
CSP & Co. Can Save Us from a Rogue Cross-Origin Storage
Browser Network! But for How Long?

Juan D. Parra Rodriguez
University of Passau
dp@sec.uni-passau.de

Joachim Posegga
University of Passau
jp@sec.uni-passau.de

ABSTRACT

We introduce a new browser abuse scenario where an attacker
uses local storage capabilities without the website’s visitor
knowledge to create a network of browsers for persistent
storage and distribution of arbitrary data. We describe how
security-aware users can use mechanisms such as the Content
Security Policy (CSP), sandboxing, and third-party tracking
protection, i.e., CSP & Company, to limit the network’s
effectiveness. From another point of view, we also show that
the upcoming Suborigin standard can inadvertently thwart
existing countermeasures, if it is adopted.

KEYWORDS

Web Security; WebRTC; PostMessage; Browser Security; Con-
tent Security Policy; Suborigins; Parasitic Computing

1 INTRODUCTION

Browsers provide access to computational resources such as
local storage, network and processing power. This can be
helpful for several applications; however, rogue developers
can also abuse browser’s resources, e.g., for mining crypto-
currencies in the browser (crypto-jacking). Meanwhile, the
Web security community is engaged in an arms race against at-
tackers exploiting data or session related vulnerabilities such
as cross-site scripting (XSS), therefore leaving the browser
resource abuse problem unattended.

We discuss how malicious third-party code can make
its way into honest Web applications, force their visitor’s
browsers to join a browser network to store and distribute
arbitrary data without letting the browser’s user know. Also,
we show that some CSP directives, and other mechanisms,
can be effective to thwart the browser network attack, even
though their rationale protects against other attacks. Further,
countermeasures presented are analyzed from the perspective
of the two potential victims of a browser resource attack,
namely the browser’s user visiting the website, and the web-
site (developer or administrator). From another point of view,
we show that existing countermeasures are threatened by up-
coming standards and can be reversed as their attacker model
does not include browser resource abuse scenarios.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5632-9/18/03.
https://doi.org/10.1145/3176258.3176951

2 EXTERNAL SCRIPTS ON THE WEB

Websites commonly instruct the browser to fetch resources
from different servers across the Internet. Thus, to cope with
various security threats, the browser has an Origin-based
security model which isolates resources. In most cases, an
important factor is whether the code is served by a different
Origin1 than the site visited by the user. For brevity, we call
this an external resource.

Nonetheless, in the Origin-based security model external
resources can inherit the Origin from the page in-
cluding them depending on how the resources are included.
As shown by rows 1 and 2 of Table 1, sites including exter-
nal resources with a script tag share their Origin with the
resource. Conversely, Iframes obtain their Origin from their
source location, i.e., rows 3 and 4 of Table 1, regardless of
the Origin of the website including them.

Also, Table 1 shows the Origin assigned to the resource,
which determines the Local Storage instance available for it.
For example, the Iframe of row number 4 of Table 1 obtains
a different storage object than the site including it. On the
contrary, scripts included as shown by rows 1, 2 and 3 share
the Local Storage instance with the site including them.

Leaving aside how external scripts are executed, external
code can go rogue and abuse a website visitor. In our
case, it is important to mention that abusive external code can
be included in a website by a developer either intentionally or
unintentionally. Some sites may intentionally sacrifice their
reputation by using “unconventional” means to earn money,
e.g., crypto-jacking. However, popular sites are not keen to
destroy their reputation by intentionally abusing browsers.

All in all, there are a number of ways leading to abusive
code execution because developers include external code with-
out being aware of the consequences; for example, through
CMS widgets2, advertisements, or JavaScript libraries.

3 THE ATTACK

In addition to inadvertently including malicious external
code, developers can introduce XSS vulnerabilities allowing
the execution of malicious scripts abusing local storage, i.e.,
Abusive Scripts.

1An Origin can be seen as a tuple containing the protocol, host
and port for a particular website; for example, the origin for
https://a.com/home/ the tuple (https, a.com, 80)
2Wordpress removed a plugin from their marketplace, as it abused
thousands of browsers to do crypto-mining without the web-
site’s owners and browser’s users knowledge. For more informa-
tion see https://www.wordfence.com/blog/2017/11/wordpress-plugin-
banned-crypto-mining/

1

https://doi.org/10.1145/3176258.3176951


CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA Juan D. Parra Rodriguez and Joachim Posegga

Row
No.

Inclusion code from visited site:
code from Origin https://a.com

Same Origin
as the visited site

Local Storage
Instance

1 <script src="https://a.com/script.js" ... > yes https://a.com (shared)

2 <script src="https://b.com/script.js" ... > yes https://a.com (shared)

3 <iframe src="https://a.com/script.js" > yes https://a.com (shared)

4 <iframe src="https://b.com/script.js" > no https://b.com (not shared)

Table 1: External resource inclusion (from a site hosted by https://a.com), its Origin and Local Storage

As shown by row 4 in Table 1, the Origin-based secu-
rity model introduced in Section 2 provides Iframes loaded
from a different Origin with a Local Storage instance in a
different Origin as the site including them. Although this
Local Storage separation is beneficial for code isolation, it can
be abused when a website includes 𝑛 Iframes from different
Origins consuming up to 𝑛 times the Local Storage quota
(see Figure 1). This approach has already been used to fill
the user’s disk3.

Browser 1

Iframe (5MB)

Iframe (5MB)

Iframe (5MB)

Abusive
Script 
(15MB)

Iframe (5MB)

Iframe (5MB)

Iframe (5MB)

Abusive
Script 
(15MB)

Browser 2

Figure 1: Rogue Storage Network (using 30 MB)

This way of bypassing the storage quota can be extended by
using a cross-Origin inter-window messaging mechanism,
i.e., postMessage represented by dotted lines. This lets each
Iframe communicate with the parent window (Abusive Script)
allowing it to access their Local Storage to create a database
with 𝑛 frames, and therefore using 𝑛 times the Iframe quota.

Furthermore, an attacker can coerce browsers to share infor-
mation from Local Storage with other browsers executing the
Abusive Script without the user’s knowledge through inter-
browser messaging communication, i.e., WebRTC Data
Channels. In the case of WebRTC, the Same Origin Policy is
not applicable when browsers interact with each other, so an
attacker can connect browsers he controls through different
sites in a single cross-Origin browser network.

We have previously evaluated the feasibility of the browser
network through several experiments with real-life browsers
and automation tools in a technical report [1]. We analyzed
how visitor return rates and time between visits affect avail-
ability of the information distributed across browsers. Further,
we also analyzed the amount of traffic exchanged between
browsers and servers to conclude that network overhead for
servers is significantly less than for browsers.

3http://www.bbc.com/news/technology-21628622

4 ATTACKER MODEL

Before defining countermeasures, we analyze possible attack
scenarios. Figure 2 depicts how an attacker can use a site
(marked with X) to deliver malicious code while making the
Origin-based isolation implemented by browsers explicit.

The first scenario shows an attacker compromising the
website visited by the user. This scenario takes place when
the attacker embeds the Abusive Script directly within the
Origin of the visited site. This can, for example, happen when
an attacker controls a third-party library included using the
script tag or when an attacker exploits an XSS bug. The
second and third scenario show when the Abusive Script
included in a “safe” manner, i.e., different Origin than the
website being visited. These cases happen when the external
content is included in an Iframe, e.g., advertisements. The
main difference between attack scenario 2 and 3 is that an
attacker could make a site host the Abusive Script or the
Iframes performing storage. In practice the attacker can do
both in one Origin, but we separate them for the sake of
clarity in relation to the possible countermeasures.

Iframe

Site Visited by the User

Site Visited by the User

: Origin 
separation

: Origin 
differs from 
the visited 
site

: Compromised 
site

Scenario 1 Scenario 2

Scenario 3

Site Visited by the User

Iframe

Iframe

Iframe

Iframe

Iframe

Iframe

Iframe

Iframe

Abusive 
Script

Abusive 
Script

Abusive 
Script

Figure 2: Scenarios based on compromised sites and
Origin separations

2



CSP and a Rogue Cross-Origin Network of Browsers CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

5 COUNTERMEASURES

The victim most affected by browser resource attacks is the
browser’s user. However, sites used to host Abusive Scripts
without their knowledge can be considered victims of the at-
tack also as their reputation could suffer. To this end, we split
countermeasures based on who can take action (browser’s
user or website developers); further, for each actor deploying
a countermeasure, we reference for which attack scenarios
from Figure 2 they are protected.

Users can protect themselves against all attack scenarios
if they enable their browser’s third-party tracking protection.
This mechanism is intended to protect the user’s privacy from
advertisements by blocking persistence APIs for JavaScript
running in Origins different from the site loaded. The implica-
tions of third-party protection for resources executed outside
of the visited website’s Origin would mean that row num-
ber 4 on Table 1 would lose access to any persistent storage
mechanism. Also, practically speaking, this measure denies
local storage access to any resource with gray background in
Figure 2.

Website’s developers can use security directives when
they include external resources; in particular, this can be
done through HTTP response headers or HTML keywords.

Developers could use the sandobx HTML keyword when
they include external content in Iframes. This directive en-
sures that an Iframe is not allowed to execute JavaScript,
unless the allow-scripts keyword is used. Moreover, even
if developers use the allow-scripts keyword, sand-boxed
Iframes cannot use their Local Storage instance because each
Iframe gets assigned to a random, invalid, origin. As a result,
all Origin checks fail and prevent the Iframe from using Local
Storage or cookies. By including the sandbox directive when
including the site containing the Abusive Script, developers
can prevent the second and third attack scenarios.

Developers can use the script-src and frame-src CSP
directives in the HTTP response headers to specify which
scripts or frames are loaded by a particular site. Thus, with
a restrictive policy allowing only secure scripts, which cannot
be compromised by the attacker, it becomes impossible for the
attacker to execute his Abusive Script or the storage Frame
functionality. If this countermeasure is properly implemented,
it would protect the site against the first and second attack
scenarios. Although it is less likely, an attacker compromising
a website to host the Iframe source (Local Storage part)
would not be prevented by the script-src directive from
including this compromised script in another Origin, i.e.,
third scenario.

When an attacker has compromised a site and is using it
as an Iframe within an Abusive Script, i.e., third scenario,
a developer could set the frame-ancestors CSP directive
in the HTTP response headers to ensure that the site can
only be embedded in resources loaded from a list of origins.
Therefore, if a security-aware developer specifies a restrictive
list of frame ancestors for his site, this would prevent an
attacker who has compromised the site from including this
particular site as the storage Iframe in the Abusive Script.

6 CONCLUSION

Currently, security-aware users and developers can configure
browsers and their websites to avoid being used by a rogue
cross-Origin storage network such as the one described in
this paper. However, there are three issues that could re-
vert existing advantages. First, CSP directives are designed
for different purposes than preventing an attack such as
the one presented in this paper. For instance, script-src
and frame-ancestors protect against XSS and click-jacking;
therefore, there is no guarantee that future countermeasures,
e.g., future specifications of CSP, will still protect users
against resource abuse attacks. Second, the most successful
mechanism from CSP, i.e., script-src, has faced challenges
when retrofitting existing applications [3]; moreover, most
of the CSP policies using script-src are easily circumvented
today [2]. Third, the browser’s third-party tracking protection
currently prevents all attack scenarios; however, if the Subo-
rigins4 specification is adopted, attackers can abuse browsers
with less effort than today and overcome the third-party
tracking protection. The main problem with the Suborigins
specification is that it allows a single Origin to define separate
Suborigins. Each Suborigin is provided with a Local Storage
instance and inter-window communication capabilities. There-
fore, an attacker can increase the number of Iframes used to
store information on the browser side without constraints.
More to the point, separate Suborigins created from the same
Origin are not considered third-party content5, so the Origin
separation observable in the first scenario of Figure 2 will
vanish rendering the third-party tracking protection useless
in that case. However, this kind of attack requires a more
powerful attacker who can set HTTP response headers.

ACKNOWLEDGMENTS

This research has been supported by the EU under the H2020
AGILE (Adaptive Gateways for dIverse muLtiple Environ-
ments), grant agreement number H2020-688088.

REFERENCES
[1] Juan David Parra Rodriguez and Joachim Posegga. 2016. Abus-

ing Web Browsers for Hidden Content Storage and Dis-
tribution. Technical Report MIP-1603. University of Pas-
sau. http://www.fim.uni-passau.de/fileadmin/files/forschung/
mip-berichte/MIP 1603.pdf

[2] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and
Artur Janc. 2016. CSP Is Dead, Long Live CSP! On the Insecu-
rity of Whitelists and the Future of Content Security Policy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY,
USA, 1376–1387. https://doi.org/10.1145/2976749.2978363

[3] Michael Weissbacher, Tobias Lauinger, and William Robertson.
2014. Why is CSP failing? Trends and challenges in CSP adoption.
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 8688 LNCS (2014), 212–233. https://doi.org/10.1007/
978-3-319-11379-1 11

4https://w3c.github.io/webappsec-suborigins/
5https://github.com/w3c/webappsec-suborigins/issues/43

3

http://www.fim.uni-passau.de/fileadmin/files/forschung/mip-berichte/MIP_1603.pdf
http://www.fim.uni-passau.de/fileadmin/files/forschung/mip-berichte/MIP_1603.pdf
https://doi.org/10.1145/2976749.2978363
https://doi.org/10.1007/978-3-319-11379-1_11
https://doi.org/10.1007/978-3-319-11379-1_11

	Abstract
	1 Introduction
	2 External Scripts on the Web
	3 The Attack
	4 Attacker Model
	5 Countermeasures
	6 Conclusion
	Acknowledgments
	References

