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1 Introduction

Let (2, A, P) be a probability space, let (B, | - | ) be a separable Banach space endowed with its Borel
o-algebra B(B), and let X : Q@ — B be A-B(B)-measurable. For N € N the quantization problem for
X of level N consists in approximating X by a A-B(B)-measurable mapping X : Q — B whose range
ran (X) satisfies | ran (X)| < N. Any such random element X is called an N -quantization of X (in short:
quantization of X). For s € [1,0) the associated quantization error of order s is defined by

~ ~ 1/s
(X, X, B) = (E[IX - X|5|) ", (1)
and the Nth minimal quantization error
esf,) (X, B) :=inf {e(s) (X, X, B) | X is an N-quantization of X}

of order s (in short: minimal quantization error of X) is the minimal error that can be achieved by any
N-quantization of X.
This dissertation is devoted to the quantization problem for X being the solution process of an au-
tonomous d-dimensional stochastic differential equation (abridged by SDE) of the following type

dX(t) = a(X (1)) dt + b(X(t))dW(t),  te]o,1],

with an r-dimensional driving Brownian motion W, and we consider X as a random element with values
in the space L,([0,1];RY), p € [1,00), and C([0, 1];RY). Our main objective is to study the asymptotic
behavior of the Nth minimal quantization error when the size N of the quantizations tends to infinity,
and we provide sharp lower and upper error bounds along with the corresponding asymptotic constants.
In particular, the results regarding the sharp asymptotic constants are new. If d > 1, the lower bounds
hold for those N-quantizations of X which belong to the classes of product-quantizations of X. If d = 1,
the lower bounds even hold for any N-quantization of X. Especially, if d = 1 and the dimension r of the
driving Brownian motion W satisfies r > 2, our results generalize already existing results on the sharp
asymptotics of the Nth minimal quantization error of solutions of scalar SDEs, where the term scalar
refers to the case d =1 = 1.

As part of our analysis, we present a semi-constructive method which yields sequences ()? N)NeN of
N-quantizations of X that satisfy

, e®(X, Xy, B)
limsup ———————=

<9
Nowo (X, B)

for a § € [1,00). Such sequences of quantizations are called asymptotically optimal, and, if § = 1, they
are called strongly asymptotically optimal. Our method generalizes the quantization procedure developed
for scalar SDEs presented in [MGR13|. In special cases our method is even constructive and easy to
implement.
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A further objective of this dissertation is to study the asymptotics of the Nth minimal quantization error
of one-dimensional It6 processes in the spaces L,([0,1];R), p € [1,00), and C([0,1];R). More precisely,
we derive new sharp upper and lower error bounds together with corresponding asymptotic constants.
Subsequently, we use those results to derive the sharp asymptotics of the Nth minimal quantization error
of solutions of such one-dimensional SDEs which are driven by a multidimensional Brownian motion.
Furthermore, we provide a lower bound for the Nth minimal quantization error w.r.t. to certain product-
quantizations of multidimensional Ité6 processes in the space C([0,1];R%). The main purpose of both
results, the one on one-dimensional Itd processes and the one on multidimensional It6 processes, is to
serve as auxiliary results for the analysis on quantization of multidimensional SDEs.

Our analysis of the asymptotic behavior of the Nth minimal quantization error of a solution X of
an SDE is based on the general concept of information-based complexity, see [TWW88|. A problem
formulation in terms of information-based complexity comprises a set ' whose elements are called the
problem elements, a normed vector space GG, and an operator S : F' — (G, which is called the solution
operator that specifies the approximation problem under consideration. Elements S(f), f € F, are called
solution elements. For f € F one aims at computing an approximation U(f) of S(f), and the distance
of the approximation U(f) to the solution element S(f) is measured with respect to a prescribed error
criterion. These notions are transferred to the quantization problem for X in following way. The problem
elements to be approximated are the (in general infinitely many) trajectories of X, which lie in the
space C([0,1]; R?), the solution operator associated to our approximation problem is given by the identity
operator on C([0,1];R%), approximations of the trajectories of X are given by the (finitely many) paths
of a quantization X of X, and the error criterion is set in (1).

Moreover, the e-complezity (in short: complezity) corresponding to our approximation problem de-
noted by comp(e) is given by the minimal computational cost to obtain a quantization of X with prescribed
accuracy € > 0, i.e.,

comp(e) = inf {cost()N()

N N 1/
X is a quantization of X (E [HX - XHSB]) ’ < 5} ,

~

where cost(X), the computational cost to construct the paths and probability weights of a quantization
X, is determined by

(i) all required function evaluations, for instance, of the coefficients a and b, which specify the SDE
under consideration, and possibly of their partial derivatives, and

(i) all required arithmetic operations.

By assuming that the construction of a path and its probability weight of a quantization X requires at
least one function evaluation or one arithmetic operation, where each of them is performed at an a priori
fixed finite unit cost ¢ > 0, we obtain

~

¢+ |ran (X)| < cost(X).

On the other hand, the computational cost to construct the paths and probability weights of the elements
of our sequences (Xy)nen of N-quantizations of X is close to the size of the quantization in the sense
that

cost(Xy) < C-In|ran (Xy)| - |ran (X))

where C' denotes a positive real constant which does neither depend on N nor on the underlying SDE.
Therefore, we roughly measure the computational cost to construct the paths and probability weights of a



quantization X of X by the size of ran ()N( ). We add that we follow the procedure most common in the lit-
erature by formulating our results in terms of the sizes of quantizations rather than in terms of complexity.

A Concise Historical Overview of the Literature

We provide a concise overview of the literature in the field of quantization. In the course of this, we mainly
focus on results on the asymptotics of the minimal quantization error and on constructive approaches to
quantization, which are connected to the topic of this thesis. Further references of interest to our purposes
will be drawn attention to at appropriate places throughout the thesis.

Quantization has been extensively investigated in various contexts since the late 1940’s initiated by
the development of pulse-code modulation, which was the first digital technique for conveying an analog
information signal such as telephone speech over an analog channel such as a telephone wire. Especially,
the papers by SHANNON [Sha48], OLIVER, PIERCE and SHANNON [OPS48|, and BENNETT [Ben48| are
considered as seminal works for the developments in the field of quantization. GRAY and NEUHOFF
provide an elaborate and comprehensive overview of the history and practice of quantization in their
paper |GN98|, which roughly comprises the period between the late 1930’s and the late 1990’s.

From a probabilistic point of view the following numerical integration problem is a classical problem,
which, among other things, motivated the study of quantization. Let X be a random element with values
in a separable Banach space (B, |- |g), and let T : B — R be a Borel measurable and integrable mapping.
In many fields of application, for instance, mathematical finance, one wishes to approximate E [T'(X)].
Utilizing the notion of quantization yields an approach to obtain an approximation of E [T'(X)]. More
precisely, one approximates X by an N-quantization X of X for a desired N € N and uses

E[T(X)]= Y T(a) - P({X =a})

acran (X)

as an approximation for the sought quantity E [T'(X)]. The numerical computation of the above formula
is feasible if one can evaluate the function 7" and the distribution Pg is known. Hence for practical
purposes one is not interested only in the support points of a quantization but also in the corresponding
probability weights.

Typical examples for the Banach space (B, || z) most commonly treated in the literature are (R?, |-||)
where | - | denotes any norm on R%, (C([0,1];R?), | - [ ), and (L,([0, 1];R%), | - Iz, ([0,13;ray) for p € [1,00).
In the finite-dimensional case one speaks of vector quantization whereas the infinite-dimensional case is
referred to as functional quantization.

In the context of vector quantization we refer to the standard monograph by GRAF and LUSCHGY
[GL00|, which comprises a large variety of results on vector quantization from a mathematical point
of view. Results regarding the sharp asymptotics of the minimal quantization error in finite-dimensional
spaces for random elements with a non-singular distribution are due to ZADOR in 1963 [Zad63|, BUCKLEW
and WISE in 1982 [BW82|, and GRAF and LUSCHGY in 2000 [GLOO]. The book by GRAF and LUSCHGY
additionally contains an investigation of the asymptotics of the minimal quantization error for several
classes of random elements with a singular distribution, see [GL00, Chapter III].

In contrast to vector quantization, the topic of functional quantization has only been intensively treated
since the early 2000’s. In the field of functional quantization the asymptotic behavior of the minimal
quantization error as well as methods for constructive quantization were first studied for Gaussian process.
The derivation of upper bounds for the minimal quantization error of certain centered Gaussian processes
with values in a separable Banach space was first treated by FEHRINGER in 2001 in his dissertation
[FehO1]. Therein the asymptotic behavior of the small ball function corresponding to the distribution of
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the respective process is utilized as one of the main tools. FEHRINGER also provided a lower bound for
the minimal quantization error of Brownian motions in the Hilbert space La([0,1];R). Combined with
the upper bounds he obtained the sharp rate of convergence of (In N )_1/ 2 for the minimal quantization
error for Brownian motions in the space La([0, 1];R). However, the analysis in [Feh01] does not provide
sharp asymptotic constants. The results of FEHRINGER were extended in [DFMS03| by, among other
things, the provision of lower bounds for the minimal quantization error of centered Gaussian processes
in separable Banach spaces. But, again, the results in [DFMS03| do not incorporate sharp asymptotic
constants.

In 2002, parallel to the aforementioned works and by employing a different method, LUSCHGY and
PAGIES also derived the sharp rate of convergence of (In N)~'/2 for the minimal quantization error for a
large class of centered Gaussian processes in the Hilbert space La([0,1];R), see [LP02]. They pursued
a constructive approach based on the Karhunen-Loéve expansion of the respective process and on quan-
tization of normally distributed random variables. In particular, in the case of Brownian motions and
Brownian bridges one is in full knowledge of the eigenfunctions and eigenvalues in the Karhunen-Loéve
expansion. We will provide a more detailed presentation of this approach in Chapter 2.

In [LP04] LuscHGY and PAGES complemented their work in [LP02] by the provision of the corre-
sponding sharp asymptotic constants but still in the Hilbert space framework only. Independently of the
work by LUSCHGY and PAGES, DEREICH derived the same results as in [LP04] in his dissertation [Der03]
by using similar techniques.

Regarding a survey on constructive approaches to quantization of stochastic process and applications
to mathematical finance we refer the reader to [PP09|, in which, to a great extend, only Gaussian processes
with values in a Hilbert space are considered. For applications of quantization to numerical methods in
mathematical finance one may also consult the papers [PJ03|, [PPP04] and [PP05|, for example.

In the context of constructive quantization of stochastic processes in other frameworks than in a Hilbert
space setting, we mention the following two approaches. In [Wil08] WILBERTZ developed a constructive
method for quantization of Brownian motions in the space C([0,1];R) based on spline approximations. In
|[LP08] LuscHGY and PAGES developed a different constructive approach for quantization of stochastic
processes X in the space L,([0,1];RY) for p € [1,00). They exploit the mean regularity of X, and the
main tool in the construction is the expansion of X in terms of the Haar basis and the assumption that
optimal quantizations of the corresponding coefficients are available. In particular, they obtain upper
bounds for the minimal quantization error of one-dimensional Ité processes and multidimensional SDEs
but in both cases without further specified asymptotic constants.

DEREICH and SCHEUTZOW fully resolved the sharp asymptotics of the minimal quantization error
for a large class of Gaussian processes in the spaces L,([0,1];R), p € [1,00), and C([0,1];R) in 2006
in [DS06]. In [DS06| they derive the true rate of convergence of (In N)~'/2 along with corresponding
sharp asymptotic constants. According to the authors the results presented in the aforementioned paper
served as preparatory work to derive the sharp asymptotics of the minimal quantization error of one-
dimensional SDEs driven by a one-dimensional Brownian motion in the spaces L,([0,1];R), p € [1,»0),
and C([0, 1]; R), which were published by DEREICH in 2008 in [Der08a| and [Der08b|. Under rather mild
smoothness assumptions on the coefficients of the SDE it is found that the asymptotic behavior of the
minimal quantization error is related to the asymptotics of the minimal quantization error of the driving
Brownian motion and to the local regularity of the diffusion coefficient of the SDE. We will return to the
papers |Der08a] and [Der08b| in greater detail in Chapter 4.

Prior to the work by DEREICH, LUSCHGY and PAGES were the first who treated the complexity of
quantizations of solutions of SDEs in their work [LP06| published in 2006. It was a first attempt to provide
an upper bound for the minimal quantization error as well as to construct sequences of asymptotically
optimal quantizations of the solution X of a one-dimensional SDE. As a core ingredient in their con-



struction LUSCHGY and PAGES use quantizations of the driving Brownian motion, which is similar to our
method. But they employ a different method to obtain N-quantizations of X. More precisely, they solve
N deterministic ordinary differential equations (abridged by ODEs) in order to obtain an N-quantization
of X. Moreover, unlike our method, one of the key assumptions in [LP06| is strict positivity of the
diffusion coeflicient of the SDE. Due to this assumption they are in the position to apply the Lamperti
transform, which is used to transform the solution X into a diffusion process which satisfies a new SDE
whose diffusion coefficient is constant 1. The work in [LP06] is extended to multidimensional SDEs by
PaGES and SELLAMI in [PS11| by again solving a system of ODEs related to the considered SDE and,
instead of applying the Lamperti transform, by utilizing rough path theory.

Regarding a survey of results on the asymptotic behavior of the minimal quantization error of, on the
one hand, random elements with values in finite-dimensional spaces and, on the other hand, stochastic
processes, we refer the reader to [Der09].

In 2009 in [CDMGRO09] CREUTZIG, DEREICH, MULLER-GRONBACH and RITTER derived lower and
upper bounds for the minimal quantization error of solutions of multidimensional SDEs which proved the
true rate of convergence to be (In N )*1/ 2. In the aforementioned paper this result serves as an auxiliary
statement in the study of an infinite-dimensional quadrature problem, namely, the study of numerical
integration of Lipschitz continuous functionals defined on a Banach space by means of deterministic
and randomized algorithms. We stress that the results in [CDMGRO09, Proposition 3| on the minimal
quantization error do not incorporate further specified asymptotic constants. Moreover, the regularity
assumptions imposed on the coefficients of the SDE in the aforementioned paper are stronger compared
the ones imposed in our analysis.

Last but not least, we want to draw the reader’s attention to the work by MULLER-GRONBACH and
RITTER [MGR13| published in 2013. Therein they present a fully constructive method for quantization
of a solution of a scalar SDE in the path spaces L,([0,1];R), p € [1,0), and C([0,1];R). This work is
of great significance to this dissertation since one of our goals is to generalize the method presented in
[MGR13] to the case of multidimensional SDEs driven by a multidimensional Brownian motion.

Synopsis of the Thesis and Main Results

This dissertation is organized as follows. Chapters 2 and 3 are more of a preliminary character. In
Chapter 2 we provide preliminary results on quantization. First, we rigorously introduce the basic defi-
nitions and properties of quantizations already hinted at above, and, in addition to that, we present two
alternative approaches to quantization. Subsequently, we focus on the existence of optimal quantizations,
i.e., quantizations that achieve the minimal quantization error. Afterwards we present in greater detail
selected results on the asymptotic behavior of the minimal quantization error already mentioned in the
above literature overview, for instance, Zador’s theorem and the results of DEREICH and SCHEUTZOW
published in [DS06]. Additionally, we introduce several (semi-)constructive approaches to quantization.
In particular, we provide a method which yields asymptotically optimal sequences of quantizations of
Lévy Areas.

In Chapter 3 we first settle the main setting considered in this thesis. Afterwards we introduce the no-
tion of strong solutions of SDEs along with standard results on existence of strong solutions. Subsequently,
we introduce two classical time-discrete strong It6-Taylor approximation schemes for strong solutions of
SDEs, namely the Euler-Maruyama scheme and the Milstein Scheme. Both will play a prominent role in
the succeeding chapters. In either case we additionally provide a time-continuous approximation scheme
along with upper error bounds as well as results on the finiteness of certain moments.

Chapter 4 is mainly devoted to quantization of one-dimensional and multidimensional Itd processes.
First, we derive the sharp asymptotics of the minimal quantization error of one-dimensional It6 processes
in the spaces Ly([0,1];R), p € [1,0), and C([0,1];R). To our knowledge the results on the lower error
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bounds and on the sharp asymptotic constants are new. At this point we throw the work done by
DEREICH in [Der08a] and [Der0O8b| into sharp relief, since it contributed greatly to the derivation of our
results. More precisely, the key ideas and techniques employed in DEREICH’s are carried over to prove
the main result of Section 4.1, namely Theorem 4.1.2. In Section 4.2 we utilize the results obtained in
Section 4.1 in order to derive new results on the sharp asymptotics of the minimal quantization error
of such one-dimensional SDEs which are driven by a multidimensional Brownian motion. Those results
are obtained under rather mild assumptions on the coefficients of the SDE. The last section of Chapter
4, Section 4.3, is devoted to quantization of multidimensional Ité6 processes. In the main result of this
section, namely Theorem 4.3.2, we provide a new lower bound for the minimal quantization error w.r.t.
certain product-quantizations in the space C([0, 1]; RY). The lower bound is derived by, on the one hand,
utilizing the key ideas and (slightly modified) techniques employed in [Der08b], and, on the other hand,
by employing further different arguments. As already mentioned, the main purpose of Chapter 4 is to
provide auxiliary results for the analysis of the asymptotics of the minimal quantization error of solutions
of multidimensional SDEs.
Chapter 5 is concerned with quantization of the solution X = (X1,..., X9)’ of a d-dimensional SDE

dX () = a(X(8)) dt + b(X (£))dW (),  te]0,1],

driven by an r-dimensional Brownian motion W, and we provide a method which yields (strongly)
asymptotically optimal sequences ()Z' N)Nen In the classes of product-quantizations of X in the space
(Ly([0,1];RY), || - HLP([OJ];Rd)), p e [1,0), and in the space C([0,1];RY), on the one hand, equipped with
the supremum norm | - |, and, on the other hand, equipped with the norm || - |5 : C([0, 1];R%) — [0, o0)

defined by
d 1/s
IAlls = (Z !fkl\io> ,
k=1
where f = (f1,...,f%)" and s € [1,00) is the moment parameter considered in the quantization error
criterion (1). Clearly, ||| - [||s indeed defines a norm on C([0, 1]; R%). Moreover, || - |||s is equivalent to the
supremum norm || - o, and hence (C([0,1];R%), ||| - ||ls) is a separable Banach space. Although || - |||

is not the norm one would naturally choose when working with the space C([0,1];R%), it seems to be
quite well-fitted when considering product-quantizations. If the dimension d of the SDE satisfies d = 1,
our constructed sequences of quantizations of X are even strongly asymptotically optimal in the classes
of all possible quantizations of X. As already mentioned, our construction generalizes the quantization
procedure for solutions of scalar SDEs developed in [MGR13], and it basically consists of two steps. As
a first step, we apply a coarse-level quantization which consists of quantizations of finite-dimensional
projections of X. The construction of the coarse-level quantization is built-up by the time-discrete d-
dimensional Milstein scheme, by quantizations of standard normally distributed random variables, and
by quantizations of Lévy Areas. Especially the Lévy Areas occurring in the multidimensional Milstein
scheme pose an additional challenge when considering multidimensional SDEs. As a second step, we apply
a fine-level quantization which takes into account the local regularity of the components X* of X. The
techniques employed in the fine-level quantization are similar to asymptotically optimal step-size control
for strong approximation of SDEs, see, for instance, [HMGRO1|, [MGO02a], and [MGO02b]. For technical
reasons we use a different refinement strategy for each of the above mentioned Banach spaces. In the case
of quantization in L,([0, 1];R%) we separately quantize Brownian bridges defined on subintervals of [0, 1]
by applying a sequence of quantizations of Brownian bridges on [0, 1] as one of the main tools. In the case
of quantization in C([0,1];RY) equipped with the supremum norm || - |, instead of separately applying



quantizations to Brownian bridges, we quantize in one go a weighted combination of Brownian bridges.
To this end, one of the core ingredients is a sequence of strongly asymptotically optimal quantizations of
Brownian motions on [0,1]. In the case of quantization in C([0,1]; R?) equipped with the norm || - [||s,
we built-up a fine-level quantization by building blocks and ideas from both the L,([0, 1]; R%)-case and
the C([0,1]; R%)-case considered beforehand. In each case the fine-level quantization is crucial for the
overall performance of the quantization of X. We add that in the case of quantization in L,([0, 1];R?) we
confine ourselves to the case where the moment parameter in the quantization error criterion (1) equals
the parameter p. Our constructions are of a semi-constructive type since, in general, the determination of
the distribution of the quantizations remains an open problem. However, in special cases our method is
constructive and easy to implement, and the computational cost to determine the paths and corresponding
probability weights of the quantizations X ~ is proportional to In N - N. The computational cost takes
into account all required function evaluations of the coefficients of the SDE and their partial derivatives as
well as all required arithmetic operations to carry out the algorithm. We point out that it is reasonable to
assume that the support points and probability weights of all quantizations employed in our construction
can be obtained in precomputational steps, see [Wil08| as well as the website

http://www.quantize.maths-fi.com

for downloads. Therefore, we do not have to take into account the cost to construct them in our analysis
of the computational cost.

Chapter 6 contains the proofs of the main results of Chapter 5, namely, of Theorem 5.2.4, Theorem
5.3.4 and Theorem 5.4.1.

In Chapter 7 we close this thesis with some final remarks and a collection of open problems.

Basic Notation

We collect basic notation used throughout this dissertation. Further notations, where most of them are
used only at specific places within the text, will be introduced when needed. We also refer the reader to
the notation index attached at the end of this thesis.

e N denotes the set of natural numbers without 0, and Z denotes the set of integers. Moreover, for
z€Z weuse N, = {n € Z | n > max{z0}} to denote the set of all non-negative integers being
greater or equal than z.

e For a set A we use |A| € {0} U N U {00} to denote the (possibly infinite) number of points in A.

e Let A, B be non-empty sets, and let T': A — B. We use ran (T") to denote the image set of T, i.e.,
ran (T) = {T'(a) | a € A}.

e Let (D,||-|p) be a normed R-vector space. By B(D) we denote the Borel o-algebra on D.

e For v € R? we use |v[, to denote the £,-norm, p € [1,0), of v, and we use ||v]s to denote the
max-norm of v. Moreover, for a matrix V' = (v; ;), V; and V) stand for the ith row and jth column

of V, respectively, and similarly to the £,-norm on R we put |V, := (Z” |vi;[P) Y2 for p € [1,0).

e Let a,be R with a < b, let d € N, and let p € (0,00). We use L,([a,b]; R?) to denote the vector
space of all equivalence classes of Borel measurable functions f : [a,b] — R? such that

b
/ 1f18dt < .
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We equip the space Ly([a, b]; R?) with the (quasi-)norm | - Iz, (fap1me) * Lp([a, b]; R%) — [0, 0) given

by
b 1/p
U1y o = ([ 170N a)

We mostly write Ld[a,b] and | - HLg[a,b] instead of L,([a,b];RY) and | - I L, (a,b);r4): Tespectively. If
d = 1, we use the even shorter notation Ly[a,b] and |- |1, (4. We follow the literature and identify
functions with their respective equivalence classes. Additionally, recall that (Lg [a,b], ]| Lg[a,b]) is a

separable Banach space for every p € [1, ).
Moreover, C([a,b]; R?) denotes the set of all continuous functions f : [a,b] — R%. If not stated
otherwise, we equip this space with the supremum norm | - |5 given by

Ifloo = max sup [f5(0)]
0 k:L_,.,dte[CL,b]

for f = (f',..., fY € C([a,b];RY). If d = 1, we use the shorter notation C[a,b]. Recall that
(C([a, b];RY), || - | ) is a separable Banach space.

Furthermore, for o € (0,1] we use C%([a,b];RY) to denote the set of all a-Holder continuous
functions which consists of all functions f : [a,b] — R? such that

|f|o¢,a7b = sup M

< 0
a<s<t<b ’t - $’a ’

and we equip this space with the norm || - |4, : C%([a,b]; R?) — [0, 00) given by

Hf“oc,a,b = HfHOO + |f|a7a1b'

As above, if d = 1 we use a shorter notation, namely C*[a,b]. Additionally, if a = 0 and b = 1, we
abbreviate | - [q := | - [a,0,1 as well as |- |4 := | - |a,0,1. Last but not least, note the well known fact
that (C*([a,b];R?), | - |a,a) is a Banach space.

o Let de N, and let f = (f1,...,f%)" : R? - R? be partially differentiable. By Vf* we denote the
gradient of f*, and we use Vf : R? — R%*? to denote the Jacobean matrix of f, i.e.,

oft .. aft

ox1 oxq
Vi=1: oo

ox1 oxq

e In the whole thesis In stands for the natural logarithm, and occasionally we make use of the Landau
symbol o.
Preliminaries on Stochastic Processes
In this subsection, let d € N, let (£2,.A, P) be a probability space, and let a,b € R with a < b.
A family X = (X(t))te[a,p) Of A-B(R9)-measurable mappings X (t) : @ — R? is called an R%-valued

stochastic process (with time interval [a, b]). For fixed w € Q the function X(-,w) : [a,b] — R?
given by X(t,w) = X(t)(w) is called a sample path or trajectory of X associated with w, and we



call X continuous if all sample paths of X are continuous. Moreover, X is called measurable if the
mapping ¥x : [a,b] x Q — R defined by

Ux(t,w) = X(t)(w)

is B([a,b]) ® A-B(R?%)-measurable. All stochastic processes of interest in this thesis possess continuous
sample paths, which guarantees measurability, see, for instance, [KS88, Remark 1.14].

In this thesis we mostly interpret measurable stochastic processes as random elements with values in a
function space such as the space of (equivalence classes) of p-integrable functions Lg[a, b], p € [1,0) or the
space of continuous functions C([a,b]; R?). The following results motivates this viewpoint on stochastic
processes. For proofs we refer the reader to [PZ14, Proposition 3.18 and Proposition 3.19].

Lemma 1.1
Let X = (X(t))se[a] be a measurable R*-valued stochastic process on (€2, A, P).

a) Assume that X is continuous. Then the mapping X : Q — C([a, b];R?) defined by X (w) = X (-, w)
is A-B(C([a,b];R?))-measurable.

b) The mapping X : ) — Lg[a, b] defined by

X(w) = {[X(-,w)], if X(-,w) is p-integrable,

0, else,
' d
is A-B(L[a, b])-measurable.

Hence saying that we interpret X as a random element with values in LZ[a, b] or C([a,b],R?) means that

we are actually considering the associated random elements X and X, respectively. For the rest of this
thesis we abuse notation and write X instead of X and X.






2 Preliminaries on Quantization

In this chapter we present those definitions and results in the field of quantization of a random element
Z which are important to our purposes. In particular, we present selected constructive approaches to
quantization of specific random elements, which will be employed in the subsequent chapters of this
thesis. This chapter is organized as follows. In Section 1 we first introduce basic definitions with regard
to quantization of Z. Subsequently, we pay special attention to so-called Voronoi quantizations of Z since
this concept will be exploited at several places within the text. We close the first section by presenting
those properties of the Nth minimal quantization error which are most important to our purposes.

In Section 2 we provide selected results on the existence of optimal quantizations in the context of
those Banach spaces which will play a crucial role in this thesis.

In the last section, Section 3, our focus is on the asymptotic behavior of the Nth minimal quantization
error when NV tends to infinity. We commence by presenting the main result in the finite-dimensional case,
namely, Zador’s theorem. Afterwards we outline a method which yields an asymptotically optimal sequence
of quantizations of standard normally distributed random variables. Additionally, we collect further
properties of the resulting sequence of quantizations, which will prove beneficial in the following chapters.
Subsequent to that, we focus on quantization of Lévy areas. More precisely, we present a different
construction leading to a sequence of quantizations of the following stochastic It6 integral fol Wi(s) dWa(s)
where (W7, Ws) is a two-dimensional Brownian motion on [0,1]. Both aforementioned constructions of
sequences of quantizations will be employed in Chapter 5. In the last part of Section 3 we present the sharp
asymptotics of the Nth minimal quantization error of Brownian motions and Brownian bridges on [0, 1]
where both of them are viewed as random elements in the spaces (C[0, 1], | - lo) and (L,[0, 1], |- | ,[0,17)
for p € [1,0). Additionally, we outline a constructive approach to quantization of a Brownian bridge B
on [0, 1] which is based on the Karhunen-Loéve expansion of B and on quantizations of standard normally
distributed random variables.

We add that the topics of quantization of SDEs and, more general, quantization of [t6 processes are
postponed to the Chapters 4 and 5.

2.1. Basic Definitions and Basic Properties of Quantizations

In the whole section let s € [1,00), let (£2,.A4, P) be a probability space, let (B,| - |g) be a separable
R-Banach space endowed with its Borel o-field B(B), and let Z : Q@ — B be A-B(B)-measurable. Fur-

thermore, to avoid trivial cases we require |ran(Z)| = oo, and we assume the following integrability
condition to hold:

E[|Z]%] < . (2.1.1)

11



2. Preliminaries on Quantization

Remark 2.1.1

Let Z : @ — B be A-B(B)-measurable. The separability assumption on B then guarantees that Z + Z
is again A-B(B)-measurable. In contrast to that, the sum of two random elements with values in a non-
separable Banach space need not be a random element. But since the random element which is added to
Z in the upcoming Definition 2.1.2 takes only finitely many values, measurability of their sum is not an
issue. Furthermore, we point out that the integrability condition (2.1.1) ensures that all expected values
in the upcoming Definition 2.1.2 are finite.

Definition 2.1.2
Let N € N.

a) A random element Z : Q — B with |ran(Z)| < N is called an N-quantization of Z.

b) For an N-quantization Z of Z the quantization error (of order s) is defined by
~ ~ 1/s
e()(2,Z,B) = (E[HZ . Z||SBD .

Moreover, the Nth minimal quantization error of Z (of order s) is given by

eg\‘;)(Z, B) :=inf {e(s)(Z, Z,B) | 7 is an N-quantization of Z}.

¢) An N-quantization Z of Z is called an N-optimal quantization of Z (of order s) if

e®)(2,Z,B) = ¢ (z,B).

Notation
For N € N we denote the set which contains all N-optimal quantizations of Z of order s by C](\f) (Z, B).

Remark 2.1.3
a) The set C’](\?)(Z, B) might be empty, see Remark 2.2.4 ¢).

b) In the case that Z has finite range itself, the task of approximating Z by an N-quantization 7 is
trivial if V is sufficiently large. In that case a suitable choice is Z = Z. This is the reason why we
assumed |ran(Z)| = oo at the beginning.

c¢) For applications of quantizations to, for instance, numerical integration one seeks for such quan-
tizations of Z which can be implemented. But, unfortunately, in general the probability weights
corresponding to a quantization of Z are hard to compute. We will come back to this problem at
certain places within this thesis.

Apart from the approach to quantization of a random element presented in Definition 2.1.2, we outline
two different approaches to quantization, and we will see in Lemma, 2.1.4 that those alternative approaches
are equivalent to the already presented one.

The first alternative approach to the notion of quantization is connected to the application of quanti-
zations in the field of signal processing and source coding. Roughly speaking, the main task in this context
consists in processing a signal with (possibly) infinitely many outcomes via a communication channel with
limited bandwidth. To this end, the original signal has to be transferred into a signal which takes only

12



2.1. Basic Definitions and Basic Properties of Quantizations

finitely many values. Hence, from this point of view, one obtains an N-quantization of Z by composing Z
with a Borel measurable function f : B — B with |ran(f)| < N such that the resulting N-quantization
of Z is of the form Z = f(Z). From now on, we call such a function f an N-quantizer.

The second alternative approach to the concept of quantization consists in constructing a set a € B
with 1 < |a] < N such that the sth mean distance of Z and « is as small as possible. From now on, we
call any set o € B with 1 < |a| < N an N-codebook.

The following lemma shows that for all N € N the minimal errors induced by those two alternative
approaches to the concept of quantization are the same as the Nth minimal quantization error of Z defined
in Definition 2.1.2 b). Consequently, this lemma justifies switching between those three approaches when
constructing quantizations of random elements, and therefore we might choose that approach which is
the most advantageous in the respective situation.

Lemma 2.1.4
For all N € N it holds

eS\S,)(Z7 B) = inf{ (E[HZ - f(Z)||‘75D1/S ’ f : B — B Borel measurable, |ran(f)| < N}

- inf{ <E[r(£1€iél HZ—aHSB])l/S ‘ ac B, 1<|al < N}.

In the proof of the previous lemma we will employ the notion of Voronoi partitions of B induced by
finite subsets of B. For the convenience of the reader we provide a definition of the notion of Voronoi
partitions at this point.

Definition 2.1.5
Let o € B with 1 < |a| < c0. We call {V,(a) | a € @} a Voronoi partition of B induced by « if the
following is satisfied:

(i) For all a € av it holds V,,(a) € B(B).
(ii) For all a € a it holds Vi (a) = {# € B| |z — a|p = minpeq | — b5}
(iii) For all a,a’ € a with a # @ it holds V,(a) n V,(d') = &.
(1) Upea Vala) = B.
Moreover, the sets V,(a), a € a, are called Voronoi cells of the Voronoi partition {V,(a) | a € a}.

Remark 2.1.6
For every a € B with 1 < |a| < o there exists at least one Voronoi partition of B induced by «.
Indeed, we denote the elements of o by a; for i = 1,..., ||, and we abbreviate

Walai) == {z € B| |2 - ail p = min | — bl 5}

foralli=1,...,|al. Now, put V,(a1) := Wy(a1) and

i1
Valai) = Wa(a\ | Walay)
j=1
for all i = 2,...,|al. Then it is easy to see that {Va(a;) | i = 1,...,]al} is a Voronoi partition of B

induced by a.
13



2. Preliminaries on Quantization

Proof of Lemma 2.1.4: R
Let N € N. First, let f : B — B be a Borel measurable mapping with |ran(f)| < N. Then Z := f(Z) is
an N-quantization of Z, and we have

(2.8) < e(2.2.8) = (B[ |1z - 12)13]) "

Therefore,
egs)(Z, B) < inf{ (E[HZ - f(Z)||SB])1/S ’ f: B — B Borel measurable, |ran(f)| < N}.

Secondly, let Z:Q — Bbean N-quantization of Z. Then 5 := Z(Q) is an N-codebook, and hence

"< (512 - 2m) ",

inf{ (E[%gg = aHsB])l/s ’ acB, 1<]al < N} < (E[Igleiﬁn = bH“”BD
which leads to
inf{ (E[gleig = aHSB])l/S ‘ ac B, 1< o] <N|<e(2.B).
It remains to prove

inf{ (E[HZ — f(Z)HSBDl/S ‘ f : B — B Borel measurable, |ran(f)| < N} 2.12)

1/s
< inf{(E[mein = a||sB]) ‘ ac B, 1<lal < N}.

Let « € B with 1 < |a| < N, and let V, = {V,(a) | a € a} be a Voronoi partition of B induced by «.
Moreover, we define my, : B — B by

a (D) = > a- Ly, ) (D). (2.1.3)

acex

Due to (i) and (iii) in Definition 2.1.5, and due to the choice of «, the mapping 7y, is well-defined and
Borel measurable with | ran(my, )| < N. Additionally, in view of Definition 2.1.5 (ii)--(iv), it holds

1Z(w) = v, (Z)lB = )} 12(w) = b5 - Ly, ) (Z(w))

bea

- Z %}_:iol} |Z(w) —al -y, ) (Z(w))

bea

=min |Z(w) — a|p
acEx

for all w € ). Therefore,

inf{ (E[HZ - f(Z)HSBDUS ‘ f: B — B Borel measurable, |ran(f)| < N} < <E[r51€1£ |1Z — aH‘ngl/s.

This implies (2.1.2), which finishes the proof. O

14



2.1. Basic Definitions and Basic Properties of Quantizations

Remark 2.1.7

Let N € N, and let « € B with 1 < |a] < N. Furthermore, let V, = {V,(a) | a € a} be a Voronoi
partition of B induced by «. The mapping 7y, defined in (2.1.3) is called nearest-neighbor projection
associated to V,. Note that for every Borel measurable mapping f : B — B with f(B) < « it holds

E[|Z = £(2)15] > E| min[Z = bl | = E[1Z - 7, (2)]3].
Thus, 7y, (Z) yields the best approximation of Z compared to all approximations of Z by a random
element of the form f(Z) where f: B — B is a Borel measurable mapping with values in a.

We close this section by presenting selected well known properties of the Nth minimal quantization
error. To underline the importance of assuming the integrability condition (2.1.1) to hold, on the one
hand, and considering separable Banach spaces, on the other hand, we also incorporate a proof.

Proposition 2.1.8
a) For all N € N it holds eg\s,)(Z, B) > 65\7')+1(Z7 B).

o) -
b) It holds ]%Enoo ey (Z,B) =0.

c) Let (E,|-|r) be a separable R-Banach space, and let S : B — E be a bounded linear operator. Then,
for all N € N,

e2(S(2), E) < |S|op - €52, B).

Proof:

a) This statement follows directly from the definition of the Nth minimal quantization error of Z.

b) Since B is separable, there exists a set B = {y,, | n € N} © B such that cl(B) = B. W.lo.g. we
may assume y; = 0. Lemma 2.1.4 leads to

0< (92 B)* = inf{E[rgleiél = aHSB] ‘ ac B, 1< o] <N} < IE[

min_ | Z — y;|3 ] 2.14
z':l,.l..,N I vilz| ( )
for all N € N. Additionally, the fact that B is dense in B yields

lim min [|[Z -y =0.
N—oowi=1,.,N

Furthermore, for all N € N the random variable min,—; __n [|Z — ;|| is A-B(R)-measurable, and

min | Z -yl < [Z-uilp = 1Z]5
i=1,....N

Also recall that we have assumed the integrability condition (2.1.1) to hold. Thus, all assumptions
of Lebesgue’s dominated convergence theorem are satisfied, which then leads to

. . a8 = : 3 — s | =
Jim E| min |2 —yil| = B[ lm min 17— y}] =0

Together with (2.1.4) we finally arrive at

(8
1 = 0.
Jim ey (Z,B) =0

15



2. Preliminaries on Quantization

c¢) Keep in mind that we assumed the integrability condition (2.1.1) to hold, and then combine Lemma
2.1.4 with the proof of Lemma 1 in [GLP07].

O

2.2. Existence of Optimal Quantizations

In this section we present selected results on existence of N-optimal quantizations since those results
justify certain assumptions to be made in the subsequent chapters. The results provided in this section
are due to GRAF, LUSCHGY and PAGES, see [GLPO7].

As in the previous section, let s € [1,0), let (B, | - |B) be a separable R-Banach space endowed with
its Borel o-field B(B), and let Z be a B-valued random element with |ran(Z)| = oo which satisfies the
integrability condition (2.1.1), i.e.,

E[|Z]%] < .
Recall that the dual B’ and bidual B” of B are given by
B' = L(B,R) and B"=L(B,R),

respectively. Equipped with the respective operator norm | - ||op each of them is again a Banach space.
Here we abuse notation and use the same symbol for both norms.

Before we present the main theorems of this section, we first need to clarify what is meant if B is said
to be 1-complemented in its bidual B”, since this property is one of the prerequisites in the upcoming
theorems.

Definition 2.2.1
The Banach space B is said to be 1-complemented in its bidual B” if there exists a linear projection
P : B” — 1(B) such that

I Pllop <1
where ¢+ : B — B” denotes the canonical embedding of B into B”.

In the following remark we present a sufficient condition for a Banach space to be 1-complemented
in its bidual space. For further sufficient conditions which guarantee this property we refer to |[GLPO7,
Corollary 1].

Remark 2.2.2

Assume that B is reflexive. Then the canonical embedding operator + : B — B” is an isometric isomor-
phism, and in particular it holds «(B) = B”. Now consider the identity mapping idg» on B”. Then id g~
is a linear projection, and it is easy to see that |idpr|op < 1. Consequently, B is 1-complemented in its
bidual B”. To sum up, every reflexive Banach space is 1-complemented in its bidual space.

In the following theorem we summarize some of the main results in [GLPO7| on the existence of
N-optimal quantizations of Z.

Theorem 2.2.3 ([GLP07, Theorem 1, Proposition 2/)
Assume that B is 1-complemented in its bidual B"”. Then, for all N € N,

c$(z,B) + .
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2.2. Existence of Optimal Quantizations

Remark 2.2.4

a) All (LZ[O, 1], - |\Lg[071])—spaces with p € [1,00) are 1-complemented in their bidual spaces. Indeed,
for p € (1,0), the space (LZ[O, 1], - ||Lg[071]) is reflexive and thus Remark 2.2.2 applies. The space
(L4[0,1], | - ||L¢11[0’1]), however, is not reflexive. For more details on why (L{[0,1],]|- ||L«11[071]) satisfies
the assumptions of Theorem 2.2.3, we refer to [GLP07, Corollary 1 (i) and the Example on p. 32|.
Thus, any random element with values in one of those spaces admits for all N € N at least one V-

optimal quantization, and hence in those spaces the infimum in Definition 2.1.2 b) actually stands
as a minimum.

b) Assume (B, | -||g) = (R, || - |) where | - | denotes any norm on R?. Since R? is a reflexive Banach
space, Remark 2.2.2 yields that Theorem 2.2.3 incorporates the case of finite-dimensional Banach
spaces as well. Regarding existence results on optimal quantizations in this context we also refer
the reader to [GL00, 4.12 Theorem].

In particular, if d = 1, even more is known. Under certain additional assumptions not only
does an N-optimal quantization exist but it is also unique. More precisely, if P; is strongly
unimodal, i.e., Pz is an absolutely continuous distribution with Lebesgue density h such that
I:={z € R| h(x) > 0} is an open interval and Inoh; is concave, then |C](\f)(Z, R)| = 1 for all
N e N, see |GL00, 5.1 Theorem)].

c¢) Theorem 2.2.3 is not applicable to the case (B, |- |g) = (C([0,1];R?), | - | ) since this space is not
1-complemented in its bidual space, see the counterexample [GLPO7, p. 42|. Therein a real-valued
stochastic process on [0, 1] with continuous paths is presented which does not possess a 1-optimal
quantization in the space (C[0, 1], - |«)-
However, in the upcoming Theorem 2.2.7 we will see that for all NV € N there exists a random
element with values in the space of all bounded, Borel measurable functions which takes exactly NV
values and which achieves the minimal quantization error in the space (C([0, 1];R?), | - [|s0).

Example 2.2.5
We consider the Banach space (R, |- |), and we assume Z ~ N(0,1). Then, Pz is absolutely continuous
with Lebesgue density ¢ : R — R given by

o) = = - exp(=a?/2).

Note that I = {zx € R | ¢(x) > 0} = R, and for z € I we have

1.2

In(¢(z)) = —In (vV27) — -
Clearly, Ino ¢ is concave, and thus due to Remark 2.2.4 b), for all s € [1,0) and all N € N, there exists

exactly one N-optimal quantization A n of Z of order s.

Remark 2.2.6

In [PJO3] PAGES and PRINTEMS present numerical methods to determine N-optimal quantizations of
one- and multidimensional standard normally distributed random variables in the case s = 2. In the one-
dimensional case they use Newton’s method in order to obtain approximations of N-optimal quantizations.
Whereas in the case of quantization in the space R?, d € Ny, stochastic gradient methods are employed.
The support points and their corresponding probability weights of the approximations of N-optimal
quantizations determined with the just described methods are available for downloads at the website

http://quantize.maths-fi.com.
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In the one-dimensional case the database comprises optimal quantizations up to a size of N = 5999. In
the multidimensional case it comprises optimal quantizations up to a size of N = 1450 for dimensions
between d = 2 and d = 10.

For the next theorem we put
MP([0,1]; RY) := {f : [0,1] — R? | f is Borel measurable and bounded},

and we equip this space with the supremum norm | - . It is well known that (MP°([0,1];RY), | - [o) is
a Banach space.
Theorem 2.2.7 (/GLP0O7, Proposition 1, Theorem 3, Theorem 4])

(i) For all N € N it holds

e (7,0([0,1;RY) = e (2, MP([0,1];RY)).

(ii) For all N € N there exists a MP([0,1]; R%)-valued random element Zy with |ran(Zy)| = N such
that

9 (z.c(lo.11 ) = (212 - Znlz]) "

2.3. Asymptotic Behavior of the Minimal Quantization Error

In the foregoing section we treated the question of whether optimal quantizations of a random element Z
with values in a separable R-Banach space (B, ||- | p) exist. But even if one knows that such quantizations
exist, they are in general hard to determine. Thus, in most cases, one confines oneself to an analysis of
the asymptotic behavior of the Nth minimal quantization error of Z.

Recall that in Proposition 2.1.8 we have already shown that, for all s € [1, 0),

lim ¢\ (Z, B) = 0.

N—o

Now two research questions naturally arise:

e How fast does (eg{;)(Z, B))nen converge to 07

e How to construct (and implement) asymptotically optimal sequences (Z ~N)Nen of N-quantizations
of Z7
Before we try to give answers to those questions, we first need to clarify what is meant by an asymptotically

optimal sequence of N -quantizations.

Definition 2.3.1

Let s € [1,00), let (B, | -||g) be a separable R-Banach space, and let Z be a B-valued random element
with |ran (Z)| = 0. A sequence (Zy)nen of N-quantizations of Z is called asymptotically optimal
(of order s) if there exists a ¢ € [1,00) such that

. el (Z,Zn, B)
limsup —————=
vor o (Z.B)

If the previous inequality holds with § = 1, the sequence (2 ~N)nNen is called strongly asymptotically
optimal (of order s).
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2.3. Asymptotic Behavior of the Minimal Quantization Error

Analogously, we call a sequence (fn)nyen of N-quantizers fy : B — B strongly asymptotically optimal
(of order s) if

e (Z, fn(2), B)

lim sup ® <1
N—w ex' (Z,B)
2.3.1. Finite-dimensional Vector Quantization
In this subsection we consider the Banach space (R?, |- |) where, for now, | -|| denotes any norm on R

Zador’s Theorem

We present the main result on the sharp asymptotics of the minimal quantization error in the context
of finite-dimensional vector quantization, namely, Zador’s theorem. It was first stated by ZADOR (1963)
[Zad63| in the case s = 2 for random vectors with an absolutely continuous distribution. The theorem
in its general form, i.e., for any R%valued random vector, is due to BUCKLEW and WISE (1982) [BWS82)].
But BUCKLEW and WISE also treat the case s = 2, only. Here we present the version of Zador’s theorem
as stated in [GL00, 6.2 Theorem|, which is formulated for any R%-valued random vector and any moment
parameter s € 1, 00).

Theorem 2.3.2
Let s € [1,00), let Z be an Re-valued random vector with distribution Py, and let

Py = PPt 4 e

be the Lebesque decomposition of Py with respect to the d-dimensional Lebesque measure \g where PS™
denotes the absolutely continuous and Py"® the singular part of Py. Furthermore, let h : R? — [0, 00) be
a Lebesgue density of PE™, and suppose that E[||Z||**°] < oo for a 6 > 0. Then there exists a constant

c(s,d) € (0,00) depending only on the moment parameter s, the dimension d and the norm | - | such that
(d+s)/ds
lim NY. e (Z,RY) = ¢(s, d) - ( / ()| (d+s) dx) . (2.3.1)
N—0 R4
Remark 2.3.3
a) The exact value of the constant c(s, d) in the previous theorem is known only in very special cases.
For instance, if d =1 and || - | = | - |, it holds
1
N — =
C(Sa ) 2 . (S + 1)1/8

for all s € [1,00), see, for example, [GLOO, Lemma 2.9 combined with Remark 8.10 (c)].

b) The moment condition E [||Z]**°] < o in Theorem 2.3.2 ensures that

(/ |h($)|d/(d+s) dr
R4

For a proof see [GLO00, 6.3 Remark|. Moreover, we refer the reader to the example [GL00, Example
6.4], which shows that the moment condition in Theorem 2.3.2 cannot be weakened.

(d+s)/ds
> < Q0.
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c) If

|h(z)|¥4+9) 4z > 0,
Rd

Theorem 2.3.2 yields that the Nth minimal quantization error eg\é})(Z, R%) goes to 0 as fast as N-Vd
when N tends to infinity. If A = 0 a.e., (2.3.1) implies only 65\5,)(2, R%) = o(N~1/4).

Quantization of N (0, 1)-distributed Random Variables

In this subsection we assume d = 1 and || - | = | - |. Moreover, let Z be a real-valued random variable
with Z ~ N(0,1). We outline a construction which yields a strongly asymptotically optimal sequence of
N-quantizations of Z. In [GL00, Chapter 7| one finds a more detailed discussion on this construction,
which may be applied to a wider class of real-valued random elements than only to standard normally
distributed ones, see also Remark 2.3.5 at the end of this subsection.

Let s € [1,00), and let N € N. Moreover, for i = 1,..., N let 2@i-1),y denote the (2i — 1)/2N-quantile of
the standard normal distribution and put

ol = VIt s 22 (2.3.2)

Then agsj)\, < aésj)v < e < ag\s,)N. In addition to that, we define

Ag\s,) = {af?v, ce a%?N}
and
o m\% = 1/2- (a(.s) +a' ) fori=1 N —1 as well as m*% := —o0 and m{Y := o0
iN - N T 4N ARRR o,N * N,N * )
. A(s)(ag?\,) = (m’ES—)lN7m’E,SJ)V] fori=1,...,N —1, and
N
8) N (S (s
o A§3>(aSV7N) = (mN)—l,N7mN?N)'
Then, due to construction,
VAS\SI) = {VAE\;)(CLE?\[) ‘ 1= 1,...,N} (233)

is a Voronoi-partition of R with associated nearest-neighbor projection my («) 8iven by
AN

™y = agf}v -1 ( () y- (2.3.4)
Al

Now by defining

we obtain an N-quantization of Z.

20



2.3. Asymptotic Behavior of the Minimal Quantization Error

In [GLOO, Section 7.3] it is proven in a more general context that the sequence (Z](\f)) Nen satisfies

- () (7 (5) 1 1/(1+s) (+s)/
Jlim N el (2,2, R) - T </R|¢(g;)| da:)

where ¢ is the density of the standard normal distribution.

In the following lemma we collect further properties of the sequence (Z](\‘;)) NeN, Which will prove
beneficial in Chapter 5.

Lemma 2.3.4
a) For all N € N it holds E[Z](\?)] = 0.
b) For all § € [1,00) it holds

sup B[| Z{['] < eo.

c¢) There exists a constant c¢(s) € (0,00) depending only on s such that
e(s)(Z, Z&?,R) <c(s)- N1
for all N € N.

Proof:

a) This statement follows directly from the definition of the sets in the Voronoi partitions V 1 N EN,
N
and the symmetry of Py.

b) For a proof we refer to [MGR10, Section 3.1].

¢) As already mentioned above, the sequence (2](\‘;)) ~Nen of N-quantizations of Z is strongly asymptot-
ically optimal of order s, i.e., it holds

: (s) ~(s) 1 1/(1+s) (s
lim N el (2,2, R) - el </R]<p(x)‘ d:v> .
Thus, there exists a constant ¢(s) € (0,00) depending only on s such that
e(s)(Z, Z](\‘;),]R) <c(s)-N7!

for all N € N.

Remark 2.3.5
a) For N € N it holds

P({ZY = aR}) = P({Z e Vo (@iR)})

for all i = 1,...,N. Since P; = N(0,1), the above probability weights can easily be computed.
Hence the above presented method for quantization of standard normally distributed random vari-
ables is fully constructive, and the algorithm is easy to implement.

21



2. Preliminaries on Quantization

22

b)

As already mentioned at the beginning of this subsection, the above presented method for quantiza-
tion of standard normally distributed random variables is just a specific example of a quantization
procedure which is applicable to a whole class of real-valued random variables.

Indeed, let s € [1,00), and let Y be a real-valued random variable with an absolutely continuous
distribution Py such that Py possesses a Lebesgue density h which satisfies

(i) I ={xeR|h(x) > 0} is an open interval, and
(ii) h is continuous on 1.

Moreover, we require E[|Y]*"] < oo for a § > 0. Then the previous moment condition and (i)
imply

0< / ’h(t)|1/(1+5) dt < co.
R

We add that (ii) is a technical assumption on h which is exploited in the proofs in [GLO0O, Section
7.3]. Furthermore, we define hs : R — R by

(h(x))l/(l-‘rs)
- I (h(t))l/(Hs) gt

hs(x)

and by Ps we denote the absolutely continuous distribution on R with Lebesgue density hs. Next, for
N e N, let bgsjz, be the (2i — 1)/2N-quantile of the distribution Ps for every ¢ = 1,..., N. Moreover,
for N € N we put

s) . (p(s) (s
](V T {b§7N7- . -7bN,)N}7

we define the Voronoi cells of an associated Voronoi partition Vﬁ(s) in the same way as the Voronoi

N
cells of the Voronoi partition in (2.3.3), and we define my ) analogously to (2.3.4). Then, as proven
AN

in [GLOO, Section 7.3], the sequence (?]E,S))N(;N with

?JSJS) =Y g (Y)
AN

is strongly asymptotically optimal of order s.

If Y ~ N(0,1), it is easy to see that Py possesses a Lebesgue density which satisfies (i) and
(ii) above, and additionally the required moment condition on Y is satisfied. Moreover, it holds
P, = N(0,5 + 1), see [GL00, Table 7.1], and hence 8%, = a'*) for all i = 1,...,N and N ¢ N

n
where agsj)\, are the numbers defined in (2.3.2). Thus, the construction for quantization of standard

normall}; distributed random variables presented at the beginning of this subsection is just a special
case of this more general procedure.

At this point, we also refer to [MGR13, Section 3.1]. Therein they present a different constructive
method for quantization of standard normally distributed random variables which yields a sequence
of N-quantizations that also satisfies a)--c) in Lemma 2.3.4. In contrast to the construction pre-
sented here, the method in [MGR13, Section 3.1] is neither a Voronoi quantization nor does it
employ quantiles of the standard normal distribution.
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Quantization of Lévy Areas

Let (€2, A, P) be a probability space equipped with a filtration F = (F(t))e[0,1] Which satisfies the usual
conditions, i.e., F is right-continuous and

{AcQ|INeA: AC N A P(N) =0} < F(0).

Moreover, let W = (W7, Wa) be a two-dimensional F-Brownian motion on [0, 1] defined on (€2, A, P).

The statements presented in the next lemma will prove beneficial in the remaining part of this thesis. In
particular, b) and c) will play a role in the construction of a sequence of quantizations of the Itd integral
) Wi(s) dWal(s).

Lemma 2.3.6

a) It holds
1
E [/ Wl(s) dWQ(S)] =0.
0
b) For every p € [1,00) it holds
! p
EU/ Wi (s) de(s)‘ } < .
0
c¢) It holds

/ Wi(s) dWa(s) £ / (= Wi(s)) dWa(s).
0 0

d) Let s,t € [0,1] with s <t. Then

/ (Wi(u) — Wi(s)) dWa(u)

is independent of F(s).

Proof:

a) This statement is well known, and therefore a proof is omitted.

b) It suffices to carry out the proof for p € [2,00). Applying the Burkholder-Davis-Gundy inequality,
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Jensen’s inequality, and Fubini’s theorem, yields the existence of a constant ¢ € (0,00) such that

E|| /01w1<s>dw2<s>1p]<Engq / Wils) dWa(s ﬂ
<E[</O |W1<s>|2ds>p/2]

1
<c-/0 E[|W1i(s)[P] ds

<c-E[ sup [Wi(s)]P].
s€[0,1]

Now, applying the well-known fact that E[supse[o’l] |[W1(s) ]p] < oo finishes the proof of b).

We put
1
X::/ Wi(s)dWa(s)  and Y = —X.
0

Moreover, for n € N let m, = {to,...,t,} be the discretization of [0, 1] given by

1
ti = —
n
for all i = 0,...,n. Note that (m,)nen is a sequence of partitions of [0, 1] with
1
lim max |t —tg_1| = lim — = 0.
n—o0 k=1,....,n n—o n

Furthermore, we define sequences (X, )nen, (Yn)nen of real-valued random variables by

Z 1(tk—1) Wz(tk) — WQ(tk_l)) and Y, = —-X,.

Then, X, L3 X as well as Y, L Y, see, for example, [Kuo06, Theorem 4.7.1.], and hence X, £ X
L
aswellas Y,, > Y.
For all n € N there exists a Borel measurable mapping v, : C([0, 1]; R?) — R such that

Xn = ¢n (Wl, WQ) and Yn = %( — Wl, WQ). (2.3.5)

Additionally, note that the process —W; is a Brownian motion on [0, 1] which, on top of that, is
independent of Wy. Thus, (—Wi, Ws) is a two-dimensional Brownian motion on [0, 1], and hence

(W1, Wa) £ (—W1,Ws). Together with (2.3.5) we obtain X, £Y, for all n € N. Consequently, all

assumptions of Lemma C.1 are satisfied, which finally leads to X Ly,

We abbreviate

- / (Wi (u) — Wi(s)) dWa(u),
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and we show that I and 14 are independent for all A € F(s). In view of Proposition C.2 the latter
holds if and only if

O,14)(8:1) = 1(s) - pu,(t)
for all (s,t) € R? and all A € F(s).
We fix A e F(s), and for n € N let m, = {to,...,t,} be the discretization of [s,t] with
1
t = o (t—
s+ - (t—ys)

for all i = 0,...,n. Then (7, )nen is a sequence of partitions of [s,t] with

. .1
lim max |t —tg—1| = lim —-(t—s) =0.
n—w k=1,...n n—o0 n

Furthermore, we put
I =Y (Wilte—1) — Wi(s)) - (Wa(tx) — Wa(te—1))
k=1

for all n € N. Then I, Iz I, and hence I, A I, which implies
lim o, (t) = ¢1(t) (2.3.6)
n—aoo

for all £ € R. Moreover, I, =y implies

lim E [ (1, 14) = (1, 14) 3] = lim E[|7, — 1]*] =0,

n—0o0

and hence (I,,14) 5 (I,14). Therefore,

lim go(ImﬂA)(s,t) = QO(I,ILA)(S’t) (2.3.7)

n—o0

for all (s,t) € R2. Additionally, it is easy to see that, for all n € N, I,, and 1 4 are independent. Now
by combining (2.3.7), Proposition C.2, and (2.3.6), we finally end up with

Pa(s:t) = lm o, q,(s,t) = lim (pr,(s) - 014(t) = (lim 7, (5)) - @1, (t) = pr(s) - 1, (t)

n n—0o0 n—o0

for all (s,t) € R?, which finishes the proof of d).

O

For the rest of this subsection we put Z := fol Wi(s)dWa(s), and we outline a method which yields a
sequence (2 N)NeN of quantizations of Z where each quantization Zn has finite range of roughly N points.
The method is also employed in [MGRY15] and it is based on a more general construction due to [DV11].
In [DV11] DEREICH and VORMOOR present a quantization procedure for such R?-valued random vectors
which have finite moments of any order. Due to Lemma 2.3.6 b) Z has finite moments of any order, and
hence the quantization procedure presented in [MGRY15] is a suitable choice for quantization of Z.
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Let v € (1,00), and let N € N. We put

J = |NY|,

s3]

Moreover, for k =1,...,N; +1and j =1,...,J we put

and for j =1,...,J we define

k—1
bir:=7—1
5,k J + Nj 5
and we consider the mapping T](V7 ) R — R defined by
J Nj
()
Ty 7 Z Z ( [bj,k:bj, k+1)(x) —bjk - ]l(—bj,wl,—bj,k] (a:)) (2.3.8)

To sum up, this construction is built-up as follows. For j = 1,...,J the intervals [j—1, j) and (—j, —(j—1)]

are partitioned into equidistant subintervals of length 1/N;. Based on this, the function T](\7 ) maps a point
x € (—J,J) to the left endpoint of the respective subinterval x lies in if z > 0, whereas z is mapped to

the right endpoint of the respective subinterval x lies in if x < 0. Moreover, T](V7 ) maps all points in
(—o0,—J] v [J,0) to 0.
Now by defining

2 =12
we obtain a quantization of Z.

~(7)

In the following lemma we collect selected properties of the sequence (Zy’)nen, which will play a role in
Chapter 5.

Lemma 2.3.7
a) For all N € N it holds
T](VW) (R) [_Nl/w’Nl/V]

and

J
ran (7)) =2- Y N; ~1<2-N- .

j=1 vl

b) For all N € N it holds E[Z{’] = 0.

c) For all s € [1,00) and all p € (1 + (1 + ) - s,00) there exists a constant c(p,s) € (0,00) depending
only on p and s such that

B[12 - 201 < ctp.s) - max L E[|ZP]} - N

for all N € N.
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d) For all s € [1,00) it holds

sup E[\Z(\?)F] < 0.
NeN

Proof:

a) Let N € N. The definition of the mapping T](\,7 ) directly implies

J
T](\?)(R) < [-NY7,NY7]  and | ran (T](\?))| =2- Z N; —1.
j=1

Moreover, since v > 1 the over-harmonic series 2;0:1 1/47 converges to (() where ¢ denotes the
Riemann zeta function. Thus, by the definition of the numbers N; and by the standard estimate
C(y) <7/(v—1), see, for instance, [IR90, Proof of Proposition 16.1.2.], we conclude that

J
1 gl
2-5N»—1<2~N~E <2-N- <2-N- )
~ J = 7 ¢(v) N1

which finishes the proof of a).

b) Let N € N. Due to the definition of the function T](\,7 ), and due to the symmetry of Pz, see Lemma
2.3.6 ¢), we obtain

=

=3
I

1=

bj,k . (P({Z € [ijf, bj,k+1)}) — P({Z € (_bj,k+17 _bj,k]})>

<.
Il

—_

—

2T

Il
M~

bjk - (P({Z € [bjk bjrs1)}) — P({Z € [bj,kabj,k+1)})>

I

o S,

o
—
=
l
H

c) For a proof we refer the reader to [MGRY15, Lemma 5.1.].

d) Let s € [1,0), and choose p e (14 (1 + ) - s,0). Due to c) there exists a constant ¢(p, s) € [1,0)
depending only on p and s such that

E[IZ0'1"] < c(p.s) - (E[|Z1"] + max {1, E[|Z"]} - N7*) < c(p,5) - (E[|Z]"] + max {1, E[|Z]"]})

(2.3.9)
for all N € N. Moreover, Lemma 2.3.6 b) yields
max {E[|Z|°], E[|Z"]} < 0.
Therefore, together with (2.3.9) we arrive at
Js\fléE]E[‘Z](\?)P] < .
O
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Remark 2.3.8

Let N € N. The probability weights corresponding to the quantization 21(\7) are hard determine. It is
well known that the distribution Py is an absolutely continuous distribution, see, for instance, [RWO01].
But to our knowledge there is, so far, no closed form expression of the distribution function Fz of Z to
be found in the literature. Hence, for us, it remains an open problem how to determine or at least how

to apprioximate the probability weights corresponding to ZJ(\?) Therefore, the presented quantization
procedure for Z is only of a semi-constructive type.

2.3.2. Quantization of Brownian Motions and Brownian Bridges

In this subsection we present the results of DEREICH and SCHEUTZOW in [DS06] on the sharp asymptotics
of the Nth minimal quantization error of one-dimensional Brownian motions and Brownian bridges on
[0, 1] both of them interpreted as random elements with values in the Banach spaces (Ly[0,1], | - HLI,[O,l]),
p € [1,00), and (C[(), 1], - ||OO). But first, for the convenience of the reader, we recall the definition of a
Brownian bridge.

Definition 2.3.9
Let a,b € [0,00) with @ < b. A real-valued stochastic process B = (B(t))[qp] is called a Brownian
bridge on [a, b] if

(i) B is a Gaussian process with continuous paths,
(ii) for all ¢ € [a,b] it holds E[B(t)] = 0, and
(iii) for all s,¢ € [a,b] it holds

(min(s,t) — a) - (b— max(s, t))
b—a '

Cov[B(s),B(t)] =

Remark 2.3.10

a) An attribute peculiar to a Brownian bridge B on [a,b| resulting from (ii) and (iii) in the previous
definition is the fact that B(a) = 0 = B(b) a.s., which motivates the term bridge.

b) One obtains a prominent example of a Brownian bridge on [0, 1] by the following construction. Let
W = (W (t))se[0,1] be a one-dimensional Brownian motion, and let B = (B(t))c[o,1] be defined by

B(t) =W(t)—t-W(1).
It is easy to see that the process B is a Brownian bridge on [0, 1].

Theorem 2.3.11 (/DS06, Theorem 1.1, Theorem 1.3])
Let W be a one-dimensional Brownian motion on [0,1], and let B be a Brownian bridge on [0, 1].

(i) Let p e [1,0). Then there exists a constant k, € (0,00) such that, for all s € [1,00),

lim VIn N - el (W, Ly[0,1]) = lim VInN - e (B, L,[0,1]) = &,

N—00 N—0
(ii) There exists a constant ko € (0,00) such that, for all s € [1,00),

lim VInN - e (W,¢[0,1]) = lim VIn N - e (B,C[0,1]) = rop.

N—o0 N—o0
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Remark 2.3.12

a) For p = 2 it is known that kg = \/2/7, see, for example, [Der03, Section 6.4] and [LP04, Section 3].
Whereas for all other p € [1,00) one has only estimates for x,. More precisely, we put

) @ » 2 1 © o, 2
A(p) := inf 2P (p(2)) dz + = - (¢'(x))" dax
o 2 Jw
where the infimum is taken over all weakly differentiable functions ¢ : R — R such that

/w (p(2))* dz = 1.

—00

Then,
Ky € [op). VB - cp)]

where ¢(p) := 27 . Vo (Ap)/(2 —l—p))(2+p)/(2p), see [Der09, Section 3.2].

b) The exact value of the constant k4 is unknown. One only has the estimate

Koo € [W/\/g, 7r],
see, for instance, [DFMS03].

Constructive Quantization of Brownian Bridges in L0, 1]

We close this section by outlining a constructive method for quantization of Brownian bridges on [0, 1] in
the Hilbert space L2[0, 1] w.r.t. the moment parameter s = 2. Throughout this subsection, by {-,-)7,[0,1]
we denote the inner product on Ls[0, 1].

Let (€2, A, P) be a probability space, and let B = (B(t));e[0,1] be a Brownian bridge defined on (€2, A, P),
which we interpret as a random element with values in the space Ly[0,1]. The method is based on the
Karhunen-Loéve expansion of B and on quantizations of standard normally distributed random variables,
and it is a specific example of a more general construction which is mostly employed for quantization of
Gaussian processes with values in a separable Hilbert space. For more detailed and more general accounts
on Karhunen-Loéve expansions and their application in the context of quantization of Gaussian processes
one might consult, for example, [LP02], [Der03|, [PP05], the survey [PP09], and the website

http://www.quantize.maths-fi.com

for downloads. But since we utilize the method only in the context of quantization of a Browinian bridge
on [0,1] in the space L2[0, 1], we confine ourselves to this case here.
We commence by considering the linear operator I'g : Ls[0, 1] — L2[0, 1] given by

1
Cah) = [ 1) BIBO B s tel0.1]
The operator I'p is called the covariance operator of B. Due to definition 2.3.9 (ii) it holds

E[B(t) - B(s)] = min(s,t) —s-t
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for all s,¢ € [0,1], and hence we have

(Tpf)(t /f - (min(s,t) — s t)ds

for t € [0,1] and f € L2[0,1]. The covariance operator I'g belongs to a wide class of integral operators
which are called Fredholm integral operators. In the following lemma we collect further properties of
I'p.

Lemma 2.3.13
The operator I'g is compact, positive and self-adjoint.

Proof:
First, note that the kernel k : [0,1]?> — R of the Fredholm integral operator I'p is given by

k(s,t) = min(s,t) — s - t.

It is easy to see, that k is continuous. The fact that a Fredholm integral operator with a continuous kernel
is compact then yields that I'p is compact. Secondly, the statement that ['p is self-adjoint and positive
can be easily verified by direct calculation. For a proof we refer to [Tou08]. O

Due to the previous lemma all prerequisites of the spectral theorem for compact, self-adjoint operators
on Hilbert spaces are satisfied, by means of which one derives that for P-a.a. w € €) it holds

— Z V(W) - en (2.3.10)
n=1

where convergence holds in the space L2[0,1] and

(i) en, n € N, are the eigenfunctions of I'p,
(ii) (An)nen is the sequence of eigenvalues corresponding to the eigenfunctions e,, n € N, and

(i) (&n)nen is the sequence of i.i.d. standard normally distributed random variables given by

1
En = \/T—n : <en>B>L2[0,1]

for n € N.

It is well known that the eigenfunctions e, : [0,1] — R and corresponding eigenvalues A,, of I'g are given
by

en(t) = V2 - sin(mn - t), te0,1],
and )\, = (7mn)~2, respectively, see, for instance, [LP02, Example 3.3.].

Definition 2.3.14
The series on the right-hand side in (2.3.10) is called Karhunen-Loéve expansion of B.

Remark 2.3.15
Due to (2.3.10) there exists a set Q* € A with P(2*) = 1 such that

= Z \/)\»né.n(w)en
n=1
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for all w € Q*. Now consider the mapping B : 2 — L3[0, 1] defined by

— B if a*
B (w)’ Twe 9
0, else.
Since B ©2% B, we have B £ B. Hence from now on we may assume equality in (2.3.10) without
changing the distribution of B, and we abuse notation and write B instead of B.

Let N € N. The following procedure yields an N-quantization of B. The idea is simply to take a
truncation index d(V) € N as well as numbers Ny, ..., Ng(n) € N such that Ny - -+ Ngvy < N, and to apply

an Np-optimal quantization ESLN") to the random variable &, for n = 1,...,d(N). Then by defining

By Z VA - €N (2.3.11)

we obtain an N-quantization of B. We denote the set which contains all N-quantizations of B that are
of the form as in (2.3.11) by Kx.

Remark 2.3.16

a) Ideally, for N € N, one would prefer those N-quantizations of B in Ky that induce the least possible
error among all N-quantizations of B that are of the form as in (2.3.11). More precisely, for N € N
one seeks for an N-quantization By opti € K, if it exists, such that

E [HB - EN,OptiniQ[O,”] — inf {E [HB . EHQ[OJ]] ] Be /cN} . (2.3.12)

In [PPO05, Section 4] it is shown that for all N € N such a quantization B N,opti exists, and hence
the infimum in (2.3.12) actually stands as a minimum. Moreover, due to [PP05, Proposition 3| the
sequence (E N@pti) Nen ©f N-quantizations of B is asymptotically optimal of order 2.

For N € N we call the truncation index corresponding to B N,opti, Which we donte by d(N)optis
optimal truncation index. The set {N1,..., Ny, } such that Ni-- Ny, < N corre-

opti
sponding to EN,Opti is called optimal product- decomp051t10n of N. A database which contains
tables with numerical values for d(IV)opt; along with a corresponding optimal product-decomposition
{Ny,..., Ny N)opti} of N is available for downloads at the above mentioned website for NV = 1 up to
N = 11519. For further details on how the aforementioned database is derived, we refer the reader
to [PP05]. Figure 2.3.1 displays the paths of a quantization §3370pti with d(33)opti = 2 and with
optimal product-decomposition 33 = 11 - 3.

b) Let N € N, and let d(N) € N as well as Ny, ..., Ny € N such that Ny --- Ngvy < N. Moreover,
~(N1,,Ng(n))

forallm =1,...,d(N) let E(N" be the Nj-optimal quantization of &,, and let B, be the
corresponding N-quantization of B which is of the form as in (2.3.11).

Each o € ran (EJ(VNl""’Nd<N>)) corresponds to a vector (a1, ...,aqn)) € X, A 1 ran (E( ")) such
that

d(N)

o= A Qp * €.
2V
n=1
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Since the random variables &1, ..., {g() are independent, we have
(N1 Ngia) d(N)
P({BY M) —a}) = TT P& = an}).
n=1

Additionally, recall that approximations of optimal quantizations of one-dimensional standard nor-
mally distributed random variables along with their corresponding probability weights are available
at the above mentioned website for downloads, see also Remark 2.2.6. Thus, the above presented
quantization procedure for Brownian bridges on [0, 1] is fully constructive, and moreover the algo-
rithm is easy to implement.

An alternative approach to obtain an N-quantization by utilizing the Karhunen-Loéve expansion of
B is the following. For N € N and a truncation index d(/N) one applies an N-optimal quantization to
the whole multidimensional standard normally distributed random vector (&1, ..., &g N))’ , instead
of separately applying quantizations to the random variables &, for n = 1,...,d(IN). Since this
approach is not of interest to our purposes, we will not go into greater detail at this point. For
a detailed account on this alternative approach to quantization of B we refer the reader to, for
example, [Der03] and [LP04].

For a constructive approach to quantization of Gaussian processes in the space Ly[0, 1] we refer the
reader to [LP08|. Therein the authors use the expansion of the respective process in terms of the
Haar basis as one of the main tools.

1.0

)
)

Bs3,0pti(t)
i\
«»a

!
)
y
!

-0.5

-1.0

Figure 2.3.1.: Paths of a quantization §3370pti of a Brownian bridge B on [0,1]



3 Preliminaries on Stochastic Differential
Equations

In this chapter we provide preliminaries on SDEs which are required in this thesis. The chapter is
organized as follows. In Section 1 we settle the main setting for the remaining part of this thesis.

Subsequent to this, in Section 2, we introduce the notion of a strong solution of an SDE. Additionally,
we present basic results on existence and uniqueness of strong solutions. We conclude the second section
with a remark on diffusion processes and their interrelationship with strong solutions of SDEs.

In the last section, in Section 3, we present two time-discrete strong approximation schemes for strong
solutions of SDEs, namely the Fuler scheme and the Milstein scheme, along with a corresponding time-
continuous process in each case.

3.1. Main Setting of the Thesis

3.1.1. Basic Setting

Let d,r € N, and let (£2,.A, P) be a complete probability space, i.e.,
{AcQ|INe A: A NAPN)=0} <A

We consider a d-dimensional system of autonomous stochastic differential equations of the following type

dX(t) = a(X (1)) dt + b(X(t))dW(t), te[0,1],

X(0) = . (3.1.1)

with initial condition x¢ = (.7,‘(1), e ,mg)’ e RY, r-dimensional driving Brownian motion
W= Wy,...,W,.)
defined on (2, A, P), Borel measurable drift
a=(ay,...,a9) : RY - R?

and Borel measurable diffusion coefficient

0 ]Rd N RdXT'

b= (bij)k=1,..
Jj=1,...,r

)
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3. Preliminaries on Stochastic Differential Equations

Note that (3.1.1) is just a short notation for the following system of stochastic integral equations:

1 _JIl ta S S r t ; S S
quo+/1wmw+;AMAm»mw>

0
2 = ZEQ ta S S \ t ; S i\S
Xawo+42muw+gémwm»mw>
Xd(t) = xg + /Ot ad(X(s)) ds +§/0t ba,; (X(s)) dW;(s)

for ¢ € [0, 1].

Additionally, we equip (€2, .4, P) with a specific filtration, which is convenient when considering strong
solutions of SDEs. More precisely, we take the natural filtration FV = (FW (t))te[0,1] generated by the
Brownian motion W, which is given by

FY ) =a({W(s) | se[0,t]})
for t € [0,1], and we put
NFY)={AcQ|INeFY(1): Ac N A P(N) = 0}.
Then, by utilizing F" and N (F"), we define
Ft) = o(FV ) uN(FY)) (3.1.2)

for ¢ € [0,1]. Note that since we assumed that (2,4, P) is complete, it holds F(t) < A for all ¢ € [0, 1],
and hence F := (F(t))se[o,1] is a filtration on (€2, A, P). Furthermore, F is augmented, right-continuous,
and W is a F-Brownian motion see, for instance, [KS88, Theorem 2.7.9 and the proof of Proposition
2.7.1].

3.1.2. Additional Technical Assumptions

We impose the following additional technical assumptions on the coefficients a and b of the SDE (3.1.1):
For f € {a, b, ... b} we assume that

(C1) f is continuously differentiable, and

(C2) there exists a constant K € (0,00) such that
(i) sup |Vf(z)], < K, and

zeR4

(i) for all z,y € R it holds [V f(z) = Vf(y)|, < K - [z — y]2.

In particular, assumption (C1) ensures that all partial derivatives of the functions a, b b exist,
and, in addition to that, due to (C2) the partial derivatives of a, bW, ..., b are uniformly bounded and
globally Lipschitz continuous.
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Remark 3.1.1

a) The assumptions (C1) and (C2) are stronger compared to the so-called standard assumptions
on the coefficients of an SDE, which in case of an autonomous SDE require that both the drift
and diffusion coefficient are globally Lipschitz continuous. In case of a non-autonomous SDE the
standard assumptions additionally incorporate the assumption that both a and b are of at most
linear growth. See also the following remarks in b).

b) In the proof of the upcoming Corollary 3.2.5 we will show that (C1) and (C2) (i) imply that both
a and b are globally Lipschitz continuous. This in turn, since a and b are time-independent, yields
that ¢ and b are of at most linear growth, see also Remark 3.2.4.

¢) Due to (C2) (i) the derivatives Va, Vb, j = 1,...,r, are uniformly bounded, and together with
Taylor’s theorem we obtain the existence of a constant C' € (0, o0) such that for all z,y € R? it holds

la(z) — a(y) — Valy) - (z —y)|2 < C - |z —yl3
as well as

max b9 () =6V (y) = VO (y) - (& = )2 < O & — y]3.

J=1,...7r

3.2. Basic Facts on Strong Solutions of SDEs

In this section, we assume the setting in Section 3.1.1, and we introduce the notion of a strong solution
of an SDE. Additionally, we provide basic results on existence and uniqueness of strong solutions under
standard assumptions on the coefficients of the SDE. The material presented in this section along with
further facts on SDEs can be found, for example, in KARATZAS and SHREVE [KS88|. For an introduction
to the field of stochastic analysis we also refer the reader to the monographs by, for instance, ARNOLD
[Arn74], PROTTER [Pro05] and MAO [Mao07].

Definition 3.2.1

A strong solution of the SDE (3.1.1), on the given probability space (2,4, P) and with respect to the
Brownian motion W and initial condition g, is an R%valued stochastic process X = (X (t))te[o,1] With
the following properties:

(i) X has continuous paths.
(ii) X is adapted to F.

(iii) For all t € [0,1] it holds

/0 Z ’ak i ‘b’f,j(X(S))F) ds <o P-a.s.

J=1

(iv) Forall k =1,...,d and ¢ € [0, 1] it holds

XF(t) = af + /t ar(X(s)) ds + 27": /t b (X (s)) Wj(s) P-as.
0 odo
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3. Preliminaries on Stochastic Differential Equations

Remark 3.2.2

According to the previous definition all paths of a strong solution of an SDE are continuous. Hence,
in view of the observations presented at the end of the introductory chapter, we may interpret a strong
solution as a random element with values in the spaces C([0, 1]; R?) and LZ[0, 1] for p € [1,0).

The following theorem states that under standard assumptions on the coefficients of the SDE (3.1.1)
there exists a unique strong solution.

Theorem 3.2.3
Assume that there exists a constant C € (0,0) such that for all x,y € R? it holds

max {|a(z) — a(y) |2, [b(z) — b(y) |2} < C - |z =yl (3.2.1)

Then there exists a unique (up to indistinguishability) strong solution X of the SDE (3.1.1), and for all
q € [1,00) there exists a constant ¢ € (0,00) depending on q, the initial value xy, and the constant in
(3.2.1), such that

E[ sup HX(t)HgO] <e (3.2.2)
te[0,1]
Proof:
For a proof we refer the reader to, for example, [KS88, Theorem 2.9|. OJ
Remark 3.2.4

More generally, one mostly considers non-autonomous SDEs whose initial value is a random vector. In
this case one has to include two additional prerequisites in Theorem 3.2.3 in order to obtain the same
results stated therein. First, one additionally has to require that a and b are of at most linear growth.
Secondly, one has to include an additional assumption on the finiteness of the absolute moments of the
initial value, see, for example, [KS88, Theorem 2.9].

The following considerations show that in the context of the setting presented in Section 3.1.1 those
two additional assumptions need not be included in Theorem 3.2.3. First, recall that the SDE (3.1.1) is
time-independent. Hence assuming a as well as b to be globally Lipschitz continuous implies that both a
and b are of at most linear growth. Indeed, let z € R?. Inequality (3.2.1) yields

[f @)z < 1 (2) = F(O)l2 + [£(0)2 < C - |zl2 + [ £(0) |2 < max{C, | £(0)[2} - (1 + J=[2)

for f € {a,b}. Secondly, since the initial value zg of the SDE (3.1.1) is deterministic, all moments E[|zo|?],
q € [1,00), are finite.

Corollary 3.2.5
The assumptions (C1) and (C2) (i) guarantee the existence of a unique strong solution X of the SDE
(3.1.1).

Proof:
Let f e {a,b™,...,b("}. We show that f is globally Lipschitz continuous. Then the assertion of the
corollary follows by applying Theorem 3.2.3. Due to assumption (C1) f satisfies the prerequisites of the
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3.3. Strong It6-Taylor Approximation Schemes

mean value theorem, which together with assumption (C2) (i) yields

1
1) — F)la = H [ Vi@ -

2

1
</ IV +t- (=) - (@ —y)ladt
0

1

</ IV +t- @ =)o (@ — y)ladt
0

< Vd-1K [z - 9l

for all z,y € R? where K is the constant in (C2). This implies that a and b are globally Lipschitz
continuous. O

For the remaining part of this section we assume that there exists a strong solution X = (X! ... X d)’
of the SDE (3.1.1). If a and b are continuous, X is a diffusion process. In particular, for all p € [1, 00), all
k=1,...,d,all s,t€[0,1] with s < ¢, and Px(y-a.a. v € R?, we have

E[|1X*(0) = XM (s | X(s) = 2| = mi- [ou(@)] - (¢ = )7 + o((t — )'2)

where m,, denotes the pth root of the pth absolute moment of a one-dimensional standard normally
distributed random variable, i.e.,

m, = </Z lylP/(2m)"/? - exp(—y?/2) dy) Up?

see [MG02b, Section II.1]. Thus, given X (s) = z, the kth component X* of the solution X is locally
Hoélder continuous of order 1/2 in the pth mean sense, and m,, - |bg(z)|2 might be called a conditional
L,-Hélder constant for X* at point z. In view of that, the local smoothness of X* at time point ¢ € [0, 1]
is determined by the size of

Stoct (X" (1)) = b (X (2)) -

Remark 3.2.6

Assumption (C1) yields that a and b are continuous. Consequently, assuming the setting in Section 3.1
to hold guarantees that the strong solution X of the SDE (3.1.1) is a diffusion process, and hence the
observations prior to this remark hold. We will come back to them in Chapter 5.

3.3. Strong Ito-Taylor Approximation Schemes

We assume the setting in Section 3.1.1, and we present two classical methods for strong approximation
of solutions of SDEs, namely, the Fuler scheme and the Milstein scheme. Both schemes are based on
a fixed discretization of the time interval [0, 1] and recursively generate an approximation of X at the
discretization points.
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3. Preliminaries on Stochastic Differential Equations

The Euler scheme and the Milstein scheme are examples of a wider class of strong approximation schemes
that are based on the It6-Taylor expansion, which was first introduced by WAGNER and PLATEN in 1978
in [WP78]. In this context we also refer the reader to the standard monograph by KLOEDEN and PLATEN
[KP95] in which, among other things, an overview of strong It6-Taylor approximation schemes is provided
along with corresponding error analyses.

For the remaining part of this chapter, let m € N and let
O=tg<ti1 < - <ty=1 (3.3.1)

be a fixed discretization of the time interval [0, 1]. Moreover, we put

A=t -ty
forl=0,...,m—1, and
Anax := max A
=0,....m—1

3.3.1. Euler-Maruyama Scheme

The first time-discrete strong approximation scheme to be introduced is the Euler scheme, which is also
called Euler-Maruyama scheme and dates back to MARUYAMA in 1955, see [Marb5]. The Euler scheme is
the simplest strong Itd6-Taylor approximation scheme.

The time-discrete d-dimensional Euler scheme, in short Euler scheme,

XP = (XE(to), ..., XE (tm))

corresponding to the discretization (3.3.1) is defined by

X2 (to) = o,

~

XEw) = XEt) + a(XE(t-1) - (1 — 1) + b(XE(t21)) - (W () — W(ti-1))
for I =1,...,m. In particular, its kth component, k = 1,...,d, reads
X (t) = af,

XER(t) = XER(toy) + ar (X5 (0-1)) - (00— tie1) + i b (X0 (ti-1)) - (Wj(t) — Wj(tih))
j=1

forl=1,...,m.

Additionally, we introduce a time-continuous R%valued stochastic process associated to )/(\'7]2 The d-
dimensional Euler process

XE = (xB1 . xEBdY

on [0, 1] corresponding to the discretization (3.3.1) is defined by
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Xr%’k(to) = .’Elg,

Xk () = X () + an(XJ(00)) - (= i) + 5 b (X)) - (W5() = W)
j=1
for t € (ti—1,4], 1 =1,... ,mand k = 1,...,d. Note that, first, all paths of XE are continuous, and,
secondly, it holds XE () = XE(#;) for all 1 = 0,...,m.

The results of the following proposition are well known, and therefore a proof is omitted.

Proposition 3.3.1 ([Fau92, Proposition 14])
Let q € [1,00), and assume that a and b are globally Lipschitz continuous. Then there exists a constant
c€ (0,00) such that, for all m e N,

E| sup |XE(®I%] <o
te[0,1]

as well as

E| sup [X(t) — XE(0)%| < - AY2,
te[0,1]
3.3.2. Milstein Scheme

In addition to the setting in Section 3.1.1 we assume that b is partially differentiable. We introduce the
time-discrete Milstein scheme, which dates back to MILSTEIN in 1974, see [Mil75].
For ji,j0 =1,...,rand [ =1,...,m we abbreviate

t

J(lj1,j2) = /t (le (s) — Wi, (tl—l)) AW, (s).
-1

Moreover, for j = 1,...,r, recall that

Vb ;

o) = |

Vbg

denotes the R4*?-valued mapping which consists of all partial derivatives of b\,
The time-discrete d-dimensional Milstein scheme, in short Milstein scheme,

Xot = (X0 (t0). - X} (bm)
corresponding to the discretization (3.3.1) is defined by
XM (to) = o
XMty = XM (to1) + a(Xt-1)) - (= tiea) + b(XD(t-1)) - (W (t) — W (ti-1))

+ Z Vb(jQ)b(jl)(Xrl\r/L[(tl—l))'J(lj17j2)
j17j2:1

forl=1,...,m.
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3. Preliminaries on Stochastic Differential Equations

Componentwise this reads
v M,k k
‘ern,7 (to) = Zp,

XME@) = XME )+ ap (XM (1)) - (8 — t11) Z b (X0 (1) - (W (t0) — Wy (ti-1)) (3.3.2)

+ Y Vb (XN (1o0)) - I

L J1,J2)
J1,j2=1

forl=1,..mand k=1,...,d.
Hence, in comparison to the FEuler scheme, besides the increments of the driving Brownian motion the
Milstein scheme is additionally composed of multiple It6 integrals.

Additionally, we introduce a time-continuous R%valued stochastic process associated to X,I\,f The d-
dimensional Milstein process

on [0, 1] corresponding to the discretization (3.3.1) is defined by
X}nmk(to) = xlgv

XME#) = XMEG ) 4 ap (XM (#-1)) - (¢ —ti-1) + 2 brej (XD (t1-1)) - (W(t) — Wj(tim)) (33.3)
= 3.

+ i ka,hb(jl)()?nl\f(tl,l)) -/t (le (S) — le (tlfl)) de2 (S)

J1,g2=1 ti—1

forte (ti_1,4],1=1,...,mand k=1,...,d. R
Note that all paths of X2 are continuous and X2 (t;) = XE(t;) forall { = 0,...,m

The following proposition states that all uniform moments of the Milstein process are uniformly bounded
in m, and it provides an upper bound for the gth mean uniform distance of X and X} under rather mild
assumptions on the coefficients of the SDE (3.1.1).

Proposition 3.3.2
Let q € [1,0), and we assume (C1) as well as (C2) to hold. Then there exists a constant ¢ € (0,00) such
that, for all m e N,

E[ sup ||X£f(t)|\go] <c (3.3.4)
te[0,1]
as well as
E| sup [X(t) — XMOI%] < ¢ Al (3.3.5)
te[0,1]
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Proof:
Let m € N. Throughout the proof ¢ denotes a not further specified positive real constant which may vary
from line to line and which might only depend on the moment parameter ¢, on the dimension d of the
SDE (3.1.1), on the dimension r of the driving Brownian motion W, on the initial value zo, and on the
constant in (C2).

Recall that F = (F(t))s[o,1] is the filtration as defined in (3.1.2). Furthermore, we write X M and XM

instead/\of XM and )A(%[, reipectively, and for k=1,...,dand j =1,...,r we write aﬁ;l and 82:]1 instead
of ap (XM (t;_1)) and by ; (XM (t,_1)), respectively. Additionally, we put

Z“ .
tz L]

o BRI =) [b’ b3V U0 (XM (1)) - (W, ijl(tl_l))] Ay, 4 and
I=1 =1

o ORI = VaphD (XM(ty1)) - (W) — Wytim1)) - Loy 4
=1

fork=1,...,dand j=1,...,7
By the definition of XM, see (3.3.3), we have

XMAg) FRS gk /O AF(s) ds+; /0 BN (s) dW;(s) (3.3.6)

as well as

k & P-as. ta s)) — ks_r k’,js S C tk,js s
XK(1) - X (r) 2 /O(k(xm) 4= 3 <>)d+;/00 (5)d

(3.3.7)
+ Z [ (st - 59) e

for all t € [0,1] and k£ =1,...,d.

For the moment we assume ¢ € (QN N N4), and we split up the proof into single steps.

Step 1: The triangle inequality and Hoélder’s inequality imply

t r t ‘ 4 t q r q
ak +/ AF(s)ds + ) / BRI(s)dW;(s)| <c- <x’g|q + / + ] / B3 (s) dW;(s) )
0 j=1 0 j=1

)

forallt € [0,1] and k = 1,...,d. Thus, (3.3.6) together with the previous inequality, the Burkholder-

<1+/ |A*(s) \qu+2

j=1

/B’H()dW()

0
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Davis-Gundy inequality, Holder’s inequality (recall ¢ > 2), and Fubini’s theorem, lead to

E[Szﬁ]mm(s)w]@-<1+E_82%pﬂ ]A’“ |qdu] +ZEL§1tpt / B (w) AW (u) D
. 2
<c- <1+E_ | A¥ (u) {qdu} +]§E[< |B’W( )|2du> /D
Sc-(l—i—E_ |A’“ u} +;E[ |B’w )|qduD
:c.<1+/0t( Il + S e[ ])du)

for all t € [0,1] and k = 1,...,d. Hence

ELZ}B%]”XM ) | (H/Okl |[ 4" )] + ; 18" () ])m) (3.3.8)

for all ¢ € [0, 1]. Next, observe (3.3.7), and by employing similar arguments which led to (3.3.8), we
conclude that

E| sup |X(s) = XM (s)|% ]

s€[0,t]
( /0 E|ay (X () = A%w) = X, M @) | + ) E[beg (X (w)) —Bk’%u)\q]) du
j=1 j=1
d r s y q
E| su C*I () du
ZZ | emaf

(3.3.9)

for all ¢t € [0,1].

Step 2: In this step we further estimate the expression on the right hand side of (3.3.8). First, by the
fact that a is of at most linear growth, we have

AR )| = [a T < e (1+ XM )]L) <e- (1+ sup [ XM(w)]%) (3.3.10)
u€el0,s]
forall se (t;_1,t], Il =1,...,mand k = 1,...,d. Secondly, since b is of at most linear growth, and

due to (C2) (i), we obtain

B < - (L 1M )1S) - (143 Wi(s) - W)l (3.3.11)
J1=1
for all se (tj—1,4],l=1,...,m,k=1,...,dand j=1,...,r
Next, note that for all I = 1,...,m the random vector XM(t;_1) is F(t;_1)-B(R?)-measurable
and o ({W(s) — W(ti—1) | s € (ti—1,t]}) is independent of F(t;_1). Hence, by (3.3.8), (3.3.10),
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(3.3.11), and by employing (C.2) as well as (C.3) in the proof of Lemma C.5, we arrive at

ELZ‘&E | )HZO] <c- <1+/OtE[ sup HXM(U)HE’O] dS)

u€l0,s]

for all ¢ € [0, 1].
As a next step, we verify that the prerequisites of Gronwall’s inequality, see Lemma A.1, are
satisfied. To this end, we consider the function f : [0,1] — [0, 0] defined by

f(t) = ELZ}& XML |

and we show that f is bounded and Borel measurable. Indeed, since the function f is monotonically
increasing, we conclude that f is Borel measurable. It remains to show that f is bounded. Due
to the definition of the Milstein scheme, see (3.3.2), due to the properties of a, b and their partial
derivatives, since XM (t;_1) is F(t;_1)-B(R%)-measurable for all [ = 1,...,m, due to Lemma 2.3.6 b)
and d), due to the properties of W, and since all absolute moments of normally distributed random
variables are finite, we obtain

E[IXM(W)l%] < e ((1+E[|XM (b)) + Z} [+ 1R o) 9) - W5 (0) = Wi (k)7

)
s ]E[1+||XMtl NESE Imf])

Ji,j2=1

—c- <(1+E[|X’M(tll)|go]) s (L+E[IRM @)z ] ) - ; [ W) = Witi-) 7]
F (B[R I]) Y B[l ])

J1,J2=1
e (1+E[IXM(1-1)1%))
for all I = 1,...,m. Together with the fact that zo € R%, the previous inequality iteratively implies
(max E[|£(0)]%,] < .

Thus, combined with (3.3.8), (3.3.10), (3.3.11) and the properties of the normal distribution we have

sup f(t) <c- (1 + /01 i <E [‘Ak(s)r]] + i E [\Bk’j(sﬂq] > ds)

te[0,1] = ~
<e (ZZ [ (ee[iRMi]) o
—I—g/t:ll ]E[(l + HXM(tz 1) ) ( ]1211 (W, (s) — Wy, (t1—1)|? )] ds)

<o (14 max E[1£4)12])
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Now it follows from Gronwall’s inequality that
B[ sup |[XM(0)]%| < sup E[ sup [xM(5)[f, | <
te[0,1] t€[0,1] s€[0,t]

which finishes the proof of (3.3.4).

Step 3: It remains to prove (3.3.5). To this end, we further estimate the expression on the right hand
side of (3.3.9).

For the moment, we fix k € {1,...,d}, j € {1,...,r}, L € {1,...,m} and s € (¢;_1,%;]. Since
b is globally Lipschitz continuous, since the partial derivatives of b are uniformly bounded, and by
Remark 3.1.1 ¢), we obtain

|k, (X (5)) = B*(s)|*
c- (yb,w- (X (s)) = bi,j (XM(3))|*
1 (XM(5)) = b (XM(t121)) = Ve (XM (#-1)) - (XM(s) — XM (t-1)) |

+ | Wby (XM (1)) - (XM(s) — XM(t1-1) Z Vb b9 (XM (1)) - (le(s)fwﬁ(tl_l)ﬂq)

e+ (1009 = XN, + X () = XM 1)
[ (R ()) - (X)X (1) - Z b0 (XM (1, 1)) - (W5, () —le(tl_1))))q>

¢ (HX(S) = XM ()%, + [ XM (s) — XM (b3

+2’XMZ ) — 3 b (R (0) - (W (s) — W) ).

Jji=1

(3.3.12)

By the definition of XM, and by the properties of a, b as well as by the properties of the partial
derivatives of b, we have

d
DUIEMA(s) = XMt ) Z bi gy (XM (ti21)) - (Wi, (s) = W, (=) |

i=1 Jj1=1
§ q
M) - (s — tioa) + Z Vi (R 00) - [ (W) = W, (1m0)) W ()

d
c-(1+uf< ) (3 5[ o

Jije=1 Jli-1

W, (h1) AWy ()|

S

<o (IR L) - (At Y sup
J1,J2= 1S€[tl 1a]

(Wi () = Wi (t1-1)) dWis (w)] ).

ti—1

Hence, together with Lemma 2.3.6 d), inequality (3.3.4), the Burkholder-Davis-Gundy inequality,
Minkowski’s integral inequality, see Proposition A.3, and the properties of the Brownian motion W,
we end up with
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[Z | XMi(s) — xMit,_y) Z bijy (XM (ti)) - (le(S)—le(tz—l)ﬂq]
Ji=1

T

<c-E[<1+|ﬁ?M<tu>|q) (Mt Y} sup | / (Wm(u)—wjl(tz1>)dwj2<u>\q)]

j1.ja=15€[ti—1,8] " Vi1

= (T4 B[R 0)1%]) - (A + > E[ sup

/s (le (u) = Wj (tlfl)) dWj, (u)‘q]>

J1,92=1 SE[tl,hS] ti—1
2 q/2
e (At D E[( [ W) - W)
J1=1 t—1
i y 2/q7 12
r s a/2
=c- A;Znax + Z (E[</ ‘WJI (U) - Vle (tl—l)’2 du) ])
Jji=1 t—1
L 2/q q/2
<c- | A%, + Z /t (E[|Wj1 (u) — Wy, (t1—1))|q]) du]
ai=t Lt
s q/2
<c- | AL+ Apax du
t1—1
<cC A?nax
(3.3.13)
Next, the definition of XM and the properties of a and b lead to
Z|XM1 XM’L(tl 1>|
<ot (L4 IRt o) - (D + Z Wis) = W(tia)| + . \/ (Wi (1) = Wi (1) dWj (w)).
J1.g2=1 Jti—1
Then, by using similar arguments as in (3.3.13) we derive that
d .
B[1X(s) - XMt )% < 2 |10 () = XMt 1) 2] < 0 A (3.3.14)

Now by combining (3.3.12)--(3.3.14) we arrive at

/Ok ot ‘b’”( ())_Bk’j(3)|q] ds < c (A%lax /OE[UE%I?S] HX<u)—XM(u)H§o] ds)
(3.3.15)

for all ¢ € [0, 1].
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In a similar way one proves that

/Ok 1 [Jax (X —Ak(s)—jile’j(sﬂq] ds <c- (Agnax /Otm:[ sup || X (u) = XM (w)]% ds)

u€l0,s]
(3.3.16)
for all t € [0,1].
In view of (3.3.9), it remains to further estimate
d r

ZZ [sup/Ck’J du].

k=1j=1 se[0,t
For ease of notation, for k=1,...,dand j =1,...,7, we put

V(1) / k(s

for t € (0,1] as well as V*7(0) := 0. Moreover, forl = 1,...,mand j = 1,...,r we define real-valued

stochastic processes ZbJ = (Zb () teftir,t] DY
ZM(t) = Wj(t) — Wi(ti—1).
Now observe:

(i) Due to the definition of the mappings C*J we have
t/\t +1
Vk’] Z/ vakb (t)) : (W](U) — Wj(tz)) du
1=0

= Z Vab (XM( ) ./:AL+1 (W;(u) — Wj(t;)) du

i=0 i
forall te[t;—1,t],l=1,....m,j=1,...;rand k=1,...,d.

(ii)) Forall j =1,...,7and k = 1,...,d, due to the definition of the filtration F and the definition
of the mapping C*7, the process V57 is adapted to F.

(iii) Forallj =1,...,rand = 1,...,m the process Z"/ is a Brownian motion w.r.t to the filtration
(Jr(t))te[tl,l,tl]-

(iv) For alll =1,...,m the random vector )’EM(tl,l) is F(t;—1)-B(R%)-measurable.

We use these observations to show that every process V*7 is an F-martingale. Indeed, let s,¢ € [0, 1]
with 0 < s < ¢t < 1. Then there exists an [ € {1,...,m} such that t € (¢;,—1,%]. It is enough to
consider the case s € (t;_1,t;]. The properties of the conditional expected value, see Proposition B.1
a), ¢) and d), the observations (i)--(iv), the properties of Brownian motions, and Fubini’s theorem,
lead to
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E[Vk’j(t) ’ ]:S] Pas @ [V’W(s) ‘]—"s] +E [Vakb(j)()?M(tz—l)) '/t Z5 (u) du

7|

7|

P-as. Vk,J( )—i—Vakb( )( (tl 1)) B [/t Zlvj(u) du
Pas. VR (s) + VaybV )( M(t11)) - E [/t 2 (u) du]

— Vhi(s )—|—Vakb( )( Mg, 1)) /tE [Zl,j(u)] du
= Vki(s).

It follows from Doob’s martingale inequality

d r "y d r y q d r . ,
£ Ee|anlf evwaf <o £ 2] [ evwnf] o £ Salrur]
(3.3.17)
As a next step, recall that ¢ € 2N, and note that
(Vk,j(tl),X'M(tl)) and /tl+1 7119 (5) ds
are independent for all [ = 0,...,m — 1. Thus, we obtain
E[ (VM (1)’
_E {(Vk’j(tl) 4 ttm O (s) ds)q]
-5 (1) = [oey ([ o)’
= é}o (Z) B :(Vk’j(tz>)q o (Vagb (XM(5))" - (/tt 7!+ (s) ds)“]
= NZ:) <Z) E[(VH @) (Vo@D (£(1))" | E [( /t ) ds)“]
=E|(VM®)"| + Z (Z) E| (VM @) (Va? (1)) ] - E {(/ 2 dS)M]
(3.3.18)

foralll=0,....m—1,k=1,...,dand j = 1,...,r, and where for the last equality we employed
the fact that

E [/tt ZH i (s) ds} _ /t E[W;(s) — W;(t))] ds = 0.

t
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Moreover, by applying Holder’s inequality, and due to the properties of the Brownian motion W,

(7] . Lt
E[(/ ZHl’J(S)dS>M} <E[(/ |Wj(s)—Wj(tl)|#dS>] .Af_l
tl tl,
tit1
< </ L2 ds) At (3.3.19)
t

we have

for every = 2,...,q. By combining (3.3.18) and (3.3.19), by using the properties of a and b, and
by applying (3.3.4), we arrive at

E[(V*(t111)7)

<E[VH@)] + 2 (Z) E[(V49 ()" - (Ve (R(1)))" - AY]

B[R] e Ay

<E 7’Vk’j<tl)‘qi +c-A;-E [ < ’Vk’j tl ‘q " (1 + H)?M(tl)”oo)u . A’ﬁlax
- - =0
[ (e |+ (1 + 1RY(E) o) - A |
)+

<E _’Vk’j(tl)‘q_ (1 +c- )+

for all [ = 0,...,m — 1. Thus, by employing the discrete version of Gronwall’s inequality, see
Corollary A.2, we obtain

E [|V’“’j(tm)|q] < max E [!Vk’j(tl)|q] < ¢ Afhax (3.3.20)

foralk=1,...,dand j=1,...,r
To sum up, in view of (3.3.9), (3.3.15), (3.3.16), (3.3.17) and (3.3.20) we derive that
M/ \[|2 ! M
B[ sup [(s) - XM(6)|%, | < (At [ B[ sup [X(0) - Xw)12 ] s
s€[0,t] 0 u€|0,s]

for all ¢ € [0,1]. Similar to Step 2 one shows that g : [0,1] — [0, 0] defined by

o(0) = B[ sup [X(s) = XM

is a bounded Borel measurable function, and hence Gronwall’s inequality yields

E[ sup | X (t) XM(t)HZO] c- Al

max?
te[0,1]

which finishes the proof of (3.3.5).

For arbitrary ¢ € [1,00) we choose § = min{n € (2N n Ny) | n > ¢}. Then Holder’s inequality and the
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results obtained in Step 1 up to Step 3 above imply

<l sy 0l |- ( (<] s 0l )™ < ((6] s vl ])*) <o

as well as
q
Mgy (9 M@ 1)
E[ts[%g] |x(t) - x (t)HOO] < <(E[ts[%g] RIGED: (t)HooD ) < Aba
which finishes the proof of Proposition 3.3.2. O
Remark 3.3.3

The results of Proposition 3.3.2 are well known under much stronger assumptions on the coefficients a and
b than those imposed in Proposition 3.3.2, see, for example, [Fau92, Proposition 25| and [KP95, Theorem
10.6.3 and Corollary 10.6.4].

As a consequence of Proposition 3.3.2 and Proposition 3.3.1 we derive an upper bound for the gth
mean maximum distance of the Milstein scheme and the Euler scheme corresponding to the discretization
(3.3.1), which will prove beneficial in the Chapters 5 and 6.

Corollary 3.3.4
Let q € [1,0), and we assume (C1) as well as (C2) to hold. Then there exists a constant ¢ € (0,00) such
that, for all m e N,

max*

E| max [X)(t) - XE()% | < c- AL

Proof:
Let m € N. Due to Proposition 3.3.1 and Proposition 3.3.2 there exists a constant ¢ € (0, 00) not depending
on m such that

(B[ s 1R300 - Xﬁ(n)&])w

:07"-7m

< (=] s b - Ri1s]) "+ (] s 1) - £Ee])

—,m [=0,...,m

1/2
<c- Arr{ax'

O

We close this chapter by focusing on the special situation where b has the so-called commutativity
property.

Definition 3.3.5
The diffusion coefficient b is said to have the commutativity property if

(Vb(jl) .b(jQ))(x) = (Vb(jz) . b(jl))(x>

for all z € R% and ji,jo = 1,...,r.
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For instance, the diffusion coefficient of a scalar SDE and the diffusion coefficient of an SDE with additive
noise or diagonal noise has the commutativity property.
Now, the following question naturally arises:

Which form does the Milstein scheme take if b has the commutativity property?
First note that by applying 1t6’s formula we obtain

J(ljlajz) = /t | (le(s) - Wi (ti—1)) dWj, (s) Fas % ) ((Wh (t1) — Wi, (tl—l))2 - Al—l)

for all j1,70=1,...,r with j1 = jo and all [ =1,...,m, and

1 t
/t (W, (5) — Wi (1)) dWi () + / (Wia(s) — Wi (ti_1)) dWi, (s) P25 (W, (81) — Wi, (t121)) - (Wi (1) — Wy (1))

foralll=1,...,mand j1,j2 = 1,...,r with j; # ja, see, for instance, [KP95, (10.3.6) and (10.3.15)].
Thus, if b has the commutativity property, the kth component, k = 1,...,d, of the Milstein scheme
can be rewritten such that

an\f’k(to) = xg’

XME(t) P2 MR y) + a (XM (#e1)) - (= tier) + ZT: b (XD (ti=1)) - (W;(ty) — Wj(timn))

j=1
1 < DN
5 2 Vb9 (X5l (ten) - (Wit — Wi(ti-1))” = Ar1)
j=1
+ Z ka,jzb(jl)()?i\n/[(tl—l)) : J(ljth)
Ji.g2=1
J1#7J2
= XMRHe) + ay ()A(nl\f(th)) (i —ti1) + Z br,j ()?nl\f(tlfl)) - (Wj(t) = Wiltio1))
j=1

S T () - (W (1)~ Wt1))? = D)
j=1

+ Z vbk,hb(jl)()?ﬂl\g(tl_l)) ' (J(lj17j2) + J(lj27j1))

Jij2=1
J1<J2
Pas. )/(\an\é[’k(tl_l) + ag ()?nl\f(tl_l)) . (tl — tl—l) + Z bk,j ()?nhf(tl_l)) . (Wj (tl) — Wj(tl_l))
j=1

1 NS

t3- 3 Vb b9 (X (1) - (W () = W (1)) = D)

j=1

+ 30 Vb bU (XN () - (W, (0) = Wiy (1)) - (W (81) = Wi (1))
Ji,J2=1
Ji1<j2

(3.3.21)

for all I = 1,...,m. This special form of the Milstein scheme will play a role in Chapter 5.
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4 Quantization of 1t6 Processes

In this chapter we mainly focus on quantization of It6 processes. The main results of this chapter, see
Theorem 4.1.2 and Theorem 4.3.2, will serve as auxiliary results in Chapter 5.

The chapter is organized as follows. In Section 1 we derive new results on the sharp asymptotics of
the Nth minimal quantization error of one-dimensional Itd processes in the spaces L,[0,1], p € [1,00),
and C[0, 1].

In Section 2 we apply the results obtained in the first section in order to derive the sharp asymptotics
of the Nth minimal quantization error of solutions of such one-dimensional SDEs that are driven by a
multidimensional Brownian motion. To our knowledge these results are new, and they generalize the main
theorems in [Der08a| and [Der08b].

In the last section, Section 3, we provide a lower bound for the Nth minimal quantization error with
respect to certain product-quantizations of multidimensional It process in the space (C([0, 1];R%), | - [|o0)-
The main result of this section, Theorem 4.3.2, will be crucial for deducing the results of Theorem 5.3.5
in Chapter 5.

Before we deal with the above described subjects, we provide a few definitions. Among other things,
we clarify at this point what is to be understood by a product-quantization. In this context we confine
ourselves to those Banach spaces which will be focused on in the remaining part of this thesis.

Let d € N, and let p,s € [1,00). Recall that || - |||s is the norm on the space C([0,1];R?) intro-
duced in the introductory chapter, see page 6. Furthermore, let (€2, A, P) be a probability space, and let
X = (XY,..., X% be a random element defined on (2, A, P) with values in the space (B, | - |3) where

(B, I5) € {(Lg[0, 11, | Lggo.11), (€10, 1T RE), [+ o), (CC[0, 1T;RD), ] - lls) }-

Definition 4.0.1
Let N € N.

a) An N-quantization X = ()~(17 e ,)Z'd)/ of X is called an N-product-quantization of X if there
exist real numbers t1,...,t4 € [0, 1] such that

d
(i) > tr <1and
k=1

(ii) for all k = 1,...,d it holds | ran (X*)| < |N%].

Furthermore, an N-product-quantization X of X is called an N -uniform-product-quantization
of X ifty =1/dforall k=1,...,d.
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~ ~

b) Let f : B — B be an N-quantizer and put (X', ..., X?) := f((Xl, .. .,Xd)/). If there exist real
numbers t1,...,tq € [0, 1] such that

d
(i) > tx <1and
k=1

(i) for all k = 1,...,d it holds | ran (X*)| < [ N'*],

then f is called an IN-product-quantizer. Moreover, an N-product-quantizer f is called an IN-
uniform-product-quantizer if ¢, = 1/d for all k = 1,...,d.

Definition 4.0.1 naturally gives rise to the following classes of quantizations. For N € N we define
o Xy := {)Z' :Q— B X is an N-quantization of X},
o XN prod := {)Af :Q — B X is an N-product-quantization of X},

o XN prod,uni := {)? :Q— B Xisan N -uniform-product-quantization of X}.

Clearly,
XN,prod,uni = XN,prod < XN (401)

for all N e N. If d = 1, we have equality in (4.0.1) for all N € N.
Next, we introduce the minimal quantization errors associated to the above classes of product-
quantizations.

Definition 4.0.2
Let s € [1,00) and N € N.

a) We call
e roa(X. B) == inf {®) (X, X, B) | X € Xy proa}

the Nth minimal quantization error of X (of order s) w.r.t. product-quantizations of
X.

b) We call

() (X, B) := inf {® (X, X, B) | X € Xy prod,uni }

eN,prod,uni

the Nth minimal quantization error of X (of order s) w.r.t. N-uniform-product-
quantizations of X.

The following lemma will prove beneficial in the proof of the upcoming Theorem 4.3.2.

Lemma 4.0.3
Let s € [1,00). For all N € N it holds

ef,?prod’um(X, B) = inf {e(s) (X, f(X), B) ‘ [ is an N—uniform—product—quantizer}.

Proof:
This lemma can be proven similarly to Lemma 2.1.4. O
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4.1. Quantization of One-dimensional It6 Processes

In this section we derive the sharp asymptotics of the Nth minimal quantization error of one-dimensional
[t6 processes in the spaces (Lp[0, 1], [ z,[0,1)), P € [1,0), and (C[0,1], - [«). To our knowledge the main
result of this section, Theorem 4.1.2, is new.

In this section let r € N, let (€2, A, P) be a probability space equipped with a filtration F = (F())se[0,1]
which satisfies the usual conditions, and let W = (W7y,...,W,.) be an r-dimensional F-Brownian motion
on [0, 1] defined on (2, A, P).

Let X = (X(t))e[o,1] be a real-valued continuous stochastic process such that for all ¢ € [0,1] it
holds

X(t) =z0+ /0 Y(s)ds + Z /0 Zj(s)dWj(s) P-as. (4.1.1)
j=1

where we require:
(A1) It holds z € R.

(A2) Y = (Y(5))se[o,1] is a real-valued stochastic process such that

(i) Y is measurable and adapted to F, and
(ii) for all g € [1,00) it holds E[HYH%Q[OJ]] < .

(A3) For all j = 1,...,r it holds that Z; = (Z;(s))se[0,1] is a real-valued stochastic process such that
Z;j(0) e R, Z; is adapted to F and the paths of Z; are y-Hélder continuous for every v € (0,1/2).

(A4) There exists an « € (0,1/2) such that for all ¢ € [1,00) it holds EUHZ()H%‘Z] < o0 where
Z = (Zl, .. .,Zr) and, recall,
t)— f(s
ey MO-16)

O<s<t<l |t —s|]®

for f:[0,1] — R.
Remark 4.1.1

a) Forall j =1,...,r assumption (A3) yields that all paths of Z; are continuous and thus Z; is mea-

surable. Furthermore, it is easy to see that (A3) implies that all paths of the process (|| Z(s) H%)Se[m]
lie in the space of a-Holder continuous functions C*[0, 1] where o denotes the constant in assump-
tion (A4). Hence we may interpret the process (|Z(s)|3)se[0,1] as a random element defined on
Q with values in C*[0,1]. In addition to that, note that the mapping f — |f|a, f € C*[0,1], is
continuous and therefore B(C*[0, 1])-B(R)-measurable. Thus, for all ¢ € [1,00), the expected value

considered in assumption (A4) is well-defined.

b) Holder’s inequality and assumption (A2) (ii) yield

E [/Ot |Y(s)|ds] <E Uol |Y(s)yds] <E [(/01 |Y(s)]2d3>1/2] <o
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for all t € [0,1]. Thus, for all ¢ € [0, 1], we have

t
/yY(s)ds<oo P-as.
0

Hence, in particular, almost all sample paths of the process ( fg’ Y(s) ds) 0.1] are continuous.
te|0,1

Additionally, the fact that the process Y is adapted to F leads to the same property for the

process (fot Y (s) ds)te[0 q

As already mentioned in a), due to assumption (A3), every process Zj, j = 1,...,r, has con-
tinuous paths and thus may be interpreted as a random element with values in the space C[0, 1].
Furthermore, the assumptions (A3) and (A4) imply

IE[ sup |Zj(t)|q] <o
te[0,1]

forall ge [1,0) and j =1,...,r. Indeed, let g € [1,00) and j € {1,...,r}. Holder’s inequality, and
the assumptions (A3) and (A4) imply

1/q 1/2q
(lamor]) = (L, 20e)
1/2q
< (E[( sup [1Z(]3 = 1203 + 12013 \)q]) (4.12)

te[0,1]

<2 (B|120)3[7] + E[1z0)1])

< o,

where « is the parameter in assumption (A4).

Furthermore, by (4.1.2) we have

E [/Ot (Zj(s))st] < IE[ sup \Zj(t)|2] <o

te[0,1]

for all ¢t € [0,1] and j = 1,...,r. Together with assumption (A3) and the construction of the
stochastic Ité integral, we conclude that for all j = 1,...,r the process

([ 26 de<s>)te[0’1]

is a continuous F-martingale. Thus, the process M = (M (t));e[o,1] defined by
Tt
MO =Y, [ 2 awy(s
j=1

is a continuous F-martingale, and it is well known that its uniquely (up to indistinguishability)
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determined quadratic variation process (M) = ((M)(t)) is given by

te[0,1]

() = /0 12(s) 3 ds,

see, for example, [KS88, Remark 3.3.30].
d) Due to the remarks in a) and b) the expression on the right-hand side of (4.1.1) is well-defined.

e) The process X has continuous sample paths. Hence we may interpret X as a random element with
values in the space C[0, 1] or L,[0,1] for p € [1, ).

By employing the same key ideas and techniques as in [Der08a| and [Der08b| one obtains the following
result.

Theorem 4.1.2
(i) Let p e [1,00). Then for all s € [1,00) it holds

s s 1/s
lim vVIn N - egv) (X, Lylo, 1]) = Kp - (E [H 1Z()]2 ”Lgp/<p+2)[0,1]] )

N—0
where ky, is the constant in Theorem 2.8.11 (i).

(i) For all s € [1,00) it holds

s s 1/s
Jim Vi e (4,000,11) = - (E [[1Z0)12 17,0 )

where Ko, is the constant in Theorem 2.53.11 (ii).

Proof:

As a first step, one carries over all auxiliary statements along with their proofs presented in [Der08a,
Sections 2 and 3| and [Der08b, Sections 2 to 7|. In the course of this, apply the assumptions (A1)--(A4)
as well as (4.1.2) in Remark 4.1.1. Subsequent to this, one derives the assertions of the theorem by

mimicking the main proofs in the aforementioned papers, see [Der08a, pp. 948-951] and [Der08b, pp.
934-936]. O

4.2. Quantization of One-dimensional SDEs

We apply the results obtained in Theorem 4.1.2 to derive the sharp asymptotics of the minimal quanti-
zation error of solutions of such one-dimensional SDEs that are driven by a multidimensional Brownian
motion. Since we solely work with autonomous SDEs in this thesis, we also confine ourselves to such
SDEs here.

Let 7 € N, let (2, A, P) be a probability space, and let F = (F(t))[0,1] be a filtration which satisfies the
usual conditions. We consider a one-dimensional autonomous SDE

dX (t) = a(X (1)) dt + ;1 bj(X () dW;(t),  te[0,1], (4.2.1)

X(O) = X,

55



4. Quantization of Ité6 Processes

with initial condition zg € R, r-dimensional driving F-Brownian motion W = (W1,...,W,)’, and Borel
measurable functions a : R — R and b = (by,...,b,) : R — RY" such that (4.2.1) has a strong solution
X = (X(t))¢e[0,1] and such that the processes

(a(X(s)))se[O’l] as well as (bj(X(S)))se[0,1]’ j=1...,7
have the respective properties in (A2)--(A4) introduced in the previous section.

The following result, which is a direct consequence of Theorem 4.1.2, generalizes Theorem 1.1. in [Der08a|
and Theorem 1.1. in [Der08b|.

Proposition 4.2.1
(i) Let p € [1,00). Then for all s € [1,00) it holds
. (s) s 1/s
dim VInN el (X, Ly[0,1]) = 5y - <IE [H 16X ()2 HLQP/W)[OJ]] )
where ky, is the constant in Theorem 2.5.11 (i).
(i) For all s € [1,00) it holds
. (s) s 1/s
Jim VInN el (X,€10,11) = e (B [ IBXCDI: 0] )

where Ko, is the constant in Theorem 2.83.11 (ii).

Remark 4.2.2
Assume that a and b satisfy the assumptions (C1) and (C2) (i). Then there exists a strong solution X of
the SDE (4.2.1), see Corollary 3.2.5, and we will show in Theorem 5.2.6 that the processes (a(X(s)))

and (bJ(X(5>))se[0,1]
of Section 3.1 the statements in Proposition 4.2.1 hold.

s€(0,1]
, 7 =1,...,7, have the respective properties in (A2)--(A4). Hence in the setting

4.3. A Lower Bound for Product-Quantizations of Multidimensional It6
Processes

In this section we derive a lower bound for the Nth minimal quantization error w.r.t. N-uniform-product-
quantizations of multidimensional Ité processes in the space (C([0, 1];R?), |- |s). To this end, for technical
reasons, we consider It processes defined on the time interval [0, c0).

In this section let d,r € N, let (€2, A, P) be a probability space equipped with a filtration F = (F(t))[0,00)

which satisfies the usual conditions, and let W = (W7y,...,W,.) be an r-dimensional F-Brownian motion
on [0,00) defined on (£, 4, P).
Let X = (X',..., X%’ be an R%valued continuous stochastic process on [0,00) such that for all

k=1,...,dand t € [0,00) it holds
t r t
Xkt) = af + / Y*(s)ds + )] / Z¥(s)dWj(s),  P-as.
0 j=170

where we require:
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(B1) Forall k =1,...,d it holds zf € R.

(B2) For all k = 1,...,d it holds that Y* = (Yk(s))se[o «) is a real-valued stochastic process such that
(1)) Y* is measurable, adapted to F, and for all ¢ € [0,0) it holds

t
/ Yh(s)|ds <o P-as,
0

and

(ii)) Y* satisfies (A2) (ii).
(B3) Forallk=1,...,dand j = 1,...,r it holds that Zk = (Z]k(s))se[o ) 18 a real-valued stochastic pro-
cess such that Zj'?(O) e R, Zk is measurable and adapted to F, and the process (fo Zk ) dW;(s ))t 000)
€[0,00
is well-defined and a continuous F-martingale. Moreover, we require that for all k = 1,...,d and
all j =1,...,r the process (Z]]‘C(S))se[(],l] has ~-Hoélder continuous paths for all v € (0,1/2).

(B4) For all k =1,...,d the process Z¥ := (Z},..., ZF) satisfies (A4) as well as
t
lim/ 125 (5)|3 ds = oo. (4.3.1)
t—00 0

Remark 4.3.1

a) By employing the assumptions (B2)--(B4) one derives results analogous to those in Remark 4.1.1.
In particular, we point out that by assumption (B3) we have that for all £ = 1,...,d the process
MF = (Mk(t))te[o,oo) defined by

by = S [ 24(s) aw(s
’”‘;1/0 Z5(s) dW;(s)

is a continuous F-martingale, and its quadratic variation process (M*) = ((M*)(t))
by

1e[0,00) is given

(M) /|zk )I3 ds.

Furthermore, for all k = 1,...,d assumption (B4) ensures lim; ,,(M¥)(t) = o0. Note that
without changing M* on the time interval [0, 1] one can always ensure (4.3.1) to hold by changing

Z¥ outside [0,1] in a suitable way. Indeed, for j = 1,...,r define a stochastic process (7§<t))te[o,oo)
by

—k {Z]’?(t), if ¢ € [0, 1],

Z(t) =
]() t, else.

Then the process 7" = (7?, . ,71:) satisfies

g 2 ¢ k 2
/0 17" (s)13 ds = /0 1Z*(s)|3 ds
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4. Quantization of Ité6 Processes

for all t € [0,1], and it is easy to see that

But for simplicity we a priori assumed (4.3.1) to hold.

b) For all k = 1,...,d and all g € [1,00) it holds E[((M*)(1))?] < o. Indeed, let k € {1,...,d}, and
let ¢ € [1,00). Similar to Remark 4.1.1 b), and by applying the assumptions (B3) and (B4), we
conclude that there exists a constant ¢(q) € (0,00) depending only on ¢ such that

r

E[(<Mk>(1))q] [(/ Z|Zk |2ds) ]\c(q)~ZE[ sup [Z5(0)[* ]<oo. (4.3.2)

j=1 tE[O 1

We will utilize this fact in the proof of the upcoming Proposition 4.3.5.

We will employ large parts of the key ideas and techniques presented in [Der08b| in order to derive
the upcoming Theorem 4.3.2, which is the main result of this section. Unfortunately, our proof of that
theorem incorporates only the case where the components of M := (M*, ..., M%)" are mutually orthogonal
in the sense that for every i,k € {1,...,d} with i # k and every t € [0, 0) it holds (M?, M*)(t) = 0 where
(M?, M*) denotes the cross-variation process of M? and MP¥. Nevertheless, we expect the results in
Theorem 4.3.2 to hold also in the general case, but a rigorous proof of this conjecture remains an open
problem.

Now, for the rest of this section we impose the following additional assumption on the processes
AN AL

(B5) In addition to the assumptions (B3) and (B4) we assume that the processes Z',..., Z% are of a
form such that for every 4,k € {1,...,d} with i # k and every ¢ € [0, c0) it holds (M? M*)(t) = 0

Theorem 4.3.2
For all s € [1,00) it holds

1/s
liminf vIn N eNprOd i (X C([0,1;RY) = kg - Vd - <E ernaXdH 1 Z5() |2 HL2 0 1]])

N—o

-----

where Ko is the constant in Theorem 2.8.11 (ii).
In the following, we outline the basic strategy for the proof of Theorem 4.3.2. For k = 1,...,d and

t € [0,00) we put
t
R(t) = af +/ Y*(s)ds
0

Then for k = 1,...,d and ¢ € [0,00) it holds
XF(t) = A¥(t) + M*(t)  P-as.

Next, since for all k = 1,...,d the process M* is a continuous martingale with lim;_,,(M*)(t) = co and
due to assumption (B5), the theorem of F. B. KNIGHT, see Proposition C.3 in the Appendix, yields
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that we can represent M as a d-dimensional stochastic process consisting of d independent time-changed
Brownian motions. More precisely, for k = 1,...,d and s € [0,00) consider the stopping time

T*(s) := inf {t € [0, 0) ’ (M*y(t) = s}

Then the stochastic process B = (B(s))se[0,00) = (B*(3), - -, Bd(s));e[o o0y With BF(s) = M*(T*(s)) for
k=1,...,d and s € [0,00) is a Brownian motion with respect to its completed natural filtration which
we denote by FP = (]:B(S))se[o o)

Now we proceed in roughly two steps. First, for all Kk = 1,...,d we construct a sequence (@ﬁ)neN of

approximations of (M*) on [0,1] such that for every n € N the process 1&,’? has monotonically increasing,
continuous sample paths. Secondly, one the one hand, we apply a specific quantization procedure to the
process (Bl(w}l(s)), e Bd(wg(s)))se[o 1] for all n € N, and, on the other hand, we quantize the process

(A, ..., A%). We add that the procedure for quantization of (A',..., A9) is hidden in the statements of
Theorem 4.3.6. For further details we refer the reader to [Der08b, Proof of Theorem 7.1.].

4.3.1. Auxiliary Statements for the Proof of Theorem 4.3.2

As already mentioned, for proving Theorem 4.3.2 we employ large parts of the key ideas and auxiliary
statements in [DerO8b|. More precisely, to avoid redundancy, we carry over only those auxiliary statements
stated in the aforementioned paper which make our proof self-contained. Furthermore, we additionally
employ arguments in the main proof in Section 4.3.2 which are different to those used in [Der08b].

We proceed as follows. The required auxiliary statements are presented in the following subsections,
and afterwards we carry out the main proof of Theorem 4.3.2.

An Auxiliary Lemma on Quantization of Brownian Motions

Lemma 4.3.3
Let s € [1,0), let T € (0,00), and let B be a one-dimensional Brownian motion on [0,T]. Moreover, let
the operator S : C[0,T] — C[0, 1] be defined by

(5D@) = —=- 1T -x).  we[o1]

Then the following holds:
a) S is a bounded linear operator with | S|op = 1/v/T.
b) The process S(B) is a one-dimensional Brownian motion on [0, 1].

c¢) For all N € N it holds

8 (B, cl0,T7).

Proof:

a) Clearly, S is linear. Moreover, it holds

1 1 1
SFloy = —— - T 2) = — . = — |\flw
I = 7+ sup 1f(T )l = - sup 5@l = -1
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4. Quantization of Ité6 Processes

for all f € C[0,T]. Hence S is bounded with

1
|Slop = Noat

b) The fact that S(B) is a one-dimensional Brownian motion on [0, 1] follows directly from the scaling
properties of Brownian motions.

c) Note that E[|B||%,] < o, and therefore Proposition 2.1.8 and a) yield

eg\sf) (S(B)7C[O> 1]) < |[Slop - 65\8/) (B,C[O,T]) = . 65\8}) (B,C[(),T])

4

for all N € N.

A Sequence of Approximations of (M)

Recall that for all k = 1,...,d assumption (B4) yields the existence of a parameter o* € (0,1/2) such
that for all ¢ € [1,00) it holds

E|1Z*()B[% | < oo (4.3.3)

In this subsection, for every k = 1,...,d, we construct a sequence of approximations of ({(M k>(t))te[071],
which depends on the parameter o*. For the construction we use a technique proposed at the beginning
of Section 4 in [Der08b|.

Fix ke {1,...,d}, let ne N, and let 0 = tp < t; < --- < t, = 1 be the discretization of [0, 1] given
by

t;

3| .

for i = 0,...,n. Moreover, we consider the set
(¥, n) = {j-n=0* | j e No n [0, (],

14ak

and we put jmax ;= max{j e Ny |j € [0, n?( )]} as well as

o G0 1= [0.1/2- -0
o Cyarm (i) = [j .~ (1+a®) 1/2. n—(1+ak),j  p—(+aF) o 1/2.- n—(1+ak)> for j=1,..., jmax — 1,
o and Cyak 1) (Jmax) = [jmax cpm(rat) _q /9. p—(1tah) oo).

By utilizing the intervals Cyqk ,y(j), 7 =0, ..., jmax, We define 4k ;) : R = R by

Jmax

J
Tk () = D, e Loy, ) ()
=0
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Now let 2[)7’3 = (zﬁﬁ(t)) 1€[0,1] be the real-valued stochastic process which is defined by
D (ti) = Ty(ar ) ((MF)(8:))
fori=0,...,n and
Up(t) = Pn(ti) - (tixn —0) -+ (tin) - (= t;) -
for t € (t;,t;iv1) and i =0,...,n — 1.

Remark 4.3.4

a) For all ne N and k = 1,...,d the process z/?fb has continuous and monotonically increasing sample
paths, where the latter is a consequence of the fact that the process (M*) has monotonically
increasing paths.

b) Let n € N. By the construction of the process 1&,]3, and by the definition of the set I(a*,n), it holds

Tk . —(1+ak 14+ak 1
wn(1><]max'n (+a)<n+o¢ < pltomax

for all k = 1,...,d where apax 1= maxg—1,_. 4 aF. We will utilize this fact in the proof of Theorem
4.3.2.

The following proposition serves as one of the auxiliary statements in the proof of Theorem 4.3.2.

Proposition 4.3.5
Let k € {1,...,d}. For every q € [1,0) there exists a constant ¢(q) € (0,00) depending only on q such
that, for allm € N,

1/q
(E[ sup. [(M¥) (1) — &sw]) < clg) -n~ 1+,
te[0,1]
Moreover, for all n € N3, it holds
In |ran(¢f)| < 6-n-Inn. (4.3.4)

Proof:
We show only (4.3.4). The remaining part of the proof is carried out by mimicking the proof of Proposition
4.1. in [Der08b|. In the course of this, apply (4.3.2) and (4.3.3).

By the definition of wﬁ, and by the definition of the set I(a*,n), we have

In | ran(¢f)| < In ([I(a*, n)[*) = n - In([I(a",n)) < n-In(2 - n> 1+
for all n € N. Together with the fact that o* < 1/2 we obtain
In|ran(¢f) <n-In24n-2-(1+af) - mn<3-n-(1+Inn)<6-n-lnn

for all n € N3. O
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4. Quantization of Ité6 Processes

The Main Auxiliary Theorem

In this section we provide the main auxiliary result. We prove only the result in a). The statements in
b)--d) can be proven analogously to their corresponding statements presented in [Der08b, Theorem 7.1.].

Recall that, for k = 1,...,d and n € N, ¢¥ is the approximation of ({MF*)(t))1e[o,1] constructed in the

k

previous subsection, which depends on the parameter of. Moreover, we define aumin := ming_; 4",
3oy

and for n € N we put 1[1” = (1&}“ .. .,@E;ﬁ)’.

Theorem 4.3.6
Let v € ((1 + omin) 7Y, 1), and let (ny)nen be the sequence in N such that ny =1 and ny = [(El N)Y]| for

N = 2. Then for every s € [1,00) there exist a sequence of d-dimensional Brownian motions (WN)

—1 —d
(Whs o s W) yen
stochastic processes on [0,1], as well as a sequence (Tn)Nen = ((T]{[, .. ,T](\i,)')NGN of Borel measurable
mappings Ty : C([0,1]; R?) — C([0, 1];RY) such that the following holds:

NeN —
on [0,00), a sequence (Ry)nen = ((Ry, - "R?V),)NeN of R-valued, continuous

a) For all N € N the Brownian motion W y is independent of zﬂnN.

b) Forallk=1,...,d and t € [0,0) it holds
XF(t) = Wiy (05 (1) + B&(t),  P-as.

¢) For N € N we put (E}V,,é‘]j\,)' =Ty ((R,---, R%)).

(i) There ezist a real number §; € (0,0), a constant c¢; € (0,00), and an index Ny € Ny such that,
forall N =Ny andk=1,...,d,

1/s
<E[ sup |RE — Elfv‘s]) <e- (lnN)f(l/zﬂm.
te[0,1]

(i) There exist a real number do € (0,1), a constant co € N, and an index Ny € Ny such that, for
all N =2 Ny and k=1,...,d,

In|ran (R, &F )| <o~ [(InN)™]-In ([(In N)™]).

Proof:
Let s € [1,00). We show that there exists a sequence of d-dimensional Brownian motions on [0, o) that
satisfies a). To prove the statements b)--d) one first carries over the auxiliary statements in [Der08b,
Sections 4 to 6]. Subsequently, one carries out the main proof of the statements b)--d) by mimicking the
proof of the analogue statements in [Der08b, Theorem 7.1.].

To prove the existence of a sequence of d-dimensional Brownian motions on [0,00) that satisfies a),
we use results in the field of enlargements of filtrations presented in [ADIO7| and [JY85], which are
also employed in [Der08b, Section 6]. Recall that FZ is the completed filtration generated by the d-

dimensional Brownian motion B = (B(t)) 1e[0,00)" For N € N we consider the right-continuous initial

enlargement G,y = (Gny (t))re[0,00) Of FB given by

o (1) i= [ (F2() © () ).

s>t
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Then the results presented in [ADI07, Lemma 1, Proposition 1 and Theorem 3] imply that for k = 1,...,d
and N € N the process B¥ can be written as

BF(t) = W?V(t) + /t Bk (s)ds P-as.,
0

for ¢ € [0,00), where (ﬁg(t))te[o,oo) is a real-valued, predictable stochastic process adapted to G, and

—k ok .
Wi = (Wx(t))e[o,00) is given by

k

W (t) = BR (1) - /O 8% (s) ds

for t € [0,00). Also see [ADI07, Example 2].

As a next step, we show that for all N € N the process Wy = (WJIV, o ,W;iv)/ is a d-dimensional
Brownian motion on [0,00) w.r.t to the filtration G, ,. For the moment we fix N € N. Now, as stated

in [ADIO7, Theorem 3|, for every k = 1,...,d the process W?V is a continuous local G, ,-martingale.

Moreover, note that for every k£ = 1,...,d the process (f(f va(s) ds) 10,00 is of bounded variation, and
te

)

recall that B!, ..., B¢ are independent one-dimensional Brownian motions. Together with standard facts
on cross-variation processes we arrive at

Wiy, Wao(t) = St (4.3.5)

for i,k e {1,...,d} and ¢ € [0,00) where d;; denotes Kronecker’s delta. Thus all prerequisites of LEVY’s
characterization of d-dimensional Brownian motions are satisfied, and we may conclude that Wy is a
d-dimensional Brownian motion w.r.t G,, . It remains to show that for all N € N the Brownian motion
W n is independent of zﬂn v- Indeed, let N € N. On the one hand, since Wy is a G,,-Brownian motion,
W is independent of Gy, (0). On the other hand, due to the definition of the filtration G,,, 1[’nN is
measurable with respect to Gy, (0). Hence Wy is independent of Un ~» which finishes the proof of a). [

4.3.2. Proof of Theorem 4.3.2

We carry out the main proof.

Proof of Theorem 4.3.2:

Let s € [1,0). Recall that amax = maxp—1, 4 aF where of is the parameter in Proposition 4.3.5.
Moreover, put amin := mink:Lmdak, fix v € ((1 + amin)" 1, 1), let (ny)nen be the sequence in N
such that n; = 1 and ny = [(lnN)“’] for N > 2, and for N € N let (Wyx)yen be the sequence
of d-dimensional Brownian motions on [0,00), let (Rxy)nen be the sequences of continuous stochastic
processes on [0,1] with values in R?, and let (T'n)nen be the sequences of Borel measurable map-
pings Ty = (T, ..., TE) : C([0,1];RY) — C([0,1]; R?) in Theorem 4.3.6. Again, for N € N, we put
(RY,...,R%) == Tn((RY,...,RL)).

k

We split up the proof into single steps.

Step 1: In this step we make a few preliminary observations. Let k € {1,...,d}, let N € N, and for the
moment we fix w € Q. For t € [0,¢% (1)(w)] we put

gﬁﬁN(t)(w) := inf {s € [0,0) ’ @ﬁN(s)(w) > t}.
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4. Quantization of Ité6 Processes

Recall that the function s — @@ﬁN(s)(w), s € [0,1], is monotonically increasing and continuous.

Y
Hence the function ¢ — ¢F (t)(w), t € [O,Iﬁ,’jN(l)(w)], is its monotonically increasing, continuous
pseudo-inverse. In particular, it holds

D (P (8)(@)) () = t (4.3.6)
for all t € [0, @ﬁN(l)(w)] Together with Theorem 4.3.6 b) the observation in (4.3.6) leads to

Wi (#)(w) = X*(ak, (1)) (w) — Bk (85, (1)) () (4.3.7)

forallte [0,¢§N(1)(w)].

Step 2: First, recall that forall N e Nand k= 1,...,d we have 1217'2]\](1) < n§\1,+ama"). Secondly, for N € N
let Sy : C([0,1]; R%) — C([0, 1]; R?%) be an N-uniform-product-quantizer of X; := (X (t))sef0,1]> and
we put ()?}V, . ,)?j‘f])' = Sy (Xl). Then, due to Definition 4.0.1 b), we have

| ran ()Z']’%)’ < [Nl/dJ (4.3.8)

forall k=1,...,dand N € N.

Now, let k € {1,...,d}, and let N € N. We utilize X ]]2, and }Nﬁv and define a real-valued stochastic

process W}{} on [0, ng\lf+amax)] by

WA () = XK (65, (¢ A 00y (1)) = B (0, (8 A 90, (1)) (4.3.9)

for ¢ € [0, ng\lﬁamx)]. Now combining (4.3.7) and (4.3.9) leads to

1/s

< E[kmax sup X (B, (1 k(1)) = K (85, (4 0, (1))
]

=1’.”7dt€[0,n5\}+amax

IE[ max - swp W (e a (1) - W (A gk, (1)
]

k=17--'7dte[0’n%+amax
1/s

s

] (4.3.10)

|

Furthermore, forallk = 1,...,d,t € [0, ng\I,Jran‘“x)] and w € it holds @f (t/\i)ﬁN(l)(w)) (w) € [0, 1].
Hence we have

X (6 (0 00, (1)) = R (2 (1 2 1, 0)) | < e, sy [XF0) = R
=550 €0,

1/s

# B max sw[RA(gk, (a9, (1) - B (2h, (0 k(1))
]

k:17"’7d ¢ 6[07n5\}+amax)

and

R (s (8 1 00 (D)) = B (2 (1 00, ()] < max, sup [Rhy(a) = Ryt
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Therefore, together with (4.3.10), we obtain

E[ max - swp[Wh(ta @, (1) - Wh (e gk, (1)
]

k=1,...,d
yeeey t€[07n5\1,+amaX)

1/s /s
< (]E[klznlax sup ‘Xk(t)—)?]li,(t)f]) + (E[kmaxd sup ‘R%(t)—ﬁ%(t)ﬂ) .

----- dtef0,1]

Step 3: In this step we estimate

1/s
lim sup VIn N - (E[ max sup ’R?v(t) - ﬁ?\/(ﬂf]) .

N—)OO k=1,...,dt€[071]

By Theorem 4.3.6 c¢) there exist a real number ¢§; € (0,0), a constant ¢; € (0,00) and an index
N7 € Ny such that, for all N = Ny,

1/s
<E[kmax sup }Rﬁv(t) — R%(t)ﬂ) <c¢ - (In N)_(1/2+61).

=Ldyef0,1]
Thus,
1/s
limsup vIn N - E[ max sup ’Rfv(t) — E?V(t)ls] = 0. (4.3.12)
N—w k=1,....d te[0,1]

Step 4: In this step we further estimate
1/s

|

e, [P, (0) < T AL 0)
]

:1W”dteﬁLn%+&m3ﬁ
To this end, for z = (2!, ..., 2% € R, we put
ki(z) :=min{k e {1,...,d} | |zF| = 'Irllaxd\xﬂ}.
i=1,...,

Moreover, we will employ the following observations:

o Let k € {1,...,d}. Theorem 4.3.6 d) combined with (4.3.8) as well as (4.3.9) implies the
existence of a real number d; € (0, 1), a constant ¢ € N and an index Ny € Ny such that for all
N > Ns we have

| ran (W]]f,)’ < |ran ()N(J@,E?V,ﬁﬁl\,ﬂ < [Nl/dJ -my "N (4.3.13)

where my := [ (In N)*].

e [t is easy to see that

. my-Inmpy
| — =0. 4.3.14
Nlinoo In N 0 ( 3 )
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e For the moment we fix N € N. By Theorem 4.3.6 a) we have that

Wy = (W}V, e ,W?V)/ is independent of Qﬁm\,(l) = (zﬂl (1),... ,zﬂgN(l))/.

nn

Furthermore, by the definition of ()?]1\,, . ,)Z'j‘\l,)/ and (ﬁi}v, . ,ﬁiﬁl\,)/, and due to (4.3.7) there
exists a Borel measurable mapping ® : C([0, 1];RY) — C([0, 1]; R?) such that Wy = SN (Wh).
In particular, combining the previous considerations leads to the fact that (WN, WN) is inde-
pendent of ¥, (1).

Now by using the above observations, by applying Proposition B.2, Lemma 4.3.3, (4.3.13), and
Proposition 2.1.8 a), we obtain, for all N > No,
1/s
(1) = ])

S

(E[kmax sup ‘W’;\r (t A 7/35”\,(1)) - Wk’ (t A J’ﬁN(l))
]

te[07n§\}+0max)
1/s
s])

77777 telo ng\}+an\ax)
)

- (E max sup ‘Wf\, (t A v*) — WE(t A oF)
- ]

> ks () . %)
vk e|ran(v7§*(”))|(w’c[0’ 1])

= L g (V- CL0.1)

for Py qyaa. v = (v',...,v%)" € [0,00)? where W denotes a Brownian motion on [0,1]. Thus,
N

together with Theorem 2.3.11 (ii) we arrive at

lijlvninf vIn N - (E[ max sup 'W; (t A lﬂfw(l)) — W]]f; (t A T&fm(l))
—© e te[0,n (L Homax)]

(4.3.15)

1/s
> ko - Vd - liminf (E [ max (TﬁSN(l))S/Z]>

N—w

,,,,

where k4 is the constant in the aforementioned theorem, and where we used the fact that

In N In N
lim inf > lim inf > Vd.
e \/ln (|NVe] - m@™N) e \/(lnN)/d+02-mN ‘Inmy vd

We employed (4.3.14) to derive the last inequality in the above detached formula.
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Step 5: We combine the results of Step 1 up to Step 4. Recall that, for N € N, Xy is an arbitrary
N-uniform-product-quantization of X;. Then, by Lemma 4.0.3, (4.3.11), (4.3.12) and (4.3.15), we
derive that

1/s
lim inf \/F eNprod um(X C([O 1] Rd)) Koo - \f lim inf ( [kmaxd (1&1121\7(1»5/2]) .

N—oo N—o0

=1,...

It remains to further estimate

lim inf (E [kmax (qﬁﬁN(l))"ﬁDl/s.

N—00 =1,....d

The inverse triangle inequality implies

(E [kir{?_}id(AfLN(l))sm])l/s y (E [kf}axd«kal))S/QDl/s Zd: ( [W <M’“>(1)|S/QD1/S

7777

for all N € N. Moreover, by Proposition 4.3.5 we have

1/s . 1/s
Z < [W Mk>( ’s/2]> / < Zd] (E[ Sup1 ‘%N(t) _<Mk>(t)‘s/2]>

k=1 k=1

k=1 N
1
S ¢ (TLN) (1+amin)/2
<c- !
(h’l N) 7'(1+an1in)/2

for all NV € N such that ny > 3, and where ¢ denotes a positive real constant not depending on N
which may vary from line to line. Now due to the choice of 7, we have 7 - (1 + amin)/2 > 0. Hence
we end up with

R . 1/s . 1/s
lim inf <E Lmaxd (T,ZJZN(I)) /2:|> = (E [kinlc?x,d H HZk()HQ ||L2[0,1]:|> 3

N—o0 =1,...,

which finishes the proof.
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5 Quantization of Multidimensional
SDEs

In this chapter we provide a method which yields (strongly) asymptotically optimal sequences of quanti-
zations of a strong solution X = (X!,..., X Cl)’ of a d-dimensional system of SDEs, and we consider the
spaces Lg[O, 1], p € [1,0), and C([0,1];R?). Our construction generalizes a quantization procedure for
scalar SDEs developed in [MGR13|, and it basically consists of two steps, namely, a coarse-level quanti-
zation and a fine-level quantization. We apply both of them separately to each component X* of X such
that we end up with overall product-quantizations of X. In particular, the fine-level quantization will
turn out to be a decisive ingredient in the construction since it will be crucial for the overall performance
of the quantization.

The chapter is organized as follows. In Section 1 we construct a coarse-level quantization of X. Section
2 deals with quantization of X in the space (L2[0,1],] - | Lg[071]). The section closes with a discussion,
which includes, among other things, the analysis of the computational cost and an example. Section 3 is
devoted to quantization of X in the space (C([0,1];RY), | - [ls). The last section of this chapter, Section
4, is concerned with quantization of X in the space (C([0, 1];R%), ||| - ||ls), s € [1,0), where || - |||s is the
norm introduced in the introductory chapter.

General assumptions:
(i) Throughout the chapter we assume the setting in Section 3.1 with r € Na.

(ii) To avoid trivial cases we assume that the continuous R"-valued process (by(X(t))) te[0.1] 1S DOt

indistinguishable from the constant zero process for all £ = 1,...,d, where X is the unique strong
solution of the SDE (3.1.1).

iii) For m € e =tg < <ty = e the equidistant discretization of the time interval [0,
iii) F N let 0 t t 1 be th idistant di tizati f the ti int 10,1
given by

t = (5.0.1)

l
m
forall [ =0,...,m.
5.1. A Coarse-level Quantization
Let m € N. We aim at constructing a quantization of the R (m*1)_yalued random matrix
X = (X(t0),..., X(tm)).

Due to assumption (C1) all partial derivatives of the diffusion coefficient b of the SDE (3.1.1) exist. Hence
we are in the position to employ the d-dimensional Milstein scheme corresponding to the discretization

(5.0.1) whose kth component, k = 1,...,d, is given by )?nl\f’k(to) = zf and
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5. Quantization of Multidimensional SDEs

XMWY = MR ) + ap (XM (o)) -m—t + Z b (X (t1-0)) - (W () = Wi (1))

+ D0 VbV (XN t-) - T
Ji,j2=1

for I =1,...,m where

t
J(ljlvj2) = /t (le(s) - W (tl—l)) dVVJé (s).
-1

From now on, we abbreviate ‘
V7 =m' 2 (Wit)) — Wy(ti—1)) (5.1.1)

forj=1,....,randl=1,...,m, and

Ié m‘Jé

1.42) (5.1.2)

Jig2) T

for j1,70 =1,...,rand [ = 1,...,m. Recall that for all l = 1,...,m and ji,j52 = 1,...,r [t6’s formula
implies

2 e ,
(W5 () = Wy (=) —mT L i gy = g,
J(Jl ja) T ‘](Jz J1) e ( 311( l)jl 5;( l 1)) . 1 j.l ‘].2 (5.1.3)
’ ’ m= Y Y, if j1 # Jo2.
Thus, in view of (5.1.1)--(5.1.3), we rewrite the Milstein scheme such that for all k¥ = 1,...,d and
[=1,...,m we end up with

X%’k(tl) P-g.s. X%’k(tlfl) + ag (an\é[(tlfl)) . mfl + 777,71/2 . Z bk,j (an\é[(tlfl)) . }flj
j=1

o i Vb ;b9 (X (1) - (V) = 1)
j=1

+m L. Z kaﬁb(jl)()?%(tl—l)) ) Iéjm‘z)
Ji,j2=1
J1<jz

Z kaJQb(jl)()?%(tl—l)) ’ (Yljl 'Yle B IéjQ:jl))
Ji,j2=1
J1>J2

(5.1.4)

= X0M(ten) + an (X0 (t-n) -m w2 Ebm M )Y
7=1

SN b (R 1)) - (07— 1)
j=1

T

+m7 ) (ka,jzb(jl)()?nl\f(tl—l)) - kau&b(h)(iM(tl_l») o
g
+m e Y Vb b0 (X () - Y YR

Ji,j2=1
J1<J2
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5.1. A Coarse-level Quantization

Note that
YZJ ~ N(0,1)

forall j=1,...rand [ =1,...,m, and

1
L
T £ [ Wits) awa(s

for all ji,72 = 1,...,7 with j; < jo and all [ = 1,...,m. Hence, in view of (5.1.4), it stands to reason
to employ quantizers for one-dimensional standard normally distributed random variables and quantizers
for the It6 integral fol Wi (s)dWs(s) as additional building blocks in our construction.

Let g € [1,0). For quantizing the standardized increments of the driving Brownian motion we choose

a sequence (T;q))neN of n-quantizers Tglq) : R — R for standard normally distributed random variables,
and forall j=1,....,rand [ =1,...,m we put

v = T (v (5.1.5)

for all n € N and we assume that:

(N1) For all n € N it holds E[Y;'"/] = 0.

(N2) For all s € [1,00) it holds sup,,cy E[DN/}(:]L)J

*] < o0.

(N3) There exists a constant ¢1(q) € (0,00) depending only on ¢ such that
(V7 V09 R) < ei(q) - m?
for all n e N.

In Section 2.3.1 we have already presented a method which yields such a sequence (i(f))neN.
Let v € (2,00). For quantizing the standardized It6 integrals we take the sequence of mappings
(T7(17))neN where 7" : R — R is defined as in (2.3.8), and we put
7bn ()t
I(jl,jz) =1, (I(j17j2))
for all n € N, all j1,50 = 1,...,r with j; < jo and all [ = 1,...,m. By Lemma 2.3.7 the sequence
(fg;f jz))"EN has the following properties:

(T1) For all n € N it holds E[[{

. 1,
(I2) For all s € [1,0) it holds sup,,cy E[\I(j?7j2)\5] < 0.

}T7j2)] =0.

(I3) There exists a constant c2(g) € (0,00) depending only on ¢ such that

~ 1/q
l 1,n _1
(E[U(ﬁ,jz) - I(jl,j2)|q]) <e2(q) - n
for all n € N.

. Fln
(I4) For all n € N it holds |ran (I(j1,j2))| <4-n.

Now we replace the standardized increments of the driving Brownian motion as well as the standardized

Ito integrals in (5.1.4) by their just chosen respective quantizations. More precisely, let n € N, and we
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5. Quantization of Multidimensional SDEs

define

X@Okt) = XOF ) + an(XD, (1)) - m™ +m™ 23 by (X9, (1)) - 252“
j=1

1 . N~ ~
+5- m-L. Z meb(ﬂ) (ng}n(tl_l)) ) ((1/17(;11),])2 ~1)
j=1

st D) (Thegab ) (R0, (01)) = V009 (RS0, (00) ) - T
J1,J2=1

J1<ja2
+mt Z Vg, b9 (X0, (t1-1)) ‘%f?’jl 'f/}fz)’k
J1,j2=1
J1<J2
forl=1,...,mand k=1,...,d.
By the above construction we have obtained a quantization
XO = (X9 (to),. ... X0 (tm))  of X = (X(t0),..., X(tm))

m,n

with

| ran ()N(,(,?)nk)‘ < (4(;) -n”(;))m7 (5.1.6)

for all k =1,...,d, where we used the fact that |{(¢,5) € {1,...,r}* | i < j}| = (;) as well as (I4). From
now on, we call the R¥(m+1)_yalued random matrix )Affr??n Milstein quantization of X (of level n).

The following proposition contains the main result of this section, whose proof is postponed to Section
6.1.

Proposition 5.1.1
Let g € [1,00). Then there exists a constant ¢ € (0,00) such that, for all m,n € N,

IE[ max HX(tl)—)?;,g}n(tl)ngO] <c (m 4+t

1=0,...,m

Remark 5.1.2

If b has the commutativity property, the Milstein scheme is of the form as in (3.3.21). In this case it
suffices to employ only quantizations of standard normally distributed random variables in the coarse-
level quantization.

Euler Quantization of X

Let m € N. For technical reasons, at certain places within this chapter, we will not utilize the Milstein
quantization of X. Instead, we will consider a quantization of the d-dimensional Euler scheme

XE = (XE(to), ..., XE (tm))
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5.1. A Coarse-level Quantization

associated to the discretization (5.0.1), which is built-up analogously to the Milstein quantization. We
will go into greater detail about the reasons for this procedure in the next section of this chapter.
Recall that the kth component, k = 1,...,d, of the d-dimensional Euler scheme is given by

X" (to) = 2,

~ ~ ~ 5.1.7
X%k(tl) = Xr%k(tl_l) + ag (Xr%(tl 1 -m- -|- Z bk] tl 1)) (Wj(tl) — Wj(tl_l)) ( )
fori=1,...,m. Let ¢ € [1,0), and let n € N. In view of (5.1.7) we define
X iH0) = af,
(5.1.8)

XE(a).k t) = XE(a)k ti—1) + ag XE(a) ti—1)) -m~ L2, by ; X (‘J) ti—1 ?(q)’j
m,n m,n m,n l,n
7j=1

forl=1,...,mand k =1,...,d, and where }N/l(z)’j is the quantization in (5.1.5).

From now on, we call the R%(™*1)_yalued random matrix
RELD - (RED (... KW,

Euler quantization of X (of level n).

Proposition 5.1.3
Let q,s € [1,00). Then there exists a constant ¢ € (0,00) such that, for all m,n € N,

B[ max [XEO @) <c

[RRRE

as well as

E[z max | X(t) - )?7%75501)(151)”80] <c- (mt 4”2

=0,...,m

Proof:

Let m,n € N. In the proof ¢ denotes a not further specified positive real constant which may vary at
every occurrence and which does neither depend on m nor on n. Similar to the upcoming Lemmas 6.1.1
and 6.1.2 one proves that

E| max |XEO@)]5] < e
[=0,...,m ’

=U,...,

and

E[l max | XE () — )?,%f,;ﬁ(tl)ugo] <c - (m™t+nh) (5.1.9)

=U,...,

Together with Proposition 3.3.1 this leads to

B[ max [X(0) - X205 ] < e (B] sup 1X(0) - XE@L] + B[ max |XE(1) - X0 @)17))

te[0,1]

<c- (quﬂ + (m*1 + nil)q>

=J...m 71 \ L+$c0nr 4 Li=1,..,

<c- (m_1 + n_l)q/2.



5. Quantization of Multidimensional SDEs

5.2. Quantization in L,([0, 1]; R?)

Throughout the whole section let p € [1,0), and we interpret X as an Lg [0, 1]-valued random element. As
a first ingredient we extend the Milstein quantization to a C([0, 1]; R%)-valued random element by means
of piecewise linear interpolation, i.e., for m,n € N and ¢ € [1,0) we define

XD.(#) = (b —t)-m - XD, (t11) + (t— 1) - m - X9, (1)

for t e [t;_1,t)] and I =1,...,m.

5.2.1. Fine-level Quantization: Quantization of Brownian Bridges

Let m € N. In this subsection we construct a fine-level quantization which consists of quantizations of
Brownian bridges on the subintervals [t;_1,;]. In the next subsection we will combine the fine-level quan-
tization with the coarse-level quantization constructed in the previous section in order to get a sequence
of overall quantizations of X.

Forl=1,...,mand j =1,...,r we define a real-valued stochastic process Blj = (Bf (t))te[tl,l hl by

BI(t) = Wi(t) = (ty — ) - m - Wjlti1) — (£ — timy) - m - Wj(t). (5.2.1)

Note that the processes Blj have continuous sample paths. Hence we may interpret sz as an Lp[t;_1,]-
valued random element.

In the following lemma we collect facts about the processes Bj, which will prove beneficial in the
remaining part of this thesis. Since those facts are well known, a proof is omitted.

Lemma 5.2.1

a) Forallj=1,...,r andl =1,...,m the process Blj is a Brownian bridge on [t;_1,1;].
b) The processes B%, .., BT, ,BL.....B are independent.
c) (Bll, By BL L .,Bfn) is independent of (W(to), .. .,W(tm)).

The construction of a fine-level quantization is based on the following key observation, see (I.), and
on the two succeeding ingredients, see (II.).

(I.) By Lemma 5.2.1, for all [ = 1,...,m, the processes Bll, ..., B are independent Brownian bridges
and thus, in particular, independent Gaussian processes. This implies

3.8 Bl £ 18- B} (5.2.2)

j=1

for all 8 = ([3’1, . ,BT)/ eR"and [ =1,...,m. In our analysis (5.2.2) will turn out to be one of the key
observations. Moreover, (5.2.2) strikes on the idea to design quantizers suited to such processes which are
of the form as on the right hand side of (5.2.2) and then apply those quantizers to such processes which
are of the form as on the left hand side of (5.2.2). This is one of the key ideas for our construction.
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5.2. Quantization in L,([0,1];R%)

(I1.) Consider the following mappings:

e For K € Nlet Sk : L,[0,1] — L,[0, 1] be a K-quantizer for a Brownian bridge on [0, 1]. Regarding
constructive approaches which yield quantizers for a Brownian bridge on [0, 1] we refer the reader
to Section 2.3.2.

o Let e R"\{0}, and let [ € {1,...,m}. We define ¢g; : Lp[t;—1,t;] — L,[0, 1] by

1

=L mY?  h(ti_y +m~' 1), te[0,1]. (5.2.3)
2

b ih(t)

The operator 1, is linear and bijective, and its linear inverse @/}5_} : Lpl0,1] — Lp[t;—1,t] is given
by
Yy ih(t) = [Blza-m™ V2 h(m - (t—ti-1)), te [tioi,t). (5.2.4)

Lemma 5.2.2
Let 1 € {1,...,m}, B € R"\{0} and let B; be a Brownian bridge on [t;_1,t;]. Then the stochastic process
(¥pa(]8]2 - Bl)(t))te[OJ] is a Brownian bridge on [0,1].

Proof:
This statement follows directly from the scaling property of Brownian bridges. O
As a last step in this subsection we combine the mappings introduced in (II.). For [ = 1,...,m,

K eNand BeR" let ®g; i : Lp[ti—1,t] = Lp[ti—1,%] be defined by

w_l SK(lb ,lh) ) if “6“2 #* 07
B xh = 1 (Sic(Wpih) (5.2.5)

0, if | Bll2 = 0.

Note that for all [ = 1,...,m, K € N and § € R" the mapping ®3; x is Borel measurable with
ran (@310 < K.

5.2.2. Overall Quantization

Let g € [1,00), m € Ny and n € N. The strategy to get an overall quantization of each component X* of X
is to apply the quantizers ®g; x constructed in the previous in order to obtain quantizations of Brownian
bridges, and, subsequently, to combine the resulting quantizations with the coarse-level quantization.

To this end, we first choose the size K of the quantizers Sk employed in the previous section separately
for each component X* of X by taking into account the local regularity of X*. Recall that in the pth
mean sense the local smoothness of X* at time point ¢ is determined by the size of

1/2

soen (XF(1) = (2 (brs (X)) (5.2.6)
j=1

see Section 3.2. It stands to reason that one chooses a greater K in regions where Sjocp (X k (t)) is large
and vice versa.

In the following, for technical reasons, our construction partly differs from the one in [MGR13], and
we use the Euler quantization of X instead of the Milstein quantization in order to get an estimate of
the quantity in (5.2.6) at the time points ¢;. We briefly justify this procedure. Since in the definition
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5. Quantization of Multidimensional SDEs

of the Euler quantization only quantizations of the increments of the Brownian motion W are employed,
Lemma 5.2.1 ¢) then guarantees that

XE@ (o), XB@@ V) and (BY,....Bl,....,B.,... B’
( m,n ) m,n 1 1 m m

are independent. This statement need not hold when replacing Xm(n)(tl) by the Milstein quantization
X}(n)n(tl) since, in general, the multidimensional Milstein scheme contains the multiple It6 integrals J* (i1.32)
with j1 # j2. Now by using the Euler quantiaztion instead of the Milstein quantization we are in the
position to utilize Proposition B.2 in our analysis in Chapter 6.

For k =1,...,dand [ = 1,...,m we estimate the quantity in (5.2.6) at time point ¢;_; by

Bkl . 1/2
St = (Z by j (X 2D (4, 1)))2> : (5.2.7)

Now we utilize (5.2.7) and define

-

~E kl1—1 \2p/(p+2)
max (SIOCH o n) L if  max &% >0
d m-—1 ~Evi 2/ (p+2) "d-m-lnm [’ i=0,...,m—1, IOCH m,n )
(P.a).k . _ { Z Z (SlocH m n) v=1,..d (5 9 8)
Mmmn = v=1 =0 2.
! 1
else
\d-m’ ’

for k=1,....,dand [ = 1,...,m. Thus, up to the thresholds (d-m -Inm)~! and (d-m)~! each random

: (p.q).k
variable n;" "
the local regularity of X over all subintervals. From now on, we will mostly drop the parameters m,n, p, g

(p,q)k . ~ABkl-1 ~E,k, -1
. We also use the shorter notation s; .7 ~ instead of SocH.m.n-

provides an estimate of the local regularity of X* on the subinterval [t;_1,%;] relative to

and write 771 instead of Mm

We employ the random quantities nlk to further specify the size K of the quantizers Si. Let M € N.
Fori=1,...,mand k=1,...,d we choose

Kiiv = [M"lk]- (5.2.9)
Now by defining
Tt = RO+ @, sz o z by (REL (1)) - B ) (1) (52.10)
where
b (XEAD (121)) o= (ren (XD (t121)), - i (X 2D (8121)))
forte [ti—1,4],l=1,...,mand k =1,...,d, we obtain a quantization )N(gf’g)M (Xf)fz)j\li, o ,)?ﬁf:z?]f/l[)/

)10y
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5.2. Quantization in L,([0,1];R%)

of X = (Xl, e Xd)/. Together with (5.1.6) we have

[ran (XZ00)] < (46) nr+(£)>m SEEY

=1

< (460G ﬁ2 At
=1
< (41"'(2) nr+(§)> le 1771

forall K =1,...,d, and hence
[ran (X77,) \<H}ran )|

< (4d'(1+(2)) . nd'(r+(2)))m . Mzza Xy (5'2'11)

< (4d(1+(;)) . nd(T+(g)))m . Ml—&-l/lnm’

where we used the fact that

~E kl—1\2p/(p+2
L&, N O 0 i 1 1
IDEDNI P S S
m— . .
) 2 2 m-Inm nm
k=11=1 k=11=1 Z Z (SE)CVI;) p/(p+2)
if  max sIE qu > 0, and
i=0,...,m—1, '°¢
v=1,..,d
d m d m 1
S - el
k=1i=1 hmti=1 &M nm
~E,v,1
if max 3§°x =0
1=0,...,m—1, locH
v=1,....d

We consider a sequence of quantizations

)N(](\I;,q) _ xa)

my,my,Mn’

N € N, of X where we choose the parameters my and My as follows. First, in order to control the size
of X](\I;’q) via (5.2.11) we choose

r —mnN
My = max <<4d'(1+(2)>.mjlv'(”(2))> N 1y (5.2.12)

> Inmy/(1+lnmpy)
Secondly, we require

my -Ilnm
(Lim1) hm SN TN

N—w0 lnN
and
my
Lim2) lim —=—
(Lim2) lim 3% =

7



5. Quantization of Multidimensional SDEs

Remark 5.2.3

a) A valid choice of a sequence in N which satisfies (Lim1) and (Lim2) is (my)neny with m; = 1 and

my = [(InN)Z/?’], N > 2.

b) In view of (5.1.6) there exists a constant ¢ € (0,00) such that, for all sufficiently large N € N,

In (| ran ()Z'},%}WN)\) < c-mpy - In(my).

Hence due to (Lim1), in a logarithmic scale, the size of the coarse-level quantization is asymptoti-
cally negligible compared to the size of the overall quantization of X.

c) Note that (Lim2) yields

. vVIn N
lim = 0.
N—on My

Thus, in view of Proposition 5.1.1 and Theorem 5.2.4 below, the error of the coarse-level quantization
tends faster to 0 when N tends to infinity than the error of the overall quantization and is therefore
asymptotically negligible. Consequently, the fine-level quantization is a decisive ingredient for the
overall performance of our quantization of X.

d) By the construction of the sequence ()Z'](\Z;’q))NeN and due to (5.2.13) in the upcoming Theorem 5.2.4
we have

v (,q)
X N € XN ,prod

for all sufficiently large N € N.

Next we state the main result of this section, whose proof is postponed to Section 6.2. We put

Rp = limsupvVIn K - g

K—w

with 0 := e(P) (B,Sk(B), Lp[0,1]) where B denotes a Brownian bridge on [0, 1], and we put

1/p
a wipre T
c? .- || b (X (-
<I€Z—:1 H H k( ())H2 L2p/(p+2)[071]
Theorem 5.2.4
Let ¢ > min{g e 2N | § = p}. Then
[ran (X) [ < N (5.2.13)

for all sufficiently large N € N, and

limsup (VIn N - e® X,)Af(p’Q),Ld 0,1])) <&, -C®.
N p p

N—o
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5.2. Quantization in L,([0,1];R%)

Due to the previous theorem the asymptotic behavior of the quantization error of order p correspond-

ing to the sequence (X](\I;’q))NeN depends on the SDE via the constant C®) and on the sequence (Sg)gen

of K-quantizers for a Brownian bridge on [0, 1] employed in our construction via &p.

~

Due to Theorem 2.2.3 we may assume that (Sk)xen is a strongly asymptotically optimal sequence of
order p of K-quantizers for a Brownian bridge on [0, 1]. Therefore, the preceding theorem together with
Theorem 2.3.11 leads to the following result.

Corollary 5.2.5
Let ¢ = min{qg € 2N | § = p}, and assume that (Sk)Ken 1S a strongly asymptotically optimal sequence of
order p of K-quantizers Sk : Ly[0,1] — Lp[0, 1] for a Brownian bridge on [0,1]. Then,

lim sup (\/lnN -elP) (X, X}g’q), Lg[O, 1])) < Kp - c®)

N—w

where Ky is the constant in Theorem 2.8.11 ().

We close this subsection with the following theorem, which is derived by applying Theorem 4.1.2 (i)
as well as Theorem 5.2.4 and Corollary 5.2.5.

Theorem 5.2.6
It holds

lim VinN el (X, L90,1]) = k, - O

N—oo

where K, is the constant in Theorem 2.8.11 (i).

Proof:
In the whole proof ¢ denotes a not further specified positive real constant which may vary from line to
line and which does not depend on V.

We prove the upper bound first. Due to Theorem 5.2.4 and Corollary 5.2.5 there exists a sequence
()N(N)NGN of quantizations of X such that

limsup vVIn N - egg)prod(X, Lg[O, 1]) < limsup vIn N - e®) (X, )Z'N,Lg[(), 1]) < kp - o), (5.2.14)

N—w0 N—w0

Hence it remains to show

liminf VinN el (X, L2[0,1]) = , - C®.

N—o0

We split up the proof into single steps.

Step 1: In this step we make a few preliminary observations, and we show that each component X* of
X is an Itd process as required in Section 4.1.
First, by the fact that b is of at most linear growth, and by (3.2.2) in Theorem 3.2.3, we have

2p/(p+2)

Lap/(p+2)

(p+2)/2
o 1}) <c (L+E[|X]Z]) < o (5.2.15)

c _ (ki | (x)1,

Secondly, we show that for all k = 1, ..., d the processes (ak(X(t)))te[O 1 and (by, ; (X(t)))te[0 it
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j=1,...,r, satisfy the respective assumptions in (A2)--(A4) in Section 4.1 since then we are in
the position to apply Theorem 4.1.2 (i). Indeed, let k € {1,...,d}. Since X is a strong solution of the
SDE (3.1.1), X has continuous paths and is adapted to F. In addition to that, due to assumption
(C1), the mapping ay is continuous. Thus, the process (ak(X (t))) re[0.1] is measurable and adapted
to F. Next, we show IE[Hak(X())HsLZ[O’l]] < o for all s € [1,00). It is enough to consider the case

€ [2,00). By Jensen’s inequality, by the fact that a is of at most linear growth, and by (3.2.2) in
Theorem 3.2.3, we have

E [(/01 |ak(X(t))|2dt> 8/2] <E [/01 lar(X ()] dt] <c - (1+E[X]5]) < .

Hence (ak(X(t)))te[o,ﬂ
Next, we verify (A3). Let j € {1,...,r}. As above one argues that the real-valued process
(ka(X(t)))te[O ) I8 adapted to F. Additionally, since X (0) = zg € R, it holds b; ;(X(0)) € R.

Furthermore, it is well known that the assumptions (C1), (C2) and the fact that xo € R? imply
that almost all paths of X are y-Holder continuous for all y € (0,1/2). W.l.o.g. we may even assume
that all paths of X have this property. Since in addition by, ; is Lipschitz continuous, we obtain that
the paths of (b (X(t)))te[o,l] are y-Hélder continuous for all v € (0,1/2). Hence (bx;(X(2)))
has the properties required in (A3).

It remains to verify (A4). Let s € [1,00) and a € (0,1/2). It holds

156 (X (#)) 12 = [5r(X ()12 | - [ Jor(X (£)) 12 + o (X (5)) ]2 |

\s<t<1 |t - S‘Q

2 e (X D2 [, - [ 1ox(X ()2 ],

has the properties required in (A2).

t€[0,1]

[ lox (X (D3], =

and hence Hélder’s inequality implies

B O] <2 (E el 2]) ™ (E[ o 2]) ™

Utilizing the properties of b as well as Theorem 3.2.3 leads to

(E [H [0k (X (+))] 2 H25D1/2 < o,

and therefore it remains to prove

B[] b (X ()2 [2] < o

Since b is Lipschitz continuous, it holds

U

[ 106 (X )2 = 106X ()2 | < [01(X (1)) = br(X (s))]l2 < e Y [XF(H) — X*(s)]

for all s,t € [0,1]. Hence

2s d
(X ()12 |is _ < sup [ 6e(X (8)]2 — [0£(X(5))]2 ’) <ec. Z |Xk‘is'
k=1

0<s<t<l |t — s|@
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5.2. Quantization in L,([0,1];R%)

Now by Lemma C.6 we arrive at
d 2
E[[IoeX ()l ] < e DB [[xH2] < o,
k=1
which finishes the proof of (A4).

Step 2: In this step we provide further auxiliary statements. For N € N let Xy = ()?}V, . )?]Cf[)’ be an

arbitrary N-product-quantization of X. Then there exist th), . (N) € [0, 1] such that
: (N) Sk ()
Dty ) <1 and  |ran (Xy)| < |N% |, fork=1,....d, (5.2.16)

for all N € N. In particular,
[ran (X5) < [N ]| (1n V)| (5.2.17)

forallk =1,...,d and N € N3. For ease of notation, we abbreviate mN [Nt( )J [(ln N) 2/3J for

NeNand k = 1,...,d. Note that for all N e Nand k = 1,...,d we have m > |(In N)*®|, and
hence

dim mk, = (5.2.18)

forallk=1,...,d.
Furthermore, Proposition 2.1.8 a) together with (5.2.17) implies

d 1/p
VInN - e®) (X, Xy, L%[0,1]) = VIn N - (Z ( @ (x*, Xk, L,[0, 1]))p>

_ (,i< )”/Q(F o0 (x* Z5 L, [0, 1])>p>1/p
(i(lnN) v (/- ) (x* L L) )1/p

for all N € N such that for all k = 1,...,d it holds m%, > 2. Hence,

d

VIn N - ()(X Ld 0,1]) (Z (11n1\]7€ )p/2 ( Inmk; - 6(p;)c »10, 1])) )1/p (5.2.19)
nmN

for all N € N such that for all k = 1,...,d it holds m’f\, > 2.
Now by (5.2.18) and Theorem 4.1.2 (i) we have

1/p
lim y/lnm¥; - e} (X¥,L,[0,1]) = - (IE [H Ik (X2 7, o ]) (5.2.20)

N—o0

forall k=1,...,d.
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5. Quantization of Multidimensional SDEs

Additionally, observe that, for all k = 1,...,d, (bk(X(t)))te[o 1] is a continuous process which we

assumed is not indistinguishable from the constant zero process, see assumption (ii) at the beginning
of this chapter. Therefore,

(=Ll on]) >0 (5.221)

forallk=1,...,d.

Step 3: We put

82

L :=liminf Vin N - e roa (X, L2[0,1]),
and we abbreviate
ax = VIV e, (X, £20. 1)
for N e N. It is a classical result that there exists a subsequence (an,)en of (an)nen such that
lli>nolc an, = L. (5.2.22)

Next, we show that there exists a subsequence (Nj,,)men of (IVi)ien such that the sequence
(BN, Jmen given by

B, = Z #{Nem) (5.2.23)

for m € N is convergent. Indeed, first consider the sequence (thl))lEN- By Definition 4.0.1 this
sequence is bounded with th’) € [0,1] for all I € N. Hence there exists a convergent subse-
(Ny) (Ny)

quence (t; ")pen of (thl))leN with vy 1= limy_, t; "’ € [0, 1]. Secondly, we consider the sequence

(téN’))l,eN Again, this sequence is bounded with téNl') € [0,1] for all I’ € N. Hence there exists
a convergent subsequence (té v ))l//eN of (t( l))l’eN with vg 1= limyr_,q thl") € [0,1]. By repeat-

ing these arguments another (d — 2)-times we obtain a subsequence (N, )men of (N;)en such that
(t(Nlm))meN converges for every k = 1,...,d. Thus the sequence (8x, )men Where By, is given as

in (5.2.23) is convergent with limit Zzzl vg. Furthermore, due to (5.2.16) we have By, € [0,1] for
all m € N and therefore

d
Do <1 (5.2.24)

k=1

As a next step, we show that actually v, € (0,1] for all k = 1,...,d. Indeed, assume that there
exists a k € {1,...,d} such that vy = 0. Then,
(Ni) 2/3
lim ty m’In N, + (lanm)

m—0 In Nlm

= 0.
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This implies

In m’fv
. [

lim =0,
m—c In N

and hence together with (5.2.19)--(5.2.22) we obtain

d p/2 1/p
. L In Nlm
L= lgln_)lo%f an, = Kp- Z (hmlnf ik ) -E [H 108 (X () 2 HLQP/(HQ) 0,1 ] = o0,

m

which contradicts (5.2.14) combined with (5.2.15).

Step 4: Due to the results obtained in Step 3, and due to the definition of the sequences (mf\,l Jmen it

holds
p/2
... InNg, —p/2
(hmlnf - > ZUkp

m—0 In my,
m

for all k =1,...,d. Hence, together with (5.2.19), (5.2.20) and (5.2.22) we derive

d 1/p
—p/2
L= rp- (2 E [Uk ’ H ||bk( )”2 |‘L2p/(p+2) 0,1 ]) : (5.2.25)
k=1
For ease of notation, we abbreviate
ek = | 1o (X () HLQP/(p+2)[0,1]
for k = 1,...,d. By the reverse Holder inequality applied with the exponents A\; = —2/p and

A2 =2/(p+ 2), and by (5.2.24), we have

d d (p+2)/2 d —p/2 d (p+2)/2
Z —p/2 cp > <Z c?p/(p+2)> . (Z v ) (Z p+2>

k k :
k=1 k=1 k=1 k=1

Therefore, in view of (5.2.25), we finally end up with

d oo (042) (p+2)/27\ /P
o o d ) . e
Bt VI - B30 = - (2| (35, 77 |
which finishes the proof.
O

Remark 5.2.7
Similar to the proof of Theorem 5.2.6 one shows

N—o

1p
2 W Loy [0, 11]) .

liminf VIn N eNprOd unl(X Ld[O 1]) ( [2 H ku
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Now, let p € [1,00), and assume d € Ny. We compare this lower bound with the one obtained in Theorem
5.2.6, namely

1/p
wirn T
Z [ (X O)l,
Lop/(p+2)[0,1]
To this end, we abbreviate
Cp 1= H b (X (-
e X, o
for k =1,...,d, and, for the moment, we fix w € 2. By the reverse Holder inequality we have

d d (p+2)/2
Z U};p/Z . ( (Z 2p/ p+2))
k=1

for all (vi,...,vg) € (0,1]% with 3¢_, v < 1. In particular,

d d (p+2)/2
dr/? . Z (cr(w)) (Z 2:0/ p+2)> .

Thus,

d d (p+2)/2
2 2
dr/? . Z ci > <Z Ck‘p/(zﬂr )) :
k=1

k=1
and hence

1/p d 2p/(p+2) (p+2)/2
b ( >, |E o (x
( [Z H H ; Lop/(p+2)[0; 1]]) " (kz_jl “ k( © 2 sz/(p+2)[011]>

Therefore, as one would expect, approximating X by quantizations of the larger classes Xy proq, IV € N,
instead of only taking quantizations from the classes Xx prod,uni; NV € N, leads to a smaller lower bound.

1/p

5.2.3. Discussion

Strong Asymptotically Optimality of the Sequence ()N(](\];’q)) NeN

Let g € [1,0). The following proposition states that the sequence ()Z'](\I;’Q)) Nen of quantizations of X
constructed in the previous section is strongly asymptotically optimal of order p in the classes Xy prod,
N € N, provided that the sequence (Sk)ken is a strongly asymptotically optimal sequence of order p of
K-quantizers for a Brownian bridge on [0, 1].

Proposition 5.2.8
Let ¢ = min{q € 2N | § = p}, and assume that (Sk)ken is a strongly asymptotically optimal sequence of
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5.2. Quantization in L,([0,1];R%)

order p of K-quantizers Sk : Lpy[0,1] — L,[0,1] for a Brownian bridge on [0,1]. Then,

(p) (X )?(P,‘I) Ld[o 1])
. € ) N » Hp 9
<
N (X, L4[0,1]) :
N,prod » Hplh

and in particular, in case d = 1, it holds

®)(x, X, L,[0,1
limsupe ( N p[’])

<1
N> e (X, L,y[0,1])

Proof:

The first statement is a direct consequence of assumption (ii) at the beginning of this chapter, and of
Corollary 5.2.5 as well as Theorem 5.2.6. The second statement is a direct consequence of assumption
(ii), and of Proposition 4.2.1 as well as Corollary 5.2.5. O

Computational Cost

Let g € [1,0), v € (2,0), m € Ny, as well as n, M € N, and recall that )?T(f”Z?M is the quantization of X
as constructed in Section 5.2.2.

In this subsection we analyze the computational cost to determine the paths and probability weights
of X ﬁfg) s in the space Lg [0, 1] along with their corresponding probability weights. The analysis is carried
out similarly to the analysis of the computational cost in [MGR13, Section 2.5|, and it leads to a result
analogous to the one derived in the aforementioned paper. We assume that the following quantities, which
do not depend on the parameters of the SDE, are available via precomputational steps. Hence they do

not have to be taken into account in the analysis of the computational cost.

e We assume that we know the support points z; = z,; and their corresponding probability weights
Gi = Cny, © = 1,...,n, of the distribution

n
PZT(Lq) = Z C’L . 5,21-
i=1

of a sequence of n-quantization Z(Lq) of a standard normally distributed random variable, which has
the properties (N1)--(N3). See Section 2.3.1 for a simple construction.

o Let I be a real-valued random variable with I £ fol Wi(s) dWa(s). We put I =7 (I) where
7 is the mapping defined in (2.3.8), and we put N (n,v) := |ran (ﬁﬁ))| By the construction of

Téw), see Section 2.3.1, we know the support points i; = in,, i = 1,...,N(n,7), of the quantization
Z(Lq). Now consider the set

r m
®m,n = <{21,...,Zn}r X {il,...,i/\[(nﬁ)}(Q)) .
This set contains vectors which are built-up by m blocks of equal length r + (g) where each block
consists of support points of quanizations of standard normally distributed random variables and
of support points of quantizations of I. The vectors in ©,,, are used to obtain the Milstein
quantization. For now, we assume that for every vector in the set ©,, , one knows the corresponding

probability weight. We further comment on this assumption in the remark at the end of this
subsection.
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5. Quantization of Multidimensional SDEs

e We assume that for K € N we know the distribution
K
B) = Z BK.i * Obg .,
i=1

of the K-quantizations Sx (B) of a Brownian bridge B on [0, 1] where, fori = 1,..., K, 8k, denotes
the probability weight corresponding to the path by ; of the quantization Sk (B ) The discussion in
Section 2.3.2 justifies this assumption.

Given the coefficients a and b as well as the initial value zg of the SDE we have to compute the
following constituents of Xr(r]f’g)’k, k =1,...,d, where, for now, we assume that all probability weights

occurring in the analysis below can be computed. We comment on this assumption in further detail at
the end of this subsection.

For I=1,...,(n" - N(n, 7)(;))m we choose a vector eﬁ,{)n € Oy, n, and we compute the following:

(1) For every k =1,...,d we first compute
(i) the knot z*(1) = (mg’m, a;,]%([)) of the coarse-level quantization (ﬂS‘i},;’“(to), ooy, X (tm))
corresponding to e,ﬁﬁ?n, and
(i) the knot zBk:(0) = (zEF) ZERDy ot the Euler quantization (X2 (to), . .., XD (t,_1))
corresponding to 0( )
Note that for all k = 1,...,d the probability weight of z%() is given by the probability weight

corresponding to eﬁ,{?n which we denote by £

(.) Secondly, for all k& = 1,...,d compute the values (b ;(x OE( )), b E(]))), j=1,...,d, along
k(1)

with the associated values s;E_l of the random variables sf: K171 a5 defined in (5.2.7) for
l=1,....,m
(M) Now fix k€ {1,...,d}. Thirdly, we compute
(i) the size

k,(I)

(I) (I)
Ky =Ky v = K

1

of the fine-level quantization on the subinterval [t;_1,¢;] for I = 1,..., m where
E.k,(I)\ 2p/(p+2
sk )) p/(p+2) 1 . Ean(l)
max  ——— S T Iam [ if Z‘:Omaglc_l s; > 0,
77;@,(1) = 3 (SEV(I))2P/(P+2) P
v=1 1=0
! 1
{ r, else,
and
(ii) for J* = (J{“,...,Jﬁl)eK,gI) ={1,... K]ill)}x -~><{1,...,K,£21} we compute the probability
weights

k
p(LJ HIBK(I) ch

k,l°
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5.2. Quantization in L,([0,1];R%)

Note that J* is a vector of length m which consists of the numberings corresponding to those paths
of the fine-level quantization on the respective Ith subinterval [t;_1,%;], | = 1,...,m, which are
concatinated such that one obtains a function defined on the whole interval [0, 1].

Let k € {1,...,d}. For the distribution of X(p q)M we have

k
Prwas = > SRR S (5.2.26)
, I=1 J’“EK,(J)

where, in view of (5.2.2), (5.2.5) and (5.2.10),

Y (@) =ty (=) om0 (O ) (0), i )
7 - Si—1 40
xf(l) (ty —t)- m+xl() (t—ti_1) - m, i ;31;([)_0’
(5.2.27)

for t € [t;—1,t;] and I = 1,...,d, and where ’y(l"]k) denotes the probability weight corresponding to the
path Y(:7%) *). We further comment on the weights v/ ") in the remark at the end of this subsection. For
the distribution of X 7 (p Q) we have

Piwa = > > A" sy

m,n, M =1 JeK(I)

where K = KD ... 5 KD where YU = (Y @Iy for J = (J,..., 4 e KO, and
where (/) denotes the probability weight corresponding to the path Y!»/). We further comment on the
weights v*/) in the remark at the end of this subsection.

We use the real number model to analyze the computational cost, i.e., we assume that all evaluations of
the coeflicients a, b and their partial derivatives as well as all arithmetic operations are carried out at cost
one. Regarding an introduction to the real number model we refer the reader to, for example, [Nov95|.

The total computational cost, denoted by cost(m,n, M), to construct the paths Yy&I) in Lg[O, 1] and
their corresponding probability weights v(/*/) is then given by the total number of all required evaluations
of a, b and their partial derivatives as well as by all required arithmetic operations to carry out the
algorithm. By

(nr-./\/'(n,'y) (72))m
[ran (X70),)| < > [KW)|
I=1

we have

d-m - [ran (X0, )] < cost(m,n, M) < e d-m - ran (XP,))],

(5.2.28)

where the constant c is the number of all required function evaluations and arithmetic operations to carry
out the algorithm. Note that ¢ does not depend on the parameters of the SDE. By (5.2.28) we obtain
cost(m,n, M) < c-d- (In|ran ()?T(f’z)M){) - |ran ()Z'T(f’g)M)‘

for all n > 2.
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5. Quantization of Multidimensional SDEs

In particular, by Theorem 5.2.4 we have

cost(my,my, My) <c-d- (ln’ran ()Afj(\‘?’Q))‘) . ’ran ()A(/](\f’q))‘ <c-d-InN-N

for all sufficiently large N € N. Hence the computational cost to construct the paths and corresponding

probability weights of X N

(p,9)

is close to the size of the quantization.

In the following remark we further comment on the probability weights £ of the coarse-level quantization
and on the probability weights 4(/*/) of the overall quantization.

Remark 5.2.9
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a)

Let k€ {1,...,d}. For I =1,...,(n" - N(n, 7)(5))7” let eﬁ,{)n € Opn, and let 2™ be the knot

of the kth component of the Milstein quantization corresponding to (9( ) For us, in general, it
remains an open problem to determine, or at least approximate, the probablhty weight & (D) of k(D).

More precisely, it holds aﬁ,{?n = (eﬁ,{)n - 0(1) ) where 0,(7{?;5 €{z1,...,zn} X {il, e ,iN(nﬁ)}(g)
forl=1,...,m,ie. 07(7{)” consists of m blocks, where the Ith block 97(n1)nl contains support points of

)3 ,j=1,. randl(( )) Ji,d2 =1,...,r with j; < jo. For [ =1,...,m we

use €D to denote the probability weight corresponding to Gﬁn)n Clearly,

5(1) — H 5(1)’1

=1

the quant1zat1ons Y(q

In general it is hard to determine the weights €D 1 =1,..., m, since, to us, the joint distribution
of the random variables Y7, j = 1,...,r, and I(Jl oy J1sJ2 =1, with ji < ja, is unknown.

In the very special case that b has the commutativity property, we know the probability weights
€U, In this case, in the Ith step of the Milstein scheme, one quantizes only the independent
standard normally distributed random variables Y;', ... ,Y)", see Remark 5.1.2. Hence if b has the
commutativity property, £ is the product of the respective probability weights corresponding to

T

the quantizations of V!, ..., Y.

Since the random vectors (Yll,...,Ynll,...,Y{,...,YJZ,I(lLZ) I(lr L) I("fQ),...,I("LLT)) and
(Bll, By BL B}"n) are interdependent, the weights 'y(I T in (5.2.26) can in general not

be calculated by simply multiplying the corresponding weights £) and p(+/ ",

But if b has the commutativity property, the weights V(I’Jk) can be computed via exactly the
same procedure. Indeed, in (3.3.21) we have shown that if b has the commutativity property, the
Milstein scheme consists only of the increments of the driving Brownian motion W. Therefore, the

):d

Milstein quantization is built-up only by the quantizations }Nfl(fl , and hence Lemma 5.2.1 ¢) then

guarantees that for K = 1,...,d the distribution of )N(T(,’Z;,‘{)’k is given by

(N B))"
k
Pspar = Z Z 5(1) ',O(I’J ) '53;(1,176)-

J’“er@I)

For general b determining, or at least approximating, the weights (>’ ") still remains an open
problem to us.
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¢) In general, the components of the solution X are interdependent. Hence, even if one knows Pgv.a)
m,n,M

for Kk = 1,...,d, it is hard to draw conclusions about Pf{(”*‘“ . In the very special case that
m,n,M
X1 ..., X% are independent the distribution of Xr(,ffz?M is given by
(N (3)) " .
k
Prgo, = % 5 (TT"7) oy
T I=1 JekK) k=1

The previous remark shows that our construction is of a semi-constructive type, and it is fully con-
structive in very special cases only.

Example

For the purpose of illustration we provide an example of a rather simple one-dimensional linear SDE
driven by a two-dimensional Brownian motion (W7, W5), and we construct the paths and corresponding
probability weights of a quantization in the path space Ls[0,1]. We consider the SDE

dX(t) =dt +2XdW;(t) — XdWa(t), te]0,1], (5.2.20)
X(0) = 2. o
The drift coefficient a : R — R is given by a(z) = 1, and the diffusion coefficient b = (b1, bo) : R — R*?2
is given by b(z) = (2 -z, —x). Note that both a and b meet the smoothness assumptions imposed on the
coefficients of the SDE in Section 3.1.2.

Regarding the coarse-level quantization we choose the following parameters, where for reasons of clarity
and comprehensibility we take small m and n:

q=2, m=2 and n=2.

Note that for all z € R it holds b} (z) - ba(z) = —2z = by(x) - bh(x). Thus, b has the commutativity
property, and hence, in view of (3.3.21), the Milstein scheme associated to the SDE (5.2.29) is of the
following form:

for [ = 1,2, and where Yl1 and Yl2 are the standard normally distributed random variables defined in
(5.1.1).
At each step of the Milstein scheme, except for the starting point ¢y, we employ 2-quantizations to
each of the independent standard normally distributed random variables Yll and Yl?. This leads to a total
(2)

number of 16 distinct paths for the coarse-level quantization )?272, which are displayed in Figure 5.2.1a.
For quantizing the random variables Ylj we use the method described in Section 2.3.1. Then each support

point of the quantization of Ylj has a corresponding probability weight of 1/2, and hence, by Remark 5.2.9
a), we conclude that the probability weight of each path of the coarse-level quantization is 1/16.
The number of the local refinement of a coarse-level path is determined by its associated values
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)?5’2(2) (to), )?;’2(2) (t1) via the values of the quantities §Eéﬁ1 and 7 for [ = 1,2. See Table 5.1 for the
numerical values of these quantities in our example. Therein the values are listed bottom-up in the sense

that the first row corresponds to the first path from below in Figure 5.2.1a and so on.

>(2 >(2 SE,(2 SE,(2 ~E, <E,
Block No. 2(2)(1/2) X§2)(1) X2,2( )(1/2) X2,2( )(1) SIOL?H SloclH m e Kis HKog

-0.97 -4.64 0.85 345 447 190 072 072 5 5

-0.97 -0.39 0.85 2.05 447 190 0.72 0.72 5 5

1 -0.97 0.17 0.85 -0.75 447 190 0.72 0.72 5 5
-0.97 1.21 0.85 0.65 447 190 0.72 0.72 5 5

1.19 -0.37 -2.46 0.07 447 549 0.72 0.72 5 5

1.19 0.91 -2.46 413 447 549 0.72 0.72 5 5

2 1.19 2.57 -2.46 -3.99 447 549 0.72 0.72 5 5
1.19 7.76 -2.46 -8.04 447 549 0.72 0.72 5 5

2.33 -1.22 4.15 122 447 928 0.72 0.72 5 5

2.33 1.30 4.15 -0.64 447 928 0.72 0.72 5 5

3 2.33 2.64 4.15 8.08 447 9.28 0.72 0.72 5 5
2.33 12.87 4.15 1494 447 928 0.72 0.72 5 5

11.10 -7.66 7.46 1.80 4.47 16.67 0.72 079 5 6

11.10 4.30 7.46 -10.52 447 16.67 0.72 0.79 5 6

4 11.10 10.68 7.46 14.12 447 16.67 0.72 0.79 5 6
11.10 99.31 7.46 26.44 4.47 16.67 0.72 0.79 5 6

Table 5.1.: Support points of the coarse-level quantization along with the local regularity in the coarse
level quantization

For the fine-level quantization we chose M = 8, which then specifies the size K;g and Ky of the
quantization of the Brownian bridges Bj and Bs, respectively. See again Table 5.1 for the resulting values
in our example. We quantize the Brownian bridges B} and Bi by employing the method described at the
end of Section 2.3.2, where we choose the truncation indices d(K1 8)opti and d(K2g)opti as in the database
available at the website

http://quantize.maths-fi.com.

We combine the paths of the coarse-level quantization and the fine-level quantization as in (5.2.27).
The paths of the overall quantization )?2(?5?52 are displayed in Figure 5.2.1b. The respective numbers of
paths resulting from block 1 up to block 4 in Table 5.1 are 100, 100, 100 and 120 summing up to a total
number of 420 paths.

In our example we obtain a total number of 15 distinct probability weights ranging from a mini-
mum value of 0.000493 to a maximum value of 0.005543. For each path of the overall quantization
Remark 5.2.9 b) implies that its weight is the product of the weights of the corresponding coarse-level
and fine-level paths, where the latter is determined by the corresponding weights of the quantizations
of the Brownian bridges Bi and Bi. For the first three blocks in Table 5.1 the distinct probability
weights of the quantizations of B} and Bj are 0.1067, 0.2444, 0.2978 in each case. Whereas in the fourth
block the distinct probability weights of the quantizations of B and Bi are 0.1067, 0.2444, 0.2978 and
0.0740, 0.1810, 0.2450, respectively. To get a better insight on the shape of paths of the quantization
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)?52228) , we incorporated four supplementary figures in Figure 5.2.1 where each of them corresponds to one
of the four blocks in Table 5.1, see Figures 5.2.1c to 5.2.1f. Additionally, in Figure 5.2.1c to Figure 5.2.1f
those paths with probability weight 0.005543 are marked in , and the paths with probability weight
0.000493 are marked in

5.3. Quantization in C([0,1];R?) w.r.t. the Supremum Norm
Throughout this section let s € [1,00), let € > 0, and let
Ne = min{n e N | A < (1+¢)}. (5.3.1)

We aim at constructing a sequence of product-quanizations of the solution X of the SDE (3.1.1) in the
space C([0, 1]; R?) equipped with the supremum norm || - |. Recall that for m,n € N and ¢ € [1,0) the
extension of the Milstein quantization to a C([0, 1]; R%)-valued random element is given by

X (t) = (tr—t)-m- X9, (t1) + (t—tiy) -m- X9, (1)

for t e [t;—1,t] and I =1,... ,m.

5.3.1. Fine-level Quantization: Quantization of a Weighted Combination of
Brownian Bridges

Let m € N, and recall that for [ =1,...,m and j = 1,...,r the Brownian bridge Blj on [t;_1,t;] is given
by

Bl(t) = Wjt) — (ty —t) - m - Wj(ti—1) — (¢ — t—1) - m - W(ty)
for t e [tl—la tl].

In this section we construct a fine-level quantization, which is different from the fine-level quantization
used for quantization of X in LZ[O, 1], see Section 5.2.1. For technical reasons the fine-level quantization

presented in this section will not consist in applying quantizations to the Brownian bridges Blj separately.

Instead, we quantize in one go a weighted combination of the Brownian bridges B/, where we consider
deterministic weights first.
More precisely, for k = 1,...,d let 4% = (’yk) e R™*" and we consider the real-valued stochastic

Lj
—(~k —(~k
process B = (B(v )(t))te[(),l] given by
B = S kB
(t) = Z V.5 l( )
j=1

for t e [t;_1,t]] and I =1,...,m.
Due to Lemma 5.2.1 b) it holds

Sy

. c
O A E e B (5.3.2)

foralll = 1,...,m and kK = 1,...,d, where 'ylk = (vfl,...,vfr). Equation (5.3.2) is one of the key
observations for our construction.
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5.3. Quantization in C([0,1]; R?) w.r.t. the Supremum Norm

Notation i .
We define Bp ) = (BE7 ))te[O,l] by

k
B () = |4F)2 - BH®)

for t € [t;—1,%;] and [ = 1,...,m. Moreover, where is does not cause confusion, we write B; and BO®)

k
instead of Bl1 and BP ), respectively.

In view of (5.3.2) the main idea is to design (a sequence of) quantizers ") C[0,1] — C[0,1] for

the process Bpk), which will then be applied to the process E(Vk). One of the core ingredients in the
construction of the quantizers will be a sequence of strongly asymptotically optimal quantizers for a
Brownian motion on [0, 1].

For the remaining part of this subsection, let k € {1,...,d}, and let v¥ = ('yl]fj) € R™*" such that

|vEl2 # 0 (5.3.3)

foralll =1,...,m as well as

m
2 I3 = m. (5.3.4)
=1

We split up our construction into single steps. The first three steps are built-up analogously to the
construction for scalar SDEs in [MGR13, Section 2.3].

Step 1: We consider a sequence Z1, ..., Z,, of i.i.d. random variables with Z; ~ N(0, 1) which is inde-
pendent of W. We put

l
Wg =0 and Wi = m 2. Z Z;
i=1

forl=1,...,m. Then,
Wi £ Wi (t)

forall [ =0,...,m.

Now we add the random variables W, ..., W} to the Brownian bridges By, ..., By, in such a
way that we end up with a new Brownian motion. More precisely, we define a real-valued stochastic
process W* = (W*(t))se[0,1] by

W*(t) =Bi(t)+(t;—t)-m- VVl*—l +(t—t1—1) -m- VVZ* (5.3.5)

forte[t;_1,t] and Il =1,...,m.

The statement of the following lemma is verified rather easily, and therefore a proof is omitted.

Lemma 5.3.1
The process W* is a one-dimensional Brownian motion on [0, 1].
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Step 2: We put slg := 0 and

S\H

l
Z 13

for i =1,...,m. Then due to (5.3.3) and (5.3.4) we have

_ .k k ko _
O0=s5y<sy<:---<s, =1

Hence, depending on v*, we have introduced a new discretization of the time interval [0, 1], and the
corresponding piecewise linear time transformation 7% : [0,1] — [0,1] is given by

k
§s—s
-1
Tk(s) =l_1+—F5
[RAlF
for s € [sf 1> sl] and [ = 1,...,m. In particular, 7% is bijective and its piecewise linear inverse

function (7%)~1:[0,1] — [0, 1] is given by
(P71 = sty + ]3¢ tien)
forte[ti—1,tj]]and i =1,...,m

Step 3: In this step we construct a one-dimensional Brownian motion on [0, 1], whose properties serve as
further key observations for our construction of a fine-level quantization. By utilizing the Brownian
motion W*, we define a real-valued stochastic process W) = (W0")(s)) sef0,1] Via

-1
WO (s) = 3 Iaflle - (W (7 (s5) = W (P (s50)) ) + I - (W (75 (9)) = W (7 (sE0))
=1

(5.3.6)
for se[sF |, sflandl=1,...,m.
Lemma 5.3.2
a) The process WO is a one-dimensional Brownian motion on [0,1].
b) The process WO s independent of (Yi,...,Y,L).
c) Foralll =1,...,m it holds
WD (sf) = m™12 2 ¥z - 2 (5.3.7)

d) It holds
B = WO () ) = (=) - m - WO (sF ) = (t—ti1) - m - WO () (5.3.8)
forallte [ti_1,4)] andl=1,...,m

Proof:

a) This statement follows by employing the properties of the Brownian motion W*.
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b) By the definition of W*, see (5.3.5), there exists a measurable mapping ® such that
W* = ®(Bi,..., By, 21,y Zon).

Moreover, due to Lemma 5.2.1 ¢), and due to the fact that the random variables 71, ..., Z,, are
independent of W, we obtain that (Bi,..., B, Z1,...,Zy) is independent of (Yi,...,Y,}).
Hence W* is independent of (Y}, ...,Y,L), and by the definition of W(Vk), see (5.3.6), we then
obtain the assertion in b).

c),d) The statements in ¢) and d) follow from (5.3.5) and (5.3.6) by direct calculation.

O

Step 4: Observing c¢) and d) in the previous lemma gives a hint on which ingredients might be employed
to obtain a sequence of quantizers for B (™). Due to d) the Brownian bridges of WO on the subin-
tervals [sF |, sF] coincide with BO") up to the time transformation 7%. Hence in view of (5.3.8) it
stands to reason to built-up quantizations of B0 in the following way: First, we apply quantiza-
tions to the Brownian motion W("Yk), and, secondly, we apply quantizations to the random variables
W(”/k)(s;“). In view of (5.3.7), we obtain quantizations of W(Vk)(sf) by applying quantizations of
standard normally distributed random variables.

More precisely, we employ the following ingredients as building blocks in our construction:

(I.) Let ¢ € [1,0). We take a sequence (TT(Lq))neN of n-quantizers 7 : R — R for a standard
normally distributed random variable, which satisfies (N1)--(N3), and for all n € N we put
~ (~k
W,Eln’q)(s’g) =0 and

l
Wi (sF) = m™2 - 3 Inble - 2 (5:3.9)
i=1

)

forl =1,...,m where

Z((Q = Trgq)(Zi).

,L‘?

(II.) Let (Swae)men be a strongly asymptotically optimal sequence of order sn. of M-quantizers
Sme : C[0,1] — C[0,1] for a Brownian motion on [0,1], where 7. is the natural number in
(5.3.1). At this point, for technical reasons, our construction differs from the one in [MGR13,
Section 2.3]. In [MGR13, Section 2.3| the authors choose an arbitrary sequence of M-quantizers
for a Brownian motion on [0, 1].

Let n, M € N. We combine the aforementioned building blocks. By defining

~

ng,’ig{;) (t) = Sare WOV () 2@E) = (4 — ) - m - WD (sF1) = (£ = tiy) - m - WG9 (sF)
(5.3.10)

for t € [t;j—1,t] and I = 1,...,m, we obtain a quantization of BO"). Note that, in view of (5.3.10)
k
and (5.3.8), there exists a Borel measurable mapping 2/)(7 €) C[0,1] — C[0,1] with

m,n,M

| ran (1/1(%’%5))‘ <n™ M (5.3.11)

m,n, M
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such that

m,n,

forall te[t;—1,tj]]and I =1,...,m

5.3.2. Overall Quantization

Let ¢ € [1,00) and m,n, M € N. We combine the fine-level quantization constructed in the previous
subsection with the coarse-level quantization of X in order to obtain an overall product-quantization of
X. First we replace the deterministic weights considered in the previous subsection by random weights.
In analogy to the construction in [MGR13] we define by jm : R? — R by

bie,jm(x) = sgn (bgj(2)) - max (]bk,j(x)\,m_l)
fork=1,...,dand j =1,...,r where sgn : R — R is given by

1, ify>=0
W) =3 ) ity <o

Now we take random weights T'* by taking into account the local regularity of X*. More precisely, for
k=1,....d,7=1,...;,randl =1,...,m we put

~1/2
T = B (X0 (1) ( Z [0k (XED (1)) ) (5.3.13)

where
6k,m ()?7];:17,5"?) (tz)) = (Bk’,l,m ()?7%7(7;1) (tz)) yeeey Bk,r,m ()?7%7(7;1) (tz))) :

For ease of notation, we write I'f ; instead of Ff’j(fr)l .- Note that the random matrix I'* = (T} ;) takes

values in R™*" and satisfies
ITF[l2 # 0

foralll=1,...,m as well as

m

DL ITFIE =

=1

which is in accordance with the assumptions imposed on the deterministic weights in (5.3.3) and (5.3.4).
We add that the random weights I'* are different from the ones employed in [MGR13, Section 2.3]. Therein
the random weights are built-up by the Milstein quantization whereas, for technical reasons, we employed
the Euler quantization.

Now for k =1,...,d we define a quantization XT(n n) a of X k by

i 1/2
~ £ ~ N3 k
R@E (1) = XDk (1) < Z [Brm (X )Hz) e (BT (1) (5.3.14)
fort e [t;—1,t;]] and I =1,...,m
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Hence, by separately quantizing each component X* of X, we have obtained a product-quantization
)N(r(:z]?M = ()N((q’s)’l )Nf(q’s)’d), of X = (X',..., X% By (5.1.6) and (5.3.11) we have, for all k =

1 y m,n,M> " *mmn,M
’ran ()Z'T(g:i?}\]})‘ < (4(;) ) n1+r+(;)>m - M.
Thus,
d
[ran (X505 )| < T [ran (X524 < (420 .nd~<1+r+<;)>)m M (5.3.15)
k=1

We consider a sequence of quantizations

Fe) _ glae)

my,my,My’

N € N, of X where we choose the parameters my and My as follows. First, in order to control the size
of X](\?’E) via (5.3.15) we choose

oy 1/d
My := max <<4d‘(2) . m;i\.,(1+r+(2))> : N) N (5.3.16)

Moreover, in addition to (Lim1) we require

2
. . (m?‘v/lnmN)
(Lim3) lim ==y =<

for all @ € (3/4,1). The technical assumption (Lim3) is another point in which our construction is
distinct from the one in [MGR13].

Remark 5.3.3

a) A valid choice of a sequence in N which satisfies (Lim1) and (Lim3) is, again, (my)yen with
mi1 =1 and

my = [(lnN)Q/s], N > 2.
b) Note that (Lim3) implies

lim Vin V- N

N—o0 my

for all @ € (3/4,1). Obviously, assumption (Lim3) is slightly stronger than (Lim2).

c¢) By the construction of the sequence ()NCJ(\?’E))NGN and due to (5.3.17) in the upcoming Theorem 5.3.4

we have
v(@:€)
XN € XN,prod,uni

for all sufficiently large N € N.
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The following theorem contains the main result of this section, whose proof is postponed to Section 6.3.
We put

@) . /q. (E [kinf??id [ e (x ) H‘;[OJ]DI/S.

Theorem 5.3.4
Let ¢ = min{q € 2N | ¢ = sn.}. Then

| ran ()?1(\?,5)” <N (5.3.17)
for all sufficiently large N € N, and

lim sup (\/mN e (x, X9 ¢([o, 1];Rd))> < ko - O (1 4 ¢)

N—oo

where Ko is the constant in Theorem 2.3.11 (ii).

The previous theorem and Theorem 4.3.2 lead to the following result on the asymptotic behavior
of the Nth minimal quantization error w.r.t to N-uniform-product-quantizations of X in the space

C([0,1]; R9).

Theorem 5.3.5
For all s € [1,00) it holds

lim VIn N - el (X, c(o, 1];Rd)) = Koo - OO

Nooo N,prod,uni
where Ko is the constant in Theorem 2.3.11 (ii).

Proof:
First, analogously to the proof of Theorem 5.2.6 one shows that X is an [td process as required in Section
4.3. Hence by Theorem 4.3.2 we have

hm lIlf \/F eN ,prod,uni (X’C([()? 1]; Rd)) Z Koo - 0(0078)-

Secondly, for every € > 0, due to the construction of quantizations of X above, and due to Theorem
5.3.4, there exists a sequence (X](\?))NGN of N-quantizations of X such that

limsup vVIn N - e(®) (X, )N(](\?),C([O, 1];]Rd)) < oo - O (1 +¢).

N—w

Thus, for every € > 0 we have

limsup vVIn N eNpmd i (X, C([0, 1];Rd)) < Koo - O (1 +¢).

N—oo

Therefore,

limsup vIn N eNprOd i (X,€C([0,1];RY)) < inf ko - C®3) (14 &) = ke - C),

N—o e>0

which finishes the proof. O
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Remark 5.3.6
One obtains results on the computational cost to determine the paths and corresponding probability
weights of the quantizations ng’z) as analogous to those presented in Section 5.2.3 by carrying out an

analysis similar to the one in Section 5.2.3.

5.4. Quantization in C([0,1];R?) w.r.t. a Norm Equivalent to the
Supremum Norm

Throughout this section, let s € [1,00), and we interpret X as a random element in the space C([0, 1];R%)
equipped with the norm ||| - |||s. By considering the norm ||| - |||s instead of the supremum norm | - ||o, we
derive results on the asymptotic behavior of the minimal quantization error of X w.r.t to quantizations
in the wider classes Xy proq instead of only in the classes Xy prod,uni-

Except for a few alterations we use the ideas and building blocks presented in the Sections 5.3.1 and
5.3.2 to obtain a sequence of product-quantizations of X in the space (C([0,1];R9), |||-|lls). We additionally
employ ideas utilized in the case of quantization in Lg [0,1].

5.4.1. Fine-level Quantization

Let g € [1,00), and let m,n € N. We adopt the whole construction presented in Section 5.3.1 except
for one alteration. Namely, in Step 4 instead of taking a strongly asymptotically optimal sequence of
quantizers for a Brownian motion on [0, 1], we choose an arbitrary sequence (Sk)ren of K-quantizers
Sk : C[0,1] — C[0, 1] for a Brownian motion on [0, 1].
Then the quantization of BO") in (5.3.10) reads
é(’ykﬁ) (t) = Sk (W(Vk)) ((Tk)_l(t)) —(ti—t)-m- VT/T(&Z’Q) (Séil) —(t—t_1) -m- wora (S;f)

m,n, K m,n

forte[t;—1,4],l=1,...,m, k=1,...,d and K € N. Asin Section 5.3.1, forall k =1,...,d and K € N,
k
there exists a Borel measurable mapping 1#(7 ) C[0,1] — C[0,1] with

m,n,K *

| ran (w(wk’Q) ) <n™- K. (5.4.1)

m,n, K

such that
é(’Yk#I) (t) = w(’ykﬂ) (B('yk))(t)

m,n, K m,n,K

forall t e [t;_1,t] and I =1,...,m.

5.4.2. Overall Quantization

Let e [1,00), me Ny, neN, and for k =1,...,d let T* = (Ffj) be the random matrix where the entries

Ffj are defined as in (5.3.13).
Additionally, we further specify the size K of the quantizers Sk by taking into account the respective
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path properties of X*. More precisely, let M € N, and for k = 1,...,d we put

qr\28/(s42) )
uﬁ,‘fb?hk ‘= max d( man) S B R (5.4.2)
Y \25/(5+2)

where

1/2
A:n,n::( D MEE tum)-

(s) k

For ease of notation, we write u* instead of ,u . Now, similarly to the case of quantization in Lg [0,1],

we choose the size K dependent on M and p* by taking
Ky = [M™]. (5.4.3)

In analogy to (5.3.14), by defining

~ k (kK
ROk (1) = ROk + A ) (BY) )

for t € [t;—1,t], 1 =1,...,mand k =1,...,d, we obtain a product-quantization
v v(a),1 v (a).d 1 d
X9 = (X XDy of X = (XYL, X9,

By the choice of K}, as, by (5.4.1), and by (5.1.6), we have
| ran ()?,g?n’“M)\ < (4(;) _n1+r+(£)> K < <2 4(3) . n1+r+(g)>m M

forall k =1,...,d. Thus,

ran (X, ar) < H!ran (X
< (zd 44 (3). nd-<1+r+(g)>>m Yoy (5.4.4)
B
We consider a sequence of quantizations
S

()

N e N, of X, where we chose the parameters my and My as follows. In order to control the size of Xy
via (5.4.4) we choose

. . —my Inmy/(1+Inmpy)
My = max <<2d 420) ”*(2))) -N) 1y (5.4.5)
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Moreover, we require (Lim1) as well as (Lim3) to hold. Then the statements in Remark 5.3.3 a) and
b) stay valid, and instead of the statement in Remark 5.3.3 ¢), by arguing similarly as stated therein, we
have

)Z'](\([]) € XN,prod

for all sufficiently large NV € N.
We put

= limsup vIn K (W Sk(W),c[o,1])

K—o

where W denotes a Brownian motion on [0, 1], and we put

d (s+2)/2
¢@ . [E (2 LR (XDl I35 )
k=1

The construction leads to the following result.

1/s

Theorem 5.4.1
Let g = min{q € 2N | § = s}. Then
ran (R)] < N

for all sufficiently large N € N, and

limsup (Vo - el (X, X, C([0, 1 RY) ) < g, - €,

N—o

By applying the previous theorem, Theorem 2.2.7, and Theorem 4.1.2 (ii), we obtain the following re-
sult on the asymptotic behavior of the Nth minimal quantization error w.r.t. to N-product-quantizations
of X in the space (C([0,1];R?), ||| - [|ls). We abbreviate M°[0,1] := M®([0, 1]; R).

Theorem 5.4.2
It holds

lim vInN - eg\s,?prod (X,C([0,1];RY)) = ki - @)

N—o0

where Ko is the constant in Theorem 2.3.11 (ii).

Proof:
By utilizing Theorem 4.1.2 (ii) one shows

liminf VLN - o)) o (X,C([0,1;RY) > rop - €

analogously to the proof of the lower bound in Theorem 5.2.6.
It remains to show

limsup vVIn N eNpmd(X C([o,1]; Rd)) Koo - @ (00:5)

N—00

Let (Sk)ien be a sequence of K-quantizers Sk : M®[0,1] — M?®[0, 1] for a Brownian motion on [0, 1]
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which is strongly asymptotically optimal of order s. Note that due to Theorem 2.2.7 (ii) such a se-
quence exists. Then by carrying out a construction which is built-up analogously to the one leading to
Theorem 5.4.1, one obtains that there exists a sequence ()N( ~N)Nen of N-quantizations of X in the space
MP®([0,1]; RY) such that

limsup (VInN - e (X, Xy, M([0,1];RY)) ) < o, - €09
([0,1];R%) :

N—o

Hence, by Theorem 2.2.7 (i), we end up with

limsup vIn N eNprod(X C([0,1];R%)) = limsup vIn N eNpmd(X MP([0,1];RY)) < Koo - ¢(®9),

N—0o0 N—oo

O

We close this section with the following result, which states that the sequence ()?](\?)) NeN is strongly

asymptotically optimal of order s provided that the sequence (Sk)xen is strongly asymptotically optimal
of order s.

Proposition 5.4.3
Let ¢ = min{q € 2N | ¢ = s}. If (Sk)ken is a strongly asymptotically optimal sequence of order s of
K -quantizers Sk : C[0,1] — C[0,1] for a Brownian motion on [0,1], it holds

<1

lim sup
N—o

)

) (X, X, c([0,1]; RY)
e roa (X, C([0, 1]; RY))

and in particular, in case d = 1, it holds

. @ (x, X7, clo,1])
lim Sup @ (x < 1.
Nooo ey ( 1)
Proof:
Note that assumption (ii) at the beginning of this chapter ensures €(*) > 0. Then the statements are a
direct consequence of Theorem 5.4.1, Theorem 5.4.2 and Theorem 2.3.11 (ii). O

Remark 5.4.4
One obtains results on the computational cost to determine the paths and corresponding probability

weights of the quantizations X X (@) M analogous to those presented in Section 5.2.3 by carrying out an
analysis similar to the one in Sectlon 5.2.3.
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6 Proofs of Chapter 5

In the whole chapter ¢ denotes a not further specified positive real constant which may vary from line
to line and which might depend only on the dimension d of the SDE (3.1.1), on the dimension r of the
driving Brownian motion W, on the initial value x¢, on the constants in (C2),(N3) and (I3), on the
conditions (N2) and (I2), as well as on all involved moment parameters.

Furthermore, in the whole chapter, for m,n € N and ¢ € [1,00), we use the abbreviations

. 62_1 = ay ()’(\'%I(tl_l)), 82_]1 = bpj ()A(}X[(tl_l)) and Elkjjll’h := Vby, ;b7 (XM(tl_l)) as well as

. a;;l = ag ()Zvr(rg,)n(tl—l)); 32;1 = bk,j (ng?n(tl—l)) and Egﬂjjlhjz = kadéb(jl) (Xr(r(zl,)n(tl—l))

fork=1,....d, j,j1,jo=1,...,rand [ = 1,..., m. Analogously we define

E,l—1

~ 2E,l—1 AE,1—1
° u; ’b/w’ and

Chliy B8 well as

o BT FEA-L g il
e+ Oy AN G5,

with X%(tl_l) and )for?,)n(tl_l) replaced by )A(,%(tl_l) and XEL’V(T?) (t;—1), respectively.
In the majority of cases, where it does not cause confusion, we also drop the notational indices E

and M, which are used to indicate which time-discrete approximation scheme is under consideration, and
write X, instead of X and X[ .

6.1. Coarse-level Quantization: Proof of Proposition 5.1.1

6.1.1. Auxiliary Lemmas 1 and 2

In the first main auxiliary lemma we provide a moment bound for the Milstein quantization.

Lemma 6.1.1
Let s,q € [1,00). Then, for all m,n € N,

E| max X0, 1))5] <e
1=0,...,m ’

goooy

Proof:
Let m,n € N and, for the moment, we assume s € 2N. For ease of notation, we drop the parameter ¢ and
write Xy, n(t;) and Y} instead of X,gg,)n(tl) and Y}(Q)’J, respectively.

s
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6. Proofs of Chapter 5

We split up the proof into single steps.

Step 1: Let k€ {1,...,d}. Due to the recursive structure of the Milstein quantization we have

-1 -1 r -1 r
an,n(tl) =x§+m_1 'Za;c—i_m_lﬂ'z Z }C z+1n Z ZEL, YN} Z+1n)2_1)
=0 iz0io1 iZ0io1

il o~ B
Z Z ( 7]27]1 kvjh]?) I(jl,jg) + ckvjl:]Q }/ZJrl n }/;'*Fl,n

i= 0.717]2 1
J1<J2
-1 -1 r
k —1 ~i —1/2
=x5+m -Zai%—m /ZZ z-‘rln
=0 i=0j=1
1 -1 r
—1 2
toom o Z Z kg H—l n) E[(Yz]-i-l n) ] + ]E[(Yz]-i-l n) ] - 1)
1=0j5=1
'
1 i ; Ti+1ln ; 7 v
' Z Z ( (E}Lc,jz,j1 - E’;c,j1,j2) ) I(jl,jg) + E?f,jl,m szJil n’ Yvifl,n)
1=0 j1,j2=1
J1<J2
foralll=1,...,m
Next, for i =0,...,m — 1 we put
3k . -1 ~ j 2
Ui :=m ‘a§c+* Z kg Yzj+1n)]_1)
7j=1
and
T
k. . —1/2 i v
=1 j=1
r (6.1.1)
-1 3 j Ti+1ln 7 7
+m - Z ((aw'zm - awiaé) 'I(]l,gg) +c k‘]l ,J2 Yz-ﬁln Yz—il n)
Ji,j2=1
J1<j2
Then, for all [ = 0,...,m, it holds
Xk () =UF+Vf (6.1.2)
where
N -1 N N -1
UF = ak + Z 9F  and VP = Z &r (6.1.3)
=0 =0
forl=1,...,m and ﬁé“ = xlg as well as 170’“ := 0. Moreover, we put
VE* = max |VF
l j:O,.?.(, | i ’
for[ =0,...,m.
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6.1. Coarse-level Quantization: Proof of Proposition 5.1.1

Step 2: In this step we further estimate |1§f| Since a and b are of at most linear growth, and due to
(C2) (i), (N2) and (6.1.2), we have

9] = Z ( (V1,07 1))

m~L - (! k! + Z |ck,],]‘ z+1n ] + 1‘)
)l2)

o g
ot (e g )

foralli=0,...,m—1and k =1,...,d. Hence, together with (6.1.3), we conclude that

Lo+

1+

k=1 k=1
d d d
< Y |UF| +e-m™ <1+Z zkHZVzk’*)
k=1 k=1 k=1
d d
:<Z] l’"’]) (1+c m_l)—i—c-m ! (1—1—2‘//”)
k=1 k=1

for all I = 0,...,m — 1. Then, by the discrete version of Gronwall’s inequality, see Corollary A.2,

we arrive at ;
max Z UF) < <1 +> fq’“*) (6.1.4)

=0

forall [ =0,...,m.

Step 3: We combine the previous two steps. By (6.1.2) and (6.1.4) we have

.\ d i \® 4
(s 250) < (e, 00+ 00 <o (34 S 0y) s

foralll=0,...,mand k =1,...,d. Hence, in particular,
d d
S
E[l max | X (1 HOO] Z [ max Xk (tl)|5] <c- (1 + I;lE [(Vm*) ]) . (6.1.6)

Thus, in order to prove the assertion of the lemma, it remains to show

i B[ (V5] <

k=1
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6. Proofs of Chapter 5

~

Step 4: Let k € {1,...,d}. In this step we show that the time-discrete process (Vlk)l=0,..,7m is an
(F(t1))i=o0,... m-martingale where F(¢;) is an element of the filtration F as defined in (3.1.2), and

where, recall, ‘N/Ok =0 and

[—1
Tk ~k
vh=> g

=0

forl =1,...,m. Now, we prove:
(i) The process (‘N/lk)l:(),m,m is adapted to (F(t;))i=o,....m-
(i) It holds E[|V}*[] < oo for all [ = 0,...,m.

(iii) It holds

foralll=1,...,m.

ad (i): Obviously, 170"“' is F(to)-B(R)-measurable. Next, let [ € {1,...,m}. Due to the definition of
f:k, see (6.1.1), and due to the definition of the filtration (F(t;))i-o, . m, the random variable
ng is F(ti+1)-B(R)-measurable for all i = 0,...,l — 1. Moreover, it holds F(t;+1) < F(t;) for
alli=0,...,0l —1. Thus, ‘N/Zk is a sum of F(t;)-B(R)-measurable random variables, and hence

YN//“ is F(t;)-B(R)-measurable.

ad (ii): Trivially, it holds E[|Y70k|] =0 < 0. Next, let [ € {1,...,m}. By the triangle inequality we
have

Moreover, by (C2) (i), (N2) and (I2), by the properties of b, by the recursive structure
of the Milstein quantization, and by IE[H:UOHOO] < o0, we conclude that E[[ﬁf!] < oo for all
1=0,...,m—1. Thus,

E[[Vi*]] < .
ad (iii): Let [ € {1,...,m}. Due to the definition of 17/“, and due to Proposition B.1 a), it holds

E[‘N/zk ‘}—(tl—l)] e Z_ZIE[gf ]:(tl—l)]-
i=0

First, we consider the case i € {0,...,l — 2}. By the definition of F(¢;_1), by the definition of
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6.1. Coarse-level Quantization: Proof of Proposition 5.1.1

the Milstein quantization, and by Proposition B.1 a) and c¢), we have

T

E[gzg ]__(tl_l)] Pas. —1/2 Z E[N};,j . }Nfzﬂﬂn »7:(151—1)]
j=1
1 _ " o ~ ~
vy om s N[y ()"~ BlT 0% | Fle)
=1

j1,J2=1
]j1]<j2

+ mfl ' Z E[Ei?,jl,jz ’ z&l,n ’ zﬁl,n f(tlfl)]

Juj2=1
J1<J2

_ &

Secondly, we consider the case i = [ —1. Note that (Y/ v éjl jQ)) is independent of F(t;_1) for all

J,J1,j2 = 1,...,r, and note that Xm,n(tl—l) is F(t;_1)-B(R%)-measurable. Then Proposition
B.1 a), ¢) and d), and the properties (N1) and (I1), lead to

B[e | )] P2 m . D[R T, | ]

7j=1
1 T
_ ~— ~ s ~
#gem e N[ (G4 - B[E7)) | Fe-n)]
j=1
N >
-1 ~—1 ~—1 n
e Z E[(cka‘m =o)L i) f(tH)]
.717.]2:1
J1<J2
I8
B " N
smte B[R T T F)
.717.]2:1
J1<J2
T r
P-a.s.  1/2 -1 ~i 1 _1 a1 S ~i 9
2l N B B[V, + 5 om T Y B (37,7 - B[,
J=1 j=1
T
-1 ~M—1 ~—1 Fln
T D @~ G ELG ]
]17]2=1
J1<J2
T
-1 ~—1 & &
tmo G ELYER] - B[]
Ji,j2=1
11<J2

(6.1.8)
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6. Proofs of Chapter 5

Thus, by (6.1.7) and (6.1.8) we arrive at

which finishes the proof of (iii) .

Since (‘N/lk)l=07___7m is an (F(t;))i=o,... m-martingale, the process (|‘~/lk|)l=0,,,_,m is an (F(t))i=0,...m-
submartingale. Consequently, by applying Doob’s maximal inequality for submartingales we obtain

E| (V)] zE[]r%ax V| < e B[ 7] (6.1.9)

.,m. Therefore, in view of (6.1.6), it remains to show

R[] <

=1

forall [ =0,..

B

which we get down to in the next step.

Step 5: First, note that since we assumed s € 2N, it holds

kZi:lE [|‘7ll—€-1|s] — kZi:l}E [|‘7lk|8] + Zd: ZS: <3> .F [(‘Zk)S—u' (gc)u] T Z E [(%k)s—l glk]

k=1

(6.1.10)
forevery l =0,...,m — 1. N
We go on by analyzing the last summand in the previous equation first. The definition of &,
see (6.1.1), leads to

(VA g =m 2 Y ()

J
k?] }/l+1,n
=1

1 _ Sy s
wgem Y V)T A () B[
1

ST () T

g2:1  Chkygge

' )
J1,j2=1
J1<J2
: 1
-1 7kys—1 ~1 J1 J2
+m ’ Z (‘/2) 'ck7j17]2 Yl+1n }/l-i-ln
jl.:.jZfl
J1<J2

foralll =0,...,m—1 and k

,d. Again, note that (Y 171
for all j,51,52 = 1,..

LG )) is independent of F(t;)
— 1, and note that the random vector (Xp.n(t;) ‘N/lk) is
m—1and k=1,...,d. Together with the properties

.,rand [ 0, ..
measurable w.r.t. F(t;) for all [ =0,

.,m



6.1. Coarse-level Quantization: Proof of Proposition 5.1.1

of W and (N1) as well as (I1) we arrive at

I ., < Shys—1 A 2 2
+5om Y E|() T Ay | B[ () - LA
7j=1
.
-1 rk\s—1 i~ ~ Fl+1,
+m - Z E [(VE ) ’ (Ck,j27j1 - Cle,jQ)] -E [I(jl,jg)] (6'1-11)
J17]2=1
J1<J2
T
-1 rkys—1 ~
+m ’ Z [ |:<V2 ) ’ Ck,jth] B [}/2]4:1 n:| E [lejfl n]
J1,g2=1
J1<J2

foralll=0,....m—1land k=1,...,d.
Next, we further estimate the second summand on the right-hand side of (6.1.10). By the
properties of b, and by (C2) (i), we obtain

r
’glk’ < m_1/2 ’ Z ’bfk,j‘ ’Yl+1n’ + _1 Z ‘ijj‘ ‘ l+1n - [ Yl{kln) ]’
j:1
+m Z <’Cl€j2j1 Ck]l Jz2l Nl]"’;l]:,|+‘ k.]l J2 ’YJlln‘ ’Ybl n|>
Ji,j2=1
J1<J2
(1 + HXTTL n(tl HQ ( -l Z |}/l{i-1 n| + mil Z | l+1n Ylj-i-l n) ]|

r

emte 3 (T Tl 1725,0D)
J1,J2=
J1<J2

foralll=0,...,m—1and k=1,...,d. Thus, for u =2,...,s, we obtain

G < e (L 1 Rmntt)ll2) - (m2 - Y 970"
j=1

r

L) - B )7)

7=1
r
em N (T 8 L)
vy

foralll=0,....m—1land k=1,...,d.
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6. Proofs of Chapter 5

Then, by (N2) and (I2), as well as (6.1.5) and (6.1.9), we arrive at

23 (2) @ @) <o SE[ 3

k=1 p=2 1 n=2

=

(Z) P (1 )?m,n(tl)Q)#]

b
Il

N
o
3
L
M~

E[(I7]+ 1+ 1Zmn(@)]2) ]

k=1
d
<c-m b ZE[’V’“‘ +1+Z max ‘ )]s]
k=1 0,-..:d
d
<com (1 + > IE[|XN//‘“]S]>
k=1
(6.1.12)

for all  =0,...,m — 1. Now combining (6.1.10)--(6.1.12) leads to

Zd:]E[“Zilr] Zﬁ: [|V}k|] 14+c-m™ )—i—c~m_1

k=1

foralll =0,...,m — 1. By applying the discrete version of Gronwall’s inequality we finally arrive
at

k=1

Zd: []Vk ] %laxmélE[Wlk’S] <c

For general s € [1,00) let § = min{n € 2N | n > s}. Then the results obtained above and Holder’s
inequality imply

[RRRE} 90y

~ 1/5\
E[ max HXm,n(tz)Hio] < ((E[ max Han tl)’oo]) ) S G
1=0,...,m 1=0,...,m

which finishes the proof. O

In the next main auxiliary lemma we provide an upper bound for the gth mean maximum distance

of
(X9, (o), ..., XD (tm))  and  (XM(to), ..., XM(tm)).
Lemma 6.1.2
Assume that ¢ € 2N. Then, for all m,n € N,
E[l_rgaxm | XM (1) — X9, (1)]4, ] S(mt )
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6.1. Coarse-level Quantization: Proof of Proposition 5.1.1

Proof:
Let m,n € N and, as in the proof of Lemma 6.1.1, we drop the parameter ¢ and write X’m’n(tl) and }72]”

instead of X}g?n(tl) and z%)J , respectively.
We split up the proof into single steps.

Step 1: Let k € {1,...,d}. Due to the recursive structure of the Milstein scheme and the Milstein
quantization it holds

X (tr) — X5 (81)

-1 -1 r
P-as. m-1. Z <az i az) + m*1/2 . Z Z (bz,j . lfszrl —_ ZJ, . Yi]Jrl,n)
i=0 1=0j=1
-1 r
1 B ) . ) ~ ~ ~
+ 3 m~t- Z Z (EZ,J}J’ ' ((Yz]+1)2 - 1) - 52,]',;' ’ ((}/Zi-ln)2 + E[(Y;]—i-ln)Q] - E[(Yzj—l-ln)Q] - 1))
i=0j=1

-1 r
—1, ~ i CpiFl ()L Fitlm
+ m Z Z <(Ck)j27jl ck:j17j2) I(jl,jQ) (ckm]Q’.]l Ck’.]17.]2) I(]],jQ))

1=0j1,j2=1
J1<J2
-1 r
-1 ~i J1 J2 ~i vl VJ2
DY (Ck,jl,jz Y Yt — g Yiva Ym,n)
1=071,j2=1
J1<J2

foralll=1,...,m.
Similar to the proof of Lemma 6.1.1 we put

1 4 <

. i , P
O = (@ = @) + 5 omT e ) 8 (Bl(Va )] - 1)
j=1
and
T
k —1/2 i j Y i
S DY < kgt Vi~ ﬁc,j'Yzﬁl,n>
j=1
1 - , < <
gem Y (B (0202 = 1) =2+ (P02~ E[5,)%)))
j=1
r . . . . 4 N 6.1.13)
-1 +1 i+1,n (
e Z ((62’12’11 ~Chjigo) Al (hjoin = Chrgo) 'I(jl,jQ))
Ji,j2=1
J1<J2
'
. , , , . y -
Y (52,;‘1,;‘2 Y YR =g Y }/z’]jl,n>
Ji,g2=1
J1<J2
fori =0,...,m—1.
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6. Proofs of Chapter 5

Furthermore, we put

-1 -1
=07 and VFi= ) ¢f (6.1.14)
i=0 i=0
forl=1,...,m as well as Ué“ := 0 and Vok := 0, and we abbreviate
Ulk = max |Uk| , Vlk’l< = max |Vk|
Ak’* ] N 7 Nk’* ] ’” 7 (6115)
Xl ‘= Imax ’Xm(tj)‘ ) Xl ‘= Imax ’Xm,n(tj)’
7=0,...,1 7=0,...,1
for [ =0,...,m. Then it holds
Xk (t) = Xp o(0) "2 UF v
and hence
~ ~ P-a.s.
X (1) = Xh )] < U+ (6.1.16)

foralll=1,....,m

Step 2: In this step we further estimate [9¥|. First note that, by Hélder’s inequality, by (N2) and (N3),
and by the finiteness of all absolute moments of a standard normally distributed random variable,

we have
= BL0,0)°]| = [BLO0] - B 2 ]\
U i+1 z+1n| 2| 'L+1 z+1n’] ) s (6117)
<E z+1 z+1 n| ]) ( [| z+1 z+1n|] )
<c-

forallj =1,...,randi=0,...,m—1. Then, together with the property that a is globally Lipschitz
continuous and the fact that b is of at most linear growth, and by assumption (C2) (i), we obtain

‘795‘ :‘m_l'(ai—@k +7 m- ch,]] 2+1n) ]_1)’
( i) D) Bl B[00 (0119
Jj=1
(1R (t) = Ktz + (14 [Kmn(t:)2) -0

forall i = 0,...,m —1and k = 1,...,d. Hence, in view of (6.1.14)--(6.1.16) and (6.1.18), we
conclude that
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6.1. Coarse-level Quantization: Proof of Proposition 5.1.1

d d d
DUl < DL IUE+ ) 197
k=1 k=1 k=1

d
< VU +eom™ - (1Rt = R lt) 2 + (1 + [ K (t0)]2) 07"
k=1
d d d N
< U+ e-m™t (Z (Kb () = Xl + (14 2 1% ) n‘1>
k=1 k=1 k=1
d d d N
< YU +e-m™t (Z UF|+ > v + (1 + ) Xf*) n_1>
k=1 k=1 k=1 k=1
d d d
=<Z]Uﬁ]> (1+cm1)+cm1-<2‘/lk’*+(l+ZXlk*) nl)
k=1 k=1 k=1
forall [ =0,...,m — 1. Now by the discrete version of Gronwall’s inequality we end up with

k k?* ~k7* —1
jmax ), |Uf| < (ZVZ (14 Y &) on ) (6.1.19)
k=1 k=1 k=1
foralll=0,...,m

Step 3: Combining (6.1.16) and (6.1.19) leads to

<max X5 (1)) — Xﬁ,nw)q < (m Z U5 | + Z V’”)

J=1,...1 ok 2=
d d N
<ec- <Z(Vlk,*)q +n9. (1 + Z(an*)q)> ’
k=1 k=1

foralll=1,...,mand k =1,...,d, and hence, together with Lemma 6.1.1, we arrive at

N d
IE[ mlax \Xk (tj) — Xk n(t5) |q] (Z [ ] (m_1+n_1)q> (6.1.20)

Jj= —

foralll=1,...,mand k =1,...,d. Thus, in particular,

E| max [ Xon(t) — Xna(t)]h] < iE[ max | XN (0) = X, ()]

1=0,....,m I=1,...,
=t (6.1.21)
<c (Z E [(Vqﬁ’*)q] +(m " +n 1)q> ,
k=1

where in the first inequality we used the fact that X* k(to) = zf = X’g o(to) forall k=1,...,d.
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6. Proofs of Chapter 5

Therefore, it remains to prove that
d
2 [ vk ] ¢ (m™t+n )%

Step 4: Similar to Step 4 in the proof of Lemma 6.1.1 one shows that (Vlk)l=07._,m is an (F(t1))i=o,....m-
martingale for all k = 1,...,d. Then Doob’s maximal inequality for submartingales yields

E [(Vl’“*)q] <c-E [yv,’“\Q] (6.1.22)

forall [ =0,...,mand k =1,...,d. Thus, in view of (6.1.21), it suffices to show
d
2 [|V’f ] S ) (6.1.23)
Step 5: In this step we prove (6.1.23). First, since ¢ € 2N, and by (6.1.14), we have

Sl - Sefver] £ 33 (1) ot el ew Sefwer o

k=1 k=1 k=1 p=2 k=1
(6.1.24)

foralll =0,...,m—1.
We go on by estimating the last summand in the previous equality first. In view of (6.1.13) we

have
(Vl”“)q_1 EF = m~12. il (Vlk) (b Vi bl Vi n)
=
+ é o ;1 (V)" (Elk,j,j (O = 1) = (V) — E[0,)° ]))
tm i ) (V)" ((Elk,ml = i) 1Grg ~ Chiasi =~ o) - T@%)
i

-1 k\g—1 A~ J1 J2 ~ J1 J2
+m ’ Z (‘/2) '(Ck‘,j17j2 }/l—i-l Yl+1 Ck/‘,jl,]z Y}-s-ln }/l-l-ln
Ji,j2=1
J1<Jz2

foralll =0,...,m—1and k = 1,...,d. Then, by employing similar arguments as in (6.1.11) we
arrive at

d
SE[(vH)"ef| o (6.1.25)
k=1

Next, we further estimate the second summand in (6.1.24). To this end, we fix u € {2,...,q},
le{0,...,m—1} and ke {1,...,d} for the moment. Then,

k —u/2  p - I - I
€ \“<C'(m W ol mT el m “‘as,k,l>

sy
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where

71 g
ALkl = Z ’b kg~ l+1 kj Y2+1,n|’

T
Q21 = Z 6lw l+1)2 - 1) - Elk,jd‘ ) ((YIJ+1 n) E[(Yljﬂ n) ])‘v

T

._ A A il (A A CFH+ln
A3kl *= Z (’(Ck:jmjl Ck,j1,j2) I(jl,jg) (ck,jz,jl Ck,jlyjz) I(jl,jz)’
J1,52=1
J1<J2
~ J1 J2 J1 J2
+|Ck,j1,32 Y Y - Ck,jmg Yl+1n Y lnD

In the following we further estimate the above three terms separately. First, since b is globally
Lipschitz continuous and of at most linear growth we have

|b b +1n’

Yi
’b Vi b Vi + b l+1 b Vi, il
|Yz+1| |bk P~ k;,j| + |b il | 41~ l+1n‘
< e (1l 1Zmlt) = Tl + (1 + [ Kmat)2) - [V, ~ 1,
forall j =1,...,r, and hence

oy <er 3 (W1 1K) = Kot 5 + (14 [ Rt |2)" - 1V, = 37,0, 0) - (6:1.26)

Secondly, by the fact that b is globally Lipschitz continuous and of at most linear growth, by (C2),
and by (6.1.17), we have

B (V) = 1) =2y (V1) — B[V,
<JO%)® =1 By = Bl + Beal - 1007 = (Far)® = (L= E[(V41,)°))]
e (0782 = 1] 1 Rom(tr) - Kotz - (15 [ K1)l
+ (14 Rl ) - (1070 = (2 + 1= B[EF,,0%))
e (|07 = 1] 1Zm(t) - Ktz (14 1Kl
l

(U [ Rma()le) - (077 = Ty, +07Y)

A

N

for all j =1,...,r. Therefore,

oy < Z( T2 =1 1R (t) — K - (14 [ R (1))
(6.1.27)

U R (0)2)" - () = Tl + 07
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Thirdly, the properties of b imply

~ _ Al ) Crl+l (M A X Tl+1,n

| @iy = Chuso i) — @iy = Cia) (j1.j2)
Al Al ~ ~ l+1 ~ I+1 Tl+1,n
< } I S o ’ ’ ’ o ‘ D A5 Cy
= (Ck J2,J1 Cr j1,j2) (CkJ%]l ckv]lv\]?) (J1,72) + Cr 22,01 — G ,J1,J2 (j1,72) I(]17J2)
1+1 ~ l+1 1+1 Tl+1,n

<l T N B o R 7
= |Gk ja Ck JJ2,71 (J1,72) + Chk.j1,72 Ck.j1,72 (J1,72) + ( Ck.ja, 51 + |C ,J1,72 ) (J1,72) (J1,72)

S CAOES MO MOTSRI AR EREE MO RS i)

and
|/C\lk J1,J2 YE]J:I leJJrzl ckjl \J2 }/174:171 szl n‘
< ‘ Ck,j1,52 _Elk,jh]é’ ‘th} |YZJ+1‘ + ’Ck Ji ]2‘ ’ l+1 Ylj-zl Ylﬂln Ylj-fl,n‘
S ‘Ck,jhjfz - Elkdhjz’ |YJ11} |YJ21‘ + ’Ck J1 ]2| ’lel| })/lj-fl )/l]-‘rl,n| + |Elk,j1 Jz’ |}/l+1 n| | l+1 Ylj-':l n
<c <||)Afm(tl) — X2 - (14 [Xomn (t)2) - [V |- V72|
(U4 IR t)2) - (V2] Y2 = T2+ (V2] 1Y = D)
for all j1,7o = 1,...,r with j; < jo. Thus,
T
o <co DT 1 Xmt) = Xl - (14 [ X (t)]12)" - IR
Ji,j2=1
J1<j2
r
v FlI+1,
too 2 (I Xmn(t)le)” - 116, — TG
Ji,j2=1
J1<j2
'
too D0 1 Xmt) = X (@)l - (14 [ X (8)2)" - Y7 V72
Ji,j2=1
J1<jz
'
Rk Z (1 + HXm,n(tl)HQ)u ’ (‘Yf-i}l‘” ‘Yf—‘fl le n‘” + ’Ypl n"u ’Yl]—i}l le1 n‘u)
e
(6.1.28)

Additionally, due to Holder’s inequality, due to (N2) and (N3), and due to the properties of
standard normally distributed random variables, we obtain

E[|070)2 = T ] SB[V = Tl (7] + (700"

e ottt ) (e[ )

< C- nf(lu‘fl)

forallj=1,...,r
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Now by combining the previous inequality with (6.1.26)--(6.1.28), by applying (N2), (N3) and
(I3) as well as Lemma 2.3.6 b), by using the fact that all absolute moments of a standard normally
distributed random variable are finite, and by utilizing the fact that

R 2 Lo e 2 (n "+ n— k=1, m—u/2)
m—H2 . (n ™"+ n =1 m~1) (6.1.29)

mt. (m_1 + n_l)“

N

N

for all u = 2....,q, we derive that
E |V et
<c-E [IV/“I‘I‘“ STl T Al e m T aé‘,k,z)]
<o (m2 (BT 1Zn(t) = K@)l ] + 07 B[V (14 1 Rma()]2)"])
+m "R [mﬂw N X (t) = X ()]s - (1 + Hffm,n(tz)Hz)“]

tmH. (n*(ufl) +n M) R [|Vlk’qw 1+ H)}mm(tl)‘b)u]

B [V R (t) — St - (14 | Zonnt)]2)"]
tmH .o E LR [|Vlk|q—u 1+ H)me,n(tl)ﬂz)“] )
<o (m 2 B[V | Rt) ~ K1)+ m e B[V (0 | R n)])']
B[V Ron(t) — Ko )1+ (L4 [T (t)]2)"]
T (e VI [|Vlk|‘1_“ 1+ H)N(mn(tl)Hz)M] >
<o (B [T 1 Rin0) — Ko (0)14]
B VAT K (t) = R - (14 | R (8)]2)"]

tmt (m ) R [Mk\q_“ 1+ H)N(mn(tlﬂ‘?)#] )

forall u=2,...,¢q,1=0,....m—1land k=1,...,d.
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Thus, together with Holder’s inequality, Proposition 3.3.2, and Lemma 6.1.1 we arrive at

q
> (1) w [ gv]
pn=2

q ~ ~
<o (m =] D) (@) VA 1R (t) — Ko (0)14]

n=0

q

m2 B[ (0 I K1) = Ko@) - (14 [ K (t)2)" |

! E[Z ) IV (1 R (t)]2)" - (7t + 071 7))

= (m™ B[V + 180t = Znat)lz)']

£ 2 B[ (V4 1Zn(t) = K @)ll2 - (14 [ K (t)]2) )]

(6.1.30)
~ q
[V + (1 1 Za@)ll2) - (7 07 ))] )
<o (m B[]+ m B 1R (t) - ()]
2R [ X () = X )57 [ X (8) = X () 2+ (1 + | X (81)2)
+m ‘m(l m,nl‘g Hml m,nl‘2(+‘m,nl2)
+mt. (n_l + m_l)q>
<o (m B[]+ m B [1Rn(t) - R ()]
~ ~ (a=1)/q
+m~2. (E [HXm(tz) — Xm,n(tl)Hg]) +m~L. (n_l + m_l)q)
<com b (B[] + B [1Rn(t) = K 18] + (07 +m7)1)
foralll =0,...,m—1and k = 1,...,d, where in the last inequality we employed an analysis similar

to the one in (6.1.29), namely,

~ ~

m-1.F [H)A(m(tl) _ )men(tl)Hq] om2 (IE [||X ) - X ’n(tl)”gD(qfl)/q
=mt. (E [H)A(m(tl) — Xpun(ty Hq] +m~ - ( [ Xm,n(tz)|g]>(q1)/q>
<t (B[ 1% = Kntelg]) "+ 71}

<c~m_1~<E[|\X (t) — an(tl)uq] (m~! 0~ )).
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Finally, by (6.1.24), (6.1.25), (6.1.30), and by (6.1.20) as well as by (6.1.22), we have

(V] - Y+ 33 (4) Bl @)

k=1 k=1 k=1 p=2
d
< ME[W] +em (ZE[W |+ E[1Ru(t) ~ Konl] + (o -1+m-1)q>
k=1 k=1
d d
< NE[VHT] +com? <2E[|v/f|ﬂ n )
k=1 k=1
d
= (ZEUV/“’]) (T+em™)+em™ - (n+m™)
k=1
forall I =0,...,m — 1. Now, by applying the discrete version of Gronwall’s inequality, we end up
with

which finishes the proof.

6.1.2. Proof of Proposition 5.1.1
To prove Proposition 5.1.1 we employ Proposition 3.3.2 and Lemma 6.1.2.

Proof of Proposition 5.1.1:
Let m,n € N and, for the moment, assume g € 2N. Then Proposition 3.3.2 and Lemma 6.1.2 yield

B[ max |X(0) — X0, 001%] < e (B[ sup 13(0) = X301 ] + B[ max 1 X30e) - XD, w)]2))
[=0,...,m te[0,1] 1=0,...,m

N

c- (m_q + (m_ + n_l)q)
<c- (m_1 + n_l)q.

(6.1.31)

For arbitrary ¢ € [1,0) we choose ¢ = min{n € 2N | n > ¢}. Then Holder’s inequality and (6.1.31) yield

N N o\ 2/d
[ o [X(0) - Rl < (B[ mox X0 - Xg@IL]) < on vt

=0,...,m =0,...,m
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6.2. Quantization in L,([0, 1];R?): Proof of Theorem 5.2.4

In the whole section we consider fixed parameters p, ¢ € [1,0) with ¢ = min{q € 2N | ¢ = p}.

6.2.1. Auxiliary Lemma 3: An Auxiliary Process

For m € N we define an R%valued stochastic process X,, = (an, . ,an)/ on [0,1] in terms of the
time-discrete Milstein scheme and the Brownian bridges Bl] by
T
X (t) = (t=tia) -m - X0F() + (=) - m- X0 (oa) + D by (X0 (0)) - B (1)
j=1

for t e [t;—1,t],l=1,...,mand k =1,...,d.
Lemma 6.2.1
Let s € [1,00). Then, for all m € N,

sup E[JX(0) ~ K ()]3] < e-m™.

te[0,1]
Proof:
Let m € N. Recall that XM = (X!, XM4) denotes the d-dimensional Milstein process on [0,1] as

given in (3.3.3). For ease of notation, we drop the parameter m throughout the proof and write X and
XM instead of X,, and XM respectively. W.l.o.g. we may assume s > 2.
First note that

d

_7 S Su k —7k S . i
;{gg]E[wu) X1 | <,§1te[£]E[’X - X @) (6.2.1)

Furthermore, by Proposition 3.3.2, and by the fact that Yk(O) = zk = XMk(0), we obtain
k

sup E [|X’f(t) - Y’“(ms] — sup E [|Xk(t) _XME@) 4 xMk@G) X (t)|5]
te[0,1] te[0,1]

<c. <sup E|[XH(0) ~ XMHE@ | + sup B [[XME() —Xk(t)ls]> (6.2.2)
t€[0,1] te[0,1]

<c- (ms + sup E [[XMk(t) —Xk(t)s]>

te(0,1]

forall k=1,...,d.
Next, we fix k € {1,...,d}, and for ¢t € (0, 1] we put

Rk(t) = Z ( /C\lijImﬁ ’ / (le (u) =Wy, (tl—l)) AW, (u)) ']l(tl—htz](t)‘
=1 ti—1

J1,j2=1 -

Now, for the moment, we fix ¢ € (0,1]. Then there exists an / € {1,...,m} such that ¢ € (t;_1,%;]. By the
definition of the time-discrete Milstein scheme, see (3.3.2), and by the definition of the processes By, see
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(5.2.1), we have

7k- ~
X)) = (t—ti1)-m- XME@) + (g —t) -m- XMFE) + Z b=l Bl (1)
7j=1
= XMEG )+ (=) -as (- t) Z b — Wj(ti—1))
~A—1 l
+ (t - tl—l) T Ck,jorji J(j1,j2)
J1,J2=1
Zbl 1. —(ty—t) - m-Wj(ti—1) — (t —ti_1) -m - W;(tr))
= )/(\'M’k(tlfl) + (t — 1 1 Z bl L. i Wj(tlfl))
4
+(t—ti1) -m Z ,sz ’ ]1 J2)°
.]17.]2 1
Hence
7k. A~
X (t) = XM’k(tlfl) (t — 1 1 + 2 bl ’Jl j Wj(tlfl)) + (t — tlfl) -m - Rk(tl),
and thus, by the definition of the Milstein process XM, we arrive at
XME) —XF(#) = RE(t) — (t — ti_1) -m - RF (1), (6.2.3)

As a next step, we further estimate E[|R*(¢)|*]. Since b is of at most linear growth, and due to (C2)
(i), we have

‘Rk(t)|s sc 7]2 J1 ‘/tz ) Wi ( Wi, (i 1)) AW, (u)

Jl,jz 1

e IR ) S | / Wi (t-0)) A ()]

J1,J2=1

Together with the fact that XM(t,_;) is F(t_1)-B(R%)-measurable, Lemma 2.3.6 d), and Proposition
3.3.2, we conclude that

B[RO ] < e (1+E[IRM@))%]) - [\ / W, (w) = W, (1 1>)dwj2<u>\s]
91’” b (6.2.4)

<c- 2 E[‘/t (I/le(u)—le(tl_l))deQ(u)r].

J1,52=1 ti—1

Moreover, the Burkholder-Davis-Gundy inequality, Minkowski’s integral inequality, see Proposition A.3,
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and the properties of W imply

: [’ /tt_l (Wi, (u) = Wy (t1-1)) AW, (u S]

] E[ sup ‘/t Wi, ( Wi, (ti— 1)) dWi, (u)

3e(ty—1,t]
s/2
<ec ‘ W, (u) — W, (t-1)] du
i1

2/s s/2
s/2
=c- ( [‘/ Wi ( ]ltll‘du ])
t—1
s/2
$7\2/s
<o | [ eI - w1
-1
r 5/2
t 2/s
<c / (m75/2) du
|V ti-1
<c- m’Q)S/2
=C- mf‘s
(6.2.5)
for all j1,50=1,...,r
Now by combining (6.2.1), (6.2.2), as well as (6.2.3)--(6.2.5), we finally arrive at
o d
sup ]E[HX(t) —X(t)H‘;O] <c- <m_5 + Z sup E[|Rk(t)s]> <c-m” e
te[0,1] L—1 t€(0,1]
O

6.2.2. Auxiliary Lemmas 4 and 5
Recall that, for K € N,
(SK = e(p) (E, SK(E), Lp[O, 1])

where B denotes a Brownian bridge on [0, 1] and Sk is a K-quantizer for a Brownian bridge on [0, 1].
Furthermore, for me Ny, n, M e Nand k = 1,...,d we put

m

—(p12)/2 ~Ekl—1 \p
AmnM = m~ P22 Z ( 1ochn) ’ (5Kk,l,lu)p
=1

where, recall,

Nisznjn _ (Z blw ,(q) (t— 1)))2>1/27

122



6.2. Quantization in Ly([0,1];R9): Proof of Theorem 5.2.4

and where the random variables K}, ps are defined as in (5.2.9). Additionally, we put

mnM = EAmnM

-1 ~E, k-1

For ease of notation, we write 3/~ instead of SocHm.n in the proofs of the following lemmas.

Lemma 6.2.2
For all m € Ny and all n, M € N it holds

— 1/p _ _
(B[ = X000y ]) " <o (m™ +n7) + (ElAmnar]) "

N

Proof:
Let m € Ny, n, M € N and, in addition to the abbreviations already introduced at the beginning of this
chapter, we put

forl=1,....mand k=1,...,d.

We split up the proof into single steps.

Step 1: First, recall that

7k ~
X 0) = (t— tia) - RE) + (1~ ) R e) + 38 B
j=1
and
v (0,9),k v - 7E, -1 j
KR = XOF0 + vy g (RSB0
j=1

forte[tj—1,t],l=1,...,mand k=1,...,d.
Secondly, for k = 1,...,d we define real-valued stochastic processes U} = (U{“(t))te[()’l] and

Uéc = (Uéc(t))te[o,l] by
UL(t) = (t—tizg) - m - (XM (1) — XOF®) + (6 —t) - m - (XD () — X0 (1))
i ( bl 1 El 1) B]() (bgjfl_gg’] ) BJ( ))
7j=1

and

T

y YEI-1  f
t) B (pggyl_lthk,l,]W ( . bkv] ’ Bl ) (t)

j=1 J=1
for t € [tj—1,t;] and [ = 1,...,m. Then,
X, — NTSf:Z?M =U; + U,

where Uy = (U}, ..., Ud)" and Uy = (U},...,Ug).
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Hence

(& [1%0 - X200 0]) " < E[0Eg0n]) "+ E[1E00]) " G20

1/p
Step 2: In this step we further estimate ( [”UlHLd 0.1 ]) . By Fubini’s theorem we have

el tgon])” - (S2[S [ wtora]) - (S£ [ eluror)a) "

Moreover, the properties of b imply

T
R < e ( max [X3(0) - XW.@ls + X 1K (0) - X012, - 1B 0)F
IR ]:1

. (6.2.8)
+ M IRE ) - XED W)l - 1B @)
j=1

forallt e [t;—1,4;], 1 =1,...,mand k =1,...,d. Note that, forall j = 1,...,7and I = 1,...,m, the
Brownian bridge B is independent of F(#;_1), and note that ()’(\}%(tl,l), )’(\'%I(tl,l)) is measurable
w.r.t. F(t;—1) for every [ = 1,...,m. Thus, by (6.2.8), by Lemma 6.1.2, by Corollary 3.3.4, and by
the choice of ¢ together with (5.1.9) in the proof of Proposition 5.1.3, we conclude

E[Ut@f] <e (40 +Z B ES et AR AAOH
ARG (6.2.9)
<c- ((m_l +n )+ (mT 4T ; [‘B] ] )

Z [\XE ti—1) )N(%,(yg)(th

forallt e [t;—1,t],1=1,...,mand k = 1,...,d. Furthermore, since the processes Blj are Brownian
bridges on [¢;_1, t;], Definition 2.3.9 yields

E [\B{(t)!p] <c ((t=tia)-(t—t)-m)”> <com™P?<c (m 4 )PP (6.2.10)

forall te[t;—1,t],l=1,...,mand j=1,...,7.
Hence, in summary, due to (6.2.7), (6.2.9) and (6.2.10) we end up with

( [HUlHLd 0.1 ])Up <c-(m 40t (6.2.11)
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Step 3: Let feR", K e N, and let [ € {1,...,m}. Recall that ®g;  is the mapping as defined in (5.2.5).

First, we assume 8 # 0. Due to Lemma 5.2.2, due to the definition of the mappings ¥3; and
1/}5%, see (5.2.3) and (5.2.4), respectively, and due to the change of variable rule, we obtain

E (|18 - B = ®sanc (1812 BII o o]

—E| [ |18l B —<bﬁ,l,K(ﬁ2'B})<t>|”dt]

| /ti-1

-E| [ wﬁ,}(w,l(w?-B}))(t)—%,,,K(nmz-B})(t){pdt]

| Vti-1

5| [ i - sl

| Jos (6.2.12)
2 _ _
=B8]5-E [/ m 2 B(m - (t—t1)) —m 2 Sk (B) (m - (t — tl—l))‘p dt]
t—1
t; o
6B et [ e [Blme (6 ti-0)) = S (B)m- (¢~ 1)
t—1
1 J— S—
w2 ol | [ [B(s) ~ S (B) (o) ds|
0
2 gl (5
where B denotes a Brownian bridge on [0, 1].
Secondly, assume 8 = 0. Then, due to the definition of the mapping ®4; f, it holds
©50,5 (1812 - BY)(t) =0
for all t € [t;—1,t;]. Hence, trivially,
E| 1812 B = @a0xc (1812 B, o, o] =m0 1815 - (650)" (6.2.13)

1p
Step 4: In this step we further analyze ( [HUQHLd 0.1 ]) . To this end, we consider the R**™-valued

random matrix

Vi= (XEWD(t),..., X2W@(1,,_1)).
In view of (5.1.8) and (5.2.9) it holds that
bl ’lilv Kl,l,Ma R 735’17% Kd,l,M)
is measurable with respect to (V) for all [ = 1,...,m. Moreover, by the definition of the Euler
quantization of X together with the definition of the random variables K} ;s as well as Lemma
5.2.1 ¢), we get that
(?)/]f:’l_l,Klvl’M,...,?)/dE’l_l,KdJ’M) and (Bll, ,Blr)

are independent for alll = 1,...,m. Thus, forallk =1,...,dand [ =1,...,m, due to Proposition
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B.2, and due to (5.2.2), (6.2.12) as well as (6.2.13), we obtain

E[1USI8 g, o |V = 5]
:E: gz’gjl—l(m B] q) b N B) LKk, (B (Z ) ip[tl,l,tl]]
- E: B By BE = Beas )1, i (B B B) Zp[tl,l,tl]]

/2 I

for Py-a.a. 8 € R¥™ where Zgjl 1(5) and K a(3) denote the realizations associated to

ﬁ) Hg ) (6Kk,l,1\1(6))p

and K} ar, respectively. Therefore, we conclude that

e letma])” -

=1

M= D=

k

Il
fu

I
=

B 0422 31 i

Z E [||U2 HL »([ti—1 tz])])

(6Kk,l,M)”]> Up

=1

m

1/p
E[m*(p+2)/2 . Z (gk’lfl)p : (5Kk,l,M)p]>

k=1 =1
d 1/p
= Z E[Afn,n,M]>
k=1
— (E[Amnn])"”.

Step 5: Now by combining (6.2.6), (6.2.11) and (6.2.14) we end up with

1
(B[~ XD o) < e (m 407 4 (B [ A ] ),

which finishes the proof.

OfNEl 1

(6.2.14)

O

For the remaining part of this subsection we consider a sequence (my)yen in N which satisfies (Lim1)

and (Lim?2), and recall that

. . —my Inmy/(1+Inmpy)
My = max ((4d'(1+(£)) -m]\}(T+(2))> -N> o 1

for N e N.
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Additionally, recall that

Rp = limsup VIn K - 6

K—w

and

1/p

2)/2
wipr)  \ T
[0.1]

Lap/(p+2)

d
e~ (& (2 o
=1

We will employ the next lemma in the proof of the fifth main auxiliary lemma, namely, Lemma 6.2.4.

Lemma 6.2.3
It holds
i In MN
im =
Now InN
Proof:

First, note that due to (Lim1) there exists an index A/ € N such that

. —my Inmpy/(1+lnmpy)
<<4d.(1+(;)) .m;i\-[(w(g))) ~N> >

for all N > N. Secondly, due to the definition of My, and due to the calculation rules of the logarithm,
we have

Inmy d-(1+(3) ., G )
In My 1+mlen«4 ) I

~ Inmy a-(+(3)) ., +(E)

= Trmmy <—mN ln(4 2 my )+1nN

< _lnmy n N
1+ Inmy

<InN

for all N > N. Thus,

Hence it remains to show
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By applying the calculation rules of the logarithm once more, we obtain

| r (r+ (5
In MN = 111(1/2) -+ ﬂ . <_mN -1n (4d.(1+(2)) 'm(]i\l( +(2))> + 111N>

1+Inmy
Inmpy d " Inmpy r
—1n(1/2) - — N | 1 (4 (1+(2))>_7. -1 A d- d-
n(1/2) 1+ Inmy M- 1+ Inmy M s LN r 2
1
MmNy N
1+ Inmy
Inm (1T Inm r
= 111(1/2) - ﬁ My - lnmN -In <4d (1+(2))) — ﬁ My - lnmN . (d r+ d- (2>>
1
_mmN N
1+ Inmy
(6.2.15)
for all N > N such that my > 3. Moreover, (Lim2) implies limy_,o my = 00, and hence
Inmpy
im ——— =
N-w 1+ Inmpy
Thus, (6.2.15) together with (Lim1) leads to
i inf In My
imin =
No>w InN
O
Lemma 6.2.4
It holds
: Ur\
lim sup (\/1 N - (E [AmN,mN,MN]) > <R, P,
N—w
Proof:

We may assume &, < o0 since otherwise there is nothing to prove. Additionally, note that &, > x, > 0,
where k), is the constant in Theorem 2.3.11 (i). Moreover, for N € N we put

—(p) .
Ky = max maxd VIn Ky gy '5Kk,z,MN-

1=1,...mn k=1,...,

From now on, we use the shorter notation Ky instead of E%). Note that &, < co implies

sup Ry < c. (6.2.16)
NeN

Additionally, for s € [1,00) and N € N we put
my d 1/s
Doim (il S )

I=1k=1

and we define Dy analogously to ﬁst with 3%/~1 replaced by s¥!=1 := s, (Xk(tl,l)).
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Furthermore, we abbreviate
p* =2p/(p+2).

We split up the proof into single steps.
Step 1: As a first step we further estimate E[AmN,mN,MN]- To this end, we fix N € N such that My

By (5.2.9) and (5.2.8), we have
k
< (BN ()™

(gk,l—l)p X (h’l Kk,l,MN)_p/2 <
" eyt
2 ~k ] j— —
< (InMy) ™72 @EHHP. | O(glj _11),,*

I'>0and k=1,...,d. Thus,

forall l =1,...,m with max,—; 45 ik

= Z AmNJTbN,MN

AvamNaMN

my d
e —p/2 2
= 7TLN(p+2)/2 Z (sk’l l)p‘ <ank7l7MN) v <ank7l7MN)p/ ' (5Kk,z,MN)
I=1 k=1
my—1 d P2 iy d
< (I My) 2 En)?my ( >, 2@ ) - ( 2, () )
i=0 v=1 1=1k=1
— (M) "2 (- Do)
(6.2.17)
and hence
E [Apmymntin] < (InMy) P2 E [(EN - f)p*,N)p] . (6.2.18)
Step 2: We prove
Imsupn o V. (6.2.19)
Kp
To this end, it is enough to show lim  min min Ky, = 0.
N—oowl=1,...mpy k=1,...,
,my}and ke {1,...,d}. By

Let N € N such that my > 3, and, for the moment, fix [ € {1,..

(5.2.9) we have

k
In Ky sy = In My =7 - In My.
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Moreover, if o max 3¢ = 0, it holds 7} = 1/(d - my) and hence
i=0,...,mny—1,
v=1,...,d

1 1
In K, > ‘InMy > —————— -1InMy.
B LMy d-mpy nAN d-mpy-Inmy HAN
If max 3 >0, (5.2.8) yields
’l‘=07...777’L]\7—17
v=1,..d
In K ! In M
n > n
RLMy =g my - lnmy N
Therefore,
1
K P — - InM
kLMy 2 XD (d-mN'lnmN . N)
foralll=1,...,my and k=1,...,d, and hence
K ——— InMy ).
o RS Bk 2> exP (d-mN~lnmN " N)
Additionally, due to Lemma 6.2.3 we have
lnMN
im =
N—ow InN ’
and thus, together with (Lim1), we obtain
In N In My
lim ——— - InMy = 1li =
Nlinoo d-mpy-lnmpy HAN = Nlinood my - lnmN In N

Consequently,

lim min min Ky pry = 0.
Noowl=1,...my k=1,....d N

Step 3: Recall that

my d 1/p*
Dp*,N:(mrvl-erbk (1) \p*)
=1 k=1

for N € N. Since X has continuous paths, since b is continuous, see Section 3.2, and due to the fact
that the euclidean norm | - ||2 is continuous, we obtain

my d 1/p* 1/p*
Jim Dy y(w) = lim <m]—vl. 2, 2 (X (1) >)||§*) (2 / o (X @ @) dt)
(6.2.20)

for all w e Q2.
Moreover, since b is of at most linear growth, and due to (6.2.16), it holds

(Fn - Dpx n)” < c- (1+ sup | X(s)]%)
s€[0,1]

for all N € N.
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Furthermore, Theorem 3.2.3 guarantees

E| sup |X(s)[5,] < 0.
s€(0,1]

Hence all assumptions of Fatou’s lemma are satisfied, which, together with (6.2.19) and (6.2.20),
implies

limsupE[(EN . Dp*7N)p] <E [limsup (EN . Dp*’N)p}

N—oo N—c0
< E [(hmsup (EN)p> : (thUP (Dp*,N)p)]
N—w N—w

N

(%,)? - E [lim sup (Dp*,N)P}

N—oo

— (Ep . C(p))p_

Step 4: In this step we prove that, depending on the value of p, there exists an « € (0, 00) such that

i e[ -B]) (el 210
which then yields
limsupE [(EN . ﬁp*yN)p] < lim supIE[(EN . Dp*,N)p] < (Ep : C(p))p. (6.2.21)

N—o0 N—00

First, assume p € [2,00). Then 1 < p* < p, and the inverse triangle inequality as well as the

properties of b imply
1/p* my d 1/p*
i, l— 1|p> ( ZZ|SM 1|p>

N

DL

Dp*,N - Dp*,N‘ =

m
m
=1 k=1 1=1 k=1
my d 1/p* my d 1/p*
_ -1/p* ~kl—10* -1/p*  kl—1p*
= ( Z’mN "8 ’ - ZZ‘mN "8 ’
=1 k=1 =1 k=1

A

d . 1/p*
<m1_v1 S NN s )
L ) A\ (6.2.22)
=\"MN - Z |ku(XmN,mN(tl—1))H2_ ku( (ti-1) ||2’

I=1k=1

1/p*
myt- 2 2 [k (K (t1-1) = b (x<tl_1>)||’z’*)

I=1k=1
. 1/p*
<e: (mf_vl' |X (t1-1) = X (-0 [, )
=1

< c- max HX(tl) XE() (tl)Hoo

m m
1=0,...mn NN

for all N € N. Thus, by the inverse triangle inequality, by supyey Ry < ¢, and by the choice of ¢
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together with Proposition 5.1.3, we obtain

([ D))"~ (5[ D]

1/p

- 1/p
<c- IE[ max || X (t;) — XE@ (tl)Hio})

my,mn

for all N € N. Due to (Lim2) we have

and hence we end up with

i | (5 [y - Dyr)]) = (B[ o - D))

N—o0

Secondly, assume p € [1,2). Then p* < 1, and hence p/p* > 1. By (6.2.22) we conclude that

~ * *

(D) = (D )" < [y = Dy " < o max (1) ~ RED, ()]

my,m
1=0,...,m NN

Together with the inverse triangle inequality, supyey AN < ¢, and the choice of ¢ combined with
Proposition 5.1.3, we obtain

\(E (G- Dye)”] ) = (B[ o Den)?])"

s <E [|RN|p ' }(BP*JV)p* — (Dpr )" |p/p*])P*/P

<c (B[|(Dpr)” — (Dp*vN)p*‘p/p*Dp*/p

Combined with

. —p*/2
lim mNp / =0
N—w

we finally arrive at

lim ‘(E [(EN : ﬁp*?N)p] )p*/p - (E[(EN ' Dp*,N)pr*/p o

N—0

Step 5: We combine all previous steps. By (6.2.18), Lemma 6.2.3 and (6.2.21) we end up with

oy (VI - (B[ Ay, 15,]) ) < Bisip (m o (E[(,@N.ﬁp*ﬁN)le/p)

N—ow N—0 In My
. In N . a ) P
< (131 mMN) (i B (- 2y
<Fp- c®).
Ul
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6.2.3. Proof of Theorem 5.2.4

We prove Theorem 5.2.4 by applying the Lemmas 6.2.1, 6.2.2 and 6.2.4.

Proof of Theorem 5.2.4:
By the aforementioned lemmas and (Lim?2) we conclude

limsup (VIn N -e® X,)?“””,Ld 0,1
N p[ ]

N—0
. < p 1/p . (9,9) 1/p
< limsup ( VIn N - <IE [||X—XmN||Ld[01]]) +limsup [ VIn N - ( [HXmN—X HLd(MD
N—w ’ N—o
< c¢- limsup + limsup vVIn N ( [A mN’mN’MN])l/p
N—0 mn N—0
< FRp - C(P)_
The statement on the size of the range of )?](\Z;’q) directly follows from (5.2.11) and (5.2.12). O

6.3. Quantization in C([0,1];R?): Proof of Theorem 5.3.4

In the whole section we consider fixed parameters e > 0 and s,q € [1,00) with ¢ = min{G e 2N | § = sn.},
where 7. the natural number as in (5.3.1).

6.3.1. Auxiliary Lemma 6: The Auxiliary Process Revisited

In this subsection we revisit the auxiliary process introduced in Section 6.2.1. Recall that for m € N the
—1

d-dimensional stochastic process X,, = (X . ,Yi)/ is given by

my

XE () = (t—tis1) -m- XMR@) + (= 1) -m - XMR () +Zb,w Mt 4)) - Bi(t)
j=1

forte[t;—1,t],l=1,....mand k =1,...,d.

Lemma 6.3.1
Let 5 € (2,00). Then there exists an az € (3/4,1) such that, for all m € N3,

1/5
(E[ sup. X (1) —Xm<t>r§o]> <eolmm.me,

te[0,1]

Proof:
Let m € N3. We use (3.3.5) in Proposition 3.3.2 and (6.2.3) in the proof of Lemma 6.2.1 to conclude that

1/3 1/5
<E[ sup X(t)—Xm(mgo]) <cmlie. Z ( [ sup |RF(1)[} ]) (6.3.1)

te[0,1] te(0,1]
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where, recall,

RE(t) = ( G / (W), (s) = Wiy (ti1)) dez(S)) Lty (t)
=1 ti—1

J1,J2=1 -

for t € (0,1]. The properties of b, Holder’s inequality, and Proposition 3.3.2 imply

E[ts(%% IR’“(t)Ig]

-----

~ N\ 12
1+E[l max X%(tﬂgg]) . (E [l max  sup

=1,..., m tG[tl_l,tl]

/t (Wi, () = Wi, (1)) dWj, (s)

o

for all K =1,...,d. Furthermore, by the Burkholder-Davis-Gundy inequality, by Holder’s inequality, by
Fubini’s theorem, and by the properties of W, we conclude that

N

e
b7~
—

JARCACEUATE PR

""" M telt;—1,t1]

T
<c- E
c Z ( {l:{mx sup

(6.3.2)

. 25
/ (le (5) - le (tl—l)) dVVj2 (S)

ti—1

E| max sup
l:l,...,m te[tl_17tl]

m t s
<c- ZE (/t ‘le (S) — le(tl_1)|2d8>
-1

5—1

= b 5 b 6.3.3
<C-ZE (/ \le(s)—le(t,,l)\Q ds> : (/ 15/G-1) ds) (6:3.3)

=1 ti—1 ti—1
om0 N [ 2
—em 0.3 E| W, (5) = Wi, ()] ds

I=17t-1

< c-m G . s
=cC- m_(2§_1)

for all j1,j2 = 1,...,7. Hence, in view of (6.3.2) and (6.3.3), we arrive at

d 1/5
Z <E[ sup |Rk(t)|§]> <c- m*(2§71)/2§.
k=1

te(0,1]

Now, put a;z := (25—1)/28. Since § > 2, it holds a; € (3/4,1). By (6.3.1), and by the fact that m > 3,
we finally end up with

1/5
<E[ sup |X(75)—Xm(t)§o]> <c-lnm-m™9.
te[0,1]
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6.3.2. Auxiliary Lemmas 7 and 8

Recall that (Sue)men is a strongly asymptotically optimal sequence of order sn. of M-quantizers
Swme : C[0,1] — C[0,1] for a Brownian motion on [0, 1]. Moreover, for M € N we put

§\) = (1) (W, Sy (W), C[0, 1])

where W denotes a Brownian motion on [0, 1], and we use the abbreviation

m—1 1/2
B - (m $ }bk,m(X%,@(ti))Ii)
1=0

for myn € N and £k = 1,...,d. Analogously, we define Z’;,n with [[bg m (Xm E( (ti))|2 replaced by
[0 (X (t:))l2-

For the rest of this subsection, for ease of notation, we write n and Sy instead of 7. and Shp,
respectively, for M € N.

Lemma 6.3.2
Let m,n, M e N, let k € {1,...,d}, and let ¥¥ € R™*" such that (5.3.3) as well as (5.3.4) are satisfied.
Then there exists a constant c(s,e) € (0,00) neither depending on m,n nor on M such that

1/s
(B[IB™ - w542 @) < 56 4 (s e) - nL.

Proof:
By (5.3.2), (5.3.12), (5.3.8) as well as (5.3.10), and by Hélder’s inequality, we have
. —(7*)\ s 7 s 1/sn
(B[1BT — 0 @) = (B [189 - v B0 ))

< (E [HW(W’“) _ SM(W(VIC))HZ’J])”S"

o) sby — et ghy o)
+(E[lmax (WO (s7) = W9 (s7)] ])

=1,....m

(6.3.4)
(sn) by k) kel )
< 5Mn + <E[l_1{1§.xm|W(“’ )(sl) —Wﬁznm(sl)’ ]) .

It remains to further estimate the second summand in the last line of (6.3.4). To this end, we put
UIS =0 and
—k k >~k
U 1= WO sh) = Wi )

for i =1,...,m. In view of Lemma 5.3.2 ¢) and (5.3.9), it holds

l
Ul =mY2. Dl (Zi - Zi(,zz))

for all Il = 1,...,m. By the choice of the random variables Zi,..., Z,,, by the properties of standard
normally distributed random variables, and by (N1), we derive that (Uf)l:07,,.7m is a martingale with
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respect to its natural filtration. Therefore, Doob’s maximal inequality implies the existence of a constant
c1 = ci1(s,e) € (0,00) such that

E[l:%§§m|ﬁf|q] e E[[T5]]. (6.3.5)

Furthermore, by the definition of Uf, by the choice of the random variables Z1, ..., Z,,, by (N1) and the
properties of standard normally distributed random variables, by (5.3.4), and by (IN3), we conclude that
there exist constants co = ca(s, ), c3 = c3(s,¢) € (0,00) such that

. q
[} l+1‘ ] ’Uﬂq_ + Z (Z) = [‘Uﬂqiu] ' (m_l : H’YlkHH%)“/2 E [(ZZH - Zl(+)1 n)u]
_ . q
<E|[T)]"] +e2-m™ - Infalp - ) (Z) B[] 0

n=2
<E[[T7"] + c2-m™ - |fal3 - E| (T7] + )]
)

N
=

ez m 3 n T

[UF]7] - (1 4+ e3 - a3

for all I = 0,...,m — 1. Together with (5.3.4) we have that all assumptions of the discrete version of
Gronwall’s inequality are satisfied, which then yields

[{Um\] c3 -l (6.3.6)

Finally, (6.3.4)--(6.3.6) imply the existence of a constant c(s,e) € (0, 00) such that

(B[1B ~ st BON]) " < 0+ el n

Lemma 6.3.3
Let n, M € N, and let § € (2,0) with § = s. Then there exists an oz € (3/4,1), an index N(5) € N3 and a
constant c(s, ) € (0,00) which neither depends on n nor on M such that, for all m = N(§),

N 1/s

et (X, XﬁfZ)M,C([O, 1];Rd)) <c (m™t a4 <E[k£nlaxd (Af;m)s]> “(1+¢e)- (63) +c(s,e) -mn71).
Proof:
First, note that Hélder’s inequality and Lemma 6.3.1 guarantee the existence of an a3 € (3/4,1) such
that

(E[1x - Xl ]) " < (B[1x - Xuls]) < comm - mons

for all m € N3. Now, choose 8 € (0, 1,5 — 3/4) and put g5 := a1 5 — . Note that the choice of 8 implies
Qo5 € (3/4,1). Moreover, since lim,, .o Inm/m? = 0, there exists an index N(3) € N3 such that for all
m > N(5) one has Inm < mP. This leads to

Inm - m s < mﬂ—al,g = 92,5
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and therefore
(E[”X 7ym|‘§o])l/s <ec- (m™tppTh)oes

for all m > N(5). Consequently,

o0 (x, X9, (0.1 m) < (B[1x - Xl )+ (B[1% - X0005])
_ a 1/s
<c-(m™ 40T 4 (B X - X015 )

for all m > N(3).

Secondly, for the remaining part of this proof we fix m > N(3), and for k = 1,...,d let UF be the
real-valued stochastic process defined in Step 1 in the proof of Lemma 6.2.2, and let U} = (U} (t))tef0,1]
and U} = (U:,’f(t))te[o,l] be real-valued stochastic processes defined by

Z <bk7] tl 1)) —Bk7j7m()?7%’7%])(tl,1))> . Blj(t)
for t € [t;—1,t;] and I =1,...,m, and

vt = &, (BT - s 37)),

respectively. Then,

Xm —XT(T(L]Z)M—U1+U2+U3

where U; = (U},...,U?) for i = 1,2,3, and hence

— 1/s s s S s S
(B [1%n - X01%]) T < @IUID Y + E[IU05]) 1 + E[I1Us15]) (6.3.8)
As a next step, we further estimate (E[|U7 | OO]) . Since b is globally Lipschitz continuous, we obtain

sup [UF(0)[" < e (| max 1R (0) - XD, 1)l
te[0,1] 1=0,...,m

+ 2( max |3 (0) - RE@IL) - (max  sw [BO]) (539

=Leomelt,_y ]

+2( e 1R - XD 1) - (o s [BO]))

:1,.,.,m te[tl_l,tl

for all K = 1,...,d. Additionally, we put az := (1 + ag3)/2. Note that, due to az 3 € (3/4,1), it holds

s € (3/4,1). Now, in view of (6.3.9), by the choice of ¢ combined with Lemma 6.1.2 and (5.1.9) in the
proof of Proposition 5.1.3, by Lemma 5.2.1 ¢), by Lemma C.5, by Holder’s inequality, by Corollary 3.3.4,
and by applying the same arguments as in the beginning of this proof, we arrive at
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(ENvr]) " <e (0 + B[ max 122000 - 2@ - (max s (B0

’’’’’ I=Leomgelt g )

,,,,, 1=1

~ ~ . s 1/s
+ D[ max [XE(0) - XEO )] B[ max  sw [B0)]])
= m 70 o1 Lil=1,..., mte[t,_l,tl]

s s /s
<c ((W1 +n )+ (m ) (Inm- nfl)s/z)1

1/s

Next, we derive an upper bound for (IE[HU2||§O]) . Clearly, forall k =1,...,dand j = 1,...,r, we have

[k g (%) = by ()] < [[b,j (2)] — max(|bgj ()|, m ™) < m™
for all € R%. Thus, together with Lemma C.5 and by employing the same arguments as in the beginning
of this proof, we obtain

) /s N
(]E[\|U2H§o])l/s <c-mt. Z (E[l max  sup ‘B{(t)ﬂ)l <c- (m_1 + n_l)as. (6.3.10)

=Mt 4]

J=1

It remains to further analyze (E[HUgHiO])I/ °. As in Step 4 in the proof of Lemma 6.2.2 we consider
the random matrix

V= (XEW(tg), ..., XEBD(t,1)). (6.3.11)

Due to the definition of the random elements fT’fnn and T'* the vector (A}nn, ..., Aﬁw, Fd) is measur-
able with respect to o(V). Moreover, Lemma 5.2.1 ¢) implies that (B{,...,B},,...,B},...,Bp,) and V
are independent. Hence Proposition B.1 b), Proposition B.2, Jensen’s inequality, Lemma 6.3.2, and the
choice of 7, imply the existence of a constant ¢(s,e) € (0,00) which neither depends on m,n nor on M

such that

~ —(Tk k —__(Tk s
E[JUs5 | V =] = B[ max [4F,, - (B 50 ()]

Vzv]

—(T*(v k(v),q.6) (T* (v s
( ())_w(F ( )qa)(B( ()))Hoo]

m,n, M

< (kmax (gfnn(v))s) IE[

=1,..d

~ s d —(T*(v k(y —(TF (v s 1/77
< (s, (Baa(0)) = | (3B - e ) 12
k=1

N 5 d —(Tk(w k(y — (T ()N 115 H 6.3.12
< (o, (o) (SR i@ ) O

< ( ax (Afnn(v))s) (1+¢)°- (5%277) +e(s,e) )’
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6.3. Quantization in C([0,1]; R?): Proof of Theorem 5.3.4

for Py-a.a. v € R¥™ where /Nlﬁun(v) and T'*(v) denote the realizations associated to v of Af;m and T,
respectively. Thus,

1 1 i " (sm)
(Ewals )" = EE O 1VI)Y < (B[ max (F,)7]) - (2 @47 + close) ),

:17"'7

Combining this with (6.3.7)--(6.3.10) finishes the proof. O

6.3.3. Proof of Theorem 5.3.4

We prove Theorem 5.3.4 by utilizing, among other things, Lemma 6.3.3.

Proof of Theorem 5.3.4:
Let § € (2,00) with § > s. Moreover, let (my)nen be a sequence in N which satisfies (Lim1) and (Lim3).
Due to Lemma 6.3.3 and (Lim3), we have

lim sup (VlnN ce®) (X, )N(](\?’e),C([O, 1];Rd)))

N—o0

N—0 k=1,....d

N 1/s
< limsup (V InN - <E[ max (Alran,mN)s]> (1+¢)- (55\27\/) +c(s,e) - Inmy - mNo‘g)>

with oz € (3/4,1).

Next, similar to Lemma 6.2.3 one proves that

. In MN . 1
AN T d (6:3.13)
Moreover, due to similar arguments as employed in (6.2.22) we conclude that
—k s 1s Tk s 1s
(E[ kinl(:ix,d (AmN’mN) :|> o (E[ kinl,ax’d (AmN mzv) ])
[ mN—l 7 9
< (=], ("8 el = o (0 |2\ )
o i=0
i mpy—1
< |E| max, (le- ; B8 (X (£)) = Bre, (X0, (1)
i | Ml ~ 2 (6.3.14)
= | ® Fold <mN ' Z;) j;|bkvj(X(ti))_bkvjvmw( S |>
- 1/s
my—1 r 9
< (5 s, (555 (s s ) )
_k:l,...,d = =

s\ /s
o (2] s 100~ RE 01, + )]

:07"'7mN
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6. Proofs of Chapter 5

for all N € N. Now, (Lim3) implies

. —1/2
lim m
N—w

=0,

and hence we obtain

lim sup
N—o0

=0.

(E[ kinl(:i..).(,d (A]’;N’mN)SD N B (E[ kinl(:i.?.(,d (g’ﬁ”‘N’mN)sD N

Furthermore, by arguing similarly to Step 3 in the proof of Lemma 6.2.4, we get

' . . 1/s s 1/s
iy (2 o, (B0 )]) < (B[ [0k [ )

N—© _17"'7

Thus, by the previous two detached formulas we have

N

N—oo

<E [kinﬁfd e (x 01, ;[071]D " (6.3.15)

In particular, note that the properties of b together with Theorem 3.2.3 guarantee

s 1/s
[)" <=
L2[0,1]

Since we assumed that (Sys)aen is a strongly asymptotically optimal sequence of order sn of M-
quantizers Sys : C[0,1] — C[0, 1] for a Brownian motion on [0, 1], the same holds true for the sequence

(Samy)Nen. Thus, by Theorem 2.3.11 (ii), by (6.3.13) as well as (6.3.15), and by (Lim3), we conclude
that

N . 1/s
i sup (B[ o (25,,,)°])

(E [m 1B (x ),

N—w k=1,...,d N

< (e[ mox | O, ])
= (B[ [ I,

< b - C®%) L (1 4 ¢)

N 1/s
lim sup (m - (E[ nax (A’ﬁnN,mN)SD -(1+s>-(65&”)+c<s,e>.1nmN~mNa§))

1/s

(1+4¢)- (limsup VInN - 55&2)

N—o

s 1/s /
-(I4+¢)-| lim Vin ¥ - | lim sup 1nMN-5(sn)
La[0,1] My
21Y,

N0 /In My Nosor

where Ky is the constant in Theorem 2.3.11 (ii), which finishes the proof.
The statement on the size of the range of )ij(\?’s) directly follows from (5.3.15) and (5.3.16). O

6.4. Quantization in C([0,1];R?%): Proof of Theorem 5.4.1

We consider fixed parameters s,q € [1,00) with ¢ = min{Gg € 2N | § > s}. Recall that (Sk)ken is a
sequence of K-quantizers Sk : C[0, 1] — CJ0, 1] for a Brownian motion on [0, 1], and we put

S := e (W, S (W), C[0,1])

for K € N where W denotes a Brownian motion on [0, 1].
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Moreover, recall that

1/2 o 1/2
Am( znbm (X0 n)HS) wd A ( E\bk ||2)

formneNand k=1,...,d.

6.4.1. Auxiliary Lemmas 8 and 9

In analogy to Lemma 6.3.3 we derive the following result.

Lemma 6.4.1
Let § € (2,00) with § > s. Then there exists an «z € (3/4,1) such that, for all m € N3 and n, M € N,

()(X XT(,Z)HM,C([O,l];Rd) <c-lnm- ('m +n- )

d 1/s
( [Z 6Kk]b1)s]> +e-nt (E
k=1
Proof:

Let m € N3, and let n, M € N. First, Lemma 6.3.1 and Hoélder’s inequality guarantee the existence of an
s € (3/4,1) such that

(B[ x =% llz])” <comm- (m L4 nt), (6.4.1)

Secondly, for k =1,...,d let Uf as well as Ué“ be as in the proof of Lemma 6.3.3, and let Uéf be given by
~ —(Tk Fk, —(Tk
Uf = - (BT = 0%, (BT)).
where Ky, is the random variable in (5.4.3). Then we have

X=X =U1+ Uz +Us

where U; = (U},...,U%) for i = 1,2,3. Hence

1/s

_ 1/s 3 d

(B 1% = 0, ll3]) <2@g2uw;) . (6.4.2)
i=1 k=1
Due to (??) and (6.3.10) in the proof of Lemma 6.3.3 it holds
d 1/s d 1/s
(=[St ) (=] S]] fecmu e
k=1 k=1
Similar to Lemma 6.3.2 one proves that
—_(~k
(2[5 = s kB ]) < o e

forallk=1,...,d and K € N where v¥ € R™*" satisfies (5.3.3) as well as (5.3.4). Then similar to (6.3.12)
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6. Proofs of Chapter 5

we conclude that

E[\

for all k =1,...,d where V is the random matrix in (6.3.11). Therefore,

1/s d 1/s
(E ) < (]E[Z (ﬁfn7n‘5K,mM)S]> +ec-n b (E
k=1

Now combining (6.4.1)--(6.4.4) finishes the proof.

V] < (‘Tlfn,n)s ) (6Kk,JVI tc- n—1)87 Pas.,

d

>, IUs,

k=1

k=1

3 ()¢

1/s
> . (6.4.4)

O

For the remaining part of this subsection we consider a sequence (my)nen in N which satisfies (Lim1)
and (Lim3). Since to a great extend the proof of the following lemma highly resembles the proof of Lemma

6.2.4, we carry out only a sketch of the proof.
Recall that

1/s

d (s+2)/2
¢ — | E (Z | 1ok (X ()2 Hi‘j;f)

k=1
and

= limsup vVIn K (W Sk(W),C[0,1])

K—w

where W denotes a Brownian motion on [0, 1].

Lemma 6.4.2
It holds
d 1/s
lim sup ( Z mN _ 5Kk,MN)S] ) < Fooos L @(0:8)
N—a0 k=1
Proof:

We may assume Fo s < 00. Note that Ko s = Koo > 0 where k4 is the constant in Theorem 2.3.11 (ii).

Moreover, for N € N we put

() ._
KN oo i= kI:nlaxdy/ank’MN '5Kk,MN'

(s)

From now on, we write xy  instead of Nyoo- Note that Ky s < 00 implies

SUp KN,o0 < C.
NeN

Additionally, we abbreviate

*=2s/(s+ 2).
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6.4. Quantization in C([0,1];R?): Proof of Theorem 5.4.1

Now, analogous to (6.2.17), due to the choice of K}, ur,,, see (5.4.3), and the definition of u*, see (5.4.2),
we derive that

mN,mN (:“k) s

Mg

d
2 (Aan,mN)s - (5Kk7A1N)s < (FCN,oo) (In My) —s/2,

k=1 k:1
—5/2
RS (A nn)”
< (IfN,OO) ]-n MN Z mN,mN d DN "
k=t ; (A )
d s/s
s —s 2
k:1
and therefore
d 1/s d . s/s /s
s —-1/2 s ~ s
k=1 k=1
(6.4.5)
for all N € N such that My > 2
Similar to Step 2 in the proof of Lemma 6.2.4, one shows
Hmsupy op Koo _ g (6.4.6)

Roo,s

Moreover, since b is continuous and X has continuous paths, it holds

4 s/s* d s/s*
. —k s* s*
Jin (Z () ) - (Z 06X |L2[o,u> -

k=1

Now analogous to Step 3 in the proof of Lemma 6.2.4 one argues that all assumptions of Fatou’s lemma
are satisfied, which in turn, combined with (6.4.6), then leads to

d s/s
limsup E | (kne0)” (Z (Aan’mN)s*> < (Fooys - (’l(oo’s))s. (6.4.7)
N—0 1

As a next step, by employing arguments similar to those employed in Step 4 in the proof of Lemma
6.2.4, as well as by carrying out an analysis analogous to the one in (6.3.14), we conclude that, dependent
on s, there exists an a € (0, 00) such that

«

d s/s* d s/s*
]\;linoo E IQNOO (; mN,mN > —|E /iNOO (Z mN’mN ) =0.

67
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6. Proofs of Chapter 5

Consequently, together with (6.4.7), we obtain

d s/s* s d s/s* 1/s
. s ~ s* . s —k s*
s (2 () (3 W) | ] <t (2 o)™ (3 o))
N—0 1 N—0 1
< Foo,s * Q:(OO,S)’
(6.4.8)
As in Lemma 6.2.3 one shows
In My
dim == 1. (6.4.9)
Now by combining (6.4.5)--(6.4.9) we end up with
d 1/s
limsup [ VIn N - (]E Z (A,]an’mN 0K, MN)s]> < Fopys - €9,
N—w0 1 ’
O
6.4.2. Proof of Theorem 5.4.1
We prove Theorem 5.4.1 by employing the Lemmas 6.4.1 and 6.4.2.
Proof of Theorem 5.4.1:
Similar to the proof of Theorem 5.3.4, and by Lemma 6.4.1 as well as (Lim3), we obtain
d 1/s
lim sup (\/1 N-e(s)(X,)?](\?),C([O, 1];Rd))> <limsup | VIDN - | E Z (/lenN —_— '5Kk‘MN)s
N—o0 N—00 E—1 '
Now Lemma 6.4.2 leads to
d 1/s
1 . Ak . s 3 . (OO,S)
hjr\;lj;p vVin N (E ;1 (AmN’mN 5Kk,MN) ]) < Fepys - € .
The statement on the size of the range of )NCI(\?) directly follows from (5.4.4) and (5.4.5).
O
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7 Final Remarks and Open Problems

We close this thesis by summarizing our main results and by presenting a selection of open problems.

Ad Chapter 2

In section 2.3.1 we applied a quantization procedure for such real-valued random variables which have
finite moments of any order, see [DV11| and [MGRY15]|, for quantization of Z = fol Wi(s) dWa(s) where

(W7, W) is a two-dimensional Brownian motion. By the construction of the mappings T](V7 ), N e N, see

(2.3.8), we know the support points of the quantization 21(\7) = T](\,W)(Z) for all N € N. But so far the
construction has only been of a semi-constructive type since, to us, the distribution Pz is unknown, see
also Remark 2.3.8. Hence, to us the determination (or at least approximation) of Pz remains an open
problem, which leads to the following question:

Question 1: How to compute (or at least) approximate the probability weights corresponding to the
support points of the quantizations 21(\7) for N e N?

Ad Chapter 4

In Chapter 4 we derived new results on the sharp asymptotics of the Nth minimal quantization error
of one-dimensional 1t6 processes, see Theorem 4.1.2. Subsequently we applied the results obtained in
the aforementioned theorem to derive the sharp asymptotics of the Nth minimal quantization error of
solutions of such one-dimensional SDEs which are driven by a multidimensional Brownian motion, see
Proposition 4.2.1. In case that the dimension r of the driving Brownian motion of the SDE (4.2.1) satisfies
r = 2, Proposition 4.2.1 generalizes the results on the sharp asymptotics of the Nth minimal quantization
error of solutions of one-dimensional SDEs driven by a one-dimensional Brownian motion presented in
[Der08a, Theorem 1.1.] and [Der08b, Theorem 1.1.]. We closed the chapter by providing a lower bound
for the Nth minimal quantization error w.r.t. N-uniform-product-quantizations of multidimensional It
processes in the space (C([0,1];R?), | - |«), see Theorem 4.3.2.

Although the main results of this section, namely Theorem 4.1.2 and Theorem 4.3.2, basically served
as auxiliary results to derive Theorem 5.2.6, Proposition 5.3.5, and Theorem 5.4.2, they give rise to the
following research question:

Question 2: The results in Theorem 4.1.2 yield the sharp rate of convergence of (In N)_l/2 of the Nth
minimal quantization error of multidimensional Ito processes in the spaces (LZ[0,1],] - | Lg[o71]),

pe[l1,00) and (C([0,1];R?), | - o). What are the corresponding sharp asymptotic constants?
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7. Final Remarks and Open Problems

Ad Chapter 5

In Chapter 5 we presented a semi-constructive method which led to sequences of (strongly) asymptotically
optimal quantizations of the solution X of the SDE (3.1.1) in the spaces (Lg[O, 1], - HLg[OJ]), p € [1,0),
0, 11;RY, Il - llls), s € [1,0), and (C([0,1];R?), || - |s0). Together with the results obtained in Chapter
4 we were able to derive the sharp asymptotics of the Nth minimal quantization error w.r.t. general
N-product-quantizations in the spaces (LZ[0,1], ] - ”Lg[o,l]) and (C([0,1];R9), ||| - [lls) as well as of the Nth
minimal quantization error w.r.t. N-uniform-product-quantizations in the space (C([0,1];R%),| - [o).
Considering that the following further research question arises:

Question 3: As mentioned in the Introduction, the sharp rate of convergence of (In N)~/2 of the Nth
minimal quantization error of solutions of multidimensional SDEs in the spaces (L2[0,1], | - | Lg[071]),
pe[1,00) and (C([0,1];RY), |- |) is already known. What are the corresponding sharp asymptotic
constants?

Moreover, the fact that our method is semi-constructive leads to the following open problems:

Question 4: To be able to compute the probability weights corresponding to the Milstein quantization
of X we need to know the joint distribution of the random variables Y{,j = 1,...,r, and I (1j1 i)
Ji,d2 = 1,...,r with j; < jo. How to determine (or at least approximate) this distribution?

Question 5: How to compute the probability weights corresponding to the overall quantizations of X
constructed in the Sections 5.2.2, 5.3.2, and 5.4.27

As there can be all kind of interdependencies between the components of X, we conjecture that one
can hardly find a general answer to Question 5.
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A Selected Inequalities

Gronwall’s Lemma

Lemma A.1
Let a, € R with =0, let T € (0,0), and let f : [0,T] — [0,00) be a bounded Borel measurable function
such that

t
f0)<a+a- [ fe)ds
for allt € [0,T]. Then,

sup f(t) < a-exp(f-T).
te[0,T']

Proof:
See, for example, [RY99, Appendix, §1] or [Kuo06, Lemma 10.2.2.]. O

The following corollary contains a discrete version of Gronwall’s lemma.

Corollary A.2
Let a, € [0,00), let m € N, and let T € (0,00). Moreover, let fo,..., fm and DNo,...,Ap_1 be non-
negative real numbers such that

m—1
M A=T
=0
and
S <a- A+ fi-(1+8-4)
foralll=0,...,m —1. Then,

max fi < (fo+a-T) exp(B-T).

[=0,...,m

Proof:
The proof is carried out analogously to the proof of Corollary 1 in [MG02b, Appendix, §1]. O
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A. Selected Inequalities

Minkowski’s Integral Inequality
The following result is a special case of Minkowski’s integral inequality.

Proposition A.3
Let T € [0,00), let q € [1,0), let (2, A, P) be a probability space, and let Y : [0,T] x Q — [0,00) be a
B([0,T]) ® A-B([0,0))-measurable stochastic process. Then,

g1\ Ve
(E /OTY(S)ds D </OT (E[|Y(s)|q])1/qu.
Proof:

See, for example, [HLP52, Theorem 202| or [Ste70, Appendix, §A.1]. O
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B Properties of Conditional Expected
Values

As a reference for the presented statements and their proofs one might use [GS77, Chapter 5| or [Klel4,
Chapter 8|.

Part I

First, we collect basic properties of conditional expected values, which are employed in this thesis. All
(in)equalities concerning conditional expected values are understood to hold almost surely.

Let (,.A, P) be a probability space, and let X,Y : Q — R be A-B(R)-measurable with
max {E[|X|],E[|Y]]} < .

Proposition B.1
Let G < A be a o-algebra.

a) For all N\ e R it holds E[N- X +Y |Gl =A-E[X |G|+ E[Y | G]. (Linearity)
b) If Y < X P-a.s., then E[Y | G] <E[X | G]. (Monotonicity)
¢) IfE[|X - Y]] <0 and Y is G-B(R)-measurable, then

E[X-V|G]=Y E[X|G] and E[Y|G]=Y.
d) If o(X) and G are independent, then E[X | G| = E[X]. (Independence)

Part 11

Secondly, we employ the following fact on conditional expected values at several places within this thesis.

Let (2,.A, P) be a probability space, let (D, D), (E,£) be measurable spaces, let X : Q@ — D be A-D-
measurable, and let Y : ) — E be A-E-measurable.
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B. Properties of Conditional Expected Values

Proposition B.2
Assume that X and Y are independent, and let T : D x E — R be a D®E-B(R)-measurable mapping with

E[|T(X,Y)]] < o0.
Then, for Px-a.a. x € D,

E[T(X,Y)| X = 2] = E[T(z,Y)].
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C Further Auxiliary Statements

Part I

In this section we provide auxiliary statements which are employed in Chapter 2.

Lemma C.1
Let X,Y, X,,,Y,, ne N, be real-valued random variables such that

(i) Xn 5 X,

(i) Y, 5 Y, and
(111) for all n € N it holds X, Ly,.
Then, X £ Y.

Proof:
We show that Fx(t) = Fy(t) for all t e R. For Z € {X,Y} we put

C(Fz) := {te R | Fz is continuous in t} .
First, let ¢t € C(Fx) n C(Fy). Then by (i)--(iii) we have

FX<t> = hIIéO FXn(t) = lingo Fyn(t) = Fy(t). (Cl)
Secondly, let t € (C(Fx) n C(Fy))c. It is well known that (C(FX))C and (C(Fy))c are countable. Thus,
(C(Fx) n C(Fy))c is countable, and hence C(Fx) n C(Fy) is dense in R. Consequently, there exists a
sequence (tp)nen in C(Fx)nC(Fy) with t,, | t. Together with the right-continuity property of distribution
functions and (C.1) we arrive at

Fx(t) = Fx( lim tn) = lim Fx(t,) = lim Fy(t,) = Fy ( lim #,) = Fy(t),

n—0oo n—0oo
which finishes the proof. O

The next result is sometimes also referred to as Kac’s theorem. As a reference one might use, for example,
[App05, Theorem 2.1].

Notation

Let d € N, and let Z be an R%valued random vector. By ¢z we denote the characteristic function of Z,
which is given by ¢z(t) = E[exp (i - (t, Z))] for t € R? where (-, -) denotes the standard scalar product
on R,
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C. Further Auxiliary Statements

Proposition C.2

Letde N, and let X',..., X% be real-valued random variables. Then the following statements are equiva-
lent:
(i) The random variables X', ..., X? are independent.

(ii) For all (z',...,2%) e R? it holds

d
P(x1,..,Xd) (l”la cee fL’d) = H pxi(r').
i=1

Part I1

In this section we provide an auxiliary statement which is employed in the proof of Theorem 4.3.2.
More precisely, we present a multivariate extension of the well-known theorems of DAMBIS, DUBINS and
SCHWARZ, see [Dam65| and [DS65].

Throughout this section let d € N, and we use (2,.4, P) to denote a probability space equipped with a
filtration F = {F;}4e[0,00) Which satisfies the usual conditions.

The following result is often referred to as Knight’s theorem. As a reference one might use, for example,
|[KS88, Theorem 3.4.13].

Proposition C.3 (F. B. Knight (1971))
Let M = (M(t))ie[o,0) = (M'(t), ..., Md(t))ge[o o0y be a continuous stochastic process defined on (Q,A,P)
such that

i) M is adapted to F,

ii) for every k =1,...,d the process (Mk(t))te[o,oo) is a local F-martingale,

i) for every k = 1,...,d it holds lim;_,oo.( M*)(t) = o0 P-a.s. where (M¥) denotes the quadratic
variation process of M*, and

i) for every i, ke {1,...,d} withi # k and every t € [0,00) it holds (M?, M*(t) = 0 where (M?, M*)
denotes the cross-variation process of M* and MP.

Furthermore, for s € [0,00) and k = 1,...,d consider the stopping time

T*(s) := inf {t € [0, 0) ’ (M*y(t) = s}

Then the stochastic process B = (B(s))se[0.00) = (B'(s), ..., Bd(s))’se[o o0y With BE(s) := M*(T*(s)) for
s€[0,0) and k =1,...,d is a d-dimensional Brownian motion.
Part 111

In this section we assume the setting in Chapter 5, and we provide two auxiliary results which are em-
ployed in the proofs of the main results of Chapter 5.
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Forme Nlet 0 =ty <--- <ty = 1 be the discretization of [0, 1] as defined in (5.0.1), and recall that
the independent Brownian bridges B; considered in Chapter 5 are given by

BI(t) = Wj(t) = Wytiey) — (£ — ti—1) - m - (W) — Wj(ti-1))
forte[t;—1,t],l=1,...,mand j=1,...,7.
The following auxiliary result will be used in the proof of Lemma C.5.

Lemma C.4
Let (B,| - |B) be a Banach space, and let X be a B-valued Gaussian random element. Then for all
p,q € (0,00) there exists a constant c(p,q) € (0,00) depending only on p and q such that

EIXI)" < e ) - B]IXIE]) .

Proof:
For a proof we refer the reader to [LT91, Corollary 3.2.|. O

Lemma C.5
Let g€ [1,00), and let j € {1,...,r}. Then there exists a constant c € (0,00) such that, for all m € Ny,

' 1/q Inm 1/2
E[ max sup |Blj(t)|q] se <> '
=1 melt, 1 1] .
Proof:

Let m € Ny. Throughout the proof ¢ denotes a not further specified positive real constant which may
vary from line to line and which does not depend on m.
The definition of the processes BZJ leads to

E[ max  sup ‘Blj(mq]
I=1m el 4]

1/q q
(E[z max  sup |W;(t) — Wj(t11)|q]> i (E[ —maXm‘Wj(tl) B Wj(tll)’q])l/ '

=Leomaelty_y ] Ty

IN

First, we further estimate the second summand in the above inequality. Recall that Ylj e ,Y,% are

independent standard normally distributed random variables where Y}j = m'2 - W;(t;) — W;(t;_1) for
l=1,...,m. By Lemma C.4 and [LT91, Formula (3.6)|, we obtain

1/q ‘ 1/q
(B[ e, 95000 = witwnle] ) =2 (B[ max 7] )
=1,....m 1=1,....m
<c-m~V2. E[ max |Yl]|]

1=1,....m
Inm\ /2
o)

m
Secondly, the processes (W;(t) — Wj(ti—1))se, 1.1, | = 1,...,m, are independent Brownian motions

on the respective subintervals [t;_1,%;]. Then, by the scaling properties of Brownian motions and by
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C. Further Auxiliary Statements

Lemma C.4, we obtain

1,....m =1,....m

1/a 1/q
E[ max  sup \Wj(t)—wj(tl_l)\q] =m1/2-(E[ max wlq]) <c.m*1/2-E[ max \|wl\|oc]
=1,..., Mtelti_y ] = =1

(C.2)
where Wi, ..., W,, denote independent Brownian motions on [0, 1]. Moreover, similar to [LT91, Formula
(3.6)] and by utilizing [LT91, Lemma 3.1.], one derives that

1/2
E[z max HW;HOO] <c-(lnm)’7, (C.3)
which finishes the proof. O

For the next auxiliary lemma recall that

o s MO T6)

O<s<t<l |t —s|®

for f:[0,1] — R and a € (0,1/2), and recall that X = (X!,..., X9) is the strong solution of the SDE
(3.1.1).

Lemma C.6
Let ke {1,...,d}. Then, for all ¢ € [1,0) and o € (0,1/2), it holds

E[|X*|2] < o0.

Proof:
Let g € [1,00), and let o € (0,1/2). Throughout this proof ¢ denotes a not further specified positive
real constant which may be different at every occurrence and which might only depend on the moment

parameter ¢, on «, and on the constant in (C2).
Recall that P-a.s.

t

X" (t) :x’g+/ ap (X (s)

0

)ds+j;/0 b (X (s)) dW;(s)

for all ¢ € [0,1]. We put

t

A(t) = x’é—i—/o ar(X(s))ds and  M;(t) :=/0 bj (X (s)) dWj(s), j=1,...,m,

for t € [0,1]. Then by the triangle inequality we have

(E[IXHL]) T < (B[|A1L])Y + Z [1812])". (C.2)
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Moreover, due to the fact that a is of at most linear growth, and due to Theorem 3.2.3, we obtain

el - (=] oy PO=201) )
< (B[ (o, 2G5 D”‘J

( L a(X (w) duf
sup

1/q

0<s<t<l [t — s

1/q (C.3)
(SuPyefo, ) lar(X (w)]) - [t — s \*
E sup
0<s<t<1 |t — s
l/q
( sup ak (u))|q]>
u€e(0,1]
1/q
<c- (1+E[IX]1%])
< 0.
Furthermore, the properties of b, Fubini’s theorem and Theorem 3.2.3 yield
1
2
E [/O (b (X () du} <c-(1+E[IX]2]) < o0.
Additionally, the processes (ka(X(u)))ue[O 1 j = 1,...,r, are measurable and adapted to F, where

F is the filtration constructed in Section 3.1.1. Hence for all j = 1,...,r the process M; satisfies the
assumptions of Theorem 3.1. in [Der08b|, which combined with the properties of b, Fubini’s theorem, and
Theorem 3.2.3 then yields that for every s € (max{g,2/(1 — 2a)}, ®0) we have

E[M12]) 7 < E[IM )" < c. </01E[}bk,j(x<u))|“] du) T (1+ E[XIE]D") < .

(C.4)

Now combining (C.2)--(C.4) finishes the proof.
O
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Notation Index

N natural numbers without 0
Z integers
N, non-negative integers greater or equal than z € Z
R real numbers
Sets
1%} empty set
A€ the complement of a set A
|A| the cardinality of a set A

Real Numbers

|z] the largest integer z < z

[z] the smallest integer z > x

|| the absolute value of

TAY the minimum of z and y

D) the standard scalar product on R?

an = o(by) small O-notation for real sequences (an)nen and (by)nen, i€,

lim,, o @n /b, = 0 if b, £ 0 for all n > N for an N e N

Vectors and Matrices

[v]lp the ¢,-norm of a vector v e R for p e [1, )
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C. Further Auxiliary Statements

lvlloo

V(@)

IVl

the max-norm of a vector v € R?
the ith row of a Matrix V' = (v; ;)
the jth column of a Matrix V = (v; ;)

the p-norm of a Matrix V = (v; ;) for p e [1,0)

Mappings and Functional Analysis

ran (7

g

5l‘k

2

L(D,E)

- llop
D’

D/I
Function Spaces

C([a,b);RY)
Cla, b]

I oo

11z, (fa,b):re)

(RAFZTPRATE P TP

Ly([a,b],R?)

Ld[a,8), Lyla,b]
C*([a, b RY)

I£1

a,a,b

158

the image set of a mapping T: A — B

the partial derivative of a partially differentiable function g : R — R w.r.t.
to the kth variable for k =1,...,d

the Jacobian matrix of a partially differentiable function f:R? — R¢

the space of continuous linear operators T : D — E between normed vector
spaces (D, | - |p) and (E, |- |p)

operator norm
the dual space of a normed vector space (D, || - |p)

the bidual space of a normed vector space (D, | -|p)

the space of continuous functions f : [a,b] — R?

shorter notation for C([a,b];R)

the supremum norm

the L,([a,b]; R?)-(quasi-)norm of a function f : [a,b] — R, see p. 8
shorter notation for | f| ., (asre) and || fllz, ([a,5:R)

the space of all (equivalence classes) of functions f : [a,b] — R? with finite
L,([a, b]; R%)-norm

shorter notation for L,([a,b],R%) and L,([a,b],R)
space of a-Holder continuous functions f : [a,b] — R? for a € (0,1]

norm on space C*([a,b]; R?), see p. 8



Probability and Measure

B(D)
Ad

random variable

random vector

random matrix

random element

the Borel o-algebra on a normed vector space (D, | - |p)
d-dimensional Lebesgue measure

term used to refer to a A-B(R)-measurable mapping X : Q@ — R where
(Q, A, P) is a probability space

term used to refer to a A-B(R?)-measurable mapping X : Q — R? where
(Q, A, P) is a probability space

term used to refer to a A-B(R?*™)-measurable mapping X : Q — RI*™
where (9, A, P) is a probability space

term used to refer to a A-B(B)-measurable mapping X : Q — B where
(Q, A, P) is a probability space and (B, | -||z) is a Banach space

distribution (law) of a random element X
expected value of a random element X

conditional expected value of the random variable X given the o-algebra
o(Y) generated by the random element YV

Cov[X,Y] covariance of two random variables X and YV
N(u,o?) the normal distribution with mean ;. and variance o2
N(0,1) the standard normal distribution
Fx the distribution function of a random variable X
c .
X=Y equal in law
X, £x convergence in law for random elements X and X,,, ne N
X, 5 x L,-convergence, p € [1,0), i.e., lim,_E[|X — X,["] = 0, for random vari-
ables X and X,,, ne N
ox the characteristic function of a random vector X
Quantization
e)(Z,Z,B) the quantization error of order s of a B-valued random element Z corre- p. 12
sponding to the quantization Z
eg\s;)(Z,B) the Nth minimal quantization error of order s of a B-valued random ele- p. 12

ment Z
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C. Further Auxiliary Statements

Cl(\f)(X, B) the set of all N-optimal quantizations of order s of a B-valued random

element Z
Abbreviations
a.a. almost all
a.e. almost everywhere
a.s. almost surely
corresp. corresponding (to)
w.r.t. with respect to
SDE stochastic differential equation
ODE ordinary differential equation
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