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Summary

The Internet of Things (IoT) is a network of computational services, devices, and people, which share in-
formation with each other. In IoT, inter-system communication is possible and human interaction is not
required'. IoT devices are penetrating the home and office building environments. According to current
estimates, about 35 billion IoT devices will be connected by the year 20212. In the IoT business model, value
comes from integrating devices into applications, e.g., home and office automation. In general, an IoT applica-
tion associates different information sources with actions which can modify the environment, e.g., change the
room’s temperature, inform a person, e.g., send an e-mail, or activate other services, e.g., buy milk on-line.

In this thesis, we focus on the commissioning and verification processes of IoT devices used in building
automation applications. Within a building’s lifespan, new devices are added, interior spaces are refurbished,
and faulty devices are replaced. All of these changes are currently made manually. Furthermore, consider that
a context-aware Building Management System (BMS) is an IoT application, which measures direct-context
from the building’s sensors to characterize environmental conditions, user locations, and state. Additionally,
a BMS combines sensor information to derive inferred-context, such as user activity. Similar to IoT de-
vices, inferred-context instances have to be created manually. As the number of devices and inferred-context
instances increases, keeping track of all associations becomes a time-consuming and error-prone task.

The hypothesis of the thesis is that users who interact with the building create use-patterns in the data,
which describe functional relations between devices and inferred-context instances, e.g., which desk-movement
sensor is used to infer desk-presence and controls which overhead light; additionally, use-patterns can also
provide structural relations, e.g., the relative position of spatial sensors. To test the hypothesis, this thesis
presents an extension to the new IoT class rule programming paradigm?®, which simplifies rule creation based
on classes. The proposed extension uses a semantic compiler to simplify the device and inferred-context
associations. Using direct-context information and template classes, the compiler creates all possible inferred-
context instances. Buildings using context-aware BMSs will have a dynamic response to user behaviour, e.g.,
required illumination for computer-work is provided by adjusting blinds or increasing the dim setting of over-
head ceiling lamps. We propose a rule mining framework to extract use-patterns and find the functional and
structural relationships between devices. The rule mining framework uses three stages: (1) event extraction,
(2) rule mining, (3) structure creation. The event extraction combines the building’s data into a time-series
of device events. Then, in the rule mining stage, rules are mined from the time series, where we use the estab-
lished algorithm temporal interval tree association rule learner. Additionally, we proposed a rule extraction
algorithm for spatial sensor’s data. The algorithm is based on statistical analysis of user transition times
between adjacent sensors. We also introduce a new rule extraction algorithm based on increasing belief. In
the last stage, structure creation uses the extracted rules to produce device association groups, hierarchical
representation of the building, or the relative location of spatial sensors. The proposed algorithms were tested
using a year-long installation in a living-lab consisting of a four-person office, a 12-person open office, and
a meeting room. For the spatial sensors, four locations within public buildings were used: a meeting room,
a hallway, T-crossing, and a foyer. The recording times range from two weeks to two months depending on
scenario complexity.

We found that user-generated patterns appear in building data. The rule mining framework produced
structures that represent functional and spatial relationships of building’s devices and provide sufficient in-
formation to automate maintenance tasks, e.g., automatic device naming. Furthermore, we found that en-
vironmental changes are also a source of device data patterns, which provide additional associations. For
example, using the framework we found the facade group for exterior light sensors. The facade group can be
used to automatically find an alternative signal source to replace broken outdoor light sensors. Finally, the
rule mining framework successfully retrieved the relative location of spatial sensors in all locations but the
foyer.
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Chapter 1

Introduction

1.1 The Internet of Things and Building Management Systems

The Internet of Things (IoT) is a network of computational services, devices, and people, which share in-
formation with each other. In IoT, inter-system communication is possible and human interaction is not
required [75]. An IoT device is any physical object that can be connected to the Internet to provide or receive
information, e.g., sensors and actuators. IoT devices are penetrating the home and office environment. By
using the Internet, devices, computational services and users can be easily connected. Among all the foreseen
IoT applications, building and home automation have found a quick entrance into the market. The IoT
revolution brings low cost devices and infrastructure to the building and home environments, where users
can control them through common interfaces like the mobile phone. Driven by energy saving and comfort,
Building Management System (BMS) optimize the energy consumption in office buildings based on occupancy
and other context information to provide the user with comfortable environmental settings while minimizing
energy consumption [3, 82]. The balance between comfort and energy consumption is achieved by detecting
context information derived from sensor data, e.g., activities which require energy [34] or ontology based
recognition [83]. In office buildings, comfort is divided in two main topics: thermal [20] and lighting [47]
comfort. In both cases context information is used to estimate the best comfort conditions. Similarly, BMS
in home environments also use context to save energy and provide comfort [111]. Additionally, the BMS is
used to facilitate assistance and care to people with disabilities [56, 84], while providing users the possibility
of independent living. At the city level, a BMS connected to the internet is capable of reporting real-time
feedback to the grid. Energy generators us the information provided by connected BMSs to balance energy’s
supply and demand, which in turn, reduces natural resource consumption such as gas, carbon, or water [2].

Adopting IoT systems and frameworks has commercial benefits for building owners. Technologies which
reduce the energy footprint, while maintaining comfort, have a direct impact on the rent price and the effective
rent. People will pay higher rent prices for apartments which are certified energy efficient, and the owner will
spend less on operating the building, thus, increasing the owner’s effective rent income. In 2010, the impact of
building’s energy efficiency certificates on the rent prices and the effective rent was measured at a 3% and 7%
increase respectively for independently certified buildings [26]. However, the majority of new IoT devices and
applications will have to adapt to current buildings and their infrastructure. A building’s average service-life
in Europe and the USA is expected to be between ~ 50 to 70 years [50, 88]. Thus, most IoT installations will
be made in existing buildings. New IoT devices will coexist with old technologies, e.g., old BMS, as the cost
of a full replacement greatly exceeds the cost of an upgrade to support new technologies [97]. Furthermore,
according to current estimates, about 35 billion IoT devices will be connected by the year 2021 [16]. Other
than context measurement for energy and comfort in buildings, the added value of IoT devices depends
on the applications that they support. From driving style recommendation based on environmental and
traffic sensors [57], to smart appliances such as refrigerators [27, 30]. As more devices are installed, they
need to be associated in meaningful relationships with the services that provide oversight and control, e.g.,
the refrigerator’s and washing machine’s state and power consumption can be associated to the household’s
appliance energy monitoring dashboard, but not to the house’s outdoor light controller. The intended market
for IoT devices is mostly composed of non-technical users. However, if the commissioning process and the
user interaction cannot be simplified, IoT devices will have a difficult time being incorporated [59].

A simplified BMS model consist of three components: sensors, control logic and actuators. Therefore, BMS
commissioning consist on assigning each sensor a corresponding actuator using rules that constitute the control
logic. The installation procedure goes as follows: create groups based on locations with similar properties,



2 CHAPTER 1. INTRODUCTION

e.g., office rooms, assign sensors and actuators to the rooms, then create control rules, which associate sensors
with actuators. In the basic commissioning scheme, location information is not technically necessary, as
the rule associates the sensor and actuator. However, location information provides the user a hierarchical
structure to manage all devices and system properties. Context-aware BMSs, in addition to the simplified
model, use inferred context and control algorithms which calculate optimal actuator states based on current
context. Nevertheless, the commissioning process follows the same logic: create groups based on locations,
assign sensors to inferred context algorithms, map actuators and required context to the control algorithm.
Although the commercialization of IoT devices for the public has made the trigger action paradigm the most
popular due to its ease of use, the promised energy savings and comfort improvements will require carefully
crafted rules, or the inclusion of advanced control strategies which only experts will be able to generate.
Additionally, validating the installation and maintaining it during the life span of the building requires time
and expert involvement. In particular, when managing old BMS infrastructure which are customized to the
building’s specifications, detailed information about the old BMS configuration and its current state is not
easily attainable. As a result, when incorporating new IoT technologies into old buildings, the new devices
rarely interact with the old infrastructure, creating unnecessary redundancies and sub-utilizing all possible
sources of context information. Thus, commissioning, validating and maintaining a BMS is a manual, labour
intensive, and error-prone task.

The hypothesis of the thesis states that users who interact with the building create use-patterns in the
data, from where building structures can be inferred. The use-patterns can be used to validate the BMS
installation, discover old BMS structures, or automatically associate sensor replacements. Use-patterns are
extracted using rule mining techniques because, in particular, the simplified BMS model uses rules for the
control logic, e.g., if presence then light = on, and in general, a rule is an approximation of the control logic,
where a change in the input variables reflects a change in the output, e.g., a new set point for the room
temperature causes the heating and ventilation system to modify the internal state, as consequence, a change
in room temperature is observed. The hypothesis is illustrated in the following example: When users enter
the building to go to their offices, they will activate motion sensors in their path. As users enter the office
building they create a tree-like structure which starts with the main door in the root, branches out to the
floors, then the offices, and finally the individual desks. Each tree node represents a motion sensor, and the
edges represent the transition times between motion sensors, e.g., the time it takes to go from the office door
to the desk. When tow nodes are connected due to a user transition, the association is called a structural
relationship. Similarly, actuators that respond to the motion sensors are also assigned to the tree as nodes,
e.g., a ceiling lamp that activates in response to a presence sensor. The association of nodes created by the
BMS’ control logic is defined as a functional relationship. The resulting tree can be mapped into the BMS’
time-series as rules, e.g., if hallway motion is observed, then room; motion is also seen, within an expected
time of ¢ = 5 & 1s. Each level of the tree-like structure represents a building’s location, e.g., the root is the
building as an entity, the next level represents the floors, followed by corridors, office rooms, areas, and finally,
desks which are the leaves of the tree.

1.2 Related approaches to variable relation discovery

The thesis’ hypothesis proposes that the structure of the building and the functional relationships of context
variables can be extracted from BMS data. In this section, we discuss related methods where different types
of relationships and structures are extracted. First, we examined methods to extract the exact location of
wireless sensor network nodes; where the structure of the building can be reconstructed from the individual
node positions. Then, we look into unsupervised learning of Bayesian networks algorithms, as users can be
seen as a random process and their movement through the building creates a graph. Additionally, we thought
of the user movement as creating activation patterns in the BMS’s time-series, therefore, we considered motif
search approaches to see if activation patterns could be extracted. Finally, we considered the methodologies
used in complex system diagnostics, as the relationships of the system’s components need to be modelled or
approximated in order to find problems within the system.

Wireless sensor network localisation

Structural relationships are a well studied problem in wireless sensor networks. Savvides et al. [101] proposed
the model for 3D localisation of wireless nodes, where at least three beacon nodes are required for calculating
the absolute location of all nodes in the mesh. They use lasers rangers to measure the distance between
nodes. In current work, Kirichek et al [52] replace the laser ranging mechanism with the sensor’s wireless
communication channel, and use the power propagation to distance relationship to estimate the mesh topology.
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Absolute position of all sensor nodes will yield the structure of the building. However, since the approach is
based on the power of the transmission signals, it means that all devices in the buildings have to be a part
of the wireless sensor network, and all nodes have to use the same communication protocol. The rule mining
approach proposed in this thesis uses the BMS’ time-series, which is the data collected from all devices and
context variables. Therefore, relative localisation of sensors can be achieved, regardless of the communications’
media and protocols used to communicate with the BMS.

Learning graphical models and functional association

Users interacting with the building can be seen as a random process. Furthermore, the use-patterns can
be modelled using graphical models, in particular, Bayesian networks. Hence, the use-pattern graph has
the following structure: every context variable is a node and every edge represents the transition between
variables, e.g., transitions between motion sensors, or a response created by the BMS control logic, e.g.,
motion sensor and ceiling lamp. Furthermore, the BMS’ time-series can be seen as a sequence of building
status snapshots, where each record contains the value of all context variables. Therefore, algorithms that
learn graphical models in databases can be candidates to automatically extract the functional and structural
relationships of the building’s context variables. For example, Cheng et al. [13, 14] proposed the three-phase
dependency analysis algorithm (TPDA) to automatically learn Bayesian networks from data. TPDA uses an
information theory based approach, does not require specific expert knowledge, and is guaranteed to have
polynomial complexity. However, using TPDA in time-series data to extract the building structure presents
several challenges as three out of the four assumptions are not satisfied. First, the records are not independent
and identically distributed, the information in a given record depends on the previous records, due to the time
causality effect introduce by the BMS’ control logic, and the temporal relation of the user generated events.
In a real case scenario, values can be missing, e.g., due to equipment failure, thus, TPDA’s no missing data
assumption is not maintained. Finally, TPDA requires large quantities of data, although buildings constantly
generate data, some context variable relations are scars, e.g., context variables’ relationships associated to the
usage of service rooms. Therefore, the conditional independence test for scars variables is not reliable.

Instead of learning a graphical model to model functional relationships, Ilyas et al. [44] proposed an
algorithm called CORDS, a method to find correlation and soft functional dependencies in databases. Their
proposed method finds pairwise relationships between database columns and builds the dependency graph
from the pairs. TPDA and CORDS find record wise relationships, i.e., the dependencies are learned from
variations within records. Whereas the functional and structural relationships are time dependent, i.e., the
relationship between database columns is evidenced across multiple records. For example, given a pairwise
relationship a — b, and Vr € D records in a database D, TPDA and CORDS will find a,b € r;Vr; € D’ C D.
Therefore, CORDS and TPDA cannot be directly applied to the BMS time-series. The rule mining approach
used in this work findsa — b such that a € r; Ab € r;4,, where n is the expected value of record separation,
i.e., number of positions or time interval.

Motif search

The problem of functional and structural associations of context variables from a BMS’ time-series can be
approached from a pattern recognition perspective. In principle, as users move through the building, they
create use-patterns, which are recorded in the BMS’ time-series. Yeh et al. [115] and Zhu et al. [120] presented
the STAMP and STOMP algorithms respectively. Fine-tuned for performance, STAMP and STOMP compute
the distance between each subsequence of the time-series. Then, they find the nearest neighbour for each
subsequence based on euclidean distance. A matrix profile is built, where for each segment, the index of
its nearest neighbour is stored. Finally, the matrix profile and its index of minimum segment distances is
used to assemble the motifs. STAMP and STOMP differ on how they search for the minimum distance,
while STAMP does an aleatory search of the minimum distances, STOMP does an ordered search. While the
matrix profile is robust against slight motif transformation in time, i.e., pattern stretch, and in amplitude,
i.e., measurement error, in the case of the building’s use-patterns, the differences between sequences does
not follow the minimum distance criteria as use-patterns can be overlapping. Additionally, an instance of
the use-pattern is expected to have random insertions of other symbols which surpass the measurement error
expected by the matrix profile. For example, Eq. 1.1 illustrates three sample time-series segments, where the
pattern 1 — 5 — 9 is present. Using the minimum euclidean distance criteria, all three sequences are considered
different. In contrast to motif search, rule mining looks for the appearance of symbols in the segment rather
than its shape. Therefore, rule mining can extract the pattern 1 — 5 — 9 regardless of other symbols appearing
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in the sequence.

[17 9 9 07 07 07 0) O]
[1, 5, 9, 10, 10, 10, 10, 10] (1.1)
[17 ) ) 77 5a 37 2, 9]

System diagnostics

One application of functional and structural relationship mining is in system diagnostics. In general, a time-
series is the recorded evolution of a generating process through time. The health, i.e., status, of the generating
process can be assessed by studying the time-series. Kavulya et al. [48] summarised diagnostic techniques of
complex system in six classes: rule-based, model-based, statistical modelling, machine learning, count and
threshold, and visualization techniques. An intuitive approach to diagnostics is the rule-based diagnostic
technique, which relies on expert’s knowledge and is limited to the failure cases foreseen by the expert. As
systems grow in complexity, e.g., increasing number of devices in a building., the knowledge base is difficult
to maintain. Model-based techniques are based on physical, regression, or graphical models. Although model-
based techniques for diagnostics are the most accurate, they require extensive knowledge of the system and
of all factors affecting the system’s behaviour. In contrast to model-based diagnostics, statistical techniques
require less in-depth knowledge of the system. However, statistical diagnostics depends on the moment where
the base line was calculated, as the system behaviour evolves, a malfunction or an expected change are equally
considered as anomalies, e.g., full CPU use due to high throughput vs. a runway process. Machine learning
is used to cluster faults by mapping measurable performance and behaviour metrics, i.e., features, into fault
state clusters. The clustering approach works as long as the system’s behaviour does not drastically change
over time. Additionally, fault clusters can be over-fitted increasing the number of undetected fault instances.
Count and threshold is used to determine whether the type of fault is transient, i.e., caused by external factors,
or intermittent, i.e., caused by failing internal components. Depending on the application, a threshold on the
rate of both fault types is set to determine when to replace or improve a component. Finally, visualization
summarizes the time-series information into human readable diagrams and info-graphics to allow operators
to identified anomalous behaviour patterns.

The rule mining based approach to functional and structural relationship modelling uses the intuitive
idea of a rule-based model, but instead of expert’s knowledge, the rules are learnt from the system. So, a
large knowledge base is maintainable. Rule mining combines statistical and unsupervised machine learning
methods. Therefore, the internal system behaviour can be modelled without in-depth system’s knowledge.
However, unlike statistical modelling, where performance evaluations are used to determine faulty states, rule
mining finds the frequency of events in the system and the relative rate of finding the same events during
an observation window. Thus, diagnostic models based on functional relationships, are not susceptible to
the variation of performance metrics due to changes in behaviour. For example, a runway process does not
interact with other processes in the same way a process with high load interacts with its pears, even though,
both processes cause high CPU load.

1.3 Thesis goals

This thesis has two goals: (1) simplify the process of instantiating inferred context and control algorithms
when using class rule programming, and (2) study use-patterns discovery to validate, maintain, and model
the Building Management System (BMS).

While the class rule programming paradigm for BMS systems simplifies rule creation for non-technical
users, additional work is required to simplify the instantiation of inferred context variables and control algo-
rithms. The goal is that a non-technical user can program a context-aware BMS without the need of direct
expert participation, while maintaining the benefits of an expert’s system in terms of energy saving and
comfort. The approach should leverage device’s location information to create dynamic associations between
sensors, actuators, inferred context variables and control algorithms. Additionally, the approach needs to be
scalable in order to support installations from a single-room home to a skyscraper.

When users interact with the building, the resulting building’s use-patterns should be discoverable through
rule mining of the BMS’ time-series. In general, propositional rules of the form a — b are an approximation
of the BMS’ control logic, as variations in the controller’s input variables cause changes in the outputs.
Additionally, building occupants’ generate a correlation between context variables. For example, when a user
enters and sits at a desk, the room’s motion and desk presence will often appear within similar time intervals,
and thus can be encoded as a rule, e.g., if room; movement then desk; presence in t = 3 & 1s. The extracted
rules reflect the variables’ functional relationship, i.e, variables are involved in the control process, and
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the structural relationship from a user’s perspective, i.e., the user path through the different levels of the
building’s hierarchy. With the extracted rules, the goal is to discover functional and structural relationships
of context variables and extract building structures and the association of each variable to the different levels
of the structure.

1.4 Thesis outline and related publications

This thesis is divided in four parts: (1) the introduction to a new programming paradigm for building
management systems, (2) functional and structural context variables’ relationship mining from the Building
Management System (BMS)’ time-series data when using the new programming paradigm, (3) an extension of
structural mining to relative localization for spatial sensors, and finally, (4) an atomic rule mining algorithm
which does not use any thresholds on the confidence or support of the rules.

The preference based programming paradigm is introduced in chapter 2. Chapters 3—4 present two methods
for functional and structural context variable relationship mining from BMS’s time-series. Thermopile array
sensors are introduced with an application in chapter 5, and an extension of structural relationship mining to
relative sensor position is presented in chapter 6. Chapter 7 introduces the Bayesian Rule Extractor (BRE)
algorithm, which is based on the belief of a rule always increasing. The algorithm does not use thresholds
on the rule’s support. Finally, the thesis conclusions are presented in chapter 8. Table 1.1 indicates which
chapters from the thesis that have been independently published.

Chapter Publication

L. I. Lopera Gonzalez and O. Amft. “Mining relations and physical grouping of building-
embedded sensors and actuators”. In: PerCom 2015: Proceedings of the International
Conference on Pervasive Computing and Communications. IEEE, Mar. 2015, pp. 2-10.
DOI: 10.1109/PERCOM.2015.7146503

L. I. Lopera Gonzalez and O. Amft. “Mining Hierarchical Relations in Building Man-
4 agement Variables”. In: Pervasive and Mobile Computing. Pervasive and Mobile Com-
puting 26 (Feb. 2016), pp. 91-101. 1sSN: 1574-1192. DOI: 10.1016/j.pmcj.2015.10.009

L. I. Lopera Gonzalez, M. Troost, and O. Amft. “Using a thermopile matrix sensor
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Chapter 2

Semantic Compiler for
Smart-Building Ontologies

2.1 Introduction

With the Internet of Things (IoT), devices are becoming interconnected and people may achieve automatic
control over their smart spaces by interconnecting sensors with actuators. Unlike previous building automation
strategies, which were closed systems and required professional installers, IoT has propelled products that
non-experts can install. However, individual device manufacturers are not aware of the entire IoT ecosystem.
Therefore, information processing happens at a device level. For example, Nest smart thermostat uses on-
board sensors and on-line services to learn and adapt to occupant’s behaviour and preferences [114]. Although
the thermostat can share its knowledge about user patterns with other appliances [112], it is not designed
to take other thermostats into consideration. As a result, the number fo possible interactions between the
thermostat and other devices is limited to a specific set of actions. The advantage of the actions-set is that
an average person can create associations to other devices known to the thermostat.

Two of the driving forces for IoT integration in buildings is energy saving and occupant comfort. Research
has shown that by closely monitoring the building’s context, i.e., the occupant’s state and activity, and the
space’s environmental conditions, as more devices are installed and interconnected, detail context information
becomes available and fine grained actions can be taken to minimize energy consumption while preserving
comfort [64, 73]. Detailed context information can be divided in two categories: direct-context and inferred-
context. Information provided by devices or external service, e.g., light sensors, weather forecast, constitute
direct-context. Smart-buildings use algorithms to compute additional context information called inferred-
context [24]. For example, a sensor fusion algorithm to recognize office-desk activities [74]. Furthermore, a
sequence of algorithms in combination with direct-context instances, required to compute inferred-context, is
considered a context-aware framework. For example, Cook’s et al. [17] introduced the middle ware to have
context-aware home automation.Once inferred- and direct-context are evaluated, smart-buildings use context
information to modify the environment using actuators. Algorithms, called composers, compute new actuator
states based on context, preferences, and system operation goals. For example, a light composer uses a room’s
available lamps, blinds, exterior light sensors, and activity monitoring to set the room’s illumination to an
occupant-specified level while minimizing energy consumption. Degeler et al. [23] proposed a service oriented,
context-aware building management system that used composers to provide comfortable and energy efficient
environment for the building’s occupants. The problem of context-aware frameworks and composers is that
the configuration is unsuitable for non-experts, and is labour-intensive for experts.

Smart-building behaviour is programmed with the creation of control rules which associate context events
with composers, e.g., if an occupant is present in the room, activate the room’s light composer. This approach
to control rule creation is called a Triguer-Action Paradigm (TAP). TAP provides a logical programming mech-
anism that people with no technical background can use, albeit limited to associating a few trigger sources to
specific actions[11, 107]. Furthermore, IoT motivates the integration of devices from different manufacturers,
and TAP has been widely adopted by device management services such as IFTTT, smart assistants such
as Amazon® Alexa' " or Google® home, which provide the functionality for people to conveniently operate
their smart environments from one application. For TAP to work, all composers, direct- and inferred-context
instances must be pre-defined in the system for non-experts to effectively program the building.

The challenge of commissioning a smart-building with IoT devices, context-aware frameworks, and TAP
is that there is considerable effort in creating and configuring all required instance for each building location.

7
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Space Device ' . | Composition _ Rule
Description Wassociancnl| R ZLEARCaniguration ~| Configuration “| Creation
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Figure 2.1: Comparison between the Manual Building Commissioning (MBC) process and our proposed
approach the Building’s Ontology Compiler (BOC). BOC automates the creation of inferred-context
instances. In addition, BOC presents composer alternatives to the building-programmer for the rule
creation step using the Class Rule programming Paradigm (CRP). Finally, BOC implements the selected
composer classes and convert the class rules to instance rules.

Therefore, commissioning the smart-building is a labour intensive task that requires expertise. In general, the
commissioning process for each building location goes as follows:

Describe the space.

Associate devices to locations in the space description.
Create and configure inferred-context framework instances.
Create and configure composer instances.

Specify control rules using TAP.

G =

In this work we present the Building’s Ontology Compiler (BOC), a methodology for simplifying the smart-
building commissioning process. Our goal is to minimize complexity to expert building-programmers such that
non-exeprt can also commission the smart-building. BOC works as follows, after the building-programmer
associates devices to building locations, BOC instantiates all inferred-context instances. Then, BOC creates
a list with all composers that it can instantiate per location. Context instances and composers are organized
using an ontology into classes. BOC uses the Class Rule programming Paradigm (CRP) paradigm introduced
by Corno et al. [18]. The rule creation process is simplified using CRP, as rules can be expressed using context,
composer, and location classes instead of the specific instances. For example, in CRP, the rule “if Presence
in Office activate Office’s Light Composer” applies to all locations of type Office, and for each office activates
the office’s light composer based on its occupant presence condition. After rules are created using CRP, BOC
converts the context and composer classes used in the rule to instances. Only the composers that match the
class and location specified in the rules are instantiated from the composer list. The location class is used to
determine the correct instances to associate, e.g., lamps, sensors, and composer from the same office. Fig. 2.1
illustrates the comparison between Manual Building Commissioning (MBC) and BOC.

We evaluate BOC with the configuration data for a four person office with a total of 17 sensors, 12 inferred
context instances, and 8 actuators. We created three scenario descriptions of the same room and simulated the
room lighting system for each description to evaluate energy saving using 337 days of recordings, which used
the recorded presence and outdoor light data to simulate the lighting system response under each scenario
description.

2.2 An Ontology for Smart-buildings

Building’s Ontology Compiler (BOC) depends on an ontology in order to create inferred-context and composer
instances. The ontology specifies seven main classes: location, context, composers, topic, algorithms, mapping
and cost functions. Location class defines all the different types of spaces found in a building. The building’s
hierarchical structure is created by associating instances through properties. In particular, using the property
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hasLocation, context and composers instances are assigned to the appropriate location instance, which in
turn, can be assigned to a containing location instance. For example, presencel, ceiling lampl, composerl
haveLocation deskl, and deskl hasLocation rooml.

The context class is divided into three subclasses: object state/activity, environmental state and actuators.
Object state/activity refers to context information which describes objects in the space, e.g., occupants. For
example, occupant states like presence, fallen, or sitting, as well as activities such as computer work, desk
work, talking. Environmental state refers to the physical variables which describe the space that contains
objects. For example, temperature, humidity, and CO5. Finally, following the definition from the Sensor-
Observation-Sampling-Actuator ontology (SOSA) [19], actuators represent devices/services which can execute
actions. For example, ceiling lamps, radiators, and notification services. A subsequent class hierarchy is
proposed as follows: function, modality, device model. For example, Presence as function, Passive Infra-
Red motion detectors (PIR) for modality, Wireless-self-powered-PIR sensors as device model. For object and
environmental classes an inferred modality is added. As a result, inferred-context instances are classified in the
ontology. For example, when presence in room one (presence_1) is derived from the room’s people counter,
then, it can be classified as follows: presence_1 € [Context,Object state/activity, Presence, Inferred).
Fig 2.2 illustrates other context hierarchy examples.

Location | Context | | Composers |
Object State or Environmental
: Activity State HenaE

I —F 1 -- -1

| Presence H lllumination | | lllumination | I lllumination | i
I I I i

| PIR | LightSensor | | Dimmers | L_Dim + Ex. Light" | |
| : | 1

|  Room | | wspPPR* || w-sPLs* || 1-10V Dimmer |

| room l<—| presencel |:| light_sensorl || dimmerl |—>| composer |§

i | | | h.illumination*
.

- |
e K] linear cost : ; i

Entltlgl?;lsS g furction linear mapping function | Dim + Ex. Light |
] € — — E—— |
|:| Instance 3 | lllumination | | lllumination | | lllumination | !
Properties | Composers |
i i hasLocation '
"} hasTopic | Cost Function | | Mapping Function | | Algorithms |

Figure 2.2: Ontology illustration of the asserted facts about a presence, a light sensors, an actuator,
and a composer associated to a room instance. The arrows represent associations by properties as listed
in Table 2.1.

* W-SP-PIT: Wireless self powered passive infra-red.

**  W-SP-LS: Wireless self powered light sensor.

h. illumination: Homogeneous illumination

Dim +Ex. Light: Dimmable lamps and exterior light sensor.

+—+

In Internet of Things (IoT) applications, specifically building automation, an alternative context catego-
rization by function is called a Topic. For example, the illumination topic groups light sensors, ceiling lamps,
and composers for illumination. Topic are better suited to group instances around environmental state classes,
such as illumination, which can be mapped to a physical phenomenon or quantity. Then, the topic uses the
environmental state’s variable space as common ground to exchange information between the instances of a
topic. Therefore, all devices under that topic provide interfaces to operate in the topic’s value space. For
example, the illumination topic uses an unsigned real variable space with a Lux unit. The common light
sensor provides data already in Lux, the composer estimates lighting requirements also based in Lux and
dimmable ceiling lamp actuators provide an interface to convert Lux to the 1|10 Volts format used by some
commercial dimmer controllers. Topic interfaces might not be directly provided by the actuator, therefore we
propose the Mapping and Cost functions classes to overcome the missing information. The mapping function
class defines functions which have as input the topic’s variable space and converts the value into an actuator
understandable value, e.g., f(200Luz) == 2V. A cost function instance also takes as input the topic’s variable
space value and convert it into consumed resources, e.g., f(200Lux) == 30W. Energy aware composers can
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Property Inverse Transitive  Domain Range Description
hasLocation Contains Location, Con- Location Associates context, composer and
text, Composers location instances to their contain-
ing location.
hasLocationT ContainsT ° Location, Con- Location Transitive version of hasLocation,
text, Composers used to traverse the location hier-
archy.
hasTopic Location, Con- Topic Associates a topic to classes or in-
text, Composers, stances.
Algorithms, Cost
and mapping
funcitons.
hasAlgorithm Context, Com- Algorithms Associates algorithms with com-
poser posers and inferred-context.
hasCostFunction Actuators Cost Function  Associates cost functions with actu-
ators.
hasMappingFunction Actuators Mapping Associates mapping functions with
Function actuators.

Table 2.1: Object properties defined in the smart-building ontology.

then use the information to compute optimal solutions.

Context class granularity minimizes information input and promotes re-usability. For example, a build-
ing has one hundred dimmable ceiling lamp actuators, which come in tow models: one or two fluorescent
tubes. Thus, the actuators are categorized as follows: context, actuators, illumination, dimmable lamps,
model 1|model 2. If the difference between models is the power consumption and the maximum illumination
provided, then, an energy saving composer can be instantiated with instances of either model, the required
information to produce the correct illumination is retrieved from the ontology by consulting the actuator’s
associated mapping and cost functions.

A composer instance is classified in the ontology under the Composer class, which is an extension to
Class Rule programming Paradigm (CRP)’s Action class. Corno et al. [18] defined the Action class in CRP
as the set of commands each individual IoT devices or service can execute. We found that the definition
limits the scope of the actions to a conjunction of commands per device. Instead, a composer instance
represents an algorithm/procedure which can combine current context information and generate commands
to multiple devices. For example, a homogeneous illumination composer can maintain a room’s illumination by
compensating changes in the exterior light with the room’s dimmable lamps. The composer uses the position
of each lamp with respect to the windows to provide homogeneous illumination distribution throughout the
room. Alternatively, a composer can turn on lamps. Thus, a CRP command is redefined as the procedure to
set a specific actuator to a given state. Therefore, commands are considered composers.

The Algorithms class is divided into inferred-context and composer subclasses, then, each subclass has
the same hierarchy as the respective instance class which uses the algorithms. Fig 2.2 illustrates an example
of the hierarchy used to classify the algorithm “homogeneous illumination”. A composer or inferred-context
instance is the parametrization of an algorithm for a specific location. Hence, the same algorithm can be
used in multiple locations. Fig. 2.2 illustrates the ontology with asserted facts about a room, a light sensor, a
presence sensor and a composer. The associated mapping and cost functions, and the composer’s algorithm,
and relationships created by properties are also shown in Fig. 2.2

The ontology defines the object properties listed and described in Table 2.1. For the building-programmer
the most important property is hasLocation, which is used by the building-programmer to associate devices
to locations, and to create the building hierarchy. The properties hasAlgorithm and the transitive version of
hasLocation are used in the creation of templates which are explained in the next section. The remaining
properties are intended for experts, and device manufacturers.

CRP proposes a device manufacturer/technology independent abstraction for creating rules, which is
achieved by using an ontology to define context and command classes. In CRP, rules are formulated by using
context as event sources, e.g., presence, and commands as actions, e.g., turn on lamps. With the rule “when
presence, turn on lamps”, using the ontology’s reasoner, which lamps to turn on is determined by which rooms
have presence. We continue the manufacturer/technology independent abstraction by proposing context and
composer hierarchies, and the associated property classes. Further more, the mapping and cost functions
compliment information which might not be provided by the device manufacturer. Therefore, the composers
can operate in an abstraction level independent of the manufacturer/technology.
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From Fig. 2.2 it is clear that the ontology requires many definitions and assertions. However, using device
discovery and self registration technologies, such as universal plug-n-play or Kim et al’s [51] seamless integra-
tion of heterogeneous devices, most of the registration burden can be passed to the devices’ manufacturers.
In other words, when a device is added to the network, it will register its information regarding context
class hierarchy, mapping and cost functions if applicable. Although, we are aware that there is no standard
for IoT device ontologies, there are techniques to incorporate and translate between the building’s and the
device ontology [1]. Additionally, algorithms can be independently developed and downloaded from a central
repository, in the style of the IFTTT[43] platform, because the ontology is designed to operate independently
of hardware manufacturers/technologies. As a result, the ontology can be maintained by experts, and for
the specific smart-building installation only the building description, device associations and CRP rules are
required.

In a manual commissioning process, once a complete description of the available devices, inferred-context
and composers is created, frameworks like GREENERBUIDLINGS [23] and Han et al. [38] can take over the
smart-building runtime.

2.3 Ontology extension for the compiler: The Templates Class

) Templates - Templates
> Composer_templates \ ~ Composer_templates
¥ Context_templates v ) dimmable_light_composer
. General_area_presence . actuators_tmp
Implementable Pl algo_tmp
v-- () USR_presence_template P inpuEs tmp
~~algo_tmp - location_tmp
+ & inputs_tmp iy

b user_prefs_tmp

= &) location_tm :
P P Implementable

v  Device_templates

Implementable »- () presence_controller
v- @ PIR_presence_template b single_preference_composer
.. algo_tmp - Context_templates
‘- €) inputs_tmp S Device_templates
(a) (b)
Figure 2.3: (a) Context templates defined in the smart-building ontology. The

USR_ presence__template defines presence, computer- and desk-work context classes based on
two ultrasound ranging sensors installed in separate desk areas. The PIR_ presence_template defines
the presence context class for each passive infra red sensor available. The Implementable class groups all
sibling templates which have instances in all requirement subclasses. (b) Composer templates defined
in CCP’s Ontology. The Implementable class groups all sibling templates which have instances in all
requirement subclasses. The dimmable_light_ composer_template uses desk and room light sensors
and controls ceiling lamps independently.

Before Building’s Ontology Compiler (BOC) can create inferred-context and composer instances, informa-
tion has to be provided to guide the instantiation process. Therefore, we created three template classes used
for controlling the instantiation process: Device, Context, and Composer templates. In general, a template
class is designed to classify, by assertion or by inference, context, algorithms and location instances in grouped
in respective requirement subclasses. A device template class classifies sensors as inputs, and an algorithm
to derive information from each input individually. The inferred-context instance inherits the location from
the input. The template has an assertion of the hasOutput property which links the template to the context
class function. For example, Fig. 2.3a illustrates the taxonomy of the Device template PIR_ presence, which
looks for Passive Infra-Red motion detectors (PIR) motion sensors as inputs, and an algorithm that converts
the motion sensor into presence. The template asserts that hasOutput some Presence. Context templates
are used to specify inferred-context which is derived from multiple inputs. An additional location subclass is
used to determine the locations where inputs will be merged using the algorithms. Fig. 2.3a illustrates the
taxonomy of the Context template USR_ presence, which searches for Ultra Sound Ranging sensors (USR)
sensors installed in left and right areas of desks and the algorithm that converts USR sensors mounted on
desk areas into presence, computer- and desk-work. The template asserts three hasOutput properties one for
each algorithm’s output class. In contrast to the other templates, the Composer template uses an actuator
subclass to classify the actuators which will receive commands from the composer. The hasOuput property
assertion is used to indicate the class of composer that will be instantiated. In addition, a user preference
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subclass is used to set the composer’s control reference when applicable. Fig. 2.3b illustrates the taxonomy
of composer templates.

2.4 Building Ontology Compiler

Building’s Ontology Compiler (BOC) uses the templates to automatically create inferred-context and com-
poser instances. After the building-programmer has created the space description and assigned devices to
their respective locations, BOC executes five steps: (1) execute the ontology reasoner to classifies the con-
text instances into the template requirement classes, (2) add a data property assertion to each template for
each requirement class that has instances, (3) run the ontology reasoner again to classify templates under
the implementable class of each template type. (4) using the templates from the implementable class, create
instances using the information contained in the template. (5) repeat from (1) until no new instances are
created. For composer templates, when the compiler finds more than one implementable template, it does not
run step (4). Instead, the composer availability list is presented to the building-programmer when creating the
system rules. The list is populated by all composers templates that are classified as implementable. Finally,
once the rule are specified using Class Rule programming Paradigm (CRP), the composers used in the rules
are implemented according to the templates.

Goal: When there is presence in the room, dim the ceiling lamps as out door light increases.

Paradigm Premise Conclusion
CRP: and —>
CRP + BOC: presence_room == True —» dimmercontroller_room(ceiling_lamp, outdoor_light)
Degeler et al.: presence_room == True — ceiling_lamp_room + outdoor_light_room > 1000lux
TAP: presence_room == True —» dimmercontroller_room(ceiling_lamp, outdoor_light )

Legend: Instance, value

Figure 2.4: Comparison between Triguer-Action Paradigm (TAP), Degeler et al. [23], and Class Rule
programming Paradigm (CRP) + the Building’s Ontology Compiler (BOC) paradigms. We consider
that Class Rule programming Paradigm (CRP) is a Triguer-Action Paradigm (TAP) superset, because
CRP’s compiled form is equivalent to a TAP rule.

Fig. 2.4 illustrates an example of a rule created using CRP, and BOC’s compilation result. Additionally, we
included for comparison the rules expressions defined by Degeler et al. [23] which could describe the composer
functionality directly in the rule formulation, and the rule in TAP, assuming the composer is considered an
available service. Fig. 2.4 shows that the compiled version of CRP rule is equivalent to TAP therefore, CRP
is a superset of TAP.

2.5 Evaluation scenarios

Using the four person office from GREENERBUIDLINGS dataset [23], we made a Building’s Ontology Compiler
(BOC)’s proof of concept. The room has four desks with computer screens, two screen-mounted Ultra Sound
Ranging sensors (USR), one ceiling-mounted Passive Infra-Red motion detectors (PIR), and a light sensor on
each desk’s work surface. Additionally, the room is equipped with an outdoor-light sensor, and 15 dimmable
fluorescent ceiling lamps controlled in pairs by seven 1-10V dimmer controllers and an extra single tube
controller for the ceiling lamp over desk two. The room’s layout is illustrated in Fig. 2.5. The room had the
most utilization from the living-lab with 337 days of data recordings. For all three scenarios the evaluation
goal is to configure all necessary inferred-context and composer instances such that energy is saved based on
room or desk presence, based on a Class Rule programming Paradigm (CRP) rule of the form “if Presence
then activate Energy-efficient-composer”.

We tested three room description scenarios, where we simulated different sensors and actuators availability
and location assignments: (1) room-with- presence-only, (2) room-with-outdoor-light, and (3) room-with-
desks. Fig. 2.5 illustrates the room’s layout and the device associations for the room-with-desk description,
where a ceiling lamp controller u;, a light \; and PIR sensor, were assigned to each desk d;. Additionally, two
USR sensors were mounted on the top corners of each desk’s screen, which created a left and right desk areas.
The remaining four ceiling lamp controllers, and the outdoor light sensor were assigned to the room. All
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Figure 2.5: Room layout. Illustration of the positions of the desks, dimmable ceiling lamps, and
sensors. Presence in the room P, is an inferred context variable thus its location does correspond to a
logical rather than a physical location. The layout reflects the room with ceiling lamps associated to the
desks. In all other descriptions the ceiling lamps are associated to the room, and only the outdoor light
sensor \, is used.

A

descriptions use the same location associations for the USR and PIR sensors. The next description, room-
with-presence-only, assigns all ceiling lamps to the room and light sensors were not included. Finally,
the room-with-outdoor-light description also assigned all ceiling lamps to the room , but it includes the
outdoor light sensor A\,. We used the GREENERBUIDLINGS data recording of the individual desk presence and
outdoor light to simulate the system’s response to each description. We used the dimmers cost functions to
convert the specific illumination requirements during the simulation to power consumption. Eq. 2.1 illustrates
the cost function for the dimmer with one (¢;) and two (cz) fluorescent light tubes. The functions use the
change of illumination Ax;. The constants were calculated using the recorded data.

c1(Axy) = 0.017Az; +21.25  [W]

2.1
co(Dxy) = 0.069Az;, +9.75  [W] @1)

We tested two algorithms to compute the three USR based context classes: presence, computer- and desk-
work. The first algorithm used windowed statistical analysis of the distance measurement and an estimation
of the occupant’s path on the field of view of both sensors to determine all three classes simultaneously [46].
The second method first detects presence on each individual sensor, by applying stochastic models of the
presence and away conditions, then the individual outcomes were used to compute all three classes at the
desk level [65]. Additionally, the USR’s presence was aggregated with the PIR motion output with a sensor
fusion algorithm [46]. Similarly, the room’s presence is inferred from the disjunction of all four desk’s presences.
In general, a location’s presence is the disjunction of all presence sources in that location including its sub-
loactions. Hence, we created three templates: USR, with two algorithmic choices, PIR, and location presence.
Fig. 2.6 illustrates the flow of compilation process to generate the inferred-context instances. Presence-based
USR and PIR templates are instantiated in the fist compiler pass and the location-based presence template is
instantiated in the second pass. By using the ontology reasoning, the compiler skips one pass and associates
all sensor-based presence into the room’s presence, which would be equivalent to associate desk presences in
a third compiler pass.

We defined two composer templates for the illumination topic. The first template has an On/Off controller
behaviour, when an instance of this composer template is enabled, it calls the dimmer’s turn on interface,
which sets the lights the maximum, e.g., 10V. The second template uses a light sensor in the location to control
available dimmable lamps which compensate for diminishing exterior light. Specifically, Eq.2.2 describes the
implementation of the composer algorithm for the optimal lamp control, where x; is the illumination level of
each lamp controller in locationl, and |A; is the light sensor. The algorithm then uses the dimmers mapping
function, shown in Eq. 2.3, to convert from z; to the corresponding 1|10 Volts value used by the dimmer’s
controller. Both dimmer models use the same mapping function.

> (@1 + A1) > 1000Lux (2.2)
i€l
m(x;) = 0.009 z;[V] (2.3)

BOC is evaluated in two aspects: feasibility and impact on energy consumption. Using the protégé ontology
editor [79] we verified feasibility by creating a simple building description, where only the room, desks and
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Figure 2.6: Illustration of Building’s Ontology Compiler (BOC)’s inferred-context instance creation
based on the device and space descriptions. Desk presence and room presence are implemented by the
same template. Therefore, BOC saves a compilation pass.

desk areas were described. Our goal was to verify if the correct instances are created in the ontology, because
a service oriented architecture, such as [23, 38], can use the composer instances from the ontology to configure
their composition services. We created instances which represent the sensors and actuators, and associated
them into the corresponding locations according to the different scenario descriptions. Finally, we implemented
BOC using owlready?2 [58] python library.

2.6 BOC'’s performance

Building’s Ontology Compiler (BOC) successfully created inferred-context instances and associated the com-
posers templates into their implementable class for each room description. Tab. 2.2 indicates which composer
templates were implementable for each description e, we indicate with x which templates were selected for
the energy saving evaluation.

Optimal light control  On/Off control

Room-with-presence-only ox
Room-with-outdoor-light ok
Room-with-desks ok

Table 2.2: Association between different room description and the implementable composers (o). Ad-
ditionally, the table shows the room description — composer combination used for the energy saving (x)
analysis.

We used the 337 days of desk-presence and light-sensor data to evaluate energy consumption performance of
each description scenario. We used the room-with-presence-only description as power usage baseline. Fig. 2.7a
illustrates a typical day at the office and the energy consumption as a result of the provided room description
and sensor association. For the day illustrated in the example, the room and outdoor light description achieved
the most energy saving with 78%. When compared to the room and desk description, we can see that the
composer is completely shutting down the lights as a response to the high exterior illumination provided by
the sensor. Thus, achieving the best energy savings. However, the desk light sensors from the room and
the composer implemented as a result of the room-with-desks description maintains a level of illumination
for the users present, which can bee seen as a comfort improvement. Further more, Fig. 2.7b illustrates
that on average the room and desk description saves 65% and the room and outdoor light sensor only saves
56% of energy. Night hours and the unbalanced occupancy throughout the day explain why, on average, the
room-with-desks description has better energy savings than the room-with-outdoor-light description.
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Figure 2.7: Results for energy saving analysis for the four-person office. (a) Illustration of Outdoor
light, presence, and illumination power needed for each composer, for a normal office day. Room presence
and outdoor light composer is the most energy efficient, at 78% savings with respect to the room pres-
ence baseline. The Context aware composer gives all users an adequate illumination according to their
preferences and still scores 68% of energy saving. However, (b) shows that over 337 days of recording,
the room and desk description with the single user preference composer saves on average 65% of energy
with respect to the Room presence baseline. In contrast, the room presence and outdoor light composer
only saves 56% when compared to the Room presence baseline.
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2.7 Future directions

In Building’s Ontology Compiler (BOC)’s proof of concept we have showed that the templates can provide the
information to automatically generate context and composer instances. However, we need to elaborate on how
the compiler treats properties assertions in order to have better control over the generation of instances. For
example, room presence was expected to be computed from desk presences only, and not from the individual
sensor presence. Although, equivalent for the case of presence, we foresee applications where the specific
inputs require more selectivity on the instances. For example, a situation where there are multiple inputs of
the same class, but the algorithm require pairwise distinct associations.

We showed that Class Rule programming Paradigm (CRP)’s manufacturer’s independent class abstraction
also applies to composer algorithms regardless of sensor and lamp manufacturers. Furthermore, we showed
how the optimal light composer used the mapping and cost functions to maintain control over the room’s
illumination. Additionally, similar to the ON/Off control composer, the turn on command also applies to
other devices. Therefore, in our ontology, devices provide the necessary interfaces to be used. We illustrated
the use of a procedural algorithm instance to implement the optimal light control composer. However, based
on schemas design for the description of buildings and their equipment, e.g., BRICK [6], we envision that
our approach can be extended to use description schemas as algorithms, or incorporate them into the context
classes accordingly.

The ontology presented in this chapter can be consider a building runtime ontology. Furthermore, there
are building information models which part of the design and manufacturing process, e.g., buildingSmart
IFC [10] or ghXML[33]. We envision that both ontologies will be merged following a procedure similar to
what Niknam et al. [85] proposed for unifying the design, cost and scheduling ontologies. When considering
IoT devices from the design process, the individual device information is known in the cost ontology, therefore,
the information can be merged with the building’s description. Once the building is constructed, the devices
only need the physical installation, and a set of factory rules following CRP’s approach, and by using the
compilation approach proposed in this chapter , the building will considerably minimize the commissioning
time. Furthermore, with a detailed information model, the absolute position of ceiling lamps can be described
and used to implement a composer that uses the “homogeneous lighting” algorithm.
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Chapter 3

Mining relations and physical grouping of
building-embedded sensors and actuators

Chapter originally published as: L. 1. Lopera Gonzalez and O. Amft. “Mining relations and physical
grouping of building-embedded sensors and actuators”. In: PerCom 2015: Proceedings of the International
Conference on Pervasive Computing and Communications. IEEE, Mar. 2015, pp. 2-10. DOI: 10.1109/PERCOM.
2015.7146503

3.1 Introduction

In modern buildings, various sensors and actuators are used to control lighting, blinds, Heating, Ventilation,
and Air-Conditioning (HVAC), as well as appliances. Frequently, motion detectors and temperature sensors
are deployed per desk to adjust lighting and HVAC system [3, 28, 69]. Milenkovic et al. [73] showed that
several office activities can be recognised from sensors commonly found in office buildings, e.g. to save energy.
Furthermore, adding sensor modalities, such as proximity sensors at office desks helps to control computer
screens according to user activity and increase comfort [46]. Overall, offices may contain some 5-10 embedded
sensors and actuators around a desk, resulting in up to 50 measurement and status variables in a 5-user office
space. For an average 10-floor office building with some 500 desks, ~5000 variables can be expected, not
considering variables originating from corridors, meeting rooms, and common areas. Measurement and status
information is typically managed via dedicated building networks and processed in a building management
system (Building Management System (BMS)). With the continuous increase in building functionality, the
amount of variables that need to be processed in a BMS grows and creates substantial challenges for classical
manual commissioning and continuous management of a building.

During building commissioning, sensors and actuators need to be linked into BMS rules that determine
functionality, including automation functions, such as moving blinds up and down depending on desk lighting
state. Further context information can be derived, such as counting the number of users occupying an office
space at any moment. User count information is relevant for a BMS to adaptively control the HVAC system
of an office space [74]. For example, presence in an office room could be determined as a logic combination
of individual desk presence variables and used to control overhead lighting. An example BMS presence rule
then is:

If presence in : deskl|desk2|desk3 == True
= Then : Over HeadLightl == 50%

The exemplary presence rule shown still ignores relevant information, such as the outside lighting con-
ditions. As a consequence, rules are typically complex and are constructed hierarchically, which further
increases overall variable count in a BMS. While attempts have been made to structure information and ap-
ply service oriented approaches for BMS [23], the challenge of verifying correct configuration and continuously
updating rules persist. Rule updates are necessary following revisions in installed devices, refurbishment,
and rearrangement of building spaces, which renders any manual configuration management labour-intensive
and error-prone. An automatic inference of relationships and location groups among building variables could
help building managers to extract and optimise rules and identify configuration errors, for example when a
presence detector of one desk was erroneously matched to a light of another desk.
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In this chapter , we introduce a framework to automatically group building variables by their physical
location. As building variables, we consider data provided by a BMS system, which represents a sensor
measurement, actuator state, or values derived by processing sensor data. Building variables are multi-modal
and represents different physical and virtual quantities.

In our approach, we exploit the fact that occupants use and interact with a building during everyday ac-
tivity, producing streams of sensor and actuator events, i.e. building variable changes. Building variables that
change state in recurring temporal relation could indicate that they share the same observation space, hence
location. We infer rules that represent variable relationship using association rule mining. We hypothesise
that spatial relation of building variables is reflected in the mined rules and therefore variable groups can be
extracted reflecting physical location. For example, a room presence detector and any lights activated by that
presence detector will appear in the same location group. Additional variables related to the HVAC system
of the same room, may be located in a nearby technical closet. Hence, our approach aims at extracting all
variables, including lights, presence detectors, HVAC-related, etc. that belong to the same location group. In
particular, the contributions of this work are the following:

1. We present a novel grouping framework to (1) consistently derive events from various sensor and actuator
modalities to obtain building variables, (2) extract temporal association rule relations among variables,
and (3) derives variable groups using transitive grouping. Our grouping framework can be considered
as fundamental for various applications. The derived groups can be used to validate BMS operation or
to provide new rules for additional building automation functions.

2. We evaluate variable grouping performance of our approach and compare to a manually configured BMS
and a baseline using standard hierarchical agglomorative clustering. For our evaluation, we consider
operational data gathered over several months from three living-lab office rooms of different type and
purpose that are typical for office buildings: a ~20 people meeting room, a 4-people office room, and a
12-people open desk space.

3. We illustrate potential applications of our grouping framework in several situations. First, we derive
new rules for counting people in a room, which is relevant for advanced HVAC operations. For example,
more air circulation is necessary when more people use a building space. The corresponding BMS rules
could be automatically derived by our grouping framework and suggested to the building manager. We
then show how BMS rule errors could be identified based on the derived variable grouping.

In this work, we focus on the grouping framework and its performance in realistic office conditions with
actual occupants who regularly work or use the rooms and thus show application examples. We consider that
our approach is relevant to office buildings, but similarly for public buildings such as schools, universities,
hotels, and potentially for modern private houses that use networked ubiquitous sensors and actuators for
automation.

3.2 Related Work

The use of tools and applications to aid in building management has been an active field of study. Jianguo et
al [25] used statistical models to estimate if a fault would occur in the future. Modelling building complexity
and different modalities found in the building is challenging. Practical approaches aim at modelling partial
behaviour, and in general benefit from location information to reduce model complexity. A building is a perfect
example of an expert system, governed by prepositional rules. One situation, illustrating the uncertainty in
building variable relations, is the control of interior lights and blinds based on outside light information, where
location affects sensors and actuators coupling.

Data generated by all the variables in the building can be seen as a time-series of events. Furthermore,
a sequence triggered by a single user looks like a very specific event pattern. The following event sequence
illustrates one such pattern: (1) Going into the office (P), (2) turning on the lights (L), (3) working at the
computer (W). The resulting pattern in the stream is PLW. Bayardo [7] proposes a method to extract
such patterns from large data streams. However, the reality is that the events P,L,W are shuffled with
events coming from other sources. i.g. other offices. The method relies on the definition of transaction,
which translate to use an observation window to extract patterns of fixed length. Selecting and dynamically
adjusting the observation window length is still an open problem.

The approach proposed in this work uses variable associations to overcome modelling any internal pro-
cesses. Agarwal et al [3] look for associations rules in the data and deals with big datasets, unfortunately,
time is not included. Yu et al [117] introduces the concept of adding time as feature although applied in the
context of web searches. Guillame-Bert and Crowley [35, 36] presents an algorithm with an application to
mine rules extracted from a time series of events.
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Figure 3.1: Schematic overview of our variable grouping framework. Based on building variables of a
Building Management System (BMS) an event sequence was derived, providing event label and time-
stamp information. From the event sequence logic rules were discovered using the Temporal Interval
Tree Association rule learning (TITArl) algorithm. Finally, variables were grouped according to physical
location using Weighted Transitive Clustering (WTC) method.

In the field of pervasive computing other approaches have been applied to extract rules with different
purposes: Rollins et al [98] extract rules to detect energy usage patterns in homes and [22] propose a novel
method to learn the rules of the system in an automated way. Rule mining is not the only method to
find associations of variables. Krishnan et al [55] propose to discover the taxonomy in activity patterns.
The resulting hierarchy could indeed convey information about activity location. Unfortunately the activity
patterns seem to be unique for an entire home. In the building environment, the activity patterns are repeated
through out the building.

Our approach extracts rules from the event stream of building variables to mine sensors and actuators that
share a location. Rules and their corresponding confidence values create an unordered space, where distances
can not be defined. To our knowledge, no machine learning algorithms exist that operate seamlessly in this
kind of feature space.

3.3 Approach Overview

Our building variables grouping approach relies on the following two ideas: (1) Variables that belong to the
same physical space will change value in some temporal relation. In other words, there will be a strong
correlation between when the variables that are grouped together change value. In contrast, variables from
different areas will not show recurrent co-articulation of their events. (2) Based on the rules relating variables,
we can infer which variables relate to the same physical space and thus should be grouped together.

Implicit interaction with the environment, e.g. opening a door, walking in a room, flipping a light switch,
etc. causes events across different building variables to correlate. Variable correlation is larger when the
variables are located close to each other. As an example, correlation between a hallway movement sensor and
a desk computer screen state is lower than the correlation between the computer screen state and a presence
at the same desk. We use rule discovery to measure the variable correlation and group variables that belong
to a specific location.

We propose a three step architecture to mine relevant location groups of building variables without su-
pervision, in particular: (1) Derive an event sequence from all variables in a BMS by quantising their state
or value. Here we abstract from the particular variable meaning and modality, as any information other than
state or value require specific information from the particular BMS used, or supervised information, e.g. from
an expert. (2) Discover prepositional logic rules from the event time series that relate the variables based on
event occurrence correlation. Here we used the TITArl algorithm, designed for learning temporal association
rules from symbolic sequences [35]. (3) Derive variable groups from the mined rules. Here we propose WTC
approach that - as we show in this work - outperformed standard hierarchical clustering on the mined rules.
Fig. 3.1 illustrates the framework components.

3.4 Variable grouping framework

In this section, we explain the functionality of all framework components and detail algorithms and imple-
mentation.
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Event extraction

Often variable relations in Building Management System (BMS) are made using direct ascending mapping.
Hence, if variable A is related to variable B (A = B), then an increase in value of A will produce an increase
in value of B. For example, if presence == true in a room then light = On. Similar mappings also apply for
more complex variable relations, which are not joined by a logic relationship. For example, when a user sets
the thermostat at a higher temperature, the HVAC system will react by starting the heating unit, reflected
in higher energy consumption.

To derive an event sequence, we consider ascending changes in all building variables. The sequence is
formed by event label (according to variable name) and timestamp. Table 3.1 shows an example of event
sequence.

Table 3.1: Example of event sequence derived using the event generator component.

Event timestamp Event label

1353935850.335012  powerconsumptionll
1353935868.344362 powerconsumption2
1353935898.467623  presence3
1353935900.453503  luxlevel3
1353935934.376489  powerconsumptionl
1353935936.701680 powerconsumption4
1353935946.382288 powerconsumption3

Implementation: To construct the event sequence, we searched in all available variables v; at any given
moment t for value changes using the condition A(;t’" > ©,. Some measurement variables contain noise that
does not qualify as suitable value change. We applied threshold filters with ©; > 0, as to only derive events
when the variable change is larger than threshold ©;. The event stream is formed by storing label and

timestamp of events from all building variables in order of occurrence.

Rules extraction

Rule extraction aims to discover temporal association rules from the event sequence. Temporal association
rules are logic relations of the form A = B. When A is observed, B is expected to occur before a time laps 7.
In addition, we obtain a rule confidence and denote the support of a rule. Here we consider rule confidence
as: given all events of label A, how many times A = B occurred within 7. The concept of support can be
defined as: given all events with label B, how many B events can be produced by the rule A = B within 7.
Rule confidence and support are further detailed in [4, 35]. Table 3.2 shows an example of mined rules.

Implementation: We used the Temporal Interval Tree Association rule learning (TITArl) algorithm by
Guillame-Bert and Crowley [35]. TITArl discovers rules in the event sequence by tracking the temporal
distribution of candidate event occurrences and their correlation over time. TITAr] provides a validity period,
indicating the rule lifetime in a event sequence. TITArl requires a series of parameters to effectively process
event sequences. In this work, we chose the following settings: inputFEvent predicate ”. x 7, output Event
predicate ”. x 7, time window future 15s, time window past 15s, minimum rule confidence 0.05, minimum
support 0.05, minimum number of use 2, all other settings were left at their default configuration. We used
very low settings for confidence, support, and number of uses to obtain a sensitive rule mining behaviour.
Subsequently, we studied performance in the group creator module.

Location grouping

We define a group as set of variables that are related to each other through a rule or a set of rules. The
smallest possible group could be constructed from a single two-element rule, i.e. A = B produces group
{A, B}. Groups do not have order, hence A = B and B = A produce the same group {A, B}. Larger
groups can be constructed from a union of smaller groups that have common variables. For example, A = B
and C = B yield groups {A, B} and {C, B}. Since both rules contain B, they are united to {4, B,C}.
Equation 3.1 states the general grouping algorithm in recursive form.
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Table 3.2: Example of mined rules with corresponding rule confidence and support.

Rule Confidence  Support
blindsangle3 = dimmer2 0.05 0.05
dimmerl = blindsheight2 0.05 0.06
blindsangle2 = blindsheight2 0.05 0.11
blindsanglel = dimmer2 0.05 0.25
luzlevell = luxlevelout2 0.05 0.10
deskwork9 = presence3 0.05 0.06
doorl = statuslights2 1.00 1.00
powerconsumptionl = statuscomputerl 1.00 1.00
statusbeamerl = presentationl 1.00 1.00
N (N
Gr=S s UJgng if ging #0 (3.1)
i=1 | j=1

The grouping is resolved iteratively. Gy is the set of all groups at iteration k, g; and g; are any single
group from Gy and N is the number of groups in Gi. If Giy1 contains two or more groups with the same
elements, these groups will be merged into one group. The grouping procedure is terminated if Gx41 == Gy.
We refer to this technique as transitive clustering, as it resembles the transitive property of mathematical
operations (a =bAb=c=a=c).

When error-less rules were mined or expert-defined rules are considered, Eq. 3.1 can be applied and will
produce correct groups. However, rules mined from actual event sequences contain errors that must be avoided.
We utilise confidence and support of rules to deal with errors. When starting the grouping, variables may
appear in multiple groups with different confidence values. We define group confidence (GC) as the average
over the maximum confidence at which each variable joined a group. The first groups are derived from the
mined rules, thus variables join a group with the confidence of the rule which contained it. In order to merge
two groups, we compute the group threshold(GT) as shown in Equation. 3.2.

GT = GC — bw x var(MCV) (3.2)

Where bw is the acceptance bandwidth and MCV is the array of the maximum confidence at which each
variable joined a group. Equation 3.3 denotes the new concept.

N[N L 9iNg #0
Grn = UTUs09 1 oS o) o

i=1 | j=1

Implementation: The location grouping module was implemented in two modes: as Trivial Transitive
Clustering (TTC) and Weighted Transitive Clustering (WTC). TTC is the implementation of the algorithm
described in Eq. 3.1. TTC is used to process rules that come from sources that do not provide confidence
or support information, i.e. expert-defined rules. WTC implements the algorithm described in Eq. 3.3 and
is used to process rules mined by the rule extraction module. WTC uses a rule acceptance threshold (RT)
to filter out rules that have weak confidence. WTC parameters RT, bw, GC, and GT are updated on every
iteration. The WTC algorithm can run continuously as new rules become available. For WTC all incoming
rules that pass the rule confidence threshold are permanently stored. With new incoming rules, existing
variable grouping is revised. WTC differs from TTC in two main aspects: For WTC, (1) new groups have to
pass the RT and (2) confidence information is used to decide whether or not to merge groups.

3.5 Evaluation Methodology

We evaluated our framework for grouping building variables with real-life data from three office spaces. In
this section, we describe the dataset, evaluation metrics, and the comparative analysis.
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(a) Meeting room (R1) (b) 12-people office (R3).

Figure 3.2: View into the different room types in the GB living-lab.

Evaluation Dataset

The GreenerBuildings (GB) living-lab dataset was collected over the span of 14 months, with recordings in
three office rooms on the TU Eindhoven campus; R1: a ~20-people meeting room (13 months), R2: a 4-people
office (14 months), and R3: a 12-people open desk space (2 months). Table 3.4 shows the available variables
types per room. In total, the living-lab recorded 243 variables. A Building Management System (BMS) was
managing each living-lab room. Fig. 3.2 shows examples of the room types.

During recordings the living-lab was constantly updated and extended, devices were installed and broken
ones replaced, as well as sampling frequencies revised, sensor range and resolution modified, all according
to individual analysis goals. With the device changes, variable count changed and processing algorithms to
derive variables changed too. For example, presence at the desk was computed from a motion detector or
ultrasound ranging sensors, or by analysing desk power consumption. BMS rules where added and modified
to take advantage of additional information and optimize energy consumption and user comfort. We consider
that for our mining and grouping analysis in this work, the modifications reflect part of an office building
life-cycle, where often changes and adjustments are made.

Table 3.3 shows the typical sensors, actuator and context variables associated to a desk cell in our living-
lab. In a hierarchical aggregation, desk cells are associated to a room cell. Rooms provide common services
to underlying cells. When building rules in a BMS are formulated, room variables usually appear in tandem
with desk variables. For example, the room has one outdoor light sensor, thus, each desk uses that outdoor
sensor to estimate dimming level for the corresponding overhead lamp. The exact behaviour is described by
the building rules. Finally rooms are associated to floors, and floors to the buildings. In addition to desk cells,
we use areas to denote spaces in the meeting room, where each area contains a presence sensor, temperature
sensor, and light sensor.

Table 3.3: Variables associated to a typical office desk. In a hierarchical aggregation, desk cells are
associated to a room cell.

Sensors and actuators

appliance power-meters 3 appliance switches 3
overhead lamp 1 desk lamp 1
ultrasound sensors 2 movement sensor 1
light sensor 1 override switch 2
Context variables

presence 1 deskwork 1

computer-work 1

Performance metrics

Our framework aims at creating variable groups that represent spatial entities, e.g. a desk or a room. We
use the clustering metrics homogeneity and completeness to describe the variable grouping performance in
office rooms [99]. Homogeneity measures if all result clusters contain only data points which are members of
a single class. Completeness measures if all the data points that are members of a given class are elements of
the same cluster. Both metrics are in the range [0, 1], where 1 indicates a perfect clustering result.
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Rooms Rooms

Variable type R1 R2 R3 Variable type R1 R2 R3
blindsangle 3 0 0 outdoortemperature 1 0 0
blindsheight 3 0 0 piroverhead 1 5 3
brainstorming 1 0 0 powerconsumption 3 12 12
co2level 1 0 0 presence 3 4 12
computerwork 0 4 12 presenceroom 1 1 0
deskwork 0 4 12 presentation 1 0 0
dimmer 4 6 0 screenswitch 0 5 0
distance 1 0 0 statusbeamer 1 0 0
door 1 1 0 statuscomputer 0 4 0
humidity 4 0 0 statushvac 2 0 0
hvac 2 0 0 statuslamp 0 4 0
lamp 0 4 0 statuslights 2 2 0
luxlevel 1 4 0 statusscreen 0 4 0
luxlevelout 2 1 0 switch 0 0 13
motionin 1 1 0 temperature 4 0 0
motionout 1 1 0 user 0 0 24
numberofpeople 1 1 0 usr 0 0 24
outdoorco2level 1 0 0 window 2 2 0
outdoorhumidity 1 0 0

Table 3.4: Variables available per living-lab office room considered in our evaluation study. R1: ~20-
people meeting room, R2: 4-people office, R3: 12-people open desk space.

Homogeneity and completeness measure grouping quality. In addition, we proposed two new metrics to
measure the capacity of the framework to group all variables (relative coverage) and understand how many
groups are created (cluster factor). Relative coverage is derived as the ratio between variables that appear in
the groups and variables available in considered evaluation period. Due to the changes in the living-lab during
the recordings, we only consider variables available in a given period as a fair way to evaluate our system.
Cluster factor is derived as ratio between identified group count and expected groups count. Cluster factor is
thus a relative performance metric to evaluate group count against ground truth for any time period in the
dataset.

Ground truth

The living-lab variables were defined including location information in their names. Specifically, all variable
names contained a reference to the room that they belong to, e.g. deskworkl__R1, indicating room R1. The
ground truth groups, i.e. the rooms, were derived from the names of all variables available for a given period.

Comparative analysis

Initially, we extracted expert rules from the BMS and applied the Trivial Transitive Clustering (TTC) algo-
rithm to derive groups. Further, to quantify the benefit of our algorithms over the performance that random
guessing yields, we generated rules by randomly selecting variables from the total variable set. The gener-
ated rules were subsequently grouped using TTC. To obtain a random performance baseline, the process was
repeated 10000 times and performance metrics averaged.

We selected an evaluation period length of one month, aligned with calendar months. One month was
chosen, as it increased chances of gathering multiple events for all variables. In our evaluation, rules were
parsed from the Temporal Interval Tree Association rule learning (TITArl) xml files. Each rule was encoded
into a group containing all variables mentioned in the head or body of the rule. Each group is accompanied
by a confidence vector containing rule confidence, support, number of events predicted, number of events to
predict, and a counter on how many times a rule containing those variables was observed. As a result, GC,
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Table 3.5: Comparison of average performance across different evaluated methods. Random association
was used as a baseline. HAC was included to assess the benefit of our proposed WTC algorithm. The low
homogeneity scores of HAC indicate that it is not suitable for variable grouping into office spaces. WTC
homogeneity and completeness high scores indicate that the algorithm is creating relevant associations,
however at lower coverage and higher cluster count.

Rand HAC WTC

Homogeneity 0.0067 0.0729 0.9635
Completeness 0.0682 0.9310 0.9697
Relative coverage 0.8651 1.0000 0.2189
Cluster factor 4.0230 1.0000 3.1905

GT, RT become vectors. Based on the parsed rules, parameter sweeps were performed to obtain RT and bw.
The best parameters were selected by maximising the sum over all metrics (except for cluster factor) after
running Weighted Transitive Clustering (WTC) in each step.

As there are no established algorithms for rule grouping and besides the random performance baseline, we
used Hierarchical Agglomerative Clustering (HAC) for comparison to our approach. Our HAC implementation
relies on a linkage matrix built by assigning arbitrary indexes to the variable names and using the rule
confidence as linkage value. We used the same RT as in the WTC evaluation to obtain the same set of initial
rules. To implement HAC, we used the scikit library [94] and set the targeted clusters to the number of rooms
expected for that evaluation period, which results in a cluster factor of 1 (cf. Sec. 3.5).

Finally, a noise analysis was performed, to confirm WTC robustness. For this purpose, we randomly
deleted up to 25% of the rules and inserted up to 25% of erroneous rules constructed by randomly selecting
variables assigned with the highest confidence vector. We then simulated deletions and insertions in variable
events.

3.6 Results

The random performance baseline and HAC were considered to assess benefits of our proposed Weighted
Transitive Clustering (WTC) algorithm, as described in Sec. 3.5. Table 3.5 shows a comparison of all three
methods for all four performance metrics individually averaged. While random association cannot obtain
reasonable clustering performance, HAC can obtain completeness above 0.9, similar to WTC. However, HAC
fails to obtain homogeneity, hence many variables of one space are confused into different clusters. WTC can
perform above 0.9 on both, homogeneity and completeness. HAC obtained perfect cluster factor because the
expected number of variable groups was configured as a parameter. Full relative coverage could be achieved,
since HAC is designed to assign all instances to clusters. While WTC obtained a relative coverage of ~ 0.22,
manually grouping all rules contained in the living-lab Building Management System (BMS) showed a relative
coverage of 0.14 only. Hence, WTC still mined a larger set of rules and building variables than those used in
the operational BMS. The relatively large cluster factor confirms that WTC provides sub-room resolution in
building variable grouping, i.e. variable groups that are subsets of the targeted room group.

Fig. 3.3a shows monthly averages of the WTC performance sorted according to relative coverage. In
contrast to the average metrics show in Tab. 3.5 above, we analyse here monthly performances individually.
As the figure shows, WTC provides high homogeneity and completeness independent of relative coverage.
Cluster factor increased with relative coverage, indicating that when more variables are grouped, a sub-room
clustering is obtained.

Fig. 3.3b shows the performance metrics over the number of events used to create groups, as more events
suggest that the mining and grouping becomes more challenging. As the figure indicates, completeness and
homogeneity metrics were not affected by proportion of events used to create groups.

We subsequently applied WTC continuously to the data, hence not for individual months only. Fig. 3.4a
shows performances for the rule confidence threshold optimized to achieve best completeness and homogeneity
performance. Fig. 3.4a also shows that the framework is capable of fixing grouping mistakes, as seen by the
drops and subsequent recovery of completeness and homogeneity. The standard deviation of available variables
per month is of 35.27 variables this shows that adding and removing devices has no effect in the performance
of the framework. When optimising for clustering performance, relative coverage reached 30% only and it
would take about 5 months to reach this coverage. Moreover, the sub-room clustering effect was observed
here too. Fig. 3.4b shows performances for optimising the rule confidence threshold for best relative coverage.
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Figure 3.3: (a) Weighted Transitive Clustering (WTC) performance metrics vs. relative coverage. Each
data point corresponds to one evaluation month. WTC provides high homogeneity and completeness
independent of relative coverage. (b) WTC performance metrics vs. number of events used to create
groups. Each data point corresponds to one evaluation month. WTC completeness and homogeneity
metrics were not affected by proportion of events used.

e - Rel.coverage e:e Homogeneity o - Rel.coverage eo:e Homogeneity
e—e Completeness o o Cluster factor (right) e—e Completeness o - Cluster factor (right)
1.00 ‘ ‘ ‘ ‘ 1.00
0.75¢- 0.75
18
0.50} 16 0.50
o - -0-
[oRd
S i
0.25]  _g-g-e.g- 078 ¢ 4 0.25f . 18
S R S BMS max relative Coverage_ _42 | _ 1 ol - - .- --BMSmaxrelative Coverage_ _ ] g
0.00 : : : : 0 0.00 : : : : 4
201211 201302 201305 201308 201311 201211 201302 201305 201308 201311
Months Months
(a) Clustering performance (b) Relative Coverage

Figure 3.4: Continuous mode performance over the study months with rule confidence threshold
optimised for (a) clustering performance and (b) relative coverage.

In this configuration, WT'C acquired higher relative coverage (~ 75%) and converged within two observation
months. In contrast, using BMS rules only resulted in a relative coverage of only 14%. Temporal Interval
Tree Association rule learning (TITArl) parameters for achieving maximum relative coverage were 0.1 for rule
confidence, 0.01 for rule support, and 0.4 for group bandwidth.

We furthermore analysed the effect of basic noise as deletion and insertion on the rule mining and grouping
performance. Removing rules (deletions) up to 25% reduced relative coverage by less then 2% as shown in
Fig. 3.5b. Inserting wrong rules directly impacted homogeneity and completeness performance. Fig. 3.5a
shows the insertion scaling. The rapid performance drop suggests that rule mining errors do critically affect
operation. It is clear that various other forms and distributions of noise could occur under real-life conditions.
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Figure 3.5: (a) Insertion noise analysis showing homogeneity and coverage vs. percentage of inserted
erroneous rule rules. Lines indicate the average behaviour and shaded areas shows a sweep over different
rule deletion settings (0% to 24%, in 1% increments). Insertions were obtained using erroneous rules set
to highest confidence. (b) Deletion noise analysis showing relative coverage vs. deleted rules. Shaded
region shows a sweep over different rule insertion settings (0% to 24%, in 1% increments). Deletions
causes the relative coverage to drop as each deleted rule will remove variables.

3.7 Example Applications

In the context of large building installations, the following example applications illustrate how our variables
grouping by location can be used.

People counting estimation

In modern buildings, people counting is relevant for safety, comfort, and energy saving. However, accurately
measuring the number of people in the room is still a work in progress. In this application we estimate people
count in monitored areas using presence sensors. For simplicity, we assume that presence sensors map directly
to people count, which was adequate in all office desk rooms of our living-lab. We consider here a BMS
application that would work by (1) a building manager writes a global rule of the form numberO f People
in space = count of all presence sensors that are activated. (2) The application uses variable groups found
by our WTC and applies the global rule. (3) Finally, the BMS obtains new people count variables and can
perform counting, given the rules. We applied the global rule idea to our living-lab rooms considered in this
work. Fig. 3.6a shows the average normalised accuracy with respect to available presence variables during
each evaluation period. Results indicate that the estimation performance is above 75% across all rooms.

Detecting/correcting variable naming error

BMS variables are commonly named including a location label. For example, BMS variables could contain
type, unique counter within the group, and location label, such as deskworkl_R1, where variable type =
deskwork, unique counter = 1, location label: R1. Our framework can detect location reference errors in
variable names following these steps: (1) Generate a group location label by majority voting among group
variables. (2a) Variables that have a different individual location label than group location label are tagged
for revision by a building manager. (2b) Optionally: automatically correct the database entry and propagate
accordingly. Fig. 3.6b shows an example of the process for detecting a wrong variable name.

Detecting missing/broken variables

Modern office buildings use repeating patterns for installing devices and instrumentation, i.e. each desk has
the same sensor and actuator features. The regular pattern can be converted to a template and used in our
framework to check if detected groups that fulfil the template condition follow the expected specifications.
By mining location, devices tampering or misconfiguration can be detected as user activity will not correlate
with active sensors. Thus, the tampered sensor can be excluded from the group. Fig. 3.6c¢ illustrates the
application in an example. Assuming the previous naming convention, the grouping can be used to propose
a missing element’s name.
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Figure 3.6: BMS application examples. (a) People counting estimation. For this application, the con-
sidered living-lab rooms were analysed and averaged normalised accuracy for the people count estimation
is shown. (b) Detecting variable naming error example. (c) Detecting missing variable example. See
main text for details (Sec. 3.7).

3.8 Discussion

Density of ubiquitous sensors and actuators in office buildings is rapidly raising, as fine grained activity
and context recognition is required for comfort and energy saving [73]. Although, existing networked sensor
and actuator technologies use one-of-many self-registration protocols, a team of experts is usually required
to virtually interconnect sensors and actuators, and fill databases with information with specifics of the
installation, e.g. location. Our work introduced a foundation for tools and applications to assist in different
building commissioning/management tasks.

In addition to the example applications presented, our framework could assist in autonomous error man-
agement, e.g. by working around a broken sensor and using measurements of a similar device to estimate
the missing value. For example, a desk has a light sensor and uses that information to dim the overhead
light. Also, there is a light sensor measuring the outdoor light. If the desk light sensor breaks, a Building
Management System (BMS) could work around the issue by using an outdoor light sensor that provides re-
lated measurements, to estimate the overhead light dimming. Our framework retrieves groupings that not
necessarily reflect a naive structural interpretation. For example, we observed situations where all outdoor
light sensors got grouped, thus discovering a facade group. A facade group could nevertheless help the BMS
to easily find replacement for a broken outdoor light sensor.

We estimate that a permissive confidence thresholds our Weighted Transitive Clustering (WTC) algorithm
will pull all building variables into one group. Hence a commissioning step is required for our approach too.
Nevertheless, we expect that the parameter fitting could be implemented as an optimisation problem, thus
minimising manual labour. Further, the parameter fitting essentially permits building managers to match the
WTC algorithm with a particular task, e.g. grouping all variables at floor level.

We chose Hierarchical Agglomerative Clustering (HAC) for comparison to our WTC algorithm as HAC
is frequently used in clustering, e.g. for words in text. In contrast to typical clustering problems, no feature
space and corresponding similarity measures were available between the building variables. Consequently,
for HAC, we considered the rule confidence as similarity indicator between building variables. However, rule
confidence alone is clearly insufficient to group variables. WTC addresses the variable grouping by employing
an iterative merging considering transitivity and group confidence. WTC thus provides appropriate results
even if variable naming or ordering errors prevent an naive grouping using variable names only.

3.9 Conclusions

The Weighted Transitive Clustering (WTC) algorithm proved to be effective approach for grouping variables
according to their physical location. Our approach could outperform the hierarchical clustering method and is
robust against lost events or deleted rules. Although WTC created more groups than expected, these groups
reflected the smallest granularity of association, e.g. desks, blinds, temperature sensors. Our analyses further
showed that rule mining quality is critically important. When the WTC algorithm is used continuously over
time, it showed robustness to errors in the data and could adjust to new relationships found in the data, such
as installation and Building Management System (BMS) rule changes. The WTC confidence threshold could
be used to balance discovery speed and overall accuracy depending on the particular setting.
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The performance analysis indicates that more events are not necessary better, rather, valid distinguish-
able events from where correct rules can be extracted, will produce good groupings in short time. Expert
rules are incomplete by nature, mostly because they are written in a minimum effort basis. We showed
that automatic grouping of variables is a crucial step towards a self-commissioning building. Several ap-
plications can be designed on top of our framework to enrich building capabilities and support building
management /commissioning in rapidly detecting errors.
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Chapter 4

Mining hierarchical relations in building man-
agement variables
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4.1 Introduction

Effective operation of modern buildings relies on interconnected ubiquitous devices. Examples of ubiquitous
devices installed in many large buildings include movement detectors and light sensors, besides actuators,
e.g., ceiling lights and air ventilation. The devices are represented as measurement and control variables in a
building management system (Building Management System (BMS)). The variables are then combined in rules
or more advanced interpretation algorithms to infer building context states. For example, Milenkovic et al. [74]
showed how several office user activities could be recognised from sensors already available in many buildings.
Detected user activities are again variables. A BMS thus links measurements from sensors and operations
of actuators. For example, occupancy measurements in a meeting room, indoor temperature, and outdoor
weather conditions are used to control optimal operation of a Heating, Ventilation, and Air-Conditioning
(HVAC) system in this meeting room.

The motivation of building owners and operators to further increase measurement and automation func-
tions are manifold, including saving energy [21], and improve occupant comfort under energy efficiency con-
straints [46, 68]. Buildings, such as office towers may utilise about ten measurement and control variables
per desk, resulting in 100 variables for a 10-occupant open office space. In a typical office building with
ten floors and 500 desks, as many as 50.000 variables can be expected, not considering corridors, elevators,
meeting rooms, etc. Priyadarshini et al. [95] reported an application example of wireless sensor nodes, where
ubiquitous integration and rapid increase in devices and variables is well illustrated. For scalability, BMS
development is thus migrating to a service-oriented architecture, as illustrated by Degeler et al. [23]. Nev-
ertheless, a great deal of manual labour is required during commissioning to correctly relate sensors and
actuators, derive context variables, and maintain consistency during a building’s lifetime.

Whether newly build or refurbished, commissioning of a BMS is today performed by expert technicians
that work together with device and system suppliers to correctly interlink variables. During maintenance,
further effort is spent to correct variable naming errors and updating configurations upon device exchanges,
failures, or upgrades. It is technically conceivable that any modern building-installed device would automat-
ically identify itself, revealing its location and interrelation of variables with other devices. However, several
constraints prohibit self-configuring features from being implemented in individual building-installed devices,
including device cost, size, power consumption, and robustness for continuous operation over many years.
Due to the cost of large BMS installations, sensors and actuators need to be affordable. For example, EnO-
cean (www.enocean.com) develops wireless self-powered sensors and actuators, including motion detectors and
wall switches, which are even used in new building constructions to minimise physical network infrastructure.
Therefore, methods that could mine variable relations from a central BMS based on the variables’ data streams
are sought. In earlier work, we showed that mining relations among BMS variables and grouping variables has
many applications, including detecting missing or broken devices, detecting and correcting variable naming
errors, and deriving new variables such as people count in office spaces [63].
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We present a novel approach to derive groups and group hierarchy from variable association rules that are
mined in event time series of variable states. Our hypothesis is that variables that relate to the same physical
space in a building will provide events with temporal relation. Variables that have a causal relation, i.e., a
variable changes in response to a change in another variable, should have a temporal dependency in states
that could be extracted from their event time series. For example, occupants walking through a building
space towards a desk will create changes in presence and activity variables and potentially in light actuator
states, first for the building space, i.e. room, and then at the desk. For our approach, the variables could have
different origin, including sensor measurements, actuator states, and derived states. Our approach considers
state changes across all variable as one unified, temporal ordered event stream and derives variable grouping
without supervision. As rules are mined, temporal relation of events provides the basis for variable groupings.
Subsequently, variable hierarchy is determined to describe dependencies.

In particular, the chapter provides the following contributions:

1. We present a group mining framework to extract variable association rules from the unified variable
event stream and then extract variable groups from the rules. A novel parameter-free Hierarchical tree
clustering (HT'C) algorithm is introduced to group variables into hierarchical structures. HTC works in
two steps, where initially a rooted variable tree is constructed based on the extracted variable association
rules and subsequently the tree is clustered and trimmed to represent variable group relations.

2. We evaluate our mining framework using actual BMS data of several months and derive variable grouping
performance. The grouping performance is compared to expert generated groups and to groups derived
from BMS configurations. The evaluation confirmed that HTC provides relevant groupings that are
robust even if only subsets of the BMS data was considered as source.

In our previous work, we devised a Weighted Transitive Clustering (WTC) algorithm to discover variable
grouping [63]. However, the groups derived by WTC provided no hierarchy information. As a result, when an
environmental variable is associated with more than one room group, the linked room groups are merged into
one. Additionally, to distinguish different hierarchy levels, e.g. room and desks, WT'C needs to be run with
different parameter settings. In contrast, the HT'C algorithm presented in this work produces hierarchical
groups that describe the relationship between rooms and desks. The hierarchical groups can also describe
interconnections between groups created by environmental variables. In this work, we demonstrate that HTC
can outperform the WTC algorithm. HTC finds groups that associate a majority of variables and identifies
alternative relations between variables. Moreover, due to the hierarchical representation, variable relations
could be inspected graphically.

4.2 Related work

In wireless sensors networks, device localisation is an active field of research. One common approach to
localisation is device-based, i.e. using sensor node communication capabilities to estimate a node’s relative
location with respect to its neighbours [91, 93]. Aspens et al. [5] provide a detailed theory for automatically
constructing graphs that represent the sensor location in a bi-dimensional or three-dimensional space. They
considered the distance between neighbouring nodes known and assume fixed positions of beacon nodes. In
practice, the location of beacons is manually configured in order to map a node’s location to a physical
location. Furthermore, beacons become critical path points in the system, as broken beacons may prevent
correct node localisation.

Patwari et al. [92] illustrate how to obtain the distance between neighbouring nodes using time of arrival
and received signal strength. The localisation techniques used in wireless sensor networks require that a node
spends some energy in the task of localisation. In a highly ubiquitous and distributed environment, sensor
nodes will have very restricted energy budget and on-sensor localisation might not be feasible. In addition,
alternative communication media and protocols may require separate device-based localisation solutions. Since
buildings are used for decades, different communication media may get installed as technology evolves. In
this regard, modern Building Management System (BMS)s are already design to be extensible and handle
different protocols or media [23]. Instead of device-based localisation, it is therefore interesting to utilise the
data available in a BMS.

While modelling energy consumption patterns of a building, Moreno et al. [77] investigated which building
variables had the largest impact on individual energy-consuming appliances, e.g. HVAC. They proposed a
clustering approach to infer a group of variables related to the energy measuring device in each appliance.
To implement the clustering, snapshots of the building variables’ values were used to compute features. The
features would cluster variables for each appliance. In the work of Moreno et al., energy measuring devices
represent the clusters to which other variables get assigned. In contrast, our variable grouping does not require
a particular energy measuring device or appliance to be present.
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Rule mining approaches are able to extract association of data from multiple modalities [76, 109]. For
example, Koperski et al. [54] showed how useful rules can be extracted by mining a geographical database,
e.g., house prices rise for houses closer to the beach. Furthermore, Ma et al. [70] showed that their rule mining
approach was able to correctly handle many different datasets. Yin et al. [116] illustrated the difficulty of
mining relevant rules, and the importance of balancing the support of the rules in order to get meaningful
results. In our framework [63], we used the temporal rule association method proposed by Guillame-Bert and
Crowley [35]. The framework receives a labelled stream of events and extracts rules of the form A = B, where
B happens within an observation window after A. Temporal association rules can represent the behaviour
of real systems that have delays between the time a sensor changes value and the time an actuator responds
to that change. In addition to sensor actuator relationships, we consider relations created by a user moving
from one context state to another, e.g., presence at the desk to computer work. The delayed actuator reaction
and the time of a context transition are not possible to detect in a snapshot of the data. Thus temporal rule
mining methods are better suited to extract relations in a building environment than variable clustering using
data snapshots.

After obtaining variable relations, groups among all variables are extracted. When using Weighted Tran-
sitive Clustering (WTC) as group extraction method, we observed that it was not possible to differentiate
structures within variable groups [63]. WTC uses thresholds to control grouping. We observed that the
thresholds also controlled the hierarchical level of groups, e.g., room level or desk level. Grouping is thus chal-
lenging in building structures that share common elements from external environmental variables, e.g., sun
light, or from joint building variables, e.g., presence in hallways. Consequently, WTC required a parametric
search over the thresholds to extract each grouping hierarchy level, i.e., distinguish rooms or desks in a room.

In this work, we replace WTC with a novel group extraction algorithm that yields hierarchical group
structures. These structures describe individual variable relations, thus solving the grouping in shared building
structures. Unlike WTC that relies on thresholds, our new approach is non-parametric. We evaluate the
resulting groups to compare with WTC, and discover additional variable relations that might be of interest.

4.3 Group Mining Framework

For our mining approach, we assume that sensors and actuators that are located, or related to the same physical
space will produce temporally related events. Relations will appear in particular then, when variables have a
causal relation. The event relations among variables may be caused by the user interacting with the space,
but could as well be coming from weather changes and other sources of dynamics. For example, changes in
outdoor lighting conditions may cause a Building Management System (BMS) to respond by changing blind
or lighting states. A change in outdoor light should be observable in most outdoor light sensors. Therefore,
all outdoor light sensors will present a high temporal correlation of their change events. Moreover, the events
of associated actuators will show correlations to the outdoor light events.?

Our group mining framework comprises three steps: (1) event extraction, (2) rule extraction, and (3) group
extraction. In this work, we focus on the group extraction to obtain hierarchical variable groups that could be
used in building management. Fig. 4.1 illustrates the group mining framework. In this section, we describe
the processing steps of our framework.

Event extraction

Event extraction is used to convert the data time series of building management variables into a unified time
series of events. Events are extracted by detecting positive value changes in the variable data time series.
Then, all events are labelled with the variable name and inserted into a single, temporal ordered event time
series. The actual data values or other information about the detected changes are not used in the subsequent
processing. Table 4.1 shows an example sequence of the resulting unified event time series.

Every variable v; was processed for value changes at every sample time ¢ using the condition AA? > 0;.
The threshold filter ©; > 0 was used to filter out variable-specific noise.

Rule extraction

Rule extraction converts the unified event time series into a set of prepositional rules with a confidence
assigned to each extracted rule. Rules were derived as variable associations based on event occurrences over
an observation window. The resulting variable association rules are denoted as logic relations of the form

I There may be different relations observable among the variables relating to individual building facades, depending on the
building orientation.
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Figure 4.1: Group mining framework to derive variable group relations from the data time series of
building management variables. The groups are derived by mining a unified time series of events for
variable association rules. In this work, we focus on extracting variable groups using a novel hierarchical
tree clustering (Hierarchical tree clustering (HTC)) algorithm.

Table 4.1: Example of unified event time series derived from building management variables by the
event extraction step of our group mining framework.

Event timestamp Event label
1353935850.335012
1353935868.344362
1353935898.467623

1353935900.453503

powerconsumptionll
powerconsumption2
presence3

luxlevel3

1353935934.376489
1353935936.701680
1353935946.382288

powerconsumptionl
powerconsumption4

powerconsumption3

Table 4.2: Example of variable association rules with confidence and support derived from a unified
event time series by the rule extraction step of our group mining framework.

Rule Confidence Support
blindsangle3 = dimmer2 0.05 0.05
dimmerl = blindsheight2 0.05 0.06
blindsangle2 = blindsheight2 0.05 0.11
blindsanglel = dimmer2 0.05 0.25
luzlevell = luzlevelout2 0.05 0.10
deskwork9 = presence3 0.05 0.06
doorl = statuslights2 1.00 1.00
powerconsumptionl = statuscomputerl 1.00 1.00
statusbeamerl = presentationl 1.00 1.00

A = B. When A is observed, B is expected to occur before a time laps 7. In addition, we obtain a rule
confidence and denote the support of a rule. Here we consider rule confidence as follows: Given all events of
label A, how many times A = B occurred within 7. The concept of support can be defined as: Given all
events with label B, how many B events can be produced by the rule A = B within 7. Table 4.2 shows an
example of the variable association rules.

To implement the rule extraction, we used the Temporal Interval Tree Association rule learning (TITArl)
algorithm by Guillame-Bert and Crowley [35]. TITArl discovers rules in the event sequence by tracking the
temporal distribution of candidate event occurrences and their correlation over time. TITArl provides a
validity period, indicating the rule lifetime across an event sequence. TITArl parameters were set identical
as in our previous work [63]: input Event predicate ".*", output Event predicate ".*", time window future
155, time window past 15s, minimum rule confidence 0.05, minimum support 0.05, minimum number of use
2. All other settings were left at their default configuration. We set confidence, support, and number of uses
parameters to obtain a sensitive rule mining behaviour.

Group extraction

Group extraction intends to convert the varying variable association rules into variable groups according
to their relationship. In this work, we consider that organising the variables in a hierarchical representation
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according to their relationship benefits variable grouping as the groups retain information about the variables’
causal relation. We propose here the HT'C algorithm that is detailed in the following section. The Weighted
Transitive Clustering (WTC) algorithm, used previously, considered all elements in a rule as belonging to one
group [63]. WTC also considered that a newly extracted rule would be part of an existing group, if the new
rule shared elements with the existing group. WTC used a threshold on a new rule’s confidence to decide
whether to include the new elements from the rule in the existing group.

4.4 Hierarchical tree clustering (HTC)

To derive hierarchical variable groups our Hierarchical tree clustering (HTC) algorithm operates in two steps.
In the first step, a rooted tree is constructed from the variable association rules. In the second step, the tree
is clustered into hierarchical groups.

Constructing a rooted tree

In the first stage, we construct a rooted tree G(N, &), where N is the set of nodes consisting of the variables
in the rules plus a node root from where all branches grow. Set £ is the set of edges constructed from pairing
the premise of the rule to the conclusion. Every edge £ is assigned a weight that is equal to the value of the
rule confidence ¢. A main branch is defined as the sub-tree structure in which the top node is a child of the
root node. Fig. 4.3 (b) depicts the main branch for a four-people office room. The resulting tree is also called
a rooted directional graph and is similar to an arborescense as defined by Mesbahi et al. [72], where there
should exist no simple cycles, every node should have only one path leading to it, and all paths direct outward
from the root node. For our tree construction, one exception to the definition was needed: Leaf nodes are
allowed to have alternative paths. For the building variable tree, there may be shared elements at the leafs
of the hierarchical structure. For example, two independent users presence variables can be related to one
common ceiling light.

Subsequently, the tree is rearranged in two forms: (1) Nodes that are children of root and several other
parents are removed from the root node. (2) Nodes that have multiple parents and are not a leaf node are
promoted to be the parent of their parents. Promoting nodes enforces the arborescense. The rearrangement
process is repeated until every node has a single parent, with the exception for leaf nodes. Fig. 4.3 (a) shows
a tree constructed from the Building Management System (BMS) configurations, Fig. 4.3 (b) illustrates the
result of applying node promotion.

In building management data, node promotion has logical implications. Variables that are used to compute
an additional variable are often promoted. For example, presence in the room is computed from the presence
at the desks. Therefore, promoting room presence over the presence at the desks creates a correct logical
hierarchy. In the rule mining step, rules will reflect the order of computation. Thus, node promotion is
needed to reflect the logical hierarchy.

After the tree rearrangement is concluded, trimming is done by removing unwanted edges. We iterate over
the main branches and do a one-to-rest comparison. We defined a normalised branch length Lg, as shown
in Equation 4.1, where L, is the normalised length of path p, e, is number of edges in the path p, ¢; is the
edge weight in path p, and 3 is the set of paths of the main branch that have common nodes with other main
branches. All paths in § are trimmed by enforcing Equation 4.2. Finally, if the trimming process yields loose
branches, these loose branches become main branches. Orphaned nodes are discarded. Fig. 4.3 (b) illustrates
the trimming process by removing the connection between the door sensor, dimmers, and outdoor light sensor.

fp _ Z?il(l —ci)
ep (4.1)

max (fp‘ Vp ¢ B)

Lp

Zp < ZB|Vp ep (42)

Tree clustering into hierarchical groups

The second and final step of the HT'C algorithm is to convert the main branches into hierarchical groups. A
hierarchical group consists of variables arranged in a head set, an elements set, and an array of children. The
children are groups with the same properties. We define a main group as the hierarchical group derived from
a main branch. In addition,we considered group members as set of variables contained in head and elements
sets of a group, as well as the variables of all child groups.
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To convert the tree into groups, we analysed the main branches. Each node at the top of a main branch
becomes the group head. The following nodes that have only one child also become part of the head set. The
node elements are the leaf nodes which directly descend from the last head node. Any node derived from the
last head node which contains more than one child, will be in the head set for the subgroup. The process is
repeated recursively until all nodes are covered.

Groups can be of five different types: basic, alternative, shared, equivalent and overlapping. An alternative
group comes from a branch that has all its paths ending in the leafs of another branch. When all paths of
a branch end in different branches’ leafs, then the resulting type is shared group. An equivalent group comes
from branch that shares all leafs with another branch. An overlapping group derive from a branch that has
some paths ending in their own leafs, and some paths that end in some other branches’ leafs. Finally the
basic group is a group that has no overlaps, but can have some leafs shared, or leafs appearing as part of an
alternative group. Fig. 4.2 illustrates all group types. Stand-alone trees, e.g. Fig. 4.3 (b), are also considered
basic groups in our work.

[ Alternative I Basic
B Basic 3 Shared

[ Overlapping >< [ Equivalent

Figure 4.2: Illustrations of branches that generate different group types in our Hierarchical tree clus-
tering (HT'C) algorithm. Please refer to Section 4.4 for more details.

Fig. 4.3 (c) shows an example of a main group corresponding to a room, cells corresponding to actual office
desks in the room, and subcells corresponding to desk areas in front and at the sides of a computer screen.
The hierarchical groups produced by HTC resemble the variable locality.

From the rules that produce the tree in Fig. 4.3 (a), a group is extracted that represents a room with
cells and subcells subgroups. In contrast, when the same rules were used with Weighted Transitive Clustering
(WTC), the result is single flat group, e.g., Room 1, without information on cell or subcell association.
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Figure 4.3: Illustration of the Hierarchical tree clustering (HTC) algorithm steps. (a) Rooted direc-
tional graph constructed from system configuration rules of a four-people office room. (b) Processing
result after arranging and trimming the tree. (c) Respective conversion of the tree into hierarchical
variable groups. The groups are depicted in correspondence to the physical architecture of the room.

4.5 Evaluation methodology

For the evaluation of the Hierarchical tree clustering (HTC) algorithm, we used the same set of rules mined
for our previous analysis of the Weighted Transitive Clustering (WTC) algorithm [63]. However, we created
a new ground truth and composed a complete hierarchical description of the living-lab data to validate the
framework. Additionally to the new ground truth, we used configuration information from the Building
Management System (BMS) to validate the grouping stage of the framework. Finally, we took external
environmental variables into consideration as they represent parallel hierarchies to the room organisation
created from user-driven events.

Evaluation Dataset

The GreenerBuildings (GB) living-lab dataset was recorded at the TU Eindhoven campus during 14 months.
The living-lab consisted of 3 rooms; R1: a 4 people office room (14 months), R2: a ~20 people meeting
room (13 months), and R3: a 12 people open office space (3 months). In total 277 variables were recorded. The
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dataset contains sensors (outdoor light, room COg, humidity, temperature, etc.), actuators, and contextual
variables. Context variables included room presence, desk presence, computer work, presentation, brain
storming, etc. During the 14 months of recording, sensors were added, broken ones replaced, rules were
updated, and configurations fine-tuned. We consider that the modifications are part of a real building life-
cycle, and thus presents a rich set of test cases to evaluate our approach. The dataset is described in detailed
in [63].

Ground truth and BMS configurations

We derived Ground Truth Groups (GTG) manually considering user-driven and environmental dynamics to
create a rooted tree. The tree was subsequently grouped into hierarchical groups. After grouping, GTG
contained ten main groups in total. Two of the main groups represented R1 and R2 respectively. R3 had no
variable that joined the available cells, i.e., no door or presence in the room variables. Thus, the other eight
main groups represented cells from R3.

In addition, we created BMS configuration groups (BCG) automatically parsing the BMS configurations
and extracting rooted tree. Similarly to GTG, we grouped the tree into hierarchical groups using the group
creation step of HT'C. The configurations were selected from the final month of recording, where all system
variables were present. The resulting groups were then manually verified to ensure correctness. The BCG
represents a baseline for comparison to our HT'C algorithm where all the edges’ weights were set to one.

Evaluation metrics

Metrics of graph similarity could be applied to compare the ground truth with the mined groups [86]. However,
graph similarity requires strict agreement in variable associations. The ground truth used in our evaluation
contained all the variables ever recorded by the system, whereas individual periods would contain a subset of
the variables only. In the BMS application domain, different objectives should be assessed: It is desirable that
all available variables are used, and that each variable is associated correctly with its corresponding variables.
Thus, relative coverage and correctness were chosen as metrics to evaluate performance.

Relative coverage measures how many variables are associated from those variables available in the test
period. By measuring relative coverage, we can keep track of the effectiveness of the algorithm. Accurate
grouping of a fraction of variables only could hinder applications of the algorithm.

Correctness assesses the quality of the groups rather than the similarity to the GTG. To establish the
group quality, we define room level correctness and variable neighbour correctness. The room to which a
variable belongs to is encoded in the variable’s name, e.g., dimmerl__R1. The naming convention facilitates
checking correctness at the room level. We defined three approaches to determine the label of a group:
majority voting (CMV), head majority voting (CHMYV), and sensor class (CSC).

Correctness CMV computes the label of the group by parsing the name of all variables in the group,
including subgroups. The room label with the most occurrences becomes the group label. Correctness CHMV
only applies majority voting to the head of the main group. Correctness CHMYV is thus a stricter comparison
than correctness CMV and emphasises performance of the hierarchical approach. Correctness CSC separates
sensors in two classes: outdoor, and the rest, we want to measure how well is the grouping when we consider
that external environmental sensors might link variables from different rooms. Therefore, correctness CSC
applies correctness CMV for the groups that do not contain external environmental sensors, and otherwise
considers groups to be correct. In each case, the respective correctness score is computed by the ratio between
the number of variables that have the chosen group label and the total amount of variables in the group.

The room analysis is insufficient to evaluate the information gained from the hierarchical grouping. There-
fore, we consider correctness from a variable’s neighbourhood point of view too. Equation 4.3 defines the
neighbourhood of z with respect to a set of groups I', where gm(g) are the group members of g.

Ne(z,T') = {gm(g)Vg € T'|x € g.head V g.elements} (4.3)

Correctness at the group level (Correctness at the group level (CG)) computes for a given variable x, the ratio
of the number of elements in the intersection between Ne(z, G4) and Ne(xz, GT'G) over number of elements in
Ne(z, G4), where Ne(z, G4) is the neighbourhood set of 2 with respect to the groups extracted from the data
, and Ne(z, GTG) is the neighbourhood set of & with respect to the GTG. Equation 4.4 shows how the total
score of G4is computed.

INe(z, Gq) N Ne(, GTG)))

Ne(z, Ga)| (44

CG = meanvyeq, (meanvweg (
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Moreover, we want to measure the effect of allowing the external environmental sensors to mix different
variables together. We therefore measure correctness at the group level with sensor class selection (CGSC).
Similarly to correctness CSC, correctness CGSC considers a subgroup being correct, which contains at least
one external environmental sensor and otherwise applies correctness CG. In either case, to compute the total
score of a group, the score for all variables is averaged. Finally, to compute the score of a grouping result the
score of all groups are averaged.

Applications in the BMS domain depend greatly on the correctness of the groups [63]. For example, in
autonomous configuration applications mistakes in the group extraction will create user discomfort, e.g. when
light sensors and switches may be linked to wrong overhead lights. Similarly, in error detection application
erroneous variable grouping would require additional effort from technicians in reviewing the application’s
error reports.

Group quality analysis

In addition to correctness and relative coverage, we measured group quality by counting how many groups
are created according to the group types defined in Section 3, e.g., basic, alternative, etc.

Groups containing external environmental sensors may interact with other groups. By using a naming
convention that differentiates groups with and without external environmental sensors, we measured their
occurrence as a ratio. Any group containing external environmental sensors were named Out_variable-type_ id,
e.g., Out_light 001, while other groups were named Space_label id, e.g, Space_ R1_0001.

Comparative analysis

We compared the performance of HTC against the WTC method and therefore used the same rules as mined
in our previous work [63]. Rules are derived in periods of one month. We evaluated the performance on
individual months and compared results against GTG and BCG. Against GTG, an absolute benchmark on
the grouping capabilities is obtained. BCG serves as a baseline of a basic functional hierarchical grouping.

Subsequently, we evaluated performance at the end of the recordings by accumulating period rules. The
rules of periods were added sequentially to the processing.

4.6 Results

BCG achieved a relative coverage of only 33% and produced 15 additional groups compared to the three main
groups in Ground Truth Groups (GTG). While correctness at room level was perfect for BMS Configuration
Groups (BCG), Correctness at the group level (CG) was 0.96.

The average correctness results at the room level were: Correctness by head majority vote (CHMV) = 0.91+
0.07, Correctness by majority vote (CMV) = 0.93+0.06, and Correctness with sensor class selection (CSC) = 0.96+
0.04. Fig. 4.4 shows the correctness results for each evaluation period. An almost identical correctness CHMV
and CMV suggest that errors are related to the group members or their children, rather than to the head set.
In other words, the head set is of the same label as the majority of the group members. The evaluation of
the correctness grouping from a variable perspective yielded: CG = 0.66 4+ 0.11 and Correctness at the group
level with sensor class selection (CGSC) = 0.72 £0.1. Hierarchical tree clustering (HTC) achieved an average
relative coverage of 75% + 6 p.p.. The correctness CSC metric shows that the system can correctly separate
user generated hierarchies from external environmental variable hierarchies. Fig. 4.4 shows all four metrics
for the individual periods.

The per-period group quality analysis is summarised in Table 4.3, where the distribution of group names
with respect to group types is shown. There were overlaps between Out light and Space groups. Thus,
outdoor light sensors were associated with variables from different rooms, which is consistent with previous
observations [63]. The average number of basic groups is similar to the number of groups obtained with GTG.
Equivalent and alternative groups may occur as a result of incomplete information from the rule extraction
stage.

Fig. 4.5 illustrates the cumulative system performance, i.e. when data from all preceding monthly periods
was accumulated. Due to the installation changes (device additions, replacements) during the living-lab
recordings, system performance varies. At the end of the last period, i.e. month 14, relative coverage was
96%, and correctness metrics were: CHMV=0.95, CMV=0.95, CSC=0.97, CG=0.78, and CGSC=0.81.

Finally, we analysed group quality in the cumulative setting. A total of 46 basic Space groups were
obtained at the end of the last period. In conjunction with the high correctness scores, we interpret that the
hierarchical groups contain correct variables, but that there was missing information in the mined rules to
assemble the variables in the expected ten main groups.
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Figure 4.4: Performance results for relative coverage and correctness derived on individual monthly

periods of the dataset. The correctness metrics are described in Sec. 4.5

Alternative Equivalent Overlapping
Ollt C02 — _
Out humidity - —
Out light - 0.80
Out temperature - -
Space 1.40 3.00

Table 4.3: Per-period group quality analysis showing average number of group name per period assigned
to each group type. As expected, Out light groups overlap with Space groups. The average number of
basic groups is similar to the number of groups obtained by the GTG.
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Figure 4.5: Performance results of the cumulative analysis for relative coverage and completeness. Per-
formance variations could be explained by installation changes (device additions, replacements) during
the living-lab recordings.

WTC achieved an average relative coverage of ~ 22%, whereas HT'C reached 75% for the same data. For
the cumulative analysis, WTC finished with a relative coverage of ~ 70%, whereas HT'C scored 96%. HTC
was able to use more variables per grouping than WTC. At the room level, correctness metrics were 0.91 for
HTC, and ~ 0.94 for WTC. However, correctness CSC yielded an average of 0.96 for HTC, indicating that in
the overall grouping of room level variables both algorithms have similar performance. HTC finished with a
score of 0.95 in the cumulative analysis for correctness at the room level. In comparison, WTC reached only
0.75 for correctness, indicating that HTC was able to improve its performance as new information became
available.

4.7 Discussion

The framework performance is closely related to the quality of mined rules and in turn, the stability of the
monitored system is key to obtain good rules. Fig. 4.5 shows a performance drop at month 11, which is due to
adding office room R3 to the Building Management System (BMS). R3 inserted noisy sensor data, resulting
in random actuation. The noisy sensors produced irrelevant variable changes and events, which subsequently
yielded false associations and rules. In Hierarchical tree clustering (HTC), we did not apply filters on the
incoming rules. The quality of group structures was therefore dependent on the quality of the extracted rules.
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Nevertheless, subsequent analysis months show that the performance recovered as variable errors declined. We
used several variants of the performance metrics correctness and relative coverage to evaluate the framework
and HTC algorithm. With these performance metrics we could ensure that the framework is suitable for
different applications within a BMS.

In addition to the framework evaluation, we performed a group quality analysis, The group quality analysis
provided insight into the internal structure of the resulting group sets. In the per-period analysis we found that
the external environmental sensors related to air quality (humidity, CO2, temperature) formed basic groups.
The basic groups consisted of variables of the same type, e.g. all temperature sensors, or a combination
of CO,, temperature and humidity. The tendency of external environmental variables of producing basic
groups could be explained with event delays. While user-driven changes in building context occur within a
second, a change in air quality due to user activity could take several minutes. However, changes in external
environmental variables are reflected without delay. For example, outside temperature events are almost
simultaneous with indoor temperature events. Similarly, Out light basic groups contain light related sensors
and actuators. The specialisation of the group is explained by a higher number of outdoor light events with
respect to presence changes, i.e., during working hours only a handful of presence changes will occur, whereas
the outdoor light could change many times during the same period.

Alternative and equivalent group types were not considered in the GTG, however, they are present in the
BCG. BCG has only 33% relative coverage, thus, the resulting groups are incomplete. Similarly, 46 basic
Space groups were found at the end of the cumulative period compared to ten in GTG and 25 in BCG.
The results can be explained by incomplete information in the rules. Nevertheless, the relative coverage
and correctness results indicate that correct variables are grouped. We can interpret the result as follows:
Applications that depend on correct hierarchical information, i.e., people counting estimation, would obtain
reduced performance due to the accumulating basic groups. However, applications that depend in the general
association of the variables, i.e., cell variable finder, will function properly.

During the recording months, many device modifications were performed, e.g. adding new sensors and
replacing broken devices. In addition, rules were updated, and configurations fine-tuned, resulting in changes
to variable behaviour. The changes may have negatively affected the rule mining and group extraction.
However, such modifications are part of the building life-cycle and thus correspond to an even longer evaluation
in a real building. In the living-lab dataset, three office rooms with different properties were included: meeting
room, four-person office, open space office. We consider these room types representative for office buildings
in general.

A threshold filter was applied to the unified event time series with the goal to prevent continuous variables,
e.g, desk power consumption, from triggering new events at every change in measured value. In this work,
thresholds were set manually for selected variable types, e.g. for desk power consumption to distinguish
computer on and off events, for light intensity sensor to detect on/off states in overhead lighting, etc. The
threshold filter was not used for variables that may have several states, including external light intensity
and temperature measurements. If the threshold filter would be omitted for any variable, additional events
may be created that are uncorrelated with actual building state changes. As a result, the rule extraction
may produce irrelevant rules. The tree trimming step, described in Section 4.4, was designed to eliminate
connections created by any sources of noise and thus would eliminate parts of the tree that were created due
to the noise events. A combination of threshold filter and tree trimming in our framework however still yielded
trees that better related to actual context changes than the tree trimming step alone. Based on our results,
we consider the thresholds robust enough to be applied for any variable of the same type. Thus, to implement
our framework, filter thresholds could be specified in the BMS for each variable type and applied accordingly.
Another option is to estimate filter thresholds from variable observations over a short operation time of the
building, e.g. one week. As building states change will be reflected in the variables, robust estimation of
boundaries between two variable states will become feasible.

In building environments, one of the strongest motivators to install or retrofit high sensor densities is
energy saving due to more fine-grained automated control. An energy saving study conducted in our living-
lab [64] showed that even the energy consumed by the sensors and actuators affects energy saving. Therefore,
adding additional functionality to devices may not be feasible under energy saving restrictions. HTC deals
with energy-constrained devices as the method does not impose additional functions on sensors and actuators.

Applications such as the variable failure management [63], benefit from the hierarchical groups extracted
by HTC. In several cases, the extracted groups contained multiple outside light sensors that could be used
interchangeably to control ceiling lights and blinds states if the original sensor fails. The group mining
framework provides the basis to handle failure exchanges automatically.

In general, the mining framework could be extended to other processes, which can be described by a
temporal sequence of events, and where the resulting associative temporal rules qualitatively describe a
property of the process. The resulting hierarchical groups will indicate the intrinsic hierarchy of the variables.
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For example, if the framework is used in an automated production line, the resulting groups will indicate the
association of sensors to each step of the production line.

For example, we envision that the mining framework could be applied in crowd sourcing applications.
Participating users will no longer have to provide location using energy-expensive methods like GPS. Rather,
the location could be estimated from the relation of low-power sensor measurements in smartphones.

4.8 Conclusions

The HTC algorithm successfully created hierarchical variable groups that resembled those of GTG and the
BCG baseline. We showed how the grouping at low hierarchy levels, i.e. at cell and subcell levels, resembles
corresponding groupings of GTG, which is a substantial improvement over the WTC algorithm. Moreover,
HTC does not require tuning parameters, whereas WTC required a parametric search to find each hierarchy
level. HT'C extracts all hierarchy levels simultaneously from the variable association rules. When compared
with WTC, HTC performed similarly or even better in all performance metrics used. The additional informa-
tion stored within the hierarchical groups and the ability to describe variable interactions, led us to conclude
that HT'C is a better choice for the variable group extraction stage of the framework.

HTC yielded variable relations that were not considered in GTG or BCG baseline. These relations consisted
mainly of external environmental sensors that created overlapping groups with room-related variables. These
unexpected relationships can become useful for optimising system performance. For example, we found
instances that associated external light sensors to user-operated windows. The association can be understood
as an indirect measure of room temperature and user comfort. Consequently, the BMS could adjust the HVAC
to compensate accordingly.
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Using a thermopile matrix sensor to rec-
ognize energy-related activities in offices
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matrix sensor to recognize energy-related activities in offices”. In: SEIT 2013: Proceedings of the 3rd Inter-
national Conference on Sustainable Energy Information Technology. Procedia Computer Science. Recipient
of the Best Paper Award at SEIT 2013. Elsevier, 2013, pp. 678-685. DOI: 10.1016/j.procs.2013.06.090

5.1 Introduction

Energy conservation while maintaining occupant comfort is a critical optimisation tradeoff in commercial and
residential buildings. Although modern building energy management systems (BEMS) can control lighting
and heating/ventilation systems, various installations and appliances used by occupants during the day are
manually operated, including office devices, kitchen appliance, washing basins, etc. By providing feedback on
appliances usage and thus energy consumption, occupant awareness on energy needs can be improved. To
provide accurate feedback, usage patterns and occupant activities could be recognised from ambient sensors.

Ambient sensor modalities that have been successfully used for activity recognition include video cameras
and microphones, e.g. [49, 89]. However, these modalities are often perceived by occupants as privacy intrusive.
Moreover, cameras may require regular maintenance to ensure their robust operation. Previous investigations
on activity recognition in buildings considered Passive Infra-Red motion detectors (PIR) too, e.g. [113]. While
PIR sensors are optimal for motion detection, are low cost, and require minimal maintenance, the obtained
motion information is often too limited for activity recognition. In particular, PIR sensors can detect an
initial motion in their field of view, but cannot detect constant presence of a heat source, such as a person.
This effect is a result of the PIR’s operation principle that works by detecting heat-differences. In contrast,
thermopile sensors that exploit the Seeback effect to detect temperature differences could continuously detect
heat differences. Thus, occupants in the sensor’s field of view could be continuously recognised, not only
while moving. Moreover, objects that show a temperature difference compared to its surroundings could be
identified, such as a coffee pot or sink used with warm or cold water. Activities recognised with a single
thermopile sensor could be attributed to energy consumption, e.g. to provide feedback on actual consumption
due to using warm or cold water, or using the kettle.

In this work, we investigate a novel generation of thermopile sensors constructed in a 2D-matrix for
recognising objects and occupant-object interactions from a single sensor installed in an office pantry area.
We used a ceiling mounted sensor matrix to detect heat distributions captured by the matrix’ elements and
subsequently recognise objects and occupants. With this approach we can show that a single sensor installation
can provide information on various activities, rather than instrumenting many devices and appliances with
individual sensors.

In particular, this paper provides the following contributions:

1. We introduce the thermopile sensing concept and our processing framework to process the sensor matrix
data. The framework detects and tracks objects in the sensors field of view, and classifies the detected
objects according to state and interaction categories. The framework provides concurrent responses for
all configured and detected objects, thus can process multi-user scenarios.

2. We present our evaluation study comprising (1) a scripted set of 21 activities used as training dataset,
and (2) a uncontrolled, real-life dataset used for testing. During the training analysis, optimal features
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and parameter sets for the classifiers were determined.
3. We evaluate our approach and processing framework using the real-life study dataset and determine
classification performances for all concurrent state and interaction classifiers.

5.2 Related Work

PIR sensors have been used to recognize activities, in [108] PIR sensors where used to keep track of how
many people where in a room, and in [78] PIR’s where used to detect activity as a series of activations of
certain areas in the home. Although both efforts presented promising results, their approaches depended on
a gateway and assume that activities are performed when entering or exiting a coverage area. If applied to
a constrained area i.e. a bathroom, sensor need to be placed on all areas or objects of interest, as presented
in [106]. These works required to place sensors in locations where they could interfere with the activity being
performed. Multiple devices also means that maintenance requires more effort, even if the sensors are "tape
and forget’, as argued in [106].

Infra-red cameras provide thermal images that can be conveniently used to tracking people, as they usually
shine against cooler backgrounds. In [96] it was shown that thermal images provide advantages for problems
like identifying pose and thus, inferring the activity a person. Although well suited for activity recognition,
the cost of thermal cameras is higher than that of a thermopile sensor grid. Furthermore, since infra-red
cameras look like standard visual light cameras may yield similar privacy concerns, from the perspective of
end users.

5.3 Approach

This section details the thermopile sensor concept and particular device choice. Moreover, the processing
architecture used to recognise object state and interaction classes are described.

Thermopile sensor

Thermopile sensors are capable of measuring the thermal radiation absorbed on their active area. They
belong to the category of thermal detectors, which generate a small thermoelectric voltage proportional to the
detected radiation. Their operation principle is based on the Seebeck effect. The Seebeck effect describes the
electric current in a closed circuit composed of two dissimilar materials when their junctions are maintained at
different temperatures [31, 53]. When several thermopile sensors are arranged in a matrix, a scene image can
be constructed from the heat radiation. These temperature differences between the sensing elements (pixels),
can be interpreted as objects by measuring how the pixel’s values differ from the ambient temperature. In this
work, we considered the Panasonic GridEye sensor [90], which is an array of 64 thermopile sensors arranged in
a 8x8 matrix. Example images and processing steps performed based on the thermal images obtained from
the sensor are detailed in the following section.

Processing architecture

The proposed architecture for detecting fine-grained interactions between people and objects of interest in a
scene consists of three main modules: sensor layer, object detection layer, and classification layer. See Fig. 5.1
for a diagram of the architecture.

Sensor layer The sensor layer uses raw data from the thermopile sensor matrix and applies a Brown’s
lens correction (see Eq. 5.1) to fix the barrel distortion due to the sensor’s construction. Here, 7. and
are corrected and uncorrected distances of pixels with respect to the optical axis. K, are radial distortion
coefficients, here K; = 7.4 x 1073 and K5 = 0.17 x 103 are used.

Te =Ty + ‘Krl'r'u3 + K2ru5 (51)

1
TC = - Au(Tu — TCL'HLb) —+ Tamb and a = m (52)
To compensate for the sensor mounting angle, an area correction was applied as described by Eq. 5.2. Here,
T. and T, are corrected and uncorrected temperature of a pixel respectively, Ty,,.p is the ambient temperature,
A, is the uncorrected projected area of a pixel and « is the area normalization constant, parametrized by
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Figure 5.1: Detailed diagram of the processing architecture to process thermopile sensor images in this
work. Please refer to the main text for more details regarding the functionalities inside each block.

d and 6, which are the sensor’s distance to the projected area and the average pixel view angle (8°). These
corrections provide a grid where features appearances are independent of their location in the matrix. The
parameters K,, and A4, where fitted according to [90].

Object detection layer By taking the corrected matrix from the sensor layer, an occupancy map was
derived by assigning the most probable state given the pixel’s temperature difference with the ambient tem-
perature. The states can be one of empty, cold or hot occupant. The resulting occupied pixels are then
grouped by searching the surrounding pixels for the ones in the same state. This approach does not allow
for an object to be partially hot and partially cold with respect to ambient temperature. If adjacent pixels
present hot-cold behaviour, separate objects will be detected.

Subsequently, information about the scene context was added. We used here prior knowledge on the
stationary objects located in the sensors field-of-view. Such objects might not be visible by the sensor, e.g.
objects that are overshadowed or at room temperature. In Fig. 5.2 (c) it can be seen how the inclusion of
the prior object location knowledge allows to split object blobs into two separate objects. Also, this process
allowed us to make a first classification: objects created from intersecting blobs and considering prior object
location knowledge are considered static objects, while the remaining ones are considered dynamic objects.
The final step in the object detection layer was to keep track of each object across frames. This is needed to
keep a consistent history of each object as required by the following steps.

(©) (@

Figure 5.2: Output object detection layer for a scene with one dynamic and four static objects; (a) lens
corrected sensor output, (b) resulting occupancy map with occupied pixels outlined in green, (c) detected
objects (green) and fixed objects (blue), (d) resulting labelled objects.

Classification layer We arranged all objects identified in an image scene into possible pairs as follows:
(1) static object paired with dynamic objects, and (2) pairs of two dynamic objects. For each pair, a reference
object was selected. For static-dynamic pairs, the static object was always used as reference. Object processing
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queues were then created per object pair and results grouped according to the reference object. As a result,
the classification layer will provide the current activity for each reference object.

An activity is defined as the state an object or the interaction this object with another one in the scene.
We classified the reference object state and its interaction with the other object in the couple. State and
interaction results were then fed into a state filter to remove unlikely or impossible states given the sequence
in which activities have occurred.

At this point an activity interest list was employed. This list contained all possible interactions with the
reference object ordered by their relevance. The current activity for an reference object was determined by
selecting from all the detected interactions the one ranking higher in the list.

As a final step, a temporal filtering was applied, equivalent to a low pass filter, to remove short transient
states that last very short time periods only.

5.4 Study Methodology and Implementation Details

This section describes the study methodology and implementation details of the recordings with the thermopile
sensor.

Test installation and data recording The sensor was placed in an office building pantry area, overseeing
several static objects and dynamic objects. In particular, the pantry area contained a faucet with hot and cold
water, a coffee pot, and a microwave. In this space several activity scenarios are regularly performed, where
static objects interact with dynamic objects. As an example, a person (dynamic object) uses the faucet (static
object), or two persons are talking (dynamic objects). Table 5.1 shows the states and interactions considered
for each static object, and the interaction considered between dynamic objects. It also lists the activity
occurrences in both scripted and real-life dataset.

After classifier training using the scripted dataset, a validation was performed using recordings of (4.9Hours)
on a regular working day. All recordings were performed in the pantry area. Ground truth for the activ-
ity dataset was obtained using manual annotations from a video recorded at 1fps. The annotations were
up-sampled after the recordings to match the sensor data rate.

(a) Thermopile sensor used: Panasonic Grid-

Eye (b) Office pantry area used for evaluation.

Figure 5.3: Illustrations of the thermopile sensor and placement in the studies. The sensor was placed
at the celling, capturing the table corners, microwave, and counter with the faucet, refrigerator, and the
coffee pot.

Object and interaction classifiers Classifiers were used to determine state and interaction classes. Ta-
ble 5.3 presents the features selected and used for classifications per pair of objects. For state classifiers, only
features for the reference object were considered. For interaction classifier, the complete set was used. Since
multiple dynamic objects could exist in a scene at any given time, the interaction classifiers ran for all object
pairs containing the same static object as reference. In the pantry area and corresponding to the number of
objects, a total of eight classifiers were used. We used Support Vector Machines (SVM), where parameters
had been tuned with a grid search method as suggested by [42] on training data.

The state filtering was implemented using Hidden Markov Model (HMM)s and fitted on the training dataset
using hmme-estimate from Matlab. The function calculates the maximum likelihood estimate for transition
and emission probabilities given the sequence and known states extracted from the training set. Subsequently
the activity interest list refinement was applied. Table 5.2 shows the activity interest lists defined per reference
object. For example, if there are four dynamic objects, and the Coffee Pot as static object, then the classified
interactions are: [Away, Away, Serving, Present]. After applying the activity interest list, the recognised
result is Serving.
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Object

Activity

Scripted dataset  Real-life dataset

Coffee Pot

State

Interaction

Off
On
Away
Present
Serving

Faucet

State

Interaction

Off
Hot
Cold
Away
Present

Microwave

State

Interaction

Off
On
Away
Present

Refrigerator

State

Interaction

Closed
Open
Away

Present

Interacting

C?)OOUDOOUD@OJG)O)OOWWOO\I:

People

Interaction

Single
Meeting

W| =
NI
o
W

Table 5.1: Overview on objects, interactions, and occurrence instances in scripted and real-life datasets.

Reference object Coffee pot Faucet Microwave Refrigerator People
Index  Activity Index Activity  Index Activity  Index Activity Index  Activity
3 Away 2 Away 2 Away 3 Away 2 Single
2 Present 1 Present 1 Present 2 Present 1 Meeting
1 Serving 1 Interacting

Table 5.2: Activity interest list per reference object as used in our evaluation. The lower the index, the
higher the interest (relevance) for the recognition. The interest can be adjusted according to application

needs.

Reference objects

Paired objects

Index Feature Index Feature
1 Area temperature product 2. Area temperature product
3. Temperature variance 4. Temperature variance
5 Area 6. Area
| 7. Distance to object 1
8. Gradient X direction 12. Gradient X direction
9. Gradient Y direction 13. Gradient Y direction
10. Gradient magnitude 14. Gradient magnitude
11. Gradient phase 15. Gradient phase
16. Temperature 17. Temperature
| 18.  Position variance

Table 5.3: Feature set considered for the object and interaction classification. The list is structured
into features for state classifiers (Reference objects) and for interaction classifiers (reference & paired

objects).
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Evaluation procedure To evaluate our approach, we initially determined the relevance of features pre-
sented in Tab. 5.3 for both classifiers. We used a variation of the approach presented in [39] to determine
relevance. Instead of using the complete feature set jointly, each feature was evaluated individually since
a high degree of correlation could be expected. In result, this yielded a much smaller feature vector size.
Subsequently, accuracy performance measurements were obtained using the real-life dataset.

5.5 Results

The feature relevance analysis results are shown in Fig. 5.4 for state and interaction classifiers. As the
diagrams indicate, the six best features were sufficient to achieve high accuracy for state classifiers. For
interaction classifiers, eight features were needed to obtain high accuracy. Choosing additional features did
not improve performance for any of the two classifier groups.
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Figure 5.4: Accuracy vs. feature vector size for (a) state classifiers, (b) interaction classifiers. The
analysis was performed in a 5-fold cross validation using the training dataset.

Fig. 5.5 shows an example of the grid search results obtained for Support Vector Machines (SVM) param-
eters C' and 0. Here, a smooth surface near the Radial Basis Function (RBF) kernel centre with small o could
be observed. This indicates that the SVM should perform well with the test data, which is confirmed by the
results shown in Table 5.4. Similar plots where obtained for the other seven classifiers.
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Figure 5.5: Support Vector Machines (SVM) parameter grid search for Coffee Pot classifiers: (a) state
classifier, (b) interaction classifier.

Table 5.4 summarizes classifier modelling performances on the training data. As the result shows, the
classifiers can sufficiently model most cases, except for the microwave state classifier. We observed that the
microwave states did not result in sufficient temperature difference between On and Off. Rather, a sequence of
interaction events involving the microwave could provide sufficient discriminatory power. This issue becomes
more pronounced for the real-life dataset, shown in Table 5.5. As people will simply stand in front of the
microwave, e.g. to read the billboard, the object state cannot be reliably determined.
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Classifier Coffee pot  Faucet  Microwave  Refrigerator = Meeting
State 1.00 0.70 0.56 1.00
Interaction 0.82 0.97 0.86 0.73 0.85

Table 5.4: Normalized average training set accuracies per classifier. The result shows sufficient mod-
elling capability of the approach for most state and interaction classifiers.

Object Activity Accuracy
Coffee Pot State Off NaN

On 100,00%

Interaction = Away / Present 96,55%

Serving 96,43%

Faucet State Off 80,00%

Cold / Hot 45,45%

Microwave State Off 34,48%

On 32,14%

Refrigerator State Closed 66,67%

Open 50,00%

Interaction  Away / Present 24,44%

Interacting 11,36%

People Interaction Single 65,52%

Meeting 60,71%

Table 5.5: Overview on recognition performance using the real-life dataset for testing classifiers. In the
real-life dataset, not all activities were performed, shown here as combined states for some classes.

5.6 Discussion and Conclusion

The 2D-matrix thermopile sensor provides information for detecting complex activities, like serving coffee
in a pantry area. Our test scenario showed that the matrix configuration simplified monitoring relatively
complex areas. While our approach required to obtain a map of static objects, there was no need to carefully
measure overlap of each thermal device with the sensor’s field of view. This issue was mentioned by Wren and
Tapia [113] as limiting factor for classifying activities using ambient sensors. Although not all interactions
described in [113] where tested in this work, e.g. for meetings (corresponding to split and join activities)
similar performances were achieved in our approach. Nevertheless, our method required a simpler sensor
installation.

The hight at which a sensor is placed determines the tradeoff between coverage and resolution of the scene
image. The tradeoff can be observed in Tabs. 5.5 and 5.4, where some good performance ratings obtained
during training did not hold for validation. We consider that the performance reduction was due to proximity
and size of the areas of interest. For example, the normal use of the faucet, makes people invade the refrigerator
area, resulting in erroneous class responses.

Thermopile sensors allow us to recognize multiple activities with one sensing device in places where multiple
sensor modalities would have been required. It can be expected that every recognized activity can be mapped
to an energy cost, which in turn, can be fed back to the user to guide energy consumption awareness. This
energy consumption feedback can be given instantaneously when the activity is being performed. Although
our test showed that the sensor can be used to identify complex activities in a scene, the processing was done
offline. In further work, the processing architecture could be implemented in the thermopile sensor device.
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Data mining-based localisation of spatial
low-resolution sensors in commercial build-
ings
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6.1 Introduction

Large numbers of ubiquitous sensors are being deployed in buildings to balance comfort and energy saving,
maintain safety, or enforce security. As sensor technology evolves, new device generations with improved
performance become available, typically at much faster rates than buildings are renewed. As a consequence,
future buildings are likely to contain a 'zoo’ of devices, all communicating to the Building Management System
(BMS). At the BMS, sensor information is aggregated, processed, and used to provide the desired building
features. During building commissioning, sensors need to be correctly associated, e.g., the sensors in a corridor
must be correctly identified to activate corresponding ceiling lights. Furthermore, security, remote manage-
ment, and maintenance services depend on the correct device representation in the BMS. Any newly added
sensors must be integrated with the existing BMS configuration. Research on emerging sensor design and
modalities has shown that a high sensor density, with multiple devices per building space is required to opti-
mise comfort and energy consumption [64]. As the number of devices increases and building layout evolves,
maintenance becomes time-intensive and error-prone, even for regular activities, as finding and fixing con-
figuration errors, locating damaged sensors, or reconfiguring refurbished spaces. Novel methods to automate
sensor commissioning and maintenance are needed to support continuous installation and management.

Classic building-installed sensors provide a single point of measurement, i.e., movement detector in a
corridor. However, spatial sensors,e.g. radar, thermopiles, camars, etc, which can track objects in the field
of view, are becoming common in buildings scenarios. Specially, the low-resolution spatial sensors which can
detect but not identify objects. Thus, protecting user privacy. A typical low-resolution ubiquitous spatial
sensors provides coarse spatial data only, i.e. less than 100 pixels. Typical applications, involve the use
of multiple spatial sensors to monitor an area, their combined fields of view provides more coverage, e.g.,
to track users across a building space and detect possible safety hazards, such as blockages in emergency
paths. For such applications, the sensor’s relative position and rotation to its neighbouring sensors is a key
information to properly construct a virtual representation of the combined fields of view. Typically, the
process of configuration and verification of spatial sensors is manually done, which hampers their widespread
use in buildings.

In this chapter , we investigate an approach to determining relative position and orientation of multiple
spatial sensors. We envision that the proposed approach can be used at building commissioning time, where
the technicians will trigger the correct configuration simply by walking in the field of view of the sensors as they
install the network or other facilities. Additionally, once the building is open to the public, our approach can be
used to detect faulty sensors or changes in configuration from user-generated movement tracks. Our approach
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exploits each individual sensor’s object tracking capabilities to extract transition events, then mines link rules
to determine each sensor’s likeliest neighbours, and finally uses link rules to create a spatial representation
of the relative position and orientation of all sensors. The sensors considered in this work provide low
spatial resolution only, which renders most vision-based and multi-camera tracking techniques infeasible. We
validate our approach using thermopile array sensors. As network topology depends on the building space,
we investigate four different building spaces in our analyses. While we focus in this work on thermopile array
sensors being a novel type of spatial sensor, we expect that the proposed approach could be used with other
spatial sensors too. In particular, the following contributions are made:

1. We propose an data-driven approach, independent of sensor modality and communication media or
protocol, that uses data of a spatial sensor to detect and track object’s in its field of view. Based on
extracted transition events, link rules are mined that describe the probability of any two sensors being
neighbours. Finally, a sorting algorithm is developed to determine sensors arrangement.

2. We evaluate our position and orientation estimation approach in four typical installation scenarios of
increasing sensor number and complexity, involving corridor, corridor crossing, meeting room, and an
open hall setting. For each scenario, we performed a study to obtain realistic movement patterns over
at least two weeks. Here we compare performance of the method’s variants.

6.2 Related work

A growing number of sensor types and control applications are proposed, addressing all building facilities,
including Heating, Ventilation, and Air-Conditioning (HVAC), office appliances, and others. Presence detec-
tors, light sensors [74], power meters [46], are considered a single point of measurement sensors, i.e., they
provide a value which can not be mapped to a specific location within the field of view of the sensor. In
contrast, microphones [29], high frequency radar [118], and novel thermopile array sensors [40, 67], among
others, are considered spatial measurement sensors, because objects can be mapped to a region and tracked
as the move through the sensor’s field of view.

Thermopile array sensors have been successfully used to monitor activity in different environments. For
example, Hevesi et al. [40] used the Panasonic GridEye thermopile array to track household activities. Earlier,
Lopera et al. [67] used the same sensor to detect different activities in a office kitchen area. Both investigations
mapped the sensor’s spatial regions to activities. Mashiyama et al. [71] used the GridEye sensor for fall
detection in an elderly people monitoring system. All three approaches used user and object detection using
temperature thresholds across multiple sampling frames. We use a similar method in our object detection
step. However on top, we track objects within the field of view of individual sensors. Specifically, we were
interested in the exit and entry regions and the related time stamp of exit and entry events.

A common drawback of low resolution spatial sensors, i.e., less than 100 pixels, is their limited field-of-
view. When mapping sensor regions to activities, as described above, sensor distance is indirectly related to
information resolution. For example, for far-away sensors, e.g., more than three meters with a thermopile array
sensor, multiple activities will share the same pixel and thus activities become indistinguishable. Similarly,
fall detection performance is affected if the sensor is mounted on high ceilings as arms and legs become harder
to identify. Typically, the view constraint is overcome by (1) using sensors with higher resolution, e.g. larger
pixels count where available, and (2) by installing networks of multiple sensors at suitable target distances.
When using sensor networks, the relative positions of the sensors are required. Our method automatically
finds the relative position of the sensors so that a combined image of the sensor network can be derived.

While cameras are often considered obtrusive in buildings, the algorithms for tracking across multiple
image feeds and mining camera arrangement have parallels to the ubiquitous spatial sensors considered here.
In image processing, tracking objects and activities is used to compute exact location of cameras. For instance,
Bodor et al. [9] proposed a method to compute the optimal positions of cameras and camera parameters based
on observed activities, thus maximising the observability of a scene. In multiple camera scenarios, Zhao et
al. [119] proposed a method to track objects over multiple cameras. Nistér [87] show how by tracking objects
in multiple video frames, the relative position of the cameras to the object can be reconstructed. Similarly,
thermal cameras have been used to recognise activity, i.e., walking, jugging, and running, as presented by Han
et al. [37]. Thermal cameras have been used to identify people in biometric applications too, as described by
Jain et al. [45].

Camera position inference methods, in both visible light and thermal imaging, utilise image resolutions
of typically 64k pixels and above to capture features. The high resolution allows to build statistically robust
object models, which can positively identify objects across multiple cameras. In the case of low resolution
spatial sensors, object identification across sensors is not feasible. For example, the Panasonic GridEye sensor
used in this work provides 64 pixels. People in the sensor’s field-of-view may be represented by three to nine
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pixels only, and the pixel with an object will only take up to 12 possible values (variation of +3C° with
.25C" resolution). Consequently, none of the typical image processing features can be found in the thermopile
sensor image, such as arm position, stride, texture, or colour, making unequivocal object identification between
sensors infeasible. Our method uses the tracking information from each sensor and builds a statistical model
of possible transitions between sensors.

A foreseeable deployment mode of ubiquitous sensors in buildings is a Wireless Sensor Network (WSN),
where localisation is a widely studied problem. For example, Payal et al. [93] and Patwari et al. [91, 92]
proposed using the node’s own radio signal to estimate location. Furthermore, Aspens et al [5] presented a
theory on how to construct graphs that represent sensor location in a given node and proposed how to map
location to a real space if the coordinates of a beacon are known. For the proposed WSN methods to work,
all nodes need to implement the exact same location estimation method. A change of operating frequency,
transmitting power, or communication protocol will render the approaches inaccurate. As new manufacturers,
devices, and communication means appear in the building market at a much faster pace than entire buildings
are renewed, the typical WSN assumptions imposed for localisation hamper their applicability in the building
context. Our approach aims at mining the relative location of sensor nodes from their data, thus our approach
is independent of the underlying sensing and communication technologies and infrastructure. Our approach
allows the sensor node to be simpler, as the node does not require the hardware/software to deal with the
localization problem.

A methodology of finding associations between sensors and organizing them into groups has been proposed
by Lopera et al. [62, 63]. Hierarchical and flat groups associate sensors and actuators, which can then be
associated to a general part of a building. However, the groups are unable to provide relative location or
rotation information of the individual sensors. To our knowledge there are no purely data-driven techniques
to find relative or absolute sensor positions in a network.

6.3 Sorting approach

Building occupants moving in a sensor-monitored space create correlated data in the sensors data streams.
For example, a person moving across a corridor can be observed as a temporal sequence of objects appearing
in the nodes of the sensor network. People moving across the sensor’s field-of-view create tracks that can
be interpreted as local object tracks. Our sorting approach is based on the idea that orientation and rela-
tive location of individual sensors can be estimated when matching the local object tracks between sensors.
Depending on the particular sensor application, the installation could be sparse, i.e., leaving gaps between
sensors, or dense, i.e., having sensor overlaps. Our proposed approach and subsequent evaluation consider
both installation types.

Our sorting approach can be summarised in three processing stages: (1) transition event extraction,
(2) link rule estimation, and finally (3) sensor matrix arrangement. Fig. 6.1 illustrates the complete sorting
approach. The resulting sensor matrix can be conveniently used to determine interaction and automation
controls associated to individual sensors or the complete sensor network. Below, we describe the general
approach. The implementations details of the sorting method are described in the subsequent section of this

paper.
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Figure 6.1: Overview on our sorting approach to infer arrangement of spatial sensors and our imple-
mentation using thermopile array sensor nodes. Three processing states are used: (1) transition event
extraction, to derive relations of sensors based on real-life movement data; (2) link rule estimation, to
describe probabilistic relations of sensor nodes; and finally (3) sensor matrix arrangement, to represent
the relative position and orientation of a sensor network.
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Transition event extraction

We consider that every spatial sensor type has its specific methods to detect and track objects within their
field of view. For example, high frequency radar [118] can detect and track people through walls; and speakers
can be localized and track using audio based methods [100]. Therefore, we specify the information required
from the specialized tracking system and formalize the event extraction as follows: A track in a sensor s is
described by the moment, location and region a detected object enters and exits the field of view. A region
is a division of the sensor field of view to define general orientation and overcome misalignments which result
from the installation process. The length in time of the track is the lifetime. Eq. 6.1 shows the complete
description of a track in sensor s, where the entry and exit tuples:(...)e, (... )., contain the respective region
r, position X, and timestamp t. The life time [t of the track is computed as It = t, — t..

Ts ={(r, X, te, (r, X, tg, It} (6.1)

A transition event e,y is defined as the union of two tracks in sensors s and f respectively, where exit time
stamp of the track in s is within and observation window ow from the exit time of the track in f. The gap
time d is calculated as shown in Eq. 6.2, where t.y is the track entry time in sensor f and ¢, is the track exit
time in sensor s.

d=tof—to, (6.2)

The gap time d is effectively the separation between the borders of the field of view of the sensors. Therefore,
a negative d implies that an object entered f before leaving s and the sensors are overlapping. The complete
definition of a transition event is shown in Eq. 6.3.

esf:{TS,Tf,dHtxf—tms<0w/\s;£f (6.3)

A key benefit of ubiquitous sensors placement is the reduction of meticulous installation, i.e., set-and-
forget. A problem which affects the proposed approach is large rotation misalignment, e.g., a sensor is rotated
90 °C with respect to the expected general orientation. Rotations are estimated and corrected as follows:
Given regions r, and 7, define r, matching r; if for two correctly positioned sensors s and f, r, = r;s and
ry = Tef. The rotation of a sensor s is estimated by selecting the region r, which appears the most in the
transition events which contain s, then selecting the most common corresponding region r/,. If r, does not
match r),, define § = ), — r,, then in all ey; and e;; update the regions r.,r, of all tracks in s as 7. + ¢ and
re + 9.

Finally, a set of filters is applied to harness the sensors’ installation specific knowledge, for example:
source of noisy local tracks, details regarding sensor modality and installation procedures. In general, a filter
determines whether or not an transition event e;; remains in set of all transitions to be considered for the
next steps. Since the filters are application specific, the details are explained in Section 6.4.

Link rule estimation

Extracted transitions events are then aggregated into a link rule. Rules describe the link between originating
and receiving sensors (s;,5;), regions of origin and destination (74,7 ), expected gap time of observed transitions
events (d ), confidence (c), and the number of times the transition event was observed (g). Throughout this
paper we will use the complete or simplified notations to refer to link rules as shown in Eq. 6.4.

Complete notation: {(s; : 7 —s; :7p),¢,d,q} (6.4)
Simplified notation: s;:r, —s;: 7 '

Although transitions are directional, link rules are not. Thus, for sensors s; and s;, and connecting regions
ro and 7y, the link rules in Eq. 6.5 are considered identical. As transitions describe the same relative position
in both directions, only one rule is extracted. In contrast, link rules are considered different when they link
the same sensors, but connect through different regions, as shown in Eq 6.6.

SiiTq—SjiTh =817y —8 :Tq (6.5)

SiiTq—8; 1Ty F# S :Tq—Sj:Tc (6.6

The link rule extraction process works as follows: Define the set of all transition events as E, then, let
e C I/, contain the transition events which have sensors s;, s; connecting through regions r,, r, respectively.
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Parameter ¢ is defined as the size of €. To compute ¢ and d, a Gaussian kernel is fitted to the gap times d of
all e;; € € to estimate the gap time distribution P(d). Eq. 6.7 shows how ¢, d and ¢ are computed.

¢ = max(P(d))
d = E(d) = argmax(P(d)) (6.7)
q= el

Fig. 6.2 shows examples of different fitted distributions obtained for one day of recordings. Sensor which

are neighbours to each other will produce link rules with high ¢ on the neighbouring regions. In contrast, link
rules created from spurious transition events will have low c.

0.4
031" [—High c.
. --- Low c.
B o2}
o
0.1]
0 ‘ ‘
=30 —20 ~10

Gap times(d) [s]

Figure 6.2: Example of probability distributions of gap times for highest and lowest confidence ¢ from
a day of recordings. Sensor which are neighbours to each other will produce link rules with high ¢ on
the neighbouring regions. In contrast, link rules created from spurious transition events will have low c.

In practice, when noise is present in the data or the use of an area is very low, the following situations will
affect the outcome of the link rule estimation process: (1) although only one transition event is necessary to
build a rule with high confidence, the rule might be incorrect, especially in busy and noisy environments. True
link rules will have more samples but inherently less confidence than the one sample rule. (2) Noisy sensors
will trigger many false events, thus some link rules will have an excessive number of events and relatively high
confidence. (3) Gap times generated by spurious noisy transition events can be smaller than the real events.
(4) Two sensors can have more than one link rule, which implies that the two sensor will connect through
different regions. In conventional rule mining techniques, rules are sorted by confidence, support and finally
number of samples. None of these measures can be sequentially sorted to guarantee that the correct link rules
are used first.

To overcome the situations mentioned above, two processing steps are added to link rule extraction:
(1) computing a weight wy., for sensor s and region 7, which modifies the confidence ¢, and (2) aggregate all
link rules for each pair of sensors. The new weight serves as sorting proxy instead of the confidence, and rule
aggregation ensures that any two sensors are only connected through one respective region.

The weight ws., aims at assigning a higher confidence to those sensor-regions pairs that have the expected
behaviour, while punishing those which come from noisy transition events. The weight is computed as shown
in Eq. 6.8, where o,., is the standard deviation of the number of link rules containing s : r, ¢mg is the
maximum confidence observed in any link rule which involves sensor s, and finally, dw,., is a gap time weight
as defined in Eq. 6.9 where d , represents all the estimated gap times from all link rules containing sensor s.

1
Weip = AWg.p - —— - CMeg (6.8)
Os:r
dg
dwgy =1 — mean(d,) _ (6.9)

max(d s) — min(d )

The next step is to convert all link rules which have the same pair of sensors connecting on different regions
into a single link rule. The process of unification is called link rule averaging and it works as follows: First
map each region r,, to its normalized relative position vector rp, as shown in Eq. 6.10, where I is the matrix
with the unit vectors of the space where X is defined, and rpw,, is the unique weight vector for region r,.

rpn =Ixrpw,| | rpa =1 (6.10)
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Then, compute the link rule orientation using the relative position vectors as shown in Eq. 6.11, where a
link rule for sensors s; and s; is shown; the link rule orientation o; is computed using the relative position
vectors rp, and rpy, for the respective connecting regions r, and rp.

l=5;:7q—8;:7Tp = 0, =TPa —I'Pp (6.11)

The final orientation 0 is the result of the weighted sum of rule orientations as shown in Eq. 6.12, where
A is the set of all link rules which join sensors s;, and s;.

62201 cCLqr (612)

lex

Finally, convert the orientation 6 into regions 7, and 7, by selecting the region where the distance between
the normalized orientation and the respective relative position vector is minimized as shown in Eq.6.13.

" (e -)
min [ —— — 'Pn
ol
(a7 )
min [ ——— — rPn
o]

A new link rule { for sensors s; and s; is written as shown in Eq. 6.14, were ¢/, d’ and ¢ are the respective
maximums observed for all link rules in A.

Tqg =Tn

(6.13)

Ty ="Tp

l={s;:7q—sj:T,c,d" q} (6.14)
Next, for every sensor-region s : r the best available neighbour is selected as the link rule s : r — s : 7/
which has the highest weighted confidence we;. Eq. 6.15 shows how to compute wc;.

wep =y - dl s Wg ! (615)

Once the neighbours are decided, the final set of link rules is constructed by selecting first the rules which
have confirmation, i.e., s; : 7, and s; : 7, were selected as best neighbours respectively; only the link rule
with best confidence is selected from the confirmed pair. Finally, the link rules which add information but
do not contradict confirmed link rules are added to the list. For example, let link rules I; = s1 : 7y — 83 : 7
and lg = 83 : 1. — 84 : rq be confirmed link rules, and let I3 = s1 : 7, — s3 : 7. and Iy = 85 : 1. — S4 : g be
unconfirmed link rules. Thus, I4 adds information about sensor s5 and it is included in the final set. I3 states
that sensor s; connects to s3 on region 7., contradicting I which states that s3 on region r. has a confirmed
neighbour s4. Thus I3 is omitted from the final list of link rules.

Sensor matrix arrangement

In the final processing stage, link rules are used to place sensors into the matrix according to the directional
information encoded in the link rules. The basic principle of the sorting algorithm is to sort the mined link
rules in descending order according weighted confidence we; computed as shown in Eq. 6.15.

The sensor matrix M is a spatial representation of the relative position of all sensors. M has the same
number of dimensions as X but the units are sensors. The general sensor-placement method works as follows:
Given a rule [ = s; : 7, — 55 : 7, and p; the position of sensor s; in M. The relative position p; of s; with
respect to s; is calculated as shown in Eq. 6.16, o; is the orientation of the link rule as defined in Eq. 6.11.

Pj =Pit+ 0 (6.16)

If M is empty s; is selected first and placed in the origin of the space and s; is placed according to the
link rule. A more general interpretation of [ is as the direction of travel from s; to find s;. Therefore, if p;
is occupied by another sensor, then s; is located in the subspace of M centred in s; delimited by the infinite
extension of rp,,, and rp,_;. The subspace is termed Mg. s; is placed in an available position within Mg
minimizing the distance between s; and s;. The final position of s; is considered to be in an inferred position
when s; is not placed adjacent to s;. For example, assume that ! indicates s; is to the left of s;, and p;
is occupied by sj then sensor-placement would place s; to the left of si; s; is in an inferred position, and
link rule [ is still satisfied. Inferred positions can be used for sensor placement if the minimization criteria is
satisfied. When a new sensor is placed in an inferred location, the existing sensors are moved one position in
direction 0;. When s; is an inferred sensor, and new link rule /,, contains s; and s;, such that s; is already in
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M, then, after applying [, if s; does not change position, s; is considered verified and the inferred status is
removed.

As the sorting algorithm progresses, new link rules can add information regarding already existing sensors.
Occasionally, the directional information encoded in a new link rule will contradict the current state of M and
is discarded. A contradiction is define as follows: Given a new link rule [ = s; : v — s; : 1, when applying
the general interpretation of the rule, s; is not in the subspace Mg. When the rule is not discarded, the new
information is incorporated as follows: Let [; be a link rule which positioned sensors s; and s;, let Iy be a
link rule which positioned sensors s; and sy, finally, let I,, be the new link rule which relates sensors s; and
sk. From the trio of link rules select the pair which has the minimum sum of gap distances. Discard [,, if it
is not in the selected pair. Otherwise, remove the unselected rule from the list of used rules, append [,, and
finally clear M and start over using the updated list of used link rules.

When both sensors contained in a new link rule I,, are not present in M and M # (0 , then [,, is placed in
a pending list. The process-pending-list procedure is executed every time a new link rule is successfully added
using the sensor-placement. With process-pending-list procedure, the pending list is checked for link rules
which contain sensors already in M. Every matching rule is removed of the pending list and added using the
sensor-placement procedure. The process-pending-list procedure is recursive, every successful placement will
immediately trigger a call to process-pending-list again.

The sorting algorithm ends when all sensors are placed in M, or when there are no more rules available.
Algorithm 1 summarizes the sorting algorithm.

Algorithm 1: Algorithm steps to derive the sensor matrix arrangement.

Start with an empty M.;
Select the first link rule [ from the we; ranked list.;
Place the first sensor pair starting at the origin and following the relative direction.;
repeat
Select the next link rule [ from the list. ;
Run: sensor-placement();
Run: process-pending-list();
until Rules erhausted, or all sensors have been placed.;

6.4 Implementation

To validate the proposed sorting algorithm, we chose to use networks of thermopile array sensors. Specifically,
we used the Panasonic GridEye; a thermopile array sensor which comes in an 8 x 8 pixel arrangement as shown
in Fig. 6.3. Here we describe how the propose method is applied and we give details about the implementation
using the selected sensor.

North

Center
= ]
D @
& i

South

Figure 6.3: Example of the regions definition used with thermopile array sensor in this work. Regions
are further used to support the transition event extraction stage. The particular thermopile array is a
Panasonic GridEye with an 8 x 8 matrix.

Object detection and tracking

We based our approach in the object tracking used by Lopera et al. [67], where the 8 x 8 frame was analysed
as follows: First a temperature threshold was applied to the entire frame to select candidate pixels for objects.
The threshold was empirically set to the median of the frame plus 1°C. Objects are started by selecting all
local maxima from the candidate pixels. Then, each object is grown by adding neighbouring pixels. The
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(d) €)

Figure 6.4: Illustration of the transition event extraction for an 8x8 thermopile array sensor. (a) Raw
sensor data. (b) Pixel selection based on median and threshold. (c¢) Detected object with their respective
centre of mass. (d) Local object track starting in region W (green) and ending in region E (red).
(e) Matching of tracks into a event, beginning (green) and ending (red) regions in the respective sensors.
The gap time d is the difference between object entry time in sensor s; and exit time of sensor s;.

complete object is extracted by recursively selecting neighbours of neighbours. When two objects in a frame
overlap, pixels are assigned following a minimum distance to local maxima criteria. Finally, the object’s
estimated position is defined as the centre of mass.

A track is calculated by analysing consecutive frames. A track starts when an object o first appears in a
frame, the starting point for the track is the position where o was first detected. On each consecutive frame,
a new position is added as o changes location. Once o is no longer detected, the track is finished, and the
last know position is recorded. In the case of multiple objects, tracks are created by minimizing the distance
of the new positions to the last position of the track. If objects get too close and become indistinguishable,
i.e., objects merge, all tracks are kept and updated with the position of the merged object. After a split,
objects will be assigned to tracks using the minimal distance criteria. There are no guaranties that the object
which started the track is the same object that finished the track after a merge or close passing condition. In
the case multiple users cross the sensor in close formation, it is possible that they are detected as on single
large user; then, only one track is created following the trajectory of the estimated centre of mass of the large
object.

Framework implementation

Transition and event extraction: Fig. 6.4 illustrates different steps of the transition event extraction
procedure. We defined X as a plane with origin in the bottom-left corner of the sensor frame, i.e., south west
corner; starting at 0, each pixel occupies one unit. Also, the regions are defined as: north, south, east and
west (N, S, E, W), as illustrated in Fig. 6.3. The centre region does not make part of the regions set. Tracks
which end or start in the centre region are discarded. The observation window ow was chosen to be 30s.
Filters are applied in sequence and the order of application does not change the final result; except for
the relabelling filters and the directional filter. The latter will remove all the transition events on which the
relabelling is applicable. We design the following filters to remove unwanted transitions. Gap time filter:
Removes transition events whose |d| are less than a gap time threshold. Gap time inconsistency filter: For
transition events on overlapping sensors, i.e., negative gap time, removes transitions whose |d| are larger than
It in either sensor. Lifetime filter: The transition event’s It must be greater than a life time threshold. Relabel
orthogonal transitions: When an object moves on the edges of the sensor, it is likely that the exit and entry
regions do not correspond to the direction of movement. For example, an object moving on the north edges of
two sensors might have entry and exit positions X., X, in region N, but the direction of movement reflects
a E to W transition. Therefore, both tracks entry and exit regions are updated to match the direction of
movement. Relabel parallel transitions: When multiple objects are crossing the sensors, objects moving in
opposite directions might cross the same region of adjacent sensors within ow. For example, let 07 be an
object crossing sensor s from W to F; a time t later, an object oy crosses sensor f in the opposite direction F
to W then, a transition event is triggered with rys = roy = W. Following the principle of the transition event
extraction, the direction is determined by s and thus the destination track is inverted by swapping the entry
and exit positions and regions, the times remain unmodified. Directional filter: Removes transition events
where the direction, determined by the regions r,, and r.f, does not match the local trajectory direction ltd
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in sensor s. [td is defined in Eq. 6.17, where arg max returns the axis of X which has the dominant position
change, and the sign provides the trajectory direction.

ltd = sign(Xys — Xes) argmax(|Xzs — Xes|) (6.17)

If the relabel parallel and orthogonal transitions filters are not applied, all rules which would have been
relabelled are discarded by transition direction filter. Use first transition filter: Only accepts the first transition
event created by every track in the destination sensor. Stationary objects filter: Removes transition events
where the trajectory within either sensor starts and ends in the same position. Implies (X, = X,)s or
(Xe =Xy3)s. Chain of three filter: Given two transition events e;; and ej, it will allow transitions where the
time stamps of sensor j are within ow, i.e., in the case where an object transitioned from sensor ¢ to sensor j
to sensor k, the filter searches in the transition event set for the corresponding transition events e;; and ejy,
allowing some discrepancy between the time stamps in sensor j of at most ow. Chain of four filter: Given
two transition events e;; and egy the same logic applied to building the transition events, is used between
sensors j and k. The filter searches for transition events which build a chains that could be created by an
object going from sensor ¢ to f passing through sensors j and k.

Link rule estimation: For the link rule aggregation the weight vectors rpw,, were defined as ([1, 0], [-1,
0], [0, 1], [0,-1]) for N, S, E, W respectively.

Sensor matrix arrangement: Using the selected regions all relative position can be found in a plane.
Thus, M can be represented by a matrix with the sensor id as seen in Fig. 6.6. The starting M is a 3 x 3
matrix and the origin is the centre position. The matrix M is expanded as needed.

6.5 Real-life evaluation

We validated our mining approach using four different real-life scenarios: (a) office corridor, (b) meeting room,
(c) corridor with a T intersection, and (d) open space “foyer” area. The scenarios were chosen to provide
different geometries with varying sensor arrangement complexity. Specifically, we aimed at progressively
removing restrictions to the various ways in which the sensors could be positioned.

Evaluation scenario setup

All scenarios were located in different buildings on a university campus. Permission was obtained from the
building management to install the sensors and record data. In all scenarios sensors covered public building
areas. Sensors were small devices fixed to the ceiling, thus did not affect building users in their activities.
Information plates were installed before and during the recordings of each scenario with study manager contact
details, study description and an illustration of the data collected.

We used the 8 x 8 Panasonic GridEye sensors connected to an Arduino UNO board using I?C protocol.
Each Arduino UNO sampled up to two GridEye sensors at 10 Hz and sent measurements to a computer via
USB connection. A cabinet rack was used to store the computer during the experiments.

Fig. 6.5 shows scenarios during the recordings and summarises the technical specifications and recording
duration for each scenario.

Office corridor scenario

Sensors were mounted in a straight line leaving gaps between each sensor’s field-of-view. Fig. 6.6 illustrates
the sensor arrangement. Sensors recorded users coming in and out of offices. The corridor area could otherwise
be accessed at both ends. The corridor was recorded between the months of January and February 2015. At
peak hour, an estimated average of 36 users used the corridor.

Meeting room scenario

The meeting room consist of a square of eight sensors positioned on top of the meeting room table. Unlike
the corridor, there were overlaps in the sensors field-of-view as shown in Fig. 6.7b. The meeting room is a
stationary scenario, as users stay confined to their sitting places for most of the time. The meeting room was
recorded between the months of September and November in 2015. At peak hour, an estimated average of 7
users were present.
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(a) Corridor: 15 sensors, (b) Meeting room: 8 sensors,
48 days, height 2.40m, 54 days, height 2.65m,

and area 124m? and area 26m?

(c) T-crossing: 8 sensors, (d) Foyer: 20 sensors,
23 days, height 2.80m, 51 days, height 2.80m,
and area 31m? and area 78m?

Figure 6.5: Pictures of the four evaluation scenarios used in this work. For the corridor and meeting
room, sensors were mounted on the ceiling. A recording rack is visible for the corridor scenario (Fig. 6.5a).
For T-crossing and foyer scenarios, sensors were attached to grey pipes that were then installed hanging
from the ceiling. The pipes contained the installation wiring.

T-crossing scenario

The corridor and the meeting room are restricted to two neighbouring sensors. The T-crossing scenario,
extends options to at least three neighbours. The space includes vending machines. The intersection gave
access to classrooms, hence at specific times many people were moving simultaneously in the monitored area.
The T has an angle of 13°, which is different from other scenarios having strict orthogonal arrangements.
Sensor installation height was of 2.80m, which is at the upper range limit of the sensors, lowering temperature
differences between background and observed people. Fig. 6.7a depicts the area and sensor placement. The T-
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Figure 6.6: Floor maps of the corridor scenario illustrating sensor placement and corresponding sensor
matrix representation M. Only 6 out of 15 sensors are shown.

crossing was recorded in November 2015. At peak hour, an estimated average of 50 users used the T-crossing.
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Figure 6.7: Floor maps of the (a) T-crossing and (b) meeting room scenarios illustrating sensor place-
ment and corresponding sensor matrix representation M.

Foyer scenario

The foyer was the most complex scenario considered, involving walking and sitting areas and multiple access
points. The sitting area was covered with a dense sensor placement, while gaps in the field-of-view were left
in the walking area. The foyer gave access to class rooms, thus people moved in flocks at specific times. In
addition, luggage lockers were available in the covered area, where people would remain stationary for brief

period of time.

Sensor installation height was also 2.80m. Fig. 6.8 illustrates the sensor placement, and

space characteristics. The foyer was recorded between December 2015, and January 2016. At peak hour, an
estimated average of 80 users used the foyer.
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Figure 6.8: Floor maps of the foyer scenario illustrating sensor placement and corresponding sensor

matrix M representation.

Evaluation metrics

To evaluate the mining performance of our approach, we measured the accuracy of the sensor arrangement
with respect to the reference shown in Figures 6.6, 6.7a, 6.7b and 6.8. Accuracy was calculated as follows:
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Given the inferred sensor matrix M with the reference matrix Mg, let M, and MiGT be the set of columns
or rows from M and Mgt respectively. Partial accuracy pa; is computed for the columns and rows sets
independently as shown in Eq. 6.18. Total accuracy is given by (pa. + pa,)/2.

. 1
pa; = max (| ind ) — (6.18)
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We performed a parametric search on the observation window ow = (30s, 15s, 10s, 58, 2.5s) and the
minimum object life time It = (0s, 0.5, 1s,2s). For each choice of parameters we tested different combinations
of the filters defined in Section 6.4. In all test the Basic combination was used which consists of the gap time,
life time, gap time inconsistency, relabel parallel and orthogonal transitions, and directional filters. Additional
combinations were tested in conjunction with the basic combination. The filter combinations where chosen
as follows: Chain of 8 uses the chain of three filter with ow gap time. Chain of 3 - 0 uses the chain of three
filter with ow = 0. Special case where the time stamps of the common sensor j are equal. Chain of 4 uses
the chain of four filter with ow as gap time. Combined uses the first transition and stationary filters. Full
Chain of 3 uses the stationary objects and chain of three filters with ow as gap time. Full Chain of 4 uses
the stationary objects and chain of four filters with ow as gap time. Full Chain. 3 - 0 uses the stationary
objects and chain of three, with ow = 0. Stationary uses the stationary objects filter. 1t Transition uses the
first transition filter. In the case of the full chain combinations, the first transition was not used, as it would
considerably diminish the possibility of the chain filters to find matching transition events.

Additionally, we analysed the sorting performance when the link rules from several days were combined.
We used a sliding window of size ws days to collect and combine link rules. We used values for ws in the
range 1-16 days.

Finally, we tested the rotation detection and correction performance by randomly selecting a sensor s and
a rotation § € {£90°, 180°}, then all tracks of sensor s used in transition events were modified by updating r.
and r, with §. Then we measured if the sensor were set back to the original state. Due to the large amount
of possible sensor rotation combinations between all sensors, we opted for only simulating rotations of up to
five sensors simultaneously.

6.6 Results

We made a sweep of the filter parameters and combinations used to extract the transition events and measure
the average daily accuracy. The best minimum life time [t was Os for all scenarios. For the observation
window ow, a value of 30s was the best for the T-crossing and the foyer, 10s for the meeting room and 5s
for the corridor. The filter type with best performance was the 1%t. Transition for the corridor and meeting
room, where as for the foyer and T-crossing scenarios, the Chain of 3 - 0 was the best filter configuration.
Table 6.1 shows the maximum and average daily performances for all filter combinations. The T-crossing
is the most dynamic of the scenarios and it benefits from having the users generally traversing the entire
scenario. In contrast, the corridor suffers from the spurious correlation of users entering and exiting the
rooms on ether side. Specially at lunch times where users leave the rooms at the same time other users are
traversing the corridor. Therefore, a small ow focuses on tracks created by people actively moving through
the corridor. The meeting room is a stationary scenario, users are sitting around the table most of the time,
and the only usable tracks are made when getting to the chairs or when leaving. Therefore, a smaller ow is
needed to differentiate dynamic from stationary tracks. However, in comparison to the corridor scenario, the
larger ow points to slower tracks, which are expected as users crossing the corridor are much faster than when
approaching to a table. In the meeting room scenario the = 65% accuracy is explained by the lack of use
of the scenario, and the false transition events created by spurious user movements while sitting. The foyer
scenario had predominantly a dynamic behaviour which is reflected in the larger ow. However, users followed
preferred paths to move in and out of the rooms, thus the number of generated tracks over all sensors was not
equally distributed. Additionally, the sitting area presented the same restriction as the meeting room. The
performance is not related to the number of sensors in the scenario, rather to the space geometry and sensor
distribution.

We studied the performance of the system when using sliding windows to aggregate the rules of multiple
days, and found that performance improves and stabilizes with a window size of 5-6 days for all filter config-
urations. All scenarios showed and additional increase in performance after 10-12 days. The use frequency
explains the performance stabilisation, e.g., five days corresponds to the work week, where most transition
events can be found. The meeting room was less frequently used, thus showing a rather linear performance
trend. Fig. 6.9 illustrates accuracy convergence for all scenarios.
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Corridor Foyer Meeting room T-crossing

max mean max mean max mean max mean

1°%, Transition 1.00 0.679 0.648 0.529 1.0 0.659 1.0 0.910
Basic 1.00 0.665 0.705 0.536 1.0 0.635 1.0 0.936
Chain of 3 1.00 0.674 0.705 0.536 1.0 0.642 1.0 0.936
Chainof 3-0 1.00 0.674 0.705 0.536 1.0 0.642 1.0 0.936
Chain of 4 1.00 0.672 0.634 0.529 1.0 0.638 1.0 0.935
Combined 1.00 0.671 0.672 0.475 1.0 0.642 1.0 0.903
F.C.of 3 0.93 0.656 0.648 0.528 1.0 0.638 1.0 0.927
F.C.of3-0 0.93 0.656 0.648 0.528 1.0 0.638 1.0 0.927
F.C. of 4 1.00 0.662 0.656 0.530 1.0 0.632 1.0 0.935
Stationary 0.90 0.646 0.648 0.528 1.0 0.641 1.0 0.935

Table 6.1: Accuracy results for the different filter combinations. F.C. denotes full chain combinations.
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Figure 6.9: Average performance of the different filter configurations as a function of the window size.
The performance increases rapidly with window size ws, but then stabilizes at window sizes of 5-6 days.
Use patterns explains the stabilisation periods, e.g., five days corresponds to the work week, where most
transition events can be found. The meeting room was less frequently used, thus showing a rather linear
performance trend.

Although, maximum daily performance for most scenarios was already achieved with daily evaluations,
i.e., ws = 1, for the foyer scenario, the maximum accuracy reached in any given day was 0.78 with ws = 12,
ow = 2.5, It = 2.0 and the combined filter configuration. A small ow and a large minimum I¢, benefit slow
moving targets, the combined filter configuration will focus on people entering/exiting the sitting area, as
well as in the correct transitions. The large ws implies that the parameters, in combination with the filter,
require time to gather the enough correct link rules. Unfortunately, when comparing with the best average
performance in Fig. 6.9d, it is clear that the conditions for reaching the best order are not commonly occurring
in the normal use of the space.

Fig. 6.10 shows the daily performance of the best parameters and filter configuration for each scenario.
Corridor and T-crossing scenarios evidence the importance of activity in the area, the low peaks in performance
of the one-day sliding window clearly match with weekend periods. In the meeting room and the foyer, the
one-day sliding window is usually insufficient to reconstruct the order, whereas an increase in ws substantially
improves performance as more rules can be aggregated together. However, the performance of the 16 day
window was occasionally surpassed by smaller size windows.

We tested the ability of the rotation detection and correction to fix sensors that were rotated using only
the basic filter configuration. In all scenarios the sensor rotations were correctly identified most of the time.
On average, the meeting room was able to correctly identify rotations in a 71% of the cases, while the rest of
the scenarios yielded a daily average of 94%. The low performance of the meeting room was due to the large
number of false transition events created by the spurious user movements while sitting.
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Figure 6.10: Daily performance of the stationary filter configuration using sliding windows of different
sizes and the best parameters ow and [t for overall average performance. The weekends have reduced
activity, thus the one-day sliding window shows performance drops. As the sliding window size increases,
performance is maintained over the weekends.

6.7 Conclusion and further work

We developed and evaluated a mining method to infer relative positions and orientations of spatial sensors
within a network. We tested our approach using thermopile arrays which are a typical example of a spatial
sensor. The sensor arrangement was inferred based on people movement patterns only, thus involving no
supervised information. Evaluations in four different real-life scenarios were performed across recording du-
ration of 23 to 54 days, to derive insight on realistic performance and identify open challenges. Overall, the
evaluation results show that our mining method works excellent in scenarios where the sensors are restricted to
linear shapes, i.e., any hallway, meeting room and corridors. Here, we successfully retrieved the correct order
at least once. Relative position of open spaces like the foyer are harder to identify due to the combination of
sedentary and moving areas. More observation days improves robustness against missing sensors due to lack
of area use, e.g, the 16 day window size yielded constant performance even over weekends when less people
were present. To reduce the performance variance when using different window sizes further refinements of the
aggregation method and link rule ordering could be made. In the current state, we envision that our approach
can be used during building commissioning and maintenance. Our mining method could be used to detect
broken sensors, reorganise BMS information after device replacement, or after building space rearrangements.
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Chapter 7

Bayesian Rule Extraction

7.1 Introduction

Mining time-series association rules is an interesting field of study with multiple applications. For example,
rule-mining has been used to find the automatic arrangement of spatial sensors in corridors, meeting rooms
and foyers [66]. In activities of daily living, rule-mining is used, as part of a framework, to extract complex
activities such as house cleaning, which is composed of other activities such as washing dishes and mopping
the floors [60]. In the emerging field of smart building maintenance, rule mining is used to find commissioning
errors, automatic integration of Internet of Things (IoT) devices into the Building Management System (BMS)
and update of sensors’ locations [62, 63].

A time-series is the evidence of a process evolution in time. Rule mining is one of the many strategies
which uses the time-series to model the underlying generating process. Specifically, rule mining extracts
the temporal relationships of symbols in the time series. In a deterministic process, rules reflect the cause
and effect relationship between the inputs and outputs of the model, e.g., when the switch is pressed then
light turns on. In stochastic models, a rule reflects the likelihood of a process, e.g., when the office door is
opened, the most likely event to occur next is desk presence. Real life time-series rule mining is faced by the
challenge of extracting the relationship between symbols when the time-series is generated by the combination
of multiple stochastic and deterministic processes. An example of a real-life application is people moving inside
a building and the corresponding BMS responses. As variables are measured and converted into symbols, both
the stochastic processes and the control systems will generate sequences of symbols which are related. For
example, a building occupant enters the main door, and walks along the corridor to get to his/her office, as the
occupant enters the corridor, the ceiling lights activate to maintain illumination. Additionally, several other
occupants will follow similar paths and generate corresponding building responses. In the BMS time-series,
patterns emerge where events of the main door are followed by corridor sensors and actuators and finally
the office of each individual occupant. However, the entrance pattern is interlaced with the other patterns
caused by users moving about in the building, e.g., users going from one office to another. Current data
mining approaches use minimum support or minimum confidence as thresholds to find the rules and reduce
the search space. However, thresholds on support and confidence are calculated by parametric searches and
they become application specific. Furthermore, there is no intuitive way of knowing what is an adequate value
for the thresholds nor can they be computed analytically. Additionally, support-based methods suffer from
false associations. A rule which associates a rare and a frequent symbol will take precedence over a rule which
associates two rare symbols. Similarly, high frequency symbols generate enough support and confidence of
random symbol associations, which can bypass the thresholds.

Our proposed solution assumes that the time-series’ generating deterministic and stochastic processes can
be broken down into a set of atomic rules, premise — conclusion, which form the constituents of the model,
e.g., nodes and edges in a graphical model. Given the strenuous work required to clean up rules and find
appropriate thresholds, we break the problem in two parts: (1) extract atomic rules from the time-series,
(2) assemble the extracted rules into complex models with predictive capabilities. This chapter focuses on
the first step: extraction of atomic rules. In this work, we present the Bayesian Rule Extractor (BRE),
where we use the idea of increasing belief as criteria for rule selection. Formally, we use Bayesian inference to
determine the likelihood of a rule. If the posterior is less than the prior, the rule is discarded. BRE focuses
on the premise, which is the first symbol of the observation window ow, i.e., BRE determines what events
are generated due to the premise. Then, BRE creates candidate associations with all remaining symbols in
ow. BRE traverses the time-series only once, and has only one parameter: observation window size |ow].

63
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We propose three filters, which also work on probability measures alone and do not require parameters nor
thresholds. BRE and the proposed filters present the following features:

1. Bayesian Rule Extractor (BRE) and its filters do not use thresholds on support or confidence.
2. Rules between rare symbols are always extracted.
3. High frequency noise rules are removed, as well as false rules composed of a rare and a frequent symbol.

We present the evaluation of the algorithm in a synthetic dataset as a well as two real-life datasets: a
routine and activity diary and a smart building’s living-lab recording. We present properties of the algorithm
and give comments regarding how to select the observation window size |ow].

7.2 Related work

Hipp et al. [41] describe the general formulation of the rule mining problem as follows: let V = s1,...,s, be
the vocabulary of distinct symbols. A rule A — B is constructed of item sets such that A C V and B C V.
To determine that A and B are related, a partition of the dataset 7" must include A and B. When AUB C T
is said that T supports the rule A — B. In general, support is defined as the number of partitions 7" which
support the rule with respect to the size of database partitions. For example, a shopping receipt is a partition
of the database of sold items, after analysing multiple receipts a rule can be extracted where if milk, sugar,
flour and eggs are bought, then candles and paper plates are also on the receipt. Bayesian Rule Extractor
(BRE) is designed for time series analysis, where the partition T is created by the observation window ow and
the item set can only contain one symbol, i.e, |A| = |B| = 1. BRE follows an atomic rule approach, where
instead of looking for the largest possible subsets of T, it looks for the most common association between
individual symbols, e.g., s1,— s2. The atomic rule approach reduces the complexity of the search space from
growing exponentially with |V, i.e., V|Vl to |V|?. More complex associations, i.e., rules of the form A — B
can be constructed in post-processing, but the effectiveness and complexity of posterior methods is application
dependent.

Rule mining algorithms focus on how to find frequent rules based on two thresholds: minimum support
and confidence, as stated by Hipp et al. [41]. The difference between algorithms is the way the dataset is
traversed to find the rules. For example, Muyeba et al. [80] proposed a method, based on fuzzy sets and
weighted support, to ensure that rules with low support and high confidence are not discarded. Recent work
such as Chen et al. [12], Guillame-Bert and Crowley [35], and Liu et al. [60], also used thresholds on support
and confidence to determine which rules to keep. Najafabadi et al. [81] combines collaborative filtering,
associative rule mining and clustering to improve the performance of a music recommender system. However,
the rule mining module is still based on the principle of minimum support. Shokoohi-Yekta et al. [104]
proposed a framework which combined motif search techniques with rule mining. Instead of using a threshold
on support, Shokoohi-Yekta et al. [104] used a threshold on the probability of finding better rules. BRE is
the first algorithm for rule mining without any threshold on the rule’s support, confidence or the probability
of finding a better rule. Instead, BRE uses the idea of update belief in the rule after each observation to
determine which rules to keep. Additionally, We propose three threshold-free filters to control which types of
rules to select.

One of the most advanced time series rule mining algorithms is the Temporal Interval Tree Association
Rule Learner (Titarl), which was introduced by Guillame-Bert and Crowley [35]. The goal of the algorithm
is to produce complex rules involving multiple symbols and with a precise tree of temporal associations. In
general, for each rule, Titarl adds conditions to increase the rule complexity, separates rules and refines the
timing histograms to better predict the conclusion of the rule. Titarl has two drawbacks: first, it requires
different thresholds and conditions to perform correctly and to know when to stop; second, the price to pay
for the added rule complexity, makes Titarl unsuitable for large datasets. In comparison, BRE is a lightweight
rule extraction algorithm which uses no thresholds. The only parameter is the observation window size |ow|,
which can be estimated with some basic knowledge of the application. However, the direct output of the
algorithm is atomic rules, which require further processing.

A common problem of rule mining algorithm which rely in the minimum support threshold is the problem
of rarity as defined by Weiss [110]. Since BRE does not use the minimum support threshold, rare rules can
be captured without suffering the combinatorial explosion.

The Bayes theorem is commonly used in machine learning algorithms. The classic example is the Naive
Bayes classifier used to filter spam e-mail. However, Bayesian theory, in general, has been applied to graph-
ical and other classification models to overcome the naive assumption of conditional independence between
features [8]. When applied to classification, Bayesian models use posterior maximization to assign a class to
the sample. In contrast, BRE tracks the rule a — b belief as the posterior probability of finding a symbol b
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given that symbol a was observed. BRE recursively updates the posterior probability after each rule observa-
tion, using as prior the posterior of previous rule observations. BRE’s rule selection criteria is the monotonic
increase of the belief.

7.3 Algorithm

Bayesian Rule Extractor (BRE) algorithm mines atomic rules of the form a — b, which represent the relation-
ship between symbols a and b, where, if the premise a is observed, then, the conclusion b will also be found
within an expected time interval, i.e., within an observation window ow. BRE is a data driven approach and
assumes that the observed data is a representative sample of the underlying processes. Therefore, BRE uses
frequency statistics to calculate probabilities. BRE uses confidence and belief to extract pair-wise relationships
between symbols from the time-series. Confidence is calculated using the probability of the rule P(a — b),
which is equivalent to the conditional probability P(bla). Eq. 7.1 shows how, using the Bayes theorem, the
rule’s confidence can be simplified to the number of times the rule a — b has been observed, over the number
of premises a observations. Furthermore, P(a|b) is the number of times that a — b is observer over the total
number of conclusion b observations, P(a) and P(b) are the respective number of symbol observations relative
to the total amount of observed symbols s;.

P(a) = #a/s
P(b) = #b/s
P(alp) = w (7.1)
Plalb) - P(b) _ #(a—b)
P(a) #a

The belief in a rule a — b is a recursive process. When the rule is first observed, the rule’s confidence
P(bla) is the initial belief B(b|a);. As rules are observed, the rule’s belief B(b|a); is updated using the Bayes
theorem, where the prior probability p is the rule’s belief in the previous observation B(b|a)z—1 as shown in
Eq. 7.2.

P(a — b) = P(bla) =

P(alb) - p

(ap) -p+ (1 —p)- (1 - P(alb))

We considered two types of time-series for BRE’s design: ed-sampled and sampled. When symbols appear
at equidistant time intervals, the series is called an ed-sampled time-series, and the relative position of the
symbols in the array measures the rule’s timing. As shown in the ed-sampled time-series example of Eq. 7.3,
the timing between symbols a and d is one, and between a and g is three. The time unit depends on the
sample frequency of the equidistant samples. On the other hand, in a sampled time-series symbols appear
at arbitrary times, and the difference between the symbols’ time-stamps measures the rule’s timing. In the
sampled time-series example of Eq. 7.3, the time between symbols a and d is t5 — ¢;.

B(bla)k = - (7.2)

time-serires examples
ed —sampled = [...,a,d, f,9,d,...] (7.3)
sampled = [...,¢1 : a,ta : d,t3: g,...]

We designed BRE with only one parameter: the observation window size |ow|, which defines the maximum
wait time for the conclusion b to appear, i.e., defines the maximum rule timing. With |ow| set, BRE traverses
the time-series one sample at the time. Starting with the oldest symbol, BRE uses the following five steps to
mine rules: (1) retrieve observation window ow, (2) create candidate rules cr, (3) update related rules, (4) time
candidate rules cr, (5) apply belief criteria. Additionally, filters can be applied to improve the algorithm’s
output. Given a symbol a at time t, BRE retrieves the observation window ow by selecting symbols from the
time series which fulfil Eq. 7.4, where ¢, is the time stamp of the conclusion symbol b, and |ow]| is the size of
the observation window ow. For ed-sampled time-series, |ow| represents the number of symbols to consider
including symbol a.

ty < t+ |ow| (7.4)

Once the observation window ow is retrieved, candidate rules (cr) are constructed by using the first symbol
from the ow as the premise and all other symbols in ow as conclusions in the form: premise — conclusion.
If a symbol appears multiple times in ow, only the first appearance of the symbol is considered. When the
premise has been seen already, related rules are updated. A related rule contains the same premise as the
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candidate rules cr but is not in the candidate rules cr. The belief in a related rule is updated by using the
rule’s confidence as the prior, effectively resetting the belief in the related rule. The rational for the update
follows the idea that the belief in a rule has to change when the premise is observed but the rule is not present
in ¢r. Additionally, the update is necessary to deal with the absolute belief property (see Prop. 1), which
states that if the belief on a rule is one, the belief will always be one. Thus, if a related rule has a belief of
one, it will be updated to match the fact that the premise appeared and not the conclusion, so the belief in
the rule should not be one.

The next step in the algorithm is to time all rules in c¢r. Rule timing is defined as the symbol distance
between the conclusion and the premise; in ed-sampled time-series the timing is simplified to the difference in
symbol’s positions in ow, while for sampled time-series, rule timing is the difference between the conclusion
and the premise’s time-stamps. Eq. 7.5 shows an ed-sampled time-series example of an observation window
ow of |ow| = 5. In addition, Eq. 7.5 shows the candidate rules c¢r with their respective timing. For every rule
in cr, a histogram is created of the sampled times. In ed-sampled time-series, the histogram is made using
|ow| as the number of bins, and the bin size equals to one. For sampled time series, automatic histogram
creation is used. We introduced a new method for dynamically computing histograms (see Section 7.3). Our
method ensures bin resolution in areas where the samples are clustered together. The proposed method is
used to improve the approximation of the rule timing’s expected value.

ow = [a, b, c,d, b

er=[a—=b:1),(a—c:2),(a—d:3) (7.5)

When symbols have no self dependence, e.g. a — a does not exist in the generating process, BRE can
use an alternative timing mode, which creates individual observation window sizes |ow*| for each symbol in
the time-series. In the alternative timing mode, when the premise of ow appears also as a conclusion, e.g.,
a — a, then the timing between the symbols becomes the new |ow| for the premise. Eq. 7.6 shows an example
of the change in observation window size from ow to ow* for premise a. Every time |ow*| changes, all rules
related to the premise are updated as follows: each related rule instance with timing greater than the new
|ow| are removed; then, the timing histogram is recreated; finally, if the rule is left without samples, the
rule is discarded. BRE’s alternative timing mode was created to maintain performance in situations where
an arbitrary large |ow| was set. For example in the building environment, when the heating, ventilation,
and lighting variables are overlapped in the Building Management System (BMS)’ time-series, BRE needs a
sufficiently large |ow| to capture the heating and ventilation relationships, whereas the lighting associations
will benefit from a shorter |ow].

Ow :[a,b7c7d7e’f7g’a/,v7b7t7p]
ow* =[a,b,c,d,e, f,g]

The next step in the algorithm is to apply the belief criteria. For every rule in cr, the confidence and the
belief are computed. Using k as the number of observed symbols up to and including the premise, the rule’s
confidence is calculated using k + 1 as the total number of observed symbols s;. As a result, the position of
the rule’s conclusion in ow does not affect the computation of probabilities, which makes BRE robust against
symbol insertions between the premise and the conclusion. BRE uses the following criteria to consider a rule
as true: the belief of the rule should not decrease over time. Rules which do not fulfil the criteria are discarded.
If a rule reappears in the time-series after being previously discarded, the belief of the rule is computed using
the current rule’s confidence as a prior, which increases the likelihood that the rule will be kept. Finally, after
the observation window ow is processed, a new ow is selected by shifting the premise of the window by one
symbol. BRE’s general procedure is shown in Alg. 2
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Algorithm 2: Bayesian rule extraction algorithm.

Input: Time-series (ts), |ow], set of filters
Result: Set of atomic rules.
for premise a in ts do
ow = ts [a.index : a.index + |ow]];
cr = candidate_rules (ow);
update_related_rules(a, cr);
time_rules (ow, cr);
for rule r in cr do
if r in atomic_rules then
| prior = atomic_rules [r |.belief
else
if r in history then
| prior = confidence (r)
else

b = r.conclusion;

prior = P(b); /* Probability of the conclusion b */
end

end

if belief (r, prior) > prior then

| atomic_rules [r | = [confidence (r), belief (r, prior), disjunction (r)]
else

| atomic_rules.remove(r)

end

history.append({r:[confidence (r), belief (r, prior), disjunction (r)]})
end

end

for rule r in atomic_rules do

/* Remove r from atomic_rules if r does not pass all the filters. x/
if not all (map (r, filters)) then

| atomic_rules.remove(r)

end

end

Once the entire time-series has been processed, filters are applied to further remove rules. We propose three
filters: disjunction, belief , and rule timing filters. The disjunctive filter tests if the disjunction probability is
less or equal than the confidence of the rule and the uniform symbol distribution. The filter’s passing criteria
is defined in Eq. 7.7, where |V is the size of the vocabulary, i.e., all distinct symbols in the time-series. By
design, the disjunctive filter targets rules which associate common and rare symbols, since a rare premise
should have a rare consequence.

(P(aUb) <= P(bla)) A(P(aUb) <= %) (7.7)

The belief filter rejects any rule where the rule’s confidence is greater than the belief in the rule. The

passing criteria is shown in Eq. 7.8. A typical case of a rule that has a lower belief than confidence is a rule

that has as conclusion a symbol b which has been observed at least twice as many times as the rule. In this

case, the confidence will be larger than the belief because the conditional probability P(a|b) is already below

0.5 (see Prop. 3). Typically, additional observations of the rule will remove it. However, if there is no more
data, the rule remains as a candidate and is removed by the belief filter.

B(bla) >= P(bla) (7.8)

The timing filter tests that the probability of the rule and its timing’s expected value is greater than the
uniformly distributed timing. Eq. 7.9 shows the filter’s passing criteria, where p; is the expected value of rule
r’s timing, h is the bin size for sampled time-series and |ow| is the size of the observation window ow. Since
the rule appearing and the timing of the rule are independent, P(u; N ;) can be computed as the product of
the probabilities as shown in Eq. 7.9. The timing filter targets rules which are the association of independent
symbols. The timing of a rule is expected follow a modal distribution, e.g., normal, whereas independent
symbols will create rules with uniformly distributed timing.
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Figure 7.1: Time-series example of three working days, Monday (M) through Wednesday (W). (a) Il-
lustration of how a ceiling lamp, which reacts to presence and outdoor light, generates a multimodal
timing relationship between presence (P) and ceiling light (C) events. (b) Illustration of the resulting
multimodal histogram for the situations illustrated in (a) after several observations.

P(rnp) > P(U(u))

1
ﬁ ed-sampled
ow

(7.9)
P(pe) P(pe) >

—— sampled
|ow|
BRE’s works on the principle of increasing belief in a rule. Therefore, we analyse BRE under three
conditions: (1) when a rule is rejected on the first observation, (2) when belief in a rule decreases, and
(3) when belief in a rule saturates. The analysis’ results are the following three properties: Property 1,
absolute belief, states that when a rule has a belief of one, the belief will never change. Property 2, rejection
boundary, defines that unless a rule has absolute belief because both the premise and the conclusion have not
been seen before, the rule will not be accepted in the first observation. Finally, Property 3, diminishing belief,
states that if the conditional probability P(a|b) < 0.5, the rule’s belief will always diminish. The formalization
and proof of BRE’s properties are found in the appendix.

Dynamic histogram creation

BRE’s timing filter uses the probability of the expected value of the timing distribution to differentiate
random symbol associations from rules. Therefore, BRE requires a good estimation of the expected value and
its associated probability. However, in sampled time-series, symbols appear at arbitrary times. In general,
given a rule a — b, considered correct, the rule timing distribution is typically normal distributed around
a value i, i.e., N(u,0?). However, depending on the underlying event generation process, the distribution
could also be multimodal or become skewed. For example, suppose a scenario where a ceiling lamp responds to
presence and outdoor light. Thus, the timing between ceiling lamp and presence events will have a multimodal
distribution. Fig. 7.1 illustrates three cases which can cause the scenario’s multimodal distribution and the
resulting histogram after multiple observations. In Fig. 7.1(a) an |ow| of 45 minutes is used to illustrate
the presence and ceiling lamp activations of three days of the week. Monday’s (M) time-series illustrates
how the first mode of the distribution is created: after dawn, the ceiling lamp responds immediately, e.g.,
pe < 1s. Tuesday’s (T) time series illustrates the case for the second modality: when a presence event occurs
before dawn, and the ceiling lights react once the outdoor light is gone. Finally, Wednesday’s (W) time-series
illustrates a condition which reinforces both modes. The activation of the ceiling lamp happened within the
45 minute ow of the first presence event, thus, two rules are created, one for each presence event using the
same ceiling lamp event as a conclusion.

The challenge of dynamically constructing a histogram is to determine an appropriate number of bins or
a bin size. For normal distributions, there are two commonly used methods to estimate the number of bins
for a histogram: Freedman—Diaconis’ choice [32] and Sturges’ formula [105]. However, neither method works
well for multimodal distributions. Therefore, our proposed empirical methodology dynamically calculates the
bin number and size and extends to multimodal and skewed distributions.
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We expect that most of atomic rules will have a normally distributed timing. Therefore, we set the
minimum number bins to 18, which is the result of adding one to the average between applying Sturges and
the Freedman—Diaconis rules to a normal distribution with 1000 samples. The Freedman—Diaconis rule was
approximated as shown in Eq. 7.10, where R is the data’s range, IQR is the interquartile range, o is the
standard deviation, & is the bin size, and ny is the number of bins in the histogram.

IQR _1.3490

R| _|6o 3.nl/3

"t = [hw ~ {h] = 1349

The next step in our method is to maintain the number of bins in the regions where samples cluster. The
histogram is created progressively, and the bins are evenly distributed between the maximum and minimum
of the samples. When a new sample falls outside the current range, two actions can be taken: (1) if the
new sample is less than a bin width away from the closest range edge, use the sample as new boundary and
redistribute all bins evenly between boundaries; otherwise, (2) increase the bin number until the new sample
is covered. By increasing the number of bins, our method is robust to outliers and maintains a high number
of bins in the regions where samples cluster. As a result, the error of the expected value is reduced. Fig. 7.2

illustrates the benefits of our proposed methodology when compared to Sturges and Freedman—Diaconis. The
data distribution in Fig. 7.2 is the same as in the multimodal example in Fig. 7.1(b).
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Figure 7.2: Resulting histograms by applying Freedman-Diaconis (F-D), Sturges, and Bayesian Rule
Extractor (BRE)’s histogram creation method. Data distribution is the same as in Fig. 7.1(b). BRE’s
method for binning copes with multimodal distributions and produces an expected value which is closer
to the real one.

7.4 Evaluation Methodology

The Bayesian Rule Extractor (BRE) algorithm is evaluated in three different scenarios: (1) a synthetic time-
series, (2) a building’s Building Management System (BMS) data stream, and (3) rehabilitation users’ routine
diary. The synthetic time-series is designed to measure and verify the rule extraction capabilities under
controlled circumstances and quantify the limitations of the algorithm.

For the BMS data stream, we used the GREENERBUIDLINGS ’s dataset introduced by Lopera et al. [62,
63]. The dataset is a real world example of building management system data. We test 14 months of data,
where variables are added and control rules are constantly updated. The goal of the test is to evaluate BRE’s
performance on a real world, causal system, with multiple underlying generator processes.

The final test uses a diary collected in a rehabilitation study conducted by Seiter et al. [102, 103]. The
diary has two time-series: one has labels for activities of daily living, e.g., making coffee or talking, and
the second time-series has labels of user’s routines, e.g., socialising. Routine labels group together activities,
e.g., the socialising routine groups making coffee and talking activities. In the second test, we mine the
activity time-series and extract rules which are mapped into routines. The test uses a continuous time-series
and provides a scenario where the order of the symbols is not always maintained, e.g., for a given routine,
activities a and b appear as a — b or b — a. Furthermore, the symbols are shared across routines.
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Synthetic Time-series Evaluation

A synthetic-time series provides a controlled situation where the algorithm’s strengths and limitations can
be evaluated. Therefore, we analysed BRE’s behaviour when extracting one rule from a noise background.
For simplicity, we use a numeric vocabulary and the rule is constructed by a rule generator process using
symbols 10 and 11, e.g., 10 — 11. To emulate real data conditions, each rule was created with timing sampled
from a uniform distribution in the range [1,...,6]. Background noise is generated by the random-generator
process by uniformly sampling the following vocabulary: V,, = 0,1,2,3. There are two parameters used to
generate the synthetic time-series: number of samples ng, and rule instances n,. The synthetic time-series is
constructed by combining the rule and random generator processes in four steps: (1) for every rule instance
n, randomly choose a timing between one and six (t;,q.) samples, and fill the gap with symbols from the
random generator. (2) Randomly select positions p, for the rules, such that p, < ng, also ensuring that rule
instances do not overlap. (3) Build the time series by filling spaces between rules with symbols from the
random process generator. (4) Finally, pad the beginning and the end of the synthetic time-ser