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Chapter

Introduction

1.1 Overview

The basic idea of border basis theory is to describe a zero-dimensional ring P/I by an
order ideal of terms O whose residue classes form a K-vector space basis of P/I. The
O-border basis scheme is a scheme that parametrizes all zero-dimensional ideals that
have an O-border basis. In [Hai98] it is pointed out that, in general, the O-border
basis scheme is not an affine space. Subsequently, in [Huib09]) it is proved that if an
order ideal O with p elements is defined in a two dimensional polynomial ring and it
is of some special shapes, then the O-border basis scheme is isomorphic to the affine
space A%, This thesis is dedicated to find a more general condition for an O-border
basis scheme to be isomorphic to an affine space of dimension nu that is independent
of the shape of the order ideal and the dimension of the polynomial ring that the order

ideal is defined in.

We accomplish this in 6 Chapters. In Chapters[2and [3|we develop the concepts and
properties of border basis schemes. In Chapter {4 we transfer the smoothness criterion
for the point (0, ...,0) in a Hilbert scheme of points in [Huib05] to the monomial point
o = (0,...,0) of the border basis scheme by employing the tools from border basis
theory. In Chapter |5 we explain trace and Jacobi identity syzygies of the defining
equations of a O-border basis scheme and characterize them by the arrow grading. In
Chapter [6] we give a criterion for the isomorphism between A™ and By by using the
results from Chapters[dand Chapter[5] The techniques from other chapters are applied
in Chapter [6.4 to segment border basis schemes and in Chapter [6.4] to O-border basis

schemes for which O is of the sawtooth form.
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1.2 Motivation

Border basis schemes were generally treated as open subsets of Hilbert schemes of
points until the pioneering article [KrRo0§| which introduced a construction of border
basis schemes independent of Hilbert schemes of points and the name border basis
scheme, as well. Before explaining border basis schemes, let us take a brief look at
border basis theory. Let P be a polynomial ring, and let I be a zero-dimensional ideal
in P. The basic idea of border basis theory is to describe a zero-dimensional ring P /I
by an order ideal of terms O whose residue classes form a K-vector space basis of P/
(for further information we refer to [KrRo05]). Let O be an order ideal with u terms.
The O-border basis scheme is a scheme that parametrizes all zero-dimensional ideals
that have an O-border basis. It is an open sub-scheme of the Hilbert scheme of
points H¥ = Hilb*(A™). The affine varieties mentioned in [Hai98] Proposition 2.1 and
[Huib09] are exactly the O-border basis schemes of points on the plane. Let us present
which questions motivated this work.

It is first stated in [Hai9§| that, in general, border basis schemes are not affine cells,
i.e. they are not isomorphic to affine spaces. This note leads us to ask the following

question which is the starting point of our research.

Question 1.2.1. Under which condition (or conditions) is a given O-border basis

scheme isomorphic to an affine space?

In [MilSt05], page 363 an algebraic method is used to show the smoothness of a
given Hilbert scheme of points in the plane. This motivated us to ask whether we can
use a similar method to answer Question [I.2.1 We show that the given method is
insufficient but it directs us to consider the minors of the Jacobian matrix of the set of
defining equations of the O-border basis scheme.

Two further valuable sources of our work are [Huib05] and [Huib09]. In the first
article [Huib05], a criterion for the smoothness of the monomial point o of a Hilbert
scheme of points is given. This leads us to reprove this result for the monomial point

o of a given O-border basis scheme, after which the following question arises:

Question 1.2.2. [s there a way to generalize this local smoothness criterion to a global

smoothness criterion for an O-border basis scheme?

The second article is [Huib09] which introduces new ways to compute the syzygies
of the tuple 7 constituting of the defining equations of the O-border basis scheme.

This article motivated us to use those syzygies to examine when a given O-border
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basis scheme is an ideal-theoretic complete intersection. In general, we find that these
syzygies are not enough to reach such a conclusion. By employing further algebraic
techniques (see Chapter [6.4)), we get results for some specific O-border basis schemes.

Let us explain our novel contributions in more detail in the next section.

1.3 Main Results

The first contribution starts in Chapter [3, where we introduce a grading on the poly-
nomial ring, in which the vanishing ideal of a border basis scheme is defined. We shall
call this grading the arrow grading. Then we show that the vanishing ideal of the
O-border basis scheme is homogenous with respect to the corresponding arrow grad-
ing. Although this is a known fact (see, for example, Lemma 4.1 [Huib09]), we give an
alternative proof by employing the generic multiplication matrices. Moreover, in the
same chapter, we show that the torus action (see page 208 of [Hai98] and page 363 of
[MiISt05]) on By results in the arrow grading. The arrow grading is neither of positive
type nor of non-negative type as defined in ([KrRo05], Definition 4.2.4). Thus it follows
that in Bp there might exist more than one maximal homogenous ideal. This shows
that the corresponding claim on page 363 of [MilSt05] is incorrect. Consequently, giv-
ing an algebraic proof of any claim about border basis schemes is more difficult because
of the peculiarity of the grading which is defined on the coordinate ring of a border
basis scheme.

In the subsequent chapter, Chapter [5 we investigate the cotangent space of a
border basis scheme at the monomial point 0 = (0, ...,0). In [Hai98] a new method of
constructing the cotangent space of a border basis scheme of u points in the plane is
proposed. We call this method the arrow method. The main idea is to consider every
indeterminate from the set {c1, ..., ¢, } which parametrizes the border basis scheme as
an arrow from an order ideal term to a border term. Then one constructs a basis of the
cotangent space by using the relations of border terms and order ideal terms. Later, in
Chapter 4 and 5 of [Huib05][[} this arrow method is generalized to n dimensions and a
way for constructing a basis of the cotangent space of a border basis scheme is given.
Although none of those citations contains the name border basis scheme, in [Hai9§]
the set U, given in Equation 2.3, and in [Huib05] the set Us given in Equation (4)
in Chapter 2.2 are both border basis schemes. Our work is inspired by both of those

sources, but mainly by [Huib05]. In contrast to these articles we do not use the arrow

! [Huib05] is a pre-print that is only published in arXiv.
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method. The foundation of our work depends on the generating set of the vanishing
ideal of a border basis scheme which encodes all relations between border terms and
order ideal terms. Thus every arrow relation, as used in [Huib09] and [Hai98] to
construct a basis of the cotangent space of Hilbert scheme of y points at the monomial
point (0, ...,0), is coded by the elements of the defining equations of a border basis
scheme. By using these equations one can compute all equivalence classes modulo m?,
where m is the maximal ideal generated by the indeterminants of the coordinate ring of
the O-border basis scheme. Let us denote this set of equivalence classes by &. We prove
that the arrow degree is well-defined on this set. Then we show that & contains at
least nu elements. Consequently, by using the set €, we give a K-basis of the cotangent
space. From this we deduce the following smoothness criterion for the monomial point

of a border basis scheme.

Theorem 1.3.1. Let O C T" be an order ideal with p elements. The monomial point
0 € Bo is smooth if and only if the number of elements of € is npu.

A similar result can be found in [Huib05], Theorem 5.1.1. We reprove the statements
of Chapter 4 and 5 from|[Huib05] for border basis schemes by using the tools we have

in border basis scheme theory such as border relations and the arrow grading.

The trace and the Jacobi identity syzygies of T, where 7 denotes the set of
the defining equations of a given O-border basis scheme, were first introduced in
[Huib09]. In Section 10 of [Huib09] the trace syzygies of T were used to show that
any border basis scheme of points contained in a plane is an ideal-theoretic com-
plete intersection. Moreover, in the same article, for the specific case O = {1,x,} C
K{[z1, 9, 23] both trace syzygies and Jacobi identity syzygies of 7 were used to prove
that By is an ideal-theoretic complete intersection. Let 5(2,2,2) denote the order
ideal {1, x3, x9, x1, Xows, 173, T1X2, L1223} € K[, 29, x3]. We show that these meth-
ods are not sufficient to decide whether By 222 is a complete intersection or not. We
reprove some of the properties of the trace and Jacobi identity syzygies. Our goal is
to characterize these syzygy computations by the arrow grading. We show that there
are at most 60 redundant polynomials in the set of defining equations of the border
basis scheme Bp(s 29y that can be found by Jacobi identity and trace syzygies of 7 and
we illustrate the reasons why these methods are not sufficient. Moreover, we imple-
mented the Jacobi identity and the trace syzygy computation methods in the package
bbsmingen of the computer algebra system ApCoCoA.

In [Huib02], Proposition 7.3.1 states that if the order ideal O € K[zy,xs] is of a
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specific shape (”sawtooth”) then the O-border basis scheme is isomorphic to an affine
space. We give a more general condition that applies to an order ideal O C T",
independent of the shape of O. The matrix Mg is a specially chosen sub-matrix of the
Jacobian matrix of 7. The way how to construct this matrix is explained in iv).

Then we prove the following result.

Theorem 1.3.2. Let O denote an order ideal in K[z, ..., x,], having p elements. If
there exists a set S C Bp with nu elements such that the entries of the corresponding
matriz Mg are in the polynomial ring K[S] and the determinant of this matriz is +1,

then Bo s isomorphic to an affine space of dimension npu.

In other words, for a given O-border basis scheme, if there exists a maximal minor
of Jac(T) that is £1 and the corresponding sub-matrix is in Mat,,(K[S]), the O-
border basis scheme is isomorphic to an affine space. Moreover, it is an ideal theoretic
complete intersection where the vanishing ideal is generated by 7s. We note that if By
is isomorphic to an affine space of dimension ny, then it is not trivial that it is an ideal
theoretic complete intersection (see [KumT77]).

In Chapter We apply Theorem to prove Proposition 7.3.1 of [Huib02] which

is as follows.

Theorem 1.3.3. Let O = {t1,...,t,} be an order ideal in T?. If the order ideal O has

the sawtooth form then By is isomorphic to an affine space.

An order ideal has the sawtooth form if the diagram of O is of the form such that
every step width, except possibly the topmost, and every step height, except possibly

N

the rightmost, is of size one.

Table 1.1: Diagram of O has the sawtooth form

Our aim is to compare the two methods and to emphasize the fact that Theo-
rem [1.3.2] is more general than the methods applied in the proof of Theorem 7.3.1 of
[Huib02].

Let O = {1,xy,2%,...,21'} C K[z1, ..., z,] be an order ideal. We call such an order
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ideal as a segment order ideal and the O-border basis scheme as a segment border basis
scheme. We first compute Jacobi identity and trace syzygies of the defining equations
of a segment border basis scheme. Next, we show that they are not sufficient to give
all redundant generators of the vanishing ideal of this scheme. Then we give a new
method to find all redundant generators of the vanishing ideal of a segment border

basis scheme. This method leads us to the following result.

Theorem 1.3.4. A segment border basis scheme can be generated by exactly uv — npu

polynomials from T .

Then, by applying the methods we develop in Chapter [6] we prove the following

theorem.

Theorem 1.3.5. A segment border basis scheme is isomorphic to an affine space.

Moreover, it is an ideal-theoretic complete intersection.

In [Ro09], Corollary 3.13, it is also shown that a segment border basis scheme is
isomorphic to an affine space. Our result depends on Theorem which differs from
[Ro09].

For further research we strongly believe that Theorems [1.3.2] can be genralized to

the following criterion.

Conjecture 1.3.6. Let O C Klxy,...,z,| be an order ideal. Let K be a perfect field.
The border basis scheme By is isomorphic to an affine space, if there exists a spanning
set S of m/m? such that Det(Ms) = +1 holds.

1.4 Outline

Above we presented our contributions and motivation in detail. The organization of
every chapter is given at the beginning of the chapters, as well. Therefore in this
section we avoid detailed explanations and provided a rough outline of the thesis.

Chapter 2 briefly introduces the border bases theory, the construction of border
basis schemes, and the principal component of a border basis scheme. One can find
a brief discussion on the basic algebraic geometry, as well. Moreover, the number of
non-trivial generators of a box and of a segment border basis is given.

Chapter 3 focuses on the Z™-gradings. We define a Z™-grading on the ring K[C]
and call it the arrow grading. First we show that the arrow grading is neither of

positive nor of non-negative type. Then we show that the only maximal ideal that is
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homogenous in K[C] with respect to the arrow grading is the ideal generated by the
indeterminates {ci1, ..., ¢, }. We shall denote this ideal by 9t. Furthermore, we give a
proof that the arrow grading is also defined on the coordinate ring of the border basis
scheme Bp = KJ[C]/Z(Bp). This implies the well-known fact that the vanishing ideal
of a border basis scheme is generated by homogenous polynomials with respect to the
arrow grading. Moreover, we show that the arrow grading is exactly the grading of the
torus action on the coordinate ring Bp which is mentioned in [Hai98]. Since we show
that the arrow grading is neither of positive nor of negative type, our results contradict
to the claims concerning grading and the homogenous maximal ideal on page 363 of
[MiISt05].

Chapter 4 introduces a smoothness criterion for the monomial point o = (0, ...,0)
of a given border basis scheme Bpn. Therefore we focus on the maximal ideal m =
(11, .., G,) and investigate the cotangent space m/m? of the border basis schemes Bp at
the point 0. We reprove some results (see Chapter 3, of [Huib05]) for the Hilbert scheme
of points in the setting of O-border basis schemes. Although the main ideas of the
proofs are the same, the difference in our approach comes from border basis theory. We
use tools such as generic multiplication matrices, neighborhood relations of the border
elements, properties of order ideals and, most importantly, the arrow grading. Despite
the fact that in [Hai98] and [Huib05|] a border basis scheme is described (see Equation
2.3 in [Hai98] and Section 2.3 in [Huib05]), the tools we have mentioned are not used.
This distinguishes our work on constructing the generating set of the cotangent space

of a border basis scheme. Note that the article [Huib05] is an unpublished arXiv article.

Chapter 5 discusses the trace and the Jacobi identity syzygies of T which were
first introduced in [Huib09]. We prove some properties of those syzygies by using the
arrow grading. Using Jacobi identity and trace syzygies, we compute the redundant
generators of the box border basis scheme Bg(; 2 2). We explain the reasons why these
syzygies are not conclusive on whether Bpg22.2) is a complete intersection. Section
is dedicated to finding a way to solve these problems for segment border basis
schemes. Our strategy is the following: we start by generalizing the Jacobi identity
syzygy and the trace syzygy computations to an arbitrary segment border basis scheme.
Then, by using the arrow grading and the construction of the defining equations of the
segment border basis scheme, we give a method to compute the redundant generators
of the vanishing ideal of an arbitrary segment border basis scheme. Consequently, we
prove that an arbitrary segment border basis scheme is an ideal-theoretic complete

Intersection.
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Chapter 6 is dedicated to finding conditions for a general order ideal @ C T"™ which
make an O-border basis scheme an affine cell, i.e. isomorphic to an affine space. If o
is a smooth point of the O-border basis scheme, where O C T" has p terms, then Bp
is locally isomorphic to an affine space of dimension nu. Our aim is to find a condition
which extents this local property to all of Bp. The main results of this section (see
Theorems imply that this extension is possible. To be precise, we show that
the coordinate ring By is isomorphic to a polynomial ring of dimension ny if there
exists a set S C C (see Chapter ) and if there exists a maximal minor of the
Jacobian matrix of 7 that is +1 and the matrix corresponding to this minor is in
Mat,,—n, (K[S]). Moreover, we show that if a given O-border basis scheme is an affine
space and the vanishing ideal is generated by the subset 7s (see Notation [6.2.3) of T,
then there exists a maximal minor of the Jacobian matrix of 7 that is +1. Since our
results neither depend on the shape nor on n, they are more general than the existing
results.

By using Theorem [6.2.20] in Section [6.4] we show that an arbitrary segment border
basis scheme is isomorphic to an affine space of dimension nu. Section discusses
Theorem 7.3.1 of [Huib02] which states that O-border basis schemes are affine spaces
if O is of the form sawtooth. This section is mainly dedicated to prove this result by
using Theorem , and to comparing the method given in [Huib02] to the method
we use. Moreover, this application shows a way to employ Theorem [6.2.20] in a proof
which gives a general condition of a special order ideal. In addition Theorem [6.2.20
is independent of the shape of the order ideal and the dimension of the ring that the

order ideal is defined.



Chapter

Preliminaries

This chapter starts with known theorems and basic concepts in algebra and alge-
braic geometry (see Section such as varieties, Zariski topology, dimension theory,
smoothness and complete intersections without proofs. Our aim is to introduce the
algebraic geometric background that is used in this thesis without going deep into the
topics. We continue our summary on the basics by giving introductory definitions and
theory of border bases (see Section [2.2)). This section is important to see the connection

between border basis theory and border basis schemes.

Afterwards, we explain how border basis schemes are constructed (see Definition
.c and Construction and recall preliminary results from the theory of border
basis schemes focusing on the monomial point o in these schemes (see Definition m
and Lemma . Furthermore, in Section we give a brief discussion on the
principal component of a border basis scheme (see Definition . It should be noted
that we give the explicit generating system of the vanishing ideal of a border basis
scheme. Therefore we are able to use basic algebraic and algebraic geometric tools we

introduce in Section 2.1] instead of scheme theoretic ones.

The last section (see Section is dedicated to giving the exact number of non-
trivial generators of the vanishing ideals of box border basis schemes (see Definition
and segment border basis schemes (see Definition [2.5.5)). The importance of this
section will become clear as we investigate the redundant elements of the set of defining

equations of those border basis schemes in Chapters [5] and [6]
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2.1 Algebraic Geometry

This section is intended to give an overview of the well- known algebraic and algebraic
geometric tools we use throughout this thesis. Unless stated otherwise, throughout
this section we let K be a field and K the algebraic closure of K. Let L O K be a field

extension. Let P denote the polynomial ring K|z, ..., z,].
Definition 2.1.1. Let f be a polynomial in P and let I be an ideal in P.

a) A point (ai,...,a,) € L™ is said to be a zero of the polynomial f in L" if
f(a1,...,a,) = 0 holds.

b) The set of all zeros of f in L™ is denoted by Z(f).

c) The set of simultaneous zeros of all polynomials of an ideal I in L" is called the
zero-set of I in L" and is denoted by Z,(1).

For further information on zero-sets we refer to Chapter 2.6.B of [KrRo00]. Note
that () and L™ are zero-sets. Furthermore, arbitrary intersections and finite unions
of zero-sets are again zero-sets. This implies that zero-sets form the closed sets of a

topology.

Definition 2.1.2. Let L be equal to K. Then the topology formed by the zero-sets are
called the Zariski topology on K". The space K™ with the Zariski topology is called

the n-dimensional affine space over K" and it is denoted by Aj.

Definition 2.1.3. Let V' be a subset of L”. The set of all polynomials f € P such
that f(ai,...,a,) = 0 for all (ai,...,a,) € V forms an ideal of P. This ideal is called
the vanishing ideal of V' in P and is denoted by Z(V'). Moreover, the ring P/Z(V) is
called the coordinate ring of V' and it is denoted by K[V].

Now we recall the well-known Hilbert’s Nullstellensatz.

Theorem 2.1.4. Let I be a proper ideal of K[xy, ..., x,]. Let /T denote the radical of
1. Then the following holds.
Z(2(1) = VI

Proof. The proof follows from [KrRo00], Theorem 2.6.16. O



2.1. Algebraic Geometry 11

Definition 2.1.5. Let V be a zero-set from L".

a) The zero-set V is called irreducible if the following holds: If V; and V; are
zero-sets in L™ such that V =V, U V5, then V =V, or V =14,

b) Let W be an irreducible zero-set in L™ where W C V. The zero-set W is called

an irreducible component of V| if it is a maximal irreducible subset of V/

Theorem 2.1.6. LetV be a zero-set from L™. The zero-set V' has only finitely many ir-
reducible components. Moreover, there exist finitely many irreducible zero-sets Vi, ...,V

of V such that V =V, U...UV,.
Proof. The proof follows from [Ku85|, Proposition 2.14 and Corollary 2.15. O

Theorem 2.1.7. A zero-set V. C L" is irreducible if and only if its vanishing ideal
Z(V) is prime.

Proof. The proof follows from [Ku85|, Chapter 1, Proposition 1.10. O
Definition 2.1.8. Let V' C L.” be a non-empty zero-set. The Krull dimension of V

is the supremum of the lengths of all chains of non-empty distinct irreducible subsets
of V. It is denoted by dim(V).

Note that the Krull dimension of a zero-set V' C L" is equal to the Krull dimension
of the coordinate ring K[V] (see page 40, [Ku85]). That is

dim(V) = dim(K[V]) = dim(P/Z(V")).

Definition 2.1.9. Let V' be a zero-set in L™ with dim(V') = d where 1 < d < n. Then
n — d is called the codimension of V' and denoted by codim(V').

Definition 2.1.10. Let V' be a zero-set from L™ with codim(V') = ¢. The zero-set V'
is called an ideal-theoretic complete intersection, if Z(V') C P can be generated

by ¢ polynomials.
For further information on complete intersections we refer to [Ku85], Chapter 3.3.

Lemma 2.1.11. (Nakayama Lemma) Let R be a ring and let I be an ideal that is
contained in the intersection of all maximal ideals in R. Let M be an R-module and let
N be a submodule of M and let M/N be finitely generated. If we have M = N + I M,
then M = N holds.
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Proof. This follows from [Ku85|], Chapter IV, Lemma 2.2. ]
Definition 2.1.12. A ring that has a unique maximal ideal, is called a local ring.

In the following we let V' be a zero-set in L™. Let o denote the point (0, ...,0) € L™
and let V contain o. Let I denote the vanishing ideal Z(V'). Let P/I be denoted by R.
Let m be the maximal ideal generated by {z1,...,Z,} C R.

Definition 2.1.13. The localization of R at the multiplicative set S = R\ m is called
the local ring of V' at o and is denoted by R,,.

The ring R, contains a unique maximal ideal, namely the ideal mRy,. Let L = Ry, /m
be the residue field of Ry,. Let pu(m) denote the minimal number of generators of m.
Then by Lemma [2.1.11| we have the following equality.

p(mRy,) = dimg, (m/m?) (2.1)

Definition 2.1.14. The L-vector space m/m? is called the cotangent space at o.
The number p(mRy,) is called the embedding dimension of Ry. It is denoted by
edim(Ry,).

As a consequence of Definition [2.1.14] Equation (2.1)) is as follows:
edim(Ry,) = dimg,(m/m?) (2.2)

Proposition 2.1.15. The dimension of the local ring of V at o is smaller or equal to

the minimal number of generators of mRy,. That is
dim(R,,) < p(mRy) = edim(Ry,).

Proof. This follows from [Ku85], Chapter IV, Theorem 3.4 (Generalized Krull Principal
Ideal Theorem). O

The ring Ry, is called a regular local ring if dim(R,,) is equal to edim(Ry,).
Otherwise it is called a singular local ring. If R, is a singular local ring then the

point o is said to be a singular point of V' (see page 473 [KrRo05]).

Definition 2.1.16. A system of elements {ay,...,a,} (m > 0) of a ring R is called
independent if the following conditions hold:
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a) (a1, ....am) # R

b) If F € Rz, ..., 2] is a homogenous polynomial with F'(ay, ..., a,) = 0, then all

coefficients of F' are contained in Rad(ay, ..., an,).

A system of elements {ay, ..., a,,} (m > 0) of aring R is called algebraically independent

if the following conditions hold:
a) (ay,...,am) # R

b) If F € Rz, ..., 2] is a homogenous polynomial with F(ay, ..., a,) = 0, then all

coefficients of F' are 0.

Definition 2.1.17. Let I be an ideal from P and be generated by { f1, ..., fs}. The Ja-
cobian matrix of the tuple F = (fi, ..., f) is the matrix Jac(F) = (%)i:17,,,s,j:1 .....
Mat, ,,(P). The Jacobian matrix of the tuple F that is evaluated ag the point 0 =
(0,...,0) € K" is denoted by Jac(F),.

Theorem 2.1.18. Let V. C L" and let Z(V') denote the vanishing ideal from P =
Klzy,...,z,] and let char(K) = 0. Then the following holds.

a) Let Z(V) be generated by a tuple F = (f1,..., fs). Then rank(Jac(F),) < n —
dim(Ry) holds.

b) Let Z(V) be generated by a tuple F = (fi,..., fs). If we have rank(Jac(F),) =
n — dim(Ry,), then Ry is regular.

c) The local ring Ry, is regular if and only if there exists a tuple of polynomials

F =(f1,..., [s), which generates Z(V') and we have rank(Jac(F),) = n—dim(Ry,).
Proof. This follows from [Ku85|, Chapter VI, Proposition 1.5. O

Theorem 2.1.19. Let V C L" be irreducible with dimension d and let Z(V') denote the
vanishing ideal in P = Klxy, ..., z,| that is generated by a tuple F = (f1,..., fs). Then
the singular locus of V' is the common zero set in V' of the polynomials obtained as the

(n—d) x (n—d) minors of the Jacobian matriz Jac(F) = (gi;)izu‘,s,j:l n € Maty ,,(P).

.....

Proof. This follows from [KaKeSt00], Chapter 6.2, Theorem. ]

Definition 2.1.20. Let J be the ideal generated by the minors of size n—d in Theorem
2.1.19] Then the ideal J in P/Z(V) is called the Jacobian ideal of Z(V) and denoted
by J.
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Corollary 2.1.21. Let V' C L™ be irreducible with dimension d and let Z(V') denote
the vanishing ideal in P = K|x1, ..., x,] that is generated by a tuple F = (f1, ..., fs). The
Jacobian ideal J is a unit ideal of P/Z(V') if and only if V' is smooth.

2.2 Border Bases

In order to understand the theory of border basis schemes, it is necessary to discuss
border basis theory. Although we shall not go deeply into the theory, we discuss the
basic concepts necessary for the rest of this thesis. For further information we refer to
[KrRo05].

Definition 2.2.1. Let I C P be a zero-dimensional ideal. A polynomial z{* --- x5 € P
such that (aq,...,a,) € N is called a term. Let T" denote the set of all terms in P
and let T} = {z1,...,x,}.

(a) Let O = {t4,...,t,} denote a non-empty set of terms from T". If O is closed under

forming divisors, then it is called an order ideal.

(b) The set of terms defined as T} - O\O = (z;0OU... Ux,0)\O is called the border
of O and denoted by 90.

(c) An O-border prebasis G = {gi, ..., 9.} is a set that consists of polynomials of the

I
g; =bj — Zaijti
i=1

form

where {aij}ie{l,..,u} c K.
je{1,.v}

(d) Let G be an O-border prebasis. Then G is called an O-border basis of [ if the

residue classes of the elements of O form a K-basis of P/1.

The basic idea of border basis theory is to describe a zero-dimensional ring P/I by

an order ideal of terms O whose residue classes form a K-vector space basis of P/I.

Example 2.2.2. Let O denote the order ideal {1, x1, 29, 2122} € K[z1, xs]. Then the

border of O is 00 = {3, 23, x123, 372 }. The figure below justifies the name border.

Example 2.2.3. Let O denote the order ideal {1, x1, 29, 2122} € K[y, xs]. Then the

border of O is 0O = {x3, 1%, x123, v3x5}. Let I be an ideal of K[z, z5] that is generated
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2 2
Ty | T | X3%o
)
1 T X7

by G = (g1, 92, 93, 94) Where

912153-*—3314-1, 92:$%+$1+372,

2 2
g3 = T1T5 — T2, g4 = x{T2 + X102 — 11 — 1.

Then G is an O-border prebasis of 1.

In Example (2.2.3)) if O is the K-basis of P/I, then G is an O-border basis of I. The
following definition gives us one tool to verify whether the given O-border prebasis is

an O-border basis or not.

Definition 2.2.4. Let P denote the polynomial ring K[z, ..., z,|. Let O = {t1,...,t,}
be an order ideal. Then 0O = {by,...,b,} be the border of O. For indices i = 1, ..., i1
and j = 1,..,v, we let a;; be from K. Finally, we let G = {¢1, ..., g»} be the O-border

prebasis with
o
gj = bj — Zaijti.
i=1

For 1 < r < n, define the r'" formal multiplication matrix A, = (fii?) of G by

r (Skz if ti = 2t
51&1) - {

A if bj = xrtl
where d;; is the Kronecker delta.

The next theorem gives a very important property of multiplication matrices. This
property will play a crucial role in constructing the defining equations of border basis
schemes (see Definition [2.3.1)).

Theorem 2.2.5. Let O be an order ideal and let G be an O-border prebasis and let I
be a zero-dimensional ideal generated by the elements of G. The set G is an O-border

basis of I if and only if the formal multiplication matrices of G pairwise commute.

Proof. This follows from [KrRo05], Theorem 6.4.30. O

Example 2.2.6. (continues) We show that the O-border prebasis in Example (2.2.3)
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is an O-border basis of I. With respect to our notation we have t; = 1, t5 = z1, t3 =
Ty, ty = 1T, by = 73, by = 22, by = w125 and finally by = z2x5. Let us construct the

first and second formal multiplication matrices.

g1 =25+ a1 +1=b —ant — anty, app =—1, ag =—1
g2 = T7 + 21 + Tg = by — agoty — azats, oy = —1, ag = -1
g3 = 1125 — T2 = by — agsts, azz =1
g1 = Tixg + 129 — 11 — 1 = by — quaty — aouts — auty, agy = —lagg = 1,004 =1

k=16 =0 &) =aw € =du &) = au
k= 2755) = 022 5%) = Q22 fé}a) = 024 fgl) = Q4
k=360 = 05 &) = am € =6y € = ay
k=460 =6 €3 =am &) =du €8 = au

012 12 014 o4 0 0 0 1

02 22 024 vy 1 -1 0 1
Al — =

033 Q32 034 Q34 0O -1 0 O

042 42 a4 Oug 0 0 1 -1

In the same way, we get the generic multiplication matrix As,.

513 514 11 (13 00 -1 0

023 024 @1 23 00 -1 0
./42 = =

033 034 @31 33 10 0 1

043 044 Qa1 Qu3 01 0 O

The matrices A; and Ay are pairwise commutative i.e., A1 Ay = AzA;. Then by
Theorem [2.2.5, G = {g1, g2, g3, ga} is an O-border basis.

2.3 The Border Basis Scheme

An O-border basis scheme is a scheme that parametrizes all zero-dimensional ideals
that have an O-border basis. Therefore it is an open sub-scheme of the Hilbert scheme
HP = Hilb"(A™) of u points. In this section, instead of handling an O-border basis

scheme in a scheme theoretic manner, we construct the the generators of the vanishing
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ideal of an O-border basis scheme in a concrete way by using the border basis theory.

Let P denote the polynomial ring K[z, ....,z,]. Let O = {t1,...,t,} C T" be an
order ideal and 0O = {by,...,b,} be its border. Let I C P be a zero-dimensional ideal
with an O-border basis. Let {c11, ..., ¢, } be set of further indeterminates and let K[C]

denote the polynomial ring K[ci1, ..., ¢l

Definition 2.3.1. The generic O-border prebasis is the set of polynomials G =
{91, .., o} In K[z1, .., 2, c11, ..., ¢ given by

I
gj = bj — Zcijti. (23)
i=1
Definition 2.3.2. Let O C P denote an order ideal. Let G be the generic O-border

prebasis.

a) Let Ay € Mat,(K[c]) be the k'™ formal multiplication matrix associated to G
(see Definition [2.2.4) where k € {1,...,n}. Then A, is called the k' generic

multiplication matrix with respect to O.

b) The affine scheme Bp C A* defined by the ideal Z(Bg) generated by the entries
of the matrices Ay A; — A A, with 1 < k <[ < n is called the O-border basis

scheme.

¢) The ring K[C]/Z(Bo) is called the coordinate ring of the scheme By and is
denoted by Be.

Lemma 2.3.3. Let P denote the polynomial ring K|x1,...,x,] and let O be an order
ideal. Let t, and t, be distinct terms from the order ideal O such that xit, = t,. Let
[ be an index from the set {1,...,n} and A; be the generic multiplication matriz with

respect to O. Then we have Aleff = eg.

Proof. This is a result of the definition of the generic multiplication matrices with
respect to O. O]

In this example we show how to construct an O-border basis scheme with a given
order ideal O. We explicitly give the generating system of the vanishing ideal. The
main idea is to construct the vanishing ideal of By by imposing Theorem to the

generic multiplication matrices with respect to the order ideal O.
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Example 2.3.4. Let P denote the polynomial ring Kz, z5]. Let O denote the order
ideal {1,z, 79, z175} € P. Then the border of O is 00 = {3, 2% x 23, x3xy}. With
respect to our notation we have t; = 1, ty = zy, t3 = Ty, ty = 2129, by = 23, by =

22, b3 = 1123 and finally by = 23x5. The generic O-border prebasis is

2
G = {372 — C11 — €211 — C31T2 — C4171 T2,
2
Ty — C12 — Co2¥1 — C32T2 — C42X1 T2,
2
T1T9 — C13 — C23T1 — €332 — C43T1 X2,

2
T1Tg — C1q — C24T1 — C34T2 — C44~’U1$C2}~

Now let us construct the generic multiplication matrices with respect to O which is

basically constructing formal multiplication matrices of the generic O-border prebasis

G.

0 C12 0 C14 0 0 C11 (13
Al _ 1 Co2 0 Coy A2 _ 0 0 Co1  C23
0 c32 0 e 1 0 c31 ¢33
0 co 1 cyy 0 1 ca1 cu3

The vanishing ideal of the border basis scheme that is generated by the entries of

(A1 Ay — Az Ay) is the following ideal.

I(BO) = <011032 +C13C42 — C14,C12C21 + C14C41 — C13,
C12C23 — C11C34 +C14C43 — C13C44,C21C32 + C23C12 — Cay,
C21C22 + C24C41 + C11 — C23,C22C23 — C21C34 + C24C43 — C23C44 + C13,
C31C32 +C33C42 + C12 — C34,C21C32 +C34C41 — C33,
C23C32 — C31C34 + C34C43 — C33C44 — C14,C32C41 + C42C43 + C22 — C44,

C21C42 + C41Caq + C31 — Ca3,C34Ca1 — Coa3Ca2 + Cag — C33 )

Definition 2.3.5. A monomial ideal is an ideal generated by a set of terms from
T". The monomial ideal generated by the elements of JO is called the border term
ideal of O and is denoted by BTp.
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The next two lemmas can be found in [KrRo08] as notes. In order to make clear

reference, we turn them into lemmas and give explicit proofs.

Lemma 2.3.6. Let O C P be an order ideal. There is a one-to-one correspondence
between the zero-dimensional ideals that have an O-border basis and the K-rational
points of the border basis scheme. In particular, the point 0 = (0,...,0) in the scheme

corresponds to the border term ideal.
Proof. Let o be the substitution homomorphism defined as follows,

o:Kle, e, @1, xn] — Ko, ..o, 2]
Cij = Qyj

T —— Ty

where o;; € K and k = 1,...,n. Let G be the generic O-border prebasis. By Equation
(2.3), the image of G under o is

o(G) = {b; — Zaiﬂsi lj=1,..,v} (2.4)

which is an O-border prebasis for some zero-dimensional ideal in P, say I. Let A, A; €
Mat,,(K[C]) be two distinct generic multiplication matrices with respect to O. The im-
ages of generic multiplication matrices Ay, A; under the map o are the k* and [*
formal multiplication matrices with respect to the prebasis o(G). By Theorem ,
o(G) is an O-border basis of I if and only if the formal multiplication matrices com-
mute. Then o(G) is an O-border basis if and only if for each k,I € {1,...,n} and
k#1
o(ArA) = o(Ag)o(A) = o(A))o(Ax)

holds. By Theorem [2.2.5, this holds if and only if the point (o, ..., ) is a point in
Bo. In particular, after plugging the point (0,...,0) in G we have the ideal (b4, ..., b,),
which is the border term ideal. O]

Definition 2.3.7. A point in the scheme By is called a monomial point if it corre-

sponds to a monomial ideal.

Lemma 2.3.8. Let O C P be an order ideal. The point o = (0, ...,0) in Bo is the only

monomial point of this border basis scheme.
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Proof. By Lemma , the point 0 = (0,...,0) € By corresponds to the border term
ideal (by,...,b,). We do the proof by showing that the border term ideal is the only
monomial ideal with O-border basis. For a contradiction, suppose there is a monomial
zero-dimensional ideal I with an O-border basis that is different than BT». We let

m
{b; — Z Qijti}j=1,..0,
i—1 i=1,...,0
where o;; € K for ¢ = 1,...,p and j = 1,...,v be the O-border basis of I. Since I
is a monomial ideal, for every ¢ = 1,...,pp and j = 1,...,v we have a;; = 0. But this
contradicts to the assumption that I is different than BT. O

In Example (2.3.4]) we constructed the defining equations for B by imposing the
Theorem to the generic multiplication matrices. Before introducing an alternative
construction method which employs the relations of border terms, let us give a closer

look what those border relations are and how they can be used to compute polynomials
in K[C].

Definition 2.3.9. Let G = {g1,...,0,} be a generic O-border prebasis where g; =
by — Y cijti € Klern, ooy Cuuy @1, oy @) Let Ay, .. A, € Mat,(K[C]) be the generic
multiplication matrices with respect to O. Finally, for each index j € {1,..., u} let ¢;
denote the column matrix (cy;, ..., ¢,;)" € Mat,1 (K[C]). Let b;,b; € 0O be two distinct

border terms.

a) The border terms b;,b; are called next-door neighbors if we have b; = z;b; for
some xy, € {x1,..., T, }. We let ND(¢, j) be the set of polynomial entries of ¢; — Ayc;
where b; and b; are next-door neighbors. We shall denote the union of all such sets
by ND.

b) The border terms b;, b; are called across-the-street neighbors if we have x;b; =
x;b;. We let AS(1, 7) be the set of polynomial entries of Ayc; — Ajc; if b; and b; are
across-the-street-neighbors We shall denote the union of all such sets by AS.

c) Let b; and b; be across-the-corner neighbors such that z3b; = z;b;. If there exists
by, € 00 with b; = b, and b; = xb,,, then b; and b; are called the across-the-

corner-neighbors.

Lemma 2.3.10. Let b;,b; € 0O be two distinct border terms. If b; = xb; holds, then
there exists t, € O for some q € {1, ..., u} and x; € {z1,...,x,} such that xt, € O and

xkxltq = bz
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Proof. This is a result of the Definitions [2.2.1| and [2.3.9]a. O

Lemma 2.3.11. Let b;,b; € 0O be two distinct border terms. If x;b; = x1b; holds,
then there exists t, € O for some q € {1, ..., u} such that xyt, = b; and x;t, = b;.

Proof. This is a result of the Definitions [2.2.1| and [2.3.9b. n

Proposition 2.3.12. Recall the setting in Definition |2.3.9. The union of all sets in
ND and all sets in AS contains the non-trivial entries of the commutators ApA;— A Ay
with 1 <k <l <n.

a) If one removes from this union all sets in AS such that b;,b; are across-the-corner
neighbors, one gets precisely the set of the non-trivial entries of the commutators
A Ay — AJAL with 1 < k <1 < n. In particular, the remaining union generates the
vanishing ideal Z(Bp).

b) The polynomials in the sets of AS corresponding to across-the-corner neighbors b;, b;

are contained in Z(Bo).

Proof. This follows from [KrRo08], Proposition 4.1. O

Definition 2.3.13. Recall the setting given in Definition We shall name the
polynomials that are from the union of AS and ND as neighbor polynomials and

denote the set of neighbor polynomials by 6.

Lemma 2.3.14. Recall the setting given in Definition [2.3.9  Let b;,b; € 0O be two
distinct terms from 0O such that xb; = b;. Let 0, € ND(i, ) be the polynomial in p™

row of the matriz ¢; — Agc;. Then for every r € {1, ..., u} we have

0 ifapt, € O\ {t,}
O = cpi — (D0, frerj) with fr=14¢ 1 if ity =1, € O
Comif Tyte = by € DO,

Proof. The p™-row of ¢; — Ayc; is equal to e,(c; — Axc;). Then we have
o
Or = Cpi — () frcny)-

r=1

We focus on the p'-row of the generic multiplication matrix A;. As a result of Defini-



29 2. Preliminaries

tion [2.2.4] we have

53 if Tt =15 € O
A )pr = P
(Ax)y { cpm if zit, = by, € 00

where 9, is the Kronecker delta. Then we have
0 if xktr € O \ {tp}

fr: 1 ikatrztpe(’)
cpm  if zpt, = by, € 00.

Lemma 2.3.15. Recall the setting given in Definition [2.5.9. Let b;,b; € 0O be two
distinct border terms where xb; = ;b;. If 0, € AS(1, j) is the polynomial in the p™-row
of the matriz Ayc; — Ajci, then for every r € {1,..., u} we have

K [
0. = —(Z hscs;) + (Z fTCTj), where
s=1 r=1

0 ifxit, € O\ {t,} 0 if ;its € O\ {t,}
fr=2 1 ifayt,=t,€0 and hy=1< 1 if eits =t,€ O
con  if Tty = b, € 00 Com  if Tits = by, € 00.

Proof. The p™-row of Ajc; — Aic; is equal to e,(Agc; — Ajc;). Then we have

7 7
en = _(Z h'scsi) + (Z frcrj)~
s=1 r=1

We focus on the p™-row of the generic multiplication matrices A; and A; to find h,
and f,.. As a result of Definition we have

Oup U xpt, =1,€ 0O Oup U aits=1,€0
(Ak)pr:{ p 1 Tk { p 12

Ap)ps =
Cpm  if Tpt, = by, € 00, (A cpm  if zits = b, € 00
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where 4, is the Kronecker delta. Then we have

0 if xt, € O\ {t,} 0 if its € O\ {t,}
fr= 1 if xpt, = t, € @ and hg = 1 if oty = t, € @
cpm i 2Rty = by, € 00. com i 2t = by, € 00.

[]

Let k and [ be two distinct integers from {1,...,n} where k& < [. We denote a
polynomial entry of the commutator operation [Ag, A;] = ApA; — AjAj in position
(p,q) by 7t where p,q € {1,..., u}. Then the result of this commutator operation will

be as follows.

Kl Kl
T - Ti

(A, A} = A Ay — AAy = | 0 (2.5)
o T

Let 7 be the set of all polynomial entries of the multiplication matrices, i.e.
T={rl1k#1 and k,lec{l,..n}, pge{l, .. u}}. (2.6)

Then we have Z(Bp) = (T).

Remark 2.3.16. By Proposition the vanishing ideal Z(Bp) can be generated
by the lifting neighbor syzygies and by imposing Theorem to the generic multi-
plication matrices with respect to order ideal O (see Example and Proposition
2.3.12)). The above enumeration on the elements of set 7 allows us to create a link

between these two methods.

This approach is given in Section 2 of [Huib09]. Since we use it frequently, we want

to revise the construction with our notation.

Construction 2.3.17. Recall the setting given in Definition and Equality .
Let t,,t, be two distinct terms from O. By Equation , we have 70 = e, (ALAy —
ArAr)el. We first show explicitly that qul is 0 if it is contained in neither ND nor AS.
If this is not the case, we give the shape of the polynomial 7} by using Lemmas
and 2.3.15

a) If zpity, =t; € O with t, =t, € O and x4t, = t, € O holds, then Tzlfé is neither
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in ND nor in AS and the following holds.

tr tr __
epArdie, = e, Are) =0

epAiAcey = 0.

Hence we have ijql = epAkAleff — ep,AlAkeZT = 0.

If we have zpzit, = b; € 00 with x;t, = ¢, € O and x4t, = t, € O, then T]fé is
neither in ND nor in AS. We show that this polynomial is 0 in this case as in the

previous case.

tr . tr __ .
epArdie, = e Are) = ¢

t
epiAre, = cr

Hence we have Tlfql = epAkAleff — ep,AlAkeZT = 0.

If zt, =t, € O and xit, = b; € 00 with z;(z4t,) = xit, = b; € 0O holds, then
xb; = b;, i.e. by and b; are next-door neighbors and TI’fql € ND(7, ). In order to see

this, consider the following.

Tz]f; = ep(AlAk - AkAl)eff
= ep(Arhr)e) — ep(ApA)el

t t
= e Aie) — e AvAie,

C1i C1j
= € — €p.Ak
Cui Cuj
C1j
= Cpi — epAk
Cuj

This is the p™ row of ¢; — Agc;. Then by Lemma [2.3.14] we have

" 0 ifayt, € O\ {t,}
Cpi — Z frerj where f, =< 1 it opt, =t,€ O
r=1 com  if xgt, = by, € 00.
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d) If we have z3t, = b, € 00 and z;t, = b; € 00, i.e. x;b; = x;b;, then b; and b; are

across-the-street neighbors and Tzlfé € AS(7, ). To see this consider the following.

Tjé = ep(AkAl - .Al.Ak)efIr
= ep(AcA)e) —ep(AAL)e)
= ep(Arc; — Aicy)

That is the p*-row of the matrix Ajic; — Aici, whose entries give the elements of
the set AS(7, 7). Then by Lemma [2.3.15, we have the following

1 1

ki

Tog = — E hscsi + E frcrj where
s=1 r=1

0 ifaut, e O\ {tp} 0 if ;its € O\ {t,p}
=41 ifat,=t,€0 and hy,=1¢ 1 it =t,€0
Cpn if xpt, =0, € 80, Com if ¢ty = b, € 00.

Remark 2.3.18. Construction [2.3.17]is in agreement with Proposition [2.3.12]

In order to avoid index problems, in the next lemma we denote an arbitrary poly-
nomial in 7 simply by 7, instead of T;fé. We use this notation when the information on

how the polynomial T}% is constructed is not necessary.

Lemma 2.3.19. The polynomials from the set T are of degree two with no constant.

In particular, a polynomial, say 7., is of the following form:

=1 +7MeT (2.7)

where 712 € KI[C] is a homogenous polynomial of degree 2 with respect to the standard
grading and T,EU € KI[C] is a homogenous polynomial of degree 1 with respect to the

standard grading. Moreover, the set supp(T,gl)) has at most two linear monomaials.

Proof. This follows from Construction [2.3.17] n
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2.4 The Principal Component

Our aim in this section is to familiarize the reader with the concept and the properties
of the principal component of an O-border basis scheme which we will use in Chapter
M For further information on the principal component we recommend the reader
[KrRol10], Section 3. We continue to work over the polynomial ring P = Kz, ..., z,]
over a field K. Let K denote the algebraic closure of K. Let O = {t,...,t,} denote an
order ideal of terms in T™ and we let 0O = {by, ..., b, } be the border of it.

The tuples y® = (yii), e yff)) for i =1, ..., u that are given in the following defini-
tion constitute of the indeterminates yy(»i), for 7 = 1, ...,n which represent the coordinates
of the i*" point in the set X C A%, which has ;i elements.

Definition 2.4.1. Let Q denote the ring K[y, ..., y*)]. We define the following poly-

nomials in Q.

substitutions xy — y,(f) in ¢;.

(b) Fori=1,..,pand j =1,...,v we let

Aij = det(ta(y®) [ - 1 b (°) [ | 8u(y®)).

Here t;,(y*) denotes the k'™ column of the matrix Ap. If we replace the i® column of

Ao by b;(y*®), then we have the determinant A,;.
This example enlightens Definition [2.4.1]

Example 2.4.2. Let O = {1,x1,29, 2122} be the order ideal. Then the border of
it is 00 = {22, 22, x123, v3x,}. With respect to our notation we have t; = 1, ty =
Ty, b3 = Xo, ty = T1Te, by = 13 by = 22, by = x122 and finally by = 22x,. Let X =
{(—2,4),(1,1),(—3,9),(4,16)} be a set of points on the plane. Consider the following

equation system,
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bi(y™) = (YD) + o F Ayt (D), =1, p
,4)) =16 = 11 — 2721 + 431 — 8
bi(y?) = ((1,1)) =1 = 311+ 721 + 71 + a1
( 4) =18 = 1 — 3721 + 931 — 27y
bi(yW) = y*((—2,4)) =256 = 711 + 471 + 16931 + 64741

By Cramer’s Rule the solution of the system for {v;;} is, 2—2. Thus we compute the
following.

16 -2 4 =8
1 1 1 1

det
8 -3 9 =27
256 4 16 64
11 = = —24.

1 -2 4 =8

1 1 1 1

det
1 -3 9 =27
1 4 16 64

By the same method we can calculate v15 = 10,713 = 15,741 = 0,732 = 1 and the rest

1S zero.

Notation 2.4.3. Let K(y™,...,4) denote the quotient field of Q.

a) Let C denote the K-subalgebra of K(y", ..., y®) generated by the elements 22
with i € {1,...,p} and j € {1,...,v}.
b) Let ® denote the following surjective K-algebra homomorphism.
¢:K[C] — Co (2.8)
— Dij
J A(’)

Definition 2.4.4. Let O C K|z, ..., x,] be an order ideal. The principal component
of Bp is an irreducible component of By whose vanishing ideal is Ker(®). The principal

component is denoted by Cp.
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Let us consider the zero-dimensional radical ideals having an O-border basis. Such
ideals correspond to the points on the border basis scheme which are called radical

points.

Theorem 2.4.5. The principal component Cp is smooth of dimension nu at its radical

points.

Proof. This follows from [KrRol0] Theorem 4.2. O

Corollary 2.4.6. If the monomial point 0 in By is smooth, then it is included in Cp,
and we have dim((Bo)wm) = nu.

Proof. This follows from [KrRol0], Theorem 4.2.b and Proposition 4.6. O

2.5 Box and Segment Border Basis Schemes

Recall the Construction and let 7 denote the set of generators of a given border
basis. In this section we shall investigate box and segment border basis schemes with
order ideals which have special shapes. Our main interest is to give an exact number
of non-trivial polynomials of the set 7 for each border basis scheme. We will need the
number of non-trivial defining equations of those schemes as we look into the ideal-
theoretic complete intersection (see Definition property of them. Throughout
this section we let P denote the polynomial ring K[z, ..., z,].

Let us start with the formal definition of a box border basis scheme.

Definition 2.5.1. Let dy, ..., d,, be integers > 2.

(a) The order ideal B(dy,...,d,) = {«* 2% € T" | oy < d; for i =1,...,n} is
called the box of size (dy, ...,d,). If it is clear which size we are dealing with, we

simply write B.

(b) Let I be a zero-dimensional ideal of P. A B-border basis of I is called a box border
basis of I.

(c¢) The B-border basis scheme is called the box border basis scheme and is denoted

or simply by Bg.

Lreees dn)

Lemma 2.5.2. Let B(dy, ...,d,) be the box of size (di, ...,d,). The number of terms in
the order ideal is

B| =dy - d,.
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The number of terms in the border is

n

98] = v = > ([T o).

i=1 j=1

where the set {d;,,...,d;, _,} is a subset of {dy,...,d,}.

Proof. The first part that |B| = d; ---d,, is clear. Now we prove the second part of the
claim. Let t; € B with

log(t;) = (aq, .oy gy oy Ct).

We have zxt; € OB if and only if o, +1 = dj, with ; € {0, 1, ...,d;—1} and j € {1,...,n}.
By fixing the k'™-component of log(;) as d — 1 and letting the other components of
this vector be one of the possible values from the set {0, 1,...,d; — 1}, we can find the
number of border elements that are calculated by multiplying the order ideal elements
with the indeterminate xj;. Therefore for one indeterminate xz; the number of border
elements is dy - - - dy_1dyy1 - - - d,. Clearly, the set {dy, ..., dy_1,dks1,...,d,} has (n — 1)
elements and is a subset of {dy, ..., d,, }. By summing up these multiplications for every

indeterminate, we find the desired result. O]

Lemma 2.5.3. Let B(dy, ...,d,) be the boz of size (dy, ..., d,,). The number of non-trivial
polynomials in the generating set T of Z(Bg) is

m n—2

u((n — Vv —v") with V' = Z(H di,),

=1

where m =n(n —1)/2 and {d;,, ...,d;,_,} is a subset of {dy, ...,d,}.

Proof. Let log(t,) = (ou, ..., , ...,an) € K™ As a result of the definition of generic
multiplication matrices, the entries of the generic multiplication matrices are non-
trivial if and only if z4t, is in OB or z;t, € OB. Our aim is to find the number of order
ideal elements with this property. In order to find the non-trivial entries of the matrix
ApA; — At Ay, we fix the k'"-component of log(t,) as dy, — 1 and for j # k, [ let a; be

from {1,...,d; — 1}. Thus from this product of generic multiplication matrices we have
(-~ dirdier - dy - dy) + (dy = Dy -+ diydinr - diadigs -+~ d

It is the number of the order ideal elements which become border elements after the
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multiplication with xj or ;. We compute this for every pair xy, z; € {z1, ..., z,} with

[ # k. The number of such pairs is n(n — 1)/2. Therefore we have

(dodg---dp+ (dy — 1)dsdy -+ -dy) + -+ (dy -+ dp—1 + (dy — 1)dy - - dpp—2)).
This is equal to the following.

(n—1)(dads - dp + -+ dp_rdppsr - dn)) — -+ — (dsda--dp+ -+ dy - dp_s)

=n-—1v—70

Since 75

-, is computed for every ¢, € B, the result is u((n — 1)v — /). O

Example 2.5.4. Consider the box order ideal B(2,2,2,2). By Lemma we have
p=2%=16 and by Lemma [2.5.2, we have v = n(2-2-2) = 32. By Lemma [2.5.3 the

number of non-trivial indeterminates is
p(n—1)v —1v")=16((4 —1)32 — /)

where v/ =m - (2-2) with m = (g‘) = 6. Therefore the number of non-trivial elements

in the generating set of Z(Bpg) is
p((n— 1y —v/) = 16(3 - 32 — 12) = 1152.
Definition 2.5.5. Let [ be a zero-dimensional ideal of P.
(a) The order ideal O = {1,zy, ...,z '} is called the segment order ideal.
(b) An O-border basis of I is called a segment border basis of I.
(c) The O-border basis scheme is called the segment border basis scheme.

Lemma 2.5.6. Let O denote the segment order ideal {1,zy, ..., %'} and let Bo be a

segment border basis scheme. Then the number of terms in 0O is (n—1)u+ 1 and the

n(n—1) )

number of non-trivial polynomials in T is pu?( 3

Proof. The first part is a result of Definition [2.2.1] For the second claim, recall that

there are n-different generic multiplication matrices with p? entries and one uses pairs
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of them to construct 7. Since the shape of the order ideal is a segment, n — 1 generic
multiplication matrices have neither 0 nor 1 as entry. Therefore the matrix [A;, A;]
(see Equation ) for every pair A;, A; € {A4, ..., A,} does not have trivial entries.
This gives the desired result. [l
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Chapter

The Arrow Grading

This chapter introduces a grading (see Definition on the polynomial ring where
the vanishing ideal of a border basis scheme is defined. We shall call this grading the
arrow grading (see Definition . Before looking into the properties of the arrow
grading, in Section we give a short discussion on Z™-graded polynomial rings where
m is a positive integer. Our focus point in this section is gradings defined by matrices,

whose properties we recall in Definition [3.1.6]

The second section (see Section |3.2)) is devoted to investigating the arrow grading in
detail. First we illustrate that the arrow grading is not like any of the special gradings
that we define in the first section (see Example [3.2.12)). This shows that it is not a
trivial work to deal with the problems we introduce in the rest of the thesis. Then we
prove that the vanishing ideal of a border basis scheme is homogenous with respect to
the arrow grading. Although it is a known fact (see for example Lemma 4.1 [Huib09]),
we give an alternative proof to the known ones. Moreover, we remark that the torus
action (see page 208 of [Hai98] and page 363 of [MilSt05]) on Be results in the arrow
grading (see Remark . Since the arrow grading is not of positive type, we easily
show that there might exist more than one maximal homogenous ideal in By. This
contradicts to the claims on page 363 of [MilSt05] (see Counterexamples and
3.2.16)).

Consequently, the main idea delivered in this chapter is to show that giving an
algebraic proof of any claim on a border basis scheme is not straightforward by showing
the peculiarity of the grading which is defined on the coordinate ring of a border basis

scheme.
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3.1 Gradings

In this section we discuss gradings and gradings defined by a matriz. Unless otherwise
stated, throughout this section let K be a field. Let P denote the polynomial ring
Klzy, ..., z,)].

Definition 3.1.1. Let R be a ring. Let (M, +) be a monoid. The ring R is called an
M-graded ring if there exists a family of additive subgroups {Ry, }menr such that the

following properties are satisfied.

a) R = @mGM R‘m
b) RuRu C Rypp for all mym’ € M

The elements of R,, are called the homogenous elements of degree m of R and for
every r € R,, it is written deg(r) = m. If R is an M-graded ring, then for every element
re€Rwehaver =3 .

m € M the element 7, is called the homogeneous component of degree m.

rm such that for each m € M we have r,, € M,,. For every

Remark 3.1.2. Since 0 is included in every additive subgroup, we say that 0 € R is

homogenous of every degree.

Example 3.1.3. Consider the polynomial ring P = K{zy, ..., z,,]. We equip P with an
N"-grading by letting P, denote an additive subgroup of P, so that for each polynomial
f € P,, all monomials in the support of f are of degree o € N". This grading is called
the standard grading of P.

Definition 3.1.4. Let R be a graded ring. An ideal of R is called a homogeneous

ideal if it can be generated by homogenous elements.

Lemma 3.1.5. Let I be an ideal of a graded polynomial ring. The ideal I is homoge-
nous if and only if the homogenous components of each polynomial f € I are included

i I, as well.
Proof. This follows from [KrRo00], Proposition 1.7.10. O

Definition 3.1.6. Let m be a positive integer. Let P be Z™-graded polynomial ring
where K C Py and x4, ...., z,, are homogeneous elements. Let W denote a matrix from
the set Mat,, ,(Z). Let wy, ..., w,, denote the rows of W (see Definitions 4.1.6 and 4.2.4
of [KrRo03]).
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(a) If for every i € {1,...,n} the i"-column of W has the degree of the indeterminate
x;, then W is called the degree matrix of the grading.

(b) We say P is graded by W if P is Z™-graded and the degrees of the indeterminates
are the columns of W with K C Py,

(c) Let P be graded by W. The grading on P is said to be of non-negative type if
there exists a tuple (ay, ..., a,,) € Z™ such that the entries of cywy + ... + Wy,

which correspond to non-zero columns of W are positive.

(d) Let P be graded by W. The grading on P is called of positive type if there exists

a tuple (aq, ..., ap,) € Z™ such that all entries of cywy + ... + @, w,, are positive.

(e) Let P be graded by W. The grading on P is called non-negative if the first

non-zero element in each non-zero column of W is positive.

(f) Let P be graded by W. The grading on P defined by W is called positive if no

column of W is zero and the first non-zero element in each column is positive.

Remark 3.1.7. If the grading given is positive (resp. non-negative) then it is of

positive type (resp. of non-negative type).
Now we give some examples for gradings defined by matrices.

Example 3.1.8. Let P be graded by W = (1,...,1). The grading on P is a positive
grading and it is also of positive type. Actually, it is equal to the standard grading on

P (see Example ).

-1 0
Example 3.1.9. Let P denote K|z, x2] and be graded by W = ( 0 1) . Then the

grading defined on P is of non-negative type, since for a = (a1, ) = (=1, 1) € Z2,

we have ajw; + aswy = (1,1)

-1 1
Example 3.1.10. Let P denote K[z, 23] and be graded by W = ( . 1) . Then
we have
a(—=1,1) +b(1,—1) = (—a+b,—b+a).

Since for any a,b € Z\ {0} the first and the second entry of this tuple (—a+ b, —b+ a)
can not be simultaneously larger than 0, this implies that the grading on P given by

W is neither of positive type nor of non-negative type.
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We want to mention one more grading before ending this section. Let R be a ring
and I be an ideal of it. For all n € N we let gr?(R) := ["/I"*! and g% := R/I.

Lemma 3.1.11. gr;(R) = @,y 977 (R) is an N-graded ring.

Proof. Let x = a+ I"™ € gr}(R) y = b+ I"™"' € gri*(R). Then we have

ry = ab+ ["TT g grit,

O
Definition 3.1.12. The ring gr;(R) is called graded ring of 1.
3.2 The Arrow Grading on K|[C]
In this section we introduce a new grading on Klcy, ...., ¢,,], namely the arrow grading.

We attribute the name arrow grading to the proof of [Hai98|, Proposition 2.4, which
employs arrows to indicate indeterminates from the set {c11, ..., ¢y}

Unless otherwise is stated, let K be a field and K be the algebraic closure of K. Let
P denote the polynomial ring Kz, ..., z,|. Let I C P denote a zero-dimensional ideal
in P. Moreover, we let O = {ty,...,t,} C T™ denote an order ideal and 00 = {by,...,b,}
denote the border of it. Let {ci1, ..., } be a set of further indeterminates and K[C]
denote the polynomial ring K|ei1, ..., ¢,]. Let Bo denote the O-border basis scheme,
let Z(Bp) denote the vanishing ideal of Bp and let Bp denote the coordinate ring of
Bo. Finally, let 7 denote the set {ij(j | £ < landk,l € {1,...,n}, p,q € {1,...,u}},
which is the generating set of Z(Bp) (see Chapter [2.3|for further information).

Definition 3.2.1. Let O C P be an order ideal and 0O be the border of it. Let m
denote the number of indeterminates in the ring K|[C]. Let ¢;; be an indeterminate from
the ring K[C]. We define the degree of the indeterminate ¢;; by

deg(cij) = lOg(bJ) — lOg(tl) = (Ul, 7Un) ez

where t; € O and b; € 00. This way we define a Z"-grading on the ring K[C]. Let W be
a matrix with m columns and n rows. We let (uq, ..., u, )" be the column of the matrix
W corresponding to the indeterminate ¢;;. Then the ring K[C] is graded by matrix W.
We shall name this grading the O-arrow grading and denote it by degy, . If it is clear

which order ideal we are dealing with, then we simply call the arrow grading.
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Let us write some observations on the generators of a vanishing ideal of an O-border
basis scheme with respect to the O-arrow grading. But first let us recall Lemma/|2.3.19|
The polynomials from the set 7 are of degree two with no constant. In particular, a

polynomial, say 7y, is of the following form:

=P +70eT (3.1)

where T,.SQ) € K][C] is a homogenous polynomial of degree 2 with respect to the standard

grading and Ve K[C] is a homogenous polynomial of degree 1 with respect to the

standard grading. Moreover, the set supp(T,.gl)) has at most two linear monomials.

Corollary 3.2.2. Let P denote the polynomial ring Kz, ....,x,]). Let O denote an
order ideal {t1,...,t,} € P. Then 00 = {by,...,b,} is the border of it. Let c;; be an

indeterminate from the set {c11, ..., ¢, }. Let Tzlfql € T be a non-zero polynomial.
a) The degree vector degy, (T5!) = (dy, ...,d,) € Z" has at least one positive entry.

b) For everyc;; € {ci1,...,cu }, we have degy,(c;;) # (0, ...,0) and their degree vector
has at least one positive entry.

c) If the indeterminate c;; is in the support of T

»gs then for every quadratic monomial

cd € supp(g), we have ¢;; 1 cd.

Definition 3.2.3. Let A be a matrix from Mat, ,(P). If there exist two tuples dy =
(do1, ..., dor) € (Z™)" and dy = (dyy,...,d1s) € (Z™)° such that for every i = 1,...,r
and j = 1,..., s the entry (a;;) in position (i, j) of A has degree degy, (a;;) = di; — do;,
then the matrix A is called a homogenous matrix. In this case, the pair (dy,d;) €
(Z™)" x (Z'™)* is called a degree pair of A.

Recall the generic multiplication matrices (see Definition [2.3.1)). Let us give a closer
look at them with respect to the arrow grading.

Lemma 3.2.4. Let O be an order ideal. The generic multiplication matrices with

respect to O are homogenous with respect to the O-arrow grading.

Proof. Let O = {t1,...,t,} C K[z1,...,2,] be an order ideal. Let [ be an index from
{1,...,n}. Let A; € Mat,(K[C]) be the " generic multiplication matrix with respect

to O. We show that this matrix is a homogenous matrix with respect to the arrow
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grading. We let

d; = (log(zt1), ..., log(xit,)) and do = (log(t1), ..., log(t,)). (3.2)

Let a;; be the entry in position (i, j) of A;. There are three possible values for a;;, namely
0,1 or an indeterminate from the set {c11, ..., ¢, }. If @5 is 0, then it is homogenous of
every degree. If a;; is 1, then as a result of the construction of the multiplication matrix
A;, we have x;t; = t; and this implies degy, (a;;) = log(xt;) — log(t;) = dij — doi = 0.
If a;; is an indeterminate, say ¢, from KI[C], then we have b,, = z;t; and m = 4. This

implies
degyy (Cmn) = log(b,) — log(t,,) = log(zt;) — log(t;) = dij — do;.

Therefore the matrix A, is a homogenous matrix with the degree pair (dy, d;) in Equa-
tion 3.2 ]

Lemma 3.2.5. Let O = {ty,....,t,} C K[z1,...,x,] denote an order ideal. Let Ay
be the k™" generic multiplication matriz with respect to O and A; be the I generic
multiplication matriz with respect to O where k,l € {1,...,n} and k # l. Then the
results of the matriz multiplications Ay - A; and A; - A, are both homogenous matrices
with the same degree pair (do, dg)) where dgyy = (log(xrxity), ..., log(xrait,)) and dy =
(log(t1), ..., log(t,)).

Proof. In Lemma we show that for each [ € {1,..,n} the generic multiplication
matrix 4; is a homogenous matrix such that for each element a;; in (4, j) position of
A; has the degree pair (dy, d;) where the following holds.

degyy (ai;) = log(at;) — log(t;) = di, — do, (3.3)

Recall that Bp is the coordinate ring of the O-border basis scheme (see Definition
2.3.1). Consider the graded Bo module @@, Bo(—dj,). Let ey, ..., ¢, be the canonical
basis of @i, Bo(—d;,) and (uy, ...,u,) be the canonical basis of @/_, Bo(—dy,). Let
W, be defined as follows.

B H
U : @PBo(—d,) — P Bo(—dy,)
j=1 i=1

tr
ej — uAe;
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Its representation matrix with respect to the basis (ey, ..., e,) is the I'" generic multi-
plication matrix 4;. Moreover, by Lemma [3.2.4] A, is a homogenous matrix. Thus ¥,

is a homogeneous Bp-linear map and hence the following holds.

degy (Vi(e;)) = degy (u; + degy (ai;))
= log(t;) + log(z;t;) — log(t;)
= log(zit;)

Let k be an index from {1,...,n} \ {l}. Let ¥} be defined as follows.

7 "
v, - @ B(’)(_dkj) — @ B@(—doj)
j=1 i=1
ej — uApel

Its representation matrix with respect to the basis (es,...,e,) is the kt" generic mul-
tiplication matrix A,. We consider the homogenous maps ¥, o ¥; and ¥, o ¥;. The
representation matrix of ¥, o ¥, is A, A; and the representation matrix of ¥; o Uy is
A Ai. Let b;; be the element in position (4, j) of Ay and a;; be the element in position
(i,74) of A;. Then the following holds.

I

degyy (W0 Uk(e;)) = degy(u; > (aibsi))

i=1
= log(t;) + log(xit;) — log(t;) + log(zxt;) — log(t;)
= log(zxxt;)

= log(t;) + log(zxt;) — log(t;) + log(zt;) — log(t;)
m

= degy (u; Y (bijazs))

=1

= degy (V) 0 ¥y(e;))

Let d, denote log(xyait;). Then the entry in (4, j) position of the matrix Az.4; and

i
A A has the same arrow degree which is

lOg(l‘kl‘lt]‘) — log(tz) = d(kl)j — dgl (34)

Thus ApA; and A;A;, are homogenous matrices with the same degree pair (do, d(u))
where dyy = (log(xrxity), ..., log(xrait,)) and do = (log(ty), ..., log(t,)). O
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Despite it is a well-known fact that the vanishing ideal of a O-border basis scheme
is homogenous with respect to the arrow grading, in the following proposition we give

a different proof.

Proposition 3.2.6. Let O be an order ideal. The vanishing ideal of the O-border basis

scheme Z(Bo) is a homogenous ideal with respect to the O-arrow grading.

Proof. By Lemma [3.2.5 and Equation [3.4] the matrix AA; and the matrix A;A
are homogenous matrices with the same degree pair (do, dqx)) where (dy,, ..., do,) and
(daryy» - dary,,)- Therefore we can deduce that the entry in the position (p,q) of the

matrix 7% = A, A, — A A; which is Tfé is homogenous of degree
diy, — do, = log(zrxity) — log(ty). (3.5)
]

One can find the next corollary as Lemma 4.1 in [Huib09]. The enumeration of
the elements of T (see Equation (2.5)) with help of order ideal elements gives a di-
rect method to determine their arrow degree. The following corollary emphasizes the

importance of Costruction [2.3.17] and gives this method.

Corollary 3.2.7. Let TI% € 7 be the non-trivial polynomial entry in the position (p,q)
of [Ax, Ai]. Then we have

degw(rzfé) = log(zyait,) — log(t,).
Proof. This follows from Lemma |3.2.5| and Proposition [3.2.6| [

Let O denote an order ideal from T?. Next remark emphasizes the link between the

O-arrow grading and the 2-dimensional torus action given in [Hai9g].

Remark 3.2.8. Let us take a closer look at the torus action mentioned in [Hai9§]
(see page 208) and [MilSt05] (see page 363). Let C* denote the group of complex
numbers without 0. Let G denote the 2-dimensional torus group (C*)?. The group G

acts algebraically on C? via

a:GxC* — C?

((u,0),(§,Q) — (u vQ)
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The co-action on the polynomial ring Clz, 3] is as follows.

o :Clr,y] — C|G]® Clz,y]
fo— f(wv) - (z,y) = fluz,vy)

It is a known fact that this action results with a Z2-grading on the polynomial ring
Clz,y] (see for instance [Bri09], Example 1.7).
On page 208 of [Hai98] it is implied that there exists an induced action on the

border basis scheme, given by
(u,v)cij = u" " e (3.6)

where b; = 2"y® and t; = z"y"*. Clearly, the power of u and v, which is (r — h, s — k),
is equal to log(b;) — log(t;) i.e., to degy (c;j). This is the first clue that suggests the
link between the grading mentioned on page 363 of [MilSt05] and the arrow grading.
We claim that they are the same. Let C[G] act on the coordinate ring C[C] as given in
Equation [3.6]

g:Clc] — C[¢]®C[]

g — g((u,v) - cj) = glu""v"" "¢ )

E|Let us pick an arbitrary element 7,, from the generating set 7 of Z(By). Under the
given action we have

(Tpg) (W "0* ).

We showed that for a border element b; € 0O and an order ideal element t; € O the
arrow degree satisfies degy, (c;;) = (r — h, s — k). Moreover, Proposition states

that 7,, is homogenous of arrow degree

degy, (7pq) = log(zyt,) — log(t,) = (di, da2).

These imply

r—h,_ s—k d1 d2(

(Tpg) (U™ "0 Feyj) = um 0™ (1)

Therefore the ideal Z(Bp) is invariant under this group action if and only if the grading

!Note that there are exactly two generic multiplication matrices with respect to an order ideal
O C Kz, z2]. Thus every element from the generating set 7 of Z(Bp) has the same upper index (1 2)
which we omit for the sake of simplicity.
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is the arrow grading.

Lemma 3.2.9. Let O C T" be an order ideal. The induced action given in Equation

(@ on Bo results in the O-arrow grading on Be.

Proof. Let ¢;; be an indeterminate from C[C] where the border term b; is z* --- )"

and the order ideal term ¢; is z7" - - - 2. Consider Equation [3.6| for ¢;; and (uq, ..., u,).
Then we have

(Upy ooy U )iy = U Ul ey (3.7)

Let G denote the n-dimensional torus group (C*)". Let C[G] act on the coordinate
ring CI[C]| as given in Equation

g.cle] — clgecc
r1—hq rn—hn

g — g((ur,...,up)) - cij) = g(ug R T Cij)

Pick an arbitrary generator 7' from the generating set 7 of Z(Bo). By Proposition

3.2.6|, the polynomial 7‘:; is a homogenous polynomial of arrow degree

degyy (1) = log(wxity) — log(ty) = (du, ..., do).
Then under the given action we have

(T~ y) =t (o)

Therefore, the ideal Z(B) is invariant under this group action if and only if the grading
is the O-arrow grading.
O

Now we focus on the maximal ideals that are homogenous with respect to the arrow
grading in Bp C K[C].

Proposition 3.2.10. Let O C T" denote an order ideal and let 0O denote the border
of it. The ideal M = (ci1, ..., ) C Klein, ..., ] is the only mazimal ideal that is

homogenous with respect to the O-arrow grading.

Proof. Let K denote the algebraic closure of the field K. Assume that there exists a
maximal ideal 91, which is different than 91 and assume that 91 is homogenous with
respect to the O-arrow grading. By Hilbert’s Nullstellensatz every maximal ideal
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in the polynomial ring K[C] is of the form (c11 — a1, ..., ¢u — ) Where {a1y, ..y} C
K. Since M is different than 90, there exists a polynomial f = ¢;; — a with a constant
term « # 0 that is in the generating set of 91 but not in 9. The maximal ideal Dt
is a homogenous ideal with respect to the O-arrow grading. Hence the polynomial
f is a homogenous polynomial with respect to the arrow grading. As a result of the
definition of the arrow grading, the constant term of the polynomial f has the arrow
degree degy, () = (0,...,0) C Z". Since f is a homogenous polynomial with respect to
the arrow grading, we have deg(c;;) = (0,...,0). This contradicts to Corollary )
Hence 9 = (c11, ..., ¢u) C Klent, ., €] is the only maximal ideal that is homogenous

with respect to the O-arrow grading.

Now we show that the ideal 9 = (c11, ..., cuw) C Kley, ..., ¢ is the only maximal
ideal that is homogenous with respect to the O-arrow grading. The field K is algebraic
closure of K and the base change is a (faithfully) flat extension. Then by going down
theorem the only maximal ideal that is homogenous in K[cyi, ..oy Cyy] correspond to
the only maximal ideal that is homogenous in K|cy, ..., ¢;,]. Hence MM = (c11, ..., cu) C
Kleit, ..., €] is the only maximal ideal that is homogenous with respect to the O-arrow
grading.

O

Corollary 3.2.11. Let O denote an order ideal from K[z, ...,x,]|. Let Bo C KI[C]
denote the coordinate ring of the O-border basis scheme. The ideal m = (¢, ..., é,w> C

Bo s the only mazimal ideal that is homogenous with respect to the arrow grading.

Let us give an example which shows that the arrow grading is neither positive nor

negative. Moreover, it is neither of positive nor of non-negative type (see Definition

from Chapter [3.1)).

Example 3.2.12. (counterexample) This example is a counterexample to the claim
in page 363 of [MilSt05], that for any O C T? the O-arrow grading is positive. Let
P denote the polynomial ring K[z1,zs]. Let O denote the order ideal {1, z1,zs, x122}.
Then its border is 00 = {3, 2% z 23, 23z}, where with respect to our notation we
have t; = 1,19 = 21,13 = 29,14 = T129,b1 = x%,bg = Jf%,bg = xlx% and by = x%x‘l. We

construct the grading matrix W whose columns are of the form

degy (i) = log(b;) — log(t:)

with ¢;; € {c11, ..., ¢ }. Let us first find the first column of W which corresponds to
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degW(cn).
degyy (c11) = log(by) — log(t1) = log(x3) — log(1) = (0,2) — (0,0) = (0,2).
If we proceed in this way, then we get the grading matrix .

Ci1 Ci2 €13 Cia C21 Co2 C23 Coqg C31 C32 €33 C34 C41 C42 C43 Cy4
W= 0 2 1 2 -1 1 0 1 0 2 1 2 -1 1 0 1
N 2 0 2 1 2 0 2 1 1 -1 1 0 1 -1 1 0

The first non-zero element of the column that corresponds to the degree of ¢y is
(—1,2) i.e., it is negative. By Definition [3.1.6le) and f) the grading given by W is
neither positive nor non-negative. Let w; indicate the first row and ws indicate the
second row of W. If W is of positive or non-negative type, then by Definition [3.1.6]c)
and d) for some a,b € Z the following must hold.

a(wy) + b(wy) > (0, ...,0)
Let us look closely to the arrow degree of ¢4; and c49. The degree of ¢y,

degy (ca1) = log(by) —log(ts) = (—1,1),

which gives the 13" column. The degree of ¢y, is

degyy (caz) = log(bz) —log(ts) = (1,-1)
which gives the 14™ column. Moreover we have

a-wiz+b-wez=—a+b

a.w114+b-w214:a—b.

If —a+ b > 0 holds, then b > a holds. If we have a — b > 0, then we have a > b.

Therefore W is neither of positive nor of non-negative type.

We want to underline the fact that the peculiarity of the arrow grading does not
allow us to give an algebraic proof as easy as mentioned on page 363 of [MilSt05]. For
this purpose we show that there is more than one mazimal homogenous ideals in the

ring Bo.
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Definition 3.2.13. Let R be a graded ring. A maximal homogenous ideal is a

homogenous ideal of R which is not contained in any other homogenous ideal of R.

Theorem 3.2.14. (Graded Version of Krull’s Theorem) Let R be a graded ring.

Then each proper homogenous ideal is contained in a maximal homogeneous ideal.

Proof. This follows from [Per01], Theorem 3.4. O

Remark 3.2.15. We should note that by Proposition there exists only one
maximal ideal that is homogenous in Bp. For an arbitrary field K the following example
shows that there might be homogenous ideals that are not contained in the maximal
ideal M = (c11, ..., Cop)-

Example 3.2.16. (counterexample) Let us recall Example [3.2.12] We show that
this example is a counter example to the consecutive claim in page 363 of [MilSt05]
that the maximal homogenous ideal in By is unique, as well. The polynomial f =

cq1cq2 — 1 € K|eqy, ..., a4 is @ homogenous irreducible polynomial of degree 0,

degyy (f) = degy (ca) + degyy (caz) + degyy (1) = (=1, 1) + (1, =1) 4 (0,0) = (0,0).

f is not included in the maximal ideal 9t that is generated by {ci1, ..., 44}, since it has a
constant summand. Thus by graded version of Krull’s theorem there exists a maximal
homogenous ideal M, different than 9t which contains (f). Clearly, the polynomial

f = éncse — 1 € Bp is not in the maximal ideal m € Bo, either.
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Chapter

The Cotangent Space of a Border

Bases Scheme

In this chapter we investigate the cotangent space of an O-border basis scheme, By at
the monomial point 0 = (0, ...,0) € Bp. In [Hai98] M. Haiman proposed a new method
of constructing the cotangent space of a border basis scheme of y points in the plane.
We call this method the arrow method. The main idea is to consider every indeterminate
from the set {ci1, ..., ¢} as an arrow from an order ideal term to a border term, then
to construct a basis of the cotangent space by using the relations of border terms and
order ideal terms. Then in Chapter 4 and 5 of [Huib05]] M. Huibregste generalizes
this "arrow method” to n dimensions and gives a way for constructing a basis of the
cotangent space of a border basis scheme. We note that although in [Hai98] the set
U, that is given in Equation 2.3 and in [Huib05] the set Uz that is given in Equation
(4) in Chapter 2.2 are both border basis schemes, none of those citations contains the
name border basis scheme.

Our work is inspired by both of those sources, but mainly by [Huib05]. In con-
trast to these articles, we do not use the arrow method. In order to understand the
foundation of our work, one should recall how we construct the generating set 7 of
the vanishing ideal of a border basis scheme (see Chapter [2.3). This construction de-
pends on all the relations of border terms and order ideal terms. Thus every relation

that is used in [Huib05] and [Hai98| to construct a basis set of the cotangent space at

the point o is coded in elements of 7. In Lemmas 4.1.3| and [4.1.4] we show how these
relations are coded. In Propositon we show how to encode it. Therefore if we

! [Huib05] is a pre-print that is only published in arXiv.
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let O C Klzy,...,x,] be an order ideal and T generate Z(Bp), then just by observ-
ing the elements of 7 we have all the equivalence classes modulo the ideal m? C B,
where m is generated by {¢i1,...., ¢} C Kleir, ..., cuw]/Z(Bo). We denote this set of
equivalence classes by €. We show that the arrow degree is well-defined on this set.
Then we show that every equivalence class in € contains a minimal indeterminate (see
Definition , and in Theorem we show that the subset of € that consists of
equivalence classes of minimal standard indeterminates has at least nu elements. The
set S (see Lemma of indeterminates that is constructed in [Huib05], Chapter 4
is a set where elements are chosen from each equivalence class from the set €.

Consequently, in Section by using the set €, we give a basis of the cotangent
space. Moreover, we give a smoothness criterion for the monomial point of a border
basis scheme (see Theorem [£.2.15). A similar result for Hilbert scheme of points can
be found in [Huib05], Theorem 5.1.1. Our main inspiration is the paper [Huib05], we
reprove the statements in Chapter 4 and 5 of [Huib05] for border basis schemes by
using the tools we have in the border basis scheme theory such as border relations and

the arrow grading.

4.1 Equivalence Classes of Elements from C modulo

m2

This section is dedicated to investigating equivalence relations among elements from
Bo modulo m?. Unless otherwise stated, throughout this section we let K be a field of
characteristic 0. Let P denote the polynomial ring K[z, ..., z,,]. Let O denote an order
ideal {t1,...,t,} C T™ and then the border of it is 00 = {by, ..., b, }. Let C = {c11, ..., ¢ }
be a set of further indeterminates and K[C] = Kleiy, ...., ¢ . Let T denote the set of
generators of the vanishing ideal of an O-border basis scheme given in Equation ([2.6]).
We denote the image of an indeterminate ¢;; in Bp as ¢;; and we denote the set of
such elements by C. We let 9 denote the maximal ideal of K[C] that is generated by

{c11, ..., ¢y }. Moreover, we let m denote the maximal ideal of By that is generated by

{€11, .-, Cuw }

Definition 4.1.1. We say the elements ¢;; and ¢ of C' are equivalent to each other
modulo m? if we have ¢y = ¢;; +m? € Bp. We let C denote the set {¢;+m? | &; € C}.

We let [¢;;] C C denote the equivalence class of ¢;; modulo m?.
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Remark 4.1.2. By Lemma [2.3.19, an element 7, of T is of the following form,

=T +7W eT (4.1)

where 712 € K]C] is a homogenous polynomial of degree 2 with respect to the standard

grading and e K[C] is a homogenous polynomial of degree 1 with respect to the

standard grading. Moreover, there are at most two monomials in the support of TS).

a) If a polynomial 7, from 7T is of the form P 4 ¢ij, then we have ¢;; € m?,

b) If a polynomial 7,, from 7T is of the form &+ Cij £ Cpg, then we have [¢;;] =[G

The next two lemmas show how neighborhood relations of border terms affect the

equivalence classes of elements from C modulo m?.

Lemma 4.1.3. Let O C T" be an order ideal. Let b; and b; be two distinct border

terms that are next-door neighbors where b; = xxb; and k € {1,...,n}.

a) If there exists a term t, € O such that xt, =t, € O, then there ezist indetermi-

nates cyi, ¢ € C such that [¢,;] = [Cpi).

b) If for every t, € O either xit, € 00 or xit, € O\ {t,} holds, then we have

= 2
cpl-em.

Proof. Let Ay denote the k' generic multiplication matrix, where k € {1,...,n}. For
each i € {1,...,v} let ¢; denote the column matrix (cy4, ..., ¢ui)"". From the next-door
neighborhood relation b; = zb; we get ND(4, j). This set ND(4, j) contains p polyno-
mials which are the entries of the p x 1 matrix ¢; — Ayc;. For an arbitrary term ¢, € O

the polynomial in the p'* row of the matrix ND(, j), has the following form:

y 0 if zpt, € O\ {t,}
cpi — (Y frery) where f, =4 1 ifayt, =t,€0 (4.2)
r=1 Com i Txt, = by, € 0O

In Construction 2.3.17.c we show that the elements of ND(i, j) are also in 7. Clearly,
for each t, € O, a polynomial from ND(3, j) is in Z(Bp). Thus for each p € {1, ..., u}
Polynomial [4.2] satisfies

w
Epi == (Z frérj) € B(Q.
r=1
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Consider the polynomial f, in[4.2] and recall that by Lemma [2.3.19] a polynomial from
T has at most two linear monomials in its support. If we have f, = 1, then we have
[¢pi] = [¢r4]. Otherwise, we have ¢,; € m?. Note that in this case we can not have any

information about ¢,;. ]

Lemma 4.1.4. Let O C T" be an order ideal. Let b; and b; be two distinct border terms

that are across-the-street neighbors where x;b; = xb;, k # 1 and xy, x; € {x1, ..., 2, }.

a) If there exist terms t,,ts,t, € O such that xyt, = xits =t, € O, then we have
[Csi] = [&5].

b) If there exist ts,t,,t, € O such that zity =t, € O with :c,;ltp ¢ O or zit, € 00,
then we have

Gy € M.

c) If there exist t,,ts,t, € O such that xt, =t, € O with a:l_ltp ¢ O or xits € 00,
then we have

érj S m2.

Proof. Let Ay, denote the k' generic multiplication matrix, where k € {1,...,n}. For
each i € {1,...,v} let ¢; denote the column matrix (cij,...,c,;)". From the across-
the-street neighborhood relation z;b; = xb;, it follows that AS(z, j) contains p many
polynomials which are the entries of the y x 1 matrix Ayc; — Ajc;. Consider the poly-
nomial in the p*"-row of the matrix Aic; — Aic; whose entries are the elements of the

set AS(7,j). Then by Lemma [2.3.15] this polynomial has the following form.

I I
- Z hSCSi -+ Z frer (43)
s=1 r=1

0 ifat, € O\ {t,} 0 if 2t € O\ {t,}
fr: 1 if:cktrztpe(’) Jheg = 1 ifa;lts:tpeO
con i it = b, € 00 cpm if 21ty = by, € 00

Since this polynomial is in Z(Bp), for each p € {1, ..., u} Polynomial (4.4)) satisfies

O hiea) = £:6;) € Bo.
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Consider the polynomials f, and h, in 4.4l By Lemma [2.3.19 a polynomial from 7
has at most two linear terms in its support. If there exists r,s € {1,..., u} such that
fryhs = 1, then we have [¢s;] = [¢,]. If there exists s € {1,.., u} such that hy = 1 and
for every r € {1,...,u} we have f, # 1, then we have ¢,; € m?. If for every s € {1,..., u}
we have hs # 1 and there exists r € {1, .., u} such that f, =1, then we have ¢,; € m?.
If for both r,;s € {1,...,u} we have f, # 1 and hy, # 1, then we can not have any

information neither on ¢; nor on ¢,;. O

Now we show that the arrow grading is well-defined on the set of equivalence classes

of indeterminates modulo m?.

Lemma 4.1.5. Let O C T" be an order ideal. Let ¢,, and ¢;; be two elements from
C but not in m2. If &; and ¢,, have the same equivalence class modulo m?, then the

indeterminates c;; and c,q have the same arrow degree.

Proof. Assume c;; and ¢, are distinct indeterminates, otherwise the proof is trivial. If

we have [¢;;] = [¢,,], then there exists a polynomial p € m?, where
:I:EijZFqu+/3=OEB@.

Let the number of polynomials in 7 be denoted by A. Then by Equation (2.6) the

equality above can be re-written as

A
ey Fepgtp=D  faTx (4.4)

k=1

where 7, € T, f. € K[C] and p € IM?. Let 7" indicate the homogenous component
of degree 1 of 7, (see Lemma [2.3.19). Thus by equating the linear parts of Equation
(4.4), we get

A
+Cij F Cpg = Z 557}9)7 (4.5)
k=1

where f,, € {1, —1,0}. Let T" denote the set {,,,...., 7, } which is a subset of T of all
T.., where 3, # 0. Since ¢;; and ¢, are distinct, we have m > 1. By Lemma , a
polynomial from 7 has at most two linear monomials in its support. Since we have
Cpg, Cij & m?, meither +c,, nor +¢;; can be the only linear monomial of the support
of a polynomial from 7. Let 7, be a polynomial in 7" that has two monomials in its

support and one of them is either f=¢;; or ¢,,. In other words, let ¢ be an element in
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{cij, cpg} and let

7',8) = tcyy FC

where ¢, € C. Then there is no polynomial 7, in 7 such that the monomial +¢,,, is the

homogenous component of 7, of degree 1. Otherwise, by Lemmas [4.1.3] and [4.1.4], this
contradicts to the assumption that ¢;,¢,, ¢ m?. Thus by Lemma [2.3.19] the supports
of the elements of T" have exactly two linear monomials. Then Equation (4.4) becomes

:|: CZ] :F Cpq = Z Bﬁu (Csuru j: Clunu) (46)
u=1

where m € Nt and 8, € {1, —1}. There are two cases. The first case is that there
exists a polynomial 7., € T where = +(cpq — ¢i5). Proposition states that
polynomials from T are homogenous with respect to the arrow grading, and hence we
have degyy, (¢;j) = degy (cpq). In the second case Equation becomes

+ Cij + Cpq = i(cij + Clln1) + (cl1n1 + 6821“2) =R = (CSme + CPOI) (47)

and we get a telescopic sum of indeterminates where each (cs,r, £ Ciin,) 1S T,gi). Then
for each k; € {k1,..., kn} the pairwise intersection of the supports of 7., and 7,,,, is
nonempty. By Proposition [3.2.6] every polynomial in 7 is homogenous with respect to
the arrow degree. Hence the arrow degrees of each 7, in the telescopic sum [4.7) are the

same. Thus we have

degW(C,-j) = degy (ciyny) = .. = degw(csmm) = degW(cpq),
which is the desired result. ]

Proposition 4.1.6. Let O C T" be an order ideal. Let [¢;;| indicate the equivalence
class of ¢;; modulo m*. Let rﬁ}’ denote the homogenous component of the polynomial
T« € T of degree 1 with respect to the standard grading.

a) An indeterminate ¢;; € Bo is in m? if and only if there exist polynomials in T such
that ¢;; = 22:1 a7V, where ay, € {0,1,—1}.

b) Let com and c;j be two distinct indeterminates from C. Then gy, is in [¢;j] if and
only if £(Gij — Cam) = S on_y a7t where a, € {0,1,—1} holds.

c) Let ¢;; be a non-zero indeterminate from Bep. The equivalence class [¢;j] contains
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only ¢;; if and only if there is no 7, € T that contains c;; in its support.

Proof. First we prove a). If we have ¢;; = 2221 akT,gl), then there exists at least one
index k£ € {1,.., A} where a; # 0 and 7',51) is a monomial of degree 1, say c¢,,. This
implies that ¢,, is in m? and the claim follows from the transitivity. For the converse,
if we have ¢;; € m?, then there exists a polynomial p € 92 such that p F ¢;; € Z(Bo).
This implies pF¢;; = 22:1 BxTw, where By € K[C]. By equating the linear polynomials,
we get the desired result.

Now we prove b). Let &, be an element of C. We have ¢,,, € [¢;;] if and only if
there exists a polynomial p € 9? such that p=+ (¢;; — ¢sm) € Z(Beo). Therefore we have
pE(cij—com) = 2221 f7., where f € K|C|. Thus the claim follows by considering each
.

Finally, we prove ¢) by way of contradiction. Suppose [¢;;] contains ¢, and ¢;; is
not an element of any support of 7., for any . This contradicts b). Now suppose £¢;;
is in the support of a 7,. By a) and b), we have either ¢; € m* or ¢;; € [Ck), which

contradicts to our assumption. O

Remark 4.1.7. Proposition [4.1.6| implies that, by examining the polynomials in 7T

modulo m?, we can find every equivalence class and its elements.

Example 4.1.8. Let P denote the polynomial ring K[z, z5]. Let O denote the order
ideal {1, 1, Zo, 11272 }. Then 0O = {3, 2% 23 x3x5} is the border of it, where in our
notation we have t; = 1,ty = x1,13 = To,ly = T179,b0; = 23,by = 23,b3 = 122 and
by = x3xy. Let us compute the set T for Z(Bp).

T2 = C11C32 + C13C42 — C14

T3 = C12€21 + C14C41 — C13

Ti4 = C12C23 — C11C34 — C14C43 1+ C13C44

Tog = C21C32 + C23C42 — Coy

To3 = C21C22 1 C24Cyq1 + C11 — Co3

To4 = Co2C23 — C21C34 — C24C43 1 C23C44 + C13
Tsa = C13C32 1+ C33C42 + C12 — C34

T33 = C21C32 1 C34C41 — C33

T34 = C23C32 — C31C34 — C34C43 1+ C33C44 — C14

Tao = C32C41 + C42C43 + Co2 — Cy4
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T43 = C21C42 + C41C44 + C31 — C43

T4a = C34C41 — C23C42 — Co4 + C33

By Proposition a) and b) and by examining 79, 713, 733, T24, We identify the set
of indeterminates in m? and get {Ci4, Co4, €13, C33}. From Proposition b) and by
computing 73 modulo m?, we get that ¢, and ¢y are in the same equivalence class.
In the same way, ¢3; and ¢43 are in the same equivalence class, ¢jo and ¢oq are in the
same equivalence class, and finally ¢»; and ¢34 are in the same equivalence class. By
Proposition ¢), the remaining equivalence classes contain just one indeterminate
which are given by {¢sn},{Cs2}, {Cs2} and {c1}. All non-zero equivalence classes are

then given by

{€u}, {Cao}, {en}, {Cs2}, {C31,Cas}, {C11, Cos}, {Co2, Caa}, {Cr2, Csa}-

We choose one indeterminate from each non-zero equivalence class as a representative

and form the set of equivalence classes. The result is

€ = {[en1], [ea], [Ga1], [ea], [Cra], [Cao], [Ea2], [Caa] }-

Remark 4.1.9. Consider the polynomial

Taq = Co4C41 — C33C42 — C23 + C34

in Example [4.1.8l Clearly, the elements €3, ¢34 of C are equivalent modulo m?. We

denote this relation by
C23 ™~ C34.
The set T also contains

T33 = C22C31 1 C33C42 — C34.

Then Proposition |4.1.6p) and b) imply a3, ¢34 € m?. Despite the fact that in Example
there is a neighborhood relation between b4 and b3 which results in the relation
between co3 and cs4, this information cannot be obtained from the set in (4.1.8]).

To keep this information we introduce the following notation.

Notation 4.1.10. We let € denote the set of non-zero equivalence classes of elements
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from C. Let {Ci,j,, -, Cinjrn } De a subset of C, where m > 1. If we have

Cirji ™ Cigjo ™ "+ ™ Ciryjms
then we denote this subset by C; ; where ¢; ; is an arbitrary element of {¢;,j,, ...., Ci,.j. }-

If for each p € {1,...,m} we have ¢; ; ¢ m?, then we have C; ; = [¢; ;] € €.

pj;n

Example 4.1.11. (continues) Recall Example The set in (4.1.8]) is € i.e.,

€ = {[c11], [ean], [G31], [Cm], [C12], [Canl, [E32], [Can] }-

We have ¢y3 € m? and ¢35 € m?, as well. The set Caz = {3, 34} however does not
contain ¢;3, since there exists no polynomial in 7 that gives a relation between co3 (or
similarly cz4) and c13. Moreover, we have C13 = {¢13}, C14 = {c14}, C11 = [c11], Co1 =
[ca1], Cs1 = [ca1], Ca1 = [ca1], Chr2 = [c12], Caz = [c22], C52 = [c32], and finally, Cyo = [ca2].

Definition 4.1.12. Let ¢;; be an element from C. Let O = {t1, ..., ¢, } be an order ideal
and 0O be its border.

a) The indeterminate ¢;; is called standard, if degy, (¢;;) has exactly one positive

component. Otherwise it is called non-standard.

b) The indeterminate c;; is called x,-standard, if only the k' component of the

degree vector degyy, (c;;) is positive.

Definition 4.1.13. Let O C T" be an order ideal. Let b; be a border term, z; €
{z1,...,2,} and wy be a positive integer. If we have b; = x}*, then b; is called an
Xx-pure power term. For any order ideal term ¢;, the indeterminate ¢;; € C is called

an X,-pure power indeterminate.

Example 4.1.14. Every pure power indeterminate is standard. More precisely, if an
indeterminate ¢;; is an x-pure power indeterminate, then the indeterminate ¢;; is an

zi-standard indeterminate.

Definition 4.1.15. Let BT denote the border term ideal and G the minimal generat-
ing set of the border term ideal consisting of border terms. Let ¢;; be an indeterminate
from C. If the border term b; is from the minimal generating set of the border term
ideal G, then ¢;; is called a minimal indeterminate. If the indeterminate ¢;; is a

standard indeterminate, then it is called a minimal standard indeterminate.
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Corollary 4.1.16. Let c¢;; be an xj-standard indeterminate from C. If for every x; €
{21, ..z} \ {zn} we have xit; € 9O, then the element ¢;; € C is not in m? In
particular, if we have ¢;; ¢ m?, then there exists Ci,j, € [Cij] such that for each x; €
{@1, o} \ {zr} we have xit;, € 00.

Example 4.1.17. (continues) Consider Example again. The set of equivalence

classes is

€ = {[en], [ean], [€31], [ea], [C12], [Caa], [E32], [Can] }-

The border term ideal is generated by {z?%, 23, 1279, x123}. The minimal generating set
of the border term ideal consists of the pure power terms by = z% and b; = z3. The

pure power indeterminates are always standard. In this case they are also minimal.

Now we ask ourselves whether it is possible to form the set of equivalence classes
¢ by using only pure power indeterminates. The following example gives a negative

answer to this question.

Example 4.1.18. Let P denote the polynomial ring K[z, 23] and let O denote the
order ideal {1, z1, z5}. Then the border of it is O = {z3, r179, ¥3} where with respect
to our notation we have t; = 1,ty = 1,13 = 13,0y = x3,by = x175 and by = 22. The
vanishing ideal of the border basis scheme is generated by the following polynomials.

T2 = C13C22 — C12C23 + C12C32 — C11C33,

T13 = C13C21 — C12C22 + C12€31 — C11€32,

To2 = (22€32 — C21C33 + C12;,

T23 = —cgg + c21023 + C22¢31 — C21C3 2 + C11,4
T32 = —C23C32 + ng + c22C33 — €31€33 — C13,
T33 = —C22C32 + C21C33 — C12

The elements of the set {¢i3,¢19, 11} are in m?. The equivalences classes are

{Car}, {Caa}, {Cas}, {Ca1}, {Caa}, {ca3}-

Therefore the set of equivalence classes is € = {[Ca1], [C2], [C23], [C31], [C32], [€33]}. The
minimal generating set of the border term ideal is {#%, z, x5, z3}. This means that every
indeterminate here is minimal. Moreover, one should note that the indeterminates
c13,C11 are pure power indeterminates that are standard and minimal, yet ¢;3 and ¢4

are in m?.



4.2. A Smoothness Criterion for the Monomial Point of a Border Basis Scheme 57

Proposition 4.1.19. Fvery equivalence class in € contains at least one element, say

Cij, from C where ¢;; 1s a minimal indeterminate.

Proof. Let ¢,, be an element of C and let [¢,,] be an equivalence class in €. As a

consequence of the definition of €, the element ¢,, is not in m?. Let [¢,,] be given by

[épq} = {qu’ Cprqrs -+ épm‘lm}

where m > 0. Keep the elements of [¢,,] in mind and consider the set of border elements
B = {by, by, .., by, }- Choose the smallest border term from this set with respect to
the Lex term ordering, say b, . We want to show that ¢, is a minimal indeterminate
ie., b, € G. For contradiction suppose that there exists a term b; € JO such that
b; | by, and b; <pex by, . Then there exists a term xy, € {1, ..., x, } such that x;b; = b,,.
There are two cases to examine. The first case is that there exists a term ¢; € O such
that xyt; = t,,. Then from Lemma follows ¢;; € [€pe). Thus the border term b; is
in B. This contradicts the fact that by, is the smallest element of B. The second case
is that an order ideal term ¢; as in the first case does not exist. That is a:,:lti ¢ O
and xb; = by, . Then by Lemma , the element ¢,,,, is in m?. This contradicts the
assumption that ¢,, € €. O

4.2 A Smoothness Criterion for the Monomial Point

of a Border Basis Scheme

In [Huib05], Theorem 5.1.1 gives a smoothness criterion for the monomial point (0, ..., 0)
in a Hilbert scheme. Inspired by this result, in this section we give a smoothness crite-
rion for the monomial point of a border basis scheme based on methods we introduced
in the previous section. The smoothness criterion we give can be deduced from Theo-
rem 5.1.1, [Huib05]. Instead of using this deduction, we choose to employ the border
basis scheme theory. This approach will play a fundamental role in Chapter [0

Before starting, let us recall some of our definitions and notation. Let K be a
field and L. D K be a field extension. Let P denote the polynomial ring Kz, ..., z,].
Let O = {t1,....,t,} C T" be an order ideal and 0O = {by,...,b,} its border. Let
C = {ci1, .-, cu} be a set of further indeterminates and K[C] = K|eyy, ..., ¢ ). Let C
denote the set {¢11, ..., ¢}, where each ¢;; € Bo. Let T denote the set of generators
of the vanishing ideal of a border basis scheme as given in Equation (2.6). We let m

denote the maximal ideal of By that is generated by the elements of C. Moreover, we
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assume that (Bp)m/m is isomorphic to the field L. Then the cotangent space of Bo
at the point o = (0,...,0), which is m/m?, is an L-vector space. Let & be the set of
non-zero equivalence classes of elements from C. Let BTy denote the border term ideal

and G denote the minimal generating set of the border term ideal.

Example 4.2.1. Let P denote the polynomial ring K[z, 9, x3] and let O denote the
order ideal {1,z, 22, x3}. Then the border of it is 00 = {23, xox3, T173, T3, T179, 23}
where with respect to our notation we have t; = 1,t9 = x1,t3 = x9,t4 = x3b1 = x%, by =
Tox3, by = 1113, by = 13, b5 = 1179 and bg = x2. The vanishing ideal of the border basis
scheme is generated by homogenous (with respect to the standard grading) quadratic
polynomials plus the following polynomials.

72122 = (25C35 — €24C36 T C23C45 — C22C46 1 C15

7'213? = —635 + C24C26 + C25C34 — C24C35 + C23C44 — C22C45 + C14
72142 = —C23C25 + C22C26 + C25C32 — C24C33 + C23C42 — C22C43 + C12
T 3122 = —C26C35 + 012),5 + C25C36 — €34C36 + €33C45 — C32C46 — C16
731?? = —C25C35 + C24C36 1+ €33C44 — C32C45 — Ci15

73142 = —C33C34 — C23C35 1+ €32C35 1 C22C36 + €33C42 — €32C43 — C13
7'2159’ = (25C33 — C22C36 T C23C43 — C21C46 1+ C13

721:? = —C23C25 + C22C26 + C25C32 — C22C35 + C23C42 — C21C45 + C12
7212 = —033 + €21€26 + C25C31 — €22€33 + C23C41 — €21€43 + C11

T, 4123 = —C36C42 — C26C43 + 042;3 + €33C45 + C23C46 — C41C46 — Cl6
Ti?? =  —C35C42 — C25C43 + C42C43 + C32C45 — C41C45 + C22C46 — C15
Tiz‘f = —C33C42 — C23C43 + C31C45 + C21C46 — C13

7325’ = —C25C33 + C33C34 + C23C35 — C32C35 + C32C43 — €31C45 + C13
732?? = —(24C33 + C22C35 + €32C42 — €31C44 + C12

T??f = —6?2)2 — C22€33 + €31C34 + €21C35 + €32€41 — €31C42 + C11
ng’ = —C35C42 — C25C43 + C42C43 + €33C44 + C23C45 — C41C45 — C15
T, ng’ = —C34C42 + 64212 — C24C43 + C32C44 — C41C44 + C22C45 — C14
Tﬁ’ = —C32C42 — C22C43 + C31C44 + C21C45 — C12

By Proposition a), the residue classes of indeterminates contained in m? are

{¢16, €15, C14, C13, C12, C11 }
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The minimal generating set of the border term ideal is exactly the border. Therefore
all the indeterminates in the set C are minimal. This means that border terms do not
have next door neighbors and all polynomials from 7 are from AS. By Proposition
c), the set of equivalence classes is € = {[¢;;] : ¢;; € C \ {cu6, €15, €14, C13, C12, €11 } }
Note that ci4, c16, c11 are pure power indeterminates that are standard and minimal,

yet their residue classes are contained in m?.

Remark 4.2.2. The indeterminates coo, co3 and ¢y5 in Example are non-standard
indeterminates, yet their residue classes are not in m?. One should also compare the
number of elements in € in Examples [4.2.1] |4.1.18 and [4.1.8] In Examples 4.1.18| and
[M.1.8 the set € contains ny elements but in the Example the number of elements
of € is larger than npu.

Notation 4.2.3. Let t = z{'---zy*-- 2% be a term in T". We denote the k-

component of the vector log(t) by deg, (¢). In this case we have
deg,, (t) = ay.

Remark 4.2.4. Recall that G is the set of minimal generators of the border term ideal

consisting of border terms.

a) If the set G consists of pure power terms only, then every border term can be

divided by exactly one pure power term.

b) If an indeterminate c,, is zj-standard, then for [ # k the border term b, can not

be divisible by an x;-pure power term.

c¢) For distinct indices k and [, let the indeterminate ¢;; be an x,-pure power inde-
terminate, and let c¢,, be an z;-pure power indeterminate. Distinct pure power
indeterminates have different arrow degrees and by Lemma the equivalence

classes of ¢;; and ¢,, modulo m? are distinct.

Lemma 4.2.5. Let O C T" be an order ideal. If the minimal generating set of BT o

consists of only pure power terms, then € has exactly nu elements.

Proof. Clearly, the number of pure power indeterminates is npu, which is in our case
also the number of minimal standard indeterminates. By Proposition 4.1.19] every
equivalence class in @ has at least one element from C that corresponds to a minimal

indeterminate in C. Since two distinct elements from C, which are mapped to distinct
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pure power indeterminates, can not be in the same equivalence class of €&, it follows
that every equivalence class in & contains exactly an element that corresponds to a

pure power indeterminate.

If we show that there exists no pure power indeterminate, say ¢;;, such that ¢;; € m?,
then we have the desired result. For this purpose, let the indeterminate ¢;; be an -
pure power indeterminate. By examining the set T, we construct the set of elements
from C that are in relation ~ with ¢;;, i.e. Cy;. Let Bj = {bj, b1, ...,b;,,} denote the set
of border terms which are divisible by b; and z;. Now we choose an element ¢;, ;, € Cj;.
Let x;b;, be a term, say bj,, in B. Since ¢; ;, is an xj-standard indeterminate, there
are two cases. The first case is that we have a border term x;b; € B, and therefore
xit;, is a term in O, say tj,. Then by Lemma [4.1.3p) and Lemma b),c), we have
Ciyjy ~ Gi,j,- The second case is that z;b; ¢ B. Since G consists of pure powers only,
the term x;b;, is divisible by the x;-pure power term. Keep in mind that ¢; ; is an
rp-standard indeterminate i.e., deg, (t;.) > deg,, (b;,). Hence z;t; is a term in JO. Thus
we have either an equivalence relation with an element of Cj; or x;t;, € 0O. Since this

holds for any x; € {zy...,x,} \ {zx}, by Corollary [4.1.16[ and Proposition b),c),

we have ¢;,;, ¢ m?, O

Definition 4.2.6. Let ¢;; be an indeterminate from K[ecyy, ..., ¢,,]. Let the arrow degree
of ¢;; be (a1, ..., @, ..., o, ). The x-offset of ¢;; is the arrow degree of ¢;; without the

xri-component. We denote it by

offsety, (ci;) = (1, -y k1, k41, -y On)-

The idea of replacing an zj-standard pure power indeterminate that is an element
of m? with a minimal standard indeterminate which has the same z;-offset and that
is not contained in m?, is due to [Huib05]. The process described in [Huib05] is called
Shadow Promotion and it is defined for arrows. Inspired by this technique, we introduce

a similar method in our setting for border basis schemes.

There are nu distinct pure power indeterminates in C. Recall that pure power in-
determinates are standard and distinct pure power indeterminates indicate distinct
equivalence classes in m?. Let [¢;;] be the equivalence class of an zj-pure power in-
determinate ¢;; where z;t; € O for x; € {z1,...,2,} \ {zx}. The following algorithm
shows how to find an equivalence class [¢,,] € & where ¢, is a minimal z;-standard

indeterminate which is determined by the term ¢; and the z;-offset of ¢;;.
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Algorithm 4.2.7. Let O C T" be an order ideal. Let b; = z* be an xj-pure power
indeterminate and ¢; € O. Let ¢;; be an z;-pure power indeterminate where there exists
an indeterminate x; € {z1,...,x,} \ {zx} such that x;t; € O. Consider the following

sequence of instructions.
1. Let [ = 0.

2. Increase [ by one. If we have | = k, then increase [ by one again. If we have
[ = n+1, then let ¢, := t;, and continue with step 4) otherwise continue with
step 3)

3. Let t;, :=t; and 3, := 0. Repeat computing ¢;, = x; - t;, and increasing ; by one
until ¢;, € 00. Then let t;, :=t; /x;, f; — 1 and continue with step 2).

4. Let 2" - - 28 be a term in T that is denoted by b where 8, = 0 and b-t; = t, € O.
Repeat computing x - b := b until b € 00 and let b, := b. Then construct the

equivalence class [¢,5] and pick a minimal standard indeterminate ¢,, from [¢,s].

This is an algorithm which returns a minimal z;-standard indeterminate, c,, which

has the same zj-offset as the xj,-pure power indeterminate ¢;; and [¢,,] € €.

Proof. There are finitely many terms in O and finitely many indeterminates in {x, ..., z, }.
Thus this algorithm stops after finitely many steps. Since in Step 3) after computa-
tion ¢;, is still an order ideal term, the term b and 0 -¢; = ¢, are order ideal terms
where deg, (b) = 0. Therefore there exists an integer o such that zib € dO which
is computed in step 4). From this follows the existence of the border term b in step
4). By steps 2) and 3), the order ideal term t, has the following property. For each
x; € {x1, ..., 2} \ {zx} we have x;t,, € JO. Then by Corollary , we have ¢, ¢ m2.
Therefore by Proposition , there exists a minimal indeterminate c,, such that
Cpg € [Crs]. Moreover, from step 4) we have by = z}* - b and t, = b - t; where m € Ny

and (8, = 0. Let us determine the arrow degree of c¢,,.

degW(Crs) = log(bs)_log(tr)

— log(x’fl e x}:’ e wgn) — log(x’fl e xfi_ll . xiiﬁl e wﬁ" . tz>

= log(z}") — log(t:)

From the above equation follows that ¢, is an xzp-standard indeterminate. Since

b; = z}’ is a pure power term, we have offset,, (c.s) = offset,, (t;) = offset,, (c;).
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Consequently, from ¢,, € [¢,s] follows that ¢,, is a minimal z;-standard indeterminate

and by Lemma we have offset,, (c,s) = offset,, (c,,) = offset,, (ci;). O

Example 4.2.8. (continues) Recall Example where O is the order ideal
{1,21,25}. Then 0O = {3, x125, 23} is the border of it. The set of pure power in-
determinates is {ci1, Ca1, €31, C13, C23, c33}. The indeterminates ci3, ¢ are pure power
indeterminates that are standard and minimal yet ¢;3 and ¢;; are in m2. We replace
c13 with a minimal standard indeterminate that is an output of Algorithm [£.2.7 We
have b3 = 22, k =1, t; = 1 and degy,(c13) = (2,0) with offset,, = (0)

2) Set [ = 2 since k = 1.
3) We have xyt; = t3 € O but 22 € JO. Then we let t;, = t3 and f; := 1.
2) We have [ = 3 then we let t, := t3.

4) The term b is x5 and xq - 9 = by € 0O and t; = 1. Then we let b, := by. Since by

is already minimal, we have c,, = ¢;s = c32
By the same way we can replace ¢;; with cog. Therefore we have

€ = {[Ca2], [Ca1], [31], [Ca2], [Cas], [c33] }-

Theorem 4.2.9. Let O C T"™ be an order ideal. Let & denote the set which contains the

equivalence classes of indeterminates modulo m®. The set € has at least ny elements.

Proof. Let S,,;, denote a subset of & that contains the equivalence classes of minimal
standard indetermates modulo m?.

We divide the proof into two cases. The first case is where the minimal generating
set of the border term ideal consists of pure power terms only. The second case is
where the minimal generating set of the border term ideal has not only pure power
terms. We show that in both cases there are at least nu elements in S,,;, C €. If the
minimal generating set consists of only pure power terms, then by Lemma [{.2.5 we
have & = S,,;, and the cardinality of € is nu. For the second case, recall Algorithm
. Let x and x; be two distinct indeterminates from Kz, ..., z,,]. If an z;-standard
pure power indeterminate is in m?2, then by Algorithm , there exists an xi-standard
minimal indeterminate whose equivalence class is not in m? which has the same xj-offset

as the pure power indeterminate.
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We claim that the output of the Algorithm for distinct pure power indetermi-
nates are distinct indeterminates with distinct equivalence classes in €. Keep in mind
that the output indeterminate of the Algorithm [4.2.7]is a minimal standard indetermi-
nate whose equivalence class is in €. From Lemma[4.1.5] it follows that the equivalence
class of the output of Algorithm for zj-standard and z;-standard pure power
indeterminates with k& # [ cannot be equal. Therefore we let ¢;; and c¢,; be distinct
xi-pure power indeterminates. Then the terms ¢; and ¢, in O are different from each
other. Apply Algorithm m, and let ¢,,q, be the output for ¢;; and ¢,, 4, be the output
for ¢,;. If the indeterminates cp,q and ¢, 4, have different z;-offset, then by Lemma
4.1.5, we have [Cp,q;] # [Cpugu]- If these two indeterminates ¢;; and c¢,; have the same

x-offset with distinct order ideal terms , then we have

deg,, (1) # deg,, (t). (4.8)

Let ¢;,s, be the indeterminate in step 4) of Algorithm[4.2.7 where ¢, € [¢1,s,]- Let ¢,
be the indeterminate in step 4) of Algorithm [1.2.7 where ¢4, € [G;,s,]. By steps 2) and
3) of the Algorithm [£.2.7, deg,, (t;) remains the same i.c., deg,, (t,,) = deg,, (t;). Then
by , we have deg,, (t.,) # deg,, (t.,). From this and step 4) of Algorithm where
bs, and b, are defined, follows degy, (¢, s,) # degy (¢r.s,). Consequently, from Lemma
[4.1.5]follows that degyy (¢p,q,) # degy (Cpg,) and we have [6,q,] # [Cp,q. ). Altogether, we
have shown that for distinct pure power indeterminates whose equivalence classes are
in m?, there exist distinct minimal standard indeterminates with distinct equivalence
classes in €. Since there are nu pure power indeterminates, there are at least nu

equivalence classes of minimal standard indeterminates. O

As the following example shows, there can be non-standard indeterminates whose

equivalence classes are in &

Example 4.2.10. (continues) Recall Example Clearly, the number of inde-
terminates in Bp is p * v = 24 in this example. There are 6 indeterminates in m? and
¢ contains equivalence classes of 3 indeterminates which have a non-standard arrow
degree. Thus the set of equivalence classes of minimal standard indeterminates modulo

m? has exactly 15 equivalence classes which is larger than ny = 12.

Lemma 4.2.11. Let O C T? be an order ideal with . elements. Then the set & has

exactly 2u elements.

Proof. Let b, = 7" and b, = x5? be the two pure power terms in 0. Then there are
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exactly 2u pure power indeterminates and by Algorithm [£.2.7], there are exactly 2u
minimal standard indeterminates which are not contained in m?. Thus the cardinality
of & is larger or equal to 2u. For contradiction suppose | € |> 2u i.e., suppose that
there exists an indeterminate ¢;; € C such that for each ¢, € O the element ¢;; is
neither in Cy,, nor in Cy, and the indeterminate ¢;; is not an output of the Algorithm
yet [¢;;] € € holds. The indeterminate ¢;; is either a standard or a non-standard
indeterminate.

If the indeterminate ¢;; is a non-standard indeterminate, then we construct the set

Ci; = A{Cijrs -, Ciprjrn + Where for each index k € {1,...,m — 1} we have
deg,, (t;,.) < deg, (t;,)and deg,, (t;,,) > deg,, (t;,). (4.9)

Since ¢;; is neither in Cly,, nor in C,,, we have deg, (b;,,) < deg, (b,)and deg,, (b;,) <
degm(bT). Thus there exists a border term b, such that either x9b;, = b or z2b;, =
x1b. If there exists an order ideal term ¢; such that xot; = t; or aqot; = x1t;, then
we have ¢ € Cj; with deg,, (t;) > deg,,(t;, ), which contradicts to (4.9). Since there
exists no order ideal term ¢, with the above property, by Lemmas [4.1.3| and |4.1.4}, we

have ¢;, ;. € m? and consequently Cij € m2.

If ¢;; is a standard indeterminate, then c;; is either an x;-standard or xy-standard
indeterminate. Without loss of generality we let ¢;; be an x;-standard indeterminate.
Then by Corollary there exists an element ¢;, ;. € [¢;;] such that xst; € 00
and for each ¢;,;, € [¢;;] we have deg,, (t;,) > deg,,(t;,) and deg, (t;,,) < deg, ().
Moreover,

deg, (b;,) > deg,, (b;,) and deg,, (b;,) < deg,, (b;,) (4.10)

hold. We let the arrow degree of ¢;,, ;.. be degy,(¢;,.;..) = log(b;,.)—log(t:,,) = (aq, 1) —
(cvg, B2) = («, ) where o > 0 and (8 < 0.

Then there exists an order ideal term t,, such that x'gl t, = t;,, and offset,, (¢;,.;..) =
offsety, (Cuw). We apply Algorithm t0 Cuw- Then by Step 2) of Algorithm we

have t, = t; and we compute the smallest integer v where
b, = xh'z] € HO. (4.11)

Since + is the smallest integer that satisfies Equation (4.11)), it cannot be larger than
the deg,, (b;,,) i.e., ay. If the integer v smaller than o, then b, has a next-door neighbor
and this contradicts (4.10). Thus we have by = z5'2S" = b, and [¢;,,;..] = [Grs)- O
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Lemma 4.2.12. Let S be a subset of C which contains d elements, where each element
¢ij € C and [¢;;] € €. Then the subspace of m/m? spanned by the elements of S has the

dimension d.

Proof. Every indeterminate in S is chosen from a non-zero distinct equivalence class
modulo m?. Therefore they are L-linearly independent in the vector space m/m?, where
S is a subset of m/m2. The L- subspace of m/m? spanned by S has the dimension d,

which is exactly the number non zero equivalence classes in €. O]

Remark 4.2.13. The set S is the same as the one that is constructed in [Huib05],
Theorem 4.1.3. Although the set S is not unique, the set € is unique.

Lemma 4.2.14. Let O C T™ be an order ideal. If the monomial point of an O-border
basis scheme is smooth, then the dimension of the local ring (Bo)m is nu. In particular,

if the point o is not smooth, then the dimension of (Bo)w is larger than npu.

Proof. This follows from Theorem and Corollary [2.4.6] O]

Theorem 4.2.15. Let O C T" be an order ideal. The monomial point 0 € By is

smooth if and only if the number of elements of € is npu.

Proof. Assume first that the monomial point in a border basis scheme is smooth.
Then, by Lemma [4.2.14] we have dim((Bo)w) = nu. By the smoothness, we also have
dim((Bo)m) = edim(Bp) = nu. This means the maximum number of the L-linearly
independent indeterminates in the vector space m/m? is nu. Then by Theorem m,
the cardinality of € is npu.
Conversely, let us assume that the cardinality of € is nu. By Lemma [4.2.14] in the
general case we have
dim((Bo)m) = npu. (4.12)

By Proposition [2.1.15, we have
dimy,(m/m?) > dim((Bo)m)- (4.13)

Moreover, the set S, which is constructed by choosing an element from each equivalence

class of €, is a set of maximal L-linear independent indeterminates in the L-vector space
m/m?. Then by Lemma [4.2.12| and by the equality | € |=| S | , we have

np =| € |=| S |= dimy, (m/m2). (4.14)
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Then by considering Inequalities (4.12)) and (4.13)) with Equality (4.14]), we have the

following result.
np =| S |= dimg,(m/m?) > dim((Bo)w) = nu

Thus we have dim((Bo)wm) = nu = edim(Bp) and o is a smooth point of Be. O

Example 4.2.16. (continues) Let us recall Example [1.1.8, The set & consists of
the equivalence classes of minimal standard indeterminates only. More precisely, it
consists of the equivalence classes of pure power indeterminates. Thus the monomial
point in this example is smooth. On the other hand, in Example we have seen
that the set & has more elements than the set of the equivalence classes of minimal
standard indeterminates. Therefore the monomial point of the border basis scheme in

that example is not smooth.

Corollary 4.2.17. Let O C T? be an order ideal. The monomial point of an O-border

basis scheme is smooth.
Proof. This follows from Lemma [4.2.11| and Theorem [4.2.15 O

Recall that the order ideal B(dy,...,d,) = {27 - 20~ € T" | oy < d; for i =
1,...,n} is called the box order ideal of size (di, ..., d,).

Corollary 4.2.18. Let B € T™ be a box order ideal. The monomial point a B-border

basis scheme is always smooth.

Proof. This follows from the fact that the minimal generating set of the border term

ideal of any box border basis scheme just consists of the pure power terms. O



Chapter

Trace and Jacobi Identity Syzygies

In this chapter we shall present two types of syzygies of the tuple whose entries are the
elements of 7 (see Equation ([2.6])) of a given O-border basis scheme, the trace syzygies
of T (see Definition and Remark ) and the Jacobi identity syzygies of T
(see Definition and Remark [5.2.3)), which are computed by the help of the generic
multiplication matrices (see Definitions [2.2.4] and [2.3.1]b). The trace and the Jacobi
identity syzygies of T were first introduced in [Huib09]. In Section 10 of [Huib09] the
trace syzygies of T are used to show that all O-border basis schemes are ideal-theoretic
complete intersections, where O C T? (see Definition . Moreover, in the same
article, for the specific case O = {1, 21} C K[x1, x2, x3], both trace syzygies and Jacobi

identity syzygies were used to prove that By is an ideal-theoretic complete intersection.
In this chapter we show that for box order ideal B(2,2,2) C K]z, x5, 3], these syzygies
of T are not sufficient to decide whether By 29) is a complete intersection or not.

In the first two sections we reprove some of the properties of trace and Jacobi
identity syzygies of 7. Our aim is to characterize these syzygies by the arrow grading
(see Lemmas|5.1.5] |5.1.6{ and [5.2.6]). In Section [5.1| we give an example where one can

illustrate that the given border basis scheme is a complete intersection (see Example

5.1.22| ) by employing the trace syzygies of T.
The last section (see Section is dedicated to finding redundant elements of the
set T of defining equations of the box border basis scheme B, 2 2) by using the Jacobi

identity and the trace syzygies of T together. We show that there are at most 60
redundant polynomials in the generating set 7 of Z(Bp(2,2,2)) (see Proposition [5.4.3).
We observe that trace and Jacobi identity syzygies of 7 do not give conclusive results

whether Bp(22,2) has the complete intersection property or not. We provide the reasons
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in Remarks [5.4.1] and [5.4.4]

Moreover, we implemented the Jacobi identity and the trace syzygy computation
methods in the package bbsmingensyz of the computer algebra system ApCoCoA. The
vanishing ideal of this box border basis scheme Bp, 2 9) has 144 generators. Therefore
it is to hard to perform the syzygy computations by hand. In some cases, where
defining equations of border bases schemes have larger cardinalities, even computers
might fail to succeed with those computations. In such cases, to find at least the
rewritable elements with respect to trace or Jacobi identity syzygies of 7, we introduce
a practical method which we call simplified trace and Jacobi identity syzygies of O (see
Section . In Section [5.4] we first compute the simplified syzygies trace and Jacobi
identity syzygies which reduces the number of computations to identify the redundant

elements of T .

5.1 Trace Syzygies

Unless stated otherwise, throughout this section we let K be a field and P denote the
polynomial ring K[z, ..., z,]. Let O = {t1,...,t,} C T™ be an order ideal and let 0O
denote its border {by, ..., b, }. Let C denote a set of indeterminates {ci1, ..., ¢, }. Let K[C]
be the polynomial ring K[ciy, ..., ¢, ]. Recall that Z(Bp) is the vanishing ideal of the
border basis scheme Bo which is generated by the set T = {7} | p,q € {1,..u}, k<
[ k,l€{1,.,n} (see Section [2.3).

Let A, B € Mat,,(K[C]) be square matrices, where m € N_. Then [A, B] denotes
the commutator A-B — B - A.

Lemma 5.1.1. Let A, B € Mat,,(K[C]) be square matrices, where m € Ny Then the
Trace([A, B]) is 0.

Proof. Let A = () mxm and B = (bij)mxm, where a;;, b;; € K[c]. Then the Trace([.A, B])
is as follows.

Trace([A, B]) = Z euw(AB — BA)e Z e  ABel" — e, BAeT

u=1 u=1
m m

=D 30 WFRES 3 I
u=1 j=1 u=1 j=1

= 2 auibn) = 2 auibia) = 0

u=1 j=1 7j=1
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Hence we have Trace([A, B]) = 0. O

Lemma 5.1.2. Let Ay,, ..., Ax,, A € Mat,(K[C]) be square matrices where m € Nj.
Then the following equality holds.

[Ag, - A, Al = Z Apy - A [AL Ary ) Ak - A (5.1)

S

Proof. Let us consider the u*" summand on the right hand side of Equation (5.1)).

Ay Ay A A Aryy o Ak = Agy - Agy (AiAg, — Ar, A Ay A,
= Ap, - Apy  ArAg, Ary o Ak — Ak Ay A, AiAg, o Al (5.2)
Now let us check the (u+ 1)** summand in Equation (??), which is
Ag, - Ay DA A+ Ak — Ak - Ay Ay  ALAR, o - A (5.3)

If we take the sum of Equations (5.2) and (5.3)), then the negative term of Equation
(5.2) and the positive term of Equation ([5.3]) cancel each other out. This implies that
the sum in Equation ([5.1]) is a telescopic sum and the result of it is just the sum of the

positive term of the first summand and the negative term of the last summand i.e.,
Ay - Ay Ak Abrs Ay = Ay A, Ak Ay - A A= [ Ay - A, Al

Hence we have

[Ag, - Ap,, Al = Z Apy - A [A Ary J A, - A,

S

O

Example 5.1.3. Let O C K|z, 22, 23] be an order ideal. Let A;, Ay and A3 be
the generic multiplication matrices with respect to O. We consider the commutator

operation [A; 43434, A5, A1]. By Lemma [5.1.2] the following equality holds.

(A1 Ao A3 A1 Ay, Ayl = A A A AsAvAs + A[ A, As) As AL Ay
+ A1 Ag[ Ay, A3] A1 As + A1 A A3 Ay, A As + A1 As A3 Ay [Ay, As)
= A[Ay, AJ A3 A1 Ay + A1 Ag[ Ay, As] At As + A1 A A3 A AL As
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Remark 5.1.4. Recall that the polynomial ring K[C] is a Z"-graded ring such that
the indeterminate ¢;; € K[C| has the arrow degree degy,(c;;) = log(b;) — log(t;). The
details on the arrow grading are given in Section [3.2]

Let O = {t1,...,t,} C K[z1,...,z,] be an order ideal. Let A; be the I generic
multiplication matrix where [ € {1,...,n}. Then by Lemma [3.2.4) A, is a homogenous
matrix with the degree pair (dy, d;) where the following holds.

d; = (log(zity), ..., log(xit,)) = (dyy, ..., dy, ), do = (log(ty), ..., log(t,)) = (do,, ..., do,)

Lemma 5.1.5. Let O C T" be an order ideal. Let Ay, ..., Ax,, A € Mat,(K[C]) be
generic multiplication matrices with respect to O, where s € Ny and ky,....ks,l €
{1,...,n}. The matriz A Ay, - - - Ak, and the matriz Ay, - - - Ay, A; are both homogenous

matrices with the same degree pair (do, d(g,...k,1)) where
d(lﬂ“'k‘sl) = (10g((l]k1 R l‘ksl’ltl), ceeny log(xkl R l’ksl’ltu» anddo = (10g<t1), ey 10g(tu)).

Proof. Let Ay, be a generic multiplication matrix in { Ay, , ..., Ag, } with the degree pair
(do, di,) where

dy, = (log(xy,t1), ..., log(wk,t,)) = (dki)1, ..., dki) ), do = (log(ty), ..., 1og(t,)) = (do,, ...

By Lemma the degree pairs of the matrices Ay, A; and A; A, are the same which
is (do, d(k,1)), where

dkyy = (log(zp, ity ), ..., log(xr,2it,)) and do = (log(ty), ..., log(t,)) (5.4)
Hence, the Lemma follows. O]

Lemma 5.1.6. Let O C T" be an order ideal. Let Ay, ..., Ay, A € Mat,(K[C]) be
generic multiplication matrices with respect to O, where s € Ny and ky,....,ks,l €
{1,...,n}. Then the Trace( Ay, --- Ay, A;) is a homogenous polynomial in K[C] with re-
spect to the arrow grading. Moreover, if we let 11 denote the term xy, - - -z, x; € T,
then the following holds.

degy (Trace(Ayg, - - - Ax. A1) = degy, (Trace(Aj Ay, - - - Ag.)) = log(IT)

Proof. The trace of a product of matrices is invariant under the cyclic permutation of



5.1. Trace Syzygies 71

the positions of the matrices i.e.,
Trace(Aj Ay, - -+ Ag,) = Trace( Ay, - - - Ag. Aj). (5.5)
By Lemma [5.1.5] the matrix Ay, - - - Ay, A; has the degree pair (do, d(k,...,1) Where

d(k1-~~ksl) = <1Og<l’k1 s Iksl’ltl), ceeny IOg(Ikl s Iksxltu», do = (log(tl), . log(tp))

Therefore the entries in (i,4) position of Ay, -- - A, A; are of the arrow degrees

(log(wg, - - - 2, 2ts) — log(ti)) = dg,..k.), — do, = log(ak, - - - T, 1),

Then the polynomial Trace(Ay, - - - Ay, A;) has the following arrow degree.

m

degW(Trace(AlAkl te Akg)) = degw(z aii) = d(lkl---ks)i — dOi
=1
= log(@, -~ k1)

By Equality [5.5] follows the proof. O

Let T denote the set of generators of the ideal Z(By), where m denotes the number
of polynomials in 7. Recall that a polynomial in 7 is of the form 7 where k < [ and

k,le{l,..,n} and p,q € {1,...u}. We enumerate the polynomials from 7. Let
{(k,l) | k<, and k,l € {1,...,n}} = {(1,2),(1,3),...,(1,n),(2,3),...,(n— 1,n)}

denote the set of upper indices of the polynomials from 7 and let (k;,{;) and (k;,[;)
be two different tuples from this set. Let

(o) pge{l, o pd} ={1,1),(1,2), ., (L), (2,0), ., (1 )},

be the set of lower indices of the polynomials from 7 and let (p;, ¢;) and (p;, ¢;) be two
different tuples from this set. We order the indices as follows. We have (k;,l;) <tpex
(k;,1;) holds and in the case of equality (p;, ¢;) <rex (Pj,¢;) holds.

Lemma 5.1.7. Consider the above setting. If we enumerate the polynomaials in T with

respect to the above ordering of the indices, then a polynomial ijé is the o polynomial

where o = ["("271) — (nfk)(;hkﬂ) +(l—k=Dp*+p-q
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Proof. There are "™~ tuples in the set {(k,1) | k < I, andk,l € {1,..,n}}. With

n(n— n—k)(n—k
(21)_( )(2 +1)+(l—k‘—1)

many tuples that are smaller than (k,1). The tuple (p, q) is the (p-¢)" tuple in the set

respect to the ordering we defined above there are

{(p,q) | p,q € {1,...,u}}. Thus with respect to the given ordering the polynomial is

the o polynomial in 7 where o = ["("271) — (nfk)(;hkﬂ) +(I—k=Dp*+p-q. O

Recall that we let m be the number of polynomials in 7. Let (eq,...,€,) be the
canonical basis of K[C]™. We let e’;fl denote the canonical basis element e,, where by

Lemma [5.1.7) o = [ — =ROkED (7 1)) 4 p- g. Then (e&

1<pg<p 18 the

pq 1<i<i<n

canonical basis of K[C]|™

Example 5.1.8. Let O = {1,271} C Klxy, %2, 23]. Then the vanishing ideal of the O-
border basis scheme Z(Bo) is generated by the set T = {7} | p,q € {1,...u}, and k <
I k,0 € {1,..,n}}. With respect to the ordering above, the polynormal i is the
first element and 735 is the 12 element i.e., the last element. By Lemma -, 7, the
polynomial 735 is the 8" element of 7 where ((3—1—1)u*+p-q = 4+4 = 8. Since the
number of elements in the set 7 is m = 12, we have K[C]'? with the canonical basis

12 13 13 13 13 23 .23 23 23
(6117 6127 6217 €32, €11, €15, €1, €25, €115 €1, €31, €33) =

(61, €2, ..., 612).
Remark 5.1.9. We note that for the sake of simplicity instead of calling the syzygy of
the tuple whose elements are the elements of 7, we call it the syzygy of T. If it is clear

from the context which O-border basis scheme is used, then we simply call it syzygy.

The ring K|C] is a graded ring with respect to the arrow grading, where the arrow
degree degyy (¢;;) is log(b;) — log(t;). Moreover, by Proposition [3.2.6] that Z(Bo) is a
homogenous ideal with respect to the arrow grading, where the arrow degree degy, (7, K )
is log(zpaity) — log(ty). By letting degy (ell) = degy (13l) = dFl, € Z", we make the

K][C]-module K[C]™ a graded free module,

D Kll(—dy).
1<p,q<p
1<i<i<n

Then we have the following graded K|C]-module homomorphism with respect to the
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arrow grading:

v: P KlC|(-d) — I(Bo) (5.6)
1<p,g<p
1<i<i<n
kl kl
epq — qu

The kernel of the map ¢ is the set {3 1<pgcu phvent | Y 1<pg<u phimmr = 0}. In other
1<i<l<n 1<i<l<n
words, the kernel Ker(y) is the syzygy module of 7. Furthermore, the syzygy module

Syz(T) is a homogenous sub-module of K[C]™ with respect to the arrow grading. Let

H denote a set of further indeterminates {hi3, ..., AL, ..., R U"Y where the cardinality

of the set ‘H is m. Let 6 denote the following map:

0:K[C" — K[Cl[h3, ... hE . (D" = K[C][H] (5.7)
e Mg

Then 0 is a well-defined K[C]-module morphism that is injective. A polynomial of the

form Y 1<pq<p piLRE has the inverse image Y 1<pq<u phyel: under the map 6.

, : 1Py
1<i<i<n 1<i<i<n .
Let IT = ay, - - - @y, - 7y, € T" be a term where s € N. Let us choose an index [ from

the set {l1,...,ls,ls41}, and let g, ..., x5, = %, where ky, ..., ks € {1, ...,n}. Then with

K]

respect to the new indexing we have
II = Thy " T, X1 € T (58)

and we call z; as the distinguished indeterminate. Let Ay, ..., Ay, A, € Mat,(K[C])
be generic multiplication matrices with respect to O. Now we consider the following

polynomial in the ring K[C, H].
A

s p
Z Z €U<Ak1 te .Akifl : Aki+1 te 'Aks)eg (59)

i=1 u=1 kil kil
h ... bkl
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We let
k’i, k‘i, k'i k'z
F ey gt gl
: : = Ay, - Ag,_, and : : = Ay, - Ag,
ki— ki— i k;
f;(tl v cee /S# v 9;&1“) e g(uzl)
(5.10)

where f D gl K[C]. Note that by Definitions [2.2.4] and [2.3.1] the generic

Y z]
multiplication matrices have the following two properties: First, they are non-zero

matrices. Second, for k # [, we have Ay # A;. Therefore the products of the generic
multiplication matrices Ay, - - - Ay, _, € Mat,(K[C]) and Ay, , - - - Ai, € Mat,(K[C]) are

non-zero matrices. Then Polynomial (5.9)) is equal to the following polynomial.

kil kil i
s I hll te h‘lu g§u+1)
ki ki . ) kil 1, kil
Z(ffn Vo f ”) Do Col = ) KRR (511
i=1 u=1 B il pkil (Kit1) 1<p,g<p
o Hu 1<i<I<n

Thus Equation ‘D is a K[C]-linear combination of the indeterminates h’;jzl, where
each k)il € K[C] represents the coefficient of h¥il in Equation (5.11). The inverse image
of the left hand side of Equation (5.11]) under the map @ is

kil okl
Z Kipq Cpg -
1<p,q<p
1<i<i<n

il ksl kil kil
In other words, under the map ¢ we have ©(3 1<pa<u Fpy €pi ) = D 1<pq<p Ky Ty -

1<i<i<n 1<i<i<n

Lemma 5.1.10. In the above setting the vector > 1<pq<pu m’;qle’;ql 1s an element of the
1<i<i<n

syzygy module Syz(T).

Proof. We show that (> 1<pg<u kFilekil) is 0. In Equation (5.11]) we substitute the h’;g’j

pq pq
1<i<i<n
by T pq , and we get the following.

k;l kil (kit1)
s p T - Tip J1u
(ki-1) (ki-1) . . . kil kl
E E (ful up : T : : '%pq Pq 512)
i=1 u=1 k;l kil (kit1) 1<p,q<p
Tul - T G 1<i<l<n

Recall that, [A;, Ax] denotes the commutator A; - Ay — Ay, - A, where k.1 € {1,...,n}
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and k # [. Then by Equation (2.5)), we have

™o T

(AL A= & -0 1 ] (5.13)
s Tkl
Tpt o Tup

Then by Equalities (5.10) and by Equation (5.13), Polynomial (5.12)) becomes the
following.

kil ksl
s u T11 Tipn
. . t
E E eu( Ak, - A, : o Ak Ay ey (5.14)
i=1 u=1 kil ksl
Tl e Tan

By using the definition of the commutator and (5.14]), we get the following.

> e ZAM A AL A A e A el

u=1

= Trace( Z Ay -+ Aki—l [-’417 Aki]AkiJrl T Aks)
=1

= Trace([Ay, - - - Ax,, Al])

By Lemma [5.1.1, we have Trace([Ay, - - - Ag,, A;]) = 0. Therefore we have

kil kil ki
] o Tll te Tl,u giu )
ki ki o .
N ] A | R
i=1 u=1 ksl kil (ki )
B T o Th i
where Y 1<pg<u kil = 0 and thus > 1<pa<n rpileril is an element of the syzygy
1<i<i<n 1<i<i<n
module Syz(7T). O

Recall how we get Term (5.8) which is II = xy, --- 2,2, € T, where x; is the

distinguished indeterminate. By Lemma [5.1.6] we have
degy (Trace(Ay, - - - Ak, A;)) = degy, (Trace(Aj Ay, - - - Ag.)) = log(IT).

Lemma 5.1.11. In the above setting, if the coefficient ofhk il which is k¥, and the poly-

pq >’
nomial T]lfél are non-zero polynomials from K[C], then the arrow degree degy, (kkileki)

pq "pq
is log(IT).
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Proof. Recall that the map ¢ is a homogenous map and we have degy, (el ) = degy, (T5).

Moreover, by (5.10]), we have degW(fup )) = log(z, - - - ok, ,t,) and degw(géu’“)) -

log(xk,,, - - -, tu). Then the following holds.

degyy (rilelily = degy (ki) + degyy (e
= degy (f5 V) + degyy (") + degyy (g )
= log(zg, - - @k, _,t,) — log(t,)
+ log(zg,xit,) — log(t,)
+log(wp,,, - - - i ty) — log(ty))

= log(zy, -+ wx,1)

Thus if the entry T;f is a non-zero polynomlal from 7 and the indeterminate hk’ ! has

a non-zero coefficient in Equation (5.11)), then we get degy, (ryilekil) = log(II). O

Now let us summarize what we have until now. We start with a term

M=xy - -x, - x5 €T

. o _

Then we choose a variable z; from {xz;,...., 2,251} and we let o = Tk Ty
As a result we get II = my, -~z x; (see (5.8))). For each indeterminate z; from
{xky, ., Tr,, 21} there exists a generic multiplication matrix A; and vice-versa. Thus

there is a bijection between terms in T" and the products of generic multiplication
matrices. Then the term Il = xy, - - - 2y, 2; corresponds to the product of the generic

multiplication matrices Ay, - - - Ay, A;. Moreover, by Lemma [5.1.6] we have
degyy (Trace(Ay, - - - A, A1) = degy (Trace(AiAy, - - - Ag,)) = log(I),

where Aj Ay, -+ - Ap. — Ay, - - - Ag, A; is the commutator [Ag, - - - Ay, A;]. Thus by Lemma,
5.2.1], the polynomial

hkil hk’il
s 1 - Ny
Trace(ZAklmAki,l Do A AL = Z Kyl hlit € K[C,H]
i= il ; 1<p,q<
1 W
leads us to the element Y i1<pq<u khileli! of the syzygy module Syz(T), which is a

1<i<l<n
homogenous module with respect to the arrow grading that is of arrow degree log(II).
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In the above equation, by substituting h’; with Tp then we get

q

. GO
Z Z eU(Akl T Aki—l B Ak¢+1 ) Aks) Trace(['Akl ’ ‘Aks ) 'Al])
=1 u=1 kil ;
=t T T

In other words, for the product II and the distinguished variable z;, if we compute

Trace([Ag, - - - Ag,, Ai]) by letting

Wit Ry

(A, All=| = . |, (5.16)
kil :
B bk

kil kl

kil kil
Py pq Pq

then we get Y 1<p,g<p fipy hié! which leads us to the syzygy module element ) 1<p.q<p Ky
1<i<l<n 1<i<l<n

By this way the syzygy module element »  1<pg<u /i’;qle’;ql can be computed which de-
1<i<l<n

pends on the distinguished variable z; and the term II.

Definition 5.1.12. In the above setting, the syzygy of 7 (D 1<pasp kkilekily € K[C]™

pa Epq
1<i<i<n

from Lemma is called the trace syzygy of 7 with respect to the distin-

guished indeterminate x; and the term II. We shall denote this trace syzygy by

Tz,

Corollary 5.1.13. Let II denote 28 € T" and o € Ny.. Then the trace syzygy T s, s
(0, ...,0) € K™

Definition 5.1.14. A polynomial Tkl from 7T is called a rewritable element with
respect to a trace Syzygy if the component ,‘i L of Tr, is a non-zero constant from
the field K. A polynomial 7% Toy U from T is called a redundant if the polynomial 7 pq is in
the ideal (7 \ {72l})).

Example 5.1.15. Let O denote the order ideal {1,x1} C K[zq,xs]. Its border is
00 = {xg,xlxg,x%}. We compute the vanishing ideal of the O-border basis scheme
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Z(Bp) with their arrow degrees by the help of the ApCoCoA package bbsmingensyz.

Arrow degree(1,1) Arrow degree(2,1)
71112 = C13C21 — C12 7'1122 = —C11€13 t C13C22 — C12C23
Arrow degree(0,1) Arrow degree(1,1)

12 12
Ty1 = C21C23 + C11 — Ca2 Toy = —C13C21 + C12

We let II = xyx9 which corresponds to the product of the generic multiplication
matrices A;A;. (We will explain later why we choose II that way.) Since we have
[A1, As] = —[As, A;], both 21 and x5 as the distinguished indeterminate will lead to
the same trace syzygy. Let x; be the distinguished indeterminate and let us com-
pute the trace syzygy T. 2,2, as we explained. First we compute the trace of the

commutator by using Equation (}5.16)).

12 h12

h
Trace([A;, As]) = Trace( g 1122 ) = hii + hy?.
hai  haj
Then the trace syzygy is Tuima, = €17 + €35 From this equality follows that the

polynomials 77 and 79 are both rewritable elements. Only one of them is redundant.

In Example [5.1.15, which term from T? should we choose to show 7{7 is redundant?
In other words, how should we choose II so that we can get all the redundant elements

in 77 The following proposition gives answers to our questions.

Proposition 5.1.16. Let O C T" denote an order ideal. Let Ay, ..., Ax,, A €
Mat, (KIC]) be generic multiplication matrices with respect to O, where s € Ni and
ki,... ks, 1 € {1,...,n}. Let I denote the term xy, ---xp,x; € T". Let T;fé be a polyno-
mial from T, where k € {ky,....ks}, 1 € {1,....n}\{k1, ..., ks} and p,q € {1,...,u}. Then
we have degW(T]fé) = log(II) if and only if the component “I;fz of Tri, is a non-zero

constant.

Proof. This follows from [Huib09], Proposition 8.3. O

o . k-l o e . .
Definition 5.1.17. Let 7, be a non-trivial polynomial from 7 (see Equation .

The polynomial 77 is called a standard polynomial if

degyy (7,,) = log(zxaity) — log(t,)
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has exactly one positive component. Otherwise, it is called a non-standard poly-
nomial. If the arrow degree vector has no negative entries, then it is said to be of
non-negative arrow degree. Otherwise, it is said to be of non-positive arrow

degree.

Example 5.1.18. (continues) Recall Example [5.1.15| where the vanishing ideal of
the O-border basis scheme Z(Bp) is generated by the following elements:

Arrow degree(1,1) Arrow degree(2,1)
T11 = C13C21 — C12 T2 = —C11€13 + C13C22 — C12C23
Arrow degree(0, 1) Arrow degree(1,1)

To1 = C21C23 + C11 — C22 Tog = —C13C21 + C12

Since all the polynomials in 7 have the same upper index, we omit the upper index.
We want to find all the redundant and rewritable elements in 7. Then by Proposition
5.1.16] we need to compute the trace syzygies whose arrow degrees are the same as
the arrow degrees of the elements of 7. Recall that in Example the trace syzygy
is Tyywyzy = €11 + € for arrow degree (1,1). From this equality follows that the

polynomials 71 and 79 are both rewritable elements of 7T .

Next we consider the arrow degree (0, 1). Then we have log(IT) = (0,1) i.e., IT = 5.
By Corollary [5.1.13] we have Ty, = (0,...,0) € K™.

The remaining arrow degree is (2,1). Then II is x?xy which corresponds to the
product of the generic multiplication matrices A;A;.As. By Lemma [5.1.2] we have the

following equations.

Trace([.Az, Al]Al + .A1 [./42, Al]) = 2Trace([A1, AQ]Al)
= Trace([Al, AQ]Al + .Ag [./41, Al])

Therefore choosing either x; or x5 won’t change the trace syzygy. Let x; be the distin-

guished indeterminate and let us compute the trace syzygy T,» as we explained.

x2,T1

First we compute the trace of the commutator by using Equation ([5.16)).

12 12
h’ll h12

12 12
h21 h22

Trace([A%, Aj]) = Trace( ( > Ap) = clgh%f + czghég + h}%

Hence the trace syzygy is Ty zpz = C13€37 + €23h33 + ej3. From this equality follows
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that the polynomial 795 is rewritable by {71, 722 }. From the equality 77 = —795 follows

that 717 and 715 are redundant. Then the ideal Z(Bo) is generated by the set {7o1, 722 }.

Lemma 5.1.19. Let II denote the term xf‘x? e T", where o, B € Ny. Then the trace
syzygy Tz, is the same as the trace syzygy T,

Proof. If the exponents of x; and x; are both 1 i.e., Il is x;x;, then the claim follows
from the equality [A;, A;] = —[A;, A;]. Assume we have o, f > 1. If we choose z; as
the distinguished variable, then by Lemma [5.1.2| we have the following.

A Ay A A = (A AJAL AA, - A) (5.17)
(A A AL A A, - A -
(A A - Al AL A

If we we choose z; as the distinguished variable, then by Lemma we have the

following.

(A AA; - A Al = ([Aj AJA - AA; -+ Aj) (5.18)
(A AilAj, AJA; -+ Aj)

Since the trace is invariant under the cyclic permutation of the matrices, the traces
of the matrices in the Equation (5.18) and in Equation (5.17)) are the same. Thus we
have Tn,mi = TH,xj' ]

Remark 5.1.20. Proposition |5.1.16/helps us to determine the rewritable elements (see
Definition [5.1.12)) with respect to a trace syzygy. First we recall how one can compute
the arrow degree of an element of 7. Let T;fé be polynomial in T, where k,[ € {1,...,n}

and p,q € {1, ..., u}. Then we have

degw(rfé) = log(zat,) — log(t,).

By Proposition the component /i’;é of T4, is @ non-zero constant if and only if
log(IT) = (log(wpaity) — log(ty)) = degy (751). Since II is a product of indeterminates,
Proposition implies that we should choose every t,,t, € O such that the vector
log(IT) is in N™. Thus the only rewritable polynomials with respect to trace syzygies
are the ones that are of non-negative arrow degrees (see Definition . Let T{fé eT
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be a redundant polynomial of non-positive arrow degree. Even if TI% is redundant, the
component /{’;fl of a trace syzygy is never a non-zero constant.

Moreover, at least two components of log(Il) must be larger than zero, since the
commutator operation needs at least two different generic multiplication matrices for a
non-zero result. Thus for a non-standard polynomial from T[]fé € T with non-negative
arrow degree the trace syzygy contains a non-zero constant /{’;f]. Therefore by finding
the non-standard, non-negative arrow degrees of the elements of 7, one can compute

every rewritable element with respect to trace syzygies.

Definition 5.1.21. Let © C P be an order ideal. Let By denote the O-border basis
scheme. Let o denote the monomial point (0, ...,0) € Bp.

a) We call the generic multiplication matrices we get by evaluating (ciq, ...., ) at
0=(0,...,0) € By as simplified generic multiplication matrices. We denote

the simplified generic multiplication matrix we get from a generic multiplication
matrix A by A’

b) If we evaluate the polynomials £}/ € K[C] at o, which is a component of the trace
syzygy Tz, in Equation (5.8]) and if we let Ty ,, denote the result of this process,
then the non-zero components of T’y ,,, will indicate the rewritable elements with

respect to Try,,. We call T'r,, as simplified trace syzygy of T.

In particular, one can compute T’ ,, without computing the whole trace syzygy

Tr . Recall that we started our computation of Ty ,, with

kil il
s h/lqi LIS h/l;l/
kil 7 kil
Trace( g Ay - A, o A Ay = g Ko Tty € K[C, H].
=1 kil kil 1<p,g<p
iy - b, 1<i<l<n

(5.19)
In Equation (5.19)) by replacing the multiplication matrices

Apyy oo, Agy 1 As A

i1 0t

s

with the simplified multiplication matrices without changing the entries from K[#], one
can easily find T'y,,. The advantage we get by using simplified generic multiplication
matrices is as follows. If the computation of the trace syzygy T ., cannot be performed
or takes too long by computer, then computing Ty, will give us the rewritable elements

with respect to T, faster. In the next example we compute the trace syzygies of the
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defining equations of box border basis scheme Bp(22). The trace syzygies of T give all

the redundant elements from 7.

Example 5.1.22. Let P denote the polynomial ring K[zq,xs]. Let B(2,2) denote the
order ideal {1, z1, zo, 122}. The border of B(2,2) is OB = {3, 23, x123, 2372}, so that
in our terminology we have t; = 1,ty = 1,13 = Tg,ty = T1T2,b0y = T3,by = 12, b3 =
r175 and by = x27. The arrow degrees of the elements of T (see Definition can
be calculated as d = (dy, dy) = degyy, (zyt,) —degy, (t,). By using the ApCoCoA package

bbsmingensyz we compute the elements of 7 with their arrow degrees.

Arrow degree(2,1)

T2 = C11C32 + C13C42 — C14

T34 = C23C32 — C31C34 — C34C43 + C33C44 — C14
Arrow degree(1,2)

T3 = C12€21 + C14C41 — C13

To4 = Co2C23 — C21C34 — C24C43 1 C23C44 + C13
Arrow degree(2, 2)

T4 = C12C23 — C11C34 — C14C43 1+ C13C44

Arrow degree(1,1)

Tog = C21C32 + C23C42 — C24
T33 = C21C32 + C34C41 — C33
T4a = C34C41 — C23C42 — Co4 + C33

Arrow degree(0, 2)

T3 = C21C22 1 C24C41 + C11 — Ca3
Arrow degree(2,0)

Tg2 = C13C32 1+ C33Ca2 + Ci12 — C34
Arrow degree(1,0)

Ta2 = (3241 1 C42C43 + C2 — Caq
Arrow degree(0, 1)

T43 = C21C42 + C41C44 + C31 — C43

Note that 7 has non-standard polynomials which have non-negative arrow degree and

there are no polynomials of non-positive arrow degrees. The non-standard arrow degrees
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are (1,1), (2,1), (1,2) and (2,2). For every non-standard arrow degree, say d, we

compute the corresponding trace syzygy.

i)

ii)

d = (1,1) : The arrow degree d is equal to log(xixs). Then let IT denote the term
T172. By Lemma we have [A;, As] = —[ Az, A;]. Then we can choose x; as
the distinguished indeterminate and compute

Trace([Ay, As)) = Tog + T33 + T4 = 0.

Hence the trace syzygy is Ty 2,2, = €22 + €33 + ess. The polynomial 744 is a
rewritable element with respect to the trace syzygy T4, 4,,2,. It is rewritable by
733 and Ty9, since we have

T4 = T2 — T33 (5-20)

d = (1,2) : The degree d is equal to log(x,23). Let II denote the term z 3. Let

us choose first x; as the distinguished variable.

Trace([A1, A2) Az + Az Ay, As]) = 2Trace(Az[ A1, Ag])
= 2Trace([A;, As]As)
= 2(c11has + ca1hss + carhsy + c13ha
+cazhag + c33haz + Pz + hag).

By using Equation ((5.20) we get the following trace syzygy.

Toia22) = C11€22+ 21630 + Car€34 + Cr3€0

+Co3€49 + C33€43 + €13 + €94.

Note that if we choose x5 as the distinguished variable, then we will have the

same trace syzygy as T as the following equation shows.

a:lzv%,:vl

Trace([Az, A1] Ay + Ai[ Az, As]) = Trace(Az[ Ay, As])

After the next case, we give the redundant element of 7, which we get from this

step.
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iii) d = (2,1) : The arrow degree d is equal to log(z2x,). Let IT denote the term x2zs.

We choose z; as the distinguished variable.

Trace([Ay, As) A1 + As[Aq, A1]) = Trace([Aq, As)Ay)
= 2(caohos + c32h03 + Caohog + Coshas
+c3ahas + cashas + hio + hag).

By using Equation (5.20)), we get the following trace syzygy.

To2000, = (Coz+ Caa)ean + C32€23 + Cagas + Cos€ao

+C34€43 — Caa€44 + €12 + €34.

Note that if we choose x5 as the distinguished variable, then we will have the

same trace syzygy as the following equation shows:

Trace([Ag, ./41]./41 + ./41 [./42, ./41]) = 2Trace([A1, AQ]A]_)

We have the following trace syzygies of T .

Torzoz = €20+ €33+ € (5.21)

Toia2er = C11€22+ Ca1€32 + Car€34 + Cr3€m (5.22)
+C23€42 + C33€43 + €13 + €24.

Ta2ap0, = (Coz+ Caa)€an + C32€23 + Cagos + C21€42 (5.23)

+C34€43 — C44€44 + €12 1+ €34

From Syzygy (5.21)), it follows that o9, 733, T44 are all rewritable and one of them is
redundant. Since kg3 is zero in both T, 42 o, Ty2,, 4, , We can say 733 is redundant.
From Syzygy (5.22)), it follows that 713 and 794 are rewritable. Since k13 is zero

in Syzygies (5.21]) and (5.23)), 715 is redundant. Finally, from Syzygy (5.23)), it
follows that 715 and 734 are rewritable. Since k15 is zero in the Syzygies ([5.21])
and (5.22)), 715 is redundant. Thus the polynomials 795, 713 and 733 are redundant.

2,.2

iv) d = (2,2) : The arrow degree d is equal to log(x3x3). Let IT denote the term z3x3.
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The trace is invariant under cyclic permutations. Then by Lemma [5.1.2] we have

Trace([Al.AlAg, AQ] = TI&CG([AQ, Al]AlAQ + .Al [Al, AQ]
= Trace(A;[Ar, Az Ax + A1 Az [ Ay, As)
= Tl"aCe([.A1A2A2, ./41]

Thus choosing either x; or x5 will lead to the same trace syzygy. Let x; be the
distinguished variable. In this case let us compute the trace syzygy by using the

simplified multiplication matrices.
Trace(.A’l [.A1, ./42]./4/2 + .AllAlz [Al, AQ]) = T14-

The simplified trace syzygy is T'm,, = eus. Thus 74 is the rewritable ele-
ment with respect to T,z2,2,,. Since the arrow degree degy (714) is larger than
degy (744), degy (T12) and degy, (13) with respect to the ordering <pe, and since
the indeterminates from K|[C] have the arrow degree vector with at least one pos-
itive component, k14 is not a component of Syzygies , and .
Thus without computing the whole syzygy T ,,, we can say that 714 is redun-
dant.

Proposition 5.1.23. Let O C T? be an order ideal. Then Bo is an ideal theoretic

complete intersection.
Proof. This follows from [Huib09], Theorem 11.24. O

Example 5.1.24. (continues) We continue with Example |5.1.22] By Corollary
4.2.17 the (Bo)w is smooth of dimension nu = 8. From i, ii, iii and iv, it follows that
Z(Bo) can be generated by 8 = uv — nu polynomials which is the co-dimension of Be.

Thus Bp is an ideal theoretic complete intersection.

Remark 5.1.25. Let O C T? be an order ideal. In [Huib09] an ordering on the set

arrow degrees
{(d1,d2) | degyy (7pq) = (d1,d2)) dr,dz € Ny, 7pq € T}

is defined in order to find the exact redundant generators of Z(Bp). Let m denote the
monomial x;xt, and let ¢, and ¢, be terms from the order ideal. The main idea of

this ordering process depends on the fact that there exist a power s € N, such that
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tr, = x5 is in O and there exists a term ¢, € O such that a non-standard arrow degree

has the following property.
(dy,ds) = log(zq29t,) — log(t,) = log(z129t,) — log(t,,)

By using this property, in [Huib09] Proposition [5.1.23| is proved. This is a property
that only holds in special cases. For instance, in Section |5.4| we show that for the box
border basis scheme Bp(s 22y where B(2,2,2) C T3, this does not hold.
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5.2 Jacobi Identity Syzygies

Let A,B,D € Mat,(K[C]) be square matrices, where m € N,. Then the equality
D, [A,B]] + [A, [D,B] + [B,[A,D]] = 0 is called the Jacobi identity. Let Bp denote
an O-border basis scheme and let 7 be the set of defining equations of Bp. As in
the previous subsection, we first reprove some more or less well-known properties of
the generic multiplication matrices with respect to the Jacobi identity, then we give a

definition of a Jacobi identity syzygy of T. Recall that

v: P KlCl(-dy) — I(Bo) (5.24)
1<p,g<p
1<i<i<n
kl kl
epq qu

is a surjective graded K|C]-module morphism. The kernel of the map ¢ is the syzygy
module Syz(7T). The syzygy module Syz(7T) is a homogenous module with respect to
the arrow grading. Moreover, let the set H denote a set of further indeterminates
{ni3, ..., hEL, ..., A7) where the cardinality of the set 7 is m. The map
0:K[C]" — K[C][hi}, ... b, -, B D™ = K[C)[H]
kl

ki
€pg > g

is an injective K[C]-module morphism. Let O C T"™ denote an order ideal. Let
Ay, Ai, A € Mat,,(K[C]) be generic multiplication matrices with respect to O, where
k,l;m € {1,...,n}. Then the matrix

N hiE o bk LR L)
ml ml mk mk kl kl
A hk o bk hiih hiil,

is an element of Mat,(K|[C, H]). For i,j € {1, ..., u} in position (7, 7) of this matrix is
a polynomial in K[C,H], which is as follows.

ml ml mk mk kl kl
[ U hELh

el | 1 o r [l relnAL ] 0 s s [l e A, | 2 e

ml ml mk mk kl kl
[ Y A Wk
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(s) f(s)
11 DY 1;11
For s € {k,l,m}, we let A, = .. ¢ |, where fISZ) is either a constant from
U 7
{0,1} or an indeterminate from C. Then Polynomial ([5.26]) is as follows.
m l m
ht f 1(]') hy
l ! . m m . k k .
RNl N I S ARt N N IR O KR O I
mk 0] ml
huj f 7] huj
k m
11y Al 137"
(Rt b | | T [ @i | ] (Ba2n)
(k) Ik (m)
fpj hﬁj jﬁj

Then Polynomial (5.27)) is equal to the following polynomial.

M
1) ym 0)ym k)71 m k)71 m m m
DU i = B ") + () = £ ) + (5 h = £7w) - (5.28)

p=1

Let us denote the K[C]-coefficient of an indeterminate h7:¥ € H as pii* € K[C]. Then
Polynomial ([5.28) is as follows.

mk 1 mk ml 1 ml kl 1 kl
Z Pog Mg+ Pog Nopg + PogPig (5.29)

1<pgsp

The inverse image of Polynomial (5.29)) under the map 6 is

mk _mk ml _ml kl _kl
Z ppq €pq + ppq epq + ppquQ‘ (530)

1<p,g<sp

Then under the map ¢, we have

mk mk Loml | Kl _kl\ k_mk Lml | Kkl _kl
i Z Ppa €pg T Ppq€pa + Ppo€pq) = Z Poq Tpg + PpaTpq T PpaTpg- (5.31)

1<p,q<p 1<p,q<p

Lemma 5.2.1. In the above setting, the vector ZKM@ pgflke;’,}f + pg;leg;l + p’;fle';é 18

an element of the syzygy module Syz(T).

Proof. We show that both sides in Equation (5.31)) are 0. Recall Equation ([5.28). We

: P - : D1m Dym )7 om 57 m
substitute h’;;l with Tllfél in the polynomial Zgzl( fi(p) hpjk— fzgj) hz-pk)—l—( fl(p )hpjl— flgj)hipl )+
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( fig")h’;é. — f;;l)h%). Then we have
a l l k k
S (k= pOrmhy 4 (fi0 e f ety (fimh ek, (5.32)
p=1

Polynomial (5.32)) is in position (7, j) of the following matrix.

ml ml mk mk kl kl

Y e Tip e T, T - T
T A D VS e N 7 S B
T;ﬁl - T/Z]f Tﬁk - TIZZ}C Tﬁ - TSL
= [Ap, [A, Anl] + [As [Ar, Al + [Ans [Ag, Al (5.33)

The Jacobi identity [Ay,[A;, An]] + [Al, [Ak, Am]] + [Am, [Ar, All] is a zero matrix.
Hence the polynomial 7/, (fi(;)T;?k — fé?ﬁ;k) + (f,-(;)Tgfl - flﬁk)ﬁﬁl) + (fi(m)nf} - f;;n)ﬁ’;ol)

which is in the (7, 7) position of [Ay, [Ai, An]]+ [ Al [Ak, Anl] + [Am, [Ak, Al]] is 0. Then

mk mk ml ml kl kLY __ mk -mk ml,-ml kl _kl __
we have SO(ZKWKM Ppq €pq +qu €pq +ppqepq) o Zlép,qéu Ppq Tpq +'0pq Tpq +ppq7—pq = 0.

Thus the vector ), <pa<u pgflke]’?qk + pz;lezzl + p';ée’;fl is an element of the syzygy module

Syz(T). 0

Definition 5.2.2. In the setting above, the vector } 7, a<u pg?lke;’(;k +p;’}1161’;}1[ +p’]§ée’;é €

Syz(T) from Lemma (5.2.1)) is called a Jacobi identity syzygy 7 and it is denoted
by jj;lm

Remark 5.2.3. We note that for the sake of simplicity instead of calling the Jacobi
identity syzygy of the tuple whose elements are the elements of T, we call it the Jacobi
identity syzygy of 7. If it is clear from the context which O-border basis scheme is
used, then we simply call it Jacobi identity syzygy.

Definition 5.2.4. In the setting above, let .Z’;lm be a Jacobi identity syzygy of T,
where k, 1, m are distinct indices from {1,...,n} and 7,5 € {1, ..., u}. A polynomial qul
from T is called rewritable with respect to the Jacobi identity syzygy of T, ji’;-lm if

kL kim
Ppq 18 @ non-zero constant component of T

Example 5.2.5. Let O = {1, 2,22} C K[z, 72, 23] be the order ideal. The border
is 00 = {x3, 19, 371, Tow1, T332, Tox2, 23} and with respect to our notation we have

_ _ 2 _ _ _ _ 2 2
t1 = 1,1y = 1,13 = 271,01 = 23,00 = 22,03 = 2371,bs = x271,b5 = w327,b6 = w277
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and by = x3. We compute the Jacobi identity syzygy J}2* with the ApCoCoA package

bbsmingensyz and the result is as follows.

123

12 12 12 12 13 13 1321 23 _ 23
11 = —C21€13 — C31€13 F C13€51 + C15€37 — C22€13 — C32€13 + C14€

+ 016631 +cires) — e

The polynomial 75 is a rewritable polynomial. In Section ?? we show that it is

redundant, as well.

Lemma 5.2.6. In the above setting, the vector 3, ., pzzk Z}Ik + p;”ql ;,Zl + p’;lq ’;f] has

the arrow degree degy, (3 1<) g<, Premt + phem + prterl) = log(zpmimt;) — log(t;).

Proof. Recall that the map ¢ in is homogenous and we have degy,(ekl) =
degW( 1). Let A, be a generic mult1phcat10n matrix from {A, A;, A, }. By Lemma
the generic multiplication matrlx A is a homogenous matrix. For the entry in
posmon (,p) of As we have degW(f ) log(zst,) — log(t;). For the entry in position
(p,j) of As we have degW(fpj ) = log(xst;) — log(t,). Then for each p € {1, ..., u}, the
following holds.

degy (fi)ep®) = degy (f3) + degy (")
= log(zt,) —log(t;) + log(xmzit;) — log(t,) (5.34)
= log(zrzizmt;) — log(t;)
= log(wit;) —log(ty) + log(wmarty) —log(ts) = degy (fy; efi")

Similarly, we have the following equality.

m k) m m
degy (fWemhy = degy (fVeml) = degy (fiekl)
= degy (fIel))) = log(apzimmt;) — log(t;).

Therefore we have the following equations which gives the desired result.

mk mk ml ml kl _kl
degW Z Ppq €pq +ppq Pq +ppq pq)
1<p,q<p
w

= degy, (O (fSemt — flemky 4 (fiem! — fDemty + (fireh — fimell))
p=1
= log(zrx T mt ) log(t;)
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Definition 5.2.7. Let O C T" denote an order ideal. Let Ay, A;, A, € Mat,(K[C])
be generic multiplication matrices with respect to O, where k,I,m € {1,...,n}. Let

i Al AL € Mat, (K) be the corresponding simplified generic multiplication matrices.
Then the Jacobi identity syzygy jZ’;lm we compute by using simplified generic multi-
plication matrices is called simplified Jacobi identity syzygy and it is denoted by

klm
J,L] .

Simplified Jacobi identity syzygies indicate the rewritable polynomials in 7 as the

next example shows.

Example 5.2.8. (continues) Recall Example[5.2.5where O = {1, x1, 23} C K[z1, 22, x3].
We compute the Jacobi identity by using the simplified generic multiplication matrices

with the ApCoCoA package bbsmingensyz.

J2 = AL [Ag, As]] + [AL, [AL, As]] + [AS, [AL A3l
“RB B0
= (M -h3E ME-hE MY
hit —h33 h33 —h33 h3

Hence the polynomials 75, 755, 725, 722 725, 725, T2, 725, T45 are rewritable polynomials.
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5.3 Segment Border Basis Schemes

Let O denote the set {1, x4, ...,21'} C K[x1,...,z,]. Then O is called the segment order
ideal and Be is called the segment border basis scheme (see Section . We let T
denote the set of defining equations of Be. In this chapter we compute Jacobi identity
and trace syzygies of the defining equations of a segment border basis scheme. Besides,
we introduce a new algebraic method to compute the remaining redundant generators
of the vanishing ideal of the segment border basis scheme (see Propositions and
that cannot be computed by using trace and Jacobi identity syzygies of T .

Our aim in this section is to prove that segment border basis scheme is an ideal-
theoretic complete intersection. We proceed in the following way: First we compute
redundant polynomials in 7 via Jacobi identity syzygies of 7 and then we let T’
denote the set of defining equations of By without the redundant elements that we
computed. Then we compute the redundant elements of 77 via the trace syzygies of T’
and we let 7" denote the set of 77 without the redundant elements that we computed.
Finally, we use our method to compute the redundant elements of 7" and show that the
vanishing ideal of the given segment border basis scheme can be generated by puv —nu
polynomials, where uv is the dimension of the ring K[C], n is the dimension of the

polynomial ring K[z1, ..., z,|, and p is the number of elements in the order ideal.

In Section [5.3.1] we start our computation with an O-border basis scheme where
O = {1,zq,....2""} € K[z, 29, 23] by following our strategy and we prove that the

vanishing ideal of the O-border basis scheme can be generated by pv —npu polynomials.

In Section [5.3.2] we generalize the results of Section to the O-border basis
scheme where O = {1,zy,...,2* '} € K[zy, ..., z,]. In other words, we generalize this
property for an arbitrary segment border basis scheme and we show that the generating

set of the vanishing ideal of an arbitrary segment border basis has exactly purv — nu

polynomials (see Proposition [5.3.14] and Corollary |5.3.15)).

In [Ro09], Corollary 3.13 it is shown that a segment border basis is isomorphic to
an affine space of dimension nu. Hence we show that an arbitrary segment border basis
scheme is an ideal theoretic complete intersection (see Corollary [5.3.17). This is not
a known property of segment border basis schemes. In Chapter [6] we give a different
method to show that given border basis scheme is an affine space and we verify the
result from [Ro09], Corollary 3.13.
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5.3.1 Segment Order Ideals in T?

Let O C Klzy,....,x,] be a segment order ideal. Let the number of the terms in O
be p and the number terms in O be v. Let T denote the generating set <7’1ﬁ | ¢,p =
L.,p, k0 €{1,..,n}) of the vanishing ideal of the segment border basis scheme
Bo. This section is dedicated to show that some of the elements of 7 are redundant
and in fact the vanishing ideal of an arbitrary segment border basis scheme can be
generated by the set (Tpl,f lp=1,..,0u,g=1,..,u—1 k € {2,...n}), which has
exactly puv — np elements. We shall denote this set 7,.,. We start with the order ideal
O ={1,zy,...,27} C K[z1, 29, 23] and generalize to a segment border basis scheme in
Klzy, ..., z,)].

Let O denote the order ideal {1,1,....,2* '} C T® Then its border is 00 =
{w3, 29, w371,
ToT1, T3T3, Tox?, ..., 2} } and with respect to our notation we have t; = 1,y = x, ..., t, =
2t by = xg,by = @9, by = w3xy, by = ok, by = w323, bg = w02, ..., b, = x". Recall
that for each border term b; we have ¢; = (¢, ..., ¢4;). The generic multiplication ma-

trices are as follows.

Al = (6? " a| 6577; Cg;H-l) (535)
Ay = (c5 | el |-, ] ¢5,) (5.36)
Ag= (e e |- ] e5y) (5.37)

Remark 5.3.1. The entries of Ay and Ajz are from C\{c1 9,1, ..., ¢u2,—1 }- In particular,

+1 and 0 are not among the entries of As and Aj.

Lemma 5.3.2. The elements of the set {Tfj?’ li=1,..,u—1,j=1,...,u} are redundant
generators of the vanishing ideal Z(Bp). That is, if we let T' = {T]}QQ, T}}q?’, Ti?ilq, | q,p =
1,...,u}, then the vanishing ideal Z(Be) is generated by T'.

Proof. We compute the Jacobi identity matrix.
I = [As, [Ar, As]] + [Ag, [Ar, As]] + [A1, [Az, As]]
hiz ... hﬁ hid ... h%i % ... h%ﬁ
= [As, | ¢+ 0 [T A o s AL s ]

12 12 13 13 23 23
[ ) [ ) A )

By considering the generic multiplication matrix 4; (see (5.35])), we can deduce that
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the Jacobi identity matrix has the following form.

W2 h2 R
N T e | P C o T (5.38)
12 12 13 13
hul h/m hul huu
Cluhi?i . ch,hfﬁ#_l >t —ciyh?3 + clyhﬁ)
+ : : : (5.39)
-1
Cw/hisl Cul/hisu—l (i vhigi
hi3 . hi . ht 0
23 23 23 23 23 23 23
23 23 23 23 23 23 23

As we showed in Equations and all entries of the matrices Az and A; are

from the set {c11, ..., C1y—1, ..o, Clu—1, ..., Cuv—1}. Hence the entries of Matrices and
are polynomials of degree larger than 1. Additionally, only the entries of Matrices
and are polynomials with the top index (23). Since we want to show that
the set of the polynomials {7* |i =1,...,u—1,j = 1,..., u} is redundant, we focus on
the first  — 1 columns of Matrix (5.40)) and examine the following Jacobian identity
syzygies of T. We consider the first row of Matrix (5.40)). For each k € {1,..,u — 1}
we have the following Jacob identity syzygy of T.

123 __ 12 12 12 12 13 13 13 13 23 23
jlk - § P11 — E ppkepk+ E P14€1q — E ppkepk+clV€uk+elk+l (541>

1<g<sp 1<psp 1<gsp 1<psp

Hence for each k € {1, .., u — 1} the polynomial Tf?k +1) 18 rewritable as follows.

23 _ 12 12 1212 13 13 13,13 23
Tk+1 = _( E P1gT1q — § PpkTpk + § P14€14 — § PpkTpk + ClVT;Lk) (542)

1<gsp 1<p<p 1<gsp 1<p<p

We focus on the rest of the rows of Matrix (5.40). If we let [ € {2,..., u}, then from
matrix J123, for each k and [ we get the following Jacobi identity syzygy.

123 _ 12 12 12 12 13 13 13 13 23 | 23 23
T = E Pig €lg — E PpkCpk T+ E Pig €lg — E PpiCpk T Clw€pp + €715 — €
1<gsp 1<p<p 1<gsp 1<p<p

(5.43)
Hence for each index [ € {2,..,u— 1} and k € {1, .., u— 1}, the polynomials TZQ(?;H_I) are
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rewritable as follows.

7—1231]@ le+1 — _ Z /0127—[112 Z )012 12+ Z p137_123 Z p13 13+Cl1/7- ) (544)

1<g<p 1<p<p 1<q<p 1<p<p

From Equations (|5 and (| - ) follows that 73, ..., 723 are rewritable. Moreover,

» Tp—1p
P, ..., o1, are either 0 or constants in the Jacobi identity syzygies. Thus the elements

of the set {73, .. } are redundant and contained in the ideal generated by the

’ulu
set 7' = {r2, iy | 4.5 =1, u}. O

Remark 5.3.3. Note that by Lemma we can not conclude whether 773 is re-
dundant of not where k € {1, ..., u}.

Lemma 5.3.4. Let O denote the segment order ideal {1,21,...,2"7'} € Kxy, ..., z,].
Let KI[C] be the polynomial ring where C = {c11, ..., ¢ }. The arrow degree vector of

each c¢;; € C has at least one positive component.

Proof. The border of the order ideal O is 00 = {x3, T, T3T1, ToT1, T3T3, L2273, ..., Th' }.
Let ¢;; be an indeterminate in C where degy, (c;;) = log(b;) —log(t;) = (i, ..., d,) € Z™.
As a result of the shape of the order ideal and its border, for each d; € {d,...,d,}
we have d; > 0 and there exists at least one index € {1,...,n} such that d; > 0. Let
g € K[C] be a homogenous polynomial of the arrow degree (uy, ..., u,). Then for each
ur € {ug,...,un}, we have u, > 0. If we have u; < 0, then there exists at least one
indeterminate, say ¢;; € C with the arrow degree (dy, .., dg, ...,d,), such that ¢;; | c,
where ¢ € supp(g), where d; < 0 and dj > 0. Since none of the indeterminates in C

has a negative entry in the £ component of their arrow degree, u; > 0 follows. O]
Remark 5.3.5. We use the term ordering Lex with 1 >ty ... >1ex Tn-

Lemma 5.3.6. Let O denote the segment order ideal {1,zy,...,2" "'} € K[ay, ..., z,).
Let le and le be non-standard polynomials from T’ with non-negative arrow degrees
where 7% # 7% and degy, (T)%) >pex degW( "). If there exists a term I such that

log(IT) = degW( ) then the entry Ii of the trace syzygy Tr ., is 0.

Proof. We have degy, (7)%) >1ex degyy (7.F). Then by Proposition |5.1.16} the entry %
of the trace syzygy T, is not a constant i.e., it is either 0 or a polynomial from K][C].

Suppose for contradiction, it is a non-zero polynomial from K|C]. By Lemma|5.1.6} “ the

ke 1k | 1k
Prq Pq +T

same arrow degree as log(H) — log(zt“""x;,). By Corollary [3.2.7, the arrow degree of

polynomial x is homogenous with respect to the arrow grading and has the



96 5. Trace and Jacobi Identity Syzygies

T;]; is log(x1zxt,) — log(t,). As a consequence of the shape of the order ideal we get
deg(7pn) = log(z1xxty) — log(ty) = log(zixy) — log(xi™") = log(x{ " ay).

Since the polynomial TI}]; is a non-standard polynomial with the non-negative arrow

degree, we have 0 < (¢ — p+ 1) < p. Therefore we have

degyy (fipg) = log(Il) — degy(7,y)

= log(z}“"ay) —log(z{ " ay)

= (M_W_Q+paoa>0)

By ordering the following arrow degrees with respect to Lex where 1 > x9 > ... > z,,,
we get

degW (T;l;) >Lex degW(Tu{Z)’

we get the inequality ¢ —p+1>p—w+1ie, p—w—q+p <0, where s} € K[C].
This contradicts to Lemma [5.3.4] which states that in every arrow degree vector of a
homogenous polynomial from KJ[C] there exists at least one entry in the arrow degree

vector that is larger than 0. Thus the entry /1110’; is 0. O

Proposition 5.3.7. Let O denote the segment order ideal {1, x1, ..., z" '} € Ky, ..., zn).

The elements of the set {TI}/’j | p=1,..,u,k = 2,...,n} are redundant generators of
I(Bo).

Proof. We will prove that for each order ideal term ¢, € {t,...,t,} the polynomial TL})Z
is redundant. From Corollary and from the fact that each order ideal term ¢, is

297" follows that the arrow degree of Til’j is

degy (1F) = log(zfzy) — log(z{* ") (5.45)
= log(ﬁ_wﬂmk)'

The rewritable polynomials that are computed via trace syzygies of 7 have non-
standard positive arrow degrees. Since the index w — 1 is smaller than pu, the integer
(4 —w+1) is larger than 0 and the polynomial Tiz is non-standard with non-negative
arrow degree. Then by Proposition [5.1.16] there exists a trace syzygy Tria,, where II
denotes the term 2 "'z, such that mi’; is a non-zero constant in Ty ,,. That is, the

polynomial Tulj’; is rewritable. Note that by Lemma |5.1.19| choosing either x; or x; as
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the distinguished indeterminate will give the same trace syzygy.

From the fact that IT = 2% “"'a;, follows that A; and A, are the only generic
multiplication matrices used to compute the Trace[A; - - - A; Ay - - - Ay, Al] which leads
to the trace syzygy Tr.,. Then for each l 6 {2,...,n} \ {k} the entry . of the trace
syzygy Tra, is 0. Thus the polynomial 7% is rewritable by {7, ..., uu} \ {75} By
using Equation (5.45)), for each w € {1, .. ,u} we can order the arrow degrees of the

polynomial in the set {7iF, ..., 71*} as follows.

o Tup
degW( ) <pLex ' <Lex degW(Tllj) (546)
We compute the trace syzygy T,z ar = Yo1<pcp1 Fpnon, Where degyy (147) = log (121,
to get
Tﬁﬁ € (rik .. .,Tiﬁ_l).

From Equation - we get degy (7,%) <pex degy (71%,,) = log(zizy). We compute

the trace syzygy Tozu, o0 = 21<pacu1 Fpe€pa- Then by Proposition (5.1.16} the com-

ponent /1# 1, 18 constant in the trace syzygy T,z,, ,, and by Lemma [5.3.6, for each
index p € {1,...,u — 1}, the component /@1 is 0 in the trace syzygy Txll,k 2.+ Oince
Tan € (Tif, oy TN 1} holds, we have T € <7’111k, <y Thk 1) As we proceed this way for
each w € {1,...,u} we get 727 € (7}, ..., 7}%_|). Thus the polynomials 7{}, ..., 7!% are
redundant. O

Corollary 5.3.8. The elements of the set {1}2 pw | p =1,...,u} are redundant gen-
erators of Z(Bo). That is, if we let T" = {7} Toq> pq, #p Slp=1,..,0q=1,....0—1},
then the vanishing ideal Z(Bp) is generated by T".

Proposition 5.3.9. The set {70 | ¢ =1,...,u} is contained in the ideal ({77, 7,2
p=1.,uq¢=1,..,u—1}) =Z(Bp). In particular, if the index p > 0 holds, we have
the following.

q—1 i—1 i—1
Tog = Z( i T i) T ez T s e ) (5.47)
Jj=0 j=0

i

=1
pn—1 H—1 H—1
12
+ <_Cu (21'—1)[2 T(i+5) (q+j71)] + Cpi 7—(iﬂ') (q+j1)]>

i=q j=1 =0
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If the index g = 1 holds, Equation has the following form.

p—1 I3 H—u
Ti? - Z < n(2i—1) ZTH'J ) (gg—1)) T Cu2i ZT(H-] ) (q+i— 1)]) (5.48)
i=1 ]:1 j =0

Proof. Given p — 1 as the largest value for the indices ¢ — j — 1 and ¢ + j + 1. To
begin, let us consider the first part of Equation ([5.47)), whereas the index ¢ > 1 and

the indices i, j are fixed values.

B = sl Aks — AN
= e j A1 Az el

€q—j—1

—ei_jAsAsel)

q—j—1 g—j—1

For each i € {1,..,¢ — 1}, the polynomial 77  is the (i — 1) summand of the sum

Zg 07—(12 ) (g—5—1)° By using Equation (5.35]), we determine the polynomial 7'1 (g—i)"

12 t t
Tl( 9) = Gi_jA1A2€qT,Z- - 62'_3'./42./416(;;1

C1vCu2(q—i) — C12(q—i+1)
For j # (i — 1) the summands of ZJ 0 T(,L * ) (a—j—1) have the following shape.

—e;_jAs A€l

= Ci—juCu2(g—j-1) T Cli—j-1)2(¢—j-1) — Ci2g

12 _
T(i—j) (q—j—1) — G- JAlA?eq Jj—1 g—j—1

Therefore the sum 3% =0 Tl ) is equal to the following.

(q—j—1)
i—2
D ClimiyrCuzla—it)) + CLoCu2(g—i) + Climjm1)2Aq—i-1) ~ Climi) A=) — CL2(g—i+1) (5.49)
7=0

We want to show that Equation has the following shape.

i—1

Z T(z j) (g—i—1) — Z Ci—j)vCu2(g—i+1) — Ci2q

Let us consider the j* summand of Equation ([5.49) which is homogenous of degree one
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with respect to the standard grading where 57 <7 — 1.

Cli-j=1)2(a-5—1) ~ Ci=5) 2(a—3) (5.50)

Now let us check the (j+ 1)™ summand of Equation (5 which is homogenous of
degree one with respect to the standard grading where 7 +1 < i — 1, as well.

Cli—j—2)2(q—j) — Ci—j—1) 2(a—j—1) (5.51)

If we take the sum of Equations (5.50) and (5.51)), then the positive term of Equation
and the negative term of Equation (5.51)) cancel each other out. Therefore the
sum Z] o T(,L * ) (¢—j—1) has the following form.

i—2

Z Cli—j) vCu2(g—i+1) T C12(g—i+1) — Ci2g-

J=0

Moreover, we showed that for j = ¢ — 1 the summand of the Equation (/5.49)), which is

homogenous of degree one with respect to the standard grading, is the following.

—C12(g—i+1)-

This proves our claim that Equation (5.49) has only one linear summand. Thus the

sum

i—1 i—1
Z T(lz'2—j> (¢—j-1) = Z Cli—g) vCu2(q—i+1) — Ci2g (5.52)
3=0 j=0

gives the desired result. Similarly, we identify the summands of 3"~ =0 T(lf ) (@mje1):

S13 ) CCua(g—i-1 T Cr2(g-itd) - ifj=1v-1
(Y Ci—jvCu2(g—j—1)—1 — Cli—j—1)2(q—j—1)—1 T C(i—j) 2(q—j)—1 otherwise

One can also show similarly that the equality

[y

11—

ZT (a—5-1) Cli—j) vCu2(g—it+1)—1 — Ci2g—1- (5.53)

<.
Il
]
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holds. Now we compute the first part of Equtaion (5.47) i.e.,

-1
Z( 21127’ J)qjl)—i—cMQZZT q]1>. (5.54)
i=1

We plug Equations (5.52)) and ((5.53)) in Equation (5.54). Then we have

i—
E ( E —Cpu (2i—1)C(i—j) vCpu2(q—i+1) T Cu2iCli—j) vCpu2(q—i+1)—1 + Cp(2i—1)Ci2q — ci?q—lcu%) .

=1

For every index ¢ = 1,...,q — 1, if the index j is equal to i — ¢ + 1, then the following
holds.

—Cu (2i-1)C(i—j) vCp2(q—i+1) T Cu2iC(i—g) vCu2(q—i+1)-1 = 0

Since ¢ is larger than 1 and j < ¢ — 1, for every term —c, (2i—1)C(i—j) vCu2(g—i+1) there is

Cpu2iC(i—j) vCu2(q—i+1)—1 Which cancels that term. Therefore the following equation holds.
q—1 i—1
(Z —Cu (2i—1)Ci—j) vCp2(q—i+1) T Cu2iC(i—j) v Cp 2(q—z’+1)—1> =0

-1 i1
Consequently, the sum » 7", <—cu(2i,1)[2j:0 Tid) (i) ‘*’Cu?i[zj 07(13 N 1)]>

is equal to the following.
q—1

Z Cu(2i-1)Ci2q — Ci2q—1Cp2i (5.55)

=1

Now we compute the second part of Equation (5.47)) i.e.,

p—1 —1 p—i
Z( p(2i-1) ZT(H‘J)(Q'H 1] + Cuai ZT( ) (g+i—1) ) (5.56)
1=q 7=1 =0

We follow the same route as we did for computing the ﬁrst part of Equation (5.47]).

12 13

Let us fix = and j and compute T(Z+])(q+j 1) and J lT(Z_H)(q_H 1)

12 _
Tiij i1 = €i(Ardr — AsAr)e];
t
= €i+jA1A26q7:|—j—1 — e A Aie, iy

= CitjuCu2(g+ji—1) 1 Clitj—1)2(q+i—1) — Ci+j2(q+j)

As in the previous summand, the degree 1 homogenous components (with respect to the
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standard grading) of the sum Z;Zi T2y (a1y—1) form a telescopic sum (see Equations

(5.50) and (5.51f)). Therefore this sum is equal to the following.

n—1i

Z CitjvCu2(gtj—1) T Cizq — Cu2(q+u—i)- (5.57)
=1

13

Similarly, the sum Z;:f Tiivg) (qj—1) 1S equal to the following.

n—1i

D CitjuCunigri-n-1+ Cisg1 = Cua(giu—i)-1 (5.58)
j=1
We plug Equations (5.57)) and (5.58) in Equation (5.56)). Then we have
pn—1
D = Cu@i1)CitvCunigri-1) F Cu2iCitirCuz(gri-1)-1
i=q

—Cpu(2i-1)Ci2q T Cp (2i-1)Cp2(g+u—i) T Cu2iCi2q—1 — Cp2iCp2(q+p—i)—1-

As in the first part, we have

pn—1

E :_Cu (2i—1)CitjvCu2(g+j—1) T Cu2iCitjvCu(g+j—1)—1 = 0
i=q

Moreover, for every ¢« = ¢+ 1, ..., u — 1 the summand

~Cu2iCu2(gtp—i)-1 T Cu(2i-1)Cu2(g+u—i)

is equal to 0. Therefore Sum (5.56)) is equal to the following.

pn—1
Z —Cu(2i-1)Ci2g T Cu2iCi2q—1 — Cu2qCu2(p)—1 T Cu(2g-1)Cp2(p) (5.59)
i=q

By summing up the results ((5.55)) and (5.59)), we conclude that Equation ([5.47)) is equal
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to the following.

pn—1
E : —Cu(2i-1)Ci2g T Cu2iCizg—1 — Cu2qCu2(p)—1 + Cu(2g-1)Cp2(n)
i=q+1
q—1
+ E Cp(2i-1)Ci2q — Ci2q—1Cpu2i
i=1
pn—1
= E : —Cu(2i-1)Ci2g T Cu2iCiz2q-1 — Cu2qCu2(u)—1 T Cu(2q-1)Cu2(n)
i=1
_ tr tr 23
= epAaAze, — e Az Ase) =1,

]

Corollary 5.3.10. Let P denote the polynomial ring K|z, zo, x3]. Let O denote the
order ideal {1, x1, ....,x”_l} where with respect to our notation we have t; =1,...,t, =
xﬁ‘_l. Then the vanishing ideal of the O-border basis scheme is generated by the set

{rl2 7181 p=1,.. u,q=1,...,u — 1} which has exactly pv — 3 polynomials.

pq’ "pq

Proof. 1t follows from Corollary Lemma and Propostion [5.3.9 that Z(Bo)

2718 | 'p =1, pu,q = 1,..,u — 1}). This generating set has

is generated by ({77, 7,
2 - (u—1) polynomials. By Lemma [2.5.6] the number of border elements v is equal

to 2+ 1. Therefore pv —3pu = 2u+ 1)p—3u=2-pu- (u—1). O

Example 5.3.11. Let O denote the order ideal {1, 1,27} C K[z, xq, x3]. Then the
border of it is 00 = {x3, To, 1371, ToT1, T377, 227, 25 } and with respect to our notation
we have t; = 1,1y = x1,t3 = 22,b; = x3,by = X9, b3 = X371, by = Tox1, by = 1377, bg =
x223 and by = z3. The dimension of the ring K[C] is 27 and the dimension of K[y, zo, 23]
is 3. Then we have puv —np = 21—9 = 12. Our aim is to show that the ideal Z(Bp) can
be generated by puv —nu = (3-7) — (3 -3) = 12 polynomials. The defining equations
of By are as follows:

23 12
T3y = —C14C31 + C13C32 — C24C33 + C23C34 — C34C35 + C33C36 , Tq1 — C17C32 — Ci4,
23 12
Ti3 = C12C15 — C11C16 + C14Co5 — C13C26 + C16C35 — C15C36 , T33 — —C17C32 — C27C34 + Cog,
12 13 _
To3 = —C17Ca2 — Ca4Co7 + C27C36 — C26C37 + C16 , Toy = Co27C33 + C13 — C25,

23 12
Tyy = —C14C21 + C13C22 + Co6C33 — C25C34 , Toy — Co7C32 + C12 — Cog,
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71223 = C12€13 — C11C14 + C14C23 — C13C24 + C16C33 — C15C34 7'3112 = C32C37 + C22 — C34,
7'113? = —C12C17 — C14C27 + C17C36 — C16C37 7'313? = —C17C31 — C27C33 + Ca5,
7213? = —C17C21 — C23Co7 + Co7C35 — Ca5C37 + C15 7‘1123 = C17C33 — C15,
7'115? = —C11C17 — C13C27 + C17C35 — C15C37 7_215 = Co7C31 + C11 — Ca3,
TP = C14Ca1 — C13C22 + C16C31 — C15C32 ,  Tas = C3aC37 + Cag — Cag,
T??:? = —C16C31 + C15C32 — C26Ca3 + CosCaa , TP = C17C31 — Ci3,
722:? = —C16C21 + C15C22 + Co4Co5 — C23C26 + Co6C35 — Ca5C36 7'1122 = C17C34 — C16,
72213 = —C12C21 + C11Co2 — Co2C23 + C21C24 + C26C31 — Co5C32 7'2122 = C27C34 + C14 — Cog,
T??f = —C12C31 + C11C32 — C22C33 + C21C34 — C32C35 + C31C36

By Lemma - for p = 1,2 and ¢ = 1, 2,3 the polynomials . pq,
Lemma |5.3.8 u for and ¢ = 1,2,3 the polynomials 7 3,7'3}(12 are redundant as well. By
using Proposition we show that the polynomials 733, 735, 73 are in ({7?, 73
i,7=1,2,3}).

are redundant. By

23 12 12 13
T3 = C31(7'32 +To1) — 032(7'32 + 7’21) + 0337'31 C34731

23 12 13
T3g = C€31T17 — C327'11 + 633732 C34T39

23 12 13 13 13
Ty = CaiTiy — CTis + Cas(Ti] + Ta3) — Caa(Ti} + 725

Therefore we conclude that Z(Bo) = ({7,2, 7,0 | p =1,2,3, ¢ = 1,2}) and the number
of generators are 2- - (1—1) = 12. Now let us emphasize that the number of elements of
the border 0O is 2u+1 = 7 and n = 3. The polynomial ring K[C] has pv indeterminates.
In our case where O = {1, z;,2?} we have nu = 3-3 = 9. Then we have uv —ny = 12

and it is equal to the number of generators of Z(Bo).

5.3.2 Segment Order Ideals in T"

In this section we generalize Lemma [5.3.2] and Proposition for the polynomial
ring K[xy, ..., z,]. Note that Lemma and Proposition are given for an ar-
bitrary segment order ideal in the polynomial ring K[xy,...,x,]. Let O denote the
segment order ideal {1, z1,...., a2} _1} Then the border of the order ideal O is 00 =
{Zp, .oy Toy Ty, Doy, . :cff Zo, :El} and with respect to our notation we have t; = 1,15 =
Ty, .oty = x’ffl,bl = Tpyoiybpo = To,bp_1 = Ty, by = box1,...,b,_1 = x‘fflxg and

b, = z!. Recall that for each border term b; we have ¢; = (cy, ..., ¢4;) and that for the
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polynomial 7% from 7T, we have k < .

Lemma 5.3.12. The generic multiplication matrixz Ay is as follows.
Av= (e |, el | &) (5.60)
For i > 1 the generic multiplication matriz A; has the following form

Ai =& | enymany b oo | Gty met)) (5.61)
where the index k = (n+ 1) — .

Proof. Since for each t; € O\ {t,} we have z1t; € O, the generic multiplication matrix
A; has the given form. Let ¢; be an arbitrary term from O\ {¢;}. For an arbitrary
indeterminate z; € {xo, ..., z,} we have ;t; = b,—;11 and z;t; = b—i+1)(j—1)(n—1)- Thus
the generic multiplication matrix A; has the form given in . O]

Lemma 5.3.13. The elements of the set {Ti’;l li=1,.,pu—1,j=1,...,u, andk,l €
{2,...,n}} are redundant generators of Z(Bp).

Proof. We compute the Jacobi identity matrix.

I = A, [AL Al + (A [Ar, An] + (A, [Ar, Al
Tf’ln . TIZZ"L Tf{” o Tﬁ’f lell o TﬁlL
= [Ap, | ¢+ - AL s A ]
TLT o T/Z’Z T/’f{” . TL“Z‘ T/ﬁ . Tl]fi

Since the order of the indices m, k,[ does not change the Jacobi identity syzygies of
Tseq, for convenience, we always choose m < k < [. From Lemma follows that
if m # 1, then there is no entry of the Jacobi identity syzygy, which is a non-zero
constant. Thus the Jacobi identity syzygy J™* is useful for determining redundant
generators of the vanishing ideal if and only if m = 1. By computing the Jacobian

identity matrix with the generic multiplication matrix A; (see (5.60))), we have the

following.
1k 1k 1 1
T - Tig T e Ti
N % 7 I R D P T e (5.62)
1k 1k 1 1
T - Tu T o Tug
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Ch,T/]fi . cl,,T/’flu L OO~ + clyrkl)
I : - : : (5.63)
Cuw TRy o Cu T () —cintht)
T{“Ql . T{“Iﬁ . Tﬁi 0
N I v Tf]lo 1'— Tzké . leli 1'— Tfﬁ T{jﬁ (5.64)
Bl Tl

As in Lemma [5.3.2) we focus on the the first 4 — 1 columns of Matrix (5.64) and
examine the following Jacobi identity syzygies. First we consider the first row of the
matrix (5.64]). If we let the index ¢ € {1, .., u — 1}, then we have the following.

=3 pikett = N o+ > pitelt = > phtepi + cuelr + ety (5.65)

1<gsp 1<p<sp 1<gsp 1<p<p
Hence for each i € {1,.., u — 1} the polynomial 77 (i+1) is rewritable as follows.
1k _1k L 1k 101 1l 23
712+1 E P1gT1q — E Ppi + E P14€1q — E PpiTpi + CluTyi ) (5.66)
1<gsp 1<p<sp 1<gsp 1<psp

We focus on the rest of the rows of Matrix (5.64). We let j € {2, ..., u} then from the
matrix J'¥ for each 7 and j we get the following Jacobi identity syzygy of 7.

1kl __ 1k 1k lk 1lc 1 1 1l 1 kl
‘~7]1 § Piq€iq E Ppi i + E PiqCiq— E i pz+cll/€ +€l 15— Clit1 (567)
1<g<sp 1<psp 1<g<sp 1<p<p

Hence for each [ € {2,..,u — 1} and ¢ € {1,..,u — 1}, the polynomials Tl( are

+1)
rewritable as follows.

ki k_1k k_1k 11 11
Ti—1k— ﬂ+1 Z p}q qu Z pl , i T Z p}q qu Z pzln ;ﬂ'cﬂf ) (5.68)

1<g<p 1<p<p 1<g<p 1<p<p

From Equatlons and ( - ) follows that 7%, ..., u 1, are rewritable. Moreover,
o ,pﬂ 1, are e1ther 0 or constants in the Jacobi identity syzygies of 7. Thus the

elements of the set {7}, .. } are redundant and contained in the ideal generated

’ulu

by the set {7}, 72k | i j =1, .., u}. Since this holds for arbitrary k,l € {2,..,n} with

k # 1, the claim 7' = {7} 717 M | i 5 =1, puk <1, k,l€{2,..,n}} follows. ]

U’ l] H]
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Proposition 5.3.14. Let k <. Let By = {bp,, ..., bm,, } be the ordered subset of 0O
such that each border term b,,, € By is divisible by either x) or x;. That is

_ p—1 p—1
By = {x, xp, w120, 01208, 0 Wiy T}
and with respect to our notation we have

-1 -1
bm1 = Iy, bmg = Tk, bm3 = T172y, bm4 = 1Tk, -+ bmg -1 {Ell'lf 7bm2 - IkI/f
I Iz

Then the set {7} | p=1,...,pandk,l € {2,..,n}} is the set of redundant generators
of Z(Bp). In particular, for each q € {1, ..., u} the polynomial Tllfé is redundant as the
following equalities show.

q—1 i—1 i—1
i=1 =0 §=0

7

pn—1 =1 H—
+Z <_ (ma2i—1) ZT(z+] ) (g+j— 1 + Cp (mas+1) ZT ) (g+3i—1) )
i=q J=1 J=0

If q is equal to 1, then the equality has the following form.

pn—1 n—u
kl
Tl = Z ( Cumaia ZTZ+J ) (g+j— 1 t Cu(mai+1) ZTZ+_] ) (q+35— 1)]) (57())

i=1 3=0

Proof. We focus on the set By;. Let the integers k,[ be from {1,...,n} and k # [. If we
consider the map

h:Klxy,.,z, — K,z 2
T; > X

where j € {1,k,l}, and i € {1,...,n} \ {1, k,}, then the set
Bkl U {I ptl } = {bm17 m%,l'éH—l}

can be seen as the border of the order ideal @ = {zy,...,2* "} in K[z, 2}, 7;] under h.
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Thus we let by, 1 denote the term af 1 instead of b,. Now let us recall the construction

of the generic multiplication matrices A; and A; (see Definitions [2.2.4] and [2.3.1]) We
reconstruct A and A; by using By, instead of 0O. Thus we have the following generic

multiplication matrices.

A= (65 || e | ) (5.71)
Ap = (i, Ly |-l Emy) (5.72)
A= (1, CZLQWl) (5.73)

If we apply Proposition [5.3.9 with these generic multiplication matrices, then we get
Equations (5.69)) and (5.70]). Therefore for arbitrarily chosen k,l € {2,...,n} the propo-

sition follows. O

Corollary 5.3.15. Let P denote the polynomial ring K|z, ..., z,]. Let O be a segment
order ideal {1, x, ....,xﬁ“l} and let the number of terms in its border 0O be v. Then

the vanishing ideal of the O-border basis scheme is generated by pv — np polynomials.

Proof. 1t follows from Lemmas [5.3.7 and [5.3.13 and Propostion [5.3.14] that Z(Bp) is
generated by

T p=1,pg=1,p—1 ke{2..n})

This generating set has
(m—=1)-p-(p—1)

polynomials. By Lemma the number of border elements is equal to (n — 1)u + 1.
v=mn-1Du+1
We plug this in the equation pv — nv and the following holds.

pv —np=((n—Dp+p—np=n-1) p-(u—1).
Hence we get the desired result. O]

Example 5.3.16. Let O denote the order ideal {1, 1,2} C K[z, o, 73, 2z4]. Then
the border of the order ideal O is 0O = {xy, 13, T2, 124, T1T3, T1To, T2 Ty, T3T3, TiTo, T3}
and with respect to our notation we have by = x4,by = x3,b3 = 9,0y = x124,b5 =
1173,b = X1T9,by = 234,03 = 23w3,bg = 19,010 = 3. The dimension of the

ring K[C] is equal to 30 and the dimension of K[z, x5, 24] is 4. Then we have
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pv — np = 30 — 12 = 18. We show that the ideal Z(Bp) is generated by the following

polynomials.

12
T32

12
T

12
Too

12
T3]

14
To1

14
T31

Ti = C110C33 — C16,  Top = C210C32 + C1a — Cas (5.74)
7'1122 = C110C36 — C19, 7'2123 = C210C35 + C15 — C28

= C36C310 + C26 — C39, 7'3}13 = C32C310 + C22 — C35

= C210C33 + C13 — Ca6, TP = Ci10C32 — C15

= (210C36 + C16 — C29, 7'1123 = C110C35 — C18

= C33C310 + C23 — C3p, 7'3123 = C35C310 + C25 — C38
7'11{1 = C110€31 — C14, 7'1151 = C110€34 — C17

= C210C31 + C11 — Ca4, 7'2151 = C210C34 + C14 — Co7

= C31C310 + C21 — C34, 7'3151 = C34C310 + C24 — C37

By Lemma [5.3.13] the Jacobi identity syzygies of T indicate that for p = 1,2 and

23 24 .34

g = 1,2,3 the polynomials 772, 75+ 75 are redundant i.e., the following polynomials

are redundant.

23

T

23

T2 =

23

T3 =

23

Tor =

23

Tog =

23

Tog =

24

T

24

Tig —

24

T3 =

24

To1 =

24

Tog =

24

Tog =

pg’ "pq’ pq

C16C22 — C15C23 + C19C32 — C18C33

C13C15 — C12C16 + C16C25 — C15C26 + C19C35 — C18C36
C13C18 — C12C19 1 C16C28 — C15C29 + C19C38 — C18C39
—C13Co2 + C12C23 — C23Ca5 + C22C26 + C29C32 — C28C33
—C16C22 F C15C23 + C29C35 — C28C36

—C19C22 + C18C23 + C26C28 — C25C29 + C29C38 — C28C39
C16C21 — C14C23 + C19C31 — C17C33

C13C14 — C11C16 + C16C24 — C14C26 + C19C34 — C17C36
C13C17 — C11C19 + C16C27 — C14C29 + C19C37 — C17C39
—C13C21 F C11C23 — C23Ca4 + C21C26 + C29C31 — C27C33
—C16C21 F C14Co3 + C29C34 — C27C36

—C19C21 + C17C23 + CoCa7 — C24Co9 + C29C37 — C27C39
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34
11

34
T12

34
T13

34
Ta1

34
Ta2

34
Ta3

C15C21 — C14C22 + C18C31 — C17C32

C12C14 — C11C15 + C15C24 — C14C25 + C18C34 — C17C35
C12€17 — C11C18 + C15C27 — C14C28 + C18C37 — C17C38
—C12C21 + C11C22 — C22C24 + C21Co5 + C28C31 — C27C32
—C15C21 + C14Co2 + C28C34 — C27C35

—C18C21 + C17C22 + Co5Ca7 — C24Cog + Co8C37 — Co7C38

By Lemma [5.3.8] the trace syzygies of 7 indicate that for and ¢ = 1,2,3 the poly-

14

nomials 737, 73}, 73

12

redundant, as well.

12
T13

&

14
T33

are redundant, as well. That is, the following polynomials are

= —C13C110 — €16C210 T C110C39 — C19C310

= —C110C23 — C26C210 T C210C39 — C29C310 T C19
—C110C33 — C210C36 + C29

= —C12C110 — C15C210 1 C110C38 — C18C310

= —C110C22 — C25C210 T C210C38 — C28C310 T C18
= —C110C32 — C210C35 T Ca28

= —C11C110 — C14C210 + C110C37 — C17C310

= —C110C21 — C24C210 T C210C37 — C27C310 + C17

= —C110€31 — C210C34 + Co7

Let Bys denote the set {x3, To, 1103, T179, 1223, T35, 3} where we have by = x3,b3 =
Ty,bs = w173,b6 = 1179, by = x33,b9 = 3wy, b19 = x3. By Proposition [5.3.14] the

following holds.

23
T31

23
T3

23
T33

C32<7'32 + 7’21) 033(7'32 + 7’21) + C357'31 6367'2}5’

—C13C32 T C12C33 — C23C35 + C22C36 — C33C38 + C32C39
CsaT)7 — C33Tiy + Ca5Ty — Ca6Tas

—C16C32 1+ C15C33 — C26C35 + C25C36 — C36C38 + C35C39
CsaTl3 — C33T1s + Ca5(TiT + Ta3 ) — C36(T1y + Ta3)

—C19C32 + €18C33 — C29C35 t+ C28C36
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Let Bsy denote the set {xy, x3, 2124, 2173, 2304, 233, 25} Where by = 24,0y = 23,by =
T174,b5 = 1173,b7 = 2314, b8 = 73w3,0,0 = 7}. By Proposition [5.3.14| m the following
holds.

Tgf = 031(732 + 721) C32(732 + 7—21) + 03473}12 0357315
= —C12C31 + C11C32 — C22C34 + C21C35 — C32C37 + C31C38
Ty = Ca1Ti} — C3aTiy + CaaTay — Cas5Tap
= —C15C31 + C14C32 — Ca5C34 + C24C35 — C35C37 + C34C38
Tys = Ca1Tys — CaaTiy + Caa(Tit + To3) — Cas(Tiy + Ta5)

= —C18C31 1+ C17C32 — C28C34 1+ C27C35

Let By denote the set {xy, o, 174, 2179, ¥3w4, 2309, 25} where we have byxy, by =
To,by = 1114, = 19, by = x3x4,b9g = T32x9,b:0 = z3}. By Proposition [5.3.14] the
following holds.

24 12, 12 13
T3 = c31(T3s + Top) — C33(Tas + Top) + CaaTay — CagTa

= —C13C31 1+ C11C33 — C23C34 + C21C36 — C33C37 + C31C39

2u 12 13 12 13
= —C16C31 T C14C33 — C26C34 + C24C36 — C36C37 + C34C39
u 12 13 12 12
Tg3 = C31T3 — C33T13 + caa(Tii + Top) — 036(711 + 7'22)

= —C19C31 1+ C17C33 — C29C34 + C27C36

Then the O-border basis scheme is generated by the set {72 ] p=1,23q=

PQ’ PQ’

1,2}, whose elements are the 18 polynomials given in (5.74).

Corollary 5.3.17. Let P denote the polynomial ring K[z1, ..., x,]. Let © = {1, 24, ..., 2/}

denote a segment order ideal with p terms. Then the border basis scheme By is an

ideal-theoretic complete intersection.

Proof. By Propostion [5.3.14] the ideal Z(Bp) is generated by 7s.,, which by Corollary
5.3.15 has purv — nu polynomials. Since the segment border basis scheme is isomorphic
to an affine space of dimension nu, the number of the generators of the vanishing ideal

Z(Bp) is equal to the codimension of the O-border basis scheme. [
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5.4 Some Redundant Generators of Z(Bg )

Unless otherwise stated, throughout this section we let K be a field, and let P denote
the polynomial ring K[z, zo, 23]. Let B(2,2,2) denote the order ideal

{1,.1'3,1'2,$1,£C2£L'3,$1$3,$1$2,$1$2$3}.
The border of B(2,2,2) is
2 2 2 2 2 2. 2 2 2 2 . 2 2
OB = {z3, x5, x], T], To3, T5X3, T{T3, T1X5, T]To, T1ToT3, T1T5T3, T1T2T3}.

Let T be the set of generators of Z(Bg) defined in (2.6). Then by Lemma [2.5.2) the

number of elements of T is 144.

This section is dedicated to finding the maximal number of redundant generators
of the vanishing ideal of the box border basis scheme Bp(, 2 2) by computing the Jacobi
identity and trace syzygies of T. As we mentioned in Sections[6.1and the simplified

Jacobi identity and trace syzygies indicate the rewritable polynomials (see Definitions

5.2.7 and |5.1.21]). Thus we start our computation by finding the simplified generic

multiplication matrices.

A= (e [eg [eg [0]0]0]0)  Ay=(e5 |e5 | 0] €7 [0]eg [0]0)
Ay = (e310]e5 [eg |0]0]es [0)

The non-standard distinct positive degree vectors are

We compute the simplified trace syzygies T’y ,, by using the ApCoCoA package bb-
smingensyz, in order to find the rewritable elements. The non-zero simple trace syzygies

are given as follows:

/ 12, 12, 12, 12 12
Torzsar = Tz, = €11+ 5y T egz ey + .+ egg,

/ 13, 13 , 13 | 13 13
Torwsar = Taraser = €11 + €35 T35+ e+ o+ e,

o / _ 23 23 23 23 23
Topesas = Tagasen = €17 + €55 + €33 + €41 + ... + €53,
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T/
/

T z123,71
/
T 2202 2,

T/
/
T x%xg,xl

T 2

2
173,71
T

/
T LEQQ?%,IQ

T 2

2
T5T3,T2

22zo,01
z1x3,01
x%xg,wg

T,$1332333 » L1
T/xl T2x3,T2
T/xlxgxg ,T3
T,:c%aszxg L1
T/m%xzxg L2
T/$%LL‘2I3 ,T3
T

T/
T
T
T/
T/xlxgxg ,T3

T 2

aclzvgxg,m

T 2

2
T{T2T5,T1
T/

aclxz:vg,:m
2
T1T2X3,T2
2
T1T2T5,T3
2
T1T5T3,T1

xlxgzvg,:vz

2.2
T1T5T5,T2

Note that 4 of the above simple trace syzygies, T’

614+6

613+€

617 + 6287

_|_

614+6

616 + e38a

eis + €3

612+€

+ 48’

612+6
612+6

613—|—€

6 .+ 638
2 4 ol2
e1s + €33,
e15 + 648’

+ 387

615—|—6

+ 48’

615—|—6

et + €33,

12
€18;

13
€18;

23
€1s-

+e
+e

+

34 637

—|—e
+e

—|—e

+e

+e
+

+e

+e

+e

+ 6687

—l— 678,

+ 658

3 4 668,

+ 6787

—|—e
+e
+e
7+ e,

—|—e
+e
—i—e

—|—e
+e
+e

+e
+e
+e

3+ 668,
34 658,

+ 6587

+ 6387

3 4 618,

/ /
xmc%xg,xg? T x1$2I57I37 T x%xgxg,x1 Y

/
T T12223,23

don’t give new rewritable elements, so there are 23 different trace syzygies. Next we

compute the Jacobi identity syzygies.

Similarly, we use the simplified generic multi-

plication matrices as the multiple of commutators to find the rewritable elements with

respect to Jacobi identity syzygies.

J123 —

1 [A2, As]] +

[

5, [Asz, A1]] +

[A3, [Ar, Al

(5.75)
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The entries of the matrix in Equation (5.75|) are the following.

R e e I A O I
SN BT
N R R N -
e L T
m g |
Mi- | hEe | kR [RE- | WR | AR | AR
o mi- |l |- || el |l
SN I
N R Y R R VTR
o mi- [ ae e || MR |
SR A
T T P P R P R
N N L S T
TR SR B
n ||
O[RE- [MR- M- [RE | MR- | MR- | AR
Wi+ | g+ |- | g |l | e | aR
7 S S T R
My ||
O [ A= [hEe | hE [REe | MR- | R | AR
ST R S
M- e e R ||
m ||
O[WE [WB- (B [WEe [WR |k | R
R e L L
Wi+ |+ |- | aR- |l | | AR
M- e e R | |
M | |

When we compare this result with the simplified trace syzygies, we observe that some

of the rewritable elements occur more than once. For example both trace syzygy and

Jacobi identity matrix computations show that 7{5 is rewritable. Thus after carefully

examining T ,, and

J123

, we can simplify the repeating rewritable elements and the

trivial polynomials. We claim that there are at most 60 redundant elements in the set

T that can be determined using trace and Jacobi identity syzygies. Before proving our

claim let us summarize some of our observations that we get from our computations.
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Remark 5.4.1. Keep in mind that simplified Jacobi identity matrix is not a zero
matrix. By Lemma [5.2.6] a non-zero entry in position (4, j) of the J'?* has the arrow
degree log(zixexst;) — log(t;). By considering the order ideal,

B(2,2,2) = {1, x3, 2, T1, Tok, L1235, T1T2, T1X2T3}

one can easily deduce that all entries of J'** have non-negative arrow degrees (see
Definition [5.1.17). In Remark we explain that by computing the trace syzygies
one can only find the rewritable polynomials from 7 with a non-standard and non-
negative arrow degree. Let us compute the generators of 7 (BB(27272)) and their arrow
degrees by using the ApCoCoA package bbsmingensyz There are 12 different non-

standard and non-positive arrow degrees.
(_17 17 2)7 (17 _17 2)7 (_17 27 1)7 (27 17 _1)7 (27 _17 1)7 (17 27 _1)7

(—-1,2,2),(2,-1,2),(2,2,-1),(1,1,-1),(1,—1,1),(—=1,1,1)

If there are redundant polynomials of the above arrow degrees, then neither Jacobi

identity nor trace syzygies of 7 will give them.

The order ideal B(2,2,2) is symmetric with respect to swapping z; and x; where

i # jandi,j € {1,2,3}. This is a quite useful property, as next lemma shows.

Lemma 5.4.2. Let 0 be a permutation defined on the set {1,2,3}. Let \ denote the
number of rewritable elements (with respect to either Jacobi identity or trace syzygy)
from T with arrow degree a = (a1, 9, 3) € N3. Then there are X rewritable ele-

ments (with respect to either Jacobi identity or trace syzygy) with arrow degree o, =
(Qo(1)s Ao(2)s Ao(3))-
Proof. We start with Jacobi identity syzygies. There are A rewritable elements from

T with respect to Jacobi identity syzygies with degree «. Let ¢ be an index from the
set {1,2,3} and let ¢,,t, € B(222) be two order ideal terms such that

__ .b1,..P2,..P3 _ 41 ,.92 .93
t, = oy w5’ xy’ and ty = 27 vy’ w3’

Let the polynomial T;fql € T be one of those A rewritable elements. Since 7 is rewritable

pq
with respect to Jacobi identity syzygies, we have

o = ((1/1, Gz, O[g) = (L ]-7 ]-) + log(tp) - 1Og(tq)
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Thus for each ¢ in {1,2,3}, the «; is equal to p; + 1 — ¢; i.e., ; = p;+ 1 — ¢;. Then we
have

o (i) = Po(i) — oi) T 1

where t,, = 2}°V2h@2h® and t,, = 277V 2y @ 2d . The order ideal B(2,2,2) is
a symmetric order ideal. Since the terms t,,¢, are in B(2,2,2), we have t, ,t, €
B(2,2,2). Thus for each order ideal term ¢, and ¢, there exits a rewritable polynomial
from 7T in (p, ¢) position of the matrix J¥™ there exists a rewritable polynomial from
T in (ps, qs) position of the matrix J¥m.

Now we focus on the rewritable elements from 7 with respect to the trace syzygies.
Let Tzlfé € 7 be a rewritable element with respect to trace syzygies, where p,q € {1, ..,8}
and k,l € {1,2,3}. There are three cases to consider.

case 1) If two components of the arrow degree vector « are zero, then there are only zero

trace syzygies.

case 2) Next assume one component of a, say a; = 0 and the others a;, o, # 0. By

Lemma [5.1.19] we have T 29420 0, =-T IR PR, . Therefore considering just one
7 T‘

trace syzygy 1 o _ar will be enough to ﬁnd rewritable elements. By the same
i

argument for some o, there is only one trace syzygy T copy oot , -
o(j o(r) **e(d)

case 3) We consider the last case oy, g, a3 # 0. Let IT denote term z{*z5225* € T3 and
IT" denote the term x ‘(’1()1 )‘Tj?(;) 3&’;? € T3. For the term II, there are exactly three
different trace syzygies, since we have Ty, z; # Ti, x; where @ # j. Then there

are also three different trace syzygies Tty i € {1,..,3}. Moreover, the trace

Lo (i)?
syzygy 1t s, has the same shape as T, .

Therefore the number of rewritable elements with respect to trace syzygies are the

same for any permutation of the components of given arrow degree vector. O]

Before proving our main proposition of this section, let us give an overview of the
proof method we will follow. The main aim of the proof is to give the maximal number

of the redundant polynomials in 7 that can be computed by trace and Jacobi identity
syzygies.

1) We fix an arrow degree d = (dy,ds, d3) € N* and compute the Jacobi identity and
trace syzygies by using the simple generic multiplication matrices. This will give

us the rewritable polynomials with respect to Jacobi identity and trace syzygies.
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2) If the both syzygy computation method indicates the same rewritable polynomi-
als, then we compute the trace syzygy and the Jacobi identity syzygy only for this
arrow degree. Then we give the maximal number of the redundant polynomials,
say A.

3) Using Lemma we deduce the maximal number of redundant polynomials
for arrow degrees (d1, d3, dz), (d2, di,d3), (da, d3, dy), (d3, d1, d2) and (d3, da, dy) are
also A.

Thus the number of redundant polynomials for the arrow degree (dy,ds,ds) and its
re-arrangements are at most 6 - A. The reason why we cannot give the exact number of
redundant polynomials, is given in Remark [5.4.4]

Proposition 5.4.3. Let P denote the polynomial ring K[zy, xe,x3]. Let B(2,2,2) be
the order ideal. Let T denote the set of generators of the vanishing ideal of the box
border basis scheme Bg222). Then there are at most 60 redundant polynomials from T

that can be computed by trace and Jacobi identity syzygies.

Proof. As we have seen while computing the trace and Jacobi identity syzygies of T,
one can only compute the rewritable polynomials from 7 that have non-negative arrow
degrees (for details see Remark [5.4.1). Therefore it suffices to consider the elements
from 7 with arrow degree vector from N3. There are seven different sorts of arrow

degree vectors we will consider.

i) We start our computation with degrees, (0,0,1), (1,0,0), (0, 1,0), (0,0, 2),(0,2,0)
and (2,0,0). There is no trace syzygy with respect to those degrees. Thus it is
enough to consider only Jacobi identity syzygies. By Lemma |5.2.6) a non-zero
entry of Matrix in position (7,7) has the degree

(1,1,1) + log(t;) — log(t;) (5.76)

where t;,t; € B(2,2,2). Therefore the only possible position for an entry of the
arrow degree (1,0,0) in Matrix is (8,2). The entry J12® is non-zero. Since
there is no other possible position in the Matrix for the given degree,
choosing one of the rewritable elements that is indicated by the simplified Jacobi
identity syzygy Ji2® will give us the desired rewritable element from 7 of arrow
degree (1,0,0). This is the first possible redundant element. By the same argu-

ment, we have one rewritable element by the simplified Jacobi identity syzygy
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ii)

iii)

Je23 with degree (0,0,1) and one rewritable by J¢Z* with degree (0,1,0). For
(0,2,0),(2,0,0),(0,0,2) by the same way, we can get one rewritable element
by each simplified Jacobi identity syzygies Ji23, Ji23 J123

from this step we have 6 different rewritable polynomials and at most 6 redundant

respectively. Therefore

polynomials.

As a result of Equation (5.7€]), the entries of arrow degrees (0,2,2), (2,0,2)
r (2,2,0) are located only in positions (4,5),(3,6) and (2,7) of Matrix (5.75]).
By examining the simplified Jacobi identity syzygies in these positions, we have
JIZ = 2 23 JI23 = I3 — eld and JIB =

look at the Jacobi identity syzygy J323.

123 _ § : 23 23 E : 23 23 E : 13 13 E : 13 13
p4q 64q p + p4q e4q p

= el2 — el2. Now let us give a closer

1<q<8 1<p<8 1<q<8 1<p<8
12 12 12 12
+ E P1q€aq — E Pp5Cp5 T+ efs + els
1<q<8 1<p<8

Therefore 72 — 722 can be rewritten as K[C]-linear combination of tuples of poly-

nomials from the set {7j1, 7 | k <1, k,1€{1,2,3}, p,q e {1,....8}}\{ris, i3}
Hence, the polynomial 7 can be a redundant element from 7. Then we examine
the simplified trace syzygy Txgxg 2, = €13+ i3 such that log(z323) = (0,2,2).
If we show the trace syzygy T,2,2,, is different from the Jacobi identity syzygy
Ji23, then by substituting €23 With Jig? — €32 in Tyzp2 ., we can deduce that 779
can also be a redundant element of 7. Recall that we obtain the trace syzygy

T 2.2, from Trace(As[ A, As] Az + Az A3 Az, As]) and let us focus on that trace

T5T5,T2

Syzygy.

T = Y (k262 (5.77)

p,q€{l,...,.8}

That implies this trace syzygy is different than the Jacobi identity syzygy. Hence,
the polynomial 725 can be a redundant element of 7. Then both 7% and 75 can be
redundant elements of 7. By the same method one can show /¢ and 743, 72, 7.2
can be redundant. There are altogether at most 6 redundant elements coming

from this step.

Let us consider the arrow degrees (0,1,1),(1,0,1) and (1,1,0). We will first
find the rewritable element with degree (1,1,0). By Lemma [5.4.2} the redundant
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polynomials of degrees (1,0,1) and (0,1,1) can be found similarly. The trace
syzygy and the simplified trace syzygy are equal for degree (1,1,0).

Torene, = €15 + €53 + €35 + €53 + -+ - + exg (5.78)
There are exactly three different positions in Matrix ([5.75]), where the simplified
Jacobi identity syzygies have degree (1,1,0).
123 23 23 23 23 3 13 1313
Ts3” = Z P5q€5q — Z Pp3€ps T Z PraCsq — Z Pp3€ys  (5.79)
1<q<8 1<p<8 1<q<8 1<p<8
12 12 12,12 | 12, 23
+ Z P5q€5q — Z Pp3€ps + €55 T €57
1<q¢<8 1<p<8
T = Y - Y et Y el Y et 60
1<q<8 1<p<8 1<q¢<8 1<p<8
o = Y el el el
1<g<8 1<p<8
123 23 23 23 23 1313 13,13
\787 = Z Pgq€sq — Z pp7€p7+ Z Pgq€8q — Z Pp7€p7 (581)
1<q<8 1<p<8 1<g<8 1<p<8
b el Y gl ettt el
1<q<8 1<p<8
The entries of the tuple (pf™) 1<pq<s are either a non-constant polynomial from
r,s€{k,l,m}
K[C] or 0. If the polynomial 733 is a redundant polynomial which is rewritable
by Equation (5.78), then the polynomials 72, 743 can also be redundant poly-
nomials from 7, which are rewritable polynomials in 7 by the Jacobi identity
syzygies (5.79) ,(5.80) and (5.81)). Hence the polynomial 77 can be a redundant
polynomial from 7, as well. Thus there are at most 4 redundant polynomials of
degree (1,1,0). By Lemma [5.4.2] there are also at most 4 redundant elements of
degree (0,1,1) and at most 4 more from degree (1,0,1). Altogether, there are at
most 12 redundant polynomials of such sort of arrow degrees.
iv) Next we consider the arrow degrees

(0,2,1),(2,1,0),(2,0,1),(0,1,2),(1,0,2), and (1,2, 0).

As in iii) we focus on one of those arrow degrees, say (1,2, 0), and find the maximal

number of redundant polynomials. Then similarly to the previous steps, by using
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Lemma [5.4.2| we deduce, that there is the same number of redundant polynomials
of the other given arrow degrees. There are two positions in Matrix ([5.75]) such

that the Jacobi identity syzygies have degree (1,2,0).

TP = Y R Y i Y - Yl 6s)

1<q<8 1<p<8 1<q<8 1<p<8
12 12 12 12 23
+ E P24€2q — E Pp3€p3 T+ ers + €32 + €53
1<q<8 1<p<8
123 _ 23 23 23 23 13 13 13 13
Tor~ = E Peq6q — E Ppr€pr + E Peq€6q — E Pp7 (5.83)
1<q<8 1<p<8 1<q<8 1<p<8
12 12 12 12
+ E PeqC6q — E Pp7€pr T+ es + €45 + €50
1<q<8 1<p<8

The entries of the tuple (p’;&m) 1<pg<s are either a non-constant polynomial
r,se{k,l,m}

from K[C] or 0. Therefore the polynomials 7% and 743 can be the redundant
polynomials which are rewritable elements by both J acobl identity syzygies ((5.82)

and . Moreover, there is exactly one trace syz T that corresponds
y Yzygy p

:r:1x T

to arrow degree (1,2,0).

Tozen = D Fpeere +2e13 + 2e52 + 2617 + 2ef] (5.84)

Pq pq
1<p,g<8

The components of the tuple (Ii )1<p g4<s are either a non-constant polynomial
from K[C] or 0. Hence, 7/? can be redundant. Therefore there are at most 3
redundant polynomials of arrow degree (1,2,0). By Lemma there are at
most 3 redundant polynomials of each given arrow degree. Consequently, there

are at most 18 redundant polynomials of the above arrow degrees.

v) In this case we consider the arrow degrees (1,2,1),(1,1,2) and (2,1,1). As in the
previous cases we choose one arrow degree , say (1, 1,2). By Equation (5.76)), in
positions (3, 5), (4, 6), (7, 8) of Matrix the simplified Jacobi identity syzygies
with degree (1,1,2) are located . Let us give a closer look at the Jacobi identity
syzygies.

o= Y A Y A Y el 559

1<q<8 1<p<8 1<q<8

13, 13 12 12 12 12 15, 23
- E Pp5€ps T E P34€34 — E Pp5C€ps Tt €13 T €53

1<p<8 1<q<8 1<p<8
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123 _ 23 23 23,23 | 13 13
T~ = E P1g€aq — E Pp6Cps T E P4qCaq (5.86)
1<q<8 1<p<8 1<qg<8
13, 13 12 12 12 12
= D et D Platia— D i
1<p<8 1<q<8 1<p<8
23
123 _ 23 23 23 23 13 13
Js™ = Z P1q€7q — Z Pps€ps + Z P14€74
1<q<8 1<p<8 1<q<8
}: 13 13 Z 12 12 Z 12 12
- ppSepS + p7qe7q p
1<p<8 1<q<8 1<p<8
23
_648 + €33

The components of the tuple (p’;;]m) 1<p,g<8 are either a non-constant polynomial
T sE{k,l,m}
from K[C] or 0. Hence the polynomials 725, {2 and 778 can be redundant, which

are rewritable polynomials by the Jacobi identity Syzygies , and
(5.88]). There are also trace syzygies that correspond to that degree but they
are just equal to the K[C]-combination of the above Jacobi identity syzygies.
Therefore by Lemma [5.4.2], we deduce there are at most 9 redundant elements

of the above arrow degrees.

vi) The diagonal positions of Matrix contain the polynomials of degree (1,1, 1).

By examining the simplified Jacobi polynomials in the diagonal position i.e., J!?3
for every p € {1,...,8}, we deduce there are exactly 7 different Jacobi identity
syzygies and therefore at most 7 different redundant polynomials. The trace

syzygy of that degree does not give a new rewritable polynomial.

vii) The only remaining degrees are (2,2,1),(1,2,2) and (2, 1,2). By Equation ({5.76))
there is exactly one Jacobi identity syzygy for each given arrow degree. These are

23 J423 and T2 respectively, where simplified Jacobi identity syzygies have

one non-zero component. Therefore there is at most one redundant polynomial

for each given degree. It is not necessary to check the trace syzygies, since they

indicate the same rewritable elements from 7 .

As a result, there are at most 60 rewritable elements with respect to Jacobi identity

and trace syzygies. O]

Remark 5.4.4. Note that in Proposition [5.4.3] we did not claim that there are ex-
actly 60 redundant polynomials from 7, instead we claimed that there are at most 60

redundant polynomials that can be computed by Jacobi identity and trace syzygies of
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T. There are two reasons: First reason is that there are standard polynomials that
are rewritable with respect to the Jacobi identity syzygies. The Second reason is that
we can not order the arrow degrees of the polynomials from 7 such that it enables
us to decide whether a rewritable polynomial is also a redundant one or not, since
arrow grading is neither of positive type nor positive. In other words, we cannot use
any arguments that depend on the graded version of the Nakayama Lemma [2.1.11]
There are two reasons why we don’t face the same problem in the case where the
polynomial ring is K[z, z5]. First, in that case there are no non-standard non-positive
polynomials from 7 (see Remark and therefore the trace syzygies of T are
enough to compute all the redundant polynomials. Second, there are no indetermi-
nates from KJ[C] that have arrow degree vectors with more than one negative entry,

such as degy, (cs2) = (—1,1,—1).
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Chapter

Border Basis Schemes and Affine

Spaces

This Chapter is dedicated to finding conditions which make an O-border basis scheme
an affine cell, i.e. isomorphic to an affine space. For the special case n = 2, in [Hai9§]
O-border basis schemes are described as open coverings of the punctual Hilbert schemes
Hilb*(A?%). Moreover, it is stated as a remark (see Proposition 2.1 [Hai98]) that they are
not affine cells in general. In [Huib02], Chapter 7, a necessary and sufficient condition
on the order ideal O C T? is given which makes O-border basis scheme an affine space.
Since our results depend neither on the shape of O nor on n, they are more general than
the existing results. If the monomial point o0 is a smooth point of the O-border basis
scheme and p denotes the number of terms in O C T", then By is locally isomorphic to
an affine space of dimension nu. Our aim is to find a condition which extents this local
property to Bp. The main results of this section (see Theorems imply that this
extension is possible. To be precise, we show that the coordinate ring By is isomorphic
to a polynomial ring of dimension ny if there exist a set S C C (see Chapter ) and
a maximal minor of the Jacobian matrix of 7 that is =1 and the corresponding matrix
of this minor is in Mat,, _,,(K[S]). Let us have a closer look at the sections of this

chapter.

In Section we investigate the properties of the Jacobian matrix of the defining
equations 7 of an O-border basis scheme where @ C T" and K is a perfect field.
Then we show that the Jacobian ideal is a homogenous ideal with respect to the arrow
grading. On page 366 of [MilSt05], this property is also mentioned for an order ideal
O C T
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Before stating our main theorem, in Section [6.2] we give a condition for checking

whether the injective homomorphism

v:K[S] — K[C]/Z(Bo)

Cij +—— Eij

in is surjective or not, where S is a set defined in Lemma . This condition
holds under the assumptions that the given border basis scheme is an ideal-theoretic
complete intersection. In particular, our claim holds if the vanishing ideal of the O-
border basis scheme is generated by the subset Ts of 7. Then we generalize this result to
Theorem in which we give a condition without that assumption. Then, by using
our theorem (see Theorem [6.2.20]), we show that the coordinate ring of the border basis
scheme Bp, where O = {1, 2, z,} C T? is isomorphic to an affine space of dimension
9. The proof of Theorem is an algorithmic proof. By using the idea of this proof
we give an algorithm for checking whether given border basis scheme is isomorphic to
an affine space (see Algorithm [6.2.26)).

Additionally, we have two sections which we apply Theorem to prove that
O-border basis scheme is isomorphic to an affine space where the order ideal O is a

segment order ideal in Section [6.3] and the order ideal O has the sawtooth form in
Section [6.4]

6.1 The Jacobian Matrix of T

Unless stated otherwise, throughout this section we let P denote the polynomial ring
Klz1, ..., z,), where K is a field. Let O = {t1,...,t,} C T" be an order ideal and let 0O
denote its border {by,...,b,}. Let C denote a set of indeterminates {ci1, ..., ¢, }. Let
K|C] be the polynomial ring K[ciy, ..., €.

Let Z(Bp) be the vanishing ideal of the border basis scheme By and it is generated
by the set T = {Tlfé | p,q € {1,..n}, k<l k,0le{l,..,n}} defined in Section .
By Lemma [2.3.19] the polynomials from the set T are of degree two with no constant
term.

Let 7,, be a polynomial in 7. Recall that no matter which order ideal is used, by
Lemma [2.3.19] the polynomial 7, is of the following shape:

T = @ 4 TS) (6.1)

K



6.1. The Jacobian Matrix of T 125

where T,.EQ) € K][C] is a homogenous polynomial of degree 2 with respect to the standard

grading and Ve KI[C] is a homogenous polynomial of degree 1 with respect to the
standard grading. For the polynomial T,ﬁ”, there are three possibilities: The first is
that 73" = (Ciyjy £ Cinjs), Where ¢4, Ciniy, € K[C]. The second is that = ¢;; and

finally, we have the possibility r,.ﬁ” =0.

Since the polynomials in 7 have a specific shape, we can describe the entries of the
Jacobian matrix. This section is dedicated to collecting information on how the shape
of the elements of T effects the Jacobian matrix of 7 and the Jacobian ideal. Recall
that we denote the Jacobian matrix of T by Jac(T).

Corollary 6.1.1. The non-zero entries of the Jac(T) are either linear polynomials
from K[C] with no constant, or +1. In particular, if we let T;fé € T and let ¢, € C,
then the following holds.

P +1 if crs € Supp(TI%)
(?cpq = { linear polynomial in K[C]| if ¢;s | ¢, ¢ is a quadratic term in Supp(TI’fé)

0 otherwise.

Proof. Let ¢, be an indeterminate from C. There are three cases we will consider.

case 1) If the term ¢, is in the support of the polynomial T]fé then, by Proposition m,
we have degy, (75!) = degyy (¢r). By Corollary [3.2.2] none of the indeterminates in
C has the arrow degree (0, ...,0) € K™ Then for each index «, the indeterminate

¢rs can not divide the monomial ¢, ¢, j, € Supp(n’fé
87’% — 41

Jcrs

) and as a result, we have

case 2) If there exists an index a such that ¢, divides the monomial ¢y, Ci,j. € Supp(7h)
then, by Proposition m, the indeterminate ¢, is not an element of Supp(TZ%),

okl . . . .
and hence 2% is a linear polynomial with no constant term.

kl

. . or,
case 3) If ¢4 satisfies neither case 1 nor case 2, then we have St =
ij

]

Example 6.1.2. Let O denote the order ideal {1,2,} C T% Then 00 = {x9, 1179, %}
is its border. By considering the arrow degrees of the elements of the set C =
{c11, ..., c23}, we construct the degree matrix. The columns of this matrix are the
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arrow degree vectors of each ¢;; € C i.e., degy (¢;;) = log(b;) — log(t;).
cii Ci2 €13 €21 €22 €23
— ( 0o 1 2 -1 0 1 )
1 1 0 1 1 0
The coordinate ring of the border basis scheme is Bo = K[C|/Z(Bp) where the van-

ishing ideal of the border basis scheme is generated by the set T = {71, T12, 721, T2 }
with

T11 = C13C21 — C12 T12 = C11C13 — C13C22 + C12C23

T21 = C21C23 — C22 To2 = C13C21 — C12.

For details on how we construct these polynomials we refer to Chapter 2] By Proposi-
tion |3.2.6, the polynomials from 7 are homogeneous with respect to the arrow grading.

Let us give their arrow degrees:

degy (111) = (1,1), degy (112) = (2,1), degy (m21) = (0,1), degyy(m22) = (1,1)
Next we compute the Jacobian matrix and get the following matrix as a result.

0 —1 Co1 C13 0 0

0111 0111
Oci1 "7 Oca3
Jac(T) — o . | a3 c3 cn—c 0 —az o
M= = B =y 0 ey -1 ¢
972 972 23 21
dcnn Ocas 0 —1 Coq C13 0 0

Let us check whether Jac(7T) is a homogeneous matrix (see Definition (3.2.3)) or not.
First we find suitable vectors e and d such that e = (ey, e, 3, €4) determines the degree

of the rows and d = (dy, ..., ds) determines the degree of the columns. Consider
€ — d; = degW<_)7

where ¢y is the i element of C and 7,, is the j** element of 7. Choosing e; = degy, (7,)
and d; = degy, (cx) gives us the desired vectors. Thus the Jacobian matrix Jac(7) is
a homogenous matrix with the degree pair (d,e) where e = ((1,1),(2,1),(0,1),(1,1))
and d = ((0,1),(1,0),(2,0),(0,1),(1,0)).
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Lemma 6.1.3. Let O C T" be an order ideal with p elements. Let m be the number
of polynomials in T. Then the Jacobian matriz Jac(T) is a homogeneous matriz with
respect to the arrow grading, with the degree pair (e,d) € (Z™)™ x (Z")m, where e; =
degy (711) € Z" and d; = degy (c,s) € Z", for the i'™ element TV of T and the j™

element c.; of C. Consequently, the minors of Jac(T) are homogeneous polynomials

and the Jacobian ideal is a homogeneous ideal.
Let T]]fé be the i element of 7 and let ¢, be the j* element of C.
Proof. By Proposition [3.2.6] every polynomlal in T is homogeneous with respect to the

arrow grading. Then the polynomial ’T’q is homogeneous with respect to the arrow
grading, as well. By Corollary [6.1.1], we have

P +1 if ¢, € Supp(TI%),
ﬁ = linear polynomial in K[C] if ¢, | ¢, ¢ is a quadratic monomial in Supp(7,)

0 otherwise.

Note that 0 is homogenous of every degree. Then the arrow degree of the polynomial

above is
GTM
degy (5.7) = degyy (7,q) — degyy (cro)- (6.2)
Since 7K is the i”* polynomial in 7 and ¢, is the j™ indeterminate in C, we let

degy (74) = e; and degW(cTS) = d;. Then by Corollary , the degree of the ho-
mogeneous element ’f‘é in the matrix is (e; — d;). Thus the Jacobian matrix is a
homogeneous matrix with respect to the degree pair (e,d) (see Definition [3.2.3).
Furthermore, every sub-matrix of the Jacobian matrix is also a homogeneous ma-
trix. Therefore r-rowed minors are homogeneous polynomials of degree Y ., (e} — d!)
where d; € {dy,...,d,.,} and €, € {eq,...,e,}. In particular, the Jacobian ideal is a

homogeneous ideal with respect to the arrow grading. O]

Remark 6.1.4. In Chapter 4] we showed that the arrow grading is in general nei-
ther of positive nor of non-negative type. Although the Jacobian ideal is homogenous

with respect to the arrow grading, it is not necessarily included in the maximal ideal

| PIEERES v L. .
(cy cu) (see Example [3.2.12))
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6.2 An Affine Space Criterion

Unless stated otherwise, throughout this section we use the following notation.

e We let P denote the polynomial ring K[z1, ..., x,]. We assume that K is a perfect
field.

o Let O = {t1,...,t,} C T" be an order ideal and let JO denote its border 00 =
{b1,...,b, }.

e Let C denote the set of indeterminates {c1, ..., ¢, }. Let K[C] be the polynomial

ring Kleig, .., ¢l

e The ideal Z(Bp) is the vanishing ideal of the border basis scheme Bp. It is gen-
erated by the set T = {Tlfql | p,q € {1,..u}, k<1 k/le€{l,..,n}}, which is
defined in Chapter [2.3

e According to Lemma [2.3.19] the polynomials from the set 7 are of degree two
with no constant. Let us pick a polynomial from 7, say 7.. Then we write the
polynomial 7,; as

=T +70 eT (6.3)

where 712 € K][C] is a homogenous polynomial of degree 2 with respect to the
standard grading and Ve K]C] is a homogenous polynomial of degree 1 with
respect to the standard grading. Recall that the set Supp(T,gl)) has at most two

linear monomials.

Remark 6.2.1. The field K is isomorphic to Bo/m(Bp), and the point o = (0,...,0) €
K.

6.2.1 Border Bases Scheme with the Smooth Monomial Point

Throughout this subsection we make the following assumptions.
e The field K is a perfect field.
e The point 0 = (0,..,0) is a smooth point on the scheme Bp.

Now let us recall the necessary notations for this subsection.

e Let m denote the maximal ideal of By generated by the elements of C = {¢11, ..., Gopy } C
Bo. Then (Bp)n is a regular local ring.
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e The set & denotes the set of non-zero equivalence classes modulo m?.

e Since o0 is a smooth point of By, according to Theorem 4.2.15) the set € has

exactly nu different equivalence classes.

e Theset S = {s1, ..., Sp,} is constructed in a way that each [s;] represents a distinct

equivalence class in €. The set § is not unique.

e We let K[S] denote the polynomial ring K[sq, ...., s,,,]. We let S=1{5€Bo|si €
S}cc.

o Welet S = {3 € m/m? | s; € S} denote a basis set of the vector space m/m?.

e We denote the elements of C \ S as dy, ...., d,,, where m = pv — npu.

Remark 6.2.2. Let O C T" denote an order ideal. In Chapter 7 of [Huib02] it is
proved that the O-border basis scheme is an affine space (see Theorem 7.4.1, [Huib02]),
if n is 2 and the order ideal O has a special shape. For further information on this topic
we refer to Chapter 7 of [Huib02]. Note that in this section we present a condition that
is valid for n > 2 and independent of the shape of O

Let us introduce the necessary notation we use frequently throughout this section

and next section.

Notation 6.2.3. Let O C T" be an order ideal that has p terms. If we let the number
of elements in the i*" equivalence class in & to be k;, then by picking exactly one element
from each equivalence class, we can construct k; x ... X k,, many different sets S. We

denote the number of such sets by ng.
ng =k X ... X kp,, (6.4)

For the rest of the section let us fix one such set S.

Lemma 6.2.4. For each element d; of C\ S there exists at least one polynomial T; in
T that contains the term d; in its support. If the polynomial 7; has the term d; that is
distinct from d; in its support, then there exists a polynomial 7; € T such that 7, # T;

and 7; contains the term d; in its support.

Proof. Let s; be an indeterminate from S&. We write elements in the equivalence class

[3;] as follows,

(8] = {51, iy, . di } (6.5)
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and hence this equivalence class has k£ + 1 elements. If we have £ = 0, then by
Proposition MC), there exists no polynomial in 7 that contains the term s; in its
support. If we have k£ > 1 in , then by Proposition ), for each element d;;
of {di,,...,d;,} € C\ S there exists a polynomial in 7 that contains the term d;; in its
support. Additionally, if we have Jj € m?, then d; € C\ S and by Proposition ),
there exist polynomials in 7 that contain d; in their support. To prove our next claim,
we let 7, be a polynomial in 7" that contains the distinct terms dj, and d; in its support.
Keep in mind that d; and d; are both in C\S. To get a contradiction, we suppose neither
the term d; nor the term d; is in the support of a polynomial in 7" except for 7. Using
this assumption with Proposition b) gives us that [d;] = {d;,d;}. By Proposition
m a), neither d; nor d; is in m?. Then we have [d;] € €. As a result of the construction
of §, either d; or d; must be in S. This contradicts with the assumption that d; and d;
are both in C\ S. O

By Lemma for each d; € C\ S there exists at least one polynomial in 7, say
7;, such that d; € Supp(7;). By Corollary for the polynomial 7; € T we have

8’7'1'
==+1. .
ad. (6.6)

By using these two results we construct a subset of 7 that depends on S.

Construction 6.2.5. According to the Lemma we form a subset of 7, where
for each d; € C\ S, we pick exactly one polynomial 7; € T that satisfies . We
let 7s denote this set. Recall that m = pv — np is the number of elements of C \ S.
Then there are exactly m polynomials in 7s. By using the elements of 7s and C \ S,

we construct the following m x m matrix.

dy ... dp
oT1 oT1
[ £l *% * od: o,
Pl =] : (6.7)
* * Otm OTm
Tm +1 d, 9dum

We denote the matrix in (6.7) by M.

Remark 6.2.6. Note that there can be more than one 7; for each d; € M. Hence the

set Ts is not uniquely determined.
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Let us compute the Jacobian matrix Jac(7).

C11 e Cuv
L12 orif ot
11 dci1 e Ocuv
Jac(T) = : AV (6.8)
Tn—l n aTE;J,_l n aT;LH—l n
127%% Oci11 T 8c;w

The matrix Mg is a sub-matrix of Jac(7). We rearrange the rows and the columns of

as follows.
Jac(T) = (M‘S *) (6.9)

* *

Recall that we denote the Jacobian matrix evaluated at the point o0 = (0, ...,0) € Bo
as Jac(T),.

Lemma 6.2.7. By applying row and column operations on the matriz Jac(T ), in

without exchanging rows and columns, we get a matriz of rank uv —nu of the following

Jac(T ), ~ ( Im | O ) (6.10)

shape.

010

The matriz I, is the unit matriz of rank m and it is the matric Mg evaluated at the
point o = (0, ..., 0).

Proof. By Lemma , the entries of the matrix Jac(7) are 0 or £1 or a homogenous
(with respect to the standard degree) linear polynomial in K|C|. If we evaluate the
matrix Jac(7) at the point 0 = (0, ..., 0), we substitute 0 instead of each indeterminate
¢;; in the matrix Jac(7), then the homogenous linear polynomials become 0 and the
entries of the matrix Jac(7), are 0 or +1. Moreover the monomial point 0 = (0, ..., 0)
is a smooth point of the scheme By. Then by Theorem the matrix Jac(7), has
rank m. Hence by row and column operations we get O

6.2.2 Border Basis Schemes with an Arbitrary Monomial Point

Throughout this section we make no assumptions on the monomial point o of By. Let
us recall some of the necessary notations and claims from Chapter [4] that we will use

in this subsection.

i) The set € denotes the set of non-zero equivalence classes modulo m?.
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ii) According to Theorem[4.2.9| the set & has at least nu different equivalence classes.

iii) The set S = {s1,...,sn,} C C is constructed in a way that each [5;] represents a
distinct equivalence class in €. The set S is not unique. For further information
we refer to Chapter [4]

iv) According to Lemmald.2.12] the elements of S = {5; € m/m? | s; € S} are linearly

independent and the K-vector space (S)xk is a subspace of m/m? of dimension at

least npu.
v) We denote the elements of the set C\ S as {di, ..., d,,}, where m = pv — np.

Our next lemma shows that if we can find a maximal minor of the Jacobian matrix,

which is +1, then the point o is a smooth point of the O-border basis scheme.

Lemma 6.2.8. If there exists a set S as given in Notation |6.2.5 with nu elements
such that the determinant of the matrix Mg in 18 1, then the monomual point
0 € By is a smooth point.

Proof. The matrix Mg is an m x m matrix. Since the determinant of Mg is +1,
the rank of the matrix Mg evaluated at any point including o = (0,...,0) € Bp is
m = vu — nu. The matrix Mg is a submatrix of the matrix Jac(7). Hence we have

the following inequality.
Rank(Jac(T),) > Rank(Ms,) = vy —nu=m

By Theorem [2.1.18p), the rank of the matrix Jac(7 )o=(o,..0) is less than or equal to
UV — ML
Rank(Jac(T),) < pv — np.

Hence we have Rank(Jac(7T),) = uv — nu. Then by Theorem [2.1.18¢), o is a smooth
point of Bp. O]

Lemma 6.2.9. Let us pick a polynomial 7, € T . If the entries of the matriz Mg given
m are in K[S], then each monomial in the support of 7',52) is either of the form
sid; € (K[S])[dy, ..., dw] or a quadratic monomial s,s, € K[S].

Proof. Suppose the matrix Mg € Mat,,(K[S]) and there exists a monomial d;d; € 7,52).

Then in position (k,j) of Mg we have % = d; and in (k,l) position of Mg we have
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g:l’; = d; This contradicts to the assumption that the entries of the matrix Mg are in
KI[S]. O

Notation 6.2.10. Suppose that the entries of the matrix Mg in are from K[S].
Then, by Lemma [6.2.9] the polynomial 7 is of the form.

a B
Th=% spd, £ sy, Edptt, (6.11)
=1

J

wheret = 0 or ¢ € C. Notice that 4 Zf 5p;Sq, € K[S],and D7 sy, dy, € (K[S])[dy, ... a,,]-
Let us give a closer look into all the possibilities for ¢.

case 1) If t is 0, then we let gx(S) = j:Zf Sp,5q; € K[S].
case 2) If we have t € K[S], then we let g,(S) = + 25:1 sp,5q, £1 € K[S].

case 3 If we have t € C\ S, then we let g, (S) = j:Zle sp,5q; € K[S] and we have
& — +1is in K[S].

Then we rewrite the polynomial 75 as follows.

T = Z%dl :EZSPJS(I dkzl:t
oT 87
= iz—kdz i—kdk+gk(3)
=1

Notice that for j & {l1, ..., 14, k} we have aT’“ = (. This leads us to the following equality.

71(S) T dy 91(S)

T (S) %TT’? gg—’; dpm gm(S)
Recall that we construct the set 7s by picking exactly one polynomial, 7; from 7T

for each element d; such that

871-
ad;
Notation 6.2.11. If we let S = {s, ..., 5, }, then by Lemma |4.2.12} the vector space

(S)x is a subspace of m/m? of dimension nu. Let J C K[C] denote the ideal generated
by the set Ts = {m,....,7m} C T and we let Z(J) = V. Let the coordinate ring of V

= =x1.
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be denoted by K[V]. Let us denote the image of an indeterminate ¢;; in K[V] as ¢&;
and let us denote the set of such elements by C. We denote the maximal ideal that is
generated by the elements {¢11,...., ¢, } € K[V]| by n. Moreover, the Jacobian matrix
of Ts is as follows.

d1 N dm S1 ... S”M
ke O In o)
(s == *x k% * ady ' 9dm  Os1 " Osmp
Jac(Ts) = : e T
* * *1 * % * Ot OTm  OTm O
Tm ddy " Odm Bs1 T Osny

Since the ideal J is a subset of (¢;;), the monomial point o = (0,...,0) € By is also
contained in V. Since Ts C T holds where Z(Bp) = (T), we have Bo C V. Moreover,

the shape of the Jacobian matrix of Tg is as follows;
Jac(Ts) = ( M |+ ) (6.12)
Let us consider the following map.

b:Kleyl/T — Kleiyl/Z(Bo)
n — m

n? — m?

Since J C Z(Bo) holds, the map b is a canonical surjective K-algebra homomor-
phism.

Lemma 6.2.12. [n Setting (0.2.11)), suppose Ms € Mat,,(K[S]) and the determinant
of this matrixz is £1. Then the point o is a smooth point of V. Moreover, the dimension

of the local ring K[V], is np.

Proof. Since the determinant of the matrix M is £1, the rank of it is pv — nu at any
point of V including the point o. Then the rank of (Jac(7s)), is puv — nu. Let K[V]
denote the coordinate ring of V. Let n be the maximal ideal generated by the elements
in the set {1, ..., G} C K[V]. By Theorem [2.1.18h), we have Rank(Jac(7s))o) <
pv — dim(K[V],). Then the following holds.

dim(K[V],) < nu (6.13)
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On the other hand, by Lemma the point o0 is a smooth point of Bo C V and the
dim((Bo)w) is nu. Then the following holds.

dim(K[V].) = nu (6.14)

By Inequalities (6.13]) and (6.14]), we have dim(K[V],) = nu. Then by Theorem [2.1.18¢),

the point o0 is a smooth point of V. m

Lemma 6.2.13. In Setting (6.2.11]), if the corresponding matrix Ms € Mat,,(K[S])
has determinant £1, then the elements of the set S = {3; | s; € S} form a K-vector

space basis of n/n?.

Proof. By Lemma the point 0 = (0, ...,0) of Bp is smooth of dimension nyu and
by Lemma the point (0, ...,0) is a smooth point of V of dimension nu. Hence
we have dimg(m/m?) = dimg(n/n?) = nu. Moreover, by Lemma the elements
of the set S = {5; + m? € Bp | s; € S} form a K-vector space basis of m/m2. As a
result of the canonical surjective K-algebra homomorphism b, the canonical K-algebra

homomorphism

e:m/m* — n/n?

5 4+m? — § +n’

is surjective. Since both m/m? and n/n? have the same dimension, the K-algebra
homomorphism is an isomorphism. Hence the elements of S are K-linearly independent

with dimension nu. Then they form a K-vector space basis of n/n?. O]

Recall that, as given in Definition 3.1.12] the ring gr,(K[V],) is called the graded
ring of K[V],.

Lemma 6.2.14. In the setting [6.2.11], the ring gr,(K[V],) is isomorphic to the poly-

nomial ring K[S]. In particular, the system {1, ...,5,,} is independent.

Proof. By Lemma the set of residue classes of the elements of S form a basis of
the K-vector space n/n?. Then by Nakayama’s Lemma [2.1.11] it follows that n(K[V],)
is minimally generated by the elements of S. Since the monomial point o is smooth, any
minimal system of generators are regular system of parameters of (K[V]),. Hence the

elements of S form an K[V],-regular sequence. Then from the implication from a) to
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b) of [Ku85] Chapter V, Corollary 5.13 , it follows that the K-algebra homomorphism

0:K[S] — gra(K[V]n)

S; §i+ﬂ2

is an isomorphism.

Lemma 6.2.15. Let ¢ denote the K-algebra homomorphism

¢ :K[S] — K[V (6.15)

S; —— S;.
Then the K-algebra homomorphism ¢ is injective.

Proof. Our aim is first to show that the K-algebra homomorphism

I:K[S] — KV

S; —> §;.

is injective. Our strategy is to show that the elements of {51, ..., 5,,} are algebraically
independent in K[V],. Let F' be a polynomial in K[V]u[z1, ..., ] such that F'(51, ..., 5,,) =
0. By Lemma the system of parameters {51, ..., $,,} are independent. As a re-
sult of Definition the set of coefficients of F' are contained in Rad(5y, ..., 5,,).
For F' € K[V]u[z1, ..., %y,] the set of coeflicients of I are contained in Rad(5y, ..., 8,,) N
K[V]s = n N K[V]s. Then the coefficients of F' are 0, and the elements of {51, ...,5,,}
are algebraically independent. Hence the map I' is injective.

Now we prove that the set K[V] \ n has no zero divisors. Let a + J and b+ J be
two elements in K[V] \ n. The maximal ideal n is generated by the elements of C. Then
both a and b polynomials with constant terms and ab has a constant term. Recall
that the ideal J is generated by the polynomials 7, € 7s that have no constants in
their support. Hence the polynomial ab is not in J. Thus the set K[V] \ n has no zero
divisors. Hence the K-algebra homomorphism from K[V] to the localization K[V], is

injective. Consequently, the K-algebra homomorphism ¢ is injective. O]

Lemma 6.2.16. In Setting (0.2.11)), if the corresponding matric Mg € Mat,,(K[S])

has determinant 1, then the coordinate ring of V is isomorphic to the polynomial ring
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K[S]. In particular, V is a smooth ideal-theoretic complete intersection.

Proof. By Lemma[6.2.15] the K-algebra homomorphism ¢ given in (6.15]) is injective.
We prove our claim by showing that ¢ is surjective i.e., for each d; € C \ S there

exists a polynomial f; € K[S] such that ¢(f;) = d; € K[V]. We assumed that the entries
of Mg are in K[S].

dy ... dn
or or
o[£l * % 3 Pde
Ms= |+ o i =+ - | eMat,(K[S))
OTm OTm
Tm \ * S | R

By Lemma [6.2.9] the polynomial 7, € Ts can be written as follows.

(97'1 8T1 87’1
= —do -+ —dp+---+ —d,, 1
T1 8d2d2 8dkdk 8dmd —f—gl(S)ZFdl (6 6)
OTm, OTm, OTm,
S N UL AL N d,.
T, ad, ™ oa, od. 1+ 9m(S)F

where for each k € {1, ..., m} the polynomial gx(S) is in K[S] and for each i € {1,...,m}

the polynomial % is in K[S], as well. By keeping Equation (6.16)) in mind, we consider

the following system of linear equations over the ring K[C].

g—;ﬁ gd% I 91(8)
: : =—1 = | (6.17)
g%; g;_:; T Gm(S)

By Cramer’s rule for rings, if (ay,...,a,) € K|[C] is a solution of (6.17)), then for ¢ =
1,...,m we have

Det(Ms)a; = Det(M;),

where M, is the matrix Mg in which the i** column has been replaced by

91(S)

Im(S)

Since Mg € Mat,,(K[S]) holds, for each i € {1, ..., m} the matrix M; € Mat,,(K[S]).
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Then Det(M;) is in K[S]. Since we assumed that Det(Mg) is £1, for each index
i € {1,...,m}, the element a; is £Det(M;). We claim that f; = a; = £Det(M;)
satisfies o(f;) = d;. In the ring K[V)] the equation system (6.16) becomes

Under the map ¢ the equation system (6.17) becomes,

o(f1) 91(S) d,
M : = - : =Ms |

©(fm) Im(S) dn,

Since the matrix Mg has determinant £1 it is invertible in K[S], we have the following
equality.
e(f1) dy

o (fm) d
Then for each d; € C\' S we have a polynomial f;, ¢(f;) = d; € Bp. Moreover, by the
Cramer’s Rule we have for each d; € C \ S have a polynomial f; = Det(M;) € K[S].

This shows that the injective K-algebra homomorphism ¢ is surjective, as well. O

Remark 6.2.17. The proof of Lemma [6.2.16| does not only introduce a condition that
makes the map ¢ an isomorphism, it also illustrates a method to find the pre-images

of the elements of the set C \ S concretely.

Let us apply the preceding result to an example.

Example 6.2.18. Let us recall Example4.1.8) where the order ideal is O = {1, xy, x2, x122}.
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In Example [3.2.12| we show that Z(Be) is generated by the following 12 polynomials.

T22 = C21C32 + C23C42 — C24 T33 = C21C32 + €34C41 — €33
T44 = C34C41 — C23C42 — C24 + €33 T32 = €31€32 + €33C42 + C12 — C34
T12 = C11C32 + C13C42 — C14 T34 = C23C32 — C31C34 — C34C43 + €33C44 — C14
T13 = C12€21 + C14C41 — C13 T24 = C22C23 — C21C34 — C24C43 + C23C44 + C13
T23 = C21C22 + C24C41 + C11 — €23 T42 = C32C41 + C42C43 + C22 — C44
T43 = C21C42 + C41C44 + C31 — C43 T14 = C12€23 — C11€34 — C14C43 + C13C44

In Example[4.1.8] we have computed the set € = {[¢11], [C21], [c31], [En1], [€12], [C22], [C32]. [Cao]},
where [¢31] = {c31, cas}, [C11] = {11, cas}, [Coa] = {22, caa}, [C12] = {c12, c34}. By choos-
ing one element from each equivalence class, we get a set S (see Lemma . Let
us construct this set as S = {ca1, Ca3, €32, C34, Ca1, Ca2, C43, Caa }. Let M be the set C\ S.

Then the set C\ S is

{033, Ca4, C22, C31, C12, C11, C13, 614}-

Note that by Proposition ), no matter which elements from an equivalence class
of & we choose, the elements cy4, ¢13, C24, ¢33 in C \ S cannot be replaced. As a result of
O C T2, Corollary implies that the monomial point o is the smooth point of the
O-border basis scheme where the dimension of the regular local ring (Bp)y is 2 = 8.
Then as given in , there exists an injective homomorphism

v:K[S] — K[C]/Z(Bo)

S; —— §;.

We show that the map ¢ is surjective, as well. By Proposition [5.1.23] the scheme B is
an ideal-theoretic complete intersection where the vanishing ideal of it is generated by
a subset Ts of 7. We compute the generating set Ts = {Ta2, T33, Ta2, Tu3, To3, T24, T32, T34 }
by using our ApCoCoA package bbsmingensyz. For further information on how to do
the computations we refer to Chapter

@ '(G33) = T33+ C33 = Carcaz + caacar = g33(S) € Bo,
@ NCa4) = Taa T Ca4 = CarCaz + CozCaz = g24(S) € Bo,
80_1(522) = Tya — C23 = €32C41 + C42Ca3 — Caa = g22(S) € Bo,
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¢ 1 (E2) = Taz— Ca2 = czacq1 + cazcaz — cas = g22(S) € Bo,

0 N(e31) = Taz— c31 = 21642 + carcas — ca3 = g31(S) € Bo,

e He2) = ¢ ' (E31)e32 + ¢ (Ca3)Ca2 — C3a = @ 1 (€31)C32 + ¢ (€33)Ca2 — g12(S) € Bo,
e Nen) = @it + ¢ () — Gz = ¢ (C21)Ca1 + 911(S) € Bo,

@ H(e13) = cC2aCa3 — o131 — @ (Coa)Cas + Co3Caa = —¢ (Caa)cas + g13(S) € Bo,

e 1 (E1) = coscsr — 0 (Ca1)csa — csacas + cazeas = —~ (Ca1)cza + g14(S) € Bo.

For each c¢;;

fou
1

f13

fi2
f33
f1a

fo2
f31

€ M if we let fi; :== ¢~1(¢;), then we have

T22 + C24 = C21C32 + C23C42,

0723 0723

= faa + = fo2 — ca3,

Ocoy Ocas
87‘24 87‘24

——foa + = foo — ca1€34 + C23C44,
6024 8022

0732 0732

——f31+ 7 f33 — ¢34,

8631 8033

T33 + €33 = C21C32 + C34C41,
8734 67’34

— = f31 + = f33 + c23C32 — 3443,
6031 8033

T4 — €22 = C32C41 + C42C43 — C44,

T43 — €31 = C21C42 + C41C44 — C43.

Let us recall the following equality

0722
dcaq

Ms =

0743
Jcag

which in this example leads
—1 0 0 0

cu1 1 0 0O

c43 0 1 0

0 0 0 1

Ms=149 0o 0 o

0 0 0 0

0 0O 0 O

0 0 0 0

P P faa 924(S)
= Oes Ju g11(S)
X = ,
Omag Omaz
den Oes I31 gm(S)
us to the following equality.

0 0 0 0 faa c21¢32 + c23C42

0 0 c21 0 f11 c23

0 0 c23 0 f13 —ca1¢34 + c23c44
can 0 0 es2 | | fi2 | _ €34

-1 0 0 0 f3s c21¢32 + ¢34¢41
—c4a —1 0 —c34 f1a €23€32 — €34C43

0 0 1 0 fa2 €32€41 + €C42€43 — C44

0 0 0 1 f31 €21C42 + C41C44 — C43

The matrix M is in Matg(K][S]) and the determinant of it is 1. Then B¢ is isomorphic

to an affine space A®. Let us find explicitly the pre-images of the elements ¢; € Bo,
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where ¢;; € M. Let us start with cos.

C21C32 + C23C42 000 O 0 O 0
Co3 100 O 0 ¢y O
C91C34 + Co3Cay 01 0 O 0 c3 O
Moy = C34 0 01 co 0 0 3
C21C32 + C34C41 000 -1 0 0 0
C23C32 — C34C43 0 00 —cgyy =1 0 —c3y
C32C41 + CaaCa3 —cyy 0 0 0O O 0O 1 0
Co1C42 +Cq1€44 —cg3 0 0 O 0 0 0 1

Then foy = Det(May) = ca1039 + Co3¢42 € K[S]. By using the same method we have

fiu = Det(Mi1) = —carezaca1 — cascaicar € K[S]

fiz = Det(Mi3) = cozcsacar — Ca1C32Ca3 + o134 — 2¢3¢40 € K[S]
Ji2 = Det(Mu) = —C34C41C42 + C32C41C44 — C32C43 — C34 € K[S]
f3z = Det(Ms3) = caicsp + czacar € K[S]

fir = Det(Mis) = caicsacan — Ca1C32Ca0 + Ca3c32 — 2c31¢43 € K[S]
J2 = Det(M22) = C32C41 + C42C43 — Ca4 € K[S]

Ja1 = Det(M31) = €21C42 T C41C44 — C43.

The image of f33 under the map ¢ is as follows.
©(f33) = 21032 £ c34€a1 = Co1Cap £ C34Cy1 = Ca3

In the same way, we have ¢( fa1) = Caa, p(fo2) = Ca2, ¢(f31) = C31, ©(f12) = Cr2, (f11) =
11, ¢(f13) = 13, and finally ¢(fos) = Cou.

Recall how we constructed the Matrix where {dy,....,d,} = C\ S and Ts =
{71, ..., Tm}, which is a subset of T that consists of the polynomials, whose supports
contain d;. Our goal is to get rid of the condition that the vanishing ideal of a given
O-border basis scheme must be generated by the set 7s C 7. In order to reach this

goal let us recall some notation and introduce new ones.

In Chapter 2| Proposition [2.1.19 states that if I C K[z, ..., z,] is a prime ideal and
K is a perfect field, then the Jacobian ideal defines the singular locus of Z([7). This is
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a crucial part of the proof of our next claim. Before stating the lemma let us recall
Definition [2.4.4] i.e. the principal component of By is an irreducible component of B
whose vanishing ideal is Ker(®) in . The principal component is denoted by Cp.

Lemma 6.2.19. Let O denote an order ideal with u terms from Kz, ..., x,|. If there
exists a set S C C with nu elements such that the entries of the corresponding matriz
Ms are in the polynomial ring K[S] and the determinant of this matriz is £1, then

Co is smooth of dimension npu.

Proof. Recall from Chapter [2.5| that the principal component Cgy is irreducible and
contained in Bp. Let J denote the ideal that is generated by a set Ts. Then we have
Z(Co) O I(Bp) O J where J is generated by Ts C 7. Thus the matrix Mg in
Notation (6.2.11]) is a submatrix of the Jacobian matrix of the generators of Z(Cp).
By Theorem the principal component has the dimension nu at its smooth
points. Then the submatrices of the Jacobian matrix that have the rank uv—npu give the
maximal minors of it, which generate the Jacobian ideal. Since Mg is a submatrix of
the Jacobian matrix of the generators of Z(Cp) with rank pv —npu, the Det(Mg) = £1
is one of the maximal minors of the Jacobian matrix. Then the Jacobian ideal is a unit
ideal. The ideal Z(Cp) is a prime ideal and K is a perfect field. Then by Theorem
the Jacobian ideal defines the singular locus of K[C]/Z(Cp). As a result of the
Corollary 2.1.21] Cp is smooth of dimension nu.
O

Theorem 6.2.20. Let O denote an order ideal with u terms from K[z, ..., x,]. If there
exists a set S C C with nu elements such that the entries of the corresponding matriz
Ms are in the polynomial ring K[S] and the determinant of this matriz is £1, then

Bo is isomorphic to an affine space of dimension nj.

Proof. W e have Z(Cp) 2 Z(Bp) 2 J where J is generated by Ts C 7. Then we have
V 2 Bo 2 Co. (6.18)

By Lemma [6.2.16, the zero set V is an affine space of dimension nu and it contains
the principal component Cp. By Lemma [6.2.19| the principal component is smooth of

dimension nu. From those results follows that Cp is an affine space of np. Since we have
(6.18)), the O-border basis scheme B is an affine space of dimension nu, as well. ]

Remark 6.2.21. Note that for a given O-border basis scheme Theorem [6.2.20[ implies
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that if there exists a maximal minor of Jac(7) that is £1 and the corresponding sub-
matrix is in Mat,,(K[S]), then the O-border basis scheme is isomorphic to an affine
space. It is also worth mentioning that it is not necessary to check all the minors of
the Jacobian matrix, since it is enough to construct the set S and pick polynomials
1; € T, for each d; € M with the property that ngi
candidate minors of the Jacobian matrix of T is more efficient than blindly checking

= +1. This way of constructing the

all the minors of it.

Remark 6.2.22. If an O-border basis scheme satisfies Theorem [6.2.20, then it is an
ideal theoretic complete intersection where the vanishing ideal is generated by Ts.
In general, affine spaces of dimension smaller than 5 need not be an ideal theoretic

complete intersection (see [Kum77]).

Corollary 6.2.23. Let O denote the order ideal {1,x1, 22} C K[z1, 22, 23]. Then the

O-border basis scheme is isomorphic to an affine space A°.

Proof. The border of O is 00 = {x3, x93, 123, T35, T1T9, T3 }. The generators of the

vanishing ideal of the O-border basis scheme are as follows.

Polynomials with arrow degree (2, 1,0)

12
Tig = C16C25 — C15C26 + C15C35 — C14C36
Polynomials with arrow degree (1,2,0)
12
Ti3 = C16C24 — C15C25 + C15C34 — C14C35
Polynomials with arrow degree (1,1,0)
12 _
Toyg = C25C35 — C24C36 1 C15
12
T33 = —C25C35 1+ C24C36 — C15
Polynomials with arrow degree (0,2, 0)
12 2
To3 = —Cy5 1 Co4Cop + C25C34 — C24C35 + C14
Polynomials with arrow degree (2,0, 1)
13
Tig = —C11C16 + C16C23 — C13C26 + C15C33 — C12C36,
Polynomials with arrow degree (0,2,1)
23 _
Ti3 = —C11C14 1+ C15C22 — C13C24 + C14C32 — C12C34

Polynomials with arrow degree (1, —1,1)

13
T31 = 31035 1+ C21C36 — C33
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Polynomials with arrow degree (2,0, 0)

T35 = —C26C35+ Cis+ C25C36 — C34C36 — Ci6
Polynomials with arrow degree (1,0, 1)

TIY = C16C21 + Ci5C31 — Ci3

Tys = —Ci6C21+ C25C33 — C22C36 + C13

T35 = —Cis5C31 — C25C33 + C22C36

T35 = —C15C31 — C25C33 + C33C34 + C23C35 — C32C35 + C13
Polynomials with arrow degree (1,1, 1)

TI§ = —C11Ci5+ CiCaa — C13C25 + C15C32 — C12C35

Tis = —C11C15+ C15C23 — C13C25 + C14C33 — C12C35
Polynomials with arrow degree (0,0, 1)

Ty = 21026+ Ca5C31 + €11 — Ca3

73?13 = (31C34 + C21C35 +C11 — C32
Polynomials with arrow degree (0,1, 1)

7213? = —C15C21 — C23C25 + C22C26 + C25C32 — C22C35 + C12

71213 = C15C21 + C14C31 — C12

T35 = —Ci5C21+ C24C33 — C22C35

T35 = —C14C31 — C24C33 + C22C35 + C12
Polynomials with arrow degree (2, —1,1)

T35 = —Ci6C31 — C26C33 + C33C35 + C23C36 — C32C36
Polynomials with arrow degree (—1,1,1)

72213 = (21C25 + C24C31 — C22
Polynomials with arrow degree(—1,2,1)

7223 = —C14C21] — C23C24 F C22C25 + C24C32 — C22C34

As we did in Chapter [4.1], by the help of Proposition [£.1.6], we compute the set of

equivalence classes by using the polynomials in 7.

€ = {[Ca3], [Caa], [Cas], [Cas], [C31], [Can], [C3a], [C35], [C36] }

The cardinality of & is 9 which is nu. Then by Theorem [4.2.15] o is a smooth point

of Bp. Since o is the smooth point of the O-border basis scheme, the dimension of
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the regular local ring (Bop)n is 3 = 9. By observing the equivalence classes in €, we

deduce that except for

[Cos] = {Co3, C11, C32},

all the other equivalence classes contain exactly one element. Then there are exactly 3
different bases of the K-vector space m/m?. Then there are three different possibilities

for the set S. Let us choose the elements of S as follows.

S = {0237 Ca24, Co5, Co6, C31, C21, C34, C35, 036}

The set Ts is not unique, either. Since for each element d; € M a polynomial 7; € Ts

satisfies

ot
ad;
the polynomials that are homogenous of standard degree 2 are not in 7s. Moreover,
the polynomials 737, 743, 742, a3, T2, To¢ are the only polynomials that satisfy Equality
- for the elements cy9, €33, €11, €39, €16, c14 Of M and hence they must be Ts. The

rest of the elements of Ts depend on our choice. For example, for the indeterminate c5

= 41, (6.19)

both of the polynomials 135, 745 satisfy Equality and we choose 752. By choosing
exactly one polynomial for each remaining element of M we get

7:9 - {7-22 ) 7-23 ) 7—3}227 7—3?237 7—21137 7—32137 7—32??7 31137 23}
Keep in mind that if by using this choice of Ts we get a non-constant polynomial as

determinant, then we check other possibilities. Now we have all we need to construct
the matrix Mg.

€11 C12 €13 C14 €15 Ci6 C22 (32 €33
(0 0 0 0 1 0 0 0 0
w3l 0 0 0 1 0O 0 0 0 0
™3] 0 0 0 0 0o -1 0 0 0
7'3?5’ 0 0 1 0 —c31 O 0 —c35 —co5+c3g
Ms=r3]l 1 0 0 0 0O 0 0 0 0 € Mato(K[S]).
|l 1 0 0 0 0 0 -1 0
2310 1 0 —c; 0 0 ¢ O —co4
il 0o 0 0 0 0o 0 0 0 -1
= \0 0 0 0 0 0 -1 0 0
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We observe that entries of the matrix Mg are in K[S], and the determinant of this
matrix is —1. By Theorem |6.2.20, B is isomorphic to the affine space AY. O]

Lemma 6.2.24. Let O C K|z, ..., z,] be an order ideal. Let By be the coordinate ring
of the O-border basis scheme Bp. Let By be a smooth scheme. If the vanishing ideal
Z(Bo) is generated by Ts, then the elements of Ts forms an K[C]-reqular sequence.

Proof. The O-border basis scheme is smooth. By Theorem the dimension of the
Principal component at smooth points is nu. Hence the dimension of O-border basis
scheme has dimension nu. The set Ts has puv — nu elements, where uv — nu is the
codimension. Then the border basis scheme is an ideal theoretic complete intersection.

Thus the elements of 75 form a regular sequence. O

For further research we strongly believe that Theorem [6.2.20] can be generalized to

give the following criterion.

Conjecture 6.2.25. Let O C K|xy,...,x,] be an order ideal. Let K be a perfect field.
The border basis scheme Beo is isomorphic to an affine space, if there exists a spanning
set S of m/m? such that Det(Ms) = +1 holds.

Algorithm 6.2.26. Let O C K[zy,...,x,] be an order ideal. Let & represent the set
of equivalence classes modulo m?. Let S; represents a set, where each element is chosen
from different equivalence classes of €. Let M, denote the set C\ S;. Let Ts denote the

set of polynomials that for each d, € M, there exists exactly one 75, in Ts

Step 1) If the cardinality of & is larger than nu, return "the O-border basis scheme is

not isomorphic to an affine space”. Else proceed with the next step.

Step 2) Compute ng asin (6.4). Let £ := {[¢;;] | the number of elements of [¢;;] is more than 1}.
Let Sp := {c;j € C | [¢ij] € Eo}. We set i := 0.

Step 3) i :=i+ 1 and construct the following set
S; = S;_1U{choose exactly one ¢;; from each of the equivalence classes [¢;;] € E'},
where for j <4, §; # S, holds.

Step 4) Construct M; := C \ S; and the matrix Mg; and compute the determinant of
MSZ‘.
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Step 5) If the determinant of Mg; is 1 and M; € K[S;], then return "B is isomorphic
to an affine space of dimension nu and it is isomorphic to K[S;] 7. If the deter-
minant of Mg; is a non-constant polynomial and i < ng, then return to step 3)

and construct a different S;. Otherwise, the algorithm is inconclusive.

Step 6) If the determinant of Mg; is £1 and ¢ < ng then return to step 3) and construct
a different S;. If the index 7 is equal to the number of all possible sets S, ng, then

the algorithm is inconclusive.

Under the above assumptions, this algorithm finds out whether O-border basis scheme

is isomorphic to an affine space.

Proof. This follows from Theorems [4.2.15| and [6.2.20] O]

For further research, our calculations using Algorithm [6.2.26] which is derived from
Theorem and Theorem 7?7 also suggest the following result.

Conjecture 6.2.27. Let O = {ty,...,t,} C T? be an orderideal. Let O’ = {t,...,t,} C
T™ be the same order ideal whose border is in T™. If the O-border basis scheme is isomor-
phic to an affine space of dimension 2u, then the O'-border basis scheme is isomorphic

to an affine space of dimension npu.

6.3 Segment Border Basis Scheme is an Affine Space

We start Section by proving that the monomial point of a segment border basis
scheme is smooth of dimension nu. (see Proposition m ). Then by using Theorem
6.2.20, we prove that a segment border basis is isomorphic to an affine space of dimen-
sion nu (see Proposition [6.3.6). This result was also shown in [Ro09],Corollary 3.13 by
a different method. In this section we verify this with our method.

Let C denote a set of indeterminates {ci1, ..., ¢, }. Let K[C] be the polynomial ring
K[c11, ..., ¢u]. Let O denote the segment order ideal {1,z ...., 24"}, Then the border
of the order ideal O is 0O = {xy, ..., Ty, Tp, boiry, ..., 2% 29, 2%} and with respect to
our notation we have t; = 1,ty = zy,....,t, = x‘l‘_l,bl = Ty, ey by = X9, by =
Ty b = boxy, ..., by = x’f_lxg and b, = 2. By Corollary |5.3.15| the vanishing ideal
of a segment border basis scheme By is generated by the set {Tplé lp=1,.,0uq =
L..,p— 11 € {2,...,n}}. We shall name this set as T,,. Let o denote the point
(0,...,0) € Bp. We let m denote the maximal ideal of Bp that is generated by the

elements of C = {¢;; € Bo | ¢;; € C}. Moreover, for the sake of simplicity we assume
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that (Bo)m/m is isomorphic to the field K. Then the space m/m? is an K-vector space.
Let & denote the set of the equivalence classes modulo m?. Let us take a closer look at

the elements of Tge,.

Lemma 6.3.1. The quadratic monomials in the support of the polynomial 7'plé € Toeg

are of the form cp,cuj, where 1 < j<wv, 1 <p<pandl <qg<p—1.

Proof. Let 7). be a polynomial from T, Let ¢, be an order ideal term such that
rity = by, € 00 and ity = bpy1)—; = bi. The polynomial T;é is the entry in position
(p, q) of the matrix

A1 A — AA;.

By Lemma[5.3.12] for ¢ > 1 the generic multiplication matrix 4; has the following form
Ar=(ey | ... 1ey | ¢e)) (6.20)
For the indices [ > 1 the generic multiplication matrix .4; has the following form

A= (i | | gmnyman) | | G m1yn=1)) (6.21)

where the index k = (n + 1) — [. Then by using the generic multiplication matrices

above, we have

T;}é = ep[(eg’" | eff | CZT)(CZ | Cicr—&-(j—l)(n—l) | cil(u_l)(n_n)]eé’“
—epl(c | - | c';;—(j—l)(n—l) || C'Z;(,L_n(n_n)(e'é’ | e,tf | cff)}ef;
CovCuj £ g
where ¢ is a linear polynomial from K[C] and j € {1, .., u}. O

Recall that the vanishing ideal of the O-border basis scheme is generated by the
set Toeg = {7y |P=1,..,pq=1,...,p—1, 1 €{2,...,n}} that has exactly uv —npu.

Lemma 6.3.2. Let O = {1,zy,...,24" "} denote a segment order ideal in K[xy, ..., z,].

a) Let T;é be a polynomial from Ts,. Then we have degW(T}}é) = ae; + e, where
—pn+1<a<p.

b) A polynomial T;é € Tseqg has only one indeterminate from C in its support if and

only if we have p = 1.
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c¢) A polynomial 7} € Tse, has a non-standard arrow degree if and only if there exists

an order ideal term t, such that degy, ({}) = qe1 + e, = degy (7,1).
d) The equivalence classes [¢1,], [Co], ..., [Cuv]; [Cu—1)] € € have only one element in
C.
Proof.  a) A polynomial T]}é € Tseq has the following arrow degree
degyy (7)) = log(z13ity) — log(t,,) = log(zaf) — log(z{™") = (¢ —p+ Der + ey,
For each order ideal term ¢, and ¢, we have —p+1< (¢ —p+1) < p.

b) For each index [ € {2, ..., u}, the generic multiplication matrix .4; does not have
any constant entry and only the first row of the generic multiplication matrix A
does not have the entry 1. If a polynomial 7'” € Tseq has only one indeterminate
in its support, then the polynomial Tzfé is located in the first row of the matrix

[A1, Aj] ie., p= 1. For the converse let b; = x;t,. Then we have the following.

Tllé = e1(e ]e |C )(Cll? ’CkJr(] 1)(n—1) | .. ’Ck+(u 1)(n— 1))]6”
—61[(% o | Ck+(j—1)(n—1) || Ck+(u—1)(n—1))<€2 | % \ CV )]63
= gip Ly

c) Let t, be an order ideal term and xl be from {zs, ..., z,,}. Consider the polynomial

71y € Teeg- The arrow degree of 7! is non-standard as follows.
degyy (1) = ge1 + e

For the converse let 7! € T, with a non-standard arrow degree. Then by part
a) we have pt > s —r + 1 > 0 and there exists t, where 0 < g=s—r+1<p
such that degy, (7]) = degy (/1)

d) For each index 1 < k < u the indeterminate ¢y, has the following arrow degree

degyy (cr) = log(b,) — log(ti) = log(a}) — log(x}) = (1 — ke

By part a), there is no polynomial in 7., with this given arrow degree and by
Proposition ¢), the claim follows.
O
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Corollary 6.3.3. Let O denote a segment order ideal in K[zy, ..., x,] with p terms.
For ¢;; € BO we have ¢; € m? if and only if the arrow degree of the indeterminate c;;

15 non-standard.
Proof. This follows from Lemma b), ¢) and Proposition a). O

Proposition 6.3.4. Let O C T" be a segment order ideal. Then the monomial point
0=(0,...,0) € Bp is smooth. Moreover, let Ss., denote the set

{C1us Covs ooy Currs Cp(v—1) - Cp1 }-
Then the set Ssey = {Cij € Bo | ¢ij € Sseq} is a basis of the K-vector space m/m?.

Proof. Let us examine the border of the segment order ideal. The minimal generating
set of the border term ideal is {b;, ba, ...., b,_1, b, }, where by = x9,by = X3, ....,b,_1 = T,
and b, = zf ~! which are pure power terms. Recall Lemma which states that if
the border term ideal is generated by pure power terms. Hence the set € has exactly
ng. Then by Theorem [4.2.15] the monomial point o is smooth.

The set Sseq has exactly p+v —1=p+[(n—1)p+ 1] — 1 = nu distinct elements.
We show that those elements are K-linearly independent in the vector space m/m?. By
Lemma ), [ew)s [ea], -y [Ew], [Cuw—1)] € € have only one element in C. Then by
Proposition ), we have [¢1,] # [Co] #, ..., 7# [Cw] # [Cuw—1)]. We now focus on the
rest of the elements in the set S,.4. Since for each border term b; € {by,...,b,_2} C 00,

the index 7 is smaller than v, for a < 0 the arrow degree of c,; is as follows.
degyy (cui) = log(b;) — log(t,) = log(zx]) — log(zh ") = aey + ¢

Consequently, we have the inequality © — 1 > s. Then each ¢;; € {cuw—2),...., 1} is
standard and by Corollary , the equivalence class ¢; is not in m?. Moreover, for
distinct border terms b; and by, we have degy, (¢,;) # degy (¢ur). Then by Lemma[d.1.5
[€,;] # [€.x]. Thus the set S, is a set of K-linear independent indeterminates in m/m?
with nu elements, which is by the smoothness of o the exact number of elements in €.

Hence the proposition follows. n

Corollary 6.3.5. Let O C T" be a segment order ideal. Let T;é be a polynomial in

Tseg- The polynomial 7)) is of the following form (TI}Z)(Q) + (Tl}é)(l), where (T;é)(l) € K[C]

q
18 a linear polynomial and (Tll)(z) 18 homogenous polynomial of standard degree 2 and

Pq
it is in K[Seg].
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Proof. This follows from Lemma [2.3.19, Proposition [6.3.4] and Lemma [6.3.1} O
Proposition 6.3.6. Let P denote the polynomial ring K[z, ..., z,|. Let

O={1,z1,.., 2"} C Klzy,..., 2]
be a segment order ideal. Then By is isomorphic to an affine space of dimension nj.

Proof. By Proposition [6.3.4], the set

Sseg = {Cuu, Covy s Cpvs Cp(w—1Ys -5 Cut }

is a K-vector basis of m/m?. Let M denote the set of indeterminates C \ Sy, The set
M has exactly uv — nu elements. By the Corollary [5.3.15] the vanishing ideal of the
segment border basis scheme By is generated by the set

7269 = {T;é |p = 17 g = ]_, ey b — 11 S {2, ...771/}},

which has pv — nu elements, as well. Note that by Proposition ) and b), for
each d; € M there exists a polynomial 7; € T, such that g—gﬁ = +1. We construct the
following matrix.

di ... dn di ... dn
0 o]
Tl ﬁ e Td?n 1 [£1 % *
Msseg = - =
OTm OTm * *
Tm de  vde Tm +1

Since the set T, is a set of generators of Z(Bp), the Jacobian matrix is as follows:

Jac(Tseq) = ( Ms,., | * ) (6.22)

By Corollary (6.3.5, a polynomial 7! € T.eg, is of the following shape

7_11 _ (Tll)(Q) + (Tll)(l)’

pg — \'pg Pq

where (72)® € K[S,,] and (72)") € K[C] is a linear polynomial that has at most two
terms in its support. Then by Corollary [6.1.1], the entries of Mg, are only +1 and 0.
Since the monomial point 0 = (0,..,0) is a smooth point of By, by Theorem [2.1.18¢,

the rank of the matrix Jac(7seg)o is p — npu. Since the entries of Mg, are either £1
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or 0, it is a sub-matrix of Jac(7seg)o, as well. Then the matrix Mg, has the rank

uv — nu. By applying row operations, we have

dy ... dn
! +1 0 0
nofEL 0 41 0 0
M‘Sseg: : : - : ~ : .. <. . :Em
T \ * % £l ' ' o
0 0 +1

Hence, the determinant of the matrix Mg, is 41. Thus by Theorem [6.2.20 the
segment border basis scheme is isomorphic to an affine space of dimension nu. O]

Example 6.3.7. Let O denote the segment order ideal {1,z1,23} C K[z, w9, z3].
Then the border of O is

2 2 .3
00 = {x3, T3, 1173, TaT3, T1T3, ToT7, T7 },
so that in our terminology we have
3

2 2 2
t1 = 1,19 = 21,13 = 27, b1 = 23,b2 = T2, b3 = 2173, by = Taw3, b5 = T1T3, b6 = 2277, b7 = 2}.

By Propositions the defining equations are as follows.

12 13
T11 = C17C32 — C14 T11 = C17C31 — C13
12 13 _
Tyy = C27C34 + C14 — Cog Toy = C27C33 + C13 — Co5
12 13 __
T = C17C34 — C16 Tig = C17C33 — C15
12 13 _
Ty1 = C27C32 + C12 — Coq Ty] = C27C31 + C11 — Ca3
12 13 _
T3y = C34C37 + Co4 — C3 T3y = C33C37 + Ca3 — C35
12 13
T31 = C32C37 + Co2 — C34 T3] = C31C37 + C21 — C33

By Lemma m, the set Ssy = {C17, Car, Ca7, Ca1, C32, C33, Ca4, C35, C37} 1S a spanning set
of m/m?. By Proposition [6.3.6, the scheme Be is isomorphic to an affine space of

dimension nu.

Let us illustrate this result. Recall that the homomorphism

QO:K[Sseg] — K[C]/I(BO),

Cij = Eij
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is injective (see Chapter Map [6.17)).

To show that ¢ is surjective, we compute the determinant of the matrix Ms,,, .
Clearly, this matrix is in Maty2(K[Sse,]) and the determinant of this matrix is 1. By
Theorem [6.2.20], the scheme B is isomorphic to an affine space of dimension nu. Now
we illustrate the way to get f; € K[S] for each d; € M, concretely. Recall from Chapter

6] that we have the following equation.

fi qn (8>
MSseg X = )

fm Im(S)

For each ¢;; € M, we define f;;, which are the pre-images of each ¢;; € M as follows.

fia = 71112 — C14 = C17C32 fiz = 7'1113 + €13 = C17C31
fas 1= carC34 — f14 fos 1= corc3z + fi3
fi6 7= Ti3 + c16 = C17C34 fi5 1= Ti3 + c15 = ci7Ca3
foa = T§22 — Cq4 = C34C37 — C36 foz == 7'3}23 — Co3 = (C33C37 — C35
Ji2 7= corc3a + fou fi1 = carcs1 + fo3
Jo2 = 7’3112 — C22 = C32C37 — C34 for = T;f’ — C21 = C31C37 — C33.

Then the matrix Ms,,, is as follows.

Q
[N}
338

=)
INY
=

Co3  Co4

)
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—

)
AR
¥

)
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w
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~
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ot
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—
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Now let us verify the entries of the column matrix

91(S)

gm<8)

which are by Corollary all in the polynomial ring K[Sg.,| as follows.

g14 = C17C32, §13 = C17C31 J26 = C27C34, g25 = C27C33
g16 = C17C34, g15 = C17C33, g24 = C34C37 — C36, 23 = C33C37 — C35

g12 = C27C32, g11 = C27C31, g22 = C32C37 — C34, (21 = C31C37 — €33

By Proposition [6.3.6| all the polynomials that we defined above fi1, fia, ..., fog are from
the polynomial ring K[ci7, cor, c37, €31, C32, C33, C34, €35, €37) = K[Sseq]. We let ¢;; € M
and d = ¢;;. Hence, for each d; € M there exists an f, € K[S,,] such that f, =
Det(M}) € K[Sseq], where Det(M}) is the determinant of the matrix Mg, that has
the the column G in the k™ column. In this example, it is straightforward to verify
the polynomials fj, by simple substitution. For example, fi4 = ci7cs2 € K[Sse,] and
fae can be found by substituting fi4 by ci7¢32 and hence we get fog = corc3s — c17¢39.

By proceeding this way, we get

f1a == ciresy J13 1= crresn
fog 1= CorC3s — C17C32 fas 1= corC3z + cr7can
fi6 1= C17C34 J15 1= c17e33
Jo4 1= c3ac37 — C36 Jo3 1= c33¢37 — C35
f12 1= carC3o + C34C37 — C36 f11 7= carcs1 + c33¢37 — C35

f22 ‘= C32C37 — C34 f21 ‘= (C31C37 — C33.
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6.4 Special Order Ideals from T?

1) Let an element 2"y' of the order ideal O be denoted by t,;.

Before starting the main part of this section, let us present the necessary notation and

definitions. Unless stated otherwise, throughout this section the polynomial ring in use
is P = K[z,y] and O is an order ideal in T?.

2) The set of indeterminates of C are of the form ¢,;;, where j is the index of b; and

rl are such that ¢,; is an element of the order ideal O.

3) For i > 0 and j > 0 we place the term z'y’ at position (4, ) of a diagram in

order to visualize O and 00. Let us illustrate how we place the terms and how

the diagram of O is constructed with an example.

{1,2,y, 2y, 2%, y*, 2%y, xy®, 2%, y°, 2y, y*} € T

Example 6.4.1. Let O denote the order ideal

Then the border of O is 90 = {zy?, x?y?, 2%, y°, zy*, 23y?, 2y }.

y5 = by Xys = bg
% 70" 2yt =
% 20 P 3y3 = b,
y2 lL'yQ 172y2 x3y2 X4y2 — b3
y xy z%y zy 'ty y = by
1 x x? x> x? b,

Table 6.1: Diagram of O

As given above we have 2"y’ = t,;. In the diagram of O, for [ = 0, we have

too =1, tig =, ..., t40

=zt b =2°.

5

4) Let L denote the number of rows and R denote the number of columns. In

Diagram we have 6 rows, i.e. R =6 and 6 columns, i.e. L = 6.

5) Let R; denote the number of terms placed in the row [ and L, denote the number

of terms placed in the column r. For example, in the third row we have [ = 2,
Diagram [6.1] has 5 terms, i.e. Ry = 5 and in the fourth column it has 3 terms,

ie. L4 =

3.
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Definition 6.4.2. An order ideal has the sawtooth form if the diagram of O is of the
form such that every step width, except possibly the topmost, and every step height,

except possibly the rightmost, is of size one.

i

Table 6.2: Diagram of O has the sawtooth form

Let O be an order ideal that has the sawtooth form. Let 0O = {by, ....,b,} denote
the border of O, with v elements. Observe that, except for the top row which consists
of only border terms, each row has exactly one border term. We enumerate the border
term on the j* row as b;,; = xfy/, where 0 < j < L—1. For example, in Diagram
border elements are indexed beginning from b; to bg in an ascending order between the
top row and the bottom row. There are v border terms and if the border term is on the
top row then we enumerate the border terms as b; = 2¥Jy“~! where v > j > L — 1.

In [Huib02] by using Proposition 7.1.2 and Corollary 7.2.2 the following theorem

was proven.

Theorem 6.4.3. Let O = {t1,...,t,} be an order ideal in T?. If the order ideal O has

the sawtooth form then By is isomorphic to an affine space.

In this section our aim is to prove the above theorem by applying Theorem [6.2.20
instead of using Proposition 7.1.2 [Huib02]. The main reason is to show that Theorem
6.2.20| is not only a good tool to check whether a given O-border basis scheme is an
affine space, but it can be used to give genral results for a specific shape of order ideals
like sawtooth. Moreover, it holds for larger dimensional polynomial rings, not just for
two dimensional cases.

Next we translate very useful notions introduced in [Huib02] to our notation, that

are called the exposable term, exposed term.

Definition 6.4.4. Let O € K[z, y] be an order ideal. Let t,; be a term in O and b; be

a term from 00.

1. If we have xt,; = b; then we call b; as an x-exposed border term and ¢,; is called
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an x-exposable order ideal term.

2. If we have yt,; = b; then we call b; an y-exposed border term and ¢,; is called

a y-exposable term.

3. If b; is either z-exposed or y-exposed, then ¢,;; is called an exposed indeter-

minate.

4. Let b; be an y-exposed border term and ¢y, is an z-exposable term in the order

ideal. Then the indeterminate cyy; is called yx-exposed indeterminate.

5. Let b; be an x-exposed border term and ¢ is an y-exposable term in the order

ideal. Then the indeterminate cyy; is called xy-exposed indeterminate.

Construction 6.4.5. Let O be an order ideal that has the sawtooth form. Let S be

a subset of C that contains xy-exposed indeterminates and yx-exposed indeterminates.

Corollary 6.4.6. Let O = {ty,...,t,} be an order ideal in T?. Let S be constructed as
in Construction . Then the set S is a basis of the K-vector space m/m?.

Proof. By Proposition 2.4 of [Hai98] the set S is a spanning set of m/m? and there are
exactly 2/ elements in S. By Corollary [4.2.17, the monomial point o is a smooth point
of By and the dimension of m/m? is 2u. Hence the set S is a basis set of m/m?. [

We let m = pv — 2p. The elements of C \ S are denoted by d, for p € {1,...,m}.

Recall that for each d, we choose exactly one polynomial 7 in 7 with the property

or
od,

as Ts. We note that 7s is not unique.

= +1. We index this polynomial 7 as 7, and we call the set of these polynomials

We write each polynomial in 7 with respect to our new notation. Recall that two
distinct border terms b;, b; satisfying x1b; = b; are called x;-next door neighbors where
in our setting we have xy € {z,y}.

For the order ideal that has sawtooth form, y-next door neighbors are located only
on the rightmost column, i.e. yb; = by, ...,ybr,—1 = br,. Let b; and b; be distinct
border terms in {by,...,b,} that are y-next door neighbors, i.e. yb; = b; By the
enumeration on the border elements, we have b; = b;,_;. Recall Construction )
of the polynomial 7,, € ND(¢, j) which is a result of y-next door neighbors b; and b;. In
order to rewrite the polynomial 7,, in the notation of this section, we use ¢,; and ¢,/

for ¢, and t,, respectively. Note that ¢,/ is y-exposable and b, = yt, is a y-exposed
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border term. Hence the polynomial in Construction [2.3.17¢) that is constructed by
lifting y-next door neighbors.

Vri—1im1 = Crii — Cri—1i—1 — E Crrri—1Crim (6.23)
trll/eO
ytr/l/meEQO

Next recall Construction ) for the x-next door neighbors. We use t,; and ¢,/
instead of ¢, and ¢,, respectively. Note that ¢, is y-exposable and b, = xt,; is an
xr-exposed border term. Moreover, as a result of the enumeration of the border terms,
for z-next door neighbor border terms b; and b;, we have j =i — 1 (see Example .
The border elements with z-next door neighbor relation are located only on the top
row of Diagram , we have by = xbpy1,br1 = xbpio...,b, — 1 = xb,. Let b; and b; 4
be two distinct border terms in {by,...,b,}. Then we get the following polynomial by

lifting x-next door neighbors.

Xo11i = Criic1 — Cr—11i — E Cr1iCrin (6-24)
tT/l/EO
l‘tr/l/aneaO

The neighbor relation that we focus on is the across the street neighbors. Since the
order ideal in use has the sawtooth form, the border terms we consider are {b.,, ..., br}
and b; = b;y1. We use t,; and ¢,y and ¢,»p» instead of ¢,,t, and ¢, respectively. The
term t,p is x-exposable and ¢, is y-exposable. We let yt,»» = b, and xt,y = b,.
The border term b, is an z-exposed term and the border term b, is an y-exposed term.
Then the polynomial that we get by lifting across the street neighbors b; and b;_; with

xb; = yb;_1, is as follows.

Q17"—1l—|-1i = Crli—1 — Cr—1l+14 — E Cr1i—1Cr+1lq + E Cr 17 iCryllm (625)
[ €O to €O
xt,11=bq €00 Yty pp =bm €00

Lemma 6.4.7. Let O C T? be an order ideal that has the sawtooth form. Let S be

as given in Construction [0} Then the following statements are true for polynomials

Xotr—1im1, Ve—ui and A, _y41;.

i) Consider the polynomial Y,.;. For each t. € O with yt., € 0O the indetermi-

nate cppi—1 in YVe_11; 1S in S.

i1) Consider the polynomial X,_1;;—1. For each t.y € O with xt,y € 0O the inde-
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terminate cppi—q n Xp_q17i—1 18 in S.

iii) Consider the polynomial A, _1,11;. For each t.p € O with xt.y € 0O the inde-
terminate c,..pr; and for each t,»p € O with yt,»p € 0O the indeterminate c»p;_1
are both in S.

Proof. The first statement 1) is a result of the definition of zy-exposed indeterminate,
since the border terms on the last column (see, for example, Table are r-exposed
and t,. is y-exposable. The second statement is a result of the definition of yx-exposed
indeterminate, since the border terms on the top row are y-exposed and both t,»p -

exposable. The last statement follows similarly to i) and ii). O

Lemma 6.4.8. Let O € T? be an order ideal of the shape sawtooth. Then the matriz
M is an element of Mat,,(K[S]).

Proof. The set Tg consists of polynomials of the form X, ) and 2. Let 7, be an element
from Ts with 7, = 7,51) + 7,52) where 7,52) represents the homogenous (with res. standard
grading) part of 7 of degree 2. Recall that the element in position (k,j) of the matrix

Mg is
8Tk

30, (6.26)

where d; € C\ S. By Lemma the monomials in Supp(7’,§2)) are of the form =+sp,
where p € C and s € §. Then if p = d, is in C \ S then we have

O _
od,

If pis in S, then is 0. Moreover, by Lemma [2.3.19 Supp(Tél)) has maximum 2
elements and as a result of the choice of T one of them is dj. Hence the entries of the

matrix Mg is either s,0 or +1. O

Recall that the set 75 is not a uniquely chosen set.

Lemma 6.4.9. Let O C T? be an order ideal. Let Tg be a subset of T which is defined
in Construction [6.2.5. Then the O-border basis scheme Bep is a complete intersection

and the vanishing ideal Z(Bp) is generated by Ts.

Proof. By Proposition |5.1.23| the scheme By is a complete intersection and Z(Bp) is
generated by a subset 7' of T with uv — 2u polynomials. Our aim is to show that for
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each d; € C\ S there exists a polynomial 7; € 7’ such that
that 7" is Ts.

By Corollary the monomial point o of By is smooth and by Lemma the
elements of S form a K-vector space basis of the space m/m?, then for each d; € C\ S
d; € m? holds. Then by Proposition we have d; = 221:1 o, T, where o, = 1 and
7, € T'. Hence for each d; € C\ S there exists at least one polynomial, 7; in the set 7’
such that 9% = +1. Since there are exactly m elements in both sets 77 and C \ S, the

ad;
set T’ is one possible Ts. O

J = 41. This will show

Let d;;, = ¢ry 5, and dj, = ¢y, be two distinet elements in C \ S, where #,,,
and t,,, are order ideal terms and b;, and b;, are border terms. Let 7;, and 7, be

polynomials in 7s which correspond to d;; and d;,, respectively. We say
diy < dj, (6.27)
if and only if one of the following statements is true.
i) 7 > 1y
ii) For the case r = ry, we have [} > [y

iii) For the case r; = ry and l; = Iy, the polynomial 7;, is of the form 2, ;, and 7,

is either of the form YV, j, or Xy, j,-

iv) For case ry =y and l; = Iy, the polynomial 7;, is of the form }Y,,;, ;, and 7;, is of
the form X,

2l g2+

Lemma 6.4.10. Let bj, and b, be two distinct border terms and neighbors. Let 1, be
the polynomial which satisfies ngl) = Ciyk1j1 — Cigko jo QN 7'152) =D\ Cragn 1y S- If we let

sx be an element in S, then we have ¢; g, j, < Cisky jo and for each N, ¢y g, 1, =< Cisky jo-

Proof. This is a result of 7 <" with polynomials YV;,k, j,, Xisks jo a0d Aiyps, jo- O

Lemma 6.4.11. Let d, and ds be two distinct elements in C\ S. Let a,, be the entry
in position (p,u) and ag, be the entry in position (s,v) of the matriz Mg, where u,v €
{1,....m}. If d, < ds holds, then for each u > v we have a,, = 0 and for each v > s
we have ag, = 0. Moreover, we have a,, = £1 and ass = £1. Then the p" and the st

row and the column of the matrix Ms have the following shape.



6.4. Special Order Ideals from T? 161

dy ... dy dpy1 ... ds dsp1 ... dy
T ap ... *1 0 ... 0 0 ... 0 (6.29)
Te \ Q1 ... Qg Qspp1 ... =+l 0 ... 0 .

Proof. We prove the claim by descending inductionon 0 <! < L—1landon 0 < r < R;.
In order to visualize the process, reducing [ represents moving through the rows starting
from the top row that contains order ideal terms and reducing r represents moving

through the elements of the row starting from the xz-exposable ones (See Diagram |6.1).

step 1) Our first step is [ = L — 1. By Constructions and the only neighbor
relation we have to consider is the z-next door neighbor relations and the poly-
nomials in Tg that are calculated as a result of this relation. We focus on the

polynomials X,;; 1 and we claim that for each 0 < r < R; the polynomial

§ Cr’l’jcrlqv

t.1€0
xt .y =bq €00

is in K[S]. To prove this claim we proceed by descending induction on 1 < r < R;.

sub-step 1) Let [ = R — 1 and r = R,. Recall that R; represents the number of order
ideal elements in the row [. By Lemma i) for each j € {1,..., R — 1}
the indeterminates ¢, ; is in S§. Moreover, t,; is on the top row and y-
exposable and 0, is an z-exposed term. Therefore for each z-exposed b, the
indeterminate c¢,;4, that is in &};;_1, is in S. Then the entries of M in the

row p are 0 or +1.

sub-step 2) Now we assume that | = R — 1 and r < R;. By Lemma i), for each
j € {1,...,L, — 1} the indeterminate ¢, ; is in S. By Lemma ii), for
1 < R — 1 the indeterminate ¢,.;;_1 is in &. This holds, since each b;_; is
x-exposed and t,; is y-exposable. If we let d = ¢.;_1 and d, = ¢,_1;4, then
as a result of we have d, < d,. By using the induction hypothesis for
each u > r, the element a,, in position (s,u) of the matrix Mg is 0, and
for each v < v, we have a,, € K[S]. Hence the k¥ and the s rows of the

matrix Mg have the following shape.

di ... dy dpsr ... dy deer ... dp

w .10 .0 0 .. 0
e (6.29)
0 ... =1 0 ... 1 0 .. 0
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step 2) We assume [ = [—n, where 1 < n < L—1. We proceed with descending induction
on 0 < 7 < Ri_,. (Note that the number of indeterminates of the polynomial

ring K[z, y] is fixed in this section and it is 2.)

sub-step 1)) For | =1 —n and r = R;_,,, the term in the order ideal that is indexed as
ti—nr,_, 1s z-exposable. In this case only y-next door border elements will
result with non-trivial results. These next door relations are between the
border terms located on the rightmost column of the diagram of O. Hence it
suffices to consider 1 <@ < Lg. Let us focus on the polynomial, say 7, that

is constructed as a result of lifting y-neighbors, i.e. the polynomial V,;_, 1.

Cri—n+1i — Crl—ni—1 — E Cri—1Crl—n+1m
t.ry €O
Yt .10 =bm €00
We claim that the polynomial } 3 ,,co Crr1ri—1Crm 18 in K[S]. By Lemma
ytrll/:bm€6o

[6.4.7)ii) the indeterminate ¢, ;_1 is in S. Moreover, for each m € {Lg, ..., v},
the indeterminate c¢,;,, is in S, since each border term b, is y-exposed and
the term t(_p41)(r,_,,) is z-exposable. This proves the claim that the degree
two homogenous part of YV, _,11; is in K[S]. If we let dy = ¢;_ps1; and
dy = Cp—pi—1 With I —n + 1 > [ —n, then by we have d;, < ds and the
" and the s rows of the matrix Mg are the same as [6.29]

sub-step 2) For the last induction step, we assume 0 < r < R;_,.

1) As a result of the property iii) of 7 <" given in we first focus on
X, _11-ni14, which is constructed as a result of the lifting of across the

street neighbors.

Crl—ni—1—Cr—1l—-n+1i— § Cr’l’i—lcr+1l—nq+ § Cr 17 iCryll—nm
[ €O ty €O
xt,11=bq €00 Yty pp =bm €00

If we let dy, = ¢;_1;_p+1; and dg = ¢y_pi—1, then we have dj, < d;. By
Lemma we can write the degree two homogenous part ? as a
product of an element from C \ S, say d,, and an element from S. By
Lemma iii), the terms ¢,;;—1 and ¢,»»; in the above equation are
in S. Then d, € C\' S can be ¢;j_pt14 O C—pn+1m. In each case, as a
result of Property i) of 7 <7, for l —n+ 1 > [ — n we have d, < d;.
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Moreover, by Property ii) of 7 < 7, for each 1 < i < v indeterminate
d, < Cr—11—n+1i = dyj, since we have r — 1 < r. Then by the induction
hypothesis for each index u > k the element in position (k,u) of Mg
is 0 and for each index v > p the element in position (p,v) of Mg is 0.
Hence the k', p!" and s rows of Mg have the following form.

di ... dp ... dp dg1 ... ds dsp1 ... dnm
T [ apt ... =E1 0 0 0 0 ... 0
| agr .. akp ... 1 0O ... 0 0o ... 0 (6.30)
Ts \ Qg1 Qsp -1 0 1 0 ... 0

Thus the rows of the matrix Mg have the desired form. By Lemma
the entries of the matrix Mg are in K[S]. The entries which are
represented by a;; are elements of K[S].

Now we consider the polynomials in 7s that are constructed as a result
of lifting y-next door neighbors. We focus on polynomial ),;_,,;_1 which

has the degree 2 homogenous part

Crl—n+1i — Crl—ni—-1 — E Cr17 i—1Crl—n+1m-
t.ry €O
ytr/l’ =b,, €00

By Lemma [6.4.7ji), the term ¢y ;—1 in the above equation is in S.
Similarly, the border term b,, is y-exposed, but the indeterminate ¢,;_,
is not necessarily in S. If we let ¢—pi1m = dp, dy = ¢r—pn+1i and
ds = ¢r—pi—1, then we have d, < ds and d, < d,. By the induction
hypothesis, the k" and p" rows of Mg satisfy the claim that in the k%
row, after the k' column there are only zeros and in the p! row, after
the p' column there are only zeros. There are cases which 7, is a result
of across the street relation. Then by the relation <, d, < dj holds.
And there are cases which 7,/ is a result of z-next door relations. Then
by the relation <, dj < d,y holds. Then for u € {p, k, p'} we have

0T,
=0
ad,
if d, < d, holds and 5
Tu _ 49,

od,,
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Then for the row and columns p, k, p’ the matrix Mg has the following

form.
di .. ody oo dp dgyr e dy dyyr o dp
T [ apr ... 1 ... 0 0 ... 0 0 ... 0
Tk a1 cee Okp e 1 0 0 0 0
Tp! Qpy oo Qplp  «o. Qp'k Gplk4]  --- +1 0 N 0

Since we have

0T,
ad. =0 for d, ¢ {d,, dy,dy,ds}
and 5
Ts
=41
od

Consequently with
dy, < di, < dy < ds,

the rows and the columns p, k, p’, s of the matrix M have the following

form.
dy . ody o ody dger . dy . ds ... dm
»fapm ... £1 ... 0 0 ... 0 0 0
Te | a1 ... Qrp ... 1 0 ... 0 0 0)
T | Gp1 oo Qyp .. Qg g ... E1 0 0
Ts as1 ... Ggp ... —1 agpp1 ... Ggy 1 0
(6.31)
Note that by Lemma the entries of the matrix Mg are in K[S].

By the property iv) of the last step is to consider the polynomials
in 7s, that are constructed as a result of the z-next door neighborhood
relation. Their form is given in Polynomial [6.24]

Cri—ni—-1 — Cr—1l—ni — E Cr11 iCri—nq
tr/l/EO
:ctrll/:bqea(’)

By Lemma i) for each 7 € {1,...,v} the indeterminate c.; is in
S. If we let ds = ¢p_1—n; and dy = ¢y and for i € {1,..,v} we
let ¢;y—nq = dp, then we have d;, < d; and d, < d,. In this case such
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ds does not exist. Since the border term b; is y-exposed, for each 7,
that corresponds to d, is a result of either an y-next door neighborhood
relation or an across the street neighborhood relation, where order ideal
elements were located on the row [ — n and column r. By considering
the properties iii) and iv) of , we have d, < dj,. Hence by applying
the induction hypotheses, the k™ and s rows of Mg are as follows.

dp ... dy ... dip dpyr ... ds ... dy
o {ap ... 1 ... 0 0 o ...
| agr .. akp ... 1 o ... 0 ... 0 (6.32)
Ts \Qs1 ... Ggp ... —1 0 1 0

Then by the induction hypothesis the rows p and s of the matrix Ms where d, < d;

is of the form [6.28
Il

Recall that an indeterminate ¢;; is called standard, if the arrow degree degyy (¢;j)
has exactly one positive component. Otherwise it is called non-standard. We let
zr € {r,y}. An indeterminate c¢;; is called zj-standard, if only the k" component of

the degree vector degy(c;;) is positive.

Remark 6.4.12. Let us summarize what we showed until now. Recall that 75 is a
system of the generators of the vanishing ideal Z(By). As a result of the construction
of Ts for each element 7, of 7Ts, there is an element, d, in C\ S with g%z = +1. For two
distinct neighbors b;, and b;, we denote the homogenous (with respect to the standard

degree) of degree 1 part of 7, by ngl)

= Ciyky j1 — Cis ks j» a0d homogenous of degree 2
part of 7, by 7',§2) = >\ Cryqx 1hSA- As seen, there are two possibilities for d,. As a result
of <, we have ¢;,;, < ¢;,j, and for each A\, we have ¢,, 4,1, < Ci,k,j,- By Lemma
and Lemma [6.4.11] the choice of d, = ¢, ;, is made with respect to the ” < 7. If
theindeterminated, is a non-standard indeterminate or an z-standard indeterminate,
then by constructing the polynomial 7, by neighbor relations of b;, results with the
following two possible conclusions. First the indeterminate ¢;,x, ;, does not exist and the
second one is that the indeterminate ¢; , ;, is in §. Moreover, by choosing d, = c;,k, j,
for 7, and proceeding this way will place S—Z) = +1 in the diagonal. If 7, is an y-standard
polynomial and we choose d, = ¢;,i, ;,, then there are two cases to consider. The first
case is that ¢; 1, is x-exposable or the border terms b; and b;, have only z-next door
neighbors. Then ¢; , j, is in S and this case is similar to the previous argument. The

second case is that one of the border terms b;, or b;, has an across the street neighbor.



166 6. Border Basis Schemes and Affine Spaces

We investigate this case in the next proof in detail and show that the matrix is lower

triangular.

Lemma 6.4.13. Let O € T? be an order ideal. If the order ideal O has the sawtooth
form then the matrix Ms is similar to a lower triangular matriz that have 1 on the

diagonal.

Proof. Tt suffices to show that row operations on the rows, say the p** row, where the
the arrow degree of 7, is y-standard, will result with the lower diagonal matrix that
has £1 on the diagonal, since as stated in Remark the other rows are already
in the desired shape. Let us illustrate why the case which y-standard polynomial 7, is
different than the other cases. Let the homogenous component of 7, of degree 1 be

1
T,S ) = Crii—1 — Cr—114-

We assume 7, is constructed as a result of z-next door neighbor relation of b;_; and
b;. By Lemma and Lemma [6.4.11] we have d, = ¢,_y;;. Then let 7, and 7, be
polynomials constructed as result of across the street neighbors b;_1,b;_5 and b;_2,b; 3
respectively. We let T]il) = Cpli—1 — Cra11-1i—2 and Ts(l) = Cry1-1i—2- As above we have
dy = ¢rt1-1i—2 and dy = c¢,415-1i—2. Moreover, we have d, < d = ds, and we let
d = ¢,1i—1- Hence the corresponding rows and the columns of the matrix Mg are as

follows where we let a;; denote the element of K[S] in position (¢, j) of M.

div ... dg dgy1 ... dp ... dp digyr ... dp
fap ... 1 apgy1 ... =1 ... 0 0 ... 0
| apn .. 1 aggy1 .. Qg ... —1 0 ... 0 (6.33)
Ts \Qs1 --- Gsqg Qsg1 .- Ggp ... 1 0 ... 0

Clearly this matrix is not a lower triangular matrix, since dp = d,s and there are
two different polynomials are indexed the same. Since this is only an enumeration
problem, we fix it as follows. First we claim that ag; = 0 for ¢ < ¢ < p. This follows
from the fact that in Polynomial we have ¢, 4111n < Crric1 < G141 and Cryqpm <
Crii—1 = Cr—1414- Then we claim that a,; = 0 for ¢ < ¢ < k. This follows from the
fact that in Polynomial we have ¢,;_1 < ¢._1;; and ¢y, < ¢,._1;4. Since the border
term b,, is z-exposed, either ¢,;,, € S or ¢, = d, where 7, is a result of either across
the street or y-next door relation. As a result of the property (iv) of <, we have

Crin = Crii1 < Cp_174. Our last claim is ayg; = 0 for ¢ < ¢ < k. This follows from the
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fact that in Polynomial [6.25, For Tg(l) = Cry11-1i—2 We have

2 §
7'3( ) = E Crlri—3Cry21—1q T+ G i—2Cr42l—1m-

tT/l/EO trp €O
xtr/l/:bqeao ytrvpv=bm€8(9

As a result of the first property of <, ¢,49-1m and ¢,19-1, come before dy, d, and d.
Hence the claim follows. Then the above matrix has the following shape.

di ... dg dgg1 ... dp ... dip dpg1 ... dy
Tp [ ap1 1 0 ... =1 ... 0 0 ... 0
|l an ... 1 0 .. 0 ... -1 0 ... 0 (6.34)
Ts \ Qs1 0 0 ... 0 ... 1 0 ... 0

There are row operations that can be applied on the above matrix which make it a
lower triangular matrix having 41 on the diagonal. Matrix represents the p'*, k"
and the s rows of the matrix Mg for polynomials 7,,7; and 7, with y-standard
arrow degrees. If the polynomials are not of the y-standard arrow degree, they already
satisfy the property of Lemma [6.4.11| and the above problem is avoided as a result of

the properties (i) and (ii) of < . O

Proposition 6.4.14. Let O = {ty,...,t,} be an order ideal in T?. If the order ideal O
18 of the form of a sawtooth then the O-border basis scheme, Bo is isomorphic to an

affine space.

Proof. By Lemma[6.4.13|the determinant of the matrix Mg is =1 and by Lemma [6.4.8
the entries of this matrix are in K[S]. Then by Theorem [6.2.20| the O-border basis
scheme By is an affine space.

O

Definition 6.4.15. An order ideal has the deformed sawtooth form if the diagram of
O is of the form such that every step, width is decreasing, except possibly the topmost,

and every step height, except possibly the rightmost, is of size one (see, for example,
Diagram .

Let O = {t1,...,t,} be an order ideal in T2. If O has the sawtooth form then the
only y-next door neighbors are on the top row. if the 0O has deformed sawtooth form,
then there are border elements which are not located on the top row but are y-next

door neighbors. The next example shows that Theorem [6.2.20] is not useful to verify
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whether O-border basis scheme is isomorphic to an affine space, if the order ideal O

has the deformed sawtooth shape.

Example 6'4'16' Let O = {17 ZE, y7 xya LE’Q, y27 123/7 a:yQa ZIJ'S, 937 x2y27 xsyu xy?)a x3y27 ZA, y47

xty, 2°, 20y, 28, 2%y, xty?, 25y?, 2%y3, 23y3}. Then the border of it is

Let us draw the diagram of O.

y5
y4 Xy4 X2y4 X3y4
y3 xyS $2y3 xSyS X4y3 X5y4
y2 ny I3y2 x3y2 {L'4y2 CE’5y2 X6y2
y | ay | 2%y | 2Py | 2ty | 2Py | 2By [xTy
1 x 2 X3 2t x° 20 x7

Table 6.3: Diagram of O

We compute the generating set T of Z(Bp), by using ApCoCoA and focus on the

following polynomials.

T416 = —C42C132 + C42C161 — C41C162 + C46C201 + Ca49C211 — C48C212

—C45C229 + C48C231 — C47C232 — C43C242 + C45Co51 — C44Co52 — C22 + C31,

T513 = C52C162 T C56C202 + C59C212 + C58Ca32 + C55Ca52 1+ Coo — C53,
S§Tg24 = C92C163 + C9pC203 + CgoC2a13 + CogCa33 + Co5Ca53 + C53 — Cya,
T515 = —C135C152 T C152C164 — C151C165 1T C156C204 1 C159C214 — C158C215 — C155C225

+C158C234 — C157C235 — C153C245 1 C155C254 — C154C255 + Cy4,
Ti216 = —C122C132 + C122C161 — C121C162 1+ C126C201 T C129C211 — C128C212 — C125C222

+C128C231 — C127C232 — C123C242 + C125C251 — C124C252 + C71 — Cy2,

T1513 = C152C162 t C156C202 + C159C212 + C158C232 + C155C252 + Coo — C153,
Tig24 = C163C182 1 C186C203 1 C189C213 + C188C233 + C185C253 + C153 — C1s4,
Top25 = —C165C201 — C135C202 T C164C202 + C204C206 1+ C209C214 — C208C215 — C205C225

+C208C234 — C207C235 — C203C245 + C205C254 — C204C255 + C184,

Ti624 = C162€C163 T C166C203 1 C169C213 + C168C233 + C165C253 — C164;,
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By Proposition a) Cig4 and g4 are both in m? and hence they are in C \ S. By
Proposition a) and b)

C22,C31,C53,C94,C92,C71,C153, C184, C205, C225

are in m? and hence in C\ S, as well. Therefore for every possible S, the set 75 contains
the polynomial 7994 = ¢92C163 + Co6C203 + Co9C213 + CosC233 + Co5C253 + C53 — C94 Where
g%ff; = 93 € M and %%;23 = c163 € C\'S. Then for any S the matrix Mg is not in

Mat,,, (K[S]). But we note that for S that is given in Construction [6.4] the determinant
./\/lg is 1.

The Example indicates that Theorem [6.2.20f can’t be applied directly to the case
which the order ideal has deformed sawtooth form, since the condition Mg € Mat,,;,—2,(K[S])
is not satisfied.

Using Theorem to prove that Be is an affine space, where O is of the shape
sawtooth, is not simpler than the proof [Huib02]. But we note that, Proposition 7.1.2 of
[Huib02] only holds for two dimensional cases whereas Theorem holds for every
number of dimensions. We conjecture that our theorem can be generalized further in
Conjecture [6.2.25] It asks whether any given O-border basis scheme is an affine space
if the determinant of the matrix Mg, which is not necessarily in K[S], is 1.
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|Chapter 7

Appendix

Function 7.0.17. (WMat) This function computes the Weight Matriz with respect

to the arrow grading.

WMat(0O, BO, N) :
WMat (OO : LIST, BO : LIST, N : INTEGER) : MATRIX

InPut:The order ideal OO, the border BO and the number of Indeterminates of the
Polynomial Ring.
OutPut: Weight Matrix.

Example 7.0.18. Use R::=QQ[x[1..2]];
00:=BB.Box([1,11);
B0:=BB.Border (00) ;

N:=Len(Indets());

W:=BBSGen.Wmat (00,B0,N) ;

W;
Mat ([

o, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
2, 0, 2, 1,1, -1, 1,0, 2,0, 2,1, 1, -1, 1, 0]
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Function 7.0.19. (NonStand) : This function computes the non-standard Indeter-

minates in the Coordinate Ring of Border Basis Scheme, Bo.

NonStand(OO, BO, N, W);
NonStand(OO : LIST,BO : LIST,N : INTEGER, W : MATRIX) : LIST

InPut:The order ideal OO, border of OO, N the number of Indeterminates of the
Polynomial Ring and the Weight Matrix.

OutPut: List of Indeterminates and their degree with respect to the arrow grading.

Example 7.0.20. Use R::=QQ[x[1..2]];
00:=BB.Box([1,1]1);

BO:=BB.Border(00) ;

Mu:=Len(00) ;

Nu:=Len(B0) ;

N:=2;---—Number of indeterminates in the ring R.
W:=BBSGen.Wmat (00,B0,N) ;

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1. . Mul];

BBSGen.NonStand (00,B0,N,W) ;
[[c[1,3], [R :: 1, R :: 211, [cl1,4], [R :: 2, R :: 11],
[c[2,3], [R :: 1, R :: 111, [c[3,4], [R :: 1, R :: 1111

Function 7.0.21. (TraceSyzFull) : Let 7 := t[k,l,i, j] be the(i, j)" entry of ma-
triz the operation [Ay, Aj]. The result of the Trace Syzygy computation is K[C]-linear
combination of Tilj-l that is equal to 0. This function computes such Trace Syzygy polyno-
mials. This function, because of the growth of the polynomials during the computation,

may not give result for the ring with three indeterminates.

TraceSyzFull(OO, BO, N);
TraceSyzFull(OO : LIST, BO : LIST, N : INTEGER) : LIST

InPut:The order ideal OO, border BO, the number of Indeterminates of the Polyno-
maal.

OutPut: The list of Trace Syzygy polynomial.
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Example 7.0.22. Use R::=QQ[x[1..2]];
00:=BB.Box([1,1]);

BO:=BB.Border(00) ;

W:=BBSGen.Wmat (00,B0,N) ;

Use XX::=QQ[c[1..Mu,1..Nul,t[1..N,1..N,1..Mu,1..Mul];
N:=2; --——-Number of indeterminates in the ring R.
BBSGen.TraceSyzFull(00,B0,N);

cl1,2]1t[1,2,3,1] + c[2,2]1t[1,2,3,2] + c[3,2]t[1,2,3,3] +
cl4,2]1t[1,2,3,4] + c[1,41t[1,2,4,1] + c[2,4]1t[1,2,4,2] +

cl3,41t[1,2,4,3] + c[4,4]1t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4],
2c[1,1]1t[1,2,2,1] + 2c[2,1]1t[1,2,2,2] + 2c[3,1]1t[1,2,2,3] +

2c[4,1]1t[1,2,2,4] + 2c[1,3]t[1,2,4,1] + 2c[2,3]t[1,2,4,2] +

2c[3,3]1t[1,2,4,3] + 2c[4,3]t[1,2,4,4] + 2t[1,2,1,2] + 2t[1,2,3,4],
cl1,21t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]1t[1,2,3,4] +
cl1,4]1t[1,2,4,1] + c[2,41t[1,2,4,2] + c[3,4]1t[1,2,4,3] + c[4,4]t[1,2,4,4] +
t[1,2,1,3] + t[1,2,2,4],
2c[1,2]c[3,1]1t[1,2,2,1] + 2c[1,4]c[4,1]1¢t[1,2,2,1] + 2c[2,2]c[3,1]t[1,2,2,2] +
2c[2,4]1c(4,11t[1,2,2,2] + 2c[3,1]1c[3,2]t[1,2,2,3] + 2c[3,4]1c[4,11t[1,2,2,3] +
2c[3,11c[4,2]t[1,2,2,4] + 2c[4,1]1c[4,4]1t[1,2,2,4] + 2c[1,2]c[3,3]t[1,2,4,1] +
2c[1,4]c[4,3]t[1,2,4,1] + 2c[2,2]c[3,3]t[1,2,4,2] + 2c[2,4]c[4,3]t[1,2,4,2] +

2c[3,2]c[3,3]t[1,2,4,3] + 2c[3,4]1c[4,3]1t[1,2,4,3] + 2c[3,3]c[4,2]t[1,2,4,4] +

2c[4,3]1c[4,4]1t[1,2,4,4] + 2c[1,1]1¢t[1,2,2,3] + 2c[2,1]1t[1,2,2,4] +
2c[1,4]1t[1,2,3,1] + 2c[2,4]1t[1,2,3,2] + 2c[3,4]1t[1,2,3,3] +

2c[4,4]t[1,2,3,4] + 2c[1,31t[1,2,4,3] + 2c[2,31t[1,2,4,4] + 2t[1,2,1,4]]

NOTE: As one can see in the example some syzygies might appear more than once.

Function 7.0.23. (TraceSyzLin) Let 7} := t[k, 1,4, ] be the(i, j)™ entry of matriz
the operation [Ay, Aj]. The result of the Trace Syzygy computation is K|C|-linear com-

bination of TZ-’;Z that is equal to 0. This function only computes the summands of Trace
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Syzygy, which has constant and non-zero coefficient.

TraceSyzLin(OO, BO, N);
TraceSyzLin(OO : LIST,BO : LIST,N : INTEGER) : LIST

InPut: The order ideal OO, border BO, the number of Indeterminates of the Polyno-
mial.
OutPut: List of polynomials T, which have constant coefficients in the Trace Syzygy

polynomial.

Example 7.0.24.

Use R::=QQ[x[1..2]];

00:=BB.Box([1,1]);

BO:=BB.Border(00) ;

W:=BBSGen.Wmat (00,B0,N) ;

Use XX::=QQ[c[1..Mu,1..Nul,t[1..N,1..N,1..Mu,1. .Mul];
N:=2; --———-Number of indeterminates in the ring R.
BBSGen.TraceSyzLin(00,B0,N) ;

t[1,2,1,3] + t[1,2,2,4],
2t[1,2,1,2] + 2t[1,2,3,4],
t[1,2,1,3] + t[1,2,2,4],
2t[1,2,1,4]]

Function 7.0.25. (TraceSyzStep) Let 7/} := t[k,1,i,j] be the(i,j)™ entry of ma-
trixz the operation [Ay, Aj]. The result of the Trace Syzygy computation is K[C]-linear
combination of 7‘{}’ that is equal to 0. This function only computes the trace syzygy for

the degree of the given monomial(not necessarily a target monomial).

TraceSyzStep(Mon, X, OO, BO, N);
TraceSyzStep(Mon : MON, X : INDET, OO : LIST, BO : LIST,N : INT) : POLY
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InPut:The Monomial Mon, the distinguished indterminate of choice, order ideal OO,
border BO, the number of Indeterminates of the Polynomial.

OutPut: Trace syzyqy of the degree of the given monomial.

Example 7.0.26. Use R::=QQ[x[1..2]7];

00:=BB.Box([1,1]);
BO:=BB.Border (00) ;

Mu:=Len(00) ;

Nu:=Len(B0O);

N:=2; —-——-Number of indeterminates in the ring R.
Mon:=x[1]"2x[2];--—-—---—- Target Monomial

X:=x[1]; - Choice of the Indeterminate

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mul]l;
BBSGen.TraceSyzStep(Mon,X,00,B0,N) ;

c[1,21t[1,2,3,1] + c[2,2]t[1,2,3,2] +
c[3,2]t[1,2,3,3] cl4,2]t[1,2,3,4] +
cl1,4]1t[1,2,4,1]
cl2,4]1t[1,2,4,2]
cl4,4]1t[1,2,4,4]

cl3,4]1t[1,2,4,3] +
t[1,2,1,3] + t[1,2,2,4]

Function 7.0.27. (JacobiFull) Let R = K|x1,...,x,] and A; is the generic multipli-
cation matrix for ;. Let Ti];l = tlk,l,i,7] be the entry in position (i,j) of matriz the

operation [Ay, A;]. This function computes the entries of the Jacobi identity
[Ai[ Ay, Ai]] + [AR[Ay, Ai] + [AiAi, Ag]] = 0,

where i, k, 1 is from {1..n}. Note that this function does not work for the case, where

n=2.

JacobiFull(OO, BO, N);
JacobiFull(OO : LIST, BO : LIST,N : INTEGER) : MATRIX
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InPut:Order ideal OO, border BO, the number of Indeterminates of the Polynomial.
OutPut: The entries of the Jacobi Identity.

Example 7.0.28. Use R::=QQ[x[1..3]];

00:=[1,x[11];

BO:=BB.Border(00) ;

Mu:=Len(00) ;

Nu:=Len(B0) ;

N:=3;--————Number of indeterminates in the ring R.
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mul]l;
BBSGen.JacobiFull (00,B0,N);

([ C[cl1,11t[1,2,1,1] + c[1,3]1t[1,2,2,1] +

cl1,2]1t[1,3,1,1] + c[1,41t[1,3,2,1] + c[1,5]t[2,3,2,1],
cl1,11t[1,2,1,2] + c[1,3]1t[1,2,2,2] + c[1,2]1t[1,3,1,2] +
cl1,4]1t[1,3,2,2] + c[1,5]t[2,3,2,2]1],

[ c[2,1]1t[1,2,1,1] + c[2,3]t[1,2,2,1] + c[2,2]¢[1,3,1,1] +

cl[2,41t[1,3,2,1] + c[2,5]t[2,3,2,1] + t[2,3,1,1],
c[2,1]1t[1,2,1,2] + c[2,31t[1,2,2,2] +
cl[2,21t[1,3,1,2] + c[2,4]1t[1,3,2,2] + c[2,5]1t[2,3,2,2] + t[2,3,1,2]111]

Function 7.0.29. (JacobiLin) Let R = K{z1,...,x,] and A; is the generic multipli-
cation matriz for x;. Let 7)) := t[k,1,1,j] be the entry in position (i,j) of the matriz

the operation [Ay, A;]. This function computes the entries of the Jacobi identity
[Ai[ Ay, Ai]] + [AR[Ay, Ail] + [AiAi, Ag]] = 0,

where i,k, 1 is from {1..n}, which has constant coefficients. Note that this function

does not work for the case, where n = 2.

JacobiLin(OO, BO, N);
JacobiLin(OO : LIST, BO : LIST,N : INT) : MATRIX

InPut:Order ideal OO, border BO, the number of Indeterminates of the Polynomial.
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OutPut: The entries of the Jacobi Identity.

Example 7.0.30.

Use R::=QQ[x[1..3]];

00:=[1,x[11];

B0O:=BB.Border (00) ;

Mu:=Len(00) ;

Nu:=Len(B0) ;

N:=3;--————-Number of indeterminates in the ring R.
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mul]l;
BBSGen.Jacobilin(00,B0,N) ;

[ [ I
-t[2,3,1,2],
0],

t[2,3,1,1] - t[2,3,2,2],
t[2,3,1,2]111]

Function 7.0.31. Class This function computes the equivalent indeterminates in
the cotangent space mathfrakm/m? of border basis scheme Bo (BBS) and gives these
equivalent indeterminates in the first list and the elements of m? in the second list that

starts with 0. The base ring is K|xy,..,x,].

Class(OO, BO, W, N);
Class(OO : LIST,BO : LIST,N : INTEGER, W : MATRIX) : LIST

InPut:The order ideal OO.
OutPut:The list of K-linearly independent indeterminates in the cotangent space.

Example 7.0.32. Use R::=QQ[x[1..2]];
00:=[1,x[1],x[2],x[1]1x[2]];
B0:=BB.Border(00) ;

Mu:=Len(00) ;
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Nu:=Len(B0O) ;

W:=BBSGen.Wmat (00,B0,N) ;

N:=2;------Number of indeterminates in the ring R.
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1. .Mu,1..Mul]l;
BBSGen.Class(00,B0,W,N);

[

cl[2,3],
cl1,11],

c[3,4],
cl1,21],

cl4,4],
c[2,21],

cl[4,3],
cl3,111],

0,
cl1,4],
cl1,3],
cl[2,4],
c[3,3]11]

Function 7.0.33. EqClass Computes the equivalence classes of the elements in the
coordinate ring of border basis scheme modulo the ideal m* by using the defining equa-
tions of the given OO-border basis scheme. The ideal m is the mazimal which is ho-

mogenous with respect to the arrow grading.

EqClass(0O0O,BO, W, N);
EqClass(OO : LIST,BO : LIST, W : MAT,N : INT) : LIST
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InPut:The order ideal OO, Border of the order ideal BO, the weight matriz W, the
number of indeterminates of the ground ring.

OutPut:List of the list of equivalence classes modulo m?.

Example 7.0.34.

Use R::=QQ[x[1..2]];

00:=[1,x[1],x[2],x[1]1x[2]1];

BO:=BB.Border(00);

Mu:=Len(00) ;

Nu:=Len(B0) ;

N:=2;---- Number of indeterminates in the ring R.
W:=BBSGen.Wmat (00,B0,N) ;

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1. . Mul];
BBSGen.EqClass(00,B0,W,N);

L

cl[2,3],
cl1,111,

c[3,4],
cl[1,21],

cl4,4],
c[2,21],

cl4,3],
c[3,111]

Function 7.0.35. IsMonSmooth Compares the number of bases elements in m/m?
and the dimension of the pronciple component of the OO-border basis scheme which is
N x Mu, where N is the number of indeterminates of the ring which OO is defined and

Mu is the number of terms in OQO.

IsMonSmooth(OO, BO, W, N);
IsMonSmooth(OO : LIST, BO : LIST, W : MAT,N : INT) : BOOL
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InPut:The order ideal OO, border of the order ideal BO, the weight matrix W, the
number of indeterminates of the ground ring.
OutPut:BOOL (True or False)

Example 7.0.36.

Use R::=QQ[x[1..2]1];
00:=[1,x[1],x[2],x[1]1x[2]];
B0O:=BB.Border (00) ;

Mu:=Len(00) ;
Nu:=Len(B0) ;
N:=2;---- Number of indeterminates in the ring R.

W:=BBSGen.Wmat (00,B0,N) ;
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1. .Mu,1..Mull;
BBSGen . IsMonSmooth (00,B0,W,N) ;

The monomial point of the BB scheme is smooth.True

Function 7.0.37. IsAffine This function checks possible minors of the jacocian ma-
trix of the defining equations of border basis scheme. Instead of checking the minors
directly, we construct possible sub-matrices by computing the possible generators of the
vanishing ideal of the OO-border basis scheme and possible basis sets for the vector
space m/m?2. Because of the rapid growth of the elements in the Cartesian product, for
border basis schemes with slightly large number of generators, one should not always

expect result. We recommend the function IsAffineEff in that case .

IsAffine(OO, BO, N, W, M, S, PolDeg, Pol);
IsAffine(OO : LIST, BO : LIST, W : MAT, N : INT, M : LIST, PolDeg : LIST, Pol : LIST)
: BOOL, LIST

InPut:The order ideal OO, Border of the order ideal BO, the weight matriz W, the
number of indeterminates of the ground ring N, the list possible basis elements S, the
list of the sets of elements that S does not contain M, List of defining equations of

border basis scheme and PolDeg.
OutPut: BOOL (True or Fulse)
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Example 7.0.38.

Use R::=QQ[x[1..2]];

00:=[1,x[1],x[2],x[11x[2]1];

BO:=BB.Border(00) ;

Mu:=Len(00) ;

Nu:=Len(B0O);

N:=2;---— Number of indeterminates in the ring R.

W:=BBSGen.Wmat (00,B0,N) ;

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1. . Mu,1..Mull;

BBSGen.IsAffine(00,B0,N,W);

The monomial point of the BB scheme is smooth.

The Coordinate Ring of the given BB scheme is
isomorphic to a polynomial ring K[S].

K[S]=KI[
cl2,1],
cl3,21,
cl4,1],
cl4,2],
cl2,3],
cl3,4],
cl4,4],
cl4,3]]

The scheme can be generated by the polynomials[
c[1,2]cl[2,1] + c[1,4]c[4,1] - cl1,3],
cl[2,31cl3,2] - c[3,1]1c[3,4] + c[3,4]1c[4,3] - c[3,3]c[4,4] - c[1,4],
-c[2,1]c[3,2] - c[2,3]c[4,2] + c[2,4],
cl[2,1]c[3,2] + c[3,4]c[4,1] - c[3,3],
c[2,1]c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3],
-c[3,11c[3,2] - c[3,3]c[4,2] - c[1,2] + c[3,4],
-c[3,2]cl[4,1] - c[4,2]c[4,3] - c[2,2] + c[4,4],
cl2,11c[4,2] + cl[4,1]1c[4,4] + c[3,1] - c[4,3]]

True
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Function 7.0.39. IsAffineEff This function checks possible minors of the Jaco-
bian matriz of the defining equations of border basis scheme. Instead of checking the
minors directly, we construct possible sub-matrices by computing the possible gener-
ators of the wvanishing ideal of the OO-border basis scheme and possible basis sets
for the vector space m/m?%. This function is more efficient version of the function
[sAffineEff(OO, BO, N, W, M, S, PolDeg, Pol). Instead of computing all the possible re-
dundant polynomial candidates in Z(Bp), we compute them step by step. After each
step we check the determinant of the matriz Mg, and proceed to the next possible candi-
dates if the determinant is not +1. Note that not all the possibilities in the generating

set are computed.

IsAffineEff(OO, BO, N, W, M, S, PolDeg, Pol).
[sAffineEff(OO : LIST, BO : LIST, W : MAT, N : INT, M : LIST, PolDeg : LIST, Pol : LIST)
: BOOL, LIST

InPut:The order ideal OO, Border of the order ideal BO, the weight matriz W, the
number of indeterminates of the ground ring N, the list possible basis elements S, the
list of the sets of elements that S does not contain M, List of defining equations of

border basis scheme and PolDeg.
OutPut: BOOL (True or Fulse)

Example 7.0.40.

Use R::=QQ[x[1..2]];
00:=[1,x[1],x[2],x[1]x[2]];
B0:=BB.Border (00) ;

Mu:=Len(00) ;
Nu:=Len(B0O);
N:=2;---- Number of indeterminates in the ring R.

W:=BBSGen.Wmat (00,B0,N) ;

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1. . Mu,1..Mull;
M:=BBSGen.FindM(00,B0,W,N); ---The elements in m"2 wrt the given S.
PolDeg:=$apcocoa/bbsmingensys.0rganizePolDeg(00,B0,W,N) ;

----Gives the tau’s with degrees and their position on the mult matrix
Pol:= $apcocoa/bbsmingensys.0OrganizePoly(00,B0,W,N) ;
-—-Gives the defining equations of border basis scheme

-- in K[C] that excludes the homogenous of degree 2 polynomials.
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The monomial point of the BB scheme is smooth.
The number of possible subsets is 8
Is the matrix in K[S]7?
The matrix M_s is in K[S]
The matrix isMat([
(-1, -c[4,2], 0, O, O, O, O, O],
(c(4,1], 1, 0, O, O, O, O, O],
(o, o, 1, c[4,1], 0, 0, 0, 0],
(0, -c[3,2], o, 1, 0, 0, O, O],
(c(2,1], O, O, O, -1, O, O, O],
(o, o, o0, cf[2,1], o0, -1, 0, 0],
(o, o, o, 0, -cl[3,2], o0, 1, 0],
[0, 0, 0, 0, -c[4,2], 0, O, -1]
D
Computing the Determinant for the evaluated matrix
Determinant is -c[4,1]c[4,2] + 1
The evaluated Determinant is-c[4,1]c[4,2] + 1
Is the matrix in K[S]7?
The matrix M_s is in K[S]
The matrix isMat([
(-1, 0, 0, 0, O, O, O, O],
(c(4,1], -1, 0, O, O, O, O, O],
(o, o, 1, c[4,11, 0, 0, 0, O],
(o, o, o, 1, o, 0, 0, 0],
[c[2,1], O, O, O, -1, O, O, O],
(o, o, o, c[2,1], 0, -1, 0, 0],
(0, -c[3,4], 0, 0, -c[3,2], 0, 1, O],
(0, -c[4,4], 0, 0, -c[4,2], 0, 0, -1]
D
Computing the Determinant for the evaluated matrix
Determinant is -1
Computing the Full determinant
The evaluated Determinant is-1

The Coordinate Ring of the given BB scheme is isomorphic to a polynomial ring K[S]
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K[S]=K[I[
cl2,1],
cl2,3],
c[3,2],
cl3,4],
cl4,1],
cl4,2],
cl[4,3],
cl4,41]]
The scheme can be generated by the polynomials[
cl1,3],
cl1,2]c[2,1] + c[1,4]c[4,1] - c[1,3],
cl1,4],
cl[2,3]cl3,2] - c[3,1]1c[3,4] + c[3,4]c[4,3] - c[3,3]c[4,4] - cl[1,4],
cl[2,4],
-c[2,11c[3,2] - c[2,3]c[4,2] + c[2,4],
cl1,1],
cl2,1]1c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3],
cl1,2],
-c[3,11c(3,2] - c[3,3]c[4,2] - c[1,2] + c[3,4],
cl2,2],
-c[3,2]cl4,1] - cl4,2]c[4,3] - c[2,2] + cl[4,4],
cl3,1],
cl2,1]cl4,2] + cl4,1]c[4,4] + c[3,1] - c[4,3],
cl3,3],
cl2,11c(3,2] + c[3,4]c[4,1] - c[3,3]]

True
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