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Notation

N0 := {0, 1, 2, 3, . . .} set of natural numbers including 0

N := {1, 2, 3, . . .} set of natural numbers

Z set of integers

Z≤0 := {x ∈ Z | x ≤ 0} set of negative integers with 0

Q field of rational numbers

R field of real numbers

R≥0 := {x ∈ R | x ≥ 0} set of positive real numbers with 0

R := R ∪ {−∞,+∞}
R[x] polynomial ring in x over R

R o-minimal structure formed by

the semialgebraic sets

Ran o-minimal structure; R expanded by

restricted analytic functions

Rexp o-minimal structure; R expanded by

the exponential function

Ran,exp o-minimal structure; R expanded by restriced

analytic functions and the exponential

function

P(M) Pfaffian closure of the o-minimal structureM

C1 class of continuously differentiable functions
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ex exponential function exp(x)

log(x) natural logarithm

erf(x) := 2√
π

x∫
0

e−t
2
dt (Gauss) error function

erfc(x) := 1− erf(x) complementary error function

Γ(x) :=
∞∫
0

tx−1e−tdt gamma function

Γ′(x) :=
∞∫
0

tx−1e−t log(t)dt first derivative of Γ(x)

Γ(x, y) :=
∞∫
y

tx−1e−tdt incomplete gamma function

Θ(r, ϕ) polar coordinate transformation map

n! := 1 · 2 · 3 · · ·n factorial function

γ ≈ 0, 5772156649 Euler-Mascheroni constant

f ≈ g g is an asymptotic (series) expansion of f

f ∼ g f is asymptotically similar to g

f = O(g) |f | is bounded above by g asymptotically

f = o(g) f is dominated by g asymptotically

(Ω,F , P ) probability space

µ mean

σ2 variance

N (µ, σ2) normal distribution

δx(A) Dirac measure

(Xt)t≥0 stochastic process

Bt Brownian Motion at time t

A closure of set A

Ax := {y ∈ Rn | (x, y) ∈ A} family of sets

S |N (x) partial sum up to the first summand with

order equal or greater than N of series S(x)
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1
Introduction

1.1 Motivation

The modern theory of asymptotic expansions goes back to the research of Thomas
Stieltjes [Sti86] and Henri Poincaré [Poi86] in 1886. The asymptotic analysis is
that branch of mathematics, more precisely of analysis, devoted to the study of
the behaviour and the representation of a given function by simple functions at a
limit point of the function’s domain. Let us consider the example if the function is
analytic. In this special case the asymptotic expansion can be given by its Taylor
series. As long ago as 1812, Pierre-Simon Laplace [dL12] showed two methods
of establishing an asymptotic expansion of functions defined by an integral. The
method in which we are interested is finding a function’s asymptotics by integrating
by parts. In this way, he represented the complementary error function, which is
defined by the integral

2√
π

∞∫
x

e−t
2

dt,

by a divergent power series, cf. [Cop04, p.2].

1



2 Chapter 1. Introduction

We combine this topic with a field of model theory that comes up about one
hundred years later after Poincaré. But first, we take a closer look at the so-called
semialgebraic sets and go back to a significant theorem, which was established in
the middle of the 20th century. Semialgebraic sets can be found in a lot of areas
in mathematics. They are a boolean combination of equalities and inequalities of
real polynomials, that means, they are a finite union of sets of the form

{x ∈ Rn | f(x) = 0, g1(x) > 0, . . . , gk(x) > 0}.

These sets are “truly a special feature in real algebraic geometry”, see [BCR98, p.2].
It is a consequence of the many pleasant properties of this class of sets: for example,
they are closed under union, intersection, and complementation. Therefore, the
finite union and intersection of semialgebraic sets is still semialgebraic, as well as
their complements. Their most significant feature was proven and published by
the logician Alfred Tarski [Tar48] in 1948 and popularized by Abraham Seidenberg
six years later by using it in his work [Sei54]. The results of both are known as
the Tarski-Seidenberg Theorem which states that semialgebraic sets are also stable
under projection. In addition to this, semialgebraic sets have only finitely many
connected components and each of them is also semialgebraic. These fundamental
properties give great conveniences. In the early 1980s the model theorist Lou
van den Dries realized that few axioms provide many properties of semialgebraic
sets, cf. [vdD98, p.vii]. Thereby, he based the theory of the so-called o-minimal
structures in [vdD84], which has become a recognized area since then.

The theory of o-minimal structures could be located as branch of model theory
and mathematical logic with ties to real algebraic geometry and real analysis.
In its set-theoretic definition, an o-minimal structure, in our context on the real
ordered field, is a structureM, that means a family of sets (Mn)n∈N which fulfills
specific axioms, in which the sets in M1 are precisely the finite union of intervals
and points. From this point of view, the semialgebraic sets form the simplest
o-minimal structure: The expansion of the real ordered field by all semialgebraic
sets. O-minimality can be seen as a generalization of semialgebraic sets and real
algebraic geometry. By this , it is possible to expand the area of analysis to them
and to do, for example, integration. The theory of o-minimal structures offers
great potential for research in different areas. In the late 1980s and the 1990s the
community had a particular interest in finding structures which are o-minimal.
One of these determined structures is Ran, the expansion of the real ordered field
by all restricted analytic functions, see [vdD86]. Their definable sets are also known
as the globally subanalytic sets. Another field of research is studying the effects of
o-minimality e.g. to stability properties or to measures, see for example [Kai12].
From this point of view, Jean-Marie Lion, Jean-Philippe Rolin, and Georges Comte
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considered parameterized integrals∫
f(x, y)dy

under the condition that f is a globally subanalytic function, see [LR98] and
[CLR00]. These papers state the significant result that

∫
f(x, y)dy has the form of

a polynomial P (ϕ1, . . . , ϕn, logϕ1, . . . , logϕn) in globally subanalytic functions ϕi
and their logarithms. In 2011, Raf Cluckers and Daniel Miller treated the integrals∫

f(x, y) (log(g(x, y)))n dy,

where f and g are globally subanalytic functions, see [CM11]. In their focus
of interest are the so-called constructible functions, which are represented by a
finite sum of finite products of globally subanalytic functions and their logarithms.
Cluckers and Miller showed stability under integration for the class of constructible
functions. As a consequence, they proved that the constructible functions form
the smallest class, “which is stable under integration and contains all the globally
subanalytic functions”, see [CM11, p.312]. Hence, this paper is an extension of the
research of Lion, Rolin, and Comte, which we mentioned above. In 2013, Tobias
Kaiser gave a sharper result in the case of semialgebraic functions in [Kai13]. He
showed that parameterized integrals of semialgebraic functions can be completely
described if the semialgebraic functions are enlarged by the global logarithm and
the iterated antiderivatives of power series, see [Kai13, p.349]. The newest work of
Cluckers, Comte, Miller, Rolin, together with Tamara Servi about the integration
of oscillatory and globally subanalytic functions continues the research in this area,
see [CCM+16]1. Oscillatory integrals have the form∫

eig(x,y)f(x, y)dy

and in this context, the functions f and g are globally subanalytic. An example of
oscillatory integrals of this kind is given by Fourier transforms, cf. [CCM+16, p.4].
The authors “prove[d] the stability under integration and under Fourier trans-
form of [. . . ] globally subanalytic functions and their complex exponentials”,
see [CCM+16, p.1].

1This paper is not even published yet at the present moment. It was submitted on 8 January,
2016, see https://arxiv.org/abs/1601.01850.

https://arxiv.org/abs/1601.01850
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A further aim of research, in this context, is studying integrals of the form∫
eg(x,y)f(x, y)dy, (1.1)

where f and g are globally subanalytic functions. Issues regarding this integral
are far from being solved at present. Our research concentrates on the following
kind of integrals: ∫

e−
y2

2t f(y)dy (1.2)

and ∫
e−

y2

2t f(y) log(y)dy, (1.3)

where f is a globally subanalytic function and t is a positive real number. These
special cases of the integrals in (1.1) attract attention in the following way: without
regard to the prefactor, the integrals in (1.2) and (1.3) arise when we consider

Fn(t) :=
1

(2πt)
n
2

∫
A

e−
|x|2
2t dx. (1.4)

Thereby A is a semialgebraic set and n the dimension of A. By examining Fn(t),
we continue combining the theory of o-minimality with another mathematical field,
the stochastics. The reason is that the integrals in (1.4) also represent the proba-
bility distribution given by the Brownian Motion.

The Brownian Motion is a jittery motion of particles in liquid discovered of
the botanist Robert Brown. In the early 20th century, Albert Einstein gave the
explanation that this physical phenomenon is caused by the molecular kinetic
theory of heat, cf. [Ein05]. In financial mathematics and stochastic processes the
Brownian Motion has gained a growing importance among other things due to
Louis Bachelier, who used it to study fluctuations in stock prices in [Bac00], and
Norbert Wiener, who proved its mathematical existence in [Wie21].

The significant role of the Brownian Motion in the theory of stochastic processes
is caused by its many interesting properties. Furthermore, it is a popular example
for the so-called Gauss processes and it is one of the best known Lévy processes.
In addition with other Lévy processes, the Brownian motion is located at the
interface of martingale and Markov processes, cf. [KW14, p.V]. Since our research
puts no value in the Brownian Motion as stochastic process and we do not use its
properties in any essential way, we refer for more detailed information to relevant
literature, e.g. [KS14] and [KW14]. Our interest in the Brownian Motion pertains
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solely to the probability that the Brownian Motion is in a semialgebraic set A at
each time t, which is given by Fn(t) in (1.4). This probability distribution does
not tell us how the values of the Brownian Motion at different times are related.
Due to the fact that the Brownian Motion is a jittery and “wild” motion in its
microscopic view as we will see in Figure 2.7 and 2.8 in Chapter 2, the following
question arises: Is the Brownian Motion tame in its macroscopic perspective if A
is tame?

Against this background, we study Fn(t), the probability distribution given by
the Brownian Motion, in two ways: on the one hand, we examine definability in
an o-minimal structure; on the other hand, our purpose is to establish asymptotic
expansions for the time evolution of Fn(t) at its limit points. In other words, time
t approaches zero or tends towards infinity. Establishing asymptotic expansions
in connection with stochastics is not a new idea. [GKS61] gives a good overview
about asymptotic expansions in probability theory. Asymptotic expansions have
been investigated for probability density functions, for example, of the arithmetic
mean of identically distributed summands in [Dan54] and are a general method
for finding corrections of the limiting distribution if the remainder terms decrease
slowly, cf. [GKS61, p.153,155]. There are already works about the asymptotic ex-
pansion of the multivariate normal distribution, see [Rub64], and of the stationary
distribution for the reflected brownian motion, see [FK16]2. There is no need to go
further in these publications, because we do not use their results. In contrast to
these listed works, we take the approach that we use the properties of o-minimality
to achieve our goals.

1.2 Outline and Results
In the next paragraphs, we give a short outline of this thesis and its research
results. More detailed information can be found at the beginning of the respective
chapter and section. Chapter 2 presents the preliminaries. First, we compile some
basic definitions and theorems. Afterwards, we take a closer look at the theory of
asymptotic expansions in Section 2.2 and at o-minimal structures in 2.3. A brief
excursion in stochastic theory ends this chapter.

In the following main chapter, which is Chapter 3, we start with considering the
one-dimensional case. Examining the definability of the probability distribution
in (1.4) on a family of semialgebraic sets results in the following proposition.

2This paper is not even published yet, at the present moment. The last revised version is
from 5 April, 2017, see https://hal.archives-ouvertes.fr/hal-01295562.

https://hal.archives-ouvertes.fr/hal-01295562
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Proposition
The probability distribution, which is given by the Brownian Motion on a family
of one-dimensional sets Aa definable in an o-minimal structureM, is definable in
the Pfaffian closure P(M).

After required preparations, we consider the integrals F2(t) on two-dimensional
semialgebraic sets in Section 3.2, where our main results are stated and proven in
Subsection 3.2.2. We show:

Theorem A
The probability distribution F2(t), which is given by the Brownian Motion on a
semialgebraic set A ⊂ R2, has the following asymptotic series expansions:

i) As t→ 0, F2(t) has the asymptotic series expansion

∞∑
k=0

γkt
k
q ,

which is not necessarily convergent and where γk ∈ R and q ∈ N.

ii) As t→∞:

a) If A is bounded, F2(t) is definable in Ran and therefore, F2(t) is a con-
vergent Puiseux series.

b) If A is unbounded, F2(t) has the asymptotic expansion

%0(t) + %1(t) log(t),

where %0(t) =
∞∑
k=0

γkt
− k
q and %1(t) =

∞∑
k=1

δkt
−k, where at least one of

the series is not zero and γk, δk ∈ R and q ∈ N, are convergent Puiseux
series and therefore, the asymptotic expansion is definable in Ran,exp.

The proof is split into t approaches zero and in t tends towards infinity, where
we gather our work in Theorem 3.2.15, respectively in Theorem 3.2.25. For this
purpose, we examine integrals of the form

∫
e−

r2

2t r ψ(r)dr, where ψ(r) is a bounded
globally subanalytic function and then we investigate asymptotic series expansions
of them. The significant point to note here is that we achieve definability in Ran

in case A is bounded as t approaches infinity.
Section 3.3 is devoted to the study of F3(t). For investigating the asymptotic ex-

pansions in the three-dimensional case, we need more preparations. These are com-
piled in Subsection 3.3.1. As in the two-dimensional case we split Subsection 3.3.2
in two parts and examine t approaches zero first, then t tends towards infinity. Each
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of these parts ends again in a theorem. By investigating asymptotic expansions of
the probability distribution given by the Brownian Motion, we are also interested
in finding asymptotic expansions of

∫
e−

r2

2t r2ψ(r)dr and
∫
e−

r2

2t r2ψ(r) log(r)dr in
Subsection 3.3.2. In conclusion, it is remarkable that we get definability of F3(t)
in Ran,exp in the case t approaches infinity and if A is bounded. Summarizing
Theorem 3.3.30 and 3.3.43 we gain

Theorem B
The probability distribution F3(t), which is given by the Brownian Motion on a
semialgebraic set A ⊂ R3, has the following asymptotic series expansions:

i) As t→ 0, F3(t) has the asymptotic expansion

∞∑
k=0

(γk + δk log(t)) t
k
q ,

which is not necessarily convergent and where γk, δk ∈ R and q ∈ N.

ii) As t→∞:

a) If A is bounded, F3(t) has the form %0(t) + %1(t) log(t), where %0(t) and
%1(t) are globally subanalytic functions, and thus, F3(t) is a constructible
function and definable in Ran,exp.

b) If A is unbounded, F3(t) has the asymptotic expansion

%0(t) + %1(t) log(t) + %2(t) log(t)2,

where %0(t) =
∞∑
k=0

γkt
− k
q , %1(t) =

∞∑
k=1

δkt
− k
q , and %2(t) =

∞∑
k=1

λkt
1
2
−k,

where at least one of the series is not zero and γk, δk, λk ∈ R and q ∈ N,
are convergent Puiseux series. Thus, the asymptotic expansion is defin-
able in Ran,exp.

Finally, in Chapter 4 we give a short conclusion and discuss further research.
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2
Preliminaries

In this chapter we would like to take up some necessary preliminaries. First, we give
some well-known basic definitions and theorems. In the second section we go into
the theory of asymptotic series expansions. In this connection, the relation between
asymptotic series and the Landau Notation which denotes order relations is pointed
out. Furthermore, the asymptotic series expansions of the gamma function, the
incomplete gamma function and the error function defined in Section 2.1 are given.
Subsequently, we proceed with so-called o-minimal structures and some significant
theorems. Finally, we make a brief excursion in stochastic theory, where we dip
into stochastic processes and introduce the Brownian Motion as special example.
This is caused by our study of the definability and the asymptotic behaviour of
the probability distribution given by the Brownian Motion on a set in the main
chapter.

2.1 Basic Definitions and Theorems

First, we fix a convention for the empty sum and the empty product. Letm, j ∈ N0

where m < j. We define the empty sum as
m∑
k=j

ak = 0 and the empty product as

9
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m∏
k=j

ak = 1. Furthermore, we use the following notation: Let S(x) be an infinite sum

in x and let N ∈ N. Then S
∣∣
N

(x) denotes the partial sum of S(x) which contains
the summands of S(x) up to the first summand with order equal or greater than N .
For the following definitions, remarks, and theorems we adopt the notation as given
by Abramowitz and Stegun in [AS12], by Graham in [GKP94], by Koenigsberger
in [Kön13], by Sibagaki in [Sib52], and by Siegel in [Sie69].

Definition 2.1.1. The function

πn : Rn+1 −→ Rn,

(x1, . . . , xn+1) 7−→ (x1, . . . , xn),

denotes the projection map on the first n coordinates.

Definition 2.1.2. Let e : R → R denote the exponential function. The (non-
elementary) (Gauss) error function erf : R −→]− 1, 1[ is defined as

erf(x) =
2√
π

x∫
0

e−t
2

dt.

Figure 2.1. The graph of the error function erf(x) for x ∈ [−3, 3].
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Remark 2.1.3. The error function has the following properties:

• The error function is an odd function, that means erf(−x) = −erf(x) for
x ∈ R.

• The error function has the following special (limit) values:

◦ lim
x→∞

erf(x) = 1.

◦ lim
x→−∞

erf(x) = −1.

◦ erf(0) = 0.

• Let Φ(x) = 1√
2π

x∫
−∞

e
−t2
2 dt be the cumulative distribution function of the stan-

dard normal distribution. The error function erf(x) is related to Φ(x) by
Φ(x) = 1

2

(
1 + erf

(
x√
2

))
.

Definition 2.1.4. The complementary error function erfc : R −→]0, 2[ is de-
fined as

erfc(x) =
2√
π

∞∫
x

e−t
2

dt.

Figure 2.2. The graph of the complementary error function erfc(x) for x ∈ [−3, 3].
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Remark 2.1.5. The complementary error function is related to the error function
by

erfc(x) = 1− erf(x).

The well-known gamma function and its first derivative are defined for all
complex numbers except the non-positive integers. For positive real numbers, and
also for complex numbers with a positive real part, we can define the gamma
function via the following convergent improper integral.

Definition 2.1.6. The gamma function Γ : R>0 → R is defined in Euler’s
integral representation as

Γ(x) =

∞∫
0

tx−1e−tdt.

Figure 2.3. The graph of the gamma function Γ(x) for x ∈ ]− 2, 5].

Remark 2.1.7. Let x ∈ R>0. The gamma function has the following properties:

• Γ(1) = 1.

• Γ(x+ 1) = xΓ(x).

As well as the gamma function above we can write its first derivative for positive
real numbers as the following convergent improper integral.
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Definition 2.1.8. The first derivative of the gamma function Γ′ : R>0 → R
is given in its integral representation by

Γ′(x) =

∞∫
0

tx−1e−t log(t)dt.

Figure 2.4. The graph of the first derivative of the gamma function Γ′(x) for
x ∈ ]− 5, 5].

Remark 2.1.9. There is only a single positive zero x0 of the first derivative of the
gamma function. Its first six digits are

x0 = 1, 461632 . . . .

Remark 2.1.10. Let x ∈ R>0 and let x0 be the positive zero of the first derivative
of the gamma function. If x > x0, then Γ′(x) > 0.

For further information to the first derivative of the gamma function and its
zeros we refer to [Sib52].

Definition 2.1.11. The incomplete gamma function Γ : R2
≥0 \ {(0, 0)} → R

is defined in integral representation as

Γ(x, y) =

∞∫
y

tx−1e−tdt.
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Remark 2.1.12. The incomplete gamma function Γ : R2
≥0 \ {(0, 0)} → R has the

following properties:

• Γ(x+ 1, y) = xΓ(x, y) + yxe−y.

• The incomplete gamma function has the special limit value lim
y→∞

Γ(x, y) = 0.

Remark 2.1.13. For x ∈ R>0 the gamma function is related to the incomplete
gamma function by

Γ(x, 0) = Γ(x).

Remark 2.1.14. For y ∈ R≥0 the incomplete gamma function has the special
value

Γ(1, y2) = e−y
2

.

Remark 2.1.15. For y ∈ R≥0 the incomplete gamma function is related to the
error function by

Γ

(
1

2
, y2

)
=
√
π(1− erf(y)).

Proof. By Definition 2.1.11 of the incomplete gamma function, we get

Γ

(
1

2
, y2

)
2.1.11
=

∞∫
y2

t
1
2
−1e−tdt

=

∞∫
y2

t−
1
2 e−tdt.

We make a change of variables t = x2 and obtain by Definition 2.1.4 of the com-
plementary error function

∞∫
y

1

x
e−x

2

2x dx = 2

∞∫
y

e−x
2

dx

2.1.4
= 2

√
π

2
erfc(y)

2.1.5
=
√
π(1− erf(y)).

�

Corollary 2.1.16. The gamma function has the special value

Γ

(
1

2

)
=
√
π.
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Proof. It follows easily by 2.1.15 that

Γ

(
1

2

)
2.1.13
= Γ

(
1

2
, 0

)
2.1.15
=
√
π(1− erf(0))

2.1.3
=
√
π.

�

The two following theorems play a vital part in integration theory. The Trans-
formation Theorem describes the relation between two different coordinate sys-
tems. Fubini’s Theorem gives conditions under which, for example, it is possible
to calculate a double integral by using one-dimensional integrals.

Theorem 2.1.17 (Transformation Theorem). Let U ⊂ Rd be an open set and let
Θ : U → Θ(U) ⊂ Rd be a C1-diffeomorphism. The function f is integrable on
Θ(U) if the function x 7−→ f(Θ(x))| det(DΘ(x))| is integrable on U . Then∫

Θ(U)

f(y)dy =

∫
U

f(Θ(x))| det(DΘ(x))|dx,

where DΘ(x) is the Jacobian matrix and det(DΘ(x)) is the functional determinant
of Θ.

Theorem 2.1.18 (Fubini’s Theorem). Let f be an integrable function on Rn×Rm.
For every fixed y ∈ Rm, except the elements of a null set N ⊂ Rm, the function
x 7−→ f(x, y) is integrable over Rn. Set F (y) :=

∫
Rn
f(x, y)dx for y ∈ Rm \N and

F (y) := 0 for y ∈ N , then F is integrable over Rm and we can write

∫
Rn×Rm

f(x, y)d(x, y) =

∫
Rm

F (y)dy =

∫
Rm

∫
Rn

f(x, y)dx

 dy.
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This subsection concludes with the definition of analytic functions and Puiseux
series.

Definition 2.1.19. Let U ⊂ R be an open set and let f : U → R. The function f
is called analytic at x0 ∈ U if there exists a power series

∞∑
n=0

an(x− x0)n

and some r > 0 such that the series converges absolutely for x ∈ ]x0 − r, x0 + r[,
and such that we have

f(x) =
∞∑
n=0

an(x− x0)n

for all x ∈ ]x0− r, x0 + r[. The function f is called analytic in U if f is analytic
at every x ∈ U .

We define so-called Puiseux series which are a significant generalization of
power series. Isaac Newton introduced them in his letter to Henry Oldenburg in
1676, see [Te60, p.1]. They are named after Victor Puiseux, who rediscovered them
in 1850. Puiseux series are used to represent an arbitrary function as an infinite
sum of simple functions.

Definition 2.1.20. Let q ∈ N, let k ∈ Z, and let an ∈ R for all n ∈ Z. A series
of the form

∞∑
n=k

an(x− x0)
n
q

is called Puiseux series at (center) x0.

In addition, we want to remark that a Puiseux series can appear in three

different contexts. In certain cases, we understand
∞∑
n=k

anx
n
q as a formal series

by means of a purely algebraic object with no assertion of convergence; so x is
simply an indeterminate. We can add and multiply two series as usual and we
also get information of the formal series, but possibly no analytic information
like asymptotic formulas, see [Wil14, p.27]. In another context, we interpret the
Puiseux series as an asymptotic series expansion which we cover in the next section.
In this case, it can be convergent or divergent. As opposed to this, a Puiseux series,
which is definable in the o-minimal structure Ran (see Section 2.3), is always a
convergent series.



2.2. Asymptotic Expansions 17

2.2 Asymptotic Expansions
As already mentioned in Chapter 1, the theory of asymptotic series expansions goes
back to Stieltjes and Poincaré in 1886. It can be split into two parts. According to
Copson, see [Cop04, p.3], “the first part deals with the summability of asymptotic
series and with the validity of such operations as term by term differentiation or
integration; the second is concerned with the actual construction of a series which
represents a given function asymptotically.” To narrow this down, we have a closer
look at the second part. Our aim is to investigate a convergent or divergent infinite
series which represents a given function asymptotically in a neighbourhood of a
limit point of the function’s domain. That means that any partial sum of that series
provides a very good approximation of the function with an error of the order of
the first term omitted. This order of the error is noted by the order symbols O
and o, the so-called Landau notation. We follow the definitions and remarks as
given by Erdélyi in [Erd56], by Copson in [Cop04], and by Murray in [Mur12]; the
examples for asymptotic series expansions are given by Abramowitz and Stegum
in [AS12].

Definition 2.2.1. Let D ⊂ R be a nonempty set, let D be the closure of D in
R := R ∪ {−∞,+∞}. Let x0 ∈ D be a limit point and let f, g : D → R be real
functions. We write

f(x) = O (g(x))

as x→ x0 if there exists a constant C and a neighbourhood U of x0 such that for
all x ∈ U ∩D

|f(x)| ≤ C|g(x)|.

We write
f(x) = o (g(x))

as x→ x0 if for every δ > 0 there exists a neighbourhood U of x0 such that for all
x ∈ U ∩D

|f(x)| ≤ δ|g(x)|.

Remark 2.2.2. Let g(x) 6= 0 in a punctured neighbourhood of x0. As x→ x0, then
f(x) = O(g(x)) if f(x)

g(x)
is bounded on a neighbourhood of x0 and f(x) = o(g(x)))

if lim
x→x0

f(x)
g(x)

= 0.

The O-notation gives us an asymptotic upper bound on the growth rate of
a function. This growth rate is also referred to as an order of this function.
Consequently, it describes how fast a function f increases in a neighbourhood of a
particular value x0 or infinity when the argument tends towards it. As mentioned
previously, in the case of asymptotic expansions it is used to estimate the error
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that occurs when we represent a function asymptotically by a series. Usually the
error is described in terms of more simple functions. Therefore, functions with the
same growth rate may be represented by the same O-notation. The O-notation
is a little bit vague in the following sense. Strictly speaking, it should be written
as f ∈ O (g), but the use of “=“ is common. Associated with the O-notation, the
symbol o makes a stronger statement: f = o(g) means that g grows much faster
than f . Therefore, every function f that is o(g) is also O(g), but not generally
vice versa.

When going into more detail of asymptotic series expansions it occurs that an
asymptotic expansion describes the asymptotic behaviour of a function in terms
of an asymptotic sequence of functions, which is defined as follows.

Definition 2.2.3. Let D ⊂ R be a nonempty set, let D be the closure of D in R,
and let x0 ∈ D be a limit point of D. For n ∈ N0 let gn : D → R be a function.
The sequence of functions (gn(x))n∈N0

is called asymptotic sequence as x→ x0

if for each n ∈ N there is a punctured neighbourhood of x0, in which gn(x) 6= 0 and
if for all n ∈ N

gn+1(x) = o (gn(x)) ,

as x→ x0.

A series with real coefficients, which is formed by such an asymptotic sequence,
is an asymptotic series expansion of a function if the series fulfil the following
definition.

Definition 2.2.4. Let D ⊂ R be a nonempty set, where D ⊆ R, and x0 ∈ D be
a limit point of D, let (gn(x))n∈N0

be an asymptotic sequence in R as x → x0, let
f : D → R be a function, and (an)n∈N0

be a real sequence. The (formal) series
∞∑
k=0

angn(x) is called asymptotic (series) expansion of f(x) as x→ x0, denoted

by

f(x) ≈
∞∑
n=0

angn(x),

if for every value of N ∈ N0

f(x)−
N∑
n=0

angn(x) = o (gN(x)) , (1)

as x→ x0.
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Remark 2.2.5. Since

f(x)−
N−1∑
n=0

angn(x) = aNgN(x) + o (gN(x)) ,

the partial sum
N−1∑
n=0

angn(x)

is an approximation to f(x) with an error O (gN(x)) as x → x0; this error is
of the same order of magnitude as the first term omitted. That means that the
equation (1) in Definition 2.2.4 may be written as

f(x)−
N−1∑
n=0

angn(x) = O (gN(x)) .

Remark 2.2.6. If an asymptotic expansion of f(x) as in Lemma 2.2.4 exists, it
is unique and the coefficients are uniquely given by

aN = lim
x→x0

f(x)−
N−1∑
n=0

angn(x)

gN(x)
.

Remark 2.2.7. A function may have several asymptotic series expansions, but
every expansion is unique in respect to its asymptotic scale.

Definition 2.2.8. The first non-zero term akgk(x) is called dominant term and
we write

f(x) ∼ akgk(x)

as x→ x0. That means lim
x→x0

f(x)
gk(x)

= ak ∈ R \ {0}. We also say f behaves like gk
or f is asymptotically similar to gk at x0.

The expression asymptotically similar is not only used to characterize a function
by the dominant term of its asymptotic series expansion, but also to describe the
asymptotic behaviour between two functions f and g.

Definition 2.2.9. Let D ⊂ R be a nonempty set, let f, g : D → R be real functions,
where g(x) 6= 0 in a punctured neighbourhood of x0. We say f is asymptotically
similar to g at the limit point x0 if

lim
x→x0

f(x)

g(x)
∈ R \ {0}.
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Furthermore we say f is asymptotically equivalent to g at the limit point x0 if

lim
x→x0

f(x)

g(x)
= 1.

There are a number of rules for operating with order relations. They are often
only shown for the O-symbol, but also hold for the o-symbol. For these rules we
refer to Erdèlyi [Erd56, p.5].

Next, we see some examples for asymptotic expansions of well-known functions,
which are vital for this thesis. Some of them are familiar by the next remark.

Remark 2.2.10. Let the function f(x) be analytic at the limit point x0. The
convergent Taylor series of f in x0 is an asymptotic series expansion of f(x) as
x→ x0.

In consequence of that, we can easily specify the asymptotic expansion for the
exponential function as x approaches zero.

Lemma 2.2.11. As x → 0, the exponential function has the asymptotic series
expansion

ex =
∞∑
n=0

xn

n!
.

An asymptotic series expansion can be both – a convergent or a divergent se-
ries. In most cases it is less useful if it is convergent, because in the case of a
divergent series sometimes only a few terms are required to give an accurate ap-
proximation of the function. A familiar example is the asymptotic expansion of
the error function. If a function is defined by a definite integral, a simple way
of finding the asymptotic expansion is by repeated integration by parts. Laplace
introduced the idea that the error function can be represented by a convergent
power series by integration by parts. Since the series converges slowly for big val-
ues, he investigated an asymptotic expansion for the related complementary error
function erfc = 1− erf by the same method. This allows a quicker computation of
large values. The divergent asymptotic expansion of the error function is shown
below.

Lemma 2.2.12. As x → ∞, the error function has the asymptotic series expan-
sion

erf(x) ≈ 1 + e−x
2

x−1 1√
π

∞∑
n=0

(−1)n+1 1

(2x2)n

n∏
l=1

(2l − 1)

and as x→ 0

erf(x) ≈ 2√
π

∞∑
n=0

(−1)nx2n+1 1

(2n+ 1)n!
.



2.3. O-minimal Structures 21

Another example of finding an asymptotic expansion by integration by parts
is the incomplete gamma function. Copson shows this in detail in [Cop04, p.13].

Lemma 2.2.13. Let x ∈ R≥0. As y → ∞, the incomplete gamma function has
the asymptotic series expansion

Γ(x, y) ≈
∞∑
n=1

e−yyx−n
n−1∏
l=1

(x− l)

and as y → 0 and x 6= 0 the asymptotic series expansion

Γ(x, y) ≈ Γ(x) + yx
∞∑
n=0

(−1)n+1yn
1

(x+ n)n!
.

Moreover, in the special case where x = 0 we get as y → 0 the asymptotic series
expansion

Γ(0, y) ≈ (− log(y)− γ) +
∞∑
n=1

(−1)n+1yn
1

n · n!
,

where γ denotes the Euler-Mascheroni constant.

2.3 O-minimal Structures
The story of the o-minimal structures began in the early 1980s. Lou van den Dries
looks back and writes in [vdD98, p.vii]: “I had noticed that many properties of semi-
algebraic sets and maps could be derived from a few simple axioms”. Stimulated
by van den Dries’ paper Remarks on Tarski’s problem concerning (R,+, ·, exp),
see [vdD84], Pillay and Steinhorn introduced the notation o-minimality in their
work Definable sets and ordered structures [PS84]. The designation o-minimal is
the abbreviation for order-minimal. This thesis focuses on o-minimal structures
that expand the field of reals. In this case the most simple one is the structure
formed by the semialgebraic sets. Thus, the study of o-minimal structures and
o-minimal theory generalizes real algebraic geometry. First, the major line of
research was based on discovering expansions of the real ordered field that are
o-minimal. Van den Dries proved in [vdD86] that the structure Ran, the real or-
dered field expanded by restricted analytic functions, is o-minimal, but it does
not contain the full exponential function. In 1991 Wilkie could show that Rexp,
the real ordered field expanded by the exponential function, is also an o-minimal
structure, see [Wil96]. O-minimality is a class of tame geometry. “The o-mini-
mal structures provide an excellent framework for developing tame topology”, is
written in [vdD98, p.vii] by van den Dries.
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Tameness implies many pleasant properties as example stratification or trian-
gulation. It also guarantees piecewise smoothness of semialgebraic functions. The
so-called Cell Decomposition Theorem allows to partition a definable set X into
finitely many disjoint subsets X1, . . . , Xn, n ∈ N, of a special form. These Xi are
called cells. This partition of X can moreover be chosen such that all restrictions
of a semialgebraic function f : X → R to Xi are continuous. This fact is signifi-
cant for our work. Furthermore, tameness implies that every set has finitely many
connected components, there are no functions which oscillate, there are strong
properties of finiteness, and there is also held a good notion of dimension. Every-
thing is controlled or to express it with Coste’s words: It is “without pathological
behaviour” [Cos99, p.6].

In the following, we only refer to a few aspects of the theory mentioned above. If
not stated otherwise, we follow the definitions as given by van den Dries in [vdD86]
and [vdD98].

Definition 2.3.1. A semialgebraic set A ⊂ Rn, n ∈ N, is a finite union of sets
of the form

{x ∈ Rn | f(x) = 0, g1(x) > 0, . . . , gk(x) > 0},

where f, g1, . . . , gk ∈ R[x1, . . . , xn].

Example 2.3.2. The sets, which are represented by the coloured surfaces in Fig-
ure 2.5, are semialgebraic.

Figure 2.5. Examples for a semialgebraic sets in R2.

Definition 2.3.3. A set A ⊂ Rn is called semianalytic if for each x0 ∈ Rn there
is an open neighbourhood U of x0 and there are real analytic functions f, g1, . . . , gk
on U, such that A ∩ U is a finite union of sets of the form

{x ∈ U | f(x) = 0, g1(x) > 0, . . . , gk(x) > 0}.
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Definition 2.3.4. Let πn be the projection map on the first n coordinates. A set
A ⊂ Rn is called subanalytic if for each x0 ∈ Rn there is an open neighbour-
hood U of x0 and a bounded semianalytic set B ⊂ Rm where m ≥ n such that
A ∩ U = πn(B).

Definition 2.3.5. A set A ⊂ Rn is called globally subanalytic if it is a subana-
lytic set after applying the semialgebraic homeomorphism

Rn −→ ]− 1, 1[n,

xi 7−→
xi√

1 + x2
i

.

Definition 2.3.6. Let A ⊂ Rn be a globally subanalytic set. A function f : Rn → R
is called constructible on A if there are globally subanalytic functions fi : A → R
and fi,j : A→ (0,∞) such that

f(x) =
k∑
i=1

fi(x)

`i∏
j=1

log(fi,j,(x)),

where k, `i ∈ N.

Definition 2.3.7. A function f : Rn → R is called restricted analytic function
if there exists a real convergent power series p in n variables which converges on
an open neighbourhood of [−1, 1]n such that

f(x) =

{
p(x), x ∈ [−1, 1]n,

0, else.

Definition 2.3.8. A structure on the ordered field R is axiomatically defined as
a familyM = (Mn)n∈N of sets such that for each n:

i) Mn is a boolean algebra of subsets of Rn(i.e. if A,B ∈ Mn then A ∪ B ∈
Mn, A ∩B ∈Mn,Rn \A ∈Mn), which contains the semialgebraic subsets of
Rn.

ii) A ∈Mm and B ∈Mn implies A×B ∈Mm+n.

iii) If A ∈ Mn+1 and πn is the projection map on the first n coordinates then
πn(A) ∈Mn.

A structureM is called o-minimal if it satisfies the extra axiom:

iv) The sets in M1 are precisely the finite unions of intervals and points.
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Definition 2.3.9. Let M = (Mn)n∈N be a structure. A set A ⊂ Rn is definable
in M if A ∈Mn.

Definition 2.3.10. Let A ⊂ Rn and let f : A −→ Rm be a function, then f is a
function definable in M if its graph {(x, f(x)) | x ∈ A} is definable inM.

Example 2.3.11. Examples for o-minimal structures are:

i) The structure R is the expansion of the real ordered field by all semialgebraic
sets. It is o-minimal.

ii) The structure Ran is the expansion of the real ordered field by all restricted
analytic functions. It is o-minimal. The sets definable in Ran are known as
the globally subanalytic sets.

iii) The structure Rexp is the expansion of the real ordered field by the exponential
function exp : R→ R. It is o-minimal.

iv) Ran,exp is the structure which is generated by restricted analytic functions and
extended by the exponential function. It is o-minimal.

The Pfaffian closure is another o-minimal structure. It goes beyond the
scope of this thesis to give the exact definition. For more details we refer to
Speissegger [Spe99, p.210], [MRS12, p.181ff]. To put it crudely, the Pfaffian closure
P(M) is an o-minimal expansion of an o-minimal structure M where P(M) is
inductively generated. It is closed under Pfaffian chains with arbitrary definable
functions instead of polynomials. The following theorem is listed for the interested
reader for the sake of completeness.

Theorem 2.3.12. LetM be an o-minimal expansion of the real field. Then there
is an o-minimal expansion P(M) ofM which is closed under solutions to Pfaffian
equations in the following strong sense. Whenever U is a definable and connected
open subset of Rn, ω = a1dx1 + · · · + andxn is a 1-form on U with definable
coefficients ai : U → R of class C1, and L ⊆ U is a Rolle leaf of ω = 0, then L is
also definable in P(M).

Proof. We refer to Speissegger [Spe99, p.189]. �

In other words, every o-minimal expansion R̃ of the real field has an o-minimal
expansion P(M), the Pfaffian closure of M, in which the solutions to Pfaffian
equations are definable. For more details on the theorem and the definition of
Rolle leafs we refer to Speissegger [Spe99, p.189] and Moussu and Roche [MR92].
A central point for our research is the following consequence of this theorem.
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Corollary 2.3.13. Suppose that I ⊆ R is an open interval, a ∈ I and g : I → R
is definable in the Pfaffian closure P(M) and continuous. Then its antiderivative

F : I → R given by F (x) :=
x∫
a

g(t)dt is also definable in P(M).

Subsequently, we proceed with significant theorems and definitions. We can
decompose every definable set in finitely many disjoint subsets of a special form
called cells. This concept plays an essential role in o-minimal structures. Generally,
proofs are more intelligible if we show the claim for every single cell type and finally
gather the results.

Definition 2.3.14. Fix an o-minimal structureM. Let B ⊂ Rn be nonempty and
definable. Cells are defined inductively as follows:

i) B ⊆ R is a cell if B is either a point or an open interval.

ii) Let B ⊆ Rn be a cell and f : B −→ R be a definable continuous function,
then the graph of f is a cell in Rn+1.

iii) Let B ⊆ Rn be a cell and f, g : B −→ R be definable continuous functions
such that f(x) < g(x) for all x ∈ B, then

• {(x, y) ∈ B × R : f(x) < y < g(x)},

• {(x, y) ∈ B × R : f(x) < y},

• {(x, y) ∈ B × R : y < f(x)},

• finally B × R

are cells in Rn+1.

Then B is also called base of the cell.
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Rn

R

g(x)

f(x)

B
] [

Figure 2.6. Different cell types in Rn+1 on the base B

Theorem 2.3.15 (Cell Decomposition Theorem). LetM be an o-minimal struc-
ture.

i) Each definable set A ⊂ Rm has a finite partition A = C1 ∪ . . .∪Ck into cells
Ci for i ∈ {1, . . . , k}.

ii) If f : A −→ Rn is a definable map, this partition of A can be chosen such
that all restrictions f |Ci are continuous.

Proof. We refer to van den Dries [vdD98, p.52]. �

The next theorem is a major result of Comte, Lion and Rolin. It provides us
the form of an integral of globally subanalytic functions over a globally subanalytic
set after integration.

Theorem 2.3.16. Let Y ⊂ Rn × Rm be a globally subanalytic set. Suppose that
the dimension of every fiber Yx is at most k. Let v(x) = vk(Yx) denote the k-
dimensional volume of Yx. The set of points, where v(x) is finite, is a globally
subanalytic set B ⊂ Rn. The restriction of v on B is of the form

P (f1, . . . , fd, log f1, . . . , log fd),

where f1 = f1(x), . . . , fd = fd(x) are strictly positive globally subanalytic functions
and P is a polynomial.



2.3. O-minimal Structures 27

Proof. We refer to Comte, Lion, and Rolin [CLR00, Theorem 1, p.885] and [LR98,
Remark, p.756]. �

Remark 2.3.17. Let a ∈ Rm. If n = 1, we get a finite partition of R in intervals
such that the volume v(x) on each interval has the form of a polynomial in log |x−a|
with analytic functions of |x− a|

1
p as coefficients, where p ∈ N.

Proof. We refer to Lion and Rolin [LR98, Remark, p.756]. �

The next theorem says broadly speaking: By specific requirements it is possible
to choose a cell decomposition of a set X such that a function on X, which is
definable in Ran, has the form of a Puiseux series.
Theorem 2.3.18 (Preparation Theorem). Let X ⊆ Rn+1 and let f : X −→ R,
(x, y) 7−→ f(x, y), be a function definable in Ran. There is a cell decomposition C
of X such that the following holds: Let C ∈ C and let B be the base of cell C. Let
C be fat with respect to the last variable y, that means, Cx is a nonempty open
interval for every x ∈ B. Then the function f |C can be written as

f |C(x, y) = g(x)|y − ξ(x)|σu(x, y − ξ(x))

where σ ∈ Q, the functions g, ξ : B −→ R are definable and real analytic with
y 6= ξ(x) on C, and u(x, y) is a so-called special unit on

Cξ := {(x, y − ξ(x)) | (x, y) ∈ C},

that is of the form

u(x, y) = v(b1(x), . . . , bM(x), bM+1(x)|y|
1
q , bM+2(x)|y|−

1
q ),

where q ∈ N. The function

φ : B × R \ {0} −→ RM+2,

(x, y) 7−→ (b1(x), . . . , bM(x), bM+1(x)|y|
1
q , bM+2(x)|y|−

1
q ),

is a definable and real analytic function with φ(Cξ) ⊂ [−1, 1]M+2 and v is a
real power series in M + 2 variables that converges on an open neighbourhood
of [−1, 1]M+2 and is away from 0.

Proof. We refer to Lion and Rolin [LR97, p.862]. �

The constructible functions form the smallest class of functions which contains
all the globally subanalytic functions and which is stable under integration.
Theorem 2.3.19. The class of constructible functions is stable under integration.

Proof. We refer to Cluckers and Miller [CM11, p.314]. �
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2.4 The Brownian Motion

The Brownian Motion is a physical phenomenon which is named after the botanist
Robert Brown (∗ 1773, † 1858). In 1827 Brown studied pollen grains of plants sus-
pended in water under a microscope and he observed that every single particle
executes a jittery motion. In 1880, Thorvald N. Thiele developed the first mathe-
matical model of the Brownian Motion and described the mathematics behind it.
Notwithstanding the above Louis Bachelier used the Brownian Motion in his PhD
thesis “The theory of speculation” to study fluctuations in stock prices. In 1905,
Albert Einstein gave the explanation for the jittery motion of the particles in his
paper about the molecular kinetic theory of heat, see [Ein05]. His explanation was
a milestone for the proof of the existence of molecules and atoms. The mathemat-
ical existence of the Brownian Motion was finally proved by Norbert Wiener in
1923. For that reason it is also called Wiener process.

In financial mathematics and stochastics the Brownian Motion is an example
for many significant classes of stochastic processes. One of these classes are the
so-called Gauss processes, see [MS06, p.341]. Furthermore, the Brownian Motion
is the basis of many financial market models. The theory of stochastic processes
goes beyond the scope of this thesis, therefore we only want to provide a short
insight into the Brownian Motion as a stochastic process in this part. For deeper
studies of stochastic processes we refer for example to Meintrup [MS06], which is
also the source for the following definitions.

Before we get to the Brownian Motion, we call back to one’s mind the definition
of normal distribution and some basics about stochastic processes.

Definition 2.4.1. Let σ > 0 and µ ∈ R. The probability measure N (µ, σ2) with
density f : R→ R,

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

is called normal (or Gaussian) distribution with mean µ and variance σ2.

Definition 2.4.2. Let (Ω,F , P ) be a given probability space, (Z,Z) a measurable
space, and let I ⊂ R≥0 be an index set. A family X = (Xt)t∈I of measurable maps

Xt : Ω −→ Z,

where t ∈ I, is called stochastic process (with state space Z).
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Definition 2.4.3. Let (Xt)t≥0 be a stochastic process and ω ∈ Ω. The map

X(ω) : I −→ Z,

t 7−→ Xt(ω),

is called path of ω.

Remark 2.4.4. A stochastic process X is continuous if for almost all ω ∈ Ω the
path X(ω) is continuous.

Definition 2.4.5. Let z ∈ R. A one-dimensional stochastic process (Bt)t≥0 with
state space R is called Brownian Motion in RRR with start value z if it satisfies
the following properties:

i) B0 = z almost sure.

ii) Let 0 ≤ s < t. Then Bt − Bs is normally distributed with mean 0 and
variance t− s.

iii) Let n ≥ 1, 0 ≤ t0 < t1 < . . . < tn. Then Bt0 , Bt1 − Bt0 , . . . , Btn − Btn−1 are
independent random variables.

iv) Almost surely, every path, t→ Bt, is continuous.
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Figure 2.7. Simulation of the one-dimensional Brownian Motion
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Remark 2.4.6. The Brownian Motion with start value zero is called standard
Brownian Motion.

In other words, the Brownian Motion is the interpretation of a single particle,
which executes a jittery motion caused by the thermal motion of molecules and
started at a given position z at time t = 0. Therefore, the random variable Bt

denotes the position of the particle at time t. The probability of presence of a
particle at time t at a position is normally distributed. Moreover, the Brownian
Motion has independent increments and the path of the particle is continuous,
which means, the particle does not “jump”.

Definition 2.4.7. An n-dimensional stochastic process (Bt = (B1
t , . . . , B

n
t ))t≥0

is called Brownian Motion in RnRnRn with start value z = (z1, . . . , zn) ∈ Rn if
every stochastic process (Bi

t)t≥0 is a Brownian Motion in R with start value zi
for i ∈ {1, . . . , n} and the stochastic processes B1

t , . . . , B
n
t are independent for

every t ≥ 0.
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Figure 2.8. Simulation in 5000 time steps of a discrete approximation to a
two-dimensional Brownian Motion. It shows the random variable Bt, that means
the (x, y)-position of a single particle.
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The Brownian Motion has a number of interesting properties. We refer for more
detailed information about these to specialist literature, e.g. [KS14] and [KW14].
In this thesis we put no value to the Brownian Motion as a stochastic process and
its properties, but rather in the probability that the Brownian Motion is in a given
set A at time t. We conclude this chapter by the probability distribution given by
the Brownian Motion on a set, which we examine in the next chapter.

Remark 2.4.8. Let A ⊂ Rn be a Borel set and let z ∈ Rn be the start value. The
probability for Bt ∈ A at time t is given by

Pz(Bt ∈ A) =

δz(A), t = 0,

1

(2πt)
n
2

∫
A

e−
|x−z|2

2t dx, t > 0,

where δz(A) denotes the Dirac measure which is defined as

δz(A) =

{
1, z ∈ A,
0, z /∈ A.
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3
Definability and Asymptotic

Expansion for the Time Evolution
of the Probability Distribution
Given by the Brownian Motion

on Semialgebraic Sets

In this main chapter we devote our attention to the probability that the Brownian
Motion is in a semialgebraic set A ⊂ Rn, n ≤ 3, at time t. This probability is
given by

Pz(Bt ∈ A) =

δz(A), t = 0,

1

(2πt)
n
2

∫
A

e−
|x−z|2

2t dx, t > 0,

where z denotes the start value, see Remark 2.4.8. We are interested in the de-
finability of t 7→ Pz(Bt ∈ A) in an o-minimal structure and in finding asymptotic
expansions for this time evolution.

In the one-dimensional case in Section 3.1 we do not consider the probability
distribution of the Brownian Motion on a single set A, which, in this case, is defin-

33
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able in an arbitrary o-minimal structureM, but on a definable family of sets Aa.
At time zero, (a, z) 7→ Pz(B0 ∈ Aa) is definable in this o-minimal structureM. As
a result for t > 0, we show that (a, z, t) 7→ Pz(Bt ∈ Aa) is definable in the Pfaffian
closure ofM. For this purpose, we prove in Remark 3.1.1 the definability of the
error function using a result of Speissegger [Spe99]. In addition, we will use, here
and in every dimension, the important Cell Decomposition Theorem. By this, we
are able to decompose the integral over the set A into integrals over more simple
sets, more precisely over cells, which are intervals in the one-dimensional case, for
example.

In higher dimensions we restrict our research to a single arbitrary set A, which
is globally subanalytic and not only semialgebraic. The reason is that we would
have to enlarge the o-minimal structure R to Ran in the proof quite early anyway.
Furthermore, we assume without loss of generality that the dimension of A is equal
or greater than two. We can clearly concentrate on the case t > 0. For the sake of
convenience, we only study the standard Brownian Motion, where the start value
is zero. In consequence of the translation invariance, we may translate the start
value of a Brownian Motion from any time back to the origin. In other words, we
can transform every Brownian Motion to the standard Brownian Motion without
a loss. With respect to our probability distribution, we have only a translation of
A by the start value z. Under these conditions, we aggregate our setting for R2

and R3 in the next remark.

Remark (General setting for higher dimensions). In higher dimensions than one
let A ⊂ Rn be a globally subanalytic set with dimension n and the probability
distribution, which is given by the standard Brownian Motion, is represented as

f(t) :=
1

(2πt)
n
2

∫
A

e−
|x|2
2t dx,

where t > 0.

Extending our studies to R2 and R3 we face the problem that we cannot give
a general statement about the definability of f(t). Consequently, we focus estab-
lishing asymptotic expansions of f(t) in Section 3.2 and 3.3. Each of them starts
with some preparations.

In the two-dimensional case we are faced with integrals of the form
∫
e−s

2
s
k
q

+1ds,
for which we derive a recursive formula in Lemma 3.2.1, and furthermore some
asymptotic expansions. To find an asymptotic expansion of f(t), we will also
come across integrals of the form

∫
e−

r2

2t r ψ(r)dr in the main part of 3.2, where
ψ(r) is a bounded globally subanalytic function,which can be represented as a con-
vergent Puiseux series, Their asymptotic expansions will be ascertained in Lemma
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3.2.12 as t tends towards zero and in Lemma 3.2.24 as t approaches infinity in
several steps. As a conclusion of this section, we obtain that the asymptotic ex-
pansion of f(t) is a Puiseux series with positive exponents as t approaches zero,
which is stated in Theorem 3.2.15. As t → ∞, it is remarkable that f(t) is defin-
able in the o-minimal structure Ran by an important theorem of Comte, Lion, and
Rolin in [CLR00] if A is bounded. If A is unbounded we investigate an asymptotic
expansion of f(t) of the form ϕ0(t) +ϕ1(t) log(t), where ϕi are convergent Puiseux
series, and thus, the expansion is definable in Ran,exp.

The three-dimensional case also starts with some preparations. They contain
recursive formulas for

∫
e−s

2
s
k
q ds, see Lemma 3.3.1, and for

∫
e−s

2
s
k
q log(s)ds, see

Lemma 3.3.13, and some asymptotic expansions. Afterwards, we are confronted
with integrals of the form

∫
e
r2

2t r2ψ(r)dr and
∫
e−

r2

2t r2ψ(r) log(r)dr in the main
part. They are achieved by applying the polar transformation once again to f(t)
and by using an important result of Come, Lion, and Rolin [CLR00]. As t ap-
proaches zero, the asymptotic expansion of

∫
e
r2

2t r2ψ(r)dr will be established in
Lemma 3.3.25 and of

∫
e−

r2

2t r2ψ(r) log(r)dr in Lemma 3.3.27. In the case t tends
towards infinity, their asymptotics are stated in Lemma 3.3.42. Our results of this
section are resumed in Theorem 3.3.23. More precisely, f(t) has an asymptotic
expansion of the form

∑
(ck + dk log(t)) t

k
q , which is not necessarily convergent, as

t tends towards zero. This is stated in Theorem 3.3.30. As t approaches infinity
and if A is bounded, f(t) is definable in the o-minimal structure Ran,exp and of
the form ϕ0(t) + ϕ1(t) log(t), where ϕi are globally subanalytic functions. If A
is unbounded, the asymptotic expansion of f(t) is a constructible function of the
form ϕ0 +ϕ1 log(t) +ϕ2 log(t)2, where ϕi are convergent Puiseux series, and thus,
it is definable in Ran,exp. These results are proven in Theorem 3.3.43.

3.1 Definability in the One-Dimensional Case
First, we study the definability of the probability distribution given by the Brown-
ian Motion in R on a family of sets Aa := {x ∈ R | (a, x) ∈ A}, where A ⊂ Rn×R
is a set definable in an o-minimal structure M. For t > 0 this probability is
represented as

f : Rn × R× R>0 −→[0, 1],

(a, z, t) 7−→Pz(Bt ∈ Aa) =
1√
2πt

∫
Aa

e
−(x−z)2

2t dx,

by Remark 2.4.8. We show that f is definable in an o-minimal expansion ofM; in
the Pfaffian closure ofM. The trick of the proof is that the exponential function
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fits the requirements of Corollary 2.3.13. First, we prove that the error function is
definable in the Pfaffian closure in the next remark.

Remark 3.1.1. LetM be an o-minimal structure. The error function is definable
in the Pfaffian closure P(M).

Proof. Let g be the function defined as

g : R −→ R,
y 7−→ e−y

2

.

Then g is definable in the Pfaffian closure P(M). By Corollary 2.3.13, the an-
tiderivative of e−y2 , that is

x∫
0

e−y
2

dy
2.1.2
=

√
π

2
erf(x)

by Definition 2.1.2, is definable in P(P(M)) = P(M). �

The first goal of this chapter is to show definability of f(a, z, t) in the Pfaffian
closure by the next proposition.

Proposition 3.1.2. Let M be an arbitrary, but fixed o-minimal structure. Let
A ⊂ Rn × R be a set definable in M and Aa := {x ∈ R | (a, x) ∈ A} for a ∈ Rn.
The function

f : Rn × R× R>0 −→ [0, 1],

(a, z, t) 7−→ 1√
2πt

∫
Aa

e
−(x−z)2

2t dx,

is definable in the Pfaffian closure P(M).

Proof. By Cell Decomposition Theorem 2.3.15, we can partition A into finitely
many disjoint cells C1, . . . , Cp. Let πn : Rn+1 −→ Rn be the projection on the first
n coordinates. Let ψj, ϕj : πn(Cj) −→ R be continuous functions definable inM
such that ϕj < ψj for all j ∈ {1, . . . , p}. Then Cj has either the form

Cj = {(a, x) ∈ Rn × R | a ∈ πn(Cj) and ϕj(a) < x < ψj(a)}
or

Cj = {(a, x) ∈ Rn × R | a ∈ πn(Cj) and ϕj(a) < x}
or



3.1. Definability in the One-Dimensional Case 37

Cj = {(a, x) ∈ Rn × R | a ∈ πn(Cj) and x < ϕj(a)}
or

Cj = {(a, x) ∈ Rn × R | a ∈ πn(Cj) and ϕj(a) = x}
or

Cj = {(a, x) ∈ Rn × R | a ∈ πn(Cj)}.

By Definition 2.3.14 of a cell, the set (Cj)a = {x ∈ R | (a, x) ∈ Cj} is also a cell
for every a ∈ πn(Cj) and uniformly a point {ϕj(a)} or an open interval. We look
at the different cell types one by one.

Let Cj be of the form {(a, x) ∈ Rn × R | a ∈ πn(Cj) and ϕj(a) < x < ψj(a)}.
By substitution y = x−z√

2t
, we get

∫
(Cj)a

e
−(x−z)2

2t dx =

ψj(a)∫
ϕj(a)

e
−(x−z)2

2t dx

=
√

2t

ψj(a)−z√
2t∫

ϕj(a)−z√
2t

e−y
2

dy

2.1.2
=
√

2t

[√
π

2
erf(y)

]ψj(a)−z√
2t

ϕj(a)−z√
2t

=
√

2t

√
π

2

(
erf

(
ψj(a)− z√

2t

)
− erf

(
ϕj(a)− z√

2t

))
and we obtain definability in the Pfaffian closure ofM by Remark 3.1.1.

Let Cj be of the form {(a, x) ∈ Rn × R | a ∈ πn(Cj) and ϕj(a) < x}. By
substitution y = x−z√

2t
, we get

∫
(Cj)a

e
−(x−z)2

2t dx =

∞∫
ϕj(a)

e
−(x−z)2

2t dx

=
√

2t

∞∫
ϕj(a)−z√

2t

e−y
2

dy
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2.1.2
=
√

2t

[√
π

2
erf(y)

]∞
ϕj(a)−z√

2t

2.1.3
=

√
πt

2

(
1− erf

(
ϕj(a)− z√

2t

))
and we obtain definability in the Pfaffian closure ofM by Remark 3.1.1.

Let Cj be of the form {(a, x) ∈ Rn × R | a ∈ πn(Cj) and x < ϕj(a)}. By
substitution y = x−z√

2t
, we get

∫
(Cj)a

e
−(x−z)2

2t dx =

ϕj(a)∫
−∞

e
−(x−z)2

2t dx

=
√

2t

ϕj(a)−z√
2t∫

−∞

e−y
2

dy

2.1.2
=
√

2t

[√
π

2
erf(y)

]ϕj(a)−z√
2t

−∞

2.1.3
=

√
πt

2

(
erf

(
ϕj(a)− z√

2t

)
+ 1

)
and we obtain definability in the Pfaffian closure ofM by Remark 3.1.1.

Let Cj be of the form {(a, x) ∈ Rn × R | a ∈ πn(Cj) and x = ϕj(a)}. Then∫
(Cj)a

e
−(x−z)2

2t dx = 0

for all a ∈ πn(Cj), and we obtain obviously definability inM.

Let Cj be of the form {(a, x) ∈ Rn×R | a ∈ πn(Cj)}. By substitution y = x−z√
2t
,

we get ∫
(Cj)a

e
−(x−z)2

2t dx =

∞∫
−∞

e
−(x−z)2

2t dx

=
√

2t

∞∫
−∞

e−y
2

dy
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2.1.2
=
√

2t

[√
π

2
erf(y)

]∞
−∞

2.1.3
=

√
πt

2
2

=
√

2πt.

This function is semialgebraic and therefore obviously definable inM.
Hence, we can conclude that

f(z, t, a) =
1√
2πt

∫
Aa

e
−(x−z)2

2t dx

=
1√
2πt

p∑
j=1

∫
(Cj)a

e
−(x−z)2

2t dx

as a finite sum of definable functions is definable in the Pfaffian closure ofM. �

Corollary 3.1.3. The probability distribution given by the Brownian Motion with
start value z on a family of sets Aa, which is definable in an o-minimal structure
M, is definable in the Pfaffian closure P(M).
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3.2 The Two-Dimensional Case

3.2.1 Preparations

As part of this chapter we need the antiderivative of e−s2s
k
q

+1, where s ∈ R≥0,
k ∈ Z and q ∈ N, and some of its asymptotic expansions. The idea is to find a
recursive formula for

∫
e−s

2
s
k
q

+1ds by integrating by parts. The recursion skips 2q

steps; for this reason we rewrite integrals of the form
∫
e−s

2
s
k
q

+1ds as

Fq,j,k :=

∫
e−s

2

s
j
q

+2k−1ds,

where j ∈ {0, . . . , 2q − 1}. We denote definite integrals which belong to Fq,j,k as

Gq,j,k :=

b∫
a

e−s
2

s
j
q

+2k−1ds.

Furthermore, we show some asymptotic expansions. For this purpose, we reduce
these integrals above to finitely many integrals by recursion. That recursive for-
mula is shown in the next lemma.

Lemma 3.2.1. Let k ∈ Z, q ∈ N, and j ∈ {0, . . . , 2q − 1}. Up to an additive
constant, Fq,j,k is given by the recursive formula

Fq,j,k = −1

2
e−s

2

s
j
q

+2(k−1) +

(
j

2q
+ (k − 1)

)
Fq,j,k−1.

Proof. We proof the recursive formula by integration by parts. We choose e−s2s
and s

j
q

+2(k−1) as parts and get

Fq,j,k =

∫
e−s

2

s
j
q

+2k−1ds

=

∫
e−s

2

s s
j
q

+2(k−1)ds

= − 1

2
e−s

2

s
j
q

+2(k−1) +
1

2

(
j

q
+ 2(k − 1)

)∫
e−s

2

s
j
q

+2(k−1)−1ds

= − 1

2
e−s

2

s
j
q

+2(k−1) +

(
j

2q
+ (k − 1)

)
Fq,j,k−1.

�

In this way we can put down all the integrals
∫
e−s

2
s
j
q

+2k−1ds to finitely many
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integrals
∫
e−s

2
s
j
q
−1ds, which means to k = 0. For these special integrals, for which

k = 0, we need the antiderivative of e−s2s
j
q
−1.

Lemma 3.2.2. Let u ∈ Q≥0 and let s ∈ R>0. Up to an additive constant, we get∫
e−s

2

su−1ds = −1

2
Γ
(u

2
, s2
)
.

Proof. We make the change of variables s =
√
t and obtain∫

e−s
2

su−1ds =

∫
e−t
√
t
u−1 1

2

√
t
−1
dt

=
1

2

∫
e−t
√
t
u−2

dt

=
1

2

∫
e−tt

u
2
−1 dt. (1)

In Definition 2.1.11 we have already seen that the incomplete gamma function is
the antiderivative of e−tt

u
2
−1. Particularly, the integration limits should be taken

into consideration, because the mentioned incomplete gamma function depends on
them. We may assume a, b ∈ R>0, where a < b, are the integration limits and we
proceed with the results above:

b∫
a

e−s
2

su−1 ds
(1)
=

1

2

b2∫
a2

e−tt
u
2
−1 dt

=
1

2

∞∫
a2

e−tt
u
2
−1 dt− 1

2

∞∫
b2

e−tt
u
2
−1 dt

2.1.11
=

1

2
Γ
(u

2
, a2
)
− 1

2
Γ
(u

2
, b2
)

= − 1

2

(
Γ
(u

2
, b2
)
− Γ

(u
2
, a2
))

.

Hence, we can conclude ∫
e−s

2

su−1ds = −1

2
Γ
(u

2
, s2
)
.

�
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Corollary 3.2.3. Let u ∈ Q>0. We get

∞∫
0

e−s
2

su−1ds =
1

2
Γ
(u

2

)
.

Proof. By the same substitution as in Lemma 3.2.2 above, we achieve by Defini-
tion 2.1.6 of the gamma function

∞∫
0

e−s
2

su−1 ds =
1

2

∞∫
0

e−tt
u
2
−1 dt

2.1.6
=

1

2
Γ
(u

2

)
.

�

Perhaps the question arises why we investigate a recursive formula when we
easily get the antiderivative of Fq,j,k by Lemma 3.2.2? We could answer that
sometimes it is an advantage to reduce the integrals Fq,j,k to a finite number of
integrals Fq,j,0. But the crucial point is, that we cannot use Lemma 3.2.2 for Fq,j,k
if k is a non-positive integer. Therefore we use recursion to reduce these integrals
to integrals Fq,j,0 as we see later.

The special integrals for k = 0 are gathered in the next lemma. In fact,
(j, k) = (0, 1) is also a special case which is listed. We want to remark that for j = q

the antiderivative of the integral Fq,q,0 can also be represented by
√
π

2
erf(s) because

of Definition 2.1.2 respectively the relation which is stated in Remark 2.1.15.

Lemma 3.2.4. Let q ∈ N and let j ∈ {0, . . . , 2q− 1}. Up to an additive constant,
we obtain

Fq,j,0 =

∫
e−s

2

s
j
q
−1ds

= − 1

2
Γ

(
j

2q
, s2

)
and for (j, k) = (0, 1)

Fq,0,1 =

∫
e−s

2

s ds

= − 1

2
e−s

2

.
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Proof. First, we assume k = 0. We obtain up to an additive constant by
Lemma 3.2.2

Fq,j,0 =

∫
e−s

2

s
j
q
−1 ds

3.2.2
= − 1

2
Γ

(
j

2q
, s2

)
if the conditions j 6= 0 or s2 6= 0 are fulfilled, see Definition 2.1.6.

For the special case (j, k) = (0, 1) we get up to an additive constant

Fq,0,1 =

∫
e−s

2

s ds

= − 1

2
e−s

2

.

�

Now, we give some preparations for the case k > 0. First, we calculate the

integral
∞∫
0

e−s
2
s
j
q

+2k−1ds in the next lemma and afterwards, we devote our attention

to the asymptotic series expansions of the integrals
x∫
0

e−s
2
s
j
q

+2k−1ds, where k > 0

and x tends towards infinity.

Lemma 3.2.5. Let k ∈ N, q ∈ N, and let j ∈ {0, . . . , 2q − 1}. We obtain

∞∫
0

e−s
2

s
j
q

+2k−1ds =
k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)
.

Proof. We set Gq,j,k :=
∞∫
0

e−s
2
s
j
q

+2k−1ds. Let k = 1. By Definition 2.1.6 of the

gamma function and Remark 2.1.7, we ascertain

∞∫
0

e−s
2

s
j
q

+2−1ds
3.2.2
2.1.6=

1

2
Γ

(
j

2q
+ 1

)
.



44
Chapter 3. Definability and Asymptotic Expansion for the Time Evolution of the

Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

Therefore, we get by the recursive formula

∞∫
0

e−s
2

s
j
q

+2k−1ds
3.2.1
=

[
−1

2
e−s

2

s
j
q

+2(k−1)

]∞
0

+

(
j

2q
+ (k − 1)

)
Gq,j,k−1

I.H.
=

(
j

2q
+ (k − 1)

) k−2∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)

=
k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)
.

�

Lemma 3.2.6. Let k ∈ N, q ∈ N, x ∈ R>0, and let j ∈ {0, . . . , 2q−1}. As x→∞,
we achieve the asymptotic expansion

x∫
0

e−s
2

s
j
q

+2k−1ds ≈
k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)

− e−x2
∞∑
n=1

x
j
q

+2k−2n
n−1∏
l=1

(
j

2q
+ k − l

)
.

Proof. By using the asymptotic expansion of the incomplete gamma function in
Lemma 2.2.13 and Lemma 3.2.5, we get

x∫
0

e−s
2

s
j
q

+2k−1ds =

∞∫
0

e−s
2

s
j
q

+2k−1ds−
∞∫
x

e−s
2

s
j
q

+2k−1ds

3.2.5
2.1.11=

k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)
− 1

2
Γ

(
j

2q
+ k, x2

)
2.2.13
≈

k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)

− e−x2
∞∑
n=1

(x2)
j
2q

+k−n
n−1∏
l=1

(
j

2q
+ k − l

)
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=
k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)

− e−x2
∞∑
n=1

x
j
q

+2(k−n)
n−1∏
l=1

(
j

2q
+ k − l

)
.

�

Corollary 3.2.7. Let k ∈ N, q ∈ N, x ∈ R>0, and let j ∈ {0, . . . , 2q − 1}.
As x→∞, we get the dominant term

x∫
0

e−s
2

s
j
q

+2k−1ds ∼
k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)
.

Proof. It is an obvious consequence of Lemma 3.2.6. �

In the next paragraph we give preparations for the case that k is a non-posi-
tive integer. For calculating integrals with negative exponents we reorganize the
recursive formula of Lemma 3.2.1 in the following way.

Corollary 3.2.8. Let k ∈ Z<0, q ∈ N, and let j ∈ {0, . . . , 2q − 1}. Up to an
additive constant, Fq,j,k can also recursively be given by

Fq,j,k =
1

j
2q

+ k

(
1

2
e−s

2

s
j
q

+2k

)
+

1
j
2q

+ k
Fq,j,k+1.

Proof. We use the recursive formula

Fq,j,k = −1

2
e−s

2

s
j
q

+2(k−1) +

(
j

2q
+ (k − 1)

)
Fq,j,k−1

of Lemma 3.2.1. By reorganizing to the last term, we get for k < 1

Fq,j,k−1 =
1

j
2q

+ (k − 1)

(
1

2
e−s

2

s
j
q

+2(k−1)

)
+

1
j
2q

+ (k − 1)
Fq,j,k

and thus
Fq,j,k =

1
j
2q

+ k

1

2
e−s

2

s
j
q

+2k +
1

j
2q

+ k
Fq,j,k+1

for k < 0. �

In the next Lemma we see an application of the recursive formula in its form

for negative exponents and we calculate
∞∫
x

e−s
2
s
j
q

+2k−1ds where k < 0.
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Lemma 3.2.9. Let k ∈ Z<0, x ∈ R>0, where x ≥ 1, q ∈ N, and j ∈ {0, . . . , 2q−1}.
We get

∞∫
x

e−s
2

s
j
q

+2k−1ds =
−1
j
2q

+ k

1

2
e−x

2

x
j
q

+2k −
−k−1∑
m=1

(
−k−m∏
`=0

1
j
2q

+ k + `

)
1

2
e−x

2

x
j
q
−2m

+

(
−k∏
`=1

1
j
2q
− `

)
1

2
Γ

(
j

2q
, x2

)
.

Proof. We set Gq,j,k(x) :=
∞∫
x

e−s
2
s
j
q

+2k−1ds. We start the induction with k = −1.

We ascertain by the special values for k = 0 in Lemma 3.2.4 and the recursive
formula in Corollary 3.2.8

Gq,j,−1(x)
3.2.8
=

[
1

j
2q
− 1

1

2
e−s

2

s
j
q
−2

]∞
x

+
1

j
2q
− 1

Gq,j,0

3.2.4
=

−1
j
2q
− 1

1

2
ex

2

x
j
q
−2 +

1
j
2q
− 1

[
−1

2
Γ

(
j

2q
, s2

)]∞
x

2.1.12
=

−1
j
2q
− 1

1

2
ex

2

x
j
q
−2 +

1
j
2q
− 1

1

2
Γ

(
j

2q
, x2

)
.

For the induction step we get by applying Corollary 3.2.8

Gq,j,k(x)
3.2.8
=

[
1

j
2q

+ k

1

2
e−s

2

s
j
q

+2k

]∞
x

+
1

j
2q

+ k
Gq,j,k+1(x)

I.H.
=

−1
j
2q

+ k

1

2
e−x

2

x
j
q

+2k +
1

j
2q

+ k

[
−1

j
2q

+ (k + 1)

1

2
e−x

2

x
j
q

+2(k+1)

−
−(k+1)−1∑
m=1

−(k+1)−m∏
`=0

1
j
2q

+ (k + 1) + `

 1

2
e−x

2

x
j
q
−2m

+

−(k+1)∏
`=1

1
j
2q
− `

 1

2
Γ

(
j

2q
, x2

)
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=
−1
j
2q

+ k

1

2
e−x

2

x
j
q

+2k +
1

j
2q

+ k

[
−1

j
2q

+ (k + 1)

1

2
e−x

2

x
j
q
−2(−(k+1))

−
−(k+2)∑
m=1

−(k+1)−m∏
`=0

1
j
2q

+ (k + 1) + `

 1

2
e−x

2

x
j
q
−2m


+

1
j
2q

+ k

(
−k−1∏
`=1

1
j
2q
− `

)
1

2
Γ

(
j

2q
, x2

)
=

−1
j
2q

+ k

1

2
e−x

2

x
j
q

+2k

+
1

j
2q

+ k

− −k−1∑
m=1

−(k+1)−m∏
`=0

1
j
2q

+ k + 1 + `

 1

2
e−x

2

x
j
q
−2m


+

(
−k∏
`=1

1
j
2q
− `

)
1

2
Γ

(
j

2q
, x2

)
=

−1
j
2q

+ k

1

2
e−x

2

x
j
q

+2k

+
1

j
2q

+ k

− −k−1∑
m=1

−(k+1)−m+1∏
`=1

1
j
2q

+ k + `

 1

2
e−x

2

x
j
q
−2m


+

(
−k∏
`=1

1
j
2q
− `

)
1

2
Γ

(
j

2q
, x2

)
=

−1
j
2q

+ k

1

2
e−x

2

x
j
q

+2k

−
−k−1∑
m=1

(
−k−m∏
`=0

1
j
2q

+ k + `

)
1

2
e−x

2

x
j
q
−2m

+

(
−k∏
`=1

1
j
2q
− `

)
1

2
Γ

(
j

2q
, x2

)
.

�

Next, we establish the asymptotic expansion of
∞∫
x

e−s
2
s
j
q

+2k−1ds, where k ≤ 0,

as x tends towards zero by using the asymptotic series expansion of the exponential

function. We have to consider that
∞∫
x

e−s
2
s−1ds is special for x approaching zero.
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Lemma 3.2.10. Let k ∈ Z≤0, q ∈ N, x ∈ R>0, and let j ∈ {0, . . . , 2q − 1}.
As x→ 0,

∞∫
x

e−s
2

s
j
q

+2k−1ds

has for j 6= 0 the asymptotic expansion

dj,k +
∞∑
n=0

bj,k,n x
j
q

+2(n+k)

and for j = 0 the asymptotic expansion

d0,k +
∞∑
n=0

b0,k,n x
2(n+k) + (−1)−k+1 1

(−k)!
log(x),

where

bj,k,n :=

{
0, j = 0 and n = −k,
(−1)n+1 1

( jq+2(n+k))n!
, else,

and

dj,k :=



∞∑
n=0

(−bj,0,n) + 1
2
Γ
(
j
2q
, 1
)
, k = 0,

∞∑
n=0

(−bj,k,n)− 1
j
2q

+k

1
2
e−1 −

−k−1∑
m=1

(
−k−m∏̀

=1

1
j
2q

+k+`

)
1
2
e−1

+

(
−k∏̀
=1

1
j
2q
−`

)
1
2
Γ
(
j
2q
, 1
)
, k < 0.

Proof. We set Gq,j,k(x) :=
∞∫
x

e−s
2
s
j
q

+2k−1ds. As x→ 0, we can write

Gq,j,k(x) =

1∫
x

e−s
2

s
j
q

+2k−1ds+

∞∫
1

e−s
2

s
j
q

+2k−1ds.
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According to Lemma 3.2.4, we set for k = 0

cj,0 :=

∞∫
1

e−s
2

s
j
q
−1ds

3.2.4
=

1

2
Γ

(
j

2q
, 1

)
and for k < 0 according to Lemma 3.2.9

cj,k :=

∞∫
1

e−s
2

s
j
q

+2k−1ds

3.2.9
=

−1
j
2q

+ k

1

2
e−1 −

−k−1∑
m=1

(
−k−m∏
`=1

1
j
2q

+ k + `

)
1

2
e−1 +

(
−k∏
`=1

1
j
2q
− `

)
1

2
Γ

(
j

2q
, 1

)
.

Hence, we attain with the asymptotic expansion of the exponential function in
Lemma 2.2.11 and above

Gq,j,k(x) =

1∫
x

e−s
2

s
j
q

+2k−1ds+

∞∫
1

e−s
2

s
j
q

+2k−1ds

2.2.11
=

1∫
x

∞∑
n=0

(−1)ns2n 1

n!
s
j
q

+2k−1ds+ cj,k

=
∞∑
n=0

(−1)n
1

n!

1∫
x

s
j
q

+2(n+k)−1ds+ cj,k.

It is necessary to distinguish between two cases. First, we may assume j 6= 0 and
consequently we get j

q
+ 2(n+ k) 6= 0 for all n ∈ N0. We have

Gq,j,k(x) =
∞∑
n=0

(−1)n
1

n!

1∫
x

s
j
q

+2(n+k)−1ds+ cj,k

=
∞∑
n=0

(−1)n
1

n!

[
1

j
q

+ 2(n+ k)
s
j
q

+2(n+k)

]1

x

+ cj,k

=
∞∑
n=0

(−1)n+1 1

n!

1
j
q

+ 2(n+ k)
x
j
q

+2(n+k) + dj,k,
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where we were able to set

dj,k :=
∞∑
n=0

(−1)n
1(

j
q

+ 2(n+ k)
)
n!

+ cj,k,

because the series
∞∑
n=0

(−1)n 1

( jq+2(n+k))n!
converges. Next, we may assume j = 0.

Since 2(n+ k) = 0 for n = −k, we split the sum and achieve

Gq,0,k(x) =
∞∑
n=0

(−1)n
1

n!

1∫
x

s2(n+k)−1ds+ c0,k

=
∞∑
n=0
n6=−k

(−1)n
1

n!

1∫
x

s2(n+k)−1ds+ (−1)k
1

(−k)!

1∫
x

s−1ds+ c0,k

=
∞∑
n=0
n6=−k

(−1)n
1

n!

[
1

2(n+ k)
s2(n+k)

]1

x

+ (−1)k
1

(−k)!
[log(s)]1x + c0,k

= d0,k +
∞∑
n=0
n6=−k

(−1)n+1 1

n!

1

2(n+ k)
x2(n+k) + (−1)k+1 1

(−k)!
log(x),

where we were able to set

d0,k :=
∞∑
n=0
n6=−k

(−1)n
1

2(n+ k)n!
+ c0,k,

because the series
∞∑
n=0
n6=−k

(−1)n 1
2(n+k)n!

converges.

Finally, we set

bj,k,n :=

{
0, j = 0 and n = −k,
(−1)n+1 1

( jq+2(n+k))n!
, else,

and

dj,k :=
∞∑
n=0

(−bj,k,n) + cj,k.

�
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3.2.2 Definability and Asymptotic Expansions

Extending our research to R2 we work on the definability and the asymptotic
expansion of the probability distribution given by the standard Brownian Motion
on a globally subanalytic set A ⊂ R2 for time t > 0. By Remark 2.4.8, this
probability is given by

f : R>0 −→ [0, 1],

t 7−→ P0(Bt ∈ A) =
1

2πt

∫
A

e
−|x|2

2t dx.

In the following main part, as well in R3 below, we consider the probability dis-
tribution on a globally subanalytic set and not only on a semialgebraic set. The
reason is that we would have to enlarge the o-minimal structure R to Ran in our
proof quite early anyway. As we mentioned above, we assume without loss of
generality that the dimension of A is equal two to avoid integration over a null
set. In R2 we face the problem that we cannot give a general statement about the
definability of f(t). Therefore, we devote our attention to the limit points of t.
We investigate asymptotic expansions of f(t) as t tends towards zero and towards
infinity and we examine the definability of f(t) there. The next theorem gathers
our results :

Theorem 3.2.11. Let t ∈ R>0 and let A ⊂ R2 be a globally subanalytic set. Let
f(t) be the probability distribution given by the standard Brownian Motion at time t
on A, which is defined as

f(t) :=
1

2πt

∫
A

e−
|x|2
2t dx.

i) As t→ 0, f(t) has the asymptotic series expansion

∞∑
k=0

γkt
k
q ,

which is not necessarily convergent, where γk ∈ R and q ∈ N.

ii) As t→∞:

a) If A is bounded, f(t) is definable in Ran and therefore a convergent
Puiseux series.
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b) If A is unbounded, f(t) has the asymptotic series expansion

f(t) ≈ ρ0(t) + ρ1(t) log(t),

where ρ0(t) =
∞∑
k=0

δkt
− k
q and ρ1(t) =

∞∑
k=1

γkt
−k, where at least one of

the series is not zero and δk, γk ∈ R, are convergent Puiseux series and
therefore, the asymptotic expansion is definable in Ran,exp.

As t tends towards infinity, we notice that it makes a vital difference if the set
A is bounded or not. We prove this theorem in several small steps below and part
it into the cases t tends towards zero and t approaches infinity.

The Case t at Zero

Our first aim is to show that 1
2πt

∫
A

e−
|x|2
2t dx behaves like a Puiseux series as t ap-

proaches zero. For this purpose, we need the asymptotic behaviour respectively
the order of integrals of the form∫

D

e−
r2

2t r ψ(r) dr,

where ψ(r) is a globally subanalytic continuous function, which is bounded on an
open interval D ⊂ R≥0 ∪ {∞}. As we will see later on, we can reduce D to three
forms of intervals by using the so-called cell decomposition. They are given by:
]0, β[, where β < 1, ]α, β[, where 0 < α < β <∞, and ]α,∞[, where α ≥ 1.

First, we may assume D = ]0, β[. The function ψ(r) can be written as a conver-
gent Puiseux series around the center zero by the so-called Preparation Theorem
as we will argue later. As part of the next lemma we obtain integrals of the form
β∫
0

e−
r2

2t r
j
q

+2k−1 dr which we can convert to
x∫
0

e−s
2
s
j
q

+2k−1 ds as x approaches infin-

ity by substitution. These integrals and their asymptotics expansions have already
been pointed out in Lemma 3.2.6.

Lemma 3.2.12. Let β ∈ R>0. Let ψ(r) be a bounded function on ]0, β[, which

can be represented as the convergent Puiseux series
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k at 0, where

q ∈ N. As t→ 0 , we get the asymptotic series expansion

β∫
0

e−
r2

2t r ψ(r) dr ≈
∞∑
k=0

2q−1∑
j=0

âj,kt
j
2q

+k+1,
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where âj,k := aj,k2
j
2q

+k+1
k∏̀
=1

(
j
2q

+ `
)

1
2
Γ
(
j
2q

+ 1
)
.

Proof. We set F (t) :=
β∫
0

e−
r2

2t r ψ(r) dr. We can split F (t) into

F (t) =

β∫
0

e−
r2

2t r

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2kdr

=

β∫
0

e−
r2

2t

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k+1dr

=

β∫
0

e−
r2

2t

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k+1dr +

β∫
0

e−
r2

2t

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k+1dr.

First, we show as t→ 0

F (t)−
β∫

0

e−
r2

2t

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k+1dr = O
(
tN+2

)
for sufficiently large N ∈ N, where N is a multiple of q. We make a change of
variables s = r√

2t
and achieve by the split of F (t) above

F (t)−
β∫

0

e−
r2

2t

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k+1dr

=

β∫
0

e−
r2

2t

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k+1dr

=

β√
2t∫

0

e−s
2

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k+1√
2t ds.

By estimation of the remainder, we have

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k+1

≤ C
(
s
√

2t
)2(N+1)+1
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for 0 ≤ s
√

2t ≤ β and a sufficiently large constant C ∈ R. Thus, we can continue∣∣∣∣∣∣∣∣
β√
2t∫

0

e−s
2

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k+1√
2t ds

∣∣∣∣∣∣∣∣
≤ C

β√
2t∫

0

e−s
2
(
s
√

2t
)2(N+1)+1√

2t ds

=
√

2t
2(N+1)+2

C

β√
2t∫

0

e−s
2

s2(N+1)+1 ds

≤
√

2t
2(N+2)

C

∞∫
0

e−s
2

s2(N+1)+2−1 ds

=
√

2t
2(N+2)

C

∞∫
0

e−s
2

s2(N+2)−1 ds

3.2.3
=
√

2t
2(N+2)

C
1

2
Γ (N + 2) . (1)

By Definition 2.2.1, we conclude

F (t)−
β∫

0

e−
r2

2t

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k+1dr =

β∫
0

e−
r2

2t

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k+1dr

(1)
= O

(
tN+2

)
. (2)

We proceed by a change of variables s = r√
2t

and write

F (t) =
∞∑
k=0

2q−1∑
j=0

aj,k
√

2t
j
q

+2k+2

β√
2t∫

0

e−s
2

s
j
q

+2k+1ds

=
∞∑
k=0

2q−1∑
j=0

aj,k
√

2t
j
q

+2(k+1)

β√
2t∫

0

e−s
2

s
j
q

+2(k+1)−1ds
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=
∞∑
k=0

Fk+1(t),

where Fk(t) :=
2q−1∑
j=0

aj,k−1

√
2t

j
q

+2k

β√
2t∫

0

e−s
2
s
j
q

+2k−1ds. The asymptotic series expan-

sion of

β√
2t∫

0

e−s
2
s
j
q

+2k−1ds is

k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)
− e−

β2

2t

∞∑
n=1

(
β√
2t

) j
q

+2k−2n n−1∏
l=1

(
j

2q
+ k − l

)
and has already been pointed out in Lemma 3.2.6. In addition, we have proven in
Corollary 3.2.7

β√
2t∫

0

e−s
2

s
j
q

+2k−1ds
3.2.7∼

k−1∏
l=1

(
j

2q
+ l

)
1

2
Γ

(
j

2q
+ 1

)
. (3)

Due to the fact that e−
β2

2t tends towards zero very fast in comparison to tN , N ∈ N,
if t approaches zero, only the constant terms are of interest. Hence, we get the
asymptotic expansion F̂k(t) of Fk(t) as t→ 0, that is

F̂k(t) =

2q−1∑
j=0

aj,k−1

√
2t

j
q

+2k
k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)

=

2q−1∑
j=0

aj,k−12
j
2q

+k
k−1∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)
t
j
2q

+k

=

2q−1∑
j=0

âj,k−1t
j
2q

+k,

where âj,k := aj,k2
j
2q

+k+1
k∏̀
=1

(
j
2q

+ `
)

Γ
(
j
2q

+ 1
)
, and we observe that

F̂k(t) = O
(
tk
)
. (4)
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We set

F̂ (t) :=
∞∑
k=0

F̂k+1(t)

=
∞∑
k=0

2q−1∑
j=0

âj,kt
j
2q

+k+1.

Due to this, it is evident by

F (t)− F̂
∣∣
N

(t) =
∞∑
k=0

Fk+1(t)−

(
∞∑
k=0

F̂k+1(t)

)∣∣
N

(4)
=

∞∑
k=0

Fk+1(t)−
N∑
k=0

F̂k+1

∣∣
N

(t)

=
N∑
k=0

Fk+1(t)−
N∑
k=0

F̂k+1

∣∣
N

(t) +
∞∑

k=N+1

Fk+1(t)

(2)
=

N∑
k=0

(
Fk+1(t)− F̂k+1

∣∣
N

(t)
)

+O
(
tN+2

)
(3)
= O

(
tN+2

)
that

F (t) ≈ F̂ (t)

and as a consequence, F (t) behaves like a Puiseux series. �

To achieve our aim, it is enough to show that the integrals
∞∫
α

e
−r2
2t r ψ(r)dr are in

the scale O
(
e
−α2
2t t
)
, where ψ(r) is a continuous and bounded function on ]α,∞[.

Lemma 3.2.13. Let α ∈ R, where α ≥ 1, and let ψ(r) be a continuous and
bounded function on ]α,∞[. As t→ 0, we obtain

∞∫
α

e
−r2
2t r ψ(r)dr = O

(
e
−α2
2t t
)
.

Proof. It exists a sufficiently large constant C such that ψ(r) ≤ C on ]α,∞[. By
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a change of variables s = r√
2t
, we attain∣∣∣∣∣∣

∞∫
α

e
−r2
2t r ψ(r)dr

∣∣∣∣∣∣ ≤ C

∞∫
α

e
−r2
2t r dr

= C
√

2t

∞∫
α√
2t

e−s
2

s
√

2t ds

3.2.4
= C 2t

[
−1

2
e−s

2

]∞
α√
2t

= C te−
α2

2t

and with Definition 2.2.1 we come to the conclusion
∞∫
α

e
−r2
2t r ψ(r)dr = O

(
e
−α2
2t t
)
.

�

The next lemma considers
β∫
α

e−
r2

2t r ψ(r)dr, where ψ(r) is also a continuous and

bounded function on ]α, β[ and 0 < α < β < ∞. An argument quite similar to
the one used in the last lemma shows that we achieve essentially the same order
as above.

Lemma 3.2.14. Let ]α, β[⊂ R>0, where 0 < α < β < ∞, and let ψ(r) be a
continuous and bounded function on ]α, β[. As t→ 0, we have

β∫
α

e−
r2

2t r ψ(r)dr = O
(
e−

α2

2t t
)
.

Proof. There is a sufficiently large constant C ∈ R such that ψ(r) ≤ C on ]α, β[.
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We make a change of variables s = r√
2t

and get∣∣∣∣∣∣
β∫
α

e−
r2

2t r ψ(r)dr

∣∣∣∣∣∣ ≤
β∫
α

e−
r2

2t r Cdr

≤ C

∞∫
α

e−
r2

2t rdr

Thus, we obtain with the same proof as in Lemma 3.2.13 as t→ 0

β∫
α

e−
r2

2t r ψ(r)dr
2.2.1
= O

(
e−

α2

2t t
)
.

�

Now, we return to the integrals 1
2πt

∫
A

e
−|x|2

2t dx and ascertain their asymptotic se-

ries expansion as t tends towards zero. The idea of the proof is that we transform
1

2πt

∫
A

e
−|x|2

2t dx in polar coordinates and apply the Cell Decomposition Theorem.

As a result, we obtain integrals of the form
β∫
0

e−
r2

2t r ψ(r)dr,
∞∫
α

e−
r2

2t r ψ(r)dr, and

β∫
α

e−
r2

2t r ψ(r)dr, which we have already pointed out in the lemmas above. After-

wards, we show that 1
2πt

∫
A

e
−|x|2

2t dx behaves like a Puiseux series as t approaches

zero by using these preceding lemmas.

Theorem 3.2.15. Let A ⊂ R2 be a globally subanalytic set. Let f : R>0 → [0, 1]
be the function given by

f(t) =
1

2πt

∫
A

e
−|x|2

2t dx.

As t→ 0, we have the asymptotic series expansion

f(t) ≈
∞∑
k=0

γkt
k
q ,

where γk ∈ R.
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Proof. Let

Θ : R≥0 × ]− π, π] −→ R× R,
(r, ϕ) 7−→ (r cosϕ, r sinϕ),

be the two dimensional polar coordinate transformation. First, we transform f(t)
in polar coordinates by Transformation Theorem 2.1.17 and get

f(t) =
1

2πt

∫
A

e
−|x|2

2t dx

2.1.17
=

1

2πt

∫
Θ−1(A)

e
−|(r cosϕ,r sinϕ)|2

2t r d(r, ϕ)

=
1

2πt

∫
Θ−1(A)

e
−r2
2t r d(r, ϕ).

The function Θ is continuous and definable in the o-minimal structure Ran, conse-
quently B := Θ−1(A) ⊂ R≥0×]−π, π] is also definable in Ran. By Cell Decomposi-
tion Theorem 2.3.15, we can partition B into finitely many disjoint cells C1, . . . , Cp.
For the sake of convenience we fix j ∈ {1, . . . , p} and write C := Cj. Let
π1 : R≥0 × [−π, π]→ R≥0 be the projection on the first coordinate, letD := π1(C),
and let ψ, η : D → [−π, π] be definable continuous functions such that η < ψ and
such that

C = {(r, ϕ) ∈ R≥0 × [−π, π] | r ∈ D and η(r) < ϕ < ψ(r)}.

Due to integration, we can reduce the different cell types of Definition 2.3.14 to
this single cell C. As angular part of the cell both |η| and |ψ| are bounded by π.
Cells are defined inductively, for this reason D ⊂ R is also a cell and either a point
{α} or an open interval ]α, β[ with α, β ∈ R≥0 ∪ {∞} and α < β. If D is a point,
the integrals over D will be zero.
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Using Fubini’s Theorem 2.1.18, we get

∫
C

e−
r2

2t r d(r, ϕ)
2.1.18
=

∫
D

ψ(r)∫
ϕ=η(r)

e−
r2

2t r dϕ dr

=

∫
D

e−
r2

2t r

ψ(r)∫
η(r)

dϕ dr

=

∫
D

e−
r2

2t r (ψ(r)− η(r)) dr

=

∫
D

e−
r2

2t r ψ(r) dr −
∫
D

e−
r2

2t r η(r) dr.

If B is a bounded set, then the cells C of its cell decomposition are also bounded
and D is either a point or a bounded interval. If B is unbounded, so the cells C of
its cell decomposition could be bounded, but at least one cell is unbounded. That
means D, if an unbounded cell C is based on, could also be an interval of the form
]α,∞[.

First, we study α = 0 and β <∞. By a refined cell decomposition, we may
assume β < 1. By the Preparation Theorem 2.3.18, there is such a cell decom-
position of B, so that ψ(r) can be represented as a convergent Puiseux series at
zero. Caused by the boundedness of ψ(r), this Puiseux series has only positive
exponents. As t→ 0, we have established in Lemma 3.2.12

β∫
0

e−
r2

2t r ψ(r) dr ≈
∞∑
k=0

2q−1∑
j=0

âj,kt
j
2q

+k+1, (1)

where q ∈ N and âj,k are constants in R. Analogously, we obtain the asymptotic

expansion of
β∫
0

e−
r2

2t r η(r)dr. By the requirements above, it is η(r) < ψ(r) and

thus, ψ(r)− η(r) > 0. We get that

β∫
0

e−
r2

2t r (ψ(r)− η(r)) dr > 0 (2)

and it has the asymptotic series expansion
∞∑
k=0

2q−1∑
j=0

cj,kt
j
2q

+k+1,where cj,k ∈ R is the
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difference of the coefficients of the asymptotic expansion in (1) and that one of
η(r). Consequently, it behaves like a Puiseux series.

For 0 < α < β <∞ we have proven as t→ 0

β∫
α

e−
r2

2t r ψ(r) dr = O
(
e
−α2
2t t
)

in Lemma 3.2.14. With the same arguments as above we attain

β∫
α

e−
r2

2t r ψ(r) dr −
β∫
α

e−
r2

2t r η(r) dr = O
(
e
−α2
2t t
)
.

If C is unbounded, as previously mentioned, at least one D is consequently
unbounded. That means D could also be an interval of the form ]α,∞[ where
α ∈ R>0. By refined cell decomposition, we can assume α ≥ 1. In Lemma 3.2.13
we have already seen that

∞∫
α

e−
r2

2t r ψ(r)dr = O
(
e−

α2

2t t
)
,

as t→ 0. With the same arguments as above we get

∞∫
α

e−
r2

2t r ψ(r) dr −
∞∫
α

e−
r2

2t r η(r) dr = O
(
e
−α2
2t t
)
.

Finally, we gather the results. We have the fact e−
α2

2t t = O
(
tN
)
for an arbitrary

N ∈ N. Hence, the cells that are based on cells D of the form ]α, β[ or ]α,∞[,
where α 6= 0, do not contribute to the integral over the total set in our scale tN .
Thus, we sum up

1

2πt

∫
Θ−1(A)

e
−r2
2t r d(r, ϕ) =

1

2πt

p∑
j=1

∫
Cj

e−
r2

2t r d(r, ϕ)

≈
∞∑
k=0

2q−1∑
m=0

dk,mt
m
2q

+k,

where dk,m ∈ R. This is the desired conclusion. �
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In this thesis we focus on asymptotic expansions in a polynomial scale. There-
fore, we want to remark the following points about the established asymptotic
expansion above.

Remark 3.2.16. a) If the closure of the globally subanalytic set A does not
contain zero or if the dimension of A at zero is one, the asymptotic expansion
of the function f(t) above vanishes in respect to the polynomial scale.

b) If zero is in the closure of A and the dimension of A at zero is two, the
asymptotic expansion of f(t) does not vanish in respect to the polynomial
scale.

Proof. First, we give the arguments for the statement in a). If zero is not in the

closure of the set A, we will have only integrals of the form
β∫
α

e−
r2

2t r ψ(r)dr and
∞∫
α

e−
r2

2t r ψ(r)dr, α > 0, after cell decomposition. We have proven in Lemma 3.2.14

that
β∫
α

e−
r2

2t r ψ(r) dr = O
(
e
−α2
2t t
)

and in Lemma 3.2.13 that
∞∫
α

e−
r2

2t r ψ(r)dr =

O
(
e−

α2

2t t
)
as t→ 0. Thus, the asymptotic expansion of f(t) has a scale like e

−α2
2t t

and the asymptotic expansion of the function f(t) above vanishes in respect to the
polynomial scale. If the dimension of A at zero is one, the integral over the cell
which contains zero vanishes and by the same arguments as above the asymptotic
expansion of the function f(t) above vanishes in respect to the polynomial scale.

For b) we consider
β∫
0

e−
r2

2t r (ψ(r)− η(r)) dr in (2) in the proof of Theorem 3.2.15.

We recall that ψ(r)− η(r) > 0 and thus, there are constants σ ∈ Q>0 and C > 0

such that ψ(r)−η(r) ≥ Crσ for all r ∈]0, β]. We obtain
β∫
0

e−
r2

2t r (ψ(r)− η(r)) dr ≥

C
β∫
0

e−
r2

2t rσ+1dr, of which the asymptotic expansion has polynomial scale as we

have already seen. We can conclude that the asymptotic expansion of f(t) does
not vanish in respect to the polynomial scale. �

Finally, we would like to point out another property of the asymptotic expan-
sion.

Remark 3.2.17. The asymptotic expansion of f(t) as t tends towards zero is not
necessarily convergent.

Proof. We show this statement by a short example.
Let B be the globally subanalytic set {(r, ϕ) ∈ [0, 1

2
]× [0, π] | 0 < ϕ < 1+r

1−r}, which
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is given in polar coordinates. We set ψ(r) := 1+r
1−r and obviously |ψ(r)| is bounded

on [0, 1
2
] by π. Using Fubini’s Theorem 2.1.18, we get

∫
B

e−
r2

2t r d(r, ϕ)
2.1.18
=

1
2∫

r=0

ψ(r)∫
ϕ=0

e−
r2

2t r dϕ dr

=

1
2∫

0

e−
r2

2t rψ(r) dr.

The well-known geometric series
∞∑
n=0

qn has the limit 1
1−q if q < 1. Using this,

ψ(r) can be represented as (1 + r)
∞∑
k=0

rk =
∞∑
k=0

1∑
j=0

rj+k. In (1) in Theorem 3.2.15

we have shown the asymptotic expansion of
β∫
0

e−
r2

2t r ψ(r)dr, β < 1, which is

∞∑
k=0

2q−1∑
j=0

âj,kt
j
2q

+k+1. The coefficients âj,k are given in Lemma 3.2.12 as

âj,k = aj,k2
j
2q

+k+1
k∏
`=1

(
j

2q
+ `

)
1

2
Γ

(
j

2q
+ 1

)
,

where aj,k are the coefficients of the series representation of ψ(r). In our example

it is aj,k = 1 for all j and k. Thus, the asymptotic expansion of
1
2∫

0

e−
r2

2t r ψ(r)dr

does not converge and in consequence, the asymptotic expansion of
∫
B

e−
r2

2t r d(r, ϕ)

does not converge. �

The Case t at Infinity

Now, we consider the case t tends towards infinity and we study the definabil-
ity respectively the asymptotic behaviour of 1

2πt

∫
A

e
−|x|2

2t dx. For this purpose, we

consider again integrals of the form∫
D

e−
r2

2t ψ(r)dr, (1)
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where ψ(r) is a globally subanalytic function, which is bounded on an open interval
D ⊂ R≥0∪{∞}. More precisely, we show these integrals are definable in Ran if A,
consequently D, is bounded. The harder part is if A respectively D is unbounded.
In this case, we ascertain asymptotic expansions by reducing the integrals in (1)

to
∞∫
x

e−s
2
s
j
q
−2k−1ds as x approaches zero, which is discussed further in this work.

First, we may assume D is bounded and we consider the following important
remark.

Remark 3.2.18. Let D ⊂ R≥0 be a bounded interval and let ψ(r) be a bounded
function on D definable in Ran. As t→∞,∫

D

e−
r2

2t r ψ(r)dr

is definable in Ran and strictly positive.

Proof. For large t we get e
−r2
2t is a restricted analytic function on D and subse-

quently it is definable in Ran. Due to the fact that e
−r2
2t and ψ(r) are definable

in Ran, they fulfill the conditions of Theorem 2.3.16. Applying this theorem, we
attain that, in our context, ∫

D

e−
r2

2t r ψ(r)dr

is of the form ϕ(t
1
q ), q ∈ N, where ϕ is a strictly positive globally subanalytic

function and as a result the integral is definable in Ran. In our case, the log-term
which is stated in Theorem 2.3.16 does not appear. We could additionally prove
this by using the Taylor expansion of the exponential function and by integrating
it as usual. �

Now, we may assumeD is unbounded and therefore we consider
∞∫
α

e−
r2

2t r ψ(r)dr,

where α > 1. By arguments which we will bring later, ψ(r) is representable as a
convergent Puiseux series. Due to the boundedness of ψ(r), it can be written as

a0 +
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1), where a0 and aj,k are coefficients in R. In several lemmas

we show the asymptotic expansion of
∞∫
α

e−
r2

2t r ψ(r)dr as t tends towards infinity

by establishing expansions of these integrals for parts of ψ(r).
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Lemma 3.2.19. Let α ∈ R. As t→∞, we have the asymptotic series expansion

∞∫
α

e−
r2

2t r dr =
∞∑
n=0

(−1)n
α2n

2nn!
t1−n,

which is definable in Ran.

Proof. We achieve by a change of variables s = r√
2t

∞∫
α

e−
r2

2t r dr =

∞∫
α√
2t

e−s
2

s
√

2t
√

2tds

= 2t

[
−1

2
e−s

2

]∞
α√
2t

= te
−α2
2t .

For large t we get e
−α2
2t is a restricted analytic function and subsequently te

−α2
2t is

definable in Ran. Applying Lemma 2.2.11, we get as t→∞

te
−α2
2t = t

∞∑
n=0

(−1)n

(
α2

2t

)n
n!

=
∞∑
n=0

(−1)n
α2n

2nn!
t1−n.

�

Subsequently, we ascertain the asymptotic series expansion of the integrals
∞∫
α

e−
r2

2t r
2q−1∑
j=0

aj,kr
j
q
−2(k+1)dr, where the sum

2q−1∑
j=0

aj,kr
j
q
−2(k+1) is a summand of the

convergent Puiseux series which represents ψ(r), as preparation for Lemma 3.2.23.

The idea of the proof is to reduce our problem to
∞∫
x

e−s
2
s
j
q
−2k−1ds as x approaches

zero. We have already ascertained the asymptotics for these integrals in 3.2.10 in
Preparations 3.2.1.
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Lemma 3.2.20. Let q ∈ N, α ∈ R, where α > 1, and let
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1)

be a convergent Puiseux series, which describes a bounded function on ]α,∞[ .
As t→∞, we achieve for k ≥ 0

2q−1∑
j=0

aj,k

∞∫
α

e−
r2

2t r r
j
q
−2(k+1)dr ≈

2q−1∑
j=0

δj,kt
j
2q
−k + λk log (t) t−k

+
∞∑
n=0

2q−1∑
j=0

γj,k,nt
−n,

where λk := 1
2
a0,k(−1)k2−k 1

k!
,

γj,k,n :=

0, j = 0 and n = k,

(−1)n+1

2nn!
aj,k

α
j
q+2(n−k)

j
q

+2(n−k)
, else,

and

δj,k :=

{
a0,k2

−k [d0,k + (−1)k+1 1
k!

(log(α)− 1
2

log(2))
]
, j = 0,

aj,k2
j
2q
−kdj,k, else,

where

dj,k :=



∞∑
n=0

(−bj,0,n) + 1
2
Γ
(
j
2q
, 1
)
, k = 0,

∞∑
n=0

(−bj,k,n)− 1
j
2q
−k

1
2
e−1 −

k−1∑
m=1

k−m∏̀
=1

(
1

j
2q
−k+`

)
1
2
e−1

+
k∏̀
=1

1
j
2q
−`

1
2
Γ
(
j
2q
, 1
)
, k > 0,

and

bj,k,n :=

{
0, j = 0 and n = k,

(−1)n+1 1

( jq+2(n−k))n!
, else.
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Proof. We make a change of variables s = r√
2t

and get

2q−1∑
j=0

aj,k

∞∫
α

e−
r2

2t r r
j
q
−2(k+1)dr =

2q−1∑
j=0

aj,k

∞∫
α

e−
r2

2t r
j
q
−2k−1dr

=

2q−1∑
j=0

aj,k
√

2t
j
q
−2k

∞∫
α√
2t

e−s
2

s
j
q
−2k−1ds.

Let bj,k,n and dj,k be as in Lemma 3.2.10, where we have also proven that
n∑
n=0

(−bj,k,n)

is convergent. It should be noted that bj,k,n and dj,k are stated for the integrals
∞∫
α√
2t

e−s
2
s
j
q

+2k−1ds there, where k < 0. Therefore we have to rewrite the coefficients

for
∞∫
α√
2t

e−s
2
s
j
q
−2k−1ds, where k > 0. Applying Lemma 3.2.10, we achieve

2q−1∑
j=0

aj,k
√

2t
j
q
−2k

∞∫
α√
2t

e−s
2

s
j
q
−2k−1ds

= a0,k

√
2t
−2k

∞∫
α√
2t

e−s
2

s−2k−1ds

+

2q−1∑
j=1

aj,k
√

2t
j
q
−2k

∞∫
α√
2t

e−s
2

s
j
q
−2k−1ds

3.2.10
≈ a0,k

√
2t
−2k

(
d0,k +

∞∑
n=0

b0,k,n

(
α√
2

)2(n−k)

tk−n + (−1)k+1 1

k!
log

(
α√
2t

))

+

2q−1∑
j=1

aj,k
√

2t
j
q
−2k

(
dj,k +

∞∑
n=0

bj,k,n

(
α√
2

) j
q

+2(n−k)

t−
j
2q

+k−n

)
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= a0,k

√
2t
−2k

(
d0,k +

∞∑
n=0

b0,k,n

(
α√
2

)2(n−k)

tk−n + (−1)k
1

k!

1

2
log(t)

+(−1)k+1 1

k!

(
log(α)− 1

2
log(2)

))
+

2q−1∑
j=1

aj,k
√

2t
j
q
−2k

(
dj,k +

∞∑
n=0

bj,k,n

(
α√
2

) j
q

+2(n−k)

t−
j
2q

+k−n

)

= δ0,kt
−k +

∞∑
n=0

a0,kb0,k,n

(
α√
2

)2(n−k)

2−k t−n + (−1)k
1

k!
2−ka0,k

1

2
log(t)t−k

+

2q−1∑
j=1

aj,k2
j
2q
−kdj,kt

j
2q
−k +

2q−1∑
j=1

aj,k2
j
2q
−k

∞∑
n=0

bj,k,n

(
α√
2

) j
q

+2(n−k)

t−n

= δ0,kt
−k + (−1)k

1

k!
2−ka0,k

1

2
log(t)t−k

+

2q−1∑
j=1

aj,k2
j
2q
−kdj,kt

j
2q
−k +

∞∑
n=0

2q−1∑
j=0

aj,k2
j
2q
−kbj,k,n

(
α√
2

) j
q

+2(n−k)

t−n,

where δ0,k := a0,k2
−k (d0,k + (−1)k+1 1

k!

(
log(α)− 1

2
log(2)

))
.

We set λk := (−1)k 1
k!

2−ka0,k
1
2
,

γj,k,n := bj,k,naj,k
α
j
q

+2(n−k)

2n

=

0, j = 0 and n = k,

(−1)n+1

2nn!
aj,k

α
j
q+2(n−k)

j
q

+2(n−k)
, else,

and

δj,k :=

{
a0,k2

−k [d0,k + (−1)k+1 1
k!

(log(α)− 1
2

log(2))
]
, j = 0,

aj,k2
j
2q
−kdj,k, else.

�

Before we continue to establish the asymptotic expansion of
∞∫
α

e−
r2

2t r ψ(r)dr,

we consider the series
∞∑
k=1

δj,kt
j
2q
−k and show that it is convergent.
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Lemma 3.2.21. Let j ∈ {0, . . . , 2q − 1} and let δj,k be as in Lemma 3.2.20. We
have that

∞∑
k=0

δj,kt
j
2q
−k

converges absolutely for sufficiently large t.

Proof. In Lemma 3.2.20 the coefficients δj,k are stated as

δj,k :=

{
a0,k2

−k [d0,k + (−1)k+1 1
k!

(log(α)− 1
2

log(2))
]
, j = 0,

aj,k2
j
2q
−kdj,k, else,

where aj,k are the coefficients of a convergent Puiseux series and where

dj,k :=



∞∑
n=0

(−bj,0,n) + 1
2
Γ
(
j
2q
, 1
)
, k = 0,

∞∑
n=0

(−bj,k,n)− 1
j
2q
−k

1
2
e−1 −

k−1∑
m=1

k−m∏̀
=1

(
1

j
2q
−k+`

)
1
2
e−1

+
k∏̀
=1

1
j
2q
−`

1
2
Γ
(
j
2q
, 1
)
, k > 0,

and

bj,k,n :=

{
0, j = 0 and n = k,

(−1)n+1 1

( jq+2(n−k))n!
, else.

We proof, wether the formal series
∞∑
k=1

δj,kt
j
2q
−k converges. First, we may assume

j 6= 0. We get

∞∑
k=1

δj,kt
j
2q
−k =

∞∑
k=1

aj,k2
j
2q
−kdj,kt

j
2q
−k

=
∞∑
k=1

aj,k2
j
2q
−k

 ∞∑
n=0

(−1)n(
j
q

+ 2(n− k)
)
n!
− 1

j
2q
− k

1

2
e−1

−
k−1∑
m=1

k−m∏
`=1

(
1

j
2q
− k + `

)
1

2
e−1 +

k∏
`=1

1
j
2q
− `

1

2
Γ

(
j

2q
, 1

)]
t
j
2q
−k
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=
∞∑
k=1

aj,k2
j
2q
−k

∞∑
n=0

(−1)n

n!

1(
j
q

+ 2(n− k)
)t j2q−k

+
1

2
e−1

[
∞∑
k=1

aj,k2
j
2q
−k

(
− 1

j
2q
− k

)
t
j
2q
−k

+
∞∑
k=1

aj,k2
j
2q
−k

(
−

k−1∑
m=1

k−m∏
`=1

(
1

j
2q
− k + `

))
t
j
2q
−k

]

+
1

2
Γ

(
j

2q
, 1

) ∞∑
k=1

aj,k2
j
2q
−k

k∏
`=1

1
j
2q
− `

t
j
2q
−k.

In the next part we show that each of these series in the sum above is convergent.

To determine whether the series
∞∑
k=1

aj,k2
j
2q
−k

∞∑
n=0

(−1)n

n!
1

( jq+2(n−k))
t
j
2q
−k converges,

we estimate: ∣∣∣∣∣∣ 1(
j
q

+ 2(n− k)
)
∣∣∣∣∣∣ ≤

{
q, n− k = −1 and j > q,

1, else.
(1)

Therefore we get∣∣∣∣∣∣
∞∑
n=0

(−1)n

n!

1(
j
q

+ 2(n− k)
)
∣∣∣∣∣∣ ≤

∞∑
n=0

∣∣∣∣∣∣(−1)n

n!

1(
j
q

+ 2(n− k)
)
∣∣∣∣∣∣

(1)

≤ q
∞∑
n=0

∣∣∣∣(−1)n

n!

∣∣∣∣ = q e1.

Applying the ratio test to the series
∞∑
k=1

aj,k2
j
2q
−kq e1t

j
2q
−k, we obtain it is absolutely

convergent. Thus, we conclude that
∞∑
k=1

aj,k2
j
2q
−k

∞∑
n=0

(−1)n

n!
1

( jq+2(n−k))
t
j
2q
−k converges

absolutely by the comparison test.

Using the ratio test, we get that

∞∑
k=1

aj,k2
j
2q
−k

(
− 1

j
2q
− k

)
t
j
2q
−k

also converges absolutely.
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Now, we consider the series

∞∑
k=1

aj,k2
j
2q
−k

(
−

k−1∑
m=1

k−m∏
`=1

1
j
2q
− k + `

)
t
j
2q
−k. (1)

By estimation ∣∣∣∣∣
k−1∑
m=1

k−m∏
`=1

1
j
2q
− k + `

∣∣∣∣∣ ≤
∣∣∣∣∣(k − 1)

1
j
2q
− k + 1

∣∣∣∣∣
and by applying the ratio test, that is

lim
k→∞

∣∣∣∣∣∣∣
aj,k+1k2

j
2q
−k−1 1

j
2q
−(k+1)+1

t
j
2q
−(k+1)

aj,k(k − 1)2
j
2q
−k 1

j
2q
−k+1

t
j
2q
−k

∣∣∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣
aj,k+1k

1
j
2q
−k t
−1

aj,k(k − 1)2 1
j
2q
−k+1

∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣∣ aj,k+1( j
2q
− k + 1)

aj,k(k − 1)2( j
2q
− k)t

∣∣∣∣∣ < 1

for sufficiently large t, we get that
∞∑
k=1

aj,k2
j
2q
−k(k − 1) 1

j
2q
−k+1

t
j
2q
−k converges ab-

solutely. In consequence of that, the series in (1) is absolutely convergent by the
comparison test.

For the last series
∞∑
k=1

aj,k2
j
2q
−k

k∏̀
=1

1
j
2q
−`t

j
2q
−k we use the ratio test again and

achieve that the series also converges absolutely. Gathering our results, we have

proven that the series
∞∑
k=1

δj,kt
j
2q
−k is absolutely convergent and it follows immedi-

ately that
∞∑
k=0

δj,kt
j
2q
−k converges absolutely.

Now, we may assume j = 0. We have

∞∑
k=1

δ0,kt
j
2q
−k =

∞∑
k=1

a0,k2
−k
[
d0,k + (−1)k+1 1

k!
(log(α)− 1

2
log(2))

]
t
j
2q
−k

=
∞∑
k=1

a0,k2
−kd0,kt

j
2q
−k

+
∞∑
k=1

a0,k2
−k(−1)k+1 1

k!
(log(α)− 1

2
log(2))t

j
2q
−k
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By considering the partial proofs above, it is obvious that
∞∑
k=1

a0,k2
−kd0,kt

j
2q
−k also

converges absolutely. We can easily proof the convergence of the second series by

the ratio test. In conclusion, we achieve that
∞∑
k=1

δ0,kt
j
2q
−k is absolutely convergent

and therefore
∞∑
k=0

δ0,kt
j
2q
−k. �

Remark 3.2.22. Let
∞∑
n=0

cnt
−n be a convergent series with real coefficients cn.

As t→∞, we obtain obviously

∞∑
n=N+1

cnt
−n = O

(
t−N−1

)
.

We would point out that the aim is to ascertain an asymptotic expansion of
∞∫
α

e−
r2

2t r ψ(r)dr, where ψ(r) is bounded on ]α,∞[ and ψ(r) can be described as

the convergent Puiseux series a0 +
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1). By using the last lemmas,

we can now establish the asymptotic series expansion of integrals of the form
∞∫
α

e−
r2

2t r

(
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1)

)
dr.

Lemma 3.2.23. Let α ∈ R, α > 1, and let θ(r) be a bounded function on ]α,∞[,

which can be represented as the convergent Puiseux series
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1),

q ∈ N. As t→∞, we get the asymptotic series expansion

∞∫
α

e−
r2

2t r θ(r)dr ≈ ϕ0(t) + ϕ1(t) log(t),

where ϕ0(t) =
∞∑
k=0

2q−1∑
j=0

κj,kt
j
2q
−k and ϕ1(t) =

∞∑
k=0

λkt
−k, where κj,k, λk ∈ R and

q ∈ N, are convergent Puiseux series. Thus, the asymptotic expansion is definable
in Ran,exp.
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Proof. We set F (t) :=
∞∫
α

e−
r2

2t r θ(r)dr. By a change of variables s = r√
2t
, we get

F (t) =

∞∫
α

e−
r2

2t r

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2k−2dr

=

∞∫
α

e−
r2

2t

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2k−1dr

=
∞∑
k=0

2q−1∑
j=0

aj,k
√

2t
j
q
−2k

∞∫
α√
2t

e−s
2

s
j
q
−2k−1ds

=
∞∑
k=0

Fk(t),

where Fk(t) :=
2q−1∑
j=0

aj,k
√

2t
j
q
−2k

∞∫
α√
2t

e−s
2
s
j
q
−2k−1ds. In Lemma 3.2.20 we have ascer-

tained the asymptotic expansion F̂k(t) of Fk(t):

F̂k(t) :=

2q−1∑
j=0

δj,kt
j
2q
−k + λk log(t)t−k +

∞∑
n=0

2q−1∑
j=0

γj,k,nt
−n,

where δj,k, λk, γj,k,n ∈ R are as in Lemma 3.2.20 and thus,

γj,k,n
3.2.20
=

0, j = 0 and n = k,

(−1)n+1

2nn!
aj,k

α
j
q+2(n−k)

j
q

+2(n−k)
, else.

We define

γ̂j,k,n :=

0, j = 0 and n = k,

aj,k
α
j
q+2(n−k)

j
q

+2(n−k)
, else,

such that γj,k,n = (−1)n+1

2nn!
γ̂j,k,n. The series

∞∑
n=0

2q−1∑
j=0

γj,k,nt
−n converges obviously
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and we get the m-th remainder for an arbitrary k ∈ N0 by

Rk,m(t) := Fk(t)− F̂k
∣∣
m

(t)

=


Fk(t)−

(
2q−1∑
j=0

δj,kt
j
2q
−k + λk log(t)t−k +

m∑
n=0

2q−1∑
j=0

γj,k,nt
−n

)
, k ≤ m,

Fk(t)−
m∑
n=0

2q−1∑
j=0

γj,k,nt
−n, k > m,

=


∞∑

n=m+1

2q−1∑
j=0

γj,k,nt
−n, k ≤ m,

2q−1∑
j=0

δj,kt
j
2q
−k + λk log(t)t−k +

∞∑
n=m+1

2q−1∑
j=0

γj,k,nt
−n, k > m.

(1)

Next, we give the proof that the series
∞∑
k=0

2q−1∑
j=0

γ̂j,k,n and
∞∑
n=0

∞∑
k=0

2q−1∑
j=0

γj,k,nt
−n are

convergent. We assume γ̂j,k,n 6= 0 and estimate∣∣∣∣∣ 1
j
q

+ 2(n− k)

∣∣∣∣∣ ≤
{
q, n− k = 1 and j > q,

1, else.

Then we get the estimation of |γ̂j,k,n| by

|γ̂j,k,n| =

∣∣∣∣∣aj,k α
j
q

+2(n−k)

j
q

+ 2(n− k)

∣∣∣∣∣
≤ aj,k

(
α2
) j

2q
+n
q

1

(α2)k
.

By the requirements is α > 1 and aj,k are the coefficients of a convergent Puiseux

series. Subsequently, the series
∞∑
k=0

aj,k
1

(α2)k
converges absolutely in consequence of

the ratio test. We set

C :=

2q−1∑
j=0

∞∑
k=0

(
α2
) j

2q aj,kq
1

(α2)k
. (3)

Using the comparison test, we can conclude that
∞∑
k=0

2q−1∑
j=0

γ̂j,k,n is convergent and
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we set

B̂n :=

2q−1∑
j=0

∞∑
k=0

γ̂j,k,n. (4)

Moreover, the series

∞∑
n=0

∞∑
k=0

2q−1∑
j=0

γj,k,nt
−n =

∞∑
n=0

(−1)n+1

2nn!
B̂nt

−n

is also convergent by the comparison test, because we get∣∣∣∣(−1)n+1

2nn!
B̂n

∣∣∣∣ (4)
=

1

2nn!

∣∣∣∣∣
2q−1∑
j=0

∞∑
k=0

γ̂j,k,n

∣∣∣∣∣
≤ 1

2nn!

2q−1∑
j=0

∞∑
k=0

|γ̂j,k,n|

(2)

≤ 1

2nn!

(
α2
)n 2q−1∑

j=0

(
α2
) j

2q q
∞∑
k=0

∣∣∣∣∣aj,k 1

(α2)k

∣∣∣∣∣
(3)

≤ 1

2nn!

(
α2
)n
C

and
∞∑
n=0

1
2nn!

(α2)
n
C is absolutely convergent.

We define

F̂ (t) :=
∞∑
k=0

2q−1∑
j=0

δj,kt
j
2q
−k +

∞∑
k=0

λk log(t)t−k +
∞∑
n=0

(−1)n+1

2nn!
B̂nt

−n.

We make a change of the indices to p and set

κj,p :=

{
δ0,p + (−1)p+1

2pp!
B̂p, j = 0,

δj,p, else.

We gather

F̂ (t) =
∞∑
p=0

2q−1∑
j=0

κj,pt
j
2q
−p +

∞∑
p=0

λpt
−p log(t).

Finally, we show that F̂ (t) is the asymptotic series expansion of F (t) by the proof
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that

F (t)−
N∑
p=0

(
2q−1∑
j=0

κj,pt
j
2q + λp log(t)

)
t−p = O

(
t
2q−1
2q
−(N+1)

)
.

We attain by the results above∣∣∣∣∣F (t)−
N∑
p=0

(
2q−1∑
j=0

κj,pt
j
2q + λp log(t)

)
t−p

∣∣∣∣∣
=

∣∣∣F (t)− (F̂ (t))
∣∣
N

∣∣∣
=

∣∣∣∣∣F (t)−

(
∞∑
k=0

F̂k(t)

)∣∣
N

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

Fk(t)−
∞∑
k=0

F̂k
∣∣
N

(t)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

(
Fk(t)− F̂k

∣∣
N

(t)
)∣∣∣∣∣

=

∣∣∣∣∣
N∑
k=0

(
Fk(t)− F̂k

∣∣
N

(t)
)

+
∞∑

k=N+1

(
Fk(t)− F̂k

∣∣
N

(t)
)∣∣∣∣∣

(1)
=

∣∣∣∣∣
N∑
k=0

Rk,N(t) +
∞∑

k=N+1

Rk,N(t)

∣∣∣∣∣
(1)
=

∣∣∣∣∣
∞∑
k=0

∞∑
n=N+1

2q−1∑
j=0

γj,k,nt
−n +

∞∑
k=N+1

2q−1∑
j=0

δj,kt
j
2q
−k +

∞∑
k=N+1

λk log(t)t−k

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

n=N+1

(−1)n+1

2nn!
B̂nt

−n

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=N+1

2q−1∑
j=0

δj,kt
j
2q
−k

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=N+1

λk log(t)t−k

∣∣∣∣∣ .
It results from above that

∞∑
n=N+1

(−1)n+1

2nn!
B̂nt

−n converges. In addition, we have

shown in Lemma 3.2.21 that the series
∞∑
k=0

2q−1∑
j=0

δj,kt
j
2q
−k is convergent. We consider

∞∑
k=0

λk log(t)t−k
3.2.20
=

∞∑
k=0

1

2
a0,k(−1)k2−k

1

k!
log(t)t−k.
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This series also converges by applying the ratio test.

Using Remark 3.2.22 we obtain

∞∑
n=N+1

(−1)n+1

2nn!
B̂nt

−n = O
(
t−(N+1)

)
,

∞∑
k=N+1

2q−1∑
j=0

δj,kt
j
2q
−k = O

(
t
2q−1
2q
−(N+1)

)
,

and
∞∑

k=N+1

λk log(t)t−k = O
(
log(t)t−(N+1)

)
.

Being t−(N+1) = O
(
t
2q−1
2q
−(N+1)

)
and log(t)t−(N+1) = O

(
t
2q−1
2q
−(N+1)

)
for an

arbitrary N ∈ N, we conclude

F (t)−

(
N∑
p=0

2q−1∑
j=0

κj,pt
j
2q
−p +

N∑
p=0

λpt
−p log(t)

)
= O

(
t
2q−1
2q
−(N+1)

)
.

According to Remark 2.2.5 and to Definition 2.2.4 of asymptotic expansions, we
have proven

F (t) ≈ F̂ (t).

Due to the fact that the series in F̂ (t) converge, we can write

F̂ (t) = ϕ0(t) + ϕ1(t) log(t),

where ϕ0(t) :=
∞∑
p=0

2q−1∑
j=0

κj,pt
j
2q
−p and ϕ1(t) :=

∞∑
p=0

λpt
−p are convergent Puiseux

series, and we get that F̂ (t) is definable in Ran,exp. �

To sum it up, we have shown the asymptotic expansion of
∞∫
α

e−
r2

2t r dr in

Lemma 3.2.19 and the asymptotic expansion of
∞∫
α

e−
r2

2t r

(
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1)

)
dr

in Lemma 3.2.23. In addition, we have shown that these asymptotic expansions
are definable in Ran,exp. Finally, we can investigate the asymptotic series expansion

of
∞∫
α

e−
r2

2t r ψ(r) dr, where ψ(r) is representable as the convergent Puiseux series
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a0 +
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1). In conclusion, we get that the expansion is definable in

the o-minimal structure Ran,exp.

Lemma 3.2.24. Let α ∈ R, where α > 1, let q ∈ N, and let ψ(r) be a bounded
function on ]α,∞[, which can be written as a convergent Puiseux series around

infinity as a0 +
∞∑
k=0

2q−1∑
j=0

ãj,kr
j
q
−2(k+1). As t → ∞, we obtain the asymptotic series

expansion
∞∫
α

e−
r2

2t r ψ(r) dr ≈ a0t+ ϕ̂0(t) + ϕ1(t) log(t),

where ϕ̂0(t) =
∞∑
k=0

2q−1∑
j=0

µj,kt
j
2q
−k and ϕ1(t) =

∞∑
k=0

λkt
−k, where µj,k, λk ∈ R and

q ∈ N, are convergent Puiseux series and thus, the asymptotic expansion is defin-
able in Ran,exp.

Proof. We set F (t) :=
∞∫
α

e−
r2

2t

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2k−1 dr and get

∞∫
α

e−
r2

2t r ψ(r) dr = a0

∞∫
α

e−
r2

2t r dr +

∞∫
α

e−
r2

2t r
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2k−2 dr

= a0

∞∫
α

e−
r2

2t r dr + F (t).

In Lemma 3.2.19 we have shown

a0

∞∫
α

e−
r2

2t r dr ≈ a0

∞∑
k=0

γkt
1−k,

where γk := (−1)kα2k

2kk!
, and furthermore, that the expansion is definable in Ran. In

Lemma 3.2.23 we have proven

F (t) ≈ ϕ0(t) + ϕ1(t) log(t),

where ϕ0(t) =
∞∑
k=0

2q−1∑
j=0

κj,kt
j
2q
−k and ϕ1(t) =

∞∑
k=0

λkt
−k are convergent Puiseux

series, where κj,k, λk ∈ R, and in consequence of that, this asymptotic expansion
is definable in Ran,exp.
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We set

ϕ̂0(t) := 0

∞∑
k=0

γk+1t
−k + ϕ0(t)

=
∞∑
k=0

2q−1∑
j=0

µj,kt
j
2q
−k,

where

µj,k :=

{
a0γk+1 + κ0,k, j = 0,

κj,k, else,

and thus we can conclude
∞∫
α

e−
r2

2t r ψ(r) dr ≈ a0

∞∑
k=0

γkt
1−k + ϕ0(t) + ϕ1(t) log(t)

= a0γ0t+ a0

∞∑
k=0

γk+1t
−k + ϕ0(t) + ϕ1(t) log(t)

= a0t+ ϕ̂0(t) + ϕ1(t) log(t)

and a0t+ ϕ̂0(t) + ϕ1(t) log(t) is definable in Ran,exp. �

We go back to 1
2πt

∫
A

e
−|x|2

2t dx. Using the lemmas above, we gather our results in

the following Theorem. For this purpose, we transform the integrals 1
2πt

∫
A

e
−|x|2

2t dx

in polar coordinates and apply the theorem for cell decomposition, see Theo-
rem 2.3.15. If A is bounded, we show that the integrals are definable in Ran and
have the form of a convergent Puiseux series by Remark 3.2.18. If A is unbounded,
we get the asymptotic series expansion by Lemma 3.2.24 and furthermore the proof
that the expansion is definable in Ran,exp.

Theorem 3.2.25. Let A ⊂ R2 be a globally subanalytic set. Let f : R>0 → [0, 1]
be the function given by

f(t) =
1

2πt

∫
A

e
−|x|2

2t dx.

a) As t → ∞ and if A is bounded, the function f(t) is definable in Ran and
therefore, a convergent Puiseux series.
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b) As t→∞ and if A is unbounded, f(t) has the asymptotic series expansion

f(t) ≈ ρ0(t) + ρ1(t) log(t),

where ρ0(t) =
∞∑
k=0

κkt
− k
q and ρ1(t) =

∞∑
k=1

λkt
−k, where at least one of the

series is not zero and κk, λk ∈ R and q ∈ N, are convergent Puiseux series
and therefore the asymptotic expansion is definable in Ran,exp.

Proof. The structure of this proof is quite similar to the proof of Theorem 3.2.15.
Let

Θ : R≥0 × ]− π, π] −→ R× R,
(r, ϕ) 7−→ (r cosϕ, r sinϕ),

be the two dimensional polar coordinate transformation. First, we transform f(t)
in polar coordinates by Transformation Theorem 2.1.17 and achieve

f(t) =
1

2πt

∫
A

e
−|x|2

2t dx

2.1.17
=

1

2πt

∫
Θ−1(A)

e
−|(r cosϕ,r sinϕ)|2

2t r d(r, ϕ)

=
1

2πt

∫
Θ−1(A)

e
−r2
2t r d(r, ϕ).

The function Θ is continuous and definable in the o-minimal structure Ran, hence
B := Θ−1(A) ⊂ R≥0×] − π, π] is definable in Ran. By Cell Decomposition Theo-
rem 2.3.15, we can partition B into finitely many disjoint cells C1, . . . , Cp. For
the sake of convenience, we fix j ∈ {1, . . . , p} and write C := Cj for the next
part. Let π1 : R≥0 × [−π, π] −→ R≥0 be the projection on the first coordinate, let
D := π1(C), and let ψ, η : D −→ [−π, π] be definable continuous functions such
that η < ψ and such that

C = {(r, ϕ) ∈ R≥0 × [−π, π] | r ∈ D and η(r) < ϕ < ψ(r)}.

Due to integration, we can reduce the different cell types of Definition 2.3.14 to
this single cell C. As angular part of the cell both |η| and |ψ| are bounded by π.
Cells are defined inductively, for this reason D ⊂ R is also a cell and either a point
{α} or an open interval ]α, β[ where α, β ∈ R≥0∪{∞} and α < β. If D is a point,
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the integrals over D will be zero. Using Fubini’s Theorem 2.1.18, we get

∫
C

e−
r2

2t r d(r, ϕ)
2.1.18
=

∫
D

ψ(r)∫
ϕ=η(r)

e−
r2

2t r dϕ dr

=

∫
D

e−
r2

2t r

ψ(r)∫
η(r)

dϕ dr

=

∫
D

e−
r2

2t r (ψ(r)− η(r)) dr

=

∫
D

e−
r2

2t r ψ(r) dr −
∫
D

e−
r2

2t r η(r) dr.

If B is a bounded set, the cells C of its cell decomposition are also bounded and
D is either a point or a bounded interval. If B is unbounded, the cells C of its
cell decomposition could be bounded, but at least one cell is unbounded. That
means D, if an unbounded cell C is based on, could also be an interval of the
form ]α,∞[. First, we give the proof for a). We may assume C is bounded and
in consequence also D. By its definition above, ψ(r) is a continuous function
definable in Ran. Hence, we get by Remark 3.2.18 that

∫
D

e−
r2

2t r ψ(r)dr is strictly

positive and definable in Ran. By the proof of Remark 3.2.18 we also know that the
integral can be represented as a convergent Puiseux series. Moreover, we obtain
the same result for the subtrahend

∫
D

e−
r2

2t r η(r)dr. By definition of a cell, it is

η(r) < ψ(r) and thus, ψ(r)− η(r) > 0. We can conclude that∫
D

e−
r2

2t r (ψ(r)− η(r)) dr

is strictly positive and definable in Ran and can also be represented by a convergent
Puiseux series by the same arguments as above. Therefore, we get for a bounded
set Θ−1(A) that the integral

1

2πt

∫
Θ−1(A)

e
−r2
2t r d(r, ϕ) =

1

2πt

p∑
j=1

∫
Cj

e−
r2

2t r d(r, ϕ)

is definable in Ran and behave like a convergent Puiseux series.
Now, we prove statement b). We may assume C is unbounded. Therefore, at least
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one D is unbounded, that means, D could also be an interval of the form ]α,∞[
and by a refined cell decomposition, we may assume α > 1. By the Preparation
Theorem 2.3.18, there is such a cell decomposition of B, so that ψ can be described
by a convergent Puiseux series at infinity.
In consequence of the boundedness of ψ(r), the convergent Puiseux series in infin-

ity has only negative exponents and is representable as a0 +
∞∑
k=0

2q−1∑
j=0

ãj,kr
j
q
−2(k+1),

where q ∈ N. We obtain by Lemma 3.2.24

∞∫
α

e−
r2

2t r ψ(r) dr ≈ a0t+ ϕ̂0(t) + ϕ1(t) log(t), (1)

where ϕ̂0(t) =
∞∑
k=0

2q−1∑
j=0

µj,kt
j
2q
−k, where µj,k ∈ R, and ϕ1(t) =

∞∑
k=0

νkt
−k, where

νk ∈ R, are convergent Puiseux series and thus, the asymptotic expansion is
definable in Ran,exp. By the definition of a cell, it is η(r) < ψ(r) and therefore,
ψ(r)− η(r) > 0. We gather that the asymptotic expansion of

∞∫
α

e−
r2

2t r (ψ(r)− η(r)) dr

has the same form as in (1). Due to ψ(r) − η(r) > 0, there are constants
σ ∈ Q<0 and C > 0 such that ψ(r) − η(r) ≥ Crσ for all r ∈ [α,∞[. We get

that
∞∫
α

e−
r2

2t r (ψ(r)− η(r)) dr ≥ C
∞∫
α

e−
r2

2t rσ+1 dr, of which the asymptotic expan-

sion has the polynomial scale as we have seen above. We can conclude that at

least one coefficient of the expansion of
∞∫
α

e−
r2

2t r (ψ(r)− η(r)) dr is not zero.

Finally, we bring the achieved facts together by using the results of a). As
t→∞, we have attained as a result above that these integrals over bounded cells
Cj are definable in Ran and thus, they have the form of a convergent Puiseux series
if the cells are based on a bounded D. But if Θ−1(A) is an unbounded set, at least
one cell is unbounded and we have

1

2πt

∫
Θ−1(A)

e
−r2
2t r d(r, ϕ) =

1

2πt

p∑
j=1

∫
Cj

e−
r2

2t r d(r, ϕ) (2)

≈ ρ0(t) + ρ1(t) log(t),
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where ρ0(t) =
∞∑
k=0

2q−1∑
m=0

γm,kt
m
2q
−k, where γm,k ∈ R and γm,0 = 0 if m 6= 0, and

ρ1(t) =
∞∑
k=1

λkt
−k, where λk ∈ R, are convergent Puiseux series, where at least

one coefficient is not zero by the arguments above and because every summand in
(2) is positive. Since the Puiseux series ρ0 and ρ1 are convergent, the asymptotic
expansion is definable in Ran,exp. �
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3.3 The Three-Dimensional Case

3.3.1 Preparations

As part of this chapter we need the antiderivative of e−s2s
k
q

+2 and e−s2s
k
q

+2 log(s)
for a positive real number s, an integer k and a positive integer q. As in Sec-
tion 3.2.1 the idea is to find a recursive formula for

∫
e−s

2
s
k
q

+2ds by integrating by
parts. The recursion skips 2q steps and for this reason we rewrite integrals of the
form

∫
e−s

2
s
k
q

+2ds as

F q,j,k :=

∫
e−s

2

s
j
q

+2kds,

where k ∈ Z and j ∈ {0, . . . , 2q − 1}. We can also establish a recursive formula
for
∫
e−s

2
s
k
q

+2 log(s)ds by integration by parts. Due to the same arguments, we
rewrite

∫
e−s

2
s
k
q

+2 log(s)ds as

Hq,j,k :=

∫
e−s

2

s
j
q

+2k log(s)ds,

where k ∈ Z and j ∈ {0, . . . , 2q − 1}.

First, we consider F q,j,k :=
∫
e−s

2
s
j
q

+2kds. We find a recursive formula for F q,j,k

and we show the relation to

Fq,j,k :=

∫
e−s

2

s
j
q

+2k−1ds,

which we have already considered in Section 3.2. Afterwards, we calculate some
definite integrals and reorganize the recursive formula for negative integers k. Def-
inite integrals which belong to F q,j,k are denoted by

Gq,j,k :=

b∫
a

e−s
2

s
j
q

+2kds.

Furthermore, we show some asymptotic expansions of Gq,j,k, where a limit of the

integral tends towards zero or infinity, e.g.
∞∫
x

e−s
2
s
j
q

+2kds, where k is a negative

integer and x tends towards zero. For this, we reduce Gq,j,k to finitely many
integrals by recursion. We start with the mentioned recursive formula.
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Lemma 3.3.1. Let k ∈ Z, q ∈ N, and let j ∈ {0, . . . , 2q − 1}. Up to an additive
constant, F q,j,k is given by the recursive formula

F q,j,k = −1

2
e−s

2

s
j
q

+2k−1 +

(
j − q

2q
+ k

)
F q,j,k−1.

Proof. We proof the recursive formula by integration by parts. We choose e−s2s
and s

j
q

+2k−1 as parts and get

F q,j,k =

∫
e−s

2

s
j
q

+2kds

=

∫
e−s

2

s s
j
q

+2k−1ds

= − 1

2
e−s

2

s
j
q

+2k−1 +

(
j

2q
+ k − 1

2

)∫
e−s

2

s
j
q

+2(k−1)ds

= − 1

2
e−s

2

s
j
q

+2k−1 +

(
j − q

2q
+ k

)
F q,j,k−1.

�

In our preparations in Section 3.2.1 we have already considered integrals in the
quite similar form Fq,j,k :=

∫
e−s

2
s
j
q

+2k−1ds. The subsequent lemma shows how
F q,j,k belongs to Fq,j,k.

Lemma 3.3.2. Let q ∈ N, j ∈ {0, . . . , 2q − 1}, and let Fq,j,k :=
∫
e−s

2
s
j
q

+2k−1ds,
where k ∈ Z. Then F q,j,k is related to Fq,j,k by

F q,j,k =

{
Fq,j+q,k, j < q,

Fq,j−q,k+1, j ≥ q.

Proof. For j < q we obtain

F q,j,k =

∫
e−s

2

s
j
q

+2kds

=

∫
e−s

2

s
j
q

+2k+1−1ds

=

∫
e−s

2

s
j+q
q

+2k−1ds

= Fq,j+q,k.
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For j ≥ q we get

F q,j,k =

∫
e−s

2

s
j
q

+2kds

=

∫
e−s

2

s
j−q
q

+1+2kds

=

∫
e−s

2

s
j−q
q

+1+2k+1−1ds

=

∫
e−s

2

s
j−q
q

+2(k+1)−1ds

= Fq,j−q,k+1.

�

By recursion, we can put down each integral
∫
e−s

2
s
j
q

+2kds to the finitely many
integrals

∫
e−s

2
s
j
q ds, that means to k = 0. For these special integrals, where k = 0,

we need the antiderivative of e−s2s
j
q . To prove the following Lemma we have the

choice: we can pick up on Lemma 3.2.4 in Section 3.2 by using the relation of F q,j,k

to Fq,j,k, shown in Lemma 3.3.2, or go straight by Definition 2.1.11 of incomplete
gamma function. It appears to be less confusing to choose the second way for
j 6= q.

Lemma 3.3.3. Let q ∈ N and let j ∈ {0, . . . , 2q− 1}. Up to an additive constant,
we have

F q,q,0 =

∫
e−s

2

s
j
q ds

= − 1

2
Γ

(
j + q

2q
, s2

)
.

Proof. By the relation stated in Lemma 3.3.2, by Lemma 3.2.4 in Section 3.2, and
by Remark 2.1.14, we attain for j = q

F q,q,0
3.3.2
= Fq,0,1

3.2.4
= − 1

2
e−s

2

2.1.14
= − 1

2
Γ
(
1, s2

)
.
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By Definition 2.1.11 of the incomplete gamma function and Lemma 3.2.2, we attain
for j 6= q

F q,j,0 =

∫
e−s

2

s
j
q

+1−1ds

=

∫
e−s

2

s
j+q
q
−1ds

2.1.11
3.2.2= − 1

2
Γ

(
j + q

2q
, s2

)
.

�

The corollary below and the following remark show the values of special inte-
grals in a short proof by applying the last lemma.

Corollary 3.3.4. Let q ∈ N and let j ∈ {0, . . . , 2q − 1}. We get

∞∫
1

e−s
2

s
j
q ds =

1

2
Γ

(
j + q

2q
, 1

)
.

Proof. It is evident by

∞∫
1

e−s
2

s
j
q ds

3.3.3
=

[
−1

2
Γ

(
j + q

2q
, s2

)]∞
1

2.1.12
=

1

2
Γ

(
j + q

2q
, 1

)
.

�

Remark 3.3.5. Let q ∈ N and let j ∈ {0, . . . , 2q − 1}. We have

∞∫
0

e−s
2

s
j
q ds =

1

2
Γ

(
j + q

2q

)
,

where

Γ

(
j + q

2q

)
=

{√
π, j = 0,

1, j = q.
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Proof. By Lemma 3.3.3 and by Lemma 2.1.13, it follows immediately

∞∫
0

e−s
2

s
j
q ds

3.3.3
2.1.13=

1

2
Γ

(
j + q

2q

)
.

For j = 0 we get the special case

Γ

(
q

2q

)
= Γ

(
1

2

)
2.1.16
=
√
π

and for j = q

Γ

(
q + q

2q

)
= Γ(1)

2.1.7
= 1.

�

In the next paragraph we are interested in the asymptotic series expansion

and the asymptotic behaviour of
x∫
0

e−s
2
s
j
q

+2kds, where k > 0 and x approaches

infinity. To investigate these, we use the relation of the integrals
x∫
0

e−s
2
s
j
q

+2kds to
x∫
0

e−s
2
s
j
q

+2k−1ds, which is shown in Lemma 3.3.2, and the asymptotic expansion,

which has already been pointed out in Lemma 3.2.6 in Section 3.2.1.

Lemma 3.3.6. Let k ∈ N, q ∈ N, x ∈ R>0, and let j ∈ {0, . . . , 2q−1}. As x→∞,
we have

x∫
0

e−s
2

s
j
q

+2kds ≈
k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)

− e−x2
∞∑
n=1

x
j−q
q

+2(k+1−n)
n−2∏
l=0

(
j − q

2q
+ k − l

)
.

Proof. We set Gq,j,k(x) :=
x∫
0

e−s
2
s
j
q

+2kds and Gq,j,k(x) :=
x∫
0

e−s
2
s
j
q

+2k−1ds. In
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Lemma 3.3.2 we have proven that

Gq,j,k(x)
3.3.2
=

{
Gq,j+q,k(x), j < q,

Gq,j−q,k+1(x), j ≥ q.

The asymptotic expansion of Gq,j,k(x) has already been ascertained in Lemma 3.2.6
as x→∞. Thus, we get for j < q

Gq,j,k(x)
3.3.2
= Gq,j+q,k(x)

3.2.6
≈

k−1∏
`=1

(
j + q

2q
+ `

)
1

2
Γ

(
j + q

2q
+ 1

)

− e−x2
∞∑
n=1

x
j+q
q

+2k−2n
n−1∏
l=1

(
j + q

2q
+ k − l

)
2.1.7
=

k−1∏
`=1

(
j + q

2q
− 1 + `+ 1

)
1

2

(
j − q

2q
+ 1

)
Γ

(
j + q

2q

)

− e−x2
∞∑
n=1

x
j−q
q

+2(k+1)−2n
n−1∏
l=1

(
j + q

2q
+ k − l

)

=
k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)

− e−x2
∞∑
n=1

x
j−q
q

+2(k+1−n)
n−2∏
l=0

(
j − q

2q
+ k − l

)
,

and for j = q

Gq,q,k(x)
3.3.2
= Gq,0,k+1(x)

3.2.6
≈

k∏
`=1

`
1

2
Γ (1)− e−x2

∞∑
n=1

x2(k+1)−2n

n−1∏
l=1

(k + 1− l)

=
k∏
`=1

`
1

2
Γ (1)− e−x2

∞∑
n=1

x2(k+1−n)

n−2∏
l=0

(k − l) ,

and for j > q

Gq,j,k(x)
3.3.2
= Gq,j−q,k+1(x)
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3.2.6
≈

k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j − q

2q
+ 1

)

− e−x2
∞∑
n=1

x
j−q
q

+2(k+1)−2n
n−1∏
l=1

(
j − q

2q
+ k + 1− l

)

=
k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)

− e−x2
∞∑
n=1

x
j−q
q

+2(k+1−n)
n−2∏
l=0

(
j − q

2q
+ k − l

)
.

�

Corollary 3.3.7. Let k ∈ N, q ∈ N, x ∈ R>0, and let j ∈ {0, . . . , 2q − 1}.
As x→∞, we get the dominant term

x∫
0

e−s
2

s
j
q

+2kds ∼
k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
.

Proof. It is an obvious consequence of Lemma 3.3.6. �

Before we come to integrals with non-positive exponents and asymptotic ex-
pansions as x tends towards zero, we consider the following lemma. It shows the

asymptotic series expansion of
∞∫
x

e−s
2
s2ds, that means k = 1 and j = 0, as x

approaches zero by applying the asymptotic series expansion of the exponential
function and of the error function.

Lemma 3.3.8. Let x ∈ R>0. As x → 0, we achieve the asymptotic series expan-
sion

∞∫
x

e−s
2

s2ds ≈
√
π

4
+

1

2

∞∑
n=0

(
1− 1

(2n+ 1)

)
(−1)n

n!
x2n+1.

Proof. By integration by parts and by the asymptotic expansion of the exponential
function, see Lemma 2.2.11, and of the error function, see Lemma 2.2.12, we
ascertain as x→ 0

∞∫
x

e−s
2

s2ds =

[
−1

2
e−s

2

s

]∞
x

+
1

2

∞∫
x

e−s
2

ds

2.1.2
=

1

2
e−x

2

x+
1

2

[√
π

2
erf(s)

]∞
x



3.3. The Three-Dimensional Case 91

2.1.3
2.2.11=

1

2

∞∑
n=0

(−1)n
x2n

n!
x+

√
π

4
−
√
π

4
erf(x)

2.2.12
≈ 1

2

∞∑
n=0

(−1)n
x2n+1

n!
+

√
π

4
−
√
π

4

(
2√
π

∞∑
n=0

(−1)nx2n+1 1

(2n+ 1)n!

)

=

√
π

4
+

1

2

∞∑
n=0

(
1− 1

(2n+ 1)

)
(−1)n

n!
x2n+1.

�

Now, we consider integrals
∫
e−s

2
s
j
q

+2kds, where k < 0. Due to the fact that
we cannot use the definition of the gamma function in this case, we calculate the
integrals by a reorganized form of the recursive formula of Lemma 3.3.1, which we
show below. The proof is in the same manner as in Lemma 3.2.8.

Corollary 3.3.9. Let k ∈ Z<0, q ∈ N, j ∈ {0, . . . , 2q−1}, and let (j, k) 6= (q,−1).
Up to an additive constant, F q,j,k can recursively be given by

F q,j,k =
1

j−q
2q

+ (k + 1)

(
1

2
e−s

2

s
j
q

+2(k+1)−1

)
+

1
j−q
2q

+ (k + 1)
F q,j,k+1.

Proof. We use the recursive formula

F q,j,k = −1

2
e−s

2

s
j
q

+2k−1 +

(
j − q

2q
+ k

)
F q,j,k−1

in Lemma 3.3.1. We reorganize to the last term and get for k < 1

F q,j,k−1 =
1

j−q
2q

+ k

(
1

2
e−s

2

s
j
q

+2k−1

)
+

1
j−q
2q

+ k
F q,j,k

and in conclusion

F q,j,k =
1

j−q
2q

+ (k + 1)

1

2
e−s

2

s
j
q

+2(k+1)−1 +
1

j−q
2q

+ (k + 1)
F q,j,k+1

for k < 0. �

For k = 0 we have already calculated definite integrals
∞∫
1

e−s
2
s
j
q

+2kds in Corol-

lary 3.3.4. We compute the integrals for k = −1 among others by applying the
recursive formula for negative exponents. We will need this kind of integrals in
Lemma 3.3.11.
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Lemma 3.3.10. Let q ∈ N and let j ∈ {0, . . . , 2q − 1}. We have

∞∫
1

e−s
2

s
j
q
−2ds =

−
1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q.

Proof. We set Gq,j,−1 :=
∞∫
1

e−s
2
s
j
q
−2ds. We get for j < q by the recursive formula

of Lemma 3.3.9 and Corollary 3.3.4

Gq,j,−1
3.3.9
=

[
1

j−q
2q

+ (−1 + 1)

1

2
e−s

2

s
j
q
−1

]∞
1

+
1

j−q
2q

+ (−1 + 1)
Gq,j,0

3.3.4
= − 1

j−q
2q

1

2
e−1 +

1
j−q
2q

1

2
Γ

(
j + q

2q
, 1

)
.

For j = q we cannot apply the recursive formula, thus we attain by Lemma 3.2.2

Gq,q,−1 =

∞∫
1

e−s
2

s−1ds

3.2.2
2.1.11=

1

2
Γ(0, 1).

For j > q we use the relation to Gq,j,k :=
∞∫
1

e−s
2
s
j
q

+2k−1 of Section 3.2. This

relation is stated in Lemma 3.3.2 and we obtain

Gq,j,−1
3.3.2
= Gq,j−q,0

3.2.4
=

[
−1

2
Γ

(
j − q

2q
, s2

)]∞
1

2.1.12=
1

2
Γ

(
j − q

2q
, 1

)
.

�

The following Lemma shows the formula for the calculation of
∞∫
1

e−s
2
s
j
q

+2kds,

where k < −1, by applying the recursive formula and the lemma above.
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Lemma 3.3.11. Let k ∈ Z<0, q ∈ N, and let j ∈ {0, . . . , 2q − 1}. We achieve
for k < −1

∞∫
1

e−s
2

s
j
q

+2kds = − 1
j−q
2q

+ (k + 1)

1

2
e−1 −

−(k+2)∑
m=1

−(k+1)−m∏
`=0

1
j−q
2q

+ (k + 1) + `

1

2
e−1

+

−(k+1)∏
`=1

1
j−q
2q
− `

cj,−1,

where

cj,−1 :=

−
1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q.

Proof. We set Gq,j,k :=
∞∫
1

e−s
2
s
j
q

+2kds. According to Lemma 3.3.10, we set

cj,−1 := Gq,j,−1

3.3.10
=

−
1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q.

We start the induction with k = −2 and get by the recursive formula of Corol-
lary 3.3.9

Gq,j,−2
3.3.9
=

[
1

j−q
2q

+ (−2 + 1)

1

2
e−s

2

s
j
q
−3

]∞
1

+
1

j−q
2q

+ (−2 + 1)
Gq,j,−1

= − 1
j−q
2q

+ (−2 + 1)

1

2
e−1 +

1
j−q
2q
− 1

cj,−1

= − 1
j−q
2q

+ (−2 + 1)

1

2
e−1 −

0∑
m=1

1−m∏
`=0

1
j−q
2q

+ (−2 + 1) + `

1

2
e−1

+
1∏
`=1

1
j−q
2q
− `

cj,−1.

By using Corollary 3.3.9 again, we conclude

Gq,j,k
3.3.9
= − 1

j−q
2q

+ (k + 1)

1

2
e−1 +

1
j−q
2q

+ (k + 1)
Gq,j,k+1
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I.H.
= − 1

j−q
2q

+ (k + 1)

1

2
e−1

+
1

j−q
2q

+ (k + 1)

[
− 1

j−q
2q

+ (k + 2)

1

2
e−1

−
−(k+3)∑
m=1

−(k+2)−m∏
`=0

1
j−q
2q

+ (k + 2) + `

1

2
e−1 +

−(k+2)∏
`=1

1
j−q
2q
− `

cj,−1


= − 1

j−q
2q

+ (k + 1)

1

2
e−1

+
1

j−q
2q

+ (k + 1)

− −(k+2)∑
m=1

−(k+2)−m∏
`=0

1
j−q
2q

+ (k + 2) + `

1

2
e−1


+

−(k+1)∏
`=1

1
j−q
2q
− `

cj,−1

= − 1
j−q
2q

+ (k + 1)

1

2
e−1

−
−(k+2)∑
m=1

1
j−q
2q

+ (k + 1) + 0

−(k+2)−m∏
`=1

1
j−q
2q

+ (k + 1) + `

1

2
e−1

+

−(k+1)∏
`=1

1
j−q
2q
− `

cj,−1

= − 1
j−q
2q

+ (k + 1)

1

2
e−1 −

−(k+2)∑
m=1

−(k+1)−m∏
`=0

1
j−q
2q

+ (k + 1) + `

1

2
e−1

+

−(k+1)∏
`=1

1
j−q
2q
− `

cj,−1.

�

Next, we establish the asymptotic expansions of
∞∫
x

e−s
2
s
j
q

+2kds, where k is a

non-positive integer and x tends towards zero. We could also prove the next
lemma by taking up Lemma 3.2.9 of Section 3.2, but combining the cases of the
conclusion seems to be even more complicated than proceeding the same way as
in Lemma 3.2.9.
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Lemma 3.3.12. Let k ∈ Z≤0, q ∈ N, x ∈ R>0, and let j ∈ {0, . . . , 2q − 1}.
As x→ 0,

∞∫
x

e−s
2

s
j
q

+2kds

has for j 6= q the asymptotic series expansion

dj,k +
∞∑
n=0

bj,k,nx
j
q

+2(n+k)+1

and for j = q

dq,k +
∞∑
n=0

bq,k,nx
2(n+k+1) +

(−1)k

(−k − 1)!
log(x),

where

bj,k,n :=

{
0, j = q and n = −k − 1,

(−1)n+1 1

( j+qq +2(n+k))n!
, else,

and

dj,k :=
∞∑
n=0

(−bj,k,n) + cj,k,

where

cj,k :=



1
2
Γ
(
j+q
2q
, 1
)
, k = 0,−

1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = −1,

− 1
j−q
2q

+(k+1)

1
2
e−1 −

−(k+2)∑
m=1

−(k+1)−m∏̀
=0

1
j−q
2q

+(k+1)+`

1
2
e−1

+
−(k+1)∏̀

=1

1
j−q
2q
−`cj,−1, k < −1.

Proof. We set Gq,j,k(x) :=
∞∫
x

e−s
2
s
j
q

+2kds. As x→ 0, we can split up Gq,j,k(x) into

∞∫
x

e−s
2

s
j
q

+2kds =

1∫
x

e−s
2

s
j
q

+2kds+

∞∫
1

e−s
2

s
j
q

+2kds.
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First, we consider the last summand
∞∫
1

e−s
2
s
j
q

+2kds. By using Remark 3.3.4,

Lemma 3.3.10, and Lemma 3.3.11, we summarize

cj,k :=

∞∫
1

e−s
2

s
j
q

+2kds

3.3.4
3.3.10
3.3.11=



1
2
Γ
(
j+q
2q
, 1
)
, k = 0,−

1

− j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = −1,

− 1
j−q
2q

+(k+1)

1
2
e−1 −

−(k+2)∑
m=1

−(k+1)−m∏̀
=0

1
j−q
2q

+(k+1)+`

1
2
e−1

+
−(k+1)∏̀

=1

1
j−q
2q
−`cj,−1, k < −1.

Hence, we achieve by using the asymptotic expansion of the exponential function,
which is stated in Lemma 2.2.11,

Gq,j,k(x) =

1∫
x

e−s
2

s
j
q

+2kds+

∞∫
1

e−s
2

s
j
q

+2kds

2.2.11
=

1∫
x

∞∑
n=0

(−1)n

n!
s2ns

j
q

+2kds+ cj,k

=
∞∑
n=0

(−1)n

n!

1∫
x

s
j
q

+2(n+k)ds+ cj,k. (1)

It is necessary to distinguish between two cases. First, we may assume j 6= q.
Consequently, it is j

q
+ 2(n+ k) 6= −1 and we obtain

Gq,j,k(x) =

=
∞∑
n=0

(−1)n

n!

1∫
x

s
j
q

+2(n+k)ds+ cj,k

=
∞∑
n=0

(−1)n

n!

1
j
q

+ 2(n+ k) + 1

[
s
j
q

+2(n+k)+1
]1

x
+ cj,k
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=
∞∑
n=0

(−1)n

n!

1
j
q

+ 2(n+ k) + 1
+
∞∑
n=0

(−1)n+1

n!

1
j
q

+ 2(n+ k) + 1
x
j
q

+2(n+k)+1 + cj,k,

where
∞∑
n=0

(−1)n 1

( j+qq +2(n+k))n!
converges. We set bj,k,n := (−1)n+1 1

( j+qq +2(n+k))n!
and

dj,k :=
∞∑
n=0

(−bj,k,n) + cj,k. Therefore, we can conclude for j 6= q

Gq,j,k(x) ≈
∞∑
n=0

bj,k,nx
j
q

+2(n+k)+1 + dj,k.

Now, we may assume j = q. Since 1 + 2(n + k) = −1 if n = −k − 1, we split the
sum of (1) in

Gq,j,k(x) =
∞∑
n=0

n6=−k−1

(−1)n

n!

1∫
x

s
q
q

+2(n+k)ds+
(−1)−k−1

(−k − 1)!

1∫
x

s
q
q

+2(−k−1+k)ds+ cj,k

=
∞∑
n=0

n 6=−k−1

(−1)n

n!

1

2(n+ k) + 2

[
s2(n+k)+2

]1
x

+
(−1)−k−1

(−k − 1)!
[log(s)]1x + cj,k

=
∞∑
n=0

n6=−k−1

(−1)n

n!

1

2(n+ k) + 2
+

∞∑
n=0

n 6=−k−1

(−1)n+1

n!

1

2(n+ k) + 2
x2(n+k)+2

+
(−1)−k

(−k − 1)!
log(x) + cj,k,

where
∞∑
n=0

n6=−k−1

(−1)n 1
(2(n+k)+2)n!

converges obviously. We set

bq,k,n =

{
0, n = −k − 1,

(−1)n+1 1
(2(n+k)+2)n!

, else,

and dq,k :=
∞∑
n=0

(−bq,k,n) + cj,k. Thus, we gather for j = q

Gq,j,k(x) ≈
∞∑
n=0

bq,k,nx
2(n+k)+2 +

(−1)k

(−k − 1)!
log(x) + dq,k.

�
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Hereafter, we consider the integrals Hq,j,k :=
∫
e−s

2
s
j
q

+2k log(s)ds and denote
definite integrals which belongs to Hq,j,k by

Iq,j,k :=

b∫
a

e−s
2

s
j
q

+2k log(s)ds.

We present a recursive formula for Hq,j,k in Lemma 3.3.13 and then the value

of
∞∫
0

e−s
2
s
j
q

+2 log(s)ds. Afterwards, we establish some asymptotic expansions. We

start with showing the asymptotics of the integral
∞∫
x

e−s
2
s2 log(s)ds as x approaches

zero and after that, we examine
x∫
0

e−s
2
s
j
q

+2k log(s)ds, where k is a positive integer,

and ascertain the dominant term as x approaches infinity. Finally, we analyze
∞∫
x

e−s
2
s
j
q

+2k log(s)ds, where k is a non-positive integer. First, the next lemma

shows the mentioned recursive formula.

Lemma 3.3.13. Let q ∈ N, let k ∈ Z, and let j ∈ {0, . . . , 2q − 1}. Up to an
additive constant, Hq,j,k is given by the recursive formula

Hq,j,k = −1

2
e−s

2

s
j
q

+2k−1 log(s) +

(
j − q

2q
+ k

)
Hq,j,k−1 +

1

2
F q,j,k−1,

where F q,j,k =
∫
e−s

2
s
j
q

+2kds.

Proof. We proof the recursive formula above by integration by parts and choose
e−s

2
s and s

j
q

+2k−1 log(s) as parts. We have

Hq,j,k =

∫
e−s

2

s
j
q

+2k log(s)ds

=

∫
e−s

2

s s
j
q

+2k−1 log(s)ds

= − 1

2
e−s

2

s
j
q

+2k−1 log(s) +
1

2

(
j

q
+ 2k − 1

)∫
e−s

2

s
j
q

+2k−2 log(s)ds

+
1

2

∫
e−s

2

s
j
q

+2k−2ds
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= − 1

2
e−s

2

s
j
q

+2k−1 log(s) +

(
j

2q
+ k − 1

2

)∫
e−s

2

s
j
q

+2(k−1) log(s)ds

+
1

2

∫
e−s

2

s
j
q

+2(k−1)ds

= − 1

2
e−s

2

s
j
q

+2k−1 log(s) +

(
j − q

2q
+ k

)
Hq,j,k−1 +

1

2
F q,j,k−1.

�

This recursive formula is based on the integrals
∫
e−s

2
s
j
q

+2 log(s)ds. We do not
go further into their antiderivatives, because it contains the so-called generalized
hypergeometric function1. For our purposes, it is enough to know that they exist.

But we can easily specify the integrals
∞∫
0

e−s
2
s
j
q

+2k log(s)ds, k > 0, more precisely,

because they are based on the first prime of the gamma function. Therefore, we
show these specific integrals, where k > 0, first and afterwards that they are not
zero.

Lemma 3.3.14. Let k ∈ N, q ∈ N and let j ∈ {0, . . . , 2q − 1}. We get

∞∫
0

e−s
2

s
j
q

+2k log(s)ds =
1

4
Γ′
(
j

2q
+ k +

1

2

)
.

Proof. By substitution s = t
1
2 and Definition 2.1.8 of the first prime of the gamma

function, we get

∞∫
0

e−s
2

s
j
q

+2k log(s)ds =

∞∫
0

e−tt
j
2q

+k log(t
1
2 )

1

2
t−

1
2dt

=
1

2

∞∫
0

e−tt
j
2q

+k− 1
2

1

2
log(t)dt

=
1

4

∞∫
0

e−tt(
j
2q

+k− 1
2

+1)−1 log(t)dt

2.1.8
=

1

4
Γ′
(
j

2q
+ k +

1

2

)
.

�
1For more information to the generalized hypergeometric function we refer to [AS12] and

[Erd81].
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Corollary 3.3.15. Let k ∈ N, q ∈ N and let j ∈ {0, . . . , 2q − 1}. We have

∞∫
0

e−s
2

s
j
q

+2k log(s)ds > 0.

Proof. We get
∞∫
0

e−s
2
s
j
q

+2k log(s)ds = 1
4
Γ′
(
j
2q

+ k + 1
2

)
by Lemma 3.3.14. By

Remark 2.1.9, we know that the first derivative of the gamma function has only
a single positive zero in x0 = 1, 46 . . . and in addition Γ′(x) > 0 for x > x0

by Remark 2.1.10. Due to the fact, that we get for the smallest k, which is
k = 1: j

2q
+ 3

2
> x0 for all j ∈ {0, . . . , 2q − 1} and q ∈ N, we can conclude

Γ′
(
j
2q

+ k + 1
2

)
> 0. �

We remain on the integrals
∫
e−s

2
s
j
q

+2k log(s)ds, where k is a positive integer:

our next subgoal is to determine the dominant term of
x∫
0

e−s
2
s
j
q

+2k log(s)ds as x

approaches infinity. We achieve this by reducing the integrals to k = 1 and by
using the recursive formula of Lemma 3.3.13. First, we show the dominant term
for k = 1 in the subsequent lemma.

Lemma 3.3.16. Let q ∈ N and let j ∈ {0, . . . , 2q − 1}. As x→∞, we get

x∫
0

e−s
2

s
j
q

+2 log(s)ds ∼ 1

4
Γ′
(
j

2q
+

3

2

)
.

Proof. We can split the integral in the following way:

x∫
0

e−s
2

s
j
q

+2 log(s)ds =

∞∫
0

e−s
2

s
j
q

+2 log(s)ds−
∞∫
x

e−s
2

s
j
q

+2 log(s)ds

3.3.14
=

1

4
Γ′
(
j

2q
+

3

2

)
−
∞∫
x

e−s
2

s
j
q

+2 log(s)ds.

Since lim
x→∞

∞∫
x

e−s
2
s
j
q

+2 log(s)ds = 0, we conclude that 1
4
Γ′
(
j
2q

+ 3
2

)
is the dominant

term. �



3.3. The Three-Dimensional Case 101

The next step is to prove the formula which reduces
x∫
0

e−s
2
s
j
2q

+2k log(s)ds to
x∫
0

e−s
2
s
j
q

+2 log(s)ds for an arbitrary x ∈ R>0.

Lemma 3.3.17. Let k ∈ N, where k > 1, let q ∈ N, j ∈ {0, . . . , 2q − 1}, and
let x ∈ R>0. We get

x∫
0

e−s
2

s
j
2q

+2k log(s)ds = − 1

2
e−x

2

x
j
q

+2k−1 log(x)

−
k−1∑
m=2

k−m−1∏
`=0

(
j − q

2q
+ k − `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
k∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

)
Gq,j,k−n(x),

where Iq,j,1(x) =
x∫
0

e−s
2
s
j
q

+2 log(s)ds and Gq,j,k(x) =
x∫
0

e−s
2
s
j
q

+2kds.

Proof. We set Iq,j,k(x) :=
x∫
0

e−s
2
s
j
2q

+2k log(s)ds and Gq,j,k(x) :=
x∫
0

e−s
2
s
j
2q

+2kds.

By applying the recursive formula of Lemma 3.3.13, we achieve for the initial
step k = 2

Iq,j,2(x) =

[
−1

2
e−s

2

s
j
q

+4−1 log(s)

]x
0

+

(
j − q

2q
+ 2

)
Iq,j,1(x) +

1

2
Gq,j,2−1(x)

= − 1

2
e−x

2

x
j
q

+4−1 log(x)

−
1∑

m=2

2−m−1∏
`=0

(
j − q

2q
+ 2− `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
2∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x) +

1

2

1∑
n=1

n−2∏
`=0

(
j − q

2q
+ 2− `

)
Gq,j,2−n(x).
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We obtain with induction

Iq,j,k(x) =

3.3.13
=

[
−1

2
e−s

2

s
j
q

+2k−1 log(s)

]x
0

+

(
j − q

2q
+ k

)
Iq,j,k−1(x) +

1

2
Gq,j,k−1(x)

I.H.
= − 1

2
e−x

2

x
j
q

+2k−1 log(x) +

(
j − q

2q
+ k

)[
−1

2
e−x

2

x
j
q

+2(k−1)−1 log(x)

−
k−2∑
m=2

k−m−2∏
`=0

(
j − q

2q
+ (k − 1)− `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
k−1∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x)

+
1

2

k−2∑
n=1

n−2∏
`=0

(
j − q

2q
+ (k − 1)− `

)
Gq,j,k−1−n(x)

]
+

1

2
Gq,j,k−1(x)

= − 1

2
e−x

2

x
j
q

+2k−1 log(x) +

(
j − q

2q
+ k

)[
−1

2
e−x

2

x
j
q

+2(k−1)−1 log(x)

−
k−2∑
m=2

k−m−2∏
`=0

(
j − q

2q
+ k − (`+ 1)

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

]

+

(
j − q

2q
+ k

) k−1∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x)

+
1

2

(
j − q

2q
+ k

) k−2∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − (`+ 1)

)
Gq,j,k−(n+1)(x)

+
1

2
Gq,j,k−1(x)

= − 1

2
e−x

2

x
j
q

+2k−1 log(x)

+

(
j − q

2q
+ k

)[
−

k−1∑
m=2

k−m−1∏
`=1

(
j − q

2q
+ k − `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

]

+
k∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x)

+
1

2

(
j − q

2q
+ k

) k−2∑
n=1

n−1∏
`=1

(
j − q

2q
+ k − `

)
Gq,j,k−(n+1)(x) +

1

2
Gq,j,k−1(x)
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= − 1

2
e−x

2

x
j
q

+2k−1 log(x)−
k−1∑
m=2

k−m−1∏
`=0

(
j − q

2q
+ k − `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
k∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x)

+
1

2

k−2∑
n=1

n−1∏
`=0

(
j − q

2q
+ k − `

)
Gq,j,k−(n+1)(x) +

1

2
Gq,j,k−1(x)

= − 1

2
e−x

2

x
j
q

+2k−1 log(x)−
k−1∑
m=2

k−m−1∏
`=0

(
j − q

2q
+ k − `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
k∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x)

+
1

2

k−2∑
n=0

n−1∏
`=0

(
j − q

2q
+ k − `

)
Gq,j,k−(n+1)(x)

= − 1

2
e−x

2

x
j
q

+2k−1 log(x)−
k−1∑
m=2

k−m−1∏
`=0

(
j − q

2q
+ k − `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
k∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x) +

1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

)
Gq,j,k−n(x).

�

Using Lemma 3.3.16 and the last one, Lemma 3.3.17, we attain our subgoal:

the ascertainment of the dominant term of
x∫
0

e−s
2
s
j
2q

+2k log(s)ds as x tends towards

infinity.

Lemma 3.3.18. Let k ∈ N, where k > 1, q ∈ N, and let j ∈ {0, . . . , 2q − 1}.
As x→∞, we get that

x∫
0

e−s
2

s
j
2q

+2k log(s)ds

has the dominant term

k∏
`=2

(
j − q

2q
+ `

)
1

4
Γ′
(
j

2q
+

3

2

)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

) k−n∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
.
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Proof. We set Iq,j,k(x) :=
x∫
0

e−s
2
s
j
2q

+2k log(s)ds and Gq,j,k(x) :=
x∫
0

e−s
2
s
j
2q

+2kds. By

the dominant term of Iq,j,1(x), which is stated in Lemma 3.3.16, by the dominant
term of Gq,j,k, see Lemma 3.3.7, and by Lemma 3.3.17, we achieve the dominant
term of Iq,j,k(x) as x→∞ in the following way:

Iq,j,k(x) =

3.3.17
= − 1

2
e−x

2

x
j
q

+2k−1 log(x)−
k−1∑
m=2

k−m−1∏
`=0

(
j − q

2q
+ k − `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
k∏
`=2

(
j − q

2q
+ `

)
Iq,j,1(x) +

1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

)
Gq,j,k−n(x)

3.3.7
3.3.16≈ − 1

2
e−x

2

x
j
q

+2k−1 log(x)−
k−1∑
m=2

k−m−1∏
`=0

(
j − q

2q
+ k − `

)
1

2
e−x

2

x
j
q

+2m−1 log(x)

+
k∏
`=2

(
j − q

2q
+ `

)
1

4
Γ′
(
j

2q
+

3

2

)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

) k−n∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)

∼
k∏
`=2

(
j − q

2q
+ `

)
1

4
Γ′
(
j

2q
+

3

2

)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

) k−n∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
.

�

In the subsequent paragraph we consider the integrals
∫
e−s

2
s
j
q

+2k log(s)ds,
where k is a non-positive integer. As above, we reorganize the recursive formula
of Lemma 3.3.13 to calculate them.

Remark 3.3.19. Let k ∈ Z<0, q ∈ N, and let j ∈ {0, . . . , 2q − 1}, where
(j, k) 6= (q,−1). Up to an additive constant, Hq,j,k can also recursively be given
by

Hq,j,k =
1

j+q
2q

+ k

1

2
e−s

2

s
j
q

+2k+1 log(s)− 1
j+q
2q

+ k

1

2
F q,j,k +

1
j+q
2q

+ k
Hq,j,k+1.
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Proof. We use the recursive formula

Hq,j,k = −1

2
e−s

2

s
j
q

+2k−1 log(s) +

(
j − q

2q
+ k

)
Hq,j,k−1 +

1

2
F q,j,k−1

of Lemma 3.3.13. By reorganizing to Hq,j,k−1, we get for k < 1

Hq,j,k−1 =
1

j−q
2q

+ k

1

2
e−s

2

s
j
q

+2k−1 log(s)− 1
j−q
2q

+ k

1

2
F q,j,k−1 +

1
j−q
2q

+ k
Hq,j,k

=
1

j+q
2q

+ k − 1

1

2
e−s

2

s
j
q

+2(k−1)+1 log(s)− 1
j+q
2q

+ k − 1

1

2
F q,j,k−1

+
1

j+q
2q

+ k − 1
Hq,j,k

and thus for k < 0

Hq,j,k =
1

j+q
2q

+ k

1

2
e−s

2

s
j
q

+2k+1 log(s)− 1
j+q
2q

+ k

1

2
F q,j,k +

1
j+q
2q

+ k
Hq,j,k.

�

First, we see an application of the recursive formula in its form for nega-

tive exponents stated in the corollary above. We calculate
∞∫
1

e−s
2
s
j
q

+2k log(s)ds,

k < 0. We can put down these integrals to the integrals
∞∫
1

e−s
2
s
j
q log(s)ds and

∞∫
1

e−s
2
s−1 log(s)ds. As above, we do not go further into their antiderivative, which

contains the hypergeometric function respectively the so-calledMeijer G-function2.

Lemma 3.3.20. Let k ∈ Z<0, q ∈ N, and let j ∈ {0, . . . , 2q − 1}. We achieve
for k < −1

∞∫
1

e−s
2

s
j
q

+2k log(s)ds = −
−(k+2)∑
m=0

(
m∏
`=0

1
j+q
2q

+ (k + `)

)
1

2
cj,k+m

+

−(k+2)∏
`=0

1
j+q
2q

+ (k + `)
c̃j,−1,

2For further information to the Meijer G-function we refer to [OoSU10] and [Erd81].
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where

c̃j,−1 :=


∞∫
1

e−s
2
s−1 log(s)ds, j = q,

− 1
j+q
2q
−1

1
2
cj,−1 + 1

j+q
2q
−1
c̃j,0, else,

where c̃j,0 :=
∞∫
1

e−s
2
s
j
q log(s)ds and

cj,k :=



−
1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = −1,

− 1
j−q
2q

+(k+1)

1
2
e−1 −

−(k+2)∑
m=1

−(k+1)−m∏̀
=0

1
j−q
2q

+(k+1)+`

1
2
e−1

+
−(k+1)∏̀

=1

1
j−q
2q
−`cj,−1, k < −1.

Proof. We set Iq,j,k :=
∞∫
1

e−s
2
s
j
q

+2k log(s)ds and Gq,j,k :=
∞∫
1

e−s
2
s
j
q

+2kds. According

to Lemma 3.3.10 and Lemma 3.3.11, we set

cj,k := Gq,j,k

3.3.10
3.3.11=



−
1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = −1,

− 1
j−q
2q

+(k+1)

1
2
e−1 −

−(k+2)∑
m=1

−(k+1)−m∏̀
=0

1
j−q
2q

+(k+1)+`

1
2
e−1

+
−(k+1)∏̀

=1

1
j−q
2q
−`cj,−1, k < −1.

Furthermore, we set c̃j,0 := Iq,j,0 and c̃q,−1 := Iq,q,−1. By the recursive formula of

Corollary 3.3.19 we get for k = −1 and j 6= q

Iq,j,−1
3.3.19
=

[
1

j+q
2q
− 1

1

2
e−s

2

s
j
q

+−2+1 log(s)

]∞
1

− 1
j+q
2q
− 1

1

2
Gq,j,−1 +

1
j+q
2q
− 1

Iq,j,0

= − 1
j+q
2q
− 1

1

2
cj,−1 +

1
j+q
2q
− 1

c̃j,0.
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We start the induction with k = −2 and obtain by using the recursive formula of
Corollary 3.3.19

Iq,j,−2
3.3.19
=

[
1

j+q
2q
− 2

1

2
e−s

2

s
j
q

+2(−2)+1 log(s)

]∞
1

− 1
j+q
2q
− 2

1

2
Gq,j,−2

+
1

j+q
2q
− 2

Iq,j,−1

= − 1
j+q
2q
− 2

1

2
cj,−2 +

1
j+q
2q
− 2

c̃j,−1

= −
0∑

m=0

(
m∏
`=0

1
j+q
2q

+ (−2 + `)

)
1

2
cj,−2+m +

0∏
`=0

1
j+q
2q

+ (−2 + `)
c̃j,−1.

By using Corollary 3.3.19 again, we get for the induction step

Iq,j,k
3.3.19
=

[
1

j+q
2q

+ k

1

2
e−s

2

s
j
q

+2k+1 log(s)

]∞
1

− 1
j+q
2q

+ k

1

2
F q,j,k +

1
j+q
2q

+ k
Iq,j,k+1

I.H.
= − 1

j+q
2q

+ k

1

2
cj,k +

1
j+q
2q

+ k

− −(k+3)∑
m=0

(
m∏
`=0

1
j+q
2q

+ (k + 1 + `)

)
1

2
cj,k+1+m

+

−(k+3)∏
`=0

1
j+q
2q

+ (k + 1 + `)
c̃j,−1


= − 1

j+q
2q

+ k

1

2
cj,k −

−(k+3)∑
m=0

1
j+q
2q

+ k

(
m+1∏
`=1

1
j+q
2q

+ k + `

)
1

2
cj,k+(m+1)

+
1

j+q
2q

+ k

−(k+2)∏
`=1

1
j+q
2q

+ k + `
c̃j,−1

= − 1
j+q
2q

+ k

1

2
cj,k −

−(k+2)∑
m=1

1
j+q
2q

+ k

(
m∏
`=1

1
j+q
2q

+ k + `

)
1

2
cj,k+m

+
1

j+q
2q

+ k

−(k+2)∏
`=1

1
j+q
2q

+ k + `
c̃j,−1

= −
−(k+2)∑
m=0

(
m∏
`=0

1
j+q
2q

+ k + `

)
1

2
cj,k+m +

−(k+2)∏
`=0

1
j+q
2q

+ k + `
c̃j,−1.

�
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Remark 3.3.21. Up to an additive constant, we get∫
s−1 log(s)ds =

1

2
(log(s))2.

Proof. Up to an additive constant, we easily achieve∫
s−1 log(s)ds = log(s) log(s)−

∫
log(s)s−1ds

by integration by parts. In consequence of reorganization, we get

2

∫
s−1 log(s)ds = (log(s))2

and therefore ∫
s−1 log(s)ds =

1

2
(log(s))2 .

�

The next Lemma shows the asymptotic series expansion of
∞∫
x

e−s
2
s
j
q

+2k log(s)ds,

where k ≤ 0 and x approaches zero. This proof is similarly structured to the proof
of Lemma 3.2.10 in Section 3.2 and the proof of Lemma 3.3.12.

Lemma 3.3.22. Let k ∈ Z≤0, q ∈ N, and let j ∈ {0, . . . , 2q − 1}. As x→ 0,

∞∫
x

e−s
2

s
j
q

+2k log(s)ds

has for j 6= q the asymptotic expansion

∞∑
n=0

b̃j,k,nx
j
q

+2(n+k)+1 +
∞∑
n=0

(−b̃j,k,n)

(
j + q

q
+ 2(n+ k)

)
log(x)x

j
q

+2(n+k)+1 + d̃j,k

and for j = q

∞∑
n=0

b̃q,k,nx
1+2(n+k)+1 +

∞∑
n=0

(−b̃q,k,n) (2 + 2(n+ k)) log(x)x1+2(n+k)+1

+
(−1)−k

(−k − 1)!

1

2
(log(x))2 + d̃q,k,
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where

b̃j,k,n :=

0, j = q and n = −k − 1,

(−1)n 1

( jq+2(n+k)+1)
2
n!
, else,

and

d̃j,k :=
∞∑
n=0

(
−b̃j,k,n

)
+ c̃j,k,

where

c̃j,k :=



∞∫
1

e−s
2
s
j
q log(s)ds, k = 0,

∞∫
1

e−s
2
s−1 log(s)ds, j = q,

− 1
j+q
2q
−1

1
2
cj,−1 + 1

j+q
2q
−1
c̃j,0, else,

k = −1,

−
−(k+2)∑
m=0

(
m∏̀
=0

1
j+q
2q

+(k+`)

)
1
2
cj,k+m +

−(k+2)∏̀
=0

1
j+q
2q

+(k+`)
c̃j,−1, k < −1,

where

cj,k :=



−
1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = −1,

− 1
j−q
2q

+(k+1)

1
2
e−1 −

−(k+2)∑
m=1

−(k+1)−m∏̀
=0

1
j−q
2q

+(k+1)+`

1
2
e−1

+
−(k+1)∏̀

=1

1
j−q
2q
−`cj,−1, k < −1.

Proof. We set Iq,j,k(x) :=
∞∫
x

e−s
2
s
j
q

+2k log(s)ds. As x→ 0, we can split up Iq,j,k(x)

into

∞∫
x

e−s
2

s
j
q

+2k log(s)ds =

1∫
x

e−s
2

s
j
q

+2k log(s)ds+

∞∫
1

e−s
2

s
j
q

+2k log(s)ds.

The integrals
∞∫
1

e−s
2
s
j
q

+2k log(s)ds exist and have been calculated in Lemma 3.3.20.
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Therefore, we set c̃j,k :=
∞∫
1

e−s
2
s
j
q

+2k log(s)ds. We investigate by using the series

expansion of the exponential function in Lemma 2.2.11 that

Iq,j,k(x) =

1∫
x

e−s
2

s
j
q

+2k log(s)ds+

∞∫
1

e−s
2

s
j
q

+2k log(s)ds

=

1∫
x

e−s
2

s
j
q

+2k log(s)ds+ c̃j,k

2.2.11
=

1∫
x

∞∑
n=0

(−1)n

n!
s2ns

j
q

+2k log(s)ds+ c̃j,k

=
∞∑
n=0

(−1)n

n!

1∫
x

s
j
q

+2(n+k) log(s)ds+ c̃j,k. (1)

It is necessary to distinguish between two cases. First, we may assume j 6= q.
Consequently it is j

q
+2(n+k) 6= −1 for all n ∈ N0 and we ascertain by integration

by parts

Iq,j,k(x)

(1)
=

∞∑
n=0

(−1)n

n!

1∫
x

s
j
q

+2(n+k) log(s)ds+ c̃j,k

=
∞∑
n=0

(−1)n

n!

[ 1
j
q

+ 2(n+ k) + 1
s
j
q

+2(n+k)+1 log(s)

]1

x

−
1∫

x

1
j
q

+ 2(n+ k) + 1
s
j
q

+2(n+k)+1 1

s
ds

+ c̃j,k

=
∞∑
n=0

(−1)n
1(

j
q

+ 2(n+ k) + 1
)
n!

− x jq+2(n+k)+1 log(x)

−

[
1

j
q

+ 2(n+ k) + 1
s
j
q

+2(n+k)+1

]1

x

+ c̃j,k
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=
∞∑
n=0

(−1)n
1(

j
q

+ 2(n+ k) + 1
)
n!

[
− x

j
q

+2(n+k)+1 log(x)

+
1

j
q

+ 2(n+ k) + 1
x
j
q

+2(n+k)+1 − 1
j
q

+ 2(n+ k) + 1

]
+ c̃j,k

=
∞∑
n=0

(−1)n
1(

j
q

+ 2(n+ k) + 1
)2

n!

[
−
(
j

q
+ 2(n+ k) + 1

)
x
j
q

+2(n+k)+1 log(x)

+x
j
q

+2(n+k)+1

]
+
∞∑
n=0

(−1)n+1 1(
j
q

+ 2(n+ k) + 1
)2

n!
+ c̃j,k

=
∞∑
n=0

(−1)n
1(

j+q
q

+ 2(n+ k)
)2

n!
x
j
q

+2(n+k)+1

+
∞∑
n=0

(−1)n+1 1(
j+q
q

+ 2(n+ k)
)2

n!

(
j + q

q
+ 2(n+ k)

)
log(x)x

j
q

+2(n+k)+1

+
∞∑
n=0

(−1)n+1 1(
j
q

+ 2(n+ k) + 1
)2

n!
+ c̃j,k,

where the series
∞∑
n=0

(−1)n 1

( j+qq +2(n+k))
2
n!

converges. We set b̃j,k,n := (−1)n

( j+qq +2(n+k))
2
n!

and furthermore,

d̃j,k :=
∞∑
n=0

(−b̃j,k,n) + c̃j,k.

We can conclude

Iq,j,k(x) =
∞∑
n=0

(−1)n

n!

1∫
x

s
j
q

+2(n+k) log(s)ds+ c̃j,k

= d̃j,k +
∞∑
n=0

b̃j,k,nx
j
q

+2(n+k)+1

+
∞∑
n=0

(−b̃j,k,n)

(
j + q

q
+ 2(n+ k)

)
log(x)x

j
q

+2(n+k)+1. (2)
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We may assume j = q. Since 1 + 2(n+ k) = −1 if n = −k− 1, we split up the

series in (1) in
∞∑
n=0

n6=−k−1

(−1)n

n!

1∫
x

s1+2(n+k) log(s)ds + (−1)−k−1

(−k−1)!

1∫
x

s−1 log(s)ds. For the

first summand we achieve for j = q and n 6= −k − 1 the same result as in (2) in
an analogous way. For reasons of clarity we use this partial result and set

Hq,q,k(x) :=
∞∑
n=0

n 6=−k−1

(−1)n

n!

1∫
x

s1+2(n+k) log(s)ds+ c̃q,k

= d̃j,k +
∞∑
n=0

n 6=−k−1

b̃j,k,nx
j
q

+2(n+k)+1

+
∞∑
n=0

(−b̃j,k,n)

(
j + q

q
+ 2(n+ k)

)
log(x)x

j
q

+2(n+k)+1. (3)

Using Remark 3.3.21, we investigate the asymptotic series expansion for j = q by

Iq,q,k(x)
(1)
=

∞∑
n=0

n 6=−k−1

(−1)n

n!

1∫
x

s1+2(n+k) log(s)ds+
(−1)−k−1

(−k − 1)!

1∫
x

s−1 log(s)ds+ c̃q,k

(3)
= Hq,q,k(x) +

(−1)k−1

(−k − 1)!

1∫
x

s−1 log(s)ds

3.3.21
= Hq,q,k(x) +

(−1)k−1

(−k − 1)!

[
1

2
(log(s))2

]1

x

(3)
=

∞∑
n=0

b̃q,k,nx
2(n+k)+2 +

∞∑
n=0

(−b̃q,k,n) (2(n+ k) + 2) log(x)x2(n+k)+2

+ d̃q,k +
(−1)k

(−k − 1)!

1

2
(log(x))2,

where we set b̃q,k,n := 0 if n = −k − 1 and else we set b̃q,k,n and d̃q,k as above. �
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3.3.2 Definability and Asymptotic Expansions

In this last section of Chapter 3, we come up with the probability distribution
given by the standard Brownian Motion on a globally subanalytic set A ⊂ R3,
which is represented by

f : R>0 −→ [0, 1],

t 7−→ P0(Bt ∈ A) =
1

(2πt)
3
2

∫
A

e
−|x|2

2t dx.

As we mentioned above, we assume without loss of generality that the dimension
of A is three to avoid integration over a null set. The three-dimensional case is
structural quite similar to R2, but there is a content-related difference. As above,
we cannot give a general statement about definability of f(t) and therefore, we
devote once again our attention to the limit points of t: zero and infinity. There
we establish asymptotic expansions of f(t). It is remarkable that we get definability
of f(t) in Ran,exp if t tends towards infinity and A is bounded. But if A is unbouded
the asymptotic expansion of f(t) is also definable in Ran,exp as t approaches infinity.
The main results of this section are gathered in the following theorem.

Theorem 3.3.23. Let t ∈ R>0 and let A ⊂ R3 be a globally subanalytic set. Let
f(t) be the probability distribution given by the standard Brownian Motion on A,
which is defined as

f(t) :=
1

(2πt)
3
2

∫
A

e−
|x|2
2t dx.

i) As t→ 0, f(t) has the asymptotic series expansion

∞∑
k=0

(γk + δk log(t)) t
k
q ,

which is not necessarily convergent and where γk, δk ∈ R.

ii) As t→∞:

a) If A is bounded, f(t) has the form %0(t) + %1(t) log(t), where %0(t) and
%1(t) are globally subanalytic functions, and thereby f(t) is definable in
Ran,exp.

b) If A is unbounded, f(t) has the asymptotic expansion

ρ0(t) + ρ1(t) log(t) + ρ2(t) log(t)2,
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where ρ0(t) =
∞∑
k=0

µkt
− k
q , ρ1(t) =

∞∑
k=1

νkt
− k
q , and ρ2(t) =

∞∑
k=1

ωkt
1
2
−k,

µk, νk, ωk ∈ R and q ∈ N, are convergent Puiseux series and at least
one of the series is not zero. The asymptotic expansion is definable
in Ran,exp.

The proof of this theorem is split up in two parts. For each part we resume the
results in a theorem; as t tends towards zero in Theorem 3.3.30 and in Theorem
3.3.43 as t approaches infinity. First, we consider the case t tends to zero in the
subsequent paragraph.

The Case t at Zero

Our aim is to show an asymptotic series expansion of 1

(2πt)
3
2

∫
A

e−
|x|2
2t dx as t tends

towards zero. In the course of this we will consider integrals of the form∫
D

e
−r2
2t r2 (ψ0(r) + ψ1(r) log(r)) dr,

where ψi(r) are globally subanalytic functions and ψ0(r) +ψ1(r) log(r) is bounded
on an open interval D ⊂ R≥0 ∪ {∞}. By the Cell Decomposition Theorem 2.3.15,
we are able to reduce D to three forms of intervals: ]0, β[, where β < 1, ]α, β[,
where 0 < α < β <∞, and ]α,∞[, where α > 1.

First, we assume D =]0, β[. The functions ψ0(r) and ψ1(r) can be represented
as a convergent Puiseux series around the center zero by arguments, which we
will present later. Before we start with establishing asymptotic expansions, we
give a short proof to show the argument that if ψ0(r) +ψ1(r) log(r) is bounded on
]0, β[, β < 1, it implies ψ0(r) as well as ψ1(r) log(r) is bounded on ]0, β[.

Lemma 3.3.24. Let Ψ(r) = ψ0(r) + ψ1(r) log(r) be a bounded function on D :=
]0, β[, β < 1, where ψ0(r) and ψ1(r) are globally subanalytic functions, which
can be represented as Puiseux series around zero. We have that ψ0(r) as well as
ψ1(r) log(r) is bounded on D.

Proof. Let ψ0(r) be represented as
∞∑
n=k

anr
n and ψ1(r) as

∞∑
m=`

bmr
m. We prove the

claim by contradiction. Without loss of generality we assume k < 0. If k < `



3.3. The Three-Dimensional Case 115

then Ψ(r) ∼ rk is a contradiction to Ψ(r) is bounded on ]0, β[. If k ≥ ` then
Ψ(r) ∼ r` log(r), which is also a contradiction. Thus, it is k, ` ≥ 0. If ` = 0 then
we obtain Ψ(r) ∼ log(r), which is also a contradicition. Therefore, we get that
ψ0(r) as well as ψ1(r) log(r) have to be bounded on D and in consequence of this,
k ≥ 0 and ` > 0. �

Now, we show the asymptotic series expansions of the integrals
∫
D

e
−r2
2t r2ψ(r)dr

and
∫
D

e
−r2
2t r2ψ(r) log(r)dr.

We attract our attention to
β∫
0

e
−r2
2t r2ψ(r)dr. In Section 3.2 we have already studied

a form of integrals which is quite similar to the form above. In the next lemma,

we show the asymptotic series expansion of
β∫
0

e
−r2
2t r2ψ(r)dr by applying results of

Preparations 3.3.1.

Lemma 3.3.25. Let q ∈ N, let β ∈ R>0, where β < 1, and let ψ(r) be a
bounded function on ]0, β[ which can be represented as the convergent Puiseux

series
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k. As t→ 0, we get the asymptotic series expansion

β∫
0

e
−r2
2t r2ψ(r)dr ≈

∞∑
k=0

2q−1∑
j=0

âj,kt
j
2q

+k+ 3
2 ,

where âj,k := aj,k2
j
2q

+k+ 3
2

k+1∏̀
=1

(
j−q
2q

+ `
)

1
2
Γ
(
j+q
2q

)
.

Proof. As this proof is similar in spirit to the proof for
β∫
0

e−
r2

2t r ψ(r)dr, see

Lemma 3.2.12 in Section 3.2, we shorten it to the essentials.

We set F (t) :=
β∫
0

e−
r2

2t r2 ψ(r)dr. First, we show as t→ 0

F (t)−
β∫

0

e−
r2

2t

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k+2dr = O
(
tN+2

)
for a sufficiently large N ∈ N, where N is a multiple of q. By changing variables
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s = r√
2t
, we get

F (t)−
β∫

0

e−
r2

2t

N∑
k=1

2q−1∑
j=0

aj,kr
j
q

+2k+2dr

=

β∫
0

e−
r2

2t

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k+2dr

=

β√
2t∫

0

e−s
2

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k+2√
2t ds.

By estimation of the remainder, we obtain for 0 ≤ s
√

2t ≤ β and a sufficiently
large constant C ∈ R∣∣∣∣∣∣∣∣

β√
2t∫

0

e−s
2

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k+2√
2t ds

∣∣∣∣∣∣∣∣
≤
√

2t

∞∫
0

e−s
2

C
√

2t
2(N+1)+2

s2(N+1)+2 ds

=
√

2t
2(N+2)+1

C

∞∫
0

e−s
2

s2(N+2)+1−1 ds

3.2.3
=
√

2t
2(N+2)+1

C
1

2
Γ

(
N +

5

2

)
. (1)

We conclude

F (t)−
β∫

0

e−
r2

2t

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k+2dr =

β∫
0

e−
r2

2t

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k+2dr

(1)
= O

(
tN+ 5

2

)
. (2)

Establishing the asymptotic series expansion, we change the variable s = r√
2t

as
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above and write

F (t) =
∞∑
k=0

2q−1∑
j=0

aj,k
√

2t
j
q

+2(k+1)+1

β√
2t∫

0

e−s
2

s
j
q

+2(k+1)ds

=
∞∑
k=0

F k+1(t),

where F k(t) :=
2q−1∑
j=0

aj,k−1

√
2t

j
q

+2k+1

β√
2t∫

0

e−s
2
s
j
q

+2kds. In Lemma 3.3.6 we have al-

ready seen the asymptotic series expansion of

β√
2t∫

0

e−s
2
s
j
q

+2kds. Due to the fact

that e−
β2

2t , which is contained in one summand of the asymptotic expansion, tends
towards zero very fast in comparison to tN , N ∈ N, if t approaches zero, only the
constant terms of the expansion are of interest. In Corollary 3.3.7 we have already
seen that

β√
2t∫

0

e−s
2

s
j
q

+2kds ∼
k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
. (3)

Hence, we get the asymptotic expansion F̂ k(t) of F k(t) as t→ 0, which is

F̂ k(t) =

2q−1∑
j=0

âj,k−1t
j
2q

+k+ 1
2 ,

where âj,k := aj,k2
j
2q

+k+ 3
2

k+1∏̀
=1

(
j−q
2q

+ `
)

1
2
Γ
(
j+q
2q

)
and we observe that

F̂ k(t) = O
(
tk+ 1

2

)
. (4)

We set

F̂ (t) =
∞∑
k=0

F̂ k+1(t)

=
∞∑
k=0

2q−1∑
j=0

âj,kt
j
2q

+k+ 3
2 .
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Alike Lemma 3.2.12 in Section 3.2, we achieve

F (t) ≈ F̂ (t)

by

F (t)− F̂
∣∣
N

(t)
(4)
=
∞∑
k=0

F k+1(t)−
N∑
k=0

F̂ k+1

∣∣
N

(t)

(2)
=

N∑
k=0

(
F k+1(t)− F̂ k+1

∣∣
N

(t)
)

+O
(
tN+ 5

2

)
(3)
=O

(
tN+ 5

2

)
and thus F (t) behaves like a Puiseux series. �

Now, we study the integrals
β∫
0

e
−r2
2t r2ψ(r) log(r)dr, where β < 1 and ψ(r) log(r)

is bounded on ]0, β[ and ψ(r) can be written as a convergent Puiseux series
around the center zero. Our next aim is to find the asymptotic expansion of
β∫
0

e−
r2

2t r2 ψ(r) log(r)dr. For this purpose, we show the dominant terms of the

integrals
β∫
0

e
−r2
2t r

j
q

+2k log(r)dr by using several lemmas, which have already been

proven in Preparations 3.3.1.

Lemma 3.3.26. Let k ∈ N, q ∈ N, j ∈ {0, . . . , 2q − 1}, and let β ∈ R>0, where
β < 1. As t→ 0, we have the dominant term

β∫
0

e
−r2
2t r

j
q

+2k log(r)dr ∼ (bj,k + cj,k log(2)) t
j
2q

+k+ 1
2 + cj,k log(t)t

j
2q

+k+ 1
2 ,

where

bj,k := 2
j
2q

+k+ 1
2

[
k∏
`=2

(
j − q

2q
+ `

)
Γ′
(
j

2q
+

3

2

)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

) k−n∏
`=1

(
j − q

2q
+ l

)
1

2
Γ

(
j + q

2q

)]
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and

cj,k := 2
j
2q

+k− 1
2

k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
.

Proof. We make a change of variable s = r√
2t

and obtain

β∫
0

e
−r2
2t r

j
q

+2k log(r)dr=

β√
2t∫

0

e−s
2
(
s
√

2t
) j
q

+2k

log
(
s
√

2t
)√

2t ds

=
√

2t

β√
2t∫

0

e−s
2
(
s
√

2t
) j
q

+2k
(

log(s) +
1

2
log (2t)

)
ds

=
√

2t
j
q

+2k+1

β√
2t∫

0

e−s
2

s
j
q

+2k

(
log(s) +

1

2
(log (2) + log(t))

)
ds

=
√

2t
j
q

+2k+1

β√
2t∫

0

e−s
2

s
j
q

+2k log(s)ds

+
√

2t
j
q

+2k+1 1

2
log (2)

β√
2t∫

0

e−s
2

s
j
q

+2kds

+
√

2t
j
q

+2k+1 1

2
log(t)

β√
2t∫

0

e−s
2

s
j
q

+2kds.

We have already seen the asymptotic expansion of these integrals in Lemma 3.3.6
and 3.3.18. Due to the fact that e−

β2

2t , which is a factor in a part of each of the
asymptotic expansions, tends towards zero very fast in comparison to tN , N ∈ N,
if t approaches zero, only the constant terms are of interest. For the first summand
we have ascertained the dominant term

√
2t

j
q

+2k+1

β√
2t∫

0

e−s
2

s
j
q

+2k log(s)ds ∼ bj,k t
j
2q

+k+ 1
2
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in Lemma 3.3.18, where

bj,k :=2
j
2q

+k+ 1
2

[
k∏
`=2

(
j − q

2q
+ `

)
Γ′
(
j

2q
+

3

2

)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

) k−n∏
`=1

(
j − q

2q
+ l

)
1

2
Γ

(
j + q

2q

)]
.

Using Lemma 3.3.7, the second summand has the dominant term

√
2t

j
q

+2k+1 1

2
log(2)

β√
2t∫

0

e−s
2

s
j
q

+2kds ∼ cj,k log(2)t
j
2q

+k+ 1
2 ,

where

cj,k := 2
j
2q

+k− 1
2

k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
,

and obviously we obtain by the same lemma as above

√
2t

j
q

+2k+1 1

2
log(t)

β√
2t∫

0

e−s
2

s
j
q

+2kds
3.3.7∼ cj,kt

j
2q

+k+ 1
2 log(t)

for the third term. In conclusion, we get

β∫
0

e
−r2
2t r

j
q

+2k log(r)dr =
√

2t
j
q

+2k+1

β√
2t∫

0

e−s
2

s
j
q

+2k log(s)ds

+
√

2t
j
q

+2k+1 1

2
log (2)

β√
2t∫

0

e−s
2

s
j
q

+2kds

+
√

2t
j
q

+2k+1 1

2
log(t)

β√
2t∫

0

e−s
2

s
j
q

+2kds

∼ bj,kt
j
2q

+k+ 1
2 + cj,k log(2)t

j
2q

+k+ 1
2 + cj,k log(t)t

j
2q

+k+ 1
2

= (bj,k + cj,k log(2)) t
j
2q

+k+ 1
2 + cj,k log(t)t

j
2q

+k+ 1
2 .

�
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Now, we are able to establish the asymptotic series expansion of integrals
β∫
0

e−
r2

2t r2 ψ(r) log(r)dr in the next lemma. In consequence of the boundedness

of ψ(r) log(r) on ]0, β[, the representation of ψ(r) as a convergent Puiseux se-
ries in zero has only positive exponents. Therefore, we can reduce the integrals
β∫
0

e−
r2

2t r2 ψ(r) log(r)dr to integrals of the form
β∫
0

e−
r2

2t r
j
q

+2k log(r)dr for which we

have already seen the dominant term in Lemma 3.3.26.

Lemma 3.3.27. Let β ∈ R>0, where β < 1, let ψ(r) be a function such that
ψ(r) log(r) be bounded on ]0, β[ and ψ(r) can be described by the convergent Puiseux

series
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k, where q ∈ N. As t→ 0, we achieve the asymptotic series

expansion

β∫
0

e−
r2

2t r2 ψ(r) log(r)dr ≈
∞∑
k=0

2q−1∑
j=0

(âj,k + ĉj,k log(t)) t
j
2q

+k+ 3
2 ,

where

âj,k := aj,k2
j
2q

+k+ 1
2

[
k∏
`=2

(
j − q

2q
+ `

)
Γ′
(
j

2q
+

3

2

)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

) k−n∏
`=1

(
j − q

2q
+ l

)
1

2
Γ

(
j + q

2q

)

+
1

2
log(2)

k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)]

and

ĉj,k := aj,k2
j
2q

+k− 1
2

k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
.

Proof. We set H(t) :=
β∫
0

e
−r2
2t r2ψ(r) log(r)dr and split H(t) into

H(t) =

β∫
0

e−
r2

2t r2

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr
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=

β∫
0

e−
r2

2t r2

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr

+

β∫
0

e−
r2

2t r2

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr.

First, we show

H(t)−
β∫

0

e−
r2

2t r2

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr = O
(

log(t) tN+ 5
2

)
for a sufficiently large N ∈ N, where N is a multiple of q, and as t → 0. By
substitution s = r√

2t
, we get

H(t)−
β∫

0

e−
r2

2t r2

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr

=

β∫
0

e−
r2

2t r2

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr

=

β√
2t∫

0

e−s
2
(
s
√

2t
)2

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k

log
(
s
√

2t
)√

2t ds.

We estimate the remainder by

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k

≤ C
(
s
√

2t
)2(N+1)

for 0 ≤ s
√

2t ≤ β and a sufficiently large constant C ∈ R and thereby we can
continue∣∣∣∣∣∣∣∣

β√
2t∫

0

e−s
2
(
s
√

2t
)2

∞∑
k=N+1

2q−1∑
j=0

aj,k

(
s
√

2t
) j
q

+2k

log
(
s
√

2t
)√

2t ds

∣∣∣∣∣∣∣∣ ≤
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≤

∣∣∣∣∣∣∣∣C
β√
2t∫

0

e−s
2
(
s
√

2t
)2(N+1)+2

log
(
s
√

2t
)√

2t ds

∣∣∣∣∣∣∣∣
=
√

2t
2(N+2)+1

C

∣∣∣∣∣∣∣∣
β√
2t∫

0

e−s
2

s2(N+2) log
(
s
√

2t
)
ds

∣∣∣∣∣∣∣∣
≤
√

2t
2(N+2)+1

C

∣∣∣∣∣∣
∞∫

0

e−s
2

s2(N+2) log
(
s
√

2t
)
ds

∣∣∣∣∣∣
=
√

2t
2(N+2)+1

C

∣∣∣∣∣∣
∞∫

0

e−s
2

s2(N+2)

(
log(s) +

1

2
log(2) +

1

2
log(t)

)
ds

∣∣∣∣∣∣
≤
√

2t
2(N+2)+1

C

∣∣∣∣∣∣
∞∫

0

e−s
2

s2(N+2)+1−1 log(s)ds

∣∣∣∣∣∣+
1

2
log(2)

∞∫
0

e−s
2

s2(N+2)+1−1ds

+
1

2
| log(t)|

∞∫
0

e−s
2

s2(N+2)+1−1ds


3.2.3
3.3.14= (2t)N+2+ 1

2 C

[
1

4

∣∣∣∣Γ′(2(N + 2) + 1

2

)∣∣∣∣+
1

4
log(2)Γ

(
2(N + 2) + 1

2

)
+

1

4
| log(t)|Γ

(
2(N + 2) + 1

2

)]
3.3.15
= (2t)N+2+ 1

2 C

[
1

4
Γ′
(
N +

5

2

)
+

1

4
log(2)Γ

(
N +

5

2

)
+

1

4
| log(t)|Γ

(
N +

5

2

)]
=

[
2N+2+ 1

2C

(
1

4
Γ′
(
N +

5

2

)
+

1

4
log(2)Γ

(
N +

5

2

))]
tN+ 5

2

+

[
2N+2+ 1

2C
1

4
Γ

(
N +

5

2

)]
| log(t)|tN+ 5

2 . (1)

Being tN+ 5
2 = O

(
tN+ 5

2 log(t)
)
for an arbitrary N ∈ N as t → 0, we conclude by

Definition 2.2.1

H(t)−
β∫

0

e−
r2

2t r2

N∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr =
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=

β∫
0

e−
r2

2t r2

∞∑
k=N+1

2q−1∑
j=0

aj,kr
j
q

+2k−1 log(r)dr

(1)
= O

(
tN+ 5

2 log(t)
)
. (2)

In the next step we establish the asymptotic expansion of H(t) and for this we
rewrite H(t) in

H(t) =

β∫
0

e−
r2

2t r2

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k log(r)dr

=
∞∑
k=0

2q−1∑
j=0

aj,k

β∫
0

e−
r2

2t r
j
q

+2k+2 log(r)dr

=
∞∑
k=0

Hk(t),

where Hk(t) :=
2q−1∑
j=0

aj,k
β∫
0

e−
r2

2t r
j
q

+2k+2 log(r)dr. By Lemma 3.3.26, we ascertain

the asymptotic expansion Ĥk(t) of Hk(t) as t→ 0, which is given by

Ĥk(t) =

2q−1∑
j=0

(
âj,kt

j
2q

+(k+1)+ 1
2 + ĉj,kt

j
2q

+(k+1)+ 1
2 log(t)

)
=

2q−1∑
j=0

(âj,k + ĉj,k log(t)) t
j
2q

+k+ 3
2 ,

where

âj,k := aj,k2
j
2q

+k+ 1
2

[
k∏
`=2

(
j − q

2q
+ `

)
Γ′
(
j

2q
+

3

2

)

+
1

2

k−1∑
n=1

n−2∏
`=0

(
j − q

2q
+ k − `

) k−n∏
`=1

(
j − q

2q
+ l

)
1

2
Γ

(
j + q

2q

)

+
1

2
log(2)

k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)]



3.3. The Three-Dimensional Case 125

and

ĉj,k := aj,k2
j
2q

+k− 1
2

k∏
`=1

(
j − q

2q
+ `

)
1

2
Γ

(
j + q

2q

)
.

We observe that

Ĥk(t) = O
(

log(t)tk+ 3
2

)
. (3)

Consequently, we set

Ĥ(t) =
∞∑
k=0

Ĥk(t)

=
∞∑
k=0

2q−1∑
j=0

(âj,k + ĉj,k log(t)) t
j
2q

+k+ 3
2

and due to this it is evident by

H(t)− Ĥ
∣∣
N

(t)
(3)
=

N∑
k=0

Hk(t)−
N∑
k=0

Ĥk

∣∣
N

(t) +
∞∑

k=N+1

Hk(t)

(2)
=

N∑
k=0

(
Hk(t)− Ĥk(t)

)
+O

(
tN+ 5

2 log(t)
)

= O
(
tN+ 5

2 log(t)
)

that
H(t) ≈ Ĥ(t).

�

For the next part we may assume D =]α, β[ respectively D =]α,∞[, where
α 6= 0. We only show the scale of the integrals

∫
D

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr,

where ψ0(r) and ψ1(r) are continuous functions. For this, we use the argument
that ψ0(r) + ψ1(r) log(r) is bounded on D as we mentioned above.

Lemma 3.3.28. Let α ∈ R, where α ≥ 1. Let ψ0(r) and ψ1(r) be continuous
functions and let ψ0(r) + ψ1(r) log(r) be bounded on ]α,∞[. As t→ 0, we achieve

∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
.
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Proof. In Lemma 2.2.12 we have introduced the asymptotic expansion

erf

(
α√
2t

)
≈1 + e−

α2

2t

(
α√
2t

)−1
1√
π

∞∑
n=0

(−1)n+1 1(
α2

t

)n n∏
`=1

(2`− 1)

as t→ 0 and by Remark 2.2.5 we obviously have

erf

(
α√
2t

)
= 1 +O

(
e−

α2

2t t
1
2

)
. (1)

In consequence of the boundedness of ψ0(r) + ψ1(r) log(r), it exists a sufficiently
large constant C ∈ R such that |ψ0(r)+ψ1(r) log(r)| ≤ C on ]α,∞[. Therefore, we
get by a change of the variable s = r√

2t
and the recursive formula in Lemma 3.3.1∣∣∣∣∣∣

∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr

∣∣∣∣∣∣ ≤
≤

∞∫
α

e−
r2

2t r2C dr

=
√

2tC

∞∫
α√
2t

e−s
2
(
s
√

2t
)2

ds

=
√

2t
3
C

∞∫
α√
2t

e−s
2

s2 ds

3.3.1
=
√

2t
3
C

[−1

2
e−s

2

s

]∞
α√
2t

+
1

2

∞∫
α√
2t

e−s
2

ds


2.1.2
=
√

2t
3
C

(
1

2
e−

α2

2t
α√
2t

+
1

2

[√
π

2
erf(s)

]∞
α√
2t

)
2.1.3
=
√

2t
3
C

(
1

2
e−

α2

2t
α√
2t

+

√
π

4
−
√
π

4
erf

(
α√
2t

))
(1)
=
√

2t
3
C

(
1

2
e−

α2

2t
α√
2t

+O
(
e−

α2

2t t
1
2

))
.
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Being e−
α2

2t t
1
2 = O

(
e−

α2

2t t−
1
2

)
as t→ 0, we can gather

∞∫
α

e−
r2

2t r2C dr = O
(
e−

α2

2t t−
1
2 t

3
2

)
(1)

and in conclusion
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
.

�

Finally, we show the scale of
β∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr.

Lemma 3.3.29. Let ]α, β[⊂ R>0, where 0 < α < β < ∞. Let ψ0(r) and ψ1(r)
be continuous functions and let (ψ0(r) + ψ1(r) log(r)) be bounded on ]α,∞[. As
t→ 0, we obtain

β∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
.

Proof. It exists a sufficiently large constant C such that |ψ0(r) +ψ1(r) log(r)| ≤ C
on ]α,∞[. We get by substitution s = r√

2t
and the recursive formula in Lemma

3.3.1 ∣∣∣∣∣∣
β∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr

∣∣∣∣∣∣ ≤
β∫
α

e−
r2

2t r2Cdr

≤
∞∫
α

e−
r2

2t r2Cdr

In equation (1) in Lemma 3.3.28 we have already pointed out that

∞∫
α

e−
r2

2t r2Cdr = O
(
e−

α2

2t t−
1
2 t

3
2

)
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and consequently,

β∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
.

�

Now, we return to the integrals 1

(2πt)
3
2

∫
A

e−
|x|2
2t dx and ascertain their asymptotic

expansion as t tends towards infinity. For this purpose, we transform the in-
tegrals in polar coordinates by Transformation Theorem. By Remark 2.3.17 of
Theorem 2.3.16, which gives the form of the angular part, and by the preceding
lemmas, we show the integrals above have an asymptotic series expansion of the

form
∞∑
k=0

(δk + γk log(t)) t
k
q as t approaches zero.

Theorem 3.3.30. Let A ⊂ R3 be a globally subanalytic set. Let f : R>0 → [0, 1]
be the function given by

f(t) =
1

(2πt)
3
2

∫
A

e
−|x|2

2t dx.

As t→ 0, we have the asymptotic series expansion

f(t) ≈
∞∑
k=0

(δk + γk log(t)) t
k
q ,

where δk, γk ∈ R and q ∈ N.
Proof. Let

Θ : R≥0 × [0, π] × ]− π, π] −→ R3,

(r, ϑ, ϕ) 7−→ (r cosϕ sinϑ, r sinϕ sinϑ, r cosϑ),

be the three-dimensional polar coordinate transformation with functional determi-
nant det(DΘ(r, ϑ, ϕ)) = r2 sinϑ. By Transformation Theorem 2.1.17, we trans-
form the given integral in polar coordinates and get

1

(2πt)
3
2

∫
A

e
−|x|2

2t dx
2.1.17
=

1

(2πt)
3
2

∫
Θ−1(A)

e
−|(r cosϕ sinϑ,r sinϕ sinϑ,r cosϑ)|2

2t r2 sinϑ d(r, ϑ, ϕ)

=
1

(2πt)
3
2

∫
Θ−1(A)

e
−r2
2t r2 sinϑ d(r, ϑ, ϕ).
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The function Θ is continuous and definable in the o-minimal structure Ran, there-
fore B := Θ−1(A) ⊂ R≥0×] − π, π]2 is definable in Ran. Let Br be the set
{(ϑ, ϕ) | (r, ϑ, ϕ) ∈ B}. By Fubini’s Theorem 2.1.18, we achieve

1

(2πt)
3
2

∫
Θ−1(A)

e
−r2
2t r2 sinϑ d(r, ϑ, ϕ)

2.1.18
=

1

(2πt)
3
2

∫
R≥0

∫
Br

e
−r2
2t r2 sinϑ d(ϑ, ϕ)dr

=
1

(2πt)
3
2

∫
R≥0

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ)dr.

Applying the Cell Decomposition Theorem 2.3.15, we get a finite partition of
R≥0∪{∞} into finitely many disjoint cells, that means in points and open intervals
D1, . . . , Dp, where Dj := ]α, β[ with 0 ≤ α < β ≤ ∞ and we can write

1

(2πt)
3
2

∫
R≥0

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ)dr =
1

(2πt)
3
2

p∑
j=1

∫
Dj

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ)dr.

For the sake of convenience we fix j ∈ {1, . . . , p} and write D := Dj. Since the
integrals over D will be zero if D is a point, we ignore this case. If B is a bounded
set, consequently D is a bounded interval. If B is unbounded, at least one interval
D is unbounded and consequently β = ∞. Due to the fact that sinϑ is globally
subanalytic by its restriction to Br, we get by using Remark 2.3.17 that∫

Br

sinϑ d(ϑ, ϕ), (1)

which is the angular part, has the form of a constructible function. In our case,
the log-term of the constructible function has at most power one. The reason is, if
we apply Fubini’s Theorem 2.1.18 and integrate sinϑ, there is no log-term in the
antiderivative of sinϑ as is well known. Therefore, only the second integration can
bring a log-term in the antiderivative of the integral in (1). Thus, the angular part,
which is shown in (1), has the form ψ0(r)+ψ1(r) log(r), where ψ0(r) and ψ1(r) are
strictly positive globally subanalytic functions on D. Since ψ0(r) + ψ1(r) log(r) is
the angular part, it is additionally bounded by π.

We obtain

1

(2πt)
3
2

∫
D

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ) dr = (2)
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2.3.17
=

1

(2πt)
3
2

∫
D

e
−r2
2t r2 (ψ0(r) + ψ1(r) log(r)) dr

=
1

(2πt)
3
2

∫
D

e
−r2
2t r2ψ0(r)dr +

∫
D

e
−r2
2t r2ψ1(r) log(r)dr

 .

First, we may assume D = ]0, β[ and by a refined cell decomposition we can
additionally assume β < 1. Due to the fact that ψi(r) are globally subanalytic
functions, they can be represented as convergent Puiseux series around zero by the
Preparation Theorem 2.3.18. We get that ψ0(r) as well as ψ1(r) log(r) is bounded
on ]0, β[ by Lemma 3.3.24. In consequence of this, ψ0(r) can be represented as
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q

+2k and ψ1(r) as
∞∑
k=0

2q−1∑
j=0

âj,kr
j
q

+2k, where â0,0 = 0 and q ∈ N. As

t→ 0, we get immediately by Lemma 3.3.25

β∫
0

e
−r2
2t r2ψ0(r)dr ≈

∞∑
k=0

2q−1∑
j=0

bj,kt
j
2q

+k+ 3
2 , (3)

where bj,k ∈ R, and by Lemma 3.3.27

β∫
0

e−
r2

2t r2 ψ1(r) log(r)dr ≈
∞∑
k=0

2q−1∑
j=0

(cj,k + dj,k log(t)) t
j
2q

+k+ 3
2 ,

where cj,k, dj,k ∈ R. Subsequently, we gather that we obtain the asymptotic ex-
pansion

β∫
0

e
−r2
2t r2 (ψ0(r) + ψ1(r) log(r)) dr ≈

∞∑
k=0

2q−1∑
j=0

((bj,k + cj,k) + dj,k log(t)) t
j
2q

+k+ 3
2 .

Next, we may assume D = ]α, β[, where 0 < α < β <∞. In Lemma 3.3.29 we
have shown

β∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
.

Finally, we may assume D =]α,∞[ . By a refined cell decomposition we can
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assume α ≥ 1. We have already proven in Lemma 3.3.28 that

∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
.

At the end, we combine the results. As t → 0, we get that e−
α2

2t t = O
(
log(t)tN

)
for an arbitrary N ∈ N. Hence, the cells, that are based on cells D of the form
]α, β[ or ]α,∞[, where α 6= 0, do not contribute to the integral over the total set
in our scale. Consequently, we sum up

1

(2πt)
3
2

∫
Θ−1(A)

e
−r2
2t r2 sinϑ d(r, ϑ, ϕ) =

1

(2πt)
3
2

p∑
j=1

∫
Dj

e
−r2
2t r2

1∑
i=0

ψi(r) log(r)idr

≈
∞∑
k=0

(δk + γk log(t)) t
k
q ,

where δk, γk ∈ R. This is the desired conclusion . �

In this thesis we focus on asymptotic expansions in a polynomial scale. Finally,
we close this paragraph with two remarks which give us some properties of the
asymptotic expansion above.

Remark 3.3.31. a) If the closure of the globally subanalytic set A does not
contain zero or if the dimension of A at zero is less than three, the asymptotic
expansion of the function f(t) above vanishes in respect to the polynomial
scale.

b) If zero is in the closure of A and the dimension of A at zero is three, the
asymptotic expansion of f(t) does not vanish in respect to the polynomial
scale.

Proof. First, we give the arguments for the statement in a). If zero is not in the

closure of A, we will have integrals of the form
β∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr

and
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr, α > 0, after cell decomposition. We have

shown that
β∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
in Lemma 3.3.29 and

that
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr = O
(
e−

α2

2t t
)
in Lemma 3.3.28. Thus, the

asymptotic expansion of f(t) have a scale like e
−α2
2t t. Therefore, all coefficients of



132
Chapter 3. Definability and Asymptotic Expansion for the Time Evolution of the

Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

the asymptotic expansion of f(t) in respect to the polynomial scale are zero. If the
dimension of A at zero is less than three, the integral over the cell which contains
zero vanishes and by the same arguments as above the asymptotic expansion of
the function f(t) above vanishes in respect to the polynomial scale.
Now, we argue b). The integral

∫
Br

sinϑ d(ϑ, ϕ) in equation (1) is strictly positive for

(ϑ, ϕ) ∈ [0, π]×]−π, π]. Thus,
∫
Br

sinϑ d(ϑ, ϕ) = ψ0(r)+ψ1(r) log(r) is strictly posi-

tive. There are constants σ ∈ Q>0 and C > 0 such that ψ0(r) + ψ1(r) log(r) ≥ Crσ

for all r ∈]0, β[. We obtain that
β∫
0

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ) dr ≥ C
β∫
0

e
−r2
2t rσ+2dr, of

which the asymptotic expansion has polynomial scale as we have already seen. We
can conclude that the asymptotic expansion of f(t) does not vanish in respect to
the polynomial scale. �

Remark 3.3.32. The asymptotic expansion of f(t) as t tends towards zero is not
necessarily convergent.

Proof. We show the statement by a short example. Let B be the globally suban-
alytic set {(r, ϑ, ϕ) ∈ [0, 1

2
]× [0, π]× [0, π] | 0 < ϕ < 1+r

1−r}, which is given in polar
coordinates. We set ψ(r) := 1+r

1−r and obviously |ψ(r)| is bounded on [0, 1
2
] by π.

Using Fubini’s Theorem 2.1.18, we get

∫
B

e−
r2

2t r2 sinϑd(r, ϑ, ϕ)
2.1.18
=

1
2∫

r=0

e−
r2

2t r2

ψ(r)∫
ϕ=0

π∫
ϑ=0

sinϑ dϑ dϕdr

=

1
2∫

0

e−
r2

2t r2

ψ(r)∫
0

[− cosϑ]π0 dϕdr

= 2

1
2∫

0

e−
r2

2t r2 ψ(r)dr.

The well-known geometric series
∞∑
n=0

qn has the limit 1
1−q if q < 1. Using this,

ψ(r) can be represented as (1 + r)
∞∑
k=0

rk =
∞∑
k=0

1∑
j=0

rj+k. In (3) in Theorem 3.3.30

we have shown the asymptotic expansion of
β∫
0

e−
r2

2t r ψ(r)dr, β < 1, which is
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∞∑
k=0

2q−1∑
j=0

bj,kt
j
q

+k+ 3
2 . The coefficients bj,k are given in Lemma 3.3.25 as

aj,k2
j
2q

+k+ 3
2

k+1∏
l=1

(
j − q

2q
+ l

)
1

2
Γ

(
j + q

2q

)
where aj,k are the coefficients of the series representation of ψ(r). In our example

it is aj,k = 1 for all j and k. Thus, the asymptotic expansion of
1
2∫

0

e−
r2

2t r ψ(r)dr

does obviously not converge and in consequence, the asymptotic expansion of∫
B

e−
r2

2t r2 sinϑ d(r, ϑ, ϕ) does not converge.

�

The Case t at Infinity

In this section we study 1

(2πt)
3
2

∫
A

e−
|x|2
2t dx as t tends towards infinity. For this

purpose, we consider integrals of the form∫
D

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr,

where ψ0(r) and ψ1(r) are globally subanalytic functions and ψ0(r) + ψ1(r) log(r)
is bounded on D ⊂ R≥0 ∪ {∞}.

If not stated otherwise, we set the following conventions for the next part:
aj,k or âj,k always denote the coefficients of convergent Puiseux series; coefficients
which are in relation to integrals which contains the logarithm are marked with
tilde e.g. b̃j,k; an “extension” of coefficients are noted by capital letters e.g. B̃j,k =
(log(2)− 1)b̃j,k; for limit values of series we use capital letters with hat-symbol for
example Ĉ.

If D is bounded, we can gather that
∫
D

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr has the

form (ϕ0(t) + ϕ1(t) log(t)) by the following Lemma.

Lemma 3.3.33. Let D ⊂ R≥0 be a bounded open interval and ψ0(r) and ψ1(r) be
bounded functions on D and definable in Ran. As t→∞,∫

D

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr
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has the form ϕ0(t) + ϕ1(t) log(t), where ϕ0(r) and ϕ1(r) are globally subanalytic
functions and consequently, the integral is definable in Ran,exp.

Proof. By arguments equal to those which we used in proof of Remark 3.2.18
in Section 3.2, we attain e−

r2

2t r2ψi(r) are definable in Ran for large t and subse-
quently e−

r2

2t r2ψi(r) are globally subanalytic functions. Therefore e−
r2

2t r2ψ0(r) +

e−
r2

2t r2ψ1(r) log(r) is a constructible function, see Definition 2.3.6. Due to the fact
that constructible functions are stable under integration, see Theorem 2.3.19, we
obtain that ∫

D

(
e−

r2

2t r2ψ0(r) + e−
r2

2t r2ψ1(r) log(r)
)
dr (1)

has the form of a constructible function. We can argue that, in our context, only
a log-term with power one appears, because if we use the series expansion of the
exponential function and integrate the integrals as usual by parts, the power of
the log-term in (1) decreases in the first step. Hence, the integral in (1) has the
form

ϕ0(t) + ϕ1(t) log(t), (2)

where ϕ0 and ϕ1 are globally subanalytic functions. Consequently, the integral in
(1) is definable in Ran,exp. �

It is more elaborate to study
∫
D

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr if D is un-

bounded, that means D =]α,∞[. Our aim is to establish the asymptotic series

expansion of the integral
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr, where α < 1 and ψi(r)

are globally subanalytic functions and ψ0(r) + ψ1(r) log(r) is bounded on ]α,∞[.
Furthermore ψ0(r) and ψ1(r) can be represented as a convergent Puiseux series
around infinity by arguments we show later. We ascertain the total asymptotic
expansion in several lemmas step by step.

First, we pick up some lemmas of Preparations 3.3.1, because we can reduce
the integrals

∫
D

e−
r2

2t r
j
q
−2kdr to

√
2t

3 ∫
D

e−s
2
s
j
q
−2kds by the substitution s = r2

2t
for

example. We include immediately the factor
√

2t
3
, which arises in consequence

of the mentioned substitution, because this makes the proof in which we use the
following lemmas more clearly. We start with a short proof of the asymptotic series

expansion of
√

2t
3
∞∫
α√
2t

e−s
2
s2ds.
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Lemma 3.3.34. Let α ∈ R, where α > 1. As t→∞, we achieve

√
2t

3

∞∫
α√
2t

e−s
2

s2ds ≈
√
π

2
t
3
2 +

∞∑
n=0

(
1− 1

(2n+ 1)

)
(−1)n

α2n+1

2nn!
t1−n.

Proof. As t→∞, we get by Lemma 3.3.8

√
2t

3

∞∫
α√
2t

e−s
2

s2ds
3.3.8
≈
√

2t
3
√
π

4
+
√

2t
3 1

2

∞∑
n=0

(
1− 1

(2n+ 1)

)
(−1)n

n!

(
α√
2t

)2n+1

=

√
π

2
t
3
2 +

∞∑
n=0

(
1− 1

(2n+ 1)

)
(−1)n

α2n+1

2nn!
t1−n.

�

Applying Lemma 3.3.12 of Section 3.3.1, we ascertain the asymptotic series

expansion of
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2
s
j
q
−2kds.

Lemma 3.3.35. Let α ∈ R, where α > 1, let q ∈ N, let k ∈ N0, and let
j ∈ {0, . . . , 2q − 1}. As t→∞,

√
2t

j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2kds

has for j 6= q the asymptotic series expansion

2
j
2q
−k+ 1

2dj,kt
j
2q
−k+ 1

2 +
∞∑
n=0

bj,k,n
α
j
q

+2(n−k)+1

2n
t−n

and for j = q the asymptotic series expansion

21−k
(
dq,k, +

(−1)k

(k − 1)!
log

(
α√
2

))
t1−k +

∞∑
n=0

bq,k,n
α2+2(n−k)

2n
t−n

+ 2−k
(−1)k+1

(k − 1)!
log(t)t1−k,
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where

bj,k,n :=

{
0, j = q and n = k − 1,

(−1)n+1 1

( j+qq +2(n−k))n!
, else,

and

dj,k :=
∞∑
n=0

(−bj,k,n) + cj,k,

where

cj,k :=



1
2
Γ
(
j+q
2q
, 1
)
, k = 0,−

1
j−q
2q

1
2
e−1 + 1

j−q
2q

1
2
Γ
(
j+q
2q
, 1
)
, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = 1,

− 1
j−q
2q
−(k−1)

1
2
e−1 −

k−2∑
m=1

k−1−m∏̀
=0

1
j−q
2q
−(k−1)+`

1
2
e−1

+
k−1∏̀
=1

1
j−q
2q
−`cj,1, k > 1.

Proof. Let bj,k,n and dj,k be as in Lemma 3.3.12. It should be noted that they are

stated for the integrals
∞∫
α√
2t

e−s
2
s
j
q

+2kds there, where k < 0. First, we may assume

j 6= q and attain by the asymptotic expansion of
∞∫
α√
2t

e−s
2
s
j
q
−2kds in Lemma 3.3.12

√
2t

j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2kds

3.3.12
≈
√

2t
j
q
−2k+1

(
dj,k +

∞∑
n=0

bj,k,n

(
α√
2t

) j
q

+2(n−k)+1
)

= 2
j
2q
−k+ 1

2dj,kt
j
2q
−k+ 1

2

+ 2
j
2q
−k+ 1

2 t
j
2q
−k+ 1

2

∞∑
n=0

bj,k,n
α
j
q

+2(n−k)+1

2
j
2q

+(n−k)+ 1
2

t−
j
2q
−(n−k)− 1

2

= 2
j
2q
−k+ 1

2dj,kt
j
2q
−k+ 1

2 +
∞∑
n=0

bj,k,n
α
j
q

+2(n−k)+1

2n
t−n.
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Now, we may assume j = q and we get by Lemma 3.3.12

√
2t

q
q
−2k+1

∞∫
α√
2t

e−s
2

s
q
q
−2kds

3.3.12
≈
√

2t
2−2k

(
dq,k +

∞∑
n=0

bq,k,n

(
α√
2t

)2(n−k+1)

+
(−1)k

(k − 1)!
log

(
α√
2t

))

= 21−kdq,kt
1−k +

∞∑
n=0

bq,k,n
α2+2(n−k)

2n
t−n

+ 21−kt1−k
(−1)k

(k − 1)!

(
log

(
α√
2

)
− 1

2
log(t)

)
= 21−k

(
dq,k +

(−1)k

(k − 1)!
log

(
α√
2

))
t1−k +

∞∑
n=0

bq,k,n
α2+2(n−k)

2n
t−n

+ 2−k
(−1)k+1

(k − 1)!
log(t)t1−k.

�

In the same manner we proceed with
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2
s
j
q
−2k log(s)ds and in-

vestigate the asymptotic series expansion.

Lemma 3.3.36. Let α ∈ R, where α > 1, let k ∈ N0, let q ∈ N, and let
j ∈ {0, . . . , 2q − 1}. As t→∞, we achieve that

√
2t

j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2k log(s)ds

has for j 6= q the asymptotic expansion

∞∑
n=0

B̃j,k,n

(
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2

))
t−n

+
∞∑
n=0

B̃j,k,n

(
j

q
+ 2(n− k) + 1

)
1

2
log(t)t−n + D̃j,kt

j
2q
−k+ 1

2
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and has for j = q the asymptotic expansion

∞∑
n=0

B̃q,k,n

(
1−

(
2(n− k) + 2

)
log

(
α√
2

))
t−n

+
∞∑
n=0

B̃q,k,n (2(n− k) + 2)
1

2
log(t)t−n +

(
D̃q,k + uk

(
log

(
α√
2

))2
)
t1−k

+ (−uk) log

(
α√
2

)
log(t)t1−k + uk

1

4
(log(t))2 t1−k,

where uk := (−1)k

(k−1)!
1
2k

and

B̃j,k,n :=

0, j = q and n = k − 1,

(−1)n α
j
q+2(n−k)+1

( jq+2(n−k)+1)
2
n!2n

, else,

and

D̃j,k :=


21−k

 ∞∑
n=0

n6=k−1

(−1)n+1

( jq+2(n−k)+1)
2
n!

+ c̃q,k

 , j = q,

2
j
2q
−k+ 1

2

(
∞∑
n=0

(−1)n+1

( jq+2(n−k)+1)
2
n!

+ c̃j,k

)
, else,

where c̃j,k :=
∞∫
1

e−s
2
s
j
q
−2k log(s)ds is as in Lemma 3.3.20.

Proof. Let b̃j,k,n and d̃j,k be as in Lemma 3.3.22. It should be noted that they are

stated for the integrals
∞∫
α√
2t

e−s
2
s
j
q

+2k log(s)ds there, where k < 0. First, we may

assume j 6= q. By the asymptotic expansions of
∞∫
α√
2t

e−s
2
s
j
q
−2k log(s)ds, which we

have shown in Lemma 3.3.22, we get

√
2t

j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2k log(s)ds
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3.3.22
≈
√

2t
j
q
−2k+1

∞∑
n=0

b̃j,k,n

(
α√
2t

) j
q

+2(n−k)+1

+
√

2t
j
q
−2k+1

∞∑
n=0

(−b̃j,k,n)

(
j

2q
+ 2(n− k) + 1

)
log

(
α√
2t

)(
α√
2t

) j
q

+2(n−k)+1

+
√

2t
j
q
−2k+1

d̃j,k

= (2t)
j
2q
−k+ 1

2

∞∑
n=0

b̃j,k,n

(
α√
2

) j
q

+2(n−k)+1

t−
j
2q
−(n−k)− 1

2

+ (2t)
j
2q
−k+ 1

2

∞∑
n=0

[
(−b̃j,k,n)

(
j

q
+ 2(n− k) + 1

)
(

log

(
α√
2

)
− 1

2
log(t)

)(
α√
2

) j
q

+2(n−k)+1

t−
j
2q
−(n−k)− 1

2

]
+ (2t)

j
2q
−k+ 1

2 d̃j,k

= (2t)
j
2q
−k+ 1

2

∞∑
n=0

[
b̃j,k,n

(
α√
2

) j
q

+2(n−k)+1

(
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2

))]
t−

j
2q
−(n−k)− 1

2

+ (2t)
j
2q
−k+ 1

2

∞∑
n=0

[
b̃j,k,n

(
j

q
+ 2(n− k) + 1

)
(
α√
2

) j
q

+2(n−k)+1
1

2
log(t)t−

j
2q
−(n−k)− 1

2

]
+ (2t)

j
2q
−k+ 1

2 d̃j,k

=
∞∑
n=0

b̃j,k,n
α
j
q

+2(n−k)+1

2n

[
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2

)]
t−n

+
∞∑
n=0

b̃j,k,n

(
j

q
+ 2(n− k) + 1

)
α
j
q

+2(n−k)+1

2n
1

2
log(t)t−n

+ 2
j
2q
−k+ 1

2 d̃j,kt
j
2q
−k+ 1

2

=
∞∑
n=0

B̃j,k,n

[
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2

)]
t−n

+
∞∑
n=0

B̃j,k,n

(
j

q
+ 2(n− k) + 1

)
1

2
log(t)t−n + D̃j,kt

j
2q
−k+ 1

2 ,
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where B̃j,k,n := b̃j,k,n
α
j
q+2(n−k)+1

2n
and D̃j,k := 2

j
2q
−k+ 1

2 d̃j,k. We also set B̃j,k,n and
D̃j,k in this way for the subsequent proof for j = q. We get in a similar manner as
above that

Gq,k,n(t) :=
√

2t
2−2k

∞∑
n=0

b̃q,k,n

(
α√
2t

)2(n−k)+2

+
√

2t
2−2k

dq,k

+
√

2t
2−2k

∞∑
n=0

(−b̃q,k,n) (2(n− k) + 2) log

(
α√
2t

)(
α√
2t

)2(n−k)+2

=
∞∑
n=0

B̃j,k,n

[
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2

)]
t−n

+
∞∑
n=0

B̃j,k,n

(
j

q
+ 2(n− k) + 1

)
1

2
log(t)t−n + D̃j,kt

j
2q
−k+ 1

2 . (1)

We have

√
2t

2−2k

∞∫
α√
2t

e−s
2

s
q
q
−2k log(s)ds

3.3.22
≈
√

2t
2−2k

∞∑
n=0

b̃q,k,n

(
α√
2t

)2(n−k)+2

+
√

2t
2−2k

∞∑
n=0

(−b̃q,k,n) (2(n− k) + 2) log

(
α√
2t

)(
α√
2t

)2(n−k)+2

+
√

2t
2−2k

dq,k +
√

2t
2−2k (−1)k

(k − 1)!

1

2

(
log

(
α√
2t

))2

(1)
= Gq,k,n(t) + (2t)1−k (−1)k

(k − 1)!

1

2

(
log

(
α√
2

)
− 1

2
log(t)

)2

= Gq,k,n(t) +
(−1)k

(k − 1)!

1

2k

(
log

(
α√
2

))2

t1−k

+
(−1)k+1

(k − 1)!

1

2k
log(t) log

(
α√
2

)
t1−k +

(−1)k

(k − 1)!

1

2k
1

4
(log(t))2 t1−k

(1)
=

∞∑
n=0

B̃q,k,n

[
1− (2(n− k) + 2) log

(
α√
2

)]
t−n

+
∞∑
n=0

B̃q,k,n (2(n− k) + 2)
1

2
log(t)t−n
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+

(
D̃q,k +

(−1)k

(k − 1)!

1

2k

(
log

(
α√
2

))2
)
t1−k

+
(−1)k+1

(k − 1)!

1

2k
log

(
α√
2

)
log(t)t1−k +

(−1)k

(k − 1)!

1

2k
1

4
(log(t))2 t1−k.

�

Our subgoal for the next part is establishing the asymptotic series expansion

of
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr step by step. Due to the boundedness of

ψ0(r) + ψ1(r) log(r) on ]α,∞[, we will argue that ψ0(r) as well as ψ1(r) log(r)
are bounded on ]α,∞[ at a later time. By this and another subsequent argument,

ψ0(r) can be expressed by a convergent Puiseux series a0 +
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1)

and ψ1(r) by a convergent Puiseux series
∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2(k+1). Before we can ascer-

tain the asymptotic expansion of
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr, we make some

preparations in the following lemmas.

Lemma 3.3.37. Let q ∈ N, let α ∈ R, where α > 1, and let
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1)

and
∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2(k+1) be convergent Puiseux series, which describe bounded func-

tions on ]α,∞[. As t→∞, we achieve that

∞∫
α

e−
r2

2t r2

(
2q−1∑
j=0

aj,kr
j
q
−2(k+1) +

2q−1∑
j=0

âj,kr
j
q
−2(k+1) log(r)

)
dr

has the asymptotic series expansion

2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2 +
∞∑
n=0

2q−1∑
j=0

γj,k,nt
−n +

2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2 + κk (log(t))2 t1−k,

where

γj,k,n :=


0, j = q and

n = k − 1,

α
j
q+2(n−k)+1

(−1)n+1

2n( jq+2(n−k)+1)n!

(
aj,k + âj,k

(
log(α)− 1

j
q

+2(n−k)+1

))
, else,
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κk := âq,k
(−1)k+1

(k − 1)!2k
1

4
,

δj,k :=


(
aq,k + âq,k

1
2

log(2)
)
Dq,k + âq,kD̃q,k

+ (−1)k

(k−1)!2k
log
(

α√
2

) (
aq,k + âq,k

1
2

log
(
α
√

2
))
, j = q,(

aj,k + âj,k
1
2

log(2)
)
Dj,k + âj,kD̃j,k, else,

and λj,k :=

{
âq,k

1
2
Dq,k +

[
aq,k + âq,k

1
2

log(2)
] (−1)k+1

(k−1)!2k
, j = q,

âj,k
1
2
Dj,k, else,

where D̃j,k is as in Lemma 3.3.36 and Dj,k := 2
j
2q
−k+ 1

2dj,k, where dj,k is as in
Lemma 3.3.35.

Proof. We set

Fk(t) :=

∞∫
α

e−
r2

2t r2

(
2q−1∑
j=0

aj,kr
j
q
−2(k+1) +

2q−1∑
j=0

âj,kr
j
q
−2(k+1) log(r)

)
dr

and obtain by substitution s = r√
2t

Fk(t) =

2q−1∑
j=0

aj,k

∞∫
α

e−
r2

2t r2r
j
q
−2(k+1)dr +

2q−1∑
j=0

âj,k

∞∫
α

e−
r2

2t r2r
j
q
−2(k+1) log(r)dr

=

2q−1∑
j=0

aj,k

∞∫
α

e−
r2

2t r
j
q
−2kdr +

2q−1∑
j=0

âj,k

∞∫
α

e−
r2

2t r
j
q
−2k log(r)dr

=

2q−1∑
j=0

aj,k
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2kds

+

2q−1∑
j=0

âj,k
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2k log

(
s
√

2t
)
ds

=

2q−1∑
j=0

aj,k
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2kds
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+

2q−1∑
j=0

âj,k
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2k log (s) ds

+

2q−1∑
j=0

âj,k
√

2t
j
q
−2k+1 1

2
log(2)

∞∫
α√
2t

e−s
2

s
j
q
−2kds

+

2q−1∑
j=0

âj,k
√

2t
j
q
−2k+1 1

2
log(t)

∞∫
α√
2t

e−s
2

s
j
q
−2kds

=

2q−1∑
j=0

(aj,k + âj,k
1

2
log(2) + âj,k

1

2
log(t)

)√
2t

j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2kds

+ âj,k
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2k log (s) ds


=

2q−1∑
j=0

Fj,k(t),

where

Fj,k(t) :=

(
aj,k + âj,k

1

2
log(2) + âj,k

1

2
log(t)

)√
2t

j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2kds

+ âj,k
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2k log (s) ds.

Next, we investigate the asymptotic expansion of Fj,k(t). For this, we set B̃j,k,n

and D̃j,k as in Lemma 3.3.36 and bj,k,n as in Lemma 3.3.35. The relation

Bj,k,n := bj,k,n
α
j
q

+2(n−k)+1

2n
= −B̃j,k,n

(
j + q

q
+ 2(n− k)

)
is obvious. Moreover, let dj,k be as in Lemma 3.3.35 and we set Dj,k := 2

j
2q
−k+ 1

2dj,k

and uk := (−1)k

(k−1)!2k
. Applying Lemma 3.3.36 and Lemma 3.3.35, for j 6= q we
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establish the asymptotic expansion F̂j,k of Fj,k as t→∞ by

Fj,k(t) =

(
aj,k + âj,k

1

2
log(2) + âj,k

1

2
log(t)

)√
2t

j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2kds

+ âj,k
√

2t
j
q
−2k+1

∞∫
α√
2t

e−s
2

s
j
q
−2k log (s) ds

3.3.35
3.3.36≈

(
aj,k + âj,k

1

2
log(2) + âj,k

1

2
log(t)

)(
Dj,kt

j
2q
−k+ 1

2 +
∞∑
n=0

Bj,k,nt
−n

)

+ âj,k

(
∞∑
n=0

B̃j,k,n

[
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2

)]
t−n

+
∞∑
n=0

B̃j,k,n

(
j

q
+ 2(n− k) + 1

)
1

2
log(t)t−n + D̃j,kt

j
2q
−k+ 1

2

)
(1)

=

(
aj,k + âj,k

1

2
log(2)

)(
Dj,kt

j
2q
−k+ 1

2 +
∞∑
n=0

Bj,k,nt
−n

)

+ âj,k
1

2
log(t)Dj,kt

j
2q
−k+ 1

2 + âj,k

∞∑
n=0

Bj,k,n
1

2
log(t)t−n

+ âj,k

∞∑
n=0

B̃j,k,n

[
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2
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t−n

− âj,k
∞∑
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Bj,k,n
1

2
log(t)t−n + âj,kD̃j,kt

j
2q
−k+ 1

2

=

(
aj,k + âj,k

1

2
log(2)

)
Dj,kt

j
2q
−k+ 1

2 +

(
aj,k + âj,k

1

2
log(2)

) ∞∑
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Bj,k,nt
−n

+ âj,kDj,k
1

2
log(t)t

j
2q
−k+ 1

2

+ âj,k

∞∑
n=0

B̃j,k,n

[
1−

(
j

q
+ 2(n− k) + 1

)
log(α)

]
t−n

+ âj,k

∞∑
n=0

B̃j,k,n

(
j

q
+ 2(n− k) + 1

)
1

2
log(2)t−n

+ âj,kD̃j,kt
j
2q
−k+ 1
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=

(
aj,k + âj,k

1

2
log(2)

)
Dj,kt

j
2q
−k+ 1

2 + aj,k

∞∑
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−n
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1
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∞∑
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1
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∞∑
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j

q
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log(α)
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1
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1

2
log(2)

)
Dj,k + âj,kD̃j,k

]
t
j
2q
−k+ 1

2 + aj,k

∞∑
n=0

Bj,k,nt
−n

+ âj,k
1

2
Dj,k log(t)t

j
2q
−k+ 1

2

+ âj,k

∞∑
n=0

B̃j,k,n

[
1−

(
j

q
+ 2(n− k) + 1

)
log(α)

]
t−n

=

[(
aj,k + âj,k

1

2
log(2)

)
Dj,k + âj,kD̃j,k

]
t
j
2q
−k+ 1

2

+
∞∑
n=0

[
aj,kBj,k,n + âj,kB̃j,k,n

(
1−

(
j

q
+ 2(n− k) + 1

)
log(α)

)]
t−n

+ âj,k
1

2
Dj,k log(t)t

j
2q
−k+ 1

2 . (2)

One part of the calculation of j = q is in an analogous way to the calculation
above. For reasons of clarity we excerpt the equation in (1) and (2) and we set

Gj,k(t)
(1)
:=

(
aj,k + âj,k

1

2
log(2) + âj,k

1

2
log(t)

)(
Dj,kt

j
2q
−k+ 1

2 +
∞∑
n=0

Bj,k,nt
−n

)

+ âj,k

(
∞∑
n=0

B̃j,k,n

[
1−

(
j

q
+ 2(n− k) + 1

)
log

(
α√
2

)]
t−n

+
∞∑
n=0

B̃j,k,n

(
j

q
+ 2(n− k) + 1

)
1

2
log(t)t−n + D̃j,kt

j
2q
−k+ 1

2

)
(2)
=

[(
aj,k + âj,k

1

2
log(2)

)
Dj,k + âj,kD̃j,k

]
t
j
2q
−k+ 1

2



146
Chapter 3. Definability and Asymptotic Expansion for the Time Evolution of the

Probability Distribution Given by the Brownian Motion on Semialgebraic Sets

+
∞∑
n=0

[
aj,kBj,k,n + âj,kB̃j,k,n

(
1−

(
j

q
+ 2(n− k) + 1

)
log(α)

)]
t−n

+ âj,k
1

2
Dj,k log(t)t

j
2q
−k+ 1

2 . (3)

Using Lemma 3.3.35 and Lemma 3.3.36, we obtain for j = q the asymptotic
expansion F̂q,k of Fq,k as t→∞ by

(
aq,k + âq,k

1

2
log(2) + âq,k

1

2
log(t)

)√
2t

q
2q
−2k+1

∞∫
α√
2t

e−s
2

s
q
2q
−2kds

+ âq,k
√

2t
q
2q
−2k+1

∞∫
α√
2t

e−s
2

s
q
2q
−2k log (s) ds

3.3.35
3.3.36≈

(
aq,k + âq,k

1

2
log(2) + âq,k

1

2
log(t)

)[
Dq,kt

1−k + 2uk log

(
α√
2

)
t1−k

+
∞∑
n=0

Bq,k,nt
−n + (−uk) log(t)t1−k

]

+ âq,k

[
∞∑
n=0

B̃q,k,n

(
1− (2(n− k) + 2) log

(
α√
2

))
t−n

+
∞∑
n=0

B̃q,k,n (2(n− k) + 2)
1

2
log(t)t−n

+

(
D̃q,k + uk

(
log

(
α√
2

))2
)
t1−k + (−uk) log

(
α√
2

)
log(t)t1−k

+uk
1

4
(log(t))2 t1−k

]
(3)
= Gq,k(t) +

(
aq,k + âq,k

1

2
log(2) + âq,k

1

2
log(t)

)[
2uk log

(
α√
2

)
t1−k

+(−uk) log(t)t1−k
]

+ âq,k

[
uk

(
log

(
α√
2

))2

t1−k

+(−uk) log

(
α√
2

)
log(t)t1−k + uk

1

4
(log(t))2 t1−k

]
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= Gq,k(t) + âq,k

[
uk

(
log

(
α√
2

))2

t1−k+

(−uk) log

(
α√
2

)
log(t)t1−k + uk

1

4
(log(t))2 t1−k

]
+

(
aq,k + âq,k

1

2
log(2) + âq,k

1

2
log(t)

)[
2uk log

(
α√
2

)
t1−k

+(−uk) log(t)t1−k
]

= Gq,k(t) + âq,kuk

(
log

(
α√
2

))2

t1−k

+ âq,k(−uk) log

(
α√
2

)
log(t)t1−k + âq,kuk

1

4
(log(t))2 t1−k

+

(
aq,k + âq,k

1

2
log(2) + âq,k

1

2
log(t)

)
2uk log

(
α√
2

)
t1−k

+

(
aq,k + âq,k

1

2
log(2) + âq,k

1

2
log(t)

)
(−uk) log(t)t1−k

= Gq,k(t) + âq,kuk

(
log

(
α√
2

))2

t1−k

− âq,kuk log

(
α√
2

)
log(t)t1−k + âq,kuk

1

4
(log(t))2 t1−k

+

(
aq,k + âq,k

1

2
log(2)

)
2uk log

(
α√
2

)
t1−k + âq,k

1

2
log(t)2uk log

(
α√
2

)
t1−k

+

(
aq,k + âq,k

1

2
log(2)

)
(−uk) log(t)t1−k + âq,k

1

2
log(t)(−uk) log(t)t1−k

= Gq,k(t) + âq,kuk

(
log

(
α√
2

))2

t1−k + âq,kuk

(
1

4
− 1

2

)
(log(t))2 t1−k

+

(
aq,k + âq,k

1

2
log(2)

)
2uk log

(
α√
2

)
t1−k

+

(
aq,k + âq,k

1

2
log(2)

)
(−uk) log(t)t1−k

= Gq,k(t)

+

[
âq,kuk

(
log

(
α√
2

))2

+

(
aq,k + âq,k

1

2
log(2)

)
2uk log

(
α√
2

)]
t1−k

+ âq,k(−uk)
1

4
(log(t))2 t1−k +

(
aq,k + âq,k

1

2
log(2)

)
(−uk) log(t)t1−k
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= Gq,k(t) +

[
uk log

(
α√
2

)
+

(
aq,k + âq,k

1

2
log
(
α
√

2
))]

t1−k

+ âq,k(−uk)
1

4
(log(t))2 t1−k +

(
aq,k + âq,k

1

2
log(2)

)
(−uk) log(t)t1−k.

Therefore, we get the asymptotic expansion F̂k(t) :=
2q−1∑
j=0

F̂j,k(t) of Fk(t) by

F̂k(t) =

2q−1∑
j=0
j 6=q

F̂j,k(t) + F̂q,k(t)

=

2q−1∑
j=0
j 6=q

Gj,k(t) +Gq,k(t) + âq,k(−uk)
1

4
(log(t))2 t1−k

+

[
uk log

(
α√
2

)
+

(
aq,k + âq,k

1

2
log
(
α
√

2
))]

t1−k

+

(
aq,k + âq,k

1

2
log(2)

)
(−uk) log(t)t1−k

=

2q−1∑
j=0

Gj,k(t) + âq,k(−uk)
1

4
(log(t))2 t1−k

+

[
uk log

(
α√
2

)
+

(
aq,k + âq,k

1

2
log
(
α
√

2
))]

t1−k

+

(
aq,k + âq,k

1

2
log(2)

)
(−uk) log(t)t1−k

(3)
=

2q−1∑
j=0

[ [(
aj,k + âj,k

1

2
log(2)

)
Dj,k + âj,kD̃j,k

]
t
j
2q
−k+ 1

2

+
∞∑
n=0

[
aj,kBj,k,n + âj,kB̃j,k,n

(
1−

(
j

q
+ 2(n− k) + 1

)
log(α)

)]
t−n

+âj,k
1

2
Dj,k log(t)t

j
2q
−k+ 1

2

]
+ âq,k(−uk)

1

4
(log(t))2 t1−k

+

[
uk log

(
α√
2

)
+

(
aq,k + âq,k

1

2
log
(
α
√

2
))]

t1−k

+

(
aq,k + âq,k

1

2
log(2)

)
(−uk) log(t)t1−k.
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We set κk := âq,k(−uk)1
4
,

δj,k :=


(
aq,k + âq,k

1
2

log(2)
)
Dq,k + âq,kD̃q,k

+uk log
(

α√
2

) (
aq,k + âq,k

1
2

log
(
α
√

2
))
, j = q,(

aj,k + âj,k
1
2

log(2)
)
Dj,k + âj,kD̃j,k, else,

and

γj,k,n :=

âq,kB̃q,k,n

(
1−

(
q
q

+ 2(n− k) + 1
)

log(α)
)
, j = q,

aj,kBj,k,n + âj,kB̃j,k,n

(
1−

(
j
q

+ 2(n− k) + 1
)

log(α)
)
, else,

=



0, j = q and
n = k − 1,

α
j
2q+2(n−k)+1

2n

(
aj,k

(−1)n+1

( jq+2(n−k)+1)n!

+âj,k
(−1)n

( jq+2(n−k)+1)
2
n!

(
1−

(
j
q

+ 2(n− k) + 1
)

log(α)
))

, else,

=


0, j = q and

n = k − 1,

α
j
q+2(n−k)+1

(−1)n+1

2n( jq+2(n−k)+1)n!

(
aj,k + âj,k

(
log(α)− 1

j
q

+2(n−k)+1

))
, else,

and

λj,k :=

{
âq,k

1
2
Dq,k +

[
aq,k + âq,k

1
2

log(2)
]

(−uk), j = q,

âj,k
1
2
Dj,k, else.

In conclusion we gather

F̂k(t) =

2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2 +
∞∑
n=0

2q−1∑
j=0

γj,k,nt
−n

+

2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2 + κq,k (log(t))2 t1−k.

�
Before we continue to establish the asymptotic series expansion of the integrals

∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr, we give the proof that the series
∞∑
k=0

λj,kt
j
2q
−k+ 1

2 ,
∞∑
k=0

2
j+q
2q
−kc̃j,kt

1
2q
−k+ 1

2 , and
∞∑
k=0

δj,kt
j
2q
−k+ 1

2 are convergent.
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Lemma 3.3.38. Let j ∈ {0, . . . , 2q − 1} and let λj,k be as in Lemma 3.3.37. The
series

∞∑
k=0

λj,kt
j
2q
−k+ 1

2

converges absolutely for sufficiently large t.

Proof. In Lemma 3.3.37 the coefficients λj,k are stated as

λj,k :=

{
âq,k

1
2
Dq,k +

[
aq,k + âq,k

1
2

log(2)
] (−1)k+1

(k−1)!2k
, j = q,

âj,k
1
2
Dj,k, else,

where aj,k and âj,k are the real coefficients of a convergent Puiseux series, and

Dj,k := 2
j+q
2q
−k

(
∞∑
n=0

(−bj,k,n) + cj,k

)
,

where

bj,k,n :=

{
0, j = q and n = k − 1,

(−1)n+1 1

( j+qq +2(n−k))n!
, else,

and

cj,k :=



1
2
Γ
(
j+q
2q
, 1
)
, k = 0,−

1
j−q
2q

1
2
e−1 + 1

j−q
2q

cj,0, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = 1,

− 1
j−q
2q
−(k−1)

1
2
e−1 −

k−2∑
m=1

k−1−m∏̀
=0

1
j−q
2q
−(k−1)+`

1
2
e−1

+
k−1∏̀
=1

1
j−q
2q
−`cj,1, k > 1.

First, we may assume j 6= q. We get

∞∑
k=0

λj,kt
j
2q
−k+ 1

2 =
∞∑
k=0

âj,k
1

2
Dj,kt

j
2q
−k+ 1

2

=
∞∑
k=0

âj,k
1

2
2
j+q
2q
−k

(
∞∑
n=0

(−bj,k,n) + cj,k

)
t
j
2q
−k+ 1

2
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=
∞∑
k=0

âj,k
1

2
2
j+q
2q
−k

(
∞∑
n=0

(−bj,k,n)

)
t
j
2q
−k+ 1

2

+
∞∑
k=0

âj,k
1

2
2
j+q
2q
−kcj,kt

j
2q
−k+ 1

2

=
∞∑
k=0

âj,k
1

2
2
j+q
2q
−k

 ∞∑
n=0

(−1)n(
j+q
q

+ 2(n− k)
)
n!

 t
j
2q
−k+ 1

2

+
∞∑
k=0

âj,k
1

2
2
j+q
2q
−k

(
− 1

j−q
2q
− (k − 1)

1

2
e−1

−
k−2∑
m=1

k−1−m∏
`=0

1
j−q
2q
− (k − 1) + `

1

2
e−1 +

k−1∏
`=1

1
j−q
2q
− `

cj,1

)
t
j
2q
−k+ 1

2 .

We have already considered quite similar series in Lemma 3.2.21 and with the

same arguments as in Lemma 3.2.21 we obtain that the series
∞∑
k=0

λj,kt
j
2q
−k+ 1

2 is

absolutely convergent.
The case j = q results from Lemma 3.2.21 as well. �

As a preparation for the following lemma, we determine whether the series
∞∑
k=0

2
j
2q
−k+ 1

2 c̃j,kt
j
2q
−k+ 1

2 is convergent or divergent.

Lemma 3.3.39. Let j ∈ {0, . . . , 2q−1}, let aj,k be the coefficients of a convergent
Puiseux series, and let c̃j,k be as in Lemma 3.3.20. We have that

∞∑
k=0

aj,k2
j
2q
−k+ 1

2 c̃j,kt
j
2q
−k+ 1

2

converges absolutely for sufficiently large t.

Proof. According to Lemma 3.3.20, it is c̃j,0 =
∞∫
1

e−s
2
s
j
q log(s)ds for k = 0. It

should be noted that c̃j,k and cj,k are stated for k < −1 in Lemma 3.3.20. For
k > 1 the coefficients c̃j,k are given by

c̃j,k
3.3.20
= −

k−2∑
m=0

(
m∏
`=0

1
j+q
2q
− (k − `)

)
1

2
cj,k−m +

k−2∏
`=0

1
j+q
2q
− (k − `)

c̃j,1,
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where

c̃j,1 :=


∞∫
1

e−s
2
s−1 log(s)ds, j = q,

− 1
j+q
2q
−1

1
2
cj,1 + 1

j+q
2q
−1
c̃j,0, else,

where
∞∫
1

e−s
2
s−1 log(s)ds exists and

cj,k :=



1
2
Γ
(
j+q
2q
, 1
)
, k = 0,−

1
j−q
2q

1
2
e−1 + 1

j−q
2q

cj,0, j < q,

1
2
Γ
(
j−q
2q
, 1
)
, j ≥ q,

k = 1,

− 1
j−q
2q
−(k−1)

1
2
e−1 −

(k−2)∑
m=1

k−1−m∏̀
=0

1
j−q
2q
−(k−1)+`

1
2
e−1

+
k−1∏̀
=1

1
j−q
2q
−`cj,1, k > 1.

By Lemma 3.3.20, we get for k > 1

∞∑
k=2

aj,k2
j
2q
−k+ 1

2 c̃j,kt
j
2q
−k+ 1

2

3.3.20
=

∞∑
k=2

aj,k2
j
2q
−k+ 1

2

(
−

k−2∑
m=0

(
m∏
`=0

1
j+q
2q
− (k − `)

)
1

2
cj,k−m

+
k−2∏
`=0

1
j+q
2q
− (k − `)

c̃j,1

)
t
j
2q
−k+ 1

2

=
∞∑
k=2

aj,k2
j
2q
−k+ 1

2

(
−

k−2∑
m=0

(
m∏
`=0

1
j+q
2q
− (k − `)

)
1

2
cj,k−m

)
t
j
2q
−k+ 1

2

+ c̃j,1

∞∑
k=2

aj,k2
j
2q
−k+ 1

2

k−1∏
`=0

1
j+q
2q
− (k − `)

t
j
2q
−k+ 1

2 . (1)

First, we consider the series
∞∑
k=2

aj,k2
j
2q
−k+ 1

2

k−1∏̀
=0

1
j+q
2q
−(k−`)t

j
2q
−k+ 1

2 . We can estimate

∣∣∣∣∣ 1
j+q
2q
− (k + 1)

∣∣∣∣∣ < 1,
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because k > 1 and we apply the ratio test and obtain∣∣∣∣∣∣∣∣∣
aj,k+12

j
2q
−(k+1)+ 1

2

k+1−1∏̀
=0

1
j+q
2q
−(k+1−`)t

j
2q
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2

aj,k2
j
2q
−k+ 1

2

k−1∏̀
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1
j+q
2q
−(k−`)t

j
2q
−k+ 1

2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
aj,k+12−1

k∏̀
=0

1
j+q
2q
−(k−(`−1))

t−1

aj,k
k−1∏̀
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1
j+q
2q
−(k−`)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
aj,k+1

1
j+q
2q
−(k+1)

aj,k2t

∣∣∣∣∣∣
Thus the series

∞∑
k=2

aj,k2
j
2q
−k+ 1

2

k−1∏̀
=0

1
j+q
2q
−(k−`)t

j
2q
−k+ 1

2 converges absolutely for a suf-

ficiently large t.
Next, we examine the coefficients of the series in the first summand of the sum in
equation (1). We have∣∣∣∣∣2 j
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−k+ 1

2
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−

k−2∑
m=0

(
m∏
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1
j+q
2q
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)
1

2
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)∣∣∣∣∣ ≤
≤
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−k+ 1

2
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1
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− k

1

2
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≤

∣∣∣∣∣2 j
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2

(
(−(k − 1))

1
j+q
2q
− k

1

2

[
− 1

j−q
2q
− (k − 1)

1

2
e−1

−
(k−2)∑
m=1

k−1−m∏
`=0

1
j−q
2q
− (k − 1) + `

1

2
e−1 +

k−1∏
`=1

1
j−q
2q
− `

cj,1

∣∣∣∣∣∣
≤

∣∣∣∣∣2 j
2q
−k+ 1

2

(
(−(k − 1))

1
j+q
2q
− k

1

2

[
− 1

j+q
2q
− k

1

2
e−1

−(k − 2)
1∏
`=0

1
j+q
2q
− k + `

1

2
e−1 +

k∏
`=2

1
j+q
2q
− `

cj,1

])∣∣∣∣∣
≤ 2

j
2q
−k+ 1

2
1

4
e−1(k − 1)

(
1

j+q
2q
− k

)2

+ 2
j
2q
−k+ 1

2
1

4
e−1(k − 1)

(
1

j+q
2q
− k

)2

(k − 2)

∣∣∣∣∣ 1
j+q
2q
− k + 1

∣∣∣∣∣
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+ 2
j
2q
−k+ 1

2
1

2

(
1

j+q
2q
− k

)2

(k − 1)

∣∣∣∣∣cj,1
k−1∏
`=2

1
j+q
2q
− `

∣∣∣∣∣ .
We can also estimate

(
1

j+q
2q
−k

)2

≤ 1 for k ≥ 2. Therefore, the series

∞∑
k=2

aj,k

[
2
j
2q
−k+ 1

2
1

4
e−1(k − 1) + 2

j
2q
−k+ 1

2
1

4
e−1(k − 1)(k − 2)

∣∣∣∣∣ 1
j+q
2q
− k + 1

∣∣∣∣∣
+2

j
2q
−k+ 1

2
1

2
(k − 1)

∣∣∣∣∣cj,1
k−1∏
`=2

1
j+q
2q
− `

∣∣∣∣∣
]
t
j
2q
−k+ 1

2

are convergent, which can be easily proven by the ratio test. Using the comparison

test, we obtain that
∞∑
k=2

aj,k2
j
2q
−k+ 1

2

(
−

k−2∑
m=0

(
m∏̀
=0

1
j+q
2q
−(k−`)

)
1
2
cj,k−m

)
t
j
2q
−k+ 1

2

converges absolutely. In conclusion of that and the results above, we gather that

the series
∞∑
k=2

aj,k2
j
2q
−k+ 1

2 c̃j,kt
j
2q
−k+ 1

2 is absolutely convergent.

Finally we get that
∞∑
k=0

aj,k2
j
2q
−k+ 1

2 c̃j,kt
j
2q
−k+ 1

2 converges absolutely. �

Lemma 3.3.40. Let j ∈ {0, . . . , 2q − 1} and let δj,k be as in Lemma 3.3.37. We
have that

∞∑
k=0

δj,kt
j
2q
−k+ 1

2

converges absolutely for sufficiently large t.

Proof. In Lemma 3.3.37 the coefficients δj,k are indicated as

δj,k :=


(
aq,k + âq,k

1
2

log(2)
)
Dq,k + âq,kD̃q,k

+ (−1)k

(k−1)!2k
log
(

α√
2

) (
aq,k + âq,k

1
2

log
(
α
√

2
))
, j = q,(

aj,k + âj,k
1
2

log(2)
)
Dj,k + âj,kD̃j,k, else,

where aj,k, âj,k are the coefficients of a convergent Puiseux series, Dj,k is given as
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in the lemma before, Lemma 3.3.38, and

D̃j,k :=


21−k

 ∞∑
n=0

n6=k−1

(−1)n+1

( jq+2(n−k)+1)
2
n!

+ c̃q,k

 , j = q,

2
j
2q
−k+ 1

2

(
∞∑
n=0

(−1)n+1

( jq+2(n−k)+1)
2
n!

+ c̃j,k

)
, else,

where c̃j,k :=
∞∫
1

e−s
2
s
j
q
−2k log(s)ds.

First, we assume j 6= q. We get

∞∑
k=0

δj,kt
j
2q
−k+ 1

2

=
∞∑
k=0

((
aj,k + âj,k

1

2
log(2)

)
Dj,k + âj,kD̃j,k

)
t
j
2q
−k+ 1

2

=
∞∑
k=0

(
aj,k + âj,k

1

2
log(2)

)
Dj,kt

j
2q
−k+ 1

2 +
∞∑
k=0

âj,kD̃j,kt
j
2q
−k+ 1

2

=
∞∑
k=0

(
aj,k + âj,k

1

2
log(2)

)
Dj,kt

j
2q
−k+ 1

2

+
∞∑
k=0

âj,k2
j
2q
−k+ 1

2

 ∞∑
n=0

(−1)n+1(
j
q

+ 2(n− k) + 1
)2

n!

 t
j
2q
−k+ 1

2

+
∞∑
k=0

âj,k2
j
2q
−k+ 1

2 c̃j,kt
j
2q
−k+ 1

2 .

Due to the fact that the arguments are quite the same and the first series is very
similar to the series in Lemma 3.2.21, we refer to this lemma to show that the

series
∞∑
k=0

(
aj,k + âj,k

1
2

log(2)
)
Dj,kt

j
2q
−k+ 1

2 is absolutely convergent.

We consider

∞∑
k=0

âj,k2
j
2q
−k+ 1

2

 ∞∑
n=0

(−1)n+1(
j
q

+ 2(n− k) + 1
)2

n!

 t
j
2q
−k+ 1

2
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and we estimate∣∣∣∣∣∣∣
1(

j
q

+ 2(n− k) + 1
)2

∣∣∣∣∣∣∣ ≤
{
q2, j < q and n− k = 1,

1, else.

We get ∣∣∣∣∣∣∣
∞∑
n=0

(−1)n+1(
j
q

+ 2(n− k) + 1
)2

n!

∣∣∣∣∣∣∣ ≤
∞∑
n=0

q2

∣∣∣∣(−1)n+1

n!

∣∣∣∣ = q2 e.

By the ratio test we easily prove that q2 e
∞∑
k=0

âj,k2
j
2q
−k+ 1

2 t
j
2q
−k+ 1

2 converges. There-

fore the series
∞∑
k=0

âj,k2
j
2q
−k+ 1

2

(
∞∑
n=0

(−1)n+1

( jq+2(n−k)+1)
2
n!

)
t
j
2q
−k+ 1

2 is absolutely conver-

gent by the comparison test.

In Lemma 3.3.39 we have already seen that the series
∞∑
k=0

2
j
2q
−k+ 1

2 c̃j,kt
j
2q
−k+ 1

2 is

convergent.

Gathering the results, we have proven that
∞∑
k=0

δj,kt
j
2q
−k+ 1

2 converges absolutely.

�

We would remind you that the aim is to ascertain an asymptotic series expan-

sion of
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr, where ψ0(r) and ψ1(r) log(r) is bounded

on ]α,∞[ and ψ0(r) can be described by the convergent Puiseux series a0 +
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1) and ψ1(r) by

∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2(k+1). By the lemmas above, we

can investigate the asymptotic series expansion for the following integrals:

Lemma 3.3.41. Let α ∈ R>0, where α > 1, and let θ0(r) and θ1(r) log(r)
be bounded functions on ]α,∞[, where θ0(r) can be represented as the conver-

gent Puiseux series
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1) and θ1(r) as

∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2(k+1), q ∈ N.

As t→∞, we obtain that

∞∫
α

e−
r2

2t r2 (θ0(r) + θ1(r) log(r)) dr
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has the asymptotic series expansion

ϕ0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2,

where ϕ0(t) =
∞∑
k=0

2q−1∑
j=0

µj,kt
j
2q
−k+ 1

2 , ϕ1(t) =
∞∑
k=0

2q−1∑
j=0

λj,kt
j
2q
−k+ 1

2 , ϕ2(t) =
∞∑
k=0

κkt
1−k

are convergent Puiseux series, where µj,k, λj,k, κk ∈ R and q ∈ N. Thus, the
asymptotic expansion is definable in Ran,exp.

Proof. We set F (t) :=
∞∫
α

e−
r2

2t r2 (θ0(r) + θ1(r) log(r)) dr and achieve

F (t) =

∞∫
α

e−
r2

2t r2 (θ0(r) + θ1(r) log(r)) dr

=

∞∫
α

e−
r2

2t r2

(
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1) +

∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2(k+1) log(r)

)
dr

=
∞∑
k=0

Fk(t),

where Fk(t) :=
2q−1∑
j=0

(
aj,k

∞∫
α

e−
r2

2t r2r
j
q
−2(k+1)dr + âj,k

∞∫
α

e−
r2

2t r2r
j
q
−2(k+1) log(r)dr

)
.

In Lemma 3.3.37 we have established the asymptotic series expansion F̂k(t) of
Fk(t), which is given by

F̂k(t) :=

2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2 +
∞∑
n=0

2q−1∑
j=0

γj,k,nt
−n +

2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2

+ κk (log(t))2 t1−k,

where δj,k, γj,k,n, λj,k, and κk are as in Lemma 3.3.37. Consequently, γj,k,n is set
as

γj,k,n
3.3.37
=


0, j = q and

n = k − 1,

(−1)n+1

2nn!
α
j
q+2(n−k)+1

j
q

+2(n−k)+1

(
aj,k + âj,k

(
log(α)− 1

j
q

+2(n−k)+1

))
, else,
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and we define

γ̂j,k,n :=

0, j = q and n = k − 1,

α
j
q+2(n−k)+1

j
q

+2(n−k)+1

(
aj,k + âj,k

(
log(α)− 1

j
q

+2(n−k)+1

))
, else,

such that γj,k,n = (−1)n+1

2nn!
γ̂j,k,n. The series

∞∑
n=0

γj,k,nt
−n converges obviously and we

get the m-th remainder for an arbitrary k ∈ N0 by

Rk,m(t) := Fk(t)− F̂k
∣∣
m

(t)

=



Fk(t)−

(
2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2 +
m∑
n=0

2q−1∑
j=0

γj,k,nt
−n

+
2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2 + κk (log(t))2 t1−k

)
, k ≤ m,

Fk(t)−
m∑
n=0

2q−1∑
j=0

γj,k,nt
−n, k > m,

=



∞∑
n=m+1

2q−1∑
j=0

γj,k,nt
−n, k ≤ m,

2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2 +
∞∑

n=m+1

2q−1∑
j=0

γj,k,nt
−n

+
2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2 + κk (log(t))2 t1−k, k > m.

(1)

Next, we show that the series
∞∑
k=0

∞∑
j=0

γ̂j,k,n and
∞∑
n=0

∞∑
k=0

2q−1∑
j=0

γj,k,nt
−n are convergent.

We assume γ̂j,k,n 6= 0. We estimate∣∣∣∣∣ 1
j
q

+ 2(n− k) + 1

∣∣∣∣∣ ≤
{
q, j < q and n− k = 1,

1, else,

and consequently∣∣∣∣∣∣∣
1(

j
q

+ 2(n− k) + 1
)2

∣∣∣∣∣∣∣ ≤
{
q2, j < q and n− k = 1,

1, else.
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By these, we get for |γ̂j,k,n| the estimation

|γ̂j,k,n| =

∣∣∣∣∣ α
j
q

+2(n−k)+1

j
q

+ 2(n− k) + 1

(
aj,k + âj,k

(
log(α)− 1

j
q

+ 2(n− k) + 1

))∣∣∣∣∣
≤

∣∣∣∣∣ α
j
q

+2(n−k)+1

j
q

+ 2(n− k) + 1
aj,k

∣∣∣∣∣+

∣∣∣∣∣ α
j
q

+2(n−k)+1

j
q

+ 2(n− k) + 1
âj,k log(α)

∣∣∣∣∣
+

∣∣∣∣∣∣∣
α
j
q

+2(n−k)+1(
j
q

+ 2(n− k) + 1
)2 âj,k

∣∣∣∣∣∣∣
≤ q2

(
α2
) j+q

2q
+n (

α2
)−k |aj,k|+ q2

(
α2
) j+q

2q
+n (

α2
)−k |âj,k| log(α)

+ q2
(
α2
) j+q

2q
+n (

α2
)−k |âj,k| . (2)

Due to the fact that α2 > 1 and that aj,k and âj,k are real coefficients of a conver-

gent Puiseux series, the series
∞∑
k=0

(α2)
−k
aj,k and

∞∑
k=0

(α2)
−k
âj,k converge absolutely

by the ratio test and thus, we can conclude that
∞∑
k=0

2q−1∑
j=0

γ̂j,k,n converges by the com-

parison test. We set

B̂n :=
∞∑
k=0

2q−1∑
j=0

γ̂j,k,n (3)

and furthermore,

Ĉ := q2

2q−1∑
j=0

∞∑
k=0

(
α2
) j+q

2q
−k

(|aj,k|+ |âj,k| (log(α) + 1)) . (4)

Moreover, the series
∞∑
n=0

∞∑
k=0

2q−1∑
j=0

γj,k,nt
−n =

∞∑
n=0

(−1)n+1

2nn!
B̂nt

−n converges by the com-

parison test in consequence of∣∣∣∣(−1)n+1

2nn!
B̂n

∣∣∣∣ (3)

≤ 1

2nn!

∞∑
k=0

2q−1∑
j=0

|γ̂j,k,n|
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(2)

≤ 1

2nn!

∞∑
k=0

2q−1∑
j=0

[
q2
(
α2
) j+q

2q
+n (

α2
)−k |aj,k|

+q2
(
α2
) j+q

2q
+n (

α2
)−k |âj,k| log(α) + q2

(
α2
) j+q

2q
+n (

α2
)−k |âj,k|]

(4)

≤ 1

2nn!

(
α2
)n
Ĉ

and the fact that
∞∑
n=0

1
2nn!

(α2)
n
Ĉt−n is absolutely convergent.

We define

F̂ (t) :=
∞∑
k=0

2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2 +
∞∑
n=0

(−1)n+1

2nn!
B̂nt

−n

+
∞∑
k=0

2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2 +
∞∑
k=0

κk (log(t))2 t1−k.

We change the indices k respectively n to p and we set

µj,p :=

{
δq,p + (−1)p

2p−1(p−1)!
B̂p−1, j = q and p ≥ 1,

δj,p, else.

Thus, we can gather

F̂ (t) =
∞∑
p=0

(
2q−1∑
j=0

(
µj,p + λj,p log(t)

)
t
j
2q + κp log(t)2t

1
2

)
t−p+

1
2 .

Finally, we give the proof that F̂ (t) is the asymptotic expansion of F (t) by showing
that

F (t)−
N∑
p=0

(
2q−1∑
j=0

(
µj,p + λj,p log(t)

)
t
j
2q + κp log(t)2t

1
2

)
t−p+

1
2

is in O
(

log(t)t
2q−1
2q
−(N+1)+ 1

2

)
for a sufficiently large N ∈ N. We attain by our

results above∣∣∣∣∣F (t)−
N∑
p=0

(
2q−1∑
j=0

(
µj,p + λj,p log(t)

)
t
j
2q + κp log(t)2t

1
2

)
t−p+

1
2

∣∣∣∣∣ =
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=
∣∣∣F (t)− (F̂ (t))

∣∣
N

∣∣∣
=

∣∣∣∣∣F (t)−

(
∞∑
k=0

F̂k(t)

)∣∣
N

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

Fk(t)−
∞∑
k=0

F̂k
∣∣
N

(t)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
k=0

(
Fk(t)− F̂k

∣∣
N

(t)
)

+
∞∑

k=N+1

(
Fk(t)− F̂k

∣∣
N

(t)
)∣∣∣∣∣

(1)
=

∣∣∣∣∣
N∑
k=0

Rk,N(t) +
∞∑

k=N+1

Rk,N(t)

∣∣∣∣∣
(1)
=

∣∣∣∣∣
∞∑
k=0

∞∑
n=N+1

2q−1∑
j=0

γj,k,nt
−n +

∞∑
k=N+1

2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2

+
∞∑

k=N+1

2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2 +
∞∑

k=N+1

κk (log(t))2 t1−k

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

n=N+1

(−1)n+1

2nn!
B̂nt

−n

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=N+1

2q−1∑
j=0

δj,kt
j
2q
−k+ 1

2

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=N+1

2q−1∑
j=0

λj,k log(t)t
j
2q
−k+ 1

2

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=N+1

κk (log(t))2 t1−k

∣∣∣∣∣
As we mentioned above the series

∞∑
n=N+1

(−1)n+1

2nn!
B̂nt

−n converges and we get

∞∑
n=N+1

(−1)n+1

2nn!
B̂nt

−n = O
(
t−(N+1)

)
by Remark 3.2.22. In lemmas above, we have proven that the series

∞∑
k=0

δj,kt
j
2q
−k+ 1

2 ,

see Lemma 3.3.40, and
∞∑
k=0

2q−1∑
j=0

λj,kt
j
2q
−k+ 1

2 , see Lemma 3.3.38, are convergent. By

Remark 3.2.22, we obtain

∞∑
k=N+1

2q−1∑
j=0

(δj,k + λj,k log(t)) t
j
2q
−k+ 1

2 = O
(

log(t)t
2q−1
2q
−(N+1)+ 1

2

)
.
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Finally, we consider

∞∑
k=0

κk(log(t))2t1−k
3.3.37
=

∞∑
k=0

âq,k
(−1)k+1

(k − 1)!2k
1

4
(log(t))2t1−k.

This series is convergent by the ratio test and by Remark 3.2.22, we get

∞∑
k=N+1

κk(log(t))2t1−k = O
(
(log(t))2t1−(N+1)

)
.

We gather our results. Due to the fact that t−(N+1) = O
(

log(t)t
2q−1
2q
−(N+1)+ 1

2

)
and

the fact that (log(t))2t1−(N+1) = O
(

log(t)t
2q−1
2q
−(N+1)+ 1

2

)
for an arbitrary N ∈ N,

we conclude that

F (t)−
N∑
p=0

(
2q−1∑
j=0

(
µj,p + λj,p log(t)

)
t
j
2q + κp log(t)2t

1
2

)
t−p+

1
2

is in O
(

log(t)t
2q−1
2q
−(N+1)+ 1

2

)
for a sufficiently large N ∈ N. According to Defini-

tion 2.2.4 and to Remark 2.2.5 we have shown

F (t) ≈ F̂ (t).

What is more, each series which the asymptotic expansion F̂ (t) contains is conver-
gent. Thereby, we can write F̂ (t) as the constructible function

F̂ (t) = ϕ0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2,

where ϕ0(t) :=
∞∑
k=0

2q−1∑
j=0

µj,kt
j
2q
−k+ 1

2 and ϕ1(t) :=
∞∑
k=0

2q−1∑
j=0

λj,kt
j
2q
−k+ 1

2 and ϕ2(t) :=

∞∑
k=0

κkt
1−k are convergent Puiseux series. Thus, F̂ (t) is definable in Ran,exp. �

After all, we gather our results and establish the asymptotic series expansion

of
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr, where ψ0(r) and ψ1(r) are bounded functions

on ]α,∞[, which can be expressed by convergent Puiseux series in infinity which
are very similar to the representations of θ0(r) and θ1(r) in the last lemma.
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Lemma 3.3.42. Let α ∈ R, where α > 1, let q ∈ N, and let ψ0(r) and ψ1(r) log(r)
be bounded functions on ]α,∞[ and ψ0(r) can be represented as the convergent

Puiseux series a0 +
∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2(k+1) and ψ1(r) as

∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2(k+1). As

t→∞, we obtain that

∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr

has the asymptotic expansion

a0

√
π

2
t
3
2 + ϕ̂0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2,

where ϕ̂0(t) =
∞∑
k=0

2q−1∑
j=0

νj,kt
j
2q
−k+ 1

2 and ϕ1(t) =
∞∑
k=0

2q−1∑
j=0

λj,kt
j
2q
−k+ 1

2 and ϕ2(t) =

∞∑
k=0

κkt
1−k, where νj,k, λj,k, κk ∈ R and q ∈ N, are convergent Puiseux series and

thus, the asymptotic expansion is definable in Ran,exp.

Proof. We have

∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr =

∞∫
α

e−
r2

2t r2ψ0(r)dr +

∞∫
α

e−
r2

2t r2ψ1(r) log(r)dr

= a0

∞∫
α

e−
r2

2t r2dr +

∞∫
α

e−
r2

2t

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2kdr

+

∞∫
α

e−
r2

2t

∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2k log(r)dr

= a0

∞∫
α

e−
r2

2t r2dr + F (t),

where

F (t) :=

∞∫
α

e−
r2

2t r2

∞∑
k=0

2q−1∑
j=0

aj,kr
j
q
−2k−2dr +

∞∫
α

e−
r2

2t r2

∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2k−2 log(r)dr.
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In Lemma 3.3.34 we have proven

a0

∞∫
α

e−
r2

2t r2dr
3.3.34
≈ a0

(√
π

2
t
3
2 +

∞∑
k=0

γkt
1−k

)
,

where γk =
(

1− 1
(2k+1)

)
(−1)k α

2k+1

2kk!
. By applying the ratio test, we obtain that

the series converges. Thus, it is definable in Ran. Furthermore, in Lemma 3.3.41
we have shown the asymptotic expansion

F (t)
3.3.41
≈ ϕ0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2,

where ϕ0(t) :=
∞∑
k=0

2q−1∑
j=0

µj,kt
j
2q
−k+ 1

2 and ϕ1(t) :=
∞∑
k=0

2q−1∑
j=0

λj,kt
j
2q
−k+ 1

2 and ϕ2(t) :=

∞∑
k=0

κkt
1−k are convergent Puiseux series, where µj,k, λj,k, κk ∈ R, and thus, the

asymptotic expansion is definable in Ran,exp.

We set

ϕ̂0(t) := a0

∞∑
k=0

γk+1t
−k + ϕ0(t)

=
∞∑
k=0

2q−1∑
j=0

νj,kt
j
2q
−k+ 1

2 ,

where

νj,k :=

{
µq,k + a0γk+1, j = q,

µj,k, else.

Hence, we obtain

∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr

≈ a0

√
π

2
t
3
2 + a0

∞∑
k=0

γkt
1−k + ϕ0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2

= a0

√
π

2
t
3
2 + a0γ0t+ a0

∞∑
k=0

γk+1t
−k + ϕ0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2

= a0

√
π

2
t
3
2 + ϕ̂0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2
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and a0

√
π
2
t
3
2 + ϕ̂0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2 is definable in Ran,exp. �

We conclude the chapter by resuming the results in the following theorem. We
go back to 1

(2πt)
3
2

∫
A

e−
|x|2
2t dx and transform it in polar coordinates by Transformation

Theorem. By Remark 2.3.17 of Theorem 2.3.16, which gives us the form of the
angular part, we get integrals of the form

∫
D

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr, for

which we use our results above.

Theorem 3.3.43. Let A ⊂ R3 be a globally subanalytic set. Let f : R>0 → [0, 1]
be the function given by

f(t) =
1

(2πt)
3
2

∫
A

e
−|x|2

2t dx.

a) As t→∞ and if A is bounded, f(t) is of the form ρ0(t) + ρ1(t) log(t), where
ρn are globally subanalytic functions, and hence, f(t) is definable in Ran,exp.

b) As t→∞ and if A is unbounded, f(t) has the asymptotic series expansion

ρ0(t) + ρ1(t) log(t) + ρ2(t) log(t)2,

where ρ0(t) =
∞∑
k=0

µkt
− k
q , ρ1(t) =

∞∑
k=1

νkt
− k
q , and ρ2(t) =

∞∑
k=1

ωkt
1
2
−k, where

at least one of the series is not zero and µk, νk, ωk ∈ R and q ∈ N, are
convergent Puiseux series. Thus, the asymptotic expansion is definable in
Ran,exp.

Proof. The structure of this proof is quite similar to the proof of Theorem 3.3.30.
Let

Θ : R≥0 × [0, π] × ]− π, π] −→ R3,

(r, ϑ, ϕ) 7−→ (r cosϕ sinϑ, r sinϕ sinϑ, r cosϑ),

be the three-dimensional polar coordinate transformation with functional determi-
nant det(DΘ(r, ϑ, ϕ)) = r2 sinϑ. By Transformation Theorem 2.1.17, we trans-
form f(t) in polar coordinates and get

1

(2πt)
3
2

∫
A

e
−|x|2

2t dx
2.1.17
=

1

(2πt)
3
2

∫
Θ−1(A)

e
−|(r cosϕ sinϑ,r sinϕ sinϑ,r cosϑ)|2

2t r2 sinϑ d(r, ϑ, ϕ)

=
1

(2πt)
3
2

∫
Θ−1(A)

e
−r2
2t r2 sinϑ d(r, ϑ, ϕ).
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The function Θ is continuous and definable in the o-minimal structure Ran, there-
fore B := Θ−1(A) ⊂ R≥0×] − π, π]2 is definable in Ran. Let Br be the set
{(ϑ, ϕ) | (r, ϑ, ϕ) ∈ B}. By Fubini’s Theorem 2.1.18, we get

1

(2πt)
3
2

∫
Θ−1(A)

e
−r2
2t r2 sinϑ d(r, ϑ, ϕ)

2.1.18
=

1

(2πt)
3
2

∫
R≥0

∫
Br

e
−r2
2t r2 sinϑ d(ϑ, ϕ)dr

=
1

(2πt)
3
2

∫
R≥0

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ)dr.

By applying the Cell Decomposition Theorem 2.3.15 to R≥0∪{∞}, we get a finite
partition of R≥0 ∪ {∞} into finitely many disjoint cells, that means in points and
open intervals D1, . . . , Dp, where Dj := ]α, β[ with 0 ≤ α < β ≤ ∞ and we can
write

1

(2πt)
3
2

∫
R≥0

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ)dr =
1

(2πt)
3
2

p∑
j=1

∫
Dj

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ)dr.

For the sake of convenience we fix j ∈ {1, . . . , p} and write D := Dj. Due to the
fact that integrals over D will be zero if D is a point, we ignore this case. If B is
a bounded set, D is a bounded interval. If B is unbounded, at least one interval
D is unbounded and consequently β =∞.

In consequence of the restriction to Br, sinϑ is globally subanalytic and we can
apply Remark 2.3.17 and get that∫

Br

sinϑ d(ϑ, ϕ), (1)

which is the angular part, has the form of a constructible function. In our case, the
log-term in the constructible function has at most power one. The reason is, if we
apply Fubini’s Theorem 2.1.18 to the integral in (1) and integrate sinϑ, there is no
log-term in the antiderivative of sinϑ as is well known. Therefore, only the second
integration can bring a log-term in the antiderivative of

∫
Br

sinϑ d(ϑ, ϕ). Thus,

the integral has the form ψ0(r) + ψ1(r) log(r), where ψ0(r) and ψ1(r) are strictly
positive globally subanalytic functions. Since ψ0(r) + ψ1(r) log(r) represents the
angular part, it is bounded by π. In a similar way to Lemma 3.3.24, we can argue
that ψ0(r) as well as ψ1(r) log(r) is also bounded.
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We obtain

1

(2πt)
3
2

∫
D

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ) dr
2.3.17
=

1

(2πt)
3
2

∫
D

e
−r2
2t r2 (ψ0(r) + ψ1(r) log(r)) dr.

First, we give the proof for a). We may assume B is bounded, consequently also D.
Due to ψ0(r) and ψ1(r) are globally subanalytic functions on D, and consequently
definable in Ran, we get by Lemma 3.3.33 that∫

D

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr

has the form ϕ0(t) + ϕ1(t) log(t), where ϕi are globally subanalytic functions. We
can conclude about the total set if the set Θ−1(A) is bounded that

1

(2πt)
3
2

∫
Θ−1(A)

e
−r2
2t r2 sinϑd(r, ϑ, ϕ) =

1

(2πt)
3
2

p∑
j=1

∫
Dj

e
−r2
2t r2 (ψ0(r) + ψ1(r) log(r)) dr

has the form ρ0(t) + ρ1(t) log(t) as t → ∞, where ρn are globally subanalytic
functions and q ∈ N. Therefore f(t) is definable in Ran,exp.

Now, we prove statement b) and we may assume that B is unbounded. In
this case, at least one D is unbounded, that means, D could also be an open
interval of the form ]α,∞[ and by a refined cell decomposition we can assume
α > 1. In consequence of the definability of ψi(r) in Ran, the Preparation Theo-
rem 2.3.18, and the boundedness of ψ0(r) and ψ1(r) log(r) on ]α,∞[, which can be
shown in the same way as in Lemma 3.3.24, ψ0(r) is representable as a convergent

Puiseux series a0 +
∞∑
k=0

2q−1∑
j=0

ãj,kr
j
q
−2(k+1) and ψ1(r) as a convergent Puiseux series

∞∑
k=0

2q−1∑
j=0

âj,kr
j
q
−2(k+1), where q ∈ N. In Lemma 3.3.42 we have already pointed out

that
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr

has the asymptotic expansion

a0

√
π

2
t
3
2 + ϕ̂0(t) + ϕ1(t) log(t) + ϕ2(t) log(t)2, (2)
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where ϕ̂0(t) =
∞∑
k=0

2q−1∑
j=0

νj,kt
j
2q
−k+ 1

2 and ϕ1(t) =
∞∑
k=0

2q−1∑
j=0

λj,kt
j
2q
−k+ 1

2 and ϕ2(t) =

∞∑
k=0

κkt
1−k, where νj,k, λj,k, κk ∈ R and q ∈ N, are convergent Puiseux series and

thus, the asymptotic expansion is definable in Ran,exp.
Due to the fact that

∫
Br

sinϑ d(ϑ, ϕ) > 0 for (ϑ, ϕ) ∈ [0, π]×]−π, π], we get that the

angular part ψ0(r)+ψ1(r) log(r) is also strictly positive. Thus, there are constants
σ ∈ Q<0 and C > 0 such that ψ0(r) + ψ1(r) log(r) ≥ Crσ for all r ∈ [α,∞[.

We obtain that
∞∫
α

e−
r2

2t r2 (ψ0(r) + ψ1(r) log(r)) dr ≥ C
∞∫
α

e−
r2

2t rσ+2dr, of which the

asymptotic expansion has polynomial scale as we have already seen. Thus, at least
one of the coefficients of the series ϕ̂0(t), ϕ1(t), ϕ2(t) or a0 in (2) is not zero.

Finally, we get the following conclusion: If Θ−1(A) is an unbounded set, at
least one D is unbounded and we achieve, taking also the results of a) in account,
that

1

(2πt)
3
2

∫
Θ−1(A)

e
−r2
2t r2 sinϑ d(r, ϑ, ϕ) =

=
1

(2πt)
3
2

∫
R≥0

e
−r2
2t r2

∫
Br

sinϑ d(ϑ, ϕ)dr

=
1

(2πt)
3
2

p∑
j=1

∫
Dj

e
−r2
2t r2 (ψ0(r) + ψ1(r) log(r)) dr (3)

≈ ρ0(t) + ρ1(t) log(t) + ρ2(t) log(t)2,

where ρ0(t) =
∞∑
k=0

2q−1∑
m=0

γm,kt
m
2q
−k, where γm,k ∈ R and γm,0 = 0 ifm 6= 0, and ρ1(t) =

∞∑
k=1

2q−1∑
m=0

δm,kt
m
2q
−k, δm,k ∈ R, and ρ2(t) =

∞∑
k=1

ωkt
1
2
−k, ωk ∈ R, are convergent Puiseux

series, where at least one coefficient of the series is not zero by the arguments above
and because every summand in (3) is positive.

Since the Puiseux series ρ0, ρ1 and ρ2 are convergent, the asymptotic expansion
is definable in Ran,exp. �



4
Conclusion and Outlook

We conclude this thesis with a short summary of the shown results. Motivated by
the research of Comte, Lion and Rolin, by Cluckers and Miller, and also by the
research of Kaiser, we studied the probability distribution

1

(2πt)
n
2

∫
A

e−
|x|2
2t dx, (4.1)

which is given by the Brownian Motion on a semialgebraic set, as example for the
occurrence of integrals of the form

∫
e−

r2

2t ψ(r)dr and
∫
e−

r2

2t ψ(r) log(r)dr, where
ψ is a globally subanalytic function. In the one-dimensional case we showed
that these integrals in (4.1) on a family of sets, which are definable in an arbi-
trary o-minimal structure M, are definable in the Pfaffian closure of M. In the
two-dimensional case we examined

∫
e−

r2

2t r ψ(r)dr at the limit points of t and inves-
tigated asymptotic series expansions by applying a recursive formula. We proved
that the integrals behave like a Puiseux series as t approaches zero. As t tends
towards infinity, we gave the proof that the probability distribution is definable in
the o-minimal structure Ran and it is a convergent Puiseux series if A is bounded.
For this purpose, we applied the results of Lion and Rolin, see [LR98], to the in-
tegrals

∫
e−

r2

2t r ψ(r)dr over a bounded set. Then, we established the asymptotic

169
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expansion of the integrals over an unbounded set. We were able to demonstrate
that the asymptotic expansion has the form ϕ0(t) +ϕ1(t) log(t), where ϕi are con-
vergent Puiseux series with negative exponents, and subsequently, we got that the
expansion is definable in Ran,exp. Afterwards, we considered the probability dis-
tribution in R3 and started with the case t tends towards zero. We proved that

the integrals in (4.1) have the expansion
∞∑
k=0

(γk + δk log(t)) t
k
q . Then, we distin-

guished A is bounded and unbounded another time as t approaches infinity. In the
first case, it could be ascertained by the stability property of constructible func-
tions that the probability distribution has the form ϕ0(t) + ϕ1(t) log(t), where ϕi
are convergent Puiseux series with negative exponents and thereby the probability
distribution is definable in Ran,exp. In the other case, we proceeded as in the two-di-
mensional case and investigated the asymptotic expansions of

∫
e−

r2

2t r2ψ(r)dr

and
∫
e−

r2

2t r2ψ(r) log(r)dr in several single steps by means of recursive formu-
las. Finally, the last proof showed that the probability distribution given by the
Brownian Motion on unbounded sets has an asymptotic expansion of the form
ϕ0(t) +ϕ1(t) log(t) +ϕ2(t) log(t)2 as t approaches infinity, where ϕi are convergent
Puiseux series with negative exponents. In consequence of that, the asymptotic
expansion is definable in Ran,exp.

Now, we briefly want to discuss open questions for further research. An ob-
vious way is the enlargement to the n-dimensional case and the investigation of
asymptotic expansions of the probability distribution given by the Brownian Mo-
tion on a n-dimensional semialgebraic set. We have the vague assumption that

there may arise integrals similar to the form
∫
e−

r2

2t rn−1
n−2∑
i=0

ψi(r) log(r)idr. It is

another open question, whether these integrals can be reduced to our discussed
integrals and their asymptotic expansions by using recursion. Another path could
be the study of our probability distribution on families of semialgebraic sets in
higher dimensions.
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