
© 2018 Copyright held by the authors. This is the author’s version of the work. The final version is published in the proceedings of the 2nd Workshop on
Scalable and Resilient Infrastructures for Distributed Ledgers (SERIAL’18). DOI https://doi.org/10.1145/3284764.3284767. Publication rights licensed to ACM.

Scaling Byzantine Consensus: A Broad Analysis
Christian Berger
University of Passau
Passau, Germany

cb@sec.uni-passau.de

Hans P. Reiser
University of Passau
Passau, Germany

hr@sec.uni-passau.de

ABSTRACT
Blockchains and distributed ledger technology (DLT) that rely on
Proof-of-Work (PoW) typically show limited performance. Several
recent approaches incorporate Byzantine fault-tolerant (BFT) con-
sensus protocols in their DLT design as Byzantine consensus allows
for increased performance and energy efficiency, as well as it offers
proven liveness and safety properties. While there has been a broad
variety of research on BFT consensus protocols over the last decades,
those protocols were originally not intended to scale for a large
number of nodes. Thus, the quest for scalable BFT consensus was
initiated with the emerging research interest in DLT. In this paper,
we first provide a broad analysis of various optimization techniques
and approaches used in recent protocols to scale Byzantine consen-
sus for large environments such as BFT blockchain infrastructures.
We then present an overview of both efforts and assumptions made
by existing protocols and compare their solutions.

CCS CONCEPTS
• General and reference → Surveys and overviews; • Com-
puting methodologies → Distributed algorithms; • Computer
systems organization→ Fault-tolerant network topologies;

KEYWORDS
Scalability, Byzantine Fault Tolerance, Consensus, Blockchain, Dis-
tributed Ledger Technologies

ACM Reference Format:
Christian Berger and Hans P. Reiser. 2018. Scaling Byzantine Consensus: A
Broad Analysis. In 2nd Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers (SERIAL’18), December 10–14, 2018, Rennes, France.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3284764.3284767

1 INTRODUCTION
In the past years, distributed ledger technology (DLT) has gained
a tremendous growth in popularity. Originally, the Bitcoin [26]
blockchain and its Proof-of-Work (PoW) mechanism were invented
with the ambition to create the foundation of a secure and decen-
tralized financial accounting system of confirming transactions
in a peer-to-peer fashion and more use cases have followed since
then. DLT infrastructures share the need to achieve an agreement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SERIAL’18, December 10–14, 2018, Rennes, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6110-1/18/12. . . $15.00
https://doi.org/10.1145/3284764.3284767

about which block they append to the ledger. For this purpose, they
employ a mechanism that ideally should work even in a large-scale
and widely spread environment like the Internet. Proof-of-Work
is very successful in providing open membership by securing the
network against Sybil attacks [12] as it couples participation – to
be more concrete the probability of the node to decide the next
block – to resource consumption, making it very expensive for any
attacker to harm the infrastructure. Also, PoW scales well for a
huge number of nodes. However, the PoW scheme has inherent
flaws, to be precise PoW (i) amounts for a vast waste of energy and
resources (ii) typically performs very poorly in terms of latency
and throughput and (iii) does not guarantee consensus finality [32],
meaning a decided block is still possibly subject to future change.

In order to circumvent the inherent drawbacks of the PoWmech-
anism, Byzantine fault-tolerant (BFT) consensus – used in well
understood protocols like PBFT [10] – can be employed as an alter-
native for ordering transactions in DLTs [4]. BFT algorithms can
be used as a variant of Proof-of-Stake [7], in which nodes can be
randomly assigned the right to propose blocks and the agreement
about which block is being appended to the blockchain is canonical
among all nodes [7] thus guaranteeing consensus finality.

Furthermore, the weak spots of PoW are exactly the strong points
of traditional BFT consensus protocols as they (i) work energy ef-
ficiently (ii) can achieve high performance in the range of tens of
thousands transactions per second with a latency of only some
seconds (or even less) and (iii) provide proven liveness and safety
properties. On the downside, traditional BFT protocols lack PoW’s
support for open membership and scalability for a large number of
up to thousands of nodes. We can argue that there is quite justifi-
cation for the existence of permissioned blockchains or DLTs may
explore other methods to ensure membership, however scalability
remains a big challenge for large blockchain infrastructures.

1.1 Related Work and Contribution
A few systematization of knowledge papers have analyzed block-
chain protocols: A 2015 comparison between existing PoW and BFT
based blockchain protocols investigates on overcoming scalability
limits [32] and a perspective that analyzes design spaces for increas-
ing performance of PoW blockchains has been presented [11]. Also,
a systematic and comprehensive study of consensus in blockchain
protocols [2] evaluates performance, security and design properties,
also addressing the scalability aspect. In this paper, we present a
detailed survey that focuses on techniques recent approaches in-
corporate to improve scalability. Thus, this paper summarizes con-
temporary research and provides a systematic analysis of ongoing
efforts. In Section 2, we identify and categorize various techniques
for scaling Byzantine consensus. Subsequently, in Section 3, we
compare recent BFT blockchain protocols in terms of their assump-
tions and goals. Finally, Section 4 concludes our work.

https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767

SERIAL’18, December 10–14, 2018, Rennes, France Christian Berger and Hans P. Reiser

2 SCALING BYZANTINE CONSENSUS
Scaling Byzantine consensus is an ongoing effort that requires
exploration, advancement and combination of several methods
and approaches. We identified the following questions targeted to
increase the scalability (and efficiency) of Byzantine consensus:

• Who needs to communicate? Does the entire consortium
actively take part in achieving agreement or does a (or mul-
tiple) flexibly selected representative committee(s) decide?

• How does the communication flow? Increasing the efficiency
of communication might require a suitable communication
topology e.g. hierarchical or overlay / gossip-based.

• How can transactions be ordered and committed in parallel?
• Which new ways can be paved by employing suitable cryp-
tographic primitives?

• How can we move mission-critical steps of consensus to-
wards hardware using trusted hardware components?

Our categorization of the ongoing efforts is shown in Figure 1.

2.1 Communication Topology
Improving the efficiency of the communication flowmeans avoiding
the emergence of bottlenecks and thus to distribute the commu-
nication load as evenly as possible. To serve as an example, the
well-known PBFT protocol does not scale well because of its all-to-
all broadcast phases and the high burden that it puts on the leader
who needs to propose messages of large size to all nodes.

Flat Communication. A first and naive step to reduce the communi-
cation complexity e.g. of a PBFT-like protocol is to let the leader
collect and distribute messages [16, 33] which requires the use of
signatures instead of message authentication codes. By abstain-
ing from all-to-all direct communication, the number of messages
in the network decreases from O(n2) to O(n). However, this still
imposes a huge burden on the leader, making him the bottleneck
as he still has to communicate directly with all other nodes and
verify the signatures of their messages. A subsequent step is thus
to efficiently aggregate multiple signatures into a single one, which
we will discuss in Section 2.2.

Tree Communication. A speculative optimization technique is to re-
arrange the communication flow in a balanced tree where the leader
is at the root position, non-leaf nodes forward messages to their
children top-down and leaf nodes initiate a reply phase bottom-up
ideally with the leader obtaining the collection of all replies. This
strategy is adopted by ByzCoin [16] which employs such a com-
munication tree in combination with collective signatures [31] (see
Section 2.2). Scalability arises especially because every node only
receives the aggregated O(1)-size rather than O(n)-size message
and needs only O(1) rather than O(n) computation effort by verify-
ing only the collective signature instead of n individual signatures
in the commit phase1 [16]. However, this approach alone can not
guarantee liveness, as an adversary might have malicious nodes
at the higher positions in the tree, thus cutting of (subtrees of)
correct nodes and breaks the liveness property with less than f
malicious nodes. ByzCoin circumvents this issue by making the
leader capable of detecting such an attack and providing a costly,
1Nodes need to verify that a super majority, typically 2f + 1, signed the prepare phase.
We provide more details of the CoSi cryptographic primitive in section 2.2.1.

Scalability

Parallelization of
Transactions

Communication
Topology

Cryptographic
Primitives

Representative
Committees

Trusted Hardware
Components

Figure 1: The different directions of approaches for scaling
Byzantine consensus.

less-efficient fall-back mechanism to a flat communication scheme
in which he becomes the bottleneck.

Overlay Networks and Gossip. Since leader-based BFT consensus
protocols tend to suffer from the high communication burden of
broadcasts, for instance when the leader proposes a block of ordered
transactions to all other nodes, an interesting approach insists on
relieving the communication efforts of the leader by disseminating
messages using gossip over an application layer overlay network
– an idea recently incorporated by Algorand [13] or Gosig [19].
While the leader initiates the sending of a propose messagem to k
other, randomly chosen nodes, at every hop a node that receivesm
will forward it to randomly chosen k of its connected neighbors,
hence spreadingm like a rumor with high reliability in the network.
The propagation speed depends on the fanout parameter k and the
overall communications burden is moved away from the leader to a
more fairly distribution with nodes communicating only with their
O(1) neighbors, thus improving scalability. However, since gossip
is a technique that makes use of randomness, protocols that rely
on it tend to provide probabilistic guarantees.

Leader-less Communication. Another approach to avoid the leader
bottleneck is introduced by Snowflake to Avalanche a novel, leader-
less consensus protocol family [27]. Avalanche’s core idea relies in
a metastable mechanism which is inspired by gossip algorithms: In
the protocol, each node queries k randomly chosen other nodes in a
loop while adopting to the value that is being replied by an adjusted
majority of nodes so that eventually, correct nodes are being guided
towards the same consensus value. In this probabilistic approach,
nodes will – even in a large network – quickly converge to an irre-
versible state, but without guarantee. Note, that also deterministic
leader-free BFT consensus protocols exist [5].

Federated Byzantine Agreement. While in traditional BFT protocols
like PBFT [10] consensus is defined by the assumption of equitable
and evenly trusted and system-wide accepted nodes with the prop-
erty that any 2f + 1 nodes out of 3f + 1 can convince any correct
node to commit to a proposed ordering of transactions, the concept
of consensus is generalized in the Federated Byzantine Agreement
(FBA) model [22], where any node vi accepts transactions based

Scaling Byzantine Consensus: A Broad Analysis SERIAL’18, December 10–14, 2018, Rennes, France

on its individual trust decisions. These decisions are refined and
expressed by quorum slices. A quorum slice is a subset of a quorum
which will convince at least one particular node (e.g. vi) to com-
mit to a specific value for a given slot. Nodes can be in multiple
quorum slices at the same time and they need to carefully choose
their quorum slices: To ensure agreement, the FBA system must
guarantee quorum intersection [22], a property that states that any
two of its quorums share at least one node. To ensure progress in
presence of faulty nodes, quorum slices must overlap in a way that
quorum intersection still holds even if certain groups of nodes fail
(they are characterized by dispensable sets [22]). In FBA, scalability
depends on the concrete structure of the dependencies and trust
relations formed by the consensus slices and quorum intersections.
It is advised [22] to build a tiered, hierarchical consensus struc-
ture, in which nodes form a consensus slice containing itself and a
specific number of arbitrary nodes out of the upper adjacent layer.
While such an approach reduces communication efforts compared
to traditional BFT protocols, fault tolerance does not linearly scale
with the total number of system nodes anymore – at least from the
perspective of an individual node – thus yielding a scalable and
open system, in which however a few bad trust decisions can block
a single correct node from reaching agreement with the federation.

2.2 Cryptographic Primitives
Cryptographic primitives play a key role in scaling BFT protocols
as they can be used for several scaling approaches, presented below.

Collective Signatures. CoSi [31] is a cosigning protocol which effi-
ciently supports large-scale groups of witnesses where an author-
itative statement (e.g. leader propose message) is validated and
publicly logged by the witnesses as well as signed by the author-
itative and all or most of witnesses. The CoSi protocol achieves
scalability by constructing a Schnorr multisignature [29] over a
spanning tree in four communication phases (which are essentially
two top-down-then-bottom-up runs over the tree) [31].

The CoSi protocol can serve as building block for scalable BFT
blockchain protocols as it can efficiently compress hundreds of
individual signatures into a single signature of almost the same
size. However, in the Byzantine setting, the use of this protocol is
speculative and will only improve optimistic performance as faulty
nodes may not forward messages to their children. As ByzCoin [16]
shows, the leader only collects a O(1)-size rather than O(n)-size
message and has less verification effort since he only needs to verify
the single collective signature instead of n individual signatures,
hence sparing both computation and network resources.

Threshold Signatures. In recent work [1, 14, 33] it also has been
shown that the use of threshold signatures [30] can reduce commu-
nication costs of some BFT protocols by a factor of O(n) if applied
correctly. Like multi-signatures, threshold signatures compress the
size of multiple signatures to that of a single one with the predicate
that for a (t ,n)-threshold signature at least t participants out of n are
required to create the valid signature. For instance, PBFT [10] uses
commit certificates of size O(n) to prove that at least 2f + 1 nodes
support a commit decision. Using t = 2f + 1 threshold signatures,
these certificates can be aggregated into a single commit certificate
of size O(1), making the protocol more scalable.

Threshold Encryption. In a (t ,n) threshold cryptography scheme,
at least t out of n total parties need to work together in order to
decrypt an encrypted message. In the BFT adversary model, setting
t = f + 1 implies that an attacker can not read encrypted messages
as long as no correct node reveals its decryption share.

In HoneyBadgerBFT [24], threshold encryption is used to opti-
mize the asynchronous common subset (ACS) primitive2. In partic-
ular, as the costs of ACS depend on the size of the individual nodes’
transaction sets, an improved batching strategy relies in letting the
nodes propose mostly disjoint sets of transactions using randomly
chosen samples from their queues [24]. Ideally, each transaction
is only proposed by a single node, hence improving communica-
tion efficiency. However, as ACS allows for an adversary to choose
which nodes’ proposals are being included, he can easily censor
transactions to his liking [24]. This is being prevented using thresh-
old encryption to encrypt transactions before the agreement – the
agreement phase is being run on cipher texts, thus the adversary
can not figure out which node proposes which transactions until
after agreement [24]. With this improved batching strategy, Hon-
eyBadgerBFT achieves an optimized communication complexity of
O(n) bits per transaction for asynchronous atomic broadcast which
is better by the factor ofO(n) than existing approaches [3, 8], hence
greatly improving scalability. On a side-note, in HoneyBadgerBFT’s
design, ACS is then reduced to reliable broadcast (RBC) and the
efficiency of RBC is improved using erasure codes [9].

Verifiable Random Functions. The ambition of verifiable random
functions (VRFs) [23] is to choose a selection of all system actors
in a random and secret way without the actors needing to interact
with each other. VRFs can be used to implement cryptographic sorti-
tion [13], an algorithm for choosing such a subset of actors in a way
that considers weights, e.g. in a system with n users, for user i with
weightwi the probability for him being chosen is proportional to

wi∑n−1
j=0 w j

. The seed for generating the randomness can be derived

from a public source provided by the blockchain. Algorand [13]
uses VRFs so that every user in the system can check if he is chosen
to participate in a special committee only by taking his private key
and the seed as input while generating proof of his membership
and role as output. Scalability arises from the fact that (i) the com-
mittee is chosen by VRFs in a non-interacting way without any
excessive communication, even independent from the total size of
the system and (ii) only committee members actively participate
in the consensus protocol (which requires exchanging messages)
while the others only learn the agreed value. Furthermore, the pri-
vacy, randomness and non-interactiveness of the selection process
protects committee members from being the target of attacks [13].

2.3 Representative Committees
A key idea for achieving scalable consensus in large-scale systems
is to announce a committee of delegates with active roles (e.g. pro-
posers and acceptors) while a large portion of the nodes stay passive
e.g. they only learn about the agreed value. This committee can be
best thought of as a representative and random selection of actors
that communicate with each other to reach agreement. Because the
2The ACS primitive is then used to build an atomic broadcast primitive by letting
nodes propose a subset of the transactions stored in their queue and output the union
of transactions as the agreed-upon vector [24].

SERIAL’18, December 10–14, 2018, Rennes, France Christian Berger and Hans P. Reiser

ByzCoin FastBFT Stellar HoneyBadgerBFT Algorand Gosig OmniLedger
Scalability

(evaluated with) 1004 199 currently running
ca 100 104 up to 500k up to 10k 1800

Throughput
(transactions/s)

700
(n=1004) 370 (n=199) 1000

(n ca. 100)
1200

(n=104) <1000 4000
(n=140) ≥ 4000 (n=1800)

Latency 30s < 1s
(1 Gbps LAN) few seconds 100s 1 minute <1 minute < 2s

Synchrony weakly
synchronous

weakly
synchronous

asynchronous, but
progress depends
on synchrony

asynchronous weakly synchronous

asynchronous, but
provable liveness

only under
weak synchrony

synchronous

Consensus
determinism deterministic deterministic deterministic probabilistic probabilistic probabilistic probabilistic

Approaches
for scaling
consensus

communication
tree
+

collective
signatures

hardware-based TEE
+

secret sharing,
tree topology

federal
Byzantine
agreement

with hierarchical
structure

novel ACS
reduction with

threshold encryption,
efficient RBC with
erasure codes

committee
(cryptographic

sortition)
+

gossip

multi-
signatures

+
gossip

communication
tree, collective
signatures,
parallelizing
transactions

Table 1: Comparison of existing, scalable BFT protocols designated for large-scale blockchain infrastructures.

decision of the delegates will be binding for all, the overall system
reaches agreement as the decision is being propagated through the
network. Since the committee has a fixed size, this procedure can
scale very well, in fact being even almost independent from the
total number of nodes and work safely as long as some important
conditions are satisfied [13]: (i) The selection process should not
require coordination among the nodes and (ii) delegates are chosen
randomly, but in a representative way, e.g. by using stake-based
weighted probabilities so that an attacker can not launch a Sybil
attack and (iii) delegates are chosen privately to avoid being the
target of an attacker. Algorand [13] solves this puzzle by introduc-
ing the cryptographic sortition algorithm, which employs verifiable
random functions (VRFs) to achieve all goals above.

2.4 Parallelizing Transactions
The idea of committees can be taken up to parallelize the validation
and ordering process of transactions. Sharding [21] is an approach
in which the overall system is being partitioned into smaller, (al-
most) equally-sized committees. It is important that an adversary
should not be able to influence the distribution e.g. faulty nodes
spread evenly over all committees with overwhelming probability.
Byzantine consensus is then individually run in every committee
thus simultaneously processing disjoint sets of transactions (shards).
Ideally, the overall approach allows for scaling throughput almost
linearly [21] with an increasing total number of nodes.

Conceptually, equally sized committee can either mean possess-
ing equal hash power, equal stake or just equal number of nodes
with proven identity. The denotation depends on the way identities
are being managed and how voting power is being distributed by
the protocol. In order to ensure security, the evenly distribution
of nodes across committees should be random and the required
seed can be derived e.g. by generating epoch randomness using
Proof-of-Work [21] or employing a distributed-randomness gen-
eration protocol [17]. Furthermore, the search for members of the
same committee – and thus the creation of an overlay network –
should be handled efficiently and not rely on all-to-all broadcasts,
e.g. ELASTICO [21] introduces a special committee called directory
committee, which serves as directory service, in which joining nodes

can register their identity and get the identities of their co-members
announced once a new fully-sized committee can be established.

Two transactions can be committed in different blocks by dif-
ferent committees and thus parallelized if they don’t conflict with
each other or depend on each other, e.g. if they do not try to double-
spend (spend the same unspent transaction output UTXO twice) or
if one transaction creates an UTXO as output that is input to the
other one [17]. Efficiently analyzing conflicting transactions and
dependencies between transactions (such as A must happen before
B) can be done using a block-based directed acyclic graph [18].

2.5 Trusted Hardware Components
An interesting approach [15] to increase efficiency is to remove the
costs of achieving consensus, in particular the atomic broadcast
primitive, from the critical path of the protocol and move it to hard-
ware. In their crash fault-tolerant solution, field programmable gate
arrays were used to provide consensus as a service to applications,
e.g. an instance of Zookeeper atomic broadcast with a correspond-
ing key-value store. Although requiring specialized hardware might
be a constraint for openness and decentralization of DLTs, we still
think the general idea of consensus in hardware deserves further
exploration by research e.g. for BFT blockchain protocol variants.

We also see potential in making use of trusted execution environ-
ments (TEEs) e.g. based on Intel SGX. Hardware components could
prove useful to prevent against Sybil attacks by proving unforgeable
uniqueness within a network [28]. Recent work proposes Proof-of-
Luck (PoL) [25] consensus that utilizes Intel SGX (but can generally
be adopted for other TEEs). Conceptually, PoL combines the ideas
of TEE based proof-of-time and TEE based proof-of-ownership
to make mining energy and time efficient, thus addressing major
problems that exist in PoW.

TEEs are also used in FastBFT [20], which is an approach for
achieving scalable Byzantine consensus using hardware-assisted
secret sharing. Combining TEEs with lightweight secret sharing
allows FastBFT to introduce an efficient message aggregation tech-
nique – it also incorporates some other optimizations like optimistic
execution and a tree topology to achieve better performance and
scalability, making it an appealing choice for integration in DLTs.

Scaling Byzantine Consensus: A Broad Analysis SERIAL’18, December 10–14, 2018, Rennes, France

3 COMPARISON OF EXISTING PROTOCOLS
State-of-the-art BFT protocols employ different assumptions and
pursue different goals. In this section we present a brief comparison
(also see Table 1) of existing approaches and analyze their efforts.

3.1 Proof-of-Work vs. Proof-of-Stake
ByzCoin. An interesting approach insists in combining different
consensus mechanisms i.e. to solve the problem of determining
membership without the protocol being target to Sybil attacks
using the Proof-of-Work mechanism while at the same time using
Byzantine consensus for transactions processing in order to achieve
better performance. ByzCoin [16] proposes this idea using a Proof-
of-Work mechanism on an separate identity chain. Miners obtain
hash-power proportionate consensus shares which determine the
frequency of being leader of an epoch on the keyblock chain, hence
having the right to order transactions using BFT consensus. Notable
scalability improvements over traditional BFT protocols (like PBFT)
such as an hierarchical (or pessimistically flat) communication and
collective signatures reduce the communication complexity from
quadratical to logarithmic (linear in pessimistic case) and signature
verification costs from linear to constant time [16].

Tendermint. Tendermint [6] is a BFT state machine replication pro-
tocol that uses Proof-of-Stake (PoS), a mechanism in which voting
power is being distributed based on a notation of owning portions
(stake) of a native cryptocurrency on the protocol and validators
(nodes that run consensus) deposit stake that they risk to loose if
they are not honest. This way, the protocol can safely enjoy open
membership as long as more than 2/3 of active, stake-weighted val-
idators behave correctly. The Tendermint core consensus algorithm
is based on multi-round voting like PBFT, but has some signifi-
cant improvements for better scalability and decentralization [6]:
(i) a novel termination mechanism which efficiently utilizes gos-
sip based communication and (ii) a stake weighted round-robin
based leader rotation scheme. However, the leader rotation works
deterministically and thus is predictable for an adversary.

3.2 Federated Consensus
Compared to ByzCoin or Tendermint, the Stellar [22] consensus
protocol (SCP) enjoys flexible trust and constructs a system for
federated Byzantine agreement. SCP neither relies on PoW nor PoS
but can still provide open membership as joining nodes are not
automatically trusted by others. While SCP scales well for reasons
we explained in Section 2.1, safety depends on nodes to choose
adequate quorum slices (trust decisions) and as a possible problem
for decentralization and network growth, there exists no monetary
initiative to run a node and participate in consensus. At time of
writing the Stellar network consists of roughly hundred nodes,
processing up to thousand transactions per second. However, nodes
are mostly run by the Stellar Foundation or businesses like IBM
that have inherent interest in operating a secure network.

3.3 Randomized BFT Protocols
HoneyBadger. A practical asynchronous BFT protocol that solves
the problem of atomic broadcast and thus consensus, is HoneyBad-
gerBFT (HBBFT) [24]. The HBBFT paper justifies the thought that

timing assumptions are harmful by providing an adversarial net-
work scheduler that delays messages and creates an environment
that renders weakly synchronous BFT protocols like PBFT useless.
Moreover, HBBFT introduces a novel atomic broadcast protocol
which is implemented by an efficient reduction to asynchronous
common subset (ACS) using a new batching strategy in combi-
nation with threshold encryption as we broached in Section 2.2.
In experiments, HBBFT shows that it can process thousands of
transactions per second while scaling up to hundred nodes and
outperform PBFT even in a weakly synchronous network [24].

Algorand. A novel approach to scale a blockchain protocol for bil-
lions of users is Algorand [13]. For every block that needs to be
decided, Algorand forms a representative committee of randomly
and secretly chosen users. The committee members actively par-
ticipate in the Byzantine consensus protocol as they possess the
roles of either proposers or verifiers while others will only learn
about the decision of the committee. The selection process uses
cryptographic sortition [13], an algorithm that relies on the use of
verifiable random functions VRFs (see Section 2.2). As the selection
process is secret, the committee members can not be targeted by an
attacker. The VRFs allow the users to check for themselves if they
are elected as proposers or verifiers and also generate an unforge-
able proof of the rightful election. This process can be best though
of as a secret lottery with each user having a ticket as proof. The
selection process yields multiple proposers, however only the user
that is online and has the ticket with the smallest hash becomes the
actual leader. Verifiers need to reach agreement about the block pro-
posed by the leader. Furthermore, messages are propagated using
gossip to all users to learn about the agreed block. Thus, Algorand
can generate a new block at the same speed as messages can be
propagated through the network and it scales independently of
the total number of users in the network [13]. The stake-weighted
election process assigns probabilities proportional to the amount of
stake a user has – hence the protocol is safe with high probability
as long as the attacker controls less than 1/3 of the stake [13].

Gosig. Gosig [19] has the ambition to scale Byzantine consensus on
adversarial wide area networks. Like in Algorand, cryptographic
sortition is used to randomly and secretly select a leader, however
all nodes actively participate in reaching agreement in multi-round
signature-based voting which allows it to be safe in an asynchro-
nous setting. Gosig adapts scalability improvements on implemen-
tation level, e.g. it reduces communication overhead by aggregating
signatures into multi-signature form. Furthermore, it efficiently
implements proposal broadcast and signature collection phases by
utilizing gossip communication. Compared to HoneyBadgerBFT,
Gosig has less performance overhead but scarifies provable live-
ness in the asynchronous setting, however implements techniques
to increase the probability of liveness on best-effort basis such as
failure discovery and asynchronous signature verification [19].

3.4 Sharding BFT Protocols
ELASTICO. Ideally, sharding protocols can increase the throughput
of a growing system by partitioning the processing of transactions
into shards and processing them in parallel by disjunctive sets of
validators (committees) [21]. ELASTICO [21] is a permissionless

SERIAL’18, December 10–14, 2018, Rennes, France Christian Berger and Hans P. Reiser

sharding protocol, which (i) uses Proof-of-Work to establish identi-
ties (ii) securely partitions the system into smaller committees, thus
parallelizing transaction processing and (iii) scales almost linearly
with available computation power (which corresponds to available
proven identities). In a way, sharding is an orthogonal approach
that can be constructed using any Byzantine consensus protocol,
e.g. ELASTICO uses PBFT to run intra-committee consensus. In
experiments [21], ELASTICO can increase the number of blocks
per epoch from 1 to 16 with increasing number of total nodes (start-
ing with 100 up to 1, 600). But latency slightly increases from 600s
to 711s for finding the proofs of work while the time of reaching
consensus within the committees remains at around 100s .

OmniLedger. Compared to ELASTICO, OmniLedger [17] uses a
bias-resistant distributed randomness generation protocol instead of
PoW to generate a seed for sharding securely. It also introduces an
efficient crossshard commit protocol called AtomiX [17] that can
atomically handle transactions which affect multiple shards. Over
ELASTICO, OmniLedger makes significant performance improve-
ments by using optimizations such as: (i) using ByzCoinX [17] in-
stead of PBFT to more efficiently process transactions within shards
(e.g. by using better communication patterns such as tree topology),
(ii) resolving dependencies on the transaction level to achieve better
block parallelization and (iii) introducing a "trust-but-verify" valida-
tion architecture for optimistic real-time transaction confirmations.
In evaluation results, OmniLedger manages to scale throughput
nearly linearly with the number of available validators and achieves
a throughput in the range of thousands of transactions per second
while it can maintain latencies of below two seconds [17].

4 CONCLUSIONS
In this paper we analyzed different approaches and created a survey
of existing techniques and designs for scaling Byzantine consensus.
We conclude that great potential lies in the combination of efficient
communication strategies such as gossip and cryptographic prim-
itives like threshold-signatures as well as the use of randomness
e.g. for cryptographic sortition to elect a committee or leader. Or-
thogonal to these techniques, the parallelization of consensus in
multiple instances can help to scale throughput with a growing
number of participants if needed. Additionally, we see a vast yet
mostly unexplored research space in the incorporation of hardware
components such as trusted execution environments left open for
future work. Scalable BFT protocols differ in their ambitions. For
instance, Algorand is optimized for scaling to a tremendous number
of nodes, FastBFT employs hardware to perform extremely fast,
HoneyBadgerBFT does not break any performance records but can
withstand adversarial network conditions and OmniLedger shows
how to construct a secure scale-out blockchain protocol which can
increase the overall system throughput by sharding transactions.

REFERENCES
[1] Ittai Abraham, Guy Gueta, and DahliaMalkhi. 2018. Hot-Stuff the Linear, Optimal-

Resilience, One-Message BFT Devil. arXiv preprint arXiv:1803.05069 (2018).
[2] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. 2017. Consensus in the age of
blockchains. arXiv preprint arXiv:1711.03936 (2017).

[3] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous secure com-
putations with optimal resilience. In Proceedings of the thirteenth Annual ACM
Symposium on Principles of Distributed Computing. ACM, 183–192.

[4] Alysson Bessani, João Sousa, andMarko Vukolić. 2017. A Byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform. In Proc. of the 1st
Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. ACM.

[5] Fatemeh Borran and André Schiper. 2010. A leader-free Byzantine consensus
algorithm. In ICDCN 2010. Springer, 67–78.

[6] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT
consensus. arXiv preprint arXiv:1807.04938 (2018).

[7] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437 (2017).

[8] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-
cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[9] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information
dispersal. In 24th IEEE Symp. on Reliable Distributed Systems. IEEE, 191–201.

[10] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In
OSDI, Vol. 99. 173–186.

[11] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. 2016.
On scaling decentralized blockchains. In International Conference on Financial
Cryptography and Data Security. Springer, 106–125.

[12] John R Douceur. 2002. The sybil attack. In International Workshop on Peer-to-Peer
Systems. Springer, 251–260.

[13] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[14] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu.
2018. SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains. arXiv
preprint arXiv:1804.01626 (2018).

[15] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consensus
in a Box: Inexpensive Coordination in Hardware. In NSDI. 425–438.

[16] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing bitcoin security and performance with
strong consistency via collective signing. In 25th USENIX Security Symposium
(USENIX Security 16). 279–296.

[17] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2017. OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding. https://eprint.iacr.org/2017/406.pdf. (2017).

[18] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive block
chain protocols. In International Conference on Financial Cryptography and Data
Security. Springer, 528–547.

[19] Peilun Li, GuosaiWang, Xiaoqi Chen, andWei Xu. 2018. Gosig: Scalable Byzantine
Consensus on Adversarial Wide Area Network for Blockchains. arXiv preprint
arXiv:1802.01315 (2018).

[20] Jian Liu, Wenting Li, G Karame, and N Asokan. 2018. Scalable Byzantine Con-
sensus via Hardware-assisted Secret Sharing. IEEE Trans. Comput. (2018).

[21] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In Proc.
of the 2016 ACM SIGSAC Conf. on Computer and Communications Security. 17–30.

[22] David Mazieres. 2015. The stellar consensus protocol: A federated model for
internet-level consensus. stellar.org/papers/stellar-consensus-protocol.pdf

[23] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random functions.
In 40th Annual Symp. on Foundations of Computer Science. IEEE, 120–130.

[24] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 31–42.

[25] Mitar Milutinovic, Warren He, Howard Wu, and Maxinder Kanwal. 2016. Proof
of luck: An efficient blockchain consensus protocol. In Proceedings of the 1st
Workshop on System Software for Trusted Execution. ACM.

[26] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[27] Team Rocket. 2018. Snowflake to avalanche: A novel metastable consensus

protocol family for cryptocurrencies. https://avalanchelabs.org/avalanche.pdf
[28] Signe Rüsch. 2018. High-Performance Consensus Mechanisms for Blockchains.

In 12th EuroSys Doctoral Workshop (EuroDW’18). Porto, Portugal. https://www.
ibr.cs.tu-bs.de/users/ruesch/papers/eurodw18-ruesch-final.pdf

[29] Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal
of cryptology 4, 3 (1991), 161–174.

[30] Victor Shoup. 2000. Practical threshold signatures. In International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 207–220.

[31] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 2016. Keeping
authorities "honest" or "bust" with decentralized witness cosigning. In IEEE
Symposium on Security and Privacy (SP). IEEE, 526–545.

[32] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication. In International Workshop on Open Problems in Network Security.
Springer, 112–125.

[33] Yin Yang. 2018. LinBFT: Linear-Communication Byzantine Fault Tolerance for
Public Blockchains. arXiv preprint arXiv:1807.01829 (2018).

stellar.org/papers/stellar-consensus-protocol.pdf
https://avalanchelabs.org/avalanche.pdf
https://www.ibr.cs.tu-bs.de/users/ruesch/papers/eurodw18-ruesch-final.pdf
https://www.ibr.cs.tu-bs.de/users/ruesch/papers/eurodw18-ruesch-final.pdf

	Abstract
	1 Introduction
	1.1 Related Work and Contribution

	2 Scaling Byzantine Consensus
	2.1 Communication Topology
	2.2 Cryptographic Primitives
	2.3 Representative Committees
	2.4 Parallelizing Transactions
	2.5 Trusted Hardware Components

	3 Comparison of Existing Protocols
	3.1 Proof-of-Work vs. Proof-of-Stake
	3.2 Federated Consensus
	3.3 Randomized BFT Protocols
	3.4 Sharding BFT Protocols

	4 Conclusions
	References

