
RAPID: Resource and API-Based Detection Against In-Browser
Miners

Juan D. Parra Rodriguez
University of Passau
Passau, Germany

dp@sec.uni-passau.de

Joachim Posegga
University of Passau
Passau, Germany

jp@sec.uni-passau.de

ABSTRACT
Direct access to the system’s resources such as the GPU, persistent
storage and networking has enabled in-browser crypto-mining.
Thus, there has been a massive response by rogue actors who abuse
browsers for mining without the user’s consent. This trend has
grown steadily for the last months until this practice, i.e., Crypto-
Jacking, has been acknowledged as the number one security threat
by several antivirus companies.

Considering this, and the fact that these attacks do not behave as
JavaScript malware or other Web attacks, we propose and evaluate
several approaches to detect in-browser mining. To this end, we
collect information from the top 330.500 Alexa sites. Mainly, we
used real-life browsers to visit sites while monitoring resource-
related API calls and the browser’s resource consumption, e.g.,
CPU.

Our detection mechanisms are based on dynamic monitoring,
so they are resistant to JavaScript obfuscation. Furthermore, our
detection techniques can generalize well and classify previously
unseen samples with up to 99.99% precision and recall for the benign
class and up to 96% precision and recall for the mining class. These
results demonstrate the applicability of detection mechanisms as a
server-side approach, e.g., to support the enhancement of existing
blacklists.

Last but not least, we evaluated the feasibility of deploying proto-
typical implementations of some detection mechanisms directly on
the browser. Specifically, we measured the impact of in-browser API
monitoring on page-loading time and performedmicro-benchmarks
for the execution of some classifiers directly within the browser. In
this regard, we ascertain that, even though there are engineering
challenges to overcome, it is feasible and beneficial for users to
bring the mining detection to the browser.

CCS CONCEPTS
• Security and privacy→ Browser security; Web protocol secu-
rity;Web application security;

KEYWORDS
Web Security, CryptoJacking, HTML5, Browser Abuse

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6569-7/18/12.
https://doi.org/10.1145/3274694.3274735

ACM Reference Format:
Juan D. Parra Rodriguez and Joachim Posegga. 2018. RAPID: Resource and
API-Based Detection Against In-Browser Miners. In 2018 Annual Com-
puter Security Applications Conference (ACSAC ’18), December 3–7, 2018, San
Juan, PR, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3274694.3274735

1 MOTIVATION
HTML5 technologies such as WebGL and WebSockets contributed
to achieve something that was attempted but not successful so far:
in-browser crypto-currency mining [1]. On the one hand, crypto-
mining could be a business model where visitors use energy and
computational resources in exchange for the content they get, in-
stead of coping with advertisements and their privacy implica-
tions [14, 16, 29, 47]. However, system administrators, develop-
ers, and attackers have started embedding crypto-mining scripts
through their own and third-party sites without the users’ consent.

Abusing the browser’s resources for crypto-mining without the
user’s knowledge, i.e., CryptoJacking, has been already recognized
by the ESET antivirus company as the top cyber attack today [17].
Further, Symantec states that browser-based CryptoJacking has
increased by 8.500% in 2017 in their technical report [43]. From
a practical perspective, there is no evidence of a transparent en-
vironment where users provide consent before sites start using
their resources for mining. As a result, we propose to provision
the browser with tools to detect on its own, without relying on
information provided by the site visited, whether the site being
rendered is performing mining or not.

Our contributions can be summarized as follows: 1)we propose
several novel mining detection techniques based on the system’s
resource consumption and resource-related browser API usage. 2)
we evaluate and compare the performance of the different pro-
posed techniques by collecting information about how sites use
the browser most resource-related APIs and system’s resources.
For this, we used real-life browsers on 330.500 sites based on the
Alexa top ranking. 3) we analyze the feasibility of porting API-
based mining detection to the browser. To this end, we perform a
quantitative analysis of the overhead on the page loading time and
execute micro-benchmarks for the detection algorithm.

This paper is structured as follows: Section 2 states our problem.
Sections 3 and 4 describe our methodology and evaluation. Then,
we cover related work in Section 5 and draw conclusions from our
work and discuss feature steps in Section 6.

2 PROBLEM STATEMENT
CryptoJacking has some critical differences with malware
and other Web attacks. First of all, JavaScript malware, as well
as attacks against the users’ sessions and data, are executed once.

https://doi.org/10.1145/3274694.3274735
https://doi.org/10.1145/3274694.3274735
https://doi.org/10.1145/3274694.3274735

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Juan D. Parra Rodriguez and Joachim Posegga

Once the attacker has obtained the data, session or control over
the machine, the attack is successful and complete. For mining, an
attacker benefits over longer periods of time because his earnings
are proportional to the resources he can use on the browser’s side.
Second, conventional Web security mechanisms, such as the Same
Origin Policy or Content Security Policies (CSP) cannot protect
users against mining because in many cases the code is delivered
as part of the frame or site rendered by the browser. Thousands
of sites have been used to deliver mining scripts in different ways
without signs of cross-site scripting or other Web attacks. For in-
stance, Youtube advertisements [25, 46], Content Management Sys-
tem widgets [26], or even wrong permissions assigned to Amazon
S3 buckets [28] have been used by attackers to modify sites and
inject mining scripts.

So far, two possible countermeasures against mining have been
implemented or discussed: blacklisting domains or blocking sites
based on their resource consumption. However, existing counter-
measures have two problems. Blacklists are easy to circumvent
by moving miners to new domains1; thus, they yield too many false
negatives. Second, there is a bug description asking Chromium de-
velopers to block sites with CPU usage; however, most developers
consider it to be an unreliable indicator for mining because it can
block many benign sites and create many false positives [13].

We aim to close this gap by providing a better detection mecha-
nism that can achieve two goals. On the one hand, the detection
mechanism should label miners on sites that were not previously
seen, i.e., reduce false negatives of blacklists. On the other hand, it
should not label sites as miners unless they are performing mining,
i.e., decrease false positives with respect to a decision only con-
sidering processing power. To this end, we performed a thorough
evaluation between a detection mechanism based on network, pro-
cessor, and memory consumption and a more advanced approach
based on monitoring resource-related API calls inside the browser.

The next aspect related to CryptoJacking is to assess when to
perform online or offline detection. We refer to online detection
when detection is performed on the same browser where sites are
being browsed by users; conversely, we term offline detection when
malicious or benign sites are classified in a different system than the
one employed by the user, e.g., in a cloud infrastructure and then
delivering a blacklist to the user’s browser. In the case of offline
detection, servers are constantly crawling the internet and could
come across different content than what is served to actual users
for two reasons: 1) the server could get a customized version of
the content without the mining, 2) pages serving malicious content
could be behind log-in screens, etc. Despite these issues, offline
detection has been incredibly useful to train and verify results from
more lightweight (online) mechanisms in the past; for example,
Cujo [38] and ZOZZLE [9] were trained and verified, respectively,
using JSAND [8]: an offline malicious JavaScript detection mech-
anism. Another advantage of offline mechanisms is that they can
have more computing power and more specialized setups which
translates into better detection performance.

Every detection method we analyze can be deployed offline. In
particular, the resource-based approach can only be performed
1[6] showed that CryptoJacking actors started hosting their own proxy servers to
connect to mining pools [49] to avoid fees for Monero and to make detection harder
to perform as domain blacklisting is not sufficient anymore.

offline because it executes a browser in an isolated environment
during a single site visit. Contrarily, the resource-related in-browser
API classifier has more potential to be deployed directly in the
user’s browser, i.e., for online detection. Thus, we measure the
impact on page-loading time imposed by the API monitoring and
the computation of the feature vector.

3 METHODOLOGY
We started by performing a large-scale collection of how sites use
system’s resources particular API calls. Afterward, we labeled the
data with two classes (mining, or benign sites). Then, we chose
different sets of features as well as a learning model to train a
classifier predicting whether a site is performing mining or not.

3.1 Data Collection
There have been several approaches to automate browsers for data
collection, e.g., OpenWPMcreated by Englehardt andNarayanan [14],
yet we decided to implement our own mechanisms for various rea-
sons. We needed to control and instrument the browser remotely to
receive the events created by our instrumentation through a highly
efficient communication channel. Based on these requirements, we
decided to use the Chrome Debugging Protocolwith Chromium2.

In addition to collecting which API calls have been performed
by Websites, we faced the challenge of quantifying the resources
used by each browser during the experiments. To tackle this, we
used docker containers to isolate the browser processes and
count the amount of memory, processor, and networking used.
Additionally, through the docker API, we were able to create, stop
and delete containers for each visit. This ensures that the initial
state is always the same, i.e., no cookies, local storage or cached
sites, and the reproducibility of the experiments.

Figure 1 shows the logical architecture of our crawling system.
A Crawler Node selects a pending job (site visit) from the database,
creates a new chromium container and starts listening for memory,
CPU, and network consumption events through docker APIs. Then,
each node instructs one browser to instrument all pages loaded and
to visit a particular page. During the visit, which lasts 35 seconds,
the node receives all events detected by the instrumented code from
the browser through the Chromium debugging protocol. Finally,
it stops the tracing and waits until all data has been received be-
fore stopping the resource monitoring for the container and then
removes the container. Additionally, there is a shared MongoDB
database holding all pending jobs and results obtained so far. The
database was designed to ensure that several nodes can be executed
in parallel without conflicting with each other. We used one Virtual
Machine (VM) with 700 GB of disk to host the database and four
VMs with 15 GB of disk for crawling. All VMS were executed inside
a single physical host running a VMWare ESX Virtualization server
and had eight virtual processors and 8 GB of RAM. Moreover, each
crawling VM had seven nodes (each node controlling one browser).
To run Chromium on headless mode, we used the X virtual frame
buffer tool (Xvfb) to execute it without requiring a screen for the
servers visiting the sites.

2A key advantage is that Chromium enables us to leverage the internal network and
profiling protocol to send events from the browser to the monitoring program by
calling console.timeStamp() within the instrumented code.

RAPID: Resource and API-Based Detection Against In-Browser Miners ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Database

Crawler
Node

Crawler
Node

...

Chromium

Container

Internet

Virtual Machine

Chromium

Container

Crawler
Node

Crawler
Node

...

Chromium

Container

Virtual Machine

Chromium

Container

Virtual Machine

...

Figure 1: Crawler’s Logical Architecture

Overall, we obtained 285.919 sites out of the top 330.500 Alexa
sites.We tried to re-execute sites that failed due to network timeouts
or operational errors after the first run was finished. The main
operational error causing crashes during our experiments was non-
deterministic. The problem was that Chromium stopped sometimes
when Xvfb was used [33, 34]. From the 285.919 sites that were
adequately visited, we found 656 sites performing mining using the
labeling technique described in Section 3.2.

System’s Resource Monitoring: To minimize measurement errors,
we monitor all the resources used by the container running (only)
the Chromium instance that opened a site through the docker stats
API. In particular, our Crawler Node obtains events including mem-
ory, processor, and network consumption. Afterward, we aggregate
the total number of ticks used by the processor, the total number of
bytes used from main memory and the total number of bytes sent
or received over the network separately.

JavaScript APIs: The computational resources accessible through
the browser are CPU, GPU, storage, and networking. So, we over-
ride the browser’s behaviour by instrumenting the APIs using those
resources. In addition to APIs accessing the resources directly, we
have also monitored other APIs enabling inter-window commu-
nication because they also reflect interactions between different
domains and are commonly used by WebWorkers, etc. Nonetheless,
we tried to instrument the least amount of APIs, yet still obtaining
an overview of the resources being accessed through the browser
(see Table 1).

To monitor the APIs within the browser remotely, we used the
Chrome Debugging Protocol and let the Crawler Node instrument
the browser remotely using the addScriptToEvaluateOnLoad and
setAutoAttachToCreatedPages calls from the Page API. This in-
jects scripts when a new document is created. Despite what the term
addScriptToEvaluateOnLoad suggests, this function injects the code
before the site is loaded [21]. To receive events through the Chrome
Debugging Protocol, we used the Tracing.dataCollected func-
tion to get events generated by Chromium’s console whenever the

Resource Monitored API

CPU WebWorkers (creation)
WebAssembly (creation)

GPU WebGLRenderingContext (all functions)
CanvasRenderingContext2D (all functions)

Storage LocalStorage (set, get and remove)
IDBObjectStore (all functions)

Networking WebSocket (creation, send and receive)
RTCDataChannel-WebRTC (all functions)

Inter-Window

Window (postMessage and onMessage)
WebWorkers (postMessage and onMessage)
SharedWorker (postMessage and onMessage)
EventSource (creation and receive)
Table 1: APIs monitored

function console.timesTamp was called from the instrumented
code.

To instrument the browser we followed an approach attempt-
ing to introduce the least performance impact possible. That is to
say, whenever it was possible, we added a listener to the event
without redefining the API. For instance, this is possible when our
script needs to get the postMessage events from the window by
adding an EventListener to the window for the event “message".
In other cases, when we only needed to monitor a few specific
calls, we redefined the functions. Whenever, there were APIs in-
tensively used by mining scripts, such as the GPU-related scripts,
we opted for redefining all the functions and notifying the Crawler
Node through the Chrome Debugging Protocol whenever any func-
tion was called on the object. To redefine methods we used the
method Object.defineProperty, as it has been previously used
by IceShield [19] or the OpenWPM Firefox extension instrumenting
JavaScript [15].

As the database logged the time for each function call, the result
can be seen, from the browser’s point of view, as a list of events
observed during the execution of a site.

3.2 Labeling
We performed the data collection from the top 330.500 Alexa sites
between October the 2nd and November the 8th 2017; this time
window was very convenient. On the one hand, this collection
started shortly, i.e., less than 3 weeks, after Coinhive started op-
erating (the number one threat currently according to ESET [17]).
In particular, this time was enough to evidence the overwhelming
adoption of Coinhive described in their first-week report [44]. On
the other hand, data collection also took place before miners started
using their own domains to avoid detection and avoid paying fees
to Coinhive [6]. This evasion technique was rarely used since late
November 2017 and only became a trend towards March 2018. The
lack of evasion techniques allowed us to obtain high-quality data
for labeling our learning dataset.

To label the mining and benign classes, we queried our database
to find sites who had sent, received messages or openedWebSockets
with any domain that had been blacklisted by the existing miner

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Juan D. Parra Rodriguez and Joachim Posegga

blockers [22, 50]. A detailed list of the domains used is shown in
Table 7 (Appendix B).

Querying the database after dynamic monitoring took place,
i.e., WebSocket creations and sending or receiving events, gave us
a significant advantage over static techniques. In particular, we
obtained proportionally more miner samples by analyzing the site’s
behavior during runtime in comparison to other work analyzing
the evolution of in-browser miners, which executed queries on the
static content provided by Websites over time [18]3.

3.3 Feature Selection
At this point, we have described how we obtained two data sources:
resources consumed (memory, network, and processor), and JavaScript
API Events (a sequence of resource-related events that occurred for
each visit). However, before we can describe which features will
be used, we have to ensure fairness when making the comparison
between both datasets. Although we collected 285.919, only 196.724
actually used resource-related APIs. Thus, to be fair, we used only
the 196.724 visits that used resource-related APIs to obtain features
from both datasets (resources and API calls). This cannot leave any
mining site out of the dataset because we labeled mining sites based
on the WebSocket messages they exchanged with a known mining
server: a resource-related API call.

System’s Resource Monitoring: System’s resources could only
be quantified as a total amount of processor ticks, bytes sent or
received over the network or number of bytes of memory used
along the execution, i.e., a vector in N4.

In the case of system’s resources, not all features have the same
scale; for instance, processor ticks is likely to have higher values
than the number of bytes sent over the network. To improve per-
formance of the learning algorithm we had to perform scaling of
each vector component to a fixed range for all features. However,
scaling can be harmful when outliers are an essential aspect of
the problem (uncommon sites doing mining). So, we used a robust
scaling preprocessing algorithm from Scikit-learn to map vectors
to R4 while affecting outliers the least possible. We have witnessed
an improved performance after scaling.

Nonetheless, the fact that we have to perform scaling of each fea-
ture in comparison to all other samples observed brings a particular
downside. The scale for each feature, e.g., min and max number
of processor ticks, is fixed after scaling; as a result, scales depend
on each computer executing the prediction, e.g., big desktop PCs
will observe different ranges than phones in practice. So, online
deployment, as described in Section 2, is not an option. Instead, this
classifier could be supported to enhance existing blacklists.

JavaScript APIs: This section describes how feature vectors are
created step by step. First, we explain how we extract relevant
values for each vector component. Then, we describe the vector’s
normalization process before they are used for training and clas-
sification. Lastly, we describe the technical aspects considered for
efficiency during the learning and prediction process.

In the case of the resource-related API events, we face a chal-
lenge: mapping the sequence of events for every visit as a set of

3 [18] reports circa 1.000 mining sites on the Alexa top million. We discovered 656
sites within the top 330.500 sites.

numerical features. We explore two approaches to map events to
vectors: bag of words, and q-grams. Luckily, Rieck et al. already
introduced notation to describe q-grams in Cujo [38]. The same
q-gram representation and set of features were later used by Early-
Bird by Schutt et al. [40]. Thus, we will use the same notation
used by EarlyBird and Cujo to show the bag of words and q-grams
approach.

Bag of words: let E be the set of all possible events and let ϕb

map x to the vector space N |E | representing the bag of words. In
particular, we associate every API call e ∈ E to one dimension in
the vector. So, we can define ϕb using every API call to create the
vector like this:

ϕb : x → (ϕbe (x))e ∈E

where the ϕbe (x) counts the number of times that e appears in
x . We observed 173 resource-related API calls being performed
throughout our crawl, so |E | = 173.

Q-grams: let S be the set of all possible q-grams and let ϕq be
a function mapping x to the vector space B |S | . Now, like Rieck et
al. [38], we map every possible q-gram to a component of the vector
and using the function:

ϕq : x → (ϕ
q
s (x))s ∈S

where ϕqs (x) =

{
1, if x contains the q-gram s

0, otherwise.

Vectors produced by ϕb and ϕq have the same scale for every
feature, i.e., they are all counting events or q-grams; therefore,
unlike like the resource-based approach, this approach does not
need scaling. API-based approaches are likely to perform better
than the resource-based model on systems with different comput-
ing power because they focus on particular patterns observed on
the sequence of API calls, rather than using the actual amount of
resources consumed.

Notwithstanding, we cannot use vectors produced by ϕb and
ϕq as the feature vectors yet. The main problem is that, so far,
this feature vector would give more weight to event sequences x
containing more q-grams. Thus, we normalized vectors produced
by ϕb and ϕq using the ℓ2 (or also known as Euclidean) norm.
After normalization, the bag of word vectors are mapped from
N |E | to R |E | and q-grams vectors are mapped from B |S | to R |S | ;
furthermore, every vector has the same norm after normalization.
As a result, the value represented in a single q-gram dimension
will be diminished when sites contain many other q-grams. On
the contrary, for an event sequence with very few q-grams, each
one of them will have more weight. An important advantage of
normalization over scaling is that normalization is applied only
considering a single sample, i.e., no need to know the distribution
of the data beforehand.

We must clarify that even though Cujo [38] and EarlyBird [40]
use the same q-gram representation, our approach uses a different
set of features oriented to resource-related APIs. More details on
similarities and differences are discussed in Section 5.

The size of all possible q-grams grows exponentially with q;
theoretically, |S | has an upper bound of |E |q . However, we found
that in the case of APIs used by sites the combinations observed on
the q-grams is considerably smaller as q grows, i.e., |S | was 3.698,
17.604, 48.657, 103.034 for q values of 2, 3, 4 and 5 respectively.

RAPID: Resource and API-Based Detection Against In-Browser Miners ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Still, due to the q-gram’s high dimensionality and the fact that they
would have many components of each vector with null values, we
used a sparse “triplet” representation for the matrix continuing all
the vectors in Scipy [30]. Thus, the kth elements in the arrays i,j,v
represent thatmatrix[ik , jk] = vk .

3.4 Learning
Even though there are several classification algorithms such as
linear discriminant analysis, logistic regression, etc., Support Vec-
tor Machines (SVM) are prevalent for tackling security problems
because, unlike other classification methods that minimize the em-
pirical loss, SVM attempts to minimize the generalization loss. To
do this, the SVM draws a separator hyperplane in an n-dimensional
space and tries to find the separator that is the farthest away from
known samples [39]. This maximizes space around the separator
for new samples that have not yet been observed during training.

Another vital point visible by looking at the results of the labeling
process is that we are facing a problem with highly unbalanced
classes (656 malicious sites vs. 285.858 benign sites). From this point
of view, we weighted the vectors provided during training using
the balanced class weight Scikit-learn [32]. Thus, every sample
weight is inversely proportional to the class frequency, i.e., mining
samples have more weight as their class is considerably smaller.

Lastly, we use a linear kernel on the SVM. This helps in two
aspects: runtime performance and the kernel size is bound by the
number of dimensions of the vectors. Some other kernels, e.g., radial
base function, grow with the number of samples used for training.
The bigger the kernel is, the less feasible will be to execute the SVM
on the browser after training it with tens of thousands of sites.

4 EVALUATION
We perform two kinds of quantitative evaluation on the proposed
detection approaches. First of all, we analyze the performance of
the detection algorithm by measuring its precision and recall. Then,
we assess the impact on page-loading time imposed by the API
monitoring and the effort required to calculate q-grams while Web-
sites are loading. Last but not least, we measure the average time
required by an SVM to classify a website within the browser.

4.1 Detection
A common way to chose parameters for a particular machine learn-
ing model is to use cross-validation. Although this is fine to tune
arguments and to train the model, performance metrics calculated
during cross-validation, e.g., precision, should not be used to eval-
uate the model. When the metrics calculated by cross-validation
are used, the model is evaluated with data already used to tune the
parameters; as a result, some information from the training data
can be implicitly included in the model which results in over-fitting
and a false increase on the metric [2].

To avoid this, we do not use the metrics calculated during cross-
validation. As Figure 2 shows, we do a random split on the dataset
between a training and an evaluation partition. Then, we perform
cross-validation with K-fold (k = 4), again splitting the set ran-
domly, to train the model and find the best classifier. Once the
best classifier is obtained by cross-validation, we apply it on the
evaluation dataset.

evaluationtraining

75% 25%

K-Fold Cross-Validation

...

Best Classifier

full dataset : random
split

: apply

: produces

Figure 2: One Iteration Evaluating the Detection

Following the process described in Figure 2 guarantees us to
obtain real performance, i.e., precision and recall, because they are
calculated by applying the best found classifier on data which has
never been used in the process so far. Also, this ensures that the
classifier can generalize well when classifying samples it has never
seen. In other words, during the evaluation process the classi-
fier judges sites it has never seen before, not even during the
training phase. Further, to have certainty that high performance
is not due to a “lucky” random split, we execute the procedure
shown in Figure 2 five times, for each set of features (resources, bag
of words, and all q-grams), and calculate the mean and standard
deviation.

Metrics: Machine learning algorithms are sometimes evaluated
based on their accuracy, i.e., right predictions/total predictions;
however, this metric does not consider for which class the prediction
took place. Thus, wrong classifiers can still have high accuracy on
unbalanced datasets; for instance, a wrong classifier predicting
every site as benign would have high accuracy because most of
the sites in the dataset belong to the benign class in the first place.
To avoid this, we apply the classifier to the full evaluation set and
calculate precision and recall4 on a per-class basis.

By using these two metrics on a per-class basis, we obtain com-
plementary views with respect to how elements are labeled for a
specific class. Recall for a single class shows whether the classifier
can detect all relevant samples. Precision ensures that the clas-
sifier does not label elements that do not belong to the class. In
simpler terms, only an optimal classifier can have high precision
and recall. A classifier detecting most of the elements for the class
obtains high recall; nonetheless, if the classifier labels too many
elements, its precision will drop, e.g., blocking sites only due to
high processor consumption. Conversely, a classifier only labeling
few elements in the class, to ensure that they are indeed there, has
high precision; however, it is more likely that several elements in
the class remain undetected, so its recall will drop, e.g., blocking
sites using blacklists. Last but not least, we also calculate the f1
score5 to have a single metric balancing precision and recall at the
same time.

4precision =
|T P |

|T P | + |F P |
and r ecall =

|T P |
|T P | + |FN |

where TP is a set con-

taining all true positives, FN contains all false negatives, and FP contains all false
negatives.
5f 1 = 2 ∗

precision ∗ r ecall
precision + r ecall

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Juan D. Parra Rodriguez and Joachim Posegga

Classif. Precision Recall F1
resources 99.98 (0.00) 97.97 (0.12) 98.97 (0.06)

b. words html5 99.98 (0.00) 98.16 (0.46) 99.06 (0.23)
2grams html5 99.99 (0.00) 99.99 (0.00) 99.99 (0.00)
3grams html5 99.98 (0.01) 99.99 (0.00) 99.99 (0.00)
4grams html5 99.99 (0.00) 99.99 (0.00) 99.99 (0.00)
5grams html5 99.99 (0.00) 99.99 (0.00) 99.99 (0.00)
Table 2: Mean and Std. Dev. for Metrics (Benign)

Benign Class: Table 2 shows the mean and standard deviations
for precision, recall and the f1 score for each classifier. From 10.000
benign sites, all q-gram classifiers detect 99.99 of them, i.e., 99.99%
recall. Q-grams obtained a similar result regarding precision; specif-
ically, 2-, 4- and 5-grams produce one false positive for every 10.000
sites predicted as benign (99.99% precision). Also, the minimal stan-
dard deviation, below 0.01%, shows that we can be very confident
of these results. Moreover, in the case of 3-grams, which seem to
have a lower precision than the others, they have a higher stan-
dard deviation. This indicates that they could either have a value
between 99.97% and 99.99% as precision. For the bag of words and
resource-based approaches, the classifiers still obtain very high
precision and accuracy, i.e., they only differ by 0.01% and 1.83% in
comparison to q-grams. Considering that the benign class is the
biggest class, results presented in Table 2 show that most of the
samples are correctly classified.

Mining Class: Figure 3 shows the mean and standard deviation
for precision and recall; further, Table 3 contains the same metrics
along with the f1 score. From the recall point of view, all classifiers
perform over 93%. In other words, regardless of the classifier type,
all the proposed detection mechanisms can detect at least 93% of all
mining sites. All classifiers based on q-gram have recall between 95%
and 97%. From the precision point of view, q-grams perform really
well, e.g., from 100 sites labeled as mining by a q-gram classifier
there are between three and four false positives. Now, we address
the relatively high deviation of all the precision, and recall values
for the mining class, in comparison with the low deviation shown
for the benign class. Further, we also address why there is a gap
between the group containing the resources- and bag of words-
based classifiers in comparison to all q-grams. Especially, because
the high precision drop for the mining class was not observed when
analyzing precision and recall values for the complementary class,
i.e., benign sites, presented before.

In the presence of two complementary and significantly unbal-
anced classes, false positives and false negatives have a higher
impact on precision and recall for the smaller class. For the sake of
the argument let us assume we have a mining class with ten sites
and a benign class with 10 million sites. Let us further assume we
have a classifier detecting all ten mining sites, but also producing
ten false positives. In such a scenario, the classifier would only have
50% precision for the mining class and 100% recall. Apparently, as
we only looked at the mining class, with ten sites, the previously
mentioned classifier has very poor precision. However, we should
keep in mind that such classifier is producing ten false positives for

Classif. Precision Recall F1
resources 13.32 (0.98) 93.89 (1.34) 23.31 (1.54)

b. words html5 15.20 (3.74) 93.52 (1.62) 25.95 (5.48)
2grams html5 96.57 (1.06) 96.98 (0.96) 96.77 (0.70)
3grams html5 96.79 (1.34) 95.33 (1.91) 96.04 (0.86)
4grams html5 96.47 (1.07) 97.84 (1.29) 97.15 (1.04)
5grams html5 96.54 (1.15) 95.48 (1.38) 96.00 (0.76)
Table 3: Mean and Std. Dev. for Metrics (Mining)

precision recall
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
(fr

om
 0

 to
 1

)

Mean score (and std. dev.) for 5 runs (mining class)

amount of resources
bag of words html5
2grams html5
3grams html5
4grams html5
5grams html5

Figure 3: Detection Performance for Mining Class

10 million sites, so it will generate one false positive the 0.0001% of
the times it is used.

The benign and mining classes whose results are presented in
Table 2 and Table 3 have unbalanced sizes, i.e., 285.858 and 656 sites,
respectively. So, although the real classes are not as unbalanced
as the previous example, a small amount of false positives or false
negatives has a considerably higher impact on precision and recall
for the mining class than for the benign class. Further, due to these
high variations, introduced by a few false positives, the smaller
class has higher deviations than the benign class.

Appendix A formalizes the intuition behind class sizes and how
this affects the precision and recall metrics for the smaller class. This
formulation is used to calculate a theoretical upper bound of false
positives and false negatives with respect to the whole dataset, i.e.,
285.919 sites. This reveals that although q-grams perform better than
the bag of words- or the resource-based approach, i.e., 0.008% of false
positives with respect to the whole dataset, the latter approaches are
also working well in practice. Moreover, we show that the resource-
based and the bag of words approaches produce 1.5% and 1.3% of
false positives (compared to the whole dataset) while producing
around 0.015% of false negatives.

Another takeaway from Table 2 and 3 is that q-grams perform
similarly. The f1 score, precision and recall show that even though
there seems to be a slight trend to increase performance towards 4-
grams and then decrease for 5-grams, the standard deviation values

RAPID: Resource and API-Based Detection Against In-Browser Miners ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

do not let us have certainty that this is the case. So, depending
on performance overhead introduced by the q-gram calculation, a
reasonable trade-off could be to use 2-grams instead of 5-grams:
more on this is explained in Section 4.2.1.

During all the executions on the evaluation set, all q-gram ap-
proaches only flagged 22 sites as “false positives”. After further
investigation, we found that the classifier was detecting newmin-
ing proxies that were not part of the training set. For example,
moneone.ga was reported to blockers only after we labeled our
training set. Further, we found several domains with the same Mon-
ero URL structure, i.e., ending in /proxy or starting with ws01.
In some cases, we came across proxies that were not part of the
blacklists but are clearly associated with miners, i.e., wp-monero-
miner.de. This implies that the performance of the classifiers
is even higher than the reported values. For completeness, the
sites along with the proxies as listed in Table 6 (Appendix B).

4.2 Impact on the Page Loading Time
Wehave produced a proof-of-concept implementation using Chrome
Debugging Tools to inject the necessary scripts to monitor the
resource-related APIs and apply the bag of words classifier pre-
dicting whether a site is mining or not. However, to quantify the
overhead on the client side, we split our analysis on the runtime
performance on the client side into two parts. First, we measure the
overhead induced on page-loading time when APIs are monitored
and bag-of-words or q-grams are being calculated simultaneously.
Then, we evaluate in which cases can a classifier be executed within
the browser and its execution time. We split the analysis into two
parts because the classification takes place after the full site has
been loaded; thus, it is not useful to attempt to measure the impact
of the classifier on the page-loading time if it runs seconds after the
page is rendered. On the other hand, the constant monitoring and
calculation of q-grams can impact the page loading time; thus, it is
critical to measure its impact during the initial stages of rendering.

Further, our measurements are a worst-case scenario from the
runtime performance point of view because we are instrumenting
the browser APIs with JavaScript from a remote program (Crawler
Node). Therefore, an actual implementation of this mechanism
within the browser can only improve the user’s experience or deploy
more powerful mechanisms than our prototypical version.

4.2.1 Speed Index. Analyzing the performance impact on page
loading time for real Websites is a technically challenging problem.
Previously, there have been a number of attempts to measure a
particular event, e.g., window load, reflecting how favorable the
user’s experience is on a Website; however, these metrics were not
successful because a single event is affected by a number of factors
and not necessarily correlates with the moment when content is
shown [11]. To overcome this, the speed index calculates a curve
of visual completeness (Figure 4) using video captures. In particu-
lar, the index is calculated based on the moment when a page has
finished loading. To have a bounded value evidencing the number
of pixels that took certain time to be rendered, the speed index cal-
culates the area over the curve (up to 100% of visual completeness),
i.e., the background of the image that is not covered by histogram
bars. Thus, a high speed index reflects a site that is taking long to
render content. The main drawback of this index is that developers

Figure 4: Facebook’s SpeedIndex Visual Completeness Ren-
dered by Speedline [20]

may need to remove visual content that is modified periodically,
such as ads or banners, as the speed index would classify this as
content which has not yet been loaded (as it keeps changing).

The speed index is the better-known way to analyze how fast
sites are loading; consequently, we used it to analyze the impact
of the API instrumentation and calculation of the bag of words or
q-grams array. More to the point, we measured the speed index
using the same setup described in Section 3.1, with some differences.
First, only one Crawling Node was executed per VM. Further, we
modified the browser instrumentation to calculate q-grams directly
in the browser instead of streaming the HTML events to the Crawler
Node. Also, instead of visiting a site only once, the speed index
evaluation executed 20 consecutive visits (each one with a new
container). For Each visit, we performed remote browser profiling
and then used the Speedline library [20] in the Crawler node to
calculate the speed index over the profiling data and store it in the
database.

As the speedindex can severely vary due to a number of factors,
we are mostly interested in the overhead induced by each API-based
approach instead of the actual speed index for each site. Therefore,
we executed five kinds of automated visits: baseline, bag of words,
2-, 3- and 4-grams. The baseline experiment opened a Website and
then closed it without performing any API instrumentation. The
bag of words experiment instrumented all APIs and monitored
the number times each API call was performed. The 2-, 3-, and
4-grams experiments also instrumented the resource-related APIs
but additionally calculated the count for each q-gram observed
during the execution. Moreover, to have real comparable results, we
executed all the speed index calculations simultaneously (baseline,
bag of words and q-grams) between June the 8th and June the 10th
2018. This avoids any network delays or content updates on the
Websites that could affect our measurements if they were executed
at different times.

As discussed in Section 4.1, we need to evaluate the overhead
induced by 2-, 3, and 4-grams. Depending on the performance
overhead, a trade-off may be required to save page-rendering time.
Notwithstanding, it is clearly not a good idea to use 5-grams because
we already have an indicator that its detection performance may
drop, and in any case, 5-grams require more resources than the
smaller q-grams.

When performing the speed index measurements, we encoun-
tered a problem with specific sites whose speed index varied too
much across the 20 visits. We already suspected this could relate
to dynamic content; withal, we decided to investigate further. Fig-
ure 5 shows a histogram for the standard deviations (calculated
based on 20 subsequent visits per site) for the Alexa top 100. This

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Juan D. Parra Rodriguez and Joachim Posegga

0 2000 4000 6000 8000
Standard Deviation for Speed Index of Site

0

10

20

30

40

Nu
m

be
r o

f S
ite

s
Histogram of Std. Dev. Speed Indexes for Alexa Top 100 Sites

Figure 5: Histogram of Std. Dev. Speed Indexes for Alexa Top
100 Sites

gave us a clear experimental threshold (deviation of 1000) to keep
most of the sites who had a deviation within the most significant
part of the population. From 88 sites that we were able to visit 20
times successfully from the top 1006, 61 sites had a smaller standard
deviation than the threshold while 21 sites were above.

Interestingly, we found that although in several cases the speed
index deviation happened due to visual elements that kept changing,
e.g., banners or auto-playing videos, there seemed to be more sites
from Chinese domains or companies in the list. According to an
online forum discussing the topic, there seem to be several factors
influencing network conditions when Chinese sites are accessed
from outside of China. Apparently, China uses three locations for
the Great Chinese Firewall, charges significant amounts of money
for abroad connections and does not have enough submarine cable
connections in proportion to their population [37, 45]. If these
arguments are indeed true, this would explain the variations on the
speed index due to significant latencies and unpredictable network
conditions. For the full list of sites see Table 9 in Appendix B.

Due to space reasons, we report the mean speed index (based
on 20 visits for each site) for the top 20 Alexa sites in Figure 6, but
we still present the full Alexa top 100 list in Figure 7, as well as the
behavior of sites excluded from the calculations in Figure 8.

Figure 6 shows the mean speed index and their standard devia-
tions for the top 20 sites within the deviation threshold described
above. Overall, visits yield a higher index as the computation in-
creases, e.g., baseline requires less computation than to bag of
words and therefore yields a lower speed index. Notwithstand-
ing, although there is a clear trend for more complex monitoring
schemes to increase the speed index, the overhead induced is not
significant enough to guarantee that all sites have higher indexes
for all comparisons. For example, Instagram’s speed index has a
lower value for 4-grams than for 3-grams, although it exposes an
increasing behavior between the baseline, bag of words, 2- and
3-grams. This can be related to some dynamic features of the sites,
but it could also happen because values for the mean of the speed
index lie within an error margin (related to the standard deviation).
So, we can only know that they are “close" the value shown.

To provide an even more intuitive view on the results from the
Alexa top 100 speed index, Table 4 shows the mean and standard
deviation of the overhead of the different instrumentation and

6Remember the non-deterministic bug described in Section 3.1

Approach Overhead Mean Overhead Std. Dev
bag of words 9.258832 % 10.167985 %
2-grams 24.943266 % 15.672606 %
3-grams 38.311742 % 26.489506 %
4-grams 39.164961 % 24.461527 %

Table 4: Overall Overhead in Comparison with the Baseline

vector calculation approaches using the baseline as reference for
the different instrumentation approaches. It is clear that q-grams
can have an overhead ranging from 20 to 40% on the speed index.

4.2.2 Classifier Execution. To evaluate to which extent can be clas-
sification mechanisms based on JavaScript features be executed
directly in the browser today, we used a libSVM port to WebAssem-
bly [24] to attempt to execute an SVM. Unfortunately, we found out
that only the bag of words SVM could be executed in the browser.
The primary constraint for the q-grams was that WebAssembly
runs out of memory when trying to load the SVM. The main dif-
ference between the implementation of the libSVM WebAssembly
library and Scikit learn is that Scikit lean provides the “triplet” rep-
resentation for sparse data, and the WebAssembly wrapper requires
a regular matrix with the samples.

Withal, we executed a micro benchmark in JavaScript measuring
the time in milliseconds required to do 100.000 classifications indi-
vidually in a loop using a Lenovo TS470S with 16 GB of RAM and
an Intel Core i7-7500U CPU @ 2.70GHz. We decided to perform
many classifications between the time measurements to decrease
possible measurement error and because we realized that some-
times classifications took less than one millisecond. After executing
the micro-benchmark described above ten times, we obtained a
mean of 181 milliseconds, for the 100.000 predictions and a stan-
dard deviation of 6.54 milliseconds. So, we can say that in average
each prediction takes 0.01 milliseconds.

5 RELATEDWORK
Although there has been an initial study of the characteristics, e.g.,
timeline of events and adoption of particular miners, of in-browser
crypto-mining [18], we are the first describing a detection mecha-
nism that does not rely on blacklists and therefore achieves better
detection performance. Also, this is the first quantitative analy-
sis comparing resource and API-based detection of crypto-mining.
However, we are not the first studying malicious JavaScript code
exploiting the browser. In fact, we have leveraged similar concepts
than those described by IceShield [19], Cujo [38] and HoneyMon-
key [48]. In spite of extensive research efforts to analyze JavaScript
malware using honeypots, e.g., PhoneyC [27] or WebPatrol [4], we
focus on systems using real browsers for their measurements.

Provos et al. [35] demonstrated in 2008 that 1.3% of Google
searches had a drive-by download attack. This created a wave of
offline detection (according to the term introduced in Section 2) ap-
proaches. However, in 2005 malicious JavaScript code was already
being automatically analyzed by Wang et al. when they introduced
HoneyMonkey [48]: an automated crawling framework to detect
malware downloads through the browser. HoneyMonkey simulated
human behavior during visits to malicious sites, under Windows

RAPID: Resource and API-Based Detection Against In-Browser Miners ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

go
og

le.
co

m

yo
utu

be
.co

m

fac
eb

oo
k.c

om

wik
ipe

dia
.or

g

ya
ho

o.c
om

go
og

le.
co

.in

tw
itte

r.c
om

go
og

le.
co

.jp

vk
.co

m

liv
e.c

om

ins
tag

ram
.co

m

go
og

le.
de

go
og

le.
co

.uk

go
og

le.
co

m.
br

lin
ke

din
.co

m

go
og

le.
fr

go
og

le.
ru

ya
nd

ex
.ru

ne
tfli

x.c
om

go
og

le.
co

m.
hk

0

1000

2000

3000

4000

5000

6000

7000

Sp
ee

dIn
de

x M
ea

n

SppedIndex Overhead with Instrumentation
baseline
bag of words
2grams
3grams
4grams

Figure 6: Speed Index comparison vs Instrumentation Method (top Alexa 20 sites)

XP, while monitoring operations to the registry performed by the
machine. As the program simulating the user was not instructed
to accept to download or install malicious software, activities ob-
served in the registry after the end of the visit flagged exploit sites.
Capture-HPC uses several HTTP clients, such as Firefox or Internet
Explorer to orchestrate them and monitor the file system, registry,
or processes a kernel level. As a result, it can flag malicious behavior
whenever an unexpected change takes place [41].

We are following a similar approach asHoneyMonkey andCapture-
HPC in the sense that we also use real browsers to visit sites but at
the same time perform data collection in lower layers, i.e., docker
would be analogue to the OS.

Heidrich et al. created an in-browser solution to detect and miti-
gate malicious Websites called IceShield [19]. IceShield has been
implemented as a JavaScript Internet Explorer or Firefox extension
that redefines browser APIs to monitor JavaScript code, extracts
features and then uses Linear Discriminant Analysis (LDA) to de-
tect malicious Websites. As the most significant contribution from
IceShield is to provide a safe and lightweight manner to rewrite the
browser APIs, the evaluation of their LDA is not as extensive as
others found in the literature. Our approach uses similar techniques
as IceShield to redefine the resource-related APIs and monitor them,
yet we do this by instrumenting the browser through the Chrome
Debugging Protocol API in a research context instead of using
extensions for this.

Cova et al. used HtmlUnit, a headless browser based on the Rhino
JavaScript interpreter, to create JSAND [8]. JSAND collected partic-
ular features related to four phases observed in drive-by downloads:
redirection and cloaking, de-obfuscation, environment preparation,
and exploitation. Also, JSAND was publicly available for some time
as Wepawet, and the authors validated around 140.000 pages by
2010. Song et al. introduced an approach to prevent drive-by down-
loads via inter-module communication monitoring [42]. Song et al.
created a browser module to monitor when COM modules were
created, invoked or freed. Also, to increase the number of malicious
samples that would attack the browser, the implemented an ActiveX
emulator, to simulate several vulnerabilities. Song’s approach is
based on a Deterministic Finite Automaton (DFA) created based on

37 known exploits manually. Thus, whenever the DFA for a website
reached a dangerous state, an exploit alert was generated.

Egele et al. [12] performed heapspray shellcode detection through
the execution of a modified Firefox, with a modified SpiderMonkey
instance monitoring all string concatenation and construction op-
erations and emulating the bytes stored therein through a library
an x86 code emulation library.

Ratanaworabhan et al. proposed NOZZLE [36]: a mechanism
against heapspray attacks by using a Windows binary instrumen-
tation framework to modify Firefox’s routines to validate objects
in the heap during garbage collection. Unlike Egele et al. [12] who
only checked strings, NOZZLE inspects all objects allocated the
heap. NOZZLE disassembles the code creating a control flow graph
and analyzing data flows to find valid x86 sequences and. Then, it
defines a heap attack surface area based on the previous analysis.

Curtsinger et al. created ZOZZLE [9] to achieve better perfor-
mance than NOZZLE. To this end, ZOZZLE uses the Detours in-
strumentation library to perform JavaScript code deobfuscation
by hooking calls to the eval function on the JavaScript engine of
Internet Explorer. Once the deobfuscated code is available, ZOZZLE
parses the JavaScript and obtains the Abstract Syntax Tree (AST).

Our approach relates to JSAND [8], Egele et al. [12], Song’s
inter-module communication monitoring [42], NOZZLE [36] and
ZOZZLE [9] as they all collect features based on observations for a
particular security problem.

Rieck et al. created Cujo: a Web proxy performing static and dy-
namic analysis of JavaScript code to detect drive-by downloads [38].
Specifically, Cujo uses a custom YACC grammar to extract tokens
through lexical analysis. The result of the lexer shows a simpli-
fied representation of the code replacing variable and function
names, string values and their length and numeric values by dif-
ferent tokens, e.g., ID = ID + STR reflects an instruction where the
concatenation of a variable and a string is assigned to a variable.
Then, Cujo uses ADSandbox [10], a modification of SpiderMonkey,
to execute the JavaScript code to extract abstract operations. To
relate the static and dynamic analysis with one another, Rieck et al.
create q-grams from the reports generated by the static analysis and
ADSandbox. EarlyBird [40] is an optimization of Cujo. EarlyBird is

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Juan D. Parra Rodriguez and Joachim Posegga

a modified linear SVM with the same features as Cujo, yet giving
higher weights to malicious events occurring in the early stages of
an attack. On the one hand, EarlyBird gives higher weights to events
commonly appearing early in malicious scripts in the training set,
while leaving the weight for events mostly seen in benign sites
constant. Also, according to Schutt et al., the authors of EarlyBird,
this approach would produce a regular linear SVM whenever the
data available for training is not useful to identify which events are
present early in malicious Websites.

Clearly, the closest related work for our approach is Cujo and
EarlyBird because they both use q-grams and a SVM. However,
Rieck et al. focus on more generic features using dynamic and static
analysis, even including variable assignments; on the contrary, we
focus on particular resource-related API calls and do not need to
perform static analysis. The main reason for this is explained in
Section 2: attackers need to sustain the resource abuse to make
mining profitable; thus, a pure dynamic analysis suffices because
there is no way an attacker can perform mining without repeatedly
executing resource-intensive calls. Also, EarlyBird and Cujo are
deployed on a Proxy server; instead, we have studied, a worst-case
scenario, in which the API-based classifier is deployed directly in
the browser. We consider this effort to be valuable because the in-
creasing adoption of TLS (after Cujo was published) makes harder
the deployment of secure proxies. Especially, considering that prox-
ying TLS connections require a man-in-the-middle attack: known
to decrease security and privacy for users [31].

6 CONCLUSIONS AND FUTUREWORK
To the best of our knowledge, this is the first work proposing
several learning-based approaches to detect in-browser mining and
evaluate them thoroughly. We compare six approaches using two
data sources: system’s resources consumed by the browser, and
APIs used by Websites. To assess the detection performance of each
one of the feature sets extracted from the datasets above, we trained
and evaluated the classifiers with 330.500 sites from the Alexa top
ranking.

We conclude that our classifiers close the gap between false
negatives introduced by blacklists [6] and false positives resulting
from CPU-based site classification [13]. More to the point, using
our feature sets and our labeling approach, we found very good
classifiers.

The best classifier we found has 97.84% recall, i.e., detects 97.84%
of all mining sites in an entirely new dataset. Moreover, the best
classifier also attains 99.7% precision; that is to say, from 100 sites
predicted to perform mining, there are 99.7 on average who are
indeed abusing the browser. Also, all detection mechanisms pre-
sented by us are resilient to obfuscation techniques because they
only rely on dynamic information. Nonetheless, our API-based de-
tection mechanisms can misclassify sites whose APIs usage pattern
changed, e.g., we have observed differences in versions of Coinhive
rendering different geometrical figures. In such cases, the classifier
should be trained again with proper labels to solve the problem.
Also, existing solutions such as Revolver [23] could be used to pre-
vent evasion. The main idea behind it is to detect sites that used to
be classified as malicious and are not classified as such anymore
and then investigate the changes.

While every detection approach can be executed offline, accord-
ing to the definition given in Section 2, we explored whether the
API-based approaches, e.g., bag of words, could be deployed di-
rectly on the browser. To this end, we evaluated the impact on
page-loading time induced by a prototypical API monitoring tech-
nique for the Alexa top 100 sites. Although this is just a worst-case
scenario, i.e., a production-level implementation directly in the
browser must be more efficient, results are somewhat encouraging.
Since there are no significant detection performance differences
between using 2-, 3- or 4-grams, we concluded that executing the
bag of words or the 2-grams classifier would induce only 9.2% or
24.9% overhead on the speed index, respectively.

However, after analyzing the overhead on page-loading time and
performance of each detection approach, we encountered several
technical hurdles when attempting to implement the detection in
browsers. The first issue we found was that even though Chromium
is the best approach to instrument the resource-related APIs during
the data collection phase, their security model makes the same kind
of instrumentation in production difficult, i.e., through a Chrome
extension. Extensions work on an isolated world, and changes
are propagated through copies of the DOM [5]. Despite this, we
implemented a proof of concept capable of executing the classifier
using aWebAssembly port [24] of LibSVM [3]. To do this, we require
an additional program instrumenting Chromium remotely through
the Chrome Debugging Protocol. We must clarify that even though
we did not implement a Chrome extension to apply the classifiers
explained in this paper, this may be viable by placing a content script
that modifies the browser APIs. Also, looking at OpenWPM [14]
and how it uses a Firefox extension to perform JavaScript API
instrumentation [15] would be a good start. However, even though
this is an interesting engineering task, it does not weaken nor
strengthen our analysis of the classifiers’ detection performance
and feasibility.

Also, we performed prediction based on a 35-second visit. This
provided high-quality data and assumed a realistic scenario con-
sidering that visits take approximately 5 minutes on average [7].
However, the question of the minimum time required to achieve
an accurate prediction remains open and can be explored as future
work with the API events collected.

ACKNOWLEDGMENTS
This research has been supported by the EU under the H2020 AGILE
(Adaptive Gateways for dIverse muLtiple Environments), grant
agreement number H2020-688088.

REFERENCES
[1] Bitcoinplus. 2011. Bitcoinplus. https://web.archive.org/web/20170103133312/http:

//www.bitcoinplus.com/miner/embeddable. Accessed: 2018-04-06.
[2] Gavin C. Cawley and Nicola L.C. Talbot. 2010. On Over-fitting in Model Selection

and Subsequent Selection Bias in Performance Evaluation. J. Mach. Learn. Res.
11 (Aug. 2010), 2079–2107. http://dl.acm.org/citation.cfm?id=1756006.1859921

[3] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article 27 (May 2011),
27 pages. https://doi.org/10.1145/1961189.1961199

[4] Kevin Zhijie Chen, Guofei Gu, Jianwei Zhuge, Jose Nazario, and Xinhui Han.
2011. WebPatrol: Automated Collection and Replay of Web-based Malware
Scenarios. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (ASIACCS ’11). ACM, New York, NY, USA, 186–195.
https://doi.org/10.1145/1966913.1966938

https://web.archive.org/web/20170103133312/http://www.bitcoinplus.com/miner/embeddable
https://web.archive.org/web/20170103133312/http://www.bitcoinplus.com/miner/embeddable
http://dl.acm.org/citation.cfm?id=1756006.1859921
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1966913.1966938

RAPID: Resource and API-Based Detection Against In-Browser Miners ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

[5] Content Scripts-Google Chrome. 2018. Work in Isolated Worlds. https://develope
r.chrome.com/extensions/content_scripts#isolated_world. Accessed: 2018-06-02.

[6] Catalin Cimpanu. 2018. In-Browser Cryptojacking Is Getting Harder to De-
tect. https://www.bleepingcomputer.com/news/security/in-browser-cryptojack
ing-is-getting-harder-to-detect/. Accessed: 2018-06-02.

[7] Clicktale. 2013. ClickTale’s 2013 Web Analytics Benchmarks Report. https:
//research.clicktale.com/web_analytics_benchmarks.html. Accessed: 2018-04-06.

[8] Marco Cova, Christopher Kruegel, and Giovanni Vigna. 2010. Detection and
Analysis of Drive-by-download Attacks and Malicious JavaScript Code. In Pro-
ceedings of the 19th International Conference on World Wide Web (WWW ’10).
ACM, New York, NY, USA, 281–290. https://doi.org/10.1145/1772690.1772720

[9] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. 2011.
ZOZZLE: Fast and Precise In-browser JavaScript Malware Detection. In Proceed-
ings of the 20th USENIX Conference on Security (SEC’11). USENIX Association,
Berkeley, CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=2028067.2028070

[10] Andreas Dewald, Thorsten Holz, and Felix C. Freiling. 2010. ADSandbox: Sand-
boxing JavaScript to Fight Malicious Websites. In Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC ’10). ACM, New York, NY, USA, 1859–
1864. https://doi.org/10.1145/1774088.1774482

[11] WebPagetest Documentation. 2017. WebPagetest Documentation: Speed In-
dex. https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metric
s/speed-index. Accessed: 2018-06-10.

[12] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda. 2009.
Defending Browsers against Drive-by Downloads: Mitigating Heap-Spraying
Code Injection Attacks. In Detection of Intrusions and Malware, and Vulnerability
Assessment, Ulrich Flegel and Danilo Bruschi (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 88–106.

[13] ellenpli@chromium.org. 2018. Please consider intervention for high cpu usage
js. https://bugs.chromium.org/p/chromium/issues/detail?id=766068.

[14] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16). ACM, New York, NY, USA,
1388–1401. https://doi.org/10.1145/2976749.2978313

[15] Steven Englehardt and Arvind Narayanan. 2018. OpenWPM Firefox extension
Instrumenting JavaScript Code. https://github.com/citp/OpenWPM/blob/f3f
c7884fd93a31c689a2228c21865003749cf27/automation/Extension/firefox/data/
content.js#L480. Accessed: 2018-01-15.

[16] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan Mayer, Arvind Narayanan, and Edward W. Felten. 2015. Cookies That
Give You Away: The Surveillance Implications of Web Tracking. In Proceedings
of the 24th International Conference on World Wide Web (WWW ’15). Interna-
tional World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland, 289–299. https://doi.org/10.1145/2736277.2741679

[17] Eset. 2018. Wayback Machine: Eset Virus Radar. https://web.archive.org/web/
20180126135759/www.virusradar.com/en/statistics. Accessed: 2018-06-02.

[18] Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy Clark. 2018.
A first look at browser-based Cryptojacking. Technical Report. Bad Packets.

[19] Mario Heiderich, Tilman Frosch, and Thorsten Holz. 2011. IceShield: Detection
and Mitigation of Malicious Websites with a Frozen DOM. In Recent Advances in
Intrusion Detection, Robin Sommer, Davide Balzarotti, and Gregor Maier (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 281–300.

[20] Paul Irish. 2016. Speedline. https://github.com/paulirish/speedline Accessed:
2018-06-10.

[21] Paul Irish. 2017. Debugging Protocol: Does ‘Page.addScriptToEvaluateOnLoad‘
execute before the "load" event? https://groups.google.com/a/chromium.org/for
um/#!topic/headless-dev/cD0iF2lpHeA. Accessed: 2018-01-15.

[22] Rafael K. 2017. NoCoin: blacklist.txt. https://raw.githubusercontent.com/keraf/
NoCoin/master/src/blacklist.txt. Accessed: 2017-10-15.

[23] Alexandros Kapravelos, Yan Shoshitaishvili, Santa Barbara, Marco Cova, Christo-
pher Kruegel, and Giovanni Vigna. 2013. Revolver: An Automated Approach
to the Detection of Evasive Web-based Malware. In Usenix security. USENIX,
Washington, D.C., 637–652. https://www.usenix.org/conference/usenixsecurity
13/technical-sessions/presentation/kapravelos

[24] Daniel Kostro. 2017. LIBSVM for the browser and nodejs. https://github.com/mlj
s/libsvm. Accessed: 2018-06-02.

[25] Chaoying Liu and Joseph C. Chen. 2018. Malvertising Campaign
Abuses Google’s DoubleClick to Deliver Cryptocurrency Miners.
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising
-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/

[26] Mark Maunder. 2018. WordPress Plugin Banned for Crypto Mining. https://ww
w.wordfence.com/blog/2017/11/wordpress-plugin-banned-crypto-mining/. Ac-
cessed: 2018-01-15.

[27] Jose Nazario. 2009. PhoneyC: A Virtual Client Honeypot. In Proceedings of the
2Nd USENIX Conference on Large-scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and More (LEET’09). USENIX Association, Berkeley, CA, USA,
6–6. http://dl.acm.org/citation.cfm?id=1855676.1855682

[28] Shaun Nichols. 2018. Guys, you’re killing us! LA Times homicide site hacked to
mine crypto-coins on netizens’ PCs. https://www.theregister.co.uk/2018/02/22/la

_times_amazon_aws_s3/.
[29] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.

2013. Cookieless Monster: Exploring the Ecosystem of Web-Based Device Fin-
gerprinting. In 2013 IEEE Symposium on Security and Privacy. IEEE, Berkley, CA,
USA, 541–555. https://doi.org/10.1109/SP.2013.43

[30] Scipy Lecture Notes. 2018. Coordinate Format (COO). http://www.scipy-lectures
.org/advanced/scipy_sparse/coo_matrix.html. Accessed: 2018-06-02.

[31] Mark O’Neill, Scott Ruoti, Kent Seamons, and Daniel Zappala. 2016. TLS Proxies:
Friend or Foe?. In Proceedings of the 2016 Internet Measurement Conference (IMC
’16). ACM, New York, NY, USA, 551–557. https://doi.org/10.1145/2987443.2987488

[32] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 12 (Nov. 2011), 2825–2830.
http://dl.acm.org/citation.cfm?id=1953048.2078195

[33] primiano@chromium.org. 2017. Chromium Source Code Comment on DBUS
Bug and Xvfb. https://chromium.googlesource.com/chromium/src.git/+/2fc330d
0b93d4bfd7bd04b9fdd3102e529901f91/services/service_manager/embedder/ma
in.cc#352. Accessed: 2018-01-15.

[34] primiano@chromium.org. 2017. dbus autolaunch causes chrome to hang. https:
//bugs.chromium.org/p/chromium/issues/detail?id=715658. Accessed: 2018-01-
15.

[35] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose.
2008. All Your iFRAMEs Point to Us. In Proceedings of the 17th Conference
on Security Symposium (SS’08). USENIX Association, Berkeley, CA, USA, 1–15.
http://dl.acm.org/citation.cfm?id=1496711.1496712

[36] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. 2009. NOZZLE:
A Defense Against Heap-spraying Code Injection Attacks. In Proceedings of the
18th Conference on USENIX Security Symposium (SSYM’09). USENIX Association,
Berkeley, CA, USA, 169–186. http://dl.acm.org/citation.cfm?id=1855768.1855779

[37] Reddit. 2016. Why are Chinese sites slow/inaccessible from outside
China? https://www.reddit.com/r/China/comments/4pfhv5/why_are_chinese_si
tes_slowinaccessible_from/?st=j7rp5ul3&sh=ec919f8d. Accessed: 2016-09-15.

[38] Konrad Rieck, Tammo Krueger, and Andreas Dewald. 2010. Cujo: Efficient
Detection and Prevention of Drive-by-download Attacks. In Proceedings of the
26th Annual Computer Security Applications Conference (ACSAC ’10). ACM, New
York, NY, USA, 31–39. https://doi.org/10.1145/1920261.1920267

[39] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach
(3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA. 744–746 pages.

[40] Kristof Schütt, Marius Kloft, Alexander Bikadorov, and Konrad Rieck. 2012. Early
Detection of Malicious Behavior in JavaScript Code. In Proceedings of the 5th
ACM Workshop on Security and Artificial Intelligence (AISec ’12). ACM, Raileigh,
North Carolina, USA, 15–24. https://doi.org/10.1145/2381896.2381901

[41] Christian Seifert and Ramon Steenson. 2006. Capture - Honeypot Client (Capture-
HPC). , Available from https://projects.honeynet.org/capture-hpc; accessed on
22 September 2008 pages.

[42] Chengyu Song, Jianwei Zhuge, Xinhui Han, and Zhiyuan Ye. 2010. Preventing
Drive-by Download via Inter-module Communication Monitoring. In Proceedings
of the 5th ACMSymposium on Information, Computer and Communications Security
(ASIACCS ’10). ACM, New York, NY, USA, 124–134. https://doi.org/10.1145/
1755688.1755705

[43] Symantec. 2018. Internet Security Threat Report. Technical Report 23. Symantec.
Available at http://resource.symantec.com/LP=5538?cid=70138000000rm1eAAA,
Accessed: 2018-06-02.

[44] Coinhive Team. 2017. Coinhive Blog: First Week Status Report. https://coinhive
.com/blog/status-report. Accessed: 2018-06-02.

[45] TeleGeography. 2018. Submarine Cable Map. https://www.submarinecablemap.
com/. Accessed: 2018-06-02.

[46] The Telegraph. 2018. YouTube shuts down hidden cryptojacking adverts
. http://www.telegraph.co.uk/technology/2018/01/29/youtube-shuts-hidden-c
rypto-jacking-adverts/

[47] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. Mccoy, A.
Nappa, V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. 2015. Ad Injection at
Scale: Assessing Deceptive Advertisement Modifications. In 2015 IEEE Symposium
on Security and Privacy. IEEE, San Jose, CA, USA, 151–167. https://doi.org/10.
1109/SP.2015.17

[48] Yi-Min Wang, Doug Beck, Xuxian Jiang, and Roussi Roussev. 2005. Automated
Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser
Vulnerabilities. Technical Report. Microsoft Research. 12 pages. https://www.mi
crosoft.com/en-us/research/publication/automated-web-patrol-with-strider-h
oneymonkeys-finding-web-sites-that-exploit-browser-vulnerabilities/

[49] x25. 2017. CoinHive Stratum Mining Proxy. https://github.com/x25/coinhive-str
atum-mining-proxy. Accessed: 2018-06-02.

[50] xd4rker. 2017. MinerBlock: filters.txt. https://github.com/xd4rker/MinerBlock/b
lob/master/assets/filters.txt. Accessed: 2017-10-15.

https://developer.chrome.com/extensions/content_scripts#isolated_world
https://developer.chrome.com/extensions/content_scripts#isolated_world
https://www.bleepingcomputer.com/news/security/in-browser-cryptojacking-is-getting-harder-to-detect/
https://www.bleepingcomputer.com/news/security/in-browser-cryptojacking-is-getting-harder-to-detect/
https://research.clicktale.com/web_analytics_benchmarks.html
https://research.clicktale.com/web_analytics_benchmarks.html
https://doi.org/10.1145/1772690.1772720
http://dl.acm.org/citation.cfm?id=2028067.2028070
https://doi.org/10.1145/1774088.1774482
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://bugs.chromium.org/p/chromium/issues/detail?id=766068
https://doi.org/10.1145/2976749.2978313
https://github.com/citp/OpenWPM/blob/f3fc7884fd93a31c689a2228c21865003749cf27/automation/Extension/firefox/data/content.js#L480
https://github.com/citp/OpenWPM/blob/f3fc7884fd93a31c689a2228c21865003749cf27/automation/Extension/firefox/data/content.js#L480
https://github.com/citp/OpenWPM/blob/f3fc7884fd93a31c689a2228c21865003749cf27/automation/Extension/firefox/data/content.js#L480
https://doi.org/10.1145/2736277.2741679
https://web.archive.org/web/20180126135759/www.virusradar.com/en/statistics
https://web.archive.org/web/20180126135759/www.virusradar.com/en/statistics
https://github.com/paulirish/speedline
https://groups.google.com/a/chromium.org/forum/#!topic/headless-dev/cD0iF2lpHeA
https://groups.google.com/a/chromium.org/forum/#!topic/headless-dev/cD0iF2lpHeA
https://raw.githubusercontent.com/keraf/NoCoin/master/src/blacklist.txt
https://raw.githubusercontent.com/keraf/NoCoin/master/src/blacklist.txt
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://github.com/mljs/libsvm
https://github.com/mljs/libsvm
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://www.wordfence.com/blog/2017/11/wordpress-plugin-banned-crypto-mining/
https://www.wordfence.com/blog/2017/11/wordpress-plugin-banned-crypto-mining/
http://dl.acm.org/citation.cfm?id=1855676.1855682
https://www.theregister.co.uk/2018/02/22/la_times_amazon_aws_s3/
https://www.theregister.co.uk/2018/02/22/la_times_amazon_aws_s3/
https://doi.org/10.1109/SP.2013.43
http://www.scipy-lectures.org/advanced/scipy_sparse/coo_matrix.html
http://www.scipy-lectures.org/advanced/scipy_sparse/coo_matrix.html
https://doi.org/10.1145/2987443.2987488
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://chromium.googlesource.com/chromium/src.git/+/2fc330d0b93d4bfd7bd04b9fdd3102e529901f91/services/service_manager/embedder/main.cc#352
https://chromium.googlesource.com/chromium/src.git/+/2fc330d0b93d4bfd7bd04b9fdd3102e529901f91/services/service_manager/embedder/main.cc#352
https://chromium.googlesource.com/chromium/src.git/+/2fc330d0b93d4bfd7bd04b9fdd3102e529901f91/services/service_manager/embedder/main.cc#352
https://bugs.chromium.org/p/chromium/issues/detail?id=715658
https://bugs.chromium.org/p/chromium/issues/detail?id=715658
http://dl.acm.org/citation.cfm?id=1496711.1496712
http://dl.acm.org/citation.cfm?id=1855768.1855779
https://www.reddit.com/r/China/comments/4pfhv5/why_are_chinese_sites_slowinaccessible_from/?st=j7rp5ul3&sh=ec919f8d
https://www.reddit.com/r/China/comments/4pfhv5/why_are_chinese_sites_slowinaccessible_from/?st=j7rp5ul3&sh=ec919f8d
https://doi.org/10.1145/1920261.1920267
https://doi.org/10.1145/2381896.2381901
https://doi.org/10.1145/1755688.1755705
https://doi.org/10.1145/1755688.1755705
http://resource.symantec.com/LP=5538?cid=70138000000rm1eAAA
https://coinhive.com/blog/status-report
https://coinhive.com/blog/status-report
https://www.submarinecablemap.com/
https://www.submarinecablemap.com/
http://www.telegraph.co.uk/technology/2018/01/29/youtube-shuts-hidden-crypto-jacking-adverts/
http://www.telegraph.co.uk/technology/2018/01/29/youtube-shuts-hidden-crypto-jacking-adverts/
https://doi.org/10.1109/SP.2015.17
https://doi.org/10.1109/SP.2015.17
https://www.microsoft.com/en-us/research/publication/automated-web-patrol-with-strider-honeymonkeys-finding-web-sites-that-exploit-browser-vulnerabilities/
https://www.microsoft.com/en-us/research/publication/automated-web-patrol-with-strider-honeymonkeys-finding-web-sites-that-exploit-browser-vulnerabilities/
https://www.microsoft.com/en-us/research/publication/automated-web-patrol-with-strider-honeymonkeys-finding-web-sites-that-exploit-browser-vulnerabilities/
https://github.com/x25/coinhive-stratum-mining-proxy
https://github.com/x25/coinhive-stratum-mining-proxy
https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt
https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Juan D. Parra Rodriguez and Joachim Posegga

A THEORETICAL UPPER BOUND FOR FALSE
POSITIVES AND NEGATIVES

To bring the precision and recall values of the smallest class into con-
text, we use the known precision and recall values for each classifier
to calculate a theoretical upper bound for the total number of
false positives and negatives that formalizes about how false
positives and false negatives have higher impact on smaller classes,
i.e., the reasoning explained in Section 4.1.

Based on footnote 4, the precision formula can be transformed
to Equation 1. We should consider that every true positive needs to
belong to the class, i.e., it needs to to be in a class and to be correctly
classified; thus, the number of true positives is always smaller than
the size of the class, i.e., |TP | ≤ |Class |. With this constraint in
mind, we can put an upper bound to the number of false positives
using the size of the class as shown in Equation 2. Likewise, we
can make the similar statement about false negatives and recall, i.e.,
Equation 3.

FP = |TP |∗

(
1

precision
− 1

)
(1)

FP ≤ |Class |∗

(
1

precision
− 1

)
(2)

FN ≤ |Class |∗

(
1

recall
− 1

)
(3)

By applying Equations 2 and 3, we created a Table 5 for the
maximum number of false positives and negatives with respect to
the whole dataset, i.e., 285.919 sites in total.

Classif. False Positives False Negatives
resources 1.493 % 0.015 %

words html5 1.282 % 0.016 %
2grams html5 0.008 % 0.007 %
3grams html5 0.008 % 0.011 %
4grams html5 0.008 % 0.005 %
5grams html5 0.008 % 0.011 %

Table 5: Upper Bound of False Positives and False Negatives
Based Equation 2 and 3 Using Precision and Recall from Ta-
ble 2 and 3

B ADDITIONAL PLOTS AND TABLES
This section includes all additional plots and labels mentioned in
the main body of the paper.

Window WSocket Destination
streamcherry.com/ kdowqlpt.info:443
openload.co/ azvjudwr.info:443
www.tvnetil.net/ prv.co.il:2052/proxy
mydream.lk/ googlescripts.ml:8892/proxy
www.comicsporn.net/de/ 163.172.103.203:8892/proxy
duroos.org/ googlescripts.ml:8892/proxy
pokemgo.info/358kqm abc.pema.cl/socket
www.watchfaces.be/ wp-monero-miner.de:2096
multfun.com/ m.anisearch.ru/proxy
shopon.noip.us/ googlescripts.ml:8892/proxy
www.homfurniture.com/ www.homfurniture.com/
bonkersenergy.com/ minr.pw/socket
torrentbada.net/ moneone.ga/proxy
www.harveker.com/ io.truconversion.com
gifmixxx.com/9lG0 ws001.chapi.co
www.vipmatureporn.com/ 163.172.103.203:8892/proxy
anunciosintimos.pt/ googlescripts.ml:8892/proxy
www.coinfloor.co.uk/ api.coinfloor.co.uk/
madnessbeat.com/ ws001.chapi.co

Table 6: WS Connections Opnened by Frames Labeled as
“Flase Postives"

RAPID: Resource and API-Based Detection Against In-Browser Miners ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

go
og

le
.c

om

yo
ut

ub
e.

co
m

fa
ce

bo
ok

.c
om

w
ik

ip
ed

ia
.o

rg

ya
ho

o.
co

m

go
og

le
.c

o.
in

tw
it

te
r.

co
m

go
og

le
.c

o.
jp

vk
.c

om

liv
e.

co
m

in
st

ag
ra

m
.c

om

go
og

le
.d

e

go
og

le
.c

o.
uk

go
og

le
.c

om
.b

r

lin
ke

di
n.

co
m

go
og

le
.f

r

go
og

le
.r

u

ya
nd

ex
.r

u

ne
tf

lix
.c

om

go
og

le
.c

om
.h

k

ya
ho

o.
co

.jp

go
og

le
.it

t.
co

po
rn

hu
b.

co
m

go
og

le
.e

s

im
gu

r.
co

m

tw
it

ch
.t

v

on
cl

kd
s.

co
m

m
sn

.c
om

tu
m

bl
r.

co
m

go
og

le
.c

a

xv
id

eo
s.

co
m

m
ai

l.r
u

m
ic

ro
so

ft
.c

om

ok
.r

u

w
or

dp
re

ss
.c

om

st
ac

ko
ve

rf
lo

w
.c

om

im
db

.c
om

gi
th

ub
.c

om

pi
nt

er
es

t.
co

m

w
ik

ia
.c

om

ap
pl

e.
co

m

go
og

le
.c

om
.t

r

po
pa

ds
.n

et

of
fic

e.
co

m

bo
ng

ac
am

s.
co

m

pa
yp

al
.c

om

go
og

le
.c

om
.t

w

go
og

le
.c

om
.a

u

go
og

le
.p

l

xh
am

st
er

.c
om

di
pl

y.
co

m

go
og

le
.c

o.
id

ad
ob

e.
co

m

cr
ai

gs
lis

t.
or

g

go
og

le
.c

om
.a

r

ni
co

vi
de

o.
jp

th
ep

ir
at

eb
ay

.o
rg

go
og

le
.c

om
.p

k

go
og

le
.c

o.
th

go
og

le
us

er
co

nt
en

t.
co

m

bo
ok

in
g.

co
m

po
rn

55
5.

co
m

pi
xn

et
.n

et

go
og

le
.c

om
.e

g

so
so

.c
om

0

1000

2000

3000

4000

5000

6000

7000

8000

Sp
ee

dI
nd

ex
 M

ea
n

SppedIndex Overhead with Instrumentation
baseline
bag of words
2grams
3grams
4grams

Figure 7: Speed Index comparison vs Instrumentation Method (top Alexa 100 sites)

ba
idu

.co
m

re
dd

it.
co

m

ta
ob

ao
.co

m

jd.
co

m

we
ibo

.co
m

36
0.

cn

eb
ay

.co
m

go
og

le.
co

m
.m

x

ali
pa

y.c
om

gm
w.

cn

blo
gs

po
t.c

om

yo
ut

h.
cn

wh
at

sa
pp

.co
m

de
ta

il.t
m

all
.co

m

co
cc

oc
.co

m

tx
xx

.co
m

dr
op

bo
x.c

om

tia
ny

a.c
n

0

5000

10000

15000

20000

25000

30000

Sp
ee

dIn
de

x M
ea

n

SppedIndex Overhead with Instrumentation
baseline
bag of words
2grams
3grams
4grams

Figure 8: Speed Index values Ignored for the Alexa top 100

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Juan D. Parra Rodriguez and Joachim Posegga

precision recall
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
(fr

om
 0

 to
 1

)

Mean score (and std. dev.) for 5 runs (benign class)

amount of resources
bag of words html5
2grams html5
3grams html5
4grams html5
5grams html5

Figure 9: Detection Performance for Benign Class

Domain Match
*2giga.link
*afminer.com
*cloudcoins.co
*coinblind.com
*coinerra.com
*coin-have.com
*coin-hive.com
*coinhive.com
*coinhive-manager.com
*coinlab.biz
*coinnebula.com
*crypto-loot.com
*edgeno.de
*inwemo.com
*joyreactor.cc
*jsecoin.com
*jyhfuqoh.info
*kissdoujin.com
*kisshentai.net
*kiwifarms.net
*listat.biz
*lmodr.biz
*mataharirama.xyz
*minecrunch.co
*minemytraffic.com
minero-proxy.sh
*minero.pw
*miner.pr0gramm.com
*monerominer.rocks
*papoto.com
*ppoi.org
*reasedoper.pw
*webmine.cz

Table 7: Expressions for Mining Domains

Domain Sites Using It
coinhive.com 611
crypto-loot.com 11
coin-hive.com 8
coin-have.com 5
minemytraffic.com 3
ppoi.org 2
papoto.com 1
2giga.link 1

Table 8: Mining Sites Grouped by Type

Alexa Domain Ranking Possible Reason
baidu.com 4 located in China
reddit.com 7 dynamic UI (GIF images)
taobao.com 10 located in China
tmall.com 13 located in China
jd.com 20 located in China
weibo.com 21 located in China
360.cn 22 located in China
ebay.com 36 dynamic UI (banner)
alipay.com 47 located in China
google.com.mx 44 dynamic UI (canvas)
gmw.cn 48 located in China
aliexpress.com 54 located in China
hao123.com 56 located in China
blogspot.com 61 dynamic UI (banner)
youth.cn 68 located in China
whatsapp.com 74 dynamic UI (banner)
detail.tmall.com 78 located in China
coccoc.com 82 dynamic UI (banner)
txxx.com 84 not verified (videos?)
dropbox.com 86 dynamic UI (banner)
tianya.cn 97 located in China

Table 9: Reasons for High Std. Dev. of Sites Not Considered

	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

