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1 | Introduction

Let pΩ,A, P q be a probability space, let pB, } ¨ }Bq be a separable Banach space endowed with its Borel
σ-algebra BpBq, and let X : Ω Ñ B be A-BpBq-measurable. For N P N the quantization problem for
X of level N consists in approximating X by a A-BpBq-measurable mapping rX : Ω Ñ B whose range
ran p rXq satisfies | ran p rXq| ď N . Any such random element rX is called an N -quantization of X (in short:
quantization of X). For s P r1,8q the associated quantization error of order s is defined by

epsqpX, rX,Bq :“
´

E
”

}X ´ rX}sB

ı¯1{s
, (1)

and the N th minimal quantization error

e
psq
N pX,Bq :“ inf

 

epsqpX, rX,Bq
ˇ

ˇ rX is an N -quantization of X
(

of order s (in short: minimal quantization error of X) is the minimal error that can be achieved by any
N -quantization of X.

This dissertation is devoted to the quantization problem for X being the solution process of an au-
tonomous d-dimensional stochastic differential equation (abridged by SDE) of the following type

dXptq “ apXptqq dt` bpXptqq dW ptq, t P r0, 1s,

with an r-dimensional driving Brownian motion W , and we consider X as a random element with values
in the space Lppr0, 1s;Rdq, p P r1,8q, and Cpr0, 1s;Rdq. Our main objective is to study the asymptotic
behavior of the Nth minimal quantization error when the size N of the quantizations tends to infinity,
and we provide sharp lower and upper error bounds along with the corresponding asymptotic constants.
In particular, the results regarding the sharp asymptotic constants are new. If d ą 1, the lower bounds
hold for those N -quantizations of X which belong to the classes of product-quantizations of X. If d “ 1,
the lower bounds even hold for any N -quantization of X. Especially, if d “ 1 and the dimension r of the
driving Brownian motion W satisfies r ě 2, our results generalize already existing results on the sharp
asymptotics of the Nth minimal quantization error of solutions of scalar SDEs, where the term scalar
refers to the case d “ r “ 1.

As part of our analysis, we present a semi-constructive method which yields sequences p rXN qNPN of
N -quantizations of X that satisfy

lim sup
NÑ8

epsqpX, rXN , Bq

e
psq
N pX,Bq

ď δ

for a δ P r1,8q. Such sequences of quantizations are called asymptotically optimal, and, if δ “ 1, they
are called strongly asymptotically optimal. Our method generalizes the quantization procedure developed
for scalar SDEs presented in [MGR13]. In special cases our method is even constructive and easy to
implement.
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1. Introduction

A further objective of this dissertation is to study the asymptotics of the Nth minimal quantization error
of one-dimensional Itô processes in the spaces Lppr0, 1s;Rq, p P r1,8q, and Cpr0, 1s;Rq. More precisely,
we derive new sharp upper and lower error bounds together with corresponding asymptotic constants.
Subsequently, we use those results to derive the sharp asymptotics of the Nth minimal quantization error
of solutions of such one-dimensional SDEs which are driven by a multidimensional Brownian motion.
Furthermore, we provide a lower bound for the Nth minimal quantization error w.r.t. to certain product-
quantizations of multidimensional Itô processes in the space Cpr0, 1s;Rdq. The main purpose of both
results, the one on one-dimensional Itô processes and the one on multidimensional Itô processes, is to
serve as auxiliary results for the analysis on quantization of multidimensional SDEs.

Our analysis of the asymptotic behavior of the Nth minimal quantization error of a solution X of
an SDE is based on the general concept of information-based complexity, see [TWW88]. A problem
formulation in terms of information-based complexity comprises a set F whose elements are called the
problem elements, a normed vector space G, and an operator S : F Ñ G, which is called the solution
operator that specifies the approximation problem under consideration. Elements Spfq, f P F , are called
solution elements. For f P F one aims at computing an approximation Upfq of Spfq, and the distance
of the approximation Upfq to the solution element Spfq is measured with respect to a prescribed error
criterion. These notions are transferred to the quantization problem for X in following way. The problem
elements to be approximated are the (in general infinitely many) trajectories of X, which lie in the
space Cpr0, 1s;Rdq, the solution operator associated to our approximation problem is given by the identity
operator on Cpr0, 1s;Rdq, approximations of the trajectories of X are given by the (finitely many) paths
of a quantization rX of X, and the error criterion is set in (1).

Moreover, the ε-complexity (in short: complexity) corresponding to our approximation problem de-
noted by comppεq is given by the minimal computational cost to obtain a quantization ofX with prescribed
accuracy ε ą 0, i.e.,

comppεq “ inf

"

costp rXq

ˇ

ˇ

ˇ

rX is a quantization of X,
´

E
”

}X ´ rX}sB

ı¯1{s
ď ε

*

,

where costp rXq, the computational cost to construct the paths and probability weights of a quantization
rX, is determined by

(i) all required function evaluations, for instance, of the coefficients a and b, which specify the SDE
under consideration, and possibly of their partial derivatives, and

(ii) all required arithmetic operations.

By assuming that the construction of a path and its probability weight of a quantization rX requires at
least one function evaluation or one arithmetic operation, where each of them is performed at an a priori
fixed finite unit cost c ą 0, we obtain

c ¨ | ran p rXq| ď costp rXq.

On the other hand, the computational cost to construct the paths and probability weights of the elements
of our sequences p rXN qNPN of N -quantizations of X is close to the size of the quantization in the sense
that

costp rXN q ď C ¨ ln | ran p rXN q| ¨ | ran p rXN q|

where C denotes a positive real constant which does neither depend on N nor on the underlying SDE.
Therefore, we roughly measure the computational cost to construct the paths and probability weights of a
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quantization rX of X by the size of ran p rXq. We add that we follow the procedure most common in the lit-
erature by formulating our results in terms of the sizes of quantizations rather than in terms of complexity.

A Concise Historical Overview of the Literature

We provide a concise overview of the literature in the field of quantization. In the course of this, we mainly
focus on results on the asymptotics of the minimal quantization error and on constructive approaches to
quantization, which are connected to the topic of this thesis. Further references of interest to our purposes
will be drawn attention to at appropriate places throughout the thesis.

Quantization has been extensively investigated in various contexts since the late 1940’s initiated by
the development of pulse-code modulation, which was the first digital technique for conveying an analog
information signal such as telephone speech over an analog channel such as a telephone wire. Especially,
the papers by Shannon [Sha48], Oliver, Pierce and Shannon [OPS48], and Bennett [Ben48] are
considered as seminal works for the developments in the field of quantization. Gray and Neuhoff
provide an elaborate and comprehensive overview of the history and practice of quantization in their
paper [GN98], which roughly comprises the period between the late 1930’s and the late 1990’s.

From a probabilistic point of view the following numerical integration problem is a classical problem,
which, among other things, motivated the study of quantization. Let X be a random element with values
in a separable Banach space pB, } ¨ }Bq, and let T : B Ñ R be a Borel measurable and integrable mapping.
In many fields of application, for instance, mathematical finance, one wishes to approximate E rT pXqs.
Utilizing the notion of quantization yields an approach to obtain an approximation of E rT pXqs. More
precisely, one approximates X by an N -quantization rX of X for a desired N P N and uses

E
“

T p rXq
‰

“
ÿ

a P ran p rXq

T paq ¨ P
`

t rX “ au
˘

as an approximation for the sought quantity E rT pXqs. The numerical computation of the above formula
is feasible if one can evaluate the function T and the distribution P

rX
is known. Hence for practical

purposes one is not interested only in the support points of a quantization but also in the corresponding
probability weights.

Typical examples for the Banach space pB, }¨}Bq most commonly treated in the literature are pRd, }¨}q
where } ¨ } denotes any norm on Rd, pCpr0, 1s;Rdq, } ¨ }8q, and pLppr0, 1s;Rdq, } ¨ }Lppr0,1s;Rdqq for p P r1,8q.
In the finite-dimensional case one speaks of vector quantization whereas the infinite-dimensional case is
referred to as functional quantization.

In the context of vector quantization we refer to the standard monograph by Graf and Luschgy
[GL00], which comprises a large variety of results on vector quantization from a mathematical point
of view. Results regarding the sharp asymptotics of the minimal quantization error in finite-dimensional
spaces for random elements with a non-singular distribution are due to Zador in 1963 [Zad63], Bucklew
and Wise in 1982 [BW82], and Graf and Luschgy in 2000 [GL00]. The book by Graf and Luschgy
additionally contains an investigation of the asymptotics of the minimal quantization error for several
classes of random elements with a singular distribution, see [GL00, Chapter III].

In contrast to vector quantization, the topic of functional quantization has only been intensively treated
since the early 2000’s. In the field of functional quantization the asymptotic behavior of the minimal
quantization error as well as methods for constructive quantization were first studied for Gaussian process.
The derivation of upper bounds for the minimal quantization error of certain centered Gaussian processes
with values in a separable Banach space was first treated by Fehringer in 2001 in his dissertation
[Feh01]. Therein the asymptotic behavior of the small ball function corresponding to the distribution of
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1. Introduction

the respective process is utilized as one of the main tools. Fehringer also provided a lower bound for
the minimal quantization error of Brownian motions in the Hilbert space L2pr0, 1s;Rq. Combined with
the upper bounds he obtained the sharp rate of convergence of plnNq´1{2 for the minimal quantization
error for Brownian motions in the space L2pr0, 1s;Rq. However, the analysis in [Feh01] does not provide
sharp asymptotic constants. The results of Fehringer were extended in [DFMS03] by, among other
things, the provision of lower bounds for the minimal quantization error of centered Gaussian processes
in separable Banach spaces. But, again, the results in [DFMS03] do not incorporate sharp asymptotic
constants.

In 2002, parallel to the aforementioned works and by employing a different method, Luschgy and
Pagès also derived the sharp rate of convergence of plnNq´1{2 for the minimal quantization error for a
large class of centered Gaussian processes in the Hilbert space L2pr0, 1s;Rq, see [LP02]. They pursued
a constructive approach based on the Karhunen-Loève expansion of the respective process and on quan-
tization of normally distributed random variables. In particular, in the case of Brownian motions and
Brownian bridges one is in full knowledge of the eigenfunctions and eigenvalues in the Karhunen-Loève
expansion. We will provide a more detailed presentation of this approach in Chapter 2.

In [LP04] Luschgy and Pagès complemented their work in [LP02] by the provision of the corre-
sponding sharp asymptotic constants but still in the Hilbert space framework only. Independently of the
work by Luschgy and Pagès, Dereich derived the same results as in [LP04] in his dissertation [Der03]
by using similar techniques.

Regarding a survey on constructive approaches to quantization of stochastic process and applications
to mathematical finance we refer the reader to [PP09], in which, to a great extend, only Gaussian processes
with values in a Hilbert space are considered. For applications of quantization to numerical methods in
mathematical finance one may also consult the papers [PJ03], [PPP04] and [PP05], for example.

In the context of constructive quantization of stochastic processes in other frameworks than in a Hilbert
space setting, we mention the following two approaches. In [Wil08] Wilbertz developed a constructive
method for quantization of Brownian motions in the space Cpr0, 1s;Rq based on spline approximations. In
[LP08] Luschgy and Pagès developed a different constructive approach for quantization of stochastic
processes X in the space Lppr0, 1s;Rdq for p P r1,8q. They exploit the mean regularity of X, and the
main tool in the construction is the expansion of X in terms of the Haar basis and the assumption that
optimal quantizations of the corresponding coefficients are available. In particular, they obtain upper
bounds for the minimal quantization error of one-dimensional Itô processes and multidimensional SDEs
but in both cases without further specified asymptotic constants.

Dereich and Scheutzow fully resolved the sharp asymptotics of the minimal quantization error
for a large class of Gaussian processes in the spaces Lppr0, 1s;Rq, p P r1,8q, and Cpr0, 1s;Rq in 2006
in [DS06]. In [DS06] they derive the true rate of convergence of plnNq´1{2 along with corresponding
sharp asymptotic constants. According to the authors the results presented in the aforementioned paper
served as preparatory work to derive the sharp asymptotics of the minimal quantization error of one-
dimensional SDEs driven by a one-dimensional Brownian motion in the spaces Lppr0, 1s;Rq, p P r1,8q,
and Cpr0, 1s;Rq, which were published by Dereich in 2008 in [Der08a] and [Der08b]. Under rather mild
smoothness assumptions on the coefficients of the SDE it is found that the asymptotic behavior of the
minimal quantization error is related to the asymptotics of the minimal quantization error of the driving
Brownian motion and to the local regularity of the diffusion coefficient of the SDE. We will return to the
papers [Der08a] and [Der08b] in greater detail in Chapter 4.

Prior to the work by Dereich, Luschgy and Pagès were the first who treated the complexity of
quantizations of solutions of SDEs in their work [LP06] published in 2006. It was a first attempt to provide
an upper bound for the minimal quantization error as well as to construct sequences of asymptotically
optimal quantizations of the solution X of a one-dimensional SDE. As a core ingredient in their con-
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struction Luschgy and Pagès use quantizations of the driving Brownian motion, which is similar to our
method. But they employ a different method to obtain N -quantizations of X. More precisely, they solve
N deterministic ordinary differential equations (abridged by ODEs) in order to obtain an N -quantization
of X. Moreover, unlike our method, one of the key assumptions in [LP06] is strict positivity of the
diffusion coefficient of the SDE. Due to this assumption they are in the position to apply the Lamperti
transform, which is used to transform the solution X into a diffusion process which satisfies a new SDE
whose diffusion coefficient is constant 1. The work in [LP06] is extended to multidimensional SDEs by
Pagès and Sellami in [PS11] by again solving a system of ODEs related to the considered SDE and,
instead of applying the Lamperti transform, by utilizing rough path theory.

Regarding a survey of results on the asymptotic behavior of the minimal quantization error of, on the
one hand, random elements with values in finite-dimensional spaces and, on the other hand, stochastic
processes, we refer the reader to [Der09].

In 2009 in [CDMGR09] Creutzig, Dereich, Müller-Gronbach and Ritter derived lower and
upper bounds for the minimal quantization error of solutions of multidimensional SDEs which proved the
true rate of convergence to be plnNq´1{2. In the aforementioned paper this result serves as an auxiliary
statement in the study of an infinite-dimensional quadrature problem, namely, the study of numerical
integration of Lipschitz continuous functionals defined on a Banach space by means of deterministic
and randomized algorithms. We stress that the results in [CDMGR09, Proposition 3] on the minimal
quantization error do not incorporate further specified asymptotic constants. Moreover, the regularity
assumptions imposed on the coefficients of the SDE in the aforementioned paper are stronger compared
the ones imposed in our analysis.

Last but not least, we want to draw the reader’s attention to the work by Müller-Gronbach and
Ritter [MGR13] published in 2013. Therein they present a fully constructive method for quantization
of a solution of a scalar SDE in the path spaces Lppr0, 1s;Rq, p P r1,8q, and Cpr0, 1s;Rq. This work is
of great significance to this dissertation since one of our goals is to generalize the method presented in
[MGR13] to the case of multidimensional SDEs driven by a multidimensional Brownian motion.

Synopsis of the Thesis and Main Results

This dissertation is organized as follows. Chapters 2 and 3 are more of a preliminary character. In
Chapter 2 we provide preliminary results on quantization. First, we rigorously introduce the basic defi-
nitions and properties of quantizations already hinted at above, and, in addition to that, we present two
alternative approaches to quantization. Subsequently, we focus on the existence of optimal quantizations,
i.e., quantizations that achieve the minimal quantization error. Afterwards we present in greater detail
selected results on the asymptotic behavior of the minimal quantization error already mentioned in the
above literature overview, for instance, Zador’s theorem and the results of Dereich and Scheutzow
published in [DS06]. Additionally, we introduce several (semi-)constructive approaches to quantization.
In particular, we provide a method which yields asymptotically optimal sequences of quantizations of
Lévy Areas.

In Chapter 3 we first settle the main setting considered in this thesis. Afterwards we introduce the no-
tion of strong solutions of SDEs along with standard results on existence of strong solutions. Subsequently,
we introduce two classical time-discrete strong Itô-Taylor approximation schemes for strong solutions of
SDEs, namely the Euler-Maruyama scheme and the Milstein Scheme. Both will play a prominent role in
the succeeding chapters. In either case we additionally provide a time-continuous approximation scheme
along with upper error bounds as well as results on the finiteness of certain moments.

Chapter 4 is mainly devoted to quantization of one-dimensional and multidimensional Itô processes.
First, we derive the sharp asymptotics of the minimal quantization error of one-dimensional Itô processes
in the spaces Lppr0, 1s;Rq, p P r1,8q, and Cpr0, 1s;Rq. To our knowledge the results on the lower error
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1. Introduction

bounds and on the sharp asymptotic constants are new. At this point we throw the work done by
Dereich in [Der08a] and [Der08b] into sharp relief, since it contributed greatly to the derivation of our
results. More precisely, the key ideas and techniques employed in Dereich’s are carried over to prove
the main result of Section 4.1, namely Theorem 4.1.2. In Section 4.2 we utilize the results obtained in
Section 4.1 in order to derive new results on the sharp asymptotics of the minimal quantization error
of such one-dimensional SDEs which are driven by a multidimensional Brownian motion. Those results
are obtained under rather mild assumptions on the coefficients of the SDE. The last section of Chapter
4, Section 4.3, is devoted to quantization of multidimensional Itô processes. In the main result of this
section, namely Theorem 4.3.2, we provide a new lower bound for the minimal quantization error w.r.t.
certain product-quantizations in the space Cpr0, 1s;Rdq. The lower bound is derived by, on the one hand,
utilizing the key ideas and (slightly modified) techniques employed in [Der08b], and, on the other hand,
by employing further different arguments. As already mentioned, the main purpose of Chapter 4 is to
provide auxiliary results for the analysis of the asymptotics of the minimal quantization error of solutions
of multidimensional SDEs.

Chapter 5 is concerned with quantization of the solution X “ pX1, . . . , Xdq1 of a d-dimensional SDE

dXptq “ apXptqq dt` bpXptqq dW ptq, t P r0, 1s,

driven by an r-dimensional Brownian motion W , and we provide a method which yields (strongly)
asymptotically optimal sequences p rXN qNPN in the classes of product-quantizations of X in the space
pLppr0, 1s;Rdq, } ¨ }Lppr0,1s;Rdqq, p P r1,8q, and in the space Cpr0, 1s;Rdq, on the one hand, equipped with
the supremum norm } ¨ }8, and, on the other hand, equipped with the norm 9 ¨9s : Cpr0, 1s;Rdq Ñ r0,8q
defined by

9f9s “

˜

d
ÿ

k“1

}fk}s8

¸1{s

,

where f “ pf1, . . . , fdq1 and s P r1,8q is the moment parameter considered in the quantization error
criterion (1). Clearly, 9 ¨ 9s indeed defines a norm on Cpr0, 1s;Rdq. Moreover, 9 ¨ 9s is equivalent to the
supremum norm } ¨ }8, and hence pCpr0, 1s;Rdq,9 ¨ 9sq is a separable Banach space. Although 9 ¨ 9s
is not the norm one would naturally choose when working with the space Cpr0, 1s;Rdq, it seems to be
quite well-fitted when considering product-quantizations. If the dimension d of the SDE satisfies d “ 1,
our constructed sequences of quantizations of X are even strongly asymptotically optimal in the classes
of all possible quantizations of X. As already mentioned, our construction generalizes the quantization
procedure for solutions of scalar SDEs developed in [MGR13], and it basically consists of two steps. As
a first step, we apply a coarse-level quantization which consists of quantizations of finite-dimensional
projections of X. The construction of the coarse-level quantization is built-up by the time-discrete d-
dimensional Milstein scheme, by quantizations of standard normally distributed random variables, and
by quantizations of Lévy Areas. Especially the Lévy Areas occurring in the multidimensional Milstein
scheme pose an additional challenge when considering multidimensional SDEs. As a second step, we apply
a fine-level quantization which takes into account the local regularity of the components Xk of X. The
techniques employed in the fine-level quantization are similar to asymptotically optimal step-size control
for strong approximation of SDEs, see, for instance, [HMGR01], [MG02a], and [MG02b]. For technical
reasons we use a different refinement strategy for each of the above mentioned Banach spaces. In the case
of quantization in Lppr0, 1s;Rdq we separately quantize Brownian bridges defined on subintervals of r0, 1s
by applying a sequence of quantizations of Brownian bridges on r0, 1s as one of the main tools. In the case
of quantization in Cpr0, 1s;Rdq equipped with the supremum norm } ¨ }8, instead of separately applying
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quantizations to Brownian bridges, we quantize in one go a weighted combination of Brownian bridges.
To this end, one of the core ingredients is a sequence of strongly asymptotically optimal quantizations of
Brownian motions on r0, 1s. In the case of quantization in Cpr0, 1s;Rdq equipped with the norm 9 ¨ 9s,
we built-up a fine-level quantization by building blocks and ideas from both the Lppr0, 1s;Rdq-case and
the Cpr0, 1s;Rdq-case considered beforehand. In each case the fine-level quantization is crucial for the
overall performance of the quantization of X. We add that in the case of quantization in Lppr0, 1s;Rdq we
confine ourselves to the case where the moment parameter in the quantization error criterion (1) equals
the parameter p. Our constructions are of a semi-constructive type since, in general, the determination of
the distribution of the quantizations remains an open problem. However, in special cases our method is
constructive and easy to implement, and the computational cost to determine the paths and corresponding
probability weights of the quantizations rXN is proportional to lnN ¨ N . The computational cost takes
into account all required function evaluations of the coefficients of the SDE and their partial derivatives as
well as all required arithmetic operations to carry out the algorithm. We point out that it is reasonable to
assume that the support points and probability weights of all quantizations employed in our construction
can be obtained in precomputational steps, see [Wil08] as well as the website

http://www.quantize.maths-fi.com

for downloads. Therefore, we do not have to take into account the cost to construct them in our analysis
of the computational cost.

Chapter 6 contains the proofs of the main results of Chapter 5, namely, of Theorem 5.2.4, Theorem
5.3.4 and Theorem 5.4.1.

In Chapter 7 we close this thesis with some final remarks and a collection of open problems.

Basic Notation

We collect basic notation used throughout this dissertation. Further notations, where most of them are
used only at specific places within the text, will be introduced when needed. We also refer the reader to
the notation index attached at the end of this thesis.

• N denotes the set of natural numbers without 0, and Z denotes the set of integers. Moreover, for
z P Z we use Nz “ tn P Z | n ě maxtz, 0uu to denote the set of all non-negative integers being
greater or equal than z.

• For a set A we use |A| P t0u Y NY t8u to denote the (possibly infinite) number of points in A.

• Let A,B be non-empty sets, and let T : AÑ B. We use ran pT q to denote the image set of T , i.e.,
ran pT q “ tT paq | a P Au.

• Let pD, } ¨ }Dq be a normed R-vector space. By BpDq we denote the Borel σ-algebra on D.

• For v P Rd we use }v}p to denote the `p-norm, p P r1,8q, of v, and we use }v}8 to denote the
max-norm of v. Moreover, for a matrix V “ pvi,jq, Vi and V pjq stand for the ith row and jth column
of V , respectively, and similarly to the `p-norm on Rd we put }V }p :“

`
ř

i,j |vi,j |
p
˘1{p for p P r1,8q.

• Let a, b P R with a ă b, let d P N, and let p P p0,8q. We use Lppra, bs;Rdq to denote the vector
space of all equivalence classes of Borel measurable functions f : ra, bs Ñ Rd such that

ˆ b

a
}f}pp dt ă 8.
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1. Introduction

We equip the space Lppra, bs;Rdq with the (quasi-)norm } ¨ }Lppra,bs;Rdq : Lppra, bs;Rdq Ñ r0,8q given
by

›

› rf s
›

›

Lppra,bs;Rdq “

ˆˆ b

a
}fptq}pp dt

˙1{p

.

We mostly write Ldpra, bs and } ¨ }Ldpra,bs instead of Lppra, bs;Rdq and } ¨ }Lppra,bs;Rdq, respectively. If
d “ 1, we use the even shorter notation Lpra, bs and } ¨ }Lpra,bs. We follow the literature and identify
functions with their respective equivalence classes. Additionally, recall that pLdpra, bs, } ¨ }Ldpra,bsq is a
separable Banach space for every p P r1,8q.

Moreover, Cpra, bs;Rdq denotes the set of all continuous functions f : ra, bs Ñ Rd. If not stated
otherwise, we equip this space with the supremum norm } ¨ }8 given by

}f}8 “ max
k“1,...,d

sup
tPra,bs

|fkptq|

for f “ pf1, . . . , fdq1 P Cpra, bs;Rdq. If d “ 1, we use the shorter notation Cra, bs. Recall that
pCpra, bs;Rdq, } ¨ }8q is a separable Banach space.

Furthermore, for α P p0, 1s we use Cαpra, bs;Rdq to denote the set of all α-Hölder continuous
functions which consists of all functions f : ra, bs Ñ Rd such that

|f |α,a,b :“ sup
aďsătďb

}fptq ´ fpsq}2
|t´ s|α

ă 8,

and we equip this space with the norm } ¨ }α,a,b : Cαpra, bs;Rdq Ñ r0,8q given by

}f}α,a,b “ }f}8 ` |f |α,a,b.

As above, if d “ 1 we use a shorter notation, namely Cαra, bs. Additionally, if a “ 0 and b “ 1, we
abbreviate } ¨ }α :“ } ¨ }α,0,1 as well as | ¨ |α :“ | ¨ |α,0,1. Last but not least, note the well known fact
that pCαpra, bs;Rdq, } ¨ }α,a,bq is a Banach space.

• Let d P N, and let f “ pf1, . . . , fdq1 : Rd Ñ Rd be partially differentiable. By ∇fk we denote the
gradient of fk, and we use ∇f : Rd Ñ Rdˆd to denote the Jacobean matrix of f , i.e.,

∇f “

¨

˚

˚

˝

Bf1

Bx1
¨ ¨ ¨

Bf1

Bxd
...

. . .
...

Bfd

Bx1
¨ ¨ ¨

Bfd

Bxd

˛

‹

‹

‚

.

• In the whole thesis ln stands for the natural logarithm, and occasionally we make use of the Landau
symbol o.

Preliminaries on Stochastic Processes

In this subsection, let d P N, let pΩ,A, P q be a probability space, and let a, b P R with a ă b.

A family X “ pXptqqtPra,bs of A-BpRdq-measurable mappings Xptq : Ω Ñ Rd is called an Rd-valued
stochastic process (with time interval ra, bs). For fixed ω P Ω the function Xp¨, ωq : ra, bs Ñ Rd
given by Xpt, ωq “ Xptqpωq is called a sample path or trajectory of X associated with ω, and we
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call X continuous if all sample paths of X are continuous. Moreover, X is called measurable if the
mapping ψX : ra, bs ˆ Ω Ñ Rd defined by

ψXpt, ωq “ Xptqpωq

is Bpra, bsq b A-BpRdq-measurable. All stochastic processes of interest in this thesis possess continuous
sample paths, which guarantees measurability, see, for instance, [KS88, Remark 1.14].

In this thesis we mostly interpret measurable stochastic processes as random elements with values in a
function space such as the space of (equivalence classes) of p-integrable functions Ldpra, bs, p P r1,8q or the
space of continuous functions Cpra, bs;Rdq. The following results motivates this viewpoint on stochastic
processes. For proofs we refer the reader to [PZ14, Proposition 3.18 and Proposition 3.19].

Lemma 1.1
Let X “ pXptqqtPra,bs be a measurable Rd-valued stochastic process on pΩ,A, P q.

a) Assume that X is continuous. Then the mapping rX : Ω Ñ Cpra, bs;Rdq defined by rXpωq “ Xp¨, ωq
is A-B

`

Cpra, bs;Rdq
˘

-measurable.

b) The mapping X : Ω Ñ Ldpra, bs defined by

Xpωq “

#

“

Xp¨, ωq
‰

, if Xp¨, ωq is p-integrable,
0, else,

is A-B
`

Ldpra, bs
˘

-measurable.

Hence saying that we interpret X as a random element with values in Ldpra, bs or Cpra, bs,Rdq means that
we are actually considering the associated random elements rX and X, respectively. For the rest of this
thesis we abuse notation and write X instead of rX and X.
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2 | Preliminaries on Quantization

In this chapter we present those definitions and results in the field of quantization of a random element
Z which are important to our purposes. In particular, we present selected constructive approaches to
quantization of specific random elements, which will be employed in the subsequent chapters of this
thesis. This chapter is organized as follows. In Section 1 we first introduce basic definitions with regard
to quantization of Z. Subsequently, we pay special attention to so-called Voronoi quantizations of Z since
this concept will be exploited at several places within the text. We close the first section by presenting
those properties of the N th minimal quantization error which are most important to our purposes.

In Section 2 we provide selected results on the existence of optimal quantizations in the context of
those Banach spaces which will play a crucial role in this thesis.

In the last section, Section 3, our focus is on the asymptotic behavior of the Nth minimal quantization
error when N tends to infinity. We commence by presenting the main result in the finite-dimensional case,
namely, Zador’s theorem. Afterwards we outline a method which yields an asymptotically optimal sequence
of quantizations of standard normally distributed random variables. Additionally, we collect further
properties of the resulting sequence of quantizations, which will prove beneficial in the following chapters.
Subsequent to that, we focus on quantization of Lévy areas. More precisely, we present a different
construction leading to a sequence of quantizations of the following stochastic Itô integral

´ 1
0 W1psq dW2psq

where pW1,W2q is a two-dimensional Brownian motion on r0, 1s. Both aforementioned constructions of
sequences of quantizations will be employed in Chapter 5. In the last part of Section 3 we present the sharp
asymptotics of the Nth minimal quantization error of Brownian motions and Brownian bridges on r0, 1s
where both of them are viewed as random elements in the spaces pCr0, 1s, } ¨ }8q and pLpr0, 1s, } ¨ }Lpr0,1sq
for p P r1,8q. Additionally, we outline a constructive approach to quantization of a Brownian bridge B
on r0, 1s which is based on the Karhunen-Loève expansion of B and on quantizations of standard normally
distributed random variables.

We add that the topics of quantization of SDEs and, more general, quantization of Itô processes are
postponed to the Chapters 4 and 5.

2.1. Basic Definitions and Basic Properties of Quantizations

In the whole section let s P r1,8q, let pΩ,A, P q be a probability space, let pB, } ¨ }Bq be a separable
R-Banach space endowed with its Borel σ-field BpBq, and let Z : Ω Ñ B be A-BpBq-measurable. Fur-
thermore, to avoid trivial cases we require | ranpZq| “ 8, and we assume the following integrability
condition to hold:

E
“

}Z}sB
‰

ă 8. (2.1.1)
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2. Preliminaries on Quantization

Remark 2.1.1
Let Z : Ω Ñ B be A-BpBq-measurable. The separability assumption on B then guarantees that Z ` Z
is again A-BpBq-measurable. In contrast to that, the sum of two random elements with values in a non-
separable Banach space need not be a random element. But since the random element which is added to
Z in the upcoming Definition 2.1.2 takes only finitely many values, measurability of their sum is not an
issue. Furthermore, we point out that the integrability condition (2.1.1) ensures that all expected values
in the upcoming Definition 2.1.2 are finite.

Definition 2.1.2
Let N P N.

a) A random element rZ : Ω Ñ B with | ranp rZq| ď N is called an N -quantization of Z.

b) For an N -quantization rZ of Z the quantization error (of order s) is defined by

epsqpZ, rZ,Bq :“
´

E
”

}Z ´ rZ}sB

ı¯1{s
.

Moreover, the Nth minimal quantization error of Z (of order s) is given by

e
psq
N pZ,Bq :“ inf

 

epsqpZ, rZ,Bq
ˇ

ˇ rZ is an N -quantization of Z
(

.

c) An N -quantization rZ of Z is called an N-optimal quantization of Z (of order s) if

epsqpZ, rZ,Bq “ e
psq
N pZ,Bq.

Notation
For N P N we denote the set which contains all N -optimal quantizations of Z of order s by CpsqN pZ,Bq.

Remark 2.1.3

a) The set CpsqN pZ,Bq might be empty, see Remark 2.2.4 c).

b) In the case that Z has finite range itself, the task of approximating Z by an N -quantization rZ is
trivial if N is sufficiently large. In that case a suitable choice is rZ “ Z. This is the reason why we
assumed | ranpZq| “ 8 at the beginning.

c) For applications of quantizations to, for instance, numerical integration one seeks for such quan-
tizations of Z which can be implemented. But, unfortunately, in general the probability weights
corresponding to a quantization of Z are hard to compute. We will come back to this problem at
certain places within this thesis.

Apart from the approach to quantization of a random element presented in Definition 2.1.2, we outline
two different approaches to quantization, and we will see in Lemma 2.1.4 that those alternative approaches
are equivalent to the already presented one.

The first alternative approach to the notion of quantization is connected to the application of quanti-
zations in the field of signal processing and source coding. Roughly speaking, the main task in this context
consists in processing a signal with (possibly) infinitely many outcomes via a communication channel with
limited bandwidth. To this end, the original signal has to be transferred into a signal which takes only
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2.1. Basic Definitions and Basic Properties of Quantizations

finitely many values. Hence, from this point of view, one obtains an N -quantization of Z by composing Z
with a Borel measurable function f : B Ñ B with | ranpfq| ď N such that the resulting N -quantization
of Z is of the form rZ “ fpZq. From now on, we call such a function f an N -quantizer.

The second alternative approach to the concept of quantization consists in constructing a set α Ď B
with 1 ď |α| ď N such that the sth mean distance of Z and α is as small as possible. From now on, we
call any set α Ď B with 1 ď |α| ď N an N-codebook.

The following lemma shows that for all N P N the minimal errors induced by those two alternative
approaches to the concept of quantization are the same as the Nth minimal quantization error of Z defined
in Definition 2.1.2 b). Consequently, this lemma justifies switching between those three approaches when
constructing quantizations of random elements, and therefore we might choose that approach which is
the most advantageous in the respective situation.

Lemma 2.1.4
For all N P N it holds

e
psq
N pZ,Bq “ inf

!´

E
”

}Z ´ fpZq}sB

ı¯1{s ˇ

ˇ

ˇ
f : B Ñ B Borel measurable, | ranpfq| ď N

)

“ inf
!´

E
”

min
aPα

}Z ´ a}sB

ı¯1{s ˇ

ˇ

ˇ
α Ď B, 1 ď |α| ď N

)

.

In the proof of the previous lemma we will employ the notion of Voronoi partitions of B induced by
finite subsets of B. For the convenience of the reader we provide a definition of the notion of Voronoi
partitions at this point.

Definition 2.1.5
Let α Ď B with 1 ď |α| ă 8. We call tVαpaq | a P αu a Voronoi partition of B induced by α if the
following is satisfied:

(i) For all a P α it holds Vαpaq P BpBq.

(ii) For all a P α it holds Vαpaq Ď
 

x P B
ˇ

ˇ }x´ a}B “ minbPα }x´ b}B
(

.

(iii) For all a, a1 P α with a ‰ a1 it holds Vαpaq X Vαpa1q “ H.

(iv)
Ť

aPα Vαpaq “ B.

Moreover, the sets Vαpaq, a P α, are called Voronoi cells of the Voronoi partition tVαpaq | a P αu.

Remark 2.1.6
For every α Ď B with 1 ď |α| ă 8 there exists at least one Voronoi partition of B induced by α.

Indeed, we denote the elements of α by ai for i “ 1, . . . , |α|, and we abbreviate

Wαpaiq :“
 

x P B
ˇ

ˇ }x´ ai}B “ min
bPα

}x´ b}B
(

for all i “ 1, . . . , |α|. Now, put Vαpa1q :“Wαpa1q and

Vαpaiq :“Wαpaiqz
i´1
ď

j“1

Wαpajq

for all i “ 2, . . . , |α|. Then it is easy to see that
 

Vαpaiq
ˇ

ˇ i “ 1, . . . , |α|
(

is a Voronoi partition of B
induced by α.
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2. Preliminaries on Quantization

Proof of Lemma 2.1.4:
Let N P N. First, let f : B Ñ B be a Borel measurable mapping with | ranpfq| ď N . Then rZ :“ fpZq is
an N -quantization of Z, and we have

e
psq
N pZ,Bq ď epsqpZ, rZ,Bq “

´

E
”

}Z ´ fpZq}sB

ı¯1{s
.

Therefore,

e
psq
N pZ,Bq ď inf

!´

E
”

}Z ´ fpZq}sB

ı¯1{s ˇ

ˇ

ˇ
f : B Ñ B Borel measurable, | ranpfq| ď N

)

.

Secondly, let rZ : Ω Ñ B be an N -quantization of Z. Then β :“ rZpΩq is an N -codebook, and hence

inf
!´

E
”

min
aPα

}Z ´ a}sB

ı¯1{s ˇ

ˇ

ˇ
α Ď B, 1 ď |α| ď N

)

ď

ˆ

E
”

min
bPβ

}Z ´ b}sB

ı

˙1{s

ď

´

E
”

}Z ´ rZ}sB

ı¯1{s
,

which leads to

inf
!´

E
”

min
aPα

}Z ´ a}sB

ı¯1{s ˇ

ˇ

ˇ
α Ď B, 1 ď |α| ď N

)

ď e
psq
N pZ,Bq.

It remains to prove

inf
!´

E
”

}Z ´ fpZq}sB

ı¯1{s ˇ

ˇ

ˇ
f : B Ñ B Borel measurable, | ranpfq| ď N

)

ď inf
!´

E
”

min
aPα

}Z ´ a}sB

ı¯1{s ˇ
ˇ

ˇ
α Ď B, 1 ď |α| ď N

)

.

(2.1.2)

Let α Ď B with 1 ď |α| ď N , and let Vα “ tVαpaq | a P αu be a Voronoi partition of B induced by α.
Moreover, we define πVα : B Ñ B by

πVαpbq “
ÿ

aPα

a ¨ 1Vαpaqpbq. (2.1.3)

Due to (i) and (iii) in Definition 2.1.5, and due to the choice of α, the mapping πVα is well-defined and
Borel measurable with | ranpπVαq| ď N . Additionally, in view of Definition 2.1.5 (ii)--(iv), it holds

}Zpωq ´ πVαpZpωqq}B “
ÿ

bPα

}Zpωq ´ b}B ¨ 1VαpbqpZpωqq

“
ÿ

bPα

min
aPα

}Zpωq ´ a}B ¨ 1VαpbqpZpωqq

“ min
aPα

}Zpωq ´ a}B

for all ω P Ω. Therefore,

inf
!´

E
”

}Z ´ fpZq}sB

ı¯1{s ˇ

ˇ

ˇ
f : B Ñ B Borel measurable, | ranpfq| ď N

)

ď

´

E
”

min
aPα

}Z ´ a}sB

ı¯1{s
.

This implies (2.1.2), which finishes the proof.
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2.1. Basic Definitions and Basic Properties of Quantizations

Remark 2.1.7
Let N P N, and let α Ď B with 1 ď |α| ď N . Furthermore, let Vα “ tVαpaq | a P αu be a Voronoi
partition of B induced by α. The mapping πVα defined in (2.1.3) is called nearest-neighbor projection
associated to Vα. Note that for every Borel measurable mapping f : B Ñ B with fpBq Ď α it holds

E
“

}Z ´ fpZq}sB
‰

ě E
”

min
bPα

}Z ´ b}sB

ı

“ E
“

}Z ´ πVαpZq}
s
B

‰

.

Thus, πVαpZq yields the best approximation of Z compared to all approximations of Z by a random
element of the form fpZq where f : B Ñ B is a Borel measurable mapping with values in α.

We close this section by presenting selected well known properties of the Nth minimal quantization
error. To underline the importance of assuming the integrability condition (2.1.1) to hold, on the one
hand, and considering separable Banach spaces, on the other hand, we also incorporate a proof.

Proposition 2.1.8
a) For all N P N it holds epsqN pZ,Bq ě e

psq
N`1pZ,Bq.

b) It holds lim
NÑ8

e
psq
N pZ,Bq “ 0.

c) Let pE, }¨}Eq be a separable R-Banach space, and let S : B Ñ E be a bounded linear operator. Then,
for all N P N,

e
psq
N pSpZq, Eq ď }S}op ¨ e

psq
N pZ,Bq.

Proof:
a) This statement follows directly from the definition of the Nth minimal quantization error of Z.

b) Since B is separable, there exists a set rB “ tyn | n P Nu Ď B such that clp rBq “ B. W.l.o.g. we
may assume y1 “ 0. Lemma 2.1.4 leads to

0 ď
`

e
psq
N pZ,Bq

˘s
“ inf

!

E
”

min
aPα

}Z ´ a}sB

ı ˇ

ˇ

ˇ
α Ď B, 1 ď |α| ď N

)

ď E
”

min
i“1,...,N

}Z ´ yi}
s
B

ı

(2.1.4)

for all N P N. Additionally, the fact that rB is dense in B yields

lim
NÑ8

min
i“1,...,N

}Z ´ yi}B “ 0.

Furthermore, for all N P N the random variable mini“1,...,N }Z ´ yi}
s
B is A-BpRq-measurable, and

min
i“1,...,N

}Z ´ yi}
s
B ď }Z ´ y1}

s
B “ }Z}

s
B.

Also recall that we have assumed the integrability condition (2.1.1) to hold. Thus, all assumptions
of Lebesgue’s dominated convergence theorem are satisfied, which then leads to

lim
NÑ8

E
”

min
i“1,...,N

}Z ´ yi}
s
B

ı

“ E
”

lim
NÑ8

min
i“1,...,N

}Z ´ yi}
s
B

ı

“ 0.

Together with (2.1.4) we finally arrive at

lim
NÑ8

e
psq
N pZ,Bq “ 0.
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2. Preliminaries on Quantization

c) Keep in mind that we assumed the integrability condition (2.1.1) to hold, and then combine Lemma
2.1.4 with the proof of Lemma 1 in [GLP07].

2.2. Existence of Optimal Quantizations

In this section we present selected results on existence of N -optimal quantizations since those results
justify certain assumptions to be made in the subsequent chapters. The results provided in this section
are due to Graf, Luschgy and Pagès, see [GLP07].

As in the previous section, let s P r1,8q, let pB, } ¨ }Bq be a separable R-Banach space endowed with
its Borel σ-field BpBq, and let Z be a B-valued random element with | ranpZq| “ 8 which satisfies the
integrability condition (2.1.1), i.e.,

E
“

}Z}sB
‰

ă 8.

Recall that the dual B1 and bidual B2 of B are given by

B1 “ LpB,Rq and B2 “ LpB1,Rq,

respectively. Equipped with the respective operator norm } ¨ }op each of them is again a Banach space.
Here we abuse notation and use the same symbol for both norms.

Before we present the main theorems of this section, we first need to clarify what is meant if B is said
to be 1-complemented in its bidual B2, since this property is one of the prerequisites in the upcoming
theorems.

Definition 2.2.1
The Banach space B is said to be 1-complemented in its bidual B2 if there exists a linear projection
P : B2 Ñ ιpBq such that

}P }op ď 1

where ι : B Ñ B2 denotes the canonical embedding of B into B2.

In the following remark we present a sufficient condition for a Banach space to be 1-complemented
in its bidual space. For further sufficient conditions which guarantee this property we refer to [GLP07,
Corollary 1].

Remark 2.2.2
Assume that B is reflexive. Then the canonical embedding operator ι : B Ñ B2 is an isometric isomor-
phism, and in particular it holds ιpBq “ B2. Now consider the identity mapping idB2 on B2. Then idB2

is a linear projection, and it is easy to see that }idB2}op ď 1. Consequently, B is 1-complemented in its
bidual B2. To sum up, every reflexive Banach space is 1-complemented in its bidual space.

In the following theorem we summarize some of the main results in [GLP07] on the existence of
N -optimal quantizations of Z.

Theorem 2.2.3 ([GLP07, Theorem 1, Proposition 2])
Assume that B is 1-complemented in its bidual B2. Then, for all N P N,

C
psq
N pZ,Bq ‰ H.
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2.2. Existence of Optimal Quantizations

Remark 2.2.4

a) All pLdpr0, 1s, } ¨ }Ldpr0,1sq-spaces with p P r1,8q are 1-complemented in their bidual spaces. Indeed,
for p P p1,8q, the space pLdpr0, 1s, } ¨ }Ldpr0,1sq is reflexive and thus Remark 2.2.2 applies. The space
pLd1r0, 1s, } ¨ }Ld1r0,1s

q, however, is not reflexive. For more details on why pLd1r0, 1s, } ¨ }Ld1r0,1sq satisfies
the assumptions of Theorem 2.2.3, we refer to [GLP07, Corollary 1 (i) and the Example on p. 32].
Thus, any random element with values in one of those spaces admits for all N P N at least one N -
optimal quantization, and hence in those spaces the infimum in Definition 2.1.2 b) actually stands
as a minimum.

b) Assume pB, } ¨ }Bq “ pRd, } ¨ }q where } ¨ } denotes any norm on Rd. Since Rd is a reflexive Banach
space, Remark 2.2.2 yields that Theorem 2.2.3 incorporates the case of finite-dimensional Banach
spaces as well. Regarding existence results on optimal quantizations in this context we also refer
the reader to [GL00, 4.12 Theorem].

In particular, if d “ 1, even more is known. Under certain additional assumptions not only
does an N -optimal quantization exist but it is also unique. More precisely, if PZ is strongly
unimodal, i.e., PZ is an absolutely continuous distribution with Lebesgue density h such that
I :“ tx P R | hpxq ą 0u is an open interval and ln ˝h|I is concave, then

ˇ

ˇC
psq
N pZ,Rq

ˇ

ˇ “ 1 for all
N P N, see [GL00, 5.1 Theorem].

c) Theorem 2.2.3 is not applicable to the case pB, } ¨ }Bq “ pCpr0, 1s;Rdq, } ¨ }8q since this space is not
1-complemented in its bidual space, see the counterexample [GLP07, p. 42]. Therein a real-valued
stochastic process on r0, 1s with continuous paths is presented which does not possess a 1-optimal
quantization in the space pCr0, 1s, } ¨ }8q.

However, in the upcoming Theorem 2.2.7 we will see that for all N P N there exists a random
element with values in the space of all bounded, Borel measurable functions which takes exactly N
values and which achieves the minimal quantization error in the space pCpr0, 1s;Rdq, } ¨ }8q.

Example 2.2.5
We consider the Banach space pR, | ¨ |q, and we assume Z „ Np0, 1q. Then, PZ is absolutely continuous
with Lebesgue density ϕ : RÑ R given by

ϕpxq “
1
?

2π
¨ expp´x2{2q.

Note that I “ tx P R | ϕpxq ą 0u “ R, and for x P I we have

lnpϕpxqq “ ´ ln
`
?

2π
˘

´
x2

2
.

Clearly, ln ˝ϕ|I is concave, and thus due to Remark 2.2.4 b), for all s P r1,8q and all N P N, there exists
exactly one N -optimal quantization rZN of Z of order s.

Remark 2.2.6
In [PJ03] Pagès and Printems present numerical methods to determine N -optimal quantizations of
one- and multidimensional standard normally distributed random variables in the case s “ 2. In the one-
dimensional case they use Newton’s method in order to obtain approximations ofN -optimal quantizations.
Whereas in the case of quantization in the space Rd, d P N2, stochastic gradient methods are employed.
The support points and their corresponding probability weights of the approximations of N -optimal
quantizations determined with the just described methods are available for downloads at the website

http://quantize.maths-fi.com.
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2. Preliminaries on Quantization

In the one-dimensional case the database comprises optimal quantizations up to a size of N “ 5999. In
the multidimensional case it comprises optimal quantizations up to a size of N “ 1450 for dimensions
between d “ 2 and d “ 10.

For the next theorem we put

Mbpr0, 1s;Rdq :“ tf : r0, 1s Ñ Rd | f is Borel measurable and boundedu,

and we equip this space with the supremum norm } ¨ }8. It is well known that
`

Mbpr0, 1s;Rdq, } ¨ }8
˘

is
a Banach space.

Theorem 2.2.7 ([GLP07, Proposition 1, Theorem 3, Theorem 4])

(i) For all N P N it holds

e
psq
N

`

Z, Cpr0, 1s;Rdq
˘

“ e
psq
N

`

Z,Mbpr0, 1s;Rdq
˘

.

(ii) For all N P N there exists a Mbpr0, 1s;Rdq-valued random element rZN with | ranp rZN q| “ N such
that

e
psq
N

`

Z, Cpr0, 1s;Rdq
˘

“

´

E
”

}Z ´ rZN}
s
8

ı¯1{s
.

2.3. Asymptotic Behavior of the Minimal Quantization Error

In the foregoing section we treated the question of whether optimal quantizations of a random element Z
with values in a separable R-Banach space pB, } ¨ }Bq exist. But even if one knows that such quantizations
exist, they are in general hard to determine. Thus, in most cases, one confines oneself to an analysis of
the asymptotic behavior of the Nth minimal quantization error of Z.

Recall that in Proposition 2.1.8 we have already shown that, for all s P r1,8q,

lim
NÑ8

e
psq
N pZ,Bq “ 0.

Now two research questions naturally arise:

• How fast does pepsqN pZ,BqqNPN converge to 0 ?

• How to construct (and implement) asymptotically optimal sequences p rZN qNPN of N -quantizations
of Z ?

Before we try to give answers to those questions, we first need to clarify what is meant by an asymptotically
optimal sequence of N -quantizations.

Definition 2.3.1
Let s P r1,8q, let pB, } ¨ }Bq be a separable R-Banach space, and let Z be a B-valued random element
with | ran pZq| “ 8. A sequence p rZN qNPN of N -quantizations of Z is called asymptotically optimal
(of order s) if there exists a δ P r1,8q such that

lim sup
NÑ8

epsq
`

Z, rZN , B
˘

e
psq
N

`

Z,B
˘

ď δ.

If the previous inequality holds with δ “ 1, the sequence p rZN qNPN is called strongly asymptotically
optimal (of order s).
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2.3. Asymptotic Behavior of the Minimal Quantization Error

Analogously, we call a sequence pfN qNPN of N -quantizers fN : B Ñ B strongly asymptotically optimal
(of order s) if

lim sup
NÑ8

epsq
`

Z, fN pZq, B
˘

e
psq
N

`

Z,B
˘

ď 1.

2.3.1. Finite-dimensional Vector Quantization

In this subsection we consider the Banach space pRd, } ¨ }q where, for now, } ¨ } denotes any norm on Rd.

Zador’s Theorem

We present the main result on the sharp asymptotics of the minimal quantization error in the context
of finite-dimensional vector quantization, namely, Zador’s theorem. It was first stated by Zador (1963)
[Zad63] in the case s “ 2 for random vectors with an absolutely continuous distribution. The theorem
in its general form, i.e., for any Rd-valued random vector, is due to Bucklew and Wise (1982) [BW82].
But Bucklew and Wise also treat the case s “ 2, only. Here we present the version of Zador’s theorem
as stated in [GL00, 6.2 Theorem], which is formulated for any Rd-valued random vector and any moment
parameter s P r1,8q.

Theorem 2.3.2
Let s P r1,8q, let Z be an Rd-valued random vector with distribution PZ , and let

PZ “ P cont
Z ` P sing

Z

be the Lebesgue decomposition of PZ with respect to the d-dimensional Lebesgue measure λd where P cont
Z

denotes the absolutely continuous and P sing
Z the singular part of PZ . Furthermore, let h : Rd Ñ r0,8q be

a Lebesgue density of P contZ , and suppose that E
“

}Z}s`δ
‰

ă 8 for a δ ą 0. Then there exists a constant
cps, dq P p0,8q depending only on the moment parameter s, the dimension d and the norm } ¨ } such that

lim
NÑ8

N1{d ¨ e
psq
N pZ,R

dq “ cps, dq ¨

ˆˆ
Rd
|hpxq|d{pd`sq dx

˙pd`sq{ds

. (2.3.1)

Remark 2.3.3

a) The exact value of the constant cps, dq in the previous theorem is known only in very special cases.
For instance, if d “ 1 and } ¨ } “ | ¨ |, it holds

cps, 1q “
1

2 ¨ ps` 1q1{s

for all s P r1,8q, see, for example, [GL00, Lemma 2.9 combined with Remark 8.10 (c)].

b) The moment condition E
“

}Z}s`δ
‰

ă 8 in Theorem 2.3.2 ensures that

ˆˆ
Rd
|hpxq|d{pd`sq dx

˙pd`sq{ds

ă 8.

For a proof see [GL00, 6.3 Remark]. Moreover, we refer the reader to the example [GL00, Example
6.4], which shows that the moment condition in Theorem 2.3.2 cannot be weakened.
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c) If
ˆ
Rd
|hpxq|d{pd`sq dx ą 0,

Theorem 2.3.2 yields that the Nth minimal quantization error epsqN pZ,R
dq goes to 0 as fast as N´1{d

when N tends to infinity. If h “ 0 a.e., (2.3.1) implies only epsqN pZ,R
dq “ opN´1{dq.

Quantization of Np0, 1q-distributed Random Variables

In this subsection we assume d “ 1 and } ¨ } “ | ¨ |. Moreover, let Z be a real-valued random variable
with Z „ Np0, 1q. We outline a construction which yields a strongly asymptotically optimal sequence of
N -quantizations of Z. In [GL00, Chapter 7] one finds a more detailed discussion on this construction,
which may be applied to a wider class of real-valued random elements than only to standard normally
distributed ones, see also Remark 2.3.5 at the end of this subsection.

Let s P r1,8q, and let N P N. Moreover, for i “ 1, . . . , N let zp2i´1q{2N denote the p2i´ 1q{2N -quantile of
the standard normal distribution and put

a
psq
i,N :“

?
1` s ¨ z 2i´1

2N
. (2.3.2)

Then apsq1,N ă a
psq
2,N ă ¨ ¨ ¨ ă a

psq
N,N . In addition to that, we define

A
psq
N :“

 

a
psq
1,N , . . . , a

psq
N,N

(

and

• m
psq
i,N :“ 1{2 ¨

`

a
psq
i,N ` a

psq
i`1,N

˘

for i “ 1, . . . , N ´ 1 as well as mpsq0,N :“ ´8 and mpsqN,N :“ 8,

• V
A
psq
N

pa
psq
i,N q :“

`

m
psq
i´1,N ,m

psq
i,N

‰

for i “ 1, . . . , N ´ 1, and

• V
A
psq
N

pa
psq
N,N q :“

`

m
psq
N´1,N ,m

psq
N,N

˘

.

Then, due to construction,

V
A
psq
N

:“
!

V
A
psq
N

pa
psq
i,N q

ˇ

ˇ

ˇ
i “ 1, . . . , N

)

(2.3.3)

is a Voronoi-partition of R with associated nearest-neighbor projection πV
A
psq
N

given by

πV
A
psq
N

“

N
ÿ

i“1

a
psq
i,N ¨ 1V

A
psq
N

pa
psq
i,N q

. (2.3.4)

Now by defining

rZ
psq
N :“ πV

A
psq
N

pZq

we obtain an N -quantization of Z.
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In [GL00, Section 7.3] it is proven in a more general context that the sequence p rZpsqN qNPN satisfies

lim
NÑ8

N ¨ epsq
`

Z, rZ
psq
N ,R

˘

“
1

2 ¨ ps` 1q1{s
¨

ˆˆ
R
|ϕpxq|1{p1`sq dx

˙p1`sq{s

where ϕ is the density of the standard normal distribution.
In the following lemma we collect further properties of the sequence p rZpsqN qNPN, which will prove

beneficial in Chapter 5.

Lemma 2.3.4

a) For all N P N it holds E
“

rZ
psq
N

‰

“ 0.

b) For all s̃ P r1,8q it holds
sup
NPN

E
“
ˇ

ˇ rZ
psq
N

ˇ

ˇ

s̃‰
ă 8.

c) There exists a constant cpsq P p0,8q depending only on s such that

epsq
`

Z, rZ
psq
N ,R

˘

ď cpsq ¨N´1

for all N P N.

Proof:

a) This statement follows directly from the definition of the sets in the Voronoi partitions V
A
psq
N

, N P N,
and the symmetry of PZ .

b) For a proof we refer to [MGR10, Section 3.1].

c) As already mentioned above, the sequence p rZpsqN qNPN of N -quantizations of Z is strongly asymptot-
ically optimal of order s, i.e., it holds

lim
NÑ8

N ¨ epsq
`

Z, rZ
psq
N ,R

˘

“
1

2 ¨ ps` 1q1{s
¨

ˆˆ
R
|ϕpxq|1{p1`sq dx

˙p1`sq{s

.

Thus, there exists a constant cpsq P p0,8q depending only on s such that

epsq
`

Z, rZ
psq
N ,R

˘

ď cpsq ¨N´1

for all N P N.

Remark 2.3.5

a) For N P N it holds

P
´

 

rZ
psq
N “ a

psq
i,N

(

¯

“ P
´

 

Z P V
A
psq
N

pa
psq
i,N q

(

¯

for all i “ 1, . . . , N . Since PZ “ Np0, 1q, the above probability weights can easily be computed.
Hence the above presented method for quantization of standard normally distributed random vari-
ables is fully constructive, and the algorithm is easy to implement.
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b) As already mentioned at the beginning of this subsection, the above presented method for quantiza-
tion of standard normally distributed random variables is just a specific example of a quantization
procedure which is applicable to a whole class of real-valued random variables.

Indeed, let s P r1,8q, and let Y be a real-valued random variable with an absolutely continuous
distribution PY such that PY possesses a Lebesgue density h which satisfies

(i) I “ tx P R | hpxq ą 0u is an open interval, and

(ii) h is continuous on I.

Moreover, we require E
“

|Y |s`δ
‰

ă 8 for a δ ą 0. Then the previous moment condition and (i)
imply

0 ă

ˆ
R

ˇ

ˇhptq
ˇ

ˇ

1{p1`sq
dt ă 8.

We add that (ii) is a technical assumption on h which is exploited in the proofs in [GL00, Section
7.3]. Furthermore, we define hs : RÑ R by

hspxq “

`

hpxq
˘1{p1`sq

´
R
`

hptq
˘1{p1`sq

dt
,

and by Ps we denote the absolutely continuous distribution on R with Lebesgue density hs. Next, for
N P N, let bpsqi,N be the p2i´ 1q{2N -quantile of the distribution Ps for every i “ 1, . . . , N . Moreover,
for N P N we put

β
psq
N :“ tb

psq
1,N , . . . , b

psq
N,Nu,

we define the Voronoi cells of an associated Voronoi partition V
β
psq
N

in the same way as the Voronoi
cells of the Voronoi partition in (2.3.3), and we define πV

β
psq
N

analogously to (2.3.4). Then, as proven

in [GL00, Section 7.3], the sequence prY psqN qNPN with

rY
psq
N :“ πV

β
psq
N

pY q

is strongly asymptotically optimal of order s.

If Y „ Np0, 1q, it is easy to see that PY possesses a Lebesgue density which satisfies (i) and
(ii) above, and additionally the required moment condition on Y is satisfied. Moreover, it holds
Ps “ Np0, s ` 1q, see [GL00, Table 7.1], and hence bpsqi,N “ a

psq
i,n for all i “ 1, . . . , N and N P N

where apsqi,N are the numbers defined in (2.3.2). Thus, the construction for quantization of standard
normally distributed random variables presented at the beginning of this subsection is just a special
case of this more general procedure.

c) At this point, we also refer to [MGR13, Section 3.1]. Therein they present a different constructive
method for quantization of standard normally distributed random variables which yields a sequence
of N -quantizations that also satisfies a)--c) in Lemma 2.3.4. In contrast to the construction pre-
sented here, the method in [MGR13, Section 3.1] is neither a Voronoi quantization nor does it
employ quantiles of the standard normal distribution.
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2.3. Asymptotic Behavior of the Minimal Quantization Error

Quantization of Lévy Areas

Let pΩ,A, P q be a probability space equipped with a filtration F “ pFptqqtPr0,1s which satisfies the usual
conditions, i.e., F is right-continuous and

tA Ď Ω | DN P A : A Ď N ^ P pNq “ 0u Ď Fp0q.

Moreover, let W “ pW1,W2q be a two-dimensional F-Brownian motion on r0, 1s defined on pΩ,A, P q.

The statements presented in the next lemma will prove beneficial in the remaining part of this thesis. In
particular, b) and c) will play a role in the construction of a sequence of quantizations of the Itô integral´ 1

0 W1psq dW2psq.

Lemma 2.3.6

a) It holds

E
„ˆ 1

0
W1psq dW2psq



“ 0.

b) For every p P r1,8q it holds

E
„

ˇ

ˇ

ˇ

ˆ 1

0
W1psq dW2psq

ˇ

ˇ

ˇ

p


ă 8.

c) It holds
ˆ 1

0
W1psq dW2psq

L
“

ˆ 1

0

`

´W1psq
˘

dW2psq.

d) Let s, t P r0, 1s with s ă t. Then
ˆ t

s

`

W1puq ´W1psq
˘

dW2puq

is independent of Fpsq.

Proof:

a) This statement is well known, and therefore a proof is omitted.

b) It suffices to carry out the proof for p P r2,8q. Applying the Burkholder-Davis-Gundy inequality,
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Jensen’s inequality, and Fubini’s theorem, yields the existence of a constant c P p0,8q such that

E
„

ˇ

ˇ

ˇ

ˆ 1

0
W1psq dW2psq

ˇ

ˇ

ˇ

p


ď E

«

sup
tPr0,1s

ˇ

ˇ

ˇ

ˆ t

0
W1psq dW2psq

ˇ

ˇ

ˇ

p
ff

ď c ¨ E

«

ˆˆ 1

0
|W1psq|

2 ds

˙p{2
ff

ď c ¨

ˆ 1

0
E
“

|W1psq|
p
‰

ds

ď c ¨ E
“

sup
sPr0,1s

|W1psq|
p
‰

.

Now, applying the well-known fact that E
“

supsPr0,1s |W1psq|
p
‰

ă 8 finishes the proof of b).

c) We put

X :“

ˆ 1

0
W1psq dW2psq and Y :“ ´X.

Moreover, for n P N let πn “ tt0, . . . , tnu be the discretization of r0, 1s given by

ti “
i

n

for all i “ 0, . . . , n. Note that pπnqnPN is a sequence of partitions of r0, 1s with

lim
nÑ8

max
k“1,...,n

|tk ´ tk´1| “ lim
nÑ8

1

n
“ 0.

Furthermore, we define sequences pXnqnPN, pYnqnPN of real-valued random variables by

Xn “

n
ÿ

k“1

W1ptk´1q ¨
`

W2ptkq ´W2ptk´1q
˘

and Yn “ ´Xn.

Then, Xn
L2
Ñ X as well as Yn

L2
Ñ Y , see, for example, [Kuo06, Theorem 4.7.1.], and hence Xn

L
Ñ X

as well as Yn
L
Ñ Y .

For all n P N there exists a Borel measurable mapping ψn : Cpr0, 1s;R2q Ñ R such that

Xn “ ψn
`

W1,W2

˘

and Yn “ ψn
`

´W1,W2

˘

. (2.3.5)

Additionally, note that the process ´W1 is a Brownian motion on r0, 1s which, on top of that, is
independent of W2. Thus, p´W1,W2q is a two-dimensional Brownian motion on r0, 1s, and hence
pW1,W2q

L
“ p´W1,W2q. Together with (2.3.5) we obtain Xn

L
“ Yn for all n P N. Consequently, all

assumptions of Lemma C.1 are satisfied, which finally leads to X L
“ Y .

d) We abbreviate

I :“

ˆ t

s

`

W1puq ´W1psq
˘

dW2puq,
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2.3. Asymptotic Behavior of the Minimal Quantization Error

and we show that I and 1A are independent for all A P Fpsq. In view of Proposition C.2 the latter
holds if and only if

ϕpI,1Aqps, tq “ ϕIpsq ¨ ϕ1Aptq

for all ps, tq P R2 and all A P Fpsq.
We fix A P Fpsq, and for n P N let πn “ tt0, . . . , tnu be the discretization of rs, ts with

ti “ s`
i

n
¨ pt´ sq

for all i “ 0, . . . , n. Then pπnqnPN is a sequence of partitions of rs, ts with

lim
nÑ8

max
k“1,...,n

|tk ´ tk´1| “ lim
nÑ8

1

n
¨ pt´ sq “ 0.

Furthermore, we put

In :“
n
ÿ

k“1

`

W1ptk´1q ´W1psq
˘

¨
`

W2ptkq ´W2ptk´1q
˘

for all n P N. Then In
L2
Ñ I, and hence In

L
Ñ I, which implies

lim
nÑ8

ϕInptq “ ϕIptq (2.3.6)

for all t P R. Moreover, In
L2
Ñ I implies

lim
nÑ8

E
“

}pIn,1Aq ´ pI,1Aq}
2
2

‰

“ lim
nÑ8

E
“

|In ´ I|
2
‰

“ 0,

and hence pIn,1Aq
L
Ñ pI,1Aq. Therefore,

lim
nÑ8

ϕpIn,1Aqps, tq “ ϕpI,1Aqps, tq (2.3.7)

for all ps, tq P R2. Additionally, it is easy to see that, for all n P N, In and 1A are independent. Now
by combining (2.3.7), Proposition C.2, and (2.3.6), we finally end up with

ϕpI,1Aqps, tq “ lim
nÑ8

ϕpIn,1Aqps, tq “ lim
nÑ8

`

ϕInpsq ¨ ϕ1Aptq
˘

“
`

lim
nÑ8

ϕInpsq
˘

¨ ϕ1Aptq “ ϕIpsq ¨ ϕ1Aptq

for all ps, tq P R2, which finishes the proof of d).

For the rest of this subsection we put Z :“
´ 1

0 W1psq dW2psq, and we outline a method which yields a
sequence p rZN qNPN of quantizations of Z where each quantization rZN has finite range of roughly N points.
The method is also employed in [MGRY15] and it is based on a more general construction due to [DV11].
In [DV11] Dereich and Vormoor present a quantization procedure for such Rd-valued random vectors
which have finite moments of any order. Due to Lemma 2.3.6 b) Z has finite moments of any order, and
hence the quantization procedure presented in [MGRY15] is a suitable choice for quantization of Z.
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Let γ P p1,8q, and let N P N. We put

J :“ tN1{γu,

and for j “ 1, . . . , J we define

Nj “

Z

N

jγ

^

.

Moreover, for k “ 1, . . . , Nj ` 1 and j “ 1, . . . , J we put

bj,k :“ j ´ 1`
k ´ 1

Nj
,

and we consider the mapping T pγqN : RÑ R defined by

T
pγq
N pxq “

J
ÿ

j“1

Nj
ÿ

k“1

´

bj,k ¨ 1rbj,k,bj,k`1q
pxq ´ bj,k ¨ 1p´bj,k`1,´bj,kspxq

¯

. (2.3.8)

To sum up, this construction is built-up as follows. For j “ 1, . . . , J the intervals rj´1, jq and p´j,´pj´1qs

are partitioned into equidistant subintervals of length 1{Nj . Based on this, the function T pγqN maps a point
x P p´J, Jq to the left endpoint of the respective subinterval x lies in if x ě 0, whereas x is mapped to
the right endpoint of the respective subinterval x lies in if x ă 0. Moreover, T pγqN maps all points in
p´8,´Js Y rJ,8q to 0.

Now by defining

rZ
pγq
N :“ T

pγq
N pZq

we obtain a quantization of Z.

In the following lemma we collect selected properties of the sequence p rZpγqN qNPN, which will play a role in
Chapter 5.

Lemma 2.3.7

a) For all N P N it holds

T
pγq
N pRq Ď r´N1{γ , N1{γs

and

ˇ

ˇ ran
`

T
pγq
N

˘ˇ

ˇ “ 2 ¨
J
ÿ

j“1

Nj ´ 1 ď 2 ¨N ¨
γ

γ ´ 1
.

b) For all N P N it holds E
“

rZ
pγq
N

‰

“ 0.

c) For all s P r1,8q and all p P p1 ` p1 ` γq ¨ s,8q there exists a constant cpp, sq P p0,8q depending
only on p and s such that

E
”

|Z ´ rZ
pγq
N |s

ı

ď cpp, sq ¨max
 

1,E
“

|Z|p
‰(

¨N´s

for all N P N.
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d) For all s P r1,8q it holds
sup
NPN

E
“

| rZ
pγq
N |s

‰

ă 8.

Proof:

a) Let N P N. The definition of the mapping T pγqN directly implies

T
pγq
N pRq Ď r´N1{γ , N1{γs and

ˇ

ˇ ran
`

T
pγq
N

˘ˇ

ˇ “ 2 ¨
J
ÿ

j“1

Nj ´ 1.

Moreover, since γ ą 1 the over-harmonic series
ř8
j“1 1{jγ converges to ζpγq where ζ denotes the

Riemann zeta function. Thus, by the definition of the numbers Nj and by the standard estimate
ζpγq ă γ{pγ ´ 1q, see, for instance, [IR90, Proof of Proposition 16.1.2.], we conclude that

2 ¨
J
ÿ

j“1

Nj ´ 1 ď 2 ¨N ¨
J
ÿ

j“1

1

jγ
ď 2 ¨N ¨ ζpγq ď 2 ¨N ¨

γ

γ ´ 1
,

which finishes the proof of a).

b) Let N P N. Due to the definition of the function T pγqN , and due to the symmetry of PZ , see Lemma
2.3.6 c), we obtain

E
“

rZ
pγq
N

‰

“

J
ÿ

j“1

Nj
ÿ

k“1

bj,k ¨
´

P
`

tZ P rbj,k, bj,k`1qu
˘

´ P
`

tZ P p´bj,k`1,´bj,ksu
˘

¯

“

J
ÿ

j“1

Nj
ÿ

k“1

bj,k ¨
´

P
`

tZ P rbj,k, bj,k`1qu
˘

´ P
`

tZ P rbj,k, bj,k`1qu
˘

¯

“ 0.

c) For a proof we refer the reader to [MGRY15, Lemma 5.1.].

d) Let s P r1,8q, and choose p P p1` p1` γq ¨ s,8q. Due to c) there exists a constant cpp, sq P r1,8q
depending only on p and s such that

E
“

| rZ
pγq
N |s

‰

ď cpp, sq ¨
´

E
“

|Z|s
‰

`max
 

1,E
“

|Z|p
‰(

¨N´s
¯

ď cpp, sq ¨
´

E
“

|Z|s
‰

`max
 

1,E
“

|Z|p
‰(

¯

(2.3.9)

for all N P N. Moreover, Lemma 2.3.6 b) yields

max
 

E
“

|Z|s
‰

,E
“

|Z|p
‰(

ă 8.

Therefore, together with (2.3.9) we arrive at

sup
NPN

E
“

| rZ
pγq
N |s

‰

ă 8.
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Remark 2.3.8
Let N P N. The probability weights corresponding to the quantization rZ

pγq
N are hard determine. It is

well known that the distribution PZ is an absolutely continuous distribution, see, for instance, [RW01].
But to our knowledge there is, so far, no closed form expression of the distribution function FZ of Z to
be found in the literature. Hence, for us, it remains an open problem how to determine or at least how
to apprioximate the probability weights corresponding to rZ

pγq
N . Therefore, the presented quantization

procedure for Z is only of a semi-constructive type.

2.3.2. Quantization of Brownian Motions and Brownian Bridges

In this subsection we present the results of Dereich and Scheutzow in [DS06] on the sharp asymptotics
of the Nth minimal quantization error of one-dimensional Brownian motions and Brownian bridges on
r0, 1s both of them interpreted as random elements with values in the Banach spaces

`

Lpr0, 1s, } ¨ }Lpr0,1s
˘

,
p P r1,8q, and

`

Cr0, 1s, } ¨ }8
˘

. But first, for the convenience of the reader, we recall the definition of a
Brownian bridge.

Definition 2.3.9
Let a, b P r0,8q with a ă b. A real-valued stochastic process B “ pBptqqtPra,bs is called a Brownian
bridge on ra, bs if

(i) B is a Gaussian process with continuous paths,

(ii) for all t P ra, bs it holds ErBptqs “ 0, and

(iii) for all s, t P ra, bs it holds

CovrBpsq, Bptqs “

`

minps, tq ´ a
˘

¨
`

b´maxps, tq
˘

b´ a
.

Remark 2.3.10

a) An attribute peculiar to a Brownian bridge B on ra, bs resulting from (ii) and (iii) in the previous
definition is the fact that Bpaq “ 0 “ Bpbq a.s., which motivates the term bridge.

b) One obtains a prominent example of a Brownian bridge on r0, 1s by the following construction. Let
W “ pW ptqqtPr0,1s be a one-dimensional Brownian motion, and let B “ pBptqqtPr0,1s be defined by

Bptq “W ptq ´ t ¨W p1q.

It is easy to see that the process B is a Brownian bridge on r0, 1s.

Theorem 2.3.11 ([DS06, Theorem 1.1, Theorem 1.3])
Let W be a one-dimensional Brownian motion on r0, 1s, and let B be a Brownian bridge on r0, 1s.

(i) Let p P r1,8q. Then there exists a constant κp P p0,8q such that, for all s P r1,8q,

lim
NÑ8

?
lnN ¨ e

psq
N

`

W,Lpr0, 1s
˘

“ lim
NÑ8

?
lnN ¨ e

psq
N

`

B,Lpr0, 1s
˘

“ κp.

(ii) There exists a constant κ8 P p0,8q such that, for all s P r1,8q,

lim
NÑ8

?
lnN ¨ e

psq
N

`

W, Cr0, 1s
˘

“ lim
NÑ8

?
lnN ¨ e

psq
N

`

B, Cr0, 1s
˘

“ κ8.
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Remark 2.3.12

a) For p “ 2 it is known that κ2 “
?

2{π, see, for example, [Der03, Section 6.4] and [LP04, Section 3].
Whereas for all other p P r1,8q one has only estimates for κp. More precisely, we put

λppq :“ inf

"ˆ 8
´8

|x|p ¨
`

ϕpxq
˘2
dx`

1

2
¨

ˆ 8
´8

`

ϕ1pxq
˘2
dx

*

where the infimum is taken over all weakly differentiable functions ϕ : RÑ R such that
ˆ 8
´8

`

ϕpxq
˘2
dx “ 1.

Then,

κp P
”

cppq,
?

8 ¨ cppq
ı

where cppq :“ 21{p ¨
?
p ¨

`

λppq{p2` pq
˘p2`pq{p2pq, see [Der09, Section 3.2].

b) The exact value of the constant κ8 is unknown. One only has the estimate

κ8 P
”

π{
?

8, π
ı

,

see, for instance, [DFMS03].

Constructive Quantization of Brownian Bridges in L2r0, 1s

We close this section by outlining a constructive method for quantization of Brownian bridges on r0, 1s in
the Hilbert space L2r0, 1s w.r.t. the moment parameter s “ 2. Throughout this subsection, by x¨, ¨yL2r0,1s

we denote the inner product on L2r0, 1s.

Let pΩ,A, P q be a probability space, and let B “ pBptqqtPr0,1s be a Brownian bridge defined on pΩ,A, P q,
which we interpret as a random element with values in the space L2r0, 1s. The method is based on the
Karhunen-Loève expansion of B and on quantizations of standard normally distributed random variables,
and it is a specific example of a more general construction which is mostly employed for quantization of
Gaussian processes with values in a separable Hilbert space. For more detailed and more general accounts
on Karhunen-Loève expansions and their application in the context of quantization of Gaussian processes
one might consult, for example, [LP02], [Der03], [PP05], the survey [PP09], and the website

http://www.quantize.maths-fi.com

for downloads. But since we utilize the method only in the context of quantization of a Browinian bridge
on r0, 1s in the space L2r0, 1s, we confine ourselves to this case here.

We commence by considering the linear operator ΓB : L2r0, 1s Ñ L2r0, 1s given by

pΓBfqptq “

ˆ 1

0
fpsq ¨ E rBptq ¨Bpsqs ds, t P r0, 1s.

The operator ΓB is called the covariance operator of B. Due to definition 2.3.9 (ii) it holds

E rBptq ¨Bpsqs “ minps, tq ´ s ¨ t
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for all s, t P r0, 1s, and hence we have

pΓBfqptq “

ˆ 1

0
fpsq ¨

`

minps, tq ´ s ¨ t
˘

ds

for t P r0, 1s and f P L2r0, 1s. The covariance operator ΓB belongs to a wide class of integral operators
which are called Fredholm integral operators. In the following lemma we collect further properties of
ΓB.

Lemma 2.3.13
The operator ΓB is compact, positive and self-adjoint.

Proof:
First, note that the kernel k : r0, 1s2 Ñ R of the Fredholm integral operator ΓB is given by

kps, tq “ minps, tq ´ s ¨ t.

It is easy to see, that k is continuous. The fact that a Fredholm integral operator with a continuous kernel
is compact then yields that ΓB is compact. Secondly, the statement that ΓB is self-adjoint and positive
can be easily verified by direct calculation. For a proof we refer to [Tou08].

Due to the previous lemma all prerequisites of the spectral theorem for compact, self-adjoint operators
on Hilbert spaces are satisfied, by means of which one derives that for P -a.a. ω P Ω it holds

Bpωq “
8
ÿ

n“1

a

λn ¨ ξnpωq ¨ en (2.3.10)

where convergence holds in the space L2r0, 1s and

(i) en, n P N, are the eigenfunctions of ΓB,

(ii) pλnqnPN is the sequence of eigenvalues corresponding to the eigenfunctions en, n P N, and

(iii) pξnqnPN is the sequence of i.i.d. standard normally distributed random variables given by

ξn :“
1
?
λn
¨ xen, ByL2r0,1s

for n P N.

It is well known that the eigenfunctions en : r0, 1s Ñ R and corresponding eigenvalues λn of ΓB are given
by

enptq “
?

2 ¨ sinpπn ¨ tq, t P r0, 1s,

and λn “ pπnq´2, respectively, see, for instance, [LP02, Example 3.3.].

Definition 2.3.14
The series on the right-hand side in (2.3.10) is called Karhunen-Loève expansion of B.

Remark 2.3.15
Due to (2.3.10) there exists a set Ω˚ P A with P pΩ˚q “ 1 such that

Bpωq “
8
ÿ

n“1

a

λn ¨ ξnpωq ¨ en
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for all ω P Ω˚. Now consider the mapping B : Ω Ñ L2r0, 1s defined by

Bpωq “

#

Bpωq, if ω P Ω˚,

0, else.

Since B P -a.s.
“ B, we have B L

“ B. Hence from now on we may assume equality in (2.3.10) without
changing the distribution of B, and we abuse notation and write B instead of B.

Let N P N. The following procedure yields an N -quantization of B. The idea is simply to take a
truncation index dpNq P N as well as numbers N1, . . . , NdpNq P N such that N1 ¨ ¨ ¨NdpNq ď N , and to apply
an Nn-optimal quantization rξ

pNnq
n to the random variable ξn for n “ 1, . . . , dpNq. Then by defining

rB
pN1,...,NdpNqq

N :“

dpNq
ÿ

n“1

a

λn ¨ rξ
pNnq
n ¨ en (2.3.11)

we obtain an N -quantization of B. We denote the set which contains all N -quantizations of B that are
of the form as in (2.3.11) by KN .

Remark 2.3.16

a) Ideally, for N P N, one would prefer those N -quantizations of B in KN that induce the least possible
error among all N -quantizations of B that are of the form as in (2.3.11). More precisely, for N P N
one seeks for an N -quantization rBN,opti P KN , if it exists, such that

E
”

}B ´ rBN,opti}
2
L2r0,1s

ı

“ inf
!

E
”

›

›B ´ rB
›

›

2

L2r0,1s

ı ˇ

ˇ

ˇ

rB P KN

)

. (2.3.12)

In [PP05, Section 4] it is shown that for all N P N such a quantization rBN,opti exists, and hence
the infimum in (2.3.12) actually stands as a minimum. Moreover, due to [PP05, Proposition 3] the
sequence

`

rBN,opti

˘

NPN of N -quantizations of B is asymptotically optimal of order 2.
For N P N we call the truncation index corresponding to rBN,opti, which we donte by dpNqopti,

optimal truncation index. The set tN1, . . . , NdpNqoptiu such that N1 ¨ ¨ ¨NdpNqopti ď N corre-
sponding to rBN,opti is called optimal product-decomposition of N . A database which contains
tables with numerical values for dpNqopti along with a corresponding optimal product-decomposition
tN1, . . . , NdpNqoptiu of N is available for downloads at the above mentioned website for N “ 1 up to
N “ 11519. For further details on how the aforementioned database is derived, we refer the reader
to [PP05]. Figure 2.3.1 displays the paths of a quantization rB33,opti with dp33qopti “ 2 and with
optimal product-decomposition 33 “ 11 ¨ 3.

b) Let N P N, and let dpNq P N as well as N1, . . . , NdpNq P N such that N1 ¨ ¨ ¨NdpNq ď N . Moreover,

for all n “ 1, . . . , dpNq let rξ
pNnq
n be the Nn-optimal quantization of ξn, and let rB

pN1,...,NdpNqq

N be the
corresponding N -quantization of B which is of the form as in (2.3.11).

Each α P ran
`

rB
pN1,...,NdpNqq

N

˘

corresponds to a vector pa1, . . . , adpNqq P
ŚdpNq

n“1 ran prξ
pNnq
n q such

that

α “

dpNq
ÿ

n“1

a

λn ¨ an ¨ en.
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Since the random variables ξ1, . . . , ξdpNq are independent, we have

P
´

 

rB
pN1,...,NdpNqq

N “ α
(

¯

“

dpNq
ź

n“1

P
´

trξpNnqn “ anu
¯

.

Additionally, recall that approximations of optimal quantizations of one-dimensional standard nor-
mally distributed random variables along with their corresponding probability weights are available
at the above mentioned website for downloads, see also Remark 2.2.6. Thus, the above presented
quantization procedure for Brownian bridges on r0, 1s is fully constructive, and moreover the algo-
rithm is easy to implement.

c) An alternative approach to obtain an N -quantization by utilizing the Karhunen-Loève expansion of
B is the following. For N P N and a truncation index dpNq one applies an N -optimal quantization to
the whole multidimensional standard normally distributed random vector pξ1, . . . , ξdpNqq

1, instead
of separately applying quantizations to the random variables ξn for n “ 1, . . . , dpNq. Since this
approach is not of interest to our purposes, we will not go into greater detail at this point. For
a detailed account on this alternative approach to quantization of B we refer the reader to, for
example, [Der03] and [LP04].

d) For a constructive approach to quantization of Gaussian processes in the space Lpr0, 1s we refer the
reader to [LP08]. Therein the authors use the expansion of the respective process in terms of the
Haar basis as one of the main tools.
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Figure 2.3.1.: Paths of a quantization rB33,opti of a Brownian bridge B on r0, 1s
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3 | Preliminaries on Stochastic Differential
Equations

In this chapter we provide preliminaries on SDEs which are required in this thesis. The chapter is
organized as follows. In Section 1 we settle the main setting for the remaining part of this thesis.

Subsequent to this, in Section 2, we introduce the notion of a strong solution of an SDE. Additionally,
we present basic results on existence and uniqueness of strong solutions. We conclude the second section
with a remark on diffusion processes and their interrelationship with strong solutions of SDEs.

In the last section, in Section 3, we present two time-discrete strong approximation schemes for strong
solutions of SDEs, namely the Euler scheme and the Milstein scheme, along with a corresponding time-
continuous process in each case.

3.1. Main Setting of the Thesis

3.1.1. Basic Setting

Let d, r P N, and let pΩ,A, P q be a complete probability space, i.e.,

tA Ď Ω | DN P A : A Ď N ^ P pNq “ 0u Ď A.

We consider a d-dimensional system of autonomous stochastic differential equations of the following type

dXptq “ apXptqq dt` bpXptqq dW ptq, t P r0, 1s,

Xp0q “ x0,
(3.1.1)

with initial condition x0 “ px
1
0, . . . , x

d
0q
1 P Rd, r-dimensional driving Brownian motion

W “ pW1, . . . ,Wrq
1

defined on pΩ,A, P q, Borel measurable drift

a “ pa1, . . . , adq
1 : Rd Ñ Rd

and Borel measurable diffusion coefficient

b “ pbk,jqk“1,...,d,
j“1,...,r

: Rd Ñ Rdˆr.
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Note that (3.1.1) is just a short notation for the following system of stochastic integral equations:

X1ptq “ x1
0 `

ˆ t

0
a1

`

Xpsq
˘

ds`
r
ÿ

j“1

ˆ t

0
b1,j

`

Xpsq
˘

dWjpsq

X2ptq “ x2
0 `

ˆ t

0
a2

`

Xpsq
˘

ds`
r
ÿ

j“1

ˆ t

0
b2,j

`

Xpsq
˘

dWjpsq

...

Xdptq “ xd0 `

ˆ t

0
ad
`

Xpsq
˘

ds`
r
ÿ

j“1

ˆ t

0
bd,j

`

Xpsq
˘

dWjpsq

for t P r0, 1s.
Additionally, we equip pΩ,A, P q with a specific filtration, which is convenient when considering strong

solutions of SDEs. More precisely, we take the natural filtration FW “ pFW ptqqtPr0,1s generated by the
Brownian motion W , which is given by

FW ptq “ σ
`

tW psq | s P r0, tsu
˘

for t P r0, 1s, and we put

N
`

FW
˘

:“
 

A Ď Ω
ˇ

ˇ DN P FW p1q : A Ď N ^ P pNq “ 0
(

.

Then, by utilizing FW and N
`

FW
˘

, we define

Fptq :“ σ
`

FW ptq YN
`

FW
˘˘

(3.1.2)

for t P r0, 1s. Note that since we assumed that pΩ,A, P q is complete, it holds Fptq Ď A for all t P r0, 1s,
and hence F :“ pFptqqtPr0,1s is a filtration on pΩ,A, P q. Furthermore, F is augmented, right-continuous,
and W is a F-Brownian motion see, for instance, [KS88, Theorem 2.7.9 and the proof of Proposition
2.7.7].

3.1.2. Additional Technical Assumptions

We impose the following additional technical assumptions on the coefficients a and b of the SDE (3.1.1):

For f P ta, bp1q, . . . , bprqu we assume that

(C1) f is continuously differentiable, and

(C2) there exists a constant K P p0,8q such that

(i) sup
xPRd

›

›∇fpxq
›

›

2
ď K, and

(ii) for all x, y P Rd it holds
›

›∇fpxq ´∇fpyq
›

›

2
ď K ¨ }x´ y}2.

In particular, assumption (C1) ensures that all partial derivatives of the functions a, bp1q, . . . , bprq exist,
and, in addition to that, due to (C2) the partial derivatives of a, bp1q, . . . , bprq are uniformly bounded and
globally Lipschitz continuous.
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Remark 3.1.1

a) The assumptions (C1) and (C2) are stronger compared to the so-called standard assumptions
on the coefficients of an SDE, which in case of an autonomous SDE require that both the drift
and diffusion coefficient are globally Lipschitz continuous. In case of a non-autonomous SDE the
standard assumptions additionally incorporate the assumption that both a and b are of at most
linear growth. See also the following remarks in b).

b) In the proof of the upcoming Corollary 3.2.5 we will show that (C1) and (C2) (i) imply that both
a and b are globally Lipschitz continuous. This in turn, since a and b are time-independent, yields
that a and b are of at most linear growth, see also Remark 3.2.4.

c) Due to (C2) (i) the derivatives ∇a, ∇bpjq, j “ 1, . . . , r, are uniformly bounded, and together with
Taylor’s theorem we obtain the existence of a constant C P p0,8q such that for all x, y P Rd it holds

}apxq ´ apyq ´∇apyq ¨ px´ yq}2 ď C ¨ }x´ y}22

as well as

max
j“1,...,r

}bpjqpxq ´ bpjqpyq ´∇bpjqpyq ¨ px´ yq}2 ď C ¨ }x´ y}22.

3.2. Basic Facts on Strong Solutions of SDEs

In this section, we assume the setting in Section 3.1.1, and we introduce the notion of a strong solution
of an SDE. Additionally, we provide basic results on existence and uniqueness of strong solutions under
standard assumptions on the coefficients of the SDE. The material presented in this section along with
further facts on SDEs can be found, for example, in Karatzas and Shreve [KS88]. For an introduction
to the field of stochastic analysis we also refer the reader to the monographs by, for instance, Arnold
[Arn74], Protter [Pro05] and Mao [Mao07].

Definition 3.2.1
A strong solution of the SDE (3.1.1), on the given probability space pΩ,A, P q and with respect to the
Brownian motion W and initial condition x0, is an Rd-valued stochastic process X “ pXptqqtPr0,1s with
the following properties:

(i) X has continuous paths.

(ii) X is adapted to F .

(iii) For all t P r0, 1s it holds

ˆ t

0

d
ÿ

k“1

´

ˇ

ˇak
`

Xpsq
˘ˇ

ˇ`

r
ÿ

j“1

ˇ

ˇbk,j
`

Xpsq
˘ˇ

ˇ

2
¯

ds ă 8 P -a.s.

(iv) For all k “ 1, . . . , d and t P r0, 1s it holds

Xkptq “ xk0 `

ˆ t

0
ak
`

Xpsq
˘

ds`
r
ÿ

j“1

ˆ t

0
bk,j

`

Xpsq
˘

Wjpsq P -a.s.

35



3. Preliminaries on Stochastic Differential Equations

Remark 3.2.2
According to the previous definition all paths of a strong solution of an SDE are continuous. Hence,
in view of the observations presented at the end of the introductory chapter, we may interpret a strong
solution as a random element with values in the spaces Cpr0, 1s;Rdq and Ldpr0, 1s for p P r1,8q.

The following theorem states that under standard assumptions on the coefficients of the SDE (3.1.1)
there exists a unique strong solution.

Theorem 3.2.3
Assume that there exists a constant C P p0,8q such that for all x, y P Rd it holds

max
 

}apxq ´ apyq}2, }bpxq ´ bpyq}2
(

ď C ¨ }x´ y}2. (3.2.1)

Then there exists a unique (up to indistinguishability) strong solution X of the SDE (3.1.1), and for all
q P r1,8q there exists a constant c P p0,8q depending on q, the initial value x0, and the constant in
(3.2.1), such that

E
”

sup
tPr0,1s

}Xptq}q8

ı

ď c. (3.2.2)

Proof:
For a proof we refer the reader to, for example, [KS88, Theorem 2.9].

Remark 3.2.4
More generally, one mostly considers non-autonomous SDEs whose initial value is a random vector. In
this case one has to include two additional prerequisites in Theorem 3.2.3 in order to obtain the same
results stated therein. First, one additionally has to require that a and b are of at most linear growth.
Secondly, one has to include an additional assumption on the finiteness of the absolute moments of the
initial value, see, for example, [KS88, Theorem 2.9].

The following considerations show that in the context of the setting presented in Section 3.1.1 those
two additional assumptions need not be included in Theorem 3.2.3. First, recall that the SDE (3.1.1) is
time-independent. Hence assuming a as well as b to be globally Lipschitz continuous implies that both a
and b are of at most linear growth. Indeed, let x P Rd. Inequality (3.2.1) yields

}fpxq}2 ď }fpxq ´ fp0q}2 ` }fp0q}2 ď C ¨ }x}2 ` }fp0q}2 ď maxtC, }fp0q}2u ¨
`

1` }x}2
˘

for f P ta, bu. Secondly, since the initial value x0 of the SDE (3.1.1) is deterministic, all moments E
“

|x0|
q
‰

,
q P r1,8q, are finite.

Corollary 3.2.5
The assumptions (C1) and (C2) (i) guarantee the existence of a unique strong solution X of the SDE
(3.1.1).

Proof:
Let f P ta, bp1q, . . . , bprqu. We show that f is globally Lipschitz continuous. Then the assertion of the
corollary follows by applying Theorem 3.2.3. Due to assumption (C1) f satisfies the prerequisites of the
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mean value theorem, which together with assumption (C2) (i) yields

}fpxq ´ fpyq}2 “

›

›

›

›

ˆ 1

0
∇fpy ` t ¨ px´ yqq ¨ px´ yq dt

›

›

›

›

2

ď

ˆ 1

0
}∇fpy ` t ¨ px´ yqq ¨ px´ yq}2 dt

ď

ˆ 1

0
}∇fpy ` t ¨ px´ yqq}2 ¨ }px´ yq}2 dt

ď
?
d ¨ 1K ¨ }px´ yq}2

for all x, y P Rd where K is the constant in (C2). This implies that a and b are globally Lipschitz
continuous.

For the remaining part of this section we assume that there exists a strong solution X “ pX1, . . . , Xdq1

of the SDE (3.1.1). If a and b are continuous, X is a diffusion process. In particular, for all p P r1,8q, all
k “ 1, . . . , d, all s, t P r0, 1s with s ď t, and PXpsq-a.a. x P Rd, we have

E
”

|Xkptq ´Xkpsq|p
ˇ

ˇ

ˇ
Xpsq “ x

ı

“ mp
p ¨ }bkpxq}

p
2 ¨ pt´ sq

p{2 ` o
`

pt´ sqp{2
˘

where mp denotes the pth root of the pth absolute moment of a one-dimensional standard normally
distributed random variable, i.e.,

mp “

ˆˆ 8
´8

|y|p{p2πq1{2 ¨ expp´y2{2q dy

˙1{p

,

see [MG02b, Section II.1]. Thus, given Xpsq “ x, the kth component Xk of the solution X is locally
Hölder continuous of order 1{2 in the pth mean sense, and mp ¨ }bkpxq}2 might be called a conditional
Lp-Hölder constant for Xk at point x. In view of that, the local smoothness of Xk at time point t P r0, 1s
is determined by the size of

slocH
`

Xkptq
˘

:“ }bk
`

Xptq
˘

}2.

Remark 3.2.6
Assumption (C1) yields that a and b are continuous. Consequently, assuming the setting in Section 3.1
to hold guarantees that the strong solution X of the SDE (3.1.1) is a diffusion process, and hence the
observations prior to this remark hold. We will come back to them in Chapter 5.

3.3. Strong Itô-Taylor Approximation Schemes

We assume the setting in Section 3.1.1, and we present two classical methods for strong approximation
of solutions of SDEs, namely, the Euler scheme and the Milstein scheme. Both schemes are based on
a fixed discretization of the time interval r0, 1s and recursively generate an approximation of X at the
discretization points.
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The Euler scheme and the Milstein scheme are examples of a wider class of strong approximation schemes
that are based on the Itô-Taylor expansion, which was first introduced by Wagner and Platen in 1978
in [WP78]. In this context we also refer the reader to the standard monograph by Kloeden and Platen
[KP95] in which, among other things, an overview of strong Itô-Taylor approximation schemes is provided
along with corresponding error analyses.

For the remaining part of this chapter, let m P N and let

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tm “ 1 (3.3.1)

be a fixed discretization of the time interval r0, 1s. Moreover, we put

∆l :“ tl`1 ´ tl

for l “ 0, . . . ,m´ 1, and

∆max :“ max
l“0,...,m´1

∆l.

3.3.1. Euler-Maruyama Scheme

The first time-discrete strong approximation scheme to be introduced is the Euler scheme, which is also
called Euler-Maruyama scheme and dates back to Maruyama in 1955, see [Mar55]. The Euler scheme is
the simplest strong Itô-Taylor approximation scheme.

The time-discrete d-dimensional Euler scheme, in short Euler scheme,

pXE
m “

`

pXE
mpt0q, . . . ,

pXE
mptmq

˘

corresponding to the discretization (3.3.1) is defined by

pXE
mpt0q “ x0,

pXE
mptlq “

pXE
mptl´1q ` a

`

pXE
mptl´1q

˘

¨ ptl ´ tl´1q ` b
`

pXE
mptl´1q

˘

¨
`

W ptlq ´W ptl´1q
˘

for l “ 1, . . . ,m. In particular, its kth component, k “ 1, . . . , d, reads

pXE,k
m pt0q “ xk0,

pXE,k
m ptlq “ pXE,k

m ptl´1q ` ak
`

pXE
mptl´1q

˘

¨ ptl ´ tl´1q `

r
ÿ

j“1

bk,j
`

pXE
mptl´1q

˘

¨
`

Wjptlq ´Wjptl´1q
˘

for l “ 1, . . . ,m.

Additionally, we introduce a time-continuous Rd-valued stochastic process associated to pXE
m. The d-

dimensional Euler process

XE
m “

`

XE,1
m , . . . , XE,d

m

˘1

on r0, 1s corresponding to the discretization (3.3.1) is defined by
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XE,k
m pt0q “ xk0,

XE,k
m ptq “ pXE,k

m ptl´1q ` ak
`

pXE
mptl´1q

˘

¨ pt´ tl´1q `

r
ÿ

j“1

bk,j
`

pXE
mptl´1q

˘

¨
`

Wjptq ´Wjptl´1q
˘

for t P ptl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d. Note that, first, all paths of XE
m are continuous, and,

secondly, it holds XE
mptlq “

pXE
mptlq for all l “ 0, . . . ,m.

The results of the following proposition are well known, and therefore a proof is omitted.

Proposition 3.3.1 ([Fau92, Proposition 14])
Let q P r1,8q, and assume that a and b are globally Lipschitz continuous. Then there exists a constant
c P p0,8q such that, for all m P N,

E
”

sup
tPr0,1s

}XE
mptq}

q
8

ı

ď c

as well as

E
”

sup
tPr0,1s

}Xptq ´XE
mptq}

q
8

ı

ď c ¨∆q{2
max.

3.3.2. Milstein Scheme

In addition to the setting in Section 3.1.1 we assume that b is partially differentiable. We introduce the
time-discrete Milstein scheme, which dates back to Milstein in 1974, see [Mil75].

For j1, j2 “ 1, . . . , r and l “ 1, . . . ,m we abbreviate

J lpj1,j2q :“

ˆ tl

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq.

Moreover, for j “ 1, . . . , r, recall that

∇bpjq “

¨

˚

˝

∇b1,j
...

∇bd,j

˛

‹

‚

denotes the Rdˆd-valued mapping which consists of all partial derivatives of bpjq.
The time-discrete d-dimensional Milstein scheme, in short Milstein scheme,

pXM
m “

`

pXM
m pt0q, . . . ,

pXM
m ptmq

˘

corresponding to the discretization (3.3.1) is defined by

pXM
m pt0q “ x0

pXM
m ptlq “

pXM
m ptl´1q ` a

`

pXM
m ptl´1q

˘

¨ ptl ´ tl´1q ` b
`

pXM
m ptl´1q

˘

¨
`

W ptlq ´W ptl´1q
˘

`

r
ÿ

j1,j2“1

∇bpj2qbpj1q
`

pXM
m ptl´1q

˘

¨ J lpj1,j2q

for l “ 1, . . . ,m.
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Componentwise this reads

pXM,k
m pt0q “ xk0,

pXM,k
m ptlq “ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨ ptl ´ tl´1q `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨
`

Wjptlq ´Wjptl´1q
˘

`

r
ÿ

j1,j2“1

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨ J lpj1,j2q

(3.3.2)

for l “ 1, . . .m and k “ 1, . . . , d.
Hence, in comparison to the Euler scheme, besides the increments of the driving Brownian motion the

Milstein scheme is additionally composed of multiple Itô integrals.

Additionally, we introduce a time-continuous Rd-valued stochastic process associated to pXM
m . The d-

dimensional Milstein process

XM
m “

`

XM,1
m , . . . , XM,d

m

˘1

on r0, 1s corresponding to the discretization (3.3.1) is defined by

XM,k
m pt0q “ xk0,

XM,k
m ptq “ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨ pt´ tl´1q `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨
`

Wjptq ´Wjptl´1q
˘

`

r
ÿ

j1,j2“1

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨

ˆ t

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq

(3.3.3)

for t P ptl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d.
Note that all paths of XE

m are continuous and XE
mptlq “

pXE
mptlq for all l “ 0, . . . ,m.

The following proposition states that all uniform moments of the Milstein process are uniformly bounded
in m, and it provides an upper bound for the qth mean uniform distance of X and XM

m under rather mild
assumptions on the coefficients of the SDE (3.1.1).

Proposition 3.3.2
Let q P r1,8q, and we assume (C1) as well as (C2) to hold. Then there exists a constant c P p0,8q such
that, for all m P N,

E
”

sup
tPr0,1s

}XM
m ptq}

q
8

ı

ď c (3.3.4)

as well as

E
”

sup
tPr0,1s

}Xptq ´XM
m ptq}

q
8

ı

ď c ¨∆q
max. (3.3.5)
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Proof:
Let m P N. Throughout the proof c denotes a not further specified positive real constant which may vary
from line to line and which might only depend on the moment parameter q, on the dimension d of the
SDE (3.1.1), on the dimension r of the driving Brownian motion W , on the initial value x0, and on the
constant in (C2).

Recall that F “ pFptqqtPr0,1s is the filtration as defined in (3.1.2). Furthermore, we write XM and pXM

instead of XM
m and pXM

m , respectively, and for k “ 1, . . . , d and j “ 1, . . . , r we write pal´1
k and pbl´1

k,j instead
of ak

`

pXM
m ptl´1q

˘

and bk,j
`

pXM
m ptl´1q

˘

, respectively. Additionally, we put

• Ak :“
m
ÿ

l“1

pal´1
k ¨ 1ptl´1,tls,

• Bk,j :“
m
ÿ

l“1

”

pbl´1
k,j `

r
ř

j1“1
∇bk,jbpj1q

`

pXMptl´1q
˘

¨
`

Wj1 ´Wj1ptl´1q
˘

ı

¨ 1ptl´1,tls, and

• Ck,j :“
m
ÿ

l“1

∇akbpjq
`

pXMptl´1q
˘

¨
`

Wj ´Wjptl´1q
˘

¨ 1ptl´1,tls

for k “ 1, . . . , d and j “ 1, . . . , r.
By the definition of XM, see (3.3.3), we have

XM,kptq
P -a.s.
“ xk0 `

ˆ t

0
Akpsq ds`

r
ÿ

j“1

ˆ t

0
Bk,jpsq dWjpsq (3.3.6)

as well as

Xkptq ´XM,kptq
P -a.s.
“

ˆ t

0

´

ak
`

Xpsq
˘

´Akpsq ´
r
ÿ

j“1

Ck,jpsq
¯

ds`
r
ÿ

j“1

ˆ t

0
Ck,jpsq ds

`

r
ÿ

j“1

ˆ t

0

´

bk,j
`

Xpsq
˘

´Bk,jpsq
¯

dWjpsq

(3.3.7)

for all t P r0, 1s and k “ 1, . . . , d.

For the moment we assume q P
`

2NX N4

˘

, and we split up the proof into single steps.

Step 1: The triangle inequality and Hölder’s inequality imply
ˇ

ˇ

ˇ

ˇ

ˇ

xk0 `

ˆ t

0

Akpsq ds`
r
ÿ

j“1

ˆ t

0

Bk,jpsq dWjpsq

ˇ

ˇ

ˇ

ˇ

ˇ

q

ď c ¨

˜

|xk0 |
q `

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ t

0

Akpsq ds

ˇ

ˇ

ˇ

ˇ

ˇ

q

`

r
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ t

0

Bk,jpsq dWjpsq

ˇ

ˇ

ˇ

ˇ

ˇ

q¸

ď c ¨

˜

1`

ˆ t

0

ˇ

ˇAkpsq
ˇ

ˇ

q
ds`

r
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ t

0

Bk,jpsq dWjpsq

ˇ

ˇ

ˇ

ˇ

ˇ

q¸

for all t P r0, 1s and k “ 1, . . . , d. Thus, (3.3.6) together with the previous inequality, the Burkholder-
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Davis-Gundy inequality, Hölder’s inequality (recall q ą 2), and Fubini’s theorem, lead to

E
”

sup
sPr0,ts

|XM,kpsq|q
ı

ď c ¨

˜

1` E

«

sup
sPr0,ts

ˆ s

0

ˇ

ˇAkpuq
ˇ

ˇ

q
du

ff

`

r
ÿ

j“1

E

«

sup
sPr0,ts

ˇ

ˇ

ˇ

ˇ

ˆ s

0
Bk,jpuq dWjpuq

ˇ

ˇ

ˇ

ˇ

q
ff¸

ď c ¨

˜

1` E
„ˆ t

0

ˇ

ˇAkpuq
ˇ

ˇ

q
du



`

r
ÿ

j“1

E

«

ˆˆ t

0
|Bk,jpuq|2 du

˙q{2
ff¸

ď c ¨

˜

1` E
„ˆ t

0

ˇ

ˇAkpuq
ˇ

ˇ

q
du



`

r
ÿ

j“1

E
„ˆ t

0
|Bk,jpuq|q du



¸

“ c ¨

˜

1`

ˆ t

0

´

E
”

ˇ

ˇAkpuq
ˇ

ˇ

q
ı

`

r
ÿ

j“1

E
”

|Bk,jpuq|q
ı

¯

du

¸

for all t P r0, 1s and k “ 1, . . . , d. Hence

E
”

sup
sPr0,ts

›

›XMpsq
›

›

q

8

ı

ď c ¨

˜

1`

ˆ t

0

d
ÿ

k“1

´

E
”

ˇ

ˇAkpuq
ˇ

ˇ

q
ı

`

r
ÿ

j“1

E
”

|Bk,jpuq|q
ı

¯

du

¸

(3.3.8)

for all t P r0, 1s. Next, observe (3.3.7), and by employing similar arguments which led to (3.3.8), we
conclude that

E
”

sup
sPr0,ts

}Xpsq ´XMpsq}q8

ı

ď c ¨

´ˆ t

0

d
ÿ

k“1

´

E
”

ˇ

ˇak
`

Xpuq
˘

´Akpuq ´
r
ÿ

j“1

Ck,jpuq
ˇ

ˇ

q
ı

`

r
ÿ

j“1

E
”

ˇ

ˇbk,j
`

Xpuq
˘

´Bk,jpuq
ˇ

ˇ

q
ı

¯

du

`

d
ÿ

k“1

r
ÿ

j“1

E

«

sup
sPr0,ts

ˇ

ˇ

ˇ

ˇ

ˆ s

0
Ck,jpuq du

ˇ

ˇ

ˇ

ˇ

q
ff
¯

(3.3.9)

for all t P r0, 1s.

Step 2: In this step we further estimate the expression on the right hand side of (3.3.8). First, by the
fact that a is of at most linear growth, we have

ˇ

ˇAkpsq
ˇ

ˇ

q
“

ˇ

ˇ

pal´1
k

ˇ

ˇ

q
ď c ¨

`

1` } pXMptl´1q}
q
8

˘

ď c ¨
`

1` sup
uPr0,ss

}XMpuq}q8
˘

(3.3.10)

for all s P ptl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d. Secondly, since b is of at most linear growth, and
due to (C2) (i), we obtain

|Bk,jpsq|q ď c ¨
`

1` } pXMptl´1q}
q
8

˘

¨

´

1`
r
ÿ

j1“1

|Wj1psq ´Wj1ptl´1q|
q
¯

(3.3.11)

for all s P ptl´1, tls, l “ 1, . . . ,m, k “ 1, . . . , d and j “ 1, . . . , r.
Next, note that for all l “ 1, . . . ,m the random vector pXMptl´1q is Fptl´1q-BpRdq-measurable

and σ
`

tW psq ´ W ptl´1q | s P ptl´1, tls u
˘

is independent of Fptl´1q. Hence, by (3.3.8), (3.3.10),
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(3.3.11), and by employing (C.2) as well as (C.3) in the proof of Lemma C.5, we arrive at

E
”

sup
sPr0,ts

›

›XMpsq
›

›

q

8

ı

ď c ¨

˜

1`

ˆ t

0
E
”

sup
uPr0,ss

}XMpuq}q8

ı

ds

¸

for all t P r0, 1s.
As a next step, we verify that the prerequisites of Gronwall’s inequality, see Lemma A.1, are

satisfied. To this end, we consider the function f : r0, 1s Ñ r0,8s defined by

fptq “ E
”

sup
sPr0,ts

›

›XMpsq
›

›

q

8

ı

,

and we show that f is bounded and Borel measurable. Indeed, since the function f is monotonically
increasing, we conclude that f is Borel measurable. It remains to show that f is bounded. Due
to the definition of the Milstein scheme, see (3.3.2), due to the properties of a, b and their partial
derivatives, since pXMptl´1q is Fptl´1q-BpRdq-measurable for all l “ 1, . . . ,m, due to Lemma 2.3.6 b)
and d), due to the properties of W , and since all absolute moments of normally distributed random
variables are finite, we obtain

E
”

} pXMptlq}
q
8

ı

ď c ¨

´

´

1` E
”

} pXMptl´1q}
q
8

ı¯

`

r
ÿ

j“1

E
”

`

1` } pXMptl´1q}
q
8

˘

¨
ˇ

ˇWjptlq ´Wjptl´1q
ˇ

ˇ

q
ı

`

r
ÿ

j1,j2“1

E
”

`

1` } pXMptl´1q}
q
8

˘

¨
ˇ

ˇJ lj1,j2
ˇ

ˇ

q
ı

¯

“ c ¨

´

´

1` E
”

} pXMptl´1q}
q
8

ı¯

`

´

1` E
”

} pXMptl´1q}
q
8

ı ¯

¨

r
ÿ

j“1

E
”

ˇ

ˇWjptlq ´Wjptl´1q
˘

|q
ı

` ¨

´

1` E
”

} pXMptl´1q}
q
8

ı ¯

¨

r
ÿ

j1,j2“1

E
”

ˇ

ˇJ lj1,j2
ˇ

ˇ

q
ı

¯

ď c ¨
´

1` E
”

} pXMptl´1q}
q
8

ı¯

for all l “ 1, . . . ,m. Together with the fact that x0 P Rd, the previous inequality iteratively implies

max
l“0,...,m

E
”

} pXMptlq}
q
8

ı

ă 8.

Thus, combined with (3.3.8), (3.3.10), (3.3.11) and the properties of the normal distribution we have

sup
tPr0,1s

fptq ď c ¨

˜

1`

ˆ 1

0

d
ÿ

k“1

´

E
”

ˇ

ˇAkpsq
ˇ

ˇ

q
ı

`

r
ÿ

j“1

E
”

|Bk,jpsq|q
ı

¯

ds

¸

ď c ¨

´

m
ÿ

l“1

ˆ tl

tl´1

´

1` E
”

} pXMptl´1q}
q
8

ı ¯

ds

`

m
ÿ

l“1

ˆ tl

tl´1

E
”

´

1` } pXMptl´1q}
q
8

¯

¨

´

1`
r
ÿ

j1“1

|Wj1psq ´Wj1ptl´1q|
q
¯

ı

ds

¯

ď c ¨
´

1` max
l“0,...,m

E
”

} pXMptlq}
q
8

ı ¯

ă 8.

43



3. Preliminaries on Stochastic Differential Equations

Now it follows from Gronwall’s inequality that

E
”

sup
tPr0,1s

}XMptq}q8

ı

ď sup
tPr0,1s

E
”

sup
sPr0,ts

›

›XMpsq
›

›

q

8

ı

ď c,

which finishes the proof of (3.3.4).

Step 3: It remains to prove (3.3.5). To this end, we further estimate the expression on the right hand
side of (3.3.9).

For the moment, we fix k P t1, . . . , du, j P t1, . . . , ru, l P t1, . . . ,mu and s P ptl´1, tls. Since
b is globally Lipschitz continuous, since the partial derivatives of b are uniformly bounded, and by
Remark 3.1.1 c), we obtain
ˇ

ˇbk,j
`

Xpsq
˘

´Bk,jpsq
ˇ

ˇ

q

ď c ¨

´

ˇ

ˇbk,j
`

Xpsq
˘

´ bk,j
`

XMpsq
˘
ˇ

ˇ

q

`
ˇ

ˇbk,j
`

XMpsq
˘

´ bk,j
`

pXMptl´1q
˘

´∇bk,j
`

pXMptl´1q
˘

¨
`

XMpsq ´XMptl´1q
˘
ˇ

ˇ

q

`
ˇ

ˇ∇bk,j
`

pXMptl´1q
˘

¨
`

XMpsq ´XMptl´1q
˘

´

r
ÿ

j1“1

∇bk,jbpj1q
`

pXMptl´1q
˘

¨
`

Wj1psq ´Wj1ptl´1q
˘
ˇ

ˇ

q
¯

ď c ¨

´

}Xpsq ´XMpsq}q8 ` }X
Mpsq ´XMptl´1q}

2q
8

`

ˇ

ˇ

ˇ
∇bk,j

`

pXMptl´1q
˘

¨

´

XMpsq ´XMptl´1q ´

r
ÿ

j1“1

bpj1q
`

pXMptl´1q
˘

¨
`

Wj1psq ´Wj1ptl´1q
˘

¯
ˇ

ˇ

ˇ

q
¯

ď c ¨

´

}Xpsq ´XMpsq}q8 ` }X
Mpsq ´XMptl´1q}

2q
8

`

d
ÿ

i“1

ˇ

ˇ

ˇ
XM,ipsq ´XM,iptl´1q ´

r
ÿ

j1“1

bi,j1
`

pXMptl´1q
˘

¨
`

Wj1psq ´Wj1ptl´1q
˘

ˇ

ˇ

ˇ

q
¯

.

(3.3.12)

By the definition of XM, and by the properties of a, b as well as by the properties of the partial
derivatives of b, we have

d
ÿ

i“1

ˇ

ˇXM,ipsq ´XM,iptl´1q ´

r
ÿ

j1“1

bi,j1
`

pXMptl´1q
˘

¨
`

Wj1psq ´Wj1ptl´1q
˘ˇ

ˇ

q

“

d
ÿ

i“1

ˇ

ˇ

ˇ
ai
`

pXMptl´1q
˘

¨ ps´ tl´1q `

r
ÿ

j1,j2“1

∇bi,j2bpj1q
`

pXMptl´1q
˘

¨

ˆ s

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

q

ď c ¨
`

1` } pXMptl´1q}
q
8

˘

¨

´

∆q
l´1 `

r
ÿ

j1,j2“1

ˇ

ˇ

ˇ

ˆ s

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

q¯

ď c ¨
`

1` } pXMptl´1q}
q
8

˘

¨

´

∆q
max `

r
ÿ

j1,j2“1

sup
s̃Prtl´1,ss

ˇ

ˇ

ˇ

ˆ s̃

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

q¯

.

Hence, together with Lemma 2.3.6 d), inequality (3.3.4), the Burkholder-Davis-Gundy inequality,
Minkowski’s integral inequality, see Proposition A.3, and the properties of the Brownian motion W ,
we end up with
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E

«

d
ÿ

i“1

ˇ

ˇXM,ipsq ´XM,iptl´1q ´

r
ÿ

j1“1

bi,j1
`

pXMptl´1q
˘

¨
`

Wj1psq ´Wj1ptl´1q
˘ˇ

ˇ

q

ff

ď c ¨ E

«

`

1` } pXMptl´1q}
q
8

˘

¨

´

∆q
max `

r
ÿ

j1,j2“1

sup
s̃Prtl´1,ss

ˇ

ˇ

ˇ

ˆ s̃

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

q¯
ff

“ c ¨
´

1` E
”

} pXMptl´1q}
q
8

ı¯

¨

´

∆q
max `

r
ÿ

j1,j2“1

E
”

sup
s̃Prtl´1,ss

ˇ

ˇ

ˇ

ˆ s̃

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

qı¯

ď c ¨

´

∆q
max `

r
ÿ

j1“1

E
”

´

ˆ s

tl´1

ˇ

ˇWj1puq ´Wj1ptl´1q
ˇ

ˇ

2
du

¯q{2
ı

¯

“ c ¨

¨

˚

˝

∆q
max `

r
ÿ

j1“1

»

–

˜

E
”

´

ˆ s

tl´1

ˇ

ˇWj1puq ´Wj1ptl´1q
ˇ

ˇ

2
du

¯q{2
ı

¸2{q
fi

fl

q{2
˛

‹

‚

ď c ¨

¨

˝∆q
max `

r
ÿ

j1“1

«ˆ s

tl´1

´

E
“
ˇ

ˇWj1puq ´Wj1ptl´1qq
ˇ

ˇ

q‰
¯2{q

du

ffq{2
˛

‚

ď c ¨

¨

˝∆q
max `

«ˆ s

tl´1

∆max du

ffq{2
˛

‚

ď c ¨∆q
max.

(3.3.13)

Next, the definition of XM and the properties of a and b lead to

d
ÿ

i“1

ˇ

ˇXM,ipsq ´XM,iptl´1q
ˇ

ˇ

ď c ¨
`

1` } pXMptl´1q}8
˘

¨

´

∆max `

r
ÿ

j“1

ˇ

ˇWjpsq ´Wjptl´1q
ˇ

ˇ`

r
ÿ

j1,j2“1

ˇ

ˇ

ˇ

ˆ s

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

¯

.

Then, by using similar arguments as in (3.3.13) we derive that

E
”

}XMpsq ´XMptl´1q}
2q
8

ı

ď

d
ÿ

i“1

E
”

|XM,ipsq ´XM,iptl´1q|
2q
ı

ď c ¨∆q
max. (3.3.14)

Now by combining (3.3.12)--(3.3.14) we arrive at

ˆ t

0

d
ÿ

k“1

r
ÿ

j“1

E
”

ˇ

ˇbk,j
`

Xpsq
˘

´Bk,jpsq
ˇ

ˇ

q
ı

ds ď c ¨

˜

∆q
max `

ˆ t

0
E
”

sup
uPr0,ss

}Xpuq ´XMpuq}q8

ı

ds

¸

(3.3.15)

for all t P r0, 1s.
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In a similar way one proves that

ˆ t

0

d
ÿ

k“1

E
”

ˇ

ˇak
`

Xpsq
˘

´Akpsq ´
r
ÿ

j“1

Ck,jpsq
ˇ

ˇ

q
ı

ds ď c ¨

˜

∆q
max `

ˆ t

0
E
”

sup
uPr0,ss

}Xpuq ´XMpuq}q8

ı

ds

¸

(3.3.16)

for all t P r0, 1s.
In view of (3.3.9), it remains to further estimate

d
ÿ

k“1

r
ÿ

j“1

E

«

sup
sPr0,ts

ˇ

ˇ

ˇ

ˇ

ˆ s

0
Ck,jpuq du

ˇ

ˇ

ˇ

ˇ

q
ff

.

For ease of notation, for k “ 1, . . . , d and j “ 1, . . . , r, we put

V k,jptq :“

ˆ t

0
Ck,jpsq ds

for t P p0, 1s as well as V k,jp0q :“ 0. Moreover, for l “ 1, . . . ,m and j “ 1, . . . , r we define real-valued
stochastic processes Z l,j “ pZ l,jptqqtPrtl´1,tls by

Z l,jptq “Wjptq ´Wjptl´1q.

Now observe:

(i) Due to the definition of the mappings Ck,j we have

V k,jptq “
l´1
ÿ

i“0

ˆ t^ti`1

ti

∇akbpjq
`

pXMptiq
˘

¨
`

Wjpuq ´Wjptiq
˘

du

“

l´1
ÿ

i“0

∇akbpjq
`

pXMptiq
˘

¨

ˆ t^ti`1

ti

`

Wjpuq ´Wjptiq
˘

du

for all t P rtl´1, tls, l “ 1, . . . ,m, j “ 1, . . . , r and k “ 1, . . . , d.

(ii) For all j “ 1, . . . , r and k “ 1, . . . , d, due to the definition of the filtration F and the definition
of the mapping Ck,j , the process V k,j is adapted to F .

(iii) For all j “ 1, . . . , r and l “ 1, . . . ,m the process Z l,j is a Brownian motion w.r.t to the filtration
pFptqqtPrtl´1,tls.

(iv) For all l “ 1, . . . ,m the random vector pXMptl´1q is Fptl´1q-BpRdq-measurable.

We use these observations to show that every process V k,j is an F-martingale. Indeed, let s, t P r0, 1s
with 0 ď s ă t ď 1. Then there exists an l P t1, . . . ,mu such that t P ptl´1, tls. It is enough to
consider the case s P ptl´1, tls. The properties of the conditional expected value, see Proposition B.1
a), c) and d), the observations (i)--(iv), the properties of Brownian motions, and Fubini’s theorem,
lead to
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E
”

V k,jptq
ˇ

ˇ

ˇ
Fs

ı

P -a.s.
“ E

”

V k,jpsq
ˇ

ˇ

ˇ
Fs

ı

` E
„

∇akbpjq
`

pXMptl´1q
˘

¨

ˆ t

s
Z l,jpuq du

ˇ

ˇ

ˇ
Fs



P -a.s.
“ V k,jpsq `∇akbpjq

`

pXMptl´1q
˘

¨ E
„ˆ t

s
Z l,jpuq du

ˇ

ˇ

ˇ
Fs



P -a.s.
“ V k,jpsq `∇akbpjq

`

pXMptl´1q
˘

¨ E
„ˆ t

s
Z l,jpuq du



P -a.s.
“ V k,jpsq `∇akbpjq

`

pXMptl´1q
˘

¨

ˆ t

s
E
”

Z l,jpuq
ı

du

P -a.s.
“ V k,jpsq.

It follows from Doob’s martingale inequality

d
ÿ

k“1

r
ÿ

j“1

E

«

sup
sPr0,ts

ˇ

ˇ

ˇ

ˇ

ˆ s

0
Ck,jpuq du

ˇ

ˇ

ˇ

ˇ

q
ff

ď c ¨
d
ÿ

k“1

r
ÿ

j“1

E
„
ˇ

ˇ

ˇ

ˇ

ˆ 1

0
Ck,jpsq ds

ˇ

ˇ

ˇ

ˇ

q

“ c ¨
d
ÿ

k“1

r
ÿ

j“1

E
”

ˇ

ˇV k,jptmq
ˇ

ˇ

q
ı

.

(3.3.17)

As a next step, recall that q P 2N, and note that

`

V k,jptlq, pX
Mptlq

˘

and
ˆ tl`1

tl

Z l`1,jpsq ds

are independent for all l “ 0, . . . ,m´ 1. Thus, we obtain

E
”

`

V k,jptl`1q
˘q
ı

“ E
„

´

V k,jptlq `

ˆ tl`1

tl

Ck,jpsq ds
¯q


“

q
ÿ

µ“0

ˆ

q

µ

˙

¨ E
„

`

V k,jptlq
˘q´µ

¨

´

ˆ tl`1

tl

Ck,jpsq ds
¯µ



“

q
ÿ

µ“0

ˆ

q

µ

˙

¨ E
„

`

V k,jptlq
˘q´µ

¨
`

∇akbpjq
`

pXMptlq
˘˘µ

¨

´

ˆ tl`1

tl

Z l`1,jpsq ds
¯µ



“

q
ÿ

µ“0

ˆ

q

µ

˙

¨ E
”

`

V k,jptlq
˘q´µ

¨
`

∇akbpjq
`

pXMptlq
˘˘µ

ı

¨ E
„

´

ˆ tl`1

tl

Z l`1,jpsq ds
¯µ



“ E
”

`

V k,jptlq
˘q
ı

`

q
ÿ

µ“2

ˆ

q

µ

˙

¨ E
”

`

V k,jptlq
˘q´µ

¨
`

∇akbpjq
`

pXMptlq
˘˘µ

ı

¨ E
„

´

ˆ tl`1

tl

Z l`1,jpsq ds
¯µ



(3.3.18)

for all l “ 0, . . . ,m´ 1, k “ 1, . . . , d and j “ 1, . . . , r, and where for the last equality we employed
the fact that

E
„ˆ tl`1

tl

Z l`1,jpsq ds



“

ˆ tl`1

tl

E
“

Wjpsq ´Wjptlq
‰

ds “ 0.
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Moreover, by applying Hölder’s inequality, and due to the properties of the Brownian motion W ,
we have

E
„

´

ˆ tl`1

tl

Z l`1,jpsq ds
¯µ



ď E
„

´

ˆ tl`1

tl

|Wjpsq ´Wjptlq|
µ ds

¯



¨∆µ´1
l

ď

ˆˆ tl`1

tl

∆
µ{2
l ds

˙

¨∆µ´1
l

“ ∆
3µ{2
l ď ∆l ¨∆

µ
l

(3.3.19)

for every µ “ 2, . . . , q. By combining (3.3.18) and (3.3.19), by using the properties of a and b, and
by applying (3.3.4), we arrive at

E
”

`

V k,jptl`1q
q
˘

ı

ď E
”

ˇ

ˇV k,jptlq
ˇ

ˇ

q
ı

`∆l ¨

q
ÿ

µ“2

ˆ

q

µ

˙

¨ E
”

`

V k,jptlq
˘q´µ

¨
`

∇akbpjq
`

pXMptlq
˘˘µ

¨∆µ
l

ı

ď E
”

ˇ

ˇV k,jptlq
ˇ

ˇ

q
ı

` c ¨∆l ¨ E

«

q
ÿ

µ“0

ˆ

q

µ

˙

¨
ˇ

ˇV k,jptlq
ˇ

ˇ

q´µ
¨
`

1` } pXMptlq}8
˘µ
¨∆µ

max

ff

“ E
”

ˇ

ˇV k,jptlq
ˇ

ˇ

q
ı

` c ¨∆l ¨ E
”´

ˇ

ˇV k,jptlq
ˇ

ˇ`
`

1` } pXMptlq}8
˘

¨∆max

¯qı

ď E
”

ˇ

ˇV k,jptlq
ˇ

ˇ

q
ı

¨
`

1` c ¨∆l

˘

` c ¨∆l ¨∆
q
max

for all l “ 0, . . . ,m ´ 1. Thus, by employing the discrete version of Gronwall’s inequality, see
Corollary A.2, we obtain

E
”

ˇ

ˇV k,jptmq
ˇ

ˇ

q
ı

ď max
l“0,...,m

E
”

ˇ

ˇV k,jptlq
ˇ

ˇ

q
ı

ď c ¨∆q
max (3.3.20)

for all k “ 1, . . . , d and j “ 1, . . . , r.

To sum up, in view of (3.3.9), (3.3.15), (3.3.16), (3.3.17) and (3.3.20) we derive that

E
”

sup
sPr0,ts

›

›Xpsq ´XMpsq
›

›

q

8

ı

ď c ¨

˜

∆q
max `

ˆ t

0
E
”

sup
uPr0,ss

}Xpuq ´XMpuq}q8

ı

ds

¸

for all t P r0, 1s. Similar to Step 2 one shows that g : r0, 1s Ñ r0,8s defined by

gptq “ E
”

sup
sPr0,ts

›

›Xpsq ´XMpsq
›

›

q

8

ı

is a bounded Borel measurable function, and hence Gronwall’s inequality yields

E
”

sup
tPr0,1s

›

›Xptq ´XMptq
›

›

q

8

ı

ď c ¨∆q
max,

which finishes the proof of (3.3.5).

For arbitrary q P r1,8q we choose q “ mintn P p2NX N4q | n ě qu. Then Hölder’s inequality and the
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results obtained in Step 1 up to Step 3 above imply

E
”

sup
tPr0,1s

›

›XMptq
›

›

q

8

ı

“

˜

´

E
”

sup
tPr0,1s

›

›XMptq
›

›

q

8

ı¯1{q
¸q

ď

˜

´

E
”

sup
tPr0,1s

›

›XMptq
›

›

q

8

ı¯1{q
¸q

ď c

as well as

E
”

sup
tPr0,1s

›

›Xptq ´XMptq
›

›

q

8

ı

ď

˜

´

E
”

sup
tPr0,1s

›

›Xptq ´XMptq
›

›

q

8

ı¯1{q
¸q

ď c ¨∆q
max,

which finishes the proof of Proposition 3.3.2.

Remark 3.3.3
The results of Proposition 3.3.2 are well known under much stronger assumptions on the coefficients a and
b than those imposed in Proposition 3.3.2, see, for example, [Fau92, Proposition 25] and [KP95, Theorem
10.6.3 and Corollary 10.6.4].

As a consequence of Proposition 3.3.2 and Proposition 3.3.1 we derive an upper bound for the qth
mean maximum distance of the Milstein scheme and the Euler scheme corresponding to the discretization
(3.3.1), which will prove beneficial in the Chapters 5 and 6.

Corollary 3.3.4
Let q P r1,8q, and we assume (C1) as well as (C2) to hold. Then there exists a constant c P p0,8q such
that, for all m P N,

E
”

max
l“0,...,m

} pXM
m ptlq ´

pXE
mptlq}

q
8

ı

ď c ¨∆q{2
max.

Proof:
Letm P N. Due to Proposition 3.3.1 and Proposition 3.3.2 there exists a constant c P p0,8q not depending
on m such that

ˆ

E
”

max
l“0,...,m

} pXM
m ptlq ´

pXE
mptlq}

q
8

ı

˙1{q

ď

ˆ

E
”

max
l“0,...,m

}Xptlq ´ pXM
m ptlq}

q
8

ı

˙1{q

`

ˆ

E
”

max
l“0,...,m

}Xptlq ´ pXE
mptlq}

q
8

ı

˙1{q

ď c ¨∆1{2
max.

We close this chapter by focusing on the special situation where b has the so-called commutativity
property.

Definition 3.3.5
The diffusion coefficient b is said to have the commutativity property if

`

∇bpj1q ¨ bpj2q
˘

pxq “
`

∇bpj2q ¨ bpj1q
˘

pxq

for all x P Rd and j1, j2 “ 1, . . . , r.

49



3. Preliminaries on Stochastic Differential Equations

For instance, the diffusion coefficient of a scalar SDE and the diffusion coefficient of an SDE with additive
noise or diagonal noise has the commutativity property.

Now, the following question naturally arises:

Which form does the Milstein scheme take if b has the commutativity property?

First note that by applying Itô’s formula we obtain

J lpj1,j2q “

ˆ tl

tl´1

pWj1psq ´Wj1ptl´1qq dWj2psq
P -a.s.
“

1

2
¨
``

Wj1ptlq ´Wj1ptl´1q
˘2
´∆l´1

˘

for all j1, j2 “ 1, . . . , r with j1 “ j2 and all l “ 1, . . . ,m, and
ˆ tl

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq `

ˆ tl

tl´1

`

Wj2psq ´Wj2ptl´1q
˘

dWj1psq
P -a.s.
“

`

Wj1ptlq ´Wj1ptl´1q
˘

¨
`

Wj2ptlq ´Wj2ptl´1q
˘

for all l “ 1, . . . ,m and j1, j2 “ 1, . . . , r with j1 ‰ j2, see, for instance, [KP95, (10.3.6) and (10.3.15)].
Thus, if b has the commutativity property, the kth component, k “ 1, . . . , d, of the Milstein scheme

can be rewritten such that

pXM,k
m pt0q “ xk0,

pXM,k
m ptlq

P -a.s.
“ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨ ptl ´ tl´1q `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨
`

Wjptlq ´Wjptl´1q
˘

`
1

2
¨

r
ÿ

j“1

∇bk,jbpjq
`

pXM
m ptl´1q

˘

¨
``

Wjptlq ´Wjptl´1q
˘2
´∆l´1

˘

`

r
ÿ

j1,j2“1
j1‰j2

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨ J lpj1,j2q

P -a.s.
“ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨ ptl ´ tl´1q `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨
`

Wjptlq ´Wjptl´1q
˘

`
1

2
¨

r
ÿ

j“1

∇bk,jbpjq
`

pXM
m ptl´1q

˘

¨
``

Wjptlq ´Wjptl´1q
˘2
´∆l´1

˘

`

r
ÿ

j1,j2“1
j1ăj2

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨
`

J lpj1,j2q ` J
l
pj2,j1q

˘

P -a.s.
“ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨ ptl ´ tl´1q `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨
`

Wjptlq ´Wjptl´1q
˘

`
1

2
¨

r
ÿ

j“1

∇bk,jbpjq
`

pXM
m ptl´1q

˘

¨
``

Wjptlq ´Wjptl´1q
˘2
´∆l´1

˘

`

r
ÿ

j1,j2“1
j1ăj2

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨
`

Wj1ptlq ´Wj1ptl´1q
˘

¨
`

Wj2ptlq ´Wj2ptl´1q
˘

(3.3.21)

for all l “ 1, . . . ,m. This special form of the Milstein scheme will play a role in Chapter 5.
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4 | Quantization of Itô Processes

In this chapter we mainly focus on quantization of Itô processes. The main results of this chapter, see
Theorem 4.1.2 and Theorem 4.3.2, will serve as auxiliary results in Chapter 5.

The chapter is organized as follows. In Section 1 we derive new results on the sharp asymptotics of
the Nth minimal quantization error of one-dimensional Itô processes in the spaces Lpr0, 1s, p P r1,8q,
and Cr0, 1s.

In Section 2 we apply the results obtained in the first section in order to derive the sharp asymptotics
of the Nth minimal quantization error of solutions of such one-dimensional SDEs that are driven by a
multidimensional Brownian motion. To our knowledge these results are new, and they generalize the main
theorems in [Der08a] and [Der08b].

In the last section, Section 3, we provide a lower bound for the Nth minimal quantization error with
respect to certain product-quantizations of multidimensional Itô process in the space pCpr0, 1s;Rdq, } ¨ }8q.
The main result of this section, Theorem 4.3.2, will be crucial for deducing the results of Theorem 5.3.5
in Chapter 5.

Before we deal with the above described subjects, we provide a few definitions. Among other things,
we clarify at this point what is to be understood by a product-quantization. In this context we confine
ourselves to those Banach spaces which will be focused on in the remaining part of this thesis.

Let d P N, and let p, s P r1,8q. Recall that 9 ¨ 9s is the norm on the space Cpr0, 1s;Rdq intro-
duced in the introductory chapter, see page 6. Furthermore, let pΩ,A, P q be a probability space, and let
X “ pX1, . . . , Xdq1 be a random element defined on pΩ,A, P q with values in the space pB, } ¨ }Bq where
pB, } ¨ }Bq P

 

pLdpr0, 1s, } ¨ }Ldpr0,1sq, pCpr0, 1s;R
dq, } ¨ }8q, pCpr0, 1s;Rdq,9 ¨ 9sq

(

.

Definition 4.0.1
Let N P N.

a) An N -quantization rX “ p rX1, . . . , rXdq1 of X is called an N -product-quantization of X if there
exist real numbers t1, . . . , td P r0, 1s such that

(i)
d
ř

k“1

tk ď 1 and

(ii) for all k “ 1, . . . , d it holds | ran p rXkq| ď tN tku.

Furthermore, an N -product-quantization rX of X is called an N -uniform-product-quantization
of X if tk “ 1{d for all k “ 1, . . . , d.
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4. Quantization of Itô Processes

b) Let f : B Ñ B be an N -quantizer and put p rX1, . . . , rXdq1 :“ f
`

pX1, . . . , Xdq1
˘

. If there exist real
numbers t1, . . . , td P r0, 1s such that

(i)
d
ř

k“1

tk ď 1 and

(ii) for all k “ 1, . . . , d it holds | ran p rXkq| ď tN tku,

then f is called an N -product-quantizer. Moreover, an N -product-quantizer f is called an N -
uniform-product-quantizer if tk “ 1{d for all k “ 1, . . . , d.

Definition 4.0.1 naturally gives rise to the following classes of quantizations. For N P N we define

• XN :“
 

rX : Ω Ñ B | rX is an N -quantization of X
(

,

• XN,prod :“
 

rX : Ω Ñ B | rX is an N -product-quantization of X
(

,

• XN,prod,uni :“
 

rX : Ω Ñ B | rX is an N -uniform-product-quantization of Xu.

Clearly,
XN,prod,uni Ď XN,prod Ď XN (4.0.1)

for all N P N. If d “ 1, we have equality in (4.0.1) for all N P N.
Next, we introduce the minimal quantization errors associated to the above classes of product-

quantizations.

Definition 4.0.2
Let s P r1,8q and N P N.

a) We call

e
psq
N,prodpX,Bq :“ inf

 

epsq
`

X, rX,B
˘ ˇ

ˇ rX P XN,prod
(

the Nth minimal quantization error of X (of order s) w.r.t. product-quantizations of
X.

b) We call

e
psq
N,prod,unipX,Bq :“ inf

 

epsq
`

X, rX,B
˘
ˇ

ˇ rX P XN,prod,uni
(

the Nth minimal quantization error of X (of order s) w.r.t. N -uniform-product-
quantizations of X.

The following lemma will prove beneficial in the proof of the upcoming Theorem 4.3.2.

Lemma 4.0.3
Let s P r1,8q. For all N P N it holds

e
psq
N,prod,unipX,Bq “ inf

 

epsq
`

X, fpXq, B
˘ ˇ

ˇ f is an N -uniform-product-quantizer
(

.

Proof:
This lemma can be proven similarly to Lemma 2.1.4.
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4.1. Quantization of One-dimensional Itô Processes

4.1. Quantization of One-dimensional Itô Processes

In this section we derive the sharp asymptotics of the Nth minimal quantization error of one-dimensional
Itô processes in the spaces pLpr0, 1s, } ¨ }Lpr0,1sq, p P r1,8q, and pCr0, 1s, } ¨ }8q. To our knowledge the main
result of this section, Theorem 4.1.2, is new.

In this section let r P N, let pΩ,A, P q be a probability space equipped with a filtration F “ pFptqqtPr0,1s
which satisfies the usual conditions, and let W “ pW1, . . . ,Wrq

1 be an r-dimensional F-Brownian motion
on r0, 1s defined on pΩ,A, P q.

Let X “ pXptqqtPr0,1s be a real-valued continuous stochastic process such that for all t P r0, 1s it
holds

Xptq “ x0 `

ˆ t

0
Y psq ds`

r
ÿ

j“1

ˆ t

0
Zjpsq dWjpsq P -a.s. (4.1.1)

where we require:

(A1) It holds x0 P R.

(A2) Y “ pY psqqsPr0,1s is a real-valued stochastic process such that

(i) Y is measurable and adapted to F , and

(ii) for all q P r1,8q it holds E
“

}Y }qL2r0,1s

‰

ă 8.

(A3) For all j “ 1, . . . , r it holds that Zj “ pZjpsqqsPr0,1s is a real-valued stochastic process such that
Zjp0q P R, Zj is adapted to F and the paths of Zj are γ-Hölder continuous for every γ P p0, 1{2q.

(A4) There exists an α P p0, 1{2q such that for all q P r1,8q it holds E
“ˇ

ˇ}Zp¨q}22
ˇ

ˇ

q

α

‰

ă 8 where
Z :“

`

Z1, . . . , Zr
˘

and, recall,

|f |α “ sup
0ďsătď1

|fptq ´ fpsq|

|t´ s|α

for f : r0, 1s Ñ R.

Remark 4.1.1

a) For all j “ 1, . . . , r assumption (A3) yields that all paths of Zj are continuous and thus Zj is mea-
surable. Furthermore, it is easy to see that (A3) implies that all paths of the process

`

}Zpsq}22
˘

sPr0,1s

lie in the space of α-Hölder continuous functions Cαr0, 1s where α denotes the constant in assump-
tion (A4). Hence we may interpret the process p}Zpsq}22qsPr0,1s as a random element defined on
Ω with values in Cαr0, 1s. In addition to that, note that the mapping f ÞÑ |f |α, f P Cαr0, 1s, is
continuous and therefore BpCαr0, 1sq-BpRq-measurable. Thus, for all q P r1,8q, the expected value
considered in assumption (A4) is well-defined.

b) Hölder’s inequality and assumption (A2) (ii) yield

E
„ˆ t

0
|Y psq| ds



ď E
„ˆ 1

0
|Y psq| ds



ď E

«

ˆˆ 1

0
|Y psq|2 ds

˙1{2
ff

ă 8
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4. Quantization of Itô Processes

for all t P r0, 1s. Thus, for all t P r0, 1s, we have
ˆ t

0
|Y psq| ds ă 8 P -a.s.

Hence, in particular, almost all sample paths of the process
´´ t

0 Y psq ds
¯

tPr0,1s
are continuous.

Additionally, the fact that the process Y is adapted to F leads to the same property for the
process

´´ t
0 Y psq ds

¯

tPr0,1s
.

c) As already mentioned in a), due to assumption (A3), every process Zj , j “ 1, . . . , r, has con-
tinuous paths and thus may be interpreted as a random element with values in the space Cr0, 1s.
Furthermore, the assumptions (A3) and (A4) imply

E
”

sup
tPr0,1s

|Zjptq|
q
ı

ă 8

for all q P r1,8q and j “ 1, . . . , r. Indeed, let q P r1,8q and j P t1, . . . , ru. Hölder’s inequality, and
the assumptions (A3) and (A4) imply

˜

E
”

sup
tPr0,1s

|Zjptq|
q
ı

¸1{q

ď

˜

E
”

sup
tPr0,1s

|Zjptq|
2q
ı

¸1{2q

ď

˜

E
”´

sup
tPr0,1s

ˇ

ˇ }Zptq}22 ´ }Zp0q}
2
2 ` }Zp0q}

2
2

ˇ

ˇ

¯qı
¸1{2q

ď 2 ¨
´

E
”

ˇ

ˇ }Zp¨q}22
ˇ

ˇ

q

α

ı

` E
”

}Zp0q}2q2

ı¯1{2q

ă 8,

(4.1.2)

where α is the parameter in assumption (A4).

Furthermore, by (4.1.2) we have

E
„ˆ t

0

`

Zjpsq
˘2
ds



ď E
”

sup
tPr0,1s

|Zjptq|
2
ı

ă 8

for all t P r0, 1s and j “ 1, . . . , r. Together with assumption (A3) and the construction of the
stochastic Itô integral, we conclude that for all j “ 1, . . . , r the process

ˆˆ t

0
Zjpsq dWjpsq

˙

tPr0,1s

is a continuous F-martingale. Thus, the process M “ pMptqqtPr0,1s defined by

Mptq “
r
ÿ

j“1

ˆ t

0
Zjpsq dWjpsq

is a continuous F-martingale, and it is well known that its uniquely (up to indistinguishability)
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4.2. Quantization of One-dimensional SDEs

determined quadratic variation process xMy “
`

xMyptq
˘

tPr0,1s
is given by

xMyptq “

ˆ t

0
}Zpsq}22 ds,

see, for example, [KS88, Remark 3.3.30].

d) Due to the remarks in a) and b) the expression on the right-hand side of (4.1.1) is well-defined.

e) The process X has continuous sample paths. Hence we may interpret X as a random element with
values in the space Cr0, 1s or Lpr0, 1s for p P r1,8q.

By employing the same key ideas and techniques as in [Der08a] and [Der08b] one obtains the following
result.

Theorem 4.1.2

(i) Let p P r1,8q. Then for all s P r1,8q it holds

lim
NÑ8

?
lnN ¨ e

psq
N pX,Lpr0, 1s

˘

“ κp ¨
´

E
”

›

› }Zp¨q}2
›

›

s

L2p{pp`2qr0,1s

ı

¯1{s

where κp is the constant in Theorem 2.3.11 (i).

(ii) For all s P r1,8q it holds

lim
NÑ8

?
lnN ¨ e

psq
N

`

X, Cr0, 1s
˘

“ κ8 ¨
´

E
”

›

› }Zp¨q}2
›

›

s

L2r0,1s

ı

¯1{s

where κ8 is the constant in Theorem 2.3.11 (ii).

Proof:
As a first step, one carries over all auxiliary statements along with their proofs presented in [Der08a,
Sections 2 and 3] and [Der08b, Sections 2 to 7]. In the course of this, apply the assumptions (A1)--(A4)
as well as (4.1.2) in Remark 4.1.1. Subsequent to this, one derives the assertions of the theorem by
mimicking the main proofs in the aforementioned papers, see [Der08a, pp. 948-951] and [Der08b, pp.
934-936].

4.2. Quantization of One-dimensional SDEs

We apply the results obtained in Theorem 4.1.2 to derive the sharp asymptotics of the minimal quanti-
zation error of solutions of such one-dimensional SDEs that are driven by a multidimensional Brownian
motion. Since we solely work with autonomous SDEs in this thesis, we also confine ourselves to such
SDEs here.

Let r P N, let pΩ,A, P q be a probability space, and let F “ pFptqqtPr0,1s be a filtration which satisfies the
usual conditions. We consider a one-dimensional autonomous SDE

dXptq “ apXptqq dt`
r
ÿ

j“1

bjpXptqq dWjptq, t P r0, 1s,

Xp0q “ x0,

(4.2.1)
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4. Quantization of Itô Processes

with initial condition x0 P R, r-dimensional driving F-Brownian motion W “ pW1, . . . ,Wrq
1, and Borel

measurable functions a : R Ñ R and b “ pb1, . . . , brq : R Ñ R1ˆr such that (4.2.1) has a strong solution
X “ pXptqqtPr0,1s and such that the processes

`

apXpsqq
˘

sPr0,1s
as well as

`

bjpXpsqq
˘

sPr0,1s
, j “ 1, . . . , r,

have the respective properties in (A2)--(A4) introduced in the previous section.

The following result, which is a direct consequence of Theorem 4.1.2, generalizes Theorem 1.1. in [Der08a]
and Theorem 1.1. in [Der08b].

Proposition 4.2.1

(i) Let p P r1,8q. Then for all s P r1,8q it holds

lim
NÑ8

?
lnN ¨ e

psq
N

`

X,Lpr0, 1s
˘

“ κp ¨
´

E
”

›

› }bpXp¨qq}2
›

›

s

L2p{pp`2qr0,1s

ı

¯1{s

where κp is the constant in Theorem 2.3.11 (i).

(ii) For all s P r1,8q it holds

lim
NÑ8

?
lnN ¨ e

psq
N

`

X, Cr0, 1s
˘

“ κ8 ¨
´

E
”

›

› }bpXp¨qq}2
›

›

s

L2r0,1s

ı

¯1{s

where κ8 is the constant in Theorem 2.3.11 (ii).

Remark 4.2.2
Assume that a and b satisfy the assumptions (C1) and (C2) (i). Then there exists a strong solution X of
the SDE (4.2.1), see Corollary 3.2.5, and we will show in Theorem 5.2.6 that the processes

`

apXpsqq
˘

sPr0,1s

and
`

bjpXpsqq
˘

sPr0,1s
, j “ 1, . . . , r, have the respective properties in (A2)--(A4). Hence in the setting

of Section 3.1 the statements in Proposition 4.2.1 hold.

4.3. A Lower Bound for Product-Quantizations of Multidimensional Itô
Processes

In this section we derive a lower bound for the Nth minimal quantization error w.r.t. N -uniform-product-
quantizations of multidimensional Itô processes in the space pCpr0, 1s;Rdq, }¨}8q. To this end, for technical
reasons, we consider Itô processes defined on the time interval r0,8q.

In this section let d, r P N, let pΩ,A, P q be a probability space equipped with a filtration F “ pFptqqtPr0,8q
which satisfies the usual conditions, and let W “ pW1, . . . ,Wrq

1 be an r-dimensional F-Brownian motion
on r0,8q defined on pΩ,A, P q.

Let X “ pX1, . . . , Xdq1 be an Rd-valued continuous stochastic process on r0,8q such that for all
k “ 1, . . . , d and t P r0,8q it holds

Xkptq “ xk0 `

ˆ t

0
Y kpsq ds`

r
ÿ

j“1

ˆ t

0
Zkj psq dWjpsq, P -a.s.

where we require:
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4.3. A Lower Bound for Product-Quantizations of Multidimensional Itô Processes

(B1) For all k “ 1, . . . , d it holds xk0 P R.

(B2) For all k “ 1, . . . , d it holds that Y k “ pY kpsqqsPr0,8q is a real-valued stochastic process such that

(i)) Y k is measurable, adapted to F , and for all t P r0,8q it holds
ˆ t

0
|Y kpsq| ds ă 8 P -a.s.,

and

(ii)) Y k satisfies (A2) (ii).

(B3) For all k “ 1, . . . , d and j “ 1, . . . , r it holds that Zkj “ pZ
k
j psqqsPr0,8q is a real-valued stochastic pro-

cess such that Zkj p0q P R, Zkj is measurable and adapted to F , and the process
´´ t

0 Z
k
j psq dWjpsq

¯

tPr0,8q

is well-defined and a continuous F-martingale. Moreover, we require that for all k “ 1, . . . , d and
all j “ 1, . . . , r the process pZkj psqqsPr0,1s has γ-Hölder continuous paths for all γ P p0, 1{2q.

(B4) For all k “ 1, . . . , d the process Zk :“
`

Zk1 , . . . , Z
k
r

˘

satisfies (A4) as well as

lim
tÑ8

ˆ t

0
}Zkpsq}22 ds “ 8. (4.3.1)

Remark 4.3.1

a) By employing the assumptions (B2)--(B4) one derives results analogous to those in Remark 4.1.1.
In particular, we point out that by assumption (B3) we have that for all k “ 1, . . . , d the process
Mk “ pMkptqqtPr0,8q defined by

Mkptq “
r
ÿ

j“1

ˆ t

0
Zkj psq dWjpsq

is a continuous F-martingale, and its quadratic variation process xMky “
`

xMkyptq
˘

tPr0,8q
is given

by

xMkyptq “

ˆ t

0
}Zkpsq}22 ds.

Furthermore, for all k “ 1, . . . , d assumption (B4) ensures limtÑ8xM
kyptq “ 8. Note that

without changing Mk on the time interval r0, 1s one can always ensure (4.3.1) to hold by changing
Zk outside r0, 1s in a suitable way. Indeed, for j “ 1, . . . , r define a stochastic process pZkj ptqqtPr0,8q
by

Z
k
j ptq “

#

Zkj ptq, if t P r0, 1s,
t, else.

Then the process Zk :“ pZ
k
1, . . . , Z

k
r q satisfies
ˆ t

0
}Z

k
psq}22 ds “

ˆ t

0
}Zkpsq}22 ds
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for all t P r0, 1s, and it is easy to see that

lim
tÑ8

ˆ t

0
}Z

k
psq}22 ds “ 8.

But for simplicity we a priori assumed (4.3.1) to hold.

b) For all k “ 1, . . . , d and all q P r1,8q it holds E
“`

xMkyp1q
˘q‰

ă 8. Indeed, let k P t1, . . . , du, and
let q P r1,8q. Similar to Remark 4.1.1 b), and by applying the assumptions (B3) and (B4), we
conclude that there exists a constant cpqq P p0,8q depending only on q such that

E
”

`

xMkyp1q
˘q
ı

“ E

«˜ˆ 1

0

r
ÿ

j“1

|Zkj psq|
2 ds

¸qff

ď cpqq ¨
r
ÿ

j“1

E
”

sup
tPr0,1s

ˇ

ˇZkj ptq
ˇ

ˇ

2q
ı

ă 8. (4.3.2)

We will utilize this fact in the proof of the upcoming Proposition 4.3.5.

We will employ large parts of the key ideas and techniques presented in [Der08b] in order to derive
the upcoming Theorem 4.3.2, which is the main result of this section. Unfortunately, our proof of that
theorem incorporates only the case where the components ofM :“ pM1, . . . ,Mdq1 are mutually orthogonal
in the sense that for every i, k P t1, . . . , du with i ‰ k and every t P r0,8q it holds xM i,Mkyptq “ 0 where
xM i,Mky denotes the cross-variation process of M i and Mk. Nevertheless, we expect the results in
Theorem 4.3.2 to hold also in the general case, but a rigorous proof of this conjecture remains an open
problem.

Now, for the rest of this section we impose the following additional assumption on the processes
Z1, . . . , Zd:

(B5) In addition to the assumptions (B3) and (B4) we assume that the processes Z1, . . . , Zd are of a
form such that for every i, k P t1, . . . , du with i ‰ k and every t P r0,8q it holds xM i,Mkyptq “ 0.

Theorem 4.3.2
For all s P r1,8q it holds

lim inf
NÑ8

?
lnN ¨ e

psq
N,prod,uni

`

X, Cpr0, 1s;Rdq
˘

ě κ8 ¨
?
d ¨

ˆ

E
„

max
k“1,...,d

›

› }Zkp¨q}2
›

›

s

L2r0,1s

˙1{s

where κ8 is the constant in Theorem 2.3.11 (ii).

In the following, we outline the basic strategy for the proof of Theorem 4.3.2. For k “ 1, . . . , d and
t P r0,8q we put

Akptq :“ xk0 `

ˆ t

0
Y kpsq ds.

Then for k “ 1, . . . , d and t P r0,8q it holds

Xkptq “ Akptq `Mkptq P -a.s.

Next, since for all k “ 1, . . . , d the process Mk is a continuous martingale with limtÑ8xM
kyptq “ 8 and

due to assumption (B5), the theorem of F. B. Knight, see Proposition C.3 in the Appendix, yields
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that we can represent M as a d-dimensional stochastic process consisting of d independent time-changed
Brownian motions. More precisely, for k “ 1, . . . , d and s P r0,8q consider the stopping time

T kpsq :“ inf
 

t P r0,8q
ˇ

ˇ xMkyptq ě s
(

.

Then the stochastic process B “ pBpsqqsPr0,8q “ pB
1psq, . . . , Bdpsqq1sPr0,8q with B

kpsq “ Mk
`

T kpsq
˘

for
k “ 1, . . . , d and s P r0,8q is a Brownian motion with respect to its completed natural filtration which
we denote by FB “

`

FBpsq
˘

sPr0,8q
.

Now we proceed in roughly two steps. First, for all k “ 1, . . . , d we construct a sequence pψ̂knqnPN of
approximations of xMky on r0, 1s such that for every n P N the process ψ̂kn has monotonically increasing,
continuous sample paths. Secondly, one the one hand, we apply a specific quantization procedure to the
process

`

B1pψ̂1
npsqq, . . . , B

dpψ̂dnpsqq
˘

sPr0,1s
for all n P N, and, on the other hand, we quantize the process

pA1, . . . , Adq. We add that the procedure for quantization of pA1, . . . , Adq is hidden in the statements of
Theorem 4.3.6. For further details we refer the reader to [Der08b, Proof of Theorem 7.1.].

4.3.1. Auxiliary Statements for the Proof of Theorem 4.3.2

As already mentioned, for proving Theorem 4.3.2 we employ large parts of the key ideas and auxiliary
statements in [Der08b]. More precisely, to avoid redundancy, we carry over only those auxiliary statements
stated in the aforementioned paper which make our proof self-contained. Furthermore, we additionally
employ arguments in the main proof in Section 4.3.2 which are different to those used in [Der08b].

We proceed as follows. The required auxiliary statements are presented in the following subsections,
and afterwards we carry out the main proof of Theorem 4.3.2.

An Auxiliary Lemma on Quantization of Brownian Motions

Lemma 4.3.3
Let s P r1,8q, let T P p0,8q, and let B be a one-dimensional Brownian motion on r0, T s. Moreover, let
the operator S : Cr0, T s Ñ Cr0, 1s be defined by

pSfqpxq “
1
?
T
¨ fpT ¨ xq, x P r0, 1s.

Then the following holds:

a) S is a bounded linear operator with }S}op “ 1{
?
T .

b) The process SpBq is a one-dimensional Brownian motion on r0, 1s.

c) For all N P N it holds

e
psq
N

`

SpBq, Cr0, 1s
˘

ď
1
?
T
¨ e
psq
N

`

B, Cr0, T s
˘

.

Proof:

a) Clearly, S is linear. Moreover, it holds

}Sf}8 “
1
?
T
¨ sup
xPr0,1s

|fpT ¨ xq| “
1
?
T
¨ sup
xPr0,T s

|fpxq| “
1
?
T
¨ }f}8
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for all f P Cr0, T s. Hence S is bounded with

}S}op “
1
?
T
.

b) The fact that SpBq is a one-dimensional Brownian motion on r0, 1s follows directly from the scaling
properties of Brownian motions.

c) Note that E r}B}s8s ă 8, and therefore Proposition 2.1.8 and a) yield

e
psq
N

`

SpBq, Cr0, 1s
˘

ď }S}op ¨ e
psq
N

`

B, Cr0, T s
˘

“
1
?
T
¨ e
psq
N

`

B, Cr0, T s
˘

for all N P N.

A Sequence of Approximations of xMky

Recall that for all k “ 1, . . . , d assumption (B4) yields the existence of a parameter αk P p0, 1{2q such
that for all q P r1,8q it holds

E
”

ˇ

ˇ}Zkp¨q}22
ˇ

ˇ

q

αk

ı

ă 8. (4.3.3)

In this subsection, for every k “ 1, . . . , d, we construct a sequence of approximations of pxMkyptqqtPr0,1s,
which depends on the parameter αk. For the construction we use a technique proposed at the beginning
of Section 4 in [Der08b].

Fix k P t1, . . . , du, let n P N, and let 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1 be the discretization of r0, 1s given
by

ti “
i

n

for i “ 0, . . . , n. Moreover, we consider the set

Ipαk, nq :“
!

j ¨ n´p1`α
kq
ˇ

ˇ

ˇ
j P N0 X

“

0, n2¨p1`αkq
‰

)

,

and we put jmax :“ max
 

j P N0 | j P r0, n
2¨p1`αkqs

(

as well as

• CIpαk,nqp0q :“
”

0, 1{2 ¨ n´p1`α
kq
¯

,

• CIpαk,nqpjq :“
”

j ¨ n´p1`α
kq ´ 1{2 ¨ n´p1`α

kq, j ¨ n´p1`α
kq ` 1{2 ¨ n´p1`α

kq
¯

for j “ 1, . . . , jmax ´ 1,

• and CIpαk,nqpjmaxq :“
”

jmax ¨ n
´p1`αkq ´ 1{2 ¨ n´p1`α

kq,8
¯

.

By utilizing the intervals CIpαk,nqpjq, j “ 0, . . . , jmax, we define πIpαk,nq : RÑ R by

πIpαk,nqpxq “

jmax
ÿ

j“0

j

n1`αk
¨ 1CIpαk,nqpjq

pxq.
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Now let ψ̂kn “
`

ψ̂knptq
˘

tPr0,1s
be the real-valued stochastic process which is defined by

ψ̂knptiq “ πIpαk,nq
`

xMkyptiq
˘

for i “ 0, . . . , n and

ψ̂knptq “ ψ̂knptiq ¨ pti`1 ´ tq ¨ n` ψ̂
k
npti`1q ¨ pt´ tiq ¨ n

for t P pti, ti`1q and i “ 0, . . . , n´ 1.

Remark 4.3.4

a) For all n P N and k “ 1, . . . , d the process ψ̂kn has continuous and monotonically increasing sample
paths, where the latter is a consequence of the fact that the process xMky has monotonically
increasing paths.

b) Let n P N. By the construction of the process ψ̂kn, and by the definition of the set Ipαk, nq, it holds

ψ̂knp1q ď jmax ¨ n
´p1`αkq ď n1`αk ď n1`αmax

for all k “ 1, . . . , d where αmax :“ maxk“1,...,d α
k. We will utilize this fact in the proof of Theorem

4.3.2.

The following proposition serves as one of the auxiliary statements in the proof of Theorem 4.3.2.

Proposition 4.3.5
Let k P t1, . . . , du. For every q P r1,8q there exists a constant cpqq P p0,8q depending only on q such
that, for all n P N,

˜

E
”

sup
tPr0,1s

ˇ

ˇxMkyptq ´ ψ̂knptq
ˇ

ˇ

q
ı

¸1{q

ď cpqq ¨ n´p1`α
kq.

Moreover, for all n P N3, it holds

ln | ranpψ̂knq| ď 6 ¨ n ¨ lnn. (4.3.4)

Proof:
We show only (4.3.4). The remaining part of the proof is carried out by mimicking the proof of Proposition
4.1. in [Der08b]. In the course of this, apply (4.3.2) and (4.3.3).

By the definition of ψ̂kn, and by the definition of the set Ipαk, nq, we have

ln | ranpψ̂knq| ď ln
`

|Ipαk, nq|n
˘

“ n ¨ lnp|Ipαk, nqq ď n ¨ lnp2 ¨ n2¨p1`αkqq

for all n P N. Together with the fact that αk ă 1{2 we obtain

ln | ranpψ̂knq| ď n ¨ ln 2` n ¨ 2 ¨ p1` αkq ¨ lnn ď 3 ¨ n ¨ p1` lnnq ď 6 ¨ n ¨ lnn

for all n P N3.
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The Main Auxiliary Theorem

In this section we provide the main auxiliary result. We prove only the result in a). The statements in
b)--d) can be proven analogously to their corresponding statements presented in [Der08b, Theorem 7.1.].

Recall that, for k “ 1, . . . , d and n P N, ψ̂kn is the approximation of pxMkyptqqtPr0,1s constructed in the
previous subsection, which depends on the parameter αk. Moreover, we define αmin :“ mink“1,...,d α

k,
and for n P N we put ψ̂n :“

`

ψ̂1
n, . . . , ψ̂

d
n

˘1.

Theorem 4.3.6
Let γ P

`

p1` αminq
´1, 1

˘

, and let pnN qNPN be the sequence in N such that n1 “ 1 and nN “ rplnNqγs for
N ě 2. Then for every s P r1,8q there exist a sequence of d-dimensional Brownian motions

`

WN

˘

NPN “
`

pW
1
N , . . . ,W

d
N q
1
˘

NPN on r0,8q, a sequence pRN qNPN “
`

pR1
N , . . . , R

d
N q
1
˘

NPN of Rd-valued, continuous
stochastic processes on r0, 1s, as well as a sequence pTN qNPN “

`

pT 1
N , . . . , T

d
N q
1
˘

NPN of Borel measurable
mappings TN : Cpr0, 1s;Rdq Ñ Cpr0, 1s;Rdq such that the following holds:

a) For all N P N the Brownian motion WN is independent of ψ̂nN .

b) For all k “ 1, . . . , d and t P r0,8q it holds

Xkptq “W
k
N

`

ψ̂knN ptq
˘

`RkN ptq, P -a.s.

c) For N P N we put p rR1
N , . . . ,

rRdN q
1 :“ TN

`

pR1
N , . . . , R

d
N q
1
˘

.

(i) There exist a real number δ1 P p0,8q, a constant c1 P p0,8q, and an index N1 P N2 such that,
for all N ě N1 and k “ 1, . . . , d,

˜

E
”

sup
tPr0,1s

ˇ

ˇRkN ´
rRkN

ˇ

ˇ

s
ı

¸1{s

ď c1 ¨
`

lnN
˘´p1{2`δ1q.

(ii) There exist a real number δ2 P p0, 1q, a constant c2 P N, and an index N2 P N2 such that, for
all N ě N2 and k “ 1, . . . , d,

ln
ˇ

ˇ ran
`

rRkN , ψ̂
k
nN

˘
ˇ

ˇ ď c2 ¨
P`

lnN
˘δ2T

¨ ln
`
P`

lnN
˘δ2T

˘

.

Proof:
Let s P r1,8q. We show that there exists a sequence of d-dimensional Brownian motions on r0,8q that
satisfies a). To prove the statements b)--d) one first carries over the auxiliary statements in [Der08b,
Sections 4 to 6]. Subsequently, one carries out the main proof of the statements b)--d) by mimicking the
proof of the analogue statements in [Der08b, Theorem 7.1.].

To prove the existence of a sequence of d-dimensional Brownian motions on r0,8q that satisfies a),
we use results in the field of enlargements of filtrations presented in [ADI07] and [JY85], which are
also employed in [Der08b, Section 6]. Recall that FB is the completed filtration generated by the d-
dimensional Brownian motion B “

`

Bptq
˘

tPr0,8q
. For N P N we consider the right-continuous initial

enlargement GnN “ pGnN ptqqtPr0,8q of FB given by

GnN ptq :“
č

sąt

σ
´

FBpsq Y σ
`

ψ̂nN
˘

¯

.
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4.3. A Lower Bound for Product-Quantizations of Multidimensional Itô Processes

Then the results presented in [ADI07, Lemma 1, Proposition 1 and Theorem 3] imply that for k “ 1, . . . , d
and N P N the process Bk can be written as

Bkptq “W
k
N ptq `

ˆ t

0
βkN psq ds P -a.s.,

for t P r0,8q, where pβkN ptqqtPr0,8q is a real-valued, predictable stochastic process adapted to GnN and

W
k
N “ pW

k
N ptqqtPr0,8q is given by

W
k
N ptq “ Bkptq ´

ˆ t

0
βkN psq ds

for t P r0,8q. Also see [ADI07, Example 2].
As a next step, we show that for all N P N the process WN “ pW

1
N , . . . ,W

d
N q
1 is a d-dimensional

Brownian motion on r0,8q w.r.t to the filtration GnN . For the moment we fix N P N. Now, as stated
in [ADI07, Theorem 3], for every k “ 1, . . . , d the process W k

N is a continuous local GnN -martingale.
Moreover, note that for every k “ 1, . . . , d the process

´ ´ t
0 β

k
N psq ds

¯

tPr0,8q
is of bounded variation, and

recall that B1, . . . , Bd are independent one-dimensional Brownian motions. Together with standard facts
on cross-variation processes we arrive at

xW
i
N ,W

k
Nyptq “ δikt (4.3.5)

for i, k P t1, . . . , du and t P r0,8q where δik denotes Kronecker’s delta. Thus all prerequisites of Lévy’s
characterization of d-dimensional Brownian motions are satisfied, and we may conclude that WN is a
d-dimensional Brownian motion w.r.t GnN . It remains to show that for all N P N the Brownian motion
WN is independent of ψ̂nN . Indeed, let N P N. On the one hand, since WN is a GnN -Brownian motion,
WN is independent of GnN p0q. On the other hand, due to the definition of the filtration GnN , ψ̂nN is
measurable with respect to GnN p0q. Hence WN is independent of ψ̂nN , which finishes the proof of a).

4.3.2. Proof of Theorem 4.3.2

We carry out the main proof.

Proof of Theorem 4.3.2:
Let s P r1,8q. Recall that αmax “ maxk“1,...,d α

k where αk is the parameter in Proposition 4.3.5.
Moreover, put αmin :“ mink“1,...,d α

k, fix γ P pp1 ` αminq
´1, 1q, let pnN qNPN be the sequence in N

such that n1 “ 1 and nN “
P

plnNqγ
T

for N ě 2, and for N P N let pWN qNPN be the sequence
of d-dimensional Brownian motions on r0,8q, let pRN qNPN be the sequences of continuous stochastic
processes on r0, 1s with values in Rd, and let pTN qNPN be the sequences of Borel measurable map-
pings TN “ pT 1

N , . . . , T
d
N q
1 : Cpr0, 1s;Rdq Ñ Cpr0, 1s;Rdq in Theorem 4.3.6. Again, for N P N, we put

p rR1
N , . . . ,

rRdN q
1 :“ TN

`

pR1
N , . . . , R

d
N q
1
˘

.

We split up the proof into single steps.

Step 1: In this step we make a few preliminary observations. Let k P t1, . . . , du, let N P N, and for the
moment we fix ω P Ω. For t P

“

0, ψ̂knN p1qpωq
‰

we put

ϕ̂knN ptqpωq :“ inf
 

s P r0,8q
ˇ

ˇ ψ̂knN psqpωq ě t
(

.
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Recall that the function s ÞÑ ψ̂knN psqpωq, s P r0, 1s, is monotonically increasing and continuous.
Hence the function t ÞÑ ϕ̂knN ptqpωq, t P

“

0, ψ̂knN p1qpωq
‰

, is its monotonically increasing, continuous
pseudo-inverse. In particular, it holds

ψ̂knN
`

ϕ̂knN ptqpωq
˘

pωq “ t (4.3.6)

for all t P
“

0, ψ̂knN p1qpωq
‰

. Together with Theorem 4.3.6 b) the observation in (4.3.6) leads to

W
k
N ptqpωq “ Xk

`

ϕ̂knN ptqpωq
˘

pωq ´RkN
`

ϕ̂knN ptqpωq
˘

pωq (4.3.7)

for all t P
“

0, ψ̂knN p1qpωq
‰

.

Step 2: First, recall that for all N P N and k “ 1, . . . , d we have ψ̂knN p1q ď n
p1`αmaxq

N . Secondly, for N P N
let SN : Cpr0, 1s;Rdq Ñ Cpr0, 1s;Rdq be an N -uniform-product-quantizer of X1 :“ pXptqqtPr0,1s, and
we put p rX1

N , . . . ,
rXd
N q
1 “ SN

`

X1

˘

. Then, due to Definition 4.0.1 b), we have
ˇ

ˇ ran p rXk
N q

ˇ

ˇ ď
X

N1{d
\

(4.3.8)

for all k “ 1, . . . , d and N P N.

Now, let k P t1, . . . , du, and let N P N. We utilize rXk
N and rRkN and define a real-valued stochastic

process ĂW k
N on r0, np1`αmaxq

N s by

ĂW k
N ptq :“ rXk

N

`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

´ rRkN
`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

(4.3.9)

for t P
“

0, n
p1`αmaxq

N

‰

. Now combining (4.3.7) and (4.3.9) leads to

¨

˝E
”

max
k“1,...,d

sup
t Pr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
W

k
N

`

t^ ψ̂knN p1q
˘

´ĂW k
N

`

t^ ψ̂knN p1q
˘

ˇ

ˇ

ˇ

s
ı

˛

‚

1{s

ď

¨

˝E
”

max
k“1,...,d

sup
t Pr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
Xk

`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

´ rXk
N

`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

ˇ

ˇ

ˇ

s
ı

˛

‚

1{s

`

¨

˝E
”

max
k“1,...,d

sup
t Pr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
RkN

`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

´ rRkN
`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

ˇ

ˇ

ˇ

s
ı

˛

‚

1{s

.

(4.3.10)

Furthermore, for all k “ 1, . . . , d, t P
“

0, n
p1`αmaxq

N

‰

and ω P Ω it holds ϕ̂knN
`

t^ψ̂knN p1qpωq
˘

pωq P r0, 1s.
Hence we have

ˇ

ˇ

ˇ
Xk

`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

´ rXk
N

`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

ˇ

ˇ

ˇ
ď max

k“1,...,d
sup
uPr0,1s

ˇ

ˇXkpuq ´ rXk
N puq

ˇ

ˇ

and
ˇ

ˇ

ˇ
RkN

`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

´ rRkN
`

ϕ̂knN
`

t^ ψ̂knN p1q
˘

˘

ˇ

ˇ

ˇ
ď max

k“1,...,d
sup
uPr0,1s

ˇ

ˇRkN puq ´
rRkN puq

ˇ

ˇ.
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Therefore, together with (4.3.10), we obtain

¨

˝E
”

max
k“1,...,d

sup
t Pr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
W

k
N

`

t^ ψ̂knN p1q
˘

´ĂW k
N

`

t^ ψ̂knN p1q
˘

ˇ

ˇ

ˇ

s
ı

˛

‚

1{s

ď

˜

E
”

max
k“1,...,d

sup
t Pr0,1s

ˇ

ˇXkptq ´ rXk
N ptq

ˇ

ˇ

s
ı

¸1{s

`

˜

E
”

max
k“1,...,d

sup
t Pr0,1s

ˇ

ˇRkN ptq ´
rRkN ptq

ˇ

ˇ

s
ı

¸1{s

.

(4.3.11)

Step 3: In this step we estimate

lim sup
NÑ8

?
lnN ¨

˜

E
”

max
k“1,...,d

sup
tPr0,1s

ˇ

ˇRkN ptq ´
rRkN ptq

ˇ

ˇ

s
ı

¸1{s

.

By Theorem 4.3.6 c) there exist a real number δ1 P p0,8q, a constant c1 P p0,8q and an index
N1 P N2 such that, for all N ě N1,

˜

E
”

max
k“1,...,d

sup
tPr0,1s

ˇ

ˇRkN ptq ´
rRkN ptq

ˇ

ˇ

s
ı

¸1{s

ď c1 ¨
`

lnN
˘´p1{2`δ1q.

Thus,

lim sup
NÑ8

?
lnN ¨

˜

E
”

max
k“1,...,d

sup
tPr0,1s

ˇ

ˇRkN ptq ´
rRkN ptq

ˇ

ˇ

s
ı

¸1{s

“ 0. (4.3.12)

Step 4: In this step we further estimate

¨

˝E
”

max
k“1,...,d

sup
t Pr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
W

k
N

`

t^ ψ̂knN p1q
˘

´ĂW k
N

`

t^ ψ̂knN p1q
˘

ˇ

ˇ

ˇ

s
ı

˛

‚

1{s

.

To this end, for x “ px1, . . . , xdq1 P Rd, we put

k˚pxq :“ min
 

k P t1, . . . , du
ˇ

ˇ |xk| “ max
i“1,...,d

|xi|
(

.

Moreover, we will employ the following observations:

• Let k P t1, . . . , du. Theorem 4.3.6 d) combined with (4.3.8) as well as (4.3.9) implies the
existence of a real number δ2 P p0, 1q, a constant c2 P N and an index N2 P N2 such that for all
N ě N2 we have

ˇ

ˇ ran
`

ĂW k
N

˘ˇ

ˇ ď
ˇ

ˇ ran
`

rXk
N ,

rRkN , ψ̂
k
nN

˘ˇ

ˇ ď
X

N1{d
\

¨mc2¨mN
N

(4.3.13)

where mN :“
P`

lnN
˘δ2T.

• It is easy to see that

lim
NÑ8

mN ¨ lnmN

lnN
“ 0. (4.3.14)
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• For the moment we fix N P N. By Theorem 4.3.6 a) we have that

WN “
`

W
1
N , . . . ,W

d
N

˘1 is independent of ψ̂nN p1q “
`

ψ̂1
nN
p1q, . . . , ψ̂dnN p1q

˘1
.

Furthermore, by the definition of
`

rX1
N , . . . ,

rXd
N

˘1 and
`

rR1
N , . . . ,

rRdN
˘1, and due to (4.3.7) there

exists a Borel measurable mapping ΦN : Cpr0, 1s;Rdq Ñ Cpr0, 1s;Rdq such that ĂWN “ ΦN pWN q.
In particular, combining the previous considerations leads to the fact that

`

WN ,ĂWN

˘

is inde-
pendent of ψ̂nN p1q.

Now by using the above observations, by applying Proposition B.2, Lemma 4.3.3, (4.3.13), and
Proposition 2.1.8 a), we obtain, for all N ě N2,

¨

˝E
”

max
k“1,...,d

sup
t Pr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
W

k

N

`

t^ ψ̂knN p1q
˘

´ĂW k
N

`

t^ ψ̂knN p1q
˘

ˇ

ˇ

ˇ

s
ˇ

ˇ

ˇ
ψ̂nN p1q “ v

ı

˛

‚

1{s

“

¨

˝E
”

max
k“1,...,d

sup
t Pr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
W

k

N

`

t^ vk
˘

´ĂW k
N

`

t^ vk
˘

ˇ

ˇ

ˇ

s
ı

˛

‚

1{s

“

˜

E
”

max
k“1,...,d

sup
t Pr0,vks

ˇ

ˇ

ˇ
W

k

N ptq ´
ĂW k
N ptq

ˇ

ˇ

ˇ

sı
¸1{s

ě

˜

E
”

sup
t Pr0,vk˚pvqs

ˇ

ˇ

ˇ
W

k˚pvq

N ptq ´ĂW
k˚pvq
N ptq

ˇ

ˇ

ˇ

sı
¸1{s

ě

a

vk˚pvq ¨ e
psq

| ran pĂW
k˚pvq

N q|

`

W, Cr0, 1s
˘

ě

c

max
k“1,...,d

vk ¨ e
psq

tN1{du¨m
c2¨mN
N

`

W, Cr0, 1s
˘

for Pψ̂nN p1q
-a.a. v “ pv1, . . . , vdq1 P r0,8qd where W denotes a Brownian motion on r0, 1s. Thus,

together with Theorem 2.3.11 (ii) we arrive at

lim inf
NÑ8

?
lnN ¨

˜

E
”

max
k“1,...,d

sup
tPr0,n

p1`αmaxq
N s

ˇ

ˇ

ˇ
W

k

N

`

t^ ψ̂knN p1q
˘

´ĂW k
N

`

t^ ψ̂knN p1q
˘

ˇ

ˇ

ˇ

sı
¸1{s

ě κ8 ¨
?
d ¨ lim inf

NÑ8

ˆ

E
„

max
k“1,...,d

`

ψ̂knN p1q
˘s{2

˙1{s

(4.3.15)

where κ8 is the constant in the aforementioned theorem, and where we used the fact that

lim inf
NÑ8

d

lnN

ln
`

tN1{du ¨mc2¨mN
N

˘ ě lim inf
NÑ8

d

lnN

plnNq{d` c2 ¨mN ¨ lnmN
ě
?
d.

We employed (4.3.14) to derive the last inequality in the above detached formula.
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4.3. A Lower Bound for Product-Quantizations of Multidimensional Itô Processes

Step 5: We combine the results of Step 1 up to Step 4. Recall that, for N P N, rXN is an arbitrary
N -uniform-product-quantization of X1. Then, by Lemma 4.0.3, (4.3.11), (4.3.12) and (4.3.15), we
derive that

lim inf
NÑ8

?
lnN ¨ e

psq
N,prod,uni

`

X, Cpr0, 1s;Rdq
˘

ě κ8 ¨
?
d ¨ lim inf

NÑ8

ˆ

E
„

max
k“1,...,d

`

ψ̂knN p1q
˘s{2

˙1{s

.

It remains to further estimate

lim inf
NÑ8

ˆ

E
„

max
k“1,...,d

`

ψ̂knN p1q
˘s{2

˙1{s

.

The inverse triangle inequality implies

ˆ

E
„

max
k“1,...,d

`

ψ̂knN p1q
˘s{2

˙1{s

ě

ˆ

E
„

max
k“1,...,d

`

xMkyp1q
˘s{2

˙1{s

´

d
ÿ

k“1

´

E
”

ˇ

ˇψ̂knN p1q ´ xM
kyp1q

ˇ

ˇ

s{2
ı¯1{s

for all N P N. Moreover, by Proposition 4.3.5 we have

d
ÿ

k“1

´

E
”

ˇ

ˇψ̂knN p1q ´ xM
kyp1q

ˇ

ˇ

s{2
ı¯1{s

ď

d
ÿ

k“1

˜

E
”

sup
tPr0,1s

ˇ

ˇψ̂knN ptq ´ xM
kyptq

ˇ

ˇ

s{2
ı

¸1{s

ď c ¨
d
ÿ

k“1

1
`

nN
˘p1`αkq{2

ď c ¨
1

`

nN
˘p1`αminq{2

ď c ¨
1

`

lnN
˘γ¨p1`αminq{2

for all N P N such that nN ě 3, and where c denotes a positive real constant not depending on N
which may vary from line to line. Now due to the choice of γ, we have γ ¨ p1` αminq{2 ą 0. Hence
we end up with

lim inf
NÑ8

ˆ

E
„

max
k“1,...,d

`

ψ̂knN p1q
˘s{2

˙1{s

ě

ˆ

E
„

max
k“1,...,d

›

› }Zkp¨q}2
›

›

s

L2r0,1s

˙1{s

,

which finishes the proof.
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5 | Quantization of Multidimensional
SDEs

In this chapter we provide a method which yields (strongly) asymptotically optimal sequences of quanti-
zations of a strong solution X “ pX1, . . . , Xdq1 of a d-dimensional system of SDEs, and we consider the
spaces Ldpr0, 1s, p P r1,8q, and Cpr0, 1s;Rdq. Our construction generalizes a quantization procedure for
scalar SDEs developed in [MGR13], and it basically consists of two steps, namely, a coarse-level quanti-
zation and a fine-level quantization. We apply both of them separately to each component Xk of X such
that we end up with overall product-quantizations of X. In particular, the fine-level quantization will
turn out to be a decisive ingredient in the construction since it will be crucial for the overall performance
of the quantization.

The chapter is organized as follows. In Section 1 we construct a coarse-level quantization of X. Section
2 deals with quantization of X in the space pLdpr0, 1s, } ¨ }Ldpr0,1sq. The section closes with a discussion,
which includes, among other things, the analysis of the computational cost and an example. Section 3 is
devoted to quantization of X in the space pCpr0, 1s;Rdq, } ¨ }8q. The last section of this chapter, Section
4, is concerned with quantization of X in the space pCpr0, 1s;Rdq,9 ¨ 9sq, s P r1,8q, where 9 ¨ 9s is the
norm introduced in the introductory chapter.

General assumptions:

(i) Throughout the chapter we assume the setting in Section 3.1 with r P N2.

(ii) To avoid trivial cases we assume that the continuous Rr-valued process
`

bkpXptqq
˘

tPr0,1s
is not

indistinguishable from the constant zero process for all k “ 1, . . . , d, where X is the unique strong
solution of the SDE (3.1.1).

(iii) For m P N let 0 “ t0 ă ¨ ¨ ¨ ă tm “ 1 be the equidistant discretization of the time interval r0, 1s
given by

tl “
l

m
(5.0.1)

for all l “ 0, . . . ,m.

5.1. A Coarse-level Quantization

Let m P N. We aim at constructing a quantization of the Rdˆpm`1q-valued random matrix

Xm :“
`

Xpt0q, . . . , Xptmq
˘

.

Due to assumption (C1) all partial derivatives of the diffusion coefficient b of the SDE (3.1.1) exist. Hence
we are in the position to employ the d-dimensional Milstein scheme corresponding to the discretization
(5.0.1) whose kth component, k “ 1, . . . , d, is given by pXM,k

m pt0q “ xk0 and
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5. Quantization of Multidimensional SDEs

pXM,k
m ptlq “ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨m´1 `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨
`

Wjptlq ´Wjptl´1q
˘

`

r
ÿ

j1,j2“1

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨ J lpj1,j2q

for l “ 1, . . . ,m where

J lpj1,j2q “

ˆ tl

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq.

From now on, we abbreviate
Y j
l :“ m1{2 ¨

`

Wjptlq ´Wjptl´1q
˘

(5.1.1)

for j “ 1, . . . , r and l “ 1, . . . ,m, and

I lpj1,j2q :“ m ¨ J lpj1,j2q (5.1.2)

for j1, j2 “ 1, . . . , r and l “ 1, . . . ,m. Recall that for all l “ 1, . . . ,m and j1, j2 “ 1, . . . , r Itô’s formula
implies

J lpj1,j2q ` J
l
pj2,j1q

P -a.s.
“

#

`

Wj1ptlq ´Wj1ptl´1q
˘2
´m´1, if j1 “ j2,

m´1 ¨ Y j1
l ¨ Y j2

l , if j1 ‰ j2.
(5.1.3)

Thus, in view of (5.1.1)--(5.1.3), we rewrite the Milstein scheme such that for all k “ 1, . . . , d and
l “ 1, . . . ,m we end up with

pXM,k
m ptlq

P -a.s.
“ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨m´1 `m´1{2 ¨

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨ Y j
l

`
1

2
¨m´1 ¨

r
ÿ

j“1

∇bk,jbpjq
`

pXM
m ptl´1q

˘

¨
`

pY j
l q

2 ´ 1
˘

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨ I lpj1,j2q

`m´1 ¨

r
ÿ

j1,j2“1
j1ąj2

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

¨
`

Y j1
l ¨ Y j2

l ´ I lpj2,j1q
˘

P -a.s.
“ pXM,k

m ptl´1q ` ak
`

pXM
m ptl´1q

˘

¨m´1 `m´1{2 ¨

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨ Y j
l

`
1

2
¨m´1 ¨

r
ÿ

j“1

∇bk,jbpjq
`

pXM
m ptl´1q

˘

¨
`

pY j
l q

2 ´ 1
˘

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

´

∇bk,j2bpj1q
`

pXM
m ptl´1q

˘

´∇bk,j1bpj2q
`

pXM
m ptl´1q

˘

¯

¨ I lpj1,j2q

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

∇bk,j1bpj2q
`

pXM
m ptl´1q

˘

¨ Y j1
l ¨ Y j2

l .

(5.1.4)
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5.1. A Coarse-level Quantization

Note that

Y j
l „ Np0, 1q

for all j “ 1, . . . r and l “ 1, . . . ,m, and

I lpj1,j2q
L
“

ˆ 1

0
W1psq dW2psq

for all j1, j2 “ 1, . . . , r with j1 ă j2 and all l “ 1, . . . ,m. Hence, in view of (5.1.4), it stands to reason
to employ quantizers for one-dimensional standard normally distributed random variables and quantizers
for the Itô integral

´ 1
0 W1psqdW2psq as additional building blocks in our construction.

Let q P r1,8q. For quantizing the standardized increments of the driving Brownian motion we choose
a sequence

`

T
pqq
n

˘

nPN of n-quantizers T pqqn : R Ñ R for standard normally distributed random variables,
and for all j “ 1, . . . , r and l “ 1, . . . ,m we put

rY
pqq,j
l,n :“ T

pqq
n pY

j
l q (5.1.5)

for all n P N and we assume that:

(N1) For all n P N it holds E
“

rY
pqq,j
l,n

‰

“ 0.

(N2) For all s P r1,8q it holds supnPN E
“

|rY
pqq,j
l,n |s

‰

ă 8.

(N3) There exists a constant c1pqq P p0,8q depending only on q such that

epqq
`

Y j
l ,

rY
pqq,j
l,n ,R

˘

ď c1pqq ¨ n
´1

for all n P N.

In Section 2.3.1 we have already presented a method which yields such a sequence pT pqqn qnPN.
Let γ P p2,8q. For quantizing the standardized Itô integrals we take the sequence of mappings

pT
pγq
n qnPN where T pγqn : RÑ R is defined as in (2.3.8), and we put

rI l,n
pj1,j2q

:“ T pγqn pI lpj1,j2qq

for all n P N, all j1, j2 “ 1, . . . , r with j1 ă j2 and all l “ 1, . . . ,m. By Lemma 2.3.7 the sequence
prI l,n
pj1,j2q

qnPN has the following properties:

(I1) For all n P N it holds E
“

rI l,n
pj1,j2q

‰

“ 0.

(I2) For all s P r1,8q it holds supnPN E
“

|rI l,n
pj1,j2q

|s
‰

ă 8.

(I3) There exists a constant c2pqq P p0,8q depending only on q such that

´

E
“

|I lpj1,j2q ´
rI l,n
pj1,j2q

|q
‰

¯1{q
ď c2pqq ¨ n

´1

for all n P N.

(I4) For all n P N it holds
ˇ

ˇ ran
`

rI l,n
pj1,j2q

˘
ˇ

ˇ ď 4 ¨ n.

Now we replace the standardized increments of the driving Brownian motion as well as the standardized
Itô integrals in (5.1.4) by their just chosen respective quantizations. More precisely, let n P N, and we
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5. Quantization of Multidimensional SDEs

define

rXpqq,km,n pt0q “ xk0,

rXpqq,km,n ptlq “
rXpqq,km,n ptl´1q ` ak

`

rXpqqm,nptl´1q
˘

¨m´1 `m´1{2 ¨

r
ÿ

j“1

bk,j
`

rXpqqm,nptl´1q
˘

¨ rY
pqq,j
l,n

`
1

2
¨m´1 ¨

r
ÿ

j“1

∇bk,jbpjq
`

rXpqqm,nptl´1q
˘

¨
`

prY
pqq,j
l,n q2 ´ 1

˘

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

´

∇bk,j2bpj1q
`

rXpqqm,nptl´1q
˘

´∇bk,j1bpj2q
`

rXpqqm,nptl´1q
˘

¯

¨ rI l,n
pj1,j2q

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

∇bk,j1bpj2q
`

rXpqqm,nptl´1q
˘

¨ rY
pqq,j1
l,n ¨ rY

pqq,j2
l,n

for l “ 1, . . . ,m and k “ 1, . . . , d.
By the above construction we have obtained a quantization

rXpqqm,n :“
`

rXpqqm,npt0q, . . . ,
rXpqqm,nptmq

˘

of Xm “
`

Xpt0q, . . . , Xptmq
˘

with
ˇ

ˇ ran
`

rXpqq,km,n

˘ˇ

ˇ ď

´

4p
r
2q ¨ nr`p

r
2q
¯m

, (5.1.6)

for all k “ 1, . . . , d, where we used the fact that
ˇ

ˇtpi, jq P t1, . . . , ru2 | i ă ju
ˇ

ˇ “
`

r
2

˘

as well as (I4). From
now on, we call the Rdˆpm`1q-valued random matrix rX

pqq
m,n Milstein quantization of X (of level n).

The following proposition contains the main result of this section, whose proof is postponed to Section
6.1.

Proposition 5.1.1
Let q P r1,8q. Then there exists a constant c P p0,8q such that, for all m,n P N,

E
”

max
l“0,...,m

}Xptlq ´ rXpqqm,nptlq}
q
8

ı

ď c ¨
`

m´1 ` n´1
˘q
.

Remark 5.1.2
If b has the commutativity property, the Milstein scheme is of the form as in (3.3.21). In this case it
suffices to employ only quantizations of standard normally distributed random variables in the coarse-
level quantization.

Euler Quantization of X

Let m P N. For technical reasons, at certain places within this chapter, we will not utilize the Milstein
quantization of X. Instead, we will consider a quantization of the d-dimensional Euler scheme

pXE
m “

`

pXE
mpt0q, . . . ,

pXE
mptmq

˘
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5.1. A Coarse-level Quantization

associated to the discretization (5.0.1), which is built-up analogously to the Milstein quantization. We
will go into greater detail about the reasons for this procedure in the next section of this chapter.
Recall that the kth component, k “ 1, . . . , d, of the d-dimensional Euler scheme is given by

pXE,k
m pt0q “ xk0,

pXE,k
m ptlq “ pXE,k

m ptl´1q ` ak
`

pXE
mptl´1q

˘

¨m´1 `

r
ÿ

j“1

bk,j
`

pXE
mptl´1q

˘

¨
`

Wjptlq ´Wjptl´1q
˘ (5.1.7)

for l “ 1, . . . ,m. Let q P r1,8q, and let n P N. In view of (5.1.7) we define

rXE,pqq,k
m,n p0q “ xk0,

rXE,pqq,k
m,n ptlq “ rXE,pqq,k

m,n ptl´1q ` ak
`

rXE,pqq
m,n ptl´1q

˘

¨m´1 `m´1{2 ¨

r
ÿ

j“1

bk,j
`

rXE,pqq
m,n ptl´1q

˘

¨ rY
pqq,j
l,n

(5.1.8)

for l “ 1, . . . ,m and k “ 1, . . . , d, and where rY
pqq,j
l,n is the quantization in (5.1.5).

From now on, we call the Rdˆpm`1q-valued random matrix

rXE,pqq
m,n :“

`

rXE,pqq
m,n pt0q, . . . ,

rXE,pqq
m,n ptmq

˘

Euler quantization of X (of level n).

Proposition 5.1.3
Let q, s P r1,8q. Then there exists a constant c P p0,8q such that, for all m,n P N,

E
”

max
l“0,...,m

} rXE,pqq
m,n ptlq}

s
8

ı

ď c

as well as

E
”

max
l“0,...,m

}Xptlq ´ rXE,pqq
m,n ptlq}

q
8

ı

ď c ¨
`

m´1 ` n´1
˘q{2

.

Proof:
Let m,n P N. In the proof c denotes a not further specified positive real constant which may vary at
every occurrence and which does neither depend on m nor on n. Similar to the upcoming Lemmas 6.1.1
and 6.1.2 one proves that

E
”

max
l“0,...,m

} rXE,pqq
m,n ptlq}

s
8

ı

ď c

and

E
”

max
l“0,...,m

} pXE
mptlq ´

rXE,pqq
m,n ptlq}

q
8

ı

ď c ¨
`

m´1 ` n´1
˘q
. (5.1.9)

Together with Proposition 3.3.1 this leads to

E
”

max
l“0,...,m

}Xptlq ´ rXE,pqq
m,n ptlq}

q
8

ı

ď c ¨
´

E
”

sup
tPr0,1s

}Xptq ´XE
mptq}

q
8

ı

` E
”

max
l“1,...,m

} pXE
mptlq ´

rXE,pqq
m,n ptlq}

q
8

ı

¯

ď c ¨
´

m´q{2 `
`

m´1 ` n´1
˘q
¯

ď c ¨
`

m´1 ` n´1
˘q{2

.
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5. Quantization of Multidimensional SDEs

5.2. Quantization in Lppr0, 1s;Rdq

Throughout the whole section let p P r1,8q, and we interpret X as an Ldpr0, 1s-valued random element. As
a first ingredient we extend the Milstein quantization to a Cpr0, 1s;Rdq-valued random element by means
of piecewise linear interpolation, i.e., for m,n P N and q P r1,8q we define

rXpqqm,nptq “ ptl ´ tq ¨m ¨
rXpqqm,nptl´1q ` pt´ tl´1q ¨m ¨ rX

pqq
m,nptlq

for t P rtl´1, tls and l “ 1, . . . ,m.

5.2.1. Fine-level Quantization: Quantization of Brownian Bridges

Let m P N. In this subsection we construct a fine-level quantization which consists of quantizations of
Brownian bridges on the subintervals rtl´1, tls. In the next subsection we will combine the fine-level quan-
tization with the coarse-level quantization constructed in the previous section in order to get a sequence
of overall quantizations of X.

For l “ 1, . . . ,m and j “ 1, . . . , r we define a real-valued stochastic process Bj
l “

`

Bj
l ptq

˘

tPrtl´1,tls
by

Bj
l ptq “Wjptq ´ ptl ´ tq ¨m ¨Wjptl´1q ´ pt´ tl´1q ¨m ¨Wjptlq. (5.2.1)

Note that the processes Bj
l have continuous sample paths. Hence we may interpret Bj

l as an Lprtl´1, tls-
valued random element.

In the following lemma we collect facts about the processes Bj
l , which will prove beneficial in the

remaining part of this thesis. Since those facts are well known, a proof is omitted.

Lemma 5.2.1

a) For all j “ 1, . . . , r and l “ 1, . . . ,m the process Bj
l is a Brownian bridge on rtl´1, tls.

b) The processes B1
1 , . . . , B

r
1, . . . , B

1
m, . . . , B

r
m are independent.

c)
`

B1
1 , . . . , B

r
1, . . . , B

1
m, . . . , B

r
m

˘

is independent of
`

W pt0q, . . . ,W ptmq
˘

.

The construction of a fine-level quantization is based on the following key observation, see (I.), and
on the two succeeding ingredients, see (II.).

(I.) By Lemma 5.2.1, for all l “ 1, . . . ,m, the processes B1
l , . . . , B

r
l are independent Brownian bridges

and thus, in particular, independent Gaussian processes. This implies

r
ÿ

j“1

βj ¨B
j
l

L
“ }β}2 ¨B

1
l (5.2.2)

for all β “
`

β1, . . . , βr
˘1
P Rr and l “ 1, . . . ,m. In our analysis (5.2.2) will turn out to be one of the key

observations. Moreover, (5.2.2) strikes on the idea to design quantizers suited to such processes which are
of the form as on the right hand side of (5.2.2) and then apply those quantizers to such processes which
are of the form as on the left hand side of (5.2.2). This is one of the key ideas for our construction.

74



5.2. Quantization in Lppr0, 1s;Rdq

(II.) Consider the following mappings:

• For K P N let SK : Lpr0, 1s Ñ Lpr0, 1s be a K-quantizer for a Brownian bridge on r0, 1s. Regarding
constructive approaches which yield quantizers for a Brownian bridge on r0, 1s we refer the reader
to Section 2.3.2.

• Let β P Rrzt0u, and let l P t1, . . . ,mu. We define ψβ,l : Lprtl´1, tls Ñ Lpr0, 1s by

ψβ,lhptq “
1

}β}2
¨m1{2 ¨ hptl´1 `m

´1 ¨ tq, t P r0, 1s. (5.2.3)

The operator ψβ,l is linear and bijective, and its linear inverse ψ´1
β,l : Lpr0, 1s Ñ Lprtl´1, tls is given

by
ψ´1
β,lhptq “ }β}2 ¨m

´1{2 ¨ hpm ¨ pt´ tl´1qq, t P rtl´1, tls. (5.2.4)

Lemma 5.2.2
Let l P t1, . . . ,mu, β P Rrzt0u and let Bl be a Brownian bridge on rtl´1, tls. Then the stochastic process
`

ψβ,lp}β}2 ¨Blqptq
˘

tPr0,1s
is a Brownian bridge on r0, 1s.

Proof:
This statement follows directly from the scaling property of Brownian bridges.

As a last step in this subsection we combine the mappings introduced in (II.). For l “ 1, . . . ,m,
K P N and β P Rr let Φβ,l,K : Lprtl´1, tls Ñ Lprtl´1, tls be defined by

Φβ,l,Kh “

$

&

%

ψ´1
β,l

`

SKpψβ,lhq
˘

, if }β}2 ‰ 0,

0, if }β}2 “ 0.
(5.2.5)

Note that for all l “ 1, . . . ,m, K P N and β P Rr the mapping Φβ,l,K is Borel measurable with
ˇ

ˇ ran
`

Φβ,l,K

˘ˇ

ˇ ď K.

5.2.2. Overall Quantization

Let q P r1,8q, m P N2 and n P N. The strategy to get an overall quantization of each component Xk of X
is to apply the quantizers Φβ,l,K constructed in the previous in order to obtain quantizations of Brownian
bridges, and, subsequently, to combine the resulting quantizations with the coarse-level quantization.

To this end, we first choose the size K of the quantizers SK employed in the previous section separately
for each component Xk of X by taking into account the local regularity of Xk. Recall that in the pth
mean sense the local smoothness of Xk at time point t is determined by the size of

slocH
`

Xkptq
˘

“

´

r
ÿ

j“1

`

bk,j
`

Xptq
˘˘2

¯1{2
, (5.2.6)

see Section 3.2. It stands to reason that one chooses a greater K in regions where slocH
`

Xkptq
˘

is large
and vice versa.

In the following, for technical reasons, our construction partly differs from the one in [MGR13], and
we use the Euler quantization of X instead of the Milstein quantization in order to get an estimate of
the quantity in (5.2.6) at the time points tl. We briefly justify this procedure. Since in the definition
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of the Euler quantization only quantizations of the increments of the Brownian motion W are employed,
Lemma 5.2.1 c) then guarantees that

`

rXE,pqq
m,n pt0q, . . . ,

rXE,pqq
m,n ptmq

˘

and
`

B1
1 , . . . , B

r
1, . . . , B

1
m, . . . , B

r
m

˘

are independent. This statement need not hold when replacing rX
E,pqq
m,n ptlq by the Milstein quantization

rX
pqq
m,nptlq since, in general, the multidimensional Milstein scheme contains the multiple Itô integrals J l

pj1,j2q
with j1 ‰ j2. Now by using the Euler quantiaztion instead of the Milstein quantization we are in the
position to utilize Proposition B.2 in our analysis in Chapter 6.

For k “ 1, . . . , d and l “ 1, . . . ,m we estimate the quantity in (5.2.6) at time point tl´1 by

rsE,k,l´1
locH,m,n :“

´

r
ÿ

j“1

`

bk,j
`

rXE,pqq
m,n ptl´1q

˘˘2
¯1{2

. (5.2.7)

Now we utilize (5.2.7) and define

η
pp,qq,k
l,m,n :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

max

$

’

’

’

&

’

’

’

%

`

rsE,k,l´1
locH,m,n

˘2p{pp`2q

d
ř

ν“1

m´1
ř

i“0

`

rsE,ν,i
locH,m,n

˘2p{pp`2q
,

1

d ¨m ¨ lnm

,

/

/

/

.

/

/

/

-

, if max
i“0,...,m´1,
ν“1,...,d

rsE,ν,i
locH,m,n ą 0,

1

d ¨m
, else,

(5.2.8)

for k “ 1, . . . , d and l “ 1, . . . ,m. Thus, up to the thresholds pd ¨m ¨ lnmq´1 and pd ¨mq´1 each random
variable ηpp,qq,kl,m,n provides an estimate of the local regularity of Xk on the subinterval rtl´1, tls relative to
the local regularity of X over all subintervals. From now on, we will mostly drop the parameters m,n, p, q
and write ηkl instead of ηpp,qq,kl,m,n . We also use the shorter notation rsE,k,l´1

locH instead of rsE,k,l´1
locH,m,n.

We employ the random quantities ηkl to further specify the size K of the quantizers SK . Let M P N.
For l “ 1, . . . ,m and k “ 1, . . . , d we choose

Kk,l,M :“
Q

Mηkl

U

. (5.2.9)

Now by defining

rX
pp,qq,k
m,n,M ptq “

rXpqq,km,n ptq ` Φ
bkp rX

E,pqq
m,n ptl´1qq,l,Kk,l,M

´

r
ÿ

j“1

bk,j
`

rXE,pqq
m,n ptl´1q

˘

¨Bj
l

¯

ptq (5.2.10)

where

bk
`

rXE,pqq
m,n ptl´1q

˘

:“
`

bk,1p rX
E,pqq
m,n ptl´1qq, . . . , bk,rp rX

E,pqq
m,n ptl´1qq

˘1

for t P rtl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d, we obtain a quantization rX
pp,qq
m,n,M “

`

rX
pp,qq,1
m,n,M , . . . ,

rX
pp,qq,d
m,n,M

˘1
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of X “
`

X1, . . . , Xd
˘1. Together with (5.1.6) we have

ˇ

ˇ ran
`

rX
pp,qq,k
m,n,M

˘ˇ

ˇ ď

´

4p
r
2q ¨ nr`p

r
2q
¯m
¨

m
ź

l“1

Kk,l,M

ď

´

4p
r
2q ¨ nr`p

r
2q
¯m
¨

m
ź

l“1

2 ¨Mηkl

ď

´

41`pr2q ¨ nr`p
r
2q
¯m
¨M

řm
l“1 η

k
l

for all k “ 1, . . . , d, and hence

ˇ

ˇ ran
`

rX
pp,qq
m,n,M

˘
ˇ

ˇ ď

d
ź

k“1

ˇ

ˇ ran
`

rX
pp,qq,k
m,n,M

˘
ˇ

ˇ

ď

´

4d¨p1`p
r
2qq ¨ nd¨pr`p

r
2qq

¯m
¨M

řd
k“1

řm
l“1 η

k
l

ď

´

4d¨p1`p
r
2qq ¨ nd¨pr`p

r
2qq

¯m
¨M1`1{ lnm,

(5.2.11)

where we used the fact that

d
ÿ

k“1

m
ÿ

l“1

ηkl ď
d
ÿ

k“1

m
ÿ

l“1

¨

˚

˚

˚

˝

`

rsE,k,l´1
locH

˘2p{pp`2q

d
ř

ν“1

m´1
ř

i“0

`

rsE,ν,i
locH

˘2p{pp`2q
`

1

d ¨m ¨ lnm

˛

‹

‹

‹

‚

“ 1`
1

lnm

if max
i“0,...,m´1,
ν“1,...,d

rsE,ν,i
locH ą 0, and

d
ÿ

k“1

m
ÿ

l“1

ηkl “
d
ÿ

k“1

m
ÿ

l“1

1

d ¨m
“ 1 ď 1`

1

lnm

if max
i“0,...,m´1,
ν“1,...,d

rsE,ν,i
locH “ 0.

We consider a sequence of quantizations

rX
pp,qq
N “ rX

pp,qq
mN ,mN ,MN

,

N P N, of X where we choose the parameters mN and MN as follows. First, in order to control the size
of rX

pp,qq
N via (5.2.11) we choose

MN “ max

$

&

%

—

—

—

–

˜

ˆ

4d¨p1`p
r
2qq ¨m

d¨pr`pr2qq
N

˙´mN

¨N

¸lnmN {p1`lnmN q
ffi

ffi

ffi

fl , 1

,

.

-

. (5.2.12)

Secondly, we require

(Lim1) lim
NÑ8

mN ¨ lnmN

lnN
“ 0

and

(Lim2) lim
NÑ8

m2
N

lnN
“ 8.
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Remark 5.2.3

a) A valid choice of a sequence in N which satisfies (Lim1) and (Lim2) is pmN qNPN with m1 “ 1 and

mN “

Q

plnNq2{3
U

, N ě 2.

b) In view of (5.1.6) there exists a constant c P p0,8q such that, for all sufficiently large N P N,

ln
`ˇ

ˇ ran p rXpqqmN ,mN q
ˇ

ˇ

˘

ď c ¨mN ¨ lnpmN q.

Hence due to (Lim1), in a logarithmic scale, the size of the coarse-level quantization is asymptoti-
cally negligible compared to the size of the overall quantization of X.

c) Note that (Lim2) yields

lim
NÑ8

?
lnN

mN
“ 0.

Thus, in view of Proposition 5.1.1 and Theorem 5.2.4 below, the error of the coarse-level quantization
tends faster to 0 when N tends to infinity than the error of the overall quantization and is therefore
asymptotically negligible. Consequently, the fine-level quantization is a decisive ingredient for the
overall performance of our quantization of X.

d) By the construction of the sequence p rXpp,qqN qNPN and due to (5.2.13) in the upcoming Theorem 5.2.4
we have

rX
pp,qq
N P XN,prod

for all sufficiently large N P N.

Next we state the main result of this section, whose proof is postponed to Section 6.2. We put

κp :“ lim sup
KÑ8

?
lnK ¨ δK

with δK :“ eppq
`

B,SKpBq, Lpr0, 1s
˘

where B denotes a Brownian bridge on r0, 1s, and we put

Cppq :“

¨

˝E

»

–

˜

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

2p{pp`2q

L2p{pp`2qr0,1s

¸pp`2q{2
fi

fl

˛

‚

1{p

.

Theorem 5.2.4
Let q ě mintrq P 2N | rq ě pu. Then

ˇ

ˇ ran
`

rX
pp,qq
N

˘ˇ

ˇ ď N (5.2.13)

for all sufficiently large N P N, and

lim sup
NÑ8

´?
lnN ¨ eppq

`

X, rX
pp,qq
N , Ldpr0, 1s

˘

¯

ď κp ¨ C
ppq.
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Due to the previous theorem the asymptotic behavior of the quantization error of order p correspond-
ing to the sequence p rXpp,qqN qNPN depends on the SDE via the constant Cppq and on the sequence pSKqKPN
of K-quantizers for a Brownian bridge on r0, 1s employed in our construction via κp.

Due to Theorem 2.2.3 we may assume that pSKqKPN is a strongly asymptotically optimal sequence of
order p of K-quantizers for a Brownian bridge on r0, 1s. Therefore, the preceding theorem together with
Theorem 2.3.11 leads to the following result.

Corollary 5.2.5
Let q ě mintrq P 2N | rq ě pu, and assume that pSKqKPN is a strongly asymptotically optimal sequence of
order p of K-quantizers SK : Lpr0, 1s Ñ Lpr0, 1s for a Brownian bridge on r0, 1s. Then,

lim sup
NÑ8

´?
lnN ¨ eppq

`

X, rX
pp,qq
N , Ldpr0, 1s

˘

¯

ď κp ¨ C
ppq

where κp is the constant in Theorem 2.3.11 (i).

We close this subsection with the following theorem, which is derived by applying Theorem 4.1.2 (i)
as well as Theorem 5.2.4 and Corollary 5.2.5.

Theorem 5.2.6
It holds

lim
NÑ8

?
lnN ¨ e

ppq
N,prod

`

X,Ldpr0, 1s
˘

“ κp ¨ C
ppq

where κp is the constant in Theorem 2.3.11 (i).

Proof:
In the whole proof c denotes a not further specified positive real constant which may vary from line to
line and which does not depend on N .

We prove the upper bound first. Due to Theorem 5.2.4 and Corollary 5.2.5 there exists a sequence
p rXN qNPN of quantizations of X such that

lim sup
NÑ8

?
lnN ¨ e

ppq
N,prod

`

X,Ldpr0, 1s
˘

ď lim sup
NÑ8

?
lnN ¨ eppq

`

X, rXN , L
d
pr0, 1s

˘

ď κp ¨ C
ppq. (5.2.14)

Hence it remains to show

lim inf
NÑ8

?
lnN ¨ e

ppq
N,prod

`

X,Ldpr0, 1s
˘

ě κp ¨ C
ppq.

We split up the proof into single steps.

Step 1: In this step we make a few preliminary observations, and we show that each component Xk of
X is an Itô process as required in Section 4.1.

First, by the fact that b is of at most linear growth, and by (3.2.2) in Theorem 3.2.3, we have

Cppq “ E

»

–

˜

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

2p{pp`2q

L2p{pp`2qr0,1s

¸pp`2q{2
fi

fl ď c ¨
`

1` E
“

}X}28
‰ ˘

ă 8. (5.2.15)

Secondly, we show that for all k “ 1, . . . , d the processes
`

akpXptqq
˘

tPr0,1s
and

`

bk,jpXptqq
˘

tPr0,1s
,
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j “ 1, . . . , r, satisfy the respective assumptions in (A2)--(A4) in Section 4.1 since then we are in
the position to apply Theorem 4.1.2 (i). Indeed, let k P t1, . . . , du. Since X is a strong solution of the
SDE (3.1.1), X has continuous paths and is adapted to F . In addition to that, due to assumption
(C1), the mapping ak is continuous. Thus, the process

`

akpXptqq
˘

tPr0,1s
is measurable and adapted

to F . Next, we show E
“

}akpXp¨qq}
s
L2r0,1s

‰

ă 8 for all s P r1,8q. It is enough to consider the case
s P r2,8q. By Jensen’s inequality, by the fact that a is of at most linear growth, and by (3.2.2) in
Theorem 3.2.3, we have

E

«

ˆˆ 1

0

ˇ

ˇakpXptqq
ˇ

ˇ

2
dt

˙s{2
ff

ď E
„ˆ 1

0

ˇ

ˇakpXptqq
ˇ

ˇ

s
dt



ď c ¨ p1` E r}X}s8sq ă 8.

Hence
`

akpXptqq
˘

tPr0,1s
has the properties required in (A2).

Next, we verify (A3). Let j P t1, . . . , ru. As above one argues that the real-valued process
`

bk,jpXptqq
˘

tPr0,1s
is adapted to F . Additionally, since Xp0q “ x0 P R, it holds bk,jpXp0qq P R.

Furthermore, it is well known that the assumptions (C1), (C2) and the fact that x0 P Rd imply
that almost all paths of X are γ-Hölder continuous for all γ P p0, 1{2q. W.l.o.g. we may even assume
that all paths of X have this property. Since in addition bk,j is Lipschitz continuous, we obtain that
the paths of

`

bk,jpXptqq
˘

tPr0,1s
are γ-Hölder continuous for all γ P p0, 1{2q. Hence

`

bk,jpXptqq
˘

tPr0,1s

has the properties required in (A3).
It remains to verify (A4). Let s P r1,8q and α P p0, 1{2q. It holds

ˇ

ˇ }bkpXp¨qq}
2
2

ˇ

ˇ

α
“ sup

0ďsătď1

ˇ

ˇ }bkpXptqq}2 ´ }bkpXpsqq}2
ˇ

ˇ ¨
ˇ

ˇ }bkpXptqq}2 ` }bkpXpsqq}2
ˇ

ˇ

|t´ s|α

ď 2 ¨
›

› }bkpXp¨qq}2
›

›

8
¨
ˇ

ˇ }bkpXp¨qq}2
ˇ

ˇ

α
,

and hence Hölder’s inequality implies

E
“ˇ

ˇ }bkpXp¨qq}
2
2

ˇ

ˇ

s

α

‰

ď 2s ¨
´

E
”

›

› }bkpXp¨qq}2
›

›

2s

8

ı¯1{2
¨

´

E
”

ˇ

ˇ }bkpXp¨qq}2
ˇ

ˇ

2s

α

ı¯1{2
.

Utilizing the properties of b as well as Theorem 3.2.3 leads to

´

E
”

›

› }bkpXp¨qq}2
›

›

2s

8

ı¯1{2
ă 8,

and therefore it remains to prove

E
”

ˇ

ˇ }bkpXp¨qq}2
ˇ

ˇ

2s

α

ı

ă 8.

Since b is Lipschitz continuous, it holds

ˇ

ˇ }bkpXptqq}2 ´ }bkpXpsqq}2
ˇ

ˇ ď }bkpXptqq ´ bkpXpsqq}2 ď c ¨
d
ÿ

k“1

|Xkptq ´Xkpsq|

for all s, t P r0, 1s. Hence

ˇ

ˇ }bkpXp¨qq}2
ˇ

ˇ

2s

α
“

˜

sup
0ďsătď1

ˇ

ˇ }bkpXptqq}2 ´ }bkpXpsqq}2
ˇ

ˇ

|t´ s|α

¸2s

ď c ¨
d
ÿ

k“1

ˇ

ˇXk
ˇ

ˇ

2s

α
.
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Now by Lemma C.6 we arrive at

E
”

ˇ

ˇ }bkpXp¨qq}2
ˇ

ˇ

2s

α

ı

ď c ¨
d
ÿ

k“1

E
”

ˇ

ˇXk
ˇ

ˇ

2s

α

ı

ă 8,

which finishes the proof of (A4).

Step 2: In this step we provide further auxiliary statements. For N P N let rXN “ p rX
1
N , . . . ,

rXd
N q
1 be an

arbitrary N -product-quantization of X. Then there exist tpNq1 , . . . , t
pNq
d P r0, 1s such that

d
ÿ

k“1

t
pNq
k ď 1 and

ˇ

ˇ ran
`

rXk
N

˘ˇ

ˇ ď
X

N t
pNq
k

\

, for k “ 1, . . . , d, (5.2.16)

for all N P N. In particular,

ˇ

ˇ ran
`

rXk
N

˘ˇ

ˇ ď
X

N t
pNq
k

\

¨
X`

lnN
˘2{3\ (5.2.17)

for all k “ 1, . . . , d and N P N3. For ease of notation, we abbreviate mk
N :“

X

N t
pNq
k

\

¨
X`

lnN
˘2{3\ for

N P N and k “ 1, . . . , d. Note that for all N P N and k “ 1, . . . , d we have mk
N ě

X`

lnN
˘2{3\, and

hence

lim
NÑ8

mk
N “ 8 (5.2.18)

for all k “ 1, . . . , d.
Furthermore, Proposition 2.1.8 a) together with (5.2.17) implies

?
lnN ¨ eppq

`

X, rXN , L
d
pr0, 1s

˘

“
?

lnN ¨

˜

d
ÿ

k“1

´

eppq
`

Xk, rXk
N , Lpr0, 1s

˘

¯p
¸1{p

“

˜

d
ÿ

k“1

´

lnN

lnmk
N

¯p{2´b

lnmk
N ¨ e

ppq
`

Xk, rXk
N , Lpr0, 1s

˘

¯p
¸1{p

ě

˜

d
ÿ

k“1

´

lnN

lnmk
N

¯p{2

¨

´

b

lnmk
N ¨ e

ppq

mkN

`

Xk, Lpr0, 1s
˘

¯p
¸1{p

for all N P N such that for all k “ 1, . . . , d it holds mk
N ě 2. Hence,

?
lnN ¨ e

ppq
N

`

X,Ldpr0, 1s
˘

ě

˜

d
ÿ

k“1

´ lnN

lnmk
N

¯p{2
¨

´

b

lnmk
N ¨ e

ppq

mkN

`

Xk, Lpr0, 1s
˘

¯p
¸1{p

(5.2.19)

for all N P N such that for all k “ 1, . . . , d it holds mk
N ě 2.

Now by (5.2.18) and Theorem 4.1.2 (i) we have

lim
NÑ8

b

lnmk
N ¨ e

ppq

mkN

`

Xk, Lpr0, 1s
˘

“ κp ¨
´

E
”

›

› }bk
`

Xp¨q
˘

}2

›

›

p

L2p{pp`2qr0,1s

ı

¯1{p

(5.2.20)

for all k “ 1, . . . , d.
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Additionally, observe that, for all k “ 1, . . . , d,
`

bkpXptqq
˘

tPr0,1s
is a continuous process which we

assumed is not indistinguishable from the constant zero process, see assumption (ii) at the beginning
of this chapter. Therefore,

´

E
”

›

› }bk
`

Xp¨q
˘

}2

›

›

p

L2p{pp`2qr0,1s

ı

¯1{p

ą 0 (5.2.21)

for all k “ 1, . . . , d.

Step 3: We put

L :“ lim inf
NÑ8

?
lnN ¨ e

ppq
N,prod

`

X,Ldpr0, 1s
˘

,

and we abbreviate

αN :“
?

lnN ¨ e
ppq
N,prod

`

X,Ldpr0, 1s
˘

for N P N. It is a classical result that there exists a subsequence pαNlqlPN of pαN qNPN such that

lim
lÑ8

αNl “ L. (5.2.22)

Next, we show that there exists a subsequence pNlmqmPN of pNlqlPN such that the sequence
pβNlm qmPN given by

βNlm :“
d
ÿ

k“1

t
pNlm q
k (5.2.23)

for m P N is convergent. Indeed, first consider the sequence ptpNlq1 qlPN. By Definition 4.0.1 this
sequence is bounded with t

pNlq
1 P r0, 1s for all l P N. Hence there exists a convergent subse-

quence ptpNl1 q1 ql1PN of ptpNlq1 qlPN with v1 :“ liml1Ñ8 t
pNl1 q
1 P r0, 1s. Secondly, we consider the sequence

pt
pNl1 q
2 ql1PN. Again, this sequence is bounded with t

pNl1 q
2 P r0, 1s for all l1 P N. Hence there exists

a convergent subsequence ptpNl2 q2 ql2PN of ptpNl1 q2 ql1PN with v2 :“ liml2Ñ8 t
pNl2 q
2 P r0, 1s. By repeat-

ing these arguments another pd´ 2q-times we obtain a subsequence pNlmqmPN of pNlqlPN such that
pt
pNlm q
k qmPN converges for every k “ 1, . . . , d. Thus the sequence pβNlm qmPN where βNlm is given as

in (5.2.23) is convergent with limit
řd
k“1 vk. Furthermore, due to (5.2.16) we have βNlm P r0, 1s for

all m P N and therefore

d
ÿ

k“1

vk ď 1. (5.2.24)

As a next step, we show that actually vk P p0, 1s for all k “ 1, . . . , d. Indeed, assume that there
exists a k P t1, . . . , du such that vk “ 0. Then,

lim
mÑ8

t
pNlm q
k ¨ lnNlm `

`

lnNlm

˘2{3

lnNlm

“ 0.

82



5.2. Quantization in Lppr0, 1s;Rdq

This implies

lim
mÑ8

lnmk
Nlm

lnNlm

“ 0,

and hence together with (5.2.19)--(5.2.22) we obtain

L “ lim inf
mÑ8

αNlm ě κp ¨

¨

˝

d
ÿ

k“1

˜

lim inf
mÑ8

lnNlm

lnmk
Nlm

¸p{2

¨ E
”

›

› }bk
`

Xp¨q
˘

}2

›

›

p

L2p{pp`2qr0,1s

ı

˛

‚

1{p

“ 8,

which contradicts (5.2.14) combined with (5.2.15).

Step 4: Due to the results obtained in Step 3, and due to the definition of the sequences pmk
Nlm

qmPN it
holds

˜

lim inf
mÑ8

lnNlm

lnmk
Nlm

¸p{2

ě v
´p{2
k

for all k “ 1, . . . , d. Hence, together with (5.2.19), (5.2.20) and (5.2.22) we derive

L ě κp ¨

˜

d
ÿ

k“1

E
”

v
´p{2
k ¨

›

› }bk
`

Xp¨q
˘

}2

›

›

p

L2p{pp`2qr0,1s

ı

¸1{p

. (5.2.25)

For ease of notation, we abbreviate

ck :“
›

› }bk
`

Xp¨q
˘

}2

›

›

L2p{pp`2qr0,1s

for k “ 1, . . . , d. By the reverse Hölder inequality applied with the exponents λ1 “ ´2{p and
λ2 “ 2{pp` 2q, and by (5.2.24), we have

d
ÿ

k“1

v
´p{2
k ¨ cpk ě

˜

d
ÿ

k“1

c
2p{pp`2q
k

¸pp`2q{2

¨

˜

d
ÿ

k“1

vk

¸´p{2

ě

˜

d
ÿ

k“1

c
2p{pp`2q
k

¸pp`2q{2

.

Therefore, in view of (5.2.25), we finally end up with

lim inf
NÑ8

?
lnN ¨ e

ppq
N,prod

`

X,Ldpr0, 1s
˘

ě κp ¨

¨

˝E

»

–

˜

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

2p{pp`2q

L2p{pp`2qr0,1s

¸pp`2q{2
fi

fl

˛

‚

1{p

,

which finishes the proof.

Remark 5.2.7
Similar to the proof of Theorem 5.2.6 one shows

lim inf
NÑ8

?
lnN ¨ e

ppq
N,prod,uni

`

X,Ldpr0, 1s
˘

ě κp ¨
?
d ¨

˜

E

«

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

p

L2p{pp`2qr0,1s

ff¸1{p

.
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Now, let p P r1,8q, and assume d P N2. We compare this lower bound with the one obtained in Theorem
5.2.6, namely

κp ¨

¨

˝E

»

–

˜

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

2p{pp`2q

L2p{pp`2qr0,1s

¸pp`2q{2
fi

fl

˛

‚

1{p

.

To this end, we abbreviate

ck :“
›

›

›

›

›bk
`

Xp¨q
˘
›

›

2

›

›

›

L2p{pp`2qr0,1s

for k “ 1, . . . , d, and, for the moment, we fix ω P Ω. By the reverse Hölder inequality we have

d
ÿ

k“1

v
´p{2
k ¨

`

ckpωq
˘p
ě

˜

d
ÿ

k“1

`

ckpωq
˘2p{pp`2q

¸pp`2q{2

for all pv1, . . . , vdq P p0, 1s
d with

řd
k“1 vk ď 1. In particular,

dp{2 ¨
d
ÿ

k“1

`

ckpωq
˘p
ě

˜

d
ÿ

k“1

`

ckpωq
˘2p{pp`2q

¸pp`2q{2

.

Thus,

dp{2 ¨
d
ÿ

k“1

cpk ě

˜

d
ÿ

k“1

c
2p{pp`2q
k

¸pp`2q{2

,

and hence

κp ¨
?
d ¨

˜

E

«

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

p

L2p{pp`2qr0,1s

ff¸1{p

ě κp ¨

¨

˝E

»

–

˜

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

2p{pp`2q

L2p{pp`2qr0,1s

¸pp`2q{2
fi

fl

˛

‚

1{p

.

Therefore, as one would expect, approximating X by quantizations of the larger classes XN,prod, N P N,
instead of only taking quantizations from the classes XN,prod,uni, N P N, leads to a smaller lower bound.

5.2.3. Discussion

Strong Asymptotically Optimality of the Sequence p rXpp,qqN qNPN

Let q P r1,8q. The following proposition states that the sequence p rXpp,qqN qNPN of quantizations of X
constructed in the previous section is strongly asymptotically optimal of order p in the classes XN,prod,
N P N, provided that the sequence pSKqKPN is a strongly asymptotically optimal sequence of order p of
K-quantizers for a Brownian bridge on r0, 1s.

Proposition 5.2.8
Let q ě mintrq P 2N | rq ě pu, and assume that pSKqKPN is a strongly asymptotically optimal sequence of
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order p of K-quantizers SK : Lpr0, 1s Ñ Lpr0, 1s for a Brownian bridge on r0, 1s. Then,

lim sup
NÑ8

eppq
`

X, rX
pp,qq
N , Ldpr0, 1s

˘

e
ppq
N,prod

`

X,Ldpr0, 1s
˘

ď 1,

and in particular, in case d “ 1, it holds

lim sup
NÑ8

eppq
`

X, rX
pp,qq
N , Lpr0, 1s

˘

e
ppq
N

`

X,Lpr0, 1s
˘

ď 1.

Proof:
The first statement is a direct consequence of assumption (ii) at the beginning of this chapter, and of
Corollary 5.2.5 as well as Theorem 5.2.6. The second statement is a direct consequence of assumption
(ii), and of Proposition 4.2.1 as well as Corollary 5.2.5.

Computational Cost

Let q P r1,8q, γ P p2,8q, m P N2, as well as n,M P N, and recall that rX
pp,qq
m,n,M is the quantization of X

as constructed in Section 5.2.2.
In this subsection we analyze the computational cost to determine the paths and probability weights

of rX
pp,qq
m,n,M in the space Ldpr0, 1s along with their corresponding probability weights. The analysis is carried

out similarly to the analysis of the computational cost in [MGR13, Section 2.5], and it leads to a result
analogous to the one derived in the aforementioned paper. We assume that the following quantities, which
do not depend on the parameters of the SDE, are available via precomputational steps. Hence they do
not have to be taken into account in the analysis of the computational cost.

• We assume that we know the support points zi “ zn,i and their corresponding probability weights
ζi “ ζn,i, i “ 1, . . . , n, of the distribution

P
rZ
pqq
n
“

n
ÿ

i“1

ζi ¨ δzi

of a sequence of n-quantization rZ
pqq
n of a standard normally distributed random variable, which has

the properties (N1)--(N3). See Section 2.3.1 for a simple construction.

• Let I be a real-valued random variable with I L
“
´ 1

0 W1psq dW2psq. We put rI
pγq
n :“ T

pγq
n pIq where

T
pγq
n is the mapping defined in (2.3.8), and we put N pn, γq :“ | ran prI

pγq
n q|. By the construction of

T
pγq
n , see Section 2.3.1, we know the support points ii “ in,i, i “ 1, . . . ,N pn, γq, of the quantization
rZ
pqq
n . Now consider the set

Θm,n :“
´

tz1, . . . , znu
r
ˆ
 

i1, . . . , iN pn,γq
(pr2q

¯m

.

This set contains vectors which are built-up by m blocks of equal length r `
`

r
2

˘

where each block
consists of support points of quanizations of standard normally distributed random variables and
of support points of quantizations of I. The vectors in Θm,n are used to obtain the Milstein
quantization. For now, we assume that for every vector in the set Θm,n one knows the corresponding
probability weight. We further comment on this assumption in the remark at the end of this
subsection.
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• We assume that for K P N we know the distribution

PSKpBq “
K
ÿ

i“1

βK,i ¨ δbK,i

of the K-quantizations SKpBq of a Brownian bridge B on r0, 1s where, for i “ 1, . . . ,K, βK,i denotes
the probability weight corresponding to the path bK,i of the quantization SKpBq. The discussion in
Section 2.3.2 justifies this assumption.

Given the coefficients a and b as well as the initial value x0 of the SDE we have to compute the
following constituents of rX

pp,qq,k
m,n,M , k “ 1, . . . , d, where, for now, we assume that all probability weights

occurring in the analysis below can be computed. We comment on this assumption in further detail at
the end of this subsection.

For I “ 1, . . . ,
`

nr ¨N pn, γqp
r
2q
˘m we choose a vector θpIqm,n P Θm,n, and we compute the following:

(I.) For every k “ 1, . . . , d we first compute

(i) the knot xk,pIq “ pxk,pIq0 , . . . , x
k,pIq
m q of the coarse-level quantization p rXpqq,km,n pt0q, . . . , rX

pqq,k
m,n ptmqq

corresponding to θpIqm,n, and

(ii) the knot xE,k,pIq “ px
E,k,pIq
0 , . . . , x

E,k,pIq
m´1 q of the Euler quantization p rXEpqq,k

m,n pt0q, . . . , rX
E,pqq,k
m,n ptm´1qq

corresponding to θpIqm,n.

Note that for all k “ 1, . . . , d the probability weight of xk,pIq is given by the probability weight
corresponding to θpIqm,n which we denote by ξpIq.

(II.) Secondly, for all k “ 1, . . . , d compute the values pbk,jpx
E,pIq
0 q, . . . , bk,jpx

E,pIq
m´1qq, j “ 1, . . . , d, along

with the associated values sE,k,pIq
l´1 of the random variables rsE,k,l´1

locH as defined in (5.2.7) for
l “ 1, . . . ,m.

(III.) Now fix k P t1, . . . , du. Thirdly, we compute

(i) the size

K
pIq
k,l “ K

pIq
k,l,M “

P

Mη
k,pIq
l

T

of the fine-level quantization on the subinterval rtl´1, tls for l “ 1, . . . ,m where

η
k,pIq
l “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

max

$

’

’

’

&

’

’

’

%

`

s
E,k,pIq
l´1

˘2p{pp`2q

d
ř

ν“1

m´1
ř

i“0

`

s
E,ν,pIq
i

˘2p{pp`2q
,

1

d ¨m ¨ lnm

,

/

/

/

.

/

/

/

-

, if max
i“0,...,m´1,
ν“1,...,d

s
E,ν,pIq
i ą 0,

1

d ¨m
, else,

and

(ii) for Jk “ pJk1 , . . . , Jkmq P K
pIq
k :“ t1, . . . ,K

pIq
k,1uˆ ¨ ¨ ¨ˆt1, . . . ,K

pIq
k,mu we compute the probability

weights

ρpI,J
kq “

m
ź

l“1

β
K
pIq
k,l ,J

k
l

.
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Note that Jk is a vector of length m which consists of the numberings corresponding to those paths
of the fine-level quantization on the respective lth subinterval rtl´1, tls, l “ 1, . . . ,m, which are
concatinated such that one obtains a function defined on the whole interval r0, 1s.

Let k P t1, . . . , du. For the distribution of rX
pp,qq,k
m,n,M we have

P
rX
pp,qq,k
m,n,M

“

`

nr¨N pn,γqp
r
2q
˘m

ÿ

I“1

ÿ

JkPK
pIq
k

γpI,J
kq ¨ δYpI,Jkq (5.2.26)

where, in view of (5.2.2), (5.2.5) and (5.2.10),

YpI,Jkqptq “

$

&

%

x
k,pIq
l´1 ¨ ptl ´ tq ¨m` x

k,pIq
l ¨ pt´ tl´1q ¨m` ψ

´1

s
E,k,pIq
l´1 ,l

`

b
K
pIq
k,l ,J

k
l

˘

ptq, if sE,k,pIq
l´1 ‰ 0,

x
k,pIq
l´1 ¨ ptl ´ tq ¨m` x

k,pIq
l ¨ pt´ tl´1q ¨m, if sE,k,pIq

l´1 “ 0,

(5.2.27)

for t P rtl´1, tls and l “ 1, . . . , d, and where γpI,Jkq denotes the probability weight corresponding to the
path YpI,Jkq. We further comment on the weights γpI,Jkq in the remark at the end of this subsection. For
the distribution of rX

pp,qq
m,n,M we have

P
rX
pp,qq
m,n,M

“

`

nr¨N pn,γqp
r
2q
˘m

ÿ

I“1

ÿ

JPKpIq

γpI,Jq ¨ δYpI,Jq

where KpIq “ K
pIq
1 ˆ ¨ ¨ ¨ ˆK

pIq
d , where YpI,Jq “ pYpI,J1q, . . . ,YpI,Jdqq1 for J “ pJ1, . . . , Jdq1 P KpIq, and

where γpI,Jq denotes the probability weight corresponding to the path YpI,Jq. We further comment on the
weights γpI,Jq in the remark at the end of this subsection.

We use the real number model to analyze the computational cost, i.e., we assume that all evaluations of
the coefficients a, b and their partial derivatives as well as all arithmetic operations are carried out at cost
one. Regarding an introduction to the real number model we refer the reader to, for example, [Nov95].

The total computational cost, denoted by costpm,n,Mq, to construct the paths YpI,Jq in Ldpr0, 1s and
their corresponding probability weights γpI,Jq is then given by the total number of all required evaluations
of a, b and their partial derivatives as well as by all required arithmetic operations to carry out the
algorithm. By

ˇ

ˇ ran
`

rX
pp,qq
m,n,M

˘ˇ

ˇ ď

`

nr¨N pn,γqp
r
2q
˘m

ÿ

I“1

|KpIq|

we have
d ¨m ¨

ˇ

ˇ ran
`

rX
pp,qq
m,n,M

˘
ˇ

ˇ ď costpm,n,Mq ď c ¨ d ¨m ¨
ˇ

ˇ ran
`

rX
pp,qq
m,n,M

˘
ˇ

ˇ, (5.2.28)

where the constant c is the number of all required function evaluations and arithmetic operations to carry
out the algorithm. Note that c does not depend on the parameters of the SDE. By (5.2.28) we obtain

costpm,n,Mq ď c ¨ d ¨
`

ln
ˇ

ˇ ran
`

rX
pp,qq
m,n,M

˘ˇ

ˇ

˘

¨
ˇ

ˇ ran
`

rX
pp,qq
m,n,M

˘ˇ

ˇ

for all n ě 2.
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In particular, by Theorem 5.2.4 we have

costpmN ,mN ,MN q ď c ¨ d ¨
`

ln
ˇ

ˇ ran
`

rX
pp,qq
N

˘
ˇ

ˇ

˘

¨
ˇ

ˇ ran
`

rX
pp,qq
N

˘
ˇ

ˇ ď c ¨ d ¨ lnN ¨N

for all sufficiently large N P N. Hence the computational cost to construct the paths and corresponding
probability weights of rX

pp,qq
N is close to the size of the quantization.

In the following remark we further comment on the probability weights ξpIq of the coarse-level quantization
and on the probability weights γpI,Jq of the overall quantization.

Remark 5.2.9

a) Let k P t1, . . . , du. For I “ 1, . . . ,
`

nr ¨ N pn, γqp
r
2q
˘m let θpIqm,n P Θm,n, and let xk,pIq be the knot

of the kth component of the Milstein quantization corresponding to θpIqm,n. For us, in general, it
remains an open problem to determine, or at least approximate, the probability weight ξpIq of xk,pIq.
More precisely, it holds θpIqm,n “ pθ

pIq,1
m,n , . . . , θ

pIq,m
m,n q where θ

pIq,l
m,n P tz1, . . . , znu

r
ˆ
 

i1, . . . , iN pn,γq
(pr2q

for l “ 1, . . . ,m, i.e., θpIqm,n consists of m blocks, where the lth block θpIq,lm,n contains support points of
the quantizations rY

pqq,j
l,n , j “ 1, . . . , r, and rI

pl,nq
pj1,j2q

, j1, j2 “ 1, . . . , r with j1 ă j2. For l “ 1, . . . ,m we

use ξpIq,l to denote the probability weight corresponding to θpIq,lm,n . Clearly,

ξpIq “
m
ź

l“1

ξpIq,l.

In general it is hard to determine the weights ξpIq,l, l “ 1, . . . ,m, since, to us, the joint distribution
of the random variables Y j

1 , j “ 1, . . . , r, and I1
pj1,j2q

, j1, j2 “ 1, . . . , r with j1 ă j2, is unknown.
In the very special case that b has the commutativity property, we know the probability weights

ξpIq. In this case, in the lth step of the Milstein scheme, one quantizes only the independent
standard normally distributed random variables Y 1

l , . . . , Y
r
l , see Remark 5.1.2. Hence if b has the

commutativity property, ξpIq,l is the product of the respective probability weights corresponding to
the quantizations of Y 1

l , . . . , Y
r
l .

b) Since the random vectors
`

Y 1
1 , . . . , Y

1
m, . . . , Y

r
1 , . . . , Y

r
m, I

1
p1,2q, . . . , I

1
pr´1,rq, . . . , I

m
p1,2q, . . . , I

m
pr´1,rq

˘

and
`

B1
1 , . . . , B

r
1, . . . , B

1
m, . . . , B

r
m

˘

are interdependent, the weights γpI,Jkq in (5.2.26) can in general not
be calculated by simply multiplying the corresponding weights ξpIq and ρpI,Jkq.

But if b has the commutativity property, the weights γpI,Jkq can be computed via exactly the
same procedure. Indeed, in (3.3.21) we have shown that if b has the commutativity property, the
Milstein scheme consists only of the increments of the driving Brownian motion W . Therefore, the
Milstein quantization is built-up only by the quantizations rY

pqq,j
l,n , and hence Lemma 5.2.1 c) then

guarantees that for k “ 1, . . . , d the distribution of rX
pp,qq,k
m,n is given by

P
rX
pp,qq,k
m,n,M

“

`

nr¨N pn,γqp
r
2q
˘m

ÿ

I“1

ÿ

JkPK
pIq
k

ξpIq ¨ ρpI,J
kq ¨ δYpI,Jkq .

For general b determining, or at least approximating, the weights γpI,Jkq still remains an open
problem to us.

88



5.2. Quantization in Lppr0, 1s;Rdq

c) In general, the components of the solution X are interdependent. Hence, even if one knows P
rX
pp,qq,k
m,n,M

for k “ 1, . . . , d, it is hard to draw conclusions about P
rX
pp,qq
m,n,M

. In the very special case that

X1, . . . , Xd are independent the distribution of rX
pp,qq
m,n,M is given by

P
rX
pp,qq
m,n,M

“

`

nr¨N pn,γqp
r
2q
˘m

ÿ

I“1

ÿ

JPKpIq

´

d
ź

k“1

γpI,J
kq
¯

¨ δYpI,Jq .

The previous remark shows that our construction is of a semi-constructive type, and it is fully con-
structive in very special cases only.

Example

For the purpose of illustration we provide an example of a rather simple one-dimensional linear SDE
driven by a two-dimensional Brownian motion pW1,W2q, and we construct the paths and corresponding
probability weights of a quantization in the path space L2r0, 1s. We consider the SDE

dXptq “ dt` 2XdW1ptq ´XdW2ptq, t P r0, 1s,

Xp0q “ 2.
(5.2.29)

The drift coefficient a : RÑ R is given by apxq “ 1, and the diffusion coefficient b “ pb1, b2q : RÑ R1ˆ2

is given by bpxq “ p2 ¨ x,´xq. Note that both a and b meet the smoothness assumptions imposed on the
coefficients of the SDE in Section 3.1.2.

Regarding the coarse-level quantization we choose the following parameters, where for reasons of clarity
and comprehensibility we take small m and n:

q “ 2, m “ 2 and n “ 2.

Note that for all x P R it holds b11pxq ¨ b2pxq “ ´2x “ b1pxq ¨ b
1
2pxq. Thus, b has the commutativity

property, and hence, in view of (3.3.21), the Milstein scheme associated to the SDE (5.2.29) is of the
following form:

pXM
2 pt0q “ 2,

pXM
2 ptlq “

pXM
2 ptl´1q `

1

2
`

1
?

2
¨ pXM

2 ptl´1q ¨
`

2 ¨ Y 1
l ´ Y

2
l

˘

`
1

4
¨ pXM

2 ptl´1q ¨
`

4 ¨
`

pY 1
l q

2 ´ 1
˘

`
`

pY 2
l q

2 ´ 1
˘

˘

´ pXM
2 ptl´1q ¨ Y

1
l ¨ Y

2
l

for l “ 1, 2, and where Y 1
l and Y 2

l are the standard normally distributed random variables defined in
(5.1.1).

At each step of the Milstein scheme, except for the starting point t0, we employ 2-quantizations to
each of the independent standard normally distributed random variables Y 1

l and Y 2
l . This leads to a total

number of 16 distinct paths for the coarse-level quantization rX
p2q
2,2 , which are displayed in Figure 5.2.1a.

For quantizing the random variables Y j
l we use the method described in Section 2.3.1. Then each support

point of the quantization of Y j
l has a corresponding probability weight of 1{2, and hence, by Remark 5.2.9

a), we conclude that the probability weight of each path of the coarse-level quantization is 1{16.
The number of the local refinement of a coarse-level path is determined by its associated values
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rX
E,p2q
2,2 pt0q, rX

E,p2q
2,2 pt1q via the values of the quantities rsE,l´1

locH and ηl for l “ 1, 2. See Table 5.1 for the
numerical values of these quantities in our example. Therein the values are listed bottom-up in the sense
that the first row corresponds to the first path from below in Figure 5.2.1a and so on.

Block No. rX
p2q
2,2 p1{2q

rX
p2q
2,2 p1q

rX
E,p2q
2,2 p1{2q rX

E,p2q
2,2 p1q rsE,0

locH rsE,1
locH η1 η2 K1,8 K2,8

-0.97 -4.64 0.85 3.45 4.47 1.90 0.72 0.72 5 5
-0.97 -0.39 0.85 2.05 4.47 1.90 0.72 0.72 5 5

1 -0.97 0.17 0.85 -0.75 4.47 1.90 0.72 0.72 5 5
-0.97 1.21 0.85 0.65 4.47 1.90 0.72 0.72 5 5

1.19 -0.37 -2.46 0.07 4.47 5.49 0.72 0.72 5 5
1.19 0.91 -2.46 4.13 4.47 5.49 0.72 0.72 5 5

2 1.19 2.57 -2.46 -3.99 4.47 5.49 0.72 0.72 5 5
1.19 7.76 -2.46 -8.04 4.47 5.49 0.72 0.72 5 5

2.33 -1.22 4.15 1.22 4.47 9.28 0.72 0.72 5 5
2.33 1.30 4.15 -5.64 4.47 9.28 0.72 0.72 5 5

3 2.33 2.64 4.15 8.08 4.47 9.28 0.72 0.72 5 5
2.33 12.87 4.15 14.94 4.47 9.28 0.72 0.72 5 5

11.10 -7.66 7.46 1.80 4.47 16.67 0.72 0.79 5 6
11.10 4.30 7.46 -10.52 4.47 16.67 0.72 0.79 5 6

4 11.10 10.68 7.46 14.12 4.47 16.67 0.72 0.79 5 6
11.10 59.31 7.46 26.44 4.47 16.67 0.72 0.79 5 6

Table 5.1.: Support points of the coarse-level quantization along with the local regularity in the coarse
level quantization

For the fine-level quantization we chose M “ 8, which then specifies the size K1,8 and K2,8 of the
quantization of the Brownian bridges B1

1 and B1
2 , respectively. See again Table 5.1 for the resulting values

in our example. We quantize the Brownian bridges B1
1 and B1

2 by employing the method described at the
end of Section 2.3.2, where we choose the truncation indices dpK1,8qopti and dpK2,8qopti as in the database
available at the website

http://quantize.maths-fi.com.

We combine the paths of the coarse-level quantization and the fine-level quantization as in (5.2.27).
The paths of the overall quantization rX

p2,2q
2,2,8 are displayed in Figure 5.2.1b. The respective numbers of

paths resulting from block 1 up to block 4 in Table 5.1 are 100, 100, 100 and 120 summing up to a total
number of 420 paths.

In our example we obtain a total number of 15 distinct probability weights ranging from a mini-
mum value of 0.000493 to a maximum value of 0.005543. For each path of the overall quantization
Remark 5.2.9 b) implies that its weight is the product of the weights of the corresponding coarse-level
and fine-level paths, where the latter is determined by the corresponding weights of the quantizations
of the Brownian bridges B1

1 and B1
2 . For the first three blocks in Table 5.1 the distinct probability

weights of the quantizations of B1
1 and B1

2 are 0.1067, 0.2444, 0.2978 in each case. Whereas in the fourth
block the distinct probability weights of the quantizations of B1

1 and B1
2 are 0.1067, 0.2444, 0.2978 and

0.0740, 0.1810, 0.2450, respectively. To get a better insight on the shape of paths of the quantization
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5.3. Quantization in Cpr0, 1s;Rdq w.r.t. the Supremum Norm

rX
p2,2q
2,2,8 , we incorporated four supplementary figures in Figure 5.2.1 where each of them corresponds to one

of the four blocks in Table 5.1, see Figures 5.2.1c to 5.2.1f. Additionally, in Figure 5.2.1c to Figure 5.2.1f
those paths with probability weight 0.005543 are marked in blue, and the paths with probability weight
0.000493 are marked in light orange.

5.3. Quantization in Cpr0, 1s;Rdq w.r.t. the Supremum Norm

Throughout this section let s P r1,8q, let ε ą 0, and let

ηε “ min
 

n P N
ˇ

ˇ d1{sn ď p1` εq
(

. (5.3.1)

We aim at constructing a sequence of product-quanizations of the solution X of the SDE (3.1.1) in the
space Cpr0, 1s;Rdq equipped with the supremum norm } ¨ }8. Recall that for m,n P N and q P r1,8q the
extension of the Milstein quantization to a Cpr0, 1s;Rdq-valued random element is given by

rXpqqm,nptq “ ptl ´ tq ¨m ¨
rXpqqm,nptl´1q ` pt´ tl´1q ¨m ¨ rX

pqq
m,nptlq

for t P rtl´1, tls and l “ 1, . . . ,m.

5.3.1. Fine-level Quantization: Quantization of a Weighted Combination of
Brownian Bridges

Let m P N, and recall that for l “ 1, . . . ,m and j “ 1, . . . , r the Brownian bridge Bj
l on rtl´1, tls is given

by

Bj
l ptq “Wjptq ´ ptl ´ tq ¨m ¨Wjptl´1q ´ pt´ tl´1q ¨m ¨Wjptlq

for t P rtl´1, tls.

In this section we construct a fine-level quantization, which is different from the fine-level quantization
used for quantization of X in Ldpr0, 1s, see Section 5.2.1. For technical reasons the fine-level quantization
presented in this section will not consist in applying quantizations to the Brownian bridges Bj

l separately.
Instead, we quantize in one go a weighted combination of the Brownian bridges Bj

l , where we consider
deterministic weights first.

More precisely, for k “ 1, . . . , d let γk “
`

γkl,j
˘

P Rmˆr, and we consider the real-valued stochastic

process Bpγ
kq
“

`

B
pγkq
ptq

˘

tPr0,1s
given by

B
pγkq
ptq “

r
ÿ

j“1

γkl,j ¨B
j
l ptq

for t P rtl´1, tls and l “ 1, . . . ,m.
Due to Lemma 5.2.1 b) it holds

B
pγkq

¨ 1rtl´1,tls
L
“ }γkl }2 ¨B

1
l (5.3.2)

for all l “ 1, . . . ,m and k “ 1, . . . , d, where γkl “ pγkl,1, . . . , γ
k
l,rq. Equation (5.3.2) is one of the key

observations for our construction.

91



5. Quantization of Multidimensional SDEs

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
10

20
30

40
50

60

t

r X
p2
q

2
,2
pt
q

(a) Paths of the coarse-level quantization rX
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(c) Paths of rX
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2,2,8 corresp. to block 1 in Table 5.1
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(d) Paths of rX
p2,2q
2,2,8 corresp. to block 2 in Table 5.1
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(e) Paths of rX
p2,2q
2,2,8 corresp. to block 3 in Table 5.1

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

0
10

20
30

40
50

60

t

r X
p2
,2
q

2
,2
,8
pt
q

(f) Paths of rX
p2,2q
2,2,8 corresp. to block 4 in Table 5.1

Figure 5.2.1.: Example of a quantization in L2r0, 1s
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5.3. Quantization in Cpr0, 1s;Rdq w.r.t. the Supremum Norm

Notation
We define Bpγ

kq

1 “ pB
pγkq
1 qtPr0,1s by

B
pγkq
1 ptq “ }γkl }2 ¨B

1
l ptq

for t P rtl´1, tls and l “ 1, . . . ,m. Moreover, where is does not cause confusion, we write Bl and Bpγ
kq

instead of B1
l and Bpγ

kq

1 , respectively.

In view of (5.3.2) the main idea is to design (a sequence of) quantizers ψpγkq : Cr0, 1s Ñ Cr0, 1s for
the process Bpγ

kq

1 , which will then be applied to the process Bpγ
kq. One of the core ingredients in the

construction of the quantizers will be a sequence of strongly asymptotically optimal quantizers for a
Brownian motion on r0, 1s.
For the remaining part of this subsection, let k P t1, . . . , du, and let γk “

`

γkl,j
˘

P Rmˆr such that

}γkl }2 ‰ 0 (5.3.3)

for all l “ 1, . . . ,m as well as

m
ÿ

l“1

}γkl }
2
2 “ m. (5.3.4)

We split up our construction into single steps. The first three steps are built-up analogously to the
construction for scalar SDEs in [MGR13, Section 2.3].

Step 1: We consider a sequence Z1, . . . , Zm of i.i.d. random variables with Z1 „ Np0, 1q which is inde-
pendent of W . We put

W ˚
0 :“ 0 and W ˚

l :“ m´1{2 ¨

l
ÿ

i“1

Zi

for l “ 1, . . . ,m. Then,

W ˚
l

L
“W1ptlq

for all l “ 0, . . . ,m.
Now we add the random variables W ˚

0 , . . . ,W
˚
m to the Brownian bridges B1, . . . , Bm in such a

way that we end up with a new Brownian motion. More precisely, we define a real-valued stochastic
process W ˚ “ pW ˚ptqqtPr0,1s by

W ˚ptq “ Blptq ` ptl ´ tq ¨m ¨W
˚
l´1 ` pt´ tl´1q ¨m ¨W

˚
l (5.3.5)

for t P rtl´1, tls and l “ 1, . . . ,m.

The statement of the following lemma is verified rather easily, and therefore a proof is omitted.

Lemma 5.3.1
The process W ˚ is a one-dimensional Brownian motion on r0, 1s.
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Step 2: We put sk0 :“ 0 and

skl :“
1

m
¨

l
ÿ

i“1

}γki }
2
2

for l “ 1, . . . ,m. Then due to (5.3.3) and (5.3.4) we have

0 “ sk0 ă sk1 ă ¨ ¨ ¨ ă skm “ 1.

Hence, depending on γk, we have introduced a new discretization of the time interval r0, 1s, and the
corresponding piecewise linear time transformation τk : r0, 1s Ñ r0, 1s is given by

τkpsq “ tl´1 `
s´ skl´1

}γkl }
2
2

for s P rskl´1, s
k
l s and l “ 1, . . . ,m. In particular, τk is bijective and its piecewise linear inverse

function pτkq´1 : r0, 1s Ñ r0, 1s is given by

pτkq´1ptq “ skl´1 ` }γ
k
l }

2
2 ¨ pt´ tl´1q

for t P rtl´1, tls and l “ 1, . . . ,m.

Step 3: In this step we construct a one-dimensional Brownian motion on r0, 1s, whose properties serve as
further key observations for our construction of a fine-level quantization. By utilizing the Brownian
motion W ˚, we define a real-valued stochastic process W pγkq “ pW pγkqpsqqsPr0,1s via

W pγkqpsq “
l´1
ÿ

i“1

}γki }2 ¨
´

W ˚
`

τkpski q
˘

´W ˚
`

τkpski´1q
˘

¯

` }γkl }2 ¨
´

W ˚
`

τkpsq
˘

´W ˚
`

τkpskl´1q
˘

¯

(5.3.6)

for s P rskl´1, s
k
l s and l “ 1, . . . ,m.

Lemma 5.3.2
a) The process W pγkq is a one-dimensional Brownian motion on r0, 1s.

b) The process W pγkq is independent of pY 1
1 , . . . , Y

1
mq.

c) For all l “ 1, . . . ,m it holds

W pγkqpskl q “ m´1{2 ¨

l
ÿ

i“1

}γki }2 ¨ Zi. (5.3.7)

d) It holds

Bpγ
kqptq “W pγkq

`

pτkq´1ptq
˘

´ ptl ´ tq ¨m ¨W
pγkq

`

skl´1

˘

´ pt´ tl´1q ¨m ¨W
pγkq

`

skl
˘

(5.3.8)

for all t P rtl´1, tls and l “ 1, . . . ,m.

Proof:
a) This statement follows by employing the properties of the Brownian motion W ˚.
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b) By the definition of W ˚, see (5.3.5), there exists a measurable mapping Φ such that

W ˚ “ ΦpB1, . . . , Bm, Z1, . . . , Zmq.

Moreover, due to Lemma 5.2.1 c), and due to the fact that the random variables Z1, . . . , Zm are
independent of W , we obtain that pB1, . . . , Bm, Z1, . . . , Zmq is independent of pY 1

1 , . . . , Y
1
mq.

Hence W ˚ is independent of pY 1
1 , . . . , Y

1
mq, and by the definition of W pγkq, see (5.3.6), we then

obtain the assertion in b).

c),d) The statements in c) and d) follow from (5.3.5) and (5.3.6) by direct calculation.

Step 4: Observing c) and d) in the previous lemma gives a hint on which ingredients might be employed
to obtain a sequence of quantizers for Bpγkq. Due to d) the Brownian bridges of W pγkq on the subin-
tervals rskl´1, s

k
l s coincide with Bpγkq up to the time transformation τk. Hence in view of (5.3.8) it

stands to reason to built-up quantizations of Bpγkq in the following way: First, we apply quantiza-
tions to the Brownian motion W pγkq, and, secondly, we apply quantizations to the random variables
W pγkqpskl q. In view of (5.3.7), we obtain quantizations of W pγkqpskl q by applying quantizations of
standard normally distributed random variables.

More precisely, we employ the following ingredients as building blocks in our construction:

(I.) Let q P r1,8q. We take a sequence pT pqqn qnPN of n-quantizers T pqqn : R Ñ R for a standard
normally distributed random variable, which satisfies (N1)--(N3), and for all n P N we put
ĂW
pγk,qq
m,n

`

sk0
˘

:“ 0 and

ĂW pγk,qq
m,n

`

skl
˘

:“ m´1{2 ¨

l
ÿ

i“1

}γki }2 ¨
rZ
pqq
i,n (5.3.9)

for l “ 1, . . . ,m where

rZ
pqq
i,n :“ T pqqn pZiq.

(II.) Let pSM,εqMPN be a strongly asymptotically optimal sequence of order sηε of M -quantizers
SM,ε : Cr0, 1s Ñ Cr0, 1s for a Brownian motion on r0, 1s, where ηε is the natural number in
(5.3.1). At this point, for technical reasons, our construction differs from the one in [MGR13,
Section 2.3]. In [MGR13, Section 2.3] the authors choose an arbitrary sequence ofM -quantizers
for a Brownian motion on r0, 1s.

Let n,M P N. We combine the aforementioned building blocks. By defining

rB
pγk,q,εq
m,n,M ptq “ SM,ε

`

W pγkq
˘`

pτkq´1ptq
˘

´ ptl ´ tq ¨m ¨ĂW
pγk,qq
m,n

`

skl´1

˘

´ pt´ tl´1q ¨m ¨ĂW
pγk.qq
m,n

`

skl
˘

(5.3.10)

for t P rtl´1, tls and l “ 1, . . . ,m, we obtain a quantization of Bpγkq. Note that, in view of (5.3.10)
and (5.3.8), there exists a Borel measurable mapping ψpγ

k,q,εq
m,n,M : Cr0, 1s Ñ Cr0, 1s with

ˇ

ˇ ran
`

ψ
pγk,q,εq
m,n,M

˘ˇ

ˇ ď nm ¨M (5.3.11)
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such that

rB
pγk,q,εq
m,n,M ptq “ ψ

pγk,q,εq
m,n,M

`

Bpγ
kq
˘

ptq (5.3.12)

for all t P rtl´1, tls and l “ 1, . . . ,m.

5.3.2. Overall Quantization

Let q P r1,8q and m,n,M P N. We combine the fine-level quantization constructed in the previous
subsection with the coarse-level quantization of X in order to obtain an overall product-quantization of
X. First we replace the deterministic weights considered in the previous subsection by random weights.
In analogy to the construction in [MGR13] we define bk,j,m : Rd Ñ R by

bk,j,mpxq “ sgn
`

bk,jpxq
˘

¨max
`

|bk,jpxq|,m
´1
˘

for k “ 1, . . . , d and j “ 1, . . . , r where sgn : RÑ R is given by

sgnpyq “

#

1, if y ě 0,

´1, if y ă 0.

Now we take random weights Γk by taking into account the local regularity of Xk. More precisely, for
k “ 1, . . . , d, j “ 1, . . . , r and l “ 1, . . . ,m we put

Γ
k,pqq
l,j,m,n :“ bk,j,m

`

rXE,pqq
m,n ptl´1q

˘

¨

˜

m´1 ¨

m´1
ÿ

i“0

›

›bk,m
`

rXE,pqq
m,n ptiq

˘›

›

2

2

¸´1{2

(5.3.13)

where

bk,m
`

rXE,pqq
m,n ptiq

˘

“
`

bk,1,m
`

rXE,pqq
m,n ptiq

˘

, . . . , bk,r,m
`

rXE,pqq
m,n ptiq

˘˘

.

For ease of notation, we write Γkl,j instead of Γ
k,pqq
l,j,m,n. Note that the random matrix Γk “ pΓkl,jq takes

values in Rmˆr and satisfies

}Γkl }2 ‰ 0

for all l “ 1, . . . ,m as well as

m
ÿ

l“1

}Γkl }
2
2 “ m,

which is in accordance with the assumptions imposed on the deterministic weights in (5.3.3) and (5.3.4).
We add that the random weights Γk are different from the ones employed in [MGR13, Section 2.3]. Therein
the random weights are built-up by the Milstein quantization whereas, for technical reasons, we employed
the Euler quantization.

Now for k “ 1, . . . , d we define a quantization rX
pq,εq,k
m,n,M of Xk by

rX
pq,εq,k
m,n,M ptq “

rXpqq,km,n ptq `

˜

m´1 ¨

m´1
ÿ

i“0

›

›bk,m
`

rXE,pqq
m,n ptiq

˘
›

›

2

2

¸1{2

¨ ψ
pΓk,q,εq
m,n,M

`

B
pΓkq˘

ptq (5.3.14)

for t P rtl´1, tls and l “ 1, . . . ,m.
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Hence, by separately quantizing each component Xk of X, we have obtained a product-quantization
rX
pq,εq
m,n,M “

`

rX
pq,εq,1
m,n,M , . . . ,

rX
pq,εq,d
m,n,M

˘1 of X “ pX1, . . . , Xdq1. By (5.1.6) and (5.3.11) we have, for all k “
1, . . . , d,

ˇ

ˇ ran
`

rX
pq,εq,k
m,n,M

˘
ˇ

ˇ ď

´

4p
r
2q ¨ n1`r`pr2q

¯m
¨M.

Thus,

ˇ

ˇ ran
`

rX
pq,εq
m,n,M

˘
ˇ

ˇ ď

d
ź

k“1

ˇ

ˇ ran
`

rX
pq,εq,k
m,n,M

˘
ˇ

ˇ ď

´

4d¨p
r
2q ¨ nd¨p1`r`p

r
2qq

¯m
¨Md. (5.3.15)

We consider a sequence of quantizations

rX
pq,εq
N “ rX

pq,εq
mN ,mN ,MN

,

N P N, of X where we choose the parameters mN and MN as follows. First, in order to control the size
of rX

pq,εq
N via (5.3.15) we choose

MN :“ max

$

&

%

—

—

—

–

˜

ˆ

4d¨p
r
2q ¨m

d¨p1`r`pr2qq
N

˙´mN

¨N

¸1{d
ffi

ffi

ffi

fl , 1

,

.

-

. (5.3.16)

Moreover, in addition to (Lim1) we require

(Lim3) lim
NÑ8

`

mα
N{ lnmN

˘2

lnN
“ 8

for all α P p3{4, 1q. The technical assumption (Lim3) is another point in which our construction is
distinct from the one in [MGR13].

Remark 5.3.3

a) A valid choice of a sequence in N which satisfies (Lim1) and (Lim3) is, again, pmN qNPN with
m1 “ 1 and

mN “

Q

plnNq2{3
U

, N ě 2.

b) Note that (Lim3) implies

lim
NÑ8

?
lnN ¨

lnmN

mα
N

“ 0

for all α P p3{4, 1q. Obviously, assumption (Lim3) is slightly stronger than (Lim2).

c) By the construction of the sequence p rXpq,εqN qNPN and due to (5.3.17) in the upcoming Theorem 5.3.4
we have

rX
pq,εq
N P XN,prod,uni

for all sufficiently large N P N.
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The following theorem contains the main result of this section, whose proof is postponed to Section 6.3.
We put

Cp8,sq :“
?
d ¨

ˆ

E
„

max
k“1,...,d

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

s

L2r0,1s

˙1{s

.

Theorem 5.3.4
Let q ě mintrq P 2N | rq ě sηεu. Then

ˇ

ˇ ran
`

rX
pq,εq
N

˘
ˇ

ˇ ď N (5.3.17)

for all sufficiently large N P N, and

lim sup
NÑ8

´?
lnN ¨ epsq

`

X, rX
pq,εq
N , Cpr0, 1s;Rdq

˘

¯

ď κ8 ¨ C
p8,sq ¨ p1` εq

where κ8 is the constant in Theorem 2.3.11 (ii).

The previous theorem and Theorem 4.3.2 lead to the following result on the asymptotic behavior
of the Nth minimal quantization error w.r.t to N -uniform-product-quantizations of X in the space
Cpr0, 1s;Rdq.

Theorem 5.3.5
For all s P r1,8q it holds

lim
NÑ8

?
lnN ¨ e

psq
N,prod,uni

`

X, Cpr0, 1s;Rdq
˘

“ κ8 ¨ C
p8,sq

where κ8 is the constant in Theorem 2.3.11 (ii).

Proof:
First, analogously to the proof of Theorem 5.2.6 one shows that X is an Itô process as required in Section
4.3. Hence by Theorem 4.3.2 we have

lim inf
NÑ8

?
lnN ¨ e

psq
N,prod,uni

`

X, Cpr0, 1s;Rdq
˘

ě κ8 ¨ C
p8,sq.

Secondly, for every ε ą 0, due to the construction of quantizations of X above, and due to Theorem
5.3.4, there exists a sequence p rXpεqN qNPN of N -quantizations of X such that

lim sup
NÑ8

?
lnN ¨ epsq

`

X, rX
pεq
N , Cpr0, 1s;Rdq

˘

ď κ8 ¨ C
p8,sq ¨ p1` εq.

Thus, for every ε ą 0 we have

lim sup
NÑ8

?
lnN ¨ e

psq
N,prod,uni

`

X, Cpr0, 1s;Rdq
˘

ď κ8 ¨ C
p8,sq ¨ p1` εq.

Therefore,

lim sup
NÑ8

?
lnN ¨ e

psq
N,prod,uni

`

X, Cpr0, 1s;Rdq
˘

ď inf
εą0

κ8 ¨ C
p8,sq ¨ p1` εq “ κ8 ¨ C

p8,sq,

which finishes the proof.
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5.4. Quantization in Cpr0, 1s;Rdq w.r.t. a Norm Equivalent to the Supremum Norm

Remark 5.3.6
One obtains results on the computational cost to determine the paths and corresponding probability
weights of the quantizations rX

pq,εq
m,n,M analogous to those presented in Section 5.2.3 by carrying out an

analysis similar to the one in Section 5.2.3.

5.4. Quantization in Cpr0, 1s;Rdq w.r.t. a Norm Equivalent to the
Supremum Norm

Throughout this section, let s P r1,8q, and we interpret X as a random element in the space Cpr0, 1s;Rdq
equipped with the norm 9 ¨ 9s. By considering the norm 9 ¨ 9s instead of the supremum norm } ¨ }8 we
derive results on the asymptotic behavior of the minimal quantization error of X w.r.t to quantizations
in the wider classes XN,prod instead of only in the classes XN,prod,uni.

Except for a few alterations we use the ideas and building blocks presented in the Sections 5.3.1 and
5.3.2 to obtain a sequence of product-quantizations ofX in the space pCpr0, 1s;Rdq,9¨9sq. We additionally
employ ideas utilized in the case of quantization in Ldpr0, 1s.

5.4.1. Fine-level Quantization

Let q P r1,8q, and let m,n P N. We adopt the whole construction presented in Section 5.3.1 except
for one alteration. Namely, in Step 4 instead of taking a strongly asymptotically optimal sequence of
quantizers for a Brownian motion on r0, 1s, we choose an arbitrary sequence pSKqKPN of K-quantizers
SK : Cr0, 1s Ñ Cr0, 1s for a Brownian motion on r0, 1s.

Then the quantization of Bpγkq in (5.3.10) reads

rB
pγk,qq
m,n,Kptq “ SK

`

W pγkq
˘`

pτkq´1ptq
˘

´ ptl ´ tq ¨m ¨ĂW
pγk,qq
m,n

`

skl´1

˘

´ pt´ tl´1q ¨m ¨ĂW
pγk,qq
m,n

`

skl
˘

for t P rtl´1, tls, l “ 1, . . . ,m, k “ 1, . . . , d and K P N. As in Section 5.3.1, for all k “ 1, . . . , d and K P N,
there exists a Borel measurable mapping ψpγ

k,qq
m,n,K : Cr0, 1s Ñ Cr0, 1s with

ˇ

ˇ ran
`

ψ
pγk,qq
m,n,K

˘
ˇ

ˇ ď nm ¨K. (5.4.1)

such that

rB
pγk,qq
m,n,Kptq “ ψ

pγk,qq
m,n,K

`

Bpγ
kq
˘

ptq

for all t P rtl´1, tls and l “ 1, . . . ,m.

5.4.2. Overall Quantization

Let q P r1,8q, m P N2, n P N, and for k “ 1, . . . , d let Γk “ pΓkl,jq be the random matrix where the entries
Γkl,j are defined as in (5.3.13).

Additionally, we further specify the size K of the quantizers SK by taking into account the respective
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5. Quantization of Multidimensional SDEs

path properties of Xk. More precisely, let M P N, and for k “ 1, . . . , d we put

µpsq,km,n :“ max

$

’

’

’

&

’

’

’

%

`

rAkm,n
˘2s{ps`2q

d
ř

i“1

`

rAim,n
˘2s{ps`2q

,
1

d ¨m ¨ lnm

,

/

/

/

.

/

/

/

-

(5.4.2)

where

rAim,n :“

˜

m´1 ¨

m
ÿ

l“1

›

›bi,m
`

rXE,pqq
m,n ptl´1q

˘
›

›

2

2

¸1{2

.

For ease of notation, we write µk instead of µpsq,km,n . Now, similarly to the case of quantization in Ldpr0, 1s,
we choose the size K dependent on M and µk by taking

Kk,M :“
P

Mµk
T

. (5.4.3)

In analogy to (5.3.14), by defining

rX
pqq,k
m,n,M ptq “

rXpqq,km,n ptq `
rAkm,n ¨ ψ

pΓkq
m,n,Kk,M

`

B
pγkq˘

ptq

for t P rtl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d, we obtain a product-quantization

rX
pqq
m,n,M “ p rX

pqq,1
m,n,M , . . . ,

rX
pqq,d
m,n,M q

1 of X “ pX1, . . . , Xdq.

By the choice of Kk,M , by (5.4.1), and by (5.1.6), we have

ˇ

ˇ ran
`

rX
pqq,k
m,n,M

˘ˇ

ˇ ď

´

4p
r
2q ¨ n1`r`pr2q

¯m
¨Kk,M ď

´

2 ¨ 4p
r
2q ¨ n1`r`pr2q

¯m
¨Mµk

for all k “ 1, . . . , d. Thus,

ˇ

ˇ ran
`

rX
pqq
m,n,M

˘ˇ

ˇ ď

d
ź

k“1

ˇ

ˇ ran
`

rX
pqq,k
m,n,M

˘ˇ

ˇ

ď

´

2d ¨ 4d¨p
r
2q ¨ nd¨p1`r`p

r
2qq

¯m
¨M

řd
k“1 µ

k

ď

´

2d ¨ 4d¨p
r
2q ¨ nd¨p1`r`p

r
2qq

¯m
¨M1`1{ lnm.

(5.4.4)

We consider a sequence of quantizations

rX
pqq
N “ rX

pqq
mN ,mN ,MN

,

N P N, of X, where we chose the parameters mN and MN as follows. In order to control the size of rX
pqq
N

via (5.4.4) we choose

MN “ max

$

&

%

—

—

—

–

˜

ˆ

2d ¨ 4d¨p
r
2q ¨m

d¨p1`r`pr2qq
N

˙´mN

¨N

¸lnmN {p1`lnmN q
ffi

ffi

ffi

fl , 1

,

.

-

. (5.4.5)
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5.4. Quantization in Cpr0, 1s;Rdq w.r.t. a Norm Equivalent to the Supremum Norm

Moreover, we require (Lim1) as well as (Lim3) to hold. Then the statements in Remark 5.3.3 a) and
b) stay valid, and instead of the statement in Remark 5.3.3 c), by arguing similarly as stated therein, we
have

rX
pqq
N P XN,prod

for all sufficiently large N P N.
We put

κ8,s :“ lim sup
KÑ8

?
lnK ¨ epsq

`

W,SKpW q, Cr0, 1s
˘

where W denotes a Brownian motion on r0, 1s, and we put

Cp8,sq :“

¨

˝E

»

–

˜

d
ÿ

k“1

›

› }bkpXp¨qq}2
›

›

2s{ps`2q

L2r0,1s

¸ps`2q{2
fi

fl

˛

‚

1{s

.

The construction leads to the following result.

Theorem 5.4.1
Let q ě mintrq P 2N | rq ě su. Then

ˇ

ˇ ran
`

rX
pqq
N

˘ˇ

ˇ ď N

for all sufficiently large N P N, and

lim sup
NÑ8

´?
lnN ¨ epsq

`

X, rX
pqq
N , Cpr0, 1s;Rdq

˘

¯

ď κ8,s ¨ C
p8,sq.

By applying the previous theorem, Theorem 2.2.7, and Theorem 4.1.2 (ii), we obtain the following re-
sult on the asymptotic behavior of the Nth minimal quantization error w.r.t. to N -product-quantizations
of X in the space pCpr0, 1s;Rdq,9 ¨ 9sq. We abbreviate Mbr0, 1s :“Mbpr0, 1s;Rq.

Theorem 5.4.2
It holds

lim
NÑ8

?
lnN ¨ e

psq
N,prod

`

X, Cpr0, 1s;Rdq
˘

“ κ8 ¨ C
p8,sq

where κ8 is the constant in Theorem 2.3.11 (ii).

Proof:
By utilizing Theorem 4.1.2 (ii) one shows

lim inf
NÑ8

?
lnN ¨ e

psq
N,prod

`

X, Cpr0, 1s;Rdq
˘

ě κ8 ¨ C
p8,sq

analogously to the proof of the lower bound in Theorem 5.2.6.
It remains to show

lim sup
NÑ8

?
lnN ¨ e

psq
N,prod

`

X, Cpr0, 1s;Rdq
˘

ď κ8 ¨ C
p8,sq.

Let pSKqKPN be a sequence of K-quantizers SK : Mbr0, 1s Ñ Mbr0, 1s for a Brownian motion on r0, 1s
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5. Quantization of Multidimensional SDEs

which is strongly asymptotically optimal of order s. Note that due to Theorem 2.2.7 (ii) such a se-
quence exists. Then by carrying out a construction which is built-up analogously to the one leading to
Theorem 5.4.1, one obtains that there exists a sequence p rXN qNPN of N -quantizations of X in the space
Mbpr0, 1s;Rdq such that

lim sup
NÑ8

´?
lnN ¨ epsq

`

X, rXN ,Mbpr0, 1s;Rdq
˘

¯

ď κ8,s ¨ C
p8,sq.

Hence, by Theorem 2.2.7 (i), we end up with

lim sup
NÑ8

?
lnN ¨ e

psq
N,prod

`

X, Cpr0, 1s;Rdq
˘

“ lim sup
NÑ8

?
lnN ¨ e

psq
N,prod

`

X,Mbpr0, 1s;Rdq
˘

ď κ8 ¨ C
p8,sq.

We close this section with the following result, which states that the sequence p rXpqqN qNPN is strongly
asymptotically optimal of order s provided that the sequence pSKqKPN is strongly asymptotically optimal
of order s.

Proposition 5.4.3
Let q ě mintrq P 2N | rq ě su. If pSKqKPN is a strongly asymptotically optimal sequence of order s of
K-quantizers SK : Cr0, 1s Ñ Cr0, 1s for a Brownian motion on r0, 1s, it holds

lim sup
NÑ8

epsq
`

X, rX
pqq
N , Cpr0, 1s;Rdq

˘

e
psq
N,prod

`

X, Cpr0, 1s;Rdq
˘

ď 1,

and in particular, in case d “ 1, it holds

lim sup
NÑ8

epsq
`

X, rX
pqq
N , Cr0, 1s

˘

e
psq
N

`

X, Cr0, 1s
˘

ď 1.

Proof:
Note that assumption (ii) at the beginning of this chapter ensures Cp8,sq ą 0. Then the statements are a
direct consequence of Theorem 5.4.1, Theorem 5.4.2 and Theorem 2.3.11 (ii).

Remark 5.4.4
One obtains results on the computational cost to determine the paths and corresponding probability
weights of the quantizations rX

pqq
m,n,M analogous to those presented in Section 5.2.3 by carrying out an

analysis similar to the one in Section 5.2.3.
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6 | Proofs of Chapter 5

In the whole chapter c denotes a not further specified positive real constant which may vary from line
to line and which might depend only on the dimension d of the SDE (3.1.1), on the dimension r of the
driving Brownian motion W , on the initial value x0, on the constants in (C2),(N3) and (I3), on the
conditions (N2) and (I2), as well as on all involved moment parameters.

Furthermore, in the whole chapter, for m,n P N and q P r1,8q, we use the abbreviations

• pal´1
k :“ ak

`

pXM
m ptl´1q

˘

, pbl´1
k,j :“ bk,j

`

pXM
m ptl´1q

˘

and pcl´1
k,j1,j2

:“ ∇bk,j2bpj1q
`

pXMptl´1q
˘

as well as

• ral´1
k :“ ak

`

rX
pqq
m,nptl´1q

˘

, rbl´1
k,j :“ bk,j

`

rX
pqq
m,nptl´1q

˘

and rcl´1
k,j1,j2

:“ ∇bk,j2bpj1q
`

rX
pqq
m,nptl´1q

˘

for k “ 1, . . . , d, j, j1, j2 “ 1, . . . , r and l “ 1, . . . ,m. Analogously we define

• paE,l´1
k , pbE,l´1

k,j and pcE,l´1
k,j1,j2

as well as

• raE,l´1
k , rbE,l´1

k,j and rcE,l´1
k,j1,j2

with pXM
m ptl´1q and rX

pqq
m,nptl´1q replaced by pXE

mptl´1q and rX
E,pqq
m,n ptl´1q, respectively.

In the majority of cases, where it does not cause confusion, we also drop the notational indices E
and M, which are used to indicate which time-discrete approximation scheme is under consideration, and
write pXm instead of pXM

m and pXE
m.

6.1. Coarse-level Quantization: Proof of Proposition 5.1.1

6.1.1. Auxiliary Lemmas 1 and 2

In the first main auxiliary lemma we provide a moment bound for the Milstein quantization.

Lemma 6.1.1
Let s, q P r1,8q. Then, for all m,n P N,

E
”

max
l“0,...,m

} rXpqqm,nptlq}
s
8

ı

ď c.

Proof:
Let m,n P N and, for the moment, we assume s P 2N. For ease of notation, we drop the parameter q and
write rXm,nptlq and rY j

l,n instead of rX
pqq
m,nptlq and rY

pqq,j
l,n , respectively.
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6. Proofs of Chapter 5

We split up the proof into single steps.

Step 1: Let k P t1, . . . , du. Due to the recursive structure of the Milstein quantization we have

rXk
m,nptlq “ xk0 `m

´1 ¨

l´1
ÿ

i“0

raik `m
´1{2 ¨

l´1
ÿ

i“0

r
ÿ

j“1

rbik,j ¨
rY j
i`1,n `

1

2
¨m´1 ¨

l´1
ÿ

i“0

r
ÿ

j“1

rcik,j,j ¨
`

prY j
i`1,nq

2 ´ 1
˘

`m´1 ¨

l´1
ÿ

i“0

r
ÿ

j1,j2“1
j1ăj2

´

`

rcik,j2,j1 ´ rcik,j1,j2
˘

¨ rIi`1,n
pj1,j2q

` rcik,j1,j2 ¨
rY j1
i`1,n ¨

rY j2
i`1,n

¯

“ xk0 `m
´1 ¨

l´1
ÿ

i“0

raik `m
´1{2 ¨

l´1
ÿ

i“0

r
ÿ

j“1

rbik,j ¨
rY j
i`1,n

`
1

2
¨m´1 ¨

l´1
ÿ

i“0

r
ÿ

j“1

rcik,j,j ¨
`

prY j
i`1,nq

2 ´ E
“

prY j
i`1,nq

2
‰

` E
“

prY j
i`1,nq

2
‰

´ 1
˘

`m´1 ¨

l´1
ÿ

i“0

r
ÿ

j1,j2“1
j1ăj2

´

`

rcik,j2,j1 ´ rcik,j1,j2
˘

¨ rIi`1,n
pj1,j2q

` rcik,j1,j2 ¨
rY j1
i`1,n ¨

rY j2
i`1,n

¯

for all l “ 1, . . . ,m.
Next, for i “ 0, . . . ,m´ 1 we put

rϑki :“ m´1 ¨ raik `
1

2
¨m´1 ¨

r
ÿ

j“1

rcik,j,j ¨
`

E
“

prY j
i`1,nq

2
‰

´ 1
˘

and

rξki :“ m´1{2 ¨

r
ÿ

j“1

rbik,j ¨
rY j
i`1,n `

1

2
¨m´1 ¨

r
ÿ

j“1

rcik,j,j ¨
`

prY j
i`1,nq

2 ´ E
“

prY j
i`1,nq

2
‰˘

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

´

`

rcik,j2,j1 ´ rcik,j1,j2
˘

¨ rIi`1,n
pj1,j2q

` rcik,j1,j2 ¨
rY j1
i`1,n ¨

rY j2
i`1,n

¯

.
(6.1.1)

Then, for all l “ 0, . . . ,m, it holds

rXk
m,nptlq “

rUkl `
rV k
l (6.1.2)

where

rUkl :“ xk0 `
l´1
ÿ

i“0

rϑki and rV k
l :“

l´1
ÿ

i“0

rξki (6.1.3)

for l “ 1, . . . ,m and rUk0 :“ xk0 as well as rV k
0 :“ 0. Moreover, we put

rV k,˚
l :“ max

j“0,...,l
|rV k
j |

for l “ 0, . . . ,m.
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Step 2: In this step we further estimate |rϑki |. Since a and b are of at most linear growth, and due to
(C2) (i), (N2) and (6.1.2), we have

|rϑki | “
ˇ

ˇ

ˇ
m´1 ¨ raik `

1

2
¨m´1 ¨

r
ÿ

j“1

rcik,j,j ¨
´

E
“

prY j
i`1,nq

2
‰

´ 1
¯ ˇ

ˇ

ˇ

ď c ¨m´1 ¨

´

ˇ

ˇ

raik
ˇ

ˇ`

r
ÿ

j“1

ˇ

ˇ

rcik,j,j
ˇ

ˇ ¨
ˇ

ˇE
“

prY j
i`1,nq

2
‰

` 1
ˇ

ˇ

¯

ď c ¨m´1 ¨
`

1` } rXm,nptiq}2
˘

ď c ¨m´1 ¨

˜

1`
d
ÿ

k“1

| rXk
m,nptiq|

¸

ď c ¨m´1 ¨

˜

1`
d
ÿ

k“1

|rUki | `
d
ÿ

k“1

rV k,˚
i

¸

for all i “ 0, . . . ,m´ 1 and k “ 1, . . . , d. Hence, together with (6.1.3), we conclude that

d
ÿ

k“1

|rUkl`1| “

d
ÿ

k“1

ˇ

ˇ

ˇ

rUkl `
rϑkl

ˇ

ˇ

ˇ

ď

d
ÿ

k“1

|rUkl | ` c ¨m
´1 ¨

˜

1`
d
ÿ

k“1

|rUkl | `
d
ÿ

k“1

rV k,˚
l

¸

“

˜

d
ÿ

k“1

|rUkl |

¸

¨
`

1` c ¨m´1
˘

` c ¨m´1 ¨

˜

1`
d
ÿ

k“1

rV k,˚
l

¸

for all l “ 0, . . . ,m ´ 1. Then, by the discrete version of Gronwall’s inequality, see Corollary A.2,
we arrive at

max
j“0,...,l

d
ÿ

k“1

|rUkj | ď c ¨

˜

1`
d
ÿ

k“1

rV k,˚
l

¸

(6.1.4)

for all l “ 0, . . . ,m.

Step 3: We combine the previous two steps. By (6.1.2) and (6.1.4) we have

´

max
j“0,...,l

| rXk
m,nptjq|

¯s
ď

˜

´

max
j“0,...,l

d
ÿ

k“1

|rUkj |
¯

`

d
ÿ

k“1

rV k,˚
l

¸s

ď c ¨

˜

1`
d
ÿ

k“1

`

rV k,˚
l

˘s

¸

(6.1.5)

for all l “ 0, . . . ,m and k “ 1, . . . , d. Hence, in particular,

E
”

max
l“0,...,m

} rXm,nptlq}
s
8

ı

ď

d
ÿ

k“1

E
”

max
l“0,...,m

| rXk
m,nptlq|

s
ı

ď c ¨

˜

1`
d
ÿ

k“1

E
”

`

rV k,˚
m

˘s
ı

¸

. (6.1.6)

Thus, in order to prove the assertion of the lemma, it remains to show

d
ÿ

k“1

E
”

`

rV k,˚
m

˘s
ı

ď c.
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Step 4: Let k P t1, . . . , du. In this step we show that the time-discrete process prV k
l ql“0,...,m is an

pFptlqql“0,...,m-martingale where Fptlq is an element of the filtration F as defined in (3.1.2), and
where, recall, rV k

0 “ 0 and

rV k
l “

l´1
ÿ

i“0

rξki

for l “ 1, . . . ,m. Now, we prove:

(i) The process prV k
l ql“0,...,m is adapted to pFptlqql“0,...,m.

(ii) It holds E
“

|rV k
l |
‰

ă 8 for all l “ 0, . . . ,m.

(iii) It holds

E
”

rV k
l

ˇ

ˇ

ˇ
Fptl´1q

ı

P -a.s.
“ rV k

l´1

for all l “ 1, . . . ,m.

ad (i): Obviously, rV k
0 is Fpt0q-BpRq-measurable. Next, let l P t1, . . . ,mu. Due to the definition of

rξki , see (6.1.1), and due to the definition of the filtration pFptlqql“0,...,m, the random variable
rξki is Fpti`1q-BpRq-measurable for all i “ 0, . . . , l ´ 1. Moreover, it holds Fpti`1q Ď Fptlq for
all i “ 0, . . . , l ´ 1. Thus, rV k

l is a sum of Fptlq-BpRq-measurable random variables, and hence
rV k
l is Fptlq-BpRq-measurable.

ad (ii): Trivially, it holds Er|rV k
0 |s “ 0 ă 8. Next, let l P t1, . . . ,mu. By the triangle inequality we

have

|rV k
l | ď

l´1
ÿ

i“0

|rξki |.

Moreover, by (C2) (i), (N2) and (I2), by the properties of b, by the recursive structure
of the Milstein quantization, and by E

“

}x0}8
‰

ă 8, we conclude that E
“

|rξki |
‰

ă 8 for all
i “ 0, . . . ,m´ 1. Thus,

E
“

|rV k
l |
‰

ă 8.

ad (iii): Let l P t1, . . . ,mu. Due to the definition of rV k
l , and due to Proposition B.1 a), it holds

E
”

rV k
l

ˇ

ˇ

ˇ
Fptl´1q

ı

P -a.s.
“

l´1
ÿ

i“0

E
”

rξki

ˇ

ˇ

ˇ
Fptl´1q

ı

.

First, we consider the case i P t0, . . . , l ´ 2u. By the definition of Fptl´1q, by the definition of
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the Milstein quantization, and by Proposition B.1 a) and c), we have

E
”

rξki

ˇ

ˇ

ˇ
Fptl´1q

ı

P -a.s.
“ m´1{2 ¨

r
ÿ

j“1

E
”

rbik,j ¨
rY j
i`1,n

ˇ

ˇ

ˇ
Fptl´1q

ı

`
1

2
¨m´1 ¨

r
ÿ

j“1

E
”

rcik,j,j ¨
`

prY j
i`1,nq

2 ´ E
“

prY j
i`1,nq

2
‰˘

ˇ

ˇ

ˇ
Fptl´1q

ı

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

E
”

`

rcik,j2,j1 ´ rcik,j1,j2
˘

¨ rIi`1,n
pj1,j2q

ˇ

ˇ

ˇ
Fptl´1q

ı

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

E
”

rcik,j1,j2 ¨
rY j1
i`1,n ¨

rY j2
i`1,n

ˇ

ˇ

ˇ
Fptl´1q

ı

P -a.s.
“ rξki .

(6.1.7)

Secondly, we consider the case i “ l´1. Note that pY j
l , I

l
pj1,j2q

q is independent of Fptl´1q for all

j, j1, j2 “ 1, . . . , r, and note that rXm,nptl´1q is Fptl´1q-BpRdq-measurable. Then Proposition
B.1 a), c) and d), and the properties (N1) and (I1), lead to

E
”

rξkl´1

ˇ

ˇ

ˇ
Fptl´1q

ı

P -a.s.
“ m´1{2 ¨

r
ÿ

j“1

E
”

rbl´1
k,j ¨

rY j
l,n

ˇ

ˇ

ˇ
Fptl´1q

ı

`
1

2
¨m´1 ¨

r
ÿ

j“1

E
”

rcl´1
k,j,j ¨

`

prY j
l,nq

2 ´ E
“

prY j
l,nq

2
‰˘

ˇ

ˇ

ˇ
Fptl´1q

ı

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

E
”

`

rcl´1
k,j2,j1

´ rcl´1
k,j1,j2

˘

¨ rI l,n
pj1,j2q

ˇ

ˇ

ˇ
Fptl´1q

ı

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

E
”

rcl´1
k,j1,j2

¨ rY j1
l,n ¨

rY j2
l,n

ˇ

ˇ

ˇ
Fptl´1q

ı

P -a.s.
“ m1{2 ¨

r
ÿ

j“1

rbl´1
k,j ¨ E

“

rY j
l,n

‰

`
1

2
¨m´1 ¨

r
ÿ

j“1

rcl´1
k,j,j ¨ E

”

prY j
l,nq

2 ´ E
“

prY j
l,nq

2
‰

ı

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

`

rcl´1
k,j2,j1

´ rcl´1
k,j1,j2

˘

¨ E
“

rI l,n
pj1,j2q

‰

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

rcl´1
k,j1,j2

¨ E
“

rY j1
l,n

‰

¨ E
“

rY j2
l,n

‰

P -a.s.
“ 0.

(6.1.8)
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Thus, by (6.1.7) and (6.1.8) we arrive at

E
”

rV k
l

ˇ

ˇ

ˇ
Fptl´1q

ı

P -a.s.
“

l´2
ÿ

i“0

rξki “
rV k
l´1,

which finishes the proof of (iii) .
Since prV k

l ql“0,...,m is an pFptlqql“0,...,m-martingale, the process p|rV k
l |ql“0,...,m is an pFptlqql“0,...,m-

submartingale. Consequently, by applying Doob’s maximal inequality for submartingales we obtain

E
”

`

rV k,˚
l

˘s
ı

“ E
”

max
j“0,...,l

ˇ

ˇ rV k
j

ˇ

ˇ

s
ı

ď c ¨ E
”

ˇ

ˇrV k
l

ˇ

ˇ

s
ı

(6.1.9)

for all l “ 0, . . . ,m. Therefore, in view of (6.1.6), it remains to show

d
ÿ

k“1

E
”

ˇ

ˇrV k
m

ˇ

ˇ

s
ı

ď c,

which we get down to in the next step.

Step 5: First, note that since we assumed s P 2N, it holds

d
ÿ

k“1

E
”

ˇ

ˇrV k
l`1

ˇ

ˇ

s
ı

“

d
ÿ

k“1

E
”

ˇ

ˇrV k
l

ˇ

ˇ

s
ı

`

d
ÿ

k“1

s
ÿ

µ“2

ˆ

s

µ

˙

¨ E
”

`

rV k
l

˘s´µ
¨
`

rξkl
˘µ
ı

` s ¨
d
ÿ

k“1

E
”

`

rV k
l

˘s´1
¨ rξkl

ı

(6.1.10)

for every l “ 0, . . . ,m´ 1.
We go on by analyzing the last summand in the previous equation first. The definition of rξkl ,

see (6.1.1), leads to

`

rV k
l

˘s´1
¨ rξkl “ m´1{2 ¨

r
ÿ

j“1

`

rV k
l

˘s´1
¨rblk,j ¨

rY j
l`1,n

`
1

2
¨m´1 ¨

r
ÿ

j“1

`

rV k
l

˘s´1
¨ rclk,j,j ¨

`

prY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰˘

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

`

rV k
l

˘s´1
¨
`

rclk,j2,j1 ´ rclk,j1,j2
˘

¨ rI l`1,n
pj1,j2q

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

`

rV k
l

˘s´1
¨ rclk,j1,j2 ¨

rY j1
l`1,n ¨

rY j2
l`1,n

for all l “ 0, . . . ,m ´ 1 and k “ 1, . . . , d. Again, note that pY j
l`1, I

l`1
pj1,j2q

q is independent of Fptlq
for all j, j1, j2 “ 1, . . . , r and l “ 0, . . . ,m ´ 1, and note that the random vector p rXm,nptlq, rV

k
l q is

measurable w.r.t. Fptlq for all l “ 0, . . . ,m´ 1 and k “ 1, . . . , d. Together with the properties
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of W and (N1) as well as (I1) we arrive at

E
”

`

rV k
l

˘s´1
¨ rξkl

ı

“ m´1{2 ¨

r
ÿ

j“1

E
”

`

rV k
l

˘s´1
¨rblk,j

ı

¨ E
”

rY j
l`1,n

ı

`
1

2
¨m´1 ¨

r
ÿ

j“1

E
”

`

rV k
l

˘s´1
¨ rclk,j,j

ı

¨ E
”

prY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰

ı

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

E
”

`

rV k
l

˘s´1
¨
`

rclk,j2,j1 ´ rclk,j1,j2
˘

ı

¨ E
”

rI l`1,n
pj1,j2q

ı

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

E
”

`

rV k
l

˘s´1
¨ rclk,j1,j2

ı

¨ E
”

rY j1
l`1,n

ı

¨ E
”

rY j2
l`1,n

ı

“ 0

(6.1.11)

for all l “ 0, . . . ,m´ 1 and k “ 1, . . . , d.
Next, we further estimate the second summand on the right-hand side of (6.1.10). By the

properties of b, and by (C2) (i), we obtain

|rξkl | ď m´1{2 ¨

r
ÿ

j“1

ˇ

ˇrblk,j
ˇ

ˇ ¨
ˇ

ˇrY j
l`1,n

ˇ

ˇ`
1

2
¨m´1 ¨

r
ÿ

j“1

ˇ

ˇ

rclk,j,j
ˇ

ˇ ¨
ˇ

ˇprY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰ˇ

ˇ

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

´

ˇ

ˇ

rclk,j2,j1 ´ rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇrI l`1,n
pj1,j2q

ˇ

ˇ`
ˇ

ˇ

rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇrY j1
l`1,n

ˇ

ˇ ¨
ˇ

ˇrY j2
l`1,n

ˇ

ˇ

¯

ď c ¨
`

1` } rXm,nptlq}2
˘

¨

´

m´1{2 ¨

r
ÿ

j“1

ˇ

ˇrY j
l`1,n

ˇ

ˇ`m´1 ¨

r
ÿ

j“1

ˇ

ˇprY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰
ˇ

ˇ

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

`
ˇ

ˇrIi`1,n
pj1,j2q

ˇ

ˇ`
ˇ

ˇrY j1
l`1,n

ˇ

ˇ ¨
ˇ

ˇrY j2
l`1,n

ˇ

ˇ

˘

¯

for all l “ 0, . . . ,m´ 1 and k “ 1, . . . , d. Thus, for µ “ 2, . . . , s, we obtain

ˇ

ˇrξkl
ˇ

ˇ

µ
ď c ¨

`

1` } rXm,nptlq}2
˘µ
¨

´

m´µ{2 ¨
r
ÿ

j“1

ˇ

ˇrY j
l`1,n

ˇ

ˇ

µ

`m´µ ¨
r
ÿ

j“1

ˇ

ˇprY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰ˇ

ˇ

µ

`m´µ ¨
r
ÿ

j1,j2“1
j1ăj2

`ˇ

ˇrIi`1,n
pj1,j2q

ˇ

ˇ

µ
`
ˇ

ˇrY j1
l`1,n

ˇ

ˇ

µ
¨
ˇ

ˇrY j2
l`1,n

ˇ

ˇ

µ˘
¯

for all l “ 0, . . . ,m´ 1 and k “ 1, . . . , d.
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Then, by (N2) and (I2), as well as (6.1.5) and (6.1.9), we arrive at

d
ÿ

k“1

s
ÿ

µ“2

ˆ

s

µ

˙

¨ E
”

`

rV k
l

˘s´µ
¨
`

rξkl
˘µ
ı

ď c ¨m´1 ¨

d
ÿ

k“1

E
” s
ÿ

µ“2

ˆ

s

µ

˙

¨
ˇ

ˇ rV k
l

ˇ

ˇ

s´µ
¨
`

1` } rXm,nptlq}2
˘µ
ı

ď c ¨m´1 ¨

d
ÿ

k“1

E
”´

ˇ

ˇrV k
l

ˇ

ˇ` 1` } rXm,nptlq}2

¯sı

ď c ¨m´1 ¨

d
ÿ

k“1

E
”

ˇ

ˇrV k
l

ˇ

ˇ

s
` 1`

d
ÿ

k“1

max
j“0,...,l

ˇ

ˇ rXk
m,nptjq

ˇ

ˇ

s
ı

ď c ¨m´1 ¨

˜

1`
d
ÿ

k“1

E
”

ˇ

ˇrV k
l

ˇ

ˇ

s
ı

¸

(6.1.12)

for all l “ 0, . . . ,m´ 1. Now combining (6.1.10)--(6.1.12) leads to

d
ÿ

k“1

E
”

ˇ

ˇrV k
l`1

ˇ

ˇ

s
ı

ď

d
ÿ

k“1

E
”

ˇ

ˇrV k
l

ˇ

ˇ

s
ı

¨
`

1` c ¨m´1
˘

` c ¨m´1

for all l “ 0, . . . ,m ´ 1. By applying the discrete version of Gronwall’s inequality we finally arrive
at

d
ÿ

k“1

E
”

ˇ

ˇrV k
m

ˇ

ˇ

s
ı

ď max
l“0,...,m

d
ÿ

k“1

E
”

ˇ

ˇrV k
l

ˇ

ˇ

s
ı

ď c.

For general s P r1,8q let s̃ “ mintn P 2N | n ě su. Then the results obtained above and Hölder’s
inequality imply

E
”

max
l“0,...,m

} rXm,nptlq}
s
8

ı

ď

˜

ˆ

E
”

max
l“0,...,m

} rXk
m,nptlq}

s̃
8

ı

˙1{s̃
¸s

ď c,

which finishes the proof.

In the next main auxiliary lemma we provide an upper bound for the qth mean maximum distance
of

`

rXpqqm,npt0q, . . . ,
rXpqqm,nptmq

˘

and
`

pXM
m pt0q, . . . ,

pXM
m ptmq

˘

.

Lemma 6.1.2
Assume that q P 2N. Then, for all m,n P N,

E
”

max
l“0,...,m

} pXM
m ptlq ´

rXpqqm,nptlq}
q
8

ı

ď c ¨
`

m´1 ` n´1
˘q
.
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Proof:
Let m,n P N and, as in the proof of Lemma 6.1.1, we drop the parameter q and write rXm,nptlq and rY j

l,n

instead of rX
pqq
m,nptlq and rY

pqq,j
l,n , respectively.

We split up the proof into single steps.

Step 1: Let k P t1, . . . , du. Due to the recursive structure of the Milstein scheme and the Milstein
quantization it holds

pXk
mptlq ´

rXk
m,nptlq

P -a.s.
“ m´1 ¨

l´1
ÿ

i“0

´

paik ´ raik

¯

`m´1{2 ¨

l´1
ÿ

i“0

r
ÿ

j“1

´

pbik,j ¨ Y
j
i`1 ´

rbik,j ¨
rY j
i`1,n

¯

`
1

2
¨m´1 ¨

l´1
ÿ

i“0

r
ÿ

j“1

´

pcik,j,j ¨
`

pY j
i`1q

2 ´ 1
˘

´ rcik,j,j ¨
`

prY j
i`1,nq

2 ` E
“

prY j
i`1,nq

2
‰

´ E
“

prY j
i`1,nq

2
‰

´ 1
˘

¯

`m´1 ¨

l´1
ÿ

i“0

r
ÿ

j1,j2“1
j1ăj2

´

`

pcik,j2,j1 ´ pcik,j1,j2
˘

¨ Ii`1
pj1,j2q

´
`

rcik,j2,j1 ´ rcik,j1,j2
˘

¨ rIi`1,n
pj1,j2q

¯

`m´1 ¨

l´1
ÿ

i“0

r
ÿ

j1,j2“1
j1ăj2

´

pcik,j1,j2 ¨ Y
j1
i`1 ¨ Y

j2
i`1 ´ rcik,j1,j2 ¨

rY j1
i`1,n ¨

rY j2
i`1,n

¯

for all l “ 1, . . . ,m.
Similar to the proof of Lemma 6.1.1 we put

ϑki :“ m´1 ¨
`

paik ´ raik
˘

`
1

2
¨m´1 ¨

r
ÿ

j“1

rcik,j,j ¨
`

E
“

prY j
i`1,nq

2
‰

´ 1
˘

and

ξki :“ m´1{2 ¨

r
ÿ

j“1

´

pbik,j ¨ Y
j
i`1 ´

rbik,j ¨
rY j
i`1,n

¯

`
1

2
¨m´1 ¨

r
ÿ

j“1

´

pcik,j,j ¨
`

pY j
i`1q

2 ´ 1
˘

´ rcik,j,j ¨
`

prY j
i`1,nq

2 ´ E
“

prY j
i`1,nq

2
‰˘

¯

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

´

`

pcik,j2,j1 ´ pcik,j1,j2
˘

¨ Ii`1
pj1,j2q

´
`

rcik,j2,j1 ´ rcik,j1,j2
˘

¨ rIi`1,n
pj1,j2q

¯

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

´

pcik,j1,j2 ¨ Y
j1
i`1 ¨ Y

j2
i`1 ´ rcik,j1,j2 ¨

rY j1
i`1,n ¨

rY j2
i`1,n

¯

(6.1.13)

for i “ 0, . . . ,m´ 1.
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Furthermore, we put

Ukl :“
l´1
ÿ

i“0

ϑki and V k
l :“

l´1
ÿ

i“0

ξki (6.1.14)

for l “ 1, . . . ,m as well as Uk0 :“ 0 and V k
0 :“ 0, and we abbreviate

Uk,˚l :“ max
j“0,...,l

|Ukj | , V k,˚
l :“ max

j“0,...,l
|V k
j |,

pXk,˚
l :“ max

j“0,...,l
| pXk

mptjq| , rXk,˚
l :“ max

j“0,...,l
| rXk

m,nptjq|
(6.1.15)

for l “ 0, . . . ,m. Then it holds

pXk
mptlq ´

rXk
m,nptlq

P -a.s.
“ Ukl ` V

k
l

and hence

| pXk
mptlq ´

rXk
m,nptlq|

P -a.s.
ď |Ukl | ` V

k,˚
l (6.1.16)

for all l “ 1, . . . ,m.

Step 2: In this step we further estimate |ϑki |. First note that, by Hölder’s inequality, by (N2) and (N3),
and by the finiteness of all absolute moments of a standard normally distributed random variable,
we have

ˇ

ˇ

ˇ
1´ E

“

prY j
i`1,nq

2
‰

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
E
“

pY j
i`1q

2
‰

´ E
“

prY j
i`1,nq

2
‰

ˇ

ˇ

ˇ

ď E
“

|Y j
i`1 ´

rY j
i`1,n| ¨ |Y

j
i`1 `

rY j
i`1,n|

‰

ď

´

E
“

|Y j
i`1 ´

rY j
i`1,n|

2
‰

¯1{2
¨

´

E
“

|Y j
i`1 `

rY j
i`1,n|

‰2
¯1{2

ď c ¨ n´1

(6.1.17)

for all j “ 1, . . . , r and i “ 0, . . . ,m´1. Then, together with the property that a is globally Lipschitz
continuous and the fact that b is of at most linear growth, and by assumption (C2) (i), we obtain

ˇ

ˇϑki
ˇ

ˇ “

ˇ

ˇ

ˇ
m´1 ¨

`

paik ´ raik
˘

`
1

2
¨m´1 ¨

r
ÿ

j“1

rcik,j,j ¨
`

E
“

prY j
i`1,nq

2
‰

´ 1
˘

ˇ

ˇ

ˇ

ď c ¨m´1 ¨

´

ˇ

ˇ

paik ´ raik
ˇ

ˇ`

r
ÿ

j“1

ˇ

ˇ

rcik,j,j
ˇ

ˇ ¨
ˇ

ˇ1´ E
“

prY j
i`1,nq

2
‰
ˇ

ˇ

¯

ď c ¨m´1 ¨

´

} pXmptiq ´ rXm,nptiq}2 `
`

1` } rXm,nptiq}2
˘

¨ n´1
¯

(6.1.18)

for all i “ 0, . . . ,m ´ 1 and k “ 1, . . . , d. Hence, in view of (6.1.14)--(6.1.16) and (6.1.18), we
conclude that
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d
ÿ

k“1

|Ukl`1| ď

d
ÿ

k“1

|Ukl | `
d
ÿ

k“1

|ϑkl |

ď

d
ÿ

k“1

|Ukl | ` c ¨m
´1 ¨

´

} pXmptlq ´ rXm,nptlq}2 `
`

1` } rXm,nptlq}2
˘

¨ n´1
¯

ď

d
ÿ

k“1

|Ukl | ` c ¨m
´1 ¨

˜

d
ÿ

k“1

| pXk
m,nptlq ´

rXk
mptlq| `

´

1`
d
ÿ

k“1

| rXk
m,nptlq|

¯

¨ n´1

¸

ď

d
ÿ

k“1

|Ukl | ` c ¨m
´1 ¨

˜

d
ÿ

k“1

|Ukl | `
d
ÿ

k“1

V k,˚
l `

´

1`
d
ÿ

k“1

rXk,˚
l

¯

¨ n´1

¸

“

˜

d
ÿ

k“1

|Ukl |

¸

¨
`

1` c ¨m´1
˘

` c ¨m´1 ¨

˜

d
ÿ

k“1

V k,˚
l `

´

1`
d
ÿ

k“1

rXk,˚
l

¯

¨ n´1

¸

for all l “ 0, . . . ,m´ 1. Now by the discrete version of Gronwall’s inequality we end up with

max
j“0,...,l

d
ÿ

k“1

|Ukj | ď c ¨

˜

d
ÿ

k“1

V k,˚
l `

´

1`
d
ÿ

k“1

rXk,˚
l

¯

¨ n´1

¸

(6.1.19)

for all l “ 0, . . . ,m.

Step 3: Combining (6.1.16) and (6.1.19) leads to

ˆ

max
j“1,...,l

| pXk
mptjq ´

rXk
m,nptjq|

˙q

ď

˜

max
j“0,...,l

d
ÿ

k“1

|Ukj | `
d
ÿ

k“1

V k,˚
l

¸q

ď c ¨

˜

d
ÿ

k“1

pV k,˚
l qq ` n´q ¨

´

1`
d
ÿ

k“1

p rXk,˚
m qq

¯

¸

,

for all l “ 1, . . . ,m and k “ 1, . . . , d, and hence, together with Lemma 6.1.1, we arrive at

E
”

max
j“1,...,l

| pXk
mptjq ´

rXk
m,nptjq|

q
ı

ď c ¨

˜

d
ÿ

k“1

E
”

pV k,˚
l qq

ı

`
`

m´1 ` n´1
˘q

¸

(6.1.20)

for all l “ 1, . . . ,m and k “ 1, . . . , d. Thus, in particular,

E
”

max
l“0,...,m

} pXmptlq ´ rXm,nptlq}
q
8

ı

ď

d
ÿ

k“1

E
”

max
l“1,...,m

| pXk
mptlq ´

rXk
m,nptlq|

q
ı

ď c ¨

˜

d
ÿ

k“1

E
”

pV k,˚
m qq

ı

`
`

m´1 ` n´1
˘q

¸

,

(6.1.21)

where in the first inequality we used the fact that pXk
mpt0q “ xk0 “

rXk
m,npt0q for all k “ 1, . . . , d.
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Therefore, it remains to prove that

d
ÿ

k“1

E
”

pV k,˚
m qq

ı

ď c ¨
`

m´1 ` n´1
˘q
.

Step 4: Similar to Step 4 in the proof of Lemma 6.1.1 one shows that pV k
l ql“0,...,m is an pFptlqql“0,...,m-

martingale for all k “ 1, . . . , d. Then Doob’s maximal inequality for submartingales yields

E
”

pV k,˚
l qq

ı

ď c ¨ E
”

|V k
l |
q
ı

(6.1.22)

for all l “ 0, . . . ,m and k “ 1, . . . , d. Thus, in view of (6.1.21), it suffices to show

d
ÿ

k“1

E
”

|V k
m|
q
ı

ď c ¨
`

m´1 ` n´1
˘q
. (6.1.23)

Step 5: In this step we prove (6.1.23). First, since q P 2N, and by (6.1.14), we have

d
ÿ

k“1

E
”

|V k
l`1|

q
ı

“

d
ÿ

k“1

E
”

|V k
l |
q
ı

`

d
ÿ

k“1

q
ÿ

µ“2

ˆ

q

µ

˙

¨ E
”

pV k
l q

q´µ ¨ pξkl q
µ
ı

` q ¨
d
ÿ

k“1

E
”

pV k
l q

q´1 ¨ ξkl

ı

(6.1.24)

for all l “ 0, . . . ,m´ 1.
We go on by estimating the last summand in the previous equality first. In view of (6.1.13) we

have

`

V k
l

˘q´1
¨ ξkl “ m´1{2 ¨

r
ÿ

j“1

`

V k
l

˘q´1
¨

´

pblk,j ¨ Y
j
l`1 ´

rblk,j ¨
rY j
l`1,n

¯

`
1

2
¨m´1 ¨

r
ÿ

j“1

`

V k
l

˘q´1
¨

´

pclk,j,j ¨
`

pY j
l`1q

2 ´ 1
˘

´ rclk,j,j ¨
`

prY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰˘

¯

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

`

V k
l

˘q´1
¨

´

`

pclk,j2,j1 ´ pclk,j1,j2
˘

¨ I l`1
pj1,j2q

´
`

rclk,j2,j1 ´ rclk,j1,j2
˘

¨ rI l`1,n
pj1,j2q

¯

`m´1 ¨

r
ÿ

j1,j2“1
j1ăj2

`

V k
l

˘q´1
¨

´

pclk,j1,j2 ¨ Y
j1
l`1 ¨ Y

j2
l`1 ´ rclk,j1,j2 ¨

rY j1
l`1,n ¨

rY j2
l`1,n

¯

for all l “ 0, . . . ,m ´ 1 and k “ 1, . . . , d. Then, by employing similar arguments as in (6.1.11) we
arrive at

d
ÿ

k“1

E
”

`

V k
l

˘q´1
¨ ξkl

ı

“ 0. (6.1.25)

Next, we further estimate the second summand in (6.1.24). To this end, we fix µ P t2, . . . , qu,
l P t0, . . . ,m´ 1u and k P t1, . . . , du for the moment. Then,

|ξkl |
µ ď c ¨

´

m´µ{2 ¨ αµ1,k,l `m
´µ ¨ αµ2,k,l `m

´µ ¨ αµ3,k,l

¯
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where

α1,k,l :“
r
ÿ

j“1

ˇ

ˇpblk,j ¨ Y
j
l`1 ´

rblk,j ¨
rY j
l`1,n

ˇ

ˇ,

α2,k,l :“
r
ÿ

j“1

ˇ

ˇ

pclk,j,j ¨
`

pY j
l`1q

2 ´ 1
˘

´ rclk,j,j ¨
`

prY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰˘ˇ

ˇ,

α3,k,l :“
r
ÿ

j1,j2“1
j1ăj2

´

ˇ

ˇ

`

pclk,j2,j1 ´ pclk,j1,j2
˘

¨ I l`1
pj1,j2q

´
`

rclk,j2,j1 ´ rclk,j1,j2
˘

¨ rI l`1,n
pj1,j2q

ˇ

ˇ

`
ˇ

ˇ

pclk,j1,j2 ¨ Y
j1
l`1 ¨ Y

j2
l`1 ´ rclk,j1,j2 ¨

rY j1
l`1,n ¨

rY j2
l`1,n

ˇ

ˇ

¯

.

In the following we further estimate the above three terms separately. First, since b is globally
Lipschitz continuous and of at most linear growth we have

ˇ

ˇpblk,j ¨ Y
j
l`1 ´

rblk,j ¨
rY j
l`1,n

ˇ

ˇ

“
ˇ

ˇpblk,j ¨ Y
j
l`1 ´

rblk,j ¨ Y
j
l`1 `

rblk,j ¨ Y
j
l`1 ´

rblk,j ¨
rY j
l`1,n

ˇ

ˇ

ď |Y j
l`1| ¨ |

pblk,j ´
rblk,j | ` |

rblk,j | ¨ |Y
j
l`1 ´

rY j
l`1,n|

ď c ¨
´

|Y j
l`1| ¨ }

pXmptlq ´ rXm,nptlq}2 `
`

1` } rXm,nptlq}2
˘

¨ |Y j
l`1 ´

rY j
l`1,n|

¯

for all j “ 1, . . . , r, and hence

αµ1,k,l ď c ¨
r
ÿ

j“1

´

|Y j
l`1|

µ ¨ } pXmptlq ´ rXm,nptlq}
µ
2 `

`

1` } rXm,nptlq}2
˘µ
¨ |Y j

l`1 ´
rY j
l`1,n|

µ
¯

. (6.1.26)

Secondly, by the fact that b is globally Lipschitz continuous and of at most linear growth, by (C2),
and by (6.1.17), we have

ˇ

ˇ

pclk,j,j ¨
`

pY j
l`1q

2 ´ 1
˘

´ rclk,j,j ¨
`

prY j
l`1,nq

2 ´ E
“

prY j
l`1,nq

2
‰˘ˇ

ˇ

ď
ˇ

ˇpY j
l`1q

2 ´ 1
ˇ

ˇ ¨
ˇ

ˇ

pclk,j,j ´ rclk,j,j
ˇ

ˇ`
ˇ

ˇ

rclk,j,j
ˇ

ˇ ¨
ˇ

ˇpY j
l`1q

2 ´ prY j
l`1,nq

2 ´
`

1´ E
“

prY j
l`1,nq

2
‰˘
ˇ

ˇ

ď c ¨
´

ˇ

ˇpY j
l`1q

2 ´ 1
ˇ

ˇ ¨ } pXmptlq ´ rXm,nptlq}2 ¨
`

1` } rXm,nptlq}2
˘

`
`

1` } rXm,nptlq}2
˘

¨
`ˇ

ˇpY j
l`1q

2 ´ prY j
l`1,nq

2
ˇ

ˇ`
ˇ

ˇ1´ E
“

prY j
l`1,nq

2
‰ˇ

ˇ

˘

¯

ď c ¨
´

ˇ

ˇpY j
l`1q

2 ´ 1
ˇ

ˇ ¨ } pXmptlq ´ rXm,nptlq}2 ¨
`

1` } rXm,nptlq}2
˘

`
`

1` } rXm,nptlq}2
˘

¨
`ˇ

ˇpY j
l`1q

2 ´ prY j
l`1,nq

2
ˇ

ˇ` n´1
˘

¯

for all j “ 1, . . . , r. Therefore,

αµ2,k,l ď c ¨
r
ÿ

j“1

´

ˇ

ˇpY j
l`1q

2 ´ 1
ˇ

ˇ

µ
¨ } pXmptlq ´ rXm,nptlq}

µ
2 ¨

`

1` } rXm,nptlq}2
˘µ

`
`

1` } rXm,nptlq}2
˘µ
¨
`
ˇ

ˇpY j
l`1q

2 ´ prY j
l`1,nq

2
ˇ

ˇ

µ
` n´µ

˘

¯

.

(6.1.27)
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Thirdly, the properties of b imply
ˇ

ˇ

`

pclk,j2,j1 ´ pclk,j1,j2
˘

¨ I l`1
pj1,j2q

´
`

rclk,j2,j1 ´ rclk,j1,j2
˘

¨ rI l`1,n
pj1,j2q

ˇ

ˇ

ď
ˇ

ˇ

`

pclk,j2,j1 ´ pclk,j1,j2
˘

´
`

rclk,j2,j1 ´ rclk,j1,j2
˘ˇ

ˇ ¨
ˇ

ˇI l`1
pj1,j2q

ˇ

ˇ`
ˇ

ˇ

rclk,j2,j1 ´ rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇI l`1
pj1,j2q

´ rI l`1,n
pj1,j2q

ˇ

ˇ

ď
ˇ

ˇ

pclk,j2,j1 ´ rclk,j2,j1
ˇ

ˇ ¨
ˇ

ˇI l`1
pj1,j2q

ˇ

ˇ`
ˇ

ˇ

pclk,j1,j2 ´ rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇI l`1
pj1,j2q

ˇ

ˇ`
`
ˇ

ˇ

rclk,j2,j1
ˇ

ˇ`
ˇ

ˇ

rclk,j1,j2
ˇ

ˇ

˘

¨
ˇ

ˇI l`1
pj1,j2q

´ rI l`1,n
pj1,j2q

ˇ

ˇ

ď c ¨
´

} pXmptlq ´ rXm,nptlq}2 ¨
`

1` } rXm,nptlq}2
˘

¨
ˇ

ˇI l`1
pj1,j2q

ˇ

ˇ`
`

1` } rXm,nptlq}2
˘

¨
ˇ

ˇI l`1
pj1,j2q

´ rI l`1,n
pj1,j2q

ˇ

ˇ

¯

and
ˇ

ˇ

pclk,j1,j2 ¨ Y
j1
l`1 ¨ Y

j2
l`1 ´ rclk,j1,j2 ¨

rY j1l`1,n ¨
rY j2l`1,n

ˇ

ˇ

ď
ˇ

ˇ

pclk,j1,j2 ´ rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇY j1l`1

ˇ

ˇ ¨
ˇ

ˇY j2l`1

ˇ

ˇ`
ˇ

ˇ

rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇY j1l`1 ¨ Y
j2
l`1 ´

rY j1l`1,n ¨
rY j2l`1,n

ˇ

ˇ

ď
ˇ

ˇ

pclk,j1,j2 ´ rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇY j1l`1

ˇ

ˇ ¨
ˇ

ˇY j2l`1

ˇ

ˇ`
ˇ

ˇ

rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇY j1l`1

ˇ

ˇ ¨
ˇ

ˇY j2l`1 ´
rY j2l`1,n

ˇ

ˇ`
ˇ

ˇ

rclk,j1,j2
ˇ

ˇ ¨
ˇ

ˇrY j2l`1,n

ˇ

ˇ ¨
ˇ

ˇY j1l`1 ´
rY j1l`1,n

ˇ

ˇ

ď c ¨
´

} pXmptlq ´ rXm,nptlq}2 ¨
`

1` } rXm,nptlq}2
˘

¨
ˇ

ˇY j1l`1

ˇ

ˇ ¨
ˇ

ˇY j2l`1

ˇ

ˇ

`
`

1` } rXm,nptlq}2
˘

¨
`ˇ

ˇY j1l`1

ˇ

ˇ ¨
ˇ

ˇY j2l`1 ´
rY j2l`1,n

ˇ

ˇ`
ˇ

ˇrY j2l`1,n

ˇ

ˇ ¨
ˇ

ˇY j1l`1 ´
rY j1l`1,n

ˇ

ˇ

˘

¯

for all j1, j2 “ 1, . . . , r with j1 ă j2. Thus,

αµ3,k,l ď c ¨
r
ÿ

j1,j2“1
j1ăj2

} pXmptlq ´ rXm,nptlq}
µ
2 ¨

`

1` } rXm,nptlq}2
˘µ
¨
ˇ

ˇI l`1
pj1,j2q

ˇ

ˇ

µ

` c ¨
r
ÿ

j1,j2“1
j1ăj2

`

1` } rXm,nptlq}2
˘µ
¨
ˇ

ˇI l`1
pj1,j2q

´ rI l`1,n
pj1,j2q

ˇ

ˇ

µ

` c ¨
r
ÿ

j1,j2“1
j1ăj2

} pXmptlq ´ rXm,nptlq}
µ
2 ¨

`

1` } rXm,nptlq}2
˘µ
¨
ˇ

ˇY j1
l`1

ˇ

ˇ

µ
¨
ˇ

ˇY j2
l`1

ˇ

ˇ

µ

` c ¨
r
ÿ

j1,j2“1
j1ăj2

`

1` } rXm,nptlq}2
˘µ
¨
`ˇ

ˇY j1
l`1

ˇ

ˇ

µ
¨
ˇ

ˇY j2
l`1 ´

rY j2
l`1,n

ˇ

ˇ

µ
`
ˇ

ˇrY j2
l`1,n

ˇ

ˇ

µ
¨
ˇ

ˇY j1
l`1 ´

rY j1
l`1,n

ˇ

ˇ

µ˘
.

(6.1.28)

Additionally, due to Hölder’s inequality, due to (N2) and (N3), and due to the properties of
standard normally distributed random variables, we obtain

E
”

ˇ

ˇpY j
l`1q

2 ´ prY j
l`1,nq

2
ˇ

ˇ

µ
ı

ď E
”

ˇ

ˇY j
l`1 ´

rY j
l`1,n

ˇ

ˇ

µ´1
¨
`ˇ

ˇY j
l`1

ˇ

ˇ`
ˇ

ˇrY j
l`1,n

ˇ

ˇ

˘µ`1
ı

ď c ¨
´

E
”

ˇ

ˇY j
l`1 ´

rY j
l`1,n

ˇ

ˇ

µ
ı¯pµ´1q{µ

¨

´

E
”

`
ˇ

ˇY j
l`1

ˇ

ˇ`
ˇ

ˇrY j
l`1,n

ˇ

ˇ

˘µ¨pµ`1q
ı¯1{µ

ď c ¨ n´pµ´1q

for all j “ 1, . . . , r.
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Now by combining the previous inequality with (6.1.26)--(6.1.28), by applying (N2), (N3) and
(I3) as well as Lemma 2.3.6 b), by using the fact that all absolute moments of a standard normally
distributed random variable are finite, and by utilizing the fact that

n´µ ¨m´µ{2 ` n´pµ´1q ¨m´µ ď m´µ{2 ¨
`

n´µ ` n´pµ´1q ¨m´µ{2
˘

ď m´µ{2 ¨
`

n´µ ` n´pµ´1q ¨m´1
˘

ď m´1 ¨
`

m´1 ` n´1
˘µ

(6.1.29)

for all µ “ 2. . . . , q, we derive that

E
”

|V k
l |
q´µ ¨ |ξkl |

µ
ı

ď c ¨ E
”

|V k
l |
q´µ ¨

`

m´µ{2 ¨ αµ1,k,l `m
´µ ¨ αµ2,k,l `m

´µ ¨ αµ3,k,l
˘

ı

ď c ¨
´

m´µ{2 ¨
´

E
”

|V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2

ı

` n´µ ¨ E
”

|V k
l |
q´µ ¨

`

1` } rXm,nptlq}2
˘µ
ı¯

`m´µ ¨ E
”

|V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2 ¨

`

1` } rXm,nptlq}2
˘µ
ı

`m´µ ¨
`

n´pµ´1q ` n´µ
˘

¨ E
”

|V k
l |
q´µ ¨

`

1` } rXm,nptlq}2
˘µ
ı

`m´µ ¨ E
”

|V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2 ¨

`

1` } rXm,nptlq}2
˘µ
ı

`m´µ ¨ n´µ ¨ E
”

|V k
l |
q´µ ¨

`

1` } rXm,nptlq}2
˘µ
ı

¯

ď c ¨
´

m´µ{2 ¨ E
”

|V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2

ı

`m´µ{2 ¨ n´µ ¨ E
”

|V k
l |
q´µ ¨

`

1` } rXm,nptlq}2
˘µ
ı

`m´µ ¨ E
”

|V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2 ¨

`

1` } rXm,nptlq}2
˘µ
ı

`m´µ ¨ n´pµ´1q ¨ E
”

|V k
l |
q´µ ¨

`

1` } rXm,nptlq}2
˘µ
ı

¯

ď c ¨
´

m´µ{2 ¨ E
”

|V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2

ı

`m´µ ¨ E
”

|V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2 ¨

`

1` } rXm,nptlq}2
˘µ
ı

`m´1 ¨
`

m´1 ` n´1
˘µ
¨ E

”

|V k
l |
q´µ ¨

`

1` } rXm,nptlq}2
˘µ
ı

¯

for all µ “ 2, . . . , q, l “ 0, . . . ,m´ 1 and k “ 1, . . . , d.
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Thus, together with Hölder’s inequality, Proposition 3.3.2, and Lemma 6.1.1 we arrive at

q
ÿ

µ“2

ˆ

q

µ

˙

¨ E
”

|V k
l |
q´µ ¨ |ξkl |

µ
ı

ď c ¨
´

m´1 ¨ E
”

q
ÿ

µ“0

`

q
µ

˘

¨ |V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2

ı

`m´2 ¨ E
”

q
ÿ

µ“0

`

q
µ

˘

¨ |V k
l |
q´µ ¨ } pXmptlq ´ rXm,nptlq}

µ
2 ¨

`

1` } rXm,nptlq}2
˘µ
ı

`m´1 ¨ E
”

q
ÿ

µ“0

`

q
µ

˘

¨ |V k
l |
q´µ ¨

`

1` } rXm,nptlq}2
˘µ
¨
`

m´1 ` n´1
˘´µ

ı

¯

“ c ¨
´

m´1 ¨ E
”´

|V k
l | ` }

pXmptlq ´ rXm,nptlq}2

¯qı

`m´2 ¨ E
”´

|V k
l | ` }

pXmptlq ´ rXm,nptlq}2 ¨
`

1` } rXm,nptlq}2
˘

¯qı

`m´1 ¨ E
”´

|V k
l | `

`

1` } rXm,nptlq}2
˘

¨
`

m´1 ` n´1
˘

¯qı
¯

ď c ¨
´

m´1 ¨ E
”

|V k
l |
q
ı

`m´1 ¨ E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı

`m´2 ¨ E
”

} pXmptlq ´ rXm,nptlq}
q´1
2 ¨ } pXmptlq ´ rXm,nptlq}2 ¨

`

1` } rXm,nptlq}2
˘q
ı

`m´1 ¨
`

n´1 `m´1
˘q
¯

ď c ¨
´

m´1 ¨ E
”

|V k
l |
q
ı

`m´1 ¨ E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı

`m´2 ¨

´

E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı¯pq´1q{q
`m´1 ¨

`

n´1 `m´1
˘q
¯

ď c ¨m´1 ¨

´

E
”

|V k
l |
q
ı

` E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı

`
`

n´1 `m´1
˘q
¯

(6.1.30)

for all l “ 0, . . . ,m´1 and k “ 1, . . . , d, where in the last inequality we employed an analysis similar
to the one in (6.1.29), namely,

m´1 ¨ E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı

`m´2 ¨

´

E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı¯pq´1q{q

“ m´1 ¨

ˆ

E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı

`m´1 ¨

´

E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı¯pq´1q{q
˙

ď m´1 ¨

ˆ

´

E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı¯1{q
`m´1

˙q

ď c ¨m´1 ¨

´

E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı

`
`

m´1 ` n´1
˘q
¯

.
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Finally, by (6.1.24), (6.1.25), (6.1.30), and by (6.1.20) as well as by (6.1.22), we have

d
ÿ

k“1

E
“

|V k
l`1|

q
‰

“

d
ÿ

k“1

E
“

|V k
l |
q
‰

`

d
ÿ

k“1

q
ÿ

µ“2

ˆ

q

µ

˙

¨ E
“

pV k
l q

q´µ ¨ pξkl q
µ
‰

ď

d
ÿ

k“1

E
“

|V k
l |
q
‰

` c ¨m´1 ¨

˜

d
ÿ

k“1

E
“
ˇ

ˇV k
l

ˇ

ˇ

q‰

` E
”

} pXmptlq ´ rXm,nptlq}
q
2

ı

`
`

n´1 `m´1
˘q

¸

ď

d
ÿ

k“1

E
“

|V k
l |
q
‰

` c ¨m´1 ¨

˜

d
ÿ

k“1

E
“ˇ

ˇV k
l

ˇ

ˇ

q‰

`
`

n´1 `m´1
˘q

¸

“

˜

d
ÿ

k“1

E
“

|V k
l |
q
‰

¸

¨
`

1` c ¨m´1
˘

` c ¨m´1 ¨
`

n´1 `m´1
˘q

for all l “ 0, . . . ,m´ 1. Now, by applying the discrete version of Gronwall’s inequality, we end up
with

d
ÿ

k“1

E
”

|V k
m|
q
ı

ď c ¨
`

n´1 `m´1
˘q
,

which finishes the proof.

6.1.2. Proof of Proposition 5.1.1

To prove Proposition 5.1.1 we employ Proposition 3.3.2 and Lemma 6.1.2.

Proof of Proposition 5.1.1:
Let m,n P N and, for the moment, assume q P 2N. Then Proposition 3.3.2 and Lemma 6.1.2 yield

E
”

max
l“0,...,m

}Xptlq ´ rXpqqm,nptlq}
q
8

ı

ď c ¨
´

E
”

sup
tPr0,1s

}Xptq ´XM
m ptq}

q
8

ı

` E
”

max
l“0,...,m

} pXM
m ptlq ´

rXpqqm,nptlq}
q
8

ı

¯

ď c ¨
´

m´q `
`

m´1 ` n´1
˘q
¯

ď c ¨
`

m´1 ` n´1
˘q
.

(6.1.31)

For arbitrary q P r1,8q we choose q̃ “ mintn P 2N | n ě qu. Then Hölder’s inequality and (6.1.31) yield

E
”

max
l“0,...,m

}Xptlq ´ rXpqqm,nptlq}
q
8

ı

ď

ˆ

E
”

max
l“0,...,m

}Xptlq ´ rXpqqm,nptlq}
q̃
8

ı

˙q{q̃

ď c ¨ pm´1 ` n´1qq.
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6.2. Quantization in Lppr0, 1s;Rdq: Proof of Theorem 5.2.4

In the whole section we consider fixed parameters p, q P r1,8q with q ě mintrq P 2N | rq ě pu.

6.2.1. Auxiliary Lemma 3: An Auxiliary Process

For m P N we define an Rd-valued stochastic process Xm “
`

X
1
m, . . . , X

d
m

˘1 on r0, 1s in terms of the
time-discrete Milstein scheme and the Brownian bridges Bj

l by

X
k
mptq “ pt´ tl´1q ¨m ¨ pX

M,k
m ptlq ` ptl ´ tq ¨m ¨ pX

M,k
m ptl´1q `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨Bj
l ptq

for t P rtl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d.

Lemma 6.2.1
Let s P r1,8q. Then, for all m P N,

sup
tPr0,1s

E
“

}Xptq ´Xmptq}
s
8

‰

ď c ¨m´s.

Proof:
Let m P N. Recall that XM

m “ pXM,1
m , . . . , XM,d

m q1 denotes the d-dimensional Milstein process on r0, 1s as
given in (3.3.3). For ease of notation, we drop the parameter m throughout the proof and write X and
XM instead of Xm and XM

m , respectively. W.l.o.g. we may assume s ě 2.
First note that

sup
tPr0,1s

E
”

}Xptq ´Xptq}s8

ı

ď

d
ÿ

k“1

sup
tPr0,1s

E
”

|Xkptq ´X
k
ptq|s

ı

. (6.2.1)

Furthermore, by Proposition 3.3.2, and by the fact that Xk
p0q “ xk0 “ XM,kp0q, we obtain

sup
tPr0,1s

E
”

|Xkptq ´X
k
ptq|s

ı

“ sup
tPr0,1s

E
”

|Xkptq ´XM,kptq `XM,kptq ´X
k
ptq|s

ı

ď c ¨

˜

sup
tPr0,1s

E
”

|Xkptq ´XM,kptq|s
ı

` sup
tPr0,1s

E
”

|XM,kptq ´X
k
ptq|s

ı

¸

ď c ¨

˜

m´s ` sup
tPp0,1s

E
”

|XM,kptq ´X
k
ptq|s

ı

¸

(6.2.2)

for all k “ 1, . . . , d.
Next, we fix k P t1, . . . , du, and for t P p0, 1s we put

Rkptq :“
m
ÿ

l“1

˜

r
ÿ

j1,j2“1

pcl´1
k,j2,j1

¨

ˆ t

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq

¸

¨ 1ptl´1,tlsptq.

Now, for the moment, we fix t P p0, 1s. Then there exists an l P t1, . . . ,mu such that t P ptl´1, tls. By the
definition of the time-discrete Milstein scheme, see (3.3.2), and by the definition of the processes Bj

l , see
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(5.2.1), we have

X
k
ptq “ pt´ tl´1q ¨m ¨ pX

M,kptlq ` ptl ´ tq ¨m ¨ pX
M,kptl´1q `

r
ÿ

j“1

pbl´1
k,j ¨B

j
l ptq

“ pXM,kptl´1q ` pt´ tl´1q ¨ pa
l´1
k ` pt´ tl´1q ¨m ¨

r
ÿ

j“1

pbl´1
k,j ¨

`

Wjptlq ´Wjptl´1q
˘

` pt´ tl´1q ¨m ¨
r
ÿ

j1,j2“1

pcl´1
k,j2,j1

¨ J lpj1,j2q

`

r
ÿ

j“1

pbl´1
k,j ¨

`

Wjptq ´ ptl ´ tq ¨m ¨Wjptl´1q ´ pt´ tl´1q ¨m ¨Wjptlq
˘

“ pXM,kptl´1q ` pt´ tl´1q ¨ pa
l´1
k `

r
ÿ

j“1

pbl´1
k,j ¨

`

Wjptq ´Wjptl´1q
˘

` pt´ tl´1q ¨m ¨
r
ÿ

j1,j2“1

pcl´1
k,j2,j1

¨ J lpj1,j2q.

Hence

X
k
ptq “ pXM,kptl´1q ` pt´ tl´1q ¨ pa

l´1
k `

r
ÿ

j“1

pbl´1
k,j ¨

`

Wjptq ´Wjptl´1q
˘

` pt´ tl´1q ¨m ¨R
kptlq,

and thus, by the definition of the Milstein process XM, we arrive at

XM,kptq ´X
k
ptq “ Rkptq ´ pt´ tl´1q ¨m ¨R

kptlq. (6.2.3)

As a next step, we further estimate E
“

|Rkptq|s
‰

. Since b is of at most linear growth, and due to (C2)
(i), we have

ˇ

ˇRkptq
ˇ

ˇ

s
ď c ¨

r
ÿ

j1,j2“1

ˇ

ˇ

pcl´1
k,j2,j1

ˇ

ˇ

s
¨

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

s

ď c ¨
`

1` } pXMptl´1q}
s
8

˘

¨

r
ÿ

j1,j2“1

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

s
.

Together with the fact that pXMptl´1q is Fptl´1q-BpRdq-measurable, Lemma 2.3.6 d), and Proposition
3.3.2, we conclude that

E
”

ˇ

ˇRkptq
ˇ

ˇ

s
ı

ď c ¨
´

1` E
”

} pXMptl´1q}
s
8

ı¯

¨

r
ÿ

j1,j2“1

E

«

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

s
ff

ď c ¨
r
ÿ

j1,j2“1

E

«

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

s
ff

.

(6.2.4)

Moreover, the Burkholder-Davis-Gundy inequality, Minkowski’s integral inequality, see Proposition A.3,
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and the properties of W imply

E

«

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

s
ff

ď E

«

sup
s̃Prtl´1,ts

ˇ

ˇ

ˇ

ˆ s̃

tl´1

`

Wj1puq ´Wj1ptl´1q
˘

dWj2puq
ˇ

ˇ

ˇ

s
ff

ď c ¨ E

«

ˇ

ˇ

ˇ

ˆ t

tl´1

ˇ

ˇWj1puq ´Wj1ptl´1q
ˇ

ˇ

2
du

ˇ

ˇ

ˇ

s{2
ff

“ c ¨

»

–

˜

E

«

ˇ

ˇ

ˇ

ˆ t

tl´1

ˇ

ˇWj1puq ´Wj1ptl´1q
ˇ

ˇ

2
du

ˇ

ˇ

ˇ

s{2
ff¸2{s

fi

fl

s{2

ď c ¨

«ˆ t

tl´1

`

E
“ˇ

ˇWj1puq ´Wj1ptl´1q
ˇ

ˇ

s‰˘2{s
du

ffs{2

ď c ¨

«ˆ t

tl´1

´

m´s{2
¯2{s

du

ffs{2

ď c ¨
`

m´2
˘s{2

“ c ¨m´s

(6.2.5)

for all j1, j2 “ 1, . . . , r.
Now by combining (6.2.1), (6.2.2), as well as (6.2.3)--(6.2.5), we finally arrive at

sup
tPr0,1s

E
”

}Xptq ´Xptq}s8

ı

ď c ¨

˜

m´s `
d
ÿ

k“1

sup
tPp0,1s

E
“

|Rkptq|s
‰

¸

ď c ¨m´s.

6.2.2. Auxiliary Lemmas 4 and 5

Recall that, for K P N,

δK “ eppq
`

B,SKpBq, Lpr0, 1s
˘

where B denotes a Brownian bridge on r0, 1s and SK is a K-quantizer for a Brownian bridge on r0, 1s.
Furthermore, for m P N2, n,M P N and k “ 1, . . . , d we put

Akm,n,M :“ m´pp`2q{2 ¨

m
ÿ

l“1

`

rsE,k,l´1
locH,m,n

˘p
¨ pδKk,l,M q

p

where, recall,

rsE,k,l´1
locH,m,n “

´

r
ÿ

j“1

`

bk,j
`

rXE,pqq
m,n ptl´1q

˘˘2
¯1{2

,
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and where the random variables Kk,l,M are defined as in (5.2.9). Additionally, we put

Am,n,M :“
d
ÿ

k“1

Akm,n,M .

For ease of notation, we write rsk,l´1 instead of rsE,k,l´1
locH,m,n in the proofs of the following lemmas.

Lemma 6.2.2
For all m P N2 and all n,M P N it holds

´

E
”

}Xm ´ rX
pp,qq
m,n,M}

p
Ldpr0,1s

ı¯1{p
ď c ¨

`

m´1 ` n´1
˘

`
`

ErAm,n,M s
˘1{p

.

Proof:
Let m P N2, n,M P N and, in addition to the abbreviations already introduced at the beginning of this
chapter, we put

rbE,l´1
k :“

`

rbE,l´1
k,1 , . . . ,rbE,l´1

k,r

˘

for l “ 1, . . . ,m and k “ 1, . . . , d.

We split up the proof into single steps.

Step 1: First, recall that

X
k
mptq “ pt´ tl´1q ¨m ¨ pX

M,k
m ptlq ` ptl ´ tq ¨m ¨ pX

M,k
m ptl´1q `

r
ÿ

j“1

pbl´1
k,j ¨B

j
l ptq

and

rX
pp,qq,k
m,n,M ptq “

rXpqq,km,n ptq ` Φ
rbE,l´1
k ,l,Kk,l,M

´

r
ÿ

j“1

rbE,l´1
k,j ¨Bj

l

¯

ptq

for t P rtl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d.
Secondly, for k “ 1, . . . , d we define real-valued stochastic processes Uk1 “ pUk1 ptqqtPr0,1s and

Uk2 “ pU
k
2 ptqqtPr0,1s by

Uk1 ptq “ pt´ tl´1q ¨m ¨
`

pXM,k
m ptlq ´ rXpqq,km,n ptlq

˘

` ptl ´ tq ¨m ¨
`

pXM,k
m ptl´1q ´ rXpqq,km,n ptl´1q

˘

`

r
ÿ

j“1

´

`

pbl´1
k,j ´

pbE,l´1
k,j

˘

¨Bj
l ptq `

`

pbE,l´1
k,j ´rbE,l´1

k,j

˘

¨Bj
l ptq

¯

and

Uk2 ptq “
r
ÿ

j“1

rbE,l´1
k,j ¨Bj

l ptq ´ Φ
rbE,l´1
k ,l,Kk,l,M

´

r
ÿ

j“1

rbE,l´1
k,j ¨Bj

l

¯

ptq

for t P rtl´1, tls and l “ 1, . . . ,m. Then,

Xm ´ rX
pp,qq
m,n,M “ U1 ` U2

where U1 “ pU
1
1 , . . . , U

d
1 q
1 and U2 “ pU

1
2 , . . . , U

d
2 q
1.
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Hence
´

E
”

}Xm ´ rX
pp,qq
m,n,M}

p
Ldpr0,1s

ı¯1{p
ď

´

E
”

}U1}
p
Ldpr0,1s

ı¯1{p
`

´

E
”

}U2}
p
Ldpr0,1s

ı¯1{p
. (6.2.6)

Step 2: In this step we further estimate
´

E
”

}U1}
p
Ldpr0,1s

ı¯1{p
. By Fubini’s theorem we have

´

E
”

}U1}
p
Ldpr0,1s

ı¯1{p
“

˜

d
ÿ

k“1

E

«

m
ÿ

l“1

ˆ tl

tl´1

|Uk1 ptq|
p dt

ff¸1{p

“

˜

d
ÿ

k“1

m
ÿ

l“1

ˆ tl

tl´1

E
”

ˇ

ˇUk1 ptq
ˇ

ˇ

p
ı

dt

¸1{p

.

(6.2.7)

Moreover, the properties of b imply

ˇ

ˇUk1 ptq
ˇ

ˇ

p
ď c ¨

´

max
l“0,...,m

} pXM
m ptlq ´

rXpqqm,nptlq}
p
8 `

r
ÿ

j“1

} pXM
m ptl´1q ´ pXE

mptl´1q}
p
8 ¨ |B

j
l ptq|

p

`

r
ÿ

j“1

} pXE
mptl´1q ´ rXE,pqq

m,n ptl´1q}
p
8 ¨ |B

j
l ptq|

p
¯

(6.2.8)

for all t P rtl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d. Note that, for all j “ 1, . . . , r and l “ 1, . . . ,m, the
Brownian bridge Bj

l is independent of Fptl´1q, and note that p pXE
mptl´1q, pX

M
m ptl´1qq is measurable

w.r.t. Fptl´1q for every l “ 1, . . . ,m. Thus, by (6.2.8), by Lemma 6.1.2, by Corollary 3.3.4, and by
the choice of q together with (5.1.9) in the proof of Proposition 5.1.3, we conclude

E
”

ˇ

ˇUk1 ptq
ˇ

ˇ

p
ı

ď c ¨
´

`

m´1 ` n´1
˘p
`

r
ÿ

j“1

E
”

} pXM
m ptl´1q ´ pXE

mptl´1q}
p
8

ı

¨ E
”

ˇ

ˇBj
l ptq

ˇ

ˇ

p
ı

`

r
ÿ

j“1

E
”

} pXE
mptl´1q ´ rXE,pqq

m,n ptl´1q}
p
8

ı

¨ E
”

ˇ

ˇBj
l ptq

ˇ

ˇ

p
ı

¯

ď c ¨
´

`

m´1 ` n´1
˘p
`
`

m´1 ` n´1
˘p{2

¨

r
ÿ

j“1

E
”

ˇ

ˇBj
l ptq

ˇ

ˇ

p
ı

¯

(6.2.9)

for all t P rtl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d. Furthermore, since the processes Bj
l are Brownian

bridges on rtl´1, tls, Definition 2.3.9 yields

E
”

ˇ

ˇBj
l ptq

ˇ

ˇ

p
ı

ď c ¨
`

pt´ tl´1q ¨ ptl ´ tq ¨m
˘p{2

ď c ¨m´p{2 ď c ¨
`

m´1 ` n´1
˘p{2 (6.2.10)

for all t P rtl´1, tls, l “ 1, . . . ,m and j “ 1, . . . , r.
Hence, in summary, due to (6.2.7), (6.2.9) and (6.2.10) we end up with

´

E
”

}U1}
p
Ldpr0,1s

ı¯1{p
ď c ¨

`

m´1 ` n´1
˘

. (6.2.11)
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Step 3: Let β P Rr, K P N, and let l P t1, . . . ,mu. Recall that Φβ,l,K is the mapping as defined in (5.2.5).
First, we assume β ‰ 0. Due to Lemma 5.2.2, due to the definition of the mappings ψβ,l and

ψ´1
β,l , see (5.2.3) and (5.2.4), respectively, and due to the change of variable rule, we obtain

E
”

›

› }β}2 ¨B
1
l ´ Φβ,l,K

`

}β}2 ¨B
1
l

˘
›

›

p

Lprtl´1,tls

ı

“ E

«ˆ tl

tl´1

ˇ

ˇ}β}2 ¨B
1
l ptq ´ Φβ,l,K

`

}β}2 ¨B
1
l

˘

ptq
ˇ

ˇ

p
dt

ff

“ E

«ˆ tl

tl´1

ˇ

ˇψ´1
β,l

`

ψβ,l
`

}β}2 ¨B
1
l

˘˘

ptq ´ Φβ,l,K

`

}β}2 ¨B
1
l

˘

ptq
ˇ

ˇ

p
dt

ff

“ E

«ˆ tl

tl´1

ˇ

ˇψ´1
β,l

`

B
˘

ptq ´ ψ´1
β,l

`

SKpBq
˘

ptq
ˇ

ˇ

p
dt

ff

“ }β}p2 ¨ E

«ˆ tl

tl´1

ˇ

ˇ

ˇ
m´1{2 ¨Bpm ¨ pt´ tl´1qq ´m

´1{2 ¨ SK
`

B
˘

pm ¨ pt´ tl´1qq

ˇ

ˇ

ˇ

p
dt

ff

“ m´p{2 ¨ }β}p2 ¨ E

«

m´1 ¨

ˆ tl

tl´1

m ¨
ˇ

ˇBpm ¨ pt´ tl´1qq ´ SK
`

B
˘

pm ¨ pt´ tl´1qq
ˇ

ˇ

p
dt

ff

“ m´pp`2q{2 ¨ }β}p2 ¨ E
„ˆ 1

0

ˇ

ˇBpsq ´ SK
`

B
˘

psq
ˇ

ˇ

p
ds



“ m´pp`2q{2 ¨ }β}p2 ¨ pδKq
p

(6.2.12)

where B denotes a Brownian bridge on r0, 1s.
Secondly, assume β “ 0. Then, due to the definition of the mapping Φβ,l,K , it holds

Φβ,l,K

`

}β}2 ¨B
1
l

˘

ptq “ 0

for all t P rtl´1, tls. Hence, trivially,

E
”

›

› }β}2 ¨B
1
l ´ Φβ,l,K

`

}β}2 ¨B
1
l

˘
›

›

p

Lprtl´1,tls

ı

“ m´pp`2q{2 ¨ }β}p2 ¨ pδKq
p . (6.2.13)

Step 4: In this step we further analyze
´

E
”

}U2}
p
Ldpr0,1s

ı¯1{p
. To this end, we consider the Rdˆm-valued

random matrix
V :“

`

rXE,pqq
m,n pt0q, . . . ,

rXE,pqq
m,n ptm´1q

˘

.

In view of (5.1.8) and (5.2.9) it holds that
`

rbE,l´1
1 ,K1,l,M , . . . ,rb

E,l´1
d ,Kd,l,M

˘

is measurable with respect to σpVq for all l “ 1, . . . ,m. Moreover, by the definition of the Euler
quantization of X together with the definition of the random variables Kk,l,M as well as Lemma
5.2.1 c), we get that

`

rbE,l´1
1 ,K1,l,M , . . . ,rb

E,l´1
d ,Kd,l,M

˘

and
`

B1
l , . . . , B

r
l

˘

are independent for all l “ 1, . . . ,m. Thus, for all k “ 1, . . . , d and l “ 1, . . . ,m, due to Proposition
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B.2, and due to (5.2.2), (6.2.12) as well as (6.2.13), we obtain

E
”

}Uk2 }
p
Lprtl´1,tls

ˇ

ˇ

ˇ
V “ β

ı

“ E
”›

›

›

r
ÿ

j“1

rbE,l´1
k,j ¨Bj

l ´ Φ
rbE,l´1
k ,l,Kk,l,M

´

r
ÿ

j“1

rbE,l´1
k,j ¨Bj

l

¯›

›

›

p

Lprtl´1,tls

ˇ

ˇ

ˇ
V “ β

ı

“ E
”›

›

›

r
ÿ

j“1

rbE,l´1
k,j pβq ¨Bj

l ´ Φ
rbE,l´1
k pβq,l,Kk,l,M pβq

´

r
ÿ

j“1

rbE,l´1
k,j pβq ¨Bj

l

¯
›

›

›

p

Lprtl´1,tls

ı

“ E
”›

›

›

›

›rbE,l´1
k pβq

›

›

2
¨B1

l ´ Φ
rbE,l´1
k pβq,l,Kk,l,M pβq

`›

›rbE,l´1
k pβq

›

›

2
¨B1

l

˘

›

›

›

p

Lprtl´1,tls

ı

“ m´pp`2q{2 ¨
›

›rbE,l´1
k pβq

›

›

p

2
¨
`

δKk,l,M pβq
˘p

for PV -a.a. β P Rdˆm where rbE,l´1
k,j pβq and Kk,l,M pβq denote the realizations associated to β of rbE,l´1

k,j

and Kk,l,M , respectively. Therefore, we conclude that

´

E
”

}U2}
p
Ldpr0,1s

ı¯1{p
“

˜

d
ÿ

k“1

m
ÿ

l“1

E
”

}Uk2 }
p
Lpprtl´1,tlsq

ı

¸1{p

“

˜

d
ÿ

k“1

E
”

m´pp`2q{2 ¨

m
ÿ

l“1

›

›rbE,l´1
k

›

›

p

2
¨
`

δKk,l,M
˘p
ı

¸1{p

“

˜

d
ÿ

k“1

E
”

m´pp`2q{2 ¨

m
ÿ

l“1

`

rsk,l´1
˘p
¨
`

δKk,l,M
˘p
ı

¸1{p

“

˜

d
ÿ

k“1

E
“

Akm,n,M
‰

¸1{p

“
`

E rAm,n,M s
˘1{p

.

(6.2.14)

Step 5: Now by combining (6.2.6), (6.2.11) and (6.2.14) we end up with

´

E
”

}Xm ´ rX
pp,qq
m,n,M}

p
Ldpr0,1s

ı¯1{p
ď c ¨

`

m´1 ` n´1
˘

`
`

E rAm,n,M s
˘1{p

,

which finishes the proof.

For the remaining part of this subsection we consider a sequence pmN qNPN in N which satisfies (Lim1)
and (Lim2), and recall that

MN “ max

$

&

%

—

—

—

–

˜

ˆ

4d¨p1`p
r
2qq ¨m

d¨pr`pr2qq
N

˙´mN

¨N

¸lnmN {p1`lnmN q
ffi

ffi

ffi

fl , 1

,

.

-

for N P N.
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Additionally, recall that

κp “ lim sup
KÑ8

?
lnK ¨ δK

and

Cppq “

¨

˝E

»

–

˜

d
ÿ

k“1

›

›

›

›

›bk
`

Xp¨q
˘
›

›

2

›

›

›

2p{pp`2q

L2p{pp`2qr0,1s

¸pp`2q{2
fi

fl

˛

‚

1{p

.

We will employ the next lemma in the proof of the fifth main auxiliary lemma, namely, Lemma 6.2.4.

Lemma 6.2.3
It holds

lim
NÑ8

lnMN

lnN
“ 1.

Proof:
First, note that due to (Lim1) there exists an index N P N such that

˜

ˆ

4d¨p1`p
r
2qq ¨m

d¨pr`pr2qq
N

˙´mN

¨N

¸lnmN {p1`lnmN q

ě 1

for all N ě N . Secondly, due to the definition of MN , and due to the calculation rules of the logarithm,
we have

lnMN ď
lnmN

1` lnmN
¨ ln

´

´

4d¨p1`p
r
2qq ¨m

d¨pr`pr2qq
N

¯´mN
¨N

¯

“
lnmN

1` lnmN
¨

ˆ

´mN ¨ ln
´

4d¨p1`p
r
2qq ¨m

d¨pr`pr2qq
N

¯

` lnN

˙

ď
lnmN

1` lnmN
¨ lnN

ď lnN

for all N ě N . Thus,

lim sup
NÑ8

lnMN

lnN
ď 1.

Hence it remains to show

lim inf
NÑ8

lnMN

lnN
ě 1.
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By applying the calculation rules of the logarithm once more, we obtain

lnMN ě lnp1{2q `
lnmN

1` lnmN

¨

ˆ

´mN ¨ ln
´

4d¨p1`p
r
2qq ¨m

d¨pr`pr2qq
N

¯

` lnN

˙

“ lnp1{2q ´
lnmN

1` lnmN

¨mN ¨ ln
´

4d¨p1`p
r
2qq
¯

´
lnmN

1` lnmN

¨mN ¨ lnmN ¨

ˆ

d ¨ r ` d ¨

ˆ

r

2

˙˙

`
lnmN

1` lnmN

¨ lnN

ě lnp1{2q ´
lnmN

1` lnmN

¨mN ¨ lnmN ¨ ln
´

4d¨p1`p
r
2qq
¯

´
lnmN

1` lnmN

¨mN ¨ lnmN ¨

ˆ

d ¨ r ` d ¨

ˆ

r

2

˙˙

`
lnmN

1` lnmN

¨ lnN

(6.2.15)

for all N ě N such that mN ě 3. Moreover, (Lim2) implies limNÑ8mN “ 8, and hence

lim
NÑ8

lnmN

1` lnmN
“ 1.

Thus, (6.2.15) together with (Lim1) leads to

lim inf
NÑ8

lnMN

lnN
ě 1.

Lemma 6.2.4
It holds

lim sup
NÑ8

ˆ

?
lnN ¨

´

E rAmN ,mN ,MN
s

¯1{p
˙

ď κp ¨ C
ppq.

Proof:
We may assume κp ă 8 since otherwise there is nothing to prove. Additionally, note that κp ě κp ą 0,
where κp is the constant in Theorem 2.3.11 (i). Moreover, for N P N we put

κ
ppq
N :“ max

l“1,...,mN
max

k“1,...,d

a

lnKk,l,MN
¨ δKk,l,MN .

From now on, we use the shorter notation κN instead of κppqN . Note that κp ă 8 implies

sup
NPN

κN ď c. (6.2.16)

Additionally, for s P r1,8q and N P N we put

rDs,N :“

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

ˇ

ˇ

rsk,l´1
ˇ

ˇ

s

¸1{s

,

and we define Ds,N analogously to rDs,N with rsk,l´1 replaced by sk,l´1 :“ slocH
`

Xkptl´1q
˘

.
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Furthermore, we abbreviate

p˚ “ 2p{pp` 2q.

We split up the proof into single steps.

Step 1: As a first step we further estimate E
“

AmN ,mN ,MN

‰

. To this end, we fix N P N such thatMN ě 2.
By (5.2.9) and (5.2.8), we have

`

rsk,l´1
˘p
¨ plnKk,l,MN

q´p{2 ď
`

rsk,l´1
˘p
¨
`

lnM
ηkl
N

˘´p{2

ď
`

lnMN

˘´p{2
¨
`

rsk,l´1
˘p
¨

¨

˚

˚

˚

˝

mN´1
ř

i“0

d
ř

ν“1

`

rsν,i
˘p˚

`

rsk,l´1
˘p˚

˛

‹

‹

‹

‚

p{2

“
`

lnMN

˘´p{2
¨

˜

mN´1
ÿ

i“0

d
ÿ

ν“1

`

rsν,i
˘p˚

¸p{2

¨
`

rsk,l´1
˘p˚

for all l “ 1, . . . ,m with maxν“1,...,d rs
ν,l´1 ą 0 and k “ 1, . . . , d. Thus,

AmN ,mN ,MN
“

d
ÿ

k“1

AkmN ,mN ,MN

“ m
´pp`2q{2
N ¨

mN
ÿ

l“1

d
ÿ

k“1

`

rsk,l´1
˘p
¨
`

lnKk,l,MN

˘´p{2
¨
`

lnKk,l,MN

˘p{2
¨ pδKk,l,MN q

p

ď
`

lnMN

˘´p{2
¨ pκN q

p ¨m
´pp`2q{2
N ¨

˜

mN´1
ÿ

i“0

d
ÿ

ν“1

`

rsν,i
˘p˚

¸p{2

¨

˜

mN
ÿ

l“1

d
ÿ

k“1

`

rsk,l´1
˘p˚

¸

“
`

lnMN

˘´p{2
¨
`

κN ¨ rDp˚,N

˘p
,

(6.2.17)

and hence

E rAmN ,mN ,MN
s ď plnMN q

´p{2 ¨ E
”

`

κN ¨ rDp˚,N

˘p
ı

. (6.2.18)

Step 2: We prove

lim supNÑ8 κN
κp

ď 1. (6.2.19)

To this end, it is enough to show lim
NÑ8

min
l“1,...,mN

min
k“1,...,d

Kk,l,MN
“ 8.

Let N P N such that mN ě 3, and, for the moment, fix l P t1, . . . ,mNu and k P t1, . . . , du. By
(5.2.9) we have

lnKk,l,MN
ě lnM

ηkl
N “ ηkl ¨ lnMN .
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Moreover, if max
i“0,...,mN´1,
ν“1,...,d

rsν,i “ 0, it holds ηkl “ 1{pd ¨mN q and hence

lnKk,l,MN
ě

1

d ¨mN
¨ lnMN ě

1

d ¨mN ¨ lnmN
¨ lnMN .

If max
i“0,...,mN´1,
ν“1,...,d

rsν,i ą 0, (5.2.8) yields

lnKk,l,MN
ě

1

d ¨mN ¨ lnmN
¨ lnMN .

Therefore,

Kk,l,MN
ě exp

ˆ

1

d ¨mN ¨ lnmN
¨ lnMN

˙

for all l “ 1, . . . ,mN and k “ 1, . . . , d, and hence

min
l“1,...,mN

min
k“1,...,d

Kk,l,MN
ě exp

ˆ

1

d ¨mN ¨ lnmN
¨ lnMN

˙

.

Additionally, due to Lemma 6.2.3 we have

lim
NÑ8

lnMN

lnN
“ 1,

and thus, together with (Lim1), we obtain

lim
NÑ8

1

d ¨mN ¨ lnmN
¨ lnMN “ lim

NÑ8

lnN

d ¨mN ¨ lnmN
¨

lnMN

lnN
“ 8.

Consequently,
lim
NÑ8

min
l“1,...,mN

min
k“1,...,d

Kk,l,MN
“ 8.

Step 3: Recall that

Dp˚,N “

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

›

›bk
`

Xptl´1q
˘›

›

p˚

2

¸1{p˚

for N P N. Since X has continuous paths, since b is continuous, see Section 3.2, and due to the fact
that the euclidean norm } ¨ }2 is continuous, we obtain

lim
NÑ8

Dp˚,N pωq “ lim
NÑ8

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

›

›bk
`

Xptl´1qpωq
˘
›

›

p˚

2

¸1{p˚

“

˜

d
ÿ

k“1

ˆ 1

0

›

›bk
`

Xptqpωq
˘
›

›

p˚

2
dt

¸1{p˚

(6.2.20)

for all ω P Ω.
Moreover, since b is of at most linear growth, and due to (6.2.16), it holds

`

κN ¨Dp˚,N

˘p
ď c ¨

`

1` sup
sPr0,1s

}Xpsq}p8
˘

for all N P N.
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Furthermore, Theorem 3.2.3 guarantees

E
”

sup
sPr0,1s

}Xpsq}p8

ı

ă 8.

Hence all assumptions of Fatou’s lemma are satisfied, which, together with (6.2.19) and (6.2.20),
implies

lim sup
NÑ8

E
”

`

κN ¨Dp˚,N

˘p
ı

ď E
„

lim sup
NÑ8

`

κN ¨Dp˚,N

˘p


ď E
„

´

lim sup
NÑ8

`

κN
˘p
¯

¨

´

lim sup
NÑ8

`

Dp˚,N

˘p
¯



ď
`

κp
˘p
¨ E

„

lim sup
NÑ8

`

Dp˚,N

˘p


“
`

κp ¨ C
ppq
˘p
.

Step 4: In this step we prove that, depending on the value of p, there exists an α P p0,8q such that

lim
NÑ8

ˇ

ˇ

ˇ

´

E
”

`

κN ¨ rDp˚,N

˘p
ı ¯α

´

´

E
”

`

κN ¨Dp˚,N

˘p
ı¯αˇ

ˇ

ˇ
“ 0,

which then yields

lim sup
NÑ8

E
”

`

κN ¨ rDp˚,N

˘p
ı

ď lim sup
NÑ8

E
”

`

κN ¨Dp˚,N

˘p
ı

ď
`

κp ¨ C
ppq
˘p
. (6.2.21)

First, assume p P r2,8q. Then 1 ď p˚ ă p, and the inverse triangle inequality as well as the
properties of b imply

ˇ

ˇ

ˇ

rDp˚,N ´Dp˚,N

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

ˇ

ˇ

rsk,l´1
ˇ

ˇ

p˚
¸1{p˚

´

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

ˇ

ˇsk,l´1
ˇ

ˇ

p˚
¸1{p˚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

mN
ÿ

l“1

d
ÿ

k“1

ˇ

ˇm
´1{p˚

N ¨ rsk,l´1
ˇ

ˇ

p˚
¸1{p˚

´

˜

mN
ÿ

l“1

d
ÿ

k“1

ˇ

ˇm
´1{p˚

N ¨ sk,l´1
ˇ

ˇ

p˚
¸1{p˚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

ˇ

ˇ

rsk,l´1 ´ sk,l´1
ˇ

ˇ

p˚
¸1{p˚

“

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

ˇ

ˇ

›

›bk
`

rXE,pqq
mN ,mN

ptl´1q
˘
›

›

2
´
›

›bk
`

Xptl´1q
˘
›

›

2

ˇ

ˇ

p˚
¸1{p˚

ď

˜

m´1
N ¨

mN
ÿ

l“1

d
ÿ

k“1

›

›bk
`

rXE,pqq
mN ,mN

ptl´1q
˘

´ bk
`

Xptl´1q
˘›

›

p˚

2

¸1{p˚

ď c ¨

˜

m´1
N ¨

mN
ÿ

l“1

›

›Xptl´1q ´ rXE,pqq
mN ,mN

ptl´1q
›

›

p˚

8

¸1{p˚

ď c ¨ max
l“0,...,mN

›

›Xptlq ´ rXE,pqq
mN ,mN

ptlq
›

›

8

(6.2.22)

for all N P N. Thus, by the inverse triangle inequality, by supNPN κN ď c, and by the choice of q
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together with Proposition 5.1.3, we obtain
ˇ

ˇ

ˇ

ˇ

´

E
”

`

κN ¨ rDp˚,N

˘p
ı ¯1{p

´

´

E
”

`

κN ¨Dp˚,N

˘p
ı¯1{p

ˇ

ˇ

ˇ

ˇ

ď

´

E
”

ˇ

ˇκN
ˇ

ˇ

p
¨
ˇ

ˇ rDp˚,N ´Dp˚,N

ˇ

ˇ

p
ı¯1{p

ď c ¨
´

E
”

ˇ

ˇ rDp˚,N ´Dp˚,N

ˇ

ˇ

p
ı¯1{p

ď c ¨

ˆ

E
„

max
l“0,...,m

›

›Xptlq ´ rXE,pqq
mN ,mN

ptlq
›

›

p

8

˙1{p

ď c ¨m
´1{2
N

for all N P N. Due to (Lim2) we have

lim
NÑ8

m
´1{2
N “ 0,

and hence we end up with

lim
NÑ8

ˇ

ˇ

ˇ

ˇ

´

E
”

`

κN ¨ rDp˚,N

˘p
ı ¯1{p

´

´

E
”

`

κN ¨Dp˚,N

˘p
ı¯1{p

ˇ

ˇ

ˇ

ˇ

“ 0.

Secondly, assume p P r1, 2q. Then p˚ ă 1, and hence p{p˚ ą 1. By (6.2.22) we conclude that

ˇ

ˇ

`

rDp˚,N

˘p˚
´
`

Dp˚,N

˘p˚ ˇ
ˇ ď

ˇ

ˇ rDp˚,N ´Dp˚,N

ˇ

ˇ

p˚
ď c ¨ max

l“0,...,m

›

›Xptlq ´ rXE,pqq
mN ,mN

ptlq
›

›

p˚

8
.

Together with the inverse triangle inequality, supNPN κN ď c, and the choice of q combined with
Proposition 5.1.3, we obtain
ˇ

ˇ

ˇ

ˇ

´

E
”

`

κN ¨ rDp˚,N

˘p
ı ¯p˚{p

´

´

E
”

`

κN ¨Dp˚,N

˘p
ı¯p˚{p

ˇ

ˇ

ˇ

ˇ

ď

´

E
”

ˇ

ˇκN
ˇ

ˇ

p
¨
ˇ

ˇ

`

rDp˚,N

˘p˚
´
`

Dp˚,N q
p˚
ˇ

ˇ

p{p˚
ı¯p˚{p

ď c ¨
´

E
”

ˇ

ˇ

`

rDp˚,N

˘p˚
´
`

Dp˚,N q
p˚
ˇ

ˇ

p{p˚
ı¯p˚{p

ď c ¨m
´p˚{2
N .

Combined with

lim
NÑ8

m
´p˚{2
N “ 0

we finally arrive at

lim
NÑ8

ˇ

ˇ

ˇ

ˇ

´

E
”

`

κN ¨ rDp˚,N

˘p
ı ¯p˚{p

´

´

E
”

`

κN ¨Dp˚,N

˘p
ı¯p˚{p

ˇ

ˇ

ˇ

ˇ

“ 0.

Step 5: We combine all previous steps. By (6.2.18), Lemma 6.2.3 and (6.2.21) we end up with

lim sup
NÑ8

´?
lnN ¨

`

ErAmN ,mN ,MN
s
˘1{p

¯

ď lim sup
NÑ8

ˆ

?
lnN ¨

1
?

lnMN
¨

´

E
”

`

κN ¨ rDp˚,N

˘p
ı¯1{p

˙

ď

˜

lim
NÑ8

c

lnN

lnMN

¸

¨

ˆ

lim sup
NÑ8

E
“`

κN ¨Dp˚,N

˘p‰
˙1{p

ď κp ¨ C
ppq.
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6.2.3. Proof of Theorem 5.2.4

We prove Theorem 5.2.4 by applying the Lemmas 6.2.1, 6.2.2 and 6.2.4.

Proof of Theorem 5.2.4:
By the aforementioned lemmas and (Lim2) we conclude

lim sup
NÑ8

´?
lnN ¨ eppq

`

X, rX
pp,qq
N , Ldpr0, 1s

˘

¯

ď lim sup
NÑ8

ˆ

?
lnN ¨

´

E
”

}X ´XmN }
p
Ldpr0,1s

ı¯1{p
˙

` lim sup
NÑ8

ˆ

?
lnN ¨

´

E
”

}XmN ´
rX
pp,qq
N }

p
Ldpr0,1s

ı¯1{p
˙

ď c ¨ lim sup
NÑ8

?
lnN

mN
` lim sup

NÑ8

?
lnN ¨

`

ErAmN ,mN ,MN
s
˘1{p

ď κp ¨ C
ppq.

The statement on the size of the range of rX
pp,qq
N directly follows from (5.2.11) and (5.2.12).

6.3. Quantization in Cpr0, 1s;Rdq: Proof of Theorem 5.3.4

In the whole section we consider fixed parameters ε ą 0 and s, q P r1,8q with q ě mintrq P 2N | rq ě sηεu,
where ηε the natural number as in (5.3.1).

6.3.1. Auxiliary Lemma 6: The Auxiliary Process Revisited

In this subsection we revisit the auxiliary process introduced in Section 6.2.1. Recall that for m P N the
d-dimensional stochastic process Xm “

`

X
1
m, . . . , X

d
m

˘1 is given by

X
k
mptq “ pt´ tl´1q ¨m ¨ pX

M,k
m ptlq ` ptl ´ tq ¨m ¨ pX

M,k
m ptl´1q `

r
ÿ

j“1

bk,j
`

pXM
m ptl´1q

˘

¨Bj
l ptq

for t P rtl´1, tls, l “ 1, . . . ,m and k “ 1, . . . , d.

Lemma 6.3.1
Let s̃ P p2,8q. Then there exists an αs̃ P p3{4, 1q such that, for all m P N3,

˜

E
”

sup
tPr0,1s

}Xptq ´Xmptq}
s̃
8

ı

¸1{s̃

ď c ¨ lnm ¨m´αs̃ .

Proof:
Let m P N3. We use (3.3.5) in Proposition 3.3.2 and (6.2.3) in the proof of Lemma 6.2.1 to conclude that

˜

E
”

sup
tPr0,1s

}Xptq ´Xmptq}
s̃
8

ı

¸1{s̃

ď c ¨m´1 ` c ¨
d
ÿ

k“1

˜

E
”

sup
tPp0,1s

|Rkptq|s̃
ı

¸1{s̃

(6.3.1)
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where, recall,

Rkptq “
m
ÿ

l“1

˜

r
ÿ

j1,j2“1

pcl´1
k,j2,j1

¨

ˆ t

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq

¸

¨ 1ptl´1,tlsptq

for t P p0, 1s. The properties of b, Hölder’s inequality, and Proposition 3.3.2 imply

E
”

sup
tPp0,1s

|Rkptq|s̃
ı

ď c ¨
r
ÿ

j1,j2“1

ˆ

1` E
”

max
l“0,...,m

} pXM
m ptlq}

2s̃
8

ı

˙1{2

¨

¨

˝E

»

– max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq

ˇ

ˇ

ˇ

ˇ

ˇ

2s̃
fi

fl

˛

‚

1{2

ď c ¨
r
ÿ

j1,j2“1

¨

˝E

»

– max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq

ˇ

ˇ

ˇ

ˇ

ˇ

2s̃
fi

fl

˛

‚

1{2

(6.3.2)

for all k “ 1, . . . , d. Furthermore, by the Burkholder-Davis-Gundy inequality, by Hölder’s inequality, by
Fubini’s theorem, and by the properties of W , we conclude that

E

»

– max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ t

tl´1

`

Wj1psq ´Wj1ptl´1q
˘

dWj2psq

ˇ

ˇ

ˇ

ˇ

ˇ

2s̃
fi

fl

ď c ¨
m
ÿ

l“1

E

»

–

˜ˆ tl

tl´1

ˇ

ˇWj1psq ´Wj1ptl´1q
ˇ

ˇ

2
ds

¸s̃
fi

fl

ď c ¨
m
ÿ

l“1

E

»

–

˜ˆ tl

tl´1

ˇ

ˇWj1psq ´Wj1ptl´1q
ˇ

ˇ

2s̃
ds

¸

¨

˜ˆ tl

tl´1

1s̃{ps̃´1q ds

¸s̃´1
fi

fl

“ c ¨m´ps̃´1q ¨

m
ÿ

l“1

ˆ tl

tl´1

E
”

ˇ

ˇWj1psq ´Wj1ptl´1q
ˇ

ˇ

2s̃
ı

ds

ď c ¨m´ps̃´1q ¨m´s̃

“ c ¨m´p2s̃´1q

(6.3.3)

for all j1, j2 “ 1, . . . , r. Hence, in view of (6.3.2) and (6.3.3), we arrive at

d
ÿ

k“1

˜

E
”

sup
tPp0,1s

|Rkptq|s̃
ı

¸1{s̃

ď c ¨m´p2s̃´1q{2s̃.

Now, put αs̃ :“ p2s̃´1q{2s̃. Since s̃ ą 2, it holds αs̃ P p3{4, 1q. By (6.3.1), and by the fact that m ě 3,
we finally end up with

˜

E
”

sup
tPr0,1s

}Xptq ´Xmptq}
s̃
8

ı

¸1{s̃

ď c ¨ lnm ¨m´αs̃ .
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6.3.2. Auxiliary Lemmas 7 and 8

Recall that pSM,εqMPN is a strongly asymptotically optimal sequence of order sηε of M -quantizers
SM,ε : Cr0, 1s Ñ Cr0, 1s for a Brownian motion on r0, 1s. Moreover, for M P N we put

δ
psηεq
M :“ epsηεq

`

W,SM,εpW q, Cr0, 1s
˘

where W denotes a Brownian motion on r0, 1s, and we use the abbreviation

rAkm,n “

˜

m´1 ¨

m´1
ÿ

i“0

›

›bk,m
`

rXE,pqq
m,n ptiq

˘›

›

2

2

¸1{2

for m,n P N and k “ 1, . . . , d. Analogously, we define A
k
m,n with }bk,mp rX

E,pqq
m,n ptiqq}2 replaced by

}bkpXptiqq}2.
For the rest of this subsection, for ease of notation, we write η and SM instead of ηε and SM,ε,

respectively, for M P N.

Lemma 6.3.2
Let m,n,M P N, let k P t1, . . . , du, and let γk P Rmˆr such that (5.3.3) as well as (5.3.4) are satisfied.
Then there exists a constant cps, εq P p0,8q neither depending on m,n nor on M such that

´

E
”

›

›B
pγkq

´ ψ
pγk,q,εq
m,n,M pB

pγkq
q
›

›

sη

8

ı¯1{sη

ď δ
psηq
M ` cps, εq ¨ n´1.

Proof:
By (5.3.2), (5.3.12), (5.3.8) as well as (5.3.10), and by Hölder’s inequality, we have

´

E
”

›

›B
pγkq

´ ψ
pγk,q,εq
m,n,M pB

pγkq
q
›

›

sη

8

ı¯1{sη

“

´

E
”

›

›Bpγ
kq ´ ψ

pγk,q,εq
m,n,M pBpγ

kqq
›

›

sη

8

ı¯1{sη

ď

´

E
”

›

›W pγkq ´ SM pW
pγkqq

›

›

sη

8

ı¯1{sη

`

ˆ

E
”

max
l“1,...,m

ˇ

ˇW pγkqpskl q ´
ĂW pγk,qq
m,n pskl q

ˇ

ˇ

sη
ı

˙1{sη

ď δ
psηq
M `

ˆ

E
”

max
l“1,...,m

ˇ

ˇW pγkqpskl q ´
ĂW pγk,qq
m,n pskl q

ˇ

ˇ

q
ı

˙1{q

.

(6.3.4)

It remains to further estimate the second summand in the last line of (6.3.4). To this end, we put
U
k
0 :“ 0 and

U
k
l :“W pγkqpskl q ´

ĂW pγk,qq
m,n pskl q

for l “ 1, . . . ,m. In view of Lemma 5.3.2 c) and (5.3.9), it holds

U
k
l “ m´1{2 ¨

l
ÿ

i“1

}γki }2 ¨
`

Zi ´ rZ
pqq
i,n

˘

for all l “ 1, . . . ,m. By the choice of the random variables Z1, . . . , Zm, by the properties of standard
normally distributed random variables, and by (N1), we derive that pUkl ql“0,...,m is a martingale with
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respect to its natural filtration. Therefore, Doob’s maximal inequality implies the existence of a constant
c1 “ c1ps, εq P p0,8q such that

E
”

max
l“0,...,m

ˇ

ˇU
k
l

ˇ

ˇ

q
ı

ď c1 ¨ E
”

ˇ

ˇU
k
m

ˇ

ˇ

q
ı

. (6.3.5)

Furthermore, by the definition of Ukl , by the choice of the random variables Z1, . . . , Zm, by (N1) and the
properties of standard normally distributed random variables, by (5.3.4), and by (N3), we conclude that
there exist constants c2 “ c2ps, εq, c3 “ c3ps, εq P p0,8q such that

E
”

ˇ

ˇU
k
l`1

ˇ

ˇ

q
ı

“ E
”

ˇ

ˇU
k
l

ˇ

ˇ

q
ı

`

q
ÿ

µ“2

ˆ

q

µ

˙

¨ E
”

ˇ

ˇU
k
l

ˇ

ˇ

q´µ
ı

¨
`

m´1 ¨ }γkl`1}
2
2

˘µ{2
¨ E

”

`

Zl`1 ´ rZ
pqq
l`1,n

˘µ
ı

ď E
”

ˇ

ˇU
k
l

ˇ

ˇ

q
ı

` c2 ¨m
´1 ¨ }γkl`1}

2
2 ¨

q
ÿ

µ“2

ˆ

q

µ

˙

¨ E
”

ˇ

ˇU
k
l

ˇ

ˇ

q´µ
ı

¨ n´µ

ď E
”

ˇ

ˇU
k
l

ˇ

ˇ

q
ı

` c2 ¨m
´1 ¨ }γkl`1}

2
2 ¨ E

”

`
ˇ

ˇU
k
l

ˇ

ˇ` n´1
˘q
ı

ď E
”

ˇ

ˇU
k
l

ˇ

ˇ

q
ı

¨
`

1` c3 ¨m
´1 ¨ }γkl`1}

2
2

˘

` c3 ¨m
´1 ¨ }γkl`1}

2
2 ¨ n

´q

for all l “ 0, . . . ,m ´ 1. Together with (5.3.4) we have that all assumptions of the discrete version of
Gronwall’s inequality are satisfied, which then yields

E
”

ˇ

ˇU
k
m

ˇ

ˇ

q
ı

ď c3 ¨ n
´q. (6.3.6)

Finally, (6.3.4)--(6.3.6) imply the existence of a constant cps, εq P p0,8q such that

´

E
”

›

›B
pγkq

´ ψ
pγk,q,εq
m,n,M pB

pγkq
q
›

›

sη

8

ı¯1{sη

ď δ
psηq
M ` cps, εq ¨ n´1.

Lemma 6.3.3
Let n,M P N, and let s̃ P p2,8q with s̃ ě s. Then there exists an αs̃ P p3{4, 1q, an index Nps̃q P N3 and a
constant cps, εq P p0,8q which neither depends on n nor on M such that, for all m ě Nps̃q,

epsq
`

X, rX
pq,εq
m,n,M , Cpr0, 1s;R

dq
˘

ď c ¨
`

m´1 ` n´1
˘αs̃

`

ˆ

E
”

max
k“1,...,d

`

rAkm,n
˘s
ı

˙1{s

¨ p1` εq ¨
`

δsηM ` cps, εq ¨ n
´1
˘

.

Proof:
First, note that Hölder’s inequality and Lemma 6.3.1 guarantee the existence of an α1,s̃ P p3{4, 1q such
that

´

E
”

}X ´Xm}
s
8

ı¯1{s
ď

´

E
”

}X ´Xm}
s̃
8

ı¯1{s̃
ď c ¨ lnm ¨m´α1,s̃

for all m P N3. Now, choose β P p0, α1,s̃´ 3{4q and put α2,s̃ :“ α1,s̃´β. Note that the choice of β implies
α2,s̃ P p3{4, 1q. Moreover, since limmÑ8 lnm{mβ “ 0, there exists an index Nps̃q P N3 such that for all
m ě Nps̃q one has lnm ď mβ . This leads to

lnm ¨m´α1,s̃ ď mβ´α1,s̃ “ m´α2,s̃
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and therefore
´

E
”

}X ´Xm}
s
8

ı¯1{s
ď c ¨

`

m´1 ` n´1
˘α2,s̃

for all m ě Nps̃q. Consequently,

epsq
`

X, rX
pq,εq
m,n,M , Cpr0, 1s;R

dq
˘

ď

´

E
”

}X ´Xm}
s
8

ı¯1{s
`

´

E
”

}Xm ´ rX
pq,εq
m,n,M}

s
8

ı¯1{s

ď c ¨
`

m´1 ` n´1
˘α2,s̃

`

´

E
”

}Xm ´ rX
pq,εq
m,n,M}

s
8

ı¯1{s
(6.3.7)

for all m ě Nps̃q.
Secondly, for the remaining part of this proof we fix m ě Nps̃q, and for k “ 1, . . . , d let Uk1 be the

real-valued stochastic process defined in Step 1 in the proof of Lemma 6.2.2, and let Uk2 “ pUk2 ptqqtPr0,1s
and Uk3 “ pUk3 ptqqtPr0,1s be real-valued stochastic processes defined by

Uk2 ptq “
r
ÿ

j“1

´

bk,j
`

rXE,pqq
m,n ptl´1q

˘

´ bk,j,m
`

rXE,pqq
m,n ptl´1q

˘

¯

¨Bj
l ptq

for t P rtl´1, tls and l “ 1, . . . ,m, and

Uk3 “
rAkm,n ¨

´

B
pΓkq

´ ψ
pΓk,q,εq
m,n,M

`

B
pΓkq˘

¯

,

respectively. Then,

Xm ´ rX
pq,εq
m,n,M “ U1 ` U2 ` U3

where Ui “ pU1
i , . . . , U

d
i q
1 for i “ 1, 2, 3, and hence

´

E
”

}Xm ´ rX
pq,εq
m,n,M}

s
8

ı¯1{s
ď

`

E
“

}U1}
s
8

‰˘1{s
`
`

E
“

}U2}
s
8

‰˘1{s
`
`

E
“

}U3}
s
8

‰˘1{s
. (6.3.8)

As a next step, we further estimate
`

E
“

}U1}
s
8

‰˘1{s. Since b is globally Lipschitz continuous, we obtain

sup
tPr0,1s

ˇ

ˇUk1 ptq
ˇ

ˇ

s
ď c ¨

´

max
l“0,...,m

} pXM
m ptlq ´

rXpqqm,nptlq}
s
8

`

r
ÿ

j“1

´

max
l“0,...,m

} pXM
m ptlq ´

pXE
mptlq}

s
8

¯

¨

´

max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇBj
l ptq

ˇ

ˇ

s
¯

`

r
ÿ

j“1

´

max
l“0,...,m

} pXE
mptlq ´

rXE,pqq
m,n ptlq}

s
8

¯

¨

´

max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇBj
l ptq

ˇ

ˇ

s
¯

¯

(6.3.9)

for all k “ 1, . . . , d. Additionally, we put αs̃ :“ p1 ` α2,s̃q{2. Note that, due to α2,s̃ P p3{4, 1q, it holds
αs̃ P p3{4, 1q. Now, in view of (6.3.9), by the choice of q combined with Lemma 6.1.2 and (5.1.9) in the
proof of Proposition 5.1.3, by Lemma 5.2.1 c), by Lemma C.5, by Hölder’s inequality, by Corollary 3.3.4,
and by applying the same arguments as in the beginning of this proof, we arrive at
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´

E
“

}U1ptq}
s
ı¯1{s

ď c ¨
´

`

m´1 ` n´1
˘s
`

r
ÿ

j“1

E
”´

max
l“0,...,m

} pXM
m ptlq ´

pXE
mptlq}

s
8

¯

¨

´

max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇBj
l ptq

ˇ

ˇ

s
¯ı

`

r
ÿ

j“1

E
”

max
l“0,...,m

} pXE
mptlq ´

rXE,pqq
m,n ptlq}

s
8

ı

¨ E
”

max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇBj
l ptq

ˇ

ˇ

s
ı

¯1{s

ď c ¨
´

`

m´1 ` n´1
˘s
`
`

m´1 ` n´1
˘s{2

¨
`

lnm ¨m´1
˘s{2

¯1{s

ď c ¨
´

`

m´1 ` n´1
˘s
`
`

m´1 ` n´1
˘s¨p1`α2,s̃q{2

¯1{s

ď c ¨
`

m´1 ` n´1
˘αs̃

.

Next, we derive an upper bound for
`

E
“

}U2}
s
8

‰˘1{s. Clearly, for all k “ 1, . . . , d and j “ 1, . . . , r, we have
ˇ

ˇbk,j,mpxq ´ bk,jpxq
ˇ

ˇ ď
ˇ

ˇ|bk,jpxq| ´maxp|bk,jpxq|,m
´1q

ˇ

ˇ ď m´1

for all x P Rd. Thus, together with Lemma C.5 and by employing the same arguments as in the beginning
of this proof, we obtain

`

E
“

}U2}
s
8

‰˘1{s
ď c ¨m´1 ¨

r
ÿ

j“1

´

E
”

max
l“1,...,m

sup
tPrtl´1,tls

ˇ

ˇBj
l ptq

ˇ

ˇ

s
ı

¯1{s

ď c ¨
`

m´1 ` n´1
˘αs̃ . (6.3.10)

It remains to further analyze
`

E
“

}U3}
s
8

‰˘1{s. As in Step 4 in the proof of Lemma 6.2.2 we consider
the random matrix

V “
`

rXE,pqq
m,n pt0q, . . . ,

rXE,pqq
m,n ptm´1q

˘

. (6.3.11)

Due to the definition of the random elements rAkm,n and Γk the vector
`

rA1
m,n,Γ

1, . . . , rAdm,n,Γ
d
˘

is measur-
able with respect to σpVq. Moreover, Lemma 5.2.1 c) implies that

`

B1
1 , . . . , B

1
m, . . . , B

r
1, . . . , B

r
mq and V

are independent. Hence Proposition B.1 b), Proposition B.2, Jensen’s inequality, Lemma 6.3.2, and the
choice of η, imply the existence of a constant cps, εq P p0,8q which neither depends on m,n nor on M
such that

E
“

}U3}
s
8

ˇ

ˇ V “ v
‰

“ E
”

max
k“1,...,d

›

› rAkm,n ¨
`

B
pΓkq

´ ψ
pΓk,q,εq
m,n,M

`

B
pΓkq˘˘›

›

s

8

ˇ

ˇ

ˇ
V “ v

ı

ď

´

max
k“1,...,d

`

rAkm,npvq
˘s
¯

¨ E
”

max
k“1,...,d

›

›B
pΓkpvqq

´ ψ
pΓkpvq,q,εq
m,n,M

`

B
pΓkpvqq˘›

›

s

8

ı

ď

´

max
k“1,...,d

`

rAkm,npvq
˘s
¯

¨ E

»

–

˜

d
ÿ

k“1

›

›B
pΓkpvqq

´ ψ
pΓkpvq,q,εq
m,n,M

`

B
pΓkpvqq˘›

›

sη

8

¸1{η
fi

fl

ď

´

max
k“1,...,d

`

rAkm,npvq
˘s
¯

¨

˜

d
ÿ

k“1

E
”

›

›B
pΓkpvqq

´ ψ
pΓkpvq,q,εq
m,n,M

`

B
pΓkpvqq˘›

›

sη

8

ı

¸1{η

ď

´

max
k“1,...,d

`

rAkm,npvq
˘s
¯

¨

˜

d
ÿ

k“1

`

δ
psηq
M ` cps, εq ¨ n´1

˘sη

¸1{η

“

´

max
k“1,...,d

`

rAkm,npvq
˘s
¯

¨
`

d1{sη
˘s
¨
`

δ
psηq
M ` cps, εq ¨ n´1

˘s

ď

´

max
k“1,...,d

`

rAkm,npvq
˘s
¯

¨ p1` εqs ¨
`

δ
psηq
M ` cps, εq ¨ n´1

˘s

(6.3.12)
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for PV -a.a. v P Rdˆm where rAkm,npvq and Γkpvq denote the realizations associated to v of rAkm,n and Γk,
respectively. Thus,

`

E
“

}U3}
s
8

‰˘1{s
“

`

E
“

E r}U3}
s
8 | V s

‰˘1{s
ď

ˆ

E
”

max
k“1,...,d

`

rAkm,n
˘s
ı

˙1{s

¨ p1` εq ¨
`

δ
psηq
M ` cps, εq ¨ n´1

˘

.

Combining this with (6.3.7)--(6.3.10) finishes the proof.

6.3.3. Proof of Theorem 5.3.4

We prove Theorem 5.3.4 by utilizing, among other things, Lemma 6.3.3.

Proof of Theorem 5.3.4:
Let s̃ P p2,8q with s̃ ě s. Moreover, let pmN qNPN be a sequence in N which satisfies (Lim1) and (Lim3).
Due to Lemma 6.3.3 and (Lim3), we have

lim sup
NÑ8

´?
lnN ¨ epsq

`

X, rX
pq,εq
N , Cpr0, 1s;Rdq

˘

¯

ď lim sup
NÑ8

˜

?
lnN ¨

ˆ

E
”

max
k“1,...,d

`

rAkmN ,mN
˘s
ı

˙1{s

¨ p1` εq ¨
`

δ
psηq
MN

` cps, εq ¨ lnmN ¨m
´αs̃
N

˘

¸

with αs̃ P p3{4, 1q.
Next, similar to Lemma 6.2.3 one proves that

lim
NÑ8

lnMN

lnN
“

1

d
. (6.3.13)

Moreover, due to similar arguments as employed in (6.2.22) we conclude that
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

E
”

max
k“1,...,d

`

A
k
mN ,mN

˘s
ı

˙1{s

´

ˆ

E
”

max
k“1,...,d

`

rAkmN ,mN

˘s
ı

˙1{s
ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝E

»

– max
k“1,...,d

˜

m´1
N ¨

mN´1
ÿ

i“0

ˇ

ˇ

ˇ

›

›bkpXptiqq
›

›

2
´
›

›bk,mN

`

rXE,pqq
mN ,mN

ptiq
˘›

›

2

ˇ

ˇ

ˇ

2
¸s{2

fi

fl

˛

‚

1{s

ď

¨

˝E

»

– max
k“1,...,d

˜

m´1
N ¨

mN´1
ÿ

i“0

›

›bkpXptiqq ´ bk,mN

`

rXE,pqq
mN ,mN

ptiq
˘›

›

2

2

¸s{2
fi

fl

˛

‚

1{s

“

¨

˝E

»

– max
k“1,...,d

˜

m´1
N ¨

mN´1
ÿ

i“0

r
ÿ

j“1

ˇ

ˇbk,j
`

Xptiq
˘

´ bk,j,mN

`

rXE,pqq
mN ,mN

ptiq
˘ˇ

ˇ

2

¸s{2
fi

fl

˛

‚

1{s

ď

¨

˝E

»

– max
k“1,...,d

˜

m´1
N ¨

mN´1
ÿ

i“0

r
ÿ

j“1

´

ˇ

ˇbk,j
`

Xptiq
˘

´ bk,j
`

rXE,pqq
mN ,mN

ptiq
˘ˇ

ˇ`m´1
N

¯2
¸s{2

fi

fl

˛

‚

1{s

ď c ¨

ˆ

E
„

´

max
l“0,...,mN

›

›Xptlq ´ rXE,pqq
mN ,mN

ptlq
›

›

8
`m´1

N

¯s
˙1{s

ď c ¨m
´1{2
N

(6.3.14)

139



6. Proofs of Chapter 5

for all N P N. Now, (Lim3) implies

lim
NÑ8

m
´1{2
N “ 0,

and hence we obtain

lim sup
NÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

E
”

max
k“1,...,d

`

A
k
mN ,mN

˘s
ı

˙1{s

´

ˆ

E
”

max
k“1,...,d

`

rAkmN ,mN

˘s
ı

˙1{s
ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

Furthermore, by arguing similarly to Step 3 in the proof of Lemma 6.2.4, we get

lim sup
NÑ8

ˆ

E
”

max
k“1,...,d

`

A
k
mN ,mN

˘s
ı

˙1{s

ď

ˆ

E
„

max
k“1,...,d

›

›

›

›

›bk
`

Xp¨q
˘
›

›

2

›

›

›

s

L2r0,1s

˙1{s

.

Thus, by the previous two detached formulas we have

lim sup
NÑ8

ˆ

E
”

max
k“1,...,d

`

rAkmN ,mN
˘s
ı

˙1{s

ď

ˆ

E
„

max
k“1,...,d

›

›

›

›

›bk
`

Xp¨q
˘
›

›

2

›

›

›

s

L2r0,1s

˙1{s

. (6.3.15)

In particular, note that the properties of b together with Theorem 3.2.3 guarantee

ˆ

E
„

max
k“1,...,d

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

s

L2r0,1s

˙1{s

ă 8.

Since we assumed that pSM qMPN is a strongly asymptotically optimal sequence of order sη of M -
quantizers SM : Cr0, 1s Ñ Cr0, 1s for a Brownian motion on r0, 1s, the same holds true for the sequence
pSMN

qNPN. Thus, by Theorem 2.3.11 (ii), by (6.3.13) as well as (6.3.15), and by (Lim3), we conclude
that

lim sup
NÑ8

˜

?
lnN ¨

ˆ

E
”

max
k“1,...,d

`

rAkmN ,mN
˘s
ı

˙1{s

¨ p1` εq ¨
`

δ
psηq
MN

` cps, εq ¨ lnmN ¨m
´αs̃
N

˘

¸

ď

ˆ

E
„

max
k“1,...,d

›

›

›

›

›bk
`

Xp¨q
˘
›

›

2

›

›

›

s

L2r0,1s

˙1{s

¨ p1` εq ¨

ˆ

lim sup
NÑ8

?
lnN ¨ δ

psηq
MN

˙

“

ˆ

E
„

max
k“1,...,d

›

›

›

›

›bk
`

Xp¨q
˘›

›

2

›

›

›

s

L2r0,1s

˙1{s

¨ p1` εq ¨

˜

lim
NÑ8

?
lnN

?
lnMN

¸

¨

ˆ

lim sup
NÑ8

a

lnMN ¨ δ
psηq
MN

˙

ď κ8 ¨ C
p8,sq ¨ p1` εq

where κ8 is the constant in Theorem 2.3.11 (ii), which finishes the proof.
The statement on the size of the range of rX

pq,εq
N directly follows from (5.3.15) and (5.3.16).

6.4. Quantization in Cpr0, 1s;Rdq: Proof of Theorem 5.4.1

We consider fixed parameters s, q P r1,8q with q ě mintrq P 2N | rq ě su. Recall that pSKqKPN is a
sequence of K-quantizers SK : Cr0, 1s Ñ Cr0, 1s for a Brownian motion on r0, 1s, and we put

δK :“ epsq
`

W,SKpW q, Cr0, 1s
˘

for K P N where W denotes a Brownian motion on r0, 1s.
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Moreover, recall that

rAkm,n “

˜

m´1 ¨

m´1
ÿ

i“0

›

›bk,m
`

rXE,pqq
m,n ptiq

˘›

›

2

2

¸1{2

and A
k
m,n “

˜

m´1 ¨

m´1
ÿ

i“0

›

›bk
`

Xptiq
˘›

›

2

2

¸1{2

for m,n P N and k “ 1, . . . , d.

6.4.1. Auxiliary Lemmas 8 and 9

In analogy to Lemma 6.3.3 we derive the following result.

Lemma 6.4.1
Let s̃ P p2,8q with s̃ ě s. Then there exists an αs̃ P p3{4, 1q such that, for all m P N3 and n,M P N,

epsq
`

X, rX
pqq
m,n,M , Cpr0, 1s;R

dq
˘

ď c ¨ lnm ¨
`

m´1 ` n´1
˘αs̃

`

˜

E

«

d
ÿ

k“1

`

rAkm,n ¨ δKk,M
˘s

ff¸1{s

` c ¨ n´1 ¨

˜

E

«

d
ÿ

k“1

`

rAkm,n
˘s

ff¸1{s

.

Proof:
Let m P N3, and let n,M P N. First, Lemma 6.3.1 and Hölder’s inequality guarantee the existence of an
αs̃ P p3{4, 1q such that

´

E
”

9X ´Xm 9ss
ı¯1{s

ď c ¨ lnm ¨
`

m´1 ` n´1
˘αs̃ . (6.4.1)

Secondly, for k “ 1, . . . , d let Uk1 as well as Uk2 be as in the proof of Lemma 6.3.3, and let Uk3 be given by

Uk3 “
rAkm,n ¨

´

B
pΓkq

´ ψ
pΓk,qq
m,n,KM,k

`

B
pΓkq˘

¯

,

where KM,k is the random variable in (5.4.3). Then we have

Xm ´ rX
pqq
m,n,M “ U1 ` U2 ` U3

where Ui “ pU1
i , . . . , U

d
i q
1 for i “ 1, 2, 3. Hence

´

E
”

9Xm ´ rX
pqq
m,n,M9ss

ı¯1{s
ď

3
ÿ

i“1

˜

E

«

d
ÿ

k“1

}Uki }
s
8

ff¸1{s

. (6.4.2)

Due to (??) and (6.3.10) in the proof of Lemma 6.3.3 it holds

max

$

&

%

˜

E

«

d
ÿ

k“1

}Uk1 }
s
8

ff¸1{s

,

˜

E

«

d
ÿ

k“1

}Uk2 }
s
8

ff¸1{s
,

.

-

ď c ¨ lnm ¨
`

m´1 ` n´1
˘αs̃ . (6.4.3)

Similar to Lemma 6.3.2 one proves that

´

E
”

›

›B
pγkq

´ ψ
pγk,qq
m,n,KpB

pγkq
q
›

›

s

8

ı¯1{s

ď δK ` c ¨ n
´1

for all k “ 1, . . . , d and K P N where γk P Rmˆr satisfies (5.3.3) as well as (5.3.4). Then similar to (6.3.12)
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we conclude that

E
”

}Uk3 }
s
8

ˇ

ˇ

ˇ
V
ı

ď
`

rAkm,n
˘s
¨
`

δKk,M ` c ¨ n
´1
˘s
, Pa.s.,

for all k “ 1, . . . , d where V is the random matrix in (6.3.11). Therefore,

˜

E

«

d
ÿ

k“1

}Uk3 }
s
8

ff¸1{s

ď

˜

E

«

d
ÿ

k“1

`

rAkm,n ¨ δKk,M
˘s

ff¸1{s

` c ¨ n´1 ¨

˜

E

«

d
ÿ

k“1

`

rAkm,n
˘s

ff¸1{s

. (6.4.4)

Now combining (6.4.1)--(6.4.4) finishes the proof.

For the remaining part of this subsection we consider a sequence pmN qNPN in N which satisfies (Lim1)
and (Lim3). Since to a great extend the proof of the following lemma highly resembles the proof of Lemma
6.2.4, we carry out only a sketch of the proof.

Recall that

Cp8,sq “

¨

˝E

»

–

˜

d
ÿ

k“1

›

› }bkpXp¨qq}2
›

›

2s{ps`2q

L2r0,1s

¸ps`2q{2
fi

fl

˛

‚

1{s

and

κ8,s “ lim sup
KÑ8

?
lnK ¨ epsq

`

W,SKpW q, Cr0, 1s
˘

where W denotes a Brownian motion on r0, 1s.

Lemma 6.4.2
It holds

lim sup
NÑ8

¨

˝

?
lnN ¨

˜

E

«

d
ÿ

k“1

`

rAkmN ,mN ¨ δKk,MN

˘s

ff¸1{s
˛

‚ď κ8,s ¨ C
p8,sq.

Proof:
We may assume κ8,s ă 8. Note that κ8,s ě κ8 ą 0 where κ8 is the constant in Theorem 2.3.11 (ii).
Moreover, for N P N we put

κ
psq
N,8 :“ max

k“1,...,d

a

lnKk,MN
¨ δKk,MN .

From now on, we write κN,8 instead of κpsqN,8. Note that κ8,s ă 8 implies

sup
NPN

κN,8 ď c.

Additionally, we abbreviate

s˚ “ 2s{ps` 2q.
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Now, analogous to (6.2.17), due to the choice of Kk,MN
, see (5.4.3), and the definition of µk, see (5.4.2),

we derive that

d
ÿ

k“1

`

rAkmN ,mN
˘s
¨
`

δKk,MN

˘s
ď

`

κN,8
˘s
¨
`

lnMN

˘´s{2
¨

d
ÿ

k“1

`

rAkmN ,mN
˘s
¨
`

µk
˘´s{2

ď
`

κN,8
˘s
¨
`

lnMN

˘´s{2
¨

d
ÿ

k“1

`

rAkmN ,mN
˘s
¨

¨

˚

˚

˚

˝

`

rAkmN ,mN
˘s˚

d
ř

i“1

`

rAimN ,mN
˘s˚

˛

‹

‹

‹

‚

´s{2

“
`

κN,8
˘s
¨
`

lnMN

˘´s{2
¨

˜

d
ÿ

k“1

`

rAkmN ,mN
˘s˚

¸s{s˚

,

and therefore

˜

E

«

d
ÿ

k“1

`

rAkmN ,mN ¨ δKk,MN

˘s

ff¸1{s

ď
`

lnMN

˘´1{2
¨

¨

˝E

»

–

`

κN,8
˘s
¨

˜

d
ÿ

k“1

`

rAkmN ,mN
˘s˚

¸s{s˚
fi

fl

˛

‚

1{s

(6.4.5)

for all N P N such that MN ě 2.
Similar to Step 2 in the proof of Lemma 6.2.4, one shows

lim supNÑ8 κN,8
κ8,s

ď 1. (6.4.6)

Moreover, since b is continuous and X has continuous paths, it holds

lim
NÑ8

˜

d
ÿ

k“1

`

A
k
mN ,mN

˘s˚
¸s{s˚

“

˜

d
ÿ

k“1

›

› }bkpXp¨qq}2
›

›

s˚

L2r0,1s

¸s{s˚

.

Now analogous to Step 3 in the proof of Lemma 6.2.4 one argues that all assumptions of Fatou’s lemma
are satisfied, which in turn, combined with (6.4.6), then leads to

lim sup
NÑ8

E

»

–

`

κN,8
˘s
¨

˜

d
ÿ

k“1

`

A
k
mN ,mN

˘s˚
¸s{s˚

fi

fl ď
`

κ8,s ¨ C
p8,sq

˘s
. (6.4.7)

As a next step, by employing arguments similar to those employed in Step 4 in the proof of Lemma
6.2.4, as well as by carrying out an analysis analogous to the one in (6.3.14), we conclude that, dependent
on s, there exists an α P p0,8q such that

lim
NÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝E

»

–

`

κN,8
˘s
¨

˜

d
ÿ

k“1

`

A
k
mN ,mN

˘s˚
¸s{s˚

fi

fl

˛

‚

α

´

¨

˝E

»

–

`

κN,8
˘s
¨

˜

d
ÿ

k“1

`

rAkmN ,mN

˘s˚
¸s{s˚

fi

fl

˛

‚

αˇ
ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.
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Consequently, together with (6.4.7), we obtain

lim sup
NÑ8

¨

˝E

»

–

`

κN,8
˘s
¨

˜

d
ÿ

k“1

`

rAkmN ,mN
˘s˚

¸s{s˚
fi

fl

˛

‚

1{s

ď lim sup
NÑ8

¨

˝E

»

–

`

κN,8
˘s
¨

˜

d
ÿ

k“1

`

A
k
mN ,mN

˘s˚
¸s{s˚

fi

fl

˛

‚

1{s

ď κ8,s ¨ C
p8,sq.

(6.4.8)

As in Lemma 6.2.3 one shows

lim
NÑ8

lnMN

lnN
“ 1. (6.4.9)

Now by combining (6.4.5)--(6.4.9) we end up with

lim sup
NÑ8

¨

˝

?
lnN ¨

˜

E

«

d
ÿ

k“1

`

rAkmN ,mN ¨ δKk,MN

˘s

ff¸1{s
˛

‚ď κ8,s ¨ C
p8,sq.

6.4.2. Proof of Theorem 5.4.1

We prove Theorem 5.4.1 by employing the Lemmas 6.4.1 and 6.4.2.

Proof of Theorem 5.4.1:
Similar to the proof of Theorem 5.3.4, and by Lemma 6.4.1 as well as (Lim3), we obtain

lim sup
NÑ8

´?
lnN ¨ epsq

`

X, rX
pqq
N , Cpr0, 1s;Rdq

˘

¯

ď lim sup
NÑ8

¨

˝

?
lnN ¨

˜

E

«

d
ÿ

k“1

`

rAkmN ,mN
¨ δKk,MN

˘s

ff¸1{s
˛

‚.

Now Lemma 6.4.2 leads to

lim sup
NÑ8

¨

˝

?
lnN ¨

˜

E

«

d
ÿ

k“1

`

rAkmN ,mN ¨ δKk,MN

˘s

ff¸1{s
˛

‚ď κ8,s ¨ C
p8,sq.

The statement on the size of the range of rX
pqq
N directly follows from (5.4.4) and (5.4.5).
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7 | Final Remarks and Open Problems

We close this thesis by summarizing our main results and by presenting a selection of open problems.

Ad Chapter 2

In section 2.3.1 we applied a quantization procedure for such real-valued random variables which have
finite moments of any order, see [DV11] and [MGRY15], for quantization of Z “

´ 1
0 W1psq dW2psq where

pW1,W2q is a two-dimensional Brownian motion. By the construction of the mappings T pγqN , N P N, see
(2.3.8), we know the support points of the quantization rZ

pγq
N :“ T

pγq
N pZq for all N P N. But so far the

construction has only been of a semi-constructive type since, to us, the distribution PZ is unknown, see
also Remark 2.3.8. Hence, to us the determination (or at least approximation) of PZ remains an open
problem, which leads to the following question:

Question 1: How to compute (or at least) approximate the probability weights corresponding to the
support points of the quantizations rZ

pγq
N for N P N?

Ad Chapter 4

In Chapter 4 we derived new results on the sharp asymptotics of the Nth minimal quantization error
of one-dimensional Itô processes, see Theorem 4.1.2. Subsequently we applied the results obtained in
the aforementioned theorem to derive the sharp asymptotics of the Nth minimal quantization error of
solutions of such one-dimensional SDEs which are driven by a multidimensional Brownian motion, see
Proposition 4.2.1. In case that the dimension r of the driving Brownian motion of the SDE (4.2.1) satisfies
r ě 2, Proposition 4.2.1 generalizes the results on the sharp asymptotics of the Nth minimal quantization
error of solutions of one-dimensional SDEs driven by a one-dimensional Brownian motion presented in
[Der08a, Theorem 1.1.] and [Der08b, Theorem 1.1.]. We closed the chapter by providing a lower bound
for the Nth minimal quantization error w.r.t. N -uniform-product-quantizations of multidimensional Itô
processes in the space pCpr0, 1s;Rdq, } ¨ }8q, see Theorem 4.3.2.

Although the main results of this section, namely Theorem 4.1.2 and Theorem 4.3.2, basically served
as auxiliary results to derive Theorem 5.2.6, Proposition 5.3.5, and Theorem 5.4.2, they give rise to the
following research question:

Question 2: The results in Theorem 4.1.2 yield the sharp rate of convergence of plnNq´1{2 of the Nth
minimal quantization error of multidimensional Itô processes in the spaces pLdpr0, 1s, } ¨ }Ldpr0,1sq,
p P r1,8q and pCpr0, 1s;Rdq, } ¨ }8q. What are the corresponding sharp asymptotic constants?

145



7. Final Remarks and Open Problems

Ad Chapter 5

In Chapter 5 we presented a semi-constructive method which led to sequences of (strongly) asymptotically
optimal quantizations of the solution X of the SDE (3.1.1) in the spaces pLdpr0, 1s, } ¨ }Ldpr0,1sq, p P r1,8q,
pCpr0, 1s;Rdq,9 ¨ 9sq, s P r1,8q, and pCpr0, 1s;Rdq, } ¨ }8q. Together with the results obtained in Chapter
4 we were able to derive the sharp asymptotics of the Nth minimal quantization error w.r.t. general
N -product-quantizations in the spaces pLdpr0, 1s, } ¨ }Ldpr0,1sq and pCpr0, 1s;R

dq,9 ¨9sq as well as of the Nth
minimal quantization error w.r.t. N -uniform-product-quantizations in the space pCpr0, 1s;Rdq, } ¨ }8q.
Considering that the following further research question arises:

Question 3: As mentioned in the Introduction, the sharp rate of convergence of plnNq´1{2 of the Nth
minimal quantization error of solutions of multidimensional SDEs in the spaces pLdpr0, 1s, } ¨ }Ldpr0,1sq,
p P r1,8q and pCpr0, 1s;Rdq, } ¨ }8q is already known. What are the corresponding sharp asymptotic
constants?

Moreover, the fact that our method is semi-constructive leads to the following open problems:

Question 4: To be able to compute the probability weights corresponding to the Milstein quantization
of X we need to know the joint distribution of the random variables Y j

1 ,j “ 1, . . . , r, and I1
pj1,j2q

,
j1, j2 “ 1, . . . , r with j1 ă j2. How to determine (or at least approximate) this distribution?

Question 5: How to compute the probability weights corresponding to the overall quantizations of X
constructed in the Sections 5.2.2, 5.3.2, and 5.4.2?

As there can be all kind of interdependencies between the components of X, we conjecture that one
can hardly find a general answer to Question 5.
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A | Selected Inequalities

Gronwall’s Lemma

Lemma A.1
Let α, β P R with β ě 0, let T P p0,8q, and let f : r0, T s Ñ r0,8q be a bounded Borel measurable function
such that

fptq ď α` β ¨

ˆ t

0
fpsq ds

for all t P r0, T s. Then,

sup
tPr0,T s

fptq ď α ¨ exppβ ¨ T q.

Proof:
See, for example, [RY99, Appendix, §1] or [Kuo06, Lemma 10.2.2.].

The following corollary contains a discrete version of Gronwall’s lemma.

Corollary A.2
Let α, β P r0,8q, let m P N, and let T P p0,8q. Moreover, let f0, . . . , fm and ∆0, . . . ,∆m´1 be non-
negative real numbers such that

m´1
ÿ

l“0

∆l “ T

and

fl`1 ď α ¨∆l ` fl ¨
`

1` β ¨∆l

˘

for all l “ 0, . . . ,m´ 1. Then,

max
l“0,...,m

fl ď pf0 ` α ¨ T q ¨ exppβ ¨ T q.

Proof:
The proof is carried out analogously to the proof of Corollary 1 in [MG02b, Appendix, §1].
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A. Selected Inequalities

Minkowski’s Integral Inequality

The following result is a special case of Minkowski’s integral inequality.

Proposition A.3
Let T P r0,8q, let q P r1,8q, let pΩ,A, P q be a probability space, and let Y : r0, T s ˆ Ω Ñ r0,8q be a
Bpr0, T sq bA-Bpr0,8qq-measurable stochastic process. Then,

˜

E

«

ˇ

ˇ

ˇ

ˇ

ˆ T

0
Y psq ds

ˇ

ˇ

ˇ

ˇ

q
ff¸1{q

ď

ˆ T

0

´

E
“

|Y psq|q
‰

¯1{q
ds.

Proof:
See, for example, [HLP52, Theorem 202] or [Ste70, Appendix, §A.1].
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B | Properties of Conditional Expected
Values

As a reference for the presented statements and their proofs one might use [GS77, Chapter 5] or [Kle14,
Chapter 8].

Part I

First, we collect basic properties of conditional expected values, which are employed in this thesis. All
(in)equalities concerning conditional expected values are understood to hold almost surely.

Let pΩ,A, P q be a probability space, and let X,Y : Ω Ñ R be A-BpRq-measurable with

max
 

E r|X|s ,E r|Y |s
(

ă 8.

Proposition B.1
Let G Ď A be a σ-algebra.

a) For all λ P R it holds E rλ ¨X ` Y | Gs “ λ ¨ E rX | Gs ` E rY | Gs. (Linearity)

b) If Y ď X P -a.s., then E rY | Gs ď E rX | Gs. (Monotonicity)

c) If E r|X ¨ Y |s ă 8 and Y is G-BpRq-measurable, then

E rX ¨ Y | Gs “ Y ¨ E rX | Gs and E rY | Gs “ Y.

d) If σpXq and G are independent, then E rX | Gs “ E rXs. (Independence)

Part II

Secondly, we employ the following fact on conditional expected values at several places within this thesis.

Let pΩ,A, P q be a probability space, let pD,Dq, pE, Eq be measurable spaces, let X : Ω Ñ D be A-D-
measurable, and let Y : Ω Ñ E be A-E-measurable.
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B. Properties of Conditional Expected Values

Proposition B.2
Assume that X and Y are independent, and let T : DˆE Ñ R be a DbE-BpRq-measurable mapping with

E
“

|T pX,Y q|
‰

ă 8.

Then, for PX-a.a. x P D,

E rT pX,Y q | X “ xs “ E rT px, Y qs .
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C | Further Auxiliary Statements

Part I

In this section we provide auxiliary statements which are employed in Chapter 2.

Lemma C.1
Let X,Y,Xn, Yn, n P N, be real-valued random variables such that

(i) Xn
L
Ñ X,

(ii) Yn
L
Ñ Y , and

(iii) for all n P N it holds Xn
L
“ Yn.

Then, X L
“ Y .

Proof:
We show that FXptq “ FY ptq for all t P R. For Z P tX,Y u we put

CpFZq :“ tt P R | FZ is continuous in tu .

First, let t P CpFXq X CpFY q. Then by (i)--(iii) we have

FXptq “ lim
nÑ8

FXnptq “ lim
nÑ8

FYnptq “ FY ptq. (C.1)

Secondly, let t P
`

CpFXq X CpFY q
˘C . It is well known that

`

CpFXq
˘C and

`

CpFY q
˘C are countable. Thus,

`

CpFXq X CpFY q
˘C is countable, and hence CpFXq X CpFY q is dense in R. Consequently, there exists a

sequence ptnqnPN in CpFXqXCpFY q with tn Ó t. Together with the right-continuity property of distribution
functions and (C.1) we arrive at

FXptq “ FX
`

lim
nÑ8

tn
˘

“ lim
nÑ8

FXptnq “ lim
nÑ8

FY ptnq “ FY
`

lim
nÑ8

tn
˘

“ FY ptq,

which finishes the proof.

The next result is sometimes also referred to as Kac’s theorem. As a reference one might use, for example,
[App05, Theorem 2.1].

Notation
Let d P N, and let Z be an Rd-valued random vector. By ϕZ we denote the characteristic function of Z,
which is given by ϕZptq “ E

“

exp
`

i ¨ xt, Zy
˘‰

for t P Rd where x¨, ¨y denotes the standard scalar product
on Rd.
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C. Further Auxiliary Statements

Proposition C.2
Let d P N, and let X1, . . . , Xd be real-valued random variables. Then the following statements are equiva-
lent:

(i) The random variables X1, . . . , Xd are independent.

(ii) For all px1, . . . , xdq1 P Rd it holds

ϕpX1,...,Xdqpx
1, . . . , xdq “

d
ź

i“1

ϕXipxiq.

Part II

In this section we provide an auxiliary statement which is employed in the proof of Theorem 4.3.2.
More precisely, we present a multivariate extension of the well-known theorems of Dambis, Dubins and
Schwarz, see [Dam65] and [DS65].

Throughout this section let d P N, and we use pΩ,A, P q to denote a probability space equipped with a
filtration F “ tFtutPr0,8q which satisfies the usual conditions.

The following result is often referred to as Knight’s theorem. As a reference one might use, for example,
[KS88, Theorem 3.4.13].

Proposition C.3 (F. B. Knight (1971))
Let M “ pMptqqtPr0,8q “ pM

1ptq, . . . ,Mdptqq1tPr0,8q be a continuous stochastic process defined on pΩ,A, P q
such that

i) M is adapted to F ,

ii) for every k “ 1, . . . , d the process pMkptqqtPr0,8q is a local F-martingale,

iii) for every k “ 1, . . . , d it holds limtÑ8xM
kyptq “ 8 P -a.s. where xMky denotes the quadratic

variation process of Mk, and

iv) for every i, k P t1, . . . , du with i ‰ k and every t P r0,8q it holds xM i,Mkyptq “ 0 where xM i,Mky

denotes the cross-variation process of M i and Mk.

Furthermore, for s P r0,8q and k “ 1, . . . , d consider the stopping time

T kpsq :“ inf
 

t P r0,8q
ˇ

ˇ xMkyptq ě s
(

.

Then the stochastic process B “ pBpsqqsPr0,8q “ pB
1psq, . . . , Bdpsqq1sPr0,8q with B

kpsq :“ MkpT kpsqq for
s P r0,8q and k “ 1, . . . , d is a d-dimensional Brownian motion.

Part III

In this section we assume the setting in Chapter 5, and we provide two auxiliary results which are em-
ployed in the proofs of the main results of Chapter 5.
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For m P N let 0 “ t0 ă ¨ ¨ ¨ ă tm “ 1 be the discretization of r0, 1s as defined in (5.0.1), and recall that
the independent Brownian bridges Bj

l considered in Chapter 5 are given by

Bj
l ptq “Wjptq ´Wjptl´1q ´ pt´ tl´1q ¨m ¨

`

Wjptlq ´Wjptl´1q
˘

for t P rtl´1, tls, l “ 1, . . . ,m and j “ 1, . . . , r.

The following auxiliary result will be used in the proof of Lemma C.5.

Lemma C.4
Let pB, } ¨ }Bq be a Banach space, and let X be a B-valued Gaussian random element. Then for all
p, q P p0,8q there exists a constant cpp, qq P p0,8q depending only on p and q such that

`

E
“

}X}pB
‰˘1{p

ď cpp, qq ¨
`

E
“

}X}qB
‰˘1{q

.

Proof:
For a proof we refer the reader to [LT91, Corollary 3.2.].

Lemma C.5
Let q P r1,8q, and let j P t1, . . . , ru. Then there exists a constant c P p0,8q such that, for all m P N2,

˜

E
”

max
l“1,...,m

sup
tPrtl´1,tls

|Bj
l ptq|

q
ı

¸1{q

ď c ¨

ˆ

lnm

m

˙1{2

.

Proof:
Let m P N2. Throughout the proof c denotes a not further specified positive real constant which may
vary from line to line and which does not depend on m.

The definition of the processes Bj
l leads to

˜

E
”

max
l“1,...,m

sup
tPrtl´1,tls

|Bj
l ptq|

q
ı

¸1{q

ď

˜

E
”

max
l“1,...,m

sup
tPrtl´1,tls

|Wjptq ´Wjptl´1q|
q
ı

¸1{q

`

ˆ

E
”

max
l“1,...,m

|Wjptlq ´Wjptl´1q|
q
ı

˙1{q

.

First, we further estimate the second summand in the above inequality. Recall that Y j
1 , . . . , Y

j
m are

independent standard normally distributed random variables where Y j
l “ m1{2 ¨Wjptlq ´Wjptl´1q for

l “ 1, . . . ,m. By Lemma C.4 and [LT91, Formula (3.6)], we obtain

ˆ

E
”

max
l“1,...,m

|Wjptlq ´Wjptl´1q|
q
ı

˙1{q

“ m´1{2 ¨

ˆ

E
”

max
l“1,...,m

|Y j
l |
q
ı

˙1{q

ď c ¨m´1{2 ¨ E
”

max
l“1,...,m

|Y j
l |

ı

ď c ¨

ˆ

lnm

m

˙1{2

.

Secondly, the processes pWjptq ´Wjptl´1qqtPrtl´1,tls, l “ 1, . . . ,m, are independent Brownian motions
on the respective subintervals rtl´1, tls. Then, by the scaling properties of Brownian motions and by
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C. Further Auxiliary Statements

Lemma C.4, we obtain
˜

E
”

max
l“1,...,m

sup
tPrtl´1,tls

|Wjptq ´Wjptl´1q|
q
ı

¸1{q

“ m´1{2 ¨

ˆ

E
”

max
l“1,...,m

}Wl}
q
8

ı

˙1{q

ď c ¨m´1{2 ¨ E
”

max
l“1,...,m

}Wl}8

ı

(C.2)

where W1, . . . ,Wm denote independent Brownian motions on r0, 1s. Moreover, similar to [LT91, Formula
(3.6)] and by utilizing [LT91, Lemma 3.1.], one derives that

E
”

max
l“1,...,m

}Wl}8

ı

ď c ¨
`

lnm
˘1{2

, (C.3)

which finishes the proof.

For the next auxiliary lemma recall that

|f |α “ sup
0ďsătď1

|fptq ´ fpsq|

|t´ s|α

for f : r0, 1s Ñ R and α P p0, 1{2q, and recall that X “ pX1, . . . , Xdq1 is the strong solution of the SDE
(3.1.1).

Lemma C.6
Let k P t1, . . . , du. Then, for all q P r1,8q and α P p0, 1{2q, it holds

E
“

|Xk|qα

‰

ă 8.

Proof:
Let q P r1,8q, and let α P p0, 1{2q. Throughout this proof c denotes a not further specified positive
real constant which may be different at every occurrence and which might only depend on the moment
parameter q, on α, and on the constant in (C2).

Recall that P -a.s.

Xkptq “ xk0 `

ˆ t

0
ak
`

Xpsq
˘

ds`
r
ÿ

j“1

ˆ t

0
bk,j

`

Xpsq
˘

dWjpsq

for all t P r0, 1s. We put

Aptq :“ xk0 `

ˆ t

0
ak
`

Xpsq
˘

ds and Mjptq :“

ˆ t

0
bk,j

`

Xpsq
˘

dWjpsq, j “ 1, . . . , r,

for t P r0, 1s. Then by the triangle inequality we have

`

E
“

|Xk|qα

‰˘1{q
ď

`

E
“

|A|qα
‰˘1{q

`

r
ÿ

j“1

`

E
“

|Mj |
q
α

‰˘1{q
. (C.2)
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Moreover, due to the fact that a is of at most linear growth, and due to Theorem 3.2.3, we obtain

`

E
“

|A|qα
‰˘1{q

“

ˆ

E
„ˆ

sup
0ďsătď1

|Aptq ´Apsq|

|t´ s|α

˙q˙1{q

ď

ˆ

E
„ˆ

sup
0ďsătď1

|Aptq ´Apsq|

|t´ s|

˙q˙1{q

“

¨

˝E

»

–

¨

˝ sup
0ďsătď1

ˇ

ˇ

ˇ

´ t
s akpXpuqq du

ˇ

ˇ

ˇ

|t´ s|

˛

‚

qfi

fl

˛

‚

1{q

ď

˜

E

«˜

sup
0ďsătď1

`

supuPr0,1s |akpXpuqq|
˘

¨ |t´ s|

|t´ s|

¸qff¸1{q

“

˜

E
”

sup
uPr0,1s

ˇ

ˇak
`

Xpuq
˘ˇ

ˇ

q
ı

¸1{q

ď c ¨
´

1` E
“

}X}q8
‰

¯1{q

ă 8.

(C.3)

Furthermore, the properties of b, Fubini’s theorem and Theorem 3.2.3 yield

E
„ˆ 1

0

`

bk,j
`

Xpuq
˘˘2

du



ď c ¨
`

1` E
“

}X}28
‰ ˘

ă 8.

Additionally, the processes
`

bk,jpXpuqq
˘

uPr0,1s
, j “ 1, . . . , r, are measurable and adapted to F , where

F is the filtration constructed in Section 3.1.1. Hence for all j “ 1, . . . , r the process Mj satisfies the
assumptions of Theorem 3.1. in [Der08b], which combined with the properties of b, Fubini’s theorem, and
Theorem 3.2.3 then yields that for every κ P

`

maxtq, 2{p1´ 2αqu,8
˘

we have

`

E
“

|Mj |
q
α

‰˘1{q
ď

`

E
“

|Mj |
κ
α

‰˘1{κ
ď c ¨

ˆˆ 1

0
E
“ˇ

ˇbk,j
`

Xpuq
˘ˇ

ˇ

κ‰
du

˙1{κ

ď c ¨
´

1`
`

E
“

}X}κ8
‰˘1{κ

¯

ă 8.

(C.4)

Now combining (C.2)--(C.4) finishes the proof.
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Notation Index

N natural numbers without 0

Z integers

Nz non-negative integers greater or equal than z P Z

R real numbers

Sets

H empty set

Ac the complement of a set A

|A| the cardinality of a set A

Real Numbers

txu the largest integer z ď x

rxs the smallest integer z ě x

|x| the absolute value of x

x^ y the minimum of x and y

x¨, ¨y the standard scalar product on Rd

an “ o pbnq small O-notation for real sequences panqnPN and pbnqnPN, i.e.,
limnÑ8 an{bn “ 0 if bn ‰ 0 for all n ě N for an N P N

Vectors and Matrices

}v}p the `p-norm of a vector v P Rd for p P r1,8q
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C. Further Auxiliary Statements

}v}8 the max-norm of a vector v P Rd

Vi the ith row of a Matrix V “ pvi,jq

V pjq the jth column of a Matrix V “ pvi,jq

}V }p the p-norm of a Matrix V “ pvi,jq for p P r1,8q

Mappings and Functional Analysis

ran pT q the image set of a mapping T : AÑ B

Bg

Bxk
the partial derivative of a partially differentiable function g : Rd Ñ R w.r.t.
to the kth variable for k “ 1, . . . , d

∇f the Jacobian matrix of a partially differentiable function f : Rd Ñ Rd

LpD,Eq the space of continuous linear operators T : D Ñ E between normed vector
spaces pD, } ¨ }Dq and pE, } ¨ }Eq

} ¨ }op operator norm

D1 the dual space of a normed vector space pD, } ¨ }Dq

D2 the bidual space of a normed vector space pD, } ¨ }Dq

Function Spaces

Cpra, bs;Rdq the space of continuous functions f : ra, bs Ñ Rd

Cra, bs shorter notation for Cpra, bs;Rq

} ¨ }8 the supremum norm

}f}Lppra,bs;Rdq the Lppra, bs;Rdq-(quasi-)norm of a function f : ra, bs Ñ Rd, see p. 8

}f}Ldpra,bs, }f}Lpra,bs shorter notation for }f}Lppra,bs;Rdq and }f}Lppra,bs;Rq

Lppra, bs,Rdq the space of all (equivalence classes) of functions f : ra, bs Ñ Rd with finite
Lppra, bs;Rdq-norm

Ldpra, bs, Lpra, bs shorter notation for Lppra, bs,Rdq and Lppra, bs,Rq

Cαpra, bs;Rdq space of α-Hölder continuous functions f : ra, bs Ñ Rd for α P p0, 1s

}f}α,a,b norm on space Cαpra, bs;Rdq, see p. 8
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Probability and Measure

BpDq the Borel σ-algebra on a normed vector space pD, } ¨ }Dq

λd d-dimensional Lebesgue measure

random variable term used to refer to a A-BpRq-measurable mapping X : Ω Ñ R where
pΩ,A, P q is a probability space

random vector term used to refer to a A-BpRdq-measurable mapping X : Ω Ñ Rd where
pΩ,A, P q is a probability space

random matrix term used to refer to a A-BpRdˆmq-measurable mapping X : Ω Ñ Rdˆm

where pΩ,A, P q is a probability space

random element term used to refer to a A-BpBq-measurable mapping X : Ω Ñ B where
pΩ,A, P q is a probability space and pB, } ¨ }Bq is a Banach space

PX distribution (law) of a random element X

ErXs expected value of a random element X

ErX | σpY qs, ErX | Y s conditional expected value of the random variable X given the σ-algebra
σpY q generated by the random element Y

CovrX,Y s covariance of two random variables X and Y

Npµ, σ2q the normal distribution with mean µ and variance σ2

Np0, 1q the standard normal distribution

FX the distribution function of a random variable X

X
L
“ Y equal in law

Xn
L
Ñ X convergence in law for random elements X and Xn, n P N

Xn
Lp
Ñ X Lp-convergence, p P r1,8q, i.e., limnÑ8 E

“
ˇ

ˇX ´Xn

ˇ

ˇ

p‰
“ 0, for random vari-

ables X and Xn, n P N

ϕX the characteristic function of a random vector X

Quantization

epsqpZ, rZ,Bq the quantization error of order s of a B-valued random element Z corre-
sponding to the quantization rZ

p. 12

e
psq
N pZ,Bq the Nth minimal quantization error of order s of a B-valued random ele-

ment Z
p. 12
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C. Further Auxiliary Statements

C
psq
N pX,Bq the set of all N -optimal quantizations of order s of a B-valued random

element Z
p. 12

Abbreviations

a.a. almost all

a.e. almost everywhere

a.s. almost surely

corresp. corresponding (to)

w.r.t. with respect to

SDE stochastic differential equation

ODE ordinary differential equation
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