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Abstract

Refactoring is a well known technique to enhance various aspects of an
object-oriented program. It has become very popular during recent years,
as it allows to overcome deficits present in many programs.

Doing refactoring by hand is almost impossible due to the size and com-
plexity of modern software systems. Automated tools provide support for
the application of refactorings, but do not give hints, which refactorings to
apply and why. The Snelting/Tip analysis is a program analysis, which
creates a refactoring proposal for a class hierarchy by analyzing how class
members are used inside a program.

KABA is an adaption and extension of the Snelting/Tip analysis for
Java. It has been implemented and expanded to become a semantic pre-
serving, interactive refactoring system. Case studies of real world programs
will show the usefulness of the system and its practical value.
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Chapter 1

Introduction

Design of a class hierarchy is difficult. The designer must try to foresee
all possible uses for a particular class. As nowadays class hierarchies often
consist of hundreds of classes this job has become complex due to the pure
size of the hierarchy. Evolution of the class hierarchy even increases this
problem. New functionality must be added, new concepts must be inte-
grated and entropy is often increased. During an evolutionary process, new
maintainers take over, who are often not familiar with the spirit behind the
original design and leave a different “handwriting” in their contribution to
the class hierarchy. Of course, in many cases the clients using this library
shall not be affected by all those changes.

The class provided by the Java Development Kit are a prime example
of this: From 1.0 to 1.5 the number of classes in the java. namespace has
grown almost by a factor of 10 (from 235 to 2158). Version 1.5 provides
two different approaches to GUI programing, 3 different approaches to I/0,
and 4 different approaches to container classes. Although some of the old
concepts are marked as depreciated or obsolete, they are still in wide-spread
use.

1.1 Refactoring

An established technique against mistakes in design or the negative effects
of evolution is refactoring. Refactoring is a generic term used to express
that a program is transformed in order to improve its structure, readability
or maintainability. It was invented by Opdyke and Johnson [33],[32], but the
term became most widely known after Fowler’s book [13] which presents a
whole catalog of refactoring patterns that can be applied to a program.
While refactoring may look like a manual process at first, it is quite
obvious that this is not true for large programs. Renaming a local variable
in a ten line program may be done fast with any editor, but renaming a field
of a class that is used hundred of times in a 100000 line program cannot.

11



12 CHAPTER 1. INTRODUCTION

A lot of modern programing environments (e.g. Eclipsé:u) already have
support for application of Fowler’s and other refactorings. But most pro-
vide support only for the application of these refactorings and do not make
suggestions which refactorings should be applied. Automatic creation of
refactoring proposals is still in its infancy.

There are different reasons for that. First, most refactorings come with
non trivial preconditions, which can often only be checked by complex pro-
gram analysis. Secondly, for many refactorings, a “counter’-refactoring ex-
ists. The decision, whether the refactoring shall be applied or not may be
non trivial for a human and is even more difficult for a machine.

1.2 The Snelting/Tip Analysis

The Snelting/Tip analysis [43] suggests a program transformation, which
analyzes a class hierarchy and its clients and creates a refactoring proposal
in form of a new class hierarchy. This hierarchy is specific to the analyzed
clients. For them, it is semantically equivalent to the original program and
minimal in the sense that every object and pointer contains only the mem-
bers it needs. The semantical equivalence is reached by combining program
analysis, type constraints and concept lattices.

Figure [I.I] shows a small class hierarchy and two example clients. It
models humans in a university. A class Person has data-members for name,
address and social security number of a person. This class is extended by
the class Student. A student additionally has a student id and a professor
maybe his advisor. A second subclass Professor has a work address and
a may have a student as his assistant. Then there are two clients that use
the hierarchy. In both clients a student and a professor object is created.
In the first client, the professor is made the advisor of the student, while in
the other client, the professor hires the student as his assistant.

The hierarchy suggested by Snelting/Tip can be seen in section
Every class is displayed as a horizontally split box, where the upper half
contains members of the class and the lower half objects or pointers whose
type is that class. Pointers are named after their variable name in source
code and objects are given the name of their type and an additional number
to make different objects distinguishable. There are several things to notice:

e There is a class above java.lang.0bject. It has no members, but a lot
of pointers. This indicates these pointers do not access any members.
Pointers appearing there are good candidates for further inspection, as
unused variables are often signs of programming errors or redundant
or erroneous declarations. This applies to pointers like p1l as well as

v eclipse.org
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class Person {
public String name;
public String address;
public int socialSecurityNumber;

}

class Student extends Person {
public int studentId;
public Professor advisor;
public Student(String sn, String sa, int si) {
name = sn;
address = sa;
studentld = si;
}
public void setAdvisor(Professor p) {
advisor = p;
}
X

class Professor extends Person {
String workAddress;
Student assistant;
public Professor(String n, String wa) {
name = n;
workAddress = wa;
¥
public void hireAssistant(Student s) {
assistant = s;
}
¥

class Clientl {
static public void main(String args[]) {
Student s1 = new Student("Carl", "here", 12345678);
Professor pl = new Professor("Prof. X", "there");
sl.setAdvisor(pl);

}

class Client2 {
static public void main(String args[]) {
Student s2 = new Student("Mary", "here too", 87654321);
Professor p2 = new Professor("Prof. Y", "not there");
p2.hireAssistant(s2);

Figure 1.1: Example: professors and students
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Person.address
Professor.assistant
Student.advisor
n
p
pl

S
s2
sa
sn
wa

i

java.lang.Object

abstract setAdvisor()

sl
abstract hireAssistant() Person()
Person.name
p2
4
Person.address
Professor() Student()
Professor.workAddress Student studentld
Professorl Student?
Professor.assisant Student.advisor
Professor.hireAssistant() Student.setAdvisor()
Professor2 Studentl

Figure 1.2: Refactoring proposal for figure [[.T]
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field declarations like Person.address2.

e Members of the class Professor appear at two different classes. The
class for the object Professorl contains only the field workAddress
and the constructor. The field assistant and the method hireAssis-
tant have been moved into a new subclass and the object Professor2
has this subclass as its type. The analysis detects that there are two
different kinds of professors: one without and one with an assistant
and thus suggests creating two different classes for them.

e Something similar happens for the original student class: it is split
into two classes for students with or without an advisor.

e The field address has been moved from its original class Person into
the class Student. This was done because no professor uses this field.

e For the pointer p2, creation of a special interface containing only a
declaration of the hireAssistant method is suggested.

e Similarly for the pointer s1, creation of an interface containing only
setAdvisor is suggested.

e The member socialSecurityNumber has been removed from the hi-
erarchy entirely, as it was unused.

It is important to view this hierarchy as a refactoring proposal. It should
be reviewed by a programmer who is familiar with the code. He can then
make further modifications to the class hierarchy, e.g. merge two classes
if their distinction is not required or reanimate dead members if they are
known to be needed in future applications. Many other known refactorings
like move method or move attribute can be applied too. Other refactorings
applied by the analysis like extract interface can be undone if their effect is
unwanted.

The initial proposal or the manually manipulated hierarchy can then be
used in various way. First of all, as it is a refactoring proposal, it may be used
to automatically transform the original program into this new hierarchy. As
this is a very invasive transformation to the program source, some developers
may not want it. Still, the new hierarchy can give them interesting insights
into the actual use of members and attributes within the analyzed program.
This may be a starting point for manual applications of refactorings.

2The huge amount of pointers in this is example is an artifact of the small size of the
clients.
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1.3 Preservation of Semantics

The term semantics-preserving and semantically equivalent will be used
within this thesis. It is hard to specify exactly what is meant by this, as
almost every transformation done to a Java program may result in a change
of behavior - if it is not visible in terms of program output, it may be mea-
surable in terms of program performance. Snelting/Tip basically preserves
the access to members. All objects will access the same members as before,
regardless of the type of access used: static bound access to data members
and dynamic bound access to methods during run-time. It also preserves
behavior of objects with regards to dynamically checked properties based on
types (i.e. instanceof and type-casts). Problematic are programs which
make more in-depth assumptions about the structure of the class hierarchy,
e.g. the name of a class or the number of methods in a class. In addition,
changing the class hierarchy may result in different timings while loading
classes and thus change observable program behavior, but this kind of be-
havior is not guaranteed by either the Java language or the virtual machine
and similar changes could also be observed by switching to a different virtual
machine.

1.4 Other Work

1.4.1 Bowdidge and Griswold

Bowdidge and Griswold [6] created a program visualization called star dia-
gram that visualizes the access to data structures within a program. For a
programmer selected component of a program, the star diagram displays the
elements of the program that contains or references the selected component.
This visualization allows the application of restructurings like extraction or
inlining of functions and their parameters. Star diagrams are generally help-
ful for encapsulation. They provide generators of star diagrams for C, but
their tool was originally based on Scheme.

This approach differs from Snelting/Tip in a number of ways. First,
their focus are not object-oriented programs, but other languages, so their
list of restructurings omits all problems specific to object-orientation. Sec-
ondly, their approach is statement based and Snelting/Tip cannot suggest
refactorings like extract function. Their approach works on a subset of all
refactorings available disjunct to the set that Snelting/Tip will propose. And
thirdly, their tool only enables the application of restructurings, it will not
make proposals.
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1.4.2 Casais

Casais[8] presents an algorithm that can be used to restructure a class hi-
erarchy at the introduction of a new class. In some cases, a programmer
requires only a part of the members already present in a class hierarchy,
but all existing classes have additional unwanted members. The algorithm
restructures the existing hierarchy in a way, that a class containing exactly
the set of members needed will be present in the new hierarchy.

The obvious difference to Snelting/Tip is the fact that Casais’ algorithm
is incremental. On the other hand, both algorithms have in common that
the class hierarchy is minimal after their application. In order to use Ca-
sais’ algorithm, the set of members that shall be contained in the new class
must be specified. Snelting/Tip will infer this set automatically from the
given program. Instead of specifying the members, a programmer could just
choose any exiting class that fits his needs, use only the members required,
and than run Snelting/Tip and he should get a result that is similar to the
result of Casais’ algorithm.

Casais’ does not give any semantical guarantees and as his algorithm
may introduce multiple inheritance (the algorithm was written with Eiffel
in mind), this is a serious problem, because member access may become
ambiguous and this ambiguity has to be resolved by hand.

1.4.3 Kataoka, Ernst, Griswold, and Notkin

This work[21] presents an approach to automatically generate refactoring
proposals. These proposals are based on automatically detected invariants.
E.g. if a method that calculates the area of a rectangle and has width and
height as parameters is only used for squares, an invariant width = height
can be detected. Based on that, the refactoring remove parameter would be
proposed for application. Their invariant detection tool Daikon[31] can of
course also detect more complex invariants, but it is a tool that is based on
execution of the program, not on static analysis. The suggestions however,
can be based on any kinds of invariants, regardless whether they are detected
by static or dynamic analysis or given manually.

There are a number of differences between this work and Snelting/Tip.
First of all, the set of refactorings they can proposed are disjunct from the
set of refactorings used by Snelting/Tip, as their refactorings are applied
at the statement level and thus are more local. The main source used for
the invariants, on which their refactoring proposals are based, is a dynamic
analysis, whereas Snelting/Tip is usually based on a static analysis. The
proposal system supports statically generated invariants, but such invariants
are much harder to detect automatically and if those actually can be used
to create useful refactoring proposals remains open. In addition to that, it
is not clear from the paper, if their system provides enough information to
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actually transform the code or generates only the refactoring proposal and
then relies on other tools for application of the refactoring. Both analyzes
have in common, that the refactoring proposal is based on the actual usage
of variables within a program and therefore both are client specific.

1.4.4 Moore

Moore [28 291 30] describes a tool called Guru, which does automatic class
hierarchy restructuring and method refactoring for programs written in Self.
It restructures method in a class hierarchy in an optimal way, so that no
method appears twice in a hierarchy. Removing duplicate methods is pos-
sible in Self, because equivalence of two methods can be detected if their
source code is equivalent. Additionally, he restructures methods by creating
new methods for common expressions.

Self is not a class centric language like Java. Here, the term class is meant
to refer to both, classes and objects. If only looking at the class hierarchy
restructuring, this approach may have a lot of similarities to Snelting/Tip
at first glance, but there are also a lot of differences. First of all, his class
hierarchy restructuring is based only on the set of members for a class.
Whether these members are used or not is not taken into account, nor is
information about the position of members in the previous hierarchy (like
Snelting/Tip’s hiding constraints). The algorithm he uses to create a new
hierarchy also creates a minimal hierarchy. The difference to the concept
analysis based approach are additional suprema and infima in a lattice.
Additionally, there are a lot of small differences caused by the fact that Java
and Self are languages on different ends of the object-oriented spectrum.
Despite all theses differences, this is the only other algorithm known, which
restructures existing class members into a whole new hierarchy.

1.4.5 Rajesh and Janakiram

An approach for the automatic creation of refactoring proposals was done by
Rajesh and Janakiram [34]. Their approach is specialized in searching refac-
toring opportunities to introduce design patterns[15] into the program. They
transform a given program into predicate-templates and then use Prolog rules
for the identification of possible sites for the application of refactoring.

The refactorings for design patterns are quite complex, so it should be
possible to use their approach to find possible applications for more low-level
refactorings like move member. As their tool makes only suggestions and
does not transform the code, the questions whether applying a suggested
refactoring will preserve program semantics is left open.
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1.4.6 Tip, Kiezun, and Bidumer

In [50] a system which helps to apply refactorings is presented. The refac-
toring has to be selected and parametrized by the a user and is then au-
tomatically applied to the Java source code. Type constraints are used to
infer which types in the source code can and have to be changed, if the ap-
plication of the refactoring is meant not to break program semantics. Their
focus is on generalizing refactorings (i.e.g extract interface), but the same
mechanism can be used for other refactorings, too.

The main difference to Snelting/Tip is that they do not make refactoring
proposals, but focus on their application. Both methods complement each
other: If the hierarchy suggested by Snelting/Tip cannot be used as a whole,
it can still be used to get candidates for interface extraction, which then can
be executed using their algorithms.

1.5 Overview

This thesis is structured into four parts. First, a short recapitulation of con-
cept analysis and the Snelting/Tip analysis is given, then Snelting/Tip is
adapted from C++ to Java. The second part deals with the implementation
of the analysis. The use of points-to analysis for Snelting/Tip is examined
and a constraint based system for the extraction of information from Java
bytecode is presented. Additionally, a dynamic version of the Snelting/Tip
analysis is given, based on virtual machine instrumentation instead of static
program analysis. The third part focuses on interactive refactoring. A se-
mantic model for behavior preserving refactoring is presented, along with
some algorithms which enhance the structure of a class hierarchy. Finally
the prototype implementation is described shortly and case studies are pre-
sented.

1.6 Accomplishments

The accomplishments of this thesis are:

e Adaption of the Snelting/Tip analysis from a subset of C++ to full
Java.

e An analysis of stack-based Java bytecode which extracts the input
needed by the Snelting/Tip analysis.

e A new dynamic version of the Snelting/Tip, which collects access in-
formation at program run-time and solves possible scalability issues of
the traditional static analysis.
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e A semantic model that allows fast checking if a modification to the
class hierarchy breaks program semantics.

e The design of KABA, a tool which allows interactive refactoring of
class hierarchies analyzed with Snelting/Tip.

o Case studies which evaluate the usefulness of Snelting/Tip

1.7 Pseudo-code Notation

All algorithms in this thesis are given in a pseudo-code notation. While the
notation was meant to be intuitive, some words of explanation might be
helpful.

e Blocks ruled by if or while can be recognized by their indentation
level. Any statement with an indentation equal to or smaller than the
loop predicate will end the block.

e |s| denotes the number of items in a set s.

e de : condition is used as a boolean expression and binds e for the
current block to a value that satisfies the condition.

e Ve € E : condition is used a loop operator. No particular order for the
values of e is assumed.

e g = b is used a boolean operator to test for structural identity. If b
contains unbound variables, these are implicitly existential qualified
and like the 3 operator bound for the current block.



Chapter 2

The Snelting/Tip Analysis

This chapter gives a short recapitulation of the original analysis presented
by Snelting and Tip[42] [43], as well as a short introduction to the required
elements of concept analysis. The original analysis was written for C++.
The notation and some of the terminology has been adapted to Java and
the analysis core had to be changed a bit due to the more subtle difference
between C++ and Java. All of these are minor modifications, more severe
modifications to the analysis will be presented in chapter [Bl

This chapter is not a complete reproduction of the original papers. They
provide more examples and discussion about the analysis. For these details,
the reader is referred to [43].

2.1 Concept Analysis

Binary relations between two different sets M and N can be displayed by
listing all elements (m,n) with m € M and n € N. In 1940 Garrett Birkhoff
created the mathematical foundations of concept analysis. He proved that
a lattice can be constructed for each binary relation. The lattice is an
alternative representation of the elements of the relation. It can be converted
into the original relation and vice versa. The lattice provides a different
view on the structure of the original relation and exposes properties that
may remain hidden in the original representation.

Later concept analysis was used for the analysis of data by Ganter and
Wille[16]. It has been used for many different purposes since then, including
applications in the area of software engineering [39] O, [4], 55| 251 [40], 41], 21 26].

Concept lattices are created for a binary relation between a set of objects
O and their attributes A. The relation can be stored in a boolean table
T C O x A. For any set of attributes A C A, the set of objects having all
these attributes can be determined by

p(A)={o€ ONVa € A: (0,a) € T}

21
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Accordingly for a set of objects O C O, the set of attributes used by
these objects is defined by

0(0)={ac AVbe O : (0,a) € T}.
Then, a concept is a pair (O, A) if

p(A) =0 AN0c(0O) = A.

A concept can been seen as a rectangle of table entries in 1" where the
order of rows and columns is irrelevant. Each object o € O has all attributes
a € A and each attribute a € A is used by every object o € O.

A relation < can be defined between two concepts (O1, A1) and (O3, A2)
as follows:

(01,41) <(02,42) © 01 C Oy < A1 D As.

The set of concepts builds a complete lattice, the concept lattice L(T).
For two elements, the infimum is defined as

(Ol,Al) A (OQ,AQ) = (01 N 02,0(01 N 02))

and the supremum as

(Ol,Al) V (OQ,AQ) = (p(Al N Ag),Al N Ag))

All diagrams used for concept lattices use a reduced notation. In this
notation, the concept v(0) = (p(c({0})),o({o})) is labeled with the object
o and the concept u(a) = (p({a}), p(c({a}))) with the attribute a.

The relation between the table T and the lattice can be expressed as

(0,a) € T & 7(0) < p(a).

This also shows, that lattice and table display the same information and
are convertible into each other. In the lattice, all attributes of an object
o can be found at the concepts above o. Similar, all objects which have
a certain attribute a, can be found below a. Then infima show attributes
which are used by the same objects, while suprema show objects having the
same attributes. This hierarchical structure is not visible in the table and
exploited by transforming it into a lattice.

The table can be enriched with additional background knowledge in order
to influence the positioning of objects and attribute in the lattice. If an
attribute b must be above a, an implication can be added:

a; — ag < plar) < plaz) ©Voe O: (o,a1) €T = (0,a2) €T

Of course, the same can be done for implications between two objects:
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01 — 02 = y(01) <v(02) ©@Va€ A: (01,a) €T = (02,a) €T

The lattice can by constructed from the table with an algorithm by Gan-
ther [16]. Complexity of that algorithm is O(|O|? x | A| x n), where n is the
number of concepts. Lindig [26] has implemented different algorithms for
lattice construction and evaluated them. In general it can be said that ex-
ponential complexity is rarely seen in practice and Lindig’s implementation,
which was used here, can calculate a lattice of 2000 elements in less than a
second.

2.2 The Original Snelting/Tip Analysis

2.2.1 Defining the Table

First of all, some terminology must be introduced. In what follows, P de-
notes the analyzed program. This may be a single program including a class
hierarchy or a class hierarchy and multiple client programs. In all cases the
program must be complete and include all code that may be executed. C.m
denotes a member m, which is declared in a class C'. m may be a field or
a method. In the latter case, m is assumed to include the whole method
signature. Only members actually declared in class C' can be denoted with
C.m, members inherited from superclasses of C' must be identified with
the appropriate superclass name. static(C.m) denotes a boolean expression
which indicates whether C.m has been declared using the keyword static.
Further p, q, ... indicate variables in P and x,y, ... expressions. s,t,... des-
ignate object creation sites (details are explained in a moment). In the
following definitions, type(v) denotes the static type of a variable, expres-
sion or object creation site v. The relational operator < is used for checking
of subtypes: ¢ < ¢ is true iff an expression of type ¢ can be assigned to a
reference of type ¢'.

The objects O are the variables and objects of the program. Variables
whose type is not a reference, but a base-type can be ignored, since these
variables cannot be used to access members. Since in Java objects are cre-
ated by the new operator, they do not have variable names like a stack
allocated objects in C++. The object creation site (e.g. a source code posi-
tion) serves as an identifier for objects. Variables are identified by their name
and those names must be unique. If the same variable name is used multiple
times within a program (e.g. in different methods or in different blocks in the
same methods), they must be made distinguishable. Implicit this-pointers
are also included and they are given the variable name <this>T.

!This was inspired by the names chosen for not explicitly named methods in Java
bytecode: <init> and <clinit>
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Definition 1 The sets of pointers and objects for a program P are defined
as follows:

Pointers(P) := {v|v is a variable in P, type(v) = C,C' is a class in P}
Objects(P) := {s|new Cin P at s, type(s) = C,C is a class in P}

Pointers and objects are the objects for the concept analysis:

Pointers C O
Objects C O

The attributes A are class members. For members definitions and decla-
rations are distinguished. A declaration of a member only contains a proto-
type or an abstract declaration, while the definition also contains the actual
implementation. This was first suggested by Tip and Sweeney [49] 52], and
enables a more precise handling of virtual method calls, as information about
the actual implementation used at run-time does not become visible at the
call-site, because for the invocation only a declaration is needed. If no dy-
namic binding is used (for constructors, private methods or data-members)
this distinction is not required and using only a definition is sufficient?. On
the other hand, for an abstract method, only a declaration is needed.

Definition 2 Member declarations and definitions for a program P are de-
fined as follows (constructors are not considered methods):

MemberDcls(P) := {dcl(C.m)|m is a non private method in C,
C'is a class in P}

MemberDefs(P) := {def (C.m)|m is not an abstract method in C,
C'is a class in P}

Member declarations and definitions are attributes for the concept anal-
ysis:

MemberDcls(P)

cA
MemberDefs(P) C A

2The original Snelting/Tip created declarations for data-members. This was changed to
be more consistent: declarations are used for access using dynamic binding, definitions are
used for direct access. As the rules for declarations and definitions are almost symmetrical,
this does not result in any differences besides the notation
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2.2.2 Constructing the Table
Auxiliary Definitions

In order to get all possible targets for a dynamic method call p.f(), for
each pointer p € Pointers, an approximation of all objects o € Objects that
p may point to is needed. There is a number of existing algorithms that
are usable. The specific requirements will be discussed in chapter [4 The
following definition represents the result required from any used algorithm:

Definition 3 The points-to information for a program P is defined as fol-
lows:

PointsTo(P) := {(p,0)|p € Pointers(P),o € Objects(P),p may point to o}

Two simple algorithms shall be given as an example:
The first one simply assumes a pointer p may point to all objects of a
program that have a matching type:

PointsTo(P) := {(p,0)|p € Pointers(P),o € Objects(P), type(o) < type(p)}

Alternately, each object can be propagated through all assignments (for
a definition of assignments see below):

PointsTo(P) := {(p,0)|p € Pointers(P),o € Objects(P),
Ip1,p2, -y Pn t D= D1 A Pp = OA
V' (pi, piv1) € Assignments(P)}

This is basically identical to Andersen’s points-to analysis[3].

Table Entries for Member Access Operations

The table T" has pointers and objects of the program P as rows and dec-
laration and definition attributes for the class members of P as columns.
Informally, a table entry (p, dcl(C.m)) is created, iff a declaration for m
must be contained in p’s type and an entry (p, def (C.m)), iff the definition
of C.m must be contained in p’s type. These requirements are created by
access to the members in the program. Static or dynamic access to members
is distinguished. For dynamic access, the implementation used is determined
with the type of the object at run-time, for static access the compile time
type is used. Static access applies to data members, but also in calls to pri-
vate methods and constructors. It is also applied, if a method is directly
called on a object without using a referencé.

3In Java this is only possible by writing something like (new A()).£()
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Definition 4 The set of member access operators for a program P is defined
as follows:

StaticMemberAccesses(P) :=

{(m, p)|p-m occurs in P, p € Pointers(P),
AC : dcl(C.m) € MemberDcls(P) A type(p) < C}U
{(m, s)|s.m occurs in P, s € Objects(P}

DynamicMemberAccesses(P) :=

{(m,p)|p.m occurs in P, p € Pointers(P),
3C : dcl(C.m) € MemberDcls(P) A type(p) < C'}

For both kind of accesses, the actual member selected is determined by
the static lookup. Static lookup traverses the class hierarchy from a starting
class C' in search of a declaration or definition of a member m. In Java,
this is a two step process even for static members: the first step is done at
compile time, the second step at run-time. If C is a class, the compiler checks
for the existence of m in C' and then puts a reference to C.m into the code,
regardless if m was declared in C' itself or in a superclass or superinterface of
C. If Cis in an interface, any one declaration of m from any superinterface is
chosen (e.g. if I and J are interfaces declaring f and K extends both I and
J, lookup for f in K will result in K.f). In other words, the compiler only
searches for a matching declaration. This lookup function will be referred
to as LookupDeclaration. The definitions are then searched at run-time by
the JVM. For static accesses lookup is started at the type the compiler has
written into the bytecode, for dynamic accesses lookup is started at the
type of the object used for access. As the JVM only searches for definitions,
the ambiguity for multiple-inheritance interfaces is irrelevant. This lookup
function will be denoted LookupDefinition. Details of the lookup functions
can be found in [I7] and [24].

Using these functions, table entries can be generated from the access
sets:

Definition 5 The table entries for a program P due to member access
operations are defined as follows:

(m, z) € StaticMemberAccess(P)
X := LookupDefinition(type(x),m), (x,def(X.m)) € T
(m,z) € DynamicMemberAccess(P)
X := LookupDeclaration(type(z), m), (z,dcl(X.m)) € T
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(m,p) € DynamicMemberAccess(P)

(p,0)€PointsTo(P)
/\ X := LookupDefinition(type(o), m), (o,def(X.m)) € T

o

Table Entries for this-Pointers

A method C.m is represented twice in the table. It has a column for a def-
inition attribute and a row for the this-pointer. The first collects which
other pointers and objects actually access C.m, while the latter one col-
lects the class members accessed in the body of C.m via the this-pointer.
However, they do not have to appear at the same lattice element?. [43]
shows that p(def(C.m)) < v(C.m.<this>) must always hold. This means,
the this-pointer may have a weaker type than the class its implemen-
tation is contained in. But the type of the this-pointer will be deter-
mined by the implementing class, so it is only consistent to ensure also
~v(C.m.<this>) < p(def (C.m)) and force the this-pointer to appear at the
same lattice element as the definition.

Definition 6 The following entries are added to the table for a program P:

def (C.m) € MemberDefs(P)
(C.m.<this> def(C.m)) € T

Implications for Assignments

The program P may contain assignments in the form x = y. If x and
y are references or objects, type(y) < type(x) must be valid. Of course,
the assignment must still be valid for the new hierarchy, so v(type(y)) <
~(type(zx)) is required. As shown earlier, this property can be guaranteed
by an implication y — x. Informally, this implication can be described as
“everything accessed by x must also be available in y”.

A program contains assignments not only in explicit form, but also for
implicit one like e.g. passing parameters to methods. For each method call,
assignments between the formal and actual parameters of the method must
be added. If the call is a dynamic call p.m, then the points-to sets can be
used to resolve all possible targets for this function call:

{C.m|(p,0) € PointsTo(P) A LookupDefinition(type(o), m) = C'}

Additional assignments must also be made for this-pointers and return
values (if their type is a reference).

4And it is the usual case as long as the method does not contain a static call to itself.



28 CHAPTER 2. THE SNELTING/TIP ANALYSIS

Definition 7 The set of assignments for a program P is defined as follows:

Assignments(P) :=
{(v,w)|v = w occurs in P,v € Pointers(P),
w € Pointers(P) U Objects(P)}

From these assignments implications can be added to the table:

Definition 8 For a program P the following implications must be encoded
into its table due to the assignments in P:

(x,y) € Assignments(P)
T —y

If the sets of assignments contains a cycle, all variables contained in this
cycle will appear at the same lattice element and thus have the same new

type.

Implications for Lookup Behavior

So far it is guaranteed that the new types for all pointers and objects will
contain all members accessed. In order for the program to keep its original
behavior it is also required, that all member accesses in the new program
access the same member as they did in the original program. If the original
hierarchy contains two different members with identical signature and one
hides the other (e.g. a method that overrides a method in its superclass), it
may happen that this hiding is not automatically preserved, and in the new
hierarchy the class could access a different member than it originally did.
To keep that from happening, the following property must be fulfilled:

LookupDefinition(type(o), m) = C < LookupDefinition(y(o),m) = C

A similar rule for the declarations can be omitted, as all declarations
have the same semantics and only the definition used is relevant.

In Java, a member that is declared in a class will always hide a member
from a superclass. To ensure this property, it is only required to force
the definition attribute used in the original hierarchy to be below all other
matching definitions. This can be enforced by the following rules:

Definition 9 The following implications are incorporated into a table 71" for
a program P to preserve member hiding:

(z,def(Am)) € T, (x,def (B.m)) € T,
B<AA+B
def (B.m) — def (A.m)
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(x,dcl(Am)) € T, (z, def (B.m)) € T,
B<A
def (B.m) — dcl(A.m)

An implication is only created, if a table row with access to two conflict-
ing members actually exists. The created implications always go from sub-
to superclass and thus never create a cycle.

The original algorithm from Snelting/Tip used a system with four dif-
ferent kind of implications (additionally decl — def and decl — dcl). This is
required because C++ allows direct assignments between objects, whereas
in Java an object can never be on the left hand side of an assignment. The
more complex system had its roots in earlier work [53]. Of course, the origi-
nal system can also be used for Java, but may add artificial structure to the
class hierarchy and was therefore simplified.

While the requirement for def — def is quite obvious as the lookup
of member definitions must be preserved, the requirement for def — dcl
implications is more subtle. If an object accesses a member declaration and
a definition which are both also accessed by different objects, those attributes
will not be placed at the same lattice element as the object. Figure2.Ilshows
an example program and ﬁgurethe corresponding lattice (without the
implication). In this example, object B1 accesses def (B.f) as result of the
dynamic method call to f and dcl(B.f) because B1 is assigned to b, which
gets an entry for the call to f. The lookup of f for Bl (and B2 too) is
ambiguous, as neither the declaration hides the definition or vice versa. A
def — dcl implication however will force a conflicting declaration above the
definition. The lattice with such an implication can be seen in figure
where the conflicting lookup is removed.

2.2.3 Constructing the Lattice

To create the final table, a fix-point iteration is required, as the assignments
implications may create new hiding implications and vice versdd. For cre-
ation of the lattice, Ganther’s algorithm will be used. Snelting and Tip state
in [43] that the rows for this-pointers can be omitted from the table when
the lattice is constructed without consequences because the row is redun-
dant. Unfortunately, this proofed to be untrue. A row is only redundant,
if another row with the same entries exists. Otherwise a row will always
change the structure of the lattice. If the access pattern for a this-pointer
is unique within the table, there will be a lattice element with the sole object
label for the this-pointer. If the pointer is omitted during lattice construc-
tion, this element may vanish. Figure shows a sample program, figure

2.4(a)| the lattice with this-pointers included and figure [2.4(b)| the lattice
with this-pointers omitted. The difference is quite obvious. In the latter

5In practice the fix-point is usually reached after two or three iterations
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public static void main(String args([]) {

Figure 2.1: def — dcl example program

30 CHAPTER 2.
class A {
void £() { }
}
class B extends A {
void £() { }
}
class Test {
B b=new B(); // Bl
b.f(O);
A a=new B(); // B2
a.f();
}
}
dcl(Af) def(B.f) del(B.f)
a B.f.<this> b

NN/

N

(a) Without def — dcl

[\

dcl(A.f) dcl(B.f)
a b
def(B.f)
B.f.<this>
B1
B2

(b) With def — decl

Figure 2.2: Lattices for the def — dcl example program (2.1])
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class A {
int a;
void £() { a=5; %
}
class B extends A {
int b;
}
class Test {
public static void main(String args[]) {
A a=new AQ; // Al

Figure 2.3: Omission of this-pointer example program

[\

def(A.a)

a.a=27;
B bil=new B(); // Bl
b.fO;
b.b=61;
}
3
def(A.a)
a dcl(A.f)
A
def(A.f) def(B.b)
A.f.<this> b

dcl(A.f)
def(B.b)

a
A

\ L/

B

(a) With this-pointers

e

def(A.f)

B

(b) Without this-pointers

Figure 2.4: Lattices for the omission of this-pointer example program (2.3))
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variant, the new type for the this-pointer of A.f would include the member
B.b, which was in a subclass of A before, making the type of this-pointer
actually larger than in the original program! To prevent that from happen-
ing, this-pointers must be left in the table for lattice construction. If they
are omitted, the transformation of the program to the new class hierarchy
may result in an type-incorrect program, because member entries may be
missing for this-pointers.

In addition to that, the proof given by Snelting/Tip in [43] for the
fact, that this-pointer and def attribute always appear at the same lat-
tice element contains an omission. They assume that for a table entry
(x,def(C == f)) € T a method call x.£() must exist. For C++ this is
wrong, as the table entry can also be created from a method call p->f ()
and (p,z) € PointsTo(P). However, it does not make a difference in prac-
tice, as in this case a table entry (p, def(C :: f)) and an assignment (z,p)
will be created and (z, def (C :: f)) € T will be valid after the table iteration.

Snelting/Tip also showed that pointers in general can be removed from
the table before creating the lattice. However, the effect shown with the
this-pointer applies to omission of every other pointer too. There will
always be lattice elements which provide a suitable replacement for the
pointer, but in some cases all of these elements may be larger than required
and there is no way to automatically determine which elements suits best.
Choosing one of them randomly introduces exactly the kind of redundancies
to the class hierarchy that Snelting/Tip was meant to remove.

Whether pointers should be omitted or not, depends on the purpose of
the analysis. If it is used to study object behavior and to get some ideas for
restructuring, omitting pointers is fine. For an automated transformation
of code, exactly those pointers, which have an explicit type in the code
must be added to the analysis. For transforming Java bytecode pointers for
parameters are required in order to build new types for method signatures,
but pointers for local variables in methods can be omitted, as the JDK will
infer these types anyway. Only for the transformation of Java source code
are all pointers required, as usually a pointer has a declared type somewhere
in the source code and those type names have to be adjusted for a source
code transformation.



Chapter 3

Extensions to Snelting/Tip

In this chapter, various modifications and enhancements for the original
Snelting/Tip analysis will be shown. Most of these are required in order to
analyze the full Java language instead of the original C++ subset, but not
all of them are specific for Java.

3.1 Static Methods and Fields

The original analysis did not handle static methods and fields. As access to
them is done without an object reference, their containing class is of lower
significance than for non-static members, but still relevant, even if only for
the decision as to whether a static member is dead or alive.

In the spirit of the analysis the same attributes as for non-static members
are generated for static members:

Definition 10 Additional member definitions for the static members of a
program P are defined as follows:

{def (C.m)|m is a static field or method in class C'} C MemberDefs(P)

As access to these members does not use an object reference, the corre-
sponding table columns will not get entries automatically, so an additional
table row is also needed.

Definition 11 Additional pointers for access for to static members of a
program P is defined as follows:

{static(C.m)|m is a static field or method in class C'} C ClassPtrVars(P)

Table entries are generated for each read or write access to a static
member:

33
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Definition 12 Additional table entries for static members of a program P
are defined as follows:

C.m occurs in P, m is a static class member of C' in P
(static(C.m),def(C.m)) € T

This will basically create an individual class for each used static member.
They can later be manually merged together with the classes containing non-
static members.

The granularity of this approach may be changed by choosing a different
granularity for the accessing variables. E.g. only a single object static(C)
can be used for all members of the same original class. In this case, different
definitions for the creation of table rows and entries must be used:

Definition 13 Alternate additional pointers for access for to static mem-
bers of a program P is defined as follows:

{static(C.m)|m is a static field or method in class C} C ClassPtrVars(P)
Definition 14 Alternate table entries for static members of a program P
are defined as follows:

C.m occurs in P, m is a static class member of C' in P
(static(C),def(C.m)) € T

3.2 Class Initializers

Java provides a mechanism to execute a piece of code if a class is loaded into
the virtual machine. This code, together with all code for the initialization
of static class members, is written into a special method, called the class
initializer. The bytecode name of this method is <clinit> and this name
will be used within class hierarchies.

The special thing about class initializers is that they are implicitly called
if a class is loaded, so the analysis must deal with them in a special way
or required code may not be executed in a new class hierarchy. Figure
[B.1] shows an example of code that will break if class initializers are not
handled appropriately. In the resulting class hierarchy (figure the
class initializer and the static field are placed in different classes, but the
main program will only reference the class containing the field, and thus the
field never gets initialized.

To preserve the semantics of the original program, it must be ensured,
that for any statement which might result in a call to class initializer, the
same class initializer will be called in the new hierarchy. A class initializer
for a class t is called if an instance of t is created, a static member of £ is
accessed or the class initializer for a subclass of t is called. Enforcing calls
to the class initializer can be achieved by the following rules:
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3.2. CLASS INITIALIZERS

class A {
static Object o;
static {

o=new Object();

}
}

class Test {

public static void main(String args[]) {

A.o.hashCode() ;

}

Figure 3.1: Example program for class initializers

/N

l

java.lang.Object

l

def(A.<clinit>)

static(A.<clinit>)

def(A.<clinit>)

def(A.0)

static(A.<clinit>)

static(A.0)

(a) initial

l

def(A.0)

static(A.0)

(b) corrected

Figure 3.2: Analysis results for figure 31
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class A {
static int a=B.Db++;

class B {
static int b=A.a++;

class TestAB {
public static void main(String[] args) {
System.out.println(A.a);
System.out.println(B.b);

class TestBA {
public static void main(Stringl] args) {
System.out.println(B.b);
System.out.println(A.a);

Figure 3.3: Cyclic initialization of classes

Definition 15 The following constraints are generated for the class initial-
izers of a program P:

new C occurs in P
def (C.<init>) — def (C.<clinit>)
C.m occurs in P, m is a static class member of C' in P
def (C.m) — def (C.<clinit>)
A is a direct base class of B
def (B.<clinit>) — def(A.<clinit>)

For the given example program, the correct class hierarchy is shown in
figure In this hierarchy access to A.o results in a call to the class
initializer of A (which in turn calls the class initializer of java.lang.0bject,
so Object is included in this hierarchy).

This will not guarantee that the calling of class initializers will happen
in the same order as in the original program, because the analysis does not
make assumptions about the order of class loading. There are cases where
the order of loading the classes defines the semantics of the program. The
program in figure B3] provides a two classes with a circular dependency
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in their class initializers and two main methods. Both clients produce the
same output, although the fields are printed in different order. Fortunately
such effects can be considered obscure and are not present in casual Java
programs.

3.3 Runtime Type Checks

Java provides a mechanism which enables a programmer to check at run-
time, whether the type of an object is equal to or a subtype of a given
type with the instanceof operator. The actual syntax is 0 instanceof T,
where o is a reference and T the name of a type.

In order for new class hierarchy to be semantically equivalent to the
original hierarchy, the analysis must create a new type T” as a replacement
for T', which has the following properties:

o€PointsTo(p)
p instanceof T € P & /\ type(0) < T & ~(0) <T'

o

Every instanceof operator divides all objects into three equivalence
classes:

e Objects not tested against that operator
e Objects tested with result true

e Objects tested with result false

In order to create these three classes within the concept lattice, two
additional attributes must be used:

Definition 16 The following attributes and table entries are generated for
the use of the instanceof-operation in a program P:

p instanceof T € P at pc in method M
{check(instanceof , M, pc, true), check(instanceof , M, pc, false)} C A

OGPOiKTO(p) (0, check(instanceof , M, pc, true)) € T type(o) < T
(0, check(instanceof , M, pc, false)) € T else

o

Inclusion of the position M, pc results in an increased analysis precision,
as for every instanceof an individual attribute is used and this an individual
type is calculated.

In the final concept lattice u(check(instanceof, M, pc, true)) can be used
as the type T” as it satisfies the requirement given above. For all objects o €
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PointsTo(p), a table entry is generated iff type(o) < T, so the requirement
can be replaced by

(o0, check(instanceof , M, pc, true)) € T <
~v(0) < p(check(instanceof , M, pc, true))

This relation between table entry and lattice nodes is exactly what lattice
construction guarantees. If p instanceof 7T or o € PointsTo(p) is not true,
no entry check(instanceof , M, pc, true) will be generated, so y(o) £ T" is also
guaranteed.

As no assumptions were made about the check(instanceof, M, pc, false)
attribute, it is clear that this attributes is not required to build a semanti-
cally equivalent class hierarchy. However, it is extremely useful later during
interactive modification of the class hierarchy. Without the additional at-
tribute, it would be impossible to differ between objects that may be moved
below T” (as they are not in the points-to set of p and will never been tested
against that particular instanceof) and objects which may not (as moving
them below T” would change the result of instanceof at run-time).

Figure B4 shows an example program and figure the resulting class
hierarchy. It is easy to see that the original classes A got vertically split
into a variant tested with instanceof and a variant not tested. This looks
redundant at first (if the false attribute is omitted, the original class hierar-
chy will be reproduced), but without the attribute it would be impossible to
merge the class containing B1 and C1, as the information that B1 has never
been checked by the instanceof operator is not available and it has to be
conservatively assumed, that B1 has been checked and program semantics
will be broken if B1 and C1 have the same new type.

The new attributes may appear at L in the new hierarchy. This must be
handled specially when it comes to a source code transformation, as L is not
a valid type that can be used in a program. There are two special cases: (1)
w(check (instanceof , M, pe, true)) = L A u(check(instanceof , M, pe, false)) #
1. In this case no tested object is assignment compatible to 7', which
makes it possible to replace the whole instanceof operator by false. (2)
w(check(instanceof , M, pe, false)) = L. In this case all objects tested are
assignment compatible, but as during program execution the value of p
could be null, the operator cannot be replaced by true, but by p!=null.

The dual attribute approach is based on an earlier idea presented in
[43]. There instanceof is transformed into a method call, which is resolved
to a method returning either true or false. The def-attributes for these
two method correspond to the two attributes used here. Direct use of the
attribute makes it easier to handle every use of instanceof individually.
For the method approach, a context sensitive analysis of the transformed
instanceof operators is required.
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class A {

}
class B extends A {
}
class C extends B {

}

class Test {
static A al, a2;

public static void main(String args[]) {

al=new AQ);
al=new CQ);
a2=new AQ);
a2=new B(Q);

if(al instanceof C) {

3

Figure 3.4: Example program for instanceof operator

Test.al
Test.a2

'

java.lang.Object

l

def(A.<init>)

A2

/

N

check(instanceof, Test.main,1,false) def(B.<init>)

Al

B1

def(C.<init>)
check(instanceof, Test.main,1,true)

C1

Figure 3.5: Class hierarchy for figure 3.4
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3.4 Type-Casts

Type-casts in Java are similar to the instanceof operator. They differ in
the handling of a null reference, which is irrelevant for this analysis, and
their return value. While the instanceof operator returns a boolean value,
a type-cast returns the reference in case of success or throws an exception if
the object is not assignment compatible to the target type.

In terms of the original Snelting/Tip analysis a type-cast is a conditional
assignment.

Definition 17 Type-casts in a program P create assignments as follows:

q=(T)p occurs in P

o€PointsTo(p)
/\ type(o) < T = (q,0) € Assignments(P)

o

Like for instanceof the calculation of a new type for T is done by
creating two additional attributes:

Definition 18 The following attributes and table entries are generated for
the use of type-casts in a program P:

(T)p occurs in P at pc in method M
{(o, check(cast, M, pc, true), (o, check(cast, M, pc, false)} C A

o€ PointsTo(p) {(0, check(cast, M, pc, true)) € T type(o) < T

/\ (o, check(cast, M, pc, false)) € T else

o

The type u(check(cast, M, pc, true)) is then usable as target type for the
cast (for the same reasons as the attributes for instanceof were in the
previous section). The special cases however are different.

If p(check(cast, M, pc, false)) = L, the cast is always successful. Unfor-
tunately this is not sufficient to remove that cast, as it does not guarantee
~v(p) < v(g). Only if this additional condition is met can the cast be removed
completely and replaced by a simple assignment.

If wu(check(cast, M, pc,true)) = L, the cast is not successful for any
tested object. As null may still pass the cast, the cast must be replaced by
this fragment:

if(p!=0) throw new CastClassException();
q=null;

The type v(p) is unsuitable, as this type may be too general and objects not
passing the original cast can still be assignment compatible to v(p).

In order for the new cast to be legal Java code, the type of the left
hand side ¢ must be assignment compatible to u(check(cast, M, pec, true)),
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which means v(q) < u(check(cast, M, pc, true)) must be true. This is always
true, because ext(pu(check(cast, M, pe, true)) X contains exactly those objects
which are assigned to ¢, which places them below 7(¢q) and enforces the
assignment compatibility.

3.5 Exception Handling

Exception handling is the third variant of run-time type-checks. Here an
exception object is checked against a list of exception handlers. Each handler
as an assorted type and if the object has that or a subtype, execution is
continued at the code for that handler. If the exception matches no handler,
execution of the current method is terminated, and exception handling is
continued at a previous stack frame. If the exception is not caught at all,
the program is terminated.

Intra-procedurally, for each statement in the program, a list of exception
handlers (e, t1,v1), ..., (€n, tn, vy) can be given, where e; is the number of
this handler within the exception handler table, ¢; is the caught type and v;
the variable used to catch the exception. The additional information where
in the program the control flow is resumed, is omitted here as it is not
relevant for the analysis. To preserve the semantics for this operation, the
following condition must be fulfilled (where t] is the type of ¢; in the new
hierarchy):

m—1
VN type(o) £ t:) A(m =nV type(o) < ty,) &
m  i=1

m—1

(N v(0) £ ) A(m=nV~(o) <t,)

1=0

Informally spoken, the exception must be caught by same handler in the
new hierarchy as it was caught by in the old hierarchy.

As handling of exceptions is basically identical to a multiple use of the
instanceof operator, similar attributes are used:

Definition 19 The following attributes and table entries are generated for
exception handling in a program P:

text(c) = O for a concept ¢ = (O, A)
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o is thrown as exception by an instruction
with handlers (e1,t1,v1),. .., (én,tn,vy) in a method M of P
Ni—q ,, check(exception, M, e;, true) € A
Ni_1 ., check(exception, M, e;, false) € A
Ni=1.n(Nj=1.i type(o) £ t;) = (o, check(exception, M, e;, false) € T)
Nie1.n(Aj=1.i1 type(o) £ t5) A type(o) < ti =
(0, check(exception, M, e;, true)) € T
Niz1.n(Nj=1io1 type(o) £ t;) A type(o) < t; =
(vi,0) € Assignments(P)
(A\j=1..n tupe(o) £ tj) = (M.<exceptions>,o0) € Assignments(P)

The definition is made up of multiple parts. First, attributes for ex-
ception handlers are created. As a new type for every exception handler is
needed, the attributes include the number of the table entry. While M, pc
served as additional information to increase the precision for instance and
type-casts, M, e; entries here are required to distinguish different exception
handlers within the same method. Secondly, assume the exception is caught
by handler number m. Then for i = 1..m — 1 table entries for the false at-
tribute and for m a table entry for the true attribute are created. No entries
are created for handlers after m. Finally, if the exception is not caught by
any handler, it is stored in a special variable to indicate, that an invocation
of M may result in o being thrown as an exception. These variables can be
used to determine, which exceptions a method may throw.

An exception handler e;, t;, v; will usually occur in the list of handlers for
different instructions, but for each e;, t; and v; will be the same by definition
of the exception handler table. This is a requirement for this approach to be
usable. Otherwise table entries (o, check(exception, M, e;, true)) as well as
(0, check(exception, M, e;, false)) could be required, as different ¢; in order
to check if e; will catch o.

Again, the false attributes are not required, although they may look
more important here, but are even more useful for interactive refactoring.
There is only one special case, if check(exception, M, e;, true) = L. Then
no exception is caught by this handler and its code can be removed during
a source-code transformation.

3.6 Equality of Signatures for Overridden Meth-
ods

If the implementation of a methods is to be overridden in a subclass, lan-
guages like Java and C++ require the new implementation to have the same
signature as the overridden method2.

2C++ allows the overriding method to have a stronger return type. From JDK 1.5 on,
Java allows this too, but KABA is based on 1.3, so this new feature remains unused.
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class A {
void £() {}
void g {}
void h() {}

class B {
void f(A a) { a.fQ; }
}
class C extends B {
void f(A a) { }
}

class D extends C {
void f(A a) { a.f(0; a.g0); }
}
class E extends B {
void f(A a) { a.h(); }
}
class Test {
static B b;
public static void main(String args[]) {
b=new B(Q);
b=new C(Q);
b=new D(Q);
b=new EQ);

b.f(new AQ));

Figure 3.6: Example program illustrating signature problem

The original analysis takes no special caution to ensure this requirement
will be fulfilled by the resulting class hierarchy. A small example program
(figure [3.6) and the resulting class hierarchy (figure B.7) will illustrate this
problem.

The paramO pointers refer to the first formal parameter of the method
f in the corresponding class. All of these pointers access different members
of A and so they all appear at different classes in the class hierarchy. If one
tries to rewrite the original source code to the new hierarchy using these
types, it results in an uncompilable program, because the interfaces seem
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C.f(A->).<param0>

\

dcl(A.f)

dcl(A.g)

B.f(A->).<paramO>

dcl(A.h)

java.lang.Object D.f(A->).<param0>
E.f(A->).<paramO>

l

def(A.<init>)
def(A.f)
def(A.g)
def(A.h)

Al

Figure 3.7: Original analysis of

/N

dcl(A.h) dcl(A.g) dcl(A.f)

N/

B.f(A->).<param0>
C.f(A->).<param0>
D.f(A->).<param0>

\ E.f(A->).<paramO0>

def(A.<init>)
def(A.f)
def(A.g)
def(A.h)

Al

java.lang.Object

Figure 3.8: Analysis of with enforcement of equal signatures
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never to be implemented, as the parameter of the implementation will have
a different type than the declaration in the interface.

A possibility to avoid this effect is to enforce that the same parameter for
different implementations of a methods will have the same type in the new
class hierarchy. This can be easily achieved by assigning them to each other
(which is always possible, as they have the same type), creating an union-
type of all the individual parameter types. Of course this is only required,
if overriding methods are used together somewhere in the program. If they
are not, their signatures do not need to be equal as the fact that one of them
overrides the other is never used in the program. The same criteria is used
for the creation of hiding implications, so these implications can be used to
trigger the merging of the signatures.

def (B.m) — def (A.m) V def (B.m) — dcl(A.m)

merge(B.m.return, A.m.return)
n

/\ merge(B.m.param;, A.m.param;)
i=0

merge(a,b)
(a,b) € Assignments(P)
(b,a) € Assignments(P)

The result of these rules on the example program can seen in figure 3.8

An alternative approach to this problem [47] is only slightly different.
Instead of making two signatures completely equal, a subtype relation for
the two parameters was enforced (using just a single assignment instead of
two), resulting in a common subtype for all parameter types. The results of
the example can be seen in This common subtype (the type at which
the parameter pointer for B.f is located) can be used as parameter type for
all method signatures, because changing the type of a pointer to a subtype
will not affect the program semantics.

But showing certain types for pointers within the class hierarchy and
afterward using different types for rewriting the Java code is not a good
idea, as it undoubtedly confuses the user of the analysis. For the given
example, the first approach seems very invasive compared to the second.
But in many cases the level of detail in the second example will be too high
anyway and merging these pointers seems a logical step towards a smaller
hierarchy.

3.7 Multiple Implementations in the Same Class

Figure B.10 shows two classes where an overwritten method makes a call to
the original implementation in the superclass. If only the derived class is
instantiated, this will make both implementations appear at the same node
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C.f(A->).<param0O>

\

dcl(A.g) dcl(A.f)

A

D.f(A->).<param0>

dcl(A.h)

E.f(A->).<paramO0>

N

java.lang.Object B.f(A->).<paramO>

N/

def(A.<init>)
def(A.f)
def(A.g)
def(A.h)

Al

Figure 3.9: Analysis of with common subtype for signatures
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3.7. MULTIPLE IMPLEMENTATIONS IN THE SAME CLASS

class A {
int a;
void £() {
a=0;
}
}

class B extends A {
int b;
void £(O) {
b=0;
super.f();

}

class Test {
static B b;

public static void main(String args[]) {

b=new B();
b.fO;

Figure 3.10: Example for multiple implementations in one class
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/N

) _ dcl(B.f)
java.lang.Object

VA T

dcl(B.f)
java.lang.Object def(A.a)
Test.b '
def(A.f)
\ '/ def(B.b)
def(B.f(->)) < def(A.f(->))
def(A.a)
def(A.f)
def(B.b)
def(B.f) def(B.f)
Bl Bl
(a) initial (b) with additional object

Figure 3.11: Analysis result for figure 3101

in the concept lattice. Figure shows such a class hierarchy. It cannot
be directly translated back into source code.

There are two possible solutions for this problem. (1) The method A.f
can be renamed. As there is no object in the program which accesses only
A.f but not B.f, no dynamically bound method call to f in the program may
result in the implementation in A being executed, this is a safe operation. It
might however be problematic if this is tried with constructors, as “renaming”
a constructor would make it a common method and that is likely to affect its
semantics. If the program contains a method call z.f() that can be resolved
to either A.f or B.f, renaming one of the two methods becomes impossible.
(2) As a better alternative, the table can be modified in order to make both
implementations appear at different nodes. This seems more suitable for the
Snelting/Tip analysis which was not meant to modify programs at statement
level and works for constructors in the same way as it does for methods and
has no other limitations.

A table row which separates def (A.f) from def(B.f) can be created as
follows:
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Definition 20 The following objects and table entries are added in order
to prevent multiple methods with identical signatures to appear at the same
lattice element for a program P:

A is a transitive base class of B
/\ (0,def(Am)) €T < (o, def(B.m)) € T

o€ Objects
r:=def(B.f) < def(A.f)
reQ
a€o({ol(o,def (A.f))€TH)\{def (B.f)}

(rya)eT

a

The resulting class hierarchy can be seen in figure Other at-
tributes which are accessed by the same set of objects as the conflicting
method definitions will be placed with the superclass method. This is re-
quired as at this point it is not possible to determine which of these members
are used by which method, so they must be available for both implementa-
tions.

3.8 Library Classes

The original Snelting/Tip analysis always restructures the whole program
code analyzed. But most of the time it is more useful, to restructure just a
few classes and leave other classes the way they are. Maybe these classes do
not require refactoring or modifying them is beyond control of the user of
the analysis. For the latter case, the classes that come with the JDK are a
perfect example. These classes are used in every Java program, but a usual
requirement for the restructured program would be to run on a standard
JDK with standard library classes and not to rely on a restructured version
of the Java API.

Which classes are subject to refactoring and which classes are meant to
be unchanged by the library, must be specified by the user. In the following
section, a function Library(c) is assumed, which evaluates to true if ¢ is
a library class and false otherwise. Library classes are expected not to
know about the non-library classes. This means, they may not use them
as superclasses, create instances, access fields or call methods. E.g. tagging
all classes from the JDK as library and all classes with self-written program
code as non-library fulfills this condition. Classes and code that are not
part of the library are referred to as user classes and code.

If p is a pointer or an object, Library(p) must return true iff the type of
p cannot be changed by the user. This is automatically true for all pointers
or objects that are declared inside library classes, but also for the types of

3Reflection is a exception, but it is handled differently anyway
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1 import java.util.*;

2

3 class A {

4 public int hashCode() { return 42; }

5 public boolean equals(Object o) { return true; }
6 ¥

7

8 class Test {

9 public static void main(String args[]) {
10 Set<A> set=new HashSet<A>();

11

12 set.add(new AQ));

13 set.add(new AQ));

14

15 System.err.println(set.size());

16 b

17 %

Figure 3.12: Example program for library classes calling user code

exceptions thrown by the JVM (e.g. a java.lang.NullPointerException
when a member is accessed through a null-reference).

Besides leaving library classes unmodified, there is a second motivation
for handling them differently. A usual Java program uses a lot of library
classes and analyzing them all makes the analysis very expensive. If they
do not need to be refactored, it seems worthwhile to check if the overhead
created for them may be reduced a bit.

3.8.1 Reducing Table Entries for Library Classes

The most simple approach would be to simply ignore library classes or at
least code from library classes. Not surprisingly, doing so results in a broken
analysis. Figure shows a small problem where the methods hashCode
and equals are overwritten to ensure that only one instance of the class can
be stored in a HashMap. The calls to these methods appear only in library
code, not inside the program itself. If the library code is not analyzed,
the two methods will be marked as dead, and thus break the restructured
program.

If the code from library classes must be analyzed, it may be possible to
reduce its effects on the analysis and exclude it from the table. Including
code into the analysis usually results in an increased table size and maybe
this can be avoided by ignoring pointers or objects of library functions.

Unfortunately ignoring objects proved impossible too, because they may
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class LibraryA {
static LibraryA create() {
return new LibraryA();
}
}
class A extends LibraryA {
}
class Test {
static Object o;
public static void main(String[] args) {
o=LibraryA.create();
o=new A();

if (o instanceof A) {
}
}
}

Figure 3.13: Example program for library objects influencing user code

influence type-checks. Figure shows a small program, where LibraryA
represents a library class. If the instance of that class is ignored for the
analysis, the new type for the instanceof check may be too general (as
then the check is true for every object checked) and allow the LibraryA-
Object to pass too, breaking the original program.

For pointers the situation is a little better. Certain pointers resulting
from library code can be ignored like ordinary pointers can be. They must
be part of the analysis and be present during table construction but can
be eliminated before constructing the concept lattice. Library pointers may
create additional type-constraints on other pointers (see below for details).
Of course these constraints must be added to the table before pointers are
eventually eliminated.

In addition to table rows, library code also creates additional columns
for the declarations and definitions of analyzed members. Obviously they
cannot be left out completely, but it seems possible to have only a single
column, representing the entire class instead of individual columns for all
members, as the class is meant to be unchanged anyway.

Enforcing all members to be at the same class can be done with an
additional attribute per class (called the class attribute henceforth) and a
set of constraints:

Library(C')
all(C) e A
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class A {
public String toString() {
return "an A ("+super.toString()+")";

}

class Test {
public static void main(String args[]) {
A al=new AQ);
A a2=new AQ);

al.toString();

Figure 3.14: Example program for imprecision by collapsed library classes

Library(C), def(C.m) € A
all(C) — def (C.m)
def (C.m) — all(C)

Library(C), dcl(C.m) € A
all(C) — dcl(C.m)
del(Com) — all(C)

These constraints force the rows for all declarations and definitions of a
class to be identical, so they can be represented by just a single row.

Figure B.14] shows an example program and figure shows the result-
ing class hierarchy from an analysis using these additional constraints. The
result looks as expected. java.lang.0bject is represented as a single class,
containing all its individual members and both A objects are in subclasses,
and the toString method is only contained in the object that actually used
it in the original program.

The problem with this approach only becomes visible later, if during
interactive manipulation the user tries to merge the two classes for A1 and
A2. In this case he will get an error message explaining, that this oper-
ation would change the lookup of toString from the implementation in
java.lang.0Object to the implementation in A, which is not allowed. Obvi-
ously this is nonsense, as both A-objects had used the implementation in A.
However, this knowledge is no longer present in the class hierarchy (or the
table) and so it is conservatively assumed, that A2 needs the implementation
in java.lang.Object.

This effect is caused by forcing all attributes of a class to a single node,
which results in a reduced level of precision of member accesses. Both
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all(java.lang.Object)
def(java.lang.Object.<clinit>)
dcl(java.lang.Object.finalize)
def(java.lang.Object.finalize)
dcl(java.lang.Object.getClass)
def(java.lang.Object.getClass)
dcl(java.lang.Object.hashCode)
def(java.lang.Object.hashCode)
dcl(java.lang.Object.notify)
def(java.lang.Object.notify)
dcl(java.lang.Object.notifyAll)
def(java.lang.Object.notifyAll)
dcl(java.lang.Object.toString)
def(java.lang.Object.toString)
dcl(java.lang.Object.wait)
def(java.lang.Object.wait)

A2

def(A.toString)
Al

Figure 3.15: Class hierarchy for figure B.14] with collapsed library classes

all(java.lang.Object)

N T~

def(java.lang.Object.<clinit>) dcl(java.lang.Object.toString)
A2 def(java.lang.Object.toString)

dcl(java.lang.Object.hashCode)

N/

def(A.toString)
dcl(java.lang.Object.getClass)
def(java.lang.Object.getClass)
def(java.lang.Object.hashCode)

Al

Figure 3.16: Class hierarchy for figure B.14] with uncollapsed library classes
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A objects access the constructor of object and get a table entry at the
all(java.lang.0bject) attribute. But this single attribute now includes the
definition of java.lang.0Object.toString, although this method is never
accessed by the object. It has to be conservatively assumed, that if toString
is called for A2, the implementation from java.lang.0bject must be cho-
sen. Al gets an additional entry at the definition of A.toString, which will
override the definition inherited from the class attribute.

Again, the result is perfectly valid, but the reduction of attributes brings
new restrictions to modifying the class hierarchy later. But these restrictions
do not seem acceptable for two reasons. (1) Not allowing two objects to have
the same new type if they had the same original type is hard to sell to a
user. (2) In addition to that it is dangerous, because the methods causing
this will be crucial functions like hashCode. If these are left out from objects,
which may not require them now, but may easily require them after further
modifications of the program, it is far too easy to break the program. These
problems do not seem to justify the win in performance archived through
the modification.

Figure shows the class hierarchy for the example above using in-
dividual attributes even for library classedd. The hierarchy is much more
complicated, but it is also easy to see, that the second object of the pro-
gram does not contain a definition for a toString method at all. This
hierarchy can be transformed into one similar to figure (for an algo-
rithm see chapter [R.2]), while then allowing the two A classes to be merged,
as this time the information that A2 does not use a toString method is
contained in the original class hierarchy.

But very obviously this version leaves the problem with the unwanted
restructuring of library classes.

3.8.2 Recreation of Library Classes

Instead of forcing members of a library class to be at same node from the
start, these nodes can be constructed after creation of the initial lattice. For
each library class an equivalent class in the new hierarchy, that has the same
members and inheritance relations as the original class, must be created.

While this does not sound too hard, care must be taken in detail, as
members of library classes are usually scattered among many different classes
and mixed with members from non-library classes (see figure [[0.1] for a real
world example).

As this algorithm works on the class hierarchy, it is described in full
detail in section

For each library class to be recreated, a target class must exists, where
all attributes for that class are collated. As is it easy to move members up in

4The empty classes contain some pointers, which were omitted as they are not relevant
here
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the class hierarchy, a node above all members of a class can be constructed
as follows:

Library(C')
dl(C)e A
Library(C), def (C.m) € AC
def (C.m) — all(C)
Library(C), del(C.m) € AC

del(C.m) — all(C)
Library(C),C < C’
all(C) — all(C")
r:=all(C") < all(C),
req,
a€o({o|(0,all(C"))eTH)\{all(C)}
(r,a) €T

C
C

all(C) was already introduced in the previous section, it is the class
attribute of C' and create an infimum to all members of C.

The second and third constraints enforce the class attribute to be above
all members of the its class. The fourth constraint preserves the original
inheritance order and ensures that two class attributes will never be at the
same node in the same way this was done for methods with equal signatures
before.

All nodes with class attributes provide a kind of skeleton representing
the original class hierarchy for library classes. The algorithm provided in
section [B.2] will use this skeleton to recreate library classes in their original
state.

3.8.3 Type-Constraints generated by Library Classes

Even if a pointer in the library is not used to access a member it will gen-
erated a type-constraint on a value passed to that pointer, as the type for
the pointer itself must remain unchanged. Figure B.I7 shows an example of
this. If the library class LibraryA is not treated specially, the new type for
Test.al and Test.a2 would be T or java.lang.0bject, as no members are
accessed with these pointers. This breaks the static typing for the call to id,
as the methods requires a parameter of static type java.lang.String. If
the analysis forces the parameter of id to be java.lang.String, as it knows
that LibraryA and thus the parameter of id will be immutable, Test.al
would be forced to be of type java.lang.String too, because an assign-
ment between the two exists and then the static typing becomes right (The
new type for Test.a2 would still be T, but that is not a problem).
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class LibraryA {
static String id(String s) {
return s;

}

class Test {
static String al;
static String a2;

© 0~ D U A W N
-

10

11 public static void main(String[] args) {
12 al=new String(Q);

13 a2=LibraryA.id(al);

14 +

15 %

Figure 3.17: Example program for type constraints created by library code

A pointer can be forced to have a certain library type ¢ by creating a
table entry at the class attribute all(c), which was introduced in the previous
section.

p € ClassPtrVars(P), Library(p)
(p, all(type(p))) € T
p € ClassVars(P), Library(p)
(p, all(type(p))) € T

This will ensure each pointer or object p has the required type to make
assignments type-correct if p appears on the left side of the assignment.

For objects such table entries only becomes necessary, if empty or default
constructors are ignored in the analysis. Otherwise, each object accesses a

constructor of its class and this access will guarantee an object to be below
all(c).



Chapter 4

Points-To Analysis

For all kind of analyzes a static approximation of the objects a pointer can
point to at run-time is interesting. As a result these kind of analyzes have
been a research topic for years — a few years back mostly for C, recently
also for Java. An overview can be found in [19]. In this chapter, the spe-
cific requirements of a points-to analysis for the Snelting/Tip analysis are
presented. Then known algorithms are checked too see if they fulfill these
requirements.

4.1 Background

This work was initially started in September 1998. Back than there were only
a few publications about points-to analysis for Java, most work was still done
for C. No “ready-to-use” analysis was available, so a new implementation had
to be made. Goals for this implementation were set high (in no particular
order):

(1) Modular architecture that would allow the plugging of any available
points-to algorithm (with the main focus on Andersen’s [3] and Steensgard’s
[44] analysis as they were well known). (2) Allowing enhancements like
context-sensitivity or flow-sensitivity. (3) Whole program analysis, including
library classes and native methods. (4) Support for reflection without forcing
the user to manually specify possible targets. (5) Scalability for programs
of 20000-100000 lines of code. (6) Soundness.

The final implementation does not fulfill some of these goals for various
reasons. First of all, some established techniques for points-to analysis were
not applicable for the specific needs of the Snelting/Tip analysis. This will
be discussed in detail later in this chapter. Secondly, the influence of the
library size on Java programs was hugely underestimated. Even small Java
programs use an enormous amount of library code, very often the library
code used has a multiple of the size of the analyzed program. Finally, other
implementations have come up [37, [22], whose performance was significantly
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better compared to the self-made implementation, so that it seemed unnec-
essary to search for further enhancements. For [22] it was evaluated in [7]
whether it is usable to implement Snelting/Tip.

Still, the self-made implementation provides some advantages: (1) It is
the only implementation known which is able to analyze at least some fea-
tures of reflection without manual intervention by the user. This is described
in detail in section[.0l (2) It features a fall back conservative approximation
that can be used if a part of the code is unavailable (e.g. a native method
without a stub). (3) The analysis precision matches the specific needs of the
Snelting/Tip analysis. Other points-to analyzes usually use different clients
to evaluate their precision (Elimination of virtual method calls, synchroniza-
tion removal and stack allocation are most commonly used), but this does
not imply that Snelting/Tip will automatically benefit from their precision.
(4) The analysis has been in use for some years now and its results have
been checked countless times, providing no guarantee, but great trust in the
correctness of the implementation.

4.2 Requirements

In the Snelting/Tip analysis, the points-to set is exclusively used to enu-
merate the objects that may be used as targets for a dynamic method call.
That means if precision of a points-to analysis is evaluated, only the size of
the points-to sets of points that are used for these calls are interesting. The
set of those pointers is:

{p|p.m occurs in P, p € Pointers(P),
3C : del(C.m) € MemberDcls(P) A type(p) < C'}

Unfortunately, this specific requirement in precision is an unusual one.
A similar and often used client of points-to analysis is the elimination of
dynamic method calls. Here, the same set of pointers is relevant, but in this
analysis a change in result is only achieved if for one call site the number
of possible target methods can be reduced to 1, whereas in Snelting/Tip,
every object removed from the points-to set makes a difference. As more
efficient algorithms for the elimination of virtual method calls exist, points-
to analysis is hardly used for that purpose in practice. So it provides only
an artificial benchmark.

As strange as it sounds, a points-to analysis can be “too good” for Snelt-
ing/Tip. Figure Al contains a small program fragment. A hypothetical,
“smart” analysis can detect, that only the object B1 will be created, and
that PointsTo(p) = {B1}. If that happens, C1 will not get a def entry and
thus get a new type, that is not instantiable. But this analysis would be
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class B {
void £(O) { }

}

class C extends B {
void £() { }

}

Object array[]=new Object[5];
B p;
if (array.length>3)
p=new B(O); // Bl
else
p=new CQ); // C1
p.£O;

Figure 4.1: Points-to example program

very useful to other points-to clients, e.g. it will detect, that the target of
the method call p.f() will always be the method B.f.

The reason that these results are not usable for Snelting/Tip is a mis-
match in the set of assignments used within Snelting/Tip and inside the
points-to analysis. If Assignments(P) contains assignments that are not
used during the points-to analysis, table entries for declarations may be
propagated from a call site to objects, but they will not get corresponding
entries for definitions, as the points-to analysis “knows” that these objects
will not reach the call site.

It might be possible to retrieve the set of assignments from the points-to
analysis. But if the points-to analysis omits assignments that are present
in the source code, the resulting lattice will not preserve the semantics of
the original program. This can be prevented by modifying the source code
accordingly (e.g. removing the dead else-branch in the example above),
but Snelting/Tip was not meant to modify programs at statement level and
this should not be forced upon the user of the analysis.

The connection between Assignments(P) and the points-to sets becomes
very obvious with the compact definition of Andersen’s points-to analysis
within the description of the Snelting/Tip analysis (section [2.2.2]).

4.3 Andersen for Java

The points-to algorithm used in this implementation is based on Anderson’s
algorithm for C[3] and extends it for Java where necessary. A similar ap-
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Figure 4.2: Example program

Figure 4.3: Storage graph for figure

proach [37] was developed in parallel, but predates an earlier publication
([35], [36], [46]). More about the differences later.

Anderson’s algorithm processes all pointer related assignments of a pro-
gram. For each assignment p:=q, it makes the points-to set of p a superset
of the points-to set of ¢:

p := q occurs in P = PointsTo(q) C PointsTo(p)

Intuitively, this can be phrased as: p points at least to everything ¢
points-to. The information gained from the assignments can be stored in
a graph. Figure shows an example program, where lower case letters
represent pointers and upper case letters represent objects. A graph repre-
sentation for the assignments can be seen in figure 3l Nodes in the graph
is created for pointers and objects, and an assignment creates an edge from
the left-hand to the right-hand side.

To retrieve the points-to set for a pointer p, the graph can be traversed
by depth-first or breadth-first search starting at p, creating a list of all object
nodes, which is the points-to set of p.

Retrieval of a single points-to set has complexity O(n?), making the
algorithm O(n?) if all points-to sets must be retrieved. It is possible to add
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Q R

Figure 4.4: Alternate points-to graph for figure

all transitive edges to the graph in O(n?®) and after that, retrieval is only
O(n). Depending on the graph implementation, the second version may use
significantly more memory, as the graph will contain a lot more edges. Space
requirement for the storage of points-to sets is important. [22] compared
different approaches for the storage of points-to sets. There is a recent trend
to store points-to sets as binary decision diagrams [5, [56]. For Snelting/Tip
the first version helps saving a lot of memory, as it automatically includes
the set Assignments(P).

To handle dynamic method calls with Andersen, a fix-point iteration is
required. First an initial graph from only the assignments is created from the
code. Then, if a method call p. f(...) occurs within the program, PointsTo(p)
is calculated and assignments added for the this-pointer, return values and
parameters of f. This is done as a fix-point iteration, until PointsTo(p) is
stable.

Many of the other aspects where Java is different from C are handled
in a similar way. All conditional constraints presented in appendix [A] are
basically part of the fix-point loop.

As said before, [37] provides a adaption of Andersen for Java that is
very similar to this work. They use Bane, a generic constraint solving sys-
tem [10, 14}, 48], that has been used for pointer-analysis before [12]. This
implementation is generally faster and requires less memory, compared to
the approach described here. While it is not surprising that a specialized
constraint solving system outperforms an unoptimized self-made system,
there is a difference in the way the points-to graphs are created.

For an assignment p = ¢, where p and ¢ are pointers, they do not create
edges between the nodes for p and ¢, but edges between p and the elements
of PointsTo(q). In this representation, the graph for the example above
can be seen in figure 44l This graph can be constructed from our graph by
adding the transitive hull and removing all edges from pointers to pointers.

A second difference is the handling of fields. The example in figure
is taken from [37]. In this version for each field and object, a node
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representing this field is created (figure [4.6(b)), while they annotate edges
with field names (figure [4.6(a))).

4.4 Steensgaard for Java

Another well known points-to analysis is Steensgaard’s[44]. The basic idea
here is to use unification for assignments, i.e. for an assignment p=q it is
assumed, that the points-to sets of p and ¢ are equal. While this is less
precise than Andersen’s algorithm, it is significantly faster. Because every
assignment needs to be processed only once, the complexity is quasi linear.

The analysis was written for C and applying it to Java causes some prob-
lems. First of all, the this-pointer of the constructor of java.lang.0Object
points to every object in the program and this means via unification, all
pointers point to all objects. This can be solved by ignoring the constructor
of object, as it is empty, or by using context-sensitivity.

The other issue is the handling of dynamic bound method calls. If the
target is resolved by using the previous points-to results, the analysis would
loose it linear complexity. According to Steensgaard[45], the logical exten-
sion to his analysis for Java is to merge the this-pointers for the called
methods.

Unfortunately this extension does not work for Snelting/Tip, as it de-
liberately throws away precision at exactly the point, where Snelting/Tip
needs it. The result is an identical access pattern for all objects of the same
original type, disabling the detecting of individual access patterns (which
was the purpose of Snelting/Tip) completely. Therefore it is not reasonable
to use this analysis for Snelting/Tip.

4.5 Flow-Sensitivity

The original Snelting/Tip paper assumed that all possible points-to algo-
rithms can be used, as no further assumptions about the nature of the
points-to sets were made. But then, the expected format of the results
of the points-to analysis only fits to flow- and context-insensitive analyzes.
Still, these are established techniques in the area of points-to analysis and
their suitability for Snelting/Tip will be examined.

In a flow-sensitive analysis the order of the statements in a program is
taken into account, while a flow-insensitive analysis ignores it. As as result,
the calculated points-sets are no longer valid for an entire program, but only
at a certain place within the program. For the following example program:

1 p:=Q;
2 q:=p;
3 p:=R;
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Figure 4.5: Example program for field handling
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Figure 4.6: Points-to graphs for the program in figure
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dcl(B.f)
dcl(B.g)
class B { dcl(B.h)
void £ {}
void g() {} P
void h() {}
}
p=new B(); // Bl def(B.g) def(B.h) def(B.f)
P-£0; B2 B3 B1
p=new B(O; // B2
p.-g0;
p-hO;

Figure 4.7: Points-to example program and class hierarchy

the points-to sets by a flow-sensitive analysis are as follows:

PointsTo(p,1) = {Q}
PointsTo(p,2) = {Q}
PointsTo(q,2) = {Q}
PointsTo(p,3) = {R}
PointsTo(q,3) = {Q}

where PointsTo(v,n) denotes the points-to set of variable v after the
execution of program line n. A flow insensitive-analysis will produce these
sets:

PointsTo(p) = {Q, R}
PointsTo(q) = {Q, R}

The difference in precision is obvious. Flow-sensitive analysis is usually
better than flow-insensitive analysis, but never worse.

The Snelting/Tip analysis can be easily adapted to use the results from
a flow sensitive analysis. The points-to sets are only used to resolve method
calls and instead of using a global points-to set, the site specific set can be
used. Figure[£7] shows an example program and the resulting lattice. Here,
for the method call p.f(), the points-to set for p would contain only B1, for
p.g() it contains B2 and for p.h() only B3. The resulting lattice shows that
none of the new types for the objects can be instantiated, as all of them
miss the implementation for two methods.
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class B { / l \
void £ {}

void g {} dcl(B.h) dcl(B.g) del(B.f)
, void h() {} 03 02 ol
pl=new B(); // Bl i l l
pl.£0);
p2enew BO; // B2 def(B.h) def(B.g) def(B.f)
p2.80); B3 B2 B1

p3=new B(); // B3
p3.00); \_L/

Figure 4.8: Program from figure L7 in SSA form

A similar effect to intra-procedural flow-sensitivity can be achieved by
transforming the program into single static assignment form[I8]. The trans-
formed example and the resulting lattice can be seen in figure 4.8 In this
version the lattice is fine, but as this requires a statement level transforma-
tion too, it might be unwanted by a user of Snelting/Tip.

Another possibility is to analyze a program flow-sensitively and later
merge the information for the same variable from different program points
into a single points-to set. This will result in the same precision as a non-flow
sensitive approach, but might be useful if flow-sensitive analysis is cheaper
than a flow-insensitive analysis. But this is not true in general, so this
remains a hypothetical optimization.

4.6 Context-Sensitivity

A points-to analysis is called context-sensitive if the analysis takes a call
site (calling context) to a method into account while analyzing this method.
This increases precision but also the cost in time and space for the analysis,
as a method may be analyzed multiple times and analysis results for that
method must be store multiple times.

This is especially useful for an object-oriented language, where get- and
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class A {
void £() {}
void g(O) {}
}
class B {
A a;
void set(A _a) { a=_a; }
A get() { return a; }
}

B bil=new B(); // Bl
bl.set(new AQ); // A1, [1]
A al=bl.get(); // [2]
al.f();

B b2=new B(); // B2
b2.set(new AQ)); // A2, [3]
A a2=b2.get(); // [4]
a2.g();

Figure 4.9: An example with get- and set-methods

set-methods for a data-members of an object are common. Without special
handling, these structures make a points-to analysis imprecise.

Figure shows a program fragment, which include a class with get-
and set-methods and their usage. This is a very common pattern in object-
oriented programs, in the simple form as well as in the more complex form
of container classes.

The points-to graph can be seen in figure £.T0. The points-to sets from
this graph are PointsTo(al) = {Al, A2} and PointsTo(a2) = {Al, A2}.
This is imprecise, as in practice each variable will point to only one object.
The points-to graph also reveals the source of the imprecision. While there
are individual storage locations for Bl.a and B2.a, the passing of A1 and
A2 to the set method and retrieving it with the get method causes the
imprecision.

This imprecision can be avoided, if all calls to B.set and B.get are
treated context-sensitively. A points-to graph where this has been done can
be seen in figure [L.T1l Contexts are denoted by [1], [2], [3] and [4] as
prefixes to the variables that are specific for the methods analyzed within
this context. The context corresponds to the call sites within the program.
Handling methods context-sensitively results in a multiplication of the nodes
for variables of these methods, but exactly this increases precision. In this
version, the better results PointsTo(al) = {Al} and PointsTo(a2) = {A2}
can be determined because there are individual pointers for parameters,
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Figure 4.10: Points-to graph for figure
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] ]

@2 “
[2]B.get.<return> [2]B.get.<this> [4]B.get.<return> [4]B.get.<this>
[2]B.get.<this>.a [4]B.get.<this>.a
Bla B2.a
[ 3]
[1]B.set.<this>.a [1]B.set.<this> | bl | | [3]B.set.<this>.a | [3]B.set.<this> | b2 |
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Af.<this> [1]B.set.a B1 A.g.<this> | [3]B.set.a B2

Figure 4.11: Context-sensitive points-to graph for figure

this-pointer and return values of each get and set call.

But how will points-to results from a context-sensitive analysis influence
the Snelting/Tip analysis? Figure shows an example program and the
concept lattice, where the factory method A.create is analyzed individually
for each call site.

The resulting class hierarchy is valid, but it suggests two different types
for the object A1. This can be realized, if the code for create is put multiple
times into a transformed program: once into the class containing f and once
into the class containing g. While this may look fine for this example, it is
not a generally usable approach, because the code size would explode with
an increased number of contexts and even duplication of a single method
can be considered questionable.

In many cases, a points-to analysis that is more precise also gets faster,
because less objects have to be collected or propagated. Even if Snelt-
ing/Tip cannot profit from the better results of context-sensitive analysis, it
might still be possible to do a context-sensitive analysis, thereby using the
increased precision to speed up the analysis and later simply “throw away”
the increased precision and still benefit from the decreased analysis time.

In the example above, the main problem was caused by a variable appear-
ing in different contexts, which is a problem for the Snelting/Tip analysis
as this information cannot be mapped back into source code. If a variable
appears in different contexts, all instances of the same variable must be
merged into one variable to avoid this. This merging can be easily realized
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class A {

void £() {} / \

void g {}

static A create() { dcl(A.g) dcl(A.f)

new AQ; // Al [2]A.create.<return> [1]A.create.<return>
} q p

! \ l
p=A.create(); // [1] def(A.g) def(A.f)
p-£O; [21A1 [1]A1

g=A.create(); // [2] \ /
q.20;

Figure 4.12: Example for context-sensitivity and Snelting/Tip

by melting the variable nodes in the points-to graph. As this operation may
result in a lot of new points-to relations, the usual propagation must be done
at this stage in order to check if virtual method calls are reached by new
objects which then in turn my result in new assignments. However, the cost
for this propagation is the same cost, that would be required for a context-
insensitive analysis, as the resulting points-to graph for both analyzes will
be identical. So a lower analysis cost is only gained, if this propagation can
be omitted.

Unfortunately, a simple example is sufficient to show that this will result
in incorrect class hierarchies. Figure [L.13] shows the result of this merging.
This points-to graph is almost identical to the original graph in figure E.10]
but keeps the increased precision for the this-pointers of A.f and A.g. But
the resulting class hierarchy will again be unusable, as both objects A1 and
A2 will get entries dcl(A.f) and dcl(A.g), but only a def entry for one of
the two methods, leading to non-instantiable classes as seen before.

While context-sensitivity is a well known and valid way to enhance
points-to analysis, it is not usable for Snelting/Tip as a client analysis.

4.7 Object-Sensitivity

Instead of using the call-site as a context, the object used for the method
call can be used as a context[27]. A points-to graph for the example from
the previous section can be seen in figure .14l Here [B1] and [B2] are used
as context names, as B1 and B2 are the objects used to dispatch the calls
to the methods get and set.
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It is easy to see from the example that object-sensitivity gives the same
benefit in terms of precision as context-sensitivity, but while the cost (mea-
sured in the number of used contexts) is the same for this example, this
is not the general case. Object-sensitivity is cheaper, if a lot of calls are
made to the same container objects, while context-sensitivity is cheaper if a
small number of call sites is reached by a huge amount of objects. E.g. for
the given example, object-sensitivity will be become more expensive, if it is
possible for b1 and b2 to point to multiple B objects instead of only one,
while context-sensitivity will be more expensive if more calls to set or get
are added.

Observation of existing Java programs and the Java class hierarchy makes
object-sensitivity seem more appropriate for Java. The internal call graph
for some of the standard containers is highly complex, leading to high costs
for context-sensitivity. Which method is best for a particular program must
be decided individually. Both methods can even be combined.

For Snelting/Tip object-sensitivity provides the same problem as con-
text-sensitivity: an object or pointer may get different types in different
contexts, which cannot be realized in a Java program. The same problems
with merging arise too, making also object-sensitivity unusable for Snelt-

ing/Tip.

4.8 Other Points-To Analyzes for Java

There are a lot of other points-to analyzes for Java [57, 1], 23]. Whether
they are suitable for use with Snelting/Tip is often not clear from these pa-
pers. Most of them miss enough details for any of following topics: handling
of arrays, handling of explicit and implicit exceptions, handling of library
classes, handling of native methods or handling of type casts. Implemen-
tations are only rarely available and re-implementing each analysis might
be a vain endeavor because of the risk of detecting it does not work well
with Snelting/Tip. The results with well-known techniques like context-
sensitivity are not very encouraging.

One system is freely available and an implementation of Snelting/Tip us-
ing SOOT and SPARK was done by Buckley [7]. His results can be summed
up as follows: Although SPARK is also described as an extension of Ander-
sen for Java, the analysis is less precise than [37] and the work presented
here. The imprecision explicitly affects this-pointers and makes SPARK
uninteresting for the Snelting/Tip. Buckley suggested an improvement that
enhances the precision for this-pointers to make the analysis suitable for
Java. However, some issues remain. SOOT does not model exception ob-
jects implicitly created by the JVM (e.g. the NullPointerException that
is thrown for an expression a.z the reference a is null). Omission of these
objects will affect correctness of a transformed program, if a program relies
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on presence and catching of these exceptions. Another issue is the handling
of native methods, which has not been examined in detail.

[19] contains the statement that points-to analysis should be client spe-
cific. While the self-made implementation does not scale as good as other
peoples implementation, it fits the specific requirements of Snelting/Tip
best.



Chapter 5

An Analysis of
Java-Bytecode

This chapter describes an analysis of Java-bytecode that will extract all
required information for the Snelting/Tip analysis from a given program.

Java-bytecode was chosen as a bytecode parser is easier to implement
than a source code parser. It has also been more stable than Java itself:
bytecode has only undergone minor changes from JDK 1.0 to 1.5, while
Java itself was changed heavily (e.g. inner classes, generics).

5.1 Introduction

To implement the Snelting/Tip analysis, member accesses and assignments
must be extracted from the bytecode and a points-to analysis must be per-
formed. Bytecode is stack-oriented, i.e. most instructions fetch their argu-
ments from the stack and put their result onto the stack. In addition, there
is method-local random access memory in form of local variables. Special
instruction transfer information from the stack into these variables and vice
versa. Bytecode instructions may have additional operands. These operands
are fixed and cannot be changed during run-time.
E.g. for the following Java fragment:

x=new YO ; // Y1
y=%;
y.f=z;

a compiler can produce the following bytecode:

9 new Y ;; create new object and put reference on stack

73



74 CHAPTER 5. AN ANALYSIS OF JAVA-BYTECODE

10 astore 0 ;; store top stack content in local variable O
11 aload 0 ;; put content of local variable O onto stack
12 astore 1

13 aload 1

14 aload 2

15  putfield Y.f

Additionally, the compiler creates a local variable table:

start_pc length name type index
11 10 X Y 0
13 10 y Y 1
1 20 z java.lang.Object 2

In the example, the aload and astore instructions transfer data between
stack and local variables, while the putfield instruction writes a field of an
object. This is one of the member accesses required for Snelting/Tip. The
instruction takes two values from the stack. The topmost value is written
to the modified field (i.e. it corresponds to z to the Java program) and the
second value is the object reference whose field £ will be written (y in the
original program). This reference is required to determine all accesses to the
field £.

Looking at the example in detail reveals that the value for y was origi-
nally put onto the stack by instruction 13, which read it from local variable
1. It was put into this variable by instruction 12, which took it from the
stack, where is was put by instruction 11, which copied it from local variable
0, and ...

This kind of tracing a value backwards on the stack can be formalized
by representing the stack and local variables as sets of possible values they
can have at run-time. This must be done individually for each point in the
control-flow of the method. The bytecode instructions can than be expressed
as a relation between these sets before and after an instruction’s execution.

Let S(i,n) be a set which contains all possible values of the n-th stack
element before the instruction at program counter i is executed and R(i,n)
the content of the local variable n before instruction i.

The constraints generated from the bytecode instructions of the example
are (assuming the stack was empty before instruction 9):

(9  {vi}cs
(10)  S(10,0)C

(

( R(
(11)  R(11,0)CS(12,0)
(12)  S(12,0)CR(13,1)
(13)  R(13,1)CS(14,0)
(14)  R(14,2)CS(15,0)
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Of course if a local variable or a part of the stack is not modified by an
instruction, it must remains unchanged, so additional constraints for this
data flow are required:

(9)  R(9,0)CR(10,0)
R(9,1)CR(10,1)
R(9,2)CR(10,2)

(10) R(10,1)CR(11,1)
R(10,2)CR(11,2)

(11)  R(11,0)CR(12,0)
R(11,2)CR(12,2)

(12) R(12,0)CR(13,0)
R(12,2)CR(13,2)

(13)  R(13,0)CR(14,0)
R(13,1)CR(14,1)
R(13,2)CR(14,2)

(14) R(14,0)CR(15,0)
R(14,1)CR(15,1)
R(14,2)CR(15,2)
S(14,0)CS(15,1)

(15)  R(15,0)CR(16,0)
R(15,1)CR(16,1)
R(15,2)CR(16,2)

Subset constraints must be chosen instead of equality, as in general
control-flow is not linear like in the given fragment. E.g. instruction 15 could
be the target of a jump instruction later in the program, making S(15,1)
different from S(14,0).

These sets can be interpreted as rows for the Snelting/Tip analysis, be-
cause in bytecode member access actually happens on these sets (e.g. in-
struction 15 would create a table entry (S(15,1),def(Y.f)), but this is a
much too fine grained view, as it would create many unused table rows.
Usually, table rows are created for pointers and objects of the program. The
pointers are available in the local variable table. Each entry of this table can
be interpreted as a meta-set of local variable sets, as it represents multiple
sets R(i,n) where n is the index column of the local variable table and i the
range (start_pc, start_pc + length).

The meta-sets for the given example are:

z= {(3(11,0) ., R(20,0)}
y = {(R(13, 1) R(22, 1)}
Z_{( (1, )7 (207 )}

Then, each set can be traced to a table row by the following algorithm:
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getrow (S, been_at):=
if dmaq,...,m, € MetaSets :n>1 AN S€emi A...AN SEm,
return {mi,...,m,}
if 351,...,5, € MetaSets:n>1 AN S1CS A...AN S, CS
return |J , getrow (S;, been_at U{S})
return S
getrow(S):=
return getrow' (S,{})

The algorithm first checks if the current set is contained in any meta-set
and returns those. If it is not, all sets connected via sub-set constraints
are traversed recursively. If no subset constraints exists, the set must be an
initial set created by a new instruction and contains an object. This object
is then returned.

For the given example, S(15,1) is a good candidate to resolve, as it is
used for member access. As S(15,1) is not contained in any meta-set, all
subsets will be visited, i.e. S(14,0). S(14,0) is not contained in any meta-
set either, so all subsets of it (R(13,1)) are visited. R(13,1) is contained in
the meta-set y, so getrow(S(15,1)) = {y}, which is exactly the variable used
for the member access in the Java program before compilation.

Please note that the meta-sets are an additional input and may be used
to adjust the number of table rows actually present. Without definition of
any meta-set, getrow(S(15,1)) will be directly resolved to Y1, which is a
valid result for the given program.

With the help of the getrow function, assignments can be easily gained
from the constraint system:

X CY — (getrow(Y), getrow(X)) € Assignments(P)

The constraint system implicitly contains Andersen’s points-to analysis:
the content of a set S(x,y) already is its points-to set, and for a meta-set,
it can be easily calculated by merging all contained sets:

PointsTo(x) = U Yy

yex

Therefore the constraint-system provides all information needed for the
Snelting/Tip analysis.

Creation of such a constraint-system is only possible due to some guar-
anteed structural properties of Java-bytecode:

e The depth of the stack before each instruction can be statically deter-
mined and is invariant. This implies that the maximum stack size is
finite and statically known.
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e The number of a local variable for each access is known statically. This
implies that the maximum number of a local variable is known.

e The set of instructions following another instructions in the control-
flow is statically known.

5.2 Intra-Procedural Analysis

The intra-procedural analysis handles one method at a time. The analyzed
method will further be called M and used like a free variable. A method
name M includes the class name and signature, making it an unique identi-
fier for a method.

In addition to M a second free variable, a context C' will be used through-
out the analysis. C can be used to make the analysis context- or object-
sensitive by parametrization. For the intra-procedural analysis no further
knowledge about this context is required and as a value for C' a context
EMPTY , which represents the absence of any contextual information, can
be assumed.

The analysis builds a constraint system around possible contents of local
variables and stack of the JVM at run-time. These contents will further be
called values. Three categories of values exists:

1. base types
2. references

3. return addresses

The base types are a simplified version of the non-object types of the Java
language. Special types for boolean, byte, char or short do not exist, int is
used instead. Actual values of these are ignored in this analysis, so these are
always represented by their type-name: <double>, <float>, <int>, <long>.

Return addresses are used to allow local subroutines within a single byte-
code method. These return addresses are natural numbers and are handled
individually, as their concrete values are known and usually there are only
a few of them for each method. Handling the actual values provides a small
increase in analysis precision at small cost, as it can be used remove control-
flow that will never happen at run-time.

Each value v has a type. Figure [5.1] defines these types for all kind of
values as well as some additional functions used in the constraints. The <

! Although these techniques are not usable for Snelting/Tip, contexts are left in the
formalism, because the analysis itself is not limited to Snelting/Tip, but could be used for
other purposes, where context- and object-sensitivity are more useful.
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v if v is an abstraction of a base-type (e.g. <int>)
type(v) = < ¢ if v is a reference and c is the class of that reference

<ra> 1if v is an return address

type(v) < type(v') < v and v’ are references A
" = v is assignment-compatible to v’

2 if v = <double>V v = <long>

category(t) = {

1 else

Figure 5.1: Definition of types and associated functions

operator refers to assignment compatibility ([24, 2.6.7]) rather than the sub-
type relation in Java, as assignment compatibility includes rules for array-
types which are not fully integrated into Java’s type system. The category
function maps types to the category they have in the JVM. Its result refers
to the number of local variables a value of that type occupies and is also
used in some stack operations.

Bytecode and its semantics is defined by [24] in its binary representation
as .class files. Each class is defined by one such file, which contains all
structural information about the class as well as the actual bytecode for all
methods of that class. Although it might be possible to generate a constraint
system directly from the binary representation, this would result in very
cryptic rules that are hardly human readable. So instead of the binary
representation, an assembler like notation of bytecode is used, similar to
the output of javap -c or jaéz. A formal definition of this notation is not
given, but by using [24] it is obvious how to gain the notation used here
from the binary representation.

The code of a single method in bytecode consists of one or more instruc-
tions. Each instruction is identified by an individual opcode which is stored
first in the binary representation and zero or more following operands. The
number of operands is fixed for most operands, with two exceptions where
the total number of operands depends on the first operand. In any case, the
number of operands does not depend on information which is not statically
known. Each bytecode instruction has an address, which is the offset from
the start of the bytecode to the start of the instruction. So the first instruc-
tion of a method has always the address 0 and the second will be equal to
the length of the first instruction and so on.

The analysis generates constraints for each bytecode instructions. The
constraints depend on the address of the bytecode instruction (denominated

?jas is a wide-spread Java assembler.
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PARAMS(M) The number of parameters of method M
TPARAM (M,n) The type of a value of the n-th parameter of
method M

TRETURN (M) The type of the return value of method M
LENGTH (M) The length of the bytecode for method M in bytes

EH_MAX(M) The number of exception handlers in M

FEH_START(M,n) The start address of exception handler n

EH_END(M,n) The end address of exception handler n

EH_TYPE(M,n)  The caught type or NULL of exception handler
n. In case of NULL the handler catches every
exception.

EH_PC(M,n) The target address of the exception handler n

Figure 5.2: Bytecode properties used in constraints

pc) and the operands of the instruction (if any) or properties of the analyzed
method or the class hierarchy in general. Table contains some symbols
that are used to refer to these properties within the constraints. Although
they may look like function calls, these are static properties which can be
derived from bytecode easily.

The sets used in the constraints primarily model the local variables and
stack content of the JVM while executing the methods. Additional sets are
needed to model data-flow from and to other methods. The requirement
for parameters and return values are obvious, but the transitively reachable
data through fields and array contents is also important. In contrast to the
former sets, these are not dependent on the analyzed method, but global
sets shared by all methods. As Java has no multi-dimensional arrays but
uses nested one-dimensional arrays instead, the handling for fields of objects
and content of arrays is almost identical. Table (3] lists all sets used in
the constraints. The verification process guarantees that the sets modeling
stacks and local variables will never mix content of different base types
or base types and return addresses. Any preconditions which are always
fulfilled due to verification are omitted from the constraints.

The actual generation of the constraints from bytecode is done by the
algorithm given in figure 5.4l The algorithm has two parts. The first part
creates the initial content for the local variables from the parameter sets and
the second part processes all instructions in the bytecode and generates the
corresponding constraints.

The constraints for all instructions are listed in appendix [Al For most
instructions, the constraints are obvious and easy to understand. However,
for some of them, some words of explanation seems helpful.

The instructions dup_x2, dup2, dup2_x1, dup2_x2 have multiple cases
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R(M,C,pc,n) The content of local variable n before execu-
tion of instruction of pc

S(M,C,pc,d) The content of the stack at depth d before
execution of instruction pc

THIS(M,C) The this-pointer of method M. For static
methods, the set will be empty.

PARAM (M, C,n) The n-th parameter of method M (starting
with n=1).

RETURN (M, C) The values returned by method M.

EXCEPTIONS(M,C) The exceptions thrown by method M, in-
cludes exceptions that are thrown in methods

called from within M and not caught by any
handler in M.

CONTENT (o) A set containing all values stored as content
of the array o.
FIELD(o,f) A set containing all values assigned to the field

f of object o.

Figure 5.3: Sets used in constraints

next :=0
if not static(M)
add constraint THIS(M,C) C R(M,C,0,0)
next =1
Vi=1...PARAMS(M):
add constraint PARAM (M,C,i) C R(M,C, next,0)
next := next + category(type(PARAM (M, C,1)))

pc:=0

while pc # LENGTH(M)
decode instruction at pc
add constraints for instruction at pc
pc := pc + length of instruction at pc

Figure 5.4: Pseudo-code algorithm for constraint generation from bytecode
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depending on the type of operands on the stack. Which variant is used, can
be determined statically and for each instruction only one variant will be
used. The multiple cases can be avoided by handling the types LONG and
DOUBLE as types allocating two elements on the stack. This notation was
used in the first edition of the JVM specification[24], but changed in the
second. For generation of constraints the old notation would make the dup*
instructions easier, but complicate other constraints for other instructions,
especially method calls.

jsr and jsr_w push the address of the following instruction on the stack
which can later be used by an ret instruction. As these addresses are
statically known, they are handled with their actual value. This reduces the
number of instructions possibly following a ret instruction, as otherwise all
instructions following jsr instructions have to be assumed to be possible
succeeding instructions to every ret, creating a lot of potential data-flow
which cannot happen at run-time.

All invoke* instructions have to be distinguished between value return-
ing and void methods, as they operate differently on the stack.

Various instructions create additional rules. These rules are used for
two reasons. First, they factor out common constraints that are used by
multiple instructions and thus make the constraints more human-readable
and secondly, they allow a change of their definition, making it easier to
modify the analysis later. Rules are defined globally, so all variables they
use must be in their parameter list and unbound variables within a rule are
not allowed. These parameters are instanced with actual values when a rule
is made wvalid by a constraint. If this happens, the body of the rule definition
is added to the constraint system and formal parameters are replaced by
their actual values. A basic definition of the rules can be found in figure

Some instruction generate a rule called INIT, which handles the initial-
ization of referenced classes. Besides the exceptions which may be gener-
ated by this operation, a method called <c1linit>, which initializes all static
members of that class. This call uses a non-standard version of exception
handling, as all non-checked exceptions are wrapped into exceptions of class
ExceptionInInitializerError. The INIT rule handles this special case.

THROW is used to handle an exception. The last parameter n indicates,
which exception handler tries to catch that exception. If the exception
is not caught by a handler, another rule with n + 1 becomes active. If
it is caught, control flow is branched from the current instruction to that
exception handler. Finally, if the method does not catch the exception
locally, it is put into the EXCEPTIONS set of that method.

The rules RTE and LE are shortcuts used to handle the RunTimeFxcep-
tions and LinkFEzceptions that are thrown by various bytecode instructions.

Bytecode contains an additional wide instruction that can be used to
modify a following instruction to take wider arguments (e.g. a 16-bit local
variable number instead of 8-bit). As these instructions produce the same
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CALL(M,C, pe, M',R, T, P, ..., P)
C" := new_context(M,C,pc, M', R, T, P, ..., P,)
T C THIS(M',C")
n

P C /\ PARAM(M',C',i)
RETURN(M',C") C R
A\ THROW (M, C, pe, 0,0)
o€ EXCEPTIONS(M',C")
INIT (M, C,pc,c)
t := java.lang.ExceptionInInitializerError
M’ :=t.<init>(java.lang.Throwable)
e:= OBJECT (M, pc,t)
c s class = /\
0€EXCEPTIONS(c.<clinit>)
THROW (M, C, pc,0,0) type(o) < java.lang.Error
CALL(M,pe, M’ e,,,0)
THROW (M, C,pc,e,0)

else

THROW (M, C, pc,0,n)
EH_START(M,n) < pc
Ape < EH_END(M, n)
NEH_TYPE(M,n) = NULL
Viype(o) < EH_TYPE(M,n))
THROW (M, C,pc,0,n + 1) n< EH_MAX —1
|0 € EXCEPTIONS (M, C) else

N R(M, C, pe,i) C
R(M,C, EH_PC(M,n),i)
S(M,C, EH_PC(M,n),0)

RTE(M,C, pc,t)

THROW (M, C,pc, OBJECT (M, pc,t),0)
type(OBJECT (M, pc,t)) =t
LE(M,C, pe,t)

THROW (M, C,pc, OBJECT (M, pc,t),0)
type(OBJECT (M, pe,t)) =t

Figure 5.5: Definition of rules used in the intra-procedural analysis
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ANALYSIS_DONE := 0
while ANALYSIS_NEEDED # ANALYSIS_DONE
V(M,C) € ANALYSIS_NEEDED \ ANALYSIS_DONE:
ANALYSE(M, C)
ANALYSIS_DONE := ANALYSIS_DONE U (M,C)

Figure 5.6: Inter-procedural fix-point iteration

constraints as the usual version except for the offsets to the program counter,
they were not displayed.

5.3 Inter-Procedural Analysis

For the inter-procedural analysis, it is necessary to analyze all methods
reachable by one method. The constraints generated by the intra-procedural
analysis have been prepared for an intra-procedural analysis so that con-
straints from multiple intra-procedural analyzes can be combined into one
constraint system. The remaining task is to determine, which methods can
be reached, so their constraints must be included. This is generally called
call graph construction and there are various algorithms for it (an overview
can be found in [51]). Here, the call graph is constructed on the fly. In
bytecode all method are called by invoke* instructions, which generate a
CALL rule and this rule puts a pair of method and context into a set called
ANALYSED_NEEDED. A simple fix-point iteration (figure [5.6]) can then
be used to include all reachable methods. Existence of this fix-point de-
pends on the function new_context, which is used in CALL. This function
can be used to do an analysis context- or object-sensitive. A simple function
new_context(M,C, pc) = EMPTY that will perform an context- or object-
insensitive must be used for Snelting/Tip. For this function, the existence
of the fix-point is guaranteed, as the number of methods is always limited.

5.4 Whole Program Analysis

The next step is the whole program analysis. Instead of handling individ-
ual functions, it analyzes a complete program. The analysis is identical to
an inter-procedural analysis starting at the program entry point. Java pro-
grams are not monolithic executables with a defined entry method, but a
set of classes providing multiple possible entry methods. Usually the user
chooses the entry point explicitly by providing the name of class which is
searched for a main function. Classes derived from java.applet.Applet
may additionally be started by an applet viewer. A set of class files may be
distributed as a .jar file, giving the impression of a monolithic program,
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but the jar file just contains the name of the class used as entry point for the
java -jar filename syntax. The jar file may still contain different entry
points and these can still be used by a user with different command-line
options.

For this analysis the user must specify one or multiple entry functions,
which are analyzed first and the inter-procedural analysis then includes ev-
erything reachable from these classes automatically. It would be possible to
automatically extract all possible entry points from a given set of classes,
but this is not always desirable, as some of these entry points may be debug
or test utilities for the containing class, having little to do with the analyzed
program.

5.4.1 Stubs

The analysis described so far is sufficient to analyze any program if the
complete program code is available in Java bytecode. Unfortunately Java
bytecode has the possibility to allow methods to be implemented in other
languages (using the native keyword). Parts of the library for Sun’s JDK
are written in C. A hybrid C/Java analysis might be possible, but this will
require a lot of work and seems like overkill, because native methods are an
exception, not the common case.

However, they still must be taken care of. Simply ignoring native meth-
ods will result in wrong analysis results, even for trivial programs.

class Sample {
public String toString() {
return "a sample";

}

public static void main(String args[]) {
System.out.println(new Sample());
}
+

Inspection of the library reveals, that the field java.lang.System.out is
initialized inside a native method, which is called within the class constructor
of java.lang.System. Ignoring this method will leave the field initialized
with a dummy objects, which will not call toString for an object passed to
println. Thus the call to toString for the parameter object is completely
omitted, resulting in an incomplete call graph.

A common technique to handle these kinds of problems are stubs. A
stub is a replacement function for a native method. It is written in Java and
will be analyzed instead of the native method. It must behave identically
as far as the analysis is concerned: it will access the same members, call the
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same methods, throw and catch the same exceptions. As an example, the
stub for java.lang.System.arraycopy is given:

public static void
arraycopy(Object src, int src_position,
Object dst, int dst_position,
int length)
{
((Object[])dst) [0]=((Object [])src) [0];
}

For the analysis, most important is the data flow from the content
of src to the content of dst. As array indexes are ignored by the anal-
ysis anyway, any index will be sufficient, there is no reason to build a
full semantically identically loop. The three exceptions which are speci-
fied for the method (IndexOutOfBoundsException, ArrayStoreException,
NullPointerException) are automatically included as they may be thrown
also by the bytecode instructions for array access. The stubs throws an
additional method CastClassException, but this is fine for a conservative
approximation.

The majority of the stubs are simple and easy, however they sometimes
get complicated. They can be created from the methods specification or the
implementation. For the Snelting/Tip analysis it is important, that those
stubs contain all member accesses and assignment that may happen within
the original method.

5.4.2 A Conservative Approximation of Unanalyzed Code

Sometimes it may not be possible to provide a stub for a native method.
In these cases a conservative approximation requires to assume that the
unknown code will do “everything possible”. This generally worsens analysis
results significantly, so it is not suitable as a general replacement for writing
stubs.

“Everything possible” includes calling of methods, reading and writing
of fields or array contents and throwing of arbitrary exceptions. As a worst
case, it must be assumed that all unanalyzed methods are communicating
with each other. A reference passed as a parameter to one methods may
appear as result of another method. Native code can also create new objects.
Depending on the signature of the unanalyzed method, this has huge impact.
If the return type of unanalyzed methods is java.lang.0Object, it must be
assumed, that the methods may return an instance of every class visible to
the analysis. As this might result in loading of hundreds of classes even for
small programs is it unpractical. The best solution is to avoid unanalyzed
methods and provide stubs. An alternative is to use an heuristic approach



86 CHAPTER 5. AN ANALYSIS OF JAVA-BYTECODE

o€ UNANALYZED
N=rel) o ¢ UNANALYZED,
o€ UNANALYZED;
o€ UNANALYZED
o€ UNANALYZED
Ay [ is a non static field in type(o)

— UNANALYZED (s = FIELD (o, f)
o€ UNANALYZED
JCONTENT (0)CONTENT (o) = UNANALYZED
o€ UNANALYZED

A,,, m is a method in type(o) =
o € THIS(m, EMPTY)
Ni=1..params(m) UNANALYZED rpagam(m) <
PARAM (M, EMPTY)
RETURN (m, EMPTY) C UNANALYZED
EXCEPTIONS(M,EMPTY) C UNANALYZED

Figure 5.7: Conservative approximation of unanalyzed code

to reduce the number of possible created objects and risk an invalid analysis
result.

Figure 5.7 shows the rules for handling with unanalyzed code. There is
a general set UNANALYZED which contains all objects that may leave the
analyzed code. Then there are type-specific sets UNANALYZED, containing
only a subset of UNANALYZED that is assignment compatible to ¢. For
all objects of UNANALYZED, all their fields and content for arrays, are
considered part of UNANALYZED. Additionally, all of their methods can
be called with any objects from UNANALYZED as parameter.

5.4.3 Smart Stubs

Sometimes it is not possible to write a stub for a native method in Java. A
simple example might be a functions just made native to bypass access re-
strictions? or static typing. Additionally, the whole functionality of reflection
falls into this category. Instead of creating stubs for those methods, special
constraints can be added to the constraint system. The stubs example from
above can be expressed as:

3e.g. sun.awt.SunToolkit.getPrivateKey



5.5. SNELTING/TIP FOR THIS ANALYSIS 87

getfield fisin M at pc
/\ (z, f) € StaticMemberAccess(P)
z€getrow(S(M,C,pc,0))
putfield f isin M at pc
/\ (z, f) € StaticMemberAccess(P)
z€getrow(S(M,C,pc,1))
invokeinterface m is in M at pc
/\ (x,m) € DynamicMemberAccess(P)
xegetrow(S(M,C,pc, PARAMS (M)))
invokespecial mis in M at pc
/\ (x,m) € StaticMemberAccess(P)
zegetrow(S(M,C,pc, PARAMS(M)))
invokevirtual m is in M at pc
/\ (x,m) € DynamicMemberAccess(P)
z€egetrow(S(M,C,pc, PARAMS(M)))

Figure 5.8: Constraints for collecting member accesses

CALL(M,pc, java.lang.System.arraycopy, R, T, P, P2, P3, Py, Ps)

AN A

s€P1 deP3 0c CONTENT (s)
type(s) < content(type(o)) = o € CONTENT(d)
RTE(M, pc, IndexOut0fBoundsException)
RTE(M, pc, ArrayStoreException)
RTE(M, pc,NullPointerException)

As this version works directly on the sets used as parameters it is more
precise than the Java stub version, which will pass the content of every
source array to every destination array ignoring whether a specific pair of
arrays will be used together in one call or not. The deficit of the Java
version can be overcome by analyzing the stub multiple times in different
calling contexts.

5.5 Snelting/Tip for this Analysis

The analysis presented so far creates only the points-to sets and assignments,
but does not collect member accesses. This can be simply done with the rules
in figure 5.8l These five rules cover all member accessing operations, get the
objects used as this-pointers from the stack and use the getrow function
to translate the stack content into table rows. Depending on the kind of
binding used, the results are put into the corresponding member access set.

For non-member accesses table entries will be created by the rules given
in chapter Bl
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5.6 Reflection

Reflection refers to a part of the Java API, that enables a user to create an
object of a type that is calculated at run-time. Types are represented at run-
time as instances of java.lang.Class, which can be obtained from another
object or by a class name as a string. Reflection is a serious problem for the
conservative approximation of a static analysis, as in general every class can
be instantiated which results in huge call graphs and analysis results even
for small programs.

The usual approach is to force the user to specify which classes can be
created at each call site to reflection [49, 37] and therefore basically ignore
reflection. But there are at least some things that can and should be done
automatically: The java.lang.Class object used to create a new instance
of an arbitrary class, must be created somewhere in the program. If it is
obtained from an other object, the type it represents is known to be the
type of that object.

If it is obtained from a string, there is a possibility, that this string is
a constant and then the type is known, too. A constant string to create
this object is more often used, than one would think, as the Java compiler
translates the .class operator into calls to reflection. If a Java program
contains

Class c=A.class;
it is translated into something like:
Class c=Class.forName("A");

These strings are constants in Java bytecode. Only if the content of
the string is not known, a fall back to user-specified types or a worst case
assumption must be made.

Rules for this system can be seen in figure Without any further
addition, the OBJECTCLASS objects will only be created for classes whose
type is queried by getClass at run-time. This is not a conservative approx-
imation and relies on the user if other classes will be instantiated within the
program. A real conservative approximation would require to creation the
OBJECTCLASS objects for any known class, which results in an unaccept-
able increase in analysis cost.

The implementation contains another useful heuristic, which is not for-
malized here: If an object created by newInstance reaches a type-cast to

4The real transformation is more complicated due to exception handling and caching
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CALL(M,pc, java.lang.Class.getClass, R, T, P;)
Noecp, OBJECTCLASS (type(o)) € R
Noep, CLASS(OBJECTCLASS (type(o))) = type(o)
/\OEP1 [NIT(Mv pe, type(o))

Noep, OBJECTCLASS (type(o)) € UNANALYZED
RTE(M, pc, java.lang.LinkageError)
RTE(M, pc, java.lang.ExceptionInInitializer)
RTE(M, pc, java.lang.ClassNotFoundException)

CALL(M,pc,java.lang.Class.newInstance, R,T)
Nocr OBJECT (M, pc, CLASS(0)) € R
Noer type(OBJECT (M, pc, CLASS(0))) = CLASS (o)
RTE(M, pc, java.lang.InstantiationException)
RTE(M, pc, java.lang.IllegalAccessException)

CALL(M,pc, java.lang.Class.forName, R, T, P;)
OBJECTCLASS(VALUE(0)) € R 3VALUE(o)
Pocr UNANALYZED jaya.1ang.c1ass © R else
RTE(M, pc, java.lang.LinkageError)
RTE(M, pc, java.lang.ExceptionInInitializer)
RTE(M, pc, java.lang.ClassNotFoundException)

Figure 5.9: Rules for approximating reflection

a type t somewhere in the program, OBJECTCLASS objects for all user-
defined classes ¢’ with t < t are created. This is based on the observa-
tion, that objects created with reflection are rarely used without being down
casted, as without a cast, only the methods of java.lang.0Object are avail-
able. The limitation to user-defined classes is arbitrary and prevents that
a cast to a library type (e.g. java.lang.Comparable) may result in the
creation of far too may objects.

The system presented here only handles a very small amount of the
whole reflection API. In order to fully support reflection with regards to
Snelting/Tip, the whole API must be implemented, as there are also reflec-
tion methods to perform dynamic type-checks for that semantics must be
preserved. Access to other constructors, methods and fields can be handled
in a similar way to the approach to classes here: for all of them special
objects that are tied to the corresponding members must be created. As
methods and constructors use arrays to pass information, a more detailed
analysis which analyzes array content with higher precision might be useful.
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All of these features are currently not contained in the analysis, as they are
rarely used in most programs, whereas the simple features of reflection seem
to be very commonly used.

5.7 Contexts

The analysis is prepared for the handling of context- and object-sensitivity
as described in chapter @l Details about these techniques are not embedded
into the analysis, instead all sets contain a variable C' in their name, which
makes it easy to analyze a method multiple times with the intra-procedural
analysis by supplying different a C' every time. As the increased precision
of both, context- and object-sensitivity is based on having multiple points-
to sets for the same pointer, special knowledge about the nature of the
context must not be contained in the intra-procedural analysis, but in the
new_context function. This function has to decide what context to use for
the target of each method call within the program.

Other forms of contexts may also be possible. In a Java program, a
possible context would be the thread a method is executed in (although this
is similar to object-sensitivity) and then utilized by a smart stub for the
method java.lang.Thread.currentThread (which returns the object for
the current thread).

As context- and object-sensitivity proved incompatible with the Snelt-
ing/Tip analysis, similar results seemed probable for other forms of contexts
or sensitivity too and this area was not researched in depths.

5.8 Differences to a Real Java Virtual Machine

Although a lot of care has been taken to make the analysis as similar as
possible to a real virtual machine, some differences remain. In JDK 1.5,
the JVM loads 292 classes before loading the main class specified on the
command line. The analysis presented here will not do this, but only load
classes that are required for the execution of the program. Loading of these
classes is not mandated by the specification of the virtual machine[24], so
despite these difference, this analysis can be claimed to be correct. E.g.
a real JVM will initialize java.lang.System before execution of the main
method, whereas the analysis will initialize it only if System is really used
inside the program.

5.9 Implementation

The actual implementation does not use an explicit constraint solver. The
sets are represented as nodes in a graph and edges indicate subset relations
between sets. All sets for native types are left out from the beginning to
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save space. Sets with only one relation to a sub- or superset use a shared
representation of the sets content to avoid unnecessary duplication. This is
especially efficient for sets modeling local variables, as these sets are usually
changed by only a few instructions of each method. All conditional con-
straints are attached to the nodes of the graph. As soon as the content of
the set is changed, the constraints are rechecked. Source-code level local
variables are excluded from meta-sets per default in order to have identical
results for bytecode with or without debugging information. In addition,
this has a similar result to transforming the bytecode of a method into sin-
gle static assignment form, which enhances analysis results. This analysis
is fast in practice and the code analysis alone (including detecting member
accesses, but without propagating points-to information) took less than a
second on a machine four years ago@. If points-to propagation is included,
the time for analyzing a single method depends almost completely on the
time of the propagation.

5800 MHz Athlon, 256 MB RAM, Redhat Linux 7.1
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Chapter 6

Dynamic Snelting/Tip

Dynamic program analysis is an alternative to static program analysis. In-
stead of making statements about certain properties of a program that are
true for every possible program run, a dynamic analysis observes these prop-
erties while running the program. This can be helpful if a static analysis is
either to expensive or too imprecise and the analysis results are not required
to hold for every program run.

For Snelting/Tip a dynamic analysis provides two advantages: A dy-
namic analysis avoids any scalability issues with the points-to analysis and
it solves all problems concerning the use of reflection, even without manual
input by the user.

6.1 Creating the Table at Run-Time

The main limitation of the static analysis is the memory consumption of
the points-to graph. To avoid this, the dynamic analysis omits pointers
completely and focuses only on member access through objects. This is a
deliberate limitation, there are other dynamic analysis which take pointers
and points-to into account|20].

The base for a dynamic analysis is a number of program runs:

Definition 21 Let R be an arbitrary number of program executions for a
program P. Then s € R is true iff s is a statement in P and s is executed

during R. For all variables x1, ..., x, used in s, R will provide sets of objects
R(z1),...,R(xy,) which contain all objects that the variables may reference
in R.

In order to keep results from dynamic and static analysis as interchange-
able as possible, the same notation will be used for both.

Definition 22 The sets of pointers and objects for a dynamically analyzed
program P are defined as follows:
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Pointers(P) := {}
Objects(P) := {s|new Cin P at s and is executed in R
type(s) = C,C is a class in P}

As pointers are omitted from the analysis, member declarations become
redundant and only method definitions are used.

Definition 23 Member declarations and definitions for a dynamically an-

alyzed program P are defined as follows (constructors are not considered

methods):
MemberDcls(P) := {}
MemberDefs(P) := {d

ef (C.m)|m is not an abstract method in C,
C is a class in P}

Compared to the static analysis, table entries for member access can be
generated very easily:

Definition 24 The table entries for a dynamically analyzed program P due
to member access operations are defined as follows:

p.m occurs in P and is reached in R with o € R(p)
X := LookupDefinition(type(o), m)
(o,def(X.m))eT

The reduced complexity for accesses is caused by the omission of point-
ers. Removing pointers also removes static types, making the whole lookup
procedure easier.

The removal of pointers also removes assignments, because the left hand
side of an assignments in Java can only be a pointer in Java.

Definition 25 The set of assignments for a program P is defined as follows:

Assignments(P) = {}

The rest of the analysis remains theoretically unchanged, but in prac-
tice becomes easier, too. The omission of assignments and the implications
generated for them removes the requirement to do a fix-point iteration for
creation of the final table. But as this iteration is not very expensive, this
is only a minor benefit.

Please notice that the lattice created from a table without pointers is
different from the lattice created from a table where pointers are included
for propagation, but omitted for lattice generation.

The dynamic analysis does not make any assumptions about the number
of program runs used to extract information for the table. A single run is
sufficient, but results from multiple runs can be easily integrated. Of course,
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class A {
void £() {3}
void g(O {}

by
I.x.)(-)lean b=... / \
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a=new A(Q); // A2 \ /
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Figure 6.1: Example program for limitations of the dynamic analysis

if multiple runs are combined and provide a better coverage of the analyzed
program, the resulting class hierarchy will be more general and more similar
to the result of the static analysis. Usually a test suite for the analyzed
program should be used, as in general test suites are built to cover as much
code as possible of the program. A useful minimum should at least cover all
new statements within the program.

6.2 Limitations

It should be quite obvious that the omission of pointers and member dec-
larations has an effect on the created class hierarchy. Figure shows a
small example program and the concept lattice resulting from the dynamic
analysism In this program, the original class A will be horizontally split into
a class containing only member f and another class containing only g, as
for all program runs, Al will only access f and A2 will only access g. At
least a common supertype for A1 and A2 is required in order to provide a
new type for the pointer a. A static analysis is usually not able to find out
the access pattern and creates only one type for A1 and A2.

It is important to notice that this effect is not exclusively caused by
the omission of pointers and declarations. The result from a (hypothetical)
dynamic analysis including these can be seen in figure Here a type for
a exists, but the types for A1 and A2 are abstract and thus the whole class
hierarchy not realizable.

Lassuming multiple program runs where b is at least once true and once false.
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dcl(A.f)
dcl(A.g)

7\

def(A.g) def(A.f)

e

Figure 6.2: Class hierarchy of figure including pointers

It is interesting to see that the effects encountered here produce the same
kind of “defects” in class hierarchies that some enhancements for the points-
to analysis already did. Of course the flow-sensitivity that broke the static
points-to analysis for Snelting/Tip, is automatically present in a dynamic
analysis and the same is true for context- and object- sensitivity. Unfortu-
nately, the dynamic analysis has far fewer ways, to “fix” these problems.

Still, the dynamic variant can be useful to find out, how objects are
used within a program and get practical suggestions for modifications to the
class hierarchy. On a JVM with all static type-checking removed, the class
hierarchy would still be valid and preserve the semantics of the original pro-
gram. This indicates that the dynamic analysis can be used for application
of Snelting/Tip to languages which do not suffer from strong static type
systems, e.g. Smalltalk.

6.3 Implementation

The implementation was done by instrumenting the bytecode interpreter
Java virtual machine kaffé2. The reason for choosing this JVM was its plain
structure and easy to understand code. In fact, most of the instrumentation
for kaffe was already done, before the compilation of Sun’s JVM (which
was started in parallel) even finished. The instrumentation uses a compact
representation in memory and causes very low run-time overhead (less than

Zwww.kaffe. org


www.kaffe.org
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10 percent). The result is written into a single file, where basically each line
represents a table entry. Multiple of these files can be merged by a small
tool into the same output format produced by the static analysis. This kind
of instrumentation should be easily applicable to other virtual machines as
well.
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Chapter 7

Semantic Preserving
Refactoring

The original article by Snelting and Tip[43] already gives ideas for a tool
that takes the result of the analysis and allows interactive restructuring of
the class hierarchy. The target audience for such a tool is an engineer who
is familiar with the code, but is not required to have in-depth knowledge
about the Snelting/Tip analysis.

Besides providing the editing capability, such a tools must still check
if manual changes to the class hierarchy will affect the program semantics.
Except for trivial programs, even someone familiar with the source code
of an analyzed program, might have problems to decide, whether e.g. the
moving of a method up in the lattice will affect the semantics of the program.
So it is one task of the tool to check the correctness of manually applied
transformations automatically and give the user appropriate feedback.

As knowledge of all details of the Snelting/Tip analysis is a very high
requirement for the user of such a tool, it seems more appropriate to create
a user interface, which hides the theoretical background as much as possible.
The concept lattice can be displayed in a way similar to the display of class
hierarchies in UML-tools. The bottom element can be removed and dead
members displayed in a separate location.

For the user interface this difference may just seem like cosmetics, but it
has huge implications on what such a tools does behind the scenes. Such a
tool can be done in two ways:

e The tool uses the original data structures from the Snelting/Tip anal-
ysis and every modification to the class hierarchy is translated into a
manipulation of these data structures. After manipulation, a new class
hierarchy can be calculated which incorporates the changes wanted by
the user.

e The tool uses alternate data structures which are initialized with the
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results of the analysis. These data structures allow checking if a modifi-
cation of the class hierarchy affects program semantics and are directly
manipulated by applying such modifications.

At first glance, keeping the data structures from the analysis seems the
easier way, as no second set of data structures is needed. But in practice this
approach provides some problems. If e.g. the user moves a member up in the
hierarchy, new table entries will be generated, the iteration must be re-run
and then a new concept lattice must be calculated. This calculation is too
expensive in practice (see for running times of the lattice construction)
and there is no incremental algorithm which would make use of the fact, that
only a minor change was done to the table. Even if creating the concept
lattice would be fast, a delta between the old lattice and new lattice is needed
to update the graphical display - otherwise it would be required to create
a new graphical layout for the new lattice, which might result in bigger
changes to the layout than the user expected.

After some very unsatisfying experiments with such an editor (it was
basically unusable as calculating the lattice increased response time to user
actions dramatically), the second approach was chosen. Modifications by
the user are handled in a similar way to transactions in database: before
a commit it is checked if the modified hierarchy will modify the program
semantic compared to the semantic of the initial class hierarchy created by
the concept analysis. If there is a difference, the transaction is rolled back,
otherwise the commit can be applied.

While this provides a big improvement in terms of response time and
therefor usability, it also provides some drawbacks. (1) Some operations
which are easy to implement on the original table (e.g. adding a new as-
signment) are hard to do with this model. They can be done manually, but
hardly automatically. (2) Potential implications between table rows, that
would be automatically created after a manipulation of the table, must be
added manually. If such an implication is required for the preservation of the
program semantic, it must be added manually by the user. This is however,
not a big problem in practice.

7.1 Class Hierarchy for a Concept Lattice

The concept lattice can be transformed into a directed acyclic graph. As
explained earlier, this is a more appropriate representation for a class hi-
erarchy, as it can directly be manipulated by the user and provides more
freedom (every concept lattice can be transformed into a graph, but not
vice versa).

A class hierarchy C' = (G, Attrs, Objs) based on the concept lattice £(T)
is defined as:
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G=(N,E)
N ={ncce LT)N(c# LVIo:v(o)=c)}
E ={(ne,Ney)|Me; € Nyng, € Nycog < c1 APegica <c3 <eci}

This graph omits the bottom node if it is not labeled with any object
(which is the usual case), because it will not be a useful class in general.

Nodes of the graph are labeled with the attributes and objects from the
concept lattice as follows:

Attrs(n.) = {a|u(a) = ¢

—

Some additional helper definitions are used:

n<n' &n=n"VVni,ng..,ni:(n,n) € EA(n,ny) € EN..A

(ni,n) € E

Class(a) = {nla € Attrs(n)}
Type(0) = {nlo € Objs(n)}

n<n’
Sigs(n) = U {m|3X : def (X.m) € Attrs(n') V dcl(X.m) € Attrs(n’)}

n’Eﬁ\Lfgnl
Checks(n) = U {(T, M, pc)|check(T, M, pc,r) € Attrs(n’)}

n’eN

7.2 The Lookup Algorithm

The class hierarchy derived from the concept lattices will utilize multiple
inheritance for almost all non-trivial programs, although the original Java
programs did not use multiple inheritance. This is a result of the minimality
of the concept lattice. While this may be useful to gain insight on the object
and class usage, it is not appropriate in a restructuring proposal for a Java
program. The problem of removing multiple inheritance will be tackled later
(see [B)), another problem is relevant first.

In a class hierarchy with multiple inheritance, it is sometimes not ob-
vious, which method implementation will be chosen for a class if different
implementations are visible in different superclasses. Snelting/Tip suggested
using the lookup algorithm that is used by C++ [I]. A version of that al-
gorithm that works on our notion of graphs and member declaration and
definition, is shown in figure [[.Jl The function lookup returns all candidates
matching signature m, starting from node n.

Of course this algorithm is an obvious candidate for using it for Java
too. But closer inspection reveals, that this algorithm is not compatible
with Java’s semantics for interfaces. Interfaces are similar to C++ classes
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hides(a,b) :=
if Type(a) = Type(b) then
return a = def(C.m) A b= dcl(D.m)
else
return Type(a) < Type(b)
fi

lookup(n,m) :=
cand :={aln < Type(a) A
(a = def(C.m) Va = del(C.m)) }

return {a € cand AP b € cand : hides(b,a) }
Figure 7.1: Lookup algorithm for C+-+

containing only abstract method declarations and handled that way in the
analysis. The relevant difference in this context is their influence on method
lookup in the context of multiple inheritance. During lookup, an abstract
method in C++ is treated equally to a method definition. In Java, a method
declared in an interface will not override a method definition from a su-
perclass and only add a method declaration if a method with a matching
signature is not already present.

Figure shows a small example program. The class B inherits an
implementation of the method f from its superclass A and a declaration
from the interface I. In the corresponding C++ program (figure [T.3) B
is an abstract class and cannot be instantiated (the program cannot be
compiled).

It is easy to adjust the algorithm for Java. Figure [.4] shows a revised
hides. Here, possible overwriting of a definition by a declaration from an
interface is handled as a special case. This addition will not affect the result
of lookup, if the result was unambiguous with the original algorithm, but
change some cases from ambiguous to unambiguous (like the given example).

7.3 Preserving Semantics for Modifications

The class hierarchy represented by the graph created initially from the con-
cept lattice. If the graph is then modified, it must be explicitly checked,
whether the modification preserves semantics. Modification in this context
means every possible change to the content of C.

The usual way of modifying a class hierarchy would be to apply a number
of small changes one after another, creating a series of hierarchies C7; —
Cy — (35 — ... — C,. It is possible to check if semantics get broken for each
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7.3. PRESERVING SEMANTICS FOR MODIFICATIONS

class A {
public void £() {}
¥
interface I {
void £();
}
class B extends A implements I {
¥
class Test {
static A a;
static I i;

public static void main(String args[]) {
a=new AQ);
i=new B();

a.f(Q;
i.fQ);

Figure 7.2: Multiple inheritance with interfaces

class A {
public:
virtual void £() {}
};
class I {
public:
virtual void f() = 0;
};
class B : public A, public I {
};

static A *a;
static I *i;

int main(int,char *x) {
a=new A();

i=new B(); // compile error

a->f();
i->f();

Figure 7.3: Multiple inheritance with abstract classes
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hides(a,b) :=

if a=def(C.m) AN b=dcl(D.m) A D is an interface
return {rue

else if b=def(C.m) N a=dcl(D.m) A D is an interface
return false

else if Type(a) = Type(b) then
return a = def(C.m) A b= del(D.m)

else
return Type(a) < Type(d)

fi

Figure 7.4: Lookup algorithm for Java

step C; — (41, but this is too strict, as some modifications may not be
revertible as C;11 — C; might not be a semantics preserving transformation.
Instead, each C} is checked against C', making it possible to revert a previous
transformation.

In order for a modified class hierarchy C’ not to break the semantics of
an original class hierarchy C, a number of conditions must be fulfilled. In
the following, G', N', E', Attrs’, Objs’, Class’, Type', Sigs’, Checks’, lookup’
and <’ refer to the modified hierarchy instead of the original hierarchy.

No pointer or object is removed:

/\ /\ I’ € N’ : 0 € Objs' () (7.1)

c€N o€ Objs(c)
No pointer looses a member declaration:

o is a pointer

/\ /\ /\ lookup' ( Type' (o), m) # {} (7.2)

ceEN 0€O0bjs(c) meSigs(Type(o))

No object or pointer looses a member definition:

/\ /\ /\ Type (o) < Class(x) = Type'(0) <" Class'(x) (7.3)
ceN 0€Objs(c) x=def (X.m)

Assignments must stay type-correct:

A Type'(q) <" Type' (p) (7.4)
(p,q)€ Assignments(P)
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No class for an object becomes abstract:

o is an object

/\ /\ /\ 3C : del(C.m) € lookup’( Type' (0),m) (7.5)

cEN  0€O0bjs(c) meSigs(Type(o’))
Method lookup for all objects is unchanged:

o is an object

/\ /\ /\ 3C : C.m is a non-static method A (7.6)
cEN 0€O0bjs(c) meSigs(Type(o))

lookup( Type(0), m) = {def (C.m)} = lookup’( Type'(0), m) = {def (C.m)}

Successful type-checks stay successful:

/\ /\ /\ Type(o) < Class(check(T, M, pc, true)) = (7.7)
ceN o€ Objs(c) T,M,pc

Type' (o) <" Class'(check(T, M, pe, true))
Unsuccessful type-checks do not become successful:

/\ /\ /\ Type(o) < Class(check(T, M, pc, false)) = (7.8)
ceN o€ Objs(c) T,M,pc

Type'(0) £ Class' (check(T, M, pc, true))

A T element exists in the class hierarchy:

VteN N\ c<'t (7.9)

ceN’

The first three conditions [7.1], and ensure the completeness of
all objects and pointers. It terms of the table T', they guarantee that no
row has been removed from 7" and no entry (relevant) (o,a) € T has been
removed.

The condition [Z4] which checks if all assignments stay type-correct,
refers back to the set of assignments from the analysis, as this set is smaller
and thus less restrictive, than an assignments set inferred from existing
subtype-relations in C' would be.

The must important conditions for preserving semantics are [7.6], [7.7] and
[[.8, as they guarantee that the behavior of dynamic binding and type-
checks remain unchanged after the modification. plays the same role
as the hiding implications in the table. While the implications forced a
specific def to be the lowest reachable for a specific object, this condition
only checks if this was changed. Conditions [[.7] and [.8 are asymmetrical,
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as both check only against the true attribute. Alternately, the check in
[7.8 can be done against the false attribute, but then an additional check
Type' (check! (T, M, pe, false)) £ Type'(check! (T, M, pe, true)) is required.

Condition ensures that every class can be instantiated, if an object
of that class exists.

The final condition is required as an artifact of the implementation.
As Java programs always have java.lang.0Object on top of every class hier-
archy, adding this condition is no relevant restriction of the class hierarchy.

The set of conditions looks very restrictive at first glance, but it is not.
All objects and pointers can be extended with additional member decla-
rations or definitions. In fact, pointer may be changed to use a different
declaration (or even a definition) than they did originally, which was not
possible using the original table and concept lattice.

A straight forward implementation of a check for these conditions may
result in a very expensive implementation. The highest cost is caused by
the lookup function, which has to traverse the graph to a certain degree.
In many Java programs, calls to the method toString and hashCode will
be found and many classes don’t overwrite the default implementation in
java.lang.0bject. In this case, every call to lookup has to traverse the
class hierarchy from the class of the object to the top of the hierarchy where
the implementations can be found.

As this is a very relevant problem in practice, the next section will con-
tain special data structures and algorithms to implement the check these
conditions in an efficient way.

7.4 Efficient Check for Broken Semantics

The required conditions to ensure, that a modification does not break the
program semantic, are quiet big and must be carefully implemented in order
to be efficient. T'wo observations helped in speeding up this process:

(1) The semantics of a modified hierarchy C; is always compared to the
original hierarchy C'. As C stays unmodified the whole time, expensive calls
to functions like lookup can be cached.

(2) Many modifications from C; to Cjy; will be local changes and do
not affect all classes. A change to a class n only affects another class m if
m < n, so only these classes have to be rechecked.

7.4.1 Caching Semantic Information

As a cache for all semantic information of a class n, a structure V(n) =
(Sn, Dy, T},) is used, where S, is a set of class members that must be available
in n for static binding, D,, is a map which stores the result of lookup(m,n)
for each m, so D,,(m) = lookup(m,n). Similarly, T,, contains the type-check
attributes check(T', M, pc,r) for each (T, M, pc).
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Each V(n) does not need to be constructed individually, instead it can
be constructed from Attrs(n) and {V(m)|(m,n) € E}. This allows total
elimination of the usage of lookup, replacing the searching algorithm by a
constructive variant. This algorithm create_cache is shown in figure

7.4.2 Creating Incremental Caches

If a modification is made to a class hierarchy, obviously only the classes mod-
ified and the classes below these can be affected by those changes. Classes
above the modified classes remain unchanged and so does their cache V (n).
This can be used to construct the cache for a modified hierarchy faster, if
the set of modified nodes is known.

The algorithm for incremental construction assumes the cache of the
hierarchy before modification is still present in V', as well as the original set
of attributes for a node as Attrs’'(n). It takes a number of start nodes and
begins construction of new caches at these start nodes. Obviously, a node
was modified, if the modification changed its Objs or Atirs set, but also if an
incoming edge has been added or removed. The algorithm processes a node
only if all nodes above it have either been processed or were unaffected by
the change. Then a new cache is only constructed if the attribute of node
changed or the cache for one of its superclasses changed. Subclasses of the
node are marked for processing only if the cache for the node is changed:ﬂ.

7.4.3 Comparing Two Caches

The practical use of the caches presented is an easy way to determine whether
a class n’ € N’ from a modified hierarchy C’ can be used as a replacement
for a class n € N of the original hierarchy C. Two different versions of
comparison are required: for objects and pointers.

For objects it must be checked, whether all static members are still in-
cluded, the lookup for dynamic bound methods has not changed, the result
of type-checks have not changed and the class can still be instantiated. The
check for pointers is easier: Only the availability of static members and the
existences of at least a declaration for dynamic bound methods must be
checked.

The algorithm to compare two complete hierarchies is shown in figure
[7.91 With the assumption that an undefined result of Type will cause the
whole algorithm to fail, this algorithm checks all conditions presented earlier,
except for [[.4] and

An implementation of the algorithm lead to a tremendous speed up.
For medium sized class hierarchies (about 1000 classes), the algorithm to

!Depending on the cost of various functions involved and the size of the graph, it might
be faster to omit checking if the cache for a node has really changed and rebuild all caches
for nodes below it.
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type_hides(a,b) :=
return a = check(T, M, pc, true)

construct(n, pred) :=
Sy = U Sp U {ala € Attrs(n) A a = def(C.m)}
pEpred
cand := {}
Vm € Sigs(m)
cand := U Dp(m)U{ala € Attrs(n)Aa = def (C.m)Va = dcl(C.m)}
pEpred
Dy(m) :={a € cand A b € cand : hides(b,a)}

cand = {}
Y(T, M, pc) € Checks(m)
cand = U T,(T, M, pc) U{ala € Attrs(n) Na = check(T, M, pc,x)}
pEpred
T,.(T, M, pc) := {a € cand A b € cand : type_hides(b,a)}

create_cache() :=
append T to todo

while todo # {}
assign n to the first element of todo

remove first element of todo

pred := {p|(p,n) € E}

if A p € pred : not visisted(p)
construct(v, pred);

Vm € {m|(n,m) € E}
append m to todo

visited(n) = true

Figure 7.5: Construction algorithm for caches of semantic information
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create_cache_incremental(modified) :=
Vn € modified
append n to todo
Vne N
V(n):=V'(n)
while todo # {}
assign n to the first element of todo
remove first element of todo

if #p € todo : n<p then
pred := {p|(p,n) € E}

if Attrs(p) # Attrs’(p) Vv I pepred: V(p) # V'(p) then
construct(v, pred)

if V(p) # V'®) then
Vm € {m|(n,m) € E}
append m to todo
fi
fi
else
append n to todo
fi

Figure 7.6: Incremental construction of semantics information

compare_for_object(n,n') :=
if not S, C S/,
return false
V' m: D, has entry D,(m)
if not Dy(m) = {def(C.m)} = D!, (m)= {def(C.m)}
return false
¥V m: D!, hasentry D),(m) A D, hasno entry D,(m)
if 3 C: D!, (m)={def(C.m)}
return false
vV (T,M,pc): T, has entry T,(T,M,pc)
if not T,(T, M,pc) = {check(T, M, pc, true)} =
T! (T, M, pc) = {check(T, M, pc, true) }
return false
return {rue

Figure 7.7: Compatibility test for objects
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compare_for_pointer(n,n’) :=
if not S, C S/,
return false
if 3 m : D, hasentry D,(m) A D!, hasno entry D/, (m)
return false
return true

Figure 7.8: Compatibility test for pointers

compare_hierarchy (modified) :=
VneN : dm : n<m
if Jo € Objs(n) : o is object then
vn' € {n'|n' = Type'(0)}
if not compare_for_object(n,n’)
return false
fi
if Jo € Objs(n) : o is pointer then
vn' € {n'|n’ = Type' (o)}
if not compare_for_object(n,n’)
return false
fi

Figure 7.9: Compatibility test for whole hierarchy
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reconstruct library classes (see8.2)), was brought from multiple days running
time to a few seconds.
Multiple reasons are responsible for this speed up:

e The use of caches as replacement for lookup

e Doing incremental checking only for modified parts of the class hier-
archy

e Comparing groups of objects that have the same type instead of indi-
vidual objects

e The results for the < function were additionally cached

As alternative to caching, it was tried to replace <, which can be imple-
mented with depth-first or breads-first search, with a function of constant
complexity by calculating the transitive hull O(n?) upfront. Practice showed
that this initial overhead is too big, especially as the transitive hull must
to be rebuilt after each structural change to the graph, often causing high
overhead for small changes in the class hierarchy.
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Chapter 8

Refactoring Algorithms

This chapter describes methods and algorithms used to manipulate the class
hierarchy. The semantic preserving checks presented earlier were generic for
all possible modifications of the class hierarchy. In practice, manipulation
can be split into the basic actions, that actually modify N, E, Attrs or Objs
and more complex algorithms that are composed of these basic actions.

Almost all algorithms are presented in a slightly simplified form that
omits some checks required to deal with the fact that the algorithm is work-
ing on a graph that is currently changing. This was done to focus on the
nature of the algorithms and omit implementation details.

Not all algorithms automatically preserve semantics. Some of them make
modifications and then check if semantics are preserved. Of course, if not,
the modifications have to be reverted. In order to keep the algorithm code
free of this procedure, a special construct in pseudo code is used:

try
// make some modifications to graph here and check semantics
// if the end of the block is reached
success
// execute this code only if the modifications preserve semantics
failure
// automatically revert the changes made in the try block
// and execute this code

The success and failure blocks are optional, of course even with a
missing failure block, the changes are still reverted.
8.1 Basic Manipulation of the Class Hierarchy

The small functions shown in this section provide the basic blocks for all
following algorithms. These are the only functions actually modifying the
graph. Each functions describes the construction of a new graph C’ from
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C, based on additional parameters. While the first five algorithms are self-
explanatory and trivial, the other deserve a word of explanation. merge
collapses two classes into one. If these two classes do not have a direct inher-
itance relation all classes between the two are collapsed as well. All incoming
and outgoing edges to the collapsed classes are preserved. distribute re-
moves an attribute from a class and places it at all successors. This may
make an attribute appear multiple times in the class hierarchy. Currently,
this is only used for check(T, M, pc, false) attributes, as duplication of other
attributes is problematic and usually unwanted, as it results in code dupli-
cation. shortcut removes an class without attributes or objects by directly
connecting its sub- and superclasses.

move_attribute(n,a,n’) :=
Precondition: n,n' € N A a € Attrs(n)
N':=N
E':=F
Vme N : m#nAm#n : Attrs'(m):=Attrs(m)
Attrs'(n) :=Attrs(n) \ {a}
Attrs'(n') :=Attrs(n') U {a}
Objs’ :=0bjs

move_object(n,o,n’) :=
Precondition: n,n’ € N A o€ Objs(n)
N':=N
E':=FE
Attrs' :=Attrs
VmeN : m#nAm#n' : Objs'(m):=0bjs(m)
Objs'(n) :=0bjs(n) \ {a}
Objs'(n'):=0bjs(n’) U {0}

add_edge(n,m) :=
Precondition: n,me N A (n,m)¢FE
N':=N
E':=EU{(n,m)}
Attrs’ :=Attrs
Objs’ :=0bjs

remove_edge (n,m)) :=
Precondition: n,me N A (n,m)€E
N':=N
E':=E\{(n,m)}
Attrs' :=Attrs
Objs’ :=0bjs

add_node(n) :=
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Precondition: n¢ N
N':=N U {n}

E':=F

Attrs':=Attrs

Objs’ :=0bjs

merge(n,n’) :=
Precondition: n,n' € N A n#n’ A n' <n
remove:={m|m <n A m#n A n' <m}
N':=N\ remove
E':=E\ {(m,m/)|m € remove V m' € remove}
U{(n,m)|3(x,m) € E : z € remove A m & remove}
U{(m,n)|3(m,z) € E : x € remove A m & remove}
YmeN:m#n
Attrs'(m) :=Attrs(m)
Attrs'(m) :=Attrs(m) U|Jm € remove : Attrs(m)
VmeN:m#n
Objs'(m) :=0bjs(m)
Objs'(m):=0bjs(m) U|Jm € remove : Objs(m)

distribute(n,a) :=
Precondition: n€ N A a € Attrs(n)
N':=N
E':=FE
next:={m|(n,m) € E}
YVmeN : m#n A m¢next
Attrs'(m) :=Attrs(m)
vV m € next
Attrs'(m) :=Attrs(m) U {a}
Attrs'(n) :=Attrs(n) \ {a}
Objs’ :=0bjs

shortcut(n) :=
Precondition: ne€ N A Attrs(n) ={} N Objs(n) ={}
N':=N\ {n}
E':=E\{(m,m)) m=n Vv m'=n}
U{(m,m)|(m,n) e E A (n,m') € E}
Attrs' :=Attrs
Objs’ :=0bjs

8.2 Creation of Library Classes

As explained in section [B:8.2] a class hierarchy constructed from the concept
lattice will have the members of library classes scattered among different
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classes. But in almost all cases the refactored program is supposed to run
with the original class hierarchy, so it is required to create classes within the
new hierarchy that are equal to the original library classes.

The following algorithm will “collect” all member attributes for a class
and place them at the node containing the class attribute. In this process,
objects and pointers are merged to the same node.

add_above(c,t) :=
if (c,t) & aboves
add_node(abovel,)
aboves :=aboves U {(c,t)}

create_library_classes() :=
todo:={c|3n : all(c) € Attrs(n)}
done:={}

while Je € todo : ft € todo : t < ¢
todo :=todo \ {c}

// Step 1
made_smaller :={}
below :={n|n < Class(all(c))}
Vb € below:
Va € Attrs(b):
if a=del(X-m) V a=def(X.m)
V a = check(X, M, pc, true)
if c=X
if b # Class(all(c))
move_attribute(b, a, Class(all(c)))
made_smaller :=made_smaller U {b}
else if ¢ < X
add_above(c, X)
move_attribute(b, a, above’ )
made_smaller :=made_smaller U {b}
Vo € Objs(b):
if ¢ = type(o)
above :=above U {b}
else if ¢ < type(o)
add_above(c, type(0))
move_object(b, o, aboveéype(o))
made_smaller :=made_smaller U {b}
else if type(o) € done A b ¢ cleaned
if b # Class(all(c))
move_object(b, 0, Class(all(c)))
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made_smaller :=made_smaller U {b}

// Step 2
while 3 m € below \ above :m € N N m #n
merge(n,m)

// Step 3
while dm € made_smaller :m € N A (all(c),m) € E A
Attrs(m) ={} A Objs(m) = {}
shortcut(m)

// Step 4
Vp € {p|(p, Class(all(c))) € E}:
remove_edge(p, Class(all(c)))
Va € {a|(c,a) € aboves}:
add_edge(p, a)
Va € {a|(c,a) € aboves}:
add_edge(a, all(c))

cleaned :=cleaned U {n|n < Class(all(c))}
done:=done U {c}

The algorithm processes all library classes “bottom up”. Classes without
subclasses are processed first, then classes whose subclasses have already
been processed will be processed and java.lang.0bject will always be the
last class processed, as it is a superclass even to interfaces.

For each class ¢ 4 steps are performed.

In Step 1 all classes below Class(all(c)) are visited. For each class all
attributes and objects are traversed. An attribute is considered to belong
to a class, if it represents a member of that class or a check(T, M, pc, true)
type-check against that class. Attributes that belong to class ¢ are moved
to Class(all(c)). If an attribute belongs to a superclass of ¢, a new node is
created for that superclass and the attribute is moved there. These nodes
are called above and will be integrated into the inheritance hierarchy later.
Attributes belonging to subclasses of ¢ or not belonging to any class (like
check(T, M, pc, false) attributes) remain at their current nodes. For objects
the type of the object is checked. If the type is equal to ¢, the node is
tagged for merging. If the type of is object is a superclass of ¢, the object
must be an artificial object created to prevent two method definitions or
class attributes from appearing at the same node, as no usual object with
of type ¢ with ¢ < ¢ could have a table entry in the all(c) column as this is
not type-correct (e.g. an object of type java.lang.Object cannot access a
member of java.lang.String). Finally an object can be a subclass of ¢. If
the type is a non-library class, it is ignored, otherwise it must be a pointer
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(as an object cannot be moved above its original type due to the access of
constructors). These pointers are moved the same nodes used for attributes.
This is only required for library classes that are final, but it seems strange
if a pointer with a library type before the analysis gets a user-defined type
afterward.

In Step 2 the classes marked in the previous step are all collapsed into
Class(all(c)). This places e.g. all objects of type java.lang.String at the
node containing all members of this class. In contrast to attributes, objects
can only be moved up in the hierarchy by merging classes, as a simple move
will not guarantee that the new class still contains all attributes accessed
by the object. Here, this only applies to check(T, M, pc, false) attributes
(as all other attributes have already been moved to different classes), but of
course these are important too.

Step 3 tries to remove any empty subclasses of Class(all(c)) that may
have been created by moving attributes and objects.

Finally, step 4 integrates the nodes created in step 1 into the graph. All
incoming edges to Class(all(c)) are “routed” through the new nodes. These
nodes are temporary and will be removed during later iterations.

As this algorithm is hard to understand, an example will be given. Figure
Bl shows a sample input graph for the algorithm. Each node is split into
three parts: the name of node, its attributes and its objects. Attributes of
a class are displayed simplified by an upper letter and a number, objects as
lower letters and a number. For the original hierarchy inheritance relations
were ¢ < b < a, so the algorithm processes the classes in order ¢, b and a.
Figure shows the results of step 1 while processing class ¢. Members
from nodes 5 and 6 are moved to 4 and the newly created special nodes.
After the next step (figure B3]), these nodes are merged into 4, moving cl
up in the process. After step 4, the special nodes are integrated into graph
(figure B4). Now b is processed. Again, members are moved to new special
nodes and 3. Before step 3 (figure B.0]), the special nodes from the previous
steps are empty, but are marked for removal. The graph after b has been
fully processed can be seen in figure R.6 the final graph after a has been
processed in figure B.71

The worst case complexity of the algorithm is O(m x n), where n is the
number of nodes in the graph and m the number of library classes. However,
this is a very conservative approximation as the number of nodes n will
decrease during execution of the algorithm and the calculation of below will
traverse the whole graph only for java.lang.Object.

8.3 Automated Simplification

The concept lattices created by Snelting/Tip even for small programs are
very fine grained and thus create huge class hierarchies. In many cases this



8.3. AUTOMATED SIMPLIFICATION 119

1

all(A)
Al

/

2
A2
al
4 3
all(C) aE)
C1 B1
A4
bl
5 6
A3
co B2
c1 c2

Figure 8.1: Initial hierarchy

1 above(C,A)
all(A) A3
Al A4
B 3
ali(B)
A2 B1
al b1

\

/

4

all(C)
c1

Cc2

cl
c2

Figure 8.3: Processed C, step 2

above(C,B)

B2

1 above(C,A) above(C,B)
ali(a) A3
i ™ B2
2
A2
al
4 3
allc)
£ [
c2
b1
4
5 6
o c2

Figure 8.2: Processed C, step 1

1
all(A)
Al
2 3
2 allE)
al b1
above(C,A) above(C,B)
A3
A4 B2
4
all(C)
C1
c2
cl
c2

Figure 8.4: Processed C, step 4



120 CHAPTER 8. REFACTORING ALGORITHMS

1 above(B,A) 1
lI(A)
all(A) A3 a
Al Ad Al
/ 3 above(B,A)
2
all(B) 2:31
A2 B1
al B2
bl
above(C,A) above(C,B) 2 all(B)
A2 B1
al B2
\ '/ \ bl
4 4
all(C)
u o
c2 c2
cl
c2 2;
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level of granularity is not wanted. As making the hierarchy smaller by hand
may be too time consuming, an automated method is needed.

The following algorithms are heuristic approaches that are based on ob-
servation of case studies. They are mainly based on structural properties
of the graph and not necessarily on semantical information. While they
perform “well” (especially if different algorithms are used together), if their
quality is judged by the number of reduced classes, their modifications to the
class hierarchy may be questionable from a semantical point of view. The
decision, whether a given algorithm is suitable for application to a given
class hierarchy, must still be made by the user.

These algorithms assume that library classes have been processed with
the algorithm from the previous section. The main algorithm utilizes two
smaller algorithms and helper functions, which are presented first.

modifiable(n) :=
return 3Im: (m,n) €n A Pc: all(c) € Attrs(n)

The helper function modifiable determines if class can be modified by
the user. Library classes (recognizable by an all(c) attribute) and the top
element may not be modified.

merge_down_noobj(n) :=

if not modifiable(n)
return false

next:={m|(n,m) € E}

if |next| # 1
return false

if Objs(n) N ClassVars(P) # {}
return false

m:=only element of next

merge(n,m)

return f{rue

The function merge_down_noobj tries to merge a class with its single
subclass, if no instances of the class are created. This function is useful to
remove interfaces and abstract classes. As it ignores instanced classes, it will
not add additional members to objects and thus preserve the minimality of
the class hierarchy for objects.

But even the number of classes which have instances may be too high
and must be addressed. A second function takes care of this:

get_type(n) :=
t:=1
Va € Attr(n):
if a=dcl(X.m) V a=def(X.m)
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if t=_1
t:=X
else if t# X
return L
if t£ 1
return ¢
Va € Attr(n):
if a = check(T, M, pc,true) A a checks against t/
if t=_1
t:=
else if t #'
return L
return ¢

merge_similar(n) :=
prev:={m|(m,n) € E}
if |prev| # 1
return false
merge :=false
if Va € Attr(n) : a = class(T, M, pc, true)
merge :=true
if get_type(n) # L A get_type(n) = get_type(m)
merge:=true
if not merge
return false
m:=the only element of prev
if not modifiable(m)
return false
merge(m,n)
return true

merge_similar examines a class with a single superclass. If both contain
only attributes for members from the same original class, they are merged.
This includes attributes for member declarations and definitions, but also
attributes for successful type-checks. If they are, the classes are merged,
regardless of any objects or pointers they may have. This actually increases
the objects size, as additional members are added to objects, but helps if a
class got split into many small classes with no or only one member and lots
of inheritance relations.

The actual simplification algorithm makes use of these two small algo-
rithms.

simplify () :=
todo := N
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result : =false
while todo # {}
n = select one member of todo

todo:=todo \ {n}

try

changed : =merge_down_noobj(n)
success

if changed

result : =true
todo := todo U {m|(m,n) € E VvV (n,m) € E}

try
changed : =merge_similar(n)
success
if changed

result : =true
todo := todo U {m|(m,n) € E V (n,m) € E}
return result

simplify traverses all nodes of the class hierarchy and applies the al-
gorithms merge_down_noobj and merge_similar to all nodes. Nodes con-
nected to modified nodes are later checked again, until a fix-point is reached.
Neighbored nodes must be re-checked, as the algorithm may change the pre-
condition of having a single sub-/superclass for the two called algorithms.

In practice this algorithms reduces the number of classes for class hier-
archies with or without pointers greatly. Detailed numbers can be found in
the case studies section (I0.5]).

8.4 Removing Multiple Inheritance

Multiple inheritance is the general term used, if a class is allowed to in-
herit from two different classes. In contrast to C++, Java supports only a
limited version of multiple inheritance. Java distinguishes between classes
and interfaces, where interfaces may not contain fieldsl and implementa-
tions (member definition). Each class can have only one superclass, but is
not limited in the number of interfaces it implements.

Due to the minimality property of the concept analysis, the initial class
hierarchy can easily contain multiple inheritance even for member defini-
tions. Figure shows and example program and figure the resulting
class hierarchy. Without multiple inheritance the method definitions for
f and g must either be in the same class or in two classes with a super-
/subclass relation. In all cases at least one object would have an additional

They many contain fields for constants
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1 class A {

2 void £() { }

3 void g() { }

4 }

5

6 class Test {

7 public static void main(String args[]) {
8 A al=new AQ);
9 al.fQ;

10

11 A a2=new AQ);
12 a2.g(0);

13

14 A a3=new AQ);
15 a3.f();

16 a3.g0);

17 }

18 }

Figure 8.8: Example program for multiple inheritance

member (compared to the analysis result), which it does not require. So a
minimal hierarchy cannot be built without multiple inheritance.

As the original Snelting/Tip analysis was written for C++, this was not a
general problem, because the language allows multiple inheritance. In Java
multiple inheritance for classes must be removed to get a class hierarchy,
that can be realized. This can be done by hand, but again an automation
is desirable.

The first approach was to identify multiple inheritance “diamonds” in
the class hierarchy and collapse them. While the identification is easy, the
collapsing often caused the program semantics to be broken. It turned out,
that a strategy which modifies the class hierarchy as less as possible is the
most successful.

The core of the final algorithm is:

move_members_up(n) :=
VYm:n<m:
p(m):=p(m) U{ala € Attr(m) A a= def(X.m)}

V(ni,a1) € p:
V(ng,a2) €Ep:ni #ng A ni%ne A n2€my
above:={n|ny # n} N{n|ng # n}
above :=above \ {ala € above A 3Tb € above : b < a}
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Figure 8.9: Class hierarchy for figure 8.8

Vn € above :modifiable(n)
try
Ya € a1
move_attribute(ni,a,n)
success
return true
return false

This algorithm does not even change any inheritance relations. Instead
it identifies pairs of nodes that are causing a class to need multiple inher-
itance, because both provide needed member definitions and are not in an
inheritance relationship themselves. Then, affected members from one of
these nodes are moved to one of the lowest common ancestor of these two
nodes.

A simple example will illustrate how this works. Figure shows a
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Figure 8.10: Multiple inheritance removal

class hierarchy, where the numbers work as node identifiers and the letters
represent member definitions. Class 6 requires multiple inheritance and the
function is started for this class. The following node pairs will reach the
inner loop: (2,3), (2,5), (4,3), (4,5), (3,2), (5,2), (3,4) and (5,4). They
are not checked in any particular order, so let us assume (2,3) is picked
first. Then B will be moved to class 1, creating the hierarchy in figure
As class 6 still contains multiple inheritance, the function has to
be run again, but this this time picking (5,4). The E is lifted to 1 (figure
B.10(c)). In the third run, only (4,3) or (3,4) remain as possible candidate,
creating a hierarchy that might look like figure The algorithm is
not deterministic, but repeated application will always cause all members
of classes 2 and 4 or 3 and 5 to be moved to class 1. If semantics prohibit
moving of e.g. member E above member B, B will simply moved up first
and F later, preserving this property at all times.

If the example, classes 2 and 4 are empty after application of the algo-
rithm and can be merged into 1 or 6 to remove multiple inheritance com-
pletely. In real class hierarchies, they may not be empty, but can be still be
removed by merging. Therefore the functions is always used together with
simplification.

remove_multiple_inheritance() :=
repeat : =true
while repeat
repeat : =false

Vn e N
while move_members_up(n)
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repeat : =true

repeat :=repeat V simplify()

Obviously it is possible to construct an example for multiple inheritance
that cannot be resolved with this algorithm. But those examples do not
seem to appear in practice as this algorithm has been able to remove the
multiple inheritance in all cases ever tried. Probably an unresolvable form of
multiple inheritance will never occur in a concept lattice because the original
program can never contain it.

But still the algorithm leaves room for improvement. Currently it is very
invasive, as it is coupled to the simplification algorithm. This is acceptable,
as simplification will be run in most cases anyway, but this should not be
enforced. Another point is the non-determinism of the algorithm. The
given example has six different solutions (assuming none is blocked by the
semantic restrictions), but the algorithm will just produce one. It is possible
to calculate all possible solutions and the check for the best. This assumes
there is one best solution, but this there is no reasonable way to select one of
two symmetrical solutions as “better”. Additionally, calculating all solutions
still is very expensive for big class hierarchies.

8.5 Other Algorithms

This section presents some more algorithms that were useful at one point
or the other. They are not used in an automated process currently, but still
available to a user for manual invocation.

All examples shown in this work have been processed with the algorithms
remove_empty and merge_down_this_only in a fix point iteration.

8.5.1 Removing Empty Classes

remove_empty(n)=
if Attrs(n) ={} A Objs(n) ={}
shortcut(n)

The most basic algorithm is remove_empty. It removes a class that has
no objects or attribute by directly connecting the sub- and superclasses.
Empty classes will most likely be contained in the initial class hierarchy
created from the concept lattice and may be produced later as a by-product
of moving attributes and objects around in the class hierarchy.

8.5.2 Removing Type-Check Nodes

For objects that will fail type-checks at run-time, check(T, M, pc, false) at-
tributes were introduced in order to make these objects distinguishable from
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objects that will never be checked at run-time. Depending on programming-
style and precision of the analysis, the number of objects that access such
attributes varies highly. These attributes usually appear alone at a class
and are then inherited for all objects requiring it. Figure shows an
example program and figure the resulting class hierarchy illustrating
this phenomenon.

As these attributes do not actually represent code or will appear in re-
generated source code, they can be duplicated within the class hierarchy
without further consequences. The following algorithm can be used:

distribute_typechecks(n)=
if Attrs(n) #{} A Objs(n) ={}
A Va € Attrs(n) : a = check(T, M, pc, false)
distribute(n)

This algorithm removes a node that consist only of failed type-check at-
tributes and puts each of them at all subclasses. The effects for the example
given above can be seen in figure RI3] which has a much easier structure.
For the initial class hierarchy, this transformation is guaranteed to preserve
semantics, as the corresponding attribute indicating a successful typecheck
will never be below the attribute multiplied. However, it is explicitly allowed
to move it there, so a semantic check must be performed in general.

8.5.3 Merging Nodes with only a This-Pointer

Sometimes it might be useful, not to remove all pointers, but only this-
pointers. In contrast to the original Snelting/Tip-analysis, this-pointers
are not forced to be below their corresponding def-attribute and will be
above it, sometimes creating an individual class. A class whose only object
is a this-pointer is non a good candidate, because the static type of the
this-pointer will always be that of the implementing class of the method
(i.e. the class with the def-attribute). Some of those classes can be removed
with the following algorithm:

merge_down_this_only(n) :=

if not modifiable(n)
return false

next:={m|(n,m) € E}

if |next| # 1
return false

if Jo € Objs(n) : o is no this-pointer
return false

m:=the only element of next

merge(n,m)

return true
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class A {

class B {

class C {

class D {

class Test {

static Object o;

static Object p;

public static void main(String args[]) {
o=new A(Q);
o=new B();
o=new C();
o=new D();
p=new AQ;
p=new BQ);
p=new CQ);
p=new D();

if (o instanceof A)
o.hashCode() ;

Figure 8.11: Example program for type-check cause multiple inheritance
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Figure 8.12: Class hierarchies for listing in figure
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Figure 8.13: Result of distribute_typecheck on figure [8.12



8.5. OTHER ALGORITHMS 131

This is a weaker version of merge_down_noobj. merge_down_noobj will
merge more classes. It can be used if merge_down_noobj merges pointers,
whose type actually reflects something in the source code (e.g. a parameter-
pointer).

8.5.4 Merging Nodes Always

While merge_down_this_ptr is a weaker version of merge_down_noobj,
stronger versions are also possible:

merge_down(n) :=

if not modifiable(n)
return false

next:={m|(n,m) € E}

if |next| # 1
return false

m:=the only element of next

merge(n,m)

return {rue

merge_up(n)=
next:={m|(n,m) € E}
if |next| # 1
return false
m:=the only element of prev
if not modifiable(m)
return false
merge(m,n)
return true

These algorithms will merge any class if it has a single sub- or superclass.
This is a very invasive operation and should be used with care.
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Chapter 9

KABA

9.1 Overview

KABA is the name of a prototype implementation of Snelting/Tip for Java.
It consists of three parts:

e The static analysis for Java bytecode. It implements the analysis de-
scribed in chapter Bl

e The dynamic analysis as an instrumentation of the JVM Kaffe. Its
details are described in chapter Bl

e The graphical refactoring editor, which displays the refactoring pro-
posal and allows interactive manipulation of the new hierarchy using
the algorithms from chapter [§] while guaranteeing preservation of se-
mantics using the techniques from chapter [7l

Two other projects contribute to KABA:

e KRS, the KABA Refactoring System. It was written by Peter Schnei-
der[38] and provides a transformation of the original analyzed bytecode
to the new class hierarchy.

e An alternate implementation of Snelting/Tip for Java was done by
Thorsten Buckley[7] using SOOT[54] and SPARK[22]. It misses some
features from KABA’s own static analysis, but scales better and there-
fore can be used for larger programs.

9.2 The Graphical Refactoring Editor

The refactoring editor of KABA can be seen in figure It shows the
example from the introduction (figures [T and [[L2]). The class hierarchy
from the introduction was slightly idealized to make it easier to understand,

133



134 CHAPTER 9. KABA
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Figure 9.1: The KABA editor

whereas the editor shows the “real world” refactoring proposal. The most
noticeable difference is the use of more complicated names for objects and
full signatures in method names.

The notion is similar to the notion used in this thesis, but in the edi-
tor, every class already has an automatically proposed name (displayed in
bold font). Members of the class are shown above this name, instances and
pointers of that class below it. Class members are not shown by default.
Each class node can be expanded, so it members and instances become vis-
ible (in the screen shots the Professor and Student classes are already
expanded, whereas T and java.lang.Object are not). This was done to
reduce the amount of space required for displaying the class hierarchy - a
common problem also encountered in UML tools, where printed versions of
class hierarchies can easily take up multiple square meters if printed. The
graph layouter dynadot from the gmphvizm package is used to create the ini-
tial layout and for incrementally creating new layouts, if the class hierarchy
is changed.

The algorithms presented in chapter [§] are available either from a the
context menu for a class or from the a global menu. The architecture of the
editor is open, new plugins with new algorithms can be added anytime. An
example of modifying the graph using context menus can be seen in figure
0.21 Here, the user decides that the class containing only the attribute
Professor.assistant (called Professor’1) is not a good candidate for a
class. From the context menu he gets the option, to merge it with its only
successor. The class hierarchy after selection of that option can be seen
in figure The class has vanished and the field is now contained in the
former subclass Professor’4.

Modifying the class hierarchy is not only possible through the application

v graphviz.org


www.graphviz.org

9.2. THE GRAPHICAL REFACTORING EDITOR 135
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Figure 9.4: Error message from the editor

of algorithms. Basic operations like moving members or objects are available
too. They can moved in a cut-and-paste fashion: They are cut from their
original class and pasted to their new destination.

If a modification breaks the program semantics, it is refused by the edi-
tor. For every operation the user performs, the semantic checks presented in
chapter [[ are done in the background. The user is provided with as much in-
formation as possible, on why his operation failed. An example can be seen in
figure [@.4] where it was tried to move the member Professor.workAddress
into one of the student classes. KABA will detect that this member is re-
quired by some of the objects. Within the error message names of classes,
members and objects are highlighted in different colors to help user find
them fast in the class hierarchy.

9.3 The KABA Refactoring System

Peter Schneider[38] implemented a tool that can do arbitrary class hierarchy
transformations based on Java bytecode. The input is a class hierarchy in
bytecode and a construction plan for a new hierarchy. It will produce a new
hierarchy where members are moved according to the construction plan.
Although usable without KABA, it is closely tied to it.

The generated bytecode is as close as possible to the bytecode the Java
compiler creates, allowing to use bytecode decompilers to recreate even
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source code. His tool implements his own variant of resolving multiple in-
heritance by linearizing inheritance relations.

KRS was tested with a test suite and real world programs like JLex.
For this program it could be shown that the results of a program run for
the transformed version are identical to those of the original version. But as
the number of classes had increased, loading those classes took longer, which
resulted in a performance degradation of factor 2. As JLer is a program with
very short execution times, this is most likely an artifact of this example.

As a special bonus, KRS supports the same amount of reflection as
KABA does and can even translate class names. Consider the following
example:

class A {

int £() { return 1; }
+
class B extends A {

int £() { return 2; }
}

boolean b=...;
String s;
if (b)
s="A";
else
s="B";
Object o=Class.forName(s).newInstance();

((A)o) .£0);

As explained earlier, KABA is able to handle such simple forms of re-

flection. A wvalid refactored hierarchy for the classes A and B could look
like:

interface AB {
abstract int f() = 0;

+

class AB1 implemements AB {
int £() { return 1; }

+

class AB2 implemements AB {
int £() { return 2; }

}

To translate the usage of the two classes in the program fragment, the
names have to be adjusted. KRS transforms the code into something similar
to this:
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boolean b=...;

String s;
if (b)
s="A";
else
s="B";
if(s.equals("A"))
s="AB1";
else if(s.equals("B"))
s="AB2";

Object o=Class.forName(s).newInstance();

((AB)0) .£();

Although this is more an ugly hack that a real approach to the prob-
lems, it helps greatly for simple applications of reflections, e.g. the .class
operator.



Chapter 10

Case Studies

The chapter presents case studies of real world programs that were analyzed
with KABA. Instead of providing statistics for a huge number of programs,
a few selected examples were chosen and are discussed in depth.

10.1 A “small” example

As an introductory example, JLex (version 1.2.5) was chosen. JLex is a
scanner generator in the tradition of lex but for Java. The same example
was used by other program analyzers before[34, 37]. It consists of 7823 lines
of code and contains 26 classes, including one interface and three anonymous
inner classes implementing this interface. Besides that it does not utilize in-
heritance. JLex was analyzed with the static analysis and the initial class
hierarchy which is created from the concept lattice can be seen in figure [[0.11l
This hierarchy consists of 712 classes. A diamond shaped class indicates a
class with members from a library class, while a box shaped class indicates
a class with members from JLex itself. One class has an octagon shape, it
contains members from JLez as well as the library. In this form, the hier-
archies is not useful because classes from the library are not represented as
single classes, but their members are spread to different classes. After the
application of the algorithm create_library_classes from section 8.2l and

Figure 10.1: JLex 1.2.5, initial hierarchy
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Figure 10.3: JLez after simplification

removing of unused system classedt, the hierarchy gets much easier (seen in
figure [[0.2]) and is reduced to 208 classes. The algorithm is automatically
applied to all upcoming examples without further notice, the raw version
was only presented here to give an idea about the size and complexity of the
concept lattice. As creating 176 classes (32 classes are library classes) from
original 26 still represents a level of detail that is questionable and proba-
bly will not be accepted as a refactoring proposal by most users. Therefore
algorithms for further simplification have been developed. After applying
the algorithm simplify(section[83]), the class hierarchy is finally condensed
(seen in figure [[0.3]) to a degree of complexity that is reasonable perceivable
by a human (60 classes with 32 library classes). On the other hand, now the
hierarchy is not much different from the original hierarchy. It seems that the
simplification has not only reduced the complexity of the hierarchy, but also
removed the gain of the Snelting/Tip algorithm. Closer inspection of JLex
reveals, that except for three classes, all classes of JLex are only instantiated
at one site in the program. Therefore for most classes only one access pat-
tern is in the code and in the end, only one class will be produced. Having
only a single instantiation site in the program is not uncommon, there are
even popular design patterns (singleton, factory) which advocate this. This
is of course a limitation of Snelting/Tip in practice, but fortunately most
programs do not make such extensive use of this like JLex does. If single
objects can create hierarchies as complex as those before simplification, the
complexity is caused by access patterns from pointers. Although some useful
information can be gained from these hierarchies (e.g. it can be used to get
proposals for the extract interface refactoring), it was never a goal of Snelt-

LA system class is considered unused, if it is not sub-classed or instantiated outside of
library code
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Figure 10.4: javac after simplification

...comp.TransInner$ClassMap

...comp.Enter$MemberEnter

...comp.TransInner$FreeVarCollector

...tree. TreeTranslator

N————

...comp.TransInner

...comp.Gen

...comp.TransTypes

Object ...tree. Tree$Visitor ...comp.Enter

...comp.Check$Validator

...comp.Flow

...comp.Attr

Figure 10.5: Class hierarchy for visitor pattern of javac

ing/Tip to create hierarchies of more than 25 abstract classes and interfaces
for a single implementing class. Therefore, the following case studies ignore
pointers to the greatest possible extent and focus on simplified hierarchies
or use the dynamic analysis right from the start.

10.2 javac

The next example is Sun’s Java compiler javac from the JDK 1.3. It consists
of 145 classes and 28639 lines of code. The dynamic analysis was used and
1879 compilations of classes from JDK source code served as test-runs. The
result after simplification can be seen in figure[[0.4l As this hierarchy is still
too big to display it completely, some interesting parts are broken out and
discussed individually.

10.2.1 The Visitor Pattern

Figure [10.6l shows one sub-hierarchy of the original class hierarchy of javac,
an implementation of the visitor pattern for the syntax tree. Package names
have been omitted or are abbreviated. KABA’s refactoring proposal can
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Figure 10.6: Refactoring proposal for figure [10.53]

be seen in figure Here all class have an additional number on the
left side that is used for referencing them here in the text. The label of
the class indicates from which original class a class contains members. E.g.
classes 7 to 11 have members that were originally in two different classes
and therefore the label has two lines. On the right side is the number of
objects (lower box) or pointers (upper box, here always 0 as the dynamic
analysis was used) that have this class as their type.

While the overall structure remains completely unchanged, some differ-
ence are visible. Some members from the superclass Tree$Visist01m, have
moved into different subclasses (8,9,10,11). This indicates they are only
used from these subclass objects. Something similar can be seen for class 7,
where a member of TreeTranslator was moved down. Moving these mem-
bers down increases functional cohesion of these classes, as members that
are used together are located in the same class. Of course, functional cohe-
sion is not the only criteria for the quality of a class hierarchy, and in this
case - the implementation of a well known design patterns - it may be more
appropriate not to break the pattern to keep the code easily understandable.

A detailed inspection also showed, that a member of Tree$Visistor was
detected as dead. As part of the verification of KABA, members presumed
dead were removed from the source code, then the programs were compiled

2The $ in the name indicates that this class is in fact an inner class Visitor or the
outer class Tree
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and tested, if they were still working as expected. In this case, the compiler
accepted the program without the method and then failed at run-time by
throwing an exception and complaining about a missing implementation.
What happened? The removal of the method changed the method selected
at a call to an overloaded method. The exception and the error message
it contains indicates that this behavior is intended and no subtle mistake.
This looks like a dangerous practice that removing a dead method will break
the program semantic and such practices should be avoided.

10.2.2 The Syntax Tree

The next example shows the hierarchy for the syntax tree (figure[I0.7)). The
main class is Tree and it has subclasses for all syntactical units encountered
in a Java program. This hierarchy is identically reproduced, indicating it
was used in exactly the same way it was declared and cohesion for these
classes is good and the interface of these classes was wisely chosen.

10.2.3 The Symbol Table

The last part of javac to be examined is the implementation of the sym-
bol table. The original hierarchy can be seen in figure [[0.8 it consists of
9 classes. The refactored version, shown in figure [[0.9] has become slightly
more complex, it consists of 17 classes. The top three subclass branches of
the original superclass Symbol are almost identically reproduced, only the
class Symbol$MethodSymbol has been horizontally split into three classes and
a member of the original superclass was moved down. The fourth branch be-
came slightly complicated. Here two subclasses were also split into multiple
classes and additionally members of the original superclass are moved down
too. Some of these members (in class 8) are accessed by objects of both
subclasses, but not by all of these subclasses, creating a hierarchy where
multiple inheritance is used to include these members only in classes that
actually use them. In this case, multiple inheritance can be easily removed,
by merging classes 8 and 13 with their superclass (6). There are other ways
to achieve this goal, but it seems most natural, to resolve this by moving
members up that were located in superclasses in the original hierarchy.
The proposed refactoring will again increase the functional cohesion and
indicates a bit of redundancy in the original hierarchy, as it was possible
to move down multiple members. Of course, this also improves information
hiding, as fewer objects have access to these members. Whether this new
hierarchy is more appropriate than the old, must be decided by the user of
KABA. The proposed split class or move method refactorings are certainly
justified if function cohesion is the only criteria, but a software engineer and
user of KABA may decide otherwise. Therefore, KABA is an interactive
system: The hierarchy it creates is just a proposal and there is room to
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tree Tree$Synchronized

Figure 10.7: Class hierarchy for syntax tree in javac



10.2. JAVAC

145

...code.Symbol$VarSymbol
...code.Symbol$MethodSymbol ...code.Symbol$OperatorSymbol
|
Object ...code.Symbol
I
...comp.Resolve$ResolveError ...comp.Resolve$AmbiguityError
...code.Symbol$TypeSymbol

...code.Symbol$ClassSymbol

...code.Symbol$PackageSymbol

Figure 10.8: Class hierarchy for symbol table in javac
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...BlockWithimpliedExitPath

Figure 10.11: Class hierarchy for syntax tree of antir
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improve it. KABA provides the possibility to do so, without having to
worry about the impact of the editing on the semantics of the program.

10.3 antlr

In all examples for the Java compiler the class hierarchy was modified only
slightly. One could assume now, that this is always the case. The next case
study shows that KABA can do more than that. The analyzed program is
antlr, a scanner and parser generator for various languages. For the dynamic
analysis all example grammars from antlr were used, creating 135 test runs.
antlr has an additional run-time component for the created parsers that was
not analyzed.

10.3.1 Syntax Tree

The original hierarchy for the implementation of the syntax tree can be seen
in figure [0.11] and consists of 19 classes. The initial refactoring proposal
can be seen in figure[[0.12] Opposed to all previous examples, this hierarchy
is really complicated and more than just a slightly different variation of the
original version.

There are a number of things noticeable: Members of the original classes
GrammarElement and AlternativeElement that were superclasses to all
other classes before have been moved to 9 different classes! This indicates
that functional cohesion for these classes was very bad. Members of these
classes are still on top of the hierarchy, but merged into the same class,
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Figure 10.13: Second refactoring proposal for figure [0.11]
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Object —® ...Token —® ...CommonToken —® ...CommonHiddenStreamToken

Figure 10.14: Class hierarchy for tokens in antlr
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Figure 10.15: First refactoring proposal for figure [0.14] with dynamic anal-
ysis

H
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which indicates the splitting of the two classes in the original hierarchy is
questionable. The constructor of GrammarElement has been moved deep
into the hierarchy at class 4.

Most other classes have been split as well. There is not a single class with
more than 1 creation site showing that every object has an individual access
pattern. AlternateBlock, originally a subclass of AlternateElement has
partly been moved above that class, marking this inheritance relationship
as questionable.

Class 29 is an isolated class, because it contains only a static member
(the indicated pointer is used to create this artificial class). It can be merged
with any other class in the hierarchy. Multiple inheritance is all over the
class hierarchy and used in a more complicated way than see before: only 2
of 22 class that have instances can be realized without it. Removing multiple
inheritance is required. Afterward (figure [[0.13)), the hierarchy looks much
more smoothed and more similar to the original.

But still there are a lot of members moved and details changed. This
restructuring brings a huge increase in functional cohesion.

Comparison with the syntax tree from javac shows a fundamental dif-
ference. Although both hierarchies represent similar functionality, there is a
huge difference in the way their respective implementations are used. With-
out wanting to offend anyone, but javac seems a lot better designed. This
indicates KABA can be used to evaluate a design: If there is no big differ-
ence between the way it is declared and the way it is used, it was a good
design, otherwise something must be wrong with it.

10.3.2 Token

anltr is a program that besides the dynamic variant, can be analyzed by the
static analysis of KABA. This gives the opportunity to compare the results
of the static to those of the dynamic analysis. As an example the small
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H=
Object 1 | ..Token 2 ~Token 3 | ...CommonToken 5 | ..Token 6 - Token
4 -..CommonToken | 3 7 1 ..CommonToken [ 5

Figure 10.16: Second refactoring proposal for figure [0.14] with dynamic
analysis

15| ..CommonToken
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Figure 10.17: First refactoring proposal for figure [[0.14] with static analysis
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Figure 10.18: Second refactoring proposal for figure [0.14] with static anal-
ysis
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objects 3] 1| 1| 5} 1| 1| 1| 1| 1] 1
dynamic | 1| 1| 3| 5| 5| 5| 6| 8| 9|10
static 2212312020 (32(33|11|36|34|35

Figure 10.19: Object types in static and dynamic analysis of antlr

hierarchy of classes representing parsed tokens was selected. The original
hierarchy can be in figure 10.14

The results of the dynamic analysis can be seen in figure In the
new hierarchy, members from the original classes Token and CommonToken
are freely mixed in the hierarchy. Manual inspection reveals that the member
moved to class 7 is getType, while setType is moved to class 8. However,
the data field type they both access is in class 1 as it is initialized in the
constructor of Token. Otherwise it could be moved down, too. Of course,
if setType is moved to class 8, the instance of class 9 will always get the
initial value for type as result of its calls to getType, show more potential
for restructuring of this object. It is interesting to see that the whole token-
type functionality is only accessed by objects from three instantiation sites,
which is only a small part of the overall sites (14).

After the usual removal of multiple-inheritance (figure [[0.16]), the hierar-
chy becomes unbranched like the original class was, but is more fine grained.
The original class CommonHiddenTokenStream does not appear in the new
hierarchy and can therefore considered to be dead.

Of course, the result for the static analysis is a bit more complicated. It
can be seen in figure .17l This is the same complexity already seen for the
initial JLexr example and is mainly caused by pointers. In this hierarchy, 10
classes are not below java.lang.0bject. This indicates, that these pointers
are not used to access members of Object and they cannot be instantiated
either (an instance requires the constructor of Object). These classes make
good candidates for interfaces if they do not contain data members. There
are a few class with a high amount of pointers (1,9,10). They represent very
common access patterns and thus serve as good starting points, if the class
hierarchy is to be simplified by hand.

To compare the results of both analysis variants, the position of the
different objects within the hierarchy must be compared. Figure [10.19 cor-
relates these positions. Each column indicates a number of instantiation
sites and their respective class number in figures and [0.I7 E.g. the
first data column shows that objects from three different instantiation sites
will have the type 1 in the dynamic and 22 in the static analysis. Sur-
prisingly, there are objects (columns 3 and 4) where the dynamic analysis
yields a higher level of detail, as these objects have the same type in the
static, but different types in the dynamic analysis. There are also objects
where the static analysis produces more detailed results (columns 4 to 6).
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Assuming the number of test runs is high enough, the dynamic analysis is
right and the higher details of the static analysis are caused by imprecision
or conservativeness of the analysis.

The static analysis also contains the class CommonHiddenStreakToken,
which was presumed dead after it did not appear in the results of the dy-
namic analysis. The obvious explanation would be a too small set of tests
used during the dynamic analysis. Manual inspection reveals this is not the
case! There is no creation site for this class in the source code of antlr,
in fact class 37 is an artifact of KABA’s approximation of reflection. antlr
uses reflection (although not for the classes shown here), and at some point
KABA assumes, an instance of that class is created.

If multiple inheritance is removed from the static version and some addi-
tional simplifications are performed in order to reduce the number of classes,
the resulting class hierarchy is no longer more complex than the result of the
dynamic analysis. It can be seen in figure [[0.I8 It is even coarse-grained
than the final version of the dynamic analysis. Compared to the original hi-
erarchy it still shows that the distinction between Token and CommonToken
cannot be justified from the actual use of these classes and should be recon-
sidered. The hierarchies proposed by KABA give ideas how this can be done
and KABA provides the infrastructure to try out different possibilities.

10.4 Varying the Number of Clients

Snelting/Tip makes a closed world assumption, i.e. it assumes all code using
a class is known. In practice, this requirement may be too hard. It is possible
that an unanalyzed client will work correctly with a restructured hierarchy,
but of course there is no guarantee. But how likely is that? In order to get
a feeling for this, a hierarchy was analyzed with a varying number of clients.

As areal hierarchy with a big number of clients for static analysis was not
available, KABA itself was analyzed with the dynamic analysis was chosen
and the number of test cases modified. 335 test cases were first analyzed
individually. The sizes of input table and concept lattice are shown in figure
10.20L The test cases are spread among the x-axis the numbers of table rows,
columns, initial entries and created classes can be seen on the y-axis.

With only a few exceptions, all test cases create tables and lattices of
similar size. The noticeable range between 250 and 300 consists of a few
structural tests that are very similar, so they all have an almost identical
size for the input table. There are more groups of similar tests, but as they
are not in any particular order, this is not well visible.

Figure [[0.21] contains the merged tests: In analysis n (on the x-axis), the
results from the first n test cases were joined into one table and analyzed.
Of course, the number of table rows, columns and entries are constantly
growing. While the number of classes in the hierarchy is generally rising
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Figure 10.20: Sizes for individual test cases of KABA
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Figure 10.21: Sizes for merged test cases of KABA
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there are several places, where it drops down a little bit (e.g. 20,75,220,310).
This means an increased number of test cases can increase the complexity
but can also decrease it (although an increase is the far more usual case).

A similar result is expected for a static analysis with a varying of clients,
although there is a fundamental difference: For a dynamic analysis, the
maximum number of table rows is static, for a static analysis it will vary, as
every client brings in different table rows.

10.5 Performance

Figure shows the running times of various steps of the analysis for
the examples discussed in this chapter. The used machine is an Athlon 64
32004, 2 GB RAM, Fedora Core 3 x86, JDK 1.5.0. The JVM was run us-
ing -Xmx2000m. The column analysis describes the analysis used: S for the
static analysis, D for the dynamic analysis and B Buckley’s alternate imple-
mentation using SOOT and SPARK. The column JDK gives the version of
the JDK that was used. Analysis time sums up the whole cost of the static
analysis. The number of table entries always refers to the initial table, before
any propagation.

Initially the static analysis was a bottleneck, as it simply cannot analyze
larger problems like javac in a reasonable amount of time. Buckley’s imple-
mentation solves this problem and it does not seem likely, that the remaining
features missing from his implementation will cause a serious slow-down.

But this implementation revealed the real bottleneck: the lattice con-
struction, which was stopped after its running time exceeded 100 hours,
even for an example that has a small table compared to others. As the
algorithm used for lattice construction is the result of long research on the
implementation of lattice construction algorithms, it seems questionable,
whether there is room for improvement here. Please keep in mind that al-
though this algorithm is O(n?®) in practice, it has a theoretical worst case
complexity of O(2").

Analyzing the same example with multiple JDKs has revealed another
problem: The size of the table highly depends on the JDK used, where the
difference can be a factor of 6. As many Java programs already require
newer JDKs than 1.3 (which is the base for the static analysis), this is a
challenge for the future.

An alternative is the current dynamic analysis. It omit pointers and
therefore creates much smaller tables and enables fast lattice construction.

The algorithms used on the class hierarchy after lattice creation are not
particularly fast or slow. For bigger hierarchies they may be too slow for
use in an interactive environment if the classical sub-seconds response time
is required, but they are not a bottleneck. As these algorithms have under-
gone serious optimization work (speeding up the initial implementation by a
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JLex 26 | S 1.3 18s 35s 14s 5s | 4s | 2957 | 1505 9355 712 | 208 | 60
JLex 26 | B 1.3 59s | 363s | >100h 17080 | 7871 | 438962
javac 145 | D | kaffe - 0Os 2s 1s | 56s 306 | 2165 5679 509 | 499 | 147
javac 145 | B | kaffe | 141m | 3603s | >100h 20037 | 8844 | 188723
javac 145 | B 1.3 | 165m | 5037s | >100h 28252 | 12218 | 600443
antlr 199 | S 1.3 | 171m | 2789s | 10479s | 27403s 16308 | 6726 | 162043 | 11619 | 7268
antlr 199 | D | kaffe - 12s 1s 1s | 22s 361 | 2379 5413 344 | 335 | 155
antlr 199 | B | kaffe 67s | 871s | >100h 12402 | 6122 | 115108
antlr 199 | B 1.3 94s | 1376s | >100h 20626 | 9488 | 559637
antlr 199 | B 1.4 | 312s | 2331s | >100h 32305 | 15360 | 1911744

Figure 10.22: Performance data for all analyzes
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factor of 1000) they probably do not leave that much room for performance
improvement.

It should be noted that if context- and object-sensitivity could be en-
abled, running time for the static analysis would be greatly reduced. For
the antlr example, enabling these techniques, along with an appropriate
parametrization, reduces the analysis time by almost 90 percent!
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Chapter 11

Discussion

The case studies have shown that KABA can uncover flaws in design and
generate useful proposals on how to overcome this limitations. These pro-
posals always increase functional cohesion. In some situations other aspects
of design may be more important (e.g. some kind of redundancy may be
required to build a consistent interface to a certain functionality) and this
is the reason, why KABA’s results are called proposals. In many cases they
are not directly usable as a new class hierarchy, but give ideas where and
how to modify the hierarchy in order to enhance it.

The initial proposals are often much too fine-grained, especially in the
static analysis. This can be overcome with automatic simplification algo-
rithms, but this is an heuristic based approach and there is no guarantee that
these algorithms will not introduce the same flaws in the design, that had
been uncovered by the analysis before. The first antlr example shows this in
practice: KABA’s initial proposal was totally different from the original hi-
erarchy, but the automatically generated “final refactoring” is astonishingly
similar to the original hierarchy, so it may in fact contain the same flaws
again.

On the other hand, KABA provides the interactive refactoring editor,
where a use can redesign the class hierarchy exactly as he wants and does
not have to care whether his changes will break to program.

Unfortunately the case studies have also uncovered the limit of the anal-
ysis: Creation of the concept lattice may become very expensive for bigger
software systems.

The new dynamic analysis does not suffer from this problem, as it gen-
erates much smaller tables due to the omission of pointers. The class hi-
erarchies created that way are however no longer usable for an automatic
program transformation, but only for proving ideas for possible refactorings.
The detailed transformation (including pointers) must then be done by hand
or by a different system.
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Chapter 12

Future Work

To make KABA a tool suitable for a “normal” user, it must be integrated
into a development environment (e.g. Eclipse). The approach of creating
a whole new hierarchy will be to radical for some users, so it seems more
appropriate to make KABA give refactoring proposals as modifications to
the current hierarchy. The semantic model used for interactive refactoring
could be a start for this: It depends only on information from the initial
refactoring proposal and can then be used to check any possible class hier-
archy for semantic correctness. A program could be analyzed, the semantic
information built and then used to check if certain transformations in the
unchanged hierarchy may be possible. Possibly the semantic information
can even be built without creating a lattice at all, avoiding this bottleneck.

The scalability of the analysis is still an issue. The first approach would
be not to analyze the whole program at once, but only smaller parts of
the hierarchy (e.g. a single inheritance tree) as this will greatly reduce the
resulting table. Some of the background for this is present in the way library
classes are handled now, but additional work may be required, because the
limitation that library class will not know the other classes must then be
removed.

The most promising extension to KABA would be to extend the dynamic
analysis so it provides enough information to allow automatic code transfor-
mation. Of course this will increase the size of the table and make creation
of the concept lattice more expensive, but is not likely that it will reach ta-
bles as big as those of the static analysis, as usually the conservativeness of
this analysis is the cause for a relevant part of the table. But in cases where
the table generated by static and dynamic analysis will be almost identical,
the lattice creation will be a limiting factor again.

For a dynamic analysis is seems also possible to handle the complete
functionality of reflection and thereby remove the second limitation (besides
the size) on programs that can be analyzed.

159



160 CHAPTER 12. FUTURE WORK



Appendix A

Constraints for the Bytecode
Analysis

This appendix contains the contrains generated for all instructions of Java
bytecode. For every instruction, all possible RTE, LE and INIT rules are
listed first. These rules must be included unconditionally to the constraint
system, if the corresponding instruction is included in the program. Then,
the set constrains for stacks and local variables as well as other rules are
listed. For a few instructions, there are multiple cases (e.g. dup_x1). As
the preconditions for these cases are statically known, they are not added as
conditional constrains. Instead only the rules for the given case are included
into the constraint system.

e aaload
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

A\ CONTENT(0) C S(M,C, pc+1,0)
0€S(M,C,pc,1)
Smaz
N S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rag
/\ R(M,C,pe,i) C R(M,C,pc+ 1,i)
=0

e aastore
RTE(M,C, pc, java.lang.ArrayStoreException)
RTE(M,C, pc, java.lang.NullPointerException)
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RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

N\ S(M.C.pc,0) S CONTENT (o)
0eS(M,C,pc,2)
Smaz
/\ S(M,C,pe,i) C S(M,C,pc+1,i—3)
=3
Ruaz
/\ R(M,C,pc,i) C R(M,C,pc+1,i)
=0

e aconst_null

{NULL} C S(M,C, pc+1,0)
S’IVLO,I_I
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
i=0
Rm(lfl)
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0

e aload n

R(M,C,pc,n) C S(M,C,pc+2,0)
Smaz_l
N\ S(M,C,pc,i) C S(M,C,pc+2,i+1)
1=0
Rm(m
/\ R(M.C.pe.i) S R(M,C,pe +2,i)
i=0



e aload_O

R(M, C, pe,0) € S(M,C,pe+1,0)
Smaw - 1
N S(M.C,pe,i) € S(M,C,pe+1,i+1)
1=0
Rmaz
N R(M,C,pe,i) € R(M,C, pe+1,i)
=0

e aload_1

R(M,C,pc,2) C S(M,C,pc+1,0)
SW’L(lZ_l
/\ S(M,C,pe,i) CS(M,C,pc+1,i+1)
1=0
Rmam
A\ R(M.C.pe,i) S R(M,C,pe +1,i)
=0

e aload_2

R(M,C,pc,2) CS(M,C,pc+1,0)
Sm(l.’Eil
/\ S(M,C,pe,i) CS(M,C,pc+1,i+1)
=0
Rmaz
N R(M,C,pc,i) C R(M,C,pc+1,i)
=0

e aload_3

R(M,C,p,3) CS(M,C,pc+1,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=0
RTFLHJJ
N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
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e anewarray t
RTE(M,C, pc, java.lang.NegativeArraySizeException)
LE(M,C, pc, java.lang.IllegalAccessError)

{OBJECT (M, pc,t)} € S(M,C, pc+ 3,0)
type(OBJECT (M, pc,t)) = t[]
Sma:l:
N S(M,C,pc,i) € S(M,C,pe +3,i)
i=1
Rmﬂn’lf
/\ R(M,C,pc,i) € R(M,C, pc+ 3,1)
i=0

e areturn
RTE(M,C, pc, java.lang.IllegalMonitorStateException)

S(M, C, pe,0) € RETURN (M, C)

e arraylength
RTE(M,C, pc, java.lang.NullPointerException)

{INT} C S(M,C, pc + 1,0)
Smam
N\ S(M,C,pe,i) € S(M,C,pc+1,4)
i=1
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0



® astoren

e astore_1

e astore_2

e astore_3

165

Smam
N\ S(M,C,pe,i) € S(M,C,pc+2,i— 1)
=1
n—1
N R(M.C,pe,i) € R(M,C, pe +2,i)
=0
S(M,C,pc,0) C R(M,C,pc+2,n)
R'muw

N R(M,C,pei) C R(M,C,pe +2,i)
i=n+1

STVL(L(L’
N S(M,C.pe,i) € S(M,C.pc+1,i—1)
=1
R(MJ C7 pca 0) g
S(M,C,pc,0) C
R'maz

A\ R(M.C.pc.i) C R(M,C,pe +1,i)
=2

R(M,C, pc+1,0)
R(M,C,pc+1,1)

Smaz
/\ S(M,C,pc,i) CS(M,C,pc+1,1—1)
=1
1
N\ R(M,C.pe.i) © R(M,C, pe +1,1)
1=0
S(M,C, pc,0) € R(M,C,pc+1,2)
R'ﬂl(ll

/\ R(M,C,pe,i) C R(M,C,pc+1,i)
=3
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S max

=

s
Il
—

S(M707pcai) - S(M7C>pc+1>i_1)

>1\3

R(M,C,pc,i) C R(M,C, pc+ 1,1)
0

S(M,C,pc,0) C R(M,C,pc+1,3)
RWL(ZIL‘

/\ R(M,C,pe,i) € R(M,C,pc+ 1,i)
1=4

.
I

e athrow
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.IllegalMonitorStateException)

/\ THROW (M, C, pe,0,0)
0€S(M,C,pc,0)

e baload
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOut0fBoundsException)

{INT} C S(M,C,pc+ 1,0)
Sm(lfl‘
/\ S(M,C,pc,i) € S(M,C,pc+1,i—1)
=2
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0

e bastore
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)
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STVL(LJL’
N S(M,C,pe,i) € S(M,C,pc+1,i—3)
=3
R'mam
N R(M,C.pe,i) € R(M,C, pe+1,i)
=0
e bipushn
{INT} C S(M,C, pc+2,0)
Smazfl
/\ S(M,C,pc,i) CS(M,C,pc+2,i+1)
=0
Rmaz
N R(M,C,pe,i) C R(M,C, pe + 2,i)
=0

e caload
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOut0fBoundsException)

{INT} C S(M,C, pc+1,0)
Sma,:t
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rmam
/\ R(M.C.pe.i) S R(M,C,pe+1,i)
i=0

e castore
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

Smaz
/\ S(M,C,pc,i) CS(M,C,pc+1,i—3)
=3
RTI‘L[II
N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
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e checkcast ¢
RTE(M,C, pc, java.lang.ClassCastException)
LE(M,C, pc, java.lang.IllegalAccessError)

/\ type(o) <t = {o} € S(M,C, pc+ 3,0)
0€S(M,C,pc,0)
Smaz
N\ S(M,C,pe,i) € S(M,C,pc + 3,4)
=1
Rmax
/\ R(M,C,pe,i) C R(M,C,pc + 3,1i)
=0



o d2f
{FLOAT} C S(M,C, pc+ 1,0)
S’muw
N S(M,C,pe,i) C S(M,C,pe+1,i)
i=1
RTYL(L.Z
N\ R(M,C,pe,i) € R(M,C,pc+1,i)
=0
e d2i
{[NT} C S(M,C,pc+1,0)
STIL(ZI
/\ S(M,C,pe,i) C S(M,C,pc+ 1,i)
=1
Rm,a:c
N\ R(M.C.pe.i) € R(M,C,pe+1,i)
=0
e d21
{LONG} C S(M,C, pc+1,0)
Sma,z
/\ S(M,C,pc,i) CS(M,C,pc+1,i)
=1
Rmaz
/\ R(M,C,pc,i) € R(M,C,pc+ 1,1)
=0
e dadd

{DOUBLE} C S(M,C, pc + 1,0)

Smaz

N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)

=2
lel:l)
N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
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e daload
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

{DOUBLE} C S(M,C, pc+ 1,0)
Smaz
/\ S(M,C,pc,i) € S(M,C,pc+1,i—1)
=2
Rmaz
N R(M,C,pe,i) C R(M,C, pe+1,i)
1=0

e dastore
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOut0fBoundsException)

S’VVL(L(L’

N S(M,C,pe.i) € S(M,C,pc+1,i—3)
1=3
RTILCLJJ

N R(M.C,pc,i) C R(M,C, pc+1,i)
1=0

e dcmpg

{INT} C S(M,C,pc+1,0)
S’Vnal‘
/\ S(M’Capc’i) C S(M707pc+ 177’ - 1)
=2
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0



e dcmpl
{INT} C S(M,C,pc+1,0)
STVL(LJL’
N S(M,C,pe,i) € S(M,Cpc+1,i—1)
=2
Rmaz
N R(M,C.pe,i) € R(M,C, pe+1,i)
1=0
e ddiv
{DOUBLE} C S(M,C, pc+1,0)
SW’LG,I
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rmam
/\ R(M.C.pe.i) S R(M,C,pe +1,i)
i=0
e dload n
{DOUBLE} C S(M,C, pc+2,0)
Sm(l.’Eil
N\ S(M,C,pe,i) € S(M,C,pe+2,i+1)
=0
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc + 2,1)
=0
e dload_O
{DOUBLE} C S(M,C, pc +1,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=0
RTFLHJJ

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
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e dload_1

{DOUBLE} C S(M,C, pc+ 1,0)
Smaz’_l
/\ S(M,C,pc,i) CS(M,C,pc+1,i+1)
i=0
R'fﬂ(l@
N R(M,C.pe,i) € R(M,C, pe+1,i)
i=0

e dload_2

{DOUBLE} C S(M,C, pc+1,0)
Smuz_l
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
1=0
Rmam
/\ R(M,C,pe,i) C R(M,C,pc+ 1,i)
i=0

e dload_3

{DOUBLE} C S(M,C, pc+1,0)
/\ S(M,C,pc,i) € S(M,C,pc+ 1,1+ 1)
=0
R'Inaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0

e dmul

{DOUBLE} C S(M,C, pc+ 1,0)
Smaz
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rmaa:
/\ R(M,C,pe,i) € R(M,C,pc+ 1,4i)
1=0



e dneg

e drem

e dreturn
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{DOUBLE} C S(M,C, pc+1,0)
Sma.’[)
/\ S(M,C,pc,i) CS(M,C,pc+1,i)
i=1
Rmﬂz
/\ R(M,C,pc,i) € R(M,C,pc+ 1,1)
=0

{DOUBLE} C S(M,C, pc +1,0)
Smaz
/\ S(M,C,pc,i) CS(M,C,pc+ 1,1 —1)
=2
Rmaz
N\ R(M,C,pe,i) C R(M,C, pe+1,4)
=0

RTE(M,C, pc, java.lang.IllegalMonitorStateException)

e dstoren

87\M S(M,C,pc,i) CS(M,C,pc+2,i—1)

ff_ll

/\ R(M,C, pc,i) € R(M,C,pc+2,i)

- S(M,C,pc,0) C R(M,C,pc+2,n)
R}{n R(M,C,pc,i) C R(M,C, pc + 2,1)
i=n+2
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e dstore_0O

S’UL(L.’L‘
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=1

S(M,C,pc,0) C R(M,C,pc+1,0)

R?TLU,CL‘

N R(M.C,pc,i) € R(M,C,pc+1,i)
1=2

e dstore_1

STYL(L.’Z

N\ S(M,C,pe,i) € S(M,C,pc+1,i—1)

i=1
R(M,C, pc,0)
S(M,C, pc,0)
R’Inal'

N\ R(M,C.pe.i) C R(M,C,pe +1,i)
=3

R(M,C, pc+1,0)
R

C
C R(M,C,pc+1,1)

e dstore_2

Sma,rc

/\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)

i=1

1
N\ R(M,C, pe,i) € R(M,C, pe +1,1)
=0
S(M,C,pc,0) C R(M,C,pc+1,2)
Rmaa:
N R(M,C,pe,i) € R(M,C, pe+1,i)
1=4
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e dstore_3

Smam

/\ S(M,C7pc,i) - S(M,C,pcﬁ»l,lfl)
i=1

2
N\ R(M,C, pe,i) C R(M,C, pe+1,4)
=0
S(M,C,pe,0) € R(M,C,pc+1,3)
R'maz
A\ R(M,C,pc,i) C R(M,C,pc+1,i)
=5

e dsub

{DOUBLE} C S(M,C, pc + 1,0)
Smaz
/\ S(M,C,pc,i) € S(M,C,pc+1,i—1)
=2
Rmaz
N\ R(M,C,pe,i) C R(M,C, pe+1,4)
=0

e dup

S(M,C, pc,0)
S(M,C, pc,0)
Smaz—1
/\ S(M,C,pe,i) CS(M,C,pc+1,i+1)
i=1
Ruaz
/\ R(M,C,pe,i) € R(M,C,pc+1,i)
i=0

S(M,C,pc+1,0)
S

-
C S(M,C,pc+1,1)
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e dup_x1
S(M,C, pc,0) € S(M,C, pc+1,0)
S(M,C,pc,1) € S(M,C,pc+1,1)
S(M,C, pc,0) € S(M,C, pc+1,2)
Sm,am_l
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=2
Rmaz
AIMLQWUQMMQm+LD
i=0
e dup_x2

category(S(M,C, pc,1)) =1 =

C S(M,C, pc+1,0)
S(M,C,pc,1) C S(M,C,pc+1,1)
CS(M,C,pc+1,2)
Smaz—1
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
/\ R(M,C,pe,i) C R(M,C,pc+ 1,i)
=0

category(S(M,C,pc,1)) =2 =

S(M,C, pc,0

( M,C,pc+1,0
S(M,C, pc, 1

(

(

M,C,pc+1,1
M,C,pc+1,2
M,C,pc+1,3

S(M,C,pc,2
S(M,C, pc,0
Smaz—1

/\ S(M,C,pe,i) C S(M,C,pc+1,i+1)

=3

Riax

/\ R(M,C,pe,i) C R(M,C,pc+ 1,i)

=0

— — ~— —

C
-
-
-

o n s

)
)
)
)
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e dup2

category(S(M,C, pc,0)) =1 =

Smaz _2

/\ S(M,C,pe,i) CS(M,C,pc+1,i+2)
=2

Rmaz

N\ R(M,C,pe,i) € R(M,C,pc+1,i)
=0

category(S(M,C, pc,0)) =2 =

S(M,C, pc,0)
S(M,C, pc,1)
Smaz—1
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=1
Rmag
/\ R(M,C,pc,i) C R(M,C,pec+1,i)
=0

(M,C,pc+1,0)

cs
CS(M,Cypc+1,1)

e dup2_x1

category(S(M,C,pc,0)) =1 =

S(M,C,pc,0) CS(M,C, pc+1,0)
S(M,C,pc,1) CS(M,C,pc+1,1)
S(M,C,pc,2) CS(M,C,pc+1,2)
S(M,C,pc,0) C S(M,C,pc+1,3)
S(M,C,pc,1) C S(M,C,pc+1,4)
Sumaz—2
N\ S(M,C,pc,i) C S(M,C,pc+1,i+2)
o

N R(M,C,pe,i) C R(M,C, pe+1,1)
=0
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category(S(M,C, pc,0)) =2 =

S(M,C, pe,0) € S(M,C, pc +1,0)
S(M,C,pc,1) € S(M,C,pc+1,1)
S(M,C,pc,0) CS(M,C,pc+1,2)
Smaz_l
N\ S(M,C,pc,i) C S(M,C,pc+1,i+ 1)
1=2
Rmax
A\ R(M.C.pe.i) C R(M,C,pe +1,i)
i=0

e dup2_x2

category(S(M, C, pc,0)) = 1 A category(S(M,C, pc,2)) =1 =

S(M,C,pc,0) C S(M,C,pc+1,0)
S(M,C,pc,1) CS(M,C,pc+1,1)
S(M,C,pc,2) CS(M,C,pc+1,2)
S(M,C,pc,3) CS(M,C,pc+1,3)
S(M,C,pc,0) CS(M,C,pc+1,4)
S(M,C, pe,1) € S(M,C, pc +1,5)
Smaz—2
N\ S(M,C,pc,i) C S(M,C,pc+1,i+2)

=4

Rmaz

N\ R(M.C.pc.i) C R(M,C,pe +1,i)
=0
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category(S(M,C, pc,0)) = 2 A category(S(M,C, pc,1)) = 1 =

S(M,C, pc,0
S(M,C,pc,1
S(M,C, pc,2
S(M,C, pc,0
Smaz—1
N\ S(M,C,pe,i) CS(M,C,pc+1,i+1)
o
/\ R(M,C,pc,i) C R(M,C,pc+1,i)
=0

S(M,C,pc+1,0)
S(M,C,pc+1,1)
S(M,C,pc+1,2)
S( )

-
-
-
CS(M,C,pc+1,3

— — ~— —

category(S(M,C, pc,0)) = 1 A category(S(M, C, pc,2)) =2 =

S(M,C, pc,0) C S(M,C,pc+1,0)
S(M,C,pc,1) C S(M,C,pc+1,1)
S(M,C,pc,2) CS(M,C,pc+1,2)
S(M,C,pc,0) CS(M,C,pc+1,3)
S(M,C,pc,1) C S(M,C,pc+1,4)
Smaz—2
N\ S(M,C,pe,i) C S(M,C,pc+1,i+2)
o
/\ R(M,C,pe,i) C R(M,C,pc+1,i)
i=0

category(S(M,C, pc,0)) = 2 A category(S(M,C, pc,1)) =2 =

Smazfl

/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=2

Rmaz

N R(M,C,pe,i) C R(M,C, pe +1,1)

=0
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o f2d
{DOUBLE} C S(M,C, pc+1,0)
S"LCL.’L’
N S(M,C,pe,i) € S(M,C,pe+1,4)
=1
Rmaz
N R(M,C,pe,i) € R(M,C, pe+1,i)
=0
o 23
{INT} C S(M,C,pc+1,0)
Smax
N\ S(M,C,pe,i) € S(M,C,pc + 1,4)
=1
Rmaz
N\ R(M.C.pe,i) S R(M,C,pe+1,i)
i=0
o f21
{LONG} C S(M,C, pc+1,0)
Smam
N\ S(M,C,pe,i) € S(M,C,pc+1,4)
=1
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0
e fadd

{FLOAT} C S(M,C, pc+ 1,0)
Smuz
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rmaa:
N R(M,C,pe,i) € R(M,C, pe+1,i)
1=0
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e faload
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

{FLOAT} C S(M,C,pc+ 1,0)
Smafl)
/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
i=2
Rmaz
N R(M,C,pe,i) C R(M,C, pe+1,4)
i=0

e fastore
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOut0fBoundsException)

STVL(LJL’

N S(M,C,pe,i) € S(M,C.pc+1,i—3)
=3
R'maz

N R(M,C.pe,i) € R(M,C, pe+1,i)
1=0

e fcmpg

{INT} C S(M,C, pc+1,0)
SW?,(L.’I;
/\ S(M,C,pc,i) - S(M’C’pc+ 172_ 1)
=2
R'maz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0
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e fcmpl

{INT} C S(M,C,pc+1,0)

S’HL(L(L’
/\ S(M.C,pe,i) C S(M,Cype+1,i— 1)
=2
R?TLCLJJ
N R(M.C,pc,i) € R(M,C,pc+1,i)
1=0
e fconst_O
{FLOAT} C S(M,C,pc+ 1,0)
SW’L(LI_I
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
1=0
Rmam
/\ R(M,C,pe,i) C R(M,C,pc+ 1,i)
i=0
e fconst_1
{FLOAT} C S(M,C,pc+ 1,0)
Smazfl
N\ S(M,C,pe,i) € S(M,Cpe+1,i+1)
=0
R'maz
N R(M,C,pc,i) C R(M,C,pc+1,i)
=0
e fconst_2
{FLOAT} C S(M,C, pc +1,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
1=0
Rmaz

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0



e fadd
{FLOAT} C S(M,C,pc+1,0)
STVL(LJL’
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rmaz
N R(M,C.pe,i) € R(M,C, pe+1,i)
=0
o fdiv
{FLOAT} C S(M,C,pc+ 1,0)
SW’L(LI
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rma.”c
/\ R(M.C.pe.i) S R(M,C,pe +1,i)
=0
e fload n
{FLOAT} C S(M,C, pc + 2,0)
Smazfl
N\ S(M,C,pe,i) € S(M,C,pe+2,i+1)
=0
Rmaz
N R(M,C,pc,i) C R(M,C,pc +2,i)
=0
e fload_O
{FLOAT} C S(M,C, pc + 1,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=0
RTFLHJJ

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
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e fload_1
{FLOAT} C S(M,C, pc+ 1,0)
Smaz’_l
/\ S(M,C,pc,i) CS(M,C,pc+1,i+1)
=0
R’!TL(I%
N R(M,C.pe,i) € R(M,C, pe+1,i)
1=0
e fload_2
{FLOAT} C S(M,C,pc+ 1,0)
S7nuz_1
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
1=0
Rmam
/\ R(M,C,pe,i) C R(M,C,pc+ 1,i)
i=0
e fload_3
{FLOAT} C S(M, C, pc +1,0)
Smazfl
/\ S(M,C,pe,i) € S(M,C,pc+1,i+1)
=0
R'maz
N R(M,C,pc,i) C R(M,C,pc+1,i)
=0
o fmul

{FLOAT} C S(M,C, pc+ 1,0)
Smuz
/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=2
Rmaa:
N R(M,C,pe,i) C R(M,C, pe+1,i)
1=0



e fneg

e frem

e freturn
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{FLOAT} C S(M,C,pc+ 1,0)
Smaz
N S(M,C,pc,i) € S(M,C,pc+1,i)
=1
Rmaz
/\ R(M,C,pc,i) C R(M,C,pc+1,i)
=0

{FLOATY} C S(M,C, pc +1,0)
Smaz
/\ S(M,C,pc,i) CS(M,C,pc+ 1,1 —1)
=2
Rmaz
N\ R(M,C,pe,i) C R(M,C, pe+1,4)
=0

RTE(M,C, pc, java.lang.IllegalMonitorStateException)

o fstoren

87\M S(M,C,pc,i) CS(M,C,pc+2,i—1)

ff_ll

/\ R(M,C, pc,i) € R(M,C,pc+2,i)

- S(M,C,pc,0) C R(M,C,pc+2,n)
R}{n R(M,C,pc,i) C R(M,C, pc + 2,1)
i=n+1
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o fstore_O

S’UL(L.’L‘
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=1

S(M,C,pc,0) C R(M,C,pc+1,0)

R?TLU,CL‘

N R(M.C,pc,i) € R(M,C,pc+1,i)

=1

o fstore_1

STYL(L.’Z

N\ S(M,C,pe,i) € S(M,C,pc+1,i—1)

i=1
R(M,C, pc,0)
S(M,C, pc,0)
R’Inal'

N\ R(M,C.pc.i) C R(M,C,pe +1,i)
=2

R(M,C, pc+1,0)
R

C
C R(M,C,pc+1,1)

e fstore_2

Sma,rc

/\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)

i=1

1
N\ R(M,C, pe,i) € R(M,C, pe +1,1)
=0
S(M,C,pc,0) C R(M,C,pc+1,2)
Rmaa:
N R(M,C,pe,i) € R(M,C, pe+1,i)
=3
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o fstore_3

Smaz

/\ S(M,C,pc,i) € S(M,C,pc+1,i—1)
=1

2

A\ R(M,C.pe.i) C R(M,C, pe +1,1)

=0
S(M,C, pc,0) € R(M,C, pc+1,3)
Rmaz
/\ R(M,C,pe,i) C R(M,C,pc+1,i)
i=4
e fsub
{FLOAT} C S(M,C,pc+ 1,0)
Smaz
/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=2
Rmaz
N R(M,C,pe,i) C R(M,C, pe+1,4)
=0

o getfield X.f
RTE(M,C, pc, java.lang.NullPointerException)
LE(M,C, pc, java.lang.NoSuchFieldError)
LE(M,C, pc, java.lang.IllegalAccessError)
LE(M,C, pc, java.lang.IncompatibleClassChangeError)

type(X.f) is a reference type =

/\ FIELD (o, LookupDefinition(X.f)) € S(M,C, pc + 3,0)
0€S(M,C,pc,0)
Smaz
/\ S(M,C,pe,i) C S(M,C,pc + 3,4)
i=1
Rmag
/\ R(M,C,pe,i) € R(M,C, pc + 3,1)
i=0
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type(X.f) is not reference type =

{type(X.f)} € S(M,C, pc +3,0)
STYL(lI

/\ S(M,C,pe,i) C S(M,C,pc + 3,4)
=1

RWULI
N\ R(M,C,pe,i) © R(M,C, pe+3,1)
=0

e getstatic X.f
RTE(M,C, pc, java.lang.NoClassDefFoundError)
LE(M,C, pc, java.lang.NoSuchFieldError)
LE(M,C,pc,java.lang.IllegalAccessError)
LE(M,C, pc, java.lang.IncompatibleClassChangeError)
INIT(M, C, pe, X)

type(X.f) is a reference type =

FIELD(LookupDefinition(X.f)) C S(M,C, pc + 3,0)
S’"lflfl_l
/\ S(M,C,pc,i) CS(M,C,pc+3,i+ 1)
i=0
R'fn(lfl)
N\ R(M.C.pe.i) C R(M,C, pe +3,i)
i=0

type(X.f) is not a reference type =

{type(X.f)} € S(M,C, pc+3,0)
Smaz_l
/\ S(M,C,pc,i) C S(M,C,pc+3,i+1)
1=0
R7IL(L1}
N R(M,C.pe,i) € R(M,C, pe+3,i)
=0



e goton

Smaz

/\ S(M,C,pe,i) C S(M,C,pc+n,i)
=0
RWL(L’L‘

N R(M.C.pe.i) € R(M,C,pe +n.i)
=0

e goto_wn

S'maz

/\ S(M,C,pc,i) CS(M,C, pc+ n,i)
=0
lelfl}

N R(M,C,pe,i) C R(M,C, pe+n,i)
=0

e i2b

{INT} C S(M,C,pc+1,0)
Smaz
/\ S(M,C,pe,i) C S(M,C,pc+ 1,i)
=1
Rma,:c
/N R(M.C.pe.i) € R(M,C,pe+1,i)
i=0

e i2c

{INT} C S(M,C,pc+1,0)
Smaz
/\ S(M,C,pc,i) CS(M,C,pc+1,i)
=1
Rmaz
N\ R(M,C,pe,i) € R(M,C,pc+1,i)
=0

189
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e i2d
{DOUBLE} C S(M,C, pc+1,0)
S"LCL.’L’
N S(M,C,pe,i) € S(M,C,pe+1,4)
=1
Rmaz
N R(M,C,pe,i) € R(M,C, pe+1,i)
=0
o i2f
{INT} C S(M,C,pc+1,0)
Smax
N\ S(M,C,pe,i) € S(M,C,pc + 1,4)
=1
Rmaz
/\ R(M,C,pc,i) C R(M,C,pc+1,i)
i=0
e i21
{LONG} C S(M,C, pc+1,0)
Smam
N\ S(M,C,pe,i) € S(M,C,pc+1,4)
=1
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0
e i2s

{INT} C S(M,C, pe +1,0)
Smaz
/\ S(M,C,pc,i) € S(M,C, pc+1,1)
i=1
lell:
/\ R(M,C,pc,i) C R(M,C,pc+1,1)
i=0
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e iadd
{INT} C S(M,C, pc+1,0)
Smaz
/\ S(M7C7pca7;) - S(M7 C,pC + 17Z - 1)
i=2
R’HL(IQJ
N R(M,C.pe,i) € R(M,C, pe+1,i)
=0
e iaload

RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

{INT} C S(M,C, pc +1,0)

STVL(L(L’
/\ S(Ma C7pca7;) - S(M,C’,pc—|— 17i - 1)
i=2
Rmaz
A\ R(M.C.pe.i) C R(M,C,pe +1,i)
i=0
e iand
{INT} C S(M,C, pc+1,0)
Smaw
N S(M,C.pe,i) € S(M,C.pc+1,i—1)
i=2
R'fﬂ(ll
N\ R(M.C.pc.i) C R(M,C,pe +1,i)
i=0
e iastore

RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)
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Sma,rc

/\ S(M,C,pe,i) € S(M,C,pe+1,i—3)

=3
Rmam
AfMLQmDQMMﬂmH&@
=0
e iconst_ml
{INT} C S(M,C,pc+ 1,0)
Sm,am_l
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=0
Rmaz
/\ R(M,C,pe,i) C R(M,C,pc+1,i)
=0
e iconst_0
{INT} C S(M,C, pc+ 1,0)
Smazfl
/\ S(M,C,pc,i) € S(M,C,pc+1,i+1)
=0
Rmaz
N\ R(M,C,pe,i) C R(M,C, pe+1,4)
=0
e iconst_1
{INT} C S(M,C, pc+1,0)
Smazfl
/\ S(M,C,pc,i) € S(M,C,pc+1,i+1)
1=0
Rmaz

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0



e iconst_2

{INT} C S(M,C, pc+1,0)

Smuw_l
/\ S(M,C,pc,i) CS(M,C,pc+1,i+1)
1=0
Rmaz
N R(M,C,pe,i) € R(M,C, pe+1,i)
=0
e iconst_3
{INT} C S(M,C,pc+1,0)
S7I’L(ll_1
/\ S(M,C,pe,i) CS(M,C,pc+1,i+1)
1=0
Rmam
A\ R(M.C.pe,i) S R(M,C,pe +1,i)
=0
e iconst_4
{INT} C S(M,C, pc+1,0)
Smamfl
N\ S(M,C,pe,i) € S(M,C,pe+1,i+1)
=0
Rmaz
N R(M,C,pc,i) C R(M,C,pc+1,i)
=0
e iconst_5
{INT} C S(M,C, pc+1,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=0
RTFLHJJ

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
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e idiv
RTE(M,C, pc, java.lang.ArithmeticException)

{INT} C S(M,C,pc+1,0)
Sma:r
/\ S(M,C,pc,i) - S(M707pc+ 1>Z - 1)
=2
Rm,(l.’l)
/\ R(M,C,pc,i) C R(M,C,pc+1,i)
=0

e if acmpeqn

Smaz
/\ S(M,C,pc,i) CS(M,C,pc+3,i—2)
=2
Rmaz
N R(M,C,pe,i) C R(M,C, pe+ 3,i)
=0
SHL(L.’L’
/\ S(M,C,pc,i) C S(M,C,pc+n,i—2)
1=2
R'maz
N R(M,C.pe,i) C R(M,C, pc+n,i)
=0

e if_icmpne n

Sm,am

/\ S(M,C,pe,i) € S(M,C,pe+3,i—2)
=2
Rmaz

/\ R(M,C,pc,i) C R(M,C,pc+3,i)

=0

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+n,i—2)
=2
lel:’l

N R(M,C,pe,i) C R(M,C, pc+n,i)
=0
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e if_icmpltn

S"‘LUAL'
/\ S(M,C,pC,i) - S(M707pc +377’ - 2)
1=2
R'VVLU/.’[
/\ R(M,C,pe,i) C R(M,C, pc+ 3,i)
1=0
Sﬂ'L(lZ
/\ S(M707pcvi) - S(M,C,pc—{—n,i - 2)
1=2
R'Vn(]ﬂ)
N\ R(M.C.pe.i) S R(M,C,pe +n,i)
1=0

e if_icmpge n

Smaz
/\ S(M,C’,pc,i) - S(M,C',pc+3,z - 2)
1=2
Rmﬂz
/\ R(M,C,pc,i) C R(M,C,pc+3,i)
1=0
Smaﬂ:
/\ S(M,C',pc,i) - S(M,C,pc +n7Z - 2)
=2
R’"La"l/'
/\ R(M,C,pc,i) C R(M,C, pc+n,i)
1=0
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e if_icmpgtn

STVL(L(L’
/\ S(M,C,pc,i) CS(M,C,pc+3,i—2)
=2
Rmam
/\ R(M,C,pe,i) C R(M,C, pc + 3,1i)
=0
SW’LO,I
/\ S(Ma C,pc,i) - S(Mv C’,pc —|—7’L,i - 2)
=2
Rmam
N R(M,C,pc,i) C R(M,C,pc+n,i)
i=0

e if_icmplen

Smaz
/\ S(M,C,pc,i) c S(M’C’pc+372 - 2)
i=2
R’ITLGIE
/\ R(M,C,pc,i) C R(M,C,pc+3,i)
i=0
Smaz
N\ S(M,C,pe,i) € S(M,C,pc +n,i—2)
i=2
R’HLUJJ
/\ R(M,C,pc,i) C R(M,C, pc+n,i)
i=0



e ifeqn

e ifnen

197

S(M,C,pc,i) € S(M,C,pc+3,i—1)
R(M, C, pc,i) € R(M, C, pc+3,1i)

S(M707pcvi) QS(MvcapC+nai_1)

Smaz
/\ S(M,C’,pc,i) - S(M,C',pc+3,z - 1)
1=1
Rmﬂz
/\ R(M,C,pc,i) C R(M,C,pc+3,i)
1=0
Smaﬂ:
/\ S(M,C',pc,i) - S(M,C,pc +n7Z - 1)
i=1
R’"La"l/'
/\ R(M,C,pc,i) C R(M,C, pc+n,i)
1=0



198 APPENDIX A. CONSTRAINTS FOR THE BYTECODE ANALYSIS

e iflt n

STVL(L.’L’
/\ S(M,C,pc,i) CS(M,C,pc+3,i—1)
=1

Rmaz

/\ R(M,C,pe,i) C R(M,C, pc + 3,1i)

=0

SW’LO,I

/\ S(Ma C,pc,i) - S(Mv C’,pc —|—7’L,i - 1)
=1
Rmam

N\ R(M.C.pe.i) € R(M,C,pe+n,i)
=0

e ifgen

Smaz
/\ S(M,C,pc,i) c S(M’C’pc+372 - 1)
i=1
R’ITLGIE
/\ R(M,C,pc,i) C R(M,C,pc+3,i)
i=0
Smaz
N\ S(M,C,pe,i) € S(M,C,pc+n,i—1)
i=1
R’HLUJJ
/\ R(M,C,pc,i) C R(M,C, pc+n,i)
i=0



o ifgtn

o iflen
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S(M,C,pc,i) € S(M,C,pc+3,i—1)
R(M, C, pc,i) € R(M, C, pc+3,1i)

S(M707pcvi) QS(MvcapC+nai_1)

Smaz
/\ S(M,C’,pc,i) - S(M,C',pc+3,z - 1)
1=1
Rmﬂz
/\ R(M,C,pc,i) C R(M,C,pc+3,i)
1=0
Smaﬂ:
/\ S(M,C',pc,i) - S(M,C,pc +n7Z - 1)
i=1
R’"La"l/'
/\ R(M,C,pc,i) C R(M,C, pc+n,i)
1=0
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e ifnonnull n

Sm,(l]:‘

N\ S(M,C,pe,i) € S(M,C,pc+3,i—1)
i=1
Rmaf])

/\ R(M,C,pc,i) € R(M,C, pc+ 3,1)

i=0

Sm(lz

/\ S(M,C,pc,i) CS(M,C,pc+n,i—1)
i=1
RmaI

N R(M,C,pe,i) C R(M,C, pc+n,i)
i=0

e ifnull n

Smaz
N S(M,C,pe,i) € S(M,C,pc+3,i— 1)
=1
R'HLGJJ
/\ R(M,C,pe,i) C R(M,C,pc+ 3,1i)
=0
S?TLCLI
/\ S(Ma C>pcai) - S(Mv C',pc —|—7’L,i - 1)
=1
Rmam
N\ R(M,C.pe,i) C R(M,C, pc+n,i)
=0

e iincic

Smafl‘

/\ S(M,C,pe,i) C S(M,C,pc+3,i)
i=0
Rmaz

/\ R(M,C,pc,i) € R(M,C, pc+ 3,1)
=0



e iload n
{INT} C S(M,C, pc+2,0)
Smuw_l
/\ S(M,C,pc,i) € S(M,C,pc+2,i+1)
1=0
Rmaz
N R(M,C,pe,i) € R(M,C, pe+2,i)
=0
e iload_O
{INT} C S(M,C,pc+1,0)
Smaz_l
/\ S(M,C,pe,i) CS(M,C,pc+1,i+1)
1=0
Rmam
A\ R(M.C.pe,i) S R(M,C,pe +1,i)
=0
e iload_1
{INT} C S(M,C, pc+1,0)
Smazfl
N\ S(M,C,pe,i) € S(M,C,pe+1,i+1)
i=0
Rmaz
N R(M,C,pc,i) C R(M,C,pc+1,i)
=0
e iload_2
{INT} C S(M,C, pc +1,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=0
RTFLHJJ

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
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e iload_3
{INT} C S(M,C, pc+1,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
=0
Rmaz
N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
e imul
{INT} C S(M,C, pc+1,0)
STYLG{C
/\ S(M,C,pc,i) - S(M,C,pc—l— 1>i - 1)
=2
Rmam
/\ R(M,C,pc,i) C R(M,C,pc+1,i)
=0
e ineg
{INT} C S(M,C, pc+1,0)
S‘"L(L.’L’
S(M,C, pc,i) € S(M,C, pc+1,i)
=1

. oy
>

s
Il
o

R(M,C, pc,i) € R(M,C, pc+ 1,i)

e instanceof t
LE(M,C,pc,java.lang.IllegalAccessError)
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{INT} C S(M,C,pc+ 3,0)
Smaz
N\ S(M,C,pe,i) € S(M,C, pe+3,i)
i=1
Rm(w:
A\ R(M,C,pe.i) C R(M,C, pe +3,1)
1=0

e invokeinterface X.m cn
RTE(M,C, pc, java.lang.AbstractMethodError)
RTE(M,C, pc, java.lang.UnsatisfiedLinkError)
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.IllegalAccessError)
RTE(M,C, pc, java.lang. IncompatibleClassChangeError)
LE(M,C, pc, java.lang.NoSuchMethodError)
LE(M,C,pc, java.lang.IncompatibleClassChangeError)

type(TRETURN (X.m)) = VOID =

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+5,i—1—n)
i=14n

Rmaa

/\ R(M,C,pe,i) C R(M,C,pc + 5,1)

=0

/\ CALL(M, pc, LookupDefinition(X.m, 0),{}, {o},
0€S(M,C,pc,0)
S(M,C,pc,1),...,8(M,C, pc,n))
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type(TRETURN (X.m)) # VOID =

Smaz

/\ S(M,C,pc,i) € S(M,C,pc+5,i—n)
i=14n

Ruas

/\ R(M,C,pe,i) C R(M,C,pc+ 5,i)

i=0

/\ CALL(M, pc, LookupDefinition(X.m, o), S(M, C, pc + 3,0),
0€S(M,C,pc,0)
{0}, S(M,C,pc,1),...,S(M,C, pc,n))

e invokespecial X.m
RTE(M,C, pc, java.lang.UnsatisfiedLinkError)
RTE(M,C, pc, java.lang.NullPointerException)
LE(M,C,pc, java.lang.NoSuchMethodError)
LE(M,C, pc, java.lang.AbstractMethodError)
LE(M,C,pc, java.lang.IllegalAccessError)
LE(M,C,pc, java.lang.IncompatibleClassChangeError)

type(TRETURN (X.m)) =VOID =

Smaz

N S(M,C,pe,i) € S(M,C,pc+3,i—1—n)
1=14+n

Roax

/\ R(M,C,pc,i) C R(M,C,pc+3,i)

=0

CALL(M, pc, X.m,{}, S(M, C, pc,0),
S(M,C,pc,1),...,S(M,C, pc,n))
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type(TRETURN (X.m)) # VOID =

Smaz

/\ S(M,C,pe,i) € S(M,C,pc+3,i—n)
i=14+n

Ruaz

/\ R(M,C,pc,i) C R(M,C,pc+3,i)

=0

CALL(M, pc, X.m,S(M,C, pc + 3,0),S(M,C, pc,0),
S(M,C,pc,1),...,8(M,C,pc,n))

e invokestatic X.m
RTE(M,C, pc, java.lang.NoClassDefFoundError)
RTE(M,C, pc, java.lang.UnstatisfiedLinkError)
LE(M,C, pc, java.lang.NoSuchMethodError)
LE(M,C,pc, java.lang.AbstractMethodError)
LE(M,C, pc, java.lang.IllegalAccessError)
LE(M,C, pc, java.lang.IncompatibleClassChangeError)
INIT(M, C, pe, X)

type(TRETURN (X.m)) =VOID =

Sm,az‘

N\ S(M,C,pe,i) € S(M,C,pc+3,i—n)
RIV_L(L‘L

/\ R(M,C,pe,i) € R(M,C, pc + 3,1)

1=0

CALL(M, pc, X.m,{},{}, S(M,C, pc,0),...,S(M,C, pc,n —1))



206 APPENDIX A. CONSTRAINTS FOR THE BYTECODE ANALYSIS

type(TRETURN (X.m)) # VOID =

Smaz—maz(1—n,0)
/\ S(M,C,pc,i) € S(M,C,pc+3,i+1—n)
- R’UL(Z(L'
A R(M,C,pe,i) € R(M,C, pe + 3,i)
=0

CALL(M, pc, X.m,S(M,C, pc + 3,0),{},
S(M,C,pc,0),...,8(M,C,pc,n —1))

e invokevirtual m

RTE(M,C, pc, java.lang.AbstractMethodError)

RTE(M,C, pc, java.lang.UnsatisfiedLinkError)

RTE(M,C, pc, java.lang.NullPointerException)

LE(M,C, pc, java.lang.NoSuchMethodError)
LE(M,C, pc, java.lang.AbstractMethodError)
LE(M,C,pc, java.lang.IllegalAccessError)
LE(M,C,pc, java.lang.IncompatibleClassChangeError)

type(TRETURN (m)) = VOID =

Smaz

N S(M,C,pe,i) € S(M,C,pc+3,i—1—n)
1=14n

Roax

/\ R(M,C,pc,i) C R(M,C,pc+3,i)

=0

/\ CALL(M, pc, LookupDefinition(m, 0),{}, {o},
0€S(M,C,pc,0)
S(M,C,pc,1),...,S(M,C,pc,n))
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type(TRETURN (m)) # VOID =

Smaz
/\ S(M,C,pc,i) € S(M,C,pc+3,i—n)
1=14+n
Rmaz
/\ R(M,C,pe,i) C R(M,C, pc+ 3,i)
=0

/\ CALL(M, pc, LookupDefinition(m, o), S(M, C, pc + 3,0), {o},
0€S(M,C,pc,0)
S(M,C,pc,1),...,S(M,C,pc,n))

e ior
{INT} C S(M,C,pc+1,0)
S’IVLO,.I
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
RmafE
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0
e irem
RTE(M,C, pc, java.lang.ArithmeticException)
{INT} C S(M,C, pe + 1,0)
Smaz
/\ S(M,C,pC,i) g S(M7 C,pC + 17Z - 1)
i=2
R"n(lll'
N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
e ireturn

RTE(M,C,pc, java.lang.IllegalMonitorStateException)
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e ishl
{INT} C S(M,C,pc+1,0)
STI’L(L’I,‘
/\ S(M’Capc’i) - S(M,C,p6+ 177’ - 1)
i=2
Rmaz
/\ R(M,C,pc,i) C R(M,C,pc+1,i)
i=0
e ishr
{INT} C S(M,C,pc+1,0)
S’VVL(L(L'
/\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
i=2
R?YLU,.'L‘
/\ R(M,C,pe,i) € R(M,C,pc+ 1,i)
i=0
e istoren
STYLG{L‘

/\ S(M,C,pc,i) - S(M707pc+27Z - 1)
i=1
Rma.’v

/\ R(M,C,pe,i) C R(M,C, pec+2,i)
=0

e istore_0

Smuz

N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=1
Rmaa:

N R(M,C,pe,i) € R(M,C, pe+1,i)
=0
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e istore_1

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=1
lel:l)

N R(M,C,pe,i) C R(M,C, pe+1,4)
=0

e istore_2

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=1
Rmaz

N R(M,C.,pe,i) C R(M,C, pe+1,4)
=0

e istore_3

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
i=1
Rmaz

N R(M,C,pe,i) C R(M,C, pe+1,4)
=0

e isub

{INT} C S(M,C,pc+1,0)
Smaz
/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=2
lel:l)
N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
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e iushr
{INT} C S(M,C, pc+1,0)
S'"Lll(l}
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
i=2
R?TLUJL‘
N R(M.C,pc,i) € R(M,C,pc+1,i)
i=0
e ixor
{INT} C S(M,C,pc+1,0)
Smal‘
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
i=2
Rm,(lﬂ?
/\ R(M.C.pe.i) C R(M,C,pe+1,i)
i=0
e jsrn
{pc+3} C S(M,C,pc+mn,0)
Sm(l.’l)il
/\ S(M,C,pc,i) € S(M,C,pc+n,i+1)
i=0
Rmﬂfﬂ
N R(M,C,pc,i) C R(M,C,pc+n,i)
=0
® jsr_wn
{pc+5} C S(M,C,pc+mn,0)
Smazfl
/\ S(M,C,pc,i) CS(M,C,pc+n,i+1)
i=0
R’maz

A\ R(M,C,pe,i) C R(M,C, pc+n,i)
=0



e 124
{DOUBLE} C S(M,C, pc+1,0)
S’muw
/\ S(M,C,pc,i) CS(M,C,pc+1,i)
i=1
RTYL(L.Z
N\ R(M,C,pe,i) € R(M,C,pc+1,i)
=0
o 12f
{FLOAT} C S(M,C,pc+1,0)
STIL(ZZ
/\ S(M,C,pe,i) C S(M,C,pc+ 1,i)
=1
Rﬂ'),(]@‘
A\ R(M,Cpc.i) C R(M,C, pe +1,i)
=0
o 127
{INT} C S(M,C, pc +1,0)
Sma,z
/\ S(M,C,pe,i) € S(M,C,pe+1,i)
i=1
Rmaz
N\ R(M,C,pc,i) € R(M,C,pc+1,i)
=0
e ladd

{LONG} C S(M,C, pc+1,0)

Smaz

N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)

=2
lel:l)
N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
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e laload
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

{LONG} C S(M,C,pc+1,0)
Smaz
/\ S(M,C,pc,i) € S(M,C,pc+1,i—1)
=2
Rmaz
N R(M,C,pe,i) C R(M,C, pe+1,i)
1=0

e land

{LONGY} C S(M,C, pc+1,0)
S’VVL(L(E
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
1=2
Rmaz
N\ R(M.C.pc.i) C R(M,C,pe +1,i)
1=0

e lastore
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

S’Vn{l],‘

/\ S(M’Capc’i) C S(M707pc+ 172_3)
=3

Rmaz

/\ R(M,C,pc,i) C R(M,C,pc+1,i)
=0
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e lcmp

{INT} C S(M,C, pc+1,0)

SW?,(L.’I;
/\ S(M,C,pe,i) € S(M,C,pe+1,i—1)
i=2
Rmaz
/\ R(M,C,pe,i) C R(M,C,pc+1,i)
i=0
e lconst_O
{LONG} C S(M,C,pc+1,0)
Smuw_l
/\ S(M,C,pc,i) CS(M,C,pc+1,i+1)
i=0
R'maz
N R(M,C,pe,i) € R(M,C, pe+1,i)
i=0
e lconst_1
{LONG} C S(M,C, pc+1,0)
Smazfl
N\ S(M,C,pe,i) € S(M,C,pe+1,i+1)
i=0
Rmﬂfl}

N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
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e ldc c

type(c) € {INT,FLOAT} =

{type(c)} € S(M,C, pc +2,0)
Smazfl
/\ S(M,C,pc,i) C S(M,C,pc+2,i+1)
=0
R’ITLGCE
N R(M,C,pe,i) C R(M,C, pe+ 2,i)
=0

type(c) € {STRING} =

{OBJECT(M, pc, java.lang.String)} C S(M,C, pc + 2,0)
type(OBJECT (M, pc, java.lang.String)) =
S’ITLI,L.Z'_I
N\ S(M,C,pc,i) C S(M,C,pc+2,i+1)
i=0
Rm(],.’E
/\ R(M.C.pe.i) S R(M,C,pe +2,i)
i=0

java.lang.String

e ldc_wc

type(c) € {INT, FLOAT} =

{type(c)} C S(M,C, pc + 3,0)
Smaz’_l
N S(M,C,pc,i) € S(M,C,pe+3,i+1)
i=0
R’”L(l/l'
N R(M,C,pe,i) € R(M,C, pe+3,i)
i=0
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type(c) € {STRING} =

e ldc2_wc

e 1div

{OBJECT(M, pc, java.lang.String)} C S(M,C, pc + 3,0)
type(OBJECT (M, pc, java.lang.String)) =

java.lang.String
Smaz—1
/\ S(M,C,pe,i) C S(M,C,pc+3,i+1)
i=0
Rz
/\ R(M,C,pc,i) C R(M,C, pc+ 3,1)
i=0

{type(c)} € S(M,C, pc+ 3,0)
Sma.’ﬂfl
/\ S(M,C,pe,i) € S(M,C,pe+3,i+1)
i=0
Rmﬂz
/\ R(M,C,pc,i) C R(M,C, pc + 3,1)
i=0

RTE(M,C, pc, java.lang.ArithmeticException)

{LONG} C S(M,C, pc+1,0)
5771,0,]:‘
N\ S(M,C,pe,i) € S(M,C,pc+1,i—1)
i=2
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
i=0
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e lload n
{LONG} C S(M,C, pc+2,0)
Smaz’_l
/\ S(M,C,pc,i) CS(M,C,pc+2,i+1)
i=0
R'fﬂ(l@
N R(M,C.pe,i) € R(M,C, pe+2,i)
i=0
e 11oad_O
{LONG} C S(M,C, pc+1,0)
S’IVLLLI_I
N\ S(M,C,pc,i) C S(M,C,pc+1,i+1)
i=0
Rmam
/\ R(M,C,pe,i) C R(M,C,pc+ 1,i)
i=0
e 1load_1
{LONG} C S(M,C, pc+1,0)
Sm(l.’lfil
/\ S(M,C,pe,i) € S(M,C,pc+1,i+1)
i=0
R'InafE
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
i=0
e lload_2
{LONG} C S(M,C,pc+1,0)
Sm(ll'il
/\ S(M,C,pc,i) CS(M,C,pc+1,i+1)
i=0
Rmam

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
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e 1load_3
{LONG} C S(M,C, pc+1,0)
Sm(lT_l
/\ S(M,C,pe,i) CS(M,C,pc+1,i+1)
i=0
Rma:ﬂ
N R(M,C,pc,i) C R(M,C,pc+1,i)
=0
e Imul
{LONG} C S(M,C, pc+1,0)
STVL(LJL’
N S(M,C,pe,i) € S(M,Cpc+1,i—1)
=2
Rmaz
N R(M,C.pe,i) € R(M,C, pe+1,i)
=0
e Ineg

{LONG} C S(M,C,pc+1,0)
Smaz
/\ S(M,C,pc,i) CS(M,C,pc+1,i)
=1
Rmaz
/\ R(M,C,pc,i) € R(M,C,pc+ 1,1)
=0
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e lookupswitch default npairs my,01, ..., Mupairs; Onpairs
SW’LCL.Z'
/\ S(M,C,pc,i) C S(M,C, pc+ default,i — 1)
i=1
Rmaa
/\ R(M.C,pc,i) C R(M,C,pc+ default, i)
i=0

npairs Spmaz
N N\ S(M,C,pe,i) € S(M,C,pe+ onpairs,i — 1)
t=1 1i=1

npairs Royaz

/\ /\ R(Mu C7 pc, Z) g R(M7 Cv pc + 0npai7"s; Z)

t=1 i=0
e lor
{LONG} C S(M,C,pc+1,0)
Smaz
/\ S(M,C7p07i) C S(M7C7pc+ 17Z - 1)
i=2
RTVLCL.'L'
N R(M,C.pe,i) € R(M,C, pe+1,i)
=0
e lrem
RTE(M,C, pc, java.lang.ArithmeticException)
{LONG} C S(M,C, pc+1,0)
Smal‘
/\ S(M,C,pc,i) € S(M,C,pc+1,i—1)
=2
Rmaz‘
N R(M,C,pe,i) C R(M,C, pe+1,i)
=0
e lreturn

RTE(M,C, pc, java.lang.IllegalMonitorStateException)
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e 1shl
{LONG} C S(M,C, pc+1,0)
Sm/(L.T
/\ S(M,C,pc,i) - S(M’C’pc+ 172_ 1)
=2
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0
e lshr
{INT} C S(M,C,pc+ 1,0)
STVL(L"L'
/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
i=2
R'fﬂ(ll'
N R(M,C.pe,i) € R(M,C, pe+1,i)
=0
e lstoren
SW’HLZ‘

N\ S(M,C,pe,i) € S(M,C,pc+2,i— 1)
=1

Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 2,1)
=0

e Istore_0

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=1
lel:l)

N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
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e lstore_1

Smuz

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=1

Rmaa:

N R(M,C,pe,i) C R(M,C, pe+1,i)
1=0

e lstore_2

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=1

Rmaz

N R(M,C,pe,i) C R(M,C, pc+1,i)
1=0

e 1lstore_3

Smaz

/\ S(M,C,pc,i) € S(M,C,pc+1,i—1)
i=1

Rmaz

N R(M,C,pe,i) C R(M,C, pe+1,i)
=0

e 1lsub

{LONG} C S(M,C,pc+1,0)
Smuz
/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=2
Rmaa:
N R(M,C,pe,i) € R(M,C, pe+1,i)
1=0
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e lushr
{LONG} C S(M,C,pc+1,0)
Smaft
/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
i=2
Rmaz
N R(M,C,pe,i) C R(M,C, pe+1,4)
i=0
e lxor
{LONGY} C S(M, C, pc +1,0)
S’IVLCLI
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
=2
Rm(l.’E
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
i=0

e monitorenter
RTE(M,C, pc, java.lang.NullPointerException)

Smar

N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
i=1
Rmam

/\ R(M.C.pe.i) S R(M,C,pe+1,i)
=0

e monitorexit
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C,pc,java.lang.IllegalMonitorStateException)

Smaz

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
=1
RTI‘L[II

N R(M,C,pe,i) C R(M,C, pe+1,4)
=0
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e multianewarray ¢t n
RTE(M,C, pc, java.lang.NegativeArraySizeException)
LE(M,C, pc, java.lang.IllegalAccessError)

OBJECT (M, pc,t) C S(M,C, pc + 4,0)
type(OBJECT (M, pc,t)) = t[1"
S’!TLUJJ
/\ S(M,C,pc,i) € S(M,C,pc+4,i+1—n)
R’I:G,Z
N\ R(M,C,pe,i) C R(M,C, pe+4,i)
=0

® newt
RTE(M,C, pc, java.lang.NoClassDefFoundError)
LE(M,C, pc, java.lang.InstantiationError)
LE(M,C, pc, java.lang.IllegalAccessError)
INIT (M, C, pe,t)

{OBJECT (M, pc,t)} C S(M,C, pc + 3,0)
type(OBJECT (M, pc,t)) =t
Smaz_l
N\ S(M,C,pc,i) C S(M,C,pc+3,i+1)
1=0
R’HL(LSL‘
N R(M,C,pe,i) C R(M,C, pe+3,i)
=0

e newarray t
RTE(M,C, pc, java.lang.NegativeArraySizeException)

t=4=
{OBJECT (M, pc,t)} C S(M,C, pc+2,0)
type(OBJECT (M, pc,t)) = boolean[]
Smazfl
N\ S(M,C,pc,i) C S(M,C,pc+2,i+1)
i=0
lel]:

/\ R(M,C,pec,i) C R(M,C, pc+ 2,1)
i=0



t=5=
{OBJECT (M, pc,t)} C S(M,C, pc+2,0)
type(OBJECT (M, pc,t)) = char[]
Sm(m:_
/\ S(M,C,pc,i) CS(M,C,pc+2,i+1)
i=0
Rmaz
/\ R(M,C,pe,i) € R(M,C, pc +2,)
i=0
t=6=
{OBJECT (M, pc,t)} C (M C,pc+2,0)
type(OBJECT (M, pc,t)) = float []
Smax_l
/\ S(M,C,pe,i) CS(M,C,pc+2,i+1)
i=0
Rm,am
N\ R(M,C,pe,i) C R(M,C, pc+2,i)
i=0
t=7=

{OBJECT (M, pc,t)} € S(M,C, pc+2,0)
) =

type(OBJECT (M, pc,t) double[]
Smaw_l
N S(M,C,pe,i) C S(M,C,pe+2,i+1)
i=0
Rmal‘

N\ R(M.C.pe.i) C R(M,C, pe +2,i)
1=0
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t=8=
{OBJECT (M, pc,t)} € S(M,C, pc +2,0)
type(OBJECT (M, pc,t)) = bytel]
S'Inazil
/\ S(M,C,pc,i) CS(M,C,pc+2,i+1)
i=0
lel]:
/\ R(M,C,pe,i) C R(M,C, pc +2,4i)
i=0

{OBJECT (M, pc,t)} € S(M,C, pc+2,0)
type(OBJECT (M, pc,t)) = short[]
Smuw_l

N S(M,C,pe,i) € S(M,C,pe+2,i+1)

=0

R’Vn(lI

/\ R(M,C,pe,i) € R(M,C,pc+2,i)

i=0

t=10 =
{OBJECT (M, pc,t)} € S(M,C,pc+2,0)
type(OBJECT (M, pc,t)) = int []
Smam_l
N\ S(M,C,pe,i) C S(M,C,pc+2,i+1)
i=0
R'In(l:l}
/\ R(M,C,pc,i) € R(M,C, pc+ 2,1)
i=0

t=11=
{OBJECT (M, pc,t)} C S(M,C, pc+2,0)
type(OBJECT (M, pc,t)) = longl[]
Smazfl
N\ S(M,C,pc,i) C S(M,C,pc+2,i+1)
i=0
lel];
N R(M,C,pe,i) C R(M,C, pe+ 2,i)
i=0
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e nop

Smaz

/\ S(M,C,pe,i) € S(M,C,pe+1,i)
=0
Rmaz

N R(M,C,pe,i) C R(M,C, pe+1,4)
=0

¢ pop

Sm,az

/\ S(M,C,pc,i) CS(M,C,pc+1,i—1)
i=1

R'maz
N R(M,C,pc,i) C R(M,C,pc+1,i)
=0

e pop2

Smam

N\ S(M,C,pe,i) € S(M,C,pc+1,i—2)
=2
Rmaz

/\ R(M,C,pe,i) C R(M,C,pc+1,i)
=0

e putfield X.f
RTE(M,C, pc, java.lang.NullPointerException)
LE(M,C, pc, java.lang.NoSuchFieldError)
LE(M,C,pc,java.lang.IllegalAccessError)
LE(M,C, pc, java.lang. IncompatibleClassChangeError)
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type(X.f) is a reference type =

/\ = S(M,C, pc,0) C FIELD(o, LookupDefinition(X.f))
0€S(M,C,pc,1)
Smaz
N\ S(M,C,pe,i) € S(M,C,pc+3,i—2)
i=2
Rmaz
/\ R(M,C,pe,i) € R(M,C,pc + 3,1)
i=0

type(X.f) is not a reference type =

SWLO.I

N\ S(M,C,pe,i) € S(M,C,pc+3,i—2)
=2
Rm(m

/\ R(M.C.pe.i) C R(M,C,pe +3,i)
=0

e putstatic X.f
RTE(M,C, pc, java.lang.NoClassDefFoundError)
LE(M,C, pc, java.lang.NoSuchFieldError)
LE(M,C,pc,java.lang.IllegalAccessError)
LE(M,C, pc, java.lang.IncompatibleClassChangeError)
INIT(M,C, pe, X)

type(X.f) is a reference type =

S(M, C,pc,0) C FIELD(LookupDefinition(X.f))
STVL(L(L'

S(M,C,pe,i) € S(M,C,pc+3,i—1)

.
Il
—

R(M, C,pc,i) € R(M,C, pc + 3,1)

. =
>

~
I
o



227

type(X.f) is not a reference type =

Smam

N\ S(M,C,pe,i) € S(M,C,pc+3,i— 2)
=2

RWL(L’I)

N R(M,C,pc,i) C R(M,C,pc +3,1)
=0

e retn

Smaz

A /\ S(M,C,pe,i) C S(M,C\t,i)
teR(M,C,pc,n) =0
Rimaz

A\ /\ R(M,C,pe,i) € R(M,C,t,1i)
teR(M,C,pe,n) =0

e return
RTE(M,C, pc, java.lang.IllegalMonitorStateException)

e saload
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)

{INT} C S(M,C, pc+1,0)
S’IVLU;I
N\ S(M,C,pe,i) € S(M,C,pc+1,i— 1)
i=2
Rm(lfl)
AIMLQWUQMMﬁm%LD
=0

e sastore
RTE(M,C, pc, java.lang.NullPointerException)
RTE(M,C, pc, java.lang.ArrayIndexOutOfBoundsException)



228 APPENDIX A. CONSTRAINTS FOR THE BYTECODE ANALYSIS

Smﬂ,fl)
/\ S(M,C,pc,i) € S(M,C,pc+1,i—3)
=3
Rm(lflf
/\ R(M,C,pe,i) € R(M,C,pc+ 1,4i)
=0
e sipush n
{INT} C S(M, C,pc+ 3,0)
Smazfl
/\ S(M,C,pc,i) € S(M,C,pc+3,i+1)
=0
Rmaz
/\ R(M,C,pe,i) € R(M,C, pc+ 3,1i)
=0

e swap

S(M,C,pc,1) € S(M,C,pc+1,0)
S(M,C,pc,0) C S(M,C,pc+1,1)
Smaz
N\ S(M,C,pe,i) € S(M,C,pc+1,4)
=2
Rmaz
/\ R(M,C,pc,i) € R(M,C, pc+ 1,1)
=0
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e tableswitch default low high t1,. .., thigh—iow+1

Smaz
/\ S(M,C,pc,i) CS(M,C, pc+ default,i — 1)
i=1
R'"L(L"L'
/\ R(M,C,pc,i) C R(M,C, pc + default, 1)
i=0
high—low+1 Sy, 0z
N\ N\ S(M,C pe,i) € S(M,C,pe+t;,i—1)
t=1 =1
high—low+1 Ry ax
A N\ RM,C,pc,i) € R(M,C, pc + t;, i)
t=1 i=0
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Appendix B

Limitations of the Prototype

B.1 Late Addition of Assignments

KABA is split into different parts, most noticably the code analysis was
seperated from the interactive parts. The constraint system is only present
during analysis time, its results are stored in a condensed form which does
not include all constraints, but only the relevant parts required to build the
concept lattice.

The condensed analysis results still contain the list of assignments, but
adding additional assignments to the list will no longer result in the checking
of all conditional constraints, which may result in missing entries to the table
(the same effect as seen for context- and object-senstive points-to analysis).

Currently KABA has no user interface to add individual assignments, as
this would not provide anything, which can’t be done with the interactive
editor instead. Unfortunatly, adding assignments is the only reasonable way
to enforce equal signatures for overriden methods (see section [3.6)).

Fixing the cause of this problem is hard. Even if the code analysis
and the interactive editor were merged into one program, enabling manual
modification of the constraint system would require a new calculation of the
concept lattice. But this causes a number of problems (response time of the
interactive system, automated and very invasive changes to class hierarchy
as the result of “small” changes by the user), which are propably not solvable
in a system that is supposed to be usable by a programmer.

Fixing the effects of the different handling of assignments is a bit easier,
although this possibility might seem a little grotesque. The current handling
of additional assignments results in abstract classes, which have instances.
Two solutions are possible: First, the user is notified of the problem and
forced to refactor the class hierarchy in a way, that those classes are no
longer abstract. Secondly, a dummy function, which is empty or throws an
exception, is automatically inserted to make the class non-abstract. In both
cases, semantics of the program will not be affected, as the guarantee, that
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1 class A {

2 void £O { }
3 void g() { 2}
4 %

)

6 class Test {

7 static A p;

8 static A q;

9 public static void main(String[] args) {
10 p=new AQ);
11 p.£0O;

12 g=new AQ);
13 q.80;

14 b

15 %

Figure B.1: Sample program for assignment problem

the “missing” members are not invoked, is still given by the static analysis.

A small example will illustate this. Figure [B.1l shows a small program,
figure the analysis result. Let’s now assume, the assignment p=q shall
be added to the program. The constraint system would then re-evaulate
the CALL rule and create a hierachy as seen in figure The interactive
editor only updates the table, which results in the hierarchy as seen in figure
[B4l In this hierarchy the object named A2 contains an abstract declaration
of £(), but no implementation. It should however be obvious, that adding
a dummy method called £ () will not modify the semantics of the original
program.
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r

dcl(A.g) _
java.lang.Object
Test.q
dcl(A.f)
def(A.<init>)
Test.p
def(A.g) def(A.f)
A2 Al

Figure B.2: Original analysis of [B.1]

/N

del(Af)

java.lang.Object
Test.p

L

def(A.<init>)

def(A.f) del(A.g)

Al jSt'q
def(A.g)

A2

Figure B.3: Handling of p=q by the analysis
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/N

dcl(A.f)
java.lang.Object
Test.p
dcl(A.
ac) def(A.<init>)

Test.q

def(A.g) def(A.f)

A2 Al

Figure B.4: Handling of p=q by the editor
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