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Introduction 1

1 Introduction

Information has a particular importance in online purchase decision processes. As

opposed to consumers in o✏ine markets, consumers in online markets cannot inspect

the physical product to evaluate it and reduce their perceived risk. Hence, consumers

in online markets are dependent upon the information that they can gather about a

product in which they are interested (Park and Lee, 2007). Therefore, they have two

primary sources of information: Product descriptions and customer reviews. Both

sources a↵ect consumers’ purchase decision processes and hence have an economic

impact for consumers, shop providers and manufacturers. It is important to know

how these sources of information influence a customer’s online purchase decision and

how to extract the relevant information for the following reasons: (1) to facilitate

consumers in finding interesting and relevant information with low e↵ort, (2) to

utilize the dissolved information, (3) to support consumers during the purchase

process and (4) to take economic advantage of the extracted information. These

aims lead to several research objectives. This thesis answers the following research

questions:

1. What classification method should be used depending on the data set charac-

teristics?

2. How can product features be automatically extracted from online customer

reviews?

3. How do product and review filtering systems influence purchase decision pro-

cesses in online markets?

4. How do the presence and infomration amount of online product descriptions

influence sales?

To examine these research objectives, several studies applying di↵erent method-

ological approaches have been conducted. Overall, this thesis consists of 4 studies,

depicted in Figure 1.1
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Figure 1.1: Overview of Research Studies

The first study compares 25 classification methods in four di↵erent complexity sce-

narios and on datasets described by five data characteristics. Thus, study 1 provides

an algorithmic foundation for study 2. In study 2, a new ensemble classification ap-

proach is proposed to detect product features in online customer reviews with a focus

on sparse data, e.g., from small or new online shops. Whereas study 2 focuses on

the algorithm to detect product features, study 3 investigates the impact of filter-

ing systems based on extracted product features on a three-stage purchase decision

process. In addition to customer reviews, consumers also use product descriptions

to evaluate products, and hence product descriptions might influence a product’s

popularity. Therefore, study 4 investigates the influence of product descriptions on

a product’s sales for three di↵erent product categories. In the following, I provide a

short overview of each study.

Study 1: A comparison of classification methods across di↵erent data

complexity scenarios and datasets

Authors: Michael Scholz and Tristan Wimmer

This study investigates the performance of 25 classifiers in four di↵erent complex-

ity scenarios and on datasets described by five data characteristics. Classification

problems arise in many areas of research (e.g., disease detection (Maysanjaya et al.,

2015; Bourouhou et al., 2016), financial forecasting (Feldman and Gross, 2005; Less-

mann et al., 2015; Fitzpatrick and Mues, 2016), and tra�c sign detection (Kiran

et al., 2009; Stallkamp et al., 2012)). Therefore, a large set of algorithms has been

proposed in the existing literature, some of which have a focus on special classifica-
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tion problems. There is evidence that data characteristics influence the accuracy of

classification methods (Kiang, 2003; Shreve et al., 2011). In this study, we used a con-

trolled setting in which we generated synthetic datasets to investigate the influence

of six data characteristics on the performance of classification methods. We applied

individual, homogeneous and heterogeneous classifiers in four complexity scenarios.

This study shows that the performance of classification methods is significantly in-

fluenced by data characteristics. We found that heterogeneous ensemble classifiers

reach the highest overall accuracy and examined the best approaches for each com-

plexity scenario and dataset characteristic. Thus, this study assists researchers and

practitioners in selecting the best classifier subject to the characteristics of their

datasets.

Study 2: Product feature detection in online customer reviews

Author: Tristan Wimmer

Customers discuss their experiences about a product in online customer reviews.

These reviews are a major source of information for other consumers in the pur-

chase decision process to reduce consumers’ uncertainty about whether a product

fits their needs (Kang et al., 2017; Zhu and Zhang, 2010). Consumers tend to process

all available information they can obtain about a product of interest (Park and Lee,

2007); however, the number of online customer reviews on e-commerce websites has

increased substantially in recent years (Chen and Xu, 2017; Guo and Zhou, 2017).

Nevertheless, consumers have a limited processing capacity and become cognitively

overloaded if there are too many customer reviews to process, resulting, inter alia,

in cognitive strain – the so-called information overload phenomenon (Jacoby et al.,

1974; Keller and Staelin, 1987; Malhotra, 1984). Retailers can support customers

in their purchase decision process with product filtering systems based on product

features in customer reviews. Thus, consumers can filter product information and

identify the sections that discuss the features in which they are interested. To enable

retailers in o↵ering such decision support systems, they must be able to automat-

ically detect product features from customer reviews. This study proposes a new

ensemble approach to detect product features from online customer reviews. In this

paper, I investigate the performance of a bag-of-words model and a maximum en-

tropy model for feature detection in online customer reviews. The results show that

a bag-of-words model has high recall but also low precision, whereas the maximum

entropy model has low recall and high precision. Thus, I combine both approaches

into a new ensemble approach and show with three di↵erent datasets and product

categories that the ensemble approach is superior to the other classification meth-

ods. Further, I demonstrate that the superior accuracy is constant even for small
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training dataset sizes. The contribution of this study is to provide an algorithm

to detect product features from customer reviews for even a few customer reviews

per product category and thus is especially recommendable for new or small shop

providers, providing them with the opportunity to o↵er services such as decision

support systems based on product features in customer reviews.

Study 3: Filtering based on Customer Reviews: An Investigation of the

impact of Filtering Systems on Purchase Decision Process

Authors: Tristan Wimmer and Michael Scholz

In this study, we investigate the impact of filtering systems on the purchase decision

process. We followed Wu and Rangaswamy (Wu and Rangaswamy, 2003) and as-

sumed a three-stage-purchase decision process. For our investigation, we conducted

a laboratory experiment and measured the size, the objective quality as well as the

average price of each stage of the purchase decision process (e.g., consideration set,

choice set and choice). We investigated two types of filtering system. First, we

used product filtering based on customer reviews. Depending on their treatment,

the participants were able to filter products by selecting one or more product fea-

tures. Thereby, only those products were listed whose customer reviews discuss the

selected feature. As a second type of filtering, we implemented customer review fil-

tering. The participants were able, depending on their treatment, to filter customer

reviews, analogous to products, by selecting a product feature on a product detail

page. Afterwards, only customer reviews discussing the selected feature are shown.

We use a 2x2 full factorial design to test all combinations of product filtering, cus-

tomer review filtering and no filtering. The results of our laboratory experiment

show that both systems reduce consumers’ e↵ort in making a purchase decision and

that product filtering reduces the amount of time consumed in the purchase deci-

sion making process. Furthermore, we examine whether a product filtering system

ensures that the products considered in the early stages of the purchase decision

process are already of high quality. This allows consumers to be more focused on a

product’s price than on its quality while evaluating a product, which ultimately leads

to a selection of products that are significantly cheaper. The findings of this paper

contribute to determining how retailers can benefit from o↵ering filtering systems

and provide a better understanding of how filtering systems influence each stage of

the purchase decision process.
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Study 4: Online Product Descriptions – Boost for your Sales?

Authors: Tristan Wimmer and Michael Scholz

Consumers in online as well as o✏ine markets typically perceive uncertainty in

purchase decision processes (Akerlof, 1970; Dimoka et al., 2012; Overby and Jap,

2009). Consumers in online stores predominantly have two sources of information to

learn about a product’s characteristics: customer reviews and product descriptions

(Ghose, 2009). The existing research has intensively investigated the impact of cus-

tomer reviews on sales; however, thus far, it has only sparsely analyzed the e↵ect of

product descriptions on sales. With this study, we address this gap in the research

and examine the influence of product descriptions on sales. More precisely, we ex-

amine the e↵ect of the presence as well as the amount of product descriptions on

sales. Further, we distinguish between the e↵ect due to product descriptions written

by the retailer and descriptions written by the manufacturer. Further, this study

investigates the interaction e↵ect of product descriptions and customer reviews on

sales. Based on empirical data from Amazon.com, we found that the existence of

product description increases sales. Descriptions by Amazon.com have a slightly

higher impact on sales than product descriptions written by the retailer. Further,

the results show that product descriptions with more information have a higher im-

pact on sales. Amazon-generated product descriptions contain more information

and thus especially a↵ect product sales with no or only a few customer reviews.

Manufacturer-generated product descriptions, in contrast, have a higher impact on

sales for products with many reviews. The study demonstrates that manufacturers

and retailer should not only focus on customer reviews, but they should also provide

product descriptions.
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2 A comparison of classification

methods across di↵erent data

complexity scenarios and datasets

Abstract
Recent research assessed the performance of classification methods mainly on con-

crete datasets whose statistical characteristics are unknown or unreported. The

performance furthermore is often determined by only one performance measure,

such as the area under the receiver operating characteristic curve. We compare the

performance of several classification methods in four di↵erent complexity scenarios

and on datasets described by five data characteristics. We synthetically generate

the datasets in order to control the statistical characteristics of each dataset. The

performance of each classification method is determined by six measures. Our in-

vestigation reveals that heterogeneous classifiers perform best on average and that

some classifiers are especially recommendable in a particular scenario or for training

data with particular properties. We furthermore present insights into the relations

among several performance measures.

Authors: Michael Scholz, Tristan Wimmer

2.1 Introduction

Classification is the problem of assigning observations to a predefined set of cate-

gories (i.e., classes). The observations are described by several data that are called

features or explanatory variables. As classification methods require a training set

of data containing observations for whom the correct class is known, these methods

are considered as supervised learning methods (Hastie et al., 2008). A classification

method (often called classifier) aims at identifying patterns that assign the obser-

vations in the training set to their corresponding classes. The patterns can then

be applied to novel data in order to predict class assignments. Existing methods

di↵er in the way the patterns are expressed and identified. For example, a linear

discriminant analysis expresses patterns as linear combinations of features whereas

support vector machines strive to identify a margin between two classes of data

that is as large as possible. Because classification problems arise in many areas of
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research (e.g., disease detection (Maysanjaya et al., 2015; Bourouhou et al., 2016),

financial forecasting (Feldman and Gross, 2005; Lessmann et al., 2015; Fitzpatrick

and Mues, 2016), and tra�c sign detection (Kiran et al., 2009; Stallkamp et al.,

2012)), a variety of methods has been proposed in the last decades that implement

di↵erent ideas of how to express and assign patterns that allow assigning classes

to observations. Researchers and practitioners are thus faced with the problem of

selecting an adequate classification method for their classification problem.

There is ample evidence that the data generation process and hence the data to

be classified significantly influence the accuracy with which classes will be assigned

to observations (Kiang, 2003; Shreve et al., 2011). Some classification methods

explicitly assume a certain data generation process. Logistic regression, for example,

assumes that features are unimodally distributed and linear discriminant analysis

assumes normally distributed features (Kiang, 2003). The selection of an adequate

classification method also depends on the amount of available observations in the

training set. Methods such as distance weighted discrimination are tailored towards

high dimensional but low sample size problems (Marron et al., 2007). Existing

comparative studies investigate the performance of classification methods mostly on

one or a few datasets whose data generation process is rather unknown (e.g., Chen,

2011; Lessmann et al., 2015; Fitzpatrick and Mues, 2016). Very few studies utilize

synthetic datasets to control for several characteristics of the dataset (Kiang, 2003;

Asjad et al., 2018)). None of the existing studies, however, controls for both the data

generation process and the data complexity (i.e., sample size and dimensionality)

simultaneously.

In this study, we use a controlled setting in which we generate synthetic datasets to

investigate the e↵ect of several characteristics of the dataset on the performance of

classification methods in four major complexity scenarios: low dimensionality and

low sample size (LDLSS), low dimensionality and high sample size (LDHSS), high

dimensionality and low sample size (HDLSS), and high dimensionality and high

sample size (HDHSS). We compare individual classification methods and ensemble

classification methods and use an adaptive grid search to find optimal classifier

parameters (e.g., the number of trees for a random forest). We rely on the case of

a binary classification in this study. Our study contributes to better understand

the characteristics of classification methods and guide researchers and practitioners

in selecting classification methods being appropriate for their binary classification

problem.

The remainder of this paper is organized as follows: We review relevant comparative

studies in the next section. We briefly introduce the classification methods used in

this study in Section 2.3. The experimental design of our comparative assessment is
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described in Section 2.4 and the results are presented in Section 2.5. We conclude

this paper with a discussion of the results and implications for practitioners and

researchers.

2.2 Related Work

Two streams of comparative studies are relevant for this study. First, studies com-

paring classification methods on real data and second, studies comparing classifica-

tion methods on synthetic data. While the first stream of research contributes to

identifying classification methods that are appropriate for a particular application

(e.g., credit scoring), the second stream of research helps to understand the data

characteristics that drive the performance of the investigated classification methods.

A plenty of studies exist comparing two or more binary classification methods on

real-world data. Some of these studies intend to compare a proposed classification

methods to other methods on several datasets in order to study the proposed clas-

sifier’s performance (e.g., Eibe et al., 1998; Breiman, 2001; Sun et al., 2016). These

studies compare a rather small number of classification methods and oftentimes

classification methods using similar algorithms. Eibe et al. (1998), for example,

compared the performance of decision tree algorithms to the performance of a linear

regression and demonstrate that C5.0 and M5’ significantly more often outperform

a logistic regression than vice versa. Tibshirani et al. (2003) developed the nearest

shrunken neighbor classifier and compare it especially to linear discriminant analysis.

Their results demonstrate that the nearest shrunken neighbor classifier is superior

to the linear discriminant analysis in terms of the classification error. Sun et al.

(2016) proposeed a stabilized nearest neighbor classifier and compare their proposed

method to three other classifiers of type nearest neighbor estimator. They show on

di↵erent datasets that the stabilized nearest neighbor classifier produces more stable

results than other nearest neighbor methods.

Other studies using real-world data aim at comparing a rather large set of classi-

fication methods for a specific application. For example, various studies compare

classification methods for credit scoring (e.g., Baesens et al., 2003; Finlay, 2011;

Marqués et al., 2012; Kruppa et al., 2013; Lessmann et al., 2015; Fitzpatrick and

Mues, 2016; Maldonado et al., 2017). Recent results indicate that especially ensem-

bles that are based on di↵erent classification methods perform best in credit scoring

(Finlay, 2011; Lessmann et al., 2015). Ensembles joining the results of homoge-

neous classifiers (i.e., ensemble classifiers that aggregate multiple results from the

same classification method) perform better than individual classifiers on average.

Especially random forests were identified as rather accurate (Marqués et al., 2012;

Kruppa et al., 2013; Lessmann et al., 2015). Interestingly, logistic regression has
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been found to be one of the best individual classifiers in several studies (West, 2000;

Marqués et al., 2012; Lessmann et al., 2015). Maldonado et al. (2017) propose an

adaptation of a linear support vector machine and show that their method outper-

forms a logistic regression and the Fisher score and other methods based on support

vector machines.

A similar application area for which classification methods have been investigated is

the forecasting of bankruptcy (de Andrés et al., 2005; Li et al., 2011; Olson et al.,

2012; Wang et al., 2014a; du Jardin, 2016, 2018). Studies in this area also indicate

that ensemble methods perform better than individual classifiers (Kim and Upneja,

2014; Wang et al., 2014a; du Jardin, 2016). In a comparative study of several individ-

ual classifiers, Lahmiri (2016) showed that support vector machines with polynomial

kernel function have the highest performance. Van Gestel et al. (2006) achieved the

highest performance with a Bayesian kernel-based support vector machine compared

to a linear discriminant analysis and logistic regression.

Binary classification methods also have been widely applied to sentiment classifi-

cation (Xia et al., 2011; da Silva et al., 2014; Wang et al., 2014b; Wan and Gao,

2015). In a comparative study of some individual and ensemble classifiers, Wang

et al. (2014b) show evidence that support vector machines perform best in sentiment

classification. This is in line with the results of Pang et al. (2002); Tan and Zhang

(2008) and partially with the results presented by Su et al. (2012). In contrast,

Whitehead and Yaeger (2008); Xia et al. (2011); da Silva et al. (2014) and Wan

and Gao (2015) obtained the highest performance with ensemble classifiers rather

than support vector machines. Näıve Bayes classifiers have been furthermore shown

to predict the sentiment of texts rather accurately (Xia et al., 2011; Wang et al.,

2014b; Wan and Gao, 2015) whereas the k-nearest neighbor classifier has been found

to perform worst (Tan and Zhang, 2008; Wang et al., 2014b).

Comparative studies have been also published for several other application areas,

such as student retention prediction (Delen, 2010), census income classification

(Caruana and Niculescu-Mizil, 2006), Internet tra�c flow classification (Park et al.,

2006; Williams et al., 2006), phishing detection (Abu-Nimeh et al., 2007), and dis-

ease and lesion detection (Dreiseitl et al., 2001; Baumgartner et al., 2004; Sajda,

2006; Aruna et al., 2011; Odeh and Baareh, 2016). Support vector machines have

been identified as a highly and often most accurate classifier in several of these stud-

ies (e.g., Dreiseitl et al., 2001; Baumgartner et al., 2004; Sajda, 2006; Delen, 2010;

Aruna et al., 2011; Pineda et al., 2015). Ensemble classifiers, if included in the stud-

ies, also showed a high and mostly the best performance (Park et al., 2006; Das and

Sengur, 2010; Mohebian et al., 2017). Logistic regression has been also found to be

amongst the top performing classifiers in some studies (Dreiseitl et al., 2001; Pineda
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et al., 2015).

Comparative studies using real-world data hence indicate that the most promising

classifiers are ensemble classifiers and support vector machines with respect to their

predictive performance. These studies have been conducted on di↵erent dataset with

a di↵erent complexity and typically unknown data characteristics (e.g., feature dis-

tributions) and di↵erent performance measures. It is hence not possible to generalize

the findings from these studies.

A second stream of literature compares classification methods on synthetic dataset.

The major advantage of this approach is the possibility to control the complexity

and characteristics of the generated datasets. This, however, comes with the disad-

vantage that real-world datasets might have characteristics that are di↵erent from

the controlled characteristics of synthetic datasets. According to this disadvantage,

only a few comparative studies have been carried out so far on synthetic datasets.

We found two types of studies comparing classifiers on synthetic data: studies

proposing a method that is compared to a few other methods (e.g., Ng, 2004; Mar-

ron et al., 2007; Sun et al., 2016) and studies comparing multiple classifiers without

focusing on a particular method. For example, Marron et al. (2007) compared their

proposed distance weighted discrimination method to support vector machines and

regularized logistic regression on simulated data. They systematically varied the di-

mensionality of simulated data in order to demonstrate in which scenarios a distance

weighted discriminator outperforms a support vector machine and a regularized lo-

gistic regression. Ng (2004) compared two types of a regularized logistic regression

on synthetic data and systematically varied the number of features and the number

of observations used for training. He found that an L1 regularization is superior

to an L2 regularization especially in a high-dimensionality low-sample size scenario.

Sun et al. (2016) compared their proposed stabilized nearest neighbor classifier to

other nearest neighbor classifiers on synthetic as well as real-world data. The syn-

thetic data were generated in order to test di↵erent distributions of the two classes.

With their evaluations, Sun et al. (2016) demonstrated that their proposed classifier

provides classification solutions that are more stable (i.e., reproducible) than those

of other nearest neighbor classifiers.

Very few studies exist that compare several classification methods on synthetic data

without proposing a particular method. Kiang (2003) investigated the misclassifica-

tion error of five classification methods on synthetic data with di↵erent characteris-

tics, such as normally distributed features vs. non-normally distributed feature. She

identified neural nets and logistic regression as those with the highest performance

in most cases. Ensemble methods and support vector machines which have often

been found to be among the top performing classifiers in studies based on real-world
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data were not included in the study by Kiang (2003). Support vector machines and

k-nearest neighbor classifier have been found to be the most accurate methods in a

study by Entezari-Maleki et al. (2009). They compared seven classification methods

with respect to the area under the receiver operating characteristic (ROC) curve

and with a varying number of observations in the training set and a varying num-

ber of features. Ensemble methods were also not investigated in this study. Asjad

et al. (2018) compared discriminant analysis, artificial neural networks and support

vector machines on a synthetic dataset and showed that the support vector machine

outperforms the other two classifiers. This study is very limited in the number of

classification methods compared. Furthermore, the authors did not investigate the

influence of di↵erent data characteristics, used only one performance measure and

did not include ensemble methods in their analysis.

Although many comparative studies exist for the binary classification problem, most

of these studies focused on a specific application area. The application area might

determine the number of features and at least some data characteristics. Studies

on synthetic datasets aim at identifying classification methods that show a high

performance in general. Existing comparisons on synthetic datasets use only one

performance measure, do not investigate ensemble methods or aim at proposing a

particular classification method. Our study compares a large variety of classification

methods – including ensemble methods – in four di↵erent complexity scenarios and

six cases with di↵erent data characteristics. We furthermore compare the classifiers

with six performance measure in order to overcome the disadvantages of a single

performance measure.

2.3 Classification Methods

In this section, we discuss the classification methods investigated in this study. We

distinguish between individual and ensemble classifiers. In total, we compare 25

classification methods. We selected established and often investigated methods (e.g.,

linear discriminant analysis, logistic regression, classification and regression tree) as

well as novel methods (e.g., stabilized nearest neighbor, distance weighted discrimi-

nation). We limit the number of classifiers to 25 in order to keep our investigation

tractable and computable within a few days1. Due to the high number of methods, it

is not possible to describe the methods in detail. We hence only briefly describe the

main idea of each classifier. Table 2.1 gives a summary of all classification methods

analyzed in this study and shows the number of parameters that characterize each

method. Each of the classifiers maps a feature vector X to class labels y 2 1, . . . , C.

As the focus of this study is on binary classification methods, we set C = 2.

1We discuss our experimental setting and the maximal average time allowed per classifier in
Section 2.4.3
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Table 2.1: Classification methods considered in our study
Type Classification Method Acronym # Parameters

Linear Discriminant Analysis LDA 1
Regularized Discriminant Analysis RDA 2
Logistic Regression LR 0
Regularized Logistic Regression RLR 3
Bayesian Logistic Regression bayLR 0
k-Nearest Neighbor kNN 1
Nearest Shrunken Neighbor NSN 1

Individual Stabilized Nearest Neighbor SNN 1
Näıve Bayes NB 3
CART (Classification And Regression Tree) CART 1
C5.0 C5.0 3
Support Vector Machine linear SVM L 1
Support Vector Machine polynomial SVM P 3
Support Vector Machine radial SVM R 2
Distance Weighted Discrimination linear DWD L 2
Distance Weighted Discrimination polynomial DWD P 4
Distance Weighted Discrimination radial DWD R 3
Bagged CART bCART 0
Random Forests RF 1
Boosted Logistic Regression booLR 1

Ensemble Gradient Boosted Trees GBT 4
Simple Average All SA A 0
Simple Average TOP3 SA 3 0
Simple Average TOP5 SA 5 0
Simple Average TOP7 SA 7 0

2.3.1 Individual Classifiers

Individual classifiers train one classification model to predict the assignment of ob-

servations to classes. Individual classifiers use either of two approaches to assign an

observation i that is characterized by a vector Xi of feature levels to any of the two

classes y = 0 and y = 1 in a binary classification problem. First, some methods (e.g.,

logistic regression) directly estimate the probability that Xi belongs to class y = 1.

Other methods (e.g., support vector machines) estimate class conditional functions

or probabilities to distinguish between observations for class y = 0 and observations

for class y = 1.

2.3.1.1 Linear Discriminant Analysis

The linear discriminant analysis is a generalization of Fisher’s linear discrim-

inant algorithm (Fisher, 1936) and assumes that a hyperplane (discriminator or

discriminant function) linear in the feature vector separates the two classes. This

assumption only holds in the case of normally distributed features and a common

covariance matrix (Hastie et al., 2008). The hyperplane maximizes the di↵erence

between the observations of the two classes and is described by a linear function.
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Friedman (1989) proposed a regularized discriminant analysis that allows for

non-common covariances and shrinking the separate covariances toward a common

covariance.

2.3.1.2 Logistic Regression

Logistic regression is one of the most applied methods to the binary classification

problem (Lessmann et al., 2015). It estimates a predictor function as linear combi-

nation of the feature variables and ensures that the linear combination is in [0, 1].

The predictor function also is a linear hyperplane that separates observations of class

y = 0 from observations of class y = 1. A logistic regression is hence similar to a

linear discriminant analysis, only the way the hyperplane is estimated is di↵erent

between these two classification methods. A logistic regression requires that there

are many more observations in the training set than features in order to robustly es-

timate the parameters of the predictor function (Ng, 2004). Regularization can also

be used in logistic regressions in order to select and shrink the parameters of the

predictor function. Regularized logistic regressions especially perform better

than a logistic regression in high dimensional scenarios (Ravikumar et al., 2010). A

logistic regression finds parameters that maximize the likelihood for the observations

in the training set. Prior beliefs about the parameters are multiplied with the most

likely parameter levels (maximum likelihood) in a Bayesian logistic regression

(Gelman et al., 2008).

2.3.1.3 Nearest Neighbor Classifier

Nearest neighbor classifiers assume that observations belonging to the same class are

densely distributed in the feature space. These classifiers use the nearest neighbors

of an observation as prototypes to predict the class assignment for that observation

(Hastie et al., 2008). k-nearest neighbor classifiers as the simplest approach of

nearest neighbor classifiers predict class assignments based on the k most closely

located training data in the feature space (Cover and Hart, 1967). Tibshirani et al.

(2003) proposed a nearest shrunken neighbor classifier that shrinks each of the

two class centroids toward the overall centroid of both classes by a certain amount

(i.e., threshold). Sun et al. (2016) demonstrate that the classification results of

k-nearest neighbor classifiers are likely to be unstable in a way that they cannot

be reproduced with slightly perturbed data. They propose a stabilized nearest

neighbor classifier that minimizes the classification instability that is the expected

distribution of the distance between two classifiers.

2.3.1.4 Näıve Bayes Classifier

A Näıve Bayes classifier estimates a probability for each feature to occur in

an observation that is assigned to class y = 1. By assuming that the features are
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conditionally independent of each other, we get a simple likelihood function based on

the conditional feature probabilities. Conditional probabilities of the two classes are

then computed using the Bayes theorem as multiplication of the likelihood function

and the prior class probabilities. Although features often are not independent of each

other, Näıve Bayes classifiers are widely used due to their computational ease and

their applicability also to scenarios with high dimensionality (Hastie et al., 2008).

2.3.1.5 Classification Trees

Classification trees estimate a sequence of linear splits of the feature space. The

splits partition the feature space in rectangles that can be best described by one of

the two classes. Splits are identified by measuring the homogeneity of and across the

resulting partitions. The classification and regression tree (CART) algorithm

was introduced by Breiman et al. (1984) and uses the Gini impurity to measure the

homogeneity of a rectangle in the feature space with regard to the class variable y.

Other classification tree algorithms (ID3, C4.5, C5.0) use the information gain as

homogeneity measure. C5.0 improves C4.5 in terms of memory usage and speed

and C4.5 (Quinlan, 1993) is the successor of ID3 (Quinlan, 1986), so that we only

investigate the performance of C5.0 in this study.

2.3.1.6 Support Vector Machines

Support vector machines (SVMs) are large-margin classifiers which aim at estimating

a hyperplane in the feature space that separates the two classes and has a maximal

distance to the nearest observations (Boser et al., 1992; Cortes and Vapnik, 1995).

If the training data is linearly separable, we do have a linear SVM (SVM with

linear kernel). A linear separation is often not very accurate. SVMs can estimate

hyperplanes that are non-linear in the original feature space by applying the kernel

trick proposed by Aizerman et al. (1964). In this study, we investigate two types

of non-linear SVMs, SVMs with radial basis function kernel and SVMs with

polynomial kernel. With the kernel trick SVMs estimate a linear hyperplane in a

higher-dimensional feature space which comes with the disadvantage of an increased

generalization error especially in scenarios with high dimensionality and low sample

size (Marron et al., 2007; Jin and Wang, 2012).

2.3.1.7 Distance Weighted Discrimination

Distance weighted discrimination (DWD) is an approach that is similar to support

vector machines but reduces the generalization error especially in high-dimensional

low-sample size scenarios. Instead of maximizing the minimal distance to the hy-

perplane, DWDs minimize the average inverse distance (Marron et al., 2007; Qiao
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et al., 2010). DWDs are an appealing approach in scenarios with high dimension-

ality and low sample size but come with the major disadvantage that they require

solving a more complex optimization problem than SVMs do (Marron et al., 2007).

DWDs are thus not well suited to be applied in scenarios with high sample size. In

this study, we investigate the performance of DWDs with linear kernel, DWDs

with radial basis function kernel, and DWDs with polynomial kernel.

2.3.2 Ensemble Classifiers

Ensemble classifiers estimate multiple classification models and either combine these

models (e.g., boosted logistic regression) or their predictions (e.g., random forests).

There is ample theoretical and empirical evidence that an ensemble of classification

methods often increases the classification accuracy compared to an individual classi-

fier (Dietterich, 2000). Ensemble methods therefore combine either models generated

with the same algorithm (e.g., random forests) or models generated with di↵erent

algorithms (e.g., simple average ensemble).

2.3.2.1 Bagging

Bagging (Bootstrap Aggregating) is an approach that mainly aims at decreasing

the variance of the predictive performance of a classifier by using a bootstrapping

technology to generate additional data for training. The same classifier is used to

estimate a classification model for each bootstrapped training sample. The results

of the classification models are finally averaged to assess the total performance of a

bagged classifier. In this study, we assess the predictive performance of a bagged

CART algorithm and random forests. In contrast to bagged CART, random

forests select a subset of features at random in each bootstrapped training sample

(Breiman, 2001).

2.3.2.2 Boosting

Boosting is an approach that aims at improving the predictive performance of a

classification method by incrementally estimating classification models. Training

data that a model misclassified are used to train a classification model in the next

iteration. Like bagging, boosting also uses the same classifier for each classification

model. One of the most often applied boosting strategies is gradient boosting which

relies on the relation between the classification error and the gradient of a classifica-

tion model (Cai et al., 2009). We include a boosted logistic regression (Friedman

et al., 2000) and a boosted classification tree (Friedman, 2002) in our study.

2.3.2.3 Simple Average

Both, bagging and boosting, build ensembles with classification models that are gen-

erated by the same classification method. They are hence homogeneous ensemble
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classifiers. Another strategy of building an ensemble is combining models and/or

predictions of di↵erent classification methods. Di↵erent classification methods cor-

rectly classify data with di↵erent characteristics. Because a dataset can be seen as a

mixture of data with di↵erent characteristics, it is obvious to assume that an ensem-

ble of heterogeneous classifiers will perform better than an ensemble of homogeneous

classifiers. A simple but highly accurate strategy of combining the results of multiple

heterogeneous classifiers is to average their predictions (Lessmann et al., 2015). We

include four heterogeneous simple average classifiers in our study: simple average

over all classifiers, simple average over the top 3 classifiers, simple average

over the top 5 classifiers, and simple average over the top 7 classifiers. The

top performing classifiers are determined using the performance measures described

in the following section.

2.4 Experimental Design

The focus of this paper is to compare classification methods across di↵erent complex-

ity scenarios with respect to di↵erent characteristics of the data generation process.

In this section, we describe the complexity scenarios, the data characteristics, the

experimental setting, and the performance measures.

2.4.1 Complexity Scenarios

We approximate data complexity by two variables: sample size of the training

dataset and number of features (i.e., dimensionality). More specifically, we use

four di↵erent complexity scenarios that di↵er in the sample size and the dimen-

sionality. The first scenario is the low-dimension low-sample size (LDLSS) scenario

which is characterized by 5 features and 50 observations. The LDLSS scenario is

typical for empirical investigations in which only a limited number of participants

is involved and only a few features are collected (e.g., laboratory experiments). The

second scenario is the low-dimension high-sample size (LDHSS) scenario which is

described by 5 features and 50,000 observations and typical for analyzing observable

numeric data (e.g., financial data). Third, we define the high-dimension low-sample

size (HDLSS) scenario with 200 features and 50 observations. HDLSS problems

often occur in text mining (e.g., sentiment analysis). And fourth, we define a high-

dimension high-sample size (HDHSS) scenario with 200 features and 50,000 obser-

vations. An HDHSS scenario is typically given, for example, when detecting tumors

in microarray data.

While a high dimensionality might lead to the problem of data piling, especially

when there is only a low sample size (Ahn and Marron, 2010), a high sample size

raises performance problems (Li et al., 2007). On the other hand, a small sample size
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can cause a sparse-data bias (Greenland et al., 2000). We compare several classifiers

in these scenarios in order to gain a better understanding on the final e↵ect of the

sample size and dimensionality on the performance of classification methods.

2.4.2 Data Characteristics

Some methods make explicit assumptions on data characteristics. A linear discrim-

inant analysis, for example, assumes normally distributed data. A deviation from

an assumption might lead to a biased classification model and finally to inaccurate

predictions. We systematically generate data with respect to five data characteris-

tics that are likely to a↵ect the performance of the selected classification methods.

The five data characteristics are described in the following.

2.4.2.1 Relation between Dependent and Independent Variables

The multivariate relationship between the dependent variable and independent vari-

ables might influence the performance especially of those classification methods that

explicitly model the relationship between the class variable and the features (Kiang,

2003). We use two levels for this data characteristic: a linear relation and a quadratic

relation.

2.4.2.2 Distribution of Feature Data

Some classification methods assume normally distributed feature data (Kiang, 2003).

In order to test to what extent the performance of a classification method relies on

the normality assumption, we generate two types of data: normally distributed

data with µ 2 [1, 3] and � = 3 and exponentially distributed data with a rate of

� 2 [1/3, 1]. We use a constant standard deviation to generate normally distributed

data, so that only one parameter is drawn from a uniform distribution (i.e., µ in

case of a normal distribution and � in case of an exponential distribution).

2.4.2.3 Modality of the Class Distribution

Data might follow a distribution with two or more peaks (modes). Because some

classification methods are sensitive to multi-modal data (Kiang, 2003), we generate

either unimodal data or bimodal data where class Y = 0 is distributed into two

regions that are separated by observations from class Y = 1. There are just two

regions in the case of unimodal data, one for class Y = 0 and one for class Y = 1.

2.4.2.4 Weighting of Feature Data

Not all available features might be meaningful for assigning observations to classes.

Methods, such as regularized logistic regression, thus allow penalizing features with
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low or no discriminatory power. We use two di↵erent methods to weigh the features

in our experiment. First, all m features are equally weighted. And second, we use

the rank-order centroid method (Barron and Barrett, 1996) to assign a di↵erent

weight to each feature. A rank is assigned to each feature in the case of an unequal

weighting such that the first feature i = 1 gets ranking position 1, the second feature

i = 2 gets ranking position 2 and so forth. This ranking vector is then transformed

into m weights �i with the following equation (Barron and Barrett, 1996):

�i =
1

m

mX

k=i

1

k
, with i = 1, . . . ,m. (2.1)

2.4.2.5 Class Balance

Classifiers are supervised learning methods and their performance mainly depends

on the training set. In the case of an unbalanced training set, a common problem

is that classification methods might assign all observations to the majority class

(Dupret and Koda, 2001; Farquad and Bose, 2012). This will lead to a high accuracy,

because supervised learning algorithms are designed to maximize overall accuracy.

We investigate the performance of classification methods with a balanced training

set and an unbalanced training set where 80% of all observations belong to the first

and 20% of the observations belong to the second class.

2.4.3 Experimental Setting

We test the main e↵ects of the five data characteristics in each complexity scenario

leading to six datasets for each scenario. A summary of the datasets is presented in

Table 2.2. To test the e↵ect of each data characteristic in each scenario, we generate

100 times a dataset for each case described in Table 2.2 and in each complexity

scenario leading to totally 2,400 experiments. Each dataset consists of either n = 50

or n = 50, 000 data (low or high sample size) and each observation in the dataset is

described by either m = 5 or m = 200 features (low or high dimensionality). Each

feature is represented by a value in [0, 1] either drawn from a normal distribution

or an exponential distribution (see Section 2.4.2.2). The feature values Xij for each

observation j are squared in the case of a quadratic relationship (see Section 2.4.2.1),

weighted and summed up over all features i to a value Zj. The weights �i are set

to 1 in case of an equal weighting or are computed with the rank-ordered centroid

method otherwise (see Section 2.4.2.4). A noise term ✏j ⇠ N (0, 1) is furthermore

added to Zj. In the case of a balanced dataset an equal number of observations are

generated for the class Y = 0 and the class Y = 1. More specifically, we set Yj = 0 if

Zj is lower than the median of Z. Otherwise, we set Yj = 1. In the unbalanced case,

we set Yj = 0 for all observations j with Zj being in the 0.2-quantile of Z (see Section
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2.4.2.5). All observations with Zj being between the 25- and the 75-percentile are

assigned to class Y = 1 whereas all other observations are assigned to class Y = 0

in the case of a multimodal distribution (see Section 2.4.2.3).

Table 2.2: Simulation Cases for Each Complexity Scenario

Case Generation of Xj Computation of Zj Computation of Yj

Linear (L) Xij ⇠ N (µi,�i) Zj =
mX

i

Xij + ✏j Yj =

⇢
0 if Zj < Median(Z)
1 if Zj � Median(Z)

Quadratic (Q) Xij ⇠ N (µi,�i) Zj =
mX

i

X2
ij + ✏j Yj =

⇢
0 if Zj < Median(Z)
1 if Zj � Median(Z)

Non-Normal (NN) Xij ⇠ Exp(�i) Zj =
mX

i

Xij + ✏j Yj =

⇢
0 if Zj < Median(Z)
1 if Zj � Median(Z)

Multimodal (M) Xij ⇠ N (µi,�i) Zj =
mX

i

Xij + ✏j Yj =

⇢
0 if Zj < Percent25(Z) OR Zj > Percent75(Z)
1 if Zj � Percent25(Z) AND Zj  Percent75(Z)

Unequal Weights (UW) Xij ⇠ N (µi,�i) Zj =
mX

i

�iXij + ✏j Yj =

⇢
0 if Zj < Median(Z)
1 if Zj � Median(Z)

Unbalanced (UB) Xij ⇠ N (µi,�i) Zj =
mX

i

Xij + ✏j Yj =

⇢
0 if Zj 2 Quantile20(Z)
1 if Zj /2 Quantile20(Z)

µi 2 [1, 3];�i = 3;�i 2 [1/3, 1]; ✏j ⇠ N (0, 1)

We perform a 10-fold cross validation to train the classification methods. 45 out of

the 50 observations are used for training in the low sample size scenarios whereas

45,000 out of the 50,000 observations are used in the high sample size scenarios. The

remaining observations from the training dataset are used to estimate the perfor-

mance for selecting the best parameter levels. The 10-fold cross validation is thus

performed for each parameter level combination. A test dataset consisting of fur-

ther independently generated 50 or 50,000 observations is finally used to assess the

performance of the classification methods. The classification model with the best

performing parameter levels is applied to the test dataset. Figure 2.1 illustrates the

method evaluation process.

Training
Data

Test
Data

10-fold Cross
Validation

Select Parameter
Combination

Further Parameter
Combination

yes

Final Model

Apply Model &
Compute Performance

no

Figure 2.1: Classifier evaluation process

As described in Section 2.3, most classifier parameters significantly influence the

methods’ performance. The optimal values for these parameters are, however, rarely
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known beforehand. We use the adaptive grid search introduced in (Kuhn, 2014) to

find good parameter values. The adaptive grid search estimates the futility of pa-

rameter values just on a few re-samples with a generalized linear model and thereby

avoids testing a full-factorial design of parameter values.

Our investigation thus consists of four complexity scenarios, six cases each testing

one data characteristic, one hundred runs per case and complexity scenario and ten

runs per classification method and parameter combination (10-fold cross validation).

The number of tested parameter combinations is determined by the adaptive grid

search approach. Classification methods requiring more than 250 seconds on average

for classifying one dataset in a specific scenario are omitted in order to keep the

computational e↵ort actionable. With six cases and one hundred runs, the maximal

average time per method and scenario is hence fixed to 150,000 seconds (= 41.667

hours).

We implemented the experiment on a 64-bit Windows Server 2012 machine with

Intel Xeon E5-2690 processor and 128 GB RAM. We used only one core for training

and prediction in order to keep the conditions constant for each classifier.

2.4.4 Performance Measures

We consider five performance measure for prediction accuracy: the percentage cor-

rectly classified (PCC), the area under the receiver operating characteristic (ROC)

curve (AUC), the H-measure, the Brier Score (BS), and the F1 measure (F1). The

five scores measure di↵erent performance dimensions. The PCC and F1 statistic

measure the correctness of the predicted classes, the AUC and H-measure assess the

discriminatory ability of a classification method and the BS measures the dimension

probability prediction accuracy. We calculate these performance measures based on

the vector of true o and predicted classes f .

We calculate the rank of each classification method in each complexity scenario

and case and for each performance measure in order to compare the methods. The

method with the best predictive performance gets rank one. We furthermore average

the performance ranks to get a mean performance rank for each method. In most

analyses we refer to this mean performance rank.

The time to train a classifier is used as another performance indicator. Training time

is especially a crucial factor in real-time classification applications, such as real-time

EEG-analysis (Müller et al., 2008) or real-time tra�c sign detection (Greenhalgh

and Mirmehdi, 2012). Thus, we also use the training time as another performance

measure. Because classification methods are di↵erently well prepared for a paral-

lelized training stage, we will run our experiment only on one thread and do not

make use of any parallelization opportunities.
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2.5 Experimental Results

We present the results of our experiments in this section. We first discuss the

benchmarking results and then the predictive performance of the tested classification

methods. Second, we analyze and discuss the impact of the complexity scenarios

and data characteristic cases on the predictive performance. We then analyze the

correlations among the predictive performance measures. Finally, we discuss the

results for the performance measure training time.

2.5.1 Benchmarking Results

We rely on the mean performance rank and present raw values in the online ap-

pendix 2. As estimating a classification model can be very time-consuming, we did

not evaluate the performance of all methods in all scenarios. Missing values in the

following hence indicate that this classifier has not been evaluated in the focal sce-

nario due to very high computational e↵ort as discussed in Section 2.4.3. The high

computational e↵ort especially stems from a high number of parameter combina-

tions as well as the fact that we evaluated each classifier on 100 datasets for each

case and scenario. A summary of the results is presented in Table 2.3. The best

performing classifier per complexity scenario and data case has a mean performance

score of 1. Table 2.3 shows that the heterogeneous ensemble classifiers (SA A, SA 3,

and SA 5) show the best performance across all scenarios and datasets. This is in

line with the findings of a comparison of classification methods for credit scoring

(Lessmann et al., 2015). Regularized logistic regression (RLR), support vector ma-

chine with linear kernel (SVM L), distance weighted discriminator with linear kernel

(DWD L), and boosted logistic regression (booLR) are in neither case among the

top 5 performing classifiers rendering these methods not being recommendable for

binary classification in several situations.

Interestingly, our results show that homogeneous ensemble classifiers (bCART, RF,

booLR, and GBT) do not perform better than individual classifiers (except bagged

CART in the LDHSS scenario). This underlines the necessity to build ensembles

based on multiple classifiers, because at least one out of the four heterogeneous

classifiers is among the best three methods in 22 out of the 24 cases and the top-3

simple average classifier is among the best three methods in 15 out of the 24 cases.

Simple averaging based on the top 3 performing classifiers is the best performing

classification method in LDLSS and HDLSS scenarios. In LDHSS scenarios, we

found bagged CART (bCART) to be the best classifier and the simple averaging

based on all classifiers performed best in HDHSS scenarios. There is hence no

classification method that always outperforms all other methods.

2Appendix can be found in Chapter 6



A comparison of classification methods 24

Table 2.3: Average classifier ranks for each case and scenario.

Method Low Dimensionality – Low Dimensionality – High Dimensionality – High Dimensionality –

Low Sample Size High Sample Size Low Sample Size High Sample Size

L Q NN M UW UB L Q NN M UW UB L Q NN M UW UB L Q NN M UW UB
LDA 6 22 6 24 6 16 10 14 2 14 7 4 21 24 15 23 6 9 2 7 2 6 5 8
RDA 11 6 5 6 12 15 – – – – – – 22 10 11 10 14 19 – – – – – –
LR 5 20 14 23 4 20 11 12 13 11 8 12 11 25 22 21 21 25 3 5 9 7 5 7
RLR 7 19 10 21 10 9 6 11 7 12 9 10 16 22 14 13 25 23 – – – – – –
bayLR 4 18 13 25 5 10 9 13 12 13 6 13 19 16 23 24 23 16 6 6 8 8 3 6
kNN 18 8 15 10 23 8 13 4 9 3 13 14 8 1 5 7 10 10 – – – – – –
NSN 14 21 9 22 14 6 8 15 3 15 11 3 10 14 10 20 16 6 8 8 6 9 7 1
SNN 15 11 18 11 15 17 – – – – – – 9 2 3 6 7 3 – – – – – –
NB 16 9 17 15 19 18 7 5 4 8 12 7 15 17 17 14 13 7 9 1 3 1 8 9
CART 25 25 24 7 22 25 15 10 15 10 15 5 7 15 7 8 3 24 7 9 4 3 9 1
C5.0 24 15 23 2 24 22 – – – – – – 6 12 9 9 9 17 – – – – – –
SVM L 10 17 11 18 9 13 – – – – – – 19 20 24 16 16 20 – – – – – –
SVM P 12 7 4 9 13 5 – – – – – – 4 7 12 5 5 8 – – – – – –
SVM R 23 14 20 4 25 7 – – – – – – 12 5 13 17 11 1 – – – – – –
DWD L 8 16 12 20 7 14 – – – – – – 23 21 21 19 15 11 – – – – – –
DWD P 13 5 8 8 11 12 – – – – – – 5 6 6 4 8 12 – – – – – –
DWD R 17 4 16 12 16 11 – – – – – – 25 11 16 18 18 2 – – – – – –
bCART 22 13 21 17 18 23 1 1 1 1 1 1 18 19 20 25 12 13 – – – – – –
RF 20 12 19 14 17 19 – – – – – – 13 13 18 11 20 5 – – – – – –
booLR 21 24 25 19 20 24 14 9 14 6 14 15 24 23 19 15 24 22 – – – – – –
GBT 19 23 22 16 21 21 12 7 11 5 10 8 14 18 25 22 22 15 – – – – – –
SA A 9 10 7 13 8 3 3 8 5 9 2 2 17 9 8 12 19 4 1 2 1 2 1 3
SA 3 1 1 1 1 1 1 2 2 10 2 3 11 1 4 1 1 1 21 4 4 7 4 2 5
SA 5 2 2 2 3 2 2 4 3 8 4 5 9 2 3 2 2 2 18 5 3 5 5 4 4
SA 7 3 3 3 5 3 4 5 6 6 7 4 6 3 8 4 3 4 14 – – – – – –
Numbers indicate the mean performance rank. Bold values indicate the best performing classifier.
Missing values indicate that the method has not been evaluated for the particular scenario.

Distance weighted discrimination has been proposed as a method especially for the

HDLSS scenario. This classifier, however, performs only outstanding in this scenario

with a polynomial kernel. We – in contrast to Marron et al. (2007) – did not find

evidence that the distance weighted discrimination with polynomial kernel always

performs better in a HDLSS scenario than a support vector machine with a polyno-

mial kernel. Only in the case of quadratic data, non-normal data or a multimodal

class distribution has the distance weighted discrimination outperformed the support

vector machine.

The stabilized nearest neighbor classifier (SNN) especially performed better than

the k-nearest neighbor classifier (kNN) in the HDLSS scenario indicating that the

stabilized variant improved the generalizability of the estimated models in this sce-

nario. Sun et al. (2016) compared the stabilized nearest neighbor classifier to other

nearest neighbor approaches only in scenarios with a low dimensionality. Our re-

sults demonstrate that this method is, however, especially recommendable for small

training sets with high dimensionality.

The nearest shrunken neighbor classifier (NSN) is among the best performing clas-

sifiers in case of unbalanced data. This complements the findings by Tibshirani

et al. (2003) who demonstrated that the nearest shrunken neighbor classifier has a

higher predictive performance than a linear discriminant analysis (LDA) in a HDLSS



A comparison of classification methods 25

scenario. Our results also show that the nearest shrunken neighbor classifier out-

performs the linear discriminant analysis in most cases in the HDLSS scenario. Ad-

ditionally, we provide evidence that a nearest shrunken neighbor classifier is better

than a linear discriminant analysis and most other methods (e.g., regularized dis-

criminant analysis, logistic regression, k-nearest neighbor classifier and Näıve Bayes

classifier) in the case of unbalanced training data.

2.5.2 Scenario and Case Results

To complement the analysis of our experimental results, we compare the performance

of one classifier across all scenarios and cases in this subsection. The performance

ranks presented in the previous section do not show di↵erences in terms of the

achievable performance in each scenario and case. Figure 2.2 shows the performance

of the classifiers with the highest performance score per scenario and case. We

selected the best classifier because it shows the highest possible performance among

the investigated classification methods. The H-measure depicts the discriminatory

ability of the classifiers.
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Figure 2.2: H-Measure of the Best Performing Classifier

Figure 2.2 shows that a higher dimensionality (i.e., higher number of variables)

decreases the H-measure whereas a larger training set (i.e., larger sample size) de-

creases the variance of the classification performance. Taking the case with linear

relation, normally distributed feature data, unimodal class distribution, equally im-

portant features and a balanced training set as reference, our results show that the

classification performance mostly su↵ers from a change of the class distribution to
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a multi-modal distribution. Interestingly, the H-measure is higher when an unbal-

anced dataset is used for training then when a balanced dataset is used. This is in

contrast to the classification performance as indicated by the F1-measure (see Figure

2.3). The case with unbalanced data performs worst in terms of the F1-measure in

all four complexity scenarios. Misclassifying the minority class is more serious than

misclassifying the majority class in the case of unbalanced data. The H-measure,

however, assumes that the misclassification costs are equal for each class leading to

biased values in the case of unbalanced data (Thai-Nghe et al., 2011).
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Figure 2.3: F1-Measure of the Best Performing Classifier

2.5.3 Correlation of the Performance Measures

We also analyzed the relations among our selected performance measures. Table 2.4

shows that AUC, H-measure, and Brier Score (BS) measured the same dimension of

performance because they are highly correlated to each other. Another dimension

of performance is measured by PCC and the F1-measure. This is in line with our

definition of the performance measures (c.f. Section 2.4.4).

Table 2.4: Correlation of classifier across performance measures.
AUC PCC H BS F1

AUC 1.000 – – –
PCC 0.459 1.000 – – –
H 0.999 0.462 1.000 – –
BS 0.991 0.488 0.992 1.000 –
F1 0.267 0.795 0.267 0.275 1.000
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The H-measure has been developed as a coherent alternative to the AUC measure

(Hand, 2009). Our results indicate in line with the results by Lessmann et al. (2015)

that the performance ranks generated based on the H-measure are very similar to

those generated with the AUC measure. Both performance measures hence seem to

be substitutable in empirical studies. In the case of binary classification problems,

we recommend using one measure for each of the two dimensions – correctness of

the predicted classes and discriminator ability because di↵erences in terms of the

performance ranks rather exists for indicators measuring di↵erent dimensions than

for indicators measuring the same dimension.

2.5.4 Training Time

We trained the classification methods using only one thread. This allows analyz-

ing the training time without parallel computing advances. As the methods are

di↵erently well suited for parallelization, a method being slower than another one

on a single thread might outperform the other one when using multiple threads for

training. However, the training time on a single thread divided by the number of

possible threads provides a lower bound for the training time on a multi-threaded

architecture. The results for the training time are depicted in Figure 2.4. Note that

the training time for the simple average ensemble methods is the sum of the training

time for all other methods. We thus excluded the simple average methods from the

analysis of the training time.

Both complexity variables, the number of dimensions and the sample size, do have

a significant influence on the training time. Only three methods required less than

100 seconds in the median in each scenario: logistic regression, Näıve Bayes, and the

nearest shrunken neighbor. These methods are well suited for real-time classification

(e.g., EEG classification). Figure 2.4 shows that the variance of the training time

also significantly varies across the methods. Methods such as the linear discriminant

analysis only show a low variance in the training time whereas other methods, such

as the regularized logistic regression have a rather high variance.

We regressed the number of variables in the training set and the training sample size

on the training time for those six methods that were included in each complexity

scenario. The results of the OLS regressions are presented in Table 2.5. The ratio

of the coe�cient for the number of variables (dimensionality) and the coe�cient for

the sample size shows how sensitive the training time is on the dimensionality of the

training data compared to the sample size. An increase of the number of variables

compared to a commensurate increase in the sample size has the highest impact on

the training time of the Näıve Bayes classifier. However, the absolute impact of the

number of variables on the training time of a Näıve Bayes classifier is rather low as
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Figure 2.4: Training Time for each Classification Method in each Scenario

indicated by a rather small regression coe�cient. Table 2.5 indicates that the nearest

shrunken neighbor classifier is least sensitive to an increase of the dimensionality of

the training data. This method is hence very well suited for real-time classification in

high-dimensionality scenarios. For real-time classification of rather low-dimensional

but large data we can especially recommend using the Näıve Bayes classifier or the

nearest shrunken neighbor classifier.

Table 2.5: Influence of Dimensionality and Sample Size on Training Time.

Method Intercept # of Variables Sample Size R2 # of Variables / Sample Size
bayLR -37.24⇤⇤⇤ 0.3877⇤⇤⇤ 0.0007662⇤⇤⇤ 0.682 506.00
CART -34.91⇤⇤⇤ 0.3648⇤⇤⇤ 0.0007311⇤⇤⇤ 0.481 498.97
LDA -35.94⇤⇤⇤ 0.3584⇤⇤⇤ 0.0007127⇤⇤⇤ 0.669 502.88
LR -19.61⇤⇤⇤ 0.2371⇤⇤⇤ 0.0004042⇤⇤⇤ 0.717 586.59
NB -12.12⇤⇤⇤ 0.1972⇤⇤⇤ 0.0003185⇤⇤⇤ 0.340 619.15
NSN -9.464⇤⇤⇤ 0.1253⇤⇤⇤ 0.0003229⇤⇤⇤ 0.415 388.05

⇤⇤⇤ p < 0.001

Table 2.5 also shows that the e↵ect of the number of variables and the sample size on

the training time is rather equal for the Bayesian logistic regression, CART and the

linear discriminant analysis. Assuming that parallel computing is equally possible

for all three methods, researchers and practitioners should make a decision between

these three methods merely based on their classification accuracy.
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2.6 Discussion

This paper investigates several classification methods and evaluates their perfor-

mances in four complexity scenarios and six data characteristic cases. In contrast

to almost all other existing comparative studies, we use a synthetic dataset in order

to control the characteristics of the datasets on which we applied the classification

methods. This comes with the big advantage that we can extract rules and guidelines

for when to apply which classification method.

With controlled synthetic datasets we have shown that data characteristics signifi-

cantly influence the performance of classification methods. The overall best perfor-

mance was reached with a heterogeneous ensemble classifier. Homogeneous classifiers

often did not show a significantly higher performance than individual classifiers. Our

results, however, revealed that some classifiers are especially recommendable if the

dataset to be classified has some certain characteristics. Logistic regression as an

easy and often recommended and applied method (e.g., Kiang, 2003) showed rather

a moderate performance and a worse performance than a simple average of the best

performing classifiers in all cases and scenarios. Methods such as k-nearest neigh-

bor classifier, support vector machines with polynomial kernel, distance weighted

discriminator with polynomial kernel, bagged CART, C5.0 or Näıve Bayes classifier

also performed better than a logistic regression in most investigated cases. We hence

recommend training a large set of classifiers to finally build a heterogeneous ensem-

ble, in general. In the case of a low data dimensionality and a high sample size,

our results indicate using a bagged CART classifier rather than any other method.

For the serious scenario of high dimensionality and only a small sample size, we can

recommend using a heterogeneous ensemble, kernel-based classifiers with polynomial

kernel, or stabilized nearest neighbor classifiers.

We assessed the performance of classification methods based on several performance

measures. A correlation analysis of these measures showed that they measure two

dimensions of performance: correctness of the predicted classes and discriminatory

ability. We recommend that one measure for each dimension should be used to

evaluate classifiers in empirical studies.

The case of unbalanced training data has been found to be the most serious case

with respect to the F1-measure. In order to overcome a rather poor classification

performance when the training set is unbalanced, researchers either can use resam-

pling techniques to generate a balanced dataset or apply methods that are dedicated

towards training on unbalanced data (López et al., 2014).

Our study is subject to three major limitations. First, we only investigated main

e↵ects of data characteristics on the performance of classifiers. Each case only di↵ers

in exactly one characteristic from the reference case. Because real-world datasets
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typically are characterized by a mixture of the investigated data characteristics and

often also by characteristics that have not been taken into account in this study,

we encourage further research to also analyze interaction e↵ects of the data charac-

teristics and investigate the impact of further characteristics, such as a correlation

between the feature data.

Second, we limited the set of investigated methods to 25 and hence did not include

some existing classification methods like C4.5, quadratic discriminant analysis, or

support vector machines with kernels other than linear, radial or polynomial. Fur-

thermore, we did not consider classifiers that have been developed for specific clas-

sification methods. Our study, however, provides a generic experimental setting for

comparing classification methods. This setting can be employed in future research

to investigate further classifiers and data characteristics.

And third, we did not investigate the training time of the classification methods using

parallelization techniques. We implemented the classifiers with a single-threaded

model in order to keep the conditions constant for each classifier. Some classifiers can

use several processing cores in parallel whereas this is not or only hardly possible for

some other methods. Parallelization also depends on the concrete implementation

of a classification method and thus makes it hard to compare the training time

between the methods. Developing approaches for analyzing the training time using

parallelization techniques provides an interesting avenue for further research.
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3 Feature detection in online cus-

tomer reviews

Abstract
The numerous customer reviews available in online markets contain a variety of in-

formation, such as discussed product features, which are useful for participants in

e-commerce. Product features must be automatically detected from customer re-

views to utilize this information. In this paper, we demonstrate that the precision

and recall of a bag-of-words model and a maximum entropy model applied to cus-

tomer reviews to extract product features are contrary. Thus, we combine the two

approaches to develop a highly accurate, novel ensemble approach to detect product

features in online customer reviews.

Author: Tristan Wimmer
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3.1 Introduction

The number of online customer reviews (OCRs) on e-commerce websites has in-

creased substantially in recent years; thus, a huge amount of information is available

for participants in e-commerce (Chen and Xu, 2017; Guo and Zhou, 2017). Con-

sumers, retailers and manufacturers can benefit from the massive amount of infor-

mation contained in OCRs (Yu et al., 2011; Jing et al., 2017).

Consumers consult OCRs during the purchase decision-making process to reduce

uncertainty about whether a product fits their needs (Kang et al., 2017; Zhu and

Zhang, 2010). This process in turn increases the purchase probability; thus, retail-

ers can benefit from OCRs. (Akdeniz et al., 2013; Dorner et al., 2013). Apart from

consumers and retailers, manufacturers can also utilize the information contained

in OCRs. Manufacturers can identify the needs of (potential) consumers, improve

their products and create marketing initiatives based on OCRs (Zhan et al., 2009).

In addition to these advantages, the massive number of OCRs has some drawbacks

for consumers, retailers and manufacturers. During the decision-making process,

consumers tend to process all available information they can obtain about a product

of interest (Park and Lee, 2007). However, consumers have a limited processing

capacity and become cognitively overloaded if there are too many customer reviews

to process, resulting, inter alia, in cognitive strain – the so-called information over-

load phenomenon (Jacoby et al., 1974; Keller and Staelin, 1987; Malhotra, 1984).

Retailers could provide consumers the opportunity to filter often-discussed product

features to reduce the risk of information overload. For this reason, and to harness

the benefits of OCRs, such as making recommendations or product improvements,

retailers and manufacturers need to know which product features are discussed in

OCRs. Due to the large quantity of OCRs, manual detection of product features

is impractical. The automatic detection of product features from online customer

reviews is essential to achieve the outlined benefits and to overcome the problems

arising from the substantial quantity of OCRs.

However, the automatic detection of product features in OCRs is not a trivial task

for several reasons. First, the writing style varies among consumers and across do-

mains (e.g., di↵erent product categories, types of products), which complicates the

application of rule-based approaches. A rule-based approach may be applicable for a

highly focused application of feature detection, but a set of rules must be defined for

each domain in order to apply a rule-based approach. Thus, rule-based approaches

are impractical due to the variation in products, writing styles and domains.

Second, customers use di↵erent words to refer to the same feature (e.g., screen,

monitor, display), which makes it di�cult to apply a thesaurus. Third, OCRs are

written in di↵erent languages, which creates challenges related to di↵erent grammar,

vocabulary and writing style.
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The existing approaches counter these problems by, for example, including external

dependencies to detect product features in OCRs. Popescu and Etzioni (Popescu

and Etzioni, 2005) use web search engines as external information resources. In

practical applications, access to such external dependencies is di�cult to obtain.

Furthermore, the existing approaches also use opinion words (words describing a

consumer’s opinion about a product feature) to detect product features. These ap-

proaches search for product features located around an opinion word, such as the

approach of Hu and Liu (Hu and Liu, 2004a). Thus, product features that are not

associated with an opinion word are not detected. In practical applications, con-

sumers, retailers and manufacturers are also interested in product features that are

not associated with an opinion word, e.g., to identify product features that customers

are missing. Such features are not necessarily associated with an opinion word.

In this study, we aim to develop an approach to automatically detect product fea-

tures from OCRs, which fulfills the following conditions. First, the approach must be

able to detect as many product features as possible, independently of whether there

is an associated opinion word, to ensure a wide range of application. Second, our

approach should neglect external dependencies and use only the OCRs themselves as

data because external dependencies are expensive and di�cult to maintain. Third,

the approach should be able to work on a relatively small dataset. Most e-commerce

platforms have hundreds, rather than thousands, of customer reviews. Further, re-

cent machine learning algorithms, such as deep neural networks, typically require a

considerable number of customer reviews to achieve high accuracy. New and small

or medium-sized e-commerce platforms often have a limited number of customer re-

views per product category and cannot provide the amount of data required to train

these approaches with reasonable accuracy. To facilitate the application of feature

detection by these platforms, our approach should work well with only hundreds of

customer reviews. Fourth, our method should be customizable to di↵erent languages

because e-commerce platforms typically have separate shops for di↵erent countries

and, hence, contain customer reviews in di↵erent languages.

Somprasertsri and Lalitrojwong (Somprasertsri and Lalitrojwong, 2008) counter

these problems with a promising maximum entropy (ME) model. ME models are

among the most popular methods for information extraction (Zhang et al., 2010).

Somprasertsri and Lalitrojwong’s proposed model achieves high accuracy and pre-

cision but relatively low recall. Another common method for text classification is

bag-of-words (BOW) models (Bloehdorn and Hotho, 2006; G. Forman, 2003). BOW

models are often used for opinion mining, which is frequently performed simultane-

ously with product feature detection (Yu et al., 2017; Mohey, 2016; Khan et al., 2014;

Whitelaw et al., 2005; Socher et al., 2013). Intuitively, if all words of a customer

review are contained in the bag, the model would achieve a recall of one, whereas
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the precision would be low. We compare a BOW model to a ME model and find

that the accuracy of the BOW model is high and that its precision and recall are

opposite those of the ME model. Thus, a combination of the two approaches can

improve the detection accuracy. Thus far, existing research has not applied a BOW

model for feature detection in customer reviews nor combined a ME model and a

BOW model, even though the precision and recall of the methods are opposite and

would satisfy our conditions.

In this paper, we propose a highly accurate ensemble approach that combines a

BOW model with a ME model to detect product features in online customer re-

views. Furthermore, our proposed approach works independently from the presence

of any opinion words, ensuring that it detects as many product features as possible.

In addition, our approach does not use external dependencies to ensure high applica-

bility. Furthermore, our proposed approach achieves high accuracy even when only

a few customer reviews are available for training.

The remainder of this paper is organized as follows. In the next section, we provide

an overview of related work. Then, we present our proposed approach in section

3.4. In section 3.5, we present some benchmarks and describe the datasets used for

the empirical evaluation. The results are outlined in section 3.6. We validate our

results in section 3.7 and conclude this paper with a summary of the results and a

discussion.

3.2 Related work

The existing research on feature detection can be broadly classified into two streams

based on the objective. The first stream follows the initial work of Hu and Liu (Hu

and Liu, 2004a) and pursues detection of product features from customer reviews by

using opinion words or aiming to determine the sentiment of a product feature (Hu

and Liu, 2004a,b; Xu et al., 2010; Qiu et al., 2009; Zhuang et al., 2006; Kobayashi

et al., 2007; Jakob and Gurevych, 2010; Stoyanov and Cardie, 2008; Wang and

Wang, 2008). Therefore, this stream focuses on the detection of product features

that appear together with one or more opinion words. Product features that are not

described by an opinion word are neglected. This process di↵ers from the second

stream of research, which aims to detect product features regardless of opinion words.

This di↵erentiation largely determines the application possibilities. For example, a

retailer who wants to give customers the opportunity to consider the most-discussed

product features needs to detect all product features. Given the following OCR from

the dataset used in (Hu and Liu, 2004a), the approaches of the first stream do not

label ”zoom” as a product feature because it is not described by an opinion word,

whereas ”closeup mode”and ”battery”are annotated as product features because they

have associated opinion words.
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”the same 4mp chip from the 4500 camera, plus a 3x zoom with the ability to

expand upon that with extenders, great closeup mode, long lasting rechargable

battery, etc etc.”

Thus, if the focus is on the determination of a product feature’s sentiment, the first

stream is suitable. However, if all features, independently of co-occurrence with an

opinion word, are needed, the second stream is preferred. In this paper, we aim

to extract as many product features as possible, irrespective of associated opinion

words. Thus, we focus on the second stream of literature.

Popescu and Etzioni (Etzioni et al., 2005; Popescu and Etzioni, 2005) investigate

the detection of product features independently of opinion words. Their algorithm

determines whether a noun or noun phrase is a feature by computing the pointwise

mutual information (PMI). They compute the PMI score between a given phrase and

a product-class-specific discriminator (e.g., TVs). Access to web search engines is

required to calculate the PMI score, but access to web search engines for commercial

use is not free of charge and thus limits the applicability, especially for small-sized

retailers.

Somprasertsri and Lalitrojwong (Somprasertsri and Lalitrojwong, 2008) neglect ex-

ternal dependencies. They focus on the extraction of product features from OCRs

and exclude the detection of opinion words, as well as their polarity. Somprasert-

sri and Lalitrojwong use a two-step approach. First, they extract product features

with a classifier; second, they search for additional product features that consist of

more than one word (e.g., mouse wheel). In the first step, they use a ME model

classifier with a set of attributes to detect product features. The underlying idea

of an ME model is that its attributes are conditionally dependent of each other.

ME selects the model with the highest entropy as the model with the probability

distribution that best represents the current data (Somprasertsri and Lalitrojwong,

2008; Ratnaparkhi, 1998). They compare di↵erent ME models based on di↵erent

sets of attributes. The ME model with the highest F1 is based on three attributes.

First, Somprasertsri and Lalitrojwong use part-of-speech (POS) tags (Somprasertsri

and Lalitrojwong, 2008) as attribute. Further they assume that infrequent words

are not likely to be product features. If a word in the training set occurs fewer than

five times, it is classified as rare. This information is passed to the ME as the second

attribute. Third, they use the context of each word: the four words before and

after a word are used as context information. In the second step, Somprasertsri and

Lalitrojwong (Somprasertsri and Lalitrojwong, 2008) apply a natural language pro-

cessing technique to consider product features that consist of more than one word.

The word is annotated as a feature if its head noun matches the product features
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extracted by the ME. We focus on product features consisting of one word; thus,

only the first step is applicable in our study. They demonstrate that their proposed

ME model achieves high accuracy but relatively low recall.

We contribute to the existing research by combining an ME model, which is one of

the most commonly used methods in information extraction (Zhang et al., 2010),

and a BOW model into a novel ensemble approach to detect as many product fea-

tures as possible and to counteract the low recall of ME models demonstrated by

Somprasertsri and Lalitrojwong (Somprasertsri and Lalitrojwong, 2008).

3.3 Review model

An OCR may consist of product features that represent a product characteristic

(e.g., the screen size of a TV). We follow the existing literature and limit features to

be nouns because nouns are considered to be feature candidates (Archak et al., 2011).

Product features can be explicitly or implicitly mentioned in customer reviews. For

example, in the customer review ”The camera can easily put into the pocket.”, the

customer writes about the size without mentioning it explicitly. Thus, the size is

an implicit product feature. Explicit product features are mentioned directly by

the customer (e.g., small camera size). In this paper, we follow Somprasertsri and

Lalitrojwong (Somprasertsri and Lalitrojwong, 2008) and focus on the detection of

explicit product features in OCRs.

Formally, a dataset of OCRs consists of I customer reviews (R = {r1, ...rI}). These
customer reviews are split into a training set and a testing set. The training set

consists of all reviews ri with i 2 [1, z], and the testing set consists of reviews

with i 2 [z + 1, I]. Each review ri may contain N sentences ri = {si,1, ..., si,N}.
Each sentence may have M sequences si,n = {qi,n,1, ..., qi,n,M} defined as a part of

a sentence delimited by punctuation, such as ”,”. Each sequence qi,n,m consists of

P words qi,n,m,p = {wi,n,m,1, ..., wi,n,m,P}. Each word is represented by a POS tag

p(wi,n,m,p) = ps with ps 2 {UH, LS, DT, NNS, VBD, JJ, NN, CC, RB, IN, PRP,
VBN, NNP, JJS, VBP, VB, PRP, VBG, VBZ, MD, RP, TO, EX, WRB, CD, WDT,

JJR, RBS, RBR, PDT, WP, NNPS, FW}. Further, each sequence may contain D

features qi,n,m,p = {fi,n,m,p,1, ..., fi,n,m,p,D}. We limit the input to the OCR itself and

its POS tags. POS tags are appropriate because they can be easily determined by a

POS tagger, such as the Stanford Log-linear Part-Of-Speech Tagger1. Furthermore,

POS taggers are available in almost every language and thus can be easily adapted

for OCRs written in di↵erent languages.

1https://nlp.stanford.edu/software/tagger.shtml

https://nlp.stanford.edu/software/tagger.shtml
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3.4 Proposed approach

Feature detection in online customer reviews is a kind of text classification because

the aims is to classify whether a word is a product feature. BOW models are a

common method for text classification (Bloehdorn and Hotho, 2006; G. Forman,

2003). A BOW model for feature detection matches each word of a new customer

review with the words contained in the bag. If the word is an element of the bag,

the word is annotated as a product feature. Thus, as many product features as pos-

sible should be included in the bag to detect a high proportion of available product

features. If all possible product features are contained in the bag, the BOW model

would achieve a recall of one. Intuitively, customers write about a limited number

of product features. Thus, only a relatively small number of customer reviews must

be processed to obtain many possible product features. However, product features

that are rarely discussed have a lower probability of being contained in the train-

ing set and thus in the bag. The BOW approach does not consider any contextual

information, which is sometimes indispensable in determining whether a word is a

product feature because a specific word is not necessarily a product feature every

time a customer uses it. For example, whether the word restaurant is a product

feature depends on the context. If a customer of a hotel writes about a restaurant

in town, the restaurant is not a product feature because the hotel has no influence

on the restaurant. By contrast, if the customer writes about the hotel restaurant, it

is definitely a product feature. A possible solution to this problem is to determine a

threshold. This threshold can be defined as how often a word occurs as a feature. If

a word occurs several times but is rarely a feature, the word is not added to the bag.

However, in this scenario, rare features are not identified by the BOW model. The

approach proposed by Somprasertsri and Lalitrojwong (Somprasertsri and Lalitroj-

wong, 2008) may be compliant with a BOW model as follows. As outlined in section

3.2, they propose an ME model to detect product features. In contrast to BOW

models, the ME model proposed by Somprasertsri and Lalitrojwong (Somprasertsri

and Lalitrojwong, 2008) considers the context information for classification. Because

the ME model uses additional information for classification, it might be suitable for

detecting further product features. In our preliminary investigation, we compared

the two approaches, i.e., BOW and ME, and found that the recall and precision show

opposite trends. The ME model in (Somprasertsri and Lalitrojwong, 2008) achieves

high precision but low recall, whereas the BOW model achieves high recall and low

precision. Therefore, the ME model classifies fewer words as product features but

the detected words are true product features, whereas the BOW model detects more

product features but also incorrectly predicts more words to be features. We pro-

pose a new ensemble approach that combines a BOW model and an ME model to

take advantage of the benefits of both models. We combine the results of both ap-
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proaches to build our ensemble model. We define the BOW model to be the leading

approach because the words in the bag are definitely feature candidates. Further-

more, our preliminary investigation demonstrated that the BOW model achieves a

significantly higher recall, and thus detects more product features, than does the

ME model. The ME model can reverse the prediction of the BOW model in one

scenario. If the BOW approach classifies a word as a non-feature (because it is not

in the bag) but the ME model predicts it as product feature, the classification result

of the ME model is preferred because the ME model is able to detect features that

are not contained in the bag. Table 3.1 depicts the decision matrix of our ensemble

model.

Table 3.1: Decision Matrix

Predicted by BOW
Predicted by ME

Feature Non-feature

Feature Feature Feature
Non-feature Feature Non-feature

3.5 Experimental investigation

In this section, we introduce some benchmarks and di↵erent variants of our proposed

ensemble approach. Further, we describe the datasets used to evaluate our ensemble

approach and further benchmarks.

3.5.1 Algorithms

In this section, we present our proposed approach and benchmarks for comparison.

The first benchmark is a naive approach (NP), which is followed by three hidden

Markov chain models (HMM 1, HMM 2, HMM 3). Next, we apply two BOW mod-

els (BOW 1, BOW 2). Furthermore, we apply ME models in two forms (ME 1,

ME 2). Last, we introduce four forms of our proposed ensemble model based on the

BOW and ME models (EM 1, EM 2, EM 3, EM 4). Table 3.2 gives an overview of

the applied algorithms.
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Table 3.2: Algorithm Overview
Abbreviation Algorithm Description
NP – All nouns are features
HMM 1 Hidden Markov Chain Based on a single word
HMM 2 Hidden Markov Chain HMM 1 with optimization
HMM 3 Hidden Markov Chain Based on sequences
BOW 1 Bag of Words BOW without pruning and without rare word condition
BOW 2 Bag of Words BOW with pruning and without rare word condition
BOW 3 Bag of Words BOW with pruning and with rare word condition
ME 1 Maximum Entropy Trained with context and POS tags
ME 2 Maximum Entropy Trained with context, POS tags and rare word condition
EM 1 Bag of Words+Maximum Entropy BOW 2 + ME 1
EM 2 Bag of Words+Maximum Entropy BOW 3 + ME 2
EM 3 Bag of Words+Maximum Entropy BOW 2 + ME 2
EM 4 Bag of Words+Maximum Entropy BOW 3 + ME 1

3.5.1.1 Naive approach

We implement a naive approach (NP) as a benchmark. As outlined in 3.3, we

define features as nouns. Therefore, we formulate a simple baseline that predicts

every word wi,n,m,p of the testing dataset as a feature if p(wi,n,m,p) 2 {NN,NNS,

NNP,NNPS}. Every plural, singular, proper singular and proper plural noun is

predicted to be a feature.

3.5.1.2 Hidden Markov chain model

Hidden Markov models (HMM) are popular for information extraction and include

syntactic information (Zhang et al., 2010). Whether a word is a feature may depend

on the syntax of the customer review; thus, we apply three di↵erent HMM models.

In general, an HMM model is a doubly stochastic process consisting of a number of

states and observations, transition probabilities, emission probabilities and an initial

state distribution (Rabiner and Juang, 1986). The emission probabilities include the

probability that a state emits into an observation, whereas the transition probabili-

ties are the probabilities that a feature is followed by a further feature or non-feature

and vice versa. In HMM 1, the POS tags p(wi,n,m,p) of the currently considered word

wi,n,m,p represent observations. HMM 1 may predict non-nouns as features. In accor-

dance with the assumption that only nouns are feature candidates, HMM 2 optimizes

the output of HMM 1 in a post-processing step. Therefore, HMM 2 annotates every

feature candidate as a non-feature if p(wi,n,m,p) 62 {NN,NNS,NNP,NNPS}. In

HMM 1 and HMM 2, the states are feature and non-feature. The POS tag of the

actual processed word may be insu�ciently informative to detect product features

in OCRs. Thus, whether a word is a feature may not depend on p(wi,n,m,p) but on

the sequence qi,n,m it belongs to. Therefore, we implement HMM 3, which takes se-

quences of POS tags into consideration. The observations of HMM 3 are the merged

POS tags of each sequence qi,n,m. The states are (feature, non-feature) based on each

sequence. Thus, the outcome of HMM 3 is the prediction of whether a sequence is
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a feature. According to our definition, sequences cannot be features; thus, we anno-

tate each noun in a sequence as a feature if the sequence itself is predicted to be a

feature.

3.5.1.3 Bag of words

In addition to the syntax, the word itself may be relevant to whether it is a fea-

ture. Intuitively, customers predominately write about the same product features

because each service or product has a limited number of possible features. Thus,

we assume that a BOW model might be suitable to detect product features from

OCRs. In general, a BOW model is a very simple and specific type of vector space

model that disregards grammar (Ngo-Ye and Sinha, 2014; Chan and Chong, 2017).

First, all words from each customer review ri in the training set that are annotated

as features fi with i 2 [1, z] are selected. These words are stored in the BOW.

After all customer reviews in the training set are processed, the BOW contains,

independently of their occurrence frequency, all features of the training set, so that

8fi : fi 2 BOWwith i 2 [1, z]. In the next step, all customer reviews of the testing

set are processed. Therefore, each customer review ri in the testing set is split into

its words. Each of these words and each of the words in the BOW are transformed

into lower case and stemmed. Afterwards, each word is labeled as a feature can-

didate, which fulfills the condition wi,n,m,p 2 BOW with i 2 [z + 1, I]. Thus, all

feature candidates in the testing set that have been manually identified as features

in the training set are tagged.

We apply three types of BOW models. First, we apply a model as outlined before

(BOW 1). The existing approaches of the first stream of literature, such as Hu and

Liu (Hu and Liu, 2004a), search for product features located around an opinion

word that describes these features. As outlined above, these approaches are limited

to detecting only product features that are described by an opinion word. Neverthe-

less, in a preliminary investigation, we found that adjectives are often located near

product features. These adjectives do not have to be opinion words nor do they

necessarily describe the product feature. Thus, we introduce BOW 2, which splits

each sentence si,n with i 2 [z + 1, I] into M sequences. If there is no adjective in

the sequence qi,n,m, each detected feature candidate is annotated as a non-feature.

Thus, BOW 2 might produce fewer false positives because product features without

a nearby adjective are classified as non-features. In contrast to the approaches of the

first stream of literature, BOW 2 is not limited to detecting only product features

that are described by an opinion word because the referencing of the adjective to a

special feature does not play any role. Somprasertsri and Lalitrojwong (Somprasert-

sri and Lalitrojwong, 2008) set a threshold of five for feature candidates; that is only

words that occur five times or more can be feature candidates because some words
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might be a feature in only a special context. BOW 3 implements this threshold and

thus ensures that words that are frequently not product feature are excluded from

the bag and, hence, are not detected.

3.5.1.4 Maximum entropy

BOW models detect product features based on the words themselves, whereas the

three hidden Markov chains ignore the words and consider the syntax based on the

POS tags. BOWmodels might tend to incorrectly detect words as feature candidates

because depending on the context, the same word can be a feature or non-feature.

The three HMMs predict feature candidates based on the order probability of the

POS, which implies that the syntax around a product feature is fairly consistent.

Somprasertsri and Lalitrojwong combined the syntax and the word itself via an

ME model Somprasertsri and Lalitrojwong (2008). An ME model is a probabilistic

approach that classifies data based on a predefined, weighted set of variables. Som-

prasertsri and Lalitrojwong Somprasertsri and Lalitrojwong (2008) used POS tags

and the context of each word. Therefore, they passed the words and the POS tags

of the four words before and after each target word to the ME model. Further, they

assumed, that infrequent words are not likely to be product features. They defined a

word as rare if it occurred in the training set fewer than five times. This information

was also passed to the ME model. Table 3.3 summarizes the features used to train

the best-fitting ME model.

Table 3.3: Maximum Entropy Features
Variable Description
Context All words in a [-4,+4] window around the considered word
POS Tag All POS tags in a [-4,+4] window around the considered word
Rare Word Condition Whether the word occurs fewer than 5 five times in the training set

We build two di↵erent ME models. To obtain results comparable to those of BOW 2

and BOW 3, we train ME 1 with the same features as those of BOW 2 (the context

and POS tags). Furthermore, we train ME 2 with the rare word condition of BOW 3

to exclude the possibility that the threshold is dependent on the dataset. Thus, we

use the same set of features as that of Somprasertsri and Lalitrojwong (Somprasertsri

and Lalitrojwong, 2008). They used the Maxent toolkit version 2.4.0. We use the

more recent Maxent toolkit version 3.0.02.

3.5.1.5 Ensemble approach

We build four ensemble models (EM 1, EM 2, EM 3, EM 4) to map all combinations

of the presented BOW and ME models. EM 1 is a combination of BOW 2 and ME 1

2available at: https://sourceforge.net/projects/maxent/files/Maxent/3.0.0/

https://sourceforge.net/projects/maxent/files/Maxent/3.0.0/
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(both without the rare word condition), and EM 2 is a combination of BOW 3 and

ME 2 (both with the rare word condition). EM 3 is a combination of BOW 3 and

ME 1 (with and without the rare word condition), and EM 4 is a combination of

BOW 2 and ME 2 (without and with the rare word condition).

3.5.2 Datasets

We investigate the performance of our ensemble approach with two datasets. First,

we collect 400 English customer reviews for hotels as a service from a hotel booking

platform. Second, we use 200 randomly selected English customer reviews for TVs

(physical product) from the newegg.com dataset presented in (Ngo-Ye and Sinha,

2014). We manually annotate all product features in both datasets. In the hotel

dataset, we neglect alleged features (e.g., restaurants) that may not be in the sphere

of influence of the hotelier. The characteristics of both datasets are summarized in

Table 3.4. The hotel reviews are half as long as the TV reviews, but the numbers of

sentences are similar. The similarity between customer reviews within the datasets is

low in both cases.3 Thus, customers have a di↵erent writing styles. Furthermore, the

numbers of discussed features di↵er. Hotel customers discuss 95 di↵erent features

and TV customers 78 di↵erent features, whereby they use 1.48 and 1.33 product

features per review on average. A total of 113 hotel customer reviews and 66 TV

reviews do not contain any product features4. Table 3.4 presents an overview of

both datasets.

Table 3.4: Dataset Overview
Hotel Dataset TV Dataset

Number of reviews 400 200
Mean review length in words (SD) 22.42 (19.45) 43.18 (57.47)
Mean number of sentences (SD) 2.04 (1.55) 2.95 (3.71)
Mean cosine similarity between reviews (SD) 0.16 (0.05) 0.14 (0.04)
Number of product features 594 266
Number unique product features 95 78
Percentage of unique product features 0.16 0.29
Number of reviews without features 113 66
Mean number of features per review (SD) 1.48 (1.36 ) 1.33 (1.23)
Number of product feature with occurrence <5 31 42
Percentage of product features with occurrence <5 0.33 0.64

3We calculated the cosine similarity between reviews based on the POS tags. POS tags are suitable
for representing the uniform structure of sentences. The cosine similarity ranges between zero
(very dissimilar) and one (equal). The cosine similarity of customers reviews for the hotel
dataset is 0.16, and that of the TV dataset is 0.14.

4For example, the OCR ”I loved absolutely everything!” doesn’t contain any hotel features.
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3.6 Experimental results

3.6.1 Results of the bag of words and maximum entropy

Models

We applied 10-fold cross-validation to obtain robust results.

Table 3.5: Results for the Hotel Dataset for the BOW and ME Models
F1 Precision Recall

BOW 1 0.6696 0.5271 0.9255
BOW 2 0.7101 0.6087 0.8559
BOW 3 0.7471 0.7563 0.7390
ME 1 0.7303 0.8818 0.6260
ME 2 0.6952 0.8916 0.5741

Table 3.6: Results for the TV Dataset for the BOW and ME Models
F1 Precision Recall

BOW 1 0.5960 0.4626 0.8598
BOW 2 0.6394 0.5314 0.8152
BOW 3 0.6178 0.7334 0.5376
ME 1 0.5181 0.9091 0.3679
ME 2 0.5154 0.9154 0.3640

Tables 3.5 and 3.6 show the results for the BOW and ME models. Within the BOW

approach, BOW 2 and BOW 3 perform best. BOW 2 classifies words as product

features only if there is an adjective within the sequence, whereas BOW 3 extends

BOW 2 by implementing a threshold. Words that occur fewer than five times are

classified as non-features even if they are contained in the bag. Thus, words that are

rarely product features and are more often non-features are classified as non-features,

as outlined in section 3.4. Tables 3.5 and 3.6 show that the threshold improves

the accuracy for the hotel dataset, whereas it decreases the accuracy for the TV

dataset. Overall, the accuracy of the BOW models is fairly high, which confirms our

assumption that BOW models are suitable for detecting product features in OCRs.

As many product features as possible must be contained in the training set and thus

in the bag for a BOW model to achieve high accuracy. Furthermore, the training set

must be relatively small to avoid excessive e↵ort annotating product features. Thus,

customer reviews must be characterized by a high feature-review rate, i.e., a limited

number of customer reviews must contain almost all product features, in order for

a BOW model to detect many product features. Figure 3.1 represents the features

gained by adding the features of an additional customer review. Initially, adding the

product features from a customer review to the bag fills the bag with, on average,
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approximately 1.2 new product features. The greater the number of features already

in the bag is, the lower the probability that a feature to be added is not already in

the bag. A strong negative slope is observed up to approximately 100 OCRs. Thus,

accounting for features in additional reviews becomes less worthwhile because the

probability of adding an unknown product feature to the bag is greatly reduced.

Figure 3.1: Feature information gain per review

Within the ME models, ME 1 performs best for both datasets. ME 1 is based

on the context information and POS Tags, whereas ME 2 includes the rare word

threshold. As outlined above, we adopt the threshold of five from Somprasertsri and

Lalitrojwong (Somprasertsri and Lalitrojwong, 2008). We tested di↵erent thresholds

and found that only a threshold of five improved the accuracy. When comparing the

ME and BOW models, the trends in precision and recall are opposite. The BOW

models have substantially higher recall but considerably lower precision than those

of the ME models. Thus, the BOW models detect more product features than do

the ME models, but they also misclassify more words as features. Words in the bag

are not necessarily product features every time they are used by customers. The

word restaurant is a feature if it belongs to the hotel, whereas when referring to a

restaurant in town, it is not a product features. BOW models do not consider this

di↵erentiation, resulting in a lower recall. The ME models achieve high precision,

indicating that they detect real product features and misclassify only a few words

as features. The low recall of the ME models indicates a failure to detect some

product features. However, in contrast to the BOW models, which are limited

to detecting product features that are already in the bag, ME models are able to

detect all product features independently if they have previously been observed

in the training set. We investigated the results of the best models (BOW 3 and

ME 1) for the hotel dataset. Table 3.6.1 represents the confusion matrix for the
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hotel dataset. ME 1 has fewer false positives but also fewer true positives. The

high number of false negatives indicates that ME 1 misses twice as many product

features as BOW 3 does. Furthermore, 81.94% of the product features not detected

by ME 1 are detected by BOW 3. Moreover, ME 1 detects an additional 21.05%

(20 out of 95) unique product features that are not detected by BOW 3. Thus, we

investigated which words are detected by ME 1 and not by BOW 3 and found that

70% of the additionally detected product features occur in the dataset fewer than 5

times.

Table 3.7: Confusion Matrix for the Hotel Dataset
BOW 3 ME 1

TP 438 367
TN 8023 8105
FP 140 58
FN 156 277

Thus, a combination of the two approaches is promising because it facilitates the use

of the opposing recall and precision and the detection of rarely mentioned product

features. In the next section, we apply our proposed ensemble approach, as well as

some benchmarks, to these datasets.

3.6.2 Results for EM and benchmarks

In this section, we present the results of our proposed approach as well as those of

further benchmarks. Again we applied a 10-fold cross-validation. Tables 3.8 and 3.9

show the results for both datasets.

Table 3.8: Results for the Hotel Dataset
F1 Precision Recall

NP 0.0679 0.0680 0.9982
HMM 1 0.2600 0.1521 0.9000
HMM 2 0.3540 0.2206 0.9000
HMM 3 0.2513 0.2353 0.2876
BOW 1 0.6696 0.5271 0.9255
BOW 2 0.7101 0.6087 0.8559
BOW 3 0.7471 0.7563 0.7390
ME 1 0.7303 0.8818 0.6260
ME 2 0.6952 0.8916 0.5741
EM 1 0.7266 0.6053 0.9138
EM 2 0.7768 0.7435 0.8152
EM 3 0.7245 0.6084 0.9012
EM 4 0.7805 0.7331 0.8360
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Table 3.9: Results for the TV Dataset
F1 Precision Recall

NP 0.0721 0.0376 0.9659
HMM 1 0.1599 0.0910 0.8607
HMM 2 0.2345 0.1447 0.8382
HMM 3 0.1742 0.1334 0.2586
BOW 1 0.5960 0.4626 0.8598
BOW 2 0.6394 0.5314 0.8152
BOW 3 0.6178 0.7334 0.5376
ME 1 0.5181 0.9091 0.3679
ME 2 0.5154 0.9154 0.3640
EM 1 0.6466 0.5318 0.8378
EM 2 0.6661 0.7340 0.6131
EM 3 0.6466 0.5318 0.8378
EM 4 0.6687 0.7351 0.6169

As expected, the combination of an ME model and a BOW model increases the

accuracy substantially. For both datasets, our ensemble approach EM 4 performs

best and achieves outstanding performance, surpassing the performance of all the

BOW and ME models and the benchmarks. The NP approach has the worst F1

for both datasets and, as expected, the best recall. The recall should be one for

both datasets, but a few nouns are tagged as non-nouns, which results in a recall

of less than one for both datasets. The hidden Markov chain model based on single

words performs twice as well as NP and better than the sequence-based HMM 3.

Thus, the structure of a whole sequence is not su�cient to detect product features

in customer reviews. HMM 1 predicts many non-noun words, which according to

our definition are not features, to be features. Thus, HMM 2, which limits features

to be nouns, has the highest accuracy among the HMMs. The BOW models have

an F1 that is at least twice as high as that of the HMM models.

3.7 Robustness check

To validate the results and to assess the performance with di↵erent training dataset

sizes, we applied our proposed approach and the benchmarks to a third dataset.

This dataset consists of 200 online customer reviews of di↵erent airlines, expressing

the users’ experience for their flight. Table 3.10 provides an overview of this dataset.
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Table 3.10: Overview of the Flight Dataset

Flight Dataset
Number of reviews 200
Mean review length in words (SD) 126.45 (79.00)
Mean number of sentences (SD) 8.66 (4.55)
Mean cosine similarity between reviews (SD) 0.29 (0.04)
Number of product features 676
Number of unique product features 81
Percentage of unique product features 0.11
Number of reviews without features 37
Mean number of features per review (SD) 3.38 (2.79)
Number of product features with occurrence <5 58
Percentage of product features with occurrence <5 0.71

First, we want to validate the performance in a manner analogous to that used for

the hotel and TV dataset. Table 3.11 presents the results of each method based

on a 10-fold cross-validation for the flight review dataset. The ensemble approach

EM 4 achieves the best accuracy. BOW 3 achieves the highest accuracy among

the BOW models. The rare word threshold decreases the performance of the ME

models, so ME 1 performs better than does ME 2. Furthermore, HMM 2 is the

best-performing HMM, and the naive approach performs the worst. These results

are consistent with our previous investigation.

Table 3.11: Results for the Flight Dataset
F1 Precision Recall

NP 0.0471 0.0241 0.9925
HMM 1 0.1530 0.0886 0.6275
HMM 2 0.1667 0.0978 0.6275
HMM 3 0.0.800 0.0809 0.0822
BOW 1 0.4892 0.3341 0.9196
BOW 2 0.4920 0.3664 0.7577
BOW 3 0.5464 0.4527 0.6968
ME 1 0.4888 0.7635 0.3683
ME 2 0.4565 0.7728 0.3281
EM 1 0.5060 0.3734 0.7926
EM 2 0.5658 0.4608 0.7400
EM 3 0.5051 0.3732 0.7892
EM 4 0.5684 0.4608 0.7491

Next, we investigate the performance for di↵erent training dataset sizes. We applied

our proposed ensemble approach and the benchmarks to training dataset sizes of

10%, 30%, 50%, 70% and 90% of the complete flight review dataset. A training
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dataset size of 10% contains 20 of 200 customer reviews. We applied 10-fold cross-

validation for each training dataset size. Figure 3.2 illustrates the performance

of each method with di↵erent training dataset sizes. The BOW models perform

much better than the ME models, especially for small training sets, which indicates

that ME models require more customer reviews for training than do BOW models.

BOW 1 has the highest accuracy among the BOWmodels for small training datasets.

Small training datasets contain many features that occur fewer than five times due

to the limited number of words. Thus, the implementation of a threshold decreases

the accuracy of the BOW models when only a few customer reviews are available for

training. By contrast, the threshold improves the accuracy as the training dataset

size increases because the probability that a word (product feature) is contained in

the bag increases. The rare word threshold overcomes this problem. Our proposed

ensemble approach always performs best, even for the small training dataset size of

only 20 customer reviews. When the training dataset size is at least 30%, EM 4

always performs the best. The performance of the ME models is poor for small

training datasets. Thus, the key contributors of the ensemble approaches to the

accuracy when the training dataset is small are the BOW models. The hidden

Markov chain models benefit from an increasing dataset size if there are few customer

reviews, but they still perform much worse than do the BOWmodels, the ME models

and our proposed ensemble models. The baseline approach always results in low

accuracy.
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Figure 3.2: F1 for di↵erent training dataset sizes



Feature detection in online customer reviews 56

In summary, our assumption that the combination of ME and BOW models will

improve the accuracy is confirmed. The combination of a BOW model with a rare

word condition and an ME model trained with the context and POS tags achieves

outstanding performance for feature detection in online customer reviews. Further-

more, our proposed approach achieves the highest accuracy even when only a few

customer reviews are available for training.

3.8 Discussion

In this paper, we propose an ensemble approach based on a BOW model and an

ME model. We investigated our approach with three di↵erent datasets and product

categories and demonstrated that our proposed approach achieves high accuracy,

even when the training dataset is small. Our proposed ensemble approach does not

use any external dependencies, which are usually not free of charge for commer-

cial use. The proposed approach is easy to implement and easy to customize for

other languages by switching the POS tagger. We focused on developing an ap-

proach that achieves high accuracy even for a small number of customer reviews

because new or small e-commerce platforms have only a few customer reviews per

product category. Thus, machine learning techniques, such as deep learning, which

require a large training dataset, are di�cult to apply. For example, we applied a

deep machine learning approach, namely, a feed-forward multilayer artificial neural

network, on all three datasets to detect product features, and achieved F1 values

of approximately 0.5413 for the hotel dataset, 0.342 for the TV dataset, and 0.3514

for the flight reviews dataset. Thus, the accuracy is much lower than that of the

proposed approach, likely due to the small training dataset. Our proposed ensemble

approach also achieves high accuracy with a relatively small training dataset. Thus,

our proposed approach is especially recommended for e-commerce platforms with

few customer reviews. In practical applications, feature detection is a necessary pre-

ceding step for several technologies, such as filtering systems improving consumer

convenience. Convenience has a strong positive impact on customer purchase deci-

sions (Chen et al., 2010); hence, e-commerce retailers should o↵er such systems to

increase sales. Consumers consider product features when searching for a product

that satisfies their demands (Zhu and Zhang, 2010; Brucks et al., 2000). Intuitively,

consumers do not know all the product features that determine a product’s quality

in advance. Thus, consumers would benefit if they are o↵ered a filtering system that

suggests important product features for the actual considered product. A proxy

for this importance may be the frequency with which a product feature has been

discussed in customer reviews because the more important a product feature is, the

more customers may have written about it. Thus, retailers should o↵er a filter-

ing system so that consumers can filter products based on the product overview.
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Further, retailers can o↵er such a filtering system on the product detail page, so

consumers do not have to read all the customer reviews but can filter for those that

discuss important product features. Thus, consumers can find appropriate products

more easily, thereby increasing purchase probability.

Our approach is subject to three major limitations. First, we assume that a feature

consists of only one word. This assumption does not support product features con-

sisting of multiple words, such as remote control or room service. Second, we focus

on the extraction of explicit features. OCRs also contain implicit features, which

cannot be detected with our approach. Third, the rare word condition may vary for

di↵erent datasets and must be evaluated before applying our ensemble model.

Finally, two interesting areas for further research exist: first, the extension of our

ensemble approach to detect implicit product features; second, the application of

our ensemble approach to detect opinion words in OCRs. Thus, an investigation of

opinion word detection with an ensemble approach based on a BOW with annotated

opinion words and an ME model provides an interesting avenue for further research.



58

References

Billur Akdeniz, Roger J. Calantone, and Clay M. Voorhees. E↵ectiveness of Market-

ing Cues on Consumer Perceptions of Quality: The Moderating Roles of Brand

Reputation and Third-Party Information. Psychology & Marketing, 30(1):76–89,

jan 2013. ISSN 07426046.

Nikolay Archak, Anindya Ghose, and Panagiotis G Ipeirotis. Deriving the Pricing

Power of Product Features by Mining Consumer Reviews. Management Science,

57(8):1485–1509, 2011. ISSN 0025-1909.

Stephan Bloehdorn and Andreas Hotho. Boosting for Text Classification with Se-

mantic Features. pages 149–166, 2006. ISSN 0302-9743. doi: 10.1007/11899402 10.

Merrie Brucks, Valarie A. Zeithaml, and Gillian Naylor. Price and brand name

as indicators of quality dimensions for consumer durables. Journal of the

Academy of Marketing Science, 28(3):359–374, 2000. ISSN 00920703. doi:

10.1177/0092070300283005.

Samuel W.K. Chan and Mickey W.C. Chong. Sentiment analysis in financial texts.

Decision Support Systems, 94:53–64, 2017. ISSN 01679236. doi: 10.1016/j.dss.

2016.10.006.

Runyu Chen and Wei Xu. The determinants of online customer ratings: a com-

bined domain ontology and topic text analytics approach. Electronic Commerce

Research, 17(1):31–50, 2017. ISSN 15729362. doi: 10.1007/s10660-016-9243-6.

Ying Hueih Chen, I. Chieh Hsu, and Chia Chen Lin. Website attributes that increase

consumer purchase intention: A conjoint analysis. Journal of Business Research,

63(9-10):1007–1014, 2010. ISSN 01482963. doi: 10.1016/j.jbusres.2009.01.023.

Verena Dorner, Olga Ivanova, and Michael Scholz. Think Twice Before You Buy!

How Recommendations A↵ect Three-Stage Purchase Decision Processes. 5, 2013.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,

Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-

entity extraction from the Web: An experimental study. Artificial Intelligence,

165(1):91–134, jun 2005. ISSN 00043702. doi: 10.1016/j.artint.2005.03.001.

G. Forman. An Extensive Empirical Study of Feature Selection Metrics for Text

Classification. J. Machine Learning Research, 3:1289–1305, 2003.

Bin Guo and Shasha Zhou. What makes population perception of review helpfulness:

an information processing perspective. Electronic Commerce Research, 17(4):585–

608, 2017. ISSN 15729362. doi: 10.1007/s10660-016-9234-7.



59

Minqing Hu and Bing Liu. Mining Opinion Features in Customer Reviews. Proceed-

ing AAAI’04 Proceedings of the 19th national conference on Artifical intelligence,

pages 755–760, 2004a.

Minqing Hu and Bing Liu. Mining and Summarizing Customer Reviews. Proceeding

KDD ’04 Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 168–177, 2004b.

Jacob Jacoby, Donald E. Speller, and Carol A. Kohn. Brand Choice Behavior as a

Function of Information Load. Journal of Marketing Research, 11(1):63–69, feb

1974. ISSN 00222437. doi: 10.2307/3150994.

Niklas Jakob and Iryna Gurevych. Extracting opinion targets in a single-and cross-

domain setting with conditional random fields. Proceedings of the 2010 Confer-

ence on Empirical Methods in Natural Language Processing, (October):1035–1045,

2010.

Nan Jing, Tao Jiang, Juan Du, and Vijayan Sugumaran. Personalized recommen-

dation based on customer preference mining and sentiment assessment from a

Chinese e-commerce website. Electronic Commerce Research, 2017. ISSN 1389-

5753. doi: 10.1007/s10660-017-9275-6.

Mangi Kang, Jaelim Ahn, and Kichun Lee. Opinion mining using ensemble text

hidden Markov models for text classification. Expert Systems with Applications,

0:1–10, 2017. ISSN 09574174. doi: 10.1016/j.eswa.2017.07.019.

Kevin Lane Keller and Richard Staelin. E↵ects of Quality and Quantity of Informa-

tion on Decision E↵ectiveness. Journal of Consumer Research, 14:200–213, 1987.

doi: 10.2307/2489411.

Aurangzeb Khan, Khairullah Khan, Shakeel Ahmad, Fazal Masood Kundi, Irum

Tareen, and Muhammad Zubair Asghar. Lexical Based Semantic Orientation of

Online Customer Reviews and Blogs. Journal of American Science J Am Sci,

1010(88):143–147, 2014.

Nozomi Kobayashi, Kentaro Inui, and Yuji Matsumoto. Opinion Mining from Web

Documents: Extraction and Structurization. Transactions of the Japanese Society

for Artificial Intelligence, 22(2):227–238, 2007. ISSN 1346-0714. doi: 10.1527/

tjsai.22.227.

Naresh K. Malhotra. Reflections on the Information Overload Paradigm in Consumer

Decision Making. Journal of Consumer Research, 10:436–440, 1984. doi: 10.2307/

2488913.

Doaa Mohey. Enhancement Bag-of-Words Model for Solving the Challenges of Sen-



60

timent Analysis. International Journal of Advanced Computer Science and Appli-

cations, 7(1):244–252, 2016. ISSN 21565570. doi: 10.14569/IJACSA.2016.070134.

Thomas L. Ngo-Ye and Atish P. Sinha. The influence of reviewer engagement char-

acteristics on online review helpfulness: A text regression model. Decision Support

Systems, 61(1):47–58, 2014. ISSN 01679236. doi: 10.1016/j.dss.2014.01.011.

Do-Hyung Park and Jumin Lee. eWOM overload and its e↵ect on consumer be-

havioral intention depending on consumer involvement. Electronic Commerce Re-

search and Applications, pages 386–398, 2007. doi: 10.1016/j.elerap.2007.11.004.

Ana-Maria Popescu and Oren Etzioni. Extracting product features and opinions

from reviews. In Proceedings of the conference on Human Language Technology

and Empirical Methods in Natural Language Processing - HLT ’05, pages 339–

346, Morristown, NJ, USA, 2005. Association for Computational Linguistics. doi:

10.3115/1220575.1220618.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. Expanding domain sentiment

lexicon through double propagation. IJCAI International Joint Conference on

Artificial Intelligence, pages 1199–1204, 2009. ISSN 10450823.

L. Rabiner and B. Juang. An introduction to hidden Markov models. IEEE ASSP

Magazine, 3(January):Appendix 3A, 1986. ISSN 0740-7467. doi: 10.1109/MASSP.

1986.1165342.

Adwait Ratnaparkhi. Maximum Entropy Models For Natural Language Ambiguity

Resolution. IRCS Technical Reports Series, 60(March), 1998.

Richard Socher, Alex Perelygin, and Jy Wu. Recursive deep models for semantic

compositionality over a sentiment treebank. Proceedings of the . . . , (October):

1631–1642, 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0073791.

Gamgarn Somprasertsri and Pattarachai Lalitrojwong. A maximum entropy model

for product feature extraction in online customer reviews. 2008 IEEE Conference

on Cybernetics and Intelligent Systems, pages 575–580, 2008. doi: 10.1109/ICCIS.

2008.4670882.

Veselin Stoyanov and Claire Cardie. Topic identification for fine-grained opinion

analysis. Proceedings of the 22nd International Conference on Computational

Linguistics, (August):817–824, 2008. doi: 10.3115/1599081.1599184.

Bo Wang and Houfeng Wang. Bootstrapping Both Product Features and Opin-

ion Words from Chinese Customer Reviews with Cross-Inducing. Proceedings of

IJCNLP 2008, 2008.

Casey Whitelaw, Navendu Garg, and Shlomo Argamon. Using appraisal groups

for sentiment analysis. Proceedings of the 14th ACM international conference



61

on Information and knowledge management - CIKM ’05, page 625, 2005. ISSN

1947-4040. doi: 10.1145/1099554.1099714.

Bing Xu, Tie-Jun Zhao, De-Quan Zheng, and Shan-Yu Wang. Product features min-

ing based on Conditional Random Fields model. In 2010 International Conference

on Machine Learning and Cybernetics, pages 3353–3357. IEEE, jul 2010. ISBN

978-1-4244-6526-2. doi: 10.1109/ICMLC.2010.5580679.

Boya Yu, Jiaxu Zhou, Yi Zhang, and Yunong Cao. Identifying Restaurant Features

via Sentiment Analysis on Yelp Reviews. arXiv, pages 1–6, 2017.

Jianxing Yu, Zheng-Jun Zha, Meng Wang, and Tat-Seng Chua. Aspect Ranking :

Identifying Important Product Aspects from Online Consumer Reviews. Compu-

tational Linguistics, pages 1496–1505, 2011. doi: 10.1109/CC.2013.6488828.

Jiaming Zhan, Han Tong Loh, and Ying Liu. Gather customer concerns from online

product reviews - A text summarization approach. Expert Systems with Applica-

tions, 36(2 PART 1):2107–2115, 2009. ISSN 09574174. doi: 10.1016/j.eswa.2007.

12.039.

Lei Zhang, Bing Liu, Suk Hwan Lim, and Eamonn O’Brien-Strain. Extracting and

Ranking Product Features in Opinion Documents. In Proceedings of the 23rd

International Conference on Computational Linguistics: Posters, COLING ’10,

pages 1462–1470, Stroudsburg, PA, USA, 2010. Association for Computational

Linguistics.

Feng Zhu and Xiaoquan (Michael) Zhang. Impact of Online Consumer Reviews on

Sales : The Moderating Role of Product and Consumer. Journal of Marketing, 74

(2):133–148, 2010. ISSN 0022-2429. doi: 10.1509/jmkg.74.2.133.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. Movie Review Mining and Summarization.

In Proceedings of the 15th ACM International Conference on Information and

Knowledge Management, CIKM ’06, pages 43–50, New York, NY, USA, 2006.

ACM. ISBN 1-59593-433-2. doi: 10.1145/1183614.1183625.



Filtering based on Customer Reviews 62

4 Filtering based on Customer Re-

views: An Investigation of the

Impact of Filtering Systems on

Purchase Decision Processes

Abstract
Customer reviews provide an important source of information for consumers’ pur-

chase decisions. To o↵er better access to this information, online platforms such as

Amazon have begun to implement product- and review filtering systems that are

based on terms extracted from customer reviews. In this study, we investigate the

e↵ects of product and review filtering systems that are based on customer reviews

on consumers’ purchase decision processes. We therefore measure the impact of the

filtering systems, i.e., product and review filtering, on all three stages of a purchase

decision process – screening, evaluation, selection. The results of a laboratory exper-

iment with 114 participants show that i) both systems reduce consumers’ e↵ort in

making a purchase decision, ii) a product filtering system helps consumers in making

a purchase decision that improves their consumer surplus, and iii) a product filter-

ing system allows consumers to be focused on attributes other than quality (e.g.,

price) when evaluating products. Our findings provide interesting implications for

researchers, consumers, and platform providers.

Authors: Tristan Wimmer, Michael Scholz

4.1 Introduction

Several online stores support consumers in their purchase decision processes with de-

cision support systems such as filtering systems or customer review systems (Benlian

et al., 2012). Customer review systems are designed to help consumers obtain in-

formation about a product’s quality prior to purchase. Consumers rely on customer

reviews to narrow down their search for products with an acceptable level of quality

(Huang et al., 2017; Jang et al., 2012). Filtering systems, in contrast, help consumers

to strain information. A combination of both systems seems promising, especially

when there are many customer reviews and such reviews contain substantial infor-

mation required by consumers to evaluate a product’s quality. Prior research has
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proposed a variety of approaches for automatically extracting product features dis-

cussed in customer reviews (Etzioni et al., 2005; Hu and Liu, 2004; Somprasertsri

and Lalitrojwong, 2008). These approaches form the technological basis for filtering

systems that operate on customer reviews. Although various approaches for product

feature extraction have been developed and proposed to be used for filtering cus-

tomer reviews, investigations of the e↵ects of such filtering systems on consumers’

purchase decision processes have fallen short. We propose that the product features

extracted from customer reviews can be used for two types of filtering systems –

product filtering systems and customer review filtering systems. Product filtering

systems help consumers to narrow down a list of available products whereas cus-

tomer review systems help to evaluate a particular product’s quality. Thus, both

systems might have di↵erent e↵ects on purchase decision processes.

In a controlled laboratory experiment, we investigate the e↵ects of product filter-

ing and customer filtering systems on consumers’ purchase decision processes. The

results show that i) both systems reduce consumers’ e↵ort in making a purchase

decision; ii) a product filtering system already a↵ects the purchase decision process

in the early stages, whereas a review filtering system only has an e↵ect on the later

stages; and iii) the e↵ect of product filtering systems on early purchase decision

process stages allows consumers to shift from focusing on evaluating a product’s

quality to evaluating a product’s price in the later stages, which ultimately leads to

a purchase of a cheaper but qualitatively equal product.

This study contributes to a vivid stream of research on the e↵ects of software tools

on consumers’ purchase decision processes. By measuring the e↵ect of product and

review filtering systems on all stages of the purchase decision process, this study

presents deep insights into the formation of a purchase decision with and without

the focal filtering systems. This enables us to, among other things, study the aspects

(price and quality) upon which consumers are focused in di↵erent stages of the pur-

chase decision process. From a methodical point of view, we present a suggestion of

how to measure the evolvement of a purchase decision process based on the screening

of available products to making a final purchase decision.

The remainder of the paper is organized as follows. In the next section, we define

our objects of investigation – product and review filtering systems. Then, we present

the theoretical foundations and the subsequent research model. Thereafter, we de-

scribe the laboratory experiment and report the findings. Finally, we discuss our

findings with respect to related research and examine the implications for research

and practice.
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4.2 Product and Review Filtering Systems

Filtering systems are information systems that sort items (filter) from a set of items

due to certain criteria defined either by the users of such a system or by the system

itself. Within a purchase decision process, the items that are of major interest are

product descriptions and customer reviews (Benlian et al., 2012). Product filtering

systems allow consumers to either explicitly define constraints (i.e., aspiration levels)

such as a maximal price or to implicitly set criteria for filtering out inadequate prod-

ucts. These systems can use di↵erent sources of data such as product descriptions,

customer reviews and user input (e.g., importance weights or aspiration levels).

Customer reviews aim at helping consumers in diagnosing the quality of a particular

product. However, they are threatened by their own success due to the high number

of available customer reviews, and hence it is di�cult for consumers to find relevant

customer reviews (Scholz and Dorner, 2013). For example, Amazon.com, introduced

a review filtering system with which consumers can easily filter reviews by using the

frequently used words as filter criteria.

In this study, we consider product filtering systems and review filtering systems that

use customer reviews as a database. More specifically, the product features discussed

in customer reviews can be used for filtering products or reviews. The product fea-

tures that are available for a particular product and the level of quality are important

to consumers to know to judge the utility a product o↵ers to her. Thus, filtering

products based on product features extracted from customer reviews might help a

consumer to find prospective products more easily, whereas filtering reviews based

on product features facilitates the diagnosing of the quality of a particular product.

For both filtering systems, the data used for filtering as well as the objects that will

be filtered are shown in Figure 4.1.

Figure 4.1: Product Filtering and Review Filtering System

Both filtering systems likely a↵ect consumers’ purchase decision processes but in

di↵erent ways. Product filtering systems a↵ect the purchase decision process at a
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rather early stage whereas review filtering systems might have an e↵ect on the later

stages.

4.3 Theoretical Foundation

In this section, an overview is provided of the theoretical foundations required to

answer our research questions. First, we explain the purchase decision process and

describe each stage of this process in detail. Second, we present the related work

and show how specific filtering systems, such as recommender systems, influence

each stage of the purchase decision process.

4.3.1 Purchase Decision Process

Consumers use various decision rules to search and evaluate available products and

finally make a purchase decision (Hauser, 2014). In addition, the criteria used by

consumers to stop the search and evaluation process are divergent. Some consumers

aim at finding the product with the highest utility whereas others are satisfied with

a product that surpasses an individually defined utility threshold (Chowdhury et al.,

2009). However, there is consensus in the marketing and information systems liter-

ature that consumers’ purchase decision making in general is a process that consists

of multiple stages (Dorner et al., 2013; Hauser and Wernerfelt, 1990; Wu and Ran-

gaswamy, 2003). Several researchers propose a two-stage purchase decision process

(Gilbride and Allenby, 2004; Hauser and Wernerfelt, 1990; Roberts and Lattin, 1991)

whereas others assume a three-stage decision making process (Dorner et al., 2013;

Wu and Rangaswamy, 2003).

We follow Wu and Rangaswamy (2003) and assume a three-stage purchase deci-

sion process that starts with the screening of available products (awareness set). All

products that pass the screening stage form the consideration set (Hauser and Wern-

erfelt, 1990; Shocker et al., 1991). Consumers use rather simple, noncompensatory

decision rules in the screening stage to eliminate products from the awareness set

that are unattractive (Hauser, 2014; Hauser et al., 2010; Moe, 2006).

The products in the consideration set are evaluated in detail in a second stage. The

result of this evaluation stage is the choice set consisting of all products a consumer is

willing to purchase (Wu and Rangaswamy, 2003). Consumers typically use other and

more complex decision rules in their evaluation than in the screening stage (Moe,

2006). Thus, evaluating a particular product is on average more time-consuming

than screening a particular product.

Finally, the consumer selects a product from the choice set. The selection criterion in

this stage does not need to be the overall utility. Some consumers accept the risk of

selecting a product that does not provide the highest utility to reduce the cognitive
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e↵ort for evaluating products and making a final choice (Chowdhury et al., 2009;

Johanson and Payne, 1985; Payne et al., 1992). Figure 4.2 illustrates the purchase

decision process.

Consideration
Set

Awareness
Set

Choice
Set Choice

Screening Evaluation Selection

Figure 4.2: Purchase Decision Process

Several personal and contextual factors have been found to a↵ect the purchase deci-

sion process (Chakravarti and Janiszewski, 2003; Häubl and Trifts, 2000; Suh, 2009).

We discuss the influence of filtering systems as a particular contextual factor on the

size, quality, and price of the result of each of the three process stages in the next

section.

4.3.2 Influence of Filtering Systems on Purchase Decision

Processes

In particular, prior work investigated the influence of recommender systems on pur-

chase decision processes (Dellaert and Häubl, 2012; Parra and Ruiz, 2009; Pathak

et al., 2010). Recommender systems can be considered to be product filtering sys-

tems that filter products with mainly historical or implicit consumer input (Ghoshal

et al., 2015).

These systems help consumers in forming their consideration and choice sets faster

and more accurately (Dorner et al., 2013; Häubl and Trifts, 2000). The average

utility of a product filtered with a recommender system is higher than the average

utility of a product from the awareness set. However, the marginal expected utility

of screening the next recommended product decreases with the number of previously

inspected products in the presence of a recommender system (Dellaert and Häubl,

2012). Screening the next product is hence less meaningful when using a recom-

mender system than without using such a system. As a consequence, consumers’

consideration sets are smaller and the products in the consideration set are more

homogeneous with respect to their utility (Dorner et al., 2013; Häubl and Trifts,

2000; Parra and Ruiz, 2009). Recommender systems shift consumers’ focus from

screening products toward evaluating products in detail (Dellaert and Häubl, 2012;

Lenton and Francesconi, 2010). There is furthermore evidence that recommender

systems positively influence a consumer’s propensity to convert to a purchaser (Ben-

lian et al., 2012; Pathak et al., 2010).

There is only sparse evidence about the impact of other filtering systems on purchase
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decision processes. Dabrowski and Acton (2013) demonstrate that a relaxation of

user-specific filter constraints increases the quality of the finally selected product.

However, they did not investigate how the decision process is a↵ected by a product

filtering system compared to a situation with no product filtering system.

4.4 Research Model

Product filtering systems are available just at the beginning of the purchase decision

process and hence might a↵ect all three stages of the process. Review filtering

systems are available only if the consumer has selected a product to consider in

detail. Thus, we expect that these filtering systems will have an e↵ect only on the

formation of the choice set as well as on the final choice.

4.4.1 E↵ects of Using a Product Filtering System

4.4.1.1 Consideration Set

The possibility of filtering out some (inappropriate) products reduces the size of the

awareness set and increases the average utility of the products within the awareness

set. The number of products that have a chance to be in the consideration set is thus

reduced if a product filtering system is available. Furthermore, consumers have some

prior information about the utility of the products’ being in the awareness set: they

know that the products respect the filter criteria. The marginal benefits of including

the next product in the consideration set are lower than in a situation without a

product filtering system because of a higher homogeneity of filtered products (Häubl

and Trifts, 2000). We thus expect that consumers who use a product filtering system

will have smaller consideration sets than consumers who do not use such a system.

H1a: The use of a product filtering system leads to a reduction in the number of

products in the consideration set.

We furthermore expect that the average quality of the products in the consideration

set is higher if consumers can use a product filtering system because products that

do not meet the desired criteria can be filtered out.

H1b: The use of a product filtering system leads to a higher average quality of the

products in the consideration set.

If the available filters are not correlated with the price of the products, we do not

expect that the average price of the products in the consideration set will be a↵ected

by the availability of a product filtering system.

H1c: The use of a product filtering system does not lead to di↵erent prices of products

in the consideration set if the filter criteria are not correlated with the price of the

products.
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4.4.1.2 Choice Set

Consumers seriously consider the products in the consideration set during the eval-

uation stage to determine their utilities and to decide which products to transfer to

their choice set. The size of the choice set is therefore limited by the size of the con-

sideration set. Because we expect smaller consideration sets when consumers use a

product filtering system, we can also expect smaller choice sets if a product filtering

system is used. However, we also expect that the products in the consideration set

to be of higher average quality when consumers use a product filtering system. Fur-

thermore, the products in the consideration set are more homogeneous with respect

to their quality when inappropriate products can be filtered out. Smaller consid-

eration sets typically also indicate lower heterogeneity in the considered products’

utility (Häubl and Trifts, 2000). Prior work has shown that the di�culty in select-

ing products increases when the heterogeneity of the products in the consideration

set decreases (Dhar, 1997; Dhar and Simonson, 2003). Dorner et al. (2013) demon-

strate that the probability that a product is transferred from the consideration set

to the choice set increases when consumers can use decision support systems that

decrease the heterogeneity of the products’ utility in the consideration set. We thus

expect that consumers who use a product filtering system will have a larger choice

set relative to their consideration set size.

H2a: The use of a product filtering system leads to an increase in the choice set size

relative to the consideration set size.

Prior research cites evidence that the average quality of “goal-satisfying” products

(i.e., products in the choice set) is lower when search costs are low, due to the

availability of decision support systems (Diehl, 2005; Diehl et al., 2003). Product

filtering systems reduce search costs because they filter out inadequate products.

Nevertheless, we expect a higher quality of the products included in the consideration

set and hence the products that can be in the choice set (see H1b). Furthermore,

filtering ensures that the minimum average quality is above the average quality when

no filtering is available. Filtering signals that the products in the awareness set have

a higher average quality so that consumers might put less e↵ort into evaluating the

quality of the products in the consideration set. We thus expect no di↵erence in

terms of the average quality between choice sets from consumers who use a product

filtering system and consumers who do not.

H2b: The use of a product filtering system does not a↵ect the average quality of the

products in the choice set.

If the quality of the consideration set is already high due to the possibility of filtering

out inadequate products, consumers can put more concentration into the price or

price-quality evaluation than on the evaluation of pure quality. Diehl (2005) provide
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evidence that consumers concentrate more on price than on quality if the relative

importance of price is higher than the slope of the quality on price. We therefore

expect that the use of a product filtering system will reduce the average price of the

alternatives in the choice set.

H2c: The use of a product filtering system reduces the price of the products in the

choice set.

4.4.1.3 Choice

We argue that a product filtering system does not a↵ect the quality of the products

included in the choice set. Thus, selecting a product from a choice set formed with

the help of a product filtering system will lead to a quality that is comparable to

selecting from a choice set formed without access to a product filtering system.

H3a: The use of a product filtering system does not a↵ect the quality of the finally

selected product.

The lower price of the products in the choice set will consequently lead to a lower

price of the selected product when using a product filtering system. We hence expect

a higher consumer surplus when consumers have the opportunity to use a product

filtering system.

H3b: The use of a product filtering system reduces the price of the selected product.

4.4.1.4 Time of the Purchase Decision Process

We expect that consumers’ e↵ort in screening products and building a consideration

set is significantly reduced due to i) a smaller awareness set and ii) a higher utility

of the products in the result set. We further expect that this lower consumer e↵ort

will reduce the total time a consumer invests in the purchase decision process.

H4: The use of a product filtering system reduces the total time of the purchase

decision process.

4.4.2 E↵ects of Using a Review Filtering System

4.4.2.1 Consideration Set

A review filtering system supports consumers in filtering customer reviews for a

particular product. Customer reviews are considered to evaluate the quality of a

product. We hence expect that review filtering systems will not influence the size,

quality or price of the products in the consideration set.

H5a: The use of a review filtering system does not a↵ect the number of products in

the consideration set.
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H5b: The use of a review filtering system does not a↵ect the average quality of the

products in the consideration set.

H5c: The use of a review filtering system does not a↵ect the average price of the

products in the consideration set.

4.4.2.2 Choice Set

A review filtering system makes it easier for consumers to find customer reviews

that discuss the product features that are important to them. This will likely reduce

the time necessary to determine whether a product is worth buying. We expect

that the presence of a review filtering system will induce a shift in the purchase

decision process from evaluating only a few products in depth towards evaluating

more products with less e↵ort. Dellaert and Häubl (2012) found support for such

a shift in the inverse direction in the presence of a recommendation system that

assists consumers especially in the screening stage. Because a review filtering system

supports consumers in the evaluation stage, we propose that consumers can evaluate

more products with the same e↵ort than they would without the presence of a review

filtering system.

H6a: The use of a review filtering system increases the number of products in the

choice set.

Choice sets likely contain products of similar quality (Lehmann and Pan, 1994)

because consumers can better justify a compromise than an extreme product (Si-

monson, 1989). A review filtering system provides the possibility of easily identifying

customer reviews that discuss the quality features that are important for a consumer

in a particular situation. We thus expect that consumers will likely choose products

with a higher quality in the choice set.

H6b: The use of a review filtering system increases the average quality of the products

in the choice set.

Price is a typical search attribute and can be evaluated without any uncertainty

based on retailer or manufacturer information. Customer reviews are not necessary

and do not help in the evaluation of the price of a particular product. Therefore, we

expect no e↵ect on the price of the products in the choice set in the presence of a

review filtering system.

H6c: The use of a review filtering system does not a↵ect the average price of the

products in the consideration set.

4.4.2.3 Choice

We argue that the quality of the products included in the choice set is positively

a↵ected by a review filtering system (H6b). We hence expect that the presence of a
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review filtering system will improve the quality of the finally chosen product.

H7a: The use of a review filtering system will increase the quality of the selected

product.

Because customer reviews typically do not help to evaluate the price of a product,

a review filtering system does neither a↵ect the price of the products in the choice

set nor the price of the finally selected product.

H7b: The use of a review filtering system will not a↵ect the price of the selected

product.

4.4.2.4 Time of the purchase decision process

In the presence of a review filtering system, consumers need to spend less e↵ort

in the evaluation of a product. Consequently, we expect that consumers evaluate

more products (see hypothesis H6a). Decision rules to evaluate a product are more

complex than the rules applied to screen a product (Gensch, 1987; Moe, 2006). Thus,

we expect that a consumer must invest much more e↵ort in evaluating a product

than she must invest in screening a product. Therefore, although we expect that

consumers will build larger choice sets when they have access to a review filtering

system, we also expect that they will need less time to make a final selection.

H8: The use of a review filtering system reduces the total time of the purchase

decision process.

Figure 4.3 summarizes our research model.

Figure 4.3: Research Model
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4.5 Empirical Investigation

We conducted a laboratory experiment in the PAULA1 lab at the University of

Passau to investigate our research model. In this section, we describe the treatments,

the experimental procedure and the sample used for the experiment.

4.5.1 Treatments

We investigated the e↵ects of product filtering and review filtering systems on con-

sumers’ purchase decision processes with the 2 x 2 between-subjects design shown in

Table 4.1. The basis of all treatments is a self-implemented hotel booking platform

that operates on a database including 640 hotels located in Vienna. We chose hotels

for two main reasons. First, hotels are a very popular good, with which we could

assume all our participants to be reasonably familiar. Second, evaluating a hotel

description is possible without any specific expert knowledge. The hotels are in a

price range between 43 and 712 Euros with a median of 103 Euros per night. Each

hotel is described by a price, customer reviews, and an average customer rating.

Hotel descriptions were extracted from a large real-existing booking platform, and

the names as well as locations were anonymized.

Table 4.1: Experimental Design
Treatment Product Filtering System Review Filtering System
1 – –
2 X –
3 – X
4 X X

Our self-implemented hotel booking platform supports all three stages of the pur-

chase decision process. A list of all available hotels (awareness set) is presented on

the start page. The treatments that allow product filtering (i.e., treatments 2 and 4)

present a list of product features frequently discussed in the customer reviews of all

640 hotels (see Figure 4.4). By clicking on a particular product feature, the list of

hotels is filtered such that only hotels with customer reviews discussing the selected

feature are shown. Hotels are described by an identifier, the average customer rating

and the price in the hotel list.

Participants can click on each hotel to obtain a description that consists of the hotel

identifier, the price, average customer ratings with respect to seven categories (com-

fort, equipment, location, free Wi-Fi, sta↵, price performance ratio and overall), and

a list of all customer reviews for the focal hotel (see Figure 4.5). Treatments that

1The PAULA lab is a professionally equipped and managed laboratory with computer cubicles that
allowed us to control several potential confounding variables such as communication between
the participants.
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allow review filtering (i.e., treatments 3 and 4) present the same list of frequently

discussed product features as presented on the hotel overview page by treatments 2

and 4. Participants can filter the customer reviews by clicking on a specific product

feature.

Figure 4.4: Translated Mock-up of the Hotel Overview Page with Product Filtering
Possibility

Figure 4.5: Translated Mock-up of the Hotel Detail Page with Review Filtering Pos-
sibility

Each hotel can be bookmarked. A link to the bookmark page is available on each

other page so that hotels can be removed from the bookmark list at any time.
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The product features were manually extracted from all customer reviews in our

database. Because many extracted product features (e.g., parking space, parking lot)

referred to one and the same feature (e.g., parking), we aggregated the extracted

product features and finally came up with a list of eight product features (food,

fitness, equipment, location, parking, service, tra�c connection, and furnishing).

4.5.2 Experimental Procedure

The experiment proceeded as follows. Each participant was randomly assigned to

one of the four treatments. Each participant received an introduction sheet including

i) a description of the study context, ii) instructions for the experiment, and iii) a

short user’s manual for the self-implemented booking platform. The participants

were instructed to assume that they are planning to travel to Vienna for two nights.

They should look for a hotel o↵ering parking and fitness possibilities and costs not

more than 250 Euro in total. There was no time limit for the hotel searching task,

and there was no need to come up with a final choice (a no-choice option was allowed).

After reading the instructions, the participants could open the laptops and begin

searching for an adequate hotel with one of the described treatments.

The participants could finish the hotel search at any time by clicking on a button

labeled “Finish Experiment,” which was available on the hotel overview page. When

clicking on this button, the participants were instructed to have all hotels in the

bookmark list they have positively evaluated and to be basically willing to book.

After the hotel search task, the participants answered an additional questionnaire

with questions about their finally selected hotel, their experience with hotel booking

platforms, the number of holiday trips per year, and demographic characteristics.

4.5.3 Variables

According to our research model, we measured di↵erent variables for each step of

the purchase decision process. More specifically, we measured the size of the con-

sideration and choice set, the quality of the alternatives in consideration and choice

set and of the final choice and the price of all alternatives in the consideration and

choice set as well as the price of the finally selected hotel. We therefore define the

consideration set as consisting of all hotels for which the detail page has been re-

quested. The choice set is defined by all hotels that are finally on the bookmark list.

Because a hotel can only be added to the bookmark list from the detail page, we can

ensure that all hotels that are in the choice set are also in the consideration set. The

final choice is a hotel from the choice set (i.e., bookmark list) that the participant

would definitely book for a two-day trip.

We simply counted the number of hotels in the consideration and choice sets to ob-

tain the size of the two sets. The quality was measured by counting the number of
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hotels o↵ering parking and fitness possibilities. This number is divided by two times

the consideration or choice set size to obtain a value scaled in 0; 1] that expresses

how many hotels fulfill the requirements. As the price for the consideration (choice)

set, we use the average price across all hotels in the consideration (choice) set.

4.5.4 Pretest

We carried out one-on-one pretests with four students who did not take part in

the final experiment. Afterwards, the participants were asked to write down their

opinions of and thoughts on every step of the experiment. The resulting comments

were respected in the final experiment. We also tested the manipulation checks and

found that all pretest participants correctly applied the filtering systems.

4.5.5 Sample

We invited 140 undergraduate and graduate students of a public university in Ger-

many to take part in a laboratory experiment. A total of 114 participated in and

successfully completed the experiment. A total of 29 participants used the first

treatment (no filtering), 25 used the second treatment (product filtering), 29 used

the third treatment (review filtering) and 31 used the fourth treatment (product

and review filtering). Di↵erences in treatment group sizes are due to the random

assignment of participants to treatments. Each participant was paid 10 Euros. The

participants’ age, gender, booking platform usage and number of holiday trips is

presented in Table 4.2 for each treatment. ANOVA tests indicate no significant

di↵erences for all variables.

Table 4.2: Sample Characteristics and ANOVA Results (p-value) for Di↵erences be-
tween Treatment Groups

Variable Treatment 1 Treatment 2 Treatment 3 Treatment 4 p-value
Age 22.32 22.10 21.84 22.86 0.571
Females 67.74% 58.62% 72.00% 75.86% 0.504
Booking platform usage 86.67% 82.76% 72.00% 93.33% 0.186
Holiday trips per year 2.68 3.10 3.40 2.97 0.539
N 31 29 25 29 –

4.6 Data Analysis and Results

4.6.1 Manipulation Check

Each participant visited the detail page of at least three hotels. Therefore, we can

assume that each participant had the chance to use the product filter and the review

filter if available. We also analyzed how often our participants used a product filter

criterion or review filter criterion. The results are presented in Table 4.3.
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Table 4.3: Usage of Filter Systems

Treatment
Product Filter Criteria Review Filter Criteria
Min Median Max Min Median Max

Treatment 1 – No Filter Systems 0 0 0 0 0 0
Treatment 2 – Product Filter System 2 5 17 0 0 0
Treatment 3 – Review Filter System 0 0 0 12 135 238
Treatment 4 – Both Filter Systems 1 4.5 16 4 32 256

All participants who had the opportunity to use the product filtering and/or the

review filtering system filtered products and/or reviews by defining at least one

criterion. Thus, we can assume that our participants correctly perceived the presence

or absence of the filtering systems.

4.6.2 Descriptive Analysis

Table 4 provides an overview of our measured purchase decision process variables.

The participants who used treatment 1 (no filter system) finally chose the most

expensive hotel across all treatments. They also spent more time until they finally

found an adequate hotel. The finally selected hotel of the participants in treatment

group 4 (both filter systems are available) is on average approximately 24 Euros

cheaper than the hotel selected by the participants in treatment group 1.

Table 4.4: Mean (Standard Deviation) of our Purchase Decision Process Variables
Variable Treatment 1 Treatment 2 Treatment 3 Treatment 4

Consideration Set
Size 67.16 (69.62) 12.79 (6.06) 90.96 (50.97) 24.27 (33.32)
Quality 0.53 (0.08) 0.96 (0.06) 0.52 (0.14) 0.92 (0.13)
Price 200.87 (31.70) 195.12 (16.91) 200.86 (20.82) 188.01 (14.71)

Choice Set
Size 4.71 (2.69) 6.10 (3.29) 9.68 (6.14) 10.87 (0.26)
Quality 0.93 (0.13) 0.99 (0.03) 0.99 (0.04) 0.99 (0.03)
Price 194.01 (18.69) 179.53 (12.33) 190.95 (12.93) 180.14 (10.99)

Choice
Quality 0.97 (0.12) 1.00 (0.00) 0.98 (0.10) 1.00 (0.00)
Price 202.29 (33.19) 180.38 (21.05) 191.48 (26.65) 178.23 (18.47)

Total Time (in minutes) 50.48 (10.63) 37.48 (13.52) 37.74 (13.90) 33.33 (11.79)

The consideration set size and the choice set size are relatively high compared to the

set sizes reported for other products (Dorner et al., 2013; Häubl and Trifts, 2000).

One reason might be that the hotels were sparsely described, thus our participants

did not need to read and digest much product information.

4.6.3 E↵ects on the Consideration Set

The consideration set size is an over-dispersed count variable. We hence conducted

a negative binomial regression to investigate the e↵ects of our treatments on the

consideration set sizes of the participants in the experiment. We defined the quality
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to be a binomial variable and thus analyzed the di↵erences with respect to the quality

with a logistic regression. We used a linear regression with an OLS estimator for

comparing the price of the hotels in the consideration set across our four treatment

groups. The results of all regression analyses for investigating the e↵ects on the

consideration set are presented in Table 4.5.

Table 4.5: E↵ects on the Consideration Set
Variable Size Quality Price
Intercept 4.207 (0.135)*** -0.721 (0.027)*** 200.865 (3.992)***
Product Filtering -1.658 (0.200)*** 0.671 (0.591)*** -5.748 (5.742)
Review Filtering 0.303 (0.202) -0.012 (0.376) -0.003 (5.974)
Product Filtering x Review Filtering 0.337 (0.286) -0.152 (0.076) -7.100 (8.318)

Significance codes: ⇤ ⇤ ⇤ p < 0.001, ⇤ ⇤ < 0.01, ⇤ < 0.05

We expected a reduced consideration set size for the participants who used the

product filtering system. Thus, we can support H1a. Two reasons for the reduction

of the consideration set in the presence of a product filtering system are possible.

First, filtering reduces the awareness set such that several products might not be

available to be included in the consideration set after filtering. Second, the filtered

products will have a higher utility reducing the e↵ort to find a product that sur-

passes a specific utility threshold. We conducted another analysis to investigate the

reason for the reduction in the consideration set size. Therefore, we created a vari-

able that expresses the consideration set size depending on the number of filtered

products. More specifically, we computed the fraction of the number of considered

hotels and the actual number of filtered products. Because the participants were

able to change the filter criteria, we computed this fraction for each filter step and

used the mean overall fractions as the adjusted consideration set size. For exam-

ple, if a participant activates the filter criterion “location” and then screens three

products, the fraction is three divided by the number of filtered products – in this

case, 322. If she then deactivates the filter criterion and screens two other hotels,

we calculate the second fraction as 2
640 . The adjusted consideration set size finally

is
�

3
322 +

2
640

�
/2 = 0.00622. We compared the four treatment groups with respect

to the adjusted consideration set size with a logistic regression and did not find a

significant e↵ect of the filtering systems (p > 0.5). This indicates that the reduction

of the awareness set instead of the higher utility is responsible for the smaller con-

sideration sets of the participants who used the product filtering system.

Product filtering helps to filter out products with a low quality (i.e., products that

do not fulfill some defined constraints). Thus, the quality of the products in the

consideration set has been found to be higher for participants who used the product

filtering system. Hence, we can support H1b.

The product filtering system used in the empirical investigation o↵ers consumers
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the possibility of using product features frequently discussed in customer reviews as

filter criteria. Because the price is a search attribute, it is typically not discussed in

customer reviews. Hence, the product filter criteria are rather not correlated with

price, and we did not expect any e↵ect of the product filtering system on the price

of the products in the consideration set. The results in Table 4.5 support this hy-

pothesis (H1c).

The reviews for a hotel can be filtered just after the hotel successfully passed the

screening stage and has been included in the consideration set. We thus did not

expect any e↵ects of the review filtering system on the consideration set. Table 4.5

indicates that the review filtering system indeed did not a↵ect the size, quality or

price of the consideration set, supporting hypotheses H5a, H5b, and H5c.

4.6.4 E↵ects on the Choice Set

We also found the choice set size to be over-dispersed and hence analyzed the e↵ect

of the four treatments on the choice set size with a negative binomial regression. We

used the consideration set size as an additional covariate in this regression because

we assume the filtering systems have an e↵ect on the choice set size relative to the

consideration set size. We applied a logistic regression for investigating the e↵ects on

the quality and a linear regression to identify the e↵ects on the price of the products

in the choice set. The results of these regression analyses are presented in Table 4.6.

Table 4.6: E↵ects on the Choice Set
Variable Size Quality Price
Intercept 1.029 (0.141)*** -0.075 (0.084) 194.006 (2.543)***
Product Filtering 0.683 (0.171)*** 0.070 (0.113) -14.478 (3.658)***
Review Filtering 0.531 (0.154)*** 0.064 (0.106) -3.062 (3.806)
Product Filtering x Review Filtering -0.107 (0.209) -0.064 (0.141) 3.678 (5.300)
Consideration Set Size 0.007 (0.001)*** – –

Significance codes: ⇤ ⇤ ⇤ p < 0.001, ⇤ ⇤ < 0.01, ⇤ < 0.05

Both filtering systems positively influence the choice set size. Consumers consider

more products in detail relative to the number of products in the consideration

set. Hypotheses H2a and H6a are thus supported. As expected, we also did not

find any e↵ect of the product filtering system on the quality of the products in the

choice set (H2b). The review filtering system should help consumers to more easily

evaluate a product’s quality in detail. This is underscored by the fact that the

consumers who used the review filtering system evaluated more products relative to

their consideration set size. However, the average quality is not significantly higher

when using a review filtering system than not. This might be because the high

quality of the products in the choice set of the participants who did not use a review

filtering system (see Table 4.4). Even the participants who used neither the product



Filtering based on Customer Reviews 79

filtering nor the review filtering system had choice sets with an average quality of 93%

. With 99%, the average quality is higher for the participants who used the review

filtering system; however, this rather small di↵erence is not statistically significant.

We hence found no support for H6b.

The price of the products in the choice set is on average approximately 14 Euros

lower in the presence of a product filtering system. Because we did not find a

significant e↵ect of product filtering on the price of the products in the consideration

set, we can assume that consumers who used the product filtering system have

switched from a quality focus to a price focus. We estimated the importance weights

used by the consumers for screening and evaluating with a random-e↵ects model to

obtain further insights into the focus-shift from quality to price in the evaluation

stage by the usage of a product filtering system. We use the decision of whether a

product from the awareness set (consideration set) is included in the consideration

set (choice set) as the dependent variable. We further use the normalized price and

quality as the covariates. The normalization ensures that price and quality are both

in the interval [0;1] and that the highest price (lowest quality) level is 0 whereas

the lowest price (highest quality) level is 1. This enables us to directly compare

the regression coe�cients for price and quality. We further estimate participant-

specific random intercepts because each participant screened multiple products and

evaluated multiple products. The additional fixed-e↵ect analyses are depicted in

Table 4.7 and Table 4.8.

Table 4.7: Importance Weights for Screening Products
Variable Treatment 1 Treatment 2 Treatment 3 Treatment 4
Intercept -12.344 (0.521)*** -24.295 (1.507)*** -10.412 (0.483)*** -24.294 (1.170)***
Price 9.975 (0.522)*** 15.434 (1.519)*** 8.425 (0.464)*** 17.548 (1.157)***
Quality 1.954 (0.081)*** 8.893 (0.364)*** 1.791 (0.075)*** 7.218 (0.221)***
Price- Quality- Ratio 5.105 1.736 4.704 2.431

Significance codes: ⇤ ⇤ ⇤ p < 0.001, ⇤ ⇤ < 0.01, ⇤ < 0.05

Table 4.8: Importance Weights for Evaluating Products
Variable Treatment 1 Treatment 2 Treatment 3 Treatment 4
Intercept -11.943 (2.984)*** -29.822 (4.842)*** -27.821 (3.455)*** -31.124 (3.891)***
Price 5.175 (3.144) 24.587 (4.566)*** 17.589 (3.456)*** 22.302 (3.766)***
Quality 6.389 (0.507)*** 7.256 (1.617)*** 11.749 (0.945)*** 11.484 (1.172)***
Price- Quality- Ratio 0.810 3.389 1.497 1.942

Significance codes: ⇤ ⇤ ⇤ p < 0.001, ⇤ ⇤ < 0.01, ⇤ < 0.05

The results show that the products’ price is relatively more important in the eval-

uation than in the screening stage in the presence of a product filtering system

(treatment 2). Without any filtering system, our participants were mainly focused

on price in the screening stage (i.e., when building the consideration set), and they

considered quality to be slightly more important than price in the evaluation stage
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(i.e., when building the choice set). With the possibility of using a product filtering

system, the importance of a product’s price was over three times higher than its

quality in the evaluation stage. Thus, a product filtering system causes a shift from

quality-focused product evaluations to price-focused product evaluations. Thus, we

can support hypothesis H2c.

In support of H6c, we did not find any e↵ect of the review filtering system on the

price of the hotels in the choice set.

4.6.5 E↵ects on Choice

All participants finally found a hotel they were willing to book for a two-day stay in

Vienna. We analyzed the e↵ects of the filtering systems on the quality of the finally

selected product with a logistic regression and the e↵ects on the price of the chosen

product with a linear regression.

Table 4.9: E↵ects on Choice

Variable Quality Price
Intercept 3.401 (1.016)*** 202.29 (4.59)***
Product Filtering 18.16 (5428.33) -21.91 (6.60)**
Review Filtering 0.49 (1.75) -10.81 (6.87)
Product Filtering x Review Filtering -0.49 (7612.57) 8.66 (9.56)

Significance codes: ⇤ ⇤ ⇤ p < 0.001, ⇤ ⇤ < 0.01, ⇤ < 0.05

As expected, product filtering has no significant influence on the quality of the

finally chosen product (see Table 4.9). Hypothesis H3a is thus supported. Almost

all participants chose a product that fulfilled all necessary constraints (i.e., parking

and fitness possibility). We hence did not find a significant di↵erence between the

product quality of the participants who used the review filtering system and that of

the participants who did not. Hypothesis H7a is not supported.

The participants who had the possibility of filtering hotels finally selected a hotel

that is on average more than 20 Euros cheaper than the hotels selected by the

participants who could not filter hotels. This di↵erence is statistically significant

and supports hypothesis H3b. We also found support for hypothesis H7b because

the review filtering system did not significantly a↵ect the price of the finally chosen

hotel.

4.6.6 E↵ects on Total Time

We analyzed the e↵ect of the filtering systems on the total time the participants

required to come up with a final choice with a linear regression. The results are

depicted in Table 4.10.
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Table 4.10: E↵ects on Total Time
Variable Total Time
Intercept 50.48 (2.234)***
Product Filtering -13.00 (3.21)***
Review Filtering -12.74 (3.34)***
Product Filtering x Review Filtering 8.58 (4.66)

Significance codes: ⇤ ⇤ ⇤ p < 0.001, ⇤ ⇤ < 0.01, ⇤ < 0.05

Both filtering systems support consumers in their purchase decision process and

reduce the e↵ort that must be invested by the consumers to decide. In support

of hypotheses H4 and H8, the participants who used a product filtering and/or

a review filtering system needed significantly less time for the complete purchase

decision process.

4.6.7 Summary

A summary of all hypotheses tests is presented in Table 5.11. Our results show that

product filtering and review filtering systems that are based on product features

extracted from customer reviews do not improve the quality of the finally selected

product. However, both systems drastically reduce the time needed by consumers

to invest to make a final decision.

Table 4.11: Hypotheses Tests

System Hypothesis Result

Product

Filtering

Consideration

Set

H1a: The use of a product fil-

tering system leads to a reduc-

tion in the number of products

in the consideration set.

supported

H1b: The use of a product fil-

tering system leads to a higher

average quality of the products

in the consideration set.

supported

H1c: The use of a product fil-

tering system does not lead to

di↵erent prices of products in

the consideration set if the fil-

ter criteria are not correlated

with the price of the products.

supported
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Choice Set

H2a: The use of a product fil-

tering system leads to an in-

crease in the choice set size rel-

ative to the consideration set

size.

supported

H2b: The use of a product fil-

tering system does not a↵ect

the average quality of the prod-

ucts in the choice set.

supported

H2c: The use of a product fil-

tering system reduces the price

of the products in the choice

set.

supported

Choice
H3a: The use of a product fil-

tering system does not a↵ect

the quality of the finally se-

lected product.

supported

H3b: The use of a product fil-

tering system reduces the price

of the selected product.

supported

Time H4: The use of a product fil-

tering system reduces the total

time of the purchase decision

process

supported

Review

Filtering

Consideration

Set

H5a: The use of a review fil-

tering system does not a↵ect

the number of products in the

consideration set.

supported

H5b: The use of a review fil-

tering system does not a↵ect

the average quality of the prod-

ucts in the consideration set.

supported

H5c: The use of a review fil-

tering system does not a↵ect

the average price of the prod-

ucts in the consideration set.

supported
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Choice Set

H6a: The use of a review

filtering system increases the

number of products in the

choice set.

supported

H6b: The use of a review fil-

tering system increases the av-

erage quality of the products in

the choice set.

not supported

H6c: The use of a review fil-

tering system does not a↵ect

the average price of the prod-

ucts in the consideration set.

supported

Choice
H7a: The use of a review fil-

tering system will increase the

quality of the selected product.

not supported

H7b: The use of a review fil-

tering system will not a↵ect

the price of the selected prod-

uct.

supported

Time H8: The use of a review fil-

tering system reduces the total

time of the purchase decision

process.

supported

Furthermore, a product filtering system ensures that the products considered in

early stages of the purchase decision process are already of high quality. This allows

consumers to be more focused on price than quality when evaluating a product,

which ultimately leads to a selection of products that are significantly cheaper. On

average, the participants who used the product filtering finally selected a hotel that

is approximately 9% cheaper than those selected by participants who did not use a

filtering system. Figure 4.6 depicts the quality trend, and Figure 4.7 presents the

price trend over the purchase decision process for product filtering, review filtering

and no filtering.

The consumers increase their consideration set quality by using a product filtering

system. The filtering of products furthermore reduces the number of products that

can possibly be added to the consideration set, which results in smaller consideration

sets of higher quality. Therefore, a product filtering system facilitates consumers in

focusing on other attributes (e.g., price or nonfilterable attributes) in the evaluation

stage.
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Figure 4.7: Price Trend for Filtering Systems

4.7 Discussion

This study investigates the e↵ects of product filtering and review filtering systems

operating on customer reviews on consumers’ purchase decision processes. More

specifically, we investigated the impact of the two filtering systems on consumers’

consideration set, choice set and final choice in a controlled laboratory experiment.

Whereas product filtering systems a↵ect the purchase decision process in the first

stage (screening), review filtering systems have been found to a↵ect only the second

(evaluation) stage. Although the two filtering systems have not been found to a↵ect

the quality of the finally selected product, the stages before a consumer can make a

final purchase decision are very di↵erent. Both systems allow the consumers to make
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a final purchase decision in maximally 75% of the time required by the consumers

without a filtering system. The consumers who use a product filtering system es-

pecially save time by forming significantly smaller consideration sets, whereas the

consumers who use a review filtering system save time with a simplified product

evaluation. The higher quality of products in the consideration by the consumers

who use a product filtering system furthermore causes a shift in the importance

weights for price and quality.

4.7.1 Research Implications

Our findings have several important implications for understanding consumers’ pur-

chase decision-making behavior. First, in line with Dellaert and Häubl (2012), we

argue that consumers evaluate more products if decision support systems are avail-

able that either make the evaluation easier or that make the preparation of a set of

products easier to evaluate. The decision about whether a next product should be

evaluated in detail depends on the e↵ort a consumer must invest and the expected

utility of the product to be evaluated next (Dellaert and Häubl, 2012; Hauser and

Wernerfelt, 1990). A review filtering system makes it easier for consumers to diag-

nose the quality of a certain product and hence reduces the e↵ort a consumer must

invest. A product filtering system, in contrast, ensures a high utility of products

because low-utility products can be filtered out. Second, we found evidence for a

shift in the aspects mainly considered in the evaluation stage. Without any filtering

system, consumers’ consideration sets consist of a high proportion of low quality

products. Thus, consumers place high importance on evaluating a product’s quality

when forming the choice set. Because quality in the consideration set is much higher

on average when consumers use a product filtering system, they consider quality

only with rather low importance in the evaluation stage and can thus focus on other

aspects such as price.

Finally, we argue in line with Wu and Rangaswamy (2003) and Dorner et al. (2013)

that purchase decision processes consist of three steps (screening, evaluation, and

selection), and we present an approach for measuring the results of each of the

three steps (i.e., consideration set, choice set, and choice). Our approach uses only

behavioral data and is applicable for many online platforms. We define the consid-

eration set to include products that were selected from a product overview page that

provides product details. As such, a selection typically corresponds to a click; the

measurement of the consideration set is rather easy. The choice set is defined to con-

sist of all products that were seriously considered for purchase. We used the concept

of a bookmark list to measure the choice set. A choice set is comparable to a list

of bookmarks in that they are used for objects with some importance like products

in a choice set. Adding a product to the bookmark list also corresponds to a click
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that can be easily observed in an experiment. A consumer’s choice is defined as the

product that is purchased or marked for purchase (e.g., added to a shopping cart)

and can also be measured by analyzing a consumer’s clicks in an online platform.

4.7.2 Managerial Implications

Our findings also provide implications for consumers and online platform providers.

Consumers benefit from product- and review filtering systems in the reduced e↵ort

they need to invest to make a purchase decision. The reduced e↵ort will likely im-

prove consumers’ satisfaction with an online platform, which will ultimately lead to

an increase in consumers’ loyalty (Cyr, 2008). Consumers who use a product filtering

system furthermore gain a higher consumer surplus. The participants who used the

product filtering system in our experiment had a consumer surplus of approximately

70 Euros, whereas the participants who did not use any filtering system had only a

consumer surplus of approximately 48 Euros. This higher consumer surplus is likely

to additionally improve consumers’ loyalty to an online platform.

Thus, we recommend that online platform providers should implement product

filtering- and review filtering systems to reduce consumers’ e↵orts as much as possible

and simultaneously improve consumers’ surplus. Although review filtering systems

do not significantly a↵ect the price of the finally chosen product, such systems reduce

the time that must be invested by a consumer to make a purchase decision. Online

platform providers should furthermore o↵er the possibility for consumers to store

products on a bookmark list. This possibility allows online platform providers to

obtain deeper insights into the purchase decision processes of their customers. For

example, they can analyze the attribute levels that determine why one product has

been added to the bookmark list and another one not. Such an analysis will help

platform providers to derive marketing strategies and make personalized o↵ers.

4.7.3 Limitations and Future Research

This paper has some limitations that warrant future research. First, we performed

a laboratory experiment to control for confounding variables and improve internal

validity. Consumers’ purchase decision process is subject to several confounding

variables such as the influence of additional product information, which may have

an impact on the measured e↵ects of product- and review filtering systems on real

online platforms. Future research should hence investigate the e↵ects of product and

review filtering systems in field experiments to improve the generalizability of our

findings. Second, we investigated the e↵ects of the filtering systems only with one

product category. The presented e↵ects might di↵er in their strength for di↵erent

product categories. Investigating the e↵ects of product filtering based on customer

reviews and review filtering systems on purchase decision processes for di↵erent
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product categories is thus an interesting avenue for future research. Third, although

this study o↵ers important insights into the evolvement of a purchase decision in

the presence and absence of a product filtering and a review filtering system, no

insights are possible about how the addressed filtering systems lead to cognitive and

emotional changes of the purchase decision-makers. Biodata, such as fMRI scans or

EEG data, are required to obtain deeper insights into the cognitive and emotional

state of consumers during a purchase decision process (vom Brocke and Liang, 2014).

We encourage researchers to conduct neuroscience studies and map the data of these

studies with our study.
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Boost for your Sales

Abstract
Product descriptions are a source of information online consumers can use to reduce

product uncertainty. Recent research provides evidence that consumers favor us-

ing information from other consumers, such as customer reviews, over information

provided by the retailer or manufacturer, such as product descriptions. We comple-

ment this research and show that the presence of product descriptions significantly

influences products’ sales and that this influence decreases with an increasing num-

ber of customer reviews. We furthermore demonstrate that a product description’s

information amount positively a↵ects a product’s sales. The number of customer

reviews available for a product also moderates the e↵ect of the information amount

of a product description on sales.

Authors: Tristan Wimmer, Michael Scholz

5.1 Introduction

Online consumers face a barrier in physical experience of products. While consumers

in o✏ine markets can touch the product of their choice, online consumers hardly can

evaluate a product’s physical characteristics prior to purchase. Consumers in online

as well as o✏ine markets typically perceive uncertainty in purchase decision pro-

cesses (Akerlof, 1970; Dimoka et al., 2012; Overby and Jap, 2009). Pavlou et al.

(2007) investigated reasons for perceived product uncertainty by considering the re-

lationship between sellers and consumers as a principal-agent problem. Amongst

others, they identified information asymmetry as one of the most important deter-

minants of perceived uncertainty. This information asymmetry refers to the seller

or the product and finally leads to seller uncertainty or product uncertainty (Pavlou

et al., 2007; Ghose, 2009). Seller uncertainty is defined as consumer’s di�culty to

predict a seller’s behavior in the future whereas product uncertainty refers to the dif-

ficulty to evaluate a product’s quality prior to purchase (Dimoka et al., 2012; Hong

and Pavlou, 2014). Consumers in o✏ine markets can inspect a product’s physi-

cal characteristics and can get personal advice from the seller. Consumers in online

stores, such as Amazon or Staples, predominantly have two sources of information to

learn about a product’s characteristics: customer reviews and product descriptions
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(Ghose and Han, 2014). Consumers typically have a higher trust in information from

other consumers than from a producer or a marketplace (Benlian et al., 2012). Re-

cent research thus has intensively investigated the e↵ect of customer reviews, as one

source of information, on consumers’ purchase decision processes and retailers’ sales

(Forman et al., 2008; Purnawirawan, 2014; Zhu and Zhang, 2010). These studies

demonstrate that customer reviews a↵ect purchase decisions and ultimately sales to

a large extent. The more reviews are available, the lower is a consumer’s perceived

product uncertainty (Cui et al., 2012; Ehrmann and Schmale, 2008). Consumers

tend to consult other information sources (e.g., product descriptions, third-party

assurances) if no or only a few customer reviews are available. Dimoka et al. (2012)

found evidence that product descriptions reduce product uncertainty most signif-

icantly among several information sources, such as product descriptions, product

inspections, history reports and product warranties. Further, Detlor et al. (2003)

found evidence, that product descriptions are important in pre-purchase online in-

formation seeking. Hence, product descriptions are another important source for

reducing product uncertainty with two major advantages compared to customer

reviews: First, product descriptions are also available in the absence of customer

reviews, because they are provided by the seller. Thus, product descriptions are of-

ten the only source of information consumers’ can digest to learn about a product’s

characteristics prior to purchase. And second, sellers can control product descrip-

tions and hence the extent to which they reduce product uncertainty. Despite these

major advantages, product descriptions and their impact on sales has been sparsely

examined in recent research. We thus focus on the e↵ect of product descriptions on

the reduction of product uncertainty. We follow Pavlou et al. (2007) and assume

that a lower product uncertainty leads to higher sales and analyze the impact of

product descriptions on sales. Our empirical investigation shows that products with

a product description generate higher sales than products without a description. We

provide evidence that the information amount of product descriptions is positively

correlated with products’ sales. With this paper, we contribute to recent research

by (1) examining the e↵ect of the presence and the information amount of product

descriptions on sales, (2) distinguishing between the e↵ect of product descriptions

written by a retailer and product descriptions written by a manufacturer, (3) in-

vestigating the interaction e↵ect of product descriptions and customer reviews on

sales.

The remainder of this paper is organized as follows. In the next section, we discuss

the theoretical background on product uncertainty and its reduction. Afterwards, we

describe our research model followed by a description of our empirical evaluation. We

then present the result of the empirical evaluation and of some robustness checks.

We conclude this paper with a summary of our results and a discussion of the
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implications for researchers and practitioners.

5.2 Theoretical Background

5.2.1 Product Uncertainty

Product uncertainty is defined as consumers’ di�culty to evaluate a product’s char-

acteristics prior to purchase (Luo et al., 2012). The higher the variance of product

characteristics the higher is the perceived product uncertainty (Hong and Pavlou,

2014). A consumer who wants to purchase a new electric toothbrush might feel

uncertain about whether a particular toothbrush is controllable via a mobile appli-

cation. If there is no toothbrush with mobile application support available, there is

no variance for this characteristic. Thus, in the case that none of the toothbrushes

provides mobile application support there is no product uncertainty. As soon as

there are toothbrushes with and without mobile application support available, con-

sumers perceive product uncertainty to a particular extent about the quality of that

mobile application support.

Product uncertainty has negative implications for both, sellers and consumers. Re-

cent research has demonstrated that the higher the product uncertainty, the lower is

the price premium that can be charged for a particular product (Dimoka et al., 2012).

Product uncertainty furthermore negatively a↵ects sales (Pavlou et al., 2007) and

the number of product returns (Hong and Pavlou, 2014). Consumers’ transaction

costs increase with the perceived product uncertainty because consumers need to

invest search costs in order to reduce product uncertainty (Liang and Huang, 1998).

Furthermore, a rising product uncertainty decreases consumers’ purchase intention

significantly (Pavlou et al., 2007). Sellers and consumers have a keen interest in

reducing product uncertainty. Therefore, sellers and consumers provide information

in form of product descriptions or customer reviews to reduce product uncertainty

in online stores.

5.2.2 Reduction of Product Uncertainty in Online Stores

Online consumers want to learn about a product’s characteristics before purchase in

order to reduce product uncertainty. In o✏ine stores, consumers can reduce product

uncertainty by inspecting a product itself and requesting individual advice from the

seller. Inspecting products prior to purchase is typically not possible in online stores.

Thus, online consumers gather information about a product’s characteristics from

di↵erent information sources, such as product descriptions and customer reviews

(Akdeniz et al., 2013; Dorner et al., 2013). Customer reviews are peer-generated

product evaluations that typically consist of a product rating and an optional tex-

tual description of the experiences with the product (Mudambi and Schu↵, 2010;
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Scholz and Dorner, 2013). Recent research has shown that the existence of cus-

tomer reviews reduces product uncertainty and thereby improves consumers’ pur-

chase probability (Dorner et al., 2013). Customer reviews might vary significantly in

the product characteristics they discuss. The probability that a consumer can learn

about some certain characteristic increases with the number of provided customer

reviews (Liu, 2006). Mudambi and Schu↵ (2010) furthermore find evidence that the

length of the textual description of a customer review is positively correlated with

the perceived helpfulness of the review. Longer reviews presumably discuss more

product characteristics. Archak et al. (2011) show that reviews discussing more

product characteristics are more influential on consumers’ purchase decisions. Simi-

larly, Scholz and Dorner (2013) find support that reviews with a higher information

amount are more helpful for consumers. Reviews with a higher helpfulness are more

likely to reduce product uncertainty (Mudambi and Schu↵, 2010). Helpfulness has

been furthermore shown to positively a↵ect a retailer’s sales (Forman et al., 2008).

In summary, product reviews are an important source of information. They in-

fluence consumers’ decision-making processes by reducing information asymmetries

and thus by reducing product uncertainty. In contrast to customer reviews, the

e↵ect of product descriptions on reducing consumers’ product uncertainty has been

sparsely analyzed in existing research. Dimoka et al. (2012) investigate the influence

of product descriptions on product uncertainty in online car auctions. They provide

evidence that the influence of product descriptions is nearly twice as much as that

of third-party assurances, such as (car) inspections, history reports or product war-

ranties. Ghose and Han (2014) find evidence that the length of product descriptions

is positively correlated with sales.

In summary, existing research demonstrates that customer reviews and product de-

scriptions contribute to reduce product uncertainty. An investigation of the e↵ect of

the existence of product descriptions as well as the interaction of product descrip-

tions and customer reviews on sales is missing so far.

5.3 Research Model

Recent research has illustrated that product uncertainty significantly influences sales

(Pavlou et al., 2007). Factors positively influencing product uncertainty are hence

likely to negatively influence sales. In the following, we will use sales as proxy for

product uncertainty because product sales are easily observable. Product descrip-

tions have been found to be one source for reducing product uncertainty (Dimoka

et al., 2012). If no or not enough information is available for reducing product

uncertainty, consumers refrain to buy, especially high-priced products (Kim and Kr-

ishnan, 2015). The availability of product descriptions helps consumers to learn
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about product characteristics and thereby reduce product uncertainty. According

to Pavlou et al. (2007), this will finally lead to higher sales.

H1: Products with a product description generate on average more sales than prod-

ucts without a product description.

The information amount transported in a product description significantly varies

across the products. Descriptions discussing more product characteristics are more

likely to help consumers reducing product uncertainty. Recent research has provided

evidence that customer reviews, as another source of information for consumers, are

perceived as more helpful if they discuss more product characteristics that are not

widely discussed in other customer reviews (Scholz and Dorner, 2013; Otterbacher,

2008). Such an e↵ect has been shown for app descriptions (Ghose and Han, 2014).

We expect a similar e↵ect also for product descriptions and thus hypothesize that a

product’s sales are increasing in the product description’s information amount.

H2: The higher the information amount of a product’s description, the higher are

its sales on average.

Recent research provides ample evidence that the number of customer reviews avail-

able for a particular product positively influences this product’s sales (Ehrmann and

Schmale, 2008; Chen et al., 2004). Consumers prefer customer reviews over prod-

uct descriptions because the retailer or manufacturer generates the latter (Benlian

et al., 2012). Product descriptions communicate a positive picture about a product

whereas customer reviews also point to a product’s drawbacks. However, product

descriptions exist, in contrast to customer reviews, even if no consumer has bought

or evaluated the product. The more reviews are available, the higher is the prob-

ability that a particular consumer will find enough information to reduce product

uncertainty and the higher will be the probability to purchase a product. Recent

research has demonstrated that the number of reviews positively a↵ects sales (For-

man et al., 2008; Duan et al., 2008). We therefore propose a decreasing impact of

a product’s description on sales when there is an increasing number of customer

reviews available.

H3: The influence of the availability of a product description on a product’s sales is

moderated by the number of reviews. The more reviews a product has, the lower is

the e↵ect of the availability of a description on sales.

Similarly, the impact of a description’s information amount might be also moderated

by the number of reviews available for a product.

H4: The influence of a description’s information amount on sales is moderated by

the number of reviews. The more reviews a product has, the lower is the e↵ect of its

descriptions’ information amount on sales.
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Our hypotheses are summarized in Figure 5.1. We describe the empirical evaluation

with which we test the derived hypotheses in the following section.

Figure 5.1: Research Model

5.4 Empirical Evaluation

In order to prove our hypotheses, we collected data for three product categories

from Amazon.com. We collected data about 84 backpacks, 131 pencils and 136

electric toothbrushes for a period of 39 days. For each product of each category and

day, we gathered the price, the average rating and the number of reviews. Amazon

provides typically two kinds of product descriptions: descriptions generated by the

manufacturer and descriptions generated by the retailer (Amazon.com). Thus, we

collected the product description provided by the manufacturer and the product

description provided by Amazon.com for each product. Figure 5.2 represents an

exemplary product description of an electric toothbrush.

The price range for each product category is rather large as shown in Table 5.1.

On the one hand, each category has at least one product which doesn’t have any

customer reviews (ratings) and on the other hand, each category includes products

with a lot of customer reviews (e.g., there are more than 1,000 reviews available

for 10 of the electric toothbrushes in our dataset). An Amazon product description

is available for 90% of the backpacks, 96% of the pencils and 96% of the electronic

toothbrushes in our dataset. Manufacturer product descriptions are significantly less

often available than Amazon product descriptions (p < 0.001). Only 23% of the col-

lected backpacks, 3% of the pencils and 16% of the electronic toothbrushes provide
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Figure 5.2: Exemplary Manufacturer and Amazon Product Description of an Elec-
tronic Toothbrush

a manufacturer product description. The mean lengths of Amazon and manufac-

turer product description di↵er. Amazon product descriptions furthermore consists

of significantly more words than manufacturer descriptions (p < 0.001). Amazon

descriptions on average are 91.76 words long whereas manufacturer descriptions only

consist of 48.13 words. We will use product sales ranks as proxy for sales because

sales figures are not available on Amazon.com. The lower the sales rank of a product,

the more instances of this product have been sold compared to other products in

the same category. The mean sales rank for the backpacks in our dataset is 3911.85,

that for pencils is 244.24 and the toothbrushes in our dataset or on average on rank

307.18. For each product category, we collected top sellers (i.e., products with a

sales rank of 1) as well as well as niche products (i.e., products with a rather high

category-specific sales rank). A summary of the collected data variables is provided

in Table 5.1 and Table 5.2.
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Table 5.1: Variables Overview
Variable Symbol Description
Price p Price of the product
Average Rating avr Average rating based on customer reviews
Number of Reviews rev Number of customer reviews
Amazon Product Description apd Availability of an Amazon product description
Manufacturer Product Description mpd Availability of a manufacturer product description
Sales Rank rank Sales rank of the product
Day d Day at which the data have been collected
Length Amazon Product Description la Number of words in the Amazon product description
Length manufacturer Product Description lm Number of words in the manufacturer product description

Table 5.2: Descriptive Statistics of the Variables in the Dataset
Variable p avr rev adp mpd rank la lm
Backpacks (min) 7.99 – 0 0 0 10 0 0
Backpacks (max) 447.5 5 2822 1 1 72690 307 377
Backpacks (mean) 65.82 4.28 388.97 0.91 0.23 3911.85 91.76 48.13
Pencils(min) 1.99 – 0 0 0 1 0 0
Pencils(max) 56.39 5 2588 1 1 1935 322 404
Pencils(mean) 11.15 3.9 91.22 0.96 0.03 244.24 64.43 7.29
Toothbrushes (min) 3.8 – 0 0 0 1 0 0
Toothbrushes (max) 199.99 5 6233 1 1 1466 510 1018
Toothbrushes (mean) 44.55 3.95 316.47 0.95 0.16 307.18 145 93

5.5 Analysis and Results

5.5.1 E↵ect of Product Descriptions

In H1, we hypothesized that products with an available product description generate

on average more sales than products without a product description. According to

H3, the number of customer reviews available for a product moderates this e↵ect.

In order to test H1 and H3, we estimate the e↵ect of the presence of a product

description binary-coded by the variables apd (Amazon product description) and

mpd (manufacturer product description) on product i’s sales rank rank at day d.

We use price p, average rating avr and number of reviews rev as control variables,

because they have been found to significantly a↵ect sales ranks (Zhu and Zhang,

2010). More specifically, we estimate the following model with fixed product and

time e↵ects for proofing H1 and H3:

log(ranki,d) = �1log(pi,d) + �2avri,d + �3log(revi,d + 1) + �4apdi,d + �5mpdi,d +

�6log(revi,d + 1)apdi,d + �7log(revi,d + 1)mpdi,d + �8category + �1d+ �2i+ ✏i,d

We use the logarithm of product i’s price to model a diminishing e↵ect of price on

sales rank. A price di↵erence between 200 and 210 Euros might be less relevant

for a consumer than a price di↵erence between 20 and 30 Euros. We also use the

logarithm of each product’s number of reviews to model a diminishing e↵ect of this
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variable on the sales rank. Furthermore, we use the logarithm of each product’s

sales rank as dependent variable in order to model diminishing perceived di↵erences

between sales ranks (Ho-Dac et al., 2013). Variance inflation factors of less than 2

indicate the absence of multicollinearity in our model. Based on a Durbin-Watson

test, we did not find an indication for autocorrelated residuals (D = 1.9998, p =

0.497). The results of our regression model with robust standard errors are depicted

in Table 5.3.

Table 5.3: E↵ect of Product Descriptions on log(Sales Rank)

Variable Estimate Std.Error t-Value p-Value
log(Price) 0.361 0.030 11.950 < 0.001
Average Rating 0.062 0.016 3.922 < 0.001
log(Number of Reviews+1) -0.634 0.055 -11.506 < 0.001
Amazon Product Description -0.778 0.159 -4.898 < 0.001
Manufacturer Product Description -0.606 0.221 -2.742 0.006
log(Number of Reviews + 1) x
Amazon Product Description 0.178 0.051 3.484 < 0.001
log(Number of Reviews + 1) x
Manufacturer Product Description 0.083 0.028 2.926 0.003
Pencils -3.163 0.106 -29.947 < 0.001
Toothbrushes -2.496 0.134 -18.658 < 0.001
Adj. R2 (full model) 0.960
Adj. R2 (projected model) 0.341

As expected, Table 5.3 also shows that a lower price and a higher number of cus-

tomer reviews result in a better sales rank. A somewhat counterintuitive result that

emerges from Table 5.3 is that a better (higher) average rating increases the sales

rank. One would expect that a better rating would decrease the sales rank. However,

previous research has shown that there exists a negative relation between sales and

average rating for some product categories (Ghose and Ipeirotis, 2011). Customer

ratings typically follow a J-shape distribution with most ratings being very positive

(i.e., they are 5-star ratings) (Hu et al., 2017). Consumers might fear manipulated

5-star ratings and rather trust products being characterized not only by 5-star rat-

ings, which ultimately might lead to a positive observed relation between sales rank

and a product’s average rating. The results in Table 5.3 indicate that both types

of product descriptions – Amazon and manufacturer descriptions – significantly in-

fluence a product’s sales rank. The existence of an Amazon product description on

average decreases the sales rank by 2.18 ranks whereas the existence of a manufac-

turer product description decreases 1.82 ranks. Amazon descriptions hence have a

higher impact on a product’s sales rank. Manufacturers should consequently create

descriptions for their products in order to improve their sales. Our hypothesis H1,
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that the presence of a product description has a significantly positive influence on

sales is therefore supported by our data.

In H3, we proposed that the e↵ect of product descriptions on sales will diminish

with an increasing number of customer reviews. Positive estimates of the interaction

e↵ects between the number of reviews and the availability of both, Amazon product

descriptions and manufacturer product descriptions, show support for H3.

Our results show a high importance of product descriptions for improving a prod-

uct’s sales. We will analyze the impact of the information amount of Amazon and

manufacturer product descriptions in the next section.

5.5.2 E↵ect of Product Descriptions’ Information Amount

In H2, we hypothesized that a higher information amount in a product description

will lead to a better sales rank. To proof H2, we use the number of words as a

proxy for a description’s information amount. H4 hypothesizes an interaction e↵ect

between the number of reviews and the information amount of product descriptions.

We use the following model to prove H2 and H4.

log(ranki,d) = �1log(pi,d)+�2avri,d+�3log(revi,d+1)+�4log(lai,d+1)+�5log(lmi,d+

1) + �6log(revi,d + 1)log(lai,d + 1) + �7log(revi,d + 1)log(lmi,d + 1) + �8category +

�1d+ �2i+ ✏i,d

With variance inflation factors of less than 2.1, we can assume that our model is not

subject to multicollinearity. A Durbin-Watson test also indicated that our model is

not subject to an autocorrelation problem (D = 1.9998, p = 0.496). The results in

Table 5.4 again show that a lower price and a higher number of customer reviews

result in a better sales rank. Table 5.4 also shows that the information amount of

Amazon product descriptions has a significant positive influence on a product’s sales

rank (the higher the information amount, the lower is the sales rank). The e↵ect

of manufacturer descriptions is in the same direction but only weakly significant.

Hypothesis H2 is hence supported partially.
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Table 5.4: E↵ect of Product Descriptions’ Information Amount on log(Sales Rank)
Variable Estimate Std.Error t-Value p-Value
log(Price) 0.361 0.030 12.097 < 0.001
Average Rating 0.084 0.016 5.252 < 0.001
log(Number of Reviews + 1) -0.744 0.051 -14.574 < 0.001
log(Length Amazon Description+1) -0.209 0.030 -7.078 < 0.001
log(Length Manufacturer Description+1) -0.088 0.048 -1.829 0.068
log(Number of Reviews + 1) x
log(Length Amazon Description+1) 0.074 0.011 6.919 < 0.001
log(Number of Reviews + 1) x
log(Length Manufacturer Description+1) 0.010 0.006 1.673 0.094
Pencils -2.746 0.129 -21.218 < 0.001
Toothbrushes -2.050 0.146 -14.043 < 0.001
Adj. R2 (full model) 0.960
Adj. R2 (full model) 0.344

H4 proposes a diminishing e↵ect of the information amount of product descriptions

on sales when the number of customer reviews increases. As shown in Table 5.4 and

Figure 5.3, we found such a diminishing e↵ect for both Amazon and manufacturer

product descriptions. The interaction e↵ect of the number of customer reviews

and the information amount of manufacturer descriptions is, however, only weakly

significant. The more customer reviews are available the higher is the estimate

for the information amount indicating that a higher number of available customer

reviews leads to a diminishing e↵ect of the information amount on sales. Hypothesis

H4 is therefore partially supported by our data.

Figure 5.3: Interaction E↵ect Between the Availability of Product Descriptions and
the Number of Reviews
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5.6 Robustness Check

We test the robustness of our results by investigating the e↵ects of product descrip-

tions on quantiles rather than average values of sales ranks. We found a very high

variance of 13.075.579 for the sales ranks (2.547 for log(sales ranks)) in our data

set indicating that our data set encompasses blockbusters as well as niche products.

Thus, we analyze the e↵ects of product descriptions on quantiles of sales ranks.

More specifically, we run quantile regressions at the 25, 50 and 75% quantile of our

dependent variable sales ranks. We estimate the regression model again with fixed

product and time e↵ects. Table 5.5 shows the results for the additional quantile

regressions and the e↵ect of the availability of product descriptions.

Table 5.5: Results of Quantile Regressions for Availability of Product Descriptions
Variable Estimate Estimate Estimate

25% quantile 50% quantile 75% quantile
log(Price) 0.276*** 0.289*** 0.284***
Average Rating -0.002 0.007 0.021
log(Number of Reviews + 1) -0.530*** -0.553*** -0.562***
Amazon Product Description -0.552*** -0.511** -0.487**
Manufacturer Product Description -0.711*** -0.759*** -0.744***
log(Number of Reviews + 1) x
Amazon Product Description 0.104* 0.103* 0.101*
log(Number of Reviews + 1) x
Manufacturer Product Description 0.057* 0.062** 0.058**
Pencils -3.235*** -3.180*** -3.128***
Toothbrushes -2.576*** -2.601*** -2.627***
Significance codes: *** p < 0.001, ** < 0.01, * < 0.05

Table 5.5 indicates that Amazon product descriptions as well as manufacturer de-

scriptions significantly a↵ect sales rank. The influence of manufacturer descriptions

is higher than of Amazon descriptions and in opposite to the Amazon descriptions,

the influence of manufacturer descriptions slightly increases for niche products. The

biggest influence of Amazon product descriptions is for blockbusters. In summary,

the e↵ect of the existence of product descriptions is rather robust to products with

di↵erent sales ranks. Table 5.6 depicts the results for the quantile regressions and

the e↵ect of the information amount of product descriptions. All findings from Table

5.4 are supported by the results in Table 5.6. Thus, they are robust for products

with di↵erent sales ranks.
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Table 5.6: Results of Quantile Regressions for Information Amount of Product De-
scriptions

Variable Estimate Estimate Estimate
25% quantile 50% quantile 75% quantile

log(Price) 0.266*** 0.277*** 0.273***
Average Rating 0.028 0.037* 0.050**
log(Number of Reviews + 1) -0.629*** -0.645*** -0.660***
log(Length Amazon Description+1) -0.168*** -0.150*** -0.156***
log(Length Manufacturer Description+1) -0.144*** -0.153*** -0.153***
log(Number of Reviews + 1) x
log(Length Amazon Description+1) 0.045*** 0.043*** 0.045***
log(Number of Reviews + 1) x
log(Length Manufacturer Description+1) 0.012* 0.013* 0.013*
Pencils -3.189*** -3.136*** -3.084***
Toothbrushes -2.550*** -2.582*** -2.607***
Significance codes: *** p < 0.001, ** < 0.01, * < 0.05

5.7 Discussion

This paper examined the influence of product descriptions on sales. Based on em-

pirical data from Amazon.com, we found that the existence of product descriptions

positively a↵ects sales. This finding is valid for descriptions generated by the man-

ufacturer as well as descriptions generated by Amazon. Amazon descriptions have

been found to have a slightly stronger influence on products’ sales than descriptions

generated by the manufacturer. Products o↵ered online should hence be described

by product descriptions. We furthermore demonstrated that product descriptions

that have a higher information amount are more influential on products’ sales. The

higher the information amount of a description, the better it is prepared to re-

duce consumers’ product uncertainty. We demonstrated that especially Amazon

product descriptions positively influence sales rank. Finally, we analyzed the inter-

play between product descriptions and customer reviews and showed that Amazon-

generated product descriptions especially a↵ect sales of products having no or only

a few customer reviews. Manufacturer-generated product descriptions, in contrast,

have been found to have a higher impact on sales for products having many reviews.

This indicates that consumers might have a higher trust in Amazon descriptions.

Further, our robustness check showed that the e↵ect of the existence of product

descriptions is independent of its sales rank.

Our research hence has three major managerial implications. First, manufacturers

and retailers should not only incentivize their consumers to provide reviews but also

provide product descriptions on their own. We found that an Amazon-generated

product description improves a product’s sales rank by more than two positions

on average. Second, the longer a product description, the better it helps reducing
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product uncertainty and the more consumers finally buy the product. Following

Mudambi and Schu↵ (2010), we assume that longer product descriptions discuss

more product characteristics and hence have a higher information amount. And

third, it is worthwhile to provide a product description also for products that already

got many customer reviews. In the case of Amazon as online store, we found that

especially product descriptions generated by manufacturers have a high impact on

a product’s sales if there are many customer reviews available.

Our research contributes to the ongoing stream of literature on the impact of infor-

mation sources on consumers’ purchase decisions. We demonstrate that the origi-

nator of the product description determines the impact of product descriptions on

sales. Amazon-generated descriptions have been found to have a higher impact on

sales than descriptions generated by the manufacturer.

Our investigation is subject to two major limitations. First, we analyzed the im-

pact of product descriptions and customer reviews on sales only for three product

categories – electric toothbrushes, backpacks and pencils. The influence of prod-

uct descriptions on sales varies across di↵erent product categories. Future research

should hence investigate further product categories. Second, we found a significant

and positive e↵ect of product descriptions on sales, which indicates that consumers

use product descriptions to reduce product uncertainty. We, however, did not mea-

sure consumers’ product uncertainty and instead assumed that product uncertainty

has a strong impact on sales. Investigating the e↵ect of product descriptions on con-

sumers’ stated product uncertainty and the e↵ect of the stated product uncertainty

on sales provides an interesting avenue for future research.
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6 Appendix

A Average classifier ranks for di↵erent performance

measures for linear relation

Table 1: Average performance measure values for LDLSS

Low Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 9.21 0.000 9.89 0.000 9.89 0.000 9.86 0.000 9.48 0.000 9.49
RDA 10.88 0.000 11.51 0.000 11.51 0.000 11.48 0.000 11.21 0.000 11.24
LR 8.94 0.000 10.02 0.000 10.01 0.000 9.98 0.000 9.07 0.000 9.39
RLR 9.24 0.000 10.10 0.000 10.10 0.000 10.07 0.000 9.55 0.000 9.54
bayLR 8.80 0.000 9.78 0.000 9.78 0.000 9.74 0.000 8.91 0.000 9.17
kNN 16.94 0.000 15.85 0.000 15.85 0.000 15.82 0.000 16.73 0.000 16.36
NSN 11.71 0.000 12.19 0.000 12.19 0.000 12.16 0.000 12.03 0.000 12.00
SNN 14.06 0.000 11.53 0.000 11.53 0.000 11.52 0.000 14.12 0.000 12.43
NB 15.37 0.000 15.02 0.000 15.02 0.000 14.99 0.000 15.67 0.000 15.32
CART 23.30 0.000 18.04 0.000 18.08 0.000 18.36 0.000 22.60 0.000 20.25
C5.0 21.07 0.000 18.93 0.000 18.95 0.000 19.23 0.000 20.54 0.000 20.21
SVM L 10.48 0.000 11.34 0.000 11.34 0.000 11.31 0.000 10.66 0.000 10.86
SVM P 11.59 0.000 11.59 0.000 11.59 0.000 11.56 0.000 11.64 0.000 11.56
SVM R 21.20 0.000 17.94 0.000 17.94 0.000 17.95 0.000 20.67 0.000 19.50
DWD L 9.78 0.000 10.54 0.000 10.54 0.000 10.53 0.000 9.84 0.000 10.14
DWD P 11.39 0.000 11.86 0.000 11.86 0.000 11.84 0.000 11.49 0.000 11.80
DWD R 14.99 0.000 15.88 0.000 15.88 0.000 15.85 0.000 14.91 0.000 15.86
bCART 19.43 0.000 18.00 0.000 18.00 0.000 17.96 0.000 19.59 0.000 18.80
RF 17.38 0.000 16.88 0.000 16.88 0.000 16.82 0.000 17.43 0.000 17.43
booLR 17.88 0.000 18.65 0.000 18.65 0.000 18.63 0.000 17.53 0.000 18.66
GBT 16.52 0.000 16.46 0.000 16.46 0.000 16.43 0.000 16.93 0.000 16.70
SA A 10.53 0.000 11.16 0.000 11.16 0.000 11.13 0.000 10.59 0.000 10.81
SA 3 3.75 – 6.51 – 6.50 – 6.50 – 3.52 – 4.89
SA 5 4.88 0.000 7.26 0.006 7.25 0.006 7.23 0.006 4.68 0.000 5.89
SA 7 5.70 0.000 8.06 0.000 8.05 0.000 8.03 0.000 5.59 0.000 6.69
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 2: Average performance measure values for LDHSS

Low Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 8.05 0.000 7.11 0.000 7.11 0.000 7.11 0.000 7.93 0.000 7.64
LR 7.67 0.000 7.46 0.000 7.46 0.000 7.46 0.000 7.65 0.000 7.71
RLR 7.25 0.000 7.11 0.000 7.11 0.000 7.11 0.000 7.38 0.000 7.17
bayLR 7.55 0.000 7.29 0.000 7.29 0.000 7.29 0.000 7.54 0.000 7.43
kNN 13.00 0.000 13.04 0.000 13.04 0.000 13.04 0.000 13.00 0.000 13.04
NSN 7.50 0.000 7.09 0.000 7.09 0.000 7.09 0.000 7.65 0.000 7.34
NB 7.62 0.000 7.11 0.000 7.11 0.000 7.11 0.000 7.44 0.000 7.17
CART 14.99 0.000 14.94 0.000 14.94 0.000 14.94 0.000 15.00 0.000 14.94
bCART 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00
booLR 14.01 0.000 13.80 0.000 13.80 0.000 13.80 0.000 14.00 0.000 13.87
GBT 11.70 0.000 10.53 0.000 10.53 0.000 10.53 0.000 11.74 0.000 11.01
SA A 5.40 0.000 5.72 0.000 5.72 0.000 5.72 0.000 5.66 0.000 5.51
SA 3 2.93 0.000 4.76 0.000 4.76 0.000 4.76 0.000 2.65 0.000 3.95
SA 5 4.87 0.000 6.12 0.000 6.12 0.000 6.12 0.000 4.86 0.000 5.54
SA 7 6.46 0.000 6.92 0.000 6.92 0.000 6.92 0.000 6.50 0.000 6.67
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

Table 3: Average performance measure values for HDLSS

High Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 14.12 0.000 14.32 0.001 14.34 0.001 14.16 0.007 13.94 0.000 14.44
RDA 14.32 0.000 13.87 0.007 13.89 0.007 14.09 0.008 13.80 0.000 14.44
LR 12.75 0.000 13.88 0.004 13.78 0.004 13.83 0.012 13.03 0.000 13.60
RLR 12.41 0.000 14.65 0.003 14.62 0.003 14.48 0.008 12.99 0.000 13.96
bayLR 12.99 0.000 14.08 0.008 14.08 0.008 14.12 0.034 13.72 0.000 14.24
kNN 15.32 0.000 11.38 0.163 11.41 0.144 11.30 0.431 15.85 0.000 12.46
NSN 13.68 0.000 12.35 0.403 12.36 0.502 12.40 0.414 14.32 0.000 12.94
SNN 13.57 0.000 11.61 0.163 11.57 0.144 11.41 0.339 15.04 0.000 12.51
NB 13.38 0.000 13.69 0.026 13.66 0.026 13.70 0.050 13.27 0.000 13.85
CART 13.80 0.000 11.55 0.171 11.49 0.276 11.58 0.385 14.14 0.000 12.31
C5.0 15.19 0.000 10.49 0.945 10.49 1.000 10.67 1.000 15.69 0.000 11.77
SVM L 13.43 0.000 13.88 0.001 13.88 0.001 14.02 0.001 13.79 0.000 14.24
SVM P 14.55 0.000 9.52 – 9.49 – 9.73 – 15.20 0.000 11.16
SVM R 13.02 0.000 13.05 0.144 13.04 0.144 12.93 0.385 14.43 0.000 13.62
DWD L 13.79 0.000 14.36 0.001 14.37 0.001 14.38 0.001 14.38 0.000 14.87
DWD P 14.85 0.000 9.81 0.945 9.80 1.000 9.87 1.000 15.48 0.000 11.35
DWD R 13.82 0.000 14.59 0.001 14.59 0.001 14.62 0.001 14.53 0.000 15.51
bCART 12.78 0.000 14.62 0.000 14.60 0.000 14.29 0.001 12.77 0.000 14.08
RF 13.82 0.000 13.85 0.002 13.88 0.001 13.99 0.001 13.29 0.000 13.76
booLR 14.83 0.000 13.66 0.003 13.66 0.003 13.62 0.007 14.93 0.000 14.90
GBT 14.43 0.000 13.25 0.163 13.28 0.144 13.46 0.172 13.98 0.000 13.77
SA A 14.29 0.000 13.27 0.003 13.29 0.002 13.42 0.006 14.41 0.000 14.04
SA 3 5.10 – 11.81 0.441 11.82 0.502 11.59 1.000 2.44 – 6.88
SA 5 6.44 0.002 13.43 0.101 13.46 0.060 13.30 0.140 3.87 0.000 9.17
SA 7 8.34 0.000 14.04 0.003 14.13 0.002 14.06 0.003 5.71 0.000 11.12
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.



Appendix iii

Table 4: Average performance measure values for HDHSS

High Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 3.63 1.000 4.79 0.000 4.79 0.000 4.74 0.000 3.61 0.016 4.11
LR 3.77 0.466 4.86 0.000 4.86 0.000 4.81 0.000 3.79 0.000 4.57
bayLR 3.85 0.162 4.93 0.000 4.93 0.000 4.88 0.000 3.86 0.000 4.70
NSN 5.80 0.000 6.25 0.000 6.25 0.000 6.21 0.000 5.26 0.000 6.17
NB 7.58 0.000 8.00 0.000 8.00 0.000 7.99 0.000 7.52 0.000 8.07
CART 9.00 0.000 4.13 0.046 4.14 0.072 4.49 0.424 7.09 0.000 5.50
SA A 4.17 0.162 1.63 – 1.62 – 1.57 – 7.39 0.000 2.50
SA 3 3.48 – 5.21 0.000 5.21 0.000 5.16 0.000 2.92 – 4.68
SA 5 3.71 0.466 5.20 0.000 5.20 0.000 5.15 0.000 3.56 0.001 4.70
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

B Average classifier ranks for di↵erent performance

measures for quadratic relation

Table 5: Average performance measure values for LDLSS

Low Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 18.00 0.000 18.82 0.000 18.82 0.000 18.82 0.000 17.35 0.000 19.08
RDA 6.25 0.000 9.94 0.000 9.94 0.000 9.94 0.000 5.78 0.000 7.96
LR 17.96 0.000 18.14 0.000 18.14 0.000 18.13 0.000 17.52 0.000 18.47
RLR 17.58 0.000 18.14 0.000 18.14 0.000 18.14 0.000 17.10 0.000 18.29
bayLR 17.77 0.000 17.98 0.000 17.98 0.000 17.98 0.000 17.33 0.000 18.25
kNN 17.00 0.000 4.77 – 4.77 – 4.77 – 20.20 0.000 9.90
NSN 18.26 0.000 19.02 0.000 19.02 0.000 19.00 0.000 17.73 0.000 19.07
SNN 16.84 0.000 8.74 0.000 8.74 0.000 8.74 0.000 18.98 0.000 12.15
NB 8.15 0.000 11.80 0.000 11.80 0.000 11.80 0.000 7.72 0.000 10.11
CART 21.96 0.000 18.97 0.000 18.97 0.000 19.00 0.000 21.36 0.000 20.62
C5.0 13.81 0.000 15.03 0.000 15.03 0.000 15.03 0.000 13.31 0.000 14.64
SVM L 17.07 0.000 16.27 0.000 16.27 0.000 16.27 0.000 17.21 0.000 16.91
SVM P 9.70 0.000 7.93 0.000 7.93 0.000 7.93 0.000 10.44 0.000 8.39
SVM R 11.88 0.000 16.59 0.000 16.59 0.000 16.59 0.000 9.88 0.000 14.56
DWD L 16.88 0.000 16.10 0.000 16.10 0.000 16.10 0.000 17.15 0.000 16.80
DWD P 7.00 0.000 6.21 0.012 6.21 0.012 6.21 0.012 7.96 0.000 6.09
DWD R 4.17 0.000 6.61 0.000 6.61 0.000 6.61 0.000 4.25 0.000 5.04
bCART 13.87 0.000 14.43 0.000 14.43 0.000 14.43 0.000 13.84 0.000 14.50
RF 11.60 0.000 12.96 0.000 12.96 0.000 12.95 0.000 11.42 0.000 12.44
booLR 19.89 0.000 19.61 0.000 19.61 0.000 19.61 0.000 19.36 0.000 20.10
GBT 19.09 0.000 19.00 0.000 19.00 0.000 19.02 0.000 18.77 0.000 19.46
SA A 10.38 0.000 10.47 0.000 10.47 0.000 10.46 0.000 10.60 0.000 10.26
SA 3 2.51 – 5.09 0.249 5.09 0.249 5.09 0.249 2.38 – 3.19
SA 5 3.24 0.001 6.05 0.001 6.05 0.001 6.05 0.001 3.20 0.000 4.04
SA 7 4.12 0.000 6.33 0.003 6.33 0.003 6.33 0.003 4.17 0.000 4.68
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 6: Average performance measure values for LDHSS

Low Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 14.35 0.000 14.03 0.000 14.03 0.000 14.03 0.000 12.57 0.000 14.34
LR 12.10 0.000 11.52 0.000 11.52 0.000 11.52 0.000 13.02 0.000 11.56
RLR 12.06 0.000 11.47 0.000 11.47 0.000 11.47 0.000 13.03 0.000 11.54
bayLR 12.18 0.000 11.60 0.000 11.60 0.000 11.60 0.000 13.08 0.000 11.68
kNN 6.75 0.000 1.00 – 1.00 – 1.00 – 6.94 0.000 3.46
NSN 14.21 0.000 14.09 0.000 14.09 0.000 14.09 0.000 12.94 0.000 14.38
NB 3.75 0.000 6.14 0.000 6.14 0.000 6.14 0.000 3.32 0.000 5.42
CART 9.31 0.000 12.25 0.000 12.25 0.000 12.25 0.000 9.05 0.000 11.31
bCART 2.31 0.000 2.39 0.000 2.39 0.000 2.39 0.000 2.64 0.000 1.57
booLR 9.45 0.000 8.39 0.000 8.39 0.000 8.39 0.000 9.96 0.000 8.67
GBT 6.04 0.000 5.56 0.000 5.56 0.000 5.56 0.000 5.95 0.000 6.24
SA A 8.34 0.000 8.62 0.000 8.62 0.000 8.62 0.000 8.36 0.000 8.51
SA 3 1.34 – 4.09 0.000 4.09 0.000 4.09 0.000 1.30 – 2.73
SA 5 2.69 0.000 3.54 0.000 3.54 0.000 3.54 0.000 2.81 0.000 2.96
SA 7 5.13 0.000 5.31 0.000 5.31 0.000 5.31 0.000 5.04 0.000 5.62
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

Table 7: Average performance measure values for HDLSS

High Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 16.05 0.000 15.93 0.000 16.00 0.000 16.43 0.000 14.09 0.000 16.40
RDA 11.23 0.000 14.97 0.000 15.03 0.000 15.45 0.000 7.29 0.000 12.90
LR 15.91 0.000 15.96 0.000 16.11 0.000 16.34 0.000 14.09 0.000 16.50
RLR 14.32 0.000 15.46 0.000 15.44 0.000 15.52 0.000 13.43 0.000 15.80
bayLR 13.18 0.000 15.06 0.000 15.10 0.000 15.03 0.000 12.28 0.000 14.90
kNN 15.69 0.000 3.20 – 3.10 – 2.84 – 23.25 0.000 7.37
NSN 13.45 0.000 14.48 0.000 14.52 0.000 14.51 0.000 12.46 0.000 14.56
SNN 16.12 0.000 3.67 0.518 3.60 0.518 3.36 0.518 22.71 0.000 8.12
NB 12.23 0.000 16.55 0.000 16.59 0.000 16.71 0.000 9.80 0.000 14.99
CART 15.57 0.000 14.27 0.000 14.26 0.000 14.45 0.000 13.78 0.000 14.70
C5.0 16.20 0.000 11.86 0.000 11.94 0.000 12.62 0.000 14.65 0.000 13.41
SVM L 13.09 0.000 15.20 0.000 15.19 0.000 15.12 0.000 12.44 0.000 15.28
SVM P 13.86 0.000 8.94 0.000 8.80 0.000 8.49 0.000 17.62 0.000 10.66
SVM R 15.37 0.000 7.26 0.000 7.15 0.000 6.76 0.000 20.55 0.000 10.55
DWD L 13.30 0.000 15.20 0.000 15.19 0.000 15.26 0.000 12.40 0.000 15.38
DWD P 14.29 0.000 8.65 0.000 8.58 0.000 8.36 0.000 18.27 0.000 10.60
DWD R 10.13 0.000 14.59 0.000 14.57 0.000 14.49 0.000 9.45 0.000 13.18
bCART 15.09 0.000 15.16 0.000 15.25 0.000 15.51 0.000 13.00 0.000 15.21
RF 14.18 0.000 13.43 0.000 13.47 0.000 13.69 0.000 13.15 0.000 13.70
booLR 15.01 0.000 15.75 0.000 15.79 0.000 15.86 0.000 12.84 0.000 15.91
GBT 13.95 0.000 15.56 0.000 15.55 0.000 15.44 0.000 12.22 0.000 15.16
SA A 11.75 0.000 11.88 0.000 11.80 0.000 11.49 0.000 13.95 0.000 11.93
SA 3 4.46 0.821 13.95 0.000 13.98 0.000 13.78 0.000 2.74 – 8.80
SA 5 4.34 – 13.29 0.000 13.27 0.000 12.93 0.000 3.42 0.011 8.24
SA 7 6.25 0.000 14.71 0.000 14.72 0.000 14.61 0.000 5.12 0.000 10.72
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 8: Average performance measure values for HDHSS

High Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 6.26 0.000 6.11 0.000 6.11 0.000 6.11 0.000 6.12 0.000 6.13
LR 5.76 0.000 5.92 0.000 5.92 0.000 5.92 0.000 5.70 0.000 5.92
bayLR 5.79 0.000 5.96 0.000 5.96 0.000 5.96 0.000 5.72 0.000 5.96
NSN 7.49 0.000 7.31 0.000 7.31 0.000 7.31 0.000 7.40 0.000 7.37
NB 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00
CART 9.00 0.000 8.45 0.000 8.45 0.000 8.45 0.000 9.00 0.000 8.62
SA A 2.15 0.000 2.20 0.000 2.20 0.000 2.20 0.000 3.47 0.000 2.21
SA 3 3.92 0.000 4.24 0.000 4.24 0.000 4.24 0.000 3.46 0.000 4.16
SA 5 3.62 0.000 3.81 0.000 3.81 0.000 3.81 0.000 3.13 0.000 3.63
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

C Average classifier ranks for di↵erent performance

measures for non-normal

Table 9: Average performance measure values for LDLSS

Low Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 10.61 0.000 10.26 0.000 10.24 0.000 10.20 0.000 11.21 0.000 10.27
RDA 10.38 0.000 9.29 0.000 9.28 0.000 9.26 0.000 12.05 0.000 9.55
LR 10.73 0.000 13.61 0.000 13.60 0.000 13.54 0.000 10.29 0.000 12.56
RLR 10.44 0.000 11.66 0.000 11.63 0.000 11.59 0.000 10.64 0.000 11.28
bayLR 10.54 0.000 12.79 0.000 12.77 0.000 12.72 0.000 10.21 0.000 11.86
kNN 16.95 0.000 9.03 0.001 9.03 0.001 9.05 0.001 19.71 0.000 12.65
NSN 11.43 0.000 10.62 0.000 10.61 0.000 10.54 0.000 12.31 0.000 11.07
SNN 18.75 0.000 10.32 0.157 10.31 0.157 10.30 0.157 21.00 0.000 13.88
NB 14.02 0.000 13.57 0.000 13.56 0.000 13.54 0.000 14.85 0.000 13.80
CART 20.79 0.000 17.29 0.000 17.34 0.000 17.59 0.000 19.78 0.000 19.09
C5.0 19.77 0.000 17.96 0.000 18.10 0.000 18.19 0.000 18.18 0.000 18.85
SVM L 10.90 0.000 11.19 0.000 11.18 0.000 11.13 0.000 11.63 0.000 11.32
SVM P 11.89 0.000 5.78 – 5.77 – 5.74 – 15.93 0.000 8.17
SVM R 14.93 0.000 20.18 0.000 20.20 0.000 20.48 0.000 10.48 0.000 17.95
DWD L 10.57 0.000 12.15 0.000 12.14 0.000 12.07 0.000 10.70 0.000 11.68
DWD P 12.09 0.000 10.32 0.001 10.31 0.001 10.27 0.001 13.23 0.000 11.06
DWD R 12.70 0.000 14.57 0.000 14.56 0.000 14.65 0.000 11.60 0.000 13.65
bCART 17.50 0.000 18.54 0.000 18.54 0.000 18.54 0.000 16.38 0.000 18.41
RF 16.91 0.000 17.65 0.000 17.66 0.000 17.61 0.000 15.94 0.000 17.68
booLR 19.61 0.000 20.52 0.000 20.52 0.000 20.43 0.000 17.93 0.000 20.38
GBT 17.90 0.000 18.70 0.000 18.70 0.000 18.67 0.000 16.62 0.000 18.75
SA A 10.45 0.000 10.71 0.000 10.69 0.000 10.65 0.000 10.96 0.000 10.33
SA 3 3.88 – 9.35 0.000 9.34 0.000 9.38 0.000 3.19 – 6.14
SA 5 5.24 0.000 9.52 0.000 9.51 0.000 9.48 0.000 4.64 0.000 7.15
SA 7 6.04 0.000 9.40 0.000 9.39 0.000 9.37 0.000 5.53 0.000 7.47
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 10: Average performance measure values for LDHSS

Low Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 3.53 0.000 3.14 0.000 3.14 0.000 3.14 0.000 10.68 0.000 3.19
LR 10.21 0.000 11.32 0.000 11.32 0.000 11.32 0.000 4.46 0.000 11.23
RLR 7.84 0.000 8.10 0.000 8.10 0.000 8.10 0.000 7.25 0.000 7.97
bayLR 10.14 0.000 11.20 0.000 11.20 0.000 11.20 0.000 4.43 0.000 11.10
kNN 13.00 0.000 7.39 0.000 7.39 0.000 7.39 0.000 13.42 0.000 10.23
NSN 3.40 0.000 3.17 0.000 3.17 0.000 3.17 0.000 10.58 0.000 3.27
NB 4.28 0.000 2.68 0.000 2.68 0.000 2.68 0.000 12.14 0.000 3.31
CART 14.04 0.000 14.95 0.000 14.95 0.000 14.95 0.000 12.55 0.000 14.61
bCART 1.00 – 1.12 – 1.12 – 1.12 – 1.00 – 1.00
booLR 14.96 0.000 13.74 0.000 13.74 0.000 13.74 0.000 15.00 0.000 14.14
GBT 11.21 0.000 10.31 0.000 10.31 0.000 10.31 0.000 8.54 0.000 10.96
SA A 4.29 0.000 5.64 0.000 5.64 0.000 5.64 0.000 7.22 0.000 4.76
SA 3 8.82 0.000 10.99 0.000 10.99 0.000 10.99 0.000 3.63 0.000 10.28
SA 5 8.09 0.000 9.34 0.000 9.34 0.000 9.34 0.000 4.00 0.000 8.26
SA 7 5.20 0.000 6.91 0.000 6.91 0.000 6.91 0.000 5.10 0.000 5.71
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

Table 11: Average performance measure values for HDLSS

High Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 13.05 0.000 14.10 0.001 14.12 0.001 13.88 0.008 12.49 0.000 13.71
RDA 14.21 0.000 12.90 0.037 12.93 0.040 13.40 0.011 12.10 0.000 13.00
LR 15.07 0.000 15.02 0.001 15.03 0.000 15.56 0.000 13.22 0.000 15.11
RLR 14.14 0.000 13.20 0.002 13.21 0.002 13.15 0.001 13.73 0.000 13.61
bayLR 14.51 0.000 14.88 0.000 14.88 0.000 14.81 0.000 14.41 0.000 15.14
kNN 12.19 0.000 10.42 0.162 10.35 0.162 9.91 0.240 16.47 0.000 11.12
NSN 13.80 0.000 12.28 0.070 12.24 0.070 12.38 0.033 14.01 0.000 12.99
SNN 14.10 0.000 8.84 – 8.79 – 8.71 – 17.47 0.000 10.66
NB 13.92 0.000 13.36 0.005 13.38 0.002 13.46 0.007 12.71 0.000 13.77
CART 13.44 0.000 11.66 0.162 11.62 0.166 11.92 0.021 12.83 0.000 12.09
C5.0 15.10 0.000 11.10 0.175 11.07 0.256 11.10 0.240 15.48 0.000 12.79
SVM L 14.22 0.000 14.72 0.000 14.70 0.000 14.71 0.000 13.99 0.000 15.18
SVM P 13.94 0.000 11.98 0.162 11.97 0.129 11.96 0.060 16.29 0.000 13.04
SVM R 14.03 0.000 12.29 0.000 12.29 0.000 12.16 0.001 15.77 0.000 13.16
DWD L 14.39 0.000 14.06 0.000 14.11 0.000 14.18 0.001 14.13 0.000 14.93
DWD P 14.04 0.000 10.72 0.175 10.69 0.256 10.58 0.240 15.85 0.000 11.73
DWD R 14.13 0.000 13.76 0.009 13.79 0.003 13.93 0.002 12.61 0.000 13.74
bCART 14.23 0.000 13.88 0.011 13.93 0.008 14.04 0.005 13.62 0.000 14.27
RF 13.03 0.000 13.94 0.000 13.93 0.000 13.84 0.001 12.98 0.000 13.79
booLR 13.34 0.000 13.96 0.000 14.04 0.000 13.94 0.000 13.88 0.000 14.18
GBT 14.14 0.000 14.84 0.000 14.81 0.000 15.08 0.000 14.04 0.000 15.38
SA A 13.73 0.000 11.87 0.037 11.82 0.046 11.74 0.013 14.89 0.000 12.65
SA 3 5.16 – 13.66 0.000 13.69 0.000 13.38 0.000 2.89 – 8.94
SA 5 5.77 0.258 13.30 0.002 13.28 0.002 13.07 0.006 3.70 0.078 9.14
SA 7 7.32 0.000 14.28 0.000 14.31 0.000 14.07 0.001 5.42 0.000 10.89
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 12: Average performance measure values for HDHSS

High Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 3.60 1.000 4.24 0.000 4.24 0.000 4.24 0.000 5.14 0.000 3.29
LR 3.67 0.610 7.13 0.000 7.13 0.000 7.13 0.000 2.45 0.412 6.82
bayLR 3.61 1.000 7.09 0.000 7.09 0.000 7.09 0.000 2.42 0.705 6.81
NSN 5.38 0.000 6.32 0.000 6.32 0.000 6.32 0.000 5.28 0.000 6.03
NB 7.86 0.000 1.76 – 1.76 – 1.76 – 8.13 0.000 3.65
CART 9.00 0.000 2.71 0.000 2.71 0.000 2.71 0.000 8.31 0.000 3.73
SA A 4.40 0.059 2.79 0.000 2.79 0.000 2.79 0.000 7.03 0.000 2.77
SA 3 3.56 – 7.09 0.000 7.09 0.000 7.09 0.000 2.37 – 6.78
SA 5 3.92 0.360 5.88 0.000 5.88 0.000 5.88 0.000 3.88 0.000 5.12
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

D Average classifier ranks for di↵erent performance

measures for multimodal

Table 13: Average performance measure values for LDLSS

Low Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 16.16 0.000 15.08 0.000 15.07 0.000 15.10 0.000 16.55 0.000 16.52
RDA 9.23 0.000 12.06 0.000 12.04 0.000 11.55 0.000 11.03 0.000 11.10
LR 15.83 0.000 15.05 0.000 15.05 0.000 15.13 0.000 16.04 0.000 16.32
RLR 15.49 0.000 15.04 0.000 14.99 0.000 15.11 0.000 16.30 0.000 15.84
bayLR 15.88 0.000 15.36 0.000 15.43 0.000 15.50 0.000 16.21 0.000 16.71
kNN 11.62 0.000 13.73 0.000 13.71 0.000 13.93 0.000 9.46 0.000 12.05
NSN 15.94 0.000 14.32 0.000 14.36 0.000 14.25 0.000 17.56 0.000 16.18
SNN 13.43 0.000 12.04 0.000 12.05 0.000 12.54 0.000 10.90 0.000 12.13
NB 13.22 0.000 14.26 0.000 14.30 0.000 14.12 0.000 13.62 0.000 14.32
CART 16.11 0.000 9.68 0.000 9.69 0.000 9.91 0.000 15.40 0.000 11.18
C5.0 16.88 0.000 4.95 – 5.00 – 5.50 – 16.30 0.000 7.96
SVM L 15.47 0.000 14.54 0.000 14.56 0.000 14.63 0.000 14.74 0.000 15.28
SVM P 12.97 0.000 12.45 0.000 12.47 0.000 12.54 0.000 11.85 0.000 12.04
SVM R 11.18 0.000 9.39 0.000 9.33 0.000 8.89 0.009 14.48 0.000 9.96
DWD L 15.91 0.000 14.65 0.000 14.68 0.000 14.74 0.000 15.29 0.000 15.54
DWD P 10.09 0.000 13.35 0.000 13.30 0.000 13.03 0.000 10.48 0.000 11.84
DWD R 9.61 0.000 13.56 0.000 13.52 0.000 13.29 0.000 10.69 0.000 12.29
bCART 14.02 0.000 14.22 0.000 14.21 0.000 14.30 0.000 14.69 0.000 14.78
RF 12.93 0.000 13.03 0.000 12.99 0.000 12.91 0.000 14.38 0.000 13.40
booLR 16.94 0.000 13.93 0.000 13.94 0.000 13.96 0.000 16.68 0.000 15.44
GBT 15.94 0.000 13.34 0.000 13.27 0.000 13.28 0.000 17.11 0.000 14.77
SA A 13.51 0.000 12.95 0.000 13.02 0.000 13.03 0.000 13.41 0.000 13.01
SA 3 5.12 – 11.04 0.000 11.03 0.000 10.99 0.000 2.94 – 7.20
SA 5 5.68 0.564 13.11 0.000 13.11 0.000 12.88 0.000 3.90 0.029 8.93
SA 7 5.83 0.005 13.88 0.000 13.89 0.000 13.90 0.000 5.02 0.000 10.21
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 14: Average performance measure values for LDHSS

Low Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 12.96 0.000 12.86 0.000 12.86 0.000 12.86 0.000 12.96 0.000 12.98
LR 12.88 0.000 12.89 0.000 12.89 0.000 12.89 0.000 12.84 0.000 12.89
RLR 13.06 0.000 12.90 0.000 12.90 0.000 12.90 0.000 13.01 0.000 12.93
bayLR 13.00 0.000 12.89 0.000 12.89 0.000 12.89 0.000 12.91 0.000 12.94
kNN 3.39 0.000 3.61 0.000 3.51 0.000 2.96 0.000 5.24 0.000 3.07
NSN 13.09 0.000 13.00 0.000 13.00 0.000 13.00 0.000 13.28 0.000 13.05
NB 7.49 0.000 8.55 0.000 8.55 0.000 8.55 0.000 8.93 0.000 8.51
CART 8.96 0.000 9.57 0.000 9.57 0.000 9.58 0.000 9.66 0.000 9.61
bCART 1.00 – 1.11 – 1.06 – 1.00 – 1.00 – 1.00
booLR 10.00 0.000 2.78 0.000 3.05 0.000 4.76 0.000 7.02 0.000 5.55
GBT 5.03 0.000 5.58 0.000 5.57 0.000 5.32 0.000 4.60 0.000 5.29
SA A 7.55 0.000 9.33 0.000 9.33 0.000 9.32 0.000 8.39 0.000 9.10
SA 3 2.00 0.000 2.63 0.000 2.53 0.000 2.04 0.000 2.00 0.000 2.00
SA 5 3.61 0.000 5.31 0.000 5.30 0.000 5.07 0.000 3.00 0.000 4.25
SA 7 5.97 0.000 6.98 0.000 6.98 0.000 6.85 0.000 5.16 0.000 6.84
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

Table 15: Average performance measure values for HDLSS

High Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 15.36 0.000 13.15 0.075 13.11 0.080 13.46 0.007 15.32 0.000 14.80
RDA 12.88 0.000 13.74 0.001 13.69 0.001 13.63 0.003 13.22 0.000 13.45
LR 13.80 0.000 14.12 0.085 14.09 0.097 13.96 0.056 14.31 0.000 14.49
RLR 13.18 0.000 13.31 0.084 13.30 0.111 13.10 0.064 13.17 0.000 13.54
bayLR 13.66 0.000 15.12 0.001 15.09 0.001 14.86 0.002 13.66 0.000 15.05
kNN 13.62 0.000 11.61 1.000 11.64 1.000 11.72 1.000 14.37 0.000 12.05
NSN 14.66 0.000 14.03 0.004 14.12 0.004 14.24 0.009 14.35 0.000 14.49
SNN 14.04 0.000 11.27 1.000 11.29 1.000 11.29 1.000 14.83 0.000 11.99
NB 13.94 0.000 13.27 0.306 13.34 0.306 13.66 0.165 13.72 0.000 13.77
CART 14.39 0.000 11.53 0.950 11.49 0.950 11.56 1.000 14.47 0.000 12.60
C5.0 14.03 0.000 11.95 1.000 11.98 1.000 12.04 1.000 15.47 0.000 12.90
SVM L 13.52 0.000 14.03 0.028 13.98 0.021 13.95 0.009 13.13 0.000 13.96
SVM P 13.11 0.000 11.26 1.000 11.23 1.000 11.13 1.000 13.95 0.000 11.44
SVM R 13.62 0.000 13.64 0.197 13.69 0.131 13.60 0.191 14.73 0.000 14.10
DWD L 13.07 0.000 14.39 0.028 14.35 0.027 14.39 0.027 12.96 0.000 14.28
DWD P 13.46 0.000 10.28 – 10.30 – 10.36 – 13.49 0.000 11.04
DWD R 13.50 0.000 14.08 0.028 14.04 0.046 13.91 0.031 13.23 0.000 14.27
bCART 14.70 0.000 14.59 0.054 14.60 0.097 14.54 0.152 15.02 0.000 15.65
RF 13.88 0.000 13.11 0.660 13.12 0.875 13.04 0.875 14.11 0.000 13.48
booLR 15.45 0.000 12.07 1.000 12.12 1.000 12.49 0.925 16.04 0.000 13.81
GBT 14.80 0.000 13.51 0.056 13.49 0.046 13.36 0.056 15.37 0.000 14.51
SA A 13.23 0.000 13.38 0.271 13.38 0.271 13.27 0.408 13.73 0.000 13.52
SA 3 5.14 – 11.64 0.660 11.62 0.689 11.54 0.689 2.90 – 7.17
SA 5 6.57 0.002 12.72 0.160 12.76 0.147 12.70 0.160 4.08 0.001 8.94
SA 7 7.39 0.000 13.20 0.021 13.16 0.021 13.18 0.047 5.36 0.000 9.72
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 16: Average performance measure values for HDHSS

High Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 5.37 0.000 6.50 0.000 6.50 0.000 6.50 0.000 4.82 0.000 6.32
LR 5.42 0.000 6.45 0.000 6.45 0.000 6.45 0.000 4.89 0.000 6.38
bayLR 5.42 0.000 6.47 0.000 6.47 0.000 6.47 0.000 4.86 0.000 6.44
NSN 6.61 0.000 7.39 0.000 7.39 0.000 7.39 0.000 5.61 0.000 7.13
NB 1.55 – 3.32 0.000 3.31 0.000 3.30 0.000 1.99 – 2.03
CART 8.45 0.000 1.27 – 1.27 – 1.27 – 7.25 0.000 3.46
SA A 3.55 0.000 2.55 0.000 2.55 0.000 2.55 0.000 8.17 0.000 3.06
SA 3 3.45 0.000 4.82 0.000 4.83 0.000 4.84 0.000 2.86 0.000 4.07
SA 5 5.17 0.000 6.24 0.000 6.24 0.000 6.24 0.000 4.57 0.000 6.11
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

E Average classifier ranks for di↵erent performance

measures for unequal weights

Table 17: Average performance measure values for LDLSS

Low Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 9.66 0.000 10.51 0.000 10.51 0.000 10.51 0.000 9.77 0.000 10.01
RDA 12.33 0.000 12.66 0.000 12.66 0.000 12.66 0.000 12.56 0.000 12.39
LR 9.09 0.000 10.05 0.000 10.05 0.000 10.05 0.000 9.21 0.000 9.47
RLR 10.55 0.000 11.09 0.000 11.09 0.000 11.09 0.000 10.61 0.000 10.84
bayLR 9.55 0.000 10.35 0.000 10.35 0.000 10.34 0.000 9.67 0.000 9.90
kNN 18.61 0.000 17.08 0.000 17.08 0.000 17.08 0.000 18.57 0.000 18.16
NSN 13.22 0.000 13.17 0.000 13.17 0.000 13.16 0.000 13.25 0.000 13.25
SNN 15.39 0.000 14.12 0.000 14.12 0.000 14.12 0.000 15.64 0.000 15.04
NB 16.20 0.000 15.77 0.000 15.77 0.000 15.76 0.000 16.16 0.000 16.23
CART 19.69 0.000 16.20 0.000 16.20 0.000 16.20 0.000 19.48 0.000 17.79
C5.0 18.53 0.000 17.66 0.000 17.66 0.000 17.66 0.000 18.05 0.000 18.25
SVM L 10.39 0.000 11.04 0.000 11.04 0.000 11.04 0.000 10.85 0.000 10.72
SVM P 12.65 0.000 12.99 0.000 12.98 0.000 12.98 0.000 12.83 0.000 12.95
SVM R 21.77 0.000 18.82 0.000 18.83 0.000 18.85 0.000 21.25 0.000 20.09
DWD L 9.93 0.000 10.52 0.000 10.52 0.000 10.52 0.000 9.96 0.000 10.29
DWD P 11.04 0.000 11.72 0.000 11.72 0.000 11.72 0.000 11.27 0.000 11.50
DWD R 15.13 0.000 14.79 0.000 14.78 0.000 14.78 0.000 15.33 0.000 15.24
bCART 16.20 0.000 14.91 0.000 14.91 0.000 14.91 0.000 16.62 0.000 15.64
RF 15.80 0.000 15.13 0.000 15.13 0.000 15.13 0.000 16.05 0.000 15.54
booLR 17.18 0.000 17.16 0.000 17.16 0.000 17.16 0.000 16.81 0.000 17.11
GBT 17.29 0.000 16.99 0.000 16.99 0.000 16.99 0.000 16.86 0.000 17.25
SA A 10.32 0.000 10.84 0.000 10.84 0.000 10.84 0.000 10.52 0.000 10.49
SA 3 3.69 – 6.25 – 6.25 – 6.25 – 3.46 – 4.50
SA 5 5.07 0.000 7.41 0.003 7.41 0.003 7.41 0.003 4.80 0.000 5.93
SA 7 5.71 0.000 7.78 0.000 7.78 0.000 7.78 0.000 5.41 0.000 6.45
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 18: Average performance measure values for LDHSS

Low Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 6.71 0.000 6.12 0.000 6.12 0.000 6.12 0.000 6.81 0.000 6.43
LR 6.55 0.000 6.37 0.000 6.37 0.000 6.37 0.000 6.54 0.000 6.54
RLR 7.01 0.000 6.97 0.000 6.97 0.000 6.97 0.000 6.92 0.000 7.15
bayLR 6.50 0.000 6.37 0.000 6.37 0.000 6.37 0.000 6.50 0.000 6.41
kNN 13.00 0.000 13.38 0.000 13.38 0.000 13.38 0.000 13.00 0.000 13.27
NSN 10.97 0.000 10.91 0.000 10.91 0.000 10.91 0.000 10.97 0.000 10.94
NB 12.00 0.000 12.15 0.000 12.15 0.000 12.15 0.000 11.99 0.000 12.12
CART 14.83 0.000 14.23 0.000 14.23 0.000 14.23 0.000 14.75 0.000 14.46
bCART 1.00 – 1.02 – 1.02 – 1.02 – 1.00 – 1.00
booLR 14.17 0.000 13.03 0.000 13.03 0.000 13.03 0.000 14.25 0.000 13.55
GBT 9.52 0.000 8.82 0.000 8.82 0.000 8.82 0.000 9.39 0.000 9.11
SA A 2.62 0.000 3.82 0.000 3.82 0.000 3.82 0.000 3.00 0.000 3.26
SA 3 3.98 0.000 5.29 0.000 5.29 0.000 5.29 0.000 3.77 0.000 4.57
SA 5 5.92 0.000 6.12 0.000 6.12 0.000 6.12 0.000 5.78 0.000 6.00
SA 7 5.21 0.000 5.40 0.000 5.40 0.000 5.40 0.000 5.32 0.000 5.20
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

Table 19: Average performance measure values for HDLSS

High Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 13.87 0.000 12.11 0.940 12.16 0.940 12.48 1.000 13.12 0.000 12.29
RDA 14.84 0.000 12.93 0.017 13.00 0.010 13.19 0.007 13.71 0.000 13.67
LR 15.13 0.000 13.65 0.312 13.61 0.339 13.65 0.129 14.68 0.000 14.22
RLR 14.80 0.000 14.45 0.002 14.49 0.001 14.60 0.001 14.66 0.000 15.52
bayLR 14.74 0.000 13.97 0.005 13.99 0.002 14.01 0.002 14.68 0.000 14.57
kNN 13.38 0.000 11.80 0.940 11.74 0.940 11.73 1.000 14.86 0.000 12.57
NSN 14.99 0.000 12.76 0.515 12.76 0.644 12.97 1.000 14.64 0.000 13.79
SNN 13.93 0.000 11.56 0.646 11.56 0.939 11.77 1.000 14.30 0.000 12.34
NB 14.41 0.000 13.27 0.091 13.27 0.091 13.33 0.245 13.97 0.000 13.52
CART 13.90 0.000 9.73 – 9.73 – 9.91 – 15.19 0.000 10.89
C5.0 13.28 0.000 12.49 0.126 12.43 0.306 12.18 1.000 14.12 0.000 12.54
SVM L 13.71 0.000 13.54 0.005 13.53 0.010 13.49 0.033 13.52 0.000 13.79
SVM P 13.48 0.000 11.70 0.940 11.70 0.940 11.63 1.000 14.30 0.000 12.25
SVM R 13.82 0.000 12.41 0.206 12.42 0.339 12.39 0.540 14.21 0.000 12.75
DWD L 13.45 0.000 13.43 0.085 13.44 0.085 13.45 0.045 13.61 0.000 13.77
DWD P 13.65 0.000 11.98 0.905 11.88 0.939 11.81 1.000 14.61 0.000 12.38
DWD R 13.81 0.000 13.94 0.010 13.97 0.010 14.04 0.011 13.05 0.000 14.05
bCART 12.05 0.000 13.66 0.009 13.62 0.012 13.46 0.014 12.93 0.000 13.29
RF 14.48 0.000 12.85 0.085 12.89 0.085 12.88 0.101 15.60 0.000 14.21
booLR 15.61 0.000 14.61 0.005 14.63 0.007 14.90 0.002 15.12 0.000 15.31
GBT 14.54 0.000 13.44 0.001 13.44 0.000 13.52 0.005 14.30 0.000 14.24
SA A 14.04 0.000 13.35 0.005 13.38 0.006 13.55 0.003 14.15 0.000 14.14
SA 3 4.24 – 12.91 0.085 12.91 0.085 12.44 0.203 2.98 – 8.69
SA 5 4.76 0.009 13.62 0.001 13.61 0.001 13.14 0.020 3.70 0.002 9.06
SA 7 6.08 0.000 14.86 0.000 14.82 0.000 14.47 0.001 4.97 0.000 11.14
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 20: Average performance measure values for HDHSS

High Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 4.25 0.070 4.71 0.000 4.71 0.000 4.70 0.000 3.81 0.009 4.43
LR 4.04 0.028 4.58 0.000 4.58 0.000 4.57 0.000 3.46 0.005 4.43
bayLR 4.04 0.058 4.57 0.000 4.57 0.000 4.55 0.000 3.46 0.008 4.38
NSN 4.80 0.011 5.55 0.000 5.55 0.000 5.53 0.000 4.22 0.008 5.11
NB 7.57 0.000 7.32 0.000 7.32 0.000 7.30 0.000 7.39 0.000 7.53
CART 9.00 0.000 8.27 0.000 8.27 0.000 8.43 0.000 8.44 0.000 8.51
SA A 3.60 0.841 1.09 – 1.09 – 1.07 – 7.45 0.000 2.21
SA 3 3.53 – 4.32 0.000 4.32 0.000 4.30 0.000 2.97 – 3.98
SA 5 4.17 0.025 4.58 0.000 4.58 0.000 4.56 0.000 3.80 0.005 4.42
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

F Average classifier ranks for di↵erent performance

measures for unbalanced

Table 21: Average performance measure values for LDLSS

Low Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 9.85 0.000 15.76 0.000 15.76 0.000 15.76 0.000 8.30 0.000 13.82
RDA 11.09 0.000 14.09 0.000 14.09 0.000 14.09 0.000 10.77 0.000 12.91
LR 10.03 0.000 17.23 0.000 17.23 0.000 17.23 0.000 7.42 0.000 14.31
RLR 9.54 0.000 13.20 0.000 13.20 0.000 13.20 0.000 9.46 0.000 11.34
bayLR 9.34 0.000 14.46 0.000 14.46 0.000 14.46 0.000 8.54 0.000 11.92
kNN 14.43 0.000 8.64 0.000 8.64 0.000 8.64 0.000 17.95 0.000 10.89
NSN 17.97 0.000 4.84 – 4.84 – 4.84 – 23.05 0.000 10.61
SNN 18.16 0.000 10.08 0.000 10.08 0.000 10.08 0.000 20.52 0.000 13.89
NB 14.05 0.000 13.54 0.000 13.54 0.000 13.54 0.000 14.39 0.000 14.23
CART 21.19 0.000 18.10 0.000 18.10 0.000 18.10 0.000 17.20 0.000 19.66
C5.0 18.95 0.000 15.46 0.000 15.46 0.000 15.46 0.000 16.98 0.000 17.33
SVM L 10.21 0.000 14.01 0.000 14.01 0.000 14.01 0.000 10.04 0.000 12.36
SVM P 13.12 0.000 8.64 0.000 8.64 0.000 8.64 0.000 16.55 0.000 10.26
SVM R 18.04 0.000 4.96 0.157 4.96 0.157 4.96 0.157 23.02 0.000 10.85
DWD L 10.63 0.000 13.95 0.000 13.95 0.000 13.95 0.000 9.90 0.000 12.51
DWD P 12.46 0.000 12.63 0.000 12.63 0.000 12.63 0.000 12.62 0.000 12.31
DWD R 14.47 0.000 10.52 0.000 10.52 0.000 10.52 0.000 16.85 0.000 12.27
bCART 17.55 0.000 18.05 0.000 18.05 0.000 18.05 0.000 14.81 0.000 19.03
RF 14.95 0.000 13.07 0.000 13.07 0.000 13.07 0.000 15.51 0.000 14.26
booLR 16.66 0.000 20.59 0.000 20.59 0.000 20.59 0.000 10.96 0.000 19.56
GBT 14.27 0.000 15.69 0.000 15.69 0.000 15.69 0.000 13.30 0.000 15.94
SA A 10.70 0.000 9.62 0.000 9.62 0.000 9.62 0.000 12.90 0.000 9.41
SA 3 4.80 – 12.37 0.000 12.37 0.000 12.37 0.000 3.40 – 7.57
SA 5 5.84 0.002 12.40 0.000 12.40 0.000 12.40 0.000 4.80 0.000 8.26
SA 7 6.70 0.000 13.11 0.000 13.11 0.000 13.11 0.000 5.73 0.000 9.52
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 22: Average performance measure values for LDHSS

Low Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 5.92 0.000 6.04 0.000 6.04 0.000 6.04 0.000 8.02 0.000 4.75
LR 6.79 0.000 12.05 0.000 12.05 0.000 12.05 0.000 3.03 0.000 11.65
RLR 6.77 0.000 9.75 0.000 9.75 0.000 9.75 0.000 5.79 0.000 10.24
bayLR 7.06 0.000 11.83 0.000 11.83 0.000 11.83 0.000 3.81 0.000 11.76
kNN 11.00 0.000 13.64 0.000 13.64 0.000 13.64 0.000 11.15 0.000 13.95
NSN 14.37 0.000 1.49 – 1.49 – 1.49 – 14.37 0.000 4.31
NB 12.00 0.000 2.98 0.000 2.98 0.000 2.98 0.000 13.00 0.000 6.01
CART 14.63 0.000 1.56 0.157 1.56 0.157 1.56 0.157 14.63 0.000 5.27
bCART 1.00 – 6.96 0.000 6.96 0.000 6.96 0.000 1.00 – 1.30
booLR 13.00 0.000 15.00 0.000 15.00 0.000 15.00 0.000 11.67 0.000 14.99
GBT 9.68 0.000 4.97 0.000 4.97 0.000 4.97 0.000 9.97 0.000 7.29
SA A 2.85 0.000 4.01 0.000 4.01 0.000 4.01 0.000 9.18 0.000 1.73
SA 3 6.42 0.000 11.54 0.000 11.54 0.000 11.54 0.000 3.06 0.000 11.21
SA 5 5.32 0.000 10.12 0.000 10.12 0.000 10.12 0.000 4.63 0.000 9.73
SA 7 3.21 0.000 8.05 0.000 8.05 0.000 8.05 0.000 6.68 0.000 5.80
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.

Table 23: Average performance measure values for HDLSS

High Dimensionality - Low Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 10.53 0.000 9.79 0.124 9.78 0.124 9.78 0.124 16.02 0.000 9.68
RDA 15.90 0.000 13.10 0.000 13.06 0.000 13.04 0.000 12.82 0.000 16.23
LR 24.86 0.000 23.12 0.000 23.70 0.000 24.39 0.000 3.42 – 23.86
RLR 20.05 0.000 19.39 0.000 19.32 0.000 19.21 0.000 8.20 0.000 21.19
bayLR 14.44 0.000 11.96 0.000 11.94 0.000 11.93 0.000 13.34 0.000 14.38
kNN 11.31 0.000 10.10 0.048 10.10 0.048 10.10 0.048 15.81 0.000 10.56
NSN 8.78 0.073 9.54 0.327 9.54 0.327 9.54 0.327 16.32 0.000 8.07
SNN 8.06 0.635 9.43 0.635 9.43 0.635 9.43 0.635 16.86 0.000 7.22
NB 8.99 0.073 9.44 0.635 9.44 0.635 9.44 0.635 16.17 0.000 8.14
CART 21.02 0.000 20.42 0.000 20.42 0.000 20.29 0.000 7.75 0.000 21.25
C5.0 14.76 0.000 15.29 0.000 15.28 0.000 15.18 0.000 11.41 0.000 15.19
SVM L 17.77 0.000 15.72 0.000 15.64 0.000 15.59 0.000 10.41 0.000 18.46
SVM P 9.37 0.004 10.29 0.032 10.28 0.032 10.27 0.032 16.10 0.000 8.67
SVM R 8.01 – 9.35 – 9.35 – 9.35 – 16.98 0.000 7.12
DWD L 11.31 0.000 11.16 0.001 11.14 0.001 11.13 0.001 15.26 0.000 10.77
DWD P 11.49 0.000 11.24 0.001 11.22 0.001 11.21 0.001 14.92 0.000 11.05
DWD R 8.06 0.635 9.35 – 9.35 – 9.35 – 16.98 0.000 7.18
bCART 12.24 0.000 10.74 0.003 10.72 0.003 10.72 0.003 14.64 0.000 12.01
RF 8.41 0.327 9.59 0.466 9.59 0.466 9.58 0.466 16.75 0.000 7.57
booLR 18.75 0.000 17.55 0.000 17.48 0.000 17.41 0.000 9.04 0.000 19.50
GBT 13.60 0.000 10.49 0.007 10.48 0.007 10.47 0.007 15.35 0.000 12.70
SA A 8.17 0.327 9.35 – 9.35 – 9.35 – 16.98 0.000 7.29
SA 3 15.54 0.000 19.50 0.000 19.43 0.000 19.34 0.000 4.70 0.264 19.14
SA 5 12.62 0.000 16.06 0.000 15.98 0.000 15.95 0.000 7.71 0.000 15.60
SA 7 10.97 0.009 13.05 0.000 13.01 0.000 12.98 0.000 11.07 0.000 12.15
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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Table 24: Average performance measure values for HDHSS

High Dimensionality - High Sample Size

PCC p-value AUC p-value H p-value BS p-value F1 p-value AvgR
LDA 4.96 1.000 5.58 0.000 5.58 0.000 5.58 0.000 4.20 0.000 5.56
LR 5.03 1.000 5.53 0.000 5.53 0.000 5.53 0.000 4.26 0.000 5.52
bayLR 4.99 1.000 5.50 0.000 5.50 0.000 5.50 0.000 4.24 0.000 5.49
NSN 4.61 – 2.44 – 2.44 – 2.44 – 7.99 0.000 2.73
NB 6.25 0.003 8.47 0.000 8.47 0.000 8.47 0.000 2.15 – 8.21
CART 4.61 – 2.44 – 2.44 – 2.44 – 7.99 0.000 2.73
SA A 4.87 1.000 4.08 0.000 4.08 0.000 4.08 0.000 5.76 0.000 4.07
SA 3 4.92 1.000 5.46 0.000 5.46 0.000 5.46 0.000 4.17 0.000 5.42
SA 5 4.77 1.000 5.50 0.000 5.50 0.000 5.50 0.000 4.25 0.000 5.29
Bold face indicates the best classifier (lowest rank) per performance measure. p-value are the adjusted
p-values of each performance measure to a pairwise comparison of the best classifier (per performance
measure) to each other.
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