
Linear Orderings of Sparse Graphs

Dissertation

KATHRIN HANAUER

Supervisor:
PROF. DR. FRANZ J. BRANDENBURG

Fakultät für Informatik und Mathematik

Universität Passau

July 2017

Abstract
The LINEAR ORDERING problem consists in finding a total ordering of the vertices of a

directed graph such that the number of backward arcs, i. e. , arcs whose heads precede

their tails in the ordering, is minimized. A minimum set of backward arcs corresponds

to an optimal solution to the equivalent FEEDBACK ARC SET problem and forms a

minimum CYCLE COVER.

LINEAR ORDERING and FEEDBACK ARC SET are classic NP-hard optimization prob-

lems and have a wide range of applications. Whereas both problems have been studied

intensively on dense graphs and tournaments, not much is known about their structure

and properties on sparser graphs. There are also only few approximative algorithms

that give performance guarantees especially for graphs with bounded vertex degree.

This thesis fills this gap in multiple respects: We establish necessary conditions

for a linear ordering (and thereby also for a feedback arc set) to be optimal, which

provide new and fine-grained insights into the combinatorial structure of the problem.

From these, we derive a framework for polynomial-time algorithms that construct

linear orderings which adhere to one or more of these conditions. The analysis of the

linear orderings produced by these algorithms is especially tailored to graphs with

bounded vertex degrees of three and four and improves on previously known upper

bounds. Furthermore, the set of necessary conditions is used to implement exact and fast

algorithms for the LINEAR ORDERING problem on sparse graphs. In an experimental

evaluation, we finally show that the property-enforcing algorithms produce linear

orderings that are very close to the optimum and that the exact representative delivers

solutions in a timely manner also in practice.

As an additional benefit, our results can be applied to the ACYCLIC SUBGRAPH

problem, which is the complementary problem to FEEDBACK ARC SET, and provide

insights into the dual problem of FEEDBACK ARC SET, the ARC-DISJOINT CYCLES

problem.

Preface

You don’t do a PhD thesis all on your own. Certainly, you are the one who writes it and

who agonizes about its content, but there are so many people without whom this project

would not have been realizable. I wish to express my gratitude to everyone who helped

me come this far.

Let me start with my supervisor, Prof. Dr. Franz J. Brandenburg. Thank you for

“infecting” me with FEEDBACK ARC SET and LINEAR ORDERING and I mean this in a

strictly positive sense! You piqued my curiosity in cycles and their breakup in the first

place and, as a matter of fact, it lasted until now. Thank you also for introducing me

to the world of papers, conferences, and journals, for relying on my abilities, and for

your always valuable advice. I also would like to thank Prof. Dr. Ulrik Brandes for being

the second referee for this dissertation, for his interest in my work, and for some very

inspiring conversations.

During my time working as a teaching and research assistant at the Chair of Theoretical

Computer Science, I was lucky to have great colleagues, some of whom have also

become friends over time. Thank you, Christopher Auer, Christian Bachmaier, Wolfgang

Brunner, Susanne Frühauf, Andreas Hofmeier, Marco Matzeder, Daniel Neuwirth, Josef

Reislhuber, and Alexander Riemer, for sharing your experience and your advice, for

many expert discussions, and simply for having made this chair a great place to work.

Special thanks go to my office mates, Christopher Auer and Josef Reislhuber, whom

I naturally spent most of the time with. I am also incredibly grateful to Christian

Bachmaier for carefully proof-reading this thesis and for his very helpful comments.

On the private side, I want to thank my partner, Olaf. If it were not for you, this project

would probably never have been finished. You were my rock in turbulent waters, you

cheered me up when I had found myself once more in a dead end with a proof or with

something else, you were always there when I needed you. Thank you for believing

in me. Aside from that, I am highly grateful for your professional opinion on this

thesis. I also wish to especially thank my parents, Christiana and Reiner: Thank you for

your understanding, your enduring support, for helping me through difficult episodes,

ii

for accommodating me, and for covering my back such that I can focus on this thesis.

Cordial thanks also to my sister, Christina, for being a great and appreciated dialogue

partner, for taking work off me, and for some very cheerful recreational activities! I am

also truly grateful to my partner’s parents, Erika and Heinz, for their encouragement

and for providing me several times a place to work, but also to rest.

Passau, in July 2017 Kathrin Hanauer

Contents

1 Introduction 1

2 The Linear Ordering Problem: An Outline 5
2.1 The Linear Ordering Problem and its Kin 6

2.1.1 Problem Statements . 6

2.1.2 Linear Programming . 9

2.1.3 Dual Problems . 11

2.1.4 The Acyclic Subgraph Polytope . 13

2.1.5 Reductions to and from the LINEAR ORDERING Problem 14

2.2 Complexity . 18

2.2.1 NP-Completeness Results . 18

2.2.2 Approximability and Approximations 21

2.2.3 Parameterized Complexity . 23

2.2.4 Polynomially Solvable Instances 25

2.3 The Cardinality of Optimal Feedback Arc Sets 26

2.3.1 Existential Bounds . 26

2.3.2 Algorithms with Absolute Performance Guarantees 27

2.4 Linear Orderings in Practice . 28

2.4.1 Heuristics . 28

2.4.2 Applications . 30

3 Preliminaries: Definitions and Preparations 35
3.1 Basics . 35

3.1.1 Sets and Multisets . 35

3.1.2 Minimal and Maximal versus Minimum and Maximum 37

3.1.3 Computational Complexity . 37

3.1.4 Data Structures . 37

3.2 General Graph Theory . 38

3.2.1 Graphs, Vertices, and Arcs . 38

iv Contents

3.2.2 Vertex Degrees . 39

3.2.3 Paths, Cycles, and Walks . 40

3.2.4 Connectivity and Acyclicity . 41

3.3 Feedback Arc Sets and Linear Orderings 43

3.3.1 Feedback Arc Sets . 43

3.3.2 Linear Orderings . 44

3.3.3 Forward Paths and Layouts . 47

3.4 Preprocessing and Default Assumptions 48

3.4.1 Loops and Anti-Parallel Arcs . 48

3.4.2 Strong Connectivity . 49

3.4.3 Biconnectivity . 50

4 Properties of Optimal Linear Orderings: A Microscopic View 55
4.1 General Framework . 55

4.2 Algorithmic Setup . 58

4.2.1 Graphs . 58

4.2.2 Linear Orderings . 59

4.2.3 Vertex Layouts . 59

4.2.4 Initializing the Data Structures . 60

4.2.5 General Remarks . 63

4.3 Nesting Property . 63

4.3.1 A 1-opt Algorithm . 63

4.3.2 Nesting Arcs . 68

4.3.3 A Graph’s Excess . 71

4.4 Path Property . 73

4.4.1 Forward Paths for Backward Arcs 73

4.4.2 Establishing Forward Paths . 74

4.4.3 Minimal Feedback Arc Sets . 76

4.5 Blocking Vertices Property . 77

4.5.1 Left- and Right-Blocking Vertices 78

4.5.2 Vertical Splits . 82

4.5.3 Establishing Non-Blocking Forward Paths 84

4.6 Multipath Property . 87

4.6.1 Arc-Disjoint Forward Paths . 87

4.6.2 Analyzing the Flow Network Approach 91

Contents v

4.6.3 Arc-Disjoint Cycles . 94

4.6.4 An NP-hard Extension . 95

4.7 Multipath Blocking Vertices Property . 97

4.7.1 Non-Blocking Multipaths . 98

4.7.2 Flow Networks for Split Graphs 103

4.7.3 Again an NP-hard Extension . 107

4.8 Eliminable Layouts Property . 112

4.8.1 Eliminable Layouts . 112

4.8.2 The Elimination Operation . 117

4.8.3 Eliminating Eliminable Layouts 122

4.9 A PsiOpt-Algorithm . 126

4.9.1 A Cascading Meta-Algorithm . 127

4.9.2 Establishing the Necessary Properties Simultaneously 129

4.10 Manipulations and Meta-Properties . 132

4.10.1 Basic Operations on Linear Orderings and Graphs 133

4.10.2 Fusion Property . 143

4.10.3 Reduction Property . 146

4.10.4 Arc Stability Property . 149

5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs 151
5.1 Auxiliary Graphs . 152

5.1.1 The Forward Path Graph . 152

5.1.2 The Pooled Forward Path Graph 154

5.1.3 The Polarized Forward Path Graph 156

5.1.4 The Truncated Forward Path Graph 157

5.2 Subcubic Graphs . 159

5.2.1 A Tight Bound . 159

5.2.2 On the Approximation Ratio . 163

5.3 From Subcubic to General Graphs . 167

5.3.1 Pebble Transportation in Supercubic Graphs 168

5.3.2 A General Assignment Scheme . 169

5.4 Subquartic and Subquintic Graphs . 173

5.4.1 Two Special Cases of One-Arc Stability 173

5.4.2 A Tight Bound for Subquartic Graphs 177

5.4.3 Subquintic Graphs . 193

vi Contents

6 Exact and Fast Algorithms for Linear Ordering 197
6.1 Partial Layouts and Incomplete Linear Orderings 198

6.2 Exact Algorithms for Optimization and Decision 201

6.3 Branch and Bound with Integrated Partial Layouts 208

6.4 Fine-Tuning . 218

6.5 Runtime Comparison for Sparse Graphs 219

7 Experimental Evaluation 221
7.1 The Algorithm Test Suite . 222

7.1.1 Algorithms . 222

7.1.2 Input Instances . 224

7.1.3 Technical Setup . 226

7.1.4 Evaluation . 227

7.2 Sparse Regular Graphs . 228

7.2.1 Selection and Configuration of Algorithms 228

7.2.2 Performances and Running Times 229

7.2.3 Summary . 237

7.3 Large Graphs . 239

7.3.1 Fences, Ladders, and their Composites 239

7.3.2 Performances and Running Times 240

7.3.3 Summary . 243

7.4 The LOLIB Graph Library . 244

7.4.1 Sets of LOLIB Instances . 244

7.4.2 Performances and Running Times 246

7.4.3 Comparison to Other Approaches 249

7.5 Threats to Validity . 249

7.5.1 Construct Validity . 249

7.5.2 Internal Validity . 250

7.5.3 External Validity . 250

7.6 Summary . 250

8 Conclusion and Future Work 253

Bibliography 255

Notation Index 267

Contents vii

Algorithm Index 273

Subject Index 277

1 Introduction

To put it in extreme terms, one might say that cycles appear in our everyday life. There

even is the term “life cycle”, which appears in various contexts: Products have one,

software, organisms. We are also confronted on a daily basis with other types of cycles.

Soon after getting up, we make use of the water cycle. When we need to go somewhere,

we find that the time-tables of public transportation have cycles: If we wait only long

enough, there always is a next bus, train, subway to come. Some of them even operate

themselves on a circle route. Large cities often have ring roads and in rural areas, drivers

are frequently confronted with roundabouts, which provide the advantage that, while

going in circles, one has all the time in the world to decide which exit to take. At least

in theory. A cycle basically describes a permanent reoccurrence of events or a process

that, instead of terminating, always starts anew. All of the aforementioned sounds very

positive—as if cycles were in general a nice thing. Sometimes, however, cycles are not

good. We can be trapped in a vicious cycle and need to break it. We may want to have a

clear beginning and a clear ending, or something which is first and something which is

last. It may be important to know with what to start.

When modeling relationships between entities as a directed graph, cyclic structures

occur rather frequently. All the same, they are undesired in many applications and

have to be cut, usually however under the precondition that their breakup changes the

graph as little as possible. Such situations naturally include different types of ranking

problems, for example in conjunction with elections, votings, or sports tournaments.

In the late 18th century, the Marquis de Condorcet observed what is known today as

the Condorcet paradox [dC85]: Given three or more options, the majority preferences

can be cyclic, even though the individual preferences are not. Cycles also hamper the

analysis of systems, such as in electronic circuits testing or software verification. Not

least, cyclic dependencies are often the cause for bootstrapping problems in various

fields of computing.

The problem of breaking cycles by removing a minimum cardinality set of arcs from

a directed graph G is known as the FEEDBACK ARC SET problem. As the thereby

2 1 Introduction

obtained acyclic subgraph always admits a topological sorting, the problem can be

formulated equivalently as the LINEAR ORDERING problem, which consists in finding

a total ordering π of the vertices of G that minimizes the number of “backward” arcs

(u, v), where π(u) > π(v). In an optimal solution, there is a one-to-one correspondence

between the backward arcs with respect to a linear ordering and the removed arcs in an

optimal feedback arc set. This perspective on FEEDBACK ARC SET also underlines its

connection to ranking problems. Another benefit of the LINEAR ORDERING problem is

that it can be visualized nicely. To this end, the vertices are placed on a horizontal line in

the order of π. “Forward” arcs, which are those that agree with the linear ordering, are

then drawn from left to right above the line and backward arcs from right to left below.

FEEDBACK ARC SET is a relatively old problem with respect to computational com-

plexity. Accordingly, there are many results concerning it and which equally apply to

its sibling, the LINEAR ORDERING problem. We therefore start with a comprehensive

survey on the latter, which includes FEEDBACK ARC SET as well as further related

problems. The chapter stretches from the discussion of computational complexity over

worst-case cardinalities of backward arc sets to practical considerations such as heuristics

and applications.

Afterwards, we define some mathematical and graph-theoretical notation and terms

that enable us to deal with the LINEAR ORDERING problem formally. At the end of this

chapter, we also stipulate some basic assumptions regarding the input graphs under

consideration.

Next, we study optimal linear orderings thoroughly and with an attentive eye for

details. Whereas this may at first seem like a waste of time and effort in light of the fact

that LINEAR ORDERING belongs to the class ofNP-hard problems, we later demonstrate

the opposite for sparse instances in various respects. In the course of this chapter,

we derive a number of properties that are characteristic for optimal linear orderings

and show for each of them how it can be established algorithmically and, with few

minor exceptions, in a time-efficient manner. In result, we develop a polynomial-time

algorithm that constructs a linear ordering compliant to all major properties. As an

addendum, the last section here also briefly touches some high-level properties, the

so-called meta-properties.

Subsequent to this, we devote ourselves to an in-depth analysis of linear orderings

that adhere to properties of the previous chapter and consider the cardinality of their

induced set of backward arcs. For graphs having n vertices and a maximum vertex

degree of three, i. e. , subcubic graphs, we derive an improved upper bound of ⌊n
3 ⌋ on

3

the cardinality of an optimal feedback arc set and show that it is tight. By extending our

approach, we are also able to assess vertices of degree four. This yields an improved

upper bound of ⌊2n
3 ⌋ for the cardinality of an optimal feedback arc set of a subquartic

graph having n vertices. Again, the new result is best possible. Furthermore, we

conjecture that a very similar approach can be applied to show that an optimal feedback

arc set of a subquintic graph has cardinality at most ⌊2.5n
3 ⌋.

In the following chapter, we make use of some of the properties to develop new exact

algorithms which are fast on sparse graphs and at the same time space-efficient. For

cubic graphs, they have a running time of only O∗(
√

2n) and thereby outperform even

other candidates that require exponential space.

The penultimate chapter contains an experimental evaluation of algorithms that

establish a set of properties efficiently as well as of one of the new exact algorithms. For

comparison, they also compete against standard algorithms that have been used in the

past to tackle the FEEDBACK ARC SET problem and the LINEAR ORDERING problem.

Here, the property-enforcing routines show their superiority on sparse graphs and still

very good performance on other graphs.

We conclude in the last chapter and pick up on some open problems and suggestions

for future work.

2 The Linear Ordering Problem:
An Outline

First references to the LINEAR ORDERING problem date back to the 1950s, when Chen-

ery and Watanabe [CW58] studied methods to analyze the interdependencies among

different productive sectors in economic sciences. What is more, they already suggested

a simple and straightforward algorithmic approach to obtain a good or even an optimal

solution in this context. Since then, the LINEAR ORDERING problem has found compre-

hensive consideration in different branches of mathematics and computer science and

has been encountered in many and varied applications.

This chapter briefly surveys known facts about LINEAR ORDERING. It starts with

different equivalent statements of the problem that can be found in literature as well as

closely related problems and their mutual reductions. This also includes the formulation

of the LINEAR ORDERING problem as linear program and the introduction of the linear

ordering polytope. Next, we address its computational complexity, how it has been

tackled algorithmically, and compile results regarding the cardinality of optimal solu-

tions. The chapter concludes with an overview of heuristics and practical applications.

Additionally, we summarize in Table 2.1 a selection of the algorithms that have been

mentioned.

In order to provide a concise description of studied graphs and graph classes, let us

briefly agree on terminology. Unless indicated otherwise, the term graph, denoted by

G, always refers to a directed, unweighted multigraph with vertex set V and arc set A,

which is a multiset of ordered pairs of vertices. In particular, this includes the possibility

for G to contain parallel arcs as well as loops. The cardinalities of V and A are denoted

by n and m, respectively. An arc (u, v) is said to leave vertex u and enter vertex v. The

number of arcs leaving a vertex is called its outdegree, and the number of arcs entering

it accordingly its indegree. The degree of a vertex is the sum of its out- and indegree. A

graph G is called Eulerian if for every vertex v of G, the number of arcs entering v equals

the number of arcs leaving v. The complete graph on n vertices is the graph that has an

6 2 The Linear Ordering Problem: An Outline

arc between every ordered(!) pair of vertices, i. e. , for u, v ∈ V , u ̸= v, (u, v) ∈ A and

(v, u) ∈ A. In contrast, a tournament is a graph that has exactly one arc between every

unordered pair of vertices, i. e. , for u, v ∈ V , u ̸= v, either (u, v) ∈ A or (v, u) ∈ A, but

neither both nor none. A graph is called bipartite, if its set of vertices can be partitioned

into sets V ′ ∪̇V ′′ such that there is no arc connecting two vertices contained in the same

partition. A bipartite tournament is a bipartite graph with an arc between every unordered

pair of vertices v′, v′′ such that v′ ∈ V ′ and v′′ ∈ V ′′. The definition of bipartite can be

generalized from two partitions to an arbitrary number c, thus resulting in the notion of

c-partite graphs and tournaments.

Throughout this chapter, we use big O notation (see Section 3.1.3) to specify the

computational complexity of problems and algorithms.

2.1 The Linear Ordering Problem and its Kin

Different perspectives on the LINEAR ORDERING problem, resulting from its appearance

in multifarious kinds of application as well as its being researched in the field of pure

(graph theory) and applied mathematics (optimization) as well as computer science have

led to a number of formulations stating more or less the same problem. In the following,

we summarize the most frequently used definitions of the LINEAR ORDERING problem

and list some relevant reductions to and from other problems.

2.1.1 Problem Statements

A linear ordering π of G is a sequential ordering of its vertex set, which is modeled as a

bijection that assigns to each vertex v a unique integer from the range {0, . . . , |V | − 1}.
Given a graph with vertex set {a, b, c, d, e}, e. g. , a possible linear ordering could be as

follows:

π(a) = 0, π(b) = 4, π(c) = 3, π(d) = 1, π(e) = 2.

The order of the vertices defined by π here is (a, d, e, c, b). Given a specific linear ordering

π, an arc (u, v) of G is a forward arc if its orientation strictly conforms with the linear

ordering, i. e. , if π(u) < π(v). Otherwise, if π(u) ≥ π(v), (u, v) is a backward arc. We

denote the multiset consisting of all forward arcs by Fπ, and the multiset consisting of

all backward arcs by Bπ. Continuing the above example, an arc directed from a to c, e. g. ,

would agree with π and thus be part of Fπ. However, an arc directed from c to a would

contradict π and therefore be contained in Bπ. Note that also an arc directed from a to

2.1 The Linear Ordering Problem and its Kin 7

a, i. e. , a loop, is considered contradictory. For a visual representation, the vertices are

usually placed on a horizontal line in the order of π. Forward arcs are then drawn in the

upper half-plane and backward arcs in the lower. Examples are shown in Figure 3.6.

The “classic” LINEAR ORDERING problem now consists in finding a linear ordering π

of a given graph that minimizes the number of arcs contradicting it, i. e. , to minimize

the cardinality of Bπ:

The Linear Ordering Problem (LO)
Instance: directed graph G

Question: What linear ordering π of G minimizes |Bπ|?

At times, the arcs of the directed graph under consideration have attributes assigned,

such as a weight function w. In this case, it may be desirable not to minimize the number

of contradictory arcs, but instead the sum of their weights. This leads to the weighted

version of the LINEAR ORDERING problem:

The Weighted Linear Ordering Problem (wLO)
Instance: directed graph G, arc weight function w

Question: What linear ordering π of G minimizes
∑

a∈Bπ

w(a)?

The WEIGHTED LINEAR ORDERING problem generalizes the LINEAR ORDERING prob-

lem by using a constant arc weight function such as w : A→ {1}. Conversely, however,

the WEIGHTED LINEAR ORDERING problem with integer or rational arc weights may

also be transformed back to the LINEAR ORDERING problem by translating the weight

of each arc to an adequate number of parallel arc copies. Arcs with negative weights can

be handled by reversing their direction and proceeding with the absolute value of the

weight.

Both the LINEAR ORDERING problem and the WEIGHTED LINEAR ORDERING problem

have been stated as optimization problems. The respective decision versions are obtained

by additionally supplying an upper bound k. Thus, the counterpart of the LINEAR

ORDERING problem is:

8 2 The Linear Ordering Problem: An Outline

The Linear Ordering Decision Problem (dLO)
Instance: directed graph G, positive integer k

Question: Is there a linear ordering π of G such that |Bπ| ≤ k?

If we again regard arc weights, we obtain the decision version of the WEIGHTED

LINEAR ORDERING problem:

The Weighted Linear Ordering Decision Problem (wdLO)
Instance: directed graph G, arc weight function w, positive integer k

Question: Is there a linear ordering π of G such that
∑

a∈Bπ

w(a) ≤ k?

For an arbitrary linear ordering π of a graph G, the subgraph of G that consists only of

the forward arcs can never have a cycle. This implies that every cycle in G must contain

at least one arc of Bπ. For this reason, the multiset Bπ is also called a feedback arc set of

G. Indeed, this view on the LINEAR ORDERING problem is very common in the field of

graph theory:

The Feedback Arc Set Problem (FAS)
Instance: directed graph G with arc set A

Question: What is the smallest subset B ⊆ A that contains at least one arc of

every cycle in G?

The according decision problem here reads:

The Feedback Arc Set Decision Problem (dFAS)
Instance: directed graph G with arc set A, positive integer k

Question: Is there a subset B ⊆ A, |B| ≤ k, that contains at least one arc of every

cycle in G?

The definitions of the weighted versions of FAS and dFAS, the WEIGHTED FEEDBACK

ARC SET problem (wFAS) and the WEIGHTED FEEDBACK ARC SET DECISION problem

(wdFAS), can be obtained straightforwardly. The formal equivalence of LO and FAS has

already been established by Younger [You63] in 1963 and implies the equivalence of the

respective weighted and/or decision versions.

2.1 The Linear Ordering Problem and its Kin 9

The “FEEDBACK ARC SET perspective” also leads to three further names for the

LINEAR ORDERING problem, namely FEEDBACK CUTSET, CYCLE COVER, and CYCLE

HITTING SET. Yet another term is based on the observation that if the problem were

considered on an undirected graph instead, the subgraph consisting only of forward

arcs would be a tree, which motivated the name CHORD SET [You63].

The adjacency matrix of a directed graph G on n vertices is an n× n matrix H with

entries hij , 0 ≤ i, j < n such that hij = 1 if there is an arc from the ith to the jth vertex

and hij = 0 otherwise. In case that G is weighted, hij instead equals the respective

arc’s weight, if the arc exists. Using this graph representation, the LINEAR ORDERING

problem is equivalent to the following statement:

The Matrix Triangulation Problem
Instance: n× n matrix H

Question: What simultaneous permutation of H’s rows and columns minimizes

the sum of the entries (on and) below the diagonal?

Note that the entries on an adjacency matrix’s diagonal correspond to loops of the

graph and remain on the diagonal for every simultaneous permutation of the rows and

columns.

2.1.2 Linear Programming

By switching back to the FEEDBACK ARC SET perspective, the LINEAR ORDERING

problem can straightforwardly be formulated as an integer 0-1 linear program. Let C

be the set of all cycles of a graph G with n vertices and arc set A. For a cycle C ∈ C ,

denote by a ∈ C that the arc a is contained in cycle C. For each arc a, we use a variable

xa to specify whether a is part of the feedback arc set (xa = 1) or not (xa = 0). Then, the

corresponding linear program reads:

minimize
∑
a∈A

xa (2.1a)

subject to ∑
a∈C

xa ≥ 1, ∀C ∈ C , (2.1b)

xa ∈ {0, 1} , ∀a ∈ A. (2.1c)

10 2 The Linear Ordering Problem: An Outline

For the weighted version, the objective function has to be replaced by

minimize
∑
a∈A

w(a)xa. (2.1a’)

As graphs are likely to have an exponential number of cycles, this modeling is rather

unsuitable in practice. Instead, similar as in the MATRIX TRIANGULATION problem, a

weighted graph G+ with the same number n of vertices is considered that has an arc

between each ordered(!) pair of vertices. The arcs’ weights are denoted and determined

as for the adjacency matrix, i. e. , if there is an arc from vertex i to vertex j, hij is the weight

of this arc (or 1 in case of an unweighted graph), and hij = 0 otherwise. For any linear

ordering of G+, both the subgraph consisting of forward arcs only and the subgraph

consisting of backward arcs only are tournaments. If the arc directed from vertex i to

vertex j is forward, then the arc from j to i is backward and vice versa. Furthermore, a

tournament is acyclic if and only if it does not contain a cycle of length three. Replacing

the variables xa by xij , the LINEAR ORDERING problem and the WEIGHTED LINEAR

ORDERING problem can thus be rewritten as follows:

minimize
∑

0≤i,j<n

hijxij (2.2a)

subject to

xij + xji = 1, ∀0 ≤ i < j < n, (2.2b)

xij + xjk + xki ≥ 1, ∀0 ≤ i < {j, k} < n, j ̸= k, (2.2c)

xij ∈ {0, 1} , ∀0 ≤ i < j < n. (2.2d)

In contrast to the original linear program, this formulation only has
(n

2
)
+2
(n

3
)

constraints—

a polynomial.

The canonical linear programming relaxation is obtained in each case by replacing

Equation (2.1c) and Equation (2.2d) with

0 ≤ xa ≤ 1, ∀0 ≤ i < j < n (2.1c*)

and

0 ≤ xij ≤ 1, ∀0 ≤ i < j < n, (2.2d*)

respectively. The value of the objective function of the 0-1 integer linear programs is the

same for both Equation (2.1a) and Equation (2.2a) and usually denoted as τG or simply

τ . Nutov and Penn [NP95] showed that the equality also holds for the objective function

value of the relaxed versions. The relaxation’s objective function value is usually denoted

2.1 The Linear Ordering Problem and its Kin 11

by τ∗
G or τ∗. As every solution of the integer linear program is also a feasible, though not

necessarily optimal, solution of its relaxation, τ∗ ≤ τ . The solution associated with the

relaxation, i. e. , the assignments of the variables xa or xij , respectively, is also referred to

as a fractional solution.

2.1.3 Dual Problems

Basically, the dual of a problem can be thought of as its counterpart in some respect. For

LO, there are two problems that are commonly considered “dual” to it.

In the first case, we only switch view in that we are no longer seeking a linear ordering

that minimizes the number of arcs contradicting it. Instead, we aim at maximizing the

complementary arc set, i. e. , the number of arcs that agree. The solution remains the

same: Any linear ordering that maximizes the number of forward arcs also minimizes

the number of backward arcs and vice versa. Transferred to the FEEDBACK ARC SET

view, the corresponding problem is known as the ACYCLIC SUBGRAPH problem:

The Acyclic Subgraph Problem (AS)
Instance: directed graph G with arc set A

Question: What is the largest subset F ⊆ A such that the subgraph of G re-

stricted to F is acyclic?

The corresponding weighted and/or decision versions are derived in an analogous

manner as in Section 2.1.1. Similarly, a 0-1 integer linear program for ADC can be

formulated. For the cycle set version (cf. Equation (2.1)), the corresponding linear

program reads

maximize
∑
a∈A

xa (2.3a)

subject to ∑
a∈C

xa ≤ |C| − 1, ∀C ∈ C , (2.3b)

xa ∈ {0, 1} , ∀a ∈ A, (2.3c)

12 2 The Linear Ordering Problem: An Outline

where |C| denotes the length of cycle C, i. e. , its number of arcs. For the three-cycle

version (cf. Equation (2.2)), the according linear program is

maximize
∑

0≤i,j<n

hijxij (2.4a)

subject to

xij + xji = 1, ∀0 ≤ i < j < n, (2.4b)

xij + xjk + xki ≤ 2, ∀0 ≤ i < {j, k} < n, j ̸= k, (2.4c)

xij ∈ {0, 1} , ∀0 ≤ i < j < n. (2.4d)

Another notion of “dual” originates from mathematical optimization theory and is

closely linked to linear programming. In short, both linear programs introduced in

Section 2.1.2 could be written as

minimize h⊺x (2.5a)

subject to

Cx ≥ b, (2.5b)

x ≥ 0. (2.5c)

Let m denote the number of arcs in the graph under consideration and C be again the

set of all cycles. For the (relaxation of the) first linear program in Section 2.1.2, x is an

m× 1 vector whose entries correspond to the variables xa and h is a vector of the same

dimension with all entries set to 1. C is a |C | ×m matrix with Cij = 1 if the jth arc is

part of the ith cycle and Cij = 0 otherwise. b is a constant-1 vector of size |C | × 1.

The appertaining dual of this linear program is:

maximize b⊺y (2.6a)

subject to

C⊺y ≤ h, (2.6b)

y ≥ 0. (2.6c)

Here, y is a vector of size |C | × 1 and selects a maximum subset of C with the restriction

imposed by Equation (2.6b) that the jth arc may occur in at most hj of the selected cycles,

i. e. , in case of on unweighted graph, the cycles must be arc-disjoint.

If we treat both programs as 0-1 integer linear programs for unweighted graphs, the

dual linear program is equivalent to the following graph problem:

2.1 The Linear Ordering Problem and its Kin 13

The Arc-Disjoint Cycles Problem (ADC)
Instance: directed graph G with arc set A

Question: What is the largest collection of pairwise arc-disjoint cycles?

The objective function value of the dual program with the requirement that all vari-

ables are integral is usually denoted by νG or ν and is also used in general for the

cardinality of an optimal solution to ADC. The objective function value of the canonical

relaxation is denoted as ν∗
G or ν∗ and, as it is a maximization problem, ν∗

G ≥ νG . Fur-

thermore, the strong duality theorem implies that τ∗
G = ν∗

G, whereas the weak duality

theorem yields νG ≤ τG.

2.1.4 The Acyclic Subgraph Polytope

One approach to studying the LINEAR ORDERING and the FEEDBACK ARC SET problem

results from a closer examination of the structure of the linear programs. Commonly,

the perspective of the ACYCLIC SUBGRAPH problem is taken here.

Consider a graph G with arc set A of cardinality m. Then, every subset Y ⊆ A can

be represented by an m-dimensional vector xY that has an entry for every arc a ∈ A.

The value xY
a = 1 indicates that a ∈ Y , whereas xY

a = 0 means that a ̸∈ Y . The acyclic
subgraph polytope PAS(G) of G can then be defined as the polytope in Rm that is the

convex hull of all vectors that represent an acyclic arc set of G. With this notion, the

linear program in Equation (2.3) could be rewritten succinctly as

maximize c⊺x, x ∈ PAS(G), (2.7)

where c is the m-dimension 1-vector in the unweighted case and otherwise ca = w(a).

The (vector representing the) optimal solution to this linear program is always integral

due to the modeling and, if G is unweighted, equals m− τG and otherwise the respective

arc weight sums. The problem, however, lies in the definition of PAS(G), which does not

allow for an application of standard linear programming techniques. Thus, one focus

of interest lies in a description of PAS(G) by an (ideally polynomially sized) system of

inequalities.

The inequalities given in Equation (2.3) also define a polytope in Rm, which is com-

monly referred to as PC(G). As every acyclic arc set must satisfy the inequality con-

straints of Equation (2.3), the polytope PC(G) contains PAS(G). In contrast to PAS(G),

however, PC(G)’s extreme points are not necessarily integral. Instead, PAS(G) equals the

14 2 The Linear Ordering Problem: An Outline

convex hull of all integral points of PC(G) [GJR85b]. Grötschel et al. [GJR85b] termed a

graph weakly acyclic, if PAS(G) = PC(G). Thus, τG = τ∗
G = ν∗

G = νG in this case. Graphs

with PAS(G) ̸= PC(G) are conversely said to be strongly cyclic [GJR85b]. For such graphs,

the description of PAS(G) requires further, facet-defining inequalities. Such inequalities

are obtained from certain graphs including, e. g. , 2- and 3-cycles, k-fences, Möbius

ladders, and several more [GJR85b, GJR85a, GKN98, MR11]. If G is not triconnected, a

description of PAS(G) can be obtained from the description of the acyclic subgraph poly-

topes of its triconnected components and if every triconnected component H satisfies

τH = νH , then so does G [BFM94, NP95].

A slightly different polytope that is often studied in the same context is the linear
ordering polytope Pn

LO, which is defined as the convex hull of all acyclic subtournaments

of the complete graph on n vertices, i. e. , it has an arc between every ordered pair of

vertices. For the sake of brevity, we will denote this graph with Gn in the following.

The polytope Pn
C is the polytope defined by Equation (2.3) with respect to Gn, i. e. ,

Pn
C = PC(Gn) and thus contains in particular Pn

LO. As we only consider acyclic subgraphs

that are tournaments here, Pn
LO is a face of PAS(Gn). Dridi [Dri80] proved that Pn

LO = Pn
C

for n ≤ 5, whereas for n > 5, Pn
LO ⊊ Pn

C. Reinelt [Rei93] explicitly listed the facets for G6

and G7.

Although the ACYCLIC SUBGRAPH problem is primarily considered here, the results

can be transferred straightforwardly to the LINEAR ORDERING and the FEEDBACK ARC

SET problem. As a matter of fact, there is a one-to-one correspondence between the

vertices of the polytopes obtained from the respective definitions with regard to LO/FAS
and the acyclic subgraph and linear ordering polytope [GJR85b].

2.1.5 Reductions to and from the Linear Ordering Problem

Apart from the dual problems, LINEAR ORDERING is unmediatedly linked to a number

of other well-known problems via polynomial time reductions. In many cases, these

relationships also allow to deduce facts for LO/FAS concerning, e. g. , complexity or

approximability. For this reason, we list a selection of the most relevant or most fre-

quently considered ones here. In order to keep the problem descriptions concise, we

do not explicitly state the respective decision versions; they can be obtained similar as

in Section 2.1.1 by introducing a positive integer k as supplementary parameter that

serves as an upper bound. All problems considered here, except for the last, reference

primarily the FEEDBACK ARC SET view.

2.1 The Linear Ordering Problem and its Kin 15

The problem with the intuitively closest connection to FAS emerges by substituting

the quest for arcs by a quest for vertices:

The Feedback Vertex Set Problem (FVS)
Instance: directed graph G with vertex set V

Question: What is the smallest subset X ⊆ V that contains at least one vertex of

every cycle in G?

The corresponding WEIGHTED FEEDBACK VERTEX SET problem (wFVS) is formu-

lated by additionally specifying a weight function w on the vertices and minimizing∑
v∈X w(v) instead of |X|.
There are approximation-preserving reductions between FAS and FVS in both direc-

tions (see, e. g. , [ENSS98]):

For FAS ⪯ FVS, we need the notion of a graph’s line graph. Let G be a directed graph

with vertex set V and arc setA. The line graph ofG, which we denote as L(G), is a graph

with vertex set A and an arc from a vertex a1 ∈ A to a vertex a2 ∈ A if the head of the arc

a1 in G coincides with the tail of the arc a2 in G, i. e. , there is a vertex v ∈ V such that

a1 enters v and a2 leaves v. Let now G be an instance of FAS. Then, L(G) is an instance

of FVS. Moreover, B is a subset of G’s arcs covering all cycles of G if and only if B is a

subset of L(G)’s vertices covering all cycles of L(G). In case that the weighted versions

are considered, i. e. , wFAS ⪯ wFVS, every vertex of the line graph directly inherits the

respective arc’s weight.

For FVS ⪯ FAS, we employ a routine called vertex splitting: Let G with vertex set V

and arc set A be an instance of FVS. Construct a new graph G′ from G by replacing each

vertex v ∈ V by two vertices vin and vout along with an arc av that is directed from vin to

vout. For every arc from u to v in G, G′ contains an arc from uout to vin. Then, if X is a

subset of G’s vertex set covering all cycles of G, then the set of arcs {ax | x ∈ X} covers

all cycles in G′. Conversely, if B is a subset of G′’s arc set covering all cycles of G′, then

a subset of G’s vertices covering all cycles of G can be obtained as follows: Substitute

every arc a in B that did not result from the splitting of a vertex by the arc av, where

v is either the head or the tail of the arc corresponding to a in G. Compared to B, this

modified arc set is equal or less in size and still covers all cycles of G′. The vertex set

covering all cycles of G then consists of all vertices v ∈ V such that av is in the modified

arc set. For wFVS ⪯ wFAS, the arcs resulting from the splitting operation inherit the

respective vertex’s weight, whereas the weight of all other arcs of G′ is set to infinity.

16 2 The Linear Ordering Problem: An Outline

A classic problem with a close linkage to FAS that is concerned with undirected graphs

is VERTEX COVER:

The Vertex Cover Problem (VC)
Instance: undirected graph U with vertex set V

Question: What is a smallest subset X ⊆ V such every edge has at least one end

vertex in X?

As its name suggests, VC is a covering problem, as is FAS. However, the task here is to

cover all edges of an undirected graph by selecting at least one of its end vertices.

The reduction VC ⪯ FAS is approximation-preserving [Kan92] and has been described

first in [Kar72]: Consider an undirected graph U with vertex set V and edge set E as an

instance of VC. Similar to the reduction from FVS, we construct a directed graph G from

U that contains two vertices vin, vout for every vertex v ∈ V along with an arc av that

is directed from vin to vout. Furthermore, for every undirected edge e ∈ E connecting

vertices u and v in U , G contains an arc from uout to vin as well as an arc from vout to uin.

Note that this construction yields a directed cycle of length four for every edge in U . A

subset of vertices X ⊆ V now covers all edges of U if and only if the arc set {ax | x ∈ X}
covers all cycles of G. A vertex cover X of U can be constructed from any feedback arc

set B of G and such that |X| ≤ |B| in the same way as in the reduction FVS ⪯ FAS.

A generalization [ENSS98] of FEEDBACK ARC SET results from the specification of

an additional set of “interesting” vertices (a definition via arcs is also possible) for

the problem instance and the subsequent restriction of the task to only cover cycles

containing at least one interesting vertex or arc:

The Subset Feedback Arc Set Problem (SUBSET-FAS)
Instance: directed graph G with vertex set V and arc set A, I ⊆ V
Question: What is the smallest subset B ⊆ A that contains at least one arc of

every cycle of G that contains an element of I?

Considering I = V , the reduction FAS ⪯ SUBSET-FAS becomes immediately apparent

as does the fact that approximations are preserved. SUBSET FEEDBACK VERTEX SET

(SUBSET-FVS) and the respective weighted versions, SUBSET WEIGHTED FEEDBACK

ARC SET (SUBSET-wFAS) and SUBSET WEIGHTED FEEDBACK VERTEX SET (SUBSET-
wFVS), can be defined accordingly.

2.1 The Linear Ordering Problem and its Kin 17

Next, we want to instance a problem that FAS has an approximation-preserving

reduction to, but as yet there is none known for the opposite direction:

The Directed Multicut Problem (DMC)
Instance: directed network N with arc capacities c, 2k vertices forming source-

sink pairs si, ti, 0 ≤ i < k

Question: What is a minimum capacity set of arcs whose removal disconnects

each source si from the sink ti?

In fact, DMC is equivalent to SUBSET-wFAS [ENSS98], which is demonstrated by the

following transformations:

For SUBSET-wFAS ⪯ DMC, construct a directed network N from a graph G that

contains a source sv and a sink tv for every vertex v contained in the set I that defines the

interesting cycles, i. e. , k = |I|. All vertices not contained in I have a single counterpart

in N . Furthermore, there is an edge with infinite capacity from tv to sv, ∀v ∈ I . Every

arc directed from vertex u to vertex v in G is represented by an arc emanating from su, if

u ∈ I , otherwise the counterpart of u, and entering tv, if v ∈ I , otherwise v’s counterpart.

The capacity of every such arc inN equals the arc’s weight inG. A minimum capacity set

of arcs that separates all source-sink pairs in N then directly corresponds to a minimum

weighted set of arcs covering all interesting cycles of G.

For DMC ⪯ SUBSET-wFAS, the directed graph G is constructed from a directed

network N by identifying each source si with its sink ti and adopting all arcs such that

the weight of each corresponds to its capacity in N . The set I consists of all vertices

resulting from the identification of the source-sink pairs.

In Section 2.1.2, we have already seen how to cast LO/FAS as an integer linear program,

which is not purely of theoretical interest, but in particular also enables us to find a

solution to a concrete instance in practice by means of LP solvers. Another tool that

is widely used to solve complex problems are so-called SAT solvers. To round off, we

therefore also show how to construct a boolean formula for an instance of dLO, or, more

formally, how to reduce dLO to SAT.

The Boolean Satisfiability Problem (SAT)
Instance: boolean expression F

Question: Is there an assignment of true and false to the variables in F such

that F evaluates to true?

18 2 The Linear Ordering Problem: An Outline

The reduction dLO ⪯ SAT works on the linear ordering perspective: Given a graph G

with vertex set V and arc set A and an integer k, we construct a boolean expression F

that is satisfiable if and only if G has a linear ordering with at most k backward arcs. To

this end, we create variables vi, ∀v ∈ V ∀0 ≤ i < |V |, that serve the representation of a

linear ordering π: If vi = true, then π(v) = i. Thus, F must ensure that for every vertex

v exactly one of the variables vi is true. In order to restrict the number of backward

arcs to at most k, we also create variables al, ∀a ∈ A ∀0 ≤ l < k. Similar as for the

vertices, F has to ensure that for every value of l at most one arc a ∈ A exists such that

al = true. Finally, the linear ordering represented via the variables vi and the selection

of the backward arcs represented via the variables aj must be linked with each other

by adding clauses to F that require for every arc a ∈ A that is directed from vertex u to

vertex v and every position i, 0 ≤ i < |V | that if ui = true and there is no position j,

i < j such that vj = true, then there must be an l, 0 ≤ l < k, such that al = true, i. e. , a

must be selected as one of the at most k backward arcs. The interested reader is referred

to [SW93] for a more detailed description of the construction of F .

2.2 Complexity

Having stated the problems under consideration and to some extent also discussed

important interrelationships, we now turn to the classification of LO and FAS with

respect to their computational complexity. In this context, we also consider some special

classes of graphs as input instances.

2.2.1 NP-Completeness Results

The decision version of FEEDBACK ARC SET is one of Karp’s 21 NP-complete problems

[Kar72] that were published in 1972. Its NP-hardness follows from the reduction from

VERTEX COVER, which has already been stated in Section 2.1.5. dFAS is also listed as

“Problem [GT8]” in Garey and Johnson’s seminal book Computers and Intractability: A
Guide to the Theory of NP-Completeness [GJ79]. The NP-hardness of FAS immediately

implies the same hardness result for ACYCLIC SUBGRAPH as well as for all problems

that have a polynomial-time reduction from FAS, in particular FVS and SUBSET-FAS.

Also the ARC-DISJOINT CYCLES problem belongs in this complexity class [BG02].

There are a couple of algorithms with exponential running time that compute an

optimal solution to the LINEAR ORDERING and FEEDBACK ARC SET problem. A large

2.2 Complexity 19

family consists in so-called branch-and-cut or cutting plane approaches, which operate

on the linear programming perspective and seek to move from a fractional to an integral

solution. The monograph by Martí and Reinelt [MR11] provides a detailed overview.

These approaches constantly undergo further improvements, cf. [BSN15]. Using a cut-

ting plane algorithm, Grötschel et al. [GJR84a] solved concrete LO instances obtained

from input-output matrices (cf. Section 2.4) of size up to 60 × 60 as well as from the

German Soccer Championship of 1981/82. Mushi [Mus05] used input-output matrices

of size up to 41 × 41 and compared the performance with respect to different config-

urations of the linear programming solver. With a combinatorial branch-and-bound

approach, Kaas [Kaa81] was able to solve instances of 25 to 34 vertices by enumerating

permutations. Note that the straightforward approach of testing all possible feedback arc

sets requires O∗(2m) time, which is worse than O∗(n!) for dense graphs. Flood [Flo90]

developed an exact “screening” algorithm that iteratively constructs permutations and

compared it experimentally to an approach that solves the more general quadratic as-

signment problem using instances with up to 20 vertices. Using dynamic programming,

Raman and Saurabh [RS07] show that a minimum feedback arc set can be computed

in O∗(2n) time and O∗(2n) space or, alternatively, in polynomial space and O∗(4n+o(n))
time. Fomin and Kratsch [FK10] devise an algorithmic framework for solving various

ordering problems, which is also based on the dynamic programming approach. In case

of the LINEAR ORDERING problem, it yields a running time of O(nm · 2n), however

again at the expense of exponential space.

The fact that FEEDBACK ARC SET is NP-hard for general graphs immediately raises

the question whether under special conditions, e. g. , for certain classes of graphs, a

solution may nevertheless be computable efficiently. In many cases, however, the answer

is in the negative. Note that the reductions between FAS and FVS do not necessarily

preserve the characteristics of a class.

One example are tournaments, which occur rather frequently in real-world application

scenarios (cf. Section 2.4). In 1992, Bang-Jensen and Thomassen [BT92] conjectured that

FAS remains NP-hard if the problem instance is a tournament. Only in 2005, more

than one decade later, Ailon et al. [ACN08] were able to give a randomized reduction

from the general FEEDBACK ARC SET problem to FEEDBACK ARC SET on tournaments,

thus proving that FAS on tournaments remains NP-hard unless NP ⊆ BPP . Soon

afterwards, Alon [Alo06] as well as Charbit et al. [CTY07] independently provided

derandomized reductions, thus finally settling the conjecture. A different approach

was taken by Conitzer [Con06] in an essay on Slater rankings (cf. Section 2.4), who

20 2 The Linear Ordering Problem: An Outline

obtained the same hardness result using a reduction from the canonical decision version

of MAX-SAT to dFAS on tournaments. Interestingly, the question of whether FVS remains

NP-hard on tournaments could already be confirmed in 1989 by Speckenmeyer [Spe89].

Bang-Jensen and Thomassen [BT92] also provide a different proof for this result.

An exact algorithm for FAS on tournaments has been developed by Raman et al.
[RSS07] with a running time of O(nO(1) · 1.5541m). For FVS, Dom et al. [DGH+10]

presented an algorithm with a time complexity of O(1.709n). In both cases, fixed-

parameter approaches (cf. Section 2.2.3) were the basis.

Another prominent class of graphs are bipartite tournaments. Just as in the previous

case, the NP-hardness of FVS, shown by Cai et al. [CDZ02] in 2002, had already been

established when in 2006, Guo et al. [GGH+06] were able to also close the gap for FAS.

Inspired by Conitzer’s proof for tournaments, they gave a reduction from SAT and

thereby showed not only that FAS remains NP-hard on bipartite tournaments, but also

for the more general case of c-partite tournaments, for any fixed c ≥ 2.

Surprisingly on first sight, FAS also remains NP-hard on Eulerian graphs. Every

Eulerian graph can be decomposed into a set of pairwise arc-disjoint cycles by a simple

greedy algorithm. This stirs up hope that the maximum number of pairwise arc-disjoint

cycles might equal the size of a minimum feedback arc set, which, as both cardinalities

must be integral, would imply that these graphs are weakly acyclic (cf. Section 2.1.2) and

hence allow for a polynomial-time solution of FAS and ADC using LP solvers. This hope

is dashed by Borobia et al. [BNP96], who provide a Eulerian graph on seven vertices

with an optimal fractional solution of 4.5. Seymour [Sey96] showed, however, that

equality indeed holds if the underlying undirected graph is linklessly embeddable in

three-dimensional space or, equivalently, if it does not have a minor in the Petersen

family. Finally, Perrot and Van Pham [PVP13] gave a reduction for FAS on general graphs

to FAS on Eulerian graphs, thus settling NP-hardness decisively.

For two further graph classes, the NP-hardness of the FEEDBACK ARC SET problem

has been known for a relatively long time: directed line graphs and graphs where every

vertex has outdegree and indegree at most three [Gav77]. The situation is again similar

for FVS: NP-hardness has been shown for graphs where every vertex has outdegree

and indegree at most two, planar graphs with outdegree and indegree at most three at

each vertex [GJ79], as well as line graphs [Gav77].

2.2 Complexity 21

2.2.2 Approximability and Approximations

Intractability, i. e. , NP-hardness, of a problem almost automatically creates need for

good approximation algorithms and simultaneously poses a new question: How close

to the optimum solution can we get?

Let us start with the bad news: For general graphs, Kann [Kan92] showed that the

FEEDBACK ARC SET problem is MaxSNP-hard, which also implies APX -hardness.

Consequently, unless P = NP , no polynomial-time approximation scheme for FAS can

exist, which would allow to construct a solution in polynomial time that is at most (1+ε)
times bigger than the optimum, for any ε > 0. As a matter of principle, APX -hardness

still leaves the possibility to find a constant-factor approximation algorithm, i. e. , an

algorithm that guarantees that the quotient of the size of the delivered solution divided

by that of the optimum is bounded by some constant c. Unfortunately, no such algorithm

for FAS on general graphs is known presently. Furthermore, as VERTEX COVER ⪯ FAS
(cf. Section 2.1.5) via an approximation-preserving reduction, the fact that it is NP-hard

to approximate VC better than to a factor of 10
√

5− 21 = 1.3606 . . . [DS05] also applies

to FAS. However, VERTEX COVER has a relatively simple factor-two approximation

[GJ79, PS98] and is thus APX -complete, whereas APX -completeness is still an open

question for FAS.

It is important to note here that the closely related ACYCLIC SUBGRAPH problem has

a constant-factor approximation with ratio 1
2 : Take an arbitrary linear ordering of the

vertices of the input graph. If the number of backward arcs induced thereby exceeds

the number of forward arcs, reverse the ordering. Then, if the graph has m arcs, the

forward arcs form an acyclic subgraph containing at least m
2 arcs. As the optimum

solution is at most m, we obtain a guaranteed approximation ratio of 1
2 . Thus, AS is

APX -complete. Due to a result by Papadimitriou and Yannakakis [Pap91], AS is also

complete forMaxSNP .

In the context of hardness of approximation, a conjecture postulated by Khot [Kho02]

in 2002, which is widely known as the Unique Games Conjecture, plays an influential role.

One of several equivalent formulations is based on the so-called LABEL COVER problem:

22 2 The Linear Ordering Problem: An Outline

The Unique Label Cover Problem
Instance: undirected, edge-weighted, complete bipartite graph U with edge set

E, a set of vertex labels M , for every edge e ∈ E a bijection pe : M →M

Question: What label assignment maximizes the total weight of those edges

e = {u, v}with the property that pe maps the label of u to the label of v?

The Unique Games Conjecture now states that for a pair of constants (c1, c2) sufficiently

small, there is a constant k depending on c1 and c2 such that it isNP-hard to distinguish

whether an instance of UNIQUE LABEL COVER with |M | = k has an optimum value of at

least 1−c1 or at most c2. If this conjecture could be confirmed, it would prove a number of

classicNP-hard optimization problems to be inapproximable below some specific bound

[Kho10]. Among these problems is not only VC (with a bound of 2 [KR08]), but most

notably also the FEEDBACK ARC SET problem. In particular, Guruswami et al. [GMR08]

prove that on condition of the Unique Games Conjecture, FAS is inapproximable within

a constant-factor. They also show that if the conjecture is true, ACYCLIC SUBGRAPH

cannot be approximated within a factor better than 1
2 .

On the positive side, Even et al. [ENSS98] showed that FAS (in fact, SUBSET-wFAS) can

be approximated to a factor of O(min {log τ∗ log log τ∗, logn log logn}) in polynomial

time, where τ∗ denotes again the optimum fractional solution (cf. Section 2.1.2) and n

the number of vertices. Their algorithm is based on a result by Seymour [Sey95], who

proved that the integrality gap, i. e. , the maximum ratio between the optimum integral

and the optimum fractional solution, is at most O(log τ∗ log log τ∗) in the unweighted

case. Alternatively, the authors provide an O(log2 |X|)-approximation algorithm for

SUBSET-wFAS, where X identifies the set of interesting cycles (cf. Section 2.1.5). For

FAS, Even et al. improve a result by Leighton and Rao [LR88], who obtained a factor of

O(log2 n) via the computation of approximately sparsest cuts using linear programming.

Klein et al. [KST90] replaced this dependency with a randomized algorithm. Demetrescu

and Finocchi [DF03] were able to show that the straightforward approach of identifying

and destroying cycles step by step yields an O(m · n)-time algorithm which guarantees

a solution that exceeds the optimum by a factor of at most the length of the longest cycle

in the graph.

There are further encouraging results if we consider FAS again on special classes of

graphs. For tournaments, Ailon et al. [ACN08] presented a randomized 3-approximation

algorithm called KwikSort that constructs a linear ordering in a similar manner as

2.2 Complexity 23

the well-known QuickSort algorithm sorts numbers. The authors also extended this

approach to tackle wFAS on tournaments with various kinds of weight constraints,

which led to different approximation ratios. Van Zuylen and Williamson [vZW09]

were able to obtain respective derandomized versions while preserving approximation

guarantees. Shortly after the conference version of [ACN08], Kenyon-Mathieu and

Schudy [KS06, KS07] designed a polynomial-time approximation scheme (PTAS) for

WEIGHTED FEEDBACK ARC SET on tournaments. Their algorithm is based on earlier

results by Arora et al. [AFK02] as well as Frieze and Kannan [FK99], who obtained

polynomial-time approximation schemes for the ACYCLIC SUBGRAPH problem on n-

vertex graphs whose number of arcs is in Ω(n2). To complete the picture, we note that

for FVS on tournaments, a 3-approximation algorithm has been known since 1989 and is

due to Speckenmeyer [Spe89]. In 2000, Cai et al. [CDZ00] were able to improve the ratio

down to 2.5 and, only recently, Mnich et al. [MWV15] even achieved 7
3 .

Finally, there are also approximation results for bipartite and multipartite tourna-

ments: Gupta [Gup08] presented both randomized and deterministic 4-approximation

algorithms for FAS on these classes of graphs; van Zuylen [vZ11], however, pointed out

an error in the correctness proof. Nevertheless, she was able to confirm the findings

for wFAS on bipartite tournaments by designing a different algorithm. Her work also

includes a 2-approximation algorithm for wFVS on bipartite tournaments, thereby im-

proving on earlier results by Cai [CDZ02] and Sasatte [Sas08a], who achieved a factor of

3.5 and 3, respectively.

2.2.3 Parameterized Complexity

Besides studying approximability, an alternative approach to dealing with NP-hard

problems consists in their classification with respect to parameterized complexity. To

this end, an instance x of the decision problem under consideration is equipped with

an additional parameter k. The complexity of deciding whether (x, k) is a YES- or

a NO-instance is then measured with regard to both the size of x and the parameter

k. Such a parameterized problem is said to be fixed-parameter tractable and belongs to

the complexity class FPT if there is an algorithm which solves the problem in time

|x|O(1) · f(k), where f is some function depending only on k, but not on x. Self-evidently,

the parameterized complexity of a problem is strongly dependent on the choice of the

parameter k.

24 2 The Linear Ordering Problem: An Outline

In the case of dFAS, it seems natural to use the upper bound on the size of the feedback

arc set as parameter k and the sum of the feedback arcs’ weights for wdFAS. Indeed, Chen

et al. [CLL07] showed in 2007 that dFAS is in FPT with this choice of k by constructing

an algorithm with a running time ofO(nO(1) ·(1.48k)k)1 on an n-vertex graph. A superset

of the authors [CLL+08] also published a faster algorithm that runs in O(nO(1) · 4kk3k!)2

time. Both algorithms were originally designed for dFVS, but can be transferred to dFAS3

using the reduction described in Section 2.1.5. Raman and Saurabh [RS06] proved that

also dAS is fixed-parameter tractable with k being the number of arcs in the acyclic

subgraph and that it can be solved in time O(4kk +m).

Further results again target specific classes of graphs. Already in 2003, Raman and

Saurabh [RS03] constructed an O(nω logn · (c
√

k/e)k)-time algorithm for dFAS on tour-

naments, where ω is the exponent in the running time of the best matrix multiplication

algorithm, e is the base of the natural logarithm, and c some constant. In a later ver-

sion, Raman and Saurabh [RS06] were able to improve the running time further to

O(nω · 2.415k), now also including the weighted version, wdFAS, if all arcs have weight

at least one. The currently best known FPT -algorithms for both unweighted and

weighted (with weights at least one) FAS on tournaments are due to Alon et al. [ALS09]

with a running time of 2O(
√

k log2 k) + nO(1) and Karpinski and Schudy [KS10] with a

running time of 2O(
√

k) + nO(1). Bessy et al. [BFG+11] showed how to compute a kernel

with O(k) vertices in polynomial time.

If we consider the vertex version, i. e. , dFVS, on tournaments, an O(n3 · 3k)-time

algorithm can be obtained straightforwardly from the observation that a graph is acyclic

if and only if it does not contain a directed triangle. Dom et al. [DGH+10] showed that

dFVS on tournaments can be solved in timeO(n2(log logn+ k) · 2k). For wdFVS, the best

result is an O(nω · 2.4143k)-time algorithm by Raman and Saurabh [RS06].

On bipartite tournaments, Dom et al. [DGH+10] also provided a O(n6 · 3.373k)-

time algorithm for dFAS. For dFVS, there is an O(n2 · 3k + n3)-time algorithm due

to Sasatte [Sas08b].

1The exact running time given is O(n4 · (1.48k)kk2.5) for dFVS, which can be improved to O(n3 ·
(1.48k)kk3.5 log k log log k) using the approximation by [ENSS98].

2The exact running time given is O(n4 · 4kk3k!) for dFVS, which can be improved to O(n3 ·
4kk4k! log k log log k + n4.376 log2 n) using the approximation by [ENSS98].

3The authors claim in both cases that the algorithm for dFAS, obtained via the reduction, has the same
running time as for dFVS. As the line graph needed for this purpose contains m instead of n vertices,
this seems incorrect in the general case. As m ∈ O(n2), the exponent in the polynomial depending on n

doubles for dFAS.

2.2 Complexity 25

2.2.4 Polynomially Solvable Instances

Fortunately, there are also a couple of graph classes that admit the solution of the

FEEDBACK ARC SET problem in polynomial time.

One of the oldest results dates back to 1976 and relates to the well-studied class of

planar graphs. Lucchesi and Younger [Luc76, LY78] showed that the cardinality of a

minimum dijoin, i. e. , a set of arcs covering all directed cuts of a given graph, equals the

size of a maximum set of pairwisely disjoint directed cuts. This minimax equality has

an immediate effect for FAS on planar graphs, as there is a one-to-one correspondence

between a cycle in the graph and directed cut in its planar dual. A minimum dijoin

in the planar dual graph thus translates directly to a minimum feedback arc set in

the original graph. The former can be computed efficiently in time O(n4) for both

unweighted and weighted graphs via an algorithm by Frank [Fra81]. Targeting especially

its application with respect to the FEEDBACK ARC SET problem, de Mendonça Neto and

Eades [dMNE99] developed a set of improvements that lead to a significant speedup in

practice. A very comprehensible and nicely illustrated review of Frank’s algorithm can

be found in [Eck15]. Alternatively, there also is an algorithm by Karzanov [Kar79] that

computes a minimum dijoin in polynomial time. Stamm [Sta90] additionally developed

a factor-2 approximation algorithm for FAS on planar graphs that runs in timeO(n logn).

In 1990, Ramachandran [Ram90] proved the minimax equality also for reducible flow

graphs. A graph is called a reducible flow graph if it contains a vertex v such that a

depth-first search traversal starting at v is unique. The proposed algorithm runs in time

O(min (m2,mn5/3)) and operates on weighted and unweighted graphs. By combining an

earlier approach of Ramachandran [Ram88] with contraction operations, Koehler [Koe05]

was able to improve the running time to O(m logn).

A result that has already been mentioned in Section 2.2.1 is the polynomial-time

tractability of FEEDBACK ARC SET on Eulerian graphs that are linklessly embeddable in

three-dimensional space [Sey96]. A graph is said to be linklessly embeddable, if it can be

embedded such that for any two closed undirected paths, there is a disk that bounds

one path, but does not contain the other.

A further class of graphs, which actually comprises the above mentioned classes,

constitute all graphs with the property τ = ν. Here, the ellipsoid method [GJR85b]

can be applied to efficiently solve the LINEAR ORDERING and the FEEDBACK ARC SET

problem. Alternatively, we can use the formulation given in Equation (2.4) together with

any polynomial-time linear programming algorithm [NP95]. This class also contains all

26 2 The Linear Ordering Problem: An Outline

graphs whose underlying undirected graph does not have the “utility graph” K3,3 as

minor [BFM94, NP95].

Regarding FEEDBACK VERTEX SET, we observe a considerable difference in complexity

for planar graphs: FVS remains NP-hard [Yan78]. For reducible flow graphs, however,

there is even a linear-time algorithm for unweighted graphs [Sha79].

2.3 The Cardinality of Optimal Feedback Arc Sets

Given an unweighted graph on n vertices andm arcs, how large can an optimal feedback

arc set at most be? This question has been posed relatively early in the history of FAS.

For an answer, one can either try to construct or prove the existence of graphs whose

feedback arc set has a particular size, or via the analysis of an algorithm’s performance.

The absolute lower bound here is trivial: A graph may be acyclic and thus its optimal

feedback arc set is the empty set.

We may, however, also ask the question in a slightly different way: Let Gn,m denote

the set of all unweighted graphs with n vertices and m arcs and consider

τ̃n,m = max
G∈Gn,m

τG,

where τG denotes the cardinality of an optimal feedback arc set of G. How large is τ̃n,m?

2.3.1 Existential Bounds

The question was first addressed in 1965 by Erdős and Moon [EM65], who showed that

in case of tournaments,
m

2 − c0(n3 logn)
1
2 < τ̃n,m ≤ m− ⌊n2 ⌋ · ⌊

n+ 1
2 ⌋, (2.8)

where c0 is some constant. Furthermore, they showed for general graphs that

if lim
n,m→∞

n logn
m

= 0, then lim
n→∞

τ̃n,m

m
= 1

2 . (2.9)

A couple of years later, Spencer [Spe71] was able to establish again for tournaments that
m

2 − c1n
3
2
√

logn ≤ τ̃n,m ≤ m

2 − c2n
3
2 , (2.10)

for two constants c1 and c2, and finally close the gap asymptotically by showing [Spe80]
m

2 − c3n
3
2 ≤ τ̃n,m (2.11)

for another constant c3. Furthermore, Spencer obtained c2 = 0.1577989 . . . , whereas de

la Vega [dlV83] proved a value of 1.73 for c3.

2.3 The Cardinality of Optimal Feedback Arc Sets 27

2.3.2 Algorithms with Absolute Performance Guarantees

The results presented in the previous subsection more or less settle the question for

tournaments. What remains open, however, is how τ̃n,m behaves on sparser graphs.

In this context, an O(m+ n)-time algorithm by Berger and Shor [BS90] reveals inter-

esting facts: Process the vertices of a graph in random order. For each vertex, take the

smaller set of either all incoming or all outgoing arcs and add it to the feedback arc set,

then remove the vertex along with all incident arcs from the graph and proceed. Berger

and Shor discovered that this algorithm can be derandomized and yields

πG ≤ m

2 − c4
m√
∆G

, (2.12)

where ∆G denotes the maximum degree of a vertex in G and c4 is again some constant.

As m = n(n−1)
2 and ∆G = n− 1 on tournaments, this result generalizes the upper bound

in Equation (2.10). Furthermore, they provide concrete bounds for small values of ∆G

and show that

τ̃n,m ≤ 5
18m (2.13)

in case of ∆G = 3 and

τ̃n,m ≤ 11
30m (2.14)

if ∆G = 4 or 5. The derandomized version has a running time of O(m · n).

Shortly thereafter, Eades et al. [ELS93] developed a faster, O(m)-time algorithm and

proved

τ̃n,m ≤ m

2 −
n

6 . (2.15)

Depending on the maximum vertex degree, this bound is more precise or even better

than that in Equation (2.12) for those sparse graphs having m ∈ O(n). This algorithm

constructs two linear orderings vertex by vertex in a manner similar to a generalized

TopSort or the SelectionSort algorithm for numbers: If a vertex has no incoming arcs, it

is appended to the first ordering; if it has no outgoing arcs, it is prepended to the second

ordering. Otherwise, the algorithm chooses the vertex whose difference of outgoing

and incoming arcs is a minimum and appends it to the first ordering. In all cases, the

processed vertex is removed from the graph and the procedure continues with the

remainder. Finally, the second linear ordering is appended to the first.

Eades and Lin [EL95] later tailored the algorithm in [ELS93] specifically to cubic

graphs, i. e. , graphs where every vertex has degree 3, and were thereby able to improve

28 2 The Linear Ordering Problem: An Outline

the bound in Equation (2.13) further. Their new algorithm runs in time O(m · n) and

yields

τ̃n,m ≤ m

4 . (2.16)

2.4 Linear Orderings in Practice

Until now, our perspective on the LINEAR ORDERING problem has been almost purely

theoretical. We conclude this chapter by taking the practical view and mention algo-

rithms that do not offer guarantees, but perform well in experiments. Furthermore, we

also show in which application scenarios the LINEAR ORDERING problem occurs.

2.4.1 Heuristics

The motivation to design an algorithm for LINEAR ORDERING can be multifarious:

Obtaining approximate solutions with guaranteed maximum deviation from the opti-

mum, a worst-case upper bound, or being satisfied with a decisive answer of whether

a concrete (small) quantity of backward arcs suffice, which would be an application

for FPT -algorithms have already been covered earlier. For some practical scenarios,

however, such guarantees are irrelevant. Instead, one may prefer algorithms that experi-

mentally yield good results, are easy to implement, particularly fast, or a combination

thereof.

The randomized algorithm by Berger and Shor [BS90] with a running time of O(m)
as well as the O(m)-time, deterministic algorithm by Eades et al. [ELS93], which have

already been mentioned in Section 2.3, are already two examples that meet all three

requirements fairly well. The derandomized version of the former adds more complexity

to the implementation and runs in time O(m · n). Interestingly, both algorithms bear

resemblance to a two-sided SelectionSort .

Another popular heuristic has been proposed by Chanas and Kobylański [CK96],

which can be regarded as an adaptation of InsertionSort to the LINEAR ORDERING

problem: It starts with an arbitrary linear ordering that specifies the processing order

of the vertices and constructs a new linear ordering starting from an empty sequence.

The currently processed vertex is inserted into the new ordering at its locally optimal

position, i. e. , such that a minimum of its incident arcs are backward. Once completed,

the new linear ordering is used to specify the processing order and the procedure is

repeated until the number of backward arcs is not reduced during a repetition. The

2.4 Linear Orderings in Practice 29

resulting linear ordering is then reversed and the algorithm starts anew, until also this

step yields no further improvement. As the number of backward arcs can be reduced at

most O(m) times, the procedure can be implemented in time O(m · n2).

Coleman and Wirth [CW09] compared a number of algorithms, including those by

Eades et al. as well as Chanas and Kobylański experimentally on tournaments of size 100.

Their selection also contains adaptations of further sorting algorithms to the LINEAR

ORDERING problem as well as several own variations. In conclusion, they find that the

heuristic by Chanas and Kobylański performs best in practice, but also that it can be

improved further by using other heuristics as preprocessing.

A similar study has been conducted on a broader set of input graphs, including also

instances with up to 200 vertices as well as graphs that are significantly sparser than

tournaments [Han10]. It comprises the algorithms mentioned above by Berger and

Shor, Eades et al., as well as Chanas and Kobylański. Additionally, it considers the

algorithm by Demetrescu and Finocchi [DF03], which has already been mentioned in

Section 2.2.2 and has a running time of O(m · n), as well as an algorithm by Saab [Saa01],

who developed a divide-and-conquer algorithm based on the minimum graph bisection

problem. Similar as in the study by Coleman and Wirth, the algorithm by Chanas and

Kobylański outperforms all others except in a benchmarking setup with cubic graphs,

where the algorithms by Eades et al. and Saab achieve slightly better results.

Inspired by these findings, a study with different variations of InsertionSort -like

heuristics on graphs of size up to 1,000 vertices has been carried out [BH11]. The authors

also considered a 1-opt algorithm that repeatedly removes a vertex from the linear

ordering and reinserts it at its locally optimal position. Additionally, its combination

with a reversal operation as in Chanas and Kobylański’s heuristic has been included.

These new approaches turned out to produce the best results in the setup and also show

the fastest convergence rates, i. e. , the number of backward arcs reduces very quickly

during the execution.

In their monograph on the LINEAR ORDERING problem on tournaments, Martí and

Reinelt [MR11] survey further heuristics and report on their experimental performance.

The authors make a distinction between constructive approaches, local search, and multi-

start procedures and cover a great variety of algorithms. Their conclusion confirms

the superiority of InsertionSort variants in the first category. Among the local search

procedures, again insertion-based heuristics like that by Chanas and Kobylański and the

1-opt algorithm show to come in average closer to the optimum than their competitors.

However, they reach the best objective value noticeably less often than, e. g. , a heuristic

30 2 The Linear Ordering Problem: An Outline

based on local enumeration, which computes an optimal solution for short, fixed-length

subsequences of the linear ordering. Martí and Reinelt also dedicated an entire chapter

to meta-heuristics like the greedy randomized adaptive search procedure (GRASP),

tabu search, simulated annealing, and genetic algorithms. In the analysis, a memetic

algorithm, which is a combination of a genetic algorithm and an insertion-based local

search, outperforms all others.

For the FEEDBACK VERTEX SET problem, Lemaic [Lem08] proposed an interesting set

of heuristics which is based on Markov chains.

2.4.2 Applications

The LINEAR ORDERING problem has a broad variety of applications, either directly or

via one of its related problems. In the following, we list a small selection.

Input-Output Analysis In the introduction to this chapter, the origin of LO in the field of

economics has already been mentioned. In particular, it arises in the analysis of so-called

input-output matrices, which are used to represent the interdependencies, e. g. , between

different sectors of a national economy. Here, an n × n matrix H models the inputs

and outputs of n sectors, where the entry hij in the ith row and the jth column tells the

amount of units sector i requires from sector j in order to produce one unit itself. One

approach to study these interdependencies consists in establishing a hierarchy of the

sectors according to their subjection to the production of other sectors. Technically, this

corresponds exactly to the perspective taken in the MATRIX TRIANGULATION problem.

The linear ordering of the sectors can then be compared for instance to the respective

result obtained for other countries [CW58]. Exact computations have been reported for

a set of input-output matrices of size up to 60 × 60 [GJR84b]. Input-output matrices

also provide a good source for the generation of benchmarking instances for LINEAR

ORDERING and FEEDBACK ARC SET algorithms and are part of the LOLIB library, which

is also used in Chapter 7.

Ranking and Rank Aggregation Another vast area of applications originates from the

close linkage between linear orderings and rankings, due to the fact that an arc in the

input graph can be interpreted as a “preference” relation. Moreover, arc weights even

allow to express nuances.

The WEIGHTED LINEAR ORDERING problem finds a relatively close correspondence

in a variant of the RANK AGGREGATION problem which is also known as KEMENY

RANKING [Kem59] and probably the second-oldest reference to LINEAR ORDERING:

2.4 Linear Orderings in Practice 31

Given a set of n items that are ranked by k voters with possible ties, find a consensus

ranking that minimizes the sum of the distances to all k input rankings. The distance

between two rankings is computed by considering the items pairwisely and assigning

each pair a value of 0, 1, or 2, depending on whether both rankings agree on their

relative order, one sees them tied and the other has a preference, or their opinions are

conflictive, respectively, and then taking the sum over all pairs. The task of finding a

consensus ranking can be modeled as an instance of the LINEAR ORDERING problem:

Construct a graph with a vertex for every item along with an arc (i, j) for every pair

of items i, j whose weight equals the number of voters who prefer i to j. An optimal

linear ordering of this weighted graph then yields a totally ordered consensus ranking

whose sum of distances is a minimum. Due to the nature of the LINEAR ORDERING

problem, however, consensus rankings with ties are ignored. If, however, the order of

any two items is uniquely determined, the size of the corresponding feedback arc set

equals the pairwise sum of the Kendall tau distances of the consensus ranking and all

input rankings. The Kendall tau distance of two permutations is defined as the number

of their pairwise disagreements and equals half of their Kemeny distance, where every

disagreement scores 2.

Whereas a KEMENY RANKING asks to minimize the total number of disagreements

over all voters, a SLATER RANKING aims at minimizing the number of disagreements

over a pairwise majority decision, i. e. , if a majority of the voters prefers i to j, then

the consensus ranking should ideally rank i before j. This ranking rule originates

from a problem studied by Slater [Sla61], who investigated inconsistencies in pairwise

comparisons in psychological experiments. In order to find a consensus ranking, we can

construct an unweighted graph having again a vertex for every item and an arc (i, j)
for two items i, j if the majority of the voters ranked i before j. Every optimal linear

ordering then is a consensus ranking.

Ranking and rank aggregation problems naturally occur in voting systems, sports

competitions, and scheduling tasks and imply in turn vast and manifold applications

of the LINEAR ORDERING problem. One of them is metasearch, which combines the

rankings of different web search engines in order to either simply obtain a better result,

taking multiple selection criteria into account, or to combat spam [DKNS01, YXS06].

Rank aggregation is also employed when users of a website can express their individual

preferences and an overall opinion needs to be compiled, e. g. , for movie databases or

travel portals. In sports tournaments, Kemeny and Slater rankings or variations thereof

32 2 The Linear Ordering Problem: An Outline

may be used to obtain a ranking of the candidates, however with the drawback that the

optimal solution often is not unique.

Even though the LINEAR ORDERING problem is able to grasp both Kemeny and Slater

rankings entirely if all rankings are permutations, research is dedicated specifically to

these scenarios due to the special nature of the input graph: In contrast to the LINEAR

ORDERING problem in general it is always built itself from rankings.

Penalty Approaches A solution to LO or FAS always produces a consistent set of arcs,

which builds the acyclic subgraph. This characteristic is the key to its application in

penalty approaches: Assume that we are given a set of items. Along with it comes a set

of item pairs i, j specifying that i should precede j and a penalty pij that becomes due if

this order is violated. We now need to find a set of item pairs such that the sum of its

penalties is a minimum and all remaining pairs are not conflictive. In fact, this scenario

can be modeled as an instance of WEIGHTED FEEDBACK ARC SET or WEIGHTED LINEAR

ORDERING, if we are seeking a total order of the items. The input graph has a vertex for

every item and an arc (i, j) whose weight equals the penalty pij for every given pair of

items i, j.

The penalty approach is used in practice to solve the ONE-SIDED CROSSING MINI-

MIZATION problem: Consider a bipartite graph with vertex set U ∪̇V and assume that

the elements of U are totally ordered and placed on a straight line l1. The task now is

to find an ordering of the vertices in V such that if they are placed on a second straight

line l2 parallel to l1, the number of edge crossings is minimized. We can cast this as a

WEIGHTED LINEAR ORDERING problem by creating a graph with vertex set V and an arc

(u, v) for two vertices u, v ∈ V such that the penalty puv equals the number of crossings

between arcs incident to u and arcs incident to v that occur if v precedes u in the resulting

linear ordering. ONE-SIDED CROSSING MINIMIZATION appears, e. g. , as a subproblem

in the graph drawing framework for directed graphs proposed by Sugiyama [STT81].

Further scenarios for the penalty approach are again scheduling problems as well

as tasks that require to resolve cyclic dependencies and specify penalties for the non-

observance of a dependency.

Feedback Vertex Set: Deadlock Recovery and Circuit Testing Due to the mutual

reducibility of FEEDBACK ARC SET and FEEDBACK VERTEX SET, we also mention some

applications for the latter.

A typical example is the recovery from a deadlock. Deadlocks arise in operating

systems, e. g. , if a process waits for a resource that is currently held by another pro-

cess, while the other process itself requests a resource that is held by the first process.

2.4 Linear Orderings in Practice 33

Similar situations may occur upon the concurrent access of a database and also in non-

computational setups. These cases can be modeled again as a graph, where each process

or client is represented by a (weighted) vertex and arcs are used to express dependencies.

A minimum feedback vertex set then tells which processes or clients need to be killed in

order to resolve the deadlock while keeping the damage to a minimum.

Another interesting application for FVS appears in the context of testing electronic

circuits. Here, feedback cycles have shown to significantly complicate the task. However,

the test generation complexity is greatly reduced if such cycles are broken while still

yielding good fault coverage [CA90]. An exact algorithm for this problem has shown to

work reasonably fast also for large instances [CA95].

Further Applications There are many more application scenarios for both FAS and FVS
which are similar to those mentioned above. Furthermore, if we consider extensions

of both problems such as additional constraints on the linear ordering, weights on

both vertices and arcs, or a non-linear objective function, their number increases even

further [MR11].

34 2 The Linear Ordering Problem: An Outline
Table

2.1:A
lgorithm

s
for

the
L

IN
E

A
R

O
R

D
E

R
IN

G
problem

.

A
lgorithm

G
raph

C
lass

Perform
ance

a
Tim

e
C

om
plexity

R
eferences

ILP/Branch
&

C
ut/C

utting
Plane

general
exact

exponential
cf.Section

2.2.1

Enum
eration

via
Branch

&
Bound

general
exact

O
(n!)

cf.Section
2.2.1

D
ynam

ic
Program

m
ing

general
exact

O
∗(2

n) b,O
∗(4

n+
o(n))

[R
S07],[FK

10]

Extension
ofF
P
T

algorithm
tournam

ents
exact

O
∗(1.5541

m
)

[R
SS07]

A
pproxim

ation
general

O
(log

n
loglog

n)·
τ

P
[EN

SS98]

G
reedy

C
ycle

D
estruction

general
|longestcycle|·

τ
O

(m
·
n)

[D
F03]

K
w

ikSort
tournam

ents
3·τ

P
[A

C
N

08,vZ
W

09]

PTA
S

tournam
ents

(1
+
ε)·

τ
P

[K
S06,K

S07]

A
pproxim

ation
(A
P
X

)
bipartite

tournam
ents

4·τ
P

[vZ
11]

F
P
T

algorithm
general

exact
O

∗(4
kk

3k!)
[C

LL
+

08]

F
P
T

algorithm
tournam

ents
exact

O
(2

O
(√

k
log

2
k))

[K
S10]

F
P
T

algorithm
bipartite

tournam
ents

exact
O

∗(3.373
k)

[D
G

H
+

10]

via
M

inim
um

D
ijoins

planar
graphs

exact
O

(n
4)

[Luc76,LY
78,Fra81]

C
ontraction

algorithm
reducible

flow
graphs

exact
O

(m
log

n)
[R

am
88,K

oe05]

via
LP

Solver
graphs

w
ith

τ
=
ν

exact
P

[G
JR

85b,BFM
94,N

P95]

Selection
by

D
egree

general
m2
−

m
·c

√
∆

G
O

(m
·
n)

[BS90]

G
eneralized

TopSort
general/

cubic
graphs

m2
−

n6
/

m4
O

(m
)

/
O

(m
·n)

[ELS93]/
[EL95]

InsertionSort-like
H

euristics
general

–
O

(m
·
n

2)
[C

K
96,BH

11]

aW
orst-case

upper
bound

for
resultofcom

putation.
τ:V

alue
ofoptim

alsolution.
bSpace

com
plexity:O

∗(2
n)

3 Preliminaries: Definitions and
Preparations

The first two sections of this chapter summarize mathematical notations and basic

definitions that are used in this thesis and introduce some technical terms. In the third

section, we look at some simple graph manipulations and briefly study their impact on

the LINEAR ORDERING problem. Among other things, these contribute to being able to

state a couple of default assumptions in the last section.

3.1 Basics

We start by introducing a set of very basic terms and definitions. Although most readers

will be familiar with them, we list them here for the sake of completeness.

3.1.1 Sets and Multisets

A set is an unordered collection of pairwise distinct elements, e. g. , {e0, e1, e2}. A set Y

is a subset of another set X , denoted by Y ⊆ X , if every element of Y is also contained in

X , but not necessarily vice versa. A subset Y of X is called proper and denoted by either

Y ⊊ X or Y ⊂ X , if Y ⊆ X , but Y ̸= X . In this thesis, the former notation, Y ⊊ X is

used to emphasize the properness of a subset relation, e. g. , if this fact is important, while

in the latter, Y ⊂ X , it can be regarded as an additional, but not relevant information. If

Y ⊆ X , then X conversely is a superset of Y , which is denoted as X ⊇ Y . Analogously, a

superset is said to be proper, denoted as Y ⊋ X and unstressed as Y ⊃ X , if equality of

the sets is ruled out. The number of elements of a set X is called the cardinality of X and

denoted by |X|. The cardinality of a set can be finite or infinite. To distinguish sets from

multisets, which will be introduced later in this subsection, we also call them simple sets.

The set of natural numbers is denoted by N, which by default includes the element

0. The fact that N contains 0 can be emphasized by writing N0. To specify the natural

numbers that are greater than or at least a specific value k ∈ N, we use the abbreviations

36 3 Preliminaries: Definitions and Preparations

N>k and N≥k, respectively. These definitions can be made analogously for the set R of

real numbers.

In contrast to a set, a sequence S is an ordered collection of elements and allows for

duplicates. A sequence can be specified by (si)k
i=0 together with a definition of each

element si. The number of elements of S is called the length of S, which may be finite or

infinite.

An n-tuple is an ordered collection of exactly n elements, which are usually listed

within parenthesis. (e1, e2, e3), for instance, is a 3-tuple. Like sequences, n-tuples may

contain duplicates.

If a set’s restriction of being distinct is put aside, we obtain a multiset. To distinguish

multisets from sets, we denote them by [e0, e0, e1, e2]. Formally, a multiset X is defined

by a 2-tuple (U,m), where U is called the underlying set of elements and m : U → N≥1

specifies the number of occurrences of an element u ∈ U inX . IfX = (U,m) and U ⊆ U ′,

we introduce a term and shorthand notation for this relation by calling X a multisubset of

U ′ and denoting it byX ⊆∗ U ′. ForU ′ = {e0, e1, e2}, e. g. ,X = [e0, e0, e1] is a multisubset

of U ′, as the underlying set of elements of X is U = {e0, e1} and U ⊆ U ′. Note that

every simple set X is also a multiset (X,m), where m : X → {1} is the constant-one

function that maps every element to 1. A multiset Y = (UY ,mY) is a subset of a multiset

X = (UX ,mX), denoted by X ⊆ Y , if UY ⊆ UX and ∀u ∈ UY : mY (u) ≤ mX(u). As in

the case of subsets, most relations defined on sets carry over accordingly to multisets.

To avoid confusion, however, we briefly address unions and multiset sums. Given two

multisets X = (UX ,mX) and Y = (UY ,mY), the union X ∪ Y is defined as the multiset

(UX∪Y ,mX∪Y), where UX∪Y = UX ∪ UY and for all u ∈ UX∪Y ,

mX∪Y (u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mX(u), if u ∈ UX ∧ u ̸∈ UY ,

mY (u), if u ∈ UY ∧ u ̸∈ UX ,

max {mX(u),mY (u)} , else.

In contrast, the multiset sum X ⊎ Y yields the multiset (UX⊎Y ,mX⊎Y), where UX⊎Y =
UX ∪ UY and for all u ∈ UX⊎Y ,

mX⊎Y (u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mX(u), if u ∈ UX ∧ u ̸∈ UY ,

mY (u), if u ∈ UY ∧ u ̸∈ UX ,

mX(u) +mY (u), else.

Observe that a multiset sum only differs from an ordinary union if X and Y are not

disjoint. With these definitions, we obtain for X = [e0, e0, e1] and Y = [e0, e1, e1, e2],

3.1 Basics 37

e. g. , X ∪ Y = [e0, e0, e1, e1, e2] and X ⊎ Y = [e0, e0, e0, e1, e1, e1, e2]. As might have

been expected, the intersection X ∩ Y is defined as the multiset (UX∩Y ,mX∩Y), where

UX∩Y = UX ∩ UY and for all u ∈ UX∩Y ,

mX∩Y (u) = min {mX(u),mY (u)} .

The cardinality of a multisetX = (U,m) equals again the number of elements contained

in X and is denoted by |X|, i. e. , |X| = ∑
u∈U m(u).

To simplify notation, we write x ∈ X for a multiset X = (U,m), to express that x ∈ U ,

and x ̸∈ X if x ̸∈ U . Furthermore, in case that no ambiguity arises, we use the term set

from here on as an umbrella term for both simple sets and multisets.

3.1.2 Minimal and Maximal versus Minimum and Maximum

As the terms minimal and maximal and their differentiation from minimum and maxi-

mum often lead to misunderstandings, we define them here explicitly. Let X be a set of

elements, Y ⊆ X be a subset thereof and p be an arbitrary property such that Y fulfills

p. Under these preconditions, we say that Y is minimal with respect to p, if for every

element y ∈ Y holds that the set Y \ {y} does not fulfill p. Likewise, Y is maximal with

respect to p, if for every element x ∈ X \ Y holds that Y ∪ {x} does not fulfill p.

On the contrary, Y is minimum with respect to p, if there is no other subset Z ⊆ X

such that Z also fulfills p and |Z| < |Y |. Analogously, Y is maximum with respect to p, if

there is no other subset Z ⊆ X such that Z also fulfills p and |Z| > |Y |.

3.1.3 Computational Complexity

We use standard big O notation, i. e. , O, o, Ω, and Θ, to describe the growth of functions

that express the time or space complexity of an algorithm or a subroutine. When dealing

with very fast growing functions such as exponential functions, polynomially bounded

factors are often negligible. The starred variant of O accounts for these situations and is

defined as O∗(g) = O(g · p), where p is any polynomial. This notation is often used for

exact or FPT algorithms.

3.1.4 Data Structures

Many algorithms that are described in this thesis use lists to store different types of

elements. We therefore briefly introduce some notations in this context.

38 3 Preliminaries: Definitions and Preparations

Lists represent the mathematical concept of finite sequences, i. e. , they maintain the

order of their elements and allow for duplicates. A list L with elements e0, e1, and e2

can be specified by ⟨e0, e1, e2⟩. Subsequently, ⟨ ⟩ denotes the empty list.

We use the operator ⋄ to express that two lists are concatenated. For two lists L1 =
⟨e0, e1⟩ and L2 = ⟨e2⟩, e. g. , L1 ⋄ L2 = ⟨e0, e1, e2⟩ and L2 ⋄ L1 = ⟨e2, e0, e1⟩.

The ith element of a list L can be queried by L[i]. We assume that lists are zero-based,

i. e. , the first element of the list has index 0. For L = ⟨e0, e1, e2⟩, e. g. , this implies that

L[0] = e0, L[1] = e1, and L[2] = e2, while for another list L′ = ⟨e2, e0, e1⟩, e. g. , L′[0] = e2,

L′[1] = e0, and L′[2] = e1.

The length of a list is denoted by |L| and indicates the number of elements it contains.

Thus, for L = ⟨e0, e1, e2⟩, |L| = 3.

3.2 General Graph Theory

We now turn to graphs. The definitions introduced here refer without exception to

directed graphs (digraphs). In contrast to undirected graphs, the relation between two

vertices is not necessarily symmetric.

3.2.1 Graphs, Vertices, and Arcs

A graph G is a tuple (V,A) with a finite vertex set V and a finite arc set A ⊆∗ V ×V , where

A is a multiset (U,m) with U ⊆ V × V . Unless indicated otherwise, we assume this

naming for the vertex and arc set of a graph G in the remainder of this thesis.

The size of G is measured by the cardinalities n = |V | and m = |A|. An arc a with

tail u and head v is specified by a = (u, v). In this case, a is said to be incident to both

vertices u and v and a is an outgoing arc of u and an incoming arc of v. Two vertices u, v

are called adjacent, if (u, v) ∈ A or (v, u) ∈ A. For an arc a = (u, v), we say that a is an

incoming arc from u at v and an outgoing arc to v at u.

The reverse of an arc (u, v), denoted by (u, v)R, is an arc with transposed head and tail,

i. e. , (u, v)R = (v, u). For a (multi-)set Y ⊆ A of arcs, Y R = [yR | y ∈ Y] and consequently,

|Y | = |Y R|. The reverse of a graph G = (V,A) is the graph GR = (V,AR). Observe that

reversion is an involution, i. e. , (u, v)RR = (u, v), Y RR = Y , and GRR = G.

A loop is an arc where head and tail coincide, e. g. , a = (u, u). An arc a = (u, v) has

parallel arcs, if m(a) ≥ 2 and one or more anti-parallel arcs, if (v, u) ∈ A. The multiset

containing all parallel arcs of an arc a, including a itself, is denoted by [a]∥. We say that

3.2 General Graph Theory 39

v0

v1

v2

v3

v4

v5

v6 v7

v8

v9

v10

v11

v12v13

Figure 3.1: A multigraph with loops at v3, v6, and v11, three parallel arcs (v2, v4), two par-

allel arcs (v8, v10), as well as anti-parallel arcs {(v4, v5) , (v5, v4)}, {(v8, v10) , (v10, v8)},
and {(v9, v11) , (v11, v9)}.

a graph has parallel or anti-parallel arcs, if one of its arcs has parallel or anti-parallel

arcs, respectively. A graph with loops, parallel, or anti-parallel arcs is called a multigraph.

Otherwise, the graph is said to be simple. In the latter case, it suffices to define A as a

simple set, i. e. , A ⊂ V × V . Figure 3.1 provides an example of a multigraph that will

serve as a running example for the remainder of this chapter.

A graph G′ = (V ′, A′) is a subgraph of G, denoted by G′ ⊆ G, if V ′ ⊆ V and A′ ⊆ A

as well as A′ ⊆∗ V ′ × V ′. A subgraph G′ is spanning if V ′ = V . For a set of vertices

X ⊆ V , the induced subgraph GX is the subgraph of G with vertex set X and arc set

(UX ,mX), where UX = {(u, v) ∈ U | u ∈ X ∧ v ∈ X} and ∀a ∈ UX : mX(a) = m(a).

Using a set of arcs Y , we define the spanning subgraph G
⏐⏐
Y of G that is restricted to Y as

G
⏐⏐
Y = (V,A ∩ Y).

A tournament is a simple graph G = (V,A) such that for each distinct pair of vertices

u, v ∈ V , u ̸= v, exactly one of the arcs (u, v) and (v, u) is in A. A graph is bipartite if its

vertex set V can be partitioned into two sets V ′ ∪̇V ′′ = V such that for all arcs (u, v) ∈ A,

either u ∈ V ′ and v ∈ V ′′ or u ∈ V ′′ and v ∈ V ′. A bipartite tournament is a simple

bipartite graph G = (V ′ ∪̇V ′′, A) with exactly one of (u, v) and (v, u) in A for each pair

of vertices u, v such that u ∈ V ′ and v ∈ V ′′.

3.2.2 Vertex Degrees

For a vertex v ∈ V , we denote by N+(v) the simple set of vertices that v has an out-

going arc to, i. e. , N+(v) = {u ∈ V | (v, u) ∈ U}. Likewise, N−(v) denotes the simple

set of vertices that v has an incoming arc from, i. e. , N−(v) = {u ∈ V | (u, v) ∈ U}. The

outdegree d+(v) of v is defined as the number of arcs that are outgoing from v, also

40 3 Preliminaries: Definitions and Preparations

counting parallel arcs, i. e. , d+(v) = ∑
u∈N+(v)m((v, u)). Equivalently, d−(v) denotes v’s

indegree, i. e. , d−(v) = ∑
u∈N−(v)m((u, v)). Finally, the (total) degree d(v) of v is defined

as d(v) = d+(v) + d−(v) and the delta degree δ(v) as δ(v) = d+(v)− d−(v). Note that for

every graph,
∑

v∈V δ(v) = ∑
v∈V d+(v)−∑v∈V d−(v) = 0.

A vertex v is called a source if d+(v) ≥ 1 and d−(v) = 0 and a sink if d+(v) = 0 and

d−(v) ≥ 1. In case d(v) = 0, v is said to be isolated. The maximum degree of a vertex in a

graph is denoted by ∆G, i. e. , ∆G = maxv∈V d(v).

A graph G is k-regular, if ∀v ∈ V : d(v) = k and k-subregular, if ∀v ∈ V : d(v) ≤ k,

or equivalently, ∆G = k. For k = 3, we also refer to such a graph as cubic or subcubic,

respectively. For k = 4, the terms quartic and subquartic are used as an alternative. In

case of k = 5, a graph is called quintic or subquintic, respectively.

3.2.3 Paths, Cycles, and Walks

A path P of length k is an alternating sequence of k + 1 vertices and k connecting arcs

P = ⟨v0, (v0, v1) , v1, (v1, v2) , v2, . . . , vk−1, (vk−1, vk) , vk⟩. In case no ambiguity arises, we

may also specify a path by giving only either its vertices or arcs. As a short form, we

write v0 ⇝ vk to denote an unspecified path from v0 to vk. A path is simple, if it does

not include a vertex more than once. Let VP = {v0, v1, . . . , vk} be the set of vertices of

P and AP = {(v0, v1) , (v1, v2) , . . . , (vk−1, vk)} the set of arcs of P. With a slight abuse of

notation, we write v ∈ P for a vertex v ∈ V to express that v ∈ VP, and a ∈ P for an arc

a ∈ A to express that a ∈ AP.

A path P′ is a subpath of a path P = ⟨v0, (v0, v1), v1, (v1, v2), v2, . . . , vk−1, (vk−1, vk), vk⟩,
if P′ = ⟨vi, (vi, vi+1), vi+1, . . . , vj−1, (vj−1, vj), vj⟩, for some i, j with 0 ≤ i ≤ j ≤ k, i. e. ,

P′ is a continuous subsequence of vertices and arcs of P.

Two paths P and P′ are vertex-disjoint if they do not share a common vertex. Likewise,

P and P′ are arc-disjoint, if they do not share a common arc. Every vertex-disjoint pair of

paths is also arc-disjoint.

A cycle C of length k is a path of length k where the first and the last vertex coincide,

i. e. , v0 = vk. For a cycle to be simple, all vertices apart from v0, vk must be distinct.

Whenever a graph contains a cycle C that is not simple, it also contains a simple cycle C′

that consists of the shortest subpath in C that begins and ends at the same vertex.

The notion of vertex- and arc-disjointness is transferred from paths to cycles anal-

ogously, i. e. , two cycles C and C′ are vertex-disjoint (arc-disjoint) if no vertex (arc) is

contained in both C and C′.

3.2 General Graph Theory 41

Note that paths and cycles of length k = 1 are single arcs and loops, respectively.

Similar to a path, a walk W of length k is an alternating sequence of k+1 vertices and k

arcs W = ⟨v0, a{v0,v1}, v1, a{v1,v2}, v2, . . . , vk−1, a{vk−1,vk}, vk⟩with the vital difference that

a{vi,vj} may either be the arc (vi, vj) or its reverse, i. e. , (vj , vi). Informally, a walk is a

path where the arcs’ directions are ignored. Consequently, every path is also a walk, but

not vice versa.

3.2.4 Connectivity and Acyclicity

A graph G is said to be connected, if there is a walk from u to v for every pair of vertices

u, v ∈ V . G is said to be k-vertex-connected or simply k-connected, if n > k and for any

subset of at most k − 1 vertices V ′ ⊊ V , GV \V ′ is connected, i. e. , the removal of at most

k−1 arbitrary vertices does not disconnectG. A 2-connected graph is synonymously also

called biconnected. A connected component of a graph is a maximal connected subgraph,

i. e. , for X ⊆ V , GX is a connected component if GX is connected if there is no superset

X ′ ⊋ X such that GX′ is connected. Analogously, a biconnected component or block of a

graph is a maximal biconnected subgraph. A vertex v is called a cut vertex, if GV \{v} has

more connected components than G. In particular, a graph is biconnected if and only if

it does not have a cut vertex. The definition implies that every cut vertex of a graph is

part of at least two blocks. The block-cut tree of a graph G is an unrooted tree T whose

nodes each represent either a block or a cut vertex of G. Two nodes of T are adjacent if

and only if one of them represents a block, the other a cut vertex, and the block contains

the cut vertex.

The graph depicted in Figure 3.1, e. g. , is not biconnected due to the presence of

the (only) cut vertex v10. It contains two blocks: one consisting of all vertices vi with

0 ≤ i ≤ 10, and second consisting of all vertices vj with 10 ≤ j ≤ 13. Observe that v10 is

contained in both blocks. The block-cut tree of this example graph thus consists of three

nodes representing two blocks and one cut vertex.

For two vertices u, v of a graph G, v is said to be reachable from u if there is a path

u ⇝ v in G. The vertices u and v are called strongly connected, if they are mutually

reachable, i. e. , there are paths u⇝ v and v ⇝ u in G. By transferring this definition to

the whole graph, we obtain that a graph is strongly connected, if there is a path between

each ordered pair of vertices.

A strongly connected component, SCC for short, of a graph is a strongly connected

subgraph that is maximal with respect to its vertex set. Formally, the property of being

42 3 Preliminaries: Definitions and Preparations

σ0

σ1

σ2

σ3 σ4

σ5v0

v1

v2

v3

v4

v5

v6 v7

v8

v9

v10

v11

v12v13

Figure 3.2: Strongly connected components of the example graph.

σ0

σ1

σ2

σ3 σ4

σ5

Figure 3.3: The condensation of the example graph.

strongly connected defines an equivalence relation on the set of vertices such that each

equivalence class corresponds to the vertex set of exactly one SCC. This also implies

that any two vertices vi, vj of a cycle C are strongly connected, as C can be split into two

paths vi ⇝ vj and vj ⇝ vi. Therefore, for every cycle in G, its vertices and arcs must be

part of the same SCC. Figure 3.2 shows the SCCs of the example graph.

In general, the number of SCCs in a graph may range between 1 and n. In the former

case, the graph itself is strongly connected, while in the latter, every SCC consists of a

single vertex only. If so, the graph does not contain a cycle of length k > 1. A graph is

said to be acyclic, if it does not contain a cycle of length k > 0. In consequence, every

loop-free graph with n SCCs is acyclic. Contracting each SCC of G to a single vertex

always yields an acyclic graph that is called the condensation of G. See Figure 3.3 for the

condensation of the example graph.

In an acyclic graph, the reachability relation defines a partial order on the set of its

vertices. Every linear extension of this relation (i. e. , to a total order) corresponds to a

topological sorting of the acyclic graph. A topological sorting of G = (V,A) is a bijective

mapping ξ : V → {0, . . . , n− 1} that assigns a topsort number ξ(v) to every vertex v such

3.3 Feedback Arc Sets and Linear Orderings 43

σ1 σ0 σ5 σ2 σ3 σ4 σ5 σ1 σ0 σ2 σ3 σ4

Figure 3.4: Two possible topological sortings of the condensed example graph.

that ∀ (u, v) ∈ A : ξ(u) < ξ(v). Descriptively, every arc must point from a vertex with

a lower topsort number to a vertex with a higher topsort number. A graph is acyclic

if and only if it can be sorted topologically. Just as there may be a number of different

linear extensions to a partial order, there may be equally many topological sortings of an

acyclic graph. For illustration, Figure 3.4 shows two possible topological sortings of the

condensed example graph.

Computing a topological sorting and inherently checking whether a graph is acyclic

can be accomplished in timeO(n+m) by repeatedly removing a source v from the graph

and assigning it the topsort number ξ(v) in increasing order. We refer to the algorithm

that returns a topological sorting of an acyclic graph G as TopSort(G) .

The strongly connected components of a graph can also be retrieved in time O(n+m)
using, e. g. , Tarjan’s algorithm [Tar72], which is based on depth-first search. At the same

time, the graph’s condensation may be constructed.

3.3 Feedback Arc Sets and Linear Orderings

This section is to introduce notation that relates especially to the mathematical handling

of feedback arc sets and linear orderings.

3.3.1 Feedback Arc Sets

A feedback arc set B, sometimes also called a cycle cover, for a graph G = (V,A) is a set

of arcs B ⊆ A such that the subgraph restricted to A \ B is acyclic. The set F = A \ B is

referred to as the acyclic arc set of G with respect to B and the subgraph restricted to F ,

G
⏐⏐F , as the according acyclic subgraph.

Given a set of arcs B ⊆ A, we say that B is feasible, if it forms a valid feedback arc set.

In conformance with the definitions in Section 3.1, a feedback arc set is called minimal, if

no arc can be removed from it such that it remains feasible. Analogously, a feedback arc

44 3 Preliminaries: Definitions and Preparations

v8

v9

v10

v11 v8

v9

v10

v11 v8

v9

v10

v11

(a) (b) (c)

Figure 3.5: A feasible feedback arc set (a), a minimal feedback arc set (b), and an optimal

(minimum) feedback arc set (c) for the subgraph σ5, highlighted by dotted red arcs.

set is minimum, if its cardinality is minimum among all feedback arc sets of G. In this

case, the feedback arc set is also said to be optimal.

Figure 3.5 shows three different feedback arc sets for the strongly connected subgraph

σ5 of the example graph. In the first example, Figure 3.5(a), one of the arcs (v8, v9),

(v9, v10), or (v10, v11) could be removed from the feedback arc set while still maintaining

feasibility. This is not the case for the feedback arc set depicted in Figure 3.5(b), however,

its cardinality is not minimum among all feedback arc sets, as Figure 3.5(c) testifies. In

fact, the last figure shows an optimal feedback arc set.

We denote the cardinality of an optimal feedback arc set by τG or simply τ , if no

ambiguity arises.

If B is an (optimal) feedback arc set for a graph G, then BR is an (optimal) feedback

arc set for the reverse graph GR. In particular, this implies that τG = τGR .

The optimal feedback arc set is the empty set if and only if the graph is acyclic.

3.3.2 Linear Orderings

A linear ordering πG of G = (V,A) is a bijective mapping πG : V → {0, . . . , n− 1} that

assigns a unique LO position πG(v) to every vertex v ∈ V . An arc (u, v) is called forward, if

πG(u) < πG(v), and otherwise backward. Two vertices u, v ∈ V are said to be consecutive
with respect to πG, if their LO positions differ by exactly one, i. e. , |πG(u)− πG(v)| = 1.

More generally, a set X ⊆ V of vertices is called consecutive with respect to πG, if

maxu,v∈X |πG(u)− πG(v)| = |X| − 1.

Linear orderings are usually visualized by aligning the vertices horizontally and

sorting them according to their LO positions in increasing order from left to right.

Forward arcs are then drawn as arches above or on the same level as the vertices, while

backward arcs appear below it. We denote by FπG and BπG the set of arcs that are

3.3 Feedback Arc Sets and Linear Orderings 45

v11 v10 v9 v8 v11 v9 v10 v8 v8 v9 v10 v11

(a) (b) (c)

Figure 3.6: Linear orderings of the subgraph σ5, such that the backward arcs in (a), (b),

and (c) each correspond to the respective feedback arc set shown in Figure 3.5.

v0

v1 v2

Figure 3.7: A feasible feedback arc set without corresponding linear ordering.

classified by πG as forward and backward, respectively. We omit the subscript and

simply write π instead of πG if the graph it refers to is clear from the context.

In fact, linear orderings bear resemblance to topological sortings, but with the im-

portant distinction that the latter do not allow for backward arcs. If we consider the

subgraph restricted to the forward arcs, however, then π indeed is a topological sorting

of this subgraph. Consequently, π defines an acyclic subgraph G
⏐⏐Fπ

of G along with a

feedback arc set, which corresponds exactly to the set of arcs classified as backward, Bπ.

Note that if we consider instead the subgraph restricted to the backward arcs excluding

loops, then the reversal of π again is a topological sorting. Hence, G
⏐⏐Bπ

may contain

cycles of length at most one. We say that a vertex v ∈ V is a pseudosource with respect

to a linear ordering π if v is a source in G
⏐⏐Fπ

. Analogously, a vertex v ∈ V is called a

pseudosink with respect to a linear ordering π if v is a sink in G
⏐⏐Fπ

.

Figure 3.6 uses the subgraph σ5 of the example graph again and shows three linear

orderings. The set of backward arcs in each of them corresponds to the feedback arc set

depicted in the respective subfigure of Figure 3.5.

A linear ordering uniquely identifies a feedback arc set Bπ and an acyclic arc set Fπ,

whereas the opposite does not hold true in general. On the contrary, every topological

sorting ofG
⏐⏐Fπ

yields a linear ordering π′ such that Bπ′ ⊆ Bπ, i. e. , the topological sorting

may “accidentally” have classified arcs of Bπ as forward. This implies that, first, there

may be multiple linear orderings that define the same feedback arc set and, second, not

every feedback arc set B has a corresponding linear ordering π such that B = Bπ. For a

46 3 Preliminaries: Definitions and Preparations

v8

v9

v10

v11

v11 v10 v9 v8

(a) (b)

Figure 3.8: Construction of linear ordering that corresponds exactly to the feedback arc

set depicted in Figure 3.5(a): reversal of non-loop backward arcs (a) and topological

sorting (b). For illustration, reversed backward arcs are drawn below the vertex level.

graph consisting only of a cycle of length k > 1, for example, such as the graph shown

in Figure 3.7, the set of all arcs is feasible, but we have already argued in the paragraph

before last that for any linear ordering π, the subgraph G
⏐⏐Bπ

must be acyclic except for

loops. If this requirement is met, however, a construction of π is possible, which is also

exemplified in Figure 3.8.

Observation
If there is an acyclic arc set F ⊆ A of a graph G = (V,A) and the set B = A \ F
does not contain a cycle of length k ≥ 2, a corresponding linear ordering π can

be obtained such that B = Bπ by topologically sorting the graph that consists of

G
⏐⏐F plus the reverse of each arc in B that is not a loop.

The characteristic of inducing the same set of backward arcs yields an equivalence

relation ∼B on the set of linear orderings of a graph. The equivalence class of π hence is

the set containing all linear orderings π′ that induce exactly the same set of backward

arcs as π, i. e. , [π]∼B = {π′ | Bπ′ = Bπ}. Using the above observation, [π]∼B can be

constructed explicitly by compiling all topological sortings.

To ease notation, we define |π| = |Bπ|. We also adopt the terminology from sets and

say that a linear ordering π is optimal, if its induced feedback arc set Bπ is. To express that

a linear ordering π is optimal, we denote it by π∗, i. e. , we always have |π∗
G| = τG. Note

that all linear orderings in the equivalence class [π∗]∼B of an optimal linear ordering π∗

are also optimal.

For a linear ordering π, we define the reverse linear ordering πR as πR : V → {0, . . . , n− 1}
where πR(v) = n− 1− π(v) for every vertex v ∈ V . This definition complies well with

the definition of the reverse graph: If πG is a linear ordering of G, then πG
R forms the

3.3 Feedback Arc Sets and Linear Orderings 47

corresponding linear ordering for GR such that BπG
R equals the set of backward arcs

induced by πG
R on GR, i. e. , BπG

R = BπG
R . In particular, this implies that πG is an

optimal linear ordering of G if and only if πG
R is an optimal linear ordering of GR. Note

that also the reversion of a linear ordering is an involution, i. e. , πG
RR = πG.

Finally, we simplify Bπ and Fπ to B and F , respectively, if the linear ordering that

these sets are obtained from is unambiguous. In the context of a linear ordering π, B and

F always refer to Bπ and Fπ.

3.3.3 Forward Paths and Layouts

Given a linear ordering π of a graph G = (V,A), a path P is called forward path if every

arc in P is forward.

For every vertex v ∈ V , π defines four (multi-)sets of arcs: F−(v), F+(v), B−(v),

B+(v), which contain the incoming forward, outgoing forward, incoming backward,

and outgoing backward arcs of v according to π. Additionally, we use F(v) = F−(v) ∪
F+(v) and B(v) = B−(v) ∪ B+(v) if we do not want to distinguish between incoming

and outgoing arcs. We denote the cardinalities by f−(v) = |F−(v)|, f+(v) = |F+(v)|,
b−(v) = |B−(v)|, and b+(v) = |B+(v)|. Analogously, we set f(v) = f−(v) + f+(v) =
|F(v)|, and b(v) = b−(v) + b+(v) = |B(v)| to express the total number of forward

and backward arcs incident to v, respectively. For ease of notation, let φ[X], for φ ∈
{F−,F+,B−,B+, f−, f+, b−, b+}, be the canonical extension of the function φ to sets of

elements, e. g. , F−[X] = ⨄
v∈X F−(v) and f−[X] = |F−[X]|. The linear ordering π

induces a layout L : V → N4
0 such that for each vertex v ∈ V , L(v) is the 4-tuple

(f−(v), f+(v), b−(v),b+(v)).

Note that if we consider the reverse graphGR along with the reverse linear ordering πR,

then for every vertex v ∈ V , its incoming forward arcs according to π in G correspond to

its outgoing forward arcs according to πR in GR and its outgoing forward arcs according

to π in G correspond to its incoming forward arcs according to πR in GR. Likewise, its

incoming backward arcs according to π in G correspond to its outgoing backward arcs

according to πR in GR and its outgoing backward arcs according to π in G correspond to

its incoming backward arcs according to πR in GR.

In order to improve comprehensibility, we use pictograms that visualize the layout

as a shorthand notation for the 4-tuples, depending on the degree of accuracy needed.

In a pictogram, a simple arc () always signifies exactly one arc, whereas an arc with

a double shaft () serves as a representative for a set of arcs. We use a dotted version

48 3 Preliminaries: Definitions and Preparations

(), if the represented arc set may be empty, otherwise, the lines are drawn solid. In the

latter two cases, identical colors and drawing styles of two double shaft arcs indicate

identical arc set cardinalities, provided that they are incident to the same vertex. (We

would run out of drawing styles if we also kept this invariant across different vertices.)

The pictogram , for instance, represents a vertex v with L(v) = (i, j, k, l), where

i ≥ 0, j = k + 1, k ≥ 1, and l = 2.

3.4 Preprocessing and Default Assumptions

The LINEAR ORDERING problem consists in finding an optimal linear ordering π∗ of a

graph G. Prior to tackling this task, there are a few preprocessing steps which can be

taken to facilitate the handling of G.

In this section, we will introduce them briefly and see how they enable us to set

up some default assumptions on the input graphs. Unless indicated otherwise, the

restrictions listed here shall be effective for the remainder of this thesis.

3.4.1 Loops and Anti-Parallel Arcs

Consider a graph G = (V,A) as input to the LINEAR ORDERING problem.

By the definition of a linear ordering, a loop is always classified as a backward arc. Let

l denote the number of loops of the input graph G and let G′ be the subgraph of G that

contains all arcs but loops. Then, every linear ordering of G′ is also a linear ordering of

G and vice versa, whose set of backward arcs differ by exactly the l loops.

The same applies to pairs of anti-parallel arcs. Let {(u, v) , (v, u)} ⊆ A be such a pair

and let G′ be the subgraph of G restricted to A \ {(u, v) , (v, u)}. Note that parallel arcs

of (u, v) or (v, u), if existent, remain in G′. Again, every linear ordering of G′ is also a

linear ordering of G and vice versa, whose set of backward arcs differ by exactly 1: In

case that u has a smaller LO position than v, G has (v, u) as an additional backward arc,

otherwise, the additional backward arc is (u, v).

In consequence, loops and anti-parallel arcs can be deemed irrelevant for the construc-

tion of a linear ordering. We can therefore remove all loops from the input graph as well

as anti-parallel arcs pairwisely and proceed with the resulting graph, which is simple up

to parallel arcs. After the construction of the linear ordering, these arcs are reinserted.

The manipulation of graphs and their effects on the LINEAR ORDERING problem are

also discussed in more detail in Section 4.10.1.

3.4 Preprocessing and Default Assumptions 49

v0

v1

v2

v3

v4

v5

v6 v7

v8

v9

v10

v11

v12v13

Figure 3.9: The example graph of the previous section after the removal of loops and

anti-parallel arcs.

In the following, we confine ourselves to considering only graphs without loops and

anti-parallel arcs:

Assumption 3.1
The input graph is free of loops and anti-parallel arcs.

The result of the application of the preprocessing steps described above to the example

graph of the previous section is shown in Figure 3.9.

3.4.2 Strong Connectivity

Consider now a graph G = (V,A) that is not strongly connected. In Section 3.2.4, we

have already seen that no cycle of the graph can contain vertices of different strongly

connected components. It therefore suffices to solve the problem on the SCCs separately

and combine the results afterwards:

Let σ0, . . . , σk be the strongly connected components of G and let π0, . . . , πk be linear

orderings of them, respectively. Denote by B0, . . . ,Bk the according induced sets of

backward arcs. Then, B = ⋃
0≤i≤l Bi is a feedback arc set of G with |B| = ∑

0≤i≤k |Bi|.
A corresponding linear ordering π of G can be obtained by either sorting G

⏐⏐F topolog-

ically (cf. Section 3.3) or by “concatenating” the linear orderings of the SCCs in the order

of the topological sorting of the condensation of G, i. e. , if ξ is a topological sorting of the

condensation of G and u, v are two vertices of G, then π(u) < π(v) if and only if either

u and v are vertices of the same SCC σi and πi(u) < πi(v) or u belongs to SCC σi and

v belongs to SCC σj , i ̸= j, and ξ(σi) < ξ(σj). Note that for the sake of simplicity, the

SCCs and the vertices of the condensation graph have been identified in this definition.

This allows us to impose the following restriction:

50 3 Preliminaries: Definitions and Preparations

σ0

σ1

σ2

σ6

σ3 σ4

σ5v0

v1

v2

v3

v4

v5

v6 v7

v8

v9

v10

v11

v12v13

Figure 3.10: The strongly connected components of the graph depicted in Figure 3.9.

Assumption 3.2
The input graph is always strongly connected.

For illustration, Figure 3.10 depicts the strongly connected components of the graph

shown in Figure 3.9, i. e. , the example graph of the previous section after the removal of

loops and anti-parallel arcs.

3.4.3 Biconnectivity

Finally, consider the case that G = (V,A) is strongly connected, but not biconnected.

The following fact is commonly known (cf. [Sta90]):

Proposition 3.1
A set of arcs B ⊆ A is a feedback arc set for a graph G = (V,A) if and only if

B = ⋃
i Bi such that Bi is a feedback arc set of βi, for every block βi of G.

As this may not be entirely obvious at first glance, we provide a short proof here.

Proof. Let β0, . . . , βk denote the blocks ofG and let T be the block-cut tree ofG. Consider

two vertices u, v ∈ V that are not cut vertices and contained in blocks βu and βv,

respectively, such that βu ̸= βv. As G is strongly connected, there must be paths

P = u⇝ v and P′ = v ⇝ u in G. Both paths contain all cut vertices X on the path from

βu to βv in T . Let C denote the cycle consisting of P and P′. In this case, C contains all

vertices in X at least twice, i. e. , C is not simple. Instead, C consists of a set of simple

cycles formed by the subpaths between two cut vertices. The vertices of every such

simple cycle are subsequently contained in a common block of G. Furthermore, C is

3.4 Preprocessing and Default Assumptions 51

covered by a feedback arc set if and only if every cycle of this set of simple cycles is

covered.

Hence, it suffices to solve the LINEAR ORDERING separately on each block and com-

bine the result afterwards, which allows us assume:

Assumption 3.3
The input graph is biconnected.

Let β0, . . . , βk again denote the blocks of G and let π0, . . . , πk be their respective linear

orderings. A linear ordering π of the graph G can be obtained by sorting the acyclic

subgraph G
⏐⏐F that results from removing all arcs that have been classified as backward

by one of π0, . . . , πk topologically, as Proposition 3.1 immediately suggests. Alternatively,

π can be constructed directly from the π0, . . . , πk as follows: Traverse the block-cut tree

T of G by a depth-first search to obtain a preordering of the blocks and sort the linear

orderings of the blocks according to this preorder. For simplicity, assume that π0, . . . , πk

is already such an ordering. We incrementally construct a combined linear ordering:

Let π(0) = π0. For 0 < i ≤ k, let vi denote the only common vertex of πi and π(i−1).

This vertex must be a cut vertex, as it is part of at least two blocks, and, as T is a tree,

there can only be one such vertex. Construct π(i) from π(i−1) by replacing vi in π(i−1)

with the linear ordering πi. More formally, for two distinct vertices u ̸= w contained in

one of the blocks β0, . . . , βi, π(i)(u) < π(i)(w) if and only if either both are contained in

βi and πi(u) < πi(w), or both are not contained in βi and π(i−1)(u) < π(i−1)(w), or u is

contained in βi, w is not contained in βi, and π(i−1)(vi) < π(i−1)(w), or u is not contained

in βi, w is contained in βi, and π(i−1)(u) < π(i−1)(vi). Then, π = π(k) is a linear ordering

of G that conforms with every linear ordering πi, 0 ≤ i ≤ k.

With respect to the aim of using all assumptions concurrently, let us briefly address the

question of whether a block of a strongly connected graph is again strongly connected.

Proposition 3.2
Every block β of a strongly connected graph G is itself strongly connected.

Proof. Let T be the block-cut tree of G and let u, v be two vertices of the same block β of

T . As G is strongly connected, there is a path P = u⇝ v in G. If P contains only vertices

of β, P is also a path in β. Suppose P contains a vertex that does not belong to β. In

this case, P must also pass through at least one cut vertex. Let w be the first cut vertex

52 3 Preliminaries: Definitions and Preparations

v8

v9

v10

v11

β0
v8 v9 v10 v11

(a) (b)

Figure 3.11: The block β0 of σ5 along with an (optimal) linear ordering.

v10

v12v13

β1

v12 v10 v13

(a) (b)

Figure 3.12: The block β1 of σ5 along with an (optimal) linear ordering.

encountered on a traversal of P. Then, w is contained in β and P leaves β at w. However,

P must end at v, which is also contained in β and, as T is a tree and w is a cut vertex, P
must enter β again at w. Subsequently, β contains a path u⇝ w as well as a path w ⇝ v.

Hence, β contains a path u ⇝ v for every pair of vertices u, v, which implies that β is

strongly connected.

We can thus continue the preprocessing of the input graph after the removal of loops

and pairs of anti-parallel arcs as well as the partition into strongly connected components

by simply splitting these SCCs up into blocks.

The strongly connected components of the example graph, as visualized in Figure 3.10

are all biconnected except for σ5, which has a cut vertex v10. Figure 3.11 and Figure 3.12

show the two blocks of σ5 along with an optimal linear ordering for each block. The

block-cut tree of σ5 is depicted in Figure 3.13(a). The linear ordering for σ5 obtained

using the procedure described above is given in Figure 3.13(b).

v10

β0 β1

v8 v9 v12 v10 v13 v11

(a) (b)

Figure 3.13: The block-cut tree of σ5 and the linear ordering constructed from those of β0

and β1.

3.4 Preprocessing and Default Assumptions 53

σ1 σ0 σ5 σ2 σ3 σ4 σ6

Figure 3.14: A topological sorting of the SCCs depicted in Figure 3.10.

v2 v0 v1 v3 v8 v9 v12 v10 v13 v11 v4 v6 v7 v5

Figure 3.15: An (optimal) linear ordering of the graph depicted in Figure 3.10, obtained

by concatenating the linear orderings of the SCCs in the order of the topological

sorting as shown in Figure 3.14.

v2 v0 v1 v3 v8 v9 v12 v10 v13 v11 v4 v6 v7 v5

Figure 3.16: An optimal linear ordering of the example graph after the reinsertion of

loops and pairs of anti-parallel arcs. The linear ordering corresponds to that depicted

in Figure 3.15.

54 3 Preliminaries: Definitions and Preparations

In order to finish the example, we next obtain a topological sorting of the condensation

of the graph shown in Figure 3.10, which is depicted in Figure 3.14. Afterwards, the sep-

arately computed, here even optimal, linear orderings of the SCCs can be “concatenated”

in the order of the topological sorting (cf. Figure 3.15).

Finally, the loops and anti-parallel arcs are reinserted into the graph, thus leading to

a linear ordering of the original input graph. Figure 3.16 provides the optimal linear

ordering of the example graph that has arisen from these steps.

4 Properties of Optimal Linear
Orderings: A Microscopic View

Finding the absolutely best solution to a problem is often time consuming, and, if

the instance is big enough, at times even impossible. In this chapter, we specifically

study optimal solutions to the LINEAR ORDERING problem to gain more insight into

their structure. In doing so, we apply a kind of microscopic view with the emphasis

being placed primarily on single arcs and vertices, thus opposing more “macroscopic”

approaches that operate on higher abstraction levels. Whereas this limitation might

appear disadvantageous at first sight, it turns out to be powerful in sum due to synergy

effects.

We benefit algorithmically in two respects: First, approximation algorithms and

heuristics can be improved to yield better solutions while still running in polynomial

time. In the course of this chapter, algorithms are developed that monotonically improve

a given linear ordering. Second, exact algorithms can take advantage of these findings

and be sped up. A third aspect consists in the ability to prove new bounds on the

cardinality of an optimal solution for different kinds of graphs.

As a consequence, the contents provided here form the basis for all subsequent

chapters.

4.1 General Framework

A solution to a problem is optimal if and only if it is at least as good as every other

solution. This is the common definition for optimality. As LINEAR ORDERING is a

minimization problem, the part “is as good as” translates to “induces at most as many

backward arcs as” here. In order to obtain a more formal definition, we introduce a

predicate Opt which expresses whether a linear ordering π is optimal, i. e. , Opt(π) =

56 4 Properties of Optimal Linear Orderings: A Microscopic View

true, or not, i. e. , Opt(π) = false or ¬Opt(π) = true. Then, we can express optimality

as follows:

Opt(π)⇔ ∀π′ : |π| ≤
⏐⏐π′⏐⏐

As mentioned at the beginning, finding such a solution for NP-hard optimization

problems such as LO and FAS is in any case resource consuming and sometimes im-

possible in practice. Instead, one tries to find good solutions, where “good” may be

interpreted in different ways. A “good” solution may, e. g. , be one that is provably close

to the optimum, with the downside that something about the optimal solution must be

known. A different approach consists in optimizing a given solution as far as possible.

Optimality is unquestionably a very ambitious property for a linear ordering to

achieve. In the following sections, we therefore establish a more accessible set of prop-

erties with the characteristic that if a linear ordering disrespects one of them, it is not

optimal and can be improved in a prespecified way. A special class of such properties

consists in those who require a coupling with another property such that the compli-

ance of a linear ordering depends on the choice of the partner. We call such properties

meta-properties and address a selection of them in the last section of this chapter.

Just as Opt indicates whether or not a linear ordering is optimal, we define a predicate

for every introduced property that can be established efficiently and that is not a meta-

property. Furthermore, we define a set Ψ that encompasses all these predicates. The

“superpredicate” Ψopt then expresses that a linear ordering has all properties defined by

the predicates in Ψ:

Ψopt(π)⇔ ∀ψ ∈ Ψ : ψ(π)

We call a linear ordering π Ψ-optimal if and only if Ψopt(π) = true. As a reminder, we

point out that π∗ always denotes an optimal linear ordering, i. e. , Opt(π∗) is always true

(cf. Section 3.3).

In this chapter, we prove the following two theorems:

Theorem 4.1
For every linear ordering π holds: Opt(π)⇒ Ψopt(π).

A characteristic of the properties in Ψ is that all can be established concurrently and in

polynomial time, which allows us to implement a Ψopt-algorithm for LINEAR ORDERING.

4.1 General Framework 57

Theorem 4.2
There is an O(n ·m2 ·min{n 2

3 ,m
1
2 })-time algorithm that constructs a Ψ-optimal

linear ordering π.

In the individual sections of the chapter, we will introduce each property separately,

prove its validity for optimal linear orderings, and, where applicable, provide a property-

establishing algorithm. A common feature of these algorithms is that they can be

conveniently formulated by means of the routine Iterate (cf. Algorithm 4.1): Let E(G, π)

be an algorithm that takes a graph G and a linear ordering π as input and returns π if it

respects the respective property. Otherwise, it applies an improvement to π and returns

this new linear ordering. Then, Iterate(G, π,E) establishes the property by calling E(G, π)

until no further improvement is possible, i. e. , E ’s return value equals its argument π.

Algorithm 4.1 Iterate

Require: graph G, linear ordering π, property-enforcing routine E(G, π)

Return: a linear ordering obtained from π that respects the property enforced by E(G, π)

1: procedure Iterate(G, π,E)

2: π′ ← π

3: repeat

4: π ← π′

5: π′ ← E(G, π)

6: until π = π′

7: return π

A crucial characteristic of every property-enforcing routine E(G, π) is that it never

returns a linear ordering π′ such that |π′| > |π|. This monotonicity in combination

with the wrapper algorithm Iterate yields a local search heuristic for every routine E

which employs a technique that is also known as hill climbing. In contrast to simulated

annealing or tabu search, no worsening of the solution, even if only temporarily, can

occur.

The local search terminates as soon as E no longer modifies the linear ordering, i. e. ,

π = π′ in the pseudocode. Prior to this, the linear ordering must have been improved in

each call to the property-enforcing routine, i. e. , |π| decreases by at least one per loop

58 4 Properties of Optimal Linear Orderings: A Microscopic View

iteration. As 1 ≤ |π| ≤ m, this enables us to bound the running time of Iterate(G, π,E)

depending on E as follows1:

Proposition 4.1
Iterate(G, π,E) runs in O(m) times the running time of E(G, π).

4.2 Algorithmic Setup

In the current chapter, several algorithms are devised that construct and manipulate

linear orderings. The data structures given in this section serve as a basis for future time

complexity analyses. Along with these, two initialization algorithms are introduced that

may be used as ingredients to other algorithms later.

4.2.1 Graphs

We start with a suitable data structure to represent the input graph. Taking into account

that the algorithms studied in the following sections construct or manipulate different

linear orderings of the input graph, but not the graph itself, there is no need to attach

great importance to the cost of vertex or arc additions and deletions. We are, however,

interested in being able to efficiently obtain the vertices and arcs that are linked with

a vertex. Furthermore, this thesis focuses especially on sparse graphs, hence, space

complexity may be worth a consideration. For these reasons, we assume an adjacency

list representation here, or, more precisely, an incidence list representation, i. e. , every

vertex stores a list of incident incoming and outgoing arcs. For an efficient handling

of parallel arcs in multigraphs, we assume that they are represented blockwisely in

the incidence lists, such that the parallel copies of an arc can be skipped in O(1) in the

traversal of an incidence list where required.

Additionally, every arc a knows its head and tail, which can be accessed by head(a)
and tail(a) in constant time. Accessing the reverse of a graph does not cause more than

constant overhead if only the roles of the lists of incoming and outgoing arcs at each

vertex are swapped and heads are treated as tails and vice versa.

We further maintain F and B as sets and additionally a flag attached to each arc

specifying whether this arc is classified as forward or backward according to the current

1See also Section 4.2.5 for further remarks on an efficient implementation of Iterate.

4.2 Algorithmic Setup 59

linear ordering. Consequently, computing, e. g. , a topological sorting of an acyclic

subgraph can be accomplished by ignoring all arcs with flag “backward”.

4.2.2 Linear Orderings

There are essentially two possibilities of how a linear ordering can be implemented.

Mathematically, it is modeled as a bijective function from the set of vertices V to the set

of natural numbers ranging from 0 to n− 1. A data structure that comes relatively close

to this is the map, which is sometimes also called an associative array or a dictionary. A

different approach consists in storing the actual ordering of the vertices in a linear data

structure such as an array or a linked list.

Both map and array share the advantage that the position of every vertex is stored

explicitly (although in the case of an array, the mapping is technically from {0, . . . , n− 1}
to V). A drawback is, however, that even small changes to the relative ordering of the

vertices, e. g. , the movement of a single vertex to another position, requires up to O(n)
updates. In case of a linked list, the situation is precisely the reverse. Here, such a move

operation can be accomplished in constant time, provided that the insertion position is

known.

In anticipation of the algorithms introduced in the following, we opt for a representa-

tion of a linear ordering as a doubly-linked list, which allows for an efficient traversal of

the ordering in both directions. If needed, the exact position of a vertex within a linear

ordering must be computed explicitly as shown in Section 4.2.4.

Whenever the reverse of a linear ordering is accessed or modified by an algorithm, we

assume that only a different interface is used, such that there is no additional overhead

and changes to the reverse linear ordering also take effect directly on the original linear

ordering.

4.2.3 Vertex Layouts

A linear ordering induces a layout on each vertex. In Section 3.3.3, we introduced the

sets F−(v), F+(v), B−(v), and B+(v) for a vertex v. As discussed earlier, we assume that

the graph is represented using incidence lists. In order to also maintain these special

sets, we add four additional incidence lists to each vertex. Every such list is sorted

according to the positions of the tails in the current linear ordering for F−(v) and B−(v)
and likewise according to the positions of the heads for F+(v) and B+(v), in each case in

60 4 Properties of Optimal Linear Orderings: A Microscopic View

Algorithm 4.2 Compute LO positions and forward/backward arc sets.

Require: graph G = (V,A), linear ordering π

Return: LO positions w. r. t. π, sets of backward and forward arcs B,F
1: procedure ComputePositionsAndArcSets(G, π)

2: i← 0
3: for all v in the order of π do

4: π(v)← i ▷ allow for fast “reverse lookup”: v has position i in π

5: i← i+ 1
6: F ← ∅; B ← ∅
7: for all (u, v) ∈ A do

8: if π(u) < π(v) then

9: F ← F ∪ {(u, v)}
10: else

11: B ← B ∪ {(u, v)}
12: return π,B,F

ascending order (with respect to the bijection π). We assume that the lists are represented

as doubly-linked lists in any implementation.

To denote the sorted list of arcs in F−(v) according to a linear ordering π, we introduce

a notation that is based on the definition of lists in Section 3.1 and write ⟨F−⟩π (v).

Likewise, we obtain ⟨F+⟩π (v), ⟨B−⟩π (v), and ⟨B+⟩π (v) for F+(v), B−(v), and B+(v),

respectively. If the linear ordering that these ordered lists refer to is clear from the

context, the subscript may also be omitted.

4.2.4 Initializing the Data Structures

Whereas we may readily assume that the graph is given with incidence lists, this is not a

reasonable approach for the sorted lists introduced above. They depend heavily on a

specific linear ordering, which is, by nature of this chapter, subject to change. The same

applies to the exact position of a vertex within a linear ordering and the classification

of arcs as forward or backward. Furthermore, algorithms may or may not make use of

these additional structures. Therefore, it is desirable to be able to list their construction

explicitly as a statement in pseudocode if needed.

To this end, we provide two initializing routines, ComputePositionsAndArcSets(G, π)

as well as ComputeLayoutLists(G, π), that take a graph G and a linear ordering π as

4.2 Algorithmic Setup 61

Algorithm 4.3 Compute vertex layouts.

Require: graph G = (V,A), linear ordering π with precomputed LO positions

Return: sorted layout lists ⟨F−⟩, ⟨F+⟩, ⟨B−⟩, ⟨B+⟩
1: procedure ComputeLayoutLists(G, π)

2: for all v ∈ V do initialize ⟨F−⟩ (v), ⟨F+⟩ (v), ⟨B−⟩ (v), ⟨B+⟩ (v) with ⟨ ⟩
3: for all v in the order of π do

4: for all incoming arcs (u, v) of v do

5: if π(u) < π(v) then

6: ⟨F+⟩ (u)← ⟨F+⟩ (u) ⋄ ⟨(u, v)⟩
7: else

8: ⟨B+⟩ (u)← ⟨B+⟩ (u) ⋄ ⟨(u, v)⟩
9: for all outgoing arcs (v, u) of v do

10: if π(v) < π(u) then

11: ⟨F−⟩ (u)← ⟨F−⟩ (u) ⋄ ⟨(v, u)⟩
12: else

13: ⟨B−⟩ (u)← ⟨B−⟩ (u) ⋄ ⟨(v, u)⟩
14: return ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩

input and perform these tasks. Algorithm 4.2 and Algorithm 4.3 show their respective

details.

We are able to identify two separate blocks in the listing of ComputePositionsAndArc-

Sets : In lines 3–5, the algorithm iterates over all vertices in the order of their appearance

within π. Concurrently, it maintains a counter variable i, which in each iteration corre-

sponds to the position of the current vertex. For every vertex, the value of i is stored

explicitly as an attribute. Next, in lines 7–11, the previously computed vertex positions

are used to construct the sets F and B.

ComputeLayoutLists starts by initializing the sorted lists ⟨F−⟩ (v), ⟨F+⟩ (v), ⟨B−⟩ (v),

and ⟨B+⟩ (v) with empty lists. In the loop spanning lines 3–13, the algorithm again

iterates over all vertices in the order they appear in π. For every vertex v, first all

incoming arcs are considered. Let (u, v) be such an arc. If (u, v) is forward, then at

the arc’s tail, u, (u, v) must be added to the end of u’s sorted list of outgoing forward

arcs: The heads of all outgoing forward arcs of u that are not in the list yet must have a

greater position in π than v, due to the fact that the algorithm iterates over the vertices

62 4 Properties of Optimal Linear Orderings: A Microscopic View

in the order of π. The same argument applies if (u, v) is backward, and likewise for all

outgoing arcs of v.

Lemma 4.1
The initialization routines ComputePositionsAndArcSets(G, π) and Compute-

LayoutLists(G, π) run in time O(m) each.

Proof. Consider Algorithm 4.2 first. The first block, lines 3–5, iterates over all vertices

of V . For each vertex, storing its position and incrementing the counter variable i can

be accomplished constant time. Hence, the first block requires O(n) steps. The second

block, lines 7–11, consists in iterating over all arcs of the graph, each time comparing

two previously computed values and adding an arc to either F or B. For every arc, this

can be done in constant time, so the running time of the second block is in O(m).

Consider now Algorithm 4.3 and assume that the linear ordering π is already equipped

with precomputed LO positions. The initialization with empty lists requires O(n) time.

The remainder of the listing contains three nested loops. The outer loop iterates again

over all vertices. In its body, there are two more loops that iterate over the incoming

and outgoing arcs, respectively, of the current vertex v. The body of every inner loop

consists in querying the LO positions of an arc’s end vertices and appending the arc to

the end of a list, both of which can be accomplished in constant time if the LO positions

have been precomputed. The running time of the inner loops is therefore in O(d−(v))
and O(d+(v)), respectively. Consequently, this block requires

∑
v∈V d−(v) + d+(v) = 2m

steps, which is in O(m).

In conclusion, with n ∈ O(m) due to G being strongly connected, the running time of

both ComputePositionsAndArcSets(G, π) and ComputeLayoutLists(G, π) is in O(m).

We stipulate that every algorithm that needs to access these additional structures

is required to call the routines ComputePositionsAndArcSets and, if necessary, Com-

puteLayoutLists prior to querying them. After manipulating a linear ordering, it is the

algorithm’s obligation to update the structures accordingly if it requires further access

to them.

4.3 Nesting Property 63

4.2.5 General Remarks

All algorithms presented in this chapter adhere to the concept of referential transparency,

i. e. , calling a function or an algorithm with the same parameters will always produce the

same result and there are no side-effects. For this reason, a property-enforcing routine E,

e. g. , explicitly returns a linear ordering. In a faithful implementation in real code, this

may result in additional overhead for copying the linear orderings back and forth and

checking explicitly whether the linear ordering has actually been changed by E requires

another O(n) steps. By waiving referential transparency and modifying the linear

ordering passed as argument directly or an intelligent copy-on-write implementation,

these expenses can be saved.

To avoid fundamental misconception of the presented algorithms, however, we stick

to referential transparency in pseudocode, but assume an efficient realization for the

runtime analyses. This is to apply to all algorithms, functions, and (sub-) routines used

in this chapter.

As noted before, we also assume that accessing the reverse of a graph or linear ordering

is only a change of the interface and thus produces no additional overhead.

4.3 Nesting Property

Local search is a widely-used postprocessing scheme for optimization problems that

iteratively improves a solution by applying local changes. The first property that we

consider here, the Nesting Property, can be regarded as the result of an algorithm that

belongs in this class.

4.3.1 A 1-opt Algorithm

In general, k-opt describes a class of heuristics that perform a local search by modifying

k elements of the current solution at a time. Large values of k are typically borne by

running times that are exponential in k. We consider a setting where k = 1. For a linear

ordering π of a graph G, a vertex v, and a position p ∈ {0, . . . , n− 1}, we define the

operation Move(π, v, p) , which returns the linear ordering obtained from π by moving v

to position p, as follows:

Let vi denote the vertex at position i within π, i. e. , π(vi) = i. The input linear

ordering thus reads π = (v0, . . . , vq−1, vq, vq+1, . . . , vn−1). Calling Move(π, vq, p) then

64 4 Properties of Optimal Linear Orderings: A Microscopic View

Algorithm 4.4 A 1-opt Procedure

Require: graph G, linear ordering π

Return: π if it is 1-opt, otherwise an improved linear ordering π′

1: procedure OneOpt(G, π)

2: for all v ∈ V do

3: bo ← b−(v) + b+(v) according to current position of v

4: p← position of v that minimizes b−(v) + b+(v)
5: bn ← b−(v) + b+(v) according to position p

6: if bn < bo then

7: π′ ←Move(π, v, p)

8: return π′

9: return π

yields the linear ordering π′ = (v0, . . . , vp−1, vq, vp, . . . , vq−1, vq+1, . . . , vn−1), if p < q, and

π′ = (v0, . . . , vq−1, vq+1, . . . , vp−1, vp, vq, . . . , vn−1), if p > q. In case p = q, π′ = π.

Using this operation, we can implement a 1-opt algorithm for LO using the procedure

OneOpt shown in Algorithm 4.4: For a vertex v of the graph, consider all positions

within π and select the position p that minimizes the number of backward arcs incident

to v, i. e. , b−(v) + b+(v) (cf. line 4). Move v to p if this reduces the number of backward

arcs and return, otherwise continue with the next vertex. In fact, a very similar procedure

that is known as “Sifting” is used in the context of crossing minimization [BB04]. By

combining OneOpt(G, π) with Iterate, we obtain a 1-opt algorithm for LO. However,

OneOpt, as it is listed in Algorithm 4.4, needs O(n2) steps if, for every vertex v ∈ V , it

naively examines every position within π in line 4.

For this reason, we devise an enhanced implementation of this 1-opt algorithm that is

listed as EnforceNesting(G, π) in Algorithm 4.5. As we will see in the next subsection,

the arcs of a linear ordering that is 1-opt form a sort of nesting, hence the name. This

algorithm makes use of the additional data structures described in Section 4.2. In the

first two steps of the algorithm, it therefore calls ComputePositionsAndArcSets and

ComputeLayoutLists to set these up.

The improvement with regard to the routine OneOpt in Algorithm 4.4 is based on

the following observation: Let v ∈ V be a vertex. Consider the number of backward

arcs incident to v while v is moved to positions 0, 1, . . . , n − 1 in turn. At position

0, b−(v) + b+(v) = d−(v). More precisely, b+(v) = 0, as v is already at the smallest

position within π, and b−(v) = d−(v). By moving v to position 1, v “skips” the vertex

4.3 Nesting Property 65

Algorithm 4.5 Nesting Property

Require: graph G, linear ordering π

Return: π if Nest(π), otherwise an improved linear ordering π′

1: procedure EnforceNesting(G, π)

2: π,B,F ← ComputePositionsAndArcSets(G, π)

3: ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩ ← ComputeLayoutLists(G, π)

4: for all v ∈ V do

5: R(v)←Merge(⟨F+⟩ (v), π ◦ head, ⟨B−⟩ (v), π ◦ tail)
6: L(v)←Merge(⟨F−⟩ (v), π ◦ tail, ⟨B+⟩ (v), π ◦ head)

7: c← 0; cmin← 0; p← π(v)
8: for all a in the order of R(v) do

9: if a ∈ F then c← c+ 1
10: else

11: c← c− 1
12: if c < cmin then cmin← c; p← π(tail(a))

13: c← 0
14: for all a in the reverse order of L(v) do

15: if a ∈ F then c← c+ 1
16: else

17: c← c− 1
18: if c < cmin then cmin← c; p← π(head(a))

19: if cmin < 0 then

20: π′ ←Move(π, v, p)

21: return π′

22: return π

that was previously at position 1. Whenever v is moved to the next position, it skips

another vertex. Now consider how b−(v) + b+(v) changes while v hops through the

linear ordering. Whenever v skips a vertex u such that (v, u) ∈ A, then (v, u) changes

from outgoing forward to outgoing backward, i. e. , b+(v) increases. On the other hand,

if v skips a vertex u such that (u, v) ∈ A, then (u, v) changes from incoming backward to

incoming forward, i. e. , b−(v) decreases. If v skips a vertex that is not adjacent to v, then

b−(v) + b+(v) remains unchanged.

66 4 Properties of Optimal Linear Orderings: A Microscopic View

EnforceNesting exploits this by only considering those positions where v skips an

adjacent vertex. In order to find the interesting positions, it constructs two lists R(v)
and L(v) for the current vertex v: In line 5, R(v) is obtained by merging the sorted lists

⟨F+⟩ (v) and ⟨B−⟩ (v) using a routine Merge. Merge(L1, f1, L2, f2) takes two sorted lists

as well as two functions f1 and f2 as input and returns a list with the elements of L1

and L2 that is sorted using the results of f1 and f2 applied to the elements of L1 and L2,

respectively. As R(v) is constructed from ⟨F+⟩ (v) with function π ◦ head and ⟨B−⟩ (v)
with function π ◦ tail, it contains the outgoing forward and incoming backward arcs of

v that are sorted using the position of the heads for the arcs in F+(v) and the position

of the tails for the arcs in B−(v). In line 6, L(v) is obtained analogously by merging

⟨F−⟩ (v) and ⟨B+⟩ (v). In contrast to the consideration we just made, EnforceNesting

starts at the current position of every vertex instead of position 0. With the arcs in R(v),

positions greater than v’s current position are considered, while examining L(v) results

in considering the positions smaller than v’s.

In line 7, three variables are initialized: The variable c can be thought of as representing

the balance between additional forward and backward arcs. Whenever skipping an

adjacent vertex implies that the number of backward arcs increases, it is incremented, if

the number of forward arcs increases, it is decremented. The actual number of incident

backward arcs of v at a position thus equals b−
π (v) + b+

π(v) + c. Initially, c is set to 0. The

variable cmin maintains the minimum value of c encountered so far and p stores the

corresponding position of the adjacent vertex within π. They are initialized with 0 and

the current position of v, respectively.

In lines 8–12, the algorithm iterates over the arcs in R(v) in order. Let a be an arc of

R(v). If a is a forward arc with respect to the current linear ordering, then a becomes

backward as soon as v skips a’s head. Otherwise, if a is backward, a becomes a forward

arc once v skips a’s tail. In the former case, c must be incremented, because the number

of incident backward arcs increases. In the latter, c must be decremented. Line 9 and

line 11 contain exactly this update of c. If this leads to a new minimum value of c, the

variables cmin and p are updated accordingly in line 12.

In the loop spanning lines 8–12, only positions greater than the current position of

v are considered. Therefore, in lines 14–18, the arcs contained in L(v) are considered.

For that purpose, c is reset to 0. Note that this does not apply to cmin and p. As L(v)
contains the arcs sorted in ascending order with regard to π, but c stores relative changes

to b−
π (v) + b+

π(v) starting from the current position of v, the arcs must be considered in

descending order, i. e. , L(v) needs to be traversed backwards. The body of this loop

4.3 Nesting Property 67

corresponds to that of the first loop, with the only exception that p must be obtained

from the position of the arc’s head.

Finally, if cmin is negative, moving v to the corresponding position reduces the number

of incident backward arcs. This is checked, and, if applicable, realized in lines 19–21.

Observe that if p is the original position of a vertex u and p is greater than v’s original

position, then Move(π, v, p) moves v to the position right behind u. Otherwise, if p is

smaller than v’s original position, Move(π, v, p) moves v right before u. In both cases,

the vertex u is skipped as intended.

Lemma 4.2
EnforceNesting(G, π) runs in time O(m).

Proof. Consider the procedure EnforceNesting as given in Algorithm 4.5. The calls to

ComputePositionsAndArcSets in line 2 and ComputeLayoutLists in line 3 run in time

O(m) by Lemma 4.1. Next, in lines 4–21, a loop follows that iterates over all vertices of

the graph. Let v be one of the considered vertices.

The loop’s body starts with computing the sorted lists R(v) and L(v) by merging

⟨F+⟩ (v) and ⟨B−⟩ (v) as well as ⟨F−⟩ (v) and ⟨B+⟩ (v). This is realized using the routine

Merge(L1, f1, L2, f2), which takes two sorted lists and two functions as input. Merge can

be implemented in time O(|L1|+ |L2|) analogously to the merge step in the MergeSort

sorting algorithm, assuming that each call to f1 or f2 returns in constant time. To this

end, Merge(L1, f1, L2, f2) uses two iterators, one for L1 and the other for L2, which

both start at the first element of the list, respectively. Now the elements at the current

iterator positions are passed as arguments to f1 and f2 and the results are compared.

The element that yields the smaller value is then appended to the output list and the

iterator of the input list which the element was taken from is advanced. Subsequently,

the statements in line 5 and line 6 can be carried out in time O(d(v)).

In line 7, the variables c, cmin, and p are set up. Due to the call to ComputePositions-

AndArcSets at the beginning of the algorithm, the value of π(v) can be obtained in time

O(1). The same applies to the updates of p in line 12 and line 18.

In the following, there are two loops spanning lines 8–12 and lines 14–18, respectively,

whose bodies consist only of statements that can be carried out in constant time: the

forward flag of an arc a is queried in the condition a ∈ F of the if-clause and the

variables c, cmin, and p are updated. Hence, the running time of these loops is in

O(|R(v)|+ |L(v)|) = O(d(v)).

68 4 Properties of Optimal Linear Orderings: A Microscopic View

Finally, line 19 checks whether a better position than the current one was found for v,

and, if so, moves v there. If p is actually a natural number storing a concrete position

within π, Move(π, v, p) runs in time O(n). The move operation becomes more efficient,

however, if p is merely a pointer to a position in the doubly-linked list representing π

(cf. Section 4.2). In this case, Move(π, v, p) can be carried out in time O(1)1. Due to the

fact that EnforceNesting terminates immediately afterwards, Move is called at most

once during the whole execution of EnforceNesting.

Hence, we have up to n iterations of the outer loop, and each vertex v that is considered

has a cost of O(d(v)), which yields a total of O(∑v∈V d(v)) = O(m) for all vertices.

Additionally, we needO(m) steps for the calls to ComputePositionsAndArcSets in line 2

and ComputeLayoutLists in line 3 as well as another O(1) or O(n) steps for the call to

Move in line 20.

In conclusion, as n ∈ O(m), EnforceNesting runs in time O(m), irrespective of the

realization of p.

In order to obtain a 1-opt algorithm, we combine EnforceNesting again with Iter-

ate. Define EstablishNesting(G, π) as a synonym for Iterate(G, π,EnforceNesting). The

combination of Lemma 4.2 with Proposition 4.1 then yields:

Corollary 4.1
EstablishNesting(G, π) runs in time O(m2).

4.3.2 Nesting Arcs

As has already been indicated, a linear ordering that is 1-opt contains a kind of nesting

structure. We want to explore this a bit further.

Hence, we may ask ourselves, what does a linear ordering π “look like” after the

execution of EstablishNesting(G, π)? EstablishNesting terminates as soon as Enforce-

Nesting cannot find an improved position for any vertex. Let us therefore consider such

a vertex v and the listing in Algorithm 4.5. The variable cmin indicates whether there

is a position for v such that v has less incident backward arcs than before. In this case,

cmin < 0 (cf. line 19). Consequently, if no improvement is possible, cmin = 0, as cmin

was initialized in line 7 with 0 and only decreases in the course of the algorithm. If cmin

always remains at 0, however, then cmust always remain non-negative. This implies that

1See also Section 4.2.5.

4.3 Nesting Property 69

v

R(v)L(v)

: c :0 1 0 1 2 101010

Figure 4.1: A vertex v whose position within the linear ordering cannot be improved by

EnforceNesting.

during the iteration overR(v) in the first loop, the number of backward arcs encountered

up to any element of R(v) never exceeds the number of processed forward arcs. The

same holds for the second loop, which iterates over L(v). In consequence, for every

encountered backward arc, there must be a matching forward arc that was processed

earlier. This forward arc must then be nested inside the corresponding backward arc.

Figure 4.1 provides an example and also visualizes the values of c during the algorithm’s

iteration over R(v) and L(v), respectively. The colors highlight the nesting pairs of arcs.

By expressing this nesting structure as property of a linear ordering, we obtain1:

Lemma 4.3 Nesting Property
For every optimal linear ordering π∗ of a graph G, there are two injective map-

pings µh, µt : B → F such that

µh((u, v)) = (v, x)⇒ π∗(x) < π∗(u) and

µt((u, v)) = (y, u)⇒ π∗(v) < π∗(y).

Descriptively, the mapping µh assigns each backward arc a nesting forward arc at its

head and µt likewise at its tail.

Proof. Let π be an arbitrary linear ordering of G. Consider the movement Move(π, v, p)

of a vertex v to a new position p within π. If p > π(v), then all outgoing forward arcs

of v whose heads are at a position < p are turned into backward arcs and all incoming

backward arcs with tail in the same range become forward. Likewise, if p < π(v), all

1This result has also been published in an earlier conference article [HBA13].

70 4 Properties of Optimal Linear Orderings: A Microscopic View

v0 v1 v2 v3 v4

Figure 4.2: Defining µh((v4, v1)) = (v1, v3) = µt((v3, v0)) conforms with Lemma 4.3 and

thereby shows that µh[B] ∩ µt[B] ̸= ∅ is possible.

incoming forward arcs become backward and outgoing backward arcs become forward

if the other end vertex lies at a position > p.

Let π′ be the linear ordering that is obtained after running EstablishNesting on

π. Define the injective mapping µh as follows: For every vertex v, order the outgo-

ing forward arcs (v, x0) , (v, x1) , . . . , (v, xk−1) increasing in “length”, i. e. , such that

π′(x0) ≤ π′(x1) ≤ · · · ≤ π′(xk−1). Do the same for the incoming backward arcs

(u0, v) , (u1, v) , . . . , (us−1, v), with π′(u0) ≤ π′(u1) ≤ · · · ≤ π′(us−1). Note that if v is

incident to parallel arcs, the vertices xi, xj or ui, uj for i ̸= j need not necessarily be

distinct. We have s ≤ k, otherwise moving v to position π′(us−1) decreases the number

of backward arcs incident to v by s− k. For each i, 0 ≤ i < s, set µh((ui, v)) = (v, xi).

Consider the backward arc (ui, v) with µh((ui, v)) = (v, xi). Suppose π′(xi) > π′(ui).

Then, moving v to position π′(ui) would turn i backward arcs into forward arcs, but

at most i− 1 forward arcs would become backward. This contradicts the assumption

that there is no position for v in π′ that decreases the number of incident backward arcs

further.

The injective mapping µt can be obtained by processing the outgoing backward arcs

and the incoming forward arcs for each vertex, again both increasing in length. The

argument can be applied likewise.

In particular, this guarantees the Nesting Property for every optimal ordering π∗,

because by definition, no ordering with strictly less backward arcs exists.

A similar observation was independently made by [Hel64].

Observe that µh[B] and µt[B] need not be disjoint. For an example, consider the graph

depicted in Figure 4.2. Setting µh((v4, v1)) = (v1, v3) as well as µt((v3, v0)) = (v1, v3)
meets all requirements given in Lemma 4.3.

Let Nest(π) be the predicate that indicates whether π respects the Nesting Property.

By Lemma 4.3 follows:

4.3 Nesting Property 71

Corollary 4.2
For every linear ordering π holds: Opt(π)⇒ Nest(π).

4.3.3 A Graph’s Excess

Lemma 4.3 backs up a quite intuitive relationship between the cardinalities of F−(v),

F+(v), B−(v), and B+(v) of a vertex v, as the defined mappings µh, µt are injective:

Corollary 4.3
Let π be a linear ordering of a graph G = (V,A) that respects the Nesting

Property. Then,

∀v ∈ V : b−(v) ≤ f+(v) ∧ b+(v) ≤ f−(v).

With Corollary 4.2, we immediately have:

Corollary 4.4
Let π∗ be an optimal linear ordering of a graph G = (V,A). Then,

∀v ∈ V : b−(v) ≤ f+(v) ∧ b+(v) ≤ f−(v).

Furthermore, we can deduce:

Corollary 4.5
Let π∗ be an optimal linear ordering of a graph G = (V,A). Then,

∀v ∈ V : b(v) ≤ min {d−(v),d+(v)} .

Proof. By Corollary 4.4, we have

b−(v) + b+(v) ≤ b−(v) + f−(v) = d−(v),

b−(v) + b+(v) ≤ f+(v) + b+(v) = d+(v).

Hence, b(v) = b−(v) + b+(v) ≤ min {d−(v), d+(v)}.

72 4 Properties of Optimal Linear Orderings: A Microscopic View

Although Corollary 4.4 essentially only implies that there are at most as many back-

ward arcs as forward arcs and therefore a weak bound of m
2 for |π∗|, it helps in strengthen-

ing it for certain graphs. To this means, we define the excess exc(G) of a graph G = (V,A)
as follows:

exc(G) =
∑
v∈V

max{0, δ(v)}

Lemma 4.4
Let π∗ be an optimal linear ordering of a graph G. Then,

|π∗| ≤ m

2 −
exc(G)

2 .

Proof. Let π be a linear ordering that respects the Nesting Property. Recall that δ(v)
is defined as d+(v) − d−(v), which in turn equals f+(v) + b+(v) − f−(v) − b−(v). By

rearranging the terms, we obtain

δ(v) =
(
f+(v)− b−(v)

)
−
(
f−(v)− b+(v)

)
.

Define x(v) = f+(v)− b−(v) and y(v) = f−(v)− b+(v), such that

δ(v) = x(v)− y(v).

By Corollary 4.4, both y(v) ≥ 0 and x(v) ≥ 0, so we derive from the former that

δ(v) ≤ x(v), and from the latter,

max {0, δ(v)} ≤ x(v).

We now associate each forward arc with its tail and each backward arc with its head in

order to ensure that every arc is counted exactly once. Then, every vertex v is accountable

for f+(v) forward arcs and b−(v) backward arcs. In consequence,

m =
∑
v∈V

(
f+(v) + b−(v)

)
=
∑
v∈V

(
2 · b−(v) + x(v)

)
=
∑
v∈V

(
2 · b−(v)

)
+
∑
v∈V

x(v)

≥
∑
v∈V

(
2 · b−(v)

)
+ exc(G),

4.4 Path Property 73

v . . . u v . . . u

(a) (b)

Figure 4.3: A backward arc b = (u, v) along with a forward path Pb = v ⇝ u (a), and the

corresponding cropped forward path Pbcrop (b).

because x(v) ≥ max {0, δ(v)}. With |π| = ∑
v∈V b−(v),

m ≥ 2 · |π|+ exc(G),

hence,

|π| ≤ m

2 −
exc(G)

2 .

With Corollary 4.2, the claim follows.

As it is evident from the definition of the excess, the strength of Lemma 4.4 depends

highly on the imbalance between the in- and outdegrees of a graph’s vertices.

4.4 Path Property

The second property introduces the vital concept of a backward arc’s forward path, which

provides the basis for the so-called forward path graph used in Chapter 5. Furthermore,

it characterizes a linear ordering that induces a minimal feedback arc set.

4.4.1 Forward Paths for Backward Arcs

In Chapter 3, a forward path has been introduced as a path that consists only of forward

arcs. As a first step, we extend this definition as follows:

Let b = (u, v) be a backward arc according to some linear ordering π. A path Pb is a

forward path for b, if it consists only of forward arcs and Pb = v ⇝ u, i. e. , Pb starts at

b’s head and ends at b’s tail. Figure 4.3(a) provides a schematic drawing of a forward

path for a backward arc. The cropped version of a forward path, which is shown in

Figure 4.3(b), will only be introduced in Section 4.5. As we only consider graphs without

anti-parallel arcs, every forward path for a backward arc has length at least two.

We obtain the following property1:

1This result has also been published in an earlier conference article [HBA13].

74 4 Properties of Optimal Linear Orderings: A Microscopic View

Lemma 4.5 Path Property
Let B be the set of backward arcs according to an optimal linear ordering π∗. For

every backward arc b = (u, v) ∈ B, there is a forward path Pb = v ⇝ u.

Proof. Let π∗ be an optimal linear ordering of a graph G. Suppose there is a backward

arc b = (u, v) in π∗ that has no forward path Pb. Consider the feedback arc set B induced

by π∗. By assumption, B is optimal. Remove b and all its parallel arcs from B and insert

it into F . As there is no forward path v ⇝ u, G
⏐⏐F remains acyclic.

Subsequently, B \ [b]∥ is feasible, a contradiction to the optimality of B and therefore

also to the optimality of π∗.

Note that Lemma 4.5 does not require the forward paths of two backward arcs to be

arc-disjoint. In particular, this also applies to parallel arcs. All parallel arcs of a backward

arc may, e. g. , be associated with the same forward path here, and in case of parallel

forward arcs, all forward paths can use the same copy. Subsequently, we may neglect

parallel arcs with respect to the Path Property and only have to ensure that they are

classified alike.

Let Path(π) be a predicate such that Path(π) = true if and only if π respects the Path

Property.

Corollary 4.6
For every linear ordering π holds: Opt(π)⇒ Path(π).

4.4.2 Establishing Forward Paths

The proof of Lemma 4.5 already suggests how the Path Property can be established for a

linear ordering. This is also the approach of the procedure EnforceForwardPaths(G, π)

shown in Algorithm 4.6.

As explained above, parallel arcs can largely be ignored with respect to the Path

Property. Hence, we first create the simple subgraph G′ ⊆ G which retains only one of

multiple parallel arcs. More formally, if G = (V,A) with A = (U,m), then G′ = (V,A′)
with A′ = (U,m′) and m′ : U → {1} is the constant-one function. The graph G′ is

computed in line 2 by the routine SimplifyGraph(G) . We denote the sets of backward

and forward arcs corresponding to G′ by B′ and F ′, respectively.

4.4 Path Property 75

Algorithm 4.6 Path Property

Require: graph G, linear ordering π

Return: π if Path(π), otherwise an improved linear ordering π′

1: procedure EnforceForwardPaths(G, π)

2: G′ ← SimplifyGraph(G) ▷ G′ retains only one of multiple parallel arcs

3: π,B′,F ′ ← ComputePositionsAndArcSets(G′, π)

4: T ←TransitiveClosure(G′⏐⏐F ′)

5: for all b ∈ B′ do

6: if head(b)⇝ tail(b) ̸∈ T then

7: F ′ ← F ′ ∪ {b}
8: π′ ← TopSort(G

⏐⏐F ′)

9: return π′

10: return π

For reasons of efficiency, the transitive closure T of G
⏐⏐F ′ is obtained in the next step.

To this end, the algorithm employs a routine TransitiveClosure(G) , which computes and

stores for each ordered pair of vertices u, v whether there is a path u ⇝ v in G. The

routine is called with argumentG
⏐⏐F ′ and the result stored in a variable T . To test whether

a backward arc b has a forward path then is only a query to T . If the check is negative

for a backward arc b, b is added to the set of forward arcs and TopSort(G
⏐⏐F ′) yields a

topological sorting of the acyclic subgraph, which is used as the new linear ordering.

This implicitly also guarantees that parallel arcs in G receive the same classification.

Let ω be the exponent in the running time of fast matrix multiplication algorithms.

Lemma 4.6
EnforceForwardPaths(G, π) runs in time O (min{n ·m,nω}).

Proof. Consider the procedure EnforceForwardPaths in Algorithm 4.6. Due to the

blockwise representation of parallel arcs (cf. Section 4.2), SimplifyGraph can construct

the simple subgraph G′ in O(n + m′) = O(m′) steps, where m′ = |A′| denotes the

number of arcs in G′ = (V,A′). Second, the routine ComputePositionsAndArcSets is

called, which also has a running time of O(m′) by Lemma 4.1.

Next, in line 4, the transitive closure T of G
⏐⏐F ′ is obtained. This can be accomplished,

e. g. , by a depth-first search or a breadth-first search starting from every vertex of G′

76 4 Properties of Optimal Linear Orderings: A Microscopic View

and using only forward arcs. Every depth-first search or breadth-first search requires

O(m′) steps. Subsequently, the transitive closure can be computed in time O(n ·m′).

Alternatively, the transitive closure of a graph can be obtained via matrix multipli-

cation in time O(nω), where ω equals the exponent in the running time of fast matrix

multiplication algorithms [Ski08]. As multiplying two n×nmatrices requires to consider

all entries of the matrices, it has an asymptotic lower bound of Ω(n2). Consequently,

ω ≥ 2, which in turn implies that this approach yields a better running time only for

sufficiently dense graphs.

Having already constructed T , testing whether a backward arc has a forward path

in line 6 then requires only constant time. The number of backward arcs is in O(m′).

Finally, the time needed to compute a topological sorting in line 8 if the check fails is

in O(m′) as mentioned in Chapter 3. Note that the procedure terminates in this case

immediately afterwards. Hence, a topological sorting is computed at most once during

the execution of EnforceForwardPaths.

To sum up, we have a running time of O(m′) + O(min{n ·m′, nω}) + O(m′) for the

initialization, the computation of the transitive closure, and the check of all backward

arcs. If necessary, we need additionally O(m′) steps to compute the improved linear

ordering at the very end. As G′ is simple, m′ ∈ O(n2). Furthermore, ω ≥ 2, which

implies m′ ∈ O(nω). Consequently, the running time of EnforceForwardPaths is in

O(min{n ·m′, nω}). Observing that m′ ≤ m finally yields O(min{n ·m,nω}).

At present, the best known value for ω is 2.3728639 due to Le Gall [LG14].

By a combination of EnforceForwardPaths and Iterate, we obtain an algorithm

that repeats these steps until every backward arc has a forward path. We refer to

this algorithm as EstablishForwardPaths(G, π) , i. e. , EstablishForwardPaths(G, π) :=
Iterate(G, π,EnforceForwardPaths).

Applying Proposition 4.1 to Lemma 4.6 then yields:

Corollary 4.7
EstablishForwardPaths(G, π) runs in time O(m ·min{n ·m,nω}).

4.4.3 Minimal Feedback Arc Sets

EstablishForwardPaths can be regarded as a minimization procedure for the set of

backward arcs that is associated with the linear ordering that it receives as input: After

4.5 Blocking Vertices Property 77

it has terminated, no backward arc can be removed from the feedback arc set without

destroying feasibility. Consequently, we obtain the following characterization1:

Corollary 4.8
The feedback arc set B induced by a linear ordering π is minimal if and only if π

respects the Path Property.

Recall from Chapter 3 that for an arbitrary feedback arc set B, a topological sorting of

the corresponding acyclic subgraph G
⏐⏐F yields a linear ordering whose induced set of

backward arcs B′ is only a subset of B. With the Path Property we obtain:

Theorem 4.3
Let π be a linear ordering of a graph G. Every topological sorting of G

⏐⏐F yields a

set of backward arcs B′ = Bπ if and only if π fulfills the Path Property.

Proof. Let π be a linear ordering of a graph G and let ξ be a topological sorting of G
⏐⏐F ,

which we also interpret as a linear ordering of G. If an arc b is backward with respect to

ξ, then b ̸∈ F , i. e. , it must also be backward with respect to π. This implies Bξ ⊆ Bπ.

Let us now assume that π respects the Path Property. Suppose Bξ ⊊ Bπ and let b be an

arc with b ∈ Bπ, but b /∈ Bξ . Then, ξ witnesses that Bπ \ {b} is feasible, a contradiction to

Corollary 4.8, which states that Bπ is minimal.

For the converse, assume that π does not respect the Path Property, i. e. , there is an

arc b ∈ Bπ that has no forward path Pb in G
⏐⏐F . Let F ′

π = Fπ ∪ {b}. Then, G
⏐⏐F ′

π
is acyclic

(cf. proof of Lemma 4.5) and G
⏐⏐Fπ

⊊ G
⏐⏐F ′

π
. Compute a topological sorting ξ′ of G

⏐⏐F ′ ,

which is also a topological sorting of its subgraph G
⏐⏐Fπ

. By construction, b ̸∈ Bξ′ , but

b ∈ Bπ. Hence, there is at least one topological sorting ξ′ of G
⏐⏐Fπ

such that Bξ′ ̸= Bπ.

4.5 Blocking Vertices Property

The Path Property introduced in Section 4.4 requires for every backward arc b = (u, v)
a forward path Pb = v ⇝ u. In this section, we show that on the basis of their layout,

certain vertices can be excluded from being part of such a path.

1This result has also been published in an earlier conference article [HBA13].

78 4 Properties of Optimal Linear Orderings: A Microscopic View

(a) (b)

Figure 4.4: Pictograms for a left-blocking vertex (a) and a right-blocking vertex (b).

4.5.1 Left- and Right-Blocking Vertices

We start by defining the term of a cropped forward path of a backward arc: Let π be a

linear ordering of a graph G and let Pb = ⟨x0 = v, x1, . . . , xk = u⟩ be a forward path for

a backward arc b = (u, v). Then, Pbcrop = ⟨x1, . . . , xk−1⟩ is called a cropped forward path

for b. Descriptively, Pbcrop is the subpath of Pb obtained by removing its first and last

vertex, i. e. , Pb without b’s head and tail. Figure 4.3(b) illustrates the definition once

more. As a forward path for a backward arc has at least two arcs and three vertices, its

cropped equivalent consists of at least one vertex.

Next, consider the layout of a vertex v that is induced by a linear ordering. We say that

v is left-blocking if f−(v), f+(v), b+(v) ≥ 1, and f−(v) = b+(v). Likewise, v is right-blocking
if f−(v), f+(v), b−(v) ≥ 1, and f+(v) = b−(v). The pictograms, for left-blocking and

for right-blocking, illustrate the choice of naming: the blocking side is the “side”

of the vertex where the number of incoming and outgoing arcs are equal. Figure 4.4

additionally shows enlarged versions of both pictograms. Observe that every vertex that

is left-blocking in G according to a linear ordering π is right-blocking in GR according

to the linear ordering πR. Likewise, every right-blocking vertex according to π in G is

left-blocking according to πR in GR.

Note that for two distinct vertices v ̸= v′ in any linear ordering always holds that

F−(v) ∩ F−(v′) = F+(v) ∩ F+(v′) = B−(v) ∩ B−(v′) = B+(v) ∩ B+(v′) = ∅.

In case of blocking vertices, this and the fact that an arc can either be forward or backward

leads us to the following observation:

Proposition 4.2
For every set Zl of left-blocking vertices, f−[Zl] = b+[Zl] and F−[Zl] ∩ B+[Zl] =
∅. Likewise, for every set Zr or right-blocking vertices, f+[Zr] = b−[Zr] and

F+[Zr] ∩ B−[Zr] = ∅.

4.5 Blocking Vertices Property 79

Moreover, due to the equal number of incoming and outgoing arcs on their “blocking

side”, left-blocking and right-blocking vertices show an interesting feature:

Lemma 4.7
Let π be a linear ordering of a graph G = (V,A) and let B ⊆ A the set of

backward arcs induced by π. If Zl ⊆ V is a set of left-blocking vertices, then

B′ = B\B+[Zl]∪F−[Zl] is feasible and every path u⇝ v that consists only of arcs

in A \ B′ and contains a vertex in z ∈ Zl must have a subpath u⇝ z consisting

only of vertices in Zl. Likewise, if Zr ⊆ V is a set of right-blocking vertices, then

B′ = B \ B−[Zr] ∪ F+[Zr] is feasible and every path u ⇝ v that consists only

of arcs in A \ B′ and contains a vertex in z ∈ Zr must have a subpath z ⇝ v

consisting only of vertices in Zr. Furthermore, |B| = |B′| in both cases.

Proof. Consider first the case that Zl ⊆ V is a set of left-blocking vertices with respect to

π. Let F = A \ B denote the set of forward arcs induced by π. Note that B+[Zl] ∩ B−[Zl]
need not necessarily be empty: There may be two vertices z, z′ ∈ Zl such that (z′, z) ∈ B,

so (z′, z) ∈ B−(z) and (z′, z) ∈ B+(z′). Due to G being free of loops by Assumption 3.1,

z ̸= z′, so π(z) < π(z′).

Consider a path P = u⇝ v that uses only arcs in

F ′ = A \ B′ = F \ F−[Zl] ∪ B+[Zl].

and contains at least one vertex z ∈ Zl. If z is not the first vertex on P, i. e. , z ̸= u, P must

contain an incoming arc a ∈ F ′ of z. As F−(z) ⊆ F−[Zl] and F ′ ∩F−[Zl] = ∅, a ̸∈ F−(z).

Thus, a ∈ B−(z)∩F ′. This implies that there is a vertex z′ ∈ Zl such that a ∈ B+(z′), i. e. ,

a = (z′, z), and P contains z′. Furthermore, π(z) < π(z′), because a is backward. If also

z′ ̸= u, P must contain an incoming arc a′ ∈ F ′ of z′. For the same reason as in case of z,

there is hence a vertex z′′ ∈ Zl such that a′ = (z′′, z′) and π(z′) < π(z′′). We can repeat

this argument until we reach the first vertex of P, u. Thus, every vertex preceding z in P
is in Zl, which implies that P has a subpath u⇝ z consisting only of arcs in Zl.

Suppose that

B′ = B \ B+[Zl] ∪ F−[Zl]

is not feasible. Then, there is a cycle C consisting only of arcs in F ′. In case that C is

not simple, G
⏐⏐F ′ also contains a simple cycle consisting of the shortest subpath of C

whose first and last vertex are identical (cf. Section 3.2). We therefore readily assume

that C is simple. As G
⏐⏐F is acyclic, C must contain at least one arc of F ′ \ F = B+[Zl].

80 4 Properties of Optimal Linear Orderings: A Microscopic View

Let k ≥ 1 and Y = {(zi, hi) | 0 ≤ i < k} ⊆ B+[Zl] be the set of arcs in C that are also in

B+[Zl]. Then, C consists of Y and a set of paths P = {hi ⇝ zj | 0 ≤ i, j < k} that use

only arcs in F ′ and zj ∈ Zl for all 0 ≤ j < k. As we have shown above, this implies

that all paths of P consist only of vertices in Zl. In consequence, all vertices of C are

in Zl and all arcs of C are backward arcs with respect to π, a contradiction to B being

acyclic (cf. Section 3.3). Hence, B′ is feasible. Furthermore, Proposition 4.2 implies that

b+[Zl] = f−[Zl] and B+[Zl] ∩ F−[Zl] = ∅. We can therefore conclude that |B| = |B′|.
For the proof concerning a set of right-blocking vertices Zr, the same arguments

as above are applicable. Alternatively, we may consider the reverse graph GR along

with the reverse linear ordering πR. In GR, the vertices in Zr are left-blocking and the

statement follows immediately.

With this in mind, we can now turn to the Blocking Vertices Property. In its definition,

also the reason why these vertices are called “blocking” becomes apparent:

Lemma 4.8 Blocking Vertices Property
Let π∗ be an optimal linear ordering of a graph G. For every backward arc

b ∈ B induced by π∗ there is a cropped forward path that does not contain a

left-blocking vertex and there is a cropped forward path that does not contain a

right-blocking vertex.

Proof. We first show that every backward arc has a forward path without left-blocking

vertices. Let π∗ be an optimal linear ordering of a graph G = (V,A) and let B, F be the

respective sets of backward and forward arcs. Suppose, for the sake of contradiction,

that there is a backward arc b = (u, v) ∈ B such that all cropped forward paths of b

contain at least one left-blocking vertex. If applicable, the same immediately holds for

all parallel arcs of b. In consequence of the Path Property, there is at least one forward

path for b. Construct the set Z ⊂ V as follows: For every cropped forward path of b,

place the first vertex that occurs on a traversal of the path and is left-blocking in Z. Note

that this implies in particular that v ̸∈ Z. By Lemma 4.7,

B′ = B \ B+[Z] ∪ F−[Z]

is feasible and |B′| = |B|. Let

F ′ = F \ B′ = F \ F−[Z] ∪ B+[Z].

4.5 Blocking Vertices Property 81

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Figure 4.5: An optimal1 linear ordering with right-blocking vertex v5 and left-blocking

vertex v7. The red backward arc (v9, v3) has exactly two forward paths: The blue path

⟨v3, v5, v8, v9⟩ contains v5, but not v7, the green path ⟨v3, v4, v7, v9⟩ contains v7, but not

v5. There is no forward path for (v9, v3) that contains neither v5 nor v7.

Suppose there is a forward path Pb = v ⇝ u of b in G
⏐⏐F ′ . As every forward path of b in

G
⏐⏐F contains at least one arc of F−[Z] and F−[Z] ∩ F ′ = ∅, Pb must use at least one arc

in B+[Z]. Hence, Pb contains a vertex z ∈ Z. By Lemma 4.7, Pb must then also start at a

vertex in Z. However, Pb starts at v and v ̸∈ Z, a contradiction.

Recall that B′ is feasible, which implies that G
⏐⏐F ′ acyclic. Obtain a linear ordering π′

of G by sorting G
⏐⏐F ′ topologically. In general, the set of backward arcs induced by π′

in this case is a subset of B′ (cf. Section 3.3). As π∗ is optimal and |B′| = |B|, however,

π′ must be an optimal linear ordering of G with B′ being its induced set of backward

arcs. Furthermore, we have just shown that π′ does not respect the Path Property, a

contradiction to Lemma 4.5. Hence, π∗ cannot be optimal.

The lemma follows for right-blocking vertices by considering the left-blocking vertices

in the reverse graph GR along with the reverse linear ordering πR instead. Alternatively,

the right-blocking case can be proven directly by constructing the set Z of right-blocking

vertices analogously and using Lemma 4.7 to exchange the arcs in B−[Z] for the arcs in

F+[Z] and vice versa in the modified set of backward and forward arcs, i. e. ,

B′ = B \ B−[Z] ∪ F+[Z]

and

F ′ = A \ B′ = F \ F+[Z] ∪ B−[Z].

In analogy to the left-blocking case, B′ is feasible and we can show that there is no

forward path for b in any linear ordering that induces B′, which eventually contradicts

the optimality of π∗.

82 4 Properties of Optimal Linear Orderings: A Microscopic View

v

vertical

split
vl vr

Figure 4.6: Vertical split operation on vertex v.

Note that the Blocking Vertices Property does not—and cannot—guarantee the exis-

tence of a forward path for a backward arc that contains neither left- nor right-blocking

vertices: Let Zl and Zr denote the sets of left- and right-blocking vertices, respectively, as

they are constructed in the proof of Lemma 4.8. Then, B+[Zl]∩B−[Zr] may be non-empty

and, hence, the set B′ in the proof may be equal in cardinality or even greater than B.

Figure 4.5 provides further evidence by depicting a backward arc in an optimal linear

ordering that either has a forward path via a left-blocking vertex or a forward path via

a right-blocking vertex, but none else. The optimality has been verified by an exact

algorithm.

As before, we define a predicate NoBlock(π) that expresses whether a linear ordering

π respects the Blocking Vertices Property and obtain:

Corollary 4.9
For every linear ordering π holds: Opt(π)⇒ NoBlock(π).

4.5.2 Vertical Splits

The Blocking Vertices Property is stated in Lemma 4.8 as an extension, or more precisely,

restriction of the Path Property. Alternatively, the graph can be modified such that the

Blocking Vertices Property can be traced back to the plain Path Property on the modified

graph.

A vertical split of a vertex v is a graph operation that replaces v by two vertices vl, vr

such that vl inherits all arcs in F−(v) ∪ B+(v) and vr inherits all arcs in F+(v) ∪ B−(v).

In effect, vl is a pseudosink and vr is a pseudosource. Figure 4.6 gives an illustration of

this modification. For ease of handling, we identify the arcs incident to v before and

after the split, i. e. , if a = (v, u) is an arc with a ∈ F+(v) before the split, then a = (vr, u)
with a ∈ F+(vr) after the split. This holds likewise for arcs in B−(v) as well as for arcs in

F−(v) and B+(v), which are inherited by vl.
1Verified by an exact algorithm.

4.5 Blocking Vertices Property 83

u h0 x h1 y h2 z v w

u h0 x h1 yl yr h2 z v w

(a)

(b)

Figure 4.7: A linear ordering of a graph with right-blocking vertex y (a) and the corre-

sponding linear ordering of its right-blocking split graph (b).

For a graph G with linear ordering π, we obtain the left-blocking split graph Gsp/l along

with a linear ordering πsp/l by applying a vertical split to every left-blocking vertex

and keeping every other vertex as it is. πsp/l is constructed from π such that the split

vertices vl, vr of v adopt the relative position of v in π and πsp/l(vl) < πsp/l(vr). Likewise,

we obtain the right-blocking split graph Gsp/r with linear ordering πsp/r by applying

a vertical split to every right-blocking vertex and keeping every other vertex as it is.

Figure 4.7 shows the linear ordering of a graph and its right-blocking split graph with

corresponding linear ordering.

By making oneself aware of the fact that these splits exactly inhibit forward paths to

pass through, but not start or end at the split vertices, we obtain:

Corollary 4.10
Let π be a linear ordering of a graph G. Then, π respects the Blocking Vertices

Property if and only if both πsp/l and πsp/r respect the Path Property.

84 4 Properties of Optimal Linear Orderings: A Microscopic View

v0 v1 v2 v3 v4 v5l v5r v6 v7l v7r v8 v9 v10 v11 v12

Figure 4.8: The linear ordering obtained from the optimal2 linear ordering shown in

Figure 4.5 by splitting both left- and right-blocking vertices. There is no forward path

for the backward arc (v9, v3).

In consequence, we can reformulate Lemma 4.8 to1:

Corollary 4.11
Let π∗ be an optimal linear ordering of a graph G. Then, π∗

sp/l and π∗
sp/r respect

the Path Property.

Note that in parallel to Lemma 4.8, Corollary 4.11 does not apply if both left- and

right-blocking vertices are split simultaneously. Figure 4.8 demonstrates this by showing

the linear ordering obtained from the optimal2 linear ordering given in Figure 4.5 by

splitting both left- and right-blocking vertices.

4.5.3 Establishing Non-Blocking Forward Paths

Finally, we want to deal with the algorithmic aspect of the Blocking Vertices Property.

Let SplitVertically(G, π,X) be a function that returns the graph Gsp that is obtained from

G by applying a vertical split to all vertices in X ⊆ V . Along with Gsp, it returns the

corresponding linear ordering πsp.

Using this routine, the Blocking Vertices Property can be established efficiently by

means of the two procedures shown in Algorithm 4.7. EnforceNoBlockLeft enforces the

left-sided Blocking Vertices Property, i. e. , it only considers left-blocking vertices. Like

all property-enforcing algorithms before, it receives a graph G and a linear ordering π as

input. Due to Corollary 4.11, the Blocking Vertices Property can be reduced to the Path

1A significantly weaker version of this result has also been published in an earlier conference arti-
cle [HBA13].

2Verified by an exact algorithm.

4.5 Blocking Vertices Property 85

Algorithm 4.7 Blocking Vertices Property

Require: graph G, linear ordering π

Return: π if NoBlock(π), otherwise an improved linear ordering π′

1: procedure EnforceNoBlocking(G, π)

2: π′ ← EnforceNoBlockLeft(G, π)

3: if π′ ̸= π then return π′ else return EnforceNoBlockLeft(GR, πR) R

4: procedure EnforceNoBlockLeft(G, π)

5: π,B,F ← ComputePositionsAndArcSets(G, π)

6: Q← set of left-blocking vertices in G according to π

7: Gsp/l, πsp/l ← SplitVertically(G, π,Q)

8: G′ ← SimplifyGraph(Gsp/l)

9: πsp/l,B′,F ′ ← ComputePositionsAndArcSets(G′, πsp/l)

10: T ←TransitiveClosure(G′⏐⏐F ′)

11: for all b ∈ B′ do

12: if head(b)⇝ tail(b) ̸∈ T then

13: Z ⊆ Q as in the proof of Lemma 4.8

14: F ′′ ← (F \ F−[Z]) ∪ B+[Z] ∪ [b]∥
15: π′ ← TopSort(G

⏐⏐F ′′)

16: return π′

17: return π

Property on the left-blocking split graph. The necessary steps to obtain the improved

linear ordering efficiently, however, differ slightly from those in the Path Property, which

is why EnforceForwardPaths is not reused here. Instead, the modification of the linear

ordering is included directly.

In order to identify the set of left-blocking vertices, the algorithm needs to call Com-

putePositionsAndArcSets on the input graph. The set of left-blocking vertices as well

as the left-blocking split graph Gsp/l and the corresponding linear ordering πsp/l are

obtained in line 6 and line 7. Next, just as in EnforceForwardPaths, the simple subgraph

G′, here of Gsp/l, is constructed (line 8). As we also need to access the set of forward

and backward arcs in G′, the algorithm again calls ComputePositionsAndArcSets on G′

and the linear ordering πsp/l. The transitive closure T of the subgraph of G′ induced by

the set of forward arcs F ′ is computed explicitly in line 10. Afterwards, each backward

arc is checked for a forward path. This task reduces again to querying T in line 12.

If negative, the improved set of forward arcs is constructed as shown in the proof of

86 4 Properties of Optimal Linear Orderings: A Microscopic View

Lemma 4.8 and a new linear ordering π′ is computed (lines 14–15). In this case, the

routine cancels and returns π′. Otherwise, if the check for all backward arcs was positive,

EnforceNoBlockLeft returns the unmodified original linear ordering π.

For the right-blocking vertices, EnforceNoBlockLeft is called with the reverse graph

GR and the reverse linear ordering πR. For simplicity, we assume an implementation

such that changes to πR are immediately reflected in π. Eventually, EnforceNoBlocking

combines both calls.

Let ω be the exponent in the running time of fast matrix multiplication algorithms.

Lemma 4.9
EnforceNoBlocking(G, π) runs in time O(min{n ·m,nω}).

Proof. The analysis of EnforceNoBlockLeft does not differ much from that of EnforceFor-

wardPaths conducted in Lemma 4.6. For the identification of the left-blocking vertices,

however, the algorithm needs to call ComputePositionsAndArcSets immediately on the

input graph here. As a result of the blockwise representation of parallel arcs (cf. Sec-

tion 4.2), ComputePositionsAndArcSets can be implemented nonetheless in time O(m′),

where m′ again denotes the number of arcs in the simple subgraph of G. Computing the

set of left-blocking vertices in line 6 can then be achieved in time O(n), because only the

length of the respective incidence lists at each vertex need to be compared. For the same

reason as above and utilizing the fact that parallel arcs are always classified identically,

the split graph and the corresponding linear ordering in line 7 can be obtained in time

O(m′),

Comparing the size of Gsp/l and πsp/l to G and π, respectively, we find that Gsp/l

and πsp/l have at most twice as many vertices as G and π. The number of arcs remains

the same. Consequently, nGsp/l
∈ Θ(nG) and mGsp/l

= mG. Therefore, we do not

differentiate between nG and nGsp/l
= nG′ and simply use n. For the arcs, we write

m = mG = mGsp/l
if we include parallel arcs, and m′ = mG′ for the arcs of the simple

subgraph G′ ⊆ Gsp/l.

As in EnforceForwardPaths, SimplifyGraph(Gsp/l) can be implemented to run in time

O(m′), which equally applies to the second call to ComputePositionsAndArcSets in

line 9. The transitive closure of the subgraph induced by the set of forward arcs in line 10

takes time O(min{n ·m′, nω}), as has already been discussed in the proof of Lemma 4.6.

In the following, the algorithm loops over all arcs that are currently classified as

backward, whose number is in O(m′). For each backward arc b, the existence of a

4.6 Multipath Property 87

forward path is tested in O(1). If necessary, the set Z of blocking vertices that occur first

on any cropped forward path of b can be obtained by a breadth-first search in time in

line 13 in accordance with the definition in the proof of Lemma 4.8. Afterwards, the set

of forward arcs is recomputed in line 14 and a new linear ordering obtained in line 15.

All of these statements can be executed in time O(m′) if parallel arcs are again treated

blockwisely. Like in EnforceForwardPaths, these steps are carried out at most once

during the execution of EnforceNoBlockLeft.

Consequently, we obtain the same running time for EnforceNoBlockLeft as for En-

forceForwardPaths, which is O(m′) + O(min{n · m′, nω}), and can be bounded from

above by O(min{n · m,nω}). As EnforceNoBlocking consists of exactly two calls to

EnforceNoBlockLeft, we obtain the same running time. See Section 4.2.5 for the reason

why we neglect the cost of comparing π to π′ and of the reverse operations.

We employ again Iterate to obtain an algorithm that establishes the Blocking Vertices

Property and define EstablishNoBlocking(G, π) as Iterate(G, π,EnforceNoBlocking).

By Lemma 4.9 and Proposition 4.1 follows:

Corollary 4.12
EstablishNoBlocking(G, π) runs in time O(m ·min{n ·m,nω}).

4.6 Multipath Property

With the introduction of the Blocking Vertices Property in the previous section, one

possibility for tightening the Path Property has already been shown. The Multipath

Property constitutes another one, which is aimed at arcs shared by forward paths.

4.6.1 Arc-Disjoint Forward Paths

We cannot assume in general that, even for an optimal linear ordering, it is possible to

find a forward path for every arc such that all forward paths are pairwise arc-disjoint.

For an example, consider the graph shown in Figure 4.9. The linear ordering depicted

here is known to be optimal1, yet the forward paths for the backward arcs (u0, v0) and

(u2, v2) have arc (u1, v1) in common.

1see also Section 5.2.1

88 4 Properties of Optimal Linear Orderings: A Microscopic View

v0 v2 u1 v1 u2 u0

Figure 4.9: Two backward arcs (u0, v0) and (u2, v2) with non-disjoint forward paths.

On the other hand, there are clearly graphs where arc-disjointness of all or some of

the forward paths is achievable. This raises a question: What is a sufficient condition for

a set of backward arcs to have arc-disjoint forward paths in an optimal linear ordering?

The following lemma provides one such requirement:

Lemma 4.10 Multipath Property
Let π∗ be an optimal linear ordering of a graph G = (V,A). For every vertex

v ∈ V , there is a set of pairwise arc-disjoint forward paths that contains a distinct

forward path for every b ∈ Bπ∗(v).

Proof. We consider an arbitrary linear ordering π of a graph G = (V,A) that respects

the Path Property and show that if it does not fulfill Lemma 4.10, then π is not optimal.

Let B, F be the sets of backward and forward arcs according to π and v ∈ V . Note that

B(v) = B+(v) ∪ B−(v) and a forward path for a backward arc b ∈ B+(v) can only consist

of vertices at positions ≤ π(v), whereas a forward path for a backward arc b ∈ B−(v) can

only consist of vertices at positions ≥ π(v). Hence, every forward path for a backward

arc in B+(v) is arc-disjoint to every forward path for a backward arc in B−(v).

We can regard the problem of finding disjoint forward paths for B+(v) as a maximum

flow problem with unit capacities on the graph obtained from G
⏐⏐F by adding a new

vertex s and unit-capacity arcs from s to every head h of a backward arc in B+(v).

Consider the maximum flow f from s to v. If f = b+(v), then there are arc-disjoint

forward paths for the backward arcs in B+(v). Otherwise, we can find a minimum

cut D that consists of f < b+(v) arcs and separates s from v. See Figure 4.10(a) and

Figure 4.10(b) for an illustration of this setup. Let X = D ∩ F and Y = B+(v) \ {(v, h) |
(s, h) ∈ D}, i. e. , we ignore arcs in the minimum cut that are incident to s and, at the

same time, their respective backward arcs, so the fact that |D| < |B+(v)| implies that

|X| < |Y |. Figure 4.10(c) visualizes X and Y once more. Let B′ = B \ Y ∪ X and

4.6 Multipath Property 89

G
∣∣
F

h0 h1 h2 h3 v

G
∣∣
F

h0 h1 h2 h3 v

s

minimum s − v cut D

G
∣∣
F

h0 h1 h2 h3 v

X

Y

minimum s − v cut D

(a)

(b)

(c)

Figure 4.10: Proof of the Multipath Property:

A vertex v with outgoing backward arcs and their respective forward paths (a). Intro-

duce a source vertex s with unit-capacity arcs to every head of an arc in B+(v) and

consider the maximum s− v flow/minimum s− v cut (b). Finally, identify the sets

X = D ∩ F (red) and Y = B+(v) \ {(v, h) | (s, h) ∈ D} (green) (c).

90 4 Properties of Optimal Linear Orderings: A Microscopic View

F ′ = F \X ∪ Y . Suppose, for contradiction, that F ′ contains a cycle C. As G
⏐⏐F is acyclic,

C includes at least one arc b = (v, u) ∈ Y , so C passes through v. In order to close the

cycle, there must be a path u ⇝ v in F ′. Observe that u ⇝ v may contain further arcs

from Y . In this case, v appears more than once in u⇝ v. Consider the subpath from u to

the first occurrence of v, which is a forward path in F \X . As (v, u) ∈ Y , (s, u) cannot

have been part of the minimum cut, which implies that there also is a path from s to v

via u in the maximum flow graph that is not covered by D, a contradiction. Hence, G
⏐⏐F ′

is acyclic, so B′ is feasible and with |B′| < |B|, π cannot be optimal.

The proof for the existence of arc-disjoint forward paths for B−(v) follows by consider-

ing the outgoing backward arcs v in the reverse graph GR along with the reverse linear

ordering πR (cf. Section 3.3.3).

As before, we introduce a predicate MPath(π) that expresses whether π respects the

Multipath Property and obtain:

Corollary 4.13
For every linear ordering π holds: Opt(π)⇒ MPath(π).

Lemma 4.10 immediately implies the “simple” Path Property and also the Nesting

Property. For the latter, it suffices to set µh((u, v)) to the first arc of the forward path

v ⇝ u that is determined by computing arc-disjoint forward paths for the incoming

backward arcs at v, and µt((u, v)) analogously to the last arc of the forward path v ⇝ u

that is determined by computing arc-disjoint forward paths for the outgoing backward

arcs at u.

Corollary 4.14
For every linear ordering π holds: MPath(π)⇒ Nest(π) ∧ Path(π).

Note that for a backward arc (u, v), the Multipath Property only demands a forward

path P = v ⇝ u such that P is arc-disjoint with all other forward paths incident to v,

and a possibly different forward path P′ = v ⇝ u that is arc-disjoint with the forward

paths of all backward arcs incident to u. This is no deficiency of the Multipath Property:

The graph depicted in Figure 4.11 testifies that these two forward paths cannot always

be selected coincidently, i. e. , such that P = P′. Here, for the backward arc (v8, v0), the

forward path ⟨v0, v3, v7, v8⟩ is selected at v0, while at v8, the selected forward path is

⟨v0, v1, v8⟩ and there is no possibility to find two that match each other without creating

4.6 Multipath Property 91

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 4.11: Linear ordering where the forward paths for (v8, v0) at v0 and v8 and (v10, v0)
at v0 and v10 cannot be selected coincidently.

the analogous conflict for the forward path for (v10, v0) at v0 and v10. The depicted linear

ordering is optimal1.

4.6.2 Analyzing the Flow Network Approach

The argument via flow networks in the proof of the Multipath Property readily suggests

the use of maximum flow/minimum cut algorithms to establish the property efficiently.

To this effect, let MinCut(G, s, t) be an algorithm that computes a minimum s− t cut in

a graph G with unit-capacity arcs and returns the set of arcs forming the cut-set. Then, a

property-enforcing procedure EnforceMultiPaths(G, π) for the Multipath Property can

be implemented as shown in Algorithm 4.8.

We take again advantage of the fact that establishing pairwise arc-disjoint forward

paths for the incoming backward arcs of each vertex can be reduced to establishing

pairwise arc-disjoint forward paths for the outgoing backward arcs in the reverse graph

using the reverse linear ordering. Consequently, EnforceMultiPaths(G, π) simply calls

the subroutine EnforceMPathsOutgoing(G, π) twice: once with G and π, and, if the

linear ordering is unchanged, once with GR and πR.

Let us therefore consider EnforceMPathsOutgoing(G, π). The first step after the

initialization is to obtain the flow network N from the acyclic subgraph G
⏐⏐F with

unit capacities on all arcs (line 6). Then, for every vertex v of the input graph, the

algorithm checks whether there are arc-disjoint forward paths for all outgoing backward

1Verified by an exact algorithm.

92 4 Properties of Optimal Linear Orderings: A Microscopic View

Algorithm 4.8 Multipath Property

Require: graph G = (V,A), linear ordering π

Return: π if MPath(π), otherwise an improved linear ordering π′

1: procedure EnforceMultiPaths(G, π)

2: π′ ← EnforceMPathsOutgoing(G, π)

3: if π′ ̸= π then return π′ else return EnforceMPathsOutgoing(GR, πR) R

4: procedure EnforceMPathsOutgoing(G, π)

5: π,B,F ← ComputePositionsAndArcSets(G, π)

6: N ← G
⏐⏐F ▷ construct flow network N with unit capacities

7: for all v ∈ V do

8: add new vertex s to N ▷ consider forward paths for arcs in B+(v)
9: for all (v, u) ∈ B+(v) do add unit-capacity arc (s, u) to N

10: D ←MinCut(N, s, v)

11: if |D| < b+(v) then

12: X ← D ∩ F
13: Y ← B+(v) \ {(v, u) | (s, u) ∈ D}
14: F ′ ← F \X ∪ Y
15: π′ ← TopSort(G

⏐⏐F ′)

16: return π′

17: remove s and all incident arcs from N

18: return π

arcs (lines 8–16). To this end, it adds a new vertex s to the flow network N (line 8) and

arcs from s to the head of every backward arc (line 9). Next, MinCut(N, s, v) is called,

which returns a minimum set D of arcs whose removal disconnects s from v. In case

that its cardinality equals the number of outgoing backward arcs b+(v), the pairwise

arc-disjoint forward paths for B+(v) correspond to the flow paths that can be computed

by a maximum flow algorithm. Note that the cardinality of D cannot exceed b+(v),

because s has only b+(v) outgoing arcs and each arc has unit capacity. Hence, if there

are not enough pairwise arc-disjoint forward paths for the backward arcs in B+(v), the

arc sets X and Y are obtained as described in the proof of Lemma 4.10 and an improved

set of forward arcs is constructed. Topologically sorting the subgraph of G restricted to

the new set of forward arcs then yields an improved linear ordering π′. At this point,

EnforceMPathsOutgoing cancels all further examination of forward paths and returns

4.6 Multipath Property 93

π′, as the given linear ordering π did not respect the Multipath Property. Otherwise, the

newly added vertex s is removed from the flow network N and the algorithm proceeds

with the next vertex.

Let κ(n,m) be the time complexity of computing a minimum cut in a unit-capacity

network.

Lemma 4.11
EnforceMultiPaths(G, π) runs in time O(n · κ(n,m)).

Proof. We start by analyzing EnforceMPathsOutgoing, which is shown in Algorithm 4.8.

The first step consists in calling the routine ComputePositionsAndArcSets, which has a

running time of O(m) by Lemma 4.1. The second step is to construct a flow network N

from G with unit capacities. This can be accomplished in constant time by not storing

the capacity of each arc explicitly, but rather providing a capacity function that returns 1
for each arc.

Next, consider the statements within the loop beginning in line 7. Adding a vertex

to the flow network in line 8 along with an arc for each backward arc in B+(v) in line 9

can be accomplished in time O(m), because we assume an incidence list representation

of G (cf. Section 4.2). Due to the initialization phase in line 5, we can iterate over B+(v)
without additional effort, e. g. , via the sorted list ⟨B+⟩ (v).

Let nG and mG denote the number of vertices and arcs of G, respectively, and let

analogously nN andmN denote the number of vertices and arcs ofN . Then, nN = nG +1
and mN ≤ mG − |B|+ ∆G. We immediately derive nN ∈ Θ(nG). As to mN , we obtain

with ∆G ≤ nG thatmN ≤ mG−|B|+nG ≤ 2mG, i. e. , mN ∈ O(mG). In consequence, we

can safely use n = nG and m = mG to estimate the time complexity of routines executed

on N .

Let O(κ(n,m)) be the running time of an algorithm that computes a minimum s− v
cut in a unit-capacity network in line 10. The following check in the condition of the

if-clause requires only constant time, provided that the minimum cut algorithm stores

the cardinality of D explicitly. The statements in the body of the if-clause are carried

out at most once during the execution of EnforceMPathsOutgoing, because at its end,

the algorithm terminates prematurely. Computing the sets of arcs X and Y as well

as computing the new set of backward arcs F ′ in lines 12–14 and finally obtaining an

improved linear ordering in line 15 can be accomplished in time O(m).

94 4 Properties of Optimal Linear Orderings: A Microscopic View

The time complexity of the statements in lines 8–11 is therefore O(m + κ(n,m)) =
O(max{m,κ(n,m)}). Additionally, O(m) steps are needed if the condition of the if-

clause holds. Otherwise, s is again removed from N along with all incident arcs, which

requires at most O(m) steps. Taking these statements together, we obtain the body of

the loop that starts at line 7 and which iterates over all vertices of G. Consequently,

the time complexity of the loop is O (n · (max{m,κ(n,m)}) +m). We may assume

that computing a minimum cut requires at least one traversal of the graph, which

is why κ(n,m) ∈ Ω(m). Hence, O (n · (max{m,κ(n,m)}) +m) can be simplified to

O(n · κ(n,m) +m) = O(n · κ(n,m)).

With EnforceMultiPaths consisting of exactly two calls to EnforceMPathsOutgoing,

its running time is the same. See again Section 4.2.5 for the reason why we neglect the

cost of comparing π to π′ and of the reverse operations.

We combine again the property-enforcing procedure with Iterate and obtain an algo-

rithm EstablishMultiPaths(G, π) that establishes the Multipath Property and is defined

as Iterate(G, π,EnforceMultiPaths). In consequence of Lemma 4.11 and Proposition 4.1,

we obtain:

Corollary 4.15
EstablishMultiPaths(G, π) runs in time O(n ·m · κ(n,m)).

The currently best known algorithm for solving the maximum flow/minimum cut

problem on unit-capacity networks is due to Dinic [Din70, Din06] and has a time com-

plexity of O(m ·min{n 2
3 ,m

1
2 }).

4.6.3 Arc-Disjoint Cycles

Interestingly, the Multipath Property also lets us gain new insights into the dual problem

of the FEEDBACK ARC SET problem, the ARC-DISJOINT CYCLES problem.

To this end, consider a vertex v in a linear ordering of a graph G that respects the

Multipath Property. By Lemma 4.10, there are pairwise arc-disjoint forward paths for the

backward arcs in B+(v)∪B−(v). These forward paths form together with their respective

backward arcs a set of pairwise arc-disjoint cycles in G.

Thus, the Multipath Property implies a lower bound on an optimal solution to the

ARC-DISJOINT CYCLES problem:

4.6 Multipath Property 95

Corollary 4.16
If π is a linear ordering of a graph G that respects the Multipath Property, then

the number of arc-disjoint cycles in G is at least maxv∈V b−(v) + b+(v).

4.6.4 An NP-hard Extension

Earlier in this section, Figure 4.9 has shown us an example for an optimal linear ordering

of a graph where the two induced backward arcs have non-disjoint forward paths. Con-

sequently, we asked for sufficient conditions for a set of backward arcs to have pairwise

arc-disjoint forward paths. The Multipath Property provided one such condition by

stating that a common head or tail suffices. In fact, this condition can be strengthened

even more with the help of the following observation:

Lemma 4.12
Let B be the set of backward arcs induced by a linear ordering π of a graph G

such that π respects the Multipath Property, let b ∈ B, and let v be vertex on

a forward path Pb for b. Let Y ⊆ B+(v) or Y ⊆ B−(v) be a subset of either the

incoming or the outgoing backward arcs of v and let X be a set of forward arcs

induced by π such that every forward path of b or a backward arc in Y contains

an arc in X and |X| ≤ |Y |. Then, B′ = B \
(
Y ∪ [b]∥

)
∪X is feasible.

Proof. Let G = (V,A) and consider a backward arc b = (u,w) ∈ B and a vertex v that

lies on a forward path Pb for b. This implies that Pb consists of two subpaths P′
b = w ⇝ v

and P′′
b = v ⇝ u. Note that v = u or v = w is not precluded. In this case, one of

both subpaths is empty and b ∈ B(v). Observe, however, that if b ∈ B(v), but [b]∥ ̸⊆ Y ,

then the existence of a set of forward arcs X that covers all forward paths in Y ∪ [b]∥
with |X| ≤ |Y | contradicts the Multipath Property. Hence, either b ̸∈ B(v) or [b]∥ ⊆ Y .

Assume that Y ⊆ B+(v) (cf. Figure 4.12).

As π respects the Multipath Property, there must be pairwise arc-disjoint forward

paths for the backward arcs in B(v) = B+(v)∪B−(v). In particular, there must be pairwise

arc-disjoint forward paths for the backward arcs in Y , due to Y ⊆ B+(v). Subsequently,

every set of forward arcs that covers all forward paths of the backward arcs in Y has

cardinality at least |Y |. Hence, |X| = |Y | and every arc x ∈ X is part of at least one

forward path of a backward arc in Y .

96 4 Properties of Optimal Linear Orderings: A Microscopic View

w v uh1h0

b

X

Y

Figure 4.12: Schematic drawing of the situation in Lemma 4.12 with Y ⊆ B+(v).

Let F = A \ B and F ′ = A \ B′ = F \X ∪
(
Y ∪ [b]∥

)
. Suppose that B′ is not feasible.

Then, there must be a cycle C consisting only of arcs in F ′. As F is feasible, C must

contain at least two arcs of Y ∪ [b]∥: If C contained just one arc y ∈
(
Y ∪ [b]∥

)
, all other

arcs must be in F \X , which implies that there is a forward path for y in G
⏐⏐F that is not

covered by X , a contradiction. In particular, this also implies that C cannot only contain

arcs in [b]∥ ∪ F \X , i. e. , C must contain at least one arc from Y .

Consider the possibility that C does not contain b or one of its parallel arcs. In this

case, there is a set of k ≥ 2 arcs Y ′ = {(v, hi) | 0 ≤ i < k} ⊆ Y such that C is composed

of this set of arcs plus a set of paths P = {hi ⇝ v | 0 ≤ i < k}which contain only arcs

of F \X . Hence, with respect to π, the paths in P are forward paths for the backward

arcs in Y ′ that are not covered by X , a contradiction.

Consequently, C must contain b = (u,w) or one of its parallel arcs and k ≥ 1 further

arcs (v, hi) ∈ Y , where 0 ≤ i < k. Thus, C must have a subpath P = w ⇝ v which

contains only arcs of F \X . As every arc x ∈ X is contained in at least one forward path

of a backward arc in Y and all of these forward paths end at v, no arc of X can be part of

the subpath P′′
b = v ⇝ u of Pb. Subsequently, P and P′′

b form a path w ⇝ v ⇝ u that uses

only arcs in F \X and is a forward path for b, a contradiction to the definition of X .

In conclusion, F ′ must be acyclic, so B′ is feasible. The analogous statement for the

case that Y ⊆ B−(v) follows immediately by considering the reverse graph GR along

with the reverse linear ordering πR.

The extension of the Multipath Property is now straightforward:

Lemma 4.13 Extended Multipath Property
Let π∗ be an optimal linear ordering of a graph G, let b be a backward arc

induced by π∗, and let v be vertex on a forward path Pb for b. Then, there is a set

of pairwise arc-disjoint forward paths for the backward arcs in B+(v) ∪ [b]∥ as

well as one for the backward arcs in B−(v) ∪ [b]∥.

4.7 Multipath Blocking Vertices Property 97

Proof. Let G = (V,A) and denote by B and F the set of backward and forward arcs

induced by π∗, respectively. Consider a backward arc b ∈ B. By Lemma 4.5, there

must be a forward path Pb for b. Let v be a vertex on Pb. If b ∈ B(v), then the statement

immediately follows from Lemma 4.10. Hence, assume that b ̸∈ B(v), i. e. , [b]∥∩B(v) = ∅.
Suppose that there is no set of forward paths for B+(v) ∪ [b]∥ that are pairwise arc-

disjoint. Then, there must be a subset of backward arcs Y ⊆ B+(v) and a directed

multicut X ⊆ F such that every forward path for b and every forward path for a

backward arc in Y contains an arc from X and |X| < |Y |+
⏐⏐⏐[b]∥⏐⏐⏐, i. e. , |X| ≤ |Y |.

Let B′ = B\
(
Y ∪ [b]∥

)
∪X . As Y ∩ [b]∥ = ∅ and

⏐⏐⏐[b]∥⏐⏐⏐ ≥ 1, |B′| < |B|. In consequence of

Lemma 4.10, π∗ respects the Multipath Property, so we can conclude from Lemma 4.12

that B′ is feasible, a contradiction to the optimality of π∗.

To prove the existence of a set of pairwise arc-disjoint forward paths for the backward

arcs in B−(v) ∪ [b]∥, we consider the reverse graph GR along with the reverse linear

ordering π∗R instead.

Note that in contrast to the Multipath Property, the proof of Lemma 4.13 does not

suggest an efficient algorithm to ensure that an arbitrary linear ordering π respects this

property. The DIRECTED MULTICUT problem that appears as a subroutine in the proof

is NP-hard in general (cf. Section 2.1.5) and even remains so in case of two terminal

pairs [KPPW15], which would otherwise have been sufficient here for a polynomial-time

implementation: The first terminal pair (s1, t1) consists in the head (s1) and tail (t1) of

the considered backward arc b. For the second terminal pair (s2, t2), we introduce an

artificial source s as in the proof of Lemma 4.10, where s has an arc to every head of an

outgoing backward arc of v, and then use s2 = s and t2 = v.

4.7 Multipath Blocking Vertices Property

With the Blocking Vertices Property and the Multipath Property, two independent

extensions of the Path Property have been introduced in the preceding sections. It would

be desirable, however, to be able to establish a combination of both, i. e. , to have a

Blocking Vertices Property for the arc-disjoint forward paths of the Multipath Property.

This is the aim of this section.

98 4 Properties of Optimal Linear Orderings: A Microscopic View

4.7.1 Non-Blocking Multipaths

In analogy to Corollary 4.11 for the Blocking Vertices Property and simple forward paths,

we can formulate the existence of non-blocking multipaths as follows:

Lemma 4.14 Multipath Blocking Vertices Property
Let π∗ be an optimal linear ordering of a graph G. Then, π∗

sp/l and π∗
sp/r respect

the Multipath Property.

Proof. Just as the Multipath Blocking Vertices Property is obtained from a combination

of the Blocking Vertices Property and the Multipath Property, so is its proof. Let π∗ be

an optimal linear ordering of G = (V,A) and suppose, for the sake of contradiction, that

π∗ does not respect the Multipath Blocking Vertices Property.

The Right-Blocking Split Graph and Outgoing Backward Arcs We assume first that π∗
sp/r

does not respect the Multipath Property. In this context, let v be a vertex of G, and

suppose that the Multipath Property is violated for the set of outgoing backward arcs

B+(v) of v. As in the proof of the Multipath Property, the forward paths for the outgoing

and incoming backward arcs of a vertex can be considered separately. The argument for

the set of incoming backward arcs B−(v) is symmetric and will be addressed at the end

of the proof.

In case that v itself is right-blocking and therefore split into vl and vr, substitute v by vl

in the following paragraphs. For the correctness, recall that vl inherits F−(v) and B+(v),

so F−(vl) corresponds to F−(v) and B+(vl) corresponds to B+(v). Furthermore, arcs in

F+(v) cannot be part of forward paths for backward arcs in B+(v).

By assumption, there are no pairwise arc-disjoint forward paths for the backward arcs

in B+(v) in the right-blocking split graph with linear ordering π∗
sp/r. Let s, D, X , and Y

be defined as in the proof of Lemma 4.10, i. e. , s is the newly introduced source with

an outgoing arc to every head of a backward arc in B+(v), D is a minimum cut with

|D| < b+(v) that separates s from v, X = D ∩ F , and Y = B+(v) \ {(v, h) | (s, h) ∈ D}
(cf. Figure 4.10(b)).

Because we considered the split graph when computing the minimum cut, X only

covers forward paths that are preserved during the splitting of right-blocking vertices.

In consequence, there may be uncovered forward paths in the unsplit graph G that

contain right-blocking vertices.

To overcome this issue, construct a set Z of right-blocking vertices as follows: For each

backward arc in Y , consider all forward paths according to π∗ in the unsplit graph G

4.7 Multipath Blocking Vertices Property 99

Gsp/r

∣∣
F

h h′
l h′

r v

part of
minimum

cut D or ∈ Z

Figure 4.13: Proof of Multipath Blocking Vertices Property: A forward path h⇝ v for the

backward arc (v, h) in G (but not in Gsp/r) that contains the head of another outgoing

backward arc (v, h′) (respectively (v, h′
r) in Gsp/r) of v. If all forward paths for (v, h′)

are covered, so are all forward paths for (v, h) via h′.

that do not contain an arc of the reduced minimum cut X . Place the last right-blocking

vertex that occurs on a traversal of the respective cropped forward paths in Z. Because

X is a minimum cut for all forward paths for arcs in Y according to π∗
sp/r in the split

graph, every cropped forward path not passing through an arc in X must contain a

right-blocking vertex.

The intention now is to additionally exchange the incoming backward arcs for the

outgoing forward arcs of the right-blocking vertices in Z in analogy to the proof of

the Blocking Vertices Property. Let H = {h ∈ V | (v, h) ∈ Y } be the set of all heads

of the backward arcs in the reduced set Y of outgoing backward arcs of v. Suppose

that some vertices in Z are at the same time the head of an outgoing backward arc of

v, i. e. , H ∩ Z ̸= ∅. As we only consider cropped forward paths, there must hence be

two backward arcs b = (v, h) , b′ = (v, h′) ∈ Y such that a forward path Pb for b in the

unsplit graph G passes h′ and h′ is right-blocking, i. e. , b′ = (v, h′) = (v, h′
r) (see also

Figure 4.13). Note, however, that this also implies that every forward path for b′ in G is

a subpath of a forward path for b and that destroying all forward paths of b′ also cuts

all forward paths of b that contain h′. As we placed the last right-blocking vertex that

occurs on a traversal of every cropped forward path for b in Z and every subpath h′ ⇝ v

either contains a right-blocking vertex or an arc of X , h′ ̸∈ Z. Subsequently, Z ∩H = ∅,
and, as all forward paths end at v, v ̸∈ Z either.

Let now

B′ = B \ B−[Z] ∪ F+[Z]

and

F ′ = A \ B′ = F \ F+[Z] ∪ B−[Z].

100 4 Properties of Optimal Linear Orderings: A Microscopic View

By Lemma 4.7, B′ is feasible and |B′| = |B|. Furthermore, every path that consists only

of arcs in F ′ and contains a vertex in Z must end within Z. Next, consider

B′′ = B′ \ Y ∪X = B \ (B−[Z] ∪ Y) ∪ F+[Z] ∪X

and

F ′′ = A \ B′′ = F ′ \X ∪ Y = F \ (F+[Z] ∪X) ∪ B−[Z] ∪ Y.

Note thatZ∩H = ∅ immediately implies thatB−[Z]∩Y = ∅. Furthermore,F+[Z]∩X = ∅
because X covers exactly all forward paths in π∗

sp/r and no forward path in π∗
sp/r can

contain a vertex of Z. Hence, if the tail t of an arc in X were in Z, then t must be the head

of an outgoing backward arc of v, but Z ∩H = ∅. As shown in the proof of Lemma 4.10,

|X| < |Y |. Thus, |B′′| < |B′| = |B|.
It remains to show that B′′ is feasible, i. e. , G

⏐⏐F ′′ is acyclic. Suppose, for contradiction,

that G
⏐⏐F ′′ contains a simple cycle C, i. e. , all arcs of C are in F ′′. Due to B′ being feasible,

C must contain exactly one arc (v, h) ∈ Y . Observe that if C contained more than one

arc of Y , it would contain v at least twice and would therefore not be simple. Then, the

remaining arcs of the cycle must constitute a path P = h⇝ v and consist solely of arcs

in F ′ \X . As every path in F ′ that contains a vertex of Z must also end in Z and v ̸∈ Z
by construction, P cannot contain a vertex of Z. Thus, P is a forward path for (v, h) in

G
⏐⏐F and contains neither an arc of X nor a vertex of Z, a contradiction. Subsequently,

C cannot exist, so B′′ is feasible. Because |B′′| < |B|, this, however, contradicts the

optimality of π∗.

The Left-Blocking Split Graph and Outgoing Backward Arcs Let us now suppose that

π∗
sp/l does not respect the Multipath Property and consider again the outgoing backward

arcs B+(v) of a vertex v.

The proof follows largely that for the right-blocking split graph, i. e. , we add a source

vertex s with an outgoing arc to every head of a backward arc in B+(v) and consider the

minimum s− v cut D. If the Multipath Property is violated, then |D| < b+(v) and we

define the sets X and Y as in the right-blocking case.

There is a difference in the construction of the set Z in that it contains left- instead of

right-blocking vertices: For each backward arc in Y , consider again all forward paths

according to π∗ in the unsplit graph G that are not covered by an arc of the reduced cut

X , but now place the last left-blocking vertex that occurs on a traversal of the respective

cropped forward path in Z.

4.7 Multipath Blocking Vertices Property 101

As we are dealing with left-blocking vertices, we are interested in the arc sets F−[Z]
as well as B+[Z] here. By applying again Lemma 4.7, we obtain that

B′ = B \ B+[Z] ∪ F−[Z]

is feasible, |B′| = |B| and that every path that consists only of arcs in

F ′ = A \ B′ = F \ F−[Z] ∪ B+[Z]

and contains a vertex in Z must start in Z.

With the same argument as above, we obtain that H ∩ Z = ∅, which implies that

Y ∩ B+[Z] = ∅. Furthermore, X ∩ F−[Z] = ∅, because all vertices in Z are left-blocking

and therefore split vertically in πsp/l. This implies that all forward paths using an arc in

F−[Z] must end there, but X is a minimum cut for forward paths ending at v. We obtain

the improved set of backward and forward arcs as

B′′ = B′ \ Y ∪X = B \ (B+[Z] ∪ Y) ∪ F−[Z] ∪X

and

F ′′ = A \ B′′ = F ′ \X ∪ Y = F \ (X ∪ F−[Z]) ∪ B+[Z] ∪ Y.

It remains again to show that B′′ is feasible, i. e. , G
⏐⏐F ′′ is acyclic. Hence, suppose that

G
⏐⏐F ′′ contains a simple cycle C. As in the right-blocking case, C must then contain exactly

one arc (v, h) ∈ Y and all other arcs of C form a path P = h⇝ v that uses only arcs in

F ′ \X . Here, every path in F ′ that contains a vertex of Z must also start in Z, but h ∈ H
and H ∩ Z = ∅, so P again cannot contain a vertex of Z. Subsequently, P is a forward

path for (v, h) in G
⏐⏐F that is covered neither by X nor by Z, a contradiction. Hence, B′′

is feasible with |B′′| < |B| a contradiction to π∗ being optimal.

Incoming Backward Arcs The respective proofs for the incoming backward arcs in the

left-blocking as well as the right-blocking case follow by considering the reverse graph

GR along with the reverse linear ordering π∗R. Note that the combination of incoming

backward arcs and the left-blocking case corresponds to the outgoing backward arcs and

the right-blocking case in the reverse graph and linear ordering, and the combination

of incoming backward arcs and the right-blocking case corresponds to the outgoing

backward arcs and the left-blocking case.

Figure 4.14 continues the example given in Figure 4.7 and shows how this linear

ordering instance is improved by enforcing the Multipath Blocking Vertices Property

for the outgoing backward arcs of vertex v: The first subfigure, Figure 4.14(a), depicts

102 4 Properties of Optimal Linear Orderings: A Microscopic View

u h0 x h1 yl yr h2 z v w

s

u h0 x h1 yl yr h2 z v w

u h0 x v w h1 y h2 z

(a)

(b)

(c)

Figure 4.14: Enforcing the Multipath Blocking Vertices Property on the instance intro-

duced in Figure 4.7 for the outgoing backward arcs of vertex v: Find a minimum s− v
cut (a), identify the backward and forward arcs to exchange with each other (b), and

obtain the improved linear ordering (c).

4.7 Multipath Blocking Vertices Property 103

the acyclic subgraph of the right-blocking split graph with an additional source s and

arcs to every head of an outgoing backward arc of v. The dashed red arcs highlight a

minimum s− v cut, which consists of the two arcs (s, h0) and (z, v). As (s, h0) is incident

to s, the reduced minimum cut X contains only (z, v), and the subset Y ⊆ B+(v) of

exchangeable backward arcs equals {(v, h1) , (v, h2)}. Additionally, we construct the set

of right-blocking vertices Z with Z = {y}, because y is the last right-blocking vertex

encountered on a traversal of the cropped forward path ⟨y⟩ of ⟨h1, y, v⟩ in the unsplit

acyclic subgraphG
⏐⏐F . We thus have identified two sets of arcs that switch their roles from

backward to forward and vice versa: The arcs in Y ∪ B−(y) = {(v, h1) , (v, h2) , (w, y)}
will become forward arcs, whereas the arcs in X ∪ F+(y) = {(z, v) , (y, v)}will become

backward arcs. In Figure 4.14(b) these two arc sets are highlighted. As the right-blocking

split graph is shown, however, (w, y) must be translated to (w, yr) and (y, v) to (yr, v).

Finally, Figure 4.14(c) depicts a linear ordering obtained by topologically sorting the

improved acyclic subgraph.

We introduce a predicate MNoBlock(π) that expresses whether a linear ordering π

respects the Multipath Blocking Vertices Property and derive from Lemma 4.14:

Corollary 4.17
For every linear ordering π holds: Opt(π)⇒ MNoBlock(π).

The definition of the Multipath Blocking Vertices Property immediately implies that

∀π : MNoBlock(π)⇒ NoBlock(π) ∧MPath(π). With Corollary 4.14, we thus obtain:

Corollary 4.18
For every linear ordering π holds:

MNoBlock(π)⇒ Nest(π) ∧ Path(π) ∧ NoBlock(π) ∧MPath(π).

4.7.2 Flow Networks for Split Graphs

In Algorithm 4.8 it has been shown how to enforce the Multipath Property using a flow

network. We extend this algorithm here to also incorporate blocking vertices, such that

we finally obtain an algorithm for the Multipath Blocking Vertices Property.

To this end, consider the procedure EnforceMNSBOut(G, π, σ) listed in Algorithm 4.9.

Like all property-enforcing algorithms, it takes a graph G and a linear ordering π

104 4 Properties of Optimal Linear Orderings: A Microscopic View

Algorithm 4.9 Multipath Blocking Vertices Property

Require: graph G = (V,A), linear ordering π, (side σ = left or σ = right)

Return: π if MNoBlock(π), otherwise an improved linear ordering π′

1: procedure EnforceMultiPathsNoBlocking(G, π)

2: π′ ← EnforceMNSBOut(G, π,left)

3: if π′ ̸= π then return π′

4: else π′ ← EnforceMNSBOut(G, π,right)

5: if π′ ̸= π then return π′

6: else π′ ← EnforceMNSBOut(GR, πR,left) R

7: if π′ ̸= π then return π′ else return EnforceMNSBOut(GR, πR,right) R

8: procedure EnforceMNSBOut(G, π, σ)

9: π,B,F ← ComputePositionsAndArcSets(G, π)

10: Q← set of σ-blocking vertices in G according to π

11: Gsp, πsp ← SplitVertically(G, π,Q)

12: πsp,B′,F ′ ← ComputePositionsAndArcSets(Gsp, πsp)

13: N ← Gsp
⏐⏐F ′ ▷ construct flow network N with unit capacities as default

14: for all q ∈ Q do add zero-capacity arc (ql, qr) to N

15: for all v ∈ V do

16: add new vertex s to N ▷ consider forward paths for arcs in B+
πsp(v)

17: for all (v, u) ∈ B+
πsp(v) do add arc (s, u) to N

18: D ←MinCut(N, s, v) ▷ compute minimum cut closest to v

19: if size(D) < b+
πsp(v) then

20: Z ← {q ∈ Q | (ql, qr) ∈ D}
21: X ← D ∩ F ′

22: Y ← B+(v) \ {(v, u) | (s, u) ∈ D}
23: if σ = right then F ′′ ← F \ (X ∪ F+[Z]) ∪ Y ∪ B−[Z]
24: else F ′′ ← F \ (X ∪ F−[Z]) ∪ Y ∪ B+[Z]

25: π′ ← TopSort(G
⏐⏐F ′′)

26: return π′

27: remove s and all incident arcs from N

28: return π

4.7 Multipath Blocking Vertices Property 105

as input. In this case, however, there is a third parameter σ specifying whether to

enforce the Multipath Blocking Vertices Property with respect to the left- or to the

right-blocking vertices. The algorithm follows largely that of EnforceMPathsOutgoing

shown in Algorithm 4.8, but adds a couple of statements. Like EnforceMPathsOutgoing,

EnforceMNSBOut only considers the set of outgoing backward arcs for every vertex.

In line 10, a set Q of vertices is obtained that either contains all left- or all right-

blocking vertices in G, depending on whether σ is set to left or right. This set is then

used in the following statement to obtain, respectively, the left- or right-blocking split

graph Gsp along with linear ordering πsp. The initialization step in the following line

sets the additional data structures up. In contrast to EnforceMPathsOutgoing, the flow

network here is constructed from the split graph restricted to the set of forward arcs

(cf. line 13). Unless specified otherwise, all arcs of N have a default capacity of one unit.

The following line, line 14, describes the addition of zero-capacity arcs between the two

split components of a vertex in Q and thereby represents the key idea to handle the

blocking vertices: As their capacity is set to zero, they do not influence the value of a

maximum flow or minimum cut between a source and a sink, but if they are on a path

connecting these two vertices, they may be part of the cut set.

Next, the algorithm loops over all vertices v of the input graph. Recall that when

the vertical split operation was introduced in Section 4.5, we identified every arc of the

unsplit graph with its counterpart in the split graph. Therefore, we do not have to make

a distinction between whether an arc is incident to a split or an unsplit vertex.

The loop (lines 15–27) encompasses the check for all outgoing backward arcs for each

vertex. To this end, a new vertex s is added to the flow network (line 16) along with an

arc from s to the (split or unsplit) head of every outgoing backward arc of v. In the next

step, the minimum s− v cut closest to v is obtained (line 18). As already mentioned, this

cut set, D, may contain zero-capacity arcs that originate from the blocking vertices. The

choice of the minimum cut as the one that is closest to v implies that the zero-capacity arc

belonging to last blocking vertex on each forward path, if existing, is in D. Furthermore,

we must compare the size of D, i. e. , the sum of capacities of arcs in D, to b+(v) in line 19

rather than D’s cardinality, in order to know whether the set of backward arcs can be

improved.

If the test is positive, the set Z of blocking vertices is extracted from Q as those whose

zero-capacity arcs are part of the minimum cut D. As mentioned above, we assume

here that MinCut(N, s, v) yields a set of arcs that is closest to v and minimal with respect

to the definition given in Section 3.1, as can be obtained, e. g. , by a backward-looking

106 4 Properties of Optimal Linear Orderings: A Microscopic View

breadth-first search starting from v. Then, Z matches the definition in the proof of

Lemma 4.14.

Next, the reduced cut set X and the corresponding reduced set of backward arcs Y

are obtained in line 21 like in Algorithm 4.8. Note, however, that intersecting D and the

set of forward arcs in G, F , not only eliminates arcs incident to the new vertex s, but

also zero-capacity arcs originating from Q.

The improved set of forward arcs is obtained for the right-blocking case in line 23 and

for the left-blocking case in line 24, as described in the proof of Lemma 4.14. Topologically

sorting the subgraph of G restricted to this new set of forward arcs then yields the

improved linear ordering π′, which is returned immediately. Otherwise, if the test in

line 19 was negative, the algorithm continues with the next vertex.

The procedure EnforceMultiPathsNoBlocking(G, π), which is also listed in Algo-

rithm 4.9, calls EnforceMNSBOut four times: once with side σ set to left, once with

σ set to right with parameters G and π, and the same with parameters GR and πR to

ensure the Multipath Blocking Vertices Property also for the incoming backward arcs of

every vertex.

Let κ(n,m) be the time complexity of computing a minimum cut in a unit-capacity

network.

Lemma 4.15
EnforceMultiPathsNoBlocking(G, π) runs in time O(n · κ(n,m)).

Proof. We start again by analyzing EnforceMNSBOut. EnforceMNSBOut differs from

EnforceMPathsOutgoing, which was analyzed in the proof of Lemma 4.11, only in few

statements. The construction of the set of blocking vertices Q in line 10 as well as the call

to SplitVertically in line 11 and the insertion of the zero-capacity arcs in line 14 can be

accomplished in time O(m). In comparison to G, the split graph Gsp has at most twice

as many vertices and the same number of arcs, hence, their size is asymptotically equal.

Thus, the initialization steps in line 9 and line 12 require O(m) time each.

An important point in the algorithm is the call to MinCut in line 18. In the proof

of Lemma 4.11, we introduced a function κ(n,m) to express the running time of an

algorithm that computes a minimum cut in a unit-capacity network as O(κ(n,m)).

Here, the flow network additionally contains exactly the zero-capacity arcs, which are,

however, irrelevant for the computation of the maximum s− v flow. The set of arcs that

form a minimum cut can be obtained by a backward breadth-first search on the residual

4.7 Multipath Blocking Vertices Property 107

graph that starts from v and that also takes the zero-capacity arcs with residual capacity

zero into account. This does not increase the asymptotic running time of MinCut and is

compliant with the demands on the cut set stated in the description of Algorithm 4.9.

The effort to compute an improved set of forward arcs stays asymptotically the same in

comparison to EnforceMPathsOutgoing.

In conclusion, as κ(n,m) ∈ Ω(m) as argued in the proof of Lemma 4.11, the time

needed to compute the minimum cut still dominates the asymptotic time complexity

of the statements inside the loop. For the total running time of the loop, this yields

O(n · κ(n,m)), which in turn supersedes the additional effort of O(m) at the beginning

of the procedure.

EnforceMultiPathsNoBlocking consists of four calls to EnforceMNSBOut and there-

fore has the same asymptotic running time. Due to the general assumptions regarding

the implementation (cf. Section 4.2.5), we neglect again the cost of comparing π to π′ and

of the reverse operations.

By passing EnforceMultiPathsNoBlocking as parameter to Iterate, we obtain an algo-

rithm that establishes the Multipath Blocking Vertices Property. For easier reference, we

set EstablishMultiPathsNoBlocking(G, π) to Iterate(G, π,EnforceMultiPathsNoBlocking).

Lemma 4.15 in combination with Proposition 4.1 yields:

Corollary 4.19
EstablishMultiPathsNoBlocking(G, π) runs in time O(n ·m · κ(n,m)).

As already mentioned in Section 4.6, κ(n,m) ∈ O(m ·min{n 2
3 ,m

1
2 }).

4.7.3 Again an NP-hard Extension

At the end of the previous section, we introduced the Extended Multipath Property,

which is stronger than the Multipath Property, but not efficiently enforceable anymore.

A similar extension is possible for the Multipath Blocking Vertices Property, which uses

the following statement:

108 4 Properties of Optimal Linear Orderings: A Microscopic View

Lemma 4.16
Let B be the set of backward arcs induced by a linear ordering π of a graph G

such that π respects the Multipath Blocking Vertices Property and b = (u,w) ∈ B.

Let v be a vertex on a forward path Pb for b that contains no left-blocking vertex

and let Y ⊆ B+(v) or Y ⊆ B−(v) be a set of either incoming or outgoing backward

arcs of v. Furthermore, let Z ⊆ V be a set of left-blocking vertices that contains

neither w nor, if Y ⊆ B+(v), the head of any arc in Y . If there is a set X of

forward arcs induced by πsp/l that covers every forward path of a backward arc

in Y ∪ [b]∥ in πsp/l, Z covers every forward path of a backward arc in Y ∪ [b]∥ in π

that contains a left-blocking vertex, and |X| ≤ |Y |, then B \
(
B+[Z] ∪ Y ∪ [b]∥

)
∪

F−[Z] ∪X is feasible.

Likewise, let v be a vertex on a forward path Pb for b that contains no right-

blocking vertex and let Y ⊆ B+(v) or Y ⊆ B−(v) be a set of either incoming or

outgoing backward arcs of v. Furthermore, let Z ⊆ V be a set of right-blocking

vertices that contains neither u nor, if Y ⊆ B−(v), the tail of any arc in Y . If there

is a set X of forward arcs induced by πsp/r that covers every forward path of a

backward arc in Y ∪ [b]∥ in πsp/r, Z covers every forward path of a backward

arc in Y ∪ [b]∥ in π that contains a right-blocking vertex, and |X| ≤ |Y |, then

B \
(
B−[Z] ∪ Y ∪ [b]∥

)
∪ F+[Z] ∪X is feasible.

Proof. Let G = (V,A) and denote by F = A \ B the set of forward arcs induced by π.

We consider first the left-blocking case. As v is on the forward path Pb = w ⇝ u in

πsp/l, Pb consists of two subpaths P′
b = w ⇝ v and P′′

b = v ⇝ u. Furthermore, v is not

left-blocking by the lemma’s preconditions.

As π respects the Multipath Blocking Vertices Property, πsp/l respects the Multipath

Property by Lemma 4.14. Consequently, there must be pairwise arc-disjoint forward

paths for the backward arcs in B(v) = B+(v) ∪ B−(v) in πsp/l, which in particular also

holds for those in Y . Hence, every set of forward arcs that covers all forward paths for

the backward arcs in Y must have cardinality at least |Y |. As |X| ≤ |Y |, we can conclude

that |X| = |Y | and that every arc in X is part of at least one forward path for a backward

arc in Y in πsp/l.

Next, consider the set of left-blocking vertices Z. By Lemma 4.7,

B′ = B \ B+[Z] ∪ F−[Z]

4.7 Multipath Blocking Vertices Property 109

is feasible, |B| = |B′| and every path consisting only of arcs in

F ′ = A \ B′ = F \ F−[Z] ∪ B+[Z]

that contains a vertex in Z must also start at a vertex in Z. Let (t, h) ∈ Y ∪ [b]∥ and

suppose there is a path P = h ⇝ t that uses only arcs in F ′. If P contains a vertex in

Z, then, due to Lemma 4.7, h ∈ Z, a contradiction to our precondition that Z contains

neither w nor the head of any arc in Y if (t, h) ∈ B+(v) and to v being not left-blocking if

(t, h) ∈ B−(v), i. e. , h = v. Consequently, P contains only arcs in F and no vertex in Z,

which in turn implies that P is covered by X .

Let now

B′′ = B′ \
(
Y ∪ [b]∥

)
∪X

and

F ′′ = A \ B′′ = F ′ \X ∪ Y ∪ [b]∥ .

Suppose there is a cycle C inG
⏐⏐F ′′ . W. l. o. g., we assume that C is simple. As B′ is feasible,

G
⏐⏐F ′ is acyclic, so C cannot only consist of arcs in F ′ \X . Hence, C must contain at least

two arcs from Y ∪ [b]∥: If C contained just one arc (t, h) ∈ [b]∥ ∪ Y , then there must be

a path h ⇝ t in F ′ \ X , a contradiction to our conclusion in the previous paragraph.

Furthermore, if C contains two or more parallel arcs in [b]∥, it is not simple. Hence, C must

use at least one arc of Y . Suppose C uses neither b nor one of its parallel arcs. In case that

Y ⊆ B+(v), this implies that C consists of a set of arcs Y ′ = {(v, hi) | 0 ≤ i < k} ⊆ Y as

well as a set of paths P = {hi ⇝ v | 0 ≤ i < k}, where k ≥ 2. Otherwise, if Y ⊆ B−(v),

C analogously consists of a set of k ≥ 2 arcs Y ′ = {(ti, v) | 0 ≤ i < k} ⊆ Y as well as

a set of paths P = {v ⇝ ti | 0 ≤ i < k}. In both cases, the paths in P use only arcs in

F ′ \X , which once more contradicts our conclusion in the previous paragraph.

Hence, exactly one arc of [b]∥ and k ≥ 1 arcs of Y must be part of C. Consider the case

that Y ⊆ B+(v) and let Y ′ = {(v, hi) | 0 ≤ i < k} ⊆ Y be the subset of arcs in Y that is

used in C. Then, C must also contain subpaths hj ⇝ u for some j ∈ {0, . . . , k − 1} and,

more importantly, a subpath P′ = w ⇝ v, such that all use only arcs in F ′ \X . Recall

that every arc in X is also part of a forward path for a backward arc in Y in πsp/l and

all of these forward paths end at v. Hence, P′′
b = v ⇝ u uses neither an arc arc in X nor

does it contain a vertex in Z. The same applies for P′, which yields that they together

form a path w ⇝ v ⇝ u that contains neither a left-blocking vertex nor an arc in X and

is a forward path for b in π, a contradiction. For the alternative case that Y ⊆ B−(v), let

Y ′ = {(ti, v) | 0 ≤ i < k} ⊆ Y be the subset of arcs in Y that is used in C. As above, C

110 4 Properties of Optimal Linear Orderings: A Microscopic View

must then contain a subpath w ⇝ tj , for some j ∈ {0, . . . , k − 1}, as well as a subpath

P′ = v ⇝ u, and both use only arcs in F ′ \X . Every arc in X must again also be part of

a forward path for a backward arc in Y in πsp/l, all of which start at v. Thus, P′
b = w ⇝ v

can neither contain an arc in X nor a vertex in Z. Hence, the combination of P′
b and P′

results in a path w ⇝ v ⇝ u, which is a forward path for b in π that is not covered by X

and does not pass through a left-blocking vertex, a contradiction.

Consequently, G
⏐⏐F ′′ is acyclic, which yields that

B′′ = B′ \
(
Y ∪ [b]∥

)
∪X

=
(
B \ B+[Z] ∪ F−[Z]

)
\
(
Y ∪ [b]∥

)
∪X

= B \
(
B+[Z] ∪ Y ∪ [b]∥

)
∪ F−[Z] ∪X

is feasible.

The analogous statement using right-blocking vertices follows once more by consider-

ing the reverse graph GR along with the reverse linear ordering πR.

Note that for an application of Lemma 4.12 in the proof of Lemma 4.16, we would

have needed a linear ordering that induces the intermediate set of backward arcs B′ and,

most notably, respects the Multipath Property, which we cannot guarantee in general.

Using Lemma 4.16, we can strengthen the Multipath Blocking Vertices Property as

follows:

Lemma 4.17 Extended Multipath Blocking Vertices Property
Let π∗ be an optimal linear ordering of a graphG and let b = (u,w) be a backward

arc induced by π∗. If v is a vertex on a forward path Pb for b in π∗
sp/l (π∗

sp/r) and

u and w are not themselves left-blocking (right-blocking), then there is a set of

pairwise arc-disjoint forward paths for the backward arcs in B+(v) ∪ [b]∥ as well

as one for the backward arcs in B−(v) ∪ [b]∥ in π∗
sp/l (π∗

sp/r).

Proof. Let G = (V,A) and denote by B and F the set of backward and forward arcs

induced by π∗, respectively. Note that if b ∈ B(v), then the pairwise arc-disjoint for-

ward paths for B+(v) ∪ [b]∥ = B+(v) and B−(v) ∪ [b]∥ = B−(v) are already implied by

Lemma 4.14. Hence, assume in the following that b ̸∈ B(v).

As π∗ is optimal and hence respects the Multipath Blocking Vertices Property, both

π∗
sp/l and π∗

sp/r respect the Multipath Property. Recall that, due to the identification of

4.7 Multipath Blocking Vertices Property 111

arcs before and after a vertical split, π∗
sp/l and π∗

sp/r induce the same sets of backward

and forward arcs as π∗.

Suppose there is a backward arc b = (u,w) ∈ B and a vertex v on a forward path Pb

of b in πsp/l such that u and w are not left-blocking and no set of pairwise arc-disjoint

forward paths for the backward arcs in B+(v)∪[b]∥ or for the backward arcs in B−(v)∪[b]∥
exists. Then, there must be a set Y ⊆ B+(v) or Y ⊆ B−(v), respectively, as well as a

directed multicut X ⊆ F such that |X| ≤ |Y |+
⏐⏐⏐[b]∥⏐⏐⏐, and X covers all forward paths for

the backward arcs in Y ∪ [b]∥ in π∗
sp/l.

Identify a set Z of left-blocking vertices by traversing all cropped forward paths for

the backward arcs in Y that do not contain an arc of X and placing the first left-blocking

vertex that occurs in Z. If Y ⊆ B+(v), we traverse all forward paths backwards, i. e. ,

starting at v, whereas if Y ⊆ B−(v), we use the usual direction (and thereby also start at

v). Proceed likewise in both cases for all cropped forward paths for b that do not contain

an arc in X and add the left-blocking vertices encountered first to Z. As u, v, and w are

not left-blocking, they cannot be in Z. Assume that Y ⊆ B+(v). Then, there also is no

head of a backward arc in Y contained in Z (cf. also the proof of Lemma 4.14): In this

case, there would have been backward arcs (v, h) and (v, h′) such that, w. l. o. g., h′ is

left-blocking and part of a cropped forward path P for (v, h). Then, however, P has a

subpath which is a cropped forward path for (v, h′), which either contains an arc of X

or a left-blocking vertex z ∈ Z. In the former case, P also contains an arc of X and is

therefore not considered, whereas in the latter, z must have been encountered before

h′ on a backward traversal of P and we only collect the first left-blocking vertex that

occurs to create Z. The analogous argument yields that if Y ⊆ B−(v), then no tail of a

backward arc in Y can be contained in Z.

As |X| ≤ |Y |, we can apply Lemma 4.16 both if Y ⊆ B+(v) and if Y ⊆ B−(v), which

yields that

B′ = B \
(
B+[Z] ∪ Y ∪ [b]∥

)
∪ F−[Z] ∪X

is feasible. As | [b]∥ | ≥ 1, b+[Z] = f−[Z] by Proposition 4.2, and all sets are pairwise

disjoint, |B+[Z] ∪ Y ∪ [b]∥ | > |F−[Z] ∪X|, which implies that |B′| < |B|, a contradiction

to π∗ being optimal.

The analogous statement for right-blocking vertices follows immediately from the

left-blocking case by considering the reverse graph GR along with the reverse linear

ordering πR instead.

112 4 Properties of Optimal Linear Orderings: A Microscopic View

For the same reason as for the Extended Multipath Property, the proof of the Extended

Multipath Blocking Vertices Property does not suggest an efficient algorithm to check

or enforce it, due to the NP-hardness of the DIRECTED MULTICUT problem (cf. Sec-

tion 4.6.4). In particular their preparatory lemmas, Lemma 4.12 and Lemma 4.16, may

however be useful in case that a directed minimum cut has already been obtained by

some other procedure. In this case, weaker versions of the Extended Multipath Prop-

erty and the Extended Multipath Blocking Vertices Property may be implemented in

polynomial time. In fact, two such properties are employed in Section 5.4.1.

4.8 Eliminable Layouts Property

The next property that is discussed in this chapter differs from all previous ones in an

important aspect: If it is violated, then the linear ordering is not necessarily improved

during the establishment; the cardinality of the induced set of backward arcs may also

remain constant. There is some revenue after all: First, enforcing it may destroy one of

the aforementioned properties and thereby indirectly yield an improvement of the linear

ordering. Second, it can also be applied to linear orderings that are already optimal and

thus limits the number of orderings to consider when looking for an optimal solution

(cf. Chapter 5, Chapter 6).

4.8.1 Eliminable Layouts

An eliminable layout can be regarded as a special form of the layout of a blocking

vertex. Consider the layout L(v) of a vertex v according to a linear ordering. Recall

that v is called left-blocking, if f−(v) = b+(v) and f−(v), f+(v), b+(v) ≥ 1. Accordingly,

v is called right-blocking, if f+(v) = b−(v) and f−(v), f+(v),b−(v) ≥ 1. We now add a

further constraint. A vertex v has an eliminable layout, if either f−(v), f+(v),b+(v) ≥ 1
with f−(v) = b+(v) and b−(v) = 0, or f−(v), f+(v), b−(v) ≥ 1 with f+(v) = b−(v), and

b+(v) = 0. More descriptively, if v’s layout is eliminable, then v is either left-blocking

with additionally b−(v) = 0, or v is right-blocking with b+(v) = 0. In pictograms, an

eliminable layout is depicted as or , respectively.

As the name suggests, we want to eliminate these layouts, i. e. , we aim at constructing

a linear ordering that does not induce an eliminable layout on any vertex, and at the

same time without increasing the number of backward arcs. An advantage of this

4.8 Eliminable Layouts Property 113

task over the Blocking Vertices Property is that we do not have to decide between two

versions (left and right), but can eliminate both types simultaneously1:

Lemma 4.18 Eliminable Layouts Property
For every optimal linear ordering π∗ of G there is a linear ordering π∗′ with⏐⏐π∗′⏐⏐ = |π∗| such that π∗′ does not induce an eliminable layout on any vertex.

Proof. Let π be a linear ordering of G that respects the Nesting Property (cf. Lemma 4.3).

Recall from Section 3.3 that the layout L(v) of a vertex v is defined as the four-tuple

(f−(v), f+(v), b−(v),b+(v)). We will make use of this notation in the proof.

Consider a vertex v with layout L(v) = (x, y, y, 0) for some x, y ≥ 1 () within

π. Then, v is right-blocking and its layout is eliminable by the above definition. For

easier reference, we name the tails of v’s incoming backward arcs ui in ascending order

with respect to the linear ordering, i. e. , we obtain an indexed family {ui}0≤i<y with

π(ui) ≤ π(ui+1), ∀0 ≤ i < y − 1, and (ui, v) ∈ B−(v), ∀0 ≤ i < y. In consequence of π

adhering to the Nesting Property, there is an injective mapping µh that assigns a forward

arc (v, wi) ∈ F+(v) to each backward arc (ui, v) ∈ B−(v), ∀0 ≤ i < y. Furthermore,

∀0 ≤ i < y, π(v) < π(wi) < π(ui). As b−(v) = f+(v) and the mapping µh is injective,

every arc in F+(v) is assigned to a unique backward arc.

Figure 4.15(a) shows a subsequence of a linear ordering that we will use as an example

in the following. It is important to note that the figure does not show a complete linear

ordering. There must be vertices to the left of v because v has incoming forward arcs and

there may also be vertices between those depicted or to the right of the rightmost vertex.

Consider now the following operation: Modify π by moving v to some position at

least π(uy−1), e. g. , by applying the routine Move(π, v, π(uy−1)). In the example, y = 2,

so we obtain the situation depicted in Figure 4.15(b) after moving v to π(u1).

We can now observe that in the new linear ordering, let us call it π′ to distinguish it

from the initial linear ordering π, all arcs in B−(v) count as forward arcs whereas all arcs

in F+(v) have become backward arcs. From now on, we indicate with subscript π or π′

which linear ordering a set or quantity refers to.

As both B−
π (v) and F+

π (v) contain y arcs, the cardinality of the induced set of backward

arcs remains unchanged in π′. The layout of v in π′ is Lπ′(v) = (x+ y, 0, 0, y) () and is

therefore no longer eliminable. However, also the layouts of ui and wi, ∀0 ≤ i < y, have

changed, so we investigate these next.

1A weaker version of this result has also been published in an earlier conference article [HBA13].

114 4 Properties of Optimal Linear Orderings: A Microscopic View

v w0 u0 w1 u1 w′
0 u′

0

w0 u0 w1 u1 v w′
0 u′

0

(a)

(b)

Figure 4.15: Excerpt from a linear ordering that induces an eliminable layout on vertex v

(a) and the linear layout resulting from moving v (b).

Let us first consider some vertex u ∈ {ui}0≤i<y. Suppose that the layout of u changed

to in π′, i. e. , Lπ′(u) = (xu, yu, yu, 0) for xu, yu ≥ 1. The movement of v can only

affect the classification of arcs incident to v, hence, it suffices to consider the only arc

incident to both u and v, which is the former backward arc (u, v). As (u, v) ∈ B+
π (u) before

and (u, v) ∈ F+
π′(u) afterwards, b+

π(u) = b+
π′(u) + 1 and f+

π (u) = f+
π′(u)− 1. Consequently,

the layout of u with respect to the initial linear ordering π is Lπ(u) = (xu, yu − 1, yu, 1)
(). Then, however, b−

π (u) = yu > yu − 1 = f+
π (u), a contradiction to Corollary 4.3 and

the assumption that π respects the Nesting Property. So π′ cannot induce the eliminable

layout type on any vertex u ∈ {ui}0≤i<y.

Suppose that the layout of u is in π′, i. e. , Lπ′(u) = (yu, xu, 0, yu) for any u ∈
{ui}0≤i<y and xu, yu ≥ 1. With the same argument, we obtain b+

π(u) = b+
π′(u) + 1

and f+
π (u) = f+

π′(u) − 1, so the layout of u with respect to the initial linear ordering π

is Lπ(u) = (yu, xu − 1, 0, yu + 1) (). Then, b+
π(u) = yu + 1 > yu = f−

π (u), again a

contradiction to Corollary 4.3 and π respecting the Nesting Property. Consequently, π′

also cannot induce the eliminable layout on any vertex u ∈ {ui}0≤i<y.

Next, we turn our attention to some vertex w ∈ {wi}0≤i<y. Here, the only arc whose

classification is affected by the movement of v is the arc (v, w). For this arc holds that

(v, w) ∈ F−
π (w) and (v, w) ∈ B−

π′(w). Hence, after the movement of v, w has at least one

4.8 Eliminable Layouts Property 115

incoming backward arc, so as layout of w with respect to π′ can be discarded. It

may be the case, however, that Lπ′(w) = (xw, yw, yw, 0) (). As (v, w) changes from

incoming forward to incoming backward with respect to w, we have b−
π (w) = b−

π′(w)− 1
and f−

π (w) = f−
π′(w) + 1. Then, the layout of w according to the initial linear ordering

π would have been Lπ(w) = (xw + 1, yw, yw − 1, 0) (), which does not contradict

the Nesting Property. Subsequently, the elimination of the layout at v may in turn

produce this layout on vertices in {wi}0≤i<y. We therefore have to iterate the movement

process in order to eliminate the layout also on these vertices until the constructed linear

ordering either no longer induces an eliminable layout of type on any vertex or it

violates Corollary 4.3.

Assume that the elimination of is implemented as a sweep line algorithm that

starts at the first vertex of π, i. e. , π−1(0), and processes the vertices in ascending order

according to π. Whenever the Nesting Property is violated during the procedure it may

be re-established, which produces a linear ordering that induces strictly fewer backward

arcs. In this case, the sweep line algorithm starts anew. So if the procedure reaches the

qth vertex in π, we have as an invariant that none of the vertices v′ with π(v′) < q have

layout . Observe that if the vertex at position q is moved, the vertex that formerly

was at position q + 1 takes position q afterwards, so the sweep line does not necessarily

advance its position in every step. Once the sweep line reaches the vertex at the last

position, the elimination process is finished.

Suppose that the procedure does not terminate. Then, the sweep line is stuck at some

position q < n − 1, i. e. , the vertex at position q has layout , and each time after

eliminating the layout on this vertex, there is another vertex at the same position q with

layout . As this process continues forever, but there are only n vertices, there must

be a vertex v that reoccurs infinitely often at position q. Consider a linear ordering π(v→q)

that is obtained from π by move operations, such that v is at position q and the sweep

line cannot advance beyond q. For the sake of clarity, note that π(v→q) is not unique, i. e. ,

there may be more than one such linear ordering. We simply pick one of them here. As

already argued, v must have an eliminable layout with Lπ(v→q)(v) = (x, y, y, 0) ().

Let {ui}0≤i<y and {wi}0≤i<y be defined with respect to v as at the beginning of the proof.

Consider again the elimination operation, which moves v beyond all vertices that

have an outgoing backward arc to v or an incoming forward arc from v. If the sweep line

cannot advance to a position greater than q and if v reoccurs at q infinitely often, then all

vertices {ui}0≤i<y and {wi}0≤i<y must also take position q with layout between any

two reoccurrences of v at q. Let Xv = {ui}0≤i<y ∪ {wi}0≤i<y.

116 4 Properties of Optimal Linear Orderings: A Microscopic View

v w0 u0 w1 u1 w′
0 u′

0

Figure 4.16: Excerpt from a linear ordering where the elimination process does not

terminate.

Next, consider a vertex v′ ∈ Xv. As we just argued, also v′ occurs infinitely often at

position q with eliminable layout . Let π(v′→q) be a linear ordering obtained from

π(v→q) by move operations and such that v′ is at position q. Let Lπ(v′→q)(v′) = (x′, y′, y′, 0)
(). Denote again by {u′

i}0≤i<y′ and {w′
i}0≤i<y′ the set of adjacent vertices of v′ in

analogy to the naming when considering v. As v′ also reoccurs at position q, so must

{u′
i}0≤i<y′ and {w′

i}0≤i<y′ by the same argument as above.

We can describe the set X of vertices that reoccur at position q as a transitive closure

of Xv, i. e. , X = {v} ∪ ⋃v′∈X Xv′ . Figure 4.16 depicts an excerpt of a linear ordering

where the sweep line is stuck at the leftmost position that is shown. In this example,

X = {v, u0, u1, w0, w1, u
′
0, w

′
0}.

Next, we want to analyze the subgraph GX of G induced by X . Consider some vertex

v ∈ X . By definition, v takes position q infinitely often and with eliminable layout .

Let π(v→q) be defined as above. Then, B+
π(v→q)(v) = ∅ and {w | (v, w) ∈ F+

π(v→q)(v)} ⊂ X .

Consequently, the head of every outgoing arc of v is also in X . As for the incoming arcs

of v, we find that because v has layout in π(v→q), F−
π(v→q)(v) ̸= ∅. Hence, there must

be at least one vertex z with π(v→q)(z) < q. This implies that the sweep line has already

passed z, so z ̸∈ X . Therefore, X must be a proper subset of V . Furthermore, there is a

path z ⇝ v in G consisting of the arc (z, v) ∈ F−
π(v→q)(v), but there is no path v ⇝ z in

the opposite direction: v ∈ X and the head of every outgoing arc of a vertex in X is also

in X , but z ̸∈ X . However, G is strongly connected, a contradiction. Subsequently, there

must be at least one vertex in X that has not a layout of type when taking position

q, at which point the sweep line can advance.

Finally, suppose that the initial linear ordering π was optimal. Recall that if during

the elimination process a linear ordering is obtained that contradicts Corollary 4.3, the

Nesting Property is violated and its re-establishment yields a linear ordering π′ with

|π′| < |π|. If π was optimal, this would be a contradiction. Hence, Corollary 4.3 holds for

4.8 Eliminable Layouts Property 117

all linear orderings throughout the elimination process and it terminates with a linear

ordering π′′ such that |π′′| = |π|.
For vertices with layout , the statement follows as in the case of the Blocking

Vertices Property by considering the vertices of type in the reverse graph along

with the reverse linear ordering. Alternatively, the layout could be eliminated

analogously using a sweep line that processes the vertices in descending order according

to the linear ordering π. Here, for a vertex v with eliminable layout, the vertices {ui}0≤i<y

must be defined as the heads of v’s outgoing backward arcs and {wi}0≤i<y as the tails

of v’s corresponding incoming forward arcs. If we again assume a sorting such that

π(ui) ≤ π(ui+1) for all 0 ≤ i < y − 1, then v must be moved to a position less than or

equal to π(u0).

Let Elim(π) the predicate that indicates whether a linear ordering π respects the

Eliminable Layouts Property. By Lemma 4.18, we have:

Corollary 4.20
For every linear ordering π holds: Opt(π)⇒ Elim(π).

From here on, we stipulate that if a linear ordering π respects the Eliminable Layouts

Property, then it does not induce an eliminable layout on any vertex.

4.8.2 The Elimination Operation

In the proof of Lemma 4.18, an elimination operation has been described and it has been

shown that this process always terminates. However, none has been said so far about

the number of steps it takes, which will be the subject of analysis in this section. For ease

of notation and understanding, the following definitions all refer to eliminable layouts

of type , but can be made likewise for layouts of type .

Let π be a linear ordering of a graph G and 0 ≤ q ≤ n − 1 be a position within π.

We define the elimination operation on the vertex at position q as a function elimq(π).

Assume that v is the vertex at position q, i. e. , π(v) = q. Then, elimq(π) returns the linear

ordering obtained from moving v to a certain position p (which we will address shortly),

provided that π induces a layout of type on v. Otherwise, elimq(π) = π. In the

proof of Lemma 4.18, p was defined to be such that p ≥ max(u,v)∈B−(v) π(u) and it was

suggested to actually use the smallest possible value of p. For reasons that will become

clear later in this subsection, we refrain from adopting this proposal and simply set

118 4 Properties of Optimal Linear Orderings: A Microscopic View

p = n− 1, which always satisfies the condition. We can hence define elimq(π) formally

as:

elimq(π) =

⎧⎪⎨⎪⎩Move(π, vq, n− 1), if Lπ(vq) is of type ,

π, else.

It has already been pointed out in the proof of Lemma 4.18 that the position q in the

linear ordering serves as a barrier in the elimination operation: neither can a vertex that

resides at a position smaller than q in π be moved to a position at least q in elimq(π), nor

vice versa. More precisely, every vertex v with π(v) < q remains at its position during

the elimination operation:

Proposition 4.3
Let π be a linear ordering of a graph G and q ∈ {0, . . . , n− 1}. For every vertex

v ∈ V holds: If π(v) < q, then elimq(π)(v) = π(v), otherwise, elimq(π)(v) ≥ q.

Using functional powers, we are able to describe any number i of successive elimina-

tion operations at position q as the ith iterate of elimq(π). This implies that we obtain for

i = 0 the identity function, i. e. ,

elimq
0(π) = π,

for i = 1,

elimq
1(π) = elimq(π),

and for any i ≥ 2,

elimq
i(π) =

(
elimq ◦ elimq

i−1
)

(π),

where f ◦ g denotes the standard function composition of two functions f and g.

In the next step, we introduce a notation to list the vertices occurring at a specific

position within π. To this end, let Iπ(q) be a sequence of vertices si such that si takes

position q after the ith elimination operation on q. As shown in the proof of Lemma 4.18,

this sequence must eventually encounter a vertex whose layout is not eliminable at

position q. From this point on, elimq is the identity function. In order to avoid a sequence

of infinite length, we additionally require that the linear ordering changes after every

elimination operation. More formally,

Iπ(q) = (si)k
i=0 , s. t. elimq

i(π)(si) = q,

∀i ∈ {0, . . . , k − 1} : elimq
i(π) ̸= elimq

i+1(π),

elimq
k(π) = elimq

k+1(π).

4.8 Eliminable Layouts Property 119

With this definition, the number of steps needed to eliminate all layouts of type at

position q in π equals exactly the length of Iπ(q) minus one. To facilitate notation, we

treat a linear ordering in the following as a permutation of the vertices of G. A linear

ordering is thus represented as an n-tuple such that the vertex at position i is listed as

the ith entry.

Lemma 4.19
Let Iπ(q) = (si)k

i=0 be the sequence of vertices taking position q during the

elimination operation applied to a linear ordering π of a graph G. Then, k ≤
n− q − 1.

Proof. Let π = (v0, . . . , vn−1) be a linear ordering of a graph G and q ∈ {0, . . . , n− 1}
be a position within π. Consider the elimination operation at position q. Let si be

a vertex that appears in Iπ(q) = (si)k
i=0 and assume for the moment that i < n −

q − 1. By definition of Iπ(q), elimq
i(π)(si) = q. If i = 0, then elimq

0(π) = π, so

s0 = vq. Otherwise, all vertices sj with 0 ≤ j < i have already been moved successively

to position n − 1 of the linear ordering. The linear ordering obtained after the first

iteration of elimq is elimq
1(π) = elimq(π) = (v0, . . . , vq−1, vq+1, . . . , vn−1, vq). After the

second iteration of elimq, we have that elimq
2(π) = (v0, . . . , vq−1, vq+2, . . . , vn−1, vq, vq+1),

and the linear ordering after the ith iteration of elimq must therefore be elimq
i(π) =

(v0, . . . , vq−1, vq+i, . . . , vn−1, vq, . . . , vq+i−1). Hence, si = vq+i, still under the assumption

that i < n− q − 1.

If we leave aside that i < n − q − 1 and consider i = n − q − 1, then si = vn−1, i. e. ,

elimq
n−q−1(π) = (v0, . . . , vq−1, vn−1, vq, . . . , vn−2). This implies that in the (n− q)th itera-

tion of elimq, elimq
n−q(π) = (v0, . . . , vq−1, vq, . . . , vn−1), which is π again. Consequently,

from this point on, the elimination process would reconsider only vertices that have

already taken position q in an earlier step, namely in the (i− (n− q))th iteration, and,

what is more, the linear ordering would be the same as in the (i− (n− q))th iteration.

Hence, if the vertex at position q has an eliminable layout in the ith iteration, it would

also be in position q and have an eliminable layout in the (i+ (n− q))th iteration. Then,

however, the elimination process would not terminate, a contradiction to the proof of

Lemma 4.18.

Finally, as i ≤ k, we conclude that k ≤ n− q − 1.

For the analysis here, we defined elimq(π) such that a vertex v at position q with

eliminable layout is moved to the very end of the linear ordering, whereas in the proof of

120 4 Properties of Optimal Linear Orderings: A Microscopic View

Lemma 4.18, it has been shown that any position p with p ≥ max(u,v)∈B−(v) π(u) suffices

to prove its correctness.

To justify our decision, let us briefly consider the consequences for the length of Iπ(q) if

elimq(π) would have been defined to move a vertex v only to position max(u,v)∈B−(v) π(u).

In this case, it is possible that vertices appear in Iπ(q) multiple times. Figure 4.17 shows

an example of such a situation. Due to reoccurring vertices, the length of Iπ(q) here can

easily exceed n − q, which is by Lemma 4.19 the maximum length of Iπ(q) if we use

p = n − 1. In the example depicted in Figure 4.17, the length of Iπ(q) with π(v0) = q

grows quadratically with the number of vertices involved. More precisely, if x is the

(odd) number of vertices in the example and f(x) denotes the length of Iπ(q), then

f(x) = f(x − 2) + x − 1, because the vertices at the last two positions are moved for

the first time after the vertex vx−3, i. e. , the last vertex in a sequence of length x − 2,

had reached position q and was as a consequence moved to position x− 1. Note that

in Figure 4.17, v2 changes its position for the first time only in consequence of the

elimination of v0’s layout, and v4 remains at its position until the elimination of v2’s

layout. As f(1) = 1, f(x) = 1
4(x2 + 3).

With regard to an efficient establishment of the Eliminable Layouts Property, the

possibility of vertices reoccurring in Iπ(q) is undesirable. Moving vertices to a position

greater than or equal to the minimum position required but smaller than n− 1 therefore

seems not reasonable, as it cannot avoid legitimate reoccurrences of vertices. Setting

p = n− 1, on the other hand, guarantees that this never happens.

If, instead of eliminable layouts of type , those of type are considered, we can

explicitly define elimq(π) in an analogous fashion:

elimq(π) =

⎧⎪⎨⎪⎩Move(π, vq, 0) if Lπ(vq) is of type ,

π, else.

This corresponds exactly to the effect of the Move operation carried out on the reverse

graph for the vertices with induced layout according to the reverse linear ordering.

In this case, Proposition 4.3 changes accordingly to:

Proposition 4.4
Let π be a linear ordering of a graph G and q ∈ {0, . . . , n− 1}. For every vertex

v ∈ V holds: If π(v) > q, then elimq(π)(v) = π(v), otherwise, elimq(π)(v) ≤ q.

With Iπ(q) being obtained for this definition of elimq(π), the proof of Lemma 4.19 can

be conducted analogously, so the statement remains valid.

4.8 Eliminable Layouts Property 121

v0 v1 v2 v3 v4 vx−3 vx−2 vx−1. . .

v1 v2 v0 v3 v4 vx−3 vx−2 vx−1. . .

v2 v0 v1 v3 v4 vx−3 vx−2 vx−1. . .

v0 v1 v3 v4 v2 vx−3 vx−2 vx−1. . .

v1 v3 v4 v2 v0 vx−3 vx−2 vx−1. . .

v3 v4 v2 v0 v1 vx−3 vx−2 vx−1. . .

v4 v2 v3 v0 v1 vx−3 vx−2 vx−1. . .

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.17: First steps of an elimination operation where the elimination of layout

on a vertex v is implemented such that v is only moved to max(u,v)∈B−(v) π(u).

122 4 Properties of Optimal Linear Orderings: A Microscopic View

4.8.3 Eliminating Eliminable Layouts

The proof of Lemma 4.18 and the discussion in the previous subsection already indicate

how the Eliminable Layouts Property can be established efficiently. The listing in

Algorithm 4.10 provides the corresponding pseudocode.

Like in the establishment of the Blocking Vertices Property and in accordance with the

proof of the Eliminable Layouts Property, the routine EliminateLayouts(G, π) consists

of two calls to a subroutine EliminateRightLayouts(G, π), which takes only care of the

elimination of the layout . In the second call, EliminateRightLayouts therefore

obtains the reverse graph along with the reverse linear ordering as arguments instead.

As shown in the proof of Lemma 4.18, the elimination operation applied to vertices with

layouts of type cannot produce a layout of and, because of their symmetry, also

vice versa.

The procedure EliminateRightLayouts(G, π) takes a graph G and a linear ordering π

as input. Here, we additionally require π to respect the Nesting Property. Similar to the

property-enforcing algorithms we encountered in the previous sections, EliminateRight-

Layouts returns π without modification if the initial linear ordering adheres to the

Eliminable Layouts Property with respect to the layout . There is, however, a slight

difference in the interpretation if EliminateRightLayouts returns a different linear order-

ing π′: In this case, the linear ordering either contains a vertex for which Corollary 4.3

does not hold, so π′ does not respect the Nesting Property and re-establishing it yields

an improved linear ordering; or some vertices have been moved during the execution of

this algorithm without violating Corollary 4.3. As Corollary 4.3 is only implied by the

Nesting Property but not logically equivalent, the corollary may hold even though the

Nesting Property does not. For reasons of efficiency, EliminateRightLayouts, and thus

indirectly also EliminateLayouts, only checks the weaker restriction. Hence, returning a

different linear ordering only indicates that an improvement of the linear ordering may

be possible.

For the elimination of layout , the sweep line starts at position 1 (line 7), because

the vertex at position 0 certainly has f−(v) = 0, so its layout cannot be of type . Unless

the sweep line has advanced beyond the third but last vertex in the linear ordering,

which sits at position n − 3, the algorithm applies two checks to the vertex v at the

current sweep line position. Considering only positions smaller than or equal to n− 3
suffices because a vertex at position n− 2 or n− 1 cannot have both an outgoing forward

arc and an incoming backward arc, so its layout cannot be of type .

4.8 Eliminable Layouts Property 123

Algorithm 4.10 Eliminable Layouts Property

Require: graph G = (V,A), linear ordering π respecting the Nesting Property

Return: π if Elim(π), otherwise a linear ordering π′ that can possibly be improved by

re-establishing the Nesting Property

1: procedure EliminateLayouts(G, π)

2: π′ ← EliminateRightLayouts(G, π)

3: if π′ ̸= π then return π′ else return EliminateRightLayouts(GR, πR) R

4: procedure EliminateRightLayouts(G, π)

5: π,B,F ← ComputePositionsAndArcSets(G, π)

6: ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩ ← ComputeLayoutLists(G, π)

7: s← 1 ▷ start sweep line at position 1 for elimination of

8: while s ≤ n− 3 do

9: v ← π−1(s) ▷ consider vertex at position s

10: if f+(v) < b−(v) or f−(v) < b+(v) then

11: return π ▷ violation of Corollary 4.3

12: else if f+(v) ≥ 1 and f+(v) = b−(v) and f−(v) ≥ 1 and b+(v) = 0 then

13: π ←Move(π, v, n− 1)

14: ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩ ← Update(v, ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩)
15: else

16: s← s+ 1 ▷ advance sweep line

17: return π

If v’s layout violates Corollary 4.3 (line 10), EliminateRightLayouts immediately stops

and returns the modified linear ordering π, because the linear ordering is guaranteed to

be improvable. Otherwise, in line 12, it checks whether v’s layout is of type and, if

this is the case, it applies the move operation as defined in Section 4.8.2, i. e. , v is always

moved to the last position n−1. To avoid visual clutter, the variable π is simply overwrit-

ten here. The algorithm then calls a helper routine Update(v, ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩),
whose task is to update the sorted lists representing the vertices’ layouts such that their

cardinalities can be queried in subsequent iterations. The implementation of Update

will be addressed after the description of EliminateRightLayouts.

In case that v neither contradicts Corollary 4.3 nor has a layout of type , the sweep

line advances to the next position (line 16). If the algorithm finishes the loop without

124 4 Properties of Optimal Linear Orderings: A Microscopic View

Algorithm 4.11 Helper Routine for EliminateRightLayouts(G, π)

Require: moved vertex v, layout lists ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩
Return: updated lists ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩

1: procedure Update(v, ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩)
2: for all (v, u) in the order of ⟨F+⟩ (v) do

3: ⟨B+⟩ (v)← ⟨B+⟩ (v) ⋄ ⟨(v, u)⟩
4: remove (v, u) from ⟨F−⟩ (u)
5: ⟨B−⟩ (u)← ⟨B−⟩ (u) ⋄ ⟨(v, u)⟩
6: for all (u, v) in the order of ⟨B−⟩ (v) do

7: ⟨F−⟩ (v)← ⟨F−⟩ (v) ⋄ ⟨(u, v)⟩
8: remove (u, v) from ⟨B+⟩ (u)
9: ⟨F+⟩ (u)← ⟨F+⟩ (u) ⋄ ⟨(u, v)⟩

10: ⟨F+⟩ (v)← ⟨ ⟩; ⟨B−⟩ (v)← ⟨ ⟩
11: return ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩

cancelling prematurely, the algorithm returns the linear ordering π, which may however

be different from the original one in line 17.

Let us now turn to the realization of the helper routine Update. Naturally, calling

the initializing routines ComputePositionsAndArcSets as well as ComputeLayoutLists

instead would serve the same purpose, which is the update of the representation of the

vertex layouts. As the change to the linear ordering is comparatively small, however,

we expect a better running time of Update in comparison to those, which rebuild all

structures from scratch. Furthermore, this helper routine only needs to maintain the

structures used by EliminateRightLayouts, which are the (cardinalities of) the sorted

lists representing the vertex layouts.

Algorithm 4.11 shows the implementation of this routine in pseudocode. Update re-

ceives the vertex v that has been moved as well as the layout lists ⟨F−⟩ , ⟨F+⟩ , ⟨B−⟩ , ⟨B+⟩
as input. Recall from the proof of Lemma 4.18 and from the discussion in the previous

subsection that the move operation only affects arcs incident to v whose head or tail,

respectively, has a position greater than v’s original one, which are exactly the arcs in

F+(v) and B−(v). The classification of these arcs switches from backward to forward

and vice versa. In lines 2–5, Update traverses the outgoing forward arcs of v in the order

they appear in ⟨F+⟩ (v), i. e. , such that the position of their heads does not decrease.

Every such arc is appended to the sorted list of outgoing backward arcs of v. As ⟨F+⟩ (v)

4.8 Eliminable Layouts Property 125

is traversed in order, every arc whose head has a greater position than the currently

considered arc will be processed afterwards. This approach guarantees a correct sorting

of ⟨B+⟩ (v). For the head u of the current arc, similar updates are conducted. Here, the

arc is removed from the list ⟨F−⟩ (u) of incoming forward arcs and then appended to

⟨B−⟩ (u). As v is moved to the greatest position within the linear ordering, (v, u) must

be the last arc in the sorted list ⟨B−⟩ (u) of incoming backward arcs. Analogously, the

incoming backward arcs of v are processed in lines 6–9. Finally, the sorted lists ⟨F+⟩ (v)
and ⟨B−⟩ (v) are cleared, because v has no outgoing forward or incoming backward

arcs after being moved. Note that Update does not update the attribute of a vertex that

explicitly stores its position within π.

Lemma 4.20
EliminateLayouts(G, π) runs in time O(n ·m).

Proof. Consider the listing in Algorithm 4.10. First, the algorithm calls Compute-

PositionsAndArcSets as well as ComputeLayoutLists, which set up the sorted lists

representing the vertex layouts and run in time O(m) each by Lemma 4.1. The next

statement of EliminateRightLayouts is an initialization only and requires time O(1).

Consider the body of the loop, which spans lines 8–16. The sweep line itself may be

thought of as a pointer to a position in the list that can access the element residing

there in constant time. Due to the fact that the algorithm maintains the data structures

representing the vertex layouts explicitly, the conditions of the if and else-if clause can

also be checked in constant time.

The move operation in line 13 consists of removing v from its current position in

the linear ordering and appending it to the end, which can be accomplished in time

O(1), because by assumption, π is represented as a doubly-linked list (cf. Section 4.2).

The updates to ⟨F−⟩, ⟨F+⟩, ⟨B−⟩, and ⟨B+⟩ for v as well as for the head of every arc

in ⟨F+⟩ (v) and the tail of every arc in ⟨B−⟩ (v) are realized in the subroutine Update.

Advancing the sweep line in line 16 requires only constant time.

Let us now turn to analyzing the time complexity of Update. To this end, consider the

listing in Algorithm 4.11. The routine consists of two loops that iterate over ⟨F+⟩ (v) and

⟨B−⟩ (v), respectively. In their bodies, an arc is once removed from a list and appended

to a list twice. These three statements can be carried out in time O(1). As to the removal

of an arc from a list, we assume that each arc stores altogether two references to its

positions within the two layout lists it is contained in, where one of them belongs to

126 4 Properties of Optimal Linear Orderings: A Microscopic View

its tail and the other to its head. Then, also removals can be handled in constant time.

Clearing the lists ⟨F+⟩ (v) and ⟨B−⟩ (v) in line 10 requires at most O(d(v)) steps. As the

sum of the number of iterations of both loops is at most d(v), we can conclude that the

running time of Update is in O(d(v)).

Using this result, we find that one iteration of the loop in EliminateRightLayouts

takes time O(d(v)) if v is the currently considered vertex. Next, the number of iterations

needs to be addressed. By Lemma 4.19, the elimination process at position q needs to

consider at most n− q vertices. As q ranges from 1 to n− 3, we have at most
∑n−3

q=1 (n− q)
iterations, which is in O(n2). Consequently, the running time of the loop dominates that

of the initialization steps at the beginning of the algorithm. By using ∆G as an upper

bound for the degree d(v) of any vertex v, we obtain a running time of O(n2 ·∆G).

This can be slightly improved by the following consideration: For each iteration, we

have a time complexity of O(d(v)), where v is the currently considered vertex. The

number of iterationsO(n2) is asymptotically equivalent to assuming that every vertex of

G appears at every position within π. By Lemma 4.19, no vertex is considered twice at the

same position q, i. e. , the time complexity for one position is in O(∑v∈V d(v)) = O(m).

As there are O(n) positions, EliminateRightLayouts(G, π) runs in time O(n ·m).

We neglect again the time required to compare π to π’ in EliminateLayouts as well as

the effort to obtain the reverse graph and linear orderings due to the preconditions set

in Section 4.2.5. As EliminateLayouts calls EliminateRightLayouts twice, we obtain the

same asymptotic running time.

Note that EliminateLayouts is only useful in combination with a procedure that

re-establishes the Nesting Property, e. g. , EstablishNesting. Hence, we refrain from

defining a routine here that only establishes the Eliminable Layouts Property and head

on to further properties. Nonetheless, we do not treat the Eliminable Layouts Property

as a meta-property, because its own behavior is unaffected by the concrete routine that

re-establishes the Nesting Property.

4.9 A Ψopt-Algorithm

Each of the past sections of this chapter introduced a new property that provides a

necessary condition for a linear ordering to be optimal. Additionally, algorithms have

been given to establish almost each individual property. Our aim now is to combine

4.9 A PsiOpt-Algorithm 127

E 0

E 1

E 2

E i

E k−1

G, π

π
←
π

′
π′ = ππ′ 6= π

π′ = ππ′ 6= π

π′ 6= π

π′ 6= π

π′ = ππ′ 6= π

Figure 4.18: Operation principle of the meta-algorithm Cascade.

these algorithms into one that efficiently constructs a linear ordering adhering to all

properties at the same time.

4.9.1 A Cascading Meta-Algorithm

Let G be a graph and π be an arbitrary linear ordering of G. We assume that for every

property we want to establish, there is a property-enforcing routine E(G, π) that applies

an improvement to the input linear ordering π if π did not adhere to the respective

property and otherwise leaves π unchanged. In the former case, E(G, π) returns an

improved linear ordering π′, in the latter, the return value equals the argument, π.

At the beginning of this chapter, we introduced a meta-algorithm Iterate that takes

one such property-enforcing routine as input and calls it repeatedly until the property

has finally been established. In order to achieve the same for multiple properties, we

devise a meta-algorithm Cascade(G, π, L = ⟨E0, . . . ,Ek−1⟩), which takes an entire list of

property-enforcing routines as input. Figure 4.18 illustrates the operation principle of

this procedure.

The algorithm passes the graph G and the current linear ordering π to each property-

enforcing routine of the list in turn, starting with E 0. If a property-enforcing routine

E i returns π unmodified, then the linear ordering passed to E i already respected the

corresponding property. If E i is the last property-enforcing routine in the list, the

algorithm terminates. Otherwise, the next step consists in passing the linear ordering to

E i+1. Whenever a routine returns a different linear ordering than it has been given as

argument, the algorithm jumps back to the first element of the list, E 0.

128 4 Properties of Optimal Linear Orderings: A Microscopic View

Algorithm 4.12 Cascade

Require: graph G, linear ordering π, list L = ⟨E0, . . . ,Ek−1⟩ of property-enforcing

routines E(G, π)

Return: a linear ordering that respects all properties enforced by the elements of L

1: procedure Cascade(G, π, L = ⟨E0, . . . ,Ek−1⟩)
2: c← 0
3: while c < k do

4: π′ ← E c(G, π)

5: if π′ = π then

6: c← c+ 1 ▷ continue to next routine

7: else

8: c← 0 ▷ restart from E0 with linear ordering π′

9: π ← π′

10: return π

Algorithm 4.12 lists the implementation of Cascade in more detail. The counter

variable c is initialized with 0 in line 2. In the following loop, the property-enforcing

procedure E c is called with parameters G and π. In case that the returned linear ordering

π′ equals π, the variable c is incremented, otherwise, it is reset to 0 and π becomes π′.

The loop terminates once c reaches k.

Lemma 4.21
Let π be a linear ordering of a graph G and let L = ⟨E0, . . . ,Ek−1⟩ be a list of

property-enforcing routines that either return an improvement of the given linear

ordering, or return the linear ordering that has been passed as argument. Then,

Cascade(G, π, L) returns a linear ordering respecting all properties enforced by

E0, . . . ,Ek−1 and runs in timeO(m) times the maximum running time of E i(G, π),

where 1 ≤ i < k.

Proof. Let E i be an arbitrary property-enforcing routine. By contract, E i returns its

argument, π, if and only if π respects the property to enforce. Otherwise, it returns a

modified linear ordering π′ whose cardinality of the induced set of backward arcs is at

least one less than that of π.

Consider the listing in Algorithm 4.12. Let r denote the number of times that the

variable c is reset to 0 in line 9. Every reset coincides with a property-enforcing routine

4.9 A PsiOpt-Algorithm 129

returning a new linear ordering, which in turn implies that the cardinality of the induced

set of backward arcs has decreased by at least one. In consequence, r cannot exceed |π|,
where π here denotes the initial linear ordering that was passed to Cascade as parameter.

More precisely, r < |π|, because we only consider strongly connected graphs and r = |π|
would imply that the set of backward arcs induced by the linear ordering at termination

was empty, i. e. , that the graph G was acyclic.

Next, we want to analyze the steps taken between two resets of the variable c, includ-

ing its initialization in line 2. Let j denote the value of c immediately before one such

reset. Then, since the previous reset, all property-enforcing routines E i with 0 ≤ i ≤ j
have been called and all except for E j returned the linear ordering π unmodified. The

number of steps taken between two resets of the variable c equals the sum of the steps

required for each E i, 0 ≤ i ≤ j, which is asymptotically equivalent to the maximum

of the time complexity of the involved property-enforcing routines. As j < k and

r ∈ O(m), Cascade runs in time O(m) times the maximum running time of E i(G, π),

where 0 ≤ i < k.

As to the correctness of Cascade, consider the sequel of the algorithm starting with

the last reset of the variable c. Here, the algorithm passes the current linear ordering

to each property-enforcing routine of the list. Each routine must return π unmodified,

because if not, there would be another reset of the variable c. Consequently, the current

linear ordering respects all properties enforced by E0, . . . ,Ek−1 and, as there can be no

further reset, Cascade terminates.

4.9.2 Establishing the Necessary Properties Simultaneously

We now turn to proving the two theorems stated at the very beginning of this chapter.

There, we introduced the predicate Ψopt for linear orderings with the following definition:

Ψopt(π) ⇔ ∀ψ ∈ Ψ : ψ(π), where Ψ denotes the set of predicates corresponding to the

properties introduced earlier in this chapter. Hence,

Ψ = {Nest,Path,NoBlock,MPath,MNoBlock,Elim}.

As announced at the beginning of this chapter, we show:

Theorem 4.1 (restated)
For every linear ordering π holds: Opt(π)⇒ Ψopt(π).

130 4 Properties of Optimal Linear Orderings: A Microscopic View

Proof. Let π be a linear ordering. By Corollary 4.17, Opt(π) implies MNoBlock(π) and

by Corollary 4.18, if MNoBlock(π) holds, then also Nest(π), Path(π), NoBlock(π), and

MPath(π). Finally, Corollary 4.20 yields that Opt(π) also implies Elim(π), which con-

cludes the proof of Theorem 4.1.

The results of the previous subsection immediately enable us to construct a Ψopt-

algorithm PsiOpt(G, π) , which establishes the Nesting Property, the Path Property,

the Blocking Vertices Property, the Multipath Property, the Multipath Blocking Ver-

tices Property, and the Eliminable Layouts Property simultaneously. As to this, we

use the meta-algorithm Cascade and set the list of property-enforcing routines to

L := ⟨EnforceNesting, EnforceForwardPaths, EnforceNoBlocking, EnforceMultiPaths,

EnforceMultiPathsNoBlocking, EliminateLayouts⟩. Then, it is convenient to define

PsiOpt(G, π) as Cascade(G, π, L). Let κ(n,m) again be the time complexity of computing

a minimum cut in a unit-capacity network.

Lemma 4.22
PsiOpt(G, π) establishes the Nesting Property, the Path Property, the Blocking

Vertices Property, the Multipath Property, the Multipath Blocking Vertices Prop-

erty, and the Eliminable Layouts Property simultaneously on a linear ordering π

of a graph G and runs in time O(n ·m · κ(n,m)).

Proof. If for all property-enforcing routines contained in the list L held that they either

leave the linear ordering unchanged or improve it, the claim would immediately follow

by Lemma 4.21. Unfortunately, this is not the case for EliminateLayouts. It is known,

however, that the elimination process applied within this routine never constructs a

linear ordering whose induced set of backward arcs has greater cardinality than the one

it received as an input.

Therefore, let us briefly consider the situation when EliminateLayouts returns a new

linear ordering π′, but the cardinality of the induced set of backward arcs remains

constant, i. e. , |π| = |π′|. Whenever a routine returns a new linear ordering, Cascade

reinvokes all property-enforcing routines of the list L. Observe that EliminateLayouts is

the last item in L and that EliminateLayouts is the only property-enforcing routine in L

that may return a new linear ordering that is neither an improvement nor a worsening.

There are two possibilities: Either the modification applied by EliminateLayouts to

the linear ordering that it has been passed as argument destroyed one of the properties

4.9 A PsiOpt-Algorithm 131

established earlier by one of the other property-enforcing routines or the new linear

ordering still respects all of them despite the modification. In the former case, the

property-enforcing routine for the destroyed property must apply an improvement.

As shown in the proof of Lemma 4.21, there are at most O(m) improvements of the

linear ordering possible. In the latter case, the property-enforcing routines preceding

EliminateLayouts in L do not change the linear ordering and Cascade terminates with

one additional run through the elements of L.

Consequently, the number of resets of the variable c in Algorithm 4.12 is still bounded

by O(m). The running times of the elements of L are as follows: O(m) for EnforceNest-

ing,O (min{n ·m,nω}) for EnforceForwardPaths,O(min{n·m,nω}) for EnforceNoBlock-

ing, O(n · κ(n,m)) for EnforceMultiPaths, O(n · κ(n,m)) for EnforceMultiPathsNoBlock-

ing, and O(n ·m) for EliminateLayouts, where ω denotes the exponent in the running

time of fast matrix multiplication algorithms and ω ≥ 2 (cf. Section 4.4), and κ(n,m)
represents the time complexity of computing a minimum cut in a unit-capacity network

with κ(n,m) ∈ Ω(m) (cf. Section 4.6).

WithO(min{n·m,nω})⊆ O(n·m) andO(n·m) ⊆O(n·κ(n,m)), the maximum running

time of a property-enforcing routine in L equals O(n · κ(n,m)). Hence, PsiOpt(G, π)

runs in time O(n ·m · κ(n,m)).

By choosing an arbitrary initial linear ordering to be passed as an argument to

PsiOpt(G, π), we obtain an algorithm that constructs a Ψ-optimal linear ordering π.

This concludes the proof of Theorem 4.2 if we substituteO(m ·min{n 2
3 ,m

1
2 }) for κ(n,m),

which is the running time of Dinic’s algorithm (cf. Section 4.6.2):

Theorem 4.2 (restated)
There is an O(n ·m2 ·min{n 2

3 ,m
1
2 })-time algorithm that constructs a Ψ-optimal

linear ordering π.

Utilizing the result of Corollary 4.18, which states that the Multipath Blocking Vertices

Property implies the Nesting Property, Path Property, Blocking Vertices Property, and

Multipath Property, the algorithm PsiOpt(G, π) can alternatively also be defined as

Cascade(G, π, ⟨EnforceMultiPathsNoBlocking,EliminateLayouts⟩). This neither affects

the validity of Lemma 4.22 nor the proof of Theorem 4.2.

For subcubic graphs, we obtain a slightly more efficient Ψopt-algorithm by observing

that due to Corollary 4.3, the Nesting Property ensures that every vertex can be incident

to at most one backward arc. In consequence, the Path Property together with the

132 4 Properties of Optimal Linear Orderings: A Microscopic View

Nesting Property implies the Multipath Property. Furthermore, the Eliminable Layouts

Property ensures that every vertex that has an incident backward arc has only either

incoming or outgoing forward arcs, but not both. Consequently, if a linear ordering π of

a subcubic graph respects the Nesting Property, the Path Property, and the Eliminable

Layouts Property, then no cropped forward path can contain a left-blocking or right-

blocking vertex, thus, π also respects the Blocking Vertices Property, which is, for the

same reason as above, equivalent to the Multipath Blocking Vertices Property. There-

fore, it suffices to define the Ψopt-algorithm for subcubic graphs, PsiOptCubic(G, π) , as

Cascade(G, π, ⟨EnforceNesting,EnforceForwardPaths,EliminateLayouts⟩).
For subcubic graphs, we have that m = 3

2n, i. e. , m ∈ O(n). The time complexities of

EnforceNesting, EnforceForwardPaths, and EliminateLayouts therefore all reduce to

O(n2). With the same argument regarding the handling of EliminateLayouts as in the

proof of Lemma 4.22, we derive from Lemma 4.21:

Corollary 4.21
There is an O(n3)-time algorithm that constructs a Ψ-optimal linear ordering π

of a subcubic graph.

4.10 Manipulations and Meta-Properties

Eventually, we attend to some further properties of optimal linear orderings that are

not beneficial on their own, but rather in conjunction with other LINEAR ORDERING

algorithms or, particularly with regard to the earlier results of this chapter, property-

enforcing routines. That is why we also call them “meta-properties”. In this section, we

introduce three major representatives of this kind: the Fusion Property, the Reduction

Property, and the Arc Stability Property. As each of them isNP-hard in its most general

form, we additionally suggest some weaker, polynomial-time establishable, variants.

A characteristic that is common to all of these meta-properties is that they are built on

manipulations of the input graph and, accordingly, its current linear ordering. There-

fore, we first lay the foundations for these manipulations in a separate subsection and

afterwards turn our attention to the above mentioned meta-properties.

4.10 Manipulations and Meta-Properties 133

4.10.1 Basic Operations on Linear Orderings and Graphs

We start by studying a number of simple graph operations and their impact on a linear

ordering. Although the motivation for this is provided by the meta-properties that will

be presented later in this section, the following results are also of interest in themselves

and can be considered independently. Our goal is that, given a graph G along with

a linear ordering πG, the manipulation of G can be transferred simultaneously to a

manipulation of πG such that we obtain a new graph H along with a linear ordering πH

and πH is derived from πG.

In the following, let G = (VG, AG) be a graph with vertex set VG and arc set AG =
(UG,mG) and let the graph H = (VH , AH) with vertex set VH and arc set AH = (UH ,mH)
be obtained from G by some manipulation. For the benefit of a conciser notation, we

generalize mG and mH such that for some tuple of vertices (x, y) with (x, y) ̸∈ UG,

mG((x, y)) = 0. The same applies analogously to mH . Except for the penultimate graph

operation, we assume that G is free of loops and pairs of anti-parallel arcs. The latter

does not necessarily also apply to H .

Note that the operations that are introduced to describe the manipulations behave

like functions, i. e. , they have a return value and do not change the graphs, vertices, arcs,

or linear orderings that are passed to them as arguments. We nevertheless stick to the

term “operation” as graph manipulations are widely known also as “graph operations”.

The implications of the operations for the respective linear ordering are in general

not difficult to see and have to some extent also been observed in the same or a similiar

fashion elsewhere, e. g. , by Younger [You63]. For the sake of completeness and to avoid

the need to bother the reader with subtle differences, we provide all necessary proofs.

Manipulations of Linear Orderings

For a concise description of how a linear ordering changes, we define three basic op-

erations: If both G and H have the same set of vertices, i. e. , VG = VH , then any linear

ordering πG of G can also be interpreted as a linear ordering of H . For the sake of clarity,

we denote such a reinterpretation explicitly by the operation reinterpret(πG, H), which

returns the corresponding linear ordering for H .

Otherwise, if H was obtained from G by adding a new vertex u, i. e. , VH = VG ∪ {u},
then a linear ordering of H may be obtained by inserting u at some position q, where

134 4 Properties of Optimal Linear Orderings: A Microscopic View

0 ≤ q < |VH |, in a linear ordering πG of G. This is the definition of the operation

insert(πG, u, q). More formally, for every vertex v ∈ VH ,

insert(πG, u, q)(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
πG(v), if πG(v) < q,

q, if v = u,

πG(v) + 1, if πG(v) ≥ q.

For convenience, we also provide a version of the operation which takes a graph as an

additional argument and performs a reinterpretation by defining insert(πG, u, q,H) =
reinterpret(insert(πG, u, q), H).

Finally, H may be the result of the removal of a vertex u from G, i. e. , VH = VG \ {u}.
In this case, the construction of a linear ordering of H from a linear ordering πG of G by

simply leaving out v suggests itself. We denote this operation by skip(πG, u). Formally,

the definition reads

skip(πG, u)(v) =

⎧⎪⎨⎪⎩πG(v), if πG(v) < πG(u),

πG(v)− 1, if πG(v) > πG(u),

where v ∈ VH . As above, we define a convenience operation which also performs a

reinterpretation by setting skip(πG, u,H) = reinterpret(skip(πG, u), H).

Having this settled, we are ready to turn to graph manipulations.

Vertex Removal

We start with the very simple graph operation of vertex removal. For a vertex v ∈ VG,

we denote by remove(G, v) the removal of v from G, i. e. , if H = remove(G, v), then

H = G
⏐⏐
VG\{v}.

Consider a vertex v whose incident number of backward arcs with respect to a linear

ordering πG of a graph G is the maximum possible in an optimal linear ordering by

Corollary 4.5, i. e. , bπG(v) = min {d+(v), d−(v)}. We call such a vertex maximal in πG. To

distinguish such vertices further, we say that a maximal vertex v is out-maximal in πG if

bπG(v) = d+(v) and in-maximal in πG if bπG(v) = d−(v).

Proposition 4.5
Let π∗

G be an optimal linear ordering of a graph G = (VG, AG). A vertex v ∈ VG is

(i) out-maximal in π∗
G if and only if v is either a pseudosink or right-blocking,

(ii) in-maximal in π∗
G if and only if v is either a pseudosource or left-blocking.

4.10 Manipulations and Meta-Properties 135

Proof. Let v ∈ VG be a maximal vertex in π∗
G. Then, bπ∗

G
(v) = b−

π∗
G

(v) + b+
π∗

G
(v) =

min {d+(v), d−(v)}. Assume for (i) that bπ∗
G

(v) = d+(v). Then, b−
π∗

G
(v) = d+(v)−b+

π∗
G

(v) =
f+
π∗

G
(v). Thus, v is a pseudosink if b−

π∗
G

(v) = f+
π∗

G
(v) = 0 and otherwise right-blocking.

In case (ii), where bπ∗
G

(v) = d−(v) instead, an analogous argument yields that v is a

pseudosource if b+
π∗

G
(v) = f−

π∗
G

(v) = 0 and otherwise left-blocking.

For the respective converse, assume first that v is either a pseudosink or right-blocking,

i. e. , f+
π∗

G
(v) = b−

π∗
G

(v). Note that if v is a pseudosink, then f+
π∗

G
(v) = b−

π∗
G

(v) = 0. Hence,

b−
π∗

G
(v) + b+

π∗
G

(v) = f+
π∗

G
(v) + b+

π∗
G

(v) = d+(v). Likewise, if v is either a pseudosource or

left-blocking, then f−
π∗

G
(v) = b+

π∗
G

(v) and b−
π∗

G
(v) + b+

π∗
G

(v) = b−
π∗

G
(v) + f−

π∗
G

(v) = d−(v). As

bπ∗
G

(v) = b−
π∗

G
(v)+b+

π∗
G

(v) ≤ min {d+(v),d−(v)} by Corollary 4.5, v is maximal in π∗
G.

Let us now study the implications on a linear ordering πG of G upon the removal of a

maximal vertex.

Lemma 4.23
Let π∗

G be an optimal linear ordering of a graph G = (VG, AG) and let v ∈ VG

be maximal in π∗
G. Then, πH = skip(π∗

G, v,H) is an optimal linear ordering of

H = remove(G, v) and |π∗
G| = |πH |+ bπ∗

G
(v).

Proof. Let H = (VH , AH). The removal of v from G also implies the removal of all arcs

incident to v. As v is maximal, |π∗
G| = |πH |+ bπ∗

G
(v) = |πH |+ min {d+(v),d−(v)}.

Suppose that πH is not optimal and let π∗
H be an optimal linear ordering of H . Then,

|π∗
H | < |πH |. Construct a new linear ordering πG of G such that

πG =

⎧⎪⎨⎪⎩insert(π∗
H , v, 0, G), if d−(v) ≤ d+(v),

insert(π∗
H , v, |VH | , G), else,

i. e. , v is inserted at the very beginning of π∗
H if it has at most as many incoming as

outgoing arcs, and otherwise at the very end. Consequently, v is incident to exactly

min {d−(v),d+(v)} backward arcs in πG. Thus,

|πG| = |π∗
H |+ min {d+(v),d−(v)} < |πH |+ min {d+(v), d−(v)} = |π∗

G| ,

a contradiction to the optimality of π∗
G.

136 4 Properties of Optimal Linear Orderings: A Microscopic View

v0 v1 v2 v3 v4 v5 v6

v0 v1 v2 v3v4 v5 v6

(a)

(b)

Figure 4.19: A linear ordering πG of a graph G (a) and the result of contract(G, (v3, v4))
with linear ordering insert(skip(skip(πG, v3), v4), v3v4, πG(v3), H) (b).

Arc Contraction

Let (u, v) be an arc of G. By contracting (u, v), we obtain a new graph H such that the

vertices u and v of G are replaced by a new vertex “uv” which inherits all arcs incident

to u and v in G except for the arc (u, v) itself and, if existent, all parallel arcs of (u, v). If u

and v are adjacent to the same vertex in G, the contraction may create additional parallel

or anti-parallel arcs.

We denote this operation by contract(G, (u, v)). Formally, if H = contract(G, (u, v)),

then VH = VG \ {u, v} ∪ {uv} and AH = (UH ,mH), where

UH = {(x, y) ∈ UG | x, y ∈ VH}
∪ {(x, uv) ∈ UG | x ∈ (N−

G(u) ∪N−
G(v)) \ {u, v}}

∪ {(uv, y) ∈ UG | y ∈ (N+
G(u) ∪N+

G(v)) \ {u, v}}

and for all (x, y) ∈ UH ,

mH((x, y)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mG((x, y)), if x, y ̸∈ {u, v} ,
mG((x, u)) +mG((x, v)), if y = uv,

mG((u, y)) +mG((v, y)), if x = uv.

Consider now a linear ordering πG of G and assume that πG(v) = πG(u) + 1. As u and

v are consecutive with respect to πG, setting the corresponding linear ordering πH of H

to insert(skip(skip(πG, u), v), uv, πG(u), H) suggests itself.

4.10 Manipulations and Meta-Properties 137

In Figure 4.19, the effect of an arc contraction is visualized. Figure 4.19(a) highlights the

arc (v3, v4) of the graph G in the linear ordering πG, which is contracted in Figure 4.19(b).

The linear ordering πH used for the graph resulting from the arc contraction, H , is

πH = insert(skip(skip(πG, v3), v4), v3v4, πG(v3), H).

Lemma 4.24
Let π∗

G be an optimal linear ordering of a graph G = (VG, AG), u, v ∈ VG, (u, v) ∈
AG, and π∗

G(v) = π∗
G(u)+ 1. Then, πH = insert(skip(skip(π∗

G, u), v), uv, π∗
G(u), H)

is an optimal linear ordering of H = contract(G, (u, v)) and |π∗
G| = |πH |.

Proof. Denote by Bπ∗
G

and BπH the set of backward arcs in G induced by π∗
G and the

set of backward arcs in H induced by πH , respectively. The contraction of arc (u, v)
in G produces counterparts of all arcs in H except for (u, v) and its parallel arcs. By

construction of πH , the correspondents of all arcs of H that are backward arcs in πH are

also backward arcs in π∗
G and vice versa. The arc (u, v) and its parallel arcs are forward

arcs with respect to π∗
G. Subsequently, |Bπ∗

G
| = |BπH |, which yields |π∗

G| = |πH |.
Suppose for the sake of contradiction that πH is not an optimal linear ordering of

H . Then, there is an optimal linear ordering π∗
H of H such that |π∗

H | < |πH |. Obtain a

linear ordering πG of G from π∗
H by applying the corresponding inverse operations, i. e. ,

πG = insert(insert(skip(π∗
H , uv), u, π∗

H(uv)), v, π∗
H(uv) + 1, G). Note that this implies in

turn that π∗
H = insert(skip(skip(πG, u), v), uv, πG(u), H). With the same argument as

above, we can conclude that |πG| = |π∗
H |. By assumption, however, |π∗

H | < |πH |. Hence,

also |πG| < |π∗
G|, a contradiction, because π∗

G is an optimal linear ordering of G.

From Lemma 4.24 and its proof we can derive that for every linear ordering πH of a

graph H that is obtained from a graph G by arc contraction, there is a corresponding

linear ordering πG of G that induces as many backward arcs on G as πH induces on H ,

because πG can always be constructed from πH such that the contracted arc is a forward

arc with respect to πG. In particular, this also applies to optimal linear orderings of H

and yields the following result:

Corollary 4.22
Let (u, v) be an arc of a graph G and H = contract(G, (u, v)). Then, τG ≤ τH .

138 4 Properties of Optimal Linear Orderings: A Microscopic View

Arc Insertion

Next, we consider the effects of connecting two non-adjacent vertices in a graph by

inserting a new arc. Let u, v be two distinct vertices of G, i. e. , u ̸= v. The opera-

tion connect(G, u, v) manipulates G by adding a new arc (u, v). Formally, if H =
connect(G, u, v), then VH = VG and AH = AG ⊎ [(u, v)]. Note that u and v may already

be adjacent in G. We immediately make the following observation:

Proposition 4.6
Let πG be a linear ordering of a graph G, H = connect(G, u, v), and πH =
reinterpret(πG, H). Then, |πG| = |πH |, if πG(u) < πG(v), and |πH | = |πG| + 1,

otherwise.

Proof. If πG(u) < πG(v), then the new arc (u, v) is a forward arc with respect to πH . In

this case, |πH | = |πG|. Otherwise, πG(u) > πG(v), so (u, v) counts as a backward arc and

|πH | = |πG|+ 1.

Let us now consider optimal linear orderings and arc insertions for two consecutive

vertices:

Lemma 4.25
Let π∗

G be an optimal linear ordering of a graph G = (VG, AG), u, v ∈ VG, and

π∗
G(v) = π∗

G(u) + 1. Then, πH = reinterpret(π∗
G, H) is an optimal linear ordering

of H = connect(G, u, v) and |π∗
G| = |πH |.

Proof. As π∗
G(u) < π∗

G(v), Proposition 4.6 immediately implies |π∗
G| = |πH |.

Suppose for the sake of contradiction that πH is not an optimal linear ordering of

H . Then, there is an optimal linear ordering π∗
H of H with |π∗

H | < |πH |. Let πG =
reinterpret(π∗

H , G) be the corresponding linear ordering of G. By Proposition 4.6, |πG| ≤
|π∗

H |, which yields |πG| ≤ |π∗
H | < |πH | = |π∗

G|. Hence, |πG| < |π∗
G|, a contradiction to π∗

G

being an optimal linear ordering of G.

Observe that the graph obtained from G by inserting an arc always has the same

set of vertices as G. Consequently, every linear ordering of one graph can always be

reinterpreted as a linear ordering of the other graph. If we consider optimal linear

orderings of both graphs, then this observation in combination with Proposition 4.6

immediately yields:

4.10 Manipulations and Meta-Properties 139

Corollary 4.23
Let u, v be two vertices of a graph G and H = connect(G, u, v). Then, τG ≤ τH ≤
τG + 1.

Arc Subdivision

The subdivision can be considered the converse operation of an arc contraction. Let (u, v)
be again be an arc of G. Then, subdividing (u, v) yields a new graph H that removes the

arc (u, v) and adds a new vertex “uv” along with two arcs (u, uv) and (uv, v).

We denote this operation by subdivide(G, (u, v)). Formally, ifH = subdivide(G, (u, v)),

then VH = VG∪{uv} andAH = AG\{(u, v)}∪{(u, uv) , (uv, v)}. Applying this operation

to any arc of a graph does not have great influence on its linear orderings:

Proposition 4.7
Let πG be a linear ordering of a graph G, H = subdivide(G, (u, v)), and πH =
insert(πG, uv, πG(u) + 1, H) or πH = insert(πG, uv, πG(v), H). Then, |πG| = |πH |.

Proof. If (u, v) is a forward arc, then πG(u) < πG(v) and subsequently, πH(u) < πH(uv) <
πH(v) for both choices of πH . Hence, (u, uv) and (uv, v) are also forward arcs and

|πG| = |πH |.
Otherwise, if (u, v) is a backward arc, then πG(v) < πG(u). In case that πH =

insert(πG, uv, πG(u) + 1, H), πH(v) < πH(u) < πH(uv), i. e. , (u, uv) is forward and

(uv, v) is backward. On the other hand, if πH = insert(πG, uv, πG(v), H), then πH(uv) <
πH(v) < πH(u), which implies that (u, uv) is backward and (uv, v) is forward. As the

backward arc (u, v) is removed by the subdivision operation and replaced by (u, uv) and

(uv, v), and exactly one of them is backward and the other is forward, we again obtain

|πG| = |πH |.

In particular, the above observation can be transferred to the optimality of linear

orderings as well:

Lemma 4.26
Let π∗

G be an optimal linear ordering of a graph G, H = subdivide(G, (u, v)), and

πH = insert(πG, uv, πG(u) + 1, H) or πH = insert(πG, uv, πG(v), H). Then, πH is

an optimal linear ordering of H .

140 4 Properties of Optimal Linear Orderings: A Microscopic View

Proof. Towards a contradiction, suppose that πH is not an optimal linear ordering of

H and let π∗
H be an optimal linear ordering of H . Then, |π∗

H | < |πH |. Consider the

classification of (u, uv) and (uv, v) with respect to π∗
H . If both are backward, then

the vertex uv is incident to two backward arcs, but no forward arcs. However, this

contradicts the Nesting Property and thereby also the optimality of π∗
H . Hence, at

least one of (u, uv) and (uv, v) must be a forward arc. Furthermore, if one of them

is a backward arc, then the other arc must be the corresponding nesting arc at uv.

Subsequently, if (u, uv) is backward, then π∗
H(uv) < π∗

H(v) < π∗
H(u), and if (uv, v) is

backward, then π∗
H(v) < π∗

H(u) < π∗
H(uv).

Let πG = skip(π∗
H , uv,G) be the linear ordering of G obtained from π∗

H by simply

ignoring uv. In case that both (u, uv) and (uv, v) are forward arcs, π∗
H(u) < π∗

H(uv) <
π∗

H(v). Hence, πG(u) < πG(v) and the sets of backward arcs induced by π∗
H and πG are

identical. Otherwise, if one of (u, uv) and (uv, v) is backward with respect to π∗
H , then

π∗
H(v) < π∗

H(u) as shown above. Thus, also πG(v) < πG(u) and (u, v) is backward with

respect to πG. Then, the set of backward arcs induced by π∗
H and πG differ only in that

the former contains either (u, uv) or (uv, v), whereas the latter contains (u, v) instead.

Subsequently, |π∗
H | = |πG|.

By Proposition 4.7, |π∗
G| = |πH |. Hence, |πG| = |π∗

H | < |πH | = |π∗
G|, a contradiction to

the optimality of π∗
G. In consequence, πH must be an optimal linear ordering of H .

Neutralization

So far, we have put the possibility that an arc contraction produces one or more pairs

of anti-parallel arcs aside, although we stipulated in Section 3.4 that we assume all

input graphs to be free of anti-parallel arcs. To also allow for the handling of graphs

resulting from arc contractions, we introduce a graph operation called neutralization,

which removes anti-parallel arcs pairwisely. More precisely, we show that an arc and its

reverse neutralize each other with respect to their impact on an optimal linear ordering

and thereby provide the formal proof for our assumption in Section 3.4 as a side line.

Let u, v ∈ VG, u ̸= v, be two distinct vertices and (u, v) , (v, u) be a pair of anti-parallel

arcs of G. The operation neutralize(G, (u, v) , (v, u)) yields a new graph by removing one

copy of each of (u, v) and (v, u) from G. Formally, if H = neutralize(G, (u, v) , (v, u)),

then VH = VG and AH = AG \ [(u, v) , (v, u)]. Subsequently, with AH = (UH ,mH),

(u, v) ∈ UH ⇔ mG((u, v)) ≥ 2 and (v, u) ∈ UH ⇔ mG((v, u)) ≥ 2. If (u, v) ∈ UH , then

mH((u, v)) = mG((u, v))− 1. Likewise, if (v, u) ∈ UH , then mH((v, u)) = mG((v, u))− 1.

4.10 Manipulations and Meta-Properties 141

Proposition 4.8
Let u, v ∈ VG, u ̸= v, (u, v) , (v, u) ∈ AG, and H = neutralize(G, (u, v) , (v, u)).

Then, for any linear ordering πG of G holds: |πG| = |reinterpret(πG, H)|+ 1.

Proof. Let πH = reinterpret(πG, H). As either πG(u) < πG(v) or πG(v) < πG(u), one

of (u, v) and (v, u) must be a forward arc and the other one must be a backward arc

with respect to πG. Observing that exactly these arcs are removed in H then yields that

|πH | = |πG| − 1.

As in the case of arc insertion, every linear ordering of a graph can be reinterpreted as

a linear ordering of the graph after applying a neutralization operation and vice versa.

Corollary 4.24
Let u, v ∈ VG, u ̸= v, and (u, v) , (v, u) ∈ AG. If H = neutralize(G, (u, v) , (v, u)),

then τG = τH + 1.

With regard to the improval of linear orderings, the following result is especially of

interest:

Lemma 4.27
Let πG be a linear ordering of a graph G, u ̸= v ∈ VG, (u, v) , (v, u) ∈ AG, and

H = neutralize(G, (u, v) , (v, u)). Then, Opt(πG)⇔ Opt(reinterpret(πG, H)).

Proof. Consider an optimal linear ordering π∗
G of G and let πH = reinterpret(π∗

G, H). By

Proposition 4.8, |π∗
G| = |πH | + 1. Suppose that πH is not an optimal linear ordering

of H . Then, there is is an optimal linear ordering π∗
H of H such that |π∗

H | < |πH |. Let

πG = reinterpret(π∗
H , G). By Proposition 4.8, |πG| = |π∗

H |+ 1. Consequently, |πG| − 1 =
|π∗

H | < |πH | = |π∗
G| − 1, which implies that |πG| < |π∗

G|, a contradiction to π∗
G being

optimal.

By switching the roles of G and H , the same argument can be used to show that if

π∗
H = reinterpret(πG, H) is an optimal linear ordering ofH , then πG = reinterpret(π∗

H , G)
is an optimal linear ordering of G.

For convenience, we define a graph operation that eliminates all pairs of anti-parallel

arcs by an exhaustive application of the neutralization operation as long as a pair of

anti-parallel arcs exists. To this end, we “overload” the operation neutralize and use

142 4 Properties of Optimal Linear Orderings: A Microscopic View

H = neutralize(G) with the just described semantics. Formally, the graph H that is

obtained by neutralize(G) has the vertex set VH = VG and the arc set AH = (UH ,mH),

where

UH =
{
(u, v) ∈ UG | (v, u) ̸∈ UG ∨

(
(v, u) ∈ UG ∧mG((u, v)) > mG((v, u))

)}
and for every arc (u, v) ∈ UH ,

mH((u, v)) =

⎧⎪⎨⎪⎩mG((u, v)), if (v, u) ̸∈ UG,

mG((u, v))−mG((v, u)), else.

We can immediately derive from Lemma 4.27:

Corollary 4.25
Let πG be a linear ordering of a graph G and H = neutralize(G). Then,

Opt(πG)⇔ Opt(reinterpret(πG, H)).

Vertex Fusion

Finally, by combining three of the aforementioned operations, namely arc connection,

arc contraction, and neutralization, we obtain what we call a vertex fusion. A specialty

here is that we use the involved vertices’ positions to specify where the fusion shall

occur. The vertex fusion applied to a graph G and a linear ordering πG at position q,

0 ≤ q < n− 1, is denoted by fuse(G, πG, q) and yields a tuple (H,πH), where

H = neutralize(contract(connect(G, vq, vq+1), (vq, vq+1)))

and

πH = insert(skip(skip(πG, vq), vq+1), vqvq+1, πG(vq), H).

In other words, a vertex fusion replaces two consecutive vertices u and v by a new vertex

“uv” and afterwards removes anti-parallel arcs pairwisely.

From our study of the single operations that it is compiled from, we immediately

obtain:

Lemma 4.28
Let π∗

G be an optimal linear ordering of a graphG on n vertices and q be a position

with π∗
G with 0 ≤ q < n − 1. Then, (H,πH) = fuse(G, π∗

G, q) such that πH is an

optimal linear ordering of H .

4.10 Manipulations and Meta-Properties 143

v0 v1 v2 v3 v4 v5 v6

v0 v1 v2v3 v4 v5 v6

v0 v1 v2v3v4 v5 v6

(a)

(b)

(c)

Figure 4.20: A linear ordering πG of a graph G (a) along with the result of fuse(G, πG, 2)
(b) and and the second iterate fuse2(G, πG, 2) (c).

Proof. Let vq denote the vertex at position q, i. e. , π∗
G(vq) = q. As π∗

G is an optimal

linear ordering of G and vq, vq+1 are two consecutive vertices with respect to π∗
G,

πH′ = reinterpret(π∗
G, H

′) is an optimal linear ordering of H ′ = connect(G, vq, vq+1)
by Lemma 4.25. Furthermore, the linear ordering πH′′ = insert(skip(skip(πH′ , vq), vq+1),
vqvq+1, π

∗
G(vq), H ′′) then also is an optimal linear ordering ofH ′′ = contract(H ′, (vq, vq+1))

by Lemma 4.24. Finally, Lemma 4.27 implies that πH = reinterpret(πH′′ , H) is an optimal

linear ordering of H = neutralize(H ′′), which concludes the proof.

4.10.2 Fusion Property

The Fusion Property and its variants, as the name already suggests, are based on the

graph operation that we just introduced, the vertex fusion. Consider a linear ordering

πG = (v0, v1, . . . , vn−1) of some graph G = (VG, AG) with AG = (UG,mG). As hitherto,

we treat a linear ordering as a permutation of V . With a slight abuse of notation, we

can use functional powers to generalize the fusion of two consecutive vertices in πG

to a fusion of an arbitary set of consecutive vertices: fuse0(G, πG, q) then yields (G, πG)
and for any natural number i, 1 ≤ i < n− q, fusei(G, πG, q) = fuse(fusei−1(G, πG, q), q),

which is equivalent to a fusion of the vertices with position at least q and at most q + i.

144 4 Properties of Optimal Linear Orderings: A Microscopic View

Figure 4.20 exemplifies the fusion of a set of consecutive vertices: The initial graph

G with linear ordering πG is shown in Figure 4.20(a). A vertex fusion at position 2,

i. e. , fuse(G, πG, 2), yields the graph and linear ordering depicted in Figure 4.20(b). The

arcs (v1, v2) and (v1, v3) of G result in a pair of parallel arcs (v1, v2v3), whereas the

correspondents of the arcs (v0, v2) and (v3, v0) of G now neutralize each other, and

likewise do (v2, v5) and (v5, v3). Another pair of parallel arcs originates from (v2, v4)
and (v3, v4). The graph and linear ordering in Figure 4.20(c) is obtained by another

application of the vertex fusion operation and is equivalent to fuse2(G, πG, 2).

Using the above definition, we can state the Fusion Property as follows:

Lemma 4.29 Fusion Property
Let π∗

G be an optimal linear ordering of a graph G on n vertices and B its induced

set of backward arcs. For every linear ordering πG ∈ [π∗
G]∼B

, every position

q with 0 ≤ q < n, and every iterate i with 0 ≤ i < n − q, the vertex fusion

fusei(G, πG, q) yields a graph H and a linear ordering πH such that πH is an

optimal linear ordering of H .

Proof. Let G be a graph that is free of anti-parallel arcs with an optimal linear ordering

π∗
G. Consider any linear ordering πG ∈ [π∗

G]∼B
. As π∗

G is optimal, so is πG.

Let now q be a position within πG with 0 ≤ q < n and 0 ≤ i < n− q. We prove that

fusei(G, πG, q) = (H,πH) such that πH is an optimal linear ordering of H by induction

on i.

Base case i = 0: As fuse0(G, πG, q) = (G, πG), the claim follows immediately.

Base case i = 1: In this case, fuse1(G, πG, q) equals fuse(G, πG, q) and the claim follows

immediately from Lemma 4.28.

Inductive step i⇒ i+1: Let (H,πH) = fusei(G, πG, q). By induction hypothesis, πH is an

optimal linear ordering of H . Let (H ′, πH′) = fusei+1(G, πG, q). As fusei+1(G, πG, q) =
fuse(fusei(G, πG, q), q), (H ′, πH′) = fuse(H,πH , q) = fuse1(H,πH , q) and the claim fol-

lows again from Lemma 4.28.

At the beginning of this section, the Fusion Property was called a meta-property.

Indeed, given a linear ordering π of a graph, we cannot derive benefit from Lemma 4.29

alone. Such a benefit could be, e. g. , the ability to tell whether π can be improved, similar

to the properties discussed earlier in this chapter. If we additionally consider one of

these “beneficial” properties, however, things change.

4.10 Manipulations and Meta-Properties 145

Let πG be again a linear ordering of a graph G and let ψ be such a beneficial property.

We may even assume that πG respects ψ. If there is a set of consecutive vertices with

respect to πG, however, such that their fusion yields a linear ordering not respecting ψ,

Lemma 4.29 immediately implies that πG cannot be optimal. Moreover, the Fusion Prop-

erty enables us to actually construct an improved linear ordering of G by first enforcing

ψ on the linear ordering obtained from the vertex fusion, and then re-expanding the

fused vertices while preserving their original relative order.

As the Fusion Property essentially makes a statement about all topological sortings of

the acyclic subgraph G
⏐⏐F of a given linear ordering πG in combination with the fusion

of all sets of consecutive vertices with respect to πG, the number of resulting linear

orderings which have to be checked is superpolynomial in general. For this reason, the

formulation of relaxations seems appropriate. We exemplarily state three below:

All relaxations relinquish to consider all possible topological sortings of G
⏐⏐F and only

use the current linear ordering πG. The first weaker version of the Fusion Property

additionally restricts itself to the sets of consecutive vertices that include the vertex at

position zero in the linear ordering:

Corollary 4.26 Prefix Fusion Property
Let π∗

G be an optimal linear ordering of a graph G. For every iterate i with

0 ≤ i < n, the vertex fusion fusei(G, π∗
G, 0) yields a graphH and a linear ordering

πH such that πH is an optimal linear ordering of H .

Note that it may be the case that the i-th iterate of the fusion operation yields a linear

ordering that respects some property, whereas the (i− 1)-th iterate does not and vice

versa.

Analogously, another relaxation of the Fusion Property consists in considering only

sets of consecutive vertices that include the vertex at position n−1 in the linear ordering:

Corollary 4.27 Suffix Fusion Property
Let π∗

G be an optimal linear ordering of a graph G. For every position q with

0 ≤ q < n, the vertex fusion fusen−q−1(G, π∗
G, q) yields a graph H and a linear

ordering πH such that πH is an optimal linear ordering of H .

Both the Prefix Fusion Property and the Suffix Fusion Property “generate” n linear

orderings that can be passed on to other property-enforcing routines. Note that the

146 4 Properties of Optimal Linear Orderings: A Microscopic View

Suffix Fusion Property is in fact equivalent to the Prefix Fusion Property on the reverse

graph along with the reverse linear ordering.

Finally, a reasonable assumption would be that the implications of the Fusion Property

are especially strong if every backward arc in the original linear ordering also has a

correspondent in the linear ordering resulting from the vertex fusions. To this end, we

define a function maxIterate(q) that yields the largest iterate i, 0 ≤ i < n−q, of the vertex

fusion at position q such that every backward arc has a correspondent in the resulting

graph and linear ordering. Then, the greedy vertex fusion operation fusegreedy(G, πG)
yields a graph H and a linear ordering πH that can be obtained as follows: Initially, set

q ← 0, i ← maxIterate(q), and let (H ′, πH′) = fusei(G, πG, q). Next, set q ← q + i + 1,

i ← maxIterate(q) using the new value of q, and reapply the vertex fusion operation

using H ′ and πH′ instead of G and πG as input. The last step is repeated as long as q

does not exceed n− 1.

Corollary 4.28 Greedy Fusion Property
Let π∗

G be an optimal linear ordering of a graph G and let H and πH be the graph

and linear ordering resulting from fusegreedy(G, π∗
G). Then, πH is an optimal

linear ordering of H .

As in case of the Prefix Fusion Property and the Suffix Fusion Property, the linear

ordering obtained thereby can be passed to other property-enforcing routines. Under

the assumption that a vertex fusion can be computed in time that is proportional to the

degrees of the two involved vertices, i. e. , O(d(u) + d(v)) for vertices u and v, the time

required for a multi-vertex fusion is in O(n), due to the increasing vertex degree of the

fused vertices. Enforcing the Prefix Fusion Property or the Suffix Fusion Property in

combination with another algorithm with running time in Ω(n) therefore increases it by

a factor of O(n), whereas enforcing the Greedy Fusion Property generates just one linear

ordering and hence always only requires O(n) additional steps for its construction.

4.10.3 Reduction Property

For the second meta-property, we reduce the input graph by removing a set of vertices.

To simplify notation, we introduce a generalized version of the function skip which

creates a new linear ordering by skipping a set of vertices instead of only a single one.

For a linear ordering πG of a graph G = (VG, AG), it is formally defined by

skip(πG, U)(v) = πG(v)− |{u ∈ U | πG(u) < πG(v)}| ,

4.10 Manipulations and Meta-Properties 147

where v is a vertex of G and U ⊆ V . As for the original definition of skip, we define the

convenience function skip(πG, U,H) = reinterpret(skip(πG, U), H).

Lemma 4.30 Reduction Property
Let π∗ be an optimal linear ordering of a graph G = (VG, AG) and let U be a set

of pseudosources, pseudosinks, and either left- or right-blocking vertices, but

not both. Then, πH = skip(π∗
G, U,H) is an optimal linear ordering of H = GVG\U .

Proof. The statement follows trivially if U = ∅. Thus, we assume in the remainder

that |U | ≥ 1. First, consider an out-maximal vertex v in π∗. As the name suggests,

bπ∗(v) = d+(v). Furthermore, by Proposition 4.5, v is either a pseudosink or right-

blocking. Suppose that v loses one of its outgoing backward arcs. Then, both its

outdegree and its number of incident backward arcs decrease by one. Subsequently, v

is still out-maximal afterwards. Likewise, if we consider an in-maximal vertex v in π∗,

then v must be a pseudosource or left-blocking. Here, the same applies for the removal

of an incoming backward arc: v remains in-maximal.

Assume that U contains no left-blocking vertices and order the vertices ui ∈ U ,

0 ≤ i < k = |U |, such that π∗(ui) < π∗(ui+1) for every 0 ≤ i < k − 1. By Lemma 4.23,

π
(0)
G = skip(π∗

G, u0, G
(0)) is an optimal linear ordering of G(0) = remove(G, u0). If k = 1,

this already proves the statement for the case that U contains only pseudosources,

pseudosinks, or right-blocking vertices. Otherwise, the removal of u0 from G and its

incident arcs may have resulted in the loss of either an incoming forward arc or an

outgoing backward arc of another vertex uj ∈ U . In consequence, uj cannot be a

pseudosource with respect to π∗, but must be a pseudosink or right-blocking, i. e. , uj

is out-maximal. As π(0)
G is optimal, f−

π
(0)
G

(uj) ≥ b+

π
(0)
G

(uj). Furthermore, due to our above

considerations, uj is out-maximal with respect to π(0)
G . Subsequently, every vertex in

U \ {u0} is either a pseudosource, a pseudosink, or right-blocking with respect to π(0)
G .

We can therefore apply Lemma 4.23 once more and obtain that π(1)
G = skip(π(0)

G , u1, G
(1))

is an optimal linear ordering of G(1) = remove(G(0), u1). As all remaining vertices in

U—should they exist—can again only have lost an incoming forward arc or an outgoing

backward arc, the reasoning from above can be continued for all vertices of U . This

finally yields that π(k−1)
G = skip(π(k−2)

G , uk−1, G
(k−1)) = πH is an optimal linear ordering

of G(k−1) = H and thereby concludes this part of the proof.

The argument for the case that U contains no right-blocking vertices follows imme-

diately by considering the reverse graph GR along with the reverse linear odering π∗
G

R.

148 4 Properties of Optimal Linear Orderings: A Microscopic View

Alternatively, we can prove the statement directly by ordering the vertices ui ∈ U ,

0 ≤ i < k = |U |, such that π∗(ui) > π∗(ui+1) for every 0 ≤ i < k − 1, i. e. , in descending

order with respect to π∗. Then, the removal of a vertex ui can only cause a vertex uj , j > i,

to lose either its outgoing forward arc or its incoming backward arc. Thus, uj cannot be

a pseudosink, but must be in-maximal. The optimality of the corresponding linear order-

ing in consequence of Lemma 4.23 again guarantees that f+

π
(i)
G

(uj) ≥ b−
π

(i)
G

(uj) and our con-

sideration at the beginning of the proof implies that uj is in-maximal with respect to π(i)
G .

By continuing the argument, we obtain that π(k−1)
G = skip(π(k−2)

G , uk−1, G
(k−1)) = πH is

an optimal linear ordering of G(k−1) = H .

As the vertex set U in Lemma 4.30 is not limited in size, enforcing the Reduction

Property as it is stated would require to consider all suitable subsets of vertices, which

in general is a superpolynomial amount. Instead of providing a weaker, but efficiently

establishable version of this property here, we hint at its close relationship to the Blocking

Vertices Property and the Multipath Blocking Vertices Property. These also deal with

left- and right-blocking vertices, but, in contrast to the Reduction Property, they do not

remove them, but split them vertically and thereby preserve in particular their incident

backward arcs. Furthermore, both of them can be enforced in polynomial time.

Note that a key insight in the proof of Lemma 4.30 was that if we stick to the prescribed

ordering of the vertices of U , the removal of a vertex did not affect the out- or in-

maximality of the remaining vertices. If the set U were to contain both left- and right-

blocking vertices, however, this guarantee would be void. Interestingly, if we consider

the example given in Figure 4.5 and Figure 4.8 with this in mind, we observe that after

the removal of the right-blocking vertex v5, the hitherto left-blocking vertex v7 is no

longer left-blocking, and vice versa.

The following version of a Reduction Property hence follows immediately from

Lemma 4.23:

Corollary 4.29 Independent Set Reduction Property
Let π∗ be an optimal linear ordering of a graph G = (VG, AG) and let U be an

independent set of maximal vertices. Then, πH = skip(π∗
G, U,H) is an optimal

linear ordering of H = GVG\U .

4.10 Manipulations and Meta-Properties 149

4.10.4 Arc Stability Property

When we introduced the first property of this chapter, the Nesting Property, we observed

that it is related to a family of algorithms that are subsumed under the term local search.

In fact, the algorithm that enforces the Nesting Property is a representative of the

class of k-opt heuristics, whose principle of design is to improve a given solution by

simultaneously modifying (up to) k of its components. EnforceNesting does so by

moving one vertex at a time to a new position within a given linear ordering π and is

therefore actually a 1-opt algorithm.

We will now bring in another implementation of a k-opt algorithm that also operates

on linear orderings, but in a different way. In result, we obtain a further property of

optimal linear orderings. In contrast to the Nesting Property, however, it is a meta-

property:

Lemma 4.31 Arc Stability Property
Let π∗

G be an optimal linear ordering of a graph G = (V,A) and let F ⊆ Fπ∗
G

be

a subset of the forward arcs induced by π∗
G. Then, |π∗

G| ≤ |πH | + |F | for every

linear ordering πH of the spanning subgraph H = (V,A \ F).

Proof. Suppose there is a linear ordering π′
H of H such that |π′

H | < |π∗
G| − k, where

k = |F |. As G and H share the same set of vertices, π′
G = reinterpret(π′

H , G) is a linear

ordering of G. Recall that H = G
⏐⏐
A\F . In the worst case, π′

G classifies every arc in

F as backward, which yields |π′
G| ≤ |π′

H | + k and hence, |π′
G| − k ≤ |π′

H | < |π∗
G| − k.

Consequently, |π′
G| < |π∗

G|, a contradiction to the optimality of π∗
G.

Apparently, enforcing the Arc Stability Property even in combination with a polynomial-

time heuristic on a graph with m arcs requires
(m

k

)
calls to this subroutine for each

k ∈ {1, . . . ,m− |π| − 1} and is hence unattractive for the design of fast algorithms. On

the other hand, the running time increases only by a polynomial factor of O(mk) if the

cardinality k of F is fixed.

The following trivial version hence only has a multiplicative overhead of O(m):

Corollary 4.30 One-Arc Stability Property
Let π∗

G be an optimal linear ordering of a graph G = (V,A) and let a be a forward

arc with respect to π∗
G. Then, |π∗

G| ≤ |πH |+ 1 for every linear ordering πH of the

spanning subgraph H = (V,A \ {a}).

5 Maximum Cardinality of Optimal
Feedback Arc Sets of Sparse Graphs

In the preceding chapter, we compiled a collection of properties that every optimal linear

ordering must respect. What is more, we showed that the larger part of them can be

established efficiently, both separately and collectively. For the latter, we developed

an algorithm PsiOpt for general graphs as well as its sibling PsiOptCubic for subcubic

graphs, which construct a compliant solution, i. e. , a Ψ-optimal linear ordering, in

polynomial time.

We now turn to an analysis of these algorithms with respect to their qualitative

performance on sparse graphs. More precisely, we study in particular graphs whose

maximum vertex degree is three or four, and also suggest an approach for graphs with a

maximum vertex degree of five. In doing so, we obtain improved upper bounds for the

cardinality of minimum feedback arc sets for these classes.

The chapter is structured as follows: In the first section, we define some auxiliary

graphs. These graphs are successively derived from an input graph G and a concrete

linear ordering π of G and will aid in the analysis of the cardinality of the backward

arc set induced by π. Next, we attend to subcubic and cubic graphs and prove a tight

upper bound of ⌊n
3 ⌋ for the cardinality of a minimum feedback arc set of a graph with n

vertices. This section also contains a short discussion of the quality of a Ψ-optimal linear

ordering in comparison to an optimal one. Afterwards, we extend the scheme used

for subcubic graphs such that we can essentially analyze graphs with arbitrary vertex

degrees. The application of this general approach to subquartic graphs yields a tight

upper bound of ⌊2n
3 ⌋ for a graph with n vertices, which, if all vertices have degree exactly

four, equals ⌊m
3 ⌋ with m = 2n being the number of arcs. Finally, we briefly consider

subquintic graphs and arrive at the conjecture that the upper bound here is ⌊2.5n
3 ⌋ for a

graph on n vertices. If the graph is quintic, then the number of arcs is m = 2.5n, which

would again imply an upper bound of ⌊m
3 ⌋.

Throughout this chapter, we assume that the input graph is simple.

152 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

5.1 Auxiliary Graphs

In Chapter 4, we introduced the concept of a forward path. The Path Property uses

forward paths in a very basic manner in that it only demands their existence for every

backward arc. The Blocking Vertices Property poses further restrictions, and the Multi-

path Property and finally the Multipath Blocking Vertices Property require compliance

with other backward arcs’ forward paths.

We will now use forward paths to obtain a few auxiliary graph structures. The

constructions build on each other in the sense that the first auxiliary graph forms the

basis for the second, the second for the third, and so on.

5.1.1 The Forward Path Graph

Let π be a Ψ-optimal linear ordering of a graph G = (V,A). In tangible terms, the

Multipath Blocking Vertices Property guarantees that if we take the left-blocking split

graph Gsp/l of G along with the corresponding linear ordering πsp/l, then πsp/l respects

the Multipath Property, i. e. , for every vertex v in Gsp/l, there is a set of pairwise arc-

disjoint forward paths that contains a distinct forward path Pb for every backward arc b

that is incident to v according to πsp/l. Furthermore, the same holds for the right-blocking

split graph Gsp/r together with the corresponding linear ordering πsp/r.

On the basis of the latter, we define the term of a forward path graph. By definition of

Ψ-optimality, π must respect the Multipath Blocking Vertices Property. A forward path
graph

⇝
G =

(⇝
V ,
⇝
A
)

of G with respect to π is a spanning subgraph of G’s right-blocking

split graph Gsp/r, i. e. ,
⇝
G ⊆ Gsp/r, where

⇝
G is compiled from the backward arcs induced

by πsp/r plus for every vertex v ∈ ⇝V a set of pairwise arc-disjoint forward paths Pv

such that Pv contains a distinct forward path for every incoming backward arc of v

with respect to πsp/r. Figure 5.1 provides an example for a graph and a forward path

graph of it. The colors indicate the respective forward paths that have been chosen

for each backward arc. Along with the forward path graph
⇝
G, we maintain a linear

ordering ⇝π , whose vertex ordering equals that of πsp/r, i. e. , ⇝π = reinterpret(πsp/r,
⇝
G).

Note that because all backward arcs are preserved and the arcs before and after the split

are identified, B⇝
π

= Bπsp/r
= Bπ and thus, |⇝π | = |πsp/r| = |π|.

In contrast to Gsp/r, the forward path graph
⇝
G is not uniquely determined. Indeed,

there may be more than one suitable set of arc-disjoint forward paths for the incoming

backward arcs of a vertex, and we select one arbitrarily. What is more, arc-disjointness is

only required for forward paths of backward arcs with a common head. The forward

5.1 Auxiliary Graphs 153

u v w x y z
u v wl wr x y z

(a) (b)

Figure 5.1: A graph (a) along with one of its forward path graphs (b).

u v wl wr x y z

Figure 5.2: An alternative forward path graph for the graph in Figure 5.1(a).

path graph depicted in Figure 5.2 thus is another possible forward path graph for the

graph and linear ordering shown in Figure 5.1(a). Also note that for the set of selected

forward paths, arc-disjointness is only required for those belonging to the incoming

backward arcs of each vertex, but not necessarily for those belonging to its outgoing

backward arcs. The latter are chosen at their respective heads. In Section 4.6.1 we have

already seen that a coincident selection is not always possible. Figure 5.3 provides

another example of the construction of a forward path graph that demonstrates these

facts.

Note that ⇝π respects the Path Property but neither the Nesting Property nor the

Eliminable Layouts Property, due to
⇝
G being only a subgraph of G. More precisely, ⇝π

respects only “half” of the Nesting Property, namely the part that concerns the backward

arcs’ heads, i. e. , the mapping µh in Lemma 4.3. It does, however, not hold for the

u v w x y z u v w x y z

(a) (b)

Figure 5.3: Another graph (a) along with one of its forward path graphs (b).

154 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

(a) (b)

Figure 5.4: An example for a for-out-tree on vertices with layout (a) and an example

for a for-in-tree on vertices with layout (b). The dotted blue arcs indicate that

there may, but need not, be more incident forward arcs.

backward arcs’ tails, which is expressed via the mapping µt. In particular, we still

have f+
⇝
π

(v) ≥ b−
⇝
π

(v) for every vertex v within ⇝π . If b+
⇝
π

(v) ≥ 1, however, then it is only

guaranteed that f−
⇝
π

(v) ≥ 1, but not necessarily f−
⇝
π

(v) ≥ b+
⇝
π

(v).

5.1.2 The Pooled Forward Path Graph

For a further analysis of the forward path graph
⇝
G, we pool vertices with certain layouts

in ⇝π . Consider a vertex v ∈ ⇝V such that f−
⇝
π

(v) = 1, b−
⇝
π

(v) ≥ 1, and b+
⇝
π

(v) = 0. We

represent the layout of vertices like v by the pictogram . Observe that every such

vertex has exactly one incoming forward arc and that these arcs alone naturally cannot

form a cycle, because they are all forward arcs. Hence, the vertices with layout

together with their incoming forward arcs define a subgraph of
⇝
G that is a forest of

out-trees. We call these out-trees the for-out-trees on vertices with layout in ⇝π .

Analogously, we can identify a forest of for-in-trees in ⇝π that consist of vertices v ∈ ⇝V
such that f+

⇝
π

(v) = 1, b+
⇝
π

(v) ≥ 1, and b−
⇝
π

(v) = 0 together with their only outgoing forward

arc. The layout of these vertices is depicted by the pictogram . Figure 5.4 provides

examples for both kinds of trees.

Based on these two structures, we now simplify the forward path graph
⇝
G by con-

tracting the tree arcs and thereby pooling all vertices that belong to the same for-out-tree

or for-in-tree in ⇝π . Let (u, v) be a forward arc in ⇝π such that u and v both have layout

. Then, we contract (u, v) as described in Section 4.10.1, which yields again a vertex

uv with layout . Likewise, if (u, v) is a forward arc in ⇝π such that u and v both

have layout , then the contraction of (u, v) produces in turn a vertex uv with layout

. We call the graph obtained after an exhaustive application of these operations a

pooled forward path graph and denote it by
⇝
G

◦
=
(⇝
V

◦
,
⇝
A

◦)
. We also derive a corresponding

linear ordering ⇝π◦ for
⇝
G

◦
from ⇝π as follows: Before contracting an arc (u, v) connecting

two vertices u, v with layout , we modify ⇝π by moving v to the position ⇝π(u) + 1.

5.1 Auxiliary Graphs 155

u vw xy z

Figure 5.5: The linear ordering of the pooled forward path graph derived from the

forward path graph shown in Figure 5.3(b).

Analogously, before contracting an arc (u, v) connecting two vertices u, v with layout

, we modify ⇝π by moving u to the position ⇝π(v)− 1. Note that this neither affects

the layouts of u and v nor the classification of any arc. Then, u and v are consecutive and

a linear ordering for the resulting graph can be obtained as described in Section 4.10.1.

Observe that in contrast to an actual vertex fusion, we do not perform a neutralization,

i. e. , except for the contracted arcs, all arcs incident to the involved vertices are preserved.

As a consequence,
⇝
G

◦
is not necessarily a simple graph. For ease of handling, we identify

the arcs incident to the vertices before the contraction with their counterparts afterwards.

The sets of backward arcs induced by ⇝π and ⇝π◦ are thus the same.

Whereas the pooled forward path graphs of the forward path graphs depicted in

Figure 5.1(b) and Figure 5.2 remain as they are, because the former has no vertex with

layout or and the latter has a one-vertex for-in-tree consisting only of y, a

difference is visible for the example shown in Figure 5.3(b): Here, the vertices v and

w have layout and form a degenerate for-out-tree which is a path. Similarly, the

vertices x and y both have layout and constitute a degenerate for-in-tree. To obtain

the corresponding pooled forward path graph, the arcs (v, w) and (x, y) are contracted,

such that new vertices vw and xy emerge. The result is depicted in Figure 5.5.

Consider a set of vertices VT + that forms a connected for-out-tree T+ in ⇝π and let

v◦ ∈ ⇝V ◦
be the vertex that pools all vertices in VT + . As T+ has exactly |VT + | − 1 arcs, we

obtain

f−
⇝
π

◦(v◦) = 1,

f+
⇝
π

◦(v◦) =
∑

v∈VT +

f+
⇝
π

(v)− (|VT + | − 1) =
∑

v∈VT +

f+
⇝
π

(v)− |VT + |+ 1,

b−
⇝
π

◦(v◦) =
∑

v∈VT +

b−
⇝
π

(v),

b+
⇝
π

◦(v◦) = 0.

(5.1)

156 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Analogously, if T− is a connected for-in-tree in ⇝π with vertex set VT − and v◦ ∈ ⇝V ◦
is the

vertex within ⇝π◦ that pools all vertices in VT − , then

f−
⇝
π

◦(v◦) =
∑

v∈VT −

f−
⇝
π

(v)− (|VT − | − 1) =
∑

v∈VT −

f−
⇝
π

(v)− |VT − |+ 1,

f+
⇝
π

◦(v◦) = 1,

b−
⇝
π

◦(v◦) = 0,

b+
⇝
π

◦(v◦) =
∑

v∈VT −

b+
⇝
π

(v).

(5.2)

5.1.3 The Polarized Forward Path Graph

Starting from the pooled forward path graph
⇝
G

◦
, we obtain the so-called polarized forward

path graph
⇝
G

∅
=
(⇝
V

∅
,
⇝
A

∅)
. To this end, we polarize every vertex v ∈ ⇝V ◦

by splitting it

into up to three component vertices or simply components vs, vp, and vt, such that vs

inherits all incoming and vt inherits all outgoing backward arcs of v. All forward arcs of

v are inherited by vp. Additionally, we add b−
⇝
π

(v) parallel arcs (vs, vp) as well as b+
⇝
π

(v)
parallel arcs (vp, vt). For simplicity’s sake, each component vertex of v is only present

if it inherits at least one arc from v with a single exception: In case that v is isolated in
⇝
G

◦
,
⇝
G

∅
contains only an isolated vertex vp. The definition in particular also implies that

if v is a pseudosource or a pseudosink or has no incident backward arcs, then v is not

split at all. In these cases, we have vs = v or vt = v or vp = v, respectively. Note that the

vertical split of a right-blocking vertex v, which already occurred for the construction of

the forward path graph
⇝
G, produces a pseudosink vl and a pseudosource vr according to

the definition in Section 4.5.2. To conform with the above naming scheme, we set vs = vr

and vt = vl in this case. Figure 5.6 depicts the general case of a vertex v ∈ ⇝V ◦
that is split

into three component vertices vs, vp, vt ∈
⇝
V

∅
and the slightly different situation if v ∈ V

is right-blocking in π.

Along with
⇝
G

∅
, we maintain a corresponding linear ordering ⇝π∅ of

⇝
G

∅
, which is

derived from
⇝
G

◦
such that vs, vp, and vt take the relative position of v in ⇝π

◦ and
⇝π

∅(vs) ≤ ⇝π
∅(vp) ≤ ⇝π

∅(vt), where applicable. Observe that if v is right-blocking in

π, then ⇝π◦(vl) ≤ ⇝π
◦(vr) already, so we keep the ordering ⇝π∅(vt) ≤ ⇝π

∅(vs) in this ex-

ceptional case. Consequently, if existing, vs always is a pseudosource in ⇝π∅, vt is a

pseudosink, and vp has only forward paths passing through it, but no incident backward

arcs and is therefore called a passage vertex or simply a passage. Note that by defini-

tion, the passage vertex may also be isolated. Indeed, every vertex v ∈ ⇝V ∅
is either a

5.1 Auxiliary Graphs 157

v
polarization

vs vp vt

v

vertical split

& polarization
vt vs

(a)

(b)

Figure 5.6: Polarization of a vertex v in
⇝
G

◦
with incoming and outgoing forward and

backward arcs into its component vertices vs, vp, and vt in
⇝
G

∅
(a) as well as the special

case where v is right-blocking in G and therefore only has component vertices vl = vt

and vr = vs in
⇝
G

∅
(b).

pseudosource, a pseudosink, or a passage in ⇝π∅. Note that the polarization preserves all

backward arcs as well as all forward paths selected during the construction of
⇝
G. The

additional arcs added between vs and vp as well as vp and vt may be regarded as an

extension of the forward paths of the respective incident backward arcs.

Figure 5.7 shows two examples for polarized forward path graphs: The graph in

Figure 5.7(a) is obtained from the forward path graph in Figure 5.2, which is the same as

its pooled forward path graph except for the relabelling of the split verticeswl andwr into

wt and ws, respectively, as described above. The second graph, shown in Figure 5.7(b),

is constructed from the pooled forward path graph that served as an example in the

previous subsection.

For a better visualization, we use special pictograms for the components of the pooled

vertices that were introduced in
⇝
G

◦
: If v has layout in ⇝π◦, then v is split into vs and

vp during the construction of
⇝
G

∅
, which have combined layout in ⇝π∅. Analogously,

if v has layout in ⇝π◦, then v is split into its component vertices vp and vt, which

have combined layout in ⇝π∅.

5.1.4 The Truncated Forward Path Graph

The last auxiliary graph that we use is constructed in turn from the polarized forward

path graph
⇝
G

∅
. The truncated forward path graph

⇝
G

∅

tr =
(⇝
V

∅

tr,
⇝
A

∅

tr
)

is the subgraph obtained

from
⇝
G

∅
by removing all vertices that are pseudosinks with respect to⇝π∅. In other words,

158 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

us vp wt ws xp yp yt zt

us vws vwp xyp xyt zt

(a)

(b)

Figure 5.7: The linear orderings of the polarized forward path graphs derived from the

(pooled) forward path graphs shown in Figure 5.2 in (a) and Figure 5.5 in (b).

⇝
G

∅

tr = ⇝
G

∅

S∪P , where S is the set of pseudosources and P is the set of passage vertices

with respect to ⇝π∅. As the backward arcs are removed together with their tails,
⇝
G

∅

tr is

acyclic. Furthermore, every vertex v that is a pseudosource in ⇝π∅ is a source in
⇝
G

∅

tr with

d+
⇝
G

∅
tr

(v) = b−
π (v), because, first, the forward paths chosen for

⇝
G are pairwise arc-disjoint

at the backward arcs’ head. Second, no pseudosource can have a forward arc to a

pseudosink in
⇝
G

∅
: Otherwise, this forward arc’s tail must be a pseudosource and its

head must be a pseudosink in
⇝
G

◦
, which would imply that

⇝
G and hence alsoG had a pair

of anti-parallel arcs. In consequence, only passage vertices in ⇝π∅ may “lose” outgoing

(forward) arcs during the transition from
⇝
G

∅
to
⇝
G

∅

tr, which is also why
⇝
G

∅

tr contains

exactly the same isolated vertices as
⇝
G and there are no sources in

⇝
G

∅

tr that were not

pseudosources in
⇝
G

∅
. To facilitate indication, we call a spanning subgraph H ⊆ ⇝

G
∅

tr

of
⇝
G

∅

tr source-preserving if there is a one-to-one correspondence between the sources in

H and the pseudosources in ⇝π∅ and d+
H(v) = b−

⇝
π

∅(v) for every pseudosource v ∈ ⇝V ∅
.

Hence,
⇝
G

∅

tr is itself source-preserving.

For visualization purposes, we maintain a linear ordering ⇝π∅
tr of

⇝
G

∅

tr, which is obtained

from ⇝π
∅ by skipping all pseudosinks. Figure 5.8 shows the truncated forward path

graphs of all forward path graphs that were given exemplarily in Section 5.1.1. The

forward path graph depicted in Figure 5.1(b) is at the same time also a pooled and a

polarized forward path graph, except for the relabelling of the vertices. Figure 5.8(a)

displays the corresponding truncated forward path graph. For the polarized forward

5.2 Subcubic Graphs 159

us vp ws xp us vp ws xp yp

(a) (b)

us vws vwp xyp

(c)

Figure 5.8: The linear orderings of the truncated forward path graphs derived from the

(polarized) forward path graphs shown in Figure 5.1(b) in (a), Figure 5.7(a) in (b), and

Figure 5.7(b) in (c).

path graphs shown in Figure 5.7, their truncated counterparts are given in Figure 5.8(b)

and Figure 5.8(c).

5.2 Subcubic Graphs

We start our analysis of the cardinality of optimal feedback arc sets with the sparsest

type of graphs, which are the subcubic ones. It might be objected here that there are even

sparser graphs with a maximum vertex degree of two or one. For a graph to be strongly

connected, however, every vertex needs at least one incoming and one outgoing arc.

Hence, a vertex degree of one is never possible, and a graph whose vertices each have

degree exactly two and which is strongly connected is a simple cycle with an optimal

feedback arc set of cardinality one.

5.2.1 A Tight Bound

In order to estimate the number of backward arcs in dependency on the size of the input

graph, we will use the following notion: Think of a graph along with a linear ordering

and imagine that every backward arc produces a pebble that is initially located at its

head. This pebble is then transported along a forward path to the backward arc’s tail and

put down on one of its vertices that is neither incident to another backward arc nor has

another pebble already been deposited there. This vertex can then uniquely be assigned

to the backward arc that produced the pebble. We will show that such an assignment is

possible for every subcubic graph, and that we can also assign each backward arc its

head and tail.

160 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Theorem 5.1
Every Ψ-optimal linear ordering of a subcubic graph having n vertices induces

at most ⌊n
3 ⌋ backward arcs.

Proof. Consider a Ψ-optimal linear ordering π of a subcubic graph G = (V,A). As π

respects the Nesting Property and the Eliminable Layouts Property, it induces one of the

seven different layouts shown in Table 5.1 on every vertex v ∈ V . Note that the layouts

and are eliminable and therefore beyond consideration.

We first construct a forward path graph
⇝
G =

(⇝
V ,
⇝
A
)

ofGwith respect to π as described

in Section 5.1.1. Let ⇝π denote the corresponding linear ordering of
⇝
G and observe that

⇝
V = Vsp/r = V , because no vertex can have both an incoming and an outgoing backward

arc in π and π respects the Eliminable Layouts Property. With every vertex being incident

to at most one backward arc, we can assume that
⇝
G contains exactly one forward path per

backward arc. Due to the limited number of possible vertex layouts,
⇝
G cannot contain a

vertex with layout or , which implies that the corresponding pooled forward

path graph
⇝
G

◦
equals

⇝
G. Moreover, every vertex in

⇝
G already is either a pseudosource,

a pseudosink, or a passage vertex. Hence,
⇝
G

∅
= ⇝
G

◦
= ⇝
G. Note that no vertex with an

outgoing backward arc can be part of a forward path that does not end at it. We conduct

the analysis of
⇝
G using the truncated forward path graph

⇝
G

∅

tr =
(⇝
V

∅

tr,
⇝
A

∅

tr
)
, which can in

this case be obtained directly from
⇝
G by removing all pseudosinks (cf. Section 5.1.4).

To estimate the number of backward arcs in π, we look at the delta degrees of the

vertices in
⇝
G

∅

tr. Recall that the delta degree δ(v) of a vertex v is defined as d+(v)− d−(v).

To ease notation, we stipulate that all denominations of vertex degrees, i. e. , δ(v), d+(v),

and d−(v), used in the remainder of this proof only refer to the truncated forward path

graph
⇝
G

∅

tr. Figure 5.9 provides an example of a graph, a Ψ-optimal (here even optimal)

linear ordering, and the corresponding truncated forward path graph.

Table 5.1: Layouts induced by a Ψ-optimal linear ordering on a vertex v of a subcubic

graph as pictograms and 4-tuples.

d(v) = 2: (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0)

d(v) = 3: (0, 2, 1, 0), (2, 0, 0, 1), (1, 2, 0, 0), (2, 1, 0, 0)

5.2 Subcubic Graphs 161

u v w

x y z

u w y v x z

(a) (b)

us

+1

ws

+1

yp

−1

vp

−1 (c)

Figure 5.9: The 3-fence (a), an optimal linear ordering of it (b), and the (in this case

unique) truncated forward path graph with delta degrees (c).

Consider a vertex v ∈ V that has an incoming backward arc in π. Looking up the table

of possible layouts of vertices with an incident backward arcs, we find that the layout of

v must be either or , i. e. , v is a pseudosource and b−
π (v) = b−

⇝
π

(v) = 1. Furthermore,

v = vs in
⇝
G

∅

tr. As
⇝
G

∅

tr is source-preserving, vs is a source in
⇝
G

∅

tr with d+(vs) = 1 and thus,

δ(vs) = 1. Besides, there are no other sources in
⇝
G

∅

tr.

Consider now a non-isolated vertex vp ∈
⇝
V

∅

tr whose original vertex v has no incident

backward arcs in
⇝
G and suppose that in the truncated forward path graph, δ(vp) ≤ −2.

Recall that
⇝
G is a union of backward arcs and corresponding forward paths, i. e. , v has

at least one incoming and one outgoing arc in
⇝
G. Furthermore, it can be incident to at

most three arcs, hence, if δ(vp) ≤ −2, the layout induced on v by ⇝π must be and

v’s outgoing forward arc (v, t) ∈ ⇝A is not contained in
⇝
A

∅

tr. This in turn implies that

t is a pseudosink with b+
π(t) = b+

⇝
π

(t) = 1 and is therefore not part of
⇝
G

∅

tr. Moreover,

both incoming arcs of v must be contained in
⇝
G

∅

tr to obtain δ(vp) = −2 and no smaller

delta degree is possible. In consequence,
⇝
G contains two forward paths for the single

backward arc whose tail is t, a contradiction to the fact that the forward path graph for a

subcubic graph contains exactly one forward path per backward arc. Thus, we obtain for

every vertex vp of
⇝
V

∅

tr a delta degree of δ(vp) ≥ −1, because an isolated vertex always

has a delta degree of zero. As
⇝
G

∅

tr contains no other vertices, we can therefore conclude

that ∀v ∈ ⇝V ∅

tr : δ(v) ∈ {−1, 0, 1}.

162 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Recall from Section 3.2 that for every graph the sum of the delta degrees of its vertices

equals zero. Thus, ∑
v∈
⇝
V

∅
tr

δ(v) = 0.

Consequently, for every vertex v with δ(v) = +1,
⇝
G

∅

tr must contain another vertex u with

δ(u) = −1. Furthermore, the vertex set of
⇝
G

∅
= ⇝
G and G is exactly the same, whereas

that of
⇝
G

∅

tr differs only in the removal of all pseudosinks. This enables us to assign each

backward arc (u, v) three exclusive vertices of G: Its tail u, its head v, which is preserved

as the source vs in
⇝
G

∅

tr, and a passage vertex w of
⇝
G such that the delta degree of wp

in
⇝
G

∅

tr is δ(wp) = −1, which thereby counterbalances the delta degree δ(vs) = +1 of vs.

Hence,

|⇝π | ≤ ⌊n3 ⌋,

as the number of backward arcs is always integer.

So the pebble that each backward arc produces and that must be transported along

a forward path until it is dropped on one of its vertices corresponds in the proof to a

source in the truncated forward path graph with delta degree +1, whereas the deposit

vertex is the balancing one with delta degree −1.

By Corollary 4.21, we can construct a Ψ-optimal linear ordering of a subcubic graph

in O(n3) time. Thus, we obtain1:

Corollary 5.1
There is an O(n3)-time algorithm to construct a feedback arc set with cardinality

at most ⌊n
3 ⌋ for a subcubic graph.

A directed triangle or the graph depicted in Figure 5.9, which has an optimal fractional

feedback arc set of size 3
2 using one half of each of the arcs (x, u), (y, v), and (z, w) already

testify that the bound of ⌊n
3 ⌋ is tight for n = 3 and n = 6, respectively. In fact, there is a

subcubic graph that meets this bound for all values of n ≥ 3:

Lemma 5.1
For every n ≥ 3 there is a subcubic graph on n vertices whose optimal feedback

arc set has cardinality at least ⌊n
3 ⌋.

1This result has also been published in an earlier conference article [HBA13].

5.2 Subcubic Graphs 163

u0

v0 w0

u1

v1 w1

ui

vi wi

uk−1

vk−1 wk−1.

Figure 5.10: Construction of subcubic graphs with n vertices and τ = ⌊n
3 ⌋.

Proof. Let k = ⌊n
3 ⌋ and construct a graph Gn that consists of k vertex-disjoint di-

rected triangles such that the ith triangle uses the vertices {ui, vi, wi} and the arcs

{(ui, vi) , (vi, wi) , (wi, ui)}, where 0 ≤ i < k. Additionally, Gn contains an arc (wi, vi+1)
for every 0 ≤ i < k − 1 and an arc (wk−1, v0). The construction is also visualized in

Figure 5.10. Finally, perform an arc subdivision on n − 3k of the arcs as described in

Section 4.10.1. Then, Gn is a strongly connected, subcubic graph on n vertices with k

vertex-disjoint and hence also arc-disjoint cycles. Consequently, τGn ≥ k = ⌊n
3 ⌋.

Note that the graphs constructed in Lemma 5.1 can be easily augmented such that

at most one vertex has a degree less than three by adding, e. g. , arcs that connect two

vertices ui and u⌊ k
2 ⌋+i for 0 ≤ i < k

2 . As every optimal linear ordering is also Ψ-optimal

by Theorem 4.1, the combination of Theorem 5.1 and Lemma 5.1 yields1:

Theorem 5.2
The cardinality of an optimal feedback arc set of a subcubic graph having n

vertices is at most ⌊n
3 ⌋ and this bound is tight for all values of n ≥ 3.

5.2.2 On the Approximation Ratio

In the previous subsection, we showed that every optimal linear ordering of a cubic

graph induces a feedback arc set of cardinality at most one third of the number of

vertices, and that this bound can be achieved by an efficient algorithm, PsiOptCubic. A

natural question to ask here is: How close is the solution of PsiOptCubic to an optimal

solution? Or, maybe more importantly, how bad can it be?

The attentive reader may have noticed that the proof of the bound in the previous sub-

section was based only on two properties: the Path Property and the Eliminable Layouts

1A slightly weaker version of this result has also been published in an earlier conference article [HBA13].

164 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

v0 v1 v2 v3 w2 w1 w0 x0 x1 x2 u3 u2 u1 u0

v0 v1 v2 v3 w2 w1 w0 x0 x1 x2 u3 u2 u1 u0

x0 x1 x2 v0 u3 v3 u2 v2 u1 v1 u0 w2 w1 w0

(a)

(b)

(c)

Figure 5.11: A cubic graph with a Ψ-optimal linear ordering of size n+2
4 (a), a visualization

of some of its cycles (b), and an optimal solution needing only two backward arcs (c).

5.2 Subcubic Graphs 165

Property. Indeed, these two properties do not suffice to construct linear orderings that

are guaranteedly close to an optimal solution:

Lemma 5.2
For every k ≥ 2, there is a cubic graph on n = 4k − 2 vertices with a Ψ-optimal

linear ordering π such that |π|
τ ∈ Θ(n).

Proof. We construct a graph G = (V,A) with n = 4k − 2 vertices as it is depicted in

Figure 5.11(a) for k = 4: For every 0 ≤ i < k, G has two vertices ui and vi that are

connected by an arc (ui, vi). Additionally, there is an arc (vi, ui−1) for every 1 ≤ i < k

and there is an arc (v0, uk−1). Furthermore, for every 0 ≤ i < k−1, G has two vertices wi

and xi as well as the arcs (vi, wi) and (xi, ui). Next, add the arcs (wi+1, wi) and (xi, xi+1)
for every 0 ≤ i < k−2. Finally, we insert the arcs (vk−1, wk−2), (w0, x0), and (xk−2, uk−1).

In result, G is cubic.

Let π = (v0, v1, . . . , vk−1, wk−2, wk−3, . . . , w0, x0, x1, . . . , xk−2, uk−1, uk−2, . . . , u0) be

the linear ordering which is already depicted in Figure 5.11(a) for k = 4. Then, π

is a Ψ-optimal linear ordering of G and |π| = k. Observe that all forward paths with

respect to π use the arc (w0, x0). Furthermore, there is a cycle consisting only of the

vertices ui and vi, 0 ≤ i < k. Figure 5.11(b) highlights these cycles: The arcs of the cycles

containing the forward paths are colored blue, whereas the cycle induced by the vertex

set
⋃

0≤i<k {ui, vi} is colored red. The backward arcs are part of the blue cycles as well

as the red cycle and are therefore bicolored. Note that there are further cycles that use

both pure red and pure blue arcs and, because of the latter, necessarily also (w0, x0).

Subsequently, however, the arc (w0, x0) together with one of the current backward arcs,

(u0, v0), e. g. , cover all cycles in G and removing them yields an acyclic subgraph of G.

A corresponding linear ordering is depicted in Figure 5.11(c). In conclusion, τ = 2 for all

graphs constructed like G, which implies that |π|
τ = k

2 = n+2
8 ∈ Θ(n).

Another property that has been introduced in Chapter 4 but has not played a role

so far is the Fusion Property. As a matter of fact, if we choose the vertices to be fused

carefully, we can use it to construct a better solution for the graphs constructed in the

proof of Lemma 5.2: Let G = (V,A) be a graph constructed according to the description

in the proof of Lemma 5.2. We partition the vertices in Y = {vi | 0 ≤ i < k} into up to

three sets Z1, Z2, Z3 such that two vertices vj , vl ∈ Y , vj ̸= vl, are in different partitions

if there is a vertex u ∈ V such that both (vj , u) , (u, vl) ∈ A. More descriptively, vj and vl

166 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

v0 v1 v2 v3 w2 w1 w0 x0 x1 x2 u3 u2 u1 u0

v0v2 v1v3 w2 w1 w0 x0 x1 x2 u3 u2 u1 u0

(a)

(b)

Figure 5.12: A suitable partition of the vertices {vi | 0 ≤ i < k} (a) and the graph and

linear ordering obtained after the fusion of all vertices that are in the same partition (b).

5.3 From Subcubic to General Graphs 167

reside in different partitions if they have a common neighbor u such that one of them

has an outgoing arc to u and the other has an incoming arc from u. A suitable partition

can be found efficiently by constructing an undirected helper graph GH that has Y as

vertex set and an edge between two vertices in Y if they may not be contained in the

same partition. In case of graphs constructed like G, every vertex in GH has degree at

most two. Hence, GH is a collection of simple paths and cycles and is thus 3-colorable.

In fact, GH is only a simple cycle of length k here. Now, any 3-coloring of GH such that

two adjacent vertices receive different colors corresponds to a suitable partition of the

vertices in Y . Figure 5.12(a) depicts such a coloring for G. As the cycle in GH for the

example graph has length k = 4 and is thus even, two colors suffice. Next, we obtain

a new linear ordering π′ from π by reordering the vertices in Y such that vertices in

the same partition (i. e. , of the same color) are consecutive. Note that G does not have

any arcs between two vertices of Y , which is why Bπ′ = Bπ. Finally, fuse all vertices

of Y that are in the same partition. Due to the construction of Z1, Z2, and Z3, there is

a one-to-one correspondence between the arcs in the fused graph and the arcs in G,

i. e. , no neutralization of arcs occurs. The fused graph along with the respective linear

ordering is shown in Figure 5.12(b) and we observe that neither v0v2 nor v1v3 has two

arc-disjoint forward paths for its incident backward arcs, i. e. , the linear ordering of the

fused graph does not respect the Multipath Property and hence can be improved.

In case of the example graph, re-establishing the Multipath Property on the fused

graph, undoing the fuse operation, and re-establishing the Path Property indeed yields

an optimal linear ordering. However, the above construction of the fused graph fails

already if we replace the arcs (vi, ui−1), for every 1 ≤ i < k as well as (v0, uk−1) by

dedicated paths of length at least two. Then, all vertices can be in the same partition and

the fused graph has forward paths that use these new paths. It therefore remains an

interesting open question of whether the Fusion Property or any other property can be

used in general to efficiently construct a linear ordering of a cubic graph that improves

the gap shown in Lemma 5.2.

5.3 From Subcubic to General Graphs

Subcubic graphs certainly constitute the class of the sparsest interesting graphs to

consider as input to the LINEAR ORDERING problem. As we have seen in Chapter 4,

however, powerful properties such as the Blocking Vertices Property, the Multipath

Property, and the Multipath Blocking Vertices Property, grasp at nothing on these graphs

168 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

because they are just too sparse: For cubic graphs, an optimal linear ordering cannot

induce blocking vertices with an non-eliminable layout and as every vertex can be

incident to at most one backward arc, the pairwise arc-disjoint forward paths demanded

by the Multipath Property are trivially guaranteed by the combination of the much

simpler Nesting Property and Path Property.

In this section, we raise the maximum vertex degree and propose a suitable extension

of the schema used for the analysis of cubic graphs.

5.3.1 Pebble Transportation in Supercubic Graphs

Remember the idea about the pebble that is produced by each backward arc and trans-

ported along one of its forward path, which we used in the previous section to prove a

tight bound on subcubic graphs? There, we were able to exclusively assign a backward

arc its tail, its head, and one further vertex on its forward path. Looking at vertices

of degree four or more, however, the same procedure is no longer possible, because a

vertex may have multiple incoming and outgoing backward arcs. On the other hand,

the Nesting Property also limits the number of incident backward arcs to at most half of

a vertex’s degree.

Motivated by this observation, we will extend the notion of “pebble transportation”

as follows: Every backward arc b still produces a pebble that initially lies at its head and

must be transported along a forward path of b until it can be deposited on one of the

forward path’s vertices. However, a vertex is no longer exclusively associated with one

backward arc, but must be shared.

Let G = (V,A) be a graph along with a linear ordering π. To keep track of a vertex’s

assignments, we introduce three mappings αh, αt, αd : V → N, where αh(v) denotes

the number of backward arcs whose head is v, αt(v) denotes the number of backward

arcs whose tail is v, and αd(v) denotes the number of pebbles that are deposited on v.

Furthermore, let α(v) = αh(v) + αt(v) + αd(v) be the vertex-wise sum of these values.

The value of α(v) may be regarded as a fee or charge that is demanded by a vertex v.

In case of subcubic graphs, we found that α(v) ≤ 1 for each vertex v and hence, every

backward arc can be associated with three exclusive vertices. For higher vertex degrees,

we may think of halves and thirds of vertices, e. g. , if α(v) = 2 or α(v) = 3, respectively.

Let us now consider the necessary conditions for these mappings to be useful for the

estimation of |π|. Whereas the definition of αh and αt immediately imply that∑
v∈V

αh(v) =
∑
v∈V

αt(v) = |π| , (5.3)

5.3 From Subcubic to General Graphs 169

we must take care that ∑
v∈V

αd(v) ≥ |π| . (5.4)

We say that an assignment scheme α that consists of the mappings αh, αt, and αd is

admissible with respect to a linear ordering π if it fulfills Equation (5.3) and Equation (5.4).

Employing this to count the number of backward arcs then yields:

Proposition 5.1
Let π be a linear ordering of a graph G = (V,A) along with an admissible

assignment scheme α. Then,

τG ≤ |π| ≤ ⌊
1
3
∑
v∈V

α(v)⌋.

5.3.2 A General Assignment Scheme

Based on the prerequisites that we just developed and the proof strategy for the subcubic

case, we propose the following general assignment scheme:

Lemma 5.3
Let G = (VG, AG) be a graph with linear ordering π that respects the Multipath

Blocking Vertices Property, let
⇝
G

∅
be a corresponding polarized forward path

graph of G with linear ordering ⇝π∅, and let H = (VH , AH) ⊆ ⇝G∅

tr be a spanning,

source-preserving subgraph of the respective truncated forward path graph.

Then, α(v) = αh(v) + αt(v) + αd(v) such that

αh(v) = b−
π (v),

αt(v) = b+
π(v), and

αd(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{−δH(vp), 0}, if vp ∈ VH is v’s passage component,
1
k ·max{−δH(up), 0}, if v and k − 1 other vertices are pooled

within a vertex u and up ∈ VH is

u’s passage component,

0, otherwise.

for each vertex v ∈ VG is an admissible assignment scheme.

170 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Proof. Recall from Section 5.1 that the polarized forward path graph
⇝
G

∅
is obtained from

the right-blocking split graph Gsp/r of G by first constructing a forward path graph
⇝
G =

(⇝
V ,
⇝
A
) ⊆ Gsp/r along with a linear ordering ⇝π such that every set of backward

arcs with a common head has pairwise arc-disjoint forward paths. Afterwards, the

pooling of vertices with layout and in ⇝π yields the pooled forward path graph
⇝
G

◦
=
(⇝
V

◦
,
⇝
A

◦)
together with the linear ordering ⇝π◦. By splitting every vertex v in

⇝
G

◦

into up to three components vs, vp, and vt such that vs is a pseudosource, vp is a passage,

and vt is a pseudosink, we obtain the polarized forward path graph
⇝
G

∅
=
(⇝
V

∅
,
⇝
A

∅)
and

finally the truncated forward path graph
⇝
G

∅

tr =
(⇝
V

∅

tr,
⇝
A

∅

tr
)

by removing all pseudosinks

in
⇝
G

∅
.

As has already been noted in Section 5.1.3, all backward arcs as well as the forward

paths chosen for
⇝
G are preserved in

⇝
G

∅
. Furthermore, every vertex v ∈ ⇝

V
∅

with

an incident backward arc is either a pseudosource or a pseudosink. As H is source-

preserving, every pseudosource vs in
⇝
G

∅
is a source inH such that d+

H(vs) = b−
⇝
π
∅(vs) and

every source in H originates from a pseudosource in
⇝
G

∅
. Hence, for each source vs ∈ VH

that originates from the polarization of the vertex v ∈ ⇝V ◦
, δH(vs) = b−

⇝
π
∅(vs) = b−

⇝
π

◦(v).

Observe that, as in every graph,
∑

x∈VH
δH(x) = 0. Let S ⊆ VH be the set of all sources in

H and let vs be the respective pseudosource component of a vertex v ∈ ⇝V ◦
. As S ⊆ ⇝V ∅

also equals exactly the set of pseudosources in
⇝
G

∅
, we obtain∑

vs∈S

δH(vs) =
∑

vs∈S

b−
⇝
π

∅(vs) =
∑

v∈
⇝
V

◦
b−
⇝
π

◦(v) =
∑
v∈V

b−
π (v) = |π| .

Consequently, the delta degrees of all non-sources in H must sum up to the negative of

this value, i. e. , ∑
x∈VH\S

δH(x) = − |π| .

Equivalently, ∑
x∈VH\S

−δH(x) = |π| ,

which yields ∑
x∈VH\S

max{−δH(x), 0} ≥ |π| . (5.5)

Consider now the mappings αh, αt, and αd as defined in the statement of the lemma,

but initially for the vertices of
⇝
G

∅
instead of G, as follows: For a vertex x ∈ ⇝G∅

, we

set αh(x) = b−
⇝
π

∅(x) and αt(x) = b+
⇝
π
∅(x). Furthermore, if x is a passage, we derive

the value of αd(x) from its negative delta degree in H and clip it at zero, i. e. , αd(x) =

5.3 From Subcubic to General Graphs 171

max{−δH(x), 0}. Keep in mind that every vertex of
⇝
G

∅
is either a pseudosource or

a pseudosink or a passage and that VH contains exactly the pseudosources and the

passages. To make αh, αt, and αd total, we set αh(x) = 0 for pseudosinks and passages,

αt(x) = 0 for pseudosources and passages, and αd(x) = 0 for pseudosources and

pseudosinks. Let P denote the set of passages in
⇝
G

∅
. Equation (5.5) then yields that∑

x∈
⇝
V

∅

αd(x) =
∑
x∈P

max{−δH(x), 0} =
∑

x∈VH\S

max{−δH(x), 0} ≥ |π| , (5.6)

because for every pseudosource or pseudosink x, αd(x) = 0 by the above definition.

Furthermore, VH consists exactly of the pseudosources and passages of
⇝
G

∅
and every

pseudosource in
⇝
G

∅
corresponds to a source in S ⊆ VH .

The mappings αh, αt, and αd for the vertices of G are now obtained from their

corresponding component vertices in
⇝
G

∅
, i. e. , for v ∈ VG, αh(v) = αh(vs), αt(v) = αt(vt),

and αd(v) = αd(vp). If a component does not exist, we set the respective value to zero.

In case that v is pooled within a vertex u in
⇝
G

◦
along with k − 1 further vertices,

we have b−
⇝
π

◦(u) = ∑
v∈
⇝
V (u)

b−
⇝
π

(v) = ∑
v∈
⇝
V (u)

b−
π (v) and b+

⇝
π

◦(u) = ∑
v∈
⇝
V (u)

b+
⇝
π

(v) =∑
v∈
⇝
V (u)

b+
π(v), where

⇝
V (u) is used here to denote the set of vertices that u pools. Note

that
⇝
V (u) ⊆ V . We set αh(v) = b−

π (v), αt(v) = b+
π(v), and αd(v) = 1

k · αd(up), such that

the componentwise sum of all vertices pooled within u yields exactly αh(u), αt(u), and

αd(u). Recall from Section 5.1.3 that for a right-blocking vertex v, vs = vr, vt = vl, and

there is no passage component vp.

Hence, this definition yields for every vertex v ∈ VG that

αh(v) = αh(vs) = b−
⇝
π
∅(vs) = b−

⇝
π

◦(v) = b−
⇝
π

(v) = b−
π (v) and

αt(v) = αt(vt) = b+
⇝
π
∅(vt) = b+

⇝
π

◦(v) = b+
⇝
π

(v) = b+
π(v)

and thereby corresponds to the statement in the lemma. Furthermore,∑
v∈VG

αh(v) =
∑

v∈VG

b−
π (v) = |π| ,

∑
v∈VG

αt(v) =
∑

v∈VG

b+
π(v) = |π| , and, due to Equation (5.6),

∑
v∈VG

αd(v) =
∑

v∈VG

αd(vp) =
∑

x∈
⇝
V

∅

αd(x) ≥ |π| ,

which shows that the assignment scheme is admissible and thereby concludes the

proof.

172 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Table 5.2: Definition of the mappings αh, αt, and αd according to Lemma 5.3.

Lπ(v) L⇝
π
∅(vs)/ L⇝

π
∅(vp)/ L⇝

π
∅(vt)a αh(v) αt(v) αd(v)

v vs b−
π (v) 0 0

v vt 0 b+
π(v) 0

v vs vp vt b−
π (v) b+

π(v) max{−δH(vp), 0}

v vt vs b−
π (v) b+

π(v) 0

v vs vp b−
π (v) 0 max{−δH(vp), 0}b

v vp vt 0 b+
π(v) max{−δH(vp), 0}c

v vp 0 0 max{−δH(vp), 0}

aAs
⇝
G ⊆ G and

⇝
G

∅
is obtained in turn from

⇝
G, f−

⇝
π

∅(vp) ≤ f−
π (v), f+

⇝
π

∅(vp) ≤ f+
π (v), and, if vp does not

exist, 1 ≤ f−
⇝
π

∅(vt) ≤ f−
π (v) in general. For the sake of readability, the pictograms do not reflect this fact

if compared to the leftmost column.
bIf v has layout in ⇝π and is pooled within a vertex u along with k − 1 further vertices, then the

second column shows the components us and up of u and αd(v) = 1
k

max{−δH(up), 0}.
cIf v has layout in ⇝π and is pooled within a vertex u along with k − 1 further vertices, then the

second column shows the components up and ut of u and αd(v) = 1
k

max{−δH(up), 0}.

5.4 Subquartic and Subquintic Graphs 173

The assignment scheme presented in Lemma 5.3 is once again subsumed in Table 5.2

for the different vertex layouts. Here, the first column shows the layout of a vertex v

as induced by the linear ordering π that is to be analyzed. In the second column, the

components of v or, if v is pooled within a vertex u in
⇝
G

◦
, those of u are depicted. The

last three columns specify v’s assignments. The table also shows the implications in case

that v is right-blocking in the fourth row.

5.4 Subquartic and Subquintic Graphs

We now apply the generalized assignment scheme developed in the previous section to

subquartic graphs, i. e. , graphs where every vertex has a degree of at most four. Prior

to this, we introduce two properties that basically constitute a manifestation of the Arc

Stability Property, but are especially tailored to graphs of this density. The analysis of

Ψ-optimal linear orderings that additionally adhere to them allows us then to derive a

tight bound. Finally, we will also make a suggestion how this proof can be extended to

also accommodate for graphs with vertex degree at most five, i. e. , subquintic graphs.

5.4.1 Two Special Cases of One-Arc Stability

In preparation for our estimate of the upper bound of an optimal feedback arc set of a

subquartic graph, we introduce two properties of optimal linear orderings. Interestingly,

their generalization yields the Extended Multipath Blocking Vertices Property, which

has already shown not to be establishable efficiently, whereas the following weaker

versions only require a special implementation of the One-Arc Stability Property.

Lemma 5.4 Alternative Forward Paths Property
Let π∗ be an optimal linear ordering of a graph G = (V,A). Let u, v ∈ V such

that u has exactly one incoming backward arc bu and v has exactly one outgoing

backward arc bv with respect to π∗ and let (u, v) ∈ A be a forward arc in π∗. Then,

at least one of bu and bv has a forward path that contains neither (u, v) nor a

left-blocking (right-blocking) vertex.

Proof. Let bu = (t, u) and bv = (v, h) denote the incoming backward arc of u and the

outgoing backward arc of v, respectively, and set a = (u, v). By Lemma 4.14, π∗ respects

the Multipath Blocking Vertices Property. Consider first the left-blocking case and

174 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

h u v ta

bubv

Figure 5.13: Initial situation in Lemma 5.4.

suppose that in π∗
sp/l, all forward paths for bu contain a as first arc and all forward paths

for bv contain a as last arc, as is also depicted schematically in Figure 5.13.

Identify a set Z of left-blocking vertices by traversing all cropped forward paths of

bu and bv in π∗ and placing the first left-blocking vertex that is encountered thereby

in Z. Then, every forward path for bu or bv in π∗ uses either a or contains a vertex in

Z. Moreover, u, v ̸∈ Z because with all forward paths for bu and bv in π∗
sp/l passing

through a, neither u nor v can be left-blocking. Consider h and t. As all forward paths

for bu have a as their first arc and all forward paths for bv have a as their last arc,

π∗(h) < π∗(u) < π∗(v) < π∗(t). Hence, h cannot be part of a forward path of bu and

t cannot be part of a forward path for bv. Furthermore, we only considered cropped

forward paths for the creation of Z and all forward paths for bv start at h, whereas all

forward paths for bu end at t. Thus, h, t ̸∈ Z either.

Let B and F denote the set of backward and forward arcs induced by π∗, Y = {bv} ⊆
B+(v), and X = {a}. Observe that v is on a forward path for bu with respect to π∗

sp/l. By

Lemma 4.16,

B′ = B \
(
B+[Z] ∪ Y ∪ [bu]∥

)
∪ F−[Z] ∪X

= B \ (B+[Z] ∪ {bu, bv}) ∪ F−[Z] ∪ {a}

is feasible. Furthermore, b+[Z] = f−[Z] by Proposition 4.2, and B+[Z] ∩ {bu, bv} = ∅ due

to v, t ̸∈ Z. Subsequently, |B′| < |B|, a contradiction to the optimality of π∗.

For the right-blocking case, the statement follows by an analogous argument. Alter-

natively, we can instead consider the reverse graph GR along with the reverse linear

ordering π∗R. Then, u and v swap roles and every right-blocking vertex in π∗ is left-

blocking with respect to π∗R and vice versa.

The second property has a similar setup:

5.4 Subquartic and Subquintic Graphs 175

Lemma 5.5 Tail On Forward Path Property
Let π∗ be an optimal linear ordering of a graph G = (V,A). Let u, u′, v ∈ V such

that u and u′ are not left-blocking (right-blocking) and have exactly one incoming

backward arc bu and bu′ , respectively, v has a single outgoing forward arc, and

(u, v) , (u′, v) ∈ A are forward arcs with respect to π∗. If a forward path for bu in

π∗
sp/l (π∗

sp/r) contains the tail of bu′ or vice versa, then at least one of bu and bu′

has a forward path in π∗
sp/l (π∗

sp/r) that does not contain v.

Proof. Let B and F denote the set of backward and forward arcs induced by π∗ and

let bu = (w, u) and bu′ = (w′, u′). By Lemma 4.14, π∗ respects the Multipath Blocking

Vertices Property. If w = w′, then the statement immediately follows in consequence

thereof. Hence, we only consider the case that w ̸= w′.

W. l. o. g., assume that w′ is part of a forward path Pbu for bu in π∗
sp/l or in π∗

sp/r,

respectively. Consequently, π∗(u) < π∗(w′) < π∗(w). Let a be v’s only outgoing forward

arc, i. e. , F+(v) = {a}. Note that if a forward path for bu or bu′ contains v, then it must

also contain a. Set Y = {bu′} ⊆ B+(w′) and X = {a}.
Suppose that in π∗

sp/l, all forward paths for bu and bu′ contain v. This situation is also

depicted in Figure 5.14. Construct a set of left-blocking vertices Z by traversing every

cropped forward path for bu and bu′ in π∗ and collecting the first left-blocking vertex

that occurs during the traversal in Z. Due to the precondition in the statement of the

lemma, neither u nor u′ are left-blocking. Hence u, u′ ̸∈ Z. The same applies for w and

w′: Based on our assumption, w′ is part of a forward path for bu in π∗
sp/l. Hence, w′

cannot be left-blocking, so w′ ̸∈ Z. As π∗(w′) < π∗(w), w cannot be part of a forward

path for bu′ and, due to the consideration of cropped forward paths only, w ̸∈ Z.

Every forward path for bu or bu′ in π∗ then contains either a or a vertex of Z. Due to

Lemma 4.16,

B′ = B \
(
B+[Z] ∪ Y ∪ [bu]∥

)
∪ F−[Z] ∪X

= B \ (B+[Z] ∪ {bu′ , bu}) ∪ F−[Z] ∪ {a}

is feasible. By Proposition 4.2, b+[Z] = f−[Z]. Moreover, the fact that w,w′ ̸∈ Z yields

that B+[Z] ∩ {bu′ , bu} = ∅, which in turn implies that |B′| < |B|, a contradiction to the

optimality of π∗.

The proof for the right-blocking case is similar. To this end, suppose that all forward

paths for bu and bu′ in π∗
sp/r contain v. Let Z be a set of right-blocking vertices that is

176 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

u u′ v w′ wa

bu

bu′

Figure 5.14: Initial situation in Lemma 5.5.

obtained by traversing every cropped forward path for bu and bu′ in π∗ and putting the

first right-blocking vertex that occurs during the traversal in Z. For the same reasons as

in the left-blocking case, u, u′, w, w′ ̸∈ Z. Lemma 4.16 here yields that

B′ = B \
(
B−[Z] ∪ Y ∪ [bu]∥

)
∪ F+[Z] ∪X

= B \ (B−[Z] ∪ {bu′ , bu}) ∪ F+[Z] ∪ {a}

is feasible. Again by Proposition 4.2, b−[Z] = f+[Z] and B−[Z] ∩ {bu′ , bu} = ∅ because

u, u′ ̸∈ Z. Thus, |B′| < |B|, a contradiction to the optimality of π∗.

In contrast to the Extended Multipath Blocking Vertices Property, the properties

shown in Lemma 5.4 and Lemma 5.5 can be enforced efficiently in both cases by a

variant of the One-Arc Stability Property:

Lemma 5.6
There is a O(m2)-time algorithm that tests whether a given linear ordering π

respects the Alternative Forward Paths Property and, if negative, applies an

improvement.

Proof. First, we obtain the set of forward and backward arcs induced by π by call-

ing the initialization routine ComputePositionsAndArcSets, which was introduced in

Section 4.2.4 and runs in O(m) time by Lemma 4.1. Next, consider each forward arc

a = (u, v) and check whether u has exactly one incoming backward arc and v has exactly

one outgoing backward arc. This can be accomplished in constant time. If positive,

remove a and test for both πsp/l and πsp/r if at least one of the backward arcs incident to

u and v has a forward path. The latter requires at most two traversals of the graph per

backward arc and can thus be accomplished in O(m). If both backward arcs have no

forward path, we compute a set Z of left-blocking or right-blocking vertices, respectively,

5.4 Subquartic and Subquintic Graphs 177

apply the modification given in the proof of Lemma 5.4 to the set of backward arcs, and

obtain an improved linear ordering by topologically sorting the new acyclic subgraph of

G in time O(m). Hence, the running time is in O(m2 +m) = O(m2).

For the Tail On Forward Path Property, we obtain:

Lemma 5.7
There is a O(m2)-time algorithm that tests whether a given linear ordering π

respects the Tail On Forward Path Property and, if negative, applies an improve-

ment.

Proof. We start again with the computation of the set of forward and backward arcs

induced by π by calling the initialization routine ComputePositionsAndArcSets, which

was introduced in Section 4.2.4 and runs inO(m) time by Lemma 4.1. Then, the algorithm

loops over all vertices v ∈ V and checks whether v has a single outgoing forward arc a

and whether there is a set of vertices U with |U | ≥ 2 such that each vertex u ∈ U has an

outgoing forward arc to v, is not left-blocking or right-blocking, respectively, and has

exactly one incoming backward arc bu. In case of success, we remove a and test for every

vertex u ∈ U whether its incident backward arc bu has a forward path in πsp/l (πsp/r).

The algorithm creates a set U ′ ⊆ U that contains all vertices that failed this test. The time

needed to construct U and U ′ is in O(f−(v) ·m) ⊆ O(d−(v) ·m). For every vertex u ∈ U ′,

we have to see whether there is a vertex u′ ∈ U ′ such that u is on a forward path for u′.

More precisely, it suffices to check whether there is a forward path from the tail of bu′ to

the tail of bu, because they all have a forward path via a. This can be accomplished by

traversing the forward path graph with respect to πsp/l (πsp/r) starting at the tails and

requires hence O(d−(v) ·m) time. If there are two such vertices u ̸= u′ ∈ U ′, we obtain

a set Z of left-blocking or right-blocking vertices, respectively, apply the modification

given in the proof of Lemma 5.5 to the set of backward arcs, and obtain an improved

linear ordering by topologically sorting the new acyclic subgraph of G in time O(m). In

sum, we hence obtain a running time of O(∑v∈V (2 · d−(v) ·m) +m) ⊆ O(m2).

5.4.2 A Tight Bound for Subquartic Graphs

With these two new properties at hand, we are now ready to apply the generalized

assignment scheme to subquartic graphs. Due to the Nesting Property, a vertex of

degree four can have up to two incident backward arcs. For such a vertex v, we then

178 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Table 5.3: Layouts induced by a Ψ-optimal linear ordering on a vertex v with d(v) = 4
as pictograms and 4-tuples.

b(v) = 2: (0, 2, 2, 0), (2, 0, 0, 2), (1, 1, 1, 1)

b(v) = 1: (0, 3, 1, 0), (3, 0, 0, 1), (1, 2, 1, 0), (2, 1, 0, 1)

b(v) = 0: (1, 3, 0, 0), (2, 2, 0, 0), (3, 1, 0, 0)

already have αh(v)+αt(v) = 2. By showing that for every vertex v in a subquartic graph,

α(v) ≤ 2 on average, we obtain:

Lemma 5.8
Let π be a Ψ-optimal linear ordering of subquartic graph G such that π addition-

ally respects the Alternative Forward Paths Property and the Tail On Forward

Path Property. Then, there is an admissible assignment scheme α with respect to

π such that for every vertex v of G, α(v) ≤ 2 on average.

Proof. Let G = (VG, AG) be a subquartic graph with a Ψ-optimal linear ordering π that

additionally respects the Alternative Forward Paths Property and the Tail On Forward

Path Property. Then, π also respects the Nesting Property and the Eliminable Layouts

Property and hence induces one of the seventeen different layouts shown in Table 5.1

and Table 5.3 on every vertex of G. In particular, every vertex is incident to at most two

backward arcs. Let n = |VG| and m = |AG| denote, as usual, the number of vertices and

arcs of G. The graph depicted in Figure 5.15 will serve as a running example.

In analogy to the proof for subcubic graphs, we obtain a forward path graph
⇝
G =(⇝

V ,
⇝
A
)

of G along with the linear ordering ⇝π as a first step. Recall that
⇝
G ⊆ Gsp/r and,

by construction,
⇝
G contains two pairwise arc-disjoint forward paths for every pair of

backward arcs that have a common head. For the forward paths of a pair of backward

arcs with a common tail, arc-disjointness is not guaranteed though. Hence, it may be the

case that a vertex with layout in πsp/r has just one incoming forward arc in ⇝π , i. e. , its

layout is . Consider a forward path P = u⇝ v such that every vertex besides u has

an outgoing backward arc and v is a pseudosink in π. We call such a path a pseudosink
path. In case that there are multiple ways to select a forward path for a backward arc b

and b’s head has just one incoming backward arc, we choose a forward path for b that is

not a pseudosink path wherever possible. As G is subquartic, this affects in particular

5.4 Subquartic and Subquintic Graphs 179

o q u v w x y z

Figure 5.15: A Ψ-optimal linear ordering that respects the Alternative Forward Paths

Property and the Tail On Forward Path Property of a quartic graph. For each backward

arc, one possible forward path is highlighted, with forward paths of backward arcs

with a common head being arc-disjoint.

o q u v w x y z

Figure 5.16: The forward path graph of the graph in Figure 5.15 corresponding to the

selection of the forward paths, which at the same time also is its pooled forward path

graph.

backward arcs whose heads have layout . This forward path selection policy has

already been paid regard to in Figure 5.15. Figure 5.16 shows the corresponding forward

path graph
⇝
G.

We now obtain the pooled forward path graph
⇝
G

◦
=
(⇝
V

◦
,
⇝
A

◦)
by contracting arcs as

described in Section 5.1.2. As G is subquartic, this only concerns vertices with layout

and as well as vertices with layout and in ⇝π . Along with
⇝
G

◦
, we

also obtain the corresponding linear ordering ⇝π◦. In case of the example graph, every

for-out-tree and every for-in-tree consists of a single vertex only. The pooled forward

path graph therefore equals the forward path graph. Let u ∈ ⇝V ◦
be a vertex with layout

180 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

os qs qp up vs vp wt xp yp yt zt

Figure 5.17: The polarized forward path graph obtained from the pooled forward path

graph in Figure 5.16.

in ⇝π◦ such that u pools k vertices, i. e. , it is the result of k − 1 arc contractions. We

can specify the cardinalities given in Equation (5.1) more precisely here and obtain

f−
⇝
π

◦(u) = 1,

1 ≤ f+
⇝
π

◦(u) ≤ k + 1,

b−
⇝
π

◦(u) = k,

b+
⇝
π

◦(u) = 0.

(5.7)

Similarly, if u has layout in⇝π◦ and pools k vertices, we can derive from Equation (5.2)

that
1 ≤ f−

⇝
π

◦(u) ≤ k + 1,

f+
⇝
π

◦(u) = 1,

b−
⇝
π

◦(u) = 0,

b+
⇝
π

◦(u) = k.

(5.8)

In the next step, we consider the polarized forward path graph
⇝
G

∅
=
(⇝
V

∅
,
⇝
A

∅)
and

the corresponding linear ordering ⇝π∅, which are derived from
⇝
G

◦
and ⇝π◦ as shown in

Section 5.1.3. This auxiliary graph again only differs from the previous one in case of

vertices with layout and , because all other vertices already are either pseu-

dosources, pseudosinks, or passages. Recall that a vertex u with layout in ⇝π◦ is split

into two vertices us and up with combined layout and that a vertex u with layout

in ⇝π◦ is split into two vertices up and ut with combined layout in ⇝π∅. Hence,

if u has layout in ⇝π◦ and pools k vertices, then us has k incoming backward arcs

and there are k parallel arcs (us, up). Likewise, ut has k outgoing backward arcs and

there are k parallel arcs (up, ut) in case that v has layout in ⇝π◦ and pools k vertices.

5.4 Subquartic and Subquintic Graphs 181

os

2|0|0

qs qp

1|1|0

up

0|1|0

vs vp

1|0|0

wt

0|0|1

xp

0|0|0

yp yt

0|2|1

zt

0|0|2

Figure 5.18: The truncated forward path graph obtained from the polarized forward path

graph in Figure 5.17 along with the assignments of each vertex according to Equa-

tion (5.9). The assignments of each vertex v of the original graph are represented as

αh(v)|αd(v)|αt(v). Vertices with a dashed border, i. e. , wt, yt, and zt, are not contained

in the truncated forward path graph and only shown here to be able to conveniently

display their assignments.

Figure 5.17 depicts the polarized forward path graph for the example graph. As we

already noticed in Section 5.1.3, all backward arcs as well as all forward paths selected

during the construction of
⇝
G have been preserved during the transformation of

⇝
G to

⇝
G

◦

and
⇝
G

∅
. Furthermore, every vertex v ∈ ⇝V ∅

with an incident backward arc is either a

pseudosource or a pseudosink.

From
⇝
G

∅
we obtain the truncated forward path graph

⇝
G

∅

tr =
(⇝
V

∅

tr,
⇝
A

∅

tr
)

by removing

all pseudosinks as described in Section 5.1.4. As
⇝
G

∅

tr is source-preserving, the following

definition of αh, αt, and αd yields an admissible assignment scheme by Lemma 5.3:

αh(v) = b−
π (v),

αt(v) = b+
π(v), and

αd(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{−δ⇝
G

∅
tr

(vp), 0}, if vp ∈
⇝
V

∅

tr is v’s passage component,

1
k ·max{−δ⇝

G
∅
tr

(up), 0}, if v and k − 1 other vertices are pooled

within a vertex u and up ∈
⇝
V

∅

tr is

u’s passage component,

0, otherwise.

(5.9)

Figure 5.18 shows the truncated forward path graph for the running example. For each

vertex v ∈ VG, the assignments are additionally given using the format αh(v)|αd(v)|αt(v).

We now show that for every vertex v ∈ VG, α(v) = αh(v) + αt(v) + αd(v) ≤ 2 on

average, with a single exception, which we will address in the last part of the proof.

Depending on v’s layout within π, we distinguish the following cases:

182 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

v is a pseudosource or a pseudosink. If v is a pseudosource or a pseudosink in π, then

we immediately obtain from the definition that α(v) = αh(v) = b−
π (v) ≤ 2 in the former

and α(v) = αt(v) = b+
π(v) ≤ 2 in the latter case.

v has both an incoming and an outgoing backward arc. If v has layout in π, then

it is right-blocking. Subsequently, αh(v) = b−
π (v) = 1, αt(v) = b+

π(v) = 1, and hence,

α(v) = αh(v) + αt(v) = 2.

v has no incident backward arcs. In this case, v is neither pooled nor polarized and

thus has only a (possibly isolated) passage component vp in
⇝
G

∅

tr. By the definition in

the previous step, α(v) = αd(v) = max{−δ⇝
G

∅
tr

(vp), 0}. As G is subquartic, d⇝
G

∅
tr

(vp) ≤

dG(v) ≤ 4. Hence, 1 ≤ d+
G(v) ≤ 3 and 1 ≤ d−

G(v) ≤ 3. Regarding
⇝
G

∅

tr, however, we only

have that d+
⇝
G

∅
tr

(vp) ≤ d+
G(v) and d−

⇝
G

∅
tr

(vp) ≤ d−
G(v). In particular, v may be an isolated

vertex if no forward path selected during the construction of
⇝
G contains v. Otherwise,

v has at least one incoming and one outgoing arc in
⇝
G. In consequence of the removal

of pseudosinks, vp may be a sink in
⇝
G

∅

tr, but not a source. Thus, we either have that

d+
⇝
G

∅
tr

(vp) = d−
⇝
G

∅
tr

(vp) = 0 or d−
⇝
G

∅
tr

(vp) ≥ 1. Assume that d+
⇝
G

∅(vp) = 1 and d+
⇝
G

∅
tr

(vp) = 0.

Then, v has an outgoing forward arc whose head h is a pseudosink in
⇝
G, which is

removed during the construction of
⇝
G

∅

tr. Furthermore, v must be contained in one

or more forward paths of h’s outgoing backward arcs. Observe that h is the tail of

these backward arcs and that the forward paths for
⇝
G are selected such that they are

pairwise arc-disjoint at the backward arcs’ heads, but not necessarily at their tails. As G

is subquartic, b+
π(h) ≤ 2, so v can be part of at most two forward paths, which implies

that f−
⇝
π

(v) ≤ 2 and thus, d−
⇝
G

∅(vp) ≤ 2. Note that if d+
⇝
G

∅(vp) ≥ 2, then d−
⇝
G

∅(vp) ≤ 2
due to G being subquartic. Hence, if d+

⇝
G

∅
tr

(vp) = 0, then d−
⇝
G

∅
tr

(vp) ≤ 2. Consequently,

δ⇝
G

∅
tr

(vp) ≥ −2 in any case, so α(v) ≤ 2.

v has an incoming, but not an outgoing backward arc and is not a pseudosource. Assume

now that v has layout in π. Let b denote v’s only incident backward arc, i. e. ,

B−
π (v) = {b}. There are two possibilities: Either v is not contained in any forward path

selected for
⇝
G besides the one for b. In this case, v is a pseudosource in

⇝
G and therefore

also in
⇝
G

◦
and

⇝
G

∅
. Then, α(v) = αh(v) = 1. Otherwise, v has layout or in ⇝π .

Let u ∈ ⇝V ◦
be the vertex with layout in ⇝π◦ that pools v and k − 1 further vertices.

By Equation (5.7), b−
⇝
π

◦(u) = k, 1 ≤ f+
⇝
π

◦(u) ≤ k + 1, and f−
⇝
π

◦(u) = 1. In
⇝
G

∅
, u is split into

two vertices us and up with combined layout and such that b−
⇝
π
∅(us) = f+

⇝
π
∅(us) = k,

f−
⇝
π
∅(up) = k + 1, and 1 ≤ f+

⇝
π

∅(up) ≤ k + 1. Consider up’s delta degree in
⇝
G

∅

tr. As a

5.4 Subquartic and Subquintic Graphs 183

forward path in
⇝
G has length at least two, not every head of an outgoing forward arc of

up can be a pseudosink in
⇝
G

∅
and hence be removed to obtain

⇝
G

∅

tr. Thus, d+
⇝
G

∅
tr

(up) ≥ 1

and, subsequently, δ⇝
G

∅
tr

(up) ≥ −k. Hence, max{−δ⇝
G

∅
tr

(up), 0} ≤ k, which in turn yields

that αd(v) = 1
k · max{−δ⇝

G
∅
tr

(up), 0} ≤ 1. Furthermore, v has αh(v) = b−
π (v) = 1, so

α(v) = αh(v) + αd(v) ≤ 2 on average.

v has an outgoing, but not an incoming backward arc and is not a pseudosink. Finally,

let us consider the case that v has layout in π and let B+
π (v) = {b}. Similar to the

previous case, there are two possibilities: If no forward path for a backward arc different

from b contains v, then v is a pseudosink in
⇝
G and remains such during the construction

of
⇝
G

◦
and

⇝
G

∅
. Consequently, α(v) = αt(vt) = 1. In case that at least one forward path

actually passes through v, v has layout or in
⇝
G and is subject to the pooling

and polarization employed to obtain first
⇝
G

◦
and then

⇝
G

∅
. Consider the vertex u ∈ ⇝V ◦

with layout in ⇝π◦ that pools v and k − 1 further vertices. Then, u is split into two

vertices up and ut with combined layout for the construction of
⇝
G

∅
and ⇝π∅. By

Equation (5.8), 1 ≤ f−
⇝
π

◦(u) ≤ k + 1, b+
⇝
π

◦(u) = k, and f+
⇝
π

◦(u) = 1, which implies that after

the split, 1 ≤ f−
⇝
π

∅(up) ≤ k + 1, f+
⇝
π

∅(up) = k + 1 and f−
⇝
π

∅(ut) = b+
⇝
π

∅(ut) = k. Consider

u’s passage component up. Note that ut is a pseudosink and therefore removed during

the construction of
⇝
G

∅

tr. Thus, 1 ≤ d−
⇝
G

∅
tr

(up) ≤ k + 1 and 0 ≤ d+
⇝
G

∅
tr

(up) ≤ 1. In particular,

d+
⇝
G

∅
tr

(up) = 0 if and only if the head of u’s outgoing forward arc is a pseudosink in
⇝
G

◦
with

respect to ⇝π◦. If this is not the case, then δ⇝
G

(up) ≥ −k. We can draw the same conclusion

if d−
⇝
G

(up) ≤ k. This yields αt(v) = b+
π(v) = 1 and αd(v) = 1

k ·max{−δ⇝
G

∅
tr

(up), 0} ≤ 1 on

average, i. e. , α(v) ≤ 2 on average for every vertex v that is pooled within u.

To complete this case, assume that the head of u’s outgoing forward arc in ⇝π◦ is a

pseudosink t and d+
⇝
G

∅
tr

(up) = 0 as a result. Furthermore, let d−
⇝
G

∅
tr

(up) = k+1, which yields

δ⇝
G

∅
tr

(up) = −(k + 1) and subsequently, αd(v) = 1
k · (k + 1) with the current attribution

scheme. As αt(v) = 1, we only have α(v) = 1 + k+1
k > 2 on average. We will show

that this common surplus of one for all vertices pooled within u can be carried over

to another vertex such that on average, every vertex is still charged at most two. To

this end, we will modify
⇝
G

∅

tr a posteriori by removing further arcs and thereby obtain a

spanning subgraph H =
(
VH , AH

) ⊆ ⇝G∅

tr. In doing so, however, we will prove that the

above assumptions and conclusions for
⇝
G

∅

tr also remain valid for H . Furthermore, the

handling of each vertex like u requires the removal of exactly one arc.

184 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

u

k

y z t

bz

u

k

w

k′

y z t

by bz

(a) (b)

Figure 5.19: Case I: y has no incident backward arcs (a). Case II(a): y has an incoming

backward arc, but its forward path does not use (y, z) (b). In both cases, the arc

corresponding to (y, z) can be removed a posteriori.

Recall that the pooling of vertices with layout and was defined via the contrac-

tion of the vertices’ outgoing forward arcs. The fact that up has indegree d−
⇝
G

∅
tr

(up) = k+ 1

immediately implies that f−
⇝
π

◦(u) = k + 1. Subsequently, u emerged from the pooling of

k ≥ 1 vertices of
⇝
G such that each vertex has layout in the forward path graph ⇝π

(and none has layout). Moreover, the k+1 incoming forward arcs of u are part of the

k forward paths selected for the backward arcs incident to u plus the at most two further

forward paths for the backward arcs incident to the pseudosink t. Let z be a leaf in the

for-in-tree that is pooled within u, i. e. , none of both tails of z’s incoming forward arcs

has layout or in ⇝π , and let B+
⇝
π

(z) = B+
π (z) = {bz}. Consider the penultimate

vertex y ∈ ⇝V on the forward path Pbz selected for bz during the construction of
⇝
G. Then,

(y, z) must be a forward arc in
⇝
G. More precisely, (y, z) is an incoming forward arc of

z in
⇝
G, so there also is a corresponding incoming forward arc of u in

⇝
G

◦
. As y is the

penultimate vertex on a forward path, it cannot be a pseudosource in ⇝π , which implies

that it can neither be one in π nor have layout in π.

Case I Consider the case that y has no incident backward arcs (cf. Figure 5.19(a)). As

we have argued above, 1 ≤ d−
⇝
G

(y) ≤ 3. Suppose for the sake of contradiction that by

the previous argumentation, α(y) = αd(y) = 2. Then, δ⇝
G

∅
tr

(yp) = −2, which implies

that d−
⇝
G

∅
tr

(yp) = 3 and d+
⇝
G

∅
tr

(yp) = 1, because (yp, zp) is an outgoing arc of yp in
⇝
G

∅

tr.

Consequently, the at most k + 2 forward paths entering u use the k other incoming

forward arcs of u besides (y, z) plus the three incoming forward arcs of y. This yields

k + 3 different forward arcs in total, where no pair of these arcs can be part of the same

forward path, a contradiction. Hence, d−
⇝
G

∅
tr

(yp) ≤ 2 and α(y) ≤ 1. We can therefore

modify H in comparison to
⇝
G

∅

tr by additionally removing the arc corresponding to (y, z),

i. e. , one of the possibly multiple parallel arcs (yp, up), without affecting the validity and

correctness of the previous arguments. Note that if yp has outgoing forward arcs to two

5.4 Subquartic and Subquintic Graphs 185

u

k

w

k′

y z t

z′

by bz

Figure 5.20: Case II(b): There is another forward path for by not using (y, z), so the arc

corresponding to (y, z) can be removed.

or three vertices with layout and a posteriori, i. e. , forH , loses two or three outgoing

arcs as a result of this carryover, then yp must have had at least as many outgoing arcs

before the modification, which reduces the number of possible incoming arcs due to G

being subquartic. Thus, its delta degree would be at least −2 in the first case and exactly

−1 in the second, which implies that δH(yp) ≥ −2 and hence α(y) ≤ 2 in any case.

Case II Otherwise, assume that y has layout or . Then, u is incident to a vertex

w ∈ ⇝V ◦
with layout , which pools k′ ≥ 1 vertices including y. Note that w is split

into ws and wp during the construction of
⇝
G

∅
with combined layout in ⇝π∅. Let by

denote y’s incoming backward arc in π.

Case II(a) If the forward path Pby selected for by during the construction of
⇝
G does

not contain z (cf. Figure 5.19(b)), then we can again modify H in comparison to
⇝
G

∅

tr by

additionally removing the arc that corresponds to (y, z) without affecting the correctness

of the above analysis: As the first arc of Pby is an outgoing arc of wp in both
⇝
G

∅

tr and H ,

d+
H(wp) ≥ 1 and thus, δH(wp) ≤ k is still guaranteed.

Otherwise, Pby is a pseudosink path and both Pby and Pbz contain (y, z). Hence,

by’s tail is either pooled within u or equals the pseudosink t. In consequence of the

Alternative Forward Paths Property, at least one of by or bz must have another forward

path in πsp/r that does not contain (y, z). Furthermore, we stipulated that the forward

paths starting at a vertex with layout in π are chosen such that pseudosink paths

are avoided wherever possible.

Case II(b) Assume that by has another forward path P′
by

not containing (y, z) in π and let

z′ denote the head of y’s second outgoing forward arc in π, i. e. , F+
π (y) = {(y, z) , (y, z′)}

(cf. Figure 5.20). Then, P′
by

would have been chosen during the construction of
⇝
G unless

it also was a pseudosink path. Subsequently, z′ must have layout in π as well as in
⇝π and be pooled within u. As up has the maximum of k + 1 incoming arcs in

⇝
G

∅

tr,
⇝
A

∅

tr

186 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

u

k

w

k′

y z t

y′

by bz

Figure 5.21: Case II(c): There is another forward path for bz via y′ and y′ has no incident

backward arcs, so the arc corresponding to (y′, z) can be removed.

must in particular contain the arc corresponding to (y, z′), i. e. ,
⇝
G

∅

tr and H currently have

at least two parallel arcs (w, u). Hence, we can again remove the arc corresponding to

(y, z) a posteriori from
⇝
G

∅

tr to obtain H and d+
H(wp) ≥ 1 is still guaranteed. Note that u is

processed after this step, so the arc (wp, up) that corresponds to (y, z′) cannot be removed

later during the processing of another vertex like u and therefore certainly remains in H .

Otherwise, if P′
by

does not exist, then bz must have a second forward path P′
bz

that does

not contain (y, z), but uses z’s other incoming forward arc (y′, z). Note that (y′, z) ∈ ⇝A
because d−

⇝
G

∅
tr

(up) = k+1. For the same reason as above, y′ can neither be a pseudosource

in π nor have layout .

Case II(c) If y′ has no incident backward arcs, then we can reuse the arguments that we

used for y in this case and conclude that the additional removal of the arc corresponding

to (y′, z) in H in comparison to
⇝
G

∅

tr preserves that α(y′) ≤ 2 (cf. Figure 5.21).

Otherwise, y′ has layout in π and is hence pooled within a vertex w′ with layout

in ⇝π◦, which is split into two vertices w′
s and w′

p with combined layout in ⇝π∅.

Let by′ denote the incoming backward arc of y′.

Case II(d) If the forward path Pby′ selected for by′ does not contain (y′, z), then its

first arc guarantees again that d+
H(w′

p) ≥ 1 even after the belated removal of the arc

corresponding to (y′, z) (cf. Figure 5.22(a)).

Case II(e) Consider the case that Pby′ contains (y′, z) (cf. Figure 5.22(b)). Then, it is a

pseudosink path and by′ ’s tail is either pooled within u or the pseudosink t. If there is a

second forward path P′
by′ for by′ that does not use (y′, z), then it must be a pseudosink

path, too, due to the preferential forward path selection policy. As f−
⇝
π

(u) = d−
⇝
G

∅
tr

(up) =

k + 1, there is at least one further arc (w′, u) in
⇝
G

◦
that corresponds to the first arc of

P′
by′ and after the removal of the arc corresponding to (y′, z) to obtain H , d+

H(w′
p) ≥ 1 is

still guaranteed. Observe that as in Case II(b), u is processed after this step, so the arc

5.4 Subquartic and Subquintic Graphs 187

u

k

w

k′

w′

y z t

y′

by

by′

bz

u

k

w

k′

w′

y z t

y′

by

by′

bz

u

k

w

k′

w′

y z t

y′

by

by′

bz

(a)

(b)

(c)

Figure 5.22: Case II(d): The forward path selected for by′ does not use (y′, z), so the

arc corresponding to (y′, z) can be removed a posteriori (a). Case II(e): There is

another forward path for by′ not using (y′, z), so the arc corresponding to (y′, z) can

be removed a posteriori (b). Case II(f): All forward paths for by and by′ contain z

and hence in particular z’s only outgoing forward arc, a contradiction to either the

Multipath Blocking Vertices Property if by and by′ have a common tail, or to the Tail

On Forward Path Property otherwise (c).

188 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

os

2|0|0

qs qp

1|1|0

up

0|1|0

vs vp

1|0|0

wt

0|0|1

xp

0|1|0

yp yt

0|1|1

zt

0|0|2

Figure 5.23: The modified truncated forward path graph obtained from the truncated

forward path graph in Figure 5.18 by additionally removing (xp, yp) in result of the

application of Case I. The new assignments according to Equation (5.10) for each

vertex v of the original graph are again represented as αh(v)|αd(v)|αt(v). Vertices

with a dashed border, i. e. , wt, yt, and zt, are not contained in the modified truncated

forward path graph and only shown here to be able to conveniently display their

assignments.

(w′
p, up) that corresponds to the second outgoing forward arc of y′ cannot be removed

later during the processing of another vertex like u but certainly remains in H .

Case II(f) Eventually, suppose that by′ has only forward paths via (y′, z) (cf. Fig-

ure 5.22(c)). Then, the forward paths of both by and by′ pass through z and, in particular,

use z’s outgoing forward arc in
⇝
G. This implies that by and by′ either have a common

tail or that the tail of one is part of the forward path of the other. In consequence of the

Multipath Blocking Vertices Property, by and by′ must have arc-disjoint forward paths in

the former case, whereas in the latter, at least one of them must have a forward path not

containing z by Lemma 5.5, both times a contradiction.

Hence, all possible cases showed that it is safe to remove the arc corresponding

to one of z’s incoming forward arcs a posteriori, which yields that d−
H(up) = k and,

subsequently, δH(up) = −k. As a result, for each vertex v of the k vertices pooled within

u holds that αt(v) = 1 and αd(v) ≤ 1 on average. Furthermore, to obtain the modified

5.4 Subquartic and Subquintic Graphs 189

Table 5.4: Mappings αh, αt, αd, and their sum α for v ∈ VG.

Lπ(v) αh(v) αt(v) αd(v) α(v)

, , , ≤ 2 0 0 ≤ 2

, , , 0 ≤ 2 0 ≤ 2

1 1 0 2

1 0 ≤ 1a ≤ 2a

0 1 ≤ 1a ≤ 2a

, , , , , 0 0 ≤ 2 ≤ 2

aon average

graph H , we neither remove an arc that is incident to a source in
⇝
G

∅

tr nor can H contain

a source that was not already one in
⇝
G

∅

tr. Thus H is source-preserving and

αh(v) = b−
π (v),

αt(v) = b+
π(v), and

αd(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{−δH(vp), 0}, if vp ∈ VH is v’s passage component,
1
k ·max{−δH(up), 0}, if v and k − 1 other vertices are pooled

within a vertex u and up ∈ VH is

u’s passage component,

0, otherwise.

(5.10)

is an admissible assignment scheme with respect to π that guarantees α(v) ≤ 2 on

average for every vertex v ∈ VG. Table 5.4 itemizes the assignments for each vertex

v ∈ VG once again.

The modified truncated forward path for the running example graph is depicted in

Figure 5.23. Here, the vertex y required a special treatment. As the forward path selected

for y’s outgoing backward arc (y, q) in the original linear ordering contains (x, y) as last

arc and x has no incident backward arcs, Case I applies.

Together with Proposition 5.1, Lemma 5.8 immediately implies the equivalent of

Theorem 5.1 for subquartic graphs:

190 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Theorem 5.3
Every Ψ-optimal linear ordering π of a subquartic graph having n vertices such

that π additionally respects the Alternative Forward Paths Property and the Tail

On Forward Path Property induces at most ⌊2n
3 ⌋ backward arcs.

Recall that the algorithm PsiOpt, which we introduced in Section 4.9.2 of the previous

chapter and which constructs a Ψ-optimal linear ordering, uses the meta-algorithm Cas-

cade together with subroutines that enforce the individual properties that are grouped

together for Ψ-optimality. By Lemma 4.21, the running time of Cascade is O(m) times

the maximum running time of one of its subroutines. As pointed out in the proof of

Lemma 4.22, this also applies to PsiOpt, even though the last of its subroutines, Elimi-

nateLayouts, does not guarantee a strict improvement in case of failure. Furthermore, the

most time-consuming subroutine of PsiOpt has a running time of O(n · κ(n,m)), where

κ(n,m) represents the time complexity of computing a minimum cut in a unit-capacity

network with κ(n,m) ∈ Ω(m) ∩ O(m · min{n 2
3 ,m

1
2 }) (cf. Section 4.6). By Lemma 5.6

and Lemma 5.7, the Alternative Forward Paths Property and the Tail On Forward Path

Property, which are are in addition to Ψ-optimality required for the proof of the sub-

quartic bound, can both be enforced in O(m2). Hence, if we insert these two further

subroutines prior to EliminateLayouts in PsiOpt, we obtain a new cascading algorithm

that establishes all necessary properties. Moreover, with m ∈ Θ(n) for subquartic graphs

and hence = O(n2) ⊆ O(n · κ(n,m)), we obtain together with an overhead of a factor

of O(m) = O(n) for the cascading1:

Corollary 5.2
There is an O(n2 · κ(n,m)) ⊆ O(n3.5)-time algorithm to construct a feedback arc

set with cardinality at most ⌊2n
3 ⌋ for a subquartic graph.

Similar as in the subcubic case, we are again able to show that the bound in Theo-

rem 5.3 is tight:

1In [HBA13], there is a similar statement that claims a running time of at most O(n3.38). However, the
underlying linear ordering there does not respect the Multipath Blocking Vertices Property, but only a
considerably weaker property.

5.4 Subquartic and Subquintic Graphs 191

.

u0 v0

w0

u1 v1

w1

u2 v2

w2

u k
2

v k
2

w k
2

uk−1 vk−1

wk−1

.

Figure 5.24: Construction of subquartic graphs with n vertices and τ = ⌊2n
3 ⌋. The shaded

regions indicate vertex fusions.

Lemma 5.9
For every n ≥ 6 there is a subquartic graph on n vertices whose optimal feedback

arc set has cardinality at least ⌊2n
3 ⌋.

Proof. Let k = ⌊2n
3 ⌋. Observe that if n mod 3 = 0, then k = 2 · n

3 , whereas k = 2 · n−1
3 if

n mod 3 = 1, and k = 2 · n−2
3 + 1 if n mod 3 = 2. We construct a graph Gn on n vertices

that has exactly k arc-disjoint cycles of length 3. To this end, let T be a set of k vertex-

disjoint, directed triangles t0, . . . , tk−1, where ti = ⟨ui, (ui, vi) , vi, (vi, wi) , wi, (wi, ui) , ui⟩,
i. e. , ti consists of the vertices ui, vi, and wi and the arcs (ui, vi), (vi, wi), and (wi, ui).

Note that this yields exactly 3k vertices and 3k arcs.

The vertex set Vn of Gn is formed by the pairwise fusion of the triangle vertices as

follows: For every 0 ≤ i < k − 1, Vn has a vertex viui+1, which emerges from the fusion

of the triangle vertices vi and ui+1. Additionally, there is a vertex vk−1u0. Furthermore,

for every 0 ≤ i < ⌊k
2⌋, Vn contains a vertex wiw⌊ k

2 ⌋+i, and, if k is odd, also the vertex

wk−1. Figure 5.24 gives an outline of this construction and visualizes the fusions of the

triangle vertices. The arc set of Gn corresponds exactly to the triangles’ arcs. In case that

n mod 3 = 1, we additionally perform an arc subdivision on an arbitrarily selected arc.

Consequently, if n mod 3 = 0, then k is even and Gn has exactly k + k
2 = 3

2 · 2 · n
3 = n

vertices and 3k = 2n arcs. Otherwise, if n mod 3 = 1, then k is also even and Gn has

k+ k
2 +1 = 3

2 ·2 · n−1
3 +1 = n−1+1 = n vertices and 3k+1 = 3 ·2 · n−1

3 +1 = 2n−1 arcs.

192 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

v0u1 v1u2

v2u3v3u0

w0w2 w1w3

v0u1 v1u2

v2u3v3u0

w0w2

w1w3

s

(a) (b)

v0u1
v1u2

v2u3

v3u4

v4u0

w0w2

w1w3

w4

(c)

Figure 5.25: Subquartic graphs with τ = ⌊2n
3 ⌋ for n = 6 (a), n = 7 (b), and n = 8 (c).

Colors highlight the arc-disjoint cycles originating from the directed triangles during

the construction. The vertex s in (b) results from the arc subdivision.

Finally, if n mod 3 = 2, then k is odd andGn has exactly k+⌈k
2⌉ = 2 · n−2

3 +1+ n−2
3 +1 =

n − 2 + 2 = n vertices and again 3k = 3 ·
(
2 · n−2

3 + 1
)

= 2n − 1 arcs. In Figure 5.25,

the resulting graphs for n = 6, n = 7, and n = 8 are shown in an exemplary way.

By construction, Gn is strongly connected, subquartic, and has k arc-disjoint cycles.

Furthermore, Gn is simple for n ≥ 6. Thus, τGn ≥ k = ⌊2n
3 ⌋.

Due to every optimal linear ordering being Ψ-optimal by Theorem 4.1 and respecting

the Alternative Forward Paths Property and the Tail On Forward Path Property by

Lemma 5.4 and Lemma 5.5, we obtain1 from Theorem 5.3 and Lemma 5.9:

Theorem 5.4
The cardinality of an optimal feedback arc set of a subquartic graph having n

vertices is at most ⌊2n
3 ⌋ and this bound is tight for all values of n ≥ 6.

Note that in case of a quartic graph, m = 2n.

1A similar result has also been published in an earlier conference article [HBA13].

5.4 Subquartic and Subquintic Graphs 193

Table 5.5: Layouts induced by a Ψ-optimal linear ordering on a vertex v with d(v) = 5
as pictograms and 4-tuples.

b(v) = 2: (0, 3, 2, 0), (1, 2, 1, 1),

(3, 0, 0, 2), (2, 1, 1, 1)

b(v) = 1: (0, 4, 1, 0), (1, 3, 1, 0), (2, 2, 1, 0),

(4, 0, 0, 1) (3, 1, 0, 1), (2, 2, 0, 1)

b(v) = 0: (1, 4, 0, 0), (2, 3, 0, 0),

(3, 2, 0, 0), (4, 1, 0, 0)

5.4.3 Subquintic Graphs

Upon considering vertices of degree five, we observe that the Nesting Property here

implies that the number of incident backward arcs in any optimal linear ordering cannot

exceed two, as is the case for subquartic graph. Table 5.5 subsumes all possible layouts

induced by a Ψ-optimal linear ordering on a vertex of degree five. Eliminable layouts

are omitted.

Let π be a Ψ-optimal linear ordering of a subquintic graphG = (V,A) and assume that

π also respects the two new properties introduced in Section 5.4.1. Consider a forward

path graph
⇝
G with respect to π, as well as the corresponding pooled, the polarized, and

the truncated forward path graph
⇝
G

◦
,
⇝
G

∅
, and

⇝
G

∅

tr, respectively.

By applying the general assignment scheme from Section 5.3.2 in analogy to the

proof of Lemma 5.8 with H = ⇝
G

∅

tr, we immediately obtain α(s) = αh(s) ≤ 2 for every

pseudosource s and α(t) = αt(t) ≤ 2 for every pseudosink t. Whereas a vertex v with

layout is right-blocking and, in consequence of the vertical split, is counted as a

pseudosink and a pseudosource, such that α(v) = αh(v) + αt(v) = 2, this does not

apply to its left-blocking equivalent, because
⇝
G ⊆ Gsp/r, but

⇝
G ̸⊆ Gsp/l in general. If

a vertex v has layout in the forward path graph
⇝
G, then it has three component

vertices vs, vp, and vt in
⇝
G

∅
, where δ(vp) ≤ 1. Subsequently, we obtain only α(v) =

αh(v) + αt(v) + αd(v) ≤ 1 + 1 + 1 = 3.

A vertex v with layout or in π is subject to pooling in
⇝
G

◦
unless there is no

forward path passing through it. In this case, it is a pseudosource or a pseudosink in
⇝
G,

which implies that α(v) = αh(v) = 1 and α(v) = αt(v) = 1, respectively. Otherwise, let

194 5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs

Table 5.6: Mappings αh, αt, αd, and their sum α for v ∈ VG.

Lπ(v) αh(v) αt(v) αd(v) α(v)

, ≤ 2 0 0 ≤ 2

, 0 ≤ 2 0 ≤ 2

1 1 0 2

1 1 ≤ 1 ≤ 3

1 0 ≤ 1a ≤ 2a

0 1 ≤ 3a ≤ 4a

1 0 ≤ 2 ≤ 3

0 1 ≤ 2 ≤ 3

0 0 ≤ 1 ≤ 1

0 0 ≤ 2 ≤ 2

, 0 0 ≤ 3 ≤ 3

aon average

u be the vertex that pools k vertices with layout , including v. Here, we can argue

similar as in the proof of Lemma 5.8 and thereby obtain δ⇝
G

∅
tr

(up) ≥ −k. Hence, αd(v) ≤ 1
on average. If u pools k vertices with layout , then d−

⇝
G

∅
tr

(vp) ≤ 3k − k + 1 = 2k + 1

by Equation (5.2). In consequence, we only obtain αd(v) ≤ 3 on average.

For a vertex v with layout or , the passage component vertex vp may in the

worst case inherit both incoming forward arcs and have no outgoing arcs in
⇝
G

∅

tr. Thus,

αd(v) ≤ 2 here.

Finally, the situation in case that v is a passage with layout , , or is

straightforward and yields α(v) ≤ 1, α(v) ≤ 2, and α(v) ≤ 3, respectively. If v has layout

, d+
⇝
G

∅
tr

(vp) = 0 may occur. Then, however, vp’s only outgoing forward arc in
⇝
G

∅

tr

is incident to a pseudosink t, where t can have at most two outgoing backward arcs.

In consequence, d−
⇝
G

∅
tr

(vp) ≤ 2. If d+
⇝
G

∅
tr

(vp) = 1, then we only have d−
⇝
G

∅
tr

(vp) ≤ 3, which

yields δ⇝
G

∅
tr

(vp) ≥ −3 and hence α(v) ≤ 3 in summary. Table 5.6 subsumes these vertex

assignments once more.

5.4 Subquartic and Subquintic Graphs 195

By modifying
⇝
G

∅

tr carefully towards a subgraph H ⊆ ⇝
G

∅

tr and considering vertices

with different layouts in unison, we conjecture that it is possible to obtain α(v) ≤ 2.5
on average in all of the above cases. Due to the same maximum number of incident

backward arcs for subquintic as for subquartic graphs, the arguments for the subquartic

case conducted in the proof of Lemma 5.8 should be applicable here for vertices of

degree at most four.

Conjecture 5.1
Let π be a Ψ-optimal linear ordering of subquintic graph G such that π addition-

ally respects the Alternative Forward Paths Property and the Tail On Forward

Path Property. Then, there is an admissible assignment scheme α with respect

to π such that, on average, for every vertex v in G, α(v) ≤ 2.5 if d(v) = 5 and

α(v) ≤ 2 otherwise.

If this conjecture holds true, we immediately obtain:

Conjecture 5.2
The cardinality of an optimal feedback arc set of a subquintic graph having n

vertices is at most ⌊2.5n
3 ⌋.

Note that in case of a quintic graph, m = 2.5n, so we would obtain an upper bound of
m
3 in consequence.

6 Exact and Fast Algorithms for
Linear Ordering

In computational complexity theory, NP-hard problems such as the LINEAR ORDER-

ING problem are called “intractable”, which is due to their lack of a polynomial-time

algorithm. This shortcoming implies that every algorithm that guarantees to return an

optimal solution for arbitrary graphs has a quite long worst-case execution time and is

thus usually of little interest in practice—in particular, if the input instances are large.

For this reason, a number of heuristics and approximations for the LINEAR ORDERING

problem have been developed to obtain good solutions in reasonable time (cf. Chapter 2,

Chapter 4). By contrast, exact approaches are few and far between.

To recapitulate briefly, a naive search for an optimal feedback arc set requires to

test up to 2m possible arc subsets. In case that the input graph is dense, it is more

efficient to enumerate all n! possible linear orderings, though. By means of dynamic

programming, an optimal solution can be obtained in as little asO∗(2n) time [RS07,FK10].

In contrast to the above approaches, however, this procedure also requires exponential

space. Alternatively, the algorithm can be brought down to polynomial space, which

is accompanied by an increase in running time to O∗(4n+o(n)). With the continued

improvement of linear (and non-linear) program solvers and the development of new

cutting plane strategies that specifically target the LINEAR ORDERING problem [MR11,

BSN15], these specializations of a multi-purpose tool suite seem to have become the

de-facto standard to obtain optimal solutions.

Nevertheless, the ever increasing computational power of modern devices also

changes the size at which an input instance becomes effectively intractable. This in

turn stimulates demand for exact algorithms, whose number and variety can thus be

expected to grow at about the same rate as real-world problems become “tractable” in

practice. What is more, the quality of non-optimal results for larger instances improve

further if heuristics are employed that combine exact solutions of subproblems, like local

enumeration (cf. Section 2.4.1).

198 6 Exact and Fast Algorithms for Linear Ordering

In this chapter, we devise a new exact algorithm that performs in particular very well

on sparse graphs. Furthermore, it is easy to implement and competitive with existing

approaches in that it runs in timeO∗(min{(m
n + 1)n, (⌊∆G

2 ⌋+ 1)n
,
√

2 (−n) ·n!}) in general

and in O∗(min{(1
2
√
k2 − 1)n

,
√

2 (−n) · n!}) on k-regular graphs with odd k, and requires

only O(n · m) space. Prior to this, we do some groundwork which already yields a

simpler version of the aforementioned algorithm as well as one for the corresponding

decision problem.

In addition to the default assumptions postulated in Section 3.4.1, we only deal with

graphs that are simple, i. e. , we do not allow for multiple parallel arcs. In compensation,

the algorithms presented in the following can be adapted to weighted graphs in a

straightforward manner, thus providing in turn a means to handle parallel arcs.

Assumption 6.1
The input graph is free of parallel arcs.

6.1 Partial Layouts and Incomplete Linear Orderings

In Section 3.3.3, we stated that a linear ordering π of a graph G = (V,A) induces a layout

L that assigns a 4-tuple to every vertex v ∈ V specifying its number of incoming and

outgoing forward and backward arcs. More precisely, L(v) = (f−(v), f+(v),b−(v), b+(v)).

Let us now reverse our perspective and suppose that we are solely given a layout L.

What can we tell about those linear orderings inducing L? Evidentially, all of them must

imply the same number of backward arcs, as for every linear ordering π,

|π| =
∑
v∈V

b−(v) =
∑
v∈V

b+(v).

In fact, it suffices here to know only one of b− or b+. Let us hence assume that we

are just given b−(v) for every vertex v ∈ V . We call the function λ : V → N0 which

assigns each vertex v ∈ V a number of incoming backward arcs λ(v) a partial layout of G.

Certainly, every linear ordering π unambiguously defines a partial layout λπ such that

λπ(v) = b−
π (v), but not vice versa. A linear ordering π is said to realize a partial layout λ

if λ = λπ. A partial layout is realizable, if there is a linear ordering that realizes it. Not

every partial layout λ is also realizable, e. g. , if λ(v) > d−(v).

Despite its name, a partial layout that is realizable by an optimal linear ordering in

fact defines the layout of each vertex entirely.

6.1 Partial Layouts and Incomplete Linear Orderings 199

Lemma 6.1
If two linear orderings π, π′ of a graph G = (V,A) that both respect the Nesting

Property and the Path Property realize the same partial layout λ, then Bπ = Bπ′ .

Proof. Consider the set X of all vertices v ∈ V such that λ(v) = d−(v). Note that this

always applies to the vertex at the smallest position within any linear ordering and thus

in particular also to π−1(0) and π′−1(0). Hence, X ̸= ∅. With b−
π (v) = b−

π′(v) = d−(v), all

incoming arcs of a vertex v ∈ X are backward with respect to both π and π′, i. e. , v has

no incoming forward arcs. Subsequently, B−
π (v) = B−

π′(v) and F−
π (v) = F−

π′(v) = ∅. As

π and π′ respect the Nesting Property, v cannot have an outgoing backward arc due to

Corollary 4.3, so B+
π (v) = B+

π′(v) = ∅ and F+
π (v) = F+

π′(v). Let B = B−
π [X] = B−

π′ [X] ⊆
Bπ ∩ Bπ′ and F = F+

π [X] = F+
π′ [X] ⊆ Fπ ∩ Fπ′ . As F−

π [X] = F−
π′ [X] = ∅, there is no arc

(u, v) in neither Fπ nor Fπ′ such that u ̸∈ X and v ∈ X .

Let w be the vertex at the smallest position within π that is not in X . Then, F−
π (w) ⊆

F+
π [X] ⊆ F , which implies that the same arcs are also incoming forward arcs of w

in π′, i. e. , F−
π (w) ⊆ F−

π′(w). Furthermore, λ(w) = d−(w) − f−
π (w) = d−(w) − f−

π′(w),

so f−
π (w) = f−

π′(w) and, as a result, F−
π (w) = F−

π′(w) and F−
π′ ⊆ F . Consequently,

B−
π (w) = B−

π′(w). Moreover, B+
π (w) ⊆ B−

π [X] ⊆ B, which in analogy to the above

implies that the same arcs are also outgoing backward arcs of w with respect to π′, i. e. ,

B+
π (w) ⊆ B+

π′(w). Suppose there is an arc (w, y) ∈ B+
π′(w) \ B+

π (w). Then, (w, y) ∈ F+
π (w).

As F+
π (w) ⊆ Fπ and w ̸∈ X , y ̸∈ X either. Due to π′ respecting the Path Property, there

must be a path P = y ⇝ w consisting only of arcs in Fπ′ . In particular, P must use

an arc (x,w) ∈ F−
π′(w). As y ̸∈ X and x ∈ X , P contains at least one arc (u, v) ∈ Fπ′

such that u ̸∈ X and v ∈ X , a contradiction. Hence, B+
π (w) = B+

π′(w) and subsequently,

F+
π (w) = F+

π′(w).

Let X ′ = X ∪ {w}, B′ = B ∪B−
π (w) = B ∪B−

π′(w), and F ′ = F ∪F+
π (w) = F ∪F+

π′(w).

Then again, B′ = B−
π [X ′] = B−

π′ [X ′] ⊆ Bπ ∩ Bπ′ and F ′ = F+
π [X ′] = F+

π′ [X ′] ⊆ Fπ ∩ Fπ′ .

As the tail of every arc in F−
π (w) = F−

π′(w) is in X , there is no arc (u, v) in neither Fπ nor

Fπ′ such that u ̸∈ X ′ and v ∈ X ′.

The statement follows by repeating the argument with X = X ′, B = B′, and F = F ′

until X contains all vertices of G and B = Bπ = Bπ′ .

As every optimal linear ordering respects the Nesting Property by Lemma 4.3 and the

Path Property by Lemma 4.5, we immediately obtain:

200 6 Exact and Fast Algorithms for Linear Ordering

Corollary 6.1
If two optimal linear orderings π∗, π′∗ of a graph G = (V,A) realize the same

partial layout λ, then Bπ = Bπ′ .

As a benefit, it suffices to check whether a partial layout is realizable by any linear

ordering if we are only interested in those that are optimal.

In this chapter, we will also deal with linear orderings of a graph G = (V,A) that do

not (yet) assign a LO position to each vertex v ∈ V . Such a linear ordering π is said

to be incomplete and defined as a mapping π : V → {0, . . . , n− 1} ∪ {⊥} which either

assigns a unique LO position to a vertex v ∈ V or ⊥ if the LO position is undefined.

Besides, there may be no “gaps” within the incomplete linear ordering. More formally, if

π(v) ̸= ⊥, then ∀i ∈ {0, . . . , π(v)} ∃u ∈ V : π(u) = i. With a slight abuse of terminology,

we say that a vertex v is contained in π if π(v) is defined, i. e. , π(v) ̸= ⊥. The length
l(π) of an (incomplete) linear ordering π is the number of vertices contained in π, i. e. ,

l(π) = |{v ∈ V | π(v) ̸= ⊥}|. Furthermore, the extension of an incomplete linear ordering

π by a vertex v with π(v) = ⊥ yields an (incomplete) linear ordering π′ that assigns each

vertex contained in π the same LO position and π′(v) = l(π) additionally.

Let π be an incomplete linear ordering. In favor of a concise notation, we adapt

some definitions for conventional linear orderings to incomplete ones. As a matter of

principle, every vertex v that is not contained in π is treated as if it extended π, i. e. , as if

we considered the extension of π by v. Hence, if a vertex v has an arc to or from a vertex

not contained in π, then this arc is considered as an outgoing forward arc or an incoming

backward arc of v, respectively. More formally,

F+
π (v) = {(v, u) | π(u) = ⊥ ∨ (π(v) ̸= ⊥ ∧ π(v) < π(u))} ,
B−

π (v) = {(u, v) | π(u) = ⊥ ∨ (π(v) ̸= ⊥ ∧ π(v) < π(u))} ,
F−

π (v) = {(u, v) | π(u) ̸= ⊥ ∧ (π(v) = ⊥ ∨ π(u) < π(v))} ,
B+

π (v) = {(v, u) | π(u) ̸= ⊥ ∧ (π(v) = ⊥ ∨ π(u) < π(v))} .

The definitions of f−, f+, b−, b+, and L follow accordingly. Nevertheless, the number of

backward arcs induced by π is defined only via the vertices contained in π, i. e. ,

|π| =
∑

v∈V : π(v)̸=⊥
b−(v).

In subsequence, the extension of a linear ordering never decreases the number of induced

backward arcs.

6.2 Exact Algorithms for Optimization and Decision 201

6.2 Exact Algorithms for Optimization and Decision

We now cast the results from Section 6.1 and in particular Lemma 6.1 and Corollary 6.1 in

a relatively simple, yet surprisingly fast algorithm which solves the LINEAR ORDERING

problem to optimality. Afterwards, we straightforwardly derive an algorithm for the

corresponding decision problem. The procedure described in the following lemma

provides the basis for both:

Lemma 6.2
Let λ : V → N0 be a partial layout of graph G = (V,A). There is an O(m)-time

and O(n)-space algorithm that either guarantees that no optimal linear ordering

realizing λ exists or returns a candidate linear ordering that realizes λ.

Proof. Consider the function CheckPartialLayout(G,λ) listed in Algorithm 6.1, which

obtains a simple graph G = (V,A) along with the specification of λ as arguments and

operates similar to an algorithm for topological sorting. As we are given the number of

incoming backward arcs λ(v) = b−(v) for every vertex v ∈ V , we can immediately derive

the number of incoming forward arcs f−(v) as d−(v) − b−(v) (cf. line 5). Furthermore,

we maintain a bucket for every possible number of incoming forward arcs and pigeon-

hole the vertices accordingly (cf. line 2 and line 6). Observe that we stipulated in

Assumption 3.2 that G is strongly connected, which implies at least one incoming and

one outgoing arc per vertex and hence ∀v ∈ V : d−(v) < ∆G.

After these preprocessing steps, we start to iteratively construct a linear ordering π

by extending π by a vertex v if and only if exactly f−(v) vertices from N−(v) are already

contained in π. The algorithm returns π in line 21 if π could be constructed such that

it induces λ and if π is not glaringly non-optimal, e. g. , because it violates the Nesting

Property. In the latter case, λ is rejected by returning ⊥.

For the construction of π, CheckPartialLayout makes use of the buckets to ensure that

exactly f−(v) vertices from N−(v) are already contained in the linear ordering before

extending it by v. To this end, it maintains as invariant that if a vertex v is contained in

bucket S[j], then j vertices having an arc to v still need to be processed before v. Thus, a

vertex may only extend the linear ordering if it currently resides in the bucket S[0].
Let us briefly consider the relationship between two vertices u, v ∈ S[0], u ̸= v,

for any point in time during the execution of the algorithm. Suppose (v, u) ∈ A. If

CheckPartialLayout processes u before v, u’s number of incoming backward arcs would

202 6 Exact and Fast Algorithms for Linear Ordering

Algorithm 6.1 Check a partial layout and construct a linear ordering inducing it.

Require: simple graph G = (V,A), partial layout λ : V → N0

Return: reject λ by returning ⊥ or return a linear ordering realizing λ

1: procedure CheckPartialLayout(G,λ)

2: for all j ∈ {0, . . . ,∆G − 1} do S[j]← ∅
3: b− ← λ

4: for all v ∈ V do

5: f−(v)← d−(v)− b−(v) ▷ compute number of incoming forward arcs

6: S[f−(v)]← S[f−(v)] ∪ {v} ▷ sort vertex into bucket

7: π ← ⊥V

8: i← 0
9: while S[0] ̸= ∅ do

10: remove one vertex v from S[0]
11: if 2 · b−(v) ≥ n− i− |S[0]| then return ⊥ ▷ π cannot be optimal

12: π ← insert(π, v, i)
13: i← i+ 1
14: for all outgoing arcs (v, u) of v do ▷ update all outgoing neighbors u of v

15: if π(u) = ⊥ then

16: let S[j] be the bucket containing u

17: if j = 0 then return ⊥ ▷ b−(u) is less than λ(u)

18: S[j]← S[j] \ {u} ▷ update bucket of u

19: S[j − 1]← S[j − 1] ∪ {u}
20: if i < n then return ⊥ ▷ λ unrealizable for at least one vertex

21: return π

match λ(u) exactly. Thus, (v, u) must be a backward arc in order to comply with λ(u).

Furthermore, if π is optimal, it must respect the Nesting Property by Lemma 4.3. Hence,

there must be a vertexw such that π(u) < π(w) < π(v) and (w, v) is an incoming forward

arc of v. In consequence, w ∈ N−(v) and, as v ∈ S[0], π induces strictly less incoming

backward arcs on v than specified by λ(v). Conversely, if CheckPartialLayout processes

v before u, then (v, u) is a forward arc. As u ∈ S[0], b−
π (u) < λ(u). Subsequently, no two

vertices in S[0] may be adjacent.

At the beginning of the main part of the algorithm, the linear ordering π is “empty”,

i. e. , the LO position is undefined for all vertices (cf. line 7). We also use a variable

6.2 Exact Algorithms for Optimization and Decision 203

i to specify the current number of vertices that have already been ordered, which is

initialized with 0 in line 8. In lines 9–19, CheckPartialLayout loops over the vertices

contained in bucket S[0]. In each iteration, it removes one arbitrary vertex v from S[0]
and checks whether it can have λ(v) incoming backward arcs and at the same time have

position i in π. Note that if v has b−(v) incoming backward arcs and f+(v) outgoing

forward arcs, then at least f+(v) + b−(v) vertices must have a position strictly greater

than i in π, as we declared G to be simple in Assumption 6.1. Furthermore, we have

already argued that if π is optimal, then v cannot be adjacent to another vertex in S[0].
In consequence of the Nesting Property and in particular Corollary 4.4, f+(v) ≥ b−(v),

which yields that 2 · b−(v) < n − i − |S[0]|. Hence, CheckPartialLayout rejects λ and

returns ⊥ in line 11 if this inequality is violated. Otherwise, we extend π by v. More

formally, v is inserted into π at position i and i is incremented. The algorithm now

updates the buckets of all vertices having an incoming arc from v in lines 14–19 that

are not contained in π yet. Let u be one such vertex and u ∈ S[j]. As argued above, π

cannot be optimal if u ∈ S[0]. Thus, CheckPartialLayout rejects λ in this case (cf. line 17).

Observe that v ∈ N−(u). As v is now contained in π, u can be moved from bucket S[j] to

S[j − 1] in lines 18–19. Once S[0] is empty, the algorithm checks whether π contains all

vertices and terminates.

For the analysis of the time complexity, we assume that a vertex’s addition to or

removal from a bucket requires constant time. As ∆G < n, the preprocessing steps in

lines 2–6 can be accomplished in time O(n). For every vertex that is processed in the

loop spanning lines 9–19, the algorithm needs to consider at most all outgoing arcs

and sort the heads into a new bucket. In consequence, the number of steps required in

the main part is
∑

v∈V d+(v) = m, which yields a time complexity of O(m). Due to G

being simple and strongly connected, n ∈ O(m), so the algorithm runs in time O(m).

The space complexity follows by observing that at any point during the algorithm, all

buckets together contain at most n elements.

With the help of Lemma 6.2, we are able to design an exact algorithm by enumerating

all contemplable partial layouts:

Theorem 6.1
There is an O(n)-space algorithm that constructs an optimal linear ordering π∗

of a graph G with maximum vertex degree ∆G in time O(m · (1
2
√
k2 − 1)n) if G

is k-regular and k is odd, and O(m · (min{m
n , ⌊∆G

2 ⌋}+ 1)n) otherwise.

204 6 Exact and Fast Algorithms for Linear Ordering

Algorithm 6.2 A simple, exact algorithm.

Require: simple graph G = (V,A)
Return: the returned linear ordering is optimal

1: procedure ExactLOSimple(G)

2: λ← 0V

3: repeat

4: λ←next(G,λ) ▷ construct next λ such that
∑

v∈V λ(v) is non-decreasing

5: π ← CheckPartialLayout(G,λ)

6: until π ̸= ⊥
7: return π

Proof. Consider the algorithm ExactLOSimple(G) listed in Algorithm 6.2, which obtains

a graph G = (V,A) as parameter. It first initializes a partial layout λ in line 2 with

the constant-zero function. Then, it enters a loop that enumerates partial layouts in

some non-decreasing order with respect to
∑

v∈V λ(v) in line 4 and passes each to

CheckPartialLayout in line 5. As soon as this subroutine returns a linear ordering

π ̸= ⊥ and thereby reports that the current partial layout is realizable, ExactLOSimple

abandons the search and returns π.

Before giving our attention to the question how many interesting partial layouts

exist and how they can be enumerated, let us briefly address the overall correctness

of ExactLOSimple. First, we may note that the initial value of λ, which assigns each

vertex zero incoming backward arcs, is never checked. However, this choice implies

that for any linear ordering π realizing λ, |π| = 0, i. e. , G is acyclic, a contradiction

to Assumption 3.2, which states that all graphs are strongly connected. Second, the

algorithm returns immediately if a check was successful and does not consider any

further partial layouts. As the invariant during the enumeration of partial layouts is

that
∑

v∈V λ(v) is non-decreasing, the number of induced backward arcs in the next

iteration must be either the same or greater. As we are interested in an optimal solution,

i. e. , one with the minimum number of induced backward arcs, this behavior is correct.

Furthermore, by Corollary 6.1, it suffices to test for each partial layout only whether

there is an arbitrary linear ordering that realizes it.

How many partial layouts of G do we need to enumerate in the worst case? In

consequence of the Nesting Property (cf. Lemma 4.3, Corollary 4.4), an optimal linear

6.2 Exact Algorithms for Optimization and Decision 205

ordering π∗ of G induces a layout on every vertex v ∈ V such that b−(v) ≤ f+(v). Hence,

with b−(v) + f+(v) ≤ d(v),

b−(v) ≤ ⌊d(v)
2 ⌋.

The number of incoming backward arcs b−(v) for every vertex v thus ranges between 0
and ⌊d(v)

2 ⌋, which yields a total of ⌊d(v)
2 ⌋+ 1 possibilities per vertex and at most

∏
v∈V

(
⌊d(v)

2 ⌋+ 1
)

possible partial layouts λ. Due to the inequality of the arithmetic and geometric means1

and the monotonicity of the exponentiation we can bound this value from above by

∏
v∈V

(
⌊d(v)

2 ⌋+ 1
)

=

⎛⎝ n

√∏
v∈V

(
⌊d(v)

2 ⌋+ 1
)⎞⎠n

≤
(

1
n
·
∑
v∈V

(
⌊d(v)

2 ⌋+ 1
))n

=
(

1
n
·
(∑

v∈V

⌊d(v)
2 ⌋+ n

))n

=
(

1
n
·
∑
v∈V

⌊d(v)
2 ⌋+ 1

)n

≤
(

1
n
·
∑
v∈V

d(v)
2 + 1

)n

=
(

1
2n ·

∑
v∈V

d(v) + 1
)n

=
(1

2n · 2m+ 1
)n

=
(
m

n
+ 1

)n

.

Depending on the vertices’ degree distribution in G, a better upper bound may be

obtained by observing that

⌊d(v)
2 ⌋ ≤ ⌊

∆G

2 ⌋.

In combination, the number of interesting partial layouts of a graph G is therefore at

most (
min

{
m

n
, ⌊∆G

2 ⌋
}

+ 1
)n

.

1The inequality states that n√x1 · x2 · · · · · xn ≤ x1 + x2 + · · · + xn

n
.

206 6 Exact and Fast Algorithms for Linear Ordering

In case that G is k-regular and k is odd, the Eliminable Layouts Property imposes a

further restriction: Consider a vertex v that has the maximum of ⌊k
2⌋ = k−1

2 incoming

backward arcs, i. e. , b−(v) = k−1
2 . The Nesting Property again implies that f+(v) ≥ b−(v),

i. e. , f+(v) ≥ k−1
2 . If f+(v) = k−1

2 , however, then f−(v) = 1 and b+(v) = 0, which is an

eliminable layout. By Lemma 4.18, there is an optimal linear ordering π∗ of G such that

π∗ does not induce an eliminable layout on any vertex v ∈ V . Subsequently, it suffices

to assume that f+(v) = k+1
2 . But then again, v’s outdegree d+(v) = f+(v) = k+1

2 and

v’s indegree d−(v) = b−(v) = k−1
2 . Due to the handshaking lemma, at most half of all

vertices of G can have k+1
2 outgoing and k−1

2 incoming arcs, which in turn implies that

at most n
2 vertices can have the maximum of k−1

2 incoming backward arcs, and the other
n
2 vertices can have at most k−3

2 incoming backward arcs. Thus, the number of partial

layouts to consider is(
k − 1

2 + 1
)n

2
·
(
k − 3

2 + 1
)n

2
=
(
k + 1

2

)n
2
·
(
k − 1

2

)n
2

=
(
k + 1

2 · k − 1
2

)n
2

=
(
k2 − 1

4

)n
2

=
(1

2
√
k2 − 1

)n

.

Note that in the listing of the algorithm, this behavior is hidden in the functionality of

next(G,λ).

If G is k-regular and k is even, then every vertex may have k
2 outgoing and k

2 incoming

arcs and b−(v) = k
2 is possible for every v ∈ V . As m = kn

2 and hence, k = 2m
n , the

number of possible partial layouts in this case is(
k

2 + 1
)n

=
(2m

2n + 1
)n

=
(
m

n
+ 1

)n

,

which meets exactly the previously established bound for general graphs.

Irrespective of whether G is k-regular or not, the contemplable partial layouts can

be enumerated as requested in a non-decreasing fashion with respect to
∑

v∈V λ(v).

Furthermore, we assume that the order of the enumeration is fixed. Then, given a partial

layout λ, the next partial layout in order can be constructed in situ and in at most O(n)
time. Furthermore, by Lemma 6.2, CheckPartialLayout runs in time O(m) and needs

O(n) space. As n ∈ O(m), each iteration of the loop hence requires O(m) time and O(n)
space. In total, ExactLOSimple has a space complexity of O(n) and a running time of

6.2 Exact Algorithms for Optimization and Decision 207

Algorithm 6.3 An algorithm for the LINEAR ORDERING decision problem.

Require: simple graph G = (V,A), upper bound k

Return: true if G has a linear ordering π such that |π| ≤ k, otherwise false

1: procedure DecideLO(G, k)

2: λ←next(G, 0V) ▷ obtain first λ with
∑

v∈V λ(v) = 1
3: while

∑
v∈V λ(v) ≤ k do

4: π ← CheckPartialLayout(G,λ)

5: if π ̸= ⊥ then return true

6: λ←next(λ) ▷ construct next λ such that
∑

v∈V λ(v) is non-decreasing

7: return false

O(m · (min{m
n , ⌊∆G

2 ⌋}+ 1)n) for general graphs and O(m · (1
2
√
k2 − 1)n) for k-regular

graphs with k odd.

The fact that ExactLOSimple enumerates partial layouts in a non-decreasing fashion

allows us to turn it straightforwardly into an effective algorithm for the decision problem.

Theorem 6.2
There is anO(n)-space algorithm that decides inO(m·(n+ k − 1)k) time whether

a given graph G has a linear ordering π such that |π| ≤ k.

Proof. Consider the modification of ExactLOSimple as listed in Algorithm 6.3. In contrast

to the original, DecideLO(G, k) receives an additional parameter k that serves as an

upper bound on the cardinality of the induced set of backward arcs of the linear orderings

to consider. Like ExactLOSimple, it initializes λ as a first step in line 2, here however

by setting it to the first partial layout whose sum of function values equals one, which

is obtained by calling next on the constant-zero partial layout 0V . Afterwards, the

algorithm enters a while loop that has as invariant that
∑

v∈V λ(v) may not exceed k,

i. e. , the upper bound passed as parameter must be observed. In line 4, it then checks

whether λ can be realized by a linear ordering and if so, returns true, because this linear

ordering induces at most k backward arcs. Otherwise, the algorithm constructs the

next partial layout such that the sum of its function values is not less than the current

one and the statements in the loop’s body are repeated. This continues until either a

partial layout is realizable or the upper bound k is exceeded. In the latter case, the loop

208 6 Exact and Fast Algorithms for Linear Ordering

terminates regularly and the algorithm returns false, because every linear ordering of

G must induce strictly more than k backward arcs.

Naturally, every partial layout considered by DecideLO would also have been con-

sidered by ExactLOSimple. For this reason, its running time can be at most that of

the algorithm solving the optimization problem and the space complexity is in fact

the same. However, we can now additionally bound the running time of DecideLO

in terms of the parameter k. To this end, let us consider the number of partial layouts

whose sum of function values equals an integer i. This corresponds to the number

of possibilities of distributing i identical balls in n bins and hence is exactly
(n+i−1

i

)
.

As DecideLO considers only partial layouts such that i ≤ k, we obtain a total of∑
1≤i≤k

(n+i−1
i

) ∈ O((n+ k − 1)k) partial layouts. With a cost ofO(m) for checking each

partial layout, the statement follows.

In consequence, we can decide in polynomial time whether a graph has a linear

ordering inducing at most k backward arcs if k is fixed. Unfortunately, the degree of the

polynom depends directly on k.

6.3 Branch and Bound with Integrated Partial Layouts

Especially in case that |π∗| is large, one major drawback of the approach developed in

the previous section for solving the optimization problem consists in the construction of

an expectably huge number of partial layouts λ that are rejected by CheckPartialLayout.

In a more sophisticated approach, we therefore seek to overcome this issue by generating

only those partial layouts λ that are also realizable, i. e. , that have a candidate linear

ordering inducing them. We will have to trade this, however, for the invariant that the

partial layouts are considered in a monotonically increasing order with respect to the

number of induced backward arcs.

Furthermore, we address another important shortcoming of ExactLOSimple : If G is

dense enough, its worst-case running time may exceed the effort of simply enumerating

all n! possible linear orderings. To this end, we modify ExactLOSimple such that the

construction of the linear ordering is integrated in the enumeration of all possible partial

layouts λ.

The algorithm we employ here as a subroutine, ExtendLO, is recursive in nature and

builds a linear ordering stepwise by extending it by vertices, similar to a simple and

straightforward brute-force search. In doing so, however, it guarantees that it never

6.3 Branch and Bound with Integrated Partial Layouts 209

generates two linear orderings that induce the same partial layout λ. Algorithm 6.4

outlines ExtendLO(G, π, t, E, Z,D). Apart from the graph G, the routine receives an

incomplete linear ordering π, a value t telling the size of the best solution found so far, as

well as three sets E, Z, D as arguments, the latter of which are used to classify vertices

and thereby keep the above guarantee of not testing the same partial layout more than

once: Every vertex v belongs in exactly one of four categories depending on v’s current

status and, if applicable, the effect on π if v would extend the incomplete ordering π in

the next step. Additionally, we assume that for each partial layout λ that is still to be

considered by the algorithm, there is an individual upper bound λmax for each vertex v,

i. e. , λ(v) ≤ λmax(v).

processed: π(v) ̸= ⊥, i. e. , π(v) is defined.

eligible (E): π(v) = ⊥, 1 ≤ b−(v) ≤ f+(v), the arcs in B+(v) and F−(v) nest as required

by the Nesting Property, b−(v) ≤ λmax(v), and v’s layout is not .

zero cost (Z): as in case of “eligible”, but with b−(v) = 0.

deferred (D): π(v) = ⊥ and v ̸∈ E ∪Z, i. e. , either B+(v) and F−(v) violate the Nesting

Property, L(v) violates the Eliminable Layouts Property, or b−(v) > λmax(v).

Note that for every vertex v that is not yet contained in π, the value of b−(v) equals

its indegree d−(v) minus the number of incident incoming arcs whose tail is already

contained in π. Likewise, the value of f+(v) can be obtained from v’s outdegree d+(v)
minus the number of incident outgoing arcs whose head is already contained in π. As

we consider simple graphs by Assumption 6.1, the algorithm only has to keep track of

the number of vertices in N−(v) and N+(v), respectively, that are already contained in

π. Alternatively, it can store the values b−(v) and f+(v) explicitly by initializing them

with b−(v) = d−(v) and f+(v) = d+(v) and decrementing them whenever a neighbor of

v has been processed. This also already suffices to check whether v’s layout would be of

eliminable type if v extended π.

To assess the linear ordering’s compliance with the Nesting Property, the algorithm

maintains an equilibrium or balance E(v) for each vertex v that is initialized with zero.

Whenever π(v) = ⊥ and a vertex from N+(v) extends π, E(v) is decremented to indicate

that there is an outgoing backward arc of v whose nesting incoming forward arc is still

missing. Consequently, E(v) is incremented if a vertex from N−(v) extends π and E(v)
was negative before. Otherwise, the balance remains unchanged. Note that an incoming

forward arc of v cannot be the nesting forward arc of backward arc whose head has a

greater position than this forward arc’s tail. Thus, v may extend π only if E(v) = 0 at this

210 6 Exact and Fast Algorithms for Linear Ordering

point of time. If π already contains v, E(v) may be incremented for each vertex in N+(v)
that extends π and decremented accordingly for each vertex in N−(v). Then, a negative

value of E(v) always indicates an unresolvable violation of the Nesting Property at v.

ExtendLO(G, π, t, E, Z,D) returns an extension of π if and only if the number of

backward arcs induced by the extension is strictly less than t. Otherwise, it indicates that

no such extension is possible and returns ⊥. To keep the algorithms’ listing concise, we

assume that the values b−(v), f+(v), as well as E(v) are stored within the data structure

representing π for each vertex v ∈ V . Furthermore, the maintenance of the sets E, Z,

and D obviates the need to represent λ or λmax explicitly.

The algorithm proceeds as follows: First, it checks whether the number of backward

arcs induced by the incomplete linear ordering π already meets or exceeds t and, if

positive, discards π and returns ⊥ in line 2. Otherwise, π is extended by all vertices

classified as “zero cost” in lines 4–9. For every such vertex v holds that π induces

no incoming backward arcs, i. e. , all neighbors having an arc to v must already be

contained in π. v is inserted at the position beyond the last within π, such that π(v) is

maximum among all vertices that π is defined for (cf. line 6). As v is contained in π now,

the classification of all unprocessed neighbors u of v may require an update, which is

handled by the subroutine Reclassify(G, u, v, π,E, Z,D). It will be reviewed later.

After all zero cost vertices have been processed, ExtendLO checks whether π is already

complete in line 10. If so, |π| < t and the routine returns it. Otherwise, as Z = ∅ now,

π must be extended by an “eligible” vertex, which also implies that this vertex has at

least one incident incoming backward arc. Thus, neither may E be empty nor may the

number of backward arcs already induced by π plus the minimum of the incoming

backward arcs of a vertex in E equal or exceed the currently best value t. Observe that if

|π|+ b−
π (v) ≥ t for all v ∈ E, then π cannot be extended such that the number of induced

backward arcs is strictly less than t. Therefore, ExtendLO aborts in these cases and

returns ⊥ in line 11.

In line 12, the algorithm chooses and removes one vertex v from E such that t could

still be undercut. Recall that b−
π (v) is the number of incoming backward arcs of v if

v would extend π in the next step. Trivially, there are two possibilities for v in the

optimal linear ordering that is to be constructed (provided that it exists): Either v has

exactly b−(v) incoming backward arcs, i. e. , λ(v) = b−(v), or strictly less than b−(v),

i. e. , λ(v) < b−(v). To cover the former case, the algorithm appends v to π in line 13.

In contrast to the processing of zero cost vertices, π is not modified, but the resulting

linear ordering is stored as π′ instead and the sets E,Z,D are copied to E′, Z ′, D′ in

6.3 Branch and Bound with Integrated Partial Layouts 211

Algorithm 6.4 Extend an incomplete linear ordering optimally.

Require: simple graph G, incomplete linear ordering π, currently best result t, vertex

sets E (eligible), Z (zero cost), D (deferred)

Return: a completion of π of size less than t, if possible, otherwise ⊥
1: procedure ExtendLO(G, π, t, E, Z,D)

2: if |π| ≥ t then return ⊥
3: l← |{v ∈ V | π(v) ̸= ⊥}|
4: while Z ̸= ∅ do

5: remove one vertex v from Z

6: π ← insert(π, v, l)
7: l← l + 1
8: for all neighbors u of v do

9: E,Z,D ← Reclassify(G, u, v, π,E, Z,D)

10: if l = n then return π

11: else if E = ∅ or minv∈E b−
π (v) ≥ t− |π| then return ⊥

12: remove one vertex v from E with |π|+ b−(v) < t ▷ branch on λ(v)
13: π′ ← insert(π, v, l)
14: E′ ← E;Z ′ ← Z;D′ ← D

15: for all neighbors u of v do

16: E′, Z ′, D′ ← Reclassify(G, u, v, π′, E′, Z ′, D′)

17: π′ ← ExtendLO(G, π′, t, E′, Z ′, D′)

18: if π′ ̸= ⊥ then t← |π′|
19: add v to D

20: π ← ExtendLO(G, π, t, E, Z,D)

21: if π = ⊥ then return π′

22: return π

line 14. Similar as above, the insertion of v to the linear ordering requires an update on

all neighbors of v, which is taken care of in lines 15–16, but now reflected in the new sets

E′, Z ′, D′. ExtendLO then recurses on the extended linear ordering π′ with E′, Z ′, D′ as

arguments and stores the result again in π′ (cf. line 17). As the recursive call returns only

a linear ordering if π′ could be extended such that it induces less than t backward arcs,

the value of t is updated in line 18 in preparation of another recursive call. Here, the

algorithm tests the second possibility for v. To this end, it defers v and stores the result

212 6 Exact and Fast Algorithms for Linear Ordering

Algorithm 6.5 Reclassify a vertex.

Require: graph G = (V,A), vertices u, v, incomplete linear ordering π, vertex sets E

(eligible), Z (zero cost), D (deferred)

Return: E,Z,D where u is reclassified correctly

1: procedure Reclassify(G, u, v, π,E, Z,D)

2: if π(u) ̸= ⊥ then return E,Z,D

3: if (v, u) ∈ A then b−(u)← b−(u)− 1; E(u)← min {0, E(u) + 1}
4: else f+(u)← f+(u)− 1; E(u)← E(u)− 1

5: if f+(u) < b−(u) or E(u) ̸= 0 or L(u) = then

6: ensure that u ̸∈ E and u ∈ D
7: else if b−(u) = 0 then

8: move u to Z

9: else if (v, u) ∈ A and u ̸∈ E then

10: move u from D to E

11: return E,Z,D

of the recursive call back in π (cf. lines 19–20). As before, the return value is different

from ⊥ if and only if the linear ordering could be extended such that it induces less

backward arcs than t. ExtendLO accounts for this and returns π′ in case that the second

recursive call failed, and otherwise π. Note that if both π = ⊥ and π′ = ⊥, the algorithm

returns π′ = ⊥, which indicates that the incomplete linear ordering passed as argument

could not be extended such that it undercuts t. The binary choice in the second part of

the algorithm is one of two characteristics of ExtendLO to ensure that no partial layout

is considered twice.

Let us finally consider Reclassify(G, u, v, π,E, Z,D), which is listed in Algorithm 6.5.

This subroutine is called whenever the classification of a vertex u may require an update

due to the insertion of its neighbor v in π. In case that u has already been processed,

it immediately returns its arguments E,Z,D, as no reclassification of u is necessary.

Otherwise, consider a vertex u such that (v, u) ∈ A or (u, v) ∈ A and u is not yet

contained in π. Let b−(u) and f+(u) here denote the number of incoming backward

and outgoing forward arcs of u, respectively, if u would extend the incomplete linear

ordering in the next step. As defined in Section 6.1, we consider an arc (u,w) or (w, u)
to be in B+(u) or F−(u) if and only if π(w) ̸= ⊥. We assume that b−(u) and f+(u) are

initialized with d−(u) and d+(u), respectively, at the beginning of the algorithm and u’s

6.3 Branch and Bound with Integrated Partial Layouts 213

balance with E(u) = 0, as described earlier. Then, if (v, u) ∈ A, (v, u) is an incoming

forward arc of u. Hence in line 3, b−(u) is decremented and (v, u) can be the nesting

forward arc of an outgoing backward arc at u, i. e. , E(u) is incremented if it was negative

before. Otherwise, if (u, v) ∈ A, then (u, v) is an outgoing backward arc of u, so f+(u)
and E(u) are both decremented in line 4.

Next, we revalidate the classification of u with respect to E, Z, and D. If u does

not meet the requirements for being “eligible” as defined above, which demand that

b−(u) ≤ f+(u), there is a proper nesting of the arcs in B+(u) and F−(u) that complies

with the Nesting Property, and u’s layout is not of eliminable type , then u must be

classified as “deferred” (cf. lines 5–6). Note that the heads of all arcs in B+(u) as well as

the tails of all arcs in F−(u) are already contained in π. Hence, their nesting is already

determined and we can check it as described earlier in this section by testing whether

E(u) = 0. Otherwise, if b−(u) = 0, then u now is a “zero cost” vertex and therefore

moved to Z (cf. lines 7–8). In case that u meets the requirements for being “eligible” and

u is considered because of an incoming arc, i. e. , because (v, u) ∈ A, then u is effectively

also reclassified as eligible and moved from D to E if necessary in lines 9–10. Thus, u can

only change from “deferred” to “eligible” if b−(u) has decreased by at least one since its

last inspection. This is the second part that ensures that no partial layout is considered

twice. As to the correctness, observe that if u was deferred because it did not meet all

requirements of being “eligible”, then only a decrease of b−(u) can resolve this. On the

other hand, if u was “deferred” deliberately for the second recursive call in ExtendLO,

then u may still meet the requirements of being “eligible” at the next inspection even

though b−(u) has not decreased, which is why this reclassification may only occur if

a further incoming arc of u has been classified as forward, i. e. , if b−(u) certainly has

decreased.

Together with a proper initialization of E, Z, and D, we can use ExtendLO to con-

struct an alternative exact algorithm that performs asymptotically at least as good as

ExactLOSimple :

Theorem 6.3
There is an O(n · m)-space algorithm that constructs an optimal linear or-

dering π∗ of a graph G with maximum vertex degree ∆G in time O(m ·
min{(1

2
√
k2 − 1)n

,
√

2 (−n) · n!}) if G is k-regular and k is odd, and O(m ·
min{(m

n + 1)n, (⌊∆G
2 ⌋+ 1)n

,
√

2 (−n) · n!}) otherwise.

214 6 Exact and Fast Algorithms for Linear Ordering

Algorithm 6.6 A more sophisticated exact algorithm.

Require: simple graph G

Return: the returned linear ordering is optimal

1: procedure ExactLOIntegrated(G)

2: π ← linear ordering of G obtained by some heuristic

3: E ← ∅; Z ← ∅; D ← ∅
4: for all v ∈ V do

5: if d+(v) ≥ d−(v) then E ← E ∪ {v} else D ← D ∪ {v}
6: π′ ← ExtendLO(G,⊥V , |π| , E, Z,D)

7: if π′ ̸= ⊥ then

8: return π′

9: return π

Proof. Consider algorithm ExactLOIntegrated(G) as given in Algorithm 6.6. In order to

obtain a linear ordering to start with, it runs a heuristic on G in line 2. Afterwards, the

setsE, Z, andD are constructed in preparation for the call to ExtendLO with an “empty”

linear ordering ⊥V , i. e. , one that does not define a LO position for any vertex. For the

classification of each vertex v ∈ V in lines 4–5, the algorithm needs to consider only its

out- and indegree: Recall that a vertex is “eligible” if it can extend the incomplete linear

ordering in the next step such that its layout is in accordance with the Nesting Property

and the Eliminable Layouts Property. As the incomplete linear ordering is initially

empty, all outgoing arcs of v would become outgoing forward arcs and all incoming arcs

would become incoming backward arcs if v is appended in the next step. The algorithm

therefore classifies v as “eligible” if and only if d−(v) ≤ d+(v). Note that an eliminable

layout is impossible at this stage because f−(v) = 0. Moreover, Z = ∅ because G is

strongly connected by Assumption 3.2.

Next, ExactLOIntegrated calls ExtendLO(G,⊥V , |π| , E, Z,D). As mentioned above,

the incomplete linear ordering here is ⊥V . We also assume that b−, f+, and E are

initialized accordingly as described earlier, i. e. , with b−(v) = d−(v), f+(v) = d+(v),

and E(v) = 0 for each vertex v ∈ V . The parameter t is set to |π|, because we are only

interested in linear orderings that are strictly better than the solution returned by the

heuristic algorithm. Thus, if this call returns a linear ordering π′ such that π′ ̸= ⊥, then

|π′| < |π| and, as ExtendLO tested all contemplable partial layouts, π′ is an optimal

linear ordering of G. Subsequently, the algorithm returns π′ in line 8. Otherwise, the

6.3 Branch and Bound with Integrated Partial Layouts 215

solution found by the heuristic already is an optimal solution and is hence returned in

line 9.

Even though ExtendLO enumerates the partial layouts only implicitly and in a dif-

ferent order, it does not consider more partial layouts than ExactLOSimple due to the

vertex classifications and the argumentation at the beginning of this section. For every

vertex v that is appended to the incomplete linear ordering, the classification of its

neighbors are updated in Reclassify, which can be done in constant time per neighbor

if we assume that the values necessary to compute its layout and balance are stored

explicitly. Hence, the effort for all reclassifications during one completion of a linear

layout is in O(∑v∈V d(v)) = O(m). Furthermore, each recursive call of ExtendLO needs

to copy the sets E, Z, and D once be able to branch on λ(v) for some vertex v, which

requires O(n) steps each time.

As in case of ExactLOSimple, the number of complete linear orderings does not exceed(
min{m

n , ⌊∆G
2 ⌋}+ 1

)n
for general graphs and

(
1
2
√
k2 − 1

)n
for k-regular graphs with k

odd. Furthermore, ExactLOIntegrated never constructs the same linear ordering twice,

but on the contrary: Suppose that ExactLOIntegrated obtains a complete or incomplete

linear ordering π in the course of the algorithm. Then, for every pair of consecutive

vertices u, v with respect to π, ExactLOIntegrated does not construct the linear ordering

that emerges when u takes the LO position of v and vice-versa. If either (u, v) or (v, u)
exists, then the local ordering of u and v in an optimal linear ordering is uniquely

determined by the fact that the arc cannot be backward in consequence of the Nesting

Property. Otherwise, if no such arc exists, then both linear orderings induce the same

(partial) layout on u and v and ExactLOIntegrated enumerates each only at most once.

Consequently, ExactLOIntegrated constructs at most

n!
2 n

2
=
√

2 (−n) · n!

linear orderings.

In summary, ExactLOIntegrated traverses a recursion tree havingO(min{(1
2
√
k2 − 1)n

,√
2 (−n) · n!}) leaves if G is k-regular and O(min{(m

n + 1)n, (⌊∆G
2 ⌋+ 1)n

,
√

2 (−n) · n!}) in

general, and in both cases asymptotically the same number of inner nodes. With each leaf

being associated with a cost of O(m) for the reclassifications and each inner node with

a cost of O(n) ⊆ O(m) for the set copying, the time complexity of ExactLOIntegrated

follows as stated in the theorem.

Finally, let us address the algorithm’s space complexity. For each recursive call, the

space required to store the incomplete linear ordering as well as t, E, Z, and D is in

216 6 Exact and Fast Algorithms for Linear Ordering

t = 5 u v w x y z
π ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
C E E E E D D
E 0 0 0 0 0 0
b− 1 2 1 2 3 2
f+ 2 2 3 2 1 1

t = 5 u v w x y z
π 0 ⊥ ⊥ ⊥ ⊥ ⊥
C P E E D D D
E 0 0 0 −1 0 0
b− 1 2 1 2 2 1
f+ 2 2 3 1 1 1

elect u

defer u. . .

t = 5 u v w x y z
π 0 1 ⊥ ⊥ ⊥ ⊥
C P P D E D Z
E 0 0 −1 0 −1 0
b− 1 2 1 1 2 0
f+ 2 2 2 1 0 1

elect v

t = 5 u v w x y z
π 0 1 ⊥ ⊥ ⊥ 2
C P P Z E D P
E 1 1 0 0 −1 0
b− 1 2 0 1 2 0
f+ 2 2 2 1 0 1

process Z

t = 5 u v w x y z
π 0 1 3 ⊥ ⊥ 2
C P P P Z D P
E 1 0 0 0 0 1
b− 1 2 0 0 1 0
f+ 2 2 2 1 0 1

process Z

t = 5 u v w x y z
π 0 1 3 4 ⊥ 2
C P P P P Z P
E 0 1 1 0 0 1
b− 1 2 0 0 0 0
f+ 2 2 2 1 0 1

process Z

t = 5 u v w x y z
π 0 1 3 4 5 2
C P P P P P P
E 1 0 2 1 0 1
b− 1 2 0 0 0 0
f+ 2 2 2 1 0 1

process Z

u v z w x y

t = 3

return π

t = 3 u v w x y z
π 0 ⊥ ⊥ ⊥ ⊥ ⊥
C P D E D D D
E 0 0 0 −1 0 0
b− 1 2 1 2 2 1
f+ 2 2 3 1 1 1

defer v

t = 3 u v w x y z
π 0 ⊥ 1 ⊥ ⊥ ⊥
C P E P E D D
E 0 0 0 0 0 −1
b− 1 1 1 1 1 1
f+ 2 2 3 1 1 0

elect w

⊥

|π|+ 1 = 3 ≥ t

t = 3 u v w x y z
π 0 ⊥ ⊥ ⊥ ⊥ ⊥
C P D D D D D
E 0 0 0 −1 0 0
b− 1 2 1 2 2 1
f+ 2 2 3 1 1 1

defer w

⊥

E = ∅

u v w

x y z

Figure 6.1: ExactLOIntegrated ’s proceeding on the graph depicted in the lower right

corner (part one, continued in Figure 6.2).

6.3 Branch and Bound with Integrated Partial Layouts 217

. . .

t = 3 u v w x y z
π ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
C D E E E D D
E 0 0 0 0 0 0
b− 1 2 1 2 3 2
f+ 2 2 3 2 1 1

defer u

t = 3 u v w x y z
π ⊥ 0 ⊥ ⊥ ⊥ ⊥
C D P D E D D
E 0 0 −1 0 −1 0
b− 1 2 1 1 3 1
f+ 2 2 2 2 0 1

elect v

⊥

|π|+ 1 = 3 ≥ t

t = 3 u v w x y z
π ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
C D D E E D D
E 0 0 0 0 0 0
b− 1 2 1 2 3 2
f+ 2 2 3 2 1 1

defer v

t = 3 u v w x y z
π ⊥ ⊥ 0 ⊥ ⊥ ⊥
C D E P E D D
E 0 0 0 0 0 −1
b− 1 1 1 1 2 2
f+ 2 2 3 2 1 0

elect w

t = 3 u v w x y z
π ⊥ 1 0 ⊥ ⊥ ⊥
C D P P Z D D
E 0 0 1 0 −1 0
b− 1 1 1 0 2 1
f+ 2 2 3 2 0 0

elect v

t = 3 u v w x y z
π ⊥ 1 0 2 ⊥ ⊥
C Z P P P D D
E 0 1 2 0 0 0
b− 0 1 1 0 1 1
f+ 2 2 3 2 0 0

process Z

t = 3 u v w x y z
π 3 1 0 2 ⊥ ⊥
C P P P P Z Z
E 0 1 2 1 0 0
b− 0 1 1 0 0 0
f+ 2 2 3 2 0 0

process Z

t = 3 u v w x y z
π 3 1 0 2 4 ⊥
C P P P P P Z
E 1 0 3 2 0 0
b− 0 1 1 0 0 0
f+ 2 2 3 2 0 0

process Z

t = 3 u v w x y z
π 3 1 0 2 4 5
C P P P P P P
E 2 1 2 2 0 0
b− 0 1 1 0 0 0
f+ 2 2 3 2 0 0

process Z

w v x u y z

t = 2

return π

t = 2 u v w x y z
π ⊥ ⊥ 0 ⊥ ⊥ ⊥
C D D P E D D
E 0 0 0 0 0 −1
b− 1 1 1 1 2 2
f+ 2 2 3 2 1 0

defer v

⊥

|π|+ 1 = 2 ≥ t

t = 2 u v w x y z
π ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
C D D D E D D
E 0 0 0 0 0 0
b− 1 2 1 2 3 2
f+ 2 2 3 2 1 1

defer w

⊥

|π|+ 2 = 2 ≥ t

Figure 6.2: Continuation of Figure 6.1.

218 6 Exact and Fast Algorithms for Linear Ordering

v u w

Figure 6.3: An “eligible” vertex v where the tails of its incoming arcs have degree three.

O(n). The maximum recursion depth of ExtendLO is given by the number of times that

every vertex may change its classification, which is in O(d(v)) per vertex v and hence in

O(∑v∈V d(v)) = O(m) in total. This yields an overall space complexity of O(n ·m).

Figure 6.1 and Figure 6.2 exemplarily visualize the proceeding of ExactLOIntegrated

on a small input graph. The variables maintained by the algorithm are represented in

tabular form, where C indicates the classification of each vertex as P (processed), E

(eligible), Z (zero cost), or D (deferred). The initial upper bound t was set to the trivial

upper bound of ⌊m
2 ⌋ = 5. Observe that t declines in the course of the algorithm down

to t = 2 and that the recursive call corresponding to the election of a vertex always

precedes that for its deferral.

6.4 Fine-Tuning

In order to keep the description of the algorithm ExactLOIntegrated concise, some pos-

sible improvements have been omitted in the previous sections, as they do not influence

the estimation of the worst-case running time except in that the effort comprised in the

polynomial factor may increase. Nevertheless, they may speed up the observed execu-

tion time for some input graphs. The additions suggested in the following, however, are

neither exhaustive nor do they actually guarantee a decrease in running time. On the

contrary, it may be the case that the extra checks cost more than they save. Hence, their

employment must be carefully considered.

An addition that barely increases the time effort consists in checking the adherence to

the Nesting Property not only for vertices that are about to be inserted in the incomplete

linear ordering, but also for those that are already contained. Effectively, this implies

that the proper nesting of the arcs in B−(v) and F+(v) of an already processed vertex v

is verified if one of its neighbors is reclassified. This can be accomplished easily in the

helper routine Reclassify, which must then have the possibility to report a violation with

the result that the current incomplete linear ordering is rejected.

6.5 Runtime Comparison for Sparse Graphs 219

Apart from the Nesting Property and the Eliminable Layouts Property, also other

properties of optimal linear orderings may be considered during the construction of a

linear ordering, such as the Path Property, the Blocking Vertices Property, the Multipath

Property, or the Multipath Blocking Vertices Property. In these cases, however, the addi-

tional effort required for the check should be balanced against the effort of enumerating

perhaps only few more discardable linear orderings. As the incomplete linear ordering

is constructed “from left to right”, i. e. , with increasing LO positions, the application of

the Suffix Fusion Property suggests itself. For the examination of the fused graphs along

with the fused linear orderings, however, the benefits should again be weighed carefully

against the additional time effort.

In case that the graph contains vertices of degree three, it is already possible to reduce

the number of “eligible” vertices during the initialization phase in ExactLOIntegrated :

Such a degree-three vertex may have an outgoing(!) backward only if it also has two

incoming arcs, otherwise, its layout would be eliminable. Hence, a vertex v can be

“eligible” in this phase only if all tails of its incoming arcs either do not have vertex

degree three or also have two incoming arcs, as depicted in Figure 6.3. This check may

also be reapplied if the reclassification of v is considered in Reclassify.

6.5 Runtime Comparison for Sparse Graphs

WithO(m ·min{(m
n + 1)n, (⌊∆G

2 ⌋+ 1)n
,
√

2 (−n) ·n!}), the runtime analysis of ExactLOIn-

tegrated in Theorem 6.3 shows a strong dependency on the input graph’s density. This

is in sharp contrast to almost all of the previously known exact algorithms for solving

the LINEAR ORDERING problem: For the enumeration of all vertex permutations, ap-

proaches based on dynamic programming, as well as those employing linear program

solvers, the number of vertices n of the input graph has great influence on the running

time, whereas the graph’s density is sometimes even completely ignored. Only the

brute-force algorithm that tests all 2m possible subsets of arcs for whether they are a

feasible feedback arc set takes advantage if the input graph has few arcs. This fact could

be taken as evidence that there has not been placed great importance in the development

of exact algorithms that are tailored to sparse graphs in the past.

In this chapter, we made a first attempt to close this gap. The comparison of running

times provided in Table 6.1 shows that the newly developed algorithm outperforms

the brute-force subset testing approach easily. Moreover, for graphs with a maximum

vertex degree of at most seven, it is also able to keep up with or even outrace the

220 6 Exact and Fast Algorithms for Linear Ordering

Table 6.1: Running Times for Sparse Graphs.

ExactLOIntegrated
subset testing

∆G = k k-regular

k = 3: O∗(2n) O∗(
√

2 n) ⊆ O∗(1.4143n) O∗(23n/2) ⊆ O∗(2.8285n)

k = 4: O∗(3n) O∗(3n) O∗(4n)

k = 5: O∗(3n) O∗(
√

6 n) ⊆ O∗(2.4495n) O∗(25n/2) ⊆ O∗(5.6569n)

k = 6: O∗(4n) O∗(4n) O∗(8n)

k = 7: O∗(4n) O∗((2
√

3)n) ⊆ O∗(3.4642n) O∗(27n/2) ⊆ O∗(11.31134n)

k = 8: O∗(5n) O∗(5n) O∗(16n)

k = 9: O∗(5n) O∗((2
√

5)n) ⊆ O∗(4.4722n) O∗(29n/2) ⊆ O∗(22.6275n)

dynamic programming algorithm, which has a running time of O∗(4n+o(n)) if the space

complexity is to be kept polynomial. Last, but not least, ExactLOIntegrated is easy to

implement and requires only standard data structures.

7 Experimental Evaluation

It sounds at first like a paradox that in practice, algorithms with (good) performance

guarantees are often inferior to theoretically weaker or not-guaranteeing-anything

heuristics. Indeed, a series of papers have shown that the situation is no different

for FEEDBACK ARC SET and LINEAR ORDERING: As has already been discussed in

Section 2.4.1, in particular algorithms that mimic an “insertion sort” of the input graph’s

vertices have turned out to be very effective—both standalone and as postprocessing

after other heuristics or meta-heuristics [CW09, Han10, BH11, MR11]. By contrast, a

3-approximation algorithm for tournaments, e. g. , was shown to be significantly weaker

in experiments [CW09, Han10].

The study conducted by Martí and Reinelt [MR11] for the ACYCLIC SUBGRAPH prob-

lem on very dense and weighted graphs also includes an evaluation of the performance

of (meta-)heuristics in comparison to the optimum solution—wherever this value was

known. Their findings suggest that the candidates perform surprisingly well on the

used test instances with very small relative errors. For sparse and unweighted graphs,

however, no similar comparison of solutions found by non-exact algorithms to the

optimum has been published so far.

In the following, we report on an experimental evaluation of the algorithms introduced

in this thesis with a focus on sparse and regular graphs. Besides the assessment of the

solution quality, i. e. , the size of the produced feedback arc set, we also consider the

execution times of the individual candidates. Due to the relatively “efficient” exact

algorithm presented in Chapter 6 as well as a specific selection of test instances, we can

use the optimum solution value in many cases to gauge the candidates’ performances.

With the bounds obtained in Section 4.3 and Chapter 5, the set of tested algorithms

also contain candidates that offer performance guarantees—albeit not with respect to

the optimum solution. Nevertheless, their behavior will especially be of interest.

222 7 Experimental Evaluation

7.1 The Algorithm Test Suite

We start with a short motivation and overview of the tested algorithms. Afterwards, we

introduce different sets of input instances that were used to evaluate the candidates both

with regard to their performance and their running time. The section concludes with a

description of the implementations in source code as well as the technical setup and the

execution environment.

7.1.1 Algorithms

In Chapter 4, we proved a collection of properties that any optimal linear ordering has

to respect and showed how a better solution can be obtained in case that one of these

properties is violated. This finally led to an algorithm called PsiOpt in Section 4.9.2,

which constructs a linear ordering that simultaneously adheres to the Nesting Property,

the Path Property, the Blocking Vertices Property, the Multipath Property, the Multipath

Blocking Vertices Property, and the Eliminable Layouts Property. As the Multipath

Blocking Vertices Property implies all other properties except for the Eliminable Layouts

Property, an alternative implementation of PsiOpt could only enforce these two prop-

erties, while preserving the same theoretical solution quality as PsiOpt as well as the

same asymptotic running time. With the property-enforcing routine for the Multipath

Blocking Vertices Property being relatively costly in comparison to those for the Nesting

Property and the Path Property (cf. Section 4.9.2), this raises an interesting question of

which variant of PsiOpt consumes more computation time in practice.

One further property that has been introduced in Chapter 4, the Fusion Property, was

described as a kind of meta-property and is only applicable in combination with another

algorithm. Furthermore, only weaker versions, such as the Prefix Fusion Property,

the Suffix Fusion Property, and the Greedy Fusion Property, can be established in

polynomial time, provided that the combined algorithm is also efficient. We chained

two of these weaker versions with PsiOpt for this evaluation, also with the intention

of comparing the performances and running times to those of the “standalone” PsiOpt

algorithm.

Ensuring only the Nesting Property by means of EstablishNesting as described in

Section 4.3 yields a 1-opt algorithm that resembles InsertionSort on the set of vertices

and is closely related to heuristics like Moves [CW09] and Sifting [Han10, BH11] or

the approach taken by Chanas and Kobylański [CK96]. In contrast to EstablishNesting,

Sifting may modify the linear ordering also without strictly improving it and terminates

7.1 The Algorithm Test Suite 223

as soon as the size of the induced backward arc set has not changed during one iteration.

With respect to this, EstablishNesting behaves similar to a stable sorting algorithm and

continues until the linear ordering itself remains without modification. The algorithm

by Chanas and Kobylański starts in each iteration with an “empty” linear ordering and

inserts the vertices one by one at their locally best position. The vertices are processed in

the order specified by the linear ordering obtained in the previous iteration or its reverse

until again the size of the induced set of backward arcs has not decreased during one run.

EstablishNesting can hence be expected to produce similar results as these competitors.

Another sorting-like heuristic was proposed by Eades et al. [ELS93], which also turned

out to be a good “preprocessor” for InsertionSort -like heuristics [CW09]. What is more,

it additionally offers a performance guarantee in terms of an absolute upper bound

on the cardinality of the induced set of backward arcs. With a linear running time on

unweighted graphs, it is also well suited to produce good results very quickly.

We chose the algorithm by Eades et al. as well as EstablishNesting as a yardstick to

assess both the quality and the running time of the algorithms developed in this thesis.

Finally, we introduced an exact algorithm in Chapter 6, which is suited to yield optimum

values for small enough graphs and whose running time—although exponential in

theory—is to be evaluated in practice.

It would have been interesting to also compare the running time of ExactLOIntegrated

to the exact algorithm based on dynamic programming [RS07, FK10], which runs in only

O∗(2n) time, but requires exponential space. Unfortunately, the memory usage of the

implementation (cf. Section 7.1.3) on input instances with as few as 30 vertices already

exceeded our memory limit of 120GB, which made this part of the study impracticable.

The test suite includes the following algorithms:

Nest: EstablishNesting as described in Section 4.3.

ELS: The linear-time algorithm by Eades et al. [ELS93].

Psi : The Ψopt-algorithms PsiOpt and PsiOptCubic for cubic input graphs, as introduced

in Section 4.9.2.

PsiAlt: Cascade with EnforceMultiPathsNoBlocking and EliminateLayouts, which as

an alternative to PsiOpt also yields a Ψopt linear ordering (cf. Section 4.9.2).

Fusion: The algorithm obtained by applying Cascade on an enforcement of both the

Prefix Fusion Property and the Greedy Fusion Property, each combined with

PsiOpt.

ExIn: The exact algorithm ExactLOIntegrated as described in Section 6.3 with ELS as

the heuristic that provides the initial upper bound.

224 7 Experimental Evaluation

From the set of possible tuning options described in Section 6.4 for ExIn, we implemented

the additional check of the nesting balance for already processed vertices as well as the

extension in the assessment of a vertex’s eligibility if the tails of its incoming arcs have

degree three.

The Suffix Fusion Property has been omitted in the test suite for reasons of symme-

try with the Prefix Fusion Property. We also also decided against the inclusion of a

polynomial-time variant of the Reduction Property or the Independent Set Reduction

Property due to their close relationship with the Blocking Vertices Property and the

Multipath Blocking Vertices Property (cf. Section 4.10.3). In a pre-test, the enforcement

of the additional properties introduced specifically for the proof of the bound for sub-

quartic graphs in Chapter 5, i. e. , the Alternative Forward Paths Property and the Tail

On Forward Path Property, yielded very few to no improvements in comparison with

the “standard” Ψopt-algorithms. To keep the number of algorithms and their variants

manageable, the results for these versions are not listed here separately. The same applies

for their generalization, the One-Arc Stability Property, and further polynomial-time

variants of the Arc Stability Property.

With the exception of ELS and ExIn, all algorithms can also be used as postprocessing

routines and therefore be instantiated with an input linear ordering. To also assess

the variability introduced therewith, these candidates are tested with the following

initializers:

Any : an arbitrary but fixed linear ordering,

ELS: the linear ordering produced by ELS,

Random: a random linear ordering.

The input linear ordering for an algorithm is hence determined by the result produced

by the respective initializer. For the initializer Any , we used the linear ordering corre-

sponding to the order the vertices were given in the definition of the input graph. In

case of Random, the initial linear ordering was obtained in each run from a random

permutation of the list of vertices. We refer to the combination of an algorithm A with an

initializer I as A|I. Nest|ELS, e. g. , hence means that the algorithm Nest was started

from an initial linear ordering obtained by ELS.

7.1.2 Input Instances

The input instances for the evaluation can be subdivided into three categories:

7.1 The Algorithm Test Suite 225

(a) (b)

Figure 7.1: A 4-fence (a) and a Möbius ladder (b).

Cubic, Quartic, Quintic As the focus of this evaluation lies especially on sparse and

regular graphs, our first three sets of instances comprise strongly connected, regular

graphs of degrees three, four, and five, respectively, i. e. , cubic, quartic, and quintic

graphs. In view of the exact algorithm, the number of vertices of the instances was kept

small and ranges between 20 and 200 in intervals of 10 in each case, with 100 graphs per

size.

The graphs were constructed as follows: First, a random undirected k-regular graph

was generated using the algorithm by Steger and Wormald [SW99] for k ∈ {3, 4, 5}.
Afterwards, each graph was oriented such that it is strongly connected by producing

a randomized ear decomposition [Sch13] for 50% of the instances and a randomized

decomposition into cycles and ears for the remaining 50%. Due to the sparsity of the

graphs, a random orientation obtained by independently choosing the direction of each

arc with a certain probability and filtering those graphs which did not turn out strongly

connected had a reject rate of close to 100% and was hence impracticable. We also

decided against a random orientation and later decomposition into strongly connected

components due to the varying and expectably small sizes of the single SCCs.

Facet To also benchmark graphs with more vertices, another set of input instances was

compiled with the number of vertices ranging between approximately 100 and 1000 in

intervals of 100. These graphs were generated as two-clique-sums of so-called k-fences

and Möbius ladders. In short, a k-fence is a bipartite tournament on k + k vertices such

that the vertices in the first partition have exactly one incoming arc and the vertices in the

second partition have exactly one outgoing arc, whereas a Möbius ladder is obtained by a

specific cyclic conjunction of an odd number of cycles of length three and four such that

the resulting graph can be embedded on a Möbius strip [MR11]. Figure 7.1 depicts an

example for each of them. The graphs of both classes produce facet-defining inequalities

226 7 Experimental Evaluation

of the acyclic subgraph polytope [MR11] (cf. Section 2.1.4). Furthermore, the value of

an optimal solution to the LINEAR ORDERING problem is known for these graphs, and,

if two such graphs are combined into a larger graph H by means of a two-clique-sum,

then also H yields a facet-defining inequality and the value of an optimal solution of H

can be obtained from those of the two combined graphs [BFM94, NP95].

We utilize this fact to generate sparse test instances of size between 100 and 1000. To

this end, all k-fences with k ∈ {3, . . . , 30} as well as 2640 ladders consisting each of three

to eleven 3- and 4-cycles were constructed. Then, for each graph with target size n, we

drew graphs randomly from the set of all graphs producing facet-defining inequalities

and attached them to one another until no graph could be added without exceeding n.

The set contains 50 instances per target size.

LOLIB For an evaluation of our algorithms in comparison to other heuristic approaches

and to also investigate their performance on dense graphs, we included the LOLIB1

library [MR11], a collection of graphs that are in general very dense and nearly tourna-

ments. For part of the graphs contained therein, the value of an optimum solution is

known, whereas for others, only the best value found so far is available. The library con-

sists of eight sets of graphs, some compiled from real-world data, such as input-output

matrices, others generated according to some random distribution. In contrast to the

other test instances, the graphs contained in the LOLIB library have integer arc weights,

which have been translated to their corresponding unweighted multigraphs, i. e. , an arc

with weight k was replaced by k parallel unweighted arcs.

7.1.3 Technical Setup

All algorithms as well as the data structures for graphs and linear orderings have been

implemented in C++ and as described in the respective sections of this thesis. Basic data

structures such as lists, sets, maps, etc. were taken as provided by the standard template

library (STL). The algorithms to enforce the Multipath Property and the Multipath

Blocking Vertices Property, which employ a network flow algorithm as a subroutine,

make use of the implementation available as part of the COIN-OR LEMON graph library2.

The generators for the input instances Cubic , Quartic , Quintic , and Facet were real-

ized in Python on the basis of the NetworkX software package3.

1http://www.optsicom.es/lolib/, last accessed on July 5, 2017.
2http://lemon.cs.elte.hu/trac/lemon, last accessed on July 5, 2017.
3https://networkx.github.io/, last accessed on July 5, 2017.

http://www.optsicom.es/lolib/
http://lemon.cs.elte.hu/trac/lemon
https://networkx.github.io/

7.1 The Algorithm Test Suite 227

Both the graphs and the results produced by the implementation were stored in a

MySQL database. The algorithms were run on machines with an Intel R⃝ Xeon R⃝ E5-2650

v2 processor with 2.60GHz and 128GB memory. Each test scenario, i. e. , the execution

of each algorithm on each graph, was repeated at least five times and the median was

taken to obtain unbiased running times. In case of ExIn on input instances from Cubic ,

Quartic , or Quintic as well as in case of Fusion on input instances from Facet, we

additionally set a time limit of 4 hours.

The implementation as well as the generated input graphs used in the evaluation are

available on a supplementary web page1. The statistical evaluation was conducted using

the statistics module shipped with Python.

7.1.4 Evaluation

For the evaluation of the performances and running times, we gathered a number of key

figures. Let B and F denote the set of backward and forward arcs, respectively, that are

induced by the linear ordering π constructed by an algorithm for a given graph G. The

assessed values of π are the cardinalities of the multisets B and F , i. e. , |B| and |F|. We

denote by τ again the value of the optimum solution to the LINEAR ORDERING problem.

For the ACYCLIC SUBGRAPH problem, the optimum solution value, denoted by τ here,

can then be obtained as the difference between the number of arcs |A| = m and the

optimum solution to the LINEAR ORDERING problem, i. e. , τ = m− τ . If these values

are neither known nor could they be determined, we used the best known solution

as approximative value instead. As mentioned above, all experiments were repeated

between 5 and 10 times.

The figures used in the evaluation of an algorithm on a set of graphs are:

mean |B|: the mean of |B|
dev. % (B): the mean percentage deviation from the optimum or best known solution

as |B|−τ
τ

dev. %(F): the mean percentage deviation from the optimum or best known solution

as τ−|F|
τ

#hits of OPT/best: the number of times an algorithm found the optimum or best

known solution for a graph compared to the total number of graphs in the set

time: the mean of all graphs in the set of the median of all execution times for the

algorithm on the same graph

1https://algo-rhythmics.org/sparselo

https://algo-rhythmics.org/sparselo

228 7 Experimental Evaluation

In case of Random as initial linear ordering, we collected two values for the mean result

and the deviations: for the first one, we used the average over all repetitions as the result

of the algorithm, whereas for the second, we picked the best solution obtained during

all repetitions. The value for #hits of OPT/best was determined here by considering

the solutions of all repetitions. For Any and ELS as initializers, the algorithms are

deterministic and hence produce the same solution in each repetition.

With regard to the deviations from the optimum or best known solutions, recall that

τ = m− τ . Thus,

τ − |F| = m− τ − |F| = m− τ − (m− |B|) = |B| − τ.

Subsequently, the value of the absolute deviation is independent from whether B or F is

considered. As τ ≤ τ, however, the mean percentage deviation for the set of forward

arcs can be at most the mean percentage deviation for the set of backward arcs.

7.2 Sparse Regular Graphs

The first collection of benchmark instances consists of the sets Cubic , Quartic , and

Quintic , which contain 3-, 4-, and 5-regular graphs, respectively. The graphs generated

for these sets are (at least partly) small enough for the exact algorithm ExIn to finish in

acceptable time. For these instances, we are hence able to compare the performance of

the heuristic and approximative approaches to the optimum solution.

7.2.1 Selection and Configuration of Algorithms

We benchmarked all algorithms listed in Section 7.1.1. For instances of Cubic , Psi refers

to the specially crafted version of PsiOpt on cubic graphs, PsiOptCubic. In this case,

there also exists no alternative implementation of PsiOpt, which is why no performance

or runtime results were gathered for PsiAlt on the Cubic set.

To obtain an upper bound on the size of graphs such that ExIn terminates in acceptable

time, we set an initial limit of 4 hours. All instances with up to 140 vertices from Cubic
remained below this threshold. Out of 50 cubic graphs with 150 vertices, ExIn still

terminated on 44 of them in less than 4 hours. For Quartic and Quintic , the time limit

could be kept strictly only on instances with 40 vertices or less. Among the 100 quartic

and 100 quintic graphs with 50 vertices, however, there were only one quartic and two

quintic graphs that needed more time. We hence softened the 4 hour limit slightly to

also make for a comparison against exact values for these instances.

7.2 Sparse Regular Graphs 229

20 40 60 80 100 120 140 160 180 200

10

20

30

40

number of vertices n

nu
m

be
r

of
ba

ck
w

ar
d

ar
cs

|B
|

ExIn
Nest|Any
ELS |Any
Psi |Any
Fusion|Any
Nest|ELS
Psi |ELS
Fusion|ELS
Nest|Random
Psi |Random
Fusion|Random

Figure 7.2: Comparison of absolute performances on Cubic instances.

20 40 60 80 100 120 140 160 180 200

4

6

8

10

12

number of vertices n

nu
m

be
r

of
ba

ck
w

ar
d

ar
cs

|B
|

ExIn
Psi |Any
Fusion|Any
Psi |ELS
Fusion|ELS
Psi |Random
Fusion|Random

Figure 7.3: Absolute performances of ExIn, Psi , and Fusion on Cubic instances.

7.2.2 Performances and Running Times

We repeated the execution of each algorithm on a graph five times for ExIn and ten

times for all other algorithms. The running time of an algorithm on a graph always

corresponds to the median of the measured values.

Figure 7.2 displays the absolute performances on Cubic as the mean number of

induced backward arcs of all candidates graphically. For those using a random initial

linear ordering, the plot shows the average cardinality of the backward arc set over all

ten repetitions.

230 7 Experimental Evaluation

In regard of the results obtained in other studies [CW09, BH11], which show a certain

superiority of algorithms like Nest, its performance compared to ELS here is surprisingly

bad on first sight. However, the graphs tested there were significantly denser with

probabilities between 0.5 and 0.95 for two vertices to be connected via an arc. A small

evaluation including ELS and an approach similar to Nest on cubic graphs of size 10

to 150 [Han10], by contrast, revealed similar relative performance tendencies. The plot

shows that if Nest was run on a linear ordering produced by ELS, it was able to achieve

a small improvement.

Equally striking, but now in the positive sense, is the performance of Psi and Fusion,

which is once again considerably better than ELS or Nest|ELS and comes very close

to the optimum solutions produced by ExIn. There is no visible difference between

Psi and Fusion in this plot. Figure 7.3 therefore shows only the performances of Psi ,
Fusion, and ExIn again in a separate plot. Here, a very tiny gap between the graphs

corresponding to Psi|Any and Fusion|Any can be perceived, with an advantage for

the latter. As in Figure 7.2, the plot shows a small deviation of Psi and Fusion from the

optimum solution that grows with the number of vertices.

For a more detailed evaluation of performances, all figures have been compiled in

Table 7.1 for instances of Cubic with 20, 80, 140, and 200 vertices. It shows that on

the set of graphs with 20 vertices, both Psi and Fusion found the optimum solution

for each graph starting from 10 random linear orderings. If there was no variation

in the input linear ordering during the repetitions, i. e. , in case of Any and ELS, the

optimum hit rate is still 96 out of 100. With increasing graph size, the number of times an

optimum linear ordering was found declines and the mean deviation from the optimum

grows, as was already indicated by the visualizations given in Figure 7.2 and Figure 7.3.

Nevertheless, the optimum hit rate on graphs of size 140 is still between 31 and 34 for

Psi and Fusion with Any and ELS as initializers, and even 76 and 79 for Psi|Random
and Fusion|Random. The absolute mean deviation from the optimum is around one

arc for these algorithms, which results in a mean percentage deviation of about 0.5%

with respect to the set of forward arcs and less than 14% with respect to the set of

backward arcs. Observe that for Cubic-200 , i. e. , cubic graphs with 200 vertices, no

optimum solutions were available. For this reason, the mean deviations as well as the

hit rate relate to the best solution found by any of the algorithms, which is however not

necessarily the optimum. Interestingly, the number of best solution hits does not exceed

86 out of 100 for any candidate, which implies that the best solutions were obtained in

some sort of “collaboration”.

7.2 Sparse Regular Graphs 231

Ta
bl

e
7.

1:
Pe

rf
or

m
an

ce
s

an
d

ru
nn

in
g

ti
m

es
on

C
ub

ic
in

st
an

ce
s.

Ex
In

N
es

t|
A

ny
EL

S|
A

ny
P

si
|A

ny
Fu

sio
n|

A
ny

N
es

t|
EL

S
P

si
|E

LS
Fu

sio
n|

EL
S

N
es

t|
R

an
do

m
P

si
|R

an
do

m
Fu

sio
n|

R
an

do
m

C
ub

ic
-2

0

m
ea

n
|B

|
2.

51
4.

68
3.

88
2.

55
2.

55
3.

54
2.

55
2.

55
(4

.5
8,

3.
30

)
(2

.5
7,

2.
51

)
(2

.5
5,

2.
51

)
de

v.
%

(B
)

0.
00

97
.8

2
63

.8
7

1.
83

1.
83

47
.7

5
2.

17
2.

17
(9

4.
28

,3
6.

42
)

(2
.4

0,
0.

00
)

(1
.9

2,
0.

00
)

de
v.

%
(F

)
0.

00
7.

87
4.

96
0.

14
0.

14
3.

73
0.

14
0.

14
(7

.4
8,

2.
85

)
(0

.2
1,

0.
00

)
(0

.1
6,

0.
00

)
#h

it
s

of
O

PT
10

0
/

10
0

3
/

10
0

21
/

10
0

96
/

10
0

96
/

10
0

29
/

10
0

96
/

10
0

96
/

10
0

34
/

10
0

10
0

/
10

0
10

0
/

10
0

ti
m

e
0.

69
m

s
1.

12
m

s
0.

14
m

s
2.

84
m

s
49

.2
8

m
s

0.
21

m
s

1.
61

m
s

44
.9

7
m

s
1.

04
m

s
2.

70
m

s
47

.6
0

m
s

C
ub

ic
-8

0

m
ea

n
|B

|
5.

78
17

.9
9

11
.4

5
6.

42
6.

40
10

.5
6

6.
39

6.
35

(1
7.

73
,1

4.
69

)
(6

.3
7,

5.
83

)
(6

.2
9,

5.
82

)
de

v.
%

(B
)

0.
00

22
0.

88
10

4.
00

11
.6

0
11

.2
4

87
.8

1
10

.8
8

10
.1

8
(2

16
.6

0,
16

1.
77

)
(1

0.
76

,0
.8

7)
(9

.2
1,

0.
70

)
de

v.
%

(F
)

0.
00

10
.6

9
4.

96
0.

56
0.

54
4.

18
0.

53
0.

50
(1

0.
45

,7
.8

0)
(0

.5
1,

0.
04

)
(0

.4
5,

0.
04

)
#h

it
s

of
O

PT
10

0
/

10
0

0
/

10
0

0
/

10
0

54
/

10
0

54
/

10
0

0
/

10
0

56
/

10
0

57
/

10
0

0
/

10
0

95
/

10
0

96
/

10
0

ti
m

e
82

3.
61

m
s

18
.9

2
m

s
0.

34
m

s
37

.0
2

m
s

88
9.

92
m

s
1.

01
m

s
14

.2
2

m
s

76
7.

62
m

s
10

.8
5

m
s

38
.5

2
m

s
79

3.
13

m
s

C
ub

ic
-1

40

m
ea

n
|B

|
8.

53
30

.9
8

18
.2

0
9.

57
9.

52
16

.9
9

9.
54

9.
51

(3
1.

01
,2

6.
88

)
(9

.6
9,

8.
78

)
(9

.6
3,

8.
75

)
de

v.
%

(B
)

0.
00

26
9.

55
11

5.
96

12
.5

5
11

.8
5

10
1.

56
12

.1
4

11
.8

0
(2

69
.7

9,
22

0.
16

)
(1

3.
86

,2
.9

3)
(1

3.
11

,2
.5

9)
de

v.
%

(F
)

0.
00

11
.1

4
4.

80
0.

52
0.

49
4.

20
0.

50
0.

49
(1

1.
16

,9
.1

1)
(0

.5
7,

0.
12

)
(0

.5
5,

0.
11

)
#h

it
s

of
O

PT
10

0
/

10
0

0
/

10
0

0
/

10
0

31
/

10
0

32
/

10
0

0
/

10
0

32
/

10
0

34
/

10
0

0
/

10
0

76
/

10
0

79
/

10
0

ti
m

e
20

m
in

48
.0

7
s

49
.9

4
m

s
0.

56
m

s
92

.8
7

m
s

3.
41

s
1.

98
m

s
34

.9
2

m
s

3.
39

s
29

.8
3

m
s

90
.4

8
m

s
3.

36
s

C
ub

ic
-2

00
(1

1.
31

a)

m
ea

n
|B

|
44

.4
2

25
.8

6
12

.8
6

12
.6

8
24

.0
3

12
.8

0
12

.7
6

(4
3.

93
,3

9.
18

)
(1

2.
88

,1
1.

60
)

(1
2.

78
,1

1.
46

)
de

v.
%

(B
)b

29
9.

21
13

1.
39

14
.1

7
12

.6
1

11
4.

70
13

.7
2

13
.4

2
(2

94
.8

1,
25

1.
92

)
(1

4.
26

,2
.7

0)
(1

3.
25

,1
.3

4)
de

v.
%

(F
)b

11
.4

7
5.

04
0.

54
0.

47
4.

41
0.

52
0.

50
(1

1.
30

,9
.6

5)
(0

.5
4,

0.
10

)
(0

.5
1,

0.
05

)
#h

it
s

of
be

st
0

/
10

0
0

/
10

0
17

/
10

0
23

/
10

0
0

/
10

0
22

/
10

0
22

/
10

0
0

/
10

0
75

/
10

0
86

/
10

0
ti

m
e

99
.2

8
m

s
0.

84
m

s
15

2.
67

m
s

9.
42

s
3.

91
m

s
61

.2
8

m
s

9.
93

s
68

.1
1

m
s

15
3.

37
m

s
9.

50
s

a m
ea

n
of

be
st

so
lu

ti
on

s
b w

it
h

re
sp

ec
tt

o
th

e
be

st
so

lu
ti

on

232 7 Experimental Evaluation

Comparing the performance of Psi and Fusion in terms of figures, we observe a small

improvement towards the latter for larger graphs, which increases slowly as the number

of vertices grows. The mean deviations from the optimum or best known solution show

only marginal differences with respect to the initializers: If ELS was used instead of

Any or Random, the obtained solutions are on average slightly closer to the optimum in

many cases.

Looking at the running times, we can identify two main groups among the non-exact

algorithms: Whereas Nest, ELS, and Psi terminated on average within at most a few

milliseconds on graphs with 20 vertices and still within roughly 150 milliseconds on

graphs with 200 vertices, Fusion needed around 50 milliseconds on average on the set

of the smallest instances, and almost 10 seconds on that of the largest ones. It is worth

noting that the running time of Psi was reduced if it started from a linear ordering

produced by ELS. ExIn’s average computation time ranged between 0.7 milliseconds

on graphs with 20 vertices and 21 minutes on graphs with 140 vertices. Interestingly,

the mean time consumed by running ExIn on a graph with 20 vertices undercuts the

mean time consumed by running any other non-exact algorithm except for ELS alone

and Nest|ELS. For instances from Cubic-80 , the average running time of ExIn was still

on about the same level as that of Fusion. The running time of ExIn on a graph with 80

vertices varied between 14 milliseconds and 6 seconds, and between 2.5 seconds and 3

hours for graphs with 140 vertices. The one-hour-barrier was broken first for a graph

with 120 vertices, and also the maximum running time of 3 hours and 49 minutes was

measured for a graph from this set.

The situation is very similar for quartic graphs, as Figure 7.4 shows. Again, Nest|Any
and Nest|Random are clearly outperformed by ELS. Running Nest on the linear or-

dering obtained by ELS seems to increase the solution quality slightly more than for

Cubic , the discrepancy in performance between Nest|ELS and that of Psi and Fusion is

however still markedly. For a better visualization of the differences between the variants

of Psi and Fusion, Figure 7.5 provides again a separate plot. As in the case of cubic

graphs, a small gap between the performance graphs of Psi|Any and Fusion|Any are

discernible. The plot also shows that the obtained solutions are on average close to the

optimum, with a deviation that increases with the number of vertices.

For a better assessment of the solution qualities and running times, Table 7.2 shows

the key figures for ExIn, Psi , PsiAlt, and Fusion for different initial linear orderings on

quartic instances of size 20, 50, 140, and 200. On graphs with 20 vertices, i. e. , Quartic-
20 , Fusion was still able to find an optimum solution if the algorithm was started ten

7.2 Sparse Regular Graphs 233

20 40 60 80 100 120 140 160 180 200

10

20

30

40

50

60

number of vertices n

nu
m

be
r

of
ba

ck
w

ar
d

ar
cs

|B
| ExIn

Nest|Any
ELS |Any
Psi |Any
PsiAlt|Any
Fusion|Any
Nest|ELS
Psi |ELS
PsiAlt|ELS
Fusion|ELS
Nest|Random
Psi |Random
PsiAlt|Random
Fusion|Random

Figure 7.4: Comparison of absolute performances on Quartic instances.

20 40 60 80 100 120 140 160 180 200

5

10

15

20

25

30

number of vertices n

nu
m

be
r

of
ba

ck
w

ar
d

ar
cs

|B
|

ExIn
Psi |Any
PsiAlt|Any
Fusion|Any
Psi |ELS
PsiAlt|ELS
Fusion|ELS
Psi |Random
PsiAlt|Random
Fusion|Random

Figure 7.5: Absolute performances of ExIn, Psi , PsiAlt, and Fusion on Quartic instances.

234 7 Experimental Evaluation

Table
7.2:Perform

ances
and

running
tim

es
on

Q
uartic

instances.

ExIn
P

si|A
ny

P
siA

lt|A
ny

Fusion|A
ny

P
si|ELS

P
siA

lt|ELS
Fusion|ELS

P
si|R

andom
P

siA
lt|R

andom
Fusion|R

andom

Q
uartic-20

m
ean

|B
|

4.45
4.70

4.77
4.64

4.76
4.77

4.65
(4.75,4.46)

(4.72,4.46)
(4.66,4.45)

dev.%
(B

)
0.00

5.93
7.08

4.42
7.69

7.73
5.18

(7.07,0.25)
(6.09,0.33)

(4.79,0.00)
dev.%

(F
)

0.00
0.70

0.91
0.54

0.87
0.90

0.56
(0.85,0.03)

(0.76,0.03)
(0.58,0.00)

#hits
ofO

PT
100

/
100

78
/

100
73

/
100

81
/

100
75

/
100

73
/

100
83

/
100

99
/

100
99

/
100

100
/

100
tim

e
13.05

m
s

7.34
m

s
5.33

m
s

58.90
m

s
5.03

m
s

2.47
m

s
50.85

m
s

6.70
m

s
4.96

m
s

56.19
m

s

Q
uartic-50

m
ean

|B
|

8.16
9.14

9.18
9.01

9.43
9.48

9.24
(9.17,8.32)

(9.13,8.30)
(9.02,8.27)

dev.%
(B

)
0.00

12.22
12.69

10.67
15.65

16.42
13.23

(12.57,1.90)
(11.99,1.63)

(10.80,1.37)
dev.%

(F
)

0.00
1.07

1.11
0.93

1.39
1.44

1.18
(1.09,0.17)

(1.06,0.15)
(0.94,0.12)

#hits
ofO

PT
100

/
100

41
/

100
32

/
100

44
/

100
26

/
100

24
/

100
32

/
100

84
/

100
86

/
100

89
/

100
tim

e
7.0

m
in

4.15
s

33.76
m

s
29.08

m
s

385.12
m

s
19.12

m
s

10.60
m

s
293.93

m
s

31.56
m

s
26.14

m
s

363.43
m

s

Q
uartic-140

(18.56
a)

m
ean

|B
|

21.33
21.04

21.05
21.47

21.69
21.13

(21.15,19.14)
(21.20,19.19)

(20.90,18.89)
dev.%

(B
) b

15.15
13.67

13.65
15.92

17.09
14.15

(14.24,3.12)
(14.47,3.44)

(12.83,1.85)
dev.%

(F
) b

1.06
0.95

0.95
1.11

1.20
0.98

(0.99,0.22)
(1.01,0.24)

(0.90,0.13)
#hits

ofbest
6

/
100

8
/

100
8

/
100

3
/

100
3

/
100

6
/

100
56

/
100

54
/

100
72

/
100

tim
e

123.10
m

s
100.38

m
s

4.83
s

73.52
m

s
49.32

m
s

4.65
s

137.49
m

s
86.65

m
s

4.71
s

Q
uartic-200

(25.72
a)

m
ean

|B
|

29.62
29.40

29.29
30.11

30.14
29.68

(29.25,26.56)
(29.46,26.68)

(28.99,26.45)
dev.%

(B
) b

15.27
14.55

14.00
17.20

17.30
15.54

(13.94,3.32)
(14.71,3.78)

(12.88,2.90)
dev.%

(F
) b

1.04
0.98

0.95
1.17

1.18
1.06

(0.94,0.22)
(1.00,0.26)

(0.87,0.19)
#hits

ofbest
3

/
100

7
/

100
6

/
100

1
/

100
2

/
100

3
/

100
49

/
100

42
/

100
54

/
100

tim
e

229.45
m

s
211.29

m
s

14.98
s

129.25
m

s
77.04

m
s

14.45
s

250.50
m

s
181.30

m
s

15.85
s

am
ean

ofbestsolutions
bw

ith
respectto

the
bestsolution

7.2 Sparse Regular Graphs 235

times from a random initial linear ordering, and also Psi and PsiAlt missed just one.

The deterministic variants reached the optimum less often with 73 to 83 out of 100.

The hit rate declines rapidly as the size of the graphs grows and drops below 10%

already for the non-randomized algorithms on instances with 140 vertices. Observe

that for Quartic-140 and Quartic-200 , the reference for the mean deviations as well as

the hit rate is the best solution that was found by any of the candidates, which is not

necessarily the optimum solution. The fact that the best solutions were not produced

by a single algorithm alone, which has already been observed on Cubic , becomes even

more apparent here: Fusion|Random as the most successful candidate found in only 54

out of 100 cases the best solution.

As the plots suggested, the mean percentage deviation from the optimum or best

known solution increases with the number of vertices. For Quartic-50 , the solutions

produced by Psi , PsiAlt, and Fusion differ from the optimum by little more than one

arc on average, which results in a relative deviation of at most 1.44% and 16.42% with

respect to the set of forward and backward arcs, respectively.

Even though Psi and PsiAlt establish the same set of properties on a given linear

ordering, their performances differ slightly: In case of Any as initial linear ordering,

Psi seems to outperform PsiAlt on smaller instances, whereas this goes into reverse on

larger graphs. Exactly the opposite can be observed for Random, whereas for ELS as

initial linear ordering, Psi shows the lower mean deviations. Hence, with respect to their

performances, no clear winner can be determined. The figures also show that Fusion
yields the best results among all non-exact candidates. In comparison to the results

for cubic graphs, the performance gap between Fusion and Psi or PsiAlt emerges even

more clearly.

The running time of Psi and PsiAlt ranged on average between a few milliseconds

on instances with 20 vertices and 250 milliseconds on graphs from Quartic-200 . By

contrast, the execution of Fusion required around 50 milliseconds to 16 seconds. Again,

ExIn ran on average faster than Fusion on small instances, with about 13 milliseconds on

the graphs in Quartic-20 . However, in terms of the mean running time, Fusion outran

ExIn already for instances of size 30, with around 150 milliseconds for the former in

comparison to 400 milliseconds for the latter candidate. The maximum computation time

consumed by ExIn remained below three minutes for instances of up to 40 vertices, but

jumped to 4.5 hours for Quartic-50 . Nevertheless, the minimum time for a graph with

50 vertices was still below 3 seconds. The comparison of Psi and PsiAlt with respect to

236 7 Experimental Evaluation

20 40 60 80 100 120 140 160 180 200

20

40

60

80

number of vertices n

nu
m

be
r

of
ba

ck
w

ar
d

ar
cs

|B
| ExIn

Nest|Any
ELS |Any
Psi |Any
PsiAlt|Any
Fusion|Any
Nest|ELS
Psi |ELS
PsiAlt|ELS
Fusion|ELS
Nest|Random
Psi |Random
PsiAlt|Random
Fusion|Random

Figure 7.6: Comparison of absolute performances on Quintic instances.

20 40 60 80 100 120 140 160 180 200

10

20

30

40

50

number of vertices n

nu
m

be
r

of
ba

ck
w

ar
d

ar
cs

|B
|

ExIn
Psi |Any
PsiAlt|Any
Fusion|Any
Psi |ELS
PsiAlt|ELS
Fusion|ELS
Psi |Random
PsiAlt|Random
Fusion|Random

Figure 7.7: Absolute performances of ExIn, Psi , PsiAlt, and Fusion on Quintic instances.

their running time shows that PsiAlt terminated faster on average, in particular if both

algorithms started from a linear ordering computed by ELS.

The benchmark results for quintic graphs do not differ significantly from those for

quartic graphs. Figure 7.6 displays the average number of backward arcs induced by

the solutions obtained from the various algorithms. The performance of Nest was again

the poorest, whereas Psi , PsiAlt, and Fusion yielded results close to the optimum. For

a better resolution of the graphs corresponding to the latter three, a separate plot is

7.2 Sparse Regular Graphs 237

provided in Figure 7.7. Interestingly, PsiAlt|ELS seems to perform marginally worse

than its competitors.

A more detailed comparison of the approaches can be made from the figures compiled

in Table 7.3, which reports on the results for ExIn, Psi , PsiAlt, and Fusion on instances

with 20, 50, 140, and 200 vertices. Similar to Quartic , the best hit rate is close to 100%

for all algorithms if they were started ten times from a random initial linear ordering,

and declines rapidly as the size of the graphs grows. The deviations also confirm that

PsiAlt|ELS is outperformed by its competitors, although the differences are rather

small. What is remarkable, however, is that PsiAlt is in almost all cases outmatched by

Psi , which also becomes evident in the optimum/best hit rate. Again, Fusion appears

superior to both Psi and PsiAlt, with an even greater distinction than could be observed

on Quartic and Cubic . The mean percentage deviation from the optimum on graphs

with 50 vertices is still below 1.9% and 16.38% with respect to the set of forward and

backward arcs, respectively.

The measured running times on quintic graphs range between hardly 10 milliseconds

on graphs with 20 vertices and a little more than 300 milliseconds on graphs with 200

vertices for Psi and PsiAlt, whereas Fusion needed between about 60 milliseconds

and 16 seconds. ExIn, in comparison, terminated within 15 milliseconds on average

on graphs with 20 vertices, and thereby once again outraced Fusion. For graphs with

50 vertices, however, the mean execution time was already beyond 17 minutes. The

maximum running time of ExIn on a quintic graph was approximately 5 hours and 10

minutes on a graph with 50 vertices. In contrast, ExIn terminated within 4 minutes on

all graphs with 40 vertices or less. The minimum time needed by ExIn on an instance

from Quintic-50 was less than 10 seconds.

7.2.3 Summary

The algorithms Psi , PsiAlt, and Fusion show very good performances on the test sets

containing 3-, 4, and 5-regular graphs with low mean deviations from the optimum

solution. Here, they stand out clearly against approaches like Nest or ELS.

The comparison of Psi and PsiAlt reveals slightly better performance results for the

former on quintic graphs, whereas the picture is rather unclear on quartic instances.

The additional effort to establish the Prefix Fusion Property and the Greedy Fusion

Property only seems to pay off for larger and slightly denser than cubic graphs, however

at the expense of a faster termination. Furthermore, the measured execution times of

238 7 Experimental Evaluation

Table
7.3:Perform

ances
and

running
tim

es
on

Q
uintic

instances.

ExIn
P

si|A
ny

P
siA

lt|A
ny

Fusion|A
ny

P
si|ELS

P
siA

lt|ELS
Fusion|ELS

P
si|R

andom
P

siA
lt|R

andom
Fusion|R

andom

Q
uintic-20

m
ean

|B
|

6.43
6.72

6.80
6.66

6.78
7.02

6.70
(6.80,6.45)

(6.83,6.46)
(6.71,6.45)

dev.%
(B

)
0.00

4.93
5.94

3.77
5.67

9.39
4.29

(5.87,0.28)
(6.39,0.44)

(4.48,0.28)
dev.%

(F
)

0.00
0.66

0.85
0.53

0.80
1.35

0.62
(0.84,0.05)

(0.93,0.07)
(0.64,0.05)

#hits
ofO

PT
100

/
100

75
/

100
67

/
100

78
/

100
69

/
100

58
/

100
76

/
100

98
/

100
97

/
100

98
/

100
tim

e
14.61

m
s

9.39
m

s
7.11

m
s

65.53
m

s
6.48

m
s

3.05
m

s
58.92

m
s

8.83
m

s
6.18

m
s

62.87
m

s

Q
uintic-50

m
ean

|B
|

13.05
14.61

14.92
14.50

14.80
15.17

14.65
(14.56,13.30)

(14.68,13.41)
(14.34,13.25)

dev.%
(B

)
0.00

12.25
14.50

11.36
13.86

16.38
12.57

(11.75,1.96)
(12.73,2.70)

(10.04,1.54)
dev.%

(F
)

0.00
1.39

1.67
1.29

1.56
1.90

1.43
(1.35,0.22)

(1.46,0.32)
(1.15,0.18)

#hits
ofO

PT
100

/
100

16
/

100
13

/
100

20
/

100
12

/
100

8
/

100
15

/
100

76
/

100
66

/
100

81
/

100
tim

e
17.0

m
in

46.61
s

42.70
m

s
34.16

m
s

384.88
m

s
24.57

m
s

12.90
m

s
329.01

m
s

39.35
m

s
31.75

m
s

366.84
m

s

Q
uintic-140

(32.01
a)

m
ean

|B
|

35.80
35.54

35.33
35.79

36.50
35.43

(35.52,32.80)
(36.01,33.02)

(35.12,32.45)
dev.%

(B
) b

12.01
11.12

10.54
11.97

14.12
10.84

(11.13,2.51)
(12.62,3.20)

(9.84,1.40)
dev.%

(F
) b

1.19
1.11

1.04
1.19

1.41
1.07

(1.10,0.25)
(1.26,0.32)

(0.98,0.14)
#hits

ofbest
6

/
100

9
/

100
10

/
100

3
/

100
1

/
100

9
/

100
46

/
100

38
/

100
68

/
100

tim
e

156.18
m

s
126.98

m
s

5.16
s

95.16
m

s
46.77

m
s

4.43
s

151.62
m

s
108.73

m
s

4.80
s

Q
uintic-200

(44.04
a)

m
ean

|B
|

48.66
49.13

48.24
49.57

50.76
49.03

(48.48,45.09)
(49.45,45.47)

(47.84,44.54)
dev.%

(B
) b

10.71
11.60

9.72
12.72

15.33
11.49

(10.24,2.43)
(12.43,3.33)

(8.78,1.17)
dev.%

(F
) b

1.01
1.12

0.92
1.21

1.47
1.09

(0.97,0.23)
(1.19,0.31)

(0.83,0.11)
#hits

ofbest
6

/
100

2
/

100
7

/
100

3
/

100
1

/
100

3
/

100
45

/
100

34
/

100
66

/
100

tim
e

306.26
m

s
259.06

m
s

16.11
s

174.35
m

s
77.98

m
s

14.16
s

301.17
m

s
230.41

m
s

15.09
s

am
ean

ofbestsolutions
bw

ith
respectto

the
bestsolution

7.3 Large Graphs 239

the exact algorithm ExIn remained below those of Fusion on small instances, while

naturally providing the better results. In general, the execution times of ExIn varied

widely between a few milliseconds or seconds and several hours, even if the graphs

were equal in size.

7.3 Large Graphs

The experimental results on sparse regular graphs revealed a number of interesting facts

with regard to the algorithms’ performances. To gain a better overview of the candidates’

behavior on sparse graphs, we conducted another evaluation on larger graphs which

are still sparse, but no longer regular.

7.3.1 Fences, Ladders, and their Composites

We generated 28 k-fences for k = 3, . . . , 30 as well as 2640 Möbius ladders. For the latter,

we used three to eleven cycles per graph. The maximum vertex degree of the obtained

graphs was ten, whereas the minimum was three. All k-fences and Möbius ladders

have been put together in the sets Fences and Möbius Ladders , respectively. The graphs

in these sets also form the initial population of a set of graphs S that we used for the

construction of the actual test instances.

To generate large sparse graphs, we applied the following procedure: LetG be a graph

that is randomly chosen from S. We denote by nG the number of G’s vertices and by N

the target size, i. e. , the number of vertices that G should finally have. Consider a subset

S′ of S that contains only graphs whose number of vertices plus nG does not exceed

N + 2. If S′ is not empty, choose a graph H from S′ at random with uniform distribution

and attach H to G by means of a two-clique-sum: Select one arc of G and H , respectively,

identify the head of the former with the tail of the latter and vice versa, and remove

both arcs. This yields a composite graph with nG+H = nG + nH − 2 vertices, where nH

denotes the number of vertices in H . Let G now in turn be this composite and repeat the

steps until no further graph can be attached such that nG ≤ N . As the smallest graph in

S has six vertices, the size of G differs from N by at most 5. For the construction of the

next graph, we added G to S.

The set of benchmark instances Facet consists of 50 graphs for each target size between

100 and 1,000 in intervals of 100. The average vertex degree of a graph in Facet is slightly

less than four, however with an average median of three. For all graphs, the minimum

240 7 Experimental Evaluation

vertex degree is three, whereas the maximum ranges between six on smaller instances

and up to 48 on larger ones.

The optimum solution value of a graph can be obtained in unison with its construc-

tion by summing up the optimum solution values of the two combined graphs and

subtracting one in each step i. e. , τG+H = τG + τH − 1 [BFM94].

Due to the long computation time of Fusion, we decided again upon a time limit of 4

hours. In consequence, Fusion was run only on graphs with at most 700 vertices.

7.3.2 Performances and Running Times

As in case of the sparse regular instances, we ran every algorithm ten times on every

graph. The evaluation of the running time always uses the median of all repetitions.

For a better understanding of the graphs contained in Facet and their “difficulty” with

respect to the LINEAR ORDERING problem, we first executed the candidates on Fences
and Möbius Ladders. Table 7.4 lists the obtained results. In view of the distinctive in-

and outdegree distribution of fence graphs, it does not come as a great surprise that every

algorithm found an optimum solution on all 28 instances. In case of Möbius ladders,

differences in performance become visible. The mean optimum number of backward

arcs for the graphs in Möbius Ladder is 5.69. If started ten times from a random linear

ordering, Psi , PsiAlt, and Fusion were able to find the optimum solution on every

instance. Psi|Any and Fusion|Any still show a very good optimum solution hit rate

and only low mean percentage deviations from the optimum. Similar values were

obtained by Fusion|Random if we consider the mean performance of all repetitions.

Nest|Any and Nest|Random (with regard to the average performance) produced the

worst results, followed by ELS|Any and Nest|ELS. The picture is hence similar to that

seen on the sets Cubic , Quartic , and Quintic .

We now take a look at the performances on Facet, as depicted in Figure 7.8. As before,

the plot shows the mean number of backward arcs obtained by the algorithms. For

those candidates starting from a random linear ordering, we used the average value.

The observable results are consistent with those for Cubic , Quartic , and Quintic . The

deviations from the optimum solution are again very small, in particular for Psi and

Fusion, and seem to grow with a similar rate as for smaller instances. Unfortunately,

the evaluation of Fusion on graphs with 800 vertices and more had to be aborted due to

running times of several hours.

7.3 Large Graphs 241
Ta

bl
e

7.
4:

Pe
rf

or
m

an
ce

s
an

d
ru

nn
in

g
ti

m
es

on
Fe

nc
es

an
d

M
öb

iu
s

La
dd

er
s

in
st

an
ce

s.

N
es

t|
A

ny
EL

S|
A

ny
P

si
|A

ny
P

siA
lt

|A
ny

Fu
sio

n|
A

ny
N

es
t|

EL
S

P
si

|E
LS

P
siA

lt
|E

LS
Fu

sio
n|

EL
S

Fe
nc

es
(1

5.
50

a)

m
ea

n
|B

|
15

.5
0

15
.5

0
15

.5
0

15
.5

0
15

.5
0

15
.5

0
15

.5
0

15
.5

0
15

.5
0

de
v.

%
(B

)
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
de

v.
%

(F
)

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

#h
it

s
of

O
PT

28
/

28
28

/
28

28
/

28
28

/
28

28
/

28
28

/
28

28
/

28
28

/
28

28
/

28
ti

m
e

22
.9

4
m

s
0.

35
m

s
54

.5
5

m
s

38
.2

7
m

s
62

5.
96

m
s

0.
75

m
s

20
.6

0
m

s
7.

02
m

s
19

3.
50

m
s

M
öb

iu
s

La
dd

er
s

(5
.6

9a)

m
ea

n
|B

|
6.

33
5.

85
5.

69
5.

74
5.

69
5.

81
5.

71
5.

73
5.

70
de

v.
%

(B
)

11
.1

0
2.

71
0.

07
0.

92
0.

06
2.

08
0.

40
0.

67
0.

23
de

v.
%

(F
)

3.
10

0.
75

0.
02

0.
26

0.
02

0.
58

0.
11

0.
18

0.
06

#h
it

s
of

O
PT

11
09

/
26

40
22

21
/

26
40

26
29

/
26

40
24

97
/

26
40

26
31

/
26

40
23

16
/

26
40

25
77

/
26

40
25

35
/

26
40

26
04

/
26

40
ti

m
e

0.
73

m
s

0.
12

m
s

5.
56

m
s

3.
43

m
s

38
.0

5
m

s
0.

14
m

s
3.

02
m

s
1.

11
m

s
31

.9
6

m
s

N
es

t|
R

an
do

m
P

si
|R

an
do

m
P

siA
lt

|R
an

do
m

Fu
sio

n|
R

an
do

m

Fe
nc

es
(1

5.
50

a)

m
ea

n
|B

|
15

.5
0

15
.5

0
15

.5
0

15
.5

0
de

v.
%

(B
)

0.
00

0.
00

0.
00

0.
00

de
v.

%
(F

)
0.

00
0.

00
0.

00
0.

00
#h

it
s

of
O

PT
28

/
28

28
/

28
28

/
28

28
/

28
ti

m
e

19
.0

9
m

s
43

.7
4

m
s

32
.5

0
m

s
94

0.
53

m
s

M
öb

iu
s

La
dd

er
s

(5
.6

9a)

m
ea

n
|B

|
(6

.2
1,

5.
69

)
(5

.7
0,

5.
69

)
(5

.7
3,

5.
69

)
(5

.6
9,

5.
69

)
de

v.
%

(B
)

(9
.0

5,
0.

06
)

(0
.2

3,
0.

00
)

(0
.8

0,
0.

00
)

(0
.0

7,
0.

00
)

de
v.

%
(F

)
(2

.5
4,

0.
02

)
(0

.0
6,

0.
00

)
(0

.2
2,

0.
00

)
(0

.0
2,

0.
00

)
#h

it
s

of
O

PT
26

30
/

26
40

26
40

/
26

40
26

40
/

26
40

26
40

/
26

40
ti

m
e

0.
62

m
s

4.
87

m
s

2.
89

m
s

37
.8

3
m

s

a m
ea

n
of

O
PT

so
lu

ti
on

s

242 7 Experimental Evaluation

Table
7.5:Perform

ances
and

running
tim

es
on

Facet
instances

w
ith

initializersA
ny

and
ELS

.

N
est|A

ny
ELS

|A
ny

P
si|A

ny
P

siA
lt|A

ny
Fusion|A

ny
N

est|ELS
P

si|ELS
P

siA
lt|ELS

Fusion|ELS

Facet-100
(34.74

a)

m
ean

|B
|

40.60
38.52

36.24
36.48

35.84
37.84

36.28
36.38

36.08
dev.%

(B
)

16.98
10.90

4.32
5.03

3.16
8.93

4.43
4.72

3.86
dev.%

(F
)

4.19
2.67

1.07
1.23

0.78
2.18

1.09
1.16

0.94
#hits

ofO
PT

0
/

50
0

/
50

9
/

50
3

/
50

15
/

50
0

/
50

6
/

50
5

/
50

8
/

50
tim

e
29.79

m
s

0.52
m

s
92.49

m
s

56.35
m

s
3.28

s
1.82

m
s

50.39
m

s
20.52

m
s

2.60
s

Facet-500
(174.24

a)

m
ean

|B
|

208.24
197.68

182.40
184.12

181.16
193.72

183.26
184.64

181.78
dev.%

(B
)

19.53
13.46

4.69
5.67

3.98
11.19

5.18
5.97

4.33
dev.%

(F
)

4.51
3.10

1.08
1.30

0.92
2.58

1.19
1.37

1.00
#hits

ofO
PT

0
/

50
0

/
50

0
/

50
0

/
50

0
/

50
0

/
50

0
/

50
0

/
50

0
/

50
tim

e
494.07

m
s

2.50
m

s
962.86

m
s

1.10
s

17.0
m

in
9.93

s
18.56

m
s

453.76
m

s
215.10

m
s

18.0
m

in
43.38

s

Facet-1000
(351.14

a)

m
ean

|B
|

418.38
398.34

368.12
371.74

389.64
367.90

370.60
dev.%

(B
)

19.15
13.45

4.83
5.87

10.97
4.77

5.54
dev.%

(F
)

4.24
2.97

1.06
1.29

2.42
1.05

1.22
#hits

ofO
PT

0
/

50
0

/
50

0
/

50
0

/
50

0
/

50
0

/
50

0
/

50
tim

e
2.11

s
5.50

m
s

4.16
s

5.25
s

69.55
m

s
1.19

s
654.62

m
s

am
ean

ofO
PT

solutions

7.3 Large Graphs 243

200 400 600 800 1,000

100

200

300

400

number of vertices n

n
u
m
b
er

o
f
b
a
ck
w
a
rd

a
rc
s
|B
| OPT

Nest—Any
ELS—Any
Psi—Any
PsiAlt—Any
Fusion—Any
Nest—ELS
Psi—ELS
PsiAlt—ELS
Fusion—ELS
Nest—Random
Psi—Random
PsiAlt—Random
Fusion—Random

Figure 7.8: Comparison of absolute performances on Facet instances.

The compilation of detailed figures in Table 7.5 and Table 7.6 once again confirms the

results from the previous section. The deviations of Psi and PsiAlt from the optimum

are in the region of 5% with respect to the set of backward arcs and 1% with respect to the

set of forward arcs. If started ten times from a random linear ordering, their performance

improved notably. Again, Psi outperforms PsiAlt by presenting lower mean percentage

deviations. Fusion came even closer to the optimum than Psi , however at the expense of

a markedly increased running time, whereas those of Psi and PsiAlt still did not exceed

a couple of seconds on instances with 1000 vertices. The solutions obtained by Nest and

ELS are on average worse than those of its competitors. However, ELS remained below

10 milliseconds even on the largest graphs in the set. The OPT hit ratio can be observed

to decline further as the size of the input instances grows. On Facet-500 , none of the

algorithms was able to find an optimum solution for a graph.

7.3.3 Summary

The evaluation of the benchmarking results on large and non-regular graphs reaffirms

the impression from Section 7.2: Fusion yielded on average the best results and came

very close to the optimum, but required comparatively long running times. Psi per-

formed slightly worse than Fusion, but terminated within a few seconds even on graphs

with 1,000 vertices. The solutions obtained by PsiAlt were on average not as good as

those by Psi and the gap also seems to increase marginally with the size of the input

244 7 Experimental Evaluation

Table 7.6: Performances and running times on Facet instances with initializer Random.

Nest|Random Psi|Random PsiAlt|Random Fusion|Random

Facet-100 (34.74a)

mean |B| (40.59, 38.48) (36.18, 35.20) (36.55, 35.30) (35.95, 35.08)
dev. % (B) (16.93, 10.81) (4.16, 1.34) (5.23, 1.63) (3.46, 0.96)
dev. % (F) (4.16, 2.65) (1.02, 0.33) (1.28, 0.40) (0.84, 0.24)
#hits of OPT 0 / 50 27 / 50 24 / 50 33 / 50
time 27.74 ms 90.87 ms 51.80 ms 2.79 s

Facet-500 (174.24a)

mean |B| (206.48, 200.96) (182.30, 179.38) (184.54, 181.18) (181.01, 178.90)
dev. % (B) (18.53, 15.36) (4.63, 2.95) (5.92, 3.99) (3.89, 2.68)
dev. % (F) (4.28, 3.56) (1.06, 0.68) (1.36, 0.92) (0.89, 0.61)
#hits of OPT 0 / 50 0 / 50 0 / 50 0 / 50
time 474.54 ms 976.50 ms 957.37 ms 15.0 min 33.85 s

Facet-1000 (351.14a)

mean |B| (416.15, 407.86) (367.77, 363.48) (372.39, 367.68)
dev. % (B) (18.52, 16.16) (4.74, 3.51) (6.05, 4.71)
dev. % (F) (4.11, 3.58) (1.04, 0.77) (1.33, 1.04)
#hits of OPT 0 / 50 0 / 50 0 / 50
time 2.15 s 4.11 s 4.52 s

amean of OPT solutions

instances. Both Nest and ELS are clearly inferior to the other candidates with regard to

the performance, but are in the lead with respect to the running time.

7.4 The LOLIB Graph Library

The last category of test instances used in this evaluation consists of graphs provided by

the LOLIB graph library, which has been used by Martí and Reinelt [MR11] to evaluate a

number of heuristics and meta-heuristics. The library was included in this study for one

thing to also assess the algorithms’ performance on dense graphs, for another thing to

broaden the number of competitors and obtain further results to compare against.

7.4.1 Sets of LOLIB Instances

The LOLIB graph library consists of eight different sets of input instances, most of which

are relatively dense and weighted. For this study, loops as well as two-cycles have

been removed from the graphs in a preprocessing step. In the following, we give a

7.4 The LOLIB Graph Library 245

short summary of the sets of instances based on the description provided by Martí and

Reinelt [MR11]. As usual, n denotes a graph’s number of vertices.

The set IO is compiled from different input-output matrices and contains 50 graphs

with 44 to 79 vertices and 270 to 2705 arcs with a median vertex degree between 0.32n
and 0.95n. The total weight of the arcs ranges between 16,938 and 296,170,682.

The instances in RandA1 , RandA2 , RandB were generated randomly. For RandA1 ,

the number of vertices is 100, 150, 200, and 500, with 25 instances for each size. The arc

weights of the graphs were generated by a (0, 100) uniform distribution, which results

in a minimum vertex degree of 0.93n. The number of arcs for graphs in this set lies

between 4,892 and 123,581, the total arc weight between 161,639 and 4,222,286. RandA2
contains graphs with 100, 150, and 200 vertices and again 25 instances per graph size.

They were obtained from n
2 random permutations for each size n from the number of

times that each relative order of a pair of vertices appeared in one of the permutations.

The graphs in this set have between 4,338 and 18,369 arcs with a total arc weight of

25,696 to 163,470. The vertex degrees range between 0.73n and 0.96n. The 90 graphs

in RandB were generated with the intent to create difficult instances for the LINEAR

ORDERING problem. Their number of vertices is 40, 44, and 50, and the arc weights were

drawn uniformly from different, specifically chosen ranges. The resulting graphs have

766 to 1,219 arcs and total arc weights of 38,165 to 70,498. Also these graphs are very

dense with the minimum relative vertex degree being 0.89n.

The set SGB contains 25 graphs that originate from the Stanford GraphBase [Knu09]

and have a size of 75 vertices. The arc weights were again drawn uniformly from

{0, . . . , 25000}. Graphs in this set have between 2,432 and 2,550 arcs with a total arc

weight of 3,543,100 to 3,792,880. The vertex degree in this set ranges between 0.31n and

0.99n.

XLOLIB is a set of 78 benchmark instances by Schiavinotto and Stützle [SS04] that

were generated from enlarged input-output matrices. The graphs have 150 or 250

vertices, their number of arcs is between 3,949 and 29,548. The total arc weight includes

values from 286,139 to 140,281,693. The density of the graphs varies with vertex degrees

of 0.25n to 0.99n.

The instances in MB originate from Mitchell and Borchers [MB00] and were ob-

tained from random matrices where all arc weights were drawn uniformly from either

{0, . . . , 99} or {0, . . . , 39}. Afterwards, some percentage of the arcs were removed again.

The resulting 30 graphs have 100 to 250 vertices and 4,671 to 30,824 arcs. The vertex

degree ranges between 0.87n and 0.97n, the total arc weight is 164,363 to 1,100,843.

246 7 Experimental Evaluation

Finally, LOLIB contains a set of graphs the authors called Special , which is itself a

collection of instances used in other publications. The 37 graphs have varying sizes of as

few as 11 up to 452 vertices and 55 to 2,996 arcs with a total arc weight between 55 and

2,884,574. Also the vertex degrees spread widely from 0.002n up to 0.99n.

7.4.2 Performances and Running Times

We ran the algorithms Psi and Fusion on all instances of LOLIB. Heuristics similar to

Nest have already been covered in the study by Martí and Reinelt [MR11]. ELS was only

implemented for simple graphs. For this reason, we also omitted ELS as initial linear

ordering and started either from an arbitrary, but fixed linear ordering (Any) or a random

one (Random). The resulting four algorithm configurations Psi|Any , Psi|Random,

Fusion|Any , and Fusion|Random were repeated five times on each graph.

Table 7.7 reports both on the algorithms’ performances and running times. For each

set of instances, we gathered four key figures: the mean deviation from the optimum or

best known value for the set of backward arcs (dev. % (B)), the same value for the set of

forward arcs (dev. % (F)), the number of times an algorithm found an optimum linear

ordering or one matching the best known value of a graph in relation to the total number

of graphs in the set, and the mean time the execution of the algorithm on a graph from

the respective set needed. Due to the large diversity of the graphs even within the same

test set and the concomitant variations in their respective linear orderings, the mean

value of the obtained solutions is not very meaningful and was therefore omitted.

For the set IO, Fusion|Random was able to retrieve an optimum or best solution for

90% of the instances in the set, Psi|Random still achieved 84%. The deviations from the

optimum or best known solutions are rather small and show a distinct improvement if

the algorithms started from a random linear ordering instead of the one that was fixed

arbitrarily. The performance results of Psi|Any and Fusion|Any are identical, and also

differ only slightly for Psi|Random and Fusion|Random.

None of the algorithms was able to find an optimum or best solution for a graph

of RandA1 . Yet, the deviation from the optimum solution is less than 1.7% for the set

of backward arcs and less than 1.1% for the set of forward arcs. The closeness of the

respective deviations for the set of backward arcs and the set of forward arcs suggest

that τ is not too far from half of the total number of arcs. Again, the performances of

Psi and Fusion are almost equal. The comparatively large size of the graphs in this set

with up to 500 vertices together with a high density results in running times that are on

7.4 The LOLIB Graph Library 247

Table 7.7: Performances and running times on LOLIB instances.

Psi|Any Fusion|Any Psi|Random Fusion|Random

LOLIB-IO

dev. % (B) 1.73 1.73 (1.02, 0.16) (0.92, 0.10)
dev. % (F) 0.09 0.09 (0.05, 0.01) (0.04, 0.00)
#hits of OPT/best 29 / 50 29 / 50 42 / 50 45 / 50
time 291.50 ms 985.28 ms 301.97 ms 1.01 s

LOLIB-RandA1

dev. % (B) 1.69 1.69 (1.63, 1.21) (1.66, 1.24)
dev. % (F) 1.03 1.03 (1.00, 0.75) (1.02, 0.77)
#hits of OPT/best 0 / 100 0 / 100 0 / 100 0 / 100
time 7 min 12.81 s 50 min 19.77 s 6 min 30.58 s 48 min 58.73 s

LOLIB-RandA2

dev. % (B) 1.48 1.38 (1.54, 0.98) (1.39, 0.82)
dev. % (F) 0.11 0.10 (0.11, 0.07) (0.10, 0.06)
#hits of OPT/best 0 / 75 0 / 75 0 / 75 0 / 75
time 18.97 s 1 min 46.26 s 13.60 s 1 min 34.12 s

LOLIB-RandB

dev. % (B) 2.29 2.27 (2.01, 0.85) (2.05, 0.83)
dev. % (F) 0.91 0.91 (0.80, 0.34) (0.81, 0.34)
#hits of OPT/best 1 / 90 1 / 90 4 / 90 11 / 90
time 202.96 ms 952.24 ms 203.90 ms 937.40 ms

LOLIB-SGB

dev. % (B) 0.18 0.18 (0.48, 0.07) (0.17, 0.01)
dev. % (F) 0.07 0.07 (0.18, 0.03) (0.07, 0.00)
#hits of OPT/best 2 / 25 2 / 25 7 / 25 12 / 25
time 1.02 s 4.49 s 1.23 s 5.42 s

LOLIB-MB

dev. % (B) 0.06 0.06 (0.09, 0.04) (0.08, 0.03)
dev. % (F) 0.01 0.01 (0.01, 0.00) (0.01, 0.00)
#hits of OPT/best 1 / 30 3 / 30 6 / 30 5 / 30
time 28.53 s 2 min 40.38 s 20.92 s 2 min 31.99 s

LOLIB-XLOLIB

dev. % (B) 4.98 4.86 (4.82, 3.39) (4.70, 3.34)
dev. % (F) 1.42 1.39 (1.36, 0.98) (1.34, 0.96)
#hits of OPT/best 0 / 78 0 / 78 0 / 78 0 / 78
time 2 min 38.0 s 6 min 52.15 s 2 min 32.1 s 6 min 36.53 s

LOLIB-Special

dev. % (B) 4.35 4.17 (3.72, 1.79) (3.44, 1.45)
dev. % (F) 1.00 0.96 (0.88, 0.49) (0.85, 0.40)
#hits of OPT/best 4 / 37 4 / 37 6 / 37 6 / 37
time 646.07 ms 5.74 s 671.16 ms 5.80 s

248 7 Experimental Evaluation

average around 7 minutes for Psi and 50 minutes for Fusion. A maximum of 5 hours

and 20 minutes was measured during the execution of Fusion|Any on a single instance.

For the graphs in RandA2 , the deviation for the set of backward arcs is at most 1.54%

and not far below those for RandA1 , whereas it does not exceed 0.11% for the set of

forward arcs. Even though, no algorithm produced an optimal or best solution. There

also is a small improvement of performance visible between Psi and Fusion.

Despite the fact that the set RandB was compiled specifically to obtain “difficult”

instances for the LINEAR ORDERING problem, both Psi and Fusion were at least able to

reach the optimum or best solution on a few graphs. Regarding the deviation from the

optimum or best solution, however, the observed values are among the larger ones. The

performances of Psi and Fusion are almost equal.

The results on the instances from both SGB and MB show the smallest mean devia-

tions of all sets in LOLIB. Nonetheless, the optimum or best hit rate remains below 50%

for SGB and even below 20% for MB. Interestingly, the mean deviations for IO graphs

are noticeably larger, whereas all algorithms found an optimum or best solution for at

least 58% of the graphs.

Finally, the instances in the set XLOLIB and Special seem to have been the most

challenging for the tested set of algorithms. The deviations from the optimum or best

solution in case of the set of backward arcs reach values of almost 5% and 1.5 % in case

of the set of forward arcs. For the graphs contained in XLOLIB, no algorithm could find

an optimum or best solution. The ratio of optimum or best solutions found for instances

from Special range between 10% and a little more than 16%.

All in all, the results show relatively small mean deviations from the optimum or best

known solutions for Psi and the same or only slightly better ones for Fusion, both for

Any and Random as initial linear ordering strategy. The mean deviation for the set of

backward arcs is less than 5% on all sets, and in many cases even far below 2%. For

the set of forward arcs, the mean deviation is for all sets except RandA1 and XLOLIB
at most 1%, and never exceeds 1.42%. In contrast to the benchmark results on sparser

graphs, the observed performance of both Psi and Fusion shows a dependency on the

initial linear ordering: The mean deviations from the optimum value differ—at times

even considerably—for Any and Random, in most cases in favor of Random. By contrast,

the performance gaps between Psi and Fusion are barely noticeable. Considering all

sets of LOLIB, the mean deviations of the solutions obtained by Psi|Any , Psi|Random,

Fusion|Any , and Fusion|Random for the set of forward arcs are 0.72%, 0.67%, 0.71%,

and 0.67%, respectively.

7.5 Threats to Validity 249

7.4.3 Comparison to Other Approaches

In comparison to the results of the study reported on by Martí and Reinelt [MR11], we

can observe that both Psi and Fusion perform in most cases markedly better than the

set of heuristics included there, which comprises a number of construction heuristics

as well as various local search approaches. On the other hand, some representatives of

the meta-heuristics tested in their study like tabu search, variable neighborhood search,

scatter search, or GRASP show mean deviations of 0.45% or less on average across all

LOLIB instances with regard to the set of forward arcs. These findings suggest that the

performance of Psi and Fusion resides somewhere between conventional insertion and

local search heuristics and the mentioned meta-heuristics.

The performance figures on LOLIB instances show no distinct superiority of Fusion
over the simpler and considerably less time-consuming Psi algorithm. As a clear

dependency of the solution quality from the initial linear ordering was observable, it

would be interesting to apply Psi as a local search heuristic in combination with the

above mentioned meta-heuristics.

7.5 Threats to Validity

Assessing the performance of graph algorithms in practice calls for a number of decisions

on the realization that may have major or minor influence on the results obtained.

7.5.1 Construct Validity

We mainly assessed the mean performance of the algorithms on a set of graphs. In

consequence, differences in the quality of individual solutions may get lost in the

evaluation of average values. To counteract this, we also included the best or OPT hit

ratio of an algorithm, which reflects whether an algorithm often came very close to

the optimum, but always missed it, or whether it really obtained optimal solutions.

Furthermore, the quality of the input linear ordering naturally has an enormous impact

on both the quality of the final solution and the running time of the algorithms Nest,

Psi , PsiAlt, and Fusion. To preempt too much influence from this side, we used three

different initializers. In this context, we also covered the performance of the algorithms if

they start from different random linear orderings. Due to the large number of n! possible

linear orderings for a graph of size n, five or ten repetitions may however well be too

few to judge the performance, especially on large graphs.

250 7 Experimental Evaluation

7.5.2 Internal Validity

Both the algorithms and the specific data structures were not trimmed excessively to

get the shortest possible running times. Thus, speedups of some computation times,

accompanied by an equalization or a further diversification among the candidates, are

possible. Moreover, there may be replacements for the standard data structures as well

as the helper algorithms used which change the picture. This in principle also concerns

the realization of weighted arcs as multiple parallel arcs. However, the overhead should

be small due to their blockwise representation (cf. Section 4.2).

7.5.3 External Validity

Naturally, there must be a set of instances to run the algorithms on. As sparse real-world

graphs are scarce and suitable data is difficult to find, we opted for a combination of

different random generation processes on the one hand and the adaptation of a graph

library that has already been used in a similar study on the other hand. Due to the

method of construction, the graphs in the test sets Cubic , Quartic , and Quintic as well

as Facet may show a bias with respect to certain properties such as in- and outdegree

distributions or the intertwining of cycles, which may influence the performance of

individual algorithms positively or negatively. In an attempt to reduce this risk, we

implemented two different random orientators of an undirected regular graph for

Cubic , Quartic , and Quintic . Furthermore, we included the set Facet of graphs that are

both larger and were constructed by a radically different process. With regard to the

adaptation of the LOLIB graph library, the graphs contained therein have been collected

from a number of very different sources [MR11]. As such, even the instances in the

same subset partly vary widely with respect to many properties such as size, density, or

degree distributions.

7.6 Summary

In the previous sections, we compared the performances of the algorithms developed in

this thesis to other established approaches as well as to the optimum solution. Especially

on the tested sets of sparse input instances, Psi , PsiAlt, and Fusion were able to produce

results that are on average better than those of their heuristic competitors and very

close to the best ones possible. On dense and weighted graphs, their performance with

respect to the percentage deviation from the optimum is numerically similar to that

7.6 Summary 251

on sparse graphs. However, the values of τ and τ on dense and weighted instances

are considerably larger, which makes the same absolute deviation appear smaller in

relation. In consequence, low percentage deviations on sparse graphs are more difficult

to achieve, a fact that speaks once again for the performance of Psi , PsiAlt, and Fusion.

In the comparison of the two variants of PsiOpt, Psi shows on average better results

than PsiAlt, which might be due to the larger number of improving routines involved,

which in turn could be speculated to have led to a wider search space. It would be

interesting to see a detailed analysis of the reasons for the observable performance gap,

though. The establishing of the Prefix Fusion Property and the Greedy Fusion Property

in conjunction with PsiOpt, as realized in the algorithm Fusion, improved the results on

sparse graphs once more in comparison to Psi , however only marginally. On some test

sets from LOLIB, the performances of both algorithms were even equivalent. In view of

this and the markedly increased time effort for Fusion, the practical usefulness must be

weighed carefully according to the operational scenario.

Finally, the exact algorithm developed in Chapter 6 has proven itself to be applicable

in practice with very fast execution times on small instances and still acceptable ones for

larger graphs. On cubic graphs, even input instances with far beyond 100 vertices did

not pose a problem.

8 Conclusion and Future Work

It comes to no surprise that the single chapters of this thesis answered some questions

and in most cases immediately posed new ones. The survey in Chapter 2 serves well

as a starting point to walk briefly through the results. For instance, it lists a number of

algorithms and heuristics for the LINEAR ORDERING problem that have been known

for some time along with their performance guarantees. In Chapter 4, we derived a

series of sophisticated properties that led to a collection of new algorithms that solve the

LINEAR ORDERING problem approximately (Chapter 4) and exactly (Chapter 6). Having

a running time of O(n · m2 · min{n 2
3 ,m

1
2 }) for general graphs, the algorithm PsiOpt,

which efficiently establishes all major properties concurrently, is asymptotically not

much slower than pure InsertionSort -based approaches and undoubtedly fast enough

to be run also on large instances, as demonstrated in Chapter 7.

Concerning the maximum size of an optimal feedback arc set for a graph having

n vertices and m arcs, which has also been covered in Chapter 2, Eades et al. [ELS93]

showed that it is at most n
2 − n

6 for general graphs and it is at most 5
18m and 11

30m for

graphs with maximum vertex degree three and four, respectively, due to a result by

Berger and Shor [BS90]. In Chapter 4, we pointed out that the establishment of the

Nesting Property alone already ensures that m
2 −

exc(G)
2 is not exceeded, where exc(G) is

the so-called excess of the input graph G, which is the larger the bigger the imbalance

between the vertices’ in- and outdegrees. What is more, we proved in Chapter 5 with

the help of PsiOpt that in case of subcubic graphs, i. e. , those with a maximum vertex

degree of three, an optimal feedback arc set cannot contain more than ⌊n
3 ⌋ arcs and that

this is best possible. With a small extension of the set of properties enforced by PsiOpt,

we also derived a tight upper bound of ⌊2n
3 ⌋ for the backward arc set for subquartic

graphs, where the maximum vertex degree is four. Both results respectively improve the

previously known upper bounds of 5
18m = 5

12n in the cubic case and 11
30m = 22

30n in the

quartic one. Apart from the obvious open question about tight bounds for graphs with

larger vertex degrees, Chapter 5 also asks what can be achieved in comparison to the

254 8 Conclusion and Future Work

optimal solution if we additionally take more high-level properties into account. Can

this yield some kind of approximation algorithm?

In Chapter 6, we devised two exact algorithms for the LINEAR ORDERING optimization

problem and one for the decision problem, all of which are tailored specifically to graphs

with very small maximum vertex degrees and require only relatively short execution

times and polynomial space. In fact, they constitute the first exact algorithms for LINEAR

ORDERING and FEEDBACK ARC SET that are designed for sparse graphs. On cubic

graphs, the achieved running time is only O∗(
√

2n). It would be interesting to see

whether these algorithms can be sped up further by mixing them with the approaches

used in other exact algorithms, such as dynamic programming or divide and conquer.

Finally, we showed in Chapter 7 that the algorithms developed in this thesis are

competitive with existing ones both with regard to performance and running time. As

expected, their strengths lie in particular in the processing of sparse instances. Here,

the exact representative exhibited fast execution times and sometimes even outran its

polynomial-time competitors. It was able to process cubic input instances with 140

vertices in about 20 minutes on average. Conversely, the latter produced results that

came very close to the optimum. On denser instances, PsiOpt and its siblings were no

longer superior to other algorithms, but also not overly inferior. Upon considering that

the best results on these graphs were obtained by local search and other meta-heuristics,

the combination of PsiOpt with these paradigms may be promising. Furthermore, due

to time and space constraints, we could not evaluate the algorithmic strengths of all

properties introduced in this thesis and their combinations. Thus, a more large-scale

evaluation of algorithms for the LINEAR ORDERING problem on an extended set of input

instances suggests itself. Furthermore, an in-depth analysis of hill climbing algorithms

such as PsiOpt, its alternative implementation that enforces only the Multipath Blocking

Vertices Property and the Eliminable Layouts Property, as well as further representatives

of this kind, which also includes the assessment of the decline rate of the solution size in

the course of their operation, might reveal interesting facts.

Bibliography

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent

information: Ranking and clustering. Journal of the ACM, 55(5):23:1–23:27,

October 2008.

[AFK02] Sanjeev Arora, Alan Frieze, and Haim Kaplan. A new rounding procedure

for the assignment problem with applications to dense graph arrangement

problems. Mathematical Programming, 92(1):1–36, March 2002.

[Alo06] Noga Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics,

20(1):137–142, 2006.

[ALS09] Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Susanne

Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas,

and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceed-
ings, Part I, volume 5555 of Lecture Notes in Computer Science, pages 49–58.

Springer, 2009.

[BB04] Michael Baur and Ulrik Brandes. Crossing reduction in circular layouts. In

Juraj Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors, Graph-
Theoretic Concepts in Computer Science, 30th International Workshop,WG 2004,
Bad Honnef, Germany, June 21-23, 2004, Revised Papers, volume 3353 of Lecture
Notes in Computer Science, pages 332–343. Springer, 2004.

[BFG+11] Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony

Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for feedback arc set in

tournaments. Journal of Computer and System Sciences, 77(6):1071–1078, 2011.

[BFM94] Francisco Barahona, Jean Fonlupt, and Ali Ridha Mahjoub. Compositions

of graphs and polyhedra IV: acyclic spanning subgraphs. SIAM Journal on
Discrete Mathematics, 7(3):390–402, 1994.

256 Bibliography

[BG02] Jørgen Bang-Jensen and Gregory Gutin. Digraphs - theory, algorithms and
applications. Springer, 2002.

[BH11] Franz J. Brandenburg and Kathrin Hanauer. Sorting heuristics for the feed-

back arc set problem. Technical Report MIP-1104, Faculty of Computer

Science and Mathematics, University of Passau, 2011.

[BNP96] Alberto Borobia, Zeev Nutov, and Michal Penn. Doubly stochastic matrices

and dicycle covers and packings in eulerian digraphs. Linear Algebra and its
Applications, 246:361–371, 1996.

[BS90] Bonnie Berger and Peter W. Shor. Approximation algorithms for the maxi-

mum acyclic subgraph problem. In David S. Johnson, editor, Proceedings of
the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January
1990, San Francisco, California., pages 236–243. SIAM, 1990.

[BSN15] Ali Baharev, Hermann Schichl, and Arnold Neumaier. An exact method for

the minimum feedback arc set problem. http://www.mat.univie.ac.at/

~herman/fwf-P27891-N32/minimum_feedback_arc_set.pdf, December

2015.

[BT92] Jørgen Bang-Jensen and Carsten Thomassen. A polynomial algorithm for

the 2-path problem for semicomplete digraphs. SIAM Journal on Discrete
Mathematics, 5(3):366–376, August 1992.

[CA90] Kwang-Ting Cheng and Vishwani D. Agrawal. A partial scan method for

sequential circuits with feedback. IEEE Trans. Computers, 39(4):544–549, 1990.

[CA95] Arun Chakradhar, Srimat T.and Balakrishnan and Vishwani D. Agrawal.

An exact algorithm for selecting partial scan flip-flops. Journal of Electronic
Testing, 7(1-2):83–93, 1995.

[CDZ00] Mao-cheng Cai, Xiaotie Deng, and Wenan Zang. An approximation algo-

rithm for feedback vertex sets in tournaments. SIAM Journal on Computing,

30(6):1993–2007, 2000.

[CDZ02] Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang. A min-max theorem on

feedback vertex sets. Mathematics of Operations Research, 27(2):361–371, 2002.

http://www.mat.univie.ac.at/~herman/fwf-P27891-N32/minimum_feedback_arc_set.pdf
http://www.mat.univie.ac.at/~herman/fwf-P27891-N32/minimum_feedback_arc_set.pdf

Bibliography 257

[CK96] Stefan Chanas and Prezemysław Kobylański. A new heuristic algorithm solv-

ing the linear ordering problem. Computational Optimization and Applications,

6(2):191–205, 1996.

[CLL07] Jianer Chen Chen, Yang Liu, and Songjian Lu. Directed feedback vertex set

problem is FPT. In Erik D. Demaine, Gregory Gutin, Dániel Marx, and Ulrike

Stege, editors, Structure Theory and FPT Algorithmics for Graphs, Digraphs and
Hypergraphs, 08.07. - 13.07.2007, volume 07281 of Dagstuhl Seminar Proceedings.

Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),

Schloss Dagstuhl, Germany, 2007.

[CLL+08] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon.

A fixed-parameter algorithm for the directed feedback vertex set problem.

Journal of the ACM, 55(5), 2008.

[Con06] Vincent Conitzer. Computing slater rankings using similarities among can-

didates. In Proceedings of the National Conference on Artificial Intelligence,

volume 21, page 613. Menlo Park, CA; Cambridge, MA; London; AAAI

Press; MIT Press; 1999, 2006.

[CTY07] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback

arc set problem is NP-hard for tournaments. Combinatorics, Probability &
Computing, 16(1):1–4, 2007.

[CW58] Hollis B. Chenery and Tsunehiko Watanabe. International comparisons of

the structure of production. Econometrica, 26(4):487–521, 1958.

[CW09] Tom Coleman and Anthony Wirth. Ranking tournaments: Local search and

a new algorithm. Journal of Experimental Algorithmics (JEA), 14:6, 2009.

[dC85] M. le Marquis de Condorcet. Essai sur l’application de l’analyse à la proba-

bilité des décisions rendues à la pluralité des voix. 1785.

[DF03] Camil Demetrescu and Irene Finocchi. Combinatorial algorithms for feed-

back problems in directed graphs. Information Processing Letters, 86(3):129–

136, 2003.

[DGH+10] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß.

Fixed-parameter tractability results for feedback set problems in tourna-

ments. Journal of Discrete Algorithms, 8(1):76–86, 2010.

258 Bibliography

[Din70] E. A. Dinic. An algorithm for the solution of the max-flow problem with the

polynomial estimation. Doklady Akademii Nauk SSSR, 194(4), 1970. In Russian.

English translation: Soviet Mathematics Doklady 11, pages 1277–1280 (1970).

[Din06] Yefim Dinitz. Dinitz’ algorithm: The original version and even’s version.

In Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors,

Theoretical Computer Science: Essays in Memory of Shimon Even, pages 218–240.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[DKNS01] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggre-

gation methods for the web. In Vincent Y. Shen, Nobuo Saito, Michael R.

Lyu, and Mary Ellen Zurko, editors, Proceedings of the Tenth International
World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pages

613–622. ACM, 2001.

[dlV83] Wenceslas Fernandez de la Vega. On the maximum cardinality of a consistent

set of arcs in a random tournament. Journal of Combinatorial Theory, Series B,

35(3):328–332, 1983.

[dMNE99] Candido Ferreira Xavier de Mendonça Neto and Peter Eades. An improve-

ment for an algorithm for finding a minimum feedback arc set for planar

graphs. 21(4), 1999.

[Dri80] T. Dridi. Sur les distributions binaires associées à des distributions ordinales.

Mathématiques et sciences humaines, (69):15–31, 45, 1980.

[DS05] Irit Dinur and Shmuel Safra. On the hardness of approximating Vertex Cover.

Annals of Mathematics, 162(1):439–485, 2005.

[Eck15] Barbara Eckl. Feedback Arc Set auf planaren Graphen. Bachelor’s thesis,

2015.

[EL95] Peter Eades and Xuemin Lin. A Heuristic for the Feedback Arc Set Problem.

Australasian Journal of Combinatorics, 12:15–25, 1995.

[ELS93] Peter Eades, Xuemin Lin, and William F. Smyth. A fast and effective heuristic

for the feedback arc set problem. Information Processing Letters, 47(6):319–323,

October 1993.

[EM65] Paul Erdős and J. W. Moon. On sets of consistent arcs in a tournament.

Canadian Mathematical Bulletin, 8:269–271, 1965.

Bibliography 259

[ENSS98] Guy Even, Joseph (Seffi) Naor, Baruch Schieber, and M. Sudan. Approximat-

ing minimum feedback sets and multicuts in directed graphs. Algorithmica,

20(2):151–174, 1998.

[FK99] Alan Frieze and Ravi Kannan. Quick approximation to matrices and appli-

cations. Combinatorica, 19(2):175–220, 1999.

[FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in

Theoretical Computer Science. An EATCS Series. Springer, 2010.

[Flo90] Merrill M. Flood. Exact and heuristic algorithms for the weighted feedback

arc set problem: A special case of the skew-symmetric quadratic assignment

problem. Networks, 20(1):1–23, 1990.

[Fra81] András Frank. How to make a digraph strongly connected. Combinatorica,

1(2):145–153, 1981.

[Gav77] Fanica Gavril. Some NP-complete problems on graphs. In Proceedings of
the 11th Conference on Information Sciences and Systems, pages 91–95. Johns

Hopkins University, 1977.

[GGH+06] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian

Wernicke. Compression-based fixed-parameter algorithms for feedback

vertex set and edge bipartization. Journal of Computer and System Sciences,

72(8):1386–1396, 2006.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.

Freeman, first edition edition, 1979.

[GJR84a] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane

algorithm for the linear ordering problem. Operations Research, 32(6):1195–

1220, 1984.

[GJR84b] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Optimal triangula-

tion of large real world input-output matrices. Statistische Hefte, 25:261–295,

1984.

[GJR85a] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear

ordering polytope. Mathematical Programming, 33(1):43–60, 1985.

260 Bibliography

[GJR85b] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. On the acyclic

subgraph polytope. Mathematical Programming, 33(1):28–42, 1985.

[GKN98] E. Girlich, M. Kovalev, and V. Nalivaiko. A note on an extension of facet-

defining digraphs. Technical report, 1998.

[GMR08] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra.

Beating the random ordering is hard: Inapproximability of maximum acyclic

subgraph. In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 573–582. IEEE

Computer Society, 2008.

[Gup08] Sushmita Gupta. Feedback arc set problem in bipartite tournaments. Infor-
mation Processing Letters, 105(4):150–154, 2008.

[Han10] Kathrin Hanauer. Algorithms for the feedback arc set problem. Master’s

thesis, Faculty of Computer Science and Mathematics, University of Passau,

Passau, Germany, 2010.

[HBA13] Kathrin Hanauer, Franz J. Brandenburg, and Christopher Auer. Tight upper

bounds for minimum feedback arc sets of regular graphs. In Andreas Brand-

städt, Klaus Jansen, and Rüdiger Reischuk, editors, Graph-Theoretic Concepts
in Computer Science - 39th International Workshop, WG 2013, Lübeck, Germany,
June 19-21, 2013, Revised Papers, volume 8165 of Lecture Notes in Computer
Science, pages 298–309. Springer, 2013.

[Hel64] Ernst Helmstädter. Die Dreiecksform der Input-Output-Matrix und ihre

möglichen Wandlungen im Wachstumsprozeß. In Fritz Neumark, editor,

Strukturwandlungen einer wachsenden Wirtschaft. Schriften des Vereins für

Socialpolitik, 1964.

[Kaa81] R. Kaas. A branch and bound algorithm for the acyclic subgraph problem.

European Journal of Operational Research, 8(4):355–362, 1981.

[Kan92] Viggo Kann. On the Approximability of NP-complete Optimization Problems.

PhD thesis, Royal Institute of Technology, Stockholm, Sweden, May 1992.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Ray-

mond E. Miller and James W. Thatcher, editors, Proceedings of a symposium

Bibliography 261

on the Complexity of Computer Computations, held March 20-22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York., The IBM

Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[Kar79] Alexander V. Karzanov. On the minimal number of arcs of a digraph meeting

all its directed cutsets. Graph Theory Newsletters, 8(4), March 1979.

[Kem59] John G. Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591,

1959.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In John H.

Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Com-
puting, May 19-21, 2002, Montréal, Québec, Canada, pages 767–775. ACM,

2002.

[Kho10] Subhash Khot. On the unique games conjecture (invited survey). In Pro-
ceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC
2010, Cambridge, Massachusetts, June 9-12, 2010, pages 99–121. IEEE Computer

Society, 2010.

[Knu09] Donald Ervin Knuth. The Stanford GraphBase: A Platform for Combinatorial
Computing. Addison-Wesley Professional, 1st edition, 2009.

[Koe05] Henning Koehler. A contraction algorithm for finding minimal feedback sets.

In Proceedings of the Twenty-eighth Australasian Conference on Computer Science -
Volume 38, ACSC ’05, pages 165–173, Darlinghurst, Australia, Australia, 2005.

Australian Computer Society, Inc.

[KPPW15] Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström.

Fixed-parameter tractability of multicut in directed acyclic graphs. SIAM
Journal on Discrete Mathematics, 29(1):122–144, 2015.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate

to within 2-ε. Journal of Computer and System Sciences, 74(3):335–349, 2008.

[KS06] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors:

A PTAS for weighted feedback arc set on tournaments. Electronic Colloquium
on Computational Complexity (ECCC), 13(144), 2006.

262 Bibliography

[KS07] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors.

In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, San Diego, California, USA, June
11-13, 2007, pages 95–103. ACM, 2007.

[KS10] Marek Karpinski and Warren Schudy. Faster algorithms for feedback arc

set tournament, kemeny rank aggregation and betweenness tournament. In

Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms
and Computation - 21st International Symposium, ISAAC 2010, Jeju Island, Korea,
December 15-17, 2010, Proceedings, Part I, volume 6506 of Lecture Notes in
Computer Science, pages 3–14. Springer, 2010.

[KST90] Philip Klein, Clifford Stein, and Éva Tardos. Leighton-Rao might be practical:

Faster approximation algorithms for concurrent flow with uniform capaci-

ties. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of
Computing, STOC ’90, pages 310–321, New York, NY, USA, 1990. ACM.

[Lem08] Mile Lemaic. Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem
for Digraphs. PhD thesis, 2008.

[LG14] François Le Gall. Algebraic complexity theory and matrix multiplication. In

Katsusuke Nabeshima, Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó,

editors, International Symposium on Symbolic and Algebraic Computation, ISSAC
’14, Kobe, Japan, July 23-25, 2014, page 23. ACM, 2014.

[LR88] Thomas Leighton and Satish Rao. An approximate max-flow min-cut theo-

rem for uniform multicommodity flow problems with applications to approx-

imation algorithms. In Foundations of Computer Science, 1988., 29th Annual
Symposium on, pages 422–431, Oct 1988.

[Luc76] Cláudio Leonardo Lucchesi. A minimax equality for directed graphs. PhD thesis,

1976.

[LY78] Cláudio Leonardo Lucchesi and Daniel Haven Younger. A minimax theorem

for directed graphs. Journal of the London Mathematical Society, 17:369–374,

1978.

[MB00] John E. Mitchell and Brian Borchers. Solving linear ordering problems with

a combined interior point/simplex cutting plane algorithm. In H. L. Frenk,

Bibliography 263

C. Roos, T. Terlaky, and S. Zhang, editors, High Performance Optimization,

chapter 14, pages 349–366. Kluwer Academic Publishers, Dordrecht, The

Netherlands, 2000.

[MR11] Rafael Martí and Gerhard Reinelt. The Linear Ordering Problem. Exact and
Heuristic Methods in Combinatorial Optimization, volume 175 of Applied Mathe-
matical Sciences. Springer Berlin Heidelberg, 2011.

[Mus05] A. R Mushi. The linear ordering problem: An algorithm for the optimal

solution. 6(1):51–64, June 2005.

[MWV15] Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh.

A 7/3-approximation for feedback vertex sets in tournaments. CoRR,

abs/1511.01137, 2015.

[NP95] Zeev Nutov and Michal Penn. On the integral dicycle packings and covers

and the linear ordering polytope. Discrete Applied Mathematics, 60(1-3):293–

309, 1995.

[Pap91] Mihalis Papadimitriou, Christos H.and Yannakakis. Optimization, approx-

imation, and complexity classes. Journal of Computer and System Sciences,

43(3):425–440, 1991.

[PS98] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, 1998.

[PVP13] Kévin Perrot and Trung Van Pham. NP-hardness of minimum feedback

arc set problem on Eulerian digraphs and minimum recurrent configuration

problem of chip-firing game. CoRR, abs/1303.3708, 2013.

[Ram88] Vijaya Ramachandran. Finding a minimum feedback arc set in reducible

flow graphs. Journal of Algorithms, 9(3):299–313, 1988.

[Ram90] Vijaya Ramachandran. A minimax arc theorem for reducible flow graphs.

SIAM Journal on Discrete Mathematics, 3(4):554–560, 1990.

[Rei93] Gerhard Reinelt. A note on small linear-ordering polytopes. Discrete &
Computational Geometry, 10:67–78, 1993.

[RS03] Venkatesh Raman and Saket Saurabh. Parameterized complexity of directed

feedback set problems in tournaments. In Frank K. H. A. Dehne, Jörg-Rüdiger

264 Bibliography

Sack, and Michiel H. M. Smid, editors, Algorithms and Data Structures, 8th
International Workshop, WADS 2003, Ottawa, Ontario, Canada, July 30 - August
1, 2003, Proceedings, volume 2748 of Lecture Notes in Computer Science, pages

484–492. Springer, 2003.

[RS06] Venkatesh Raman and Saket Saurabh. Parameterized algorithms for feed-

back set problems and their duals in tournaments. Theoretical Computer
Science, 351(3):446–458, 2006. Parameterized and Exact ComputationFirst

International Workshop on Parameterized and Exact Computation 2004.

[RS07] Venkatesh Raman and Saket Saurabh. Improved fixed parameter tractable

algorithms for two "edge" problems: MAXCUT and MAXDAG. Inf. Process.
Lett., 104(2):65–72, 2007.

[RSS07] Venkatesh Raman, Saket Saurabh, and Somnath Sikdar. Efficient exact algo-

rithms through enumerating maximal independent sets and other techniques.

Theory Comput. Syst., 41(3):563–587, 2007.

[Saa01] Youssef Saab. A fast and effective algorithm for the feedback arc set problem.

Journal of Heuristics, 7(3):235–250, 2001.

[Sas08a] Prashant Sasatte. Improved approximation algorithm for the feedback set

problem in a bipartite tournament. Operations Research Letters, 36(5):602–604,

2008.

[Sas08b] Prashant Sasatte. Improved {FPT} algorithm for feedback vertex set problem

in bipartite tournament. Information Processing Letters, 105(3):79–82, 2008.

[Sch13] Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Infor-
mation Processing Letters, 113(7):241 – 244, 2013.

[Sey95] Paul D. Seymour. Packing directed circuits fractionally. Combinatorica,

15(2):281–288, 1995.

[Sey96] Paul D. Seymour. Packing circuits in Eulerian digraphs. Combinatorica,

16(2):223–231, 1996.

[Sha79] Adi Shamir. A linear time algorithm for finding minimum cutsets in re-

ducible graphs. SIAM Journal on Computing, 8(4):645–655, 1979.

Bibliography 265

[Ski08] Steven S. Skiena. The Algorithm Design Manual. Springer-Verlag London,

2008.

[Sla61] Patrick Slater. Inconsistencies in a schedule of paired comparisons. Biometrika,

48(3-4):303–312, December 1961.

[Spe71] Joel Spencer. Optimal ranking of tournaments. Networks, 1(2):135–138, 1971.

[Spe80] Joel Spencer. Optimally ranking unrankable tournaments. Periodica Mathe-
matica Hungarica, 11(2):131–144, 1980.

[Spe89] Ewald Speckenmeyer. On feedback problems in digraphs. In Manfred

Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th International
Workshop, WG ’89, Castle Rolduc, The Netherlands, June 14-16, 1989, Proceedings,

volume 411 of Lecture Notes in Computer Science, pages 218–231. Springer,

1989.

[SS04] Tommaso Schiavinotto and Thomas Stützle. The linear ordering problem:

Instances, search space analysis and algorithms. Journal of Mathematical
Modelling and Algorithms, 3(4):367–402, 2004.

[Sta90] Hermann Stamm. On feedback problems in planar digraphs. In Rolf H.

Möhring, editor, Graph-Theoretic Concepts in Computer Science, 16rd Interna-
tional Workshop, WG ’90, Berlin, Germany, June 20-22, 1990, Proceedings, volume

484 of Lecture Notes in Computer Science, pages 79–89. Springer, 1990.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual

understanding of hierarchical system structures. IEEE Transactions on Systems,
Man, and Cybernetics, 11(2):109–125, 1981.

[SW93] Hermann Stamm-Wilbrandt. Programming in propositional logic or reduc-

tions: Back to the roots (satisfiability). Technical report, Universität Bonn,

1993.

[SW99] Angelika Steger and Nicholas C. Wormald. Generating random regular

graphs quickly. Comb. Probab. Comput., 8(4):377–396, July 1999.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

266 Bibliography

[vZ11] Anke van Zuylen. Linear programming based approximation algorithms for

feedback set problems in bipartite tournaments. Theoretical Computer Science,

412(23):2556–2561, 2011.

[vZW09] Anke van Zuylen and David P. Williamson. Deterministic pivoting algo-

rithms for constrained ranking and clustering problems. Mathematics of
Operations Research, 34(3):594–620, 2009.

[Yan78] Mihalis Yannakakis. Node- and edge-deletion NP-complete problems. In

Richard J. Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman,

and Alfred V. Aho, editors, Proceedings of the 10th Annual ACM Symposium on
Theory of Computing, May 1-3, 1978, San Diego, California, USA, pages 253–264.

ACM, 1978.

[You63] Daniel Haven Younger. Minimum Feedback Arc Sets for a Directed Graph.

IEEE Transactions on Circuit Theory, 10(2):238–245, June 1963.

[YXS06] Yao Yu, Chen Xinmeng, and Zhu Shanfeng. Rank aggregation algorithms

based on voting model for metasearch. In Wireless Communications, Network-
ing and Mobile Computing, 2006. WiCOM 2006. International Conference on,

pages 1–4. IEEE, 2006.

Notation Index

(u, v)

an arc with tail u and head v, 38

(u, v)R

the reverse of (u, v), (u, v)R = (v, u),

38

u⇝ v

a path from u to v (short form), 40

X ⊆∗ U

X is a multisubset of U , i. e. ,
X = (U ′,m) and U ′ ⊆ U , 36

X ⊎ Y
the multiset sum of X and Y , 36

⟨B+⟩π (v)

a list containing the elements of B+(v)
sorted according to the position of
their heads in π, 60

⟨B−⟩π (v)

a list containing the elements of B−(v)
sorted according to the position of
their tails in π, 60

⟨F+⟩π (v)

a list containing the elements of F+(v)
sorted according to the position of
their heads in π, 60

⟨F−⟩π (v)

a list containing the elements of F−(v)
sorted according to the position of
their tails in π, 60

⟨v0, . . . , vk⟩
a path from v0 to vk, 40

[π]∼B

the set of linear orderings inducing the
same set of backward arcs as π, 46

A

the set of arcs, 38

AR

the set containing the reverse of each
arc in A, 38

B
a feedback arc set, 43

often used as simplification for Bπ, 47

B(v)
the set of backward arcs incident to v,

47

b(v)
the total number of backward arcs

incident to v, 47

B+(v)
the set of backward arcs outgoing from

v, 47

b+(v)

268 NOTATION INDEX

the number of backward arcs outgoing
from v, 47

B−(v)
the set of backward arcs incoming to v,

47

b−(v)
the number of backward arcs incoming

to v, 47

Bπ

the set of backward arcs induced by π,

44

NoBlock(π)
a predicate that indicates whether or

not π respects the Blocking
Vertices Property, 82

C
a cycle, 40

connect(G, u, v)
the graph obtained by adding a new arc

(u, v) to G, 138

d(v)
v’s degree, 40

d+(v)
v’s outdegree, 39

d−(v)
v’s indegree, 40

∆G

the maximum degree of a vertex in a
graph G, 40

δ(v)
v’s delta degree, 40

δ(v) = d+(v)− d−(v), see also d+(v)
and d−(v)

Elim(π)

a predicate that indicates whether or
not π respects the Eliminable
Layouts Property, 117

elimq(π)
function that applies the elimination

operation to the vertex π−1(q) and
returns the resulting linear
ordering if this vertex has an
eliminable layout, otherwise, it is
the identity function, 117

exc(G)
the excess of G, 72

F
an acyclic arc set, 43

often used as simplification for Fπ, 47

F(v)
the set of forward arcs incident to v, 47

f(v)
the total number of forward arcs

incident to v, 47

F+(v)
the set of forward arcs outgoing from v,

47

f+(v)
the number of forward arcs outgoing

from v, 47

F−(v)
the set of forward arcs incoming to v,

47

f−(v)
the number of forward arcs incoming to

v, 47

Fπ

the set of forward arcs induced by π, 44

NOTATION INDEX 269

fuse(G, π, q)
the graph and linear ordering obtained

by a fusion of the vertices at
position q and q + 1 in π, 142

G

a graph, 38

G = (V,A), see also A and V

GR

the reverse of G,GR = (V,AR), 38

G|F
the acyclic subgraph of G, 43

Gsp

a general split graph of G, without
indicating what vertices are split,
84

Gsp/l

the left-blocking split graph of G, 83

Gsp/r

the right-blocking split graph of G, 83

GX

the subgraph induced by the vertex set
X ⊆ V , 39

G|Y
the subgraph of G restricted to the arc

set A ∩ Y , 39
⇝
G

a forward path graph of G with respect
to a Ψ-optimal linear ordering,

152
⇝
G

◦

a pooled forward path graph of G with
respect to a Ψ-optimal linear
ordering, 154

⇝
G

∅

a polarized forward path graph of G
with respect to a Ψ-optimal linear
ordering, 156

⇝
G

∅

tr

a truncated forward path graph of G
with respect to a Ψ-optimal linear
ordering, 157

Iπ(q)
the sequence of vertices in the order

they occur at position q starting
from π, 118

insert(π, u, q)
the linear ordering obtained by

inserting vertex u at position q in
π, 134

insert(π, u, q,H)
= reinterpret(insert(π, u, q), H), 134

L(G)
the line graph of G, 15

l(π)
the length of an (incomplete) linear

ordering π, 200

L(v)
the layout of vertex v, 47

m

the number of arcs, 38

m = |A|, see also A

MNoBlock(π)
a predicate that indicates whether or

not π respects the Multipath
Blocking Vertices Property, 103

MPath(π)

270 NOTATION INDEX

a predicate that indicates whether or
not π respects the Multipath
Property, 90

n

the number of vertices, 38

n = |V |, see also V

N+(v)
the set of vertices with an incoming arc

from v, 39

N−(v)
the set of vertices with an outgoing arc

to v, 39

Nest(π)
a predicate that indicates whether or

not π respects the Nesting
Property, 70

neutralize(G, (u, v) , (v, u))
the graph obtained by removing the

pair of anti-parallel arcs (u, v) and
(v, u) from G, 140

νG

the cardinality of an optimal set of
arc-disjoint cycles of G, 13

the objective function value of the ADC
0-1 integer linear program, 13

νG ≤ τG, see also τG

ν∗
G

the objective function value of the ADC
linear programming relaxation, 13

ν∗
G = τ∗

G, see also τ∗
G

ν∗
G ≥ νG, see also νG

O
f ∈ O(g): f asymptotically grows at

most as fast as g, 37

o
f ∈ o(g): f asymptotically grows

strictly slower than g, 37

O∗

as O, but ignores polynomially
bounded factors, 37

Ω
f ∈ Ω(g): f asymptotically grows at

least as fast as g, 37

Opt(π)
a predicate that indicates whether or

not π is optimal, 56

P
a path, 40

Pb

a forward path for backward arc b, 73

Pbcrop

a cropped forward path for backward
arc b, 78

Path(π)
a predicate that indicates whether or

not π respects the Path Property,

74

π

a linear ordering, 44

|π|
the cardinality of the induced feedback

arc set, 46

πR

the reverse of π, 46

πsp

the linear ordering belonging to Gsp,

84

πsp/l

NOTATION INDEX 271

the linear ordering belonging to Gsp/l,

83

πsp/r

the linear ordering belonging to Gsp/r,

83

Ψopt(π)
a predicate that indicates whether or

not π respects all properties of
Chapter 4, 56

reinterpret(π,H)
the linear ordering obtained by

interpreting π as a linear ordering
of a graph H , 133

skip(π, u)
the linear ordering obtained by

removing vertex u from π, 134

skip(π, u,H)
= reinterpret(skip(π, u), H), 134

τG

cardinality of an optimal feedback arc
set of G, 44

the objective function value of the FAS
0-1 integer linear program, 10

τG ≥ νG, see also νG

τ∗
G

the objective function value of the FAS
linear programming relaxation, 11

τ∗
G = ν∗

G, see also ν∗
G

τ∗
G ≤ τG, see also τG

Θ
f ∈ Θ(g): f asymptotically grows as

fast as g, 37

ξ(v)
the topsort number of v, 42

V

the set of vertices, 38

W
a walk, 41

Algorithm Index

Cascade(G, π, L)

calls the property-enforcing routines contained in L in a specific order until all properties
are established, 128

CheckPartialLayout(G,λ)

checks a partial layout λ and, if possible, constructs a linear ordering realizing it, 202

ComputeLayoutLists(G, π)

computes the ordered lists of incoming/outgoing forward/backward arcs, 61

ComputePositionsAndArcSets(G, π)

computes the sets of induced forward and backward arcs, 60

DecideLO(G, k)

decides whether G has a linear ordering inducing at most k backward arcs, 207

EliminateLayouts(G, π)

returns π, if Elim(π), otherwise a possibly improvable linear ordering, 123

EnforceForwardPaths(G, π)

returns π, if Path(π), otherwise an improved linear ordering, 75

EnforceMultiPaths(G, π)

returns π, if MPath(π), otherwise an improved linear ordering, 92

EnforceMultiPathsNoBlocking(G, π)

returns π, if MNoBlock(π), otherwise an improved linear ordering, 104

EnforceNesting(G, π)

returns π, if Nest(π), otherwise an improved linear ordering, 65

EnforceNoBlocking(G, π)

returns π, if NoBlock(π), otherwise an improved linear ordering, 85

EstablishForwardPaths(G, π)

establishes the Path Property on π, 76

EstablishMultiPaths(G, π)

establishes the Multipath Property on π, 94

274 ALGORITHM INDEX

EstablishMultiPathsNoBlocking(G, π)

establishes the Multipath Blocking Vertices Property on π, 107

EstablishNesting(G, π)

establishes the Nesting Property on π, 68

EstablishNoBlocking(G, π)

establishes the Blocking Vertices Property on π, 87

ExactLOIntegrated(G)

computes an optimal linear ordering π of G (integrated version), 214

ExactLOSimple(G)

computes an optimal linear ordering π of G (simple version), 204

ExtendLO(G, π, t, E, Z,D)

extends an incomplete linear ordering π optimally, 211

Iterate(G, π,E)

repeatedly calls a property-enforcing routine E(G, π) until the property is established, 57

Merge(L1, f1, L2, f2)

merges two lists L1 and L2 as in the MergeSort algorithm by applying the functions f1 and
f2 to the elements of L1 and L2, respectively, and comparing the results., 66

MinCut(G, s, t)

computes a minimum s− t cut in G with unit capacities and returns the arcs in the cut-set,
91

Move(π, v, p)

moves vertex v to position p within π, 63

PsiOpt(G, π)

establishes the Nesting Property, the Path Property, the Blocking Vertices Property, the
Multipath Property, the Multipath Blocking Vertices Property, and the Eliminable
Layouts Property simultaneously on π, 130

PsiOptCubic(G, π)

establishes all properties of Chapter 4 simultaneously on π if G is subcubic, 132

Reclassify(G, u, v, π,E, Z,D)

extends an incomplete linear ordering π optimally, 212

SimplifyGraph(G)

computes the simple subgraph of G, 74

ALGORITHM INDEX 275

SplitVertically(G, π,X)

applies a vertical split to all vertices in X and returns the resulting graph and linear
ordering, 84

TopSort(G)

computes a topological sorting of an acyclic graph G, 43

TransitiveClosure(G)

computes the transitive closure of G, 75

Subject Index

Numbers printed in bold face indicate the pages where the term is introduced.

acyclic arc set, 43, 45, 46

acyclic graph, see graph

↰

acyclic

ACYCLIC SUBGRAPH, 11, 18

Acyclic Subgraph (decision), 24

ACYCLIC SUBGRAPH (DECISION), 11

acyclic subgraph polytope, 13, 226

ADC, see ARC-DISJOINT CYCLES

adjacent, see vertex

↰

adjacent

admissible, 169

Alternative Forward Paths Property, 173

arc

anti-parallel, 38, 133

backward, 44

contraction, 136

forward, 44, 47

incident, 38

incoming, 38

insertion, 138

neutralization, 140

outgoing, 38

parallel, 38

reverse, 38, 46, 140

subdivision, 139

arc contraction, see arc

↰

contraction

arc insertion, see arc

↰

insertion

arc neutralization, see arc

↰

neutralization

arc set, 38, 39

feasible, 43, 79, 95, 108

Arc Stability Property, 149

arc subdivision, see arc

↰

subdivision

ARC-DISJOINT CYCLES, 13, 18

AS, see ACYCLIC SUBGRAPH

balance, 209

biconnected component, see block, 41

block, 41, 50

block-cut tree, 41

Blocking Vertices Property, 80

BOOLEAN SATISFIABILITY, 17

cardinality, 35, 37, 38

CHORD SET, 9

component vertex, see vertex

↰

component

condensation, 42, 49

connected component, 41

cubic graph, see graph

↰

cubic

cut vertex, 41

cycle, 40

arc-disjoint, 40

278 SUBJECT INDEX

simple, 40, 50

vertex-disjoint, 40

CYCLE COVER, 9

cycle cover, 43

CYCLE HITTING SET, 9

dAS, see ACYCLIC SUBGRAPH

(DECISION)

degree, 40

delta degree, 40, 160

indegree, 40

outdegree, 39

delta degree, see degree

↰

delta degree

dFAS, see FEEDBACK ARC SET

(DECISION)

digraphs, 38

directed graphs, 38

DIRECTED MULTICUT, 17, 97, 112

dLO, see LINEAR ORDERING (DECISION)

DMC, see DIRECTED MULTICUT

Eliminable Layouts Property, 113, 178

excess, 72

Extended Multipath Blocking Vertices

Property, 110

Extended Multipath Property, 96

facet-defining, 14, 225

FAS, see FEEDBACK ARC SET

feasible, see arc set

↰

feasible, 77

FEEDBACK ARC SET, 8

feedback arc set, 43, 45

minimal, see also set

↰

minimal, 43,

73, 77

minimum, see also set

↰

minimum,

44

optimal, 44

FEEDBACK ARC SET (DECISION), 8

FEEDBACK CUTSET, 9

FEEDBACK VERTEX SET, 15, 18

fixed-parameter tractable, 23

forward path, 47, 73, 74, 77

cropped, 78, 132

for a backward arc, 73

forward path graph, 73, 152

polarized, 156, 169, 180

pooled, 154, 170, 179

truncated, 157, 160, 169

FPT , see fixed parameter tractable

fractional solution, 11, 22

FVS, see FEEDBACK VERTEX SET

graph, 38, 43

acyclic, 42, 43

biconnected, 41

bipartite, 6, 32, 39

bipartite tournament, 6, 20–24, 34,

39, 225

complete, 5

connected, 41

cubic, 27, 29, 40, 225

Eulerian, 5, 25

linklessly embeddable, 20, 25

multigraph, see multigraph

quartic, 40, 225

quintic, 40

regular, 40

reverse, 38, 44, 46, 58

simple, 39, 48, 151, 198

strongly connected, 41, 50

strongly cyclic, 14

SUBJECT INDEX 279

subcubic, 2, 40, 131, 159

subgraph, 39

acyclic subgraph, 43

induced, 39

restricted, 39, 43

simple, 74, 85

source-preserving, 158, 169

spanning, 39, 152

subquartic, 3, 40

subquintic, 3, 40

subregular, 40

tournament, 6, 10–14, 19–24, 26,

29–31, 34, 39

weakly acyclic, 14, 20

head, 38

incident, see arc

↰

incident

incoming, see arc

↰

incoming

indegree, see degree

↰

indegree

Independent Set Reduction Property,

148

induced subgraph, see graph

↰

subgraph

↰

induced

isolated vertex, see vertex

↰

isolated

k-fence, 14, 161, 225

k-opt, 63, 149

k-regular, see graph

↰

regular

KEMENY RANKING, 30

Kendall tau distance, 31

LABEL COVER, 22

layout, 47

eliminable, 112

partial, 198

left-blocking split graph, 83

length (list), 38

length (sequence), 36

line graph, 15, 20

LINEAR ORDERING, 7, 203, 213

linear ordering, 6, 44

incomplete, 200

containment, 200

extension, 200

length, 200

optimal, 46

Ψ-optimal, 56, 131–132, 160, 178,

195

reverse, 46, 59

LINEAR ORDERING (DECISION), 8, 207

linear ordering polytope, 14

linear program, 9

linear programming relaxation, 10

LO, see LINEAR ORDERING

local search, 63, 149

loop, 38, 45, 48, 133

LO position, 44, 200

Möbius ladder, 14, 225

MATRIX TRIANGULATION, 9

meta-property, 56

multigraph, 39

Multipath Blocking Vertices Property, 98

Multipath Property, 88

multiset, 36, 38

multiset sum, 36

multisubset, 36

Nesting Property, 63, 69, 178

neutralization, see arc

↰

neutralization

One-Arc Stability Property, 149, 173, 176

280 SUBJECT INDEX

ONE-SIDED CROSSING MINIMIZATION,

32

outdegree, see degree

↰

outdegree

outgoing, see arc

↰

outgoing

parameterized complexity, 23

partial

layout

realizable, 198

realization, 198

passage, see vertex

↰

passage

path, 40

arc-disjoint, 40, 87

forward, see forward path

pseudosink, 178, 185

simple, 40

subpath, 40

vertex-disjoint, 40

Path Property, 74, 153

polarization, 156

pooling, 154

pseudosink, see vertex

↰

pseudosink

pseudosource, see vertex

↰

pseudosource

quartic graph, see graph

↰

quartic

quintic graph, see graph

↰

quintic

RANK AGGREGATION, 30

reducible flow graph, 25

Reduction Property, 147

regular graph, see graph

↰

regular

restricted subgraph, see graph

↰

subgraph

↰

restricted

right-blocking split graph, 83, 152

SAT, see Boolean Satisfiability

SCC, see strongly connected component

sequence, 36, 38

set, 35

maximal, 37, 41

maximum, 37

minimal, 37

minimum, 37

simple, 35, 36, 37, 39

simple cycle, see cycle

↰

simple

simple graph, see graph

↰

simple

simple path, see path

↰

simple

simple subgraph, see graph

↰

subgraph

↰

simple

sink, see vertex

↰

sink

SLATER RANKING, 31

source, see vertex

↰

source

spanning subgraph, see graph

↰

subgraph

↰

spanning

strongly connected component, 41, 49

strongly connected graph, see graph
↰

strongly connected

strongly cyclic, see graph

↰

strongly

cyclic

subcubic graph, see graph

↰

subcubic

subgraph, see graph

↰

subgraph

subpath, see path

↰

subpath

subquartic graph, see graph

↰

subquartic

subquintic graph, see graph

↰

subquintic

subregular, see graph

↰

subregular

subset, 35

proper, 35

SUBSET FEEDBACK ARC SET, 16, 18

SUBSET FEEDBACK VERTEX SET, 16

SUBSET WEIGHTED FEEDBACK ARC

SET, 16

SUBJECT INDEX 281

SUBSET WEIGHTED FEEDBACK VERTEX

SET, 16

SUBSET-FAS, see SUBSET FEEDBACK

ARC SET

SUBSET-FVS, see SUBSET FEEDBACK

VERTEX SET

SUBSET-wFAS, see SUBSET WEIGHTED

FEEDBACK ARC SET

SUBSET-wFVS, see SUBSET WEIGHTED

FEEDBACK VERTEX SET

superset, 35

proper, 35

tail, 38

Tail On Forward Path Property, 175

topological sorting, 42, 45, 75

topsort number, 42

tournament, see graph

↰

tournament

bipartite, see graph

↰

bipartite

tournament

tuple, 36

undirected graphs, 38

Unique Games Conjecture, 21, 22

VC, see VERTEX COVER

vertex

adjacent, 38

component, 156

consecutive, 44, 136, 138, 143, 155

degree, 5

fusion, 142

in-maximal, 134, 147

indegree, 5

isolated, 40, 161

left-blocking, 78, 112, 134

maximal, 134

out-maximal, 134, 147

outdegree, 5

passage, 156

pseudosink, 45, 82, 134

pseudosource, 45, 82, 134

reachable, 41

removal, 134

right-blocking, 78, 112, 134

sink, 40

source, 40, 43

strongly connected, 41

VERTEX COVER, 16, 21

vertex fusion, see vertex

↰

fusion

vertex removal, see vertex

↰

removal

vertex set, 38, 39

vertex splitting, 15

vertical split, 82

walk, 41

wdFAS, see WEIGHTED FEEDBACK ARC

SET (DECISION)

wdLO, see WEIGHTED LINEAR

ORDERING (DECISION)

weakly acyclic, see graph

↰

weakly

acyclic

WEIGHTED FEEDBACK ARC SET, 8

WEIGHTED FEEDBACK ARC SET

(DECISION), 8

WEIGHTED FEEDBACK VERTEX SET, 15

WEIGHTED LINEAR ORDERING, 7

WEIGHTED LINEAR ORDERING

(DECISION), 8

wFAS, see WEIGHTED FEEDBACK ARC

SET

282 SUBJECT INDEX

wFVS, see WEIGHTED FEEDBACK

VERTEX SET

wLO, see WEIGHTED LINEAR ORDERING

	1 Introduction
	2 The Linear Ordering Problem: An Outline
	2.1 The Linear Ordering Problem and its Kin
	2.1.1 Problem Statements
	2.1.2 Linear Programming
	2.1.3 Dual Problems
	2.1.4 The Acyclic Subgraph Polytope
	2.1.5 Reductions to and from the Linear Ordering Problem

	2.2 Complexity
	2.2.1 NP-Completeness Results
	2.2.2 Approximability and Approximations
	2.2.3 Parameterized Complexity
	2.2.4 Polynomially Solvable Instances

	2.3 The Cardinality of Optimal Feedback Arc Sets
	2.3.1 Existential Bounds
	2.3.2 Algorithms with Absolute Performance Guarantees

	2.4 Linear Orderings in Practice
	2.4.1 Heuristics
	2.4.2 Applications

	3 Preliminaries: Definitions and Preparations
	3.1 Basics
	3.1.1 Sets and Multisets
	3.1.2 Minimal and Maximal versus Minimum and Maximum
	3.1.3 Computational Complexity
	3.1.4 Data Structures

	3.2 General Graph Theory
	3.2.1 Graphs, Vertices, and Arcs
	3.2.2 Vertex Degrees
	3.2.3 Paths, Cycles, and Walks
	3.2.4 Connectivity and Acyclicity

	3.3 Feedback Arc Sets and Linear Orderings
	3.3.1 Feedback Arc Sets
	3.3.2 Linear Orderings
	3.3.3 Forward Paths and Layouts

	3.4 Preprocessing and Default Assumptions
	3.4.1 Loops and Anti-Parallel Arcs
	3.4.2 Strong Connectivity
	3.4.3 Biconnectivity

	4 Properties of Optimal Linear Orderings: A Microscopic View
	4.1 General Framework
	4.2 Algorithmic Setup
	4.2.1 Graphs
	4.2.2 Linear Orderings
	4.2.3 Vertex Layouts
	4.2.4 Initializing the Data Structures
	4.2.5 General Remarks

	4.3 Nesting Property
	4.3.1 A 1-opt Algorithm
	4.3.2 Nesting Arcs
	4.3.3 A Graph's Excess

	4.4 Path Property
	4.4.1 Forward Paths for Backward Arcs
	4.4.2 Establishing Forward Paths
	4.4.3 Minimal Feedback Arc Sets

	4.5 Blocking Vertices Property
	4.5.1 Left- and Right-Blocking Vertices
	4.5.2 Vertical Splits
	4.5.3 Establishing Non-Blocking Forward Paths

	4.6 Multipath Property
	4.6.1 Arc-Disjoint Forward Paths
	4.6.2 Analyzing the Flow Network Approach
	4.6.3 Arc-Disjoint Cycles
	4.6.4 An NP-hard Extension

	4.7 Multipath Blocking Vertices Property
	4.7.1 Non-Blocking Multipaths
	4.7.2 Flow Networks for Split Graphs
	4.7.3 Again an NP-hard Extension

	4.8 Eliminable Layouts Property
	4.8.1 Eliminable Layouts
	4.8.2 The Elimination Operation
	4.8.3 Eliminating Eliminable Layouts

	4.9 A PsiOpt-Algorithm
	4.9.1 A Cascading Meta-Algorithm
	4.9.2 Establishing the Necessary Properties Simultaneously

	4.10 Manipulations and Meta-Properties
	4.10.1 Basic Operations on Linear Orderings and Graphs
	4.10.2 Fusion Property
	4.10.3 Reduction Property
	4.10.4 Arc Stability Property

	5 Maximum Cardinality of Optimal Feedback Arc Sets of Sparse Graphs
	5.1 Auxiliary Graphs
	5.1.1 The Forward Path Graph
	5.1.2 The Pooled Forward Path Graph
	5.1.3 The Polarized Forward Path Graph
	5.1.4 The Truncated Forward Path Graph

	5.2 Subcubic Graphs
	5.2.1 A Tight Bound
	5.2.2 On the Approximation Ratio

	5.3 From Subcubic to General Graphs
	5.3.1 Pebble Transportation in Supercubic Graphs
	5.3.2 A General Assignment Scheme

	5.4 Subquartic and Subquintic Graphs
	5.4.1 Two Special Cases of One-Arc Stability
	5.4.2 A Tight Bound for Subquartic Graphs
	5.4.3 Subquintic Graphs

	6 Exact and Fast Algorithms for Linear Ordering
	6.1 Partial Layouts and Incomplete Linear Orderings
	6.2 Exact Algorithms for Optimization and Decision
	6.3 Branch and Bound with Integrated Partial Layouts
	6.4 Fine-Tuning
	6.5 Runtime Comparison for Sparse Graphs

	7 Experimental Evaluation
	7.1 The Algorithm Test Suite
	7.1.1 Algorithms
	7.1.2 Input Instances
	7.1.3 Technical Setup
	7.1.4 Evaluation

	7.2 Sparse Regular Graphs
	7.2.1 Selection and Configuration of Algorithms
	7.2.2 Performances and Running Times
	7.2.3 Summary

	7.3 Large Graphs
	7.3.1 Fences, Ladders, and their Composites
	7.3.2 Performances and Running Times
	7.3.3 Summary

	7.4 The LOLIB Graph Library
	7.4.1 Sets of LOLIB Instances
	7.4.2 Performances and Running Times
	7.4.3 Comparison to Other Approaches

	7.5 Threats to Validity
	7.5.1 Construct Validity
	7.5.2 Internal Validity
	7.5.3 External Validity

	7.6 Summary

	8 Conclusion and Future Work
	Bibliography
	Notation Index
	Algorithm Index
	Subject Index

