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Kurzfassung

Fahrerassistenzsysteme sind ein wesentlicher Baustein zur Steigerung der Sicherheit im Straßen-
verkehr. Vor allem sicherheitsrelevante Applikationen benötigen eine genaue Information über
den Ort und der Geschwindigkeit der Fahrzeuge in der unmittelbaren Umgebung, um mögliche
Gefahrensituationen vorherzusehen, den Fahrer zu warnen oder eigenständig einzugreifen. Re-
präsentative Beispiele für Assistenzsysteme, die auf eine genaue, kontinuierliche und zuverlässige
Relativpositionierung anderer Verkehrsteilnehmer angewiesen sind, sind Notbremsassitenten, Spur-
wechselassitenten und Abstandsregeltempomate.

Moderne Lösungsansätze benutzen Umfeldsensorik wie zum Beispiel Radar, Laser Scanner oder
Kameras, um die Position benachbarter Fahrzeuge zu schätzen. Dieser Sensorsysteme gemeinsame
Nachteile sind deren limitierte Erfassungsreichweite und die Notwendigkeit einer direkten und
nicht blockierten Sichtlinie zum Nachbarfahrzeug. Kooperative Lösungen basierend auf einer
Fahrzeug-zu-Fahrzeug Kommunikation können die eigene Wahrnehmungsreichweite erhöhen, in
dem Positionsinformationen zwischen den Verkehrsteilnehmern ausgetauscht werden.

In dieser Dissertation soll die Möglichkeit der kooperativen Relativpositionierung von Straßen-
fahrzeugen mittels Fahrzeug-zu-Fahrzeug Kommunikation auf ihre Genauigkeit, Kontinuität und
Robustheit untersucht werden. Anstatt die in jedem Fahrzeug unabhängig ermittelte Position zu
übertragen, werden in einem neuartigem Ansatz GNSS-Rohdaten, wie Pseudoranges und Doppler-
Messungen, ausgetauscht. Dies hat den Vorteil, dass sich korrelierte Fehler in beiden Fahrzeugen
potentiell herauskürzen. Dies wird in dieser Dissertation mathematisch untersucht, simulativ mo-
delliert und experimentell verifiziert. Um die Zuverlässigkeit und Kontinuität auch in ”gestörten”
Umgebungen zu erhöhen, werden in einem Bayesischen Filter die GNSS-Rohdaten mit Inertialsen-
sormessungen aus zwei Fahrzeugen fusioniert. Die Validierung des Sensorfusionsansatzes wurde
im Rahmen dieser Dissertation in einem Verkehrs- sowie in einem GNSS-Simulator durchgeführt.
Zur experimentellen Untersuchung wurden zwei Testfahrzeuge mit den verschiedenen Sensoren
ausgestattet und Messungen in diversen Umgebungen gefahren.

In dieser Arbeit wird gezeigt, dass auf Autobahnen, die Relativposition eines anderen Fahrzeugs
mit einer Genauigkeit von unter einem Meter kontinuierlich geschätzt werden kann. Eine hohe
Zuverlässigkeit in der longitudinalen und lateralen Richtung können erzielt werden und das Sys-
tem erweist 90 % der Zeit eine Unsicherheit unter 2.5 m. In ländlichen Umgebungen wächst die
Unsicherheit in der relativen Position. Mit Hilfe der on-board Sensoren können Fehler bei der
Fahrt durch Wälder und Dörfer korrekt gestützt werden. In städtischen Umgebungen werden
die Limitierungen des Systems deutlich. Durch die erschwerte Schätzung der Fahrtrichtung des
Ego-Fahrzeugs ist vor Allem die longitudinale Komponente der Relativen Position in städtischen
Umgebungen stark verfälscht.
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Abstract

Advanced driver assistance systems play an important role in increasing the safety on today’s roads.
The knowledge about the other vehicles’ positions is a fundamental prerequisite for numerous
safety critical applications, making it possible to foresee critical situations, warn the driver or
autonomously intervene. Forward collision avoidance systems, lane change assistants or adaptive
cruise control are examples of safety relevant applications that require an accurate, continuous
and reliable relative position of surrounding vehicles.

Currently, the positions of surrounding vehicles is estimated by measuring the distance with e.g.
radar, laser scanners or camera systems. However, all these techniques have limitations in their
perception range, as all of them can only detect objects in their line-of-sight. The limited percep-
tion range of today’s vehicles can be extended in future by using cooperative approaches based
on Vehicle-to-Vehicle (V2V) communication.

In this thesis, the capabilities of cooperative relative positioning for vehicles will be assessed
in terms of its accuracy, continuity and reliability. A novel approach where Global Navigation
Satellite System (GNSS) raw data is exchanged between the vehicles is presented. Vehicles use
GNSS pseudorange and Doppler measurements from surrounding vehicles to estimate the relative
positioning vector in a cooperative way. In this thesis, this approach is shown to outperform the
absolute position subtraction as it is able to effectively cancel out common errors to both GNSS
receivers. This is modeled theoretically and demonstrated empirically using simulated signals from
a GNSS constellation simulator.

In order to cope with GNSS outages and to have a sufficiently good relative position estimate
even in strong multipath environments, a sensor fusion approach is proposed. In addition to the
GNSS raw data, inertial measurements from speedometers, accelerometers and turn rate sensors
from each vehicle are exchanged over V2V communication links. A Bayesian approach is applied
to consider the uncertainties inherently to each of the information sources. In a dynamic Bayesian
network, the temporal relationship of the relative position estimate is predicted by using relative
vehicle movement models.

Also real world measurements in highway, rural and urban scenarios are performed in the scope of
this work to demonstrate the performance of the cooperative relative positioning approach based
on sensor fusion. The results show that the relative position of another vehicle towards the ego
vehicle can be estimated with sub-meter accuracy in highway scenarios. Here, good reliability and
90 % availability with an uncertainty of less than 2.5 m is achieved. In rural environments, drives
through forests and towns are correctly bridged with the support of on-board sensors. In an urban
environment, the difficult estimation of the ego vehicle heading has a mayor impact in the relative
position estimate, yielding large errors in its longitudinal component.
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Chapter 1.

Introduction

1.1. Intelligent Transportation Systems

Society faces the strong need for personal mobility. Every European citizen traveled 12.869 km
inside Europe in the year 2010. Road transport represents the largest share with 73,7% of all
displacements. Passengers that traveled by plane account for a share of only 8.2% [1]. Almost
half of the transport of goods inside the European Union occurs over roads. Both, passenger
and freight transport are growing from year to year. This increasing trend over the last decades
has also strong economical and environmental implications. Further increase in the traffic density
leads to more congestion and environmental pollution. The CO2 emissions from road transport
have increased by almost 23 % in the period from 1990 to 2010 [1].

In the context of increasing road traffic, safety is an important issue to account for. In 2011, 30.268
casualties were counted in road accidents in Europe [2]. Although this figure steadily decreases
from year to year [3], huge efforts are made in further minimizing the number of accidents and
their consequences. Over 100 Million road accidents involving personal injury and incurring in high
material costs occur every year in Europe. Thus, along with the high human and societal costs,
road accidents produce an important economic cost. In 2011, a white paper from the European
Commission proposed an ambitious target: achieving zero casualties on the road by 2050 [4]. This
goal is known now as Zero Vision.

Many safety systems have been progressively introduced since the three-point seat belt was first
fitted into commercial vehicles in the 1960’s and was made mandatory in the 1970’s. Seat belts
belong to the category of so-called passive safety systems, which aim at reducing the consequences
of an accident. Airbags, deformation zones, and enforced body structures are further examples
of passive safety systems. Active safety systems, on the other hand, aim at avoiding dangerous
situations. Active safety systems that can be encountered in today’s vehicles are, for example,
Anti-lock Braking Systems (ABSs), that prevent the wheels from blocking and loose steering control
of the vehicle, or Electronic Stability Programs (ESPs), that aim at avoiding vehicle’s skidding and
mitigating the effects of driver’s over- and under-steering.
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Chapter 1. Introduction 2

Figure 1.1.: To perceive the immediate environment of the vehicle, radar, camera and ultrasonic
sensors are installed in modern vehicles. Automatic parking assistants, automatic
cruise control or forward collision applications use this information to make driving
safer and more comfortable.

Information and Communication Technologies (ICT) are expected to boost the development of the
second generation of active safety systems [5]. The term Intelligent Transportation Systems (ITS)
embraces all strategies where new technologies are brought into the transportation domain in order
to increase safety, efficiency, mobility and comfort. In the special case of road transport, these
include technological advances for users, vehicles, infrastructure and transportation authorities.
Especially in road vehicles, great advances in sensor and actuator technologies and the rapid
development of processing capabilities in the last years, have promoted the introduction of so-
called Advanced Driver Assistance Systems (ADASs). These systems are developed to support,
complement and even substitute the driver in the complex task of controlling a vehicle. ADASs
warn the driver about potential risks, maintain safety distances to the vehicle driving in front,
keep the vehicle on its lane, monitor the blind spot of the driver, and avoid collisions with other
vehicles or pedestrians by e.g. automatically braking down the vehicle. These automated systems
are paving the way towards fully autonomous vehicles.

Analogous to the term ”fly-by-wire” used in the aeronautic industry, ”drive-by-wire” refers to the
use of electrical systems to replace traditionally mechanical actuators and linkages [6]. These
technologies have fostered the development of semi-autonomous or fully-autonomous driver as-
sistance systems, such as collision avoidance systems, Automatic Cruise Control (ACC) or parking
assistants. Sensors, on the other end, provide the required perception of the environment that the
driver assistance system needs (see Figure 1.1). While ultrasonic sensors cover the short-range
distance up to several meters, cameras, radar sensors and laser scanners cover the medium-range
distance up to 100 meters. Dedicated ACC long-range radars have even an extended range of up
to 200 meters1.

However, all of these sensors have some common limitations. The distance of up to 200 meters is
of special relevance because of the risk of collision [7]. This corresponds to a 5-second-reaction-

1Bosch LRR3
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V2V‐Communication

Ranging Sensor

Figure 1.2.: Cooperative approaches based on direct communication between vehicles are able to
extend the perception range of the ego vehicle beyond the LoS of current ranging
sensors.

time when driving at 150 km/h, which can be regarded as safe enough to warn the driver, start
breaking smoothly or hand over the control of the vehicle. Although most of the ranging sensors
are able to cover this area, their main drawback is the Line-of-Sight (LoS) requirement. Radar,
laser scanners and vision based systems are not able to detect obstacles or track vehicles that
are hidden by other vehicles or drive behind curves or crests. Some applications, as for instance
cooperative ACC or intersection assistants could highly profit from an extended perception range
beyond the LoS.

The advent of inter-vehicle communication, also known as Vehicle-to-Vehicle (V2V) communication
offers the potential of an increased perception range to driver assistance systems. In the last
decade, standardization organizations in the United States, Europe and Japan have worked towards
the adoption of a common standard for V2V communication. Already in 1998, the US Federal
Communications Commission allocated 75 MHz of spectrum in the 5.9 GHz band to be used for
ITS [8]. In 2008, the European Commission allocated 30 MHz in this same band for this purpose[9].
IEEE 802.11p, an amendment to the IEEE 802.11 communications standard for wireless local area
networks, was adopted for the lower layer communication, namely physical and medium access
layers [10]. The European counterpart to IEEE 802.11p is ITS-G5 which is standardized by the
European Telecommunications Standards Institute (ETSI) [11].

This communication technology enables vehicles to exchange information directly between each
other or with road side infrastructure over a distance up to 1000 m. Hence, V2V communication
is able to potentially provide an extension of the perception range of the vehicle beyond what is
possible with the aforementioned ranging sensors (see Figure 1.2). V2V communication has the
possibility to enhance and complement modern driver assistance systems with external sources
of information. For instance, ACC can be adapted to incorporate dynamic information of several
vehicles ahead of the in front driving vehicle and, in this way, better predict sudden changes in the
traffic situation. Also, fully new assistance systems that make use of Vehicle-to-Vehicle or Vehicle-
to-Infrastructure communication can be designed. Green Light Optimal Speed Advisory (GLOSA)
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is an application, by which traffic lights broadcast the light phases so that vehicles can adapt their
speed in order to optimize the traffic flow.

ETSI is currently working on the definition of a set of messages for the European V2V technology
[12]. For instance, each vehicle will transmit periodically Cooperative Awareness Messages (CAMs)
containing basic information such as position, speed and heading [13]. Since these parameters are
not precisely measured, the uncertainty related to each of them is also included in the payload.
CAM messages are intended to inform surrounding vehicles about the presence of other road
participants. These beacon messages are sent with an update rate of 1 Hz to 10 Hz, depending
on the current change in position, speed and heading [13].

1.2. Positioning in Vehicular Environments

Self-positioning plays an important role in vehicular environments. The vision is that every vehicle
is able to position itself on the road with lane level accuracy. Especially the deployment of
Global Navigation Satellite Systems (GNSS), as the American Global Positioning System (GPS) or
the European satellite navigation system Galileo, are foreseen to strongly contribute to this aim.
In recent years, GNSS positioning devices are entering the mass market. GNSS receivers can be
found in any smartphone and are integrated into middle and premium class vehicles. The primary
applications of GNSS in road transport are navigation, route guidance and fleet management [14].
Drivers get their location on a digital map and are guided to their destination. Fleet management
systems provide an overview of the position and status of large fleets of vehicles for companies,
such as car rental services, car pool companies, or freight companies. Car insurance companies
use GNSS to monitor the driving behavior in exchange of a fee reduction. New uses of GNSS in
road transportation include automatic tolling and emergency call [14].

Many of these applications require to know where the vehicle is located. Electronic street maps
are used in the navigation devices and in fleet management software. For displaying purposes,
maps are very convenient, as they allow to interpret a position in relation to the environment.
The process by which a two- or three-dimensional position estimate is mapped onto a street is
called map-matching [15].

However, the accuracy, availability and robustness of GNSS are still far from meeting the stringent
requirements of safety-critical systems in the road environment. Great efforts are performed to
introduce GNSS for civil safety-critical systems in aviation. Ground-Based Augmentation System
(GBAS) is a strong competitor to the currently used Instrumental Landing System (ILS), that
provides guidance to aircraft while approaching and landing on equipped airports [16]. By using
a set of ground base stations GBAS can improve the performance of GNSS in terms of integrity,
continuity, accuracy and availability.
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Also in the vehicular environment, efforts have been made towards augmenting GNSS, mainly with
the use of further information sources [17]. A common approach is the fusion of GNSS with inertial,
odometer or steering wheel sensors inside the vehicle [18–20]. The fusion of image [21], video [22]
or laser scanner [23] with inertial sensors and GNSS are current research topics. Further approaches
to enhance the absolute positioning of a vehicle are using so-called ”signals of opportunity” such
as LTE or WiFi [24].

1.3. Relative Positioning for Safety-Critical Applications

One example of a safety-critical driver assistance system requiring a precise absolute position is a
lane departure warning system. This system monitors the position of the vehicle with regard to
the occupied lane and warns the driver when the vehicle is drifting out of the lane. However, the
vast majority of safety applications require precise knowledge about the relative position of other
vehicles, pedestrians or obstacles. In the following, three different hazardous situations, which can
be overcome by reliable and accurate relative positioning technologies, are described:

Forward Collision Avoidance Systems

John is driving with his car on a rural road. He is driving at an adequate speed, given the good
weather and pavement conditions. The road is curvy and trees or slope changes often obstruct
John’s view. Every now and then, a side road merges at the right side. Johns is driving towards
a bend. Suddenly, his car stops accelerating and starts softly braking, while at the same time a
light flashes in John’s car’s dashboard. A slowly driving tractor suddenly appears in front of him,
but his car is now slow enough for John to take safe control over the situation.

Forward collision avoidance systems are systems that either warn the driver or autonomously in-
tervene in the control of the car in the case of imminent collisions [25]. By means of a relative
positioning technology these systems are able to scan the environment in front of the car, detect
other vehicles, bicycles or pedestrians, evaluate critical situations and perform required counter-
measures to avoid a collision or, at least, reduce its damage.

Lane Change Assistant

John decides to take the highway which brings him faster to his destination. A short turn, a
roundabout, and he is on the access lane of the highway. A few vehicles drive on the lane to his
left. John checks the side-view and rear-view mirrors, looking for the cars on the overtaking lane.
Feeling sure that he is able to merge onto the highway, John slowly turns the steering wheel to
the left. He feels heavy haptic feedback from the steering wheel to the right. At the same time,
a quiet ’Beep’ sounds. John has no time to realize this, but the next thing he sees is a car appear
just on the next lane to his left. John is surprised. His Lane Change Assistant just saved him and
the driver in the other car of entering into an unsafe situation.
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Lane change or merging assistants provide warnings to the drivers if it is unsafe to change the
lane or merge into a line of traffic. These assistant systems monitor the relative position of the
surrounding vehicle within the road environment and the intention of the driver. Especially vehicles
driving in the blind spot of the driver have to be detected on time.

Platooning

John has managed to merge safely the highway. He feels a bit fuddled about the risky experiences
he has encountered. John has still more than one hour to drive and he is feeling a bit tired.
He decides to use the ACC functionality of his car, which is capable of following automatically a
foregoing vehicle. He can lift his right foot from the throttle pedal. The car is smoothly following
the front car at a distance that makes him feel comfortable and, at the same time, adheres to
the given traffic rules. Suddenly, the braking lights of the in front driving car start flashing and
immediately John’s car performs a strong brake, even before John can realize it. His car comes
to a standstill at a safe distance to the car in front.

ACC is capable of adjusting the speed of the ego vehicle to the flow of traffic, while maintaining
the safety distance to the preceding vehicle. It is envisioned that these systems eventually take
over the task of steering and are able to safely follow a preceding car autonomously. A train of
vehicles following each other is called a platoon. Platooning systems will not only rely on on-board
ranging sensors, but will be supported by V2V communications. Intra-platoon communication is
not only necessary for platoon coordination, e.g. entering and leaving the platoon, but especially
to maintain its stability, by correctly adapting to changing dynamics of the vehicles [26].

Although the knowledge about the absolute position is a prerequisite for many ITS applications,
certain safety-critical applications require precise knowledge about the relative position of sur-
rounding vehicles in order to avoid collisions. While relative position accuracy is one of the most
important requirements, relative speed is as important, since it enables to have a precise predic-
tion of the future relative position. Further important requirements are the system’s reliability and
availability, the robustness to changing environmental conditions, the perception range and field
of view, and the capability to resolve different targets.

The above mentioned three scenarios are examples of situations where common ranging sensor
reveal their limitations and could be intelligently supported by cooperative solutions relying on
V2V communication.

1.4. Objective, Research Questions and Methodology

This thesis aims at demonstrating the suitability of using a cooperative approach based on V2V
communication for relative positioning between vehicles. To this end, a probabilistic method based
on a Bayesian approach is proposed, in which the two dimensional relative position and relative
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velocity towards another vehicle is tracked over time in the ego vehicle reference frame along with
a measure of its uncertainty. A cooperative approach is based on the exchange of GNSS information
between neighboring vehicles. In this thesis, the exchange of absolute positions and the exchange
of GNSS raw measurements are considered and their performance is compared to each other. Both
GNSS information and on-board sensor output are fused in order to give a continuous, stable and
robust estimate of the relative position. The cooperative approach will be evaluated according to
its accuracy, reliability and availability by computer simulations and in real-world scenarios.

The research questions this thesis addresses are the following:

1. Which are the advantages in exchanging GNSS raw measurements between vehicles and
which is its gain over exchanging absolute positions for vehicle relative positioning?

2. Which increase in robustness is achieved by fusing GNSS raw measurements with sensors
available in today’s vehicles?

3. Which performance in the estimation of the relative position can be expected in typical
environments regarding accuracy, reliability and availability?

4. Is it possible to achieve with a cooperative approach a better performance than on-board
ranging sensors?

The methodology followed to answer these research questions starts by defining the problem of
relative position between vehicles. The problem is contained by setting up assumptions, which
help to efficiently approach the research questions. The driver assistance system making use of the
relative position estimate sets the requirements. Since these requirements are not known, in the
scope of this thesis, the requirements on the system are defined through the performance of modern
ranging sensors. Along with the system requirements, performance metrics are defined. A novel
relative positioning system is proposed based on theory regarding GNSS and inertial navigation,
Bayesian estimation and sensor fusion. In the evaluation phase, the subsystems are validated in
controlled environments, such as simulators and hardware-in-the-loop emulators. In a second step,
the system is tested in real-world environments. A test setup is described and a suited reference
system is chosen. After applying the defined performance metrics, the results are presented and
the conclusions are drawn.

1.5. Outline of the Thesis

A schematic representation of the structure of this thesis is presented in Figure 1.3. The thesis
is divided into eight chapters as follows: After this introduction, in Chapter 2, a review of the
requirements posed on relative positioning systems and current solutions for relative positioning
in vehicular environments are presented. In Chapter 3, the fundamentals of satellite navigation,
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Figure 1.3.: The picture shows a schematic representation of the outline of this thesis.

inertial navigation and Bayesian estimation theory are reviewed as far as they are relevant for
the scope of this thesis. The theoretical model for the cooperative relative position estimation
given by a dynamic Bayesian network will be presented in Chapter 4. The concept of baseline
and other relevant definitions are also presented in this chapter. In Chapter 5, the models for
GNSS, inertial sensors and vehicle movement are explained. The multisensor fusion of the three
information sources is explained here. The proposed approaches for cooperative relative positioning
are evaluated, once, in a vehicle simulator and, second, under controlled conditions using a GNSS
simulator. These results will be presented in Chapter 6, whereas the real-world experiments with
two vehicles driving in different environments are presented in Chapter 7. Chapter 8 concludes
the thesis by summarizing the main contributions of the presented work, answering the research
questions and giving an outlook to possible future lines of investigation.



Chapter 2.

State-of-the-Art Relative Vehicle Positioning
Solutions

Automotive applications, such as Forward Collision Warning (FCW) or Automatic Cruise Control
(ACC), need continuous information about the relative position and relative velocity of other
vehicles in the vicinity of the ego vehicle. The exact requirements on the relative positioning system
are determined by the individual safety-critical application. As a first step, these requirements will
be named and quantified, by considering modern safety applications, such as FCW and ACC, and
by looking at modern on-board ranging sensors. Later in this chapter, a review on commercially
available and state-of-the-art relative positioning solutions is given. Here, a distinction is made
between non-cooperative solutions, where the ego vehicle perceives passive target vehicles by
means of a ranging sensor, and cooperative systems, where the target vehicle actively supports
the ego vehicle to find its relative position.

2.1. Requirements on Relative Positioning

To define the requirements on relative positioning, on the one hand, driver assistance applications,
as for instance FCW and ACC, are considered. However, homogeneous specifications and standards
on the performance and the figures of merit of driver assistance systems are not available and every
developer applies its own design [27]. Therefore, also the performance of today’s on-board ranging
sensors is taken into account. FCW and ACC are already today offered in high-end and middle-
class vehicles1,2,3 and they are based on the availability of radar sensors, laser scanners or camera
systems. Hence, the stated performance of these sensors can shed light on the requirements of
relative positioning systems.

1Distronic Plus in Mercedes S-Class and E-Class
2Volvo City Safety in Volvo S60
3Front Assist in Volkswagen Golf and Jetta

9



Chapter 2. State-of-the-Art Relative Vehicle Positioning Solutions 10

Accuracy The most considered aspect of positioning systems is theis accuracy. In general, the
accuracy of a measurement system could be defined as ”how close” a measurement is to its true
value. This closeness is quantified by the distance between measured and true value. Often, in
spoken language, the word precision is used interchangeably when speaking about accuracy. In
science, precision is the degree of repeatability or how alike consecutive measurements under the
same conditions are. A measurement system with a systematic error or bias might be precise, but
not accurate, since the mean of its measurements differs from the true value.

In positioning systems, the accuracy is the length of the three-dimensional vector between the
measured position and the true position in a Cartesian coordinate frame. In applications that do
not require vertical position, as it could be the case of vehicular applications where cars drive on
roads, the accuracy is measured in a two-dimensional plane. Position accuracy is usually quantified
by the Root Mean Square (RMS) error [28]. Other conventions are the 95th percentile, which is
the confidence interval containing 95 % of the measurements [28]. A measure of this uncertainty
in the estimate is important for the application making use of the relative position information.

The relative position of a target vehicle is given, as it will be explained in Chapter 5, in the
local coordinate frame attached to the ego vehicle. When evaluating the accuracy of an on-board
ranging sensor mount on the front of the vehicle, it is common to differentiate between along-track
and across-track accuracy [29]. In polar coordinates, this translates to a distinction between range
accuracy and angular accuracy. As will be presented in the subsequent sections, some systems
have excellent along-track resolutions, while their across-track accuracy is poor.

Certain systems have an accuracy that degrades the higher the distance between ego and target
vehicle, while other systems have a range-invariant accuracy. The requirement from the driver
assistance system on the relative position accuracy is distance dependent. An ACC system aims at
maintaining a constant time headway to a preceding vehicle, i.e. maintaining a speed-dependent
distance, by adapting the velocity of the ego vehicle [30]. A time headway of 1.8 s is experienced by
the occupants as safe and comfortable [31]. To maintain this value with 0.1 s accuracy, a relative
position accuracy of 5.5 % on the distance is required. This translates to a position accuracy of
1.65 m while driving at 60 km

h . According to [32], a 10 % position accuracy at a distance of 90 m
is sufficient for an ACC application. In order to give precise warnings in FCW systems, a position
accuracy of at least 6.6 % is required according to the definitions stated in [27]. In comparison to
these values, commercially available radar sensors state ranging accuracies of 10 cm to 25 cm or
1 % to 3 % in distances up to 200 m to 250 m4,5.

Many applications require to distinguish between different vehicles in the environment. ACC
needs to follow the vehicle driving on the same lane ahead of the ego vehicle, while a Lane Change
Assistant (LCA) needs to resolve the lane in which a vehicle behind is approaching. The width of

4Bosch LRR3
5Continental ARS 30x
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a highway lane in Germany is 3.75 m [33], while the width of a rural road lane is 3.00 m [34]. This
requirement translates to a relative positioning accuracy requirement of 1.875 m on highways and
1.5 m on rural roads.

For some applications, knowing accurately the range rate or relative velocity is of higher importance
than knowing its precise range [32]. ACC systems, for example, rely on adapting the speed of the
own vehicle to that of the in-front driving car [35]. Radar sensors provide good speed accuracy
in the order of 0.1 m

s to 0.3 m
s

4. In safety applications, as for instance, FCW or LCA, the relative
speed is used to better predict the future relative position and the Time to Collision (TTC) [27].

It is required that a relative positioning system has a high accuracy, meaning that its relative
position measurements are bias-free and precise in both along- and across-track direction, and will
additionally output a measure of the current uncertainty of its measurement.

Availability It is of highest importance that a relative positioning system for safety-critical ap-
plications is always available. Multiple causes can be the reason for a diminished availability. A
Global Navigation Satellite Systems (GNSS)-based positioning system might not be available in
situations with complete obstruction in the line of sight to the satellites as, for instance, in tun-
nels. Not only GNSS, but any type of radio based positioning system, can be made unavailable by
jamming the signal. Vision-based ranging systems might not be available in adverse whether con-
ditions, as, for instance, fog or heavy rain or at night. In order to provide a continuous operation
of a safety system, the requirement on availability should address a value of 100 %.

Reliability The system’s reliability is a highly critical factor in safety-of-life applications. The
accuracy of a system might be very high, but if it is not reliable it cannot be accounted on. When
looking at integrity, accuracy is a secondary matter. The current accuracy of the system might
be poor, but it might be quantified with a great confidence. The 95th percentile is sufficient to
characterize the system’s performance from an accuracy point of view, whereas probabilities of the
system being outside the stated confidence interval are in the order of one in one million to one
in one billion in a given time frame [36]. In system engineering, reliability is also called integrity.
Integrity gives ”a measure of the trust which can be placed in the correctness of the information
supplied by the total system” [37]. Integrity also includes the ability to provide alarms when the
error tolerance of a certain parameter is exceeded. Integrity analysis yields a protection level and
an integrity risk. The protection level is the confidence interval for a certain parameter, while the
integrity risk is the probability that the parameter is not contained within the protection level [36].

While in civil aviation stringent integrity requirements are imposed on all involved operational
components, in the field of road transport integrity is starting to be specifically considered. With
the introduction of satellite-based augmentation systems, such as the European system EGNOS,
GPS has been extended to incorporate integrity services [38]. So-called Ranging and Integrity



Chapter 2. State-of-the-Art Relative Vehicle Positioning Solutions 12

Monitoring Stations are responsible for monitoring the space signals and to flag corrupted satellites
that should not be used [28]. At the user side, Receiver Autonomous Integrity Monitoring (RAIM)
techniques can be applied [28]. By taking advantage of the redundancy in the navigation signals
towards several satellites, faulty satellites can be detected.

The Functional Safety for Road Vehicles standard (ISO 26262) defines so-called Automotive Safety
Integrity Levels to quantify the risk associated to each software and hardware component inside a
vehicle related to safety-critical applications [39]. Consequently, also Advanced Driver Assistance
System (ADAS) fall under the ISO26262 requirements. For an Intelligent Transportation Systems
(ITS) application to operate safely and manage correctly hardware failures, operating errors and
changing environments, the relative positioning system is required to detect other participants
with high certainty and deliver a measure of the current confidence [40].

Detecting Range and Field of View When looking at relative positioning systems, a figure of
merit is the detecting range and the Field of View (FoV) of the system. Some ranging systems,
as for instance laser scanners or visual systems, have Line-of-Sight (LoS) characteristics, meaning
that they can only measure the position of neighbors to whom they have direct visibility. They
can be obstructed by other vehicles, buildings or the surrounding topography. These systems
also have a technical range limitation related to the limited transmit power or sensor sensitivity.
Additionally, they also have a limited FoV, defined by the opening angles in azimuth and elevation
in which they can scan the environment.

To overcome these limitations for rear-looking driver assistance systems, as for instance, lane-
change assistants, multiple instances of a sensor need to be placed around the vehicle to get a 360
degree FoV of the environment. With Vehicle-to-Vehicle (V2V) communication and omnidirectional
antennas an all-around perception of the environment is automatically achieved. In this case, a
detecting range of several hundreds of meters and up to two kilometers in ideal conditions is
achievable [41].

Dimension A position in space is given by a its three Cartesian coordinates. The relative
position of a target vehicle in the ego vehicle reference frame is, in general, a three dimensional
coordinate. However, many relative positioning systems are only able to measure the relative
position in one or two dimensions. A laser scanner uses a rotating mirror around one axis to scan
the environment in azimuth angle. Consequently, it can output a two-dimensional relative position
while disregarding the vertical component. An Ultra-Wideband (UWB) system, on the other hand,
is able to measure the Round-Trip Delay (RTD) of a signal sent by the ego vehicle and returned
by a target vehicle. This system is only able to estimate the range between the vehicles, but not
the exact two- or three-dimensional position. In vehicular environments where, usually, vehicles
drive on the same plane, a two-dimensional relative position estimate is sufficient for many driver
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assistance systems. Situations where vehicles drive at different heights, as for instance, at over-
and underpasses, require a resolution of the third dimension.

Target Resolution The resolution, i.e. the ability to resolve different targets and objects, is
important for driver assistance systems, such as LCA and FCW [27]. This makes it possible to
quantify the number of targets and correctly distinguish them. On-board ranging sensors will
likely merge vehicles that drive closely together at similar speed into the same target and will give
a new identification to every detected vehicle disregarding if it was detected before. A cooperative
approach relying on the exchange of information over V2V communication will have the possibility
of identifying targets unambiguously, since an identification of each vehicle is provided in the
exchanged messages [13].

System Delay For safety relevant driver assistance applications, a fast response is required.
It is important for a warning system to give timely alarms, and for a controlling system in ACC
to be able to respond smoothly to changes in the speed of the foregoing vehicle. For this, the
information from the relative position device has to be outputted at a high rate. In platooning,
a fast and reliable control of the speed and steering of the vehicle is pursued. For instance, ACC-
graded long range radars have output rates between 10 Hz and 20 Hz. Laser scanners have output
rates above 10 Hz. For collision detection and pre-crash sensors higher update rates are needed,
with measurement cycles up to 50 Hz [29].

The output rate of measurements is one important factor. However, the delay in the measurement,
i.e. the time elapsed since a physical event occurs until the system offers it at its output, is as
significant, since it causes a delayed detection for FCW assistants or an unstable controlling in
platooning applications. One example is the detection of changes of speed. As radar sensors and
laser scanners are not sensible to changes in velocity, they can only estimate acceleration by looking
at consecutive measurements and, thus, suffer form an increased delay. A cooperative solution
that directly transmits sensor information from the vehicles will overcome this limitation. However,
a propagation and communication system delay will be introduced by the V2V communication [42].

Cost The price of the relative positioning system has to be taken into account in commercial
passenger and freight vehicles. The cost of a certain relative positioning solution is not only the
direct price of the device that needs to be equipped in the car, but also secondary costs need to be
considered. Secondary costs can include installation and maintenance costs, power consumption,
noise and heat creation and processing power.

Laser scanners, but specially vision-based solutions, are in general computational intensive as
large amounts of data need to be processed. Solutions based on radar sensors, on the other hand,
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include radio frequency (RF) pre-processing, signal processing and object detection and tracking
all on the same device, usually a lightweight and power efficient component.

Specifically with regard to electric vehicles, the power consumption of a system is of increasing
relevance. All externally mounted devices can potentially decrease the aerodynamic properties of
vehicles in general, which is especially relevant for electric vehicles, have to be taken into account.
In this way, rooftop antennas for GNSS, UWB and V2V will cause certain air drag when compared
to a radar sensor or a laser scanner that can be effectively hidden inside the vehicle’s upper grille
or behind the front bumper . The increasing number of sensors, actuators and the related cabling
inside the vehicle accounts for more weight, which has a direct impact on the motor’s power and
fuel consumption or does need to be compensated by a weight loss in other components.

In cooperative solutions based on V2V communication, the necessary communication bandwidth
has to be taken into account as one further cost aspect. Although the spectrum for ITS-related
communication is reserved in Europe, America and Japan, the communication spectrum is per
se a valuable resource [43] that could be used for alternative communication purposes, as for
example mobile communications, including 4G-LTE and future mobile communication generations.
Automotive radar sensors usually work above common communication frequencies in the 24 GHz
and 77 GHz band [44]. However, mutual interference of radar sensors is also becoming a growing
issue in radar technology [45, 46].

2.2. Non-Cooperative Approaches for Relative Positioning

In this and the following section current commercially available and state-of-the-art solutions
for relative positioning are reviewed. This section focuses on egocentric or non-cooperative ap-
proaches, while the following section analyzes cooperative solutions. Egocentric techniques are
passive or non-cooperative in a way that a target vehicle is not actively contributing to the estima-
tion of its relative position. It could be argued that having a surface that reflects radio signals from
a radar sensor could make a target vehicle being ”cooperative”. For this reason, in the context of
this thesis, cooperative will be considered a vehicle that has installed a device that is for the sole
purpose of making other vehicles aware of himself. According to this definition, the chassis of the
vehicle that reflects radar signals makes radar be a non-cooperative technique.

2.2.1. Radio Ranging

One simple technique to estimate the range towards another vehicle consists in using electromag-
netic waves and measuring the Received Signal Strength (RSS) of a signal transmitted by another
vehicle. The signal level is, under ideal conditions such as free-space propagation, proportional to
the distance between transmitter and receiver antenna. By assuming a certain model for the power
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decay over distance, given by the path loss exponent [47], a rough estimate of the range between
two cars can be performed. Since V2V communication technology is foreseen to be integrated in
future vehicles, several research groups have analyzed the possibility of performing RSS ranging
with this technology. Alam et al. use Doppler measurements in [48] to estimate the path loss
exponent. Parker et al. [49] propose a cooperative technique that uses RSS in combination with
speed measurements from the vehicles in the cluster. Although they demonstrate theoretically
that their approach is accurate, reliable and allows real-time operation, they do not reveal the
measurement uncertainty used for the RSS measurements. This is the key issue in RSS-based ap-
proaches, since real-world experiments show that only a rough estimate of the transmitter position
can be acquired in this way, since shadowing and multipath cause large variations in the received
signal strength [50]. In [51], errors above 20 m are reported for short distances between vehicles
between 20 m to 45 m.

Radar is a technology that uses high-frequency electromagnetic waves to measure the distance and
relative speed of target objects. Radar sensors can already be found today in middle class vehicles
for forward collision warning applications, lane change assistants or automatic cruise control. Two
main radar technologies exist in the ITS domain. Impulse radar sensors measure the time needed
for a short pulse to travel from the radar sensor to the object, reflect and travel back to the sensor.
Frequency Modulated Continuous Wave (FMCW) radars transmit a frequency modulated signal
with constant power envelope [29]. The frequency difference between the outgoing and incoming
wave is directly proportional to the relative distance to the target object. Both radar types are
capable of additionally measuring the relative speed by exploiting the Doppler effect and looking
at the frequency difference between the outgoing and incoming wave.

Radar sensors work typically in two frequencies. The 77 GHz band is used for, so-called long-
range radars6,7,8. The 24 GHz UWB band is temporarily allowed in Europe for automotive short-
range radar sensors9. Also in this band, narrow-band radars can be operated using the 100 MHz
Industrial-Scientific-Medical (ISM) band10. In this band, radars coexist with radio communication
devices and radio astronomy stations that might be impaired if too many automotive radars are
operated. Therefore, the European Commission made available the 79 GHz band for long-term
operation of radar sensors, seeking worldwide harmonization. This band has the advantage that a
common technology for short-range and long-range radars can be developed, along with decreased
dimension and weight, and increased Doppler sensitivity [52]. The usage of the 24 GHz UWB band
has been prolonged until January 2018 [53].

Typically, a distinction is made between short-range radar up to 20 or 30 m, medium range radar

6Bosch LRR3
7Delphi ESR
8Continental ARS 30x
9SMS UMRR

10TRW AC100
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up to 100 m10 and long-range sensors that measure beyond this distance up to 250 m6 7 [54].
Short-range radars are used for collision avoidance and object detection and need higher range
resolution and, consequently, more bandwidth (4 GHz at 77 GHz to 81 GHz) [55]. They usually
have also wider field of view up to ±30°. Long-range radars, on the other hand, are mainly used
for ACC and can work with a lower range resolution and are designed with smaller bandwidths
(500 MHz between 76 GHz and 77 GHz). Their field of view is smaller (±8°10 or ±15°6).

In general, the range and speed resolution of a radar is determined by its bandwidth. Products
available on the market state range accuracies of 10 cm6 to 30 cm9 or 1 % to 2.5 % of the measured
distance. The speed accuracies range from 0.12 m

s
6 to 0.3 m

s
9.

Generally, the across-track accuracy of radars is low. The approach used to estimate the Angle of
Arrival (AoA) of the reflected signal is to implement an array of patch antennas and compare the
amplitude and phase of signals in partially overlapping beams [29]. Some radar sensors provide
moderate angular resolution by using mechanical sweeping radar scanners [44]. Angular accuracies
of between 0.5°10 and 5° are typical, yielding lateral uncertainties from 87 cm to 400 cm at 50 m
distance, respectively.

Targets can be easily resolved when they are located in different range and velocity cells [56].
For instance, commercial radar sensors claim to have a correct resolution of objects when their
distance is above 2.5 m10 or their speed difference above 1.4 km

h
10. Target resolution for objects at

a similar distance and with similar speed, relies on lateral resolution of objects. The lateral accuracy
is dependent on the antenna beam width, which, at the same time, depends on the wavelength.
Larger wavelengths yield broader beams for the same antenna dimension and, consequently, a
coarser lateral resolution [57]. Therefore, moving from 24 GHz to 79 GHz yields a better lateral
resolution and the availability of 4 GHz of bandwidth enhances the overall longitudinal resolution
in range and velocity.

Other characteristics of radar sensors are their potential for invisible integration behind electromag-
netically transparent materials, as for instance, behind the front bumper. Besides few exceptions,
radars usually have no moving parts and are, therefore, more robust and less prone to mechanical
failures than laser scanners. In contrast to vision- and laser based systems, radars are robust
against environmental conditions such as changes in light, fog or rain. In recent years, the price
of radar sensors has dropped considerably and are available in middle and high class vehicles.

2.2.2. Laser Scanners

Light Detection and Ranging (LIDAR) is a laser-based ranging system similar to radar, that, based
on the Time of flight (ToF) of reflected light pulses, is able to measure the distance towards an
object. These systems usually work in near infra-red region of the electromagnetic spectrum at
905 nm. Their transmit power is limited to comply with eye-safety regulations, which imposes
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a practical limit on the measuring range of the sensor [58]. Usually, a rotating device makes it
possible to use one to four laser light sources to scan points in space. A device operating in
the described manner is called a laser scanner. 2D laser scanners measure points in one plane,
while 3D laser scanners are able to also vary the elevation angle. Available products use different
scanning planes in order to achieve a small range of elevation angles to account for the inclination
of the vehicle.

The use of laser scanners is mainly in the field of obstacle detection, collision mitigation and
stop-and-go assistants. Nevertheless, the use of laser scanners for ACC is already finding its place
in ITS. Future autonomous cars will likely rely on laser scanner information to get information
from surrounding obstacles [59]. Although, laser scanners are not able to measure the relative
speed between ego and target vehicle directly, they provide a relative speed measurement by
differentiating the range of successive scans [59].

As the output power of automotive laser scanners is limited, their maximum perception range
lies between 80 m11 and 200 m12 and strongly depends on the light reflectivity index of the object
[60]. There are short-range laser scanners for object detection with ranges of around 10 m13. With
110°12 or 120°11, the FoV of laser scanners is generally broader than that of radar sensors. Even
360° laser scanners that scan the whole surrounding at high revolutions with several laser beams
exist14. These have been used in autonomous vehicles as ”Junior” from Stanford University [61]
or the Google self-driving car [62].

Laser scanners have range accuracies between 0.02 m14 and 0.1 m12 13 or 0.5 m11. The lateral
accuracy is given by their angular resolution of around 0.125°12 and 0.09°14. The speed accuracy
of 0.5 m

s
13 is slightly worse, but comparable, to that of radar sensors.

The operational availability of laser scanners is limited by environmental conditions [60]. Fog,
rain, dust, dirt and water heavily detriment the performance of the sensor. Also, incident sunlight
in the morning and afternoon hours can cause disturbances on the laser detecting device and
thereby affecting the accuracy of the measurements.

The price is still too high for laser scanners being incorporated into commercial vehicles. Never-
theless, they are extensively used by many research groups to test novel advanced driver assistant
systems or self-driving vehicles [63, 64].

2.2.3. Time-of-flight Cameras

ToF or 3D cameras are used in many different fields including human-machine interaction, industrial

11 Hella Alaska Automotive laser scanner
12 Ibeo LUX
13 Continental SRL1
14 Velodyne HDL-64E S2
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automation and robotics [65]. In the automotive domain, they can be used in driver assistance
and safety applications, such as pedestrian recognition or pre-crash detection [66]. Unlike laser
scanners, the ToF camera captures the entire scene with one single light pulse. Each camera pixel
measures the time delay of modulated infrared light by comparing the phase of the outgoing and
the incoming signal [67, 68]. The distance information is captured simultaneously for the entire
scene [69].

When compared to video cameras, ToF camera’s Complementary metal–oxide–semiconductor
(CMOS) sensors have currently much lower resolution (64x8 pixel [69], 200x200 pixel15,16 or
176x144 pixel17). Typical ranges where ToF cameras operate are between 7 m15 and 10 m17.
They are therefore suited for pedestrian recognition and object tracking in automotive environ-
ments [70]. A CMOS sensor for a ToF camera that targets a distance of about 20 m is presented
in [69]. The field of view is around 40°15 17.

A typical value for the ranging accuracy is around 1 cm17 at a distance up to 10 m. The advantage
of ToF cameras is that they do not use mechanical components as laser scanners. Compared to
video-based techniques, ToF cameras use a single lens and reach more accurate depth information
[66]. When compared to laser scanners, ToF cameras have high frame update rates, ranging from
20 fps [71], 50 fps17, 60 fps15 and 200 fps [69].

ToF camera’s sensors, like laser scanner sensors, have problems with incident sunlight, which is a
great drawback for situation awareness in automotive applications. Additionally, the price of ToF
cameras, although decreasing in recent years, is still too high for market introduction.

2.2.4. Vision-based Solutions

Machine vision techniques are able to detect and localize objects by processing the images from
an imaging device like a camera. Although vision can provide highly valuable information about
the environment, image processing techniques are often computationally expensive and, in the
ITS domain, still under development. For automotive vision sensors, vision processing of road
scenes can provide accurate information that other sensors fail to obtain. Already today, cameras
are being introduced in high-class vehicles for detecting lane markings and offer lane keeping
assistants or lane departure warning systems18. Also, automatic traffic sign recognition systems
are already able to inform the driver about the current speed limit and other type of hazards
along the road19. Further on, cameras are recently incorporated for object detection20. Especially

15PMD Cam Board
16PMD CamCube
17SwissRanger SR4000
18Lane Departure Warning and Lane Keeping Aid in Ford Focus
19Traffic Sign Assist by Continental
20Volvo City Safety in Volvo S60
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pedestrians detection, that would otherwise fail with radar sensors or laser scanners, can be
accomplished with vision-based solutions [72].

Generally, for a camera system it is relatively easy to measure distances in the lateral, cross-track,
direction. Depending on the resolution of the camera, a certain lateral accuracy depending on
the distance can be obtained. Vision processing is less effective for calculating the longitudinal,
along-track, distance of an object. Monocular systems, which use one sole camera, estimate
the longitudinal distance by exploiting the geometry of the problem and incorporating knowledge
about the size of the objects [32]. On the contrary, stereovision systems use two laterally-displaced
cameras that capture the scene in front of the vehicle. By comparing the images from each camera
a so-called disparity map, that represents the depth of the scene, can be created [73].

Camera systems typically have a range from 4 m up to 80 m and a field of view of ±20° in
azimuth [74]. Some commercially available systems state detection ranges and FoV of 100 m and
38° respectively21. However, stereovision and depth capability rapidly drops with distance and is
limited to a range of up to 40 m [75].

While radar sensors and laser scanners have rather constant ranging errors over distance, the range
accuracy of camera systems typically decreases quadratically with distance [76]. At 3 m, a range
error of 5 cm is stated in [77], while the error at 40 m is around 3 m. An accuracy of around 1 %
at ranges from 10 m to 95 m with a stereovision camera system was obtained in [78].

In [32] it was concluded that a monocular vision sensor offers sufficient accuracy in range and
range rate to be used in an ACC application. By using laws of perspective, they have range errors
of 5 % at 44 m and 10 % at 90 m. This has been used, e.g., in a monocular vision system for a
robotic follower vehicle in [79].

Cameras work usually at frame rates between 15 and 25 fps and have, thus, measuring rates
comparable to that of radar sensors and laser scanners. However, relative velocity cannot be
directly measured, but has to be differenced from successive images. Camera sensors are, like
human visual perception, sensitive to adverse lightning conditions as for instance, fog, rain, low
sun, and other vehicle’s lights at night.

A common approach to overcome the limitations of certain type of sensor is to fuse its information
with other complementary sensors. The limited measuring rate of camera systems and the absence
of range rate measurements can be enhanced with the use of a radar sensor, which, on the other
hand, will profit from the good lateral resolution of camera systems [80, 81]. The combination of
camera and laser scanner is also found in the literature [82]. Non-cooperative approaches involving
radar, laser scanner and camera have been explored as well in [83].

21Mobileye EyeQ2
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(a) (b) (c) (d)

Figure 2.1.: The figure reveals critical situations where ranging sensors have a poor performance.

2.2.5. Ultrasonic Ranging

Although this technique is often found in today’s vehicles, its purpose is to offer short range
obstacle detection, mainly for the use in parking assistants22. Since the scope of this work lies
in safety-critical applications, which additionally are relevant at higher speeds and, consequently,
larger distances, this technology will not be further regarded.

2.3. Cooperative Approaches for Relative Positioning

A series of non-cooperative approaches have been presented in the previous section, with radar
sensors, laser scanners and vision-based systems being the most representative technologies. A
common problem of these three systems is their LoS characteristic. As shown in Figure 2.1, there
are many situations in which these sensors are not able to offer a relative position and velocity
estimate. The limited range (Figure 2.1a), the limited field of view (Figure 2.1b and 2.1c) and
sight blockage by other vehicles (Figure 2.1d) or bends are common situations. The underlying
problem is the high frequencies in the radio spectrum where these three technologies work and
their inherent propagation characteristics. Millimeter waves, used in radar frequency bands, behave
nearly similar to optical frequencies of laser scanners and vision-based solutions. They are mainly
line-of-sight and are blocked by cars or buildings. For this reason, all the approaches regarded in
this section are able to extend the awareness range of the ego vehicle by using lower frequencies.
This section presents cooperative techniques for relative positioning, where target vehicles are no
longer passive, but perform a specific action to enable the ego vehicle to estimate their relative
position.

22Parking Assitant from Bosch
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2.3.1. Transponder-based Ranging

One possibility is reusing the idea of radar sensors at lower frequencies. However, due to the
larger wavelength, vehicles in relation are rather small and do not offer a sufficiently big surface
to reflect radio waves. Therefore, an antenna is installed on a target vehicle and the signals are
amplified and ”reflected” back to the sender in the ego vehicle. The relative distance of the target
vehicle can be estimated by measuring the Round-trip Time (RTT) and multiplying by the speed
of light. This technique is typically known as Round-Trip Delay (RTD).

Radio ranging based on Ultra-Wideband (UWB) technology has been investigated in [84]. An
UWB signal at 6.35 GHz is used for estimating the range towards other vehicles with decimeter-
level precision up to 300 m. This two-way ranging technique is assessed in [85]. In [86], it is
concluded that UWB offers 70 cm accurate relative position estimation in kinematic situations.

In [87], 2.4 GHz and 5.9 GHz radios are used to estimate the range towards a set of Road Side
Units (RSUs) in order to perform Time Difference of Arrival (TDOA) and absolute position. It has
been concluded that ranging performance using V2V technology is highly dependent on relative
velocity and distance. In his test setup, the measured ranging errors are up to 0.7 m at distances
of up to 90 m in LoS situations. Simulations for absolute positioning fusing GNSS and RTD
measurements from several vehicles have been presented in [88].

One problem with RTD is that the delay caused by the target vehicle to reflect the signal back
has to be estimated. In [88], the solution was to use physical level timestamping at reception
and retransmission. Other limitations to the accuracy are imposed through multipath propagation
and, specially, Non-line-of-Sight (NLOS) propagation [89].

Radio ranging systems based on RTD will output an estimate of the range between the antennas,
corresponding to the distance between ego and target vehicle. Consequently, it is not possible to
obtain a full two- or three-dimensional relative position towards other vehicles.

Other transponder-based solutions rely on Time of Arrival (ToA), in which the absolute time
between transmission and reception is measured to estimate the distance. This, however, requires
precisely synchronized clocks at every vehicle, in order to compare the transmission and reception
timestamps [90].

2.3.2. GNSS-based Cooperative Positioning

In cooperative positioning two or more mobile stations working together to improve their position
solutions by communicating directly with each other. Different to the previous techniques, coop-
erative positioning relies on information sent over a communication link. With the introduction
of a comprehensive and standardized communication technology for ITS, the idea of performing
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cooperative positioning in vehicular ad-hoc networks becomes possible. So-called Cooperative
Awareness Message (CAM) are beaconing messages that include the information about the abso-
lute position, the speed and the heading of each ITS station. Along with this information, the
estimation error shall also be included in the CAM.

ETSI’s standard for CAM messages [13] does not specify the technique used for computing the
position, speed and heading estimate in each vehicle. GNSS will be used as the primary source for
absolute position information. The use of several GNSS constellations in parallel, as for instance
the American GPS [91], the Russian GLONASS [92] or the European Galileo system [24], can be
exploited. By using multiple constellations, more satellites can be tracked and used for position,
velocity and time estimation and, thus, an increased availability and improved accuracy can be
achieved.

Further on, the usage of multi-frequency GNSS receivers can help to estimate the delay of the
dispersive parts of the atmosphere [93]. Besides the L1 and L2 frequency bands in early GPS, the
new L5/E5 band will enhance this capability [24]. However, dual- or multi-frequency receivers are
usually more expensive and are usually not used in mass-market applications.

Differential GNSS Differential GNSS is a technique, which is able to reduce atmospheric and
other common errors. Differential GPS (DGPS) [28] was targeted to overcome the random satellite
clock error and ephemeris data truncation to artificially decrease the system’s accuracy for civil
users, also known as Selective Availability (S/A). In DGPS, a receiver located at a known position
(a so-called base station) can determine the offset on the range towards each satellite and send this
information to other receivers (so-called rovers). Since S/A is an error common to all receivers, the
broadcasted offset can be directly used to correct each pseudorange prior calculating the absolute
position.

In general, ground-based augmentation systems (GBAS), as for instance DGPS, use base stations
at known locations to transmit real-time correction data for GNSS positioning. The transmission
is accomplished using some communication technology, as for instance a dedicated radio com-
munication link or a cellular communication system. When GNSS correction data is transmitted
from geostationary satellites, it is referred as satellite-based augmentation systems (SBAS). For
instance, the American system WAAS [94] or the European system EGNOS [95] provide wide area
coverage of differential corrections.

The general rule applies that the nearer the base station, the more correlated the errors between
base station and rover are, and the larger improvement of the position solution can be expected.
This way, atmospheric errors can be corrected, in general, for rovers at a maximum distance of
20 km to a base station [38].

The usage of GBAS or SBAS requires the deployment and maintenance of a network of base
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stations and the availability of a communication technology to provide the correction information
to each vehicle. GBAS is mainly deployed at airports for automatic landing systems of aircraft
[96]. Due to the low elevation of SBAS satellites at our latitudes, the reception of differential
corrections is difficult in certain scenarios, such as urban canyons.

GNSS and On-Board sensors Further on, vehicles also apply sensor fusion techniques with
on-board sensors to support the GNSS position solution in GNSS impaired environments, such as
under dense tree canopy, in urban canyons or while driving in tunnels. Commonly used on-board
sensors for absolute positioning in vehicular environments are wheel speed sensors, odometers,
steering wheel angle, accelerometers, barometers and magnetic compasses [97].

The fusion of GNSS with inertial sensors, composed of two triads of accelerometers and gyroscopes,
is a well-known technique for supporting GNSS in aircraft, missiles and ships [98]. In the last
decade, these techniques have been extended to vehicle positioning, by moving from high-graded
and expensive ring laser and fiber optic gyroscopes to low-cost inertial Microelectromechanical
Systems (MEMS) sensors [99].

Absolute Positioning Absolute positioning has received a lot of attention. Enhancing GNSS
to mitigate the influence of multipath has been explored in [100–104]. Fusion of GNSS with
on-board sensors has been addressed, e.g. by [105, 106]. Augmenting GNSS with opportunistic
signals, such as cellular networks or WiFi access points, has been analyzed [107–109]. The fusion
of GNSS with either laser scanners or vision-based systems is addressed in [63, 110, 111]. An
enhancement of GNSS positioning with maps has been developed by [112]. Last but not least,
cooperative approaches for deriving absolute positions have been proposed in [113–117]. In all
this work, absolute positioning is the major point of research.

Relative Positioning Approaching the problem of relative positioning, in which the position
towards other vehicles is the mayor aim, from a cooperative perspective has experienced less
attention. Probably due to the ever-growing availability of precise and cheaper ranging sensors,
the usage of GNSS for relative positioning has been relegated to a second place. The aim in
GNSS-based relative positioning is to offer equal capabilities to the on-board ranging sensors
and, in addition, extend their limited perception range. This includes to provide accurate relative
position and velocity in an ego vehicle frame meeting the stringent requirements of safety-critical
driver assistance applications.

The use of GNSS absolute positions and speed contained in CAMs to estimate the relative position
to other vehicles using a particle filter has been analyzed in [57, 118]. In [119], the effectiveness
of sharing absolute positions using low-end, mid-range and high-end GNSS receivers has been
identified by comparing its output to a radar sensor has been identified. It has been concluded
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that low-cost GPS receivers are not capable to meet the requirements of safety-critical applications
as they showed longitudinal errors of around 2 m and lateral errors above 3 m while driving in a
highway environment.

Relative positioning with Raw GNSS Measurements The concepts of differential GNSS can
be extended by moving from the classic base-station/rover setup for absolute positioning towards
a two-rover setup for relative position estimation. By sharing pseudorange measurements, i.e. the
raw GNSS distance measurements to the satellites in view [28], over V2V communication, each
vehicle can subtract the neighbor’s pseudoranges from its own and compute a relative position.
At the same time, correlated GNSS errors, common to both vehicles, are reduced. The concept of
relative localization on the basis of the exchange of GNSS pseudorange data has been presented
in [120]. In [121], an integration approach, where pseudorange observations from two vehicles are
subtracted from each other, is presented and the theoretical potential is shown through simulations.
Later [122], this is tested in a mainly sub-urban environment, yielding a standard deviation error
of 3.4 m for a 12 minute run. Using a Weighted Least Squares algorithm and weighting each
pseudorange according to the received carrier-to-noise ratio (CN0) the relative position between
two GNSS antennas is estimated in [123]. Experimental results with static 3 m and 8 m inter-
antenna distance on a rooftop yield baseline length errors of up to 40 m.

Differential Carrier Phase Ambiguity Resolution A number of groups have addressed the
relative positioning problem of vehicles by solving differenced carrier phase ambiguities rather than
using differenced pseudorange techniques [124–127]. The potential of this approach is derived from
the fact that noise in the Phase-lock Loop (PLL) of the GNSS receiver is smaller than the noise in
the Delay-lock Loop (DLL) by several orders of magnitude [38]. In order to determine the range
towards the satellite, the integer number of cycles has to be resolved. This task is especially
difficult in vehicular environments due to signal disturbances, satellite blockage and multipath,
which lead to cycle slips that will reset the resolution algorithm [28].

A test platform for relative positioning yielding range errors of less than 1 m 99 % of the time in
open sky and 90 % on obscured roads was built in [127]. In [128], a particle filter that samples from
the relative position domain to solve the carrier phase ambiguity was designed. The use case was
relative positioning of low orbit satellites. The duplication of a trajectory using carrier phase based
relative positioning was inspected in [129, 130]. Cooperative relative positioning exchanging Real
Time Kinematics (RTK) position solutions between vehicles was analyzed in [131]. Later, integrity
concepts based on the same method was explored in [132]. In [133], a novel algorithm for solving
the integer ambiguity for low-cost single-frequency receivers based on multiple hypothesis and
weighting each according to its residual is presented. The approach yielded encouraging results in
open-sky environments, providing a robust relative position with centimeter accuracy and partial
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immunity to cycle slips.

GNSS carrier phase-based relative positioning approaches offer extremely accurate full three-
dimensional relative position and relative velocity at the output rate of a GNSS receiver. If
coupled with on-board inertial sensors, the update rate can be increased up to 15 to 20 Hz in
order to meet the requirements of safety-critical applications (see Section 2.1). The main dis-
advantage is its sensitivity and, consequently, the limited continuity in its performance. Trees,
bridges and highway gantries cause momentary drops in the signal level, loss of lock on the carrier
phase and cycle slips. Low cost receivers are specially sensitive, and a continuous tracking of the
carrier phase is extremely challenging in usual scenarios [133].

2.4. Discussion

As a conclusion to this chapter, Table 2.1 summarizes all presented relative positioning techniques.
The requirements reviewed in Section 2.1 are added in each row to allow to evaluate each of the
techniques according to the analysis of the previous sections. Three symbols (+, ◦, −) are used
to symbolize if a ranging system performs positively, neutral or negatively in a certain category.

On-board ranging sensors, as radar sensors and laser scanners, offer a high accuracy in their range
estimation. While radar sensors have poor lateral resolution, laser scanners can calculate the lateral
distance with higher accuracy. Both have an acceptable update rate for safety-critical applications
(above 10 Hz), but only radar sensors offer a direct estimation of the relative velocity. Vision-based
systems, based on stereo cameras, are only able to estimate the distance to vehicles in near range
and have to use additional information about objects and context to estimate the distance to
more distant vehicles. Relative speed can be estimated by looking at consecutive images. Radar
sensors, eventually supported by laser scanner or cameras, are a very suited approach for relative
positioning for safety-critical advanced driver assistance systems. Radar sensors and vision-based
solutions correctly complement each other regarding longitudinal and lateral performance.

Regarding cost, radar sensors have dropped in price in the last decade. The same is expected
for vision-based systems, since camera technology has found its place in consumer market and
the technology has matured for introduction into the automotive segment. Laser scanners, with
its mechanical parts, will need probably some more time to be cheap enough to find market
introduction.

All non-cooperative approaches have LoS characteristics and are easily obstructed by obstacles,
such as other vehicles, or have a limited range in bends and crests. This is considered an important
drawback, when range information to other vehicles is required in non-highway environments.
Rural roads are often curvy and a foregoing vehicle might often leave the sensing range of the
device. In urban environments, approaching vehicles might hide behind other vehicles or buildings.
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These are situations where ranging sensors have important limitations.

Therefore, cooperative approaches can offer a real and safety-relevant benefit. While transponder
based approaches based on RSS and RTD measurements exhibit too large errors, solutions based
on ToA require synchronized clocks on radio transponders in each vehicle. Thus, the exchange of
positioning information between vehicles seams to be the most suitable solution for a cooperative
approach. Here, different solutions compete with each other and it has to be considered which
is best to meet the requirements of advanced driver assistance applications. Standalone GNSS
solutions currently do not meet the requirements on accuracy on relative position and relative
speed. Further on, continuous operation for stand alone GNSS is an important issue.

An ”intelligent” approach is to take advantage of the complementary nature of on-board rang-
ing sensors and cooperative approaches based on GNSS and V2V communication. For instance,
researchers have worked on augmenting the capabilities of radar sensors with absolute positions
exchanged over V2V communication in [57]. This approach was proved in various simulated road
environments.

Realizing the important drawbacks of on-board sensors, this thesis focuses on a cooperative ap-
proach for relative positioning using V2V communication. It builds on the concept of differential
GNSS and the raw GNSS measurement exchange proposed in [120]. Additionally, this thesis
will incorporate the advances in sensor fusion in order to increase the availability, continuity and
robustness of the relative positioning approach. In order to provide the required confidence, a
probabilistic approach, which considers the propagation of the uncertainty, will be followed. Since
cost is an important variable in automotive industry, care will be taken in conducting a research
bounded by the limitations of low-cost and mass-market sensors.



Chapter 2. State-of-the-Art Relative Vehicle Positioning Solutions 27

Table 2.1.: Relative Positioning Techniques
Relative
Positioning
Technique

RSS
Ranging

Radar Laser
Scanner

ToF
Camera

Vision
Based

RTD GNSS
only

GNSS
+INS

GNSS
Carrier
Phase

Cooperative No No No No No Yes Yes Yes Yes

Accuracy −− ++ ++ ++ − − ◦ + +

Availability ◦ ◦ ◦ − ◦ + − ◦ −−

Reliability ◦ ++ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Range
FoV

◦ ◦ ◦ −− − ++ ++ ++ ++

Dimension −− ◦ ◦ + + −− ◦ ◦ ◦

Target
Resolution

−− ◦ ◦ + + ++ ++ ++ ++

Price ++ ◦ − −− + ++ ++ − −



Chapter 3.

Theoretical Background for Cooperative
Relative Positioning

This chapter will introduce the background theory as required to understand the concepts in
this thesis. First, Global Navigation Satellite Systems (GNSS) will be introduced. Along with an
introduction to the basic operation and functionality, the GNSS raw measurements will be regarded
in detail. The second section will introduce inertial navigation systems. Inertial sensors and sensor
platforms will be presented, different coordinate systems and coordinate transformations will be
reviewed, and the usage of inertial information for positioning will be explained. Finally, a review on
estimation theory and Bayesian filters will be given. Basic principles on estimators are introduced,
Bayesian filter theory and its optimal implementation, the Kalman filter, is explained.

3.1. Global Navigation Satellite Systems

The basic idea behind GNSS positioning is that a receiver is able to locate itself by measuring
the distance towards a set of satellites. Currently, the only fully deployed GNSS constellation
is the American Global Positioning System (GPS) [134]. Other countries have started launching
their own navigation satellites, as for instance the Russian system GLONASS [92] or the Chinese
Compass/Beidou-2 [135]. To maintain independence from foreign (military) navigation systems,
the European Union and the European Space Agency are currently deploying the global navigation
system Galileo [36]. GNSS is usually divided in three segments, the space segment, the user
segment and the control segment. In GPS, for instance, the space segment is composed by 32
satellites orbiting the Earth in medium Earth orbit at an altitude of about 20.000 km. The control
segment is composed by several monitoring stations and antennas. The user segment are the
GNSS receivers in smartphones, cars, airplanes, agricultural machines or traffic lights.

By knowing the distance or range towards three or more satellites, the transmitter is in principle
able to determine its three-dimensional position by trilateration [38]. The range towards a single
satellite is estimated by measuring the Time of Arrival (ToA) of the satellite signal, which travels

28
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through the atmosphere at nearly the speed of light and arrives at the receiver antenna. To
distinguish the signals from different satellites, a code division multiplexing scheme is used, i.e.
each satellite modulates its carrier signal with a different spreading sequence. The control segment
is in charge of determining the satellite’s position and clock offset. The later is of uttermost
importance, since the ranging problem is in fact a synchronization problem between the receiver
and the satellite clocks. For this purpose, satellites carry highly precise atomic clocks. The offset
due to the free-running inexpensive (and thus imprecise) user clock remains as an unknown to all
measured ranges. These ”falsely” measured ranges are also called pseudoranges [38]. Therefore,
the range towards an additional satellite is needed to resolve the user clock bias in addition to the
position. In this way, GNSS is able to provide global positioning and time information.

GNSS signals The signals transmitted by the GNSS satellites have special characteristics, so
that a receiver is able to track them. They consist of three parts, the carrier wave, the spreading
sequence and the navigation data [136]. The carrier wave of GPS, for example, is transmitted at
L1 and L2 frequency [134]. The spreading sequence on L1 is called Coarse Acquisition (C/A) code,
a predefined 1023 chip sequence transmitted at a chipping rate of 1.023 MHz. The navigation data
is Binary Phase Shift Keying (BPSK) modulated binary data at 50 bits per second on top of the
C/A code that carries satellite orbit, satellite clock and atmospheric information.

Receiver Operation A GNSS receiver has to perform a series of sequential tasks in order to
compute its position. In the acquisition stage, the receiver has to find new satellite signals and
estimate their delay. These can be signals from satellites that have been lost momentarily or
from newly visible satellites. After the acquisition stage, in the tracking stage the receiver follows
dynamic variations of the delay of each satellite over time. This is done in so-called tracking
loops. At the same time, the navigation message bits are decoded and interpreted. When a stable
tracking of at least four satellites is possible, the navigation computer inside the receiver is able
to solve the user position, velocity and time.

Next, the signal tracking stage is explained. Figure 3.1 shows the classical structure for a ToA
estimator based on a Phase-lock Loop (PLL)/Delay-lock Loop (DLL) architecture. The analogue
processing stage amplifies the signal from the antenna and does the bandpass filtering and the
down-conversion to intermediate frequency. The analogue signal is then sampled, so that the
following tracking stages are performed in the digital domain. The intermediate frequency signal
is down converted to base band by mixing it with a replica of the carrier wave. This process is called
carrier wipe-off and is normally done on both the in-phase and quadrature signals. If the replica
of the carrier wave is phase-aligned with the incoming signal, the quadrature components is zero
and the PLL is said to be ”locked in phase”. The in-phase signal sI is now multiplied by three C/A
code replicas: Early sR,E, Prompt sR,P and Late sR,L. The three replicas are nominally generated
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Figure 3.1.: Block diagram of a classic PLL/DLL tracking loop architecture inside a GNSS receiver.

with a spacing of ±0.5 chip. The ”integrate and dump” block outputs a value proportional to the
correlation of the incoming signals to each of the replica codes.

The DLL will steer the code replica delay to get the highest correlation at the prompt value sI,P

by comparing sI,E and sI,L. The delay of the replica code is adjusted so that the values in sI,E

and sI,L are equal. This happens inside the code loop discriminator. The loop dynamics are given
by the bandwidth of the DLL low pass filter (LPF), which will be a design trade-off between noise
and allowed user dynamics. The pseudorange measurement is equal to the adjusted delay to the
satellite.

Above, a coherent code tracking loop was introduced, that requires a perfect phase match between
incoming and replica carrier signal. Non-coherent tracking loops, on the other hand, do not
require a perfect lock on the phase, but only on the frequency. In this case, the PLL is replaced
by a Frequency-lock Loop (FLL) and also the quadrature components sQ,E, sQ,E and sQ,E have
to be taken into account in the code loop discriminator. Different discriminator designs that
make different use of the three in-phase components and additional three quadrature components
exist. For a deeper understanding on the code and carrier tracking loops, different discriminator
configurations and different loop filters, the reader is referred to [38, 93].

Pseudorange, Doppler and Carrier Phase While in the tracking stage, a receiver has a lock
on the code delay and on the carrier frequency. The code delay corresponds to the pseudorange
measurement and the carrier frequency to the Doppler measurement provided by a GNSS receiver.
If the receiver uses a PLL instead of an FLL, the receiver will lock on the phase of the signal and
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a third measurement, the carrier phase, becomes available.

The pseudorange ρ is the delay of the signal estimated by the DLL and denoted in meters. This
measurement is biased by the offset due to the satellite and user clocks. A pseudorange measure-
ment from a receiver r to a satellite s can be expressed as

ρs
r = rs

r + c · (δtr − δts) + ερ, (3.1)

where rs
r is the geometric range from the receiver antenna to the satellite antenna, δtr and δts are

the receiver and satellite clock offsets measured in seconds, respectively and c is the speed of light
in meters per second. ερ contains all ranging errors due to atmospheric delays, satellite position
errors, relativistic effects and noise. A deeper discussion follows in Section 5.1.

The Doppler measurement Φ̇ is the Doppler shift of the signal estimated by the PLL/FLL and given
in meters per second [137]. The signal from the satellites experiences this Doppler shift because
of the relative movement of satellite and receiver [38]. Additionally, the measurement is subjected
to a bias resulting from the drifts of the satellite and user clocks. The Doppler measurement can
be expressed as

Φ̇s
r = ṙs

r + c · ( ˙δtr − ˙δts) + εΦ̇, (3.2)

where ṙs
r is the change in geometric range due to the movement of user and satellite. ˙δtr and ˙δts

are the receiver and satellite clock drifts in seconds per second, while εΦ̇ contains the combined
error due to changes in the satellite clock and the atmosphere and measurement noise.

Finally, the carrier phase measurement Φ is the difference between the phases of the receiver
generated carrier replica and the received carrier signal measured in meters. The carrier phase can
be measured by the receiver very precisely, up to sub-centimeter level accuracy [28]. However, as
one cycle cannot be differentiated from the previous or the next one, the carrier phase measurement
comes along with an intrinsic ambiguity term. The carrier phase measurement can be expressed
in the following way:

Φs
r = rs

r + c · (δtr − δts) + λ ·N + εΦ, (3.3)

where εΦ incorporates the ranging errors associated to the carrier phase measurement. Here,
it is worth mentioning that the ionospheric delay of the carrier phase measurement is of equal
magnitude and opposed sign than in the case of the pseudorange measurement and that the noise
components is about two orders of magnitude less for the carrier phase measurement as compared
to the pseudorange [38]. λ is the L1 wavelength in meters and N the integer number of cycles
between the satellite and the receiver. As long as the PLL keeps a lock on the carrier phase, the
integer ambiguity remains constant. Momentary signal loss causes the PLL to loose the lock and
the integer ambiguity number to reset. This event is called a ”cycle slip” and is one of the reasons
why using the carrier phase measurements for positioning is still a challenging task [28].
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3.2. Inertial Navigation

Inertial navigation deals with the problem of continuously estimating the position, velocity and
orientation of a moving object by using motion sensors and rotation sensors via a process called
dead reckoning. Dead reckoning dates back to ancient time of marine navigation [138]. Starting
from a known position, a ship was continually monitoring the covered distance by measuring
its speed with the ship log and its heading with a compass. The current vessel’s position is
determined from the previous fix and advancing the covered distance in a certain direction. As
measurement errors in dead reckoning accumulate over time, the availability of anchor points,
such as a lighthouse, or other reference information, such as the longitude angle estimated with a
sextant, are of high importance for accurate navigation.

In principle, the basic idea behind inertial navigation and the integrative nature of the problem has
stayed the same. Today’s inertial navigation sensors are accelerometers and gyroscopes, while the
reference information for reducing the error growth is mainly GNSS. Modern inertial navigation has
been effectively implemented in a wide range of applications such as ships, submarines, aircrafts,
unmanned aerial vehicles, guided missiles and spacecraft.

Different types of gyroscopes exist. Ring laser gyroscopes and fiber optic gyroscopes are based on
the Sagnac effect [98]. In both sensors, the phase or frequency difference created by the interfer-
ence of two counter-propagating laser beams is detected in order to measure the turn rate of the
sensor. These sensors are extremely precise and have small drifts. Recent advances in the produc-
tion of Microelectromechanical Systems (MEMS), have made it possible to construct lightweight
and small inertial platforms that can cost-effectively be integrated in commercial platforms, such
as vehicles. Thus, modern driver assistance systems as Electronic Stability Program (ESP) already
rely on the availability of cheap accelerometers and gyroscopes in today’s cars.

An Inertial Navigation System (INS) is a system that estimates the position, attitude and velocity
of a moving object. It consist of the inertial navigation sensors and the navigation computer.
A so-called strapdown system contains three orthogonally mounted accelerometers and three
orthogonally mounted gyroscopes, measuring linear acceleration and angular velocity respectively
[98]. This sensor assembly is called Inertial Measurement Unit (IMU). The navigation computer
processes the information of the sensors in order to compute position, attitude and velocity.

3.2.1. Coordinate Frames

Point positioning is the problem of determining the coordinates of a single point, representing
an object, and referring it to a certain coordinate frame. A coordinate frame is defined as a
system that assigns numbers or coordinates to determine the position of each point in space. In
a three-dimensional euclidean space, three mutually orthogonal axis span a cartesian coordinate
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system. Such a coordinate frame is defined with a reference point and the directions of each of
the axis in the space. A general knowledge of the coordinate systems usually used in navigation
is essential for understanding the concepts explained in this thesis.

Inertial Reference Frame In order to express force, acceleration, velocity and position vectors in
accordance with Newton’s laws, an inertial coordinate system must be defined stationary in space,
or moving with a constant velocity [16]. In the context of this thesis, this frame is the coordinate
frame in which the satellite’s position, velocity and acceleration are given and in which inertial
sensors on the Earth measure rotations and accelerations. The Earth-Centered-Inertial (ECI) is an
inertial coordinate system located at the center of gravity of the Earth but not rotating with it
[28]. The z-axis zi coincides with the Earth’s rotation axis and points towards the North pole. The
x-axis xi lies on the equatorial plane and points towards vernal equinox. The y-axis yi completes
the right-handed system, also on the equatorial plane [28].

ECI is fixed to the stars and it is the favored coordinate system for the near-Earth environment,
specially suitable to the analysis of satellite motion. Although ECI is not rotating with the Earth,
it is constantly accelerating due to the translation movement of the Earth around the sun, and,
therefore, strictly speaking it does not meet the requirements of an inertial reference system.

Earth Coordinate Frame A global coordinate frame is needed for representing the position of
a point on the Earth. For that purpose, a coordinate system is needed that is fixed to the Earth
and rotates with it, so that the coordinates of a stationary object remain fixed over time. The
Earth-Centered-Earth-Fixed (ECEF) is such a frame, located at the center of gravity of the Earth
and rotating with it. The z-axis of ECEF, ze, coincides with zi in the coordinate system ECI. Its
x-axis xe lies in the equatorial plane pointing toward the Earth’s prime meridian and its y-axis ye

completes the right-handed system, also on the equatorial plane.

Vehicle Coordinate Frame The vehicle coordinate frame, in the literature often referred to as
body frame, is fixed to the vehicle, moving and rotating with it. It is usually located at the center
of mass of the object, or, in the special case of land vehicles, it is located at the rotating point
in the center of the rear axle. In this work, and for practical reasons, the origin is located at
the vehicle’s foremost point. Horizontal rotations have to be corrected by the distance from the
rotation point to the origin of the vehicle coordinate frame. Axes conventions typically depend
on the particular vehicle. As shown in Figure 3.2, xv points in the forward driving direction of the
vehicle, yv points in the left direction and zv completes the right-handed system pointing in up
direction.

The sensor frame is the frame in which the 3-axes gyroscopes and accelerometers of the IMU
measure angular velocities and accelerations. In the frame of this work, the IMU sensor is assumed
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Ego Vehicle

Figure 3.2.: The figure shows the vehicle coordinate frame. Its origin is at the foremost center point
of the vehicle. Its x-axis points in forward driving direction, the z-axis perpendicular
in up direction, and the y-axis to the left to complete the right-hand rule.

to be perfectly aligned and co-located with the vehicle frame. Hence, the vehicle frame and the
sensor frame coincide. In cases where a misalignment is desired, it will be explicitly pointed out.

Navigation Coordinate Frame For navigation purposes, it is convenient to define a local co-
ordinate system fixed to the Earth frame. A typical navigation frame is the East-North-Up (ENU)
coordinate system, which is obtained by fitting a tangent plane to the geodetic reference ellipse
at a certain point. The East-axis points in East direction, the North-axis points in North direction
and the Up-axis is perpendicular to the East-North tangent plane completing the right-handed
system. Figure 3.3 shows a schematic view of the Earth and all four coordinate systems: ECI,
ECEF, vehicle and navigation coordinate frame.

The attitude of the vehicle is given by the attitude of the vehicle frame in the navigation frame.
Attitude, therefore refers to how the vehicle frame system needs to be rotated in order to orient its
axis in parallel to the navigation frame (this definition of attitude is valid for the other coordinate
systems as well). The Euler angles are the three rotations around the x-, y- and z-axis that rotate
the vehicle frame into the navigation frame. The angle by which the vehicle frame is rotated
around the x-axis is the roll angle φ. The rotation angles around the y- and z-axis are called
pitch θ and yaw ψ respectively. These three rotations are shown in Figure 3.4. To transform the
coordinates of a vector in vehicle frame to navigation frame the Euler angles are used by building
the Direction Cosine Matrix (DCM) Cn

v according to:

Cn
v =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ

 . (3.4)

An acceleration vector in vehicle frame av can be transformed to a vector in navigation frame an

by multiplying it with Cn
v as in

an = Cn
v · av. (3.5)
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Figure 3.3.: The figure displays the coordinate frames relevant to inertial navigation: the inertial
frame ECI (xi,yi,zi), the Earth frame ECEF (xe,ye,ze), the local navigation frame ENU
(E,N ,U) and the vehicle frame (xv,yv,zv).

Further information on other forms to express the attitude of an object, such as orientation vectors
and quaternions, can be found in [98].

3.2.2. Navigation

An IMU provides the measurements to determine the user’s position, attitude and velocity. The
strapdown algorithm is the key to calculate these values from acceleration and turn rate mea-
surements. The basic idea is to integrate once the turn rates in order to continually estimate
the object’s attitude. Knowing the attitude of the object, the Earth gravitational force can be
subtracted from the accelerometer measurements. Then, the resulting acceleration is integrated
once to get the velocity and integrated twice to get the position [139]. Figure 3.5 shows the
schematic diagram of the strapdown algorithm.

The output of the strapdown algorithm are the position of the vehicle frame in the Earth frame
expressed in Earth frame coordinates pe

e,v, the velocity of the vehicle frame in the Earth frame ex-
pressed in navigation frame coordinates vn

e,v and the attitude of the vehicle frame in the navigation
frame Cn

v .

The gyroscopes measure the turn rate of the vehicle frame with respect to the inertial frame in
vehicle frame coordinates ωv

i,v. The turn rate of the Earth frame in the inertial frame ωn
i,e is due to

the Earth rotation and is dependent on the latitude of the vehicle. The movement of the vehicle
in north and east direction makes it necessary to turn the navigation frame with respect to the
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Figure 3.4.: The figure shows the three rotations around the x-, y- and z-axis of the vehicle frame
to align it with the navigation frame. The three rotation angles roll, pitch an yaw
define the attitude of the vehicle frame with respect to the navigation frame.
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Figure 3.5.: Schematic block diagram of the strapdown algorithm [139]. The gyroscope measure-
ments are integrated once to determine the attitude of the vehicle with respect to
the navigation frame. The attitude is used to compensate for the gravity vector in
the specific force measurements of the accelerometers. After compensating for the
gravity and for the Coriolis force, the acceleration vector is integrated once to get a
velocity and twice to get a position.
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Earth frame. This is called the transport rate ωn
e,n. These two components can be neglected

for short navigation periods and for relatively low velocities [98]. Along with the initial attitude,
expressed by the Euler angles φ0, θ0 and ψ0, the integration of the turn rates yields the current
attitude of the vehicle frame in the navigation frame Cn

v . In a strapdown computer, the attitude
at time t+ τ is calculated using the attitude at time t by [98]:

Cn
v(t+ τ) = Cn

v(t)(I + sin(σ)
σ
· [σ×] + 1− cos(σ)

σ2 · [σ×]2), (3.6)

where I is the identity matrix, and σ and [σ×] are the norm and the skew symmetric matrix
representation of σ, respectively. σ represents the three micro-rotations around the three axes
and can be approximated with:

σ = ωv
i,v · τ, (3.7)

with τ being the time between two samples of the inertial sensor. Equation 3.6 and Equation 3.7
are numerical approximations of a time continuous integral in order to be implemented in a time
discrete system. A sufficiently high sampling rate is assumed, so that small angular rotations are
performed in every integration step [139]. Only under the assumption of small angular rotations,
the non-commutativity error due to the chain of rotations is maintained low [98].

The accelerometers, on the other hand, measure the specific force f v
i,v of the vehicle frame in the

inertial frame expressed in vehicle frame coordinates. To find the velocity vn
e,v the acceleration

an
e,v is integrated over time. For this, the specific force has to be corrected for the gravitational

force of the Earth, the centrifugal force due to the Earth rotation, both depending on the position
on the Earth, and the Coriolis force, due to the vehicle’s movement in the Earth rotating frame,
according to

v̇n
e,v = an

e,v = Cn
vf v

i,v − (2ωn
i,e + ωn

e,n)× vn
e,v + gn, (3.8)

where Cn
vf v

i,v is the specific force projected from the vehicle to the navigation frame, (2ωn
i,e +

ωn
e,n) × vn

e,v is the Coriolis compensation and gn is the gravitation compensation. The Coriolis
effect has to be compensated only in long-term navigation periods, e.g. in auronautical navigation
for aircraft, and has a marginal effect in road vehicle applications [98]. The differential equation
3.8 is integrated to get the velocity of the vehicle on the Earth in local navigation frame coordinates
and taking the initial speed as integrating constant.

Finally, the position pe
e,v is obtained by integrating vn

e,v, transforming it from the navigation to
the Earth frame, and taking the initial position p0 into account. Further details on the strapdown
algorithm can be found in [139].
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3.2.3. Aided Navigation

The strapdown algorithm is able to compute position, velocity and attitude out of turn rate
and specific force measurements. However, inertial navigation is accurate only for short-term
computations. Without taking action, the navigation errors will grow rapidly over time. The
limited sampling rate, errors in the initial values of attitude, velocity and position, an inaccurate
model of the gravity field and measurement errors of the sensors are responsible for this behavior
[139]. While systematic errors in the acceleration sensors propagate to the position quadratically
over time, attitude estimation errors will propagate cubically into a position error [139]. The error
models for both, gyroscopes and accelerometers, will be regarded in detail in Section 5.2.

A commonly used countermeasure against the ever-increasing positioning errors in inertial navi-
gation is to incorporate absolute positioning information from GNSS. The complementary charac-
teristic of both information sources makes it especially suitable to use one system to compensate
the drawbacks of the other system. INS cannot be perturbed by external interference sources and,
thus, has a continuous availability. Although GNSS has relatively larger position errors due to noise
and ranging biases and is prone to being jammed, it is long-term stable with bounded errors.

The most straightforward approach is a so-called loosely coupled integration, where inertial infor-
mation is coupled with position and speed measurements from a GNSS receiver (see Figure 3.6a).
A non-linear Kalman filter is usually used to estimate the navigation errors instead of estimating
the navigation solution itself [97]. This is called an error state Kalman filter and it is particularly
beneficial since the errors have smaller and rather constant dynamics compared to the vehicle’s
position or velocity. However, the main drawback of a loosely coupled approach is that a position
and speed solution is required. This is only given if more than four satellites are visible to the
GNSS receiver. A system that performs a fusion of inertial sensors with GNSS pseudorange and
Doppler measurements directly, rather than with positions and speed values, is said to be a tightly
coupled system (see Figure 3.6b). Here, navigation is still possible with less than four tracked
satellites. Additionally, in a deeply coupled system pseudorange and carrier tracking loops inside
the GNSS receiver are supported by the inertial integration [97]. Tracking loops can thus be
designed with smaller loop bandwidth and, therefore, be more precise due to the smaller errors
[38].

3.3. Bayesian Estimation Theory

Relative positioning of vehicles can be considered an estimation problem. Certain parameters, as
for instance the relative position or the relative speed, need to be estimated from measured data,
that might be corrupted by random errors. Examples of estimation processes are the following:
(a) A GNSS receiver measures the distance to a satellite by estimating the ToA of a transmitted
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Figure 3.6.: Loosely and tightly GNSS/INS coupled system architectures.

signal. The weak signal at the receiver is corrupted by noise, has been delayed by the atmosphere,
and is biased by the unknown receiver clock time. Noise, delays and biases have random nature.
(b) The acceleration and turn rate signals from an IMU are also noisy and have a time varying bias
with certain random characteristics. (c) An automotive radar is a device that estimates the relative
position of another vehicle by measuring the round trip delay of a transmitted radio frequency
signal. The received signal is embedded in noise and corrupted by additional reflected echoes,
both being randomly distributed.

In general, an estimator attempts to approximate the unknown parameters using available mea-
surements. In Bayesian estimation, the a priori knowledge that is available on the stochastic
parameters will be included into the estimator, in order to enhance its performance. Hence, in
this section principles of statistics and Bayesian estimation theory that are of importance for the
rest of the thesis will be reviewed.

3.3.1. Estimation Theory

The branch of statistics dealing with the estimation or approximation of an unknown parameter
is called estimation theory. The estimation process is based on measured or observed data. An
estimator θ̂ aims at approximating the unknown parameter θ using the measurements available.
The bias of an estimator θ̂ is the deviation of its expected value from the true value θ of the
parameter and can be expressed as:

Bias(θ̂) = E
[
θ̂ − θ

]
= E

[
θ̂
]
− θ = θ̄ − θ, (3.9)

where θ̄ is the mean of the estimator θ. It is desirable that an estimator is unbiased, so that
its mean coincides with the parameter value. The variance of an estimator gives a measure on
how much the estimated value spreads around its mean. In case of an unbiased estimator, the
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estimated value will spread around the true value. The smaller the variance, the more compact are
the estimated values around the mean value. If the variance is zero, all estimations are identical.
The variance is defined as expectation of the quadratic distance of the estimated value θ̂ to the
mean value θ̄ according to:

V ar(θ̂) = E
[
(θ̂ − θ̄)2

]
. (3.10)

In the case of θ being a vector parameter, the variance is generalized to the variance-covariance
matrix, which includes not only the variance of each parameter composing θ, but also the cross-
correlation between them. The mean squared error (MSE) of an estimator θ̂ measures the average
of the squares of the error of the estimator as:

MSE(θ̂) = E
[
(θ̂ − θ)2

]
. (3.11)

The MSE incorporates both, the variance and the bias of the estimator, in one single term. The
relationship is given by

MSE(θ̂) = V ar(θ̂) + (Bias(θ̂))2. (3.12)

In estimation theory, an estimator is called optimal when it allows to estimate a parameter without
bias and with minimum variance [140]. As will be regarded next, the minimum possible variance
for an estimator is given by the Cramér-Rao Lower Bound (CRLB) [141].

Cramér-Rao Lower Bound The variance of an estimator provides a metric on its performance.
In estimation theory the CRLB gives a lower bound on the variance of estimators of a deterministic
parameter. The best possible unbiased estimator will have, thus, a variance equal to the CRLB.

Given an estimator θ̂ that estimates a set of parameters θ out of a set of measurements z with
the conditional probability density function p(z|θ), the CRLB states that the covariance of the
estimates V ar(θ̂) is lower-bounded by the inverse of the Fisher Information Matrix (FIM) F (θ)
[24], according to

V ar(θ̂) ≥ F (θ)−1, (3.13)

where the inequality is satisfied by V ar(θ̂)− F (θ)−1 being positive-semidefinite and where each
position (k, l) in the FIM is given by

[F (θ)]k,l = E

{[
d

dθk
ln(p(z|θ))

] [
d

dθl
ln(p(z|θ))

]}
. (3.14)

The conditional probability density function p(z|θ) gives a measure on how much the measure-
ments z correlate with parameter θ. Measurements are better suited if they have a high sensitivity
to changes in the parameter θ. This is denoted by the differentiation d

dθ . Incorporating better ob-
servables of θ into an estimator will yield a higher Fischer information and, consequently, a smaller
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estimator variance. The rather complex equation for the Fischer Information can be simplified for
the case of measurements with additive Gaussian errors:

zi = si(θ) + ni with i = 1, . . . ,m, (3.15)

where si is the observed signal that is function of θ. ni is white Gaussian noise with equal variance
σ2 and mutually independent for different i. In this case the multivariate Gaussian distribution
p(z|θ) can be written as the product of individual Gaussian Probability Density Functions (PDFs)
with variance σ2 and centered at si(θ) according to

p(z|θ) =
m∏
i=1

p(zi|θ) = 1
(2πσ2)

m
2
exp

{
− 1

2σ2

m∑
i=1

(zi − si(θ))2
}
. (3.16)

In this case, the FIM components are simplified to

[F (θ)]k,l = 1
σ2

m∑
i=1

d

dθk
si(θ) d

dθl
sj(θ) (3.17)

As expected, the resulting CRLB will be proportional to the measurement noise variance σ2. The
smaller the variation of si and sj with θ, the less information the measurements carry, and the
greater the estimator’s covariance. The CRLB will be used in Section 5.1 to compute the minimum
variance of different relative position estimators. For a complete derivation of the CRLB, the reader
is referred to [24].

Least Squares Estimation In regression analysis, the Least Squares (LS) method is widely used
to find the set of function parameters that make the function best fit a set of points. The problem
can be set up as a system of equations with the function parameters as unknowns. If more points
than parameters exist, the system of equations will be over-determined. As the set of points are
usually drawn from a stochastic process, a unique solution to the problem does not exist. The
criteria by which the ”best solution” is found is the one that minimizes the sum of the squares
of the errors. The remaining error is called the residual. Supposing a linear measurement model
according to

z = H · θ + ε, (3.18)

where z is the measurement vector, θ is the unobservable state vector, H is a transformation
matrix of the state vector into the measurement vector, and ε is the mutually independent error
vector with zero mean and equal variance. The aim is to estimate the state vector θ̂ that minimizes
the error residual. This is commonly expressed as

θ̂ = arg min
θ

‖ε‖2 = arg min
θ

‖z−H · θ‖2 . (3.19)
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For the linear case in Equation 3.18, the Ordinary LS solution to the problem is given in closed
form by the equation:

θ̂ = (HTH)−1Hᵀz. (3.20)

In the frame of this work the LS method is used, for example, to estimate the baseline vector
from a set of pseudorange double difference measurements. As will be shown in Chapter 5, this is
an over-determined system of linear equations and the LS algorithm, under certain circumstances
that apply in this context, will find the best possible solution. Equation 3.18 presents a linear
relationship between state vector and measurement vector. The LS solution can also be found for
non-linear problems. Then, however, a closed form as in Equation 3.20 does not exist. The basis
for the non-linear LS is to approximate the model by a linear one and to refine the solution found
with an Ordinary LS by successive iterations [140].

3.3.2. Bayesian Estimation

The previous methods considered a static solution for the estimation problem. The estimated
parameter was assumed to be unknown and deterministic. However, often the parameter θ to be
estimated is a random variable and certain information on its stochastic properties, such as its
probability distribution, are known. In this case, this a priori information should be incorporated
into the estimation process to obtain a better estimate. Relative position or relative velocity are
random quantities and a priori information might be available and should be included into the
estimation process. In a Bayesian approach the observations are supplemented with additional a
priori information about their state. To infer the state vector x from a measurement vector z the
following definitions are useful:

• The probability p(x) is the a priori probability distribution which includes all knowledge, or
belief, on the state x prior to incorporating the measurement z.

• The probability p(x|z) is called the posterior probability distribution and includes the knowl-
edge regarding x after incorporating the measurement z.

• The probability p(z|x) is called the measurement probability distribution and specifies the
probability of the measurement z occurring, given the state x.

Bayes rule offers a convenient way to compute the posterior probability distribution p(x|z) out
of the available prior probability distribution p(x) and the measurement probability distribution
p(z|x) [142]. Bayes rule is expressed as:

p (x|z) = p (z|x) p (x)
p (z) = κ · p (z|x) p (x) , (3.21)

where p(z) is the same for any value x in the posterior p(x|z) and, thus, can be seen as a
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normalizing constant κ. Bayes rule is the center piece of Bayesian dynamic state estimation.

In a dynamic system, the state at a certain point in time is usually not independent from the state
in previous instants. For instance, the position and the velocity of road vehicles are correlated over
time. The same holds for the position of GNSS satellites, the propagation delays of atmosphere or
even the multipath propagation error. The information of the evolution of the state can be used
to obtain prior information on its current state. In general, the state at time k, xk, is generated
stochastically from all past states x0:k−1. This probabilistic relationship is given by:

p
(
xk
∣∣∣x0:k−1

)
. (3.22)

A state x is said to be complete when xk is the best predictor of future states. This is also known
as the Markov Assumption [143]. This means that xk is a sufficient summary of all that happened
in previous time steps [143]. This is expressed as:

p
(
xk
∣∣∣x0:k−1

)
= p

(
xk
∣∣∣xk−1

)
, (3.23)

where p(xk|xk−1) is the state transition probability and specifies the evolution of states over
time and its conditional dependencies. The system state x should include all relevant states with
memory in order to make it complete. The state x is often called hidden state, as it is not directly
measurable or observable. Only z can be observed through measurements or observations.

If xk is complete, the probability of a measurement zk will only be stochastically dependent of
the state xk. The knowledge of past states and past measurements is not relevant. This can be
expressed as:

p
(
zk
∣∣∣x0:k, z1:k−1

)
= p

(
zk
∣∣∣xk) , (3.24)

where p(zk|xk) is the measurement probability that describes the probabilistic relationship be-
tween the measurements and the states. Equation 3.24 implies that measurements are mutually
independent of each other. Consequently, any memory in the measurements, such as a constant
bias, has to be modeled by the system and included in the system state x [143].

The state transition probability in Equation 3.23 and the measurement probability in Equation 3.24
together describe the dynamic stochastic system. The state at time k stochastically depends on
the state at time k − 1 through the state transition probability. The measurement at time k
stochastically depends on the state at time k through the measurement probability. Such a model
is known as Hidden Markov Model (HMM) or Dynamic Bayesian Network (DBN) [143]. The DBN
is a network diagram representing the variation of the states and measurements over time and
their conditional dependencies as depicted in Figure 3.7.

A DBN is a time discrete model of a possibly time continuous system. The problems regarded in
the frame of this thesis are time continuous in nature. Sensors, such as IMU and GNSS measure
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Figure 3.7.: The figure shows two subsequent time steps of a Dynamic Bayesian Network. The
state x at time k is stochastically related to the state in time k− 1 through the state
transition probability p(xk|xk−1). The measurement z and the state x at time k are
stochastically related through the measurement probability p(zk|xk).

a physical quantity (specific force, turn rate and signal delay) continuously and the real-world
processes, such as the movement of the vehicle, are, as well, time continuous. However, since the
sensors deliver its measurements in periodic time intervals and, given that the real-world processes
is sampled at a sufficient rate, a DBN is a suited approach to model the problems in the frame of
this thesis.

The Bayes Filter Algorithm

For dynamic state estimation the Bayes filter tracks the posterior probability density function over
time. Bayes filters assume that the state vector x is complete, and, thus, the posterior PDF
contains all available statistical information on the state. The filtering algorithm is divided in two
stages and repeated recursively:

• Prediction: the state transition model is used to propagate the posterior PDF over the
state xk−1 to obtain a prior PDF over the state xk. Since the state is usually subjected
to unknown disturbances, the prediction step generally deforms and spreads the state PDF.
The computation of the prior PDF can be expressed Chapman-Kolmogorov equation [144]
as follows:

p
(
xk
∣∣∣z1:k−1

)
=
∫
p
(
xk
∣∣∣xk−1

)
p
(
xk−1

∣∣∣z1:k−1
)
dxk−1, (3.25)

where p(xk|z1:k−1) is the prior PDF over the state xk, p(xk|xk−1) is the state transition
probability, and p(xk−1|z1:k−1) is the posterior PDF over the state xk−1.

• Measurement Update: the measurement model is used to modify the prior PDF over
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the state xk obtained in the prediction step to retrieve its posterior PDF. Usually the
measurement update step shrinks again the state PDF that was widen through the prediction
step, since new information is gained on the state. To compute the posterior PDF, the
Bayesian filter algorithm uses the Bayes rule Equation 3.21:

p
(
xk
∣∣∣z1:k

)
= κ · p

(
zk
∣∣∣xk) p (xk∣∣∣z1:k−1

)
, (3.26)

where p(xk|z1:k) is the posterior PDF over the state xk, p(xk|z1:k−1) is the prior PDF over
the state xk, p(zk|xk) is the measurement probability, and κ is the normalization constant
of the Bayes rule.

The posterior PDF of Equation 3.26 is used as the input to the next prediction step in time step
k+1. The solution to the estimation problem can either be given by the parameter that maximizes
the posterior distribution, the so-called maximum a posteriori (MAP), or the expectation, which
would yield the minimum mean squared error (MMSE). Both are given in the following equations:

x̂kMAP = arg max
xk

p
(
xk
∣∣∣z1:k

)
, (3.27)

x̂kMMSE =
∫

xk
xkp

(
xk
∣∣∣z1:k

)
dxk. (3.28)

A practical implementation of the Bayesian filter requires to solve Equations 3.25 and 3.26. Finding
the solution to the integral in Equation 3.25 is usually a difficult task [143]. Only if certain restric-
tions on the state transition model in Equation 3.23 and the measurement model in Equation 3.24
are imposed and certain prior and posterior distributions are assumed, the integral becomes solv-
able. One of these implementations is introduced in the following section. A second possibility
to solve the integral is by following a numerical approach. Particle filters belong to the family
of so-called sequential Monte Carlo filters [145]. Here, the prior and posterior distributions are
not described analytically, but are described by weighted samples of the state, so-called parti-
cles. Therefore, the particle filter is an approximation to the optimal Bayesian filter. For further
information on particle filters the reader is referred to [145].

3.3.3. Gaussian Filters

In a Gaussian filter, all prior and posterior beliefs are assumed to be represented by multivariate
normal distributions according to:

x ∼ N (x,P) = |2πP|−
1
2 exp

{
−1

2(x− x)ᵀP−1(x− x)
}
. (3.29)

Thus, the belief PDF over a state x is fully characterized by a mean vector x and a variance-
covariance matrix P.
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Kalman Filters The Kalman filter is a technique for estimation in linear Gaussian systems named
after Rudolf E. Kálmán who worked on the development of its theory [146]. In a Kalman filter,
the prediction and measurement update equations take a linear form with additive white Gaussian
noise. The prediction equation is

xk = F · xk−1 + B · uk + νk−1, (3.30)

where xk represents the unobserved state vector of the system at time step k, xk−1 is the state
vector in the previous time step k − 1, F is a linear vector-valued function expressed in matrix
form representing the state transition model. The control vector uk is mapped to the sate by the
control matrix B. The uncertainty in the prediction is modeled by adding the process noise νk−1.
The measurement update equation is

zk = H · xk + ηk, (3.31)

where zk is the observed data or measurements, H is the linear measurement model that relates
the state vector to the measurements, and ηk is the vector representing the measurement noise.
Both, νk−1 in Equation 3.30 and ηk in Equation 3.31 are zero-mean mutually independent white
Gaussian noise.

It is sufficient that the stated properties of linearity and Gaussianness hold, to ensure that the
posterior PDF of the state vector xk is always Gaussian. Under this assumption, the Kalman filter
represents the optimal solution to the estimation problem [143]. This implies that no algorithm
can ever do better than a Kalman filter in this linear Gaussian environment. The Kalman filter,
as the LS algorithm, estimates the state process in a way that minimizes the mean of the squared
error [147].

Next, the algorithm to solve recursively the state estimation problem using a Kalman filter is
presented. The input of the Kalman filter is the posterior PDF from the previous step represented
by a mean vector x̂k−1 and a variance-covariance matrix Pk−1. The prediction stage computes
the mean vector x̃k and covariance matrix P̃k for the prior distribution p(xk−1|z1:k−1) according
to:

x̃k = F · x̂k−1 + B · uk, (3.32)
P̃k = F ·Pk−1 · Fᵀ + V ·Qk−1 ·Vᵀ, (3.33)

where F is a known matrix defining the linear system function, V is a known matrix that maps the
process noise in the state domain, and Qk−1 is the covariance matrix of the process noise random
variables. The resulting prior distribution p(xk|z1:k−1) is the Gaussian function N

(
x̃k, P̃k

)
.

Then, the measurement stage computes the mean vector x̂k and covariance matrix Pk of the
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posterior distribution p(xk|z1:k) incorporating the measurement vector zk according to:

ỹk = H · x̃k (3.34)
Kk = P̃k ·Hᵀ · (H · P̃k ·Hᵀ + Rk)−1 (3.35)
x̂k = x̃k + Kk · (zk − ỹk) (3.36)
Pk = (I−Kk ·H) · P̃k (3.37)

where I is the identity matrix, H is the matrix defining the linear measurement equation and
Rk is the covariance matrix of the measurement noise random vector. The posterior distribution
p(xk|z1:k) is a Gaussian function N

(
x̂k,Pk

)
. The Kalman gain matrix Kk specifies the degree

to which the measurement is incorporated into the new state estimate. The Kalman gain controls
the addition of the innovation term zk − ỹk to the prior estimate of the state. This innovation
term is the difference between the current measurement zk and the predicted measurement ỹk.

In many situations, the linearity assumptions made for the Kalman filter do not hold. Inertial
navigation systems, for instance, include highly non-linear equations. In such cases, the Kalman
filter cannot be used, and, thus, approximations are necessary in order to deal with non-linearities.
Equation 3.30 and Equation 3.31 can be written in a general form as:

xk = f(xk−1,νk−1), (3.38)
zk = h(xk,ηk), (3.39)

where f(·) and h(·) are non-linear vector-valued functions. When transforming a Gaussian dis-
tributed random variable through a non-linear function the result is, in general, a non-Gaussian
distributed variable. In fact, performing the belief update exactly is usually impossible for non-
linear functions and the Bayes filter does not possess a closed-form solution [143]. Non-linear
Kalman filters calculate a Gaussian approximation to the true belief PDF. Depending on the lin-
earization approach, there are several options for obtaining an approximate estimation solution
of the non-linear problem. Two well-known approximations to the non-linear Kalman filter are
the Extended Kalman Filter (EKF) [145] and the Unscented Kalman Filter (UKF) [148]. In the
EKF, the non-linear function is linearized with a first-order Taylor approximation and the Gaussian
distributions are propagated through this linear approximation identically as in the Kalman filter.
In the UKF, a set of discrete points of the state space, so-called sigma points, are transformed by
the non-linear functions and are converted back to a Gaussian distribution. Further information
on the EKF and UKF algorithms can be found in [145] and in [148], respectively.
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Figure 3.8.: Figure 3.8a shows the PDF p(x) of a random variable x. Also the Sigma points for that
distribution are depicted in black. The non-linear transformation y = g(x) is shown
in 3.8b along with its first order linear approximation at the mean of x. Figure 3.8c
depicts the output PDF p(y) after the transformation of x through the non-linear
function g. In blue the normalized histogram for 10,000 samples of y is shown. In
black, the Gaussian PDF corresponding to the histogram is depicted. The output of
an EKF is represented by the red curve, which corresponds to the transformation of
p(x) through the linear approximation of g(x). The black crosses are the three sigma
points transformed by g and which result in the green Gaussian PDF for the UKF.
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3.3.4. Modeling

The performance of each implementation of a Bayesian Filter depends on the amount of non-
linearity in both, the prediction and measurement equation, and prior and posterior variances.
Figure 3.8 illustrates this effect for a Gaussian distribution p(x) (Figure 3.8a) passed through a
non-linear function g(x) (Figure 3.8b). This is analogous to the propagation of the posterior PDF
through a non-linear system model in the prediction step or the propagation of the prior PDF
through a non-linear measurement model in the update step. Both output distributions, with
EKF (red) and UKF (green), are compared to the true distribution (back) determined through
Monte Carlo estimation (Figure 3.8c).

Evidently, after transformation through a non-linear equation, the previous Gaussian distribution
is no longer Gaussian (blue histogram). However, a Gaussian distribution that best models the
output distribution can be built (black). It can be observed, that the output of the EKF (red)
fails to model correctly the output distribution. The quality of the EKF approximation depends
on the amount of non-linearity of g(x) and the initial uncertainty, i.e. the width of p(x). The
UKF (green distribution), on the other hand, has a better result and, in fact, it can be shown that
the Unscented Transform (UT) is accurate up to the second order of the Taylor expansion of g(x)
[143].

However, even in the case that linearity and Gaussianess are given, the Kalman filter might
perform suboptimal due to model mismatch [149]. Bayesian estimators are only as good as the
used system and measurement models reflect the real-world process. The system state x has to
include all relevant hidden states with memory and to satisfy the completeness assumption. The
measurements need to be independent one from the other and any bias needs to be included into
the system state. In practice, there will always be a certain mismatch between the real world and
the models chosen to mirror it. If the mismatch is kept small, by trying to adapt the model as
much as possible, the Bayesian filter will converge to the correct solution [149].



Chapter 4.

Theoretical Model for Cooperative Relative
Positioning

4.1. Situation Awareness

Situation awareness of the driver and the in-vehicle systems is extremely important in safety-
critical advanced driver assistance systems. Any assistance system requires a correct perception
of the environment in order to have an accurate picture of the real world and to make the correct
decisions upon the available information. Endlsey defines situation awareness as ”the perception
of the elements in the environment within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future” [150]. However, perception is by far
not trivial. Sensor measurements are corrupted with errors and, additionally, there is not always
a suitable sensor for every relevant element of the environment. As perception is inaccurate and
incomplete under real-world conditions, situational information is inherently uncertain [151].

The conceptual system decomposition related to situational awareness is depicted in Figure 4.1.
This model can be applied for both, a human driver and an advanced driver assistance system.
The world is perceived through sensors. This data has to be interpreted to extract evidence on
the surrounding environment. The processed data is fitted into a world model. If both, the
sensing system and the data interpreter are adequate, this representation describes the relevant
surrounding with sufficient accuracy. A controlling system, based on a defined mission or goal,
will make a decision on whether to take action and perform a control command. This actuation
feeds back into the real world.

In Intelligent Transportation Systems (ITS), each station keeps an updated copy of its knowledge
on the surrounding environment. This copy is known as the Local Dynamic Map (LDM) [152].
It comprises a complex database where events and information are classified in different layers
depending on its nature. Static and dynamic information, including the map of the environment,
the road topology, other vehicles and relevant events, are part of the LDM [153]. The LDM
should, as well, provide means to represent degrees of certainty about the stored objects [152].

50
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Figure 4.1.: The figure displays the classic sensor/actuator control loop including a local, incom-
plete, inaccurate representation of the real world.

The structure and the interfaces of an LDM are standardized by European Telecommunications
Standards Institute (ETSI) [154]. Figure 4.2 displays selected attributes that are included in an
LDM. Hence, this local database represents a practical way to achieve situation awareness in ITS.

One possible metric to quantify awareness quality for collision avoidance applications is based on
the ratio of detected vehicles to all vehicles in a certain range and the age of received forwarded
information [155]. Another metric is given by the probability of having received one beacon from
one neighbor in the last second [156]. Here, also the distance between the transmitter-receiver
pair is taken into account, as the required awareness is dependent on the distance between the
vehicles. While [155] and [156] focus on communication aspects and disregard the content of
the communication packet, in [151] the value of information is considered. Here, Cooperative
Situation Awareness is defined as ”the concept of utilizing distributed information and treating
the information with its actual worth for all entities in the cooperation”. The entropy of a random
variable is used as a measure of its uncertainty. The uncertainty or entropy of a variable decreases
when new evidence, i.e. information or measurements, are incorporated into the system. Thus, the
value of information for each evidence can be obtained. In this way, the necessity of transmitting
a certain evidence can be related to its value of information.

The situation awareness of the ego vehicle is given by the completeness and accuracy of the
attributes it has on its environment (see Figure 4.2). Attributes include surrounding vehicles,
pedestrians or cyclists, the status of traffic lights or the own geographical and topological position
on the road. This information is, in general, not accurately known, either because it is not directly
observable or because the sensors employed have errors in their measurements. A vehicle will
not know precisely its own location due to positioning errors. The topological map might be
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Figure 4.2.: The figure shows exemplary attributes that comprise the awareness in the ITS domain.
A Local Dynamic Map stores these attributes along with their certainty.

outdated. The location and dynamics of surrounding vehicles is only known to the extent that
they are perceived by local on-board sensors. The intention of other drivers is difficult to observe
and can only be partially inferred by, for example, using information on turning or braking lights.
Consequently, the awareness has to include these intrinsic uncertainties into account.

From the attributes that comprise the awareness of a vehicle, in this thesis the focus will be on
the information concerning the relative position and the relative velocity towards road vehicles.
Although the proposed cooperative approach for relative position estimation could be extended to
pedestrians, the sensors and equipment proposed in this work are not expected to be carried by a
person. Furthermore, due to the motion models used in this thesis, the range of perceived vehicles
has to be further limited to cars, vans and non-articulated trucks. The relative position towards
other traffic participants, such as motorbikes, bicycles or pedestrians, lie beyond the scope of this
work. Further on, and for simplicity, only the relative position and relative velocity towards one
other vehicle will be considered in the models, simulations and real-world experiments. In this
way, the challenges related to classification, association and identification can be disregarded. The
underlying assumption is that the relative position of a pair of vehicles is independent of other
vehicles. This, however, is not true and cross-correlations between pairs of vehicles can provide
further information. The analysis of relative position in clusters of vehicles falls out of the scope
of this thesis and is proposed as future work in Chapter 8. Relative position, as will be explained
in the following section, will involve related attributes, such as time, absolute position, speed,
acceleration, turn rate or heading of each vehicle.
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Figure 4.3.: The baseline vector b is the three-dimensional vector pointing from the foremost
center point on the ground of the ego vehicle to the foremost center point on the
ground of the target vehicle.

4.2. Definition of the Baseline between two Vehicles

As introduced in the previous section, this thesis focuses on the concrete aspect of relative po-
sitioning between vehicles. The ego vehicle is the vehicle at which the driver assistance system
requiring information on relative position of surrounding vehicles is running. The target vehicle is
one surrounding vehicle, whose relative position towards the ego vehicle is to be estimated.

It is not assumed that ego and target vehicle drive in a certain configuration. In the scope of this
thesis, it is not assumed that both vehicles are following each other, although, for the experimental
setup in Chapter 7, they are placed in this configuration. While in a platooning application both
vehicles follow each other, for other applications, as for instance a forward collision warning
application, the target vehicle might be approaching from the front or from the side, while in a
blind spot warning application the target vehicle might be driving in the same direction behind to
the ego vehicle on the lane next to it.

The aim of a relative positioning system in the ego vehicle is to provide precise, accurate and
continuous knowledge about the relative position of the target vehicle. In general, and specially
for safety-critical applications, the awareness of nearby vehicles is of higher relevance, since they
represent a greater risk. The relative position information about the target vehicle is required in
real-time, meaning that the delay caused by the relative positioning system should be small and
bounded. However, not only the current relative position information is of importance, but also
a prediction of the future trajectory of the target vehicle can be used by the driver assistance
system.

The relative position of a target vehicle, as seen from the ego vehicle, is described by a three-
dimensional vector. This vector will be named the baseline b. The origin of the baseline vector
is at the foremost center point on the ground of the ego vehicle, while the end point is at the
foremost center point on the ground of the target vehicle. This baseline vector between two
vehicles is displayed in Figure 4.3.



Chapter 4. Theoretical Model for Cooperative Relative Positioning 54

The baseline vector is defined in an ego vehicle coordinate frame, following the recommendation
of the Society for Automotive Engineers (SAE) for surface vehicle coordinate frames and frame
rotations [157]. The x-axis points in forward direction of the vehicle, while the y-axis points to
the left and the z-axis, completing the right hand rule, points up (see Figure 3.2). The baseline
vector between two vehicles will be denoted as

b =


bx

by

bz

 . (4.1)

The longitudinal component of the baseline will be denoted bx, while the lateral or transverse
component will be denoted by. In certain applications, the baseline vector in space can be reduced
to a two-dimensional vector on the ground, disregarding the z component bz. Since vehicles usually
move on the same plane and larger height differences on short distances are uncommon, this is a
valid assumption. A numerical example shows the error in relative position made by disregarding
the vertical component. The relative position of a target vehicle at a distance of 100 m, would be
incorrectly estimated to 100.5 m on a road with 10 % grade. This corresponds to less than 1 %
range error. In vehicular applications, the z component is of interest e.g. in multi-stack highway
interchanges to differentiate off-road traffic or in highly inclined roads.

The baseline velocity ḃ is equal to the relative velocity between the vehicles. It is given by a
three-dimensional vector in space pointing in the direction in which the baseline is varying over
time, according to

ḃ = db
dt
. (4.2)

The baseline velocity is therefore the derivative of the baseline vector and it is calculated by
differentiating each of its components. The magnitude of the baseline velocity is equal to the
relative speed between ego and target vehicles. The baseline velocity is important as it quantifies
the rate of change of the baseline and, therefore, will enhance the performance of the driver
assistance application.

Safety-critical assistance applications use the information of the relative position of another vehicle
in form of the baseline and the baseline velocity in order to adapt the speed to an in-front driving
car, warn the driver of vehicles in their blind spot or activate the brakes, when the baseline gets
critically small. Figure 4.4 shows an overtaking and an intersection scenario for three consecutive
time steps. A red baseline velocity vector indicates a shrinking baseline, i.e. a potentially hazardous
situation, while a green one indicates a growing baseline vector and, therefore, a safe situation.

In this thesis both, baseline and baseline velocity, are not treated as deterministic quantities whose
values are known with infinite accuracy, but are random variables representing their stochastic
nature. A random variable is not described by a single value but by a probability distribution
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Figure 4.4.: Evolution of the baseline vector over time for two possible scenarios: On the left
picture an overtaking maneuver is displayed, while the right picture displays an in-
tersection scenario. The risk of a maneuver between two vehicles increases when the
baseline vector decreases in magnitude. The baseline velocity points in the direction
in which the the baseline vector is changing.

over its sample space. Each three-dimensional point in relative positioning space has a probability
assigned, corresponding to the probability of the target vehicle being at that position. The same
holds for the relative velocity space. The spread of these probabilities over the sample space at
a given point in time gives a measure of the uncertainty in the baseline and baseline velocity
estimates.

This uncertainty stems from various sources. A ranging sensor, for instance, could have a different
precision in its longitudinal and lateral coordinates or a changing accuracy with the opening angle
or the ranging distance. A cooperative solution, as the one presented in this thesis, which is based
on the exchange of information through a wireless communication channel, has a baseline and
baseline velocity accuracy that is dependent e.g. on the communication update rate or the packet
error rate. The sensors on board of each of the vehicles have errors, such as random noise and
unknown biases, that will propagate into the baseline estimate. A changing constellation of GNSS
satellites, both in number and position, will have an immediate impact on the position accuracy.
Using incomplete and erroneous models to describe the real world introduces further uncertainty
into the estimates.

Figure 4.5 represents the relative position from the ego vehicle towards two vehicles by their
probability distribution. In this case, the depicted uncertainty follows a Gaussian distribution over
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Figure 4.5.: Representation of the baseline vectors towards two vehicles by spatial random vari-
ables. In this example, the knowledge of the relative position of the right vehicle is
more precise than that of the left vehicle.

space. In general, any other function is possible, but it turns out, that Gaussian distributions
are particularly well suited to work with [143]. By means of a probabilistic approach, such as
a Bayesian filter, this uncertainty can be modeled over time [143]. The key idea is that, if the
uncertainty in the system models and the sensor models is correctly quantified, its propagation
to the final baseline and baseline velocity estimates can be correctly tracked over time. Hence,
uncertainty shall be described and actively taken into account.

4.3. Bayesian Relative Positioning

Bayesian networks, or belief networks, present, by using a graphical model, the conditional de-
pendencies of a set of random variables [143]. Bayesian networks that model a time sequence of
variables are called dynamic Bayesian networks [143]. In Chapter 3, the theoretical concepts of
Bayesian estimation were reviewed. In this section it will be shown that the continuous estimation
of the relative position of another vehicle is a problem that, if certain conditions are met, can be
modeled using a dynamic Bayesian network. The baseline vector from an ego vehicle to a target
vehicle is a hidden state that can only be observed through certain evidences or measurements.
These can be, for instance, the detected objects of a radar sensor or the baseline measurement
from subtracting two GNSS positions. Both examples are noisy measurements of the baseline.

In order to model the problem as a dynamic Bayesian network, the first order Markov assumptions
have to be met [143]. The first one, given in Equation 3.23, states that the state estimate in time
step k has a single causal relationship to the state estimate in k − 1 and is independent to any
previous estimate in time steps {0 . . . k − 2}. This requires that the state estimate contains the
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Figure 4.6.: The picture shows the baseline transition model. The baseline bk is dependent on
the previous baseline bk−1 and the dynamic states of the ego vehicle dk−1

e and the
target vehicle dk−1

t . This relationship is given by the differential motion model. The
dynamic state of each vehicle in each instant k only depends on the dynamic state in
the previous instant k− 1. This relationship is given by the Dynamic State transition
model.

full information and, consequently, is memory-less [143].

If the state estimate would only include the baseline vector b this requirement is not fulfilled, since
the baseline at k does not contain all information to do a prediction for the baseline in k + 1.
Assuming a constant change in the baseline vector over time, the baseline in k will depend on the
baseline in both k− 1 and k− 2. To overcome this issue and fulfill the Markov assumption, either
the relative velocity or the speed and heading of each of the vehicles is require to correctly predict
the baseline vector in the next time step. If a linear acceleration is assumed, this Bayesian network
would again not fulfill the Markov assumption, if the state is not extended to carry information on
the vehicle’s acceleration. The kinematic variables are introduced in the dynamic state vectors in
time step k, dke for the ego vehicle, and dkt for the target vehicle. Figure 4.6 shows the resulting
dynamic Bayesian network for the baseline vector estimate.

The baseline bk is said to be dependence-separated or d-separated of dke and dkt if dk−1
e

and dk−1
t are observed respectively [158]. The joint transition probability of the three states

p
(
bk,dke ,dkt

∣∣∣bk−1,dk−1
e ,dk−1

t
)
can therefore be factorized according in the following way:

p
(
bk
∣∣∣bk−1,dk−1

e ,dk−1
t

)
· p
(
dke
∣∣∣bk−1,dk−1

e ,dk−1
t

)
· p
(
dkt
∣∣∣bk−1,dk−1

e ,dk−1
t

)
. (4.3)

The previous equation can further be simplified by accounting for the conditional independence
of dke from bk−1 and dk−1

t and of dkt from bk−1 and dk−1
e (see Figure 4.6):

p
(
bk
∣∣∣bk−1,dk−1

e ,dk−1
t

)
· p
(
dke
∣∣∣dk−1

e
)
· p
(
dkt
∣∣∣dk−1

t
)
. (4.4)

Chapter 5 will dig deeper into relative motion models and baseline prediction models, while this
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Figure 4.7.: The figures display the causal relationship between hidden states (blue) and observa-
tions (green). Figure (a) displays the relationship between the baseline and a radar
sensor measurement, while Figure (b) shows the relationship between the baseline and
pseudorange double differences. Figure (c) displays the influence of the dynamic state
of the vehicle on the CAN bus speed measurement, the GNSS velocity measurements
and the measurements of an inertial sensor.

section aims at presenting the causal relationship among the states and the evidences.

The baseline bk is a hidden state and, consequently, not directly observable. Instead, measure-
ments from ranging sensors rk are influenced by the baseline vector and give evidence on its state
as in Figure 4.7a. A cooperative approach based on Vehicle-to-Vehicle (V2V) communication will
use the positions of ego and target vehicle estimated in each of the vehicles, to have an estimate
of the relative position of both vehicles. In this thesis a novel approach, also based on the ex-
change on GNSS data, is pursued. However, not the estimated positions in each of the vehicles
are exchanged, but the raw pseudoranges ρ. As explained in Chapter 3, the pseudoranges are
biased and corrupted measurements towards each of the GNSS satellites. These measurements
can be differenced twice, as will be explained in more detail in Chapter 5, to give, so-called double
differences ∇∆ρk that are evidences of the baseline state bk as in Figure 4.7b. Their probabilistic
dependency is given by the likelihood function

p
(
∇∆ρk

∣∣∣bk,dke) . (4.5)

As explained in Chapter 3, this function describes how likely a measurement ∇∆ρk is, given the
states bk and dke . The dependency of the pseudorange double differences with dke stems from the
fact that the baseline vector bk needs to be transformed from the ego vehicle coordinate frame
to the local navigation coordinate frame by using the orientation of the ego vehicle.

The dynamic state of each vehicle dke and dkt , including its longitudinal speed, heading, turn rate
and acceleration, influence the on-board sensors on each vehicle. Their dependency is shown in
Figure 4.7c. The speed of the vehicle will influence the speedometer readings vkCAN,e from the
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Figure 4.8.: The figure shows the full dynamic Bayesian network for continuous estimation of the
baseline between two vehicles in a probabilistic way. The directed graph shows the
conditional dependencies between the different random variables.

vehicle’s CAN bus. The speed and the heading of the vehicle will have a causal relationship on
the velocity measurements from the on-board GNSS receiver, vkGNSS,e. The acceleration, heading
and the turn rate of the vehicle influence the measurements of an Inertial Measurement Unit
(IMU), ike . Hence, these stochastic relationships can be summarized in the following probabilistic
representation for the ego vehicle:

p
(
vkCAN,e,vkGNSS,e, ike

∣∣∣dke) . (4.6)

The representation for the target vehicle is analogous. In this model, and complying with the
Markov assumption in Equation 3.24, all three evidences in time step k are assumed to be in-
dependent from their previous values in time steps {1 . . . k − 1}. This, however, is not true for
certain sensors. For instance, the vehicle speedometer, might have a systematic offset or bias
caused by a change in the wheel diameter. Also the IMU’s accelerometers and gyroscopes have
biases as will be explained in Chapter 5. Biases in the measurements are problematic, as they
violate the Markov assumption. Consequently, they need to be included in the estimated state.
The state ek includes the biases of all observations that need to be modeled.

All presented Bayesian ”pieces” are connected in the complete Bayesian network that models the
problem of continuous probabilistic baseline estimation. Figure 4.8 shows the complete Bayesian
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network for two consecutive time steps k − 1 and k. The hidden states are marked in blue, while
the observations are marked in green (dark and light in a gray scale printing). The overall joint
posterior distribution at time step k−1 gives the probability of all hidden states at time step k−1
given all observations up to time step k − 1 (see Chapter 3). This is denoted as:

p
(
{b,de,dt, e}k−1

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
(4.7)

where the nomenclature {·}e,t expresses observations at both the ego and target vehicle. The
joint prior distribution at time step k gives the probability off all states at time step k after
performing the prediction step from time step k − 1 and before incorporating new measurements
(see Chapter 3).

p
(
{b,de,dt, e}k , {b,de,dt, e}k−1

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
. (4.8)

By applying the chain rule [158], Equation 4.8 can be described as the product of:

p
(
bk
∣∣∣{de,dt, e}k , {b,de,dt, e}k−1 ,∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1

e,t
)
·

p
(
dke
∣∣∣{dt, e}k , {b,de,dt, e}k−1 ,∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1

e,t
)
·

p
(
dtt
∣∣∣ek, {b,de,dt, e}k−1 ,∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1

e,t
)
·

p
(
e
∣∣∣{b,de,dt, e}k−1 ,∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1

e,t
)
·

p
(
{b,de,dt, e}k−1

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
. (4.9)

Considering the conditional relationships from Figure 4.8, Equations 4.8 and 4.9 can be simplified
to yield the joint prior distribution of the state according to:

p
(
{b,de,dt, e}k , {b,de,dt, e}k−1

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
=

p
(
bk
∣∣∣{b,de,dt}k−1

)
· p
(
dke
∣∣∣dk−1

e
)
· p
(
dkt
∣∣∣dk−1

t
)
·

p
(
ek
∣∣∣ek−1

)
· p
(
{b,de,dt, e}k−1

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
. (4.10)

Hence, the joint prior distribution can be written as a function of the posterior distribution of
the previous time step k − 1, and the transition probabilities from k − 1 to k of each of the
states. In Equation 4.10, the probability of the random variables {b,de,dt, e}k−1 is not required.
These are so-called nuisance variables. Therefore, by integrating over the nuisance variables using
Chapman-Kolmogorov equation [158] the prior distribution for the states {b,de,dt, e}k−1 at time
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step k is obtainend. This process is called marginalization:

p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
=∫ ∫ ∫ ∫

p
(
{b,de,dt, e}k , {b,de,dt, e}k−1

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
ddk−1

e ddk−1
t dbk−1dek−1. (4.11)

In the update step, the new measurements at time step k are incorporated to the prior distribution
to obtain the new posterior by using Bayes Rule. The update equation for the pseudorange double
difference measurements ∇∆ρk is:

p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k, {vCAN,vGNSS, i}1:k−1
e,t

)
= κ·

p
(
∇∆ρk

∣∣∣{b,de}k
)
· p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k−1, {vCAN,vGNSS, i}1:k−1
e,t

)
, (4.12)

where all κ are normalization constants related to Bayes equation as explained in Chapter 3. The
update equation for the CAN speed measurements at the ego vehicle vCAN,e is:

p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k, v1:k
CAN,e, v

1:k−1
CAN,t, {i,vGNSS}1:k−1

e,t
)

= κ·

p
(
vkCAN,e

∣∣∣{de, e}k
)
· p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k, {vCAN,vGNSS, i}1:k−1
e,t

)
. (4.13)

The update equation for the GNSS derived velocity measurements at the ego vehicle vGNSS,e is:

p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k, {vCAN, i}1:k
e , {vCAN, i}1:k−1

t ,v1:k−1
GNSS,e,t

)
= κ·

p
(
ike
∣∣∣{de, e}k

)
· p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k, v1:k
CAN,e, v

1:k−1
CAN,t, {i,vGNSS}1:k−1

e,t
)
. (4.14)

Finally, the update equation for the inertial measurements in the ego vehicle ie is:

p
(
{b,de,dt, e}k

∣∣∣∇∆ρ1:k, {vCAN,vGNSS, i}1:k
e , {vCAN,vGNSS, i}1:k−1

t
)

= κ·

p
(
vkGNSS,e

∣∣∣dke) · p ({b,de,dt, e}k
∣∣∣∇∆ρ1:k, {vCAN, i}1:k

e , {vCAN, i}1:k−1
t ,v1:k−1

GNSS,e,t

)
. (4.15)

The update equations for the target measurements vkCAN,t, vkGNSS,t and ikt are analogous.

Given an initial prior probability distribution p
(
{b,de,dt, e}0

)
for time step k = 0, the joint

posterior distribution for the baseline can be estimated applying the proposed equation for predic-
tion 4.11 and update 4.12 to 4.15 sequentially for every time step k. These equations represent
the optimal solution for the estimation of the baseline given the proposed dependency model. In
Chapter 5, assumptions on the proposed distributions will be made. These assumptions will, in
general, lead to a sub-optimal estimation of the baseline.
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4.4. Vehicle Relative Positioning Metrics

Chapter 2 has presented the requirements for relative positioning systems. These requirements
were used to judge the suitability of the subsequently presented state-of-the-art approaches for
relative positioning that can be found both, installed in modern vehicles or still in development
or research phase. In order to evaluate the proposed relative positioning approach based on a
Bayesian estimation method, with exchanged GNSS pseudoranges and on-board sensors over a
V2V communication link, objective metrics need to be defined.

The accuracy of the system will be determined by calculating the error in the estimated baseline
and baseline velocity compared to the baseline and baseline velocity measured with a suited
reference system. Since planar relative positioning is regarded in the scope of this thesis, this
error is given by a two-dimensional vector, which can be decomposed in its longitudinal and
lateral component. The accuracy is assessed by performing a statistical analysis on the magnitude
of each of these components and synthesizing their distribution in a Cumulative Distribution
Function (CDF) plot. In this way, not only mean error values, but also peak errors and the
complete distribution can be analyzed.

The reliability will be analyzed by looking at the instants when the mean estimation in the relative
position exceeds the stated 3σ bound. This bound states, that the correct value lies inside with
around 99.77 % probability. If the baseline and baseline velocity errors stay inside the bound it
means that a high reliability can be expected from the system, while estimations that often or
strongly exceed the bound unveils an unreliable system.

The availability is defined as the ratio of satisfactory operational time to total time [159]. For
the proposed relative positioning system, satisfactory operation will be defined as the time the
estimation uncertainty of the relative position and relative velocity is below a certain bound.
The idea behind is that a relative positioning system providing the driver assistance application
an estimation with a large associated uncertainty will, in practice, make the estimation useless
and, consequently, the relative positioning system appear unavailable. With this definition, an
artificially increase in the stated uncertainty to meet a reliability requirement is avoided.

An ideal relative positioning system will be characterized by a) having a small estimation error in the
relative position and relative speed, b) by offering an estimation of the relative position and relative
speed that will never exceed the stated uncertainty and c) by always being available, providing an
estimation uncertainty smaller than a predefined value required by the driver assistance application.
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4.5. Summary

This chapter has motivated the problem of relative vehicle localization through the increasing need
of situational awareness in ITS. Specially for safety-related applications, vehicles require knowledge
of the position of other surrounding vehicles. The problem of relative vehicle localization is equal
to estimating the baseline vector accurately and continuously over time.

This chapter has introduced the theoretical model for the problem of probabilistic and cooperative
relative positioning between two vehicles by using the information from GNSS, inertial sensors
and speedometer. The fusion of these information sources has been achieved through the design
of a Bayesian filter in which the baseline and the baseline velocity are estimated over time. The
causal relationships have been represented by means of a Dynamic Bayesian Network. The states
have been chosen to meet the requirements of the problem and fulfill the first-order Markov
assumptions.

Accuracy, availability and reliability are the evaluation metrics that have been identified for eval-
uating the proposed approach in the evaluation chapters.



Chapter 5.

Cooperative Relative Position Estimation
through Sensor Fusion

The previous chapter introduced a probabilistic approach to solve the problem of estimating the
baseline between two vehicles using a dynamic Bayesian network. The baseline is an unknown or
hidden state and sensors represent the information sources that give evidence on this hidden state.

The aim is to find the probability density function of the baseline given the past baseline and the
current sensor readings. This probability density function is called the posterior density function
and, as explained in the previous chapter, can be written as the recursive product of the prior
probability distributions and the sensor likelihoods. In this chapter, the aim is to define each of
the probability density functions that are required to estimate the baseline posterior probability
distribution.

5.1. GNSS-based Baseline Estimation

The aim of relative positioning is to find the baseline vector b between two points. In the
special case of road transport, the baseline represents the relative position of two vehicles. The
cooperative relative positioning approach in this thesis is based on the use of Global Navigation
Satellite Systems (GNSS) measurements taken in two vehicles to estimate the baseline. A GNSS
receiver is able to measure the distance between its antenna and each of the tracked satellites. A
pseudorange is an estimation of the range between the antenna of the satellite orbiting the Earth
and the receiver’s antenna on the vehicle. The range is attained by measuring the propagation
time through the atmosphere of a signal transmitted by the satellite. Since a receiver is usually
equipped with an inexpensive, inaccurate and unsynchronized oscillator, the measured distance is
offset by an unknown amount. Additionally, the pseudorange is also corrupted by a series of errors
produced at the satellite, the atmosphere and the receiver. The measured pseudorange ρle of a

64
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receiver e towards a satellite l can be modeled as follows:

ρle = rle + c · δte + εle (5.1)

where rle is the true receiver-to-satellite geometric range, c is the speed of light constant in vacuum,
δte is the receiver clock offset and εle is the pseudorange error. The pseudorange errors are divided
in different terms corresponding to the different error sources:

εle = εlsat,e + εleph,e + εltrop,e + εlion,e + εlmp,e + εln,e, (5.2)

where:

• Satellite Clock Error (εlsat,e): this term represents the error in the signal transmission
time due to the atomic clock on-board of the satellite. Although atomic clocks are highly
accurate, their errors are large enough to require correction and must be taken into account.

• Ephemeris Error (εleph,e): to calculate the receiver position the position of each satellite
needs to be known. The calculation of the satellite’s position is made by using orbital
parameters broadcasted in the ephemeris data. Errors in satellite position when calculated
from the ephemeris data are represented as an additional delay error term in the measured
pseudorange.

• Tropospheric Error (εltrop,e): the lower part of the Earth’s atmosphere is composed of dry
gases and water vapor which produce a delay error in the GNSS signal’s propagation time
in comparison to a vacuum environment. Thus, the measured pseudorange is larger than
the correct value. This error depends on the path the signal has to travel through the
atmosphere.

• Ionospheric Error (εlion,e): the ionosphere consists of gases that are ionized by solar radi-
ation. The ionization produces clouds of free electrons that act as a dispersive medium for
GNSS signals in which propagation velocity is a function of frequency. Ionospheric delay
error varies over time on a daily cycle and, just as well as the tropospheric error, depends
on the path the signal travels through the atmosphere.

• Multipath Error (εlmp,e): objects in the vicinity of the receiver antenna may cause reflections
of electromagnetic signals resulting in one or more secondary propagation paths. The signals
on these secondary paths always have a longer propagation time and can significantly distort
the amplitude and phase of the direct-path signal. In case the Line-of-Sight (LoS) component
is blocked by the environment the correlators might track a secondary path causing a large
error in the estimation.

• Noise Error (εln,e): this term collects the remaining non-modeled errors, such as instrumen-
tal delays and white noise.
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By measuring the ranges towards a set of satellites, it is possible for a GNSS receiver to estimate its
absolute position through a process known as trilateration. Hence, two different strategies can be
formulated that make it possible to estimate the relative position between two GNSS receivers. On
one hand, the straight forward approach consists in subtracting the absolute positions of each of
the two receivers. This approach will be called absolute position differencing and will be analyzed
in Section 5.1.2. The second approach consists in differencing the pseudoranges from each other
and forming so-called single and double differences and, in a second step, estimate the baseline
using a set of differences. In this thesis, this strategy will be named pseudorange differencing
and will be explained in Section 5.1.3. Certainly, the aforementioned error sources will impact
in one way or the other the performance of both absolute position differencing and pseudorange
differencing techniques. Therefore, before presenting both approaches, analyzing their benefits
and drawbacks and comparing their performance in estimating the baseline, the error sources of
GNSS signals will be carefully analyzed in the following section.

5.1.1. Common Errors

In this section the errors on the pseudorange measurements will be regarded more carefully. Op-
posed to the classic description of error sources that can be found in the literature [28, 38], a
dedicated analysis is performed taking into account the problem description. On one hand, the
spatial correlation of the errors will be regarded. Vehicles that share GNSS measurements over a
direct Vehicle-to-Vehicle (V2V) communication link are necessarily in a distance below 2 km [41].
This will be regarded as the maximum correlation distance between the GNSS signals at the an-
tennas of both vehicles in the following assessment. As the GNSS receivers are independent from
each other they also measure the range towards the satellites at different time instants. Although
GNSS receivers tend to synchronize their measurement instants to GPS time, their increasing
clock bias will make them drift from the intended measuring instant until the internal clock is
reset. 16 ms will be used as reference value for the divergence of measurement instants in two
receivers, since this is the maximum accumulated clock bias in the Ublox LEA 4T receivers used
in this thesis until clock reset is performed. Therefore, along with the spatial correlation, also
the temporal correlation between the errors will be regarded. Specifically, the correlation between
a certain pseudorange error ε at two receivers e and t is of interest. Correlated errors at both
receivers are foreseen to cancel out by differentiation and will not contribute to the overall error
budget, while errors completely uncorrelated and errors that are partially correlated cannot be
expected to cancel out when performing a difference.

Satellite Ephemeris and Clock Errors The GPS Operation Control Segment (OCS) is respon-
sible of predicting the future satellite position and clock offset and entering these values into the
navigation message. A Kalman filter estimates the current satellite’s position, velocity, solar radi-
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ation pressure coefficients, clock offset, clock drift and clock drift rate and uses this parameters to
propagate the satellite position and clock offset into the future [160]. These parameters inside the
navigation message are used by the receivers to compute the satellite’s location at transmission
time. Any error in the broadcasted ephemerides will directly impact the range estimation done by
the receiver.

The broadcasted satellite clock bias is used to correct the signal transmit time at the receiver.
Any error in the estimated satellite clock bias automatically traduces to an error in the estimated
pseudorange by creating a virtual delay of the signal. The ephemeris error is usually decomposed
into three components. The radial component of the error vector points in direction of the Earth
center. The along and across track components point in the orbiting direction and perpendicular
to the orbiting direction of the satellite. Mainly the radial component of the ephemeris error
vector influences the ranging measurements, while the along and across error have a smaller
impact depending on the user-satellite geometry. Fortunately the radial component is nearly by
one order of magnitude smaller [161]. The Signal In Space Range Error (SISRE) gives a measure
of the fidelity of the broadcast navigation message including both, the ephemeris prediction and
the satellite clock prediction [160].

The newest generation of GPS satellites currently in orbit are the GPS Block IIF satellites. The
overall control segment error, containing both satellite clock and ephemeris error, has been tight-
ened to 3 m for these satellites [162]. According to [28], the SISRE is about 1.5 m (rms), while
according to [160] as of 2003 the SISRE was 1.1 m (rms). A short quantification of the satellite
position and satellite clock error is performed by comparing broadcasted ephemerides to postpro-
cessed precise satellite positions and satellite clock offsets. The International GNSS Service (IGS)
offers post-fitted precise ephemeris that are generated with two weeks delay from the data acquired
by its network of more than 200 base stations. The stated accuracy of IGS’ final products is around
2.5 cm in position and 75 ps in clock bias (rms). Figure 5.1a shows the radial component of the
satellite ephemeris error and Figure 5.1b the satellite clock errors for a set of satellites. It can be
observed how the satellite position error contributes up to 1 m (the offset at some of the satellites
is due to the uncorrected displacement between the antenna and the satellite’s center-of-mass).
The satellite clock error has values above 2 m of error on the pseudorange.

The satellite clock error is completely correlated between the receivers, since the offset creates a
constant bias on all tracking receivers on the Earth. The ephemeris error, on the other hand, will
be slightly different for each receiver on the Earth, due to the different distribution of the radial,
across-track and along-track components as seen from each receiver. A conservative bound for
the different ephemeris error is given in [163]:

∆εeph ≤
b · δr
r

, (5.3)
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(a) Satellite Ephemeris Error
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(b) Satellite Clock Error

Figure 5.1.: The figures show the satellite position error and satellite clock error for ten satellites in
a 24 hour period. Both, the satellite position and satellite clock errors were computed
by comparing broadcasted to precise ephemerides.

where r is the range to the satellite, δr the ephemeris error and b the separation between both
receivers. The large range towards the satellites of approximate 20.000 km is responsible for the
small angular separation of the unitary error vectors towards the satellites and, consequently, a
small difference in the projection of the ephemeris error vector. At a separation of 2 km, an
ephemeris error of 10 m has a difference of less than 1 cm between both receivers. According to
Figure 5.1a, the error due to wrong ephemeris is usually much smaller than 10 m and, hence, can
be assumed to be completely correlated between two receivers at this separation.

The delayed measurement instants will also slightly influence the correlation of the satellite clock
and ephemeris errors. The atomic clock on-board of the satellite is freely running and its clock
offset will change according to the drift of the clock. The Block IIF satellites feature high-quality
rubidium frequency standards with clock drifts between 10−12 s

s [164]. These highly stable clocks
yield a negligible clock offset difference in 16 ms of far below 1 mm. From Figure 5.1b variations
of 1.5 m in one hour can be seen, which result in a negligible ephemeris error variation in 16 ms.

While the residual error in the ephemeris data is quite small for two unsynchronized receivers, a
further magnitude related to the satellite position has to be regarded. The pseudorange measure-
ments in two receivers e and t are estimates of different ranges rle and rlt. These ranges are not
only different because of the different position of the receivers, but also because of the different
satellite positions at the transmit instants. The GNSS satellites move at a speed of around 1000 m

s
with respect to the user on the Earth [28]. Consequently, in 16 ms the satellite travels up to 15 m
distance. The radial component of this figure directly impacts the difference in the pseudoranges.
In Section 5.1.5, a method for compensating for this amount is presented.
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Tropospheric Error The non-dispersive sections of the atmosphere with a refractive index
slightly larger than unity cause a delay in the propagation of radio frequency signals. This so-called
tropospheric error in the GNSS error budget is caused by water vapor in the low troposphere up
to 12 km and dry gases, mainly O2 and N2, in the lower atmosphere up to a few hundreds of
kilometers above see level [93]. The tropospheric delay depends on the temperature, pressure and
humidity along the propagation path [93]. Since this information is usually not available, tropo-
spheric models that use a standard atmosphere model can be used to estimate the delay caused
by the troposphere. The Saastamoinen model [165] or the Modifed Hopfield model [166] are such
examples. The tropospheric delay ranges from 2 m in zenith direction to 25 m for low satellite
elevations of 5°. Fortunately, the tropospheric delay can be predicted with good accuracy. The
residual tropospheric error after applying the model is of a few centimeters for zenith satellites,
but can sum up to 0.5 m to 1 m for low elevation satellites [28].

The wet delay, the part of the tropospheric delay caused by water vapor in the lower troposphere,
is highly variable. Two receivers separated by 2 km might have, in principle, different weather
conditions. It has been recognized that horizontal tropospheric variations due to weather fronts
could adversely affect Local Area Augmentation Systems [167]. With short baseline measurements
(2 km to 3 km), the relationship between the increase in carrier phase double difference residuals
and the advance of storm fronts was identified in [168]. Residuals were found to increase up to
0.18 cycles (3.4 cm) because of the difference in tropospheric delay at each antenna. This value, is
relevant to Real Time Kinematics (RTK) positioning, but can be safely disregarded for the purposes
of this thesis. Regarding the time correlation in 16 ms, the tropospheric delay is regarded as being
equal for two different receivers. The dry gases in the atmosphere which account for 90 % of the
tropospheric delay are rather stable [28]. Variations of 3 cm observed in one hour [93], have a
insignificant impact on the time decorrelation of the tropospheric error.

Ionospheric Error The ionosphere is a region of ionized gases containing free electrons and ions
that extends from a height of about 50 km to about 1000 km above the Earth’s surface. As the
ionization of gases is produced by the radiation of the sun, the effect of the ionosphere on GNSS
signals varies widely between night and day. At the same time, the changing solar activity causes
the impact of the ionosphere to vary from one day to the next. The parameter used to quantify
the effect of the ionosphere on GNSS signals is the Total Electron Content (TEC), which measures
the number of free electrons in the path from the satellite to the receiver in a tube of 1 m2 of
cross section [28]. The TEC is measured in Total Electron Content Unit (TECU) which are defined
as 1016 free electrons per m2. Solar flares and the resulting magnetic storms create large and
sudden changes in the TEC, which affect the delay of GNSS signals.

The amount of the ionospheric delay on the pseudorange estimate, depending on the user latitude,
the time of the day, the satellite elevation and the solar activity, varies between several meters and
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several tens of meters. Eight parameters of the Klobuchar model [169] are broadcasted by the
American Global Positioning System (GPS) system for the receivers to estimate and compensate
for the ionospheric delay. According to [170], the residual error after applying the Klobuchar
ionospheric model is approximately 50 % of the total ionospheric error. At mid-latitudes the
remaining ionospheric error can be up to 10 m.

TEC walls are geographical changes of the ionospheric TEC value. The ionospheric gradient is
used to describe the spatial decorrelation rate of ionosphere delay. A large ionospheric gradient
means that the ionosphere decorrelates quickly with the increase of the spatial separation. Typical
values for a gradient is 1 mm

km to 2 mm
km [28], with values raising to 400 mm

km when the ionosphere is
active [171]. Hence, an extreme decorrelation of 80 cm could happen for a 2 km baseline during
strong ionospheric activity.

The change in the TEC content in one day with regular solar activity is of about 20 TECU in
six hours [125]. However, during a solar flare sudden changes in the TEC content can happen.
During the solar burst occurred on October 28th 2003, the TEC content changed as much as 17
TECU in a period of five minutes [172]. This corresponds to a change in delay of 2.7 m in five
minutes. Consequently, even the strongest ionospheric events have contributions of less than 1 cm
in 16 ms and, thus, the assumption of time correlation of ionospheric errors can safely be made.

Relativistic Error Both, Albert Einstein’s General Law of Relativity and the Special Law of
Relativity influence strongly the clocks on board of the satellite. On the one hand, the clock
on the satellite is at a weaker gravitational potential than the reference clocks on the surface of
the Earth. According to the General Relativity, a clock at a lower gravitational potential will run
faster than a clock at a stronger potential. This effect is called red shift and will cause that, on
average, the satellite clock ticks 45 µs faster every day [173]. On the other hand, the satellites
move faster in the inertial frame than a user on the ground. The General Relativity states that a
clock traveling at a higher speed will run slower than a stationary clock. This effect known as time
dilation accounts on average for 7 µs every day [173]. Both these effects compensate partly. To
account for the net effect the satellite clocks are set to run 38 µs slower per day prior to launch.
This is known as the factory compensation.

However, these effects are not constant but depend on position of the satellite in its orbit and the
position of the user. The residual eccentricity in the satellite orbit causes periodic variations in
the time dilation and red shift observed by a user. The receiver has to account for this residual
error that can amount to 45 ns or 13.5 m at eccentricities of only 2 % [93]. The amount of the
residual relativistic effect due to second order effects such as the Earth oblateness contribution to
the gravitational red shift or the tidal potentials of Moon and Sun can account for up to 40 ps or
12 cm [173].
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The relativistic effect can be considered as a satellite clock bias and, consequently, is correlated
in all receivers tracking the same satellite. The time variation of the relativistic induced error in
16 ms is negligible taking into account the small change in gravitational potential and in satellite
velocity in the 15 m the satellite traveled on its orbit. Therefore, this error can be assumed as
being completely correlated in two unsynchronized receivers.

The Sagnac effect is a further relativistic component that is caused by the Earth rotation during
the signal propagation time from the satellite to the receiver. Although its amount is rather large
and can be as high as 133 ns or 40 m, it is easily modeled and it is corrected before computing the
absolute position of a receiver [173]. In relative positioning using pseudoranges of two receivers,
this effect also needs to be taken into account. This will be presented in a novel synchronization
approach in Section 5.1.5.

Noise Error The random noise error on the pseudorange measurements is a consequence of
receiver noise originated in different stages of the GNSS signal reception process. In starts with
in-band radio frequency noise at the receiver antenna and the noise introduced by the radio
frequency front end. The analogue-to-digital converter introduces quantization noise into the
digital signal. These effects are all uncorrelated between two receivers, both in space and in time
[28]. Therefore, noise cannot be expected to be canceled out by a differentiation procedure.

The magnitude of the pseudorange noise depends on the carrier-to-noise ratio of the incoming
signal. This value is usually between 38 dBHz for low-elevation satellites and 45 dBHz for zenith
satellites. For a classic Delay-lock Loop (DLL) architecture as introduced in Chapter 3, the pseu-
dorange noise will also depend on its design parameters. If the input to the DLL is assumed to be
the ranging Coarse Acquisition (C/A) code plus white Gaussian noise, the following equation gives
the standard deviation σρ of the pseudorange noise [38]:

σρ = c · Tc

√√√√ d ·Bρ
4 · T · CN0

, (5.4)

where Tc is the chip width, d is the correlator spacing, Bρ the loop bandwidth, T the DLL
integration time, C

N0
the carrier-to-noise ratio of the signal and c the speed of light. The chip

width is constant and its value for the C/A code is 1 µs. The correlator spacing d is a design
parameter. The smaller the chip width, the more precise the tracking of the delay. However, a
small spacing increases the risk of loosing track of the prompt correlation peak when the signal is
weak or the risk of tracking a neighboring peak caused by multipath propagation. The integration
or averaging time T is designed according to the dynamics of the platform. By increasing the
averaging, the noise in the pseudorange gets filtered out. However, longer averaging yields a lower
loop bandwidth and a worse response to variations in the signal. Typical values for loop bandwidth
Bρ in vehicular environments are between 1 Hz and 4 Hz [28].
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Figure 5.2.: This figures shows the pseudorange error due to noise in a C/A code DLL with a
0.1 chip spacing and 1 Hz loop bandwidth in dependance of the carrier-to-noise ratio
of the incoming signal.

The pseudorange error due to noise is depicted in Figure 5.2 and can be considered around 0.2 m
for good carrier-to-noise ratio (45 dB Hz) and 2.5 m for bad satellite reception (25 dB Hz).

Multipath Error Besides the direct LoS signal transmitted from the GNSS satellite, objects in the
vicinity, as well as the ground, can cause reflections that reach the user antenna. These multipath
components are delayed and attenuated replicas of the original LoS signal. Inside the DLL, the
multipath components distort the correlation peak, making early and late correlator samples not
being centered on the true arrival time of the direct path. Consequently, the pseudorange is biased
by an amount that can be either positive or negative. The amount of multipath error depends on
the DLL correlator spacing, the time and phase delay, the phase-rate and the attenuation of the
multipath components [38]. As an example, pseudorange errors due to multipath for a receiver
with 0.5 chip correlator spacing in the presence of a −12 dB attenuated multipath signal can
produce errors up to 20 m [28]. In vehicular environments, pseudorange errors of more than 100 m
were measured in urban environments [100]. In this cases the LoS component of the signal is
blocked and the DLL is tracking a reflected component.

The multipath components are strongly related to the surrounding objects causing them and,
therefore, are not correlated in space [93]. The components arriving at two receivers separated by
short distances have different phases and therefore another interference pattern at the DLL. The
impact of the receiver unsynchronization in multipath environments will be subject of analysis in
Chapter 6.

Discussion The different contributions to the pseudorange errors have been analyzed. The
second column in Table 5.1 summarizes the expected amount of these errors. A relative position
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Table 5.1.: Summary on GNSS Errors

Error Source Potential Error Decorrelation for
a 2 km baseline

Decorrelation for
a 16 ms unsyn-
chronization

Satellite Clock &
Satellite Ephemeris 1.5 m 1 cm negligible

Tropospheric Error 0.5 m to 1 m 5 cm negligible

Ionospheric Error 2 m to 10 m
2 mm to 4 mm
80 cm during high activity < 1 cm

Relativistic Error 0 cm to 12 cm correlated negligible

Noise Error 0.2 m to 2.5 m 0.2 m to 2.5 m 0.2 m to 2.5 m

Multipath Error 0 m to 20 m 0 m to 20 m 0 m to 20 m

technique as the one followed in this thesis aims at eliminating their contribution. The third
and fourth column describe the amount of decorrelation of the common errors, once when the
two receivers are spaced 2 km apart from each other, and once when both receivers make the
measurements delayed 16 ms from each other.

Table 5.1 reveals that by using a differential approach on GNSS pseudoranges an amount of several
meters can be potentially canceled out. Specially the cancellation of the ionosphere induced error
for lower elevation satellites will have a major impact on the baseline estimation. Further on,
Table 5.1 shows that the correlation between two receivers in two different vehicles also holds in
the case of a 2 km separation distance and 16 ms unsynchronization. The largest uncorrelation
could be due to a difference in the residual ionospheric error after compensation at two distant
vehicles during a strong solar burst.

The pseudorange noise error still remains, since it is uncorrelated between the receivers, but if
correctly tackled, its contribution can be minimized as will be presented in the following sections.
Multipath is the great problem to vehicular positioning. It is uncorrelated and, consequently, not
removable through differentiation and can contribute with large errors. Multipath must be tackled
by other methods. One possibility will be addressed in Section 5.6.4.
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5.1.2. Absolute Position Differencing

After acquiring and tracking the GNSS signal of at least four satellites, a GNSS receiver e is able
to compute an estimate of its three-dimensional absolute position vector pe =

[
xe ye ze

]ᵀ
.

This position is usually expressed in an Earth-fixed coordinate frame, as for instance, the Earth-
Centered-Earth-Fixed (ECEF). The process of determining the position by measuring the Time of
Arrival (ToA) to a set of known transmitters using the geometry of circles or spheres is called tri-
lateration. The straightforward approach consists in solving the position pe and the receiver clock
error δte in a non-linear system of equations that takes L available pseudorange measurements
into account:

ρle = rle + c · δte + εle, (5.5)

with l = {1, . . . , L|L > 4} and where the range between receiver e and satellite l, rle, can be
expressed as:

rle = ‖pl − pe‖ =
√

(xl − xe)2 + (yl − ye)2 + (zl − ze)2, (5.6)

where pl =
[
xl yl zl

]ᵀ
is the known satellite position. Consequently, Equation 5.5 has four

unknowns and, by taking L = 4 measurements, a solution can be found in the ideal case. In
general, and due to the noise εle, a solution to the resulting system of equations does not exist.
Therefore, the best solution in the sense of minimizing the mean squared error is found using the
Least Squares (LS) method explained in Chapter 3. A standard algorithm to solve the system of
non-linear equations is the Gauss-Newton method [174]. The method linearizes the system model
at an initial user position p0

e =
[
x0

e y0
e z0

e
]ᵀ

and clock bias δt0e . The range from receiver e to
satellite l at iteration 0 is

rle ≈ ‖pl − p0
e‖+ xl − x0

e
‖pl − p0e‖

δx + yl − y0
e

‖pl − p0e‖
δy + zl − z0

e
‖pl − p0e‖

δz, (5.7)

where δx = x0
e − x, δy = y0

e − y and δz = z0
e − z are the position offsets to the solution. The

offset in the position and clock, δ =
[
δx δy δz δt

]ᵀ
, is found by solving the resulting system

of linear equations
δρe = Gu · δ, (5.8)
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where

Gu =


u1

x u1
y u1

z 1
... ... ... 1
uLx uLy uLz 1

 =


x1−x0

‖p1−p0e ‖
x1−x0

‖p1−p0e ‖
x1−x0

‖p1−p0e ‖
1

... ... ... 1
xL−x0

‖pL−p0e ‖
xL−x0

‖pL−p0e ‖
xL−x0

‖pL−p0e ‖
1

 , (5.9)

δρe =


ρ1

e − r0
1

...
ρLe − r0

L

 . (5.10)

Gu is the geometry matrix containing the unitary vectors ul to the L satellites in view as row
vectors and a last column filled with ones. As explained in Chapter 3, the least squares solution
to Equation 5.8 is given by:

δ = (Gu ·Gᵀ
u)−1 ·Gᵀ

u · δρe. (5.11)

In every iteration i the offset δ is added to the previous position estimate according to pi+1
e =

pie + δ. While the offset becomes smaller, the method will eventually converge to the solution[
p̂e δ̂te

]ᵀ
that minimizes the root mean squared error to all pseudoranges. In general, the position

computation converges quickly in two to four steps, even when choosing a null vector as initial
position and clock bias [28]. For the subsequent performance analysis, the geometry matrix for
absolute position differencing is defined as:

GAPD = (Gu ·Gᵀ
u)−1 ·Gᵀ

u. (5.12)

Several approaches exist to improve the absolute position estimated in this way. A Weighted Least
Squares (WLS) approach can be used to give different weights to the measurements according to
their noise variance. If the magnitude of the noise variance is unknown, the weighting matrix
can be designed in dependance of the elevation of the satellite or the carrier-to-noise ratio of the
received signal. Other epoch-wise methods to solve the absolute positioning problem that offer
greater robustness and faster convergence are the steepest descent algorithm and the Levenberg-
Marquardt algorithm [24]. In a Kalman filter, the absolute position may be estimated making
use of the temporal relationship of the unknowns and the biases and use these to increase the
accuracy of the position estimate [38].

In the case that the pseudoranges adhere to the model in Equation 5.5, the estimation of the
absolute position is unbiased. However, as explained in the previous section, certain errors might
bias the pseudorange measurements, and, consequently, bias the absolute position estimate. Some
of the error sources can be modeled and be partially subtracted to the pseudorange measurements
in order to decrease their impact on the final position estimate. Other biases as, for instance, the
ionospheric delay, can be modeled and canceled up to a certain amount. The residual stays as a
bias in the pseudorange measurement, and biases the position estimate.



Chapter 5. Cooperative Relative Position Estimation through Sensor Fusion 76

In absolute position differencing the estimate b̂APD of the baseline b between two receivers e and
t is calculated by subtracting their absolute positions as in

b̂APD = p̂t − p̂e. (5.13)

Cramér-Rao Lower Bound for absolute position differencing Recalling Chapter 3.3, the
Cramér-Rao Lower Bound (CRLB) for an unbiased estimator defines a performance lower bound
on the variance of parameter estimation algorithms. Now, the CRLB for the baseline estimated
with absolute position differencing will be derived. Equation 3.17 gives the Fisher Information
Matrix (FIM) for a vector estimator that uses observations corrupted by additive white Gaussian
noise of variance σ2. The measurements zi in Equation 3.17 are now the pseudoranges ρle. To
compute the FIM the derivative of the measurements with respect to the state is required. In this
case, this is equal to the geometry matrix Gu from the Gauss-Newton method. The resulting FIM
for the absolute position estimator p̂e at receiver e is

Jp̂e = 1
σ2 Gᵀ

uGu, (5.14)

The corresponding CRLB is given by the inverse of the FIM:

Cov(p̂e) = σ2(Gᵀ
uGu)−1. (5.15)

In the case that the pseudorange are corrupted with additive noise of varying variance given by
the diagonal matrix Rρ, the previous equation is written as:

Cov(p̂e) = (Gᵀ
uR−1

ρ Gu)−1. (5.16)

Now, assuming uncorrelated estimators in both receivers, the variances add to give the lowest
bound for the baseline estimation with absolute position differencing :

Cov(b̂APD) = 2σ2(Gᵀ
uGu)−1. (5.17)

In the general case of different satellites in receivers e and t and different noise variances on the
pseudoranges to different satellites from different receivers, the CRLB yields:

Cov(b̂APD) = (Gᵀ
u,eR−1

ρ,eGu,e)−1 + (Gᵀ
u,tR−1

ρ,t Gu,t)−1, (5.18)

where the different satellite geometries are expressed in Gu,e and Gu,t, and the different pseudo-
range covariances the matrices Rρ,e and Rρ,t.
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5.1.3. Pseudorange Differencing

A second approach is proposed for the direct estimation of the baseline b. Instead of computing
the absolute position of each vehicle, the pseudorange differencing approach for relative positioning
of vehicles relies on the double differentiation of GNSS pseudorange measurements. In a first step,
a single difference measurement ∆ρlet is obtained by subtracting the pseudorange measurements
from two different receivers e and t referred to the same satellite l:

∆ρlet = ρlt − ρle = ∆rlet + c ·∆δtet + ∆εlet, (5.19)

where ∆δtet is the differenced receiver clock biases and the differenced pseudorange error is equal
to

∆εlet =εlsat,t + εleph,t + εlion,t + εltrop,t + εlmp,t + εln,t (5.20)
− εlsat,e − εleph,e − εlion,e − εltrop,e − εlmp,e − εln,e.

As analyzed in Section 5.1.1, under a close proximity assumption, the terms εion, εtrop, εsat and
εeph can be assumed to be equal in both receivers and are canceled out with the single difference
operation yielding

∆εlet ≈ εlmp,t + εln,t − εlmp,e − εln,e. (5.21)

Hence, the single difference in Equation 5.19 is still biased by the user clocks at e and t and by
the uncorrelated noise and multipath. By subtracting two single differences towards two different
satellites l and m, a double difference measurement ∇∆ρlmet is computed. With this procedure,
the common errors to both satellites are canceled out. This is the case for the differenced receiver
clock error ∆δtet. A double difference pseudorange measurement is expressed in the following
way:

∇∆ρlmet = ∇∆rlmet +∇∆εlmet , (5.22)

where the symbol ∇∆ denotes the difference between the corresponding terms in the two single
differences. ∇∆rlmet is the projection of the baseline in the differenced direction to satellites l and
m. The error term ∇∆εlmet represents the remaining differential error term between two receivers
and two satellites:

∇∆εlmet ≈ ∇∆εmp +∇∆εn. (5.23)

As reported in [175], the remaining errors are mainly multipath and non-modeled errors like thermal
noise and interference. It should be noticed that, while common errors terms are nearly canceled
out by differencing, uncorrelated error terms increase the noise variance within this operation
likewise.

Figure 5.3 shows the geometric relationship between the vehicles and the satellites. The baseline
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Target vehicle

Satellite l Satellite m

Figure 5.3.: Geometric relationship between the baseline between two vehicles and the pseudorange
double difference measurements. For simplicity the baseline has to be put equal to
the distance between the GNSS antennas. In general, the displacement vectors from
the antenna position to the vehicle reference point defined in Chapter 4 has to be
added.

b between two vehicles, ego and target, is a vector in space expressed in an Earth-fixed coordinate
frame, such as ECEF. Each double difference measurement ∇∆ρlmet is a projection of the baseline
vector b in the direction of the differenced satellite unitary vector ulm = ul−um. By taking three
or more double difference measurements the baseline coordinates can be computed by solving a
system of linear equations. Here is an example for three pseudorange double differences:


∇∆ρlmet
∇∆ρlnet
∇∆ρloet

 =


ulmx ulmy ulmz
ulnx ulny ulnz
ulox uloy uloz



bx

by

bz

 (5.24)

where bx, by and bz are the three baseline coordinates, and ulmx , ulmy and ulmz the three differenced
unitary vector coordinates, both in the same navigation frame. The three double differences in
this example are computed by subtracting the single differences to satellite m, n and o from the
single difference to satellite l. Although any combination of double differences is possible, the
approach of selecting one satellite as the common satellite is a common procedure [28]. Usually,
the common satellite is chosen to be the one near the zenith, since it is more unlikely that this
satellite is obstructed and therefore has a better signal strength and, consequently, less noise. This
is important since the noise error of the common satellite is introduced in all double differences.
The compact representation for the linear system of equations in Equation 5.24 is given by:

∇∆ρet = Guu · b, (5.25)

where ∇∆ρet is the vector containing all double differences and Guu is the geometry matrix
containing differenced unitary vectors to the satellites in view. Usually, the system of linear
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equations in Equation 5.25 is overdetermined. The solution b̂PRD that minimizes the squared
error to this system of equations is given by [174]:

b̂PRD = (Gᵀ
uu ·Guu)−1 ·Gᵀ

uu ·∇∆ρet. (5.26)

For future analysis the definition of the geometry matrix for pseudorange differencing is given:

GPRD = (Guu ·Gᵀ
uu)−1 ·Gᵀ

uu. (5.27)

Each double difference noise component ∇∆ε in Equation 5.23 includes the noise contributions
from four pseudorange measurements, ρle, ρlt, ρme and ρmt . As subtraction cancels any common
noise component out (e.g.noise at the antenna’s amplifier), the assumption holds, that the noise
of the different pseudoranges is statistically mutually independent of each other. The next equa-
tions present the noise variance-covariance matrix for the pseudorange double differences for two
receivers e and t and three common satellites, l, m and n. The L matrix represents the linear
relationship between the the pseudorange vector ρ and the double difference vector ∇∆ρet:

∇∆ρet =
[
∇∆ρlmet
∇∆ρlnet

]
= L · ρ =



1 1
−1 0
0 −1
−1 −1
1 0
0 1



ᵀ 

ρle

ρme

ρne

ρlt

ρmt

ρnt


(5.28)

Assuming equal noise with variance σ2
ρ on all pseudoranges in both receivers e and t, the noise

covariance matrices for the pseudoranges yield Rρ,e = Rρ,t = σ2
ρ · I. Hence, the noise covariance

matrix for the double differences is

R∇∆ρ = L
[

Rρ,e 03×3

03×3 Rρ,t

]
Lᵀ = 2σ2

ρ

[
2 1
1 2

]
(5.29)

Equation 5.29 reveals that the noise variance for a double difference measurement is four times
the noise variance of each pseudorange measurement (assuming equal variance on all pseudorange
measurements). Further on, it should be noticed that the resulting double differenced observations
involving a common satellite are statistically dependent. Therefore, the calculated remaining noise
covariance matrix R∇∆ρ is not diagonal, but has off-diagonal components of twice the noise
variance of the pseudorange measurement.
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Cramér-Rao Lower Bound for pseudorange differencing Pseudorange differencing is a unbi-
ased estimator of the baseline between the vehicles. Therefore the CRLB of b̂ using the measure-
ments ∇∆ρ is derived next. As a measurement model, additive white Gaussian noise is added to
the pseudorange double differences. The resulting measurement model is

∇∆ρ = Guub + ∇∆ε, (5.30)

with ∇∆ε being white additive Gaussian noise with zero mean and mutually correlated with
covariance matrix R∇∆ρ. Consequently the measurement likelihood p(∇∆ρ|b) is a multivariate
Gaussian with mean Guub and covariance R∇∆ρ:

p(∇∆ρ|b) = 1√
(2π)N−1‖R∇∆ρ‖

exp

{
−1

2(∇∆ρ−Guub)ᵀR−1
∇∆ρ(∇∆ρ−Guub)

}
(5.31)

where N is the number of measured pseudoranges and ‖ · ‖ denotes the determinant opera-
tion. Note that having correlated noise between the measurements, the assumptions that lead to
Equation 3.17 are not valid anymore. The Fischer Information Matrix of Equation 3.17 for this
case is simplified to

Jb̂ = Gᵀ
uuR−1

∇∆ρGuu, (5.32)

and the corresponding CRLB for the pseudorange differencing baseline estimator is

Cov(b̂PRD) = (Gᵀ
uuR−1

∇∆ρGuu)−1. (5.33)

As in the case of the CRLB out of the measurement model for absolute position differencing (see
Equation 5.18), this CRLB for pseudorange differencing is a function of the measurement errors and
the constellation geometry. For a given satellite geometry, Gu or Guu, and a given measurement
errors, Rρ or R∇∆ρ, both CRLB yield the same value. This is intuitive, since the CRLB gives the
covariance of the best possible estimator.

Figure 5.4a to Figure 5.4f show the skyplot, i.e. the position of the satellites on a polar plot,
for different satellite constellations. The concentric circles represent satellite positions with same
elevation. The central point is the zenith (90°), while the outer circle represents the horizon
(0°). A horizontal baseline between two vehicles of 100 m in north direction is simulated. All
pseudorange measurements were simulated with equal standard deviation of σρ = 1 m. The
red ellipse represents the horizontal CRLB of the estimation of the relative position. Table 5.2
summarizes the variances in east, north and up direction of each of the plots.

For the chosen baseline direction, north-south variance corresponds to the uncertainty in the
longitudinal component of the baseline, while the east-west variance represents the uncertainty in
the lateral component of the baseline. The up-component of the the CRLB mirrors directly the
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uncertainty in the height component of the baseline, which, usually plays a subordinate role in
vehicle relative positioning.

Figure 5.4a shows the optimal satellite configuration that minimizes the geometric errors. A wide
open configuration with orthogonal satellites yields a small error in all three baseline components.
In practice, low satellite elevations are not convenient, as the signals are easily obstructed and,
consequently, have a lower signal strength and more noise. Usually an elevation mask between 5°
and 15° is chosen [38]. The vertical baseline error is larger than the horizontal components due to
the geometry of the problem, having only satellites located on one side of the celestial hemisphere
(see second row in Table 5.2). When only high-elevation satellites are visible (see Figure 5.4b),
the uncertainty in the vertical component increases strongly. A special case is when both vehicles
drive along an urban canyon. Here, low elevation satellites in lateral direction to the baseline are
blocked due to high buildings, while satellites in canyon-direction are available at low elevation.
The result is a low lateral baseline accuracy as pictured in Figure 5.4c.

Thus, in order to have a good longitudinal accuracy satellites distributed along the semicircle
in-line with the baseline and through the zenith are needed. Lateral accuracy is improved by
satellites distributed along the semicircle perpendicular to the baseline and through the zenith.
For good vertical baseline accuracy, low elevated satellites are of advantage.

In case of equal measurement errors, the choice of the common satellite is irrelevant. Figure 5.4d
has the same constellation than Figure 5.4a but choosing a different common satellite and, thus,
the same baseline errors can be appreciated. In practice, however, the highest located satellite
near zenith is chosen, which is usually the satellite suffering less obstruction, higher signal power
and is the more often available. In Figure 5.4e and 5.4f, extended constellations with 8 and 12
satellites can be observed. The last two rows in Table 5.2 reveal how the horizontal error can be
reduced the more satellites are available.

5.1.4. Comparison: Absolute Position Differencing and Pseudorange
Differencing

The previous sections introduced two different techniques to estimate the baseline vector between
two vehicles, namely, the subtraction of absolute positions and the differentiation of GNSS pseu-
doranges. In this section, a systematic analysis of both approaches is performed. To simplify this
analysis, a single epoch view is assumed, where a temporal relationship of the errors is neglected.
The metric used is the mean squared error (MSE), which includes both, the variance and the bias
of the estimator. The MSE for the relative positioning problem is defined as εb̂ = E[‖b̂ − b‖2].
The input to the estimators are the pseudoranges ρle and ρlt with l = {1 . . . L} and L being the
number of tracked satellites. The error model considered for the pseudoranges of e and t are the
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Figure 5.4.: The red ellipsoid represents the horizontal components of the CRLB for different satel-
lite geometries and pseudorange measurements with white Gaussian noise of equal
variance. Table 5.2 contains the values for the ellipsoids.
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Table 5.2.: Cramér-Rao Lower Bound (CRLB) values for different satellite geometries

Figure East Error North Error Up Error

Figure 5.4a 1.1338 m 1.1213 m 2.9383 m

Figure 5.4b 2.2772 m 2.2766 m 15.5557 m

Figure 5.4c 7.1751 m 1.1298 m 6.3145 m

Figure 5.4d 1.1338 m 1.1213 m 2.9383 m

Figure 5.4e 0.8250 m 0.9068 m 2.8223 m

Figure 5.4f 0.6841 m 0.7047 m 2.9087 m

following:

εle = C l + nle, (5.34)
εlt = C l + nlt, (5.35)

where C l is the common error to the pseudoranges of both receivers e and t to the same satellite
l. For simplicity, it is assumed that the common error is uniformly distributed in the interval [0, c],
where c is the common error limit. The statistical properties of C l are summarized next:

C le = C lt, (5.36)

E[C l] = c

2 , (5.37)

E[(C l)2] = c2

3 , (5.38)

E[C l · Cm] = E[C l] · E[Cm] = c2

4 . (5.39)

Whereas, nle and nlt in Equation 5.34 and Equation 5.35 are noise components following a Gaussian
distributions with zero mean and equal variance σ2

ρ on all satellites, and mutually independent
between satellites and between receivers. Its statistical properties are summarized next:

E[nle] = 0, (5.40)
E[(nle)2] = σ2

ρ, (5.41)
E[nle · nlt] = 0, (5.42)
E[nle · nme ] = 0. (5.43)
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Since this is a snapshot analysis, no assumptions on the time correlation of the errors is made. In
general, common errors and noise are not white but have a certain time correlation. The common
error is to a certain extend static due to the limited dynamic of the satellite position, the dynamic
of the atmosphere or the behavior of the atomic clocks on the satellite. The noise component on
the pseudoranges is colored by the tracking loops in the receivers. Next, the propagation of these
errors from the pseudoranges to both baseline estimators will be regarded for absolute position
differencing and pseudorange differencing. On the one hand, the baseline estimate b̂APD has a
mean squared error εb̂,APD. It can be mathematically derived that the MSE for absolute position
differencing is given by:

εb̂,APD = E[‖b̂APD − b‖2] =

= GAPD,e ·Rρ ·Gᵀ
APD,e + GAPD,t ·Rρ ·Gᵀ

APD,t

− 2 ·GAPD,e ·RC ·GT
APD,e. (5.44)

The geometry matrices at the ego receiver, GAPD,e, and at the target receiver, GAPD,t, transform
the pseudorange errors given by the covariance matrices Rρ and RC into an error in the baseline.
Both are defined as:

Rρ =


σ2 + c2

3
c2

4 . . . c2

4
c2

4 σ2 + c2

3 . . . c2

4
... . . . ...

. . .

 , (5.45)

RC =


c2

3
c2

4 . . . c2

4
c2

4
c2

3 . . . c2

4
... . . . ...

. . .

 . (5.46)

On the other hand, the baseline estimate b̂PRD, whose mean squared error is given by:

εb̂,PRD = E[‖b̂PRD − b‖2] = GPRD ·R∇∆ρ ·Gᵀ
PRD, (5.47)

where GPRD is the transformed geometry matrix from Equation 5.27 and R∇∆ρ is the error
covariance matrix for the double differences from Equation 5.29. R∇∆ρ incorporates only the
contribution from the noise terms nle and nlt, since the common error C l has canceled out through
differentiation.

Finally, with Equations 5.44 and 5.47, an expression for the mean squared error for both estimators
in dependence of the geometry of the satellite constellation used in each receiver, the common
error limit c and the noise standard deviation σρ has been found.
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Figure 5.5.: Mean baseline error with absolute position differencing (green) and pseudorange dif-
ferencing (blue) with pseudoranges corrupted by noise (left figure) and noise and
common errors uniformly distributed between zero and the common error limit (right
figure).

Given a fixed arbitrary constellation of 12 GNSS satellites and two antenna positions separated
100 m from each other, a series of Monte-Carlo simulations have been performed using MATLAB
in order to determine the performance of each of the methods. For this purpose, multiple runs
with varying random errors on the pseudoranges have been simulated. The pseudorange of each
receiver to each satellite is the true range, plus a bias term due to the user clock and an error term.
In absolute position differencing, each receiver estimates its position and user clock bias by solving
iteratively the non-linear least squares problem. In a second step, the positions in the navigation
frame are subtracted from each other to retrieve the baseline. In pseudorange differencing, first the
common set of pseudoranges are subtracted twice to calculate the pseudorange double differences.
The baseline using all double differences is estimated using a least squares algorithm. The mean
squared error vector over all simulations is computed in order to compare both methods against
each other.

First, a simulation adding a random Gaussian error nle with a certain standard deviation σρ on
each of the pseudoranges has been performed. The resulting baseline’s mean squared error is
shown in Figure 5.5a. The dots in the figure are the result from the Monte-Carlo simulation with
2000 realizations, whereas the solid line represents the theoretical result from Equation 5.44 and
Equation 5.47. Their resemblance proves that the theoretical derived equations correctly describe
the errors in the scenario. It can be seen that absolute position differencing yields a better solution
than pseudorange differencing when using the same set of 12 satellites. This is due to the fact
that the estimate of pseudorange differencing is subjected to four times the pseudorange noise
on the code double differences. If the number of satellites is decreased, the solutions of absolute
position differencing and pseudorange differencing tend to be similar and are exactly the same
when using the same four satellites.
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Figure 5.6.: The figure shows the baseline error of absolute position differencing and pseudorange
differencing with pseudoranges corrupted by noise and common errors. For absolute
position differencing the receivers use each 11 satellites where ten are common. Pseu-
dorange differencing uses ten common satellites. It can be noticed how the common
errors degrade absolute position differencing ’s baseline estimate. The right figure
shows the performance threshold of both approaches, resulting from the projection of
the intersection between both planes onto the error plane.

In the following simulation common errors are added on the pseudoranges of ego and target
receiver. The 3-D plot in Figure 5.5b displays the baseline mean squared error in dependance
of both, the noise standard deviation σρ and the common error limit c. It can be seen how,
independently on the magnitude of the common error, absolute position differencing performs
better than pseudorange differencing. When the same satellites are used at both receivers, the
bias in p̂e and p̂t is equal and cancels out. In this case, both estimators, absolute position
differencing and pseudorange differencing, are able to cancel out common errors, but absolute
position differencing achieves a lower MSE. This is however not the case when a different subset
of satellites is used in each receiver. Figure 5.6a shows the baseline error when using nine common
and two different satellites in each receiver. The result is a baseline error of several meters in
absolute position differencing. This leads to the conclusion that, depending on the magnitude
of the noise and the magnitude of the common errors on the pseudoranges, absolute position
differencing or pseudorange differencing will give a better result for the estimation of the baseline.
The red line on the error plane is the absolute position differencing-pseudorange differencing
performance threshold that shows the limit at which noise and common errors compensate and
the absolute position differencing and the pseudorange differencing planes intersect.

The presented results were simulated taking a fixed constellation of satellites. Since the GPS
satellite constellation repeats approximately every day, the simulation has been extended over
24 hours in order to attain for all possible positions of the satellites. In the same way, the
performance of both approaches using different number of satellites in every receiver has been
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Figure 5.7.: The performance threshold in dependence of the pseudorange noise standard deviation
and the common error limit is shown. The left figure shows the results for 10 common
satellites during one whole day. The right figure are the results for combinations of 6
to 11 out of 12 satellites in each receiver.

tested. The resulting displacement of the absolute position differencing-pseudorange differencing
performance threshold is shown in Figure 5.7. The figure reveals that indeed the performance
of both approaches depends on the constellation geometry and on the number of used satellites.
There areas of the error plane where pseudorange differencing outperforms absolute position
differencing and vice versa. For example, when the noise standard deviation is below 0.5 m and
the common errors are distributed between 0 m and 10 m pseudorange differencing yields a better
baseline estimate than absolute position differencing when using more than 6 satellites.

This performance analysis reveals that, in the case of white Gaussian noise errors, absolute position
differencing approach yields smaller baseline estimate errors than pseudorange differencing. This
comes from the fact that the subtraction of pseudoranges in the pseudorange differencing approach
doubles the variance of the errors in the measurements that are used in the baseline least square
problem. When looking at the common errors, it can be observed that when using the same
set of satellites at both receivers, the absolute position differencing solution also cancels out
common errors at both receivers. When using different satellites at each receiver, absolute position
differencing ’s performance decreases with increasing common errors. The performance of each of
the estimators will ultimately depend on the working point of the receiver in the scenario. While
in an open sky environment with good GNSS signal coverage, the errors due to noise will be small,
signals blockage might cause a drop in the received signals strength.
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Figure 5.8.: The left figure compares the relative positioning error of absolute position differencing
and pseudorange differencing with a fixed constellation of eight satellites in an only-
noise scenario. The right figure shows the error of PRD in dependance of the number
of common satellites.

To better understand the dependance of the error of both relative positioning techniques with
respect to the constellation, the used satellites in each receiver and the magnitude of the noise
and the common errors, a simulation with a fixed 8 satellites constellation is performed. The
constellation corresponds to that seen the 4th of June 2013 at 18:30 from the Wessling, south-
west of Munich (Germany). In Annex A, a skyview plot is displayed. The noise on the pseudoranges
is equal to 1 m (1σ) and the common error is equal to the Klobuchar ionospheric delay model
with the parameters of that day, which result in a satellite-dependent pseudorange errors between
2 and 10 m. Figure 5.8a and Figure 5.9a show the error (1σ) in the relative positioning estimate
for both, absolute position differencing and pseudorange differencing, with varying number of
satellites tracked by each receiver for the cases of only-noise and only-common errors respectively.
The number of satellites in ego and target receiver is switched between 5 and 8 satellites and all
combinations of satellites in each receiver are considered. The resulting maximum, minimum and
mean values for the relative positioning errors can be found in Annex A.

The situations more prone to happen in practice are with the receivers tracking eight or seven
satellites (cells 8-8, 8-7 and 7-7). This yields up to two satellites that are not common between
receivers. Situations where the receivers track six satellites are less likely to happen (cells 8-6, 7-6
or 6-6). In these cases up to four satellites could be different. It is improbable that receivers track
less than six satellites, especially under consideration that in future multiple satellite constellations
will be available (cells 8-5, 7-5, 6-5 or 5-5).

In Figure 5.8, only white Gaussian noise is considered to corrupt the pseudoranges. For both
receivers tracking eight satellites (cell 8-8), absolute position differencing yields a slightly smaller
error than pseudorange differencing (2.38 m and 2.49 m respectively). When decreasing the num-
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Figure 5.9.: The figures compare the relative positioning error of absolute position differencing
and pseudorange differencing with a fixed constellation of eight satellites in an only
common error scenario. The right figure shows the error of APD in dependance of
the number of the satellites that are not common to both receivers.

ber of satellites the difference in error between both approaches also increases. For instance, when
each receiver tracks seven satellites (cell 7-7), absolute position differencing has a maximum error
of 3.10 m as opposed to 4.42 m of pseudorange differencing (mean errors of 2.70 m as opposed to
3.22 m respectively). Figure 5.8b shows the error of pseudorange differencing depending on the
number of common satellites. For eight to six satellites the maximum error is below five meters.
Below that number, the error strongly increases. When the number of common satellites is equal
to four and for cases of bad geometry the maximum error of pseudorange differencing is of several
hundreds of meters (the plot is cut at 50 m).

In Figure 5.9, only common errors are considered. The relative position estimation with pseudo-
range differencing yields zero error for all combinations (see Figure 5.9a). For absolute position
differencing the minimum error is zero, which correspond to the cases when both receivers track
the same satellites. When tracking one different satellite (e.g. cell 8-7) the error is at worst
1.93 m and the mean over all possible combinations yield 0.77 m. The situation is worse when
two satellites are not common (e.g. cell 7-7 or cell 8-6). Here the error is at most 4.47 m and in
mean 1.51 m.

Figure 5.9b shows the relative positioning error in dependance of the number of satellites which
are not tracked by both receivers and that bias the estimation of the relative position. In order to
not consider cases with bad geometry, only the situations when the receivers tracked more than
5 satellites are considered. For one or two different satellites, the maximum error is 4.30 m and
6.64 m and the mean error over all combination of satellites is 1.05 m and 1.73 m, respectively.

With this analysis it has been shown that it is worth to exchange GNSS raw measurements and
to only use common pseudoranges to estimate the relative position between vehicles. This is
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convenient when at least six common satellites are available. In this way, errors performed by
differencing the absolute positions in the order of several meters can be avoided. In general it
is more convenient to have an increase in noise, which averages out over time when applying a
filtering technique, as for instance the Kalman filter, than having a bias in the measurements,
which shifts the relative position by a constant offset.

5.1.5. Receiver Synchronization

When computing double differences, the pseudorange measurements are assumed to be taken
at the same time instant. Usually, GNSS receivers perform measurements at every whole second
according to GPS time or a given fraction of a second according to its measurement rate. However,
the receiver clock has a certain bias with respect to GPS time and this offset changes according
to the clock drift of the internal oscillator. This means that measurements taken at two different
receivers will usually have an offset of a few milliseconds, causing a potential uncorrelation of
common errors [176]. The impact of this time offset on the decorrelation of common error in
GNSS was subject of analysis in Section 5.1.1. The pseudorange double difference computation
with this explicit time offset is:

∇∆ρlmet (t0) = ∇ρlme (t0)−∇ρlmt (t0 + ∆t)

= ρle(t0)− ρlt(t0 + ∆t)− ρme (t0) + ρmt (t0 + ∆t)

= rle(t0)− rlt(t0 + ∆t)− rme (t0) + rmt (t0 + ∆t)

+ εle(t0)− εlt(t0 + ∆t)− εme (t0) + εmt (t0 + ∆t), (5.48)

where t0 is used to denote the measurement instant at receiver e and ∆t is the offset to
the measurement instant at receiver t. Recalling the analysis from Section 5.1.1, the term
εle(t0)−εlt(t0 +∆t) will effectively cancel out the contributions towards satellite l coming from the
atmosphere and the satellite given both, the proximity assumption and the assumption that these
errors change slowly with respect to ∆t. The same holds for satellite m. The receiver clock biases
at ego and target receiver, δte(t0) and δtt(t0 + ∆t), are not included in Equation 5.48, since they
are canceled by the differentiation to satellites l and m. Multipath errors, on the other hand, in
general remain unsubtracted due to their low spatial and temporal correlation. Satellite, receiver,
reflector or scatter movement cause the multipath characteristics to be time variant [177]. The
initial assumption that ∇∆ερ ≈ ∇∆εmultipath + ∇∆εnoise holds in the case of unsynchronized
receivers.

The third line in Equation 5.48 contains the geometric ranges to the satellites l and m from
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receivers e and t. These could be rewritten as:

∆rlet(t0)− δ∆rlet(∆t)−∆rmet (t0) + δ∆rmet (t0 + ∆t) = (5.49)
∇∆rlmet (t0)− δ∆rlet(∆t) + δ∆rmet (t0 + ∆t)

The first term in the second line, ∇∆rlmet (t0), is the actual desired quantity, representing the
projection of the baseline at time t0 towards satellites l and m. The second and the third term
represent the change in geometric range in ∆t. During the offset time, the movement of the
satellites, the displacement of the receivers due to the Earth rotation and the displacement of
each of the receivers due to its movement creates a systematic error that has to be accounted
for. The maximum relative movement between receiver and satellite is about 1000 m

s , leading to
a double difference error of about one meter per every millisecond offset. The equatorial rotation
rate is about 465.1 m

s , producing a displacement of the receivers of up to 0.5 m every millisecond
offset. A relative movement of the vehicles on the surface Earth of 60 m

s amounts to 6 cm for
every millisecond receiver time offset.

A technique to synchronize the measurements taken by different receivers at different time instants
is proposed [176]. By taking the pseudorange rate or Doppler measurement at the receiver as a
measure of the relative speed between receiver and satellite, drl

e
dt , a linear extrapolation of the

pseudoranges is performed:

ρ(t0 + ∆t) = ρ(t0) + ∆t · λ · φ̇(t0), (5.50)

where λ is the L1 wavelength. The Doppler measurement at t0, φ̇(t0), gives an estimate of the
pseudorange change rate and can therefore be used to predict the pseudorange in t0 + ∆t. The
extrapolation assumption holds as long as the relative movement between receiver and satellite is
constant for this short period of time. The apparent Doppler shift caused by the receiver’s clock
drift is common to all satellites and will cancel out when double differencing.

In order to be able to perform this adjustment, the exact time t0 when the measurement has
been performed has to be known. The receiver will output the GPS timestamp at which the
measurement is taken. This has to be corrected by the receiver clock offset, which the receiver is
able to estimate by solving the navigation equations. The extrapolation time ∆t is the difference
to the next measurement epoch. All measurements in the next chapters have been synchronized
using this method.

Any change in speed, i.e. acceleration in vehicle and/or satellite, will cause an erroneous extrapo-
lation. Considering maximum vehicle acceleration of around 8 m

s2 , the range error due to a change
in the vehicle’s speed during 10 ms is in the order of micrometers and can be neglected. The
change of the satellite’s speed is below 1 m

s2 [178] and is, thus, also neglected. Finally, due to the
large radius of the Earth the change in rotational velocity in such a short time frame can be disre-
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garded. In the same way, second order variations in the ionosphere and troposphere delays could
cause modeling errors. However, as explained in Section 5.1.1, changes in the TEC distribution,
even during solar flares, are in the order of minutes and will not introduce additional errors. The
satellite elevation and the changes of water concentration in the atmosphere are, as well, slow
processes that will not influence the outcome of the extrapolation. Therefore, extrapolating using
the Doppler measurement seems to be reasonable.

5.2. Inertial Sensors

The fusion of GNSS and inertial information has the great advantage that both sensors complement
each other, making it possible to obtain accurate and continuous position, velocity and orientation
estimates. The coupling of Inertial Measurement Unit (IMU) and GNSS will be extended within
this work to relative positioning of vehicles. IMUs were introduced in Chapter 3. A typical model
for the gyroscope measurements ω̂ is, according to [139]:

ω̂ = Mω · ω + bω + nω, (5.51)

where ω is the 3D turn rate of the sensor in inertial frame, Mω is the remaining axis misalignment
after factory compensation, bω is the gyroscope bias and nω is sensor noise. The gyroscope
bias is given in degrees per second ( °

s) or degrees per hour ( °
h). The bias of the gyroscope is

not constant, but wanders over time. Its time variation is the bias stability and it is commonly
described stochastically as a first-order Gauss-Markov process. The noise of the gyroscope is
commonly assumed to be zero-mean, white and Gaussian distributed [139]. As seen in Chapter 3,
the turn rates are integrated to compute the orientation. Consequently, the integration of the
noise in the gyroscopes will create an error in the orientation. Therefore, the noise in a gyroscope
is often expressed by the angle random walk in °/

√
h. This describes the average deviation of the

angle after integrating the turn rates [179]. It can be shown that standard deviation in the angle
grows with the square root of time [180]. An angular random walk of 15 °/

√
h means that after

one hour the standard deviation of the orientation error will be 15°. The noise can also be defined
in terms of its Fast Fourier Transform (FFT) density in °/s/

√
Hz.

Accelerometers measure specific force. According to [139], the following model can be assumed
for the accelerometer measurements f̂ :

f̂ = Ma · f + ba + na, (5.52)

where f is the specific force experienced by teh sensor, Ma is again the axis misalignment, ba is
the accelerometer bias and na is accelerometer noise. In this case, the bias of the sensor is given
in m

s2 and the noise can be quantified by the velocity random walk in m/s/√s or directly by the
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FFT noise density in m/s2/
√

Hz.

The misalignment will be considered zero and, thus, the matrices Mω and Ma are equal to the
identity matrix. An Allan variance analysis makes it possible to obtain the characteristic values
for the bias stability and the noise variance for a particular sensor [180]. This tool is usually used
to measure the stability of oscillators, such as crystal oscillators, atomic clocks or lasers [181]. In
the frame of this thesis it is applied to characterize the stability of gyroscopes and accelerometers
sensors used in the scope of this work.

A long sequence of data samples is divided in intervals of the increasing length. Each of the
intervals is averaged and the difference of averages of successive intervals is squared and averaged
for all intervals. This is performed for all averaging times possible without loosing significance
in the statistics. The resulting Allan variances (or Allan deviation if taken the squared root)
are plotted as function of the averaging time in a log-log graph, as shown in Figure 5.10a and
Figure 5.10b for the accelerometers and the gyroscopes.

The first section of both, the acceleration and the gyroscope curves, shows the impact of white
noise and thus has a slope of −0.5. If the averaging time is quadrupled, the noise power is halved.
By looking at an averaging time of 1 s the angle random walk can easily be read [182]. This yields
a value of 5× 10−4 rad/√s = 0.03 °/√s = 0.03 °/s/

√
Hz for the gyroscope and 9× 10−4 m/s/√s

= 0.05 m/s2/
√

Hz for the accelerometer noise. The stability of the bias of the sensor is read in
the Allan deviation chart by looking at the minimum of the curves. Here the values of 14 °

h at
500 s for the gyroscope and of 2.5× 10−4 m

s2 at 100 s for the accelerometer are read.

The data sheet for the Xsens MTx inertial sensors1 states the following values for the gyroscopes:
a bias stability of 20 °

h and a noise density of 0.05 °/s/
√

Hz. For the accelerometer a bias stability
of 4× 10−6 m

s2 and a noise density of 0.003 m/s/2√Hz are specified. While the parameters for
the turn rate sensors pretty well match the data sheet specifications, the parameters for the
accelerometers show important deviations. For this reason, the more pessimistic values from the
presented Allan variance study will be used for the experiments in the following chapters.

By dividing the FFT noise spectral density by the sample rate of the sensor it is possible to compute
a standard deviation for the turn rate and acceleration noise. This can be used to model the
likelihood of measurements in the update step of a Bayesian filter as explained Section 3.3. The
bias stability parameter can be used to model the time variation of the turn rate and accelerometer
biases in the prediction step of a Bayesian filter using a random walk model:

bk+1
ω = bkω + nbω , (5.53)

1Xsens MTi10 series URL: http://www.xsens.com/products/mti-10-series/
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Figure 5.10.: Allan deviation plots for the Xsens MTx accelerometers and gyroscopes used in the
scope of this thesis.
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Figure 5.11.: The left figure shows the gyroscope biases for the sensors used in this work. A 500 s
window was used to average the input samples from each of the gyroscopes. The
right figure shows the noise distribution using a histogram on the biased-free samples.
A normality test yields that the distribution of the errors is well approximated with
a Gaussian distribution.

and choosing for the random walk noise nbω standard deviation a value equal to:

σ =

√
δt

t
·Bs, (5.54)

where δt is the sampling time, t is the averaging time used to find the bias stability and Bs is
the bias stability measured in °

s [180]. Figure 5.11a shows the gyroscope biases over a period
of 800 seconds, that have been computed by averaging with a time window equal to the bias
stability value. The biases for the used Xsens MTx IMUs have values in the order of ±0.5 °

s .
If left uncompensated their integration would yield an angular error above 10° in less than one
minute. Figure 5.11b shows the distribution of the errors for the three axis gyroscope in form of a
histogram. Their nearly Gaussian shape is confirmed by applying a Kolmogorov-Smirnov (KS) test.
This test compares the cumulative distribution function of the empirical data with the cumulative
distribution function of a normal distribution. The KS test does not reject the null-hypothesis
at a 5 % significance level, meaning that the gyroscope noise Probability Density Function (PDF)
resembles a Gaussian distribution. The accelerometer sensors, which are not shown here, yield the
same results for the Kolmogorov-Smirnov test. Additionally, the skewness and the kurtosis values
for the distribution have similar values as a normal distribution. Hence, the assumption that the
noise on gyroscopes and accelerometers of the Xsens MTx is white and Gaussian is correct and
they can be used in a Gaussian Bayesian filter.

Sensor Placement and Alignment Each of the vehicles in this thesis is equipped with an IMU.
The placement of the IMU on the vehicle is important for navigation purposes. The center of
the yaw rotation of a four wheel vehicle is in the center of the rear axle [97]. If the IMU is not
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Figure 5.12.: The left figure shows the ENU velocity error components for a Ublox LEA 4T in
a test environment with good carrier to noise ratio. The velocity was computed
using a tightly coupled processing of Doppler measurements. The right figure is the
corresponding horizontal speed measurement.

placed at this location, it is not measuring exactly the rotation of the vehicle and the amount has
to be corrected by the displacement vector between the IMU and the center of rotation. This,
so-called ”lever-arm effect” has also to be compensated when the GNSS antenna is not located at
same location than the IMU [183]. Besides the mounting point of the IMU, also the alignment is
crucial for navigation. The ideal case is to have the sensor frame and the vehicle frame aligned
with each other. A calibration step is assumed after the placement of the IMU inside the vehicle
prior to the experiments.

5.3. GNSS Doppler Measurements

By measuring the Doppler shift towards the GNSS satellites in view, and by knowing their orbital
speed, a receiver is able to solve for its own 3D velocity and its clock drift. The procedure is
analogous to 3D position calculation by taking Doppler measurements instead of pseudoranges,
satellite velocity instead of satellite position and computing receiver velocity and clock drift instead
of receiver position and clock bias.

The computation of the satellite’s velocity is easily accomplished by differencing subsequent satel-
lite positions computed out of the broadcasted navigation messages, thus achieving satellite ve-
locity accuracy of ±1 mm

s [178]. Figure 5.12a shows the Doppler derived velocity error in the ENU
frame for a static receiver. The standard deviation of the single velocity components are 6.0 cm

s ,
6.3 cm

s and 13.5 cm
s . As expected the Up component has a larger error due to the hemispherical

satellite constellation. Figure 5.12b shows the error of the norm of the velocity vector, i.e. the
speed, processed using a Kalman filter.

An alternative that offers higher accuracy is to use time differenced carrier phase measurements.
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These, due to higher integration times within the GNSS receiver, are less noisy than Doppler
measurements [184]. The inherent integer ambiguity associated to carrier phase measurements
is canceled through time differentiation. The drawback is their lower availability in situations
with low carrier-to-noise ratio and the occurrence of cycle slips. Again, both the velocity ENU
component errors and the speed error is shown in Figure 5.13a and Figure 5.13b, respectively. The
standard deviation in the velocity components are 1.9 cm

s , 1.1 cm
s and 5.8 cm

s . When available, the
GNSS velocity is used twofold. On the one hand, it is used for updating the speed of the vehicle
by taking the magnitude of the velocity vector. On the other hand, the planar components of the
velocity will yield the east-north direction or heading of the vehicle.

It has to be noted that, when the single velocity components follow Gaussian distributions, the
distribution of the speed estimation follows a Ricean distribution, that can only be approximated
to a Gaussian distribution at higher speed. At zero speed, the speed error is Rayleigh distributed.
Nevertheless, a Gaussian distribution will be considered when including the speed into a Bayesian
filter.

The accuracy of the heading estimate is dependent on the magnitude of the measured velocity.
At zero speed the heading is undetermined. The higher the speed of the vehicle is, the better the
heading estimate can be done. Its standard variation can be approximated with:

σh ≈ arctan σv
‖v‖

, (5.55)

with σh and σv being the standard deviations of the heading and the velocity component, re-
spectively, and ‖v‖ being the norm of the velocity vector. This results in heading errors of 0.4°,
0.08° and 0.04° when driving at 10 km

h , 10 km
h and 100 km

h respectively. The resulting PDF for
the heading estimate has a Gaussian shape, and is confirmed performing a KS test at different
speed from 2 m

s to 40 m
s . The heading estimate from GNSS is the sole source of absolute heading

information that is available. Therefore, its correct incorporation into the filter and fusion with
gyroscope data is highly important and will be discussed in Section 5.6.2.

5.4. Speed Sensors

A speed sensor inside the vehicle is able to determine the rotation speed of the wheels by means
of measuring the fluctuating magnetic field disturbed by a toothed ring mounted at the wheel
or differential [29]. Speed sensors are part of active safety systems in modern vehicles, as the
Anti-lock Braking System (ABS) or Electronic Stability Program (ESP) [29]. Not all wheels rotate
at the same speed. Especially in turns the inner wheels rotate less than the outer wheels. Due to
wheel slip and skids, both wheels might have different speed and, thus, will provide false vehicle
speed measurements [97]. The on-board control unit, takes an average speed of the four wheels
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Figure 5.13.: The left figure shows the ENU velocity error components for a Ublox LEA 4T in the
same test conditions as in Figure 5.12. Instead of using GNSS Doppler measure-
ments, the more accurate carrier phase measurements are used as updates of the
Kalman Filter.

to calculate the speed of the vehicle. A scale factor error due to the uncertainty of the wheel
radii is an additional and predominant error source. Usually, the speed values are quantized to
the next whole km

h prior to deliver it through the On-board Diagnostics (OBD) interface. Hence,
this processed information is less accurate than the speed information available to ABS or ESP.
Therefore, a model for the available speed measurement is assumed next. The speed sensor inside
the vehicle gives a biased and noisy measure v̂ of the forward speed of the vehicle:

v̂ = A · v + bv + εv, (5.56)

where v is the actual speed of the vehicle, A is a scale factor due to the unknown wheel radii,
bv is an offset in the speed sensor and nv is quantization noise. The distribution of the noise
component depends on the quantization method. Rounding or truncation have an impact on its
mean. However, this is taken into account by the offset parameter bv. Quantization noise is
uniformly distributed with standard deviation σv = 1/

√
12 km

h . The sensor fusion architecture,
which will be introduced in the next section, is based on a Kalman filter. This implementation of a
Bayesian filter assumes white Gaussian distributed noise. Consequently, the colored and uniformly
distributed noise of the speed sensor will cause a non-optimal behavior of the Bayesian estimator.

Parameter bv can be determined through a calibration procedure, since it is likely that it stays
constant over the duration of the measurements. The wheel radii, on the other hand, suffer
changes over time and it is convenient to design a calibration procedure for parameter A. As
discussed in Section 5.3, GNSS receivers offer a second source of speed information of the vehicle.
Figure 5.14 compares both sources of speed information. In Figure 5.14a the speed of a vehicle
on a section of highway is shown. The offset and the quantization of the speedometer values can
be appreciated. These sections can be used to automatically learn the parameters A and bv of the
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Figure 5.14.: Comparison of vehicle speed from GNSS and on-board speedometer in highway and
in urban scenario.

sensor. However, around second 1055 and 1075 the influence of multipath and low signal strength
on the GNSS speed estimation occurs. Figure 5.14b shows a drive through an urban canyon. Low
signal strength and multipath cause the filtered output of the velocity estimate to give an incorrect
and biased information on the speed of the vehicle. Luckily, multipath is a transitory effect and
will average out in a long-term estimation of the speedometer parameters.

5.5. Vehicle Relative Motion Models

In Chapter 3, the Bayesian filter, along with its prediction and update steps, has been presented.
When estimating the relative position of a target vehicle in a Bayesian filter, a system model, that
predicts the baseline coordinates in k+ 1 from the baseline coordinates in time step k, is required.
Numerous publications propose filter designs that use such full 3D models, such as [183, 185].
While aircraft, missiles and submarines move freely in all directions, special constraints that hold
for ground vehicles can be exploited to simplify the problem. So-called non-holonomic constraints
are based on the fact that land vehicles are not able to move sideways, up-wards nor downwards
[186].

In the literature, planar motion models for vehicles are divided in either kinematic or dynamic
models. Kinematics studies the motion of objects, their position, velocity and acceleration, without
considering their cause of motion. On the other hand, dynamic models include the effect of force
and torque vectors on the motion of the vehicles.

The bicycle model is a dynamic model often considered in the literature for vehicle positioning
[187–189]. With the help of this model, the position and the heading of the vehicle are estimated.
As control inputs, usually the wheel speed, the steering angle and the yaw rate from the ESP
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sensors are used. The bicycle model is parametrized by including the mass of the vehicle and the
distances from the center of mass to the front and rear axles. An improvement to this model is
the Ackermann motion model, which considers a four wheel vehicle [190]. The advantage of this
model over the commonly used bicycle model is that here the speed of every single wheel is used
to compute the speed of the vehicle [191].

In this thesis, the more simpler kinematic models are considered. Kinematic models are non-
parametric models that consider the vehicle as a point mass. They are reasonable for low-speed
scenarios, without sharp driving maneuvers and obviate the lateral displacement of the vehicle
[192].

If the relative position is assumed to be given in a two-dimensional vehicle coordinate frame as
explained in Chapter 3, the function f(·) transforms the baseline in time step k,

[
bkx bky

]ᵀ
, into

the baseline in time step k+ 1,
[
bk+1

x bk+1
y

]ᵀ
. Ideally, this function is linear, so that the Kalman

filter is applied. If this is not the case, the approximations to the optimal filter given by the
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) need to be implemented.

One simple kinematic model is a rectilinear constant speed model. Here the baseline b is predicted
using the baseline velocity ḃ, which represents the relative speed between the vehicles. The
prediction equations are:


bx

by

ḃx

ḃy


k+1

=


bx + ∆t · ḃx

by + ∆t · ḃx

ḃx

ḃy


k

+


nx

ny

nẋ

nẏ


k

, (5.57)

where ∆t is the prediction time. The noise terms nx, nx, nẋ and nẏ model the uncertainty in
the prediction of each of the states. The baseline velocity ḃ is, at the same time, also part of
the estimated state vector. It can either be, that the baseline velocity is directly observed, for
example through a ranging sensor or from a differential GNSS Doppler measurement. If, on the
contrary, the relative velocity remains unobserved, it will be inferred from the relative position
observations in the filter. The relative velocity can also be predicted by incorporating the velocity
of both vehicles. The equations of the resulting Constant Velocity (CV) model are:


bx

by

ḃx

ḃy


k+1

=


bx + ∆t · (vt · cos(∆ψ)− ve)

by −∆t · vt · sin(∆ψ)
vt · cos(∆ψ)− ve

−vt · sin(∆ψ)


k

+


nx

ny

nẋ

nẏ


k

, (5.58)

where ∆ψ = ψt − ψe is the difference in heading angles towards north of the ego and target
vehicle and ve and vt are the longitudinal speed of ego and target vehicle respectively. The speed
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and heading of the target vehicle are also estimated quantities and form part of the state vector.
The speed and heading values from the ego vehicle are used as control input in the prediction
step. This model assumes that both the ego and the target vehicle move with constant speed and
constant heading. It will however, perform poorly when the vehicles accelerate or brake or when
they change the driving direction. Only if the time step length ∆t is infinitesimally small, this
model can be used to approximate an accelerated or curvilinear movement. One possibility is to
absorb these situations by designing the prediction models with increased system noise. The result
is a relative position estimate with a higher uncertainty. To overcome this problem, the previous
CV model is extended to the Constant Acceleration (CA) model by incorporating the accelerations
of each of the vehicles:

bx

by

ḃx

ḃy


k+1

=


bx + ∆t · ((vt + 0.5 ·∆t · a2

t ) · cos(∆ψ)− (ve + 0.5 ·∆t · a2
e))

by + ∆t · ((vt + 0.5 ·∆t · a2
t ) · sin(∆ψ)

(vt + 0.5 ·∆t · a2
t ) · cos(∆ψ)− (ve + 0.5 ·∆t · a2

e)
(vt + 0.5 ·∆t · a2

t ) · sin(∆ψ)


k

+


nx

ny

nẋ

nẏ


k

,

(5.59)
where ae and at are the longitudinal accelerations of the ego and target vehicle respectively. The
acceleration of the target vehicles is added to the state vector, whereas the acceleration of the
ego vehicle is used as a control input.

The rectilinear models, however, fail to track the relative position when the vehicles are turning.
Therefore, the rectilinear CV model is extended to include the turn rates of both vehicles in
the prediction of the baseline [193]. The equations for the curvilinear Constant Turn Rate and
Velocity (CTRV) model are shown next:


bx

by

ḃx

ḃy


k+1

=
[

Ck
k−1 0
0 Ck

k−1

]k
Bk +


nx

ny

nẋ

nẏ


k

, (5.60)

where Ck
k−1 is the rotation matrix for the rotation that the ego vehicle has performed during ∆t:

Ck
k−1 =

[
cos(∆t · ψ̇k−1

e ) − sin(∆t · ψ̇k−1
e )

sin(∆t · ψ̇k−1
e ) cos(∆t · ψ̇k−1

e )

]
, (5.61)
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Figure 5.15.: Baseline error for target vehicle driving in curve and predicted with rectilinear move-
ment model. The prediction error increases with decreasing curve radius or increasing
speed.

and Bk is the prediction of the baseline in the ego vehicle frame at k:

Bk =


bx − ve

ψ̇e
· sin(∆t · ψ̇e) + vt

ψ̇t
(sin(∆ψ + ∆t · ψ̇t)− sin(∆ψ))

by + ve
ψ̇e
· (cos(∆t · ψ̇e)− 1)− vt

ψ̇t
(cos(∆ψ + ∆t · ψ̇t)− cos(∆ψ))

vt · cos(∆ψ)− ve

vt · sin(∆ψ)



k

. (5.62)

The factors ve
ψ̇e

and vt
ψ̇t

yield the radius of the curve performed by the ego and the target vehicle,
respectively. In case a vehicle is not turning, i.e. driving on a curve with sufficiently large
radius, this term tends to infinity and the corresponding model for the vehicle is substituted
for a rectilinear model. The CTRV model of Equation 5.60 can be extended to include linear
accelerations in the same way as in Equation 5.59. The resulting equations of the Constant Turn
Rate and Acceleration (CTRA) model are not shown here.

Figure 5.15 shows the prediction error with the rectilinear model for a turning target vehicle in
dependance of the curve radius and the speed of the vehicle. Figure 5.15a and 5.15b show the
curves for 1 Hz and 10 Hz update rate, respectively. The baseline is predicted for 1 s and 0.1 s,
respectively, and then an measurement update for the state is performed. For 1 Hz update rate,
large baseline errors occur even for large curve radii. Such a low update rate is only suited for a
highway environment. At 10 Hz update rate, tight curves exhibit errors in the order of centimeters.
In this thesis a curvilinear model with an update rate of at least 10 Hz is chosen.

Figure 5.16a shows the results for the baseline estimation error using the constant velocity and
the constant acceleration kinematic models during a typical acceleration maneuver. The target
vehicle has accelerated with 2 m

s2 away from the ego vehicle. The resulting estimation error is always
lower for the CA model (red) compared to the CV model (blue). If the update rate is sufficiently
increased, the CV model can have an equal performance than the CA model. At an update rate of
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Figure 5.16.: Baseline prediction error during a 2 m
s2 rectilinear acceleration maneuver (left) and

during a 20 °
s turn at 5 m

s (right).

10 Hz and accelerations in the order of the ones encountered in vehicular environments, the error
is maintained below 2 cm using a CV model.

Figure 5.16b shows the baseline estimation error with a CTRA and a CA model while performing a
20 °

s turn at 5 m
s . During the turning maneuver, the CTRA model (green) is able to properly predict

the baseline and yields a smaller error than the rectilinear CA model (red). At an update rate of
1 Hz, errors of nearly 1 m can be appreciated. With increasing update rate, the rectilinear model
is, as well, able to predict the baseline. At 10 Hz both models have sub-centimeter accuracy.

The rectilinear motion model has been extensively used in various forms for absolute and relative
positioning of vehicles by many research groups as for instance [103, 194–196]. Several research
groups have used the constant turn rate model, for example for vehicle positioning [112, 196–198]
or for tracking objects detected with on-board ranging sensors [82]. The use of a certain motion
model will heavily depend on the road environment. In scenarios with slow and linear changes in
the speed and heading, a rectilinear constant velocity model is a suited approach. In an urban
scenario, however, vehicles accelerate and decelerate in short periods of time and perform often
90° turns at intersections. In this scenario, a curvilinear constant acceleration model yields better
results [199].

The noise components in Equations 5.58 through 5.60 represent the uncertainty in the prediction
step using each of the models. There are two sources of this uncertainty. On the one hand,
the inaccurate estimate of the speed, acceleration, heading and turn rate of each vehicle will
propagate in every prediction step to the baseline estimate. The noise on the acceleration should
accommodate possible jerks of the vehicle. On the other hand, also the uncertainty due to model
mismatch, i.e. the fact that the vehicles might not displace according to these models, or other
sources, as for example the error due to the GNSS antenna position on the roof of the vehicle,
need to be taken into account.
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Figure 5.17.: Baseline uncertainty during a ten second prediction period. The blue cloud is the
Monte Carlo approximation with 3000 particles. The black ellipse is the Gaussian
approximation performing a linearization of the otherwise non-linear relative motion
model.

As introduced in Chapter 4, for a probabilistic relative positioning approach the baseline transition
probability p

(
bk
∣∣∣bk−1,dk−1

e ,dk−1
t

)
is needed. This probability density results from the relative

motion models presented in Equations 5.58 through 5.60. However, due to the non-linearity of
these equations, Gaussian probability functions for all components of bk−1, dk−1

e and dk−1
t do

not result, in general, in a Gaussian distribution of the baseline bk. By performing a first order
linearization, an approximation to this function can be found.

Figure 5.17 shows the approximated Gaussian distribution of p
(
bk
∣∣∣bk−1,dk−1

e ,dk−1
t

)
for three

time steps as a black ellipse and the actual distribution computed with a Monte Carlo method
as a blue cloud of points. In green, the true relative position of the target vehicle, which follows
a rectilinear constant velocity motion, is shown. Figure 5.17a assumes a small uncertainty in
the headings ψe and ψt, yielding a lower non-linearity in the constant velocity motion models.
Consequently, the Gaussian PDF correctly approximates the true relative position distribution. In
Figure 5.17b, however, the uncertainty in the heading is larger to absorb possible rotations of the
target vehicle. The result is a poorer approximation of the true distribution.

The heading estimation of the ego vehicle and its associated uncertainty have a special impact on
the estimate of the relative position. Relative positioning estimation through GNSS information
(both by differencing absolute positions or through pseudorange differencing) is performed in an
Earth-fixed coordinate system. To translate this estimation into the ego vehicle coordinate frame
a rotation using the ego vehicle heading has to be performed. The uncertainty in the ego vehicle
heading will translate in an uncertain rotation of one frame into the other and into an increased
uncertainty in the relative position of the target vehicle. When the target vehicle is driving in
front of the ego vehicle, it is the lateral coordinate of the baseline which will be mainly affected.
Figure 5.18 displays the uncertainty of a 30 m and a 50 m long baseline in navigation frame



Chapter 5. Cooperative Relative Position Estimation through Sensor Fusion 105

-20 -10 0 10 20
0

10

20

30

40

50

60

East (m)

N
or

th
 (m

)

(a)

-20 -10 0 10 20
0

10

20

30

40

50

60

x (m)

y 
(m

)

(b)

-20 -10 0 10 20
0

10

20

30

40

50

60

x (m)

y 
(m

)

(c)

Figure 5.18.: The figures show the uncertainty of a 30 m and a 50 m baseline. The red and
blue dots are the particle clouds and the black ellipses are the linearized Gaussian
uncertainty. The left figure shows the baseline in navigation frame coordinates with
a 1 m (1σ) error in north and east direction. After rotating this baseline into the
ego vehicle frame by the ego vehicle’s heading angle with an uncertainty of 1° (1σ)
in the middle figure and 5° (1σ) in the right figure, the uncertainty in the baseline
has increased.

(5.18a) and how a heading uncertainty of 1° (1σ) in Figure 5.18b, and of 5° (1σ) in Figure 5.18c,
impact the baseline estimate in the vehicle frame. The uncertainty is widen by applying the
transformation matrix in Equation 3.5. Again, due to the linearization errors, a Gaussian filter will
yield an erroneous estimate for higher heading errors.

To sum up, it can be stated that the use of a more complex model as the constant acceleration
from Equation 5.59 or the constant turn rate model from Equation 5.60 has a benefit when
longer prediction periods need to be bridged during accelerations or turning maneuvers. This can
happen, for example, during communication outage phases. All models are highly non-linear in
the heading of the vehicles. Consequently, the more accurate these parameters are estimated,
the less linearization error is performed by using a parametric Bayesian filter as the EKF or the
UKF. In Chapter 6, the rectilinear and the constant turn rate models will be tested in a vehicle
simulator.

5.6. Multisensor Fusion

The multisensor fusion approach to estimate of the relative position of a target vehicle towards
an ego vehicle is based on a probabilistic filtering technique to incorporate in an optimal way the



Chapter 5. Cooperative Relative Position Estimation through Sensor Fusion 106

building blocks that have been introduced in the previous sections. The direct baseline measure-
ments from differential GNSS measurements will be fused with on-board inertial information from
both, ego and target vehicles. The motion models from the previous section will be used to predict
the prior distribution of the baseline between the vehicles before incorporating new measurements
or when GNSS measurements are not available, as for instance in tunnels.

Figure 5.19 shows the overall multisensor fusion architecture, which follows a cascaded decentral-
ized fusion concept. This architecture is given by two main constraints to the system. On the one
hand, due to the limited communication bandwidth, the message update rate is limited to 10 Hz.
On the other hand, as explained in Chapter 3, the inertial computation has to be done at a high
update rate in order to maintain a low error due to skew matrix approximation and numerical in-
tegration. For this reason, the kinematic measurements from the IMU are processed independently
in the kinematic filter and supported by the speed information from the vehicle’s Controller Area
Network (CAN) bus and velocity measurements from the GNSS receiver. The outputs of this filter
are the speed and the acceleration in forward direction, the yaw angle or heading of the vehicle
with respect to the north and the yaw rate or turn rate around the up axis.

In the case of the target vehicle, the kinematic information is packed together with the GNSS
measurements of the tracked satellites into a Cooperative Awareness Message (CAM) and broad-
casted over V2V communication. In the relative positioning filter, the kinematic information is
used to predict the baseline and the differenced pseudorange measurements are used to update
the baseline prediction.

The output of the filter is the estimation of the baseline and the baseline velocity. Both are
two-dimensional quantities given in the ego vehicle frame. Along with both estimates, the current
uncertainties in the baseline and baseline velocity are output by the upper relative positioning
filters. These are given as 4×4 variance-covariance matrices that represent the Gaussian confidence
ellipses around the mean baseline and baseline velocity estimate. The design of both filters
is described in the following sections. Hence, the cooperative relative positioning unit can be
regarded as a further ranging sensor from the driver assistance application’s point of view, the
same way as a radar or a stereo vision sensor.

5.6.1. Relative Positioning Filter

To track the relative position of two vehicles, a probabilistic filtering technique based on a Bayesian
filter has been chosen. As presented in Chapter 3, the Kalman filter is one possible technique to
implement a dynamic Bayesian filter. Here, the posterior probability distribution of the baseline
and baseline velocity at time step k is given by their mean vector xk and their variance covariance
matrix Pk. The state vector contains both, the estimates of the two-dimensional baseline and the
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Figure 5.19.: Multisensor fusion architecture for cooperative relative position estimation. A cas-
caded decentralized approach solves the communication and inertial measurements
constraints.

baseline velocity in vehicle coordinates according to

xk =
[
bx by ḃx ḃy

]ᵀ
. (5.63)

To predict the baseline in the next step a probabilistic system model based on the relative motion
models presented in Section 5.5 is proposed. Depending on the motion model used to predict the
prior distribution in the next step, the state vector xk has to be increased with the required kine-
matic parameters of the target vehicle. In the case of a CTRV model, the state vector additionally
includes the speed vt, the heading ψt and the yaw rate ψ̇t:

xk =
[
bx by ḃx ḃy vt ψt ψ̇t

]ᵀ
. (5.64)

Prediction Model A probabilistic motion model will incorporate the uncertainty of the prediction
step into the prior distribution. Through the probabilistic model, not only xk is transformed into
x̂k+1, but also Pk is transformed into P̂k+1, by incorporating the uncertainties in the kinematic
estimates, such as the speed, headings or yaw rates used to predict the baseline in the next step.
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The equations using the rectilinear CV motion model for prediction are

bk+1
x = bkx + ∆t · (vkt · sin(ψkt − ψke )− vke )

bk+1
y = bky + ∆t · (vkt · cos(ψkt − ψke ))

ḃk+1
x = vkt · sin(ψkt − ψke )− vke
ḃk+1

y = vkt · cos(ψkt − ψke ) (5.65)
vk+1

t = vkt + nv

ψk+1
t = ψkt + ∆t · ψ̇kt
ψ̇k+1

t = ψ̇kt + nψ̇

where ∆t is the time step at which the Kalman filter is executed. The baseline and the baseline
velocity are predicted using the rectilinear constant speed model from Equation 5.58. The speed
of the target vehicle is maintained with a random walk model. The current rotation around the up
axis, ψ̇k, is used to predict the heading of the vehicle ψk+1 in the next time step. The kinematic
estimates from the ego vehicle represent the control input:

vk =
[
ve ψe ψ̇e

]ᵀ
. (5.66)

The noise terms n in Equation 5.65 represent the prediction uncertainty in speed and turn rate due
to correspondent linear and circular accelerations. These are modeled as mutually independent
zero mean Gaussian distributed noise. This noise will propagate in each prediction step to the
baseline and baseline velocity state estimates. The more complex movement models, CA, CTRV
and CTRA have been introduced in the previous section and can be used instead of the first four
lines in Equation 5.65.

Update Model Two measurement update steps are performed to the relative positioning filter.
The first update is the kinematic state of the target vehicle, when a CAM is received. The
kinematic estimates, i.e. speed, heading and yaw rate from target vehicle, are updated, with the
measurement vector:

zkt =
[
vt ψt ψ̇t

]ᵀ
, (5.67)

which contains the kinematic estimates from the lower kinematic filter of the target vehicle. The
update function

zkt = H · xk + η, (5.68)

relates the state space xk and the measurement space zk. η is zero-mean Gaussian distributed
noise that models the measurement likelihood. Its noise variance-covariance directly stems from
the output of the lower kinematic filters as will be explained in the following section. The mea-
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Figure 5.20.: The pseudorange double differences are measured in the local navigation coordinate
frame, while the baseline is estimated in the vehicle-fixed coordinate frame. By means
of the heading of the ego vehicle, the baseline is rotated from the vehicle-fixed to
the local navigation frame.

surement matrix H is
H =

[
03×4 I3×3

]ᵀ
. (5.69)

If the received CAM contains GNSS pseudorange measurements, these are differenced from the
latest ego pseudoranges to form pseudorange double differences to update the baseline estimate. In
a first step, the pseudorange measurements have to be synchronized as explained in Section 5.1.5.
A gating procedure discards the measurements that are likely to be corrupted by multipath as
will be explained in Section 5.6.4. The pseudorange double differences ∇∆ρ are related to the
baseline estimate b according to

∇∆ρ = Guu ·Cn
v · b + η∇∆ρ (5.70)

where Guu is the geometry matrix of differenced unitary vectors to the satellites, Cn
v is the

coordinate transformation matrix from vehicle frame to navigation frame as in Equation 3.4. In
the two-dimensional case, as depicted in Figure 5.20, this rotation is a function of the ego vehicle’s
heading. The observation noise η∇∆ρ of the pseudorange double difference measurements is
modeled as zero mean Gaussian noise with covariance matrices R∇∆ρ. This models the remaining
error after differentiation, i.e. noise and multipath as explained in Section 5.1.3.

As it can be observed, both, the equations for prediction Equation 5.65 and GNSS update
Equation 5.70 are not linear. Consequently, an approximation to the linear and Gaussian Kalman
filter has to be done. A UKF implementation has been chosen for the relative positioning filter in
the frame of this thesis (see Chapter 3).
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5.6.2. Kinematic Filter

The lower kinematic filter estimates the speed and the heading of the vehicle, which are necessary
to correctly predict the baseline vector in GNSS impaired or GNSS denied environments (see
Equation 5.65). Optionally, also the acceleration and the yaw rate are estimated. For this purpose,
the measurements from the IMU are coupled with the speed information from the vehicle’s CAN
bus and the Doppler-derived speed and heading of the GNSS receiver. GNSS heading and speed
estimation are very accurate when favorable constellation, line-of-sight to the satellites and no
multipath are given. The velocity vector accuracy is in the order of less than 2 cm

s (see Section 5.3).
IMU and speed sensor are on board of the vehicle and are not affected by external disturbances.
Microelectromechanical Systems (MEMS)-based IMU measurements have good short-term stability
if its drifts are correctly estimated. Speed sensors also have biases that require correct calibration
or estimation as explained in Section 5.4.

Consequently, the GNSS Doppler related estimations of speed and heading are used to estimate
the biases of the on-board IMU and speed sensors, when good GNSS signal quality is given. When
this is not the case, the GNSS measurements are disconnected and dead-reckoning kinematic mode
is executed.

A kinematic assumption is a valuable source of information that can be integrated into the mea-
surement step of a Bayesian filter like another sensor measurement. Therefore, they are also called
pseudo-measurements. For instance, a zero-rotation assumption tells the Bayesian filter that the
vehicle is not rotating when it is at a standstill [97, 105]. The assumption of zero-rotation can
safely be made, as the vehicle is not able to rotate around any of its axis without moving forward.
The idea is that the information of the vehicle not being rotating makes the turn rate biases
directly observable.

The estimation of the heading is especially important, since it impacts the linearity of the relative
motion models as explained in Section 5.5. Further on, the proposed relative motion models of
Section 5.5 also included a rotational term accounting for the uncertainty in the ego heading
estimate. Hence, an accurate and reliable estimation of the ego vehicle’s heading is of great
importance in order to meet the lateral relative position requirements.

The guidelines, constraints and requirements on the kinematic filter can be synthesized as follows:

• The kinematic filter output vector is a random variable with a mean value and a variance-
covariance matrix. These are the measurement updates for the upper relative positioning
filter.

• The kinematic filter estimates forward speed, acceleration, heading and turn rate of the
vehicle.

• The heading of the vehicle needs to be estimated with high accuracy, e.g. less than 0.5°
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(1σ). On the one hand, to minimize the linearization error of the relative positioning filter
and, on the other hand, to perform a correct rotation from the navigation frame to the ego
vehicle frame.

• It is important to correctly estimate the gyroscope biases. They are directly observable at
standstill, but need to be continuously estimated over time since they may change over time.

• Estimate the acceleration of the vehicle, in order to use a constant acceleration model instead
of a constant velocity model. Constant acceleration models are expected to be beneficial
in rural and urban areas where changes in speed occur more often and where the limited
update rate of GNSS and CAN might not provide sufficient time resolution.

• The kinematic filter should be able to cope with longer GNSS outages. Outages of around 1
minute are likely to occur in urban tunnels. The longest German tunnel, the Rennsteigtunnel,
has a length of nearly 8 km, needing over five minutes to drive through it.

• The processing rate of the kinematic filter is limited by the system on which it is executed.
The output at which estimates are given out is limited by the maximum V2V communication
update rate of 10 Hz [13].

• It is important to use an IMU based on MEMS technology. This is an important constraint,
since it has an impact on the performance of the kinematic filter. MEMS IMUs are less
stable and more noisy than Ring Laser Gyroscopes (RLGs) or Fiber Optic Gyroscopes (FOGs).

Two kinematic filter architectures are compared in this thesis. Both use the same sensors and
pseudo-measurements to estimate the kinematic parameters speed, acceleration, heading and
heading rate. Next, the basic architecture of each of both approaches is presented.

Full 3D Inertial Filter This is the standard Kalman filter for fusing GNSS and Inertial Naviga-
tion System (INS) measurements [97, 139]. Originally designed for high precision FOG IMUs, the
classic algorithm is applied here to MEMS-based IMUs. In a strapdown algorithm the gyroscope
is integrated to obtain the attitude of the vehicle in the navigation frame and the accelerometers
are integrated once to obtain the velocity in the navigation frame (see Chapter 3). In an EKF, the
errors between the strapdown attitude and velocity outputs and the GNSS velocity are estimated.
In a so-called open-loop configuration the estimated errors are subtracted from the strapdown’s
algorithm output. In a closed-loop configuration the estimated errors are fed back to the strap-
down before starting the next iteration. Thereafter, the state of the EKF is re-initialized to zero.
In this work, the later configuration is chosen. The state vector is equal to:

x =
[
δv δα bω ba

]ᵀ
, (5.71)
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including the 3-state velocity error in East-North-Up (ENU) navigation frame δv, the 3-state
attitude error δα, the 3-axis gyroscope bias bω and the 3-axis accelerometer bias ba. The INS
error propagation equations are as follow:


δv
δα

bω
ba


k+1

=


I3 ∆t · F1,2 0 ∆t · F1,4

0 I3 ∆t · F2,3 0
0 0 I3 0
0 0 0 I3




δv
δα

bω
ba


k

+


0 G1,2 0 0

G2,1 0 0 0
0 0 I3 0
0 0 0 I3




νω

νa

νbω

νba


k

, (5.72)

with

F1,2 = Cn
v · [f×] , (5.73)

F1,4 = Cn
v · I3, (5.74)

F2,3 = −Cn
v , (5.75)

G1,2 = Cn
v , (5.76)

G2,1 = −Cn
v , (5.77)

where f is the current specific force measurement, Cn
v the current attitude computed by the

strapdown algorithm, ∆t the time interval between two IMU samples, νω and νa are the white
Gaussian noise on the gyroscopes and accelerometer. Their variances are set according to the Allan
variance analysis from Section 5.2. A random walk model is used for the prediction equation of
the gyroscope and accelerometer biases with νbω and νba being white Gaussian noise. Its variance
will be small in order to make it relatively static in accordance to its maximum temporal change
according to Section 5.2.

By looking at each row of Equation 5.72, the different contributions to each of the estimated errors
can be regarded. The increment in the velocity errors δv is due to the acceleration produced by
the incorrect correction of the gravity vector due to an attitude error and the contribution of the
accelerometer biases and the noise rotated into the navigation frame. The attitude errors δα are
accumulated due to the biases in the turn rate sensors and the noise of the turn rate sensors into
navigation frame. These are simplified equations of the complete inertial error-state Kalman filter
that includes the contributions due to imperfect knowledge of the gravity, Earth turn rate, Coriolis
force, incorrect assumptions of the shape of the Earth etc. [98].

The error-state Kalman filter is updated using the GNSS speed vGNSS expressed in ENU coordinates.
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An alternative would be to perform a tightly coupled integration, where the Doppler measurements
from the GNSS receiver are used in the update step (see Figure 3.6b). The latter approach has
the advantage that updates to the Kalman filter are also available when less than for satellites are
tracked by the GNSS receiver. The filter state is updated using the following equation:

v̂− vGNSS =
[

I3 03×9
]
· x + ηvGNSS , (5.78)

where v̂ is the computed velocity from the strapdown algorithm and ηvGNSS is the GNSS velocity
error which is assumed to be white and Gaussian distributed. Its covariance matrix is output by
the least-squares or Kalman filter used to compute the GNSS velocity out of the GNSS Doppler
measurements and will include the uncertainties given by the geometry and the quality of the raw
measurements. If GNSS measurements are not available, the CAN speedometer readings, vCAN,
are used to update the filter velocity error. This is done by creating a velocity vector in vehicle
frame, with its x-axis value equal to the CAN speed and the y- and z-axis values equal to zero. The
assumption of the vehicle not moving side- nor up-wards is known as non-holonomic assumption.
The update equation is:

v̂−Cn
v ·
[
vCAN 0 0

]ᵀ
=
[

I3 03×9
]
· x + ηvCAN , (5.79)

where the velocity vector containing the CAN speedometer value is rotated from the vehicle frame
to the navigation frame and subtracted from the current velocity computed by the strapdown
v̂. The resulting vector represents a measurement update of the first three states of the Kalman
filter. The measurement error ηvCAN is modeled as white Gaussian noise with variance-covariance
matrix equal to:

Cn
v ·RvCAN ·C

n
v
ᵀ, (5.80)

where RvCAN is the variance-covariance matrix containing in its diagonal the variance of the CAN
speedometer and the uncertainties associated to the non-holonomic constraints.

As an information to observe the gyroscope biases a zero-rotation assumption is implemented in
the filter. This update is executed when the speed of the vehicle is below 0.1 m

s , which is regarded
as a safe threshold to assume that the vehicle is not rotating. The update equation is:

ω =
[

03×6 I3 03×3
]
· x + ηnra, (5.81)

where ω is the turn rate measurement from the gyroscope and ηnra is the noise on the zero-
rotation assumption. Its variance is chosen equal to the gyroscope measurement error variance.
In order to achieve a fast convergence at the beginning, but still immunity to spurious gyroscope
measurements when the vehicle starts moving, a gating procedure of gyroscope measurements
is implemented using the Mahalanobis distance including the current estimate covariance of the
gyroscope biases. The Mahalanobis distance is later discussed in this chapter (see Section 5.6.4).
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Even estimating correctly the gyroscope biases, the roll and pitch attitude angle errors will grow
steadily over time due to the integration of noise. Here, the heading measurements from GNSS do
not help, since roll and pitch remain unobserved. For this reason a zero-acceleration assumption is
implemented. The key idea is that, when the vehicle is not accelerating it only senses the gravity
on its three axis. The update equation is as follows:

[
φ̂

θ̂

]
−

 arcsin fy
g

− arcsin fx
g

 =
[

02×3 I2 02×7
]
· x + ηzaa, (5.82)

where φ̂ and θ̂ are the roll and pitch angle computed by the strapdown algorithm and ηzaa is the
zero-acceleration measurement noise. The variance of the noise should be high enough to include
the sensor noise in the accelerometers, errors in the magnitude of the gravity and attitude errors
due to biases in the accelerometers. An accelerometer bias of 0.1 m

s2 produces an attitude error
of 0.6 degree by using this technique. A time window of three seconds is used to detect that the
vehicle is not accelerating by averaging the measurements from the accelerometers and comparing
the norm to the magnitude of the gravity vector. The zero-acceleration assumption is applied, if
the difference falls below a predefined threshold.

Outside the error-state Kalman filter, the IMU sensor readings are corrected by the current esti-
mations of the biases bω and ba prior to the strapdown computation (see Figure 3.6a). Then,
the output of the strapdown algorithm, v̂ and α̂ is corrected with the estimated velocity and
attitude errors, δv and δα. Thus, the relevant output of this filter, namely longitudinal speed and
acceleration, heading and planar turn rate, are found as follows:

v = ‖v̂− δv‖, (5.83)
a = [Cn

v · (f − ba)]x,y , (5.84)
ψ = [α̂− δα]ψ , (5.85)
ψ̇ = Cn

v · (ω − bω). (5.86)

The longitudinal speed v is the norm of the velocity output by the strapdown v̂ corrected by
the estimated velocity error δv (see Equation 5.83). The longitudinal acceleration a is the planar
component of the acceleration in the navigation frame (see Equation 5.84). The heading estimate
is the yaw angle from the attitude out of the strapdown algorithm α̂ corrected by the attitude
error estimation δα (see Equation 5.85). Finally, the vehicle frame turn rates ω are corrected by
the bias bω and transformed to the navigation frame with Cn

v to compute the heading rate ψ̇ (see
Equation 5.86).

The advantage of the filter is the estimation of the acceleration out of the IMU measurements.
This however involves accurate attitude estimation in order to subtract the high-magnitude gravity
vector. Small errors in the attitude estimation will cause large velocity errors. Therefore, correct
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estimation of turn rate biases is of uttermost importance.

Full Bayesian Filter This is a completely Bayesian filter to estimate the 3-axis attitude and turn
rate, the longitudinal speed and acceleration of the vehicle and the accelerometer and gyroscope
biases. Instead of integrating the accelerometer and gyroscope measurements, this approach
evaluates how the sensor measurements fit the current vehicle state by updating the state in a
Bayesian way. The state vector is

x =
[
v a φ θ ψ φ̇ θ̇ ψ̇ bω,x bω,y bω,z ba,x ba,y ba,z

]ᵀ
, (5.87)

where v is the longitudinal speed, a the longitudinal acceleration, φ, θ and ψ the Euler angles
that transform the vehicle frame to the navigation frame, φ̇, θ̇ and ψ̇ the turn rates around the
vehicle frame axis and bω,x, bω,y, bω,z and ba,x, ba,y, ba,z the three gyroscope and accelerometer
biases respectively. Speed and attitude angles are predicted using the previous estimation and
the current acceleration and turn rates, respectively, plus noise to model the uncertainty in the
prediction. As in the previous filters, a random walk model is used to predict the gyroscope and
accelerometer biases of the next time step.

The measurements from accelerometer, gyroscope, CAN speed and GNSS speed and heading, will
be used to update the estimates in a Bayesian way. The update equations for the accelerometer
are:

ax = a cos θ − g sin θ + ba,x + ηax, (5.88)
ay = g sinφ cos θ + v · ψ̇ cosφ + ba,y + ηay, (5.89)
az = a sin θ + g cosφ cos θ − v · ψ̇ sinφ + ba,z + ηaz, (5.90)

where the accelerometer measurements ax, ay and az are related to the attitude φ, θ and the speed
v and acceleration a of the vehicle. The right side of all three equations is written column-wise to
highlight the contributions due to the longitudinal acceleration of the vehicle, the gravity and the
lateral centripetal force when driving in bends. ηa is white Gaussian noise on the accelerometers
according to Section 5.2. These update equations include so-called non-holonomic constraints
regarding the movement of the vehicle [200]. They assume that the vehicle is only moving along
its forward axis and that it is driving on a planar surface. The update equations for the gyroscopes
are:

ωx = φ̇ − ψ̇ sin θ + bωx + ηωx, (5.91)
ωy = θ̇ cosφ + ψ̇ sinφ cos θ + bωy + ηωy, (5.92)
ωz = ψ̇ cos θ cosφ − θ̇ sinφ + bωz + ηωz, (5.93)
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Figure 5.21.: The figure shows a schematic representation of the scheduling mechanism in the
upper and lower filter in ego and target vehicle.

where the gyroscope measurements ωx, ωy and ωz are related to the attitude angles φ, θ, the
turn rates in navigation frame φ̇, θ̇ and ψ̇ and the gyroscope biases bωx, bωy and bωz. ηω are the
gyroscope measurement noise components according to Section 5.2.

The update equations for the speed and the heading map one to one the state to the measurement.
At standstill the zero-rotation assumption is applied by updating the turn rates φ̇, θ̇ and ψ̇ with
values of zero.

In Chapter 6, both kinematic filters are tested in a vehicle simulator. It is part of the analysis
to evaluate the performance of each implementation regarding the estimation of the speed, ac-
celeration, heading and heading rate of the vehicles, especially when GNSS velocity measurements
are not available or they are corrupted while driving under dense tree canopy or through urban
canyons. Special attention is also put on the estimation of the biases, which are hidden states
that are observable during standstill phases of the vehicle or partly observable while driving.

5.6.3. Synchronization

When designing a cooperative system timing and synchronization are crucial issues. Vehicles
exchange data that need to be measured in the same time scale in order to be correctly incorporated
in the estimation filters. Using GNSS-time has the advantage that it is a completely synchronized
system. In GPS, for example, ground segment, satellites and ground receivers are all synchronized
to GPS time, which is an atomic coordinate time standard [28]. When solving its position, the
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receiver is automatically synchronized to GPS time with nanosecond precision.

However, the time instants when the position solutions of two receivers are made, might be offset
by a few milliseconds. A time offset of 16 ms creates a relative position error of about 0.8 m for
two vehicles driving in opposite directions on a rural road at 100 km

h ! For this reason, in this work
it was proposed to synchronize the raw GNSS measurements when forming pseudorange double
differences as explained in Section 5.1.5. The analysis is completed here for the fusion with other
sensors.

The timing schema for the sensor fusion architecture is shown in Figure 5.21. For the kinematic
filters in each of the vehicles (orange and violet squares), the on-board sensors, namely the IMU
(blue circle) and the speed sensor (green circle), are required to be accurately synchronized to GPS
time. This means that when a speed, acceleration or turn rate measurement sample is taken by
the sensor, this is immediately related to GPS time. These measurements are incorporated into the
kinematic filter adapting the prediction step according to the time to the last measurement update.
At regular intervals the kinematic filter in the target vehicle outputs its current timestamped
kinematic estimate to input it into a CAM (violet circles). If a new GNSS measurement is available
(red circle), this is also input into the CAM. At the relative positioning filter (turquoise square), the
ego vehicle kinematic state (orange circle) is used to predict the current states prior to incorporating
the target measurements of the arrived CAM. The ego vehicle kinematic state is also used to predict
the baseline states when the application (grey) requires a new relative position estimate.

The communication between the vehicles requires some time, including reading sensor values,
composing the CAM, accessing the channel, coding and modulation, transmission and the cor-
responding actions at the receiver side. According to [201], the mean time to actually access
the channel is 1 ms, while [202] presents access times of as high as 10 ms in dense traffic scenar-
ios. The actual transmission time and coding-decoding times are small when compared to these
values. The communication over the CAN bus inside the vehicle is also below 10 ms [203]. For
the worst case, the assumption of a 30 ms transmission latency is sufficient. Consequently, the
relative positioning filter might lag for the short period of the communication delay as seen from
the application.

5.6.4. Pseudorange Measurement Quality and Gating

The previously described multisensor fusion approach for relative positioning uses GNSS double
differenced pseudorange measurements to update the baseline estimate. This update is done
according to the likelihood of the measurements, i.e. how good they match the prior distribution
given by the prediction step. Unlike on-board sensors, as for instance speedometer or IMU,
where the measurement error statistic is stationary, GNSS measurements have varying statistical
properties. Depending on the signal reception and the signal strength at the antenna the amount



Chapter 5. Cooperative Relative Position Estimation through Sensor Fusion 118

of noise on the double differences will vary. Up to some extend, the varying quality of the GNSS
measurements can be, and will be, assessed by taking the carrier-to-noise measurements from
the GNSS receiver. Unfortunately, multipath errors are difficult to detect, as they do not have an
immediate impact on the carrier-to-noise estimate, and can produce large biases in the order of
tens of meters [38].

According to D. Hawkins ”an outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different mechanism” [204]. The
approach followed in this thesis to provide certain robustness in the relative position estimate is to
discard measurements that are not likely to fit the prediction. This is similar to probabilistic data
association as used, for instance, for associating observations to targets in radar sensors and avoid
incorrect associations [147]. For this approach, a gate width or tolerance band is defined to prevent
faulty measurements to corrupt the estimate. One straightforward possibility is to use a fixed value
for the gate width, as for instance in [205]. In this thesis, an alternative method was followed, where
the gate width changes over time according to the a priori knowledge, based on the Mahalanobis
distance between the predicted and the measured pseudorange double differences. In general, the
Mahalanobis distance differs from the Euclidean distance in that it takes the correlation between
the measurements into account [206]. The Euclidean distance de between the double difference
pseudorange measurements ∇∆ρ and the predicted double difference pseudorange measurements
Guu ·Cn

v ·b̂, with Guu being the differenced unitary matrix from Equation 5.25 and Cn
v the rotation

matrix from the vehicle frame to the local navigation frame, is

de =
√

(∇∆ρ−Guu ·Cn
v · b̂)ᵀ(∇∆ρ−Guu ·Cn

v · b̂). (5.94)

On the other hand the Mahalanobis distance dm is given by:

dm =
√

(∇∆ρ−Guu ·Cn
v · b̂)ᵀ((Guu ·Cn

v)ᵀP(Guu ·Cn
v))−1(∇∆ρ−Guu ·Cn

v · b̂). (5.95)

The Mahalanobis distance does not only take the mean values of measurements and state es-
timates into account, but also the uncertainty in the prediction and the correlation among the
measurements. It can be seen that the a priori uncertainty P enters in the distance computation.
Observations with a Mahalanobis distance above a predefined threshold will be discarded. Com-
mon practice reveals that a value of three for the threshold is common [139]. In Chapter 7, the
performance of the gating approach in multipath corrupted environments will be analyzed. The
same scenario will be run activating and deactivating the gating or using different gate widths for
the Mahalanobis distance.

Similarly, GNSS derived measurements, as for instance speed and heading, will also be affected by
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an incomplete satellite constellation, low carrier-to-noise values or the occurrence of multipath. In
the same way as above, the Mahalanobis distance to the current state estimate is used to detect
outliers in the GNSS speed and heading measurements and avoiding the update with a corrupted
measurement. When measurements get rejected, the speed is updated with measurements from
the CAN bus speedometer and the heading angle is obtained on the basis of the integration of the
gyroscopes.

5.7. Impact of Communication

A cooperative approach for relative positioning of vehicles relies on the availability of a V2V com-
munication channel to exchange information between vehicles. Its performance will, consequently,
depend on the reliability of the communication link. An overview on the challenges regarding the
communication link, the expected performance and related work is given in this section. First,
a brief analysis on the required communication load for the proposed cooperative approach is
presented.

5.7.1. Communication Load

The amount of transmitted data depends upon the numerical values, the type of data, the limit and
the precision of each parameter. Additionally, the used encoding will translate the values to an array
of bits. The current V2V communication standard specifies that ”encoding and decoding shall be
done according to ASN.1 unaligned packet encoding rules” [13]. ASN.1 stands for Abstract Syntax
Notation One, and is a standard developed by the International Telecommunication Union (ITU)
Telecommunication Standardization Sector that describes the rules to encode and decode data in
telecommunications and computer networks.

With this encoding, and considering all mandatory fields and the most prominent optional fields,
the current length of CAM messages can be situated between 200 and 500Byte [207, 208]. This
is considered to include, besides the identification and the position of the vehicle, the kinematic
filter output, i.e. speed, acceleration, heading, and yaw rate, along with its uncertainties.

The proposed technique for relative positioning of vehicles on behalf of pseudorange differencing
requires that the vehicles exchange the pseudoranges measured towards the satellites along with the
corresponding satellite identification and the measured carrier-to-noise value. For this analysis,
a simple encoding strategy is assumed. Pseudorange measurements are floating point values
that need to be traduced to integer values and, finally, to an array of bytes. The pseudorange
measurements are rounded to the next mm and encoded with 5Byte. The satellite number is
encoded with 1Byte to account for different constellations and geostationary satellites. The
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Table 5.3.: Communication Load
Relative Positioning Approach Communication Load
CAM with ASN.1 PER 200 - 500 Byte
Pseudoranges (GPS) 95 Byte
Pseudoranges (GPS + GLONASS) 165 Byte
Pseudoranges (GPS + GLONASS + Galileo) 277 Byte

carrier-to-noise ratio is an integer value ranging from 0 dBHz to 50 dBHz, which, thus, can be
encoded with 1Byte.

With the current GPS constellation consisting of 32 satellites, a receiver on the ground at medium
latitudes is able to track a maximum of 12 GPS satellites with an elevation mask of 5° [209]. The
usage of further GNSS satellites from other constellations, as for instance GLONASS or Galileo, or
even geostationary satellites from augmentation systems, as for instance, EGNOS, would increase
this number [38]. For this analysis, a mean of 12 visible satellites per constellation is assumed.

The pseudoranges are assumed to be extrapolated by the clock offset to the nearest point in
the common time grid. This timestamp has to be exchanged in order to precisely align the
pseudoranges in different cars. The time of week consists of the seconds passed since midnight
Saturday/Sunday GPS time, i.e. a number increasing from 0 to 604 800. A precision of tens of
milliseconds is needed to unambiguously mark the measurement on the time scale. Hence, 4Byte
are sufficient to encode the timestamp.

Table 5.3 shows the amount of data needed to exchange all measured pseudoranges for each
of the constellations. The typical size of a CAM message has been added for comparison. The
exchange of GPS pseudoranges adds 95Byte to the original CAM. Including further constellations,
into the system might double the size of the original CAM. The transmission of all pseudorange
measurements for GPS, GLONASS and Galileo using this simple encoding strategy accounts for a
maximum of 277 Byte. This analysis proves that the exchange of pseudorange measurements does
not require an extreme amount of communication resources, but could, in principle, be exchanged
using the available V2V communication technology.

5.7.2. Communication Link Performance

The cooperative relative positioning system proposed in this thesis relies on the exchange of CAMs.
These messages are single-hop messages that are transmitted in broadcast mode to all neighbors
and which do not require a network routing strategy to be disseminated [210]. Hence, only the
Physical and the Medium Access Layer of the Open Systems Interconnection (OSI) model [211]
are required to transmit and receive CAMs.
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Physical Layer CAMs are transmitted using the control channel, which is the channel reserved
for safety-critical information in the ITS-G5 standard. The communication technology behind V2V
is similar to the IEEE802.11 standard used for wireless local area networks, commonly known as
WiFi. In Europe, V2V works in the 5.9 GHz communication band, where besides the control chan-
nel other five 10 MHz service channels are allocated for Intelligent Transportation Systems (ITS)
communication [11]. The default data rate on the physical layer is 6 Mbps, with the possibility
of transmitting at higher rates by adapting the modulation and the coding rate. The transmit
power is limited to 33 dBm Equivalent Isotropic Radiated Power (EIRP). This will limit the maxi-
mum communication range achievable for cooperative relative positioning. Besides of the transmit
power, the range will depend on the transmit and receive antenna and on the propagation condi-
tions. While 2 km communication range has been achieved [41], typical communication ranges are
expected to be between 500 m and 1000 m [212]. However, messages from neighboring vehicles
might still not be received due to physical effects on the wireless channel. Shadowing, blocking,
multipath induced fading, Doppler and interference result in some messages being incorrectly re-
ceived. Field tests have shown that packet error rates of around 50 % can be expected at a range
of 300 m [213]. Other work states average V2V availability of 90 % at 200 m and 50 % at 1000 m
[131].

However, the probability of packet reception is not a suited metric to quantify awareness in
vehicular ad-hoc networks, since only an average value is given and the time distribution of the
packet drops remains hidden [214]. Consecutive packet drops, so-called bursts, are specially
harmful for mutual awareness, since no measurement updates are received from the target vehicle
and, hence, the driver assistance application has to rely solely on a predicted relative position with
increasing uncertainty. According to real-world experiments in [215], consecutive package drops
of up to 15 messages (1.5 s) occur with a probability of more than 0.1 % in highway environments.

Medium Access Layer The medium access protocol used in V2V communication is Carrier Sense
Multiple Access with Collision Avoidance (CSMA-CA) [10]. The key concept of this protocol is
that any station, prior transmitting a packet, listens to the channel to determine if it is free. In
that case it starts transmitting its packet. However, the problem of CSMA-CA is that, when
the channel load is high, the likelihood of packets colliding increases [207]. One possible cause
is that two nearby stations sense the channels as idle and start transmitting at the same time
and, thus, causing a packet collision. A further reason is that a station is not able to detect a
transmission that is going on at a distant location and starts transmitting itself causing a collision
at the receiver. This is known as hidden terminal problem and is the cause of most of the collision
in vehicular networks [202].

The Update Delay, by quantifying the time between two successful message receptions from the
same transmitter, is a suited metric for beacon based ad-hoc networks providing a measure of
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Figure 5.22.: The figure shows the Update Delay curves for a highway scenario with five lanes in
each direction. The repetition rate used by the vehicles complies with the trigger
conditions described in the standard [13].

the situational awareness [216]. Figure 5.22 displays the probability of reaching a certain Update
Delay while driving on a highway with medium traffic consisting of five lanes in each direction.
In this environment, for instance, with a probability of 3× 10−4 a message from a vehicle driving
100 m in front does not reach the ego vehicle in 1 s.

Hence, a reliable prediction model of the baseline is important to be able to bridge the instants
in which no GNSS measurements nor kinematic information from the target vehicle is available
at the ego vehicle. Especially, taking into account that the driver assistance application requires
data continuously. In this regard, ”unconsciousness” intervals of a few seconds due to Physical
and Medium Access layer should be considered. With this in mind, the following chapters will
evaluate the prediction performance of the proposed relative motion models of Section 5.5 and
the prediction capability of the cooperative relative positioning approach in terms of accuracy,
availability and reliability.

5.8. Summary

This chapter has presented and discussed different components that are used for probabilistic
relative positioning of vehicles. An analysis on the errors that affect GNSS yielded that the
pseudorange measurements towards the satellites can be biased by an amount of several meters.
Some of the error components are common to receivers close by, and, hence, could be eliminated
through differencing. Two approaches for estimating the relative position between two receivers
using GNSS have been compared to each other. The classic approach of differencing the absolute
positions computed by each of the receivers yields a biased relative position estimate when the
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receivers do not use the same satellites or they incorporate their measurements in a different way.
By exchanging the pseudoranges towards the satellites, only the measurements common to both
receivers are used and, thus, an unbiased estimate of the relative position is obtained. The price is
a slight increase in the noise and a lower availability if only a small number of satellites is in view.
A new technique for synchronizing GNSS measurements taken at different receivers in different
vehicles based on Doppler extrapolation has been proposed.

A characterization of MEMS inertial sensors consisting of accelerometers and gyroscopes was per-
formed. The magnitude of the gyroscope biases requires that they are correctly taken into account
in the Bayesian filter by tracking their value over time. The sensor noise was proved to be white
and Gaussian.

Further on, static measurements indicated that GNSS-derived velocity is accurate up to a few cm
s

under good GNSS coverage. However, satellite signal blockage and multipath can cause errors
up to 1 m

s . These situations can be bridged by using a correctly calibrated speedometer, at the
expense of having correlated quantization noise.

Relative motion models that predict the baseline in the absence of GNSS updates have been
presented. It is suggested to use second-order models, such as the constant acceleration and
constant turn rate model, in order to keep a small relative positioning error when the message
update rate between the vehicles is below 10 Hz. It is important to keep the heading error below
1°, in order to have a small error due to the linearization of the system model and to decrease
the lateral error of the baseline vector when the target vehicle drives at higher distance. The
architecture of a two step sensor fusion filter for relative positioning has been proposed, consisting
of an upper relative positioning filter and a lower kinematic filter in each of the vehicles.

Last but no least, an analysis on the required V2V communication resources revealed that the
amount of additional data for cooperative relative position is a fraction of the current CAM size.
A review of the Update Delay metric showed that communication outages between vehicles of one
second have to be bridged by the relative positioning filter in real-world environments.



Chapter 6.

Verification under Controlled Conditions

The system and sensor models presented in the previous chapter aim at describing the vehicular
environment to get close to the real-world. However, due to the high complexity of each single
system, a mismatch between models and real-world is likely to occur. The sensor models for
speed sensors and inertial measurement unit assume Gaussian errors and time correlated biases.
GNSS pseudorange, Doppler and carrier phase measurements are, as well, assumed to be disturbed
by additive white Gaussian noise. The rectilinear and constant turn rate models for the vehicle
dynamics are simplified models, whereas the movement of real-world road vehicles might deviate
from this behavior.

The next two sections present the results of controlled tests performed using simulations. First, a
MATLAB simulation environment is used to create the sensor outputs for two vehicles driving in
different configurations. The second section evaluates the GNSS measurements and their impact
on the baseline estimation by using a GNSS constellation simulator that generates real GNSS
signals which are fed into real GNSS receivers.

6.1. Cooperative Relative Position Simulator

Before testing the cooperative relative positioning system presented in the previous chapter in
real-world environments with real-world sensors in real cars, a simulation environment is used for
testing and validating the multisensor fusion approach. A simulator is used to generate sensor
log files of a controlled environment where two vehicles drive different maneuvers, where all on-
board sensors and movement dynamics are modeled. The simulator log files are input into the
cooperative relative position filter for the sake of its validation. The proposed approach is verified
by checking that the states are correctly estimated and tracked in time by comparing them to the
true values given by the simulator. By using a sensor simulation environment, it is possible to
have a reference of all estimated parameters, against which the estimation can be compared to.
As it will be explained in Chapter 7, the real-world experiments will lack a correct truth for many
of the values, as for instance, speed, heading or absolute positions of vehicles or satellites.

124
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From an estimation perspective, the multisensor fusion will perform optimal if the prediction
equations exactly model the movement of the simulated vehicles and the measurement likelihoods
exactly model the errors on the simulated sensors. In this sense, the simulations will not be able
to quantify the performance of the proposed approaches. However, the usage of a simulator
has multiple interesting advantages. First of all the mentioned availability of a true value for all
states. Next, the possibility of performing multiple realizations of the same experiment and in this
way obtaining a statistical evaluation of the performance of the used estimators. In a simulated
environment, multiple parameters can be accurately tuned, which are otherwise not controllable
in a real-world environment. For instance, the following aspects could be addressed by using a
simulated environment:

• Sensor models: different noise levels in speed and inertial sensors can be modeled and it is
possible to model ideal noise-free sensors. The impact of quantization noise on the speed
sensor can be addressed.

• Inertial Measurement Unit (IMU) misalignment: ideally the IMU on-board of each vehicle
would be perfectly aligned with the body frame. The impact of a misalignment between
sensor and body frame or the effect of the lever arm between IMU and GNSS antenna can
be studied.

• System synchronization: the processing units on-board of each vehicle are not synchronized
and run on their own clocks. The impact of not having a fully synchronized system can be
inspected.

• Time discretization: the impact of having a time discretized system can be investigated,
specially in strong vehicle dynamics, such as high longitudinal and lateral accelerations.

• Observability: Some states are not observable or are only weakly observable. This is the
case, for instance, for the gyroscope and accelerometer biases, the attitude of the vehicle or
the heading at standstill. How this states can be made observable and how much time it
requires can be inspected by using a simulated environment.

• System non-linearity: The impact of non-linearity in the system equations can be analyzed.

Some of these aspects will be regarded in the scope of this work. The Cooperative Relative
Position Simulator is composed of two independent and cascaded components: the True Value
Generator and the Sensor Simulator. In Figure 6.1, the two components are displayed. The True
Value Generator emulates the vehicle state in ego and target vehicle in a predefined scenario. The
vehicle state, in the scope of this work, is reduced to the following values:

• Position p of the vehicle expressed in local navigation coordinates.

• Attitude α of the vehicle given by its three Euler angles which transform the vehicle coor-
dinate frame into the local navigation coordinate frame.
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Figure 6.1.: The Cooperative Relative Position Simulator emulates the sensors at ego and target
vehicle that are the input for the Cooperative Relative Positioning algorithms. It
consists of two steps: first, the True Value Generator creates the dynamic state of
both vehicles. Then, the Sensor Simulator, along with the sensor models and its
parameters, creates the log files that are fed into the Cooperative Relative Positioning
algorithm.

• Velocity v of the vehicle in local navigation coordinates.

• Acceleration a of the vehicle expressed in vehicle coordinates.

• Turn rate ω of the vehicle expressed in vehicle coordinates.

• Clock bias δt and clock drift δ̇t of the GNSS receiver.

To simplify the complexity of the modeling, certain assumptions are applied in this study. First,
the vehicle consists of two rigid bodies which are connected by springs; the one above is called
sprung mass and the other one is called unsprung mass. The damping factor of the spring is linear.
The vehicles drive exclusively in the east-north plane of the local navigation coordinate system,
and thus, the up coordinate is constant. This coordinate system is fixed at time t0 at the position
of the ego vehicle and it does not change during the simulation. This constraint assumes a flat
surface of the Earth. The gravity vector is constant over space and always points in negative up
direction. The vehicles move only in their forward direction with no skidding or side-slip. The
simulator’s clock runs at 1 kHz (∆t = 1 ms), which is assumed to be a high enough sampling rate
in order to represent accurately the vehicle’s dynamics.

In the simulator, a platooning scenario is implemented, where the ego vehicle drives at a varying
distance behind the target vehicle. Both vehicles drive on straight paths interrupted by bends
of different curvature. The vehicles always start from standstill and accelerate with constant
predefined jerk. At the end of the scenario, both vehicles come to a standstill. Each of the
vehicles are given initial values for their position p0

e and p0
t , attitude α0

e and α0
t , velocity v0

e and
v0

t , acceleration a0
e and a0

t , turn rates ω0
e and ω0

t , clock bias δt0e and δt0t and clock drift δ̇t0e and
δ̇t

0
t . Also the starting date and time are give as initial values.

The input to the simulator are the three-dimensional jerk values jk at each time instant. A constant
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positive jerk value makes the specific force of the vehicle to increase linearly and, consequently, the
speed to increase quadratically. In this way, smooth accelerations and decelerations are achieved.
By having the constant jerk segments as control input, both, linear accelerations and decelerations,
as well as, constant circular turns can be simulated. The suspension factors in x and y direction,
Sx and Sy, specify the angle by which the vehicle is pitched and banked when accelerating in x
and y direction, respectively [217, 218]. Equations 6.1 through 6.9 describe the iteration loop that
calculates the kinematic state for each of the vehicles.

ωkxy = jkxy · Syx (6.1)

ωkz = vkx
R

(6.2)

Ωk =
[
ωk×

]
(6.3)

Ck = Ck−1 · (I + sin(σ)
σ
·Ωk ·∆t+ 1− cos(σ)

σ2 ·Ωk ·∆t) (6.4)

ak = ak−1 + jk ·∆t (6.5)
fk = Ckᵀ · g + ak (6.6)

vk = vk−1 + 1
2 · (C

kak + Ckak−1) ·∆t (6.7)

pk = pk−1 + 1
2 · (v

k + vk−1) ·∆t (6.8)

δtk = δtk−1 + δ̇t
k−1 ·∆t (6.9)

The simulated vehicles will roll and pitch due to accelerations in lateral and longitudinal direction,
respectively. The corresponding angular rates are computed in Equation 6.1. The yaw rate is given
by the longitudinal speed and the radius of the curve as in Equation 6.2. Equation 6.3 computes
the skew symmetric matrix from the turn rates ωk, which is then integrated in Equation 6.4 to find
the new attitude of the vehicle given by its direct cosine matrix Ck (see Equation 3.6). Here, σ is
the norm of the turn rate vector times the time step ∆t. By integrating the jerk jk in Equation 6.5
the acceleration of the vehicle in vehicle frame ak is obtained. The transposed Direction Cosine
Matrix (DCM) is used in Equation 6.6 to add the gravity g projected into the vehicle frame to
the acceleration and compute the vehicle’s specific force [97]. In Equation 6.7, the velocity of
the vehicle in navigation frame vk is obtained by applying the trapezoidal integration rule on
the rotated acceleration of the vehicle [219]. Finally, the new position pk is calculated from the
previous position and the traveled distance by integrating the speed in Equation 6.8. The GNSS
receiver clock bias is obtained adding the drift to the previous clock bias in Equation 6.9. The
true values for the position of the GNSS satellites, their satellite clock bias and drift are taken
from a RINEX ephemeris file that is loaded into the simulator [220]. Once the true values for both
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vehicles and the GNSS satellites are generated by True Value Generator, the Sensor Simulator will
simulate the sensor outputs for the GNSS receiver, the IMU and speed sensor. All parameters can
be introduced to the simulator via a graphical user interface. For each of the sensors a model for
their output is described next.

Speed Sensor The speed sensor measures the speed of the vehicle in forward direction. The
sensor output vCAN will have a constant bias bCAN added to the true longitudinal speed of the
vehicle vx and an additive white Gaussian noise component εCAN according to

vCAN = dvx + bCAN + εCANe . (6.10)

Statistical analysis performed on available sensors yield that the bias of the speed sensor is between
0 m

s and 0.3 m
s . The Gaussian noise is zero mean and standard deviation of around 0.3 m

s . The
Controller Area Network (CAN) bus readings output the value rounded to the next integer.

Inertial Measurement Unit From the simulated attitude α, turn rate ω and accelerations a of
the vehicle the six IMU measurements are generated. The accelerometers inside the IMU measure
the specific force f acc which is given by

f acc = Ma · (a + Cᵀg) + ba + na, (6.11)

where the misalignment matrix Ma multiplies the acceleration of the vehicle a and the rotated
gravity vector g with components

[
0 0 9.81

]ᵀ
. The accelerometer biases ba are generated by

a first order Gauss-Markov model as explained in Chapter 5 and na is mutually independent white
Gaussian noise. The misalignment matrix presents the rotation of the sensor frame into the vehicle
frame. When the sensor is perfectly aligned with the vehicle this matrix equals the identity matrix.
The turn rates measured by the gyroscopes ωgyr are given by

ωgyr = Mω · ω + bω + nω, (6.12)

where nω is mutually independent white Gaussian noise and bω are the gyroscope biases that are
generated by a first order Gauss-Markov model.

In the frame of this work, only the impact of certain sensor errors are analyzed, while other
errors are assumed to be nonexistent or compensated by a prior calibration. For instance, the
misalignment of the sensor and errors in the estimation of the gravity are assumed to be zero.
Additionally, as a first approach, accelerometer biases are set to zero and only the gyroscope biases
are considered.



Chapter 6. Verification under Controlled Conditions 129

GPS Measurements The pseudorange measurements are simulated by taking the true position
of the vehicle pk and the true position of the satellite pks at the time of transmission of the
signal. This requires an iterative process analogous to the common positioning problem, since
both the transmission time and satellite position are unknown. Starting with the satellite position
at reception time as an initial guess and calculating the signal propagation time, a first approxi-
mation of the actual transmit time is made. This is used to compute a new satellite position and
to enter the next iteration. Once this process converges, the satellite and a user clock bias are
added to the propagation time to yield the pseudorange. Additionally, atmospheric errors can be
activated. The ionospheric delay is computed from Klobuchar parameters in the Receiver Inde-
pendent Exchange Format (RINEX) ephemeris file, while the tropospheric delay is calculated using
the Modified Hopfield model [221]. The atmospheric parameters for the dry and wet tropospheric
delay (temperature, air pressure, etc.) can be configured for each run. For the carrier phase mea-
surements a random number of whole L1 cycles is added to the true range, while the sign of the
ionospheric delay is inverted as described in Chapter 3. The Doppler measurements are calculated
from the relative speed of satellite and receiver. The speed of the satellite is computed from three
consecutive satellite positions. The clock drifts δ̇t of receiver and satellite clocks are added. All
three GNSS measurements are corrupted by Gaussian noise. The variances of pseudorange, carrier
phase and Doppler can be set independently for each run. The possibility of adding a constant
offset on the pseudoranges has been implemented in order to simulate a multipath induced bias
in the pseudorange estimate.

As will be discussed in Section 6.2.1, pseudorange measurements are corrupted by time-correlated
noise, thus, violating the first-order Markov assumption in a Bayesian filter. In order to evaluate
the impact of a time correlation on the proposed filters, colored noise can be activated within
the Cooperative Relative Position Simulator. The time correlation of pseudoranges is correctly
modeled with an autoregressive filter of order one according to:

εk = nk + ζ1 · εk−1, (6.13)

where ζ1 is the AR(1) model parameter equal to 0.855, which matches the time correlation of the
Ublox LEA 4T receivers used in this thesis and n is white Gaussian noise with zero mean and a
standard deviation dependent on the simulated Carrier-to-Noise Ratio (CN0).

6.1.1. Movement Model Evaluation

The first test aims at validating the proposed relative motion models from previous chapter. For
this purpose, and in order to isolate the problem to exclusively consider movement model errors, the
initial baseline and baseline velocities are initialized to true values and all errors in the inertial and
speed sensors are deactivated and the GNSS double differenced measurements are disconnected.
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(a) Constant Velocity Model
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(b) Constant Acceleration Model

Figure 6.2.: The figures show the longitudinal baseline prediction error when performing an ac-
celeration of the target vehicle using a CV and a CA model. The blue curves are
comfortable maneuvers (jerk of 1.5 m

s3 ), while the red curves are extreme maneuvers
(jerk of 8 m

s3 ). In order to get the prediction error below 1 m a higher update rate than
10 Hz is required using the CV model. The CA model yields prediction errors of a few
centimeters at 10 Hz update rate.

The baseline will be predicted solely on the basis of the correct values of speed, acceleration, turn
rate and heading in each vehicle.

During normal driving, comfortable accelerations that can be encountered range from −2 m
s2 to

2 m
s2 [222], with acceleration changes below 2 m

s3 [223]. Sports cars have accelerations above 6 m
s2

and emergency braking can reach decelerations up to 10 m
s2 and acceleration changes of 8 m

s3 in
periods below 1 s [224].

Typical horizontal turn rates are given by the road topology, which is designed in order to limit
the centripetal acceleration and lateral jerk experienced by a vehicle to around 1.5 m

s2 and 1 m
s3 ,

respectively [225]. During normal driving, the horizontal turn rates are below 20 °
s . Higher turn

rates can be encountered in bends with small radii. In a curve with 10 m radius, a maximum turn
rate of 57 °

s can be performed before the wheels slip on the surface.

Longitudinal and lateral jerk produce changes in longitudinal acceleration and changes in turn rate
respectively. Since these changes are not contemplated within any of the proposed models, these
situations are expected to introduce relative positioning errors. The error stems from the limited
update rate for the kinematic estimations of the target vehicle that are made available at the ego
vehicle. With an unlimited communication bandwidth and, hence, a sufficiently high update rate,
any movement could be approximated with the proposed movement models. The kinematic state
estimate of the ego vehicle does not contribute to this error, since it is automatically available for
the cooperative position sensor fusion.

Figure 6.2 shows the longitudinal baseline estimation error for both, a comfortable acceleration
(blue) and an extreme acceleration (red) of the target vehicle, for different update rates using a
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(b) Constant Turn rate and Velocity Model

Figure 6.3.: The figures show the longitudinal and lateral baseline prediction errors using a CV
and a CTRV while performing a turning maneuver. The blue curves are comfortable
maneuvers (change of 10 °

s in 1 s), while the red curves are extreme maneuvers (change
of 30 °

s in 0.1 s). Both target-to-ego update rates of 10 and 50 Hz are displayed.

CV and a CA model. It can be observed that only the CA model is able to produce centimeter-level
errors for both, comfortable and extreme acceleration maneuvers using 10 Hz update rate. With
a CV model, longitudinal errors above 1 m can be expected.

Figure 6.3 shows the analogous evaluation for a comfortable and an extreme 90° turn of the target
vehicle. Only with high update rates of 50 Hz, the CV model is able to produce a relative position
error below 10 cm. The Constant Turn Rate and Velocity (CTRV) model yields relative positioning
errors below 5 cm even for extreme maneuvers at 10 Hz.

Also the relative velocity between the vehicles is correctly predicted with errors below 5 m
s while

performing an extreme acceleration maneuver of the target vehicle using a CA model and an
extreme turn maneuver using a CTRV model.

As a conclusion, one can say that, if vehicles adhere to the presented movement models and
accurate kinematic updates are available for each vehicle’s speed, acceleration, heading and turn
rate, the baseline can be tracked with sufficient accuracy over longer periods of time if a Constant
Turn Rate and Acceleration (CTRA) model is used. An update rate of 10 Hz is sufficient in order
to obtain relative position errors below 5 cm and relative velocity error below 5 m

s .

6.1.2. GNSS Evaluation

The impact of the GNSS satellite signals on the baseline estimate is regarded next. For this
purpose different tests are executed that focus on how the baseline and the baseline uncertainty
vary with changing satellite constellation and with different carrier-to-noise values. Figure 6.4
shows the apparent satellite position in terms of elevation and azimuth.
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Figure 6.4.: The figure shows the simulated driving path superimposed to an aerial view in Google
Maps. A skyplot displays the position of the GNSS satellites during simulated test
run.
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(a) Full Constellation
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(b) Partial Constellation

Figure 6.5.: The left figure shows the baseline estimation error and its uncertainty during the whole
run using the full constellation of satellites. The right figure shows the estimation
error when a partial constellation is used. The result is an increase in the estimation
uncertainty.

The satellites highlighted in yellow represent a reduced constellation with five satellites (2, 10,
14, 25 and 29 as common satellite) that could be in view when driving on a south-west/north-
east urban canyon. This is used to analyze the impact of having only satellites in one direction.
Figure 6.5 shows the baseline estimation error and its 3σ-uncertainty in longitudinal and in trans-
verse direction. When using the full constellation of satellites the baseline 3σ-uncertainty is similar
in both directions (see Figure 6.5a). However, both uncertainties increase when compared to the
full constellation test as less satellites are used (see Figure 6.5b). The longitudinal constellation
favors the accuracy of the longitudinal component of the baseline as explained in Section 5.1.3.
When taking the turn in second 90 the constellation is parallel to the baseline and consequently
the x-variance decreases while the y-variance increases. The turn at second 145 has the opposite
impact.

Next, the baseline uncertainty with varying number of satellites is assessed. For this, the number
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(b) Baseline Error

Figure 6.6.: Baseline estimate with varying Number of Satellites. The left figure shows the number
of double differences used to update the baseline estimate. The right figure shows
the longitudinal and lateral baseline error.

of visible satellites is progressively reduced from 7 to 2, ending with one sole double difference
that updates the baseline estimate. Figure 6.6 shows the resulting baseline estimation errors and
the 3σ uncertainty bound. It can be seen that the estimation uncertainty stays relatively bounded
while decreasing the number of satellites. When from second 300 on only two satellites, i.e. one
double difference, is available, the uncertainty in the relative position estimate increases without
bound in one direction and is loosely bounded in the other after performing the last curve. From
second 350 on, no double difference can be formed and the relative position can only be predicted
through the movement model.

Pseudoranges have been simulated with a medium carrier-to-noise ratio by adding noise with
standard deviation of 1 m. The simulated Doppler noise is set to 5× 10−5 Hz. The multisensor
fusion filter assumes exactly this error in the pseudorange measurements. Consequently, the
results are optimal from the point of view of estimating the baseline uncertainty. In real-world
scenarios the challenge is to correctly determine the current error on each pseudorange and Doppler
measurement.

Time correlation of GNSS measurement noise As previously explained, pseudorange mea-
surement noise is correlated over time due to the GNSS receiver tracking loops. Consequently, also
the noise on the pseudorange double differences is time correlated. The impact of this correlation
on the baseline estimate within the simulator is regarded next. An acceleration-turn-deceleration
scenario is simulated. First, the pseudoranges output by the simulated GNSS receiver are cor-
rupted with white noise and then the pseudoranges are corrupted by noise modeled with AR(1)
model with parameter ζ1 equal to 0.855. This value stems from the investigation performed with
the available GNSS receivers as explained in Section 6.2.1. Figure 6.7 shows the error in the
baseline estimation for both cases. Figure 6.7b reveals that the incorporation of colored noise
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(a) White Noise
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(b) Colored Noise

Figure 6.7.: The figures show the error in the baseline estimate when using pseudorange measure-
ments corrupted by white (left) and colored noise (right). The unmodeled correlation
of the noise in the measurements creates an overconfident baseline estimate.

to the measurements leads to a suboptimal behavior of the filter, producing larger errors and an
overconfident estimation of the baseline. Therefore, in the scope of this thesis, the measurement
noise has been increased accordingly. Different approaches, such as state augmentation and mea-
surement differencing, exist to cope with the problem of colored noise inside a Kalman filter [226].
A further approach is to implement a shaping filter by augmenting the state space incorporating
the autoregressive model of the autocorrelation as a further equation [227].

GNSS Outlier Rejection An offset on some of the pseudoranges in either one of the vehicles is
added. The purpose is to validate the outlier rejector presented in Chapter 5. The offset on the
pseudorange aims at modeling the effect of a reflected path in a GNSS receiver. The pseudorange
error is varied throughout the simulation. Starting from a large offset of 30 m on two satellites,
the amplitude is reduced until it reaches 0.2 m.

Figure 6.8a reveals large errors in both the longitudinal and lateral component of the baseline
estimate. Since the pseudorange double difference error is not adapted, the baseline uncertainty
estimation remains low and the actual error exceeds the 3σ bound leading to a confidence error.
In Figure 6.8b the multipath rejector has been activated. The result is a correct suppression of
the faulty satellite when the pseudorange offset is 30 m and 20 m. The 10 m offset, however, is
incorporated into the estimate, since the Mahalanobis distance falls below the rejection threshold.
Further decreasing the rejection threshold has the drawback of suppressing also healthy satellites.
The sub-meter pseudorange offsets are correctly averaged out inside the Kalman filter, since their
contribution is in the order of the pseudorange noise (1 m).

The rejector will work well for strong multipath offsets that occur over short periods of time in
a small number of satellites. It also requires that an accurate baseline with small uncertainty is
present before the multipath hits in. The rejector is a suitable approach when many satellites
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(a) Multipath Rejector Deactivated
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(b) Multipath Rejector Activated

Figure 6.8.: Baseline estimate in the presence of multipath. The left figure shows the baseline
estimate error in longitudinal and lateral direction. The right figure shows the baseline
error activating the multipath rejector.

are available and the disadvantage of using less satellites can be assumed. Already today GNSS
receivers are able to track multiple constellations of satellites and tracking around 20 satellites is not
unusual in open sky environments. In future, with GNSS receivers tracking different constellations,
the availability of satellites will greatly increase.

6.1.3. Kinematic Evaluation

This section evaluates the performance of the lower kinematic filter using a 122 s section consisting
of both vehicles performing an acceleration, three bends and a deceleration until standstill. The
complete parameter list used in the simulation can be found in Table B.1 and Table B.2 in
Annex B. Figure 6.9 shows the speed, acceleration, turn rate and attitude profile during the run.
The bends of different radius and length create different bank angles and turn rates. As introduced
in Chapter 5, the lower kinematic filter estimates the vehicle’s longitudinal speed, acceleration,
heading and turn rate using an IMU, the vehicle’s speedometer and GNSS velocity from Doppler
measurements. Further on, assumptions that yield knowledge on the estimated parameters are
integrated into the filter as pseudo-measurements. Two different configurations were presented
and are evaluated here for their accuracy, robustness and observability of parameters. In order to
fairly evaluate the both kinematic filters, the measurement noise variances are set identical. The
initial state of each parameter is set to the true value and initial uncertainty values are equal in
both filters. The initial gyroscope biases are set to zero. Every time one hundred realizations of
the experiment have been performed in order to make a statistical relevant evaluation.

The evaluation of both kinematic filters concentrates on its performance in estimating the four
relevant parameters. For this, the estimation error of one of the realizations is displayed over
time as a blue line. The gray area represents three times the standard deviation of the estimated
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(c) Attitude
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(d) Attitude Rate

Figure 6.9.: The figure shows the speed, acceleration, attitude rate and attitude profile for one
vehicle in the Cooperative Relative Position Simulator. Around second 20, the vehicle
starts accelerating from standstill until reaching a speed of 17 m

s . This acceleration
causes the vehicle to pitch back 7°. From second 45 to 50, the vehicle takes a left
turn. The lateral acceleration causes the vehicle to roll to the outer side of the curve.
After two more bends with different radius to the right and to the left, the vehicle
comes to a stop at second 115.
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Figure 6.10.: The figure shows the estimation error of the relevant parameters using the Full
3D Inertial Filter with GNSS during the 122 s run. The blue lines correspond to the
estimation error of one single realization of the experiment, while the overall 3σ error
over all experiments is shown in green. In gray the filter’s 3σ-bound is displayed.

parameter (3σ-bound). The green lines represent the actual 3σ-standard deviation over all one
hundred realizations. Ideally, the stated uncertainty given by the kinematic filter would match the
actual uncertainty of the output. Each filter is evaluated, once activating the GNSS measurements,
and once without these measurements.

Full 3D Inertial Filter This filter implements a strapdown algorithm that integrate gyroscope
measurements to compute the vehicle’s attitude and integrate the accelerometers to compute
the velocity. In a Kalman filter, the increasing errors of the strapdown algorithm, along with
the gyroscope biases, are estimated by incorporating GNSS information. Starting with the correct
orientation, the filter keeps on integrating the gyroscopes to track the attitude of the vehicle. Here,
the main problem is the unobservability of roll and pitch angles, which accumulate an error due to
the integration of noise over time. The estimation errors, along with the estimation uncertainty
(3σ), are shown in Figure 6.10. Vehicle speed and acceleration are correctly estimated over the
whole 122 s run. The speed estimate is correctly bounded by the availability of full 3D GNSS
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Figure 6.11.: The figure shows the estimation error of the three gyroscope biases with the Full 3D
Inertial Filter. The biases in the planar axis converge rapidly to the correct values.
Since the zero-rotation assumption is not activated in this example, the z-axis bias is
only observable when the vehicles moves and GNSS heading information is available.

velocity. The heading angle of the vehicle stays unobserved during the standstill section of the
test run and is correctly updated when the speed of the vehicle increases with the information
from GNSS heading. The heading rate stems from the bias-corrected and projected gyroscope
measurements from vehicle frame to navigation frame.

In Figure 6.11, the correct estimation of gyroscope biases in the first seconds during standstill
can be appreciated. In this run zero-rotation assumption nor zero-acceleration assumptions are
activated. The z-axis gyroscope bias is observed later when the vehicles starts accelerating and
the heading updates from GNSS start becoming more and more accurate. With the activation of
the zero-rotation assumption, all gyroscope bias are observed during standstill. With increasing
stopping time the biases can be estimated with increasing accuracy. In this way it is possible to
completely eliminate the initial heading and heading rate errors in Figure 6.10.

Figure 6.12 shows the estimation of the four relevant parameters during a GNSS outage between
second 40 and 90. The longitudinal speed and heading errors increase and their steadily growing
uncertainty are correctly modeled in the filter. Acceleration and heading rate remain bounded due
to the information from the accelerometers and gyroscopes respectively. In order to limit the error
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Figure 6.12.: The figure shows the estimation errors in all four relevant parameters using the Full
3D Inertial Filter in the absence of GNSS velocity updates between second 40 and
second 90. Longitudinal speed and heading have larger errors when compared to the
simulation where GNSS was available. The error in the heading increases steadily
due to the absence of a suitable observation. The heading rate, which is equal in
this filter to the z-axis turn rate, is bounded.
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Figure 6.13.: The figure shows the estimation errors in all four relevant parameters using the Full
3D Inertial Filter in the absence of GNSS velocity updates between second 40 and
second 90 and using the CAN bus speedometer information instead. This information
is able to correctly contain the growth of the longitudinal velocity error in comparison
to Figure 6.12.

growth in the velocity component, CAN speed measurements are activated. The CAN speedometer
offers an observation of the forward speed of the vehicle without an information of its heading
angle. Additionally, the non-holonomic constraints state that the lateral and vertical speed of the
vehicle are both zero. Figure 6.13 shows the estimation errors in this case. It can be seen how
in the GNSS-denied section the longitudinal speed error increases slightly due to the less certain
speed information, but the uncertainty is correctly estimated. The heading error increases, similar
than in Figure 6.12. The rate at which this error increases is dependent on the gyroscope noise
variance and its correct estimation of the biases.

Full Bayesian Filter In this approach an eleven-state Kalman Filter is used to estimate both
longitudinal speed and acceleration, 3D attitude, turn rate and gyroscope biases. Instead of
integrating the gyroscopes and accelerometers in a strapdown algorithm, here the measurements
of accelerometers and gyroscopes update the state in a Bayesian way. Further updates are a
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zero-rotation assumption when the vehicle is at standstill and GNSS heading and speed when
this information is available. The estimation errors with GNSS updates available are shown in
Figure 6.14.

The Full Bayesian approach implicitly incorporates a zero-acceleration assumption (see
Equation 5.90) and, thus, its attitude angles do not drift over time. This makes it possible
to have an accurate estimation of the longitudinal acceleration of the vehicle. In general, the
estimated uncertainty for speed, acceleration and heading are greater than the actual ensemble
standard deviation, meaning that the filter is under-confident. This is related to the fact that
the prediction equations do not incorporate any sensor information in order to steer the a priori
estimate towards the expected measurement. This fact requires an increased process noise
variance in order to react correctly to acceleration and decelerations maneuvers or changes of
direction. The effect of a tight process noise variance-covariance matrix can be appreciated in
the heading rate estimation error in Figure 6.14. The filter does not correctly follow the changes
in heading rate during the three turns and yields small errors in heading rate, which propagate to
the heading and the speed estimates.

The filter estimates the gyroscope biases at standstill (see Figure 6.15). If a standstill is not
available, the filter correctly learns the z-axis gyroscope bias with the GNSS heading measurements
and the x- and y-axis gyroscope biases with the information of the accelerometers.

In Figure 6.16, the GNSS measurements have been disconnected between second 40 and 90.
The speed estimate is updated with measurements from the CAN bus speedometer, which is less
accurate, resulting in an increased speed and acceleration uncertainty. The uncertainty in the
heading estimate grows quickly due to the absence of heading information. However, also here,
the filter predicts an under-confident error. The aforementioned errors in the heading rate directly
cause biased estimates of the heading.

Discussion The previous comparison between the Full 3D inertial filter and the Fully Bayesian
filter yielded that both approaches, in principle, are valid for estimating all four kinematic param-
eters of interest. The estimation error is for both filters around zero. However, the Fully Bayesian
approach yields under-confident estimations, while the Full 3D inertial filter has an optimal behav-
ior by offering an unbiased mean and a covariance that correctly depicts the existing uncertainty.
A correct bounding of the uncertainty is important, since it will propagate to the relative position
between the vehicles and, possibly, lead to a reliability failure. Further on, the Fully Bayesian
approach requires a correct tuning of the system variance-covariance matrix in order to adapt to
changing dynamics of the vehicle. For these reasons, in the real-world experiments in Chapter 7,
the Full 3D inertial kinematic filter is chosen to estimate the speed, the acceleration, the heading
and the heading rate in both the ego and the target vehicle. However, a worse performance is
expected in real-world conditions, due to model mismatch and unmodeled effects. Inertial sensor
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Figure 6.14.: The figure shows the estimation error of the relevant parameters using the Full
Bayesian kinematic filter with GNSS during the 122 s run. The blue lines correspond
to the estimation error of one single realization of the experiment, while in green the
overall error 3σ deviation over all experiments is shown. In gray the filter’s 3σ-bound
is displayed.
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Figure 6.15.: The figure shows the estimation of the three gyroscope biases with the Full Bayesian
Filter in the absence of GNSS. By using the zero-rotation assumption the estimate
rapidly converges to the true value when the vehicle is at a standstill. While the
vehicle is driving the uncertainty in the gyroscope bias slowly increases since no
suited observation exists.
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Figure 6.16.: The figure shows the estimation errors in all four relevant parameters using the Full
Bayesian Filter in the absence of GNSS speed and heading updates. Longitudinal
speed and acceleration have larger error when compared to the simulation where
GNSS was available. The error in the heading increases steadily due to the absence
of an suitable observation.

misalignment, lever arm effects, deviating measurement models and complex vehicle dynamics will
influence the performance of the filter in an unpredicted way.

6.1.4. Speed Quantization

The speed measurement output by the vehicle CAN bus is quantized to a whole number of km
h .

This causes an error on the speed measurements that is uniformly distributed between ±0.14 m
s .

Compared to GNSS derived speed, which was quantified in Chapter 5 with an error of 0.06 m
s (1σ),

the CAN speedometer error is larger. The second important drawback is that the error does not
average to zero but can have a maximum bias of ±0.14 m

s . This bias amounts to 16.8 m relative
positioning error in 60 s.

Therefore, in practice it will be only be possible to bridge short GNSS outages using the quantized
CAN speed measurement. The alternative would be to directly use the information from Hall
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(a) Speed from GNSS
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(b) Speed from CAN

Figure 6.17.: Baseline estimation error in longitudinal and lateral direction using GNSS based
speed estimate (left) and CAN speedometer (right). The speed of ego and target
vehicle are chosen to produce the worst case scenario: the rounding of the constant
speed in each vehicle produces an ever-inceasing error in the relative position. In
this case on the longitudinal component of the baseline.

effect sensors mounted in the wheel and which are used for Anti-lock Braking System (ABS).
The resulting speed estimate has a random error with a bias of less than 0.02 m

s , related to the
estimation of the wheel radius [228]. In the worst case this would accumulate to 2.4 m relative
positioning error in 60 s.

The impact of not having a Gaussian distributed noise is assessed using the simulator. For this,
an acceleration, constant speed, deceleration scenario is simulated. GNSS pseudorange double
difference updates are deactivated and the baseline is solely estimated by prediction. Figure 6.17a
shows the baseline estimated using the speed derived from the GNSS measurements, which is zero
mean and has small error (1σ). The longitudinal and lateral errors are due to time discretization
and a small error in the ego vehicle heading estimate, respectively. Figure 6.17b shows the same
scenario using the quantized speed measurement from the CAN bus instead. The speed of each
vehicle in the constant speed section is set to the worst case, where the target vehicle’s speed has
a value that is round up, while the ego vehicle’s speed if round off to the next lower integer speed.
A steadily increasing longitudinal baseline error is the consequence.

In practice, vehicles will not drive at the edge of the rounding threshold for long periods of time.
In fact, the rounding error will average out over longer GNSS blockages. Nevertheless, the relative
positioning filter is not capable of correctly estimating this behavior. The result is a reliability
failure.
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Figure 6.18.: The figure illustrates the ”blurring” of the arrival time of sensor data due to an
unsynchronized clock in the target vehicle.

6.1.5. Timing Evaluation

For a cooperative approach precise timing is a crucial issue. Recalling Figure 5.21, sensor data
from the target vehicle is merged in the upper relative positioning filter with sensor data from the
ego vehicle. In order to have a correct estimation of the relative position, the fused sensor data
need to be referred to a common clock. For practical reasons this clock is given by GNSS time,
which is precise and stable. Consequently, GNSS measurements will per se be synchronized to
GNSS time and can be shared without further problem between vehicles.

Unless a dedicated hardware synchronization to GNSS time is performed, system clocks inside
ego and target vehicle are biased and will steadily drift away from GNSS time. The timestamps
of sensor data, such as IMU and CAN bus speedometer, will, therefore, have an unknown offset.
One solution, and the one implemented in this thesis, is to relate system and GNSS time per
software synchronization. Each time a GNSS measurement with an accurate GNSS timestamp
arrives, the system time is updated. Outages in GNSS are correctly bridged by extrapolating
linearly the relationship between system time and GNSS time. Figure 6.18 illustrates the problem
of having an unsychronized system clock in the target vehicle. IMU and CAN sensor data will have
a remaining random error in their measurement time. This jitter due to unsynchronization for the
real-world test setup used in this thesis is shown in Figure 6.19. The −80 ms spikes every 102 s
could be related to periodic tasks of the Linux operating system or garbage collection tasks in the
Java run-time environment. The two 50 ms peaks are situations when the vehicle was driving in a
tunnel and GPS tracking is momentarily lost. Here the GNSS clock is unreliable and should not
be used for updating the system time.

A jitter on the system clock with a standard deviation of 10 ms will traduce to an error in the
sensor magnitude. If, for instance, a vehicle is accelerating with 7 m

s2 , a 10 ms uncertainty in the
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Figure 6.19.: The figure shows the synchronization error between system time and GPS time after
software synchronization of the test setup used in this thesis. The synchronization
errors are mostly between ±20 ms.

Table 6.1.: Error due to System Clock Unsynchronization

Sensor Measure-
ment

Maximum
Rate of Change

Error due to system
clock unsynchronization
(1σ)

Error of the sensor
(1σ)

Speedometer 7 m
s2 0.07 m

s 0.8 m
s

Accelerometer 0.5 m
s3 0.005 m

s2 0.01 m
s2

Gyroscope 20 °
s2 0.02 °

s 0.29 °
s

measuring instant of the vehicle’s speedometer will produce a speed error of 0.07 m
s . Table 6.1

summarizes the errors due to system clock unsynchronization for all vehicle sensors taking into
account the largest expected rate of change of the considered magnitude. It can be seen how
all errors are below the expected errors of the sensor itself. Hence, it can be concluded that the
proposed software synchronization will not lead to a major performance decrease in the estimation
of the kinematic parameters inside of the vehicles.

In the absence of GNSS signals, during first acquisition or during temporary loss of tracking, the
clock in each vehicle is drifting freely until lock is reacquired. In this time, sensor data issued in the
vehicle has no temporal reference. Quartz clocks exhibit drifts below 10−5 s

s , which accumulates
to 6 ms in one minute. As long as a GNSS fix is acquired once every minute, no drift above the
synchronization error of around 10 ms is expected.

6.2. GNSS Simulator

The previous section described the Cooperative Relative Position simulator where the Cooperative
Relative Positioning algorithms are evaluated and validated. Prior to perform measurements in
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the ”uncontrolled” real world, an intermediate step is performed. The GPS receivers used for this
work are connected to a GPS constellation simulator. The GSS7790 from Spirent simulates the L1
radio frequency (RF) signals from a set of GPS satellites as they would be received at an antenna
at a certain location at a certain time1. The user has full control on the simulated satellite orbits,
satellite and atmospheric errors or the user position and movement. The RF signals are fed into the
antenna connector of the GPS receiver, which will acquire and track the different satellite signals,
decode the navigation message and deliver pseudorange, Doppler and carrier phase measurements
to compute a position, velocity and time estimate. First, for the purpose of characterizing the used
GPS receivers and in order to validate the differentiation of pseudoranges explained in Chapter 5,
a set of experiments in a zero-baseline configuration are performed.

A zero-baseline experiment consists of two receivers which are fed with exactly the same GNSS
signals received at one common antenna [175]. By using an RF splitter the output of the antenna
is guided to two Ublox LEA 4T receivers. Each antenna input is DC-blocked to prevent the
antenna supply component damaging the Spirent simulator. The Ublox receivers were configured
with an automotive platform model and were set to output raw GPS measurements at 4 Hz. This
setup forces a zero-baseline between the receivers, making it an ideal experiment to validate the
presented differencing and synchronization algorithms. At the same time, it represents the best
possible solution that can be achieved with two receivers, as the configuration forces all allegedly
common errors to be equal (i.e. satellite and atmospheric errors) and therefore canceling out
completely. In an ideal case, one could assume that noise and multipath would also cancel out
completely, as the same signals are applied to both receivers. Nevertheless, the following deviations
from the ideal zero-baseline experiment might have an impact on the resulting baseline not being
zero:

• Receiver unsynchronization. As the receivers take pseudorange measurements at different
points in time the white noise at the input of each receiver is not correlated and thus not
canceling out. Possible multipath contributions are also less correlated the larger the time
offset.

• Quantization Noise. After downconversion from RF to intermediate frequency, an analogue
to digital converter samples the incoming analogue signals and outputs digital samples. This
process involves a quantization step that assigns to each output sample the nearest discrete
value, thus producing quantization noise. As both receivers are not synchronized with each
other, this noise signal is not correlated and will not cancel out.

• Receiver Response. The receiver automatically adapts the carrier and code loop filters to get
the best trade-off between tracking accuracy and signal dynamic response. In some cases,
this response can be configured, but in general it is not visible to the user. Two independent

1Spirent GSS7790 Advanced Multi-Output, Multi-Channel GPS Simulation System. URL
http://www.spirent.com/Products/GSS7790
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receivers could respond differently to the same input.

The Spirent’s SimGen software has been used to set up different test scenarios. SimGen enables
to vary the power level of the signals of single satellites. Errors, including atmospheric delays,
satellite ephemeris and satellite clock errors and multipath, can be activated. Also the movement
of the receiver antenna can be simulated by using a predefined ground vehicle motion model.

The next sections present the experiments and the results of the performed tests activating and
deactivating certain errors. To present the results, both, pseudorange and the pseudorange double
differences, are displayed. However, pseudorange signals are not practically displayed. The large
variation of the pseudorange measurements due to satellite movement, and satellite and receiver
clock drift, cause the measurements change by hundreds of meters every second and, thus, hiding
any effect caused by noise, multipath or atmospheric errors. For this reason, the Code Minus
Carrier (CMC) signals are displayed. As the name indicates, the CMC observable are computed by
subtracting the carrier phase from the code measurement2[229]. Recalling Equations 3.1 and 3.3,
it is possible to define

ρcmc = ρ− Φ = N · λ+ 2 · εion + εmp,ρ + εmp,Φ + εn,ρ + εn,Φ. (6.14)

The ρcmc observable is free from satellite and clock biases, satellite position errors and the tropo-
spheric delay. On the other hand, the ionospheric delay εion is doubled due to its opposite sign in
pseudorange and carrier phase measurement. The unknown number of cycles, or ambiguity, N is
a constant offset in the CMC observable. The remaining components are multipath and noise on
both the pseudorange (εmp,ρ and εn,ρ) and the carrier phase (εmp,Φ and εn,Φ). The noise on the
carrier phase, as described in Chapter 3, is around two orders of magnitude smaller than on the
pseudoranges and the multipath on the carrier phase is smaller than λ/4.

6.2.1. Static Scenario - No errors

In this scenario, a static position of the receivers with a regular constellation of GPS satellites is
simulated. All satellite and atmospheric errors are deactivated, while the power of the signals is
maintained at a high value. The aim is validating the double differencing technique with Doppler
extrapolation proposed in Chapter 5. Figure 6.20 shows the pseudorange CMC and pseudorange
double difference over a period of 200 seconds. Both signals are around zero and have a noisy
characteristic. The varying receiver-satellite range is canceled in the CMC signal in Figure 6.20a,
and, since the ionospheric delay for the scenario is zero, only the noise of pseudorange and carrier-
phase is depicted. The double difference measurement in Figure 6.20b is around zero since the
baseline between the antennas is of zero length. Only the noise of four pseudoranges contributes

2The code measurement is actually the pseudorange estimate. Both terms are used interchangeably in this
section.
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(a) Pseudorange CMC
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(b) Pseudorange Double Difference

Figure 6.20.: Pseudorange CMC and pseudorange double differences in a zero-baseline test setup
for two example satellites.

to the measurement. It can be observed that the noise variance is increased by performing double
differences.

Figure 6.21 shows the pseudorange double differences and their mean and standard deviation over
a period of 900 seconds. The mean values of the signals are zero for three double difference
measurements, as expected in a zero-baseline experiment. A random error corresponding to the
noise on all four double differences still remains in the signal. The standard deviation for this error is
below 40 cm. To further assess this random error in the pseudorange double differences, the signal
power of the satellites was decreased stepwise from 20 dB to −5 dB with respect to −130 dB
nominal power. A low carrier-to-noise density leads to a higher variance in the pseudorange
measurement. This dependence, as explained in Chapter 5, is receiver dependent and is a function
of the bandwidth of code tracking loop, the integration time and the early-late correlator spacing
given by:

σρ = 4 · c · Tc
√

γ
C
N0

, (6.15)

where all variables have been summarized in a common parameter γ. Figure 6.22 shows this
relationship. A curve fitting of the sample points to the general form yields a value of 7.5× 10−4 for
parameter γ. Hence, a relationship between the carrier-to-noise measurement and the pseudorange
double difference noise is found and can be used to adapt the measurement covariance matrix in
the relative positioning filter. This relationship is valid for these receivers and under the assumption
that the parameters of the tracking loops do not change over time.

In order to incorporate the pseudorange double difference measurements into a Bayesian filter it is
important to analyze the statistical distribution of the errors. On the one hand, the time correlation
of the double differences is analyzed. Figure 6.23a shows the autocorrelation for the pseudorange
double differences in time. The double differences have a time correlation of approximately 4 s,
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(a) Mean
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(b) Standard Deviation

Figure 6.21.: The left figure shows the mean of the double differences, which is around zero for all
three satellites. The right figure is the standard deviation, which is around 30 cm.
The window length is 125 s.
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Figure 6.22.: Pseudorange double difference standard deviation over CN0 in a zero-baseline exper-
iment. The error in the double differences grows with decreasing carrier-to-noise
ratio in both satellites.
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(b) Histogram

Figure 6.23.: The left figure shows the autocorrelation function of three different pseudorange
double differences. A time correlation of about 4 s can be observed in the left figure.
The right figure shows a histogram of the amplitude of the pseudorange double
differences. A similarity test shows that the shape of the distribution resembles a
Gaussian curve.

yielding a Delay-lock Loop (DLL) bandwidth of 0.25 Hz. In black, the autocorrelation of an
autoregressive model of order 1, AR(1), with a model parameter ζ1 equal to 0.855 proofs to
match correctly the behavior of the pseudorange double difference noise. Thus, this observation
violates the first Markov assumption that measurements in a Bayesian filter shall only depend on
the current state and not on previous states or previous measurements. However, in the scope
of this work the suboptimal solution is considered and its consequences have been analyzed using
the Cooperative Relative Vehicle Simulator. This results were presented in Section 6.1.2.

On the other hand, it is important to know if the assumption of a Gaussian distribution for the noise
in the pseudorange double differences holds. Figure 6.23b shows a histogram of the amplitude of
the double difference signals. The shape of the histogram suggests that the remaining noise is to
be modeled according to a normal distribution. A Kolmogorov-Smirnov normality test confirms
the hypothesis of being Gaussian distributed noise at a significance level of 5 %.

6.2.2. Static Scenario - Common errors

To demonstrate the correct cancellation of common errors in the pseudorange double differences,
an atmospheric delay has been modeled using the Spirent simulator. This is modeled choosing
a set of parameters for the Klobuchar model [169] that are applied on the RF signals. The
error is different on each satellite and varies over time. The delay caused by the simulated
ionosphere ranges from 2.14 m to 11.25 m. Additionally, a tropospheric delay is simulated using
a tropospheric model specified in STANAG 4294 [230]. This causes a delay ranging from 2.7 m
to 27.5 m. Figure 6.24a shows the pseudorange CMC signal to three satellites. While the CMC



Chapter 6. Verification under Controlled Conditions 153

200 300 400 500 600 700 800 900 1000 1100

-6

-4

-2

0

2

Time (s)

Ps
eu

do
ra

ng
e 

(m
)

 

 

Satellite 5
Satellite 9
Satellite 24

200 300 400 500 600 700 800 900 1000 1100 1200

-6

-4

-2

0

2

Time (s)

Ps
eu

do
ra

ng
e 

(m
)

 

 

Satellite 5
Satellite 9
Satellite 24

(a) Pseudorange CMC for Ego & Target
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(b) Pseudorange Double Difference

Figure 6.24.: The left figure shows the pseudoranges to satellites 5, 9 and 24 at both receivers.
The increasing delay is caused by the modeled ionospheric delays. The right figure
shows the resulting pseudorange double differences. The ionospheric delay modeled
on the SV’s signals varies from 2 m to 12 m.

signals in Figure 6.20 were constant around zero, it can be clearly seen how the pseudoranges
show now an increasing delay. While the satellite moves, the delay changes due to the different
propagation of the signal through the atmosphere. The contribution of the ionosphere is doubled
according to Equation 6.14. Unfortunately, the CMC signals hide the effect of the troposphere,
as the associated delay is equal on code and carrier signal. The pseudorange double differences in
Figure 6.24b, however, do not show any increased error or offset. The variance of the signal and
its mean show similar values as in the previous error-free scenario. In this way, it has been verified
that a double difference procedure cancels out common errors on the pseudorange measurements.

6.2.3. Static Scenario - Multipath errors

In order to assess the impact of multipath, three different multipath models haven been simulated,
namely a fixed offset multipath model, a Doppler offset multipath model and a ground reflection
multipath model.

The fixed multipath model simulates a second delayed replica of the GNSS signal on a separate
channel. The delay of the second signal affects both the code and the phase of the carrier,
however, in this model this initial offset stays constant over time. A different phase offset causes
a different interference between both paths. Figure 6.25a shows the interference for a phase
offset of zero between the direct path (blue) and the a delayed path (red) with 50 m delay and
3 dB attenuation. Figure 6.25b shows the same delayed path but with a phase offset of π. The
resulting pseudorange estimation error varies from about 10 m to −10 m. Different time delays
for the second path, with different relative phase and different loss have been simulated using
the Spirent simulator in order to analyze its impact on the double differences. The hypothesis is
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(b) Destructive

Figure 6.25.: Pseudorange error in the code correlator produced by a second 3 dB attenuated and
50 m delayed path with phase delay zero (6.25a) and π (6.25b). The direct path
is represented in blue and the delayed path is represented in red. The green curve
represents the code correlator output (early-late spacing is 0.1 chip and integration
time is 1 ms.) The estimation error for the left figure is 10.49 m and −10.19 m for
the right figure.

that the fixed and time invariant offset will bias in the same way both receivers and will cancel
out when performing double differences. Figure 6.26a shows the CMC curves for three satellites
at each receiver. Different steps every three minutes correspond to a change in the delay of the
second path. From minute 10 to minute 37 an offset of around 10 m and phase delays from
0 to 2π have been simulated. Then, from minute 37 to 55, the delay increases stepwise to
approximately 50 m. From minute 55 on, a delay of approximately 10 m and decreasing loss of the
second path is simulated. Since ionospheric errors are deactivated and considering Equation 6.14,
the offset in the signals is due to multipath and noise in both pseudorange and carrier phase.
As the latter can be considered negligible, the offset is mainly a consequence of the multipath
on the pseudorange. At first glance, both receivers have similar offsets, which would confirm
the hypothesis that multipath is canceled out when performing double differences. Figure 6.26b,
however, shows that a remaining offset of 1 m to 2 m is transferred to the pseudorange double
differences.

This indicates that the fixed offset is not completely canceled out after differentiation. Neverthe-
less, the figure shows that this bias is small in relation to the offset of the second path. As a
conclusion one could say that, although the receivers are of the same model, each of them gives
a slightly different pseudorange estimate in the presence of a reflection. This difference biases the
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(a) Pseudorange CMC Ego & Target

10 20 30 40 50 60 70

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Time (min)

Ps
eu

do
ra

ng
e 

D
ou

bl
e 

D
iff

er
en

ce
 (m

)

 

 

Satellite 2
Satellite 3
Satellite 7

(b) Pseudorange Double Difference

Figure 6.26.: The left figure shows the CMC for satellites 2, 3 and 7 at ego and target receiver
with a fixed multipath offset model. The curves at zero at the beginning of the
simulation are satellites that are still not acquired. From minute 10 to 37 a delay of
around 10 m and varying phase offset is simulated. From minute 37 to minute 55
the offset is increased stepwise from 1 m to 50 m. From minute 55 an offset around
10 m is decreased in loss from 1 dB to 12 dB. The right figure shows the resulting
pseudoranges double differences for satellites 2, 3 and 7.

pseudorange double differences.

The Doppler multipath model is an extension of the fixed multipath model, where the delayed
and attenuated second path has a Doppler offset with respect to the direct path. The Doppler
offset produces a change in the phase of the second path, and this way changes the sign of the
interference periodically. Depending on the Doppler offset the tracking loops are able to track
this periodic change or might only show an offset in the pseudoranges. Doppler offsets ranging
from 0.1 Hz to 200 Hz have been simulated every three minutes starting at minute 10. These
values would correspond to the Doppler shift experienced by a receiver moving directly towards a
reflector at a speed of 0.07 km

h and 137 km
h respectively. The second path has a delay of 15 m and

an attenuation of 3 dB. Figure 6.27a shows the resulting double differences.

The Doppler offset of 0.1 Hz creates periodic disturbances to the double differences every 10 s.
This disturbance is created when both paths interfere negatively and the signal vanishes. This
could be verified by looking at the CN0 measurement over time for both receivers, where a periodic
interference pattern can be recognized. A Doppler offset of 1 Hz does not seem to be harmful. At
16 minutes, the 5 Hz Doppler is activated and meter disturbances occur to all double differences
that get smaller after two minutes. The 10 Hz (minute 19) and 30 Hz (minute 22) Doppler shifts
generate errors in Double Differences of up to several tenths of meters. But also here, after a
transient phase of approximately one minute, the code loops converge and track the direct path,
yielding a double difference value around zero. High Doppler shifts (80, 120, 160 and 200 Hz) do
not impact the double differences as the interference pattern changes rapidly and gets averaged
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(a) Doppler Offset
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(b) Reflector

Figure 6.27.: The left figure shows the Pseudorange double differences for several satellites with a
Doppler multipath model. Different Doppler offsets ranging from 0.1 Hz to 200 Hz
are simulated every three minutes starting from minute 10. The delay of the second
path is 15 m and the attenuation 3 dB. The right figure shows the pseudoranges
double differences for a movement towards a reflector from 50 m to 0 m. At 600 s
the multipath model is activated. At 780 s the movement starts. The variations in
speed occur smoothly.

out by the tracking loops.

The ground reflection model simulates a second path arriving at the antenna after reflecting on
the ground. This test can be regarded as a combination of the previous two tests. In contrast
to the fixed offset model, here the delay between the direct and the reflected path changes with
the movement of the surrounding. This delay change will create a Doppler offset between both
paths. A static receiver at a certain height will experience a relatively slow interference due to the
changing elevation of the satellite, which will create a changing interference pattern due to the
changing phase offset. In this test the height of the antenna changes from 50 m to 0 m at 0.1 m

s ,
which corresponds to Doppler offsets between the paths around 0.5 Hz. Figure 6.27b shows the
resulting pseudorange double differences for the descent. At 600 s the ground reflection model is
activated, while at 780 s the descent starts.

From 600 s to 780 s a periodic interference can be observed, corresponding to the angular move-
ment of the satellite. Here the Doppler offset is about 0.1 Hz. Errors up to 10 m are possible.
The amplitude and the frequency of the error due to the interference is different for each satellite,
depending on its elevation. From 780 s to 1250 s, the receivers descend from 50 m to 0 m. The
descending speed is changed gradually from 0 m

s to 0.1 m
s and back to 0 m

s . This increasing speed
creates a increasing Doppler offset between both paths, that produces a faster variation in the
pseudorange errors. The delay of the second path gets smaller with decreasing height. The delay
is larger for lower elevated satellites, as for instance satellite 24.
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Figure 6.28.: Pseudorange double differences for three satellites in a dynamic test. The receivers
experience high speeds up to 80 m

s and high accelerations up to 15 m
s2 . The signal

towards a low elevation satellite (satellite 7) experiences a loss of lock during the
15 m

s2 acceleration and deceleration.

It can be concluded that static or slowly changing multipath signals (below 5 Hz) produce meter-
level errors on pseudorange double differences for a zero-baseline setup. Fast varying multipath
components (above 10 Hz Doppler shift) are averaged out in the DLL of each GNSS receiver and
have a negligible impact. The zero-baseline setup regarded in this section represents the scenario
with highest possible correlation between the receivers. Multipath propagation is a strongly local
phenomenon, where the signal interference patterns at two locations can be completely different.
Consequently, in a setup with two antennas at different locations (e.g. on two different vehicles),
the multipath is expected to impact in a even stronger way the pseudorange double differences.

6.2.4. Dynamic Scenario

A dynamic scenario has been simulated, where the antenna accelerates from standstill to a certain
speed, moves at constant speed, decelerates back to zero and holds still for one minute. This
maneuver is repeated five times for accelerations of 3, 5, 7, 10 and 15 m

s2 , while the speed varies
from 14 m

s to 80 m
s . The purpose of the test is to verify that high vehicle dynamics do not impact

the pseudorange double differences. Figure 6.28 shows the pseudorange double differences for this
scenario. It can be observed that no errors occur until minute 19. However, the last acceleration
and deceleration of 15 m

s2 , pushes the tracking loop of a low elevated satellite (satellite 7) to its
limit and causes it to loose the lock. During the 80 m

s constant speed drive, the lock is re-acquired.
Since the dynamics found in real-world scenarios are well below these values, it is not expected
that the used GNSS receiver will have a limited performance for estimating the relative position.
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(a) Absolute Position Differencing
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(b) Pseudorange Differencing

Figure 6.29.: Baseline error of absolute position differencing (left) and pseudorange differencing
(right) with pseudoranges corrupted by noise. From minute 15 to minute 20 the
CN0 of the common satellite decreases stepwise from 40 dB Hz to 30 dBHz. From
minute 25 to 32 a set of satellites not including the common satellite are decreased
in power accordingly. From minute to 37 to 41 the power of all satellites is decreased
together.

6.2.5. Baseline Estimation

The previous analysis has focused on the pseudorange double difference signals. Now, the esti-
mation of the baseline by differencing absolute positions and by pseudorange differentiation as
explained in Chapter 5 will be regarded. For this purpose, the previous zero-baseline test setup is
used. First, a scenario with only noise is analyzed. A constellation of 11 satellites is simulated for
a 42 minute period. The power of the GNSS signals is increased and decreased during the simula-
tion. A nominal value of 44dBHz is set for all satellites at the beginning of the simulation. First,
the power of the common satellite is decreased (minute 15 to 20). Then, the power of all satellites
but the common satellite is decreased (minute 25 to 32). Finally the power of all satellites together
is decreased stepwise (minute 37 to 41). Figure 6.29 shows the magnitude of the baseline error for
both the absolute position differencing and the pseudorange differencing solution using a Least
Squares (LS) algorithm. Both epoch-wise solutions yield an unbiased estimate of the baseline.
Increasing the errors on the common satellite has a strong impact in pseudorange differencing,
since it translates to higher errors on all double differences, while for absolute position differencing
it is averaged out with the other pseudoranges in the LS algorithm. Therefore, it is important
to use a satellite with a good Line-of-Sight (LoS) as the common satellite. When all signals are
degraded equally, pseudorange differencing results in slightly higher errors than absolute position
differencing.

Next, common errors are activated in the constellation simulator. An ionospheric delay is simu-
lated in the RF signal using one set of Klobuchar parameters, while a different set of Klobuchar



Chapter 6. Verification under Controlled Conditions 159

parameters is used for modeling the ionospheric delay before computing the position solution using
a LS. The purpose is to cancel only partially the actual ionospheric delay. Table 6.2 shows the set
of Klobuchar parameters used for the simulated RF signal and for the model in the LS algorithm3.
As shown in Table 6.3, the relative error in modeling the ionospheric delay with the second set of
Klobuchar parameters ranges between 20 % and 37 %. As explained in Chapter 5, in practice the
Klobuchar model cancels approximately half of the ionospheric delay. Thus, these values represent
a rather conservative situation.

Figure 6.30a shows how both approaches correctly estimate the baseline. Using the same con-
stellation of satellites in each receiver, absolute position differencing correctly cancels out the
common errors. Similar behavior of absolute position differencing and pseudorange differencing is
observed for other correlated errors that can be activated in the simulator, as for instance, satellite
ephemeris errors or satellite clock errors.

When one of the receivers tracks one different satellite, the residual ionospheric error induces a
bias in the baseline estimate using absolute position differencing. This is shown in Figure 6.30b. In
this case one of the receivers was including the low located satellite 18 in its position computation
algorithm, thus obtaining a biased position estimate. Depending on the position of the satellite,
the baseline error distributes on the different baseline coordinates. A low located satellite, as in
this example, produces a horizontal baseline error, while higher located satellites shift the position
in the vertical direction. The different components of the error are displayed for pseudorange
differencing in Figure 6.31a and for absolute position differencing in Figure 6.31b. The horizontal
components of the baseline error are always below 0.5 m for pseudorange differencing, while the
horizontal components reach up to 1.5 m of error for absolute position differencing.

This test demonstrates the practical usage of pseudorange double differencing for relative position-
ing using low-cost GNSS receivers. The numerical values confirm also the theoretical result from
Chapter 5. The differentiation of absolute positions can cause biased baseline estimates of over
one meter when the vehicles use different satellites for computing the baseline. This value can
even be higher when, in exceptional situations, the atmospheric errors are incorrectly modeled in
the receiver (e.g. storm fronts or solar bursts) or the GNSS control segment incorrectly estimates
the satellite positions and clock biases. With the differentiation of pseudoranges, it is assured
that only the satellites common to both receivers are used and that, consequently, common error
components always cancel out and thus the resulting baseline estimate is free of any bias.

3In Table 6.2, sc stands for the unit semicircles. 1 sc is equal to 180°.
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(b) Different Satellites

Figure 6.30.: Baseline error of absolute position differencing and pseudorange differencing with
pseudoranges delayed by the ionosphere. The left figure shows both methods using
the same set of pseudoranges, yielding unbiased baseline estimates. In the right
figure one of the receivers tracks one additional satellite, yielding a biased estimate
of the baseline when using differencing absolute positions. Pseudorange differencing,
on the other hand, produces an unbiased estimate of the baseline.

Table 6.2.: Klobuchar Parameters
Applied to Alpha Beta

RF-Signal

0.0168 µs
0.0000 µs

sc
−0.1192 µs

sc2

0.0596 µs
sc3

122 900 s
−32 770 s

sc
−196 600 s

sc2

−65 540 s
sc3

Least Squares

0.0197 µs
0.0000 µs

sc
−0.1100 µs

sc2

0.0500 µs
sc3

130 000 s
−32 000 s

sc
−196 000 s

sc2

−65 000 s
sc3

Table 6.3.: Ionospheric Error: Simulated vs. Modeled
Satellite 5 13 15 18 24 28 30

RF-Signal (m) 7.35 4.032 5.26 8.39 10.87 4.47 6.75

Least Squares (m) 9.04 5.05 6.65 11.56 13.65 5.58 8.46

Divergence 22 % 25 % 26 % 37 % 25 % 24 % 25 %
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(a) Pseudorange Differencing
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(b) Absolute Position Differencing

Figure 6.31.: Instead of the norm of the baseline error, all three ENU coordinates of the error
are displayed here. It can be observed that the horizontal errors of pseudorange
differencing are below 0.5 m, whereas, one of the horizontal error components of
absolute position differencing climbs as high as 1.5 m.

6.3. Summary

This chapter aimed at bridging the gap between the theoretical analysis in Chapters 4 and 5 and the
real-world evaluation in Chapter 7. This was achieved by evaluating and verifying the performance
of the proposed cooperative relative positioning approach in controlled test environments.

A relative position vehicle simulator has been used to artificially produce a reference position and
kinematics of two vehicles and a set of satellites. All sensor outputs inside both vehicles, namely
the GNSS measurements, the inertial sensor measurements and the speed measurements have
been simulated in both vehicles. It has been verified that the along-baseline constellation in an
urban canyon affects the lateral baseline estimate. It could be tested that it is possible to have
a bounded relative position estimate with only three orthogonal satellites, i.e. two pseudorange
double differences. With only two satellites the relative positioning error increases without bound
and its growth can only be reduced by having an appropriate baseline prediction.

It has been demonstrated that it is important to include acceleration and turn rates in the proposed
kinematic relative motion models when working at 10 Hz update rate. Sub-centimeter relative
positioning errors can be expected during comfortable maneuvers. Extreme maneuvers require
higher update rates to keep the prediction relative positioning error below 1 m.

The Full 3D Inertial filter is able to estimate in an optimal way the speed, the acceleration,
the heading and the heading rate of the vehicle. In the absence of GNSS measurements, CAN
speedometer and non-holonomic constraints make it possible to limit the longitudinal speed error
and, with the help of the on-board gyroscopes, maintain the heading error below 1° (3σ) in a
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period of one minute. The zero-rotation assumption makes it possible to estimate the biases of
the gyroscopes in the first seconds when the vehicle is at a standstill.

With a GPS constellation simulator, the performance of the GNSS pseudorange double differences
for relative positioning has been analyzed in a hardware-in-the-loop setup using the receivers,
that will also be used in the real-world experiments in the next chapter. The synchronized double
differences are verified to have Gaussian errors with zero-mean and a 1σ deviation of 30 cm at high
carrier-to-noise ratio. The relationship between carrier-to-noise ratio and noise standard deviation
for these receivers has been presented. Further on, it was found, that the noise error on double
differences is not uncorrelated, but has a time correlation of 4 seconds. It has been demonstrated
that ionospheric and tropospheric delays are correctly canceled out. Multipath, however, was
found to cause biased pseudorange double difference estimates in a zero-baseline setup due to
the synchronization of pseudorange measurements. The baseline between two antennas can be
estimated by using pseudorange double differences with sub-meter accuracy in the horizontal
components. The baseline estimated by differencing absolute positions, was found to be biased
by over one meter, when each receiver tracked a different set of satellites.



Chapter 7.

Experimental Evaluation in Real World
Environments

The sensor fusion concept for cooperative relative positioning of vehicles presented in Chapter 5
will be evaluated in real-world driving conditions in this chapter. First, the test setup consisting
of two vehicles with installed GNSS receivers, inertial measurement units and speed sensors and
Vehicle-to-Vehicle (V2V) communication transceivers is presented. Next, the reference system
used to evaluate the performance of the cooperative relative positioning approach is introduced.
The driving scenarios, along with their special characteristics, will be described next. Finally, the
performed test runs for assessing the cooperative relative positioning system are presented in detail.
On the one hand, GNSS-only tests are performed to analyze the quality of the Global Navigation
Satellite Systems (GNSS) measurements in different driving environments and to understand the
advantage of subtracting pseudoranges over differencing absolute positions. On the other hand,
the cooperative approach based on sensor fusion is evaluated in all three environments with regard
to its accuracy, reliability and availability.

7.1. Experimental Setup

The experiments were performed using two test vehicles. The first vehicle, acting as the ego
vehicle, was a Mercedes G400. The second vehicle, playing the role of the target vehicle, was a
Renault Clio 3. The main difference between the ego and the target vehicle is that the former
is equipped with the reference system that will be presented in Section 7.2. In the performed
experiments both vehicles drive behind each other, the target vehicle in front of the ego vehicle.

A cooperative system requires that information is exchanged between the participants by means
of a suited communication technology. The work presented in this theses requires the ego and
target vehicle to exchange sensor measurements with each other. For the experimental evaluation
however, all measurements from the sensors are logged on-board on an automotive computer in
each vehicle and no information is exchanged in real-time. The data is processed offline and the
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(a) Mercedes G400 (b) Renault Clio 3

Figure 7.1.: Test vehicles used in this work to acquire real-world measurement data. The Renault
Clio 3 acted as the target vehicle, which is tracked by the Mercedes G400, in the role
of the ego vehicle.

algorithms are post-mission evaluated. In this way, the practical challenges related to the use
of an additional communication hardware are solved. Nevertheless, the impact of a non-ideal
communication link on the cooperative relative positioning system will be analyzed by modeling
the packet drops and the V2V communication link performance will be assessed separately with
real-world experiments in Line-of-Sight (LoS) and non-LoS situations. The following sections will
explain in detail the sensors installed inside the test vehicles.

7.1.1. GNSS receiver

Each vehicle is equipped with a Ublox LEA-4T Global Positioning System (GPS) receiver. This mid-
range receiver for L1 GPS signals was already introduced in Chapter 6 for the controlled experiments
with the GNSS simulator. The GPS receiver is configured to output GNSS raw measurements,
i.e. pseudorange, Doppler and carrier phase measurements at a rate of 4 Hz. Along with the
measurements towards each satellite, the Carrier-to-Noise Ratio (CN0) ratio is recorded. The
receiver itself automatically computes a navigation solution. Hence, receiver position and velocity,
as well as clock bias and clock drift are also available at 4 Hz. The navigation motion model
for the receiver internal Extended Kalman Filter (EKF) is configured as ”automotive”. However,
as the particular internal functionality of the receiver is unknown, the navigation solution values
are logged but only used for validation purposes. Further on, the receiver is configured not to
use the European Geostationary Navigation Overlay Service (EGNOS) satellites for ranging, nor for
correcting the position solution.

On the roof of each vehicle a magnetic-mount patch antenna from Ublox is placed. This antenna
requires a ground plane in order to properly receive the GPS signals. It is an active antenna with
a low noise 27 dB amplifier directly connected to the Ublox GPS receiver. The antenna is placed
in the center point above the rear axle of each car. The exact location towards the vehicle frame
reference point in the front of the vehicle has been precisely measured.



Chapter 7. Experimental Evaluation in Real World Environments 165

Instead of logging the satellite ephemeris inside each vehicle and consequently consuming pro-
cessing and storage resources, the broadcasted ephemeris were post-mission downloaded from the
International GNSS Service (IGS) network website1. This ephemeris data is equal to the one broad-
casted by the satellites and should not be confused with other IGS products like post processed
ephemerides that are made available after a few days or weeks and have very accurate satellite
orbits. The format in which the ephemeris data is downloaded from the IGS network is Receiver
Independent Exchange Format (RINEX).

7.1.2. Inertial Measurement Unit

To obtain inertial measurements an Xsens MTx Inertial Measurement Unit (IMU) is installed in each
vehicle. The IMU outputs the measurements from the 3-axis accelerometer and 3-axis gyroscope
at a rate of 100 Hz. The IMU is attached rigidly to the chassis of the car at a central point
above the rear axis. This is the pivot point of the vehicles around which it performs the turns.
When mounting the device inside the vehicle, care was taken to align the sensor frame to the
vehicle frame. Any misalignment between both axis would yield a non identity matrix Mω and
Ma in Equation 5.51 and Equation 5.52 respectively, and, therefore, non-constant biases in the
acceleration and turn rate measurements.

7.1.3. Speedometer

Since the year 2001, it is mandatory for vehicles in Europe to be equipped with an On-board
Diagnostics (OBD) connector to read various vehicle sub-systems, mainly to monitor the emissions
requirements [231]. The OBD standard specifies the connector and the pinout, the electrical
interface and the messaging format. OBD can be communicated over five different signaling
protocols, including ISO 9114-2, also known as K-line, and ISO 15765-2, commonly known as
CAN. While the G400 test vehicle used the former, the Clio 3 communicates over the later.
According to SAE J1979, one of the mandatory values that have to be made available through
OBD is the vehicle’s speed, which is output at both vehicles at a rate of 5 Hz. Unfortunately, the
speed measurement given through the OBD interface is subjected to quantization errors due to
the effect of rounding to the next whole km

h , in addition to a speed dependent bias.

For this reason, both sensors were calibrated prior to the tests by comparing the OBD speed
output to the speed given by the GPS receivers. A GNSS receiver is able to compute the velocity
by measuring the Doppler shift towards at least four satellites as explained is Chapter 5. For the
test, the vehicles drove on a highway and on a rural environment. Speed steps of 5 m

s from 10 km
h

to 120 km
h were performed. Figure 7.2a and 7.2b show the speed error plotted against the GPS

1http://www.igs.org/products
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(b) OBD Speed Error Clio 3
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(c) OBD Speed Error Histogram G400
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(d) OBD Speed Error Histogram Clio 3

Figure 7.2.: Speed measurements from OBD compared to GNSS derived speed for both test vehicles.
A speed dependent bias can be observed for the G400 test vehicle, while the Clio 3
has a constant bias over the regarded speed range. The lower figures show the bias
compensated speed error histogram.

speed for both test vehicles. The red lines are the linear model used to model each of the sensors.
In Figure 7.2a, a speed dependent bias of the speed sensor inside the G400 test vehicle can be
appreciated. The Clio 3 test vehicle, on the other hand, has an OBD speed error curve that is
independent of the true speed of the vehicle (see Figure 7.2b). The residual after applying the
linear model is shown in Figure 7.2c and 7.2d respectively. For simplicity, this error is modeled
as white Gaussian noise with standard deviation of 0.16 m

s and 0.24 m
s for the G400 and the Clio

3 respectively. In this way, the Kalman filter requirements of zero mean and Gaussianess for this
sensor are fulfilled.

7.2. Reference System

As a reference system for the relative position between the two vehicles a Sick LD-MRS automotive
laser scanner was chosen2. The LD-MRS is a four layer laser scanner which uses a rotating mirror

2SICK Vertriebs-GmbH, http://www.sick.com/
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Figure 7.3.: The left figure shows the SICK LD-MRS laser scanner mounted on the Mercedes G400
test vehicle. The laser scanner is used as a reference system for the relative position
and the relative speed between the ego and the target vehicle. The right figure shows
the placement of the different sensors in the vehicle and their measurement frames.

and several pulsed laser beams to calculate the distance towards reflecting objects based on Time of
Arrival (ToA) principle. At the default 12.5 Hz frequency, an angular resolution of 0.5° is achieved
on each layer. The scanning aperture ranges from 50° to 60°. The laser scanner detects objects
in its range of view and tracks their position and their speed, which are given relative to the
ego vehicle’s reference frame. Hence, the longitudinal and lateral component of the baseline and
baseline velocity can be obtained with this reference system every 80 ms. As can be appreciated
in Figure 7.3a, the laser scanner is located on top of the front bumper of the G400 test vehicle
at a height of 64 cm above the road. A small lateral displacement to the origin of the ego vehicle
reference frame has been corrected in the evaluation phase. Figure 7.3b shows the placement of
the laser scanner, the IMU and the GNSS antenna with respect to the ego vehicle reference frame.

The laser scanner is one possible reference system for relative positioning [176]. Many research
groups favor the use of an Inertial Navigation System (INS)/GNSS approach to obtain a reference
position of each vehicle [122, 232, 233]. In many cases, dual-frequency receivers with Real Time
Kinematics (RTK) technology are used to this aim. The GNSS carrier phase based positioning
solution can reach subcentimeter accuracies in open sky conditions. However, these systems
are extremely sensitive and are easily disturbed by satellite signal obstructions, falling back to a
pseudorange-only solution. The INS is able to track the position for some time but the errors grow
quickly to the order of meters if no fix on the carrier phase is achieved. The laser scanner, on
the contrary, is not dependent on good GNSS signal reception and, thus, presents an orthogonal
measuring device to the system under test. There are, however, some limitations that should be
mentioned. The laser scanner is only able to give a ground truth if the target vehicle drives in
front of the ego vehicle in the range of view of the sensor. The target vehicle is detected with a
separation of up to 100 m and while located inside the 110° opening angle.
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(a) Highway (b) Rural (c) Urban

Figure 7.4.: Three different driving scenarios where cooperative relative positioning has been
tested. Not only the quality of the GNSS signals is different in each scenario, but
also the vehicle dynamics are different on a highway, on a rural road or while driving
in an urban area.

When using a reference system the most important parameter is its accuracy. The accuracy of the
system has been analyzed in a series of experiments prior to its usage as a reference system for
cooperative relative positioning [176]. For these experiments the baseline towards a static receiver
was accurately measured with different devices, including a tape measure, an RTK system and a
Leica tachymeter. The experiments revealed a longitudinal accuracy of 10 cm up to a distance of
60 m and up to 40 cm at 100 m range. The lateral accuracy degrades due to the limited angular
resolution, with an error of around 1 m at a distance above 100 m.

A further important characteristic is the availability of the reference system. Besides the limited
scanning range of the device, environmental effects have an important impact on the performance
of the device. Specially rain, snow and fog might degrade the measurement accuracy, making the
device not suited to be used in this circumstances. Also the direct sun light during sunrise and
sun set hours has a negative impact leading to an increase in the measurement noise.

7.3. Test Scenarios

Three different driving scenarios were chosen to assess the performance of the cooperative relative
positioning algorithms. Each of the scenarios has different characteristics regarding GNSS avail-
ability and dynamic constraints. Figure 7.4 shows exemplary pictures of the scenarios where the
tests were performed.

Highway The test vehicles drove on the A96 highway between Munich and Landsberg am Lech.
The highway is mostly two lane per direction with hard shoulder and divided by a grass median
strip. The mean total width of the highway is around 30 m. Overhead bridges, foot bridges or
gantries are overhead obstacles that are encountered on this highway. Several tunnels longer than
100 m exist as well. On the sides of the highway either flat fields, forests, earth berms or noise



Chapter 7. Experimental Evaluation in Real World Environments 169

protection walls can be found.

In general, the GNSS coverage is good with line-of-sight view to a high number of satellites.
Tracking 7 or more satellites is usual in this environment. However, some of the roadside structures
might temporarily block the visibility of satellites below 30° of elevation. Bridges cause sudden
short fades in the pseudorange signals, while in tunnels signal tracking is not possible. Large
pseudorange errors occur at the entry, when the signal level is low, and at the exit, when the
signal has to be re-acquired.

As expected on highways, curve radii are very large, leading to small yaw angular rates. Although
no speed limit exists on most parts of the highway, the test vehicles drove at speeds between 80 km

h
and 120 km

h . The magnitude of the accelerations on highways is below 1 m
s2 . The test vehicles drove

at varying distance from each other, but always below the maximum range of the laser scanner in
order not to loose the reference measurements. The minimum distance was given by the sense for
safety and comfort of the ego vehicle driver and could be as low as 20 m. The maximum driving
distance was 100 m. The lateral component of the baseline vector between the vehicles is usually
low.

Rural The test vehicles drove on various secondary roads in the region south-west of Munich.
The rural scenario is characterized by two lane secondary road, with no median and no hard
shoulder. The roads pass over fields, through forests and alleys, partially under tree canopy, and
through small towns.

The GNSS coverage in the rural scenario is in general worse than in the previously described highway
scenario. Trees next to the road shadow and scatter the signal from the satellites, while forests
with high trees will even completely block the visibility to the satellites. When driving through
towns, two-story buildings will as well shadow the signal and produce multipath effects.

Although the general maximum speed on German secondary roads is 100 km
h , the test vehicles

were usually driving at a speed around 80 km
h . When passing through towns, the speed limit drops

to 50 km
h , or even 30 km

h in pedestrian protection zones. Occasional standstills are encountered
in this scenario due to traffic lights or pedestrian crossings. In general, the distance between the
vehicles is smaller than on the highway, between 5 m and 50 m. Speed changes and relative speed
between the vehicles is generally grater than in the highway scenario.

Urban Finally, the test vehicles drove in the city of Munich, which represents a typical urban
environment. Both, large avenues with two driving lanes per direction, as well as narrow streets
were regarded, with four to six story high buildings on both sides.

In an urban environment, the direct view to satellites located perpendicular to the road is difficult,
with the LoS being highly attenuated. Often, only a refracted path is receiver with the consequent
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large bias in the estimate of the satellite-to-vehicle range. Satellites at low elevation are, in general,
hard to track as they are easily masked-out by the environment.

The test vehicles drove in this environment at a maximum speed of 50 km
h . Intersections, traffic

lights and surrounding traffic cause the test vehicles to often come to a stand still. Due to regular
accelerations and decelerations of the vehicles, the relative speed is large compared to the previous
two scenarios. The baseline length varies between 5 m and 30 m.

7.4. Measurement Runs

This section presents the results from the different measurement runs in the three scenarios.
Special situations, as for instance a tunnel or an urban canyon will be regarded in detail. The
cooperative relative positioning system presented in this thesis aims at estimating the relative
position of a target vehicle in an ego vehicle reference frame. In some cases also the relative
velocity vector will be regarded. Both, relative position and relative velocity are given by the
baseline vector and baseline velocity vector as explained in Chapter 4. To display the error in
the baseline estimate, the longitudinal (x-axis) and the lateral (y-axis) components are split up
and the error of each, with respect to the laser scanner reference is displayed. To get insight
into the statistical distribution of the longitudinal and lateral errors for the whole test run in one
driving scenario, a Cumulative Distribution Function (CDF) plot is chosen. The reliability of the
cooperative relative positioning filter is evaluated using a 2D histogram which counts the events
when the estimation error was above the stated 3σ bound. The size of the 3σ bound is displayed
in a different CDF plot to conclude on the availability of a solution.

7.4.1. GNSS-only Relative Positioning

In first place, a dedicated analysis is done using only GNSS measurements from two receivers
and without using a Bayesian filter to estimate the baseline. The objective is to compare the
benefit of using pseudorange differentiation over absolute positioning in real-world environments
and assessing the quality of the GNSS pseudorange double difference measurements.

Static Baseline The first test uses a baseline of constant length on the roof of one test vehicle.
The advantage of this configuration is that possible errors of the laser scanner reference system
can be discarded. Two Ublox LEA 4T receivers are carried on-board of the Mercedes G400 test
vehicle. The antennas are mounted on the roof of the car separated by a distance of 2.13 m.
The direction of the baseline coincides with the direction of movement of the vehicle. The true
baseline is computed by rotating the true baseline length into the east-north planar coordinate
frame by using the estimated headings of both receivers. This approach yields minor errors while
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Figure 7.5.: Comparison between pseudorange differencing and absolute position differencing for
a 2.13 m baseline on the top of one test vehicle driving in a highway environment.
When one of the receivers is using a different constellation of satellites to calculate its
absolute position, it is possible that the relative position suffers from an error above
one meter.

driving in a curve, since the heading angles of the receiver in the front and the receiver in back are
not exactly the same. This error is minimized by taking the arithmetic mean of both estimates.

A weighted Least Squares (LS) has been used for calculating the absolute position of each antenna,
where the weighting matrix has been set according to the CN0 value stated by the receiver for
each satellite. Satellites below an elevation angle of 10° have been discarded. The atmospheric
delays have been modeled, using the Klobuchar model for the ionospheric delay and a modified
Hopfiled model for the tropospheric delay respectively. The pseudorange differencing solution has
also been calculated using a weighted LS and creating double differences from all pseudoranges
above 15° elevation.

Figure 7.5 shows the planar components of the baseline errors for pseudorange differencing (blue)
and absolute position differencing using the same set of satellites in ego and target vehicle (green).
Both yield approximately the same errors with a standard deviation of 76 cm for the 200 second
section (800 samples). The curves in yellow and magenta represent the solution with absolute
position differencing where one satellite was taken out artificially from the satellite set of the target
receiver. Satellite 17 has an elevation of around 40°, whereas satellite 32 has a lower elevation
of around 30°. It can be appreciated that when taking out one of the satellites out of the LS
absolute position computation an error in the relative position occurs. For satellite 17, this error
is hardly appreciable. However, for satellite 32 a biased estimation of the relative position occurs.
Usually, two receivers track the same set of satellites and, consequently, common errors cancel out
in absolute position differencing. However, if one of the receivers tracks one or several different
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satellites an error in the order of 1 m can be expected in real environments.

An analysis on the number of tracked satellites by each of the receivers and the duration of the
intervals in which the receivers tracked different satellites is shown in Figure 7.6. The data for this
statistic is taken from the measurement runs described in the next section, comprising a 30 minute
drive on a highway, another 30 minute drive in a rural environment and a 40 minute drive in an
urban area. The left plots show for each of the environments the percentage of time in which the
ego and the target receivers were tracking a certain number of satellites (blue and green) and the
percentage of time in which they tracked the same set of satellites (red) and when they tracked
one or more different satellites (turquoise). The right plots show for each of the scenarios the
histogram over the duration of intervals in which a different set of satellites was tracked in each
receiver. For the highway environment, 15 % of the time the receivers were tracking one or more
different satellites (see Figure 7.6a). In three cases, the duration of this events was above 20 s
(see Figure 7.6b). This time is enough for a filter using the absolute positions as updates for the
estimation of the relative position to get biased. In the rural area, situations in which the receivers
tracked different satellites longer than 30 s occurred (see Figure 7.6d). Due to the blockage of the
view to the satellites due to buildings and other obstacles, the probability of tracking one different
satellite in urban environments increases to 27 % and that of tracking two different satellites is 5 %
(see Figure 7.6e). The duration of these events can be as long as one minute (see Figure 7.6f).
This analysis shows that it is indeed important to exchange pseudoranges between vehicles and
use only the common satellites to estimate the baseline.

Next, the estimation error using a static baseline setup is presented. The test vehicle drove
20 minutes on the A96 highway from Wessling to Landsberg am Lech. The rural section was
performed driving 12 minutes from Wessling to Germering over Unterbrunn and Pentenried. The
urban section was a 30 minute journey from the neighborhood of Pasing into the city center and
back again. Figure 7.7 shows the CDF curves for the three environments in one common plot.

For the highway scenario good CN0 values yielded a good estimation of the baseline. In 80 %
of the time the horizontal baseline error was below 95 cm. Bridges and tunnels produced larger
pseudorange errors due to the drop in signal power. Overhead bridges produce errors of about 3 m,
while entering a tunnel errors as high as 10 m occur. It is a typical feature of low-cost receivers
to track satellite signals, even when very low power levels are available in order to offer high
availability. In this case, the receivers still output pseudorange measurements although the signal
level has dropped more than 15 dB. The availability of the baseline estimate was lowered due to
the two tunnels encountered on the route. These were traversed in 25 s and 30 s respectively.

On both, the rural and the urban environment, the baseline error was disregarded when the vehicles
were at a standstill. At standstill, multipath propagation errors have a stronger impact as they
are not averaged out inside the receiver’s Delay-lock Loop (DLL). In the rural environment, 80 %
of the time the error is below 1.6 m. The largest errors are produced while driving under dense
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(c) Rural Probability
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(e) Urban Probability
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Figure 7.6.: The figures show the probability of tracking a certain number of satellites in each re-
ceiver (left) and a histogram over the duration of the intervals in which ego and target
receiver tracked different satellites (right) for the three different driving environments.
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Figure 7.7.: The figure shows the cumulative distribution function for the horizontal baseline error
for three different driving scenarios. The experiment was performed using a static
baseline on the roof of a vehicle, whereas the baseline is estimated using a weighted
least-squares using all pseudorange double differences above 15°.

canopy and through small towns, reaching values of up to 5 m. In the urban area, 80 % of the
time the error is below 2 m, but could reach up to 20 m in seldom situations.

These tests aim to show the expected quality in the estimation of the relative position by using only
GNSS measurements. In these tests, only the baseline length was regarded and not the orientation
of the baseline, which represents a further challenge. When moving towards the multisensor fusion
approach several improvements are expected. The use of a Bayesian filter with its time-relationship
will help improve short GNSS signal power drops as the ones caused when entering and sorting
tunnels and when driving under bridges. This will minimize the effect of sudden multipath induced
errors that have a short-term impact on the baseline.

The usage of on-board sensors will help during longer GNSS outages as for instance inside tunnels
or in urban canyons when the GNSS outlier rejector minimizes the number of used satellites. On-
board sensors will also help while driving on rural roads when partial GNSS degradation occurs
while driving through forests or towns.

Zero-Baseline Now, a zero-baseline setup is used to visualize the pseudorange double difference
measurements while driving in different scenarios. Pseudorange double differences serve as updates
for the baseline estimate in the cooperative relative positioning filter. As explained in Chapter 5,
an outlier rejector has been proposed, to discard double differences with large errors that are not
likely to fit the a-priori baseline estimate. These experiments give insight of when these errors
appear and how large they are.
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(a) Double Differences
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(b) Baseline Estimation

Figure 7.8.: The left figure shows the double difference measurements towards three satellites while
driving on a highway. The right figure shows the resulting horizontal baseline error
estimate when using an epoch-wise weighted least-squares using all double differences
above 10°.

A zero-baseline experiment makes it simple to compare the baseline length. The baseline length
and therefore also the pseudorange differences would ideally be equal to zero. A zero-baseline
configuration has been setup inside the Mercedes G400 test vehicle by connecting two receivers to
one antenna mounted on the roof of the vehicle, while driving in different scenarios. Figures 7.8
to 7.10 show on the left side the measured double differences towards three different satellites and
on the right side the baseline estimation error and its uncertainty using a weighted LS algorithm.

Figure 7.8a shows that the errors on the double differences are normally below one meter. Two
larger highway gantries cause a momentary loss in signal strength producing sudden meter-level
error on all double differences (second 1030 and 1060). When crossing below bridges even larger
errors can be expected (second 1100). A tunnel is responsible for a complete drop in the GNSS
signal power (second 1450). Noise protection walls at the entrance and exit block the view to
the low-elevated satellite and errors above 10 m are the result. The receivers output values for
the pseudoranges also while entering the tunnel. Consequently, pseudoranges at the entrance of
tunnels should be carefully filtered out. During reacquisition after exiting the tunnel, the double
differences show large errors. Thus, it is recommendable to wait for at least five seconds until the
signals are used for updating the baseline estimate. Figure 7.8b shows the horizontal error when
computing the baseline with a weighted LS using all satellites above 10°. It can be seen how the
baseline error is below 1 m. Normally, the error stays inside the 3σ bound, indicating that the
usage of the CN0 to weight the double difference measurements is, in general, a suited approach.
However, some of the over-head obstacles cause the error to exceed the bound, indicating the
presence of multipath propagation.

Figure 7.9a shows three double differences while driving in a rural environment. Around second
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(b) Baseline Estimation

Figure 7.9.: The left figure shows three exemplary pseudorange double differences while driving
in a rural environment. The right figure shows the horizontal baseline estimation
error when processing all double differences above 10° elevation every epoch with a
weighted least-squares.

500 the vehicle drives through a small village, causing meter-level errors in the low and medium
elevated satellites. Thereafter, the vehicle drives on an open-sky road and the error on all double
differences shrinks to below 1 m due to the good signal strength. When driving through a forest
from second 570 on, the dense canopy causes the loss of the low elevation satellite and meter-level
errors even on high elevated satellites. The baseline estimation error using an epoch-wise weighted
LS is displayed in Figure 7.9b. Forests next to the road and villages cause meter-level errors in
the baseline estimate due to the drop in signal power. In almost all the run, the baseline error is
correctly caught by the baseline uncertainty.

Last but not least, the results for a drive in an urban environment is depicted in Figure 7.10. Please
note the larger scaling on the vertical axis of Figure 7.10a in comparison to the previous scenarios.
Two characteristic sections around second 1540 and second 1610, correspond to instants when the
vehicle was driving through a narrow city street with four to five storey high buildings on each side
and a line of trees on one of the sides. Not only the low elevated satellite suffers from large errors
above 15 m due to satellite LoS blockage, but also the high-elevated satellite shows deviations up
to 4 m. A look on the baseline estimation errors in Figure 7.10b shows that a worse performance
can be expected in urban area when compared to the rural and highway environments. Here,
the relative positioning errors easily exceed 3 m. Nevertheless, the instants where the 3σ bound
is actually exceeded are only a few during the whole run. This is promising, since multipath
propagation is an important source of positioning errors in urban environments and whose impact
is, in general, not easy to quantify. The figures suggest that a correlation between the CN0 and
the occurrence of multipath errors exists and that correlation can be exploited to weight correctly
the pseudorange double differences.
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(b) Baseline Estimation

Figure 7.10.: The left figure shows the three exemplary double differences while driving in a urban
environment. The right figure shows the horizontal baseline estimation error when
processing all double differences above 10° elevation every epoch with a weighted
least-squares.

7.4.2. Multisensor Fusion Relative Positioning

The previous section has shown the performance of relative positioning using only GNSS pseu-
doranges in a static-baseline and a zero-baseline configuration. Only the length of the baseline
vector was considered, disregarding the orientation of the vector in space. On the highway, the
best results are achieved, as a higher number of unobstructed satellites are available. Strong mul-
tipath propagation is rather seldom. Nevertheless, full continuity is not achieved due to tunnels
that completely block the reception of GNSS signals. The rural, and specially the urban scenario,
revealed several meters of errors in the baseline coordinates. The aim of the multisensor fusion
approach presented in this thesis is to keep the sub-meter baseline estimation accuracy that is
achieved in open-sky environments and bridging the error-prone situations.

For instance, on the highway, the aim is to eliminate the errors when driving below highway
gantries and bridges and offer continuity in relative positioning when driving inside a tunnel.
In rural environments, the multisensor fusion approach should be capable to bridge small forest
sections next to the road or when driving through villages. Longer drives through forests will
still remain a challenge on rural roads. In urban environment, high buildings will block the LoS
towards GNSS satellites. Additionally, the elevation mask will be increased in order to discard
error-prone satellites. Consequently, in urban environments the on-board sensors are expected to
help stabilizing the baseline estimate when fewer satellite signals are available.

In the previous analysis, a baseline in east-north coordinates was considered. A relative position
in terms of longitudinal and lateral position of the target vehicle in the ego vehicle coordinate
frame requires the heading of the ego vehicle. In the subsequent analysis the baseline is given
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Figure 7.11.: The figures show the error in the estimation of the baseline vector between ego and
target vehicle while driving on a highway. Around second 810, the vehicles enter
a tunnel and the GNSS measurements are unavailable. Here, the baseline estimate
relies solely on the on-board sensors.

in x-y-coordinates of the ego vehicle frame. This is how radar or laser scanners provide its
relative positioning measurements and how Advanced Driver Assistance System (ADAS) require
the information for collision warning and lane change assistants or for automatic cruise control.

Highway Scenario For the highway test, the vehicles were driving for approximately 30 minutes
behind each other at varying distance and different relative speed. Figure 7.11 shows the baseline
estimation error in longitudinal and lateral direction for a 300 second period. This section of the
highway includes a 300 m tunnel around second 830. In blue the error of the multisensor fusion
for relative position is displayed along with its 3σ deviation in gray. In general, the estimation
error stays inside the uncertainty bound. This is important in order to trust the relative position
estimate. The uncertainty is usually greater in lateral, than in longitudinal direction. This is due to
the uncertainty in the yaw angle of the ego vehicle and its rate of change. The green dots represent
the snapshot-wise baseline solution using pseudorange differencing rotated into the vehicle frame
using the ego vehicle yaw. It can be seen, how the sensor fusion approach correctly smooths the
strong peaks caused by multipath in the pseudorange double differences. It also correctly bridges
the time without GNSS view inside the tunnel from second 810 to 840.

Figure 7.12 shows the error in the estimation of the relative velocity between the target and the
ego vehicle. A small error in longitudinal direction of about 0.25 m

s remains. When GNSS is
unavailable, as for instance during the tunnel around second 830, the longitudinal error enlarges,
since speed information falls back to the Controller Area Network (CAN) bus speedometer. The
lateral error is about three times as large and, due to its lower observability, the uncertainty is
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Figure 7.12.: The figures show the error in the estimation of the baseline velocity in the longitudinal
component (upper plot) and in the lateral component (bottom plot) while driving
on a highway.

above 2 m
s .

The CDF for the baseline and the baseline speed accuracy in longitudinal and lateral coordinate
for the whole 30 minute trip on the highway is shown in Figure 7.13. It can be seen how 68 %
of the time the baseline error is below 1 m and 90 % below 1.5 m. Since good GNSS reception is
available, a good heading estimate exists and, consequently, the lateral component is estimated
equally well as the longitudinal. The longitudinal baseline velocity error is below 0.15 m

s in 68 %
of the time. This good value is also associated to the accurate GNSS speed that is available. The
lateral relative velocity has a half the accuracy, due to the driving configuration of the vehicles
one behind the other and the consequent observability of the lateral speed.

To compare the benefit of the multisensor approach against the epoch-wise pseudorange differ-
encing approach, Figure 7.14 shows the error of both compared to the laser scanner by means of
its overall statistical performance in a CDF plot. In 68 % of the time, the horizontal baseline error
is reduced from 2 m to 0.9 m by using a sensor fusion with on-board sensors, while at 90 % of the
time the error shrinks from 3 m to 1.5 m. Since also the estimation is available while driving inside
tunnels, the availability can be increased from 97 % to 100 %.

Figure 7.15a and Figure 7.15b show the reliability assessment of the cooperative approach for
relative positioning by counting events in which the error exceeded the 3σ uncertainty. Up to 18
events were counted in longitudinal direction. Most of the events are below 1 m and for a duration
of less than 10 seconds. In lateral direction, the number of events is similar but with an amplitude
of up to 8 m, but also for short duration of time (less than 5 s). Finally, Figure 7.16 shows the
availability CDF. In 90 % of the time the 3σ uncertainty in lateral and longitudinal direction is
below 1.6 m and 2.4 m respectively.
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(b) Baseline Speed

Figure 7.13.: The figures show the CDF curves of the estimation errors in the relative position
and relative speed in the highway scenario. The baseline coordinates yields an ap-
proximate error of below 1 m (1σ) and similar in both coordinates. Since the target
vehicle is driving in the same direction in-front of the ego vehicle, the relative speed
is better observed in the longitudinal direction. The errors are small, below 0.1 m

s
(1σ) due to the high availability of GNSS measurements in the highway scenario.
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Figure 7.14.: The figure compares the horizontal baseline estimation error CDF curves for the
cooperative multisensor fusion approach (blue) compared to the epoch-by-epoch
computation of the baseline with pseudorange differencing and a weighted LS (green).
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Figure 7.15.: The figures display a histogram with the number of times the estimation error ex-
ceeded the 3σ bound in dependance of the duration of the exceed and its magnitude
in both, the longitudinal and lateral coordinate.
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Figure 7.16.: The figure shows the availability of the cooperative multisensor approach for relative
positioning in a highway environment.
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(b) Heading

Figure 7.17.: The figures show the estimation error in vehicle speed and heading during during a
120 second GNSS outage. The speed estimation falls back to the CAN bus speedome-
ter information, while the heading is estimated by integrating the gyroscopes inside
the kinematic filter inside the vehicle.

The performance during a GNSS outage of the Fully Bayesian lower kinematic filter presented in
Chapter 5 is depicted in Figure 7.17. Here, a 2 minute tunnel between second 600 and 720 was
emulated by artificially deactivating the GNSS measurements. Figure 7.17a shows the error in the
estimation of the longitudinal speed of the ego vehicle during such an outage. The increase in
uncertainty is due to the fact that the CAN bus speedometer has a higher error than the GNSS
derived velocity. The error stays bounded and is correctly estimated by the filter. The heading
estimation error is shown in Figure 7.17b. The error is not bounded, but grows over time due to
the integration of the gyroscope signal. Thanks to the correct estimation of the gyroscope biases
a maximum error of 1° is reached in this time interval. This is less than 1 m lateral error for a
target vehicle located 50 m in front. The peaks at second 620 and 640 are not due to errors in
the heading estimate, but due to multipath errors that corrupt the GNSS heading, against which
the estimate is compared to.

In addition, the influence of a realistic communication channel has been evaluated. Obstructions
and signal blockage, fading due to multipath multipath propagation or packet collisions lead to an
increase in the update delay (see Chapter 5). When this happens, the ego vehicle has to predict
the relative position of the target vehicle using the last The aim is to analyze how the relative
position of the target vehicle can be estimated when short communication outages occur in a
specific scenario. In the first test, Cooperative Awareness Message (CAM) outages of five seconds
(50 dropped messages) have been emulated every 30 seconds.

In Figure 7.18, it can be seen how large errors of several meters in the longitudinal component
occur every time a communication outage occurs. This is due to the errors accumulated by
predicting the longitudinal speed of the target vehicle. Using a CA model helps partly to overcome
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Figure 7.18.: The figure shows the estimation of the baseline in longitudinal and lateral coordinates
during a communication outages. Once using a CV (red) and once using a CA
prediction model (green)
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(b) Heading

Figure 7.19.: The left figure shows the estimation of the target vehicle’s speed and the right figure
the heading during three successive five second communication outages. For the
speed estimation, the prediction performance of a CA model (green) is compared to
the CV model (red). For the heading estimation, a constant tun rate model is used.
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(b) Baseline Error

Figure 7.20.: The left figure shows the Update Delay CDF curve for the emulated packet drops
applied on the highway scenario. The vehicles transmit with 10 Hz update rate.
Hence, an update delay of 2 s corresponds to the loss of 20 consecutive V2V packets.
The right curve is the baseline estimation error CDF curve for the whole 30 minute
run once with an ideal communication channel and once emulating the drops of
packets.

short outages, since the instantaneous acceleration of a vehicle cannot be extrapolated for longer
periods of time. This is shown in Figure 7.19a for the same successive communications outages.
The lateral component in Figure 7.18 has less errors due to the correct prediction of the heading
of the target vehicle. A constant turn rate model, either Constant Turn Rate and Velocity (CTRV)
or Constant Turn Rate and Acceleration (CTRA), use the heading rate to predict the heading
angle in the next steps. Smaller heading estimation errors can be found in the first and third
outage in Figure 7.19b. Nevertheless, the relative positioning filter is able to correctly estimate
the uncertainty during the outages and no reliability event has been accounted for.

Since the accurate statistical modeling of the communication channel is not object of research
within this thesis a simple and widely used model for correlated packet drops has been used [234].
The Gilbert-Elliot model uses a two-state Markov Model to switch from a receiving state to a
not-receiving state [235]. The probability to switch to the not-receiving state was set to 0.2, while
the probability to switch back to the receiving state was set to 0.35. This simulation yields an
update delay probability displayed in Figure 7.20a. Due to the simple model, the shape of the
update delay curve does not correctly reassemble the update delay curve considered in Chapter 5
for a congested highway (see Figure 5.22). By comparing both plots, it can be noticed that a
worse case is considered here. Regarding the baseline estimation error in Figure 7.20b, it can be
seen how these outages have no practical influence on the overall statistical performance of the
relative positioning filter. Thus, the sensor errors and modeling errors still have a stronger impact
on the relative position than the possible loss of V2V communication packets.
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Figure 7.21.: The figures show the error in the estimation of the baseline vector between ego and
target vehicle while driving in a rural environment.

Rural Scenario Figure 7.21 shows a 500 second section of the baseline estimation error while
both vehicles drive in a rural environment. In blue, the multisensor fusion solution can be compared
to the snapshot based pseudorange differencing solution in green. Again, the gray area depicts
the 3σ uncertainty in the multisensor fusion estimate. As expected, the quality of the GNSS
signals is in general worse than on a highway. Satellite shadowing and LoS blockage occur due
to trees while driving through forests and buildings while circulating in towns. This leads to
fades in received signal power and consequently to errors in the GNSS pseudoranges. Buildings in
towns might induce multipath propagation and lead to additional errors in the GNSS pseudoranges.
Although, low-elevated satellites are easily masked in a rural environment, normally eight common
satellites were available and only in some sections, seven or six common satellites could be used.
Around second 540 a section through a small town causes errors in the GNSS pseudoranges. The
pseudorange differencing solution has errors up to 5 m, while the multisensor fusion is able to stay
inside the 3σ bound. The errors in the pseudorange solution around seconds 600, 700 and 900
are due to over-head tree canopy and forests next to the road. Also here errors up to 6 m in the
relative position are the result. Since these are only momentary events lasting around 30 s, the
multisensor fusion is able to eliminate their impact and stabilize the baseline estimate. Longer
drives through deep forests however incur in strong errors.

The overall statistical performance of a 30 minute run in a rural environment is shown in
Figure 7.22. Compared to the overall performance in the Highway environment a degradation
can be seen in both, the baseline and the baseline velocity. While the longitudinal baseline com-
ponent stays at around 0.6 m (1σ), the lateral baseline component increases the error from below
1 m in the highway environment (see Figure 7.13a) to around 1.7 m in the rural scenario. 90 %
of the time the lateral component of the relative position is below 3 m. The increased error is,
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Figure 7.22.: The figures show the CDF curves for longitudinal and lateral error in the estimation
of the baseline (left) and baseline velocity (right) while driving in a rural environment.

in general, due to GNSS errors that occur more often in the rural scenarios and that impact the
overall error statistic. In the rural scenario often changes of driving direction occur and the lateral
displacement is, generally, correctly followed by the relative movement model. In the same way,
regarding the baseline velocity in Figure 7.22b, the lateral baseline velocity increases from 0.3 m

s
in the highway environment to 0.4 m

s in the rural case. Both curves, the longitudinal and lateral
components flatten out towards higher error values, yielding twice the error in the 90 % bound
when comparing highway and rural scenarios.

An increased error can also be appreciated when comparing the multisensor fusion approach to
the pseudorange differencing snapshot approach in Figure 7.23. In the rural environment, the
difference between both is much more pronounced as compared to the highway environment (see
Figure 7.14). Although the GNSS pseudorange double differences are strongly degraded in a rural
environment (horizontal error of 2.6 m in rural compared to 2.10 m in highway 1σ), the on-board
sensors correctly support the estimation of the relative position with only a partial detriment
(horizontal error of 1.8 m in rural compared to 1.25 m on highway 1σ).

Figure 7.24 shows the reliability and availability analysis for the rural scenario. A few events of
short duration (below 10 s) and small magnitude (below 4 m) happen during the test. Generally,
these errors are caused by GNSS signal degradation. However, certain longitudinal errors are caused
by strong accelerations and decelerations that are likely to happen in a rural environment, and
that were not completely caught by the movement model. Some lateral reliability events occurred
in bends, caused by a wrong tracking of the lateral vehicle position, which is a hint that the
CTRA movement model is in certain conditions not accurate enough for tracking a real vehicle.
Figure 7.25 shows the availability of the cooperative relative positioning system during the 30
minute drive. The longitudinal uncertainty is tightly bounded to 2 m for 90 % of the time. This
is a 3σ-uncertainty matching one length of the vehicle. Considering that the width of a standard
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Figure 7.23.: The figure compares the horizontal baseline estimation error CDF curves for the
multisensor fusion approach compared to the epoch-by-epoch computation of the
baseline with pseudorange double differences and a weighted Least Squares in a
rural environment.

rural road in Germany is 2.75 m, the lateral uncertainty spans over two lanes in 84 % of the cases.
Thus, in the rural environment it is, in general, not possible to distinguish on which lane a target
vehicle is driving solely by using a GNSS-based cooperative approach for relative positioning.

Last but not least, Figure 7.26 shows the estimation of the speed and heading of the ego vehicle
with the fully Bayesian kinematic filter for a 250 second section on a rural road. While driving
through a forest with overhead tree canopy up to second 2960 speed errors in the GNSS mea-
surements of up to 2 m

s can be seen. The filter correctly detects these outliers and falls back to
using the CAN bus derived speed. Also the heading estimate has to cope with errors of up to 5°
to 10°. The correct use of GNSS quality detectors makes it possible to correctly bridge the gap
and use the gyroscope information to predict the heading of the vehicle. The kinematic filter is
able to correctly bridge these gaps of GNSS coverage in rural environments and offer an acceptable
heading and speed estimates. From 2960 an obstacle free section makes it possible to use again
the GNSS information. The errors in the ego vehicle heading are the cause of the increased lateral
error in the relative position shown in Figure 7.21 and Figure 7.22a.

Urban Scenario The urban environment represents the most challenging of the chosen scenarios
regarding relative vehicle positioning, due to signal blockage and the impact of strong multipath
on GNSS pseudorange and Doppler measurements in each of the receivers. The GNSS pseudorange
measurements might have errors of several tens of meters, causing a corresponding error on the
baseline estimate. For the urban analysis, the test vehicles drove behind each other for 40 minutes
around the city of Munich. Figure 7.27 shows a 1000 second snapshot of this drive. In order to
correctly display the baseline estimation errors, both vertical axes have been increased to 20 m
compared to the previous driving scenarios. It can be noticed how the epoch-wise estimation
of the baseline using a weighted LS yields errors above 20 m. Only the section between second
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Figure 7.24.: The figures display a histogram with the number of times the estimation error ex-
ceeded the 3σ bound in dependance of the duration of the exceed and its magnitude
in both, the longitudinal and lateral coordinate.
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Figure 7.25.: The figure shows the availability of the cooperative multisensor approach for relative
positioning in a rural environment.
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Figure 7.26.: The figure shows the estimation of the speed and the heading in a rural environment
using the fully Bayesian kinematic filter. Unlike the highway scenario, the challenge
in a rural environment are not complete GNSS blockages, but overall degraded GNSS
reception while driving through forests or towns. Nevertheless, the speed sensor and
gyroscope information are able to correctly bridge these gaps.

3220 and 3400 has smaller errors when the vehicles were driving in a large four-lane avenue
(Leopoldstraße). The fusion with on-board sensors is crucial to minimize the errors in both
coordinates. In longitudinal direction the error is usually below 5 m, but large outliers above 10 m
exceeding the 3σ-bound occur in lateral direction.

In comparison to the highway and rural scenarios, the elevation mask has been increased to 30°.
The purpose is not to track satellites, whose LoS is likely to be blocked by surrounding buildings
and which are probably received over secondary paths. In order to have sufficient double difference
measurements, the CN0 threshold had to be lowered to as low as 25dBHz. The consequence is that
the used pseudoranges will, in general, have a lower quality. Usually, three to four pseudorange
double differences were available to update the baseline estimate.

The overall performance for the 40 minute drive is shown in Figure 7.28. For deriving these CDF
curves only the instants when the vehicles were moving were considered. Figure 7.28a shows
the CDF curve for the baseline coordinate errors. The horizontal axes have been increased to
10 m, compared to the 5 m from the previous CDF curves in the highway and rural case. As early
mentioned, the longitudinal baseline component is relatively bounded to below 4 m in 90 % of
the cases. The lateral component has larger errors yielding 10 m 90 %. Regarding the baseline
velocity, a decrease in performance can be observed when compared to the rural case. The
longitudinal velocity component is below 0.8 m

s in 90 % of the time. As will be explained later,
this is mainly because GNSS derived speed is not often used due to the large errors it has in the
urban environment. The lateral component has a similar performance due to the geometrical
disposition of the vehicles and the less observation of the lateral speed through the on board
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Figure 7.27.: The figure shows the longitudinal and lateral baseline estimation errors for a 1000
second section while driving in an urban environment in blue. In green the epoch-wise
baseline estimation is presented.

sensors.

Figure 7.29 shows the reliability analysis in the urban environment. Again, with the help of a
two-dimensional histogram the count of the times the estimation error exceeds the 3σ bound in
dependance of the duration and the magnitude is shown. In Figure 7.29a, a rather good reliability
is found in the longitudinal direction. Only few events occur with meter-level errors and with
durations up to 20 s. The event with 17 m error and 40 s duration is related to the initialization of
the system, when the heading of the vehicle is unknown, and can therefore be disregarded. A look
on the lateral component in Figure 7.29b reveals often, long and large reliability failures. Some
events are beyond 40 s and far beyond 10 m. Last but not least, the Figure 7.30 shows the reduced
system availability. The reduced number of GNSS signals, the increase in the pseudorange model
noise and the prediction of the heading angles for long periods of time cause an increase in the
relative position uncertainty. A 3σ uncertainty lower than the size of one vehicle is never obtained.
An estimated uncertainty lower than 6 m is achieved 75 % of the time in longitudinal and 52 % in
lateral coordinate.

Fortunately, the often stops in the urban environment help estimating the drift of the gyroscope
sensors more precisely. This makes it possible to have a better estimate of the heading rate and
to use the heading during long periods of GNSS degradation. Figure 7.31a shows the estimation of
the heading for a 400 second section driving in Schwabing, a dense built neighborhood in Munich.
GNSS-derived heading measurement are strongly corrupted in such an environment and errors
above 20° are not seldom (e.g. second 2900). This is mainly due to the influence of reflections
and multipath on the sensitive Doppler measurements. The heading estimation inside the lower
kinematic filter is able to cope with long heading measurement unavailability. However, the
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Figure 7.28.: The figures show the CDF curves for longitudinal and lateral error in the estimation
of the baseline (left) and baseline velocity (right) while driving for 40 minutes in an
urban environment.
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Figure 7.29.: The figures display the histogram with the number of times the estimation error ex-
ceeded the 3σ bound in dependance of the duration of the exceed and its magnitude
in both, the longitudinal and lateral coordinate.
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Figure 7.30.: The figure shows the availability of the cooperative multisensor approach for relative
positioning in a urban environment.

discriminator of corrupted GNSS heading measurements often fails to reject faulty measurements
and strong state updates are performed. These are the main responsible for the large lateral
errors in the baseline estimate. The speed estimation by the lower kinematic filter is shown in
Figure 7.31b. It can be observed how the filter mostly discards GNSS derived speed measurements
and tracks the CAN bus speed instead (e.g. second 2950 to 3000). GNSS derived speed has up to
1 m

s error (e.g. in second 2670).

7.5. V2V Communication

The previous measurements were performed without explicit communication between the vehicles.
The sensor data was stored on-board of each vehicle and the cooperative multisensor fusion
algorithms were evaluated off-line. One of the advantages of a cooperative approach based on
V2V communication is the extension of the awareness range beyond the capabilities of on-board
ranging sensors, as for instance radar sensors or laser scanners. In this section, the performance
of V2V communication in both LoS and non-LoS situations is inspected [236].

Each test vehicle was equipped with a Cohda Wireless MK5 V2V communication unit. A 5 dBi
magnetic-mount antenna was fixed on the roof. The communication unit at the target vehicle was
configured to transmit 400Byte long test messages at 3Mbps on channel 180 (5.9 GHz) at a rate
of 100 Hz. The transmit power was set to 24 dBm. The test messages contained an identifier, an
increasing message counter and the position and velocity of the test vehicle. At the ego vehicle,
the messages were stored along with the received power and the vehicle’s position and velocity.

The first test aimed at evaluating the communication range capabilities of the test setup under
ideal conditions. The test was performed in an air-field where a LoS situation could be evaluated.
The vehicles started at each end of the runway and drove towards each other to the opposite
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Figure 7.31.: The figure shows the estimation of the heading and the speed in an urban environ-
ment using the fully Bayesian kinematic filter. In green and red the GNSS related
heading and speed measurements are displayed. The green ones correspond to mea-
surements that have been used to update the kinematic state, while red measure-
ments have been discarded.
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Figure 7.32.: The figure shows the received signal power for each message over distance between
the vehicles (blue dots). The red line represents the theoretical received signal power
assuming a free space path loss model. The receiver sensitivity is −98 dBm (blue
line).
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end. The test was performed 3 times. Figure 7.32 shows the received power in dependance of the
distance of the two test vehicles on a double-logarithmic scale. The maximum communication
range obtained with this setup was 2 km. The red curve represents the received signal power over
distance using a free-space path loss model according to:

Prx = Ptx − Ltx +Gtx − LFSPL +Grx − Lrx, (7.1)

where Prx is the received power, Ptx is the transmit power of 24dBm, Ltx and Lrx are the losses
due to cables and connectors at the transmitter and receiver respectively and Gtx and Grx are the
gain of the antenna at the transmitter and receiver. The free-space path loss LFSPL is equal to:

LFSPL = 20 · log(d) + 20 · log(f) + 20 · log(4π
c

), (7.2)

where d is the distance between transmitter and receiver, f is the center frequency and c is
the speed of light. When the received signal power falls under the receiver sensitivity threshold
of −98 dBm, the correct reception of the messages is not possible and a lost message is the
consequence.

It can be observed that the theoretical model for the received power correctly matches the experi-
mental values in the LoS situation. Here, a great increase of the awareness range can be achieved
when compared to on-board ranging sensors, which have sensing ranges of up to 200 m. To assess
the performance in real-world scenarios and specially in non-LoS situations, where on-board rang-
ing sensors are unavailable, a second experiment with the same test setup was performed driving
on a highway and in a rural area.

Nineteen non-LoS situations were inspected, including obstructions due to different types of ve-
hicles on the highway and due to obstacles and terrain in the rural area. In Annex C, the tables
comparing the actual received power against the theoretical LoS received power for each situation
can be found. On the highway, large obstacles such as trucks caused drops in received signal power
between 5 dB and 11 dB when driving at distances up to 106 m. At larger distance, the occlusion
effect of other vehicles was found to be less likely. The vehicles were driving between 20 m and
290 m and no drop of messages was recorded. In general, higher signal attenuation was measured
in the rural environment. Crests and bends with vegetation lowered the received signal power
up to 29 dB. Under these circumstances and considering Figure 7.32, a reliable communication
above 200 m is challenging.

The received power over time for two sections on the highway and the rural environment are
shown in Figure 7.33. Each dot in blue represents one received message from the target at the
ego vehicle with its associated received signal power. The green dots represent the theoretical
received power using the aforementioned model for LoS situations. The red line at −98 dBm is the
receiver sensitivity. Below this value messages cannot be correctly decoded and are dropped. In
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Figure 7.33a, the sections when the LoS is obstructed on the highway can be identified, since here
the received signal power is below the theoretical received power. From second 560 to 580, two
vans were driving between the ego and target vehicle. A short LoS gap occurred around second
585, after which a big truck blocked again the direct sight. In both obstructed situations, enough
power was received and all messages were decoded. At second 600 and 610 the vehicles passed
below bridges, which represented a good reflection surface for the signal to propagate from the
target to the ego vehicle on a secondary path and producing the distinctive peaks in received
signal power. From second 510 to 540, the vehicles entered a tunnel. A strong increase in the
received signal power is the result, since the tunnel has a wave guiding effect, reflecting the signal
at the walls and ceiling and bringing the power towards the receiver.

From second 1210 to 1235 in Figure 7.33b, the impact of the antenna pattern on the received
power can be observed. The vehicles were driving from a flat road to a steep road climbing up
a hill. Since the antenna gain is different for different elevations, the received power also varies,
which is not captured by the theoretical received power curve that assumed an omnidirectional
antenna. Around second 1240, the target vehicle disappears behind a curve, where terrain and a
forest block the LoS. The result is more than 16 dB drop in received power. A second obstruction
due to a thick forest in a curve in second 1250, led to a more severe drop in signal strength, which
caused the drop of up to 4 % of messages. At this moment, the vehicles were driving at a distance
of 180 m.

The experiments demonstrate that a cooperative approach based on V2V communication is able
to offer a relative position estimate of another vehicle up to more than 1 km distance if a LoS
exists between the vehicles, thus exceeding the capabilities of traditional automotive ranging
sensors. In non-LoS situations, where ranging sensors fail to offer relative position information,
V2V communication still allows to exchange sensor data between the vehicles in order to estimate
their relative position. This was shown for distances up to 290 m on highways and and 250 m in
rural environments.

7.6. Discussion

In this chapter, the cooperative relative positioning system presented in this thesis has been
evaluated under real-world conditions. A test setup with two vehicles equipped with a GPS receiver,
an IMU and access to the CAN bus speedometer has been used for the evaluation in three different
environments, namely on a highway, in a rural environment and in an urban scenario. The
requirements regarding accuracy, reliability and availability that were presented in Chapter 2, have
been evaluated using the metrics defined in Chapter 4. In the cooperative approach for relative
positioning presented in this thesis, GNSS is the source of positioning information, while the on-
board sensors are used to stabilize the estimation when GNSS signals are impaired.



Chapter 7. Experimental Evaluation in Real World Environments 196

520 540 560 580 600 620 640
-100

-90

-80

-70

-60

-50

-40

-30

Time (s)

R
ec

ei
ve

d 
Po

w
er

 (d
B

m
)

 

 

Prx
FSPL
Sensitivity

(a) Highway

1200 1210 1220 1230 1240 1250 1260 1270 1280
-100

-90

-80

-70

-60

-50

-40

-30

Time (s)

R
ec

ei
ve

d 
Po

w
er

 (d
B

m
)

 

 

Prx
FSPL
Sensitivity

(b) Rural

Figure 7.33.: The figure shows the received power (blue) and the theoretical LoS received power
(green) for a section driving on a highway (left) and a section on a curvy rural road
(right). The red line represents the sensitivity threshold.

The GNSS-only tests revealed that in real-world conditions, systematic errors in the baseline
estimate of up to two meters can be avoided by using a pseudorange differencing approach for
relative positioning of vehicles instead of the differentiation of the absolute positions of each
vehicle. These errors are related to common errors in the GNSS pseudoranges caused by the
atmosphere or the GNSS satellites that bias the absolute position estimation in each receiver.
When the receiver in each vehicle tracks a different set of satellites, this bias propagates to
the baseline estimate. When using an epoch-wise pseudorange differentiation technique, the
horizontal baseline error in a highway environment is found to be below 80 cm (1σ). Here, bridges
and tunnels are the main source of GNSS errors. The error increases to 1.2 m (1σ) in rural
environments. Specially, dense tree canopy when driving through forests produce large errors for
low-elevated satellites. In a mixed urban environment, the baseline estimation accuracy only using
GNSS degrades to 1.5 m (1σ). This is a consequence of less availability of satellite signals due to
shadowing by buildings and degraded satellite signal reception due to decreased signal strength,
LoS blockage and multipath reception.

However, vehicle safety-critical assistance systems require to have the relative position information
of another vehicle in an ego vehicle reference frame. The proposed multisensor fusion approach
for cooperative relative positioning estimates the baseline and baseline velocity in the ego vehicle
frame. In a highway environment, thanks to the good view to GNSS satellites down to an elevation
angle of 20° to 30° and rare occurrence of over-head obstacles, a relative position accuracy below
1 m (1σ) is achieved. Bridges cause small errors on the GNSS pseudoranges that are easily detected
by the multisensor fusion filter and correctly filtered out. On highways, tunnels create GNSS outages
of up to a minute. While outages of up to 10 s are correctly bridged using on-board sensors, longer
outages are found to introduce large errors in the estimation of the baseline, especially due to
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the heading error in the ego vehicle. Due to the disposition of the vehicles, the relative speed is
estimated with higher accuracy in longitudinal than in lateral direction (less than 0.1 m

s baseline
velocity error against 0.35 m

s ). A high reliability is achieved in a highway environment, with the
baseline estimation error generally falling inside the 3σ bound. High availability is reached as
well, with the 3σ uncertainty being 90 % of the time below 2.4 m. When communication outages
between the vehicles occur, the baseline is predicted solely on past kinematic data from the target
vehicle. Five-second outages lead to meter level errors in the longitudinal and lateral baseline
components. A constant turn rate and acceleration model helps limiting this error in situations
when changes in speed or heading occur. Consecutive message drops related to the wireless
medium access that can be expected in dense traffic scenarios have no impact on the overall
statistic relative position statistic.

In a rural environment, short gaps of 20 to 30 seconds of GNSS degraded measurements are easily
bridged with the available on-board sensors. GNSS heading and speed measurements get easily
corrupted when driving next to or though dense forests. By correctly detecting these periods, the
kinematic state estimation can rely on the on-board sensors. The overall relative positioning errors
are 0.75 m (1σ) and 1.6 m (1σ) in longitudinal and lateral direction respectively. Regarding the
system’s reliability, a few events during the run were recorded in which the baseline error exceeded
the 3σ uncertainty bound. These were associated to stronger lateral and longitudinal dynamics.
This points towards a mismatch in the used movement models for the vehicles. A 90 % availability
is achieved for uncertainties below 2 m in longitudinal and 3.5 m in lateral direction.

The urban environment reveals itself especially challenging due to the influence of GNSS satellite
blockage and strong multipath effects. On the one hand, a reduced set of GNSS measurements are
available when compared to the highway or rural scenarios due to the shadowing of buildings and
the increased elevation mask. On the other hand, multipath and low signal strength has a strong
impact on GNSS heading and speed measurements. Heading, cannot be used reliably and updates
with corrupted heading measurements lead to errors in the vehicle heading estimation of up to 15°.
This leads to a wrong location of the target vehicle in the ego vehicle frame and to long periods
of lateral and longitudinal positioning errors of several meters. The overall longitudinal baseline
error is 1.5 m (1σ), while the lateral error is above 4 m (1σ). The large estimation errors added
to the large reliability events make the use of the proposed approach for cooperative positioning
not appropriate in urban environments. If access to the steering wheel angle would be available,
this information could support the IMU during long heading outages.

This chapter concludes with a discussion on the possibilities that a cooperative approach for
relative positioning offers to overcome the limitations of modern ranging sensors, enhance their
performance or represent a possible replacement in the future. A state-of-the-art, commercially
available radar sensor found in today’s vehicles is the Bosch LRR3 sensor. It states to have a
distance accuracy of ±0.1 m and a relative speed accuracy of ±0.12 m

s . The ranging performance
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clearly outperforms the relative position accuracy of the cooperative approach based on GNSS
pseudorange differentiation. This radar sensor is specially designed for Automatic Cruise Control
(ACC) applications, where the relative position in the longitudinal direction, i.e. the distance to
an in-front driving vehicle, is of great importance. The angular accuracy of the radar sensor
is around 0.5°, which leads to a lateral error of 0.5 m at 50 m and 1 m at 100 m. Hence, at
larger distances the cooperative approach is able to offer a higher lateral accuracy than this radar
sensor. Another commercial radar sensor, which operates in the 24 GHz band, is the UMRR-0A
family from Smartmicro. Applications for these radars range from ACC and Forward Collision
Warning (FCW) to blind spot detection. Its range accuracy goes from ±0.25 m at 10 m to ±2.5 m
at 100 m distance. Thus, at medium ranges the presented cooperative approach is able to compete
in accuracy with this sensor.

The LLR3 radar sensor is able to detect targets up to a range of 200 m, while the cooperative
approach is able to extend this range up to 1 km. The radar sensor suffers from LoS blockage
caused by other vehicles or the surrounding environment. On highways other vehicles driving
in the same direction will block the radar sensor. In rural environments, bends with trees and
forests, earth hills or crests can easily block the sight towards another car not driving immediately
in-front. In urban environments mainly other driving or parked vehicles or buildings will block
the LoS. Here, V2V offers a substantial opportunity in increasing the awareness range for future
intelligent vehicles, since sensor information exchange is still possible in non-LoS situations up
to several hundreds of meters. Additionally, the possibilities of discriminating between different
targets is easily accomplished in a cooperative approach, whereas a radar sensor has difficulties
to discriminate between targets driving close to each other and at a similar relative speed. Along
with the benefits that a cooperative approach for relative positioning offers, challenges and new
threads appear. A cooperative approach based on wireless communication, and specially on the
current V2V communication standard, has to cope with possible security challenges. Jamming or
spoofing are examples of deliberate attacks in order to prevent other parties to receive messages or
to believe in false information. Without taking appropriate action, this attacks could theoretically
lead to not detect other vehicles or, on the contrary, to perceive vehicles that are not present at
all.

Thus, the cooperative approach is not able to compete with a modern ACC radar sensor on behalf
of the accuracy in the relative position. However, it offers important advantages, regarding its
robustness, its ability to correctly estimate the current uncertainty, its reliability and availability.
Consequently, it is foreseen that the best performance can be achieved by unifying both inde-
pendent sources of information in an overall cooperative relative positioning fusion system that
increases the awareness for future safety critical applications.



Chapter 8.

Summary, Conclusions and Future Work

8.1. Summary and Main Contributions

In this thesis, the topic of relative positioning between road vehicles using a cooperative approach
based on vehicle-to-vehicle communication, exchanged Global Navigation Satellite Systems (GNSS)
measurements and on-board sensors has been addressed. The motivation of this work was to
identify up to which extent such a cooperative approach could compete with on-board ranging
sensors such as radar, laser scanners or camera-based systems and solve their shortcomings. Future
safety-critical applications, as for instance automatic cruise control, collision avoidance systems
or lane-change assistants, require that the relative position of other road participants is given in
an ego vehicle reference frame, in the same way an on-board ranging sensor delivers the position
of detected target vehicles. This is the first work to analyze the performance of GNSS-based
cooperative localization to obtain a relative position of other vehicles in the ego vehicle frame.

A sensor fusion approach based on the use of differenced GNSS pseudoranges, on-board speed
sensor and inertial measurement unit has been proposed following a Bayesian approach. The
dynamic Bayesian network, which describes the causal dependency between the states and the
evidences, has been presented. The advantage of following a Bayesian approach is that the impact
of the uncertainty of each information source on the relative position is directly taken into account.
The uncertainty in the final estimation of the relative position of the target vehicle will decisively
depend on the quality of the GNSS pseudoranges, the given satellite constellation, the noise of the
inertial and speed sensors, the number of lost communication messages and the relative disposition
between the vehicles.

A key aspect in this thesis, is the usage of GNSS pseudorange double differences to cancel out
common errors between two GNSS receivers. With such an approach atmospheric errors, satellite
ephemeris errors and satellite clock errors are successfully eliminated without requiring additional
infrastructure or an additional communication link for broadcasting differential GNSS correction
data. The technique of pseudorange differencing was compared to the common approach of dif-
ferencing absolute positions for relative positioning. The performance of both methods depends
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on the magnitude of the common errors on the pseudoranges of both receivers and on the mag-
nitude of the pseudorange noise. The number of satellites used in each receiver, as well as the
constellation geometry, have a direct impact on which of the two approaches yields a smaller base-
line error. A novel method based on GNSS Doppler extrapolation to synchronize pseudoranges
from two different receivers has been proposed and has been validated to be used for cooperative
relative positioning.

The proposed sensor fusion approach for cooperative relative positioning has been validated in
a simulation environment that was developed in the frame of this thesis. Here, the impact on
the relative position estimation of different Vehicle-to-Vehicle (V2V) update rates, number of
available GNSS satellites, colored noise on the GNSS pseudorange measurements or different
kinematic filters could be analyzed prior to the real-world experiments. Controlled hardware-in-
the-loop simulations were specifically performed on the GNSS receivers in order to analyze their
performance prior to the outdoor tests. The method to compute pseudorange double differences
has been validated in a error-free environment. The remaining noise error from the receivers
has been analyzed in terms of mean, variance, time correlation and amplitude distribution. The
correct cancellation of common errors in both receivers has been successfully shown by simulating
an atmospheric delay on different satellites. The code double differences resulting from this
experiment are free of any possible bias. In a second set of experiments, the double difference
signals are evaluated under the effect of multipath propagation. Different multipath models show
that multipath is not canceled by double differencing. High dynamics in speed and acceleration,
on the other hand, were found not to impact the estimation of the baseline. Extreme accelerations
caused loss of signal lock inside the GNSS receiver.

Great emphasis has been put in the scope of this work on validating the proposed sensor fusion
approach in real-world environments. For this purpose a nearly two hour drive has been performed
with two vehicles driving in highway, rural and urban environments. The challenges of each
scenario have been highlighted and the overall performance in accuracy, reliability and availability
has been compared to each other by means of a statistical analysis. The test runs revealed that
the pseudorange differencing approach is able to eliminate a possible bias of up to two meters
that occurs when vehicles use different sets of satellites to compute their absolute position. The
cooperative relative positioning sensor fusion has a good performance in a highway environment.
Sub-meter positioning errors of the target vehicle were achieved. A good reliability is found, with
seldom violations of the stated 3σ bound. It was shown that communication outages of a few
seconds can be bridged with meter-level errors, but a correct accounting of the uncertainty. A non-
ideal communication channel was simulated and it was found that when transmitting at 10 Hz the
loss of packages due to medium access contention had a negligible impact on the overall estimation
of the relative position. The rural area presents more challenges than the highway environment
due to longer degraded GNSS signal reception when driving through forests or small towns and
higher vehicle dynamics due to accelerations, decelerations and changes of direction. A better
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accuracy and availability are achieved in the longitudinal (0.7 m) than in the lateral component
(1.5 m). Last but no least, the urban scenario was found to be extremely challenging, mainly
due to the difficult estimation of the ego vehicle heading, which led to meter-level errors in the
longitudinal relative position coordinate and to often reliability failures.

8.2. Conclusions

It has been proven that exchanged pseudorange measurements can be successfully used for es-
timating the relative position between two vehicles while canceling out common errors. In the
case of unobstructed view to the satellites, the approach yields a bias-less estimate of the relative
position between the vehicle with less than one meter of error. Especially, when the vehicles track
at least six common satellites, differencing pseudoranges has a advantageous effect. The two-step
differentiation amplifies slightly the noise of the double difference when compared to each single
pseudorange. Multipath propagation has a detrimental effect, yielding more than ten meters of
errors in urban environments.

The GNSS based cooperative approach, yields a relative position estimate in an Earth fixed co-
ordinate system. The heading of the ego vehicle is used to rotate this estimate into the ego
vehicle frame. Consequently, the continuous and accurate estimation of the ego vehicle heading
is of high importance to vehicular cooperative relative positioning. This has been found to be
especially difficult in urban environments due to corrupted GNSS Doppler measurements, due to
Line-of-Sight (LoS)blockage and multipath propagation.

In highway environments, the cooperative approach yielded a sub-meter accurate baseline estimate,
bridging the errors created by overhead gantries and through short tunnels. Minute-long outages
as through longer tunnels yielded meter-level errors that do not meet the requirements of modern
Intelligent Transportation Systems (ITS) applications. The relative velocity between the vehicles,
a parameter that is of great importance to many ITS applications, is correctly estimated with an
error of 0.2 m

s (1σ).

The sensor fusion approach based on on-board dynamic sensors helps increasing the continuity
and the availability of the relative position estimate under bridges, small tunnels, through villages
and forests and short urban canyons. Longer GNSS-outages remain a problem since the approach
relies on the dynamic sensors in dead-reckoning mode. Here, the on-board Inertial Measurement
Unit (IMU) and speed sensors are capable of maintaining a relative position estimate with errors
below 3 m for up to 20 s. The presented multisensor fusion approach based on a Bayesian filter
is able to correctly estimate the uncertainty in the relative position estimate depending on the
available satellite signals, the satellite constellation, the loss of V2V communication messages or
the errors in the on-board sensors.
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It was found that a message update rate of 10 Hz is sufficient to follow regular changes in ac-
celeration and turn rate of the vehicles. Extreme vehicle dynamics require a higher update rate
of V2V communication messages. The total amount of data that needs to be transmitted for
the proposed cooperative positioning approach is manageable. Without further compression, the
broadcast of synchronized pseudorange measurements amounts to less than 100 Byte, compared
to the 500 Byte required for today’s Cooperative Awareness Messages (CAMs).

The evaluation of the V2V communication, revealed that communication between the vehicles
above one kilometer is possible if a LoS exists. In non-LoS situations where on-board ranging
sensors fail to offer relative position information, the vehicles are still able to exchange infor-
mation up to several hundreds of meters. This was tested in both highway and rural environments.

Next, the proposed research questions are answered:

1. Which are the advantages and which is the gain in exchanging GNSS raw pseudoranges
for relative positioning? One way to realize a cooperative approach is to exchange the
absolute positions computed and, possibly, corrected with other sensor information, with
other vehicles. The absolute positions, however, are biased estimates of the actual position
of the vehicle due to the impact of atmospheric and satellite related errors. One way to
overcome this problem is to exchange synchronized pseudorange measurements between
vehicles and only use the pseudoranges common to both vehicles to create so-called double
differences and update the relative position estimate. The error that can be avoided by
doing this is under normal conditions around 1 or 2 meters. The price to pay is a slight
increase in noise. However, it is more convenient to have an increase in noise that averages
out in a Bayesian filter, than having a bias that offsets the relative position estimate.

2. Which increase in robustness is achieved by fusing GNSS raw pseudoranges with sensors
available in today’s vehicles? The subtraction of exchanged GNSS pseudoranges offers an
information about the relative position of both vehicles in an Earth-fixed reference frame.
In order to bring this relative position information into the ego vehicle frame and make
it meaningful for an Advanced Driver Assistance System (ADAS), information about the
heading of the vehicle is necessary. A Bayesian approach offers the possibility to correctly
account for the uncertainty of the relative position in the vehicle frame under changing
conditions. The fusion with available on-board sensors offers an increased robustness against
GNSS outages in tunnels and while driving under bridges or in urban canyons where major
errors in both speed and heading occur. By correctly relying on the IMU and the speedometer,
short outages of several seconds can be bridged. A lower horizontal error in the relative
position and an increased availability are the benefits of using a Bayesian sensor fusion
approach.
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3. Which performance in the estimation of the relative position can be expected in every
automotive environment regarding accuracy, reliability and availability? The cooperative
relative positioning approach based on Bayesian sensor fusion yields a good performance
in highway and rural environments. In a highway environment, sub-meter relative position
accuracy is achieved. GNSS outages due to tunnels can be bridged for up to around 10
seconds along with an ever-increasing uncertainty. In a rural environment, the worse quality
in GNSS signals yields an overall accuracy batter than 2 meters. In urban environments,
multipath and shadowing of GNSS signals cause large errors in the heading estimate, which
lead to large errors in the relative position, especially in its lateral component. Due to
the difficulty in accounting for these errors, the cooperative approach behaves extremely
unreliable in this type of environment.

4. Is it possible to achieve, with a cooperative approach, a comparable performance to modern
on-board ranging sensors? Regarding accuracy, a cooperative approach for relative position-
ing can only compete with on-board ranging sensors at higher distance. At distances below
100 meters, 70 GHz-radar sensors have a higher accuracy, which a cooperative approach
based on GNSS pseudoranges cannot beat. However, also at low distances the cooperative
approach is capable of working when the LoS is obstructed, either due to other vehicles or
due to the surrounding topography. In this cases, the cooperative approach can help support
a ranging sensor with an increased field-of-view, an inherent identification of targets along
with a correct estimation of the uncertainty in the relative position.

8.3. Future Work

This thesis has limited its scope to analyze the relative position between two vehicles. Part of the
future work includes analyzing the benefit in relative position within clusters of vehicles. Already
three vehicles, which are all in range of each other, build up an over-determined system for relative
positioning. This leads to an enhancement in the precision of the relative position determination
as an increased number of measurements become available. The cooperative relative positioning
approach in this thesis is based on the exchange of GNSS pseudoranges. GNSS carrier phase
measurements offer a more precise distance estimate to the satellites in view. Their drawback,
however, is the unknown number of L1 wavelengths each measurement has associated and that
needs to be resolved. The estimation of this so-called integer ambiguity is a complicated an
tedious problem, but once it is solved a relative position with a sub-centimeter accuracy becomes
possible. The technique known as Real Time Kinematics (RTK) for absolute positioning, could be
extended with sensor fusion for cooperative relative positioning of vehicles. One of the assumptions
performed in the scope of this thesis is that the vehicles drive on the same plane surface. Changes
in the height coordinate were absorbed by increasing the system and measurement noise in the
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Bayesian filters. Thus, the extension towards full 3D positioning is suggested as future work. This
could, on the one hand increase the accuracy in the estimation, and, on the other hand, be used for
discrimination between traffic on different levels (e.g. on bridges). In the scope of this work, the
cooperative approach was compared quantitatively and qualitatively to on-board ranging sensors.
However, it is envisioned that none of these two systems is determined to replace the other, but
rather will both be used in parallel to overcome each other’s limitations. A cooperative approach
offers an extended perception range and the identification capabilities of objects in the vicinity,
whereas it can benefit from the increase accuracy of on-board ranging sensors. Therefore, future
research should investigate the possibilities to fuse on-board ranging sensors with cooperative
approaches in order to offer extended capabilities for safety-critical transport applications.



Appendix A.

Relative Positioning Error for Absolute
Position Differencing and Pseudorange
Differencing

The satellite constellation corresponding to the 4th of June 2013 has been simulated. Figure A.1
shows on a skyview plot the location of the twelve satellites above the horizon as seen from
Wessling, south-west of Munich (Germany) at 18:30. A mask of 10° was used in the experiments,
yielding a constellation of eight useful satellites. The ego and the target receiver tracked between
four and eight satellites. All possible combinations were simulated and the relative positioning
error for absolute position differencing and pseudorange differencing was computed. The following
tables show the maximum, minimum and mean error for both approaches in the case of only noise
(Table A.1 and Table A.2) and only common errors (Table A.3 and Table A.4). The noise level
was set at a value of 1 m (1σ) and the common errors were equal to the ionospehric delay modeled
by the Klobuchar parameters on that day.
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Figure A.1.: Skyview plot with the location of the twelve satellites as viewed from Wessling, south-
west of Munich (Germany), on the 4th of June 2013 at 18:30.
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Table A.1.: Only Noise - PRD
Satellites 8 7 6 5

5 max. 15.31 m
mean 4.38 m
min. 2.76 m

max. 420.10 m
mean 15.39 m
min. 2.76 m

max. 420.10 m
mean 19.06 m
min. 2.76 m

max. 420.10 m
mean 20.89 m
min. 2.76 m

6 max. 4.42 m
mean 3.28 m
min. 2.64 m

max. 15.31 m
mean 4.11 m
min. 2.64 m

max. 420.10 m
mean 13.78 m
min. 2.64 m

7 max. 3.19 m
mean 2.81 m
min. 2.56 m

max. 4.42 m
mean 3.22 m
min. 2.56 m

8 max. 2.49 m
mean 2.49 m
min. 2.49 m

Table A.2.: Only Noise - APD
Satellites 8 7 6 5

5 max. 10.88 m
mean 3.51 m
min. 2.57 m

max. 10.97 m
mean 3.63 m
min. 2.62 m

max. 11.15 m
mean 3.84 m
min. 2.67 m

max. 15.21 m
mean 4.41 m
min. 2.75 m

6 max. 3.40 m
mean 2.81 m
min. 2.49 m

max. 3.68 m
mean 2.96 m
min. 2.54 m

max. 4.19 m
mean 3.20 m
min. 2.59 m

7 max. 2.77 m
mean 2.54 m
min. 2.43 m

max. 3.10 m
mean 2.70 m
min. 2.47 m

8 max. 2.38 m
mean 2.38 m
min. 2.38 m
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Table A.3.: Only Common Errors - PRD
Satellites 8 7 6 5

5 max. 0.01 m
mean 0 m
min. 0 m

max. 0.01 m
mean 0 m
min. 0 m

max. 0.01 m
mean 0 m
min. 0 m

max. 0 m
mean 0 m
min. 0 m

6 max. 0.01 m
mean 0 m
min. 0 m

max. 0 m
mean 0 m
min. 0 m

max. 0 m
mean 0 m
min. 0 m

7 max. 0 m
mean 0 m
min. 0 m

max. 0 m
mean 0 m
min. 0 m

8 max. 0 m
mean 0 m
min. 0 m

Table A.4.: Only Common Errors - APD
Satellites 8 7 6 5

5 max. 9.51 m
mean 2.43 m
min. 0.54 m

max. 11.29 m
mean 2.60 m
min. 0.09 m

max. 12.16 m
mean 2.89 m
min. 0.06 m

max. 13.18 m
mean 3.50 m
min. 0 m

6 max. 4.47 m
mean 1.51 m
min. 0.19 m

max. 5.70 m
mean 1.73 m
min. 0.04 m

max. 6.64 m
mean 2.13 m
min. 0 m

7 max. 1.93 m
mean 0.77 m
min. 0 m

max. 3.09 m
mean 1.15 m
min. 0 m

8 max. 0 m
mean 0 m
min. 0 m



Appendix B.

Cooperative Relative Positioning Simulator

B.1. Kinematic Filter Evaluation

The kinematic filters described in Section 6.1.3 were tested using the Cooperative Relative Posi-
tioning Simulator. Table B.1 lists the simulation parameters for the True Value Simulator. The
true value simulator runs at 1 kHz. The position, velocity, acceleration, jerk and turn rates for
two vehicles driving behind each other were simulated.

Table B.2 lists the simulation parameters for the Measurement Simulator. The satellite positions
and velocities were simulated using the GPS broadcasted ephemeris of the 26th of July 2012
(brdc2080.12n). The time at which the simulation run starts is at 14:15 GPS time. The Klobuchar
model parameters used to simulated the ionospheric error stem from the same navigation file.
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Table B.1.: True Value Simulator
Simulator Parameter Unit Value

Initialization Duration [ego, target] s [20, 17]

Initial Position Ego °, °, m [48.08454, 11.27777, 581]

Initial Distance m 5

Starting Jerk m
s3 0.5

Stopping Jerk m
s3 0.5

Starting Duration [ego, target] s [12, 12]

Stopping Duration [ego, target] s [12, 12]

Mass of Vehicle [ego, target] kg [2600, 2600]

Suspension Factor x-axis [ego, target] °
m s2 [3, 3]

Suspension Factor y-axis [ego, target] °
m s2 [-2, -2]

Centrifugal jerk [ego, target] m
s3 [0.5, 0.5]

Number of Bends 3

Bend Radius m [120, -80, 100]

Bend Angles ° [40, 17, 80]



Appendix B. Cooperative Relative Positioning Simulator 210

Table B.2.: Sensor Simulator
Simulator Parameter Unit Value

OS Clock Jitter s 0

Speed Sensor Sample Rate Hz 5

Noise Speed Sensor m
s 0

IMU Sample Rate Hz 100

IMU Misalignment ° [0, 0, 0]

Accelerometer Noise m/s2/
√

Hz 0.003

Accelerometer Bias m
s2 [0, 0, 0]

Accelerometer Bias Stability °
h 20

Gyroscope Noise °/s/
√

Hz 0.005

Gyroscope Bias °
s [0.2, 0.1, -0.2]

Gyroscope Bias Stability °
h 20

Noise on GNSS Pseudorange m 1

Noise on GNSS Doppler Hz 0.1

Noise on GNSS Carrier Phase m 0.001

GPS Sample Rate Hz 4

GPS Antenna Displacement m [0, 0, 0]

GPS Clock Bias ns 640 000

GPS Clock Drift ns
s −2200

Temperature ◦C 20

Pressure mbar 1015.25

Water Vapor Pressure mbar 25



Appendix C.

V2V Communication Evaluation

The following tables compare the received power with the theoretical LoS received power for nine
and ten non-LoS events while driving on a highway and on a rural road respectively. The first
column describes the non-LoS situation and the second column shows the distance between the ego
and target vehicle. The third column contains the theoretical received power with a Free Space
Path Loss model, while the fourth column contains the actual received power measured by the
receiver at the ego vehicle. Finally, the fifth column shows the drop in power for the corresponding
event.

Table C.1.: Highway
Run Distance Path Loss Rx Power Difference
Two vans 106 m -65dBm -70dBm -5dB
Heavy truck 73 m -64dBm -75dBm -11dB
Small truck 90 m -63dBm -69dBm -6dB
Heavy truck 85 m -62dBm -71dBm -9dB
Car 21 m -55dBm -61dBm -6dB
Truck (curtain) 82 m -63dBm -70dBm -7dB
Van 50 m -59dBm -64dBm -5dB
Car with trailer 100 m -64dBm -69dBm -5dB
Truck 90 m -65dBm -72dBm -7dB
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Table C.2.: Rural
Run Distance Path Loss Rx Power Difference
Hill crest 240 m -69dBm -79dBm -10dB
Fence + trees 150 m -65dBm -74dBm -9dB
Bend + trees 171 m -66dBm -82dBm -16dB
Fence + trees 80 m -58dBm -70dBm -12dB
Bend high terrain 120 m -65dBm -77dBm -8dB
Bend thick forest 180 m -67dBm -83dBm -16dB
House 2 Story 105 m -61dBm -73dBm -12dB
Bend thick bushes 124 m -63dBm -92dBm -29dB
Bend single tree 115 m -63dBm -69dBm -6dB
Hill Crest 115 m -62dBm -70dBm -8dB
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Mathematical Notation

General Notation Rules

Throughout this thesis, the following notation will be used:

• All vectors are interpreted as column vectors.

• Vectors are denoted by bold small letters and matrices by bold capital letters.

• (·)ᵀ, and (·)−1 stand for matrix (or vector) transpose and inverse, respectively.

• E {x} stands for the expectation or sample mean of x.

• p(x) stands for the probability distribution of random variable x.

• x̂ is an estimation of the unknown parameter x.

• x̃ is a prior estimation of the unknown parameter x.

• ẋ is the time derivative of x.

• ‖x‖ is the norm of vector x.

• |X| is the determinant of matrix X.

• [X]i,j denotes the component in row i and column j of matrix X.

• [x×] is the skew symmetric matrix form of vector x.

• x ∼ N (µ,P) denotes a Gaussian distributed random variable x with mean µ and variance-
covariance matrix P.

• exp {·} is the natural exponential function.

• In is an identity matrix of order n.

• 0m×n is a m× n matrix filled with zeros.

• k as a superindex is reserved for timestep.

• e and t as subindeces stand for ego and target GNSS receiver or vehicle.

• l, m and n as superindeces stand for three GNSS satellites.
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• i, e, n and v as superindeces stand for inertial, Earth, local navigation and vehicle frame,
respectively.

• xa
b,c is the inertial measurement x in the c frame with respect to the b frame expressed in

a frame coordinates.

List of Symbols

b Baseline vector
ḃ Baseline velocity
pe Position of receiver e
dke Kinematic state of the ego vehicle at time step k
dkt Kinematic state of the target vehicle at time step k
ek Error state containing all memory components of the measurements

such as biases
at time step k

∇∆ρk Double difference pseudorange measurements at time step k
vkCAN Speed measurement from the CAN bus at time step k
ik Measurements from an IMU at time step k
vkGNSS Velocity from a GNSS receiver at time step k
κ Normalization constant in Bayes Formula
rle True range between receiver e and satellite l
∆rlet Single difference true range from receiver e and t to satellite l
∇∆rlmet Double difference true range from receiver e and t to satellite l and m
ρle Pseudorange from receiver e to satellite l
∆ρlet Pseudorange single difference from receiver e and t to satellite l
∇∆ρlmet Pseudorange double difference from receiver e and t to satellite l and m
∇∆ρet Pseudorange double difference vector from receiver e and t
Rρ Is the pseudorange measurement variance-covariance matrix
ρcmc Code Minus Carrier (CMC) measurement
Φ̇l

e Doppler measurement from receiver e to satellite l
Φl

e Carrier phase measurement from receiver e to satellite l
N l

e Carrier phase ambiguity at receiver e to satellite l
sI In-phase component of a down-conversion mixer
sR,P Prompt code replica in Delay-lock Loop (DLL)
sR,E Early code replica in DLL
sR,L Late code replica in DLL
sI,P In-Phase signal correlated with Prompt code replica
sI,E In-Phase signal correlated with Early code replica
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sI,L In-Phase signal correlated with Late code replica
sQ,P Quadrature signal correlated with Prompt code replica
sQ,E Quadrature signal correlated with Early code replica
sQ,L Quadrature signal correlated with Late code replica
ul Unitary vector to satellite l
ulm Differenced unitary vector to satellites l and m
Gu Matrix of unitary vectors to satellites
Guu Matrix of differenced unitary vectors to satellites
I Fischer information matrix
ερ Pseudorange error in meters
εΦ̇ Doppler error in Hertz
εΦ Carrier phase error in cycles
εe Pseudorange error at receiver e towards satellite l in meters
εsat Pseudorange error at receiver e due to satellite clock bias
εuser Pseudorange error at receiver e due to user clock
εeph Pseudorange error at receiver e due to satellite ephemeris
εion Pseudorange error at receiver e due to ionospheric delay
εtrop Pseudorange error at receiver e due to tropospheric delay
εmp Pseudorange error at receiver e due to multipath propagation
εn Pseudorange error at receiver e due to non-modeled errors
∆εlet Pseudorange error in a single difference of receivers e and t

towards satellite l
∇∆εlmet Pseudorange error in a double difference of receivers e and t

towards satellite l and m
δte Receiver clock offset at receiver e
t0 Measurement instant in ego GNSS receiver
∆t Difference in measurement instants in GNSS receiver e and t
τ Sampling rate of inertial sensor
Bρ DLL loop bandwidth in Hertz
Tc Chip width of C/A code in metres
T Averaging time of the DLL in the GNSS receiver
d Distance between early and late correlators in relation to chip width
n Gaussian noise
ψ Yaw or heading angle
θ Pitch angle
φ Roll angle
α Attitude
ω Turn rate
bω Turn rate bias
Mω Turn rate misalignment
Bs Bias stability of a gyroscope
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ψ̇ Z-Axis turn rate (yaw rate)
θ̇ Y-axis turn rate (pitch rate)
φ̇ X-Axis turn rate (roll rate)
bψ̇ Z-axis turn rate bias
Ci

e Transformation matrix from earth coordinate frame
to inertial coordinate frame

Ce
n Transformation matrix from local navigation frame

to earth coordinate frame
Cn

v Transformation matrix from vehicle frame to local navigation frame
Cv

s Transformation matrix from sensor frame to vehicle frame
p Position
α Attitude Angles
v Velocity
vGNSS Velocity from the GNSS receiver
a Acceleration
f Specific Force
j Jerk
v Longitudinal speed
vCAN Longitudinal speed from the CAN bus
a Longitudinal acceleration
ba Acceleration bias
Ma Acceleration misalignment
A Speed sensor scale factor
bv Speed sensor bias
Sx Vehicle suspension factor in x direction
Sy Vehicle suspension factor in y direction
Ω Skew symmetric matrix representation of turn rate vector ω
σ Micro-rotation vector. This vector can be approximated with ω · τ
σ Norm of the micro-rotation vector σ
x̂k Posterior state vector in a Bayesian filter
x̃k Prior state vector in a Bayesian filter
Pk Posterior variance-covariance matrix of the state in a Bayesian filter
P̃k Prior variance-covariance matrix of the state in a Bayesian filter
Q Process noise variance-covariance matrix in a Bayesian filter
R Measurement noise variance-covariance matrix in a Bayesian filter
J Jacobian matrix
σρ Pseudorange noise standard deviation
γ DLL bandwidth parameter
ζ Pseudorange double difference autocorrelation coefficient
Ptx Transmitted signal power
Prx Received signal power
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Gtx Antenna gain at the transmitter
Grx Antenna gain at the receiver
Ltx Losses due to cables and connectors at the transmitter
Lrx Losses due to cables and connectors at the receiver
LFSPL Free space path loss
d Distance
f Frequency
c Speed of light
λ GPS L1 wavelength
g Gravity magnitude
g Gravity vector
sc Semi-circle
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Glossary

Absolute Position Differencing A technique to estimate the baseline vector between two GNSS
receivers by a) estimating the absolute geographic position of
each receiver and b) subtracting both positions to find the
baseline vector.

Baseline Vector The baseline vector is the 3D vector in space pointing from
the foremost center point of the ego vehicle to the foremost
center point at the target vehicle (see Figure 4.3). This vector
can be expressed in a local navigation frame like east-north-up
frame or a body frame like the vehicle’s coordinate frame.

Common Satellite Usually, when computingN−1 independent double differences
from a set of N single difference pseudoranges, the single dif-
ference to one satellite is chosen to subtract all other single
differences. This satellite is the one nearest to the zenith, since
it is less obstructed and suffers less from multipath propaga-
tion.

Double Difference In GNSS, double differences are post processed measurements
where the pseudoranges from two receivers towards two satel-
lite are subtracted from each other. Common errors to each
pair of pseudoranges are canceled out by this procedure.

Ego vehicle In the scope of this thesis, the ego vehicle is the one that
is interested to know the position of another vehicle, i.e. the
target vehicle, in relation to him. In analogy to a radar system,
the ego vehicle would be the vehicle where the radar sensor is
mounted on.

Euler angles Euler angles are used to describe the orientation or attitude
of an object’s body frame in a local navigation frame. They
describe the three rotations that have to be performed around
each of the body frame’s coordinate axis to transform the body
frame into the local navigation frame.
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Global Navigation Satellite System A Global Navigation Satellite System consists of a con-
stellation of satellites and a network of ground monitoring
stations that enable that a user equipped with an appro-
priate receiver positions himself by means of trilateration.

Inertial Measurement Unit An inertial measurement unit is a self-contained sen-
sor unit consisting of a triad of mutually orthogonal ac-
celerometers and a triad of mutually orthogonal turn rate
sensors or gyroscopes.

Intelligent Transportation Systems The term Intelligent Transportation Systems (ITS) em-
braces all strategies where new technologies are brought
into the world of transportation. With ITS, it is envi-
sioned that transportation is made safer, more efficient,
environmentally friendly and comfortable in the future.

Kalman Filter A Kalman filter is an optimal implementation of a sequen-
tial Bayesian filter for linear and Gaussian systems.

Least Squares Is a method to approximate the solution of an overde-
termined system by minimizing the square of the residual
error.

No-rotation Assumption The assumption of a vehicle not rotating while being at
a standstill is used in a Bayesian filter as an additional
information and implemented into the filter’s update step.
This assumption is useful as it makes the gyroscope biases
become observable for their estimation.

Pseudorange Differencing In the context of this thesis, a technique by which to esti-
mate the baseline vector between to receivers by subtract-
ing the pseudoranges common to both receivers, creating
double differences and solving a linear system of equa-
tions.

Pseudorange In the context of GNSS, a pseudorange is an estimate of
the user-to-satellite range that is biased by the unknown
receiver clock offset and is corrupted by certain errors, as
for instance satellite position error, ionospheric and tro-
pospheric delay errors, noise and multipath propagation.

Target vehicle In the context of this thesis, a target vehicle is a vehicle
that broadcasts situational information in order to enable
the ego vehicle to estimate its relative position.

Zero Baseline In a zero baseline experiment, two GNSS receivers are
connected to the same GNSS antenna and, consequently,
receive the exact same signal at their input. In a zero
baseline experiment, the baseline vector is equal to zero.
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