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Introduction

1.1 Motivation

The modern theory of asymptotic expansions goes back to the research of Thomas
Stieltjes [Sti86] and Henri Poincaré [Poi86] in 1886. The asymptotic analysis is
that branch of mathematics, more precisely of analysis, devoted to the study of
the behaviour and the representation of a given function by simple functions at a
limit point of the function’s domain. Let us consider the example if the function is
analytic. In this special case the asymptotic expansion can be given by its Taylor
series. As long ago as 1812, Pierre-Simon Laplace |[dL12| showed two methods
of establishing an asymptotic expansion of functions defined by an integral. The
method in which we are interested is finding a function’s asymptotics by integrating
by parts. In this way, he represented the complementary error function, which is

defined by the integral
2 2
— [ e "dt
NG / o

by a divergent power series, cf. |[Cop04, p.2].
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We combine this topic with a field of model theory that comes up about one
hundred years later after Poincaré. But first, we take a closer look at the so-called
semialgebraic sets and go back to a significant theorem, which was established in
the middle of the 20th century. Semialgebraic sets can be found in a lot of areas
in mathematics. They are a boolean combination of equalities and inequalities of
real polynomials, that means, they are a finite union of sets of the form

{r eR"| f(x) =0, g1(x) > 0,..., g(x) > 0}.

These sets are “truly a special feature in real algebraic geometry”, see [BCR98, p.2].
It is a consequence of the many pleasant properties of this class of sets: for example,
they are closed under union, intersection, and complementation. Therefore, the
finite union and intersection of semialgebraic sets is still semialgebraic, as well as
their complements. Their most significant feature was proven and published by
the logician Alfred Tarski [Tar4§| in 1948 and popularized by Abraham Seidenberg
six years later by using it in his work [Sei54]. The results of both are known as
the Tarski-Seidenberg Theorem which states that semialgebraic sets are also stable
under projection. In addition to this, semialgebraic sets have only finitely many
connected components and each of them is also semialgebraic. These fundamental
properties give great conveniences. In the early 1980s the model theorist Lou
van den Dries realized that few axioms provide many properties of semialgebraic
sets, cf. [vdDO98, p.vii]. Thereby, he based the theory of the so-called o-minimal
structures in [vdD84], which has become a recognized area since then.

The theory of o-minimal structures could be located as branch of model theory
and mathematical logic with ties to real algebraic geometry and real analysis.
In its set-theoretic definition, an o-minimal structure, in our context on the real
ordered field, is a structure M, that means a family of sets (M,,),en which fulfills
specific axioms, in which the sets in M; are precisely the finite union of intervals
and points. From this point of view, the semialgebraic sets form the simplest
o-minimal structure: The expansion of the real ordered field by all semialgebraic
sets. O-minimality can be seen as a generalization of semialgebraic sets and real
algebraic geometry. By this , it is possible to expand the area of analysis to them
and to do, for example, integration. The theory of o-minimal structures offers
great potential for research in different areas. In the late 1980s and the 1990s the
community had a particular interest in finding structures which are o-minimal.
One of these determined structures is R,,, the expansion of the real ordered field
by all restricted analytic functions, see [vdD86|. Their definable sets are also known
as the globally subanalytic sets. Another field of research is studying the effects of
o-minimality e.g. to stability properties or to measures, see for example [Kail2].
From this point of view, Jean-Marie Lion, Jean-Philippe Rolin, and Georges Comte
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considered parameterized integrals

[ .y

under the condition that f is a globally subanalytic function, see |[LR98| and
[CLROO]. These papers state the significant result that [ f(z, y)dy has the form of
a polynomial P(p1,...,p,,loges, ..., loge,) in globally subanalytic functions ¢;
and their logarithms. In 2011, Raf Cluckers and Daniel Miller treated the integrals

/ £ ) (log(g(z, 9)))" dy,

where f and g are globally subanalytic functions, see |[CM11]. In their focus
of interest are the so-called constructible functions, which are represented by a
finite sum of finite products of globally subanalytic functions and their logarithms.
Cluckers and Miller showed stability under integration for the class of constructible
functions. As a consequence, they proved that the constructible functions form
the smallest class, “which is stable under integration and contains all the globally
subanalytic functions”, see [CM11}, p.312|. Hence, this paper is an extension of the
research of Lion, Rolin, and Comte, which we mentioned above. In 2013, Tobias
Kaiser gave a sharper result in the case of semialgebraic functions in |[Kail3|. He
showed that parameterized integrals of semialgebraic functions can be completely
described if the semialgebraic functions are enlarged by the global logarithm and
the iterated antiderivatives of power series, see [Kail3, p.349|. The newest work of
Cluckers, Comte, Miller, Rolin, together with Tamara Servi about the integration
of oscillatory and globally subanalytic functions continues the research in this area,
see [CCM*16]7] Oscillatory integrals have the form

/ ) f(z,y)dy

and in this context, the functions f and ¢ are globally subanalytic. An example of
oscillatory integrals of this kind is given by Fourier transforms, cf. [CCM™16} p.4].
The authors “prove[d] the stability under integration and under Fourier trans-
form of [...|] globally subanalytic functions and their complex exponentials”,
see [CCM ™16, p.1].

!This paper is not even published yet at the present moment. It was submitted on 8 January,
2016, see https://arxiv.org/abs/1601.01850.
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A further aim of research, in this context, is studying integrals of the form

/egw,y)f(x,y)dy, (1.1)

where f and g are globally subanalytic functions. Issues regarding this integral
are far from being solved at present. Our research concentrates on the following
kind of integrals:

/egif(y)dy (1.2)

and

[ s ogtwa, (1.3)

where f is a globally subanalytic function and ¢ is a positive real number. These
special cases of the integrals in (1.1) attract attention in the following way: without
regard to the prefactor, the integrals in (1.2)) and (1.3) arise when we consider

1 _lai?
F.(t) = 2ni)? A/e 2t dx. (1.4)

Thereby A is a semialgebraic set and n the dimension of A. By examining F,,(t),
we continue combining the theory of o-minimality with another mathematical field,
the stochastics. The reason is that the integrals in (1.4]) also represent the proba-
bility distribution given by the Brownian Motion.

The Brownian Motion is a jittery motion of particles in liquid discovered of
the botanist Robert Brown. In the early 20th century, Albert Einstein gave the
explanation that this physical phenomenon is caused by the molecular kinetic
theory of heat, cf. [Ein05|. In financial mathematics and stochastic processes the
Brownian Motion has gained a growing importance among other things due to
Louis Bachelier, who used it to study fluctuations in stock prices in [Bac00], and
Norbert Wiener, who proved its mathematical existence in [Wie21].

The significant role of the Brownian Motion in the theory of stochastic processes
is caused by its many interesting properties. Furthermore, it is a popular example
for the so-called Gauss processes and it is one of the best known Lévy processes.
In addition with other Lévy processes, the Brownian motion is located at the
interface of martingale and Markov processes, cf. [KW14, p.V]. Since our research
puts no value in the Brownian Motion as stochastic process and we do not use its
properties in any essential way, we refer for more detailed information to relevant
literature, e.g. [KS14] and [KW14]. Our interest in the Brownian Motion pertains
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solely to the probability that the Brownian Motion is in a semialgebraic set A at
each time ¢, which is given by F,,(t) in . This probability distribution does
not tell us how the values of the Brownian Motion at different times are related.
Due to the fact that the Brownian Motion is a jittery and “wild” motion in its
microscopic view as we will see in Figure 2.7 and 2.§in Chapter [2] the following
question arises: Is the Brownian Motion tame in its macroscopic perspective if A
is tame?

Against this background, we study F,,(¢), the probability distribution given by
the Brownian Motion, in two ways: on the one hand, we examine definability in
an o-minimal structure; on the other hand, our purpose is to establish asymptotic
expansions for the time evolution of F),(¢) at its limit points. In other words, time
t approaches zero or tends towards infinity. Establishing asymptotic expansions
in connection with stochastics is not a new idea. [GKS61| gives a good overview
about asymptotic expansions in probability theory. Asymptotic expansions have
been investigated for probability density functions, for example, of the arithmetic
mean of identically distributed summands in [Dan54] and are a general method
for finding corrections of the limiting distribution if the remainder terms decrease
slowly, cf. [GKS61} p.153,155|. There are already works about the asymptotic ex-
pansion of the multivariate normal distribution, see [Rub64], and of the stationary
distribution for the reflected brownian motion, see [FK16]? There is no need to go
further in these publications, because we do not use their results. In contrast to
these listed works, we take the approach that we use the properties of o-minimality
to achieve our goals.

1.2 Outline and Results

In the next paragraphs, we give a short outline of this thesis and its research
results. More detailed information can be found at the beginning of the respective
chapter and section. Chapter [2| presents the preliminaries. First, we compile some
basic definitions and theorems. Afterwards, we take a closer look at the theory of
asymptotic expansions in Section and at o-minimal structures in 2.3} A brief
excursion in stochastic theory ends this chapter.

In the following main chapter, which is Chapter[3] we start with considering the
one-dimensional case. Examining the definability of the probability distribution
in on a family of semialgebraic sets results in the following proposition.

2This paper is not even published yet, at the present moment. The last revised version is
from 5 April, 2017, see https://hal.archives-ouvertes.fr/hal-01295562.
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Proposition
The probability distribution, which is given by the Brownian Motion on a family
of one-dimensional sets A, definable in an o-minimal structure M, is definable in

the Pfaffian closure P(M).

After required preparations, we consider the integrals F(¢) on two-dimensional
semialgebraic sets in Section [3.2] where our main results are stated and proven in
Subsection 3.2.21 We show:

Theorem A
The probability distribution Fy(t), which is given by the Brownian Motion on a
semialgebraic set A C R?, has the following asymptotic series expansions:

i) Ast — 0, Fy(t) has the asymptotic series expansion

[e.e]

Z%t%’

k=0
which 1s not necessarily convergent and where v, € R and q € N.
it) Ast — oo:

a) If A is bounded, Fy(t) is definable in R,, and therefore, Fy(t) is a con-
vergent Puiseux series.

b) If A is unbounded, F5(t) has the asymptotic expansion
00(t) + 01(t) log(t),

where go(t) = > 'yktfg and 01(t) = > 0xt™%, where at least one of
k=0 k=1
the series is not zero and Vg, 0, € R and ¢ € N, are convergent Puiseux

series and therefore, the asymptotic expansion is definable in Ryy exp-

The proof is split into ¢ approaches zero and in ¢ tends towards infinity, where
we gather our work in Theorem [3.2.15] respectively in Theorem [3.2.25] For this
2

purpose, we examine integrals of the form [ e~ r t(r)dr, where ¥(r) is a bounded
globally subanalytic function and then we investigate asymptotic series expansions
of them. The significant point to note here is that we achieve definability in R,,
in case A is bounded as ¢ approaches infinity.

Sectionis devoted to the study of F3(t). For investigating the asymptotic ex-
pansions in the three-dimensional case, we need more preparations. These are com-
piled in Subsection [3.3.1] As in the two-dimensional case we split Subsection
in two parts and examine t approaches zero first, then ¢ tends towards infinity. Each
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of these parts ends again in a theorem. By investigating asymptotic expansions of
the probability distribution given by the Brownian Motion, we are also interested
r? r? .
in finding asymptotic expansions of [ e~z r?y(r)dr and [ e~z r*y(r)log(r)dr in
Subsection [3.3.2] In conclusion, it is remarkable that we get definability of F3(t)
in Ry, exp in the case t approaches infinity and if A is bounded. Summarizing

Theorem [3.3.30] and [3.3.43] we gain

Theorem B
The probability distribution F3(t), which is given by the Brownian Motion on a
semialgebraic set A C R3, has the following asymptotic series expansions:

i) Ast — 0, F5(t) has the asymptotic expansion

> k:
Z Y + Ox log(t)) ta
k=0

which is not necessarily convergent and where 7,0, € R and g € N.
i) Ast — oo:

a) If A is bounded, F3(t) has the form go(t) + 01(t)log(t), where oo(t) and
01(t) are globally subanalytic functions, and thus, F3(t) is a constructible
function and definable in Rap exp.

b) If A is unbounded, F5(t) has the asymptotic expansion

00(t) + o1(t) log(t) + o2(t) log(t)?,

i _k S _k S 1
where got) = Yt 1, oi(t) = Y 0kt 1, and oa(t) = 3 Mt
=1 k=1

k=0 = -
where at least one of the series is not zero and Vi, 0, A\, € R and q € N,
are convergent Puiseux series. Thus, the asymptotic expansion is defin-
able in Ry exp-

Finally, in Chapter [ we give a short conclusion and discuss further research.
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Preliminaries

In this chapter we would like to take up some necessary preliminaries. First, we give
some well-known basic definitions and theorems. In the second section we go into
the theory of asymptotic series expansions. In this connection, the relation between
asymptotic series and the Landau Notation which denotes order relations is pointed
out. Furthermore, the asymptotic series expansions of the gamma function, the
incomplete gamma function and the error function defined in Section [2.1] are given.
Subsequently, we proceed with so-called o-minimal structures and some significant
theorems. Finally, we make a brief excursion in stochastic theory, where we dip
into stochastic processes and introduce the Brownian Motion as special example.
This is caused by our study of the definability and the asymptotic behaviour of
the probability distribution given by the Brownian Motion on a set in the main
chapter.

2.1 Basic Definitions and Theorems

First, we fix a convention for the empty sum and the empty product. Let m,j € Ny
m

where m < j. We define the empty sum as > ay = 0 and the empty product as
k=j
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[ ax = 1. Furthermore, we use the following notation: Let S(z) be an infinite sum
k=j

in # and let N € N. Then S| ~(7) denotes the partial sum of S(z) which contains
the summands of S(z) up to the first summand with order equal or greater than N.
For the following definitions, remarks, and theorems we adopt the notation as given
by Abramowitz and Stegun in [AS12|, by Graham in [GKP94|, by Koenigsberger
in |[Kon13|, by Sibagaki in [Sib52|, and by Siegel in [Sie69].

Definition 2.1.1. The function

T, R" — R",

('xlv s axn-‘rl) — (’Ila s axn)a

denotes the projection map on the first n coordinates.

Definition 2.1.2. Let e : R — R denote the exponential function. The (non-
elementary) (Gauss) error function erf : R —| — 1, 1] is defined as

erf(z) = — /e_t2dt.

0.54

Figure 2.1. The graph of the error function erf(z) for x € [—3, 3].
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Remark 2.1.3. The error function has the following properties:

e The error function is an odd function, that means erf(—x) = —erf(z) for
z € R.

e The error function has the following special (limit) values:

o lim erf(z) = 1.

T—r00
o $l_1>r_noo erf(z) = —1.
o erf(0) = 0.

z )
o Let d(x) = \/LQ? i e 2 dt be the cumulative distribution function of the stan-

dard normal distribution. The error function erf(x) is related to ®(x) by
P(z) =1 <1 + erf (\%))

Definition 2.1.4. The complementary error function erfc : R —10, 2[ is de-

fined as
/ e dt.

erfe(x) =

S

0.54

Figure 2.2. The graph of the complementary error function erfc(z) for z € [—3, 3].
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Remark 2.1.5. The complementary error function is related to the error function
by
erfc(z) = 1 — erf(z).

The well-known gamma function and its first derivative are defined for all
complex numbers except the non-positive integers. For positive real numbers, and
also for complex numbers with a positive real part, we can define the gamma
function via the following convergent improper integral.

Definition 2.1.6. The gamma function I' : R.y — R is defined in Fuler’s

integral representation as
oo

[(x) = /tx_le_tdt.

0

201

Figure 2.3. The graph of the gamma function I'(x) for z € | — 2, 5].

Remark 2.1.7. Let x € Ryy. The gamma function has the following properties:
o ['(1) =1.
o ['(x+1) =al(z).

As well as the gamma function above we can write its first derivative for positive
real numbers as the following convergent improper integral.
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Definition 2.1.8. The first derivative of the gamma function I’ :R.; — R
1S given in its integral representation by

/tm Ye ' log(t)dt.
0

101

-1

Figure 2.4. The graph of the first derivative of the gamma function I'(x) for
€]—5,5].

Remark 2.1.9. There is only a single positive zero xq of the first derivative of the
gamma function. Its first six digits are

7o = 1,461632.. . .

Remark 2.1.10. Let x € Rog and let xy be the positive zero of the first derivative
of the gamma function. If x > xq, then T"(x) > 0.

For further information to the first derivative of the gamma function and its
zeros we refer to [Sib52].

Definition 2.1.11. The incomplete gamma function ' : R%,\ {(0,0)} = R
is defined in integral representation as

o0

D(x,y) = /tx_le_tdt.

)
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Remark 2.1.12. The incomplete gamma function I : RZ, \ {(0,0)} = R has the
following properties:

o I(z+1,y) =al(z,y) +ye?.

e The incomplete gamma function has the special limit value lim T'(z,y) = 0.
Y—00

Remark 2.1.13. For x € Ry the gamma function is related to the incomplete
gamma function by

['(z,0) =I'(x).

Remark 2.1.14. For y € R, the incomplete gamma function has the special
value

I(1,4%) =e?.

Remark 2.1.15. For y € R the incomplete gamma function is related to the
error function by

1
r (§,y2) — V(1 - erf(y)).
Proof. By Definition of the incomplete gamma function, we get

1 [
r (§,y2) 2 /t2letdt

We make a change of variables t = 2% and obtain by Definition of the com-
plementary error function

/16_’”22x dr = Q/e_Ide
T
y Yy

= 2gerfc(y)

V(1 = erf(y)).

Corollary 2.1.16. The gamma function has the special value
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Proof. Tt follows easily by [2.1.15] that

)

"
o
= NG

1
§’0>
7(1 — erf(0))

III IIE

I3

The two following theorems play a vital part in integration theory. The Trans-
formation Theorem describes the relation between two different coordinate sys-
tems. Fubini’s Theorem gives conditions under which, for example, it is possible
to calculate a double integral by using one-dimensional integrals.

Theorem 2.1.17 (Transformation Theorem). Let U C R? be an open set and let
©:U — OU) C R? be a Ct-diffeomorphism. The function f is integrable on
O(U) if the function x — f(O(x))|det(DO(z))| is integrable on U. Then

/f dy—/f ))| det(DO(x))\dz,

where DO(x) is the Jacobian matriz and det(DO(x)) is the functional determinant
of ©.

Theorem 2.1.18 (Fubini’s Theorem). Let f be an integrable function on R™ x R™.
For every fired y € R™, except the elements of a null set N C R™, the function
x +—> f(z,y) is integrable over R™. Set F(y f f(z,y)dx fory € R™\ N and

F(y):=0 fory € N, then I is integrable over Rm and we can write

|ty - / Py = [ | [ fegyar | av

R” xR™M Rm n
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This subsection concludes with the definition of analytic functions and Puiseux
series.

Definition 2.1.19. Let U C R be an open set and let f : U — R. The function f
is called analytic at xg € U if there exists a power series

[o@)
Z an(x — x0)"
n=0

and some r > 0 such that the series converges absolutely for x € |xg —r,x¢ + 7],
and such that we have

flx) =) an(z —xo)"
n=0
for all x € Jxg —r,xo+71[. The function f is called analytic in U if [ is analytic
at every x € U.

We define so-called Puiseux series which are a significant generalization of
power series. Isaac Newton introduced them in his letter to Henry Oldenburg in
1676, see |[Te60, p.1|. They are named after Victor Puiseux, who rediscovered them
in 1850. Puiseux series are used to represent an arbitrary function as an infinite
sum of simple functions.

Definition 2.1.20. Let ¢ € N, let k € Z, and let a, € R for alln € Z. A series

of the form
Z an(z — 20) 4
n=~k

is called Puiseur series at (center) xg.

In addition, we want to remark that a Puiseux series can appear in three

0 n

different contexts. In certain cases, we understand Y a,r¢ as a formal series
n=~k

by means of a purely algebraic object with no assertion of convergence; so x is

simply an indeterminate. We can add and multiply two series as usual and we
also get information of the formal series, but possibly no analytic information
like asymptotic formulas, see [Will4, p.27]. In another context, we interpret the
Puiseux series as an asymptotic series expansion which we cover in the next section.
In this case, it can be convergent or divergent. As opposed to this, a Puiseux series,
which is definable in the o-minimal structure R,, (see Section , is always a
convergent series.
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2.2 Asymptotic Expansions

As already mentioned in Chapter|[I], the theory of asymptotic series expansions goes
back to Stieltjes and Poincaré in 1886. It can be split into two parts. According to
Copson, see |Cop04, p.3|, “the first part deals with the summability of asymptotic
series and with the validity of such operations as term by term differentiation or
integration; the second is concerned with the actual construction of a series which
represents a given function asymptotically.” To narrow this down, we have a closer
look at the second part. Our aim is to investigate a convergent or divergent infinite
series which represents a given function asymptotically in a neighbourhood of a
limit point of the function’s domain. That means that any partial sum of that series
provides a very good approximation of the function with an error of the order of
the first term omitted. This order of the error is noted by the order symbols O
and o, the so-called Landau notation. We follow the definitions and remarks as
given by Erdélyi in [Erd56|, by Copson in [Cop04], and by Murray in [Murl2|; the
examples for asymptotic series expansions are given by Abramowitz and Stegum
in [AS12].

Definition 2.2.1. Let D C R be a nonempty set, let D be the closure of D in
R :=RU{—00,4+00}. Let zg € D be a limit point and let f,g : D — R be real
functions. We write

f(x) = O(g(x))

as x — xq if there exists a constant C' and a neighbourhood U of xq such that for
allz e UND

|f(z)] < Clg(x)].
We write
f(z) =o(g(z))

as x — xq if for every § > 0 there exists a neighbourhood U of xy such that for all
xrelUnD

|f(@)| < dlg(z)]-

Remark 2.2.2. Let g(x) # 0 in a punctured neighbourhood of xo. Asx — xq, then
flz) = O(g(x)) if % is bounded on a neighbourhood of xy and f(z) = o(g(x)))
i lim @) —
if 1}520 ") = 0.

The O-notation gives us an asymptotic upper bound on the growth rate of
a function. This growth rate is also referred to as an order of this function.
Consequently, it describes how fast a function f increases in a neighbourhood of a
particular value xq or infinity when the argument tends towards it. As mentioned
previously, in the case of asymptotic expansions it is used to estimate the error
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that occurs when we represent a function asymptotically by a series. Usually the
error is described in terms of more simple functions. Therefore, functions with the
same growth rate may be represented by the same O-notation. The O-notation
is a little bit vague in the following sense. Strictly speaking, it should be written
as f € O(g), but the use of “=* is common. Associated with the O-notation, the
symbol o makes a stronger statement: f = o(g) means that g grows much faster
than f. Therefore, every function f that is o(g) is also O(g), but not generally
vice versa.

When going into more detail of asymptotic series expansions it occurs that an
asymptotic expansion describes the asymptotic behaviour of a function in terms
of an asymptotic sequence of functions, which is defined as follows.

Definition 2.2.3. Let D C R be a nonempty set, let D be the closure of D in R,
and let xo € D be a limit point of D. Forn € Ny let g, : D — R be a function.
The sequence of functions (gn(z)),cy, i called asymptotic sequence as v — xg
if for each n € N there is a punctured neighbourhood of xo, in which g,(x) # 0 and
if for alln € N

gn-&-l(m) =0 (gn(x)) )

as x — Tg.

A series with real coefficients, which is formed by such an asymptotic sequence,
is an asymptotic series expansion of a function if the series fulfil the following
definition.

Definition 2.2.4. Let D C R be a nonempty set, where D C R, and xo € D be
a limit point of D, let (gn(7)),en, be an asymptotic sequence in R as x — xo, let
f D — R be a function, and (an),cy, be a real sequence. The (formal) series

> angn(x) is called asymptotic (series) expansion of f(x) as x — xg, denoted

by
~ D ngn(@
n=0
if for every value of N € Ny
N
) =Y angn(z) = 0(gn (), (1)
n=0

as T — Tg.



2.2. Asymptotic Expansions

Remark 2.2.5. Since

N-1
f@) =) angn(x) = angn(x) + o (gn(x)),
n=0
the partial sum

N-1
> ngn()
n=0

is an approzimation to f(r) with an error O (gn(x)) as x — xg; this error is
of the same order of magnitude as the first term omitted. That means that the

equation (1) in Definition may be written as

@)~ 3 agale) = O (gx(2)

Remark 2.2.6. If an asymptotic expansion of f(x) as in Lemma exists, it
is unique and the coefficients are uniquely given by

N-1
f(I) - Z angn(w)
ay = lim n=0 )

T—x0 gN(l’)

Remark 2.2.7. A function may have several asymptotic series expansions, but
every expansion is unique in respect to its asymptotic scale.

Definition 2.2.8. The first non-zero term apgg(z) is called dominant term and
we write

f(@) ~ argi(z)
as © — xg. That means lim gf(w) =a € R\ {0}. We also say f behaves like gy

T—x0 k(@)
or f is asymptotically similar to g at x.

The expression asymptotically similar is not only used to characterize a function
by the dominant term of its asymptotic series expansion, but also to describe the
asymptotic behaviour between two functions f and g.

Definition 2.2.9. Let D C R be a nonempty set, let f, g : D — R be real functions,
where g(x) # 0 in a punctured neighbourhood of xy. We say f is asymptotically
stmilar to g at the limit point xq if

lim J@) e R\ {0}.

=0 g(x)
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Furthermore we say f 1s asymptotically equivalent to g at the limit point xq if

i L) .

=0 g(x)

There are a number of rules for operating with order relations. They are often
only shown for the O-symbol, but also hold for the o-symbol. For these rules we
refer to Erdelyi [Erd56, p.5].

Next, we see some examples for asymptotic expansions of well-known functions,
which are vital for this thesis. Some of them are familiar by the next remark.

Remark 2.2.10. Let the function f(x) be analytic at the limit point xo. The
convergent Taylor series of f in x¢ is an asymptotic series expansion of f(x) as
r — Xg.

In consequence of that, we can easily specify the asymptotic expansion for the
exponential function as x approaches zero.

Lemma 2.2.11. As x — 0, the exponential function has the asymptotic series

eTpansion
. x
" = ; -

An asymptotic series expansion can be both — a convergent or a divergent se-
ries. In most cases it is less useful if it is convergent, because in the case of a
divergent series sometimes only a few terms are required to give an accurate ap-
proximation of the function. A familiar example is the asymptotic expansion of
the error function. If a function is defined by a definite integral, a simple way
of finding the asymptotic expansion is by repeated integration by parts. Laplace
introduced the idea that the error function can be represented by a convergent
power series by integration by parts. Since the series converges slowly for big val-
ues, he investigated an asymptotic expansion for the related complementary error
function erfc = 1 — erf by the same method. This allows a quicker computation of
large values. The divergent asymptotic expansion of the error function is shown
below.

Lemma 2.2.12. As x — oo, the error function has the asymptotic series expan-

sion - .
Z n+1 n H 2l . 1
=1

n=0

erf(z) ~ 1+e %z

-

and as x — 0
1

f(z) ~ —_
erf(z) 2n + 1)n!

(_1)nl,2n+1

S
NE

3
Il
=)
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Another example of finding an asymptotic expansion by integration by parts
is the incomplete gamma function. Copson shows this in detail in [Cop04, p.13].

Lemma 2.2.13. Let z € R>y. As y — oo, the incomplete gamma function has
the asymptotic series expansion

n—1
Zeymnnx—l)
=1

and as y — 0 and x # 0 the asymptotic series expansion

1

F z, + n+1 n—'
(z,y) =~ Y Z T

Moreover, in the special case where x = 0 we get as y — 0 the asymptotic series

expansion

1

(0, y) ~ (—log(y) +Z "yt —,

where v denotes the Euler-Mascheroni constant.

2.3  O-minimal Structures

The story of the o-minimal structures began in the early 1980s. Lou van den Dries
looks back and writes in [vdD98, p.vii]: “I had noticed that many properties of semi-
algebraic sets and maps could be derived from a few simple axioms”. Stimulated
by van den Dries’ paper Remarks on Tarski’s problem concerning (R, +,-,exp),
see [vdD84|, Pillay and Steinhorn introduced the notation o-minimality in their
work Definable sets and ordered structures |[PS84]. The designation o-minimal is
the abbreviation for order-minimal. This thesis focuses on o-minimal structures
that expand the field of reals. In this case the most simple one is the structure
formed by the semialgebraic sets. Thus, the study of o-minimal structures and
o-minimal theory generalizes real algebraic geometry. First, the major line of
research was based on discovering expansions of the real ordered field that are
o-minimal. Van den Dries proved in [vdD86| that the structure R,,, the real or-
dered field expanded by restricted analytic functions, is o-minimal, but it does
not contain the full exponential function. In 1991 Wilkie could show that Ry,
the real ordered field expanded by the exponential function, is also an o-minimal
structure, see |[Wil96]. O-minimality is a class of tame geometry. “The o-mini-
mal structures provide an excellent framework for developing tame topology”, is
written in [vdD98|, p.vii| by van den Dries.
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Tameness implies many pleasant properties as example stratification or trian-
gulation. It also guarantees piecewise smoothness of semialgebraic functions. The
so-called Cell Decomposition Theorem allows to partition a definable set X into
finitely many disjoint subsets Xi,..., X,,, n € N, of a special form. These X; are
called cells. This partition of X can moreover be chosen such that all restrictions
of a semialgebraic function f : X — R to X; are continuous. This fact is signifi-
cant for our work. Furthermore, tameness implies that every set has finitely many
connected components, there are no functions which oscillate, there are strong
properties of finiteness, and there is also held a good notion of dimension. Every-
thing is controlled or to express it with Coste’s words: It is “without pathological
behaviour” p.6].

In the following, we only refer to a few aspects of the theory mentioned above. If
not stated otherwise, we follow the definitions as given by van den Dries in [vdD86)|

and [vdD98§.

Definition 2.3.1. A semzalgebraic set A C R", n € N, is a finite union of sets
of the form
{w € R | f(z) = 0, gu(w) > 0,..., () > O},

where f, g1,..., gr € Rlxy, ..., z,)].

Example 2.3.2. The sets, which are represented by the coloured surfaces in Fig-
ure [2.5, are semialgebraic.

Figure 2.5. Examples for a semialgebraic sets in R2.

Definition 2.3.3. A set A C R" is called semianalytic if for each xq € R™ there
1s an open neighbourhood U of xy and there are real analytic functions f, g1, ..., gk
on U, such that ANU is a finite union of sets of the form

{r eU| f(x)=0, g1(x) >0, ..., gr(z) > 0}.
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Definition 2.3.4. Let m, be the projection map on the first n coordinates. A set
A CR" is called subanalytic if for each xqg € R™ there is an open neighbour-

hood U of xy and a bounded semianalytic set B C R™ where m > n such that
ANU = m,(B).

Definition 2.3.5. A set A C R" is called globally subanalytic if it is a subana-
lytic set after applying the semialgebraic homeomorphism

R" — ] —1,1[",
T

V1+a?

Definition 2.3.6. Let A C R" be a globally subanalytic set. A function f : R™ — R
is called constructible on A if there are globally subanalytic functions f; : A — R
and f; j: A — (0,00) such that

T; —

k L
f(z) = 3 file) [ 1og(fis (@),

where k,l; € N.

Definition 2.3.7. A function f : R™ — R is called restricted analytic function
if there exists a real convergent power series p in n variables which converges on
an open neighbourhood of [—1,1]" such that

fla) = {p(zw, ve -1

0, else.

Definition 2.3.8. A structure on the ordered field R is axiomatically defined as
a family M = (M, )nen of sets such that for each n:

i) M, is a boolean algebra of subsets of R"(i.e. if A,B € M, then AUB €
M,,ANB € M,,R"\ A€ M,), which contains the semialgebraic subsets of
R™,

ii) A€ My, and B € M,, implies A X B € My, 1y,.

iii) If A € M,.1 and 7, is the projection map on the first n coordinates then
m(A) € M,.

A structure M is called o-minimal if it satisfies the extra aziom:

iv) The sets in My are precisely the finite unions of intervals and points.
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Definition 2.3.9. Let M = (M,,)nen be a structure. A set A C R™ is definable
mn M if Ae M,.

Definition 2.3.10. Let A C R" and let f: A —> R™ be a function, then f is a
function definable in M if its graph {(z, f(x)) | x € A} is definable in M.

Example 2.3.11. Examples for o-minimal structures are:

i) The structure R is the expansion of the real ordered field by all semialgebraic
sets. It is o-minimal.

i1) The structure Ry, is the expansion of the real ordered field by all restricted
analytic functions. It is o-minimal. The sets definable in R,, are known as
the globally subanalytic sets.

iii) The structure Rey, is the expansion of the real ordered field by the exponential
function exp : R — R. It is o-minimal.

i) Ranexp 15 the structure which is generated by restricted analytic functions and
extended by the exponential function. It is o-minimal.

The Pfaffian closure is another o-minimal structure. It goes beyond the
scope of this thesis to give the exact definition. For more details we refer to
Speissegger [Spe99, p.210]|, [MRS12, p.181ff]. To put it crudely, the Pfaffian closure
P(M) is an o-minimal expansion of an o-minimal structure M where P(M) is
inductively generated. It is closed under Pfaffian chains with arbitrary definable
functions instead of polynomials. The following theorem is listed for the interested
reader for the sake of completeness.

Theorem 2.3.12. Let M be an o-minimal expansion of the real field. Then there
is an o-minimal expansion P(M) of M which is closed under solutions to Pfaffian
equations in the following strong sense. Whenever U is a definable and connected
open subset of R", w = aidry + -+ + apdx, is a 1-form on U with definable
coefficients a; : U — R of class C', and L C U is a Rolle leaf of w = 0, then L is
also definable in P(M).

Proof. We refer to Speissegger [Spe99, p.189]. O

In other words, every o-minimal expansion R of the real field has an o-minimal
expansion P(M), the Pfaffian closure of M, in which the solutions to Pfaffian
equations are definable. For more details on the theorem and the definition of
Rolle leafs we refer to Speissegger [Spe99, p.189] and Moussu and Roche [MR92].
A central point for our research is the following consequence of this theorem.
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Corollary 2.3.13. Suppose that I C R is an open interval, a € I and g : I — R
is definable in the Pfaffian closure P(M) and continuous. Then its antiderivative

F:I— R given by F(z) := [ g(t)dt is also definable in P(M).

Subsequently, we proceed with significant theorems and definitions. We can
decompose every definable set in finitely many disjoint subsets of a special form
called cells. This concept plays an essential role in o-minimal structures. Generally,
proofs are more intelligible if we show the claim for every single cell type and finally
gather the results.

Definition 2.3.14. Fiz an o-minimal structure M. Let B C R"™ be nonempty and
definable. Cells are defined inductively as follows:

i) B CR is a cell if B is either a point or an open interval.

ii) Let B C R™ be a cell and f : B — R be a definable continuous function,
then the graph of f is a cell in R™1,

iii) Let B C R™ be a cell and f,g : B — R be definable continuous functions
such that f(x) < g(x) for all x € B, then

e {(z,y) e BxR: f(z) <y <gx)},
e {(z,y) € BxR: f(z) <y},
e {(z,y) e BXxR:y< f(x)},

e finally B xR
are cells in R*+1,

Then B is also called base of the cell.
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—] R

Figure 2.6. Different cell types in R"*! on the base B

Theorem 2.3.15 (Cell Decomposition Theorem). Let M be an o-minimal struc-
ture.

i) Each definable set A C R™ has a finite partition A = C1U...UCy into cells
C; forie{l,... k}.

i) If f: A — R™ is a definable map, this partition of A can be chosen such
that all restrictions flc, are continuous.

Proof. We refer to van den Dries [vdD98, p.52]. O

The next theorem is a major result of Comte, Lion and Rolin. It provides us
the form of an integral of globally subanalytic functions over a globally subanalytic
set after integration.

Theorem 2.3.16. Let Y C R"™ x R™ be a globally subanalytic set. Suppose that
the dimension of every fiber Y, is at most k. Let v(x) = vi(Y,) denote the k-
dimensional volume of Y,. The set of points, where v(x) is finite, is a globally
subanalytic set B C R™. The restriction of v on B is of the form

P(fi,..., fa,log f1,...,log fa),

where fi = f1(x),..., fa = fa(x) are strictly positive globally subanalytic functions
and P is a polynomial.
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Proof. We refer to Comte, Lion, and Rolin [CLR0O0, Theorem 1, p.885] and |[LR98,
Remark, p.756]. O

Remark 2.3.17. Let a € R™. Ifn =1, we get a finite partition of R in intervals
such that the volume v(x) on each interval has the form of a polynomial inlog|z—al

with analytic functions of |x — a|% as coefficients, where p € N.
Proof. We refer to Lion and Rolin [LR98, Remark, p.756]. O

The next theorem says broadly speaking: By specific requirements it is possible
to choose a cell decomposition of a set X such that a function on X, which is
definable in R,,, has the form of a Puiseux series.

Theorem 2.3.18 (Preparation Theorem). Let X C R"™! and let f : X — R,
(z,y) — f(z,y), be a function definable in R,,. There is a cell decomposition C
of X such that the following holds: Let C' € C and let B be the base of cell C'. Let
C be fat with respect to the last variable y, that means, C, is a nonempty open
interval for every x € B. Then the function f|c can be written as

Fle(z,y) = g(x)ly — &(@)|7ulz, y — £(2))

where o € Q, the functions g,& : B — R are definable and real analytic with
y # &(x) on C, and u(z,y) is a so-called special unit on

Cé = {(l‘,y - f(l’)) | (l’,y) € O}?

that is of the form

() = o(br(a)s s barl)s bara (@l barea@lyl )
where g € N. The function
¢:BxR\{0} — RM+2,
(@9) = (1) bare), Bara @yl barsa(a)ly] ),

is a definable and real analytic function with ¢(C®) C [-1,1]*2 and v is a
real power series in M + 2 wvariables that converges on an open neighbourhood
of [-1,1]M*2 and is away from 0.

Proof. We refer to Lion and Rolin [LR97, p.862]. O

The constructible functions form the smallest class of functions which contains
all the globally subanalytic functions and which is stable under integration.

Theorem 2.3.19. The class of constructible functions is stable under integration.
Proof. We refer to Cluckers and Miller [CM11], p.314]. O
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2.4 The Brownian Motion

The Brownian Motion is a physical phenomenon which is named after the botanist
Robert Brown (x 1773,  1858). In 1827 Brown studied pollen grains of plants sus-
pended in water under a microscope and he observed that every single particle
executes a jittery motion. In 1880, Thorvald N. Thiele developed the first mathe-
matical model of the Brownian Motion and described the mathematics behind it.
Notwithstanding the above Louis Bachelier used the Brownian Motion in his PhD
thesis “The theory of speculation” to study fluctuations in stock prices. In 1905,
Albert Einstein gave the explanation for the jittery motion of the particles in his
paper about the molecular kinetic theory of heat, see |[Ein05]. His explanation was
a milestone for the proof of the existence of molecules and atoms. The mathemat-
ical existence of the Brownian Motion was finally proved by Norbert Wiener in
1923. For that reason it is also called Wiener process.

In financial mathematics and stochastics the Brownian Motion is an example
for many significant classes of stochastic processes. One of these classes are the
so-called Gauss processes, see [MS06, p.341|. Furthermore, the Brownian Motion
is the basis of many financial market models. The theory of stochastic processes
goes beyond the scope of this thesis, therefore we only want to provide a short
insight into the Brownian Motion as a stochastic process in this part. For deeper
studies of stochastic processes we refer for example to Meintrup [MS06|, which is
also the source for the following definitions.

Before we get to the Brownian Motion, we call back to one’s mind the definition
of normal distribution and some basics about stochastic processes.

Definition 2.4.1. Let 0 > 0 and p € R. The probability measure N (pu, o) with

density f : R — R,
1 _ew?

fla) = — e

oV2r

is called normal (or Gaussian) distribution with mean p and variance o*.

Definition 2.4.2. Let (2, F, P) be a given probability space, (Z, Z) a measurable
space, and let I C Rsq be an index set. A family X = (Xi)wer of measurable maps

Xt:QHZ,

where t € 1, is called stochastic process (with state space Z).
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Definition 2.4.3. Let (X;):>o be a stochastic process and w € Q. The map

X(w): I — Z,
t— Xt(CU),
is called path of w.

Remark 2.4.4. A stochastic process X is continuous if for almost all w € Q the
path X (w) is continuous.

Definition 2.4.5. Let z € R. A one-dimensional stochastic process (By)i>o with
state space R is called Brownian Motion in R with start value z if it satisfies
the following properties:

i) By = z almost sure.

ii) Let 0 < s < t. Then By — By is normally distributed with mean 0 and
variance t — s.

iii) Letn>1,0<ty<t; <...<t, Then By,,By, — By,,..., B, — By, , are
independent random variables.

iv) Almost surely, every path, t — By, is continuous.
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Figure 2.7. Simulation of the one-dimensional Brownian Motion
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Remark 2.4.6. The Brownian Motion with start value zero is called standard
Brownian Motion.

In other words, the Brownian Motion is the interpretation of a single particle,
which executes a jittery motion caused by the thermal motion of molecules and
started at a given position z at time ¢ = 0. Therefore, the random variable B,
denotes the position of the particle at time ¢. The probability of presence of a
particle at time ¢ at a position is normally distributed. Moreover, the Brownian
Motion has independent increments and the path of the particle is continuous,
which means, the particle does not “jump”.

Definition 2.4.7. An n-dimensional stochastic process (By = (B},...,B!))i>o0
is called Brownian Motion in R™ with start value z = (z1,...,2,) € R™ if
every stochastic process (B!)i>o is a Brownian Motion in R with start value z;
for i € {1,...,n} and the stochastic processes B},..., B are independent for
every t > 0.

60
|

40

20
|

-20
|

Figure 2.8. Simulation in 5000 time steps of a discrete approximation to a
two-dimensional Brownian Motion. It shows the random variable B;, that means
the (z,y)-position of a single particle.
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The Brownian Motion has a number of interesting properties. We refer for more
detailed information about these to specialist literature, e.g. [KS14] and [KW14].
In this thesis we put no value to the Brownian Motion as a stochastic process and
its properties, but rather in the probability that the Brownian Motion is in a given
set A at time t. We conclude this chapter by the probability distribution given by
the Brownian Motion on a set, which we examine in the next chapter.

Remark 2.4.8. Let A C R"™ be a Borel set and let z € R™ be the start value. The
probability for By € A at time t is given by

9.(A), t=0,
|z—

22
= dx, t>0,

Pz<Bt € A) - 1 f e~
(27rt)%A

where §,(A) denotes the Dirac measure which is defined as

1, z€A,
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Definability and Asymptotic
Expansion for the Time Evolution
of the Probability Distribution
(Given by the Brownian Motion
on Semialgebraic Sets

In this main chapter we devote our attention to the probability that the Brownian
Motion is in a semialgebraic set A C R", n < 3, at time t. This probability is
given by

3.(A), t =0,
P.(Br € 4) = L e‘lngp de, t>0
(2mt)2 4 ’ ’

where z denotes the start value, see Remark [2.4.8f We are interested in the de-
finability of t — P,(B; € A) in an o-minimal structure and in finding asymptotic
expansions for this time evolution.

In the one-dimensional case in Section we do not consider the probability
distribution of the Brownian Motion on a single set A, which, in this case, is defin-
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Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

able in an arbitrary o-minimal structure M, but on a definable family of sets A,.
At time zero, (a, z) — P,(By € A,) is definable in this o-minimal structure M. As
a result for ¢ > 0, we show that (a, z,t) — P,(B; € A,) is definable in the Pfaffian
closure of M. For this purpose, we prove in Remark the definability of the
error function using a result of Speissegger [Spe99]. In addition, we will use, here
and in every dimension, the important Cell Decomposition Theorem. By this, we
are able to decompose the integral over the set A into integrals over more simple
sets, more precisely over cells, which are intervals in the one-dimensional case, for
example.

In higher dimensions we restrict our research to a single arbitrary set A, which
is globally subanalytic and not only semialgebraic. The reason is that we would
have to enlarge the o-minimal structure R to R,, in the proof quite early anyway.
Furthermore, we assume without loss of generality that the dimension of A is equal
or greater than two. We can clearly concentrate on the case t > 0. For the sake of
convenience, we only study the standard Brownian Motion, where the start value
is zero. In consequence of the translation invariance, we may translate the start
value of a Brownian Motion from any time back to the origin. In other words, we
can transform every Brownian Motion to the standard Brownian Motion without
a loss. With respect to our probability distribution, we have only a translation of
A by the start value z. Under these conditions, we aggregate our setting for R?
and R? in the next remark.

Remark (General setting for higher dimensions). In higher dimensions than one
let A C R™ be a globally subanalytic set with dimension n and the probability
distribution, which 1s given by the standard Brownian Motion, is represented as

where t > 0.

Extending our studies to R? and R? we face the problem that we cannot give
a general statement about the definability of f(¢). Consequently, we focus estab-
lishing asymptotic expansions of f(t) in Section and [3.3] Each of them starts
with some preparations.

In the two-dimensional case we are faced with integrals of the form [ e‘SQSsJ“lds,
for which we derive a recursive formula in Lemma [3.2.1] and furthermore some
asymptotic expansions. To find an asymptotic expansion of f(t), we will also

7‘2 . .
come across integrals of the form [e™2r ¢ (r)dr in the main part of , where
¥(r) is a bounded globally subanalytic function,which can be represented as a con-
vergent Puiseux series, Their asymptotic expansions will be ascertained in Lemma
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3.2.12] as t tends towards zero and in Lemma as t approaches infinity in
several steps. As a conclusion of this section, we obtain that the asymptotic ex-
pansion of f(t) is a Puiseux series with positive exponents as t approaches zero,
which is stated in Theorem [3.2.15] As ¢ — oo, it is remarkable that f(¢) is defin-
able in the o-minimal structure R,,, by an important theorem of Comte, Lion, and
Rolin in [CLROO] if A is bounded. If A is unbounded we investigate an asymptotic
expansion of f(t) of the form ¢y () + ¢1(t)log(t), where ¢; are convergent Puiseux
series, and thus, the expansion is definable in Ry exp.

The three-dimensional case also starts with some preparations. They contain

S

recursive formulas for [ e~ 23§ds, see Lemma [3.3.1} and for [ e s log(s)ds, see
Lemma [3.3.13] and some asymg)totic expansions. Atherwards, we are confronted
with integrals of the form [e%r2y(r)dr and [ e~ 2 r*)(r)log(r)dr in the main
part. They are achieved by applying the polar transformation once again to f(t)
and by using an important result of Come, LiOI21, and Rolin |[CLRO0O|. As t ap-

proaches zero, the asymptotic expansion of [ egTTQw(r)dr will be established in

r2
Lemma [3.3.25) and of [ e™272(r)log(r)dr in Lemma [3.3.27| In the case ¢ tends
towards infinity, their asymptotics are stated in Lemma[3.3.42| Our results of this
section are resumed in Theorem [3.3.23] More precisely, f(t) has an asymptotic

expansion of the form ) (¢x + dj, log(t)) ﬁ’ which is not necessarily convergent, as
t tends towards zero. This is stated in Theorem [3.3.30] As ¢ approaches infinity
and if A is bounded, f(¢) is definable in the o-minimal structure R,y ex, and of
the form og(t) + p1(t)log(t), where ¢; are globally subanalytic functions. If A
is unbounded, the asymptotic expansion of f(t) is a constructible function of the
form ¢g + 1 log(t) + @2 log(t)?, where ; are convergent Puiseux series, and thus,
it is definable in Ry exp. These results are proven in Theorem [3.3.43]

3.1 Definability in the One-Dimensional Case

First, we study the definability of the probability distribution given by the Brown-
ian Motion in R on a family of sets A, := {z € R | (a,z) € A}, where A C R" xR
is a set definable in an o-minimal structure M. For t > 0 this probability is
represented as

f:R" xR x Rso —[0,1],

—(z—2)2

(a,z,t) —P,(B; € A, o dx,

FV%”Z&

by Remark We show that f is definable in an o-minimal expansion of M; in
the Pfaffian closure of M. The trick of the proof is that the exponential function
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fits the requirements of Corollary [2.3.13| First, we prove that the error function is
definable in the Pfaffian closure in the next remark.

Remark 3.1.1. Let M be an o-minimal structure. The error function is definable
in the Pfaffian closure P(M).

Proof. Let g be the function defined as

Then ¢ is definable in the Pfaffian closure P(M). By Corollary [2.3.13] the an-
tiderivative of e7¥*, that is

T

/e‘y2dy \/TEerf(x)
0

by Definition [2.1.2] is definable in P(P(M)) = P(M). O

The first goal of this chapter is to show definability of f(a, z,t) in the Pfaffian
closure by the next proposition.

Proposition 3.1.2. Let M be an arbitrary, but fixred o-minimal structure. Let
A CR" xR be a set definable in M and A, == {x € R| (a,z) € A} for a € R".
The function

f:R" xR xRso — [0,1],
1 —(z—2)2
(a,z,t) — e~z du,
V2nt

Aa

is definable in the Pfaffian closure P(M).

Proof. By Cell Decomposition Theorem [2.3.15] we can partition A into finitely
many disjoint cells Cy, ..., C,. Let m, : R"™" — R™ be the projection on the first
n coordinates. Let ¢;, ¢; : m,(C;) — R be continuous functions definable in M
such that ¢; < ¢; for all j € {1,...,p}. Then C; has either the form

C; = {(a,z) e R" xR |ae€m,(C)) and ¢;(a) <z < j(a)}

C; = {(a,z) e R" xR | a € m,(C;) and gj(a) < z}
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C; = {(a,z) e R" xR |a € m(C;) and = < pj(a)}
C; = {(a,z) e R" xR | a € m,(C;) and ¢;(a) = z}

C; = {(a,z) e R" xR | a € m,(Cj)}.

By Definition [2.3.14] of a cell, the set (C;), = {x € R | (a,2) € C;} is also a cell
for every a € m,(C;) and uniformly a point {¢;(a)} or an open interval. We look
at the different cell types one by one.

Let C; be of the form {(a,z) € R" xR | a € m,(C;) and ¢;(a) < z < ¥;(a)}.
By substitution y = x—\/_ﬁ, we get

¥;(a)
—(z—z2 —(z—2)2
/e 2t)da‘;: /e(%)d:c
](a)

(Cj)a ®j

I
<
~
&‘b‘
<
[ V)
oW
<

pjla)—z
V2t
\/_ j(a)—z
T T V2t
B [ ]
wjla)—z
V2t

B (o (25) (25

and we obtain definability in the Pfaffian closure of M by Remark |[3.1.1}]

Let C; be of the form {(a,z) € R* xR | a € m,(C}) and ¢,(a) < z}. By
substitution y = %, we get

(—2)2 —(z—2)2
/e(%)da: /e(%)dq:
(Cj)a wj(a)

= V2t / e_yzdy

pjla)—=

V2t
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o0

NG [gerf(y)}

pjla)—z

V2t

= 31 (5)

and we obtain definability in the Pfaffian closure of M by Remark

Let C; be of the form {(a,z) € R" xR | a € 7,(C;) and z < ¢;(a)}. By
substitution y = £=, we get

V2t’
vj(a)

—(z—2)? —(z—2)2
/e2tdx:/e2td:v
(Cj)a —o0

vjla)—z
VT

I
5
~
Cb‘

<

(V)
QU
<

pjla)—z
VAt
= Vot [\/T%erf(y)]

=G (25)

and we obtain definability in the Pfaffian closure of M by Remark
Let C; be of the form {(a,z) € R" xR | a € 7,(C;) and = = p;(a)}. Then

—(z—2)2
e 22 dr=0

(Cj)a

for all @ € m,(C}), and we obtain obviously definability in M.

Let Cj be of the form {(a, z) € R" xR | a € m,(C})}. By substitution y = 7=,
we get

o0
—(z—2)2 —(z—2)2
/e % dr = /e 2t dx
(Cjla —0

= \/Q_t/e_dey



3.1. Definability in the One-Dimensional Case

o {gerf@)} i

—0o0
g3/t

L3 2200
2

2rt.

This function is semialgebraic and therefore obviously definable in M.
Hence, we can conclude that

]_ —(z—2)2
f(z,t,a) = —/e e

as a finite sum of definable functions is definable in the Pfaffian closure of M. O

Corollary 3.1.3. The probability distribution given by the Brownian Motion with
start value z on a family of sets A,, which is definable in an o-minimal structure

M, is definable in the Pfaffian closure P(M).
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3.2 The Two-Dimensional Case

3.2.1 Preparations

k
As part of this chapter we need the antiderivative of e’ sa where s € R>,

k € Z and ¢ € N, and some of its asymptotic expansions. The idea is to find a

s

recursive formula for [ e~ ?satlds by integrating by parts. The recursion skips 2q

. . . _2 kg
steps; for this reason we rewrite integrals of the form [e™* satlds as
—s? dy4ok—1
Foik ::/e Ssat s,

where j € {0,...,2¢ — 1}. We denote definite integrals which belong to F ; as

b
_s2 diop—1
Gk = /e Ssa s,

a

Furthermore, we show some asymptotic expansions. For this purpose, we reduce
these integrals above to finitely many integrals by recursion. That recursive for-
mula is shown in the next lemma.

Lemma 3.2.1. Let k € Z, ¢ € N, and j € {0,...,2¢ — 1}. Up to an additive
constant, Fy ;i is given by the recursive formula

1 2 iyou '
Fq,j,k = —56 282+2(k 2 + (2i + (]C - 1)) Fq,j,kfl-

q
Proof. We proof the recursive formula by integration by parts. We choose e=*s
I49(k—1)
and s« as parts and get
Fojr = /6_8285+2k1ds
I o iqop—ny , 1 (7 —s? Iya(k-1)-1
= — —e % ga + - ——|—2(k,’—1) e ° Sa ds
2 2 \q
1 .
= — e satAh 4 (i + (k — 1)) Fojr-1-
2q 2J
O

s

In this way we can put down all the integrals [ e~ *sat s to finitely many
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SQséflds, which means to k = 0. For these special integrals, for which
k = 0, we need the antiderivative of el 50t

integrals [ e~

Lemma 3.2.2. Let u € Q>g and let s € Roy. Up to an additive constant, we get

1 U

—s2 u—1 2
S u < , >‘
/e s ds-——zl 5 s

Proof. We make the change of variables s = v/t and obtain
41
/€S2Su1d5 = /et\/z_fu 15\/7_5 bt

1 u—
— §/e_t\/¥ th

1 u
= 5/e—ttz—l dt. (1)

In Definition we have already seen that the incomplete gamma function is
the antiderivative of e~*¢2~'. Particularly, the integration limits should be taken
into consideration, because the mentioned incomplete gamma function depends on
them. We may assume a,b € R., where a < b, are the integration limits and we
proceed with the results above:

b 1 b2
/6_825“_1 ds (:) E/e_tt;_l dt
a a2
17 . 17
= §/€tt21 dt — —/ett21 dt
a2 b2

Hence, we can conclude
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Corollary 3.2.3. Let u € Q.. We get

o0

2 1 u
5 sulds = =T (—)
/e o T

0

Proof. By the same substitution as in Lemma above, we achieve by Defini-
tion [2.1.6]| of the gamma function

/ e 't2 7l dt

0

r(3)

(e 9]

C?
/658“1ds:

0

N | —

2.1.0l

N | —

0

Perhaps the question arises why we investigate a recursive formula when we
casily get the antiderivative of F,;, by Lemma [3.2.27 We could answer that
sometimes it is an advantage to reduce the integrals F, ;; to a finite number of
integrals [y ;0. But the crucial point is, that we cannot use Lemma for Fi, ;
if k£ is a non-positive integer. Therefore we use recursion to reduce these integrals
to integrals F} ;o as we see later.

The special integrals for £ = 0 are gathered in the next lemma. In fact,
(7,k) = (0, 1) is also a special case which is listed. We want to remark that for j = ¢

the antiderivative of the integral F, ,( can also be represented by */TEerf (s) because
of Definition respectively the relation which is stated in Remark [2.1.15

Lemma 3.2.4. Let g € N and let j € {0,...,2¢—1}. Up to an additive constant,

we obtain
_¢2 19
Foio = /e sa ds

and for (j,k) = (0,1)

2
F,o1 = /e *sds
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Proof. First, we assume k£ = 0. We obtain up to an additive constant by

Lemma [3.2.2]
. _g2 11
Foio = /e sa "~ ds

—— —111 i,S2
2 2q

if the conditions j # 0 or s? # 0 are fulfilled, see Definition [2.1.6]

For the special case (7, k) = (0,1) we get up to an additive constant

2
Foo1 = /e s ds

Now, we give some preparations for the case k& > 0. First, we calculate the

2 1

oo
integral [ e~ sa 727! ds in the next lemma and afterwards, we devote our attention
0

xT .

to the asymptotic series expansions of the integrals [ 67528%+2k71d8, where k£ > 0
0

and z tends towards infinity.

Lemma 3.2.5. Let k € N, g € N, and let j € {0,...,2q — 1}. We obtain

o0 k—1 . .
—s2 dyok—1 J 1 J
ath-lgs = L)L +1).
/e i ’ H<2q+)2 <2q+)
0

=1

Proof. We set Gy = fe_szs%%_ld& Let £k = 1. By Definition [2.1.6| of the
0
gamma function and Remark [2.1.7] we ascertain

[ e 21 (
/e_s g1l ll §F (2— + 1) )
q
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Therefore, we get by the recursive formula

/6828é+2k_1d8 GZT |:—565282+2(k_1):| + (i + (k — 1)) Gojnk

0

Lemma 3.2.6. Letk € N, g € N, x € Ry, and let j € {0,...,2¢—1}. Asx — oo,
we achieve the asymptotic expansion

z k—1 . .
j 1
/e_szsé“klds = | | (2i +€) 51—‘ (QL + 1)
q q
0

/=1

oo ) n—1 .
_ 6—322 Z$%+2k72n H <2iq + E— l) )

n=1 =1

Proof. By using the asymptotic expansion of the incomplete gamma function in

Lemma and Lemma [3.2.5] we get

oo
—s2 d4ok—1 —s2 L49k—1 —s? L4ok—1
/essq+ ds = /essq+ ds—/essq+ ds
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o/ 1 (j
= I(50) 5 (5 )

1

oo ) n—1 .
—ee e T (L),
q
n=1 =1

O

Corollary 3.2.7. Let k € N, ¢ € N, © € Ry, and let j € {0,...,2¢ — 1}.
As x — 00, we get the dominant term

z k-1 . .
—s2 ly4ok—1 J 1 J
q ds ~ =4+ /)= =—+1).
[ (G 00 ()
0

=

Proof. 1t is an obvious consequence of Lemma [3.2.6] O

In the next paragraph we give preparations for the case that k is a non-posi-
tive integer. For calculating integrals with negative exponents we reorganize the
recursive formula of Lemma [3.2.1) in the following way.

Corollary 3.2.8. Let k € Z<o, ¢ € N, and let j € {0,...,2¢ — 1}. Up to an
additive constant, Fy ;. can also recurswely be given by

1 (1 2 i 1
Fq,j,k = n (—e S Sq+ > —|— .—Fq,j’k+1.
£+ k2 L4k

Proof. We use the recursive formula

1 Jio(k— ]
Fq,j,k = _56—3282—1—2(76 1) + (QLQ —+ (k — 1)) Fq,j,k—l

of Lemma [3.2.1] By reorganizing to the last term, we get for k < 1

1 1 2 7 1
) A i Ze S 8q+2(k—1)) ' F.

2q 2q
and thus 1 1 . 4
Fq,j,k = - —G_SQS%+2,€ —|— —Fq"]’k_l’_l
3, k2 5 Tk
for k < 0. O

In the next Lemma we see an application of the recursive formula in its form

[e’e) .
. A _
for negative exponents and we calculate f e sa 1 ds where k < 0.
X
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Lemma 3.2.9. Letk € Zg, x € Rog, wherex > 1,q €N, and j € {0
We get

i€ 4{0,...,2g—1}.

k-1
2 Ja9k1q —‘1 1
/essq+k ds =

—k—m 1 1 ]
x? ]+Qk j{: :[I - —m2$%—2m
e\ gt Et+k+l)2

+ 5
j ﬁ
'l =—,z%).
(e 1 2_q o E) <2q

l\le)

Proof. We set G, j (z

f e~**si* 145 We start the induction with k = —1.
We ascertain by the spec1al values for £k = 0 in Lemma [3.2.4] and the recursive
formula in Corollary [3.2.§]

mm | 1L .| 1
qu_l(x) = [L_1§6 S4 + i_le’j’O
2q T 2q
-1 1 1 1 ' *
B::m 7 563621'%72 -+ 7 |:—§F (%,82)}
5g 1 5g 1 ¢ /1
prra 1 1 2 iy 1 1
= —e'

i)
L—12 12 \2¢
i

1
—s +2k
81 + 57— Gointa ()
3+ k2 . Ttk
LH ]—1 %er %+2k+ jl : —1 1efx2$%+2(k+l)
5+ k 5.tk |5+ (k+1)2
—(k+1)-1
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_ —1 1 22 149k 4 1 -1 1€_x2 I _9(—(k+1))
5t k2 5.tk |5+ (k+1)2
—(k+2) —(k+1)—m

- x572m
ot 0 2q+/€+1—|—€ 2
—k .
L (]
+ =T (_7 1’2)
=1 2Lq —t) 2 \%q
- .7_1 1€7$2x%+2k
3 T k2
1 —k—1 [ —=(k+1)—m+1 1 1 o s
j a i1y Q¢
2q +k m=1 =1 g TR
—k .
1 1
+ F; §F (2L, 1}2)
=12q ¢ q
_ ._1 1 f:er%-‘r?k
L+k2
—k—-1 /—k—m 1 1 2 iom
- Iigre)2" "
m=1 (=0 2q TR+
—k .
1 1 J 2
+ H : ) =TI (—,x > .
<e=1 2]_q —t) 2 \%
O
Next, we establish the asymptotic expansion of [ e~ .

523§+2k_1d3, where k£ < 0,
x
as r tends towards zero by using the asymptotic series expansion of the exponential
oo
function. We have to consider that [ e

—S

2 . . .
s~ tds is special for x approaching zero.
x
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Lemma 3.2.10. Let k € Z<y, ¢ € N, x € Rog, and let j € {0,...,2qg — 1}.
Asx — 0,

o0

52 dyok—1
/essq+ ds

xT

has for j # 0 the asymptotic expansion
dig+ Y bjgn wa 20
n=0

and for j = 0 the asymptotic expansion

> 1
d07k + Z bO,k,n 1‘2(n+k) + (—1)7k+1m 10g($),
n=0 ’
where
' {0, j=0andn = —k,
jkn = _ 1\n+1 1
(—1) =) else,
and
( OO
nz_:o( b]yo»ﬂ) + %F (2%17 1) ) k= O7
= R P B =l A== 1 1
—k
1 ip (L
\+<£=1 2qu) ot <2q71> ’ et

o0 .
2 1 — .
Proof. We set Gy jr(z) := [e ¥ 557 ds. As 2 — 0, we can write

T

1 0o

_2 4 -1 _ 2 4 -1
Gyik(r) = /e Stk ds+/e Ssa s,

T 1
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According to Lemma [3.2.4] we set for £ =0

and for k£ < 0 according to Lemma |[3.2.9

[e.e]
. —s2 Iyok—1
Cjk = /e 54 ds
1

Ezg —1 1 Py | 1 ' 1 (]
=2 C el ] e+ : -T (—, 1) :
TR Z<H ;—q+k+£>2 HL—E 2" \ 2

m=1 /=1 /=1 2q

Hence, we attain with the asymptotic expansion of the exponential function in
Lemma 2:2.77] and above

1 00

—s2 I42k—1 —s2 I42k—1
Goik(r) = /essq+k ds+/essq+k ds

- S (e / GATAI g o

T

It is necessary to distinguish between two cases. First, we may assume j # 0 and
consequently we get % +2(n+ k) #0 for all n € Ny. We have

1

n 1 i n+k)—
Gojn(r) = Z(_l) a/5q+2< L 4 e
n=0 o
> 1 1 '
J

> 1 1 i

_ -1 n+l_—x§+2("+k) +d; ’
Q ) nlL+2(n + k) o
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where we were able to set

o

1
deg = Z(—l)n - + Cj ks
= (L+20+m)n
because the series 3 (—1)" 1 N o
ecause the series 7;)( ) (Tr 2 i) converges. Next, we may assume j = 0

Since 2(n + k) = 0 for n = —k, we split the sum and achieve

1
> L1
Cooale) = D (1" / 00N 1 gy,
n=0
. 1
= _ m/ 2(n+k) 1d5+( ) ( ]{j) /3_1d8+60k
ngé k T
> 1 1 ! 1
— _1 n_- |\_ - 2(n+k) _1 k 1 1
2( yl [2<n+k)s -+ () Dol o
ngé_k
1 1
= dy. n+1 L o(ntk) Rt
n;é k
where we were able to set
do ; i (=1)" ! + Cok
— 2(n+ k)n! ’
n#—k

oo
because the series ) (—1)”m converges.

n=0
n#—k
Finally, we set
; 0, j=0and n=—k,
jkn = _ 1\n+1 1
(=1) (£+2(ntk))n!” else,
and -
ik = (=bjkn) + cju.
n=0
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3.2.2 Definability and Asymptotic Expansions

Extending our research to R? we work on the definability and the asymptotic
expansion of the probability distribution given by the standard Brownian Motion
on a globally subanalytic set A C R? for time t > 0. By Remark this
probability is given by

f : R>0 — [O, 1],
—|x|?

1
t — PO(BtGA):%/e 2t dx.
A

In the following main part, as well in R?® below, we consider the probability dis-
tribution on a globally subanalytic set and not only on a semialgebraic set. The
reason is that we would have to enlarge the o-minimal structure R to R,, in our
proof quite early anyway. As we mentioned above, we assume without loss of
generality that the dimension of A is equal two to avoid integration over a null
set. In R? we face the problem that we cannot give a general statement about the
definability of f(¢). Therefore, we devote our attention to the limit points of ¢.
We investigate asymptotic expansions of f(t) as t tends towards zero and towards
infinity and we examine the definability of f(¢) there. The next theorem gathers
our results :

Theorem 3.2.11. Let t € Ry and let A C R? be a globally subanalytic set. Let
f(t) be the probability distribution given by the standard Brownian Motion at time t
on A, which is defined as

$(0) = 5 [
= € taxr.
2rt

A

i) Ast — 0, f(t) has the asymptotic series expansion
o
k
Z ’th T,
k=0
which 1s not necessarily convergent, where v, € R and q € N.
i) Ast — oo:

a) If A is bounded, f(t) is definable in R,, and therefore a convergent
Puiseux series.
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b) If A is unbounded, f(t) has the asymptotic series expansion
F(&) = po(t) + pr(t) log(t),

o [e.9]

where po(t) = > it and pi(t) = S vt™", where at least one of
k=0 k=1

the series is not zero and oy, Vi € R, are convergent Puiseux series and

therefore, the asymptotic expansion is definable in Ry exp-

As t tends towards infinity, we notice that it makes a vital difference if the set
A is bounded or not. We prove this theorem in several small steps below and part
it into the cases t tends towards zero and ¢ approaches infinity.

The Case t at Zero

o || . . .
Our first aim is to show that Qim [e~ 2t d: behaves like a Puiseux series as ¢ ap-
A

proaches zero. For this purpose, we need the asymptotic behaviour respectively
the order of integrals of the form

/e‘gir W(r) dr,

D
where () is a globally subanalytic continuous function, which is bounded on an
open interval D C Rso U {oo}. As we will see later on, we can reduce D to three
forms of intervals by using the so-called cell decomposition. They are given by:
10, 5[, where 8 < 1, ]a, [, where 0 < a < 8 < 00, and |a, o[, where a > 1.

First, we may assume D = |0, 8[. The function ¢ (r) can be written as a conver-

gent Puiseux series around the center zero by the so-called Preparation Theorem
as we will argue later. As part of the next lemma we obtain integrals of the form

_r2 diop g : =5 i42k—1 :
[ezra® dr which we can convert to [ e~ sa" ds as = approaches infin-
0 0

ity by substitution. These integrals and their asymptotics expansions have already
been pointed out in Lemma [3.2.6|

Lemma 3.2.12. Let f € R.g. Let ¢(r) be a bounded function on |0, 5[, which
oo 2q—1 .

can be represented as the convergent Puiseuz series Y > aj’krl“
k=0 j=0

q € N. Ast — 0, we get the asymptotic series expansion

at 0, where

B oo 2q—1

7"2 j
/e‘?tr W(r) dr =~ Z Z &j,kt%ﬁkﬂ,

0 k=0 j=0
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k - .

B

Proof. We set F(t) := [ e 2r ¢(r) dr. We can split F(t) into
0

F(t) =

o .
J
e mr E aj,quﬂkdr

I42k+1
E aj,krﬁ ar
=0

2q—1 B oo 2q—1
r2 I49k41 r? ikt
= e 2 ajpre dr+ [ e 2t E E ;T dr.
k=0 j=0 0 k=N+1 j=0
First, we show ast — 0
5, N 21
F(t) — /e 2 g a;, rat? g = 0 (")

0 k=0 j=0

for sufficiently large N € N, where N is a multiple of q. We make a change of
variables s = —= and achieve by the split of F(¢) above

5 N 2¢—-1

8
Ft /e TZZ NIt
0

A, o 2-1 .
_rs L 12k4+1
= e 2t a;prat ML gy
]’
o k=N-+1 j=0
%
% 241 I 4ok+1
= E E ajk <sv > V2t ds.
k=N+1 j=0

By estimation of the remainder, we have

oo 2q—1

S Y 0 (sv2)

k=N+1 j=0

+2k+1 (N+1)+

<c(ova)
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for 0 < sv2t < B and a sufficiently large constant C' € R. Thus, we can continue

Iyok41

/682 Z a]k<5\/_> V2t ds

IN
Q
o\
®
c,t
~/~
»
5

2
s? AN+ g

_ @2(N+1)+20

e

—

o0

\/Q—tQ(N+2)C/€—5282(N+1)+2—1 ds

IN

0
= @Q(NH)C/G_SQSQ(NH)_I ds
0

BZ3 @2<N+2)C%F (N +2). (1)

By Definition [2.2.1] we conclude

B , N 2¢-1 B oo 2g—1
/e TTZZ% PRy / Z ZCLJ $T2k+L g
9 k=0 ;=0 9 k=N+1 j=0
Qo). 2)

We proceed by a change of variables s = \/L% and write

B
oo 2q—1 Jyopao V2t
=+2k+ 2 L49k+1
F(t) = E E ajpV2t’ /e sa M ds
k=0 j=0 rd
B
oo 2g—1 k1) V2t
I42(k+1 —s2 L4o(k+1)—1
= g E a; V2t / o ga T2 g
k=0 j5=0 0
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= Z Fiia (1),
=0

B

Zat 1ok V2t 2 Jyop q
where Fi,(t) :== Y ajp1vV2t? [ e % sa ds. The asymptotic series expan-
J=0 0

B

V2t .
. _¢2 149k .
sion of [ e~* sat? s is
0

k—1 j 1 j 2 3 %+2k—2n n—1 j
—+/l) = =+1)—e 2 — —+ k-1
ZHI<2Q >2 <2q > ’ Z(\/Z_t) H<2q >

n=1 =1

and has already been pointed out in Lemma [3.2.6] In addition, we have proven in

Corollary [3.2.7]
£
—s? dyok—1 ; B27 J 1 J
e ¥ su ds "~ ——|—l)—F<——i—1>. 3
0/ 11 (2q 2 \2q )

2
Due to the fact that e~ tends towards zero very fast in comparison to tV, N € N,
if ¢ approaches zero, only the constant terms are of interest. Hence, we get the
asymptotic expansion Fy(t) of Fi(t) as t — 0, that is

2q—1 j k—1 . .
. iyok 1
Fi(t) = Z aj,k—1\/2_q+ H <2i + E) 51“ (2i + 1)
=0 =1 N 4
2q—1 l+k k—1 ] 1 j i_,'_k
= Z aj,k,122q — + ) =T = + 1) t2
. 2q 2 2q
2q—1

- Ltk
= E aj 112",

=0

where a;, 1= aj,k22iq+k“ 51:11 (2%1 + ﬁ) r <i + 1), and we observe that
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We set

F(t) == > Fenl(t)

oo 2g—1 )
~ L +k+1
= E E Clj7kt2q+ + .

k=0 j=0

Due to this, it is evident by

R0~ 0 = S~ (S ha0)],

k=0 k=0
00 N

2 ZFk+1(t) - Z Fraa ()
k=0 k=0

I
™
S
=

|
WE
_fy
2
=
_|._
]
=
=

k=0 k=0 k=N+1
2 al
23 (B = Bl y(0) + 0 (2¥*2)
k=0
2 o)
that )
F(t) ~ F(t)
and as a consequence, F'(t) behaves like a Puiseux series. O

0 9
To achieve our aim, it is enough to show that the integrals [ et r ¢(r)dr are in

2
the scale O <67t>, where 9(r) is a continuous and bounded function on Jo, 0o].

Lemma 3.2.13. Let a € R, where a > 1, and let (r) be a continuous and
bounded function on o, 00[. Ast — 0, we obtain

76_2227“ Y(r)ydr = O (6_27[;215) .

[0}

Proof. Tt exists a sufficiently large constant C' such that ¢ (r) < C on |, co[. By
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o7

a change of variables s = \/LE’ we attain

/627;7" Y(rydr] < C /627;7“ dr
— OV [ e svatds

V2t

and with Definition 2.2.1] we come to the conclusion

o0

/6_2:27‘ Y(r)ydr =0 (e_T%Qt> .

«

T2 . .
The next lemma considers [ e 27 ¢(r)dr, where ¢(r) is also a continuous and

(6%
bounded function on Jo, 5] and 0 < o < § < co. An argument quite similar to
the one used in the last lemma shows that we achieve essentially the same order
as above.

Lemma 3.2.14. Let |a, f[C Rsg, where 0 < a < f < oo, and let ¥(r) be a
continuous and bounded function on |a, f[. Ast — 0, we have

B

/e_gjr Y(r)ydr =0 <6_§t> .

«

Proof. There is a sufficiently large constant C' € R such that ¢ (r) < C on |a, g].
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We make a change of variables s = \/LZ and get

B

B
/e_gir Y(r)dr /e 2ty Cdr

2
< C’/e?trdr

«

Thus, we obtain with the same proof as in Lemma [3.2.13las ¢t — 0

/ﬁe_gir WY(r)dr 221 0 (6_§t> .

O

a2
Now, we return to the integrals ﬁ e~5 dz and ascertain their asymptotic se-

A
ries expansion as t tends towards zero. The idea of the proof is that we transform

a2
ﬁ f e dr in polar coordinates and apply the Cell Decomposition Theorem.
As a result, we obtain integrals of the form f e zwr WY(r)dr, f e~ 2tr Y (r)dr, and

f e_TTtr ¥ (r)dr, which we have already pointed out in the lemmas above. After-

wards, we show that 5 f = dx behaves like a Puiseux series as t approaches

zero by using these precedmg lemmas.

Theorem 3.2.15. Let A C R? be a globally subanalytic set. Let f : Roq — [0,1]
be the function given by

1 —lz|?

f(t) = 2_71'Zf e 2t dx.

A

Ast — 0, we have the asymptotic series expansion

e k
t) ~ Z ”ykta,
k=0

where vy, € R.
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Proof. Let

©: Ry x| —m 7] — RxR,
(r, ) — (rcose,rsinp),

be the two dimensional polar coordinate transformation. First, we transform f(¢)
in polar coordinates by Transformation Theorem and get

) = oo [
= — e 2t i
27t
A
1 —|(r cos p,rsin 2
Q:Q:nﬁ / . |(r cos o mrd(mp)
e-1(4)
= 5= [ Frane
= ot e T r,Q
0-1(4)

The function © is continuous and definable in the o-minimal structure R,,, conse-
quently B := O71(A) C Rsgx] —, 7] is also definable in R,,,. By Cell Decomposi-
tion Theorem , we can partition B into finitely many disjoint cells C1, ..., C),.
For the sake of convenience we fix j € {1,...,p} and write C' := C;. Let
m : Rsg x [—7, 7] = Rx¢ be the projection on the first coordinate, let D := 7 (C),
and let ¢, n : D — [—m, 7] be definable continuous functions such that n < ¢ and
such that

C = {(r,¢) € Rog x[—m,m||re€Dandn(r)<e<ip(r)}.

Due to integration, we can reduce the different cell types of Definition to
this single cell C'. As angular part of the cell both || and |¢| are bounded by .
Cells are defined inductively, for this reason D C R is also a cell and either a point
{a} or an open interval |a, §[ with «, 8 € R>q U {00} and a < 5. If D is a point,
the integrals over D will be zero.
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Using Fubini’s Theorem [2.1.18] we get

¥(r)
7‘2 m 7‘2
/e_Qtr d(r,p) “= / e 2r dpdr
c

2

e Ty W(r) dr — /egtr n(r) dr.

If B is a bounded set, then the cells C' of its cell decomposition are also bounded
and D is either a point or a bounded interval. If B is unbounded, so the cells C' of
its cell decomposition could be bounded, but at least one cell is unbounded. That
means D, if an unbounded cell C' is based on, could also be an interval of the form
|, ool

First, we study a =0 and § < oo. By a refined cell decomposition, we may
assume 5 < 1. By the Preparation Theorem [2.3.18] there is such a cell decom-
position of B, so that ¢ (r) can be represented as a convergent Puiseux series at
zero. Caused by the boundedness of ¢(r), this Puiseux series has only positive
exponents. As t — 0, we have established in Lemma [3.2.12

B ) oo 2g—1 )
/egtr W(r) dr ~ Z Z &Mt%ﬁkﬂ, (1)
0 k=0 j=0

where ¢ € N and a;;, are constants in R. Analogously, we obtain the asymptotic
-2
expansion of [e~2r n(r)dr. By the requirements above, it is n(r) < ¢(r) and
0
thus, ¢(r) —n(r) > 0. We get that

B8
/ 5 ((r) — n(r)) dr > 0 2)

oo 2g—1
and it has the asymptotic series expansion ) »° ¢;
k=0 j=0

I 4kl .
27 where ¢, € R is the
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difference of the coefficients of the asymptotic expansion in (1) and that one of
n(r). Consequently, it behaves like a Puiseux series.

For 0 < a < 8 < oo we have proven as t — 0

B
/e‘ﬁr Y(r)ydr=0 (e_T(ft>

«

in Lemma [3.2.14] With the same arguments as above we attain

B B

/egir W(r) dr — /egir n(r) dr=0 (e%t) .

« «

If C' is unbounded, as previously mentioned, at least one D is consequently
unbounded. That means D could also be an interval of the form ]a, co|[ where
a € R.g. By refined cell decomposition, we can assume « > 1. In Lemma [3.2.13
we have already seen that

T2 a2
/e‘?tr Y(rydr = O (e_?t> :
as t — 0. With the same arguments as above we get

/e_ﬁr W(r) dr — /e_ir n(r) dr =0 (e_T(ft) .

« «

Finally, we gather the results. We have the fact e’%ft =0 (tN ) for an arbitrary
N € N. Hence, the cells that are based on cells D of the form |a, 8] or |, 0o,
where a # 0, do not contribute to the integral over the total set in our scale ¢.
Thus, we sum up

1 2 1 < 2
Dy / ez rd(r,p) = oy Z/e_mr d(r, p)
o-1(4) e
oo 2g—1

Z Z dk,mt% ka

k=0 m=0

Q

where dy, ,,, € R. This is the desired conclusion. O
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In this thesis we focus on asymptotic expansions in a polynomial scale. There-
fore, we want to remark the following points about the established asymptotic
expansion above.

Remark 3.2.16. a) If the closure of the globally subanalytic set A does not
contain zero or if the dimension of A at zero is one, the asymptotic expansion
of the function f(t) above vanishes in respect to the polynomial scale.

b) If zero is in the closure of A and the dimension of A at zero is two, the
asymptotic expansion of f(t) does mot vanish in respect to the polynomial
scale.

Proof. First, we give the arguments for the statement in a). If zero is not in the

B
closure of the set A, we will have only integrals of the form [ e~ 27 ¢(r)dr and

o0 7‘2
[ e = p(r)dr, a > 0, after cell decomposition. We have proven in Lemma|3.2.14

B 2 _a2 o2
that [e 27 ¢(r) dr = O (eTt) and in Lemma [3.2.13 that [e 27 ¢(r)dr =

@2 . . . —QQ
@) (e‘ﬁt) as t — 0. Thus, the asymptotic expansion of f(t) has a scale like e72¢ ¢

and the asymptotic expansion of the function f(¢) above vanishes in respect to the
polynomial scale. If the dimension of A at zero is one, the integral over the cell
which contains zero vanishes and by the same arguments as above the asymptotic
expansion of the function f(t) above vanishes in respect to the polynomial scale.

B 2
For b) we consider [e~2r (¢(r) —n(r))dr in (2) in the proof of Theorem [3.2.15
0
We recall that i(r) —n(r) > 0 and thus, there are constants o € Q- and C' > 0

such that ¢ (r) —n(r) > Cr? for all r €]0, §]. We obtain fe’gr ((r) —n(r))dr >
0

B
C f e~ 2r°Tldr, of which the asymptotic expansion has polynomial scale as we
0

have already seen. We can conclude that the asymptotic expansion of f(¢) does
not vanish in respect to the polynomial scale. 0

Finally, we would like to point out another property of the asymptotic expan-
sion.

Remark 3.2.17. The asymptotic expansion of f(t) ast tends towards zero is not
necessarily convergent.

Proof. We show this statement by a short example.
Let B be the globally subanalytic set {(r,¢) € [0,3] x [0,7] | 0 < ¢ < £}, which
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is given in polar coordinates. We set ¢(r) := == and obviously [¢(r)| is bounded
on [0, 1] by 7. Using Fubini’s Theorem [2.1. 18 we get

r2 2
/6_2“/’ d(r, p) = / e 2%r dydr
)

The well-known geometric series > ¢™ has the limit ﬁ if ¢ < 1. Using this,

n=0
0 o 1
¥(r) can be represented as (1 +7) > rF = 5 3" r/*% In (1) in Theorem [3.2.15
k=0 k=0 j=0
B 2

we have shown the asymptotic expansion of [ e~zir Y(r)dr, B < 1, which is
0

oo 2g—1 j
. N 1 . . . .
ST Y ajut2a M The coefficients a;y are given in Lemma [3.2.12| as

+k+1 J
ajk—a]kQZq H(q—l—g) F<2q+1>

where a;, are the coeflicients of the series representation of ¢(r). In our example
1

2 7‘2
it is aj, = 1 for all j and k. Thus, the asymptotic expansion of [ e~ 21 ¢(r)dr
0

r2
does not converge and in consequence, the asymptotic expansion of [ e~ 2 r d(r, ¢)
B

does not converge. 0

The Case t at Infinity

Now, we consider the case ¢ tends towards inﬁnity and we study the definabil-

ity respectively the asymptotic behaviour of 5 f e 5 da: For this purpose, we

consider again integrals of the form

/e—§¢(r)dr, (1)

D



Chapter 3. Definability and Asymptotic Expansion for the Time Evolution of the
Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

where 9 (r) is a globally subanalytic function, which is bounded on an open interval
D C R>qU{oo}. More precisely, we show these integrals are definable in R,, if A,
consequently D, is bounded. The harder part is if A respectively D is unbounded.
In this case, we ascertain asymptotic expansions by reducing the integrals in (1)

o0 .
2 19k . . . . .
to f Y ds as x approaches zero, which is discussed further in this work.

€T
First, we may assume D is bounded and we consider the following important
remark.

Remark 3.2.18. Let D C Rsq be a bounded interval and let ¢ (r) be a bounded
function on D definable in R,,. Ast — oo,

/ e~ (r)dr

D
is definable in R,, and strictly positive.

2
Proof. For large t we get e2¢ is a restricted analytic function on D and subse-

2
quently it is definable in R,,. Due to the fact that e2r and v (r) are definable
in R,,, they fulfill the conditions of Theorem [2.3.16] Applying this theorem, we
attain that, in our context,

/e—’ir (r)dr

D

is of the form @(t%), q € N, where ¢ is a strictly positive globally subanalytic
function and as a result the integral is definable in R,,. In our case, the log-term
which is stated in Theorem does not appear. We could additionally prove
this by using the Taylor expansion of the exponential function and by integrating
it as usual. OJ

oo 7‘2
Now, we may assume D is unbounded and therefore we consider [ e~ 27 ¢ (r)dr,

where a > 1. By arguments which we will bring later, 1 (r) is representable as a

convergent Puiseux series. Due to the boundedness of ¥ (r), it can be written as
oo 2¢q—1

I_9(k+1
ao+ 3 3 aggrs 2
k=0 j=0

, where a¢ and a, ;, are coefficients in R. In several lemmas

[e.e] 7‘2
we show the asymptotic expansion of [ e~ 2z r ¢)(r)dr as t tends towards infinity

by establishing expansions of these integrals for parts of ¥ (r).
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Lemma 3.2.19. Let a € R. Ast — oo, we have the asymptotic series expansion

o0
o0 2n

r2 «
“%rdr = —1)" tlfn
/e rdr Z( ) S ,

«

which is definable in R,,.

T

Proof. We achieve by a change of variables s = o

/e_gtr dr = /6_528\/2_t\/2_td5

« &

V2t

—02 . . . . —02 .
For large t we get e™2¢ is a restricted analytic function and subsequently te™=: is

definable in R,,. Applying Lemma [2.2.11], we get as t — oo

8

Oéz "
—a? E n <2t>
te 2t = 0(—]_) T

—n

Q"n'

:M

Subsequently, we ascertain the asymptotic series expansion of the integrals
2 2l —2(k+1) 201 i_9(kt1

fe wr oy aj w1 2 ) e where the sum > ajgra 1) is a summand of the

a 7=0 Jj=0

convergent Puiseux series which represents ¢ (r), as preparatlon for Lemma/|3.2.23|

The idea of the proof is to reduce our problem to f e s % s ag approaches

zero. We have already ascertained the asymptotics for these integrals in [3.2.10] in
Preparations [3.2.1]
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x, 221 i 9(k+1)
Lemma 3.2.20. Let ¢ € N, o € R, where a > 1, and let Y > a;xre
k=0 j=0

be a convergent Puiseux series, which describes a bounded function on |o, 0ol .
As t — oo, we achieve for k>0

2q—1 0 ) . 2g—1 A
> G / e b i dr sy Gt 4 Alog (1)
J=0 « j=0
oo 2q—1
2D Vikat
where \j, := %a07k(_1>k2—k%’
0, j=0andn =k,
Vikn = § (—1)nt? a%+2(n—k>
else,

ol djk %+2(n_k) )

and
L ao 27" [doy + (=1)* ' (log(a) — 5 10g(2))], 7 =0,
) aj,kzgq _kdj,m else,
where
( OO
n;[)(_bj’om) + %F <2j_q> 1> ) k= 07
- | g Rk 1 1 -1
dj,k - n:O(_b]7k7n> 2Jq kie _m:I El;[l (;_k+€) 2
k
+H Jl %F<QL71>7 k’>0,
\ /=1 3¢ e
and
, 0, j=0andn =k,
Gk = N (1 \n+1 1
(=1) (Z+42(n—k))n!’ else.
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T

Proof. We make a change of variables s = T and get

2q—1

k+1 —2k—1
E /e sy a2 g = E ajk/e T dr
7=0 o
2q—1

_ Z%kﬁq / 2 gh21 g

n
Let b; 1. and d;;, be as in Lemma|3.2.10, where we have also proven that » (—b; )
n=0
is convergent. It should be noted that b;, and d;; are stated for the integrals

i e=s* st g there, where k < 0. Therefore we have to rewrite the coefficients

2P
X

for [ 6_528%_2k_1d8, where £ > 0. Applying Lemma |3.2.10|, we achieve

&
V2t

2g—1 o0

52 L9k
5 @k e’ sa ds

2q—1

+Za3k\/_q_2/ TR

o

Va2t

00 2(n—k)
B210 —2k 10" 1 «
= ag /2t d +§ bokn | — 4 (=) = 1o (—)
o (0"“ — o (ﬂ) (=1) K8\ o

2g-1 00 q \ a T2k
+ Z a;, k\/_ (dj,k + Z bj7k7n (—) t_2q+k_n>
n=0 \/§
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2(n—k)
11
= ap, k:\/_ (do k+ Z bo ke < ) ey (—1)kﬁ§ log(t)
(=111 (Tog(a) —  log(2)
k! 2
2g—1 00 o %+2(n—k) "
+ Z a;, k\/_ dj,k; + Z bj,k,n <7) tiEJr -
n=0 2
—k a \*" M —k 4-n Kl ok 1 —k
= ot "+ Zao,kbo,k,n — 27T 4+ (—1)" 52 " ag k5 log(t)t
n=0 \/§

2q—1 2¢—1 L+2(n—k)
S W S M

1 1
= Goupt "+ (=) =2"Fag = log(t)t*

k! 2
2q—1 oo 2¢-1 ; a %+2(nfk)
ot £ (3]
n=0 ;=0 2

where 8o := aop27F (doy + (—1)F L (log(ar) — 5 10g(2))) -
We set A\, = (—l)k%Z*kao,k%,

a;+2(n k)
2n

0, 7=0and n=k,

— (_1),,L+1a" a%-&-Q(n—k)
anpl Yok %_A'_Q(n_k) ’

Yikn = Djknljk

else,
and

ap 27k [d(),k + <_1)k+1%(10g(0‘) - %10g(2))] , J=0,
5jk = J_p
aj 2% "d;y, else.

oo 7‘2
Before we continue to establish the asymptotic expansion of [ e~z r ¢ (r)dr
«

o0 .
. . /- o, -
we consider the series  §;,t2% * and show that it is convergent.
k=1



3.2. The Two-Dimensional Case

69

Lemma 3.2.21. Let j € {0,...,29 — 1} and let §;; be as in Lemma|3.2.20L We
have that -

D oyttt

k=0

converges absolutely for sufficiently large t.

Proof. In Lemma [3.2.20] the coefficients d,;, are stated as

ap 2" [do,k + (_1)“1%(10%(0‘) - %log(Q))} , J=0,
5j,l<: = l—k
a;j k2% "d;, else,

where a;;, are the coefficients of a convergent Puiseux series and where

( OO
> (~bjon) 43T (£:1) k=0,
0o L L k—1 k—m 1 1 -1
k
L Ip (L
\+el;[12]§—“r<2q’1>’ k>0,

and
0, j=0and n =k,

bj,k,n = n+1 1
{(—1) W, else.

0 .
. J g .
We proof, wether the formal series ) §;,t2a " converges. First, we may assume
k=1

j # 0. We get

o] ) o] ) ]
J _k J _ L J _k
E 6]'7].3{?2‘1 = E (Ij7k22q dj7kt2‘1
k=1 k=1

. j G —1)" 1 1
= Zaj,;ﬂﬂ (=1) - —e !
k=1 n=0 <l +2(n — k)) n! gk
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k=1 n=0 (J‘] + 2(” -
1 - J o 1 J_
+ et [Zaj,k% " (— - _k> 13"
k=1 2q
o0 k—1 k—m 1
Lk
+Za]k22q <_ (J )) ’ ]
k=1 m=1 ¢=1 \2q k+{
1. [ > e 1
J _k J _k
+ §F (2_(]7 ].) Zaj’k%q H 7 t2a ",
k=1 /=1 2q
In the next part we show that each of these series in the sum above is convergent.
To determine whether the series ) a; (2% F > (=1)" —1 t3% converges,
k=1 N )
we estimate:
k=1 ;
. 1 < {q, nl k and j > gq, (1)
(é +2(n — k)) 1, else.

Therefore we get

A

(D1 ] [
nzzo N ) ; N )
(_

q

—_

M 1)"
1

IN

0
=qet
0

>
-

oo . ,
Applying the ratio test to the series » aj7k22iq_kq elt%q_k, we obtain it is absolutely

k=1
oo . o0 .

convergent. Thus, we conclude that &j,kQ%q_k > (_nl,) — t2 7" converges
k=1 w0 ™ (§r2n-h)

absolutely by the comparison test.

Using the ratio test, we get that

> J L 1 J L
Zaj,k22q 7 t2a
k=1 50— F

also converges absolutely.
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Now, we consider the series

00 ] k=1 k—m 1 ]
J J
> a2 (— m) e M

By estimation

1 1
PR ‘(k_ )i—k:+1‘
m=1 (=1 2q 29
and by applying the ratio test, that is
L —k-1 L —(k+1 _
. jp1k2% m a () . ammﬂ?ﬁt !
o i | T k—1)2-—1
“ool (k- 1)22q g%—k+1t2q o0 | @ik — 1) £ —k+1
. aj,kJrl( —k+1)
= lim 1
k—oo | a;p(k — 1)2<E — k)t
for sufficiently large ¢, we get that > aj7k22jq Mk — 1) kHt?%fk converges ab-
k=1

solutely. In consequence of that, the series in (1) is absolutely convergent by the
comparison test.

00 ; k
For the last series ). aj,k22iq_k 1+ Zt% we use the ratio test again and
(=1 29
achieve that the series also converges absolutely. Gathering our results, we have
o0

proven that the series ) (5]-,kt2]71_k is absolutely convergent and it follows immedi-
k=1

ately that Z kt2q ¥ converges absolutely.

Now, we may assume j = 0. We have

o0

- g _ 1 1 g
> oA = S s + (~1P 4 log(a) — 5 log()] ¢4
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By considering the partial proofs above, it is obvious that Z ap 2 *dy kt2q " also

converges absolutely. We can easily proof the convergence of the second series by

the ratio test. In conclusion, we achieve that Z do, kt2q ¥ is absolutely convergent
k=1

s .
and therefore > 50,kt2j7_k. O
k=0

Remark 3.2.22. Let Y c,t™" be a convergent series with real coefficients c,.
n=0
As t — 0o, we obtain obviously

o0

Y et =0@t"").

n=N+1

We would point out that the aim is to ascertain an asymptotic expansion of
o0 7‘2
[ e~ =r 4(r)dr, where 1 (r) is bounded on Ja, oo and (r) can be described as
[e%

oo 2g—1

the convergent Puiseux series ag+ >, Y a; 7“‘1 2k +1) By using the last lemmas,
k=0 7=0

we can now establish the asymptotic series expansion of integrals of the form

oo 2q—1
Fetr (8% att

Lemma 3.2.23. Let o € R, a > 1, and let O(r) be a bounded function on ]a ool
oo 2g—1

which can be represented as the convergent Puiseur series Y > aj; e 2k+1)
k=0 j=0
q € N. Ast — oo, we get the asymptotic series expansion
[e.9] T2
/e‘?tr O(r)dr = po(t) + ¢1(t) log(t),
oo 2q—1 00
where po(t) = Z Z Kj, kt2q "and o1(t) = 3 Mt™*, where rjp, e € R and
=0 j=0 k=0

q €N, are convergent Puiseux series. Thus, the asymptotic expansion is definable
in Ran exp-
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oo T‘2
Proof. We set F(t) := [ e 2r 0(r)dr. By a change of variables s = 5> we get

T, o 21 ,
- i_gk—2
F(t) = /e ir E ajre dr
. k=0 j=0
o0 y 2q—1 )
B 2 i_9k—1
= e 2t a; k7 dr
. k=0 j=0
oo 2q—1 i o o0
i —s2 1_2k—1
= E a;pV2t’ /e ¥ sa ds
k=0 j=0 o
vai
oo
k=0
2q—1 i_ogp .
i _s2 1-2k—1
where Fj(t) :== Y a;pV2t? = [ e % sq ds. In Lemma |3.2.20| we have ascer-
§=0 Ve

tained the asymptotic expansion F(t) of Fj,(t):

2q—1 oo 2¢—1
A J _ —n
Fit) =) 6t + Nelog(0t ™ 4+ 0 et
=0 n=0 j=0

where 6; x, A, Vjkn € R are as in Lemma [3.2.20] and thus,

S 0, j=0and n =k,
Vikn = § (Curt g draen
i) — QS . else.
2nnl ) %+2(n—k)
We define
0, j=0and n =k,
"Yj?k:yn = Qs a%+2(n_k) else
IR T a(n—k)’ ’
_qyn+1 ] oo 2g—1 )
such that vjxn = “So—jkn- The series > > 7t " converges obviously

n=0 5=0
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and we get the m-th remainder for an arbitrary k& € Ny by

Rim(t) = Fi(t) = Fi] (1)

( 2g—1 m 2g—1
Fi.(t) — (Z J; kt% P elogtTh 4+ 3 ) ’yj7k7nt_”> , k<m,
— n=0 j=0
o m 2q—1
Fi(t) = > >0 Ykt ™™, k> m,
\ n=0 j=0
oo 2q—1
Z Z Vit " k<m,
n=m+1
= {241 = o 2g-1 (1)
Z Oat? 4 Alog(t)t 4+ D 2 Ykl " k> m.
n=m+1 j=
oo 2q—1 oo oo 2q—1
Next, we give the proof that the series > > Fjxn and Y- > > vpnt™ " are
k=0 j=0 n=0 k=0 j=0

convergent. We assume 9; ., 7# 0 and estimate

1 <) n—k=1andj > q,
t+2n—k)|

1, else.

Then we get the estimation of |9, x| by

. | a§'+2(n—k)
ik I 2(n— k)
in 1

< g (o) o

By the requirements is a > 1 and a; i are the coefficients of a convergent Puiseux

series. Subsequently, the series Z a; i~ converges absolutely in consequence of

(o )
k=
the ratio test. We set

[y

2q—

C .= Z (&2)% anﬁ. (3)

=0 k=0

oo 2¢q—1
Using the comparison test, we can conclude that > > 4;, is convergent and
k=0 j=0
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we set
2g—1 oo
B, = Z ;Y ke (4>
7=0 k=0
Moreover, the series
co oo 2q—1 o) (_1>n+1 R
-n __ -n
D2 ikt "= o Bt
n=0 k=0 ;=0 n=0

is also convergent by the comparison test, because we get

D)™ w1 [RR g
‘ mpl | Q”n' ZZ%kn
7=0 k=0
1 29—1 o~
= onp)| ’Aj,k’,n‘
j=0 k=0
@ 1 n2q—1 g o) 1
2L @S @)Y
" =0 k=0 (@?)
B 1 n
S amnl (062) c

and Y 5= ()" C is absolutely convergent.
n=0

We define

oo 2g—1

n+1
_ e k A -n
_ZZ ktz +Z)\log )t +Z 2nl Bnt™".
k=0 j=0
We make a change of the indices to p and set

—1)p+1 A .
o {50,10 + zp)p! By, j=0,
Kjp =

dips else.
We gather
oo 2g—1
~ 33tk S st
p=0 j=0

Finally, we show that F'(t) is the asymptotic series expansion of F(t) by the proof
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that

N 2q—1 . .
Z (Z "’”j,ptzi” + A 10g(t)> tP=0 (tqu—(N-&-l)) '

p=0 \j=0

We attain by the results above

IN

k=0
S F(t) =) Fil, (1)
k=0 k=0
> (Bt - By N<t>)|
k=0
N 00
Z(Fk(t)—Fk|N(t)>+ Y (R - B N(t))‘
k=0 k=N+1
N o)
Y Ren(t)+ D Rin(t)
k=0 k=N+1
0o 0o 2q—1 co 2q—1 00
S0 Yt Y Yt 3 gt
k=0 n=N+1 j=0 k=N+1 j=0 k=N+1
[e'e) (_1)n+1 . 00 2q—1 i [ee)
I IR DD S R D PN
n=N+1 ) k=N+1 j=0 k=N+1

00 n R
It results from above that > ant*” converges. In addition, we have

oo 2q—1

shown in Lemma [3.2.21|that the series > > 9, kt 27* is convergent. We consider

k=0 7=0

kz_o A log ()t~ k B220 ;

k1 —k
H log(t)t™".

N)Ir—t
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This series also converges by applying the ratio test.

Using Remark |3.2.22| we obtain

and

2qg—1

> and log(t)t~ ) = O (t 2 _(N+1)> for an

Being t~N*tD) = O o
arbitrary N € N, we conclude

N 2¢—-1 1
(Zznjpt2qp+ZAtplog ) O(tq?_

p=0 j=0

).

According to Remark and to Definition of asymptotic expansions, we
have proven

F(t) =~ F(t).

Due to the fact that the series in F (t) converge, we can write

A

F(t) = ¢o(t) + ¢r(t) log(t),

oo 2q—1 fe’s)

where @o(t) = >, Z Kj, pt2q P and ¢(t) == > A\t7P are convergent Puiseux
p=0 j= p=0

series, and we get that F( ) is definable in Ry exp- O

[oe) 72
To sum it up, we have shown the asymptotic expansion of f e 27 dr in
0%

00 -2 oo 2q—1
Lemma |3.2.19|and the asymptotic expansion of f e zr | > Z aj 7‘«1 2(k+1) ) dr
« k=0 j=

in Lemma [3.2.23] In addition, we have shown that these asymptotlc expansions
are definable in Ry, exp. Finally, we can investigate the asymptotic series expansion

oo o
of [e~2r ¢(r) dr, where ¢(r) is representable as the convergent Puiseux series
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oo 2q—1

apg+ > Y Gk pra 25D conclusion, we get that the expansion is definable in
k=0 7=0

the o-minimal structure Ray exp.

Lemma 3.2.24. Let a« € R, where o > 1, let ¢ € N, and let 1)(r) be a bounded

function on |a, 00|, which can be written as a convergent Puiseux series around
oo 2g—1 k1)

infinity as ap + > > aj pra 2D As t s 00, we obtain the asymptotic series
k=0 j=0

eTpansion,
[e.e]

/e‘gir W(r) dr = apt + $o(t) + @1(t) log(t),

[0}

oo 2g—1

where @o(t) = Z > kt% Moand ¢ () = Z Mot ™, where pip, e € R and

=0 j5=0
q€ N, are convergent Puiseux series and thus, the asymptotic expansion is defin-
able in Rap exp-

00 2 oo 2g—1

Proof. We set F(t) :== [e % Z Z aj, pra 21 dr and get
©0 5 c0 5 oo 2¢g—1
/e‘?trw(r) dr = ag/e_%rdr—l—/e 2t7‘22a]k7"5 22 dr
e a k=0 j=0
o0 T‘2
= ag/e%'r dr + F(t).
In Lemma [3.2.19/ we have shown
7"2 >
ao/e%r dr =~ ag Z%tkk,

2 k=0

where v, == %, and furthermore, that the expansion is definable in R,,. In
Lemma (3.2.23| we have proven

F(t) = ¢o(t) + @1 (1) log(t),

oo 2g—1 [e'e)
where @o(t) = Z > K, st 7% and 01(t) = > Mt are convergent Puiseux
=0 5=0 k=0

series, where /ijk, A € R, and in consequence of that, this asymptotic expansion
is definable in Rap exp.
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We set
Po(t) = o Z Yyt + @o(t)
k=0
oo 2q—1 )
- S
k=0 j=0
where

) {CLo%H + Kok, J=0,
Hj ke -=

Kjks else,

and thus we can conclude

o0

/ eEr(r) dr & ao S Wt + polt) + i (1) log()

2 k=0

= aoot + ao Z Terrt ™ o (t) + r(t) log(t)
k=0

= aot + Po(t) + ¢1(t) log(t)

and agt + Po(t) + p1(t) log(t) is definable in R,y exp- O

a2
We go back to ﬁ Je - do. Using the lemmas above, we gather our results in
A

e
the following Theorem. For this purpose, we transform the integrals ﬁ e~ d
A

in polar coordinates and apply the theorem for cell decomposition, see Theo-
rem If A is bounded, we show that the integrals are definable in R,, and
have the form of a convergent Puiseux series by Remark If A is unbounded,
we get the asymptotic series expansion by Lemma[3.2.24] and furthermore the proof
that the expansion is definable in R,y exp-

Theorem 3.2.25. Let A C R? be a globally subanalytic set. Let f: Ry — [0,1]
be the function given by

1 _1z)2
f(t) = e 5 da.

2rt
A

a) Ast — oo and if A is bounded, the function f(t) is definable in R,, and
therefore, a convergent Puiseux series.
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b) Ast — oo and if A is unbounded, f(t) has the asymptotic series expansion
f(t) = po(t) + pr(t) log(t),

o [o.¢]
where po(t) = > Kt "1 and pi(t) = S M\t where at least one of the
k=0 k=1
series is not zero and ki, \xy € R and ¢ € N, are convergent Puiseux series
and therefore the asymptotic expansion is definable in Rap exp-

Proof. The structure of this proof is quite similar to the proof of Theorem [3.2.15
Let

©: Ry x| —m 7 — RxR,
(r, ) — (1 cos g, rsin @),

be the two dimensional polar coordinate transformation. First, we transform f(t)
in polar coordinates by Transformation Theorem [2.1.17] and achieve

) = 5o [
- e 2t Xz
2mt
A
E117 1 7|(rcosga,rsinga)\2
= ont / € rd(r, )
e-1(4)
1 —r
= 5 ez rd(r, )
s
e-1(4)

The function © is continuous and definable in the o-minimal structure R,,, hence
B := ©71(A) C Rsox] — 7,7 is definable in R,,. By Cell Decomposition Theo-
rem we can partition B into finitely many disjoint cells Cy,...,C,. For
the sake of convenience, we fix j € {1,...,p} and write C' := C; for the next
part. Let m : Rsg x [—7m, 7] — Rx¢ be the projection on the first coordinate, let
D :=m(C), and let ¥,n : D — [—m, 7] be definable continuous functions such
that n < 1 and such that

C = {(r,¢) € Rog x[—m,m||r € Dandn(r)<e<i(r)}.

Due to integration, we can reduce the different cell types of Definition to
this single cell C. As angular part of the cell both |n| and [¢| are bounded by .
Cells are defined inductively, for this reason D C R is also a cell and either a point
{a} or an open interval |a, f] where «, f € Rs>oU{oo} and a < 5. If D is a point,



3.2. The Two-Dimensional Case

81

the integrals over D will be zero. Using Fubini’s Theorem [2.1.18] we get

¥(r)
T2 2 8 7'2
/e_ur d(r,p) == / e 2r dpdr
c D p=n(r)

If B is a bounded set, the cells C' of its cell decomposition are also bounded and
D is either a point or a bounded interval. If B is unbounded, the cells C' of its
cell decomposition could be bounded, but at least one cell is unbounded. That
means D, if an unbounded cell C' is based on, could also be an interval of the
form |ay, 0o[. First, we give the proof for a). We may assume C' is bounded and
in consequence also D. By its definition above, 1 (r) is a continuous function

definable in R,,. Hence, we get by Remark [3.2.18] that fe_gr Y(r)dr is strictly

D
positive and definable in R,,. By the proof of Remark[3.2.18 we also know that the
integral can be represented as a convergent Puiseux series. Moreover, we obtain

the same result for the subtrahend [ e‘gr n(r)dr. By definition of a cell, it is
D
n(r) < (r) and thus, ¥(r) —n(r) > 0. We can conclude that

/ e 5 ((r) — n(r) dr

D

is strictly positive and definable in R,, and can also be represented by a convergent
Puiseux series by the same arguments as above. Therefore, we get for a bounded
set ©71(A) that the integral

1 —r? 1 Ld -2
oy / e rd(ry) = %2/62’” d(r, ¢)
61 (4) e

is definable in R,, and behave like a convergent Puiseux series.
Now, we prove statement b). We may assume C' is unbounded. Therefore, at least
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one D is unbounded, that means, D could also be an interval of the form |a, oo|
and by a refined cell decomposition, we may assume o > 1. By the Preparation
Theorem [2.3.18] there is such a cell decomposition of B, so that ¢ can be described
by a convergent Puiseux series at infinity:.

In consequence of the boundedness of 1(r), the convergent Puiseux series in infin-
oo 2g—1

ity has only negative exponents and is representable as ag + > > a; k?"q (kH)
k=0 7=0
where ¢ € N. We obtain by Lemma [3.2.24]
00 P )
[ ot dr  ant+ Go(0) + (0 o), 1)
oo 2q—1 00
where ¢g(t) = Z Z 14, w3 , where p; € R, and ¢(t) = > »t™*, where
k=0

v, € R, are convergent Puiseux series and thus, the asymptotic expansion is
definable in Ry exp. By the definition of a cell, it is n(r) < ¢(r) and therefore,
(r) —n(r) > 0. We gather that the asymptotic expansion of

[e.9]

/ 5 ((r) — n(r)) dr

«

has the same form as in (1). Due to ¢(r) — n(r) > 0, there are constants
0 € Q- and C' > 0 such that 1/1( ) —n(r) > Cr° for all r € [a,00]. We get

[e.9] 7’2
that f e~ zr (Y(r)—n(r)) dr>C f e~ Srpotl dr, of which the asymptotic expan-
sion has the polynomial scale as We have seen above. We can conclude that at

2
least one coefficient of the expansion of f e~ 27 (Y(r) — n(r)) dr is not zero.

Finally, we bring the achieved facts together by using the results of a). As
t — 00, we have attained as a result above that these integrals over bounded cells
C; are definable in R,, and thus, they have the form of a convergent Puiseux series
if the cells are based on a bounded D. But if ©7!(A) is an unbounded set, at least
one cell is unbounded and we have

1 =r?
5 / ez rd(r,p) = 27rtz/6 2w d(r (2)
e

~H(A)

Q

polt) + Pl( ) log(1),
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oo 2q—1 m
where po(t) = >, > vm,kt%_k, where v, € R and 7,0 = 0 if m # 0, and
k=0 m=0

o0

pi(t) = S Mt where )\, € R, are convergent Puiseux series, where at least
k=1

one coefficient is not zero by the arguments above and because every summand in

(2) is positive. Since the Puiseux series pg and p; are convergent, the asymptotic
expansion is definable in Rap exp- O



Chapter 3. Definability and Asymptotic Expansion for the Time Evolution of the
Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

3.3 The Three-Dimensional Case
3.3.1 Preparations

k k
As part of this chapter we need the antiderivative of e=** s and e~ 542 log(s)
for a positive real number s, an integer k£ and a positive integer ¢q. As in Sec-

tion[3.2.1| the idea is to find a recursive formula for [ e sat2ds by integrating by
parts. The recursion skips 2¢ steps and for this reason we rewrite integrals of the

2 k
form fe*S sa2ds as
= —s2 Lok
Foik ::/e S satds,

where k € Z and j € {0,...,2¢ — 1}. We can also establish a recursive formula

for [ e gat? log(s)ds by integration by parts. Due to the same arguments, we

rewrite fe_523§+2 log(s)ds as

Hyip = /e_SQSg”LQk log(s)ds,
where k € Z and j € {0,...,2q — 1}.

. . - _ 2 1ok . -
First, we consider F;; := [e™* ss7°"ds. We find a recursive formula for F', ;
and we show the relation to

—s2 diop_1
Fo ik :—/e Ssat s,

which we have already considered in Section [3.2] Afterwards, we calculate some
definite integrals and reorganize the recursive formula for negative integers k. Def-
inite integrals which belong to Fy ;; are denoted by

b
= —s2 liok
Ggik :—/e Csatds.

a

Furthermore, we show some asymptotic expansions of @q,j,k, where a limit of the

o0 .
. . . _ 2 1 . .
integral tends towards zero or infinity, e.g. [e™* siT*ds, where k is a negative
x

integer and x tends towards zero. For this, we reduce émk to finitely many
integrals by recursion. We start with the mentioned recursive formula.
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Lemma 3.3.1. Let k € Z, ¢ € N, and let j € {0,...,2¢ — 1}. Up to an additive
constant, Iy ;. is given by the recursive formula

— 1 Jaon_ | — —
Foir= —56_825f1+2k L4 (‘% + k) Fyjk-1-

Proof. We proof the recursive formula by integration by parts. We choose e’s
and sat21 as parts and get

- —s2 L4k
Foir = /e Sga s
—s2  dgop_1
= /e s sat s
_p—S SE -

In our preparations in Section we have already considered integrals in the

e —s2 L42k—1
quite similar form F, ;; = [e™ ss™" 'ds

F,.;1 belongs to F,

. The subsequent lemma shows how

Lemma 3.3.2. Letq €N, j € {0, ... — 1}, and let F, = fe_52s%+2k_1ds,
where k € Z. Then Fy; is related to F 0.k 0y

F o Fq,j-i—q,ka j < g,
q,7,k — .
Fq,j—q,k+17 J Z q.

Proof. For j < q we obtain

2%
Fojr = it ds

2J2k11
e~ ga g

+2k—1
e ds

|
\\\

,J+q,k
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For j > q we get
Foix = /6528;+2kd3

_s2 IZ94149k
= /essq++ds

_ 2 J=4 _
_ /essq+1+2k+l Lg

—s2 =94 o(k+1)—1
= /essq+(+) ds

= quj_Q7k+1 :

S

By recursion, we can put down each integral [ e~ *s07% s to the finitely many

s

integrals [ e~ QS%dS, that means to k = 0. For these special integrals, where k = 0,

we need the antiderivative of e~ s7. To prove the following Lemma we have the
choice: we can pick up on Lemma in Sectionby using the relation of F'y ;
to F, ;x, shown in Lemma [3.3.2, or go straight by Definition [2.1.11] of incomplete

gamma function. It appears to be less confusing to choose the second way for

J#q.

Lemma 3.3.3. Let g € N and let j € {0,...,2¢—1}. Up to an additive constant,
we have
Foqo = /6_8252653

1 .
= —-I ‘H—q,SZ .
2 2q

Proof. By the relation stated in Lemma by Lemma [3.2.4] in Section [3.2] and
by Remark [2.1.14] we attain for j = ¢

i 13.3.2)

Fq,q,O Fq,O,l
Bza 1
= ——e
2
grmm 1

I 1 2
= 2F(1,s).
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By Definition [2.1.11]of the incomplete gamma function and Lemma we attain
for j #q

= 82 d41-q
Fgio = /e Ssati s

O

The corollary below and the following remark show the values of special inte-
grals in a short proof by applying the last lemma.

Corollary 3.3.4. Let g € N and let j € {0,...,2q — 1}. We get

/e_SQszds = -I jﬂ,l )
2 2q
1

Proof. 1t is evident by

Remark 3.3.5. Let ¢ € N and let j € {0,...,2g — 1}. We have
T j 1 )
/6_528‘1d8 = T It ,
2 2q
0

where
F(j+q) {ﬁr, j=0,

2¢ ) |1, j=q



Chapter 3. Definability and Asymptotic Expansion for the Time Evolution of the
88 Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

Proof. By Lemma [3.3.3| and by Lemma [2.1.13] it follows immediately
- Fith 1 (J+a
qd .
/ *shds ( . )
0

For j = 0 we get the special case
and for j = q

O

In the next paragraph we are interested in the asymptotic series expansion

_g2 4

and the asymptotic behaviour of [e siT?*ds, where k > 0 and z approaches

0

€T .
infinity. To investigate these, we use the relation of the integrals [ e’ s s to

f e~ a2k 'ds, which is shown in Lemma [3.3.2 and the asymptotic expansion,

Wthh has already been pointed out in Lemma |3.2.6|in Section [3.2.1

Lemma 3.3.6. Letk € N, g e N, x € Ry, and let j € {0,...,2¢—1}. Asz — oo,
we have

z k . .
j — 1
/e—szsflwkds ~ H <]2_qq +g> 51“ (%)
0 =
_ 6_962 OO J q+2(k+1 n 1:[ (] — q l) )

n=1 =0

_ x . x .
Proof. We set Gy x(z) == [e s ds and Gy p(x) = [e 1™ ds. In
0 0
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Lemma we have proven that
G, () 22 Gojrar(®),  J <4
" Gojai1(®), J 24

The asymptotic expansion of G, ; x(z) has already been ascertained in Lemmam
as x — 0o. Thus, we get for j < q

— 332
Gq,j,k(x) = Gq,j+q,k(x)

k-1 , .

G 1
T (L) b (10 4y
- 2q 2 2q
e’} n—1
a2 ita 4ok op J+q
— € Z xTr 4 H (2—q —+ k l)

n=1 =1

k . .
2L J+taq 1/(7—q Jj+q
= L1 1 L T4l

H<2q +€+)2<2q+) <2q)

(=1

. —x qu 2(k+1)— 2nﬁ<];qq+k l)

=1

k . ‘
— 1
_ H J q+€ i J+t4q
i 2q 2 2q

and for j = q

k —

= Hél —e_m Zac (k1) 2”H(k—|—1—l)

1 =1

n—2
_ Hgl _efx Zm (k+1—n) k—l),

(=1 =0

and for j > ¢

@qd,k(@ Goj—qk+1 (z)
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koo,
320 J—q 1 J—q
%”—E—F—l
(2q +)2 <2q +>

/=1
e ) n—1
n=1 =1

k . 1 4

= 11 (‘Z—q“) 2’ (jg—q>

=1 q q
o] n—2

_6_$2Z aq+2k+1nH( —f—k l)
n=1 =0

O

Corollary 3.3.7. Let k € N, ¢ € N, © € R.q, and let 7 € {0,...,2¢ — 1}.
As x — 00, we get the dominant term

z k . .
_s2 d4ok J—q 1 J+q
ds ~ I Lhr)T(—).
/e v Sg(2q+)2(2q>
J -

Proof. 1t is an obvious consequence of Lemma |3.3.6| 0

Before we come to integrals with non-positive exponents and asymptotic ex-
pansions as x tends towards zero, we consider the following lemma. It shows the

(0.)
asymptotic series expansion of f 6_8282d8, that means £ = 1 and 5 = 0, as x

approaches zero by applying the asymptotic series expansion of the exponential
function and of the error function.

Lemma 3.3.8. Let x € Roy. As x — 0, we achieve the asymptotic series expan-

sion -
—s2 2 7T 1 (—1)" on+1
/e Sds~ §Z< (2n +1 )) al oo

T

Proof. By integration by parts and by the asymptotic expansion of the exponential
function, see Lemma [2.2.11] and of the error function, see Lemma [2.2.12] we

ascertain as x — 0

[e.e] e¢]

1 * 1
/6_8252d8 = {—ie_szsL +§/6_52d8
1
2
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@%Z( 1y FH%—geﬁ(m)
’1 . 2l VT T 2 n,.2n+1 1
P +T_T<ﬁn§(_l>x —<2n+1>m>
R (D" oni1
B T+§nz:( (2n+1 )) nl

L]

Now, we consider integrals fe_SQS%’L%ds, where £ < 0. Due to the fact that
we cannot use the definition of the gamma function in this case, we calculate the
integrals by a reorganized form of the recursive formula of Lemma [3.3.1], which we
show below. The proof is in the same manner as in Lemma [3.2.8|

Corollary 3.3.9. Letk € Zp, ¢ €N, j €{0,...,2¢—1}, and let (j, k) # (g, —1).
Up to an additive constant, F'y ;i can recursively be given by

f— 1 1 2 J 1 =
wE T (k1) (2 04 (k+1) @kt

Proof. We use the recursive formula

= I N J—q -
Fojw=—5¢" s T\ T k) Fqjr
in Lemma [3.3.1} We reorganize to the last term and get for k < 1
— 1 1 _g2 I49k_1 1 —_
Fq,j,kfl = == (‘6 St + ',—Fq,j,k
L4k \2 g

2q

and in conclusion

— 1 1 23 1 —
7 _ ——678 gat2bt)-1 - @ F
q,J,k (k+1)2 ]2—(]q+(k+1) q,J,k+1

for k < 0. |

fe'e) .
For k = 0 we have already calculated definite integrals [ e=5* 517" 45 in Corol-

1
lary [3.3.4 We compute the integrals for k¥ = —1 among others by applying the
recursive formula for negative exponents. We will need this kind of integrals in

Lemma [3.3.11]
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Lemma 3.3.10. Let ¢ € N and let j € {0,...,2g — 1}. We have

- | L%e—1+L%F(%,1>’ j<aq

/68232_2618 = _%. El
r (J;q 1 i>q

1
1 2

Proof. We set Gy 1 = Ik e’ 2ds. We get for 7 < ¢ by the recursive formula
1
of Lemma and Corollary

o0

1 _
+ 5= Gg,j0
e G Y
11 11, ()
mma 11 11, (H_q1>
i=q 9 =P 2q

For j = ¢ we cannot apply the recursive formula, thus we attain by Lemma |3.2.2

2
Ggq-1 e s lds

I
Il
l—‘\g

12.2.2)

“=--1(0,1).

N[ —

o0 .

For j > g we use the relation to G, = fe*szsiﬂk_l of Section . This
1

relation is stated in Lemma [3.3.2] and we obtain

15.5.2)

Gq’j’il = Gq7]7q70

mza | _ln (=4
2 2q 1

1 (j—
ez (L9 1),
2 2q

O

The following Lemma shows the formula for the calculation of | =" g t2k ds,

1
where k < —1, by applying the recursive formula and the lemma above.
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Lemma 3.3.11. Let k € Zy, ¢ € N, and let j € {0,...,2¢ — 1}. We achieve

fork < —1
oo —(k+2) —(k+1)—m
/e_s2s£+2kds = —— ! 16_1— Z H . L l6_1
/ Lt (k+1)2 — vy Gt (k+1)+£2
—(k+1)
+ H i—q _e 7,—1»
=1 2q
where

Proof. We set G, jx = [ e~ 5012 s, According to Lemma |3.3.10, we set
1

Cj—1 = aq7j7,1
w [ 2l (501) d<e
ir(521), i>a
We start the induction with £ = —2 and get by the recursive formula of Corol-
lary
Gojz 2 ! l6_528%73 + - ! G-
" 9y (—241)2 o (2
1 1 n 1
= — - — — Cj7_1
S+ (-241)2 ]2—(1‘1—1
1 1, =5 1 1,
= — — —e — — —
Lt (=2+1) oo Tt (=2 1)+ 2
S
+ H i—q _ EC],_I
=1 2q
By using Corollary again, we conclude
— B33 1 1 _ 1 —
gk = T —— e '+ Gy jk1

Li4+(k+1)2 Lat(k+1)
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LH. 1

et (k+1)2
1 1 1

t 7= =g 2°

—+(k+1) 2—q+(k+2)

—(k+3) —(k+2)—m

1 L., 1
: mzl H @;qq+(l<:+2)+£§e + 11 e

/=1 2q
1
=7 =g 3¢
s+ (k+1)
—(k+2) —(k+2)-m
1 1 1,
+-_— 5¢
e =
—(k+1) 1
+ H Jj—q gcjv_l
=1 2¢
1 1,
= —_ - —e
%+(k+1)2
_—(162—1—2) 1 —(kﬁ—m 1 1 |
= Bkt 1) +0 o B (k+1)+ 02
—(k+1) 1
+ H i—q gc_],—l
=1 2q
—(k+2) —(k+1)—m
1 1, 1 1
= ———¢  — - 5€
Sa 4 (k+1)2 mzzl g Lt (k+1)+102
—(k+1)

+ H St

q

o0 .
Next, we establish the asymptotic expansions of [ e*SQS%des, where k is a

x
non-positive integer and x tends towards zero. We could also prove the next
lemma by taking up Lemma [3.2.9] of Section [3.2] but combining the cases of the
conclusion seems to be even more complicated than proceeding the same way as

in Lemma [3.2.9
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Lemma 3.3.12. Let k € Z<y, ¢ € N, x € Rog, and let j € {0,...,2qg — 1}.
Asx — 0,

o)

—s2 L4k
/esqur ds

x

has for j # q the asymptotic series expansion

0

P 1

dig+ Y bjgas 20T
n=0

and for j = q
dgr + i by 2D 4 i log(x)
q, gt q,k,n <_k . 1)| )
where
; 0, j=qandn=—k—1,
ke - n+1 1
J (—1) + w, 6[86,
and o
dj,k = Z (_bj,k,n> + Cj ks
n=0
where
(11 (i+ _
Ir (g—q 1) , k=0,
1 1,-14, 11 ite
712¢ +J2(1‘12F(q»1)7 ) <4q, N
1p(iz¢ ;
7 ) - —(k+2) —(k+1)—m , -
T 2© T mZ:1 zl;[o 0 (k+1)+ 2
(1)
+ H =;C-1 k< —1.
\ (=1 2q

Proof. We set Gy () := [ e~ s ds. As x — 0, we can split up G,jr(r) into

T

o) 1 o)

_¢2 Ja9 _ 2 a9 _¢2 Jg9
/essq+kds:/eSsq+kds+/essq+kds.

x x 1
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o0 .
. ) _s? Lok
First, we consider the last summand [e™* sat?ds.

1
Lemma [3.3.10] and Lemma [3.3.11}, we summarize

By using Remark |3.3.4]

oo

. 52 l—l—Qk‘
Cik = /e sa ds

1

1 + —
2 <j2qq 1) k= 07
_ 1 1,1 1 1p [ j+a :
J2qq2 +JqQ2F<2q7]'> J <4q, b — 1
1 . ) )
% §F (Jg_qqa 1) ) J 2 q,
. o —(k+2) —(k+1)—m ) _
T LAt 2t m2=1 zl;[o o (k+1)+0 2
—(k+1) )
+ H T=¢ ch’fl’ k< —1.
/=1 2

Hence, we achieve by using the asymptotic expansion of the exponential function,
which is stated in Lemma [2.2.T1]

1 o]

al —s2 L4k —s2 Lok
Gejr(x) = /e St ds+/e Ssu s

1
) 1)
= Z(n‘> /s 2R ds + ¢ (1)

It is necessary to distinguish between two cases. First, we may assume j # q.
Consequently, it is 2 + 2(n + k) # —1 and we obtain

Gojrlz) =
- 1
1)
= (=1) /s 2R ds + e
n!
n=0 .
_ i (=" ' 1 |:sg+2(n+k)+1:|1 tein
nl L42(n+k)+1 @
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o0 n 0 n+1 1 ;
—i— . ga AR+ Cji ks
nZ:O n! ! (n+k nzz() t+2n+k)+1
1 .  (_1\n+1 1
where nzo( 1" (T2l converges. We set b; ., := (—1) (T2 and
djk = > (=bjkn) + cjr. Therefore, we can conclude for j # ¢
n=0

2(n+k)+
qu E :bjknxq +djk

Now, we may assume j = ¢. Since 1 +2(n+ k) = —1 if n = —k — 1, we split the
sum of (1) in

= ()
a —U" 44+2(ntk - 94 9(—k—1+k
Gyjr(r) = ZO T/Sq+ (n+ )ds+m/“+( s 1 e
n n:kfl x x
- (=" 1 2(n+k)+27 1 (=) 1
ZO IRETEE Jo * (2 gy BBl + i
n;én:kfl
c~  nl 2n+k)+2 — nl 2n+k)+2
n#—k—1 n#—k—1
(-n~*
+ Cho1) log(x) + ¢jk,
where 20 (—1)"m converges obviously. We set
n;én—_k—l
0, n=—-k—1,
Dg n = 1)yt 1 1
(=" Grrwrza else,
and d, ; == Z()(—bq&n) + ¢; . Thus, we gather for j = ¢

_ > —1)k
Gq,j,k(x) ~ Z bq,k,nIQ(n+k)+2 -+ ﬁ log(x) —+ qug.

n=0
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Hereafter, we consider the integrals H, == [ e~ gi T2k log(s)ds and denote
definite integrals which belongs to H, ; by

b
I,k = /e_szsfﬁzk log(s)ds.

We present a recursive formula for H,;; in Lemma [3.3.13 and then the value

of f et s T2 log(s)ds. Afterwards, we establish some asymptotic expansions. We

start with showing the asymptotics of the integral [ e 52 log(s)ds as x approaches
T

s2

x .
zero and after that, we examine f Rl log(s)ds, where k is a positive integer,

0
and ascertain the dominant term as x approaches infinity. Finally, we analyze

[e'e) .
S e~ gat2k log(s)ds, where k is a non-positive integer. First, the next lemma

T
shows the mentioned recursive formula.

Lemma 3.3.13. Let g € N, let k € Z, and let j € {0,...,2¢g — 1}. Up to an
additive constant, Hy ;. is given by the recursive formula

1_
SFqjk-1,

1 iyok— | —
Hyix = —56‘52331*2’“ "log(s) + ((72_q + k) Hyjr1+ 9

q

= _ 2 d4op
where Fyjp= [e™* s ds.

Proof. We proof the recursive formula above by integration by parts and choose
e=*"s and s17* 1 og(s) as parts. We have

Hyir = /6_8283+2k log(s)ds
= /6_828 sat2h-l log(s)ds
. 1 ; .
e gt log(s) + 5 (‘Z + 2k — 1) /€_$2S‘Jl+2k_2 log(s)ds
q

_ 2%—2
/essq+k ds

+

= N
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1 149k—1 J 1 —s2 _L42(k—1)
= —= 1 — — = 8 1
5¢ s og(s) + 2q+k 5 e % sa og(s)ds
+ % / e ga 20D g
1 —s2 d4ok—1 j —q 1—
= — 56 Sa log(s) —+ 2—(] + k Hq,j,k—l + §Fq,j,k—1-

O

This recursive formula is based on the integrals [ e gat? log(s)ds. We do not
go further into their antiderivatives, because it contains the so-called generalized
hypergeometric functionﬂ For our purposes, it is enough to know that they exist.

S

But we can easily specify the integrals f e atek log(s)ds, k > 0, more precisely,

0
because they are based on the first prime of the gamma function. Therefore, we
show these specific integrals, where k£ > 0, first and afterwards that they are not
zZero.

Lemma 3.3.14. Let k € N, g € N and let j € {0,...,2¢ — 1}. We get

r i 1 1
/68254+2k log(s)ds = ZF (2q +kE+ 2)
0

Proof. By substitution s = t2 and Definition of the first prime of the gamma
function, we get

o

/e‘SQSéJFleog(s)d / tt2q+k10g t2)=

0

2t

DN | =

1]
/ ~tydg s 2log( )dt

N | —

/e‘tt(iﬁr —5t)- Mog(t)dt
0

O

For more information to the generalized hypergeometric function we refer to |AS12] and
|[Erd81].
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Corollary 3.3.15. Let k € N, g € N and let j € {0,...,2q — 1}. We have

/e“)zssfz.“]c log(s)ds > 0.

0

4
Remark [2.1.9] we know that the first derivative of the gamma function has only
a single positive zero in xy = 1,46... and in addition I'(z) > 0 for z > =
by Remark [2.1.10f Due to the fact, that we get for the smallest k, which is

k=1 2%—}—% > xg for all j € {0,...,2¢g — 1} and ¢ € N, we can conclude

U (4+k+1) >0 0

Proof. We get fe*SZS%Hk log(s)ds = iI” (;—q +k+ %) by Lemma [3.3.14, By
0

2 1

*si7 " log(s)ds, where k is a positive integer:

We remain on the integrals [ e~

2 1

S gtk log(s)ds as x

x
our next subgoal is to determine the dominant term of [ e~
0

approaches infinity. We achieve this by reducing the integrals to £ = 1 and by
using the recursive formula of Lemma [3.3.13] First, we show the dominant term
for £ =1 in the subsequent lemma.

Lemma 3.3.16. Let ¢ € N and let j € {0,...,2g—1}. As z — oo, we get

/6—52S;+2 log(s)ds ~ if’ (2i + g) .
q
0

Proof. We can split the integral in the following way:

x o0 o0

/e_s2sé+2 log(s)ds = /6_8285+2 log(s)als—/e_‘gsffr2 log(s)ds
0 0 T
1 ' 3 r 2 J
L Z_lF/ (QLq + 5) — /eS 512 log(s)ds.

T

Since lim [ e~ 5t log(s)ds = 0, we conclude that $I” (2%1 +

T—00 T

N

) is the dominant

term. 0
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The next step is to prove the formula which reduces [ e~ g2 T2k log(s)ds to

0

e~ st log(s)ds for an arbitrary x € R.y.

Ct—=a

Lemma 3.3.17. Let k € N, where k > 1, let ¢ € N, j € {0,...,2¢ — 1}, and

let © € Ryg. We get

/63232]q+2k10g(3)d5 = —567”2955”]“_1 log(x)

0

where 1, 1(x) =

O —s
®
.
»
»
2 [
+
[\
—
o
OS]
—
w
N~—
QU
®
e
3
IS
Ql
R
.
=
—
N~—
I
O —s
®
.
2
+
[\
ol
QU
®

Proof. We set I,;u(z) == [ e s log(s)ds and G,u(z) := [ 5% ds.
9 0

By applying the recursive formula of Lemma [3.3.13] we achieve for the initial

step k =2

Iyjo(z) = {— 5
1

2 Iygq ’ ) — 1—
e ga ! log(s)l + (j2—q + 2) Iy1(z) + §Gq7j72,1(:c)
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We obtain with induction

Iy () =
1 ; - T . 1—
@ |:—§€_S2Sq+2k 110g(8>:| + (‘72—q —|— kj) Iq]k}—l(x) + EGqJ,k‘—l(m)
0 q
1 | — 1
LH. Ee_xzx%wk Mog(z) + (u + k:) [——e‘“” 2 A=D1 100 ()
k—2 k—m—2 . 1
_ 11 (j 2—q +(k—1)— f) §€*x2xq+2m‘1 log ()
m=2 (=0 q
T (i—q
+ <— + f) ]qJ}l@)
2q
=2
1 k—2 n—2 ] —q 1
rp I (T 00 =€) Cusers)]| + 00saa ()
n=1 ¢=0 q
1 J ) — 1 :
_ §e_x2xa+2k71 log(yc) + (.7 2qq + k) |:_§€—x2xq+2(k1)1 log(x)
k—2 k—m—2 1 ;
S 11 <‘7—2 k= (0 + 1)) —ex2x§+2m_110g(13)]
m=2 (=0 q

+
N

(.
)

i)

+

ol
~~_
e b
N

.
L\J‘
i)

)

+

~
~
_QN

Ny

&

2

1 ] . k—2 n—2 ] —q

+ 5 (2— + ]{j) Z H (2— +k— (E + 1)) Gq,j,k—(n—i—l)(‘r)
q n=1 /=0 q

1—
+ éGq,j,k—ﬂx)

1 2 7

= — §€7x ,’L‘E+2k_1 log(w)
j q k—l k—m—l j q 1 .
_ i _ — L — ¢ Lo %-{—Qm 11

+<2q+> ngng<2q+ )26 ’ o

: J—4q
+H <W +£) I (2)

~
[|
¥
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k—1 k—m—1 .
1 J — ;
— etk log(z) — H (‘]2—(] + k- £> e pgt2m—l1 log(x)
m=2 /(=0 q
(i
T (" ) )
=2 q
1 k—2 n—1 i—gq 1
n=1 /=0 q
1 k—1 k—m—1 .
_ 5671 x9+2k llog(x) N H (]2—q+k—£) 2@* 2x%+2m_110g(33)
m=2 /(=0 q
(i
+1] (2— + f) Ly ja()
=2 q
1 k—2n—1 ji—gq
+ 5 (2— + k- g) G ji—(n+1)(T)
q
n=0 /=0
1 k—1 k—m—1 . 1
_ §6fx2xfz+2k llog(x) _ H (32—q+k_£) 5@’1 rat2m 110g($)
m=2 /(=0 q
i—q 1k—1n—2 ji—q
AW; Z ——t+ k-1l )Gyiten
+£1_£<—2q + ) q]1($)+2n_lg< 2% + ) g, —n ()

Using Lemma [3.3.16| and the last one, Lemma [3.3.17, we attain our subgoal:

the ascertainment of the dominant term of [ =% 53t log(s)ds as « tends towards
0

infinity.

Lemma 3.3.18. Let k € N, where k > 1, ¢ € N, and let j € {0,...,2¢ — 1}.

As x — 0o, we get that

T

/6528i+2k log(s)ds
0

has the dominant term
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Proof. We set I, fe_s 32k log(s)ds and G jx(z fe_s %% ds. By

the dominant term of I, ;(x Wthh is stated in Lemma |3.3. 1 | by the dominant
term of G, see Lemma , and by Lemma |3.3.17, we achleve the dominant
term of [, ;x(x) as  — oo in the following way:

Iojn(z) =
1 k—1 k—m—1 . 1
B:‘}:jz‘ N §€7x2x%+2k_1 10g($) . 2 g (] 2qq L — g) 5673323:%-0-27)1—1 log(af:)
k j q 1 k—1n—2 ji—gq
+H(2—+€)Iqjl(l’)+§ H<2—+k_£)quk—n(w)
(=2 q n=1 (=0 q
3.3, (1 1 k—1 k—m-—1 ] q 1
10.0. 16l 22 149k—1 22 l4om-—1
N - get e log(z) — Z (Q—q +k— E) 3¢ a log(x)

O

In the subsequent paragraph we consider the integrals [ e g0t klog( )ds,
where k is a non-positive integer. As above, we reorganize the recursive formula
of Lemma [3.3.13] to calculate them.

Remark 3.3.19. Let k € Z.y, ¢ € N, and let j € {0,...,29 — 1}, where
(4, k) # (¢, —1). Up to an additive constant, H, ;j can also recursively be given
by

1 1

Hyj = 7750 " 537 log(s) -
By 2

1 1= 1

. CFoaa 4 H ..
(IJ + 4,7, +1
TP FE
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Proof. We use the recursive formula

Hyjp = —%6—823§+2k—1 log(s) + (‘% + k:) Hy k-1 + %Fq,m_l
of Lemma [3.3.13] By reorganizing to Hyjx_1, we get for k < 1
Hyjp1 = j2_qq1+ k%e 2 a2kl log(s) — ]qq1+ k%Fq,j,kl + jz_qqﬁ @ik
— %ﬁ%e—szsg-m(k—l)—&-l log(s) — %ﬁéfq,j,k_l

1
—H, ;.
=+ 4,7,
El+k—1
and thus for k£ < 0
H ., = —_6_828%+2k+1 lo (S) #1_ . - H..
a5,k — 7 2 g jﬂ + k 2 q,5,k ‘% + k: q.9,k*

2q + 2q

O

First, we see an application of the recursive formula in its form for nega-

o0 .
tive exponents stated in the corollary above. We calculate [ e st og(s)ds,
1

k < 0. We can put down these integrals to the integrals fe_szsi log(s)ds and
1

f e g1 log(s)ds. As above, we do not go further into their antiderivative, which

contalns the hypergeometric function respectively the so-called Meijer G- functz‘orﬂ

Lemma 3.3.20. Let k € Z.g, ¢ € N, and let j € {0,...,2q — 1}. We achieve
for k < —1

Y "y 1 1
—s2 149k
e ¥ sa " ]og(s)ds = — | | ———— | =Citam

1 m=0 (=0 2q
. —(k+2) 1 i
T 7,— 1>
o et (k+0)

2For further information to the Meijer G-function we refer to |[OoSU10| and |Erd81].
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where -
fe_523_1 log(s)ds, j=q,
6j’_1 = 1

1 1 1 ~
—Tm 201 T =G, else,
2q 2q

s

where ¢ := [ e~ *s4 log(s)ds and
1

( )
1 1 -1 1 1 +
e +H§P<j2qul>v J<4q,
2q 2q k= —17
1 j—
§F (Jqu? 1 ) J > q,
Cjk -= 1 1,1 SR ) 1 1,-1
It (k+1) 2 = im0 mrkeD+e2
—(k+1) )
+ Il =01 k< —1.
\ /=1 2q

Proof. We set I := [ e~ 5% Jog(s)ds and Gojn = [ e 517 ds. According
1 1

to Lemma [3.3.10| and Lemma [3.3.11] we set

Cjk .3k
( .
1 1,-1 11 +
—=73¢ Tt a3l <J2q>1>, J <4
2q 2q k= —17
1 j—
§F <%7 1 ) J > q,
BT e e
— 56 — Z H T 556
(k1) 2 = sy G rkerD+e2
—(k+1) )
+ Il =51 k< —1.
\ (=1 2q

Furthermore, we set ¢ 1= I, o and ¢; 1 := Iy 4 1. By the recursive formula of

Corollary we get for k = —1 and j # ¢

B3I0 | R S h L1 1
Iq,j,—l = T 1 56 s S4q IOg(S) — Ea q,j,—1 + EI‘M’O
2q 1 2q 2q
B 1 1 1
— —]ﬂ — 1§Cj7,1 —+ —Jﬂ — 1Cj70.

2q 2q
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We start the induction with £ = —2 and obtain by using the recursive formula of
Corollary [3.3.19
L1 e i h 11
@i=2 T |Eg _99° sa A IOg(S)] T ikg g a2
2q 1 2q
N 1
+ 4,3,—1
72—qq 2
1 1 1 .
_ _ g 25637 2 + j+4q 2Cj7_1
2q 2q
0 m 0
1 1 1
= —Z - —C',2+m+H - 6'71.
+ Js —+ 75
m=0 (z—oj_qq+<_2+£)> 2 e:0j2_qq+(_2+€)
By using Corollary [3.3.19] again, we get for the induction step
11 2 oipoem R T = 1
Ijr = T e 7 sa log(s)| — “To o olaikt ~+—Iq,j,k+1
‘% + k2 ) % + k2 B+ k
I.H. 1 1 . 1 %3) (ﬁ 1 > 1
s S —Ci L - | = - =Cj k+14+m
+ 7, + + e
Ll tk2 Bl +k = \po gy Tk+1410)) 2
—(k+3) 1
+ 11 ;

: Ci1
+ ]7

vy et (k+1+0)

B 1 1 —(k+3)

> ot (et )
1y g2 Lo Hagg

- 5 Cik+(m+1)
Jj+a J

5 1 s T k+10) 2

Jj+q j+aq 7>

5g T k w1 ¢ T k+ /¢

—~

+

11 Y ” 1 1
- g X g (g o
L 1 —(k+2) | 1 ~] 1
Btk o 4 k+0”
—(k+2) m 1 1 —(k+2) 1
= (gw> R | W=

& 1.
ro Bkt
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Remark 3.3.21. Up to an additive constant, we get

1
/51 log(s)ds = §(log(3))2.
Proof. Up to an additive constant, we easily achieve

/s_llog(s)ds = log(s)log(s) —/log(s)s‘lds

by integration by parts. In consequence of reorganization, we get

2/5‘110g(8)d8 = (log(s))*

/3_1 log(s)ds =

and therefore

(log(s))”.

l\l)l»—l

OJ

The next Lemma shows the asymptotic series expansion of f e’ AR log(s)ds,

where k < 0 and x approaches zero. This proof is similarly structured to the proof
of Lemma [3.2.70] in Section and the proof of Lemma [3.3.12]

Lemma 3.3.22. Let k € Z<p, ¢ €N, and let j € {0,...,2¢ —1}. Asxz — 0,

[ee]

/e_SQSng log(s)ds

T

has for j # q the asymptotic expansion

[e.e]

S byt ¥ +Z (— +2<n+k>) log(z)a 2 4
q
n=0
and for j = q

Z l;qJﬂ’ 14+2(n+k)+1 + Z q k n 2 + 2(n + k)) 10g<$)x1+2(n+k)+1

L o(a)) +

+
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where
- 0, j=qandn=—k—1,
bj,k,n - _1\n 1
(=1) (L+2(nthk)+1) nt’ else,
and .
Z <_Ej,k n) + C_] ks
where
(% 2 1
[ e % s log(s)ds, k=0,
1
o0 782 —1 .
[ e ¥ s log(s)ds, j=q,
6]',]6 — 1 k — _1’
J+<} 1 ;CJ,—I + J+ql lcj 0, 61567
(k+2) —(k+2)
\_ mZ:O (EI_IO ];L(Iq+(k+£ ) 5Cj k+m + gl;[() mc%_l, k < —1,
where
( .
—Arlet+ Air (B, J<q,
% 2 k=—1,
1 j— .
EF (]_qq’l ) J Z q,
Cik = ) _— —(k+2) —(k+1)—m . _—
—(k41)
+ I=4_yp 7,— 1> k < —1.
\ /=1 2q

o0
ak(T) = [e*

x

Proof. We set [,

into
o) 1
/6_528‘]1+2k log(s)ds = /e‘s

The integrals f e’

51 % log(s)ds. As z — 0, we can split up I,

sé+2klog(s)d8+/6_s

[e.9]

it log(s)ds.

1

k()

Qtok log(s)ds exist and have been calculated in Lemma|3.3.20
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[e'e) .
Therefore, we set ¢, := [ e~ gatH log(s)ds. We investigate by using the series
1
expansion of the exponential function in Lemma [2.2.11] that

1 0o

Luse) = [ st oglo)ds + [ st log(s)ds

1

e~ itk log(s)ds + ¢

- (_1) n . L42k ~
Z - s s log(s)ds + G

Zf
/

1
= (=1 i
= Z (=1 /sq+2("+k) log(s)ds + ¢ - (1)

3
Il
o

It is necessary to distinguish between two cases. First, we may assume j # q.
Consequently it is 2 +2(n+k) # —1 for all n € Ny and we ascertain by integration
by parts

T2 E) log(s)ds + ¢

=
3
=L
=
a\H

1
1

L42n+k)+1

I
NE
| L

=

S§'+2(n+k)+1 log(s)]

T

_/ | 1 S§+2(n+k)+11d8 &
t+2n+k)+1 s

1 i
= > ()"~ — i P g ()
n=0 (ﬁ +2(n+ k) + 1) n!

11
- ! S%+2(n+k)+1 + éjk
t+2n+k)+1 ’

4



3.3. The Three-Dimensional Case 111

s 1 i
= Z(_l)n ‘ [_ x5+2(n+k)+1 log(x)
n—0 (§ +2(n+k)+ 1> n!
1 L49(ntk)+1 1 ~
+- xa — = +c¢;
I42(n+k)+1 Ito(n+k)+1| 7"
= 1 ] i
= > (-1)"— 5 [— (1 +2(n+ k) + 1) za P2 60 ()
n=0 (l +2(n+k) + 1) n! 9
1
n k‘ n ~
a2t } + Z i — +
(2+2m+k)+1) n
= Sy A
n=0 (j% +2(n + k)) n!
- ntl 1 J+q 34 2(nth)+1
+) (-1) A 5 +2(n+ k) ) log(z)x
=0 (”q +2(n+ k)) nt N\ 4
- n+1 1 ~
+ Z(_l) ) 7 T Gk
(2+20m+k)+1) n
q
where the series nZ:O(—l)”m converges. We st b ., := m
and furthermore,
ik = (~bjkn) + G-
n=0

We can conclude

1
= (—=1)" itomn -
I ik(z) = Z( n') /sq+2( ) Jog(s)ds + ik

n=0

o
7 7 L42(ntk)+1
= dig+ Y byura O

n=0

+Z ) (58 2004 bogloet 2007,
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We may assume j = ¢. Since 1 +2(n+ k) = —1if n = —k — 1, we split up the

00 n L o, 1
series in (1) in > % [ s1T20 4R og(s)ds + ((__1;_1;)!1 [ s~ tlog(s)ds. For the

n= x
n#—k—1

first summand we achieve for j = ¢ and n # —k — 1 the same result as in (2) in
an analogous way. For reasons of clarity we use this partial result and set

1
— = (=1)" B
H,.k(z) = Z u/lerQ("J”‘/’) log(s)ds + ¢,k

n#—k—1 z

I
QQAI
kol
_l_
()¢
[kt
<
ko
&
Q[
+
~
3
+
=z
+
[

%) ~ P ; .
# 2 ) (254 204 1)) bogla)at 200 )

n=0
Using Remark [3.3.21] we investigate the asymptotic series expansion for j = ¢ by

1 1
) N (_1>n 142(n+k) <_1)_k_1 -1 -
loqr(z) = Z o s log(s)ds + k=) s log(s)ds + ¢,
n=0
#— T

—

—1 z

3

_1)k—1 ; .
ﬁ/s log(s)ds

S ang@)f]

2R Z(—Bq,k,n) (2(n + k) + 2) log ()22 Hh)+2
n=0

gt s log(a))

I
|

7,9,k (x) +

1
4,9,k (m ) +

T

e
NE
[pk

where we set 5q7k7n =01 n=—k—1 and else we set Bq,k,n and Jq’k as above. [J
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3.3.2 Definability and Asymptotic Expansions

In this last section of Chapter [3| we come up with the probability distribution
given by the standard Brownian Motion on a globally subanalytic set A C R3,
which is represented by

f:Rso — [0,1],

1 x|?
t— Po(Bye A) = 3/6 S da.
(2mt)2 g

As we mentioned above, we assume without loss of generality that the dimension
of A is three to avoid integration over a null set. The three-dimensional case is
structural quite similar to R?, but there is a content-related difference. As above,
we cannot give a general statement about definability of f(¢) and therefore, we
devote once again our attention to the limit points of ¢: zero and infinity. There
we establish asymptotic expansions of f(t). It is remarkable that we get definability
of f(t) in Ruy exp if t tends towards infinity and A is bounded. But if A is unbouded
the asymptotic expansion of f(¢) is also definable in R,y «xp as ¢ approaches infinity.
The main results of this section are gathered in the following theorem.

Theorem 3.3.23. Let t € Ry and let A C R? be a globally subanalytic set. Let
f(t) be the probability distribution given by the standard Brownian Motion on A,

which is defined as
1 lz|2
t) = e 2t du.
0= A/

i) Ast — 0, f(t) has the asymptotic series expansion

b k
Z (v + 9k log(t)) ta
k=0

which is not necessarily convergent and where i, o, € R.
ii) Ast — oo:

a) If A is bounded, f(t) has the form po(t) + 01(t)log(t), where go(t) and
01(t) are globally subanalytic functions, and thereby f(t) is definable in
IRan,exp’

b) If A is unbounded, f(t) has the asymptotic expansion

po(t) + p1(t) log(t) + pa(t) log(t)*,
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where po(t) = Zukt “op(t) = Zwﬁ T, and po(t) = wa

ey Vi, wr € R cmd q € N, are convergent Puiseuz series cmd at least
one of the series is not zero. The asymptotic expansion is definable
in Ran exp-

The proof of this theorem is split up in two parts. For each part we resume the
results in a theorem; as t tends towards zero in Theorem [3.3.30] and in Theorem
3.3.43| as t approaches infinity. First, we consider the case t tends to zero in the
subsequent paragraph.

The Case t at Zero

Our aim is to show an asymptotic series expansion of f e 5 dx as t tends

2mt) 2

towards zero. In the course of this we will consider integrals of the form

/ e 52 (Wo(r) + b1 (r) log(r)) dr,

D

where 1);(r) are globally subanalytic functions and vg(r) 4+ (r) log(r) is bounded
on an open interval D C R>oU {oo}. By the Cell Decomposition Theorem
we are able to reduce D to three forms of intervals: |0, 5[, where 8 < 1, ], ],
where 0 < a < 8 < 00, and ]a, co[, where o > 1.

First, we assume D =|0, 5[. The functions 1y(r) and v (r) can be represented
as a convergent Puiseux series around the center zero by arguments, which we
will present later. Before we start with establishing asymptotic expansions, we
give a short proof to show the argument that if 1y(r) 4 11 (r) log(r) is bounded on
10, 5[, B < 1, it implies 1o(r) as well as 11 (r) log(r) is bounded on ]0, 5.

Lemma 3.3.24. Let W(r) = ¢o(r) + ¢1(r) log(r) be a bounded function on D :=
10,5[, B < 1, where ¥o(r) and 1(r) are globally subanalytic functions, which
can be represented as Puiseuz series around zero. We have that y(r) as well as
1 (r)log(r) is bounded on D.

Proof. Let 1y(r) be represented as Z a,r™ and Y1 (r) as Z by, r™. We prove the

—k
claim by contradiction. Without loss of generality we assume k<0 Ifk<V?
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then U(r) ~ ¥ is a contradiction to ¥(r) is bounded on |0, 8[. If k& > ¢ then
WU(r) ~ rflog(r), which is also a contradiction. Thus, it is k,¢ > 0. If £ = 0 then
we obtain W(r) ~ log(r), which is also a contradicition. Therefore, we get that

o(r) as well as 1 (r) log(r) have to be bounded on D and in consequence of this,
k>0and ¢ > 0. UJ

2
Now, we show the asymptotic series expansions of the integrals [ e2r r2¢(r)dr
D

and [ e%fr2w(r) log(r)dr.
D

5,

We attract our attention to [ e r?¢(r)dr. In Section[3.2|we have already studied
0

a form of integrals which is quite similar to the form above. In the next lemma,

2 X
we show the asymptotic series expansion of f e2t r2(r)dr by applying results of
0

Preparations [3.3.1]

Lemma 3.3.25. Let ¢ € N, let § € Ryg, where § < 1, and let ¥(r) be a

bounded function on 10, 8] which can be represented as the convergent Puiseuz
oo 2q—1
series Z Z a;, qu TR Ast — 0, we get the asymptotic series expansion

B oo 2g—1
_r2 9 N It 3
e2 r¥(r)dr ~ E E Qjpl2a "2,

o k=0 j=0

ket 1
+k+ Ji—q I (ite
wherea]k—ajk%q 2]_[( q+€>§ (2—
=1

FE

Proof. As this proof is similar in spirit to the proof for [e~=zr ¢(r)dr, see
0

Lemma @ in Section B-2] we shorten it to the essentials.

We set F(t fe 52 Y(r)dr. First, we show as t — 0
g, N 2-1 .
/ert Z aj,kr%%wdr =0 (tN+2)
0 k=0 j=0

for a sufficiently large N € N, where N is a multiple of q. By changing variables
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s = \/Lﬂ, we get
— / 2 al J
F(t) — /e_t Z a2 gy
) ,
B oo
— /e_gi Z aj7kr%+2k+2d7“
J :

a;, (3\/_)“r +\/_ds

o

By estimation of the remainder, we obtain for 0 < sv2t < B and a sufficiently
large constant C' € R

[}
”T
_

7z o I 12k+2
/ e Z ( ) V2t ds

k=N+1 j=

o C\/Q_tQ(N+1)+282(N+1)+2 ds

(VAN
9
—

@2(N+2)+1C/65282(N+2)+11 ds

1 D
BZ3 \/2_t2(N+2)+1C2F <N+ 2) (1)
We conclude
A N 21 ‘ B o 2g-1
PO~ [y aurt ™ = [ 3 S autt
, k=0 j=0 9 k=N+1 j=0

—
—
~

@ (tN+%) . 2)

Establishing the asymptotic series expansion, we change the variable s = \/Lﬂ as
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above and write

oo 2g—1

— L 4o(k+1)+1
F(t) = 22 a2’

k=0 j=0

= Z Fk-i-l (t) )
k=0

—s2 L42(k+1
e ga kD) gg

R

B8
V2t

2q—1 5 J
f e="sa7%ds. In Lemma [3.3.6| we have al-
0

— i
where F(t) == > ajr1 gatAET
j=0

B

V2t .
ready seen the asymptotic series expansion of [ =" st ds. Due to the fact

0
2

that e’%, which is contained in one summand of the asymptotic expansion, tends
towards zero very fast in comparison to ¢, N € N, if ¢ approaches zero, only the
constant terms of the expansion are of interest. In Corollary [3.3.7 we have already
seen that

% o
—s2 42k J—4q J T4
e I (gt i (5) o
9 =1
Hence, we get the asymptotic expansion ?k(t) of Fi(t) as t — 0, which is
2q—1

Fy(t) = Z%,k—ﬂﬁﬁﬁ,

Jj=0

A k+1
R Jo 3 - .
where @, 1= a; ;2% "2 ] (Jqu + E) ST (%) and we observe that
=1

Fi(t) =0 (t’”%) . (4)

We set

’q|>

—~
~~

N—
Il

S Fal)
k=0
oo 2q-—1

j 3
= DD aututtE

k=0 j=0
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Alike Lemma [3.2.12]in Section [3.2] we achieve

by
O -
F(t) = F| () =) Frpa(t) = > Froa| o (1)
k=0 k=0
2 = 7
N (Frant) = Fraa| () + 0 (#%)
k=0
9o (1++3)
and thus F(t) behaves like a Puiseux series. O

B
Now, we study the integrals [ 6%27“2@/1(7") log(r)dr, where f < 1 and ¢(r) log(r)
0
is bounded on |0, 5[ and v(r) can be written as a convergent Puiseux series

around the center zero. Our next aim is to find the asymptotic expansion of

5,
J e =r? 4p(r)log(r)dr. For this purpose, we show the dominant terms of the
0

5 s,
integrals [ ewrrat log(r)dr by using several lemmas, which have already been
0

proven in Preparations [3.3.1]

Lemma 3.3.26. Let k € N, ¢ € N, j € {0,...,2¢ — 1}, and let § € R.q, where
b < 1. Ast — 0, we have the dominant term

_p2

67T%+2k log(r)dr ~ (bjx + cj i log(2)) t2%+k+% + ¢k log(t)t%ﬁk%,

O\m

k—1n—2 . k—n . .
1 — — 1
" (JQ_q+k_g) (%+l) ' <32ﬂ>
n=1 /=0 q =1 q q
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and

Proof. We make a change of variable s = \/Lﬂ and obtain

e (3\/2_t) ek log (3\/2_t) V2t ds

i

B
2
/e?trfﬁ% log(r)dr =
0

B
V2t
2
68

$

(s@) o (1og(s) + % log (Qt)) ds

0

- \/2—t§+2k+1

i

e si 2k (log(s) + % (log (2) + log(t))> ds

o
E‘E

l .
= \/2_q+2k+1/e_SQSéHklog(s)ds

0

i 1 ;
+ \/2_"+2kJr1 3 log (2) e ¥ sat s

ﬁ‘m Ot~ g‘m

&

Iiok+11 j
ot +1§log(15) e sit s,

S tY~—3

We have already seen the asymptotic expansion of these integrals in Lemma |3.3.6
2

and |3.3.18, Due to the fact that e*%, which is a factor in a part of each of the
asymptotic expansions, tends towards zero very fast in comparison to tV, N € N,
if t approaches zero, only the constant terms are of interest. For the first summand
we have ascertained the dominant term

@%+2k+1

_2 I J 1
e~ 51 log(s)ds ~ bj, t7athT2

i
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in Lemma [3.3.18] where

k .
j 3
b. ::27q+k+% -]_ / 1—\/ ] e
Jrk H 2q - 2q T 2

=2
4= kiﬁ —' Ykt kﬁ JT=4 )\ 1p(1+4
2q 2 2q
nlfO /=1

Using Lemma [3.3.7] the second summand has the dominant term

\/2_¢Z+2 +1§10g(2) €_S2S%+2kds ~ C]'Jg lOg(Q)tQLq+k+%,

i

where

k:—lk J—q 1. (i+q
cjk:22q 2H T-i—ﬁ QF T ;

2

2t

\/2_qu2 +1—log( t) / 28%+2kd8|3:~3]cj,kt2iq+k+% log(t)
0

for the third term. In conclusion, we get

B
J
/e it *Mlog(r)dr = Vari !

0

?gatek log(s)ds

gk
)
.

X vz
Iyok+1 j
+ V2 a T —log /e sit g
0
8
-

¥

2t

z 1
+ V2t +2k+1—10g /e siT2 (s
0
)t

~ b; t2q+ 3 4 cjrlog(2 34 cj i log(t )t%’%%

= (bjx +cjrlog(2)) t2q+ +3 + ¢ log(t )t2q+k+2
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Now, we are able to establish the asymptotic series expansion of integrals
7‘2 .
J e zr? (r)log(r)dr in the next lemma. In consequence of the boundedness

0
of ¥(r)log(r) on |0, [, the representation of ¥ (r) as a convergent Puiseux se-
ries in zero has only positive exponents. Therefore, we can reduce the integrals

8, 5,
fe‘ZTrz Y(r)log(r)dr to integrals of the form fe_%trfr% log(r)dr for which we

have already seen the dominant term in Lemma 3.3.26

Lemma 3.3.27. Let § € Ry, where § < 1, let (r) be a function such that
W¥(r)log(r) be bounded on]O, B[ and (1) can be described by the convergent Puiseux

oo 2g—1
series Y 2 a;, qu , where ¢ € N. Ast — 0, we achieve the asymptotic series
k=0 5=
eTPansion
B , 0 2¢—1 _
T J 3
/e_atr2 (r)log(r)dr ~ Z (ajr + ¢ixlog(t)) 3RS
5 k=0 j=0
where

=2
k—1 n—2 k—n .
1 (J—q ) (J—q )1 (]+Q)
+= k=) [ (5= +1):T
2 n=1 =0 2q =1 2q 2 2q
k 4 .
J—q 1. (J+4q
—log(2 — — 4/ =T ——
*20g”£Hl( 2 )2 (2(1>
and i
_1 ) — 1 J+q
= 22q+k 2 u I
C]k a]k 61;[1 ( 26] + E 9 2q
Proof. We set H(t fe e r)log(r)dr and split H(t) into

B oo 2q—1
H(t) = /e iy ZZ@MM log(r)dr
0 k=0 j5=0
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B 2q—1
= [ S 3 gyt log(r)dr
0 k=0 j5=0
B oo 2¢g—1
/e 2 y? Z Z a; qu+2k log(r)dr.
0 k=N+1 7=0
First, we show
B 9 N 2q—1 )
H(t) — /egtr2 Z ajpri Flog(r)dr = O <log(t) tNJrg)
0 k=0 7=0

for a sufficiently large N € N, where N is a multiple of ¢, and as t — 0. By

o o
substitution s = a0 We get

A T
H(t) —/e_TtTQZ a; e ¥ log(r)dr
o k=0 j=0
B ) oo 2g—1
= /e 27 2 Z Za]krfﬁ log(r)dr
0 k=N+1 7=0
B
V2t 2g—1
= /e (5\/_) Z Za]k<s t) log (5@)@&9.
0 k=N+1 5=0
We estimate the remainder by
o 2¢-1 2(N+1)
> o () s 0 (o)
k=N+1 j=0

for 0 < sv/2t < f3 and a sufficiently large constant C' € R and thereby we can

continue
8
i x 2] 1yok
[ (svar) > Y s (sva)" o (svr) va ds| <
. k=N+1 j=0
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% 2(N+1)+2
+1)+
< C/ t log (S\/g) V2t ds

_ @2(N+2)+1O —? 2NF2) oo (S@> ds

< @2(N+2)+1C S2N+2) log <5\/§> ds

T8 T8 Tt
('D‘ o -

1 1
— \/2_t2(N+2)+1C’ e 2N+2) (log(s) + 5 log(2) + 5 log(t)) ds

0

< AN /68252(N+2)+1110g(8)ds +%log(2)/68252(N+2)+11ds
0 0

+—| log(?)] /e_ * NI g g

( N+2)+1)‘+110g(2)F(2(N+2>+1)

1
)Nt o | -
4

2(N+2)+1
+ylosolr (2]

o 2tN+2+2C[1 ( _) }llog(g)r(]v+g)+illog(t)|F<N+g)}

[2N+2+2C (4 (N+ Z) —1og( )T <N+ g))} N3

1 1 ) 5
+ [2N+2+2C’ZF (N + 5)] |log(t)[t" 2. (1)

4 2

Being V3 = O (tNJ“g log(t)) for an arbitrary N € N as t — 0, we conclude by
Definition 2.2.T]
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B 9 oo 2q-1 _
= / e 2 r? Z Z aj’krﬁﬂk_l log(r)dr
0 k=N+1 j=0
2o (1 og(t)) 2)

In the next step we establish the asymptotic expansion of H(t) and for this we
rewrite H(t) in

B oo 2q—1
T2 j
H(t) = /e_%rzzz:ajjkrﬁ% log(r)dr
0 k=0 j=0
oo 2g—1 B 2
= Z aj,k/e%rqwk” log(r)dr
k=0 j=0 2
k=0
! PO R NP
where Hy(t) :== Y ajx [e 2ra log(r)dr. By Lemma [3.3.26] we ascertain
j=0 0

the asymptotic expansion Hy(t) of Hy(t) as t — 0, which is given by
2q—1 ) ]
o = Y (aj,kt%q*(’ﬁ“”% bttt log(t)>
=0
2q—1

= ) (ayu + &y log(t)) 1,

where
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and

We observe that

Consequently, we set
H(t) = ) Hit)

oo 2q—1 )
= ST (g + éulog(t)) th

k=0 j=0

H) - A () 2 S H) =Y Bl )+ Y Hilh)

that

[l
For the next part we may assume D =|a, (] respectively D =]a, oo[, where
7,,2
o # 0. We only show the scale of the integrals [ e 2672 (¢o(r) + 11 (r) log(r)) dr,
D

where 1g(r) and () are continuous functions. For this, we use the argument
that 1o(r) + 11 (r) log(r) is bounded on D as we mentioned above.

Lemma 3.3.28. Let a € R, where o« > 1. Let 1po(r) and ¢, (r) be continuous
functions and let 1o(r) 4+ 11 (r) log(r) be bounded on |a, 00[. Ast — 0, we achieve

e}

/6_7’;7“2 (Wo(r) + 1 (r) log(r)) dr = O (e‘ft> )

«
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Proof. In Lemma [2.2.12] we have introduced the asymptotic expansion

orf (\%) ~l e (%)1 % nf%(—l)"“ = E]j(% _1)

as t — 0 and by Remark we obviously have

orf (%) 140 (e—%t%) . (1)

In consequence of the boundedness of 1y (r) + 11 (r) log(r), it exists a sufficiently
large constant C' € R such that [¢o(r) +1(r) log(r)| < C on |, co[. Therefore, we

_r_

get by a change of the variable s = — and the recursive formula in Lemma w

o0

/ e~ 51 (o(r) + v (r) log(r)) dr| <

«
o0

< /e_girQC'dT
o , 2
= \/2_750/6_5 <S\/2_t> ds

t

wI[R

= Vot

o
Q
‘9\8
9]
.
N
QU
V2l

M
53
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2

C!Q [e3
Being e 5t =0 (e‘ﬂt_%> as t — 0, we can gather

o0

/e_iTQC’ dr=0 (e_%zt_%t%) (1)

[0}

&

and in conclusion

o0

/6_7;7’2 (Yo(r) + Y1 (r)log(r))dr = O <6_27t> .

«

B
Finally, we show the scale of [ e_gﬂ (Yo(r) + 1(r) log(r)) dr.

Lemma 3.3.29. Let |a, B[C Rsq, where 0 < o < f < oo. Let 1o(r) and ¢ (r)
be continuous functions and let (1o(r) + 11(r)log(r)) be bounded on Ja,o00[. As
t — 0, we obtain

B

/e_ZtTQ (Yo(r) + Y1 (r) log(r))dr = O (e‘aTtt> :

«

Proof. 1t exists a sufficiently large constant C' such that |¢g(r) 411 (r) log(r)| < C
on Ja, 00[. We get by substitution s = —= and the recursive formula in Lemma

V2t
B B
/e_gtr2 (Yo(r) + U1 (r) log(r)) dr| < /e_gtTQC’dr

r2
< / e~ r2Cdr
In equation (1) in Lemma [3.3.28 we have already pointed out that

7 1'2 a2 1 3
/e‘?trQC’dr =0 (e_?t_iti)

[0}
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and consequently,

o

B
[ o) + ) log(r) dr = 0 (5t}

O

_le? . . :
= [ e~ 2t dx and ascertain their asymptotic
2mt) 2

A

expansion as t tends towards infinity. For this purpose, we transform the in-
tegrals in polar coordinates by Transformation Theorem. By Remark of
Theorem [2.3.16] which gives the form of the angular part, and by the preceding
lemmas, we show the integrals above have an asymptotic series expansion of the

Now, we return to the integrals

form > (0x + & log(t)) ta ast approaches zero.
k=0

Theorem 3.3.30. Let A C R3 be a globally subanalytic set. Let f : Rog — [0,1]
be the function given by

1 —|z|?
ft) = (m)gA/e i dx.

Ast — 0, we have the asymptotic series expansion

o k
~ Y (6, + i log (1)) o
k=0

where O, vx € R and ¢ € N.
Proof. Let

O: Ry x [0,7] x]—m, 7] — R,
(r, 9, @) — (rcospsind, rsin@sind, r cos ),

be the three-dimensional polar coordinate transformation with functional determi-
nant det(DO(r,9,p)) = r?sind. By Transformation Theorem [2.1.17, we trans-
form the given integral in polar coordinates and get

1 7|z|2 E117 1 7|('rcos<psin19,rsin<psin19,'rcosﬂ)|2 .
e 2 dr "= e 2 r?sind d(r, 9, @)

o7t)s ort)2
(2nt)? ) ent)? )
1 / =2
= e2t rosind d(r, v, ¢).
(2nt)3 (n9:9)

e-1(4)
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The function © is continuous and definable in the o-minimal structure R,,, there-
fore B := ©7!1(A) C Ryox| — m,7]? is definable in R,,. Let B, be the set
{(W,¢) | (r,9,¢) € B}. By Fubini’s Theorem [2.1.18 we achieve

1 2
- / ezt r?sind d(r, 9, ) — 3 //6 2 2 sind d(0, @)dr
(2mt)z )2

@71(14) R>O B
1 —r
— . /e2tr2/sin19 d(9, @)dr
(2mt)2
R>o B,

Applying the Cell Decomposition Theorem [2.3.15] we get a finite partition of
R>oU{oo} into finitely many disjoint cells, that means in points and open intervals

Dy, ..., D,, where D; := |a, f[ with 0 < oo < § < 00 and we can write
3/e2t7°/31m9d19g0 e2t7" smﬁdﬁgp
For the sake of convenience we fix j € {1,...,p} and write D := D;. Since the

integrals over D will be zero if D is a point, we ignore this case. If B is a bounded
set, consequently D is a bounded interval. If B is unbounded, at least one interval
D is unbounded and consequently 5 = co. Due to the fact that sin is globally
subanalytic by its restriction to B,, we get by using Remark [2.3.17] that

/sinﬁ d(9,v), (1)

By

which is the angular part, has the form of a constructible function. In our case,
the log-term of the constructible function has at most power one. The reason is, if
we apply Fubini’s Theorem [2.1.18 and integrate sin ), there is no log-term in the
antiderivative of sin 1} as is well known. Therefore, only the second integration can
bring a log-term in the antiderivative of the integral in (1). Thus, the angular part,
which is shown in (1), has the form v,(r) 4y (1) log(r), where 1o(r) and 1 (r) are
strictly positive globally subanalytic functions on D. Since () + 11 (r) log(r) is
the angular part, it is additionally bounded by 7.

We obtain

! g /eJthQ/sim? d(9,p) dr = (2)
(2mt)z J

)
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Njw

Eild (27T1t) / e 20 1% (Yo(r) + by () log(r)) dr

= ! /e?rfrzwo(r)dr—i-/e;f?gwl(?") log(r)dr
D

(2mt)2

D

First, we may assume D = |0, 5[ and by a refined cell decomposition we can
additionally assume 5 < 1. Due to the fact that ;(r) are globally subanalytic
functions, they can be represented as convergent Puiseux series around zero by the
Preparation Theorem We get that 1o(r) as well as 11 (r) log(r) is bounded
on |0, 3 by Lemma [3.3.24] In consequence of this, ¥y(r) can be represented as

s 21 % 21
> Z ajqu T2 and ¢y (r) as 3 Z a]qu 25 where dgg = 0 and ¢ € N. As
k=0 j= k=0 j=

t— O we get immediately by Lemma 3.3.25

B ) oo 2g—1 ) .
/6_2:7'21/’0(7”)@”“ Do byt (3)
5 k=0 j=0
where b;; € R, and by Lemma
B 9 0o 2q—1 ) .
/ e 5 i (r)log(r)dr ~ Y (eju+ dylog(1) 372,
0 k=0 j7=0
where ¢, d;r € R. Subsequently, we gather that we obtain the asymptotic ex-
pansion
B 00 2q—1 , 5
J 3
/6 2 (o(r) + ¢ (r)log(r)) dr =Y > (b + cix) + djxlog(t)) 2042,
0 k=0 7=0

Next, we may assume D = ]a, [, where 0 < a < § < 0o. In Lemma [3.3.29| we

have shown 5

/e_gir2 (Yo(r) + U1 (r) log(r)) dr = O (e_%t> :

«

Finally, we may assume D =|a, 00[. By a refined cell decomposition we can
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assume o > 1. We have already proven in Lemma [3.3.28| that

o0

/e 2072 (o (r) + 1(r) log(r)) dr = O <e’%t> :

o

At the end, we combine the results. As ¢ — 0, we get that St =0 (log(t)t™)
for an arbitrary N € N. Hence, the cells, that are based on cells D of the form
Ja, B[ or |a, oof, where a # 0, do not contribute to the integral over the total set
in our scale. Consequently, we sum up

1 —r2
5 / e2r?sind d(r,0,p) = e ) log(r
(2mt)2
e-1(4)
s k
= Z (Or + e log(t)) ta
k=0
where 0y, v, € R. This is the desired conclusion . O

In this thesis we focus on asymptotic expansions in a polynomial scale. Finally,
we close this paragraph with two remarks which give us some properties of the
asymptotic expansion above.

Remark 3.3.31. ) If the closure of the globally subanalytic set A does not
contain zero or if the dimension of A at zero is less than three, the asymptotic
expansion of the function f(t) above vanishes in respect to the polynomial
scale.

b) If zero is in the closure of A and the dimension of A at zero is three, the
asymptotic expansion of f(t) does not vanish in respect to the polynomial
scale.

Proof. First, we give the arguments for the statement in a). If zero is not in the

B 2
closure of A, we will have integrals of the form [ e~ %1% (¢o(r) + ¢y (r) log(r)) dr

«

oo 72
and [ e 2r? (Yo(r) + ¢1(r)log(r)) dr, o > 0, after cell decomposition. We have

B 2 2
shown that [ e~ %% (¢o(r) + 11 (r)log(r)) dr = O (e_%t> in Lemma |3.3.29) and

that fe’gﬂ (Yo(r) +¢1(r)log(r)) dr = O (e’%t> in Lemma [3.3.28] Thus, the

o2
asymptotic expansion of f(¢) have a scale like e72c t. Therefore, all coefficients of
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the asymptotic expansion of f(¢) in respect to the polynomial scale are zero. If the
dimension of A at zero is less than three, the integral over the cell which contains
zero vanishes and by the same arguments as above the asymptotic expansion of
the function f(t) above vanishes in respect to the polynomial scale.

Now, we argue b). The integral | sind d(9, ) in equation (1) is strictly positive for

By

(0, ¢) € [0, 7] x]—m,7|. Thus, [ sin® d(9,p) = bo(r)+11(r) log(r) is strictly posi-
B,

tive. There are constants o € Q~q and C' > 0 such that ¥y (r) + wl( )log( ) >Cr°

for all » €]0, 5. We obtain that fe A f sint d(Y, ) dr > C’fe 2 7‘”+2d7“ of

which the asymptotic expansion has polynomlal scale as we have already seen. We
can conclude that the asymptotic expansion of f(t) does not vanish in respect to
the polynomial scale. O

Remark 3.3.32. The asymptotic expansion of f(t) ast tends towards zero is not
necessarily convergent.

Proof. We show the statement by a short example. Let B be the globally suban-
alytic set {(r,9,¢) € [0,3] x [0,7] x [0,7] | 0 < ¢ < 1=}, which is given in polar

coordinates. We set ¢(r) := £ and obviously [¢(r)| is bounded on [0, 1] by .

Using Fubini’s Theorem [2.1.18] we get

3 ¥(r) =
/e_girz sin 9d(r, 9, ¢) 2L 6_2%7“2 / sin ¥ d¥ dedr
r=0 =0 9=0
3 w(r)
= /e‘gir2 [— cos Vg dpdr
0 0

oo
The well-known geometric series > ¢™ has the limit 117(1 if ¢ < 1. Using this,
n=0

o0

¥(r) can be represented as (1 +7) > r* Z

j+k. In (3) in Theorem [3.3.30

m?MH

2
we have shown the asymptotic expansion of [e~2r ¢(r)dr, 3 < 1, which is
0
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oo 2q—1 .
> bj,kt%’%%. The coefficients b;;, are given in Lemma [3.3.25| as

k=0 j=0
k+1 . .
J et J—4q 1. (J+4q
. 93g Tht3 GO Sy I et Y S ¢
Aj 2™ H ( 2q 2 2q

=1

where a; are the coefficients of the series representation of ¢)(r). In our example
1

2 -2
it is aj, = 1 for all j and k. Thus, the asymptotic expansion of [ e~ 2tr ¢(r)dr
0

does obviously not converge and in consequence, the asymptotic expansion of

7‘2
J e mr?sind d(r, 9, ¢) does not converge.

B
O
The Case t at Infinity
12
In this section we study —— f e~ dr as t tends towards infinity. For this

(2mt)2 %
purpose, we consider integrals of the form

/eﬁrQ (to(r) + b1 (r) log(r)) dr,

D

where ¢ (r) and 1 (r) are globally subanalytic functions and g (r) + 11 (r) log(r)
is bounded on D C R>q U {o0}.

If not stated otherwise, we set the following conventions for the next part:
a;r or a;r always denote the coefficients of convergent Puiseux series; coefficients
which are in relation to integrals which contains the logarithm are marked with
tilde e.g. Bj,k; an “extension” of coefficients are noted by capital letters e.g. Bj,k =

(log(2) — 1)b; ; for limit values of series we use capital letters with hat-symbol for
example C.

If D is bounded, we can gather that [ e 52 (¢o(r) + 11(r) log(r)) dr has the
D
form (¢o(t) + 1(t) log(t)) by the following Lemma.

Lemma 3.3.33. Let D C Rx¢ be a bounded open interval and o(r) and 11 (r) be
bounded functions on D and definable in R,,. Ast — oo,

/ e~ 572 (o (r) + v () log () dr

D
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has the form @o(t) + p1(t)log(t), where po(r) and p1(r) are globally subanalytic
functions and consequently, the integral is definable in Ry exp.

in Section

Proof. By arguments equal to those which we used in proof of Remark [3.2.1§]
2
we attain e~ 27r21;(r) are definable in R,, for large ¢ and subse-

T 7‘2
quently e~ 2 r%;(r) are globally subanalytic functions. Therefore e 2 721y (r) +

e~ 2 1% (r) log(r) is a constructible function, see Definition [2.3.6 Due to the fact
that constructible functions are stable under integration, see Theorem [2.3.19] we
obtain that

[ (50 + St log(r)) dr 1)

D

has the form of a constructible function. We can argue that, in our context, only
a log-term with power one appears, because if we use the series expansion of the
exponential function and integrate the integrals as usual by parts, the power of
the log-term in (1) decreases in the first step. Hence, the integral in (1) has the
form

o(t) + pu(t) log(t), (2)

where ¢y and ¢; are globally subanalytic functions. Consequently, the integral in
(1) is definable in Rap exp- O

-2
It is more elaborate to study [ e~ 272 (¢o(r) + 11 (r)log(r))dr if D is un-

D
bounded, that means D =]a, 00[. Our aim is to establish the asymptotic series

expansion of the integral [ e~ (o(r) + Y1 (r) log(r)) dr, where o < 1 and 9;(r)

are globally subanalytic functions and 1y(r) + ¢1(r) log(r) is bounded on Ja, co].
Furthermore 1y(r) and 1(r) can be represented as a convergent Puiseux series
around infinity by arguments we show later. We ascertain the total asymptotic
expansion in several lemmas step by step.

First, we pick up some lemmas of Preparations [3.3.1, because we can reduce
) P2 i 3 i L
the integrals fe’ﬁrgl kdr to V2t fe’SQSiI kds by the substitution s = % for
D D

example. We include immediately the factor / 2t3, which arises in consequence
of the mentioned substitution, because this makes the proof in which we use the
following lemmas more clearly. We start with a short proof of the asymptotic series

. 3 T 2
expansion of V2t~ [ e™% s%ds.
er
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Lemma 3.3.34. Let a € R, where a > 1. Ast — oo, we achieve
2n+1

3 2 T > (8%

V2t U sds g = 1" =,
/e oo \/7 Z( 2n+1)>( T
v

Proof. As t — 0o, we get by Lemma [3.3.§]

5 [ oo EER e34/T 31 & 1 (=)™ [ o\
V2t S2ds R V2t Y— + /2 —E 1—

/e e I 2n0< (2n+1)) n! (\/ﬁ)

Ve

T3 > 1 OzQ"H
_ T - ) (e,
\/;+nz:%< (2n+1))< T

M\W

Applying Lemma of Section [3.3.1] we ascertain the asymptotic series

. I_ok4+1 P _s2 L9k
expansion of /2t 1 [ e si s,

SP
E

Lemma 3.3.35. Let a € R, where a > 1, let ¢ € N, let k € Ny, and let
j€{0,...,2¢—1}. Ast — oo,

o0
—2k+1 &2 J_
\/2t‘1 /e g1 2k s
i

has for j # q the asymptotic series expansion

142(n—k)+1

[

J gl J g1 (67 _

T
n=0

and for j = q the asymptotic series expansion

1—k (_1) 1-k a2 k) tn
2 dg.r, + =] log \/_ £+ Zb%kn n
(_1)k+1

(k—1)!

4 27F log ()t =",
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136
where
) {O, j=qandn=%k—1,
Gk = Y ()l 1 I
( ) (%-{-Q(n—k’))n!7 ese,
and .
dig = (=bjkn) + i
n=0
where
(1 j+ —
Ir (g—qq 1) , k=0,
11, -1 11 i+ :
_jz;q"ie —i-]-z_qqéI‘(J_qq,l), J <gq, _—
1 . . b
=T <]—q 1 j>q
— 2 q’ ) = 4%
ot 1 |y R keLm 1 1 -1
LA D2 T 2 2 Y, 2¢
k—1
+ j*i_gcj,h k> 1.
\ /=1 q

Proof. Let b, and d;;, be as in Lemma [3.3.12] It should be noted that they are
stated for the integrals [ e~ 51t g there, where £ < 0. First, we may assume

T
*si72%ds in Lemma 3.3.12

j # q and attain by the asymptotic expansion of [ e~
Vot

) 00 l+2(n7k)+1
L _92k+1 Q q
- (d“ ~3oe () )
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Now, we may assume j = ¢ and we get by Lemma |3.3.12

oo
4_2k+1 _¢2 4_9k
vV 2t? e ¥ sa "ds

[e3

NeT
oo 2(n—k+1) k

A a (—1) ( a )

~ V2t dgr + borpn | — + lo

< q,k nz_% q,k, ( /'2t) (k . 1)' g /_2t
o 2+2(n—k)
_ ol-k 1—k « -n
= 2 qugt + ; qug’n on t

= 27k (%,kJr%l g<\/_)>t1 k+zbqkn 2+2in k) 4—n

(~1)*+!

2

log(t)t' ",
0

1_9k41

In the same manner we proceed with /2t* e~ ga 2k log(s)ds and in-

Sy

vestigate the asymptotic series expansion.

Lemma 3.3.36. Let a € R, where a > 1, let k € Ny, let ¢ € N, and let
j€{0,...,2¢ —1}. Ast — oo, we achieve that

e}

\/2_‘1_%+1/6_5232_2k10g(s)ds

o

V2t

has for j # q the asymptotic expansion

ZBJ,M (1 — (q +2(n — k) +1> log (%)) £

1 ~
+ Z Bjhn ( +2(n—k)+ 1) 3 log(t)t™™ 4 D, t2a "tz
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and has for j = q the asymptotic expansion

;Bq,m <1 — <2(n — k) + 2) log (%)) 4n

+ go Byjn (2(n — k) +2) %log(t)t‘” + ( Dyx + w (log (%> ) 2) Ak

T (—up) log (%) log(1)11°* + 1, (log(1))” 1"

where uy, 1= %2% and

~ 0, j=qandn=Fk—1,
B, = n a%+2(n7k)+1

’ (=1) i4o(n—k)+1) nl2n’ else,

(Z+2(n—k)+1)
and
) n+1
21—k Z : (=t + C k ] =q

~ o 142(n—k)+1) n! ¢ ’ ’

Djy = k1 G )

foked (o
. 7LZ:0 (%+2(n—k)+1)2n! + Cik | 6[867

where ¢y, = [ e~ 512k log(s)ds is as in Lemma|3.3.20.
1

Proof. Let Eij and cijvk be as in Lemma |3.3.22| It should be noted that they are

stated for the integrals [ e~ gat 2k log(s)ds there, where k < 0. First, we may
%
assume j # ¢. By the asymptotic expansions of [ e~ ga 2k log(s)ds, which we

VIt
have shown in Lemma [3.3.22] we get

I_9k 7 i
Vot [ e ik log(s)ds

@

V2t
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j I492(n—k)+1
OV g o | atAnRt
~oV2t > bjkn
n=0

\/E .
+ \/2_%_%le ni;o(—l;j,k,n) (2% +2(n—k)+ 1) log <%> <%> §H2(n—k)+1
TN TR
e gogﬂ’“’” < % )g+2(n—k)+1 I
+ (2t)%*k+% nf; [(—Bj,k,n) (% +2(n — k) + 1)

2
1 H2An-k)+l )
(log (%) - 5log(t>) (%) ¢ dim -

— @E ST n(&
( ) Z[g,k, \/§

n=0
i49(n—k)+1 _ |
- 1 1 J 1 ~
Zlog(t)t "3~ (k) =3 of)3 k3 g

(\/§> 2 Og( ) ! + ( ) B 7,k
s I 42(n—k)+1 .

@ J a B

= ij,k,n—n [1 - (— + 2(n — kj) -+ 1> log (_>:| "

n=0 2 q \/5

L a B
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- ~ aaHan=R+1 ~ L k+ly 3
where Bjjn = bjrn® 75— and Dj; = 22 ""2d;;. We also set Bj;, and

D\, in this way for the subsequent proof for j = ¢. We get in a similar manner as
above that

%0 2n—k)+2
2—2k ~ (e 2—2k
Gq,k,n(t) =V Qt g qug,n (\/ﬁ) + v 2t qug

St () ()

x _ j o _
Bign|l—|*+2(n—k —|—1>lo (—)]t"
- ] 1 ~ J
+> Bk <é +2(n—k)+ 1> 5 log()t™" + Dyt (1)

1
k 2
D Gon(t) + (26)F ]({;__1);;,% (log (i> - llog@)Q

Gt L () o
(=D 1

@) ek _ 11 21—k
g s () 1+ e s
O S By [1- 200 oz ()] i
23 By [1 - =8+ 2108 ()]

+Zqun )—|—2)%log()

+
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(e 2 () )

i %2_1’“ log (%) log(t)t' " + (1(43_—1)1)! 2%% (log(t))2 £1*,

O
Our subgoal for the next part is establishing the asymptotic series expansion
oo 7‘2
of [e 2r? (¢o(r) + ¥1(r)log(r)) dr step by step. Due to the boundedness of

o(r) + ¥1(r)log(r) on Ja, oo, we will argue that 1y(r) as well as ¢ (r)log(r)
are bounded on |a, 0o at a later time. By this and another subsequent argument

oo 2¢q—1
—2(k+1
1o(r) can be expressed by a convergent Puiseux series ag + > Z a;k pra 2D
k=0 j=
oo 2¢q—1 o (k
and ¢ (r) by a convergent Puiseux series ) | Z a;, krff (1) " Before we can ascer-
k=0 j=

o0 7‘2

tain the asymptotic expansion of [ e~ 2z r? (¢y(r) 4+ 11 (r) log(r)) dr, we make some
preparations in the following lemmas.

oo 2q—1 1_2(k+1)
Lemma 3.3.37. Let ¢ € N, let o € R, where a > 1, and let Y > a;xre

k=0 j=0

oo 2q—1

and Z Z ;i pra 20D e convergent Puiseux series, which describe bounded func-

tzons on ]a oo[. As t — oo, we achieve that

o0 2g—1 2q—1
/6_72?7‘2 (Z a; pra 20D Z a; pra 2D log(r)> dr

7=0

has the asymptotic series expansion

2g—-1 oo 2g—1 2q—1
Zéakm DD ikt " 2 Aselos(t) AR g (log ()" 11,
n=0 j5=0
where
0, Jj=q and
Vi = n=k—1,

a%+2(n7k)+1(71)n+1 . .
27 (1 42(n—k)+1)n! ajp + ik | log(a) — Tia(n-k)+1 ) ) else,
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. (_1)k+1 1
k= ek G Yok g
(aq k + qué log(2 )) Dy + &q,k’D%k
6]’,1@ = +(k 1)!2k log (f) (aq,k + &q,k% log (a\/i)> , J=4q,
(aﬂ€ + aj,ki log(2 )) D+ a;iDjp, else,
P P (=DF+! o
and A]k — aq’kiDq,k -+ [aq’k —+ CLngﬁ 10g(2)} m, ] =4q,
djﬁk%Dj’k, else,
where Dj,k is as 1 Lemma |3.3.30| and D) = 22%1_“% ik, where djp is as in

Lemma [3.3.33.

Proof. We set

o0 2q—1

2q—1
R(t) = [ % (Z +Za et 2 D log(r >)d

(6%
and obtain by substitution s

oo

[\
(S}
[y

)
:

2q—1

Fk(t> = a],k/e o 2 7’q k+1)dr+ Za’jk/e % 2 7’q (k-i-l)log( )d

[e=]

<.

[e7
[e.e]

[\
[y

q—

2q—1

7=0

= ajk /6 Sra kdr—}-Za]k/e SipaT log(r)dr

.
Il
=)

[\
,_.

q—

M
O

2q—1

7
+Za],k\/% 2k+1/€

o0

e

Va2t

o0

I_9k41 2 J 9%k
= ajk\/ ! / ds

ik log (5@) ds
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2q—1 j

i_ok j
+ Z ajpV2t? o / e 51 % log (s) ds
= va

2q—1

R I_ok+11
+ E 0 ajpV2t’ B log(2)
]:

—s2 L9k
e ¥ sa “ds

2q—1
—2k+11

Q\8 g‘g\g

i .
+ ZO dj,k\/2_q 5 log(t) 6*528§—2kd8
" V2t
2q—1 . -
1 1 1 _ 9k .
- (ajvk - dj,kélog(Q) + dj,kglog(t)) N / o5 gh 2k g
3=0 4

L_2k+1 ]
+ G V2t i e 517 log (s) ds

e

Vot

2q—1

= ZF’J}k(t)a
=0
where
o1 .1 I_ok+1 _ 2 di_op
Fip(t) = aj;k—i—aj’kilog@)—i—aj’kilog(t) V2t e s ds
\/#‘;7

1_ok i
+ a2t RN PSS log (s) ds.

o

V2t

Next, we investigate the asymptotic expansion of F(¢). For this, we set Bj,km
ﬁ3.3.35

and D, as in Lemma [3.3.36(and b, ;, , as in Lemma The relation

I4o(n—k)+1 5 .
= ()
q

jukun T ]7k7n 277/

is obvious. Moreover, let d; j be as in Lemma|3.3.35and we set D, ;, 1= 22%7k+%dj,k
and uy = % Applying Lemma |3.3.36| and Lemma [3.3.35| for j # ¢ we
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establish the asymptotic expansion F k of I ast — oo by

[e.e]

*—Qk 1 2 J_
Fii(t) = (ayk+ayk log(2 )+ayk log(t )> V211 * /6_8 si 2k ds

@

V2t

i _ok j
+ a]k,\/_ AR IS log (s) ds

@

V2t
0.03.00

i .1 .1 n
B30 (aj,k + aj’k§ log(2) + aj’k§ log(t)> < I thq +3 + Z Bjpnt™ )

+a <n§; Bison {1 _ (é +2o(n— k) + 1) log (%)} o

1 S
+ZB_]kn ( +2( n—k)—i—l) —log(t)t™" + D, jt2 k+§> (1)
2
1 i g1 >
= <aj?k- + &‘]’k§ 10g<2)) (Dj’thQ k‘i’% + Z B‘],k,ntn>
n=0
.1 i
+ DY IOg(t)Dj,ktz‘? Iy ajk Z log

+aijBj,m{ - <q+2(n—k)+1) log (%)} ¢

n=0
1 P
- (&j’k * dj’k§ 10g(2)) Dﬂ%k’t;q k34 (Cij: + a]k log ) Z k"
. 1 G gyl
+ a;,Dj, kg log(t)t3a "2
+a]kZB]k" { - (q +2(n — k) + 1) log(a)} tn
a 3 1
n=0

~ 7 g _pyl
+agp Dyt
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J gl = _n
= (CL] Lkt CL] k= 10g(2)> Dj’kt;q 3 + ;. k Z Bj,k,nt
n=0

.1 - —-n 1 J _pyl
+ aj7k§ 10g(2) 2% Bj,k;,nt + aj7k§Dj7k 10g(t)t2q T2

+aJkZBjkn[1 ( +2n—k)+1>log(a)]t”
. 1 n S A
— Gk Z Bjknz log(2)t™ + G Dyt
n=0

1 .= J_pal - n
= |i(aj7k + aj7k§ 10g(2)) Dj,k + aj,ij,k} Zf2]q s + aj k Z BjJC,nt
n=0
1

1 .
+ dj kéD] k 10g(t>t2jiq_k+2

—i—a]kZB]kn[ - (q+2(n—k)+1> 1og(a)] "

1

.1 L= G gl
= |i(aj7k + aj,;ﬁ 10g(2)) Dj,k + ajyij,k} tzjq kts

+ Z |:aj’]€Bj7k7n + (Aljkéj’k’n (1 - (l + Z(n — k?) + 1> log(oz))} "

n=0 q

1

.1 Gyl
—l—aj,kiDM 10g(t>t2‘1 k+2. (2)

One part of the calculation of j = ¢ is in an analogous way to the calculation
above. For reasons of clarity we excerpt the equation in (1) and (2) and we set

(1) .1 .1 PN n
Gj7k(t) = (aj,k + aj7k§ 10g(2) + aj7k§ 10g(t)) (Dj7kt2]‘1 s + Z Bj,k,nt )

n=0

+aj (ZBJ,M { (q +2(n — k) +1) log (%)} ¢
+ i B (‘7 +2(n—k)+ 1) %log(t)t_" + Djvktzj'q’”%)

q

(2)

: {(CZJ E+ CLJ k log( )) Djjk + djjkbjjk:| tﬁikJr%
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S A j
+ Z |:(Zj’kBj,k,n + aj,kBj,k,n (1 - (—

n=0 q

+2(n—k) + 1> log(oz))} "

1 4 gl
+(Alj,k§Dj7k log(t)t2q sy (3)

Using Lemma [3.3.35] and Lemma [3.3.36} we obtain for j = ¢ the asymptotic
expansion Fj of I, ast — oo by

1 Ookit [ o
<aqk +aqk210g(2) +dq,k§10g(t)> Vo /es o2k g

(&3

V2t
[e.e]
. L _2k+1 _2 4
+ gV 2t /e <52 log (s) ds
Va
RIS
Kﬂ{‘ﬂ

1 1 _ o B
<aq,k -+ aq,;ﬁ log(2) + aq7k§ log(t)) [D%ktl k4 2uy log (E) 1k

+ Z Bypnt ™+ (—uy,) log(t)t' "

+ g i Bykn (1 — (2(n — k) +2)log <%)> ¢
+ Z Byrn (2(n — k) +2) = log(t)t_”

+ (Dq,k + g (1og (%))2> 1% 4 (—uy,) log (\/5> log(t)t**

+uk4 (log(t)) tl_k]

—
=

.1 o1 «Q _
= Gur(t) + (aq,k + aq7k§ log(2) + aq7k§ log(t)) [2uk log (E) -k

(i)

) log(t)t' % + “kzll (log(t))? tl—’“]

() log<t>t1-’“] T g

+(—u) log (%
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- Gq7k(t) + &ng

(i)

(—ug) log (%) log(t)t' % + uki (log(¢))? tl’“}

1 1 Q _
+ <aq7k + Gk log(2) + Gy log(t)) [2uk log (E) -k
+(—up) log(t)t' ]

2
A « _
= Ggi(t) + agruk <log (E)) =k
o 1
gk (—up)log | —= | log()t' % + ag pup—~ (log(t))* '+
aga(-un)tog (55 ) og(0r'~* + dgpan (1)
.1 .1 o} 1k
+ aq,k—l—aq,kélog(Z)—i—aq,kilog(t) 2uy, log 7 t
1 1
+ (aq,k + dq,;ﬁ log(2) + dq,ké log(t)) (—ug) log(t)t* ="

2
= Gng(t) + CAL%kUJk <10g (%)) tl_k

. 1 -
— Qg puy log (\/_) log(t)t =" + Qg ki (log(t))2 ik

_ .1 «Q B
+ (aqk + aqk log ) uy, log < ) 4 gk log(t)2uy log (E) tF

1
+ <aqk + aqk— log(2) ) —uy) log(t) tl ki dq7k§log(t)(—uk) log(t)tl"l‘C

= Gorlt) + dgpun (1og( ﬂ)) 1 4 g (i %) (log(#))* 11"

1 Q
Go k= log(2) ) 2ulog [ — ) t1*
+ (aq,k + aq,kQ og( )) uy, log (\/5)
1
+ (aq,k + &q,ké log(2)) (—ug) log(t)tl_k

= Ggk (t)

2
« 1 o
a log | —= g 10g(2) ) 2uplog [ —= ) | £17F
+ | Qg rug <og <\/§)> + (aq,k+aq7k2 og( )) uy log (\/5>]
N 1 _ .1 _
 ga(on) Qo) 074+ (a0 + dgacgog(@) ) (- og(0r'™
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1
= Ggi(t)+ [uk log (%) + <aq,k + dq7k§log (a 2))] ti=F

(log ()2 £* + (aq,k + &q7k%10g(2)) (—ug) log(t)t'F.

NG

+ dq,k( )

Therefore, we get the asymptotic expansion Fi(t) :== Y. Fjx(t) of Fi(t) by
j=0

(log(t)*t~*

=~ =

=Z £) + Gop(t) + agu(—us)

i
1
x log < ) (a%k + dq7k§ log <a\/§)>] ik

1
<aq K+ Qg = log(2)> (—uy) log(£)£* "

= Gjx(t) + g r(—u)

=0
1
r log ( ) (ang + d%;ﬁ log <a\/§)>] ik

it
(s ) o

Sl

(log(t))*t'*

A~ =

_I_

[\

q—
1 ~ J il
= [ |:<aj,k + aj,k§ IOg(Q)) Dj,k + (Aleij7k:| tQJ‘Z k+é

J=0

—~
=

+ Z |:aj,kBj,k,n + dj,kéj,k,n (1 — (é + 2(n — k’) + 1) lOg(Oé)):| "

n=0

R 1 _
+ () 7 (log(t)* 11

() oo

1
+ <aq7k + dq,;ﬁ log(2)> (—ug) log(t)tl’k.

1 g
Fak5 Dk log(t)t2
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We set ki, := quk(_uk>i7

and

Vikn =

and

p

\
P

(ang + CALqJﬁ% 10g(2)) Dq7k‘ + CALqVquJf
i 1= § +unlog (%) (ags + i3 log (av2)), j=a.

(CL]'Jg + CAL]'JC% 10g(2)) Dng + dj,ij,kv else,
g0 By (1= (24200 = k) +1) log(a)) i=a
@k Bjpm + @1 Bjkn (1 - <% +2(n—k)+ 1> log(a)> , else,
0, J =qand
n==Fk—1,
a%+2(n7k)+1 (—1)n+1
2n Ljik (Z+2(n—k)+1)n!

PP Gt ) A (R () _
+aj’k(§+2(n—k)+1)2n! (1 <q +2(n—k)+ 1> log(a)>) . else,

0, j=qand
n==k—1,

a%+2(n7k)+1(71)n+1 . .
| 2 (F+2(n—k)+1)n! ajp + ajx | log(a) — Tia(n—k)+1 ) )7 else,

Nig = dq,k%Dq,k + [aq,k + dq,kélog@)] (_Uk:)> J=q,
g aj ks Djk else.

In conclusion we gather

2q—1 oo 2¢q—1
~ J gyl n
Fr(t) = D 0t 2 3 7N "yt
2q—1 ]
1
+ 3 Njwlog (£t F 4 kg (log(t))* £,
=0

O

Before we continue to establish the asymptotic series expansion of the integrals

oo

«

k=0

i e (to(r) + 11(r) log(r)) dr, we give the proof that the series > )\jﬁkt%q_ﬂ%,

k=0

o0 o0 ;
ita_p 1 gl J _pgl
> 2720 P& 120 2 and Y §,t% "2 are convergent.
k=0
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Lemma 3.3.38. Let j € {0,...,2¢ — 1} and let \;j be as in Lemma|3.3.37. The

series
o
J _pyl
) At
k=0

converges absolutely for sufficiently large t.

Proof. In Lemma the coefficients \;; are stated as

g1 P (—1)k+1 .
>\'k: e aq,kﬁDq,k + [G‘Lk + aq,ki 10g(2)] (k—l)!2k7 J=4q,
Js T N 1
45k Djks else,
where a;;, and a;, are the real coefficients of a convergent Puiseux series, and

ﬂi oo
Djy = RI ( (=bjkn) + Cj,k) ;
=0

n

where
; 0, j=qandn=~FkF—1,
j7k7n = _ n+1 _ 1
( 1) (%-FQ(?’L—]C))’H!, else’
and
(1 j+
§F <J2—q, 1) y ]{? — 0,
—a3¢ G, 1<,
) - 2 k=1,
- ar(%al : jzq
. 1 |y Rz keLom 1 1 -1
_ e — — e
It —(k=1) 2 mzzzl =0 %—(kz—l)-i—f?
L
+ 11 =% k>1.
\ /(=1 24

=> di,’fi?%_k <Z (=bjkn) + Cj,k> £330+

n=0
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k=0 n=0 (Hq +2(n k)) n!
1 ey, 1 1,
+ Z(Zj’k—2 29 <—.——€
= 2 S —(k=1)2
k—2

(=1 2q

-2 k=1-m 1 1 k-1 1 ) )

-1 L k41

_ _ —e + —C. t2q 2
— H J—qQ_(k_1>+£2 HJ—q_g 371>

We have already considered quite similar series in Lemma 1] and w1th the

same arguments as in Lemma |3.2.21| we obtain that the series Z Aj kt2q k3 s

absolutely convergent.
The case j = ¢q results from Lemma [3.2.21| as well. U

As a preparation for the following lemma, we determine whether the series

o .

JV Y S J 4l .
32226, 437" s convergent or divergent.
k=0

Lemma 3.3.39. Let j € {0,...,2¢—1}, let a;; be the coefficients of a convergent
Puiseuz series, and let ¢;5, be as in Lemma[3.3.20. We have that

o0
L—k+l~ L L—k+l
Y ap2% g g

converges absolutely for sufficiently large t.

Proof. According to Lemma |3.3.20 it is ¢;o = fe_szsg log(s)ds for k = 0. It

1
should be noted that ¢;; and c;; are stated for £ < —1 in Lemma [3.3.20, For
k > 1 the coefficients ¢;; are given by

59',1@ "m Z (HQ_q_ _ )) 5 Cisk— m+H]+q ) 371’

(=0 2q
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where .
fe_325_1 log(s)ds, j=q,
5]"1 = 1

1 1 1 ~
— 77301 T 6o, else,
2q 2q

where [ e=*"s7!log(s)ds exists and
1

1 1.,-1_ ~ 1 1,1
J—Q_(k_l)Qe Z H %_(k_l)_,_gze

+ - Cj1, k> 1.

S a2t
k=2
T g, 22]%"“%( > (ﬁ 1 )10
- j’k - ]+q _j,kfm
k=2 m=0 e:o_q_(k_g) 2
k-2
1 L,k+l
+ Cl) 24 2
m_ o 75
o 2 — (k=10
- St (-3 (Mg ) poen )
o ta _ (1. _ Bk
= w0 \i=o 2 —(k—=0) ) 2
e’} —1
gl 1 gl
t 0 Y a2 e ] t3 (1)
k=2 e:o_q_(k_g

. . . s J gyl k J _pal .
First, we consider the series Y a;;,2% "2 [] L__¢37""2 We can estimate

-1
it (g
k=2 (=0 "2 ~k=0

<1,

5a—(k+1)
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because k£ > 1 and we apply the ratio test and obtain

. k+1-—1 : k

L —(k+1)+2 1 L —(k+1)+2 -1 1
a-,k+122q 2 +—t24 2 (Z'7k+12 H F¥4 1 s
J iy et (k+1-0) B J P O Y)

. k—1 . o k—1
. 2 2 - f2 2 . -
a]:k2 1 J qf(kfg)t 1 a]:k H j+q7(k7£)
(=0 29 (=0 2q

g
DRI (k1)

aj,k2t

.o FREN FR
Thus the series Y a; ;2% s I1 mtzq "2 converges absolutely for a suf-
k=2 =0 2a "

ficiently large t. -

Next, we examine the coefficients of the series in the first summand of the sum in

equation (1). We have

) k—2 m 1 1
L,k+l
2207772 | — H—) —C'k_> <
—+ 7y m —
mo<g:oj—qq—<k—€) 2
j 1 1
< 255 [ (—(kh = 1))
— + s
L — k2
J _pgl 1 1 1 1
< P\ m s T
2 (k1)
(k—2) k—1—m 1 1 /ﬁ
-1
— — —e — ]’1
m=1  £=0 j2qq (k=1)+£2 ezquq ¢
1 1 1 1
< 2573 ([ (—(k—1))- . e
= T -
J2qq k2 J2_qq L2
1 k
1 1 1
_(k_2>H ¥ __1+H ¥ Cﬂ])‘
z:o]_qq_k+€2 z:zj_qq_g
2
2—q—k+§1 -1 1
<o ()
2
pogrrtl gy (L (k= 2) |
St~k Sl —k+1
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HJ

=2 2q

Jitq
2q k

2
We can also estimate ( v 1 > <1 for k > 2. Therefore, the series

Zk Q%k [22q rqe koD 2mge (k= Dk —2) E g1
) 1 k—1 1 ) )
J gl J gl
122 +2§ (k—1)|cja | | ita _y ] ta
=2 2q

are convergent, which can be easily proven by the ratio test. Using the comparison

k— .

test, we obtain that kz aj, k22q +3 ( Zo (}_IO Ry (k ; ) ¢ m) ETalas
m q

converges absolutely In conclusion of that and the results above, we gather that

—k 1
the series Z a;j 2% e QCMt?q *2 is absolutely convergent.
2

oo - .
Finally we get that > aj7k22ij_k+%6j’kt2iq_k+% converges absolutely. O
k=0

Lemma 3.3.40. Let j € {0,...,29 — 1} and let §;; be as in Lemma|3.3.37. We
have that .

>4 NEImaE

k=0

converges absolutely for sufficiently large t.

Proof. In Lemma the coefficients ¢, are indicated as

(aqk + CAlq k; log(2 )) Dyy + &qka)q,k
(5ij = +(k 1)'2k log ( > (aq,k + &q,k% log (Oz\/é)) , ] =q,
(aj,k + (lchi log( )) Dj,k + CALj’ij’k, else,

where a;, G, are the coefficients of a convergent Puiseux series, D;, is given as
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in the lemma before, Lemma [3.3.38] and

[&.°]

21—]{3 E : . (71)n+1 5 + E k j = q
~ — L42(n—k)+1) n! % ’ ’
Dj,k = n;ékgl (q )

J a1 s —1)nt+1 ~
93¢ kt3 3 %—i—cjk . else,
n—0 (%+2(n—k)+1) n! ’

[e'e) .
where &5 := [ e s log(s)ds.
1

First, we assume j # q. We get

o0 .

J 4l
) oyt
k=0
o0

.1 .= g
= Z ((aj,k + aj,kﬁ 10g(2)) Dng + (lngDj’k) tQJq ket

k=0

SIS

= 1 G4l N AT
> (aj,k + kg 10%(2)> Dyst¥ ™3 1) "Dyt
k=0 k=0

> . 1 L_;H_l

Z @k + Gk log(2) | Djyt2a~ ">

k=0

i . OO _1\n+1 .
D v ol IS
pae "= (§+2(n—k)+1) nl

oo

N J_ eyl J _ 1

+ ) 28 Mg e
k=0

Due to the fact that the arguments are quite the same and the first series is very
similar to the series in Lemma [3.2.21) we refer to this lemma to show that the

- :
series > (ajx + a;x3 10g(2)) Djykt%f]ﬁ% is absolutely convergent.

We consider

0 ) 0 (_1)n+1

A od—ktl
) 2%

. s
k=0 n=0 (% +2(n—k)+ 1) n!
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and we estimate

1 <{q2, j<qandn—k=1,
2 _—
j 1 Ise.
(f—]+2(n—k)—|—1> , else
We get
> —1)nt! 0 1)+l
(-1 [

—0 <§+2(n—k)+1>2n! n=0

00 . L .
By the ratio test we easily prove that ¢* e > dj7k22iq_k+5t2iq_k+5 converges. There-
k=0

1 St n+1 J 1
fore the series a 22q —hty U™ ) 4352 is absolutely conver-
kzo ok nZ::O (L+2(n—k)+1)"nl Y

gent by the comparison test.

o .
In Lemma [3.3.39| we have already seen that the series 22]77“%@7@2%7“% is
k=0

convergent.
Gathering the results, we have proven that Z 95, kt 3kt converges absolutely.

k=0
0J

We would remind you that the aim is to ascertain an asymptotic series expan-
sion of [ e~ (o(r) + 1 (r) log(r)) dr, where 1y(r) and ¢ (r) log(r) is bounded

on ]a,o00[ and vg(r) can be described by the convergent Puiseux series ag +

oo 2q—1 oo 2g—1
> Z aj, e 2D and oy (r) by Z Z aj, pra 2+D By the lemmas above, we
k=0

can 1nvest1gate the asymptotic series expansmn for the following integrals:

Lemma 3.3.41. Let a € Ryy, where a > 1, and let 0y(r) and 6,(r)log(r)
be bounded functions on ]a, oo[ where Oy(r) can be represemfed as the conver-

oo 2q—1 oo 2q—1
gent Puiseuz series Y, Y aj et 25D and 0,(r) as Z E aj pra 26T g e N
k=0 5=0

Ast — oo, we obtain that

oo

/e 21% (By(r) + 01 (r) log(r)) dr

a
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has the asymptotic series expansion

wo(t) 4 @1(t) log(t) + pa(t) log(t)?,

oo 2q—1 oo 2qg—1

where po(t) = Z Z 1, Wq 2, 901( ) = Z Z Aj, Wq 902(75) = > k' Tk
k=0

are convergent Pmseum series, where (i, A]JW lik € R and ¢ € N. Thus, the
asymptotic expansion is definable in Ryy exp-

Proof. We set F(t f e %2 (6o(r) + 01(r) log(r)) dr and achieve

o0

F(t) = / 502 (Go(r) + 0 () log(r)) dr

o

oS 0o 2¢—1 oo 2¢—1
:/ (Ziawr; 2k +Z§:a]qu D Jog(r ))d
>

k=0 j5=0 k=0 j5=0

k=0
2q—1 00 2 ok &
where Fi(t) := ) (aj,kfeztr%q i dr—l—a]kfe 5242k log(r)dr) :
7=0 o a

In Lemma [3.3.37| we have established the asymptotic series expansion Fk(t) of
Fy(t), which is given by

2q—1 oo 2g—1 2q—1
Z(S]thq k+3 +22%Mt "+Z)\]klog t?q
n=0 j=0

+ Kk (10g< )) t' k?

where 9k, Vjkns Ajk, and kg are as in Lemma [3.3.37, Consequently, ;. is set
as

0, J=q and

n=k—1,
(—1)n+1 Ly2(n—k)+1

Tikn =
« A 1
2nn) %+2(n—k)+1 (ajvk + Aj k (10g(0&) - g+2(n—k)+1>) ) else)




Chapter 3. Definability and Asymptotic Expansion for the Time Evolution of the

158

Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

and we define

0,
a%+2(n7k)+1
I42(n—k)+1

Tikm =

such that ;. =

(=1
2np! ,Yj,k,n-

j=qandn==%k—1,

) ) , else,

(aﬂ?k’ + ik <log(a) - 1+2(n1—k)+1
q

n+1

~

n=0
get the m-th remainder for an arbitrary & € Ny by

R]ﬁm(t) = Fk

\

(t)_Fk’ (t)
2q—1 K m 2q—1
Fi(t) — Z%Wq +2+202%knt”
n=0 j

+ 30 A log (B2 4 gy (log(t))ztl’“) , k<m,

m 2q—1
Fp(t) = >0 X2 Yikmt™™, k> m,
n=0 j=0
00 2q—1
Z Z f)/j,k,nt n) k S m,
n=m-+1 j=0
2q—1 —k 0o 2q—1
Z(sjth‘I +2+ Z Z'ijnt n
n=m+1 j=
2q 1

+ 3 Nk log(t)tﬁf 54 kg log(0)2 8%, k> m.
=0

oo oo 2g—1

oo
The series ) 7yjrnt™ ™ converges obviously and we

Next, we show that the series Z Z Yikn and Y > Z v knlt " are convergent.

k=0 j= n=0k=0 j=

We assume ., 7# 0. We estimate

1 j<qandn—k=1,

and consequently

%+2(n—k)+1

< q,
1, else,

j<qandn—k=1,

1 {q :
<§+2(n—k)+1)2 L,

IN

else.
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By these, we get for |; .| the estimation

a§+2(n—k)+1 1
Yiknl = |- a;r + a;r | log(a) — -
m Ly2n—k)y+1\ " Lyo(n—k)+1
_ aé+2(n k)+1 aé+2(n k)+1 | ( )
il + oglo
= it 2m—k 1T T2 — k) + 1 G log
142(n—k)
+ zda,k’

|+ ¢ (aQ)%M (az)_k | | log(a)
+q? (%)% " (a?) M agul - (2)

IA
L)
[
—~
Q
[N
[
_
Q
(M)
~—
S
<

Due to the fact that a? > 1 and that a;r and a;, are real coefficients of a conver-

oo oo
: . . k k.
gent Puiseux series, the series > (a?) " a;, and Y. (a?)" G; converge absolutely
k=0

k=0
oo 2q—1
by the ratio test and thus, we can conclude that ) > 4;,, converges by the com-
k=0 j=0
parison test. We set
oo 2q—1
By =YY Ajkn (3)
k=0 j=0
and furthermore,
~ 2a-1 oo ita_
C=a*) > ()™ " (lajel + lazul (log(e) +1)) . (4)
j=0 k=0
o0 2q—1 o n+l A
Moreover, the series Z DD Ykt T =D, ( 2,2 —B,t™" converges by the com-
n=0 k=0 j=0 n=0

parison test in consequence of

(3) oo 2g—1

S ‘ ZZ |P)/],kn’

k=0 j5=0

TL

(-
27!
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(2 = - ita ., _
2SS R ) (o) o
k=0 j=0
J+q ey —K |
4 (03) 47 (0) ™ aellog(a) + g (02) 5 (02) ™ o
(4)
<5 ( )"

and the fact that Z Qn s (@2)" Ct™™ is absolutely convergent.

We define
oo 2¢—1 L n+1
+ A~ _
=D i 2+Z Sl B
k=0 j5=0
oo 2¢q-—1
+ 305 A log(t)ti k+2+zﬁk log(t))* t' "
k=0 j5=0

We change the indices k respectively n to p and we set

o 5q,p + QPEI(;)fl)!Bpfla j =dq and b Z 17
Mj7p T 5
5,05 else.

Thus, we can gather

%) 2q—1 )
Ft)=3 (Z (nj,p + i log@)) 1% + 5, log<t>2t2) s

p=0 \j=0

Finally, we give the proof that F/(¢) is the asymptotic expansion of F(t) by showing
that

N 2q—1 .
Z (Z (’uj’p + A log(t)) t3 + Kp log(t)2t§> R ar

p=

is in O <log(t)t2q?7;1_(N+l §> for a sufficiently large N € N. We attain by our
results above

N 2g—1 ‘
Fi) =3 < (Mj,p + Ajp 10g(t)) t3 + K, log(t)%) r+3

p=0 \ j=0
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= |Fw - Fw)ly,
- Jro- (s a0),
k=0
= |2 B0 =2 Bl
k=0 k=0
N 00
- Z(Fk(t)—Fk|N(t))+ > (Felt) - By N(t))‘
k=0 k=N+1
1) N 00
> Rin(t)+ > Rin(t)
k=0 k=N-+1
. o) o) 2q—1 00 2q—1
J 1
) ID DI TS DI BT
k=0 n=N+1 j=0 k=N+1 j=0
oo 2q—1 ) 00
IDOB MU s
k=N+1 j=0 k=N-+1
00 (_1>n+ . oo 2¢—-1 P
S |2 T BT | 2 D
n=N-+1 k=N+1 j=0
oo 2g—1 00
+ Z Z)\Mlog(t)t?q Mral g Z ki (log(t))* t17*
k=N+1 j=0 k=N+1

(="

As we mentioned above the series ) B,t™™ converges and we get

2nn!
n=N-+1
— (D) v
~ Bt =0 (WY
n=N-+1
by Remark|3.2.22| In lemmas above, we have proven that the series 5j,kt2ifk+%,
k=0
oo 2q—1 iyl
see Lemma [3.3.40) and Y > A;xt% "2 see Lemma [3.3.38] are convergent. By
k=0 j=0

Remark [3.2.22 we obtain

oo 2q—1

>3 G+ Aglog(t) 17445 = O (log(tyt VD).

kE=N+1 j=0
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Finally, we consider

00 o0 k+1
>~ rulog0)26 Yy o ogt)

This series is convergent by the ratio test and by Remark [3.2.22] we get

o0

S mllog(t))2F = O ((log(t))2'~+D).

k=N+1

We gather our results. Due to the fact that t~(V+Y) = O <log( )t S (N+1)+2> and

1

the fact that (log(t))?t!~W+) = O (log( )t by ~(N+D) 5) for an arbitrary N € N,
we conclude that

N 2g—1 '
P =2 <Z (Mw + A log(t)) t% + 5, 1og(t)2té> Pt

p=0 7=0

isin O 1 log(t )t G ~(NHD+g i for a sufficiently large N € N. According to Defini-

tion and to Remark we have shown

A

F(t) ~ E(1).

What is more, each series which the asymptotic expansion a (t) contains is conver-
gent. Thereby, we can write F'(t) as the constructible function

A

F(t) = ¢o(t) + ¢1(t) log(t) + a(t) log(t)*,

where () = Z Z st and g (1) = Z Z N3 and o(t) 1=

o
S kit' ™ are convergent Puiseux series. Thus, F(t) is definable in Ry exp- O
k=0

After all, we gather our results and establish the asymptotic series expansion
of [ T (¢o(r) + 11 (1) log(r)) dr, where 1o(r) and 1 (r) are bounded functions

on |a, 0o[, which can be expressed by convergent Puiseux series in infinity which
are very similar to the representations of 6y(r) and 6, (r) in the last lemma.
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Lemma 3.3.42. Let o € R, where a > 1, let ¢ € N, and let 1o(r) and ¢ (r) log(r)

be bounded functions on }oz,oo[ and Yo(r) can be represented as the convergent
oo 2q—1 oo 2q—1

Puiseuz series ag + Y, Y. aj, wra 2D and Ui (r) as Z Z Q@ pr 220kt g
k=0 5=0
t — 00, we obtain that

oo

/e‘ir (o(r) + 1 (r) log(r)) dr

67

has the asymptotic expansion

% @t - Bolt) + o1 (8) og(t) + pa(t) log (1),

oo 2q—1 41 oo 2q—1

where po(t) = Z Z v, kt2q *2 and e1(t) = Z Z A, kt2q 2 and pa(t) =

o0

S kit ™k, where Viks Njks ke € R and ¢ € N, are convergent Puiseuz series and
k=0

thus, the asymptotic expansion is definable in Ry exp-

Proof. We have

7‘2
[ &5 ) + st dr = [ty + / e~ 5124 () log (r)dr
oo 5 o0 2(1 1
:ao/e 2tr2d7“—|—/e gtzz%qu dr
2 k=0 j5=0
T2 > —
+/e—2tzz s log(r)dr
v k=0 j=0
o r2
—a0/6_2t7"2d7“+F(t),
where
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In Lemma we have proven

oo

2 I Ts
- 2 3.s .3 1—k
ao/e xridr = aqg <\/gt2 + kgo Vit ) ,

(67

2F !
the series converges. Thus, it is definable in R,,. Furthermore, in Lemma [3.3.41
we have shown the asymptotic expansion

where v, = (1 — m) (—1)’“&. By applying the ratio test, we obtain that

F(t) B 00(t) + 01(t) log(t) + s (1) log(t)2,

oo 2g—1 oo 2q—1

where ¢o(t) = Z Z 14, kt% "3 and 1(t) == Z Z A, kt% *2 and pa(t) ==

oo

> kit'™* are convergent Puiseux series, where iz, \jx, kx € R, and thus, the
k=0

asymptotic expansion is definable in Ry, exp-

We set
Po(t) = aoZVkak + po(t)
k=0
oo 2q-—1
- STk
=0 j5=0
where

. {Mq,k + aoVk+1, J =4,
Vj k=
[ s else.

Hence, we obtain

[e.e]

/e_gjr (o (r) 4 1 (r) log(r)) dr

a

3

2 4 aq Z At R 4 ©o(t) + @1(t) log(t) + @a(t) log(t)?
k=0

Q

S e e

o

w

£+ agvot + a0 et + wolt) + 1 (1) log(t) + pa(t) log(t)?
k=0

+@o(t) + u(t) log(t) + pa(t) log(t)”

:a‘O

(NI

= Qo t
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and ag \/gt% + @o(t) + @1(t) log(t) + pa(t) log(t)? is definable in Ry exp- O
We conclude the chapter by resuming the results in the following theorem. We

- 2
" 1)3 i ¢~ 5 dz and transform it in polar coordinates by Transformation
t) 2 A

Theorem. By Remark [2.3.17 of Theorem which gives us the form of the

angular part, we get integrals of the form fe_gﬂ (o(r) + 1 (r) log(r)) dr, for
D

go back to

which we use our results above.

Theorem 3.3.43. Let A C R? be a globally subanalytic set. Let f : Roq — [0,1]
be the function given by

1 —|z|?
ft) = (2“)3,4/6 i dx.

a) Ast — oo and if A is bounded, f(t) is of the form po(t) + p1(t)log(t), where
pn are globally subanalytic functions, and hence, f(t) is definable in Ry exp-

b) Ast — oo and if A is unbounded, f(t) has the asymptotic series expansion

po(t) + p1(t) log(t) + pa(t) log(t)*,

where po(t) = 3. pt ™1, pu(t) = S vt e, and pa(t) = 3 wit?*, where
k=0 k=1 k=1

at least one of the series is not zero and piy, Vg, Wy € R and q € N, are
convergent Puiseux series. Thus, the asymptotic expansion is definable in

Ran,exp .

Proof. The structure of this proof is quite similar to the proof of Theorem [3.3.30]
Let

O: Ry x [0,7] x| -7, 7] — R?,
(r, 9, @) — (rcospsind, rsin@sind, r cos ),
be the three-dimensional polar coordinate transformation with functional determi-

nant det(DO(r,9,¢)) = r?sind. By Transformation Theorem [2.1.17, we trans-
form f(t) in polar coordinates and get

1 7\z|2 E117 1 7|(rcosapsinﬂ,rsin«psinﬂ,reosﬂ)ﬁ .
e 2 dr = e 2 r?sind d(r, 9, @)

omt)? ort)2
(2n) ert? )
1 =2,
= e2t resind d(r, 9, p).
(2m)3/ (.9, )

e-1(4)
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The function © is continuous and definable in the o-minimal structure R,,, there-
fore B := ©71(A) C Ryox] — m,7]? is definable in R,,. Let B, be the set

{(¥,¢) | (r,9,¢) € B}. By Fubini’s Theorem [2.1.18] we get

1 —r?
/ e 2t r2 sin ¢ d(rﬂ%gp : 3 //6 2t 1 SlIl'lg d(ﬁ (p)d
(27t) )2

©-1(4) R>o Br

1 —r
= 3 /e%r2/sin19 d(9, p)dr
(27Tt)2RZO g

By applying the Cell Decomposition Theorem [2.3.15{to R>oU {00}, we get a finite
partition of Ry U {oo} into finitely many disjoint cells, that means in points and
open intervals Dy, ..., D,, where D; := |a, 8] with 0 < a < § < oo and we can

write
5 /e2tr /smﬁdﬁgp
)2

For the sake of convenience we fix j € {1,...,p} and write D := D;. Due to the
fact that integrals over D will be zero if D is a point, we ignore this case. If B is
a bounded set, D is a bounded interval. If B is unbounded, at least one interval
D is unbounded and consequently g = oc.

(NI

e2t'r

sind d(v¥, @)dr.

In consequence of the restriction to B,, sin is globally subanalytic and we can
apply Remark 2.3.17 and get that

/sinﬁ d(9, ), (1)

By

which is the angular part, has the form of a constructible function. In our case, the
log-term in the constructible function has at most power one. The reason is, if we
apply Fubini’s Theorem to the integral in (1) and integrate sin ¢, there is no
log-term in the antiderivative of sin ¢ as is well known. Therefore, only the second

integration can bring a log-term in the antiderivative of [ sind d(¢, ). Thus,
By

the integral has the form vy(r) + 11 (r)log(r), where 1y(r) and ;(r) are strictly

positive globally subanalytic functions. Since ¥ (r) + 11 (r) log(r) represents the

angular part, it is bounded by 7. In a similar way to Lemma |3.3.24] we can argue

that ¢o(r) as well as ¥ (r)log(r) is also bounded.
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We obtain

(2;); /e 2t27‘ /sinﬁ d(v, ) dr @(2;)3 /e 2t 172 (3o (1) + b1 (r) log(r)) dr.

First, we give the proof for a). We may assume B is bounded, consequently also D.
Due to 1o(r) and 1, (r) are globally subanalytic functions on D, and consequently
definable in R,,, we get by Lemma [3.3.33| that

/e—’z’fr (1o (r) + 1 (r) log(r)) dr

has the form ¢o(t) 4+ 1(t) log(t), where ¢; are globally subanalytic functions. We
can conclude about the total set if the set ©7!(A) is bounded that

1
(2mt)2

/ e r 2sin9d(r, 9, )
©-1(4)

5 12 (Uo(r) + 1 (r) log(r)) dr

has the form po(t) + p1(t)log(t) as ¢ — oo, where p, are globally subanalytic
functions and ¢ € N. Therefore f(t) is definable in Ry exp-

Now, we prove statement b) and we may assume that B is unbounded. In
this case, at least one D is unbounded, that means, D could also be an open
interval of the form ], co[ and by a refined cell decomposition we can assume
a > 1. In consequence of the definability of ¥;(r) in R,,, the Preparation Theo-
rem [2.3.18), and the boundedness of (r) and ¢ (r)log(r) on ]a, oo[, which can be

shown in the same way as in Lemma |3.3.24 m 1o(r) is representable as a convergent
oo 2q—1
—2(k+1 . .
Puiseux series ag 4+ 3. Y. ajxre 2*T and ¢ (r) as a convergent Puiseux series
k=0 j5=0

oo 2q—1
> ay w1 25D where ¢ € N. In Lemma [3.3.42 we have already pointed out
k=0 5=0
that

o0

/e 272 (o (r) + 1 (r) log(r)) dr

«

has the asymptotic expansion

% \/gt% T Go(t) + o1 (1) log(t) + () log(£)%, @)
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oo 2q—1 oo 2g—1

where ¢o(t) = 3 z vipt% 52 and oy (t) = > z Nt M and go(t) =

o

S kit F, where Vi Ajis ke € R and ¢ € N, are convergent Puiseux series and
k=0

thus, the asymptotic expansion is definable in R,y exp-

Due to the fact that [ sind d(d, ) > 0 for (9, ) € [0,7]x]—7, 7], we get that the

B
angular part ¥ (r) +11(r) log(r) is also strictly positive. Thus, there are constants
o € Q and C > 0 such that ¢o(r) + 1 (r)log(r) > Cr for all r € [a, 00].

We obtain that fe 52 (o(r) + b1 (r) log(r)) dr > Cfe % r”+2dr of which the

asymptotic expansmn has polynomial scale as we have already seen. Thus, at least

one of the coefficients of the series @g(t), p1(t), p2(t) or ag in (2) is not zero.
Finally, we get the following conclusion: If ©71(A) is an unbounded set, at

least one D is unbounded and we achieve, taking also the results of a) in account,

that
! / F 2 sind d(r, 9, o)
e 2 r°sin r, 9, p) =
Ok v
~1(4)
1 =2 5 [ .
= = [ ez r® [ sind d(V,@)dr
(2mt)2
RZO B
R 2
= e (Yo(r) + i (r) log(r)) dr (3)
~ polt) + pi(t) log(t) + pa(t) log(t)?,
oo 2¢q—1
where py(t) = Z > Y, 2 * where Yk € Rand 7,0 = 0if m # 0, and p1(t) =
=0 m=0
oo 2q—1 0o
7> Om, pt2a k 5m,k € R, and po(t) = > wkt%_k, wy € R, are convergent Puiseux
k= 1m 0 =

series, where at least one coefficient of the series is not zero by the arguments above
and because every summand in (3) is positive.

Since the Puiseux series pg, p1 and p, are convergent, the asymptotic expansion
is definable in R,y exp- O



Conclusion and Outlook

We conclude this thesis with a short summary of the shown results. Motivated by
the research of Comte, Lion and Rolin, by Cluckers and Miller, and also by the
research of Kaiser, we studied the probability distribution

1 22
/e_lmd:v, (4.1)

ort) s
(W)A

which is given by the Brownian Motion on a semialgebraic set, as example for the

occurrence of integrals of the form [ e‘éw(r)dr and [ e_%iw(r) log(r)dr, where
1 is a globally subanalytic function. In the one-dimensional case we showed
that these integrals in (4.1) on a family of sets, which are definable in an arbi-
trary o-minimal structure M, are definable in the Pfaffian closure of M. In the

two-dimensional case we examined [ e‘gr Y (r)dr at the limit points of ¢ and inves-
tigated asymptotic series expansions by applying a recursive formula. We proved
that the integrals behave like a Puiseux series as t approaches zero. As t tends
towards infinity, we gave the proof that the probability distribution is definable in
the o-minimal structure R,, and it is a convergent Puiseux series if A is bounded.
For this purpose, we applied the results of Lion and Rolin, see |[LR9S§]|, to the in-

tegrals | e~ 27 1(r)dr over a bounded set. Then, we established the asymptotic
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expansion of the integrals over an unbounded set. We were able to demonstrate

that the asymptotic expansion has the form ¢q(t) + 1(¢) log(t), where ¢; are con-

vergent Puiseux series with negative exponents, and subsequently, we got that the

expansion is definable in R,y exp. Afterwards, we considered the probability dis-

tribution in R? and started with the case ¢ tends towards zero. We proved that
oo

the integrals in have the expansion > (v, + dx log(t)) ta. Then, we distin-

k=0
guished A is bounded and unbounded another time as t approaches infinity. In the

first case, it could be ascertained by the stability property of constructible func-
tions that the probability distribution has the form ¢g(t) + ¢1(t) log(t), where ¢;
are convergent Puiseux series with negative exponents and thereby the probability
distribution is definable in R, ¢xp. In the other case, we proceeded as in the two-di-

2
mensional case and investigated the asymptotic expansions of [ e~z r?y(r)dr

and [ e‘gr%/}(r) log(r)dr in several single steps by means of recursive formu-
las. Finally, the last proof showed that the probability distribution given by the
Brownian Motion on unbounded sets has an asymptotic expansion of the form
©o(t) +@1(t) log(t) + pa(t) log(t)? as t approaches infinity, where ; are convergent
Puiseux series with negative exponents. In consequence of that, the asymptotic
expansion is definable in Rap exp-

Now, we briefly want to discuss open questions for further research. An ob-
vious way is the enlargement to the n-dimensional case and the investigation of
asymptotic expansions of the probability distribution given by the Brownian Mo-
tion on a n-dimensional semialgebraic set. We have the vague assumption that

n—2
there may arise integrals similar to the form [ e~ 1 S™ abi(r) log(r)idr. Tt is
another open question, whether these integrals can be réd%oed to our discussed
integrals and their asymptotic expansions by using recursion. Another path could
be the study of our probability distribution on families of semialgebraic sets in
higher dimensions.
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