
emanuel berndl

E M B E D D I N G A M U LT I M E D I A M E TA D ATA M O D E L
I N T O A W O R K F L O W- D R I V E N E N V I R O N M E N T

U S I N G I D I O M AT I C S E M A N T I C W E B
T E C H N O L O G I E S

E M B E D D I N G A M U LT I M E D I A M E TA D ATA M O D E L I N T O A
W O R K F L O W- D R I V E N E N V I R O N M E N T U S I N G I D I O M AT I C

S E M A N T I C W E B T E C H N O L O G I E S

emanuel berndl

master of science (m .sc .)

Doctoral Thesis

December 2018

University of Passau
Faculty of Computer Science and Mathematics

Chair of Distributed Informations Systems

Emanuel Berndl: Embedding a Multimedia Metadata Model into a Workflow-
Driven Environment Using Idiomatic Semantic Web Technologies, © De-
cember 2018

In many ways, people growing up with the Web and now the
Semantic Web take the power at their fingertips for granted.

— Tim Berners-Lee, 2005

A B S T R A C T

The Semantic Web exists for about 20 years by now, but its appli-
cability as well as its presence does not live up to the standards of
its original idea. Incorporated Semantic Web Technologies do have
an initial barrier to learn and apply, which can discourage many po-
tential users. This leads to less available data overall in addition to
decreased data quality.

This work solves parts of the aforementioned problem by support-
ing idiomatic entry to those Semantic Web Technologies, allowing for
"easier" accessibility and usability. Anno4j is a Java library that im-
plements a form of Object-Relational Mapping for RDF data. With its
application, RDF data can be created via a mapping by simply instan-
tiating Java objects - an object-oriented programming concept the user
is familiar with. On the other side, requesting persisted data is sup-
ported by a path-based querying possibility, while other features like
transactional behaviour, code generation, and automated validation
of input contribute to a more effective, comprehensive, and straight-
forward usage.

A use-case is provided by the MICO Platform, a centralised soft-
ware instance that connects autonomous multimedia extractors in a
workflow-driven fashion. This leads to a rich metadata background
for the inserted multimedia files, enabling them to be used in diverse
scenarios as well as unlocking yet hidden semantics. For this task it
was necessary to design and implement a metadata model that is able
to aggregate and merge the varying extractor results under a common
“headline”: the MICO Metadata Model.

The results of this work allow the use case to incorporate idiomatic
Semantic Web Technologies which are then usable natively by non-
Semantic Web experts. Additionally, an increase has been achieved in
forms of data integration, synchronisation, integrity and validity, as
well as an overall more comprehensive and rich implementation of
the multimedia extractors.

vii

Z U S A M M E N FA S S U N G

Das Semantic Web existiert nun seit rund 20 Jahren, jedoch ist des-
sen Anwendbarkeit und Präsenz nicht auf dem Stand, der in der ur-
sprünglichen Idee angestrebt wurde. Die verwendeten semantischen
Technologien besitzen eine Einstiegshürde die potenzielle Nutzer ab-
schrecken kann. Dies führt sowohl zu weniger verfügbaren Daten so-
wie einer schlechteren Datenqualität.

Diese Arbeit löst einen Teil dieses Problems, indem diese Technolo-
gien ëinfacheränwendbar für den Benutzer gemacht werden. Anno4j
ist eine Java Bibliothek die eine Form einer objektrelationalen Ab-
bildung für RDF Daten umsetzt. Dadurch können RDF Daten über
ein Mapping erstellt werden, indem lediglich einfache Java Objekte
erstellt werden müssen - ein objektorientiertes Konzept das dem Be-
nutzer bekannt ist. Eine Abfrage der Daten wird durch Pfad-basiertes
Querying vereinfacht, während andere Eigenschaften wie transaktio-
nales Verhalten, Code-Generierung und automatisierte Validierung
weitere Beiträge zur effektiveren, umfassenderen und unkomplizier-
teren Benutzung liefern.

Den Anwendungsfall stellt die MICO Platform dar, eine zentrale
Softwareinstanz die über Workflow-orientierte Arbeitsweise autono-
me Multimedia Extraktoren miteinander verbindet, um eingegebene
Multimediainhalte auf ihren Metadatenhintergrund zu untersuchen.
Dies erlaubt die Inhalte in einem breiterem Spektrum sowie eventuell
unvorhergesehenen Szenarien zu erschließen. Ein eigens entwickeltes
RDF Metadatenmodell, das MICO Metadata Model, bildet dafür ein
uniformes Datenformat, um alle erstellten Ergebnisse unter einen ge-
meinsamen Hut zu bringen.

Die Ergebnisse dieser Arbeit ermöglichen in diesem Anwendungs-
fall eine Vereinfachung der semantischen Technologien für Semantic
Web-fremde Benutzer, eine Verbesserung in Form von Datenintegra-
tion, Synchronisation und Integrität, sowie eine funktional reichere
Implementierung der Multimediaextraktoren.

viii

C O N T E N T S

i preface 1

1 the semantic web 3

1.1 The Vision and Idea of the Semantic Web 4

1.1.1 A Semantic Web Use Case 4

1.1.2 A Look at the Current State of the Semantic
Web 7

1.1.3 Open Issues of the Semantic Web 9

1.1.4 The Semantic Gap - A Metadata Problem in the
Domain of Multimedia 10

1.2 A Technical Setting for this Thesis - The MICO Project 12

1.3 Research Questions and Contributions 13

1.4 Structure of this Thesis 16

ii modelling metadata - classic approaches and a

multimedia context 19

2 principles of metadata modeling and querying 21

2.1 The Semantic Web and Other Familiar Concepts 22

2.2 The “Resource Description Framework” - The Back-
bone of Metadata Modeling 29

2.2.1 Information Units in RDF and Their Structure 30

2.2.2 RDF Basics and Concepts for Metadata Mod-
elling 32

2.2.3 RDF Vocabularies and Ontologies 37

2.2.4 RDF Datasets and Named Graphs 41

2.2.5 Expressing and Transporting RDF Data - RDF
Documents and Their Serialisations 42

2.2.6 Advanced RDF Features - Inferencing, Reason-
ing, and Reification 48

2.2.7 Querying and Manipulating RDF Data - SPARQL,
the SPARQL Protocol and RDF Query Language 50

3 combining metadata modeling with multimedia 55

3.1 Related Work - Multimedia Metadata Modeling 57

3.2 The Web Annotation Data Model 64

3.2.1 Web Annotation Structure 65

3.2.2 RDF Classes for Body and Target Components 67

3.2.3 Fragmentation of Resource IRIs and Selectors 69

3.2.4 Additional Information for Web Annotation Nodes 73

3.2.5 Complete Exemplary Web Annotation 75

3.3 The MICO Metadata Model - Connecting Annotations 76

3.3.1 Composition Module 78

3.3.2 Context Module 79

ix

x contents

3.3.3 The Content Module / The Body of the Part An-
notation 80

3.3.4 The Selection Module / The Target of the Part
Annotations 81

3.3.5 Provenance Module 82

3.3.6 Multimedia Ontology Requirements Check 87

iii the application of multimedia metadata in a

workflow-driven approach and idiomatic seman-
tic web technologies 91

4 increasing the usability and applicability of se-
mantic web technologies for multimedia meta-
data modeling and workflows - anno4j 93

4.1 Related Work - Object/Relational and Object/RDF Map-
pings 95

4.2 Anno4j - An Object-RDF-Mapping Library 102

4.3 Creation of Metadata with Anno4j 110

4.4 Querying of Metadata with Anno4j 117

4.5 Established Database Concepts of the Anno4j Library 123

4.5.1 Supporting Transactional Behaviour in Anno4j 125

4.5.2 Validate Database Input with Validated Trans-
actions 126

4.5.3 Schema Annotations for Data Validity 127

4.6 Automated Domain Model Generation through Anno4j
RDF Schema Parsing 130

4.6.1 Domain Model Generation Functionality 131

4.6.2 Generation Process Internals and Algorithms 133

4.6.3 Generation of a Web Component for a Metadata
Model 141

4.7 Additional Anno4j Database Features 143

4.8 Anno4j Conclusion, Outlook, and Envisioned Addi-
tions 146

5 a workflow-driven approach for multimedia meta-
data application 153

5.1 RW - Multimedia Metadata Platforms, Metadata Life-
cycles 155

5.2 Embedding the Multimedia Metadata Workflow - MICO 165

5.2.1 Accessing the Produced Results of the MICO
Platform 168

5.2.2 MICO Extractor Description 170

5.2.3 Implementing Own MICO Extractors 171

5.2.4 MICO Orchestration Service - The MICO Bro-
ker 173

5.3 From a Multimedia Metadata Workflow to a Self-Sustaining
Metadata Cycle 174

5.4 An Extension of the Workflow Environment 179

contents xi

5.5 Multimedia Metadata Application Conclusion 184

iv experiments and evaluations 187

6 experiments and evaluations 189

6.1 Related Work - Overall ORdfM Evaluations 190

6.1.1 Quasthoff: General ORdfM Comparison 191

6.1.2 Quasthoff: ORdfM Implementation and Run-
time Evaluations 192

6.2 Anno4j and Ontology Structure Experiments 196

6.2.1 Runtime Experiments with Generated Anno4j
Domain Models 197

6.2.2 Runtime Experiments with Pre-Created Proxy
Classes 205

6.2.3 Runtime Experiments with Generated Anno4j
Domain Models and Multiple Varying Parame-
ters 209

6.2.4 Conclusion of the Anno4j Evaluations 217

6.3 ViSIT - A Cultural Heritage Use Case for the ORdfM
Library Anno4j 218

6.4 Recapitulation of Posed Research Questions 226

v summary and conclusion 233

7 résumé 235

7.1 Conclusion 235

7.2 Future Work and Outlook 239

vi appendix 241

a appendix 243

a.1 The MICO Project 243

a.1.1 Background of the MICO Project 243

a.1.2 Development Cycle of the MICO Broker 245

a.2 Further Informations and Appended Data 247

bibliography 285

L I S T O F F I G U R E S

Figure 1 The Role of Semantic Web Users that Partic-
ipated in the Survey of Cardoso [41] (From
Which the Numbers and the Table Are Adopted). 8

Figure 2 Visualisation of the Semantic Gap Problem. 11

Figure 3 The Evolution of a Web of Documents to a Web
of Data. 23

Figure 4 The Evolution of the Semantic Web. 27

Figure 5 Interaction Between the Concepts Around the
Semantic Web. 28

Figure 6 Two Simple Statements Presented as Graph. 31

Figure 7 Combined Statements Presented as Graph. 32

Figure 8 Exemplary Blank Node. 35

Figure 9 Example RDF Dataset with Two Named Graphs
“cities:NewYork” and “cities:Chicago”. The
Exemplary Namespace “http://examplecities.-
com/” is Assumed for the Prefix “cities:”. 41

Figure 10 Exemplary RDF Graph Used for Showing the
Different RDF Serialisation Formats. 43

Figure 11 Exemplary Web Annotation Illustrating the In-
formation That the Human Face Displayed on
a Given Picture is Barack Obama. 66

Figure 12 Exemplary Web Annotation from Figure 11 with
more Metadata Information, Especially the Ad-
dition of the Datatypes Text and Image. 68

Figure 13 Exemplary Embedded Textual Body Annota-
tion (Left) and a String Body Annotation (Right).
Both Represent the Same Semantic Content.
Target Components Have Been Left out for Rea-
sons of Clarity. 69

Figure 14 Exemplary Web Annotation Showing the Con-
tent Illustrated in Figure 11 with the Extension
of a Segmentation Fragment for the Target Im-
age. 70

Figure 15 Exemplary Web Annotation with the Applica-
tion of Specific Resources Both at the Body and
Target Component. 71

Figure 16 Exemplary Web Annotation with the Appli-
cation of a FragmentSelector that Utilises the
Same Fragment of the Media Resource as the
Web Annotation in Figure 14. 73

xii

List of Figures xiii

Figure 17 Complete Web Annotation with the Use Case
of a Face Detection Process: Barack Obama
Has Been Detected on the Given Input Image. 76

Figure 18 Module Structure of the MICO Metadata Model,
Extending the Web Annotation Structure with
Body, Target, and Annotation Component. 77

Figure 19 Exemplary “mmm:Item” Node with Three “mmm:-
Part” Children. 79

Figure 20 Exemplary “mmm:Part” Node with Attached Body
and Target nodes. 80

Figure 21 Exemplary Part Annotation, Illustrating the Re-
sult of an Animal Detection Analysis. 81

Figure 22 Exemplary Part Annotation, Illustrating the Re-
sult of a Temporal Video Segmentation Analy-
sis. 82

Figure 23 Exemplary Item and Associated Part Annota-
tion with Respective Assets. 83

Figure 24 Exemplary Item Structure that Shows the In-
put Provenance (Blue Edges for “mmm:hasInput”,
Orange for “mmm:hasSource”) of the MMM. 86

Figure 25 Access Possibilities for a Triplestore Augmented
with the Anno4j Library. 106

Figure 26 Sequence of Steps Executed for Creating Meta-
data with Anno4j, Including Internal Steps of
the Library. 111

Figure 27 Resulting RDF Graph of the Executed Anno4j
Code Shown in Listing 19. 115

Figure 28 Showcase MMM Animal Detection Result Used
as Anno4j Querying Example. 120

Figure 29 Illustrating RDF Graph for the First Criteria
of the Query Defined in Listing 21 (Line 3),
Which Supports the Semantic Feature of Search-
ing for Results of an Animal Detection. 121

Figure 30 Illustrating RDF Graph for the Second Crite-
ria of the Query Defined in Listing 21 (Line 4),
Which Supports the Semantic Feature of Ele-
phants Being Depicted. 122

Figure 31 Illustrating RDF Graph for the Third Criteria
of the Query Defined in Listing 21 (Line 5),
Specifying the Detection to Be in a Rectangle
of a Width of 50 Pixels and Height of 70 Pix-
els. 122

xiv List of Figures

Figure 32 Illustration of the Anno4j Generation Tool. With
the Input of an RDFS or OWL Schema File,
Anno4j Classes, Partial Classes, Proxy Classes,
and a REST API Can be Automatically Gener-
ated. 131

Figure 33 Places of Installation for the Anno4j Library:
Classic and RESTful. 142

Figure 34 Illustration of the Extended Overall Anno4j Map-
ping Functionality, Including the Parsing of Se-
rialised RDF Triples and Writing of Anno4j Java
POJOs to Serialised RDF. 145

Figure 35 Visualisation of the Semantic Web Technology
Stack with Concepts shown in Regular Font,
While the Implementing Technologies Are Writ-
ten in Bold Font. The Dotted Border Shows
Which Concepts are Affected, Interwoven, and
/ or Supported by the Anno4j Library. 147

Figure 36 Exemplary Anno4j Recommendation Result in
the MICO Use Case. The Two “mmm:Item” In-
stances at the Bottom (Indicated by the Coloured
Tree-like Structures Which Correspond to the
MMM Colours Discussed in Section 3.3) are
Compared and Evaluated to Have a Similarity
in Their Results to 70%. 152

Figure 37 Visualisation of the Multimedia Metadata Life-
cycle (Adopted from [102]). 156

Figure 38 Visualisation of the Linked Data Lifecycle (A-
dopted from [11] [12] [13] [122]). 159

Figure 39 Visualisation of the Reasoning Cycle Applied
in the Framework of [56] (From Which the Im-
age Has Been Adopted). 163

Figure 40 Setup of the MICO Platform. 165

Figure 41 Visualisation of the Merged Lifecycles for Both
Multimedia and Linked Data, Resulting in a
Generalised Lifecycle for Linked Multimedia
Data. 175

Figure 42 Visualisation of the Core MICO Metadata Life-
cycle. 176

Figure 43 Visualisation of the MICO Metadata Lifecycle. 178

Figure 44 Workflow of Registering and Exchanging Sche-
mata for the Extended Extractor Implementa-
tion at the MICO+ Platform. 182

Figure 45 Benchmark Results for Single Variations of On-
tology Parameters for the Anno4j Evaluation. 204

List of Figures xv

Figure 46 Breakdown of the Runtimes of Subtasks Nec-
essary to Create the Initial Instance of an Anno4j
Class Implementing the “crm:E21_Person” RDF
Class of the CIDOC CRM. 206

Figure 47 Benchmark Results for Problematic Parameters
with Pre-Created Proxy Classes. 208

Figure 48 Heatmap Plot Patterns with Exemplary Heat
Values, Highlighting the Color Gradient or Scat-
tered Distribution. 211

Figure 49 Expected Pattern Types Created by the Recom-
bination of Soft and Hard Parameters. 212

Figure 50 Pattern Allocation of Runtime Experiments with
Varying Ontology Parameter Pairs. 213

Figure 51 Exemplary Scatter Pattern Result for the Com-
bination of the Child Degree and Partial Meth-
ods Parameters. 213

Figure 52 Exemplary Edge Pattern Result for the Com-
bination of the Children Degree and Inheri-
tance Depth Parameters. 214

Figure 53 Exemplary Peak Pattern Result for the Combi-
nation of the Parent Degree and Partial Classes
Parameters. 215

Figure 54 Highlighted Evaluation Results for the Combi-
nation with the Partial Class Parameter. 215

Figure 55 Highlighted Evaluation Results for the Combi-
nations with the Property/Relationship Count. 216

Figure 56 Exemplary ViSIT Scenario with Two Museums
“a” and “b”, both Issuing an Exhibition about
Person “x”. 219

Figure 57 Exemplary ViSIT Scenario Applying the ViSIT
Infrastructure to Digitally “Lend” Foreign Sam-
ples in Museum “a”. 220

Figure 58 Illustration of the Semantic Zoom Feature Pos-
sible with Anno4j. 223

Figure 59 The Core Workflow of the MICO Platform. 243

Figure 60 Exemplary Extractor Model for a MICO Audio-
Demux Extractor, Leaving Out Some Side In-
formation for the Sake of Clarity. 249

Figure 61 Resulting RDF Graph from the Code Enlisted
in Listing 30, Creating an MMM Item with
Two Part Annotations Representing a Color-
Layout and Animaldetection Result. 251

Figure 62 Screenshot of the MICO Platform Item Overview. 262

Figure 63 Screenshot of the MICO Platform Item Overview,
Hovering an as “Failed” Marked Item Progress. 263

Figure 64 Screenshot of the MICO Platform View Inspect-
ing an Item in Detail. 264

Figure 65 Resulting Heatmaps of the Paired Ontology
Parameter Evaluation (1). 265

Figure 66 Resulting Heatmaps of the Paired Ontology
Parameter Evaluation (2). 268

Figure 67 Resulting Heatmaps of the Paired Ontology
Parameter Evaluation (3). 269

L I S T O F TA B L E S

Table 1 Result of the Query Defined in Listing 14 on
the Dataset Shown in Figure 10. 52

Table 2 Result of the Query Defined in Listing 14 on
the Dataset Shown in Figure 10 with the Addi-
tion of the Triples Shown in Listing 15. 53

Table 3 RDF Ontologies and Vocabularies with Their
Respective Namespace IRI and its RDF Prefix
Used in This Work 248

Table 4 Available Schema Annotations in Anno4j. The
Table Shows a General Name, the Respective
Pendant in the OWL or RDFS Schema, and the
Corresponding (Java) Schema Annotation, in
Combination with a Description of the Imple-
mented Concept. 266

Table 5 Properties of the Test System Used in the Bench-
marks Enlisted in Section 6.2.1. 267

Table 6 Properties of the Test System Used in the Bench-
marks Enlisted in Section 6.2.3. 267

Table 7 Ontology Parameter Pair Evaluation for Chil-
dren Degree and Parent Degree. 270

Table 8 Ontology Parameter Pair Evaluation for Chil-
dren Degree and Partial Classes. 271

Table 9 Ontology Parameter Pair Evaluation for Chil-
dren Degree and Partial Methods. 272

Table 10 Ontology Parameter Pair Evaluation for Chil-
dren Degree and Properties and Relationships. 273

Table 11 Ontology Parameter Pair Evaluation for Chil-
dren Degree and Inheritance Depth. 274

Table 12 Ontology Parameter Pair Evaluation for Parent
Degree and Partial Classes. 275

Table 13 Ontology Parameter Pair Evaluation for Parent
Degree and Partial Methods. 276

xvi

Table 14 Ontology Parameter Pair Evaluation for Parent
Degree and Properties and Relationships. 277

Table 15 Ontology Parameter Pair Evaluation for Partial
Classes and Partial Methods. 278

Table 16 Ontology Parameter Pair Evaluation for Partial
Classes and Properties and Relationships. 279

Table 17 Ontology Parameter Pair Evaluation for Partial
Classes and Inheritance Depth. 280

Table 18 Ontology Parameter Pair Evaluation for Partial
Methods and Properties and Relationships. 281

Table 19 Ontology Parameter Pair Evaluation for Partial
Methods and Inheritance Depth. 282

Table 20 Ontology Parameter Pair Evaluation for Prop-
erties and Relationships and Inheritance Depth. 283

L I S T I N G S

Listing 1 Triples Contained in the Graph Shown in Fig-
ure 7 Formulated as RDF. 36

Listing 2 Triples Contained in the Graph Shown in Fig-
ure 7 with the Addition of Namespaces and
Prefixes. 36

Listing 3 Definition of the “Pets and Their Owners” On-
tology. 39

Listing 4 The Information Content Illustrated in Figure 10

represented as RDF Triples Using the N-Triples
Syntax. 42

Listing 5 The Information Content Illustrated in Figure 10

represented as RDF Triples Using the N-Quads
Syntax. 43

Listing 6 The Information Content Illustrated in Figure 10

represented as RDF Triples Using the Turtle
Syntax. 44

Listing 7 The Information Content Illustrated in Figure 10

represented as RDF Triples Using the TriG Syn-
tax. 45

Listing 8 The Information Content Illustrated in Figure 10

represented as RDF Triples Using the JSON-
LD Syntax. 45

Listing 9 The Information Content Illustrated in Figure 10

represented as RDF Triples Using the RDFa
Syntax. 47

xvii

xviii Listings

Listing 10 The Information Content Illustrated in Figure 10

represented as RDF Triples Using the RDF/XML
Syntax. 47

Listing 11 RDF Document Used for Simple Inferencing. 49

Listing 12 RDF Document Containing Inferred Triples with
the Base Triples of Listing 11. 49

Listing 13 Simple Reification Example. 50

Listing 14 Exemplary SPARQL Query Issued on the RDF
Data Contained in the Graph Shown in Fig-
ure 10. 51

Listing 15 Triples to Add to the RDF Dataset of Figure 10

to Create an Extended Dataset for the Query
Shown in Listing 14. 52

Listing 16 Instantiation of an Anno4j Object. 104

Listing 17 Anno4j Class for the “pao:Cat” RDF Class. 111

Listing 18 Anno4j Partial Class for the “pao:Cat” RDF
Class. 113

Listing 19 Simple Application of the Cat Anno4j Class
Shown in Listing 17. 114

Listing 20 Basic Querying Example of the Anno4j Library,
Querying for All Persisted Cats (Representa-
tives of the Cat Anno4j Class). 119

Listing 21 QueryService of the Anno4j Library Using LD-
Path Criteria. The Query is Issued to Retrieve
the Part Annotation Shown in Figure 28. 120

Listing 22 Basic Transaction Implementation in Anno4j,
Encapsulating Actions Done for Persisting and
Querying Information. 125

Listing 23 Adapted Anno4j Class “Cat” from Listing 17,
Introducing a Maximum Cardinality and Sym-
metric Requirement on the Relationship “pao:-

hasCatFriend”. 128

Listing 24 Exemplary “ValidatedTransaction”, Using the
“ValidatedCat” Anno4j Class Displayed in List-
ing 23. 128

Listing 25 Showcase Error Message if the Allowed Max-
imum Cardinality of the “pao:hasCatFriend”

Relationship for “cesar” is Exceeded. 129

Listing 26 The Applications of Named Graphs/Context
at Anno4j Instance-, Object Creation-, QueryService-
, and Transaction-Level in Anno4j. 144

Listing 27 Exemplary Plugin Expression “sparqlmm:left-

Besides(...)” in an LDPath Criteria. 146

Listing 28 Exemplary Object Query Application Scenario. 150

Listing 29 Exemplary SWRL Rule for the PAO Ontology. 151

acronyms xix

Listing 30 Exemplary Creation of an MMM Item with Two
Part Annotations Representing a ColorLayout
and Animaldetection Result. 250

Listing 31 Exemplary Use of the Anno4j Generation Tool. 252

Listing 32 Example RDFS Schema for the Pets and Their
Owners Ontology. 253

Listing 33 Exemplary Output of the Code Shown in List-
ing 31 with the Input Schema Shown in List-
ing 32. 254

Part I

P R E FA C E

1
T H E S E M A N T I C W E B

In the life of today, many “worldly workflows” are maintained utilis-
ing the possibilities supported by the modern World Wide Web. Cal-
endars with various appointments are managed over several end de-
vices like computers, laptops, and mobile phones. Oftentimes this
planning and scheduling of events is even interwoven with other peo-
ples’ time schedules. Among these appointments, meetings, parties,
and other social events are also organised online, with many different
possible peers participating in the organisation. Next to this, activities
like shopping and the discovery of information for various activities
have become a daily routine for almost everyone.

Despite this fact of daily repetition and the efforts that have been
spent in order to make them as fluent and functional as possible, there
still exist perceived boundaries in terms of inconvenient behaviour or
missing automatism. The mentioned workflows still require at least
a baseline of human interaction and decision taking, as there is no
applied “intelligence” or “knowledge” on the side of the executing
computer, in contrast to what humans can do. For example, a com-
puter (in most common cases) can help to schedule temporal matters,
warning a user that two appointments occupy the same time slot, but
rarely it can involve further information: imagine two consecutive
lessons with a break of ten minutes in between. Regarding only the
time, this seems feasible, but there may be other factors like the geo-
logical position of the two lessons, which would require a 30 minute
ride to get from one place to the other, rendering the situation to be
impossible to fulfil. Hence, the user still has to do the task of mind-
ing such “external” factors and assess the impact of them on his given
activities.

In [27], Berners-Lee, Hendler, Lassila, et al. reinforce this by stat-
ing that Web content of today is in general designed for humans to
read and interpret. A computer on the other hand can only parse
these pages for their layout and underlying data structure, but in
most cases they cannot manipulate them meaningfully or have a way
of interpreting their semantics. But they envision a solution or an en-
hancement to the situation, an interaction between human and com-
puter that is more fluently and beneficiary by being supported with
a component that can access certain data in order to support the user
in a seemingly intelligent way: in 2001 Berners-Lee, Hendler, Lassila,
et al. claimed that computers will step by step increase their capabili-
ties to process and especially “understand” the data that they merely

3

4 the semantic web

display at current times. The idea of the Semantic Web was born,
originally coined by Berners-Lee et al. [28].

1.1 the vision and idea of the semantic web

This section will not give a definition or deeper insights about the
concept of the Semantic Web, but will rather try to further convey the
general vision or the idea from a more high-level point of view. A
more thorough and technical definition of it is given in Section 2.1.

For the familiarisation with the Semantic Web, Section 1.1.1 will
illustrate a real-world example in extension to the one supported by
Berners-Lee, Hendler, Lassila, et al. in [27]. Afterwards, Section 1.1.2
will support a statistical view about the acceptance of Semantic Web
technologies to this date and will compare the current technical de-
velopment in contrast to what was envisioned. Then, potential and
assumed issues are enlisted that lead to the numbers shown before,
which will constitute the perceived “issues” about the vision of the
Semantic Web in Section 1.1.3 and Section 1.1.4.

1.1.1 A Semantic Web Use Case

At the beginning of their article, the authors of [27] picture an ideal
scenario for the application of the envisioned Semantic Web. In the
scenario, two people are intending to solve a problem with the sup-
port of the concept. Therefore, they use their so-called Semantic Web
agents - devices that are not only able to use the “normal” Web for
their purposes, but rather the information supported by the Semantic
Web. The difference between the two concepts of the Web is made
clear, as the semantic agent seems to support the protagonists in their
problem-solving process to a way higher degree than currently pos-
sible. The agent makes use of various “information peers” in order
to suggest solutions that fit the defined task the most. These peers
can be of different kind, but they always support some sort of infor-
mation in the form of metadata - data that further describes or char-
acterises other data or information - that can be seen or interpreted
as knowledge. Examples are homepages, personal applications like
calendars or address books, sources that support medical or trans-
portation information, and so on. The task to solve is generally de-
composed of multiple diverse requirements. These requirements may
originate from different natures, like descriptions, characteristics of
people, temporal and spatial factors, and/or multiple people taking
part. A scenario that is similar to the one in [27] is depicted in exam-
ple 1.

Example 1. Two people (Liz and Arnold) are trying to find a fitting desti-
nation and point of time for a trip to a zoo. The solution they are looking for
needs to fit the following requirements:

1.1 the vision and idea of the semantic web 5

• The zoo needs to feature two certain animals, as Liz and Arnold
are especially interested in seeing giraffes and pandas.

• That specific zoo needs to be in a certain defined spatial distance
and needs to be within reach of public transportation.

• Furthermore, the zoo should have at least a decent public rating.

• As both Liz and Arnold’s vacation time is short and there are already
other appointments, the point of time of the trip needs to fit their cur-
rent timely constraints defined by their calendars.

• In order to gain more detailed information, the two would want the zoo
to support media representations of their attractions - at best about
the desired animals, in good quality, and available for smartphone dis-
play.

• Liz’s agent is defined to trust Arnold’s agent - and vice versa - which
means that both agents incorporate and trust information that is passed
by the other agent to a full extent.

With this input, the semantic agent prompts them with possible solution
options. As one of them is not quite happy with those, they do some readjust-
ments of the requirements and make the request more strict. After this has
been passed to the agent, an adapted solution is then given - including some
warnings that the proposed plan, including the stricter requirements, is in
need of some temporal adjustments of one of the person’s previously planned
time schedule.

Every presented solution of the agent can be further differentiated in order
to see the information about the decisions made that lead to the respective
solution. At last, they find a solution they are both comfortable with. As the
task and its solution is then accepted by both peers, the respective resources
are then automatically updated by the semantic agent to the requirements
supported by this task. In this case, both the calendars of Liz and Arnold are
updated for future tasks to consider and take into account.

This small example does already highlight the complexity that such
a “semantic task” can attain, even with merely few requirements. The
requirements arise from different origins, which means that the sup-
ported information must not necessarily be supported in a uniform
syntax. Next to this fact, also the semantics conveyed by the infor-
mation are in general not understandable right away or in a uniform
way. Also, they can have varying impact on the success of the task
and hence the possibilities of achieving it. Pareto optimal solutions
are possible, however this also induces the agent to communicate
this circumstance accordingly. In addition, next to proposing solu-
tions to the defined tasks, the semantic agent is also supposed to
help in the process after the (possibly first) solution that has been
prompted to its user. By fine-tuning the previously posed require-
ments, other adapted solutions are to be computed, even in excess

6 the semantic web

of the boundaries of the defined requirements - in Arnold’s example
1, the agent proposed a solution that needed the adjustment of other
already planned activities.

Nevertheless, although this problematic poses a broad spectrum
of difficult tasks and sub-tasks that need to be achieved in order to
support a problem solving process with at least satisfying success, the
Semantic Web vision is not only composed of “how it should or could
be”-thoughts, but also ideas, proposals, specifications, standards, and
milestones about the way of how to get to its fulfilment.

Different insights and useful ideas from already existing standardi-
sations and concepts are applied and extended in order to align with
the existing Web architecture. Among those, the HTML protocol, URL
and URI identifiers, as well as the notion of resources in the same
domain are adopted and lifted to the Semantic Web concept. The Re-
source Description Framework RDF [113] supports a way of syntacti-
cally representing the informational data that is contained in various
data silos, which is straightforward to use. These data silos incorpo-
rate information of different domains and can interlink each other in
order to further multiply the usefulness of every single information
peer. In order to support convenient usage of a silo’s data, descriptive
schemata can be supported alongside the data that give a description
about the overall structure of the respective data, called an ontology
(see Section 2.2.3). The two most commonly used schema modelling
languages [173] are the Resource Description Framework Schema
RDFS [37] [72] and the more detailed Web Ontology Language OWL
[76] [70], which both conveniently implement their schema informa-
tion in RDF. This is very similar to the commonly known XML stan-
dard [111] and their respective XSD schemata [112]. Last but not least,
a comprehensive querying language is given by the SPARQL Proto-
col and Querying Language SPARQL [71], which allows for rich and
diverse querying capabilities in order to query the information pieces
from the information silos. All of these standardisations and concepts
will be referred to as the Semantic Web technologies in the remain-
der of this work and will be covered in detail in Chapter 2.

Around these formal cornerstones, Berners-Lee [26] also defines
best practises that should be followed whenever one creates Semantic
Web or Linked Data. Linked Data is a concept closely related to the
Semantic Web, which will be compared also in Section 2.1. These best
practises define how the data should be structured and linked, and
also qualitative requirements that should be met. When these rules
are followed, data silos can be accessed and its data can be used in
the most standardised and efficient way.

With all these contributions, a thorough and comprehensive setting
is given that supports developers and content creators to lift their
“general” Web applications to the standards of the Semantic Web in
order to profit from all its benefits. Nevertheless, the Semantic Web

1.1 the vision and idea of the semantic web 7

concept and its picking up in the Web world of today is not as far as it
was envisioned in 1998. The following section will give an overview
about the Semantic Web’s perceived current standing.

1.1.2 A Look at the Current State of the Semantic Web

At the time of writing of this part of the thesis1 many Semantic Web
datasets and databases are published online. One of the best known
statistics about these datasets is the Linking Open Data Cloud Dia-
gram2 (which in combination of its evolution will be covered in Sec-
tion 2.1), which shows various datasets that have been published in
Linked Data format by contributing to the Linked Open Data com-
munity project and other individuals or organisations. With the last
statistical counting in August 2017 it featured 1,163 different sets of
data3 originating from various domains like Life Sciences, Geography,
Media, or Government.

Next to the LOD Diagram, one of the best known datasets is DBpe-
dia [119], a collection of data that at this moment contains 4,58 million
different semantic “things”, from which more than 92% (4,22 million)
are classified by a consistent ontology [53]. These have been extracted
and structurally conditioned from various Wikimedia4 projects.

Both of these data accumulations show that acceptance of the Se-
mantic Web concept is definitely existing. A survey conducted by Car-
doso [41] in 2007, some years after the initial vision, showed a numeri-
cal breakdown of some statistics about the usage of the Semantic Web.
The author did not see the vision fully accomplished at the point of
time when he undertook the evaluation, but he clearly accentuated
the contributions that have been made in the domain. He also stated
his assumption that a full mainstream adoption of the Semantic Web
is five to ten years away, but also that surveys like his are important
in order to depict the road ahead and reason insights from their re-
sults. One of his results that is interesting the most for this thesis is
shown in Figure 1, which shows a survey conducted with Semantic
Web appliers and the distribution of their specified employment role.

The numbers of Figure 1 are backed up by a more generalised eval-
uation, grouping the participants to work either in the academic or
industrial domain, or both. These numbers showed that around 66%
of the participants classified their working field to the academic do-
main, while only about 18% stated industrial work, and the rest char-
acterised a mixture. This result does comply with the numbers of Fig-
ure 1, conveying that the application of the Semantic Web concept is
tilted towards the scientific sectors rather than industry. This indicates

1 October 2017

2 http://lod-cloud.net/ (last visited 03/12/2018)
3 An updated version of the LOD Cloud features 1,231 datasets in November 2018

4 https://www.wikimedia.org/ (last visited 03/12/2018)

http://lod-cloud.net/
https://www.wikimedia.org/

8 the semantic web

Figure 1: The Role of Semantic Web Users that Participated in the Sur-
vey of Cardoso [41] (From Which the Numbers and the Table Are
Adopted).

that the industry does not yet incorporate Semantic Web technologies
to benefit from its advantages, but it is rather used for research pur-
poses. Cardoso estimates that this tilted circumstance does show a
direct reflection of the current market in 2007 and sees a big potential
in a technology transfer. Nevertheless, in this day and age, more than
ten years later, this situation does still seem to remain.

A more present and more technical evaluation is done by Assaf,
Troncy, and Senart [10], who conducted an experiment that asserts
the quality of the datasets contained in the LOD Diagram mentioned
above. They did this experiment with their application called Roomba
[9], which automatically checks the defined datasets for different po-
tential existing metadata, incorporating not only content metadata
but also metadata that gives information about the usage of the re-
spective database. The categories they check for are categorised as
general, access, ownership, and provenance information. At some occa-
sions, when Roomba detects faulty metadata, it is able to correct it
automatically.

This project has been developed with the importance of metadata
provisioning in mind. Under this task the authors understand the
assignment of models and descriptive information next to the actual
dataset itself, which contains in particular information that shows
how the data can and should be used and how it can be accessed, as
well as the nature and content of its resources.

The results of Assaf, Troncy, and Senart [10] are clear, as they claim
that many of the datasets need attention. Many of the datasets lack
informative access information, while the resources of many others
suffer of low quality, exhibiting undefined or no values at all. The
problematic here is that especially these two metrics represent a de-
ciding factor for industry or enterprises to pick up the respectively
supported data.

1.1 the vision and idea of the semantic web 9

1.1.3 Open Issues of the Semantic Web

Both of the given evaluations indicate the same tendency of the Se-
mantic Web concept being more accepted in the scientific domain
rather than industry. This is strange, as research sees high potential
in the application of Semantic Web technologies and Semantic data
in intelligent systems [19]. Also, by having less contributing devel-
opers and users, this does kind of counteract the overall idea of the
Semantic Web: having many collaborating contributors to the overall
databases increases the knowledge of every participant, as there is
not just more data, but for example also possible peer reviews for
better data quality and better linkage between databases for more
sophisticated and continuative data.

As a reason for this circumstance, several open issues of the Se-
mantic Web technologies are assumed, which must be addressed in
order to increase the number of potential users. These issues are the
following:

insufficient knowledge In contrast to relational databases that
are more commonly known and applied in industry as well as
taught in basic studies, the Semantic Web concept and technolo-
gies as an extension to the common Web represent a more spe-
cialised and new way of data representation and data handling.
This comes with an own syntactical structure of the core data,
own querying languages, and further more specialised specifi-
cations and standards. Solely the fact that learning these tech-
nologies requires timely effort could discourage potential users,
as they are also potentially not aware of the benefits of the Se-
mantic Web beforehand. An exemplary study in 2009 at the Uni-
versity of Potsdam shows that out of 8 selected students in the
studies of both Bachelor and Master in Computer Science, only
three issued that they have little experience in the Semantic Web
or rather heard of the concept at all, while the other five never
came in contact with it in any way. On a scale from 0 (no knowl-
edge whatsoever) to 10 (expert in the Semantic Web domain),
the interviewees scored a mean of 0,9 on that topic [132].

complexity Next to the number of Semantic Web technologies that
need to be learnt, the technologies do also impose technical com-
plexity that does further complicate the process of applying the
technologies in order to eventually take part in the Semantic
Web. This can for example be seen in the formalism that RDF
data and their semantics are built on, which allow automated
inferencing based on the given data in order to conclude new in-
formation. Another example of a perceived high complexity can
be seen in the earlier mentioned Web Ontology Language OWL,
which is based on so-called description logics [14] [85] that are

10 the semantic web

a subset of the first order predicate logic [126] [64]. Hence, in
order to make proper use of a database that is OWL conform,
the user has to have well-grounded knowledge of these logics
and formalisms.

inconsistent data It has already been shown in the research of
Assaf, Troncy, and Senart [10], that many of the existing databas-
es do have shortcomings when it comes to overall data quality,
being expressed by undefined, missing, or incorrect values. This
is even aggravated by the fact that in many cases open databases
tend to be filled in uncoordinated fashion by various heteroge-
nous parties with varying data quality standards, which even-
tually creates very inconsistent data [57]. Oftentimes this data
is even contradictory to existing schemata that would actually
suggest structure [84]. This can lead to miscellaneous problems
when trying to work with the respective database, making it
hard to work with the supported information in a technical or
even automated way, especially in the industrial domain, where
incorrect or false data is even more grave. Next to the evalua-
tions shown above, Hogan et al. [84] also supports the claims
that the problem of inconsistent data exists in many knowledge
databases. Hogan et al. crawled and gathered a dataset consist-
ing of 12,534,481 RDF statements which have been analysed for
various highlighted errors and shortcomings like dereferenca-
bility and accessibility, syntax errors, or data noise and incon-
sistence errors. Next to the quality of the metadata, another
shortcoming that has been mentioned already is the poor ac-
cessibility of some existing databases in terms of bad querying
possibilities or the querying endpoint not being accessible at all,
which further aggravates this problem of the Semantic Web.

1.1.4 The Semantic Gap - A Metadata Problem in the Domain of Multime-
dia

After giving a first introduction about the Semantic Web and enlisting
its perceived issues, this section will complete the first look at the con-
cept by showing a representative issue that eventually arises from the
lack or bad quality of supported descriptive metadata. In reverse con-
clusion, these issues can be solved, or at least alleviated, with more
people taking part in the Semantic Web as well as give them techni-
cal support to do so. The issue at hand is called the Semantic Gap
[157] [75], which is mostly encountered in the multimedia domain. A
visualisation of the problem can be seen in Figure 2.

As described above, the intention of the Semantic Web is to support
descriptive data and information that is not only useable for humans,
but also for computers. This definition of “usable” goes even further,
as with metadata of good quality, computers are envisioned to partly

1.1 the vision and idea of the semantic web 11

Figure 2: Visualisation of the Semantic Gap Problem.

even be able to “understand” the data in order to fuel further intelli-
gent processes or systems [83].

The Semantic Gap depicts the circumstance of divagating interpre-
tation capabilities of the same object between humans and computers.
A human being can use its whole “inner knowledge base” - its past
experiences and actions - which can be recombined and applied at an
instant in order to fulfil complex chains of thought, eventually deter-
mining the information that is contained in a given object he sees - in
the case of Figure 2 a panda animal that is depicted on a picture. The
bits of information that a human uses in order to come to a conclusion
are of a very complex and intellectually high nature and can therefore
be called high-level features. As an example, a human can infer to
see an animal by recognising a set of eyes with a muzzle relatively
close to it. From that point on, he can interpret a bear-like shape and
the black and white colouring to complete his interpretation.

By contrast, computers in most cases can not perform such an inter-
pretation. They have to rely on technical information and more basic
features that are more or less dependant on the given (multimedia)
file. This is in general structural and technical information - so called
low-level features. These features can oftentimes be determined by
analysis processes and then be supported next to the given multime-
dia file in the form of metadata. In the case of our image, this could
be simple image related information like the height, width, or date
of the picture, while the simple analysis processes can use for exam-
ple pixel information in order to identify the main colour or edges
and hard colour breaks of the picture. Nevertheless, with this level
of information it is rarely possible to determine the “meaning” of

12 the semantic web

the given multimedia object, therefore manifesting the Semantic Gap
problematic.

To conclude, this section gave a short insight on the Semantic Web.
A lot of good ideas in combination with a thorough and rich vision
led to the development of comprehensive languages and standardis-
ations that allow the interaction with Semantic data. Eventually, the
aim is to make data not just use- and understandable for humans but
also computers, in order to make the information directly accessible
for intelligent systems. With the initial idea being dated back almost
two decades at the point of writing this thesis, it has also been seen
by numbers and evaluations that the vision however has not yet been
fully enfolded and the potential of the Semantic Web is not applied,
especially in the industry sector. In addition, a representative problem
that arises from missing or bad quality metadata in the multimedia
domain has been shown.

In order to find an explanation for this circumstance, some poten-
tial issues were identified that are expected to eventually lead to the
weak acceptance of the Semantic Web concept. Lifting the concept to
an all around higher acceptance or even a by default application in
the Web world of today features many more other starting points than
mentioned here, and would exceed the limits of this thesis alone. Nev-
ertheless, this thesis will show that it is possible to bring the Semantic
Web concept closer to developers and users by solving or avoiding the
issues mentioned above. It is assumed that these require an up-front
effort from the potential user in order to apply the Semantic Web
technologies, eventually discouraging him to go further. With differ-
ent contributions that align, extend, apply, enhance, or abstract from
the existing Semantic Web technologies, it is envisioned to overcome
the assumed problems, achieving a broader and higher amount of
users, in the end creating not just better quality metadata, but also
more metadata altogether.

1.2 a technical setting for this thesis - the mico project

Before the contributions of this thesis can be enlisted in Section 1.3,
it is important to define the technical environment in which they are
embedded in. This serves both as a foundational use case as well as
a best-practice showcase that evaluates the results of this thesis from
a technical standpoint. A general description of the overall project is
displayed in Section A.1.1 in the Appendix, while a more detailed
description of the mentioned setting is given in Section 5.2.

The MICO project focuses a multimedia analysis scenario, which
can be closely related to the exemplary Semantic Web use case de-
scribed in Section 1.1, as the incorporated peers are similar and can be
theoretically exchanged through their high-level roles. In both cases,
information peers are present that work autonomously and provide

1.3 research questions and contributions 13

information once requested. This returned information is generally
available in a heterogenous format, which needs to be combined to
be commonly understood. Dependencies can exist between different
peers and eventually further information is to be gained once all the
information bits have been gathered and recombined.

Another accordance can be found in the perceived issues at hand
that both scenarios involve. The issues detected with the overall Se-
mantic Web concept in Section 1.1.3 can directly be encountered and
mapped to the MICO use case, as new technologies with high initial
barriers need to be learnt and incorporated by various development
peers, and eventual results were contributed by various information
peers with varying backgrounds or purposes. Because of this, solving
the circumstances in the MICO environment does have direct implica-
tions on the overall Semantic Web domain. Therefore in order to show
approaches for the Semantic Web, the contributions of this work are
embedded in MICO, which does serve as a technical basis as well as
a best practice example.

1.3 research questions and contributions

The contributions of this work in the domains of the Semantic Web
and Multimedia aim to solve the scientific issues enlisted through-
out Chapter 1. They can be divided into three core pillars with the
addition of evaluation results. In combination with raised research
questions, they are the following:

1. How to express, create, and especially recombine the created
results of various heterogenous metadata producers?

Contribution: Multimedia Metadata Model
Metadata modelling and associated models are the backbone of every
Semantic database, as they enable both the persistence and querying
of the data in a structured fashion. Especially in the multimedia do-
main, metadata is very important for the multimedia’s further appli-
cation.

For that reason, the MICO Metadata Model MMM is developed
which covers both of the domains of multimedia and the Semantic
Web. The MMM is a modular, extensible, and rich metadata model
for multimedia data that follows both Linked Data principles as well
as requirements found in related work in terms of an ontology for
multimedia. On top of comprehensive possibilities of addressing both
the semantic content of a multimedia analysis process as well as the
target that the content is referencing, the MMM introduces several
provenance and composition elements, eventually allowing to create
a diverse and traceable metadata background for analysed multime-
dia items and their results. With both its expressiveness and exten-
sibility, the MMM is also able to incorporate heterogenous metadata

14 the semantic web

producers that are not known to a given system or application in
advance.

2. Are there ways to lower the initial barrier that is posed by Se-
mantic Web Technologies, which manifests mainly in the fields
of creation, processing, and requesting of the respective seman-
tic data?

Contribution: An Abstraction Layer for Semantic Technologies
The technologies applied in the Semantic Web impose high initial
barriers for developers that are newcomers to the Semantic Web. Of-
tentimes this can lead to a discouragement and therefore non-parti-
cipation of the respective developers which counteracts the overall
vision of the Semantic Web.

As a solution to this, the Object-Rdf-Mapping library Anno4j is
proposed, which supports an abstraction layer “on top” of the ac-
tual Semantic Web database. Using Anno4j, developers are not con-
strained to use Semantic Web technologies but can rather use con-
cepts and processes they are familiar with, in this case, the object-
oriented programming language Java. Doing so, the development of
Semantic Web applications gets both facilitated and accelerated. Ad-
ditionally, the accessibility of Semantic Web technologies gets diversi-
fied enabling a much broader field of potential users. Especially the
querying component features several different ways to request exist-
ing metadata of a database, ranging from very basic, but sparsely
configurable querying capabilities to specialised and more compre-
hensive path-based queries.

The following research questions will feature the term complex-
ity, which is related to both ontologies of the Semantic Web and the
respective pendant of domain models in the Anno4j library. These
are assessed to be more complex, the more distinctive classes with
particular relationships and properties they implement, and how the
interplay amongst these classes is in terms of an inheritance hierarchy
[153], which can be both deep and broad. A more detailed definition
will be given in the course of this work.

3. With the Anno4j library applied as use case:

3.1 Can Object-RDF-Mappings deal with complex domain mod-
els?

3.2 Is the application of complex domain models possible in
an efficient way?

3.3 What can be done with Object-RDF-Mappings in order to
(better) support data consistency?

3.4 Can the application of Object-RDF-Mappings be enhanced
by allowing different access technologies?

1.3 research questions and contributions 15

Contribution: Enhancements to the Object-RDF-Mapping Concept
Furthermore, technical extensions to the Anno4j library lift the map-
ping concept to a higher functional level, both in terms of more conve-
nient application as well as better quality of produced metadata. The
Anno4j Generation Tool allows the parsing of existing descriptive
metadata schemata in order to automatically generate the necessary
Java Classes for the library. This allows users to directly work with
more complex domain models as well, as in contrast the implementa-
tion by hand is prone to errors and requires a high amount of timely
effort. A possible concurrent generation of so-called “proxies” needs
some up-front processing time, but its produced results reduce the
subsequent time constraints of working with the complex domain
model to a imperceptible minimum. Next to this feature, a validation
component is realised that can automatically check data that is to
be created, if it suffices previously defined validity requirements. If
these are not met, no data is produced and therefore no faulty data is
inserted into the database, in the end increasing the databases meta-
data quality. In addition to this, qualitative and descriptive feedback
is given back to the user in the case of validity violations. The access
diversity of the library is further extended by a RESTful extension
that can directly be applied to an existing set of Anno4j Classes. This
allows users to conveniently interact with the Semantic database via
the commonly known HTTP standard.

Aside from the contributions enlisted above, which are motivated
by a concretely defined research questions, the work done for this
dissertation has also motivated further interesting topics that consti-
tuted meaningful results and therefore can also be seen as scientific
contributions:

Further Contribution: Embedding of the Application Contributions
In a final step, all the other contributions are combined functionally
in the MICO Platform. With the platform being affected by both the
domains of Multimedia and the Semantic Web, the MMM and Anno4j
represent solutions to increase the platforms applicability. Next to
this point of view, this does also serve as a technical use case for the
contributions.

Beyond that, further extensions to the last officially published ver-
sion of the MICO Platform are proposed that mainly base on the latest
Anno4j features (which were not incorporated in said release version).
These have the potential to increase the convenience in application
and the correctness of the produced results of the MICO Platform
further. This construct is subsumed under the name MICO+.

As another minor contribution, the lifecycles of metadata in both
the domains of Multimedia and Linked Data will be highlighted and
discussed. A merged lifecycle is proposed that incorporates the re-

16 the semantic web

quirements of the lifecycles in order to generate a detailed represen-
tative about Semantic Multimedia metadata. This allows more fine-
grained and modular insights about the process of metadata creation
in the field of the Semantic Web, enabling better and more compre-
hensive capabilities to produce metadata that forms backgrounds for
multimedia items. This approach is also incorporated in the MICO+
Platform concept.

Further Contribution: Evaluation of Anno4j
Enlisting related work in the field of Object-Rdf-Mapping backs up
the Anno4j library from an overall technical standpoint. Therefore,
evaluations and experiments have been conducted focusing on the
additional features that the Anno4j library introduces to this kind of
concept in order to support qualitative backing for the implementa-
tion. By enlisting runtime evaluations, it is shown that the incorpora-
tion of Anno4j does not impede the overall runtime of an application.
These evaluations do also support the answer for research question
3.2.

As a side-result of the Anno4j Generation Tool evaluation, an aware-
ness for the structure of metadata models and ontologies is gained,
which allows to determine the “structural complexity” of a given
schema. The evaluation process applies different structural parame-
ters originating of both classic RDFS or OWL schema features and
the Anno4j extensions to it, which eventually dictate the structure of
the given schema. With the assessment of the mentioned complex-
ity, it can be decided if the utilisation of a generation step is costly
sensible or not in terms of overall application runtimes.

1.4 structure of this thesis

This thesis is composed of five parts. The preface gives an introduc-
tion to the overall topic and domain of the Semantic Web and moti-
vates the remainder of the work. Every chapter that introduces a core
contribution is opened with a related work section, which supports
insights as well as delineations and starting points for the respective
own contributions. Also, these chapters are enclosed by an own short
summary and outlook.

After an initial picture of the Semantic Web and its vision, Part ii
establishes the concepts in a more detailed fashion. Therefore, Chap-
ter 2 commences by a definition of the term “Semantic Web” and
compares it to other existing, partially very similar, other concepts.
Then, an in-depth overview is given of the related standardisations
and languages that are present and commonly used in the Semantic
Web. A focus point is thereby set on the backbone of every Semantic
database: metadata and its modelling.

1.4 structure of this thesis 17

With the knowledge of metadata modelling, Chapter 3 combines
this practice with the domain of multimedia. After a survey about
related approaches, the Web Annotation Data Model as a basis for
the own contribution is enlisted and explained. An extension to the
WADM lifts its context to a cross-multimedia use case. The result of
this constitutes the first contribution of this thesis: the MICO Meta-
data Model MMM.

Part iii complements the theoretical background gained from prior
sections with technical pendants. Therefore, Chapter 4 covers the
topic of Object-Rdf-Mappings, firstly in terms of related approaches
and then elaborately introduces the second contribution in the form
of the own ORdfM implementation Anno4j with its various features
that allow an abstracted and rich approach to Semantic Web tech-
nologies. Afterwards, Chapter 5 ties all the prior contributions to-
gether and highlights the MICO Platform as a technical basis that
incorporates the MMM and Anno4j for their beneficial factors that al-
leviate the addressed issues of the Semantic Web. Also, the technical
steps that metadata takes throughout its lifecycle are accentuated and
covered. Eventually, an extended form of the MICO Platform, called
MICO+, is proposed with a description about its further potential
benefits.

In order to validate the approaches and claims made throughout
this thesis, Part iv first shows related evaluations and experiments
conducted for the general concept of Object-Rdf-Mappings. Secondly,
own extensions to the concept are evaluated qualitatively and dis-
cussed for their real-world application.

Part v summarises the thesis with a résumé, an outlook, and a
future work section in Chapter 7.

Part II

M O D E L L I N G M E TA D ATA - C L A S S I C
A P P R O A C H E S A N D A M U LT I M E D I A C O N T E X T

2
P R I N C I P L E S O F M E TA D ATA M O D E L I N G A N D
Q U E RY I N G

The vision of a fully integrated Semantic Web described in Chap-
ter 1 presents a state of the Web in which computers can assist hu-
man workflows by supporting aggregated information found in the
Web. The data that is incorporated in these semantic processes is en-
visioned not only to be readable, but rather be understandable for
these computers. This enables a richer field of application for vari-
ous procedures like a semantic search. An issued search query can be
interpreted in a more “humanly fashion”, with the result that func-
tionality beyond the classic possibilities can be applied. This could for
example be background knowledge about some fact. It is also possi-
ble to connect data collections and/or sources to one another in order
to create a combined knowledge base that increases the applicability
and usefulness of the data for every peer involved.

To achieve this, a more precise instrument of describing documents
is essential. This description, or more precisely the parts of it, is called
metadata, which is commonly defined as data about data [106] and
constitutes the “fuel” of the Semantic Web technologies. This data
generally contains information like title, dates, author information,
and so on. Without a baseline of correct and sophisticated metadata
associated to the data in the Web, as well as an adequate degree of
quality of the same, a Semantic Web is not feasible. Next to the data
itself, it is also important to have that data interlinked in order to
achieve a coherent state that can encourage knowledge discovery. As
it will be seen in the upcoming discussion about the evolvement of
the Web, the glue that holds together the traditional document-centric
Web are hypertext links between HTML pages. For the Semantic Web,
the Web of Data, these links are RDF links between single pieces of
data or data collections. Such an RDF link symbolises the relationship
between two pieces of data. This relationship can have various types,
each illustrating another semantic between the given data, for exam-
ple friendship between two human entities or the affiliation of a book
to its corresponding author [32].

With this importance of metadata and a linked structure in mind,
this chapter will first position the idea of the Semantic Web in the
landscape of other prevailing concepts in order to foster its poten-
tial advantages in Section 2.1. Afterwards, Section 2.2 explains the
Resource Description Framework RDF, the de-facto standard when it
comes to describing and modelling metadata in the Semantic Web, as

21

22 principles of metadata modeling and querying

well as SPARQL - the SPARQL Protocol and Query Language - as the
de-facto standard for querying semantic data in Section 2.2.7.

2.1 the semantic web and other familiar concepts

To this point, various insights about the Semantic Web, its concepts
and ideas, advantages, and also factors that are not yet as they have
been envisioned initially have been discussed. Next to this, there exist
some other concepts around the world of the Semantic Web, namely
“Web of Data”, “Linked Data”, and “Open Data”. Although every
concept by itself has several definitions in its own environment, there
has been some discussion when it comes to the question of how every
approach “interacts” with each other. Do they influence each other?
Do they have mutual influence or enabling? Does one concept fully
include the other concept or do they make use of each other? A blog
post1 from Tom Heath gives an impression of the different views (also
being entailed by a discussion of its own), picking up on a comment
of Tim O’Reilly. This section is intended to pick up on single defi-
nitions of all the mentioned concepts and give insights about their
arrangement. At its end, a subsumption interprets the various con-
cepts and explains how they are understood for this work.

web of data The vision that was introduced in Chapter 1 imag-
ines a World Wide Web that can help to solve difficult semantic tasks
that consist of various different components, ranging from temporal
constraints like time scheduling to availability checks and so forth. To
achieve this, the structure of the Web and its entities needs to support
the proposition as well as the querying for this kind of information.
The “classic” Web as it is known by now is not suited for these kind of
tasks, as it was designed to be a Web of Documents. The Web pages
and documents contained in this kind of Web were solely intended
for humans to read, use, and understand. Links between the docu-
ments allow for navigation to make them browsable, so the process of
finding desired information sometimes leads to several hops over dif-
ferent Web pages combined with a cumbersome search through each
Web page for the desired bits of information. The recombination of
those bits is also imposed to the user himself. In this design, the data
that encapsulates discoverable knowledge and information is merely
contained in data silos that are “hidden” behind their Web presences,
and consecutively only accessible through mostly proprietary APIs.
As mentioned before, this information is processed by the respective
peer and then presented only in human-readable form. This does not
enable the mechanism that is described by Tim Berners-Lee’s vision,
as the acquisition of the desired information out of mainly human-

1 http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf/

(last visited 03/12/2018)

http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf/

2.1 the semantic web and other familiar concepts 23

readable sources is very costly, if possible to be done at all. The Web
of Documents needs to evolve into a Web of Data that allows com-
puters to retrieve data in a more convenient fashion [154] [32] [81].
Figure 3 illustrates this evolution.

Web of Documents Web of Data

Figure 3: The Evolution of a Web of Documents to a Web of Data.

With the vision and the ideas discussed so far, the design of appli-
cations evolves towards making its data and associated information
more accessible. Rather than having isolated data silos in combination
with Web pages that link to each other, the data is “interwoven” in
the Web resource or it is made accessible through specially designed
endpoints that are paired with their respective Web page or access
point. This makes the Web usable to both humans and computers at
the same time. This process has been initiated with the first concepts
in 2006 [26]. More sophisticated efforts have been made since then,
in order to lift the overall concept of “data” in the Web to a higher
position and give it more significance in comprehensive processes,
resulting in a new closely related layer interwoven with the classic
document-oriented Web. Heath and Bizer [81] comprise the content
of the contributions of Bizer, Heath, and Berners-Lee [30] and Mendel-
sohn [118] by stating that many organisations as well as individuals
are applying Linked Data principles for their published data, which
leads to the fact that it is not “simply” put on the Web but rather
supported in a Linked Data foundation. This eventually constitutes a
global data space that is called the Web of Data.

As this work will later on focus on the combination of metadata
with multimedia items, it is also interesting to highlight the benefits
of those items that are incorporated in the Web of Data. Schandl et al.
[146] state that there are two main advantages. The first one focuses
on the fact that multimedia data has an important requirement when
it comes to a proper metadata allocation. This metadata is used when
the multimedia items are utilised, queried, and applied in various
occasions like multimedia players. For this purpose, the Web of Data
might already support a wide range of available metadata that could
be applied conveniently in order to increase the semantic description

24 principles of metadata modeling and querying

of the item. The second point they make is the visibility. Once inserted
into the Web of Data, the multimedia item might be discovered over
yet unseen (metadata) connections.

linked data As the statement above about the Web of Data shows,
an essential part of making it come true is the utilisation of Linked
Data. Here again, ambiguity exists about the concrete definition of
the concept, or more precisely, which data really is allowed to be en-
titled as Linked Data [40]. The central argument centres around the
question if the given piece of data abides the “Linked Data Design
Issues” defined by Berners-Lee, which are namely:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, us-
ing the standards (RDF*, SPARQL).

4. Include links to other URIs, so that they can discover more
things.

Since their formulation in 2006, these rules have been adopted by a
growing community. In general, however, they are only a recommen-
dation that one should follow when producing Linked Data. By not
following the defined issues, the benefit and applicability of some-
one’s data in the context of the Web of Data is compromised by a
great deal, if present at all. The Semantic Web community would even
argue if that data can be called Linked Data altogether (Side note: in
the dispute about the definitions, it is also practice by some to call
data which is conform to the design issues “Linked Data” with cap-
italised letters, while data without that claim is denoted as “linked
data” [40]).

In [146], Schandl et al. enlist the technologies that are utilised in
conjunction with Linked Data. The HTTP protocol and the architec-
ture of RESTful Web Services enable the possibilities to request, ma-
nipulate, and transfer resources over the Web, as well as supporting
links to other resources. Content negotiation allows to support the
data resource conveniently next to a web presence. The actual techni-
cal representation of the data is not specified by these two technolo-
gies, however there are two recommendations also supported in the
Linked Data design issues: RDF for the resource representation and
SPARQL for the querying protocol (both technologies will be covered
in Section 2.2).

open data The third term that will be integrated in the field of
the Semantic Web family is Open Data. To the best of my knowledge,
there is no fixed definition for this term, but in general it addresses

2.1 the semantic web and other familiar concepts 25

data that is released under an open license and therefore there are
no restrictions for someone to use the data freely and in any way
envisioned. The concept of Open Data is very often recombined in
conjunction with Linked Data under the name of Linked Open Data.
However, as one can see, there are differences in both terms and it is
possible for open data to not be linked, as well as linked data that is
not open [40]. As for Linked Data, Tim Berners-Lee also formulated
a ruleset that one should follow when producing Open Data. It is
implemented as a star system, suggesting the usage of incremental
rules. The more rules your data can satisfy, the more stars will be
acquired and the more “powerful” and conveniently usable your data
gets [26]. The ruleset is formulated as follows:

1. (?) Make your data available on the web (whatever format) but
with an open licence, to be Open Data.

2. (? ?) Make your data available as machine-readable structured
data (e.g. excel instead of an image scan of a table).

3. (? ? ?) As (2.) plus: Use non-proprietary formats (e.g. CSV in-
stead of excel).

4. (? ? ? ?) All the above plus: Use open standards from W3C
(RDF and SPARQL) to identify things, so that people can point
at your data.

5. (? ? ? ? ?) All the above plus: Link your data to other people’s
data to provide context.

As one can see, these recommendations are somewhat related or
overlapping to the set defined for Linked Data. In a best-case scenario,
published data should even align to both rulesets in order to make
the best possible contribution to the Linked Open Data (LOD).

current status When talking about the entirety of the avail-
able datasets published as Linked Open Data and their interconnec-
tions, it is called the Linked Open Data Cloud. Abele, McCrae, Buite-
laar, Jentzsch, and Cyganiak, the team and contributors of http://

lod-cloud.net/, have committed several diagrams that contain all
datasets that have been/are currently registered at https://datahub.
io/, to show the status of the LOD Cloud at different points of time.
Figure 4 shows the evolution with illustrations of the years 2007 (May
and November), 2008, 2009, 2014, and the central coloured one, which
illustrates the current version of 2017

2. In all diagrams a node repre-
sents a dataset, while an edge represents a connection between two
datasets, or more precisely, a link between data contained inside the

2 by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyga-
niak. http://lod-cloud.net/ (last visited 03/12/2018)

http://lod-cloud.net/
http://lod-cloud.net/
https://datahub.io/
https://datahub.io/

26 principles of metadata modeling and querying

given datasets in order to generate context between the data. Through
all the illustrated inquiries of datasets, the amount of datasets started
with 12 recorded datasets in early 2007, 28 in late 2007, over to 45

in 2008, 95 in 2009, 570 in 2014, and a total of 1139 datasets in 2017,
which represents a growth of 100% of linked datasets in the last three
years. The colours of the nodes represent the domain that the dataset
is attributed to. This reveals that the majority of Linked Data in 2017

lies in the sector of Life Science (red), Linguistics (green), Government
(yellow), Social Networking (grey), and Publications (white).

interplay Now that all concepts have been highlighted in short,
Figure 5 illustrates how the interplay between them is interpreted in
this work. The insights enlisted about Linked Data and Open Data
cover technologies which allow the production of data to incorporate
it in the Linked (Open) Data Cloud, as well as sets of best common
practices that should be applied when doing so. When complying to
these recommendations, the data is best fit to be incorporated into the
LOD Cloud and hence it can be discovered and reused by other users
in a convenient way. This data can then also be integrated into web
presences, like homepages or publicly accessible databases, enabling
the data to be not only a part of the classic Web of Documents, but
rather lifting the Web to be a Web of Data by interweaving the con-
cepts of both. Last but not least, if all this is combined and the result
is a discovery, application, reuse, as well as a playing back of informa-
tion in order to contribute to a combined and collective knowledge
base, talk is about the Semantic Web. Further delineations against
other concepts such as Artificial Intelligence [114] [137] [65] or Entity-
Relationship models [47] can be found in [29].

The main advantages of the applied concepts have been mentioned
throughout this section, to sum them up, the following enlistment
will outline them in a combined fashion [30] [81]:

• Data that is integrated into the Web of Data can be generic and
is not bound to be of a specific domain or field of application. By
using RDF as a common standardised data format, any kind of
data can be incorporated. In addition to this, the contribution to
the Web of Data is not constrained to a defined set of people or
experts. Anyone can publish Linked (Open) Data and therefore
can make a contribution to a combined knowledge base.

• This freedom could however also bear some disadvantages, as a
completely dynamic range of possibilities to model someone’s
data could lead to chaotic data heaps that cannot be understood
by anyone else. Nevertheless, the Linked Data supports the defi-
nition of ontologies, vocabularies, and/or schemata (see section
Section 2.2 for an explanation) in order to give meaning to the
supported data. Because of this and the application of the next

2.1 the semantic web and other familiar concepts 27

Fi
gu

re
4

:
Th

e
Ev

ol
ut

io
n

of
th

e
Se

m
an

ti
c

W
eb

.

28 principles of metadata modeling and querying

The Semantic Web

Web of Data

Open
Data

Linked
Data

Figure 5: Interaction Between the Concepts Around the Semantic Web.

advantages, the defined data can be dereferenced, supporting
further information of how to use it. As a result, the data be-
comes self-describing.

• As described above, next to the links between documents, the
Web of Data also interlinks the data that is contained in it. Be-
cause of this, the discovery of knowledge, further information,
and data that might be interesting to a user evolves from a self
dependant search through the web to an automatic discovery, as
links from one resource or a data silo can link to other instances.
Semantics can also be added to these links, further enhancing
the usability of the discovered linked data.

• There are also advantages from an application point of view.
Rather than programming against a fixed endpoint with restric-
tive requirements, Linked Data relies on the standardised tech-
nologies HTTP, RDF, and SPARQL, in order to support a homo-
geneous way of accessing data. As a consequence, the whole net-
work can be discovered using the same querying mechanisms.

As can be seen, essential cornerstones of the Semantic Web are the
Resource Description Framework RDF as well as the corresponding
de-facto standard querying language and protocol SPARQL. Because
of this, Section 2.2 will give an extensive description of both specifi-
cations.

At this point it is important to mention that with the status of this
work an awareness is present of the fact that beyond the Web of Data
there are other, further advanced concepts of the WWW landscape:
the Web of Things [183] applying technologies of the Internet of
Things [178], and even beyond there exist ideas about the Web of
Thoughts or Emotional Web [18] [127], whose vision it is to create
a working environment between human and computer via the per-
ceived emotions and feelings of the interacting person.

Just as with the other discussed concepts, the Web of Things does
not include a strict definition, but rather promises to implement ubiq-
uitous computing and context-awareness among devices, creating am-
bient intelligence. This is achieved by enabling devices or objects (this

2.2 the “resource description framework” - the backbone of metadata modeling 29

can be classical devices taking part in the Web like computers, smart-
phones, tablets etc., but especially everyday devices that were not
originally planned to do so, for example temperature scales and re-
frigerators) to identify, receive, communicate, or populate as well as
process data not just for and by itself, but rather in a network of such
devices over the Internet in order to comply a useful objective. This
process is executed making use of various technologies originating
from both “basic” Web technologies as well as technologies of the
concepts described above. In addition, long time known and applied
technologies like Sensor Networks [6] and Near Field Communica-
tion [174] find use in the Internet of Things to further enhance its
capabilities. Furthermore, the concept broadens the described func-
tionalities especially in terms of number and the kinds of devices
that can take part in such a network. Modern examples are the classi-
cally known “intelligent home”, supporting useful information to the
resident like food stocks that are running low and other processes
like turning on the heat when the resident is close to his home.

It is important for this work to delimitate itself against the concept
of the Web of Things, which poses the next step of evolution after
the Semantic Web. The extractors that will be utilised throughout the
following work are not as “intelligent” and ubiquitously working as
devices operating in the Internet of Things. They are rather devices
that rely on being called, only their internal process is working au-
tonomically. Because of this, the remainder of the work will rather
focus on the representation and allocation of passed information, as
well as its processing and utilisation, which is to be positioned in the
fields of the Semantic Web rather than the Web of Things.

2.2 the “resource description framework” - the back-
bone of metadata modeling

The Resource Description Framework RDF is the de-facto standard
when it comes to metadata in the Semantic Web. Additionally, RDF
can also be utilised when the modelling of information needs to be
described. RDF is composed of a family of W3C specifications with
the first recommendation issued in 1999, which has become a full
specification document in 2004 [113].

There are several advantages posed by RDF, which align and sup-
port the advantages of the Semantic Web described in Section 2.1.
Through RDF, computer-readable information can be produced that
is understandable by other software or computers in a convenient
fashion. This enables your own dataset not only to be linked to oth-
ers, but also be linked to by others as they can understand and use
it quite comfortably. Enriched and combined datasets contribute to
the collective knowledge of every participant. Additionally, combined
data allows for federated queries at one access point rather than ex-

30 principles of metadata modeling and querying

pensive information gathering at various locations. In the pursue of
Linked Open Data (see Section 2.1), openly accessible datasets of com-
mon use cases are designed and offered for public usage. By not just
linking the data but also incorporating persons as well as provenance
information, a social network can be established that further enhances
data quality and confidentiality.

This section will give a step by step introduction to the Resource
Description Framework RDF. To achieve this, Section 2.2.1 explains
the basic information unit of RDF called a statement. Afterwards, Sec-
tion 2.2.2 will relate the statement to the overall concepts that consti-
tute the metadata implemented by RDF. Therefore, Section 2.2.2 also
enlists and explicates the specification documents of the RDF frame-
work that contain the relevant information. Section 2.2.3 then utilises
these RDF basics in order to introduce ontology modelling with RDF.
A disclaimer that explains the extrinsic structure of RDF graph pic-
tures of this work is also contained. Afterwards, Section 2.2.4 ex-
plains the possible contextualisation of RDF data via so-called named
graphs. Section 2.2.5 enlists various serialisation formats of RDF data,
while Section 2.2.6 introduces the advanced RDF features inferencing
and reification in short. The overall illustration is concluded in Sec-
tion 2.2.7 by an overview of the SPARQL specification, the de-facto
standard language/protocol to query and manipulate RDF data.

2.2.1 Information Units in RDF and Their Structure

Using the term “structure” to describe information units and their
representation in RDF is actually quite exaggerated, as it is in fact
pretty straightforward in its basic components. The “smallest” entity
in RDF to describe metadata is the statement, a construct to convey a
fact or piece of information. Therefore, the statement consists of three
parts that are corresponding to the concept of a rudimentary sentence
of spoken language: subject, predicate, and object. The intended fact
is concluded by the combination of predicate and object, which is
then related to the subject. The following sentences can be seen as
examples (yet abstracting from proper RDF syntax, which will be
introduced later):

• Bob is a human.

• Cesar is a cat.

• Cesar is the pet of Bob.

• Bob’s surname is “Green”.

• Bob is 30 years old.

• Cesar is 5 years old.

2.2 rdf - the backbone of metadata modeling 31

The subjects in these statements are Bob and Cesar, while the ob-
jects are human, cat, Bob, (the textual string) Green, and two numerical
age declarations. The predicates that complete the statements between
subject and object in this case concern the assignment of a kind of
worldly instance, the assignment of a surname, age definitions, and
the association of a pet towards its owner.

Statements are either represented in their subject-predicate-object
form or, more human-friendly to read, as a graph composed of nodes
and edges. Subjects and objects are the nodes, while predicates are
illustrated as (directed, from subject to object) edges between those
nodes. An example for the first two statements “Bob is a human” and
“Cesar is a cat” can be seen in Figure 6.

Bob humanis a

Cesar catis a

Figure 6: Two Simple Statements Presented as Graph.

These two statements are not related in any way, but when more
and more statements are gathered, relations between nodes and state-
ments are developed and a network of information emerges. A graph
structure is created eventually when one displays multiple statements
using this representation. An example with the statements defined
above can be seen in Figure 7. With the addition of the pet corre-
lation between Bob and Cesar, the statements issued in Figure 6 are
connected. The other statements - the ages and the surname - add
more meaning to the described knowledge base.

Several important key aspects of modelling information with RDF
can already be seen at this point. The nodes of the graph can both
serve as subject and object, which allows interconnection of the infor-
mation holders in a thorough and extensive fashion. The targets of
the predicates are of different nature: they can describe simple val-
ues like numbers and strings, some kind of instance description of a
given individual, and as mentioned before, other nodes of the graph
to create connections between two individuals.

This shows in summary, that simple information units like the state-
ments can be used in combination in order to create meaningful accu-
mulations of information. Statements are built with three components
- subject, predicate, and object - to convey their information, and can
be drawn as a graph using nodes and edges. In order to enhance this

32 principles of metadata modeling and querying

Bob human

Cesar cat

is a

is a

is the pet of

30 age

5 age

surname

"Green"

Figure 7: Combined Statements Presented as Graph.

formalism to convey information, certain rules and a schematic ap-
proach to produce the information units are necessary. The de-facto
standard in the Semantic Web of today is the specification of the Re-
source Description Framework.

2.2.2 RDF Basics and Concepts for Metadata Modelling

The RDF specification supports readers with knowledge required in
order to understand and produce RDF data. Additionally, for more
in-depth information, further reading is enlisted at various occasions.
The specification is divided into several documents with different pur-
poses, namely:

• RDF Primer: Gives the reader the basic background about every
feature of RDF and explains where further explanations are to
be found (original draft issued in 2004 [113], updated to version
1.1 in 2014 [151]).

• RDF Concepts and Abstract Syntax: Defines the abstract syn-
tax for all RDF elements, enabling to create and link RDF-based
languages and specifications. Also gives more in-depth explana-
tion of the important structures and elements of the RDF spec-
ification (original draft issued 2004 [99], updated to version 1.1
in 2014 [52]).

• RDF Semantics: This document describes the semantics of the
RDF vocabulary, explaining how certain elements and concepts
are to be interpreted. Additionally, entailment and inferencing
rules are defined (original draft issued 2004 [79], updated to
version 1.1 in 2014 [80]).

2.2 rdf - the backbone of metadata modeling 33

• Various Standardised RDF Serialisation Formats: These for-
mats describe syntaxes that are used to represent RDF data in
textual form and therefore formulate RDF graphs. Different syn-
taxes have varying syntactical output, but are logically and se-
mantically the same when based on the same underlying data.
The best-known among the serialisations are discussed in Sec-
tion 2.2.5.

• RDF Schema Specification: The RDF Schema (RDFS) specifi-
cation is an extension for the basic RDF specification and de-
scribes a vocabulary and the process of using RDF to describe
own vocabularies. It also describes the already built-in vocabu-
lary of RDF and RDFS (original draft issued 2004 [37], updated
to version 1.1 in 2014 [72]).

• OWL 2 Web Ontology Language: This suite of specifications
(with the overview document [70]) is developed by the W3C
OWL Working Group3 and is the revised and extended version
of the OWL Web Ontology Language [76]. Like RDFS, OWL is
used in order to design and develop ontologies for semantic
data that can be shared over the Web and therefore be under-
stood by computers. To “design” an OWL ontology, the appli-
cation of different core concepts is necessary. The conceptual
structure is defined in the ontology, while a syntax defines the
external structure of the data in order to make it parse- and
understandable by computers. On top of these two, a semantic
defines the meaning of the designed ontology. The OWL 2 spec-
ification supports different profiles that are all sub-languages of
the core language OWL 2, which allow the user to trade some of
the potential expressiveness in favour of computational and/or
implementational benefits.

In the following, an explanation of the RDF concepts oriented to-
wards the specifications enlisted above will be given. The focus is laid
on the requirements posed by the following work, so not all aspects
of the specifications will be highlighted or explained in-depth. Use-
case oriented examples will support the process. The explanation will
nature from a mix of all enlisted specifications RDF, RDFS, and OWL.

As mentioned in Section 2.2.1, the information units in the RDF con-
text are the statements, consisting of three components: subject, pred-
icate, and object. Accumulations of multiple so called RDF triples
are called a graph. This graph describes information about resources,
which are represented by the nodes of the graph. A resource in this
case can be anything, from abstract things to physical, worldly things,
like people, documents, (historical) events, numbers, textual descrip-
tions, and so on. To achieve this, the RDF specification uses three
concepts that can occur in the graph: IRIs, literals, and blank nodes.

3 https://www.w3.org/2007/OWL/wiki/OWL_Working_Group (last visited 03/12/2018)

https://www.w3.org/2007/OWL/wiki/OWL_Working_Group

34 principles of metadata modeling and querying

iri IRIs (International Resource Identifier [60]) in RDF are used as
identifiers for resources. While RDF itself is neutral about the actual
text string of the IRI itself, most use cases or vocabularies give them
an intent or meaning, with the main purpose of better readability
for humans. Additionally, the uniqueness of an IRI should apply to a
preferably large domain, given that one major quality of the Semantic
Web is to concentrate as much information as possible at one single
point. The application of different IRIs for the same worldly “thing” is
an actual flaw of the Semantic Web, as the multiple created resources
might pose some ambiguity in their representations, and the process
of determining if two IRIs address the same “thing” is costly and
cumbersome. Sometimes an answer to this is not even possible, as
the two representations might also differ in terms of underlying data
or information.

As an example the IRI “http://dbpedia.org/page/Brown_bear” is
simply a text string to describe a resource in RDF, while it will glob-
ally be used in order to uniquely address a bear species by everyone
in an optimal scenario. Furthermore, from the IRI itself the user can
conclude that the resource is hosted by DBpedia4 and the name of
the bear species itself. IRIs extend the allowed characters in regards
to the URIs (Uniform Resource Identifier [24]) by allowing all char-
acters contained in the Universal Coded Character Set [90]. An IRI
can always be converted to a legal URI, while the other direction may
not produce the original/correct IRI. URLs (Uniform Resource Loca-
tor [25]) are a subset of the URIs and contain information about the
location of a given resource. Consequently, as URLs also are a subset
of the IRIs, location information could also be given to IRI resources.
In general, it is conventional to support an IRI that can be derefer-
enced via common HTTP methods in order to display the content of
the responding resource.

An IRI can be found at all three positions of an RDF triple, thereby
denoting the subject and/or object as well as the defining relationship
between them by the triple’s predicate.

literals Literals in RDF represent actual values in contrast to
IRIs. Examples among them are textual strings (“Barack Obama”,
“Germany”), numbers (“7”, “-0,42”), and dates (“1.1.2017”). In order
to be able to be interpreted by computers, a datatype should be as-
sociated with the respective literal. The mentioned examples would
then be written as an RDF value as follows:

• “Barack Obama”ˆˆxsd:string

• “Germany”ˆˆxsd:string

• “7”ˆˆxsd:integer

4 http://wiki.dbpedia.org/ (last visited 03/12/2018)

http://wiki.dbpedia.org/

2.2 rdf - the backbone of metadata modeling 35

• “-0,42”ˆˆxsd:double

• “1.1.2017”ˆˆxsd:dateTime

An extensive list of all supported possible datatypes can be found
in the Concepts and Abstract Syntax document of the RDF specifica-
tion [99] [52]. Textual strings can be related to the language they orig-
inate from by adding the associated language tag to the string. These
language strings are a subclass of the xsd:string class used above
and are added to the string with an “@” character, so the string for
“Germany” would be formulated as “Germany”@en in english and
as “Deutschland”@de for its german translation. Literals can only be
the object of an RDF triple.

blank nodes A blank node is used when you need to describe
a resource without it having a unique and global identifier. How-
ever, the blank node does receive a local identifier in order to make
it addressable in the local use case. Blank nodes can be used in the
positions of a subject or object in RDF.

Figure 8 shows an example with two blank nodes. As it has been
seen in earlier examples, “Cesar” is a cat, and pets in general have
a daily requirement on food. For the modelling of this circumstance,
blank nodes can come in handy, because the food intake can be mod-
elled in a very generic way. Rather than specifying the exact food
that is required for a given pet, general food amounts with various
requirements (in this case the distinction between wet and dry food
in addition with an amount for wet food) can be created.

Cesar catis a

200gamount

dailyDryFood
dailyWetFood

Figure 8: Exemplary Blank Node.

Finer specification of both food types (e.g. the brand) is not neces-
sary, as long as the other semantic requirements are met. This is why
a universally defined IRI for both nodes is not reasonable but a local
declaration is sufficient.

With the discussed basic components that can occur in RDF triples,
these can now be used in order to convert the statements described

36 principles of metadata modeling and querying

above into actual RDF triples with IRIs. Transforming the information
content contained in the example shown in Figure 7, the following
triples would be produced:

1 <http://petsandowners.org/Bob> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://petsandowners.org/Human>

2 <http://petsandowners.org/Bob> <http://petsandowners.org/surname> "Green"^^<http:

//www.w3.org/2001/XMLSchema#string>

3 <http://petsandowners.org/Bob> <http://petsandowners.org/hasAge> "30"^^<http://www

.w3.org/2001/XMLSchema#integer>

4 <http://petsandowners.org/Cesar> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://petsandowners.org/Cat>

5 <http://petsandowners.org/Cesar> <http://petsandowners.org/hasAge> "5"^^<http://

www.w3.org/2001/XMLSchema#integer>

6 <http://petsandowners.org/Cesar> <http://petsandowners.org/isPetOf> <http://

petsandowners.org/Bob>

Listing 1: Triples Contained in the Graph Shown in Figure 7 Formulated as
RDF.

The triples of Listing 1 have exactly the same information con-
tent as the graph shown in Figure 7. Therefore every line represents
one triple consisting of the aforementioned subject-predicate-object
structure. Altogether, there are eight IRIs, three literals, and no blank
nodes present. There are IRIs originating from an exemplary “pets
and their owners” use case, which have identifiers assigned that are
preceded with the URI of a homepage “http://petsandowners.org/”.
Furthermore, there are already actual IRIs contained in this example,
as “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” (in RDF,
this directed edge reflects the “is a” relationship that defined the
worldly instances of the example) and the datatypes “http://www.-

w3.org/2001/XMLSchema#string” and “http://www.w3.org/2001/XML-

Schema#integer” are standardised RDF concepts or terms.

namespaces As it can be seen, the IRIs associated in RDF con-
texts can get quite long and illegible. Because of this, namespaces
in conjunction with prefixes are introduced. These serve as abbrevia-
tions that represent parts of an IRI, and therefore are better to read
in textual representations of the RDF data. Listing 2 shows the RDF
data represented in Listing 1 with the utilisation of namespaces and
prefixes.

1 PREFIX pao: <http://petsandowners.org/>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4

5 pao:Bob rdf:type pao:Human

6 pao:Bob pao:surname "Green"^^xsd:string

7 pao:Bob pao:hasAge "30"^^xsd:integer

8 pao:Cesar rdf:type pao:Cat

9 pao:Cesar pao:hasAge "5"^^xsd:integer

10 pao:Cesar pao:isPetOf pao:Bob

Listing 2: Triples Contained in the Graph Shown in Figure 7 with the
Addition of Namespaces and Prefixes.

2.2 rdf - the backbone of metadata modeling 37

In lines 1-4 of Listing 2 the connections between namespace and cor-
responding prefix are defined. Line one for example specifies that the
namespace “http://petsandowners.org/” is abbreviated with the pre-
fix “pao”. This means that in the following RDF data representation,
whenever a term is preceded with the fragment “pao:”, the IRI for the
term would contain the given namespace instead. The same counts
for the other three namespaces.

For the following work, several different RDF vocabularies and on-
tologies (see below) will be utilised. For the sake of clarity, from now
on, mainly the abbreviated value of the namespaces will be used. Ta-
ble 3 in the Appendix shows an enlistment of those ontologies in
combination with their respective namespace and prefix.

2.2.3 RDF Vocabularies and Ontologies

As already mentioned before, the IRIs used in RDF are generally not
enforced to have a semantic associated to them. In practice however,
there are collections of IRIs and resources that are used in order to
model concepts with a defined semantic for a specific field of applica-
tion or use case. In the literature, these collections are called an RDF
vocabulary or RDF ontology. The distinction between both terms
is ambiguous, often times they are used as synonyms. However the
trend is to attribute more meaning towards the collection of an on-
tology. While vocabularies are rather a mere and simple gathering of
words or terms, Berners-Lee, Hendler, Lassila, et al. [27] explain that
researchers in Web-related domains and other fields like Artificial
Intelligence have adapted the term ontology. Following their defini-
tion, an ontology is comprised of a document or file that formally
describes relations among terms, which is typically a combination of
a taxonomy, describing the terms that are contained in the ontology,
and a set of inference rules that further specify those relations. Be-
cause of this, the semantics behind the described data is presented in
a standardised way, allowing computers to “understand” the mean-
ings of semantic data in the Web, as they can apply the rules and
terms defined in the ontologies by following the supported links to
those ontologies.

The inferencing and reasoning mentioned in the citations above
concern the logical conclusion of additional knowledge “hidden” in
the ontologies or data that is created obeying to the rules defined in
the ontology. with the application of these mechanisms, additional
knowledge for given RDF data can be discovered. An example of this
could be the modelling of family relations between people. When
three people, conveniently named father, son, and grandson, are con-
tained in an information base with the relations referring to father-
hood being present as RDF triples between father and son, as well as
son and grandson, it is reasonable to assume that there should also be

38 principles of metadata modeling and querying

a triple indicating the relatedness between father and grandson, even if
it is not modelled as an actual triple itself. This RDF feature will not
be required heavily in the course of this work and thusly it will only
be covered in short in this section. Also, the definition of the terms
vocabulary and ontology will follow the definition given above for
the remainder of this work.

Making use of the rules and concepts defined in ontologies, an
information base can be created in a standardised manner, and there-
fore it can be understood way easier at another peer, as the semantics
of the defined IRIs are fixed. These semantics can also be retrieved
by computers. In the example of Listing 1 the IRI “http://www.w3.-
org/1999/02/22-rdf-syntax-ns#type” is such a predefined IRI of the
RDF vocabulary. When used at other locations, the standardised se-
mantics of assigning a type relationship can be inferred.

Ontologies themselves are defined as RDF triples. Core concepts
in order to create basic ontologies originate from the RDF and RDFS
ontologies, and are defined as follows:

• Class: Classes are used in order to create categories to which
IRI nodes can be associated. The relationship between the Class
and the node, which is then called an instance of the respec-
tive Class, is the type property with the IRI “http://www.w3.-

org/1999/02/22-rdf-syntax-ns#type” already used in the ex-
amples above. A class can be enhanced with various require-
ments which are then passed to its instances by adding proper-
ties.

The IRI for Class nodes is “http://www.w3.org/2000/01/rdf--

schema#Class”.

• Property or Relationship: A property or relationship is a rela-
tion between two given RDF nodes, creating a semantical asso-
ciation between them. These nodes can be two IRIs or an IRI as
subject and a literal as object.

The IRI for Property or Relationship nodes is “http://www.w3.-
org/1999/02/22-rdf-syntax-ns#Property”.

• subClassOf: This property, associated between two Classes, cre-
ates a subclass/superclass relationship between the two associ-
ated Class nodes. The subclass inherits all of the properties de-
fined for the superclass. This also enforces, that every instance
of the subclass is also an instance of the corresponding super-
class.

The IRI for the subClassOf-Property is “http://www.w3.org/-

2000/01/rdf-schema#subClassOf”.

• subPropertyOf: This is the equivalent relationship to the sub-
ClassOf relation, but for RDF properties or relationships. When

2.2 rdf - the backbone of metadata modeling 39

this property is associated between two Property nodes, a sub-
property/superproperty relation is created. This means, if a sub-
property is created between two nodes, then there is also an
association of the superproperty issued.

The IRI for the subPropertyOf-Property is “http://www.w3.org/-
2000/01/rdf-schema#subPropertyOf”.

• domain and range: These two Properties are used to define the
allowed Classes that can be the source and the sink of a given
Property edge.

The IRI for the domain-Property is “http://www.w3.org/2000/-
01/rdf-schema#domain” and for the range-Property “http://-

www.w3.org/2000/01/rdf-schema#range”.

There are many different RDF vocabularies and ontologies with
various use cases and fields of application available in the Web. In
some cases, they are so well designed and cover such an important
scope that the W3C standardises them. The general rule in the Se-
mantic Web is to use existing vocabularies and ontologies wherever
possible, which is especially true for the standardised ones. Whenever
a public ontology is used, the barrier to understand produced RDF
data is lowered, as all peers agree upon the chosen ontology and its
semantics.

Two of the most established ontologies (next to RDF, RDFS, and
OWL that are already described and used in examples so far) are
the FOAF [38] [68] and SKOS [17] [120] ontologies. The FOAF ontol-
ogy is designed to describe and link people. Example concepts are
the “http://xmlns.com/foaf/0.1/Person” class and the “http://-

xmlns.com/foaf/0.1/surname” property associated with a person. The
existence of the IRI for the surname already shows bad practice in
the examples above, e.g. in Listing 1, as “new” IRIs have been intro-
duced for the surname and age of a person rather than using the
ones defined in the FOAF ontology. The SKOS ontology supports
concepts to describe, share, and link knowledge organisation systems
like thesauri, taxonomies, classification schemes, and subject heading
systems.

As a simple example, Listing 3 shows the ontology that could be
created for the “pets and their owners” use case. Prefixes and names-
paces are used as shown in Listing 2.

1 PREFIX pao: <http://petsandowners.org/>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

4

5 pao:Human rdf:type rdfs:Class

6 pao:Cat rdf:type rdfs:Class

7 pao:Animal rdf:type rdfs:Class

8

9 pao:Cat rdfs:subClassOf pao:Animal

10

40 principles of metadata modeling and querying

11 pao:isPetOf rdf:type rdf:Property

12

13 pao:isPetOf rdfs:domain pao:Animal

14 pao:isPetOf rdf:range pao:Human

Listing 3: Definition of the “Pets and Their Owners” Ontology.

In lines 5 to 7 of Listing 3 the RDF classes used in the specific use
case are enlisted. All of them are assigned to the type “rdfs:Class”.
Next to “pao:Human” and “pao:Cat” used in the examples above,
an additional class “pao:Animal” has been added to show the sub-
class relationship formulated in line 8, as a “pao:Cat” is defined to
be a subclass of “pao:Animal”. This implies, through semantic infer-
encing that all properties and relationships that are defined for the
“pao:Animal” class are also added for the “pao:Cat” class. Line 10

specifies that “pao:isPetOf” is an “rdf:Property”, which is then fur-
ther enriched semantically in the lines 13 and 14 with the addition of
a domain and range. These make sure that the “pao:isPetOf” edge
is always directed from a “pao:Animal” instance to a “pao:Human”

instance. The reasoning process behind all these defined statements
of the ontology enable a “pao:Cat” to also be a legal source of a
“pao:isPetOf” relationship.

disclaimer for the term “complexity” of semantic web

ontologies In the remainder of this work, ontologies of the Se-
mantic Web will often be considered in terms of their complexity. As
the core concept of the ontology is explained in this section, more
information can be given about this term. Firstly, ontologies are as-
sessed to be more complex simply by the amount of different “rdfs:-
Class” and “rdfs:Property” entities they implement. Secondly, a
higher complexity is implemented by the possible kinds of connec-
tions between these two entities. This is mainly established by sub-
class hierarchies, which can evolve both in terms of depth and broad-
ness, and the allocation of properties or relationships to given “rdfs:-

Class” representatives.
A third facet to the complexity, which is not associated with Se-

mantic Web metadata modelling, is later introduced by the Anno4j
library in Chapter 4. This library allows to map RDF data to Java
objects and thereby uses a so called domain model, which is the tech-
nical pendant to ontologies. These domain models can be enhanced
by own implemented features, which further increases its assessed
complexity.

A more thorough and detailed complexity measure for Semantic
Web ontologies and therefore also domain models will later be intro-
duced in Section 6.2.

disclaimer for rdf graph pictures For the rest of this work,
whenever RDF triples are visualised in the form of a graph, the rules

2.2 rdf - the backbone of metadata modeling 41

enlisted in List 1 in the Appendix are used to draw the graph. They
then also imply which RDF feature they illustrate.

2.2.4 RDF Datasets and Named Graphs

All previously shown examples have been representing exactly one
use case, one collection of information which is represented in RDF.
This is called an RDF graph. In some cases however, it is necessary or
desired to describe this information in a more fine-grained fashion, or
to divide the statements contained in one graph into smaller seman-
tically distinctive pieces. Therefore, an RDF dataset contains various
RDF graphs, divided into (possibly multiple) so-called named graphs
and up to one default graph. A named graph is used to describe a
subset of statements of an RDF dataset. To achieve this, each of those
statements is associated with an additional IRI that represents the
name of the graph. The default (“unnamed”) graph on the other hand
contains all those statements that are not added to one of the named
graphs. Figure 9 shows an example. For the “pets and their owners”
use case, a possible application of subgraphs would be to divide the
database into different cities, allocating the persons and animals of
the database to the city they live in.

cities:Chicagocities:NewYork

pao:Bob rdf:type

pao:isPetOf

pao:Human

rdf:type pao:Catpao:Cesar

pao:Eve

pao:isPetOf

pao:Garfieldrdf:type

rdf:type

Figure 9: Example RDF Dataset with Two Named Graphs
“cities:NewYork” and “cities:Chicago”. The Exemplary
Namespace “http://examplecities.com/” is Assumed for the
Prefix “cities:”.

In the example of Figure 9, “pao:Bob” and “pao:Cesar” are located
in “cities:NewYork”, while “pao:Eve” and “pao:Garfield” live in
“cities:Chicago”. Both Classes “pao:Human” and “pao:Cat” used
in the example are placed in the default graph, as these are state-
ments and concepts that can not (and should not) be related to one
named graph, while the “rdf:type” assignment between the vari-
ous instances and their associated classes is placed in the respective
named graphs.

42 principles of metadata modeling and querying

The division into the different graphs for the refinement of the
database was primarily aligned with SPARQL, the SPARQL Protocol
and RDF Query Language [71] (Section 2.2.7 will give more details
about SPARQL), which is the de-facto standard querying language
for RDF data. In combination, it is possible to fine-tune queries in or-
der to make use of the defined named graphs. In the example shown
in Figure 9, a simple query for “all animals” (ignoring named graphs)
would return both “pao:Cesar” as well as “pao:Garfield”. Enhanc-
ing the “all animals” query to only request data from a named graph
rather than the whole dataset, will only return the “pao:Animal”(s)

that are contained in the respective named graph.

2.2.5 Expressing and Transporting RDF Data - RDF Documents and Their
Serialisations

An RDF Document represents the encoding of a single RDF graph or
an RDF dataset, as described in Section 2.2.2. Next to the RDF data, a
concrete syntax or serialisation format is also necessary in order to
enable others to parse a document. For these syntaxes, the W3C pro-
posed several standards. The best-known are enlisted in this section
in short. N-Triples, N-Quads, Turtle, and TriG are called the “turtle
family of RDF languages” [113]. Additionally, there are serialisations
oriented towards the JSON, XML, and HTML standards.

To show practical implementation examples of the various syn-
taxes, the following graph of an RDF document shown in Figure 10

will be used and presented in the different RDF syntaxes. The until
now used exemplary use case of “pets and their owners” is extended
with interests of humans. Those interests are already present in an-
other database (referenced to by the IRI and namespace “http://-

dbpedia.org/”), so the respectively existing IRIs are utilised. In this
example, “Bob” has interest in the novel “Conviction”, which is rep-
resented via the IRI “http://dbpedia.org/page/Conviction_(Star_-
Wars_novel)”. Its “author” is referenced via the IRI “dpr:Aaron_All-
ston”, while a “label” and “release date” is also issued. The prefixes
“dpo:”, “dpr:”, and “dpp:” stand for the three namespaces “http://-
dbpedia.org/ontology/”, “http://dbpedia.org/resource/”, and last-
ly “http://dbpedia.org/page/” respectively.

n-triples N-Triples [43] is the simplest syntax for RDF data. It
serialises one triple per line which is ended with a full stop. Every IRI
is enclosed in angle brackets “<>”. The produced output is very bulky,
but its simplicity contains all the necessary information in one line
respectively, and the line by line notation allows convenient parsing
for computers. Listing 4 shows the RDF data contained in Figure 10

serialised as N-Triples.

2.2 rdf - the backbone of metadata modeling 43

http://dbpedia.orghttp://petsandowners/Bob

pao:Bobrdf:type

pao:isPetOf

pao:Human

rdf:typepao:Cat pao:Cesar

"Green"

foaf:surname

dpp:Conviction_
(Star_Wars_novel)

"Conviction (Star Wars novel)"@en

rdfs:label

dbo:author

dbr:Aaron_Aliston

foaf:topic_
interest

"2011-05-24"

dbo:releaseDate

Figure 10: Exemplary RDF Graph Used for Showing the Different RDF Se-
rialisation Formats.

1 <http://petsandowners.org/Bob> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://petsandowners.org/Human> .

2 <http://petsandowners.org/Bob> <http://xmlns.com/foaf/0.1/surname> "Green" .

3 <http://petsandowners.org/Bob> <http://xmlns.com/foaf/0.1/topic_interest> <http://

dbpedia.org/page/Conviction_(Star_Wars_novel)> .

4 <http://dbpedia.org/page/Conviction_(Star_Wars_novel)> <http://www.w3.org/2000/01/

rdf-schema#label> "Conviction (Star Wars novel)"@en .

5 <http://dbpedia.org/page/Conviction_(Star_Wars_novel)> <http://dbpedia.org/

ontology/author> <http://dbpedia.org/resource/Aaron_Allston> .

6 <http://dbpedia.org/page/Conviction_(Star_Wars_novel)> <http://dbpedia.org/

ontology/releaseDate> "2011-05-24"^^<http://www.w3.org/2001/XMLSchema#date> .

7 <http://petsandowners.org/Cesar> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://petsandowners.org/Cat> .

8 <http://petsandowners.org/Cesar> <http://petsandowners.org/isPetOf> <http://

petsandowners.org/Bob> .

Listing 4: The Information Content Illustrated in Figure 10 represented as
RDF Triples Using the N-Triples Syntax.

n-quads The N-Triples syntax does not support named graphs,
however its extension N-Quads [42] does. This is implemented for
every triple by adding the IRI of the named graph it is contained in
behind the subject-predicate-object notation, hence the name “quad”
instead of triple. This serialisation is also enlisted line by line. List-
ing 5 shows the N-Quads serialisation for the RDF data contained in
the graph shown in Figure 10, using the named graph with the IRI
“http://petsandowners.org/Bob”.

1 <http://petsandowners.org/Bob> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <

http://petsandowners.org/Human> <http://petsandowners.org/Bob> .

2 <http://petsandowners.org/Bob> <http://xmlns.com/foaf/0.1/surname> "Green" <http:

//petsandowners.org/Bob> .

3 <http://petsandowners.org/Bob> <http://xmlns.com/foaf/0.1/topic_interest> <http://

dbpedia.org/page/Conviction_(Star_Wars_novel)> <http://petsandowners.org/Bob>

.

4 <http://dbpedia.org/page/Conviction_(Star_Wars_novel)> <http://www.w3.org/2000/01/

rdf-schema#label> "Conviction (Star Wars novel)"@en <http://dbpedia.org/> .

44 principles of metadata modeling and querying

5 <http://dbpedia.org/page/Conviction_(Star_Wars_novel)> <http://dbpedia.org/

ontology/author> <http://dbpedia.org/resource/Aaron_Allston> <http://dbpedia.

org/> .

6 <http://dbpedia.org/page/Conviction_(Star_Wars_novel)> <http://dbpedia.org/

ontology/releaseDate> "2011-05-24"^^<http://www.w3.org/2001/XMLSchema#date> <

http://dbpedia.org/> .

7 <http://petsandowners.org/Cesar> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://petsandowners.org/Cat> <http://petsandowners.org/Bob> .

8 <http://petsandowners.org/Cesar> <http://petsandowners.org/isPetOf> <http://

petsandowners.org/Bob> <http://petsandowners.org/Bob> .

Listing 5: The Information Content Illustrated in Figure 10 represented as
RDF Triples Using the N-Quads Syntax.

turtle Another extension to N-Triples is called Turtle [131]. It
introduces some syntactical enhancements to improve the readabil-
ity for humans. Listing 6 shows the Turtle serialisation for the RDF
data contained in the graph shown in Figure 10. The improvements
that can be seen contain prefixing (with a basic prefix just using
a colon) of IRIs and the aggregation of relationships that refer the
same subject. A subject, rather than being entailed by a predicate
and object with a full stop to end the line, can now be followed
by several lines containing a predicate and object being ended by
a semicolon (“;”), which means that all of these lines target the same
respective subject. The last line still needs to be ended with a full
stop. An example for the resource “:Bob” (referencing the full IRI
“http://petsandowners.org/Bob”) can be seen in lines 10 to 13 in
Listing 6.

1 @prefix : <http://petsandowners.org/> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

5 @prefix dpo: <http://dbpedia.org/ontology/> .

6 @prefix dpr: <http://dbpedia.org/resource/> .

7 @prefix dpp: <http://dbpedia.org/page/> .

8 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

9

10 :Bob

11 a :Human ;

12 foaf:surname "Green" ;

13 foaf:topic_interest <dpp:Conviction_(Star_Wars_novel)> .

14

15 <dpp:Conviction_(Star_Wars_novel)>

16 rdfs:label "Conviction (Star Wars novel)"@en ;

17 dpo:author dpr:Aaron_Aliston ;

18 dpo:releaseDate "2011-05-24"^^xsd:date .

19

20 :Cesar

21 a :Cat ;

22 :isPetOf :Bob .

Listing 6: The Information Content Illustrated in Figure 10 represented as
RDF Triples Using the Turtle Syntax.

2.2 rdf - the backbone of metadata modeling 45

trig As N-Triples needed an extension to support named graphs,
it is the same for the Turtle syntax, which does not support subgraphs
by itself. TriG [44] is therefore an extension which allows to imple-
ment named graphs while using the Turtle syntax for describing the
triples. A “GRAPH” keyword surrounds the triples that are to be con-
tained in the given named graph. Listing 7 shows the TriG serialisa-
tion for the RDF data contained in the graph shown in Figure 10, the
named graph declaration can be seen in line 9 and 21, which span
over the triples from lines 10 to 19 and 22 to 27 respectively.

1 @prefix : <http://petsandowners.org/> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

5 @prefix dpo: <http://dbpedia.org/ontology/> .

6 @prefix dpr: <http://dbpedia.org/resource/> .

7 @prefix dpp: <http://dbpedia.org/page/> .

8 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

9

10 GRAPH <http://petsandowners.org/Bob>

11 {

12 :Bob

13 a :Human ;

14 foaf:surname "Green" ;

15 foaf:topic_interest <dpp:Conviction_(Star_Wars_novel)> .

16

17 :Cesar

18 a :Cat ;

19 :isPetOf :Bob .

20 }

21

22 GRAPH <http://dbpedia.org/>

23 {

24 <dpp:Conviction_(Star_Wars_novel)>

25 rdfs:label "Conviction (Star Wars novel)"@en ;

26 dpo:author dpr:Aaron_Aliston ;

27 dpo:releaseDate "2011-05-24"^^xsd:date .

28 }

Listing 7: The Information Content Illustrated in Figure 10 represented as
RDF Triples Using the TriG Syntax.

json-ld JSON-LD [105] is a serialisation for RDF based on JSON.
In general, every RDF resource is implemented as single JSON doc-
ument with a universal identifier (the @id element) in order to link
from one document to another. A context document can be installed
(and again linked to by other JSON documents) in order to support
context information like namespaces, details to properties, and so on.
As shown in Listing 8, the “@graph” element is used in order to im-
plement a whole RDF document. The listing shows the JSON-LD seri-
alisation for the RDF data contained in the graph shown in Figure 10.
Also, the context is contained in the same JSON document rather than
being linked to via the “@context” element.

1 {

46 principles of metadata modeling and querying

2 "@context": {

3 "pao": "http://petsandowners.org/",

4 "foaf": "http://xmlns.com/foaf/0.1/",

5 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

6 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

7 "dpo": "http://dbpedia.org/ontology/",

8 "dpr": "http://dbpedia.org/resource/",

9 "dpp": "http://dbpedia.org/page/",

10 "xsd": "http://www.w3.org/2001/XMLSchema#"

11 },

12 "@graph": [

13 {

14 "@id": "dpr:Conviction_(Star_Wars_novel)",

15 "dpo:author": {

16 "@id": "dpr:Aaron_Allston"

17 },

18 "dpo:releaseDate": {

19 "@type": "xsd:date",

20 "@value": "2011-05-24"

21 },

22 "rdfs:label": {

23 "@language": "en",

24 "@value": "Conviction (Star Wars novel)"

25 }

26 },

27 {

28 "@id": "pao:Bob",

29 "@type": "pao:Human",

30 "foaf:surname": "Green",

31 "foaf:topic_interest": {

32 "@id": "dpp:Conviction_(Star_Wars_novel)"

33 }

34 },

35 {

36 "@id": "pao:Cesar",

37 "@type": "pao:Cat",

38 "pao:isPetOf": {

39 "@id": "pao:Bob"

40 }

41 }

42]

43 }

Listing 8: The Information Content Illustrated in Figure 10 represented as
RDF Triples Using the JSON-LD Syntax.

rdfa To incorporate semantic data more conveniently into HTML
pages, RDFa [1] [33] (Resource Description Framework in Attributes)
allows users to decode the information of triples into their Web page.
This enables to extend the already humanly-readable homepage with
semantics that can be (automatically) parsed and processed by com-
puters. For RDFa, there exist several implementations, namely the
core and lite versions, as well as a version oriented towards XHTML
and one towards HTML5. Listing 9 shows an example, containing
the RDF data contained in the graph shown in Figure 10. For the
sake of clarity, the HTML tags have not been written out as it would
be in a normal Web page. It is also important to highlight, that the

2.2 rdf - the backbone of metadata modeling 47

“order” of the displayed tags is randomly generated. The important
attributes contained in the <div> tags are “resource”, “property”,
“typeOf”, and “prefix”. They can also be integrated in other typical
HTML tags like links and anchors.

1 <div xmlns="http://www.w3.org/1999/xhtml"

2 prefix="

3 foaf: http://xmlns.com/foaf/0.1/

4 rdfs: http://www.w3.org/2000/01/rdf-schema#

5 rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

6 xsd: http://www.w3.org/2001/XMLSchema#

7 ns1: http://petsandowners.org/

8 ns2: http://dbpedia.org/ontology/"

9 >

10 <div typeof="rdfs:Resource" about="http://dbpedia.org/resource/Conviction_(

Star_Wars_novel)">

11 <div property="rdfs:label" xml:lang="en" content="Conviction (Star Wars novel)

"></div>

12 <div property="ns2:releaseDate" datatype="xsd:date" content="2011-05-24"></div

>

13 <div rel="ns2:author" resource="http://dbpedia.org/resource/Aaron_Allston"></

div>

14 </div>

15 <div typeof="ns1:Cat" about="http://petsandowners.org/Cesar">

16 <div rel="ns1:isPetOf">

17 <div typeof="ns1:Human" about="http://petsandowners.org/Bob">

18 <div rel="foaf:topic_interest" resource="http://dbpedia.org/page/

Conviction_(Star_Wars_novel)"></div>

19 <div property="foaf:surname" content="Green"></div>

20 </div>

21 </div>

22 </div>

23 </div>

Listing 9: The Information Content Illustrated in Figure 10 represented as
RDF Triples Using the RDFa Syntax.

rdf/xml The RDF/XML syntax [150] is the “oldest” serialisation
for RDF data and is, as the name suggests, based on the XML stan-
dard. The whole document is encapsulated with the classic “<xml>”

tag, followed by a “<rdf:RDF>” tag that contains the declarations of
namespaces as attributes (the “xmlns” attribute). Each RDF resource
is implemented as a “<rdf:Description>” element, its correspond-
ing IRI is associated as “rdf:about” attribute. Using these, references
to other RDF resources can be established. Every child element of a
description represents a triple that is referring to the RDF resource as
their subject. Listing 10 shows the RDF data contained in the graph
of Figure 10 in the RDF/XML serialisation. Note that the defined
namespaces only apply for XML elements and attributes.

1 <?xml version="1.0" encoding="utf-8" ?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:foaf="http://xmlns.com/foaf/0.1/"

4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

5 xmlns:ns0="http://dbpedia.org/ontology/"

6 xmlns:ns1="http://dbpedia.org/property/"

7 xmlns:ns2="http://petsandowners.org/">

48 principles of metadata modeling and querying

8

9 <rdf:Description rdf:about="http://petsandowners.org/Bob">

10 <rdf:type rdf:resource="http://petsandowners.org/Human"/>

11 <foaf:surname>Green</foaf:surname>

12 <foaf:topic_interest rdf:resource="http://dbpedia.org/page/Conviction_(

Star_Wars_novel)"/>

13 </rdf:Description>

14

15 <rdf:Description rdf:about="http://dbpedia.org/resource/Conviction_(

Star_Wars_novel)">

16 <rdfs:label xml:lang="en">Conviction (Star Wars novel)</rdfs:label>

17 <ns0:author rdf:resource="http://dbpedia.org/resource/Aaron_Allston"/>

18 <ns1:releaseDate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">

2011-05-24</ns1:releaseDate>

19 </rdf:Description>

20

21 <rdf:Description rdf:about="http://petsandowners.org/Cesar">

22 <rdf:type rdf:resource="http://petsandowners.org/Cat"/>

23 <ns2:isPetOf rdf:resource="http://petsandowners.org/Bob"/>

24 </rdf:Description>

25

26 </rdf:RDF>

Listing 10: The Information Content Illustrated in Figure 10 represented as
RDF Triples Using the RDF/XML Syntax.

For the remainder of this work whenever RDF data is to be illus-
trated, the graph structure described in the disclaimer in Section 2.2.3
will be utilised, while RDF documents and their triples will be mainly
presented in the Turtle syntax, when no named graphs are necessary,
and TriG otherwise.

2.2.6 Advanced RDF Features - Inferencing, Reasoning, and Reification

In Section 2.2.3, the advanced RDF feature called inferencing was
mentioned. Inferencing allows systems to find “hidden” semantics or
rather implied semantics in a given RDF document, which in terms
also deduces new triples. This is done by using a reasoner, which
applies a defined set of rules to the given RDF data. These reasoners
can have a varying range of applied processes and therefore be quite
simple and efficient, while others can be composed of a multitude of
difficult inferencing rules and hence take longer periods of time to
compute the implied semantics. Following these rules, the reasoner
can also imply if the supported set of triples is logically correct or
if they contradict each other. Most reasoners are implemented using
RDFS or OWL. This is a very important feature for RDF, as it enables
ontologies to be implemented in a much shorter fashion by only im-
plying the additional semantics (and therefore the implied triples)
when the ontology is designed. Nevertheless, for the remainder of
this work the required inferred knowledge is rather shallow, so this
topic will not be discussed in all its details. In-depth discussion and
explanation can be found in [79] [80].

2.2 rdf - the backbone of metadata modeling 49

Two of the standard inferencing rules consider the subclassing of
defined “rdfs:Class” objects, as well as the type checking of the
ranges and domains of “rdfs:Property” objects. Considering the
triples of the RDF document shown in Listing 11, some triples could
be inferred by an applied reasoner.

1 @prefix : <http://petsandowners.org/> .

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

4

5 :Cat rdfs:subClassOf :Animal .

6

7 :Animal rdfs:subClassOf :LivingThing .

8

9 :Cesar

10 a :Cat ;

11 :isPetOf :Bob .

12

13 :isPetOf

14 rdfs:domain :Animal ;

15 rdfs:range :Human .

Listing 11: RDF Document Used for Simple Inferencing.

The result (containing all logically correct triples) is shown in List-
ing 12. Via the defined subclassing of a “:Cat” being an “:Animal”,
and an “:Animal” being a “:LivingThing”, the logical inference can
be deduced that a “:Cat” is also a “:LivingThing”. Its triple is added
in line 7 of Listing 12. With this new subclass hierarchy it is also safe
to assume, that “:Cesar” is not only a “:Cat”, but also an “:Animal”

as well as a “:LivingThing” (with the triples being found in lines 13

and 14). With the information of Listing 11, “:Bob” has no assigned
type. However again, through inferencing and the application of the
information of the “:isPetOf” property, one can deduce that “:Bob”
has to be a “:Human” in order to satisfy the correctness of the seman-
tics of the RDF document.

1 @prefix : <http://petsandowners.org/> .

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

4

5 :Cat

6 rdfs:subClassOf :Animal ;

7 rdfs:subClassOf :LivingThing .

8

9 :Animal rdfs:subClassOf :LivingThing .

10

11 :Cesar

12 a :Cat ;

13 a :Animal ;

14 a :LivingThing ;

15 :isPetOf :Bob .

16

17 :isPetOf

18 rdfs:domain :Animal ;

19 rdfs:range :Human .

20

21 :Bob a :Human .

50 principles of metadata modeling and querying

Listing 12: RDF Document Containing Inferred Triples with the Base Triples
of Listing 11.

All of the triples of an RDF document that have been dealt with
until now, meaning the ones that are materialised initially as well as
those that are added by a reasoner, are actual metadata that is used
to describe information about a given universe. In RDF, next to this,
there is also the possibility to make statements about the metadata
and the corresponding triples itself - statements about statements.
This is called reification. A reified triple can give further information
about another triple, such as provenance information or composition
details. This does however not imply if the original statement is true
or false in the overall context. All actual triples are always considered
to be true and “take effect” in the described universe, while reified
triples are fuzzy about that circumstance and can therefore be used
to model fuzzy information.

To model the reified statement, an “rdf:Statement” node uses
three relationship - “rdf:subject”, “rdf:predicate”, and “rdf:ob-

ject” - to link to three other instances in the RDF document and it
therefore consists of the same core concepts like the information units
of a normal RDF triple. The statement node can have an assigned IRI
or it can be a blank node, depending on whether the statement should
be applied to a local or global context.

In the example of Listing 13 “:Bob” makes an assumption about the
eating behaviour of his cat “:Cesar”. This statement does rather fit
being modelled as a reified statement than a normal statement, as the
preference of a pet can be assumed by a human but never really be
assured by the pet. In the example, “:Bob” “:assumes” the statement
“:x”, which in terms asserts that “:Cesar” does like “:DansDryFood”.

1 @prefix : <http://petsandowners.org/> .

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3

4 :x

5 a rdf:Statement ;

6 rdf:subject :Cesar ;

7 rdf:predicate :likesFood ;

8 rdf:object :DansDryFood .

9

10 :Bob :assumes :x .

Listing 13: Simple Reification Example.

2.2.7 Querying and Manipulating RDF Data - SPARQL, the SPARQL
Protocol and RDF Query Language

Up to now, Section 2.2 has given insights into the RDF specification
and the de-facto standard way of modelling, producing, and convey-

2.2 rdf - the backbone of metadata modeling 51

ing information in the form of RDF data. What is missing is the pro-
cedure of requesting and querying the persisted data. The main in-
strument to perform this is SPARQL, the SPARQL Protocol and RDF
Query Language [71]. As with RDF, the SPARQL specification [71]
is divided in various different documents that highlight particular
key aspects of the language. This section will give an overview of
SPARQL and thereby explain these aspects in short. The supported
specifications are to be consulted if deeper insights are necessary. In
the remainder of this work, whenever this SPARQL explanation does
not suffice to understand given examples, further detailed informa-
tion will be given.

In its basics, every SPARQL query consists of two parts: the “SE-

LECT” part specifies which variables are to be incorporated in the
query and how the result is to be presented, while the “WHERE” part
defines graph patterns that are to be fulfilled by the query. The result
of a query is a single subgraph that matches the defined pattern ex-
actly or, if multiple subgraphs match, a sequence of solutions. More
complex queries may include unions, optional query parts, filters, ag-
gregations, path expressions, and nested queries. The “SELECT” part
can be exchanged by the “ASK” or “CONSTRUCT” keywords, which are
used to return a “yes or no answer” to a query or to construct new
RDF graphs respectively.

Listing 14 shows an example of a simple SPARQL query that could
be used for the RDF data of Figure 10. The overall query requests for
the books that have been written by the author associated with the
IRI “dpr:Aaron_Aliston”, and returns the book’s title in combination
with an aggregated counter of all the people who declare an interest
in this book. To achieve this, in line 6 the “SELECT” part of the query
defines three variables that are to be used. “?name” will stand for the
title of the book, while “?fan” and “?count” are used for the aggre-
gation of interested people. These variables are then bound in the
“WHERE” part of the query. All lines from 8 to 10 are associated with
a local variable “?book” that represents the node of the book in the
defined graph pattern. Line 8 associates the name of the book with
the relationship “rdfs:label” to the query variable “?name”, while
in line 9 the same is done with the book’s author and the relation-
ship “dpo:author”. The difference between line 8 and 9 is that the
author is bound to an instance, rather than a variable as placeholder.
This restricts the resulting subgraph in regards to the author with
the IRI “dpr:Aaron_Aliston”. In order to count the interested people
in regards of the books, the query variable “?fan” has to be con-
nected to the book, which is done by using the inverted relationship
“ˆfoaf:topic_interest” in line 10. Line 10 could also be written as
“?fan foaf:topic_interest ?book .” to not use the inverted edge,
the results however would be the same. Line 11 groups the respective
result to combine the entries for a single book.

52 principles of metadata modeling and querying

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX dpo: <http://dbpedia.org/ontology/>

4 PREFIX dpr: <http://dbpedia.org/resource/>

5

6 SELECT ?name (COUNT(?fan) AS ?count)

7 WHERE {

8 ?book rdfs:label ?name .

9 ?book dpo:author <dpr:Aaron_Aliston> .

10 ?book ^foaf:topic_interest ?fan .

11 } GROUP BY ?name

Listing 14: Exemplary SPARQL Query Issued on the RDF Data Contained
in the Graph Shown in Figure 10.

As underlying dataset is rather small, the result to the query of
Listing 14 is rather simple: there is only one book in the data that is
written by “dpr:Aaron_Aliston” with the title “Conviction (Star Wars
novel)”. It has one person interested in it: “pao:Bob”. Table 1 shows
the result of the query.

?name ?count

Conviction (Star Wars novel) 1

Table 1: Result of the Query Defined in Listing 14 on the Dataset Shown in
Figure 10.

By adding some more triples to the database, the result can be
made more exigent. If the triples shown in Listing 15 would be added
and the same “books and their fans” query (see Listing 14) would be
issued, the result would look like the one shown in Table 2. A second
book with the title “Backlash (Star Wars novel)” was added, with
three people having interest in it: Alice, Charlie, and Dennis. Because
of this, the result for “?count” for this given book is 3.

1 @prefix : <http://petsandowners.org/> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

4 @prefix dpo: <http://dbpedia.org/ontology/> .

5 @prefix dpr: <http://dbpedia.org/resource/> .

6 @prefix dpp: <http://dbpedia.org/page/> .

7

8 :Alice

9 a :Human ;

10 foaf:topic_interest <dpp:Backlash_(Star_Wars_novel)> .

11

12 :Charlie

13 a :Human ;

14 foaf:topic_interest <dpp:Backlash_(Star_Wars_novel)> .

15

16 :Dennis

17 a :Human ;

18 foaf:topic_interest <dpp:Backlash_(Star_Wars_novel)> .

19

20 <dpp:Backlash_(Star_Wars_novel)>

21 rdfs:label "Backlash (Star Wars novel)" ;

2.2 rdf - the backbone of metadata modeling 53

22 dpo:author dpr:Aaron_Aliston .

Listing 15: Triples to Add to the RDF Dataset of Figure 10 to Create an
Extended Dataset for the Query Shown in Listing 14.

?name ?count

Conviction (Star Wars novel) 1

Backlash (Star Wars novel) 3

Table 2: Result of the Query Defined in Listing 14 on the Dataset Shown in
Figure 10 with the Addition of the Triples Shown in Listing 15.

Next to this “basic” application of SPARQL, the overview of its
specification [71] enlists a series of documents that describe the func-
tionality and the possible scope of SPARQL. Besides the Query Lan-
guage, which has been introduced in short in this section, there is
also an own language that concerns the update, creation, and modi-
fication of graphs of an RDF datastore. Other features cover various
result formats that can be applied to the results of a query, the fed-
eration of queries towards different data sources, entailment regimes
that allow queries to be enhanced with inference over RDF and OWL
information (see Section 2.2.6), an own protocol for SPARQL as well
as a SPARQL service description, and a graph store HTTP protocol.

roundup - principles of metadata modeling Altogether,
this section positioned the concept of the Semantic Web into a land-
scape of other well-known concepts like the Web of Data and Linked
Open Data. All of them are not feasible without metadata, and for de-
scribing, producing, and modelling metadata the de-facto standard
is the Resource Description Framework RDF. With the W3C specifi-
cations for RDF, RDFS, OWL, and SPARQL in mind, introductions
and their connections have been given for all of these standards. Spe-
cial focus has been laid on the process of metadata modelling, as it
represents the backbone for ontology design. Overall, RDF and RDFS
allow the user to have a general freedom when it comes to metadata
modelling, which is a good thing, but when it comes to a defined use
case or application scenario, agreed upon sets of terms and concepts
are needed. Ontologies therefore are an accumulation of such terms
which cover a specific domain and which are shared and accepted
among users. Additionally, relationships between such terms define
semantics that can be used in order to convey more information about
the desired metadata.

One such envisioned field of application is the annotation of mul-
timedia data, which allows the allocation of metadata to multimedia,
making it more useful for computers and other systems. The concept
of the Web of Data emphasises this point, as through this metadata,

54 principles of metadata modeling and querying

links between multimedia items can be established and data can be
provided and accessed openly in a more convenient way. The Web
Annotation Data Model WADM is one ontology that covers this use
case. The WADM will be explained in Section 3.2. The MICO Meta-
data Model MMM is an extension to the WADM and broadens the
context of the WADM to lift the metadata process to a scope of mul-
timedia items in order to implement whole workflows of metadata
allocation. The MMM is presented in Section 3.3 and constitutes a
core contribution of this work.

3
C O M B I N I N G M E TA D ATA M O D E L I N G W I T H
M U LT I M E D I A

Chapter 2 introduced the world of metadata in the Semantic Web and
gave insights on how metadata is formulated. Alongside the advan-
tages and also some disadvantages that exist in the Semantic Web,
several use cases as well as areas of applications come to mind. One
of the most important fields of application for metadata modelling
lies in the field of multimedia. Media items are tagged with various
informational features that range from simpler low-level ones like its
title, author, or date of creation, to more sophisticated high-level fea-
tures like detection results or a segmentation of the given media file
into subparts. As with metadata for documents or Web pages, it is
of equal importance to model the metadata for multimedia in a thor-
ough fashion, as a rich metadata background enables the media item
to be used in a wider context. This also contributes to an improvement
in the quality of applications that make use of these metadata [155]
[88]. Next to this, it is important that the metadata is produced in a
common format rather than proprietary implementations that cannot
be used at other instances. This circumstance is even aggravated by
the fact that in the Web of today, multimedia content is produced eas-
ily, while the possibilities to accurately annotate or to add metadata
to the content are rarely present or the result is persisted in a propri-
etary format, making it invaluable for other peers. On the other side,
the same issue holds for processes of finding respective content in the
end [78].

The process of applying metadata to multimedia items is also hin-
dered by the following factors [146]:

plenty of different datatypes In contrast to documents and
Web pages, there exists a larger variety of datatypes for multi-
media items. Each of those datatypes can have different unique
features that must be treated differently. This is also reflected
at the point of querying. In contrast to textual media that can
be searched through by mere simple string queries, for multi-
media like video and audio this process is more complex, as it
relies on difficult comparison operators on the media’s features
or on the processing of possibly proprietary vocabulary items
that describe the metadata [7].

fragmentation of media items Oftentimes, the point of inter-
est or the most interesting thing of a multimedia item is only
present in a fracture of the whole item, for example a fragment

55

56 combining metadata modeling with multimedia

of a picture or a short period during an audio stream. These
subparts of the media item need to be addressed in a meaning-
ful and understandable fashion. Additionally, metadata features
need to be addressable to exactly that fragment.

stacking of media items Several multimedia datatypes can be
seen as a “stacked” media item, meaning that one item is com-
posed of multiple other media items, or that there are objects
“inside” the video that require a metadata description for them-
selves. For example, with the respective extraction processes, a
video can be separated into a number of key shots (images) in
combination with its audio track. Hence a thorough metadata
acquisition can (and should) not only describe the video on its
own, but it can also be necessary to reference components of the
video (which, in addition, have other datatypes than the video
itself - see point one of this enlistment). Next to the existence of
this problem, the process of metadata allocation gets more com-
plex, as the description as well as the corresponding querying
of information needs to adapt to the intertwined structure.

quality of multimedia metadata In terms of multimedia it is
also important to have a good metadata quality, which is heavily
reflected on the reutilisation of the multimedia items. For exam-
ple, in a use case where videos are to be queried and streamed
from a database, it is important for the metadata to be exact
and easily parseable, as the playback of an “incorrect” video
(in relation to the defined search criteria) can be costly in vari-
ous factors like bandwidth and time. To counteract this, it is an
essential requirement to have a sound way to allocate the multi-
media metadata in an extensive fashion at the first place. Then,
querying mechanism need to be as sophisticated as possible in
order to match the available metadata.

Hausenblas et al. [78] also list some use cases for metadata acquisi-
tion for multimedia. Their examples are the sharing of video clips
on a social media network like twitter, the annotation of faces in
personal photos, tracking your favourite artists on a platform that
tracks the appearance of given artists in shows and reviews of the
BBC programme, and a more complex use case in which employees
of a company can search for and watch broadcasted videos of meet-
ings held in that same company. Those videos are also fragmented
and tagged according to what person(s) are relevant in the specific
fragment. Therefore the videos can also be searched through by per-
son names, next to the classic approaches like title, date, and so on.

All of these use cases show the importance of metadata allocation
to multimedia, as none of them would be feasible without metadata.
Chapter 2 has given insights into the field of metadata modelling and

3.1 related work - multimedia metadata modeling 57

as with the advantages and examples mentioned in that chapter, im-
plementing an ontology that is able to fit the defined requirements is
the way to go also for multimedia metadata. To give a deeper insight
into the field of metadata modelling for multimedia and its history,
this chapter will first enlist related work in this domain in Section 3.1.
Afterwards, the Web Annotation Data Model WADM as one of the
most influential standardisations in the fields of multimedia meta-
data for this thesis will be explained in Section 3.2. Section 3.3 then
introduces the MICO Metadata Model MMM - one of the core con-
tributions of this work - which is an extension to the WADM. The
WADM supports the baseline for the multimedia metadata modelling,
while the MMM add components in order to apply the concept of a
Web Annotation to multimedia workflow-based processes. Through-
out this chapter, requirements for a multimedia metadata ontology
and the desired use case will be defined, which are added to the ones
enlisted above. After the multimedia metadata models have been in-
troduced, Section 3.3.6 will conclude this chapter by evaluating the
proposed MMM against these requirements. The entirety of this chap-
ter proposes a solution to research question 1.

3.1 related work - multimedia metadata modeling

This section will highlight related work in the fields of metadata mod-
elling in terms of models and datatypes, the essential combination
with multimedia items as well as the process of metadata allocation
to some extent. The beginning will be done by the non-Semantic Web
cornerstones that have shaped the history of multimedia metadata,
as the metadata allocation most notably in the fields of multimedia
objects like video, audio, and images has been an important task for a
long time. As mentioned before, the better the metadata background
of a given multimedia item, the better and in a broader way the item
can be used, queried, or further processed afterwards. It is also im-
portant at this point to highlight, that the respective multimedia items
and the allocated metadata is not only to be both created and used
by experts, but also by amateurs [7]. This also imposes an important
requirement for the metadata modelling process, as this must be re-
flected on the result, which must be usable without further detail
knowledge. Afterwards, the focus will shift towards more current ap-
proaches which are positioned more towards the Semantic Web, and
which are in particular thematically closer to the contributions of this
work.

classic xml standards , mpeg-7 Various literature explore the
management of multimedia assets or metadata, partially in the con-
text of the Semantic Web, and therefore can be considered as related
to our topic. One of the most significantly involved groups with im-

58 combining metadata modeling with multimedia

pact on this field of research is the Moving Picture Experts Group
MPEG1. This group has been founded in 1988 and since then has
released various specifications and projects [107] that deal with mul-
timedia metadata modelling and closely related topics. The group de-
scribes its area of work with the “Development of international stan-
dards for compression, decompression, processing, and coded repre-
sentation of moving pictures, audio, and their combination, in order
to satisfy a wide variety of applications.”

Amongst the outcomes of the MPEG group, the most significant be-
cause most relevant for this work is the MPEG-7 standard [115] [156]
[46] which was issued in 2002 and focuses heavily on the represen-
tation of features that describe a given multimedia item in the form
of metadata (in this case, the focus of the MPEG group are videos,
images, and audio). In contrast, the preceding specifications MPEG
1 through 4 rather targeted the representation of the multimedia file
in combination with various compressed alternatives. Additionally,
they implemented better ways of transmitting, storing, as well as re-
trieving the multimedia information for those representation forms.
MPEG-7 then takes the next step and increases not just the infor-
mation description but also supports interpretation of those, which
eventually also enabled computers to better deal with these kinds of
information. This also benefits the goal of the MPEG-7: making the
multimedia items more useful for eventual human consumption. This
is also emphasised by the authors’ statement, that the biggest value of
this information is only achieved, when it can be conveniently found,
queried, and accessed as well as applied and managed.

All of this is established by supporting a rich set of innovative tools
that allow a complete description of the media’s content. Also, the
framework includes ways for a good storage solution, high-perfor-
mance content identification as well as accurate and personalised fil-
tering, searching, and retrieval. Additionally, the whole implementa-
tion is not aimed for one or several specific applications or use cases,
but rather concentrates on allowing to generate a rich and generic
metadata background that can be used universally, fuelling the inter-
operability between applications. This is also emphasised by the fact
that there is not a single “correct solution” for a representation of fea-
tures of a given multimedia item, but quite the contrary: there exist
multiple valid representations, evolving different valuable possibili-
ties at the point of time when the metadata is used.

These representations are composed by a variety of describable fea-
tures that apply broad and diverse abstraction levels, ranging from
low- to high level features that are combinable in every way. While
many low-level features can be extracted (semi-) automatically, the
high level features generally require a major amount of human inter-
action, interpretation, and/or supervision [115]. This MPEG-7 meta-

1 http://mpeg.chiariglione.org/ (last visited 03/12/2018)

http://mpeg.chiariglione.org/

3.1 related work - multimedia metadata modeling 59

data background description is rounded off with a set of basic fea-
tures that cover classic multimedia information, like video codecs,
file types, playback length, etc. At this point it is important to men-
tion that the standardisation only focuses on the description of the
metadata itself - both the processes of how it is produced as well as
how it is consumed is not included in the standard intentionally. This
is done in order to further promote diversification of and between
applications.

The cornerstones of the MPEG-7 standard that constitute its multi-
media metadata functionality are the following:

feature A characteristic piece of information of a multimedia item.

descriptor A descriptor is the representation of a feature, defining
both its syntax and semantics.

description scheme Contains descriptors as well as other descrip-
tion schemes and defines relationships amongst those.

description definition language - ddl A language that en-
ables the creation of new descriptors and description schemes.

system tools There is also a toolset supplied with the MPEG-7
standard, focusing on convenience of utilising its functionality.
These cover multiplexing of descriptions, delivery mechanisms,
synchronisation of descriptions with content, and coded repre-
sentations (textual and binary) for storage and transmission.

The standard is divided into several parts, encapsulating different
fields of functionality, in order to allow a user only use and familiarise
oneself with the respective parts that are fitting to a respective use
case. The parts are namely MPEG-7- Systems, Description Definition
Language, Visual, Audio, Multimedia Description Scheme, Reference Soft-
ware, Conformance, and Extraction and Use of Descriptions. For detailed
insights it is referred to the respective specification documents2.

towards semantic web multimedia ontologies In [115],
Martinez, Koenen, and Pereira summarise the exemplary use cases of
the former requirement document and applications document [55] for
the MPEG-7 standard and mention the fitting examples of multime-
dia editing, digital multimedia libraries, home entertainment devices,
searching multimedia content, broadcast media selection, managing
(large) content archives, semiautomatic multimedia presentation and
editing, and opening up archives to the public.

In [89] Hunter emphasises the importance of multimedia in the
Web of today and that it plays an essential part in our lives as it has

2 http://mpeg.chiariglione.org/standards (last visited 03/12/2018)

http://mpeg.chiariglione.org/standards

60 combining metadata modeling with multimedia

achieved a pervasive role. With this importance in mind, she also for-
mulates the claim that at that point it is also necessary that not only
humans can interact with the supported multimedia items, but com-
puters need to be able, too. This is done by establishing computational
interpretation of the metadata that is stored alongside the multime-
dia items. Next to this, many different communities like geospatial,
museum, medical, or educational have picked up on the metadata ac-
quisitions and they combine it with metadata and semantics of their
own. In the course of this argument, Hunter also sees the MPEG-7
standardisation as one of the fundamental modules of multimedia
metadata modelling and therefore establishes it as her starting point
towards computer-understandability of metadata. She claims how-
ever, that the process is hampered, as there needs to be a common
understanding about the semantics themselves as well as the relation-
ships between them. The XML standard, which is the basis for MPEG-
7, has some shortcomings at this task, as it lacks the expressiveness to
formulate the respective semantics. This is where the core contribu-
tion of [89] begins as she implements an ontology that applies the ex-
pressiveness of the MPEG-7 tools based on RDF Schema. The choice
of RDFS is motivated by the fact that it better facilitates the interop-
erability between systems, as RDF is more understandable for com-
puters, although the possibilities of expressing different constraints
of the MPEG-7 with XML were already good. However, RDF poses a
much better way of expressing semantics and semantic relationships
through class and property hierarchies. This enables other ontologies
to be combined with the possibilities of the MPEG-7 RDF ontology
to cover additional use cases and extend the expressivity even fur-
ther. Their process of implementing their solution is expressed in
DAML+OIL and called MetaNet. It was established by utilising a
top-down process with reverse-engineering of the XML Schema in-
formation of the MPEG-7 standard. Modern techniques supported
this process, e.g. the recognition of patterns for generating some of
the RDFS information automatically.

Still, about a decade later, the expressiveness and functionality of
the MPEG-7 standard is valued highly, as researchers align their work
trying to adopt its advantages. In [109], Li et al. mention and highlight
the importance of the MPEG-7 standard in the field of multimedia
metadata, but they also describe its weak points. They claim that the
standard does do a lot in terms of closing the semantic gap by sup-
porting good possibilities to store, manage, and retrieve large num-
bers of multimedia data on the Web, but there still is a shortcoming
when it comes to a fuller semantic description of those, resulting in a
fuzzy semantic. They compare this problem to a mismatch scenario,
in which a worldly concept can be named with multiple wordings,
while on the other hand a word can have multiple semantic mean-
ings. Next to this, Li et al. criticise that with XML reasoning cannot be

3.1 related work - multimedia metadata modeling 61

done effectively. For their solution, they imply that an RDF ontology
poses the best solution, as it can overcome the aforementioned short-
comings. Starting from there, the possible base schemas are enlisted,
and OWL DL as the most expressive and rich one is chosen as their
basis for an ontology that functionally covers their chosen MPEG-7
parts Multimedia Description Scheme, Audio-Visual, and Classifica-
tion Schema. It is also stated that temporal as well as spatial relations
between video, audio, and image data is extremely important, and
that OWL DL does not cover these relational requirements. Because
of this, the proposed solution extends the OWL DL ontology to also
incorporate ways to express those.

One of the most promising solutions is the Core Ontology for Mul-
timedia Annotation COMM [7] [167] [8]. The authors comply with
the arguments that have been issued in this section by mentioning
that some low-level features cannot be expressed in MPEG-7, and the
implementation as XML does not comply to current Semantic Web
standards and does not support referencable results. They also ad-
dress the problem of fragment identification, which is similar to the
aforementioned spatial and temporal issue, as well as the problem
of semantic fuzziness of supported annotations, wherefore they also
show an example of addressing the same semantic concept in three
different ways in MPEG-7. To this list of problems it is explained that
in the wake of the Semantic Web it is especially important to support
Web interoperability for given multimedia ontologies, which would
enable the produced descriptions to be linked to other information
sources of the Semantic Web to further increase its information con-
tent. Next to this, the generated metadata for a given multimedia file
must be embeddable into a compound document in order to create
complete and sound structures.

What is also very important to learn from Arndt et al. in [7] is
that they enlist core requirements that they deem essential for every
Web-compliant multimedia ontology. These requirements are the fol-
lowing:

mpeg-7 compliance The importance of the MPEG-7 standardisa-
tion has been highlighted throughout this whole section. This
accumulated experience and the advantages of the standard
must be conveniently expressible in a designed multimedia on-
tology. On top of that, as the existing community applying the
MPEG-7 is extensive, there is a lot of existing metadata out there
which should be importable into a new ontology.

semantic interoperability Annotations and metadata is only
reusable when it can be shared and applied conveniently at
different locations. Therefore, the semantics of a new ontology
need to be described sufficiently, so, next to the metadata it-

62 combining metadata modeling with multimedia

self, the intended meaning is distributable between different
systems.

syntactic interoperability Annotations and metadata is only
shareable amongst different systems when they are implemen-
ted in a syntax that is commonly used and applied. In the Se-
mantic Web, these are mainly the serialisation formats that were
introduced in Section 2.2.5.

separation of concerns A clear separation of domain knowl-
edge from administrative or structural knowledge fuels the un-
derstandability and reusability of according annotations. Both
of these domains as well as their connections need to be imple-
mented in a new multimedia ontology. An example here would
be the recognition of an animal (domain) vs. the allocation of
the fragment that the animal was detected in (structure).

modularity Modularity in the design of an ontology can decrease
execution overhead and lets new users apply the ontology in an
easier fashion, as they might not need its whole functionality.

extensibility An ontology should be extensible in a way that new
features or implementations can be added conveniently without
having to alter the whole core structure of the metadata model.
This feature is especially important in a domain that evolves
quickly like the domain of multimedia, as for example new
multimedia features and extraction processes are continously
added.

With these requirements in mind Arndt et al. design their multi-
media ontology that promises to deal with all the shortcomings men-
tioned above, while also satisfying the defined requirements for multi-
media ontologies. COMM covers all the descriptors and accumulated
knowledge that is present in the MPEG-7 standard and for conve-
nience reasons, also aligns with its naming conventions, while also
supporting an extensible implementation that allows the addition of
new multimedia features. The ontology is implemented in OWL and
is based on the Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) while also incorporating various design pat-
terns like Descriptions & Situations and Ontology of Information Objects
[7].

Next to a sound and rich ontology for multimedia, the authors
also cover another very important, and often forgotten, point that
goes beyond the use case of metadata modelling by itself: both the
way of technically creating associated annotations as well as utilising
existing ones. These points often pose difficulties, as a plain ontology
does not support them necessarily. To counteract this, in [167] Vacura
et al. present a Java API named COMM API that was developed to

3.1 related work - multimedia metadata modeling 63

support the infrastructure for the COMM ontology. This API will be
referred to in Section 5.1.

structural information for multimedia metadata As
seen until now, the related work mostly covered the eventual meta-
data that is to be allocated to a multimedia item, the representation
and interpretation of the features that are extracted. However, there
is another vital information that is necessary for a thorough multime-
dia metadata inquiry: the proper representation of the multimedia
item itself in combination with the “contact points” of the metadata.
This was already mentioned by Arndt et al. with their requirement
of separation of concerns. Saathoff and Scherp extend this requirement
further, as they see it as a major factor for interoperability between
different multimedia applications and systems [138] [139] [62] [147].
They extend the mentioned requirement by adding following crite-
ria alongside with the introduction of concepts for Information Objects
IO (the actual piece of information that should be conveyed to the
viewer of a multimedia item) and Information Realisations IR (the form
of representation of an IO). The separation between these two con-
cepts is emphasised, as it is important to give both of them proper at-
tribution in the process of metadata allocation. A thorough metadata
model needs to be able to annotate both the objects and realisations
in a proper, shareable, and understandable fashion, as this is impor-
tant for the interoperability between systems. These annotations also
need to cover the full range from low-level to high-level features. Last
but not least, a meaningful decomposition of the multimedia item as
well as the object and realisation levels needs to be supported by the
model. This further increases the granularity of the metadata back-
ground and is essential for precise annotations, which will later on
also affect querying capabilities. All of these requirements and inno-
vations are implemented into the Multimedia Metadata Ontology
M3O, which is an ontology based on RDF that is not restricted to the
“classic” multimedia items such as video, audio, image, etc., but can
rather also characterise more complex ones. Additionally by apply-
ing Semantic Web technologies, the ontology is open for every kind
of information from other ontologies, allowing it to implement rich
metadata annotations and semantic information content.

lessons learned In the modern Web-oriented life of today and
platforms like YouTube and Facebook - to mention only a few - multi-
media plays a central role and has a vast range of use cases and appli-
cations. To make them as useful and convenient for humans, the meta-
data that accompanies the multimedia and therefore the multimedia
metadata modelling becomes an important step towards the usage of
multimedia. The modelling has been an important topic in the fields
of computer science for a long time, but still has not stopped evolving

64 combining metadata modeling with multimedia

and enhancing further. Its main goal however has not changed since
its beginnings: making multimedia as good as possible for eventual
human consumption. This process also incorporates a necessary step
to increase the interoperability and applicability of the metadata for
computers and software in between, as computers in general play a
big role in the metadata allocation, and therefore the metadata must
also be computer-understandable before it can become valuable to hu-
mans in the last instance. Better multimedia metadata equals better
usability for computers equals better applicability for humans.

To enable this, the related work shown in this section has a lot of
insights in terms of the multimedia metadata. Many requirements
and rules have been explained in order to generate “good” metadata
or even a whole ontology in order to make the most out of it for the
scenario explained above.

Therefore, a dynamic, modular, as well as generic implementation
is essential. This is motivated by the broad range of inputs in addition
to use cases that need to be modelled in the scope of the model. The
first dynamic factor that comes in is the multimedia datatype that is
to be backed up by metadata. Next to the commonly known items
like video, audio, images, text, etc., it has become more and more
popular to have combined multimedia as well as more complex types.
Secondly, every of those multimedia types comes with a huge set of
diverse multimedia features that need to be modelled in a thorough
and non-fuzzy fashion. Thirdly, there is not a single valid metadata
representation of a given multimedia item, but multiple ones, that
might even originate from different other ontologies. A rich ontology
must also be able to incorporate interoperability not only between
computers, but also other ontologies.

Last but not least, the research field around multimedia metadata
modelling has also evolved in terms of underlying as well as ap-
plying technologies. While the still existing milestone and goto stan-
dardisation of the MPEG-7 was implemented in XML, more current
approaches have moved to RDF and Semantic Web technologies to
apply their advantages in the domain. In terms of applying technolo-
gies, next to supporting a rich ontology, developers often also support
APIs and other applications to make their ontology and metadata
more accessible.

3.2 the web annotation data model

The Web Annotation Data Model WADM supports an extensible, in-
teroperable framework as well as an accompanying RDF ontology for
the design and implementation of so called Web Annotations. This
term is defined as a piece of further description (e.g. marginalia or
highlight) for a digital resources like a comment or tag on a single
Web page or image, or a blog post about a news article. Annotations

3.2 the web annotation data model 65

are used to convey information about a resource or associations be-
tween resources. By being an RDF ontology, the WADM already cov-
ers a lot of the requirements of the use cases defined in Chapter 1.
Further requirements for multimedia ontologies have been defined
in Section 3.1, which will be evaluated in Section 3.3.6 in order to
show that the WADM is well suited as the baseline for the workflow-
oriented multimedia metadata ontology.

The WADM has been designed by the W3C Web Annotation Work-
ing Group3 and has reached its final state on 23 of February 2017

[143], as the group is now closed4. The starting point for the imple-
mentation of the WADM has been the preceding model called the
Open Annotation Data Model OADM [142], which is a contribution
of the W3C Open Annotation Community Group5.

The WADM is enclosed in a suite of specifications that are all im-
plemented in order to support the afore mentioned model and frame-
work. While the model specification focuses on the purpose and the
functionality of the model, the Web Annotation Vocabulary document
[144] gives detailed information about the classes, relationships, prop-
erties, and named entities that are utilised in the WADM. Last but
not least, the Web Annotation Protocol WAP [141] describes a client-
server based protocol that can be implemented to utilise the Web
Annotations in a Web-centric fashion following REST best-practises.

The description of the WADM will not cover every aspect of the
model and ontology in-depth, but rather tries to give an overall expla-
nation in order to understand the concept of the Web Annotations as
a basis for the following extension called the MICO Metadata Model
MMM in section Section 3.3. Therefore, this section will stick to a
more high-level explanation rather than specifying the concepts for-
mally, which is done by the WADM specification. The MMM section
will then pick up explanations given here and, if necessary, fill the
overall Web Annotation concept up with more detailed information.

The WADM specification is presented with a series of examples
that are implemented using a JSON representation that is mapped to
the respective RDF items. In this work, the examples will continue to
be illustrated as a combination of graph pictures accompanied with
the respective RDF items explained in text, as it has be done in Chap-
ter 2.

3.2.1 Web Annotation Structure

The WADM enables a modular way of implementing the two core
components of a generalised description of something: the thing that

3 https://www.w3.org/annotation/ (last visited 03/12/2018)
4 This is the version of the WADM that all of the following work is based on. If there

will be upcoming changes to this state, no changes will be incorporated.
5 https://www.w3.org/community/openannotation/ (last visited 03/12/2018)

https://www.w3.org/annotation/
https://www.w3.org/community/openannotation/

66 combining metadata modeling with multimedia

is to be described and the statement that is supposed to be about
or applied to the thing. Therefore, a Web Annotation consists of three
core concepts that are modelled extensively through various resources
in the WADM: the body component of an annotation stands for the
statement, while the target component delimits on which resource
(or subpart of a given resource) the statement is about. The WADM
states that “the body is somehow about the target”. Both of them are
connected by an annotation node which can further be extended by
provenance information.

Figure 11 shows an example, which depicts the showcase of assign-
ing or recognising a person’s identity on a given picture (and even
more precisely, only in a defined fragment of the picture), in this
case, Barack Obama. Therefore, the “annotation” node connects two
other resources for the body and target, yet abstracting from a proper
definition for both of them, which will be filled in later on in this sec-
tion. The RDF type for annotation nodes is the class “oa:Annotation”
(with the namespace “oa:” standing for “http://www.w3.org/ns/-

oa#”), whilst the resources for body and target are connected with
the annotation node via the relationships “oa:hasBody” and “oa:has-

Target” respectively.

annotation

"That face
belongs to

Barack Obama!"

targetbody

oa:hasBody oa:hasTarget

rdf:typeoa:Annotation

Figure 11: Exemplary Web Annotation Illustrating the Information That the
Human Face Displayed on a Given Picture is Barack Obama.

In general, an annotation node is enhanced with a single body and
a single target. This bears the semantics, that the statement contained
in the body is exactly concerning the single resource that is described
by the target node. There is however the possibility of having no body
and multiple bodies and/or targets. There must always be at least one
target associated with an annotation. The semantics of not having a
body can for example be a simple highlighting. When there are mul-
tiple instances of both sides, then every body is equally assigned to
every target. An example for this could be an image showing multi-

3.2 the web annotation data model 67

ple animals with the body assigning a species to those animals while
multiple targets refer to the fragments of the picture where the ani-
mals are present.

At this point it should be mentioned that there are possibilities
to include other semantics for the multiplicities. The only officially
accepted and included variation is the “oa:Choice” element for the
body component of an annotation. A choice contains several pos-
sible items from which only one, the best fitting, choice is to be
picked. An example for a choice body is the same textual comment
in different languages. The other multiplicity possibilities for both
body and target (that have not been included in the WADM specifi-
cation as they lacked proper implementations) are an unordered list
(“oa:Composite”), an ordered list (“oa:List”), and an independent
collection (“oa:Independents”). All of these multiplicity constructs
are convenient to implement on the RDF side, but the semantic inter-
pretation poses various difficulties.

3.2.2 RDF Classes for Body and Target Components

The resources associated with both the body and target component of
a Web Annotation are in general External Web Resources (EWR). In
the WADM, an EWR refers to a resource that may also exist outside
of the local host system, so when its IRI is referenced, the underlying
representation of the resource is presented. A target must always be
an EWR, while there is the possibility of a body being directly embed-
ded into the annotation, which generally represents simple textual
annotations. Although it is not obligatory, it is highly recommended
by the standard to assign RDF classes to both the target and body
component of an annotation in order to associate the datatype that is
addressed by the annotation. This issue is already reflected in the in-
troduction of Chapter 3, as this datatype association both affects the
quality of produced metadata as well as the possible querying of rel-
evant multimedia, as both are enhanced when associated datatypes
can be used.

There are the standard and classically known datatypes supported
with respective RDF classes in the WADM specification, namely im-
age (“dctypes:StillImage”), video (“dctypes:MovingImage”), sound
(“dctypes:Sound”), text (“dctypes:Text”), and dataset (“dctypes:-
Dataset”). All of them, as it is best practice, are adapted from the
Dublin Core specification called DCMI Metadata Terms [54] with
one of its namespace abbreviations “dctypes:”. As there are various
sub-types among these genres, a more detailed description can be
given by supporting the format as well as the language of the given
web resource via the properties “dc:format” and “dc:language” re-
spectively (“dc:” is also a namespace of the DCMI Metadata Terms
specification). With the format for example, a given image can further

68 combining metadata modeling with multimedia

be specified to be a “jpeg” or “png”, while the language can help by
illustrating that a given audio file contains spoken Spanish language.

Figure 12 extends the example Web Annotation shown in Figure 11

to have more metadata information. The datatypes can be assigned
to both body and target component in order to illustrate the fact that
the annotation is written text and targets a given image. This informa-
tion can directly be used at querying point of these annotations, so
only desired information will be transferred. Important to note here
is that it has been abstracted from the assignment of a fragment on
the picture (which is illustrated in Figure 11) and that the respective
resources for the annotation, body, and target have simple IRIs for
reasons of clarity. Especially the body and the target should have de-
scriptive IRIs which can be dereferenced in order to retrieve the text
passage or the image respectively.

annotation

targetbody

oa:hasBody oa:hasTarget

rdf:typeoa:Annotation

rdf:type dctypes:
StillImagerdf:typedctypes:Text

"Barack Obama" rdf:value "jpeg"dc:format

Figure 12: Exemplary Web Annotation from Figure 11 with more Metadata
Information, Especially the Addition of the Datatypes Text and
Image.

The use case of supporting simple text comments to other mul-
timedia, as shown in Figure 11 and Figure 12, is one of the most
common and most used application of annotations. For those textual
comments, the WADM supports simpler possibilities to model the
same circumstance, namely the Embedded Textual Body and String
Body, in order to match the frequency of text annotations. This con-
venience is then also reflected in the processing of those annotations
as they are supported in standardised fashion. Next to this fact, both
the embedded version and the String body version can be created
together with the respective Annotation and do not require a Web
Resource of its own.

The embedded version is associated with the RDF type “oa:Text-

ualBody”, which is to be interpreted with the same features as a “clas-
sic” text annotation like in the examples described above. The em-
bedded body can also have the properties “rdf:value”, “dc:format”,
and “dc:language”. A simpler text annotation can be implemented
by the String body version, which is a String literal that is connected
to the annotation node via the property “oa:bodyValue”. This String
may only be of the type “xsd:String” and there may not be any lan-
guage tag assigned. The associated Annotation is to be interpreted as
if it would be an Embedded Textual Body Annotation with the for-

3.2 the web annotation data model 69

mat “text/plain” by the client. Figure 13 shows an example of both
an embedded text annotation as well as an String body implemen-
tation. The annotations both show the example already presented in
Figure 11 and Figure 12. Note that both annotations should be inter-
preted the same way when parsed by a client.

annotation

body

oa:hasBody

rdf:typeoa:Annotation

rdf:typeoa:TextualBody

"Barack Obama" rdf:value

annotationrdf:typeoa:Annotation

"Barack Obama"

oa:bodyValue

"text/plain" dc:format

Figure 13: Exemplary Embedded Textual Body Annotation (Left) and a
String Body Annotation (Right). Both Represent the Same Seman-
tic Content. Target Components Have Been Left out for Reasons
of Clarity.

3.2.3 Fragmentation of Resource IRIs and Selectors

In some annotation instances it is necessary to not address an entire
EWR, but rather subparts or fragments of it. The WADM handles
this issue with two possible ways of specifying those subparts: the
segmentation of the resource and the WADM Selector classes. Both
possibilities can be used at the body and/or target component of a
Web Annotation.

The segmentation in the WADM is applied as defined by Jacobs
and Walsh in [94]. Following their definition, the segment is defined
by an IRI in combination with a fragment component, which de-
scribes both the extracted content as well as a way of how the seg-
ment is to be extracted and applied. There are various possible seg-
mentations that can be applied to different multimedia types [163].
There are however some restrictions that arise with the application
of segmentation features. It is important, that the media type is also
supported for the given resource, as segmentation fragments might
overlap syntactically between different media types. Next to this, the
WADM specification mentions that the combination of segmentation
with other features that describe the segment in more detail is not
possible. Also, supporting a segment fragment does not imply auto-
matically that the respective client will apply the segment, as they can
simply ignore it.

One of the best known segmentation standards is the W3C Me-
dia Fragments URI 1.0 specification [165], defining a best-practice to
construct and interpret spatial and temporal fragments on video, im-

70 combining metadata modeling with multimedia

age, and audio media files. In order to address only the face region
of the fragment of the image shown in Figure 11, a spatial fragment
conform to the Media Fragments specification could be applied. Fig-
ure 14 shows how the fragment would be applied to the resource IRI
of the target node, extending the normal IRI “http://example.org/-
pictures/barack.jpeg” with the fragment identifier “#xywh=pixel:-
1340,25,1040,1320”, which corresponds to a selected rectangle re-
gion starting with its top left corner at the pixel with coordinates
“(1340,25)”, having a width of 1040 pixels and a height of 1320 pix-
els.

annotation

http://example.org/pictures/
barack.jpeg#xywh=pixel:

1340,25,1040,1320

body

oa:hasBody oa:hasTarget

rdf:typeoa:Annotation

rdf:type dctypes:
StillImage

rdf:typedctypes:Text

"Barack Obama" rdf:value

"jpeg"dc:
format

Figure 14: Exemplary Web Annotation Showing the Content Illustrated in
Figure 11 with the Extension of a Segmentation Fragment for the
Target Image.

Up to this point, the most essential parts of describing a Web An-
notation have been mentioned. With these pieces of information, the
baseline is set and a broad range of applications can be covered. How-
ever, there exist limitations to this baseline of Web Annotations. In
[143] it is stated, that even simpler things like selecting a rectangular
fragment or selecting a span of text in a HTML page is not possible,
as the segmentation is limited to the possibilities that are supported
by the segmentation standards. Additionally, there are some use cases
that require “non-fragmental” information that also needs to be ap-
plied to a given Web Annotation.

To respond to this circumstance, especially in the case of apply-
ing segmentation to the resources that are targeted by both the body
and target component of a Web Annotation, the WADM implements
an instance that can be used to give further details and information
about how a Web Annotation is to be interpreted and how the re-
sources of the given annotation are targeted. This is done by using
a Specific Resource as an intermediate resource between the annota-
tion node and the body or target node respectively. Further details
can then be added to those Specific Resources, and then be inter-
preted at the point of querying. The Specific Resource node is con-
nected to the annotation node via the relationships “oa:hasBody” and
“oa:hasTarget” respectively, while a link to the media resource that is
further described is established with the relationship “oa:hasSource”

from the Specific Resource to the media resource.

3.2 the web annotation data model 71

Specific Resources can be implemented to be an External Web Re-
source themselves, however classically they are implemented as in-
corporated RDF node to the Annotation, as the Specific Resource is
only meaningful in combination with the given media resource, so it
would never be queried alone, and in order to keep the complexity
lower than necessary. Figure 15 shows an example with the use case
of a face assignment from above, which utilises two Specific Resource
nodes at the body and target component of the Web Annotation re-
spectively. To highlight that Specific Resources are not enforced to be
External Web Resources with an own dereferencable IRI, the media
resources of the body and target are indicated to have an IRI at the
domain starting with “http://example.org/”, while the two Specific
Resource nodes are entitled with a local IRI like the annotation node.

annotation

http://
example.org/...

http://
example.org/...

oa:hasBody oa:hasTarget

rdf:typeoa:Annotation

rdf:type dctypes:
StillImagerdf:typedctypes:Text

"Barack Obama" rdf:value "jpeg"dc:format

body_sr target_sr

oa:hasSource oa:hasSource

rdf:type

oa:Specific
Resource

rdf:type

Figure 15: Exemplary Web Annotation with the Application of Specific Re-
sources Both at the Body and Target Component.

With the implementation of a Specific Resource, a more sophisti-
cated version for segmentation purposes is possible, which can over-
come the shortcomings of the direct fragments applied to IRIs of the
media resources mentioned above. This is done by using Selector
nodes of the WADM specification, added to Specific Resource nodes
as the more detailed version of the respective media resource. The Se-
lector is dependant on the media resource it is attached to, and it de-
scribes how the segment of the media resource that is to be described
is to be determined. Selectors are connected to their corresponding
Specific Resource via the relationship “oa:hasSelector”. The WADM
supports several different selectors (in which mainly the FragmentS-
elector will be covered in more detail, as it is the most important one
for the following work) by default, which are the following:

fragment selector The fragmentation process described above
that is applied to an IRI of a given media resource is among
the best known procedures of describing segments of the re-
source. This is also possible by the utilisation of a Fragment
Selector. The actual fragment String is supported via the prop-
erty “rdf:value”. This Selector should be enhanced by support-
ing the specification that the given fragments conforms to by
adding the property “dcterms:conformsTo” to the Selector.

72 combining metadata modeling with multimedia

css selector This selector supports the common ways of select-
ing elements of an HTML Document Object Model through the
utilisation of CSS Selectors. The CSS expression is added via the
“rdf:value” property to the Selector.

xpath selector Next to the CSS selection, applying XPath queries
to documents that utilise the Document Object Model like XML
and HTML, also pose a comprehensive and flexible way of se-
lecting subparts of those documents. The path is added via the
“rdf:value” property to the Selector.

text quote selector This Selector selects text excerpts by sup-
porting a direct text quote via the property “oa:exact”. The
selection can be enhanced by also specifying a textual prefix
and suffix that should appear directly before and after the sup-
ported text quote respectively. Those are added via the proper-
ties “oa:prefix” and “oa:suffix” to the Selector.

text position selector In contrary to the Quote Selector, the
TextPositionSelector specifies its targeted segment of text by
supporting the start and end position of the characters of the
given text that are to be selected. This is done by adding the
properties “oa:start” and “oa:end” to the Selector, which indi-
cate the start and end position respectively. Position 0 would be
in front of the first character of the text, position 1 in front of
the second one etc.

data position selector This Selector is similar to the TextPosi-
tionSelector as it uses the same properties, but rather then se-
lecting text, this selector does work on bytes in bitstream.

svg selector A Scalable Vector Graphic can be utilised in order to
express various forms and shapes to select a fragment of a given
media file. The SVG can either be embedded directly into the
annotation via the “rdf:value” property, or implemented as an
own External Web Resource.

range selector Although the possibilities for selecting a specific
segment or fragment with the given Selectors is rich, there are
still some use cases that need finer granularity for the selection.
Because of this, a RangeSelector can be applied that selects the
range between a starting Selector and an ending Selector (but
not including it). These are added to the RangeSelector via the
relationships “oa:hasStartSelector” and “oa:hasEndSelector”

respectively. As an example6, the WADM mentions the selection
of two adjacent cells in a table of a Web page that are selected
through two XPath queries.

6 https://www.w3.org/TR/annotation-model/#range-selector (last visited
03/12/2018)

https://www.w3.org/TR/annotation-model/#range-selector

3.2 the web annotation data model 73

Figure 16 shows an exemplary Web Annotation with an imple-
mented FragmentSelector. The use case is the same face recognition
as shown above in Figure 11, so the depicted annotation does have
the same semantic content. The body content of the annotation is not
to apply to the whole picture but rather the rectangular selection of
the defined fragment of the target component with its Selector.

annotation

http://
example.org/...

http://
example.org/...

oa:hasBody oa:hasTarget

rdf:typeoa:Annotation

rdf:type dctypes:
StillImage

rdf:typedctypes:Text

"Barack Obama" rdf:value

"jpeg"dc:format

target_sr

oa:hasSource

oa:Specific-
Resourcerdf:type

selector

oa:has
Selector

oa:Fragment
Selector rdf:type

"xywh=1340,25,1040,1320" rdf:value

"http://www.w3.org/
TR/media-frags/"

dcterms:
conformsTo

Figure 16: Exemplary Web Annotation with the Application of a FragmentS-
elector that Utilises the Same Fragment of the Media Resource as
the Web Annotation in Figure 14.

Next to the Selectors themselves, the WADM supports ways to com-
bine and further specify the selection process in order to fine-tune it
even more to a given use case. Multiple Selectors, selecting the same
fragment in different ways, can be assigned to a single resource in
order to provide diverse alternatives to query that specific fragment.
Furthermore, there is the refinement of selectors. By adding a refining
Selector to a given selector, the resulting fragment is done by a se-
lection of a selection. This is especially useful, when “stacked media
types” are the resource that a selection is to be done on. Imagine that
the exemplary picture of Figure 11 is contained inside a Web page.
Addressing the same fragment could then lead from selecting a (sub-
) part of that given Web page, which is then refined by selecting the
picture to eventually selecting the fragment inside the picture with
three stacked and refined selectors. A refining Selector is added to its
original Selector via the relationship “oa:refinedBy”.

3.2.4 Additional Information for Web Annotation Nodes

In the following, additions to the “oa:Annotation” node are enlisted
that generally answer questions about the origin, context, and pur-
pose of the given Web Annotation. This information constitutes the
main provenance information of the WADM. The features are the fol-
lowing:

lifecycle information This point is closely related to the Agents
enlisted in the following bullet point, as the lifecycle informa-

74 combining metadata modeling with multimedia

tion implements the assignment of who created and/or modi-
fied the Web Annotation and at what point of time that action
took place. In the WADM specification, there are two important
timestamps specified: the creation of the annotation resource
and the generation of its serialisation. Both of them can have an
Agent assigned via the relationships “dcterms:creator” and
“as:generator”, as well as the timestamps via the properties
“dcterms:created” and “dcterms:issued” respectively. The last
point of time at which a given Web Annotation has been modi-
fied is persisted as a property “dcterms:modified” at the anno-
tation node.

agents As mentioned before, the Agent associated with a Web An-
notation is the instance that is responsible for its creation or
serialisation. Since the creation of Web Annotations is a process
that can not only be done by humans but also computers, a bet-
ter description - beyond supporting only an IRI - of the Agent
is necessary. The RDF classes to perform this enlisted in the
WADM are “foaf:Person”, “foaf:Organization”, and “as:Ap-

plication” with the possibilities of supporting a name (“foaf:-
name”), nickname (“foaf:nick”), email (“foaf:mbox” and “fo-

af:mbox_sha1sum”), as well as a homepage (“foaf:homepage”).
The agent node is connected to the annotation node via the re-
lationships “dcterms:creator” and “as:generator”.

intended audience Next to knowing who created a Web Anno-
tation, another piece of useful information is the intended ad-
dressee that it is created for. This in general are direct group-
ings of users through features like employment groups (a very
well fitting example from the WADM specification are teach-
ers and students) or groupings that are defined by supporting
various characteristical attributes like an age range or gender.
The allocation of these information does not induce that the
Web Annotation cannot be used at certain location, but systems
can rather filter the annotations before they get in contact with
the “wrong” audience group. To represent the intended audi-
ence in RDF, the Audience classes and properties of schema.org7

should be applied. Its instance node is connected to the annota-
tion node via the relationship “schema:audience”.

motivation and purpose In the course of applying provenance
information for Web Annotations it is not only important when
and who created the annotation, but also with what motivation
or out of what purpose she or he did it. This is done by assign-
ing a motivation node with the relationship “oa:motivatedBy”

to the annotation node. There are several purposes supported

7 http://schema.org/Audience (last visited 03/12/2018)

http://schema.org/Audience

3.2 the web annotation data model 75

by the WADM specification, like “oa:bookmarking”, “oa:com-
menting”, or “oa:describing”, which are so-called named in-
dividuals. This means, that rather than having a property set
to the same specific value for many RDF nodes, they have a
special unique IRI and only exist once in a given RDF graph to
which the nodes can point to. This is a strong graph feature, as
for querying purposes the named individuals allow the quick
search for a given node, then all associated nodes can be found
by following the named individual’s edges, rather than query-
ing for a text String of all the properties mentioned before. Next
to this, the named individuals can be typed and therefore use all
those advantages that have been mentioned in Section 2.2. All
of the motivations in the WADM are of the “oa:Motivation”

class.

others Last but not least there is more additional provenance in-
formation that can be added to a Web Annotation. However,
these are not as important for the following work, so they will
only be mentioned here and not discussed in detail. The acces-
sibility of content allows Web Annotations to be marked for
groups of users that have diverse ranges of ability, for exam-
ple impaired hearing, in order to enable better access for those
groups. The section about rights information explains how li-
censes and rights statements can be applied to an annotation
in order to clarify the legal usage of annotations that eventually
contain content that needs the clarification of free use. The prop-
erties associated with other identities allow the tracking of the
origin for the parts of a Web Annotation.

3.2.5 Complete Exemplary Web Annotation

In order to sum up the Web Annotation Data Model and its capa-
bilities as well as to show a thorough example of a complete Web
Annotation, Figure 17 shows such an example, incorporating all the
features and parts that have been covered in this section.

Additionally to the features described around and applied in Fig-
ure 12 and Figure 16, namely the content of the annotation - the
statement that Barack Obama is shown on the picture, in the form
of a textual body component - as well as the selection of the source
image in combination with a fragment, the example also includes
provenance information. These contain that the Web Annotation has
been created on the “20th of June, 2017” at “12 o’clock”, by a person
(its resource is illustrated with the RDF node “bob”) with the nick-
name “Bob”. The reason for creating the annotation is set to the pro-
cess of identifying (illustrated in Figure 17 with the named individ-
ual “http://www.w3.org/ns/oa#identifying”), which is attributed

76 combining metadata modeling with multimedia

annotation

http://
example.org/...

http://
example.org/...

oa:hasBody oa:hasTarget

rdf:typeoa:Annotation

rdf:type dctypes:
StillImage

rdf:typedctypes:Text

"Barack Obama" rdf:value

"jpeg"dc:format

target_sr

oa:hasSource

oa:Specific-
Resourcerdf:type

selector

oa:has
Selector

oa:Fragment
Selector rdf:type

"xywh=1340,25,1040,1320" rdf:value

"http://www.w3.org/
TR/media-frags/"

dcterms:
conformsTo

dcterms:created"2017-06-20T12:00:00Z"

bobfoaf:Person rdf:type

"Bob" foaf:nick

dcterms:creator

http://www.w3.org/
ns/oa#identifyingoa:motivatedBy

Figure 17: Complete Web Annotation with the Use Case of a Face Detection
Process: Barack Obama Has Been Detected on the Given Input
Image.

in the WADM to the identification of something that is depicted or
described by the supported target.

3.3 the mico metadata model - connecting annotations

In section Section 1.2 and Section A.1 in the Appendix, the MICO
project has been described with its vision and its goals. It has also
been discussed up to now, that one milestone of the project was to im-
plement a unified data model for all its produced results. To achieve
this, the MICO Metadata Model (MMM) [149] [23] [20] was imple-
mented in order to satisfy this requirement. It allows to deal with
a row of different extractors, all producing a manifold of different
result and output formats, both in terms of producing and storing
those results. Additionally, comprehensive querying capabilities are
supported by the structure of metadata modelling implemented in
the MMM. Provenance features are implemented to fully support the
workflow-based approach of MICO processes.

The MMM was developed as an extension to the WADM, as the
WADM already provides a broad range of useful tools in order to im-
plement information about the multimedia items. The Web Annota-
tions are generally used in order to further describe resources or asso-
ciations between them, in many cases being comments or tags about
web pages or textual documents [143]. The combination of these an-
notations forms a metadata background about the given resources.
The WADM defines a structured model and ways for users to use the
annotations.

Because of this, the WADM, and more precisely its Web Annota-
tions with the possibilities of modelling the information content in

3.3 the mico metadata model - connecting annotations 77

combination with selections and some provenance information, was
implemented as the basis of the MMM. With the requirements listed
in Chapter 3 in mind, the MMM lifts the context of the Web Annota-
tions to a context of multimedia information allocation and workflow-
based processes. A single Web Annotation, attached to the respective
multimedia item, then represents the result of a single extraction step.
Multiple extractors will add their information bit by bit to the item,
eventually forming a rich metadata background for the item. The in-
terplay of the media items and their enriched multimedia background
promise to broaden the semantic applicability of the items. Hidden
yet undiscovered semantics might lead the multimedia item to be
used in a so far unseen use case.

On top of the Web Annotations and their structure of having a
component for body, target, and the annotation itself, the MMM im-
plements two additional core features in order to apply the idea of
the Web Annotation to a multimedia use case. For reasons of con-
venience, the RDF classes, properties, and relationships have been di-
vided into different modules they apply to. The modules can be seen in
Figure 18: three adapted modules originate from the WADM, namely
the Content, Selection, and the Context modules (standing for the
body, target, and annotation components of the WADM respectively),
with the newly added MMM modules Composition and Provenance.
The colours applied in Figure 18 are representative for the modules,
and the following figures and graphics will stick to this choice of
colours as well, in order to depict the affiliation of the respective RDF
classes and instance nodes to a module.

Context
(annotation)

Content
(body)

Selection
(target)

Composition

Provenance

Figure 18: Module Structure of the MICO Metadata Model, Extending the
Web Annotation Structure with Body, Target, and Annotation
Component.

The modules adapted from the WADM fulfil the exact same role as
they do in the WADM itself. The Composition module incorporates
the elements that compose the multimedia items. The Provenance
module extends some of the provenance information already present
in the WADM, and extends overall provenance with an important

78 combining metadata modeling with multimedia

feature in a multimedia analysis workflow: the information about the
extractors and their interplay.

In order to give a description of the MMM, the following section
will build up the model features step by step, explaining them with
examples wherever possible. In the explanations the focus will lie
on the additions to the model, rather than the adaptions made from
the WADM. Adapted classes, relationship, or properties are imple-
mented as inherited RDF elements (for example “mmm:hasBody” as
a sub-relationship of “oa:hasBody”) and will be used and applied,
but not discussed in further detail, as its semantics are not changed
in regard to their role in the WADM, which was explained in Sec-
tion 3.2. The model description explains module by module, but will
at some occasions already refer to things contained in later modules,
if a higher degree of comprehension can be achieved that way.

3.3.1 Composition Module

With the use case of a multimedia analysis workflow that focuses on
the extraction of various features out of a given multimedia file to
form its semantic background, the file itself needs more attention in
the process of metadata modelling. In the MMM, this is supported by
the composition module.

From now on, whenever an analysed multimedia object is referred
to, the term Item will be utilised. In the process, every extraction
result that is added to that respective Item is referred to as a Part or
Part Annotation, which symbolises the participation of the analysis
result in workflow chains and the overall metadata background that
is created for the respective Item.

This is also applied in the metadata model. A multimedia file is
implemented by the class “mmm:Item” with respective instance nodes.
These Items form the basis for multiple possible analysis workflows
and therefore create a tree-like structure of metadata (given that there
will be backward and cross oriented edges), as an “mmm:Item” will
have various “mmm:Part” instances attached via the “mmm:hasPart”

relationship. “mmm:Part” is a sub-class of “oa:Annotation” and hence
implements the structure of a Web Annotation, which will be covered
in Section 3.3.2. A super-class “mmm:Resource” has been implemented
that disjointly subsumes the “mmm:Item” and “mmm:Part” classes. This
is done for ontology model reasons that will be seen later, as well as
technical reasons shown in Chapter 4. Figure 19 shows an example
for an Item with three different part children. Further content has
been indicated by placeholders for body and target component, some
type relationship have been left out for the Parts for reasons of clarity.

3.3 the mico metadata model - connecting annotations 79

itemmmm:Item rdf:type

part1 part2 part3mmm:Part

mmm:hasPart

...

rdf:type

Figure 19: Exemplary “mmm:Item” Node with Three “mmm:Part” Children.

3.3.2 Context Module

In the WADM (see Section 3.2), the RDF class “oa:Annotation” is the
central class, and its associated instance nodes connect the essential
parts of a Web Annotation: the body, containing the actual informa-
tion of the annotation, and the target component that may contain a
selection in order to specify the multimedia file (or its subpart) that
the annotation is based on. The MMM does adapt the structure and
the semantic of the Web Annotation by introducing the “mmm:Part”

class, which is a sub-class to “oa:Annotation”. Next to some multi-
plicity changes for some relationships and provenance features (see
Section 3.3.5), the semantic of a part is also extended in contrast to
a Web Annotation. In general, the part still is kind of a description,
classification, or further identification of a media item, but in a MICO
workflow, a part also symbolises an intermediary or final result in
the extractor workflow chains. Parts will link to one another in or-
der to express sequential processes and allow for the traceability of
those, and also link to the extractor instance that was responsible for
its creation (see Section 3.3.5). Figure 20 shows an exemplary Part
Annotation.

There are also two adapted relationships shown in Figure 20: “mmm:-
hasBody” and “mmm:hasTarget”, which are sub-relationships to the re-
lationships “oa:hasBody” and “oa:hasTarget” respectively. Both ful-
fil the same semantics as in the WADM, but the multiplicity of the
“mmm:hasBody” relationship had to be adjusted for the multimedia
analysis use case, as the single body represents the information of a
single analysis step. Because of this, a part annotation always needs
to have exactly one body node associated. As in the WADM, there
always must be at least one target associated in order to refer to the
multimedia item or multimedia subpart that the analysis was based
on, but there may be more. Multiple targets indicate, that the result
or statement of the Part Annotation is to be attributed to various mul-
timedia files or their subparts.

80 combining metadata modeling with multimedia

partmmm:Part rdf:type

body

mmm:hasBody mmm:hasTarget

target_sr

item

mmm:hasPart

Figure 20: Exemplary “mmm:Part” Node with Attached Body and Target
nodes.

3.3.3 The Content Module / The Body of the Part Annotation

As in the WADM for a Web Annotation, the body component of a Part
Annotation in the MMM composes the central information holder of
the whole construct, given that the results of the extractors will be
implemented in the body component. This information is important
when it comes to the utilisation of the metadata background that is
created in a MICO analysis workflow.

For a starting point, a super-class “mmm:Body” has been implemen-
ted, from which all further body classes will be inherited from. The
extraction results comprise a higher “semantic” level than basic data-
types applied to body components that have been seen so far. Because
of this, every extractor will implement its own body class, which will
be important in the workflow processes, as there will be extractions
that require another preceding extraction to have taken place before,
as well as querying capabilities. This allows for more fine-grained
requesting of already analysed items.

During the course of the MICO project, a lot of different workflows
composed of various extractors have emerged. To meet this impor-
tant part of the evolution of the MMM, an own specification [20]
(as a subpart of the MMM) with a respective namespace “http://-

www.mico-project.eu/ns/mmmterms/2.0/schema#” and abbreviation
“mmmterms” has been implemented.

Figure 21 and Figure 22 show two prominent representatives of
the extractors that have been utilised over the course of the MICO
project. Figure 21 shows the use case of an animal detection extractor,
which is fairly similar to the face detection, but rather than detect-
ing humanly face shapes, it tries to detect animals on a given picture.
Because of this, the constructed part annotation also is similar to the
one of a given face detection result: the detected animal is enclosed
in the body component, while the fragment of the picture that shows
the actual animal is implemented in the target component. In con-

3.3 the mico metadata model - connecting annotations 81

trast to the examples that have been seen in the Section 3.2, in all
MICO related Part Annotations, the extractors can issue their confi-
dence about given results via the property “mmm:hasConfidence” and
an associated percentage value between 0.0 and 1.0. The type of the
extractor is associated with the RDF type of the body node, in this
case “mmmterms:AnimalDetectionBody”. Altogether, the statement of
the whole Part Annotation is that an “Elephant” was found with a
confidence of “90%” on the fragment “xywh=300,150,50,70” of the
respective input picture.

part

body specres selector

mmm:Part

mmmterms:
Animal

DetectionBody

mmm:Specific
Resource

oa:Fragment
Selector

"0.9"^^xsd:double

"Elephant" "xywh=300,150,50,70"

"http://www.w3.org/TR/mediafrags/"

rdf:type

mmm:has
Body

mmm:has
Target

rdf:type

rdf:value

mmmterms:has
Confidence

rdf:type

mmm:has
Selector

rdf:type

rdf:value

dcterms:
conformsTopicture

mmm:hasSource

Figure 21: Exemplary Part Annotation, Illustrating the Result of an Animal
Detection Analysis.

Temporal Video Segmentation TVS [129] is the process of dividing
a video into temporal segments, which support the partition of the
video into logical units called shots. In general, those shots lead over
each other in transitions, which indicate the shot boundary, meaning
the ending of one shot before the start of another. Videos consist of
a sequence of consecutive frames (pictures with a very short playing
time, eventually forming the video), and single frames will be used
to indicate a shot boundary, called the shot boundary frame.

All of these information (except the transition, which is a side prod-
uct of all the aforementioned details) are incorporated in the MMM.
Figure 22 shows a Part Annotation that indicates a complete shot in a
given video resource by supporting a “mmmterms:TVSShotBody” (with
a confidence value like all MICO extractors) in combination with a
temporal fragment in the target component. In the example of Fig-
ure 22, the shot would start at second “1.000” and end at second
“3.155”.

3.3.4 The Selection Module / The Target of the Part Annotations

The addressing of the multimedia data with its subparts that serve as
the input for described analysis processes forms a fundamental part
for multimedia metadata modelling. In Section 3.2.1, the supported
possibilities of the WADM are documented. As those are already very
diverse and cover all requirements for multimedia addressing that
have been encountered in the MICO project, the MMM adopts the

82 combining metadata modeling with multimedia

part

body selector

mmm:Part rdf:type

mmm:has
Body

mmm:has
Target

mmmterms:TVS
ShotBody rdf:type

"0.7"^^
xsd:double

mmmterms:has
Confidence

oa:Fragment
Selector

rdf:type

"t=npt:1.000,3.155" rdf:value

"http://www.w3.org/
TR/mediafrags/"

dcterms:
conformsTo

specres

mmm:Specific
Resource

rdf:type

mmm:has
Selector

Figure 22: Exemplary Part Annotation, Illustrating the Result of a Temporal
Video Segmentation Analysis.

WADM’s implementation and adapts some of the multiplicities for
the multimedia analysis use case.

Both the “oa:SpecificResource” class and the relationships “oa:-

hasSource” and “oa:hasSelector” have respective counterparts in
the MMM. For every Part Annotation there must always be a “mmm:-

SpecificResource” associated via the relationship “mmm:hasTarget”,
but there may be more. On the contrary, a classic Web Annotation is
not needed to have a Specific Resource, as the target can also be ad-
dressed directly. An already known “oa:Selector” can be applied to
the Specific Resource instance via the relationship “mmm:hasSelector”.
There can be none or a single selector applied to a Specific Resource.

A more special role is attributed to the source of a Part Annotation,
which is referenced by the specific resource node via the relationship
“oa:hasSource” in the WADM, and “mmm:hasSource” respectively in
the MMM. Classically, this relationship links the Specific Resource to
the resource that it is a more specific representation of. For a Part An-
notation, there must always be a single “mmm:hasSource” relationship
present which links to a “mmm:Resource” that stands for the multime-
dia asset that the respective analysis process of the Part Annotation is
done on. This is explained in more detail in Section 3.3.5. Examples
have been shown already in Figure 21 and Figure 22.

3.3.5 Provenance Module

A very important feature in a scenario like MICO with multiple au-
tonomous extractors analysing multimedia items to form metadata
backgrounds and communicate with a central platform while doing
so, provenance is an important cornerstone. It allows the preservation
of a state of traceability through the workflows, indicate information
about given multimedia files as well as a richer description about
extractors and their settings.

The first thing that is needed for an extraction workflow is the mul-
timedia file itself with its details, for which it is important to record its
physical location as well as its format. The location is accessed when

3.3 the mico metadata model - connecting annotations 83

an extractor wants to analyse an file, the format is used when it is
determined, if a given extractor can analyse the underlying multime-
dia file. In the MMM, this information is associated with an instance
of the “mmm:Asset” RDF class. These nodes are attached to an Item
or a Part via the relationship “mmm:hasAsset”. Enclosed with an Item,
the respective Asset represents an original multimedia file that has
been injected into the platform to be processed, while an Asset of a
Part Annotation resembles an intermediary multimedia file that has
been created as the result of an extraction step. This could for ex-
ample be a frame and picture or an audio soundtrack that has been
extracted from a video. The location is applied with the property
“mmm:hasLocation”, while the format is supported via the property
“dc:format”. Figure 23 shows an example of a video with the format
“video/mp4”, which will have an intermediary image with the format
“image/jpeg” extracted. Note here that the supported formats should
align with commonly known MIME types8, but it is allowed to add
own format types in order to associate “semantic types” as a result of
an extraction workflow.

itemmmm:Item rdf:type

partmmm:Part

mmm:hasPart

... ...

rdf:type

itemAsset mmm:Assetrdf:typemmm:hasAsset

"http://example.org/
assets/asset1"

mmm:has
Location

"video/mp4"dc:format

partAsset mmm:Assetrdf:typemmm:hasAsset

"http://example.org/
assets/asset2"

mmm:has
Location

"image/jpeg"dc:format

Figure 23: Exemplary Item and Associated Part Annotation with Respective
Assets.

Next to the basic details about the multimedia items, timestamps
are a central provenance information that need to be kept track of.
For those, the relationships present in the WADM are to some extent
adapted at Item and Part Annotation instances. As in the WADM,
the timestamps supported should be a “xsd:dateTime” with the UTC
timezone expressed as “Z” [112]. The adapted semantics in the MMM9

are as follows:

• “oa:serializedAt”: The point of time at which a given Item
has been materialised at the corresponding platform instance,
or when a Part Annotation has been created by an extractor.

8 https://www.sitepoint.com/mime-types-complete-list/ (last visited 03/12/2018)
9 With one of their issued versions, the WADM specification has changed the IRIs

for the timestamps to “as:generator”, “dcterms:created”, and “dcterms:issued”.
These changes have not been incorporated into the MMM, however these properties
and relationships still incorporate the same semantics.

https://www.sitepoint.com/mime-types-complete-list/

84 combining metadata modeling with multimedia

• “oa:annotatedAt”: The point of time when a Part Annotation
is connected with its corresponding Item instance.

• “oa:serializedBy”: The link between a given Part Annotation
and its responsible extractor instance (which will be described
below). This relationship can also be associated with Item in-
stances in case there exist different ways of materialising them
at the given platform instance.

The most central point about the provenance information that is
represented by the MMM is the traceability of the multimedia analy-
sis workflow processes, which in detail covers the topic of the “input”
of the intermediary and final result steps. Understanding the input
of every step allows to retrace the whole workflow that has been
executed for metadata allocation in the data model. However it is im-
portant to cover the semantic background for both of these relations.

The term “input” for the analysis steps has to be seen twofold in
our context. Firstly, there is the actual metadata input that an extrac-
tor needs in order to do his own processing. In the MMM and this
work, this will be referenced to as the input of a Part Annotation.
The input relationship is implemented with the RDF relationship
“mmm:hasInput” and is directed from a Part node to a node of the
type “mmm:Resource”, so an Item or another Part. Secondly, there is
the multimedia Asset that a given analysis process is done on. This
is called the source of the Part Annotation, and this relationship has
been explained in Section 3.3.4. Figure 24 shows an extensive example
for this provenance feature, whose key points are the following.

• The workflow behind the example in Figure 24 contains the
initial ingestion of a multimedia Asset with the RDF pendant
“asset1” (with the IRI “http://example.org/assets/asset1”)
and three consecutive extractor steps, which will start their ex-
traction once the multimedia Asset is ingested at the given plat-
form instance and the preceding analysis step has ended even-
tually. The first and third extractor (responsible for creating the
part annotations “part1” and “part3” respectively) are “meta-
data extractors”, meaning that they produce metadata informa-
tion only, rather than an intermediary or final result that is com-
bined with an extracted multimedia file. By contrast, extractor
two is a process that does output a file which is indicated by
the relationship “mmm:hasAsset”, referring to its “mmm:Asset”

named “asset2”. Those are called “asset extractors”. The loca-
tion of the created Asset is “http://example.org/assets/as-

set2”. The input and source of every Part Annotation is imple-
mented by the two relationships “mmm:hasInput” and “mmm:has-

Source”.

• “part1” as the first Part Annotation of the workflow chain refers
to the Item node “item” as its source, so its “mmm:hasSource”

3.3 the mico metadata model - connecting annotations 85

edge (found at the target node “target1”) links to the Item
“item”, which in terms stands for the first multimedia Asset
“asset1”. The extractor is some kind process that utilises a mul-
timedia file directly as input, indicated by the relationship “mmm:-

hasInput”, which is also directed towards “item”.

• The second extractor has another function, as it takes the meta-
data extracted by the first extractor and produces a file. The
output is referred to via the “mmm:hasAsset” relationship. As
the actual input for the second Part Annotation is resembled
by the node “part1”, the “mmm:hasInput” edge is directed from
“part2” to “part1”. Its source however is directed to the Item
“item”, because the extraction process illustrated by “part2” is
based on the initially ingested multimedia file in combination
with the metadata composed by “part1”.

• Extractor number three then can take the output of extractor
two, as it is some kind of process that needs the multimedia
Asset “asset2” as input. Because of this, the source of the third
Part Annotation “part3” links to “part2” (and not the initial
Item). As that Part Annotation with its Asset also contains the
metadata input needed (if needed at all) for the creation of
“part3”, the “mmm:hasInput” edge is also directed towards the
Part Annotation “part2”.

Last but not least the provenance module of the MMM features an
extensive description for the extractors that take place in the analysis
process. Figure 60 in the Appendix shows an comprehensive example
for a full extractor model. As it is quite extensive, but on the same
hand rather self-explanatory, it will only be referred to in short.

The most important part of the extractor provenance model are the
classes “mmm:Extractor” and its associated “mmm:Mode”. In the MICO
use case, extractors could be started in different modes, allowing the
same general extractor to have different settings. In the example of
Figure 60, the Audio Demux could be set to different sampling fre-
quencies, which leads to varying output. As described above, the Part
Annotation is connected to the instance of the extractor via the rela-
tionship “oa:serializedBy”, while the respective mode of the extrac-
tor is associated via the relationship “mmm:serializedWith” (which
is an addition to the MMM that does not have a counterpart in the
WADM). This is necessary because simply linking the Part Annota-
tion to the extractor would not suffice, as the information about the
applied mode is also important.

The extractor itself is described with a name, id, and version, while
modes have a description and also an id. Next to this, modes are asso-
ciated with more detailed information (by the implementation of RDF
instances) for parameters and input/output instructions. Parameters
are instantiated with a String name and a value. Input and output

86 combining metadata modeling with multimedia

mmm:Item
rdf:type

item

part1
mmm:Part

rdf:
type

part2
part3

mmm:hasPart

mmm:hasInput

mmm:hasSource

body1 mmm:has
Body

mmm:has
Targettarget1

body2 mmm:has
Body

mmm:has
Targettarget2

body3 mmm:has
Body

mmm:has
Targettarget3

mmm:Specific
Resource

rdf:type

"http://example.org/
assets/asset2"

mmm:has
Location

"someFormat2"
dc:format

asset2
mmm:hasAsset

"http://example.org/
assets/asset1"

mmm:hasLocation

"someFormat"
dc:format

asset1

mmm:hasAsset

mmm:Asset
rdf:type

mmm:Asset
rdf:type

Figure
2

4:
Exem

plary
Item

Structure
that

Show
s

the
Input

Provenance
(Blue

Edges
for

“
m
m
m
:
h
a
s
I
n
p
u
t
”,O

range
for

“
m
m
m
:
h
a
s
S
o
u
r
c
e
”)

of
the

M
M

M
.

3.3 the mico metadata model - connecting annotations 87

of the modes share the information of having a semantic type, mime
type, and syntactic type. The former mainly describes the given in-
put or output in a semantic high level fashion and is therefore mainly
applied for humans. The mime type links to a corresponding named
individual implementing the commonly known mime types for mul-
timedia files. Lastly, the syntactic type links to a more general, MICO
use case specific data type, which is used for workflow provenance.

3.3.6 Multimedia Ontology Requirements Check

The related work shown in Section 3.1 described a list of require-
ments that an ontology for describing metadata of multimedia items
should comply with. To prove that the MMM suits for the application
of a multimedia metadata ontology, this section evaluates the MMM
against these defined requirements. Some of the following points will
also be supported practically by the Anno4j library which will be seen
in Chapter 4.

(
√

) mpeg-7 compliance Neither the WADM or MMM implement
the features of the MPEG-7 standard by default, however the
model can be dynamically adapted at its body component to
support every MPEG-7 feature. Some of the ontologies and ap-
proaches in the related work in Section 3.1 have already im-
plemented RDF pendants, which could also be applied in the
MMM.

√
semantic interoperability One of the core requirements of

the WADM itself is to implement the Web Annotations in a
fashion to make them shareable across different applications
and peers. There is also a specification next to the WADM, the
Web Annotation Protocol, whose main purpose is to implement
a client server architecture to exchange Web Annotations. So by
default, the MMM also supports semantic interoperability.

√
syntactic interoperability As both the WADM and MMM

are implemented in RDF, aligned with Semantic Web technolo-
gies, the model supports syntactic interoperability between sys-
tems.

√
separation of concerns The structure of the Part/Web An-

notations with their partitioning between body (domain knowl-
edge) and target (structural knowledge) components that are
connected by an Annotation or Part node respectively, supports
full separation of concerns. The connecting Annotation/Part
node can further contain administrative knowledge.

(
√

) modularity In the WADM and MMM, modularity by defini-
tion is not supported as for example in the MPEG-7 standardis-
ation. But rather than supporting various subparts, modularity

88 combining metadata modeling with multimedia

is supported when it comes to the body component that can be
implemented and adapted to the specific use case. In a way, the
user then only needs her or his subset of body implementations
in combination with the always needed core components of a
Part/Web Annotation.

√
extensibility Both the WADM and MMM are designed in an

extensible fashion. The main features that should be extended
are the body component as well as the selectors, however (as it
was done for the MMM as well) every RDF class, relationship,
and property can be extended and adapted to various use cases.

Next to the requirements that have been defined by the authors of
the issued related work in Section 3.1, there have also been require-
ments that have been compiled for the data model during the course
of the MICO project. These factors originate from multimedia meta-
data in general, as well as workflow-based features that have to be in-
corporated as a result of the processes that have been implemented in
the project. These have been enlisted in the introduction of Chapter 3.
The following list explains the compliance of the MMM in regards of
those requirements:
√

plenty of different datatypes The MMM does not impose
any restrictions on the analysed datatypes, querying capabili-
ties, or comparison operators. All of these features can be freely
adapted to a specific use case. Pre-knowledge of produced meta-
data can be reduced, as the Anno4j library supports ways of ap-
plying and producing the metadata in a more convenient way
(see Chapter 4).

√
fragmentation of media items The fragmentation of multi-

media files and their content is fully satisfied by the implemen-
tation of Selectors on the side of the WADM and the associated
standardisations that can be applied. Because of this, the meta-
data and therefore the statement or result of a given extractor
can be addressed in a very fine-grained fashion to the exact
fragment or subpart of a given multimedia file.

√
stacking of media items A “stacked media item” consisting

of several basic multimedia data, can be implemented in the
MMM in different ways. The breakdown of the enclosing stacked
item can be done by splitting it through the application of Part
Annotations for every subpart. Doing this, the respective sub-
parts can be addressed directly by following analyses. Next to
this, it is possible to interpret the stacked item as it is and ad-
dress it by supporting an own datatype to it. This does not al-
low the same level of granularity, but can have advantages of its
own. The addressing of incorporated media files must be done
via proper choosing of Selectors.

3.3 the mico metadata model - connecting annotations 89

√
quality of multimedia metadata In the universe of MICO

and the MMM, the metadata background that is generated for
multimedia files is highly adjustable to the eventual use case.
Multiple workflows can add their metadata and resulting fea-
tures to one and the same multimedia item type, creating rich
and diverse metadata for the analysed multimedia files. In com-
bination with the comprehensive querying capabilities enabled
through the MMM, this fuels the applicability of those multime-
dia files and therefore increases their quality as well.

In retrospective, this chapter has given insights into the field of mul-
timedia metadata modelling, which is an important topic for decades
now. It is still evolving and there are many applications or use cases
that make use of it today. Section 3.1 has highlighted some of the
influential cornerstones of the field’s history, which has also lead to
a row of requirements that need to be met by a modern multime-
dia ontology. Considering these requirements, the Web Annotation
Working Group’s prevailing Web Annotation Data Model stood out
to be a fitting candidate for a base ontology due to its satisfaction
towards mentioned ontology requirements as well as its origin in the
Semantic Web technologies. The WADM is described in Section 3.2.
Furthermore, as this work envisions a workflow-based application of
multimedia metadata, an extension to the WADM, namely the MICO
Metadata Model MMM, is introduced in Section 3.3, which extends
the functionality of the WADM to be also useful to such applica-
tions. Last but not least, the MMM was positively evaluated against
the requirements for multimedia metadata ontologies defined in Sec-
tion 3.1.

Next to the knowledge about multimedia metadata ontologies, the
related work has also shown that an important factor next to the on-
tology itself is to make the metadata technically accessible and usable
in some way. In the field of computer science, this is often done over
APIs or whole full-stack applications. Therefore, the following part
of this work will show how the MMM can be embedded in a work-
flow or eventually a cycle of work steps, that eventually comprises the
processes of producing, applying, and consuming multimedia meta-
data in order to create a rich metadata background for multimedia
items. This workflow will first be explained and then embedded into
a whole software platform in Chapter 5. Next to this, an implemented
library called Anno4j will be shown in Chapter 4, which enhances the
usability of Semantic Web technologies altogether and within that
also applies the MMM in a convenient fashion for the user.

Part III

T H E A P P L I C AT I O N O F M U LT I M E D I A
M E TA D ATA I N A W O R K F L O W- D R I V E N

A P P R O A C H A N D I D I O M AT I C S E M A N T I C W E B
T E C H N O L O G I E S

4
I N C R E A S I N G T H E U S A B I L I T Y A N D
A P P L I C A B I L I T Y O F S E M A N T I C W E B
T E C H N O L O G I E S F O R M U LT I M E D I A M E TA D ATA
M O D E L I N G A N D W O R K F L O W S - A N N O 4 J

Up to this point, this work has covered and explained concepts and
ideas of the Semantic Web world by having a workflow-centric pro-
cess in mind, which is motivated by the vision of the MICO Project
described in Section 1.2 and Section A.1 in the Appendix. Ontolo-
gies and metadata models have been the most important point of the
last sections. They compose both a syntactical as well as a semantical
structure for metadata, and thus induce how already existing meta-
data is to be interpreted on one side, but also how it has to be pro-
duced structurally on the other side. It has been learned up to know
that especially at these factors and processes, barriers exist for the
overall Semantic Web technologies [39], and especially non-Semantic
Web experts. To counteract these, this chapter will introduce technical
solutions for those barriers.

Therefore, after the basics of Semantic Web technologies have been
shown in Chapter 2, the concept of metadata modelling has been
highlighted in particular in a combination with multimedia in Chap-
ter 3. Also, a multimedia metadata ontology, namely the MICO Meta-
data Model MMM, has been developed and described in Section 3.3
which servers as the modelling backbone of this thesis.

Nevertheless, it has also been brought up throughout the sections
and chapters enlisted above, that an ontology on its own can serve a
lot of purposes, but there is a much higher potential when it is com-
bined with respective technologies and applications. This statement
has to be seen twofold. Most of the implementations that apply the
ontologies and models hinted especially in Section 3.1 are generally
oriented in the direction of full-stack applications. This means that
there is mainly a piece of software in combination with various inter-
faces that support the seemingly convenient utilisation of the under-
lying ontology, allowing the user to produce and consume the meta-
data without getting involved with the procedure of basic Semantic
Web technologies, for example in the form of SPARQL queries. This
obscuring is in most cases necessary and to some extent helpful, as
the generic user might have only limited knowledge of the Semantic
Web technologies necessary. By being forced to use unfamiliar tech-
nologies, in most cases the user would not make use the system as
a consequence. This however somehow overshadows the features of
the ontology and narrows its possibilities and applicability, not only

93

94 increased usability for semantic web technologies - anno4j

for the expert (who may have implemented the full-stack application),
but also the new potential user itself. Additionally, this kind of appli-
cation does not allow a user to further familiarise oneself with the
Semantic Web technologies.

The second possibility to combine an ontology application with re-
spective technology cannot be called an application of its own, but
is rather targeted at smaller parts of functionality (and can there-
fore of course also be incorporated in a full-stack application). An
example for this kind of technology could be a piece of software that
does mainly focus on the querying and persistence of RDF data. Al-
though these instances comprise smaller tasks, they are respectively
better suitable for familiarising a non-Semantic Web expert with the
technologies present on the one hand, and on the other hand they
provide more space for users who are already familiar with Seman-
tic Web technologies to create comprehensive and rich modules for
Semantic applications.

Eventually, the building blocks of this work will represent modu-
lar implementations that mainly focus on the increase of applicabil-
ity and usability of Semantic Web technologies. This does help non-
Semantic Web experts to apply said technologies much more conve-
niently. However, these incremental implementations will also be in-
troduced in a full-stack application serving the MICO visionary use
case, in order to demonstrate, evaluate, and validate their applicabil-
ity. The resulting MICO Platform will be explained and compared
against related implementations in Chapter 5. As described in the
MICO vision, the target of the platform incorporates the implementa-
tion of a central piece of software to which autonomous multimedia
extractors can connect to and add their analysis results to ingested
multimedia files. This at last forms the file’s metadata background,
which then can be used for further processing and exploitation of
information. An obstacle existed at this point, which can be closely
compared to problems of the Semantic Web described in Section 2.1:
the barrier for the extractor developers to write and query their re-
sults in the form of RDF metadata, which existed next to the complex
task of devising and implementing the extractors.

As a solution, the Object Relational Mapping ORM-like library
called Anno4j to map Java objects to and from RDF data has been im-
plemented. This chapter will continue to explain the basis and origin
of ORMs in combination with related work to this topic in Section 4.1.
Afterwards, a detailed description of Anno4j and its components will
be given in Section 4.2, preceded with a summarisation of scenarios
that can be solved more conveniently through the application of the
library. These also comprise some of the problems present in the Se-
mantic Web, indicating that Anno4j is able to resolve some of them
or at least lower the barrier. Section 4.2 will also give a more detailed
sectioning of the remaining part of this chapter. The entirety of this

4.1 related work - object/relational and object/rdf mappings 95

chapter proposes a solution to research question 2, while its subsec-
tions may also refer to further research questions.

Although Anno4j represents a self-contained abstraction layer that
is placed on top of the database layer, different approaches and so-
lutions of varying technical perspectives will be applied. Therefore,
various informative illustrations will be used that facilitate the de-
scription of the approaches. Each of those will be embedded in the
respective context and will be explained accordingly.

4.1 related work - object/relational and object/rdf

mappings

The concept of Object/Relational Mappings is a well-known concept,
and therefore to this day has accumulated a lot of development and
research. Despite its naming, which is sometimes entitled as object
mapping rather then ORM (which is generally used by the Hibernate1

team), all designers of the concept agree upon its use and exertion:
a piece of code or framework that can be utilised in an application
to facilitate the interaction with data, mainly covering the fields of
persistence, which is a fundamental part in the design as well as im-
plementation of an application. The overall description of ORMs is
aligned with the explanations and insights of Bauer and King [16]
and O’Neil [123], as their descriptions are detailed and in depth, and
Hibernate is one of the best known ORMs of today.

The employment of an ORM into the development an application
can lead to facilitation that can be seen at various occasions. The main
purpose is to help with persistent data (in contrast to transient data),
information that is fully persisted to the database and which there-
fore can outlive for example the runtime of an application or the
current workflow of a client. This process is also done automatically
and transparently, as it is taken over by the ORM and interwoven
into the application code, supporting robust and efficient manage-
ment of the data. It also enables concurrent access to the data, thus
multiple users can work on the same state of the data without interfer-
ing one another. Besides this, the ORM takes over or lightens several
“low-level tasks” for the application developer. Among those are the
persistence and querying of data, execution of queries for those as-
sociated tasks, dealing with query parameters, or searching through
results. Although these tasks are “easier” implementation- and effort-
wise than for example the code for the logic of the application, they
should not be treated lightly, as writing all these interactions by hand
can pose a heavy timely burden that has to be done for even simpler
applications. As the model for the application gets larger or more
complex, this circumstance gets aggravated even more. The utilisa-
tion of an ORM for these tasks does also require some more lines of

1 http://hibernate.org/orm/ (last visited 03/12/2018)

http://hibernate.org/orm/

96 increased usability for semantic web technologies - anno4j

code to be incorporated, however as ORMs generally are designed
in a non-intrusive manner, this effort is kept to a minimum and can
leave the developer to concentrate on existing requirements of the
actual application.

Altogether, ORMs promise to have the following advantages when
applied to an application:

productivity The code that has to be written for the interaction
between client application and the underlying database is re-
duced significantly. Rather than writing queries for every single
mapping requirement that has to be met (this sometimes also
includes simple interactions like getters and setters), the basic
functionality of issuing a query via the programming language
objects is the same for every class and has only to be written
once. Some of the ORMs are also able to generate parts of the
interaction code right away.

development effort In this criteria, a hand-written persistence
layer implementation is compared with the application of an ex-
isting ORM for the same purpose. Performance-wise, the hand-
written code can surely be as good as the ORM code, as of-
tentimes the ORM implementation has to conduct some time-
consuming functionality. Nevertheless, one has also to take the
development time into account, which rises quickly for hand-
written code with the size of the to-be-implemented applica-
tion, while most ORMs are incorporated easily. Next to this, the
optimisation space is very limited for hand-written implemen-
tations or again takes considerable timely efforts, while exist-
ing ORMs have had specialists that invested time and expertise
into those optimisations. In summary, using existing ORM im-
plementations for persistence purposes takes less development
time, even though the application developer has to familiarise
himself with the ORM, and it is better optimised for database
usage.

non-intrusiveness The objects that take part in ORM mappings
are rather simple and can mostly directly (or in combination
with a slight adaption) be used in the client application as data
objects or other instances as well. The ORM code that has to be
implemented in respective applications is also focused on being
usable in convenient and non-intrusive fashion and can in many
cases be picked up quickly.

reusability In contrast to self-written queries, especially for the
interaction with the database as well as the implemented map-
ping objects, code associated with an ORM is highly reusable.
This allows code pieces to be used alongside other software and

4.1 related work - object/relational and object/rdf mappings 97

applications nearly right out of the box. Code does not necessar-
ily have to be implemented redundantly and from scratch.

error-proneness and maintainability Code associated with
ORMs creates room for testing capabilities. Starting with the ba-
sic ORM functionality for the communication that can be tested,
it is also possible to write tests designed for specific class objects
next to more thorough querying use cases, rather than cum-
bersome testing of difficult to maintain SQL queries. This im-
mensely decreases the error rate of the whole system while in-
creasing the maintainability, as errors, corresponding adaptions
or updates can be implemented into the ORM system much
easier and quicker. This does also influence the reusability, as
the tests are written for more general parts of the system rather
than specific ones and must not be recreated for every feature
or mapping item that is added to the system.

application design Software patterns can be included into an ap-
plication design through the utilisation of an ORM. This makes
the code much cleaner and more efficient, further developing
gets facilitated by clear processes and implementations.

(vendor independence) Most ORM implementations are inde-
pendent from a specific underlying database, but rather focus
their interaction on a querying protocol or language like SQL.
This enables the ORMs to be used with any database that under-
stands the respective language. This independence enables eas-
ier cross-platform implementations. Additionally, deployment
processes are also facilitated, as test implementations of an ap-
plication can run on lightweight databases while the productive
system can work on a large scale database. With the aforemen-
tioned independence of database however, the migration pro-
cess can be done seamlessly.

Despite their many advantages, ORM implementations bear several
known issues that arise from the applied mapping which creates a
mismatch in terms of the data representations, as two different worlds
or paradigms collide. In [16], Bauer and King name and describe the
following problems:

granularity Java objects have a great range of possible granular-
ity, from simple basic datatype classes to coarse classes to more
specialised and detailed information holder classes. This gran-
ularity however cannot be reflected in a relational database, as
the possibilities there are more restricted. This confined scope
for data modelling is then oftentimes reflected on the domain
model of the application, leading to shortcomings like missing
functionality that has to be implemented in another, oftentimes
more costly, way.

98 increased usability for semantic web technologies - anno4j

subtypes Two of the strongest features of object-oriented program-
ming languages are inheritance and polymorphism, which both
can be applied to even more functionalities like polymorphic
querying. These concepts are neither reflected in SQL nor in a
relational database.

identity The problem of identity is encountered once you deal
with the potential equality of data items. This is necessary in
different functionality of the database like querying. While Java
supports two interpretations of identity (object identity mostly
checked by memory location, and secondly the equality test
via implemented “.equals()” methods), neither of both does
match the identity check that is done in the relational world:
the test on primary keys.

associations Associations represent the linking between different
information objects. The mismatch occurs with this concept as
the associations in the Java world are implemented via object
references which can be included directly in a class. On top of
that, these references can have any multiplicity modelled: “one-
to-one”, “one-to-many”, and “many-to-many” (which is a little
bit more difficult but manageable). In contrast, the relational
database implements these associations via projection and table
joins. For a many-to-many association, separate link tables have
to be implemented. While the object references in the Java world
are simple to implement, use, and evaluate, in the relational
world several joins and costly operations have to be executed in
order to apply associations between database entries.

object graph navigation Closely related to the problem of asso-
ciation, the navigation through the object graph that is spanned
by objects and their interconnected associations poses another
problem. In Java this can be done by calling the methods that
are supplied for the associations (in most cases, this is a sim-
ple getter method). For relational databases, there already is no
such thing as graph navigation, as it is simply not possible to im-
plement. Costly join operations between multiple tables hamper
the attempt to do so. Furthermore, when writing an SQL query,
a user has to know what he wants to query in advance when
the query is written, which does not truly represent the concept
of navigation as it is in the Java world.

As with the overall concept of ORMs, the awareness for these prob-
lems has existed for a long period of time, and therefore current
ORMs can (to a certain extent) deal with them. Handling these de-
mands a more complex implementation which oftentimes involves
more enduring queries and run-times for processes, however sup-
porting the functionality of the object-oriented languages mentioned

4.1 related work - object/relational and object/rdf mappings 99

above is worth the time investment. Hibernate itself contains some of
the best solutions for these problems, and the authors stress again at
that point that these problems are not to be taken lightly. From their
experience, they issue that the main purpose of about 30% of the code
written for a Java application is about handling the tasks and prob-
lems enlisted above, next to the cumbersome trouble of dealing with
SQL and the database connections via JDBC [136] for example in the
relational world [16]. Both of these issues necessitate a lot of timely
effort and prohibit the developer to focus on the actual application
itself.

From a technical point of view, ORMs in general support a map-
ping between objects of an object-oriented programming language
(Java in the case of Hibernate) and relational data, data entries that
are recorded in the data tables of a relational database. This mapping
is established by supporting metadata to the domain model that is
applied by the respective application. Implementation-wise, the ORM
code is integrated into the persistence layer of the overall application,
interacting between the business layer and the database itself. The
ORM is able to generate automated queries derived from the applica-
tion and the calls from higher layers.

Altogether, the ORM deals with the topics of storage, organisation,
and retrieval of structured data, concurrency and data integrity, as
well as data sharing. To do so, every ORM should support at least the
following components [16]:

crud api For every mapping object defined in an ORM mapping,
the basic CRUD functionality (standing for Create, Retrieve,
Update, and Delete) must be supported. This is to be incorpo-
rated in an API that should be usable as natively as possible.

query language or api Next to the basic querying functionality
of the CRUD API, an ORM should also support richer query-
ing capabilities via a querying language or an extended API.
This enables more fine-grained querying, so result sets can be
thinned out at querying time and therefore only objects that are
relevant to the respective query are returned by the database.
This querying functionality needs to be fine-tuned to be able to
address the model objects as well as their defined properties in
a convenient fashion. It also should align with the automated
fashion of an ORM and be able to generate queries automati-
cally to not pose any further effort on the ORM user.

mapping metadata The mapping between the objects and their
representation in the relational database is somehow supported
by metadata. An ORM needs to define this metadata model in
combination with a set of rules how to apply it. Once again, non-
intrusiveness is rated highly, as the applier of the ORM must not

100 increased usability for semantic web technologies - anno4j

invest a to big amount of time to incorporate the ORM into his
application.

optimisation functionality Up to now, it has been seen that
several issues arise in the implementation of data persistence.
There are however many more functionalities that are not essen-
tial for a working ORM, however they can contribute to a better
interaction with the overall architecture. Bauer and King [16]
mention transactional behaviour and lazy association fetching as ex-
amples. These can mostly be incorporated into the functionality
of the ORM.

The above description has given insight into the world of ORMs
that work with relational databases. As already mentioned, Hiber-
nate is one of the best-known and applied representatives, others are
for example Doctrine2 [61], Apache Cayenne3, Apache OpenJPA4 (for-
merly known as Kodo), or ActiveJPA5.

A similar clash of technologies exists in the Semantic Web world,
which has also taken up the concept of ORMs to enable more conve-
nient access to their databases via commonly known (object-oriented)
programming languages. The database is represented by a triplestore,
which is accessed by SPARQL queries, rather than SQL queries. Just
as with the ORMs, the underlying concept provides the same advan-
tages as described above. To prevent naming confusions and prohibit
concept clashes, the naming ORdfM for Object RDF Mapping is in-
troduced, which implements the same concept as it is known from
ORMs, with the difference of being applied to the Semantic Web
databases rather than relational pendants.

The aforementioned clash is seemingly less severe than in the re-
lational world for a comparison between RDF data and an object-
oriented programming language like Java. Although the granularity
problem exists as well in this mapping, subtyping can be modelled
straight away, as an RDF instance node can have several RDF classes/-
types assigned. If not done by the database immediately (as only the
most specific type is generally added), a reasoner could deal with this
(reasoning has been described in Section 2.2.6). The identity problem
is also less severe, as an RDF database does not support primary keys,
but RDF instance nodes are rather distinguished by having unique
identifiers, which comes closer to the Java world than its relational
pendant. In terms of association and graph navigation, the data repre-
sentation in the Semantic Web poses no problems for the clash, as the
object graph defined by the objects of the programming language can
directly be mapped to the RDF graph. Accessing an association from

2 http://www.doctrine-project.org/ (last visited 03/12/2018)
3 https://cayenne.apache.org/ (last visited 03/12/2018)
4 http://openjpa.apache.org/ (last visited 03/12/2018)
5 https://github.com/ActiveJpa/activejpa (last visited 03/12/2018)

http://www.doctrine-project.org/
https://cayenne.apache.org/
http://openjpa.apache.org/
https://github.com/ActiveJpa/activejpa

4.1 related work - object/relational and object/rdf mappings 101

Java object to object is directly representable via an RDF edge for a
relationship or property between RDF instance(s) or a literal.

There are several prevailing representatives of ORdfM implemen-
tations out there, which are seen as related work towards this thesis.
RDF2GO6 [148] (or also earlier known as RDFReactor [171]) defines
an abstraction layer over a triple/quad store. Therefore, easy and
quick implementation is envisioned, while the choice of data storage
can be done later. Adapters are supported for Jena7, Sesame (now
known as RDF4J8), and OWLIM9. Tinkerpop10 is an open-source
graph-computing framework that lets their users model their domain
as a property graph (a graph built from common nodes and edges,
which both can be enhanced with key/value pairs). These graphs then
can be analysed using their own graph traversal language Gremlin11.
Tinkerpop systems can be consolidated easily, allowing for conve-
nient collaboration, while every system can have its own appropri-
ate graph technology underlying. The Callimachus project12 [15] is
also an open-source project that supports a framework to construct
Linked Data applications. To achieve this, the user is able to generate
human-readable web pages that are combined with RDFa (see Sec-
tion 2.2.5) templates that are supplied by a RDF database, resulting
in a web page that is populated with RDF data.

The following three implementations follow the same approach of
using Java Reflections13 in order to establish the mapping between
a Java POJO and the resulting RDF data, enabling the process of in-
corporating the ORdfM in a non-intrusive and idiomatic fashion. Em-
pire14 is mainly centred on supporting a standard Java Persistence
API (JPA) style interface for RDF databases in order to create the
ORdfM layer. Empire is an open-source framework which was moti-
vated out of the need to create RDF-backed web apps. RDFBeans15 is
built upon the Eclipse RDF4J API16 (former Sesame) and is a mapping
framework that mainly focuses on convenient CRUD functionalities
of the mapping, as well as a dynamic proxy mechanism for transpar-
ent access of RDF data. By extending the RDF4J API, RDFBeans is
applicable for many different third-party database solutions.

The most promising approach is given by the Alibaba (former
Elmo codebase)17 library. It is aimed towards the development of

6 http://semanticweb.org/wiki/RDF2Go (last visited 03/12/2018)
7 https://jena.apache.org/ (last visited 03/12/2018)
8 http://rdf4j.org/ (last visited 03/12/2018)
9 http://semanticweb.org/wiki/OWLIM.html (last visited 03/12/2018)

10 http://tinkerpop.apache.org/ (last visited 03/12/2018)
11 http://tinkerpop.apache.org/gremlin.html (last visited 03/12/2018)
12 http://callimachusproject.org/ (last visited 03/12/2018)
13 https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.

html (last visited 03/12/2018)
14 https://github.com/mhgrove/Empire (last visited 03/12/2018)
15 https://github.com/cyberborean/rdfbeans (last visited 03/12/2018)
16 http://rdf4j.org/ (last visited 03/12/2018)
17 https://bitbucket.org/openrdf/alibaba (last visited 03/12/2018)

http://semanticweb.org/wiki/RDF2Go
https://jena.apache.org/
http://rdf4j.org/
http://semanticweb.org/wiki/OWLIM.html
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/gremlin.html
http://callimachusproject.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
https://github.com/mhgrove/Empire
https://github.com/cyberborean/rdfbeans
http://rdf4j.org/
https://bitbucket.org/openrdf/alibaba

102 increased usability for semantic web technologies - anno4j

complex RDF storage applications by supporting a set of modules
for RDF database abstractions. It introduces several features that are
not present in Sesame/RDF4J, enabling users to further increase their
application’s applicability. By supporting object-oriented features like
specialisation, which is often overlooked in other ORdfM implemen-
tations, Alibaba targets the mapping concept and its advantages that
have been described above.

An evaluation of the applicability and usefulness of ORdfMs has
been given by Quasthoff, Sack, and Meinel [134]. They conducted
an experiment in which participants (coming from the fields of com-
puter science) were asked to solve different tasks on the one hand
with the utilisation of a ORdfM and on the other hand with the Jena
library, which only allows direct access to RDF triples. The results
show that the participants prefer the access to RDF data supported
by an ORdfM as they felt it was easier to do. Next to this, the solv-
ing of the tasks in average took less time with the application of a
mapping. It was also oftentimes mentioned, that maintenance was
estimated to be much lower with the application of an ORdfM.

In summary, the concept of ORMs/ORdfMs has many advantages
and can help the development and usefulness of applications, which
is supported by the evaluation shown above. This holds true espe-
cially in the fields of persistence and convenience of its associated pro-
cesses. With the vision of the MICO Project described in Section 1.2
and Section A.1 in the Appendix, the corresponding application im-
plemented in the project poses a perfect fit for the incorporation of an
ORdfM. With its potential to implement complex mapping features
but at the same time low effort to adapt its functionality, Alibaba con-
stitutes an excellent basis for the implementation work of Anno4j of
this thesis, which will be described in the rest of this chapter. Benefits
and advantageous factors will be explained throughout the Anno4j
sections, the overall impact of Anno4j on the MICO Platform imple-
mentation will be described in Chapter 5.

4.2 anno4j - an object-rdf-mapping library

Anno4j [22] [21] is an ORdfM library implemented in Java, which
supports a idiomatic mapping between RDF triples or data and Java
objects. The library is implemented as an open-source project, can be
found at GitHub18, and it can freely be used under an Apache License
Version 2.019. Next to the GitHub page, Anno4j is also distributed
as a Maven20 dependency and can be accessed for example via the

18 https://github.com/anno4j/anno4j (last visited 03/12/2018)
19 http://www.apache.org/licenses/LICENSE-2.0 (last visited 03/12/2018)
20 https://maven.apache.org/ (last visited 03/12/2018)

https://github.com/anno4j/anno4j
http://www.apache.org/licenses/LICENSE-2.0
https://maven.apache.org/

4.2 anno4j - an object-rdf-mapping library 103

Maven Central Repository21, which enables convenient incorporation
and usage of the library in Java projects.

In order to give and overview over the technical features of the
Anno4j library and understand their interplay, a short description
about the following sections is given here:

• The basic functionalities of an ORdfM implementation like the
Anno4j library are given by its persistence and querying func-
tionalities, as it is the focus point of both writing and requesting
RDF data from a Semantic Web database. Therefore, Section 4.3
will give an in-depth description about the persistence proce-
dure of the library, also highlighting technical foundations. Af-
terwards, Section 4.4 enlists the querying capabilities that allow
users to apply different levels of granularity, offering easier but
imprecise queries up to a more detailed and therefore more pre-
cise querying.

• With the core functionality covered in the prior sections, it is
important to cover associations that the ORdfM concept has
with its underlying database in the processes of persisting and
querying data. Various database requirements and concepts ex-
ist, with the most commonly known ACID criteria as one of the
present representatives, that should be fulfilled when working
with a database in order to support both convenient and se-
cured working. Therefore Section 4.5 explains how the Anno4j
library supports such database requirements and in what way.
Focus is thereby posed on transactional behaviour supported
by the library and innovative validation features that especially
can help with the data correctness and data consistency. Here
again, different possibilities to do so are supported in Anno4j.

• The sections mentioned beforehand cover all necessary informa-
tion in order to work with Anno4j and a Semantic Web database
in regards to ACID compliance. Hence, the following sections
can focus more on the overall abstraction layer concept that
underlies the communication with the database when working
with the library. The communication is based on the so-called
domain model, Java classes that represent the mapping between
the object-oriented classes and the RDF data that they are trans-
lated to, and vice versa. These domain models can potentially
become large and thereby more complex, and they hence can be
error-prone and time-consuming to create by hand. The Anno4j
library introduces the Anno4j Generation Tool in Section 4.6,
which can be used to turn RDFS or OWL schemata, which are
often existing next to a Semantic Web database, into such do-
main models in an automated way. This reduces the initial ef-
fort to work with a given ontology and Anno4j to a minimum.

21 https://search.maven.org/ (last visited 03/12/2018)

https://search.maven.org/

104 increased usability for semantic web technologies - anno4j

Next to this enhancement, the generation tool is also capable of
generating Web- and REST compliant resources that allow the
automated composition of a RESTful application that enables to
work with the created domain model also via commonly known
HTTP requests and therefore support Web interoperability. This
is documented in Section 4.6.3.

• That followed, Section 4.7 introduces several convenience fea-
tures that increase the usability of the overall library, namely
contextualisation of persistence and querying, serialisation pos-
sibilities for both input and output, and querying plugins that
allow the introduction of own SPARQL expressions in combi-
nation with an interpretation logic in order to facilitate and
fine-tune the querying capabilities of the library. Section 4.8
summarises all results and contributions of the whole chapter
and enlists envisioned additions to Anno4j which can further
increase the applicability of the overall library.

In order to set up a given application to work with Anno4j, the con-
nection to the database needs to be established. The Anno4j imple-
mentation can connect to every RDF triplestore that is conform to the
SPARQL 1.1 specification [71]. This is done by supporting the query
and update endpoint URLs of the triplestore (which are generally ex-
posed and open in order to work with the respective application) for
the Anno4j Java object. Oftentimes, both of these endpoints are com-
bined into a SPARQL interface URL, which can also be added to the
Anno4j library instead. Listing 16 shows an example how this looks
like.

1 String queryUri = "http://petsandowners.org/database/query";

2 String updateUri = "http://petsandowners.org/database/update";

3 String sparqlUri = "http://petsandowners.org/database/sparql";

4

5 // Triplestore with query and update endpoint

6 SPARQLRepository queryUpdateRepository =

7 new SPARQLRepository(queryUri, updateUri);

8 Anno4j anno4j = new Anno4j(queryUpdateRepository);

9

10 // Triplestore with sparql endpoint

11 SPARQLRepository sparqlRepository = new SPARQLRepository(sparqlRepository);

12 Anno4j anno4j = new Anno4j(sparqlRepository);

13

14 // Without a supported endpoint, a local instance with in-memory database is

created

15 Anno4j anno4j = new Anno4j();

Listing 16: Instantiation of an Anno4j Object.

With the sole addition of a SPARQLRepository object (which rep-
resents the RDF triplestore and enables the connection to it) to the
Anno4j instance, objects can be created at and queried from that
database instance. How this is done will be covered in the follow-
ing sections. There is also the possibility of not adding a remote

4.2 anno4j - an object-rdf-mapping library 105

repository to an Anno4j object, which then creates a local in-memory
database that will hold respective data. This is shown in line 15 of
Listing 16. Its data content however is lost as soon as the respective
Anno4j instance is invalidated. This enables lightweight and quick
implementation possibilities mainly for testing purposes, as it is not
managing persistent data as described in Section 4.1. Another con-
figuration possibility allows to persist the mapping information like
class, property, and type definitions, which are currently implemented
in the respective Anno4j application. These information can some-
times be useful, but also clutter the database as they constitute many
triples.

Next to the general ORM/ORdfM advantages that have been en-
listed in Section 4.1, the application of the Anno4j library in a Java
application also poses the following generic advantages:

verification of input Through the approach of creating and que-
rying RDF information via Java objects, a natural way of verifica-
tion is given. Java objects can only be created as dictated by their
class file, so the eventually created RDF triples are always con-
form to the underlying schema from a structural point of view.
Further verification can be added to the Anno4j classes via Java
Annotations implemented specifically for this library (see Sec-
tion 4.5), which control the semantical and logical soundness of
the RDF data.

reduce pre-knowledge of the user Basic Java POJOs and the
basic Anno4j Classes are mainly composed of straight forward
data interaction methods, in general a getter and setter for ev-
ery supported attribute. Hence they are simple to understand
and use, making the entry to the underlying schema much eas-
ier than learning it from an RDFS or OWL schema. Combined
with the feature of verification, users need much less time to
start creating (sound and correct) RDF data. Additionally, the
Anno4j library and its verification implementation is able to
give feedback to the user in in the event of faulty input data.
This further increases the learning process of the user while
keeping the data status consistent as well.

standardised serialisations Anno4j can both read and write
RDF data from and to various standardised serialisations (see
Section 2.2.5). This broadens the applicability of the library to
also support “written triples” in both directions of persisting
and querying.

schema updates An update to an existing schema can be very dif-
ficult, in addition to the fact that it might also have an impact on
existing data and defined queries. In contrast, updating Anno4j
classes to introduce a change in the underlying schema is much

106 increased usability for semantic web technologies - anno4j

simpler, queries can be adapted automatically as they also base
on the Java objects. A concurrent update to an existing database
can be established via Java processes.

database access technologies RDF triplestores support some
access functionalities via REST calls, but rely mostly on SPAR-
QL queries to write and retrieve their respective data. This cir-
cumstance narrows the range of possible users of using Open
Data, which does counteract its general purpose. With the addi-
tion of Anno4j the access possibilities get broadened, as not only
SPARQL queries are possible, but also querying via Anno4j and
LDPath (see Section 4.4) and a schema-oriented REST API that
is conform to the defined mapping (see Section 4.6). Figure 25

visualises the access possibilities. Three layers on top of the
database (the basic access layer of the database itself, with two
added by Anno4j) automatically transform and pipe through
an issued request over various technologies (from REST calls
to Java POJOs (to LDPath) to eventual SPARQL queries). Im-
portant to note is, that “lower” layers are not blocked by pre-
ceding ones. This allows users to choose their desired way of
communicating with the database, enabling a broad spectrum
of interactivity.

RDF Triplestore

Standard Interface(s) of the Database

Anno4j

Anno4j REST API

Possible Interactions with the Database

SP
AR

Q
L

Ja
va

PO
JO

RE
ST

HT
TP

Figure 25: Access Possibilities for a Triplestore Augmented with the Anno4j
Library.

Next to its generic advantages, the utilisation of the library also ben-
efits the overall application by means of its technical features. These
will be documented throughout the following sections, examples will
cover Java code in order to show the basic appliance of the features.
These examples will be concise and to the point to show the basic
functionality to support given theoretical explanations, as extensive

4.2 anno4j - an object-rdf-mapping library 107

code examples would exceed the frame of this thesis. However, these
examples can be found on the Anno4j GitHub page22, which illustrate
the full potential of the library.

To give a description of the Anno4j library and its features, the fol-
lowing sections are structured as follows: Section 4.3 explains the core
feature of persisting RDF data via Java. It therefore describes how the
respective Java classes for Anno4j are created and how they can be
enhanced with mapping metadata of Anno4j. Additionally, the basic
functionality of this construct can be enhanced with different Java
features by an Anno4j extension, increasing the ORdfMs possibilities
for data creation and its functionality. Following this, Section 4.4 will
document the other “side” of the mapping with the querying of exist-
ing data. To achieve this, the path-based querying language LDPath23

[145] will be introduced, which is implemented via Anno4j to issue
comprehensive queries to the connected database or local memory
store.

After the “basic” features of the library have been elaborated, Sec-
tion 4.5 covers database characteristics in the form of consistency
and validity of the associated database status, which is also com-
monly known as the ACID criteria of databases. After the explana-
tion, a description of how these requirements are also provided in
the Anno4j library is given. Therefore, Section 4.5 explains the imple-
mented transactional behaviour of the library and how it is applied,
enabling consistency when working with Anno4j. These transactions
can then be enhanced to also include validation checks that will test
the to be added data for model conformity. Only when that is given,
that data will eventually be persisted to the connected database. This
is explained in Section 4.5.2. The validation checks rely on respective
validation information to be present in the database that is associated
in a given process. The validation information can be incorporated in
the data status itself or it can be conveniently supported next to the
Anno4j mapping, which is shown in Section 4.5.3.

All of the aforementioned features indicated that most implemen-
tation is done by hand. This is not only time consuming but also
error-prone. Anno4j supports the so-called Anno4j Generation Tool,
which is able to support many building blocks of the Anno4j library
by inputting an RDFS or OWL schema file only. The overall applica-
tion of the tool and what it is able to generate is shown in Section 4.6
and Section 4.6.1. Next to this, Anno4j is also able to alleviate its de-
fined metadata mapping to work as a RESTful API, allowing users
to issue their interactions with the RDF database via common HTTP
methods that are aligned to the associated mapping.

The last technical section of this chapter mentions smaller additions
to the Anno4j library in Section 4.7. It starts by explaining how the

22 https://github.com/anno4j/anno4j (last visited 03/12/2018)
23 http://marmotta.apache.org/ldpath/ (last visited 03/12/2018)

https://github.com/anno4j/anno4j
http://marmotta.apache.org/ldpath/

108 increased usability for semantic web technologies - anno4j

basic RDF feature of subgraphs or named graphs is included in the
functionality of Anno4j. Also, the overall mapping is extended with a
parsing functionality that allows users to write Anno4j objects to RDF
serialisations an vice versa. Own querying plugins allow for a richer,
more comprehensive, and personally fine-tuned querying functional-
ity of the library.

Overall, one of the core claims of the library is to facilitate the per-
sistence interactions with RDF data for users and their respective ap-
plications. There are various starting points for this facilitation, which
can be summarised in usage scenarios or use cases. In the following,
some of those envisioned scenarios are enlisted that focus on single
activities or processes that are to be implemented and supported by
the Anno4j library, depicting also the advantage that Anno4j enables.
In many cases, these scenarios can be combined or lined after one
another, in order to produce an even richer use case or application
scenario. Some scenarios can depend on a preferred access technol-
ogy for the database, but the following sections will show that there
are redundant and interchangeable processes possible and the other
access technologies are not prohibited, as seen in Figure 25. In gen-
eral, the scenarios share the same approach that a user wants to access
an RDF database. The envisioned use cases are the following:

non-semantic web expert Derived from the insights that have
been already mentioned in this section and preceding sections,
this is the most straightforward scenario, featuring a user that
does not have any or only limited knowledge of Semantic Web
technologies but adequate skills in Java. Therefore it is envi-
sioned to support this kind of user to interact with the respec-
tive databases in an idiomatic fashion. Anno4j allows these users
to interact with the database via other technologies than SPARQL
queries and retrieve Java POJOs. This can be done with the basic
Anno4j querying functionalities, which only needs Java knowl-
edge (see Section 4.4), or if generated the via HTTP request to
the Anno4j REST API (see Section 4.6.3) which is also presum-
able more familiar to the general user.

unknown database content/structure Oftentimes when a
database is expose for open access, its semantical description
as well as the data structure is explained on a very high level
basis. This can hamper potential users or enforce them to invest
a large amount of time in order to interact with the database
properly. In this scenario, Anno4j can help to facilitate this pro-
cess. The database can offer its schema (either as RDFS or OWL
schema) which should be exposed to the users. The user can
then generate the data model with respective Anno4j classes to
not just interact with the database, but also get a much quicker
insight into the data structure.

4.2 anno4j - an object-rdf-mapping library 109

contribution to the database content Next to the first two
scenarios enlisted, another natural use case exists in which users
want to contribute to the content of an already existing database.
Next to the technologies that facilitate the communication with
the database mentioned above, the persistence of data does also
need to be supported. Through the generation of Anno4j classes
via the schema supported by the database, users are automati-
cally “forced” into the database’s data structure, enabling conve-
nient access to the data both for persisting and querying. Next
to this, if supported by the schema, the validation properties in-
troduced through Schema Annotations can further increase the
validity of the input data produced by a user.

merge heterogenous databases As one of the more casual sce-
narios, the merging of heterogenous databases is possible via
the implementations done in Anno4j. Parsing the schemata of
multiple databases allows to synchronise the data structures
more easily, as Java POJOs are supported. This process is way
more convenient than synchronising the RDF schemata in com-
bination with the existing data. For the data, new Anno4j Classes
can be created, filled, and persisted through class merging, lead-
ing to a new consistent and combined data status.

workflow based use case This type of scenario is the most sim-
ilar to the MICO vision described in this work, which has been
introduced in Section 1.2. This scenario can be interpreted in
two different ways. The “singular” scenario depicts a user who
wants to collaborate in a workflow designed around an access
point, that incorporates the database of the scenario. For the
collaboration, a mixture of the functionalities of the scenarios
above is necessary, as the user needs to understand the data
structure of the workflow in order to query and use the data, as
well as make a contribution to the data status itself. Addition-
ally, the user does not only want to create data that is conform
to the platform’s, but may also extend the data structure, as he
introduces new forms of metadata to the workflow. The under-
standing, application, as well as the contribution to the database
has been covered above. In order to extend the data structure of
the database, it is envisioned that the user can extend the cur-
rently underlying schema with his or her own features. The new
extended data structure can then be synchronised back to the to
the central access point. This scenario can also be extended to
a “plural” use case, like the MICO platform (see Section 5.2),
in which multiple parties do this cycle of actions and especially
create a commonly agreed upon data structure. This way, every
party can conveniently interpret the results of their predeces-
sor(s) in order to apply the contained information in order to

110 increased usability for semantic web technologies - anno4j

possibly generate further information. This eventually can cre-
ate a rich and diverse metadata background.

4.3 creation of metadata with anno4j

The most fundamental step for an ORdfM mapping and therefore
also the Anno4j library lies in the persistence of (RDF) data. This
means conceptually, that possibly interconnected Java objects are cre-
ated and consecutively turned into RDF triples that are then persisted
at a respective triplestore automatically by the library. This section
gives insights on how this process looks like in the Anno4j library,
what has to be done by a user, and what internals of the library take
part in this workflow. Anno4j is built on the existing Alibaba library
that has been described in Section 4.1, which supports the persistence
functionality.

Before the explanation for metadata creation with Anno4j can be
given, some definitions are needed. Anno4j Classes, which will be
explained by text and exemplary code later, resemble the mapping
object for the ORdfM of the object-oriented programming language
Java. (Technically, these are implemented as Java interfaces, but the
naming is more convenient this way, as will be seen later.) Just like
in normal Java fashion, objects can be created in regards to a given
Anno4j class, which will be called Anno4j instance objects or just
objects of class x. So-called Partial Classes can implement the inter-
face of an Anno4j Class to extend the functionality of the respectively
created objects.

The final functionality of a given object, its behaviour, determines
“what the object can do”: what methods are supported, to what RDF
information it is mapped, which RDF class(es) it has, and so on. This
is defined by the class hierarchy that the Anno4j class is in and the
added Partial Classes that are added to the respective classes. Every
associated Anno4j and Partial Class of a strand contributes its own
behaviour to the overall behaviour of a created object. For those ob-
jects, the Anno4j library implements a proxy pattern24 [67] to increase
the applicability of the objects, mainly in terms of scalability. This is
necessary, as the scalability for such mapping implementations can
be critical [176], as proxy creations in larger class hierarchies can be
costly and it does put additional timely effort on implemented lazy
evaluations for example. Therefore the Anno4j library implemented
automated functionalities that can bypass these circumstances. This
will be covered shortly in this section and in more detail in Section 4.6.
An evaluation of the time savings will be shown in Chapter 6.

How actual metadata can be created via the Anno4j library, and
what internal processes take part, is shown in Figure 26.

24 http://www.oodesign.com/proxy-pattern.html (last visited 03/12/2018)

http://www.oodesign.com/proxy-pattern.html

4.3 creation of metadata with anno4j 111

Send
To

Database
SPARQL

Query
Filled

Anno4j
Object

Gathering
of

Behaviours
Run Java
Process

Create and
Fill

Instance
Object

Create
Anno4j

and
Partial

Classes

User-driven Actions Automated Actions

Figure 26: Sequence of Steps Executed for Creating Metadata with Anno4j,
Including Internal Steps of the Library.

Figure 26 shows the steps that are undertaken when a developer
wants to make use of the Anno4j library in one of his Java projects.
This overall process is composed of different kinds of activity which
are reflected by the colours applied in the figure. The green entities
symbolise actions that in general have to be undertaken by the devel-
oper, hence these are the steps that are not supported by automated
functionalities by the library. In contrast, the blue entities are the ones
that run fully autonomously, executed by the library with the input
provided by the green preceding steps. Both of these action classes
have steps that are supported by the functionalities of the Alibaba
library. The steps that are illustrated with a red border at the bottom
are specifically enhanced via the Anno4j library. These enhancements
and the basic functionality of every workflow step are explained in
detail in the following enlistment.

create anno4j and partial classes The essential beginning
of every metadata production via Anno4j lies within the creation of
Anno4j Classes, which can also be enhanced by the Partial Classes. A
basic Anno4j Class resembles the “building plan” for RDF instances
with an RDF class assignment as well as a list of its possible relation-
ships and properties. Hence, this encapsulates one direction of the
mapping between Java objects and RDF data.

Listing 17 shows an example of a simple Anno4j Class that resem-
bles the information of the RDF class named “pao:Cat” that has been
introduced throughout Section 2.2 with the addition of having “cat
friends” via the relationship “pao:hasCatFriend”.

1 // RDF Class definition

2 @Iri(PAO.CAT)

3 public interface Cat extends Animal {

4

5 // Getter and setter for the foaf:age property

6 @Iri(FOAF.AGE)

7 int getAge();

8

9 @Iri(FOAF.AGE)

10 void setAge(int age);

11

12 // Getter and setter for the pao:getOwner relationship

13 @Iri(PAO.HAS_OWNER)

14 Human getOwner();

15

112 increased usability for semantic web technologies - anno4j

16 @Iri(PAO.HAS_OWNER)

17 void setOwner(Human owner);

18

19 // Getter and setter for the pao:hasCatFriend relationships

20 @Iri(PAO.HAS_CAT_FRIEND)

21 Set<Cat> getCatFriends();

22

23 @Iri(PAO.HAS_CAT_FRIEND)

24 void setCatFriends(Set<Cat> friends);

25

26 // Additional behaviour that is implemented by a respective Partial Class

27 void addCatFriend(Cat friend);

28 }

Listing 17: Anno4j Class for the “pao:Cat” RDF Class.

Line 3 of Listing 17 implements the classic interface header of a
common Java interface. The name for the interface can be freely cho-
sen (according to common Java best practises) and is mainly used for
interaction with the Java objects of the mapping. Nevertheless, this
line shows how class inheritance can be implemented via the exten-
sion of the “Animal” interface (which is another Anno4j Class imple-
menting the “pao:Animal” RDF class). This heritage information will
also be represented in resulting created RDF data. The RDF class asso-
ciation is defined in line 2, showing a Java Annotation “@IRI” that as-
signs the String argument of the Java Annotation to the “rdf:type” re-
lationship of created instances, which in terms defines their RDF class.
In this example, a simple namespace class “PAO” is implemented for
convenience reasons, which contains all IRIs - represented in Java as
Strings - that are used in the given namespace. This allows shorter
terms to be used in the Java implementations, just like it was done
with the namespacing in the RDF serialisations in Section 2.2.5.

Then, in the lines 7 and 10, 14 and 17, as well as 21 and 24 there are
blocks of code that define pairs of getters and setters, each defining
different relationships and one property for the Cat Anno4j Class.
Depending on the datatype that is associated with the respective
pair, one can define a property when basic datatypes are assigned,
or a relationship for complex datatypes. Examples for this can be
seen in the first and second pair in Listing 17 for the assignment of
the “foaf:age” property and the “pao:hasOwner” relationship, which
have a basic integer or a complex Human Anno4j class as parameters
respectively. As with the RDF type association for the overall Anno4j
class, the RDF association of relationships and properties is also sup-
ported via the Java Annotation “@IRI”. These must be defined above
both the setter and getter of a respective pair and contain the IRI as
a String parameter. Examples can be seen in lines 6/9, 13/16, and
20/23 of Listing 17 respectively.

In contrast to the first two additions to the Cat Anno4j Class that
were defined to have single values, it is also possible to add multiple
values to a given property or relationship. This is done by adding

4.3 creation of metadata with anno4j 113

a Java Set to the respective getter/setter pair, which can also be ei-
ther of a complex or primitive Java type. An example can be seen in
Listing 17 with the “pao:hasCatFriend” relationship, which can have
multiple instances of a Cat added.

Up to line 24, Listing 17 showed the basic shape of an Anno4j
Class. However, in line 27 there is also an extension to this basic im-
plementation apparent, which allows to add single instances to the
“pao:hasCatFriend” relationship, rather than the whole set via the ba-
sic setter. This can be supported by the Anno4j library to increase the
basic behaviour of produced Java objects and allow for more compre-
hensive implementation. Because of this, it is also possible to make
use of other Java functionality and logic to further increase the us-
ability of the mapping. The respective implementation is done in a
Partial Class that is supported in addition to the given Anno4j Class
by implementing the relative interface. An example how this looks is
shown in Listing 18.

1 // Java Annotation that induces an Anno4j Partial Class

2 @Partial

3 public abstract class CatSupport extends AnimalSupport implements Cat {

4

5 // Implemented for the method defined in the Cat class

6 @Override

7 public void addCatFriend(Cat friend) {

8 Set<Cat> catSet = new HashSet<>();

9

10 Set<Cat> currents = this.getCatFriends();

11

12 if(!currents.isEmpty()) {

13 catSet.addAll(currents);

14 }

15

16 catSet.add(friend);

17 this.setCatFriends(catSet);

18 }

19 }

Listing 18: Anno4j Partial Class for the “pao:Cat” RDF Class.

Code-wise, the most important thing to add to an Anno4j Partial
Class is the Java Annotation “@Partial”, which is needed in the step
of behaviour gathering, as the Anno4j Java process needs to “find”
these annotated classes at the point of time when Anno4j objects are
created. Next to this, the class declaration needs to be “abstract” and
the respective interface, in this case the “Cat” class, needs to be im-
plemented. The Partial Classes also build up a hierarchical structure,
so this class needs to extend the “AnimalSupport” class, which is the
Partial Class for the semantically higher positioned “Animal” Anno4j
Class. In the body of the class, methods defined in the respective in-
terface can be implemented. In the example of Listing 18, starting
from line 7, the method is implemented whose signature is defined
in Listing 17 which allows the addition of single “pao:hasCatFriend”

relationships rather than in full sets only.

114 increased usability for semantic web technologies - anno4j

The functionality applied in Listing 17 and Listing 18 is rather sim-
ple in order to show a minimal functional example of the Anno4j
structure for basic mapping objects. However, especially the Partial
Classes can include richer and more comprehensive Java features if
needed. Respective basic setter and getter methods defined in the in-
terface can be called from the Partial Class in order to also produce as-
sociated triples. Other Java processes can also be merged technically,
for example to trigger a calculation that eventually sets the value of a
given RDF property.

The creation of Anno4j Classes itself can be done by hand, but it
has been mentioned at several occasions up to now, that Anno4j also
supports the possibility of generating these classes via Java code gen-
eration and the Parsing Tool of Anno4j. With the input of an RDFS
or OWL schema, corresponding Anno4j Classes as well as their Par-
tial Classes are created accordingly. This topic will be covered in Sec-
tion 4.6.

create and fill java object The next step of metadata cre-
ation via Anno4j encapsulates the process of writing Java code that
uses the Anno4j Classes and Partial Classes defined in the step above.
With the only difference of not creating Java objects via the commonly
known “new” operator, respective objects have to be instantiated via
an Anno4j instance, which can be connected to a triplestore or run
with a local in-memory database as shown in Listing 16. The objects
created are being used like common Java objects, which underlines
the convenience of use for non-Semantic Web experts. A simple exam-
ple, using amongst others the Cat Anno4j Class defined in Listing 17

can be seen in Listing 19.

1 Anno4j anno4j = new Anno4j();

2

3 Human bob = anno4j.createObject(Human.class);

4 Cat daisy = anno4j.createObject(Cat.class);

5 Cat eve = anno4j.createObject(Cat.class);

6

7 Cat cesar = anno4j.createObject(Cat.class);

8 cesar.setAge(5);

9 cesar.setOwner(bob);

10 cesar.setCatFriends(new HashSet<Cat>(){{add(daisy); add(eve);}});

11 // With the behaviour of the Partial Class, above line could be exchanged with:

12 // cesar.addCatFriend(daisy);

13 // cesar.addCatFriend(eve);

Listing 19: Simple Application of the Cat Anno4j Class Shown in Listing 17.

In the example of Listing 19, after an instance of Anno4j is instan-
tiated in line 1, one Human entity and two Cat entities (which will
serve as friends of our known Cat “cesar”) are created, which will
serve as dummy objects and therefore will not be filled with further
information. Line 7 creates the Cat object “cesar” that will have ad-
ditional information in the form of its age (line 8), its owner (line

4.3 creation of metadata with anno4j 115

9), and his Cat friends (line 10). All of this is done with commonly
known Java implementation. The graph of the resulting RDF triples
can be seen in Figure 27.

bob pao:Humanrdf:typecesar

pao:Cat daisy

eve

rdf:type "5"
pao:has
CatFriend

pao:has
Owner
foaf:age

Figure 27: Resulting RDF Graph of the Executed Anno4j Code Shown in
Listing 19.

Another example in the domain of multimedia and the MMM,
which has been discussed in Section 3.3, is shown in Listing 30 in
the Appendix. Its resulting RDF graph and triples are shown in Fig-
ure 61 in the Appendix. An MMM Item is created and enhanced with
two Part Annotations that represent a multimedia low-level feature
in the form of a ColorLayout analysis (a descriptor featured in the
MPEG-7 standardisation that shows color distribution [46] [96]), and
a high-level feature in the form of an animal detection.

run java process Just like the definition and the instantiation
of Anno4j objects is done in classic Java fashion, the overall process
behind it is also set in the Java world. This means, that any Java
process can incorporate Anno4j instances and objects and therefore
create metadata at the corresponding database. Once the Java process
is executed, respective metadata information is created and eventu-
ally persisted. This is the last step that a developer is involved in. The
steps after this one are processed automatically.

gathering of behaviours When the Anno4j process is trig-
gered, the respective Anno4j instance dynamically generates the en-
tire metadata model that is induced by the defined Anno4j Classes
and Partial Classes in order to be able to generate proxies of the map-
ping later. This is a required step as the model definitions are not
known to the Anno4j instance before the point of time of the build,
and the behaviours of every Anno4j object need to be gathered in or-
der to compile an eventual mapping between the Anno4j (Java) object
with its implemented functionality and the resulting RDF data.

The creation of an Anno4j Class instance triggers the compilation
of the overall behaviour for that representative. The set of behaviours
that is gathered for every object results from the implemented hier-
archy of both the Anno4j Classes and Partial Classes. In addition to
a standard behaviour of general mapping entities of Anno4j, each of
those classes imposes one strand of behaviour to a given object’s over-
all behaviour. All of them will eventually be combined and merged
down to generate the final behaviour.

116 increased usability for semantic web technologies - anno4j

For an exemplary object of the Cat Anno4j Class shown in List-
ing 17, the behaviours gathered would be the standard behaviour,
two for the Anno4j Classes “Animal” and “Cat”, and two for the re-
spective Partial Classes “AnimalSupport” and “CatSupport” (shown
in Listing 18) enabling the final object to have behaviours (methods,
type associations, ...) from both concepts.

This composition process requires Java reflections25 to scan through
the defined Anno4j Classes and Partial Classes. The merging of be-
haviours to create a proxy object, especially in large class hierarchies,
is time consuming which can result in long waiting times when work-
ing with Anno4j. This circumstance is commonly known in the fields
of ORMs / ORdfMs [176]. As a solution, a so-called Proxy Genera-
tion Tool has been implemented which allows to generate the even-
tual proxy objects in advance. These can then be supported as .jar-file
to the respective Java process in order to avoid the necessary own cre-
ation of proxy objects of the library. Using this, when working with a
non-changing model, process times can be reduced immensely. This
saving of time has been evaluated in an experiment, applying the
project use case of the ViSIT project26, which uses the Conceptual
Reference Model CIDOC CRM version 6.227. This experiment in com-
bination with an evaluation and project description is shown in Chap-
ter 6.

filled anno4j object As shown above, the result of the be-
haviour gathering process is the generation of the internal mapping
that connects the Java objects to the eventual RDF data that is to be
created. When an Anno4j instance object is created, a proxy of the
respective mapping is created, whose methods can then be accessed
to add metadata information in the form of properties and relation-
ships. The overall result is then a “filled” Anno4j instance object (in-
ternally a Java object with set attributes) that can be persisted to a
given database in the next step.

sparql query The next superordinate step consists of the con-
version of the filled Anno4j objects to RDF data. This is done by
the Anno4j and Alibaba library by transforming the filled objects
into respective SPARQL INSERT DATA28 queries that are sent to the
database automatically.

send to database The generated SPARQL queries described a-
bove are sent to the database that has been connected to the Anno4j

25 https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.

html (last visited 03/12/2018)
26 http://www.phil.uni-passau.de/dh/projekte/visit/ (last visited 03/12/2018)
27 http://www.cidoc-crm.org/Version/version-6.2 (last visited 03/12/2018)
28 https://www.w3.org/TR/2013/REC-sparql11-update-20130321/#insertData (last

visited 03/12/2018)

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
http://www.phil.uni-passau.de/dh/projekte/visit/
http://www.cidoc-crm.org/Version/version-6.2
https://www.w3.org/TR/2013/REC-sparql11-update-20130321/#insertData

4.4 querying of metadata with anno4j 117

instance or, if Anno4j was created locally, an in-memory database. The
connection to the database does not require any further actions by
the developer, simply the creation of the respective Anno4j instance
as shown in Listing 16 is enough.

4.4 querying of metadata with anno4j

Now that the first “direction” of the RDF metadata mapping possible
with Anno4j has been seen in Section 4.3, this section will introduce
the other half: the querying of metadata via Anno4j that is stored in
a database. Conceptually, the design of the querying functionality fol-
lowed the same intention as it was done for the persistence. The main
goal in mind is to reduce the barrier that Semantic Web technolo-
gies pose to developers that are not familiar with them, which could
otherwise eventually hamper and deny additional contributors to a
common knowledge base. Once again, the Anno4j library tries to al-
leviate the process of querying for the developer in a way that he has
to mainly work with concepts they are familiar with, in this case Java
objects, rather than having to deal with the Semantic Web technolo-
gies. To achieve this, Anno4j supports two different ways of query-
ing: basic and extended. In contrast to metadata creation however, at
this point the Semantic Web technologies cannot be fully avoided for
extended querying purposes, as querying at some point requires a
metric of some sort in order to formalise a respective query and its
querying criteria in order to retrieve desired metadata. However, the
Anno4j library supports a more convenient possibility for Semantic
Web querying instead of the commonly applied SPARQL: the path-
based querying language LDPath29 [145] [5].

Basic Anno4j querying allows straightforward querying for the re-
quirement of querying “all representatives” of a given Anno4j Class.
The basic version does not require Semantic Web skills, but does
lack technical advantages, as querying criteria does have to be evalu-
ated “by hand”, as a list of Java objects will be returned that have to
be searched through with Java functionality. This does also demand
more time, as all representatives of a queried Anno4j Class will be
returned without any restrictions.

LDPath is similar to XPath [49] and the SPARQL Property Paths
[152] and is particularly well-suited for querying RDF data from the
LOD. Compared to classic SPARQL that defines its queries by sup-
porting graph patterns that are then matched against the graph stored
in the respective database to retrieve results, LDPath allows to con-
struct queries by defining a path that is evaluated from a given start-
ing point entity in the graph. If the defined path with associated crite-
ria can be found, the respective entity will be contained in the result
set. These path-based queries are supposedly easier for humans to

29 http://marmotta.apache.org/ldpath/ (last visited 03/12/2018)

http://marmotta.apache.org/ldpath/

118 increased usability for semantic web technologies - anno4j

issue than SPARQL queries, especially combined with the graph-like
view that has been applied over the course of this work. Important to
note here is, that although the query features by the Anno4j library
are present, the respective database access is not limited to it, as ex-
plained earlier and shown in Figure 25. Classic SPARQL queries can
still be issued at standard database interfaces, allowing users to freely
choose the access technology and therefore operate with various use
cases.

The path queries defined in LDPath combine the edges present in
an RDF graph with a broad variety of tools and various function-
alities to form comprehensive queries. Amongst them are property
selections, reverse property selections, wildcard selections, self selec-
tor, path traversal, unions, intersections, recursive selections, tests (for
language, type, path value, and path existence), and even own func-
tions can be implemented and used.

Implementation-wise, the LDPath library is built up in a struc-
tured and modular fashion, which allows developers to include only
modules of it that are relevant to them. Amongst those modules are
some core modules in combination with backend modules, in order to
make LDPath work with different databases conveniently, as well as
extension modules that broaden the applicability of the querying lan-
guage. With Anno4j, the required LDPath dependencies are enabled
automatically, and the path criteria can be issued via the QuerySer-
vice Java object of the library. This combination extends the already
rich querying language with an important feature for our use cases
via the Anno4j native implementation: testing for literal values at the
end of paths, which can also be enhanced with different comparison
operators.

The QueryService follows the Anno4j philosophy and offers access
to Semantic Web technology, in this case the requesting of RDF data
contained in a triplestore by using Java. Therefore, the QueryService
is a Java object that can be created by an Anno4j instance. The Query-
Service object can be augmented with different configurations, con-
taining prefix definitions (which then can be applied in the defined
querying criteria), querying criteria formulated as LDPath expression,
as well as limit and offset preferences for the issued query. This is
done by the implementation of a Fluent Interface30, which allows
the chaining of respective configuration methods, as every call to the
method returns a further specified instance of the QueryService ob-
ject. Once all these are added to the QueryService, the “.execute()”

method can be executed, which issues the query that is created with
all the currently associated information of the QueryService object
towards the triplestore that is associated with the respective Anno4j
instance that created the QueryService in the first place. This method

30 http://java-design-patterns.com/patterns/fluentinterface/ (last visited
03/12/2018)

http://java-design-patterns.com/patterns/fluentinterface/

4.4 querying of metadata with anno4j 119

also takes an Anno4j Class as parameter, which defines the starting
point as well as the result type for the query to issue. So for exam-
ple the call of the method “.execute(Cat.class)” issues its LDPath
querying criteria starting from those RDF objects that have the respec-
tive RDF/Anno4j Class associated.

Next to the features listed above, the QueryService evaluates its
queries in lazy fashion in order to improve the performance of the
library. This means that data is only queried at the point that it is
directly requested or necessary for the process. This especially holds
when information objects become larger and/or there are many as-
sociations in place. Instead of a “full object”, an object contained in
an Anno4j query response contains only direct representations of de-
fined properties, every relationship and therefore association to an-
other object is firstly represented by the IRI of the related object. This
is a lightweight presentation of the object which will be accessed and
then “exchanged” with the real object once the respective informa-
tion is requested. This is done automatically by the library and al-
lows on average for quicker process and reaction times when work-
ing with a database and Anno4j. Additionally, query optimisations of
the Apache Jena31 framework are implemented and applied to every
Anno4j query automatically. These incorporate optimised join orders
as well as the optimisation of filter arrangement that is utilised in the
respective query.

Listing 20 shows the basic utilisation of the QueryService in Anno4j.
The only thing that has to be supported is the Anno4j Class that
should be queried for. The result list contains all RDF instances that
have the associated RDF type (in this case “pao:Cat”).

1 Anno4j anno4j = new Anno4j();

2

3 Cat cat1 = anno4j.createObject(Cat.class);

4 Cat cat2 = anno4j.createObject(Cat.class);

5

6 // Query for all cats

7 QueryService qs = anno4j.createQueryService();

8 List<Cat> allCats = qs.execute(Cat.class);

Listing 20: Basic Querying Example of the Anno4j Library, Querying for All
Persisted Cats (Representatives of the Cat Anno4j Class).

To show an example of both the QueryService and LDPath for ex-
tended Anno4j querying, the exemplary use case of an animal detec-
tion of the MMM is applied, which was covered in Section 3.3.3. The
underlying metadata that poses the basis for the querying is shown
in Figure 28, which shows the Part Annotation of an extractor result
indicating that an elephant has been found on the input image.

An example code snippet of how to query the Part Annotation il-
lustrated in Figure 28 can be seen in Listing 21. This has to be seen

31 https://jena.apache.org/ (last visited 03/12/2018)

https://jena.apache.org/

120 increased usability for semantic web technologies - anno4j

part

body specres selector

mmm:Part

mmmterms:
Animal

DetectionBody

mmm:Specific
Resource

oa:Fragment
Selector

"0.9"^^xsd:double

"Elephant" "xywh=300,150,50,70"

"http://www.w3.org/TR/mediafrags/"

rdf:type

mmm:has
Body

mmm:has
Target

rdf:type

rdf:value

mmmterms:has
Confidence

rdf:type

mmm:has
Selector

rdf:type

rdf:value

dcterms:
conformsTopicture

mmm:hasSource

Figure 28: Showcase MMM Animal Detection Result Used as Anno4j
Querying Example.

only as one of many different ways of retrieving the Part Annotation,
as many different queries can contain this respective Annotation in
their result set. The listing does also show the fluent interface that
has been implemented for the QueryService, meaning that the config-
uration parts can be added after one another instead of adding every
single one with an own code line (this can be seen in lines 2 to 6 in
Figure 28).

1 QueryService qs = anno4j.createQueryService();

2 qs.addPrefix (MMMTERMS.PREFIX, MMMTERMS.NS).addPrefix(MMM.PREFIX, MMM.NS)

3 .addCriteria ("mmm:hasBody[is-a mmmterms:AnimalDetectionBody]")

4 .addCriteria ("mmm:hasBody/rdf:value", "Elephant")

5 .addCriteria ("mmm:hasTarget/mmm:hasSelector/rdf:value",

6 "50,70", Comparison.ENDS_WITH);

7 List<PartMMM> result = qs.execute(PartMMM.class);

Listing 21: QueryService of the Anno4j Library Using LDPath Criteria.
The Query is Issued to Retrieve the Part Annotation Shown in
Figure 28.

In line 1 of Figure 28, the QueryService object is created, which
is done via a method of given Anno4j object. Because of this, the
queries issued by the service are automatically routed to the database
connected to the Anno4j instance. The next 5 lines add various con-
figuration parameters to the QueryService object in fluent interface
fashion. Therefore, line 2 adds two new prefixes with corresponding
namespaces, as the QueryService does not know them in advance,
which lets the LDPath criteria be defined with commonly known pre-
fixed terms. Lines 3 through 5 define various LDPath criteria for the
query that will be explained below. Lastly, line 7 executes the Query-
Service by calling the execution method with the Anno4j Class pa-
rameter “PartMMM.class”, as Part Annotations are to be queried. As
indicated, the return type is a Java Set containing objects of the re-
spective PartMMM Anno4j Class. In our exemplary use case, this Set
would contain the Part Annotation illustrated in Figure 28.

The showcase application of the QueryService shown in Listing 21

does implement three different querying criteria that are issued. Se-
mantically, the requirements that are defined are the following:

4.4 querying of metadata with anno4j 121

• As interest does only lie in the results of the animal detection ex-
tractor, the first criteria seen in line 3 requires the body node to
be of the class “mmmterms:AnimalDetectionBody”, as this is the
way how extractor results are distinguished in the MMM. There-
fore, the LDPath expression (starting from “PartMMM” nodes, so
in this example from the node entitled “part”) traverses the
edge “mmm:hasBody” and then does a class type check for the
respective class that is associated in brackets in the LDPath cri-
teria (“[is-a mmmterms:AnimalDetectionBody]”). This path is
visualised in Figure 29.

part

body specres

mmm:Part

mmmterms:
Animal

DetectionBody

"0.9"^^xsd:double

"Elephant"

rdf:type

mmm:has
Body

mmm:has
Target

rdf:type

rdf:value

mmmterms:has
Confidence

Figure 29: Illustrating RDF Graph for the First Criteria of the Query Defined
in Listing 21 (Line 3), Which Supports the Semantic Feature of
Searching for Results of an Animal Detection.

• The second criteria now further specifies the interest that the
query owner does have in the results done by the animal de-
tection extractor. Out of all the animals that are potentially de-
tected on pictures, elephants are the ones that should be se-
lected by the query. Hence the LDPath is traversed from the
starting point over the relationship “mmm:hasBody” and then the
property “rdf:value” in order to then select the literal that is
supported there. The “rdf:value” of the “mmmterms:AnimalDe-

tectionBody” reflects which animal the extractor has detected
and therefore the addition of the criteria in line 4 of Listing 21

does support a second parameter which checks the value of
the given property for equality to “Elephant” after adding the
standard LDPath parameter. This path can be seen in Figure 30.
As the check in the first criteria lies “on the path” used by
the second criteria, both could be merged to the more com-
plex LDPath expression “mmm:hasBody[is-a mmmterms:Animal-

DetectionBody]/rdf:value” with a value check for an elephant,
which would have the same semantic query requirement.

• Last but not least, a querying user could also have requirements
on the picture, or more specifically the subpart of the picture,

122 increased usability for semantic web technologies - anno4j

part

body specres

mmm:Part

mmmterms:
Animal

DetectionBody

"0.9"^^xsd:double

"Elephant"

rdf:type

mmm:has
Body

mmm:has
Target

rdf:type

mmmterms:has
Confidence

rdf:value

Figure 30: Illustrating RDF Graph for the Second Criteria of the Query De-
fined in Listing 21 (Line 4), Which Supports the Semantic Feature
of Elephants Being Depicted.

that the animal detection was done on. This could for exam-
ple be the requirement that the spatial fragment the elephant
was found in should be “rather small”. Point of interest for
this criteria is the selector and more specifically the fragment
value of said selector. The QueryService in Listing 21 therefore
is augmented with the LDPath that traverses the relationships
“mmm:hasTarget” and “mmm:hasSelector” to again read out the
value that is supported for the “rdf:value” property of the
given selector. In contrast to criteria two however, it does not
check the contained String for full equality, but rather checks
that it ends with “50, 70”, so that the selection is done on a
spatial fragment with width of 50 pixels and a height of 70 pix-
els, but it is not important where in the picture. This path is
visualised in Figure 31.

part

body specres selector

mmm:Part mmm:Specific
Resource

oa:Fragment
Selector

"xywh=300,150,50,70"

"http://www.w3.org/TR/mediafrags/"

rdf:type

mmm:has
Body

mmm:has
Target rdf:type

mmm:has
Selector

rdf:type

rdf:value

dcterms:
conformsTopicture

mmm:hasSource

Figure 31: Illustrating RDF Graph for the Third Criteria of the Query De-
fined in Listing 21 (Line 5), Specifying the Detection to Be in a
Rectangle of a Width of 50 Pixels and Height of 70 Pixels.

The Anno4j library supports both an easy to use basic querying
functionality via Java objects, as well as a more comprehensive imple-
mentation via the path-based querying language LDPath. This suf-

4.5 established database concepts of the anno4j library 123

fices the requirement for ORMs / ORdfMs of supporting a querying
API (which was introduced in Section 4.1) that lets user fine-tune
their queries for different purposes, in order to directly query for in-
formation that meets their current focus only. Path-based querying is
supposedly easier to understand than pattern-based approaches like
SPARQL, and therefore targets the overall-claim of the Anno4j library
to reduce barriers for non-Semantic Web experts.

At this point, the essential features of an abstraction layer like the
ORdfMs are discussed for Anno4j, which consist of the persistence
and the querying of data. With these, users are able to both write
and read RDF data from a given database. The next important re-
quirement that needs to be covered for such interactions are database
requirements that allow a convenient working with the database in
the first place. These requirements ensure various criteria like parallel
working or data consistency. Therefore the requirements met by the
Anno4j library are discussed in the following sections.

4.5 established database concepts of the anno4j library

In the last sections, the basic mapping functionality of the Anno4j
library has been covered. Java POJOs can be utilised to write RDF
data to a database, while various querying functionality enables con-
venient requesting of RDF data from the database, which is returned
in Java POJOs on the other hand.

What has not been covered are requirements that should always
be present when working with a database of some sort. This circum-
stance exists for a very long time now, and various literature [69]
[73] [51] emphasises the importance of implementing procedures or
the whole system architecture to be fault tolerant. There are always
sources present that can lead to different failures of the system or er-
rors in the code and applications, even if those problems only happen
in very rare situations. No matter the scenario, if a failure happens,
it is essential that in particular the data and partially the actions that
are currently done at the database are persisted, so that a consistent
state can be ensured at any point of time and data that has been
worked with cannot be lost or not reproducible. This is especially of
importance the more sensitive the data gets, with the most common
examples of finances or personal data.

One of the core concepts for database interaction that is mentioned
in the literature above is the transaction. A transaction encapsulates
multiple actions into a set of actions, that is either fully committed, so
the actions do take effect on the data that is persisted currently in the
database, or the set is aborted or rolled back and the actions do not
take effect at all. This enables the database to be conform to the ACID
concept [175], which is commonly known in the world of (relational)

124 increased usability for semantic web technologies - anno4j

databases. It stands for the following single concepts fulfilled by the
database:

atomicity The all-or-nothing philosophy described above for a gi-
ven transaction. A set of actions is either fully committed, or not
at all.

consistency Consistency targets the conformity of a given data-
base status, so the data is correct at a given state, oftentimes
oriented towards a given data scheme or model. Each action
executed with an underlying consistent status at the database
always creates another, altered but consistent status. This conse-
quently also holds true for transactions and their set of consis-
tent single actions.

isolation This concepts illustrates the fact, that the actions of a
started transaction are not visible to other users and therefore
hidden from other transactions, until it is fully committed and
the change of the data is persisted. Many techniques about this
concept deal with synchronisation.

durability Once a transaction is fully committed and therefore the
data is altered at the database, the contained set of actions need
to be fully persistent in the database from that point of time.
This means that any subsequent malfunctions or errors may not
have an effect on the happening of these actions. With the con-
cept of consistency, every correct and committed transaction
took part in the database, and the only way of reverting this
state is issuing a transaction that exactly counteracts the origi-
nally executed actions.

The Anno4j library adapts the concepts mentioned above in order
to enable ACID-like behaviour for its database communication. To
give further insights into how this is implemented, Section 4.5.1 ex-
plains the basic functionality of the transactional behaviour that has
been introduced to the library. Afterwards, Section 4.5.2 explains so-
called ValidatedTransactions, which are an extension to the classic
transaction. The validated variation allows to check the data that is
supposed to be inserted by the transaction for validity towards the
schema information that is present in the current state of the data
model. Lastly, in Section 4.5.3 Java Annotations are introduced that
can be added to the Anno4j Classes and Partial Classes in order to
produce such validation information next to the defined metadata
model in Anno4j. These additions to the Anno4j library contribute to
the answer to research question 3.3.

4.5 established database concepts of the anno4j library 125

4.5.1 Supporting Transactional Behaviour in Anno4j

The basic persistence setting for Anno4j is “auto-commit”. This means,
that every object that is created or altered during a Java process auto-
matically gets persisted in the respective database. This workflow has
shortcomings as described above, especially in the case of failures or
crashes while the process is running and is not finished. In this case,
only a part of the desired information would be stored, leading to an
inconsistent or faulty database state.

Therefore the Anno4j library supports transactional behaviour as
described in Section 4.5. This allows to bundle several Anno4j ac-
tions into sets of actions that are either committed when successful
or rolled back if an error happens. Here again, Anno4j allows the
developer to introduce rich Java features like error handling into his
processes while supporting consistency of the database.

Listing 22 shows a short implementation example of the Transac-
tion in Anno4j. The Transaction object is created via an Anno4j in-
stance and hence is reflected on the database that is associated with
the Anno4j instance. A Java interface “TransactionCommands” is im-
plemented in the library and defines the methods and behaviour of
the Anno4j and Transaction objects. Because of this, both objects be-
have the same way and offer the same functionality. Additionally, the
Transaction class offers the methods “.begin()”, “.commit()”, and
“.rollback()” for the respective essential transactional commands.

1 Anno4j anno4j = new Anno4j();

2

3 Transaction transaction = anno4j.createTransaction();

4

5 transaction.begin();

6 // Standard Anno4j code

7 // ...

8 Cat cesar = transaction.createObject(Cat.class);

9

10 QueryService qs = transaction.createQueryService();

11 // ...

12 transaction.commit(); // or eventual transaction.rollback();

Listing 22: Basic Transaction Implementation in Anno4j, Encapsulating
Actions Done for Persisting and Querying Information.

Line 3 of Listing 22 creates the Transaction object via the defined
Anno4j instance of line 1, which is started in line 5. Without a start
to the transaction, executed commands would not result in the de-
sired effect on the database. Line 6 through 11 now apply different
persistence and querying actions that are described in Section 4.3 and
Section 4.4 like creating an instance of the Anno4j Class “Cat” or creat-
ing a QueryService object. In contrast to earlier examples, this is done
using the Transaction object instead of an Anno4j instance, which is
an important detail. Last but not least, the transaction is committed

126 increased usability for semantic web technologies - anno4j

to the database in line 12 (or instead rolled back with the commented
code).

4.5.2 Validate Database Input with Validated Transactions

The transactions implemented in Anno4j ensure the ACID criteria for
database interaction via the library. This enables the database to be
in a consistent and clean state at all times which is a fundamental
cornerstone of today’s services and applications.

Next to the consistency, another important requirement that can
and always should exist for a database is the validity of the incor-
porated data. This validity is always motivated by some kind of rule
set that is defined for that respective dataset and its context or use
case, with the intention that the data is conform to the defined rules
and therefore is denoted as being valid or correct. This validity of
data is important, as the use of the data is compromised heavily if
it does not correspond to the defined ruleset. If another user wants
to apply the data in his own use case, they have to rely on the data
being conform, otherwise the process of data application gets much
more cumbersome and time-consuming.

The validity can be achieved or checked at different points of time
of a process, and if it is not done before the data is inserted, there
should always be processes that can verify the correctness of the data
later on. In addition to the validation itself, it is always important to
also propagate this information to the user, so he knows what the
invalid action would be or what instances in the database are not
corresponding to the defined ruleset.

As it has been seen so far, many databases in the Semantic Web sup-
port a vocabulary or ontology next to their actual data. This increases
the applicability of the database, as users can learn and understand
the structure of the data by parsing said ruleset, making the data it-
self more valuable. Therefore, the structural validity of the data and
hence also the semantic integrity conveyed through the data model
should always be assured. As has been discussed in Section 2.2, the
main tools to implement a metadata model in combination with a
specified structure by an ontology or vocabulary are RDFS and OWL.
Next to the mentioned information, OWL does also support more
thorough validity features like transitivity and multiplicity of RDF
relationships. Anno4j incorporates some of those, originating from
OWL Lite, in order to introduce validity checks, as will be seen in the
next section. As the model information of both RDF and OWL is also
formulated as RDF triples, the information can also be persisted at
the database itself, which can be helpful at certain scenarios when a
client also needs to consider this kind of information. In the Semantic
Web world it is especially important to make sure that data validity is

4.5 established database concepts of the anno4j library 127

given, as statements as discussed in Section 2.2 are always expected
to be “true”.

One of the most common ways of both creating a schema and even
respective instance data are editors like Protégé [121]. They enable
tool-supported possibilities to create and define classes with their
properties and relationships, and accordingly also create instances
of those classes. This process ensures complete validity of the created
data, allows the persistence on the fly, and in most cases does also
support information propagation to the user.

In contrast to editors, the Anno4j library introduces the validity
feature to the mapping functionality, enabling a more technical ap-
proach to the requirement of data validity. This enables developers
to always produce valid data and also incorporate the validation in
their known way. Next to the “Transaction” Java interface that has
been shown in Section 4.5.1, there is an extended interface called
“ValidatedTransaction” which supports all the common transaction
features with the addition of a validity check. This check is done
on the schema information supported at the respective database that
the validated transaction object is created on (again in relation to an
Anno4j object). This check is fulfilled once the “.commit()” method of
the validated transaction is called. Eventually, if the validity of the to
be added data is not given, a “ValidatedFailedException” is thrown
and the information is propagated to the Java process and the user.
Therefore, this implementation satisfies the requirements for validity
checks described above. The following Section 4.5.3 will show an ex-
ample as well as the currently possible validators that can be applied
in Anno4j and how.

4.5.3 Schema Annotations for Data Validity

Section 4.5.2 has explained what data validity is in a database, and it
has also indicated how this can be achieved in Anno4j through the
utilisation of a “ValidatedTransaction”. These transactions make
use of the schema information persisted in the respective database.
Up to that point it was assumed, that the schema information is al-
ready present. This however is not always the case, and the insertion
of this data is as important and has the same necessity to be valid as
the “normal” data.

Because of this, the Anno4j library does support convenient ways
of defining several possible validation requirements that are oriented
towards OWL Lite and contribute to the validation of the database.
Java Annotations are implemented that can be added to the Anno4j
Classes, which will be automatically transformed into respective tri-
ples that are added to the connected database at startup. Doing so,
the Anno4j instance can create “ValidatedTransaction” objects that
validate those Annotations on the fly. These Annotations are called

128 increased usability for semantic web technologies - anno4j

Schema Annotations. Table 4 in the Appendix shows an extensive
list of the Schema Annotations that are currently implemented in the
Anno4j library.

To show an example of the Schema Annotations in combination
with a “ValidatedTransaction” object in use, first of all the utilised
Anno4j Class has to be adapted. Section 4.3 explained the basic setup
of an Anno4j Class, and how getter/setter pairs need to be imple-
mented in order to formalise an RDF relationship or property for the
respective class. These can now be enhanced by adding a Schema
Annotation defining the validity criteria. Listing 23 shows a code ex-
cerpt that extends the Anno4j Class “Cat” (seen in Listing 17) with a
validation criteria on the relationship “pao:hasCatFriend”.

1 @Iri(PAO.CAT)

2 public interface ValidatedCat extends Animal {

3

4 // ... Left out other setter/getter pairs

5

6 @Symmetric

7 @MaxCardinality(3)

8 @Iri(PAO.HAS_CAT_FRIEND)

9 Set<ValidatedCat> getCatFriends();

10

11 @Symmetric

12 @MaxCardinality(3)

13 @Iri(PAO.HAS_CAT_FRIEND)

14 void setCatFriends(Set<ValidatedCat> friends);

15

16 void addCatFriend(ValidatedCat friend);

17 }

Listing 23: Adapted Anno4j Class “Cat” from Listing 17, Introducing a
Maximum Cardinality and Symmetric Requirement on the Re-
lationship “pao:hasCatFriend”.

Line 6 and 11 apply the Schema Annotation “@Symmetric”, which
semantically conveys the fact that friendship relations should always
be in both directions. This enforces that a set relationship “pao:has-

CatFriend” from instance “X” to “Y” is only valid when there also
exists the same edge from “Y” to “X”. The second validation criteria,
defined in lines 7 and 12 respectively, issues the (only exemplary) re-
quirement that cats can only have a maximum of three (symmetrically
valid) “pao:hasCatFriend” relationships.

The adapted Anno4j Class “ValidatedCat” can be used as described
in Section 4.3 and Section 4.4. Using it in combination with a “Vali-

datedTransaction” checks for the defined validation criteria shown
in Listing 23. As described in Section 4.5.2, at the point of time when
the implemented objects are to be persisted, the validation criteria are
checked and an exception with a description of what went wrong is
potentially given to the user. Listing 24 shows an example, implement-
ing “cesar” as the starting point and various additional information
to showcase the validation check.

4.5 established database concepts of the anno4j library 129

1 Anno4j anno4j = new Anno4j();

2

3 ValidatedTransaction transaction = anno4j.createValidatedTransaction();

4

5 transaction.begin();

6

7 ValidatedCat cesar = transaction.createObject(ValidatedCat.class);

8

9 ValidatedCat cat1 = transaction.createObject(ValidatedCat.class);

10 cesar.addCatFriend(cat1);

11 cat1.addCatFriend(cesar); // Necessary symmetric edge

12

13 ValidatedCat cat2 = transaction.createObject(ValidatedCat.class);

14 cesar.addCatFriend(cat2);

15 cat2.addCatFriend(cesar); // Necessary symmetric edge

16

17 ValidatedCat cat3 = transaction.createObject(ValidatedCat.class);

18 cesar.addCatFriend(cat3);

19 cat3.addCatFriend(cesar); // Necessary symmetric edge

20

21 // Adding another, fourth cat would invalidate the MaxCardinality on cesar’s cat

friends

22 // ValidatedCat cat4 = transaction.createObject(ValidatedCat.class);

23 // cesar.addCatFriend(cat4);

24 // cat4.addCatFriend(cesar);

25

26 transaction.commit();

Listing 24: Exemplary “ValidatedTransaction”, Using the “ValidatedCat”

Anno4j Class Displayed in Listing 23.

The code shown in Listing 23 passes the validation check, as the ap-
propriate additional relationships are added. In this case, the symmet-
ric edges directed from “cat1”, “cat2”, and “cat3” respectively back
to “cesar” are defined in the lines 11, 15, and 19. Lines 21 through 24

show a commented piece of code which could invalidate the max car-
dinality requirement on the defined relationship, as the allowed num-
ber is exceeded. Listing 25 shows an exemplary error message indicat-
ing the violation of this requirement. The error message shows, which
instance is invalid (the RDF node with URI “http://pao.com/cesar”)
and also the maximum cardinality is exceeded with 4 representatives,
while only 3 would be allowed. The “ValidatedTransaction” object
is created in line 3 (with the respective Anno4j object), started in line
5 and committed in line 26, just like a classic transaction.

1 com.github.anno4j.ValidatedTransaction$ValidationFailedException: Property http://

petsandowners.org/hasCatFriend of http://pao.com/cesar has only 4 values, but

maximum cardinality is 3

Listing 25: Showcase Error Message if the Allowed Maximum Cardinality of
the “pao:hasCatFriend” Relationship for “cesar” is Exceeded.

130 increased usability for semantic web technologies - anno4j

4.6 automated domain model generation through anno4j

rdf schema parsing

Various features of the Anno4j library have now been discussed, on
the one hand concerning the “basic” functionality of the mapping,
and on the other hand also more specialised features like the Vali-
datedTransaction and the Schema Annotations in order to support
consistency as well as validity for the underlying database status. Es-
sential building blocks to these processes are the Anno4j Classes (the
basic POJOs that enable the mapping), Partial Classes (extensions
to the Anno4j Classes, allowing for more fine-grained and detailed
implementation of the mapping objects), and Proxy Classes, which
have been mentioned only briefly in Section 4.3 yet. To put it simply,
a Proxy Class resembles a pre-compiled “building plan” that origi-
nates from the defined metadata model. From this plan the Anno4j
library is able to create proxies for the respective Anno4j Class in-
stances quickly, as it does not have to generate the proxies behaviour
from scratch as described in Section 4.3. These Proxy Classes can then
be provided for a given Java process to make use of. This does only
work with a static model, as a change in the model definition does
require a new generation of the Proxy Classes. However, the time sav-
ings achieved increase the applicability of the library, model changes
should not happen to often, and the library does support an auto-
mated generation of the Proxy Classes as will be described in this
section.

However, a problem can potentially exist when working with these
building blocks, as especially with complex ontologies or use cases
with many different classes and entities to model, the routine of creat-
ing the mapping (implementing the classes etc.) by hand can become
cumbersome and most notably also error-prone. Although the mere
class structure to implement is not difficult, this process needs a high
amount of focus, as for example the sole assignment of an incorrect
IRI to an Anno4j Class can lead to a faulty metadata model, recreat-
ing the mistake in the database status every time that respective class
is applied.

To counteract this circumstance, a contribution of this thesis exists
in the implementation of the so-called Anno4j Generation Tool for
the Anno4j library. This tool is able to facilitate the process described
above of creating a metadata model mapping, which is described in
Section 4.6.1. Next to this, the generation tool is also the core instru-
ment for automatically creating an object-oriented REST API for a
respectively created model, see Section 4.6.3. The internals of the gen-
eration process are described in Section 4.6.2. The Generation Tool
constitutes this thesis’s answer to research question 3.1, while its
Proxy-extension answers question 3.2 and the REST API-extension
question 3.4.

4.6 domain model generation with anno4j 131

Anno4j
Proxy Classes

Anno4j
Partial Class(es)
+ Basic methods IN OUT

Anno4j
Generation
Tool

RDFS
/ OWL

Schema

Anno4j
Class(es)

+ Schema Annotations
+ Class Hierarchy

Anno4j
REST API

Figure 32: Illustration of the Anno4j Generation Tool. With the Input of an
RDFS or OWL Schema File, Anno4j Classes, Partial Classes, Proxy
Classes, and a REST API Can be Automatically Generated.

4.6.1 Domain Model Generation Functionality

The functionality of the Anno4j Generation Tool is illustrated in Fig-
ure 32. The single input for the tool (next to some optional configura-
tion for fine-tuning the generation process) is a normal RDFS or OWL
schema file, which can contain class and property definitions of the
respective language, as well as the validation criteria that have been
discussed in Section 4.5.3 (additional OWL criteria can be included,
but will not be considered by the generation tool). At this point it is
important to note that only RDFS and OWL Lite ontologies can be
processed by the Anno4j Generation Tool. The reasons why will be
discussed in Section 4.6.2.

Schema files posed a promising possibility to facilitate the meta-
data modelling process, as ontologies or vocabularies are mostly sup-
ported when a Semantic Web use case is implemented. Out of this
schema file the generation tool is able to generate the following enti-
ties for the metadata model, next to the REST API extension explained
in Section 4.6.3:

• A full list of Anno4j Classes representing the RDF classes that
are included in the respective schema file. These are enhanced
with appropriate IRIs for the class itself as well as all added re-
lationships and properties that are defined. These are extended
with possible Schema Annotations and basic methods (add/re-
move single/multiple instances), depending on the type of re-
lationship or property and its multiplicity. Super- and subclass
relations are reflected in a Java class hierarchy.

• For every basic Anno4j Class, a respective Partial Class is imple-
mented, filling the base methods defined in the Anno4j Class
with respective code. This enables a rich basic behaviour for ev-
ery Anno4j object, and supports an interface for own extensions.

132 increased usability for semantic web technologies - anno4j

• Proxy Classes can be generated for the defined snapshot of the
metadata model. Together, these can be included into the class
path of a given Java process as a “.jar” archive/file, skipping
the behaviour gathering step of the metadata creation, resulting
in a speed up of the application. Results of this increase in speed
are evaluated in Chapter 6.

The configuration of the generation tool allows to handle two things:
ambiguity and language. Especially in more complex schemata with
a deeper class hierarchy it is possible to have clashes in the naming of
Java classes as well as Java methods and their labels. The naming for
both classes and methods is determined by supported “rdfs:label”

properties, and if those are not present, the last fragment of the given
IRI. Therefore the tool offers two ambiguity checks that can be en-
abled for the generation process. This results in a slightly longer pro-
cessing time, but will prevent name clashes that would have to be
dealt with by hand. As an example, consider the two IRIs “pao:Pet-

Owner” and “pao:Pet_Owner”. As the underscore character “_” in the
second IRI is not a valid character for Java classes, the tool would ig-
nore it and both entities would be mapped to the same Anno4j Class
“PetOwner”. With a checked ambiguity, both Anno4j Class names
would be extended with a random number that does not carry any
semantics, but the clash is prevented and therefore both (potentially
semantically different) Anno4j Classes would be created.

In terms of language, two things are concerned in the generation
process: firstly the naming for bot Anno4j Classes and their meth-
ods, and secondly the description of those in the form of Javadocs.
For both a preferred language as well as a default language can be
issued via configuration of the Generation Tool. Therefore the proper-
ties “rdfs:label” and “rdfs:comment” of the respective schema will
be utilised, as both can be supported repeatedly with different lan-
guage codes.

An extensive example for an application of the Anno4j Generation
Tool with the utilisation of the PAO ontology is shown in Appendix A.
The basic application of the generation tool is shown code-wise in
Listing 31. Using the exemplary input schema illustrated in Listing 32

(which is oriented to the data model that is designed and used in Sec-
tion 2.2), the output of the generation tool can be seen in Listing 33.

At this point it is important to mention a small tweak to the way
Anno4j database objects have been created up to now. The Java con-
structor does also support a boolean flag that induces the respectively
created Anno4j instance to also persist schema information that is as-
sociated with a given Java project at that time. This is especially im-
portant with a generated schema and the ValidatedTransactions, as
both work on that stored schema information.

The technical process of generating a domain model out of a given
ontology requires several procedures or algorithms in order to coun-

4.6 domain model generation with anno4j 133

teract issues that arise from the different concepts that exist between
RDF and OWL on the one side, and Java on the other side. These is-
sues in combination with solutions that have been introduced to the
Anno4j library will be covered in the following section.

4.6.2 Generation Process Internals and Algorithms

The overall process of the generation requires an RDFS or OWL Lite
ontology as input. The first step consists of extracting required infor-
mation in order to generate a domain model for the Anno4j library,
which is done by applying a reasoning step to the ontology (reason-
ing in RDF has been explained shortly in Section 2.2.6). This reasoner
uses several rules to deduce said information and make it usable in
further processes, creating a materialised ontology. For the Anno4j
implementation, the reasoner Openllet32 is used, which is built on top
of the reasoner Pellet [158].

With this materialised ontology, a procedure will be conducted
that normalises the present RDF or OWL classes in order to stream-
line the RDF class concept to be used for the same purpose in a
Java domain model. The above mentioned issue between both con-
cepts exists in the interpretation of classes and their instances. While
the Semantic Web concept allows the definition of equivalences be-
tween classes or properties, which symbolises that their instances are
present for both classes or that they receive both classes as a type,
this is not possible in Java. With this issue in mind, it also gets appar-
ent, why only OWL Lite and not higher specifications can be utilised
in order to generate Java domain models. Java does only allow in-
heritance relations between classes or interfaces to be modelled in
a way that represents a subset-relationship in RDFS or OWL. This
allows to be mapped only to those OWL/RDFS specifications that
apply the “rdfs:subClassOf”, “owl:equivalentClass”, and “owl:-

intersectionOf” relationships at most, which can only be assumed
from OWL Lite specifications, but not higher representatives. Nev-
ertheless, a survey of Wang, Parsia, and Hendler [172], who have
analysed 1275 RDF documents for their application of ontology spec-
ifications, shows that the largest part of these documents use OWL
Lite or lower for their documents, therefore justifying the generation
workflow in practice as described.

To solve the above issue, a procedure will be proposed that com-
bines equivalent classes represented by the given RDFS or OWL Lite
ontology, eventually making it possible to turn them into Java classes.
The result of this step is called normalised ontology. This ontology
is semantically the same with the original ontology, but meets the
requirements defined above.

32 https://github.com/Galigator/openllet (last visited 03/12/2018)

https://github.com/Galigator/openllet

134 increased usability for semantic web technologies - anno4j

Further steps that will be done on the normalised ontology increase
the usability as well as the validity and applicability of the generated
domain model. As it is common sense not just in the Semantic Web,
but also other programming related topics, meaningful names should
be used for the classes, properties, and relationships in the ontologies
as well as the domain models. If this information is present in the
input ontology of the Anno4j Generation Tool, procedures will be
called that determine meaningful names for the combined classes of
the normalising step, as well as produced identifiers for the created
Anno4j Classes and their methods. Furthermore, the method signa-
tures in the created domain model will be enhanced to eventually
use the most specialised types for their methods.

normalising a materialised ontology - finding equiva-
lent classes The normalisation step implemented in the Anno4j
Generation Tool applies its functionality in two steps. The issue be-
tween the RDF and Java class concepts manifests itself in two avail-
able relationships used in RDF/OWL in order to implement class hi-
erarchies and equivalences, which need to be handled for Java confor-
mance: the “rdfs:subClassOf” and the “owl:equivalentClass” rela-
tionships. The former in most cases would not be harmful, as it can
directly be mapped to a Java inheritance. Nevertheless, cyclic imple-
mentations of the relationship are allowed in RDF, eventually creating
a class equivalence between classes that are part of the given cycle.
The latter creates a class equivalence between two classes that are as-
sociated with a respectively defined relationship. Cyclic inheritance,
and thereby class equivalence, is prohibited in Java and hence these
occurrences need to be eliminated.

The OWL relationships can easily be found by simple SPARQL
queries, but the respective RDFS correspondent proves to be more
difficult to find because of its cyclic nature. Therefore the first step of
the normalisation consists of finding and “removing” existing cycles.

As has been seen throughout this work, RDF data and documents
can be interpreted as a directed graph with nodes and directed edges.
With this concept in mind, cycles between nodes can be found by
addressing them as so-called Strongly Connected Components SCC,
in which every node is reachable by every other node contained in
the currently considered component. Detecting these in a graph with
SPARQL queries would be inefficient, therefore the Tarjan Algorithm
[162] is applied. Algorithm 1 shows its implementation33:

The procedure seeks all SCCs in a given graph G = (V ,E) that
are reachable by a node v via depth-first search. In order to identify
all present SCCs, the procedure can be repeated as long as there is a
node v ∈ V , whose value v.index is not yet defined. Next to the graph

33 Aligned to the implementation shown in https://www.programming-algorithms.

net/article/44220/Tarjan’s-algorithm (last visited 03/12/2018)

https://www.programming-algorithms.net/article/44220/Tarjan's-algorithm
https://www.programming-algorithms.net/article/44220/Tarjan's-algorithm

4.6 domain model generation with anno4j 135

Algorithm 1 : The Procedure “tarjan()” to Identify Strongly Con-
nected Components in a Given RDF Graph.
Data : Directed graph G = (V ,E), considered node v ∈ V , already

identified SCCs S ∈ P(V), stack K, current index i
Result : Set S ∈ P(V) of the Strongly Connected Components in

G

v.index := v.lowlink := i

i := i+ 1

K.push(v)

// Considered neighbouring nodes of v:
foreach (v,w) ∈ E do

if w.index is not set then
// Continue recursively with w:
tarjan(G,w)
v.lowlink := min(v.lowlink,w.lowlink)

else if w ∈ K then
v.lowlink := min(v.lowlink,w.index)

if v.lowlink = v.index then
// The nodes on the stack form an SCC:
SCC := {}

do
u := K.pop()
SCC := s∪ {u}

while v 6= u;
S := S∪ {SCC}

return S

itself and the starting node, the input for the procedure is given by a
new index i to be set for a node and a stack K.

With v.lowlink the lowest index of a node reachable from v is
saved, whose SCC is not yet identified. As v is not traversed yet, there
is no other known edge to another node and therefore v is the only
reachable and known node, and v.lowlink is set initially to the index
of v. That followed, all direct neighbours w of v are considered. If the
node has not been traversed already, the search starts the procedure
recursively starting with w. In the case a node with lower index is
reachable from w, v.lowlink has to be adjusted when the depth-first
search returns.

If w in the other case has been traversed and hence is present on
the stack, this means that w is not part of another SCC, as these nodes
will be removed from the stack in the next step. Here v.lowlink has to
be adjusted if a node with lower index is reachable from w. The test
if a node is contained in the stack can be realised in O(1) by adding

136 increased usability for semantic web technologies - anno4j

a flag that represents the presence for example, which will be set for
the addition or removal of the node respectively.

The SCC of the node v can be returned after all neighbouring nodes
have been traversed and if v then has the lowest index of all reachable
nodes. As every node is reachable from every node in an SCC and v
has been visited first, there cannot be any further untraversed nodes
in the SCC with the return of the depth-first search from v. In addition
to this, all nodes of the SCC are placed “above” v in the stack, as
these have been traversed after v and therefore have been placed on
the stack to a later point of time. Hence all nodes can be popped from
the stack until v itself is popped. The thereby identified SCC S can be
added to the already found set of SCCs G.

With the above mentioned linear-time solution of determining the
presence of a given node on a given stack, the procedure shown in
Algorithm 1 requires only a linear runtime of O(|V |+ |E|). Therefore
it can be used in practice in order to determine the cycles constituted
by the “rdfs:subClassOf” relationships in an RDF graph.

normalising a materialised ontology - the merging of

names of equivalent classes and relationships or prop-
erties The Tarjan procedure shown above solves the problematic
cyclic relationships of the “rdfs:subClassOf” relationships, which
implement a class equivalence between the classes of the cycle. There-
fore the next step is constituted by treating the “owl:equivalentClass”
relationships that directly support a class equivalence. This is done by
the procedure presented in Algorithm 2, which is also used to fulfil
the last step of normalising a materialised ontology that is needed for
the overall generation process: the merging of class names of equiva-
lent classes.

As input, the procedure shown in Algorithm 2 receives the RDF
triples of the materialised ontology specification and the SCCs that
have been identified by the Tarjan algorithm shown in Algorithm 1.
At first, every class c out of the SCCs is checked for existing “owl:-

equivalentClass” relationships towards another class c ′. If present,
the instances of c and c ′ represent the same instances. Let s ′ be the
name of the SCC containing c ′, then both sets of SCCs can be merged
together, as every contained classes of both are equivalent to each
other. This means that s and s ′ can be removed from S, while a com-
bined SCC {s ∪ s ′} can be added. When this has been done for every
class in all SCCs, then all maximal sets of equivalent classes have been
identified, both in terms of RDFS and OWL class equivalence.

The next step of the procedure chooses a class name cs for each set
of equivalent classes s, which is chosen to represent the respective set
in the resulting normalised ontology specification. Therefore an itera-
tion is done over all classes c in s and all occurrences of the URI of c
in triples are exchanged for the IRI cs. Hence all statements that have

4.6 domain model generation with anno4j 137

Algorithm 2 : The Procedure “normaliseClassEquivalence()” to
Merge “owl:equivalentClass” Relationships and Address New
Names for Sets of Equivalent Classes.
Data : RDF-Triples G of a fully materialised ontology

specification, SCCs S of the class generalisation hierarchy
in G

Result : RDF-Triples G of the respectively normalised ontology
specification

foreach SCC s ∈ S do
foreach Class name c ∈ s do

// If an equivalence of c to another class c ′ has been
specified:
if (c, owl:equivalentClass, c ′) ∈ G then

// Combine the SCCs of c and c ′:
s ′ := SCC in S, which contains c ′

Remove s and s ′ from S

S := S∪ {s∪ s ′}

foreach SCC s ∈ S do
// Choose a class name that represents all the class names of the
group:
cs := random class name in s
// Exchange equivalent class names in all triples:
foreach c ∈ s\{cs} do

Exchange c with cs in all triples of G

been issued for a class in s do also apply for the classes now defined
by cs. At this time, the representative name is chosen randomly, but
there is the possibility of adding functionality that devises a mean-
ingful name out of the given class names. It should however be paid
caution to not increase the procedure’s overall runtime.

In terms of runtimes for the procedure shown in Algorithm 2, it
has been mentioned that the “owl:equivalentClass” relationships
can be queried efficiently, as it is the same for triples that respectively
contain a given IRI. Therefore the procedure can also be done in linear
runtime.

At this point it should be mentioned that the presented algorithms
above are also able to do the same normalising for relationships and
properties, which are implemented via the relationships “rdfs:sub-

PropertyOf” and “owl:equivalentProperty” respectively.

determination of java identifiers With the normalised on-
tology created with the processes and procedures documented above,
it is possible to turn a materialised ontology specification into a nor-

138 increased usability for semantic web technologies - anno4j

malised ontology specification that is convertible to a Java domain
model from the conceptual point of view between RDF and Java.
However, there are still further issues that need to be clarified in order
to support a clean transformation.

As has been seen throughout this work, the Semantic Web utilises
IRIs to “name” their resources. These cannot directly be used in Java,
especially for identifiers (for the interfaces of the Anno4j Classes as
well as their method names), as they contain letters and symbols that
are forbidden (e.g. brackets). Therefore in the overall workflow, a step
is necessary that adapts respective IRIs that will be used in the gen-
eration process. At the same time, when choosing the names for Java
interfaces, meaningful and significant names should be selected in
order to convey convenient semantic understanding for the eventual
developer that makes use of the resulting domain model.

The first approach to this is the “rdfs:label” property that is com-
monly defined in Semantic Web ontologies. This label in general con-
tains a textual name that is mainly for humans to interpret and un-
derstand. These labels therefore are often composed of letters only
and implement words that bear semantical meaning for humans. As
described above, if Java prohibited symbols are contained, these are
deleted from the label. In addition, the often used Camel-Case syntax
is applied for further understandability.

If the “rdfs:label” is not defined for a given class or property, it
is attempted to achieve the desired information out of the given IRIs
of the currently considered resource. In many cases, the suffixes of
such IRIs are also chosen to contain semantical meaning in order to
eventually comply to Semantic Web best-practises, trying to make the
use of the respective resource as easy and self-explanatory as possi-
ble. Therefore, the same rules for Java identifiers as described above
- removing illegal symbols and use Camel-Case - are applied for the
suffix of the IRI, which is then used as the identifier in the resulting
generation step.

As the result of the generation is an in Java usable domain model
for the Anno4j library, a further detail of convenience is drawn from
the path of a given IRI, as these paths eventually can be transferred
into a package structure in Java. For example, the IRI “http://pets-
andowners.org/Cat”, which describes a feline animal and which has
been used in examples throughout Chapter 2, will be mapped to a
Java class with the identifier “Cat” in the package structure “org.-

petsandowners”.

determination of method signatures The last few passages
have described, how the Anno4j Generation Tool devises meaning-
ful names and identifiers for the eventually generated interfaces of
Anno4j Classes as well as their methods. For the latter however, only

4.6 domain model generation with anno4j 139

the identifiers are not enough, as Java methods for a full signature
also require return types and parameters.

This information is also present in the normalised ontology and
can therefore be used for the generation process. The “rdfs:range”

and “rdfs:domain” relationships have been introduced in Chapter 2,
which restrict both the source and the sink of a to be defined rela-
tionship or property respectively. This information can directly be
mapped to a Java method signature. The “rdfs:domain” determines
which resulting Anno4j Class will receive the currently considered
method, while the “rdfs:range” fixes respective return types and
parameters. As an example, if the “pao:isPetOf” relationship from
Listing 3 with domain “pao:Animal” and range “pao:Human” would
be used in the generation process, the resulting methods would be
added to the “Animal” Anno4j Class with two basic methods (the
automatically generated Partial Classes would add more methods,
which are skipped here for reasons of clarity). The signatures for
these methods would be “void setOwner(Human owner);” and “Hu-

man getOwner();”, each with the added “@IRI(http://petsandow-

ners.org/isPetOf)” Java annotation to properly map the defined
methods.

The Anno4j Generation Tool does also incorporate the RDFS re-
quirements of allowing multiple values to be set for the above re-
lationships in its workflow. Here the issue exists again between the
concept of RDF and Java, as the assignment of multiple “rdfs:range”

relationships semantically conveys the intersection of all defined RDF
classes. This intersection of classes however is not necessarily repre-
sented by an own class which could be used in respectively generated
Java interfaces. Therefore the generation process needs to determine a
class C, which has an own class name in the given ontology specifica-
tion and which contains all individuals of the classes contained in the
intersection. This is the case when C represents a generalisation of all
those intersecting classes. Given that the RDF class “rdfs:Resource”

is represents a generalisation of all available classes, it can be inferred
that such a class can always be found. The “rdfs:Resource” is rep-
resented by the “ResourceObject” Anno4j Class in the library, hence
the same assumption can be done from the Java point of view. Nev-
ertheless, for a smaller error rate as well as higher usability of the
generated domain model, it is desired to find a class that is more
specialised than the top concept of “rdfs:Resource”. The procedure
shown in Algorithm 3 shows how this is done in the Anno4j library.

The procedure shown in Algorithm 3 receives a set of RDFS or
OWL classes C1,C2, . . . ,Cn as input, which have been defined as
the values of a “rdfs:range” or “rdfs:domain” relationship. At first
it is tested, if a class exists in the given ontology specification that
equivalently represents the intersection of the classes C1,C2, . . . ,Cn

already. In OWL, this can be tested by considering the respective

140 increased usability for semantic web technologies - anno4j

Algorithm 3 : The Procedure “getLowestCommonSuperclass()” to
Find the Lowest Common Superclass Among a Set of Classes.
Data : RDFS/OWL-Classes C1,C2, . . . ,Cn

Result : Most special common generalisation C of C1,C2, . . . ,Cn

// Check if an equivalent class exists in the cut of C1,C2, . . . ,Cn:
if If there exists a class C with C ≡ C1 uC2 u · · · uCn then

return C

// Identify a set S of common generalisations:
foreach Ci ∈ {C1,C2, . . . ,Cn} do

// Remove all classes from S that are not a direct or indirect
generalisation of Ci:
Si := Set of all generalisation of Ci

S :=
⋂n

i=1 Si

// Identify the most special class in S:
C := arg maxs∈S(d(s, rdfs:Resource))
return C

“owl:equivalentClass” relationships, which are present in the ap-
plied materialised ontology, as they are produced by the Openllt Rea-
soner discussed above. Therefore, the required information can be
requested via SPARQL queries.

In case there is no equivalent class present, a preferably most spe-
cialised class has to be determined, which contains all the classes
C1,C2, . . . ,Cn. To achieve this, the generalisations Si of every class
Ci is determined. Given that the ontology is fully materialised, Si
can be located efficiently and fully as a set of all “rdfs:subClassOf”
relationships of Ci. Afterwards with the intersection of all Si, the set
S of all common generalisations of C1,C2, . . . ,Cn can be found.

The last processing step C := arg maxs∈S(d(s, rdfs:Resource)) now
determines a class C in the set S, which is as specialised as possible.
This is the case, when C is located as “deep” as possible in the graph
of generalisations and therefore it has preferably the most generalisa-
tions. Hence, for the determination of C, the distance for every class s
in S is calculated with d(s, rdfs:Resource). This distance represents
the path of “rdfs:subClassOf” relationships from s to the most com-
mon class “rdfs:Resource”. With the preceding step of reasoning,
this path does always exist, as “rdfs:Resource” is a generalisation of
every other class and therefore this path is inferred for every class.
Also, the length of this distance path is finite, since the generalisation
hierarchy from the normalised ontology specification is free of cycles
after the procedures shown in prior steps.

With the choosing of a class that has maximal distance to the “rdfs:-
Resource” class, a class C is determined, which is as specialised as

4.6 domain model generation with anno4j 141

possible and contains the intersection of the classes C1,C2, . . . ,Cn. It
is to be noted that if n = 1 then the class C1 itself is returned.

performance of the generation process The performance
of the generation workflow that is applied by the Anno4j library to
generate a domain model out of a given ontology specification is eval-
uated in a combined experiment described throughout Section 6.2.
These evaluations apply a mocked specification that is used as input
for the Anno4j Generation Tool to create a domain model, from which
instances of generated Anno4j Classes are then instantiated. The run-
times for this whole process are tracked and it is shown that runtimes
can be kept to an imperceptible minimum. Therefore an application
of the generation can be done in practice for running systems, how-
ever the actual usage of it is designed to constitute a pre-step before
an application goes online.

roundup of the generation workflow The procedures of
this section have shown how it is possible to generate a fully usable
Java domain model from an RDFS or OWL ontology specification.
This constitutes the centrepiece of the Anno4j Generation Tool. It has
also been shown that linear runtimes are held throughout the genera-
tion workflow, which allows for an efficient utilisation and incorpora-
tion of it in real-world applications. Whenever possible, focus is laid
on understandability in order to make the resulting domain model
as useable and self-describing as possible, which does also align with
the Semantic Web best-practises.

All of this shows that it is an effective and useful way to make use
of generation processes in order to transfer models from one concept
to another, which alleviates the access to these models as well as their
accompanying technologies. This is done by allowing developers to
use their familiar technologies, also eventually reducing the develop-
ment effort of applications. Because of this, the next section will show
an extension to the processes described above, which lifts the Java do-
main model even further to be used as a REST API via commonly
known HTTP access methods.

4.6.3 Generation of a Web Component for a Metadata Model

Next to the generation of the technical elements necessary for the
mapping of a metadata model described above, the generation tool of
the Anno4j library is also able to produce RESTful interfaces. These
interfaces align with the model that is created in the first generation
step and therefore enable the library to be used as a REST API. This
moves or transfers its “place of installation”, which is illustrated in
Figure 33.

142 increased usability for semantic web technologies - anno4j

Java
Process

Classic
Anno4j
Instance

RDF
Triplestore

Access Interface

RDF
TriplestoreRESTful

Anno4j

Generic HTTP
Capable Process

Classic Anno4j Setup RESTful Anno4j Setup

Automated Anno4j
Communication with

the Database

Communication via
common HTTP Requests
aligned with a generated

Anno4j REST API

Figure 33: Places of Installation for the Anno4j Library: Classic and REST-
ful.

The left side of Figure 33 shows the “classic” implementation of
the Anno4j library. Its functionality is embedded into a common Java
process that is run on a given computer. The respective triplestore can
be had locally or remotely and is connected to the Anno4j instance.
Communication is done automatically via SPARQL queries that are
created and processed by Anno4j.

The right side shows the RESTful application of the library. The
instantiation of a respective API interface can be embedded into the
generation process described in Section 4.6.1, which creates the meta-
data model out of a supported schema file and also creates the Web
interfaces necessary. Additionally, the creation of the Web interfaces
can also be triggered by hand, to incorporate Anno4j Classes that
may have been created by hand after a preceding generation process
(or created via generation without generating the Web component as
well). Eventually, a Web Application Archive (a .war file) is created
that contains the respective RESTful interfaces. This can be embedded
next to a triplestore on a server for example, whose access interface
URIs (query and update) have to be supported via configuration to
the RESTful Anno4j component. This allows the triplestore to be ac-
cessed via the RESTful API that is generated by the Anno4j library
via common HTTP calls, extending the accessibility of the database
as shown in Figure 25.

4.7 additional anno4j database features 143

Implementation-wise, the RESTful application of the library fol-
lows the basic Web stack of the Spring framework34, featuring a mod-
ular controller/service/repository structure. This enables a fine-tuned
implementation that can be adapted conveniently for various use
cases. Throughout all of the layers, a classic behaviour is implemented
for every Anno4j Class, supporting basic methods like create, query
(single/all), and delete (single/all) instances of given input.

In summary, a convenience feature is supported by the Anno4j Gen-
eration Tool, lowering the barrier to access to the mapping between
RDF data and Java objects even more. A Semantic Web expert main-
taining an RDF database does in most cases also provide a schema
written in RDFS or OWL next to it. This schema as sole input can be
applied to support access to the database via Java objects in a conve-
nient and automated way. From another point of view, implementing
a new ontology or vocabulary can be done via Anno4j Classes or de-
signing a schema which is then used in the generation tool. In the end,
in both ways, these schema information can also be applied to foster
data validity through Schema Annotations. All of this functionality
can also be encapsulated into a RESTful application of the Anno4j
library, which can conveniently be generated with either a schema
and/or a collection of Anno4j Classes as input.

4.7 additional anno4j database features

The preceding sections of Chapter 4 have given a detailed descrip-
tion of the Anno4j library. It has been covered, what the library is
able to do and in what fields it can have beneficial factors for the
development of and in applications. This sections will show smaller
additions to some of the aforementioned functionalities, which partly
originate from overall RDF features that have been covered in Sec-
tion 2.2 and/or increase the comprehensiveness of said features.

named graphs and triple contexts Named Graphs are an
RDF feature that allow the contextualisation of triples inside the same
database by supporting the named graph IRI next to the commonly
known components of the triple. This concept has been introduced
in Section 2.2.4 and is accessed via the library in different situations.
Next to the possibility of creating an Anno4j object with a defined
default context which will be passed to all its functionality automat-
ically, objects created via an Anno4j instance can have the named
graph assigned with a respective method parameter. A instantiated
QueryService can be created in regards to a given context, and trans-
actions (both Transaction and ValidatedTransaction objects) can have
their context set to an IRI of a named graph. Listing 26 shows a code
excerpt showing the various possibilities of inserting the context.

34 https://spring.io/ (last visited 03/12/2018)

https://spring.io/

144 increased usability for semantic web technologies - anno4j

1 // The IRI used for the namespace at different occasions

2 URI context = new URIImpl("http://www.petsandowners.org/graph1");

3

4 // Create an Anno4j instance with default context

5 Anno4j anno4j = new Anno4j(context);

6

7 // Create a Cat object in the named graph, which would not be necessary if the

Anno4j object is already contextualised

8 Cat cat = anno4j.createObject(Cat.class, context);

9

10 // Create a QueryService that will query in the defined named graph only

11 QueryService qs = anno4j.createQueryService(context);

12

13 // Create a Transaction object and set the context

14 Transaction transaction = anno4j.createTransaction();

15 transaction.setAllContexts(uri);

Listing 26: The Applications of Named Graphs/Context at Anno4j Instance-
, Object Creation-, QueryService-, and Transaction-Level in
Anno4j.

serialisation input and output Another prominent RDF fea-
ture and an important part of the Semantic Web technologies is the
materialisation of triples to and from the serialisation formats that
have been discussed in Section 2.2.5. Triples can therefore be written
in textual form for humans to read or a parseable format for comput-
ers to understand. Supporting a serialisation for the objects that are
used in the mapping via the Anno4j library opens up additional pos-
sibilities of using the overall implementation by allowing convenient
usage via the commonly known triple representations.

This functionality extends the mapping of the Anno4j library with
a further component, as users can parse triples in order to convert
them to Java objects (that need to be represented in the data model of
the respective Java and Anno4j process), or on the other hand write
their existing Java objects to the commonly known RDF serialisations.
Figure 34 illustrates the extended mapping concept.

The visualised mapping shows the richness of interoperability of
the Anno4j library. The supported implementation opens a wide va-
riety for users to interact and apply Semantic Web technologies in or-
der to eventually create Semantic data. With the different conversion
mechanisms, data can be converted from one file format to another,
allowing users to benefit from the whole chain of data.

From an implementation point of view the writing of triples is
straightforward. Every object created via an Anno4j instance has a
“.getTriples(RDFFormat format)” method, which takes a constant
value of the RDFFormat Java class - representing an RDF serialisation
format - and returns the respective object as a String containing the
serialised triples.

The parsing requires the creation of an “ObjectParser” object.This
parser is contained in the Anno4j library and based on the Apache

4.7 additional anno4j database features 145

Triplestore

RDF
Data

Java
POJO
Object

Text /
Seriali-
sation

Tripl
ify

Valid
ated

Pers
isten

ce

Que
rying

Pars
ing

RDF /
OWL

Schema

Generation

Figure 34: Illustration of the Extended Overall Anno4j Mapping Function-
ality, Including the Parsing of Serialised RDF Triples and Writing
of Anno4j Java POJOs to Serialised RDF.

Jena RDF I/O technology (RIOT)35. The ObjectParser’s “.parse(...)”
method has got parameters for the input text String, a generic class
or Set of classes that determines the Anno4j Class type to parse for,
a default context, and the RDFFormat representing the serialisation
format that the input file is written in. The result is a list of objects
that are of the defined Anno4j Class(es) type and which are contained
in the triples of the parsed file. These objects are then kept in a local
memory store of the ObjectParser (to not accidentally “pollute” the
user’s data status by default), can be used as normal Anno4j objects,
and can be persisted to a respective database on demand.

query plugins for ldpath functions For an even more com-
prehensive querying capability, plugins can be added to the Anno4j
library. These extend the possible LDPath querying tools, by adding
an additional LDPath function36 in combination with an associated
querying logic. This function can then be used in querying criteria
provided for a given QueryService, allowing for much shorter but at
the same time more complex querying features and expressions. By
doing so it is possible to confine requested result sets beforehand, as
the querying logic is evaluated at a given database, rather than re-
turning a much larger result set which then is normally elaborated
afterwards. In order to implement a plugin, the user has to define the
LDPath textual function expression, as well as the querying logic. An

35 https://jena.apache.org/documentation/io/ (last visited 03/12/2018)
36 http://marmotta.apache.org/ldpath/language.html (last visited 03/12/2018)

https://jena.apache.org/documentation/io/
http://marmotta.apache.org/ldpath/language.html

146 increased usability for semantic web technologies - anno4j

exemplary expression (adopted from SPARQL-MM [104]) can be seen
in Listing 27.

1 QueryService qs = anno4j.createQueryService();

2

3 qs.addCriteria("sparqlmm:leftBesides(\"elephant\", \"lion\")");

4

5 List<ItemMMM> result = qs.execute(ItemMMM.class);

Listing 27: Exemplary Plugin Expression “sparqlmm:leftBesides(...)” in
an LDPath Criteria.

The integration and application of such a plugin could lead to a
criteria that is much shorter, but with the same semantics. The exam-
ple shown in Listing 27 could potentially query for those “ItemMMM”

objects that contain two animal detection results, one showing an ele-
phant, the other showing a lion. In addition to this, the coordinates
of the found results are supposed to be in a specific order, as in this
case the elephant to the left side of the lion.

4.8 anno4j conclusion, outlook , and envisioned addi-
tions

In summary, the Java library Anno4j offers comprehensive access to
RDF databases, following the commonly known idiom of an object
relational mapping. This broadens the database access for develop-
ers to not only use classic Semantic Web technologies like SPARQL
to directly query the database for retrieval or persistence purposes,
but use an idiomatic language they are more familiar with: Java. Still,
“lower” and more “complicated” access interfaces are not overshad-
owed for experts but rather open in parallel, enabling a user base as
diverse and wide-ranging as possible.

To recuperate the library from a technical point of view and there-
fore show its technological benefits, Figure 35 shows the Semantic
Web Technology Stack37 and the implications of Anno4j on it, or more
precisely in what layers the user is supported when applying it. The
Semantic Web Stack is a collection of concepts that are utilised in the
overall Semantic Web, with the addition of candidates in the form of
specifications or standardisations that implement respective concepts.
Concepts that do not have a candidate are envisioned in the overall
Semantic Web construct, but have not yet been supported technologi-
cally.

The yellow border indicated at the bottom of Figure 35 shows
which concepts are supported by the utilisation of Anno4j. With the
descriptions of the library throughout this chapter it has been seen
that Anno4j implements an abstraction for RDF data, therefore help-
ing with the overall concept as well as its serialisation or syntax and

37 https://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html (last visited
03/12/2018)

https://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html

4.8 anno4j conclusion, outlook , and envisioned additions 147

Identifiers: URI Character Set: UNICODE

Syntax: XML

Data Interchange: RDF

Taxonomies: RDFS

Ontologies: OWL Rules: RIF/SWRL
Querying:
SPARQL

Unifying Logic

Proof

Trust

C
ryptography

User Interface and Applications

Anno4j
Support

Figure 35: Visualisation of the Semantic Web Technology Stack with Con-
cepts shown in Regular Font, While the Implementing Technolo-
gies Are Written in Bold Font. The Dotted Border Shows Which
Concepts are Affected, Interwoven, and / or Supported by the
Anno4j Library.

also respective identifiers and URIs (which can be freely chosen by
the expert, or automatically be generated for the newcomer). Taxo-
nomical features that are supported by the RDFS schemata is fully
representable in Anno4j domain models, while querying is facilitated
by different querying methods. Out of the OWL specification only
the concepts similar to the RDFS features are implemented, with the
addition of the validation possibilities given by OWL Lite (see Sec-
tion 4.5.2). Additional rules or logics are not yet implemented, but
an SWRL extension is envisioned, which is described below. In the
end, Anno4j supports the implementation of applications, which is
indicated in the illustration as well.

Next to the various technical features supported by the library,
these applications do also benefit from design principles that are im-
plemented by Anno4j. The foremost among these is the abstraction
that is implemented, allowing users to access and produce RDF data
without having to deal with the Semantic Web technologies to do so.
Next to this, the library is designed in a modular way, decoupling its
single features whenever possible to support fine-tuned utilisation for
the user. On top of this, extensibility is offered both in ways of persist-
ing and querying data, allowing for further user-driven extensions
and implementations. The validation features of the Anno4j library
support some kind of robustness to the application, as given input
can be validated against existing schema information. As it has also
been seen in the related approaches, development effort gets reduced
when applying an ORdfM implementation like Anno4j, and Chap-

148 increased usability for semantic web technologies - anno4j

ter 6 will shows that an application is also not impeded runtime-wise
by the library. Next to these general design benefits, the ORdfM con-
cept does also enable general advantages, namely productivity, non-
intrusiveness, reusability, and higher maintainability by lower error-
proneness.

In Section 4.1 the core requirements by Bauer and King [16] for
an ORM implementation were listed. These naturally can be adapted
for ORdfM implementations as well. Anno4j supports all of them,
namely CRUD API, querying language or API, mapping metadata,
and optimisation functionality. In the following, the technical fea-
tures of Anno4j will be recapped and it will therefore be shown, how
Anno4j fulfils the basic requirements for ORMs.

The creation of metadata is encapsulated in a mapping, allowing
the user to work with Java classes with very easy basic behaviour
which - through the mapping - get transformed to RDF data on the
fly. However, this is not restricted to this basic behaviour, as so-called
Partial Classes can be supported next to the Anno4j Classes whose
methods can be implemented by hand and therefore incorporate Java
features and therefore a richer functionality.

Basic querying in Anno4j is supported idiomatically via Java ob-
jects, while LDPath expressions enable a thorough and rich querying
functionality that lowers the barrier of the de-facto standard SPARQL
to query metadata from an RDF database. Rather than querying pat-
tern-based, LDPath is a path-based querying language that suppos-
edly is easier to use, especially for non-Semantic Web experts. The re-
sult of an issued query via Anno4j is returned as the defined Java ob-
jects of the Anno4j mapping, which are therefore likewise convenient
to use for developers. The “QueryService” interface of the Anno4j
library implements a fluent interface, allowing to add LDPath query-
ing criteria as well as different configurations conveniently and in
modular fashion, enabling extensive querying functionalities.

Next to the mapping functionality to persist and query metadata,
the Anno4j library supports data consistency- and validity-preserving
features, that can be used and applied optionally. This is done via
transactional behaviour, which can be extended by so called Schema
Annotations. These Annotations are aligned with OWL Lite valida-
tion requirements for RDF data like cardinality and transitivity, and
can be added to the defined Anno4j Classes for the mapping. When
said transaction would be committed to a database, a check for the
integrity of the database status is done before changes are committed.
Eventual errors or validity violations are propagated to the user with
a description about the incorrect action.

Code generation features further increase the applicability of the
library in various other use cases. The Anno4j Generation Tool allows
the parsing of existing RDFS or OWL schemata to generate the map-
ping in an automated fashion, bypassing the process of creating it by

4.8 anno4j conclusion, outlook , and envisioned additions 149

hand. This is especially useful and time-preserving for more complex
ontologies, while also avoiding the error-proneness of hand-written
code. Next to this, the Generation Tool can also alleviate the map-
ping functionality to a RESTful API, enabling access through common
HTTP communication.

Additional features permit the whole Anno4j functionality to be
applied in common RDF named graph fashion, while a parsing com-
ponent allows to read and write Anno4j objects from and to tex-
tual RDF serialisations. Already comprehensive querying functional-
ity supported by LDPath can further be extended by personal plugins
with LDPath functions.

All of this technical functionality to access semantic data next to an
easy inclusion of the library via Maven facilitates its applicability in
not just a simpler way of using a mapping. The scenarios described
above enable whole workflow chains of large-scale applications to be
supported by the library, enhancing and simplifying the steps not
just for creation and consumption of the metadata, but also the ex-
ploitation as it can be used and produced much more conveniently.
With the additional features like generation, the effort for developers
to include metadata into their work cycle gets lowered immensely.
As an application example to also evaluate these claims, Chapter 5

will describe the MICO platform, a workflow-based multimedia sce-
nario in which Anno4j has been used to implement the metadata
communication. In this scenario, efforts have also been made to pro-
vide the Anno4j functionality to other programming languages. A
proof-of-concept version for C++ is implemented in the MICO plat-
form, called Anno4cpp (see [5] [22]) which constitutes a proxy to the
Anno4j library using Java Native Interface38 [110]. This also reveals,
that all the presented features are not just bound to Java only.

Next to this, Anno4j is provided in the active community on Git-
hub39, has been included and mentioned in recent scientific activities
[161] [130], and is listed as one of the reference implementations for
the Web Annotation Data Model on the W3C homepage for the Web
Annotations Group40. Furthermore, the currently ongoing research
project ViSIT poses another promising field of application, and there-
fore room for further development of the library (see Section 6.3).
Also, the uptake of the library in a research project can be seen as
positive evaluation.

More ideas exist that further elevate the idiomatic functionality of
the library and therefore lower the barrier of Semantic Web technolo-
gies even more. These ideas originate from current use cases or have
been gathered during the current implementation stage, but have not
(yet) been implemented as they would exceed the margin of this work.

38 https://docs.oracle.com/javase/8/docs/technotes/guides/jni/ (last visited
03/12/2018)

39 https://github.com/anno4j/anno4j (last visited 03/12/2018)
40 https://www.w3.org/annotation/wiki/Implementations (last visited 03/12/2018)

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://github.com/anno4j/anno4j
https://www.w3.org/annotation/wiki/Implementations

150 increased usability for semantic web technologies - anno4j

In any case, a short description of those ideas is given here in order to
illustrate the expendability and especially the potential of the applied
approach of Anno4j.

object queries The most anticipated extension is summarised
under the name Object Queries. As described in Section 4.4, the
current status of the Anno4j library supports queries by supporting
LDPath expressions. This is considerably lower in complexity than
SPARQL queries, but still requires some kind of knowledge of Seman-
tic Web technologies. Like the name suggests, Object Queries will be
related to the kinds of objects that are already in use of the library. As
these are again implemented in Java, the same claim of idiomatic util-
isation of Anno4j holds for this feature as well. Listing 28 illustrates
how this could look like.

1 // Left out code dealing with the Anno4j instance as well as creating potential

other Anno4j objects, in particular eventually the Cat Cesar

2 Human bob = anno4j.createObject(Human.class);

3

4 QueryService qs = anno4j.createQueryService();

5

6 Cat queryCat = qs.createObject(Cat.class);

7 queryCat.setAge(5);

8 queryCat.setOwner(bob);

9

10 Cat result = qs.execute(queryCat);

Listing 28: Exemplary Object Query Application Scenario.

The known QueryService interface gets extended so that it can cre-
ate Anno4j objects just like an Anno4j instance, and take objects as
input that follow the defined mappings that are used for querying
and persistence up to now. The execution call then transforms the ob-
ject into respective queries. In the example, a query for a “pao:Cat”

object of the age “5” and the owner “bob” would be issued. The ex-
pressiveness of this method needs to be evaluated if it can represent
all querying criteria that SPARQL or LDPath have, but if this could be
done successfully, the querying barrier would be reduced to a Java-
conform level requiring only a little knowledge about Semantic Web
technologies.

swrl The Semantic Web Rule Language SWRL [86] [124] is a lan-
guage that allows the definition of Horn-like rules that can be applied
to a semantic dataset in order to trigger a functionality that acts like a
reasoner. Reasoning has been described in Section 2.2.6 and is used to
create additional metadata from already existing metadata by apply-
ing those rules. These are made up of an antecedent (a set of require-
ments that need to be met in order to trigger the consequent) and a
consequent (a set of actions that are executed if the antecedent is ful-
filled). Both of these components are built as a concatenation between
core elements, like the existence check of a relationship between two

4.8 anno4j conclusion, outlook , and envisioned additions 151

RDF entities or an RDF type check for one entity. SWRL is based
on a recombination of OWL DL and OWL Lite with the Unary/Bi-
nary Datalog RuleML sublanguages of the Rule Markup Language41

[36]. It therefore enables an expressive language that allows the def-
inition of rich rulesets. Syntaxes are supported for XML as well as
RDF, and there is also a more human-readable notation supported
by the authors. Listing 29 shows an example of a rule that could
be implemented for the PAO use case. The rule infers semantically
that if a person (represented by the variable “?person”) owns a pet
(“?pet”) and then marries someone (“spouse”), then the respective
spouse should also have the sponsorship to said pet associated.

1 pao:isPetOf(?pet, ?person) AND pao:isMarriedTo(?person, ?spouse)

2 => pao:isPetOf(?pet, ?spouse)

Listing 29: Exemplary SWRL Rule for the PAO Ontology.

Beneficial factors of SWRL towards a technical application are its
expressiveness as well as the easy to read syntax of a ruleset. This al-
lows for a convenient implementation in the Anno4j library, enabling
users to support defined rules that can be triggered as a conjoined
process. These processes can then be used to infer information about
their dataset, which does not need to be modelled necessarily via
the Anno4j Classes. This opens up several new opportunities of meta-
data modelling. One envisioned application is called Semantic Zoom,
which will be used in the Visit project (see Section 6.3). This zoom
will work with two different metadata models that describe the same
use case in two variants - one complicated and detailed, the other
one more easy and convenient - automatically converting informa-
tion content that is produced for one model to the other model and
vice versa.

recommendation In use cases that allow users to search through
a supported set of data, for example video or music platforms at
which users can search for their favourite films and music, oftentimes
it is desired to have the possibility to compare these multimedia data
in order to support some kind of statement like “You liked this film,
so maybe you would also like these other ones!”. This is generally
done with recommendation engines, extending the given use case
to a broader functionality as well as delivering a better user experi-
ence overall. Especially the MICO use case showed potential for such
a recommendation component, and therefore the possibility to do
an implementation was evaluated. Similar extraction results could be
recommended, so for example two pictures with an alike animal de-
tection result could be presented to the user for research purposes.
LDPath querying criteria can be applied in the recommendation fea-

41 http://ruleml.org/index.html (last visited 03/12/2018)

http://ruleml.org/index.html

152 increased usability for semantic web technologies - anno4j

ture calculation and therefore target all RDF facets of MMM Items
and Part Annotations.

From a data model point of view, the RDF feature called reification
has been introduced in Section 2.2.6, which is well suited to constitute
recommendation results. A beneficial factor here is that the reification
statement is not interpreted as 100% true, which is in the nature of
recommendations, but it is rather a statement about a statement and
only asserted to be true as described before. Next to this, recommen-
dation processes are always in need of hardware resources, as well as
good potential of being supported technically to not delegate more
effort to the user than necessary. All of this aligns perfectly with an
implementation feature for the Anno4j library, which has been done
prototypically as an extractor in combination with a mapping model
in MICO. Figure 36 shows an example how the model could look like.

blankrdf:Statement rdf:type

rdf:subject rdf:object

mmm:
similarTo

rdf:predicate

"0.7"rdf:value

sim1

mmm:Similarity
Calculation

rdf:type

mmm:basedOn
SimCalculation

Figure 36: Exemplary Anno4j Recommendation Result in the MICO Use
Case. The Two “mmm:Item” Instances at the Bottom (Indicated
by the Coloured Tree-like Structures Which Correspond to the
MMM Colours Discussed in Section 3.3) are Compared and Eval-
uated to Have a Similarity in Their Results to 70%.

Two items have been evaluated for their similarity based on the
“mmm:SimilarityCalculation” with the IRI “sim1”. An “rdf:value”

is supported to indicate the degree of similarity between the two Item
instances on the bottom of the picture, in this case “0.7”. These are
connected by an “rdf:Statement” as described in Section 2.2.6. With
this implementation, multiple different calculation strategies can tar-
get the same RDF instance, enabling a broad field of application. The
approach for the implementation can then support federated and
comprehensive querying capabilities so that the recommendation re-
sults can be used effectively and without further effort.

5
A W O R K F L O W- D R I V E N A P P R O A C H F O R
M U LT I M E D I A M E TA D ATA A P P L I C AT I O N

The preceding sections of this work have given insights into basic Se-
mantic Web Technologies, overall metadata modelling with a focus
on multimedia, and the Anno4j library, which is an implementation
of an ORdfM to implement an abstraction layer on top of a given
RDF database to conveniently work with semantic data in idiomatic
fashion by using Java. The latter of these insights laid special focus on
the fact that existing Semantic Web Technologies have an initial bar-
rier to learn and apply, and that implementations like Anno4j exist
in order to facilitate miscellaneous interactions with the database, en-
abling non-Semantic Web experts to produce and consume semantic
data as well.

However, these implementations can not only be used to facilitate
single processes or enable non-experts, but they can also contribute
to a more comprehensive and thorough implementation of “bigger”
applications that intend to take part in the Semantic Web. To evaluate
and show this claim, the information supported in the previous sec-
tions will be concentrated and applied as a use case in the MICO Plat-
form, a centralised software platform that is designed to analyse mul-
timedia data by applying workflow-based processes via connected
autonomously working multimedia extractors. As a result, the plat-
form produces descriptive information that constitutes a metadata
background for the analysed multimedia files. The vision or idea of
the overall MICO Project as well as an initial description of the MICO
Platform has been given in Section 1.2.

The MICO Metadata Model (see Section 3.3) will serve as the ontol-
ogy for the created metadata, while Anno4j will be included mainly
in every metadata extractor to implement the metadata communica-
tion with the central MICO Platform. Therefore, metadata at the ex-
tractors can be persisted by creating and filling Anno4j Java objects
(which correspond to the model mapping defined in the platform de-
pendency, see Section 5.2) rather than using so-called “SPARQL tem-
plates”, predefined SPARQL queries with placeholders at respective
positions, which were the preliminary solution for creating, querying,
and communicating metadata. These templates proved to be error-
prone as well as time-consuming, as next to basic templates every
extractor needed templates of its own. Hence Anno4j supported a
much more reliable and maintainable solution to the task of meta-
data management. As will be seen later, Anno4j can also be applied
in other features of the MICO Platform.

153

154 workflow-driven multimedia metadata

For the MICO scenario described above two solutions will be pre-
sented, differing in the point of time and therefore the status of the
Anno4j library, which will have impact on the possibilities of im-
plementation space. The first solution will describe the technology
present at the effective date of the end of the MICO Project. At that
point, the MMM is in its final version described in Section 3.3, the
Anno4j library was released with the version 2.3.01, which incorpo-
rated the functionality of the 2.0.0 version with an increment to the
metadata model of the WADM. This version does not include the fea-
tures about generation (see Section 4.6), validation (see Section 4.5.2,
although basic transactional behaviour is available), nor any solution
about the proxy problem (see Section 4.6). However, a fully functional
MICO Platform implementation exists for the scenario with the facts
described above.

The second setting does incorporate the Anno4j library in its latest
release 2.4.02 and can therefore exploit its full potential. This scenario
is not implemented, as a thorough implementation would exceed the
margin of this work, however the respective results and given evalua-
tions support the claim from a theoretical and partly practical stand-
point. This theoretical construct is subsumed under the name MICO+
and will be described in combination with its potential advantages in
Section 5.4.

Regardless of which of the two settings is considered, it is shown
that a part of the problems of the Semantic Web shown in Chapter 1

can be solved and improved. More precisely, the described problem
of having a task that is supposed to be solved using the Semantic Web
requires the gathering of information from various different informa-
tion peers. Therefore, subproblems can be defined that firstly incor-
porate the understanding of the various information bits and pieces,
as the peers do not necessarily communicate “speaking the same lan-
guage”, and secondly the recombination of all those information in
order to receive a combined result. While the part about understand-
ing supports another difficult task to accomplish, what the MICO use
case in combination with Anno4j and the MMM shows is, that the
communication between various information peers is possible and
that their results or inputs can be combined to be commonly accepted
and interpretable. Additionally, by supporting a workflow-oriented
information concept of the platform that is enabled by a metadata
model that can incorporate respective information, it is shown that
the gathered information fragments are not only used statically, but
can evolve and fuel other yet undiscovered semantics.

To give a deeper insight and explanation about this, this section is
structured as follows. Section 5.1 will enlist related work in the fields

1 https://github.com/anno4j/anno4j/releases/tag/v2.3.0 (last visited
03/12/2018)

2 https://github.com/anno4j/anno4j/releases/tag/v2.4 (last visited 03/12/2018)

https://github.com/anno4j/anno4j/releases/tag/v2.3.0
https://github.com/anno4j/anno4j/releases/tag/v2.4

5.1 rw - multimedia metadata platforms , metadata lifecycles 155

of multimedia platform implementations as well as workflow-centric
metadata processes, in order to compare existing approaches against
the work done in this thesis. Afterwards, Section 5.2 describes the
MICO Platform more in-depth in the first setting describe above, es-
pecially highlighting the components and details that are necessary
for this work to show its contribution. An adapted metadata work-
flow and lifecycle concept for for handling metadata information is
described in Section 5.3. Existing shortcomings of the first described
platform setting will then be evaluated in Section 5.4, and according
improvements will be presented. These solutions will be concluded in
a technical description and hence theoretical construct of an extended
MICO Platform implementation, called MICO+.

5.1 related work - multimedia metadata platforms and

metadata lifecycles

As the previous chapters have shown, metadata in general has a great
impact on the applicability of data itself and especially in the fields of
Multimedia, as the descriptive information allows to make better use
of the multimedia content in terms of for example best display/pay-
out or the actual content. Therefore, supporting a thorough metadata
background allows the given multimedia item to be used in a wider
area of application, as it gives useful information about how it is pro-
duced, how it is structured and built up technically, and especially
what it is about or what the content of it is.

It has been learned up to now how metadata can be modelled and
described altogether in the Semantic Web, an implementation of a
specific multimedia metadata model, the MMM, has been shown,
and technical implementations to create, access, query, and apply this
metadata have been proposed. Following this, it is useful to highlight
the different high-level stages that metadata goes through in its entire
lifetime in order to potentially improve some of these steps to further
increase the quality of the metadata. These steps are subsumed un-
der the concept of a lifecycle of metadata by various authors. They also
mention the importance of technical support in order to access many
of these steps, as they are often interwoven into functionality and
therefore hidden and unaccessible for users, which counteracts the
idea of making space for improvement. Hence, after explaining some
insights about the lifecycles of metadata, this section will describe
platform implementations and their impact and/or adaption on the
lifecycle of metadata.

In [102], Kosch et al. describe the lifecycle of metadata that is di-
rectly connected to multimedia. They do this, by separating the cycle
into three different spaces: the content space contains the steps that
directly concern the multimedia file itself, while the metadata space in-
cludes everything relating to metadata that is connected to the given

156 workflow-driven multimedia metadata

multimedia file of the content space. The third space illustrates the
various kinds of users that interact in different potential ways with
the multimedia file and/or with respective connected metadata. This
is called the user space.

Production /
Creation

Post
Production
Processing Delivery Consumption

Metadata Production Metadata Consumption

Content Producers Processing Users End Users

Post
Consumption

User
Space

Content
Space

Metadata
Space

Figure 37: Visualisation of the Multimedia Metadata Lifecycle (Adopted
from [102]).

Their content space encompasses the actual creation or production of
the multimedia file, which is followed by the Post Production Process-
ing step, enriching the created file with metadata either by automated
analysis processes or human interaction. Eventually, the multimedia
in combination with its descriptive metadata is then distributed in
the Delivery step, enabling users to make use of the multimedia item
and its metadata in the Consumption step.

The metadata space is coarsely divided into two subparts, metadata
production and metadata consumption, dealing with the creation and
utilisation of metadata associated in the multimedia workflow of the
content space respectively. The production of metadata takes place
at first during the production step of the multimedia file, when com-
mon technical information like the creator, the creation date, and the
file format is addressed. Next to this, the post processing of the mul-
timedia file oftentimes incorporates various basic analysis processes
(like it has been seen in the MICO use case) that add low-level fea-
tures in general, for example a color histogram or similar features
from the MPEG-7 standardisation. There is also the possibility for
human interaction, adding more high-level features to the metadata
background that cannot be performed by the analysis processes au-
tomatically. These quite often contain information like transcoding
hints, a reference to original files (if the given described file has been
compressed in some way), a media profile, and possible content adap-
tion infos for further processing.

Different user groups or roles are involved in the whole lifecycle of
multimedia metadata, fulfilling and contributing to different steps of
the cycle. Content providers are the essential starters of the lifecycle, as
they create or instantiate the multimedia file that is to be processed.
After this initialisation, the processing users are the ones who enrich
the given media file with describing metadata in the post production
processing step. Lastly, the end users induce the delivery of the media

5.1 rw - multimedia metadata platforms , metadata lifecycles 157

files in order to consume them. This also encapsulates the metadata
consumption step of the metadata space, as the end users filter and
browse through content, find appropriate versions of media files (de-
pending on their QoS criteria), and therefore trigger the payout of
the media files via the internet by using and applying the assigned
metadata.

The lifecycle of multimedia metadata in their vision ranges from
the creation of the initial media file, to metadata allocation, and fi-
nally to delivery and consumption by end users. However, as the
authors also hint, the lifecycle for a given file is not necessarily “over”
here, as the participating roles of interacting users can overlap and
therefore trigger another iteration of the cycle. In a post consumption
step, end users can potentially allocate things like feedback, viewing
preferences, device characteristics, or simply alter and adjust exist-
ing metadata in order to further improve its quality. These terms can
then be seen as either a new multimedia file itself (if the respective
changes to it are enough to interpret it like that) and therefore restart
the cycle at the production/creation step, or the metadata allocation
can be seen as post processing and therefore trigger the cycle from
the second overall step. This eventually creates a reiterating circular
workflow of different process steps that can be iterated for several
times in order to create an always improving metadata background
for the initially injected multimedia file as well as its potentially cre-
ated altered versions via compression or similar processes.

As mentioned in the introduction of this section, the allocation of
metadata does have a close connection to technical implementations,
as these can enable better access to the steps of the metadata lifecycle,
or even provide the access possibility in the first place. Kosch et al.
do also support this claim in [102], as they, next to the steps of the
cycle itself, introduce a project in combination with its technical foun-
dation in order to embed the metadata lifecycle. The CODAC project3

bases its metadata content on the well-known MPEG-7 standardisa-
tion (also explained in Section 3.1), which is stored in a Multimedia
Database Management System [103]. This metadata database is com-
plemented by a Multimedia Data Cartridge4 [59] for multimedia files
in combination with metadata, and a dedicated streaming server to
play out the given multimedia files of their databases.

Authors of various other literature [11] [12] [13] [122] highlight an-
other point of view on metadata, also in the interpretation of a lifecy-
cle: the Lifecycle of Linked Data. Their lifecycle is designed in circular
fashion, as there are eight steps that can reiterate and re-trigger each
corresponding successor and even each other in a non-strictly linear
fashion. They do also propose a technical foundation of the lifecycle,

3 http://www-itec.uni-klu.ac.at/~harald/codac/ (last visited 03/12/2018)
4 https://docs.oracle.com/cd/B28359_01/appdev.111/b28425/introduction.htm

(last visited 03/12/2018)

http://www-itec.uni-klu.ac.at/~harald/codac/
https://docs.oracle.com/cd/B28359_01/appdev.111/b28425/introduction.htm

158 workflow-driven multimedia metadata

called the LOD2 Stack. The eight steps implementing the lifecycle,
which is also depicted in Figure 38, are namely:

extraction Data can be present in various different formats and/or
persisted in databases. In order to incorporate it into the Linked
Data lifecycle, the data has to be at least mapped to RDF data,
or even converted at best.

storage and querying With enough RDF data, the next step con-
sists of storing the data, making it access-, manage-, and query-
able.

authoring This step encapsulates the possibilities for users to both
create new data in conjunction to the existing RDF data, as well
as correcting the already existing data.

(inter-) linking Following the general idea of the Semantic Web
of having increased knowledge benefits for every participating
peer of interconnected RDF databases, this step induces users
to link respective data of preceding steps to other knowledge
bases.

classification and enrichment At this point, a lot of RDF
data has been created and gathered, and Ngomo et al. [122]
raise the claim that (starting) at this step, the quality of the pro-
duced data should be revised, in order to especially increase the
querying capabilities and usefulness of the data altogether. In
this step the focus therefore lies on the classification, structure,
and schema information of the data. The mainly mentioned pro-
cess to achieved this is relying on high-level structures that are
allocated to the gathered RDF dataset.

quality analysis By doing a comparison to the quality of content
of the Web of Documents, the authors also issue that a qual-
ity assessment should also be done for Linked Data. Therefore,
strategies or calculations are envisioned to do so.

evolution and repair If problems, inconsistencies, or faulty data
is detected, this step needs to offer possibilities to correct those.

search , browsing , and exploitation Eventually, the result of
the lifecycle is to support an ideally qualitative rich, well struc-
tured, and extensive knowledge base of RDF data that will po-
tentially be used by a broad field of users. Hence, searching,
browsing, and exploitation possibilities must be supported in a
convenient and comprehensive fashion.

The LOD2 Stack (a result of the LOD2 project5) is an integrated
distribution of aligned tools and by that implements the Linked Data

5 The original project homepage is offline, a good summary of the project is found
here: http://aksw.org/Projects/LOD2.html (last visited 03/12/2018)

http://aksw.org/Projects/LOD2.html

5.1 rw - multimedia metadata platforms , metadata lifecycles 159

Extraction

Classifi-
cation
and

Enrichment

Search,
Browsing

and
Exploitation

Authoring
Evolution

and
Repair

Storage
and

Querying

(Inter-)
Linking

Quality
Analysis

Figure 38: Visualisation of the Linked Data Lifecycle (Adopted from [11]
[12] [13] [122]).

lifecycle. It enables to choose between the incorporation of tools im-
plemented in the same project or third parties for every step of the
lifecycle, in order to enable comprehensive access to every step and
therefore the comprised RDF knowledge and data. Its main compo-
nents are implemented as open-source to support a wide field of ap-
plication as well as development and deployment possibilities. Next
to this fact, the whole implementation is kept versatile, encapsulat-
ing most functionality via defined interfaces in order to support easy
plugin of third-party implementations.

The whole framework therefore represents a combined accumula-
tion of different software, working together to fulfil the described
lifecycle. As both the third-party implementations as well as the own
implementations are fine-tuned towards their specific use case or field
of application, especially the adapted implementations are not altered
in order to not compensate their usability. In fact, the LOD2 Stack of-
fers its own access interfaces and allows the forwarding to respective
third-party interfaces of the respective lifecycle steps.

With the different possibilities posed by the recombination of the
application of different software pieces for every step of the lifecy-
cle, every implementation of the LOD2 Stack is different. Hence, the
LOD2 project supports a stack configurer, allowing users to apply the

160 workflow-driven multimedia metadata

characteristic development of the stack depending on their own re-
quirements.

This is made possible with a modular architecture of the LOD2

Stack, basing on three core pillars:

• For a standardised, well-known, as well as versatile deployment
and packaging process, the LOD2 implementation is based on
the Debian packaging system. This enables easy assembly and
installation of the various components. Dependencies can also
be managed via the Debian system.

• The access to the underlying RDF database is supported via
central standardised SPARQL endpoints that follow standard-
ised vocabularies. The same approach is applied for the base ac-
cess between the different components. All components of the
LOD2 Stack are supposed to query and write back their data
to the corresponding central triplestore, which allows for high
interoperability between the components. This however empha-
sises the fact that every component, or more specifically the data
that is written by the given component, should also be aligned
strongly to standardised and commonly understood metadata
standards and ontologies.

• As described above, the LOD2 Stack does not influence the orig-
inal interface amongst the possibly very heterogenous adopted
components, but outside of this, the Stack does implement REST
enabled Web interfaces as far as possible in order to support
commonly known access possibilities to the functionality of the
underlying Stack implementation.

In summary, a versatile and modular framework is supported by
the LOD2 Stack that is able to create Linked Data applications. By
complying to the structure of the defined Linked Data Lifecycle, every
of the eight steps can transparently be implemented either by own im-
plementations or by third-party software, allowing to construct trans-
parent applications that are fine-tuned to their respective use cases
and needs.

Altogether, the two described employments of lifecycles show that
it is beneficial for the whole technical application to have concise def-
initions of the interlinked steps and what the purpose of every step
is. Therefore, every sub-process can be designed directly fit for its
purpose, highlighting its advantages to enable easier and more com-
prehensive access for the given user.

While Kosch et al. [102] highlight their own designed implementa-
tion next to the lifecycle for multimedia metadata, Ngomo et al. [122]
support a framework that can be self-designed for different purposes.
Both approaches however show the importance and the connection

5.1 rw - multimedia metadata platforms , metadata lifecycles 161

between the theoretical lifecycle and the underlying technical imple-
mentation that realises the lifecycle. Therefore having the lifecycle of
metadata in mind when designing an application is important.

Because of this technical importance in the course of metadata, the
remainder of this section will highlight approaches and solutions to
this aspect. As it has been seen before, many different steps are neces-
sary for a thorough lifecycle of metadata, and some of them even need
user interaction in order to function. Amongst those, the most impact-
ful steps of the lifecycle are especially the creation, extraction, and
possibly the application of the metadata and hence will be focused.
Different approaches in terms of semi- and full-automated platforms,
often times with Web features, cover the landscape of todays meta-
data and annotation scenery.

Kavasidis et al. [97] propose a semi-automated Web-based collabo-
rative platform that is designed to aid users to build large scale and
diverse ground truth datasets that are supposed to be utilised for ob-
ject detection, segmentation, tracking, and classification. Their vision
is a resulting collection of annotated data that can be utilised as train-
ing data to increase the performance of classifiers in different fields of
application. With a use case of underwater fish-videos, they provide
proof of their concept in a very difficult domain, as animal monitoring
is already difficult in general, and potentially harder in underwater
domains [160]. The tool allows users to upload video files, which will
then be segmented automatically into video frames. The user is then
prompted to utilise pencil- and rectangle tools to easily place anno-
tations on a given frame. Additionally, by presenting several preced-
ing and/or successive frames, annotations on different frames can be
copied and therefore be combined and interlinked in order to create
associations and easily relate these annotations. Sharing mechanisms
between users allow for even better ground truth creation, as anno-
tations will be under concurrent supervision and therefore quality
control is ensured.

With CAMO6, Hu et al. [88] cover the problem that missing meta-
data for multimedia hampers its usability severely. They issue that
there are various datasets describing multimedia available, especially
in the wake of the LOD. However, these are oftentimes focusing only
on single multimedia types, although a combination and interlinking
would be very valuable, elevating the usefulness of the multimedia
metadata and consequently the multimedia item itself. Next to this
fact, they also claim that there are descriptions of a multimedia item
present in different data sources, but frequently these are heteroge-
nous in terms of metadata modelling as well as information cover-
age. Thirdly, as they focus their metadata descriptions on the RDF
standard, useful “legacy data” stored in relational databases is chal-
lenging to interlink with their existing RDF knowledge base. CAMO

6 http://ws.nju.edu.cn/camo/ (last visited 03/12/2018)

http://ws.nju.edu.cn/camo/

162 workflow-driven multimedia metadata

solves these problems by applying a well-known ontology, the DB-
pedia ontology7, as their base ontology, to which other information
is to be mapped in terms of a mediation model. Additionally, with
methods like ontology matching and instance linkage they can create
aggregated knowledge bases with combined information about dif-
ferent media types as well as combined descriptions emerging from
various (originally heterogenous) data sources. For the legacy data,
Hu et al. implemented a procedure that is able to connect the rela-
tional data to their domain model. Lastly, they implemented an An-
droid app that is able to query the CAMO database in order to make
use of the created multimedia metadata.

The most similar solution to the MICO Platform approach is given
by De Meester et al. [56], who, like the approach described in this
work, address the issue that comprehensive retrieval of multimedia
has become a necessity in the Web world of today. They also exem-
plify this by the uprising quantity of easy possibilities to create and
share multimedia content, mainly emphasising this point with the
convenience of Web access and the rising amount and quality stan-
dards of portable devices. Efficient retrieval goes hand in hand with
the quality of the attached multimedia metadata, which is in the focus
of the authors. Creating these metadata by hand is unfeasible, there-
fore De Meester et al. propose a domain- and problem agnostic frame-
work that is able to apply automated analysis processes by currently
available multimedia analysis methods that are incorporated as Web
services. Once a service is registered at the central platform, it sup-
ports descriptive metadata about its analysis process, which can later
on be used to apply the respective service in an analysis chain. This
is automatically determined by the platform by making use of such
descriptive metadata. The metadata is persisted as RDF and mainly
contains an easy representation of the input and output that is sup-
ported by a given analysis service. This semantic description of the
services can then be used to meet the semantic description of a re-
quest to the platform. The whole analysis implementation is based on
a reasoning cycle (inspired by [128]) consisting of three steps, which
are visualised in Figure 39.

The reasoning cycle consists of three phases, observation, hypothesis,
and prediction, between which respective processes called abduction,
deduction, and induction transpose between the phases. Observations
can be seen as the results of analysis services on a given task, there-
fore posing the initial analysis step as well as intermediate ones. With
every iteration of the cycle, potential new observations are added and
combined to the up to now discovered results. With every variation
of the observations, hypothesises can be applied to the current state
of the observations. These are in general combined with knowledge
about the analysis domain in order to find inconsistencies in the ob-

7 http://wiki.dbpedia.org/services-resources/ontology (last visited 03/12/2018)

http://wiki.dbpedia.org/services-resources/ontology

5.1 rw - multimedia metadata platforms , metadata lifecycles 163

Observation

HypothesisPrediction

abduction

deduction

induction

Figure 39: Visualisation of the Reasoning Cycle Applied in the Framework
of [56] (From Which the Image Has Been Adopted).

servations. Then in the next step, predictions are created which re-
flect how the current set of observations can be improved, based on
the given hypothesis of the iteration of the cycle. These predictions
can then trigger respective analysis processes that are able to process
the current input, which will in term create new observations that are
combined with the previously created ones, hence closing the current
run of cycle. It is important to note, that a given analysis service will
never analyse the same part of a given multimedia item twice, so at
some point, no further predictions with associated observations can
be made, therefore ending the reasoning cycle for the respective input.
The overall result is then the combined observation result.

In [56], De Meester et al. do also introduce a proof-of-concept as
well as an evaluation that their approach is feasible and that their
results achieve the promised results. In this proof-of-concept, the au-
thors implemented several components of their approach in two dif-
ferent use cases: a face detection use case as well as an optical charac-
ter recognition use case. Their results show that their framework can
produce equally good if not better results as state-of-the-art methods
and approaches, in addition to the fact that their framework can also
incorporate these methods in order to further benefit from their in-
put. For these components, further information about the semantic
description of the analysis services and how these are constituted
is given in [169] [170]. More information about the problem-solving
platform is given in [168], which describes the component that is re-
sponsible for the allocation of tasks to the registered Web services.
In so-called execution plans, the consecutive services are called, and
respective results are gathered and combined. Furthermore, the im-
plementation is able to find alternative routes if errors occur, in order
to produce equivalent results, if possible. Technically, the platform
itself implements a blackboard architectural pattern [50], which is
composed by several components. The blackboard serves as an insti-
tution that collects and holds received information. Services are the
working instances of the whole platform. A supervisor in combination

164 workflow-driven multimedia metadata

with a service composer triggers services accordingly to the requested
processes and finds alternative problem solutions in case of errors.

lessons learned and summary - metadata lifecycles and

its implications on underlying technology The perva-
sive focus point of the related work enlisted in this section is meta-
data, descriptive information pieces about a given file or data, with
the emphasis lying on the Multimedia domain. In this domain, meta-
data bears an even more important role, as multimedia files are mainly
useable to a good extent when descriptive metadata is present, which
for example gives further information about the file’s content, best
playback modes, processing information, and so on. This metadata is
expressed in different levels of detail and complexity, however, only a
combination of several different levels leads to a thorough metadata
background.

While the creation of such high-level features contains complexity
to achieve on its own, the recombination of various produced meta-
data features poses an obstacle that needs to be addressed. Therefore,
several related approaches have been mentioned that mainly focus on
software platforms and frameworks that target this problematic. With
this kind of software support, these approaches manage to create so-
lutions to the metadata issue mentioned above that deliver results in
a robust and especially more efficient, valid, and more accurate fash-
ion. Next to this fact, the platforms and frameworks do also enable
a higher and better degree of convenient usage of the production of
results as well as the eventual usage of those respective results.

For the different steps that interact with the metadata like produc-
tion, consumption, or exploitation, lifecycle interpretations exist that
implement these steps in a more fine-grained fashion. Aligning one’s
application to these delimited steps supports better transparency and
offers better fine-tuning of the sub-components as well. Therefore
a modular structured implementation is possible, supporting a best
possible fit to the respective use case.

Altogether, this Section 5.1 shows related work in the fields of mul-
timedia applications and metadata lifecycles and therefore empha-
sises their respective impacts and eventually their importance. To in-
tegrate this into the course of this work, the following Section 5.2 will
describe the MICO Platform from a technical point of view, which
has been shortly introduced in Section 1.2. The MICO Platform consti-
tutes an application that aligns with the related approaches and there-
fore, after its infrastructure and core components have been high-
lighted, Section 5.3 weaves the insights from this section and explains
how the MICO Platform fulfils the presented requirements.

5.2 embedding the multimedia metadata workflow - mico 165

5.2 embedding the multimedia metadata workflow into

a technical environment - the mico platform

With the scientific background and the MICO Project explained in
Section 1.2 and Section A.1 in the Appendix to form the theoretical
basement for this work, this section will now give more insights into
the technical implementation of the whole MICO infrastructure. This
is necessary to understand both the implications of the results and
contributions shown in the preceding sections as well as the benefi-
cial outcomes of the overall platform. Therefore, after an overview
of the general platform, specific components of the MICO infrastruc-
ture will be described in detail with focus on the topics covered in
this work, namely metadata handling in the form of creation, query-
ing, communication, and the application of the MMM, as well as the
idiomatic application of Semantic Web technologies. Figure 40 shows
an overview of the MICO infrastructure:

Messaging

Persistence
API

Service
Orchestration

Extractor
1

Extractor
2

Extractor
3

Extractor
4

Extractor
x

RDF
Database

Custom Endpoints

Recommendation

Distributed
File Storage

Model API

SPARQL-MM
Webservice

Recommdenation
API

Figure 40: Setup of the MICO Platform.

The components of the MICO Platform in addition to their respec-
tive interaction with other components are the following:

messaging The central piece of communication for the MICO in-
frastructure, managing all communication calls between com-
ponents that can not be done directly (as for example calls to
the database) and which are also possible to be queued. These
are the messages that are sent between the core persistence API,
the service orchestration unit, and the autonomously working
extractors. Various different intertwined queues exist at the side
of the MICO platform, and every extractor does have a queue of
its own. The queuing system is implemented with RabbitMQ8.
The queueing concept enables a fluent working environment,
which does also alleviate some timing constraints in the overall

8 https://www.rabbitmq.com/ (last visited 03/12/2018)

https://www.rabbitmq.com/

166 workflow-driven multimedia metadata

infrastructure. Additionally, the concept does also allow differ-
ent technical features. For example for the same extractor pur-
pose or task, multiple instances of the same extractor type can
be operated in parallel, as they listen to the same queue together.
Every instance then can pull single tasks from that respective
queue in a round robin like fashion.

extractors The core “workers” of the MICO infrastructure, extrac-
tors receive ingested media files of the MICO Platform in or-
der to produce results in the form of metadata or possibly new
(sub-) media files. This information is then propagated back to
the platform for potential further analysis processes. In general,
an extractor implements one specific task and therefore defines
a respective input and output format. Extractors can run on
other computers than the platform itself and therefore work au-
tonomously by only being connected to the platform via the
messaging component. Further information and configuration
of extractors will be given later in Section 5.2.2.

service orchestration This unit manages the possible pipelines
of extraction processes and therefore creates the workflow-dri-
ven analysis concept of the MICO Platform. When an extractor
is registered at the platform, by supporting input and output
formats, the orchestration unit can determine which ingested
media files can be analysed by which extractor and/or extractor
chains. This information is synchronised with the persistence
API and respective calls to the autonomous extractors are is-
sued. By doing this orchestration, different paths through the
extractor processes can emerge for input multimedia files, and
possibly unknown paths - the beneficial wiring and combina-
tion of extractors in a way that the developers had originally
not planned - can originate through their recombination. The
implementation of the orchestration unit is based on Apache
Camel9.

persistence api This API supports the functionality for everything
related to persistent data, and is therefore the main component
connected to both the RDF and the file storage or database, next
to the recommendation engine which has access to the RDF
database, too. Hence this API implements methods that enable
the creation, querying, updating, and accessing of any RDF or
multimedia data in the MICO platform. The API is therefore
called mainly by custom endpoints and the recommendation
engine that will be described below, and indirectly by the ex-
tractors via the messaging component.

9 http://camel.apache.org/ (last visited 03/12/2018)

http://camel.apache.org/

5.2 embedding the multimedia metadata workflow - mico 167

rdf database With respective modular implementation, any triple-
store that implements the SPARQL 1.1 language can be applied
here. The standard MICO Platform implementation comes with
a supported Apache Marmotta10 instance installed.

distributed file storage For the persistence of multimedia i-
tems that are to be analysed by the MICO Platform as well as in-
termediate file results, an HDFS11 implementation is supported
in order to provide efficient access to these items.

custom endpoints Rather than seeing the MICO Platform from
the perspective described in this work, the platform does also
encourage “external” developers to take part in an existing in-
stallation of the platform in order to benefit from its produced
results, as it supports various endpoints following classic REST
and HTTP concepts. Some default APIs and Web services like
the Model and Recommendation API or the SPARQL-MM Web-
service are supported and therefore interact with the basic end-
points, and the modular structure of the MICO Platform allows
for the addition of any custom endpoint extension.

model api and sparql-mm webservice These access interfaces
support the basic functionality of the standard ways to work
with the MICO Platform results. These possibilities will be ex-
plained further in Section 5.2.1.

recommendation and recommendation api A prototype rec-
ommendation engine based on Apache PredictionIO12 [101] has
been implemented for the MICO Project, supporting the func-
tionality as well as an API to access the results. Recommenda-
tions will mainly be used in order to request “similar” results,
given one result, so for example a video that is closely matched
to another video based on the analysed metadata backgrounds
of both. Although prototypic ideas and implementations have
been incorporated for the MMM and Anno4j (see Section 4.8),
the recommendation feature of the MICO Platform will not be
described further, as it is not in the focus of this work.

The MICO Platform is distributed as free to use virtual machine im-
age13 in the Open Virtualisation Format (OVF) [93]. This image does
come with a baseline of freely available extractors, namely “Audio
Demux”, “Speech-to-Text”, “Kaldi2RDF”, “Kaldi2TXT”, “MediaInfo”,
“MediaTags2RDF”, “Animal Detection” in two different variations
(the first one using Deformable Part Models DPM [66], added with

10 http://marmotta.apache.org/ (last visited 03/12/2018)
11 http://camel.apache.org/ (last visited 03/12/2018)
12 https://predictionio.apache.org/ (last visited 03/12/2018)
13 https://www.mico-project.eu/pages/documentation/#document-7 (last visited

03/12/2018)

http://marmotta.apache.org/
http://camel.apache.org/
https://predictionio.apache.org/
https://www.mico-project.eu/pages/documentation/#document-7

168 workflow-driven multimedia metadata

a second option using Deep Neural Networks and the YOLO frame-
work [135]), “Face Detection”, “ObjectDetection2RDF”, “Diarization”,
“OpenNLP NER” with language models for English, German, Italian,
and Spanish, and “OpenNLP Text Classifier”. All the extractors can
be enabled and disabled as required in the platform, and there are var-
ious predefined extractor pipelines that can also be activated. These
can be loaded via the platform’s basic interface by choosing respec-
tive pipelines and inducing the Platform to load them. An overview
in the MICO Orchestration Service shows a graph of enabled extrac-
tors, also indicating the possible extractor chains that are constituted
by matchings of extractors’ inputs and outputs. Both the platform and
the free to use extractors are implemented as open-source software
under the Apache License Version 2.014 and can therefore be applied
and extended freely. Software releases have been done frequently dur-
ing the MICO Project, the final version of the platform is its version
3.0.4 (which is an upgrade from the downloadable version 3.0.1). A
rich and detailed description of how to get the MICO Platform, how
to install and initialise it, how to use it, and a row of internal details
can be seen on the MICO Platform Overview homepage15.

The following sections will highlight some of the details of the
MICO Platform that are necessary as input for the workflow expla-
nation of Section 5.3 and especially the concept of the MICO+ de-
scription in Section 5.4. Therefore, Section 5.2.1 will explain the dif-
ferent methods that the MICO Platform supports to both ingest and
then afterwards access data. Then, Section 5.2.2 and Section 5.2.3 give
insights about the applied extractor conceptualisation and how to im-
plement own extractors, which is then concluded with the description
of the MICO Orchestration Service approach in Section 5.2.4, which is
the central component that manages the synchronisation of multiple
extractors to eventually create chains of extractors.

5.2.1 Accessing the Produced Results of the MICO Platform

At the very start of every extraction workflow or metadata creation
is the injection of a multimedia item into the MICO Platform, on
which the overall analysis will be based on. These are represented
as the “mmm:Item” instances that have been discussed in Section 3.3
and therefore represent the “root” of the whole respective metadata
construct. To achieve this, the MICO Platform comes with a simple
interface that supports the upload of any file. Next to the file, the user
is prompted to define the file’s format or file type. This is especially
important, as this file type will be used by the MICO Orchestration
Service in order to determine which extractors or extractor chains are
able to process the injected media file. At this point, it is important to

14 http://www.apache.org/licenses/LICENSE-2.0 (last visited 03/12/2018)
15 https://www.mico-project.eu/pages/documentation/ (last visited 03/12/2018)

http://www.apache.org/licenses/LICENSE-2.0
https://www.mico-project.eu/pages/documentation/

5.2 embedding the multimedia metadata workflow - mico 169

note that not only commonly known file types can be used here, but
also own “self-made” semantic meta file types which can represent
data constructs of one’s own use case which then are eventually pro-
cessed by own extractors that have been implemented for that given
use case.

Once injected into the MICO Platform, each item will be repre-
sented by a respective URI, and it will be enlisted in the overview
of items tab. There, all the items are enlisted and do have either of
the states “In Progress”, when the item is still processed by an extrac-
tor, “Finished”, when the analysis process has finished successfully,
or “Failed”, in the case an error happened during the whole process-
ing step. Figure 62 in the Appendix shows such an enlistment at the
bottom, while also depicting a “Service Dependency Graph”, which
corresponds to the currently enabled extractors and their transitions
between one another. Items whose analysis processes have failed do
support further information by hovering the “Failed” indicator. An
example can be seen in Figure 63 in the Appendix.

By this view, the basic inspection of an item is possible. A de-
tailed view of the item can be accessed, which shows further infor-
mation about the item itself like injection time, creator, as well as
its type(s) and associated file. In addition, every “mmm:Part” that has
been added by an extractor as intermediary or final result is enlisted
here. These do also show technical details like the ones mentioned
above for the intermediary steps. They also display their respective
“source” of the analysis process, which has been explained semanti-
cally in Section 3.3.5. An example how this looks like in the MICO
Platform is shown in Figure 64 in the Appendix.

From the item overview, as well as the detailed item view it is
possible to access the item’s metadata by pressing the buttons for
“Inspect”, “Metadata”, or on an URI of either the item or a part, which
automatically forwards the user to the triplestore’s metadata view at
the respective metadata access point. As already mentioned, for the
MICO Platform the default triplestore is Apache Marmotta with its
rich and diverse access and querying potentials. The basic metadata
view allows the user to navigate through the RDF graph by clicking
and following respective URI links between the RDF nodes, leading
to an enlistment of the details of the currently viewed node.

Next to the basic view, the MICO Platform does support three of
Apache Marmotta’s querying interfaces to enable more comprehen-
sive querying of the produced results. Those are the following:

sparql query interface An interface that bases on the SPARQL
1.1 standard, using the standalone open-source project Squebi16.
Next to full SPARQL 1.1 query and update functionalities, this
interface does also support bookmarking of result pages, auto-

16 https://github.com/tkurz/squebi (last visited 03/12/2018)

https://github.com/tkurz/squebi

170 workflow-driven multimedia metadata

creation of URI prefixes, and autocompletion for well known
ontologies.

ldpath query interface LDPath has already been introduced in
Section 4.4. This interface supports a comprehensive possibility
to issue queries of the same specification towards the dataset
that is currently present in the given MICO Platform instance.

sgvizler data visualisation A visualisation interface is imple-
mented that allows to visualise queried SPARQL results in vari-
ous visual representations like charts, maps, or tables. To achieve
this, the Marmotta framework incorporates the SGVizler frame-
work17, which is also supported conveniently by the basic MICO
Platform installation.

Altogether the MICO Platform supports comprehensive and rich
features to analyse, inspect, and make use of multimedia items in
combination with their metadata background. This is already sup-
ported by the default setting of the platform, which then can be en-
hanced further with own functionality and extractors, leading to an
even wider application scenario. Important for this adaption is the
implementation of own extractors, for which a description is given in
the following section.

5.2.2 MICO Extractor Description

The basic functionality of a MICO extractor encapsulates a certain
task, in general a multimedia analysis task, that is executed autonom-
ously for the MICO Platform. Apart from the registration process,
the extractor does mainly listen to task jobs that are pushed to the ex-
tractor queue from the MICO Platform via the communication com-
ponent described above. Results are communicated back in a similar
fashion. To perform this, the extractor registers at a MICO Platform
by supporting its input and output format, next to some configura-
tion details. These have already been discussed in Section 3.3.5 and
are illustrated in Figure 60 in the Appendix. The extractor by itself is
not aware of being incorporated into a workflow chain of the MICO
Platform, as this is done solely on the side of the platform by the
Orchestration Service.

Next to communication and configuration, each extractor is sup-
porting some kind of processing functionality, depending on the use
case of the extractor. An extractor is triggered by being messaged
by the platform. Therefore, every extractor holds its own messaging
queue. The respective message contains information about the item
that the extractor is to analyse. Results in the form of metadata in-
formation and potentially intermediary multimedia files are synchro-

17 https://github.com/mgskjaeveland/sgvizler (last visited 03/12/2018)

https://github.com/mgskjaeveland/sgvizler

5.2 embedding the multimedia metadata workflow - mico 171

nised with the platform during the analysis process. Once this process
is finished, the extractor sends a finished signal back to the platform,
issuing that further analysis processes can be triggered or that the
item has finalised its complete potential overall analysis.

As mentioned earlier, the functionality of creating and querying
metadata as well as its communication among the extractors changed
between three variants. The most basic and rudimentary implemen-
tation was supported by SPARQL Templates, predefined SPARQL
queries that contain wildcards which could be filled accordingly. The
templates were used for both querying and persisting at extractor-
level and were “hosted” and supported via the platform dependency.
However, this kind of approach had some shortcomings. The solu-
tion was primarily error-prone, as every single template had to be
written by hand and especially the URIs used in the Semantic Web
are sometimes intricate and drawn-out, therefore further impeding
the definition of the templates. In addition, every different use case
or extractor combination needed its own set of templates to query
specifics out of the data storage. This setup required some extended
knowledge about Semantic Web Technologies of the extractor devel-
opers or increased support of the metadata team, both leading to
increased required manpower altogether.

One of the most relevant contributions of this work consists in an
improvement of this shortcoming of the SPARQL templates, which is
done by the Anno4j library, described extensively throughout Chap-
ter 4. Using Anno4j, the effort of writing RDF data for the developers
can be reduced to filling and connecting simple Java objects that are
supported by the library. The data model to perform this was covered
in Section 3.3. In terms of querying, Anno4j enables two approaches
(see Section 4.4): the basic querying can be done by solely supporting
the Anno4j Class to query for, filtering through all returned objects
by hand and/or by code, which lets the extractor developers reduce
the need for Semantic Web knowledge to a minimum. With a little
more effort, the advanced querying of Anno4j via LDPath can also
be used to fine-tune the respective query to only request the desired
result objects.

The functionality described above is based on the Anno4j features
of its version 2.0. For an extended application in the MICO universe,
Section 5.4 will show how the functionality can conceptually be im-
proved when incorporating the extensions supported by the 2.4 ver-
sion of the Anno4j library.

5.2.3 Implementing Own MICO Extractors

To implement an own extractor, the MICO Project supports interfaces
and guidelines on how and what to do on the MICO Extractor Bit-

172 workflow-driven multimedia metadata

bucket homepage18. Both Java and C++ are supported as program-
ming languages, following slightly different procedures of creating
an own extractor. As Java is mainly relevant for this work, it will
focus on those corresponding explanations.

In order to support a convenient solution for integrating own ex-
tractors, a Maven parent can be incorporated in the Java project that is
to implement one’s own MICO extractor. Doing so, all respective de-
pendencies and build plugins will be managed automatically. Via the
platform dependency that is included in the Maven parent19, there
are also the necessary objects present for the metadata modelling,
creation, and querying, and most importantly the interface for im-
plementing an extractor. The “eu.mico.platform.event.api.Analy-

sisServiceBase” interface (with two further implementations “Ana-

lysisService” and “AnalysisServiceAnno4j” with an automatically
incorporated Anno4j transaction for RDF communication) supports
five configuration Strings and a “call”-method that need to be im-
plemented for a fully functioning MICO extractor. The former define
the extractor ID, the extractor mode ID, its version, as well as textual
representations of the format for input and output. The call-method
is triggered whenever the respective extractor receives an event from
the MICO Platform in order to analyse the included Item (or more
specifically the Item that is referenced by a provided Item URI).

The MMM supports a modular structure that is used to facilitate
the persistence and querying of produced metadata during a MICO
workflow. The necessary components from Item to Part with its body
and target implementations are always well defined and applied, no
matter how the analysis process looks like in detail. This way, devel-
opers can always follow the same paths in the RDF graph in order to
retrieve desired information. Various convenience functionality meth-
ods of the Anno4j library increase this unobstructed functioning even
further. For example, rather than having the user deal with support-
ing correctly formatted Date Strings, a helping method implemented
in the respective Anno4j Partial Class can have single parameters
for every necessary Date parameter (year, month, day, etc.) and with
those create the correct Date String.

However, there exists a minor shortcoming in terms of metadata
exchange when it comes to introducing “new” metadata into a work-
flow system, as potential follow-up extractors need to have knowl-
edge about respectively created metadata and its structure. This can
be broken down to the pre-knowledge of the particular Anno4j Clas-
ses, whose implementations need to be forwarded to subsequent ap-
plying other extractors. With the setup of the MICO Platform de-
scribed above incorporating the Anno4j 2.0 version, the exchange is

18 https://bitbucket.org/mico-project/extractors (last visited 03/12/2018)
19 https://maven.apache.org/guides/introduction/introduction-to-the-pom.

html (last visited 03/12/2018)

https://bitbucket.org/mico-project/extractors
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

5.2 embedding the multimedia metadata workflow - mico 173

only possible by adding the new classes to the MICO Platform depen-
dency model, which would require the developer to alter two places
of code, in addition to the required publishing of the new MICO Plat-
form version. Another way would be to support the extended MMM
metadata model of the own use case in an own dependency or repos-
itory, which would not reflect the extendable workflow philosophy
of the platform. Especially this can be dealt with much more conve-
niently with the implementation of Anno4j 2.4, which is depicted in
Section 5.4.

Altogether, a MICO extractor does have a defined lifecycle when in-
teracting with a platform instance and its orchestration service, which
will be described in the next section. Described by Aichroth et al. in
[4], these are a finite set with the start consisting of extractor prepara-
tion, which constitutes the packaging of the developed extractor and
providing it with registration information so the extractor “knows”
the address of the MICO Platform to register with. After that, the ex-
tractor can be deployed in the extractor deployment step, utilising the
registration information to connect to a given platform. If supported,
testing data is then forwarded to the platform to be used in following
testing steps. If the deployment and registration are successful, then
the extractor can be included in workflow creation steps, in order to be
applied in analysis processes of the platform. These can either be for
testing purposes or already be real workflows. Once included in at
least on of these workflows on the platform side, the platform issues
an extractor process startup call in order to “activate” the respective ex-
tractor, which then will be used in the workflow execution step when
items are injected into the platform and require processing.

5.2.4 MICO Orchestration Service - The MICO Broker

The orchestration service called the MICO Broker constitutes the
core unit that enables the workflow-centric functioning of the MICO
Platform. Autonomously and independently working extractor im-
plementations register at the respective platform instance and get
aligned after one another in order to form pipelines of loosely con-
nected processing workflows. Doing this, a transparent analysis is
supported, as not just the final results, but also intermediary steps
consisting of both pure metadata, as well as potential binary files, are
added to the whole metadata background that is produced. With this
kind of fine-grained analysis, many different links to applications and
use cases can emerge and therefore make the initially ingested media
file useable in a much broader field of application.

A more detailed description about the development cycle of the
MICO Broker, which also highlights the incorporation of the multi-
media analysis extractors, is shown in Section A.1.2.

174 workflow-driven multimedia metadata

5.3 from a multimedia metadata workflow to a self-
sustaining metadata cycle

With the detailed description of the MICO Platform in mind, a more
in-depth view about the metadata that is incorporated is given in this
section, highlighting the single steps that eventually constitute the
lifecycle of metadata. These steps range from the initial creation of
both the multimedia file and metadata, to further metadata allocation,
to the point where the metadata is applied in order to profit from its
descriptive information about the data that it is about.

In Section 5.1, two different metadata lifecycles have been intro-
duced: the Lifecycle of Multimedia Metadata invented by Kosch et
al. [102], describing the metadata that is associated in the multime-
dia domain, and the Lifecycle of Linked Data by Auer and Ngomo
et al. [11] [12] [13] [122], describing a more general view on the meta-
data overall that is associated with Linked Data. Both of them give
detailed insights about the origins of metadata in their respective do-
main, and thereby create a transparent documentation about incor-
porated steps, which generally deal with the creation, consumption,
and/or exploitation of the metadata. By supporting this documenta-
tion, it can also be seen which of those steps are in the biggest focus
and which are generally “optional”, while having the greatest impact
when it comes to the usefulness of the resulting metadata. Next to
this, it is also highlighted that the technical implementation of appli-
cations that try to align with these lifecycles can orient themselves at
these steps, allowing for higher modularity and finer-grained imple-
mentations.

In the MICO universe, actually both of the lifecycle principles de-
scribed above do have impact on the MICO metadata, as the MICO
Platform in the first place analyses multimedia data, which is pub-
lished as RDF and hence Linked Data. Therefore, it is reasonable to
devise a combination of both lifecycles, in order to properly attribute
both of them and fine-tune the corresponding MICO implementation
to the intersection of both. Figure 41 shows a merged combination of
the lifecycles for multimedia and linked data. At this point it should
be mentioned that the merging was done with a less complex multi-
media lifecycle application in mind, as there surely exist applications
that optionally incorporate a subset of the steps of authoring, quality
analysis, and/or evolution and repair.

The baseline of the combined approach is given by the Lifecycle
of Linked Data, seen in Figure 38. Therefore the base steps of ex-
traction, storage and querying, authoring, interlinking, classification,
quality analysis, evolution and repair, as well as search, browsing,
and exploitation are incorporated, as these steps do always have a
role when it comes to linked metadata. Highlighted with the top five
circles from top to middle of the figure (with the less complex view

5.3 a self-sustaining metadata cycle 175

Evolution
and

Repair

Storage
and

Querying

Extraction

Classifi-
cation
and

Enrichment

Search,
Browsing

and
Exploitation

(Inter-)
Linking

Quality
Analysis

Authoring

Production /Creation

Post Prod.
Processing

D
el

iv
er

y

Consumption

Post
Consumption

Figure 41: Visualisation of the Merged Lifecycles for Both Multimedia and
Linked Data, Resulting in a Generalised Lifecycle for Linked Mul-
timedia Data.

of multimedia applications described above) are the steps that are
generally incorporated in multimedia workflows or lifecycles of their
respective metadata, adapted to the step descriptions of the Multime-
dia Metadata Lifecycle. This is possible, as the generalised steps of
creation, querying, storage, data processing, and search or utilisation
of the metadata are applied in both lifecycles.

By viewing Figure 41, the most important aspects from which the
multimedia metadata can benefit from are the missing interlinking
and classification steps. The latter is somehow present in common
multimedia metadata formats like MPEG-7 (which was introduced
in Section 3.1), which introduce structural criteria with their XSD
schemata for example. However, these features are by far not as rich
as the possibilities proposed by RDF metadata modelling like class
and relationship hierarchies, which have been discussed in-depth in
Section 2.2. These features can improve for instance querying capabil-
ities by a great deal and therefore influence and benefit all subsequent
steps and following iterations of the whole lifecycle.

The feature of (inter-) linking metadata is a point that was not con-
sidered in former multimedia applications, as the linking of metadata
got its upcoming rise especially in the Linked Data world. Linking to
descriptive concepts that are present in other, potentially more spe-

176 workflow-driven multimedia metadata

cialised databases, linking results to unique RDF instances, or simply
linking various results among each other, are only examples from
which the whole application can benefit from.

Relating this back to MICO, the project’s metadata workflow was
devised around three (more rudimental) core steps: creation, con-
sumption, and subsequent exploitation of the queried information.
What was initially seen as a linear set of steps, is actually devising
a lifecycle of its own, as in most cases, the implemented extractor-
oriented workflow of the MICO Platform can reiterate these steps
throughout a whole process chain. With the exploited information of
an extractor result, a subsequent extractor can add its own insights
and results, therefore supporting query- and exploitable information
for another extractor, and so on. This is visualised in Figure 42. In
between, querying mechanisms are supported in order to fine-tune
queries. As it has been seen, different querying mechanisms sup-
ported by the Anno4j library enable a broad variety of access pos-
sibilities to the database.

(Semi-)
Automated
Creation

Exploitation
of Hidden
Semantics

Consumption
via

Extensive
Querying

Mechanisms

Figure 42: Visualisation of the Core MICO Metadata Lifecycle.

As an example, imagine a use case of detecting animals not just in
pictures like it was done before, but rather in whole videos. After a
video is tagged as containing animals, it is supposed to be processed
further in the envisioned overall workflow. Assuming that the task of
detecting an animal in a video is not possible with a single extractor,
as it is a very complicated task [3] [5], it will be separated in several
steps.

Following this exemplary workflow, the first task would be carried
out by a Temporal-Video-Segmentation TVS extractor, which divides
the video into meaningful subparts, meaning that the video is sepa-
rated into several successive scenes (which could be detected by blend
ins and outs, scenery changes, etc.). TVS was already mentioned and
explained a little bit more in Section 3.3.3. The scene splitting infor-
mation can now be queried and exploited by the follow up extractor,

5.3 a self-sustaining metadata cycle 177

which finds the most representative single frames of a given scene
(which is oftentimes already done by the TVS extractor as well, but
for reasons of clarity it is split in two steps). The identification of a
key frame for a whole scene is useful, as the further analysis can be
done on this single frame rather than on multiple or all frames of the
scene, which not only yields results much faster, but in general con-
tains the most useful information right away in the single frame. The
frame detection can also incorporate a direct extraction of the frame
as an image on which the following processes can be based on.

When representative frames of the video are extracted, the “orig-
inal” task of the described use case can begin: the potential detec-
tion of an animal. Therefore the animal detection extractor can, again
querying and exploiting the created metadata by its predecessor, run
its analysis on the images extracted from the overall video. Its results
of detecting an animal on a frame can then be semantically applied
to the whole scene, or if better or more thorough results are desired,
trigger further analysis processes on frames that are contained in the
remaining subparts of the scene. Once again, with this potential infor-
mation of a detected animal, the follow-up extractor can exploit this
metadata to trigger its further processes of the given workflow.

Overall in the described exemplary use case, the core MICO meta-
data lifecycle is re-iterated several times. This allows the concise query-
ing and exploitation of exactly the respective information pieces that
are needed by a given extractor instance, and also shows that a recur-
ring exploitation with enrichment of the metadata is not only feasible,
but also desirable, as modular and fine-grained metadata is the result
that can be utilised in various use cases while also fuelling successive
analysis processes.

For the MICO Platform, the merged lifecycle for linked multime-
dia data shown in Figure 41 and the core MICO Metadata Lifecycle
shown in Figure 42 are interwoven, constituting the MICO Metadata
Lifecycle. The result is visualised in Figure 43.

The general idea of the core MICO Metadata Lifecycle is already
contained in the steps that have been seen in the Linked Data Lifecy-
cle, namely extraction, storage/querying, and search/browsing/ex-
ploitation, which can directly be mapped to creation, consumption,
and exploitation. These will represent a mandatory basis for every
iteration of the overall lifecycle.

The other steps of the bottom half of the lifecycle image in Fig-
ure 43 are potentially optional, but should always be included when
possible or the necessity for better metadata quality exists. Addition-
ally, with the MICO Platform architecture and processing workflow,
the optional lifecycle steps should also be implemented following the
steps of the core MICO Metadata Lifecycle, interweaving small itera-
tions of the core lifecycle in every step of the overall lifecycle. There-
fore, these steps can all be implemented as an autonomously working

178 workflow-driven multimedia metadata

Core MICO Lifecycle

Extraction

Classifi-
cation
and

Enrichment

Search,
Browsing

and
Exploitation

Authoring
Evolution

and
Repair

Storage
and

Querying

(Inter-)
Linking

Quality
Analysis

Figure 43: Visualisation of the MICO Metadata Lifecycle.

dedicated extractor. The classification step has been greyed out as the
MMM already enforces a classified structure onto the results that are
produced by every extractor.

The result is a transparent, modular, quality-variable, and efficiently
working (by applying parallel processing) setup for metadata alloca-
tion. The realisation of the lifecycle steps as extractors, which in terms
apply the steps of the core lifecycle, allow multiple access points to
the modular implementation of workflows. Every part of metadata
that is added to the database is traceable through provenance fea-
tures and therefore allows fine-grained querying of results. As every
extractor is working autonomously, a given workflow process chain
does not run one step after another, but rather in parallel, allowing
different steps of the original workflow to be analysed nearly at the
same time. As described in the MICO Platform description, multiple
instances of the same extractor can be added to even further increase
the productivity.

There is also variability in terms of the level of metadata quality,
which can be achieved by concurrent optional reiterations of the over-
all metadata lifecycle combined with quality analysis. Many multime-
dia analysis processes can run in different configurations, generally
allowing to alter between accuracy of the results and shorter calcu-
lation times. Inaccurate results or calculations can be done quicker,
while more precise results require more training or higher calcula-

5.4 an extension of the workflow environment 179

tion times. This process can be utilised in the overall lifecycle in a
way that in the first instance, possibly inaccurate calculations are per-
formed that can be compared against a threshold value in the quality
analysis step. If the result does already suffice the given threshold, no
further calculations are necessary or respective following processing
can be triggered. In contrast, either by default or because the thresh-
old is not met, another workflow chain with the same general use case
can be triggered, which applies more thorough analysis processes in
order to achieve more accurate results that in terms take more time as
described above. This allows both the benefits of described analysis
configurations, delivering quick inaccurate results while also calculat-
ing the better ones to optionally swap out later iteration inputs.

From a technical point of view, the foundation that is created by
the lifecycle approach described in this section is perfectly met by the
Anno4j library described throughout Chapter 4. Ranging from the ex-
tractor implementations (see Section 5.2.2) to the incremental steps
of the core MICO Metadata Lifecycle, Anno4j supports developers
as well as users with various functionality to make more convenient
use of the respective step’s intention. As shown in Section 4.2, the ap-
plication barrier for the possibilities of both creating and requesting
metadata from the underlying database gets lowered by supporting
technologies the user is more familiar with. Also, by supporting dif-
ferent access technologies, users have more possibilities of communi-
cating with respective technology. Because of this, potential users and
developers can more easily support functionality for example in the
form of extractors, analysis processes, or workflows, that can be incor-
porated into the overall MICO workflow. Also, by lowering the barrier
to persist and retrieve data from the respective MICO database, the
exploitation gets facilitated. Therefore, further fuelling of the over-
all workflow by supporting new information is initiated more con-
veniently. These insights are based on the “basic” implementation of
the Anno4j library and the MICO Platform and already show, what
useful implications can be done by their combination, while also in-
corporating the theoretical foundation laid out throughout this work.
The following Section 5.4 explains the extended version of the MICO
Platform with enhanced functionality that is better suited for the over-
all use case by applying the latest version of the Anno4j library and
some corresponding technical adaptions of the platform.

5.4 extension of the workflow environment of the mico

platform by technical features of anno4j 2 .4

Chapter 5, up to now has described the MICO Platform, given con-
cepts and principles about metadata allocation in terms of lifecycles,
as well as the combination of both. Additionally, related work has
been enlisted in order to learn further details about these topics and

180 workflow-driven multimedia metadata

give limitations and additions for further clarification. By describing
the functionality of the MICO Platform backed up by its technical in-
formation, all of the cornerstones that have been described through-
out this work have come together to form a multimedia metadata
platform that allows the distributed analysis of multimedia content
by applying autonomously working extractors in a workflow-centric
fashion. By utilising frameworks or libraries, like the Anno4j library
in this case, it was shown that the barrier for the development and
therefore the contribution to such Semantic Web-oriented applica-
tions can be reduced significantly, allowing non-experts to take part
more conveniently, while supporting richer development possibilities
for developers that are already familiar with Semantic Web technolo-
gies. This overall creates an abundant and potent basis for Semantic
Web applications.

All of the descriptions of this Chapter 5 have been based on the core
implementation of the Anno4j library with version 2.0. However, the
library’s incremented version 2.4 introduces new features as well as
adapted and enhanced existing features that allow for a much more
thorough and technically richer implementation of the overall MICO
Platform (throughout Chapter 4 both versions of the library and their
differences are described).

To show the possibilities, this section will highlight the optional
extensions to the MICO Platform with the extended functionality of
the Anno4j library. In the further work, this extended implementation
of the platform is called MICO+. It is important to note that this can
only be done on a conceptual basis. However, the applied features
of the Anno4j library are implemented, published, and for critical
features also evaluated, supporting a practical background for the
claims stated above.

The enhanced features that will be described here give an extended
functionality for extractors that mainly focuses on a better way to ex-
change the metadata model amongst each other, the introduced vali-
dation features of Anno4j in order to preserve data consistency for the
whole platform instance, as well as the incorporation of the RESTful
Anno4j implementation, which eventually does widen the applicabil-
ity of the overall platform implementation. This again does promote
the various access mechanisms that then can be utilised in order to
communicate with the platform and therefore contribute to its work-
flow functionality. Doing this, non-experts as well as experts are able
to work with the platform more conveniently, creating a broader field
of possible users and developers.

extended schema functionality for extractors A draw-
back in the extractor connection that is presented in Section 5.2 is the
exchange of the actual metadata schema. The core structural informa-
tion about the metadata of the MMM (so the “mmm:Item”, “mmm:Part”,

5.4 an extension of the workflow environment 181

their relationships etc.) are incorporated in the MICO Platform Maven
dependency, which every extractor has to incorporate in order to be
able to produce and understand the basic structure of the MICO meta-
data. This is convenient and the way how it should commonly be
done. The disadvantage however comes into play when the metadata
is considered that is extractor-specific and therefore not known to
others in advance.

The schema for the core extractors that are automatically incorpo-
rated with the basic installation of the MICO Platform is included
in a sub-schema of the MMM, the MMMTerms vocabulary, which is
incorporated in the MICO Platform dependency, so these extractors
can be used out of the box. Incorporating an entirely new extractor
however does pose some obstacles.

Every newly incorporated extractor generally introduces some new
metadata schema. With the “old” platform implementation, this infor-
mation at the first point is only available and known to the project of
the extractor itself. The respective developer then has to make sure
that the respective descriptive schema is accessible to further extrac-
tor developers, in order to enable access and understandability for
the prospectively created metadata of the first new extractor. It is also
possible to incorporate the structure of the new metadata at the de-
pendency for the MICO Platform, as it is open source and overall
contribution “from the outside” of the MICO universe is desired.

However, both of these possibilities require the developer to touch
at least two different “places” of code. This is partly inconvenient
by itself as the synchronisation can pose difficulties. Especially when
multiple new extractor instances are incorporated to one platform,
the synchronisation among several different places in order to have a
common and decided upon metadata schema becomes unsolvable.

To counteract this, the Anno4j Generation Tool (see Section 4.6) al-
lows a promising solution. The sole input of the tool is an RDFS or
OWL schema, a file that is easily share- and extendable, while the
functionality of the Generation Tool is by default incorporated in the
Anno4j Maven dependency, a dependency that is automatically re-
quired for every extractor implementation. Envisioned is a Git20-like
[45] distribution, which is managed at the respective MICO+ Platform
instance. The workflow is visualised in Figure 44.

On the left side of Figure 44 a productive and running MICO+ Plat-
form instance is depicted, having several already registered extractors
(“extractor 1” through “extractor n”) with various different own
schemata, which is also depicted in a combined manner. From the
middle to the right side of the picture an extractor (“extractor x”)
is shown, which is supposed to be a new extractor that is to be incor-
porated into the overall platform workflow. Therefore, the extractor
sends an already existing register message to the platform instance,

20 https://git-scm.com/book/en/v2 (last visited 03/12/2018)

https://git-scm.com/book/en/v2

182 workflow-driven multimedia metadata

Extractor x
Schema

MICO+
Platform

Extractor x

Extractor 1 Extractor n

Registration
and Schema

Module

1. Register and
Request Schema

2. OK and Send
Schema

7. Send back
updated Schema

x. Query and
Write Metadata

Anno4j
Generation

Tool

3. Input
Platform
Schema

Extractor n
Schema

Extractor 1
Schema

Existing
Platform
Schema

Extractor n
Schema

Extractor 1
Schema

Extended
Schema

Extractor x
Schema

Extractor n
Schema

Extractor 1
Schema

Existing
Platform
Schema

3.

6.

Extractor n
Schema

Extractor 1
Schema

Anno4j
Classes

4. Generate
Anno4j
Java

Classes

5. Write own
Anno4j

Classes =>
Extend
Schema

6. Play
back

Schema

6.

Productively
running

Implementation

7.

Figure 44: Workflow of Registering and Exchanging Schemata for the Ex-
tended Extractor Implementation at the MICO+ Platform.

combined with a request for the currently present schema of the plat-
form. A desirably successful registration message and the respective
RDFS schema information is replied to the extractor, which can input
this information into the Anno4j Generation Tool, to fully generate all
necessary Anno4j Classes inside the Java project of the extractor. This
allows the developer to fully utilise the basic MMM model, as well as
all the other supported extractor metadata.

Therefore, the extractor developer can directly “understand” the
metadata that is produced by other extractors, allowing him to in-
sert his new extractor in between an existing workflow process chain,
or tie it at the end. Furthermore, it is of course possible to add new
Anno4j Classes and therefore contribute to the overall metadata mo-
del. These changes and new additions are firstly implemented as
Anno4j Classes, which will be transformed to respective RDFS meta-
data, extending the currently existing metadata model. These changes
are then automatically propagated back to the platform instance, al-
lowing them to be merged with the overall metadata model. These
changes then are also forwarded to the other already existing extrac-
tors. This enables all extractors to always know every result that is
produced in the given MICO+ Platform universe. This workflow does
also not interfere with the existing extractors, as they do not necessar-
ily have to react to updated metadata models. After the initial syn-
chronisation has been done by the newly added extractor, it can enter
the state of commonly working with the platform and therefore re-
ceive tasks by the platform, query and write metadata to its database
and so on.

The scenario described above poses most of the processing work
in terms of the metadata model onto the client, as every extractor
instance must run its own Anno4j Generation Tool in order to create
the necessary Anno4j Classes. Runtime evaluations for this process
are shown in Chapter 6. This is straightforward, as the client itself

5.4 an extension of the workflow environment 183

does have the clear view of how long this process is taking, he does
not have to wait for the platform to respond.

There is however another possibility: transferring the code gener-
ation to the MICO+ Platform instance. To perform this, the Anno4j
Generation Tool would run at the platform, triggered with every up-
date to the overall metadata schema that can be done by a newly
incorporated extractor. The output are Java classes, which can be se-
rialised and then also be transferred to the respective extractors. This
does relieve the extractor instances of the process of generating the
Anno4j Classes, but it does also pose bigger message bodies to the
HTTP messages that are sent between platform and extractor. Also,
with bigger and always growing schemata (e.g. the CIDOC CRM used
in the Visit Project, see Section 6.3), this possibility might be unfeasi-
ble.

This creates a convenient working environment for extractor devel-
opers, who are then only required to implement and adapt their own
extractor project rather than two code places as described above. No
extractor code synchronisation is necessary to retrieve and contribute
to the metadata model.

validation of produced extractor results Another im-
portant aspect of the overall MICO Platform that can be extended
by Anno4j features is the validation of extractor results. With the im-
plementation documented in Section 5.2, there is no validation at all.
So consecutively, the input for the knowledge base of a platform in-
stance is not controlled. Therefore, clients and their extractors are
basically not obliged to produce their extractor results in the way
that the MMM proposes. This does counteract the intended benefit
of RDF schemata, allowing a common understanding of how meta-
data is supposed to be structured in order to produce collaboratively
interpretable results.

The validation feature of the Anno4j library can be used on the
client and extractor side and there be interwoven into the code that
would create metadata. This process then directly precedes the step of
sending the created results to the MICO Platform, for example allow-
ing the possibility of throwing exceptions, if the validation criteria are
not fulfilled, or even incorporate these exceptions into the respective
extractor program code, opening even more possibilities. Next to this,
the validation features of Anno4j would also allow to fine-tune the
overall platform metadata schema, so more precisely the “mmm:Body”

class, in order to enforce the structure for created metadata by the
extractors. For example, a cardinality requirement addressed at the
body components could cause the metadata model to be flat at this
point of the graph, enabling an easier to understand structure. This
would induce an automated quality check when an extractor attempts
to create metadata.

184 workflow-driven multimedia metadata

restful anno4j to extend platform database accessibil-
ity As described throughout Chapter 4, the Anno4j library allows
for a RESTful application, opening a REST API that is accessible via
commonly known HTTP messages. This does automatically extend
the accessibility of the database, allowing extractor developers not
only to communicate their metadata via the basic way of the “classic”
Anno4j implementation, but rather via commonly known HTTP calls
sent by their extractors. Similar as with the overall Anno4j concept,
this enables a diversification of access technologies, broadening the
potential users and developers that contribute to the MICO Platforms.
In addition, by being able to write and query metadata via HTTP calls,
the implementation of extractors generally is not restricted to the Java
programming language (or C++ with the Anno4jCPP extension), but
can be done in any language that allows for the HTTP calls. Using this
possibility however does compromise the richness of the implemen-
tation, as with Java several interfaces and code snippets are already
supported, which alleviates the developer’s process of implementing
an extractor.

In order to generate the REST API, the sole input necessary is
the RDFS schema file of the current metadata model, so in terms
the MMM with the added extractor specific vocabulary. Interwoven
with the idea of schema synchronisation issued above, the extractor
schema information can be exchanged with the platform instance as
central process piece. After receiving a new registration of a new ex-
tractor, respective API functionality can be generated and then be
applied to the overall existing REST API.

5.5 multimedia metadata application conclusion

In retrospective, Chapter 5 describes lifecycles of metadata, gives de-
tails on platforms that mainly deal with multimedia data, as well as
the combination of both. The lifecycles allow to raise the awareness
about which process steps are applied in the life of metadata. There-
fore, applications can utilise this knowledge in order to fine-tune their
utilisation of respective functionality in the way that the given use
case requires. The cyclic concept dictates that with the iteration of a
lifecycle, metadata is created, refined, requested, applied, and in the
end, it potentially can re-trigger the whole lifecycle by sprouting new
eventually more specialised and detailed metadata. Hence, the lifecy-
cle does not necessarily “end” at some point, always increasing the
generated metadata background for the initial input.

This information was mainly derived from lifecycles of the Linked
Data domain. But there was also a lifecycle out of the multimedia do-
main, depicting important steps that are undertaken for multimedia
metadata creation. The Lifecycle of Multimedia Metadata introduces
important processing steps, while also implementing various meta-

5.5 multimedia metadata application conclusion 185

data spaces that are traversed by the eventually produced metadata.
Next to this, different user groups are identified that take part in the
metadata lifecycle.

After the lifecycles, the related work of Chapter 5 shows similar
work related to multimedia platform applications in order to com-
pare it against the MICO Platform afterwards. A multimedia platform
instance resembles a central running software application, whose gen-
eral task is to manage multimedia analysis processes that overall cre-
ate metadata of ingested multimedia files. These files can then be
utilised in combination with the analysis results and therefore be
more useful, as the metadata supports descriptive features about the
given media file. There exist various approaches for this problem,
with different strategies, incorporation of external extractors, commu-
nication protocols, and so on.

With the insights attained from the related work, Section 5.2 gives
a detailed description of the MICO Platform, a multimedia analysis
platform. This platform represents the accumulation of the contribu-
tions described throughout this work. Therefore, next to a general
description of the overall platform infrastructure, extractor implemen-
tation, communication, and orchestration, this chapter highlights the
mutual benefits of this work and the MICO Platform. Especially the
factors of the incorporation of the Anno4j library are shown.

Then, the MICO Platform documentation is combined with the
insights gained from the related lifecycle descriptions, which were
combined to develop the Lifecycle for Linked Multimedia Metadata.
The MICO Platform generates metadata that is based on Linked Data
principles, and therefore creates an interlinked and traceable meta-
data background for input multimedia data. The basic workflow for
the platform consisted of three steps - creation, consumption, and
eventual exploitation - which could be interwoven with the overall
metadata lifecycle, enabling comprehensive and transparent interac-
tions at various occasions. This concept once again could be backed
up by the Anno4j library implementation.

This chapter is concluded with an outlook for the MICO Platform,
whose implementation was ended when the MICO Project ended in
2016. In contrast, the implementation for the Anno4j library did not
stop, and therefore the library at this point of time supports richer
and more comprehensive features that can alleviate the MICO Plat-
form implementation with the state that is described in Section 5.2.
These extended features are described at the end of the chapter on a
theoretical basis.

Overall, this chapter shows that metadata is a very important cor-
nerstone in the domain of multimedia, without which a thorough
usage of the multimedia files would not be possible, especially in
the world of today that lives through convenient production and con-
sumption of multimedia content. Throughout the whole chapter and

186 workflow-driven multimedia metadata

related work, it is also apparent, that the process steps learnt from
the lifecycles are in need of technical support to make these steps
transparent and accessible on the one hand, but also rich on features
and functionality on the other hand. The results of this work achieve
that: the MMM poses a modular and extensive metadata model for
the multimedia domain, the Anno4j library implements a thorough
possibility to interact with produced metadata at various points of
metadata lifecycles, while the MICO Platform poses a perfect fit for
the before mentioned features and eventually creates a platform for
multimedia analysis. In the end, the connection of all these concepts
and implementations produces a multimedia analysis platform that
allows for convenient collaboration, eventually producing a metadata
background in the form of linked multimedia metadata that allows
the input multimedia files to be utilised in a broader field of applica-
tion and potentially yet unseen scenarios.

Part IV

E X P E R I M E N T S A N D E VA L U AT I O N S

6
E X P E R I M E N T S A N D E VA L U AT I O N S

This chapter picks up selected contributions of this work and tries
to substantiate them by evaluations in order to further foster those
issued contributions. It is structured as follows. Section 6.1 will ex-
plicate some of the experiments and results obtained by Quasthoff
[132], as the author examined and researched ORdfM libraries and
frameworks from a more general perspective.

Afterwards, the term complexity in relation to Semantic Web on-
tologies and their pendant of domain models in Anno4j will be picked
up. Several ontology parameters will be enlisted and a complexity
measure is defined in Section 6.2. Then, three evaluations are ex-
plained, which apply these parameters in different fashion. The eval-
uations also implement the Anno4j Generation Tool to create respec-
tive domain models, from which instances are instantiated and the
runtimes are tracked.

The first evaluation shown in Section 6.2.1 targets the ontology pa-
rameters in isolation, fixing the other five to a mean value devised
from an analysis of openly accessible LOD ontologies. This allows to
get a first estimation about the impact of the parameters on overall
runtimes. Section 6.2.2 describes the second evaluation, which is simi-
lar to the first one, with the difference of incorporating pre-generated
Proxy Classes (which have been introduced in Section 4.6). It is evalu-
ated, if the promised benefit of these Proxy Classes to reduce creation
times of domain model objects holds. The last evaluation shown in
Section 6.2.3 examines the recombination of the mentioned ontology
parameters in order to determine dependance on each other, as there
might be increased impact on overall runtimes.

Another way of evaluating the usefulness of an implemented piece
of software is showing its real-world application and adoption. The
ViSIT Project (also already referred to throughout this work) is a re-
search project at the University of Passau in the fields of cultural
heritage, working with Semantic Web metadata and therefore apply-
ing the Anno4j library. Section 6.3 will give a short overview of the
project and will highlight the beneficial factors that are introduced
by the utilisation of Anno4j, therefore again accentuating its useful-
ness in such applications. Additionally, an envisioned feature called
“Semantic Zoom” will be discussed, which can potentially enrich the
ViSIT use case by introducing semantical abstraction layers to the un-
derlying semantic data. This will eventually increase the data han-
dling potential of the overall use case on the one hand, as well as
diversify and facilitate data access on the other hand.

189

190 experiments and evaluations

6.1 related work - overall ordfm evaluations

This section cannot be seen in the same way as the other related work
sections of this thesis, as it will not depict related approaches to a
given topic in order to establish delimitations or enlist insights that
had impact on our own work. Instead, it will show evaluations con-
ducted by related work that refer to the overall concept of ORMs
/ ORdfMs. The concepts are already well-known and established,
therefore a conceptual evaluation is not necessary. However, this sec-
tion will first pick up some of the insights that have been already
discussed throughout this work, then add some related work eval-
uations, and finally discuss these results and their impacts on the
presented contributions in respect of their usefulness and applicabil-
ity.

general observations : ordfm implementation effort and

overall runtimes Some quantitative statements that concerned
the overall concept of ORdfM implementations have already been pre-
sented throughout this work, especially in Chapter 4. There, the pre-
vailing general observations targeted two topics: overall implementa-
tion effort of an ORdfM vs. implementing respective features by hand,
and the runtime drawbacks that potentially arise with the application
of an ORdfM.

The advantages of ORdfMs have been described on many occasions
now, but it should be remembered that the actual incorporation of an
ORdfM into an application environment takes a considerable amount
of development time and effort, especially if compared to the imple-
mentation of respective features (so for example querying and persist-
ing a given data model) by hand. This timely effort can potentially be
reduced, as there are many already existing ORdfM frameworks and
libraries out there, however, also the familiarisation with them can
still require more time. A quantitative parameter that can represent
the deciding factor on this decision is the size of the data model that is
supposed to be utilised. Small models can be implemented and han-
dled by hand, as only a considerable amount of queries needs to be
established to cover necessary functionality. But already medium- to
large-sized models already suggest the incorporation of an ORdfM.

However, although the incorporation and familiarisation requires
some extra effort, the application of an ORdfM comes with a series of
benefits. An increase in productivity, reusability, maintainability, de-
sign liberty, as well as a decrease in error-proneness are only some of
them. Therefore the concept allows for a more thorough design and
implementation of an application, that is not only increased qualita-
tively in the implementation phase itself, but also as a sustained yield
at a later stage and state of the application.

6.1 related work - overall ordfm evaluations 191

6.1.1 Quasthoff: General ORdfM Comparison

The first evaluation conducted by Quasthoff [132] in 2011 compares
different (at that time prevailing) ORdfM implementations. These are
namely RDF2Java1 (implemented originally for a management sys-
tem of weak workflows [63]), RDFReactor [171] (or RDF2Go which
has been covered in Section 4.1), SuRF2 (a Python based ORdfM),
and Elmo/Alibaba.

The evaluation is held as a series of telephone interviews with sev-
eral respondents and based on the setting of Paré [125], answering
two main questions:

• Why does the respondent apply the ORdfM concept?

• Why did the respondent implement an own solution, rather
than using an existing implementation of the concept?

Quasthoff posed some other technical and more detailed questions
about the respective implementations of the respondents, which will
not be covered here entirely, but rather single answers considered to
be important towards this work will be pitched on.

Quasthoff has also taken some requisitions into account. The ques-
tionnaire is only done with the main developers of the ORdfMs, as
they are the main applier of their respective implementation and they
are aware of the requirements that have been brought into the devel-
opment. Additionally, the evaluation reveals that ORdfMs are rarely
picked up by the community and therefore they are mostly used in
own projects of the developers. Therefore a user study would not be
useful. The evaluation also mentions that all of the respondents think
that the low reusability of an ORdfM implementation is unavoidable.
The results for the first evaluation can be subsumed under the follow-
ing categories:

meta-programming Statically typed languages like Java are com-
pared with dynamically typed ones like Python. Advantages and dis-
advantages are enlisted and contrasted for both possibilities, but the
overall insight gained is that there are only slight differences and
therefore the chosen programming language does not have an impact
on the implementation of an ORdfM. Hence, the user can choose the
programming language freely, only depending on his preferences.

complexity and tasks of an ordfm A second result targets
the complexity of ORdfM implementations, as well as the intended
tasks that it is supposed to fulfil or support. The general opinion
was that basic RDF libraries like Jena (and also mostly mentioned

1 http://rdf2java.opendfki.de/ (last visited 03/12/2018)
2 https://pythonhosted.org/SuRF/ (last visited 03/12/2018)

http://rdf2java.opendfki.de/
https://pythonhosted.org/SuRF/

192 experiments and evaluations

Elmo/Alibaba itself) are unnecessarily complicated to use. The re-
spondents also agreed that it is not possible to have a single ORdfM
implementation which can serve every use case in a sufficient fashion,
as every use case poses varying requirements. As a side note the re-
spondents also mentioned that ORdfM implementations should also
stick to their main task: the translation of RDF data and representa-
tive objects. Everything that exceeds this task should be ignored and
solved by other components. Examples are mentioned in the form of
the connection to distributed databases, licensing and privacy, and
inferencing/reasoning.

motivation to use the ordfm concept The motivations and
reasons to implement an ORdfM differ and range from pure concept
implementations to being part of larger projects. However, all of the
respondents issued that they would always use an ORdfM implemen-
tation whenever they are in need of RDF data handling, regardless of
the overall use case or the underlying data model. Some of them even
used learnt insights gained from one concept implementation in or-
der to develop an increased version. Also the general observation pre-
vailed, that documentation of an ORdfM implementation should be
made public, and collaborations between different peers are desired
in order to make the best out of the concept applications.

6.1.2 Quasthoff: ORdfM Implementation and Runtime Evaluations

In contrast to the evaluations in Section 6.1.1, which focused on ex-
isting ORdfM implementations and their developers’ opinions, this
section will describe the second set of evaluations done by Quasthoff
[132] that target the potential increase of productivity when utilis-
ing an ORdfM library or framework. This is done by an experimental
evaluation with software developers using both an ORdfM implemen-
tation compared to an approach without ORdfM, backed up by an
evaluation on the runtimes of applying an ORdfM in an application.

experimental evaluation with software developers In
this evaluation, Quasthoff, Sack, and Meinel [134] evaluate the in-
crease in productivity that is potentially gained by using an ORdfM
in your Semantic Web application. Several IT students of the Hasso-
Plattner-Institut at the University of Potsdam were asked to solve
two tasks in mixed setup combinations, supporting their opinions
and experiences afterwards in a questionnaire. The tasks consisted
in requesting different information persisted in an RDF graph, which
are semantically composed of Documents, written by Persons that have
friendship relations amongst each other. The first task demanded to
retrieve the authors of given Documents, the second task demanded
friendship relations between persons of the second degree, given an-

6.1 related work - overall ordfm evaluations 193

other Person. The participants were using OTMj [133] (an ORdfM im-
plementation developed by Quasthoff and Meinel themselves, aligned
to the results the authors gained by their evaluations, which are partly
described in Section 6.1.1) and Apache Jena as a more “basic” ap-
proach to access RDF data. The group settings alternated in terms
of which task had to be done using what technology and their re-
spective order, constituting four different group settings. With this
setup and especially the tasks done by students rather than experts,
the authors claim that the results conducted cannot be projected on
any generic Semantic Web application or project, but the results still
support thorough insights on the productivity of ORdfM implemen-
tations and emerging issues with respective solutions that can arise
with a Semantic Web application.

The metrics that have been evaluated in the experiment were rated
by the participants on a scale ranging from “very easy” to “very chal-
lenging”. They had to assess the difficulty of the task, the maintainability
of the code they produced, as well as the difficulty to use alternative
technology (like XML via HTTP or relational databases) for the same
task. Next to these features, the participants were also asked to sup-
port free feedback concerning their perceived biggest difficulties in re-
gards to the issued tasks.

In addition to these qualitative metrics supported by the partici-
pants themselves, it was tracked how much time, how many program-
ming attempts, and how many lines of code were required by each par-
ticipator. For further technical insight and understanding, these lines
of code were also categorised in terms of the high-level functional-
ity that they fulfilled. These are structural constructs, initialisation, data
access, and business logic.

The results show, that the participants assess the tasks much easier
when using an ORdfM implementation rather than Jena. In addition,
they also estimate their written ORdfM application much easier to
maintain, and they claim that using Semantic Web technologies is
easier than alternative technology. These estimations were achieved
regardless of which of the two tasks.

In regards of time requirement and the amount of tries to retrieve
the correct information for task one, the participants on average re-
quired significantly much less effort for both metrics when using the
ORdfM implementation. For task two, the amount of tries surpris-
ingly went up, while the average time to fulfil the task went down.
The tries were potentially motivated by the fact that the task was
more demanding in terms of recombination of the results, but the re-
duced time for the solution still indicates a real benefit of the ORdfM
utilisation.

The lines of code do also experience a distinct positive tendency
towards the ORdfM implementation. While the lines for structural
constructs and business logic are roughly the same for the solutions

194 experiments and evaluations

with and without ORdfM, the required lines of code for the remain-
ing functionality are reduced significantly for the ORdfM solutions.
Next to this fact, the utilisation of an ORdfM allowed the participants
for a much better separation of respective code categories, positively
influencing the code’s overall maintainability.

The results of the general feedback about experienced difficulties
revealed insightful details. A lot of the participants issued that Jena
and its functionality by itself is hard to understand and apply. Several
incorporated classes and some implemented features were deemed
confusing, and especially as a non-Semantic Web expert, hard to un-
derstand and therefore to use. In conjunction with this issue, the
participants also added that without the supported code examples
(which were supported by Quasthoff, Sack, and Meinel, not the frame-
work) the finding of a solution for given Jena tasks would take even
more time. As a second argument it was noted that the interviewees
oftentimes had problems understanding the respective RDF vocabu-
laries.

runtimes of ordfm implementations While the above eval-
uations and experiments targeted convenience factors as well as de-
velopment efficiency in the first place, it is also important to evaluate
the resource efficiency of related ORdfM implementations. Having an
inefficient implementation resource-wise could render any applica-
tion unusable, no matter how convenient or well-developed in terms
of other features it is.

Quasthoff [132] indicates that evaluations about the requesting of
RDF data is explored by Hartig [77], so his own evaluations will be
targeted at RDF data that is held in the main memory. This exper-
iment is partially based on the Berlin SPARQL Benchmark BSBM by
Bizer and Schultz [31], as the SPARQL requests used in the bench-
mark are much more complex than general ORdfM interactions. There-
fore, Quasthoff instead runs through the whole graph by traversing
every edge supported by the test data, utilising 30 different RDF
graphs that contain between 40000 and 970000 triples which describe
a fictional domain about persons, products, traders, offers, and rat-
ings.

Again, different test setups are used in order to generate best pos-
sible insights, applying the general Jena implementation against the
own developed OTMj implementation. These are: accessing the edges
without ORdfM support with object-oriented techniques, access with
ORdfM with its interactions translated into object-oriented techniques,
access via pure SPARQL, and access with ORdfM support whose
queries are translated into SPARQL queries.

Quasthoff reinforces his experiments with quantitative numbers,
amongst which the results are to be recapitulated here. The major
result, being the most impactful for this thesis, is that the utilisation

6.1 related work - overall ordfm evaluations 195

of an ORdfM implementation in a Semantic Web application does
only have a slight impact on the runtime and it is therefore beneficial
to add the abstraction layer for a diversified access to the RDF data.
It is also explained that this outcome holds true whether SPARQL
is used or not. Nevertheless, it is shown that the incorporation of
SPARQL requires a considerably low amount of extra time in the
SPARQL tests. Overall, this does still not invalidate the assumption
made above, however for a maximised implementation on in-memory
data it is reasonable to bypass SPARQL when possible. When work-
ing with decentralised data, which does generally not allow for the
approach that is applied for the in-memory data, the SPARQL time
constraint does carry less weight, and therefore the ORdfM applica-
tion does still hold true. As a side note, the author mentions that
this result does align also with the statement of the interviews of the
ORdfM developers (which have been recapped in Section 6.1.1), who
issue that there cannot be a single best ORdfM implementation: de-
pending on the given use case you can fine-tune your at best very
slim concept implementation. The same case applies for the various
runtime possibilities.

lessons learned - implications of overall ordfm evalu-
ations for the anno4j library While the remainder of this
work up to Chapter 6 explained the concept of the Semantic Web,
metadata models and multimedia, ORdfM libraries and frameworks
with the specific representative Anno4j, and the junction of all this in
the MICO Platform, a central software framework to analyse multime-
dia, the concept of ORdfMs and their advantages have been applied
whereas some prerequisites have been left out. Mainly from a devel-
opment and runtime perspective, ORMs in the world of relational
data have been publicly accepted and evaluated. Quasthoff’s results
which have been explicated in this section confirm the same assump-
tion for the ORdfM concept.

The insights to take away for the Anno4j library as an ORdfM im-
plementation are the following. On the one side there are implications
that can be expected and adopted for the library, and on the other
side, with the results made in the related work of this section, assert
confirmations for some of the claims made throughout this work.

The Anno4j library does align with the opinion of the consulted
ORdfM expert developers about the main task, which a representa-
tive implementation is supposed to fulfil: deal with the RDF data
communication while refraining to solve other associated problems
in order to keep the implementation as concise and potentially con-
venient as possible. Therefore Anno4j focuses on the accessibility and
therefore different possibilities to both produce and consume RDF
data which is supported by the Anno4j Generation Tool in order to
facilitate the access to an underlying domain model. This point is es-

196 experiments and evaluations

pecially highlighted by the expert developers to be an issue of great
importance and hence poses a thorough contribution by this thesis.
Next to this, supportive features like the validation allow for further
broadened and extended application of the library.

Another more general argument is given by the developers’ opin-
ion that they would always apply the abstraction layer supported
by an ORdfM implementation whenever they want to develop a Se-
mantic Web application. This shows that, although research about
this topic seems to stagnate, ORdfM implementations still have im-
pact and therefore are an essential cornerstone in the Semantic Web.
Making the Semantic Web and its technologies a more present and
represented entity in the overall Web of today is only possible with
approaches like the ORdfM concept.

In terms of runtimes with ORdfM applications, Quasthoff’s evalua-
tions have shown that the utilisation of the abstraction layer does not
have an impact and therefore their application is always beneficial.
This does hold true whether SPARQL queries are applied in between
or not. His evaluations have been based on his own ORdfM imple-
mentation OTMj and the underlying Apache Jena. Although Anno4j
is based on Alibaba and therefore Sesame/Rdf4j, comparisons of the
respective triple stores and functionalities have shown that Sesame
does perform at least as good as Jena, if not better [48] [166]. There-
fore Anno4j does not impose any runtime issues, backed up by the
real-world application of the library in the MICO Project (see Sec-
tion 5.2) and the ViSIT Project (see Section 6.3), which showed no
runtime problems as well, and the evaluations seen in Section 6.2.

Overall, the experiments in this field of research indicate that the
overall application of the ORdfM concept is not just practicable, but
also beneficial in terms of development efforts. Additionally, the of-
fered possibilities allow for more sophisticated and especially accus-
tomed or familiar access to RDF data, while not imposing any (or
only slight) drawbacks in terms of runtime and hence can be applied
without any concerns. These assumptions support the Anno4j library
and therefore the contribution of this work from an overall concep-
tual background. What is left to show is that the features proposed in
this thesis do not contradict the above experimental results, which is
done in the following section.

6.2 anno4j and ontology structure experiments

This section will show evaluations of overall creation runtimes of
Anno4j Class instances, as well as benchmarks for the main novel
feature introduced by the Anno4j library - the Generation Tool. These
evaluations will determine the impact that the utilisation of the li-
brary can have on the runtime of an application using its functionality.
If the overall runtime would be increased by a to large of a margin,

6.2 anno4j and ontology structure experiments 197

it is not possible to use the library or the respective feature in a real-
world application. Previous to the evaluations, ontology parameters
will be introduced, which can be altered in order to implement the
configurations for the experiments. In addition to this, these param-
eters will define a complexity measure for the input ontologies and
the pendant of domain models.

The experiments done here will evaluate the overall runtime of
Anno4j in combination with its generation feature in Section 6.2.1
with a simple test setting, which is complemented by an evaluation
using pre-created proxies in Section 6.2.2. Afterwards, Section 6.2.3
describes the application of a more thorough test setting, which varies
multiple ontology parameters in order to achieve more profound
results and insights. The Anno4j generation feature has been intro-
duced originally in Section 4.6.

6.2.1 Runtime Experiments with Generated Anno4j Domain Models

Throughout this work it has been mentioned at different occasions
that complex ontologies and respective domain models can induce
longer processing times for applications utilising the ORdfM concept,
like the Anno4j library. This does become noticeable at the point of
time when metadata is to be created via Anno4j. To be more specific,
with an existing domain model, an instance of one of its representa-
tive Anno4j Classes is to be created. It has been determined that the
runtime to perform this is influenced by the complexity of that given
Anno4j Class. In order to achieve insights about the runtime efficiency
of the Anno4j library, this section will show benchmarks that evalu-
ate the creation runtime of different configurations of Anno4j Classes
with underlying domain models. As it was also mentioned next to
the runtime issues, a solution for increasing runtimes has been imple-
mented for the Anno4j library as well. By being able to assess the com-
plexity of a given ontology, decisions can be made if an initial proxy
generation step is useful or not, as the generation imposes a relatively
fixed pre-timing interval, but at the same time reduces the runtime of
creating objects, which will be shown in Section 6.2.2. However, be-
fore the evaluations can be explained, it is important to gain insights
about the notion of “complexity” for ontologies and domain models.

related work - software and ontology complexity In
the fields of computer science, estimating the complexity of various
measures is a commonly known process, which poses advantages and
insights about further utilisations of said measure. One of the major
domains is software development and software structure.

Different approaches are to be found in related work, which have
their common factor based on software complexity. Khoshgoftaar and
Munson [98] relate their complexity measure to the possibility of aris-

198 experiments and evaluations

ing errors in the evaluated software. They try to use a statistical tool in
order to use regression analysis to identify the possibility of modules
creating errors, once the whole application is used live. Their analysis
is done before the test phase, allowing to do adjustments and reduce
error rates at early phases of the overall development cycle.

Another similar approach is given by Kafura and Reddy [95], who
determine the relationship between software complexity and the ef-
fects of maintenance activity. It has been proven, that maintenance
costs outweigh the actual costs of development [35], and therefore
the results of the authors can lead to eventual cost savings. This is
even aggravated by the fact, that with increasing size of the overall
application, associated maintenance activities increases even more. In
order to determine the complexity of software parts, the authors ap-
ply various known metrics, with which further adjustments can be
made to the software, or arising and expected maintenance activities
can be estimated, adapted, and focused, which eventually leads to a
possible reduction of said activities and costs.

For choosing their technique for the evaluation, Kafura and Reddy
ponder between objective and subjective possibilities. While the for-
mer tries to correlate the complexity metric of a component to the
times when an actual maintenance task needs to be performed for
that component, subjective techniques relate the estimated complex-
ity to the opinions and judgements of experts, who are familiar with
the reviewed system. The authors’ choice is a subjective technique,
motivated by the fact that they wanted to see if their complexity mea-
surement can support some sort of guide to avoid poorly performed
maintenance, applicable by a maintainer or maintenance manager.

Their complexity measure is targeted at source code and is consti-
tuted by seven different metrics, which they divide into code metrics
and structure metrics. Their code metrics are given by:

• McCabe’s Cyclomatic Complexity Number [116]

• Halstead’s Effort Metric E [74]

• Lines of Code

Amongst the structure metrics are:

• Henry and Kafura’s Information Flow Metric [82]

• McClure’s Control Flow Metric [117]

• Woodfield’s Syntactic Interconnection Measure [180]

• Yau and Collofello’s Logical Stability Metric [182]

These metrics were chosen because of their difference between the
respectively measured factors. Next to their study and its results, Ka-
fura and Reddy also support an analysis tool that is able to calculate

6.2 anno4j and ontology structure experiments 199

above metrics for a given Fortran source program. Their analysis is
done on a single mid-sized system, of which several consecutive ver-
sions are considered. They calculated the metric values for each ver-
sion by itself, and then tracked the changes in complexity and main-
tenance activities over the various system versions, with and under
the guidance of two expert developers.

As their conclusion, the authors see their issued claim about the
usefulness of determining the complexity in regards of potential main-
tenance confirmed. Furthermore, they mention that changes in soft-
ware code to reduce a given metric does definitely have impact on
eventual maintenance activities. Also, they have identified that out-
liers in terms of the metrics are rare, but they need definite attention,
as they can have grave impact on eventual maintenance.

With these approaches from general software design and the impor-
tance of ontologies in the Semantic Web, which has been explained
and mentioned throughout this work, recent research has also adapted
the process of quality of complexity measurement for ontologies. Sim-
ilar to the software pendant, measuring these factors for ontologies
does also promise beneficial input for the design, the improvement,
eventually arising maintenance activities, as well as the choosing of
right ontologies for a given use case [181].

One related approach is given by Yao, Orme, and Etzkorn [181],
who focus their ontology complexity measurement on cohesion met-
rics. With again the counterpart of software cohesion in mind, their
approach relates to the desired circumstance of having a good sepa-
ration of responsibilities, independence of components, and control
of complexity between object-oriented classes. The authors adapt this
definition and see ontology cohesion as a way to symbolise the de-
gree of relatedness between OWL classes, which are conceptually as
well as semantically related by the defined properties between them.
They also claim that if the entities of an ontology are thereby strongly
related, then the given ontology has a high cohesion, which is mo-
tivated by the idea that ontologies should be related in terms of a
domain. The parameters which the authors consider in order to de-
termine ontology cohesion are the following:

number of root classes The number of RDF classes without an
ingoing “rdfs:subClassOf” relationship.

number of leaf classes The number of RDF classes with no out-
going “rdfs:subClassOf” relationships.

average depth of inheritance leaf nodes A path is defined
by an inheritance chain going from a root node to a leaf node,
while the length of the path is the amount of classes on the path.
The total number of paths of an ontology is the total number of
distinct paths from each root node to each leaf node. The value

200 experiments and evaluations

of this metric is the sum of depths of all paths divided by the
total number of paths.

In their empirical evaluation, Yao, Orme, and Etzkorn gathered a
set of ontologies and gathered a group of eighteen evaluators, from
both the fields of software development and knowledge based sys-
tems with three to five years of experience, in order to let them eval-
uate these ontologies in terms of cohesion. With a subsequent step of
statistical analysis, the authors indicate that their cohesion complex-
ity measure holds for the analysis of ontologies. Furthermore, their
calculated values of their metrics for the ontologies match with the
opinions of the invited experts.

Zhang, Li, and Tan [184] do also see and value the relatedness of
software complexity and ontology complexity in a way that they issue
that software design features experiences about the relation between
software complexity and software quality. Both of these metrics sym-
bolise the difficulty for humans to apply and make use of the given
software, which manifests in the activities of coding, debugging, test-
ing, and modifying. This comparison is also drawn for ontologies of
the Semantic Web, as ontology complexity and quality is also seen
closely related to one another. Therefore the same claim is made, that
the more complex an ontology is, the harder it is for humans to use,
which is also illustrated in the processes of developing, using, and
modifying the ontology.

To assess the complexity or quality of a Semantic Web ontology,
Zhang, Li, and Tan constitute a list of eight metrics, which origi-
nate from two levels: ontology-level metrics and class-level metrics,
which either focus on the entire ontology or rather a single class of
the ontology. The ontology-level metrics are the following:

size of vocabulary Amount of classes and relationships/proper-
ties defined in the ontology. The more of these two factors, the
more complex is the ontology.

edge node ration The ratio between nodes and edges of the on-
tology. More edges in relation to nodes makes the ontology
more complex.

tree impurity This metric measures how far the inheritance struc-
ture of an ontology deviates from a tree-structure. If an ontology
is less tree-like, it is estimated to be more complex.

entropy of graph The probability of a node having i edges. A
lower entropy symbolises that the ontology has more structural
patterns and is therefore less complex.

In contrast, the class-level metrics are seen to have effects on other
entities of an ontology, when and if they are altered, and therefore

6.2 anno4j and ontology structure experiments 201

contribute on this level to the ontology complexity. They are the fol-
lowing:

number of children The number of direct subclasses of a node.
A higher value in the number of children makes the ontology
more broad and thereby more complex.

depth of inheritance The length of the inheritance path of sub-
class relationships from a root class to the currently considered
class. The longer the inheritance paths are, the deeper and there-
fore more complex is the ontology.

class in-degree The number of edges that point towards a cur-
rently regarded class node. The higher this metric is, the more
classes are dependant on the given class and the more complex
is the ontology.

class out-degree The number of edges that point away from a
currently regarded class node. The higher this metric is, the
more classes are dependant on the given class and the more
complex is the ontology.

As an analytical evaluation, Zhang, Li, and Tan enlist the properties
defined by Weyuker [177] and evaluate their metrics against these
properties. The results indicate, that the metrics suffice all but two of
the nine defined properties, which makes them generally usable in
practice. Then, they also show an empirical evaluation, in which the
authors gathered several ontologies with a data collection tool that
was also able to calculate the values for the defined metrics in order to
have a discussion basis. With these results the authors claim that their
metrics are able to differentiate between the various complexities of
a set of analysed ontologies and therefore their metrics are usable to
assess the complexity of a Semantic Web ontology.

domain model complexity and an own complexity mea-
surement With the insights about both software and ontology
complexity, it is reasonable to apply similar approaches for the eval-
uations explained in this work. The domain models of the Anno4j li-
brary constitute software code, but the software metrics shown above
seem not applicable or useful, as domain models are built out of
rather simple Java POJOs, which would not create meaningful val-
ues for metrics like the control or information flow. Nevertheless, the
impact and underlying concept does carry over to the Semantic Web
ontology complexities and therefore also for the domain model com-
plexity.

The results and metrics defined by the related approaches of on-
tology complexity are very interesting and impactful for the research
done in this thesis. It is however important to note that the related

202 experiments and evaluations

works’ perspective on the ontology complexity is different compared
to what is needed for the domain model evaluations of this work:
while the related approaches try to estimate an ontology’s complex-
ity and thereby its further implications with different parameters or
metrics after an ontology has been created, the evaluations of this the-
sis require parameters that can be configured in order to create an
ontology with representative domain model and its Anno4j Classes
in the first place. These parameters are thereafter evaluated on their
impact on creation times of domain model representatives.

Nevertheless, for the complexity of the Anno4j Classes and thereby
the domain model, six different parameters, which are partially influ-
enced by the insights gained from related work enlisted above, were
identified that do have potential impact on the runtime of creating a
respective instance. The benchmark will therefore relate back to the
parameters and give insights and explanations about their interpreta-
tions. Out of the six parameters, four originate from common meta-
data modelling concepts that closely relate to the metrics of Zhang, Li,
and Tan [184] (which in terms also suffices the claims made about the
parameters of Weyuker [177]), while two are additions that have their
source in the Anno4j library. The six parameters are the following:

direct subclasses or children degree The amount of classes
that are direct subclasses of the given class and therefore inherit
its behaviour.

direct superclasses or parent degree The amount of classes
that the given class itself is a subclass from, which in terms de-
fines the gathered inherited behaviour for the given class.

inheritance depth The amount of classes that implement a di-
rect inheritance chain that leads to the given class.

amount of relationships and properties The number of re-
lationships and properties that are defined for the given class.

defined partial classes The number of Partial Classes that are
implemented to extend the functionality of the given class.

defined methods in partial classes The number of methods
defined in all supported Partial Classes for the given class.

It is important to note that the benchmark will only consider the
first creation of an instance of a given Anno4j Class, as the library will
“remember” the proxy behaviour that it created with the initial cre-
ation. As the actual semantic content of the analysed ontologies in the
benchmark is irrelevant, mocked ontologies were generated and var-
ied in their respective parameter configuration. To obtain the domain
model that can be utilised for the evaluation in Anno4j, its Genera-
tion Tool is utilised in order to automatically generate the different
domain models.

6.2 anno4j and ontology structure experiments 203

benchmark setup An initial parameter configuration was set,
whose values were inferred from respective average values of vocab-
ularies and ontologies that are currently present in the LOD. This
approach created an initial setting for the to be instantiated Anno4j
Class. An inheritance chain with depth two is assigned, while all
of the Anno4j Classes had four different defined properties/relation-
ships and one implementing Partial Class which also implemented
the four methods of the Anno4j Class as Partial Methods respectively.
In the first round of experiments, each parameter was varied on its
own, while the other five parameters were fixed to the initial con-
figuration. From this parameter configuration an RDFS schema was
generated, which in terms was used with the Anno4j Generation Tool
to generate the domain model. This model is then compiled with an
OpenJDK Java-Compiler and packaged as a Java Archive. The Java
file together with the benchmark code is loaded into a Java Virtual
Machine JVM in order to initiate the benchmark.

Therefore, in order to allow optimisations via the JIT-Compiler, 25

warmup iterations are done. Afterwards, the next 50 iterations are
used in order to evaluate the runtime to create the respective instance
of the focused Anno4j Class. After every iteration, a new Anno4j ob-
ject is created to avoid existing proxies. When the cycle of 50 eval-
uated iterations is finished, the respectively current JVM is termi-
nated and a new JVM is started for the same parameter configura-
tion. This is done ten times overall for every configuration in order
to randomise the influence of memory layouts, caching, and garbage
collection. All of this results in 500 measures for every parameter con-
figuration. The configuration of the test system that is used for the
basic benchmarks is enlisted in Table 5 in the Appendix.

benchmark result discussion and interpretation Fig-
ure 45 visualises the results for the benchmark described above in six
sub-figures. Therefore, every figure illustrates the runtime evaluation
when a given parameter is varied while the other five parameters
are fixed to the values of the initial configuration. The results will be
discussed by each single parameter. Additionally, their impact will
be assessed and weighted against insights that have been gained by
analysing 633 Linked Open Data Vocabularies.

The first benchmark shown in Figure 45a visualises the impact on
having multiple subclasses associated with the given to be produced
Anno4j Class. Varying between one and ten associated “rdfs:sub-

ClassOf” relationships it can be seen, that this parameter does not
have negative influence on the runtime, as the required time to create
an instance of the Anno4j Class stays constant. It can therefore be
inferred, that the amount of associated subclasses is irrelevant for the
creation runtime.

204 experiments and evaluations

(a) Runtimes in Terms of Direct Sub-
classes.

(b) Runtimes in Terms of Direct Super-
classes.

(c) Runtimes in Terms of Inheritance
Depth.

(d) Runtimes in Terms of Relationships
and Properties.

(e) Runtimes in Terms of Partial Classes. (f) Runtimes in Terms of Partial Meth-
ods.

Figure 45: Benchmark Results for Single Variations of Ontology Parameters
for the Anno4j Evaluation.

In contrast, it can be seen in Figure 45b that the opposite factor in
the form of direct superclasses does have a negative impact on cre-
ation runtimes, as a polynomial growth can be assumed. In terms this
raises the assumption that this circumstance imposes difficulties relat-
ing to the applicability of Anno4j and general ontologies, as branch-
ing and diverse inheritance hierarchies are often assumed. Neverthe-
less, the investigation of the 633 LOD vocabularies in terms of direct
superclasses showed that 94,5% of the respectively contained classes
only had three or less associated superclasses. At the same time, 76%
only had exactly one superclass. Therefore this negative influence can
generally be ignored in practical applications.

6.2 anno4j and ontology structure experiments 205

The same investigation does also show that inheritance hierarchies
can go deep. In this regard, about one third of the considered classes
of the 633 LOD vocabularies were incorporated as the lowest class
in an inheritance chain with the length of five. This circumstance, in
combination with the benchmark shown in Figure 45c, indicates a
polynomial growth and therefore marks this parameter to be treated
carefully. As an example, the numbers point out that an instance of
an Anno4j Class with five superclass predecessors takes seven times
as long as a Class without superclasses.

A similar behaviour can be seen in Figure 45d, which illustrates
the runtimes with increasing amounts of defined relationships and
properties for a given Anno4j Class. Here, one can also see and as-
sume polynomial growth in terms of the runtimes. This circumstance
is even aggravated by the fact, that inheritance hierarchies propagate
their relationships and properties to their subclasses as well, so not
only the directly implemented ones of the Anno4j Class itself do have
impact here. The evaluation of the 633 LOD datasets showed that one
fourth of the found classes do at least support four different proper-
ties or relationships. Therefore, this parameter requires careful atten-
tion in more complex ontologies.

The last parameters that have been considered by the benchmark
originate from the Anno4j library, namely the possible additions of
Partial Classes and respective Methods of those, which can be im-
plemented next to a given Anno4j Class. The diagrams shown in Fig-
ure 45e and Figure 45f indicate, that both parameters do not have an
impact on the runtimes for instantiating an instance of the considered
Anno4j Class.

With the results of this section, it is possible to achieve domain
knowledge about the parameters and the impact that they introduce
to the instantiation of different Anno4j Classes. The benchmarks show
that it can be problematic to work with the Anno4j library in con-
junction with complex ontologies, especially if the ontology defines
a deep and broad class hierarchy with many different relationships
and/or properties assigned. Nevertheless, the Anno4j library is able
to solve this circumstance by pre-generating the Proxy Classes for a
given domain model, inducing a relatively fixed starting time inter-
val, but at the same time reducing the initial creation of Anno4j Class
instances to an imperceptible minimum.

6.2.2 Runtime Experiments with Pre-Created Proxy Classes

In order to give deeper insights into the problematic of runtimes
for the initial creation of Anno4j Class instances described in Sec-
tion 6.2.1, this section will highlight the reason behind the potentially
problematic runtimes. Afterwards, the Anno4j solution to this is de-

206 experiments and evaluations

scribed and a benchmark is conducted that shows the optimised effi-
ciency when using the respective feature.

In order to narrow down the source of the issue, the tool VisualVM3

is used in order to examine the factors that are involved in the process
of creating an Anno4j Class instance. As an example, Figure 46 shows
the breakdown of runtimes of processes that are involved in the initial
creation of an instance of the “crm:E21_Person” class of the CIDOC
CRM ontology (for further information about the CIDOC CRM see
Section 6.3).

Figure 46: Breakdown of the Runtimes of Subtasks Necessary to Cre-
ate the Initial Instance of an Anno4j Class Implementing the
“crm:E21_Person” RDF Class of the CIDOC CRM.

Overall the instantiation of the person object took 113,9 seconds. In
this time interval, 101,61 seconds were required by the “MethodInfo.-

rebuildStackMapIf6” method, which is part of the software library
Javaassist4. This library is used by the underlying Alibaba and is ap-
plied for the generation of bytecode for the Proxy Class. It generates
so called Stack Map Frames, which are stored in the Stack Map Ta-
ble SMT. The SMT is a data structure that was introduced by Java 6,
which is mandatory since Java 7.

It is used by the JVM in order to implement a quicker type checking.
For every bytecode instruction that induces a hop or is the target of a
hop at the point of compiling, a Stack Map Frame is inserted into the
SMT. This frame specifies the types of the local variable and of the
stack of operands to the point of time of the hop instruction. When a
class is loaded, the bytecode instruction of nearby Stack Map Frames
are read and their code effects in terms of the variable types and
the stack are inferred. If an instruction is read whose associated Stack
Map Frame is conflicting with the inferred types, then the verification
fails and the class is not loaded. With this it is prevented that the JVM
is compromised by the given code.

As Anno4j presumes Java 7, an SMT has to be created via Javaas-
sist in order to ensure that the Proxy Classes that are generated via
Alibaba can be read by the JVM. Therefore the types of local vari-
ables and the stack of operands have to be identified, and respective
Stack Map Frames need to be created for the respective locations of
the created bytecode. Checks are necessary for the type inferencing
of Javaassist, if a primitive datatype or a null reference is present, or
if the field has already been initialised. The profiling of the object

3 https://visualvm.github.io/ (last visited 03/12/2018)
4 http://jboss-javassist.github.io/javassist/ last visited (03/12/2018)

https://visualvm.github.io/
http://jboss-javassist.github.io/javassist/

6.2 anno4j and ontology structure experiments 207

creation via VisualVM shows that numerous recursive calls are nec-
essary for this in complex inheritance hierarchies, which at the end
leads to the observed long runtimes.

As mentioned earlier, only the initial creation of an object instance
is problematic in terms of runtimes, as Alibaba and therefore the
Anno4j library is able to “remember” the bytecode that is created
for the instantiated class. Therefore, after the first creation, further
creations of the same Anno4j Class do not require the same timely
effort, but are rather created with very low timing constraints. Never-
theless, although this does help with a running system, it can still be
problematic if the domain model changes often or the system and its
underlying JVM has to be restarted frequently, as the initial creation
of Anno4j Class instances has to be redone with each slight change of
the domain model.

To counteract this circumstance, the created bytecode was exam-
ined and it turned out that for an unchanged domain model, it stayed
the same for a given class. The created Proxy Class implements all
methods of the given Anno4j Class and all its superclasses and their
names are inferred from the names of the respective Anno4j Classes
and their methods. Using this, the Anno4j library supports a com-
mand line based tool that can pre-create the Proxy Classes for a given
domain model. The output are two JAR files, one of them containing
the compiled Anno4j Classes of the supported domain model, the
other containing the bytecode that is necessary for the generation
of the Proxy Classes. Adding these two JARs to a Java project that
intends to use the underlying domain model allows the creation pro-
cess to use the contained Proxy Classes and therefore skip the timely
effort to create respective bytecode on its own.

This command line tool itself needs some time in order to create its
output. However, this process can be done initially by the developer
before he deploys his application, therefore alleviating the actual user
of the costly runtimes to create initial instances of the Anno4j Classes
of the domain model. In combination with the insights gained from
the parameter evaluations in Section 6.2.1, estimations can be done
if the pre-generation step is useful or not for a given RDFS or OWL
schema.

evaluation of runtimes with pre-created proxy classes

In order to show and evaluate the effectiveness and the applicabil-
ity of the possibility of pre-creating the Proxy Classes for a given
domain model, a benchmark was done with the same settings and
measurements as the experiments shown in Section 6.2.1, with the
only alteration of adding the created JAR files of the Anno4j com-
mand line tool to pre-create the Proxy Classes. The evaluations will
only be done with the “problematic” ontology parameters of sub-
classes, inheritance depth, and number of properties and relation-

208 experiments and evaluations

ships. Nevertheless, the runtime savings are applicable for the pa-
rameter of subclasses, Partial Classes and methods as well, but their
constant runtime behaviour evaluated above is not considered as im-
pactful for applications. The results of the benchmark are shown in
Figure 47. In contrast to the actual evaluation numbers, the dotted
lines indicate the runtimes without pre-created Proxy Classes.

(a) Runtimes in Terms of Direct Su-
perclasses with Pre-Created Proxy
Classes.

(b) Runtimes in Terms of Inheritance
Depth with Pre-Created Proxy
Classes.

(c) Runtimes in Terms of the Number
of Relationships and Properties with
Pre-Created Proxy Classes.

Figure 47: Benchmark Results for Problematic Parameters with Pre-Created
Proxy Classes.

The results depicted in Figure 47 show that with pre-created Proxy
Classes in place, the originally polynomial growing runtime numbers
can be reduced to a constant behaviour. With the parameters of su-
perclasses shown in Figure 47a, inheritance depth in Figure 47b, and
the number of relationships and properties in Figure 47c, it can be
seen that the runtimes can be reduced to an imperceptible minimum.
Turning the results into numerical statements, the median of the run-
times for the superclasses had an constant average value of 56 µswith
a standard deviation of 26 µs. For the inheritance depth an average
value of 81 µs with standard deviation of 55 µs is calculated, while
the properties/relationships benchmark showed values of 80 µs to 51

µs standard deviation.

6.2 anno4j and ontology structure experiments 209

Altogether, this benchmark shows that with the application of the
Anno4j command line tool to pre-generate Proxy Classes for a given
domain model allows convenient and efficient working with even
large and complex ontologies or vocabularies. A one time process
with the input of an RDFS or OWL schema needs to be conducted
that creates two JAR files that support the domain model and the
associated bytecode that is necessary for the initial creation of an in-
stance of an Anno4j Class. Therefore Anno4j can apply a complex
domain model while still keeping low runtimes that do not impede
the applicability of users of respective applications.

6.2.3 Runtime Experiments with Generated Anno4j Domain Models and
Multiple Varying Parameters

Prior evaluations allowed to gain some domain knowledge in terms
of the defined ontology parameters, which is not only interesting
for evaluation purposes, but these insights can and should also be
applied when designing ontologies that are supposed to be used in
real-world applications. It has been seen that direct superclasses (or
Parent Degree), the inheritance depth, as well as the number of de-
fined relationships and properties of a given Anno4j Class are im-
pactful in terms of runtimes when creating an instance of this class.
These runtimes are increased in polynomial fashion the higher the re-
spective parameter is set. Defined Partial Classes with their methods
and defined direct subclasses (or Children Degree) are considered
as non-harmful for runtimes.

Nevertheless, although this domain knowledge helps to raise the
awareness for parameter definition of ontologies, it is not thoroughly
sufficient, as only single parameters are considered and altered. When
used in combination (which is the general case), parameters could be
dependant on each other, possibly having unexpected and grave im-
pact on application runtimes. To also achieve awareness and insights
for this kind of situation, this section enlists an evaluation that con-
siders multiple varying ontology parameters.

evaluation setup and approach This evaluation considers
the same ontology parameters that have been mentioned before, with
the difference of varying multiple parameters in contrast to the eval-
uations described in Section 6.2.1 and Section 6.2.2. No pre-created
Proxy Classes are in place in order to calculate the timely constraints
for the initial creation of Anno4j Classes. A grid search-like approach
(which is a concept mainly found in the fields of Statistics [164] [108]
and Machine Learning [87] [159]) is applied that is restricted to check
pairs of parameters for their allocation. It turned out quickly that
a full grid search with parameter settings above the configurations
found in general ontologies of the Semantic Web require heavy timely

210 experiments and evaluations

workloads and therefore instantly qualify for the pre-generation of
proxies, as evaluated in Section 6.2.2. However, the evaluation of pa-
rameter pairs delivers meaningful insights that further extend the
gained ontology parameter knowledge from above evaluations.

Just like for the evaluations of single parameters, the same kind
of workflow has been applied in order to generate numerical results.
The setting of parameters is applied to generate a Semantic Web ontol-
ogy, which is then used in the Anno4j Generation Tool to generate an
Anno4j domain model. From that model a considered class is picked
and a respective instance is created. The required runtime for its in-
stantiation is measured in the evaluation. The technical benchmark
setup in terms of warmup runs, real measured runs, etc. is exactly
the same as described in Section 6.2.1. The most important difference
is the hardware setting that is used. As this evaluation requires a lot
more resources, it is conducted on a server, whose technical details
are enlisted in Table 6 in the Appendix.

With the application of two varying parameters at a time, the re-
sults of this evaluation will be displayed in the form of heatmaps
[179]. Heatmaps are two-dimensional matrices, whose axes will con-
vey two respective parameter settings, while the values of the matrix
itself as a third “axis” represent the calculated runtime values for the
respective setting. These runtime results will be semantically and vi-
sually increased by the “heat” value of the map in order to better
illustrate the gradient of the values, ranging from blackish colours
for low values to whitish colours for high values.

The combination of plotting the results as a heatmap and the do-
main knowledge that has been gained for single parameters - from
now on called soft and hard parameters, depending on their constant
or polynomial impact on application runtimes - , it is expected that
the heatmap patterns will converge towards certain “pattern classes”
in terms of a visual representation. The patterns that are identified
are the following, which are also illustrated in Figure 48:

scatter pattern A scatter pattern (seen in Figure 48a) infers that
the two currently considered parameters are not dependant on
each other. This is most likely seen, when two soft parameters
are utilised in the evaluation and therefore the calculated run-
time values are roughly the same for every setting of the param-
eters. As a result and because the whole range of the heatmap
is utilised, the created heatmap receives its scattered visual pat-
tern of heat values.

peak pattern The “opposite” to the scatter pattern is visualised
with the peak pattern (seen in Figure 48b), which conveys a
high dependance between the two considered parameters. The
shape of the peak pattern orients its highest values towards the
top right corner, which conveys that the combination of parame-

6.2 anno4j and ontology structure experiments 211

ters and therefore a higher setting for the parameters has grave
impact on application runtimes. This observation can be seen
with any combination of soft or hard parameters, as the recom-
bined increase in runtimes is much higher in comparison than
the influence of a single parameter by itself. This can be seen by
the two dark edges of the heatmap pattern that are positioned
directly next to the axes and a single whitish peak value in the
top right corner.

edge pattern The last type of heatmap pattern does not necessar-
ily infer the existence or non-existence of dependance between
the two considered parameters, but does symbolise that one
parameter has more influence than the other in the given pa-
rameter combination. The increase of the one parameter does
impact the overall combined runtimes, while the increase of the
other does have a considerably low to no impact at all. This
kind of pattern can be directed towards two directions, given
by the two parameters, and therefore an increasing gradient of
heat values can be seen towards the top or right edge of the
heatmap pattern.

(a) Exemplary Scatter Pattern. (b) Exemplary Peak Pattern.

(c) Exemplary Edge Pattern, Directed To-
wards the Parameter of the y Axis.

(d) Exemplary Edge Pattern, Directed To-
wards the Parameter of the x Axis.

Figure 48: Heatmap Plot Patterns with Exemplary Heat Values, Highlight-
ing the Color Gradient or Scattered Distribution.

212 experiments and evaluations

Inferring from the domain knowledge of the single parameter eval-
uation and the defined pattern types, an expectation can be done in
terms of what kind of pattern the recombination of soft and hard
parameters will create. These expectations can be seen in Figure 49.

ha
rd

so
ft

hardsoft

Scatter Pattern

Edge Pattern (towards the left/top parameter)

Peak Pattern

Figure 49: Expected Pattern Types Created by the Recombination of Soft
and Hard Parameters.

The recombination of two soft parameters, as described above, does
most likely lead to a scatter pattern of the heatmap, as both parame-
ters on their own behalf do not increase overall runtimes regardless of
their setting. When a hard parameter is combined with a soft param-
eter, edge patterns are expected that are oriented towards the hard
parameter, as a polynomial increase in runtimes is introduced by the
hard parameter on its own. The other soft parameter is in general con-
sidered to not be impactful in their recombination. The last possible
combination of two hard parameters is expected to result in a peak
pattern, as two already impactful parameters are combined, which
eventually leads to a multiplied increase of overall runtimes.

evaluation of runtimes with varying parameter pairs

In the following, the results conducted of the evaluation of ontology
parameter pairs will be enlisted, described, and interpreted. There-
fore, first a general table and some expected results will be shown.
Unexpected results and met difficulties while doing the evaluation
will be explained afterwards.

The concrete evaluation results can be seen in the heatmaps illus-
trated in Figure 65, Figure 66, and Figure 67 in the Appendix, while
the calculated numbers (runtimes with mean and median, standard
deviation, standard error, and 95% confidence interval) of the evalu-
ations are enlisted in the tables reaching from Table 7 to Table 20 in
the Appendix.

Figure 50 shows the recombination of all given parameters apply-
ing the measured results and assigns them the pattern types that have
been described and defined above and in Figure 49.

In order to further explain the generated plots, three representative
results that fulfil various pattern types are described here. Among
those, Figure 51 shows the recombination of the Children Degree
and Partial Methods ontology parameters. The plot illustrates a scat-

6.2 anno4j and ontology structure experiments 213

d
pr
op

pm
pc

pd
cd

dproppmpcpdcd

pd

pd

pc

pc

pd

pc

d d d

Scatter Pattern

Edge Pattern (towards the left/top parameter)

Peak Pattern

Problematic Evaluation

Figure 50: Pattern Allocation of Runtime Experiments with Varying Ontol-
ogy Parameter Pairs.

ter pattern, issuing that the parameters are not dependant on each
other and therefore do not affect overall runtimes when used with
higher values and in combination. The creation runtimes take values
in a small range from around 22.5 milliseconds to 28.5 milliseconds
and are scattered throughout the whole parameter setting range. The
explanation for this circumstance could be the fact that the param-
eters do not necessarily influence each other, as the Partial Methods
defined for the given class are not necessarily passed to the subclasses,
and that the parameters especially do not interfere with creation run-
times of a given class by being soft parameters.

1 2 3 4 5 6 7
Partial Methods

1
2

3
4

5
6

7
Ch

ild
re

n
De

gr
ee

26.7 22.7 25.8 26.3 24.4 27.0 27.3

25.0 27.2 27.0 25.8 23.9 26.5 22.9

24.8 24.8 25.6 26.2 26.0 22.7 27.1

27.4 24.9 25.5 26.2 23.8 26.7 25.6

27.2 24.7 25.1 22.4 24.4 24.6 28.0

25.8 25.4 23.2 25.7 25.2 25.0 24.3

25.5 28.7 23.9 23.2 25.6 25.9 24.8

22.5

24.0

25.5

27.0

28.5

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

Figure 51: Exemplary Scatter Pattern Result for the Combination of the
Child Degree and Partial Methods Parameters.

In contrast, Figure 52 shows a representative edge pattern that is
derived from the combination of the Children Degree and Inheri-

214 experiments and evaluations

tance Depth parameters and therefore a combination of a hard and a
soft parameter. The pattern is oriented towards the Inheritance Depth
parameter, which illustrates the fact that the parameters do not have
a dependance on each other, as the increase of the Children Degree
parameter does not have any impact on creation runtimes, while
the inheritance depth parameter does show its previously known
behaviour of having an increasing impact with an increasing value
setting. Creation runtimes start with around 26 milliseconds for the
lower settings of the Inheritance Depth parameter, and increase to
around 60 milliseconds for the highest setting.

1 2 3 4 5 6 7
Inheritance Depth

1
2

3
4

5
6

7
Ch

ild
re

n
De

gr
ee

26.7 27.1 30.3 31.5 43.3 61.8 60.6

25.0 29.5 31.2 33.8 49.6 51.3 58.1

24.8 26.2 29.8 32.0 44.0 55.3 52.5

27.4 29.1 28.3 32.6 45.6 53.9 48.8

27.2 26.8 32.6 32.6 50.4 53.3 63.1

25.8 29.0 26.4 34.3 45.1 51.2 52.9

25.5 28.2 31.6 32.1 44.7 46.2 58.9

32

40

48

56

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

Figure 52: Exemplary Edge Pattern Result for the Combination of the Chil-
dren Degree and Inheritance Depth Parameters.

The last category of patters is supported by the peak pattern, which
for example is created by the combination of the Parent Degree and
Partial Classes parameters. Their respective evaluation plot is shown
in Figure 53, illustrating the characteristical shape with the highest
heat value located in the top right corner of the heatmap. This result
is unexpected, and will be discussed further in the next paragraph,
as this combination features a soft and hard parameter. The creation
runtime values have their lowest values around 30 milliseconds and
increase drastically up to a maximum of 6 seconds with higher param-
eter configurations. This can be motivated by the fact that defined su-
perclasses as well as defined Partial Classes for a given class require
the Anno4j library to merge several behaviours of different natures
together into one resulting behaviour, which imposes multiple time
consuming merge processes.

unexpected ontology parameter pair evaluation results

Several unexpected results have been discovered with the evaluation
of paired parameters. The first peculiarity is illustrated in Figure 54

and concerns the Partial Classes parameter. The respective interest-
ing pattern entries are highlighted in the matrix.

6.2 anno4j and ontology structure experiments 215

1 2 3 4 5 6 7
Partial Classes

1
2

3
4

5
6

7
Pa

re
nt

 D
eg

re
e

26.7 30.1 52.0 63.1 66.6 75.0 114.1

29.3 48.7 55.9 84.2 102.8 144.2 204.6

30.2 57.8 75.0 109.9 177.6 288.2 482.5

37.5 69.0 95.4 175.7 340.3 581.7 988.2

51.5 85.0 147.4 301.1 590.0 1079.3 2127.3

58.6 107.8 243.7 549.9 1137.4 2152.9 3770.9

50.9 131.8 366.0 834.7 1843.0 3383.9 6045.2

1500

3000

4500

6000

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

Figure 53: Exemplary Peak Pattern Result for the Combination of the Par-
ent Degree and Partial Classes Parameters.

d
pr
op

pm
pc

pd
cd

dproppmpcpdcd

pd

pd

pc

pc

pd

pc

d d d

Figure 54: Highlighted Evaluation Results for the Combination with the
Partial Class Parameter.

Prior evaluations resulted in the assumption that this parameter
can be considered as a soft parameter and therefore uncritical in
terms of application runtimes. In combination with the other five pa-
rameters however, it turned out that this is only true when regarding
the parameter “in isolation”. When combined with other soft param-
eters, earlier assumptions lead to the expectation that scatter patterns
generally are the result of the combination. In combination with a
hard parameter, an edge pattern should emerge that is tilted towards
that respective hard parameter. Figure 54 however shows that this is
not the case. In combination with soft parameters, the Partial Class
parameter takes on the “dominant” role of the pair and therefore
creates an edge pattern towards its axis. When combined with hard
parameters, a peak pattern is created. Both of these observations lead
to the conclusion, that the Partial Class parameter cannot be seen as
soft parameter, because in real-world ontologies it is generally not ap-

216 experiments and evaluations

plied alone. This result is especially interesting for the contributions
of this thesis, as the considered parameter is a concept that is intro-
duced by the Anno4j library, and therefore needs proper attention
and utilisation.

The second unexpected observation applies to the Property and Re-
lationship count for a given class. The preceding single evaluations
and therefore gained domain knowledge showed that this parameter
has an increasing impact on creation runtimes, the more properties
and relationships are implemented, exposing this parameter to be as-
sessed as a hard parameter. The pair evaluations however show the
opposite, which is illustrated in Figure 55 and the respectively high-
lighted result patterns of the heatmaps.

d
pr
op

pm
pc

pd
cd

dproppmpcpdcd

pd

pd

pc

pc

pd

pc

d d d

Figure 55: Highlighted Evaluation Results for the Combinations with the
Property/Relationship Count.

In contrast to the Partial Classes parameter which turned from a
soft to a hard parameter, the opposite holds true for the Property
and Relationship count. When combined with soft parameters such
as the Children Degree, the Partial Classes, or the Partial Methods,
the currently considered parameter induces a scatter pattern, which
symbolises non-dependance between the combined parameters. This
is unexpected, as a hard parameter should always impose at least an
edge pattern towards its values. The combination with other hard pa-
rameters, namely Parent Degree and Inheritance Depth, the Property
and Relationship count acts as “passive” part rather than introduc-
ing expected impact on runtime values, resulting in an edge pattern
towards the combination partner. All of this leads to the observation
that the Property and Relationship count only acts as a hard parame-
ter on its own, but does not induce any increases in combined creation
runtimes when applied in combination with other parameters.

The last observation of the ontology parameter pair evaluation con-
cerns the combination of the Parent Degree and Inheritance Depth
parameters. No evaluation results could be computed for this com-
bination with higher parameter values, as computation times took

6.2 anno4j and ontology structure experiments 217

several days for a single run of the evaluation, from which every set-
ting requires 75 (25 warmup and 50 benchmark) in order to achieve
meaningful results. The evaluation was cancelled for this configura-
tion after the currently active twelve threads each on their own took
over 180 hours and were still not finished. This unexpected and prob-
lematic behaviour starts at a parameter configuration of 4 and 4. Be-
cause of this, no result table nor a heatmap could be generated for
this combination.

The reason for this behaviour has yet not been fully discovered,
but from a technical point of view, a high amount of superclasses in
combination with a long inheritance chain delivers a complex ontol-
ogy - which is both deep and broad - and the Anno4j library needs
to merge down many different and possibly overlapping behaviours
into one place. It is also possible that better merging algorithms need
to be implemented in order to enhance this process. This however
opens an interesting point for future work.

Nevertheless, this circumstance does not render the Anno4j library
to be unusable with such ontologies, as the pre-generation of prox-
ies (as shown in Section 4.6) opens the possibility to pre-create the
domain model for the given complex ontology and then instantiate
respective instances in no time. Furthermore, as described in Sec-
tion 6.2.1, commonly found ontologies rarely exceed the setting of
having four or more superclasses with an inheritance depth of above
four siblings per class.

6.2.4 Conclusion of the Anno4j Evaluations

In summary, several evaluations have been conducted that target the
creation of Anno4j Class instances which fulfil certain ontology crite-
ria in terms of defined parameters. This is combined with the Anno4j
Generation Tool, which is used in order to generate the respective
Anno4j domain model out of a mocked ontology that implements the
respectively considered ontology parameters.

These evaluations have shown that there are parameters that need
to be observed when an ontology is designed that is supposed to be
worked with Anno4j in the first place. The gained insights however
do also stick to general ontologies and suggest a complexity that can
be assigned to the ontology. Furthermore, attention should be paid
when using certain parameters in combination and excessive configu-
ration. The conducted experiments allow to gain insights and aware-
ness for these kinds of problematic combinations, as they might have
impact in application runtimes which potentially surpass commonly
accepted waiting times.

With the evaluated runtimes an estimation can be made about the
complexity of a given ontology, therefore determining if a prepara-
tory step that pre-generates necessary proxies for the Anno4j library

218 experiments and evaluations

is reasonable. The respective generation requires some time upfront
before an application can go live, but it reduces instantiation runtimes
to a minimum and hence allows an uncomplicated implementation of
said application.

6.3 visit - a cultural heritage use case for the ordfm

library anno4j

The last few sections have shown various ways of evaluating the work
and the contributions enlisted in this thesis. This was initiated by an
enlistment of related work and approaches that analysed the ORdfM
concept from a more general point of view, while the subsequent
computations evaluated novel features implemented by the Anno4j
library.

Another potential way of evaluating the work done in this thesis is
showing the appliance and therefore the impact that the contributions
have on follow-up projects and other implementations in the field of
the Semantic Web. It has already been mentioned that the Anno4j
library has been mentioned in related work by Suhrbier et al. [161]
and Prabhune et al. [130] as well as the W3C Web Annotations Group,
who enlist Anno4j as a reference implementation5.

In terms of scientific impact, next to these mentions, another re-
search project at the University of Passau called ViSIT - Virtuelle
Verbund-Systeme und Informationstechnologien für die touristis-
che Erschließung von kulturellem Erbe6 (which is roughly trans-
lated to “Virtual Network-Systems and Information Technologies for
the Touristic Exploitation of Cultural Heritage”) poses a perfect use
case for the Anno4j library and has therefore picked up its applica-
tion.

The basic premise of the ViSIT Project is to virtually connect multi-
ple museums to share their cultural content in the form of exhibition
samples. In general, these museums are expected to tell a story in an
exhibition about roughly the same topic. As they however do usually
have different samples, each of them can only back up their respec-
tive exhibition with the samples they have on-site, the rest of the story
must be covered by text only, which is of course possible, but not de-
sirable, as the samples produce a much more colourful and impactful
representation of the historical facts. Figure 56 illustrates this situ-
ation. The encapsulating grey area symbolises the whole historical
content there is to tell about a given Person “x”. Puzzle pieces in the
figure depict an exhibit sample that has been found, which backs up
certain facts about the history of that given person. Two museums,
“a” painted on the left and “b” on the right, are in possession of some
of the samples, namely “1” through “6”. Exhibitions held in one of

5 https://www.w3.org/annotation/wiki/Implementations (last visited 03/12/2018)
6 http://www.phil.uni-passau.de/en/dh/projekte/visit/ (last visited 03/12/2018)

https://www.w3.org/annotation/wiki/Implementations
http://www.phil.uni-passau.de/en/dh/projekte/visit/

6.3 visit - a cultural heritage use case for the anno4j library 219

these two respective museums can now only display those samples
they have on-site, allowing them to only cover about below half of
the history that is potentially been told about “x” (incorporating the
fact that there are two other examples, which are in neither of the
houses).

Historical Content Space about Person x

Museum a’s Samples Museum b’s Samples

1

6

2

54

3

7 8

Figure 56: Exemplary ViSIT Scenario with Two Museums “a” and “b”, both
Issuing an Exhibition about Person “x”.

This circumstance is targeted by the ViSIT Project. Various digital
representations of the museums’ samples are produced, which can
be shared between the participating museums. These representations
can then be applied in different multimedia installations in order to
fill up the “bare” textual representations with not real samples by it-
self, but rather digital replacements. Representations and illustrations
like 3D models, RTI scans, or interactive maps and videos can be in-
corporated in modern applications like operable computers, tablet
stations, or virtual- and augmented reality, in order to fill in the gaps
of a given museums’s inventory while also creating a technically mod-
ern and interactive experience for the visitor. Figure 57 illustrates the
scenario of two museums telling roughly the same historic narration
about the same topic, person “x”, with the utilisation of the ViSIT ap-
plication. While Figure 56 showed two museums that were not able to
synchronise exhibit samples on the fly in order to allow both houses
to tell the narration, ViSIT facilitates this circumstance. By creating
the above mentioned digital representations of the samples, a mu-
seum can request these digital samples and incorporate them into
their narration. This does not induce a house to lend some of the
samples, as the digital samples can fill up missing pieces of the nar-
ration. In Figure 57, museum “a” on the left side complements its
narration of own exhibits “1”, “2”, and “6”, with digital representa-
tions of the samples “3” through “5”, attained by utilising the ViSIT
infrastructure.

With the contributions of this thesis in mind, it quickly gets obvi-
ous how the resulting implementations can benefit the use case of

220 experiments and evaluations

Historical Content Space about Person x

Museum a’s Samples Museum b’s Samples

5454

3 3

7 8

1

6

2

Figure 57: Exemplary ViSIT Scenario Applying the ViSIT Infrastructure to
Digitally “Lend” Foreign Samples in Museum “a”.

the ViSIT Project. In almost the same manner as it is for multimedia
data, descriptive metadata plays an important role in the overall sce-
nario described above. In order to correctly communicate and then
synchronise the available samples on demand, they require definitive
metadata that allows to search and respectively query them.

One of the best-known and prevailing ontologies for the domain of
cultural heritage is the CIDOC Conceptual Reference Model (CRM)
[58], which has been referred to already throughout this work. The
CIDOC CRM is classified as being a complex ontology, originating
from the fact that it covers the whole domain of cultural heritage by
not being specialised to smaller topic domains, as well as simply its
large amount of available RDF classes and their respective hierarchy,
which are stocked by even more unique relationships and properties.

Their data model has received substantial development and effort
and therefore has now gathered 10 years of experience. The CIDOC
CRM is implemented by the CIDOC Documentation Standards Work-
ing Group7 and CIDOC CRM SIG8, which are both working groups of
CIDOC9. It has been accepted as working draft by ISO/TC46/SC4

10

in 2000, and as official standard since 2006 [91], revised in 2014 [92].
Its purpose is to serve as an ontology to which other (if not every)
other possibly heterogenous and specialised cultural heritage infor-
mation can be mapped to in order to eventually represent a com-
monly understandable knowledge base of the whole domain knowl-
edge, therefore aligning with the general idea of the Semantic Web
and Linked Data described throughout this work.

7 http://network.icom.museum/cidoc/working-groups/overview/ (last visited
03/12/2018)

8 http://network.icom.museum/cidoc/working-groups/

crm-special-interest-group/ (last visited 03/12/2018)
9 http://network.icom.museum/cidoc/ (last visited 03/12/2018)

10 https://www.iso.org/committee/48798.html (last visited 03/12/2018)

http://network.icom.museum/cidoc/working-groups/overview/
http://network.icom.museum/cidoc/working-groups/crm-special-interest-group/
http://network.icom.museum/cidoc/working-groups/crm-special-interest-group/
http://network.icom.museum/cidoc/
https://www.iso.org/committee/48798.html

6.3 visit - a cultural heritage use case for the anno4j library 221

With its current major version 6.211 released in May 2015 (and the
from there adapted latest minor version 6.2.312), the model incapsu-
lates 89 classes and 149 unique relationships and properties (which
in most cases do also have the direct inverse relationship that does
semantically convey the opposite of the given relationship) that are
aligned in an RDF class-hierarchy with multiple in- and outwards
branching “rdfs:subClassOf” relationships.

As indicated before, although the model is very dynamic and multi-
functional and therefore allows to cover any topic or domain in the
cultural heritage domain, issues arise quickly when it comes to actu-
ally implementing the model. Even with smaller use cases, the result-
ing RDF graph grows quickly, as the recombination of many different
nodes and relationships is necessary. Additionally, when considering
RDF classes that are positioned deeper in the hierarchy, developers
are confronted with a plethora of various relationships to implement,
even aggravated by the fact that some semantic relationships between
two RDF instances are not directly modelled via a single relationship,
but rather a path over possibly several nodes. This poses the problem
of semantically finding the fitting RDF constructs to convey one’s use
case, paired with the problem of actually serialising the eventual RDF
triples.

Anno4j supports this kind of scenario in various ways. The first,
and probably most impactful benefit, is supported by the generation
capabilities of the library. As stated above, the CIDOC CRM is com-
posed of many RDF classes and relationships, making it hard to write
instance data of the respective model. With many different naming
conventions, also incorporating numbers to enumerate their objects
in ascending order, errors are bound to happen when the RDF data
creation is done by hand. Therefore technical support with the Anno4j
functionality is desirable.

The Anno4j Generation Tool takes the RDFS schema of the CIDOC
CRM (or a representative OWL version of the Erlangen CRM/OWL13)
which results in the generation of Anno4j Java Classes that represent
the CIDOC CRM domain model. With that, developers and users are
able to create triples that are conform to the CIDOC CRM model by
using simple Java Classes, rather than writing the triples by hand.
The direct benefits of this method are more convenient handling, au-
tomated structural integrity of the produced data as the Java Classes
enforce a structure, as well as a more convenient creation of the do-
main knowledge, as the Java Classes present only those relationships
that are directly supported by the given RDF class or inherited from
their superclasses. This way, the user does not have to determine the
allowed relationships and properties on his own.

11 http://www.cidoc-crm.org/Version/version-6.2 (last visited 03/12/2018)
12 http://www.cidoc-crm.org/Version/version-6.2.3 (last visited 03/12/2018)
13 http://erlangen-crm.org/ (last visited 03/12/2018)

http://www.cidoc-crm.org/Version/version-6.2
http://www.cidoc-crm.org/Version/version-6.2.3
http://erlangen-crm.org/

222 experiments and evaluations

A second benefit from applying Anno4j to create cultural heritage
data lies in the validation of created data. As indicated above, a first
step of structural validation happens as the Anno4j Classes dictate a
direct structure on the created triples. This however only affects the
validity in terms of correct RDF class instances and their relationships
and properties amongst each other, while further validation criteria,
like multiplicities or inverse relationships that have been seen in Sec-
tion 4.5.2 and Section 4.5.3, are not considered. As described through-
out this work, data validity is especially important in the Semantic
Web and Multimedia domains, and the domain of cultural heritage is
no exception. Stating cultural and historical facts is especially depen-
dant on correct data, things like dates need to be as correct as possi-
ble. From a technical point of view, the circumstance of the CIDOC
CRM and data validity is even aggravated by the fact that one can-
not assume the same general user as was done throughout this work:
the “non-Semantic Web expert” is estimated to have only few to no
knowledge about Semantic Web technologies, but is expected to have
programming knowledge of object-oriented concepts, Java at best, or
HTTP and REST.

Nevertheless, Anno4j alleviates this circumstance. Its validation fea-
tures can be included to check for the adopted validation require-
ments of the CIDOC CRM in order to enforce their fulfilment before
data is persisted. Otherwise the process of data creation is prohibited
and the user can be prompted to correct the respectively incorrect
data. The technical knowledge barrier in this case cannot be elimi-
nated entirely, but the supported technological access methods allow
for more convenient ways of constructing input interfaces that encap-
sulate the Anno4j functionality in order to also eventually create valid
CIDOC CRM data.

These facts show that the utilisation of the Anno4j library can help
developing applications in the domain of cultural heritage. In addi-
tion, the arguments enlisted here support the claims of the contribu-
tions done throughout this work. The following section will show an
outlook of a feature called “Semantic Zoom”, which allows to convert
the complex CIDOC CRM metadata into a “fuzzier” but more simple
domain model using the SWRL features of the Anno4j library shortly
described in Section 4.8.

a “semantic zoom” feature to introduce an easier mo-
del abstraction layer for the cidoc crm With the CIDOC
CRM being one of the most common metadata models in the domain
of cultural heritage, it is reasonable for a project like ViSIT to mainly
stick with that respective metadata structure. However, as indicated
in this section, the CIDOC CRM allows both very thorough and fine-
grained possibilities to dynamically model a respective use case, but
at the same time it is a very complex model and sometimes compli-

6.3 visit - a cultural heritage use case for the anno4j library 223

cated to apply. This holds true especially when the use case itself is
very shallow. To counteract this, an idea is envisioned that allows to
abstract from the complex syntax of the CIDOC CRM while at the
same time conveying roughly the same semantics with the loss of
only some information.

The Semantic Zoom is a feature that can be implemented using the
SWRL features of Anno4j (see Section 4.8). With this feature it is sup-
posed to be possible to have two models, the CIDOC CRM itself and
a much easier, condensed, semantically similar model, which are able
to be converted to one another on the fly. This is done by supporting
SWRL rules that transform CIDOC CRM triples or even whole paths
into the easier model and vice versa. Figure 58 shows an illustrative
example.

Se
m

an
tic

 Z
oo

m
 In

Se
m

an
tic

 Z
oo

m
 O

ut

Anno4j SWRL Conversion

CIDOC CRM

Condensed Model

Figure 58: Illustration of the Semantic Zoom Feature Possible with Anno4j.

There are two different metadata domains visualised in Figure 58:
on the bottom half there are instance nodes depicted that originate
from the CIDOC CRM, while the top half represents two instance
nodes of a generic model that implements the same semantics as the
CIDOC CRM. With the envisioned Semantic Zoom mechanic by ap-
plying defined SWRL rules via Anno4j, the automated conversion
translates instance data of the one domain model to the other, and
vice versa, depending on which data is created initially. This is de-
picted by the transitions between the two domain layers. Therefore,
a Semantic Zoom Out happens when one examines data in the form
of the top layer, while a possible Semantic Zoom In happens when
more detailed data in the form of the CIDOC CRM is to be regarded.

The benefits of this implementation are as follows. Firstly, the SWRL
rules implemented in the Anno4j library can be run automatically.
This enables the database to hold two graphs that are semantically

224 experiments and evaluations

equal but in two different models. Therefore, access to the underly-
ing semantics can be accessed from both ways. CIDOC CRM experts
can still write CIDOC triples as they are familiar with, while non-
CIDOC CRM experts can write and utilise the easier model and still
require (roughly) the same semantical information. For some applica-
tions it might also be easier to apply the easier model, for example
if the overall semantical relationships between the core information
carriers are to be presented on a web page or similar forms.

Secondly, with the process of data being created in the two-fold way
described above, the resulting data always keeps the claim of being
directly conform to the CIDOC CRM. With an application like this
one and in the world of the Semantic Web, this is always a positive
claim as aligning your results to a well-known ontology or vocabulary
is useful, as it invites others to use the respective data much more
easily and conveniently.

However, as this envisioned idea still represents a conceptual con-
struct, there are still shortcomings or factors that need further plan-
ning and effort in order to produce a thorough feature. The SWRL
feature of the Anno4j library has been described in the outlook sec-
tion of Chapter 4, but a first working version has been implemented
in the most current version of Anno4j. However, it has not yet been
tested in a full stack use case. Furthermore, this feature falls into
the same drawback as they exist with the generation of the Anno4j
Classes out of schemata when it comes to actually defining the SWRL
rules, especially in the case of a complex metadata model. Just as with
implementing Anno4j Classes by hand, the definition of the SWRL
rules by hand can become cumbersome and error-prone. A solution
to streamline this process should be devised in order to follow the
overall claim of the Anno4j library and therefore support a more con-
venient approach.

A slight “inconvenience” exists in terms of possible loss of infor-
mation via the implemented conversion feature. When mapping the
CIDOC CRM to a less complex data model, it is clear that not all in-
formation can be transformed, as there would not be a simplification
possible otherwise. Nevertheless, as described above, this is not only
a drawback but also a beneficial factor, as the easier domain model
can serve other purposes much more conveniently and non-CIDOC
CRM experts can use the data much more easily. Additionally, the
CIDOC CRM data is never lost.

conclusion of the evaluation chapter In summary this
chapter evaluates and confirms the applicability of the technical con-
tribution of this work, namely the Anno4j library. It is started by a
related work section that enlists related approaches that evaluate the
overall ORdfM concept from a general point of view. These results
show, that the concept is deemed very useful in Semantic Web appli-

6.3 visit - a cultural heritage use case for the anno4j library 225

cations and that there are no technical shortcomings that arise from
the incorporation of the respective abstraction layer, but rather many
advantageous factors. All of these implications can be adopted for the
Anno4j library and therefore its core functionality is verified qualita-
tively.

This overall evaluation is then followed by own implemented eval-
uations and benchmarks in order to extend the findings of the re-
lated approaches. The benchmark applies combined functionality of
the Anno4j library, as it takes a (mocked) metadata model schema as
input for the Anno4j Generation Tool in order to generate a domain
model and then persist respective information. Different parameters
of the schema were identified that implement the complexity of the
model on the one hand, and on the other hand these parameters do
have different timely impacts on the creation runtimes of the persis-
tence process, which in terms is evaluated by the benchmark. With
a baseline setting for the parameters that have been inferred to an
average value from publicly available LOD datasets, in the first evalu-
ations single parameters have been varied in order to determine their
impact. Among these six parameters, three were identified as non-
impactful as their variation did not show any impact on the runtime
of initial creations. In contrast, the other three, namely superclasses,
inheritance depth, and the amount of properties and relationships,
showed a polynomial growth in terms of runtimes for increasing val-
ues and therefore are considered as potentially problematic.

Next to the numbers indicating the runtimes, as a side effect, an
assessment of the ontology structure has been gained that allows to
evaluate the complexity of a given RDFS or OWL ontology in order
to estimate their required runtimes. This is very useful, as another
contribution of this work lies in a command line-based tool of the
Anno4j library that is able to pre-generate the Proxy Classes that are
required by the library in order to create instances of Anno4j Classes.
With the approach of the first benchmark, the “classic” procedure of
the library is to create those Proxy Classes, given an ontology, with
the initial creation of a given Anno4j Class. The command line tool
is able to pre-generate these Proxy Classes in order to support them
to a given Java process. Doing so, the time intensive process of creat-
ing the Proxy Classes is skipped, reducing the overall runtime to an
imperceptible minimum. This process has been evaluated in a second
benchmark, showing that the initially problematic parameter impacts
can be reduced to a mean value of only some microseconds.

A follow-up evaluation uses the domain knowledge gained from
the first evaluation and computes paired parameter configurations,
using the same ontology parameters as above. Most of the combina-
tions had expected results and therefore, by being dependant or non-
dependant on each other, have multiplicative or no added impact
on application and instance creation runtimes. There were however

226 experiments and evaluations

some unexpected results between several parameter combinations,
which showed that the prior gained knowledge about the parame-
ters has to be refined and adapted when the parameters are used in
conjunction with each other. The relationship and property count it-
self was estimated to be a so-called hard parameter, but turned out
to be non-dependant on each other parameter and therefore applies
its runtime increases only in isolation. In contrast, the Partial Classes
parameter, which was assumed to be a soft parameter, has heavy im-
pact in the combined runtimes with other parameters and therefore
needs particular attendance, especially as it is a newly added Anno4j
feature to the ORdfM concept. Lastly, the combination of high in-
heritance depth with many super- or parent classes turned out to
be non-computable, which in terms raises interesting topics to be re-
searched in future work. This gained knowledge about the ontology
parameters allows to gain good estimations whether a pre-generation
step of the Anno4j library is reasonable, as it can tune down applica-
tion and creation runtimes to a minimum, regardless of the ontology
parameter setting.

Overall, after the concept and different possibilities of the Anno4j
library have been highlighted throughout this work, this chapter con-
firmed the applicability and the robustness of the library. This claim is
backed up by the application of the library in the real-world project
MICO, which served as further technical embedding and supports
a combination point with the MICO Metadata Model. To extend the
real-world application, this chapter did also describe the ViSIT project
as another use case for the concept and implementation of Anno4j.

6.4 recapitulation of posed research questions

After all contributions and the work done for this thesis has been
documented throughout prior chapters and sections, this section will
recapitulate the research questions that have been formulated at the
very beginning. Thereby, an assessment of the fulfilment of their task
and therefore the anticipated goal of the research questions will be
formulated.

1. How to express, create, and especially recombine the created
results of various heterogenous metadata producers?

The envisioned Semantic Web use case, which was introduced in
Section 1.1.1, demanded the recombination of various information
pieces originating from different participating information peers. As
these peers in general are not known nor interconnected, a common
data model is not applied, which induces that respective informa-
tion pieces need costly and sometimes complicated ad hoc interpre-
tation. To support this scenario, a metadata model is needed that

6.4 recapitulation of posed research questions 227

supports the expression, creation, and especially recombination of
various metadata inputs.

A baseline to do this has been found in the W3C Web Annota-
tion Data Model WADM. This ontology proved to be well suited to
represent so-called Web Annotations, information units that further
describe another item.

The use case from above was then further enhanced by a MICO
Multimedia use case, which can be seen as a specialisation of the
general Semantic Web use case. The Web Annotations of the WADM
could conveniently be transferred to the Multimedia scenario, how-
ever this interpretation posed further requirements to the metadata
model, as provenance, better recombination possibilities, data quality
and validity, as well as traceability are important to suffice the overall
demand of the scenario and consecutively also the research question.

A solution to this is proposed with the MICO Metadata Model
MMM, which is a modular, extensible, and expressive metadata on-
tology for the Multimedia domain, which is used and applied in the
MICO use case. As this use case is a specialisation, the model can be
converted to an overall Semantic Web case without further effort.

The MMM was evaluated with requirements checks from two dif-
ferent perspectives: some were inferred from related work and target
overall Web-conformance, while own defined requirements were in-
ferred from the two use case scenarios mentioned above.

For most of the requirements, the MMM is well suitable and sup-
ports a good solution to the issues, and it therefore poses an answer
to the research question. New and potentially unknown metadata
producers can easily be integrated into the MMM, as it supports well-
defined interfaces that can be implemented in the model and then
be shared with other participating peers. Nevertheless, some of the
requirements arise further issues that are beyond the possibilities of a
data model. The modelling of metadata treated in this research ques-
tion is seen as a part of the overall Semantic Web Technologies, and
the following research questions focus on the topic of enhancing these
technologies and thereby proposing solutions to said issues.

2. Are there ways to lower the initial barrier that is posed by Se-
mantic Web Technologies, which manifests mainly in the fields
of creation, processing, and requesting of the respective seman-
tic data?

The mentioned barrier in this question is expressed in three pillars:
creation, processing, and requesting of metadata. By enhancing a sin-
gle one of the pillars, the overall barrier gets reduced. Therefore it
is reasonable to consider all three of them by itself. The answer to
this question in this work is seen in the implemented Object-RDF-
Mapping Anno4j, which allows users to access the data present in
the Semantic Web by using Java rather than the actual Semantic Web
Technologies.

228 experiments and evaluations

In terms of the creation of RDF data, the process can fully be
mapped to only using Java technologies. With only a little knowl-
edge about Semantic Web internals like URIs and how they interplay
in an RDF graph, a domain model can conveniently be instantiated by
implementing basic Java classes, the so-called Anno4j Classes, which
resemble building plans that are provided with getter and setter pairs
that represent the relationships and properties which can be associ-
ated with the currently considered RDF Class. By plain Java instanti-
ation of those Anno4j Classes, to which the user is assumed to be fa-
miliar with, the respectively created information is translated to RDF
triples on-the-fly and persisted in the particular connected database.

The processing and working with the Semantic Web data does also
get facilitated as well as improved. Both the results of creating and
querying a Semantic Web database are present to the user as common
Java objects, therefore allowing to apply any Java features to the data,
for example code instructions or even testing capabilities. This opens
a wide range of accessibility to the Semantic Web data without impos-
ing an up-front initial barrier to the user. As mentioned above with
the creation of the data, its modification is also persisted on-the-fly
by the Anno4j library.

Lastly, querying capabilities are also enhanced by using the Anno4j
library. The main querying tool for the Semantic Web is the SPARQL
querying language, which is similar to SQL from the relational world.
This especially poses another, sometimes complex, technology that
users have to learn when they want to take part in the Semantic Web.
To counteract this, Anno4j allows for basic querying, which directly
matches for RDF Classes, enabling the user to apply Java features to
the returned set of objects. Also supported is more fine-tuned path-
based querying, which is assumed to be easier to understand than
the pattern-based SPARQL queries. Additionally, the path queries
can be created modularly, adding single query requirements step
by step which are eventually recombined, rather than creating one
large query at once. This range of querying capabilities gives users
the choice between different approaches, eventually reducing efforts
that have to be spent in order to retrieve desired information from a
Semantic Web database.

In summary, these three pillars show that it is possible to reduce
or lower the initial barrier that is posed by Semantic Web Technolo-
gies with an implementation like Anno4j. By altering the underlying
technologies of the processes that users have to apply, the access is
eventually made easier for non-Semantic Web experts. Nevertheless,
the barrier can only be lowered, but most likely not removed com-
pletely. This work however developed further ideas and approaches
that might further increase this circumstance. These are mentioned in
Section 4.8 and later in Section 7.2.

3. With the Anno4j library applied as use case:

6.4 recapitulation of posed research questions 229

3.1 Can Object-RDF-Mappings deal with complex domain mod-
els?

As it has been pointed out by related work [132], a common
agreement exists that ORdfM implementations have issues
when it comes to more complex domain models or ontolo-
gies that are to be used, as the general representative does
not support any automatic features of incorporating the
ontology, or generating the domain model vice versa. The
only way is to create the domain model by hand, which
is error-prone as well as time consuming. With the Anno4j
Generation Tool, this thesis supports a technical solution to
solve this circumstance. An RDFS or OWL schema can be
inserted, triggering a process that automatically generates
the domain model that can then be applied in the Anno4j li-
brary for further utilisation of the ontology via the library’s
features.

3.2 Is the application of complex domain models possible in
an efficient way?

First evaluations of the Anno4j Generation Tool with com-
plex ontologies have shown problematic performance, as
merely the creation of a single instance of an Anno4j Class
took several minutes of processing time. A subsequent anal-
ysis of the involved processes has shown that the merg-
ing of different behaviours for a single Anno4j Class takes
close to 90% of time of the overall process. As a solution,
the Generation Tool has been extended in order to be able
to produce so called Proxy Classes, which contain the orig-
inally created behaviour. These can be supported to the
overall Anno4j project up-front, which reduces subsequent
instantiation processes to an imperceptible minimum. With
only a considerable timing constraint that can be done be-
fore an application is deployed, this feature enables Anno4j
to efficiently deal with complex domain models. The eval-
uations conducted throughout Section 6.2 as well as the
ViSIT project as a real-world use case, which utilises the
CIDOC CRM ontology, give quantitative proof of this claim.

3.3 What can be done with Object-RDF-Mappings in order to
(better) support data consistency?

Throughout this work it has been mentioned that issues in
terms of contained data exist with Semantic Web databases,
and that these need definite attention to make the respec-
tive database useable in a way that was envisioned by the
initial Semantic Web idea. These issues mostly manifest in
terms of data quality, as many databases contain faulty or

230 experiments and evaluations

partly missing data and oftentimes lack descriptive infor-
mation about its intended usage.

This circumstance is alleviated at some occasions by the
utilisation of the Anno4j library. Simply the application of
the structure of Java code and their classes for the corre-
sponding domain model already induces a basic way of
consistency, as the data that is to be created can only fol-
low the structure that is dictated by these Java and Anno4j
Classes. For example, assigned IRIs as well as RDF Class
allocations are fixed, and relationships or properties can
only be assigned to other specifically defined node types
or restricted basic datatypes respectively.

Next to this, several validity requirements can be intro-
duced in RDFS and especially OWL ontologies. These are
also defined as RDF triples and are persisted in the same
database. However, oftentimes these rules are not followed,
as the input data is not necessarily tested for these require-
ments prior to its injection in every database. The Anno4j
library can solve this circumstance, as the process of per-
sisting data can be preceded by a validation check, which
examines if the to be persisted data is conform to defined
validity requirements that are present in the database. If
these are not met, no data is persisted at all and the user
is given feedback about the reason. The definition of the
requirements can also be done conveniently in Anno4j by
adding so-called Schema Annotations, which are added di-
rectly to the Anno4j Classes.

These enhancements to the ORdfM concept can therefore
increase data quality and thereby increase the overall data
consistency.

3.4 Can the application of Object-RDF-Mappings be enhanced
by allowing different access technologies?

While the introduction of more access possibilities to the
database correlates with the same disadvantages as seen
with complex domain models - error-proneness as well as
a time consuming process - it can open the database for
users that are not familiar with Semantic Web Technologies
via other standards and protocols.

For Anno4j, the expansion of access technologies has been
done using the HTTP protocol, aligning to a RESTful API
structure oriented towards the Spring framework. Its struc-
tured approach can be combined with the Anno4j Classes,
therefore not imposing many changes to the basic data en-
tities. The necessary remaining additions to the domain
model can either be written by hand if they need to be

6.4 recapitulation of posed research questions 231

fine-tuned, while a basic HTTP behaviour can be automat-
ically generated via the Anno4j Generation Tool, which is
improved by such a functionality.

Altogether, this HTTP functionality allows to lift Anno4j
and the ORdfM concept to another level of accessibility, as
a generated RESTful API can be used in other scenarios
as the “basic” application of the mapping. Additional ac-
cess possibilities are thereby opened for users, as they can
then choose between classic SPARQL, standard Anno4j ac-
cess, or HTTP requests to interact with a Semantic Web
database.

Part V

S U M M A RY A N D C O N C L U S I O N

7
R É S U M É

7.1 conclusion

The setting for this thesis is given by the Semantic Web, an “exten-
sion” to the universal Web with the focus on lifting a “Web of Docu-
ments” to a Web that elevates its contained data and information in a
way that computers are then able to “understand” it and hence have
increased capabilities of working with it. The classic Web of Docu-
ments was mainly designed for humans to interact, so therefore the
information is represented in a way for humans to process visually,
while computers can only use this information to a small degree, if at
all.

To counteract this circumstance, the vision of the Semantic Web
coined by Tim Berners-Lee in 1998 supports guidelines, best prac-
tices, and concepts that should be met and applied by developers
and applications that want to take part in the Semantic Web and its
corresponding Web of Data. Since its first days, the Web of Data
is constantly growing and exhibits exponential growth, constituting
1139 distinct datasets and knowledge bases that are openly accessible.

It has been seen that the uptake of this idea is mainly met in the
scientific sector, while the economic world or non-scientific institu-
tions rarely apply Semantic Web technologies in order to participate
in the Web of Data and therefore they can not profit from its benefits.
However, particularly this low uptake in other sectors does contra-
dict the original idea of the Semantic Web. With every contribution
to the overall knowledge base, every participating peer could benefit.
From simple things like having sheerly more data to more complex
features like peer reviews of inserted data or the interlinking of the
given data which allows for the discovery of more continuative data,
the beneficial factors are numerous.

As a motivational standpoint for this work, several blocking factors
that impede the concept of the Semantic Web or rather the uptake of
the Semantic Web technologies have been assumed. Oftentimes, in-
sufficient knowledge about those respective technologies hinder devel-
opers to lift their application to be conform to the Semantic Web, as
they are in many cases familiar with other concepts and do not want
to invest the timely effort to familiarise themselves with the respective
languages that would be required. Secondly, the Semantic Web tech-
nologies have formal underpinnings and therefore incorporate formal
semantics as well as logics that need to be applied in order to make
full use of given Semantic Web data. Lastly, existing knowledge bases

235

236 résumé

are hard to access technologically or manifest inconsistent data, eventu-
ally hampering or preventing actual use of the contained data at all.
In the end, individual factors or a combination of them might lead to
the same result: developers that are discouraged to use the Semantic
Web.

The bits and pieces of information that represent the basic building
blocks in the Web of Data are called metadata, descriptive informa-
tion about data that characterises it in a semantical and high-level
way. A very prominent domain of metadata is the multimedia do-
main, which is also very dominant in the Web world of today, and
therefore one can see a potentially close relation between multimedia
and the Semantic Web. The main items of this domain are constituted
by videos, audio, pictures, and text. For those the metadata plays an
important role as the describing information is of essential impor-
tance when it comes to making the multimedia item available and
searchable online.

This work showed an approach to tackle the issues of the Semantic
Web described above in a multimedia-oriented use case. Therefore,
Chapter 2 introduced the concept of the Semantic Web as a whole
by defining its vision and requirements, also delimiting it against
other concepts that are similar or closely related. Then, the basics
of Semantic Web technologies have been explained which are con-
stituted by the Resource Description Framework RDF and its de-facto
standard querying language SPARQL, the SPARQL Protocol and RDF
Query Language. These have then been accompanied by the definition
of RDF ontologies and vocabularies, accumulations of defining schema
descriptions that instruct a structural format on RDF metadata al-
lowing for the specification of a certain domain. Aligning to these
schemata when producing metadata allows direct understanding and
interpretation on the one hand. On the other hand querying gets fa-
cilitated, as queries can be aligned structurally towards the defined
schemata in order to request desired information. The Resource De-
scription Framework Schema RDFS as well as the more detailed Web
Ontology Language OWL stand for the commonly known representa-
tives of ontology modelling languages.

With the use case of describing multimedia metadata in mind, af-
ter an enlistment of related work in the fields of both multimedia
metadata and efforts to lift metadata description to the Semantic Web,
which yielded fundamental insights, Chapter 3 describes the contribu-
tion comprised of the design and implementation of a comprehensive
metadata model for the multimedia domain. Therefore the W3C’s
Web Annotation Data Model WADM with its Web Annotations is imple-
mented as a baseline, constituting a modular structure for the infor-
mation pieces of the describing metadata. Applying this structure, a
syntactical distinction is made between the actual semantical content
of a piece of information, and its target, which represents the mul-

7.1 conclusion 237

timedia item or subpart of it that is actually referenced by the Web
Annotation. This allows a fine-grained modelling of metadata that en-
ables rich and comprehensive querying capabilities. This annotation
structure has been adapted and extended by the MICO Metadata
Model MMM, lifting the concept of the Web Annotation to a multi-
media use case. This is done by aligning the described distinction of
content and target to multimedia requirements and the addition of
modules for composition and provenance information between mul-
tiple annotation results. This eventually allows to recombine various
metadata sources for one given multimedia input, which are also
comprised by a provenance chain that enables traceability between
finer-grained metadata processes. In the end, a thorough, modularly
structured, and rich metadata background can be produced, allow-
ing for comprehensive querying capabilities which thus enables an
enhanced applicability and usability of the initial multimedia item.

The concept of metadata modelling as well as such comprehensive
metadata models like the MICO Metadata Model are necessary in or-
der to support domain-oriented guidelines to users for both creating
and consuming metadata, eventually increasing both the metadata’s
quality as well as its applicability. As indicated above, in the current
state of the Semantic Web, many different datasets originating from
various domains exist and can freely be used. However, as also de-
scribed in Chapter 1 and the introduction of this section, metadata
models on their own seem not sufficient enough to attract many users,
especially in the economical sector, regardless of its potential. In this
thesis, it has been assumed that the technical barrier in order to adopt
the Semantic Web technologies is to high and therefore potential de-
velopers are discouraged. As a solution to these problems, a contri-
bution of this thesis exists in the implementation and description of
the Anno4j library. It follows the ORdfM concept which is similar to
the ORM concept of the relational world, with the difference that it
deals with RDF data rather than relational data. By using the library
it is possible to convert RDF data into Java objects, a concept that the
assumed developer is familiar with, and vice versa. Therefore it can
be abstracted from the interactions and communication processes to
deal with the RDF data, enabling the user to interact with metadata
while only needing low pre-knowledge of the Semantic Web tech-
nologies. These interactions are further diversified by the library by
allowing different querying mechanisms which differ in the access
technology as well as their “difficulty” to use. Additional features
like the code generation and the validation features further increase
the overall usability of the library, decrease development efforts, and
enable database requirements like the well-known ACID criteria on
the level of the abstraction layer.

To bring all the above together and at the same time show a practi-
cal application of the concepts and contributions, a third contribution

238 résumé

exists in the incorporation of the MMM and the Anno4j library in the
MICO Platform. This platform is a multimedia analysis framework
that anticipates the registration of so called (multimedia) extractors,
autonomously working processes that can register themselves at the
platform, which are then put together in workflow chains in order to
analyse input multimedia step by step, eventually creating metadata
results. With the propagation of produced results back to the plat-
form, a combined metadata background is generated for the analysed
multimedia items. All of this aligns with the multimedia metadata
domain described above, so the MMM poses the metadata structure,
while the Anno4j library is utilised as an abstraction layer in order
to facilitate metadata communication, production, and consumption
for the extractor developers. These developers are assumed as users
who are not familiar with the Semantic Web technologies and who
cannot invest effort into learning these technologies as well, as they
have a complicated task at hand already. In addition to the technical
implementation, a metadata workflow, called the MICO Metadata
Lifecycle, was designed and also introduced to the Platform imple-
mentation. This lifecycle, and metadata lifecycles in general, allow a
more detailed view on the core steps that metadata undertakes from
production over adjustment up to the point of metadata consump-
tion, enabling an even better approach for the overall metadata back-
ground of the initial multimedia item.

Last but not least, Chapter 6 enlists various experiments together
with evaluations in order to support technical backing for the claims
made for the ORdfM concept and hence Anno4j throughout the work.
This is started by a related work section that highlights evaluations
of external research, which verifies the applicability of the ORdfM
concept from a general standpoint. Runtime evaluations show that
the incorporation of the abstraction layer does not induce unbearable
timing constraint, while other results confirm a definitive beneficial
influence in development effectivity when using the ORdfM concept.
As the Anno4j library therefore can be seen as backed up from an
overall standpoint, these related work experiments are then comple-
mented by own evaluations which target the new features that are
introduced to the Anno4j library, which are not present in related
approaches. Conclusions of evaluations are drawn in terms of which
structural features of a given RDF/OWL schema are runtime-critical
for the Anno4j Generation Tool in order to be able to make decisions
if a generation step is reasonable or not. Initial runtime issues were
detected when working with the tool and complex ontologies, but at
the same time a solution is introduced to the library that allows con-
venient work even with these complex ontologies. Therefore, with
only an initial and timely fixed effort for the generation of domain
models, the Anno4j library can be used with any size of schemata
without any runtime difficulties. With the ViSIT Project, another real

7.2 future work and outlook 239

world use case is presented that poses another application of another
domain, the cultural heritage, that benefits from the application of
the Anno4j library.

The contributions in this work show an approach to bring Seman-
tic Web technologies closer to people who are not familiar with them,
eventually increasing the range of the Semantic Web. With this, a
large community could not just utilise but also contribute to a com-
mon knowledge base which directly illustrates the original vision of
the Semantic Web. The assumed issues that build up the initial barrier
can be solved with the proposed approaches. Insufficient knowledge
is reduced, as developers interact with familiar concepts rather than
Semantic Web technologies. This argument does also hold true for the
formal underpinnings, from which our approach can abstract from.
Last but not least, inconsistent data is prohibited by validation fea-
tures of Anno4j, while the technological access is diversified via dif-
ferent access technologies from which the user can choose from. Even-
tually, this approach was embedded into the multimedia domain, im-
plementing an own metadata model to represent jointly produced
metadata backgrounds for input multimedia items at the MICO Plat-
form. Every contribution was confined with and at the same time
learned from related work and approaches. In addition, some of the
chapters did also enlist possible extensions that form an outlook and
further improvements that exceed the limitations of this work. Added
with some further ideas, these were the following.

7.2 future work and outlook

The MMM already features a modular and extensible structure to
incorporate new kinds of metadata, although a direct extension for
existing metadata standards, like the MPEG-7 structure, would be
very useful in order to allow users an out of the box utilisation of the
model. Nevertheless, especially with the combination of the MMM
and its application in the Anno4j library, respective implementations
could enhance the applicability of already existing metadata at the
point of time when the metadata is consumed in order to play out cor-
responding multimedia items. At the moment, the user is prompted
to apply own strategies to consume the metadata. With a more (semi-
) automated procedure to utilise the information of the MMM, the
consumption step could be lifted to even better applicability for mul-
timedia files.

Envisioned additions to the Anno4j library have been described in
more detail in Section 4.8. These included the so-called Object Queries,
a way to query RDF data via Anno4j by issuing Java objects rather
than queries, the SWRL Extension, a way to decouple domain mod-
elling from general development in Anno4j, and a recommendation
feature with corresponding MMM implementation, allowing to find

240 résumé

similar entities in an RDF graph, which would be especially useful in
a domain like the MICO Project.

Another feature for Anno4j that originated from the envisioned
MICO+ idea and the extended schema functionality, is the reversed
direction that the Generation Tool fulfils: generate the RDFS/OWL
schema given an implemented domain model in Anno4j. This would
close the circle between RDF data and Java objects from an abstract
standpoint and would further increase the convenience of implement-
ing new applications and especially improve the possibility of updat-
ing already existing applications. Next to this feature, an improved
MICO Platform, which is called the MICO+ Platform, would greatly
benefit from the additional features of Anno4j in version 2.4, namely
the schema generation, validation features, as well as the RESTful
implementation of Anno4j.

The experiments and evaluations that have been shown throughout
Section 6.2 have shown that there is further effort needed in terms of
some of the identified ontology parameters. Especially the combina-
tion between inheritance depth and the associated superclasses of a
given Anno4j Class turned out to be problematic to compute when
they are set to a value of four or higher. Although this is rarely met in
common ontologies, this opens interesting questions as to why this
combination leads to timely problematic computations of the library.
Furthermore, the new introduced feature of Partial Classes and there-
fore also the respective ontology parameter proved to be non-harmful
in isolation, but assumes more costly factors when combined with
other ontology parameters. This also opens possibilities for further
future work, as it is a novel feature to the ORdfM concept introduced
by Anno4j.

Part VI

A P P E N D I X

A
A P P E N D I X

a.1 the mico project

The following sections enlist information about the overall MICO
project in Section A.1.1 and one of its core components, the MICO
Broker, in Section A.1.2.

a.1.1 Background of the MICO Project

Most of the contributions of this thesis are established in the Media
in Context MICO Project1 2 [2], which is an FP7

3 research and inno-
vation project that lasted from 2013 to 2016. Its main objective is to
support federated analysis capabilities for multimedia objects, even-
tually creating metadata that greatly increases the object’s usability.
Figure 59 visualises the core workflow.

MICO
Platform

Picture Analyser

Audio Analyser

Text Analyser

Input

O
utput

Combined
Metadata
Background
for the Video

Figure 59: The Core Workflow of the MICO Platform.

The MICO Platform constitutes the centrepiece of the whole imple-
mentation of the project and is developed as a standalone software.
Autonomously working multimedia extractors can register at the plat-
form instance and will be called by the platform with respective input
to analyse. As the context is given by multimedia, the input is mainly
constituted by various multimedia types like video, audio, images,
and text, but own potential high-level input can also be processed as
long as the extractors are designed to work with it. As a result, the
MICO Platform will combine all the generated metadata that is deliv-
ered by the single extractors in order to combine it into a metadata

1 https://www.salzburgresearch.at/projekt/mico/ (last visited 03/12/2018)
2 http://mico-project.eu/ (last visited 03/12/2018)
3 https://ec.europa.eu/research/fp7/index_en.cfm (last visited 03/12/2018)

243

https://www.salzburgresearch.at/projekt/mico/
http://mico-project.eu/
https://ec.europa.eu/research/fp7/index_en.cfm

244 appendix

background for the multimedia file. Extractors can also be combined
and work in so called pipelines, propagating intermediary results be-
tween extractors to benefit from results that have been produced by
prior extractors. With the combined metadata it is envisioned to en-
hance the applicability of the initial multimedia file in thorough and
rich fashion, eventually even discovering hidden semantics, applica-
tions, and usage scenarios that had not been discovered yet.

The intention of the example use case shown in Figure 59 is to
determine if a given video file contains the concept of a dog in it
and therefore features a video eventually showing a dog as input for
the MICO Platform. Three different (very generic and high-level) ex-
tractors analyse different parts of the video. The Picture Analyser pro-
cesses single images or frames to determine if a dog-like shape occurs
during the playtime, the Audio Analyser processes the audio stream of
the video file in order to potentially detect barking noises, while the
Text Analyser can filter through textual information like the title, po-
tential comments, or descriptions, in order to find the dog concept
or something similar in the textual representations. Every extractor
will then provide a confidence about its result. While every result by
itself might only give a vague estimation about the video containing
a dog, the combined result of all three extractors contains way more
information. Also, all produced results are presented uniformly and
combined at the same place, allowing for more comprehensive inter-
pretation and application.

The project altogether featured several technical work packages
that were interconnected and based on one another. These packages
dealt with the following topics:

multimedia extractors and orchestration This work pack-
age dealt with the development and implementation of the core
workers in the MICO workflow: the (multimedia) extractors.
The various multimedia formats required different implemen-
tation efforts and there were also new additions to the extrac-
tor domain in the form of animal detectors. Additionally, the
difficult task of orchestrating these autonomous extractors in
pipelines was also part of this work package.

cross-multimedia metadata modeling All the implemented
extractors produced a plethora of different varying metadata
outputs. The main goal of this work package was the devel-
opment of a dynamic multimedia metadata model that is able
to comprise all the extractors’ final and intermediary results in
modular and structured fashion to enable rich and comprehen-
sive querying capabilities. Next to this fact, provenance informa-
tion and the recombination of produced results were envisioned.
After the metadata model was devised it also turned out that ef-

A.1 the mico project 245

forts were necessary to support both the steps of creating and
consuming said metadata model.

cross-media querying With the extractors and all their diverse
results combined in the metadata, this work package aimed
for the implementation of comprehensive querying mechanisms
and possibilities to maximise the value and information that can
be gained from the produced metadata backgrounds in order to
increase the applicability of the input multimedia data.

cross-media recommendation Last but not least, with all the
technical foundations of the former work packages, this work
package devised recommendation strategies that apply the in-
formation gained from prior steps in order to compare and
eventually recommend the analysed multimedia files between
one another. In addition, the recommendation is not only re-
stricted to single media types, but can also produce cross-media
recommendations. Doing so, the analysis of a picture can lead
to the recommendation of a video with the same semantic con-
tent.

From the descriptions of the work packages it can be seen that
the contributions of this thesis mainly target the Cross-Multimedia
Metadata Modeling work package. However the described results do
have impact on the other work packages as well, which is apparent
throughout this thesis.

a.1.2 Development Cycle of the MICO Broker

As with other technical components like Anno4j and the MMM, the
MICO Broker [4] started in a functionally rudimentary version, but
has been extended and improved over the course of the MICO Project.
The explanations of the extractors and their interplay with the MICO
Platform were based on the simpler and earlier implementation, called
“Broker v1”, as it is sufficient and more to the point for the content of
this work. However, for a well rounded explanation of the MICO Plat-
form, “Broker v2” and partly “Broker v3” will also be recapped here.

Although already robust and stable, the initial implementation of
the broker had several shortcomings that required the implementa-
tion of the more thorough following version. This was induced espe-
cially by the fact that “manual” creation of workflows or pipelines,
in the sense described above in which simple Strings for input and
output specification were matched, was not sufficient enough for the
workflow-oriented character of the MICO Platform. In addition, us-
ing this kind of matching, often times unintended or useless pipelines
were created, or other counterproductive shapes like loops could oc-
cur. This circumstance needs to be backed up by richer extractor

246 appendix

information in order to support more thorough pipeline matching.
Next to this, things like missing test potential, the support of extrac-
tor modes (for more differentiated application of the same extractor
type, already discussed in Section 3.3.5), better workflow functional-
ity in terms of error handling, workflow status, and progress tracking
or logging, were necessary for a full-stack usable implementation of
the MICO Broker.

The “simple” extractor definition was extended to have, next to
still incorporating a textual representation of its mime types for in-
put and output files, a syntactic type and a semantic type for input and
output. The former gives a more detailed description about the file
type that is either produced or required, and refers to an RDF class
of the MMMterms ontology [20], which contains predefined result
metadata constructs of the MICO use case for metadata input and
output, and to a Dublin Core type [34] for binary data. The semantic
type description gives more subjective semantical information about
the extractor in combination with its use case scenario and is gener-
ally assigned by hand. This is mostly done in tag form and can be
updated frequently, being especially useful for workflow administra-
tors. While the mime and syntactic type should always be supported
at deployment of the extractor, the semantic type can be addressed
later on. All of this configuration information is also persisted in the
triplestore of the respective MICO Platform instance, making it acces-
sible for every component of the whole implementation if necessary.

To replace the manual matching of extractors in pipelines or work-
flows, a semi-automatic implementation of the orchestration unit sup-
ports a more thorough fashion to pipeline extractors. Various compo-
nents implemented in v2 support this. The “registration service” ac-
cepts registering extractors and collects I/O configuration data that
is delivered by respective extractors, which then can be applied by
the “workflow planner” unit. The result is the semi-automatic structure
which suggests matching extractors depending on their information.
The user can then fine-tune these recommended pipelines or use them
as they are. The “item injector” then analyses injected media files and
addresses them to appropriate selected and loaded pipelines. Finally,
the “workflow executor” supports correct forwarding of intermediate
and final results to analysis processes with the remaining extractors.

A.2 further informations and appended data 247

a.2 further informations and appended data

The following list enumerates rules that are to be applied when RDF
data is drawn as a graph in this work. They imply which RDF feature
is illustrated at what place in the graph.

1. rdf:Class objects will be illustrated as rectangles with solid lines.
Their respective IRIs will be printed inside using namespace
prefixing.

2. Instance nodes as well as blank nodes are drawn as ellipses
with solid lines. For the normal instances, IRIs are printed in-
side with namespace prefixing. If necessary for the respective
example, blank nodes will receive a local IRI, otherwise the el-
lipses will be blank.

3. Literals are illustrated as rounded rectangles with solid lines.
Their values are printed inside, most times their datatype will
be omitted.

4. rdf:Property objects are drawn as solid arrows from subject to
object. Their IRIs are displayed on top of the arrow with the
application of namespace prefixing.

5. Subgraphs or named graphs (as described after this disclaimer)
are displayed as rounded rectangles with dashes lines that are
spanned around those nodes and edges that are included in the
given named graph. The IRI of the subgraph is written some-
where inside of this rectangle, also using namespace prefixing.

6. Whenever a node or edge is drawn with dashed lines rather
than normal solid lines, the circumstance of omitting further
graph elements is intended. This is done for reasons of higher
understandability and straightforwardness.

7. Colours may be used in different occasions of the graph, but
they do not have any semantic meaning. They are used to in-
crease the readability of the given graph by for example group-
ing several elements of the same colour or confining elements
from one another.

List 1: Set of Applied Rules for RDF Graph Illustrations.

248 appendix

Table 3: RDF Ontologies and Vocabularies with Their Respective Namespace IRI and its RDF
Prefix Used in This Work

Specification Name Prefix Namespace

Web Annotation Data Model
[143]

oa http://www.w3.org/ns/oa#

MICO Metadata Model
[23]

mmm
http://www.mico-project.eu/

ns/mmm/2.0/schema#
MICO Metadata Model Terms

[20]
mmm-
terms

http://www.mico-project.eu/
ns/mmmterms/2.0/schema#

Representing Content in RDF
[100]

cnt http://www.w3.org/2011/content#

Dublin Core Elements
[34]

dc http://purl.org/dc/elements/1.1/

Dublin Core Terms dcterms http://purl.org/dc/terms/

Dublin Core Types dctypes http://purl.org/dc/dcmitype/
Friend-of-a-Friend Vocabulary

[38]
foaf http://xmlns.com/foaf/0.1/

Provenance Ontology
[140]

prov http://www.w3.org/ns/prov#

Resource Description Framework
[151]

rdf
http://www.w3.org/

1999/02/22-rdf-syntax-ns#
RDF Schema

[72]
rdfs

http://www.w3.org/
2000/01/rdf-schema#

RDF Review Vocabulary
http://vocab.org/review/terms.html

ref http://purl.org/stuff/rev#

http://vocab.org/review/terms.html

A.2 further informations and appended data 249

pa
rt

mm
m:

Pa
rt

rdf
:ty

pe

ex
tra

cto
r1

mo
de

1

mo
de

2

mm
m:

Ex
tra

cto
r

rdf
:ty

pe

"A
ud

io
De

mu
ltip

lex
"

mm
m:

ha
sN

am
e

"2
.2.

1"
mm

m:
ha

sV
ers

ion

"m
ico

-ex
tra

cto
r-a

ud
iod

em
ux

"
mm

m:
ha

s
St

rin
gId

mm
m:

ha
sM

od
e

mm
m:

ha
sM

od
e

inp
ut

ou
tpu

t
pa

ram

se
ma

nti
cT

yp
e

"V
ide

o"
mm

m:
ha

s
Na

me

"V
ide

o c
on

tai
nin

g
an

 au
dio

 tra
ck

"
mm

m:
ha

sD
es

cri
pti

on

mm
m:

ha
s

Se
ma

nti
cT

yp
e

vid
eo

/m
p4

vid
eo

/
mp

eg
mm

m:
ha

s
Mi

me
Ty

pe

mi
co

:V
ide

o
mm

m:
ha

s
Sy

nta
cti

cT
yp

e

vid
eo

/
qu

ick
tim

e
vid

eo
/x-

ms
vid

eo

se
ma

nti
cT

yp
e

2
"D

em
ux

ed
 Au

dio
"

mm
m:

ha
s

Na
me

"D
em

ux
ed

 an
d

de
co

de
d a

ud
io

tra
ck

 of
 th

e i
np

ut
vid

eo
. T

he
 ou

tpu
t

sa
mp

lin
g

fre
qu

en
cy

 is
 a

us
er-

de
fin

ed

pa
ram

ete
r."

mm
m:

ha
sD

es
cri

pti
on

mm
m:

ha
s

Se
ma

nti
cT

yp
e

mm
m:

ha
s

Mi
me

Ty
pe

mi
co

:A
ud

io
mm

m:
ha

s
Sy

nta
cti

cT
yp

e

au
dio

/w
av

"S
am

pli
ng

 Fr
eq

ue
nc

y"
mm

m:
ha

s
Na

me

"1
60

00
"

rdf
:va

lue

"A
ud

ioD
em

ux
"

mm
m:

ha
s

St
rin

gId

"M
IC

O
se

rvi
ce

 fo
r

de
mu

ltip
lex

ing
 au

dio

str
ea

m
fro

m
vid

eo
 fil

es
"

mm
m:

ha
s

De
sc

rip
tio

n

mm
m:

ha
s

Inp
utD

ata
mm

m:
ha

s
Ou

tpu
tD

ata
mm

m:
ha

s
Pa

ram

oa
:se

ria
liz

ed
By

mm
m:

se
ria

liz
ed

W
ith

mm
m:

Mo
de

rdf
:ty

pe

rdf
:ty

pe

Fi
gu

re
6

0
:

Ex
em

pl
ar

y
Ex

tr
ac

to
r

M
od

el
fo

r
a

M
IC

O
A

ud
io

-D
em

ux
Ex

tr
ac

to
r,

Le
av

in
g

O
ut

So
m

e
Si

de
In

fo
rm

at
io

n
fo

r
th

e
Sa

ke
of

C
la

ri
ty

.

250 appendix

1 Anno4j anno4j = new Anno4j();

2

3 ItemMMM item = anno4j.createObject(ItemMMM.class);

4

5 AssetMMM asset = anno4j.createObject(AssetMMM.class);

6 asset.setFormat("image/jpg");

7 asset.setLocation("http://example.org/assets/pandaPicture.jpg");

8 item.setAsset(asset);

9

10 // Create Colorlayout Part

11 PartMMM colorlayoutPart = anno4j.createObject(PartMMM.class);

12 colorlayoutPart.addInput(item);

13

14 ColorLayoutBody colorLayoutBody = anno4j.createObject(ColorLayoutBody.class);

15 colorLayoutBody.setYDCCoeff("38");

16 colorLayoutBody.setCbDCCoeff("22");

17 colorLayoutBody.setCrDCCoeff("34");

18 colorLayoutBody.setCbACCoeff("15 24");

19 colorLayoutBody.setCrACCoeff("18 9");

20 colorLayoutBody.setYACCoeff("11 28 13 18 9");

21

22 SpecificResource colorlayoutTarget = anno4j.createObject(SpecificResource.class);

23 colorlayoutTarget.setSource(item);

24

25 colorlayoutPart.addBody(colorLayoutBody);

26 colorlayoutPart.addTarget(colorlayoutTarget);

27

28 // Create Animaldetection Part

29 PartMMM animaldetectionPart = anno4j.createObject(PartMMM.class);

30 animaldetectionPart.addInput(item);

31

32 AnimalDetectionBody animaldetectionBody = anno4j.createObject(AnimalDetectionBody.

class);

33 animaldetectionBody.setValue("Panda");

34 animaldetectionBody.setConfidence(0.9);

35

36 SpecificResourceMMM animaldetectionTarget = anno4j.createObject(

SpecificResourceMMM.class);

37 FragmentSelector selector = anno4j.createObject(FragmentSelector.class);

38 selector.setSpatialFragment(300, 150, 50, 70);

39 selector.setConformsTo(SelectorFactory.getMediaFragmentsSpecification(anno4j));

40

41 animaldetectionTarget.setSelector(selector);

42 animaldetectionTarget.setSource(item);

43

44 animaldetectionPart.addBody(animaldetectionBody);

45 animaldetectionPart.addTarget(animaldetectionTarget);

Listing 30: Exemplary Creation of an MMM Item with Two Part Annotations
Representing a ColorLayout and Animaldetection Result.

A.2 further informations and appended data 251

m
m

m
:It

em
rd

f:t
yp

e
ite

m

co
lo

rla
yo

ut
P

ar
t

m
m

m
:P

ar
t

rd
f:

ty
pe

an
im

al
de

te
ct

io
n

P
ar

t

m
m

m
:h

as
P

ar
t

co
lo

rla
yo

ut
B

od
y

m
m

m
:h

as
B

od
y

m
m

m
:h

as
Ta

rg
et

co
lo

rla
yo

ut
Ta

rg
et

an
im

al
de

te
ct

io
n

B
od

ym
m

m
:h

as
B

od
y

m
m

m
:h

as
Ta

rg
et

an
im

al
de

te
ct

io
n

Ta
rg

et

"h
ttp

://
ex

am
pl

e.
or

g/
as

se
ts

/p
an

da
P

ic
tu

re
.jp

g”
m

m
m

:h
as

Lo
ca

tio
n

“im
ag

e/
jp

g“
dc

:fo
rm

at

as
se

t1

m
m

m
:h

as
A

ss
et

m
m

m
:A

ss
et

rd
f:t

yp
e

"3
8"

"2
2"

"3
4"

"1
1

28
 1

3
18

 9
"

"1
5

24
"

"1
8

9"

m
m

m
te

rm
s:

Y
D

C
C

oe
ff

m
m

m
te

rm
s:

C
bD

C
C

oe
ff

m
m

m
te

rm
s:

C
rD

C
C

oe
ff

m
m

m
te

rm
s:

C
bA

C
C

oe
ff

m
m

m
te

rm
s:

C
rA

C
C

oe
ff

m
m

m
te

rm
s:

YA
C

C
oe

ff

m
m

m
te

rm
s:

C
ol

or
La

yo
ut

B
od

y
rd

f:
ty

pe
m

m
m

:S
pe

ci
fic

R
es

ou
rc

e
rd

f:
ty

pe

m
m

m
te

rm
s:

A
ni

m
al

D
et

ec
tio

nB
od

y

"0
.9

"^
^x

sd
:d

ou
bl

e

“P
an

da
”

rd
f:t

yp
e

rd
f:v

al
ue

m
m

m
te

rm
s:

ha
s

C
on

fid
en

ce
se

le
ct

or

oa
:F

ra
gm

en
t

S
el

ec
to

r

"x
yw

h=
30

0,
15

0,
50

,7
0"

"h
ttp

://
w

w
w

.w
3.

or
g/

TR
/m

ed
ia

fra
gs

/"

m
m

m
:h

as
S

el
ec

to
rrd

f:t
yp

e

rd
f:v

al
ue

dc
te

rm
s:

co
nf

or
m

sT
o

m
m

m
:S

pe
ci

fic
R

es
ou

rc
e

rd
f:

ty
pe

oa
:h

as
S

ou
rc

e

m
m

m
:h

as
In

pu
t

m
m

m
:h

as
In

pu
t

rd
f:

ty
pe

Fi
gu

re
6

1
:

R
es

ul
ti

ng
R

D
F

G
ra

ph
fr

om
th

e
C

od
e

En
lis

te
d

in
Li

st
in

g
3

0
,C

re
at

in
g

an
M

M
M

It
em

w
it

h
Tw

o
Pa

rt
A

nn
ot

at
io

ns
R

ep
re

se
nt

in
g

a
C

ol
or

La
yo

ut
an

d
A

ni
m

al
de

te
ct

io
n

R
es

ul
t.

252 appendix

1 // Necessary configuration

2 OntGenerationConfig config = new OntGenerationConfig();

3 // Language preference for identifiers and javadoc

4 config.setIdentifierLanguagePreference("en", OntGenerationConfig.UNTYPED_LITERAL);

5 config.setJavaDocLanguagePreference("en", "de", OntGenerationConfig.

UNTYPED_LITERAL);

6

7 // Ambiguity checks turned off

8 config.setRDFSLabelAmbiguityChecking(false);

9 config.setFileOrFragmentAmbiguityChecking(false);

10

11 // Java base package where class files should be created

12 config.setBasePackage("com.someproject.pao.model");

13

14 JavaFileGenerator generator = new OWLJavaFileGenerator();

15 // Path to the respective schema file

16 generator.addRDF("/some/arbitrary/filepath/generationPAO2.rdfs.xml", "RDF/XML");

17 // Trigger the process by supporting the config and path to the destination

directory

18 generator.generateJavaFiles(config, new File("/some/arbitrary/filepath/src/java/

com/someproject/pao/model"));

Listing 31: Exemplary Use of the Anno4j Generation Tool.

A.2 further informations and appended data 253

1 <rdf:RDF xml:lang="en" xml:base="http://petsandowners.org/"

2 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

4 xmlns:foaf="http://xmlns.com/foaf/0.1/">

5

6 <rdfs:Class rdf:about="Human">

7 <rdfs:label xml:lang="en">Human</rdfs:label>

8 </rdfs:Class>

9

10 <rdfs:Class rdf:about="Animal">

11 <rdfs:label xml:lang="en">Animal</rdfs:label>

12 </rdfs:Class>

13

14 <rdfs:Class rdf:about="Cat">

15 <rdfs:subClassOf rdf:resource="Animal"/>

16 <rdfs:label xml:lang="en">Cat</rdfs:label>

17 </rdfs:Class>

18

19 <rdf:Property rdf:about="has_Owner">

20 <rdfs:label xml:lang="en">has owner</rdfs:label>

21 <rdfs:domain rdf:resource="Cat"/>

22 <rdfs:range rdf:resource="Human"/>

23 </rdf:Property>

24

25 <rdf:Property rdf:about="has_Cat_Friend">

26 <rdfs:label xml:lang="en">has cat friend</rdfs:label>

27 <rdfs:domain rdf:resource="Cat"/>

28 <rdfs:range rdf:resource="Cat"/>

29 </rdf:Property>

30

31 <rdf:Property rdf:about="http://xmlns.com/foaf/0.1/age">

32 <rdfs:label xml:lang="en">age</rdfs:label>

33 <rdfs:domain rdf:resource="Cat"/>

34 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

35 </rdf:Property>

36

37 <rdf:Property rdf:about="http://xmlns.com/foaf/0.1/name">

38 <rdfs:label xml:lang="en">name</rdfs:label>

39 <rdfs:domain rdf:resource="Cat"/>

40 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

41 </rdf:Property>

42 </rdf:RDF>

Listing 32: Example RDFS Schema for the Pets and Their Owners Ontology.

254 appendix

1 /**
2 * Generated class for http://petsandowners.org/Human */
3 @Iri("http://petsandowners.org/Human")
4 public interface Human extends ResourceObject {
5 }
6

7 /**
8 * Support class for {@link Human} */
9 @Partial

10 public abstract class HumanSupport extends SchemaSanitizingObjectSupport implements Human {
11 }
12

13 /**
14 * Generated class for http://petsandowners.org/Animal */
15 @Iri("http://petsandowners.org/Animal")
16 public interface Animal extends ResourceObject {
17 }
18

19 /**
20 * Support class for {@link Animal} */
21 @Partial
22 public abstract class AnimalSupport extends SchemaSanitizingObjectSupport implements Animal {
23 }
24

25 /**
26 * Generated class for http://petsandowners.org/Cat */
27 @Iri("http://petsandowners.org/Cat")
28 public interface Cat extends Animal {
29 @Iri("http://xmlns.com/foaf/0.1/name")
30 Set<CharSequence> getNames();
31

32 @Iri("http://petsandowners.org/has_Cat_Friend")
33 Set<Cat> getHasCatFriends();
34

35 @Iri("http://petsandowners.org/has_Owner")
36 Set<Human> getHasOwners();
37

38 @Iri("http://xmlns.com/foaf/0.1/age")
39 Set<CharSequence> getAges();
40

41 /**
42 *
43 * @param values The elements to set.
44 * @throws IllegalArgumentException If the element(s) are not in the value space.
45 * The value space is defined as:
46 * The value is not null.
47 *
48 * */
49 void setHasOwners(Human... values);
50

51 /**
52 *
53 * @param values The elements to set.
54 * @throws IllegalArgumentException If the element(s) are not in the value space.
55 * The value space is defined as:
56 * The value is not null.
57 *
58 * */
59 void setAges(CharSequence... values);
60

61 /**
62 *
63 * @param values The elements to set.
64 * @throws IllegalArgumentException If the element(s) are not in the value space.
65 * The value space is defined as:
66 * The value is not null.
67 *
68 * */
69 void setHasCatFriends(Cat... values);
70

71 /**
72 *
73 * @param values The elements to set.
74 * @throws IllegalArgumentException If the element(s) are not in the value space.
75 * The value space is defined as:
76 * The value is not null.
77 *
78 * */
79 void setNames(CharSequence... values);
80

81 /**
82 *
83 * @param values The elements to set.
84 * @throws IllegalArgumentException If the element(s) are not in the value space.
85 * The value space is defined as:
86 * The value is not null.
87 *
88 * */
89 @Iri("http://xmlns.com/foaf/0.1/name")

A.2 further informations and appended data 255

90 void setNames(Set<? extends CharSequence> values);
91

92 /**
93 *
94 * @param values The elements to set.
95 * @throws IllegalArgumentException If the element(s) are not in the value space.
96 * The value space is defined as:
97 * The value is not null.
98 *
99 * */

100 @Iri("http://xmlns.com/foaf/0.1/age")
101 void setAges(Set<? extends CharSequence> values);
102

103 /**
104 *
105 * @param values The elements to set.
106 * @throws IllegalArgumentException If the element(s) are not in the value space.
107 * The value space is defined as:
108 * The value is not null.
109 *
110 * */
111 @Iri("http://petsandowners.org/has_Cat_Friend")
112 void setHasCatFriends(Set<Cat> values);
113

114 /**
115 *
116 * @param values The elements to set.
117 * @throws IllegalArgumentException If the element(s) are not in the value space.
118 * The value space is defined as:
119 * The value is not null.
120 *
121 * */
122 @Iri("http://petsandowners.org/has_Owner")
123 void setHasOwners(Set<Human> values);
124

125 /**
126 *
127 * @param value The element to be added.
128 * @throws IllegalArgumentException If the element(s) are not in the value space.
129 * The value space is defined as:
130 * The value is not null.
131 *
132 * */
133 void addHasCatFriend(Cat value);
134

135 /**
136 *
137 * @param value The element to be added.
138 * @throws IllegalArgumentException If the element(s) are not in the value space.
139 * The value space is defined as:
140 * The value is not null.
141 *
142 * */
143 void addHasOwner(Human value);
144

145 /**
146 *
147 * @param value The element to be added.
148 * @throws IllegalArgumentException If the element(s) are not in the value space.
149 * The value space is defined as:
150 * The value is not null.
151 *
152 * */
153 void addAge(CharSequence value);
154

155 /**
156 *
157 * @param value The element to be added.
158 * @throws IllegalArgumentException If the element(s) are not in the value space.
159 * The value space is defined as:
160 * The value is not null.
161 *
162 * */
163 void addName(CharSequence value);
164

165 /**
166 *
167 * @param values The elements to be added.
168 * @throws IllegalArgumentException If the element(s) are not in the value space.
169 * The value space is defined as:
170 * The value is not null.
171 *
172 * */
173 void addAllHasOwners(Set<? extends Human> values);
174

175 /**
176 *
177 * @param values The elements to be added.
178 * @throws IllegalArgumentException If the element(s) are not in the value space.
179 * The value space is defined as:

256 appendix

180 * The value is not null.
181 *
182 * */
183 void addAllHasCatFriends(Set<? extends Cat> values);
184

185 /**
186 *
187 * @param values The elements to be added.
188 * @throws IllegalArgumentException If the element(s) are not in the value space.
189 * The value space is defined as:
190 * The value is not null.
191 *
192 * */
193 void addAllNames(Set<? extends CharSequence> values);
194

195 /**
196 *
197 * @param values The elements to be added.
198 * @throws IllegalArgumentException If the element(s) are not in the value space.
199 * The value space is defined as:
200 * The value is not null.
201 *
202 * */
203 void addAllAges(Set<? extends CharSequence> values);
204

205 /**
206 *
207 * @param value The element to be removed.
208 * @return Returns true if the element was present. Returns false otherwise. */
209 boolean removeHasCatFriend(Cat value);
210

211 /**
212 *
213 * @param value The element to be removed.
214 * @return Returns true if the element was present. Returns false otherwise. */
215 boolean removeAge(CharSequence value);
216

217 /**
218 *
219 * @param value The element to be removed.
220 * @return Returns true if the element was present. Returns false otherwise. */
221 boolean removeHasOwner(Human value);
222

223 /**
224 *
225 * @param value The element to be removed.
226 * @return Returns true if the element was present. Returns false otherwise. */
227 boolean removeName(CharSequence value);
228

229 /**
230 *
231 * @param values The elements to be removed.
232 * @return Returns true if any value was removed. */
233 boolean removeAllAges(Set<? extends CharSequence> values);
234

235 /**
236 *
237 * @param values The elements to be removed.
238 * @return Returns true if any value was removed. */
239 boolean removeAllNames(Set<? extends CharSequence> values);
240

241 /**
242 *
243 * @param values The elements to be removed.
244 * @return Returns true if any value was removed. */
245 boolean removeAllHasOwners(Set<? extends Human> values);
246

247 /**
248 *
249 * @param values The elements to be removed.
250 * @return Returns true if any value was removed. */
251 boolean removeAllHasCatFriends(Set<? extends Cat> values);
252 }
253

254 /**
255 * Support class for {@link Cat} */
256 @Partial
257 public abstract class CatSupport extends SchemaSanitizingObjectSupport implements Cat {
258 /**
259 *
260 * @param values The elements to set.
261 * @throws IllegalArgumentException If the element(s) are not in the value space.
262 * The value space is defined as:
263 * The value is not null.
264 *
265 * */
266 @Override
267 public void setHasCatFriends(Cat... values) {
268 for(Cat current : values) {
269 if(current == null) {

A.2 further informations and appended data 257

270 throw new IllegalArgumentException("Value must not be null");
271 }
272 }
273 Set<Cat> _newValues = new HashSet<Cat>();
274 _newValues.addAll(Arrays.asList(values));
275 setHasCatFriends(_newValues);
276 sanitizeSchema("http://petsandowners.org/has_Cat_Friend");
277 }
278

279 /**
280 *
281 * @param values The elements to set.
282 * @throws IllegalArgumentException If the element(s) are not in the value space.
283 * The value space is defined as:
284 * The value is not null.
285 *
286 * */
287 @Override
288 public void setHasOwners(Human... values) {
289 for(Human current : values) {
290 if(current == null) {
291 throw new IllegalArgumentException("Value must not be null");
292 }
293 }
294 Set<Human> _newValues = new HashSet<Human>();
295 _newValues.addAll(Arrays.asList(values));
296 setHasOwners(_newValues);
297 sanitizeSchema("http://petsandowners.org/has_Owner");
298 }
299

300 /**
301 *
302 * @param values The elements to set.
303 * @throws IllegalArgumentException If the element(s) are not in the value space.
304 * The value space is defined as:
305 * The value is not null.
306 *
307 * */
308 @Override
309 public void setNames(CharSequence... values) {
310 for(CharSequence current : values) {
311 if(current == null) {
312 throw new IllegalArgumentException("Value must not be null");
313 }
314 }
315 Set<CharSequence> _newValues = new HashSet<CharSequence>();
316 _newValues.addAll(Arrays.asList(values));
317 setNames(_newValues);
318 sanitizeSchema("http://xmlns.com/foaf/0.1/name");
319 }
320

321 /**
322 *
323 * @param values The elements to set.
324 * @throws IllegalArgumentException If the element(s) are not in the value space.
325 * The value space is defined as:
326 * The value is not null.
327 *
328 * */
329 @Override
330 public void setAges(CharSequence... values) {
331 for(CharSequence current : values) {
332 if(current == null) {
333 throw new IllegalArgumentException("Value must not be null");
334 }
335 }
336 Set<CharSequence> _newValues = new HashSet<CharSequence>();
337 _newValues.addAll(Arrays.asList(values));
338 setAges(_newValues);
339 sanitizeSchema("http://xmlns.com/foaf/0.1/age");
340 }
341

342 /**
343 *
344 * @param value The element to be added.
345 * @throws IllegalArgumentException If the element(s) are not in the value space.
346 * The value space is defined as:
347 * The value is not null.
348 *
349 * */
350 @Override
351 public void addAge(CharSequence value) {
352 if(value == null) {
353 throw new IllegalArgumentException("Value must not be null");
354 }
355 Set<CharSequence> _acc = new HashSet<CharSequence>();
356 _acc.addAll(getAges());
357 _acc.add(value);
358 setAges(_acc);
359 sanitizeSchema("http://xmlns.com/foaf/0.1/age");

258 appendix

360 }
361

362 /**
363 *
364 * @param value The element to be added.
365 * @throws IllegalArgumentException If the element(s) are not in the value space.
366 * The value space is defined as:
367 * The value is not null.
368 *
369 * */
370 @Override
371 public void addHasCatFriend(Cat value) {
372 if(value == null) {
373 throw new IllegalArgumentException("Value must not be null");
374 }
375 Set<Cat> _acc = new HashSet<Cat>();
376 _acc.addAll(getHasCatFriends());
377 _acc.add(value);
378 setHasCatFriends(_acc);
379 sanitizeSchema("http://petsandowners.org/has_Cat_Friend");
380 }
381

382 /**
383 *
384 * @param value The element to be added.
385 * @throws IllegalArgumentException If the element(s) are not in the value space.
386 * The value space is defined as:
387 * The value is not null.
388 *
389 * */
390 @Override
391 public void addHasOwner(Human value) {
392 if(value == null) {
393 throw new IllegalArgumentException("Value must not be null");
394 }
395 Set<Human> _acc = new HashSet<Human>();
396 _acc.addAll(getHasOwners());
397 _acc.add(value);
398 setHasOwners(_acc);
399 sanitizeSchema("http://petsandowners.org/has_Owner");
400 }
401

402 /**
403 *
404 * @param value The element to be added.
405 * @throws IllegalArgumentException If the element(s) are not in the value space.
406 * The value space is defined as:
407 * The value is not null.
408 *
409 * */
410 @Override
411 public void addName(CharSequence value) {
412 if(value == null) {
413 throw new IllegalArgumentException("Value must not be null");
414 }
415 Set<CharSequence> _acc = new HashSet<CharSequence>();
416 _acc.addAll(getNames());
417 _acc.add(value);
418 setNames(_acc);
419 sanitizeSchema("http://xmlns.com/foaf/0.1/name");
420 }
421

422 /**
423 *
424 * @param values The elements to be added.
425 * @throws IllegalArgumentException If the element(s) are not in the value space.
426 * The value space is defined as:
427 * The value is not null.
428 *
429 * */
430 @Override
431 public void addAllHasCatFriends(Set<? extends Cat> values) {
432 for(Cat current : values) {
433 if(current == null) {
434 throw new IllegalArgumentException("Value must not be null");
435 }
436 }
437 Set<Cat> _acc = new HashSet<Cat>();
438 _acc.addAll(getHasCatFriends());
439 _acc.addAll(values);
440 setHasCatFriends(_acc);
441 sanitizeSchema("http://petsandowners.org/has_Cat_Friend");
442 }
443

444 /**
445 *
446 * @param values The elements to be added.
447 * @throws IllegalArgumentException If the element(s) are not in the value space.
448 * The value space is defined as:
449 * The value is not null.

A.2 further informations and appended data 259

450 *
451 * */
452 @Override
453 public void addAllAges(Set<? extends CharSequence> values) {
454 for(CharSequence current : values) {
455 if(current == null) {
456 throw new IllegalArgumentException("Value must not be null");
457 }
458 }
459 Set<CharSequence> _acc = new HashSet<CharSequence>();
460 _acc.addAll(getAges());
461 _acc.addAll(values);
462 setAges(_acc);
463 sanitizeSchema("http://xmlns.com/foaf/0.1/age");
464 }
465

466 /**
467 *
468 * @param values The elements to be added.
469 * @throws IllegalArgumentException If the element(s) are not in the value space.
470 * The value space is defined as:
471 * The value is not null.
472 *
473 * */
474 @Override
475 public void addAllHasOwners(Set<? extends Human> values) {
476 for(Human current : values) {
477 if(current == null) {
478 throw new IllegalArgumentException("Value must not be null");
479 }
480 }
481 Set<Human> _acc = new HashSet<Human>();
482 _acc.addAll(getHasOwners());
483 _acc.addAll(values);
484 setHasOwners(_acc);
485 sanitizeSchema("http://petsandowners.org/has_Owner");
486 }
487

488 /**
489 *
490 * @param values The elements to be added.
491 * @throws IllegalArgumentException If the element(s) are not in the value space.
492 * The value space is defined as:
493 * The value is not null.
494 *
495 * */
496 @Override
497 public void addAllNames(Set<? extends CharSequence> values) {
498 for(CharSequence current : values) {
499 if(current == null) {
500 throw new IllegalArgumentException("Value must not be null");
501 }
502 }
503 Set<CharSequence> _acc = new HashSet<CharSequence>();
504 _acc.addAll(getNames());
505 _acc.addAll(values);
506 setNames(_acc);
507 sanitizeSchema("http://xmlns.com/foaf/0.1/name");
508 }
509

510 /**
511 *
512 * @param value The element to be removed.
513 * @return Returns true if the element was present. Returns false otherwise. */
514 @Override
515 public boolean removeHasCatFriend(Cat value) {
516 Set<Cat> _oldValues = getHasCatFriends();
517 if(_oldValues.contains(value)) {
518 removeValue("http://petsandowners.org/has_Cat_Friend", value);
519 sanitizeSchema("http://petsandowners.org/has_Cat_Friend");
520 // Refresh values:
521 if(getHasCatFriends() instanceof PropertySet) {
522 ((PropertySet) getHasCatFriends()).refresh();
523 }
524 return true;
525 }
526 return false;
527 }
528

529 /**
530 *
531 * @param value The element to be removed.
532 * @return Returns true if the element was present. Returns false otherwise. */
533 @Override
534 public boolean removeName(CharSequence value) {
535 Set<CharSequence> _oldValues = getNames();
536 if(_oldValues.contains(value)) {
537 removeValue("http://xmlns.com/foaf/0.1/name", value);
538 sanitizeSchema("http://xmlns.com/foaf/0.1/name");
539 // Refresh values:

260 appendix

540 if(getNames() instanceof PropertySet) {
541 ((PropertySet) getNames()).refresh();
542 }
543 return true;
544 }
545 return false;
546 }
547

548 /**
549 *
550 * @param value The element to be removed.
551 * @return Returns true if the element was present. Returns false otherwise. */
552 @Override
553 public boolean removeHasOwner(Human value) {
554 Set<Human> _oldValues = getHasOwners();
555 if(_oldValues.contains(value)) {
556 removeValue("http://petsandowners.org/has_Owner", value);
557 sanitizeSchema("http://petsandowners.org/has_Owner");
558 // Refresh values:
559 if(getHasOwners() instanceof PropertySet) {
560 ((PropertySet) getHasOwners()).refresh();
561 }
562 return true;
563 }
564 return false;
565 }
566

567 /**
568 *
569 * @param value The element to be removed.
570 * @return Returns true if the element was present. Returns false otherwise. */
571 @Override
572 public boolean removeAge(CharSequence value) {
573 Set<CharSequence> _oldValues = getAges();
574 if(_oldValues.contains(value)) {
575 removeValue("http://xmlns.com/foaf/0.1/age", value);
576 sanitizeSchema("http://xmlns.com/foaf/0.1/age");
577 // Refresh values:
578 if(getAges() instanceof PropertySet) {
579 ((PropertySet) getAges()).refresh();
580 }
581 return true;
582 }
583 return false;
584 }
585

586 /**
587 *
588 * @param values The elements to be removed.
589 * @return Returns true if any value was removed. */
590 @Override
591 public boolean removeAllHasOwners(Set<? extends Human> values) {
592 boolean changed = false;
593 Set<Human> _oldValues = getHasOwners();
594 Set<Human> _containedValues = new HashSet<Human>();
595 for(Human current : values) {
596 if(_oldValues.contains(current)) {
597 changed |= true;
598 _containedValues.add(current);
599 }
600 }
601 if(!_containedValues.isEmpty()) {
602 for(Human _current : _containedValues) {
603 removeValue("http://petsandowners.org/has_Owner", _current);
604 }
605 }
606 sanitizeSchema("http://petsandowners.org/has_Owner");
607 // Refresh values:
608 if(getHasOwners() instanceof PropertySet) {
609 ((PropertySet) getHasOwners()).refresh();
610 }
611 return changed;
612 }
613

614 /**
615 *
616 * @param values The elements to be removed.
617 * @return Returns true if any value was removed. */
618 @Override
619 public boolean removeAllAges(Set<? extends CharSequence> values) {
620 boolean changed = false;
621 Set<CharSequence> _oldValues = getAges();
622 Set<CharSequence> _containedValues = new HashSet<CharSequence>();
623 for(CharSequence current : values) {
624 if(_oldValues.contains(current)) {
625 changed |= true;
626 _containedValues.add(current);
627 }
628 }
629 if(!_containedValues.isEmpty()) {

A.2 further informations and appended data 261

630 for(CharSequence _current : _containedValues) {
631 removeValue("http://xmlns.com/foaf/0.1/age", _current);
632 }
633 }
634 sanitizeSchema("http://xmlns.com/foaf/0.1/age");
635 // Refresh values:
636 if(getAges() instanceof PropertySet) {
637 ((PropertySet) getAges()).refresh();
638 }
639 return changed;
640 }
641

642 /**
643 *
644 * @param values The elements to be removed.
645 * @return Returns true if any value was removed. */
646 @Override
647 public boolean removeAllNames(Set<? extends CharSequence> values) {
648 boolean changed = false;
649 Set<CharSequence> _oldValues = getNames();
650 Set<CharSequence> _containedValues = new HashSet<CharSequence>();
651 for(CharSequence current : values) {
652 if(_oldValues.contains(current)) {
653 changed |= true;
654 _containedValues.add(current);
655 }
656 }
657 if(!_containedValues.isEmpty()) {
658 for(CharSequence _current : _containedValues) {
659 removeValue("http://xmlns.com/foaf/0.1/name", _current);
660 }
661 }
662 sanitizeSchema("http://xmlns.com/foaf/0.1/name");
663 // Refresh values:
664 if(getNames() instanceof PropertySet) {
665 ((PropertySet) getNames()).refresh();
666 }
667 return changed;
668 }
669

670 /**
671 *
672 * @param values The elements to be removed.
673 * @return Returns true if any value was removed. */
674 @Override
675 public boolean removeAllHasCatFriends(Set<? extends Cat> values) {
676 boolean changed = false;
677 Set<Cat> _oldValues = getHasCatFriends();
678 Set<Cat> _containedValues = new HashSet<Cat>();
679 for(Cat current : values) {
680 if(_oldValues.contains(current)) {
681 changed |= true;
682 _containedValues.add(current);
683 }
684 }
685 if(!_containedValues.isEmpty()) {
686 for(Cat _current : _containedValues) {
687 removeValue("http://petsandowners.org/has_Cat_Friend", _current);
688 }
689 }
690 sanitizeSchema("http://petsandowners.org/has_Cat_Friend");
691 // Refresh values:
692 if(getHasCatFriends() instanceof PropertySet) {
693 ((PropertySet) getHasCatFriends()).refresh();
694 }
695 return changed;
696 }
697 }

Listing 33: Exemplary Output of the Code Shown in Listing 31 with the
Input Schema Shown in Listing 32.

262 appendix

Figure
6

2:
Screenshot

of
the

M
IC

O
Platform

Item
O

verview
.

A.2 further informations and appended data 263

Fi
gu

re
6

3
:

Sc
re

en
sh

ot
of

th
e

M
IC

O
Pl

at
fo

rm
It

em
O

ve
rv

ie
w

,H
ov

er
in

g
an

as
“F

ai
le

d”
M

ar
ke

d
It

em
Pr

og
re

ss
.

264 appendix

Figure
6

4:
Screenshot

of
the

M
IC

O
Platform

V
iew

Inspecting
an

Item
in

D
etail.

A.2 further informations and appended data 265

1 2 3 4 5 6 7
Parent Degree

1
2

3
4

5
6

7
Ch

ild
re

n
De

gr
ee

26.7 29.3 30.2 37.5 51.5 58.6 50.9

25.0 29.2 30.2 34.7 51.6 64.4 85.2

24.8 27.5 32.9 32.9 52.7 52.8 56.1

27.4 26.9 32.5 34.8 55.1 55.7 55.8

27.2 40.9 33.8 34.7 59.1 58.2 62.3

25.8 29.1 29.8 34.8 44.7 46.0 51.7

25.5 28.5 30.3 33.9 53.4 60.4 59.0

30

45

60

75

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(a) Heatmap for the Children Degree
and Parent Degree Parameters.

1 2 3 4 5 6 7
Partial Classes

1
2

3
4

5
6

7
Ch

ild
re

n
De

gr
ee

26.7 30.1 52.0 63.1 66.6 75.0 114.1

25.0 30.5 45.8 55.9 59.7 72.4 89.5

24.8 31.9 40.6 58.2 60.2 77.3 100.2

27.4 31.3 50.2 63.9 65.1 83.0 89.1

27.2 27.3 44.1 58.1 63.7 77.6 97.9

25.8 28.4 48.2 55.9 61.3 80.7 96.3

25.5 30.1 60.9 56.0 55.3 82.6 98.4

30

45

60

75

90

105

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(b) Heatmap for the Children Degree
and Partial Classes Parameters.

1 2 3 4 5 6 7
Partial Methods

1
2

3
4

5
6

7
Ch

ild
re

n
De

gr
ee

26.7 22.7 25.8 26.3 24.4 27.0 27.3

25.0 27.2 27.0 25.8 23.9 26.5 22.9

24.8 24.8 25.6 26.2 26.0 22.7 27.1

27.4 24.9 25.5 26.2 23.8 26.7 25.6

27.2 24.7 25.1 22.4 24.4 24.6 28.0

25.8 25.4 23.2 25.7 25.2 25.0 24.3

25.5 28.7 23.9 23.2 25.6 25.9 24.8

22.5

24.0

25.5

27.0

28.5

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(c) Heatmap for the Children Degree and
Partial Methods Parameters.

1 2 3 4 5 6 7
Mapped Properties

1
2

3
4

5
6

7
Ch

ild
re

n
De

gr
ee

26.7 26.4 25.8 26.3 25.2 23.6 25.9

25.0 28.9 24.3 27.8 24.0 27.1 25.8

24.8 25.4 28.0 25.5 24.5 25.2 26.7

27.4 26.6 25.7 25.8 27.0 23.9 28.0

27.2 22.9 24.3 24.1 25.5 25.8 25.7

25.8 34.0 26.0 25.1 24.0 27.0 27.0

25.5 26.7 24.1 26.3 24.3 24.8 24.9

24

26

28

30

32

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(d) Heatmap for the Children Degree
and Properties/Relationships Param-
eters.

1 2 3 4 5 6 7
Inheritance Depth

1
2

3
4

5
6

7
Ch

ild
re

n
De

gr
ee

26.7 27.1 30.3 31.5 43.3 61.8 60.6

25.0 29.5 31.2 33.8 49.6 51.3 58.1

24.8 26.2 29.8 32.0 44.0 55.3 52.5

27.4 29.1 28.3 32.6 45.6 53.9 48.8

27.2 26.8 32.6 32.6 50.4 53.3 63.1

25.8 29.0 26.4 34.3 45.1 51.2 52.9

25.5 28.2 31.6 32.1 44.7 46.2 58.9

32

40

48

56

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(e) Heatmap for the Children Degree and
Inheritance Depth Parameters.

Figure 65: Resulting Heatmaps of the Paired Ontology Parameter Evalua-
tion (1).

266 appendix

General Name OWL / RDFS Schema Annotation

Symmetry owl:SymmetricProperty @Symmetric

A relationship with this Schema Annotation directed from RDF entity “x” to “y” is
only valid, if the same relationship is also present directing from “y” to “x”.

Transitivity owl:TransitiveProperty @Transitive

This Schema Annotation is only validated to true for two relationships from RDF
entity “x” to “y” and “y” to “z” respectively, if there is also an edge from “x” to “z”.

Functional Property owl:FunctionalProperty @Functional

A relationship/property marked with this Schema Annotation can only be
successfully validated, if for every source “x” there is only exactly one sink “y”.

Inverse Functional
Property

owl:InverseFunctionalProperty @InverseFunctional

The counterpart to “owl:FunctionalProperty” is only valid, if every sink “y” does
only have exactly one source “x” for the relationship or property.

Bijective Property - @Bijective

This Schema Annotation combines “owl:FunctionalProperty” and
“InverseFunctionalProperty”.

Inverse Property owl:inverseOf @InverseOf

For a relationship “r” there can be an inverse relationship (with another IRI) “s”
defined, inducing validity only if for every “r” from “x” to “y”, there must also
exist an edge of “s” from “y” to “x”.

Subproperty rdfs:subPropertyOf @SubPropertyOf

Marks a relationship or property to inherit all the values of the defined
superproperty.

(Min/Max) Cardinality
owl:cardinality owl:minCardinality

owl:maxCardinality

@Cardinality
@MinCardinality
@MaxCardinality

A cardinality restriction can be defined for a relationship or property, being only
validated when the multiplicity of the respective edge is inside the defined
boundaries.

All Values From owl:allValuesFrom @AllValuesFrom

Restricts a given relationship or property to a defined set of classes and types for its
sink, so if there is an edge of the respective relationship or property from “x” to
“y”, then “y” must always be conform to the defined set. Corresponds to the for all
quantifier of Predicate logic.

Some Values From owl:someValuesFrom @SomeValuesFrom

Restricts a given relationship or property to a defined set of classes or types for its
sink, so if there are several representatives of the respective relationship or property,
at least one of their sinks must correspond to the defined set. Corresponds to the
existential quantifier of Predicate logic.

Table 4: Available Schema Annotations in Anno4j. The Table Shows a Gen-
eral Name, the Respective Pendant in the OWL or RDFS Schema,
and the Corresponding (Java) Schema Annotation, in Combination
with a Description of the Implemented Concept.

A.2 further informations and appended data 267

CPU Intel®CoreTM i5-2400 (3,10 GHz)

RAM 8GB DDR3

OS Gentoo 2.3 (Linux Kernel 4.12.12)

Java-Version 1.7

JVM Oracle®JavaTM SE Runtime Environment
(build 1.8.0_144-b01)

Anno4j Version 2.4

Table 5: Properties of the Test System Used in the Benchmarks Enlisted in
Section 6.2.1.

CPU AMD OpteronTM Processor 6220, with 16

cores and 2 threads per core (3 GHz)

RAM 264GB

OS Ubuntu 18.04

Java-Version 1.8

JVM Oracle®JavaTM SE Runtime Environment
(build 1.8.0_171-b11)

Anno4j Version 2.4

Table 6: Properties of the Test System Used in the Benchmarks Enlisted in
Section 6.2.3.

268 appendix

1 2 3 4 5 6 7
Partial Classes

1
2

3
4

5
6

7
Pa

re
nt

 D
eg

re
e

26.7 30.1 52.0 63.1 66.6 75.0 114.1

29.3 48.7 55.9 84.2 102.8 144.2 204.6

30.2 57.8 75.0 109.9 177.6 288.2 482.5

37.5 69.0 95.4 175.7 340.3 581.7 988.2

51.5 85.0 147.4 301.1 590.0 1079.3 2127.3

58.6 107.8 243.7 549.9 1137.4 2152.9 3770.9

50.9 131.8 366.0 834.7 1843.0 3383.9 6045.2

1500

3000

4500

6000

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(a) Heatmap for the Parent Degree and
Partial Class Parameters.

1 2 3 4 5 6 7
Partial Methods

1
2

3
4

5
6

7
Pa

re
nt

 D
eg

re
e

26.7 22.7 25.8 26.3 24.4 27.0 27.3

29.3 21.3 20.5 19.2 19.4 22.4 29.4

30.2 34.3 32.1 33.7 32.1 34.8 34.6

37.5 40.4 38.8 35.9 37.8 39.0 38.1

51.5 57.6 51.6 58.2 57.5 49.5 54.9

58.6 59.0 53.4 62.8 63.8 62.3 59.8

50.9 69.3 66.1 66.0 69.5 71.3 70.9

20

30

40

50

60

70

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(b) Heatmap for the Parent Degree and
Partial Methods Parameters.

1 2 3 4 5 6 7
Mapped Properties

1
2

3
4

5
6

7
Pa

re
nt

 D
eg

re
e

26.7 26.4 25.8 26.3 25.2 23.6 25.9

29.3 28.7 28.4 30.4 27.7 27.4 27.4

30.2 33.2 33.6 32.1 33.5 32.6 33.7

37.5 35.6 38.3 37.2 36.8 37.6 38.6

51.5 51.9 57.1 58.7 48.8 52.4 51.7

58.6 73.5 68.2 73.4 58.8 65.8 59.7

50.9 59.1 71.5 60.9 65.7 55.8 70.2

30

40

50

60

70

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(c) Heatmap for the Parent Degree and
Properties/Relationships Parameters.

1 2 3 4 5 6 7
Mapped Properties

1
2

3
4

5
6

7

Pa
rti

al
 M

et
ho

ds

26.7 26.4 25.8 26.3 25.2 23.6 25.9

22.7 28.3 26.2 25.9 27.1 26.8 28.7

25.8 25.6 23.6 26.3 24.2 27.7 26.6

26.3 28.3 25.4 25.1 26.3 26.3 28.2

24.4 25.3 26.9 26.3 25.8 25.6 26.5

27.0 27.5 25.8 26.0 24.3 24.5 23.7

27.3 24.9 27.1 24.6 22.8 21.9 21.8

22.5

24.0

25.5

27.0

28.5

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(d) Heatmap for the Partial Methods
and Properties/Relationships Param-
eters.

1 2 3 4 5 6 7
Inheritance Depth

1
2

3
4

5
6

7

Pa
rti

al
 M

et
ho

ds

26.7 27.1 30.3 31.5 43.3 61.8 60.6

22.7 27.9 35.2 36.6 64.5 59.1 59.7

25.8 28.9 33.6 38.3 81.0 59.8 68.3

26.3 28.2 34.0 36.7 60.9 61.5 66.9

24.4 29.0 33.0 37.2 48.3 50.9 67.6

27.0 29.7 35.8 36.6 56.7 53.7 67.3

27.3 28.8 32.8 37.2 45.2 68.2 58.7

30

40

50

60

70

80

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(e) Heatmap for the Partial Methods and
Inheritance Depth Parameters.

Figure 66: Resulting Heatmaps of the Paired Ontology Parameter Evalua-
tion (2).

A.2 further informations and appended data 269

1 2 3 4 5 6 7
Partial Methods

1
2

3
4

5
6

7

Pa
rti

al
 C

la
ss

es

26.7 22.7 25.8 26.3 24.4 27.0 27.3

30.1 30.4 31.8 30.9 30.0 29.8 27.9

52.0 50.5 46.2 54.0 53.0 52.8 49.3

63.1 60.1 61.9 54.4 63.3 54.8 51.9

66.6 73.0 75.0 70.7 74.9 69.8 74.9

75.0 91.1 101.8 110.3 84.7 94.3 102.1

114.1 108.0 100.7 103.8 112.6 106.1 118.6

40

60

80

100

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(a) Heatmap for the Partial Classes and
Partial Methods Parameters.

1 2 3 4 5 6 7
Mapped Properties

1
2

3
4

5
6

7

Pa
rti

al
 C

la
ss

es

26.7 26.4 25.8 26.3 25.2 23.6 25.9

30.1 31.8 33.8 36.0 32.1 31.9 31.6

52.0 51.9 56.4 52.7 49.4 51.7 53.8

63.1 62.7 56.5 64.6 62.9 78.1 61.2

66.6 79.8 75.2 67.7 74.7 75.6 70.9

75.0 85.5 90.5 88.0 84.4 89.0 80.8

114.1 127.3 129.3 97.5 111.6 129.2 106.4

40

60

80

100

120

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(b) Heatmap for the Partial Classes
and Properties/Relationships Param-
eters.

1 2 3 4 5 6 7
Inheritance Depth

1
2

3
4

5
6

7

Pa
rti

al
 C

la
ss

es

26.7 27.1 30.3 31.5 43.3 61.8 60.6

30.1 47.0 63.2 76.9 92.0 112.3 133.9

52.0 67.8 86.5 128.7 175.3 235.7 390.1

63.1 106.0 144.4 208.5 358.6 582.1 922.6

66.6 121.7 215.8 401.8 723.8 1198.8 1856.8

75.0 164.1 358.4 724.5 1364.0 2264.7 3697.3

114.1 243.3 528.5 1104.1 2247.5 3984.8 6924.0

1500

3000

4500

6000

Cr
ea

tio
n

Ru
nt

im
e

(m
s)

(c) Heatmap for the Partial Classes and
Inheritance Depth Parameters.

1 2 3 4 5 6 7
Inheritance Depth

1
2

3
4

5
6

7

M
ap

pe
d

Pr
op

er
tie

s

26.7 27.1 30.3 31.5 43.3 61.8 60.6

26.4 27.2 32.0 36.6 58.1 61.7 63.1

25.8 26.7 34.5 40.1 44.2 60.0 78.2

26.3 26.4 35.1 40.9 55.6 59.0 67.5

25.2 28.2 34.3 37.2 60.4 59.6 67.9

23.6 29.4 33.0 37.8 56.7 61.2 64.1

25.9 29.3 33.2 37.3 56.5 60.8 59.1

30

40

50

60

70
Cr

ea
tio

n
Ru

nt
im

e
(m

s)

(d) Heatmap for the Properties/Relation-
ships and Inheritance Depth Parame-
ters.

Figure 67: Resulting Heatmaps of the Paired Ontology Parameter Evalua-
tion (3).

270 appendix

cd pd ms (mean) ms (median) ms (std. deviation) Std. Error 95

7 5 53.417 34.606 95.752 9.575 18.767

2 7 85.209 45.738 203.242 20.324 39.835

6 2 29.124 22.613 15.297 1.53 2.998

5 6 58.202 38.509 97.244 9.724 19.06

7 7 58.975 45.292 60.864 6.086 11.929

2 5 51.554 33.492 112.663 11.266 22.082

4 3 32.476 28.749 16.328 1.633 3.2

3 2 27.456 23.839 13.902 1.39 2.725

5 4 34.665 30.66 13.973 1.397 2.739

6 6 45.993 38.256 21.52 2.152 4.218

3 4 32.943 29.301 13.323 1.332 2.611

5 2 40.922 23.967 121.896 12.19 23.892

2 3 30.154 25.551 15.784 1.578 3.094

4 5 55.137 30.997 132.185 13.218 25.908

6 4 34.754 32.24 14.141 1.414 2.772

3 6 52.793 33.738 109.001 10.9 21.364

7 3 30.259 24.583 17.169 1.717 3.365

4 7 55.816 41.76 66.597 6.66 13.053

6 7 51.743 42.549 47.602 4.76 9.33

3 5 52.701 32.484 99.16 9.916 19.435

5 3 33.766 25.66 17.087 1.709 3.349

2 2 29.173 21.285 19.234 1.923 3.77

4 4 34.779 30.574 14.646 1.465 2.871

6 5 44.71 33.337 63.371 6.337 12.421

3 7 56.106 41.111 66.811 6.681 13.095

7 2 28.496 23.861 16.267 1.627 3.188

4 6 55.65 35.613 104.633 10.463 20.508

7 4 33.928 31.159 13.902 1.39 2.725

2 6 64.367 36.859 157.026 15.703 30.777

6 3 29.814 25.591 12.628 1.263 2.475

5 7 62.333 42.5 102.958 10.296 20.18

7 6 60.4 37.419 123.918 12.392 24.288

2 4 34.657 31.539 13.929 1.393 2.73

4 2 26.914 22.776 12.105 1.211 2.373

3 3 32.887 27.968 15.903 1.59 3.117

5 5 59.064 33.052 141.094 14.109 27.654

4 1 27.387 19.699 18.335 1.833 3.594

7 1 25.472 19.678 15.931 1.593 3.122

2 1 25.017 19.888 13.056 1.306 2.559

5 1 27.23 21.333 14.808 1.481 2.902

3 1 24.774 20.309 13.953 1.395 2.735

6 1 25.754 21.662 13.037 1.304 2.555

1 3 30.155 26.558 14.643 1.464 2.87

1 7 50.863 40.608 58.155 5.816 11.398

1 5 51.489 32.733 95.36 9.536 18.69

1 6 58.575 39.758 102.669 10.267 20.123

1 4 37.489 30.448 19.729 1.973 3.867

1 2 29.267 23.728 14.493 1.449 2.841

1 1 26.693 21.201 16.266 1.627 3.188

Table 7: Ontology Parameter Pair Evaluation for Children Degree and Par-
ent Degree.

A.2 further informations and appended data 271

cd pc ms (mean) ms (median) ms (std. deviation) Std. Error 95

2 7 89.452 67.054 102.405 10.241 20.071

7 5 55.331 43.075 79.794 7.979 15.64

7 4 56.032 35.819 104.171 10.417 20.417

2 6 72.425 57.072 79.485 7.948 15.579

4 3 50.248 30.201 102.847 10.285 20.158

2 5 59.665 44.159 83.076 8.308 16.283

7 7 98.423 72.551 139.962 13.996 27.433

7 6 82.624 55.213 171.015 17.101 33.519

2 4 55.862 37.827 102.166 10.217 20.025

4 2 31.256 24.235 18.886 1.889 3.702

4 4 63.9 39.317 138.335 13.834 27.114

2 2 30.524 24.562 17.681 1.768 3.465

2 3 45.795 28.964 84.664 8.466 16.594

4 5 65.109 45.554 115.067 11.507 22.553

4 6 83.018 55.081 164.894 16.489 32.319

7 2 30.118 25.62 14.779 1.478 2.897

7 3 60.865 29.615 165.964 16.596 32.529

4 7 89.144 71.279 92.574 9.257 18.144

3 5 60.157 45.19 74.045 7.405 14.513

6 7 96.348 70.77 139.919 13.992 27.424

5 3 44.143 29.745 70.955 7.095 13.907

5 2 27.347 23.395 10.992 1.099 2.154

6 6 80.661 56.212 147.621 14.762 28.934

3 4 58.174 38.422 127.925 12.793 25.073

3 7 100.184 69.179 189.878 18.988 37.216

6 5 61.349 44.712 91.645 9.164 17.962

6 4 55.925 36.234 98.755 9.875 19.356

3 6 77.287 57.333 108.298 10.83 21.226

6 2 28.393 24.227 13.162 1.316 2.58

5 6 77.604 53.185 135.189 13.519 26.497

5 7 97.938 73.698 121.577 12.158 23.829

6 3 48.192 30.44 93.502 9.35 18.326

3 2 31.884 26.804 16.164 1.616 3.168

5 4 58.085 38.235 101.508 10.151 19.896

5 5 63.673 44.719 117.812 11.781 23.091

3 3 40.551 30.14 62.77 6.277 12.303

4 1 27.387 19.699 18.335 1.833 3.594

7 1 25.472 19.678 15.931 1.593 3.122

2 1 25.017 19.888 13.056 1.306 2.559

5 1 27.23 21.333 14.808 1.481 2.902

3 1 24.774 20.309 13.953 1.395 2.735

6 1 25.754 21.662 13.037 1.304 2.555

1 3 51.959 29.475 133.372 13.337 26.141

1 2 30.122 24.189 14.702 1.47 2.882

1 6 75.045 54.983 110.475 11.047 21.653

1 7 114.146 70.607 212.429 21.243 41.636

1 4 63.127 37.829 138.158 13.816 27.079

1 5 66.557 48.654 93.846 9.385 18.394

1 1 26.693 21.201 16.266 1.627 3.188

Table 8: Ontology Parameter Pair Evaluation for Children Degree and Par-
tial Classes.

272 appendix

cd pm ms (mean) ms (median) ms (std. deviation) Std. Error 95

7 7 24.825 19.824 14.776 1.478 2.896

5 5 24.375 20.265 11.446 1.145 2.243

3 4 26.247 21.057 14.568 1.457 2.855

6 3 23.183 18.998 10.855 1.086 2.128

2 7 22.903 18.689 12.056 1.206 2.363

4 6 26.658 20.972 15.004 1.5 2.941

3 3 25.585 20.261 14.221 1.422 2.787

5 2 24.715 17.936 14.895 1.49 2.919

6 4 25.702 20.83 13.7 1.37 2.685

5 3 25.068 20.412 13.594 1.359 2.664

3 2 24.818 19.743 12.765 1.276 2.502

6 5 25.248 19.849 13.519 1.352 2.65

4 7 25.575 20.738 13.058 1.306 2.559

2 6 26.547 19.824 18.049 1.805 3.538

3 5 25.981 21.053 14.717 1.472 2.884

5 4 22.448 19.169 9.818 0.982 1.924

6 2 25.42 21.081 13.058 1.306 2.559

7 6 25.896 21.763 13.71 1.371 2.687

5 6 24.591 20.216 11.451 1.145 2.244

3 7 27.091 21.161 16.333 1.633 3.201

4 2 24.942 19.908 14.754 1.475 2.892

2 3 27.037 22.861 15.293 1.529 2.998

7 4 23.207 20.076 10.056 1.006 1.971

6 7 24.339 19.598 14.347 1.435 2.812

2 4 25.808 21.373 12.557 1.256 2.461

4 5 23.835 20.122 12.784 1.278 2.506

7 3 23.903 18.896 12.719 1.272 2.493

4 4 26.242 19.727 15.212 1.521 2.981

2 5 23.859 19.501 12.345 1.235 2.42

7 2 28.675 21.757 16.916 1.692 3.316

6 6 25.036 18.947 15.966 1.597 3.129

2 2 27.189 20.663 18.874 1.887 3.699

4 3 25.544 19.677 16.136 1.614 3.163

7 5 25.562 22.07 11.293 1.129 2.213

3 6 22.674 19.328 11.446 1.145 2.243

5 7 27.987 21.878 14.709 1.471 2.883

4 1 27.387 19.699 18.335 1.833 3.594

7 1 25.472 19.678 15.931 1.593 3.122

2 1 25.017 19.888 13.056 1.306 2.559

5 1 27.23 21.333 14.808 1.481 2.902

3 1 24.774 20.309 13.953 1.395 2.735

6 1 25.754 21.662 13.037 1.304 2.555

1 6 27.018 20.487 15.352 1.535 3.009

1 7 27.344 22.133 17.468 1.747 3.424

1 5 24.433 20.863 12.414 1.241 2.433

1 2 22.668 19.844 10.447 1.045 2.048

1 3 25.761 22.225 11.917 1.192 2.336

1 4 26.292 19.741 18.548 1.855 3.635

1 1 26.693 21.201 16.266 1.627 3.188

Table 9: Ontology Parameter Pair Evaluation for Children Degree and Par-
tial Methods.

A.2 further informations and appended data 273

cd prop ms (mean) ms (median) ms (std. deviation) Std. Error 95

4 7 28.003 23.184 16.631 1.663 3.26

6 6 26.979 22.098 13.899 1.39 2.724

2 4 27.784 22.023 15.153 1.515 2.97

2 2 28.94 21.374 20.054 2.005 3.931

3 6 25.24 21.037 13.005 1.301 2.549

7 2 26.711 20.611 15.23 1.523 2.985

5 5 25.496 21.377 12.674 1.267 2.484

5 3 24.291 18.692 13.801 1.38 2.705

7 4 26.305 21.135 15.121 1.512 2.964

3 5 24.468 19.548 13.32 1.332 2.611

3 3 28.01 19.79 18.822 1.882 3.689

5 6 25.837 22.163 13.114 1.311 2.57

7 7 24.882 19.69 14.688 1.469 2.879

4 4 25.806 20.43 13.08 1.308 2.564

6 3 26.034 21.175 13.343 1.334 2.615

6 5 23.986 19.445 12.717 1.272 2.493

4 2 26.556 21.727 13.276 1.328 2.602

2 7 25.754 21.614 13.689 1.369 2.683

2 6 27.104 20.584 18.109 1.811 3.549

6 2 33.991 19.503 117.826 11.783 23.094

4 5 26.969 20.471 17.288 1.729 3.388

4 3 25.719 20.785 14.546 1.455 2.851

6 4 25.11 19.755 13.368 1.337 2.62

5 7 25.745 22.0 12.416 1.242 2.434

7 6 24.834 20.83 12.569 1.257 2.464

3 4 25.5 19.883 16.15 1.615 3.165

3 2 25.387 20.645 13.824 1.382 2.709

5 4 24.116 20.629 11.335 1.133 2.222

7 3 24.113 21.287 10.288 1.029 2.016

7 5 24.272 20.248 12.528 1.253 2.455

5 2 22.941 18.371 12.005 1.2 2.353

3 7 26.703 19.965 16.181 1.618 3.171

2 5 23.982 18.673 13.974 1.397 2.739

2 3 24.343 19.965 13.73 1.373 2.691

4 6 23.861 19.665 13.076 1.308 2.563

6 7 26.984 20.547 19.175 1.918 3.758

4 1 27.387 19.699 18.335 1.833 3.594

7 1 25.472 19.678 15.931 1.593 3.122

2 1 25.017 19.888 13.056 1.306 2.559

5 1 27.23 21.333 14.808 1.481 2.902

3 1 24.774 20.309 13.953 1.395 2.735

6 1 25.754 21.662 13.037 1.304 2.555

1 7 25.905 21.319 12.591 1.259 2.468

1 2 26.378 20.754 15.755 1.576 3.088

1 4 26.304 23.486 12.127 1.213 2.377

1 3 25.802 22.086 11.821 1.182 2.317

1 5 25.248 20.017 16.569 1.657 3.248

1 6 23.648 20.627 10.668 1.067 2.091

1 1 26.693 21.201 16.266 1.627 3.188

Table 10: Ontology Parameter Pair Evaluation for Children Degree and Prop-
erties and Relationships.

274 appendix

cd d ms (mean) ms (median) ms (std. deviation) Std. Error 95

2 5 49.581 29.839 99.575 9.957 19.517

7 6 46.176 33.558 70.571 7.057 13.832

7 7 58.895 40.547 106.664 10.666 20.906

2 4 33.825 27.741 17.721 1.772 3.473

2 6 51.339 34.384 82.608 8.261 16.191

4 2 29.063 24.505 13.212 1.321 2.589

7 5 44.67 33.986 62.453 6.245 12.241

7 4 32.105 27.691 13.432 1.343 2.633

4 3 28.252 24.233 14.068 1.407 2.757

2 7 58.114 40.054 97.224 9.722 19.056

2 3 31.231 25.518 14.911 1.491 2.923

4 7 48.781 36.423 61.63 6.163 12.079

4 6 53.942 36.202 95.638 9.564 18.745

2 2 29.492 24.949 13.026 1.303 2.553

4 4 32.59 27.491 13.071 1.307 2.562

7 3 31.581 24.861 16.799 1.68 3.293

7 2 28.205 22.929 13.365 1.336 2.619

4 5 45.584 33.184 70.616 7.062 13.841

3 6 55.332 37.916 99.901 9.99 19.581

5 2 26.782 21.888 15.482 1.548 3.034

6 5 45.145 31.534 70.552 7.055 13.828

6 4 34.253 29.187 17.502 1.75 3.43

5 3 32.588 25.194 19.046 1.905 3.733

3 7 52.512 38.495 72.074 7.207 14.127

3 5 44.006 29.612 81.515 8.152 15.977

6 6 51.188 33.259 99.394 9.939 19.481

6 7 52.936 38.915 72.201 7.22 14.151

3 4 32.019 26.7 12.855 1.286 2.52

5 4 32.597 27.683 15.86 1.586 3.108

6 3 26.369 23.551 9.846 0.985 1.93

6 2 28.974 22.172 15.195 1.52 2.978

5 5 50.391 31.721 101.206 10.121 19.836

3 3 29.832 24.272 13.692 1.369 2.684

5 7 63.059 38.519 166.095 16.609 32.555

5 6 53.337 36.673 91.464 9.146 17.927

3 2 26.233 21.638 13.348 1.335 2.616

4 1 27.387 19.699 18.335 1.833 3.594

7 1 25.472 19.678 15.931 1.593 3.122

2 1 25.017 19.888 13.056 1.306 2.559

5 1 27.23 21.333 14.808 1.481 2.902

3 1 24.774 20.309 13.953 1.395 2.735

6 1 25.754 21.662 13.037 1.304 2.555

1 2 27.13 22.629 12.824 1.282 2.513

1 3 30.331 26.109 12.726 1.273 2.494

1 4 31.451 27.463 12.169 1.217 2.385

1 5 43.329 31.582 73.906 7.391 14.486

1 7 60.637 41.891 94.306 9.431 18.484

1 6 61.827 34.954 142.661 14.266 27.962

1 1 26.693 21.201 16.266 1.627 3.188

Table 11: Ontology Parameter Pair Evaluation for Children Degree and In-
heritance Depth.

A.2 further informations and appended data 275

pd pc ms (mean) ms (median) ms (std. deviation) Std. Error 95

5 7 2127.316 1971.024 581.012 58.101 113.878

7 5 1842.983 1698.622 479.46 47.946 93.974

5 6 1079.287 964.206 286.77 28.677 56.207

7 4 834.731 743.209 314.467 31.447 61.636

7 7 6045.152 5645.861 1364.732 136.473 267.487

5 5 590.018 518.636 266.156 26.616 52.167

3 3 75.031 60.71 80.693 8.069 15.816

7 6 3383.872 3298.029 677.773 67.777 132.844

3 2 57.769 38.504 112.719 11.272 22.093

5 4 301.07 270.102 109.803 10.98 21.521

5 2 85.02 62.552 115.008 11.501 22.542

3 4 109.862 95.768 81.589 8.159 15.992

3 5 177.631 155.438 90.151 9.015 17.67

5 3 147.397 129.427 98.868 9.887 19.378

3 6 288.207 249.646 144.036 14.404 28.231

7 2 131.777 113.436 103.439 10.344 20.274

3 7 482.514 430.065 212.92 21.292 41.732

7 3 366.032 292.324 277.807 27.781 54.45

4 2 68.997 50.615 108.057 10.806 21.179

2 4 84.155 58.421 148.555 14.856 29.117

2 5 102.793 83.312 101.56 10.156 19.906

4 3 95.375 88.965 24.206 2.421 4.744

2 6 144.218 123.502 98.537 9.854 19.313

6 2 107.812 81.691 121.442 12.144 23.803

2 7 204.585 171.08 156.089 15.609 30.593

6 3 243.711 208.524 144.456 14.446 28.313

4 7 988.225 889.384 299.657 29.966 58.733

6 5 1137.417 999.718 428.568 42.857 83.999

4 6 581.705 510.781 265.846 26.585 52.106

6 4 549.928 461.695 258.969 25.897 50.758

6 7 3770.878 3566.996 793.109 79.311 155.449

4 5 340.333 308.52 153.988 15.399 30.182

2 3 55.94 40.739 80.894 8.089 15.855

6 6 2152.933 2043.929 535.53 53.553 104.964

2 2 48.736 31.988 82.165 8.217 16.104

4 4 175.67 157.529 83.174 8.317 16.302

3 1 30.155 26.558 14.643 1.464 2.87

7 1 50.863 40.608 58.155 5.816 11.398

5 1 51.489 32.733 95.36 9.536 18.69

6 1 58.575 39.758 102.669 10.267 20.123

4 1 37.489 30.448 19.729 1.973 3.867

2 1 29.267 23.728 14.493 1.449 2.841

1 3 51.959 29.475 133.372 13.337 26.141

1 2 30.122 24.189 14.702 1.47 2.882

1 6 75.045 54.983 110.475 11.047 21.653

1 7 114.146 70.607 212.429 21.243 41.636

1 4 63.127 37.829 138.158 13.816 27.079

1 5 66.557 48.654 93.846 9.385 18.394

1 1 26.693 21.201 16.266 1.627 3.188

Table 12: Ontology Parameter Pair Evaluation for Parent Degree and Partial
Classes.

276 appendix

pd pm ms (mean) ms (median) ms (std. deviation) Std. Error 95

7 7 70.936 55.931 119.815 11.982 23.484

2 4 19.231 17.418 7.694 0.769 1.508

4 5 37.782 37.95 14.236 1.424 2.79

6 2 59.006 41.882 99.799 9.98 19.561

5 7 54.892 40.946 106.457 10.646 20.866

3 6 34.847 35.714 12.346 1.235 2.42

6 5 63.838 44.808 122.291 12.229 23.969

4 2 40.434 37.577 18.34 1.834 3.595

2 3 20.467 18.335 8.424 0.842 1.651

3 7 34.591 34.67 11.563 1.156 2.266

5 6 49.531 42.152 73.432 7.343 14.393

2 2 21.296 17.864 12.231 1.223 2.397

4 3 38.843 38.774 15.23 1.523 2.985

6 4 62.848 45.854 104.378 10.438 20.458

7 6 71.323 50.783 111.709 11.171 21.895

6 3 53.397 46.937 70.99 7.099 13.914

4 4 35.928 32.069 15.637 1.564 3.065

2 5 19.357 17.253 7.307 0.731 1.432

2 7 29.428 27.182 15.321 1.532 3.003

4 6 38.955 37.366 14.801 1.48 2.901

3 2 34.252 32.724 14.078 1.408 2.759

7 4 66.018 52.818 91.463 9.146 17.927

5 3 51.559 40.145 82.497 8.25 16.169

6 6 62.292 49.666 84.343 8.434 16.531

5 4 58.164 42.208 97.032 9.703 19.018

7 3 66.083 59.507 76.509 7.651 14.996

3 5 32.145 29.042 12.362 1.236 2.423

6 7 59.808 45.077 91.978 9.198 18.028

3 4 33.7 30.572 15.527 1.553 3.043

7 2 69.268 55.28 97.354 9.735 19.081

5 5 57.549 42.052 99.774 9.977 19.556

4 7 38.13 34.281 22.198 2.22 4.351

2 6 22.412 18.823 9.266 0.927 1.816

5 2 57.573 41.784 113.759 11.376 22.297

7 5 69.461 49.462 132.592 13.259 25.988

3 3 32.101 27.884 14.463 1.446 2.835

3 1 30.155 26.558 14.643 1.464 2.87

7 1 50.863 40.608 58.155 5.816 11.398

5 1 51.489 32.733 95.36 9.536 18.69

6 1 58.575 39.758 102.669 10.267 20.123

4 1 37.489 30.448 19.729 1.973 3.867

2 1 29.267 23.728 14.493 1.449 2.841

1 6 27.018 20.487 15.352 1.535 3.009

1 7 27.344 22.133 17.468 1.747 3.424

1 5 24.433 20.863 12.414 1.241 2.433

1 2 22.668 19.844 10.447 1.045 2.048

1 3 25.761 22.225 11.917 1.192 2.336

1 4 26.292 19.741 18.548 1.855 3.635

1 1 26.693 21.201 16.266 1.627 3.188

Table 13: Ontology Parameter Pair Evaluation for Parent Degree and Partial
Methods.

A.2 further informations and appended data 277

pd prop ms (mean) ms (median) ms (std. deviation) Std. Error 95

6 3 68.228 50.401 146.016 14.602 28.619

6 5 58.791 42.489 99.818 9.982 19.564

3 7 33.684 31.494 14.059 1.406 2.756

5 2 51.925 39.859 83.542 8.354 16.374

5 4 58.689 44.198 96.799 9.68 18.973

4 3 38.299 36.844 16.539 1.654 3.242

4 5 36.847 35.18 14.424 1.442 2.827

7 2 59.068 56.685 36.559 3.656 7.166

2 6 27.364 26.599 10.903 1.09 2.137

7 4 60.937 54.821 56.003 5.6 10.977

4 6 37.581 36.634 13.504 1.35 2.647

2 3 28.357 25.171 14.654 1.465 2.872

7 7 70.219 49.433 121.617 12.162 23.837

2 5 27.674 28.251 9.216 0.922 1.806

3 2 33.212 31.366 12.59 1.259 2.468

3 4 32.059 30.575 12.696 1.27 2.488

6 6 65.759 48.268 111.414 11.141 21.837

5 7 51.713 44.492 62.414 6.241 12.233

5 6 52.419 40.762 79.452 7.945 15.573

3 3 33.573 33.088 13.607 1.361 2.667

6 7 59.699 42.614 102.338 10.234 20.058

3 5 33.545 31.626 12.255 1.226 2.402

2 2 28.712 25.89 13.264 1.326 2.6

2 4 30.414 30.004 13.075 1.308 2.563

7 6 55.811 57.324 22.147 2.215 4.341

4 7 38.568 35.489 15.839 1.584 3.104

7 3 71.541 59.86 94.393 9.439 18.501

7 5 65.654 49.05 96.622 9.662 18.938

2 7 27.411 26.409 9.913 0.991 1.943

4 2 35.618 33.483 12.856 1.286 2.52

4 4 37.229 35.619 15.414 1.541 3.021

5 3 57.128 41.83 104.371 10.437 20.457

5 5 48.822 39.151 58.671 5.867 11.499

6 2 73.545 46.026 194.934 19.493 38.207

3 6 32.596 30.684 13.305 1.33 2.608

6 4 73.422 44.39 154.568 15.457 30.295

3 1 30.155 26.558 14.643 1.464 2.87

7 1 50.863 40.608 58.155 5.816 11.398

5 1 51.489 32.733 95.36 9.536 18.69

6 1 58.575 39.758 102.669 10.267 20.123

4 1 37.489 30.448 19.729 1.973 3.867

2 1 29.267 23.728 14.493 1.449 2.841

1 7 25.905 21.319 12.591 1.259 2.468

1 2 26.378 20.754 15.755 1.576 3.088

1 4 26.304 23.486 12.127 1.213 2.377

1 3 25.802 22.086 11.821 1.182 2.317

1 5 25.248 20.017 16.569 1.657 3.248

1 6 23.648 20.627 10.668 1.067 2.091

1 1 26.693 21.201 16.266 1.627 3.188

Table 14: Ontology Parameter Pair Evaluation for Parent Degree and Prop-
erties and Relationships.

278 appendix

pc pm ms (mean) ms (median) ms (std. deviation) Std. Error 95

7 7 118.577 104.518 125.189 12.519 24.537

6 7 102.134 73.349 183.228 18.323 35.913

3 6 52.801 38.541 108.991 10.899 21.362

5 7 74.886 58.401 109.06 10.906 21.376

2 6 29.781 29.754 9.105 0.911 1.785

4 7 51.857 48.215 54.436 5.444 10.669

4 6 54.788 44.507 61.222 6.122 11.999

2 7 27.922 26.364 10.008 1.001 1.961

5 6 69.756 63.373 83.011 8.301 16.27

3 7 49.274 36.523 83.156 8.316 16.299

6 6 94.261 77.652 129.948 12.995 25.47

7 6 106.067 98.472 102.415 10.241 20.073

2 2 30.356 28.544 12.763 1.276 2.502

4 3 61.945 46.887 100.769 10.077 19.751

6 4 110.254 79.604 201.056 20.106 39.407

3 2 50.495 34.289 101.854 10.185 19.963

5 3 75.036 57.531 110.15 11.015 21.589

7 4 103.834 82.289 99.296 9.93 19.462

4 4 54.377 47.801 72.734 7.273 14.256

2 5 30.034 29.577 13.514 1.351 2.649

6 3 101.817 77.842 163.827 16.383 32.11

5 4 70.655 54.514 90.114 9.011 17.662

3 5 53.041 39.153 100.495 10.05 19.697

7 3 100.736 90.103 91.367 9.137 17.908

3 4 53.955 33.275 133.078 13.308 26.083

5 5 74.865 59.359 108.508 10.851 21.268

7 2 108.046 86.484 117.183 11.718 22.968

2 4 30.881 29.721 13.393 1.339 2.625

4 5 63.293 48.243 101.668 10.167 19.927

6 2 91.115 73.778 107.532 10.753 21.076

5 2 73.041 62.664 86.292 8.629 16.913

3 3 46.162 36.245 71.229 7.123 13.961

7 5 112.583 93.667 146.432 14.643 28.701

4 2 60.056 43.891 107.686 10.769 21.106

2 3 31.787 29.492 16.943 1.694 3.321

6 5 84.745 66.278 92.541 9.254 18.138

3 1 51.959 29.475 133.372 13.337 26.141

2 1 30.122 24.189 14.702 1.47 2.882

6 1 75.045 54.983 110.475 11.047 21.653

7 1 114.146 70.607 212.429 21.243 41.636

4 1 63.127 37.829 138.158 13.816 27.079

5 1 66.557 48.654 93.846 9.385 18.394

1 6 27.018 20.487 15.352 1.535 3.009

1 7 27.344 22.133 17.468 1.747 3.424

1 5 24.433 20.863 12.414 1.241 2.433

1 2 22.668 19.844 10.447 1.045 2.048

1 3 25.761 22.225 11.917 1.192 2.336

1 4 26.292 19.741 18.548 1.855 3.635

1 1 26.693 21.201 16.266 1.627 3.188

Table 15: Ontology Parameter Pair Evaluation for Partial Classes and Partial
Methods.

A.2 further informations and appended data 279

pc prop ms (mean) ms (median) ms (std. deviation) Std. Error 95

4 4 64.604 53.628 89.613 8.961 17.564

3 7 53.816 39.11 94.234 9.423 18.47

4 2 62.736 48.358 95.952 9.595 18.806

2 7 31.565 30.154 14.725 1.473 2.886

5 4 67.746 58.823 73.431 7.343 14.392

5 2 79.82 57.447 153.418 15.342 30.07

6 2 85.489 74.303 83.209 8.321 16.309

6 4 87.984 68.411 117.031 11.703 22.938

7 2 127.325 85.154 226.787 22.679 44.45

7 4 97.544 93.606 67.021 6.702 13.136

6 7 80.759 76.192 68.695 6.869 13.464

7 7 106.447 101.146 96.004 9.6 18.817

3 4 52.667 40.071 85.563 8.556 16.77

4 7 61.214 48.89 81.875 8.188 16.048

3 2 51.906 36.956 101.325 10.132 19.86

5 7 70.902 59.611 81.074 8.107 15.891

2 4 35.963 34.91 16.57 1.657 3.248

2 2 31.794 31.357 13.576 1.358 2.661

2 5 32.078 32.274 12.746 1.275 2.498

5 6 75.645 62.845 101.335 10.134 19.862

2 3 33.807 30.132 17.732 1.773 3.475

4 6 78.05 52.919 166.06 16.606 32.548

3 5 49.401 36.251 79.566 7.957 15.595

3 3 56.354 42.506 101.841 10.184 19.961

7 6 129.187 97.101 206.118 20.612 40.399

6 6 88.955 74.676 105.607 10.561 20.699

7 3 129.251 97.046 225.203 22.52 44.14

7 5 111.586 99.447 120.557 12.056 23.629

6 3 90.485 80.353 97.832 9.783 19.175

6 5 84.426 68.114 93.11 9.311 18.25

5 5 74.743 65.407 98.497 9.85 19.305

2 6 31.914 31.709 10.903 1.09 2.137

5 3 75.226 57.992 113.4 11.34 22.226

3 6 51.689 39.07 84.538 8.454 16.569

4 5 62.859 50.989 91.759 9.176 17.985

4 3 56.5 53.332 68.926 6.893 13.51

3 1 51.959 29.475 133.372 13.337 26.141

2 1 30.122 24.189 14.702 1.47 2.882

6 1 75.045 54.983 110.475 11.047 21.653

7 1 114.146 70.607 212.429 21.243 41.636

4 1 63.127 37.829 138.158 13.816 27.079

5 1 66.557 48.654 93.846 9.385 18.394

1 7 25.905 21.319 12.591 1.259 2.468

1 2 26.378 20.754 15.755 1.576 3.088

1 4 26.304 23.486 12.127 1.213 2.377

1 3 25.802 22.086 11.821 1.182 2.317

1 5 25.248 20.017 16.569 1.657 3.248

1 6 23.648 20.627 10.668 1.067 2.091

1 1 26.693 21.201 16.266 1.627 3.188

Table 16: Ontology Parameter Pair Evaluation for Partial Classes and Prop-
erties and Relationships.

280 appendix

pc d ms (mean) ms (median) ms (std. deviation) Std. Error 95

5 5 723.776 684.833 270.678 27.068 53.053

6 7 3697.346 3711.853 685.251 68.525 134.309

4 4 208.515 198.297 96.49 9.649 18.912

7 6 3984.776 3962.702 748.631 74.863 146.732

7 7 6924.042 6780.342 978.16 97.816 191.719

4 5 358.557 340.453 131.841 13.184 25.841

6 6 2264.669 2176.415 571.82 57.182 112.077

5 4 401.835 392.618 161.238 16.124 31.603

2 3 63.199 51.848 90.477 9.048 17.734

5 6 1198.823 1160.685 355.452 35.545 69.668

6 4 724.546 692.515 261.062 26.106 51.168

4 7 922.594 882.259 351.328 35.133 68.86

3 2 67.849 57.748 92.692 9.269 18.168

7 5 2247.46 2179.538 530.212 53.021 103.922

7 4 1104.126 1050.621 385.307 38.531 75.52

3 3 86.46 77.455 74.731 7.473 14.647

4 6 582.12 577.809 204.357 20.436 40.054

6 5 1364.031 1317.485 376.416 37.642 73.778

5 7 1856.813 1801.828 444.379 44.438 87.098

2 2 47.041 37.275 71.117 7.112 13.939

5 3 215.847 217.958 88.16 8.816 17.279

2 6 112.256 96.037 119.195 11.919 23.362

3 7 390.09 363.759 242.064 24.206 47.444

4 2 105.965 75.792 203.741 20.374 39.933

4 3 144.37 133.774 117.442 11.744 23.019

3 6 235.707 214.685 95.972 9.597 18.811

2 7 133.909 137.394 58.779 5.878 11.521

5 2 121.731 107.751 109.843 10.984 21.529

2 5 92.014 74.38 120.877 12.088 23.692

6 2 164.123 150.769 78.692 7.869 15.424

3 4 128.697 119.47 122.62 12.262 24.033

7 3 528.464 456.508 253.462 25.346 49.679

7 2 243.318 250.942 117.287 11.729 22.988

3 5 175.292 177.88 70.087 7.009 13.737

6 3 358.39 339.103 189.506 18.951 37.143

2 4 76.864 60.076 100.767 10.077 19.75

3 1 51.959 29.475 133.372 13.337 26.141

2 1 30.122 24.189 14.702 1.47 2.882

6 1 75.045 54.983 110.475 11.047 21.653

7 1 114.146 70.607 212.429 21.243 41.636

4 1 63.127 37.829 138.158 13.816 27.079

5 1 66.557 48.654 93.846 9.385 18.394

1 2 27.13 22.629 12.824 1.282 2.513

1 3 30.331 26.109 12.726 1.273 2.494

1 4 31.451 27.463 12.169 1.217 2.385

1 5 43.329 31.582 73.906 7.391 14.486

1 7 60.637 41.891 94.306 9.431 18.484

1 6 61.827 34.954 142.661 14.266 27.962

1 1 26.693 21.201 16.266 1.627 3.188

Table 17: Ontology Parameter Pair Evaluation for Partial Classes and Inher-
itance Depth.

A.2 further informations and appended data 281

pm prop ms (mean) ms (median) ms (std. deviation) Std. Error 95

5 5 25.846 24.808 10.98 1.098 2.152

5 3 26.855 25.889 12.345 1.235 2.42

6 7 23.697 21.253 10.598 1.06 2.077

7 2 24.875 23.867 9.716 0.972 1.904

4 6 26.26 23.96 14.771 1.477 2.895

7 4 24.65 23.661 12.536 1.254 2.457

2 5 27.079 25.119 15.731 1.573 3.083

2 3 26.198 25.809 11.382 1.138 2.231

3 6 27.662 25.363 13.775 1.378 2.7

2 6 26.843 25.404 13.598 1.36 2.665

3 5 24.182 22.081 9.569 0.957 1.876

3 3 23.624 22.609 9.102 0.91 1.784

5 6 25.574 23.862 12.178 1.218 2.387

6 2 27.455 26.395 14.836 1.484 2.908

6 4 26.002 24.725 13.041 1.304 2.556

4 5 26.261 24.981 11.52 1.152 2.258

7 7 21.773 21.174 9.964 0.996 1.953

4 3 25.363 25.277 10.876 1.088 2.132

4 4 25.101 21.691 14.57 1.457 2.856

4 2 28.252 26.868 13.414 1.341 2.629

7 6 21.853 21.294 8.624 0.862 1.69

6 3 25.775 25.54 11.159 1.116 2.187

5 7 26.468 26.703 11.97 1.197 2.346

6 5 24.329 22.428 10.3 1.03 2.019

3 4 26.339 27.25 7.793 0.779 1.527

3 2 25.626 25.039 10.949 1.095 2.146

2 7 28.711 26.276 13.768 1.377 2.698

3 7 26.595 26.315 10.835 1.083 2.124

2 4 25.888 26.389 9.32 0.932 1.827

2 2 28.334 25.911 15.835 1.583 3.104

4 7 28.194 25.282 13.356 1.336 2.618

7 3 27.097 23.94 14.326 1.433 2.808

7 5 22.778 21.825 10.639 1.064 2.085

5 4 26.341 25.832 10.985 1.099 2.153

6 6 24.531 22.695 12.637 1.264 2.477

5 2 25.334 24.714 13.097 1.31 2.567

6 1 27.018 20.487 15.352 1.535 3.009

7 1 27.344 22.133 17.468 1.747 3.424

5 1 24.433 20.863 12.414 1.241 2.433

2 1 22.668 19.844 10.447 1.045 2.048

3 1 25.761 22.225 11.917 1.192 2.336

4 1 26.292 19.741 18.548 1.855 3.635

1 7 25.905 21.319 12.591 1.259 2.468

1 2 26.378 20.754 15.755 1.576 3.088

1 4 26.304 23.486 12.127 1.213 2.377

1 3 25.802 22.086 11.821 1.182 2.317

1 5 25.248 20.017 16.569 1.657 3.248

1 6 23.648 20.627 10.668 1.067 2.091

1 1 26.693 21.201 16.266 1.627 3.188

Table 18: Ontology Parameter Pair Evaluation for Partial Methods and Prop-
erties and Relationships.

282 appendix

pm d ms (mean) ms (median) ms (std. deviation) Std. Error 95

7 5 45.225 39.054 44.713 4.471 8.764

7 4 37.232 36.08 14.626 1.463 2.867

6 2 29.672 29.585 11.01 1.101 2.158

7 6 68.239 45.014 169.693 16.969 33.26

7 7 58.688 49.065 87.439 8.744 17.138

6 3 35.764 34.453 15.336 1.534 3.006

6 7 67.273 51.037 108.012 10.801 21.17

7 3 32.76 30.512 13.926 1.393 2.73

7 2 28.754 29.917 10.674 1.067 2.092

6 6 53.653 44.608 75.446 7.545 14.787

6 4 36.585 34.045 16.0 1.6 3.136

6 5 56.668 38.982 114.176 11.418 22.379

2 3 35.17 35.318 12.532 1.253 2.456

3 7 68.257 52.575 110.642 11.064 21.686

4 4 36.708 36.201 13.737 1.374 2.693

4 5 60.921 43.102 123.304 12.33 24.168

3 6 59.791 44.954 107.46 10.746 21.062

2 2 27.926 25.477 11.295 1.129 2.214

5 3 33.039 33.298 11.206 1.121 2.196

3 4 38.297 35.421 18.245 1.824 3.576

4 7 66.876 48.31 114.415 11.441 22.425

4 6 61.506 43.924 107.178 10.718 21.007

3 5 80.978 39.397 213.301 21.33 41.807

5 2 29.034 26.244 15.449 1.545 3.028

2 5 64.467 41.553 165.221 16.522 32.383

5 6 50.946 44.482 55.925 5.593 10.961

4 2 28.24 25.762 10.889 1.089 2.134

4 3 33.956 31.852 14.747 1.475 2.89

5 7 67.595 52.443 107.304 10.73 21.032

2 4 36.567 34.773 14.5 1.45 2.842

2 6 59.094 44.296 97.932 9.793 19.195

5 5 48.254 41.204 67.854 6.785 13.299

3 2 28.854 28.674 12.027 1.203 2.357

3 3 33.569 32.11 15.315 1.531 3.002

5 4 37.154 34.868 15.667 1.567 3.071

2 7 59.664 49.315 84.493 8.449 16.561

6 1 27.018 20.487 15.352 1.535 3.009

7 1 27.344 22.133 17.468 1.747 3.424

5 1 24.433 20.863 12.414 1.241 2.433

2 1 22.668 19.844 10.447 1.045 2.048

3 1 25.761 22.225 11.917 1.192 2.336

4 1 26.292 19.741 18.548 1.855 3.635

1 2 27.13 22.629 12.824 1.282 2.513

1 3 30.331 26.109 12.726 1.273 2.494

1 4 31.451 27.463 12.169 1.217 2.385

1 5 43.329 31.582 73.906 7.391 14.486

1 7 60.637 41.891 94.306 9.431 18.484

1 6 61.827 34.954 142.661 14.266 27.962

1 1 26.693 21.201 16.266 1.627 3.188

Table 19: Ontology Parameter Pair Evaluation for Partial Methods and In-
heritance Depth.

A.2 further informations and appended data 283

prop d ms (mean) ms (median) ms (std. deviation) Std. Error 95

2 7 63.146 52.3 82.43 8.243 16.156

7 2 29.309 27.386 16.941 1.694 3.32

4 7 67.495 51.686 99.718 9.972 19.545

4 6 58.978 46.352 77.706 7.771 15.23

7 3 33.232 30.313 18.079 1.808 3.543

2 6 61.679 53.07 93.041 9.304 18.236

2 4 36.597 36.475 15.192 1.519 2.978

4 4 40.883 38.4 21.243 2.124 4.164

4 5 55.609 45.432 89.331 8.933 17.509

2 5 58.128 41.17 95.563 9.556 18.73

7 4 37.262 35.65 14.518 1.452 2.846

7 5 56.45 44.583 102.746 10.275 20.138

2 2 27.181 27.931 8.777 0.878 1.72

7 7 59.071 51.214 68.786 6.879 13.482

4 2 26.415 25.542 8.589 0.859 1.683

4 3 35.057 33.285 15.394 1.539 3.017

7 6 60.787 47.746 93.184 9.318 18.264

2 3 31.967 30.088 12.995 1.3 2.547

6 6 61.231 49.544 105.751 10.575 20.727

5 3 34.329 33.952 15.701 1.57 3.077

3 3 34.524 35.903 14.306 1.431 2.804

3 2 26.689 26.295 9.37 0.937 1.837

5 2 28.179 27.031 10.047 1.005 1.969

6 7 64.103 43.717 108.144 10.814 21.196

6 5 56.721 41.697 105.055 10.505 20.591

6 4 37.774 37.828 17.949 1.795 3.518

5 5 60.382 43.148 108.771 10.877 21.319

3 5 44.204 38.782 54.618 5.462 10.705

3 4 40.084 37.317 21.303 2.13 4.175

5 4 37.18 33.058 19.242 1.924 3.771

6 3 32.992 32.359 14.417 1.442 2.826

5 6 59.552 45.964 91.98 9.198 18.028

3 6 59.952 46.417 94.945 9.494 18.609

3 7 78.209 52.939 151.93 15.193 29.778

5 7 67.851 56.419 81.511 8.151 15.976

6 2 29.438 27.407 13.845 1.384 2.714

7 1 25.905 21.319 12.591 1.259 2.468

2 1 26.378 20.754 15.755 1.576 3.088

4 1 26.304 23.486 12.127 1.213 2.377

3 1 25.802 22.086 11.821 1.182 2.317

5 1 25.248 20.017 16.569 1.657 3.248

6 1 23.648 20.627 10.668 1.067 2.091

1 2 27.13 22.629 12.824 1.282 2.513

1 3 30.331 26.109 12.726 1.273 2.494

1 4 31.451 27.463 12.169 1.217 2.385

1 5 43.329 31.582 73.906 7.391 14.486

1 7 60.637 41.891 94.306 9.431 18.484

1 6 61.827 34.954 142.661 14.266 27.962

1 1 26.693 21.201 16.266 1.627 3.188

Table 20: Ontology Parameter Pair Evaluation for Properties and Relation-
ships and Inheritance Depth.

B I B L I O G R A P H Y

[1] Ben Adida, Ivan Herman, Manu Sporny, and Mark Birbeck.
RDFa 1.1 Primer - Third Edition. W3C Note. Mar. 2015. url:
http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/.

[2] Patrick Aichroth et al. “MICO - Media in Context.” In: 2015
IEEE International Conference on Multimedia & Expo Workshops,
ICME Workshops 2015, Turin, Italy, June 29 - July 3, 2015. IEEE
Computer Society, 2015, pp. 1–4.

[3] Patrick Aichroth, Henrik Björklund, Johanna Björklund, Kai
Schlegel, Thomas Kurz, and Antonio Perez. Volume 3: MICO
Enabling Technology Modules: Version 1. Deliverable, Technical
Report. Media in Context - MICO, Nov. 2015.

[4] Patrick Aichroth, Marcel Sieland, Luca Cuccovillo, and Thomas
Köllmer. “The MICO Broker: An Orchestration Framework for
Linked Data Extractors.” In: Joint Proceedings of the 4th Interna-
tional Workshop on Linked Media and the 3rd Developers Hackshop
co-located with the 13th Extended Semantic Web Conference ESWC
2016, Heraklion, Crete, Greece, May 30, 2016. 2016.

[5] Patrick Aichroth, Johanna Björklund, Emanuel Berndl, Thomas
Kurz, and Thomas Köllmer. Volume 5: MICO Enabling Technol-
ogy Modules - Final Version. Deliverable, Technical Report. Me-
dia in Context - MICO, Apr. 2016.

[6] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and
Erdal Cayirci. “Wireless Sensor Networks: A Survey.” In: Com-
puter Networks 38.4 (2002), pp. 393–422.

[7] Richard Arndt, Raphaël Troncy, Steffen Staab, Lynda Hard-
man, and Miroslav Vacura. “COMM: Designing a Well-Foun-
ded Multimedia Ontology for the Web.” In: The Semantic Web:
6th International Semantic Web Conference, 2nd Asian Semantic
Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, Novem-
ber 11-15, 2007. Proceedings. Ed. by Karl Aberer et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 30–43.

[8] Richard Arndt, Raphaël Troncy, Steffen Staab, and Lynda Hard-
man. “Comm: A Core Ontology for Multimedia Annotation.”
In: Handbook on Ontologies. Springer, 2009.

[9] Ahmad Assaf, Aline Senart, and Raphaël Troncy. “Roomba:
Automatic Validation, Correction and Generation of Dataset
Metadata.” In: Proceedings of the 24th International Conference on
World Wide Web. WWW ’15 Companion. Florence, Italy: ACM,
2015, pp. 159–162.

285

http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/

286 Bibliography

[10] Ahmad Assaf, Raphaël Troncy, and Aline Senart. “What’s up
LOD Cloud?” In: The Semantic Web: ESWC 2015 Satellite Events.
Ed. by Fabien Gandon, Christophe Guéret, Serena Villata, John
Breslin, Catherine Faron-Zucker, and Antoine Zimmermann.
Cham: Springer International Publishing, 2015, pp. 247–254.

[11] Sören Auer. “Creating Knowledge out of Interlinked Data: Mak-
ing the Web a Data Washing Machine.” In: Proceedings of the In-
ternational Conference on Web Intelligence, Mining and Semantics.
WIMS ’11. Sogndal, Norway: ACM, 2011, 4:1–4:8.

[12] Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo.
“Introduction to Linked Data and Its Lifecycle on the Web.”
In: Proceedings of the 7th International Conference on Reasoning
Web: Semantic Technologies for the Web of Data. RW’11. Galway,
Ireland: Springer-Verlag, 2011, pp. 1–75.

[13] Sören Auer et al. “Managing the Life-Cycle of Linked Data
with the LOD2 Stack.” In: The Semantic Web – ISWC 2012. Ed.
by Philippe Cudré-Mauroux et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 1–16.

[14] Franz Baader, Ian Horrocks, and Ulrike Sattler. “Description
Logics as Ontology Languages for the Semantic Web.” In: Mech-
anizing Mathematical Reasoning: Essays in Honor of Jörg H. Siek-
mann on the Occasion of His 60th Birthday. Ed. by Dieter Hutter
and Werner Stephan. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2005, pp. 228–248.

[15] Steve Battle, David Wood, James Leigh, and Luke Ruth. “The
Callimachus Project: RDFa As a Web Template Language.” In:
Proceedings of the Third International Conference on Consuming
Linked Data - Volume 905. COLD’12. Boston, MA, 2012, pp. 1–
14.

[16] Christian Bauer and Gavin King. Hibernate in Action. Green-
wich, CT: Manning, 2005.

[17] Sean Bechhofer and Alistair Miles. SKOS Simple Knowledge Or-
ganization System Reference. W3C Recommendation. Aug. 2009.
url: http://www.w3.org/TR/2009/REC- skos- reference-
20090818/.

[18] Diana Benito-Osorio, Marta Peris-Ortiz, Carlos Rueda Armen-
got, and Alberto Colino. “Web 5.0: the future of emotional
competences in higher education.” In: Global Business Perspec-
tives 1.3 (2013), pp. 274–287.

[19] Ansgar Bernardi, Harald Holz, Heiko Maus, and Ludger van
Elst. “Komplexe Arbeitswelten in der Wissensgesellschaft.” In:
Semantic Web: Wege zur vernetzten Wissensgesellschaft. Ed. by
Tassilo Pellegrini and Andreas Blumauer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 27–45.

http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/

Bibliography 287

[20] Emanuel Berndl, Kai Schlegel, and Andreas Eisenkolb. MICO
Metadata Model - Terms. Model Specification Recommendation.
Oct. 2016. url: https://mico-project.bitbucket.io/vocabs
/mmmterms/2.0/documentation/.

[21] Emanuel Berndl, Kai Schlegel, Andreas Eisenkolb, Thomas
Weißgerber, and Harald Kosch. “Anno4j - Idiomatic Access
to the W3C Web Annotation Data Model.” In: The Semantic
Web - ESWC 2016 Satellite Events, Heraklion, Crete, Greece, May
29 - June 2, 2016, Revised Selected Papers. Ed. by Harald Sack,
Giuseppe Rizzo, Nadine Steinmetz, Dunja Mladenic, Sören
Auer, and Christoph Lange. Vol. 9989. Lecture Notes in Com-
puter Science. 2016, pp. 257–270.

[22] Emanuel Berndl, Kai Schlegel, Andreas Eisenkolb, and Har-
ald Kosch. “Idiomatic Persistence and Querying for the W3C
Web Annotation Data Model.” In: Joint Proceedings of the 4th
International Workshop on Linked Media and the 3rd Developers
Hackshop co-located with the 13th Extended Semantic Web Confer-
ence ESWC 2016, Heraklion, Crete, Greece, May 30, 2016. Ed. by
Raphaël Troncy, Ruben Verborgh, Lyndon J. B. Nixon, Thomas
Kurz, Kai Schlegel, and Miel Vander Sande. Vol. 1615. CEUR
Workshop Proceedings. CEUR-WS.org, 2016.

[23] Emanuel Berndl, Kai Schlegel, Andreas Eisenkolb, and Thomas
Weißgerber. MICO Metadata Model. Model Specification Rec-
ommendation. Oct. 2016. url: https://mico-project.bitbuc
ket.io/vocabs/mmm/2.0/documentation/.

[24] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986. RFC Editor, 2005,
pp. 1–60. url: https://tools.ietf.org/rfc/rfc3986.txt.

[25] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource
Locators (URL). RFC 1738. RFC Editor, 1994, pp. 1–24. url: ht
tps://www.ietf.org/rfc/rfc1738.txt.

[26] Tim Berners-Lee. Linked Data. Website. Last visited 03/12/2018.
2006. url: http://www.w3.org/DesignIssues/LinkedData.
html.

[27] Tim Berners-Lee, James Hendler, Ora Lassila, et al. “The Se-
mantic Web.” In: Scientific American 284.5 (2001), pp. 28–37.

[28] Tim Berners-Lee et al. Semantic Web Road Map. Website. Last
visited 03/12/2018. 1998. url: https://www.w3.org/DesignIs
sues/Semantic.html.

[29] Tim Berners-Lee et al. What the Semantic Web can represent. Web-
site. Last visited 03/12/2018. 1998. url: https://www.w3.org/
DesignIssues/RDFnot.html.

https://mico-project.bitbucket.io/vocabs/mmmterms/2.0/documentation/
https://mico-project.bitbucket.io/vocabs/mmmterms/2.0/documentation/
https://mico-project.bitbucket.io/vocabs/mmm/2.0/documentation/
https://mico-project.bitbucket.io/vocabs/mmm/2.0/documentation/
https://tools.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc1738.txt
https://www.ietf.org/rfc/rfc1738.txt
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/Semantic.html
https://www.w3.org/DesignIssues/Semantic.html
https://www.w3.org/DesignIssues/RDFnot.html
https://www.w3.org/DesignIssues/RDFnot.html

288 Bibliography

[30] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked
Data - The Story So Far.” English. In: International Journal on
Semantic Web and Information Systems 5.3 (2009), pp. 1–22.

[31] Christian Bizer and Andreas Schultz. “The Berlin SPARQL
Benchmark.” In: International Journal on Semantic Web and In-
formation Systems (IJSWIS) 5.2 (2009), pp. 1–24.

[32] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-
Lee. “Linked Data on the Web (LDOW2008).” In: Proceedings
of the 17th International Conference on World Wide Web. WWW
’08. Beijing, China: ACM, 2008, pp. 1265–1266.

[33] Christian Bizer, Kai Eckert, Robert Meusel, Hannes Mühleisen,
Michael Schuhmacher, and Johanna Völker. “Deployment of
RDFa, Microdata, and Microformats on the Web - A Quantita-
tive Analysis.” In: The Semantic Web - ISWC 2013 - 12th Interna-
tional Semantic Web Conference, Sydney, NSW, Australia, October
21-25, 2013, Proceedings, Part II. Ed. by Harith Alani, Lalana
Kagal, Achille Fokoue, Paul T. Groth, Chris Biemann, Josiane
Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris Welty, and
Krzysztof Janowicz. Vol. 8219. Lecture Notes in Computer Sci-
ence. Springer, 2013, pp. 17–32.

[34] Dublin Core Usage Board. DCMI Metadata Terms. DCMI Rec-
ommendation. Dublin Core Metadata Initiative, June 2012. url:
http://dublincore.org/documents/dcmi-terms/.

[35] Barry W. Boehm. “Software Engineering: As it is.” In: Proceed-
ings of the 4th International Conference on Software Engineering,
Munich, Germany, September 1979. 1979, pp. 11–21.

[36] Harold Boley, Said Tabet, and Gerd Wagner. “Design Rationale
of RuleML: A Markup Language for Semantic Web Rules.” In:
Proceedings of the First International Conference on Semantic Web
Working. SWWS’01. California: CEUR-WS.org, 2001, pp. 381–
401.

[37] Dan Brickley and Ramanathan Guha. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema. W3C Recommendation. W3C,
Feb. 2004. url: http : / / www . w3 . org / TR / 2004 / REC - rdf -

schema-20040210/.

[38] Dan Brickley and Libby Miller. FOAF Vocabulary Specification.
Technical Report. xmlns, Jan. 2014. url: http://xmlns.com/
foaf/spec/20140114.html.

[39] Mark Butler. “Barriers to Real World Adoption of Semantic
Web Technologies.” In: Proceedings of the 2002 International Con-
ference on Semantic Web, RDF, and XML. 2002, p. 7.

http://dublincore.org/documents/dcmi-terms/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://xmlns.com/foaf/spec/20140114.html
http://xmlns.com/foaf/spec/20140114.html

Bibliography 289

[40] Lorna M. Campbell and Sheila MacNeill. “The Semantic Web,
Linked and Open Data.” In: A Briefing Paper of the Publica-
tions from the Centre for Educational Technology, Interoperability
and Standards. (2010).

[41] J. Cardoso. “The Semantic Web Vision: Where Are We?” In:
IEEE Intelligent Systems 22.5 (2007), pp. 84–88.

[42] Gavin Carothers. RDF 1.1 N-Quads. W3C Recommendation.
W3C, Feb. 2014. url: http://www.w3.org/TR/2014/REC-
n-quads-20140225/.

[43] Gavin Carothers and Andy Seaborne. RDF 1.1 N-Triples. W3C
Recommendation. W3C, Feb. 2014. url: http://www.w3.org/
TR/2014/REC-n-triples-20140225/.

[44] Gavin Carothers and Andy Seaborne. RDF 1.1 TriG. W3C Rec-
ommendation. W3C, Feb. 2014. url: http://www.w3.org/TR/
2014/REC-trig-20140225/.

[45] Scott Chacon and Ben Straub. Pro Git. 2nd Edition. Berkely,
CA, USA: Apress, 2014.

[46] Shih-Fu Chang, T. Sikora, and A. Purl. “Overview of the MPEG-
7 Standard.” In: IEEE Transactions on Circuits and Systems for
Video Technology 11.6 (2001), pp. 688–695.

[47] Peter Pin-Shan Chen. “The Entity-Relationship Model—Toward
a Unified View of Data.” In: Readings in Artificial Intelligence
and Databases. Ed. by John Mylopolous and Michael Brodie.
San Francisco (CA): Morgan Kaufmann, 1989, pp. 98 –111.

[48] L. Cheng, S. Kotoulas, T. Ward, and G. Theodoropoulos. “Run-
time Characterization of Triple Stores.” In: 2012 IEEE 15th In-
ternational Conference on Computational Science and Engineering.
2012, pp. 66–73.

[49] James Clark and Steve DeRose. XML Path Language XPath. W3C
Recommendation. W3C, Nov. 1999. url: https://www.w3.org/
TR/1999/REC-xpath-19991116/.

[50] Daniel D Corkill. “Blackboard systems.” In: AI expert 6.9 (1991).

[51] Carlos Coronel and Steven Morris. Database Systems: Design,
Implementation, & Management. 12th ed. Cengage Learning, 2016.

[52] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF
1.1 Concepts and Abstract Syntax. W3C Recommendation. W3C,
Feb. 2014. url: http://www.w3.org/TR/2014/REC- rdf11-
concepts-20140225/.

[53] DBpedia Facts and Figures. Last visited 03/12/2018. url: http:
//wiki.dbpedia.org/about/facts-figures.

[54] DCMI Usage Board. DCMI Metadata Terms. DCMI Recommen-
dation. Dublin Core Metadata Initiative, 2006. url: http://
dublincore.org/documents/2006/12/18/dcmi-terms/.

http://www.w3.org/TR/2014/REC-n-quads-20140225/
http://www.w3.org/TR/2014/REC-n-quads-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2014/REC-trig-20140225/
http://www.w3.org/TR/2014/REC-trig-20140225/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://wiki.dbpedia.org/about/facts-figures
http://wiki.dbpedia.org/about/facts-figures
http://dublincore.org/documents/2006/12/18/dcmi-terms/
http://dublincore.org/documents/2006/12/18/dcmi-terms/

290 Bibliography

[55] Neil F. Day. “MPEG-7 Applications.” In: Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series. Vol. 4209. proc-
spie. Mar. 2001, pp. 39–47.

[56] Ben De Meester, Ruben Verborgh, Pieter Pauwels, Wesley De
Neve, Erik Mannens, and Rik Van de Walle. “Towards Robust
and Reliable Multimedia Analysis Through Semantic Integra-
tion of Services.” In: Multimedia Tools and Applications 75.22

(2016), pp. 14019–14038.

[57] Li Ding and Tim Finin. “Characterizing the Semantic Web on
the Web.” In: The Semantic Web - ISWC 2006. Ed. by Isabel Cruz,
Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe,
Peter Mika, Mike Uschold, and Lora M. Aroyo. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 242–257.

[58] Martin Doerr. “The CIDOC Conceptual Reference Module: An
Ontological Approach to Semantic Interoperability of Meta-
data.” In: AI Magazine 24.3 (2003), p. 75.

[59] Mario Döller and Harald Kosch. “MPEG-7 Multimedia Da-
ta Cartridge.” In: Multimedia Computing and Networking 2003.
Vol. 5019. International Society for Optics and Photonics. 2003,
pp. 126–138.

[60] M. Duerst and M. Suignard. Internationalized Resource Identi-
fiers (IRIs). RFC 3987. RFC Editor, 2005, pp. 1–46. url: https:
//tools.ietf.org/rfc/rfc3987.txt.

[61] Kévin Dunglas. Persistence in PHP with the Doctrine ORM. Birm-
ingham: Packt Publishing Ltd., 2013.

[62] Daniel Eißing, Ansgar Scherp, and Carsten Saathoff. “Integra-
tion of Existing Multimedia Metadata Formats and Metadata
Standards in the M3O.” In: Semantic Multimedia - 5th Inter-
national Conference on Semantic and Digital Media Technologies,
SAMT 2010. Saarbrücken, Germany, December 1-3, 2010. Revised
Selected Papers. Ed. by Thierry Declerck, Michael Granitzer,
Marcin Grzegorzek, Massimo Romanelli, Stefan M. Rüger, and
Michael Sintek. Vol. 6725. Lecture Notes in Computer Science.
Springer, 2010, pp. 48–63.

[63] L. van Elst, F. R. Aschoff, A. Bernardi, and S. Schwarz. “Weakly-
structured Workflows for Knowledge-intensive Tasks: An Ex-
perimental Evaluation.” In: WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, 2003. Pp. 340–345.

[64] Wolfgang Ertel. “First-order Predicate Logic.” In: Introduction
to Artificial Intelligence. Cham: Springer International Publish-
ing, 2017, pp. 39–64.

[65] Wolfgang Ertel. Introduction to Artificial Intelligence, Second Edi-
tion. Undergraduate Topics in Computer Science. Springer, 2017.

https://tools.ietf.org/rfc/rfc3987.txt
https://tools.ietf.org/rfc/rfc3987.txt

Bibliography 291

[66] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. “Object Detection with Discriminatively Trained Part-
Based Models.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 32.9 (2010), pp. 1627–1645.

[67] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional Computing Series. Pearson Education, 1994.

[68] Mike Graves, Adam Constabaris, and Dan Brickley. “FOAF:
Connecting People on the Semantic Web.” In: Cataloging &
Classification Quarterly 43.3-4 (2007), pp. 191–202.

[69] Jim Gray et al. “The Transaction Concept: Virtues and Limita-
tions.” In: VLDB. Vol. 81. 1981, pp. 144–154.

[70] W3C OWL Working Group. OWL 2 Web Ontology Language
Document Overview (Second Edition). Technical Report. W3C,
Dec. 2012. url: http://www.w3.org/TR/2012/REC- owl2-
overview-20121211/.

[71] W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C
Recommendation. W3C, Mar. 2013. url: http://www.w3.org/
TR/2013/REC-sparql11-overview-20130321/.

[72] Ramanathan Guha and Dan Brickley. RDF Schema 1.1. W3C
Recommendation. W3C, Feb. 2014. url: http://www.w3.org/
TR/2014/REC-rdf-schema-20140225/.

[73] Theo Haerder and Andreas Reuter. “Principles of Transaction-
oriented Database Recovery.” In: ACM Comput. Surv. 15.4 (Dec.
1983), pp. 287–317.

[74] Maurice Howard Halstead. Elements of Software Science. Vol. 7.
Elsevier New York, 1977.

[75] Jonathon S. Hare, Paul H. Lewis, Peter G. B. Enser, and Chris-
tine J. Sandom. “Mind the Gap: Another Look at the Prob-
lem of the Semantic Gap in Image Retrieval.” In: Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series.
Vol. 6073. Jan. 2006.

[76] Frank van Harmelen and Deborah McGuinness. OWL Web On-
tology Language Overview. W3C Recommendation. W3C, Feb.
2004. url: http://www.w3.org/TR/2004/REC-owl-features-
20040210/.

[77] Olaf Hartig. “How Caching Improves Efficiency and Result
Completeness for Querying Linked Data.” In: WWW2011 Work-
shop on Linked Data on the Web, Hyderabad, India, March 29, 2011.
2011.

http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

292 Bibliography

[78] Michael Hausenblas, Raphaël Troncy, Tobias Bürger, and Yves
Raimond. “Interlinking Multimedia: How to Apply Linked
Data Principles to Multimedia Fragments.” In: Proceedings of
the WWW2009 Workshop on Linked Data on the Web, LDOW 2009,
Madrid, Spain, April 20, 2009.

[79] Patrick Hayes. RDF Semantics. W3C Recommendation. W3C,
Feb. 2004. url: http://www.w3.org/TR/2004/REC-rdf-mt-
20040210/.

[80] Patrick Hayes and Peter Patel-Schneider. RDF 1.1 Semantics.
W3C Recommendation. W3C, Feb. 2014. url: http://www.w3.
org/TR/2014/REC-rdf11-mt-20140225/.

[81] Tom Heath and Christian Bizer. Linked Data: Evolving the Web
into a Global Data Space. Synthesis Lectures on the Semantic
Web. Morgan & Claypool Publishers, 2011.

[82] Sallie M. Henry and Dennis G. Kafura. “Software Structure
Metrics Based on Information Flow.” In: IEEE Trans. Software
Eng. 7.5 (1981), pp. 510–518.

[83] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and York
Sure. Semantic Web: Grundlagen. Springer-Verlag, 2007.

[84] Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan Dec-
ker, and Axel Polleres. “Weaving the Pedantic Web.” In: Pro-
ceedings of the WWW2010 Workshop on Linked Data on the Web,
LDOW 2010, Raleigh, USA, April 27, 2010. Ed. by Christian
Bizer, Tom Heath, Tim Berners-Lee, and Michael Hausenblas.
Vol. 628. CEUR Workshop Proceedings. CEUR-WS.org, 2010.

[85] Ian Horrocks. “DAML+OIL: A Description Logic for the Se-
mantic Web.” In: Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 25(1) (Apr. 2002), pp. 4–9.

[86] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, Mike Dean, et al. “SWRL: A Semantic Web
Rule Language Combining OWL and RuleML.” In: W3C Mem-
ber submission 21 (2004), p. 79.

[87] C.-W Hsu, C.-C Chang, and C.-J Lin. A Practical Guide to Sup-
port Vector Classification. Tech. rep. Jan. 2003.

[88] Wei Hu, Cunxin Jia, Lei Wan, Liang He, Lixia Zhou, and Yuz-
hong Qu. “CAMO: Integration of Linked Open Data for Mul-
timedia Metadata Enrichment.” In: The Semantic Web – ISWC
2014: 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I. Ed. by Peter Mika,
Tania Tudorache, Abraham Bernstein, Chris Welty, Craig Kno-
block, Denny Vrandečić, Paul Groth, Natasha Noy, Krzysztof
Janowicz, and Carole Goble. Cham: Springer International Pub-
lishing, 2014, pp. 1–16.

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

Bibliography 293

[89] Jane Hunter. “Adding Multimedia to the Semantic Web: Build-
ing an MPEG-7 Ontology.” In: Proceedings of SWWS’01, The first
Semantic Web Working Symposium, Stanford University, Califor-
nia, USA, July 30 - August 1, 2001. Ed. by Isabel F. Cruz, Stefan
Decker, Jérôme Euzenat, and Deborah L. McGuinness. 2001,
pp. 261–283.

[90] ISO 10646:2014(E): Information Technology – Universal Coded Char-
acter Set (UCS). Standard. International Organization for Stan-
dardization, Mar. 2014.

[91] ISO 21127:2006 - Information and Documentation – A Reference
Ontology for the Interchange of Cultural Heritage Information. Stan-
dard. International Organization for Standardization, Sept. 2006.

[92] ISO 21127:2014 - Information and Documentation – A Reference
Ontology for the Interchange of Cultural Heritage Information. Stan-
dard. International Organization for Standardization, Sept. 2014.

[93] ISO/IEC 17203:2017 (INCITS 469:2015) Information Technology –
Open Virtualization Format (OVF) Specification. Standard. Inter-
national Organization for Standardization, Sept. 2017.

[94] Ian Jacobs and Norman Walsh. Architecture of the World Wide
Web, Volume One. W3C Recommendation. W3C, Dec. 2004. url:
http://www.w3.org/TR/2004/REC-webarch-20041215/.

[95] Dennis G. Kafura and Geereddy R. Reddy. “The Use of Soft-
ware Complexity Metrics in Software Maintenance.” In: IEEE
Trans. Software Eng. 13.3 (1987), pp. 335–343.

[96] E. Kasutani and A. Yamada. “The MPEG-7 Color Layout De-
scriptor: A Compact Image Feature Description for High-speed
Image/Video Segment Retrieval.” In: Proceedings 2001 Interna-
tional Conference on Image Processing (Cat. No.01CH37205). Vol. 1.
2001, 674–677 vol.1.

[97] Isaak Kavasidis, Simone Palazzo, Roberto Di Salvo, Daniela
Giordano, and Concetto Spampinato. “An Innovative Web-ba-
sed Collaborative Platform for Video Annotation.” In: Multi-
media Tools and Applications 70.1 (2014), pp. 413–432.

[98] Taghi M. Khoshgoftaar and John C. Munson. “Predicting Soft-
ware Development Errors Using Software Complexity Met-
rics.” In: IEEE Journal on Selected Areas in Communications 8.2
(1990), pp. 253–261.

[99] Graham Klyne and Jeremy Carroll. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C Recommenda-
tion. W3C, Feb. 2004. url: http://www.w3.org/TR/2004/REC-
rdf-concepts-20040210/.

http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

294 Bibliography

[100] Johannes Koch, Philip Ackermann, and Carlos A. Velasco. Rep-
resenting Content in RDF 1.0. W3C Note. W3C, Feb. 2017. url:
https://www.w3.org/TR/2017/NOTE- Content- in- RDF10-

20170202/.

[101] Thomas Köllmer, Emanuel Berndl, Thomas Weißgerber, Patrick
Aichroth, and Harald Kosch. “A Workflow for Cross Media
Recommendations based on Linked Data Analysis.” In: Joint
Proceedings of the 4th International Workshop on Linked Media and
the 3rd Developers Hackshop co-located with the 13th Extended Se-
mantic Web Conference ESWC 2016, Heraklion, Crete, Greece, May
30, 2016. Ed. by Raphaël Troncy, Ruben Verborgh, Lyndon J.
B. Nixon, Thomas Kurz, Kai Schlegel, and Miel Vander Sande.
Vol. 1615. CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[102] H. Kosch, L. Boszormenyi, M. Doller, M. Libsie, P. Schojer, and
A. Kofler. “The Life Cycle of Multimedia Metadata.” In: IEEE
MultiMedia 12.1 (2005), pp. 80–86.

[103] Harald Kosch. Distributed Multimedia Database Technologies Sup-
ported by MPEG-7 and MPEG-21. CRC Press, 2003.

[104] Thomas Kurz, Kai Schlegel, and Harald Kosch. “Enabling Ac-
cess to Linked Media with SPARQL-MM.” In: Proceedings of
the 24nd international conference on World Wide Web (WWW2015)
companion (LIME15). 2015.

[105] Markus Lanthaler, Gregg Kellogg, and Manu Sporny. JSON-
LD 1.0. W3C Recommendation. W3C, Jan. 2014. url: http :

//www.w3.org/TR/2014/REC-json-ld-20140116/.

[106] O. Lassila. “Web Metadata: A Matter of Semantics.” In: IEEE
Internet Computing 2.4 (1998), pp. 30–37.

[107] Didier Le Gall. “MPEG: A Video Compression Standard for
Multimedia Applications.” In: Commun. ACM 34.4 (Apr. 1991),
pp. 46–58.

[108] P. M. Lerman. “Fitting Segmented Regression Models by Grid
Search.” In: Journal of the Royal Statistical Society. Series C (Ap-
plied Statistics) 29.1 (1980), pp. 77–84.

[109] Qin Li, Zhao Lu, Yunfei Yu, and Lu Liang. “Multimedia On-
tology Modeling: An Approach Based on MPEG-7.” In: 2011
3rd International Conference on Advanced Computer Control. 2011,
pp. 351–356.

[110] Sheng Liang. Java Native Interface: Programmer’s Guide and Ref-
erence. 1st. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

[111] Eve Maler, Michael Sperberg-McQueen, Jean Paoli, François
Yergeau, and Tim Bray. Extensible Markup Language (XML) 1.0
(Fifth Edition). W3C Recommendation. W3C, Nov. 2008. url:
http://www.w3.org/TR/2008/REC-xml-20081126/.

https://www.w3.org/TR/2017/NOTE-Content-in-RDF10-20170202/
https://www.w3.org/TR/2017/NOTE-Content-in-RDF10-20170202/
http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/2008/REC-xml-20081126/

Bibliography 295

[112] Ashok Malhotra, David Peterson, Sandy Gao, Paul V. Biron,
Michael Sperberg-McQueen, and Henry Thompson. W3C XML
Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C
Recommendation. W3C, Apr. 2012. url: http://www.w3.org/
TR/2012/REC-xmlschema11-2-20120405/.

[113] Frank Manola and Eric Miller. RDF Primer. W3C Recommen-
dation. W3C, Feb. 2004. url: http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/.

[114] D. Marr. “Artificial Intelligence—A Personal View.” In: Artifi-
cial Intelligence 9.1 (1977), pp. 37 –48.

[115] J. M. Martinez, R. Koenen, and F. Pereira. “MPEG-7: The Generic
Multimedia Content Description Standard, Part 1.” In: IEEE
MultiMedia 9.2 (2002), pp. 78–87.

[116] Thomas J. McCabe. “A Complexity Measure.” In: IEEE Trans.
Software Eng. 2.4 (1976), pp. 308–320.

[117] Carma L. McClure. “A Model for Program Complexity Analy-
sis.” In: Proceedings of the 3rd International Conference on Software
Engineering, Atlanta, Georgia, USA, May 10-12. 1978, pp. 149–
157.

[118] Noah Mendelsohn. The Self-Describing Web. Technical Report.
W3C, Feb. 2009. url: https://www.w3.org/2001/tag/doc/
selfDescribingDocuments-2009-02-07.html.

[119] Pablo N Mendes, Max Jakob, and Christian Bizer. “DBpedia: A
Multilingual Cross-domain Knowledge Base.” In: LREC. 2012,
pp. 1813–1817.

[120] Alistair Miles, Brian Matthews, Michael D. Wilson, and Dan
Brickley. “SKOS Core: Simple Knowledge Organisation for the
Web.” In: Vocabularies in Practice: Proceedings of the 2005 Inter-
national Conference on Dublin Core and Metadata Applications,
DC 2005, Madrid, Spain, September 12-15, 2005. Ed. by Thomas
Baker and Eva Méndez. Dublin Core Metadata Initiative, 2005,
pp. 3–10.

[121] Mark A. Musen. “The Protégé Project: A Look Back and a
Look Forward.” In: AI Matters 1.4 (June 2015), pp. 4–12.

[122] Axel-Cyrille Ngonga Ngomo, Sören Auer, Jens Lehmann, and
Amrapali Zaveri. “Introduction to Linked Data and Its Life-
cycle on the Web.” In: Reasoning Web. Reasoning on the Web in
the Big Data Era: 10th International Summer School 2014, Athens,
Greece, September 8-13, 2014. Proceedings. Cham: Springer Inter-
national Publishing, 2014, pp. 1–99.

http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://www.w3.org/2001/tag/doc/selfDescribingDocuments-2009-02-07.html
https://www.w3.org/2001/tag/doc/selfDescribingDocuments-2009-02-07.html

296 Bibliography

[123] Elizabeth J. O’Neil. “Object/Relational Mapping 2008: Hiber-
nate and the Entity Data Model (Edm).” In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’08. Vancouver, Canada: ACM, 2008, pp. 1351–
1356.

[124] Martin O’connor, Holger Knublauch, Samson Tu, Benjamin
Grosof, Mike Dean, William Grosso, and Mark Musen. “Sup-
porting Rule System Interoperability on the Semantic Web
with SWRL.” In: The Semantic Web–ISWC 2005 (2005), pp. 974–
986.

[125] Guy Paré. “Investigating Information Systems with Positivist
Case Research.” In: The Communications of the Association for
Information Systems 13.1 (2004), pp. 233–364.

[126] Alan P. Parkes. “First Order Predicate Logic.” In: Introduction
to Languages, Machines and Logic: Computable Languages, Abstract
Machines and Formal Logic. London: Springer London, 2002,
pp. 291–306.

[127] Karan Patel. “Incremental Journey for World Wide Web: Intro-
duced with Web 1.0 to Recent Web 5.0–A Survey Paper.” In:
International Journal of Advanced Research in Computer Science
and Software Engineering 3.10 (2013).

[128] Pieter Pauwels and Rens Bod. “Including the Power of Inter-
pretation Through a Simulation of Peirce’s Process of Inquiry.”
In: Literary and Linguistic Computing 28.3 (2013), pp. 452–460.

[129] Christian Petersohn. “Temporal Video Segmentation.” PhD the-
sis. Berlin Institute of Technology, 2010.

[130] Ajinkya Prabhune, Rainer Stotzka, Vaibhav Sakharkar, Jürgen
Hesser, and Michael Gertz. “MetaStore: An Adaptive Meta-
data Management Framework for Heterogeneous Metadata
Models.” In: Distributed and Parallel Databases 36.1 (2018), pp. 153–
194.

[131] Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle. W3C
Recommendation. W3C, Feb. 2014. url: http://www.w3.org/
TR/2014/REC-turtle-20140225/.

[132] Matthias Quasthoff. “Effizientes Entwickeln von Semantic-Web-
Software mit Object Triple Mapping.” PhD thesis. University
of Potsdam, 2011.

[133] Matthias Quasthoff and Christoph Meinel. “Semantic Web Ad-
mission Free–Obtaining RDF and OWL Data from Application
Source Code.” In: Proc. of the 4th Int. Workshop on Semantic Web
Enabled Software Engineering. 2008, pp. 17–25.

http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/

Bibliography 297

[134] Matthias Quasthoff, Harald Sack, and Christoph Meinel. “How
to Simplify Building Semantic Web Applications.” In: Proceed-
ings of the 5th International Workshop on Semantic Web Enabled
Software Engineering (2009), pp. 45–57.

[135] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You Only
Look Once: Unified, Real-Time Object Detection.” In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 779–788.

[136] George Reese. Database Programming with JDBC and JAVA. O’-
Reilly Media, Inc., 2000.

[137] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Mod-
ern Approach (3. internat. ed.) Pearson Education, 2010.

[138] Carsten Saathoff and Ansgar Scherp. “M3O: The Multimedia
Metadata Ontology.” In: Proceedings of the Workshop on Seman-
tic Multimedia Database Technologies, 10th International Workshop
of the Multimedia Metadata Community (SeMuDaTe 2009), Graz,
Austria. 2009.

[139] Carsten Saathoff and Ansgar Scherp. “Unlocking the Seman-
tics of Multimedia Presentations in the Web with the Multime-
dia Metadata Ontology.” In: Proceedings of the 19th International
Conference on World Wide Web. WWW ’10. Raleigh, North Car-
olina, USA: ACM, 2010, pp. 831–840.

[140] Satya Sahoo, Timothy Lebo, and Deborah McGuinness. PROV-
O: The PROV Ontology. W3C Recommendation. W3C, Apr. 2013.
url: http://www.w3.org/TR/2013/REC-prov-o-20130430/.

[141] Robert Sanderson. Web Annotation Protocol. W3C Recommen-
dation. W3C, Feb. 2017. url: https://www.w3.org/TR/2017/
REC-annotation-protocol-20170223/.

[142] Robert Sanderson, Paolo Ciccarese, and Herbert Van de Som-
pel. OADM Open Annotation Data Model. Community Draft.
W3C, Feb. 2013. url: http://www.openannotation.org/spec/
core/.

[143] Robert Sanderson, Paolo Ciccarese, and Benjamin Young. WA-
DM Web Annotation Data Model. W3C Recommendation. W3C,
Feb. 2017. url: https://www.w3.org/TR/2017/REC-annotatio
n-model-20170223/.

[144] Robert Sanderson, Benjamin Young, and Paolo Ciccarese. Web
Annotation Vocabulary. W3C Recommendation. W3C, Feb. 2017.
url: https://www.w3.org/TR/2017/REC-annotation-vocab-
20170223/.

http://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/2017/REC-annotation-protocol-20170223/
https://www.w3.org/TR/2017/REC-annotation-protocol-20170223/
http://www.openannotation.org/spec/core/
http://www.openannotation.org/spec/core/
https://www.w3.org/TR/2017/REC-annotation-model-20170223/
https://www.w3.org/TR/2017/REC-annotation-model-20170223/
https://www.w3.org/TR/2017/REC-annotation-vocab-20170223/
https://www.w3.org/TR/2017/REC-annotation-vocab-20170223/

298 Bibliography

[145] Sebastian Schaffert, Christoph Bauer, Thomas Kurz, Fabian
Dorschel, Dietmar Glachs, and Manuel Fernandez. “The Linked
Media Framework: Integrating and Interlinking Enterprise Me-
dia Content and Data.” In: Proceedings of the 8th International
Conference on Semantic Systems. I-SEMANTICS ’12. Graz, Aus-
tria: ACM, 2012, pp. 25–32.

[146] Bernhard Schandl, Bernhard Haslhofer, Tobias Bürger, Andreas
Langegger, and Wolfgang Halb. “Linked Data and Multime-
dia: The State of Affairs.” In: Multimedia Tools and Applications
59.2 (2012), pp. 523–556.

[147] Ansgar Scherp, Daniel Eißing, and Carsten Saathoff. “A Method
for Integrating Multimedia Metadata Standards and Metadata
Formats with the Multimedia Metadata Ontology.” In: Int. J.
Semantic Computing 6.1 (2012), pp. 25–50.

[148] Manfred Schied, Anton Wolff, and Köstlbacher Christian. “Con-
necting Semantic MediaWiki to different Triple Stores Using
RDF2Go.” In: Fifth Workshop on Semantic Wikis Linking Data and
People 7th Extended Semantic Web Conference Hersonissos, Crete,
Greece, June 2010. 2010, pp. 159–163.

[149] Kai Schlegel, Emanuel Berndl, Michael Granitzer, Harald Kosch,
and Thomas Kurz. “A Platform for Contextual Multimedia
Data: Towards a Unified Metadata Model and Querying.” In:
Proceedings of the 15th International Conference on Knowledge Tech-
nologies and Data-driven Business, I-KNOW ’15, Graz, Austria,
October 21-23, 2015. Ed. by Stefanie N. Lindstaedt, Tobias Ley,
and Harald Sack. ACM, 2015, 1:1–1:8.

[150] Guus Schreiber and Fabien Gandon. RDF 1.1 XML Syntax. W3C
Recommendation. W3C, Feb. 2014. url: http://www.w3.org/
TR/2014/REC-rdf-syntax-grammar-20140225/.

[151] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Note.
W3C, June 2014. url: http://www.w3.org/TR/2014/NOTE-
rdf11-primer-20140624/.

[152] Andy Seaborne. SPARQL 1.1 Property Paths. W3C Working Draft.
W3C, Jan. 2010. url: http : / / www . w3 . org / TR / 2010 / WD -

sparql11-property-paths-20100126/.

[153] Julian Seidenberg and Alan L. Rector. “Web Ontology Segmen-
tation: Analysis, Classification and Use.” In: Proceedings of the
15th International Conference on World Wide Web, WWW 2006,
Edinburgh, Scotland, UK, May 23-26, 2006. 2006, pp. 13–22.

[154] N. Shadbolt, T. Berners-Lee, and W. Hall. “The Semantic Web
Revisited.” In: IEEE Intelligent Systems 21.3 (2006), pp. 96–101.

[155] Amit P. Sheth and Wolfgang Klas, eds. Multimedia Data Man-
agement: Using Metadata to Integrate and Apply Digital Media.
McGraw-Hill, 1998.

http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/
http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/

Bibliography 299

[156] T. Sikora. “The MPEG-7 Visual Standard for Content Descrip-
tion - An Overview.” In: IEEE Transactions on Circuits and Sys-
tems for Video Technology 11.6 (2001), pp. 696–702.

[157] Leslie F. Sikos. “The Semantic Gap.” In: Description Logics in
Multimedia Reasoning. Cham: Springer International Publish-
ing, 2017, pp. 51–66.

[158] Evren Sirin and Bijan Parsia. “Pellet: An OWL DL Reasoner.”
In: Proceedings of the 2004 International Workshop on Descrip-
tion Logics (DL2004), Whistler, British Columbia, Canada, June 6-8,
2004. Ed. by Volker Haarslev and Ralf Möller. Vol. 104. CEUR
Workshop Proceedings. CEUR-WS.org, 2004.

[159] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical
Bayesian Optimization of Machine Learning Algorithms.” In:
Advances in Neural Information Processing Systems 25: 26th An-
nual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Ne-
vada, United States. Ed. by Peter L. Bartlett, Fernando C. N.
Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger. 2012, pp. 2960–2968.

[160] Concetto Spampinato, Simone Palazzo, Bastian Boom, Jacco
van Ossenbruggen, Isaak Kavasidis, Roberto Di Salvo, Fang-
Pang Lin, Daniela Giordano, Lynda Hardman, and Robert B.
Fisher. “Understanding Fish Behavior During Typhoon Events
in Real-life Underwater Environments.” In: Multimedia Tools
and Applications 70.1 (2014), pp. 199–236.

[161] Lutz Suhrbier, Wolf-Henning Kusber, Okka Tschöpe, Anton
Güntsch, and Walter G. Berendsohn. “AnnoSys - Implementa-
tion of a Generic Annotation System for Schema-based Data
Using the Example of Biodiversity Collection Data.” In: Data-
base 2017 (2017), bax018.

[162] Robert Endre Tarjan. “Depth-First Search and Linear Graph
Algorithms.” In: SIAM J. Comput. 1.2 (1972), pp. 146–160.

[163] Jeni Tennison. Best Practices for Fragment Identifiers and Media
Type Definitions. W3C Working Draft. W3C, Oct. 2012. url: h
ttp://www.w3.org/TR/2012/WD-fragid-best-practices-

20121025/.

[164] Ronald A. Thisted. Elements of Statistical Computing: Numerical
Computation. London, UK: Chapman & Hall, Ltd., 1988.

[165] Raphaël Troncy, Silvia Pfeiffer, Davy Van Deursen, and Erik
Mannens. Media Fragments URI 1.0 (basic). W3C Recommenda-
tion. W3C, Sept. 2012. url: http://www.w3.org/TR/2012/REC-
media-frags-20120925/.

http://www.w3.org/TR/2012/WD-fragid-best-practices-20121025/
http://www.w3.org/TR/2012/WD-fragid-best-practices-20121025/
http://www.w3.org/TR/2012/WD-fragid-best-practices-20121025/
http://www.w3.org/TR/2012/REC-media-frags-20120925/
http://www.w3.org/TR/2012/REC-media-frags-20120925/

300 Bibliography

[166] J. Utecht and M. Brochhausen. “Measuring the Usability of
Triple Stores for Knowledge Management on Trauma Care Or-
ganizations.” In: CEUR workshop proceedings. Vol. 1546. 2015,
pp. 241–242.

[167] M. Vacura, V. Svatek, C. Saathoff, T. Franz, and R. Troncy. “De-
scribing Low-level Image Features Using the COMM Ontol-
ogy.” In: 2008 15th IEEE International Conference on Image Pro-
cessing. 2008, pp. 49–52.

[168] Ruben Verborgh, Davy Van Deursen, Erik Mannens, Chris Pop-
pe, and Rik Van de Walle. “Enabling Context-aware Multime-
dia Annotation by a Novel Generic Semantic Problem-solving
Platform.” In: Multimedia Tools Appl. 61.1 (2012), pp. 105–129.

[169] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Jos De
Roo, Rik Van de Walle, and Joaquim Gabarro Valles. “Captur-
ing the Functionality of Web Services with Functional Descrip-
tions.” In: Multimedia Tools and Applications 64.2 (2013), pp. 365–
387.

[170] Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Jo-
aquim Gabarro. “Linked Data and Linked APIs: Similarities,
Differences, and Challenges.” In: The Semantic Web: ESWC 2012
Satellite Events. Ed. by Elena Simperl, Barry Norton, Dunja
Mladenic, Emanuele Della Valle, Irini Fundulaki, Alexandre
Passant, and Raphaël Troncy. Berlin, Heidelberg: Springer Ber-
lin Heidelberg, 2015, pp. 272–284.

[171] Max Völkel and York Sure. “RDFReactor - From Ontologies to
Programmatic Data Access.” In: Poster Proceedings of the Fourth
International Semantic Web Conference. 2005, pp. 55–65.

[172] Taowei David Wang, Bijan Parsia, and James A. Hendler. “A
Survey of the Web Ontology Landscape.” In: The Semantic Web
- ISWC 2006, 5th International Semantic Web Conference, ISWC
2006, Athens, GA, USA, November 5-9, 2006, Proceedings. Ed. by
Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo.
Vol. 4273. Lecture Notes in Computer Science. Springer, 2006,
pp. 682–694.

[173] Taowei David Wang, Bijan Parsia, and James Hendler. “A Sur-
vey of the Web Ontology Landscape.” In: The Semantic Web -
ISWC 2006. Ed. by Isabel Cruz, Stefan Decker, Dean Allemang,
Chris Preist, Daniel Schwabe, Peter Mika, Mike Uschold, and
Lora M. Aroyo. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 682–694.

[174] Roy Want. “Near Field Communication.” In: IEEE Pervasive
Computing 10.3 (2011), pp. 4–7.

Bibliography 301

[175] Gerhard Weikum and Gottfried Vossen. Transactional Informa-
tion Systems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2002.

[176] Ken Wenzel. “Komma: An Application Framework for Ontolo-
gy-based Software Systems.” In: Semantic Web–Interoperability,
Usability, Applicability (2010).

[177] Elaine J. Weyuker. “Evaluating Software Complexity Measures.”
In: IEEE Trans. Software Eng. 14.9 (1988), pp. 1357–1365.

[178] Andrew Whitmore, Anurag Agarwal, and Li Da Xu. “The In-
ternet of Things—A Survey of Topics and Trends.” In: Informa-
tion Systems Frontiers 17.2 (2015), pp. 261–274.

[179] Leland Wilkinson and Michael Friendly. “The History of the
Cluster Heat Map.” In: The American Statistician 63.2 (2009),
pp. 179–184.

[180] Scott Norman Woodfield. “Enhanced Effort Estimation by Ex-
tending Basic Programming Models to Include Modularity Fac-
tors.” PhD thesis. West Lafayette, IN, USA, 1980.

[181] Haining Yao, Anthony Mark Orme, and Letha Etzkorn. “Cohe-
sion Metrics for Ontology Design and Application.” In: Journal
of Computer Science 1.1 (2005), pp. 107–113.

[182] Stephen S. Yau and James S. Collofello. “Some Stability Mea-
sures for Software Maintenance.” In: IEEE Trans. Software Eng.
6.6 (1980), pp. 545–552.

[183] Deze Zeng, Song Guo, and Zixue Cheng. “The Web of Things:
A Survey.” In: Journal of Communications 6.6 (2011), pp. 424–
438.

[184] Hongyu Zhang, Yuan-Fang Li, and Hee Beng Kuan Tan. “Mea-
suring Design Complexity of Semantic Web Ontologies.” In:
Journal of Systems and Software 83.5 (2010), pp. 803–814.

	Dedication
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Preface
	1 The Semantic Web
	1.1 The Vision and Idea of the Semantic Web
	1.1.1 A Semantic Web Use Case
	1.1.2 A Look at the Current State of the Semantic Web
	1.1.3 Open Issues of the Semantic Web
	1.1.4 The Semantic Gap - A Metadata Problem in the Domain of Multimedia

	1.2 A Technical Setting for this Thesis - The MICO Project
	1.3 Research Questions and Contributions
	1.4 Structure of this Thesis

	Modelling Metadata - Classic Approaches and a Multimedia Context
	2 Principles of Metadata Modeling and Querying
	2.1 The Semantic Web and Other Familiar Concepts
	2.2 The ``Resource Description Framework'' - The Backbone of Metadata Modeling
	2.2.1 Information Units in RDF and Their Structure
	2.2.2 RDF Basics and Concepts for Metadata Modelling
	2.2.3 RDF Vocabularies and Ontologies
	2.2.4 RDF Datasets and Named Graphs
	2.2.5 Expressing and Transporting RDF Data - RDF Documents and Their Serialisations
	2.2.6 Advanced RDF Features - Inferencing, Reasoning, and Reification
	2.2.7 Querying and Manipulating RDF Data - SPARQL, the SPARQL Protocol and RDF Query Language

	3 Combining Metadata Modeling with Multimedia
	3.1 Related Work - Multimedia Metadata Modeling
	3.2 The Web Annotation Data Model
	3.2.1 Web Annotation Structure
	3.2.2 RDF Classes for Body and Target Components
	3.2.3 Fragmentation of Resource IRIs and Selectors
	3.2.4 Additional Information for Web Annotation Nodes
	3.2.5 Complete Exemplary Web Annotation

	3.3 The MICO Metadata Model - Connecting Annotations
	3.3.1 Composition Module
	3.3.2 Context Module
	3.3.3 The Content Module / The Body of the Part Annotation
	3.3.4 The Selection Module / The Target of the Part Annotations
	3.3.5 Provenance Module
	3.3.6 Multimedia Ontology Requirements Check

	The Application of Multimedia Metadata in a Workflow-driven Approach and Idiomatic Semantic Web Technologies
	4 Increasing the Usability and Applicability of Semantic Web Technologies for Multimedia Metadata Modeling and Workflows - Anno4j
	4.1 Related Work - Object/Relational and Object/RDF Mappings
	4.2 Anno4j - An Object-RDF-Mapping Library
	4.3 Creation of Metadata with Anno4j
	4.4 Querying of Metadata with Anno4j
	4.5 Established Database Concepts of the Anno4j Library
	4.5.1 Supporting Transactional Behaviour in Anno4j
	4.5.2 Validate Database Input with Validated Transactions
	4.5.3 Schema Annotations for Data Validity

	4.6 Automated Domain Model Generation through Anno4j RDF Schema Parsing
	4.6.1 Domain Model Generation Functionality
	4.6.2 Generation Process Internals and Algorithms
	4.6.3 Generation of a Web Component for a Metadata Model

	4.7 Additional Anno4j Database Features
	4.8 Anno4j Conclusion, Outlook, and Envisioned Additions

	5 A Workflow-driven Approach for Multimedia Metadata Application
	5.1 RW - Multimedia Metadata Platforms, Metadata Lifecycles
	5.2 Embedding the Multimedia Metadata Workflow - MICO
	5.2.1 Accessing the Produced Results of the MICO Platform
	5.2.2 MICO Extractor Description
	5.2.3 Implementing Own MICO Extractors
	5.2.4 MICO Orchestration Service - The MICO Broker

	5.3 From a Multimedia Metadata Workflow to a Self-Sustaining Metadata Cycle
	5.4 An Extension of the Workflow Environment
	5.5 Multimedia Metadata Application Conclusion

	Experiments and Evaluations
	6 Experiments and Evaluations
	6.1 Related Work - Overall ORdfM Evaluations
	6.1.1 Quasthoff: General ORdfM Comparison
	6.1.2 Quasthoff: ORdfM Implementation and Runtime Evaluations

	6.2 Anno4j and Ontology Structure Experiments
	6.2.1 Runtime Experiments with Generated Anno4j Domain Models
	6.2.2 Runtime Experiments with Pre-Created Proxy Classes
	6.2.3 Runtime Experiments with Generated Anno4j Domain Models and Multiple Varying Parameters
	6.2.4 Conclusion of the Anno4j Evaluations

	6.3 ViSIT - A Cultural Heritage Use Case for the ORdfM Library Anno4j
	6.4 Recapitulation of Posed Research Questions

	Summary and Conclusion
	7 Résumé
	7.1 Conclusion
	7.2 Future Work and Outlook

	Appendix
	A Appendix
	A.1 The MICO Project
	A.1.1 Background of the MICO Project
	A.1.2 Development Cycle of the MICO Broker

	A.2 Further Informations and Appended Data

	Bibliography

