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Introduction 1

1 Introduction

In this thesis we examine m-times Peano-differentiable functions which are
definable in M, an o-minimal expansion of the real closed field R, and com-
pare the results of classical Analysis for these functions with those in o-
minimal context.
Let f : U → R be a function where U ⊂ Rn is an open subset. We call f at
x0 m-times Peano-differentiable if there exists a polynomial p ∈ R[X1, ..., Xn]
of degree less than or equal to m with p(0) = 0 such that

lim
x→x0

f(x)− f(x0)− p(x− x0)

‖x− x0‖m
= 0.

In 1891, Giuseppe Peano introduced this concept of higher order differentia-
bility for functions of one real variable. Already the title of this work, “Sulla
formula di Taylor”, shows that Peano worked on functions which admit an
approximation with a Taylor-polynomial. But it was Peano himself who first
noted that in general these functions are not continuously differentiable.
Until about 1965, only few results about Peano-differentiable functions were
published. Exceptions are a paper of Denjoy in 1935 and one of Oliver in
1954. Oliver’s work is an improvement of Denjoy’s paper.
Since then an ever increasing number of papers were written, and we recog-
nise three main interests of research. One is continuity properties of Peano-
derivatives, another is extendibility problems of Peano-differentiable func-
tions defined on closed sets, and the third is generalisations of this differen-
tiability concept.

In this work we do not take generalisations into consideration but we
concentrate on the other two research directions, restricting ourselves to de-
finable functions in o-minimal structures. Additionally, we identify 1-times
Peano-differentiable functions as the differentiable functions in the usual
sense. We will have a special look on these functions which we call ordi-
nary differentiable from now on.

In chapter 5 we begin by giving a couple of examples of definable ordi-
nary differentiable functions of two variables. Besides the cognition that in
o-minimal context ordinary differentiable functions are not necessarily con-
tinuously differentiable, we get a first impression of the functions which arise
as derivatives. It can happen that the derivative is not locally bounded. But
even if the derivative is locally bounded we do not obtain continuity of it.
Setting additional conditions on the derivative, such as semidefiniteness of
the partial derivatives, do not imply their continuity.
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Above all we present an example which shows that the Implicit-Function-
Theorem is generally not valid for this class of functions.

In contrast to classical Analysis there is no difference between ordinary
and continuous differentiability for definable functions of one variable. This
fact enables us to analyse differentiability properties of definable ordinary
differentiable functions composed with curves. First we can characterise de-
finable ordinary differentiable functions by means of definable continuously
differentiable curves and the chain-rule.

But especially the case when the curves are non-definable is of partic-
ular interest. For definable ordinary differentiable functions f : Rn → R
we consider the following property: For all continuously differentiable curves
ϕ : (−1, 1) → Rn let f ◦ ϕ be continuously differentiable.
It is a priori not clear that this is a tame property. But we can give a sim-
ple description of these functions: They are locally Lipschitz-continuous and
definable ordinary differentiable.
However, we want to check whether f is continuously differentiable or not
by studying the differentiability class of f composed with curves. The class
of continuously differentiable curves is not big enough to detect all points at
which a derivative is not continuous. But ordinary differentiable curves with
bounded derivative are a suitable class of curves.

In chapter 6 we generalise to higher order Peano-differentiability. Be-
fore we prove that these functions are closed under addition, multiplica-
tion and composition, we present a family of semialgebraic m-times Peano-
differentiable functions.
When we look at this family of functions we can make the following special
observation. There are functions of this family where the (m − 1)th Peano-
derivatives are ordinary differentiable, but there is no function of which the
(m− 1)th Peano-derivatives are not ordinary differentiable if the mth Peano-
derivatives are locally bounded. We go into detail with this phenomena in
chapter 7.
Moreover, this family provides us with several kinds of singularities which
stimulate our interest in examining them. These are points at which the func-
tion is not m-times continuously differentiable but possibly of some weaker
differentiability class. We will analyse the sets of such points in chapter 8.

In chapter 7 we consider differentiability properties of Peano-differentiable
functions respectively conditions which imply differentiability of certain Pe-
ano-derivatives. This has already been studied for real functions of one vari-
able.
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Theorem (Oliver) Let I be an interval in R and f : I → R be an m-
times Peano-differentiable function. If, for x0 ∈ I, the mth Peano-derivative
is locally bounded from above or below at x0, the (m− 1)th Peano-derivative
is ordinary differentiable at x0.

In o-minimal context we do not need the assumption of boundedness. The
first result of this chapter states that definable m-times Peano-differentiable
functions are always m-times continuously differentiable.
According to the examples of chapter 6, we know that this does not hold
true for definable functions of several variables. However, we give, inspired
by Oliver’s theorem, a sufficient condition for definable m-times Peano-
differentiable functions which implies that the (m − 1)th Peano-derivatives
are ordinary differentiable.

Theorem 7.3 Let U ⊂ Rn be a definable open subset and f : U → R a de-
finable m-times Peano-differentiable function. Let the mth Peano-derivatives
all be bounded from above or all be bounded from below. Then the (m− 1)th

Peano-derivatives are ordinary differentiable at each x0 ∈ U .

This is also the main result of this chapter.

In chapter 8 we begin with the analysis of the sets of points at which a
definable m-times Peano-differentiable function is not m-times continuously
differentiable. For continuity properties of Peano-derivatives we find in [25]
the following statements.

Theorem (Fejzić, Rinne) Let f : Rn → R be an m-times Peano-diffe-
rentiable function. Then all Peano-derivatives up to order m are of class
Baire-1,
and

Theorem (Fejzić, Rinne) Let f : Rn → R be an m-times Peano-differen-
tiable function. Then all Peano-derivatives up to order m− 1 are continuous
on some dense open subset of Rn.

This paper is of course not the only one on that issue, but it includes many
former results about continuity properties of Peano-derivatives.
In o-minimal context we are in a more comfortable situation since definable
functions are m-times continuously differentiable outside a definable set of
lower dimension; so the second of the theorems by Fejzić and Rinne is trivial
in o-minimal context. We are further able to formulate more precise state-
ments about continuity of Peano-derivatives.
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We call a point at which a function is not m-times continuously differentiable
a Cm-singularity and denote by singm(f) the set of Cm-singularities of f . For
definable m-times Peano-differentiable functions, the following bound for the
dimension of the Cm-singularity set applies. This is the main result of this
chapter.

Theorem 8.5 Let U ⊂ Rn be open and let f : U → R be a definable
m-times Peano-differentiable function. Then

dim(singm(f)) ≤ n− 2.

Also the converse of this theorem holds true, i.e. for each definable sub-
set A ⊂ Rn with dim(A) ≤ n − 2, there is a definable m-times Peano-
differentiable function F : Rn → R with A = singm(f).
Furthermore, we can distinguish between several kinds of Cm-singularities,
i.e. points at which a function is k-times ordinary differentiable with some
additional properties. We can characterise the sets of points of a definable
m-times Peano-differentiable function which belong to such a subclass of
Cm-singularities; moreover, we discuss the relationship between the different
singularity sets.

For the constructions we make in chapter 8, we use a Λp-regular stratifi-
cation of the Rn. We develop this tool in chapter 3 and 4.
In chapter 3 we improve a result about estimates for analytic subanalytic
functions.

Proposition (Kurdyka, Paw lucki) Let U ⊂ Rn be an open set and let
Φ : U → R be an analytic subanalytic function. Then there exists a closed
nowhere dense subanalytic set Z ⊂ U such that for each u ∈ U \ Z and each
r > 0 such that the closed ball cl (Br(u)) ⊂ U \ Z,

|Dαφ(u)| ≤ C(n, p) sup
x∈Br(u)

φ(x)

r|α|
, 1 ≤ |α| ≤ p,

where C(n, p) is a constant only depending on n and p.

In this chapter we transfer this proposition to arbitrary o-minimal expan-
sions of real closed fields, and we improve the constant C(n, p), i.e. we show
that

C(n, p) := 2(p+2
2 )−2

is reasonable. We point out that this constant is independent from the di-
mension n.
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This estimation result is part of the regularity conditions of Λp-regular func-
tions.

The Λp-regular stratification has its origin in a paper of Kurdyka and
Paw lucki. There, this stratification has been developed for subanalytic sets
in order to prove a subanalytic version of Whitney’s Extension Theorem.
The general idea of stratifications is as follows. We partition sets into finitely
many sets of simpler or more convenient form.
Here the simple sets are, after an eventual orthogonal change of coordinates,
standard Λp-regular cells. We obtain the convenient form by the class of
Λp-regular functions which are used to define these cells. Λp-regular func-
tions are a subclass of the Cp-functions with additional regularity properties.
These regularity properties are of technical nature, and we will point out and
prove them for the particular applications in chapter 8 and 9.

In chapter 9 we concentrate on the extendibility of definable Peano-diffe-
rentiable functions defined on closed sets.

Definition Let A ⊂ Rn be a closed set. We call f : A → R, together with
(f[α])|α|≤m : A→ R, m-times Peano-differentiable on A, if

f(x) =
∑
|α|≤m

f[α](y)

α!
(x− y)α +R(x, y), for x, y ∈ A,

where lim
x→y

R(x, y)

‖x− y‖m
= 0.

Extending Peano-differentiable functions is a very difficult problem in clas-
sical Analysis. Even the one-dimensional case is not yet completely solved.

We recognise two strategies in solving this problem.
One of them is to restrict the class of closed sets, and the other is to claim
additional properties for the formal derivatives f[α]. Especially for functions
of several variables, very little is known.
In o-minimal context we make weaker assumptions on the formal derivatives.
The main result of this chapter is the following extension-theorem.



6 Introduction

Theorem 9.5 Let A ⊂ Rn be a closed definable set, and let f : A → R
together with the definable (f[α])|α|≤m : A→ R be a definable m-times Peano-
differentiable function. Moreover, there is a definable partition A1, ..., Ar of
A such that

(*) for each i = 1, ..., r and for all multi-indices β, 1 ≤ |β| ≤ m− 1, f[β]|Ai

together with the f[β+γ]|Ai
, |γ| ≤ m − |β|, is (m − |β|)-times Peano-

differentiable on Ai.

Then, there is a definable Pm-function F : Rn → R such that

(I) DαF (x) = f[α](x) for x ∈ A, |α| ≤ m.

(II) F is of class Cm on Rn \ A.
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2 Fundamental Definitions and Propositions

We examine differentiable functions which are definable in an o-minimal
structure expanding a real closed field. The definable sets and functions are
described by formulas. We briefly recall the concepts of “structure”,“formula”
and “definable” in the first section. Afterwards we will concentrate on o-
minimal structures. We will focus on the semialgebraic structure which is an
example of an o-minimal expansion of each real closed field. This structure
has some special features. In the second section we state fundamental results
of o-minimal structures expanding a real closed field to which we will go back
in the later chapters.

Structures and Formulas

A language L is a triple consisting of a set of function symbols F , a set
of relation symbols R and a set of constant symbols C. To each f ∈ F ,
respectively ρ ∈ R, a positive natural number nf , respectively nρ, is assigned.
The language of ordered fields Lor is of special interest for us. In this case,
For = {+,−, ·}, Ror = {<}, and Cor = {0, 1}. Now we define L-structures.

Definition 2.1 An L-structure M is given by the following data:

(i) a nonempty set M called domain,

(ii) a function fM : Mnf →M for each f ∈ F ,

(iii) a set ρM ⊂Mnρ for each ρ ∈ R,

(iv) an element cM ∈M for each c ∈ C.

For the symbols f ∈ F , ρ ∈ R, and c ∈ C we denote by fM, ρM and cM their
interpretation in M. Often we write the structure M as
M = (M, fM, ρM, cM : f ∈ F, ρ ∈ Rel, and c ∈ C). We can write the Lor-
structure with domain R as M = (R,+,−, ·, <, 0, 1) where the +,−, ·, <, 0, 1
have the obvious interpretations.

Formulas

Our aim is to describe the sets which are definable in a structure. This is
done with the help of formulas. Formulas are built using symbols of the
language L, variable symbols v1, v2, ..., the equality symbol =, the Boolean
connectives ∧,∨, and ¬, the quantifiers ∃ and ∀, and (, ), [, and ].

We begin with defining terms.
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Definition 2.2 The set of L-terms is the smallest set T such that C ⊂ T ,
each variable symbol vi ∈ T , i = 1, 2, ..., and if t1, ..., tnf

∈ T and f ∈ F ,
then f(t1, ..., tnf

) ∈ T .

We interprete a term t built by using variables from (vi1 , ..., vim) in an
L-structure M as a function tM : Mm →M . This is done inductively.
Let a = (ai1 , ..., aim) ∈ Mm and let s be a subterm of t. sM(a) is defined as
follows.

(i) If s is a constant symbol c, then sM(a) = cM.

(ii) If s is the variable vij , then sM(a) = aij .

(iii) If s is the term f(t1, ..., tnf
) where f is a function symbol of L and

t1, ..., tnf
are terms, then sM(a) = fM(t1(a), ..., tnf

(a)).

Now we are able to define formulas.

Definition 2.3 φ is an atomic L-formula if φ is either t1 = t2 where t1 and
t2 are terms, or ρ(t1, ..., tnρ) where ρ ∈ R and t1, ..., tnρ are terms.
The set of L-formulas is the smallest set W containing the atomic formulas
such that

(i) if φ ∈ W, then ¬φ ∈ W,

(ii) if φ, ψ ∈ W, then (φ ∧ ψ) and (φ ∨ ψ) are in W, and

(iii) if φ ∈ W, then ∃viφ and ∀viφ are in W.

For formulas ϕ and ψ we use ϕ → ψ for ¬ϕ ∨ ψ. We say that a variable v
occurs free in a formula φ if it is not inside a ∃v or ∀v quantifier.

Definition 2.4 Let φ be a formula with free variables from v = (vi1 , ..., vim),
and let a = (ai1 , ..., aim) ∈Mm. We inductively define M |= φ(a) as follows.

(i) If φ is t1 = t2, then M |= φ(a) if tM1 (a) = tM2 (a).

(ii) If φ is ρ(t1, ..., tnρ), then M |= φ(a) if (tM1 , ..., tMnρ
) ∈ ρM.

(iii) If φ is ¬ψ, then M |= φ(a) if M 6|= ψ(a).

(iv) If φ is (ψ ∧ θ), then M |= φ(a) if M |= ψ(a) and M |= θ(a).

(v) If φ is (ψ ∨ θ), then M |= φ(a) if M |= ψ(a) or M |= θ(a).

(vi) If φ is ∃vjψ(v, vj), then M |= φ(a) if there is b ∈M such that
M |= ψ(a, b).
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(vii) If φ is ∀vjψ(v, vj), then M |= φ(a) if M |= ψ(a, b) for all b ∈M .

If M |= φ(a) we say φ(a) is true in M.

We now give the explanation of definable sets.

Definition 2.5 Let M be an L-structure. We say that X ⊂Mn is definable
if and only if there is an L-formula φ(v1, ..., vn, w1, ..., wm) and b ∈Mm such
that

(1) X = {a ∈Mm : M |= φ(a, b)}.

We say that φ(v, b) defines X. We say that X is A-definable if there is a
formula ψ(v, w1, ..., wl) and b ∈ Al such that ψ(v, b) defines X.

We denote by SMn the set of definable sets X ⊂Mn and put SM := (SMn )n∈N.
Often, if there is no doubt about M, we say that X is definable if there is
an n ∈ N such that X ∈ SMn . Moreover, if f : Mn → Mm is a map, we say
that f is definable if the graph Γ(f) of f is definable.

Real Closed Fields

We will now specialise on certain structures, namely the o-minimal structures
expanding a real closed field. We recall that an ordered field (K,<) is a field
K equipped with an ordering< such that for x, y, z ∈ K the following applies.

(i) x < y ⇒ x+ z < y + z, and

(ii) 0 < x, 0 < y ⇒ 0 < xy.

Examples of ordered fields are the field of rational numbers Q or the field of
real numbers R with the well known orderings. The field of real numbers has
an additional property: Its only nontrivial algebraic extension is the algebraic
closure of R, the field of complex numbers, which cannot be ordered. This
property of R is shared by a whole class of fields which we call the real closed
fields.

Definition 2.6 A real closed field R is an ordered field which has no non-
trivial ordered algebraic extension.

The smallest real closed field is the field of real algebraic numbers
Ralg := {z ∈ R | ∃0 6= p ∈ Q[Z] : p(z) = 0}, cf. [5] example 1.2.3.
For a detailed introduction to real closed fields see [5] chapter 1.
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Semialgebraic Structure

Let R be a real closed field. Then we call the structure
Ssemialg(R) = (R,+,−, ·, <, 0, 1) the semialgebraic structure. The definable
sets of this structure are called semialgebraic. We can give an alternative
definition of semialgebraic sets.

Definition 2.7 The set X ⊂ Rn is semialgebraic if

(2) X =
s⋃
i=1

ri⋂
j=1

{x ∈ Rn | pi,j ∗i,j 0}

where pi,j ∈ R[X1, ..., Xn], and ∗i,j is either < or =, for i = 1, ..., s and
j = 1, ..., ri.

By [5] chapter 2, the two definitions of semialgebraic sets coincide.
Since R is ordered we can speak of intervals. An interval is a set I ⊂ R of
the form

(3) I = (a, b) = {t ∈ R | a < t < b}

where −∞ ≤ a < b ≤ ∞. Moreover we use [a, b] := {t ∈ R | a ≤ t ≤ b} etc.
Proposition 2.1.7 in [5] gives the following characterisation of semialgebraic
subsets of R.

Proposition 2.8 Semialgebraic subsets of R are exactly the finite unions of
points and open intervals.

For the semialgebraic structures we have a very powerful transfer-principle,
cf. [5] proposition 5.2.3. Note that the language of Ssemialg(R) is Lor.

Transfer Principle 2.9 Let R ⊂ K both be real closed fields. Let Φ(v) be
an Lor-formula with free variables from v = (vi1 , ..., vin). Let a ∈ Rn. Then

(4) Ssemialg(R) |= Φ(a) ⇔ Ssemialg(K) |= Φ(a).

O-minimal Structures

Definition 2.10 Let R be a real closed field. An o-minimal structure ex-
panding R is a structure M such that

(i) M = (R,+,−, ·, <, 0, 1, ...) where the dots imply that there may be more
interpretations, i.e. functions and relations.

(ii) If X ⊂ R is definable, then there are finitely many intervals I1, ..., Im
and a finite set X0 such that X = X0 ∪ I1 ∪ ... ∪ Im.
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We also say that M is an o-minimal expansion of R. A very important ex-
ample of an o-minimal expansion of R is the semialgebraic structure which
is considered as trivial expansion. This provides us with an o-minimal ex-
pansion for all real closed fields. In [68] it is shown that, if we add the expo-
nential function to the semialgebraic structure over R, we get an o-minimal
expansion. We now present some elementary facts about definable sets. We
state them in o-minimal context although they hold true in a more general
situation. The proofs can be read in [62] chapter 1.2, lemma 2.3.

Proposition 2.11 Let M be an o-minimal expansion of R. Then the fol-
lowing holds true:

(i) For each m ∈ N, SMm is a boolean algebra of subsets of Rm.

(ii) If A is definable, then R× A and A×R are definable.

(iii) The set {(x1, ..., xm) ∈ Rm : x1 = xm} is definable.

(iv) If A ∈ SMm+1, then π(A) is definable, where π : Rm+1 → Rm is the
projection map on the first m coordinates.

Proposition 2.12 Let M be an o-minimal expansion of R. Let f : S → Rn

be definable. Then:

(i) S is definable.

(ii) If A ⊂ S is definable, then f(A) is definable and f |A is definable.

(iii) If B ⊂ Rn is definable, then f−1(B) is definable.

(iv) If f is injective, its inverse f−1 is definable.

(v) The composition of definable maps is a definable map.

O-minimal Expansions of Real Closed Fields

We now fix a real closed field R and an o-minimal expansion of R. O-
minimality restricts our class of definable functions so that we deal with
several but not all important analogies of theorems of classical Analysis.
Furthermore, several tools have been developed for o-minimal structures so
that we are able to sidestep some classical constructions which cannot be
applied in o-minimal context.
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Topology

An R-norm and an R-metric are defined as for the real numbers except that
they take their values in R instead of R. An R-norm and an R-metric induce
a topology in the obvious way.

We equip Rn with the “Euclidean” scalar-product: 〈x, y〉 :=
∑n

i=1 xiyi,
x, y ∈ Rn. By ‖x‖ := 〈x, x〉1/2 we denote the Euclidean R-norm which in-
duces the Euclidean R-metric in the obvious way.
If a set is supposed to be bounded, then we mean bounded with respect to
the Euclidean R-norm.
The product topology on Rn is induced by the maximum-R-norm
|a|∞ = maxi |ai|.
As a further example of an R-norm we use the operator norm. For A ∈ Rd×n

we set ‖A‖op = sup‖x‖=1 ‖Ax‖. We obtain the following inequalities.

1√
n
‖x‖ =

√√√√ 1

n

n∑
i=1

x2
i ≤

√
sup
i
x2
i = |x|∞ ≤

√√√√ n∑
i=1

x2
i = ‖x‖ , x ∈ Rn,(5)

1√
d
‖A‖ ≤ ‖A‖op ≤ ‖A‖ , A ∈ Rd×n.(6)

Inequality (6) is folows from 1
d

∑d
i=1

∑n
j=1 a

2
ij ≤ sup‖x‖=1

∑d
i=1

(∑n
j=1 aijxj

)2
and sup‖x‖=1

∑d
i=1

(∑n
j=1 aijxj

)2 ≤∑d
i=1

∑n
j=1 a

2
ij.

We use the Euclidean topology as standard-topology for Rn. Closure cl (A),
interior int (A), and boundary bd (A) = cl (A) \ int (A) of a definable set A
are definable, cf. [62] chapter 1 lemma 3.4.
O-minimality preserves some properties of closed and bounded sets of Rn

which are in general not compact if R 6= R. So, supremum and infimum of
a definable subset of R exist in R ∪ {±∞}. Moreover, if A ⊂ Rn is closed,
bounded and definable, and if f : A→ R is a definable continuous function,
then f(A) possesses maximum and minimum in R, cf. [62] chapter 1 lemma
3.3.

Monotonicity-Theorem

A very powerful tool is given by the Monotonicity-Theorem, [62] chapter 3
theorem 1.2.

Monotonicity-Theorem 2.13 Let f : (a, b) → R be a definable function
on the interval (a, b). Then there are points a1 < ... < ak in (a, b) such that
on each subinterval (aj, aj+1), with a0 = a, ak+1 = b, the function is either
constant or strictly monotone and continuous.
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We state a very important consequence, cf. [62] chapter 3 corollary 1.6.

Corollary 2.14 Let f : (a, b) → R be definable. Then for each c ∈ (a, b)
the limits limx↗c f(x) and limx↘c f(x) exist in R ∪ {±∞}. Also, the limit
limx↗b f(x) and limx↘a f(x) exist in R ∪ {±∞}.

Connectedness

With the exception of the real numbers, all real closed fields are totally
disconnected sets. In order to transform the idea of connected sets to o-
minimal structures, one uses the concept of definable connectedness.

Definition 2.15 A set X ⊂ Rn is called definably connected if X is definable
and X is not the union of two disjoint nonempty definable open subsets of
X.

The class of definable functions is sufficiently small so that the Intermediate-
Value-Theorem holds true for definable continuous functions of one variable,
cf. [62] chapter 1 lemma 3.6 (2)

Proposition 2.16 Let f : [a, b] → R be a definable and continuous function.
Then f assumes all values between f(a) and f(b).

Let X ⊂ Rn. A definable path in X is a definable continuous map γ : [a, b] →
Rn with a, b ∈ R, a < b, taking values in X. Then for definably connected
sets the following proposition holds true, see [62] chapter 6 proposition 3.2.

Proposition 2.17 Suppose the definable set X is definably connected. Then
any two points of X can be connected by a definable path in X.

With the last proposition we can give a more general formulation of the
Intermediate-Value-Theorem.

Intermediate-Value-Theorem 2.18 Let X ⊂ Rn be definably connected
and f : X → R be a definable continuous function. Then, for all x, y ∈ X,
f assumes all values between f(x) and f(y).

Proof: We take a path γ : [a, b] → Rn in X connecting x and y. Then,
f ◦γ : [a, b] → R is definable and continuous so that we can apply proposition
2.16 to it. 2
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Differentiable Functions

Let X ⊂ Rn be open and let f : X → R be a function. We define partial
differentiability as for R = R . f is called partially differentiable at x ∈ X
with respect to the ith variable if

(7) lim
h→0

f(x+ hei)− f(x)

h
∈ R.

Note that for n = 1 we only speak of differentiable or ordinary differentiable.
For α ∈ Nn we denote by Dα the differential-operator ∂α1

∂x
α1
1
... ∂

αn

∂xαn
n

. If f is

definable and partially differentiable in X with respect to the ith variable,
then we can describe the graph of the function g : X → R, g(x) = ∂f

∂xi
(x), in

the following way. Let x = (x1, ..., xn) and φf (x, y) be a formula defining the
graph of f . Then let ψ(x, y) be the formula:

∀ε
[
ε > 0 → ∃δ

[
δ > 0 →∀h

[
h2 < δ2 →(8)

∀z1, z2

[
φf (x, z1) ∧ φf (x+ hei, z2) →(z2 − z1 − hy)2 ≤ ε2h2

]]]]
Then (x, z) belongs to the graph of g if M |= ψ(x, z) so that g is defin-
able. This induces that the derivative of continuously differentiable definable
functions is definable, and, by induction, the derivatives up to order p of de-
finable Cp-mappings are definable. Moreover, o-minimality provides us with
the Mean-Value-Theorem in the following form, cf [62] chapter 7 theorem
2.3.

Mean-Value-Theorem 2.19 Suppose a < b in R, f : [a, b] → R is de-
finable and continuous, and differentiable at each point of (a, b). Then, for
some c ∈ (a, b), we have f(b)− f(a) = (b− a) · f ′(c).

Cell Decomposition

In order to solve certain constructing problems in o-minimal context it is
often very useful to solve the problem on simple sets. Cell-decompositions
provide us with a technique to decompose a given set into sets of simple form.
Definable C0-cell-decomposition was first established in [32]. The improve-
ment of this decomposition, namely Cp-cell-decomposition, can be found in
[62] 3 and 7. We use this reference for the results presented in this section.
We need to extend the notion of Cp-mappings.

Definition 2.20 A definable map f : A → Rn, where A ⊂ Rm is not nec-
essarily open, is called a Cp-map if there are a definable open neighbour-
hood U ⊂ Rm containing A and a definable Cp-map F : U → Rn such that
F |A = f .
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The cell-decomposition requires some terminology. For each p ∈ N and each
definable set X ⊂ Rn, we put

Cp(X) := {f : X → R | f is a definable Cp-function},
Cp∞(X) := Cp(X) ∪ {−∞,∞}

where we regard −∞ and ∞ as constant functions on X. For f, g ∈ Cp∞(X)
we write f < g if f(x) < g(x) for all x ∈ X, and in this case we put

(f, g)X := {(x, y) ∈ X ×R | f(x) < y < g(x)}.

Let h ∈ Cp(X). Then

(9) (h)X := {(x, y) ∈ X ×R | y = h(x)}.

Having agreed on this terminology we are now able to define Cp-cells.

Definition 2.21 Let (i1, ..., in) be a sequence of zeros and ones of length n.
An (i1, ..., in)-Cp-cell is a definable subset of Rn obtained by induction on n
as follows:
A (0)-Cp-cell is a one-element set {x} ⊂ R, and a (1)-Cp-cell is an interval
(a, b) ⊂ R.
Suppose (i1, ..., in−1)-Cp-cells are already defined. Then

(graph) an (i1, ..., in−1, 0)-Cp-cell is the graph (h)X of a function h ∈ Cp(X)
where X is an (i1, ..., in−1)-Cp-cell;

(band) an (i1, ..., in−1, 1)-Cp-cell is a set (f, g)X where X is an (i1, ..., in−1)-
Cp-cell and f, g ∈ Cp∞(X), f < g.

A Cp-cell in Rn is an (i1, ..., in)-Cp-cell for some sequence (i1, ..., in).

A cell-decomposition is a special kind of partition.

Definition 2.22 A Cp-cell decomposition of Rn is a partition of Rn into
finitely many Cp-cells. The definition is by induction on n:

(i) A Cp-cell decomposition of R1 = R is a collection

(10) {(−∞, a1), (a1, a2), ..., (al,+∞), {a1}, .., {al}}

where a1 < ... < al are points in R.

(ii) A decomposition of Rn+1 is a finite partition of Rn+1 into Cp-cells A such
that the set of projections πRn(A) is a Cp-cell decomposition of Rn.
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The following theorem, cf. [62] chapter 7.3 especially theorem 3.2, motivates
our special interest in Cp-cells.

Theorem 2.23 Let A1, ..., Al ⊂ Rn be definable sets.

(i) For any definable sets A1, ..., Ak ⊂ Rn there is a decomposition of Rn

into Cp-cells partitioning each of the Ai.

(ii) For every definable function f : A→ R, A ⊂ Rn there is a decomposition
of Rn into Cp-cells partitioning A such that each restriction
f |C : C → R is Cp for each cell C ⊂ A of the decomposition.

Dimension

The dimension of a nonempty definable set X ⊂ Rn is defined by

(11) dim(x) := max{i1 + ...+ im : X contains an (i1, ..., in)-cell}.

Although this is an ad hoc definition, it provides us with the properties we
have in mind if we consider R = R, cf. [62] chapter 4 proposition 1.3 and
corollary 1.6..

Proposition 2.24 The following holds true:

(i) If X ⊂ Y ⊂ Rn are definable subsets, then dim(X) ≤ dim(Y ) ≤ n.

(ii) If X ⊂ Rn and Y ⊂ Rm are definable and there is a definable bijection
between A and Y , then dim(X) = dim(Y ).

(iii) If X, Y ⊂ Rn are definable, then dim(X∪Y ) = max{dim(X), dim(Y )}.

(iv) For definable sets X and Y , dim(X × Y ) = dim(X) + dim(Y ).

A very excellent result on dimension in o-minimal context concerns the fron-
tier of a definable set. We recall that the frontier ∂X of a definable set X is
defined by ∂X = cl (X)\X. We come to the following result, cf. [62] chapter
4 theorem 1.8:

Theorem 2.25 Let X ⊂ Rn be a nonempty definable set. Then

(12) dim(∂X) < dim(X).
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Approximation

In [17], approximation of definable Cp-functions by Cp+1-functions in the Cp-
topology is proved. For our purposes, theorem 1.6 of [17] with the remarks
made after this theorem, reads as follows.

Theorem 2.26 Let U ⊂ Rn be a definable open set, f : U → R a definable
Cp-function, and let ε : U → R be a definable positive continuous function.
Then there exists a definable Cp+1-function g : U → R such that

(13) |Dα(f(x)− g(x))| < ε(x), x ∈ U, 0 ≤ |α| ≤ p.

Applying theorem 2.26 k times with ε
k
, we obtain that we may suppose that

the function g is of class Cp+k. We can use this approximation theorem
to obtain special definable positive semidefinite m-times continuously differ-
entiable functions. In [50], theorem C.9, we find the following generalised
 Lojasiewicz inequality.

Theorem 2.27 Let f, g : Rn → R be continuous definable functions which
are p-times continuously differentiable in Rn \ g−1({0}), with f−1({0}) ⊂
g−1({0}). Then there is a definable p-times continuously differentiable bi-
jection Φ : R :→ R with Φ(l)(0) = 0, l = 0, ..., p, and a definable p-times
continuously differentiable function h : Rn → R such that

(14) Φ ◦ g = hf.

As a consequence of the two previous theorems we recieve the following corol-
lary.

Corollary 2.28 Let A ⊂ Rn be a closed definable set. Then there is a
positive semidefinite p-times continuously differentiable definable function
F : Rn → R such that F−1({0}) = A.

Proof: Let G : Rn → R be defined by G(x) := dist(x,A). According to
theorem 2.26 there is a definable function H : Rn → R such that H restricted
to Rn \ A is p-times continuously differentiable with

(15) |H(x)−G(x)| ≤ 1

2
dist(x,A), x ∈ Rn \ A.

If we set H|A ≡ 0, H is a continuous function.
We apply theorem 2.27 to g = H and f = 1 and get a definable p-times
continuously differentiable function h : Rn → R which vanishes exactly at
the points of A. Hence, F = h2 has the desired properties. 2
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Curve-Selection-Lemma

Definable curves play a role similar to that of sequences in Rn but they have
better properties. The following version of the Curve-Selection-Lemma is
presented in [62] chapter 6 corollary 1.5.

Proposition 2.29 If a ∈ ∂X where X is definable, there is a definable con-
tinuous injective map γ : (0, ε) → X for some ε > 0 such that limt→0 γ(t) = a.

We need a variant of this proposition which we will call Curve-Selection-
Lemma from now on. In the proof of this variant we use proposition 5.7, i.e
that a definable function f : I → R of an open definable subset I of R is
continuously differentiable if it is ordinary differentiable. The proof of this
proposition uses only the Mean-Value-Theorem and o-minimality.

We call a definable C1-map γ : I → Rn where I ⊂ R is an interval a
regular definable C1-curve if the derivative ϕ′ does not vanish at each point
of I.

Curve-Selection-Lemma 2.30 If a ∈ ∂X where X ⊂ Rn is definable,
there is a regular definable C1-curve ϕ : (−ε, ε) → Rn for some ε > 0 such
that ϕ((0, ε)) ⊂ X and ϕ(0) = a.

Before we begin with the proof we prepend a lemma.

Lemma 2.31 Let f1, ..., fn : (0, δ) → R, δ > 0, be continuous definable
functions. Then there is an ε > 0 and j such that for each 1 ≤ i ≤ n

(16) |fi(t)| ≤ |fj(t)| , t ∈ (0, ε).

In this case we say that fj dominates f1, ..., fn at 0.

Proof: We proceed by induction on n.
The case n = 1 is evident.
Now we assume that the statement of the lemma holds true for n−1 functions
f1, ..., fn−1, i.e. there is an εn−1 > 0 and j ≤ n−1 such that for each i ≤ n−1
the following holds true:

(17) |fi(t)| ≤ |fj(t)| , t ∈ (0, εn−1)

Therefore we can reduce our consideration to the functions fj and fn re-
stricted to (0, εn−1). For these functions we show the following:
There is an ε > 0 such that either

(i) |fj(t)| < |fn(t)| , t ∈ (0, ε), or
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(ii) |fj(t)| ≥ |fn(t)| , t ∈ (0, ε),

applies.
Let M be the set {t | t ∈ (0, εn−1)∧|fn(t)|−|fj(t)| > 0}. This set is definable,
and since the fi are continuous it is open. According to o-minimality, there
are finitely many disjoint intervals I1, ..., Ik such that M = I1 ∪ ... ∪ Ik. If
one of these intervals is of the form (0, ε) for some ε > 0, then (i) holds true.
Otherwise, the set (0, εn−1) \ M contains an interval of the form (0, ε) for
some ε > 0 which implies (ii). 2

Proof: of the Curve-Selection-Lemma.
We may assume that a = 0 and take the map γ : (0, ε) → X which is pro-
vided by proposition 2.29. By o-minimality, we may further assume that γ
is continuously differentiable as long as ε is chosen sufficiently small. Hence,
we can write γ as γ(t) = (γ1(t), ..., γn(t)) where each of the γi is continuously
differentiable, and limt↘0 γi(t) = 0. Since all γi are continuous, we can apply
lemma 2.31 to the γi and find an ε > 0 and a j such that γj dominates
γ1, ..., γn.
According to the Monotonicity-Theorem there is a positive ε1 < ε such
that γj is strictly monotone in (0, ε1), since otherwise, γ would not be in-
jective. Therefore, γj has an inverse γ−1

j : (0, γj(ε1)) → (0, ε1). This in-
verse is of course continuously differentiable, and, since limt→0 γj(t) = 0,
limt→0 γ

−1
j (t) = 0.

γj dominates the γi; hence, for 1 ≤ i ≤ n,

(18)
∣∣γi(γ−1

j (t))
∣∣ ≤ ∣∣γj(γ−1

j (t))
∣∣ = t

so that the function

(19) t 7→
γi(γ

−1
j (t))

t
, t ∈ (0, γj(ε1)),

is bounded. By o-minimality, the limit

(20) lim
t↘0

γi(γ
−1
j (t))

t

exists in R and we denote it by ci. Let c = (c1, ..., cn). We define the curve
ϕ : (−ε2, ε2) → Rn by

(21) ϕ(t) =

{
γ(γ−1

j (t)), t > 0

tc, t ≤ 0
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for an 0 < ε2 < min(ε1, γj(ε1)). By construction of ϕ we see that

(22) lim
t↘0

ϕ(t)

t
= lim

t↘0

γ(γ−1
j (t))

t
= c = lim

t↗0

ϕ(t)

t

applies. Hence, ϕ is differentiable at 0 with derivative ϕ′(0) = c, and c 6= 0
since cj = 1. The continuity of ϕ′ is a consequence of proposition 5.7 since
each coordinate function is a function of one variable. 2
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3 Estimates for Definable Derivatives

In this section we study definable Cp+1-functions with semidefinite deriva-
tives. For a point u of the domain of the function we are able to give bounds
for the derivatives up to order p evaluated at this point. We further show
that these bounds depend only on the distance of the point u to the boundary
of the domain and on the values of the function in a certain neighbourhood
of u. We follow an idea of Gromov [29] which is presented in [35], and we
generalise and improve the corresponding results in [35] further. We start
with the one-dimensional case. For a function of one variable we denote by
f (p) the pth derivative of f .

Lemma 3.1 Let λ : I → R be a definable C2-function, and we have either
λ(2) ≥ 0 on I or λ(2) ≤ 0 on I. Let t ∈ I and r > 0 such that [t−r, t+r] ⊂ I.
Then

(23)
∣∣λ(1)(t)

∣∣ ≤ 2

r
sup

s∈[t−r,t+r]
|λ(s)| .

Proof: Without loss of generality we may assume that λ(2) ≤ 0 on I
so that λ(1) is monotonically decreasing on I. According to the Mean-Value-
Theorem we get the two following inequations:

λ(t)− λ(t− r) ≥ inf
s∈[t−r,t]

λ(1)(s)r = λ(1)(t)r(24)

λ(t+ r)− λ(t) ≤ sup
s∈[t,t+r]

λ(1)(s)r = λ(1)(t)r.(25)

Since |λ(t)− λ(t− r)| and |λ(t+ r)− λ(t)| are both less than or equal to

(26) 2 sup
s∈[t−r,t+r]

|λ(s)| ,

we get

(27)
∣∣λ(1)(t)

∣∣ ≤ 2

r
sup

s∈[t−r,t+r]
|λ(s)| .

2

Lemma 3.2 Let λ : I → R be a definable Cp+1-function such that for
i = 2, ..., p + 1, we have either λ(i) ≥ 0 on I or λ(i) ≤ 0 on I. Let t ∈ I and
r > 0 such that [t− r, t+ r] ⊂ I. Then, for j = 1, ..., p, we get the following
inequation:

(28)
∣∣λ(j)(t)

∣∣ ≤ 2
j2+3j−2

2

rj
sup

s∈[t−r,t+r]
|λ(s)|
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Proof: We proceed by induction on j. The case j = 1 was proved in
lemma 3.1. So we assume that the statement of the lemma holds true for j.
Let u ∈ [t− r

2
, t+ r

2
] ⊂ [t− r, t+ r] ⊂ I. Then the interval [u− r

2
, u+ r

2
] ⊂ I.

Hence,

(29)
∣∣λ(j)(u)

∣∣ ≤ 2
j2+3j−2

2
1(
r
2

)j sup
s∈[t−r,t+r]

|λ(s)| .

Since λ(j+2) is semidefinite on I, we can apply lemma (3.1) to λ(j) and get

∣∣λ(j+1)(t)
∣∣ ≤ 2(

r
2

) sup
u∈[t− r

2
,t+ r

2
]

∣∣λ(j)(u)
∣∣(30)

≤ 4

r
2

j2+3j−2
2

1(
r
2

)j sup
s∈[t−r,t+r]

|λ(s)|

=
2

(j+1)2+3(j+1)−2
2

rj+1
sup

s∈[t−r,t+r]
|λ(s)| .

2

The following lemma is an n-dimensional version of lemma 3.2. In [35] it is
shown that there is a constant depending only on p and n. Here, we compute
this constant to be

(31) 2
p2+3p−2

2 .

It is surprising that the constant is independent from the dimension n since
the proofs in [35] do not give us any idea as to how we can compute the
constant without using the dimension.

For the multi-indices α, β ∈ Nn we put α! =
∏n

i=1 αi!, |α| =
∑n

i=1 αi
and α ≺ β if αi ≤ βi for i = 1, ..., n. Furthermore, if x ∈ Rn, we set
xα =

∏n
i=1 x

αi
i .

Lemma 3.3 Let ϕ : U → R be a definable Cp+1-function on the open set
U ⊂ Rn. For all multi-indices β ∈ Nn with 2 ≤ |β| ≤ p + 1 let Dβϕ be
semidefinite. Then, for each closed ball cl (Br(u)) ⊂ U and each α ∈ Nn with
1 ≤ |α| ≤ p the following inequality holds true:

(32) |Dαϕ(u)| ≤ 2
|α|2+3|α|−2

2

r|α|
sup

x∈Br(u)

|ϕ(x)|
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Proof: For this proof we make the following conventions. For 1 ≤ l ≤ n
let Vl ⊂ Rn be the subspace generated by e1, ..., el. Furthermore, we set

(33) Bl
r(u) = {u′ ∈ Rn | u′ − u ∈ Vl, ‖u′ − u‖ ≤ r},

and for α = (α1, ..., αn) ∈ Nn we put

(34) i := max{l | αl > 0}.

We show by induction on |α| that

(35) |Dαϕ(u)| ≤ 2
|α|2+3|α|−2

2

r|α|
sup

x∈Bi
r(u)

|ϕ(x)| , u ∈ U, cl (Br(u)) ⊂ U.

Let |α| = 1. Then Dα = ∂
∂xi

. Let λ : [−r, r] → R be defined by

(36) λ(s) := ϕ(u+ sei).

Then λ(2)(s) = ∂2

∂x2
i
ϕ(u + sei), and therefore it is semidefinite. So we can

apply lemma 3.2 to λ and get

|Dαϕ(u)| =
∣∣λ(1)(0)

∣∣(37)

≤ 2

r
sup

s∈[−r,r]
|λ(s)|

=
2

r
sup

s∈[−r,r]
|ϕ(u+ sei)|

≤ 2

r
sup

x∈Bi
r(u)

|ϕ(x)| .

Let 2 ≤ |α| = j + 1 ≤ p. We assume that inequality (35) holds true for
|α| ≤ j. We now have to distinguish between two different cases.

case 1: α = |α| ei.
Then Dα = ∂j+1

∂xj+1
i

. Let λ : [−r, r] → R be defined by

(38) λ(s) := ϕ(u+ sei).
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λ(k)(s) = ∂k

∂xk
i
ϕ(u+sei) for each 2 ≤ k ≤ j+2. Therefore, λ(k) is semidefinite.

Again, we apply lemma 3.2 to λ and get

|Dαϕ(u)| =
∣∣λ(j+1)(0)

∣∣(39)

≤ 2
(j+1)2+3(j+1)−2

2

rj+1
sup

s∈[−r,r]
|λ(s)|

=
2

(j+1)2+3(j+1)−2
2

rj+1
sup

s∈[−r,r]
|ϕ(u+ sei)|

≤ 2
(j+1)2+3(j+1)−2

2

rj+1
sup

x∈Bi
r(u)

|ϕ(x)| .

case 2: At least two of the αl are positive.
Then α = (α1, ..., αi, 0, ..., 0), and we set β = (α1, ..., αi−1, 0, ..., 0) so that
α = β + αiei and β 6= 0. We define the function λ : [− r√

2
, r√

2
] → R by

(40) λ(s) := Dβϕ(u+ sei).

Hence, λ is well-defined and each derivative of λ is semidefinite. We note
that for each s ∈ [− r√

2
, r√

2
],

(41) Bi−1
r√
2

(u+ sei) ⊂ Bi
r(u) ⊂ cl (Br(u)) .

So we can apply lemma 3.2 to λ and we get

|Dαϕ(u)| =
∣∣λ(αi)(0)

∣∣(42)

≤ 2
α2

i +3αi−2

2
1(
r√
2

)αi
sup

s∈[− r√
2
, r√

2
]

|λ(s)|

= 2
α2

i +3αi−2

2
1(
r√
2

)αi
sup

s∈[− r√
2
, r√

2
]

|Dβ(ϕ(u+ sei)|

≤ 2
α2

i +3αi−2

2(
r√
2

)αi
sup

s∈[− r√
2
, r√

2
]

2
|β|2+3|β|−2

2(
r√
2

)|β| sup
x∈Bi−1

r√
2

(u+sei)

|ϕ(x)|


≤ 2

α2
i +3αi−2

2 2
αi+|β|

2 2
|β|2+3|β|−2

2
1

rαi+|β|
sup

u′∈Bi
r(u)

|ϕ(u′)| .

Since αi + |β| = |α| = j + 1, it remains to prove that

(43)
α2
i + 3αi − 2

2
+
αi + |β|

2
+
|β|2 + 3 |β| − 2

2
≤ (j + 1)2 + 3(j + 1)− 2

2
.
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In order to do that we note that 1 ≤ αi ≤ j and therefore

2α2
i − 2αi(j + 1) + j − 1 ≤ 2α2

i − (2αi − 1)(j + 1)(44)

≤ 2α2
i − (2αi − 1)(αi + 1)

= 1− αi ≤ 0.

So,

α2
i + 3αi − 2

2
+
αi + |β|

2
+
|β|2 + 3 |β| − 2

2
(45)

=
(j + 1)2 + 3(j + 1)− 2

2
+

2α2
i − 2αi(j + 1) + j − 1

2

≤ (j + 1)2 + 3(j + 1)− 2

2 2

Proposition 3.4 Let ϕ : U → R be a definable Cp+1-function. There is a
definable subset Z ⊂ U of dim(Z) ≤ n− 1 which is closed in U such that for
each multi-index α ∈ Nn, 1 ≤ |α| ≤ p, and for each u ∈ U \ Z it holds true
that
(46)

|Dαϕ(u)| ≤ 2
|α|2+3|α|−2

2

dist(u, ∂U ∪ Z)|α|
sup{|ϕ(x)| ;x ∈ U, ‖x− u‖ < dist(u, ∂U∪Z)}.

Proof: For each β ∈ Nn with 2 ≤ |β| ≤ p+ 1 let

(47) Aβ := {x ∈ U | Dβϕ(x) > 0}.

We choose a definable C1-cell decomposition of Rn which is compatible with
the Aβ and U . Let B1, ..., BrB be the open cells which are contained in U .
Then

(48) Z := U \ ∪rBi=1Bi

is definable and closed in U , and dim(Z) ≤ n − 1. Furthermore, for each i,
Dβϕ is semidefinite on Bi. Let u ∈ U \Z. Then there is an i with u ∈ Bi. We
apply lemma 3.3 to ϕ restricted to Bi. For each r > 0 with cl (Br(u)) ⊂ Bi

we then get

(49) |Dαϕ(u)| ≤ 2
|α|2+3|α|−2

2

r|α|
sup{|ϕ(x)| | x ∈ cl (Br(u))}.
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Thus,

|Dαϕ(u)| ≤ inf
r>0

2
|α|2+3|α|−2

2

r|α|
sup{|ϕ(x)| | x ∈ cl (Br(u)) ⊂ Bi}

(50)

≤ inf
r>0

2
|α|2+3|α|−2

2

r|α|
sup{|ϕ(x)| | ‖x− u‖ < dist(u, ∂Bi)}

≤ 2
|α|2+3|α|−2

2

dist(u, ∂Bi)|α|
sup{|ϕ(x)| | ‖x− u‖ < dist(u, ∂Bi)}

≤ 2
|α|2+3|α|−2

2

dist(u, ∂U ∪ Z)|α|
sup{|ϕ(x)| | x ∈ U, ‖x− u‖ < dist(u, ∂U ∪ Z)}.

2

We will make use of the following corollary for the proof of theorem 4.5.

Corollary 3.5 Let φ : U → R be a definable Cp+1-function. Suppose that∣∣∣ ∂φ∂xj

∣∣∣ ≤ M on U , j = 1, ..., n. Then there is a closed definable subset Z ⊂ U

of dimension dim(Z) ≤ n− 1 such that

(51) |Dαφ(u)| ≤ 2(p+2
2 )−2 ·M · dist(u, ∂U ∪ Z)1−|α|

for any u ∈ U\Z, α ∈ Nn with 1 ≤ |α| ≤ p.

Proof: We apply proposition 3.4 to the derivatives ∂φ
∂xj

. 2
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4 Λp-regular Stratification

In this chapter we develop the concept of Λp-regular stratification. The strata
are Λp-regular cells which are a kind of Cp-cells with additional regularity
conditions in a suitably chosen linear coordinate system. In the case that
p = 1 these cells are closely related to L-regular cells, cf. [34]. Here we
use this stratification concept in order to prove extendibility of definable m-
times Peano-differentiable functions defined on closed sets and to describe
singularity sets of definable m-times Peano-differentiable functions. So, for
convenience, we define the Λp-regular cells as it is done in [35]. In this paper,
Λp-regular cell decomposition is developed for proving a subanalytic version
of Whitney’s Extension Theorem. We generalise the concept of Λp-regular
cell decomposition to arbitrary o-minimal structures expanding a real closed
field. We follow ideas given in [33], [34] and [35].
One important regularity condition of Λp-regular cells is that the gradient
of the functions with which we define the cells is bounded by a constant1.
In the papers [33], [34] and [35] no explicit estimation for this constant is
given, but the proofs induce a constant which increases exponentially with
the dimension n of the ambient space. We show that the constant

(52) 2(p+2
2 )−1n

p+3
2

is valid.
We first introduce the concepts of Λp-regular functions, cells and stratifica-
tion, and state the main theorem. After that we prepare the proof of this
theorem. A big problem is to get a coordinate system in which all gradients
of the functions which define a cell have a bounded gradient. We treat this
problem by examining ε-flat submanifolds. This requires an intensive study
of a certain distance function defined on the Grassmannian. In [33] and [34]
the open cover property of compact sets is used to obtain finite open covers
of the Grassmannian which are compact sets. This property does not apply
for the Grassmannian if we deal with real closed fields different from the real
numbers. We circumvent this problem by using model theoretic arguments.
We obtain the regularity conditions for the higher derivatives of the defining
functions by corollary 3.5.

Λp-regular Functions and Cells

We introduce the class of Λp-regular functions. These functions are inspired
by the Λp-regular functions introduced in [35] which are defined on bounded
open subanalytic subsets of Rn. The definitions coincide for bounded sets.

1The same constant is also valid for L-regular cells
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Definition 4.1 Let X ⊂ Rn be an open and definable set and ϕ : X → Rk a
definable Cp-mapping. We call ϕ Λp-regular with constant C > 0 if for each
multi-index α ∈ Nn, 1 ≤ |α| ≤ p, the following holds true:
If X 6= Rn, then

(53) ‖Dαϕ(x)‖ ≤ C

dist(x, ∂X)|α|−1
, x ∈ X.

If X = Rn, then, for each definable open Y ( Rn,

(54) ‖Dαϕ(y)‖ ≤ C

dist(y, ∂Y )|α|−1
, y ∈ Y.

We call ϕ Λp-regular if ϕ is Λp-regular with some constant C > 0.

By Λp(X,Rk) we denote the set of all Λp-regular functions ϕ : X → Rk.
If X ( Rn and f : X → Rk is Λp-regular with constant C > 0, then,
for each definable open subset Y ⊂ X, ϕ|Y is Λp-regular with the same
constant C. This can be directly concluded from the fact that for all y ∈ Y ,
dist(y, ∂Y ) ≤ dist(y, ∂X).
One easily gets that definable Λ2-regular functions with domain Rn are affine
linear functions. We do not make use of this fact.

Our next item is to define Λp-regular cells. In order to give a straightfor-
ward description of these cells, we agree on the following terminology.
For any definable open subset X ⊂ Rn let

Λp
∞(X) := Λp(X,R) ∪ {±∞}.

Here, ±∞ are regarded as constant functions. For f, g ∈ Λp
∞(X) we write

f < g if f(x) < g(x) for all x ∈ X, and in this case we put

(f, g)X := {(x, y) ∈ X ×R | f(x) < y < g(x)}.

If h ∈ Λp(X,Rk) we put

(h)X := {(x, y) ∈ X ×Rk | y = h(x)}.

If n = 0, all functions f : R0 → Rk are constant functions so that we can
interpret them as being Λp-regular. Moreover, we identify R0×Rn with Rn.

We now define Λp-regular cells as a generalisation of the definition given
in [35]. There it is assumed that the functions which are used to define the
cells are analytic functions. They are able to claim this property because they
work with subanalytic functions which are piecewise analytic. In o-minimal
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structures we do not have this property in general, and, moreover, it is not
yet known whether all definable functions are piecewise C∞. Our proofs are
of such a nature that we do not need these assumptions. We use the fact
that definable functions are piecewise Cp which is a reasonable assumption
by theorem 2.23.

Definition 4.2 The only standard Λp-regular cell in R0 is R0 itself. If we
know all standard Λp-regular cells in R0,...,Rn−1, we say that A ⊂ Rn is a
standard Λp-regular cell if A is either of the mode

(band) A = (f, g)X where X ⊂ Rn−1 is an open standard Λp-regular cell
and
f, g ∈ Λp

∞(X) with f < g, or

(graph) A = (h)X where X ⊂ Rk is an open standard Λp-regular cell and
h ∈ Λp(X,Rn−k).

The set X is called the base of the cell.

If A ⊂ Rn is a standard Λp-regular cell of dimension d, there is a sequence
of sets (A0, ..., Ad) such that Ai ⊂ Ri is a Λp-regular cell of dimension i and
Ai = (fi, gi)Ai−1

, for i = 1, ..., d, and/or A = (h)Ad
. The fi, gi are in Λp

∞(Ai−1)
such that fi < gi, and h ∈ Λp(Ad, R

n−d). We call the fi, gi and h the defining
functions of A. Note that if n = 1 or d = 0, the defining functions are
constant functions. In the same way we define the defining functions of a
Cp-cell.

Definition 4.3 We call a definable set Y ⊂ Rn a Λp-regular cell with con-
stant C if there is a linear orthogonal endomorphism ϕ : Rn → Rn such
that ϕ(Y ) is a standard Λp-regular cell and all defining functions of it are
Λp-regular with constant C.

We now go on to Λp-regular stratification.

Definition 4.4 Let p be a positive integer and C > 0. A Λp-stratification of
Rn with constant C is a partition of Rn into finitely many subsets S1, ..., Sr,
called strata, such that:

I Each stratum is a Λp-regular cell with constant C.

II For each stratum Si, the frontier ∂Si is the union of some of the strata.

We say that the stratification S1, ..., Sr is compatible with the sets A1, ..., Ak
if each Aj is the union of some of the strata.
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The aim of this chapter is to prove the following theorem.

Theorem 4.5 Let A1, ..., ArA ⊂ Rn be definable sets. There exists a Λp-
regular stratification of Rn with constant

(55) C := 2(p+2
2 )−1n

p+3
2

which is compatible with A1, ..., ArA.

One important advantage of stratifications compared to cell decompositions
is that each stratum B has a definable open neighbourhood which has empty
intersection with all strata apart from B which have at most the dimension
of B.

Bounding the Gradient

Distances on the Grassmannian

We recall that the Grassmannian Gk,n(R) is the set of vector subspaces of
dimension k in Rn. The standard distance function ∆ is defined by means
of the Hausdorff-distance.
Let A,B ⊂ Rn be two nonempty definable closed and bounded sets. The
Hausdorff-distance Hd(A,B) is defined by

(56) Hd(A,B) = max(max
a∈A

d(a,B),max
b∈B

d(b, A))

where d(a,B) = minb∈B |a− b|∞.
We use the Hausdorff-distance to define an R-metric on the Grassmannian.

The standard R-metric ∆ on Gk,n(R) is defined in the following way:

(57) ∆(M,N) = Hd(M ∩ Sn−1(R), N ∩ Sn−1(R)), if k > 0,

where Sn−1(R) defines the unit-sphere in Rn. ∆ is an R-metric on Gk,n(R),
cf. [6] beginning of chapter 2.5.
If k = 0 we note that G0,n(R) consists of a single point, and we denote the
unique metric on G0,n(R) by ∆.
We find the proof of the next proposition in [6], lemma 2.10 and theorem
2.11.

Proposition 4.6 Let X ⊂ Rn be a definable C1-submanifold of dimension
k. Let τ : X → Gk,n(R) be the tangent-mapping. Then τ is definable and
continuous with respect to ∆.
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The distance ∆ has not the right geometrical properties for our purposes.
In order to deal with a more descriptive distance on the Grassmannian we
introduce the distance δ(U, V ) for linear subspaces of Rn. This mapping
defines an R-metric on the Grassmannian which is even equivalent to ∆, cf.
proposition 4.8. Therefore the tangent-mapping from a C1-submanifold of
Rn to the Grassmannian is continuous with respect to δ.
Let P, S ⊂ Rn be one-dimensional linear subspaces. The distance δ between
P and S is defined by

δ(P, S) :=
√

1− 〈p, s〉2

where p ∈ P , s ∈ S with ‖p‖ = ‖s‖ = 1. For a linear subspace U ⊂ Rn the
distance between P and U is given by

δ(P,U) := inf{δ(P, S ′) | S ′ ⊂ Uone-dimensional subspace}.

For another linear subspace V of Rn,

δ(V, U) := sup{δ(P ′, U) | P ′ ⊂ V one-dimensional subspace}.

If dim(U) = 0, then δ(U, V ) := 0 =: δ(V, U) for all linear subspaces V ⊂ Rn.
Let V ⊂ Rn be a linear subspace. We denote by πV the projection onto V
and by πV ⊥ the projection onto the orthogonal complement of V . Agreeing
to this denomination, we can write δ(V,W ) as a closed formula.

Lemma 4.7 Let V,W be linear subspaces of Rn with positive dimension.
Then

(58) δ(V,W ) = ‖πW⊥πV ‖op .

Proof: δ(U, V ) can be written as

(59) sup
v∈V
‖v‖=1

inf
w∈W
‖w‖=1

(
1− 〈v, w〉2

) 1
2
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so that the validity of equation (58) is easily seen by

δ(V,W )2 = sup
v∈V
‖v‖=1

inf
w∈W
‖w‖=1

{1− 〈v, w〉2}(60)

= sup
v∈V
‖v‖=1

(1− sup
w∈W
‖w‖=1

〈v, w〉2)

= sup
v∈V
‖v‖=1

(1− sup
w∈W
‖w‖=1

〈πW (v), w〉2)

= sup
v∈V
‖v‖=1

(1− 〈πW (v), πW (v)〉)

= sup
v∈V
‖v‖=1

(〈v, v〉 − 〈v, πW (v)〉)

= sup
v∈V
‖v‖=1

(〈v, πW⊥(v)〉)

= sup
v∈V
‖v‖=1

‖πW⊥(v)‖2

= sup
x∈Rn

‖x‖=1

‖πW⊥πV (x)‖2

= ‖πW⊥πV ‖2
op

2

By the formulation (59) it is evident that the mapping

(61) Gk,n(R)×Gl,n(R) 3 (U, V ) 7→ δ(U, V )

is semialgebraic.
The following results about the distance function are known for the real

numbers, see for example [34]. They also apply to any arbitrary real closed
field.

Proposition 4.8 The following holds true.

(i) δ(U, V ) = δ(V, U), for U, V ∈ Gk,n(R).

(ii) For U, V ∈ Gk,n(R) and U ′ := U ×Rm, V ′ := V ×Rm,

δ(U ′, V ′) = δ(U, V ).

(iii) Let U, V,W ⊂ Rn be linear subspaces of positive dimension. Then

δ(U,W ) ≤ δ(U, V ) + δ(V,W ).

(iv) δ : Gk,n(R)×Gk,n(R) → R is an R-metric which is equivalent to ∆.



Bounding the Gradient 33

Proof:
(i): Let ϕ : Rn → Rn be a linear orthogonal mapping with ϕ(U) = V and
ϕ(V ) = U . Then, for each u ∈ U , v ∈ V with ‖u‖ = 1 = ‖v‖, it holds true
that 〈u, v〉 = 〈ϕ(u), ϕ(v)〉 = 〈v, u〉. Hence, δ(U, V ) = δ(V, U).
(ii): Let V,W ∈ Gk,n(R), and let V ′ = V ×Rm, W ′ = W ×Rm. Since

(62) π(W×Rm)⊥πV×Rm((0, ..., 0, xn+1, ..., xn+m)) = 0

we conclude that
∥∥π(W×Rm)⊥πV×Rm

∥∥
op

= ‖πW⊥πV ‖op. Hence,

δ(V ′,W ′) =
∥∥π(W×Rm)⊥πV×Rm

∥∥
op

(63)

= ‖πW⊥πV ‖op
= δ(V,W ).

(iii): Let U, V,W ⊂ Rn be linear subspaces, and let u ∈ U where ‖u‖ = 1
and δ(U,W ) = ‖u− πW (u)‖. Then

δ(U,W ) = ‖u− πW (u)‖ ≤ ‖u− πW (πV (u))‖(64)

≤ ‖u− πV (u)‖+ ‖πV (u)− πW (πV (u))‖
≤ ‖πV ⊥πU‖op + ‖πW⊥πV ‖op
= δ(U, V ) + δ(V,W ).

(iv): We prove the following inequality:

(65)
1√
n
δ(U, V ) ≤ ∆(U, V ) ≤

√
2δ(U, V )

Since ∆ is an R-metric, it follows from this inequality that δ(U, V ) = 0 if
and only if U = V so that δ is an R-metric. At the same time we obtain the
equivalence of δ and ∆.

In order to prove inequality (65), we first show that for each v ∈ V with
‖v‖ = 1 the following inequalities hold true:

inf
u∈U,‖u‖=1

√
1− 〈u, v〉2 ≤ inf

u∈U,‖u‖=1
‖u− v‖(66)

√
2 inf
u∈U,‖u‖=1

√
1− 〈u, v〉2 ≥ inf

u∈U,‖u‖=1
‖u− v‖(67)
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Inequality (66) can be understood with the aid of the following estimation.

inf
u∈U,‖u‖=1

‖u− v‖2 = inf
u∈U,‖u‖=1

〈u− v, u− v〉(68)

= inf
u∈U,‖u‖=1

2− 2〈u, v〉

= inf
u∈U,‖u‖=1

1 + (1− 〈u, v〉)2 − 〈u, v〉2

≥ inf
u∈U,‖u‖=1

1− 〈u, v〉2.

For inequality (67) we look at

2 inf
u∈U,‖u‖=1

1− 〈u, v〉2 = inf
u∈U,‖u‖=1

2− 2〈u, v〉2(69)

≥ inf
u∈U,‖u‖=1

2− 2 |〈u, v〉|

= inf
u∈U,‖u‖=1

2− 2〈u, v〉

= inf
u∈U,‖u‖=1

〈u− v, u− v〉

= inf
u∈U,‖u‖=1

‖u− v‖2 .

In order to verify inequality (65), we make use of the equivalence of the
Euclidean and the maximum R-norm, i.e. of inequality (5).
According to inequality (5), (66) and (67), we obtain for each v ∈ V with
‖v‖ = 1
(70)

1√
n

inf
u∈U,‖u‖=1

√
1− 〈u, v〉2 ≤ inf

u∈U,‖u‖=1
|u− v|∞ ≤

√
2 inf
u∈U,‖u‖=1

√
1− 〈u, v〉2.

In addition, we can express ∆(U, V ) by
(71)

∆(U, V ) = max( sup
v∈V,‖v‖=1

inf
u∈U,‖u‖=1

|u− v|∞ , sup
u∈U,‖u‖=1

inf
v∈V,‖v‖=1

|u− v|∞)

so that inequality (65) is now a direct conclusion of inequality (70) and equa-
tion (71). 2

ε-flat Submanifolds

The boundary of a Cp-cell is a finite union of of lower dimensional Cp-cells,
and these Cp-cells are graphs of Cp-mappings, cf. [6] lemma 2.6, so that they
are Cp-submanifolds. Moreover, the tangential-space exists at each point of
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the manifold.
In general the gradient of these functions is not bounded. We want to cover
the boundary by ε-flat submanifolds. These manifolds can be locally repre-
sented as graphs of Cp-mappings with bounded derivative in some suitable
coordinates.
First, we recall the concept of ε-flat submanifold as it is presented in [33].

Definition 4.9 Let M ⊂ Rn be a C1-submanifold and ε > 0. M is called
ε-flat if for all x, y ∈M

(72) δ(Tx(M), Ty(M)) < ε.

where Tx(M) denotes the tangent space of M at x.

The following proposition shows one of our interests in ε-flat submani-
folds, i.e that, after a suitable change of the coordinate system, we can cover
them by a finite disjoint union of some lower dimensional set and of graphs
of functions with bounded derivative. Furthermore, this proposition provides
us with an estimation for this bound.

Proposition 4.10 Let M ⊂ Rn be an definable Cp-submanifold of dimension
d < n such that the image of the tangent mapping is contained in k ε/2-balls
of Gd,n(R), and let U ⊂ Rn be a linear subspace of dimension d satisfying

(73) δ(Tx(M), U) < c < 1

whenever x ∈M for a suitable c > 0. Then the following holds true:

(i) There exist finitely many disjoint ε-flat Cp-submanifolds M1, ...,Mr ⊂
M of dimension d such that

(74) dim(M \ ∪ri=1Mi) < d,

and πU : Mi → U is Cp-diffeomorphic onto its image.

(ii) Let Fi : πU(Mi) → πU⊥(Mi) which sends u ∈ πU(Mi) to πU⊥(π−1
U (u)).

Then Fi is a definable Cp-mapping with

(75) ‖∇Fi‖ ≤
√
n− d

c√
1− c2

.
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Proof:
(i): We consider M in an orthogonal coordinate system induced by U ×U⊥.
Let D1, ..., Dk be the ε/2-balls in Gd,n(R) and τ : M → Gd,n(R) the tangent
mapping. Let (Bl)l∈L be a finite Cp-cell decomposition compatible with M
and τ−1(D1), ..., τ

−1(Dk). Let the Mi be the cells with Mi ⊂ M such that
dim(Mi) = d. By construction, each Mi is ε-flat.
Claim: Every cell Mi is the graph of a Cp-mapping from an open Cp-cell of
U into U⊥.
Mi is a (σ1, ..., σn)-cell with σi either 0 or 1. If one of the σd+1, ..., σn is 1,
there is at least one u0 ∈ U⊥ \ {0} such that u0 belongs to the tangent space
of M at some x. This contradicts the assumption that δ(TxM,U) < 1.
Hence πU restricted to Mi is an injective mapping, and therefore πU |Mi

is
Cp-diffeomorphic onto its image.
Furthermore, dim(M \ ∪ri=1Mi) < d by the choice of the Mi.
(ii): Let V be the tangent space of Mi at x, and denote by ωU the projection
of V onto U . We consider the mapping u 7→ πU⊥(ω−1

U (u)). The derivative of
this mapping and the derivative of Fi at u = πU(x) coincide.
Hence, we have to estimate the Euclidean norm of this linear mapping.
Since δ(V, U) < c, i.e.

sup
v∈V,‖v‖=1

inf
u∈U,‖u‖=1

√
1− 〈v, u〉2 = sup

v∈V,‖v‖=1

√
1− ‖πU(v)‖2 < c,

and ‖πU(v)‖2 + ‖πU⊥(v)‖2 = 1 for ‖v‖ = 1, we obtain δ(V, U⊥) >
√

1− c2.
So, ‖ωU(v)‖ >

√
1− c2 ‖v‖ and ‖πU⊥(v)‖ < c ‖v‖ such that

(76)
∥∥πU⊥(ω−1

U (u))
∥∥ < c√

1− c2
‖u‖ .

Therefore the operator R-norm of this linear mapping is bounded by c√
1−c2 ,

and therefore its Euclidean R-norm is less than
√
n− d c√

1−c2 . 2

We now transfer the idea of ε-flat submanifolds to functions and cells.

Definition 4.11 We call a function f ε-flat if its graph is ε-flat. We call
Λp-regular cells and Cp-cells ε-flat if their defining functions are ε-flat.

The boundary of an ε-flat cell is in general no ε-flat submanifold. However,
except for a sufficiently small set, the boundary is the finite union of ε-flat
submanifolds.

Lemma 4.12 Let n ≥ 1 and let A ⊂ Rn be a definable ε-flat Cp-cell of
dimension n. Then there is a definable subset B ⊂ ∂A with dim(B) < n− 1
such that ∂A\B is a Cp+1-submanifold, and the image of the tangent-mapping
τ : ∂A \B → Gn−1,n(R) is covered by 2n ε-balls with respect to δ.
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Proof: We proof the lemma by induction on n.
Let n = 1.
In this case the defining functions are constant functions, and the boundary
consists of two isolated points at most; so no proof is necessary.
Let n > 1,
and we suppose that the lemma holds true for n− 1.
Then A = (f, g)B where f, g are ε-flat Cp-mappings, and there is a definable
n−3-dimensional set C ⊂ ∂B such that ∂B\C is a Cp+1-submanifold of Rn−1,
and the image of the tangent-mapping τ |∂B\C in Gn−2,n−1(R) is contained in
2n− 2 ε-balls B1, ..., B2n−2 of Gn−2,n−1(R) with respect to δ.
Now we set

(77) B′
i := {M ×R |M ∈ Bi}, i = 1, ..., 2n− 2.

Then, by proposition 4.8 (ii), each B′
i is contained in an ε-ball in Gn−1,n(R),

and, moreover,

(78) τ((∂B \ C)×R) ⊂ ∪2n−2
i=1 B′

i.

Furthermore, we put B′
2n−1 := τ((f)B) and B′

2n := τ((g)B).
We now choose a Cp+1-cell decomposition of Rn which is compatible with the
sets ∂A, (∂B\C)×R, (f)B, (g)B. Let E1, ..., Er denote the cells of dimension
n− 1 which are contained in ∂A. Then

(79) dim
(
∂A \ ∪rj=1Ej

)
< n− 1

by the choice of the Ej. Each cell Ej is either contained in (∂B \C)×R, or
in (f)B, or in (g)B. In any of the three cases, τ(Ej) ⊂ ∪2n

i=1B
′
i. Hence, the

lemma is proved. 2

Finite Open Covers of the Grassmannian

By [5] chapter 3.4 , the Grassmannian Gk,n(R) is isomorphic to the algebraic
set

(80) Hn,k(R) := {A ∈ Rn×n | At = A, A2 = A, tr(A) = k}.

The isomorphism σ maps a vector space V to the matrix πV .
For A ∈ Hn,k(R), u ∈ Rn we obtain 〈Au, (Id− A)u〉 = 〈u, (A− A2)u〉 = 0,
so ‖Au‖2 + ‖(Id− A)u‖2 = 1. Hence,

(81) ‖A‖op ≤ 1
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which induces that the Euclidean R-norm ‖A‖ of A is bounded by
√
n.

Thus, Hn,k(R) is a closed and bounded subset of Rn×n. This means that, for
the real numbers, Hn,k(R) is a compact set, and therefore each open cover of
Hn,k(R) has a finite subcover. This conclusion does not hold true for Hn,k(R)
if R 6= R.
Our aim is to show that we can cover Gk,n(R), respectively Hn,k(R), by
finitely many ε-balls with respect to the corresponding R-metric if we choose
a positive ε ∈ Ralg ⊂ R.
We first show an open cover property of Hn,k(R), cf. lemma 4.13.
We look at the formula ΦH((xij)):

(82)
∧

1≤i,j≤n

[
xij = xji ∧

n∑
l=1

xilxlj = xij

]
∧

n∑
l=1

xll = k

So, A ∈ Rn×n belongs to Hn,k(R) iff Ssemialg(R) |= ΦH(A). Moreover we
obtain that Hn,k(R) is Ralg-definable.

Lemma 4.13 Let ε ∈ Ralg ⊂ R be positive. Then we can cover Hn,k(R) with
finitely many ε-balls

(83) BR
ε (Ai) := {A ∈ Hn,k(R) | ‖A− Ai‖ < ε}

where the A1, ..., ArA ∈ Hn,k(R).

Proof: Hn,k(R) is compact. Hence, for given ε ∈ Ralg there areA1, ..., Ar ∈
Hn,k(R) such that

(84)
r⋃
i=1

BR
ε (Ai)

covers Hn,k(R). We formulate for this ε and r the following sentence Φ(ε, r):

(85) ∃ri=1Ai ∈ Hn,k(R) ∀A ∈ Hn,k(R) : ‖A1 − A‖ < ε ∨ ... ∨ ‖Ar − A‖ < ε

This sentence is Ralg-definable and Ssemialg(R) |= Φ. Using the transfer-
principle we conclude that Ssemialg(Ralg) |= Φ(ε, r). Applying the transfer-
principle again we see that Ssemialg(R) |= Φ(ε, r) for arbitrary real closed
field R. So the lemma is proved. 2

Proposition 4.14 Let 0 < ε ∈ Ralg ⊂ R. There are finitely many ε-balls in
Gd,n(R) with respect to δ which cover Gd,n(R).
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Proof: step 1: For U, V ∈ Gk,n(R),

(90) ‖πV − πU‖ < ε→ δ(U, V ) < ε

applies, where we identify πV with its corresponding matrix in Hn,k(R) if we
consider the Euclidean norm.
We consider the following inequality:

δ(U, V ) = ‖πU⊥πV ‖op(91)

= ‖πV − πUπV ‖op
= ‖πV πV − πUπV ‖op
≤ ‖πU − πV ‖op
≤ ‖πU − πV ‖

Now inequality (90) is evident.

step 2:
Let the sets BR

ε (Ai) cover Hn,k(R), cf. lemma 4.13. Then the ε-balls

(92) {U ∈ Gk,n(R)|δ(U, σ−1(Ai)) < ε} ⊃ σ−1
(
BR
ε (Ai)

)
are obviously a cover of Gk,n(R). 2

Metric-Combinatorial Properties of Lines

The last lemma of this section plays the key role in the proof of theorem 4.5.
Together with proposition 4.10 and by using a suitable coordinate system
which is induced by this lemma, we get an estimate for the bounds of the
derivatives of finitely many functions whose graphs define ε-flat submanifolds.

We denote by τn the volume of the unit-ball B1(0). We will need a suitable
lower bound for the fraction τn

τn−1
, for n ≥ 2. We compute this in the next

lemma.

Lemma 4.15 For n ≥ 2 applies

(93)
τn
τn−1

>
2√
n
.

Proof: In [28] example 5.7 it is shown that

(94) τn =
πn/2

Γ
(
n
2

+ 1
)
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where Γ denotes the Gamma-function. We recall the functional equation of
Γ, i.e.

(95) Γ(x+ 1) = xΓ(x), x > 0

and special values of it, i.e. Γ(1/2) =
√
π, and Γ(1) = 1. For n = 1, 2, 3 we

now obtain the values τ1 = 2, τ2 = π, and τ3 = 4
3
π, so that

(96)
τ2
τ1

=
π

2
≥
√

2 =
2√
2
, and

τ3
τ2

=
4

3
≥ 2√

3

Now we assume the validity of (93) for n′ ≤ n. Then
(97)
τn+1

τn
=

√
πΓ
(
n
2

+ 1)

Γ
(
n+1

2
+ 1
) =

√
πnΓ

(
n−2

2
+ 1)

(n+ 1)Γ
(
n−1

2
+ 1
) =

n

n+ 1

τn−1

τn−2

≥ n

n+ 1

2√
n− 1

Together with

(98)
n2

(n+ 1)2(n− 1)
=

n2

n3 + n2 − n− 1
≥ n2

n3 + n2
=

1

n+ 1

we obtain the statement of the lemma. 2

In the next lemma we study numerically a metric-combinatorial property
of lines in Rn. This lemma plays the key-role for bounding the gradient. The
idea is down to [33], but we improve this result by giving an explicit bound.
The proof given in [33] provides us with an exponentially increasing bound
whereas we can show that the bound increases only polynomially.

Lemma 4.16 Let 2 ≤ n ≤ r ∈ N. For all lines G1, ..., Gr of Rn there exists
a line P ⊂ Rn with the following property:

(102) δ(P,Gi) < c, i = 1, ..., r

with c√
1−c2 =

√
nr2 − 1.

Proof: For each i = 1, ..., r we look at the sets

XGi
(c) :=

⋃
H∈G1,n(R)

δ(H,Gi)<c

H ∩B1(0) = {x ∈ B1(0) | δ(Rx,Gi) < c}(103)

YGi
(c) :=

⋃
H∈G1,n(R)

δ(H,Gi)≥c

H ∩B1(0) = {x ∈ B1(0) | δ(Rx,Gi) ≥ c}.
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We find a line P with

(104) δ(P,Gi) < c, i = 1, ..., r

if and only if

(105)
r⋂
i=1

XGi
(c) 6= {0}.

This is equivalent to the following statement:

(106)
r⋃
i=1

YGi
(c) 6= B1(0) \ {0}

The strategy is to find a c large enough so that the volume of YGi
(c) is that

small that

(107) rVol(YGi
(c)) < Vol(B1(0) \ {0}) = Vol(B1(0)) = τn.

The volume YGi
(c) does not depend on the choice of the line Gi. It always

stays the same for all lines. Therefore we estimate the volume for G = Ren.
We note that

(108) YG(c) ⊂ {(x1, ..., xn−1, xn) ∈ Rn |
n−1∑
j=1

x2
j ≤ 1, |xn| ≤

√
1− c2}.

Therefore the volume Vol(YGi
(c)) is bounded by

(109) Vol(YGi
(c)) ≤ 2

√
1− c2τn−1.

From equation (107) and (109) we conclude that c is a suitable constant if it
satisfies the following inequality:

(110)
√

1− c2 <
τn
τn−1

1

2r

According to lemma 4.15, the estimation

(111)
√

1− c2 = 2
1

2
√
nr

=
1√
nr

suits our needs, and therefore

(112) c =

√
1− 1

r2n
.
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Now we can give a suitable estimation for c/
√

1− c2:

(113)
c√

1− c2
≤
√

1− 1

r2n

√
nr =

√
nr2 − 1

2

In the proof of theorem 4.5 we will refer to the following statement.

Lemma 4.17 Let 1 ≤ n ∈ N and 0 < ε < 1
256n6 . Let G1, ..., G2n ⊂ Rn be

lines. Then there is a line P ⊂ Rn such that the following holds true:
If H1, ..., H2n ⊂ Rn are lines with δ(Hi, Gi) < ε, i = 1, ..., 2n, then

(114) δ(Hi, P ) < c+ ε, i = 1, ..., 2n

with c+ε√
1−(c+ε)2

≤ 2n
3
2 .

Proof: step 1:
First we show that we can replace R in the statement of lemma 4.16 by an
arbitrary real closed field R.
Each line H ⊂ Rn is determined by a unit-vector yi ∈ Rn. We fix r and n
and consider the formula Φ(a, b) with the variables a and b:

∀1≤i≤r,1≤j≤nyi,j

[[ ∧
1≤i≤r

n∑
j=1

y2
i,j = 1

]
→ ∃1≤l≤npl

[ n∑
l=1

p2
l = 1 →(115)

[ ∧
1≤i≤r

(
n∑
k=1

pkyi,k)
2 >

1

a2b

]]]
For a = r and b = n the formula Ssemialg(R) |= Φ(r, n). Since the numbers
r, n ∈ Ralg, we can apply the transfer principle, proposition 2.9, to Φ(r, n)
so that Ssemialg(Ralg) |= Φ(r, n). By applying the transfer principle again,
Ssemialg(R) |= Φ(r, n) for each real closed field R.

step 2:
In our case r = 2n, i.e.

(116) 1− c2 =
1

4n3
, c =

√
1− 1

4n3
.

We make use of the inequality

(117) 1− x ≤
√

1− x ≤ 1− x

2
, 0 ≤ x <

1

2
.
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Hence, with εn = 1
256n6 , we get

(118) c+ εn =

√
1− 1

4n3
+ εn ≤ 1− 1

8n3
+ εn ≤ 1− 1

16n3
≤
√

1− 1

16n3

and (
1− (c+ εn)2

)− 1
2 =

(
1− c2 − 2cεn − ε2n

)− 1
2(119)

≥
( 1

4n3
− 4εn

)− 1
2

= 2n
3
2

(
1− 16n3

256n6

)− 1
2

= 2n
3
2

(
1− 1

16n3

)− 1
2

which induces

(120)
c+ εn√

1− (c+ εn)2
≤ 2n

3
2 .

The lemma is now a straight conclusion of the triangle inequality of δ. 2

Proof of Theorem 4.5

Preliminary Lemmata

Before we prove theorem 4.5 we give two technical lemmata.

Lemma 4.18 Let U ⊂ Rd be an open set, f : U → Rn−d a Cp-function, and
u ∈ U . For all α ∈ Nd, |α| = p, let

(121) ‖Dαf(u)‖ ≤M.

If ϕ : Rd → Rd is a linear orthogonal isomorphism, then for v = ϕ−1(u)

(122) ‖Dα(f ◦ ϕ)(v)‖ ≤Md
p
2

applies.

Proof: Let |Dαfk(u)| ≤ Mk, k = 1, ..., n − d, |α| = p. Then we may
assume that

(123) M =

(
n−d∑
k=1

M2
k

) 1
2

.
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So we may restrict our examination to the case n = d+ 1.
Let ϕ be given by the matrix (ϕi,j)1≤i,j≤d. Then for each i,

∑d
j=1 ϕ

2
i,j = 1,

and therefore

(124)
d∑
j=1

|ϕi,j| ≤
√
d.

If Dα = ∂
∂xl1

... ∂
∂xlp

, we can express Dα(f ◦ ϕ)(v) as

(125) Dα(f ◦ ϕ)(v) =
∑

1≤k1,...,kp≤d

∂

∂xl1
...

∂

∂xlp
f(ϕ(v))ϕk1,l1 · ... · ϕkp,lp ,

so that it remains to show that

(126)

∣∣∣∣∣∣
∑

1≤k1,...,kp≤d

ϕk1,l1 · ... · ϕkp,lp

∣∣∣∣∣∣ ≤ d
p
2 .

We prove this by induction on p.
The case p = 1 is evident by inequation (124).
We now assume that

(127)

∣∣∣∣∣∣
∑

1≤k1,...,kp−1≤d

ϕk1,l1 · ... · ϕkp−1,lp−1

∣∣∣∣∣∣ ≤ d
p−1
2

applies. Then

∣∣∣∣∣∣
∑

1≤k1,...,kp≤d

ϕk1,l1 · ... · ϕkp,lp

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

1≤k1,...,kp−1≤d

ϕk1,l1 · ... · ϕkp−1,lp−1

d∑
kp=1

ϕkp,lp

∣∣∣∣∣∣
(128)

≤

∣∣∣∣∣∣
∑

1≤k1,...,kp−1≤d

ϕk1,l1 · ... · ϕkp−1,lp−1

∣∣∣∣∣∣
∣∣∣∣∣∣

d∑
kp=1

ϕkp,lp

∣∣∣∣∣∣
≤ d

p−1
2

√
d

= d
p
2 .

2

Lemma 4.19 Let M ⊂ Rn be a definable connected C1-submanifold of di-
mension d, and let X, Y ⊂ M be two disjoint submanifolds of dimension d.
Then cl (X) ∩ Y = ∅.
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Proof: We assume that there is an x ∈ cl (X) with x ∈ Y . Since M is a
C1-submanifold, there is an open definable neighbourhood U of x ∈M and a
definable C1-diffeomorphism ϕ : U → V where V is an open neighbourhood
of 0 such that ϕ(x) = 0 and

(129) ϕ(U ∩M) = V ∩ {x ∈ Rn | xnd+1 = ... = xn = 0}.

Since ϕ(X∩U) and ϕ(Y ∩U) are open in V ∩{x ∈ Rn | xnd+1 = ... = xn = 0},
there is an open neighbourhood B of 0 such that

(130) B ∩ V ∩ {x ∈ Rn | xnd+1 = ... = xn = 0} = B ∩ ϕ(Y ).

Hence, since X and Y are disjoint, x 6∈ cl (X). 2

We now prepare the proof of theorem 4.5 by means of the following lemma.

Lemma 4.20 Let d ≤ n ∈ N, n ≥ 1 and εn = 1
256n6 . Let A ⊂ Rn be a

definable set of dimension d. Let In,d(A) be the following statement:

For each positive integer p and for all ε ∈ Ralg, 0 < ε ≤ εn, we can parti-
tion A, each definable subset B of Rn with dim(B) < d, and each definable
set B̃ ⊂ Rñ, ñ < n, into finitely many definable sets X1, ..., Xr such that

each Xi is an ε-flat Λp-regular cell with constant 2(p+2
2 )−1n

p+3
2 .

Then for all definable A ⊂ Rn of dimension d, the statement In,d(A) holds
true.

Proof: Throughout the proof we often use the obvious fact that, for
disjoint definable sets X, Y ⊂ Rn, In,d(X ∪Y ) holds true if both In,d(X) and
In,d(Y ) hold true.
We now prove In,d(A) by induction on n and d.
Let n = 1.
The cases I1,0 and I1,1 are evident according to o-minimality.

Let n > 1.
We now assume that In−1,n−1 holds true. We show by induction on d that
In,d holds true.

d = 0:
A ⊂ Rn consists of finitely many points A = {a1, ..., ar}.
Each set {ai} is the graph of the function hi : R0 → Rn, h(0) = ai. Since the
hi are constant functions, they are Λp-regular with any constant and they
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are ε-flat.

We now assume that In,d−1(B) holds true for each definable B ⊂ Rn of
dimension d − 1. We show that for every definable A ⊂ Rn of dimension d,
In,d(A) holds true.
case 1: 0 < d < n

step 1a:
Let A ⊂ Rn be a definable set of dimension d. According to theorem 2.23, we
can decompose Rn into finitely many Cp+1-cells which are compatible with
A. We denote by A1, ..., ArA the cells of dimension d which are contained in
A so that

(131) dim (A \ ∪rAi=1Ai) < d,

and we apply In,d−1 to A \ ∪rAi=1Ai.
So it remains to prove the validity of In,d(Ã) for all d-dimensional Cp+1-cells
Ã ⊂ Rn.

step 1b:
Let B ⊂ Rn be a Cp+1-cell of dimension d.
According to proposition 4.14, we fix a finite definable open cover

(132)
⋃
j∈J

Bε/2(Gj) = Gd,n(R)

of the Grassmannian with ε/2-balls.
B is a Cp+1-submanifold so that the tangent-mapping τ : B → Gd,n(R) is
definable and continuous. Hence, the preimages Bj = τ−1(Bε/2(Gj)) form an
open cover of B with respect to the Euclidean topology restricted to B, i.e.

(133) B =
⋃
j∈J

Bj,

and, according to the construction, every Bj is an ε-flat submanifold of Rn.
In order to obtain pairwise disjoint ε-flat submanifolds, we select a Cp+1-cell
decomposition of Rn which is compatible with the Bj, j ∈ J .
For all j we denote byBj,l, l ∈ Lj, the cells of dimension d which are contained
in Bj. Then

(134) dim
(
Bj \ ∪l∈Lj

Bj,l

)
< d.

We apply In,d−1 to each Bj \ ∪l∈Lj
Bj,l.

Every cell Bj,l is an ε-flat Cp+1-submanifold so that it remains to show that
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In,d(B̃) holds true for each definable d-dimensional ε-flat Cp+1-submanifold
B̃ of Rn.

step 1c:
Let C ⊂ Rn be a definable ε-flat Cp+1-submanifold of dimension d. We choose
a linear subspace U ∈ Gd,n(R) such that

(135) δ(V, U) < εn <
1

2
, V ∈ τ(C).

From now on we consider C in the orthogonal coordinates induced by U×U⊥.
According to proposition 4.10, there are finitely many definable Cp+1-map-
pings fk : Ck → U⊥, k = 1, ..., rC , where the Ck are open definable subsets
of U such that

(136) ‖∇fk‖ ≤
1
2√

1−
(

1
2

)2√n− d ≤
√
n

and

(137) dim (C \ ∪rCk=1(fk)Ck
) < d.

We apply In,d−1 to C \ ∪rCk=1(fk)Ck
.

Every fk is a definable ε-flat Cp+1-mapping so that it remains to show the
validity of In,d(Γ(f)) for all graphs Γ(f)of definable ε-flat Cp+1-mappings
f : C̃ → Rn−d with ‖∇f‖ ≤

√
n.

step 1d:
Let D ⊂ Rd be open and f : D → Rn−d a definable ε-flat Cp+1-mapping such
that the gradient of f it is bounded by

√
n.

According to corollary 3.5, there is a closed definable set Z ⊂ D of dimension
less than d such that f restricted to D \ Z is a Λp-regular function with
constant

(138)
√
n− d2(p+2

2 )−2√n.

The factor
√
n− d is needed because of f being from Z to Rn−d. The graph

of the restriction remains ε-flat.
By means of Id,d, we choose a Λp-regular ε-flat partition of Rd with con-

stant 2(p+2
2 )−1d

p+3
2 which is compatible with the set D \Z, and we denote by

D1, ..., DrD the ε-flat Λp-regular cells of dimension d which are contained in
D \ Z. Then

(139) dim (D \ ∪rDm=1Dm) < d,
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and we apply In,d−1 to f(D \ ∪rDm=1Dm).
Now we consider each Dm in the coordinates in which it is standard cell, i.e.
there is a linear orthogonal change of coordinates of Rd given by the matrix
ϕm such that ϕ−1

m (Dm) is an ε-flat standard Λp-regular cell with constant

2(p+2
2 )−1d

p+3
2 .

Since ε-flatness does not depend on the choice of the coordinate system, the
f ◦ ϕm are ε-flat. According to lemma 4.18, they are Λp-regular functions

with constant 2(p+2
2 )−2

√
n− d

√
nd

p
2 .

Since d < n, both constants are less than 2(p+2
2 )−1n

p+3
2 so that the

(140) (f ◦ ϕm)ϕ−1
m (Dm), m = 1, ..., rD,

are ε-flat standard Λp-regular cells with constant 2(p+2
2 )−1n

p+3
2 .

Thus, In,d(A) holds true for each definable d-dimensional subset A ⊂ Rn.

case 2: d = n
step 2a:
Let dimA = d = n.
We choose a Cp+1-cell decomposition of Rn compatible with A and denote by
A1, ..., ArA the cells of dimension n which are contained in A. Then

(141) dim (A \ ∪rAi=1Ai) < n,

and we can apply In,n−1 to A \∪rAi=1Ai so that it remains to show the validity
of In,n(A) for each open Cp+1-cell A of Rn.

step 2b:
Let B = (f, g)X be an open Cp+1-cell.
According to proposition 4.14 we fix a finite cover of Gn−1,n(R) with ε/2-balls,
i.e.

(142)
⋃
i∈I

Bε/2(Gi) = Gn−1,n(R).

Let τf : (f)X → Gn−1,n(R) and τg : (g)X → Gn−1,n(R) denote the tangent-
mappings. We set τ±∞ := Rn−1 × {0} since we treat ±∞ as constant func-
tions. We denote by π : Rn → Rn−1 the projection on the first n − 1
coordinates.
By In,n−1, we choose an ε-flat Λp+1-regular partition of π(B) compatible with

(143) π(B), π(τ−1
f (Bε(Gi))), π(τ−1

g (Bε(Gi))), i ∈ I.
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Let B1, ..., BrB be the cells of dimension n−1 which are contained in at least
one of the sets of (143).
For each j there is a linear orthogonal coordinate system of Rn−1 in which
Bj is an ε-flat Λp+1-regular standard cell. With respect to this coordinate
system, the sets

(144) (f, g)Bj
, j = 1, ..., rB,

are ε-flat Cp+1-cells since f and g restricted to Bj are both ε-flat Cp+1-
mappings.
Moreover,

(145) dim
(
π(B) \ ∪rBj=1Bj

)
< n− 1

by the choice of the Bj.
So we conclude that

(146) dim
(
B \ ∪rBj=1(f, g)Bj

)
< n.

We apply In,n−1 to B \ ∪rBj=1(f, g)Bj
so that it remains to show that In,n(B̃)

is valid for each definable open ε-flat Cp+1-cell B̃ ⊂ Rn.

step 2c:
Let C be an open ε-flat Cp+1-cell in Rn.
According to lemma 4.12 there is a definable subset Y ⊂ ∂C such that

(i) dim(Y ) < n− 1,

(ii) ∂C \ Y is a Cp+1 submanifold, and

(iii) τ : ∂C\Y → Gn−1,n(R) is covered by 2n ε/2-balls Bε/2(G
′
i),...,Bε/2(G

′
2n).

By lemma 4.17 we find a line P such that for each family of linesH1, ..., H2n

with δ(Hi, G
′
i
⊥) < ε, i = 1, ..., 2n,

(147) δ(Hi, P ) < c+ ε, i = 1, ..., 2n,

applies, where

(148)
c+ ε√

1− (c+ ε)2
≤ 2n

3
2 .

From now on we consider C in an orthogonal coordinate system induced by
P⊥×P . Note that, since P and each G⊥

i are lines, we have δ(P⊥, Gi) < c+ε.
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Let π : Rn → Rn−1 be the projection onto the first n− 1 coordinates.
According to proposition 4.10 there exist finitely many definable open sets
D1, ..., DrD ⊂ π(∂C) and ε-flat Cp+1-functions fk : Dk → R such that

(fk)Dk
⊂ ∂C \ Y, k = 1, ..., rD,(149)

‖∇fk‖ ≤
c+ ε√

1− (c+ ε)2
≤ 2n

3
2 , k = 1, ..., rD, and(150)

dim ((∂C \ Y ) \ ∪rDk=1(fk)Ek
) < n− 1.(151)

Moreover, the (fk)Dk
are disjoint.

By dim(Y ) < n− 1 and inequalities (151) we obtain

(152) dim (∂C \ ∪rDk=1(fk)Dk
) < n− 1.

step 2d:
We choose a Cp+1-cell decomposition of Rn which is compatible with the sets

(153) C, ∂C and (fk)Dk
, k = 1, ..., rD.

We further assume that the number K of cells of this decomposition is min-
imal, i.e. that each Cp+1-cell decomposition of Rn which is compatible with
the sets of (153) consists of at least K cells.
By the definition of decompositions, cf. 2.22, the projection of the cells onto
the first n− 1 coordinates are a decomposition of Rn−1.
We denote by E1, ..., ErE the open cells of the decomposition which are con-
tained in C. Then their projections are open cells in Rn−1, and we have to
distinguish between two cases.

π(El) ⊂ π(C) \ π(∂C), or(i)

π(El) ⊂ π(∂C).(ii)

subcase (i):
In this case El must be of the form

(154) El = (−∞,+∞)π(El)

since by assumption, (−∞,+∞)π(El) ⊂ C, and (−∞,+∞)π(El) ∩ ∂C = ∅,
and the number of cells is minimal.
subcase (ii):
Since inequation (152) applies and dim(π(El)) = n−1, π(El) ⊂ Dk, for some
k. Since the cell decomposition is compatible with the (fk)Dk

we either have
π(El) ⊂ Dk or π(El) ∩Dk = ∅.
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We denote by f l1, ..., f
l
rl

those functions of the f1, ..., frk for which π(El) ⊂ Dk

holds true. Moreover, we may assume that f lj < f lj+1 on π(El).
By the compatibility of the decomposition with the (fk)Dk

, cf. (153), El is a
subset of one of the following sets.

(−∞, f l1)π(El)(a)

(f lj, f
l
j+1)π(El), j = 1, ..., rl − 1(b)

(f lrl ,∞)π(El)(c)

Moreover, each of the sets (a), (b) and (c) is the union of cells V of the
decomposition with π(V ) = π(El). Hence, by minimality of the number of
cells, El equals one of the sets of (a), (b) or (c).

Therefore we have shown that, after a change of the coordinate system,
we can partition an open ε-flat Cp+1-cell C into some lower dimensional set
and finitely many open Cp+1-cells E1, ..., ErE with El = (hl, gl)π(El) such that
hl and gl are ε-flat Cp+1-functions with hl < gl, and both ‖∇hl‖ and ‖∇gl‖
are bounded by the constant 2n

3
2 .

Moreover,

(155) dim (C \ ∪rEl=1El) < n.

We apply In,n−1 to C \ ∪rEl=1El so that it remains to show the validity of
In,n(E1), ..., In,n(ErE ).

step 2e:
Let E be one of the cells El with E = (f, g)X .
According to corollary 3.5 there exists a definable subset Z ⊂ X of dimension
less than n−1 such that f and g are both Λp-regular on X \Z with constant

2(p+2
2 )−22n

3
2 ; f and g remain ε-flat. Since X ⊂ Rn−1, we can choose by

In−1,n−1 an ε-flat Λp-regular partition of X compatible with Z with constant

2(p+2
2 )−1(n− 1)

p+3
2 . We denote by V1, ..., VrV the cells of dimension n− 1 and

select for each Vm a linear orthogonal coordinate system in which Vm is a
standard Λp-regular cell. Furthermore, we consider (f, g)Vm in the coordinate
system induced by Vm × V ⊥

m .
Hence, by lemma 4.18, each f and g restricted to Vm are ε-flat Λp-regular

functions with constant 2(p+2
2 )−22n

3
2n

p
2 = 2(p+2

2 )−1n
p+3
2 , and therefore each

(156) (f, g)Vm , m = 1, ..., rV ,

is an ε-flat Λp-regular cell with constant 2(p+2
2 )−1n

p+3
2 .

Moreover,

(157) dim (E \ ∪rVm=1(f, g)Vm) < n
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so that we can apply In,n−1 to E \ ∪rVm=1(f, g)Vm .
So the lemma is proved. 2

Proof of Theorem 4.5

Let C := 2(p+2
2 )−1n

p+3
2 .

We proof the following statement Id:
There are finitely many definable subsets Bj,l, n − d ≤ j ≤ n, 1 ≤ l ≤ rj of
Rn such that the following holds true:

(i) Bj,l is a Λp-regular cell with constant C for n− d ≤ j ≤ n, 1 ≤ l ≤ rj,

(ii) dim(Bj,l) = j for n− d ≤ j ≤ n, 1 ≤ l ≤ rj,

(iii) dim
(
Rn \ ∪nj=n−d ∪

rj
l=1 Bj,l

)
< n− d,

(iv) for each n−d ≤ j ≤ n, 1 ≤ l ≤ rj and k = 1, ..., rA, either Bj,l∩Ak = ∅
or Bj,l ⊂ Ak applies, and

(v) for j, j̃ ≥ n− d, 1 ≤ l ≤ rj and 1 ≤ l̃ ≤ rj̃ the following holds true:

If Bj,l ⊂ cl
(
Bj̃,l̃

)
, then Bj,l ⊂ ∂Bj̃,l̃ or Bj,l = Bj̃,l̃.

The statement of theorem 4.5 is In.
We proof Id by induction on d.
Let d = 0.
We select a C1-cell decomposition of Rn compatible with the sets A1, ..., ArA ,
and denote by Xn,1, ..., Xn,sn the C1-cells of dimension n.
According to lemma 4.20 we can partition each of the Xn,i into finitely many
Λp-regular cells with constant C. We denote by Bn,1, ..., Bn,rn the Λp-regular
cells of dimension n, so

(158) dim (Rn \ ∪rnl=1Bn,l) < n.

Hence, (i), (ii) and (iii) hold true.
(iv) holds true since the C1-cell decomposition is compatible with the Ak.
(v) holds true since the Bn,j are disjoint open sets.

Hence, I0 is valid.

Let 0 ≤ d < n We assume that Id holds true and show the validity of Id+1.
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We select a C1-cell decomposition of Rn compatible with the following
sets:

(159) A1, ..., ArA , Bj,l, ∂Bj,l, j = n− d, ..., n, l = 1, ..., rj

We denote by Xn−(d+1),1, ..., Xn−(d+1),rd+1
the C1-cells of dimension n−(d+1)

which are contained in

(160) Rn \
n⋃

j=n−d

rj⋃
l=1

Bj,l

so that, by (iii) of Id,

(161) dim

(
Rn \

(
n⋃

j=n−d

rj⋃
l=1

Bj,l ∪
rd+1⋃
i=1

Xd+1,i

))
< n− (d+ 1).

We now choose a further Cp-cell decomposition of Rn which is compatible
with the sets

(162) Xn−(d+1),1, ..., Xn−(d+1),rd+1
, ∂Xn−(d+1),1, ..., ∂Xn−(d+1),rX .

We denote by Y1, ..., YrY the cells of dimension n−(d+1) which are contained
in some Xn−(d+1),i.
Since dim(∂Xn−(d+1),i) < n − (d + 1), we conclude by the compatibility of
the decomposition that for all Yk

(163) Yk ∩ ∂Xn−(d+1),i = ∅

applies. Moreover, in connection with equation (161) we conclude that

(164) dim

(
Rn \

(
n⋃

j=n−d

rj⋃
l=1

Bj,l ∪
rY⋃
k=1

Yk

))
< n− (d+ 1).

According to lemma 4.20 we can partition each of the sets Yk into finitely
many Λp-regular cells with constant C, and by Bn−(d+1),1, ..., Bn−(d+1),rd+1

we
denote the Λp-regular cells of dimension n− (d+ 1).
By the choice of the Bn−(d+1),i in connection with Id, (i) and (ii) are valid.
By the choice of the Bn−(d+1),i and inequation (164), (iii) holds true.
(iv) is evident since the Xn−(d+1),l either have empty intersection with Ak or
they are a subset of it, and each Bn−(d+1),i is a subset of one of the Xn−(d+1),l.
We now show property (v).
By the compatibility of the Xn−(d+1),l with the sets of (159), and since each
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Bn−(d+1),i is a subset of some Xn−(d+1),s it is evident that for j ≥ n − d we
either have Bn−(d+1),i ⊂ ∂Bj,l or Bn−(d+1),i ∩ ∂Bj,l = ∅.
It remains to show that for Bn−(d+1),i and Bn−(d+1),j it holds true that

(165) cl
(
Bn−(d+1),i

)
∩Bn−(d+1),j = ∅, i 6= j.

We have to distinguish between two cases:
Either Bn−(d+1),i and Bn−(d+1),j are both contained in the same Xn−(d+1),l,
and therefore, by lemma 4.19, cl

(
Bn−(d+1),i

)
∩Bn−(d+1),j = ∅,

or they are contained in two different Xn−(d+1),li 6= Xn−(d+1),lj .
In this case

(166) cl
(
Bn−(d+1),i

)
⊂ cl

(
Xn−(d+1),li

)
,

and Bn−(d+1),j is contained in some Yk ⊂ Xn−(d+1),lj .
By (163), Yk ∩ ∂Xn−(d+1),li = ∅. Therefore,

cl
(
Bn−(d+1),i

)
∩Bn−(d+1),j ⊂ cl

(
Xn−(d+1),li

)
∩ Yk(167)

= Xn−(d+1),li ∩ Yk
⊂ Xn−(d+1),li ∩Xn−(d+1),lj

= ∅

since different cells of a cell decomposition have empty intersection. 2
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5 Ordinary Differentiable Functions

We begin the intrinsic study of differentiable functions. Before we look at
higher order Peano differentiability we consider the more widely known or-
dinary differentiable functions. These are by definition the 1-times Peano-
differentiable functions.

For the whole chapter we fix a real closed field R and an o-minimal ex-
pansion M = (R,+,−, ·, 1, 0, <, ...) of R. If we speak of definable sets or
functions we always mean definable in the structure M.

First we recall the definition of ordinary differentiability.

Definition 5.1 Let U ⊂ Rn be an open set and let f : U → R be a function.
f is called ordinary differentiable at x0 ∈ U with derivative Df(x0) ∈ Rn if
the following equation holds true:

(168) lim
U3x→x0

f(x)− (f(x0) + 〈Df(x0), x− x0〉)
‖x− x0‖

= 0

The ordinary differentiable functions form a composition closed ring. It
is important to note that the chain-rule is valid. Although this has already
been proved in [62] chapter 7, we will prove it again in the next chapter for
the more general case of Peano-differentiable functions.
In literature we find the concepts of totally differentiable or Frechet-differen-
tiable functions. Often they are just called differentiable functions. These
concepts coincide for the Rn. In our case we speak of ordinary differentiable
in order to underline that the derivative is not necessarily continuous.

We begin the discussion by presenting several examples. These exam-
ples show that continuous and ordinary differentiability differ for definable
functions of two or more variables. The non-continuous derivatives can be
locally bounded or unbounded functions. Semidefinite derivatives are not
necessarily continuous either.
Moreover, we give an example which shows that the Implicit-Function-Theo-
rem is not valid for ordinary differentiable definable functions.

All these examples are semialgebraic functions of two variables, and the
zero-point is the only point at which the derivatives are not continuous.
This is no coincidence. We will see in later chapters that the set of points at
which ordinary differentiable functions are not continuously differentiable is
of codimension greater than or equal to 2.

After the discussion of the examples we prove that for definable functions
of one variable, ordinary and continuous differentiability coincide.
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This property enables us to characterise ordinary differentiability of a func-
tion at a certain point by means of definable C1-curves. Furthermore, we
study ordinary differentiable definable functions composed with non-definable
curves. More precisely, the curves are continuously differentiable, respec-
tively ordinary differentiable with bounded derivative.
The differentiability class of these compositions at certain points allows us to
decide whether the derivative of the function is locally bounded or continuous
at those points.

Examples

We now give four examples of definable ordinary differentiable functions. The
examples are semialgebraic functions so that they are definable in M.

For the following three examples let A be the semialgebraic set

(169) A := {(x, y) ∈ R2 | y2 ≤ x ≤ 3y2, y > 0}.

The derivative of the first function is not continuous but it is locally
bounded.

Example 5.2
The function f : R2 → R

(170) (x, y) 7→

y2
(

1−
(
x
y2
− 2
)2)2

, (x, y) ∈ A
0, (x, y) 6∈ A

is semialgebraic and ordinary differentiable on R2 but not continuously dif-
ferentiable at (0, 0), and the partial derivatives are locally bounded.

Proof: Let h : R → R be the function t 7→ (t − 1)2(t − 3)2χ[1,3](t). h
is obviously a semialgebraic continuously differentiable function. Moreover,
h′(1) = h′(3) = 0 and h′(3/2) = 3/2. With the help of h we can write f as

(171) f(x, y) =

{
y2h
(
x
y2

)
, y > 0

0, else.

If (x, y) 6∈ cl (A), then f(x, y) = 0. If y > 0, then f is a continuously
differentiable function.
Hence, f is continuously differentiable in
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(R2 \ cl (A)) ∪ (R×R+) = R2 \ {(0, 0)}.
Since h is a bounded function,

(172) lim
(x,y)→(0,0)

∣∣∣∣ f(x, y)

‖(x, y)‖

∣∣∣∣ ≤ lim
(x,y)→(0,0)

∣∣∣∣ y2

‖(x, y)‖

∣∣∣∣ sup
t∈R

h(t) = 0

so that it is evident that f is ordinary differentiable at (0, 0) with derivative
(0, 0).
The gradient of f is

(173) ∇f(x, y) =

(
h′
( x
y2

)
, 2yh

( x
y2

)
− 2x

y
h′
( x
y2

))
, (x, y) ∈ A,

and vanishes outside A.
Moreover, h′ and h are both bounded functions so that∂f

∂x
is a bounded func-

tion. Since for (x, y) ∈ A,

(174) 0 ≤ 2x

y
≤ 6y2

y
= 6y

applies, ∂f
∂y

is locally bounded as well.

h′(3/2) = 3/2. Therefore,

(175)
∂f

∂x

(3

2
t2, t
)

=

{
3
2
, t > 0

0, t ≤ 0.

Hence, f is not continuously differentiable at (0, 0). 2

In general we do not get locally bounded derivatives as we will point out
in the next example.

Example 5.3 Let g : R2 → R be the semialgebraic function defined by

(176) g(x, y) :=

y3/2
(

1− (x/y2 − 2)2
)2

, (x, y) ∈ A
0, (x, y) 6∈ A.

g is ordinary differentiable and the derivative is not locally bounded at (0, 0).

Proof: Since g(x, y) = f(x, y)/
√
|y| for y 6= 0, and 0 elsewhere, we see

that g is continuously differentiable in R2\{(0, 0)} and ordinary differentiable
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at (0, 0).
For t > 0,

(177)
∂g

∂x

(3

2
t2, t
)

=
1√
t

∂f

∂x

(3

2
t2, t
)

=
h′
(

3
2

)
√
t

=
3

2
√
t
.

Hence, the partial derivative of g with respect to x is not locally bounded at
0. 2

The next example gives us a negative answer to the question whether
the Implicit-Function-Theorem is valid for definable ordinary differentiable
functions or not.

Example 5.4 Let h : R2 → R be the semialgebraic function

(178) h(x, y) :=

x− x
(

1−
(
x
y2
− 2
)2)2

, (x, y) ∈ A
x, (x, y) 6∈ A.

h is ordinary differentiable, ∂h
∂x

(0, 0) = 1 and h(0, 0) = 0, but for each δ > 0
there is more than one C1-function ϕ : (−δ, δ) → R with ϕ(0) = 0 and
h(ϕ(t), t) = 0.

Proof: We know by the previous examples that h is continuously dif-
ferentiable in R2 \ {(0, 0)}.
We check the differentiability of h at (0, 0). If (x, y) ∈ A,

|h(x, y)− x| =

∣∣∣∣−x(1−
( x
y2
− 2
)2)2

∣∣∣∣(179)

≤ |x|
≤ 3y2.(180)

Since 3y2 is o(‖x, y‖) we conclude that h(x, y)− x is o(‖(x, y)‖) in A. Oth-
erwise, if (x, y) 6∈ A, h(x, y) − x = 0 so that it is evident that h is ordinary
differentiable at (0, 0). Furthermore, the partial derivative of h with respect
to x equals 1 at (0, 0) and h vanishes at (0, 0).

We now consider the two functions ϕ1 : (−δ, δ) → R and ϕ2 : (−δ, δ) → R
which are defined by

(181) ϕ1(t) = 0,
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and

(182) ϕ2(t) =

{
0, if 0 ≤ t

2t2, else.

Then h(ϕ1(t), t) = 0 and h(ϕ2(t), t) = 0, but ϕ1 and ϕ2 are different func-
tions in each neighbourhood of 0. 2

The derivative of the next example vanishes at (0, 0), and both partial
derivatives are positive semidefinite functions. In spite of this, the function
is not continuously differentiable.

Example 5.5 Let h : R→ R be defined by

(183) h(t) := (t4 − 4t3 + 4t2)χ[0,1](t) + χ(1,∞)(t).

We define f : B 1
2
(0) → R by

(184) f(x, y) :=

{
y4h
(
x
y4

+ 1
)
, y > 0

0, y ≤ 0.

f is semialgebraic and ordinary differentiable with positive semidefinite par-
tial derivatives. Moreover, the derivative vanishes at (0, 0) and is not con-
tinuous at (0, 0).

Proof: step 1: h is continuously differentiable with positive semidefi-
nite derivative, and h′(1

2
) = 3

2
.

Let p be the polynomial p(t) = t4 − 4t3 + 4t2 = t2(t− 2)2. Then the deriva-
tive of p is p′(t) = 4t3 − 12t2 + 8t = 4t(t − 1)(t − 2). We obtain that
p(0) = p′(0) = p′(1) = 0 and p(1) = 1. Hence, h is continuously differen-
tiable and its derivative is positive semidefinite. Moreover, h′(1

2
) = p′(1

2
) = 3

2
.

step 2: f restricted to the set B = B 1
2
(0) ∩ {(x, y) | y < |x|} is the

function

(185) f |B(x, y) =

{
y4, x > 0, 0 ≤ y < x

0, else.

Hence, f |B is obviously continuously differentiable. Moreover, for y > 0, f is
the composition of continuously differentiable functions and is therefore con-
tinuously differentiable itself. Since h is a bounded function, f is ordinary
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differentiable with derivative (0, 0).

step 3: The derivative of f vanishes for y ≤ 0, and for y > 0 we can
write it as

(186) Df(x, y) =

(
h′
( x
y4

+ 1
)
, 4y3h

( x
y4

+ 1
)

+ h′
( x
y4

+ 1
)−4x

y

)
.

Since h′ is positive semidefinite, the partial derivative of f with respect to
x is positive semidefinite. If h′

(
x
y4

+ 1
)

is positive, then x/y4 + 1 ≤ 1, and
therefore x ≤ 0. Hence, the partial derivative with respect to y is also posi-
tive semidefinite.

step 4: ∂f
∂x

is not continuous at (0, 0).
We check this by

(187) lim
t↘0

∂f

∂x

(−1

2
t4, t
)

= lim
t↘0

h′
(−1

2

t4

t4
− 1
)

= h′
(1

2

)
=

3

2
6= 0 =

∂f

∂x
(0, 0)

2

One-Dimensional Differentiable Functions

In this section we will show that in o-minimal context, ordinary differentia-
bility induces continuous differentiability for univariate functions. We begin
with an example taken from classical Analysis.

Example 5.6 Let f : R → R be

(188) f(x) =

{
x2 sin(1/x), x 6= 0,

0, x = 0.

We know that this function is ordinary differentiable in R but the derivative
is not continuous at 0. This case does not appear in o-minimal structures,
as the following proposition indicates.

Proposition 5.7 Let I ⊂ R be an open interval and let f : I → R be a de-
finable ordinary differentiable function. Then f is continuously differentiable.

Proof: Without loss of generality we consider the point 0 =: x0 ∈ I.
Moreover, we may assume that f(0) = 0 and f ′(0) = 0. For ε > 0 let M+

ε

and M−
ε be the definable sets

(189) M+
ε := {x ∈ I | f ′(x) > ε}, M−

ε := {x ∈ I | f ′(x) < −ε}.
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According to o-minimality, both sets are the disjoint union of finitely many
open intervals and single points, i.e.

(190) M±
ε = {a1} ∪ ... ∪ {am} ∪ I1 ∪ ... ∪ Ir.

Since 0 6∈M±
ε , none of the points a1, ..., am equals 0 and no interval contains

0. We show that the intervals are not of the form (0, b) or (a, 0), with a < 0
and b > 0.
We assume that (0, b) ⊂M+

ε . According to the Mean-Value-Theorem,

(191) f(t)− f(0) > ε(t− 0), t ∈ (0, b),

so that

(192) f ′(0) = lim
t↘0

f(t)

t
≥ ε

which contradicts the assumption that f ′(0) = 0.
By symmetry, we conclude that (a, 0) 6⊂ M+

ε , and neither (0, b) ⊂ M−
ε nor

(a, 0) ⊂M−
ε . Hence, 0 does not belong to the closure of M±

ε for any ε > 0.
If f ′ was not continuous at 0 then there would be an ε > 0 such that
0 ∈ cl (M±

ε ). Since this does not occur, f ′ is continuous at 0. 2

The next lemma will be used later in this chapter and in chapter 8.

Lemma 5.8 Let f(−1, 1) → R be a continuous definable function which is
ordinary differentiable outside 0. If limt→0 f

′(t) exists in R, f is continuously
differentiable at 0.

Proof: Without loss of generality we may assume that f(0) = 0 and
limt→0 f

′(t) = 0. According to the Mean-Value-Theorem, it holds true that

(193) f(t)− f(0) = f ′(ξt)(t− 0)

for some ξt ∈ (0, t), respectively ξt ∈ (t, 0).
Hence,

(194) |f(t)| ≤ sup
ξ 6=0, |ξ|<|t|

|f ′(ξ)| |t| .

Therefore,

(195) lim
t→0

∣∣∣∣f(t)

t

∣∣∣∣ ≤ lim
t→0

sup
ξ 6=0, |ξ|<|t|

|f ′(ξ)| = 0

2
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A Characterisation of Ordinary Differentiability

By proposition 5.7, ordinary and continuous differentiability coincide for uni-
variate functions in o-minimal structures.
In order to generalise the one-dimensional differentiability concepts to func-
tions of several variables there exist a couple of concepts beside the one of
ordinary differentiability.

We know the partial differentiability which provides us with a unique
derivative at a point. The answer to the question whether or not a function
is partially differentiable at a certain point depends on the choice of the
coordinate system in which we consider the function. This problem is avoided
by the concept of Gateaux-differentiability.

We recall that a function f : Rn → R is called Gateaux-differentiable at
x0 ∈ U if there is an a ∈ Rn such that for each ν ∈ Rn, ‖ν‖ = 1, the following
holds true:

(196) lim
t→0

f(x0 + tν)− f(x0)

t
= 〈ν, a〉.

The next example shows that in o-minimal context as well as in classical
Analysis, a Gateaux-differentiable function is not necessarily ordinary differ-
entiable.

Let A := {(x, y) | y > 0, y2 < x < 3y2}.

Example 5.9 Let g : R2 → R be the semialgebraic function

(197) g(x, y) :=


(

1− (x/y2 − 2)2
)2

, (x, y) ∈ A
0, (x, y) 6∈ A.

g is Gateaux-differentiable but not ordinary differentiable at (0, 0).

Proof: The same argument as for example 5.2 here induces the continu-
ity of the partial derivatives outside (0, 0), i.e. g is continuously differentiable
in R2 \ {(0, 0)}.
Let ν := (a, b) be a unit-vector. If g(at, bt) 6= 0, the following inequality
holds true:

(198) b2 |t|2 < |a| |t| < 3b2 |t|2 .

So, if a = 0 or b = 0, then g(at, bt) = 0 for all t ∈ R. Otherwise, g(at, bt) = 0

for |t| ≤ |a|
3b2

. Thus, for all directions ν, the derivative at (0, 0) is

(199) lim
t→0

g(νt)− g((0, 0))

t
= 0.
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Hence, g is Gateaux-differentiable at (0, 0).
Since g is obviously not continuous at (0, 0) we conclude that g is not ordi-
nary differentiable at (0, 0). 2

One of the insufficient properties of the Gateaux-differentiable functions
is that they are not closed under composition. If we select the function
g of example 5.9 and ϕ : (−1, 1) → R2 with ϕ(t) = (3

2
t2, t), we see that

g ◦ ϕ(t) = 9
16
χ(0,1)(t) is not ordinary differentiable at 0, and it is a function

of one variable.

An alternative concept is to claim composition closedness a priori. The
next example belongs to the differentiability class which consists of all defin-
able functions which are continuously differentiable along all definable con-
tinuously differentiable curves.

Example 5.10 The function f : R2 → R defined by

(200) f(x, y) :=

{
yx2

x2+y2
, if (x, y) 6= (0, 0)

0, else

is semialgebraic and continuously differentiable along all definable C1-curves
but it is not ordinary differentiable at (0, 0).

Proof: The partial derivatives of f vanish at (0, 0); otherwise they are

∂f

∂x
(x, y) =

2xy3

(x2 + y2)2
(201)

∂f

∂y
(x, y) =

x4

(x2 + y2)2
− 2x2y2

(x2 + y2)2
.(202)

Hence, the gradient of f is a bounded function.
Claim:
Let p(x, y) = xkyl where k and l are non-negative integers with k + l = 4.
Let ϕ : (−δ, δ) → R2 be a definable C1-curve with ϕ′(0) = (a, b) 6= (0, 0).
Then

(203) lim
t→0

p(ϕ1(t), ϕ2(t))

(ϕ2
1(t) + ϕ2

2(t))
2

exists in R.
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Proof of the claim:
Let a 6= 0. Then

(204) lim
t→0, t6=0

ϕ2(t)

ϕ1(t)
= lim

t→0, t6=0

ϕ2(t)
t

ϕ1(t)
t

=
b

a
.

Thus,

lim
t→0, t6=0

p(ϕ1(t), ϕ2(t))

(ϕ2
1(t) + ϕ2

2(t))
2

= lim
t→0, t 6=0

ϕ4−l
1 (t)ϕl2(t)

(ϕ2
1(t) + ϕ2

2(t)
2)

(205)

= lim
t→0, t 6=0

ϕ4
1(t)

(
ϕ2(t)
ϕ1(t)

)l
ϕ4

1(t)
(

1 + 2
(ϕ2(t)
ϕ1(t)

)2
+
(ϕ2(t)
ϕ1(t)

)4)
=

(
b
a

)l(
1 + b2

a2

)2 .
The case b 6= 0 is analogous to a 6= 0. Hence, the claim is proved.

Let ϕ : (−δ, δ) → R2 be a definable C1-curve with ϕ(0) = 0. If ϕ′(0) = 0
then

(206) lim
t→0, t 6=0

d

dt
(f ◦ ϕ(t)) = lim

t→0, t6=0

(
∂f

∂x
(ϕ(t))ϕ′1(t) +

∂f

∂y
(ϕ(t))ϕ′2(t)

)
= 0

since the partial derivatives of f are bounded.
If ϕ′(0) = (a, b) 6= 0 then, for t 6= 0,

d

dt
(f ◦ ϕ(t)) =

2ϕ1(t)ϕ
3
2(t)

(ϕ2
1(t) + ϕ2

2(t))
2
ϕ′1(t) +

ϕ4
1(t)

(ϕ2
1(t) + ϕ2

2(t))
2
ϕ′2(t)(207)

− 2ϕ2
1(t)ϕ

2
2(t)

(ϕ2
1(t) + ϕ2

2(t))
2
ϕ′2(t).

By the continuity of ϕ′ and the claim, the limit

(208) lim
t→0, t 6=0

d

dt
(f ◦ ϕ(t))

exists in R. Hence, according to lemma 5.8, f ◦ ϕ is continuously differen-
tiable at 0. 2

Again, we do not get ordinary differentiability in general.
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We now give a characterisation of ordinary differentiability by means of
definable regular C1-curves and the chain-rule. This characterisation shows
that by using definable C1-curves we are only able to decide whether a defin-
able function is ordinary differentiable or not. In order to get more precise
information about the gradient such as local boundedness or continuity we
have to use more general classes of curves. This will be discussed later in
this chapter.

Proposition 5.11 Let U ⊂ Rn be a definable open subset and f : U → R a
definable function. f is ordinary differentiable at x0 ∈ U if and only if there
is an a ∈ Rn such that for all definable regular C1-curves ϕ : (−1, 1) → U
with ϕ(0) = x0 the following holds true:

(209) lim
t→0

f ◦ ϕ(t)− f(x0)

t
= 〈ϕ′(0), a〉

Proof: If f is differentiable at x0, then equation (209) is valid for every
C1-curve.
Now we show that condition (209) is sufficient.
In this case we assume that f is not differentiable at x0. Thus, for every
a ∈ Rn there is an ε > 0 and a definable set A ⊂ U with x0 ∈ A such that

(210)

∣∣∣∣f(x)− f(x0)− 〈x− x0, a〉
‖x− x0‖

∣∣∣∣ > ε, x ∈ A.

Since f is differentiable along all lines, it is also partially differentiable. So,
without loss of generality we may assume that a = (0, ..., 0) and f(x0) = 0.
According to the Curve-Selection-Lemma, there is a definable regular C1-
curve ϕ : (−δ, δ) → U with ϕ(0) = x0 and ϕ((δ, 0)) ⊂ A. By regularity of ϕ,
‖ϕ′(0)‖ = c > 0. Hence, the continuity of ϕ′ implies that there is a δ′ > 0
such that ‖ϕ(t)− x0‖ ≥ c

2
|t| for |t| < δ′.

Therefore

(211) ε ≤
∣∣∣∣ f ◦ ϕ(t)

‖ϕ(t)− x0‖

∣∣∣∣ ≤ ∣∣∣∣f ◦ ϕ(t)
c
2
t

∣∣∣∣ .
But then, f ◦ ϕ is not ordinary differentiable at 0 with derivative 0.
Hence, f has to be ordinary differentiable at x0. 2

As a consequence we can express ordinary differentiable with Gateaux-
differentiability in connection with composition closedness.

Corollary 5.12 Let U ⊂ Rn be open and f : U → R a definable function.
Let f be Gateaux-differentiable at x0 ∈ U , and for each definable regular C1-
curve ϕ : (−1, 1) → U with ϕ(0) = x0 let f ◦ ϕ be continuously differentiable
at 0. Then f is ordinary differentiable at x0.
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Proof: Let ϕ : (−1, 1) → U be a definable regular C1-curve such that
ϕ(0) = x0. We have to show that the chain-rule is valid for f ◦ ϕ at t = 0.
We define the curve ψ : (−δ, δ) → U for some 0 < δ small enough by

(212) ψ(t) :=

{
ϕ(t), t > 0

x0 + tϕ′(0), t ≤ 0.

We note that ψ |(−δ,0] is a line and ψ is a regular C1-curve. Hence,

lim
t→0

f ◦ ϕ(t)− f(x0)

t
= lim

t↘0

f ◦ ψ(t)− f(x0)

t
(213)

= lim
t↗0

f ◦ ψ(t)− f(x0)

t
= lim

t↗0

f(x0 + tϕ′(0))− f(x0)

t

=〈ϕ′(0),∇f(x0)〉.

This is the chain-rule for f ◦ ϕ at t = 0. 2

Definable Ordinary Differentiable Functions along Cur-
ves

We know the differentiability properties of definable ordinary functions along
definable C1-curves. As the following example points out, a definable ordinary
differentiable function does not implicate continuous differentiability along
non-definable C1-curves.

Example 5.13 For R = R we consider the function g of example 5.3 along
the curve ϕ : R → R2 defined by

(214) t 7→

{(
2t2 + t2 sin

(
1/
√
|t|
)
, t
)
, if t 6= 0

0, else.

Then ϕ is a continuously differentiable curve since the derivative of ϕ,

(215) ϕ′(t) =

(
4t+ 2t sin

(
1/
√
|t|
)
− t

2
√
|t|

cos
(

1/
√
|t|
)
, 1

)
, t 6= 0

and ϕ′80) = (0, 0) is a continuous function.
For each t ∈ R+ the composition g ◦ ϕ(t) reads as follows:

(216) t 7→ t3/2
(

cos
(

1/
√
t
))4
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Thus, the derivative of the composition g ◦ ϕ is

(217)
d

dt
(g ◦ ϕ)(t) =

3

2
t1/2 cos4

(
1/
√
t
)

+ 2 cos3
(

1/
√
t
)

sin
(

1/
√
t
)
.

We now have a look at the two zero-sequences (xn)n∈N and (yn)n∈N which are
given by

(218) xn :=
1

(π/4 + 2nπ)2
, and yn :=

1

4n2π2
.

We evaluate (g ◦ ϕ)′ at these points:

(g ◦ ϕ)′(xn) =
3

8

1

π/4 + 2nπ
+

1

2
→ 1

2
(219)

(g ◦ ϕ)′(yn) =
3

2

1

2nπ
→ 0

This shows that g ◦ ϕ is not continuously differentiable at 0. 2

The example motivates the following question:
Which information about the derivative of f do we get by checking the dif-
ferentiability properties of the composition of f ◦ ϕ where the ϕ are curves
of a certain differentiability class?

We know by proposition 5.11 that we can check ordinary differentiability
of a definable function f at a point x0 by using definable continuously differ-
entiable curves.
Now we consider curves which are either continuously differentiable or ordi-
nary differentiable with bounded derivative. Note that in both cases we do
not restrict our examinations to definable curves.

If we deal with not necessarily definable continuous or continuously dif-
ferentiable functions defined on a real closed field R 6= R, there appear some
technical problems since in this case, R is a totally disconnected set. For
example the function f : Ralg → Ralg with

(220) f(x) =

{
1, x < π

0, x > π

is analytic at each point x ∈ Ralg. But neither the Mean-Value-Theorem
nor the Intermediate-Value-Theorem apply to this function. So we will have
to use very elementary techniques for our proofs when we deal with non-
definable functions.
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Definable Ordinary Differentiable Functions along C1-Curves

The first result which we prove is that if the derivative of a definable ordinary
differentiable function f is locally bounded, then the composition of f with
a continuously differentiable curve ϕ is always continuously differentiable.

The idea is the following: If ϕ : (−1, 1) → Rn is an ordinary differentiable
curve with ϕ′(0) 6= 0 then, for δ > 0 small enough, ϕ((0, δ)) is contained in
some half-cone. Using some further arguments, we can reduce the problem
to sets of the form

(221) Aε,α :=
{

(x1, ..., xn) ∈ Rn | 0 < x1 < ε,
n∑
i=2

x2
i ≤ α2x2

1

}
where ε and α are positive.

Lemma 5.14 Let ϕ : (−1, 1) → Rn be an ordinary differentiable curve with

(i) ϕ(0) = 0 and

(ii) ϕ′(0) = (1, 0, ..., 0).

Then, for all α > 0 and ε > 0 there is a δ > 0 such that

(222) ϕ((0, δ)) ⊂ Aε,α.

Proof: Since all ϕi, i = 2, ..., n, are ordinary differentiable with
ϕ′(0) = 0, there is a δ1 > 0 such that

(223) |ϕi(t)| ≤
α

2
√
n− 1

|t| , i = 2, ..., n, 0 < t < δ1.

Moreover,

(224) lim
t↘0

ϕ1(t)

t
= 1.

Hence, there is a 0 < δ2 such that

(225)
1

2
t < ϕ1(t) <

3

2
t, 0 < t < δ2.

If we choose δ < min( ε
2
, α

2n
, δ1, δ2) then, for t ∈ (0, δ),

(226)
n∑
i=2

ϕ2
i (t) ≤

n∑
i=2

α2

4(n− 1)
t2 =

1

4
α2t2 ≤ α2ϕ2

1(t).
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Now,

(227) ϕ(t) ∈ Aε,α for 0 < t < δ.

2

So we first study the size of the partial derivative with respect to the first
variable in the sets Aε,α. In order to do that we need some reparametrisation
of definable curves.

Lemma 5.15 Let ε, α, δ be positive. If ϕ : (−δ, δ) → Rn is a definable
regular C1-curve with ϕ(0) = 0 and ϕ((0, δ)) ⊂ Aε,α, there is a definable
regular C1-curve ψ : (−δ1, δ1) → Rn such that

(i) ψ((−δ1, δ1)) ⊂ ϕ((−δ, δ)),

(ii) ψ(0) = 0, and

(iii) ψ(t) = (t, ψ2(t), ..., ψn(t)) with |ψ′i(0)| ≤ α, i = 2, ..., n.

Proof: step 1: We show that ϕ′1(0) > 0.
We assume that ϕ′1(0) = 0.
Since ϕ is continuously differentiable with ϕ(0) = 0, for each 0 < ε2 < ε there
is a δ2 > 0 such that

(228) |ϕ1(t)| ≤ ε2 |t| , 0 < t < δ2.

Since ϕ(t) ∈ Aε,α, t > 0, we conclude that for i = 2, ..., n

(229) |ϕi(t)| ≤ ε2αt, 0 < t < δ2.

Therefore, ϕ′i(t) vanishes at t = 0 which contradicts the assumption that ϕ
is regular.
Hence, ϕ′1(0) 6= 0. Since ϕ(t) ⊂ Aε,α for t > 0, it is evident that ϕ′1(0) > 0.

step 2:
Since ϕ′1(0) > 0, there is an open neighbourhood (−δ′, δ′) of 0 such that ϕ1

has an inverse ϕ−1
1 on this set. This inverse is clearly continuously differen-

tiable and satisfies ϕ−1
1 (0) = 0. We define ψ : (−δ1, δ1) → Rn by

(230) ψ(t) = ϕ(ϕ−1
1 (t)), t ∈ (−δ1, δ1),

where we choose δ1 that small that
∣∣ϕ−1

1 (t)
∣∣ < δ′, for |t| < δ1. Obviously,

ψ is continuously differentiable and (i) and (ii) hold true. Moreover, since
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ϕ1(ϕ
−1
1 (t)) = t, it holds true that ψ(t) = (t, ψ2(t), ..., ψn(t)).

Since ψ(t) ∈ Aε,α,

(231)
n∑
i=2

ψ2
i (t) ≤ α2t2, t > 0.

Hence,

(232) lim
t→0

∣∣∣∣ψi(t)t
∣∣∣∣ ≤ α, i = 2, ..., n.

2

The next lemma provides us with a suitable bound for ∂f
∂x1

restricted to
Aε,α if we choose ε sufficiently small.

Lemma 5.16 Let f : B1(0) → R be a definable ordinary differentiable func-
tion with f and ∇f vanishing at 0, and

(233)
∥∥∇f |B1(0)

∥∥ ≤M <∞.

Then, for α > 0 there is an ε > 0 such that

(234) sup
x∈Aε,α

∣∣∣∣ ∂f∂x1

(x)

∣∣∣∣ < 2Mαn.

Proof: We assume that the zero-point belongs to the closure of the set

(235) B :=

{
x | x ∈ A1,α ∧

∣∣∣∣ ∂f∂x1

(x)

∣∣∣∣ ≥ 2Mαn

}
.

Obviously, 0 does not belong to B. Hence, it belongs to the frontier of B.
B is definable so that we can apply the Curve-Selection-Lemma to B and
0. In combination with lemma 5.15 we obtain a continuously differentiable
definable curve ϕ : (−δ, δ) → Rn such that

(i) ϕ((0, δ)) ⊂ B,

(ii) ϕ(0) = 0, and

(iii) ϕ(t) = (t, ϕ2(t), ..., ϕn(t)) with |ϕ′i(0)| ≤ α for i = 2, ..., n.
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According to proposition 5.7, the composition f ◦ ϕ is continuously differen-
tiable because it is a univariate function. The chain-rule implies
(f ◦ ϕ)′(0) = 0 since ∇f((0, ..., 0)) = 0. Thus, there is a δ1 > 0 such that

(236) |(f ◦ ϕ)′(t)| ≤ 4

3
Mα, t ∈ (−δ1, δ1).

Moreover, since the ϕ′i are continuous there is a δ2 > 0 such that

(237) |ϕ′i(t)− ϕ′i(0)| < α

3
, t ∈ (0, δ2), i = 2, ..., n.

Let ε1 := min(δ1, δ2). We apply the chain-rule to f ◦ϕ and get for 0 < t < ε1

4

3
Mα ≥ |(f ◦ ϕ)′(t)|(238)

=

∣∣∣∣∣ ∂f∂x1

(ϕ(t))ϕ′1(t) +
n∑
i=2

∂f

∂xi
(ϕ(t))ϕ′i(t)

∣∣∣∣∣
≥
∣∣∣∣ ∂f∂x1

(ϕ(t))

∣∣∣∣−
∣∣∣∣∣
n∑
i=2

∂f

∂xi
(ϕ(t))ϕ′i(t)

∣∣∣∣∣ .
By assumption, all partial derivatives are bounded by M , and, by (237), the
|ϕi(t)| are bounded by 4

3
α for i = 2, .., n. Hence,

(239)

∣∣∣∣ ∂f∂x1

(ϕ(t))

∣∣∣∣ ≤ 4

3
Mα +

4

3
Mα(n− 1) =

4

3
Mαn.

This contradicts the assumption that 0 belongs to the closure of B. Hence,
there is an ε > 0 such that Bε(0) ∩B = ∅, i.e.

(240) sup
x∈Aε,α

∣∣∣∣ ∂f∂x1

(x)

∣∣∣∣ < 2Mαn.

2

Proposition 5.17 Let f : Rn → R be a definable ordinary differentiable
function. If ∇f is locally bounded, for all C1-curves ψ : (−1, 1) → Rn the
composition f ◦ ψ is continuously differentiable.
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Proof: Without loss of generality we may assume that x0 = 0, f(0) = 0,
‖∇f‖ is bounded in B1(0) by the constant M > 0, and ‖∇f(0)‖ = 0.
Let ψ : (−1, 1) → Rn be a C1-curve with ψ(0) = 0.
If ψ′(0) = 0, the statement is evident.
Therefore let ψ′(0) 6= 0.

step 1:
We use a suitable linear orthogonal coordinate system of the Rn in which the
first coordinate has ψ′(0) as its direction. Thus, in a small neighbourhood of
0 and after a suitable change of the coordinate system, we may assume that
ψ′i(0) = 0 for i = 2, ..., n, and ψ′1(0) 6= 0. The limit

(241) lim
t→0

d

dt
(f ◦ ψ)(t) = 0 iff lim

t→0

d

dt
(f ◦ ψ)(t/ψ′1(0)) = 0.

Hence we may assume that ψ′1(0) = 1.

step 2:
We show that

(242) lim
t↘0

∣∣∣∣ ∂f∂x1

(ψ(t))ψ′1(t)

∣∣∣∣ = 0.

Let ε > 0. For α := ε
4Mn

we choose δ1 > 0 that small that |ψ′1(t)| ≤ 2 for
0 < t < δ1. According to lemma 5.16, we may choose δ2 > 0 that small that

(243)

∣∣∣∣ ∂f∂x1

(x)

∣∣∣∣ ≤ 2Mαn, for x ∈ Aδ2,α.

Applying lemma 5.14, there is a δ3 > 0 such that ψ((0, δ3)) ⊂ Aδ2,α.
Let δ = min(δ1, δ2, δ3). Then, for 0 < t < δ it holds true that

(244)

∣∣∣∣ ∂f∂x1

(ψ(t))ψ′1(t)

∣∣∣∣ ≤ 4Mαn = ε

Hence, limt↘0
∂f
∂x1

(ψ(t))ψ′1(t) = 0.
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step 3:
For t > 0 it holds true that

|(f ◦ ψ)′(t)| =

∣∣∣∣∣
n∑
i=1

∂f

∂xi
(ψ(t))ψ′i(t)

∣∣∣∣∣(245)

≤
n∑
i=1

∣∣∣∣ ∂f∂xi (ψ(t))ψ′i(t)

∣∣∣∣
≤
∣∣∣∣ ∂f∂x1

(ψ(t))ψ′1(t)

∣∣∣∣+
n∑
i=2

∣∣∣∣ ∂f∂xi (ψ(t))ψ′i(t)

∣∣∣∣
≤
∣∣∣∣ ∂f∂x1

(ψ(t))ψ′1(t)

∣∣∣∣+
n∑
i=2

|Mψ′i(t)| .

ψ′ is continuous so that limt↘0 ψ
′
i(t) = 0 for i = 2, ..., n. This in connection

with step 2 implies

(246) lim
t↘0

(f ◦ ψ)′(t) = 0.

By replacing t with −t we obtain

(247) lim
t↘0

(f ◦ ψ(−t))′ = 0.

2

Now we want to show that if the gradient of f is not locally bounded
at x0, we obtain a continuously differentiable curve ϕ : (−1, 1) → Rn with
ϕ(0) = x0 such that f ◦ ϕ is not continuously differentiable at 0.

In example (5.13) we used the sine function to construct a C1-curve along
which the function is not continuously differentiable.

In arbitrary real closed fields we cannot make use of the sine function.
We modulate the sine oscillation by a piecewise semialgebraic function. This
is done in the following lemmata.

The idea behind creating such a C1-curve is that we disturb a definable
C1-curve by adding a quickly oscillating C1-function with certain properties
which will be pointed out. For this purpose we construct a discrete subset
AR of R with some further properties in the next lemma. Afterwards we
define the disturbing function piecewise between two consecutive points of
this set.
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Lemma 5.18 There is a discrete subset AR ⊂ (0, 1] including 1 such that

(i) cl (AR) = AR ∪ {0}.

(ii) If a ∈ AR and AR 3 b < a, then b ≤ a/2.

(iii) If a ∈ AR, then max{b ∈ AR | b < a} exists.

(iv) If a ∈ AR and a < 1/2, then min{b ∈ AR | b > a} exists.

(v) Each x ∈ (0, 1] \ AR is contained in an interval (a/2, a) for an a ∈ AR.

Proof: If R is Archimedean, let AR be

(248) AR :=

{
1

2l
| l ∈ N

}
.

For a non-Archimedean real closed field R let B ⊂ R be the convex envelope
of Z in R. Then B is a non-trivial valuation ring. We denote by ν the natural
evaluation map ν : B → (Γ,≤,+). For 0 < γ ∈ Γ let 0 < ργ ∈ ν−1({γ}) and
ρ0 = 1.
We define AR by

(249) AR :=
{

2lργ, γ ≥ 0, l ∈ Z
}
∩ (0, 1].

Obviously 1 ∈ AR.
We now check the properties.
(iii) If a ∈ AR, there is a γ ∈ Γ, l ∈ Z such that a = ργ2

l. Then

(250) max{b ∈ AR | b < a} = ργ2
l−1.

(iv) is analogous to (iii).

(251) min{b ∈ AR | b > a} = ργ2
l+1

From (iii) and (iv) we conclude that AR is discrete, and moreover, (ii) is a
direct consequence of the proof of (iii).
Now we look at the properties (i) and (v):
Let x ∈ (0, 1] \ AR. Then x ∈ B. So, there is a γ ∈ Γ such that ν(x) = γ,
and therefore ν(x) = ν(ργ). Hence, there is a non-infinitesimal r ∈ B with
x = rργ, and we find an l ∈ Z with 2l < r < 2l+1. Now (v) is evident.
We put ε := 1

2
min(r − 2l, 2l+1 − r)ργ so that Bε(x) ∩AR = ∅. Thus, 0 is the

only likely cluster point of AR.
Since for all ε > 0 the inequality ρ2ν(ε) < ε applies, we see that 0 ∈ cl (A). 2
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We now construct functions defined on an interval of R which are inspired
by some properties of the function f : R → R, f(0) = 0 and f(t) = t2 sin(1/t)
for t 6= 0. The idea is that the derivative of these functions in each neigh-
bourhood of 0 have a point at which they are greater then a given positive
lower bound. We construct these functions with the help of the semialgebraic
function h : [0, 1] → R,

(252) h(s) = s2(1− s)2(s− 1/2).

The derivative of this function is

(253) h′(s) = 2s(1− s)2(s− 1/2) + 2s2(1− s)(s− 1/2) + s2(1− s)2.

Since 0 ≤ s ≤ 1,

(254) |h′(s)| ≤ 4

applies. Furthermore,

(255) h′
(

1

2

)
=

1

16

and

(256) h(0) = h(1) = h(1/2) = 0 = h′(0) = h′(1).

Since the suitable disturbing functions depend very much on the size
of the gradient of the examined function near the considered point x0, we
always have to make an ad hoc construction. In the next lemma we construct
a function which reduces these efforts.

Lemma 5.19 There is a map H : [0, c] → R with the following properties:

(i) H ∈ C1(0, c]

(ii) |H(t)| ≤ t

(iii) |H ′(t)| ≤ 9

(iv) ∀δ > 0 ∃0 < t < δ : H ′(t) = 1/32
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Proof: Let AR be a set with the properties of lemma 5.18 and
c := max(AR). For all a ∈ AR we set ba := {b ∈ AR | b < a}. Now we
construct ,with the help of the function h, cf. equation (252), H : [0, c] → R.
For t ∈ [ba, a] we set

(257) H|[ba,a](t) = th

(
t− ba
a− ba

)
and H(0) = 0.
We see that H(ba) = H(a) = 0 and that |H(t)| ≤ t because of the properties
of h. Hence, (ii) is proved.
We can write the derivative of H restricted to [ba, a] as

(258) H ′(t) = h

(
t− ba
a− ba

)
+

t

a− ba
h′
(
t− ba
a− ba

)
.

Now we show the boundedness of the derivative of H.

(259)
∣∣H ′|[ba,a](t)

∣∣ ≤ 1 +
a

a− ba
· 4 ≤ 1 + 2 · 4 = 9

This illustrates property (iii).
Since H ′(a) = H ′(ba) = 0, we conclude that H ′ is continuous in (0, c]. This
proves property (i).
If t0 = (a+ ba)/2,

(260) H ′
(
a+ ba

2

)
= h

(
1

2

)
+

1

2
h′
(

1

2

)
= 0 +

1

2

1

16
+ 0 =

1

32
.

Hence, property (iv) is evident. 2

We use the function H to prove the following proposition.

Proposition 5.20 Let f : Rn → R be a definable ordinary differentiable
function. The gradient ∇f shall not be locally bounded at x0. Then there is
a C1-curve ϕ : (−δ, δ) → Rn with ϕ(0) = x0 such that the composition f ◦ ϕ
is not continuously differentiable at t = 0.

Proof: Without loss of generality we may assume that x0 = 0 and that
the partial derivative of f with respect to the first variable is not locally
bounded from above at 0, otherwise consider −f . Then, by the Curve-
Selection-Lemma, there is a regular definable C1-curve ψ : (−1, 1) → Rn

such that

(261) lim
t↘0

∂f

∂x1

◦ ψ(t) = +∞.
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Since ψ is definable, we have f ◦ ψ ∈ C1.
We consider the function l : (0, δ1) → R,

(262) l(t) :=
∂f

∂x1

◦ ψ(t),

where we choose δ1 that small that l is strictly monotone, continuously dif-
ferentiable and positive. We can do this by the Monotonicity-Theorem. Note
that l(t) tends to ∞ at 0, and therefore l is strictly decreasing.
We define the disturbing function ∆ : (−1,min(c, δ1)) → R by

(263) ∆(t) :=

{
0, for t ≤ 0
H(t)√
l(t)
, for 0 < t < min(c, δ1)

where H and c are taken from lemma 5.19.
Claim: ∆ ∈ C1(−1,min(c, δ1)).
Since H(t)/

√
l(t) is continuously differentiable for t 6= 0, we only need to

check the point t0 = 0.
First, we observe that t/

√
l(t) is o(t) and definable. According to proposition

5.7,
(264)

0 = lim
t↘0

(
t√
l(t)

)′
= lim

t↘0


√
l(t)− tl′(t)

2
√
l(t)

l(t)

 = lim
t↘0

(
1√
l(t)

− tl′(t)

2l(t)3/2

)
.

We can conclude that

(265) lim
t↘0

∣∣∣∣ tl′(t)l(t)3/2

∣∣∣∣ = 0.

Now we estimate the derivative of ∆ at 0.

(266) lim
t↘0

∆′(t) = lim
t↘0

(
H ′(t)√
l(t)

− H(t)l′(t)

2l(t)3/2

)
= 0,

since |H(t)| ≤ t and H ′ are bounded. Hence, ∆ is continuously differentiable.
With δ = min(c, δ1) we now define our curve ψ : (−δ, δ) → Rn by

(267) ψ(t) := ϕ(t) + (∆(t), 0, ..., 0).

Thus, ψ is a C1-curve.
We consider the derivative of f ◦ ψ. Note that for all δ2 > 0 there is a
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0 < tδ2 < δ2 such that ∆(tδ2) = 0 and ∆′(tδ2) = 1

32
√
l(tδ2 )

. For such tδ2 we

obtain

(f ◦ ψ)′(tδ2) = (Df ◦ ψ(tδ2))ψ
′(tδ2)

(268)

= (Df ◦ (ϕ(tδ2) + (∆(tδ2), 0, ..., 0)))(ϕ′(tδ2) + (∆′(tδ2), 0, ..., 0))

= (Df ◦ ϕ(tδ2))ϕ
′(tδ2) + (Df ◦ ϕ(tδ2))(∆

′(tδ2), 0, ..., 0)

= (Df ◦ ϕ(tδ2))ϕ
′(tδ2) + l(tδ2)∆

′(tδ2)

= (Df ◦ ϕ(tδ2))ϕ
′(tδ2) + l(tδ2)

1

32
√
l(tδ2)

= (f ◦ ϕ)′(tδ2) +

√
l(tδ2)

32

(f ◦ ϕ)′(tδ2) tends towards 0 as δ2 tends towards 0. Since l is strictly de-
creasing and unbounded near 0,

√
l behaves in the same way. Hence, the

derivative of f ◦ ψ is not locally bounded at 0 and therefore cannot be con-
tinuous. 2

As a first summary we remark that in general we cannot decide whether a
definable ordinary differentiable function is continuously differentiable if we
only test with continuously differentiable functions.

Definable Ordinary Differentiable Functions along Ordinary Differ-
entiable Curves

Now we want to check continuous differentiability of a function at a cer-
tain point using curves. The same idea which we used to detect not locally
bounded points of the derivative can be applied to detect non-continuous
points of it. But of course we need more curves besides the continuously
differentiable curves. We use the class of ordinary differentiable curves with
bounded derivatives.

Lemma 5.21 There is a map H : [0, c] → R with the following properties:

(i) H ∈ C1(0, c]

(ii) |H(t)| ≤ t2

(iii) |H ′(t)| ≤ 6

(iv) ∀δ > 0 ∃0 < t < δ : 1/64 ≤ H ′(t) ≤ 1/16 and H(t) = 0
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Proof: Let AR be a set of lemma 5.18 and let c := max(AR). Without
loss of generality we may assume that c ≤ 1

2
. Moreover, let h be the function

of equation (252).
For all a ∈ AR we set ba := {b ∈ A | b < a}.
Now we construct H : [0, c] → R. For t ∈ [ba, a] we set, with h of equation
(252)

(269) H|[ba,a](t) :=

{
0, ba ≤ t ≤ a− a2

t2h
(
t−(a−a2)

a2

)
, a− a2 < t ≤ a.

The derivative of H in [ba, a] is

(270) H ′|[ba,a](t) :=

{
0, ba ≤ t ≤ a− a2

2th
(
t−(a−a2)

a2

)
+ t2

a2h
′
(
t−(a−a2)

a2

)
, a− a2 < t ≤ a.

Hence, by equation (256), we get H(ba) = 0, H(a) = a2h(1) = 0, H ′(ba) = 0
and H ′(a) = 2ah(1) + h′(1) = 0. Moreover, H(a − a2) = (a − a2)2h(0) = 0
and H ′(a−a2) = 2(a−a2)h(0) +(1−a)2h′(0) = 0. Hence, H is continuously
differentiable in (0, 1], and (i) is proved.
Since h restricted to [0, 1] is bounded by 1, (ii) is a direct consequence of the
definition of H.
Since h′ is bounded by 4, we conclude that for H ′(t) restricted to [ba, a] it
holds true that

|H ′(t)| ≤ sup
t∈[ba,a]

∣∣∣∣2th(t− (a− a2)

a2

)
+
t2

a2
h′
(t− (a− a2)

a2

)∣∣∣∣(271)

≤ 2 sup
t∈[0,1]

|h(t)|+ sup
t∈[0,1]

|h′(t)|

≤ 6.

Hence, (iii) holds true.
In order to show (iv), we evaluate H and H ′ at the points a− a2/2, a ∈ AR.
We note that 0 < a ≤ 1. Thus,

H ′
(
a− a2

2

)
= (2a− a2)h

(1

2

)
+
(

1− a

2

)2

h′
(1

2

)
(272)

=
(

1− a

2

)2 1

16
.

Since

(273)
1

4
≤
(

1− a

2

)2

≤ 1,
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(iv) holds true. Moreover,

(274) H

(
a− a2

2

)
=

(
a− a2

2

)2

h

(
1

2

)
= 0.

Hence, (iv) holds true. 2

Proposition 5.22 Let f : Rn → R be a definable ordinary differentiable
function. Then f is continuously differentiable at x0 if and only if for all
ordinary differentiable curves ϕ(−1, 1) → Rn with bounded derivative and
ϕ(0) = x0,

(275) t 7→ f ◦ ϕ(t)− 〈∇f(x0), ϕ(t)〉

is continuously differentiable at t = 0.

Proof: We may reduce our considerations to definable ordinary differen-
tiable functions with locally bounded derivative since otherwise, proposition
5.20 verifies non-continuity of the derivative at x0.
Without loss of generality we may assume that x0 = 0 and f(0) = 0. Since
we consider

(276) x 7→ f(x)− 〈∇f(0), x〉

we may further assume that ∇f(0) = 0.

Let the derivative of f be continuous at 0.
If ϕ : (−1, 1) → Rn is an ordinary differentiable curve with ϕ(0) = 0 such
that ϕ′ is bounded by M , we obtain by the chain-rule

(277)

∣∣∣∣ ddt(f ◦ ϕ)(t)

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

∂

∂xi
(ϕ(t))ϕ′i(t)

∣∣∣∣∣ ≤M ‖∇f(ϕ(t))‖ .

Since limx→0∇f(x) = 0, we get continuity of d
dt

(f ◦ ϕ)(t) at t = 0.

Now let the derivative of f be not continuous at 0.
Without loss of generality we may assume that ∂f

∂x1
is not continuous at 0.

Then there is a C > 0 and a definable regular C1-curve ψ : (−1, 1) → Rn

with ψ(0) = 0 such that

(278) lim
t↘0

∣∣∣∣ ∂f∂x1

(ψ(t))

∣∣∣∣ ≥ C.
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Let ϕ : (−c, c) → Rn be defined by

(279) ϕ(t) = ψ(t) +H(t)e1

where H is the function of lemma 5.21.
By property (iv) of lemma 5.21, for each δ > 0 there exists a 0 < tδ < δ with
H(tδ) = 0 and H ′(tδ) ≥ 1/64. Thus, we evaluate (f ◦ ϕ)′ at tδ.

|(f ◦ ϕ)′(tδ)| = |(Df ◦ ϕ(tδ))ϕ
′(tδ)|

(280)

= |(Df ◦ (ψ(tδ) + (H(tδ), 0, ..., 0)))(ψ′(tδ) + (H ′(tδ), 0, ..., 0))|
= |(Df ◦ ψ(tδ))ψ

′(tδ) + (Df ◦ ψ(tδ))(H
′(tδ), 0, ..., 0)|

≥
∣∣∣∣ 1

64

(
∂f

∂x1

(ψ(tδ))

)∣∣∣∣− |(Df ◦ ψ(tδ))ψ
′(tδ)|(281)

≥ C

64
− |(Df ◦ ψ(tδ))ψ

′(tδ)|

Since f ◦ ψ is continuously differentiable with vanishing derivative at 0,

(282) lim sup
t↘0

(f ◦ ϕ)′(t) ≥ C

64
6= 0 = (f ◦ ϕ)′(0)

2
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6 Definable Peano-Differentiable Functions

In this section we introduce the concept of Peano-differentiable functions
and Peano-derivatives. We show some basic algebraic properties of Peano-
differentiable functions as well as the behaviour of the Peano-derivatives un-
der basic algebraic operations. Moreover, we discuss a family of definable
Peano-differentiable functions which will give us an impression of this class
of functions and will motivate questions about them.

Peano-Differentiability

Definition 6.1 Let U ⊂ Rn and let f : U → R be a function.
We call f m-times Peano-differentiable at x0 ∈ U if there is a polynomial
p ∈ R[X1, ..., Xn] with deg(p) ≤ m and p(0) = 0 such that

f(x) = f(x0) + p(x− x0) + ϕ(x− x0)(283)

and lim
x→x0

ϕ(x− x0)

‖x− x0‖m
= 0.(284)

p is called an approximation polynomial of f at x0.

We call f m-times Peano-differentiable in U if f is m-times Peano-diffe-
rentiable at all x0 ∈ U . We call a function f : U → Rp m-times Peano-
differentiable in U if each coordinate function is m-times Peano-differentiable.

By Pm(U,W ) we denote the set of functions f : U → W which are m-
times Peano-differentiable in U .

Before giving some examples, we note some basic facts.

Lemma 6.2 Let U ⊂ Rn be an open set. If f : U → R is a function which
is m-times Peano-differentiable at x0 ∈ U with approximation polynomial p,
then p is uniquely determined by f and x0.

Proof: Let p and q be two approximation polynomials of f at x0. Then
p(x− x0) + Φ(x− x0) = f(x)− f(x0) = q(x− x0) + Ψ(x− x0) where Φ and
Ψ are o(‖x− x0‖m).
Thus, the polynomial Q(x−x0) := p(x−x0)−q(x−x0) = Φ(x−x0)−Ψ(x−x0)
is o(‖x− x0‖m). We conclude that for the polynomialQ, the coefficients must
be zero up to order m. deg(Q) ≤ m since p and q are of degree less than or
equal to m so that Q must be the zero-polynomial, i.e. p = q. 2
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If U ⊂ Rn is open and f is m-times Peano-differentiable at x0, we denote
the unique approximation polynomial of f at x0 by pf,x0 . We may write this
as

(285) pf,x0(X) =
∑

1≤|α|≤m

f[α](x0)

α!
Xα

where we call the f[α](x0) the αth Peano-derivative of f at x0. We often use
the denomination Dαf(x0) := f[α](x0).

Examples

We fix an o-minimal expansion M of R.

By Taylors Theorem it is evident that definable m-times continuously
differentiable functions are m-times Peano-differentiable. But as we know
from definable ordinary differentiable functions which are the 1-times Peano-
differentiable functions, these functions have points at which the derivative
is not continuous.

Next we discuss a family of semialgebraic m-times Peano-differentiable
functions. These examples point out several interesting types of Cm-singula-
rities of Peano-derivatives which can appear.
In chapter 8 we will use these functions in order to construct functions which
have certain Cm-singularities on given sets.

Example 6.3
Let 1 ≤ k ≤ m be an integer. Let F = Fk,a,b : R × Rn−1 → R be the
semialgebraic function defined by

(286) F (x, y) :=

{
‖y‖a ϕk

(
x

‖y‖b − 2
)
, y 6= 0

0, y = 0

where a, b are positive rational numbers and ϕk : R→ R is defined by

(287) ϕk(t) =
tk

k!
(1− t2)m+1χ[−1,1](t).

If a > m+ 2 and a
k
≤ b < a

k−1
, the following holds true:

(i) F is m-times Peano-differentiable in Rn.

(ii) F is (k − 1)-times continuously differentiable in Rn.
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(iii) F is m-times continuously differentiable in Rn \ {0}.

(iv) F is not k-times continuously differentiable at 0.

(v) If b = a
k
, the (k − 1)th derivatives of F are ordinary differentiable with

locally bounded derivatives.

(vi) If k ≥ 2 and a
k
< b < a−1

k−1
, the (k − 1)th derivatives of F are ordinary

differentiable but not all kth derivatives are locally bounded. For k = 1
this holds for a < b.

(vii) If k ≥ 2 and if a−1
k−1

≤ b < a
k−1

, the (k − 1)th derivatives of F are

continuous but not all (k − 1)th derivatives are ordinary differentiable.

We will use the next two technical lemmata in order to show the properties
(ii) and (iv)-(vii) of the examples above.

Lemma 6.4 Let P be a homogeneous polynomial of degree l in n variables.
Then, for each multi-index α ∈ Nn and 0 < k ∈ N

(288) Dα
P (x)

‖x‖k
=

Qα(x)

‖x‖k+2|α| , x 6= 0,

where Qα is a homogeneous polynomial of degree l+|α| or the zero-polynomial.

Proof: Let S be a homogeneous polynomial and m a positive integer.
Then,

∂

∂xi

S(x)

‖x‖m
=
∂S

∂xi
(x)(x2

1 + ...+ x2
n)

1

‖x‖m+2 + S(x)
−m

‖x‖m+1

xi
‖x‖

(289)

=
Q(x)

‖x‖m+2

where Q is the homogeneous polynomial

(290) Q(x) =

(
∂

∂xi
S(x)

)
(x2

1 + ...+ x2
n)−mS(x)xi.

Obviously, deg(Q) = deg(S) + 1 or it is the zero-polynomial.
The statement of the lemma is now evident. 2
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Lemma 6.5 Let f : R \ {0} → R be an m-times continuously differentiable
function. Let g : Rn \ {0} → R be defined by g(x) := f(‖x‖). Then, for
each multi-index α ∈ Nn with |α| ≤ m there are homogeneous polynomials
Qα,0, ..., Qα,|α| of degree |α| such that

(291) Dαg(‖x‖) =
∑
l≤|α|

dlf

dtl
(‖x‖) Qα,l(x)

‖x‖2|α|−l .

Proof: We proceed by induction on |α|.
If |α| = 0, the statement is evident.
Let |α| > 0 and

(292) Dαf(‖x‖) =
∑
l≤|α|

f (l)(‖x‖) Qα,l(x)

‖x‖2|α|−l

with homogeneous polynomials Qα,l of degree |α|.
Then,

∂

∂xj
Dαf(‖x‖) =

∑
l≤|α|

∂

∂xj

(
f (l)(‖x‖) Qα,l(x)

‖x‖2|α|−l

)
(293)

=
∑
l≤|α|

f (l+1)(‖x‖) xj
‖x‖

Qα,l(x)

‖x‖2|α|−l + f (l)(‖x‖) Sα,l(x)

‖x‖2|α|−l+2

where the Sα,l are homogeneous polynomials of degree deg(Qα,l) + 1 or the
zero-polynomial, cf. lemma 6.4.
If we put

Qα+ej ,0(x) = Sα,0(x),(294)

Qα+ej ,l(x) = xjQα,l(x) + Sα,l(x), 1 ≤ l ≤ |α| ,
Qα+ej ,|α|+1(x) = xjQα,|α|,

each Qα+ej ,l is a homogeneous polynomial of degree |α|+ 1 and we get

(295) Dα+ej
f(‖x‖) =

∑
l≤|α|+1

f (l)(‖x‖)
Qα+ej ,l(x)

‖x‖2|α+ej |−l

2

We now show the properties of the examples of 6.3.
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Proof: step 1:
Since the zero-order of the polynomial tk

k!
(1− t2)m+1 at t = 1 and t = −1 is

m+1, it is evident that ϕk is an m-times continuously differentiable function.
Moreover, the functions

(296) (x, y) 7→ x

‖y‖b
, and (x, y) 7→ ‖y‖a , y 6= 0,

are C∞-functions. Hence, F is an m-times continuously differentiable func-
tion on the open set Rn \ (R× {0}n−1).
The support of F is

(297) supp(F ) = {(x, y) ∈ R×Rn−1 | ‖y‖b ≤ x ≤ 3 ‖y‖b}.

Evidently, F ism-times continuously differentiable outside its support. Hence,
we can conclude that F is m-times continuously differentiable in (Rn \ (R×
{0}n−1)) ∪ (Rn \ supp(F )) = Rn \ {0} and we have shown (iii).
ϕk is bounded by 1 and a > m. This implies that

(298) lim
(x,y)→0

∣∣∣∣ F (x, y)

‖(x, y)‖m
∣∣∣∣ ≤ lim

(x,y)→0

∣∣∣∣ ‖y‖a

‖(x, y)‖m
∣∣∣∣ = 0,

i.e. F is m-times Peano-differentiable at 0 with the zero-polynomial as ap-
proximation polynomial. This in connection with (iii) implies (i).

(iv) is a consequence of (v), (vi) and (vii).

Since F is m-times continuously differentiable outside 0, we have to dis-
cuss the Peano-derivatives in a neighbourhood of 0.

step 2:
We have a closer look at the two-dimensional case.

Let the function fk,a,b : R2 → R be defined by

(299) fk,a,b(x, y) :=

{
F (x, y) = yaϕk

(
xy−b − 2

)
, y > 0,

0, y ≤ 0

With the analogue argument as for F , fk,a,b is m-times Peano differentiable
on R2 and Cmon R2 \ {(0, 0)}. We restrict our examination to the support
of F ∩ {y > 0} = suppfk,a,b \ {(0, 0)}. Note that F (x, y) = fk,a,b(x, |y|).
For r + s ≤ m we can write the (s, r)th Peano-derivative of fk,a,b in the
following form:

(300) D(s,r)fk,a,b(x, y) =
r∑
i=0

cr,s,iy
a−bs−r−bi(−bx)iϕ

(i+s)
k (xy−b − 2)
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where cr,s,i ∈ R.
We prove equation (300) by induction on q := r + s:
The case q = 0 where r = s = 0 and c0,0,0 = 1 is evident.
Now we assume that equation (300) holds true for s+ r ≤ q − 1.
Let the constants cr,s,i for i = 0, ..., r be given.
We define

cr+1,s,0 := cr,s,0(a− bs− r),(301)

cr+1,s,r+1 := cr,s,r,

cr+1,s,i := cr,s,i(a− bs− r − bi) + cr,s,i−1, 1 ≤ i ≤ r,

cr,s+1,i = cr,s,i − b(i+ 1)cr,s,i+1, 0 ≤ i ≤ r − 1,

cr,s+1,r = cr,s,r.

Then,

∂

∂y
D(s,r)fk,a,b(x, y) =(302)

=
r∑
i=0

(
cr,s,i(a− bs− r − bi)ya−bs−r−bi−1(−bx)iϕ

(i+s)
k (xy−b − 2)+

+ cr,s,iy
a−bs−r−bi(−bx)iϕ

(i+s+1)
k (xy−b − 2)

−bx
yb+1

)
=

r+1∑
i=0

cr+1,s,iy
a−bs−(r+1)−bi(−bx)iϕk(xy

−b − 2)

and

∂

∂x
D(s,r)fk,a,b(x, y) =(303)

=
r∑
i=0

cr,s,iy
a−bs−r−bi(−bx)iϕ

(i+s+1)
k (xy−b − 2)

1

yb
+

+
r∑
i=1

cr,s,i(−bi)ya−bs−r−bi(−bx)i−1ϕ
(i+s)
k (xy−b − 2)

=
r∑
i=0

cr,s+1,iy
a−b(s+1)−r−bi(−bx)iϕ

(i+s+1)
k (xy−b − 2).

step 3: We now present an estimate for the zero-order of the derivatives
of F in a pointed neighbourhood of 0.
Note that now n ≥ 2. We restrict ourselves to supp(F )\{0} since elsewhere,
F vanishes together with its Peano-derivatives. We show that

(304) D(s,r)F (x, y) is O(‖y‖a−bs−|r|)
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where (s, r) ∈ N× Nn−1 is a multi-index with |(s, r)| ≤ m.
For (x, z) ∈ supp(fk,a,b)\{(0, 0)} applies 1 ≤ x/zb ≤ 3. Thus, by equation

(300), for s+ l ≤ m

(305) (D(s,l)fk,a,b)(x, z) is O(|z|a−bs−l).

We generalise this estimation to higher dimension.
Therefore we apply lemma 6.5 to y 7→ F (x, y) = fk,a,b(x, ‖y‖).
Let (x, y) ∈ supp(F ) \ {0} ⊂ R×Rn−1.
Then, for |(s, r)| ≤ m

D(s,r)F (x, y) = D(s,r)fk,a,b(x, ‖y‖)(306)

=
∑
l≤|r|

(D(s,l)fk,a,b)(x, ‖y‖)
Qr,l(y)

‖y‖2|r|−l .

By (305), (D(s,l)fk,a,b)(x, ‖y‖) is O(‖y‖a−bs−l).
Moreover,

(307)
Qr,l(y)

‖y‖2|r|−l is O(‖y‖l−|r|)

since a homogeneous polynomial Q(Y ) is obviously O(‖Y ‖degQ). We con-

clude that D(s,r)F (x, y) is O(‖y‖a−bs−|r|).

step 4: We show that the Peano-derivatives up to order k − 2 of F are
continuously differentiable. Note that this is only interesting for k ≥ 2.
For all choices of b and a we have 1 < b < a

k−1
. So, for |r|+ s ≤ k − 2

(308) a− bs− |r| ≥ a− (k − 2)b >
a

k − 1
> 1

applies. Hence, according to (304), the Peano-derivatives up to order k − 2
are o(|y|1), i.e. they are differentiable at 0.
If |r|+ s = k − 1,

(309) a− bs− |r| ≥ a− (k − 1)b > 0.

Hence, the (k−1)th Peano-derivatives of F are continuous at 0. This implies
(ii).

step 5: We show that ϕ
(k)
k (0) = 1, k ≥ 1:

We use a derivation formula for the product of two Ck-functions p and q,
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namely

(310) (pq)(k) =
k∑
l=0

(
k

l

)
p(l)q(k−l).

In a small neighbourhood of 0 we can write ϕk(t) =
(
tk

k!

)
· ((1− t2)m+1).

Hence,

ϕ
(k)
k (0) =

k∑
l=0

(
k

l

)(
tk

k!

)(l)

|t=0 ·
(
(1− t2)m+1

)(k−l) |t=0(311)

=
k∑
l=0

(
k

l

)(
tk−l

(k − l)!

)
|t=0 ·

(
(1− t2)m+1

)(k−l) |t=0

=
k∑
l=0

δk,l
(
(1− t2)m+1

)(k−l) |t=0

= ((1− t2)m+1)|t=0

= 1.

step 6: We show (v), (vi) and (vii).
(v) b = a

k
> 1:

Then,

a− b(k − 1) = a− a(k − 1)

k
=
a

k
= b > 1 and(312)

a− bk = 0.

Hence, by (304), the (k − 1)th derivatives of F are O(‖y‖b), and therefore
they are ordinary differentiable at 0. The kth derivatives are O(1), i.e. they
are bounded.
It remains to show that at least one of the kth derivatives is not continuous
at 0. We consider D(k,0)F (x, z, 0, ..., 0) for z > 0:

D(k,0)F (x, z, 0, ..., 0) = D(k,0)fk,a,b(x, z)(313)

= c0,k,0z
a−bkϕ

(k)
k (xz−b − 2) = ϕ

(k)
k (xz−b − 2)

For x = 2zb we get ϕ
(k)
k (xz−b − 2) = 1. Hence,

(314) lim sup
(x,y)→0

D(k,0)F (x, y) ≥ lim sup
(x,z)→0,z>0,x=2zb

ϕ
(k)
k (xz−b − 2) = 1 6= 0.
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We conclude that D(k,0)F is not continuous at (0, 0).

(vi) a
k
< b < a−1

k−1
:

Then, a− (k− 1)b > 1 and a− kb < 0. Thus, analogous to (v), the (k− 1)th

derivatives are ordinary differentiable.
Moreover, for x = 2zb, z > 0

(315) D(k,0)F (x, z, 0, ..., 0) = za−kb

which is locally unbounded at (0, 0). Hence, we have proved (vi).

(vii) a−1
k−1

≤ b < a
k−1

:
Here we have 0 < a− (k − 1)b ≤ 1. The derivative of D(k−1,0)F at 0 should
vanish if it exists. But

lim sup
(x,z,0,...,0)→0,z>0, x=2zb

D(k−1,0)F (x, z, 0, ..., 0)

‖(x, z, 0, ..., 0)‖
(316)

= lim sup
(x,z)→0,z>0, x=2zb

D(k−1,0)fk,a,b(x, z)

‖(x, z)‖

≥ lim sup
(x,z)→0,z>0, x=2zb

za−(k−1)b

(4z2b + z2)
1
2

≥ lim sup
(x,z)→0,z>0, x=2zb

z1

(9z2)
1
2

≥ 1

3

which inhibits ordinary differentiability of D(k−1,0)F at 0. 2

Basic Properties of Peano-Differentiable Functions

Definability of Peano-Derivatives

Let U ⊂ Rn be a definable open subset, and let f : U → R be a definable
function.
Let Φf (x, y) be a formula defining the graph of f , i.e.
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(x, y) ∈ Γ(f) ⇔M |= Φf (x, y). We consider the formula Ψf (x, (dα)1≤|α|≤m):

∀ε
[
ε > 0 → ∃δ

[
δ > 0 → ∀ni=1zi

[ n∑
i=1

(zi − xi)
2 < δ2 →(317)

∀y∀y′
[
Φf (x, y) ∧ Φf (z, y

′) →(
y′ −

(
y +

∑
1≤|α|≤m

dα
α!

(z − x)α
))2

≤ ε2
( n∑
i=1

(zi − xi)
2
)m]]]]

So we see that the set X of points at which f is m-times Peano-differentiable
is definable since

(318) x ∈ X ⇔ M |= ∃1≤|α|≤mdαΨf (x, (dα)1≤|α|≤m).

If f is m-times Peano-differentiable in U , we denote by F : U → (Rα)1≤|α|≤m
the function which maps x to (f[α](x))1≤|α|≤m. Then

(319) (x, y) ∈ Γ(F ) ⇔ M |= Ψf (x, y).

Hence, the Peano-derivatives are definable.

Basic Algebraic Properties of Peano-Differentiable Functions

In this section, definability of the functions is not required.
We will show that the Peano-differentiable functions form a composition-
closed ring.
First we investigate compositions of Peano-differentiable functions and gen-
eralise the chain-rule for ordinary differentiable functions in the following
way:

Proposition 6.6 Chain-Rule
Let U ⊂ Rn, V ⊂ Rñ be sets, and let g : U → Rñ, f : V → Rk be functions

with g(U) ⊂ V . If g is m-times Peano-differentiable at x and f at y = g(x),
the composition f ◦ g : U → Rk is m-times Peano-differentiable at x.
Then, an approximation polynomial pf◦g of f ◦ g at the point x is given by

(320) pf◦g = (pf ◦ pg)(m).

Here, for a polynomial r(X) =
∑

α rαX
α we put r(m)(X) =

∑
|α|≤m rαX

α.
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Proof: With the conventions

(321)

f =

f1
...
fk

 pf =: p =

p1
...
pk

 ϕf =: ψ =

ψ1
...
ψk


g =

g1
...
gñ

 pg =: q =

q1...
qñ

 ϕg =: ϕ =

ϕ1
...
ϕñ


we can write f and g in the form

(322)
f(y + η) = f(y) + p(η) + ψ(η)

g(x+ ξ) = g(x) + q(ξ) + ϕ(ξ)

where the functions ϕ and ψ possess the following property:

(323) lim
ξ→0

ϕ(ξ)

‖ξ‖m
= 0, lim

η→0

ψ(η)

‖η‖m
= 0

We put η := g(x+ ξ)− g(x) = q(ξ) + ϕ(ξ) an get

f ◦ g(x+ ξ) = f(g(x) + η)
(324)

= f(g(x)) + p(q(ξ) + ϕ(ξ)) + ψ(q(ξ) + ϕ(ξ))

= f ◦ g(x) + (p ◦ q)(m)(ξ) + p(q(ξ) + ϕ(ξ))− (p ◦ q)(m)(ξ) + ψ(q(ξ) + ϕ(ξ))︸ ︷︷ ︸
=: φ(ξ)

= f ◦ g(x) + pf (pg)(m)(ξ) + φ(ξ).

So it remains to show that limξ→0
φ(ξ)
‖ξ‖m = 0.

By the assumptions we made about f , g, p, q, ϕ and ψ, we conclude that
there is a K > 0 such that for sufficiently small ξ and η it holds true that

‖p(η)‖ ≤ K ‖η‖(325)

‖q(ξ)‖ ≤ K ‖ξ‖

‖ψ(η)‖ ≤ K ‖η‖m and lim
η→0

ψ(η)

‖η‖m
= 0

‖ϕ(ξ)‖ ≤ K ‖ξ‖m and lim
ξ→0

ϕ(ξ)

‖ξ‖m
= 0.

First we show that for i = 1, ..., k

(326) lim
ξ→0

pi(q(ξ) + ϕ(ξ))− pi(q(ξ))(m)

‖ξ‖m
= 0.
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For x = (x1, ..., xn), Y = (Y1, ..., Yn), and the multi-index α ∈ Nn,

(327) (x1 + Y1, ..., xn + Yn)α =
n∏
s=1

(
αs∑
l=0

(
αs
l

)
xlsY

αs−l
s

)
so that

(328) (x1 + Y1, ..., xn + Yn)α ≡ xα mod I

where I ⊂ R[x1, .., xn][Y1, ..., Yn] is the ideal generated by Y1, ..., Yn. Hence,
for all polynomials r ∈ R[X1, ..., Xn],

(329) r(x+ Y ) ≡ r(x) mod I.

So, for the polynomial

(330) R(ξ, Y ) :=
∑

(α,β)∈N2n

′rα,βξ
αY β := pi(q(ξ) + Y )− pi(q(ξ))(m)

the coefficients rα,0 with |α| ≤ m vanish.
Thus,

lim
ξ→0

pi(q(ξ) + ϕ(ξ))− pi(q(ξ))(m)

‖ξ‖m
= lim

ξ→0

R(ξ, ϕ(ξ))

‖ξ‖m
(331)

=
∑

|(α,0)|>m

r(α,0) lim
ξ→0

ξα

‖ξ‖m
+

∑
(α,β), β 6=0

r(α,β) lim
ξ→0

ξα
ϕ(ξ)β

‖ξ‖m

= 0

since all sums are finite.
We now consider the function ψi(q(−) + ϕ(−)). For a sufficiently small ξ,
‖q(ξ) + ϕ(ξ)‖ ≤ C ‖ξ‖ with a constant C > 0. Hence,

lim
ξ→0

∣∣∣∣ψi(q(ξ) + ϕ(ξ))

‖ξ‖m
∣∣∣∣ ≤ lim

ξ→0
sup

‖ξ′‖≤C‖ξ‖

∣∣∣∣ψi(ξ′)‖ξ‖m
∣∣∣∣(332)

≤ lim
ξ→0

sup
‖ξ′‖≤C‖ξ‖

∣∣∣∣Cmψi(ξ
′)

‖ξ′‖m
∣∣∣∣

= 0

which induces

lim
ξ→0

φ(ξ)

‖ξ‖m
= lim

ξ→0

p(q(ξ) + ϕ(ξ))− p(q(ξ))(m) + ψ(q(ξ) + ϕ(ξ))

‖ξ‖m
(333)

= lim
ξ→0

p(q(ξ) + ϕ(ξ))− p(q(ξ))(m)

‖ξ‖m
+ lim

ξ→0

ψ(q(ξ) + ϕ(ξ))

‖ξ‖m

= 0
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2

Now we show the ring-property, i.e. that sum and product of m-times
Peano-differentiable functions are again m-times Peano-differentiable.

Proposition 6.7 Sum and product of m-times Peano-differentiable func-
tions are again m-times Peano-differentiable with

(334) pf+g,x0 = pf,x0 + pg,x0and

(335) pf ·g,x0 = f(x0)pg,x0 + g(x0)pf,x0 + (pf,x0pg,x0)(m).

Proof: The approximation polynomial of the addition + : R2 → R at
(x0, y0) is

(336) p+,(x0,y0)(x, y) = x+ y,

and the one of the multiplication · : R2 → R at (x0, y0) is

(337) p·,(x0,y0)(x, y) = xy + y0x+ x0y.

Since both + and · are polynomial functions they are Pm for each m.
The chain-rule now says that

(338) pf+g,x0 = pf,x0 + pg,x0

and

(339) pf ·g,x0 = f(x0)pg,x0 + g(x0)pf,x0 + (pf,x0pg,x0)(m).

2
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7 Differentiability Properties of Peano-Deri-

vatives

In [54] we find the following statement:

Theorem 7.1 (Oliver)
Let I be an interval in R and let f : I → R be an m-times Peano-differentiable
function. If the mth Peano-derivative is locally bounded from above or below
at x0 ∈ I, the (m− 1)th Peano-derivative is ordinary differentiable at x0.

In this section we will prove a stronger statement for m-times Peano-
differentiable functions in o-minimal structures.
Moreover, we will generalise Oliver’s result to definable functions of several
variables.

One-Dimensional Peano-Differentiable Functions

Oliver’s theorem in o-minimal structures can also be regarded as a gener-
alisation of proposition 5.7 to Peano-differentiable functions. Actually, we
make use of the fact that ordinary differentiability implies continuous differ-
entiability for definable functions of one variable.

Proposition 7.2 Let I ⊂ R be an open interval and f : I → R a defin-
able m-times Peano-differentiable function. Then, f is m-times continuously
differentiable in I.

Proof: We prove this by induction on m.
The statement holds true for m = 1 because of proposition 5.7.
We now assume that the proposition holds true for m.
Let f : I → R be (m + 1)-times Peano-differentiable at 0. Without loss of
generality we may assume the pf,0 is the zero-polynomial. Hence,

(340) lim
x→0

f(x)

xm+1
= 0.

We conclude that the function h : I → R with

(341) h(x) =

{
f(x)
xm , x 6= 0

0, x = 0

is ordinary differentiable at 0 with h′(0) = 0. According to proposition 5.7,
h′ is continuous at 0.
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h′ can be expressed by

(342) h′(x) =

{
f ′(x)
xm −m f(x)

xm+1 , x 6= 0

0, x = 0.

Hence,

(343) lim
x→0

f ′(x)

xm
= lim

x→0

(
h′(x) +m

f(x)

xm+1

)
= 0.

Therefore, f ′ is m-times Peano-differentiable at 0 and thus m-times contin-
uously differentiable at 0. This induces that f is (m+ 1)-times continuously
differentiable at 0. 2

Oliver’s Theorem in Higher Dimension

Now we generalise Oliver’s theorem to definable functions of several variables.

Theorem 7.3 Let U ⊂ Rn be a definable open subset and f : U → R a de-
finable m-times Peano-differentiable function. Let the mth Peano-derivatives
all be bounded from above or all be bounded from below. Then the (m− 1)th

Peano-derivatives are ordinary differentiable at each x0 ∈ U .

We now prepare the proof of the theorem. The next lemma gives us a
bound for the number of zeros of the derivatives under certain conditions.
More precisely, it says that we always find a sufficiently large interval on
which the derivatives of a univariate definable Cp+1-function do not change
their sign.

Lemma 7.4 Let h : (a, b) → R be a definable Cp+1-function and

(344) h(p+1)(t) > 0, t ∈ (a, b).

Then there is a subinterval [c, d] ⊂ (a, b) of length

(345) |d− c| ≥ |b− a|
(p+ 1)2

such that all derivatives of order 2 to p+ 1 are either positive or negative on
(c, d).
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Proof: We show by induction on j that for j = 0, ..., p the number of
zero-points of h(p+1−j) is bounded by j:
j = 0:
By assumption, h(p+1−0) is positive. Therefore it has no zero-point.
j  j + 1:
By the assumption of induction, there are at most j zero-points
x1 < x2 < ... < xj of h(p+1−j) in (a, b).
We put x0 = a and xj+1 = b.
On each of the j + 1 intervals (xl, xl+1) where l = 0, ..., j, the (p + 1 − j)th

derivative of h is strictly positive or negative.
Hence, h(p−j)|(xl,xl+1] is a strictly monotone function and may therefore have
at most one zero-point.
So there are at most

∑p−1
l=0 l = p(p−1)

2
≤ p2 points at which at least one of the

h(i) equals 0 where i = 2, ..., p+ 1.
Hence, we find an interval [c, d] ⊂ (a, b) of length

(346)
|b− a|

(p+ 1)2

such that for i = 2, ..., p + 1, the ith derivative of h is either positive or neg-
ative. 2

As an immediate consequence of this lemma and lemma 3.2 we get:

Corollary 7.5 Let h : (a, b) → R be a definable Cp+1-function and

(347) h(p+1)(t) > 0, t ∈ (a, b).

Then there is a subinterval [c, d] ⊂ (a, b) of length

(348) |d− c| ≥ |b− a|
(p+ 1)2

such that for j = 1, ..., p:

(349)
∣∣f (j)(t)

∣∣ ≤ 2
j2+5j−2

2 sup
s∈[c,d]

|f(s)|
|d− c|i

, t ∈
(
c+

d− c

4
, d− d− c

4

)

Proof: According to lemma 7.4 we get a subinterval [c, d] ⊂ (a, b) of
the desired length where each of the derivatives of h is definite. We apply
lemma 3.2 to h restricted to [c, d] with r = (d−c)/4 and t ∈ [c+ d−c

4
, d− d−c

4
].

2
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The next lemma sets a sufficient condition on the mth partial derivative
with respect to the first variable of a definable m-times Peano-differentiable
function such that the corresponding (m− 1)th partial derivative is ordinary
differentiable.

Lemma 7.6 Let U ⊂ Rn be open and f : U → R a definable m-times
Peano-differentiable function. Let the mth partial derivative of f with respect
to the first variable be locally bounded from below (above) at x0 ∈ U . Then
the corresponding (m−1)th partial derivative is ordinary differentiable at x0.

Proof: Without loss of generality we may assume that U = B1(0),
x0 = 0, and the Peano derivatives up to order m vanish at 0. Furthermore, we
may assume that the mth partial derivative with respect to the first variable
is bounded from below on B1(0) by K < 0 .
We show that the mapping

(350) x 7→ ∂m−1

∂xm−1
1

f(x)

is o(‖x‖).
In order to show this we assume that the mapping above is not o(‖x‖), e.g.
there is an L > 0 such that

(351) ∀0 < ε <
1

2
∃xε ∈ Bε(0) :

∂m−1

∂xm−1
1

f(xε) ≥ L ‖xε‖ .

step 1:
We consider the following family of functions. gx : [−1

2
, 1

2
] → R, x ∈ B 1

2
(0)

with

(352) gx(t) := f(x+ te1).

Since gx is a definable m-times Peano-differentiable function of the variable t,
we know that gx is m-times continuously differentiable in [−1

2
, 1

2
], cf. propo-

sition 7.2.
We may apply the Mean-Value-Theorem to the (m− 1)th derivative of gx.
If s ≥ 0,

(353) g(m−1)
x (s)− g(m−1)

x (0) ≥ K(s− 0)

since K is a lower bound for the mth derivative of gx which is in fact the
function t 7→ ∂mf

∂xm
1

(x+ te1).
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Hence, if 0 ≤ s ≤ L‖xε‖
−2K

,

g(m−1)
xε

(s) = gm−1
xε

(0) +Ks(354)

≥ g(m−1)
xε

− L ‖xε‖
2

=
∂m−1

∂xm−1
1

f(xε)−
L ‖xε‖

2

≥ L ‖xε‖
2

.

Especially, g
(m−1)
xε is positive on (0, L‖yε‖

−2K
).

step 2:
We apply corollary 7.5 to gxε restricted to the interval

(
0, L‖xε‖

−2K

)
with p = m− 2.
Thus, there is a subinterval [cε, dε] ⊂

(
0, L‖xε‖

−2K

)
such that

(355)
∣∣g(m−2)
xε

(s)
∣∣ ≤ 2

(m−2)2+5(m−2)+2
2 sup

s′∈[cε,dε]

|gxε(s
′)|

|dε − cε|m−2

whenever s ∈
[
cε + (dε − cε)/4, dε − (dε − cε)/4

]
. Moreover, we may assume

that for cε and dε applies

(356) |dε − cε| =
L ‖xε‖

−2K(m− 1)2
.

So, for s ∈
[
cε + (dε − cε)/4, dε − (dε − cε)/4

]
we obtain the inequation

∣∣g(m−2)
xε

(s)
∣∣ ≤ N1 sup

s′∈[cε,dε]

|gxε(s
′)|

‖2xε‖m−2(357)

≤ N sup
y∈B2‖xε‖(0)

f(y)

‖y‖m−2

where N1 and N are positive constants depending only on m,L,K.

step 3a:
Since g

(m−2)
xε is continuous on the closed interval [−1

2
, 1

2
], we conclude that for

sε := cε+dε

2
− dε−cε

4
and tε := cε+dε

2
+ dε−cε

4
,

(358)
∣∣g(m−2)
xε

(tε)− g(m−2)
xε

(sε)
∣∣ ≤ 2N sup

y∈B2‖xε‖(0)

f(y)

‖y‖m−2 .



100 Differentiability Properties of Peano-Derivatives

step 3b:
According to the Mean-Value-Theorem, we can give an alternative estimate

for
∣∣∣g(m−2)
xε (tε)− g

(m−2)
xε (sε)

∣∣∣.∣∣g(m−2)
xε

(tε)− g(m−2)
xε

(sε)
∣∣ ≥ (tε − sε) inf

u∈(sε,tε)
g(m−1)
xε

(u)(359)

≥ (tε − sε)
L ‖xε‖

2

=
L ‖xε‖

−4K(m− 1)2

L ‖xε‖
2

≥ Ñ ‖xε‖2

with a positive constant Ñ depending only on m,L,K.

step 4:
Since f is o(‖x‖m) there is an ε > 0 such that

(360) sup
y∈B2‖xε‖(0)

f(y)

‖y‖m−2 ≤
Ñ

4N
‖xε‖2 .

Step 3a and 3b now imply
(361)

Ñ

2
‖xε‖2 ≥ 2N sup

y∈B2‖xε‖(0)

f(y)

‖y‖m−2 ≥
∣∣g(m−2)
xε

(tε)− g(m−2)
xε

(sε)
∣∣ ≥ Ñ ‖xε‖2

which is a contradiction. So, the assumption of (351) is false.

step 5:
We can show analogously that the assumption

(362) ∀0 < ε <
1

2
∃xε ∈ Bε(0) :

∂m−1

∂xm−1
1

f(xε) ≤ −L ‖xε‖

is false.
Hence, ∂m−1

∂xm−1
1

f(x) is o(‖x‖), i.e. it is ordinary differentiable at 0. 2

We note an immediate consequence of this lemma.

Corollary 7.7 Let U ⊂ Rn be open, let f : U → R be a definable m-times
Peano-differentiable function and ν ∈ Rn unit-vector. If the mth directional
derivative of f with respect to ν is locally bounded from below (above) at
x0 ∈ U , the corresponding (m− 1)th directional derivative is ordinary differ-
entiable at x0.
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This leads us directly to the following corollary.

Corollary 7.8 Let U ⊂ Rn be open and f : U → R a definable 2-times
Peano-differentiable function. If every second partial derivative of f is lo-
cally bounded from above or below at x0 ∈ U , then f is 2-times ordinary
differentiable at x0.

Corollary 7.8 cannot directly be generalised to higher order Peano-diffe-
rentiable functions. This is due to the fact that for m ≥ 3, the (m − 1)th

Peano-derivatives can be mixed derivatives, i.e. they are no longer directional
derivatives. But, by some stronger assumption as given in theorem 7.3, we
can obtain an analogous statement for m ≥ 3.

Proof of theorem 7.3 Let ν ⊂ (R+
0 )n be a unit-vector. Then, the mth

directional derivative with respect to ν is bounded from below (above) since
all mth Peano-derivatives are bounded from below (above). Hence, by corol-
lary 7.7, the (m− 1)th directional derivative with respect to ν is an ordinary
differentiable function.
All unit-vectors of Rn can be written as a linear combination of unit-vectors
with non-negative entries, and a linear combination of ordinary differentiable
functions is again ordinary differentiable. Thus, all (m − 1)th directional
derivatives are ordinary differentiable functions.
Since for α ∈ Nn with |α| = m−1 the differential operator Dα can be written
as a linear combination of (m− 1)th directional derivatives, we have finished
the proof. 2

We note a consequence of theorem 7.3.

Corollary 7.9 Let U ⊂ Rn be a definable open subset and f : U → R a de-
finable m-times Peano-differentiable function. Let the mth Peano-derivatives
all be locally bounded at x0 ∈ U . Then, the (m − 1)th Peano-derivatives are
ordinary differentiable at x0.
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8 Singularities of Peano-Differentiable Func-

tions

In this chapter we study the set of points at which a definable m-times
Peano-differentiable function is not m-times continuously differentiable. By
proposition 7.2, we know that definable m-times Peano-differentiable func-
tions of one variable are m-times continuously differentiable, while we obtain
by the examples of 6.3 that we can distinguish at least three different types
of Ck-singularities for functions of several variables.
We will first show that the codimension of the Cm-singularity set of a defin-
able m-times Peano-differentiable function is at least 2.
In the second section we give a full description of the sets which can appear
as singularity sets. Moreover, we construct for each possible set a definable
m-times Peano-differentiable function which has exactly the given set as set
of Ck-singularities of the corresponding type.

Cm-Singularities in Higher Dimension

We begin with the definition of a Cm-singularity of a function.

Definition 8.1 Let f : U → Rp be a definable mapping. If f is not m-times
continuously differentiable at x0 ∈ U , we call x0 a Cm-singularity of f . By
singm(f) we denote the set of Cm-singularities of f .

Since we can describe continuous differentiability by a formula, it is evident
that singm(f) of a definable function f is definable.

Later in this chapter we will distinguish between several subclasses of
Cm-singularities.
As our first task we will prove that the codimension of the set of Cm-
singularities of a definable m-times Peano-differentiable function is at least
2.

In order to analyse functions of several variables we agree on the following
terminology:
For δ > 0, Bδ(x) := {y ∈ Rn | ‖y − x‖ < δ}, Uδ := Bδ(0).

U ‡
δ := {(x1, ..., xn) | ‖(x1, .., xn)‖ < δ, x1 ‡ 0}

where ‡ is one of the symbols =, <,>,≤,≥, 6=.
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Definable functions are a priori Cm-functions up to a definable set of lower
dimension.
Our idea is to assume that the set of Cm-singularities is of codimension 1.
With the help of the Cm-cell decomposition we can reduce our examination
locally to the cases where this set is of the form U=

δ which leads to a contra-
diction.

The codimension-2-statement is induced by the following lemma.

Lemma 8.2 Let f : U 6=
δ → R be a definable continuous function with

∀x ∈ U=
δ ∀ε, ε′ > 0 ∃y ∈ Bε(x) ∩ U>

δ ∃y′ ∈ Bε(x) ∩ U<
δ :(363)

|f(y)| < ε′ ∧ |f(y′)| < ε′.

Then, the set of points at which f : Uδ → R,

(364) f(x) =

{
f(x), x ∈ U 6=

δ

0, x ∈ U=
δ ,

is not continuous, is of codimension greater than or equal to 2.

Proof: Without loss of generality let f be positive semidefinite.
We first look at f restricted to U>

δ .
Let

(365) A = {x ∈ U>
δ | f is locally constant at x}.

Property (363) does not change if we add to f the definable continuous
function x 7→ dist(x,Rn \ A) which vanishes on U=

δ .
So, we may assume that f is nowhere locally constant.
We define the function g : U=

δ → R as

(366) g(y) := inf
ε>0

sup
z∈Bε(y)∩U>

δ

{f(z)}.

This function is definable by construction.
The lemma is proved if g is positive only on a set of dimension less than or
equal to n− 2.
We assume that this is not true, i.e. that the set of positive points of g is of
dimension n− 1.
According to o-minimality, g is a continuous function up to a definable set of
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dimension less than n− 1. Hence, there is an M > 0, a δ1 > 0 and a y ∈ U=
δ

such that

(367) g(x) > M, x ∈ U=
δ1
∩Bδ1(y).

By property (363) we have

(368) ∀x ∈ Bδ1(y) ∩ U=
δ ∀ε > 0 ∃z ∈ Bε(x) ∩ U>

δ : f(z) ≤M.

Since Bε(x) ∩ U>
δ is definably connected and f |Bε(x)∩U>

δ
is continuous, the

Intermediate-Value-Theorem says that there is a z′ ∈ Bε(x) ∩ U>
δ

with f(z′) = M .
So, Bδ1(y) ∩ U=

δ is a subset of ∂B(M) where B(M) = f−1({M}). Therefore
we get

(369) n− 1 = dim(Bδ1(y) ∩ U=
δ ) ≤ dim(∂B(M)).

At the same time, f is nowhere locally constant. Hence, dim(B(M)) ≤ n−1,
and theorem 2.25 implies

(370) dim(∂B(M)) ≤ n− 2

which contradicts inequation (369).
For U<

δ we get the corresponding statement.
Hence, the set of points at which we cannot extend f continuously to 0 in
U=
δ is of dimension less than or equal to n − 2 since it is the union of two

definable sets of dimension less than or equal to n− 2. 2

In order to apply lemma 8.2 we need vanishing derivatives on certain sets.
This is provided by the following lemma.

Lemma 8.3 Let δ > 0 and f ∈ Cm−1(Uδ, R) be a definable m-times Peano-
differentiable function such that for each k = 0, ...,m,

(371) (x2, ..., xn) 7→ f[(k,0,...,0)](0, x2, ..., xn)

is an m-times continuously differentiable function . There exists a definable
m-times continuously differentiable function F : Uδ → R such that

(372) DαF = f[α], |α| ≤ m− 1, and D(m,0,...,0)F = f[(m,0,...,0)] on U=
δ .
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Proof: We define

(373) F (x1, ..., xn) :=
m∑
k=0

f[(k,0,...,0)](0, x2, ..., xn)

k!
xk1, (x1, ..., xn) ∈ Uδ.

Since the f[(k,0,...,0)] restricted to U=
δ are Cm-functions we see that F is also a

Cm-function. For |α| ≤ m− 1 we have

DαF (x1, ..., xn) =
m∑
k=0

Dα

(
f[(k,0,...,0)](0, x2, ..., xn)

k!
xk1

)
(374)

=
m∑

k=α1

D(0,α2,...,αn)f[(k,0,...,0)](0, x2, ..., xn)

(k − α1)!
xk−α1

1

For |α| ≤ m− 1 we get
(375)
DαF (0, x2, ..., xn) = D(0,α2,...,αn)f[(α1,0,...,0)](0, x2, ..., xn) = f[α](0, x2, ..., xn),

since f is Cm−1. Furthermore D(m,0,...,0)F = f[m,0,...,0)] on U=
δ . 2

We now show that with some further assumptions, U=
δ cannot be the set

of Cm-singularities of a definable m-times Peano-differentiable function.

Lemma 8.4 Let f : Uδ → R be a definable Cm−1-function which is m-times
Peano-differentiable on Uδ. Further, let f |U 6=δ be of class Cm and let each of

the Peano-derivatives f[α], |α| ≤ m, be a Cm-function on U=
δ . Then, f is of

class Cm except for a set of codimension greater than or equal to 2.

Proof: According to lemma 8.3, we make the general assumption that
f |U=

δ
≡ 0 together with all Peano-derivatives up to order m− 1, and

f[(m,0,...,0)](0, x2, ..., xn) = 0.

step 1: We show that all mth Peano-derivatives satisfy property (363).
Let |α| = m.
We assume that property (363) does not hold true for Dαf , i.e. that there
is an x0 ∈ U=

δ , a δ1 > 0 and an M > 0 such that for all y ∈ Bδ1(x0) ∩ U<
δ or

all y ∈ Bδ1(x0) ∩ U>
δ

(376) |Dαf(y)| > M.

Without loss of generality we may assume that x0 = 0. We assume that
inequality (376) is valid for all y ∈ Bδ1(x0) ∩ U>

δ , the other case is analog.
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By the continuity of Dαf in U>
δ1

and inequality (376), Dαf does not change
its sign in U>

δ1
. So we may assume that Dαf is positive in U>

δ1
.

We distinguish between the two possible cases.
case 1: α1 < m.
In this case there is an i ≥ 2 with αi > 0.
Dα−ei

f is continuous in Uδ and, by the general assumption, it vanishes at all
points of U=

δ .
For x1 > 0 we fix all coordinates excepting the ith one and apply the Mean-
Value-Theorem to Dα−ei

f . Then

(377) Dα−ei
f(x)−Dα−ei

f(x− xiei) ≥Mxi.

This is not possible since, also for xi > 0, according to the continuity of
Dα−ei

f , the limit

(378) lim
x1→0

(Dα−ei
f(x)−Dα−ei

f(x− xiei))

vanishes for all choices of x2, ..., xn.
So, property (363) holds true for Dαf .

case 2: α1 = m:
For an x0 ∈ U=

δ and t ∈ R sufficiently small we look at

(379)
dm

dtm
f(x0 + te1) = f[(m,0,...,0)](x0 + te1).

By the general assumption,

(380) lim
t↘0

f(t, x2, ..., xn)

|t|m
= 0

for all choices of x2, ..., xn.
According to proposition 7.2, we obtain

(381) lim
t→0,t6=0

f[(m,0,...,0)](x0 + tei) = lim
t→0,t6=0

dm

dtm
f(x0 + te1) = 0.

Thus, for all |α| = m, Dαf has property (363).
This, in connection with lemma 8.2, implies that all mth Peano-derivatives
are continuous up to a set of codimension greater than or equal to 2.

step 2:
In U 6=

δ , Dαf is continuously differentiable for |α| = m − 1 by assumption.
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Let E ⊂ U=
δ be the closure of the points at which at least one mth Peano-

derivative is not continuous. Note that

(382) dim(E) ≤ n− 2.

For x ∈ U=
δ \E, all mth Peano derivatives are continuous at x and so locally

bounded. We apply corollary 7.9 to these x and obtain continuous differen-
tiability for all (m− 1)th Peano derivatives at all points of U=

δ \ E. 2

We are now able to prove the first important result of this chapter.

Theorem 8.5 Let U ⊂ Rn be open, m ∈ N, and let f : U → R be a definable
m-times Peano-differentiable function. Then

(383) dim(singm(f)) ≤ n− 2.

Proof: We prove this by induction on m:
The case m = 0 is evident.
m− 1 m:
Since f is m-times Peano-differentiable, it is also (m − 1)-times Peano-
differentiable so that the assumption of the induction implies that

(384) dim(singm−1(f)) ≤ n− 2.

With the help of theorem 2.25 we obtain

(385) dim(cl
(
singm−1(f)

)
) ≤ n− 2.

Let V := U \ cl
(
singm−1(f)

)
. Then, V is open, and f restricted to V is an

(m− 1)-times continuously differentiable function.
We now assume that

(386) dim(singm(f |V )) = n− 1.

We select by theorem 4.5 a Λ2m-regular stratification of Rn which is compat-
ible with V , singm(f |V ), and also the sets on which all Peano-derivatives of
f up to order m are 2m-times continuously differentiable functions.
If equation (386) applies, there is at least one Λm-regular cell B of dimension
n− 1 with B ⊂ singm(f |V ).
Since B is a C2m-submanifold of V , there is an x0 ∈ B, a neighbourhood W
of x0 in V , and for some δ > 0 there is a C2m-diffeomorphism ϕ : W → Bδ(0)
such that ϕ(W ∩B) = U=

δ .
So, the function f ◦ ϕ−1 satisfies the conditions of lemma 8.4.
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Hence, f = f ◦ ϕ−1 ◦ ϕ is of class Cm except for a set of codimension ≥ 2,
which contradicts equation (386).
Hence,

(387) dim(singm(f)) ≤ dim
(
singm(f |V ) ∪ cl

(
singm−1(f)

) )
≤ n− 2

2

Characterising Cm-Singularity Sets

We have seen in the section before that the dimension of the Cm-singularity
set of a definable m-times Peano-differentiable function of n variables is
bounded by n− 2, cf. theorem 8.5.
So, it is reasonable to ask which sets can be Cm-singularity sets.
The answer is: For each definable set A ⊂ Rn with dim(A) ≤ n− 2 there is
a definable m-times Peano-differentiable function f with A = singm(f).
We will prove even more. Inspired by the examples of 6.3, we distinguish
between several types of Cm-singularities.

Definition 8.6 Let f : U → R and let k be a positive integer. We call
x0 ∈ U a

(k, \)-singularity of f if f is (k − 1)-times continuously but not k-times or-
dinary differentiable at x0,

(k,∞)-singularity of f if f is k-times ordinary differentiable at x0 but not
all kth derivatives are locally bounded at x0,

(k,<)-singularity of f if f is k-times ordinary differentiable at x0 and all
kth derivatives are locally bounded at x0.

We denote by singk,∗(f) the set of (k, ∗)-singularities of f where ∗ is one of
the symbols ∞,< or \.
If k ≤ m, all these singularities are obviously Cm-singularities.

We will give a full description of the singularity sets singk,∗(f) which can
appear for definable m-times Peano-differentiable functions.
Before we begin to prove several technical lemmata, we discuss several con-
ditions which the singularity sets have to satisfy. Of course these sets are
definable and of codimension at least 2.
In this section we will make much use of the concepts of Λm-regular stratifi-
cations, functions and cells, cf. chapter 4.
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Necessary Conditions for Singularity Sets

Let f : U → R be a definable m-times Peano-differentiable function and
1 ≤ k ≤ m.

If x0 ∈ singk,\(f), at least one of the kth Peano-derivatives is not locally
bounded at x0, cf. corollary 7.9.
Hence,

(388) ∂singk,\(f) ⊂ singk,∞(f).

Since the set of points at which at least one of the kth Peano-derivatives of
f is not locally bounded is closed in U ,

(389) singk,\(f) ∪ singk,∞(f)

is closed in U . Moreover, this union is disjoint by definition.
We obtain that if singm(f) = singk,\(f) ∪ singk,∞(f), then singm(f) is closed
in U .

We now look at singk,<(f) for k < m.
If x0 ∈ singk,<(f), at least one of the (k+1)th Peano-derivatives is not locally
bounded at x0, cf. corollary 7.9.
Hence,

(390) cl
(
singk,<(f)

)
⊂ singm(f).

Let x0 ∈ ∂singk,<(f). Then, x0 6∈ singk+1,<(f) since the (k + 1)th Peano-
derivatives are not locally bounded at x0.
We will show that it is possible for x0 to be a (k + 1,∞)-singularity.
Furthermore, the set singm,<(f) can be any definable subset of U of codimen-
sion greater than or equal to 2. We show this by constructing definable m-
times Peano-differentiable functions f : Rn → R with singm(f) = singm,<(f).
Besides the fact that all singularity sets are definable and of codimension
greater than or equal to 2 they possess the following properties:

singk,<(f) is arbitrary
singk,\(f) is arbitrary

k ≤ m singk,∞(f) is arbitrary
∂singk,\(f) ⊂ singk,∞
∂singk,∞(f) ⊂ singk,\
singk,∞(f) ∪ singk,\ is closed

k < m cl
(
singk,<(f)

)
⊂ singm(f)
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Preliminary Lemmata

We need several technical lemmata.

Lemma 8.7 Let A be either o or O. Let X ( Rn be open and let
f, g : X → R be k-times ordinary differentiable functions such that for each
multi-index α ∈ Nn with |α| ≤ k,

(391) Dαf(x) is A(dist(x, ∂X)s−|α|), Dαg(x) is O(dist(x, ∂X)r−|α|)

as x tends to ∂X. Then, for |α| ≤ k,

(392) Dα(f · g)(x) is A(dist(x, ∂X)r+s−|α|)

as x tends to ∂X.

Proof: By the Leibniz-formula for derivatives, there are aβ ∈ R, β ≺ α
(i.e. βi ≤ αi, i = 1, ..., n), such that

(393) Dα(f · g)(x) =
∑
β≺α

aβ(Dβf)(Dα−βg)(x).

According to property (391), we obtain that

(394) (Dβf(x))Dα−βg(x) is A(dist(x, ∂X)s+r−|α|)

as x tends to ∂X. Hence, the statement of the lemma is evident. 2

In the following we often write ”f(x) is A(dist(x, Y )k)” and omit ”as x
tends to Y ”.

Lemma 8.8 Let X, Y ⊂ Rn be open definable sets and ϕ : X → Y a defin-
able bijective Λp-regular mapping with Λp-regular inverse. Then there is an
L > 0 such that

(395)
1

L
dist(ϕ(x), ∂Y ) ≤ dist(x, ∂X) ≤ Ldist(ϕ(x), ∂Y ).

Proof: We choose L > 0 that way that both ϕ and ϕ−1 are Λp-regular
with L.
Without loss of generality we may assume that X is definably connected.
If x ∈ X, there is an x0 ∈ ∂X such that ‖x− x0‖ = dist(x, ∂X).
So, the function h : [0, 1) → X, t 7→ h(t) = x+ t(x0 − x) is well defined and
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obviously differentiable. We apply the Mean-Value-Theorem to ϕ ◦ h and
obtain

(396) ‖ϕ ◦ h(t)− ϕ ◦ h(0)‖ ≤ sup
0<s<t

|∇ϕ(h(s))h′(s)| (t− 0) ≤ L ‖x0 − x‖ t.

Hence, ϕ◦h is a bounded Lipschitz-continuous definable function. Thus, the
limit

(397) lim
t↗1

ϕ ◦ h(t) = z

exists in Rn.
z belongs to the boundary of Y , otherwise z ∈ Y so that x0 = ϕ−1(z) ∈ X
which is not possible. Moreover,

(398) ‖z − ϕ(h(0))‖ ≤ L ‖x− x0‖ .

Therefore we can estimate the distance of ϕ(x) to ∂Y by

(399) dist(ϕ(x), ∂Y ) ≤ ‖ϕ(h(0))− z‖ ≤ L ‖x− x0‖ = Ldist(x, ∂X).

By substituting ϕ with ϕ−1 we get inequality (395). 2

The next lemma shows the usefulness of Λp-regular functions.

Lemma 8.9 Let q be either p−1 or p and let A be either o or O. If X ⊂ Rn

is open and if f : X → R is a definable p-times ordinary differentiable
function such that for each multi-index α with |α| ≤ q

(400) Dαf(x) is A(dist(x, ∂X)p−|α|),

then for each definable open subset Y ⊂ Rn and each definable bijective Λp-
regular mapping ϕ : Y → X,

(401) Dβ(f ◦ ϕ) ∈ A(dist(y, ∂Y )p−|β|), |β| ≤ q,

applies.

Proof: We have to show the following claim.
Claim: For |β| ≤ q,

(402) Dβ(f ◦ ϕ)(y) =
∑

1≤|α|≤|β|

(Dαf)(ϕ(y))ψβ,α(y), y ∈ Y,
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where ψα,β is a Cp−|β|-function such that

(403) Dγψα,β(y) is O(dist(y, ∂Y )|α|−|β|−|γ|), |γ| ≤ q − |β| .

We will show this claim by induction on |α|.
We assume that ϕ is Λp-regular with constant C.
|β| = 1, i.e. Dβ = ∂

∂yi
for a 1 ≤ i ≤ n.

(404)

∂

∂yi
(f ◦ ϕ)(y) =

n∑
j=1

(Dej
f)(ϕ(y)) · ∂ϕj

∂yi
(y) =

∑
1≤|α|≤|β|=1

(Dαf)(ϕ(y))ψα,β(y)

where we set ψej ,β :=
∂ϕj

∂yi
. Since ϕ is Λp-regular with constant C,

(405)
∣∣Dγψej ,β(y)

∣∣ = |Dγ+ei
ϕj(y)| ≤ C

dist(y, ∂Y )|γ|

applies for |γ| ≤ q − 1 = q − |β|.
Hence, the ψα,β satisfy property (403).

|β| |β|+ 1:
We assume that for 1 ≤ |α| ≤ |β| the function ψα,β is (p− |β|)-times contin-
uously differentiable having property (403).
Then, for 1 ≤ i ≤ n,

Dβ+ei
(f ◦ ϕ)(y) =(406)

=
∑

1≤|α|≤|β|

∂

∂yi
((Dαf)(ϕ(y)) · ψα,β(y))

=
∑

1≤|α|≤|β|

n∑
j=1

(Dα+ej
f)(ϕ(y))

∂ϕj
∂yi

(y)ψα,β(y) + (Dαf)(ϕ(y))
∂ψα,β
∂yi

(y)

=
∑

1≤|α|≤|β+ei|

(Dαf)(ϕ(y))ψα,β(y)

where we have put

(407) ψα,β+ei
(y) :=



∂ψα,β
∂yi

(y), if |α| = 1

n∑
j=1

′∂ϕj
∂yi

(y)ψα−ej ,β(y) +
∂ψα,β
∂yi

(y), if 1 < |α| ≤ |β|

n∑
j=1

′∂ϕj
∂yi

(y)ψα−ej ,β(y), if |α| = |β|+ 1.
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The ′ at the summation sign
∑

means that we only sum over those j where
αj > 0.
We now check property (403) for ψα,β+ei

.
By assumption, for |γ| ≤ q − |β| − 1,

(408) Dγ
∂

∂yi
ψα,β(y) = Dγ+ei

ψα,β(y) is O(dist(y, ∂Y )|α|−|β|−|γ|−|ei|),

and since ϕ is Λp-regular,

(409) Dγ
∂ϕj
∂yi

(y) is O(dist(y, ∂Y )−|γ|).

By induction hypothesis ψα−ei,β is a Cp−|β|-function with Dγψα−ei,β(y) being
O(dist(y, ∂Y )1+|α|−|β|−|γ|) for |γ| ≤ p − |β|, c.f. (403). We apply lemma 8.7

to ψα−ei,β and
∂ϕj

∂yi
, hence

(410) Dγ

(
∂ϕj
∂yi

(y)ψα−ej ,β(y)

)
is O(dist(y, ∂Y )1+|α|−|β|−|γ|).

Since ψα,β+ei
is a linear combination of functions of the forms (408) or (410),

property (403) applies to it.
Since dist(ϕ(y), ∂X) is O(dist(y, ∂Y ), the lemma follows immediately

from the claim. 2

Constructing Singularity Sets

Now we are able to construct functions with special singularity sets.

The examples of 6.3 provide us for 2 ≤ d ≤ n, 1 ≤ k ≤ m and each
symbol ∗ ∈ {\,∞, <} with a semialgebraic function Fd,k,∗ : Rn−d → R such
that

(i) Fd,k,∗ is m-times Peano-differentiable in Rn−d,

(ii) Fd,k,∗ is m-times continuously differentiable in Rn−d \ {0}, and

(iii) singk,∗(Fd,k,∗) = {0}.

We use these functions for the proof of the following proposition as well as
the regularity conditions of Λm-regular functions and cells.

Proposition 8.10 Let Y ⊂ Rn be a Λm-regular cell of dimension d ≤ n−2.
Then, for each 1 ≤ k ≤ m there are definable m-times Peano-differentiable
functions F<, F∞, F\ : Rn → R such that
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(<) if k < m, then singm(F<) = cl (Y ), singk,<(F<) = Y and
singk+1,∞(F<) = ∂Y ;
if k = m, then singm(F<) = sing(m,<)(F<) = Y ,

(∞) singm(F∞) = singk,∞(F∞) = cl (Y ),

(\) singm(F\) = cl (Y ), singk,\(F\) = Y and singk,∞(F\) = ∂Y .

Proof: Let Y = (h)X be a standard Λm-regular cell in Rn of dimension
d, i.e. X is an open Λm-regular cell in Rd and h : X → Rn−d a definable
Λm-regular function.

step 1:
For the definable set

(411) Z :=
{

(x, y) ∈ X ×Rn−d | ‖y‖ < min(1, dist(x, ∂X)m+1))
}

let ψ : Rn → R be a definable Cm+1-function where

(i) ψ is positive in Z and

(ii) supp(ψ) = cl (Z).

Since ψ is Cm+1 with supp(ψ) = cl (Z), for all multi-indices |β| ≤ k,

(412) Dβψ(x, y) is o(dist(x, ∂X)m+1−|β|).

step 2:
If ∗ =<, for |α| ≤ k,

(413) DαFd,k,<(y) is O(‖y‖k−|α|).

If ∗ = ∞, for |α| ≤ k − 1,

(414) DαFd,k,∞(y) is O(‖y‖k−1−|α|).

If ∗ = \, for 1 ≤ |α| ≤ k − 1,

(415) DαFd,k,\(y) is O(‖y‖k−1−|α|).

step 3:
Let H∗ : Rd ×Rn−d → R be the function defined by

(416) H∗(x, y) :=

{
ψ(x, y)Fd,k,∗(y), x ∈ X
0, else.
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H∗ is m-times continuously differentiable on the open sets Rn \supp(H∗) and
(X × Rn−d) \ (X × {0}). Hence, it is m-times continuously differentiable in
the union of these sets, i.e. H∗ ∈ Cm(Rn \ (cl (X)× {0})).

step 3a: ∗ =<:
For (x, y) ∈ Z and |α| ≤ k,

(417) DαH<(x, y) =
∑
β≺α

aβ(Dα−βψ(x, y))DβFd,k,<(y)

applies, where aβ ∈ R with aα = 1.
By (412) in connection with (413) and (417), we obtain that for |α| ≤ k,

(418) DαH<(x, y) is o(dist(x, ∂X)m+1−|α|).

This implies that H< is (k + 1)-times ordinary differentiable in ∂X × {0}.
We show that singk,<(H<) = X × {0}.
If |β| ≤ k − 1, then DβFd,k,< is a continuous function. Hence, for |α| = k we
can write DαH< with the help of (417) and (412) as

(419) DαH<(x, y) = f(x, y) + (DαFd,k,<(y))ψ(x, y)

with a continuous function f .
So, the (k,<)-singularities of H<|Z correspond to the (k,<)-singularities of
Fd,k,<. Hence, by the properties of Fd,k,<, singk,<(H<) = X × {0}, and H<

has no other Cm-singularities in Z.

step 3b: ∗ = ∞:
For (x, y) ∈ Z and |α| ≤ k − 1,

(420) DαH∞(x, y) =
∑
β≺α

Aβ(Dα−βψ(x, y))DβFd,k,∞(y)

applies, where aβ ∈ R with aα = 1.
By (412) in connection with (414) and (420), we obtain that for |α| ≤ k− 1,

(421) DαH∞(x, y) is o(dist(x, ∂X)m−|α|).

This implies that H∞ is k-times ordinary differentiable in ∂X × {0}.
We show that singk,∞(H∞) = cl (X)× {0}.
If |β| ≤ k − 1, then DβFd,k,∞ is a continuous function. Hence, by (420), for
|α| = k − 1 we can write DαH∞ as

(422) DαH∞(x, y) = f(x, y) + (DαFd,k,∞(y))ψ(x, y)
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with a continuous function f .
So, the (k,∞)-singularities of H∞|Z correspond to the (k,∞)-singularities of
Fd,k,∞. Hence, by the properties of Fd,k,∞, singk,∞(H∞|Z) = X × {0}, and
H∞ has no other Cm-singularities in Z. Since at no point of cl (X × {0}) all
kth Peano-derivatives are locally bounded and H∞ is k-times ordinary differ-
entiable in cl (X × {0}), singk,∞(H∞) = cl (X × {0}).

step 3c: ∗ = \:
For (x, y) ∈ Z and |α| ≤ k − 1 it holds true that

(423) DαH\(x, y) =
∑
β≺α

aβ(Dα−βψ(x, y))DβFd,k,\(y),

where aβ ∈ R with aα = 1 By (412) in connection with (415) and (423), we
obtain that for |α| ≤ k − 1,

(424) DαH\(x, y) is o(dist(x, ∂X)m−|α|).

This implies that H\ is k-times ordinary differentiable in ∂X × {0}.
We show that singk,\(H\|Z) = X × {0}.
If |β| ≤ k − 1, then DβFd,k,\ is a continuous function. Hence, by (423), for
|α| = k we can write DαH\ as

(425) DαH\(x, y) = f(x, y) + (DαFd,k,\(y))ψ(x, y)

with a continuous function f .
So, the (k, \)-singularities of H\|Z correspond to the (k, \)-singularities of
Fd,k,\. Hence, by the properties of Fd,k,\, singk,\(H\|Z) = X × {0}, and H\

has no other Cm-singularities in Z. Since at no point of cl (X × {0}) all kth

Peano-derivatives are locally bounded and H\ is k-times ordinary differen-
tiable in ∂X × {0}, singk,∞(H\) = ∂X × {0}.

step 4:
Let g : X ×Rn−d → X ×Rn−d be the function defined by

(426) g(x, y) := (x, y − h(x)).

g is bijective, and both g and g−1 are Λm-regular since h is a Λm-regular
function. Moreover,

(427) dist((x, y), ∂X ×Rn−d) = dist(x, ∂X), (x, y) ∈ X ×Rn−d.
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We are now able to define F∗ : Rd ×Rn−d → R. We put

(428) F∗(x, y) :=

{
H∗(g(x, y)), x ∈ X
0, else.

By the same argument as in step 3, we conclude that F∗ is m-times contin-
uously differentiable on the set Rn \ cl (Y ).
Since g is m-times continuously differentiable,

(429) Y = g(X × {0}) ⊂ singk,∗(F∗).

So, it remains to look at the points of ∂Y .
step 4a: ∗ =<:

F< is m-times Peano- and (k+ 1)-times ordinary differentiable in ∂Y and in
no point of ∂y, all (k + 1)th Peano-derivatives are locally bounded.

In order to show that we obtain by lemma 8.9 and (418) in connection
with the remarks of (426) that
(430)

DαF<(x, y) = DαH<(g(x, y)) is o(dist(x, ∂X)m−|α|), |α| ≤ k, x ∈ X.

So, it is evident that F< is m-times Peano-differentiable at all points of
∂Y ⊂ ∂X ×Rn−d and that F< is (k+ 1)-times ordinary differentiable in ∂Y .
In no point of ∂y, the (k+1)th cannot be all locally bounded since that would
imply continuity of the kth derivatives in a neighbourhood of such a point,
cf. corollary 7.9, which contradicts (429).

step 4b: ∗ = ∞:
F∞ is m-times Peano- and k-times ordinary differentiable in ∂Y and the kth

Peano-derivatives are nowhere locally bounded in ∂Y . In order to show that
we obtain by lemma 8.9 and (421) in connection with the remarks of (426)
that
(431)
DαF∞(x, y) = DαH∞(g(x, y)) is o(dist(x, ∂X)m−|α|), |α| ≤ k − 1, x ∈ X

So, it is evident that F∞ is m-times Peano-differentiable at all points of
∂Y ⊂ ∂X × Rn−d and that F∞ is k-times ordinary differentiable in ∂Y .
∂Y ⊂ cl (Y ) and the kth Peano-derivatives are not locally bounded at each
point of Y . Since being not locally bounded is a closed property, the kth

Peano-derivatives are not locally bounded at each point of cl (Y ).

step 4c: ∗ = \:
F\ is m-times Peano- and k-times ordinary differentiable in ∂Y .
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In order to show that we obtain by lemma 8.9 and (424) in connection
with the remarks of (426) that
(432)
DαF\(x, y) = DαH\(g(x, y)) is o(dist(x, ∂X)m−|α|), 1 ≤ |α| ≤ k−1, x ∈ X.

So, it is evident that F\ is m-times Peano-differentiable in ∂Y ⊂ ∂X ×Rn−d

and that F\ is k-times ordinary differentiable in ∂Y . ∂Y ⊂ cl (Y ) and the kth

Peano-derivatives are not locally bounded at each point of Y . Since being
not locally bounded is a closed property, the kth Peano-derivatives are not
locally bounded at each point of cl (Y ).

Since a linear change of coordinates is a Cm operation, we can assume
that Y is not necessarily given in coordinates in which it is standard. 2

Applying theorem 4.5 and using proposition 8.10, we can construct de-
finable m-times Peano-differentiable functions with arbitrary and reasonable
singularity sets. This shows the usefulness of the concept of Λm-regular strat-
ifications.

Proposition 8.11 Let ∅ = A0 ⊂ A1 ⊂ ... ⊂ Am ⊂ Rn be a sequence of
definable sets with dim(Am) ≤ n− 2 and

(433) cl (Ak) ⊂ Ak+1, k = 1, ...,m− 1.

There exists a definable m-times Peano-differentiable function F : Rn → R
such that

(434) singk(F ) = Ak, k = 1, ...,m.

Proof: We choose a Λm-regular stratification of Rn compatible with the
A1, ..., Am and denote by Xk,1, ..., Xk,rk the cells which are contained in Ak,
k = 1, ...,m.
By proposition 8.10 (<), for each Xk,i there exists a definable m-times Peano-
differentiable function Fk,i : Rn → R such that for 1 ≤ k < m,

singk(Fk,i) = Xk,i,

singk+1(Fk,i) = cl (Xk,i) , and

singm(Fk,i) = cl (Xk,i) .

For k = m, singm(Fm,i) = Xm,i.
Hence, the function

(435) F =
m∑
k=1

rk∑
i=1

Fk,i
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has the desired property. 2

We obtain a consequence of this proposition.

Corollary 8.12 For each definable subset A ⊂ Rn with dim(A) ≤ n − 2
there exists a definable m-times Peano-differentiable function F : Rn → R
with

(436) singm(F ) = A.

Let 1 ≤ k ≤ m. With the help of proposition 8.10 we can describe the
sets of (k, ∗)-singularities of definable m-times Peano-differentiable functions.

Corollary 8.13 Let A ⊂ Rn be a definable set with dimA ≤ n − 2. There
is a definable m-times Peano-differentiable function F : Rn → R such that

singk,<(F ) = A, singk+1,∞(F ) = ∂A, and(437)

singm(F ) =

{
cl (A) , k < m

A, k = m.

We can also describe the (k,∞)- and (k, \)-singularity sets.

Corollary 8.14 Let A,B ⊂ Rn be disjoint definable subsets with dim(A) ≤
n− 2 and dim(B) ≤ n− 2. If A ∪ B is closed, there is a definable m-times
Peano-differentiable function F : Rn → R such that

singk,∞(F ) = A, singk,\(F ) = B and(440)

singm(F ) = A ∪B.

Proof: We choose a Λm-regular stratification of Rn compatible with A
and B and denote by X1, ..., Xr the cells which are contained in A and by
Xr+1, ..., Xs those contained in B.
By proposition 8.10 (\) and (∞), for each i = 1, ..., r there is a definable
m-times Peano-differentiable function Fi : Rn → R such that

(441) singk,∞(Fi) = cl (Xi) , and singm(Fi) = cl (Xi) ;

for j = r + 1, ..., s there is a definable m-times Peano-differentiable function
Gj : Rn → R such that

(442) singk,\(Gj) = Xj, singk,∞(Gj) = ∂Xj, and singm(Gj) = cl (Xj) .
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Hence, the function

(443) F =
r∑
i=1

Fi +
s∑

j=r+1

Gj

has the desired property. 2

As conclusion we see that the necessary conditions for singularity sets are
also sufficient. So we have given a characterisation of the singularity sets.
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9 Extending Definable Peano-Differentiable

Functions

Introduction

In this chapter we prove an extension theorem for definable Peano-differen-
tiable functions defined on a closed set.
As in the chapters before, R denotes a real closed field and we fix an o-
minimal expansion M of R.
We re-define Peano-differentiability in the way it is used in many papers
about extending Peano-differentiable functions. Here we are interested in
closed sets.

Definition 9.1 Let A ⊂ Rn be a set. We call f : A → R together with
(f[α])|α|≤m : A→ R m-times Peano-differentiable on A if

(444) f(x) =
∑
|α|≤m

f[α](y)

α!
(x− y)α +R(x, y) for x, y ∈ A

where

(445) lim
x→y

R(x, y)

‖x− y‖m
= 0.

Using this notion, the definition of the approximation polynomial of f at x0

remains the same for open sets. In the proof of the chain-rule, c.f. proposition
6.6, we do not use uniqueness of the approximation polynomials. Whenever
we compose Peano-differentiable functions with given approximation poly-
nomials we use the approximation polynomial constructed by means of the
chain-rule as an approximation polynomial for the composed function.

In classical Analysis, extending Peano-differentiable functions turns out
to be very difficult even for the real line.

In [8] there is an example of a 2-times Peano-differentiable function de-
fined on a perfect subset of R which is not the restriction of a 2-times Peano-
differentiable function on R.

If we assume stronger conditions on a closed subset of R, we can get ex-
tendibility. For example if the subset A ⊂ R has finite Denjoy-index, we can
extend each m-times Peano-differentiable function f to an m-times Peano-
differentiable function F on R such that f and F coincide on A together with
their derivatives, cf.[24]. In this case the class of closed sets is restricted.
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Another strategy is to restrict the class of functions which we want to
extend as Peano-differentiable functions. The following and very interesting
theorem is proved in [26].

Theorem 9.2 Let A ⊂ Rn be a closed set and let f together with the f [α] :
A→ R, |α| ≤ m, be an m-times Peano-differentiable function.
If

(i) for all multi-indices β, |β| ≤ m − 1, f[β] together with the f[β+γ], |γ| ≤
m− |β|, is (m− |β|)-times Peano-differentiable, and if

(ii) for all multi-indices β, |β| ≤ m, f[β] is a Baire-1-function (i.e. is the
pointwise limit of a sequence of continuous function),

then there is an m-times Peano-differentiable function F : Rn → R such that
DαF (x) = f[α](x) for all x ∈ A, |α| ≤ m.

We should mention that in theorem 9.2, assumption (ii) is not restrictive.
In [25], theorem 3 says that the Peano-derivatives of an m-times Peano-
differentiable function f : Rn → R are necessarily Baire-1-functions.

Theorem 9.2 is optimal in the sense that we do not get more than m-
times Peano-differentiability for the extended function, even if the function
is definable in an o-minimal structure or the formal derivatives are continuous
functions.

Example 9.3 In R2 we consider the sets A1 := {(x, y) | y ≤ 0∨ x ≥ 0} and
A2 := {(x, y) | x ≥ 0 ∧ y ≥ x4}. Then A = A1 ∪ A2 is a closed set. Let

f[0,0]|A2(x, y) = x3,(446)

f[1,0]|A2(x, y) = 3x2, and

f[2,0]|A2(x, y) = 6x.

Let f[0,1]|A2(x, y) = f[0,2]|A2(x, y) = f[1,1]|A2(x, y) = 0. Moreover, we claim
that all these functions vanish in A1.
Then, f = f[0,0] together with the f[α], |α| ≤ m, is a 2-times continuously
differentiable semialgebraic function.
But there is even no continuously differentiable F : R2 → R with f |A ≡ F |A.

Proof: We assume that there exists a C1-function F : R2 → R such
that

(447) F (x, y) = f(x, y), (x, y) ∈ A.
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For x ≥ 0 we consider

(448) F (x, x4)− F (x, 0) = f(x, x4)− f(x, 0) = x3.

Since F is continuously differentiable, we may apply the Mean-Value-Theorem
to

(449) t 7→ F (x, t).

Hence, there is a 0 < tx < x4 such that

(450) F (x, x4)− F (x, 0) =
∂F

∂y
(x, tx)(x

4 − 0).

Thus,

(451)
∂F

∂y
(x, tx) =

1

x
.

This implies that ∂F
∂y

is not locally bounded at (0, 0), and therefore it is not
continuous. 2

This example shows in particular that the concept of k-times ordinary
differentiability is not the correct one for closed sets even in o-minimal con-
text. By the example in [8] it is evident that Peano-differentiability also
needs several further assumptions to obtain extendibility.

Definition 9.4 Let A ⊂ Rn be definable. A definable partition of A is a
finite sequence of disjoint definable sets A1, ..., Ar such that A = A1∪ ...∪Ar.

The main goal of this chapter is to prove the following extension theorem
for definable m-times Peano-differentiable functions.

Theorem 9.5 Let A ⊂ Rn be a closed definable set, and let f : A → R
together with the definable (f[α])|α|≤m : A→ R be a definable m-times Peano-
differentiable function. Moreover, there is a definable partition A1, ..., Ar of
A such that

(*) for each i = 1, ..., r and for all multi-indices β, 1 ≤ |β| ≤ m− 1, f[β]|Ai

together with the f[β+γ]|Ai
, |γ| ≤ m − |β|, is (m − |β|)-times Peano-

differentiable on Ai.

Then, there is a definable Pm-function F : Rn → R such that
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(I) DαF (x) = f[α](x) for x ∈ A, |α| ≤ m.

(II) F is of class Cm on Rn \ A.

The next example shows that we cannot do without the assumption (*).

Example 9.6 Let A := {0} × R. Let f : A → R and f[α] : A → R, |α| ≤ 2
be given by the following data.
f ≡ f[(0,0)] ≡ f[(1,0)] ≡ f[(2,0)] ≡ f[(0,1)] ≡ f[(0,2)] ≡ 0 and f[(1,1)] ≡ 1. Then f is
2-times Peano-differentiable on A, but it is not the restriction of a 2-times
Peano-differentiable function F : R2 → R such that

(452) DαF |A ≡ f[α], |α| ≤ 2.

Proof: For all (0, a) 6= (0, y) ∈ A we obtain

(453) f(0, y)−
∑
|α|≤2

f[α](0, a)

α!
((0, y)− (0, a))α =

f[(1,1)](0, a)

1!1!
(y − a)101 = 0

Hence f together with f[α] is 2-times Peano-differentiable on A. We assume
that f is the restriction of a definable 2-times Peano-differentiable function
F : R2 → R. In this case, D(0,1)D(1,0)F = F[(1,1)] on R2 with the exception
of a finite set, cf. theorem 8.5. This implies D(0,1)f[(1,0)](0, y) = f[(1,1)](0, y)
except for finitely many y ∈ R. Obviously this is not true for any y. 2

On the other side, condition (*) is less restrictive than it seems to be.
So for n = 2 we obtain by theorem 8.5 for a definable m-times Peano-
differentiable function f : R2 → R that this function is Cm except for a
finite set X. So (*) is satisfied on R2 \ X, and on each one-element subset
Y ⊂ X, f |Y is trivially C2. So we see that for n = 2 (*) is also necessary.

Preliminary Lemmata

We prepare the proof of theorem 9.5 by several lemmata.
The strategy of proving theorem 9.5 is to stratify the set A into finitely many
suitable sets such that the f[α] satisfy stronger conditions on each of these
sets. These sets are Λ3m-regular cells. We begin with a simple case.

Lemma 9.7 Let d < n be a positive integer, X ⊂ Rd an open Λ3m-regular
cell and let f : cl (X)×{0} → R together with (f[α])|α|≤m : cl (X)×{0} → R
be a definable m-times Peano-differentiable function. If

(i) X 3 (x1, ..., xd) 7→ f[α](x1, ..., xd, 0, ..., 0) is Cm for |α| ≤ m,
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(ii) for 1 ≤ |β| ≤ m− 1, f[β] together with f[β+γ], |γ| ≤ m− |β|, is m− |β|-
times Peano-differentiable on X × {0}, and

(iii) f[α]|∂X ≡ 0, |α| ≤ m,

there is for every definable 3m-times continuously differentiable function ρ :
Rd → R with supp(ρ) = cl (X) and ρ|X > 0 a definable m-times Peano-
differentiable function F : Rn → R with the following properties:

DαF (x) = f[α](x), x ∈ cl (X)× {0}, |α| ≤ m,(454)

F ∈ C3m
(
Rn \ (cl (X)× {0})

)
, and(455)

supp(F ) ⊂ cl
({

(x, y) ∈ Rd ×Rn−d | x ∈ X ∧ ‖y‖ < ρ(x)
})
.(456)

Proof: step 1:
Let F1 : X ×Rn−d → R be defined by

(457) F1(x, y) :=
∑
|α|≤m

α1+...+αd=0

f[α](x, 0)

α!
yα.

By property (i), we deduce that F1 is m-times continuously differentiable
in X × Rn−d, and F1 is of course definable. Moreover, by property (ii),
DαF1(x, 0) = f[α](x, 0) for |α| ≤ m.

step 2:
Put ε : X×(Rn−d\{0}), ε(x, y) = min(1, ‖(0, y)‖m+1). According to theorem
2.26, we can approximate F1 on X × (Rn−d \ {0}) with a definable 3m-times
continuously differentiable function F2 : X × (Rn−d \ {0}) → R, i.e.

(458) |Dα(F1 − F2)(x, y)| ≤ ε(x, y), |α| ≤ m.

step 3:
Let ρ1 : Rd → R be a definable 3m-times continuously differentiable function
such that

ρ1|X > 0,

(459)

supp(ρ1) = cl (X) , and
(460)

ρ1(x) < min
(

dist(x, ∂X)m+1(1 +
∑
|α|≤m

|DαF1(x))|)−1, ρ(x), 1
)
, x ∈ X.

(461)
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Further let ϕ : [0,∞) → [0, 1] be a definable 3m-times continuously differen-
tiable function with

(462) ϕ |[0, 1
2
]≡ 1 and ϕ |[1,∞)≡ 0.

step 4:
We now define F : Rn → R by

(463) F (x, y) :=


F2(x, y) · ϕ

(
‖y‖2
ρ1(x)2

)
, x ∈ X, y 6= 0

F1(x, 0), x ∈ X, y = 0

0, else.

F is evidently definable.

step 5:
We check properties (454), (455) and (456).
Property (456) is evident by the choice of the functions ϕ and ρ1.
Since the function

(464) (x, y) 7→ ϕ

(
‖y‖2

ρ1(x)2

)
, (x, y) ∈ X ×Rn−d,

is 3m-times continuously differentiable and F2 is 3m-times continuously dif-
ferentiable in X×(Rn−d\{0}), we conclude that F ∈ C3m(Rn\cl (X × {0})).
So, property (455) is evident.
For (x, y) ∈ X ×Rn−d with 0 < ‖y‖ < 1√

2
ρ1(x), the difference

(465) |F (x, y)− F1(x, y)| = |F2(x, y)− F1(x, y)| ≤ ‖y‖m+1 .

Hence, F − F1 is m-times Peano-differentiable at all points of X × {0} such
that all Peano-derivatives up to order m vanish. Since F1 is m-times contin-
uously differentiable, F must be m-times Peano-differentiable at each point
of X × {0} such that

(466) DαF (x, 0) = DαF1(x, 0) = f[α](x, 0), |α| ≤ m.

So, it remains to show that F is m-times Peano-differentiable in ∂X×{0}n−d
with the zero-polynomial as approximation polynomial.
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Let (x, y) be of the interior of supp(F ) with y 6= 0. Then ‖y‖ < ρ1(x).

|F (x, y)| = |F2(x, y)|ϕ

(
‖y‖2

ρ2
1(x)

)
(467)

≤ |F2(x, y)|
≤ |F1(x, y)|+ ‖y‖m+1

≤
∑

1≤|α|≤m
α1+...+αd=0

∣∣f[α]((x, 0))
∣∣

α!
|yα|+ |f((x, 0))|+ ‖y‖m+1

≤
∑

1≤|α|≤m
α1+...+αd=0

∣∣f[α]((x, 0))
∣∣

α!
ρ
|α|
1 (x) + |f((x, 0))|+ ρm+1

1 (x)

≤ dist(x, ∂X)m+1 + f((x, 0)) + dist(x, ∂X)(m+1)2

For each ξ ∈ ∂X × {0},

(468) lim
(x,y)→ξ

dist(x, ∂X)m+1

‖(x, y)− ξ‖m
= 0 = lim

(x,y)→ξ

dist(x, ∂X)(m+1)2

‖(x, y)− ξ‖m
.

By property (iii),

(469) lim
(x,y)→ξ

f(x, 0)

‖(x, y)− ξ‖m
= 0

Hence,

(470) lim
(x,y)→ξ

F (x, y)

‖(x, y)− ξ‖m
= 0.

2

In order to generalise lemma 9.7 to arbitrary Λ3m-regular cells, we need
more information about Λ1-regular functions defined on Λ1-regular cells.

Lemma 9.8 Let X ⊂ Rn be a definable Λ1-regular cell of positive dimension
with constant C. We can join each pair of points x 6= y ∈ X by a definable
Lipschitz-continuous path ϕ : [0, ‖x− y‖] → X with constant (C + 1)n.

Proof: We prove this by induction on n.
The case n = 1 is evident.
n− 1 n:
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Without loss of generality we consider Y in a coordinate system in which it
is standard.
We notice that a definable function f of one variable is Lipschitz-continuous
with constant L if it is a continuous function and if the derivative of f is
bounded by L at the points at which it exists.

case 1:
Let dim(Y ) = d < n. Since x 6= y we may assume that d > 0. We write
Y = (h)X where X ⊂ Rd is a definable open Λ1-regular cell with constant C
and h : X → Rn−d is a Λ1-regular function with constant C.
If πX(x) = πX(y) then

(471) x = (πX(x), h(πX(x))) = (πX(y), h(πX(y))) = y

which contradicts the assumption that x 6= y.
Let x0 = πX(x) and y0 = πX(y).
By the assumption of the induction, there is a definable Lipschitz-continuous
path γ : [0, ‖x0 − y0‖] → X with constant (C + 1)d joining x0 and y0.
Let a := ‖x0 − y0‖ / ‖x− y‖. We define ψ : [0, ‖x− y‖] → Y by

(472) ψ(t) = (γ(at), h(γ(at))).

This path obviously joins x and y and it is continuous. For all points at
which the derivative of t 7→ γ(at) exits, we can estimate the norm of the
derivative by

‖ψ′(t)‖ = ‖aγ′(at), a∇h(γ(at)) · γ′(at)‖(473)

≤ a(C + 1)d + C(C + 1)d

≤ (C + 1)n.

case 2:
Let dim(Y ) = n. Then Y = (f, g)X where X ⊂ Rn−1 is a definable open
Λ1-regular cell and f < g are definable Λ1-regular functions f, g : X → R
with constant C.
Let x0, y0 and a be defined as in case 1.
By the assumption of the induction there is a definable Lipschitz-continuous
path γ : [0, ‖x0 − y0‖] → X with constant (C + 1)n−1 joining x0 and y0.
Moreover, we assume that for the nth coordinate of y and x, yn ≥ xn applies.
Let b := (yn − xn)/ ‖x0 − y0‖, a := ‖x0 − y0‖ / ‖x− y‖ and let the function
ϕ : [0, ‖x− y‖] → Y be defined by

(474) ϕ(t) = (γ(at), xn + abt).
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We define ψ : [0, ‖x− y‖] → Y by

(475) ψ(t) :=


(γ(at), f(γ(at))), if xn + abt ≤ f(γ(at)), (I)

(γ(at), g(γ(at))), if xn + abt ≥ g(γ(at)), (II)

ϕ(t) = (γ(at), xn + abt), else.

If b > C(C + 1)n−1, then

(476) g(γ(at)) > yn − b(t− ‖x− y‖) and f(γ(at)) < xn + tab.

Hence, ϕ(t) ∈ Y for all t. Moreover, at the points where t 7→ γ(at) is
differentiable,

(477) ‖ϕ′(t)‖ ≤ a ‖γ′(at)‖+ ab ≤ (C + 1)n−1 + C(C + 1)n−1 ≤ (C + 1)n.

If b ≤ C(C + 1)n−1, it can happen that (I) or (II) applies. This situation is
analogous to (472) and (473).
Hence, for all points t at which the derivative of ψ exists it holds true that

(478) ‖ψ′(t)‖ ≤ (C + 1)n.

2

Corollary 9.9 Let X, Y ⊂ Rn be open Λ1-regular cells and ψ : X → Y be a
Λ1-regular mapping. Then ψ is Lipschitz-continuous.

Proof: According to lemma 9.8, there is a constant C such that we
can join each pair of points x1, x2 ∈ X by a Lipschitz-continuous curve
ϕx1,x2 : [0, ‖x1 − x2‖] → X with constant C. If ψ is Λ1-regular with constant
D,
(479)
‖ψ(x2)− ψ(x1)‖ = ‖ψ(ϕx1,x2(‖x1 − x2‖))− ψ(ϕx1,x2(0))‖ ≤ CD ‖x2 − x1‖

2

We generalise lemma (9.7) to arbitrary Λ3m-regular cells of dimension
d < n.

Lemma 9.10 Let Y be a Λ3m-regular cell of dimension d < n and U a de-
finable open neighbourhood of Y . Let f : cl (Y ) → R together with (f[α])|α|≤m
be a definable m-times Peano-differentiable function with the following prop-
erties:
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(i’) f[α] ∈ C2m(Y ), |α| ≤ m,

(ii’) for 1 ≤ |β| ≤ m − 1,f[β]|Y together with f[β+γ]|Y , |γ| ≤ m − |β|, is
m− |β|-times Peano-differentiable on Y , and

(iii’) f[α](η) = 0, η ∈ ∂Y.

Then there is a definable m-times Peano-differentiable function F : Rn → R
such that

DαF (η) = f[α](η), η ∈ cl (Y ) , |α| ≤ m(480)

supp(F ) ⊂ cl (U) ,(481)

F |Rn\cl(Y ) is 3m-times continuously differentiable.(482)

Proof: We examine the validity for the special case d = 0. In this case,
∂Y = ∅ and Y = {y0}. We choose a definable C3m-map ϕ : R → R which
vanishes outside (−1, 1) and equals 1 in (−1/2, 1/2). Moreover, let ε > 0 and
let it be that small that Bε(y0) ⊂ U . Then F : Rn → R, defined by

(483) F (x) := ϕ
(

1− 1

ε
‖x− y0‖3m+1

) ∑
|α|≤m

f[α](y0)

α!
(x− y0)

α,

satisfies the conditions (480), (481) and (482).
Let d > 0.

step 1:
Let Y = (h)X where X ⊂ Rd is an open definable Λ3m-regular cell and
h : X → Rn−d a Λ3m-regular mapping.
We define the function ψ : X ×Rn−d → X ×Rn−d by

(484) ψ(x, y) := (x, y + h(x)).

This function is Λ3m-regular on X × Rn−d and bijective with Λ3m-regular
inverse. We use this function to reduce our problem to the situation assumed
in lemma 9.7. As a suitable function we choose G : X × {0} → R together
with the functions (G[α])|α|≤m : X × {0} → R given in (485) and (486).
For ξ0 ∈ X × {0} let

(485) G(ξ0) = f(ψ(ξ0)) and pG,ξ0 = pf◦ψ,ξ0

where the G[α] are defined through the identity

(486)
∑
|α|≤m

G[α](ξ0)

α!
(ξ − ξ0)

α = pG,ξ0(ξ − ξ0).
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step 2:
We extend the G[α] to the closure of X.

(487) G[α](x, 0) :=

{
G[α](x, 0), if x ∈ X
0, if x ∈ ∂X

We now show that G together with the G[α] satisfies the conditions of lemma
9.7.
According to the chain-rule, cf. proposition 6.6, G|X×{0} is anm-times Peano-
differentiable function. So, for ξ0 ∈ X × {0},

(488) pf◦ψ,ξ0(ξ) =
( ∑
|α|≤m

f[α](ψ(ξ0))

α!

( ∑
|β|≤m

ψ[β](ξ0)

β!
(ξ − ξ0)

β
)α)

(m)

applies (the index m signifies that we set all coefficients of degree greater
than m zero). The f[α] and ψ[β], |α| ≤ m and |β| ≤ m, are m-times contin-
uously differentiable functions. Hence, the coefficients of pf◦ψ,ξ0 are m-times
continuously differentiable functions and therefore, by (485) and (486), the
G[α] are m-times continuously differentiable functions in X × {0}. This is
condition (i) of lemma 9.7. Condition (ii) of lemma 9.7 is a consequence of
(ii’) and and the fact that ψ is a (definable) Cm-function on an open set.
It remains to show that G is Peano-differentiable at the points
ξ0 ∈ ∂X × {0}, i.e. we must show that

(489) lim
X×{0}3ξ→ξ0

G(ξ)

‖ξ − ξ0‖m
, ξ0 ∈ ∂X × {0}.

By equation (485), we obtain G(x, 0) = f ◦ ψ(x, 0) for x ∈ X. According
to corollary 9.9, ψ is Lipschitz-continuous with some constant L > 0 so that
ψ extends continuously to cl (X) × Rn−d. Hence, Y 3 ψ(ξ) → ψ(ξ0) ∈ ∂Y
when X × {0} 3 ξ → ξ0 ∈ ∂X × {0}. Now,

lim
ξ→ξ0

∣∣∣∣ G(ξ)

‖ξ − ξ0‖m
∣∣∣∣ = lim

ξ→ξ0

∣∣∣∣ f ◦ ψ(ξ)

‖ξ − ξ0‖m
∣∣∣∣(490)

≤ lim
ξ→ξ0

∣∣∣∣ f ◦ ψ(ξ)Lm

‖ψ(ξ)− ψ(ξ0)‖m
∣∣∣∣

≤ lim
ψ(ξ)→ψ(ξ0)

∣∣∣∣ f ◦ ψ(ξ)Lm

‖ψ(ξ)− ψ(ξ0)‖m
∣∣∣∣

= 0.

step 3:
G together with the G[α] satisfies the conditions of lemma 9.7 for cl (X)×{0}.
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Let V := ψ−1(U). There is a definable 3m-times continuously differentiable
function ρ : Rd → R with supp(ρ) = cl (X) and ρ > 0 on X such that
W := {(x, y) ∈ Rn | ‖y‖ < ρ(x), x ∈ X} ⊂ V .
Lemma 9.7 provides us with a definable m-times Peano-differentiable func-
tion H : Rn → R such that

supp(H) ⊂ cl (W ) ,(491)

H is 3m-times continuously differentiable outside cl (X)× {0}, and(492)

DαH(x, 0) = G[α](x, 0), x ∈ cl (X) , |α| ≤ m.(493)

step 4
The function F : Rn → R defined by

(494) F (x, y) =

{
H ◦ ψ−1(x, y), (x, y) ∈ ψ(W )

0, else

is a function with the desired properties.

step 4a: supp(F ) ⊂ cl (U):
This is easily seen by

(495) supp(F ) ⊂ cl (ψ(W )) ⊂ cl
(
ψ(ψ−1(U))

)
= cl (U) .

step 4b: F is 3m-times continuously differentiable outside cl (Y ).
Since F ≡ 0 on Rn \ cl (U), it is 3m-times continuously differentiable in
Rn \ cl (U). Furthermore, by (492), F is 3m-times continuously differen-
tiable in X ×Rn−d \ Y . Hence, F is 3m-times continuously differentiable in
Rn \ cl (Y ).

step 4c: F is m-times Peano-differentiable in cl (Y ).
It is obvious that F is m-times Peano-differentiable in Y by step 3.
We now concentrate on ∂Y . Let η ∈ ∂Y . We show that F is m-times Peano-
differentiable at η with vanishing approximation polynomial.
Since ψ−1 is Lipschitz-continuous with a constant L, we can extend it con-
tinuously to cl (Y ). Let ξ := ψ−1(η) and ε > 0. Since H is m-times Peano-
differentiable at ξ with the zero-polynomial as approximation polynomial,
there is a δ > 0 such that

(496) |H(w)−H(ξ)| < ε

Lm
‖w − ξ‖m , w ∈ Bδ·L(ξ) ∩W.

Let y ∈ Bδ(η).
If y ∈ Rn \ ψ(W ), then F (y)− F (η) = 0 and there is nothing to prove.
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Otherwise, ψ−1(y) ∈ W ∩Bδ·L(ξ) and we obtain the following inequation:

|F (y)− F (η)| =
∣∣H ◦ ψ−1(y)−H ◦ ψ−1(η)

∣∣(497)

≤ ε

Lm
∥∥ψ−1(y)− ψ−1(η)

∥∥m
≤ ε

Lm
Lm ‖y − η‖m

= ε ‖y − η‖m(498)

step 4d: DαF (y) = f[α](y), y ∈ cl (Y ) , |α| ≤ m.
This follows immediately if we consider the corresponding approximation
polynomials.

(499) pF,y = pH◦ψ−1,y = p(f◦ψ)◦ψ−1,y = pf,y

2

Proof of Theorem 9.5

Suppose that the statement of theorem 9.5 holds true for definable sets of
dimension less than n. If the closed definable set A ⊂ Rn has nonempty
interior int(A), we choose a definable m-times Peano-differentiable function
f̃ : Rn → R extending f together with the f[α] restricted to A\ int(A). Then

F : Rn → R defined by F := f on A and F := f̃ on Rn \ A is definable and
m-times Peano-differentiable everywhere such that the Peano-derivatives of
F coincide with the f[α] on A.
So we have to show the validity of theorem 9.5 for definable sets A ⊂ Rn

with dim(A) ≤ n− 1.

step 1:
Using theorem 4.5 we choose a Λ3m-regular stratification S1, ..., Sq of Rn

compatible with A, A1, ..., Ar, and compatible with the sets on which each
Peano-derivative up to order m is an 2m-times continuously differentiable
function. Furthermore we assume that dim(Sj) ≤ dim(Sj+1).
For j = 1, ..., q put Tj :=

⋃
i≤j Si.

Since the Sl, l < j are a strata and since all strata of dimension less than the
dimension of Tj are contained in Tj, Tj is always a closed set.
We equip each Sj with a suitable neighbourhood

(500) Uj := {x ∈ Rn | dist(x, Tj−1) > dist(x, Sj)}.
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The Uj and Tj−1 have the following obvious relationship:

(501) cl (Uj) ∩ cl (T )j−1 ⊂ ∂Uj

step 2:
We now construct the function F : Rn → R inductively using the sequences
of helping functions (H i

[α])i=0,...,q−1 : A→ R and (F i)i=1,..,q : Rn → R.

For |α| ≤ m we put H0
[α] = f[α] so that each H0

[α]

∣∣
S1

is 2m-times continu-
ously differentiable.
According to lemma 9.10 applied to H0

∣∣
S1

together with its Peano-derivatives
and with Rn as open neighbourhood of S1, we obtain a definable m-times
Peano-differentiable function F 1 : Rn → R which is 3m-times continuously
differentiable in Rn \ T1 and satisfies

(502) DαF
1 = H0

[α] on S1, |α| ≤ m.

We put H1
[α] := H0

[α]−DαF
1
∣∣
A

, |α| ≤ m, so that the H1
[α] ≡ 0 on T1 and that

the H1
[α] are 2m-times continuously differentiable on each of the Si.

We now construct the Hj
[α] and F j, provided that the Hj−1

[α] is given with
the following data:

Hj−1
[α] ≡ 0 on Tj−1,(503)

Hj−1
[α] is 2m-times continuously differentiable in Si, i = 1, ..., q.(504)

Hj−1
[α] satisfies the conditions of lemma 9.10 on Sj. As neighbourhood of Sj

we choose Uj.
Now, by lemma 9.10, we obtain a definable m-times Peano-differentiable
F j : Rn → R such that

supp(F j) ⊂ cl (Uj) ,(505)

DαF
j ≡ Hj−1

[α] on Sj, and(506)

F j
∣∣
Rn\Tj

is 3m-times continuously differentiable.(507)

Because of (501) and (507), it holds true that DβF
j ≡ 0 on Tj−1 for |β| ≤ 3m.

For every |α| ≤ m we put

(508) Hj
[α] := Hj−1

[α] −DαF
j on A

and receive

Hj
[α] ≡ 0 on Tj,(509)

Hj
[α] is 2m-times continuously differentiable in Si, i = 1, ..., q.(510)
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step 3: Now it is easy to see that

(511) F :=

q∑
i=1

F i

is a possible function we have been looking for.
Since each F i is m-times continuously differentiable outside Tq, F is m-times
continuously differentiable outside A. Moreover, for x ∈ A
(512)

f[α](x)−
q∑
i=1

DαF
i(x) = Hj−1

[α] (x)−
q∑
i=j

DαF
j(x) = Hq−1

[α] (x)−DαF
q(x) = 0,

by the definition of the H i
[α]. Hence, theorem 9.5 is evident. 2
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