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Chapter 1

Introduction

1.1 Overview

The basic idea of border basis theory is to describe a zero-dimensional ring P/I by an

order ideal of terms O whose residue classes form a K-vector space basis of P/I. The

O-border basis scheme is a scheme that parametrizes all zero-dimensional ideals that

have an O-border basis. In [Hai98] it is pointed out that, in general, the O-border

basis scheme is not an affine space. Subsequently, in [Huib09]) it is proved that if an

order ideal O with µ elements is defined in a two dimensional polynomial ring and it

is of some special shapes, then the O-border basis scheme is isomorphic to the affine

space A2µ. This thesis is dedicated to find a more general condition for an O-border

basis scheme to be isomorphic to an affine space of dimension nµ that is independent

of the shape of the order ideal and the dimension of the polynomial ring that the order

ideal is defined in.

We accomplish this in 6 Chapters. In Chapters 2 and 3 we develop the concepts and

properties of border basis schemes. In Chapter 4 we transfer the smoothness criterion

for the point (0, ..., 0) in a Hilbert scheme of points in [Huib05] to the monomial point

o = (0, ..., 0) of the border basis scheme by employing the tools from border basis

theory. In Chapter 5 we explain trace and Jacobi identity syzygies of the defining

equations of a O-border basis scheme and characterize them by the arrow grading. In

Chapter 6 we give a criterion for the isomorphism between Anµ and BO by using the

results from Chapters 4 and Chapter 5. The techniques from other chapters are applied

in Chapter 6.4 to segment border basis schemes and in Chapter 6.4 to O-border basis

schemes for which O is of the sawtooth form.
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1.2 Motivation

Border basis schemes were generally treated as open subsets of Hilbert schemes of

points until the pioneering article [KrRo08] which introduced a construction of border

basis schemes independent of Hilbert schemes of points and the name border basis

scheme, as well. Before explaining border basis schemes, let us take a brief look at

border basis theory. Let P be a polynomial ring, and let I be a zero-dimensional ideal

in P. The basic idea of border basis theory is to describe a zero-dimensional ring P/I

by an order ideal of terms O whose residue classes form a K-vector space basis of P/I

(for further information we refer to [KrRo05]). Let O be an order ideal with µ terms.

The O-border basis scheme is a scheme that parametrizes all zero-dimensional ideals

that have an O-border basis. It is an open sub-scheme of the Hilbert scheme of µ

points Hµ
n = Hilbµ(An). The affine varieties mentioned in [Hai98] Proposition 2.1 and

[Huib09] are exactly the O-border basis schemes of points on the plane. Let us present

which questions motivated this work.

It is first stated in [Hai98] that, in general, border basis schemes are not affine cells,

i.e. they are not isomorphic to affine spaces. This note leads us to ask the following

question which is the starting point of our research.

Question 1.2.1. Under which condition (or conditions) is a given O-border basis

scheme isomorphic to an affine space?

In [MilSt05], page 363 an algebraic method is used to show the smoothness of a

given Hilbert scheme of points in the plane. This motivated us to ask whether we can

use a similar method to answer Question 1.2.1. We show that the given method is

insufficient but it directs us to consider the minors of the Jacobian matrix of the set of

defining equations of the O-border basis scheme.

Two further valuable sources of our work are [Huib05] and [Huib09]. In the first

article [Huib05], a criterion for the smoothness of the monomial point o of a Hilbert

scheme of points is given. This leads us to reprove this result for the monomial point

o of a given O-border basis scheme, after which the following question arises:

Question 1.2.2. Is there a way to generalize this local smoothness criterion to a global

smoothness criterion for an O-border basis scheme?

The second article is [Huib09] which introduces new ways to compute the syzygies

of the tuple T constituting of the defining equations of the O-border basis scheme.

This article motivated us to use those syzygies to examine when a given O-border
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basis scheme is an ideal-theoretic complete intersection. In general, we find that these

syzygies are not enough to reach such a conclusion. By employing further algebraic

techniques (see Chapter 6.4), we get results for some specific O-border basis schemes.

Let us explain our novel contributions in more detail in the next section.

1.3 Main Results

The first contribution starts in Chapter 3, where we introduce a grading on the poly-

nomial ring, in which the vanishing ideal of a border basis scheme is defined. We shall

call this grading the arrow grading. Then we show that the vanishing ideal of the

O-border basis scheme is homogenous with respect to the corresponding arrow grad-

ing. Although this is a known fact (see, for example, Lemma 4.1 [Huib09]), we give an

alternative proof by employing the generic multiplication matrices. Moreover, in the

same chapter, we show that the torus action (see page 208 of [Hai98] and page 363 of

[MilSt05]) on BO results in the arrow grading. The arrow grading is neither of positive

type nor of non-negative type as defined in ([KrRo05], Definition 4.2.4). Thus it follows

that in BO there might exist more than one maximal homogenous ideal. This shows

that the corresponding claim on page 363 of [MilSt05] is incorrect. Consequently, giv-

ing an algebraic proof of any claim about border basis schemes is more difficult because

of the peculiarity of the grading which is defined on the coordinate ring of a border

basis scheme.

In the subsequent chapter, Chapter 5, we investigate the cotangent space of a

border basis scheme at the monomial point o = (0, ..., 0). In [Hai98] a new method of

constructing the cotangent space of a border basis scheme of µ points in the plane is

proposed. We call this method the arrow method. The main idea is to consider every

indeterminate from the set {c11, ..., cµν} which parametrizes the border basis scheme as

an arrow from an order ideal term to a border term. Then one constructs a basis of the

cotangent space by using the relations of border terms and order ideal terms. Later, in

Chapter 4 and 5 of [Huib05]1, this arrow method is generalized to n dimensions and a

way for constructing a basis of the cotangent space of a border basis scheme is given.

Although none of those citations contains the name border basis scheme, in [Hai98]

the set Uµ given in Equation 2.3, and in [Huib05] the set Uβ given in Equation (4)

in Chapter 2.2 are both border basis schemes. Our work is inspired by both of those

sources, but mainly by [Huib05]. In contrast to these articles we do not use the arrow

1 [Huib05] is a pre-print that is only published in arXiv.
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method. The foundation of our work depends on the generating set of the vanishing

ideal of a border basis scheme which encodes all relations between border terms and

order ideal terms. Thus every arrow relation, as used in [Huib09] and [Hai98] to

construct a basis of the cotangent space of Hilbert scheme of µ points at the monomial

point (0, ..., 0), is coded by the elements of the defining equations of a border basis

scheme. By using these equations one can compute all equivalence classes modulo m2,

where m is the maximal ideal generated by the indeterminants of the coordinate ring of

the O-border basis scheme. Let us denote this set of equivalence classes by E. We prove

that the arrow degree is well-defined on this set. Then we show that E contains at

least nµ elements. Consequently, by using the set E, we give a K-basis of the cotangent

space. From this we deduce the following smoothness criterion for the monomial point

of a border basis scheme.

Theorem 1.3.1. Let O ⊂ Tn be an order ideal with µ elements. The monomial point

o ∈ BO is smooth if and only if the number of elements of E is nµ.

A similar result can be found in [Huib05], Theorem 5.1.1. We reprove the statements

of Chapter 4 and 5 from[Huib05] for border basis schemes by using the tools we have

in border basis scheme theory such as border relations and the arrow grading.

The trace and the Jacobi identity syzygies of T , where T denotes the set of

the defining equations of a given O-border basis scheme, were first introduced in

[Huib09]. In Section 10 of [Huib09] the trace syzygies of T were used to show that

any border basis scheme of points contained in a plane is an ideal-theoretic com-

plete intersection. Moreover, in the same article, for the specific case O = {1, x1} ⊂
K[x1, x2, x3] both trace syzygies and Jacobi identity syzygies of T were used to prove

that BO is an ideal-theoretic complete intersection. Let B(2, 2, 2) denote the order

ideal {1, x3, x2, x1, x2x3, x1x3, x1x2, x1x2x3} ∈ K[x1, x2, x3]. We show that these meth-

ods are not sufficient to decide whether BB(2,2,2) is a complete intersection or not. We

reprove some of the properties of the trace and Jacobi identity syzygies. Our goal is

to characterize these syzygy computations by the arrow grading. We show that there

are at most 60 redundant polynomials in the set of defining equations of the border

basis scheme BB(2,2,2) that can be found by Jacobi identity and trace syzygies of T and

we illustrate the reasons why these methods are not sufficient. Moreover, we imple-

mented the Jacobi identity and the trace syzygy computation methods in the package

bbsmingen of the computer algebra system ApCoCoA.

In [Huib02], Proposition 7.3.1 states that if the order ideal O ∈ K[x1, x2] is of a
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specific shape (”sawtooth”) then the O-border basis scheme is isomorphic to an affine

space. We give a more general condition that applies to an order ideal O ⊂ Tn,

independent of the shape of O. The matrix MS is a specially chosen sub-matrix of the

Jacobian matrix of T . The way how to construct this matrix is explained in 6.2.3 iv).

Then we prove the following result.

Theorem 1.3.2. Let O denote an order ideal in K[x1, ..., xn], having µ elements. If

there exists a set S̄ ⊂ BO with nµ elements such that the entries of the corresponding

matrix MS are in the polynomial ring K[S] and the determinant of this matrix is ±1,

then BO is isomorphic to an affine space of dimension nµ.

In other words, for a given O-border basis scheme, if there exists a maximal minor

of Jac(T ) that is ±1 and the corresponding sub-matrix is in Matm(K[S]), the O-

border basis scheme is isomorphic to an affine space. Moreover, it is an ideal theoretic

complete intersection where the vanishing ideal is generated by TS . We note that if BO

is isomorphic to an affine space of dimension nµ, then it is not trivial that it is an ideal

theoretic complete intersection (see [Kum77]).

In Chapter 6.4 we apply Theorem 1.3.2 to prove Proposition 7.3.1 of [Huib02] which

is as follows.

Theorem 1.3.3. Let O = {t1, ..., tµ} be an order ideal in T2. If the order ideal O has

the sawtooth form then BO is isomorphic to an affine space.

An order ideal has the sawtooth form if the diagram of O is of the form such that

every step width, except possibly the topmost, and every step height, except possibly

the rightmost, is of size one.

. . .

Table 1.1: Diagram of O has the sawtooth form

Our aim is to compare the two methods and to emphasize the fact that Theo-

rem 1.3.2 is more general than the methods applied in the proof of Theorem 7.3.1 of

[Huib02].

Let O = {1, x1, x
2
1, ..., x

µ
1} ⊂ K[x1, ..., xn] be an order ideal. We call such an order
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ideal as a segment order ideal and the O-border basis scheme as a segment border basis

scheme. We first compute Jacobi identity and trace syzygies of the defining equations

of a segment border basis scheme. Next, we show that they are not sufficient to give

all redundant generators of the vanishing ideal of this scheme. Then we give a new

method to find all redundant generators of the vanishing ideal of a segment border

basis scheme. This method leads us to the following result.

Theorem 1.3.4. A segment border basis scheme can be generated by exactly µν − nµ

polynomials from T .

Then, by applying the methods we develop in Chapter 6, we prove the following

theorem.

Theorem 1.3.5. A segment border basis scheme is isomorphic to an affine space.

Moreover, it is an ideal-theoretic complete intersection.

In [Ro09], Corollary 3.13, it is also shown that a segment border basis scheme is

isomorphic to an affine space. Our result depends on Theorem 1.3.2 which differs from

[Ro09].

For further research we strongly believe that Theorems 1.3.2 can be genralized to

the following criterion.

Conjecture 1.3.6. Let O ⊂ K[x1, ..., xn] be an order ideal. Let K be a perfect field.

The border basis scheme BO is isomorphic to an affine space, if there exists a spanning

set S̄ of m/m2 such that Det(MS) = ±1 holds.

1.4 Outline

Above we presented our contributions and motivation in detail. The organization of

every chapter is given at the beginning of the chapters, as well. Therefore in this

section we avoid detailed explanations and provided a rough outline of the thesis.

Chapter 2 briefly introduces the border bases theory, the construction of border

basis schemes, and the principal component of a border basis scheme. One can find

a brief discussion on the basic algebraic geometry, as well. Moreover, the number of

non-trivial generators of a box and of a segment border basis is given.

Chapter 3 focuses on the Zm-gradings. We define a Zm-grading on the ring K[C]
and call it the arrow grading. First we show that the arrow grading is neither of

positive nor of non-negative type. Then we show that the only maximal ideal that is
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homogenous in K[C] with respect to the arrow grading is the ideal generated by the

indeterminates {c11, ..., cµν}. We shall denote this ideal by M. Furthermore, we give a

proof that the arrow grading is also defined on the coordinate ring of the border basis

scheme BO = K[C]/I(BO). This implies the well-known fact that the vanishing ideal

of a border basis scheme is generated by homogenous polynomials with respect to the

arrow grading. Moreover, we show that the arrow grading is exactly the grading of the

torus action on the coordinate ring BO which is mentioned in [Hai98]. Since we show

that the arrow grading is neither of positive nor of negative type, our results contradict

to the claims concerning grading and the homogenous maximal ideal on page 363 of

[MilSt05].

Chapter 4 introduces a smoothness criterion for the monomial point o = (0, ..., 0)

of a given border basis scheme BO. Therefore we focus on the maximal ideal m =

〈c̄11, ..., c̄µν〉 and investigate the cotangent spacem/m2 of the border basis schemes BO at

the point o.We reprove some results (see Chapter 3, of [Huib05]) for the Hilbert scheme

of points in the setting of O-border basis schemes. Although the main ideas of the

proofs are the same, the difference in our approach comes from border basis theory. We

use tools such as generic multiplication matrices, neighborhood relations of the border

elements, properties of order ideals and, most importantly, the arrow grading. Despite

the fact that in [Hai98] and [Huib05] a border basis scheme is described (see Equation

2.3 in [Hai98] and Section 2.3 in [Huib05]), the tools we have mentioned are not used.

This distinguishes our work on constructing the generating set of the cotangent space

of a border basis scheme. Note that the article [Huib05] is an unpublished arXiv article.

Chapter 5 discusses the trace and the Jacobi identity syzygies of T which were

first introduced in [Huib09]. We prove some properties of those syzygies by using the

arrow grading. Using Jacobi identity and trace syzygies, we compute the redundant

generators of the box border basis scheme BB(2,2,2). We explain the reasons why these

syzygies are not conclusive on whether BB(2,2,2) is a complete intersection. Section

5.4 is dedicated to finding a way to solve these problems for segment border basis

schemes. Our strategy is the following: we start by generalizing the Jacobi identity

syzygy and the trace syzygy computations to an arbitrary segment border basis scheme.

Then, by using the arrow grading and the construction of the defining equations of the

segment border basis scheme, we give a method to compute the redundant generators

of the vanishing ideal of an arbitrary segment border basis scheme. Consequently, we

prove that an arbitrary segment border basis scheme is an ideal-theoretic complete

intersection.
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Chapter 6 is dedicated to finding conditions for a general order ideal O ⊂ Tn which

make an O-border basis scheme an affine cell, i.e. isomorphic to an affine space. If o

is a smooth point of the O-border basis scheme, where O ⊂ Tn has µ terms, then BO

is locally isomorphic to an affine space of dimension nµ. Our aim is to find a condition

which extents this local property to all of BO. The main results of this section (see

Theorems 6.2.20) imply that this extension is possible. To be precise, we show that

the coordinate ring BO is isomorphic to a polynomial ring of dimension nµ if there

exists a set S ⊂ C (see Chapter 4.2 ) and if there exists a maximal minor of the

Jacobian matrix of T that is ±1 and the matrix corresponding to this minor is in

Matµν−nµ(K[S]). Moreover, we show that if a given O-border basis scheme is an affine

space and the vanishing ideal is generated by the subset TS (see Notation 6.2.3) of T ,

then there exists a maximal minor of the Jacobian matrix of T that is ±1. Since our

results neither depend on the shape nor on n, they are more general than the existing

results.

By using Theorem 6.2.20, in Section 6.4, we show that an arbitrary segment border

basis scheme is isomorphic to an affine space of dimension nµ. Section 6.4 discusses

Theorem 7.3.1 of [Huib02] which states that O-border basis schemes are affine spaces

if O is of the form sawtooth. This section is mainly dedicated to prove this result by

using Theorem 6.2.20, and to comparing the method given in [Huib02] to the method

we use. Moreover, this application shows a way to employ Theorem 6.2.20 in a proof

which gives a general condition of a special order ideal. In addition Theorem 6.2.20

is independent of the shape of the order ideal and the dimension of the ring that the

order ideal is defined.



Chapter 2

Preliminaries

This chapter starts with known theorems and basic concepts in algebra and alge-

braic geometry (see Section 2.1) such as varieties, Zariski topology, dimension theory,

smoothness and complete intersections without proofs. Our aim is to introduce the

algebraic geometric background that is used in this thesis without going deep into the

topics. We continue our summary on the basics by giving introductory definitions and

theory of border bases (see Section 2.2). This section is important to see the connection

between border basis theory and border basis schemes.

Afterwards, we explain how border basis schemes are constructed (see Definition

2.3.1.c and Construction 2.3.17) and recall preliminary results from the theory of border

basis schemes focusing on the monomial point o in these schemes (see Definition 2.3.7

and Lemma 2.3.6). Furthermore, in Section 2.4 we give a brief discussion on the

principal component of a border basis scheme (see Definition 2.4.1). It should be noted

that we give the explicit generating system of the vanishing ideal of a border basis

scheme. Therefore we are able to use basic algebraic and algebraic geometric tools we

introduce in Section 2.1 instead of scheme theoretic ones.

The last section (see Section 2.5) is dedicated to giving the exact number of non-

trivial generators of the vanishing ideals of box border basis schemes (see Definition

2.5.1) and segment border basis schemes (see Definition 2.5.5). The importance of this

section will become clear as we investigate the redundant elements of the set of defining

equations of those border basis schemes in Chapters 5 and 6.
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2.1 Algebraic Geometry

This section is intended to give an overview of the well- known algebraic and algebraic

geometric tools we use throughout this thesis. Unless stated otherwise, throughout

this section we let K be a field and K̄ the algebraic closure of K. Let L ⊇ K be a field

extension. Let P denote the polynomial ring K[x1, ..., xn].

Definition 2.1.1. Let f be a polynomial in P and let I be an ideal in P.

a) A point (a1, ..., an) ∈ Ln is said to be a zero of the polynomial f in Ln if

f(a1, ..., an) = 0 holds.

b) The set of all zeros of f in Ln is denoted by ZL(f).

c) The set of simultaneous zeros of all polynomials of an ideal I in Ln is called the

zero-set of I in Ln and is denoted by ZL(I).

For further information on zero-sets we refer to Chapter 2.6.B of [KrRo00]. Note

that ∅ and Ln are zero-sets. Furthermore, arbitrary intersections and finite unions

of zero-sets are again zero-sets. This implies that zero-sets form the closed sets of a

topology.

Definition 2.1.2. Let L be equal to K. Then the topology formed by the zero-sets are

called the Zariski topology on Kn. The space Kn with the Zariski topology is called

the n-dimensional affine space over Kn and it is denoted by An
K.

Definition 2.1.3. Let V be a subset of Ln. The set of all polynomials f ∈ P such

that f(a1, ..., an) = 0 for all (a1, ..., an) ∈ V forms an ideal of P. This ideal is called

the vanishing ideal of V in P and is denoted by I(V ). Moreover, the ring P/I(V ) is

called the coordinate ring of V and it is denoted by K[V].

Now we recall the well-known Hilbert’s Nullstellensatz.

Theorem 2.1.4. Let I be a proper ideal of K̄[x1, ..., xn]. Let
√
I denote the radical of

I. Then the following holds.

I(Z(I)) =
√
I

Proof. The proof follows from [KrRo00], Theorem 2.6.16.
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Definition 2.1.5. Let V be a zero-set from Ln.

a) The zero-set V is called irreducible if the following holds: If V1 and V2 are

zero-sets in Ln such that V = V1 ∪ V2, then V = V1 or V = V2.

b) Let W be an irreducible zero-set in Ln where W ⊆ V. The zero-set W is called

an irreducible component of V, if it is a maximal irreducible subset of V

Theorem 2.1.6. Let V be a zero-set from Ln. The zero-set V has only finitely many ir-

reducible components. Moreover, there exist finitely many irreducible zero-sets V1, ..., Vs

of V such that V = V1 ∪ ... ∪ Vs.

Proof. The proof follows from [Ku85], Proposition 2.14 and Corollary 2.15.

Theorem 2.1.7. A zero-set V ⊆ Ln is irreducible if and only if its vanishing ideal

I(V ) is prime.

Proof. The proof follows from [Ku85], Chapter 1, Proposition 1.10.

Definition 2.1.8. Let V ⊆ Ln be a non-empty zero-set. The Krull dimension of V

is the supremum of the lengths of all chains of non-empty distinct irreducible subsets

of V. It is denoted by dim(V ).

Note that the Krull dimension of a zero-set V ⊂ Ln is equal to the Krull dimension

of the coordinate ring K[V ] (see page 40, [Ku85]). That is

dim(V ) = dim(K[V ]) = dim(P/I(V )).

Definition 2.1.9. Let V be a zero-set in Ln with dim(V ) = d where 1 6 d < n. Then

n− d is called the codimension of V and denoted by codim(V ).

Definition 2.1.10. Let V be a zero-set from Ln with codim(V ) = c. The zero-set V

is called an ideal-theoretic complete intersection, if I(V ) ⊂ P can be generated

by c polynomials.

For further information on complete intersections we refer to [Ku85], Chapter 3.3.

Lemma 2.1.11. (Nakayama Lemma) Let R be a ring and let I be an ideal that is

contained in the intersection of all maximal ideals in R. Let M be an R-module and let

N be a submodule of M and let M/N be finitely generated. If we have M = N + IM,

then M = N holds.
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Proof. This follows from [Ku85], Chapter IV, Lemma 2.2.

Definition 2.1.12. A ring that has a unique maximal ideal, is called a local ring.

In the following we let V be a zero-set in Ln. Let o denote the point (0, ..., 0) ∈ Ln

and let V contain o. Let I denote the vanishing ideal I(V ). Let P/I be denoted by R.

Let m be the maximal ideal generated by {x̄1, ..., x̄n} ⊂ R.

Definition 2.1.13. The localization of R at the multiplicative set S = R \m is called

the local ring of V at o and is denoted by Rm.

The ring Rm contains a unique maximal ideal, namely the ideal mRm. Let L = Rm/m

be the residue field of Rm. Let µ(m) denote the minimal number of generators of m.

Then by Lemma 2.1.11 we have the following equality.

µ(mRm) = dimL(m/m2) (2.1)

Definition 2.1.14. The L-vector space m/m2 is called the cotangent space at o.

The number µ(mRm) is called the embedding dimension of Rm. It is denoted by

edim(Rm).

As a consequence of Definition 2.1.14, Equation (2.1) is as follows:

edim(Rm) = dimL(m/m2) (2.2)

Proposition 2.1.15. The dimension of the local ring of V at o is smaller or equal to

the minimal number of generators of mRm. That is

dim(Rm) 6 µ(mRm) = edim(Rm).

Proof. This follows from [Ku85], Chapter IV, Theorem 3.4 (Generalized Krull Principal

Ideal Theorem).

The ring Rm is called a regular local ring if dim(Rm) is equal to edim(Rm).

Otherwise it is called a singular local ring. If Rm is a singular local ring then the

point o is said to be a singular point of V (see page 473 [KrRo05]).

Definition 2.1.16. A system of elements {a1, ..., am} (m > 0) of a ring R is called

independent if the following conditions hold:
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a) (a1, ..., am) 6= R

b) If F ∈ R[x1, ..., xm] is a homogenous polynomial with F (a1, ..., am) = 0, then all

coefficients of F are contained in Rad(a1, ..., am).

A system of elements {a1, ..., am} (m > 0) of a ring R is called algebraically independent

if the following conditions hold:

a) (a1, ..., am) 6= R

b) If F ∈ R[x1, ..., xm] is a homogenous polynomial with F (a1, ..., am) = 0, then all

coefficients of F are 0.

Definition 2.1.17. Let I be an ideal from P and be generated by {f1, ..., fs}. The Ja-
cobian matrix of the tuple F = (f1, ..., fs) is the matrix Jac(F) = ( ∂fi

∂xj
)i=1,..,s,j=1,...,n ∈

Mats,n(P). The Jacobian matrix of the tuple F that is evaluated at the point o =

(0, ..., 0) ∈ Kn is denoted by Jac(F)o.

Theorem 2.1.18. Let V ⊆ Ln and let I(V ) denote the vanishing ideal from P =

K[x1, ..., xn] and let char(K) = 0. Then the following holds.

a) Let I(V ) be generated by a tuple F = (f1, ..., fs). Then rank(Jac(F)o) 6 n −
dim(Rm) holds.

b) Let I(V ) be generated by a tuple F = (f1, ..., fs). If we have rank(Jac(F)o) =

n− dim(Rm), then Rm is regular.

c) The local ring Rm is regular if and only if there exists a tuple of polynomials

F = (f1, ..., fs), which generates I(V ) and we have rank(Jac(F)o) = n−dim(Rm).

Proof. This follows from [Ku85], Chapter VI, Proposition 1.5.

Theorem 2.1.19. Let V ⊂ Ln be irreducible with dimension d and let I(V ) denote the

vanishing ideal in P = K[x1, ..., xn] that is generated by a tuple F = (f1, ..., fs). Then

the singular locus of V is the common zero set in V of the polynomials obtained as the

(n−d)×(n−d) minors of the Jacobian matrix Jac(F) = ( ∂fi
∂xj

)i=1,..,s,j=1,...,n ∈ Mats,n(P).

Proof. This follows from [KaKeSt00], Chapter 6.2, Theorem.

Definition 2.1.20. Let J be the ideal generated by the minors of size n−d in Theorem

2.1.19. Then the ideal J̄ in P/I(V ) is called the Jacobian ideal of I(V ) and denoted

by J.
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Corollary 2.1.21. Let V ⊂ Ln be irreducible with dimension d and let I(V ) denote

the vanishing ideal in P = K[x1, ..., xn] that is generated by a tuple F = (f1, ..., fs). The

Jacobian ideal J is a unit ideal of P/I(V ) if and only if V is smooth.

2.2 Border Bases

In order to understand the theory of border basis schemes, it is necessary to discuss

border basis theory. Although we shall not go deeply into the theory, we discuss the

basic concepts necessary for the rest of this thesis. For further information we refer to

[KrRo05].

Definition 2.2.1. Let I ⊂ P be a zero-dimensional ideal. A polynomial xα1
1 · · · xαn

n ∈ P

such that (α1, ..., αn) ∈ Nn is called a term. Let Tn denote the set of all terms in P

and let Tn
1 = {x1, ..., xn}.

(a) Let O = {t1, ..., tµ} denote a non-empty set of terms from Tn. If O is closed under

forming divisors, then it is called an order ideal.

(b) The set of terms defined as Tn
1 · O\O = (x1O∪ ...∪ xnO)\O is called the border

of O and denoted by ∂O.

(c) An O-border prebasis G = {g1, ..., gν} is a set that consists of polynomials of the

form

gj = bj −
µ∑

i=1

αijti

where {αij}i∈{1,..,µ}
j∈{1,..ν}

⊂ K.

(d) Let G be an O-border prebasis. Then G is called an O-border basis of I if the

residue classes of the elements of O form a K-basis of P/I.

The basic idea of border basis theory is to describe a zero-dimensional ring P/I by

an order ideal of terms O whose residue classes form a K-vector space basis of P/I.

Example 2.2.2. Let O denote the order ideal {1, x1, x2, x1x2} ∈ K[x1, x2]. Then the

border of O is ∂O = {x2
2, x

2
1, x1x

2
2, x

2
1x2}. The figure below justifies the name border.

Example 2.2.3. Let O denote the order ideal {1, x1, x2, x1x2} ∈ K[x1, x2]. Then the

border of O is ∂O = {x2
2, x

2
1, x1x

2
2, x

2
1x2}. Let I be an ideal of K[x1, x2] that is generated
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x2
2 x1x

2
2

x2 x1x2 x2
1x2

1 x1 x2
1

by G = (g1, g2, g3, g4) where

g1 = x2
2 + x1 + 1, g2 = x2

1 + x1 + x2,

g3 = x1x
2
2 − x2, g4 = x2

1x2 + x1x2 − x1 − 1.

Then G is an O-border prebasis of I.

In Example (2.2.3) if O is the K-basis of P/I, then G is an O-border basis of I. The

following definition gives us one tool to verify whether the given O-border prebasis is

an O-border basis or not.

Definition 2.2.4. Let P denote the polynomial ring K[x1, ..., xn]. Let O = {t1, ..., tµ}
be an order ideal. Then ∂O = {b1, ..., bυ} be the border of O. For indices i = 1, ..., µ

and j = 1, .., ν, we let αij be from K. Finally, we let G = {g1, ..., gυ} be the O-border

prebasis with

gj = bj −
µ∑

i=1

αijti.

For 1 6 r 6 n, define the rth formal multiplication matrix Ar = (ξ
(r)
kl ) of G by

ξ
(r)
kl =

{
δki if ti = xrtl

αkj if bj = xrtl

where δki is the Kronecker delta.

The next theorem gives a very important property of multiplication matrices. This

property will play a crucial role in constructing the defining equations of border basis

schemes (see Definition 2.3.1).

Theorem 2.2.5. Let O be an order ideal and let G be an O-border prebasis and let I

be a zero-dimensional ideal generated by the elements of G. The set G is an O-border

basis of I if and only if the formal multiplication matrices of G pairwise commute.

Proof. This follows from [KrRo05], Theorem 6.4.30.

Example 2.2.6. (continues) We show that theO-border prebasis in Example (2.2.3)
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is an O-border basis of I. With respect to our notation we have t1 = 1, t2 = x1, t3 =

x2, t4 = x1x2, b1 = x2
2, b2 = x2

1, b3 = x1x
2
2 and finally b4 = x2

1x2. Let us construct the

first and second formal multiplication matrices.

g1 = x2
2 + x1 + 1 = b1 − α11t1 − α21t2, α11 = −1, α21 = −1

g2 = x2
1 + x1 + x2 = b2 − α22t2 − α32t3, α22 = −1, α32 = −1

g3 = x1x
2
2 − x2 = b3 − α33t3, α33 = 1

g4 = x2
1x2 + x1x2 − x1 − 1 = b4 − α44t4 − α24t2 − α14t1, α44 = −1, α24 = 1, α14 = 1

k = 1, ξ
(1)
11 = δ12 ξ

(1)
12 = α12 ξ

(1)
13 = δ14 ξ

(1)
14 = α14

k = 2, ξ
(1)
21 = δ22 ξ

(1)
22 = α22 ξ

(1)
23 = δ24 ξ

(1)
24 = α24

k = 3, ξ
(1)
31 = δ32 ξ

(1)
32 = α32 ξ

(1)
33 = δ34 ξ

(1)
34 = α34

k = 4, ξ
(1)
41 = δ42 ξ

(1)
42 = α42 ξ

(1)
43 = δ44 ξ

(1)
44 = α44

A1 =




δ12 α12 δ14 α14

δ22 α22 δ24 α24

δ32 α32 δ34 α34

δ42 α42 δ44 α44




=




0 0 0 1

1 −1 0 1

0 −1 0 0

0 0 1 −1




In the same way, we get the generic multiplication matrix A2.

A2 =




δ13 δ14 α11 α13

δ23 δ24 α21 α23

δ33 δ34 α31 α33

δ43 δ44 α41 α43




=




0 0 −1 0

0 0 −1 0

1 0 0 1

0 1 0 0




The matrices A1 and A2 are pairwise commutative i.e., A1A2 = A2A1. Then by

Theorem 2.2.5, G = {g1, g2, g3, g4} is an O-border basis.

2.3 The Border Basis Scheme

An O-border basis scheme is a scheme that parametrizes all zero-dimensional ideals

that have an O-border basis. Therefore it is an open sub-scheme of the Hilbert scheme

Hµ
n = Hilbµ(An) of µ points. In this section, instead of handling an O-border basis

scheme in a scheme theoretic manner, we construct the the generators of the vanishing
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ideal of an O-border basis scheme in a concrete way by using the border basis theory.

Let P denote the polynomial ring K[x1, ...., xn]. Let O = {t1, ..., tµ} ⊂ Tn be an

order ideal and ∂O = {b1, ..., bν} be its border. Let I ⊂ P be a zero-dimensional ideal

with an O-border basis. Let {c11, ..., cµν} be set of further indeterminates and let K[C]
denote the polynomial ring K[c11, ...., cµν ].

Definition 2.3.1. The generic O-border prebasis is the set of polynomials G =

{g1, ..., gν} in K[x1, .., xn, c11, ..., cµν ] given by

gj = bj −
µ∑

i=1

cijti. (2.3)

Definition 2.3.2. Let O ⊂ P denote an order ideal. Let G be the generic O-border

prebasis.

a) Let Ak ∈ Matµ(K[c]) be the kth formal multiplication matrix associated to G

(see Definition 2.2.4) where k ∈ {1, ..., n}. Then Ak is called the kth generic

multiplication matrix with respect to O.

b) The affine scheme BO ⊆ Aµν defined by the ideal I(BO) generated by the entries

of the matrices AkAl −AlAk with 1 ≤ k < l ≤ n is called the O-border basis

scheme.

c) The ring K[C]/I(BO) is called the coordinate ring of the scheme BO and is

denoted by BO.

Lemma 2.3.3. Let P denote the polynomial ring K[x1, ..., xn] and let O be an order

ideal. Let tq and tp be distinct terms from the order ideal O such that xltq = tp. Let

l be an index from the set {1, ..., n} and Al be the generic multiplication matrix with

respect to O. Then we have Ale
tr
q = etrp .

Proof. This is a result of the definition of the generic multiplication matrices with

respect to O.

In this example we show how to construct an O-border basis scheme with a given

order ideal O. We explicitly give the generating system of the vanishing ideal. The

main idea is to construct the vanishing ideal of BO by imposing Theorem 2.2.5 to the

generic multiplication matrices with respect to the order ideal O.
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Example 2.3.4. Let P denote the polynomial ring K[x1, x2]. Let O denote the order

ideal {1, x1, x2, x1x2} ∈ P. Then the border of O is ∂O = {x2
2, x

2
1, x1x

2
2, x

2
1x2}. With

respect to our notation we have t1 = 1, t2 = x1, t3 = x2, t4 = x1x2, b1 = x2
2, b2 =

x2
1, b3 = x1x

2
2 and finally b4 = x2

1x2. The generic O-border prebasis is

G = {x2
2 − c11 − c21x1 − c31x2 − c41x1x2,

x2
1 − c12 − c22x1 − c32x2 − c42x1x2,

x1x
2
2 − c13 − c23x1 − c33x2 − c43x1x2,

x2
1x2 − c14 − c24x1 − c34x2 − c44x1x2}.

Now let us construct the generic multiplication matrices with respect to O which is

basically constructing formal multiplication matrices of the generic O-border prebasis

G.

A1 =




0 c12 0 c14

1 c22 0 c24

0 c32 0 c34

0 c42 1 c44


 A2 =




0 0 c11 c13

0 0 c21 c23

1 0 c31 c33

0 1 c41 c43




The vanishing ideal of the border basis scheme that is generated by the entries of

(A1A2 −A2A1) is the following ideal.

I(BO) = 〈c1 1 c3 2 + c1 3 c4 2 − c1 4 , c1 2 c2 1 + c1 4 c4 1 − c1 3 ,

c1 2 c2 3 − c1 1 c3 4 + c1 4 c4 3 − c1 3 c4 4 , c2 1 c3 2 + c2 3 c4 2 − c2 4 ,

c2 1 c2 2 + c2 4 c4 1 + c1 1 − c2 3 , c2 2 c2 3 − c2 1 c3 4 + c2 4 c4 3 − c2 3 c4 4 + c1 3 ,

c3 1 c3 2 + c3 3 c4 2 + c1 2 − c3 4 , c2 1 c3 2 + c3 4 c4 1 − c3 3 ,

c2 3 c3 2 − c3 1 c3 4 + c3 4 c4 3 − c3 3 c4 4 − c1 4 , c3 2 c4 1 + c4 2 c4 3 + c2 2 − c4 4 ,

c2 1 c4 2 + c4 1 c4 4 + c3 1 − c4 3 , c3 4 c4 1 − c2 3 c4 2 + c2 4 − c3 3 〉

Definition 2.3.5. A monomial ideal is an ideal generated by a set of terms from

Tn. The monomial ideal generated by the elements of ∂O is called the border term

ideal of O and is denoted by BTO.
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The next two lemmas can be found in [KrRo08] as notes. In order to make clear

reference, we turn them into lemmas and give explicit proofs.

Lemma 2.3.6. Let O ⊂ P be an order ideal. There is a one-to-one correspondence

between the zero-dimensional ideals that have an O-border basis and the K-rational

points of the border basis scheme. In particular, the point o = (0, ..., 0) in the scheme

corresponds to the border term ideal.

Proof. Let σ be the substitution homomorphism defined as follows,

σ : K[c11, ..., cµν , x1, ..., xn] −→ K[x1, ..., xn]

cij 7−→ αij

xk 7−→ xk

where αij ∈ K and k = 1, ..., n. Let G be the generic O-border prebasis. By Equation

(2.3), the image of G under σ is

σ(G) = {bj −
µ∑

i=1

αijti | j = 1, ..., ν} (2.4)

which is an O-border prebasis for some zero-dimensional ideal in P, say I. Let Ak,Al ∈
Matµ(K[C]) be two distinct generic multiplication matrices with respect to O. The im-

ages of generic multiplication matrices Ak,Al under the map σ are the kth and lth

formal multiplication matrices with respect to the prebasis σ(G). By Theorem 2.2.5,

σ(G) is an O-border basis of I if and only if the formal multiplication matrices com-

mute. Then σ(G) is an O-border basis if and only if for each k, l ∈ {1, ..., n} and

k 6= l

σ(AkAl) = σ(Ak)σ(Al) = σ(Al)σ(Ak)

holds. By Theorem 2.2.5, this holds if and only if the point (α11, ..., αµν) is a point in

BO. In particular, after plugging the point (0, ..., 0) in G we have the ideal 〈b1, ..., bν〉,
which is the border term ideal.

Definition 2.3.7. A point in the scheme BO is called a monomial point if it corre-

sponds to a monomial ideal.

Lemma 2.3.8. Let O ⊂ P be an order ideal. The point o = (0, ..., 0) in BO is the only

monomial point of this border basis scheme.
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Proof. By Lemma 2.3.6, the point o = (0, ..., 0) ∈ BO corresponds to the border term

ideal 〈b1, ..., bν〉. We do the proof by showing that the border term ideal is the only

monomial ideal with O-border basis. For a contradiction, suppose there is a monomial

zero-dimensional ideal I with an O-border basis that is different than BTO. We let

{bj −
µ∑

i=1

αijti}j=1,...,ν
i=1,...,µ

,

where αij ∈ K for i = 1, ..., µ and j = 1, ..., ν be the O-border basis of I. Since I

is a monomial ideal, for every i = 1, ..., µ and j = 1, ..., ν we have αij = 0. But this

contradicts to the assumption that I is different than BTO.

In Example (2.3.4) we constructed the defining equations for BO by imposing the

Theorem 2.2.5 to the generic multiplication matrices. Before introducing an alternative

construction method which employs the relations of border terms, let us give a closer

look what those border relations are and how they can be used to compute polynomials

in K[C].

Definition 2.3.9. Let G = {g1, ..., gν} be a generic O-border prebasis where gj =

bj −
∑µ

i=1 cijti ∈ K[c11, ..., cµν , x1, ..., xn]. Let A1, ...,An ∈ Matµ(K[C]) be the generic

multiplication matrices with respect to O. Finally, for each index j ∈ {1, ..., µ} let cj

denote the column matrix (c1j, ...., cµj)
tr ∈ Matµ1(K[C]). Let bi, bj ∈ ∂O be two distinct

border terms.

a) The border terms bi, bj are called next-door neighbors if we have bi = xkbj for

some xk ∈ {x1, ..., xn}. We let ND(i, j) be the set of polynomial entries of ci −Akcj

where bi and bj are next-door neighbors. We shall denote the union of all such sets

by ND.

b) The border terms bi, bj are called across-the-street neighbors if we have xkbi =

xlbj. We let AS(i, j) be the set of polynomial entries of Akci −Alcj if bi and bj are

across-the-street-neighbors We shall denote the union of all such sets by AS.

c) Let bi and bj be across-the-corner neighbors such that xkbi = xlbj. If there exists

bm ∈ ∂O with bi = xlbm and bj = xkbm, then bi and bj are called the across-the-

corner-neighbors.

Lemma 2.3.10. Let bi, bj ∈ ∂O be two distinct border terms. If bi = xkbj holds, then

there exists tq ∈ O for some q ∈ {1, ..., µ} and xl ∈ {x1, ..., xn} such that xktq ∈ O and

xkxltq = bi.
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Proof. This is a result of the Definitions 2.2.1 and 2.3.9.a.

Lemma 2.3.11. Let bi, bj ∈ ∂O be two distinct border terms. If xlbi = xkbj holds,

then there exists tq ∈ O for some q ∈ {1, ..., µ} such that xktq = bi and xltq = bj.

Proof. This is a result of the Definitions 2.2.1 and 2.3.9.b.

Proposition 2.3.12. Recall the setting in Definition 2.3.9. The union of all sets in

ND and all sets in AS contains the non-trivial entries of the commutators AkAl−AlAk

with 1 6 k < l 6 n.

a) If one removes from this union all sets in AS such that bi, bj are across-the-corner

neighbors, one gets precisely the set of the non-trivial entries of the commutators

AkAl −AlAk with 1 6 k < l 6 n. In particular, the remaining union generates the

vanishing ideal I(BO).

b) The polynomials in the sets of AS corresponding to across-the-corner neighbors bi, bj

are contained in I(BO).

Proof. This follows from [KrRo08], Proposition 4.1.

Definition 2.3.13. Recall the setting given in Definition 2.3.9. We shall name the

polynomials that are from the union of AS and ND as neighbor polynomials and

denote the set of neighbor polynomials by θ.

Lemma 2.3.14. Recall the setting given in Definition 2.3.9. Let bi, bj ∈ ∂O be two

distinct terms from ∂O such that xkbj = bi. Let θκ ∈ ND(i, j) be the polynomial in pth

row of the matrix ci −Akcj. Then for every r ∈ {1, ..., µ} we have

θκ = cpi − (
∑µ

r=1 frcrj) with fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpm if xktr = bm ∈ ∂O.

Proof. The pth-row of ci −Akcj is equal to ep(ci −Akcj). Then we have

θκ = cpi − (

µ∑

r=1

frcrj).

We focus on the pth-row of the generic multiplication matrix Ak. As a result of Defini-
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tion 2.2.4, we have

(Ak)pr =

{
δsp if xktr = ts ∈ O
cpm if xktr = bm ∈ ∂O

where δsp is the Kronecker delta. Then we have

fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpm if xktr = bm ∈ ∂O.

Lemma 2.3.15. Recall the setting given in Definition 2.3.9. Let bi, bj ∈ ∂O be two

distinct border terms where xkbj = xlbi. If θκ ∈ AS(i, j) is the polynomial in the pth-row

of the matrix Akcj −Alci, then for every r ∈ {1, ..., µ} we have

θκ = −(

µ∑

s=1

hscsi) + (

µ∑

r=1

frcrj), where

fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpn if xktr = bn ∈ ∂O

and hs =





0 if xlts ∈ O \ {tp}
1 if xlts = tp ∈ O
cpm if xlts = bm ∈ ∂O.

Proof. The pth-row of Akcj −Alci is equal to ep(Akcj −Alci). Then we have

θκ = −(

µ∑

s=1

hscsi) + (

µ∑

r=1

frcrj).

We focus on the pth-row of the generic multiplication matrices Ak and Al to find hs

and fr. As a result of Definition 2.2.4, we have

(Ak)pr =

{
δup if xktr = tu ∈ O
cpm if xktr = bm ∈ ∂O,

(Al)ps =

{
δup if xlts = tu ∈ O
cpm if xlts = bn ∈ ∂O
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where δup is the Kronecker delta. Then we have

fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpm if xktr = bm ∈ ∂O.

and hs =





0 if xlts ∈ O \ {tp}
1 if xlts = tp ∈ O
cpm if xlts = bm ∈ ∂O.

Let k and l be two distinct integers from {1, ..., n} where k < l. We denote a

polynomial entry of the commutator operation [Ak,Al] = AkAl − AlAk in position

(p, q) by τ klpq where p, q ∈ {1, ..., µ}. Then the result of this commutator operation will

be as follows.

[Ak,Al] = AkAl −AlAk =



τ kl11 . . . τ kl1µ
...

. . .
...

τ klµ1 . . . τ klµµ


 (2.5)

Let T be the set of all polynomial entries of the multiplication matrices, i.e.

T = {τ klpq | k 6= l and k, l ∈ {1, ..., n}, p, q ∈ {1, ..., µ}}. (2.6)

Then we have I(BO) = 〈T 〉.

Remark 2.3.16. By Proposition 2.3.12 the vanishing ideal I(BO) can be generated

by the lifting neighbor syzygies and by imposing Theorem 2.2.5 to the generic multi-

plication matrices with respect to order ideal O (see Example 2.3.4 and Proposition

2.3.12). The above enumeration on the elements of set T allows us to create a link

between these two methods.

This approach is given in Section 2 of [Huib09]. Since we use it frequently, we want

to revise the construction with our notation.

Construction 2.3.17. Recall the setting given in Definition 2.3.9 and Equality (2.6).

Let tq, tp be two distinct terms from O. By Equation (2.5), we have τ klpq = ep(AlAk −
AkAl)e

tr
q . We first show explicitly that τ klpq is 0 if it is contained in neither ND nor AS.

If this is not the case, we give the shape of the polynomial τ klpq by using Lemmas 2.3.14

and 2.3.15.

a) If xkxltq = tj ∈ O with xltq = tp ∈ O and xktq = tr ∈ O holds, then τ klpq is neither
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in ND nor in AS and the following holds.

epAkAle
tr
q = epAke

tr
p = 0

epAlAke
tr
q = 0.

Hence we have τ klpq = epAkAle
tr
q − epAlAke

tr
q = 0.

b) If we have xkxltq = bi ∈ ∂O with xltq = tp ∈ O and xktq = tr ∈ O, then τ klpq is

neither in ND nor in AS. We show that this polynomial is 0 in this case as in the

previous case.

epAkAle
tr
q = epAke

tr
p = cri

epAlAke
tr
q = cri

Hence we have τ klpq = epAkAle
tr
q − epAlAke

tr
q = 0.

c) If xktq = tr ∈ O and xltq = bj ∈ ∂O with xl(xktq) = xltr = bi ∈ ∂O holds, then

xkbj = bi, i.e. bi and bj are next-door neighbors and τ klpq ∈ ND(i, j). In order to see

this, consider the following.

τ klpq = ep(AlAk −AkAl)e
tr
q

= ep(AlAk)e
tr
q − ep(AkAl)e

tr
q

= epAle
tr
r − epAkAle

tr
q

= ep



c1i
...

cµi


− epAk



c1j
...

cµj




= cpi − epAk



c1j
...

cµj




This is the pth row of ci −Akcj. Then by Lemma 2.3.14, we have

cpi −
µ∑

r=1

frcrj where fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpm if xktr = bm ∈ ∂O.
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d) If we have xktq = bi ∈ ∂O and xltq = bj ∈ ∂O, i.e. xkbj = xlbi, then bi and bj are

across-the-street neighbors and τ klpq ∈ AS(i, j). To see this consider the following.

τ klpq = ep(AkAl −AlAk)e
tr
q

= ep(AkAl)e
tr
q − ep(AlAk)e

tr
q

= ep(Akcj −Alci)

That is the pth-row of the matrix Akcj − Alci, whose entries give the elements of

the set AS(i, j). Then by Lemma 2.3.15, we have the following

τ klpq = −
µ∑

s=1

hscsi +

µ∑

r=1

frcrj where

fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpn if xktr = bn ∈ ∂O,

and hs =





0 if xlts ∈ O \ {tp}
1 if xlts = tp ∈ O
cpm if xlts = bm ∈ ∂O.

Remark 2.3.18. Construction 2.3.17 is in agreement with Proposition 2.3.12.

In order to avoid index problems, in the next lemma we denote an arbitrary poly-

nomial in T simply by τκ instead of τ klpq . We use this notation when the information on

how the polynomial τ klpq is constructed is not necessary.

Lemma 2.3.19. The polynomials from the set T are of degree two with no constant.

In particular, a polynomial, say τκ, is of the following form:

τκ = τ (2)κ + τ (1)κ ∈ T (2.7)

where τ
(2)
κ ∈ K[C] is a homogenous polynomial of degree 2 with respect to the standard

grading and τ
(1)
κ ∈ K[C] is a homogenous polynomial of degree 1 with respect to the

standard grading. Moreover, the set supp(τ
(1)
κ ) has at most two linear monomials.

Proof. This follows from Construction 2.3.17.



26 2. Preliminaries

2.4 The Principal Component

Our aim in this section is to familiarize the reader with the concept and the properties

of the principal component of an O-border basis scheme which we will use in Chapter

4. For further information on the principal component we recommend the reader

[KrRo10], Section 3. We continue to work over the polynomial ring P = K[x1, ..., xn]

over a field K. Let K̄ denote the algebraic closure of K. Let O = {t1, ..., tµ} denote an

order ideal of terms in Tn and we let ∂O = {b1, ..., bν} be the border of it.

The tuples y(i) = (y
(i)
1 , ..., y

(i)
n ) for i = 1, ..., µ that are given in the following defini-

tion constitute of the indeterminates y
(i)
j , for j = 1, ..., n which represent the coordinates

of the ith point in the set X ⊆ An
K̄
, which has µ elements.

Definition 2.4.1. Let Q denote the ring K[y(1), ..., y(µ)]. We define the following poly-

nomials in Q.

(a) Let △O denote the det(tj(y
(i)))i,j=1,...,µ where tj(y

(i)) denotes the result of the

substitutions xk 7−→ y
(i)
k in tj.

(b) For i = 1, ..., µ and j = 1, ..., ν we let

△ij = det(t1(y
•) | ... | bj(y•) | ... | tµ(y•)).

Here tk(y
•) denotes the kth column of the matrix ∆O. If we replace the ith column of

∆O by bj(y
•), then we have the determinant ∆ij.

This example enlightens Definition 2.4.1.

Example 2.4.2. Let O = {1, x1, x2, x1x2} be the order ideal. Then the border of

it is ∂O = {x2
2, x

2
1, x1x

2
2, x

2
1x2}. With respect to our notation we have t1 = 1, t2 =

x1, t3 = x2, t4 = x1x2, b1 = x2
2, b2 = x2

1, b3 = x1x
2
2 and finally b4 = x2

1x2. Let X =

{(−2, 4), (1, 1), (−3, 9), (4, 16)} be a set of points on the plane. Consider the following

equation system,
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b1(y
(i)) = γ11t1(y

(i)) + ...+ γµ1tµ(y
(i)), i = 1, ..., µ

b1(y
(1)) = y2((−2, 4)) = 16 = γ11 − 2γ21 + 4γ31 − 8γ41

b1(y
(2)) = y2((1, 1)) = 1 = γ11 + γ21 + γ31 + γ41

b1(y
(3)) = y2((−2, 4)) = 18 = γ11 − 3γ21 + 9γ31 − 27γ41

b1(y
(4)) = y2((−2, 4)) = 256 = γ11 + 4γ21 + 16γ31 + 64γ41.

By Cramer’s Rule the solution of the system for {γij} is,
△ij

△O
. Thus we compute the

following.

γ11 =

det




16 −2 4 −8

1 1 1 1

81 −3 9 −27

256 4 16 64




det




1 −2 4 −8

1 1 1 1

1 −3 9 −27

1 4 16 64




= −24.

By the same method we can calculate γ12 = 10, γ13 = 15, γ41 = 0, γ32 = 1 and the rest

is zero.

Notation 2.4.3. Let K(y(1), ..., y(µ)) denote the quotient field of Q.

a) Let CO denote the K-subalgebra of K(y(1), ..., y(µ)) generated by the elements
△ij

△O

with i ∈ {1, ..., µ} and j ∈ {1, ..., ν}.

b) Let Φ denote the following surjective K-algebra homomorphism.

Φ : K[C] −→ CO (2.8)

cij 7−→ △ij

△O

Definition 2.4.4. LetO ⊂ K[x1, ..., xn] be an order ideal. The principal component

of BO is an irreducible component of BO whose vanishing ideal is Ker(Φ). The principal

component is denoted by CO.



28 2. Preliminaries

Let us consider the zero-dimensional radical ideals having an O-border basis. Such

ideals correspond to the points on the border basis scheme which are called radical

points.

Theorem 2.4.5. The principal component CO is smooth of dimension nµ at its radical

points.

Proof. This follows from [KrRo10] Theorem 4.2.

Corollary 2.4.6. If the monomial point o in BO is smooth, then it is included in CO,

and we have dim((BO)m) = nµ.

Proof. This follows from [KrRo10], Theorem 4.2.b and Proposition 4.6.

2.5 Box and Segment Border Basis Schemes

Recall the Construction 2.3.17 and let T denote the set of generators of a given border

basis. In this section we shall investigate box and segment border basis schemes with

order ideals which have special shapes. Our main interest is to give an exact number

of non-trivial polynomials of the set T for each border basis scheme. We will need the

number of non-trivial defining equations of those schemes as we look into the ideal-

theoretic complete intersection (see Definition 2.1.10) property of them. Throughout

this section we let P denote the polynomial ring K[x1, ..., xn].

Let us start with the formal definition of a box border basis scheme.

Definition 2.5.1. Let d1, ..., dn be integers > 2.

(a) The order ideal B(d1, ..., dn) = {xα1
1 · · · xαn

n ∈ Tn | αi < di for i = 1, ..., n} is

called the box of size (d1, ..., dn). If it is clear which size we are dealing with, we

simply write B.

(b) Let I be a zero-dimensional ideal of P. A B-border basis of I is called a box border

basis of I.

(c) The B-border basis scheme is called the box border basis scheme and is denoted

by BB(d1,...,dn)
or simply by BB.

Lemma 2.5.2. Let B(d1, ..., dn) be the box of size (d1, ..., dn). The number of terms in

the order ideal is

|B| = d1 · · · dn.
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The number of terms in the border is

|∂B| = ν =
n∑

i=1

(
n−1∏

j=1

dij),

where the set {di1 , ..., din−1} is a subset of {d1, ..., dn}.

Proof. The first part that |B| = d1 · · · dn is clear. Now we prove the second part of the

claim. Let ti ∈ B with

log(ti) = (α1, ..., αk, ..., αn).

We have xkti ∈ ∂B if and only if αk+1 = dk with αj ∈ {0, 1, ..., dj−1} and j ∈ {1, ..., n}.
By fixing the kth-component of log(ti) as dk − 1 and letting the other components of

this vector be one of the possible values from the set {0, 1, ..., dj − 1}, we can find the

number of border elements that are calculated by multiplying the order ideal elements

with the indeterminate xk. Therefore for one indeterminate xk the number of border

elements is d1 · · · dk−1dk+1 · · · dn. Clearly, the set {d1, ..., dk−1, dk+1, ..., dn} has (n − 1)

elements and is a subset of {d1, ..., dn}. By summing up these multiplications for every

indeterminate, we find the desired result.

Lemma 2.5.3. Let B(d1, ..., dn) be the box of size (d1, ..., dn). The number of non-trivial

polynomials in the generating set T of I(BB) is

µ((n− 1)ν − ν ′) with ν ′ =
m∑

i=1

(
n−2∏

j=1

dij),

where m = n(n− 1)/2 and {di1 , ..., din−2} is a subset of {d1, ..., dn}.

Proof. Let log(tq) = (α1, ..., αk, ..., αn) ∈ Kn. As a result of the definition of generic

multiplication matrices, the entries of the generic multiplication matrices are non-

trivial if and only if xktq is in ∂B or xltq ∈ ∂B. Our aim is to find the number of order

ideal elements with this property. In order to find the non-trivial entries of the matrix

AkAl −AlAk, we fix the kth-component of log(tq) as dk − 1 and for j 6= k, l let αj be

from {1, ..., dj − 1}. Thus from this product of generic multiplication matrices we have

(d1 · · · dk−1dk+1 · · · dl · · · dn) + (dk − 1)d1 · · · dk−1dk+1 · · · dl−1dl+1 · · · dn.

It is the number of the order ideal elements which become border elements after the
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multiplication with xk or xl. We compute this for every pair xk, xl ∈ {x1, ..., xn} with

l 6= k. The number of such pairs is n(n− 1)/2. Therefore we have

(d2d3 · · · dn + (d1 − 1)d3d4 · · · dn) + · · ·+ (d1 · · · dn−1 + (dn − 1)d1 · · · dn−2)).

This is equal to the following.

((n− 1)(d2d3 · · · dn + · · ·+ dk−1dk+1 · · · dn))− · · · − (d3d4 · · · dn + · · ·+ d1 · · · dn−2)

= (n− 1)ν − ν ′

Since τ klpq is computed for every tp ∈ B, the result is µ((n− 1)ν − ν ′).

Example 2.5.4. Consider the box order ideal B(2, 2, 2, 2). By Lemma 2.5.2, we have

µ = 24 = 16 and by Lemma 2.5.2, we have ν = n(2 · 2 · 2) = 32. By Lemma 2.5.3, the

number of non-trivial indeterminates is

µ((n− 1)ν − ν ′) = 16((4− 1)32− ν ′)

where ν ′ = m · (2 · 2) with m =
(
4
2

)
= 6. Therefore the number of non-trivial elements

in the generating set of I(BB) is

µ((n− 1)ν − ν ′) = 16(3 · 32− 12) = 1152.

Definition 2.5.5. Let I be a zero-dimensional ideal of P.

(a) The order ideal O = {1, x1, ..., x
µ−1
1 } is called the segment order ideal.

(b) An O-border basis of I is called a segment border basis of I.

(c) The O-border basis scheme is called the segment border basis scheme.

Lemma 2.5.6. Let O denote the segment order ideal {1, x1, ..., x
µ−1
1 } and let BO be a

segment border basis scheme. Then the number of terms in ∂O is (n− 1)µ+1 and the

number of non-trivial polynomials in T is µ2(n(n−1)
2

).

Proof. The first part is a result of Definition 2.2.1. For the second claim, recall that

there are n-different generic multiplication matrices with µ2 entries and one uses pairs
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of them to construct T . Since the shape of the order ideal is a segment, n− 1 generic

multiplication matrices have neither 0 nor 1 as entry. Therefore the matrix [Aj,Ai]

(see Equation (2.5)) for every pair Ai,Aj ∈ {A1, ...,An} does not have trivial entries.

This gives the desired result.



32 2. Preliminaries



Chapter 3

The Arrow Grading

This chapter introduces a grading (see Definition 3.1.1) on the polynomial ring where

the vanishing ideal of a border basis scheme is defined. We shall call this grading the

arrow grading (see Definition 3.2.1). Before looking into the properties of the arrow

grading, in Section 3.1 we give a short discussion on Zm-graded polynomial rings where

m is a positive integer. Our focus point in this section is gradings defined by matrices,

whose properties we recall in Definition 3.1.6.

The second section (see Section 3.2) is devoted to investigating the arrow grading in

detail. First we illustrate that the arrow grading is not like any of the special gradings

that we define in the first section (see Example 3.2.12). This shows that it is not a

trivial work to deal with the problems we introduce in the rest of the thesis. Then we

prove that the vanishing ideal of a border basis scheme is homogenous with respect to

the arrow grading. Although it is a known fact (see for example Lemma 4.1 [Huib09]),

we give an alternative proof to the known ones. Moreover, we remark that the torus

action (see page 208 of [Hai98] and page 363 of [MilSt05]) on BO results in the arrow

grading (see Remark 3.2.8). Since the arrow grading is not of positive type, we easily

show that there might exist more than one maximal homogenous ideal in BO. This

contradicts to the claims on page 363 of [MilSt05] (see Counterexamples 3.2.12 and

3.2.16).

Consequently, the main idea delivered in this chapter is to show that giving an

algebraic proof of any claim on a border basis scheme is not straightforward by showing

the peculiarity of the grading which is defined on the coordinate ring of a border basis

scheme.
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3.1 Gradings

In this section we discuss gradings and gradings defined by a matrix. Unless otherwise

stated, throughout this section let K be a field. Let P denote the polynomial ring

K[x1, ..., xn].

Definition 3.1.1. Let R be a ring. Let (M,+) be a monoid. The ring R is called an

M-graded ring if there exists a family of additive subgroups {Rm}m∈M such that the

following properties are satisfied.

a) R =
⊕

m∈M Rm

b) RmRm′ ⊆ Rm+m′ for all m,m′ ∈ M

The elements of Rm are called the homogenous elements of degree m of R and for

every r ∈ Rm it is written deg(r) = m. If R is an M -graded ring, then for every element

r ∈ R we have r =
∑

m∈M rm such that for each m ∈ M we have rm ∈ Mm. For every

m ∈ M the element rm is called the homogeneous component of degree m.

Remark 3.1.2. Since 0 is included in every additive subgroup, we say that 0 ∈ R is

homogenous of every degree.

Example 3.1.3. Consider the polynomial ring P = K[x1, ..., xn]. We equip P with an

Nn-grading by letting Pα denote an additive subgroup of P, so that for each polynomial

f ∈ Pα, all monomials in the support of f are of degree α ∈ Nn. This grading is called

the standard grading of P.

Definition 3.1.4. Let R be a graded ring. An ideal of R is called a homogeneous

ideal if it can be generated by homogenous elements.

Lemma 3.1.5. Let I be an ideal of a graded polynomial ring. The ideal I is homoge-

nous if and only if the homogenous components of each polynomial f ∈ I are included

in I, as well.

Proof. This follows from [KrRo00], Proposition 1.7.10.

Definition 3.1.6. Let m be a positive integer. Let P be Zm-graded polynomial ring

where K ⊆ P0 and x1, ...., xn are homogeneous elements. Let W denote a matrix from

the set Matm,n(Z). Let w1, ..., wm denote the rows of W (see Definitions 4.1.6 and 4.2.4

of [KrRo05]).
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(a) If for every i ∈ {1, ..., n} the ith-column of W has the degree of the indeterminate

xi, then W is called the degree matrix of the grading.

(b) We say P is graded by W if P is Zm-graded and the degrees of the indeterminates

are the columns of W with K ⊆ P0.

(c) Let P be graded by W. The grading on P is said to be of non-negative type if

there exists a tuple (α1, ..., αm) ∈ Zm such that the entries of α1w1 + ... + αmwm

which correspond to non-zero columns of W are positive.

(d) Let P be graded by W. The grading on P is called of positive type if there exists

a tuple (α1, ..., αm) ∈ Zm such that all entries of α1w1 + ...+ αmwm are positive.

(e) Let P be graded by W. The grading on P is called non-negative if the first

non-zero element in each non-zero column of W is positive.

(f) Let P be graded by W. The grading on P defined by W is called positive if no

column of W is zero and the first non-zero element in each column is positive.

Remark 3.1.7. If the grading given is positive (resp. non-negative) then it is of

positive type (resp. of non-negative type).

Now we give some examples for gradings defined by matrices.

Example 3.1.8. Let P be graded by W = (1, ..., 1). The grading on P is a positive

grading and it is also of positive type. Actually, it is equal to the standard grading on

P (see Example 3.1.3 ).

Example 3.1.9. Let P denote K[x1, x2] and be graded by W =

(
−1 0

0 −1

)
. Then the

grading defined on P is of non-negative type, since for α = (α1, α2) = (−1,−1) ∈ Z2,

we have α1w1 + α2w2 = (1, 1)

Example 3.1.10. Let P denote K[x1, x2] and be graded by W =

(
−1 1

1 −1

)
. Then

we have

a(−1, 1) + b(1,−1) = (−a+ b,−b+ a).

Since for any a, b ∈ Z \ {0} the first and the second entry of this tuple (−a+ b,−b+ a)

can not be simultaneously larger than 0, this implies that the grading on P given by

W is neither of positive type nor of non-negative type.
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We want to mention one more grading before ending this section. Let R be a ring

and I be an ideal of it. For all n ∈ N we let grnI (R) := In/In+1 and gr0I := R/I.

Lemma 3.1.11. grI(R) =
⊕

n∈N gr
n
I (R) is an N-graded ring.

Proof. Let x = a+ In+1 ∈ grnI (R) y = b+ Im+1 ∈ grmI (R). Then we have

xy = ab+ In+m+1 ∈ grm+n
I .

Definition 3.1.12. The ring grI(R) is called graded ring of I.

3.2 The Arrow Grading on K[C]
In this section we introduce a new grading on K[c11, ...., cµν ], namely the arrow grading.

We attribute the name arrow grading to the proof of [Hai98], Proposition 2.4, which

employs arrows to indicate indeterminates from the set {c11, ..., cµν}.
Unless otherwise is stated, let K be a field and K̄ be the algebraic closure of K. Let

P denote the polynomial ring K[x1, ..., xn]. Let I ⊂ P denote a zero-dimensional ideal

in P. Moreover, we let O = {t1, ..., tµ} ⊂ Tn denote an order ideal and ∂O = {b1, ..., bν}
denote the border of it. Let {c11, ..., cµν} be a set of further indeterminates and K[C]
denote the polynomial ring K[c11, ..., cµν ]. Let BO denote the O-border basis scheme,

let I(BO) denote the vanishing ideal of BO and let BO denote the coordinate ring of

BO. Finally, let T denote the set {τ klpq | k < l and k, l ∈ {1, ..., n}, p, q ∈ {1, ..., µ}},
which is the generating set of I(BO) (see Chapter 2.3 for further information).

Definition 3.2.1. Let O ⊂ P be an order ideal and ∂O be the border of it. Let m

denote the number of indeterminates in the ring K[C]. Let cij be an indeterminate from

the ring K[C]. We define the degree of the indeterminate cij by

deg(cij) = log(bj)− log(ti) = (u1, ..., un) ∈ Zn

where ti ∈ O and bj ∈ ∂O. This way we define a Zn-grading on the ring K[C]. Let W be

a matrix with m columns and n rows. We let (u1, ..., un)
tr be the column of the matrix

W corresponding to the indeterminate cij. Then the ring K[C] is graded by matrix W.

We shall name this grading the O-arrow grading and denote it by degW . If it is clear

which order ideal we are dealing with, then we simply call the arrow grading.
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Let us write some observations on the generators of a vanishing ideal of an O-border

basis scheme with respect to the O-arrow grading. But first let us recall Lemma 2.3.19.

The polynomials from the set T are of degree two with no constant. In particular, a

polynomial, say τκ, is of the following form:

τκ = τ (2)κ + τ (1)κ ∈ T (3.1)

where τ
(2)
κ ∈ K[C] is a homogenous polynomial of degree 2 with respect to the standard

grading and τ
(1)
κ ∈ K[C] is a homogenous polynomial of degree 1 with respect to the

standard grading. Moreover, the set supp(τ
(1)
κ ) has at most two linear monomials.

Corollary 3.2.2. Let P denote the polynomial ring K[x1, ...., xn]. Let O denote an

order ideal {t1, ..., tµ} ∈ P. Then ∂O = {b1, ..., bν} is the border of it. Let cij be an

indeterminate from the set {c11, ..., cµν}. Let τ klpq ∈ T be a non-zero polynomial.

a) The degree vector degW (τ klpq) = (d1, ..., dn) ∈ Zn has at least one positive entry.

b) For every cij ∈ {c11, ..., cµν}, we have degW (cij) 6= (0, ..., 0) and their degree vector

has at least one positive entry.

c) If the indeterminate cij is in the support of τ klpq , then for every quadratic monomial

cd ∈ supp(g), we have cij ∤ cd.

Definition 3.2.3. Let A be a matrix from Matr,s(P). If there exist two tuples d0 =

(d01, ..., d0r) ∈ (Zm)r and d1 = (d11, ..., d1s) ∈ (Zm)s such that for every i = 1, ..., r

and j = 1, ..., s the entry (aij) in position (i, j) of A has degree degW (aij) = d1j − d0i,

then the matrix A is called a homogenous matrix. In this case, the pair (d0, d1) ∈
(Zm)r × (Zm)s is called a degree pair of A.

Recall the generic multiplication matrices (see Definition 2.3.1). Let us give a closer

look at them with respect to the arrow grading.

Lemma 3.2.4. Let O be an order ideal. The generic multiplication matrices with

respect to O are homogenous with respect to the O-arrow grading.

Proof. Let O = {t1, ..., tµ} ⊂ K[x1, ..., xn] be an order ideal. Let l be an index from

{1, ..., n}. Let Al ∈ Matµ(K[C]) be the lth generic multiplication matrix with respect

to O. We show that this matrix is a homogenous matrix with respect to the arrow
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grading. We let

dl = (log(xlt1), ..., log(xltµ)) and d0 = (log(t1), ..., log(tµ)). (3.2)

Let aij be the entry in position (i, j) ofAl. There are three possible values for aij, namely

0, 1 or an indeterminate from the set {c11, ..., cµν}. If aij is 0, then it is homogenous of

every degree. If aij is 1, then as a result of the construction of the multiplication matrix

Al, we have xltj = ti and this implies degW (aij) = log(xltj) − log(ti) = dlj − d0i = 0.

If aij is an indeterminate, say cmn, from K[C], then we have bn = xltj and m = i. This

implies

degW (cmn) = log(bn)− log(tm) = log(xltj)− log(ti) = dlj − d0i.

Therefore the matrix Al is a homogenous matrix with the degree pair (d0, dl) in Equa-

tion 3.2.

Lemma 3.2.5. Let O = {t1, ..., tµ} ⊂ K[x1, ..., xn] denote an order ideal. Let Ak

be the kth generic multiplication matrix with respect to O and Al be the lth generic

multiplication matrix with respect to O where k, l ∈ {1, ..., n} and k 6= l. Then the

results of the matrix multiplications Ak · Al and Al · Ak are both homogenous matrices

with the same degree pair (d0, d(kl)) where d(kl) = (log(xkxlt1), ...., log(xkxltµ)) and d0 =

(log(t1), ..., log(tµ)).

Proof. In Lemma 3.2.4 we show that for each l ∈ {1, .., n} the generic multiplication

matrix Al is a homogenous matrix such that for each element aij in (i, j) position of

Al has the degree pair (d0, dl) where the following holds.

degW (aij) = log(xltj)− log(ti) = dlj − d0i (3.3)

Recall that BO is the coordinate ring of the O-border basis scheme (see Definition

2.3.1). Consider the graded BO module
⊕µ

i=1 BO(−dli). Let e1, ..., eµ be the canonical

basis of
⊕µ

i=1 BO(−dli) and (u1, ..., uµ) be the canonical basis of
⊕µ

j=1 BO(−d0j). Let

Ψl be defined as follows.

Ψl :

µ⊕

j=1

BO(−dlj) −→
µ⊕

i=1

BO(−d0j)

ej 7−→ uAle
tr
j
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Its representation matrix with respect to the basis (e1, ..., eµ) is the lth generic multi-

plication matrix Al. Moreover, by Lemma 3.2.4, Al is a homogenous matrix. Thus Ψl

is a homogeneous BO-linear map and hence the following holds.

degW (Ψl(ej)) = degW (ui + degW (aij))

= log(ti) + log(xltj)− log(ti)

= log(xltj)

Let k be an index from {1, ..., n} \ {l}. Let Ψk be defined as follows.

Ψk :

µ⊕

j=1

BO(−dkj) −→
µ⊕

i=1

BO(−d0j)

ej 7−→ uAke
tr
j

Its representation matrix with respect to the basis (e1, ..., eµ) is the kth generic mul-

tiplication matrix Ak. We consider the homogenous maps Ψk ◦ Ψl and Ψl ◦ Ψk. The

representation matrix of Ψk ◦ Ψl is AkAl and the representation matrix of Ψl ◦ Ψk is

AlAk. Let bij be the element in position (i, j) of Ak and aij be the element in position

(i, j) of Al. Then the following holds.

degW (Ψl ◦Ψk(ej)) = degW (uj

µ∑

i=1

(aijbji))

= log(tj) + log(xltj)− log(ti) + log(xkti)− log(tj)

= log(xlxktj)

= log(tj) + log(xktj)− log(ti) + log(xlti)− log(tj)

= degW (uj

µ∑

i=1

(bijaji))

= degW (Ψk ◦Ψl(ej))

Let d(kl)j denote log(xkxltj). Then the entry in (i, j) position of the matrix AkAl and

AlAk has the same arrow degree which is

log(xkxltj)− log(ti) = d(kl)j − d0i . (3.4)

Thus AkAl and AlAk are homogenous matrices with the same degree pair (d0, d(kl))

where d(kl) = (log(xkxlt1), ...., log(xkxltµ)) and d0 = (log(t1), ..., log(tµ)).
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Despite it is a well-known fact that the vanishing ideal of a O-border basis scheme

is homogenous with respect to the arrow grading, in the following proposition we give

a different proof.

Proposition 3.2.6. Let O be an order ideal. The vanishing ideal of the O-border basis

scheme I(BO) is a homogenous ideal with respect to the O-arrow grading.

Proof. By Lemma 3.2.5 and Equation 3.4, the matrix AkAl and the matrix AlAk

are homogenous matrices with the same degree pair (d0, d(lk)) where (d01 , ..., d0µ) and

(d(lk)1 , ..., d(lk)µ). Therefore we can deduce that the entry in the position (p, q) of the

matrix τ kl = AlAk −AkAl which is τ klpq is homogenous of degree

dlkq − d0p = log(xkxltq)− log(tp). (3.5)

One can find the next corollary as Lemma 4.1 in [Huib09]. The enumeration of

the elements of T (see Equation (2.5)) with help of order ideal elements gives a di-

rect method to determine their arrow degree. The following corollary emphasizes the

importance of Costruction 2.3.17 and gives this method.

Corollary 3.2.7. Let τ klpq ∈ τ be the non-trivial polynomial entry in the position (p, q)

of [Ak,Al]. Then we have

degW (τ klpq) = log(xkxltq)− log(tp).

Proof. This follows from Lemma 3.2.5 and Proposition 3.2.6.

Let O denote an order ideal from T2. Next remark emphasizes the link between the

O-arrow grading and the 2-dimensional torus action given in [Hai98].

Remark 3.2.8. Let us take a closer look at the torus action mentioned in [Hai98]

(see page 208) and [MilSt05] (see page 363). Let C∗ denote the group of complex

numbers without 0. Let G denote the 2-dimensional torus group (C∗)2. The group G

acts algebraically on C2 via

α : G× C2 −→ C2

((u, v), (ξ, ζ)) 7−→ (uξ, vζ)
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The co-action on the polynomial ring C[x, y] is as follows.

α′ : C[x, y] −→ C[G]⊗ C[x, y]

f 7−→ f((u, v) · (x, y)) = f(ux, vy)

It is a known fact that this action results with a Z2-grading on the polynomial ring

C[x, y] (see for instance [Bri09], Example 1.7).

On page 208 of [Hai98] it is implied that there exists an induced action on the

border basis scheme, given by

(u, v)cij = ur−hvs−kcij (3.6)

where bj = xrys and ti = xhyk. Clearly, the power of u and v, which is (r − h, s − k),

is equal to log(bj) − log(ti) i.e., to degW (cij). This is the first clue that suggests the

link between the grading mentioned on page 363 of [MilSt05] and the arrow grading.

We claim that they are the same. Let C[G] act on the coordinate ring C[C] as given in

Equation 3.6.

β′ : C[C] −→ C[G]⊗ C[C]
g 7−→ g((u, v) · cij) = g(ur−hvs−kcij)

1 Let us pick an arbitrary element τpq from the generating set T of I(BO). Under the

given action we have

(τpq)(u
r−hvs−kcij).

We showed that for a border element bj ∈ ∂O and an order ideal element ti ∈ O the

arrow degree satisfies degW (cij) = (r − h, s − k). Moreover, Proposition 3.2.6 states

that τpq is homogenous of arrow degree

degW (τpq) = log(xytq)− log(tp) = (d1, d2).

These imply

(τpq)(u
r−hvs−kcij) = ud1vd2(τpq).

Therefore the ideal I(BO) is invariant under this group action if and only if the grading

1Note that there are exactly two generic multiplication matrices with respect to an order ideal
O ⊂ K[x1, x2]. Thus every element from the generating set T of I(BO) has the same upper index (1 2)
which we omit for the sake of simplicity.
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is the arrow grading.

Lemma 3.2.9. Let O ⊂ Tn be an order ideal. The induced action given in Equation

(3.6) on BO results in the O-arrow grading on BO.

Proof. Let cij be an indeterminate from C[C] where the border term bj is xr1
1 · · · xrn

n

and the order ideal term ti is x
r1
1 · · · xrn

n . Consider Equation 3.6 for cij and (u1, ..., un).

Then we have

(u1, ..., un)cij = ur1−h1
1 · · · urn−hn

n cij. (3.7)

Let G denote the n-dimensional torus group (C∗)n. Let C[G] act on the coordinate

ring C[C] as given in Equation 3.7.

β′ : C[C] −→ C[G]⊗ C[C]
g 7−→ g((u1, ..., un)) · cij) = g(ur1−h1

1 · · · urn−hn

n cij)

Pick an arbitrary generator τ klpq from the generating set T of I(BO). By Proposition

3.2.6, the polynomial τ klpq is a homogenous polynomial of arrow degree

degW (τ klpq) = log(xkxltq)− log(tp) = (d1, ..., dn).

Then under the given action we have

(τ klpq)(u
r1−h1
1 · · · urn−hn

n cij) = ud1 · · · udn(τ klpq).

Therefore, the ideal I(BO) is invariant under this group action if and only if the grading

is the O-arrow grading.

Now we focus on the maximal ideals that are homogenous with respect to the arrow

grading in BO ⊂ K̄[C].

Proposition 3.2.10. Let O ⊂ Tn denote an order ideal and let ∂O denote the border

of it. The ideal M = 〈c11, ..., cµν〉 ⊂ K[c11, ..., cµν ] is the only maximal ideal that is

homogenous with respect to the O-arrow grading.

Proof. Let K̄ denote the algebraic closure of the field K. Assume that there exists a

maximal ideal N, which is different than M and assume that N is homogenous with

respect to the O-arrow grading. By Hilbert’s Nullstellensatz 2.1.4 every maximal ideal
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in the polynomial ring K̄[C] is of the form 〈c11−α11, ..., cµν−αµν〉 where {α11, ..., αµν} ⊂
K̄. Since N is different than M, there exists a polynomial f = cij − α with a constant

term α 6= 0 that is in the generating set of N but not in M. The maximal ideal N

is a homogenous ideal with respect to the O-arrow grading. Hence the polynomial

f is a homogenous polynomial with respect to the arrow grading. As a result of the

definition of the arrow grading, the constant term of the polynomial f has the arrow

degree degW (α) = (0, ..., 0) ⊂ Zn. Since f is a homogenous polynomial with respect to

the arrow grading, we have deg(cij) = (0, ..., 0). This contradicts to Corollary 3.2.2b).

Hence M = 〈c11, ..., cµν〉 ⊂ K̄[c11, ..., cµν ] is the only maximal ideal that is homogenous

with respect to the O-arrow grading.

Now we show that the ideal M = 〈c11, ..., cµν〉 ⊂ K[c11, ..., cµν ] is the only maximal

ideal that is homogenous with respect to the O-arrow grading. The field K̄ is algebraic

closure of K and the base change is a (faithfully) flat extension. Then by going down

theorem the only maximal ideal that is homogenous in K̄[c11, ..., cµν ] correspond to

the only maximal ideal that is homogenous in K[c11, ..., cµν ]. Hence M = 〈c11, ..., cµν〉 ⊂
K[c11, ..., cµν ] is the only maximal ideal that is homogenous with respect to the O-arrow

grading.

Corollary 3.2.11. Let O denote an order ideal from K[x1, ..., xn]. Let BO ⊂ K[C]
denote the coordinate ring of the O-border basis scheme. The ideal m = 〈c̄11, ..., c̄µν〉 ⊂
BO is the only maximal ideal that is homogenous with respect to the arrow grading.

Let us give an example which shows that the arrow grading is neither positive nor

negative. Moreover, it is neither of positive nor of non-negative type (see Definition

3.1.6 from Chapter 3.1).

Example 3.2.12. (counterexample) This example is a counterexample to the claim

in page 363 of [MilSt05], that for any O ⊂ T2 the O-arrow grading is positive. Let

P denote the polynomial ring K[x1, x2]. Let O denote the order ideal {1, x1, x2, x1x2}.
Then its border is ∂O = {x2

2, x
2
1, x1x

2
2, x

2
1x1}, where with respect to our notation we

have t1 = 1, t2 = x1, t3 = x2, t4 = x1x2, b1 = x2
2, b2 = x2

1, b3 = x1x
2
2 and b4 = x2

1x1. We

construct the grading matrix W whose columns are of the form

degW (cij) = log(bj)− log(ti)

with cij ∈ {c11, ..., cµν}. Let us first find the first column of W which corresponds to
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degW (c11).

degW (c11) = log(b1)− log(t1) = log(x2
2)− log(1) = (0, 2)− (0, 0) = (0, 2).

If we proceed in this way, then we get the grading matrix W.

W =

( c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34 c41 c42 c43 c44

0 2 1 2 −1 1 0 1 0 2 1 2 −1 1 0 1

2 0 2 1 2 0 2 1 1 −1 1 0 1 −1 1 0

)

The first non-zero element of the column that corresponds to the degree of c21 is

(−1, 2) i.e., it is negative. By Definition 3.1.6.e) and f) the grading given by W is

neither positive nor non-negative. Let w1 indicate the first row and w2 indicate the

second row of W. If W is of positive or non-negative type, then by Definition 3.1.6.c)

and d) for some a, b ∈ Z the following must hold.

a(w1) + b(w2) > (0, ..., 0)

Let us look closely to the arrow degree of c41 and c42. The degree of c41,

degW (c41) = log(b1)− log(t4) = (−1, 1),

which gives the 13th column. The degree of c42, is

degW (c42) = log(b2)− log(t4) = (1,−1)

which gives the 14th column. Moreover we have

a · w1 13 + b · w2 13 = −a+ b

a · w1 14 + b · w2 14 = a− b.

If −a + b > 0 holds, then b > a holds. If we have a − b > 0, then we have a > b.

Therefore W is neither of positive nor of non-negative type.

We want to underline the fact that the peculiarity of the arrow grading does not

allow us to give an algebraic proof as easy as mentioned on page 363 of [MilSt05]. For

this purpose we show that there is more than one maximal homogenous ideals in the

ring BO.
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Definition 3.2.13. Let R be a graded ring. A maximal homogenous ideal is a

homogenous ideal of R which is not contained in any other homogenous ideal of R.

Theorem 3.2.14. (Graded Version of Krull’s Theorem) Let R be a graded ring.

Then each proper homogenous ideal is contained in a maximal homogeneous ideal.

Proof. This follows from [Per01], Theorem 3.4.

Remark 3.2.15. We should note that by Proposition 3.2.10 there exists only one

maximal ideal that is homogenous in BO. For an arbitrary field K the following example

shows that there might be homogenous ideals that are not contained in the maximal

ideal M = 〈c11, ..., cνµ〉.

Example 3.2.16. (counterexample) Let us recall Example 3.2.12. We show that

this example is a counter example to the consecutive claim in page 363 of [MilSt05]

that the maximal homogenous ideal in BO is unique, as well. The polynomial f =

c41c42 − 1 ∈ K[c11, ..., c44] is a homogenous irreducible polynomial of degree 0,

degW (f) = degW (c41) + degW (c42) + degW (1) = (−1, 1) + (1,−1) + (0, 0) = (0, 0).

f is not included in the maximal idealM that is generated by {c11, ..., c44}, since it has a
constant summand. Thus by graded version of Krull’s theorem there exists a maximal

homogenous ideal N, different than M which contains 〈f〉. Clearly, the polynomial

f̄ = c̄41c̄42 − 1 ∈ BO is not in the maximal ideal m ∈ BO, either.
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Chapter 4

The Cotangent Space of a Border

Bases Scheme

In this chapter we investigate the cotangent space of an O-border basis scheme, BO at

the monomial point o = (0, ..., 0) ∈ BO. In [Hai98] M. Haiman proposed a new method

of constructing the cotangent space of a border basis scheme of µ points in the plane.

We call this method the arrow method. The main idea is to consider every indeterminate

from the set {c11, ..., cµν} as an arrow from an order ideal term to a border term, then

to construct a basis of the cotangent space by using the relations of border terms and

order ideal terms. Then in Chapter 4 and 5 of [Huib05]1, M. Huibregste generalizes

this ”arrow method” to n dimensions and gives a way for constructing a basis of the

cotangent space of a border basis scheme. We note that although in [Hai98] the set

Uµ that is given in Equation 2.3 and in [Huib05] the set Uβ that is given in Equation

(4) in Chapter 2.2 are both border basis schemes, none of those citations contains the

name border basis scheme.

Our work is inspired by both of those sources, but mainly by [Huib05]. In con-

trast to these articles, we do not use the arrow method. In order to understand the

foundation of our work, one should recall how we construct the generating set T of

the vanishing ideal of a border basis scheme (see Chapter 2.3). This construction de-

pends on all the relations of border terms and order ideal terms. Thus every relation

that is used in [Huib05] and [Hai98] to construct a basis set of the cotangent space at

the point o is coded in elements of T . In Lemmas 4.1.3 and 4.1.4 we show how these

relations are coded. In Propositon 4.1.6 we show how to encode it. Therefore if we

1 [Huib05] is a pre-print that is only published in arXiv.
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let O ⊂ K[x1, ..., xn] be an order ideal and T generate I(BO), then just by observ-

ing the elements of T we have all the equivalence classes modulo the ideal m2 ⊂ BO,

where m is generated by {c̄11, ...., c̄µν} ⊂ K[c11, ..., cµν ]/I(BO). We denote this set of

equivalence classes by E. We show that the arrow degree is well-defined on this set.

Then we show that every equivalence class in E contains a minimal indeterminate (see

Definition 4.1.15), and in Theorem 4.2.9 we show that the subset of E that consists of

equivalence classes of minimal standard indeterminates has at least nµ elements. The

set S (see Lemma 4.2.12) of indeterminates that is constructed in [Huib05], Chapter 4

is a set where elements are chosen from each equivalence class from the set E.

Consequently, in Section 4.2 by using the set E, we give a basis of the cotangent

space. Moreover, we give a smoothness criterion for the monomial point of a border

basis scheme (see Theorem 4.2.15). A similar result for Hilbert scheme of points can

be found in [Huib05], Theorem 5.1.1. Our main inspiration is the paper [Huib05], we

reprove the statements in Chapter 4 and 5 of [Huib05] for border basis schemes by

using the tools we have in the border basis scheme theory such as border relations and

the arrow grading.

4.1 Equivalence Classes of Elements from C̄ modulo

m2

This section is dedicated to investigating equivalence relations among elements from

BO modulo m2. Unless otherwise stated, throughout this section we let K be a field of

characteristic 0. Let P denote the polynomial ring K[x1, ..., xn]. Let O denote an order

ideal {t1, ..., tµ} ⊂ Tn and then the border of it is ∂O = {b1, ..., bν}. Let C = {c11, ..., cµν}
be a set of further indeterminates and K[C] = K[c11, ...., cµν ]. Let T denote the set of

generators of the vanishing ideal of an O-border basis scheme given in Equation (2.6).

We denote the image of an indeterminate cij in BO as c̄ij and we denote the set of

such elements by C̄. We let M denote the maximal ideal of K[C] that is generated by

{c11, ..., cµν}. Moreover, we let m denote the maximal ideal of BO that is generated by

{c̄11, ..., c̄µν}.

Definition 4.1.1. We say the elements c̄ij and c̄kl of C̄ are equivalent to each other

modulo m2 if we have c̄kl = c̄ij +m2 ∈ BO. We let Ĉ denote the set {c̄ij +m2 | c̄ij ∈ C̄}.
We let [c̄ij] ⊂ Ĉ denote the equivalence class of c̄ij modulo m2.
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Remark 4.1.2. By Lemma 2.3.19, an element τκ of T is of the following form,

τκ = τ (2)κ + τ (1)κ ∈ T (4.1)

where τ
(2)
κ ∈ K[C] is a homogenous polynomial of degree 2 with respect to the standard

grading and τ
(1)
κ ∈ K[C] is a homogenous polynomial of degree 1 with respect to the

standard grading. Moreover, there are at most two monomials in the support of τ
(1)
κ .

a) If a polynomial τκ from T is of the form τ
(2)
κ ± cij, then we have c̄ij ∈ m2.

b) If a polynomial τκ from T is of the form τ
(2)
κ ± cij ± cpq, then we have [c̄ij] = [c̄pq].

The next two lemmas show how neighborhood relations of border terms affect the

equivalence classes of elements from C̄ modulo m2.

Lemma 4.1.3. Let O ⊂ Tn be an order ideal. Let bi and bj be two distinct border

terms that are next-door neighbors where bi = xkbj and k ∈ {1, ..., n}.

a) If there exists a term tr ∈ O such that xktr = tp ∈ O, then there exist indetermi-

nates cpi, crj ∈ C such that [c̄rj] = [c̄pi].

b) If for every tr ∈ O either xktr ∈ ∂O or xktr ∈ O \ {tp} holds, then we have

c̄pi ∈ m2.

Proof. Let Ak denote the kth generic multiplication matrix, where k ∈ {1, ..., n}. For
each i ∈ {1, ..., ν} let ci denote the column matrix (c1i, ..., cµi)

tr. From the next-door

neighborhood relation bi = xkbj we get ND(i, j). This set ND(i, j) contains µ polyno-

mials which are the entries of the µ× 1 matrix ci−Akcj. For an arbitrary term tp ∈ O
the polynomial in the pth row of the matrix ND(i, j), has the following form:

cpi − (

µ∑

r=1

frcrj) where fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpm if xktr = bm ∈ ∂O

(4.2)

In Construction 2.3.17.c we show that the elements of ND(i, j) are also in T . Clearly,

for each tp ∈ O, a polynomial from ND(i, j) is in I(BO). Thus for each p ∈ {1, ..., µ}
Polynomial 4.2 satisfies

c̄pi = (

µ∑

r=1

frc̄rj) ∈ BO.
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Consider the polynomial fr in 4.2 and recall that by Lemma 2.3.19, a polynomial from

T has at most two linear monomials in its support. If we have fr = 1, then we have

[c̄pi] = [c̄rj]. Otherwise, we have c̄pi ∈ m2. Note that in this case we can not have any

information about c̄rj.

Lemma 4.1.4. Let O ⊂ Tn be an order ideal. Let bi and bj be two distinct border terms

that are across-the-street neighbors where xlbi = xkbj, k 6= l and xk, xl ∈ {x1, ..., xn}.
a) If there exist terms tr, ts, tp ∈ O such that xktr = xlts = tp ∈ O, then we have

[c̄si] = [c̄rj].

b) If there exist ts, tr, tp ∈ O such that xlts = tp ∈ O with x−1
k tp /∈ O or xktr ∈ ∂O,

then we have

c̄si ∈ m2.

c) If there exist tr, ts, tp ∈ O such that xktr = tp ∈ O with x−1
l tp /∈ O or xlts ∈ ∂O,

then we have

c̄rj ∈ m2.

Proof. Let Ak denote the kth generic multiplication matrix, where k ∈ {1, ..., n}. For
each i ∈ {1, ..., ν} let ci denote the column matrix (c1i, ..., cµi)

tr. From the across-

the-street neighborhood relation xlbi = xkbj, it follows that AS(i, j) contains µ many

polynomials which are the entries of the µ× 1 matrix Akcj −Alci. Consider the poly-

nomial in the pth-row of the matrix Akcj −Alci whose entries are the elements of the

set AS(i, j). Then by Lemma 2.3.15, this polynomial has the following form.

−
µ∑

s=1

hscsi +

µ∑

r=1

frcrj (4.3)

fr =





0 if xktr ∈ O \ {tp}
1 if xktr = tp ∈ O
cpn if xktr = bn ∈ ∂O

, hs =





0 if xlts ∈ O \ {tp}
1 if xlts = tp ∈ O
cpm if xlts = bm ∈ ∂O

Since this polynomial is in I(BO), for each p ∈ {1, ..., µ} Polynomial (4.4) satisfies

(

µ∑

s=1

hsc̄si) = (

µ∑

r=1

frc̄rj) ∈ BO.
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Consider the polynomials fr and hs in 4.4. By Lemma 2.3.19, a polynomial from T
has at most two linear terms in its support. If there exists r, s ∈ {1, ..., µ} such that

fr, hs = 1, then we have [c̄si] = [c̄rj]. If there exists s ∈ {1, .., µ} such that hs = 1 and

for every r ∈ {1, ..., µ} we have fr 6= 1, then we have c̄si ∈ m2. If for every s ∈ {1, ..., µ}
we have hs 6= 1 and there exists r ∈ {1, .., µ} such that fr = 1, then we have c̄rj ∈ m2.

If for both r, s ∈ {1, ..., µ} we have fr 6= 1 and hs 6= 1, then we can not have any

information neither on c̄si nor on c̄rj.

Now we show that the arrow grading is well-defined on the set of equivalence classes

of indeterminates modulo m2.

Lemma 4.1.5. Let O ⊂ Tn be an order ideal. Let c̄pq and c̄ij be two elements from

C̄ but not in m2. If c̄ij and c̄pq have the same equivalence class modulo m2, then the

indeterminates cij and cpq have the same arrow degree.

Proof. Assume cij and cpq are distinct indeterminates, otherwise the proof is trivial. If

we have [c̄ij] = [c̄pq], then there exists a polynomial ρ̄ ∈ m2, where

±c̄ij ∓ c̄pq + ρ̄ = 0 ∈ BO.

Let the number of polynomials in T be denoted by λ. Then by Equation (2.6) the

equality above can be re-written as

± cij ∓ cpq + ρ =
λ∑

κ=1

fκτκ (4.4)

where τκ ∈ T , fκ ∈ K[C] and ρ ∈ M2. Let τ
(1)
κ indicate the homogenous component

of degree 1 of τκ (see Lemma 2.3.19). Thus by equating the linear parts of Equation

(4.4), we get

± c̄ij ∓ c̄pq =
λ∑

κ=1

βκτ
(1)
κ , (4.5)

where βκ ∈ {1,−1, 0}. Let T denote the set {τκ1 , ...., τκm
} which is a subset of T of all

τκ, where βκ 6= 0. Since cij and cpq are distinct, we have m > 1. By Lemma 2.3.19, a

polynomial from T has at most two linear monomials in its support. Since we have

c̄pq, c̄ij /∈ m2, neither ±cpq nor ±cij can be the only linear monomial of the support

of a polynomial from T . Let τκi
be a polynomial in T that has two monomials in its

support and one of them is either ±cij or ±cpq. In other words, let c be an element in
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{cij, cpq} and let

τ (1)κi
= ±cuv ∓ c

where cuv ∈ C. Then there is no polynomial τκ in T such that the monomial ±cuv is the

homogenous component of τκ of degree 1. Otherwise, by Lemmas 4.1.3 and 4.1.4, this

contradicts to the assumption that c̄ij, c̄pq /∈ m2. Thus by Lemma 2.3.19, the supports

of the elements of T have exactly two linear monomials. Then Equation (4.4) becomes

± cij ∓ cpq =
m∑

u=1

βκu
(csuru ± clunu

) (4.6)

where m ∈ N+ and βκu
∈ {1,−1}. There are two cases. The first case is that there

exists a polynomial τκi
∈ T where τ

(1)
κi = ±(cpq − cij). Proposition 3.2.6 states that

polynomials from T are homogenous with respect to the arrow grading, and hence we

have degW (cij) = degW (cpq). In the second case Equation (4.6) becomes

± cij ∓ cpq = ±(cij ∓ cl1n1)± (cl1n1 ∓ cs2r2)± · · · ± (csmrm ∓ cpq) (4.7)

and we get a telescopic sum of indeterminates where each (csuru ± clunu
) is τ

(1)
κu . Then

for each κi ∈ {κ1, ..., κm} the pairwise intersection of the supports of τκi
and τκi+1

is

nonempty. By Proposition 3.2.6 every polynomial in T is homogenous with respect to

the arrow degree. Hence the arrow degrees of each τκi
in the telescopic sum 4.7 are the

same. Thus we have

degW (cij) = degW (cl1n1) = ... = degW (csmrm) = degW (cpq),

which is the desired result.

Proposition 4.1.6. Let O ⊂ Tn be an order ideal. Let [c̄ij] indicate the equivalence

class of c̄ij modulo m2. Let τ
(1)
κ denote the homogenous component of the polynomial

τκ ∈ T of degree 1 with respect to the standard grading.

a) An indeterminate c̄ij ∈ BO is in m2 if and only if there exist polynomials in T such

that c̄ij =
∑λ

κ=1 ακτ
(1)
κ , where ακ ∈ {0, 1,−1}.

b) Let csm and cij be two distinct indeterminates from C. Then c̄sm is in [c̄ij] if and

only if ±(c̄ij − c̄sm) =
∑λ

κ=1 ακτ
(1)
κ where ακ ∈ {0, 1,−1} holds.

c) Let c̄ij be a non-zero indeterminate from BO. The equivalence class [c̄ij] contains
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only c̄ij if and only if there is no τκ ∈ T that contains cij in its support.

Proof. First we prove a). If we have cij =
∑λ

k=1 αkτ
(1)
k , then there exists at least one

index k ∈ {1, .., λ} where αk 6= 0 and τ
(1)
k is a monomial of degree 1, say cpq. This

implies that c̄pq is in m2 and the claim follows from the transitivity. For the converse,

if we have c̄ij ∈ m2, then there exists a polynomial ρ ∈ M2 such that ρ∓ cij ∈ I(BO).

This implies ρ∓cij =
∑λ

κ=1 βκτκ, where βk ∈ K[C]. By equating the linear polynomials,

we get the desired result.

Now we prove b). Let c̄sm be an element of C̄. We have c̄sm ∈ [c̄ij] if and only if

there exists a polynomial ρ ∈ M2 such that ρ± (cij − csm) ∈ I(BO). Therefore we have

ρ± (cij−csm) =
∑λ

κ=1 fτκ, where f ∈ K[C]. Thus the claim follows by considering each

τ
(1)
κ .

Finally, we prove c) by way of contradiction. Suppose [c̄ij] contains c̄sm and cij is

not an element of any support of τκ, for any κ. This contradicts b). Now suppose ±cij

is in the support of a τκ. By a) and b), we have either c̄ij ∈ m2 or c̄ij ∈ [c̄km], which

contradicts to our assumption.

Remark 4.1.7. Proposition 4.1.6 implies that, by examining the polynomials in T
modulo m2, we can find every equivalence class and its elements.

Example 4.1.8. Let P denote the polynomial ring K[x1, x2]. Let O denote the order

ideal {1, x1, x2, x1x2}. Then ∂O = {x2
2, x

2
1, x1x

2
2, x

2
1x2} is the border of it, where in our

notation we have t1 = 1, t2 = x1, t3 = x2, t4 = x1x2, b1 = x2
2, b2 = x2

1, b3 = x1x
2
2 and

b4 = x2
1x2. Let us compute the set T for I(BO).

τ12 = c11c32 + c13c42 − c14

τ13 = c12c21 + c14c41 − c13

τ14 = c12c23 − c11c34 − c14c43 + c13c44

τ22 = c21c32 + c23c42 − c24

τ23 = c21c22 + c24c41 + c11 − c23

τ24 = c22c23 − c21c34 − c24c43 + c23c44 + c13

τ32 = c13c32 + c33c42 + c12 − c34

τ33 = c21c32 + c34c41 − c33

τ34 = c23c32 − c31c34 − c34c43 + c33c44 − c14

τ42 = c32c41 + c42c43 + c22 − c44
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τ43 = c21c42 + c41c44 + c31 − c43

τ44 = c34c41 − c23c42 − c24 + c33

By Proposition 4.1.6 a) and b) and by examining τ12, τ13, τ33, τ24, we identify the set

of indeterminates in m2 and get {c̄14, c̄24, c̄13, c̄33}. From Proposition 4.1.6 b) and by

computing τ23 modulo m2, we get that c̄11 and c̄23 are in the same equivalence class.

In the same way, c̄31 and c̄43 are in the same equivalence class, c̄12 and c̄24 are in the

same equivalence class, and finally c̄21 and c̄34 are in the same equivalence class. By

Proposition 4.1.6 c), the remaining equivalence classes contain just one indeterminate

which are given by {c̄41}, {c̄42}, {c̄32} and {c̄21}. All non-zero equivalence classes are

then given by

{c̄41}, {c̄42}, {c̄21}, {c̄32}, {c̄31, c̄43}, {c̄11, c̄23}, {c̄22, c̄44}, {c̄12, c̄34}.

We choose one indeterminate from each non-zero equivalence class as a representative

and form the set of equivalence classes. The result is

E = {[c̄11], [c̄21], [c̄31], [c̄41], [c̄12], [c̄22], [c̄32], [c̄42]}.

Remark 4.1.9. Consider the polynomial

τ44 = c24c41 − c33c42 − c23 + c34

in Example 4.1.8. Clearly, the elements c̄23, c̄34 of C̄ are equivalent modulo m2. We

denote this relation by

c̄23 ∼ c̄34.

The set T also contains

τ33 = c22c31 + c33c42 − c34.

Then Proposition 4.1.6a) and b) imply c̄23, c̄34 ∈ m2. Despite the fact that in Example

4.1.8 there is a neighborhood relation between b4 and b3 which results in the relation

between c23 and c34, this information cannot be obtained from the set in (4.1.8).

To keep this information we introduce the following notation.

Notation 4.1.10. We let E denote the set of non-zero equivalence classes of elements
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from C̄. Let {c̄i1j1 , ...., c̄imjm} be a subset of C̄, where m > 1. If we have

c̄i1j1 ∼ c̄i2j2 ∼ · · · ∼ c̄imjm ,

then we denote this subset by Cipjp where c̄ipjp is an arbitrary element of {c̄i1j1 , ...., c̄imjm}.
If for each p ∈ {1, ...,m} we have c̄ipjp /∈ m2, then we have Cipjp = [c̄ipjp ] ∈ E.

Example 4.1.11. (continues) Recall Example 4.1.8. The set in (4.1.8) is E i.e.,

E = {[c̄11], [c̄21], [c̄31], [c̄41], [c̄12], [c̄22], [c̄32], [c̄42]}.

We have c̄23 ∈ m2 and c̄13 ∈ m2, as well. The set C23 = {c̄23, c̄34} however does not

contain c̄13, since there exists no polynomial in T that gives a relation between c23 (or

similarly c34) and c13. Moreover, we have C13 = {c̄13}, C14 = {c14}, C11 = [c̄11], C21 =

[c̄21], C31 = [c̄31], C41 = [c̄41], C12 = [c̄12], C22 = [c̄22], C32 = [c̄32], and finally, C42 = [c̄42].

Definition 4.1.12. Let cij be an element from C. Let O = {t1, ..., tµ} be an order ideal

and ∂O be its border.

a) The indeterminate cij is called standard, if degW (cij) has exactly one positive

component. Otherwise it is called non-standard.

b) The indeterminate cij is called xk-standard, if only the kth component of the

degree vector degW (cij) is positive.

Definition 4.1.13. Let O ⊂ Tn be an order ideal. Let bj be a border term, xk ∈
{x1, ..., xn} and wk be a positive integer. If we have bj = xωk

k , then bj is called an

xk-pure power term. For any order ideal term ti, the indeterminate cij ∈ C is called

an xk-pure power indeterminate.

Example 4.1.14. Every pure power indeterminate is standard. More precisely, if an

indeterminate cij is an xk-pure power indeterminate, then the indeterminate cij is an

xk-standard indeterminate.

Definition 4.1.15. Let BTO denote the border term ideal and G the minimal generat-

ing set of the border term ideal consisting of border terms. Let cij be an indeterminate

from C. If the border term bj is from the minimal generating set of the border term

ideal G, then cij is called a minimal indeterminate. If the indeterminate cij is a

standard indeterminate, then it is called a minimal standard indeterminate.
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Corollary 4.1.16. Let cij be an xk-standard indeterminate from C. If for every xl ∈
{x1, ..., xn} \ {xk} we have xlti ∈ ∂O, then the element c̄ij ∈ C̄ is not in m2. In

particular, if we have c̄ij /∈ m2, then there exists c̄ipjp ∈ [c̄ij] such that for each xl ∈
{x1, ..., xn} \ {xk} we have xltip ∈ ∂O.

Example 4.1.17. (continues) Consider Example 4.1.8 again. The set of equivalence

classes is

E = {[c̄11], [c̄21], [c̄31], [c̄41], [c̄12], [c̄22], [c̄32], [c̄42]}.

The border term ideal is generated by {x2
1, x

2
2, x

2
1x2, x1x

2
2}. The minimal generating set

of the border term ideal consists of the pure power terms b2 = x2
1 and b1 = x2

2. The

pure power indeterminates are always standard. In this case they are also minimal.

Now we ask ourselves whether it is possible to form the set of equivalence classes

E by using only pure power indeterminates. The following example gives a negative

answer to this question.

Example 4.1.18. Let P denote the polynomial ring K[x1, x2] and let O denote the

order ideal {1, x1, x2}. Then the border of it is ∂O = {x2
2, x1x2, x

2
1} where with respect

to our notation we have t1 = 1, t2 = x1, t3 = x2, b1 = x2
2, b2 = x1x2 and b3 = x2

1. The

vanishing ideal of the border basis scheme is generated by the following polynomials.

τ12 = c13c22 − c12c23 + c12c32 − c11c33,

τ13 = c13c21 − c12c22 + c12c31 − c11c32,

τ22 = c22c32 − c21c33 + c12,

τ23 = −c222 + c21c23 + c2,2c31 − c21c3,2 + c11,

τ32 = −c23c32 + c232 + c22c33 − c31c33 − c13,

τ33 = −c22c32 + c21c33 − c12

The elements of the set {c̄13, c̄12, c̄11} are in m2. The equivalences classes are

{c̄21}, {c̄22}, {c̄23}, {c̄31}, {c̄32}, {c̄33}.

Therefore the set of equivalence classes is E = {[c̄21], [c̄22], [c̄23], [c̄31], [c̄32], [c̄33]}. The
minimal generating set of the border term ideal is {x2

1, x1x2, x
2
2}. This means that every

indeterminate here is minimal. Moreover, one should note that the indeterminates

c13, c11 are pure power indeterminates that are standard and minimal, yet c̄13 and c̄11

are in m2.
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Proposition 4.1.19. Every equivalence class in E contains at least one element, say

c̄ij, from C̄ where cij is a minimal indeterminate.

Proof. Let c̄pq be an element of C̄ and let [c̄pq] be an equivalence class in E. As a

consequence of the definition of E, the element c̄pq is not in m2. Let [c̄pq] be given by

[c̄pq] = {c̄pq, c̄p1q1 , ..., c̄pmqm}

wherem > 0. Keep the elements of [c̄pq] in mind and consider the set of border elements

B = {bq, bq1 , ..., bqm}. Choose the smallest border term from this set with respect to

the Lex term ordering, say bqk . We want to show that cpkqk is a minimal indeterminate

i.e., bqk ∈ G. For contradiction suppose that there exists a term bj ∈ ∂O such that

bj | bqk and bj <Lex bqk . Then there exists a term xk ∈ {x1, ..., xn} such that xkbj = bqk .

There are two cases to examine. The first case is that there exists a term ti ∈ O such

that xkti = tpk . Then from Lemma 4.1.3 follows c̄ij ∈ [c̄pq]. Thus the border term bj is

in B. This contradicts the fact that bqk is the smallest element of B. The second case

is that an order ideal term ti as in the first case does not exist. That is x−1
k ti /∈ O

and xkbj = bqk . Then by Lemma 4.1.3, the element c̄pkqk is in m2. This contradicts the

assumption that c̄pq ∈ E.

4.2 A Smoothness Criterion for the Monomial Point

of a Border Basis Scheme

In [Huib05], Theorem 5.1.1 gives a smoothness criterion for the monomial point (0, ..., 0)

in a Hilbert scheme. Inspired by this result, in this section we give a smoothness crite-

rion for the monomial point of a border basis scheme based on methods we introduced

in the previous section. The smoothness criterion we give can be deduced from Theo-

rem 5.1.1, [Huib05]. Instead of using this deduction, we choose to employ the border

basis scheme theory. This approach will play a fundamental role in Chapter 6.

Before starting, let us recall some of our definitions and notation. Let K be a

field and L ⊃ K be a field extension. Let P denote the polynomial ring K[x1, ..., xn].

Let O = {t1, ..., tµ} ⊂ Tn be an order ideal and ∂O = {b1, ..., bν} its border. Let

C = {c11, ..., cµν} be a set of further indeterminates and K[C] = K[c11, ...., cµν ]. Let C̄
denote the set {c̄11, ..., c̄µν}, where each c̄ij ∈ BO. Let T denote the set of generators

of the vanishing ideal of a border basis scheme as given in Equation (2.6). We let m

denote the maximal ideal of BO that is generated by the elements of C̄. Moreover, we
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assume that (BO)m/m is isomorphic to the field L. Then the cotangent space of BO

at the point o = (0, ..., 0), which is m/m2, is an L-vector space. Let E be the set of

non-zero equivalence classes of elements from C̄. Let BTO denote the border term ideal

and G denote the minimal generating set of the border term ideal.

Example 4.2.1. Let P denote the polynomial ring K[x1, x2, x3] and let O denote the

order ideal {1, x1, x2, x3}. Then the border of it is ∂O = {x2
3, x2x3, x1x3, x

2
2, x1x2, x

2
1}

where with respect to our notation we have t1 = 1, t2 = x1, t3 = x2, t4 = x3b1 = x2
3, b2 =

x2x3, b3 = x1x3, b4 = x2
2, b5 = x1x2 and b6 = x2

1. The vanishing ideal of the border basis

scheme is generated by homogenous (with respect to the standard grading) quadratic

polynomials plus the following polynomials.

τ1222 = c25c35 − c24c36 + c23c45 − c22c46 + c15

τ1223 = −c225 + c24c26 + c25c34 − c24c35 + c23c44 − c22c45 + c14

τ1224 = −c23c25 + c22c26 + c25c32 − c24c33 + c23c42 − c22c43 + c12

τ1232 = −c26c35 + c235 + c25c36 − c34c36 + c33c45 − c32c46 − c16

τ1233 = −c25c35 + c24c36 + c33c44 − c32c45 − c15

τ1234 = −c33c34 − c23c35 + c32c35 + c22c36 + c33c42 − c32c43 − c13

τ1322 = c25c33 − c22c36 + c23c43 − c21c46 + c13

τ1323 = −c23c25 + c22c26 + c25c32 − c22c35 + c23c42 − c21c45 + c12

τ1324 = −c223 + c21c26 + c25c31 − c22c33 + c23c41 − c21c43 + c11

τ1342 = −c36c42 − c26c43 + c243 + c33c45 + c23c46 − c41c46 − c16

τ1343 = −c35c42 − c25c43 + c42c43 + c32c45 − c41c45 + c22c46 − c15

τ1344 = −c33c42 − c23c43 + c31c45 + c21c46 − c13

τ2332 = −c25c33 + c33c34 + c23c35 − c32c35 + c32c43 − c31c45 + c13

τ2333 = −c24c33 + c22c35 + c32c42 − c31c44 + c12

τ2334 = −c232 − c22c33 + c31c34 + c21c35 + c32c41 − c31c42 + c11

τ2342 = −c35c42 − c25c43 + c42c43 + c33c44 + c23c45 − c41c45 − c15

τ2343 = −c34c42 + c242 − c24c43 + c32c44 − c41c44 + c22c45 − c14

τ2344 = −c32c42 − c22c43 + c31c44 + c21c45 − c12

By Proposition 4.1.6 a), the residue classes of indeterminates contained in m2 are

{c̄16, c̄15, c̄14, c̄13, c̄12, c̄11}.
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The minimal generating set of the border term ideal is exactly the border. Therefore

all the indeterminates in the set C are minimal. This means that border terms do not

have next door neighbors and all polynomials from T are from AS. By Proposition

4.1.6 c), the set of equivalence classes is E = {[c̄ij] : cij ∈ C \ {c16, c15, c14, c13, c12, c11}}.
Note that c14, c16, c11 are pure power indeterminates that are standard and minimal,

yet their residue classes are contained in m2.

Remark 4.2.2. The indeterminates c22, c23 and c45 in Example 4.2.1 are non-standard

indeterminates, yet their residue classes are not in m2. One should also compare the

number of elements in E in Examples 4.2.1, 4.1.18 and 4.1.8. In Examples 4.1.18 and

4.1.8, the set E contains nµ elements but in the Example 4.2.1 the number of elements

of E is larger than nµ.

Notation 4.2.3. Let t = xα1
1 · · · xαk

k · · · xαn
n be a term in Tn. We denote the kth-

component of the vector log(t) by degxk
(t). In this case we have

degxk
(t) = αk.

Remark 4.2.4. Recall that G is the set of minimal generators of the border term ideal

consisting of border terms.

a) If the set G consists of pure power terms only, then every border term can be

divided by exactly one pure power term.

b) If an indeterminate cpq is xk-standard, then for l 6= k the border term bq can not

be divisible by an xl-pure power term.

c) For distinct indices k and l, let the indeterminate cij be an xk-pure power inde-

terminate, and let cpq be an xl-pure power indeterminate. Distinct pure power

indeterminates have different arrow degrees and by Lemma 4.1.5, the equivalence

classes of c̄ij and c̄pq modulo m2 are distinct.

Lemma 4.2.5. Let O ⊂ Tn be an order ideal. If the minimal generating set of BTO

consists of only pure power terms, then E has exactly nµ elements.

Proof. Clearly, the number of pure power indeterminates is nµ, which is in our case

also the number of minimal standard indeterminates. By Proposition 4.1.19, every

equivalence class in E has at least one element from C̄ that corresponds to a minimal

indeterminate in C. Since two distinct elements from C̄, which are mapped to distinct



60 4. The Cotangent Space of a Border Bases Scheme

pure power indeterminates, can not be in the same equivalence class of E, it follows

that every equivalence class in E contains exactly an element that corresponds to a

pure power indeterminate.

If we show that there exists no pure power indeterminate, say cij, such that c̄ij ∈ m2,

then we have the desired result. For this purpose, let the indeterminate cij be an xk-

pure power indeterminate. By examining the set T , we construct the set of elements

from C̄ that are in relation ∼ with cij, i.e. Cij. Let Bj = {bj, b1, ..., bjm} denote the set

of border terms which are divisible by bj and xl. Now we choose an element c̄irjr ∈ Cij.

Let xlbjr be a term, say bjl , in B. Since cirjr is an xk-standard indeterminate, there

are two cases. The first case is that we have a border term xlbjr ∈ B, and therefore

xltir is a term in O, say tjl . Then by Lemma 4.1.3a) and Lemma 4.1.4 b),c), we have

c̄iljl ∼ c̄irjr . The second case is that xlbjr /∈ B. Since G consists of pure powers only,

the term xlbjr is divisible by the xl-pure power term. Keep in mind that cirjr is an

xk-standard indeterminate i.e., degxl
(tir) > degxl

(bjr). Hence xlti is a term in ∂O. Thus

we have either an equivalence relation with an element of Cij or xltir ∈ ∂O. Since this

holds for any xl ∈ {x1..., xn} \ {xk}, by Corollary 4.1.16 and Proposition 4.1.6 b),c),

we have ciljl /∈ m2.

Definition 4.2.6. Let cij be an indeterminate from K[c11, ..., cµν ]. Let the arrow degree

of cij be (α1, ...., αk, ...., αn). The xk-offset of cij is the arrow degree of cij without the

xk-component. We denote it by

offsetxk
(cij) = (α1, ..., αk−1, αk+1, ..., αn).

The idea of replacing an xk-standard pure power indeterminate that is an element

of m2 with a minimal standard indeterminate which has the same xk-offset and that

is not contained in m2, is due to [Huib05]. The process described in [Huib05] is called

Shadow Promotion and it is defined for arrows. Inspired by this technique, we introduce

a similar method in our setting for border basis schemes.

There are nµ distinct pure power indeterminates in C. Recall that pure power in-

determinates are standard and distinct pure power indeterminates indicate distinct

equivalence classes in m2. Let [c̄ij] be the equivalence class of an xk-pure power in-

determinate cij where xlti ∈ O for xl ∈ {x1, ..., xn} \ {xk}. The following algorithm

shows how to find an equivalence class [c̄pq] ∈ E where cpq is a minimal xk-standard

indeterminate which is determined by the term ti and the xk-offset of cij.
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Algorithm 4.2.7. Let O ⊂ Tn be an order ideal. Let bj = xωk

k be an xk-pure power

indeterminate and ti ∈ O. Let cij be an xk-pure power indeterminate where there exists

an indeterminate xl ∈ {x1, ..., xn} \ {xk} such that xlti ∈ O. Consider the following

sequence of instructions.

1. Let l = 0.

2. Increase l by one. If we have l = k, then increase l by one again. If we have

l = n + 1, then let tr := til and continue with step 4) otherwise continue with

step 3)

3. Let til := ti and βl := 0. Repeat computing til = xl · til and increasing βl by one

until til ∈ ∂O. Then let til := til/xl, βl − 1 and continue with step 2).

4. Let xβ1

1 · · · xβn
n be a term in Tn that is denoted by b where βk = 0 and b·ti = tr ∈ O.

Repeat computing xk · b := b until b ∈ ∂O and let bs := b. Then construct the

equivalence class [c̄rs] and pick a minimal standard indeterminate c̄pq from [c̄rs].

This is an algorithm which returns a minimal xk-standard indeterminate, cpq which

has the same xk-offset as the xk-pure power indeterminate cij and [c̄pq] ∈ E.

Proof. There are finitely many terms inO and finitely many indeterminates in {x1, ..., xn}.
Thus this algorithm stops after finitely many steps. Since in Step 3) after computa-

tion tli is still an order ideal term, the term b and b · ti = tr are order ideal terms

where degxk
(b) = 0. Therefore there exists an integer α such that xα

k b ∈ ∂O which

is computed in step 4). From this follows the existence of the border term bs in step

4). By steps 2) and 3), the order ideal term tr has the following property. For each

xl ∈ {x1, ..., xn}\{xk} we have xltr ∈ ∂O. Then by Corollary 4.1.16, we have c̄rs /∈ m2.

Therefore by Proposition 4.1.19, there exists a minimal indeterminate cpq such that

c̄pq ∈ [c̄rs]. Moreover, from step 4) we have bs = xm
k · b and tr = b · ti where m ∈ N+

and βk = 0. Let us determine the arrow degree of crs.

degW (crs) = log(bs)− log(tr)

= log(xβ1

1 · · · xm
k · · · xβn

n )− log(xβ1

1 · · · xβk−1

k−1 · xβk+1

k+1 · · · xβn

n · ti)
= log(xm

k )− log(ti)

From the above equation follows that crs is an xk-standard indeterminate. Since

bj = x
ωj

k is a pure power term, we have offsetxk
(crs) = offsetxk

(ti) = offsetxk
(cij).
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Consequently, from c̄pq ∈ [c̄rs] follows that cpq is a minimal xk-standard indeterminate

and by Lemma 4.1.5 we have offsetxk
(crs) = offsetxk

(cpq) = offsetxk
(cij).

Example 4.2.8. (continues) Recall Example 4.1.18 where O is the order ideal

{1, x1, x2}. Then ∂O = {x2
2, x1x2, x

2
1} is the border of it. The set of pure power in-

determinates is {c11, c21, c31, c13, c23, c33}. The indeterminates c13, c11 are pure power

indeterminates that are standard and minimal yet c̄13 and c̄11 are in m2. We replace

c13 with a minimal standard indeterminate that is an output of Algorithm 4.2.7. We

have b3 = x2
1, k = 1, t1 = 1 and degW (c13) = (2, 0) with offsetx1 = (0)

2) Set l = 2 since k = 1.

3) We have x2t1 = t3 ∈ O but x2
2 ∈ ∂O. Then we let ti2 = t3 and βl := 1.

2) We have l = 3 then we let tr := t3.

4) The term b is x2 and x1 · x2 = b2 ∈ ∂O and ti = 1. Then we let bs := b2. Since b2

is already minimal, we have cpq = crs = c32

By the same way we can replace c11 with c22. Therefore we have

E = {[c̄22], [c̄21], [c̄31], [c̄32], [c̄23], [c̄33]}.

Theorem 4.2.9. Let O ⊂ Tn be an order ideal. Let E denote the set which contains the

equivalence classes of indeterminates modulo m2. The set E has at least nµ elements.

Proof. Let Smin denote a subset of E that contains the equivalence classes of minimal

standard indetermates modulo m2.

We divide the proof into two cases. The first case is where the minimal generating

set of the border term ideal consists of pure power terms only. The second case is

where the minimal generating set of the border term ideal has not only pure power

terms. We show that in both cases there are at least nµ elements in Smin ⊆ E. If the

minimal generating set consists of only pure power terms, then by Lemma 4.2.5, we

have E = Smin and the cardinality of E is nµ. For the second case, recall Algorithm

4.2.7. Let xk and xl be two distinct indeterminates from K[x1, ..., xn]. If an xk-standard

pure power indeterminate is in m2, then by Algorithm 4.2.7, there exists an xk-standard

minimal indeterminate whose equivalence class is not inm2 which has the same xk-offset

as the pure power indeterminate.



4.2. A Smoothness Criterion for the Monomial Point of a Border Basis Scheme 63

We claim that the output of the Algorithm 4.2.7 for distinct pure power indetermi-

nates are distinct indeterminates with distinct equivalence classes in E. Keep in mind

that the output indeterminate of the Algorithm 4.2.7 is a minimal standard indetermi-

nate whose equivalence class is in E. From Lemma 4.1.5, it follows that the equivalence

class of the output of Algorithm 4.2.7 for xk-standard and xl-standard pure power

indeterminates with k 6= l cannot be equal. Therefore we let cij and cuj be distinct

xk-pure power indeterminates. Then the terms ti and tu in O are different from each

other. Apply Algorithm 4.2.7, and let cpiqi be the output for cij and cpuqu be the output

for cuj. If the indeterminates cpiqi and cpuqu have different xk-offset, then by Lemma

4.1.5, we have [c̄piqi ] 6= [c̄puqu ]. If these two indeterminates cij and cuj have the same

xk-offset with distinct order ideal terms , then we have

degxk
(ti) 6= degxk

(tu). (4.8)

Let crisi be the indeterminate in step 4) of Algorithm 4.2.7 where c̄piqi ∈ [c̄risi ]. Let crusu
be the indeterminate in step 4) of Algorithm 4.2.7 where c̄puqu ∈ [c̄rusu ]. By steps 2) and

3) of the Algorithm 4.2.7, degxk
(ti) remains the same i.e., degxk

(tri) = degxk
(ti). Then

by (4.8), we have degxk
(tri) 6= degxk

(tru). From this and step 4) of Algorithm 4.2.7 where

bsu and bsi are defined, follows degW (crusu) 6= degW (crisi). Consequently, from Lemma

4.1.5 follows that degW (cpuqu) 6= degW (cpiqi) and we have [c̄piqi ] 6= [c̄puqu ]. Altogether, we

have shown that for distinct pure power indeterminates whose equivalence classes are

in m2, there exist distinct minimal standard indeterminates with distinct equivalence

classes in E. Since there are nµ pure power indeterminates, there are at least nµ

equivalence classes of minimal standard indeterminates.

As the following example shows, there can be non-standard indeterminates whose

equivalence classes are in E

Example 4.2.10. (continues) Recall Example 4.2.1. Clearly, the number of inde-

terminates in BO is µ ∗ ν = 24 in this example. There are 6 indeterminates in m2 and

E contains equivalence classes of 3 indeterminates which have a non-standard arrow

degree. Thus the set of equivalence classes of minimal standard indeterminates modulo

m2 has exactly 15 equivalence classes which is larger than nµ = 12.

Lemma 4.2.11. Let O ⊂ T2 be an order ideal with µ elements. Then the set E has

exactly 2µ elements.

Proof. Let bw = xω1
1 and br = xω2

2 be the two pure power terms in ∂O. Then there are
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exactly 2µ pure power indeterminates and by Algorithm 4.2.7, there are exactly 2µ

minimal standard indeterminates which are not contained in m2. Thus the cardinality

of E is larger or equal to 2µ. For contradiction suppose | E |> 2µ i.e., suppose that

there exists an indeterminate cij ∈ C such that for each tu ∈ O the element c̄ij is

neither in Cuw nor in Cur and the indeterminate cij is not an output of the Algorithm

4.2.7 yet [c̄ij] ∈ E holds. The indeterminate cij is either a standard or a non-standard

indeterminate.

If the indeterminate cij is a non-standard indeterminate, then we construct the set

Cij = {c̄i1j1 , ..., c̄imjm} where for each index k ∈ {1, ...,m− 1} we have

degx1
(tim) < degx1

(tik) and degx2
(tim) > degx2

(tik). (4.9)

Since c̄ij is neither in Cuw nor in Cur, we have degx1
(bjm) < degx1

(bw) and degx2
(bjm) <

degx2
(br). Thus there exists a border term bk such that either x2bjm = bk or x2bjm =

x1bk. If there exists an order ideal term tl such that x2tim = tl or x2tim = x1tl, then

we have c̄lk ∈ Cij with degx2
(tl) > degx2

(tim), which contradicts to (4.9). Since there

exists no order ideal term tl with the above property, by Lemmas 4.1.3 and 4.1.4, we

have c̄imjm ∈ m2 and consequently c̄ij ∈ m2.

If cij is a standard indeterminate, then cij is either an x1-standard or x2-standard

indeterminate. Without loss of generality we let cij be an x1-standard indeterminate.

Then by Corollary 4.1.16, there exists an element c̄imjm ∈ [c̄ij] such that x2tim ∈ ∂O
and for each c̄ikjk ∈ [c̄ij] we have degx2

(tim) > degx2
(tik) and degx1

(tim) 6 degx1
(tik).

Moreover,

degx2
(bjm) > degx2

(bjk) and degx1
(bjm) 6 degx1

(bjk) (4.10)

hold. We let the arrow degree of cimjm be degW (cimjm) = log(bjm)−log(tim) = (α1, β1)−
(α2, β2) = (α, β) where α > 0 and β 6 0.

Then there exists an order ideal term tu such that xβ1

2 tu = tim and offsetx1(cimjm) =

offsetx1(cuw). We apply Algorithm 4.2.7 to cuw. Then by Step 2) of Algorithm 4.2.7 we

have tr = tim and we compute the smallest integer γ where

bs = xβ1

2 xγ
1 ∈ ∂O. (4.11)

Since γ is the smallest integer that satisfies Equation (4.11), it cannot be larger than

the degx1
(bjm) i.e., α1. If the integer γ smaller than α1, then bs has a next-door neighbor

and this contradicts (4.10). Thus we have bs = xβ1

2 xα1
1 = bjm and [c̄imjm ] = [c̄rs].
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Lemma 4.2.12. Let S be a subset of C which contains d elements, where each element

c̄ij ∈ C̄ and [c̄ij] ∈ E. Then the subspace of m/m2 spanned by the elements of S̄ has the

dimension d.

Proof. Every indeterminate in S̄ is chosen from a non-zero distinct equivalence class

modulo m2. Therefore they are L-linearly independent in the vector space m/m2, where

S̄ is a subset of m/m2. The L- subspace of m/m2 spanned by S̄ has the dimension d,

which is exactly the number non zero equivalence classes in E.

Remark 4.2.13. The set S is the same as the one that is constructed in [Huib05],

Theorem 4.1.3. Although the set S is not unique, the set E is unique.

Lemma 4.2.14. Let O ⊂ Tn be an order ideal. If the monomial point of an O-border

basis scheme is smooth, then the dimension of the local ring (BO)m is nµ. In particular,

if the point o is not smooth, then the dimension of (BO)m is larger than nµ.

Proof. This follows from Theorem 2.4.5 and Corollary 2.4.6.

Theorem 4.2.15. Let O ⊂ Tn be an order ideal. The monomial point o ∈ BO is

smooth if and only if the number of elements of E is nµ.

Proof. Assume first that the monomial point in a border basis scheme is smooth.

Then, by Lemma 4.2.14, we have dim((BO)m) = nµ. By the smoothness, we also have

dim((BO)m) = edim(BO) = nµ. This means the maximum number of the L-linearly

independent indeterminates in the vector space m/m2 is nµ. Then by Theorem 4.2.9,

the cardinality of E is nµ.

Conversely, let us assume that the cardinality of E is nµ. By Lemma 4.2.14, in the

general case we have

dim((BO)m) > nµ. (4.12)

By Proposition 2.1.15, we have

dimL(m/m2) > dim((BO)m). (4.13)

Moreover, the set S, which is constructed by choosing an element from each equivalence

class of E, is a set of maximal L-linear independent indeterminates in the L-vector space

m/m2. Then by Lemma 4.2.12 and by the equality | E |=| S | , we have

nµ =| E |=| S |= dimL(m/m2). (4.14)
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Then by considering Inequalities (4.12) and (4.13) with Equality (4.14), we have the

following result.

nµ =| S |= dimL(m/m2) > dim((BO)m) > nµ

Thus we have dim((BO)m) = nµ = edim(BO) and o is a smooth point of BO.

Example 4.2.16. (continues) Let us recall Example 4.1.8. The set E consists of

the equivalence classes of minimal standard indeterminates only. More precisely, it

consists of the equivalence classes of pure power indeterminates. Thus the monomial

point in this example is smooth. On the other hand, in Example 4.2.1 we have seen

that the set E has more elements than the set of the equivalence classes of minimal

standard indeterminates. Therefore the monomial point of the border basis scheme in

that example is not smooth.

Corollary 4.2.17. Let O ⊂ T2 be an order ideal. The monomial point of an O-border

basis scheme is smooth.

Proof. This follows from Lemma 4.2.11 and Theorem 4.2.15.

Recall that the order ideal B(d1, ..., dn) = {xα1
1 · · · xαn

n ∈ Tn | αi < di for i =

1, ..., n} is called the box order ideal of size (d1, ..., dn).

Corollary 4.2.18. Let B ∈ Tn be a box order ideal. The monomial point a B-border
basis scheme is always smooth.

Proof. This follows from the fact that the minimal generating set of the border term

ideal of any box border basis scheme just consists of the pure power terms.



Chapter 5

Trace and Jacobi Identity Syzygies

In this chapter we shall present two types of syzygies of the tuple whose entries are the

elements of T (see Equation (2.6)) of a given O-border basis scheme, the trace syzygies

of T (see Definition 5.1.12 and Remark 5.1.9 ) and the Jacobi identity syzygies of T
(see Definition 5.2.2 and Remark 5.2.3), which are computed by the help of the generic

multiplication matrices (see Definitions 2.2.4 and 2.3.1.b). The trace and the Jacobi

identity syzygies of T were first introduced in [Huib09]. In Section 10 of [Huib09] the

trace syzygies of T are used to show that all O-border basis schemes are ideal-theoretic

complete intersections, where O ⊂ T2 (see Definition 2.1.10). Moreover, in the same

article, for the specific case O = {1, x1} ⊂ K[x1, x2, x3], both trace syzygies and Jacobi

identity syzygies were used to prove that BO is an ideal-theoretic complete intersection.

In this chapter we show that for box order ideal B(2, 2, 2) ⊂ K[x1, x2, x3], these syzygies

of T are not sufficient to decide whether BB(2,2,2) is a complete intersection or not.

In the first two sections we reprove some of the properties of trace and Jacobi

identity syzygies of T . Our aim is to characterize these syzygies by the arrow grading

(see Lemmas 5.1.5, 5.1.6 and 5.2.6). In Section 5.1 we give an example where one can

illustrate that the given border basis scheme is a complete intersection (see Example

5.1.22 ) by employing the trace syzygies of T .

The last section (see Section 5.4) is dedicated to finding redundant elements of the

set T of defining equations of the box border basis scheme BB(2,2,2) by using the Jacobi

identity and the trace syzygies of T together. We show that there are at most 60

redundant polynomials in the generating set T of I(BB(2,2,2)) (see Proposition 5.4.3).

We observe that trace and Jacobi identity syzygies of T do not give conclusive results

whether BB(2,2,2) has the complete intersection property or not. We provide the reasons
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in Remarks 5.4.1 and 5.4.4.

Moreover, we implemented the Jacobi identity and the trace syzygy computation

methods in the package bbsmingensyz of the computer algebra system ApCoCoA. The

vanishing ideal of this box border basis scheme BB(2,2,2) has 144 generators. Therefore

it is to hard to perform the syzygy computations by hand. In some cases, where

defining equations of border bases schemes have larger cardinalities, even computers

might fail to succeed with those computations. In such cases, to find at least the

rewritable elements with respect to trace or Jacobi identity syzygies of T , we introduce

a practical method which we call simplified trace and Jacobi identity syzygies of O (see

Section 5.1). In Section 5.4, we first compute the simplified syzygies trace and Jacobi

identity syzygies which reduces the number of computations to identify the redundant

elements of T .

5.1 Trace Syzygies

Unless stated otherwise, throughout this section we let K be a field and P denote the

polynomial ring K[x1, ..., xn]. Let O = {t1, ..., tµ} ⊂ Tn be an order ideal and let ∂O
denote its border {b1, ..., bν}. Let C denote a set of indeterminates {c11, ..., cµν}. Let K[C]
be the polynomial ring K[c11, ..., cµν ]. Recall that I(BO) is the vanishing ideal of the

border basis scheme BO which is generated by the set T = {τ klpq | p, q ∈ {1, ...µ}, k <

l k, l ∈ {1, .., n} (see Section 2.3).

Let A,B ∈ Matm(K[C]) be square matrices, where m ∈ N+. Then [A,B] denotes
the commutator A · B − B · A.

Lemma 5.1.1. Let A,B ∈ Matm(K[C]) be square matrices, where m ∈ N+ Then the

Trace([A,B]) is 0.

Proof. LetA = (aij)m×m and B = (bij)m×m, where aij, bij ∈ K[c]. Then the Trace([A,B])
is as follows.

Trace([A,B]) =
m∑

u=1

eu(AB − BA)etru =
m∑

u=1

euABetru − euBAetru

=
m∑

u=1

(
m∑

j=1

aujbju)−
m∑

u=1

(
m∑

j=1

bujaju)

=
m∑

u=1

(
m∑

j=1

aujbju)−
m∑

j=1

(
m∑

u=1

aujbju) = 0
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Hence we have Trace([A,B]) = 0.

Lemma 5.1.2. Let Ak1 , ...,Aks ,Al ∈ Matm(K[C]) be square matrices where m ∈ N+.

Then the following equality holds.

[Ak1 · · · Aks ,Al] =
s∑

m=1

Ak1 · · · Akm [Al,Akm ]Akm+1 · · · Aks (5.1)

Proof. Let us consider the uth summand on the right hand side of Equation (5.1).

Ak1 · · · Aku−1 [Al,Aku ] Aku+1 · · · Aks = Ak1 · · · Aku−1(AlAku −AkuAl)Aku+1 · · · Aks

= Ak1 · · · Aku−1AlAkuAku+1 · · · Aks−1 −Ak1 · · · Aku−1AkuAlAku+1 · · · Aks (5.2)

Now let us check the (u + 1)st summand in Equation (??), which is

Ak1 · · · AkuAlAku+1Aku+2 · · · Aks −Ak1 · · · AkuAku+1AlAku+2 · · · Aks . (5.3)

If we take the sum of Equations (5.2) and (5.3), then the negative term of Equation

(5.2) and the positive term of Equation (5.3) cancel each other out. This implies that

the sum in Equation (5.1) is a telescopic sum and the result of it is just the sum of the

positive term of the first summand and the negative term of the last summand i.e.,

AlAk1 · · · AkuAku+1Aku+2 · · · Aks −Ak1 · · · AkuAku+1Aku+2 · · · AksAl = [Ak1 · · · Aks ,Al].

Hence we have

[Ak1 · · · Aks ,Al] =
s∑

m=1

Ak1 · · · Akm [Al,Akm ]Akm+1 · · · Aks .

Example 5.1.3. Let O ⊂ K[x1, x2, x3] be an order ideal. Let A1,A2 and A3 be

the generic multiplication matrices with respect to O. We consider the commutator

operation [A1A2A3A1A2,A1]. By Lemma 5.1.2, the following equality holds.

[A1A2A3A1A2,A1] = [A1,A1]A2A3A1A2 +A1[A1,A2]A3A1A2

+A1A2[A1,A3]A1A2 +A1A2A3[A1, A1]A2 +A1A2A3A1[A1,A2]

= A1[A1,A2]A3A1A2 +A1A2[A1,A3]A1A2 +A1A2A3A1[A1,A2]
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Remark 5.1.4. Recall that the polynomial ring K[C] is a Zn-graded ring such that

the indeterminate cij ∈ K[C] has the arrow degree degW (cij) = log(bj) − log(ti). The

details on the arrow grading are given in Section 3.2.

Let O = {t1, ..., tµ} ⊂ K[x1, ..., xn] be an order ideal. Let Al be the lth generic

multiplication matrix where l ∈ {1, ..., n}. Then by Lemma 3.2.4, Al is a homogenous

matrix with the degree pair (d0, dl) where the following holds.

dl = (log(xlt1), ..., log(xltµ)) = (dl1 , ..., dlµ), d0 = (log(t1), ..., log(tµ)) = (d01 , ...., d0µ)

Lemma 5.1.5. Let O ⊂ Tn be an order ideal. Let Ak1 , ...,Aks ,Al ∈ Matµ(K[C]) be

generic multiplication matrices with respect to O, where s ∈ N+ and k1, ..., ks, l ∈
{1, ..., n}. The matrix AlAk1 · · · Aks and the matrix Ak1 · · · AksAl are both homogenous

matrices with the same degree pair (d0, d(k1···ksl)) where

d(k1···ksl) = (log(xk1 · · · xksxlt1), ...., log(xk1 · · · xksxltµ)) and d0 = (log(t1), ..., log(tµ)).

Proof. Let Aki be a generic multiplication matrix in {Ak1 , ...,Aks} with the degree pair

(d0, dki) where

dki = (log(xkit1), ..., log(xkitµ)) = (d(ki)1, ..., d(ki)µ), d0 = (log(t1), ..., log(tµ)) = (d01 , ...., d0µ).

By Lemma 3.2.5, the degree pairs of the matrices AkiAl and AlAki are the same which

is (d0, d(kil)), where

d(kil) = (log(xkixlt1), ...., log(xkixltµ)) and d0 = (log(t1), ..., log(tµ)) (5.4)

Hence, the Lemma follows.

Lemma 5.1.6. Let O ⊂ Tn be an order ideal. Let Ak1 , ...,Aks ,Al ∈ Matµ(K[C]) be

generic multiplication matrices with respect to O, where s ∈ N+ and k1, ..., ks, l ∈
{1, ..., n}. Then the Trace(Ak1 · · · AksAl) is a homogenous polynomial in K[C] with re-

spect to the arrow grading. Moreover, if we let Π denote the term xk1 · · · xksxl ∈ Tn,

then the following holds.

degW (Trace(Ak1 · · · AksAl)) = degW (Trace(AlAk1 · · · Aks)) = log(Π)

Proof. The trace of a product of matrices is invariant under the cyclic permutation of
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the positions of the matrices i.e.,

Trace(AlAk1 · · · Aks) = Trace(Ak1 · · · AksAl). (5.5)

By Lemma 5.1.5, the matrix Ak1 · · · AksAl has the degree pair (d0, d(k1···ksl)) where

d(k1···ksl) = (log(xk1 · · · xksxlt1), ...., log(xk1 · · · xksxltµ)), d0 = (log(t1), ..., log(tµ)).

Therefore the entries in (i, i) position of Ak1 · · · AksAl are of the arrow degrees

(log(xk1 · · · xksxlti)− log(ti)) = d(lk1...ks)i − d0i = log(xk1 · · · xksxl).

Then the polynomial Trace(Ak1 · · · AksAl) has the following arrow degree.

degW (Trace(AlAk1 · · · Aks)) = degW(

µ∑

i=1

aii) = d(lk1...ks)i − d0i

= log(xk1 · · · xknxl)

By Equality 5.5, follows the proof.

Let T denote the set of generators of the ideal I(BO), where m denotes the number

of polynomials in T . Recall that a polynomial in T is of the form τ klpq where k < l and

k, l ∈ {1, ..., n} and p, q ∈ {1, ...µ}. We enumerate the polynomials from T . Let

{(k, l) | k < l, and k, l ∈ {1, ..., n}} = {(1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n− 1, n)}

denote the set of upper indices of the polynomials from T and let (ki, li) and (kj, lj)

be two different tuples from this set. Let

{(p, q) | p, q ∈ {1, ..., µ}} = {(1, 1), (1, 2), ..., (1, µ), (2, 1), ..., (µ, µ)},

be the set of lower indices of the polynomials from T and let (pi, qi) and (pj, qj) be two

different tuples from this set. We order the indices as follows. We have (ki, li) <Lex

(kj, lj) holds and in the case of equality (pi, qi) <Lex (pj, qj) holds.

Lemma 5.1.7. Consider the above setting. If we enumerate the polynomials in T with

respect to the above ordering of the indices, then a polynomial τ klpq is the αth polynomial

where α = [n(n−1)
2

− (n−k)(n−k+1)
2

+ (l − k − 1)]µ2 + p · q.
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Proof. There are n(n−1)
2

tuples in the set {(k, l) | k < l, and k, l ∈ {1, ..., n}}. With

respect to the ordering we defined above there are n(n−1)
2

− (n−k)(n−k+1)
2

+ (l − k − 1)

many tuples that are smaller than (k, l). The tuple (p, q) is the (p · q)th tuple in the set

{(p, q) | p, q ∈ {1, ..., µ}}. Thus with respect to the given ordering the polynomial is

the αth polynomial in T where α = [n(n−1)
2

− (n−k)(n−k+1)
2

+ (l − k − 1)]µ2 + p · q.

Recall that we let m be the number of polynomials in T . Let (e1, ..., em) be the

canonical basis of K[C]m. We let eklpq denote the canonical basis element eα, where by

Lemma 5.1.7 α = [n(n−1)
2

− (n−k)(n−k+1)
2

+ (l− k− 1)]µ2 + p · q. Then (eklpq)16p,q6µ
16i<l6n

is the

canonical basis of K[C]m.

Example 5.1.8. Let O = {1, x1} ⊂ K[x1, x2, x3]. Then the vanishing ideal of the O-

border basis scheme I(BO) is generated by the set T = {τ klpq | p, q ∈ {1, ...µ}, and k <

l k, l ∈ {1, .., n}}. With respect to the ordering above, the polynomial τ 1211 is the

first element and τ 2322 is the 12th element i.e., the last element. By Lemma 5.1.7, the

polynomial τ 1322 is the 8th element of T where ((3−1−1)µ2+p ·q = 4+4 = 8. Since the

number of elements in the set T is m = 12, we have K[C]12 with the canonical basis

(e1211, e
12
12, e

12
21, e

12
22, e

13
11, e

13
12, e

13
21, e

13
22, e

23
11, e

23
12, e

23
21, e

23
22) = (e1, e2, ..., e12).

Remark 5.1.9. We note that for the sake of simplicity instead of calling the syzygy of

the tuple whose elements are the elements of T , we call it the syzygy of T . If it is clear

from the context which O-border basis scheme is used, then we simply call it syzygy.

The ring K[C] is a graded ring with respect to the arrow grading, where the arrow

degree degW (cij) is log(bj) − log(ti). Moreover, by Proposition 3.2.6, that I(BO) is a

homogenous ideal with respect to the arrow grading, where the arrow degree degW (τ klpq)

is log(xkxltq) − log(tp). By letting degW (eklpq) = degW (τ klpq) = dklpq ∈ Zn, we make the

K[C]-module K[C]m a graded free module,

⊕

16p,q6µ
16i<l6n

K[C](−dklpq).

Then we have the following graded K[C]-module homomorphism with respect to the
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arrow grading:

ϕ :
⊕

16p,q6µ
16i<l6n

K[C](−dklpq) −→ I(BO) (5.6)

eklpq 7−→ τ klpq

The kernel of the map ϕ is the set {∑16p,q6µ
16i<l6n

ρklpqe
kl
pq | ∑16p,q6µ

16i<l6n
ρklpqτ

kl
pq = 0}. In other

words, the kernel Ker(ϕ) is the syzygy module of T . Furthermore, the syzygy module

Syz(T ) is a homogenous sub-module of K[C]m with respect to the arrow grading. Let

H denote a set of further indeterminates {h12
11, ..., h

kl
pq, ..., h

(n−1)n
µµ } where the cardinality

of the set H is m. Let θ denote the following map:

θ : K[C]m −→ K[C][h12
11, ..., h

kl
pq, ..., h

(n−1)n
µµ ] = K[C][H] (5.7)

eklpq 7−→ hkl
pq

Then θ is a well-defined K[C]-module morphism that is injective. A polynomial of the

form
∑

16p,q6µ
16i<l6n

ρklpqh
kl
pq has the inverse image

∑
16p,q6µ
16i<l6n

ρklpqe
kl
pq under the map θ.

Let Π = xl1 · · · xls · xls+1 ∈ Tn be a term where s ∈ N+. Let us choose an index l from

the set {l1, ..., ls, ls+1}, and let xk1 , ..., xks =
Π
xl
, where k1, ..., ks ∈ {1, ..., n}. Then with

respect to the new indexing we have

Π = xk1 · · · xksxl ∈ Tn (5.8)

and we call xl as the distinguished indeterminate. LetAk1 , ...,Aks ,Al ∈ Matµ(K[C])
be generic multiplication matrices with respect to O. Now we consider the following

polynomial in the ring K[C,H].

s∑

i=1

µ∑

u=1

eu(Ak1 · · · Aki−1



hkil
11 . . . hkil

1µ
...

. . .
...

hkil
µ1 . . . hkil

µµ


Aki+1

· · · Aks)e
tr
u (5.9)
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We let



f
(ki−1)
11 . . . f

(ki−1)
1µ

...
. . .

...

f
(ki−1)
µ1 . . . f

(ki−1)
µµ


 = Ak1 · · · Aki−1

and




g
(ki+1)
11 . . . g

(ki+1)
1µ

...
. . .

...

g
(ki+1)
µ1 . . . g

ki+1)
(µµ


 = Aki+1

· · · Aks

(5.10)

where f
(ki−1)
ij , g

(ki+1)
ij ∈ K[C]. Note that by Definitions 2.2.4 and 2.3.1, the generic

multiplication matrices have the following two properties: First, they are non-zero

matrices. Second, for k 6= l, we have Ak 6= Al. Therefore the products of the generic

multiplication matrices Ak1 · · · Aki−1
∈ Matµ(K[C]) and Aki+1

· · · Aks ∈ Matµ(K[C]) are
non-zero matrices. Then Polynomial (5.9) is equal to the following polynomial.

s∑

i=1

µ∑

u=1

(
f
(ki−1)
u1 . . . f

(ki−1)
uµ

)


hkil
11 . . . hkil

1µ
...

. . .
...

hkil
µ1 . . . hkil

µµ






g
(ki+1)
1u
...

g
(ki+1)
µu


 =

∑

16p,q6µ
16i<l6n

κkil
pq h

kil
pq (5.11)

Thus Equation (5.11) is a K[C]-linear combination of the indeterminates hkil
pq , where

each κkil
pq ∈ K[C] represents the coefficient of hkil

pq in Equation (5.11). The inverse image

of the left hand side of Equation (5.11) under the map θ is

∑

16p,q6µ
16i<l6n

κkil
pq e

kil
pq .

In other words, under the map ϕ we have ϕ(
∑

16p,q6µ
16i<l6n

κkil
pq e

kil
pq ) =

∑
16p,q6µ
16i<l6n

κkil
pq τ

kil
pq .

Lemma 5.1.10. In the above setting the vector
∑

16p,q6µ
16i<l6n

κkil
pq e

kil
pq is an element of the

syzygy module Syz(T ).

Proof. We show that ϕ(
∑

16p,q6µ
16i<l6n

κkil
pq e

kil
pq ) is 0. In Equation (5.11) we substitute the hkil

pq

by τ kilpq , and we get the following.

s∑

i=1

µ∑

u=1

(
f
(ki−1)
u1 . . . f

(ki−1)
uµ

)


τ kil11 . . . τ kil1µ
...

. . .
...

τ kilµ1 . . . τ kilµµ






g
(ki+1)
1u
...

g
(ki+1)
µu


 =

∑

16p,q6µ
16i<l6n

κkil
pq τ

kil
pq (5.12)

Recall that, [Al,Ak] denotes the commutator Al · Ak −Ak · Al, where k, l ∈ {1, ..., n}
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and k 6= l. Then by Equation (2.5), we have

[Al,Ak] =



τ kl11 . . . τ kl1µ
...

. . .
...

τ klµ1 . . . τ klµµ


 . (5.13)

Then by Equalities (5.10) and by Equation (5.13), Polynomial (5.12) becomes the

following.

s∑

i=1

µ∑

u=1

eu(Ak1 · · · Aki−1



τ kil11 . . . τ kil1µ
...

. . .
...

τ kilµ1 . . . τ kilµµ


Aki+1

· · · Aks)e
tr
u (5.14)

By using the definition of the commutator and (5.14), we get the following.

µ∑

u=1

eu(
s∑

i=1

Ak1 · · · Aki−1
[Al,Aki ]Aki+1

· · · Aks−1)e
tr
u

= Trace(
s∑

i=1

Ak1 · · · Aki−1
[Al,Aki ]Aki+1

· · · Aks)

= Trace([Ak1 · · · Aks ,Al])

By Lemma 5.1.1, we have Trace([Ak1 · · · Aks ,Al]) = 0. Therefore we have

s∑

i=1

µ∑

u=1

(
f
(ki−1)
u1 . . . f

(ki−1)
uµ

)


τ kil11 . . . τ kil1µ
...

. . .
...

τ kilµ1 . . . τ kilµµ






g
(ki+1)
1u
...

g
(ki+1)
µu


 = 0, (5.15)

where
∑

16p,q6µ
16i<l6n

κkil
pq τ

kil
pq = 0 and thus

∑
16p,q6µ
16i<l6n

κkil
pq e

kil
pq is an element of the syzygy

module Syz(T ).

Recall how we get Term (5.8) which is Π = xk1 · · · xksxl ∈ Tn, where xl is the

distinguished indeterminate. By Lemma 5.1.6, we have

degW (Trace(Ak1 · · · AksAl)) = degW (Trace(AlAk1 · · · Aks)) = log(Π).

Lemma 5.1.11. In the above setting, if the coefficient of hkil
pq which is κkil

pq , and the poly-

nomial τ kilpq are non-zero polynomials from K[C], then the arrow degree degW (κkil
pq e

kil
pq )

is log(Π).
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Proof. Recall that the map ϕ is a homogenous map and we have degW (eklpq) = degW (τ klpq).

Moreover, by (5.10), we have degW (f
(ki−1)
up ) = log(xk1 · · · xki−1

tp) and degW (g
(ki+1)
qu ) =

log(xki+1
· · · xkstu). Then the following holds.

degW (κkil
pq e

kil
pq ) = degW (κkil

pq ) + degW (ekilpq )

= degW (f (ki−1)
up ) + degW (τ kilpq ) + degW (g(ki+1)

qu )

= log(xk1 · · · xki−1
tp)− log(tu)

+ log(xkixltq)− log(tp)

+ log(xki+1
· · · xkstu)− log(tq))

= log(xk1 · · · xksxl)

Thus if the entry τ kilpq is a non-zero polynomial from T and the indeterminate hkil
pq has

a non-zero coefficient in Equation (5.11), then we get degW (κkil
pq e

kil
pq ) = log(Π).

Now let us summarize what we have until now. We start with a term

Π = xl1 · · · xls · xs+1 ∈ Tn.

Then we choose a variable xl from {xl1 , ...., xls , xs+1} and we let Π
xl

= xk1 · · · xks .

As a result we get Π = xk1 · · · xksxl (see (5.8)). For each indeterminate xi from

{xk1 , ...., xks , xl} there exists a generic multiplication matrix Ai and vice-versa. Thus

there is a bijection between terms in Tn and the products of generic multiplication

matrices. Then the term Π = xk1 · · · xks , xl corresponds to the product of the generic

multiplication matrices Ak1 · · · AksAl. Moreover, by Lemma 5.1.6, we have

degW (Trace(Ak1 · · · AksAl)) = degW (Trace(AlAk1 · · · Aks)) = log(Π),

whereAlAk1 · · · Aks−Ak1 · · · AksAl is the commutator [Ak1 · · · Aks ,Al]. Thus by Lemma

5.2.1, the polynomial

Trace(
s∑

i=1

Ak1 · · · Aki−1



hkil
11 . . . hkil

1µ
...

. . .
...

hkil
µ1 . . . hkil

µµ


Aki+1

· · · Aks) =
∑

16p,q6µ
16i<l6n

κkil
pq h

kil
pq ∈ K[C,H]

leads us to the element
∑

16p,q6µ
16i<l6n

κkil
pq e

kil
pq of the syzygy module Syz(T ), which is a

homogenous module with respect to the arrow grading that is of arrow degree log(Π).
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In the above equation, by substituting hkil
pq with τ kilpq , then we get

s∑

i=1

µ∑

u=1

eu(Ak1 · · · Aki−1



τ kil11 . . . τ kil1µ
...

. . .
...

τ kilµ1 . . . τ kilµµ


Aki+1

· · · Aks)e
tr
u = Trace([Ak1 · · · Aks ,Al]).

In other words, for the product Π and the distinguished variable xl, if we compute

Trace([Ak1 · · · Aks ,Al]) by letting

[Aki , Al] =



hkil
11 . . . hkil

1µ
...

. . .
...

hkil
µ1 . . . hkil

µµ


 , (5.16)

then we get
∑

16p,q6µ
16i<l6n

κkil
pq h

kil
pq which leads us to the syzygy module element

∑
16p,q6µ
16i<l6n

κkil
pq e

kil
pq .

By this way the syzygy module element
∑

16p,q6µ
16i<l6n

κkil
pq e

kil
pq can be computed which de-

pends on the distinguished variable xl and the term Π.

Definition 5.1.12. In the above setting, the syzygy of T (
∑

16p,q6µ
16i<l6n

κkil
pq e

kil
pq ) ∈ K[C]m

from Lemma (5.2.1) is called the trace syzygy of T with respect to the distin-

guished indeterminate xl and the term Π. We shall denote this trace syzygy by

TΠ,xl
.

Corollary 5.1.13. Let Π denote xα
i ∈ Tn and α ∈ N+. Then the trace syzygy TΠ,xi

is

(0, ..., 0) ∈ Kn.

Definition 5.1.14. A polynomial τ klpq from T is called a rewritable element with

respect to a trace syzygy if the component κkl
pq of TΠ,xl

is a non-zero constant from

the field K. A polynomial τ klpq from T is called a redundant if the polynomial τ klpq is in

the ideal 〈(T \ {τ klpq})〉.

Example 5.1.15. Let O denote the order ideal {1, x1} ⊂ K[x1, x2]. Its border is

∂O = {x2, x1x2, x
2
1}. We compute the vanishing ideal of the O-border basis scheme
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I(BO) with their arrow degrees by the help of the ApCoCoA package bbsmingensyz.

Arrow degree(1, 1) Arrow degree(2, 1)

τ 1211 = c13c21 − c12 τ 1212 = −c11c13 + c13c22 − c12c23

Arrow degree(0, 1) Arrow degree(1, 1)

τ 1221 = c21c23 + c11 − c22 τ 1222 = −c13c21 + c12

We let Π = x1x2 which corresponds to the product of the generic multiplication

matrices A1A2. (We will explain later why we choose Π that way.) Since we have

[A1,A2] = −[A2,A1], both x1 and x2 as the distinguished indeterminate will lead to

the same trace syzygy. Let x1 be the distinguished indeterminate and let us com-

pute the trace syzygy Tx1x2,x1 as we explained. First we compute the trace of the

commutator by using Equation (5.16).

Trace([A1,A2]) = Trace(

(
h12
11 h12

12

h12
21 h12

22

)
) = h12

11 + h12
2 .

Then the trace syzygy is Tx1x2,x1 = e1211 + e1222 From this equality follows that the

polynomials τ11 and τ22 are both rewritable elements. Only one of them is redundant.

In Example 5.1.15, which term from T2 should we choose to show τ 1212 is redundant?

In other words, how should we choose Π so that we can get all the redundant elements

in T ? The following proposition gives answers to our questions.

Proposition 5.1.16. Let O ⊂ Tn denote an order ideal. Let Ak1 , ...,Aks ,Al ∈
Matµ(K[C]) be generic multiplication matrices with respect to O, where s ∈ N+ and

k1, ..., ks, l ∈ {1, ..., n}. Let Π denote the term xk1 · · · xksxl ∈ Tn. Let τ klpq be a polyno-

mial from T , where k ∈ {k1, ..., ks}, l ∈ {1, ..., n}\{k1, ..., ks} and p, q ∈ {1, ..., µ}. Then
we have degW (τ klpq) = log(Π) if and only if the component κkl

pq of TΠ,xl
is a non-zero

constant.

Proof. This follows from [Huib09], Proposition 8.3.

Definition 5.1.17. Let τ klpq be a non-trivial polynomial from T (see Equation 2.6).

The polynomial τ klpq is called a standard polynomial if

degW (τ klpq) = log(xkxltq)− log(tp)
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has exactly one positive component. Otherwise, it is called a non-standard poly-

nomial. If the arrow degree vector has no negative entries, then it is said to be of

non-negative arrow degree. Otherwise, it is said to be of non-positive arrow

degree.

Example 5.1.18. (continues) Recall Example 5.1.15 where the vanishing ideal of

the O-border basis scheme I(BO) is generated by the following elements:

Arrow degree(1, 1) Arrow degree(2, 1)

τ11 = c13c21 − c12 τ12 = −c11c13 + c13c22 − c12c23

Arrow degree(0, 1) Arrow degree(1, 1)

τ21 = c21c23 + c11 − c22 τ22 = −c13c21 + c12

Since all the polynomials in T have the same upper index, we omit the upper index.

We want to find all the redundant and rewritable elements in T . Then by Proposition

5.1.16, we need to compute the trace syzygies whose arrow degrees are the same as

the arrow degrees of the elements of T . Recall that in Example 5.1.15 the trace syzygy

is Tx1x2,x1 = e11 + e22 for arrow degree (1, 1). From this equality follows that the

polynomials τ11 and τ22 are both rewritable elements of T .

Next we consider the arrow degree (0, 1). Then we have log(Π) = (0, 1) i.e., Π = x2.

By Corollary 5.1.13, we have TΠ,x2 = (0, ..., 0) ∈ Kn.

The remaining arrow degree is (2, 1). Then Π is x2
1x2 which corresponds to the

product of the generic multiplication matrices A1A1A2. By Lemma 5.1.2, we have the

following equations.

Trace([A2,A1]A1 +A1[A2,A1]) = 2Trace([A1,A2]A1)

= Trace([A1,A2]A1 +A2[A1,A1]).

Therefore choosing either x1 or x2 won’t change the trace syzygy. Let x1 be the distin-

guished indeterminate and let us compute the trace syzygy Tx2
1x2,x1

as we explained.

First we compute the trace of the commutator by using Equation (5.16).

Trace([A2
1,A2]) = Trace(

(
h12
11 h12

12

h12
21 h12

22

)
A1) = c13h

12
21 + c23h

12
22 + h12

12.

Hence the trace syzygy is Tx1x2,x1 = c13e
12
21 + e23h

12
22 + e1212. From this equality follows
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that the polynomial τ12 is rewritable by {τ21, τ22}. From the equality τ11 = −τ22 follows

that τ11 and τ12 are redundant. Then the ideal I(BO) is generated by the set {τ21, τ22}.

Lemma 5.1.19. Let Π denote the term xα
i x

β
j ∈ Tn, where α, β ∈ N+. Then the trace

syzygy TΠ,xi
is the same as the trace syzygy TΠ,xj

.

Proof. If the exponents of xi and xj are both 1 i.e., Π is xixj, then the claim follows

from the equality [Ai,Aj] = −[Aj,Ai]. Assume we have α, β > 1. If we choose xi as

the distinguished variable, then by Lemma 5.1.2 we have the following.

[Ai · · · AiAj · · · Aj,Ai] = (Ai · · · Ai[Ai,Aj]Aj · · · Aj) (5.17)

+(Ai · · · AiAj[Ai,Aj]Aj · · · Aj) + · · ·
+(Ai · · · AiAj · · · Aj[Ai,Aj])

If we we choose xj as the distinguished variable, then by Lemma 5.1.2 we have the

following.

[Ai · · · AiAj · · · Aj,Aj] = ([Aj,Ai]Ai · · · AiAj · · · Aj) (5.18)

+(Ai[Aj,Ai]Ai · · · Ai · Aj · · · Aj) + · · ·
+(Ai · · · Ai[Aj,Ai]Aj · · · Aj)

Since the trace is invariant under the cyclic permutation of the matrices, the traces

of the matrices in the Equation (5.18) and in Equation (5.17) are the same. Thus we

have TΠ,xi
= TΠ,xj

.

Remark 5.1.20. Proposition 5.1.16 helps us to determine the rewritable elements (see

Definition 5.1.12) with respect to a trace syzygy. First we recall how one can compute

the arrow degree of an element of T . Let τ klpq be polynomial in T , where k, l ∈ {1, ..., n}
and p, q ∈ {1, ..., µ}. Then we have

degW (τ klpq) = log(xkxltq)− log(tp).

By Proposition 5.1.16, the component κkl
pq of TΠ,xl

is a non-zero constant if and only if

log(Π) = (log(xkxltq) − log(tp)) = degW (τ klpq). Since Π is a product of indeterminates,

Proposition 5.1.16 implies that we should choose every tp, tq ∈ O such that the vector

log(Π) is in Nn. Thus the only rewritable polynomials with respect to trace syzygies

are the ones that are of non-negative arrow degrees (see Definition 5.1.17). Let τ klpq ∈ T
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be a redundant polynomial of non-positive arrow degree. Even if τ klpq is redundant, the

component κkl
pq of a trace syzygy is never a non-zero constant.

Moreover, at least two components of log(Π) must be larger than zero, since the

commutator operation needs at least two different generic multiplication matrices for a

non-zero result. Thus for a non-standard polynomial from τ klpq ∈ T with non-negative

arrow degree the trace syzygy contains a non-zero constant κkl
pq. Therefore by finding

the non-standard, non-negative arrow degrees of the elements of T , one can compute

every rewritable element with respect to trace syzygies.

Definition 5.1.21. Let O ⊂ P be an order ideal. Let BO denote the O-border basis

scheme. Let o denote the monomial point (0, ..., 0) ∈ BO.

a) We call the generic multiplication matrices we get by evaluating (c11, ...., cµν) at

o = (0, ..., 0) ∈ BO as simplified generic multiplication matrices. We denote

the simplified generic multiplication matrix we get from a generic multiplication

matrix A by A′.

b) If we evaluate the polynomials κkl
pq ∈ K[C] at o, which is a component of the trace

syzygy TΠ,xl
in Equation (5.8) and if we let T′

Π,xl
denote the result of this process,

then the non-zero components of T′
Π,xl

will indicate the rewritable elements with

respect to TΠ,xl
. We call T′

Π,xl
as simplified trace syzygy of T .

In particular, one can compute T′
Π,xl

without computing the whole trace syzygy

TΠ,xl
. Recall that we started our computation of TΠ,xl

with

Trace(
s∑

i=1

Ak1 · · · Aki−1



hkil
11 . . . hkil

1µ
...

. . .
...

hkil
µ1 . . . hkil

µµ


Aki+1

· · · Aks) =
∑

16p,q6µ
16i<l6n

κkil
pq h

kil
pq ∈ K[C,H].

(5.19)

In Equation (5.19) by replacing the multiplication matrices

Ak1 , ...,Aki−1
,Aki+1

, ...,Aks

with the simplified multiplication matrices without changing the entries from K[H], one

can easily find T′
Π,xl

. The advantage we get by using simplified generic multiplication

matrices is as follows. If the computation of the trace syzygy TΠ,xl
cannot be performed

or takes too long by computer, then computing T′
Π,xl

will give us the rewritable elements

with respect to TΠ,xl
faster. In the next example we compute the trace syzygies of the
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defining equations of box border basis scheme BB(2,2). The trace syzygies of T give all

the redundant elements from T .

Example 5.1.22. Let P denote the polynomial ring K[x1, x2]. Let B(2, 2) denote the

order ideal {1, x1, x2, x1x2}. The border of B(2, 2) is ∂B = {x2
2, x

2
1, x1x

2
2, x

2
1x2}, so that

in our terminology we have t1 = 1, t2 = x1, t3 = x2, t4 = x1x2, b1 = x2
2, b2 = x2

1, b3 =

x1x
2
2 and b4 = x2

1x2. The arrow degrees of the elements of T (see Definition 5.1.17) can

be calculated as d = (d1, d2) = degW (xytq)−degW (tp). By using the ApCoCoA package

bbsmingensyz we compute the elements of T with their arrow degrees.

Arrow degree(2, 1)

τ12 = c11c32 + c13c42 − c14

τ34 = c23c32 − c31c34 − c34c43 + c33c44 − c14

Arrow degree(1, 2)

τ13 = c12c21 + c14c41 − c13

τ24 = c22c23 − c21c34 − c24c43 + c23c44 + c13

Arrow degree(2, 2)

τ14 = c12c23 − c11c34 − c14c43 + c13c44

Arrow degree(1, 1)

τ22 = c21c32 + c23c42 − c24

τ33 = c21c32 + c34c41 − c33

τ44 = c34c41 − c23c42 − c24 + c33

Arrow degree(0, 2)

τ23 = c21c22 + c24c41 + c11 − c23

Arrow degree(2, 0)

τ32 = c13c32 + c33c42 + c12 − c34

Arrow degree(1, 0)

τ42 = c32c41 + c42c43 + c22 − c44

Arrow degree(0, 1)

τ43 = c21c42 + c41c44 + c31 − c43

Note that T has non-standard polynomials which have non-negative arrow degree and

there are no polynomials of non-positive arrow degrees.The non-standard arrow degrees
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are (1, 1), (2, 1), (1, 2) and (2, 2). For every non-standard arrow degree, say d, we

compute the corresponding trace syzygy.

i) d = (1, 1) : The arrow degree d is equal to log(x1x2). Then let Π denote the term

x1x2. By Lemma 5.1.1 we have [A1,A2] = −[A2,A1]. Then we can choose x1 as

the distinguished indeterminate and compute

Trace([A1,A2]) = τ22 + τ33 + τ44 = 0.

Hence the trace syzygy is Tx1x2,x1 = e22 + e33 + e44. The polynomial τ44 is a

rewritable element with respect to the trace syzygy Tx1x2,x1 . It is rewritable by

τ33 and τ22, since we have

τ44 = τ22 − τ33 (5.20)

ii) d = (1, 2) : The degree d is equal to log(x1x
2
2). Let Π denote the term x1x

2
2. Let

us choose first x1 as the distinguished variable.

Trace([A1,A2]A2 +A2[A1,A2]) = 2Trace(A2[A1,A2])

= 2Trace([A1,A2]A2)

= 2(c11h22 + c21h32 + c41h34 + c13h41

+c23h42 + c33h43 + h13 + h24).

By using Equation (5.20) we get the following trace syzygy.

Tx1x
2
2,x1

= c11e22 + c21e32 + c41e34 + c13e41

+c23e42 + c33e43 + e13 + e24.

Note that if we choose x2 as the distinguished variable, then we will have the

same trace syzygy as Tx1x
2
2,x1

as the following equation shows.

Trace([A2,A1]A2 +A1[A2,A2]) = Trace(A2[A1,A2])

After the next case, we give the redundant element of T , which we get from this

step.
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iii) d = (2, 1) : The arrow degree d is equal to log(x2
1x2). Let Π denote the term x2

1x2.

We choose x1 as the distinguished variable.

Trace([A1,A2]A1 +A2[A1,A1]) = Trace([A1,A2]A1)

= 2(c22h22 + c32h23 + c42h24 + c24h42

+c34h43 + c44h44 + h12 + h34).

By using Equation (5.20), we get the following trace syzygy.

Tx2
1x2,x1

= (c22 + c44)e22 + c32e23 + c42e24 + c24e42

+c34e43 − c44e44 + e12 + e34.

Note that if we choose x2 as the distinguished variable, then we will have the

same trace syzygy as the following equation shows:

Trace([A2,A1]A1 +A1[A2,A1]) = 2Trace([A1,A2]A1).

We have the following trace syzygies of T .

Tx1x2,x1 = e22 + e33 + e44 (5.21)

Tx1x
2
2,x1

= c11e22 + c21e32 + c41e34 + c13e41 (5.22)

+c23e42 + c33e43 + e13 + e24.

Tx2
1x2,x1

= (c22 + c44)e22 + c32e23 + c42e24 + c24e42 (5.23)

+c34e43 − c44e44 + e12 + e34

From Syzygy (5.21), it follows that τ22, τ33, τ44 are all rewritable and one of them is

redundant. Since κ33 is zero in both Tx1x
2
2,x1

,Tx2
1x2,x1

, we can say τ33 is redundant.

From Syzygy (5.22), it follows that τ13 and τ24 are rewritable. Since κ13 is zero

in Syzygies (5.21) and (5.23), τ13 is redundant. Finally, from Syzygy (5.23), it

follows that τ12 and τ34 are rewritable. Since κ12 is zero in the Syzygies (5.21)

and (5.22), τ12 is redundant. Thus the polynomials τ12, τ13 and τ33 are redundant.

iv) d = (2, 2) : The arrow degree d is equal to log(x2
1x

2
2). Let Π denote the term x2

1x
2
2.
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The trace is invariant under cyclic permutations. Then by Lemma 5.1.2, we have

Trace([A1A1A2,A2] = Trace([A2,A1]A1A2 +A1[A1,A2]

= Trace(A1[A1,A2]A2 +A1A2[A1,A2]

= Trace([A1A2A2,A1]

Thus choosing either x1 or x2 will lead to the same trace syzygy. Let x1 be the

distinguished variable. In this case let us compute the trace syzygy by using the

simplified multiplication matrices.

Trace(A′
1[A1,A2]A′

2 +A′
1A′

2[A1,A2]) = τ14.

The simplified trace syzygy is T′
Π,x1 = e14. Thus τ14 is the rewritable ele-

ment with respect to Tx2
1x

2
2,x1

. Since the arrow degree degW (τ14) is larger than

degW (τ44), degW (τ12) and degW (τ13) with respect to the ordering <Lex and since

the indeterminates from K[C] have the arrow degree vector with at least one pos-

itive component, κ14 is not a component of Syzygies (5.21), (5.22) and (5.23).

Thus without computing the whole syzygy TΠ,x1 , we can say that τ14 is redun-

dant.

Proposition 5.1.23. Let O ⊂ T2 be an order ideal. Then BO is an ideal theoretic

complete intersection.

Proof. This follows from [Huib09], Theorem 11.24.

Example 5.1.24. (continues) We continue with Example 5.1.22. By Corollary

4.2.17 the (BO)m is smooth of dimension nµ = 8. From i, ii, iii and iv, it follows that

I(BO) can be generated by 8 = µν − nµ polynomials which is the co-dimension of BO.

Thus BO is an ideal theoretic complete intersection.

Remark 5.1.25. Let O ⊂ T2 be an order ideal. In [Huib09] an ordering on the set

arrow degrees

{(d1, d2) | degW (τpq) = (d1, d2)) d1, d2 ∈ N+, τpq ∈ T }

is defined in order to find the exact redundant generators of I(BO). Let m denote the

monomial x1x2tq and let tp and tq be terms from the order ideal. The main idea of

this ordering process depends on the fact that there exist a power s ∈ N+ such that
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trs = xs
2 is in O and there exists a term tq′ ∈ O such that a non-standard arrow degree

has the following property.

(d1, d2) = log(x1x2tq)− log(tp) = log(x1x2tq′)− log(trs)

By using this property, in [Huib09] Proposition 5.1.23 is proved. This is a property

that only holds in special cases. For instance, in Section 5.4 we show that for the box

border basis scheme BB(2,2,2) where B(2, 2, 2) ⊂ T3, this does not hold.
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5.2 Jacobi Identity Syzygies

Let A,B,D ∈ Matm(K[C]) be square matrices, where m ∈ N+. Then the equality

[D, [A,B]] + [A, [D,B] + [B, [A,D]] = 0 is called the Jacobi identity. Let BO denote

an O-border basis scheme and let T be the set of defining equations of BO. As in

the previous subsection, we first reprove some more or less well-known properties of

the generic multiplication matrices with respect to the Jacobi identity, then we give a

definition of a Jacobi identity syzygy of T . Recall that

ϕ :
⊕

16p,q6µ
16i<l6n

K[C](−dklpq) −→ I(BO) (5.24)

eklpq 7−→ τ klpq

is a surjective graded K[C]-module morphism. The kernel of the map ϕ is the syzygy

module Syz(T ). The syzygy module Syz(T ) is a homogenous module with respect to

the arrow grading. Moreover, let the set H denote a set of further indeterminates

{h12
11, ..., h

kl
pq, ..., h

(n−1)n
µµ }, where the cardinality of the set H is m. The map

θ : K[C]m −→ K[C][h12
11, ..., h

kl
pq, ..., h

(n−1)n
µµ ] = K[C][H]

eklpq 7−→ hkl
pq

is an injective K[C]-module morphism. Let O ⊂ Tn denote an order ideal. Let

Ak,Al,Am ∈ Matµ(K[C]) be generic multiplication matrices with respect to O, where

k, l,m ∈ {1, ..., n}. Then the matrix

[Ak,




hml
11 . . . hml

1µ
...

. . .
...

hml
µ1 . . . hml

µµ


] + [Al,




hmk
11 . . . hmk

1µ
...

. . .
...

hmk
µ1 . . . hmk

µµ


] + [Am,




hkl11 . . . hkl1µ
...

. . .
...

hklµ1 . . . hklµµ


] (5.25)

is an element of Matµ(K[C,H]). For i, j ∈ {1, ..., µ} in position (i, j) of this matrix is

a polynomial in K[C,H], which is as follows.

ei[Ak,




hml
11 . . . hml

1µ
...

. . .
...

hml
µ1 . . . hml

µµ


]etrj + etri [Al,




hmk
11 . . . hmk

1µ
...

. . .
...

hmk
µ1 . . . hmk

µµ


]etrj + ei[Am,




hkl11 . . . hkl1µ
...

. . .
...

hklµ1 . . . hklµµ


]etrj

(5.26)
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For s ∈ {k, l,m}, we let As =



f
(s)
11 . . . f

(s)
1µ

...
. . .

...

f
(s)
µ1 . . . f

(s)
µµ


 , where f

(s)
pq is either a constant from

{0, 1} or an indeterminate from C. Then Polynomial (5.26) is as follows.

(f
(l)
i1 . . . f

(l)
iµ )



hmk
1j
...

hmk
µj


− (hmk

i1 . . . hmk
iµ )



f
(l)
1j
...

f
(l)
µj


+ (f

(k)
i1 . . . f

(k)
iµ )



hml
1j
...

hml
µj


−

(hml
i1 . . . hml

iµ )



f
(k)
1j
...

f
(k)
µj


+ (f

(m)
i1 . . . f

(m)
iµ )



hlk
1j
...

hlk
µj


− (hlk

i1 . . . h
lk
iµ)



f
(m)
1j
...

f
(m)
µj


 (5.27)

Then Polynomial (5.27) is equal to the following polynomial.

µ∑

p=1

(f
(l)
ip h

mk
pj − f

(l)
pj h

mk
ip ) + (f

(k)
ip hml

pj − f
(k)
pj hml

ip ) + (f
(m)
ip hkl

pj − f
(m)
pj hkl

ip) (5.28)

Let us denote the K[C]-coefficient of an indeterminate hmk
pq ∈ H as ρmk

pq ∈ K[C]. Then
Polynomial (5.28) is as follows.

∑

16p,q6µ

ρmk
pq h

mk
pq + ρml

pq h
ml
pq + ρklpqh

kl
pq (5.29)

The inverse image of Polynomial (5.29) under the map θ is

∑

16p,q6µ

ρmk
pq e

mk
pq + ρml

pq e
ml
pq + ρklpqe

kl
pq. (5.30)

Then under the map ϕ, we have

ϕ(
∑

16p,q6µ

ρmk
pq e

mk
pq + ρml

pq e
ml
pq + ρklpqe

kl
pq) =

∑

16p,q6µ

ρmk
pq τ

mk
pq + ρml

pq τ
ml
pq + ρklpqτ

kl
pq . (5.31)

Lemma 5.2.1. In the above setting, the vector
∑

16p,q6µ ρ
mk
pq e

mk
pq + ρml

pq e
ml
pq + ρklpqe

kl
pq is

an element of the syzygy module Syz(T ).

Proof. We show that both sides in Equation (5.31) are 0. Recall Equation (5.28). We

substitute hkil
pq with τ kilpq in the polynomial

∑µ

p=1(f
(l)
ip h

mk
pj −f

(l)
pj h

mk
ip )+(f

(k)
ip hml

pj −f
(k)
pj hml

ip )+
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(f
(m)
ip hkl

pj − f
(m)
pj hkl

ip). Then we have

µ∑

p=1

(f
(l)
ip τ

mk
pj − f

(l)
pj τ

mk
ip ) + (f

(k)
ip τml

pj − f
(k)
pj τml

ip ) + (f
(m)
ip τ klpj − f

(m)
pj τ klip ). (5.32)

Polynomial (5.32) is in position (i, j) of the following matrix.

[Ak,



τml
11 . . . τml

1µ
...

. . .
...

τml
µ1 . . . τml

µµ


] + [Al,



τmk
11 . . . τmk

1µ
...

. . .
...

τmk
µ1 . . . τmk

µµ


] + [Am,



τ kl11 . . . τ kl1µ
...

. . .
...

τ klµ1 . . . τ klµµ


]

= [Ak, [Al,Am]] + [Al, [Ak,Am]] + [Am, [Ak,Al]] (5.33)

The Jacobi identity [Ak, [Al,Am]] + [Al, [Ak,Am]] + [Am, [Ak,Al]] is a zero matrix.

Hence the polynomial
∑µ

p=1(f
(l)
ip τ

mk
pj −f

(l)
pj τ

mk
ip )+(f

(k)
ip τml

pj −f
(k)
pj τml

ip )+(f
(m)
ip τ klpj−f

(m)
pj τ klip )

which is in the (i, j) position of [Ak, [Al,Am]]+[Al, [Ak,Am]]+[Am, [Ak,Al]] is 0. Then

we have ϕ(
∑

16p,q6µ ρ
mk
pq e

mk
pq +ρml

pq e
ml
pq +ρklpqe

kl
pq) =

∑
16p,q6µ ρ

mk
pq τ

mk
pq +ρml

pq τ
ml
pq +ρklpqτ

kl
pq = 0.

Thus the vector
∑

16p,q6µ ρ
mk
pq e

mk
pq + ρml

pq e
ml
pq + ρklpqe

kl
pq is an element of the syzygy module

Syz(T ).

Definition 5.2.2. In the setting above, the vector
∑

16p,q6µ ρ
mk
pq e

mk
pq +ρml

pq e
ml
pq +ρklpqe

kl
pq ∈

Syz(T ) from Lemma (5.2.1) is called a Jacobi identity syzygy T and it is denoted

by J klm
ij .

Remark 5.2.3. We note that for the sake of simplicity instead of calling the Jacobi

identity syzygy of the tuple whose elements are the elements of T , we call it the Jacobi

identity syzygy of T . If it is clear from the context which O-border basis scheme is

used, then we simply call it Jacobi identity syzygy.

Definition 5.2.4. In the setting above, let J klm
ij be a Jacobi identity syzygy of T ,

where k, l,m are distinct indices from {1, ..., n} and i, j ∈ {1, ..., µ}. A polynomial τ klpq
from T is called rewritable with respect to the Jacobi identity syzygy of T , J klm

ij if

ρklpq is a non-zero constant component of J klm
ij .

Example 5.2.5. Let O = {1, x1, x
2
1} ⊂ K[x1, x2, x3] be the order ideal. The border

is ∂O = {x3, x2, x3x1, x2x1, x3x
2
1, x2x

2
1, x

3
1} and with respect to our notation we have

t1 = 1, t2 = x1, t3 = x2
1, b1 = x3, b2 = x2, b3 = x3x1, b4 = x2x1, b5 = x3x

2
1, b6 = x2x

2
1
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and b7 = x3
1. We compute the Jacobi identity syzygy J 123

11 with the ApCoCoA package

bbsmingensyz and the result is as follows.

J 123
11 = −c21e

12
12− c31e

12
13+ c13e

12
21+ c15e

12
31− c22e

13
12− c32e

13
13+ c14e

1321+ c16e
13
31+ c17e

23
31− e2312

The polynomial τ 2312 is a rewritable polynomial. In Section ?? we show that it is

redundant, as well.

Lemma 5.2.6. In the above setting, the vector
∑

16p,q6µ ρ
mk
pq e

mk
pq + ρml

pq e
ml
pq + ρklpqe

kl
pq has

the arrow degree degW (
∑

16p,q6µ ρ
mk
pq e

mk
pq + ρml

pq e
ml
pq + ρklpqe

kl
pq) = log(xkxlxmtj)− log(ti).

Proof. Recall that the map ϕ in (5.24) is homogenous and we have degW (eklpq) =

degW (τ klpq). Let As be a generic multiplication matrix from {Ak,Al,Am}. By Lemma

3.2.4, the generic multiplication matrix As is a homogenous matrix. For the entry in

position (i, p) of As we have degW (f
(s)
ip ) = log(xstp)− log(ti). For the entry in position

(p, j) of As we have degW (f
(s)
pj ) = log(xstj)− log(tp). Then for each p ∈ {1, ..., µ}, the

following holds.

degW (f
(l)
ip e

mk
pj ) = degW (f

(l)
ip ) + degW (emk

pj )

= log(xltp)− log(ti) + log(xmxktj)− log(tp) (5.34)

= log(xkxlxmtj)− log(ti)

= log(xltj)− log(tp) + log(xmxktp)− log(ti) = degW (f
(l)
pj e

mk
ip )

Similarly, we have the following equality.

degW (f
(k)
ip eml

pj ) = degW (f
(k)
pj eml

ip ) = degW (f
(m)
ip eklpj)

= degW (f
(m)
pj eklip)) = log(xkxlxmtj)− log(ti).

Therefore we have the following equations which gives the desired result.

degW (
∑

16p,q6µ

ρmk
pq e

mk
pq + ρml

pq e
ml
pq + ρklpqe

kl
pq)

= degW (

µ∑

p=1

(f
(l)
ip e

mk
pj − f

(l)
pj e

mk
ip ) + (f

(k)
ip eml

pj − f
(k)
pj eml

ip ) + (f
(m)
ip eklpj − f

(m)
pj eklip))

= log(xkxlxmtj)− log(ti)

.
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Definition 5.2.7. Let O ⊂ Tn denote an order ideal. Let Ak,Al,Am ∈ Matµ(K[C])
be generic multiplication matrices with respect to O, where k, l,m ∈ {1, ..., n}. Let
A′

k,A′
l,A′

m ∈ Matµ(K) be the corresponding simplified generic multiplication matrices.

Then the Jacobi identity syzygy J klm
ij we compute by using simplified generic multi-

plication matrices is called simplified Jacobi identity syzygy and it is denoted by

Jklm
ij .

Simplified Jacobi identity syzygies indicate the rewritable polynomials in T as the

next example shows.

Example 5.2.8. (continues) Recall Example 5.2.5 whereO = {1, x1, x
2
1} ⊂ K[x1, x2, x3].

We compute the Jacobi identity by using the simplified generic multiplication matrices

with the ApCoCoA package bbsmingensyz.

J123 = [A′
1, [A2,A3]] + [A′

2, [A1,A3]] + [A′
3, [A1,A3]]

=




−h23
12 −h23

13 0

h23
11 − h23

22 h23
12 − h23

23 h23
13

h23
21 − h23

32 h23
22 − h23

33 h23
23




Hence the polynomials τ 2311 , τ
23
12 , τ

23
13 , τ

23
21 , τ

23
22 , τ

23
32 , τ

23
31 , τ

23
32 , τ

23
33 are rewritable polynomials.
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5.3 Segment Border Basis Schemes

Let O denote the set {1, x1, ..., x
µ
1} ⊂ K[x1, ..., xn]. Then O is called the segment order

ideal and BO is called the segment border basis scheme (see Section 2.5). We let T
denote the set of defining equations of BO. In this chapter we compute Jacobi identity

and trace syzygies of the defining equations of a segment border basis scheme. Besides,

we introduce a new algebraic method to compute the remaining redundant generators

of the vanishing ideal of the segment border basis scheme (see Propositions 5.3.9 and

5.3.14) that cannot be computed by using trace and Jacobi identity syzygies of T .

Our aim in this section is to prove that segment border basis scheme is an ideal-

theoretic complete intersection. We proceed in the following way: First we compute

redundant polynomials in T via Jacobi identity syzygies of T and then we let T ′

denote the set of defining equations of BO without the redundant elements that we

computed. Then we compute the redundant elements of T ′ via the trace syzygies of T ′

and we let T ′′ denote the set of T ′ without the redundant elements that we computed.

Finally, we use our method to compute the redundant elements of T ′′ and show that the

vanishing ideal of the given segment border basis scheme can be generated by µν −nµ

polynomials, where µν is the dimension of the ring K[C], n is the dimension of the

polynomial ring K[x1, ..., xn], and µ is the number of elements in the order ideal.

In Section 5.3.1 we start our computation with an O-border basis scheme where

O = {1, x1, ..., x
µ−1
1 } ⊂ K[x1, x2, x3] by following our strategy and we prove that the

vanishing ideal of the O-border basis scheme can be generated by µν−nµ polynomials.

In Section 5.3.2 we generalize the results of Section 5.3.1 to the O-border basis

scheme where O = {1, x1, ..., x
µ−1
1 } ⊂ K[x1, ..., xn]. In other words, we generalize this

property for an arbitrary segment border basis scheme and we show that the generating

set of the vanishing ideal of an arbitrary segment border basis has exactly µν − nµ

polynomials (see Proposition 5.3.14 and Corollary 5.3.15).

In [Ro09], Corollary 3.13 it is shown that a segment border basis is isomorphic to

an affine space of dimension nµ. Hence we show that an arbitrary segment border basis

scheme is an ideal theoretic complete intersection (see Corollary 5.3.17). This is not

a known property of segment border basis schemes. In Chapter 6 we give a different

method to show that given border basis scheme is an affine space and we verify the

result from [Ro09], Corollary 3.13.
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5.3.1 Segment Order Ideals in T3

Let O ⊂ K[x1, ...., xn] be a segment order ideal. Let the number of the terms in O
be µ and the number terms in ∂O be ν. Let T denote the generating set 〈τ klpq | q, p =

1, ..., µ, k, l ∈ {1, ..., n}〉 of the vanishing ideal of the segment border basis scheme

BO. This section is dedicated to show that some of the elements of T are redundant

and in fact the vanishing ideal of an arbitrary segment border basis scheme can be

generated by the set 〈τ 1kpq | p = 1, ..., µ, q = 1, ..., µ − 1 k ∈ {2, ..., n}〉, which has

exactly µν − nµ elements. We shall denote this set Tseg. We start with the order ideal

O = {1, x1, ..., x
n
1} ⊂ K[x1, x2, x3] and generalize to a segment border basis scheme in

K[x1, ..., xn].

Let O denote the order ideal {1, x1, ...., x
µ−1
1 } ⊂ T3. Then its border is ∂O =

{x3, x2, x3x1,

x2x1, x3x
2
1, x2x

2
1, ..., x

µ
1} and with respect to our notation we have t1 = 1, t2 = x1, ..., tµ =

xµ−1
1 , b1 = x3, b2 = x2, b3 = x3x1, b4 = x2x1, b5 = x3x

2
1, b6 = x2x

2
1, ..., bν = xµ

1 . Recall

that for each border term bi we have ci = (c1i, ..., cµi). The generic multiplication ma-

trices are as follows.

A1 = (etr2 |, · · · , | etrm | ctr2µ+1) (5.35)

A2 = (ctr2 | ctr4 |, · · · , | ctr2µ) (5.36)

A3 = (ctr1 | ctr3 |, · · · , | ctr2µ−1) (5.37)

Remark 5.3.1. The entries ofA2 andA3 are from C\{c1 2µ−1, ..., cµ 2µ−1}. In particular,

±1 and 0 are not among the entries of A2 and A3.

Lemma 5.3.2. The elements of the set {τ 23ij | i = 1, ..., µ−1, j = 1, ..., µ} are redundant

generators of the vanishing ideal I(BO). That is, if we let T ′ = {τ 12pq , τ 13pq , τ 23µ−1 q, | q, p =

1, ..., µ}, then the vanishing ideal I(BO) is generated by T ′.

Proof. We compute the Jacobi identity matrix.

J
123 = [A3, [A1,A2]] + [A2, [A1,A3]] + [A1, [A2,A3]]

= [A3,




h1211 . . . h121µ
...

. . .
...

h12µ1 . . . h12µµ


] + [A2,




h1311 . . . h131µ
...

. . .
...

h13µ1 . . . h13µµ


] + [A1,




h2311 . . . h231µ
...

. . .
...

h23µ1 . . . h23µµ


]

By considering the generic multiplication matrix A1 (see (5.35)), we can deduce that
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the Jacobi identity matrix has the following form.

J
123 = [A3,




h1211 . . . h121µ
...

. . .
...

h12µ1 . . . h12µµ


] + [A2,




h1311 . . . h131µ
...

. . .
...

h13µ1 . . . h13µµ


] (5.38)

+




c1νh
23
µ1 . . . c1νh

23
µµ−1 (

∑µ
i=1−ciνh

23
1 i + c1νh

23
µµ)

...
. . .

...
...

cµνh
23
µ 1 . . . cµνh

23
µµ−1 (

∑µ−1
i=1 −ci νh

23
µ i


 (5.39)

+




h2312 . . . h231p . . . h231µ 0

h2311 − h2322 . . . h231 p−1 − h232 p . . . h231µ−1 − h232µ h231µ
...

. . .
...

. . .
...

...

h23µ−1 1 − h23µ2 . . . h23µ−1 p−1 − h23µ p . . . h23µ−1µ−1 − h23µµ h23µ−1µ




(5.40)

As we showed in Equations (5.36) and (5.37) all entries of the matrices A3 and A2 are

from the set {c11, ..., c1µ−1, ...., c1ν−1, ...., cµ ν−1}. Hence the entries of Matrices (5.38) and

(5.39) are polynomials of degree larger than 1. Additionally, only the entries of Matrices

(5.39) and (5.40) are polynomials with the top index (23). Since we want to show that

the set of the polynomials {τ 23ij | i = 1, ..., µ− 1, j = 1, ..., µ} is redundant, we focus on

the first µ − 1 columns of Matrix (5.40) and examine the following Jacobian identity

syzygies of T . We consider the first row of Matrix (5.40). For each k ∈ {1, .., µ − 1}
we have the following Jacob identity syzygy of T .

J 123
1k =

∑

16q6µ

ρ121qe
12
1q −

∑

16p6µ

ρ12pke
12
pk +

∑

16q6µ

ρ131qe
13
1q −

∑

16p6µ

ρ13pke
13
pk + c1νe

23
µk + e231k+1 (5.41)

Hence for each k ∈ {1, .., µ− 1} the polynomial τ 231 (k+1) is rewritable as follows.

τ 231k+1 = −(
∑

16q6µ

ρ121qτ
12
1q −

∑

16p6µ

ρ12pkτ
12
pk +

∑

16q6µ

ρ131qe
13
1q −

∑

16p6µ

ρ13pkτ
13
pk + c1ντ

23
µk) (5.42)

We focus on the rest of the rows of Matrix (5.40). If we let l ∈ {2, ..., µ}, then from

matrix J123, for each k and l we get the following Jacobi identity syzygy.

J 123
lk =

∑

16q6µ

ρ12lq e
12
lq −

∑

16p6µ

ρ12pke
12
pk +

∑

16q6µ

ρ13lq e
13
lq −

∑

16p6µ

ρ13pke
13
pk + clνe

23
µk + e23l−1k − e23lk+1

(5.43)

Hence for each index l ∈ {2, .., µ− 1} and k ∈ {1, .., µ− 1}, the polynomials τ 23l (k+1) are
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rewritable as follows.

τ 23l−1 k−τ 23l k+1 = −(
∑

16q6µ

ρ12lq τ
12
lq −

∑

16p6µ

ρ12pkτ
12
pk+

∑

16q6µ

ρ13lq τ
13
lq −

∑

16p6µ

ρ13pkτ
13
pk+clντ

23
µk) (5.44)

From Equations (5.42) and (5.44) follows that τ 2311 , ..., τ
23
µ−1µ are rewritable. Moreover,

ρ2311, ..., ρ
23
µ−1µ are either 0 or constants in the Jacobi identity syzygies. Thus the elements

of the set {τ 2311 , ..., τ 23µ−1µ} are redundant and contained in the ideal generated by the

set T ′ = {τ 12ij , τ 13ij, τ 23µ j | i, j = 1, .., µ}.

Remark 5.3.3. Note that by Lemma 5.3.2, we can not conclude whether τ 23µk is re-

dundant of not where k ∈ {1, ..., µ}.

Lemma 5.3.4. Let O denote the segment order ideal {1, x1, ..., x
µ−1
1 } ∈ K[x1, ..., xn].

Let K[C] be the polynomial ring where C = {c11, ..., cµν}. The arrow degree vector of

each cij ∈ C has at least one positive component.

Proof. The border of the order ideal O is ∂O = {x3, x2, x3x1, x2x1, x3x
2
1, x2x

2
1, ..., x

µ
1}.

Let cij be an indeterminate in C where degW (cij) = log(bj)− log(ti) = (d1, ..., dn) ∈ Zn.

As a result of the shape of the order ideal and its border, for each di ∈ {d2, ..., dn}
we have di > 0 and there exists at least one index ∈ {1, ..., n} such that dk > 0. Let

g ∈ K[C] be a homogenous polynomial of the arrow degree (u1, ..., un). Then for each

uk ∈ {u2, ..., un}, we have uk > 0. If we have u1 < 0, then there exists at least one

indeterminate, say cij ∈ C with the arrow degree (d1, .., dk, ..., dn), such that cij | c,
where c ∈ supp(g), where d1 < 0 and dk > 0. Since none of the indeterminates in C
has a negative entry in the kth component of their arrow degree, uk > 0 follows.

Remark 5.3.5. We use the term ordering Lex with x1 >Lex ... >Lex xn.

Lemma 5.3.6. Let O denote the segment order ideal {1, x1, ..., x
µ−1
1 } ∈ K[x1, ..., xn].

Let τ 1kω q and τ 1kp q be non-standard polynomials from T ′ with non-negative arrow degrees

where τ 1kp q 6= τ 1kωµ and degW (τ 1kp q) >Lex degW (τ 1kωµ). If there exists a term Π such that

log(Π) = degW (τ 1kωµ), then the entry κ1k
p q of the trace syzygy TΠ,x1 is 0.

Proof. We have degW (τ 1kp q) >Lex degW (τ 1kωµ). Then by Proposition 5.1.16, the entry κ1k
p q

of the trace syzygy TΠ,x1 is not a constant i.e., it is either 0 or a polynomial from K[C].
Suppose for contradiction, it is a non-zero polynomial from K[C]. By Lemma 5.1.6, the

polynomial κ1k
pqτ

1k
pq + τ 1kωµ is homogenous with respect to the arrow grading and has the

same arrow degree as log(Π) = log(xµ−ω+1
1 xk). By Corollary 3.2.7, the arrow degree of
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τ 1kp q is log(x1xktq)− log(tq). As a consequence of the shape of the order ideal we get

deg(τ 1kp q) = log(x1xktq)− log(tq) = log(xq
1xk)− log(xq−1

1 ) = log(xq−p+1
1 xk).

Since the polynomial τ 1kp q is a non-standard polynomial with the non-negative arrow

degree, we have 0 < (q − p+ 1) < µ. Therefore we have

degW (κ1k
p q) = log(Π)− degW (τ 1kp q)

= log(xµ−ω+1
1 xk)− log(xq−p+1

1 xk)

= (µ− ω − q + p, 0, ..., 0)

By ordering the following arrow degrees with respect to Lex where x1 > x2 > ... > xn,

we get

degW (τ 1kp q) >Lex degW (τ 1kωµ),

we get the inequality q − p+ 1 > µ− ω + 1 i.e., µ− ω − q + p < 0, where κ1k
p q ∈ K[C].

This contradicts to Lemma 5.3.4, which states that in every arrow degree vector of a

homogenous polynomial from K[C] there exists at least one entry in the arrow degree

vector that is larger than 0. Thus the entry κ1k
p q is 0.

Proposition 5.3.7. Let O denote the segment order ideal {1, x1, ..., x
µ−1
1 } ∈ K[x1, ..., xn].

The elements of the set {τ 1kpµ | p = 1, ..., µ, k = 2, .., n} are redundant generators of

I(BO).

Proof. We will prove that for each order ideal term tω ∈ {t1, ..., tµ} the polynomial τ 1kωµ
is redundant. From Corollary 3.2.7 and from the fact that each order ideal term tq is

xq−1
1 follows that the arrow degree of τ 1kωµ is

degW (τ 1kωµ) = log(xµ
1xk)− log(x

(ω−1)
1 ) (5.45)

= log(xµ−ω+1
1 xk).

The rewritable polynomials that are computed via trace syzygies of T have non-

standard positive arrow degrees. Since the index ω − 1 is smaller than µ, the integer

(µ− ω+ 1) is larger than 0 and the polynomial τ 1kωµ is non-standard with non-negative

arrow degree. Then by Proposition 5.1.16, there exists a trace syzygy TΠ,x1 , where Π

denotes the term xµ−ω+1
1 xk such that κ1k

ωµ is a non-zero constant in TΠ,x1 . That is, the

polynomial τ 1kωµ is rewritable. Note that by Lemma 5.1.19, choosing either x1 or xk as
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the distinguished indeterminate will give the same trace syzygy.

From the fact that Π = xµ−ω+1
1 xk, follows that A1 and Ak are the only generic

multiplication matrices used to compute the Trace[A1 · · · A1Ak · · · Ak,A1], which leads

to the trace syzygy TΠ,x1 . Then for each l ∈ {2, ..., n} \ {k} the entry κ1l
pq of the trace

syzygy TΠ,x1 is 0. Thus the polynomial τ 1kωµ is rewritable by {τ 1k11 , ..., τ 1kµµ} \ {τ 1kωµ}. By
using Equation (5.45), for each ω ∈ {1, ..., µ} we can order the arrow degrees of the

polynomial in the set {τ 1k11 , ..., τ 1kµµ} as follows.

degW (τ 1kµµ) <Lex · · · <Lex degW (τ 1k1µ). (5.46)

We compute the trace syzygy Tx1xk,x1 =
∑

16p6µ−1 κ
1k
ppe

1k
pp, where degW (τ 1kµµ) = log(x1xk)

to get

τ 1kµµ ∈ 〈τ 1k11 , ..., τ 1kµµ−1〉.

From Equation (5.46) we get degW (τ 1kµµ) <Lex degW (τ 1kµ−1µ) = log(x2
1xk). We compute

the trace syzygy Tx2
1xk,xk

=
∑

16p q6µ−1 κ
1k
pqe

1k
pq . Then by Proposition 5.1.16, the com-

ponent κ1k
µ−1µ is constant in the trace syzygy Tx2

1xk,xk
and by Lemma 5.3.6, for each

index p ∈ {1, ..., µ − 1}, the component κ1k
pµ is 0 in the trace syzygy Tx2

1xk,xk
. Since

τ 1kµµ ∈ 〈τ 1k11 , ..., τ 1kµµ−1〉 holds, we have τ 1kµ−1µ ∈ 〈τ 1k11 , ..., τ 1kµµ−1〉. As we proceed this way for

each ω ∈ {1, ..., µ} we get τ 1kωµ ∈ 〈τ 1k11 , ..., τ 1kµµ−1〉. Thus the polynomials τ 1k1µ , ..., τ
1k
µµ are

redundant.

Corollary 5.3.8. The elements of the set {τ 12pµ, τ 13pµ | p = 1, ..., µ} are redundant gen-

erators of I(BO). That is, if we let T ′′ = {τ 12pq , τ 13pq , τ 23µp | p = 1, ..., µ, q = 1, ..., µ − 1},
then the vanishing ideal I(BO) is generated by T ′′.

Proposition 5.3.9. The set {τ 23µq | q = 1, ..., µ} is contained in the ideal 〈{τ 12pq , τ 13pq |
p = 1, ..., µ, q = 1, ..., µ− 1}〉 = I(BO). In particular, if the index p > 0 holds, we have

the following.

τ 23µq =

q−1∑

i=1

(
−cµ (2i−1)[

i−1∑

j=0

τ 12(i−j) (q−j−1)] + cµ 2i[
i−1∑

j=0

τ 13(i−j) (q−j−1)]

)
(5.47)

+

µ−1∑

i=q

(
−cµ (2i−1)[

µ−i∑

j=1

τ 12(i+j) (q+j−1)] + cµ 2i[

µ−i∑

j=0

τ 13(i+j) (q+j−1)]

)
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If the index q = 1 holds, Equation (5.47) has the following form.

τ 23µ1 =

µ−1∑

i=1

(
−cµ (2i−1)[

µ∑

j=1

τ 12(i+j) (q+j−1)] + cµ 2i[

µ−u∑

j=0

τ 13(i+j) (q+j−1)]

)
(5.48)

Proof. Given µ − 1 as the largest value for the indices q − j − 1 and q + j + 1. To

begin, let us consider the first part of Equation (5.47), whereas the index q > 1 and

the indices i, j are fixed values.

τ 12(i−j) (q−j−1) = ei−j(A1A2 −A2A1)e
tr
q−j−1

= ei−jA1A2e
tr
q−j−1 − ei−jA2A1e

tr
q−j−1

For each i ∈ {1, .., q − 1}, the polynomial τ 121 (q−i) is the (i− 1)th summand of the sum∑i−1
j=0 τ

12
(i−j) (q−j−1). By using Equation (5.35), we determine the polynomial τ 121 (q−i).

τ 121 (q−i) = ei−jA1A2e
tr
q−i − ei−jA2A1e

tr
q−i

= c1 νcµ 2(q−i) − c1 2(q−i+1)

For j 6= (i− 1) the summands of
∑i−1

j=0 τ
12
(i−j) (q−j−1) have the following shape.

τ 12(i−j) (q−j−1) = ei−jA1A2e
tr
q−j−1 − ei−jA2A1e

tr
q−j−1

= ci−j νcµ 2(q−j−1) + c(i−j−1) 2(q−j−1) − ci 2q

Therefore the sum
∑i−1

j=0 τ
12
(i−j) (q−j−1) is equal to the following.

i−2∑

j=0

c(i−j) νcµ 2(q−i+1) + c1 νcµ 2(q−i) + c(i−j−1) 2(q−j−1) − c(i−j) 2(q−j) − c1 2(q−i+1) (5.49)

We want to show that Equation 5.49 has the following shape.

i−1∑

j=0

τ 12(i−j) (q−j−1) =
i−1∑

j=0

c(i−j) νcµ 2(q−i+1) − ci 2q

Let us consider the jth summand of Equation (5.49) which is homogenous of degree one
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with respect to the standard grading where j < i− 1.

c(i−j−1) 2(q−j−1) − c(i−j) 2(q−j) (5.50)

Now let us check the (j + 1)th summand of Equation (5.49) which is homogenous of

degree one with respect to the standard grading where j + 1 < i− 1, as well.

c(i−j−2) 2(q−j) − c(i−j−1) 2(q−j−1) (5.51)

If we take the sum of Equations (5.50) and (5.51), then the positive term of Equation

(5.50) and the negative term of Equation (5.51) cancel each other out. Therefore the

sum
∑i−2

j=0 τ
12
(i−j) (q−j−1) has the following form.

i−2∑

j=0

c(i−j) νcµ 2(q−i+1) + c1 2(q−i+1) − ci 2q.

Moreover, we showed that for j = i− 1 the summand of the Equation (5.49), which is

homogenous of degree one with respect to the standard grading, is the following.

−c1 2(q−i+1).

This proves our claim that Equation (5.49) has only one linear summand. Thus the

sum
i−1∑

j=0

τ 12(i−j) (q−j−1) =
i−1∑

j=0

c(i−j) νcµ 2(q−i+1) − ci 2q (5.52)

gives the desired result. Similarly, we identify the summands of
∑i−1

j=0 τ
13
(i−j) (q−j−1).

τ 13(i−j) (q−j−1) =

{
c1 νcµ 2(q−i)−1 − c1 2(q−i+1)−1 if j = i− 1

ci−j νcµ 2(q−j−1)−1 − c(i−j−1) 2(q−j−1)−1 + c(i−j) 2(q−j)−1 otherwise

One can also show similarly that the equality

i−1∑

j=0

τ 13(i−j) (q−j−1) =
i−1∑

j=0

c(i−j) νcµ 2(q−i+1)−1 − ci 2q−1. (5.53)
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holds. Now we compute the first part of Equtaion (5.47) i.e.,

q−1∑

i=1

(
−cµ (2i−1)[

i−1∑

j=0

τ 12(i−j) (q−j−1)] + cµ 2i[
i−1∑

j=0

τ 13(i−j) (q−j−1)]

)
. (5.54)

We plug Equations (5.52) and (5.53) in Equation (5.54). Then we have

q−1∑

i=1

(
i−1∑

j=0

−cµ (2i−1)c(i−j) νcµ 2(q−i+1) + cµ 2ic(i−j) νcµ 2(q−i+1)−1 + cµ (2i−1)ci 2q − ci 2q−1cµ 2i

)
.

For every index i = 1, ..., q − 1, if the index j is equal to i− q + 1, then the following

holds.

−cµ (2i−1)c(i−j) νcµ 2(q−i+1) + cµ 2ic(i−j) νcµ 2(q−i+1)−1 = 0

Since q is larger than 1 and j 6 i− 1, for every term −cµ (2i−1)c(i−j) νcµ 2(q−i+1) there is

cµ 2ic(i−j) νcµ 2(q−i+1)−1 which cancels that term. Therefore the following equation holds.

q−1∑

i=1

(
i−1∑

j=0

−cµ (2i−1)c(i−j) νcµ 2(q−i+1) + cµ 2ic(i−j) νcµ 2(q−i+1)−1

)
= 0

Consequently, the sum
∑q−1

i=1

(
−cµ (2i−1)[

∑i−1
j=0 τ

12
(i−j) (q−j−1)] + cµ 2i[

∑i−1
j=0 τ

13
(i−j) (q−j−1)]

)

is equal to the following.
q−1∑

i=1

cµ (2i−1)ci 2q − ci 2q−1cµ 2i (5.55)

Now we compute the second part of Equation (5.47) i.e.,

µ−1∑

i=q

(
−cµ (2i−1)[

µ−i∑

j=1

τ 12(i+j) (q+j−1)] + cµ 2i[

µ−i∑

j=0

τ 13(i+j) (q+j−1)]

)
. (5.56)

We follow the same route as we did for computing the first part of Equation (5.47).

Let us fix i and j and compute
∑µ−i

j=1 τ
12
(i+j) (q+j−1) and

∑µ−i

j=1 τ
13
(i+j) (q+j−1).

τ 12(i−j) (q−j−1) = ei+j(A1A2 −A2A1)e
tr
q+j−1

= ei+jA1A2e
tr
q+j−1 − ei+jA2A1e

tr
q+j−1

= ci+j νcµ 2(q+j−1) + c(i+j−1) 2(q+j−1) − ci+j 2(q+j)

As in the previous summand, the degree 1 homogenous components (with respect to the
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standard grading) of the sum
∑µ−i

j=1 τ
12
(i+j) (q+j−1) form a telescopic sum (see Equations

(5.50) and (5.51)). Therefore this sum is equal to the following.

µ−i∑

j=1

ci+j νcµ 2(q+j−1) + ci 2q − cµ 2(q+µ−i). (5.57)

Similarly, the sum
∑µ−i

j=1 τ
13
(i+j) (q+j−1) is equal to the following.

µ−i∑

j=1

ci+j νcµ 2(q+j−1)−1 + ci 2q−1 − cµ 2(q+µ−i)−1. (5.58)

We plug Equations (5.57) and (5.58) in Equation (5.56). Then we have

µ−1∑

i=q

−cµ (2i−1)ci+j νcµ 2(q+j−1) + cµ 2ici+j νcµ 2(q+j−1)−1

−cµ (2i−1)ci 2q + cµ (2i−1)cµ 2(q+µ−i) + cµ 2ici 2q−1 − cµ 2icµ 2(q+µ−i)−1.

As in the first part, we have

µ−1∑

i=q

−cµ (2i−1)ci+j νcµ 2(q+j−1) + cµ 2ici+j νcµ 2(q+j−1)−1 = 0.

Moreover, for every i = q + 1, ..., µ− 1 the summand

−cµ 2icµ 2(q+µ−i)−1 + cµ (2i−1)cµ 2(q+µ−i)

is equal to 0. Therefore Sum (5.56) is equal to the following.

µ−1∑

i=q

−cµ (2i−1)ci 2q + cµ 2ici 2q−1 − cµ 2qcµ 2(µ)−1 + cµ (2q−1)cµ 2(µ) (5.59)

By summing up the results (5.55) and (5.59), we conclude that Equation (5.47) is equal
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to the following.

µ−1∑

i=q+1

−cµ (2i−1)ci 2q + cµ 2ici 2q−1 − cµ 2qcµ 2(µ)−1 + cµ (2q−1)cµ 2(µ)

+

q−1∑

i=1

cµ (2i−1)ci 2q − ci 2q−1cµ 2i

=

µ−1∑

i=1

−cµ (2i−1)ci 2q + cµ 2ici 2q−1 − cµ 2qcµ 2(µ)−1 + cµ (2q−1)cµ 2(µ)

= eµA2A3e
tr
q − eµA3A2e

tr
q = τ 23µ q

Corollary 5.3.10. Let P denote the polynomial ring K[x1, x2, x3]. Let O denote the

order ideal {1, x1, ...., x
µ−1
1 } where with respect to our notation we have t1 = 1, ..., tµ =

xµ−1
1 . Then the vanishing ideal of the O-border basis scheme is generated by the set

{τ 12pq , τ 13pq | p = 1, ..., µ, q = 1, ..., µ− 1} which has exactly µν − 3µ polynomials.

Proof. It follows from Corollary 5.3.8, Lemma 5.3.2 and Propostion 5.3.9 that I(BO)

is generated by 〈{τ 12pq , τ 13pq | p = 1, ..., µ, q = 1, ..., µ − 1}〉. This generating set has

2 · µ · (µ− 1) polynomials. By Lemma 2.5.6, the number of border elements ν is equal

to 2µ+ 1. Therefore µν − 3µ = (2µ+ 1)µ− 3µ = 2 · µ · (µ− 1).

Example 5.3.11. Let O denote the order ideal {1, x1, x
2
1} ⊂ K[x1, x2, x3]. Then the

border of it is ∂O = {x3, x2, x3x1, x2x1, x3x
2
1, x2x

2
1, x

3
1} and with respect to our notation

we have t1 = 1, t2 = x1, t3 = x2
1, b1 = x3, b2 = x2, b3 = x3x1, b4 = x2x1, b5 = x3x

2
1, b6 =

x2x
2
1 and b7 = x3

1. The dimension of the ring K[C] is 27 and the dimension of K[x1, x2, x3]

is 3. Then we have µν−nµ = 21−9 = 12. Our aim is to show that the ideal I(BO) can

be generated by µν − nµ = (3 · 7) − (3 · 3) = 12 polynomials. The defining equations

of BO are as follows:

τ 2332 = −c14c31 + c13c32 − c24c33 + c23c34 − c34c35 + c33c36 , τ 1211 = c17c32 − c14,

τ 2313 = c12c15 − c11c16 + c14c25 − c13c26 + c16c35 − c15c36 , τ 1233 = −c17c32 − c27c34 + c26,

τ 1223 = −c17c22 − c24c27 + c27c36 − c26c37 + c16 , τ 1322 = c27c33 + c13 − c25,

τ 2322 = −c14c21 + c13c22 + c26c33 − c25c34 , τ 1221 = c27c32 + c12 − c24,
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τ 2312 = c12c13 − c11c14 + c14c23 − c13c24 + c16c33 − c15c34 , τ 1231 = c32c37 + c22 − c34,

τ 1213 = −c12c17 − c14c27 + c17c36 − c16c37 , τ 1333 = −c17c31 − c27c33 + c25,

τ 1323 = −c17c21 − c23c27 + c27c35 − c25c37 + c15 , τ 1312 = c17c33 − c15,

τ 1313 = −c11c17 − c13c27 + c17c35 − c15c37 , τ 1321 = c27c31 + c11 − c23,

τ 2311 = c14c21 − c13c22 + c16c31 − c15c32 , τ 1232 = c34c37 + c24 − c36,

τ 2333 = −c16c31 + c15c32 − c26c33 + c25c34 , τ 1311 = c17c31 − c13,

τ 2323 = −c16c21 + c15c22 + c24c25 − c23c26 + c26c35 − c25c36 , τ 1212 = c17c34 − c16,

τ 2321 = −c12c21 + c11c22 − c22c23 + c21c24 + c26c31 − c25c32 , τ 1222 = c27c34 + c14 − c26,

τ 2331 = −c12c31 + c11c32 − c22c33 + c21c34 − c32c35 + c31c36

By Lemma 5.3.2, for p = 1, 2 and q = 1, 2, 3 the polynomials τ 23pq , are redundant. By

Lemma 5.3.8, for and q = 1, 2, 3 the polynomials τ 13p3 , τ
12
3q are redundant as well. By

using Proposition 5.3.9, we show that the polynomials τ 2333 , τ
23
32 , τ

23
31 are in 〈{τ 12ij , τ 13ij, |

i, j = 1, 2, 3}〉.

τ 2331 = c31(τ
12
32 + τ 1221 )− c32(τ

13
32 + τ 1321 ) + c33τ

12
31 − c34τ

13
31

τ 2332 = c31τ
12
11 − c32τ

13
11 + c33τ

12
32 − c34τ

13
32

τ 2333 = c31τ
12
12 − c32τ

13
12 + c33(τ

12
11 + τ 1222 )− c34(τ

13
11 + τ 1322 )

Therefore we conclude that I(BO) = 〈{τ 12pq , τ 13pq | p = 1, 2, 3, q = 1, 2}〉 and the number

of generators are 2·µ·(µ−1) = 12. Now let us emphasize that the number of elements of

the border ∂O is 2µ+1 = 7 and n = 3. The polynomial ring K[C] has µν indeterminates.

In our case where O = {1, x1, x
2
1} we have nµ = 3 · 3 = 9. Then we have µν − nµ = 12

and it is equal to the number of generators of I(BO).

5.3.2 Segment Order Ideals in Tn

In this section we generalize Lemma 5.3.2 and Proposition 5.3.9 for the polynomial

ring K[x1, ..., xn]. Note that Lemma 5.3.6 and Proposition 5.3.7 are given for an ar-

bitrary segment order ideal in the polynomial ring K[x1, ..., xn]. Let O denote the

segment order ideal {1, x1, ...., x
µ−1
1 }. Then the border of the order ideal O is ∂O =

{xn, ..., x2, xn, b2x1, ..., x
µ−1
1 x2, x

µ
1} and with respect to our notation we have t1 = 1, t2 =

x1, ...., tµ = xµ−1
1 , b1 = xn, ..., bn−2 = x2, bn−1 = xn, bn = b2x1, ..., bν−1 = xµ−1

1 x2 and

bν = xµ
1 . Recall that for each border term bi we have ci = (c1i, ..., cµi) and that for the
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polynomial τ klpq from T , we have k < l.

Lemma 5.3.12. The generic multiplication matrix A1 is as follows.

A1 = (etr2 |, .., | etrµ | ctrν ) (5.60)

For i > 1 the generic multiplication matrix Ai has the following form

Ai = (ctrk | ... | ctrk+(j−1)(n−1) |, ..., | ctrk+(µ−1)(n−1)) (5.61)

where the index k = (n+ 1)− i.

Proof. Since for each ti ∈ O \{tµ} we have x1ti ∈ O, the generic multiplication matrix

A1 has the given form. Let tj be an arbitrary term from O \ {t1}. For an arbitrary

indeterminate xi ∈ {x2, ..., xn} we have xit1 = bn−i+1 and xitj = b(n−i+1)(j−1)(n−1). Thus

the generic multiplication matrix Ai has the form given in (5.61).

Lemma 5.3.13. The elements of the set {τ klij | i = 1, ..., µ − 1, j = 1, ..., µ, and k, l ∈
{2, ..., n}} are redundant generators of I(BO).

Proof. We compute the Jacobi identity matrix.

Jmkl = [Ak, [Al,Am]] + [Al, [Ak,Am]] + [Am, [Ak,Al]]

= [Ak,



τ lm11 . . . τ lm1µ
...

. . .
...

τ lmµ1 . . . τ lmµµ


] + [Al,



τ km11 . . . τ km1µ
...

. . .
...

τ kmµ1 . . . τ kmµµ


] + [Am,



τ kl11 . . . τ kl1µ
...

. . .
...

τ klµ1 . . . τ klµµ


]

Since the order of the indices m, k, l does not change the Jacobi identity syzygies of

TSeg, for convenience, we always choose m < k < l. From Lemma 5.3.12 follows that

if m 6= 1, then there is no entry of the Jacobi identity syzygy, which is a non-zero

constant. Thus the Jacobi identity syzygy Jmkl is useful for determining redundant

generators of the vanishing ideal if and only if m = 1. By computing the Jacobian

identity matrix with the generic multiplication matrix A1 (see (5.60)), we have the

following.

J1kl = [Al,



τ 1k11 . . . τ 1k1µ
...

. . .
...

τ 1kµ1 . . . τ 1kµµ


] + [Ak,



τ 1l11 . . . τ 1l1µ
...

. . .
...

τ 1lµ1 . . . τ 1lµµ


] (5.62)
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+



c1ντ

kl
µ1 . . . c1ντ

kl
µ µ−1 (

∑µ

i=1 −ciντ
kl
1 i + c1ντ

kl
µµ)

...
. . .

...
...

cµντ
kl
µ 1 . . . cµντ

kl
µ µ−1 (

∑µ−1
i=1 −ci ντ

kl
µ i)


 (5.63)

+




τ kl12 . . . τ kl1p . . . τ kl1µ 0

τ kl11 − τ kl22 . . . τ kl1 p−1 − τ kl2 p . . . τ kl1µ−1 − τ kl2µ τ kl1µ
...

. . .
...

. . .
...

...

τ klµ−1 1 − τ klµ2 . . . τ klµ−1 p−1 − τ klµ p . . . τ klµ−1µ−1 − τ klµµ τ klµ−1µ




(5.64)

As in Lemma 5.3.2, we focus on the the first µ − 1 columns of Matrix (5.64) and

examine the following Jacobi identity syzygies. First we consider the first row of the

matrix (5.64). If we let the index i ∈ {1, .., µ− 1}, then we have the following.

J 1kl
1i =

∑

16q6µ

ρ1k1qe
1k
1q −

∑

16p6µ

ρ1kpi e
1k
pi +

∑

16q6µ

ρ1l1qe
1l
1q −

∑

16p6µ

ρ1lpie
1l
pi + c1νe

kl
µk + ekl1i+1 (5.65)

Hence for each i ∈ {1, .., µ− 1} the polynomial τ 231 (i+1) is rewritable as follows.

τ kl1i+1 = −(
∑

16q6µ

ρ1k1qτ
1k
1q −

∑

16p6µ

ρ1kpi τ
1k
pi +

∑

16q6µ

ρ1l1qe
1l
1q −

∑

16p6µ

ρ1lpiτ
1l
pi + c1ντ

23
µi ) (5.66)

We focus on the rest of the rows of Matrix (5.64). We let j ∈ {2, ..., µ} then from the

matrix J1kl, for each i and j we get the following Jacobi identity syzygy of T .

J 1kl
ji =

∑

16q6µ

ρ1kjq e
1k
jq−

∑

16p6µ

ρ1kpi e
1k
pi +

∑

16q6µ

ρ1ljqe
1l
jq−

∑

16p6µ

ρ1lpie
1l
pi+clνe

kl
µi+ekll−1i−eklli+1 (5.67)

Hence for each l ∈ {2, .., µ − 1} and i ∈ {1, .., µ − 1}, the polynomials τ 23l (i+1) are

rewritable as follows.

τ kll−1 k−τ klj i+1 = −(
∑

16q6µ

ρ1kjq τ
1k
jq −

∑

16p6µ

ρ1kpi τ
1k
pi +

∑

16q6µ

ρ1ljqτ
1l
jq−

∑

16p6µ

ρ1lpiτ
1l
pi +cjντ

kl
µi) (5.68)

From Equations (5.66) and (5.68) follows that τ kl11, ..., τ
kl
µ−1µ are rewritable. Moreover,

ρkl11, ..., ρ
kl
µ−1µ are either 0 or constants in the Jacobi identity syzygies of T . Thus the

elements of the set {τ kl11, ..., τ klµ−1µ} are redundant and contained in the ideal generated

by the set {τ 1kij , τ 1lij,τ 2lµ j | i, j = 1, .., µ}. Since this holds for arbitrary k, l ∈ {2, .., n} with

k 6= l, the claim T ′ = {τ 1kij , τ 1lij,τ klµ j | i, j = 1, .., µ, k < l, k, l ∈ {2, .., n}} follows.
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Proposition 5.3.14. Let k < l. Let Bkl = {bm1 , ..., bm2µ} be the ordered subset of ∂O
such that each border term bmi

∈ Bkl is divisible by either xk or xl. That is

Bkl = {xl, xk, x1xl, x1xk, ..., xlx
µ−1
1 , xkx

µ−1
1 }

and with respect to our notation we have

bm1 = xl, bm2 = xk, bm3 = x1xl, bm4 = x1xk, ..., bm2µ−1 = xlx
µ−1
1 , bm2µ = xkx

µ−1
1 .

Then the set {τ klµp | p = 1, ..., µ and k, l ∈ {2, .., n}} is the set of redundant generators

of I(BO). In particular, for each q ∈ {1, ..., µ} the polynomial τ klµq is redundant as the

following equalities show.

τ klµq =

q−1∑

i=1

(
−cµm2i−1

[
i−1∑

j=0

τ 1k(i−j) (q−j−1)] + cµm2i+1
[
i−1∑

j=0

τ 1l(i−j) (q−j−1)]

)
(5.69)

+

µ−1∑

i=q

(
−cµ (m2i−1)[

µ−i∑

j=1

τ 1k(i+j) (q+j−1)] + cµ (m2i+1)[

µ−i∑

j=0

τ 1l(i+j) (q+j−1)]

)

If q is equal to 1, then the equality has the following form.

τ klµ1 =

µ−1∑

i=1

(
−cµm2i−1

[

µ∑

j=1

τ 1k(i+j) (q+j−1)] + cµ (m2i+1)[

µ−u∑

j=0

τ 1l(i+j) (q+j−1)]

)
(5.70)

Proof. We focus on the set Bkl. Let the integers k, l be from {1, ..., n} and k 6= l. If we

consider the map

h : K[x1, .., xn] −→ K[x1, xk, xl]

xj 7−→ xj

xi 7−→ 0

where j ∈ {1, k, l}, and i ∈ {1, ..., n} \ {1, k, l}, then the set

Bkl ∪ {xµ+1
1 } = {bm1 , ..., bm2µ , x

µ+1
1 }

can be seen as the border of the order ideal O = {x1, ..., x
µ−1
1 } in K[x1, xk, xl] under h.
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Thus we let b2µ+1 denote the term xµ+1
1 instead of bν . Now let us recall the construction

of the generic multiplication matrices Ak and Al (see Definitions 2.2.4 and 2.3.1.) We

reconstruct Ak and Al by using Bkl, instead of ∂O. Thus we have the following generic

multiplication matrices.

A1 = (etr2 |, .., | etrm | ctr2µ+1) (5.71)

Ak = (ctrm2
| ctrm4

|, ..., | ctrm2µ
) (5.72)

Al = (ctrm1
| ctrm3

|, ..., | ctrm2µ−1
) (5.73)

If we apply Proposition 5.3.9 with these generic multiplication matrices, then we get

Equations (5.69) and (5.70). Therefore for arbitrarily chosen k, l ∈ {2, ..., n} the propo-

sition follows.

Corollary 5.3.15. Let P denote the polynomial ring K[x1, ..., xn]. Let O be a segment

order ideal {1, x1, ...., x
µ−1
1 } and let the number of terms in its border ∂O be ν. Then

the vanishing ideal of the O-border basis scheme is generated by µν − nµ polynomials.

Proof. It follows from Lemmas 5.3.7 and 5.3.13 and Propostion 5.3.14 that I(BO) is

generated by

〈τ 1kpq | p = 1, ..., µ, q = 1, ..., µ− 1 k ∈ {2, ..., n}〉.

This generating set has

(n− 1) · µ · (µ− 1)

polynomials. By Lemma 2.5.6 the number of border elements is equal to (n− 1)µ+ 1.

ν = (n− 1)µ+ 1

We plug this in the equation µν − nν and the following holds.

µν − nµ = ((n− 1)µ+ 1)µ− nµ = (n− 1) · µ · (µ− 1).

Hence we get the desired result.

Example 5.3.16. Let O denote the order ideal {1, x1, x
2
1} ⊂ K[x1, x2, x3, x4]. Then

the border of the order idealO is ∂O = {x4, x3, x2, x1x4, x1x3, x1x2, x
2
1x4, x

2
1x3, x

2
1x2, x

3
1}

and with respect to our notation we have b1 = x4, b2 = x3, b3 = x2, b4 = x1x4, b5 =

x1x3, b6 = x1x2, b7 = x2
1x4, b8 = x2

1x3, b9 = x2
1x2, b10 = x3

1. The dimension of the

ring K[C] is equal to 30 and the dimension of K[x1, x2, x3, x4] is 4. Then we have
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µν − nµ = 30− 12 = 18. We show that the ideal I(BO) is generated by the following

polynomials.

τ 1211 = c110c33 − c16, τ 1321 = c210c32 + c12 − c25 (5.74)

τ 1212 = c110c36 − c19, τ 1322 = c210c35 + c15 − c28

τ 1232 = c36c310 + c26 − c39, τ 1331 = c32c310 + c22 − c35

τ 1221 = c210c33 + c13 − c26, τ 1311 = c110c32 − c15

τ 1222 = c210c36 + c16 − c29, τ 1312 = c110c35 − c18

τ 1231 = c33c310 + c23 − c36, τ 1332 = c35c310 + c25 − c38

τ 1411 = c110c31 − c14, τ 1412 = c110c34 − c17

τ 1421 = c210c31 + c11 − c24, τ 1422 = c210c34 + c14 − c27

τ 1431 = c31c310 + c21 − c34, τ 1432 = c34c310 + c24 − c37

By Lemma 5.3.13, the Jacobi identity syzygies of T indicate that for p = 1, 2 and

q = 1, 2, 3 the polynomials τ 23pq , τ
24
pq , τ

34
pq are redundant i.e., the following polynomials

are redundant.

τ 2311 = c16c22 − c15c23 + c19c32 − c18c33

τ 2312 = c13c15 − c12c16 + c16c25 − c15c26 + c19c35 − c18c36

τ 2313 = c13c18 − c12c19 + c16c28 − c15c29 + c19c38 − c18c39

τ 2321 = −c13c22 + c12c23 − c23c25 + c22c26 + c29c32 − c28c33

τ 2322 = −c16c22 + c15c23 + c29c35 − c28c36

τ 2323 = −c19c22 + c18c23 + c26c28 − c25c29 + c29c38 − c28c39

τ 2411 = c16c21 − c14c23 + c19c31 − c17c33

τ 2412 = c13c14 − c11c16 + c16c24 − c14c26 + c19c34 − c17c36

τ 2413 = c13c17 − c11c19 + c16c27 − c14c29 + c19c37 − c17c39

τ 2421 = −c13c21 + c11c23 − c23c24 + c21c26 + c29c31 − c27c33

τ 2422 = −c16c21 + c14c23 + c29c34 − c27c36

τ 2423 = −c19c21 + c17c23 + c26c27 − c24c29 + c29c37 − c27c39
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τ 3411 = c15c21 − c14c22 + c18c31 − c17c32

τ 3412 = c12c14 − c11c15 + c15c24 − c14c25 + c18c34 − c17c35

τ 3413 = c12c17 − c11c18 + c15c27 − c14c28 + c18c37 − c17c38

τ 3421 = −c12c21 + c11c22 − c22c24 + c21c25 + c28c31 − c27c32

τ 3422 = −c15c21 + c14c22 + c28c34 − c27c35

τ 3423 = −c18c21 + c17c22 + c25c27 − c24c28 + c28c37 − c27c38

By Lemma 5.3.8, the trace syzygies of T indicate that for and q = 1, 2, 3 the poly-

nomials τ 133q , τ
14
3q , τ

12
3q are redundant, as well. That is, the following polynomials are

redundant, as well.

τ 1213 = −c13c110 − c16c210 + c110c39 − c19c310

τ 1223 = −c110c23 − c26c210 + c210c39 − c29c310 + c19

τ 1233 = −c110c33 − c210c36 + c29

τ 1313 = −c12c110 − c15c210 + c110c38 − c18c310

τ 1323 = −c110c22 − c25c210 + c210c38 − c28c310 + c18

τ 1333 = −c110c32 − c210c35 + c28

τ 1413 = −c11c110 − c14c210 + c110c37 − c17c310

τ 1423 = −c110c21 − c24c210 + c210c37 − c27c310 + c17

τ 1433 = −c110c31 − c210c34 + c27

Let B23 denote the set {x3, x2, x1x3, x1x2, x
2
1x3, x

2
1x2, x

3
1} where we have b2 = x3, b3 =

x2, b5 = x1x3, b6 = x1x2, b8 = x2
1x3, b9 = x2

1x2, b10 = x3
1. By Proposition 5.3.14, the

following holds.

τ 2331 = c32(τ
12
32 + τ 1221 )− c33(τ

13
32 + τ 1321 ) + c35τ

12
31 − c36τ

13
31

= −c13c32 + c12c33 − c23c35 + c22c36 − c33c38 + c32c39

τ 2332 = c32τ
12
11 − c33τ

13
11 + c35τ

12
32 − c36τ

13
32

= −c16c32 + c15c33 − c26c35 + c25c36 − c36c38 + c35c39

τ 2333 = c32τ
12
12 − c33τ

13
12 + c35(τ

12
11 + τ 1222 )− c36(τ

13
11 + τ 1322 )

= −c19c32 + c18c33 − c29c35 + c28c36
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Let B34 denote the set {x4, x3, x1x4, x1x3, x
2
1x4, x

2
1x3, x

3
1} where b1 = x4, b2 = x3, b4 =

x1x4, b5 = x1x3, b7 = x2
1x4, b8 = x2

1x3, b10 = x3
1. By Proposition 5.3.14, the following

holds.

τ 3431 = c31(τ
12
32 + τ 1221 )− c32(τ

13
32 + τ 1321 ) + c34τ

12
31 − c35τ

13
31

= −c12c31 + c11c32 − c22c34 + c21c35 − c32c37 + c31c38

τ 3432 = c31τ
12
11 − c32τ

13
11 + c34τ

12
32 − c35τ

13
32

= −c15c31 + c14c32 − c25c34 + c24c35 − c35c37 + c34c38

τ 3433 = c31τ
12
12 − c32τ

13
12 + c34(τ

12
11 + τ 1222 )− c35(τ

13
11 + τ 1322 )

= −c18c31 + c17c32 − c28c34 + c27c35

Let B24 denote the set {x4, x2, x1x4, x1x2, x
2
1x4, x

2
1x2, x

3
1} where we have b1x4, b3 =

x2, b4 = x1x4, b6 = x1x2, b7 = x2
1x4, b9 = x2

1x2, b10 = x3
1. By Proposition 5.3.14, the

following holds.

τ 2431 = c31(τ
12
32 + τ 1221 )− c33(τ

13
32 + τ 1321 ) + c34τ

12
31 − c36τ

13
31

= −c13c31 + c11c33 − c23c34 + c21c36 − c33c37 + c31c39

τ 2432 = c31τ
12
11 − c33τ

13
11 + c34τ

12
32 − c36τ

13
32

= −c16c31 + c14c33 − c26c34 + c24c36 − c36c37 + c34c39

τ 2433 = c31τ
12
12 − c33τ

13
12 + c34(τ

12
11 + τ 1222 )− c36(τ

13
11 + τ 1322 )

= −c19c31 + c17c33 − c29c34 + c27c36

Then the O-border basis scheme is generated by the set {τ 12pq , τ 13pq , τ 14pq | p = 1, 2, 3 q =

1, 2}, whose elements are the 18 polynomials given in (5.74).

Corollary 5.3.17. Let P denote the polynomial ring K[x1, ..., xn]. Let O = {1, x1, ...., x
µ−1
1 }

denote a segment order ideal with µ terms. Then the border basis scheme BO is an

ideal-theoretic complete intersection.

Proof. By Propostion 5.3.14 the ideal I(BO) is generated by Tseg, which by Corollary

5.3.15, has µν − nµ polynomials. Since the segment border basis scheme is isomorphic

to an affine space of dimension nµ, the number of the generators of the vanishing ideal

I(BO) is equal to the codimension of the O-border basis scheme.
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5.4 Some Redundant Generators of I(BB(2,2,2))

Unless otherwise stated, throughout this section we let K be a field, and let P denote

the polynomial ring K[x1, x2, x3]. Let B(2, 2, 2) denote the order ideal

{1, x3, x2, x1, x2x3, x1x3, x1x2, x1x2x3}.

The border of B(2, 2, 2) is

∂B = {x2
3, x

2
2, x

2
1, x

2
1, x2x

2
3, x

2
2x3, x

2
1x3, x1x

2
2, x

2
1x2, x1x2x

2
3, x1x

2
2x3, x

2
1x2x3}.

Let T be the set of generators of I(BB) defined in (2.6). Then by Lemma 2.5.2, the

number of elements of T is 144.

This section is dedicated to finding the maximal number of redundant generators

of the vanishing ideal of the box border basis scheme BB(2,2,2) by computing the Jacobi

identity and trace syzygies of T . As we mentioned in Sections 6.1 and 6.2, the simplified

Jacobi identity and trace syzygies indicate the rewritable polynomials (see Definitions

5.2.7 and 5.1.21). Thus we start our computation by finding the simplified generic

multiplication matrices.

A′
1 = (etr4 | etr6 | etr8 | 0 | 0 | 0 | 0) A′

2 = (etr3 | etr5 | 0 | etr7 | 0 | etr8 | 0 | 0)
A′

3 = (etr2 | 0 | etr5 | etr6 | 0 | 0 | etr8 | 0)

The non-standard distinct positive degree vectors are

(1, 2, 0), (2, 1, 0), (1, 2, 1), (2, 1, 1), (2, 2, 0), (2, 2, 1), (0, 1, 2), (0, 2, 1),

(1, 2, 1), (0, 2, 2), (1, 2, 2), (1, 0, 2), (2, 0, 1), (1, 1, 2), (2, 0, 2), (2, 1, 2).

We compute the simplified trace syzygies T′
Π,xk

by using the ApCoCoA package bb-

smingensyz, in order to find the rewritable elements. The non-zero simple trace syzygies

are given as follows:

Tx1x2,x1 = T′
x1x2,x1 = e1211 + e1222 + e1233 + e1244 + ...+ e1288,

Tx1x3,x1 = T′
x1x3,x1 = e1311 + e1322 + e1333 + e1344 + ...+ e1388,

Tx2x3,x2 = T′
x2x3,x2 = e2311 + e2322 + e2333 + e2344 + ...+ e2388,
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T′
x2
1x2,x1

= e1214 + e1226 + e1237 + e1258

T′
x1x

2
2,x1

= e1213 + e1225 + e1247 + e1268,

T′
x2
1x

2
2,x1

= e1217 + e1228,

T′
x1x

2
3,x1

= e1312 + e1335 + e1346 + e1378,

T′
x2
1x3,x1

= e1314 + e1326 + e1337 + e1358

T′
x2
1x

2
3,x1

= e1316 + e1338,

T′
x2
2x3,x2

= e2313 + e2325 + e2347 + e2368,

T′
x2x

2
3,x2

= e2312 + e2335 + e2346 + e2378,

T′
x2
2x

2
3,x2

= e2315 + e2348,

T′
x1x2x3,x1 = e1212 + e1235 + e1246 + e1278 + e1313 + e1325 + e1347 + e1368,

T′
x1x2x3,x2 = e1212 + e1235 + e1246 + e1278 + e2314 + e2326 + e2337 + e2358,

T′
x1x2x3,x3 = e1313 + e1325 + e1347 + e1368 + e2314 + e2326 + e2337 + e2358,

T′
x2
1x2x3,x1

= e1216 + e1238 + e1317 + e1328,

T′
x2
1x2x3,x2

= e1216 + e1238

T′
x2
1x2x3,x3

= e1317 + e1328,

T′
x1x2x

2
3,x1

= e1315 + e1348,

T′
x1x2x

2
3,x2

= e2316 + e2338,

T′
x1x2x

2
3,x3

= e1315 + e1348 + e2316 + e2338,

T′
x1x

2
2x3,x1

= e1215 + e1248,

T′
x1x

2
2x3,x2

= e1215 + e1248 + e2317 + e2318,

T′
x1x

2
2x3,x3

= e2317 + e2328,

T′
x2
1x

2
2x3,x1

= e1218,

T′
x2
1x2x

2
3,x1

= e1318,

T′
x1x

2
2x

2
3,x2

= e2318.

Note that 4 of the above simple trace syzygies, T′
x1x

2
2x3,x2

,T′
x1x2x

2
3,x3

,T′
x2
1x2x3,x1

,T′
x1x2x3,x3

don’t give new rewritable elements, so there are 23 different trace syzygies. Next we

compute the Jacobi identity syzygies. Similarly, we use the simplified generic multi-

plication matrices as the multiple of commutators to find the rewritable elements with

respect to Jacobi identity syzygies.

J123 = [A′
1, [A2,A3]] + [A′

2, [A3,A1]] + [A′
3, [A1,A2]] (5.75)
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The entries of the matrix in Equation (5.75) are the following.

0
−h1315− −h1215− −h1216− −h2318 −h1318 −h1218 0

h2316 h2317 h1317

0

h1212− h1213− h1214− h1215− h1216− h1217− h1218

h1325− h1225− h1226− h2328 h1328 h1228

h2326 h2327 h1327

0

h1312− −h1235+ −h1236+ h1315− −h1316 −h1238 h1318

h1335− h1313− h1314− h2338 +h1338 +h1317

h2336 h2337 h1337

0

−h1345+ −h1245+ −h1246− h2315− −h1348+ −h1248+ h2318

h2312− h2313− h1347+ h2348 h2316 h2317

h2346 h2347 h2314

0

h1232+ h1233− h1234− h1235+ h1236+ h1237− h1238+

h1322− h1255+ h1256+ h1325− h1326− h1258+ h1328

h1355− h1323− h1324− h2358 h1358 h1327

h2356 h2357 h1357

0 h1242− h1243− h1244− h1245 h1246− h1247− h1248+

h1365+ h1265+ h1266− +h2325− h1368+ h1268+ h2328

h2322− h2323− h1367+ h2368 h2326 h2327

h2366 h2367 h2324

0 h1342− −h1275+ −h1276+ h1345+ h1346− −h1278+ h1348+

h1375+ h1343+ h1344− h2335− h1378+ h1347+ h2338

h2332− h2333− h1377+ h2378 h2336 h2337

h2376 h2377 h2334

0 h1272+ h1273− h1274− h1275+ h1276 h1277− h1278+

h1362− h1285+ h1286+ h1365+ h1366− h1288+ h1368+

h1385+ h1363+ h1364− h2355− h1388+ h1367+ h2358

h2352− h2353− h1387+ h2388 h2356 h2357

h2386 h2387 h2354

When we compare this result with the simplified trace syzygies, we observe that some

of the rewritable elements occur more than once. For example both trace syzygy and

Jacobi identity matrix computations show that τ 1812 is rewritable. Thus after carefully

examining TΠ,xk
and J123, we can simplify the repeating rewritable elements and the

trivial polynomials. We claim that there are at most 60 redundant elements in the set

T that can be determined using trace and Jacobi identity syzygies. Before proving our

claim let us summarize some of our observations that we get from our computations.
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Remark 5.4.1. Keep in mind that simplified Jacobi identity matrix is not a zero

matrix. By Lemma 5.2.6, a non-zero entry in position (i, j) of the J123 has the arrow

degree log(x1x2x3ti)− log(tj). By considering the order ideal,

B(2, 2, 2) = {1, x3, x2, x1, x2x3, x1x3, x1x2, x1x2x3}

one can easily deduce that all entries of J123 have non-negative arrow degrees (see

Definition 5.1.17). In Remark 5.1.20 we explain that by computing the trace syzygies

one can only find the rewritable polynomials from T with a non-standard and non-

negative arrow degree. Let us compute the generators of I(BB(2,2,2)) and their arrow

degrees by using the ApCoCoA package bbsmingensyz There are 12 different non-

standard and non-positive arrow degrees.

(−1, 1, 2), (1,−1, 2), (−1, 2, 1), (2, 1,−1), (2,−1, 1), (1, 2,−1),

(−1, 2, 2), (2,−1, 2), (2, 2,−1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)

If there are redundant polynomials of the above arrow degrees, then neither Jacobi

identity nor trace syzygies of T will give them.

The order ideal B(2, 2, 2) is symmetric with respect to swapping xi and xj where

i 6= j and i, j ∈ {1, 2, 3}. This is a quite useful property, as next lemma shows.

Lemma 5.4.2. Let σ be a permutation defined on the set {1, 2, 3}. Let λ denote the

number of rewritable elements (with respect to either Jacobi identity or trace syzygy)

from T with arrow degree α = (α1, α2, α3) ∈ N3. Then there are λ rewritable ele-

ments (with respect to either Jacobi identity or trace syzygy) with arrow degree ασ =

(ασ(1), ασ(2), ασ(3)).

Proof. We start with Jacobi identity syzygies. There are λ rewritable elements from

T with respect to Jacobi identity syzygies with degree α. Let i be an index from the

set {1, 2, 3} and let tp, tq ∈ B(2,2,2) be two order ideal terms such that

tp = xp1
1 xp2

2 xp3
3 and tq = xq1

1 x
q2
2 x

q3
3 .

Let the polynomial τ klpq ∈ T be one of those λ rewritable elements. Since τ klpq is rewritable

with respect to Jacobi identity syzygies, we have

α = (α1, α2, α3) = (1, 1, 1) + log(tp)− log(tq).
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Thus for each i in {1, 2, 3}, the αi is equal to pi + 1− qi i.e., αi = pi + 1− qi. Then we

have

ασ(i) = pσ(i) − qσ(i) + 1

where tpσ = x
pσ(1)

1 x
pσ(2)

2 x
pσ(3)

3 and tqσ = x
qσ(1)

1 x
qσ(2)

2 x
qσ(3)

3 . The order ideal B(2, 2, 2) is

a symmetric order ideal. Since the terms tp, tq are in B(2, 2, 2), we have tpσ , tqσ ∈
B(2, 2, 2). Thus for each order ideal term tp and tq there exits a rewritable polynomial

from T in (p, q) position of the matrix Jklm, there exists a rewritable polynomial from

T in (pσ, qσ) position of the matrix Jklm.

Now we focus on the rewritable elements from T with respect to the trace syzygies.

Let τ klpq ∈ τ be a rewritable element with respect to trace syzygies, where p, q ∈ {1, .., 8}
and k, l ∈ {1, 2, 3}. There are three cases to consider.

case 1) If two components of the arrow degree vector α are zero, then there are only zero

trace syzygies.

case 2) Next assume one component of α, say αi = 0 and the others αj, αr 6= 0. By

Lemma 5.1.19 we have T
x
αj
j x

αr
r , xj

= −T
x
αj
j x

αr
r , xr

. Therefore considering just one

trace syzygy T
x
αj
j x

αr
r , xj

will be enough to find rewritable elements. By the same

argument for some σ, there is only one trace syzygy T
x
ασ(j)
σ(j)

x
ασ(r)
σ(r)

, xσ(j)
.

case 3) We consider the last case α1, α2, α3 6= 0. Let Π denote term xα1
1 xα2

2 xα3
3 ∈ T3 and

Π′ denote the term x
ασ(1)

σ(1) x
ασ(2)

σ(2) x
ασ(3)

σ(3) ∈ T3. For the term Π, there are exactly three

different trace syzygies, since we have TΠ, xi 6= TΠ, xj where i 6= j. Then there

are also three different trace syzygies TΠ′,xσ(i)
, i ∈ {1, .., 3}. Moreover, the trace

syzygy TΠ′,xσ(i)
has the same shape as TΠ,xi

.

Therefore the number of rewritable elements with respect to trace syzygies are the

same for any permutation of the components of given arrow degree vector.

Before proving our main proposition of this section, let us give an overview of the

proof method we will follow. The main aim of the proof is to give the maximal number

of the redundant polynomials in T that can be computed by trace and Jacobi identity

syzygies.

1) We fix an arrow degree d = (d1, d2, d3) ∈ N3 and compute the Jacobi identity and

trace syzygies by using the simple generic multiplication matrices. This will give

us the rewritable polynomials with respect to Jacobi identity and trace syzygies.
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2) If the both syzygy computation method indicates the same rewritable polynomi-

als, then we compute the trace syzygy and the Jacobi identity syzygy only for this

arrow degree. Then we give the maximal number of the redundant polynomials,

say λ.

3) Using Lemma 5.4.2, we deduce the maximal number of redundant polynomials

for arrow degrees (d1, d3, d2), (d2, d1, d3), (d2, d3, d1), (d3, d1, d2) and (d3, d2, d1) are

also λ.

Thus the number of redundant polynomials for the arrow degree (d1, d2, d3) and its

re-arrangements are at most 6 ·λ. The reason why we cannot give the exact number of

redundant polynomials, is given in Remark 5.4.4.

Proposition 5.4.3. Let P denote the polynomial ring K[x1, x2, x3]. Let B(2, 2, 2) be

the order ideal. Let T denote the set of generators of the vanishing ideal of the box

border basis scheme BB(2,2,2). Then there are at most 60 redundant polynomials from T
that can be computed by trace and Jacobi identity syzygies.

Proof. As we have seen while computing the trace and Jacobi identity syzygies of T ,

one can only compute the rewritable polynomials from T that have non-negative arrow

degrees (for details see Remark 5.4.1). Therefore it suffices to consider the elements

from T with arrow degree vector from N3. There are seven different sorts of arrow

degree vectors we will consider.

i) We start our computation with degrees, (0, 0, 1), (1, 0, 0), (0, 1, 0), (0, 0, 2), (0, 2, 0)

and (2, 0, 0). There is no trace syzygy with respect to those degrees. Thus it is

enough to consider only Jacobi identity syzygies. By Lemma 5.2.6, a non-zero

entry of Matrix (5.75) in position (i, j) has the degree

(1, 1, 1) + log(tj)− log(ti) (5.76)

where ti, tj ∈ B(2, 2, 2). Therefore the only possible position for an entry of the

arrow degree (1, 0, 0) in Matrix (5.75) is (8, 2). The entry J12382 is non-zero. Since

there is no other possible position in the Matrix (5.75) for the given degree,

choosing one of the rewritable elements that is indicated by the simplified Jacobi

identity syzygy J12382 will give us the desired rewritable element from T of arrow

degree (1, 0, 0). This is the first possible redundant element. By the same argu-

ment, we have one rewritable element by the simplified Jacobi identity syzygy
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J 123
83 with degree (0, 0, 1) and one rewritable by J 123

84 with degree (0, 1, 0). For

(0, 2, 0), (2, 0, 0), (0, 0, 2) by the same way, we can get one rewritable element

by each simplified Jacobi identity syzygies J12363 , J12354 , J12372 respectively. Therefore

from this step we have 6 different rewritable polynomials and at most 6 redundant

polynomials.

ii) As a result of Equation (5.76), the entries of arrow degrees (0, 2, 2), (2, 0, 2)

or (2, 2, 0) are located only in positions (4, 5), (3, 6) and (2, 7) of Matrix (5.75).

By examining the simplified Jacobi identity syzygies in these positions, we have

J12345 = e2315 − e2348, J
123
36 = e1316 − e1338 and J12327 = e1217 − e1228. Now let us give a closer

look at the Jacobi identity syzygy J12327 .

J 123
45 =

∑

16q68

ρ234qe
23
4q −

∑

16p68

ρ23p5e
23
p5 +

∑

16q68

ρ134qe
13
4q −

∑

16p68

ρ13p5e
13
p5

+
∑

16q68

ρ124qe
12
4q −

∑

16p68

ρ12p5e
12
p5 + e2315 + e2348

Therefore τ 2315 − τ 2348 can be rewritten as K[C]-linear combination of tuples of poly-

nomials from the set {τ kl4q , τ klp5 | k < l, k, l ∈ {1, 2, 3}, p, q ∈ {1, ..., 8}}\{τ 2315 , τ 2348 }.
Hence, the polynomial τ 2315 can be a redundant element from T . Then we examine

the simplified trace syzygy T′
x2
2x

2
3,x2

= e2315 + e2348 such that log(x2
2x

2
3) = (0, 2, 2).

If we show the trace syzygy Tx2
2x

2
3,x2

is different from the Jacobi identity syzygy

J 123
45 , then by substituting e2315 with J 123

45 − e2315 in Tx2
2x

2
3,x2

, we can deduce that τ 2348
can also be a redundant element of T . Recall that we obtain the trace syzygy

Tx2
2x

2
3,x2

from Trace(A2[A2,A3]A3+A2A3[A2,A3]) and let us focus on that trace

syzygy.

Tx2
2x

2
3,x2

=
∑

p,q∈{1,...,8}

(κ23
pqe

23
pq) (5.77)

That implies this trace syzygy is different than the Jacobi identity syzygy. Hence,

the polynomial τ 2348 can be a redundant element of T . Then both τ 2315 and τ 2348 can be

redundant elements of T . By the same method one can show τ 1613 and τ 1338 , τ
12
17 , τ

12
28

can be redundant. There are altogether at most 6 redundant elements coming

from this step.

iii) Let us consider the arrow degrees (0, 1, 1), (1, 0, 1) and (1, 1, 0). We will first

find the rewritable element with degree (1, 1, 0). By Lemma 5.4.2, the redundant
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polynomials of degrees (1, 0, 1) and (0, 1, 1) can be found similarly. The trace

syzygy and the simplified trace syzygy are equal for degree (1, 1, 0).

Tx1x2,x1 = e1211 + e1222 + e1233 + e1244 + · · ·+ e1288 (5.78)

There are exactly three different positions in Matrix (5.75), where the simplified

Jacobi identity syzygies have degree (1, 1, 0).

J 123
53 =

∑

16q68

ρ235qe
23
5q −

∑

16p68

ρ23p3e
23
p3 +

∑

16q68

ρ135qe
13
5q −

∑

16p68

ρ13p3e
13
p3 (5.79)

+
∑

16q68

ρ125qe
12
5q −

∑

16p68

ρ12p3e
12
p3 + e1255 + e2357

J 123
64 =

∑

16q68

ρ236qe
23
6q −

∑

16p68

ρ23p4e
23
p4 +

∑

16q68

ρ136qe
13
6q −

∑

16p68

ρ13p4e
13
p4 (5.80)

+
∑

16q68

ρ126qe
12
6q −

∑

16p68

ρ12p4e
12
p4 + e1266 + e1367

J 123
87 =

∑

16q68

ρ238qe
23
8q −

∑

16p68

ρ23p7e
23
p7 +

∑

16q68

ρ138qe
13
8q −

∑

16p68

ρ13p7e
13
p7 (5.81)

+
∑

16q68

ρ128qe
12
8q −

∑

16p68

ρ12p7e
12
p7 + e1277 + e1288 + e1367 + e2357

The entries of the tuple (ρk,mpq ) 16p,q68
r,s∈{k,l,m}

are either a non-constant polynomial from

K[C] or 0. If the polynomial τ 1288 is a redundant polynomial which is rewritable

by Equation (5.78), then the polynomials τ 2357 , τ
13
67 can also be redundant poly-

nomials from T , which are rewritable polynomials in T by the Jacobi identity

syzygies (5.79) ,(5.80) and (5.81). Hence the polynomial τ 1377 can be a redundant

polynomial from T , as well. Thus there are at most 4 redundant polynomials of

degree (1, 1, 0). By Lemma 5.4.2, there are also at most 4 redundant elements of

degree (0, 1, 1) and at most 4 more from degree (1, 0, 1). Altogether, there are at

most 12 redundant polynomials of such sort of arrow degrees.

iv) Next we consider the arrow degrees

(0, 2, 1), (2, 1, 0), (2, 0, 1), (0, 1, 2), (1, 0, 2), and (1, 2, 0).

As in iii) we focus on one of those arrow degrees, say (1, 2, 0), and find the maximal

number of redundant polynomials. Then similarly to the previous steps, by using
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Lemma 5.4.2 we deduce, that there is the same number of redundant polynomials

of the other given arrow degrees. There are two positions in Matrix (5.75) such

that the Jacobi identity syzygies have degree (1, 2, 0).

J 123
23 =

∑

16q68

ρ232qe
23
2q −

∑

16p68

ρ23p3e
23
p3 +

∑

16q68

ρ132qe
13
2q −

∑

16p68

ρ13p3e
13
p3 (5.82)

+
∑

16q68

ρ122qe
12
2q −

∑

16p68

ρ12p3e
12
p3 + e1213 + e1225 + e2327

J 123
67 =

∑

16q68

ρ236qe
23
6q −

∑

16p68

ρ23p7e
23
p7 +

∑

16q68

ρ136qe
13
6q −

∑

16p68

ρ13p7e
13
p7 (5.83)

+
∑

16q68

ρ126qe
12
6q −

∑

16p68

ρ12p7e
12
p7 + e1268 + e1247 + e2327

The entries of the tuple (ρk,mpq ) 16p,q68
r,s∈{k,l,m}

are either a non-constant polynomial

from K[C] or 0. Therefore the polynomials τ 2327 and τ 1268 can be the redundant

polynomials which are rewritable elements by both Jacobi identity syzygies (5.82)

and (5.83). Moreover, there is exactly one trace syzygy Tx1x
2
2,x1

that corresponds

to arrow degree (1, 2, 0).

Tx1x
2
2,x1

=
∑

16p,q68

κ12
pqe

12
pq + 2e1213 + 2e1225 + 2e1247 + 2e1268 (5.84)

The components of the tuple (κ12
pq)16p,q68 are either a non-constant polynomial

from K[C] or 0. Hence, τ 1247 can be redundant. Therefore there are at most 3

redundant polynomials of arrow degree (1, 2, 0). By Lemma 5.4.2, there are at

most 3 redundant polynomials of each given arrow degree. Consequently, there

are at most 18 redundant polynomials of the above arrow degrees.

v) In this case we consider the arrow degrees (1, 2, 1), (1, 1, 2) and (2, 1, 1). As in the

previous cases we choose one arrow degree , say (1, 1, 2). By Equation (5.76), in

positions (3, 5), (4, 6), (7, 8) of Matrix (5.75) the simplified Jacobi identity syzygies

with degree (1, 1, 2) are located . Let us give a closer look at the Jacobi identity

syzygies.

J 123
35 =

∑

16q68

ρ233qe
23
3q −

∑

16p68

ρ23p5e
23
p +

∑

16q68

ρ133qe
13
3q (5.85)

−
∑

16p68

ρ13p5e
13
p5 +

∑

16q68

ρ123qe
12
3q −

∑

16p68

ρ12p5e
12
p5 + e1513 + e2338
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J 123
46 =

∑

16q68

ρ234qe
23
4q −

∑

16p68

ρ23p6e
23
p6 +

∑

16q68

ρ134qe
13
4q (5.86)

−
∑

16p68

ρ13p6e
13
p6 +

∑

16q68

ρ124qe
12
4q −

∑

16p68

ρ12p6e
12
p6

−e1348 + e2316 (5.87)

J 123
78 =

∑

16q68

ρ237qe
23
7q −

∑

16p68

ρ23p8e
23
p8 +

∑

16q68

ρ137qe
13
7q

−
∑

16p68

ρ13p8e
13
p8 +

∑

16q68

ρ127qe
12
7q −

∑

16p68

ρ12p8e
12
p8

−e1348 + e2338

The components of the tuple (ρk,mpq ) 16p,q68
r,s∈{k,l,m}

are either a non-constant polynomial

from K[C] or 0. Hence the polynomials τ 2338 , τ
13
15 and τ 2316 can be redundant, which

are rewritable polynomials by the Jacobi identity syzygies (5.85), (5.86) and

(5.88). There are also trace syzygies that correspond to that degree but they

are just equal to the K[C]-combination of the above Jacobi identity syzygies.

Therefore by Lemma 5.4.2 , we deduce there are at most 9 redundant elements

of the above arrow degrees.

vi) The diagonal positions of Matrix (5.75) contain the polynomials of degree (1, 1, 1).

By examining the simplified Jacobi polynomials in the diagonal position i.e., J123pp

for every p ∈ {1, ..., 8}, we deduce there are exactly 7 different Jacobi identity

syzygies and therefore at most 7 different redundant polynomials. The trace

syzygy of that degree does not give a new rewritable polynomial.

vii) The only remaining degrees are (2, 2, 1), (1, 2, 2) and (2, 1, 2). By Equation (5.76)

there is exactly one Jacobi identity syzygy for each given arrow degree. These are

J 123
28 ,J 123

38 and J 123
48 respectively, where simplified Jacobi identity syzygies have

one non-zero component. Therefore there is at most one redundant polynomial

for each given degree. It is not necessary to check the trace syzygies, since they

indicate the same rewritable elements from T .

As a result, there are at most 60 rewritable elements with respect to Jacobi identity

and trace syzygies.

Remark 5.4.4. Note that in Proposition 5.4.3 we did not claim that there are ex-

actly 60 redundant polynomials from T , instead we claimed that there are at most 60

redundant polynomials that can be computed by Jacobi identity and trace syzygies of
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T . There are two reasons: First reason is that there are standard polynomials that

are rewritable with respect to the Jacobi identity syzygies. The Second reason is that

we can not order the arrow degrees of the polynomials from T such that it enables

us to decide whether a rewritable polynomial is also a redundant one or not, since

arrow grading is neither of positive type nor positive. In other words, we cannot use

any arguments that depend on the graded version of the Nakayama Lemma 2.1.11.

There are two reasons why we don’t face the same problem in the case where the

polynomial ring is K[x1, x2]. First, in that case there are no non-standard non-positive

polynomials from T (see Remark 5.1.20) and therefore the trace syzygies of T are

enough to compute all the redundant polynomials. Second, there are no indetermi-

nates from K[C] that have arrow degree vectors with more than one negative entry,

such as degW (c82) = (−1, 1,−1).
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Chapter 6

Border Basis Schemes and Affine

Spaces

This Chapter is dedicated to finding conditions which make an O-border basis scheme

an affine cell, i.e. isomorphic to an affine space. For the special case n = 2, in [Hai98]

O-border basis schemes are described as open coverings of the punctual Hilbert schemes

Hilbµ(A2). Moreover, it is stated as a remark (see Proposition 2.1 [Hai98]) that they are

not affine cells in general. In [Huib02], Chapter 7, a necessary and sufficient condition

on the order ideal O ⊂ T2 is given which makes O-border basis scheme an affine space.

Since our results depend neither on the shape of O nor on n, they are more general than

the existing results. If the monomial point o is a smooth point of the O-border basis

scheme and µ denotes the number of terms in O ⊂ Tn, then BO is locally isomorphic to

an affine space of dimension nµ. Our aim is to find a condition which extents this local

property to BO. The main results of this section (see Theorems 6.2.20) imply that this

extension is possible. To be precise, we show that the coordinate ring BO is isomorphic

to a polynomial ring of dimension nµ if there exist a set S ⊂ C (see Chapter 4.2 ) and

a maximal minor of the Jacobian matrix of T that is ±1 and the corresponding matrix

of this minor is in Matµν−nµ(K[S]). Let us have a closer look at the sections of this

chapter.

In Section 6.1 we investigate the properties of the Jacobian matrix of the defining

equations T of an O-border basis scheme where O ⊂ Tn and K is a perfect field.

Then we show that the Jacobian ideal is a homogenous ideal with respect to the arrow

grading. On page 366 of [MilSt05], this property is also mentioned for an order ideal

O ⊂ T2.
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Before stating our main theorem, in Section 6.2 we give a condition for checking

whether the injective homomorphism

ϕ : K[S] −→ K[C]/I(BO)

cij 7−→ c̄ij

in (6.15) is surjective or not, where S is a set defined in Lemma 4.2.12. This condition

holds under the assumptions that the given border basis scheme is an ideal-theoretic

complete intersection. In particular, our claim holds if the vanishing ideal of the O-

border basis scheme is generated by the subset TS of T . Then we generalize this result to

Theorem 6.2.20 in which we give a condition without that assumption. Then, by using

our theorem (see Theorem 6.2.20), we show that the coordinate ring of the border basis

scheme BO, where O = {1, x1, x2} ⊂ T3 is isomorphic to an affine space of dimension

9. The proof of Theorem 6.2.20 is an algorithmic proof. By using the idea of this proof

we give an algorithm for checking whether given border basis scheme is isomorphic to

an affine space (see Algorithm 6.2.26).

Additionally, we have two sections which we apply Theorem 6.2.20 to prove that

O-border basis scheme is isomorphic to an affine space where the order ideal O is a

segment order ideal in Section 6.3 and the order ideal O has the sawtooth form in

Section 6.4.

6.1 The Jacobian Matrix of T
Unless stated otherwise, throughout this section we let P denote the polynomial ring

K[x1, ..., xn], where K is a field. Let O = {t1, ..., tµ} ⊂ Tn be an order ideal and let ∂O
denote its border {b1, ..., bν}. Let C denote a set of indeterminates {c11, ..., cµν}. Let

K[C] be the polynomial ring K[c11, ..., cµν ].

Let I(BO) be the vanishing ideal of the border basis scheme BO and it is generated

by the set T = {τ klpq | p, q ∈ {1, ...µ}, k < l k, l ∈ {1, .., n}} defined in Section 2.3.

By Lemma 2.3.19, the polynomials from the set T are of degree two with no constant

term.

Let τκ be a polynomial in T . Recall that no matter which order ideal is used, by

Lemma 2.3.19, the polynomial τκ is of the following shape:

τκ = τ (2)κ ± τ (1)κ (6.1)
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where τ
(2)
κ ∈ K[C] is a homogenous polynomial of degree 2 with respect to the standard

grading and τ
(1)
κ ∈ K[C] is a homogenous polynomial of degree 1 with respect to the

standard grading. For the polynomial τ
(1)
κ , there are three possibilities: The first is

that τ
(1)
κ = (ci1j1 ± ci2j2), where ci1j1 , ci2j2 ∈ K[C]. The second is that τ

(2)
κ = cij and

finally, we have the possibility τ
(1)
κ = 0.

Since the polynomials in T have a specific shape, we can describe the entries of the

Jacobian matrix. This section is dedicated to collecting information on how the shape

of the elements of T effects the Jacobian matrix of T and the Jacobian ideal. Recall

that we denote the Jacobian matrix of T by Jac(T ).

Corollary 6.1.1. The non-zero entries of the Jac(T ) are either linear polynomials

from K[C] with no constant, or ±1. In particular, if we let τ klpq ∈ T and let crs ∈ C,
then the following holds.

∂τ klpq
∂crs

=





±1 if crs ∈ Supp(τ klpq)

linear polynomial in K[C] if crs | c, c is a quadratic term in Supp(τ klpq)

0 otherwise.

Proof. Let crs be an indeterminate from C. There are three cases we will consider.

case 1) If the term crs is in the support of the polynomial τ klpq then, by Proposition 3.2.6,

we have degW (τ klpq) = degW (crs). By Corollary 3.2.2, none of the indeterminates in

C has the arrow degree (0, ..., 0) ∈ Kn. Then for each index α, the indeterminate

crs can not divide the monomial cuαvαciαjα ∈ Supp(τ klpq) and as a result, we have
∂τklpq

∂crs
= ±1.

case 2) If there exists an index α such that crs divides the monomial cuαvαciαjα ∈ Supp(τ klpq)

then, by Proposition 3.2.6, the indeterminate crs is not an element of Supp(τ klpq),

and hence
∂τklpq

∂crs
is a linear polynomial with no constant term.

case 3) If crs satisfies neither case 1 nor case 2, then we have
∂τklpq

∂cij
= 0.

Example 6.1.2. Let O denote the order ideal {1, x1} ⊂ T2. Then ∂O = {x2, x1x2, x
2
1}

is its border. By considering the arrow degrees of the elements of the set C =

{c11, ...., c23}, we construct the degree matrix. The columns of this matrix are the
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arrow degree vectors of each cij ∈ C i.e., degW (cij) = log(bj)− log(ti).

W =

( c11 c12 c13 c21 c22 c23

0 1 2 −1 0 1

1 1 0 1 1 0

)
.

The coordinate ring of the border basis scheme is BO = K[C]/I(BO) where the van-

ishing ideal of the border basis scheme is generated by the set T = {τ11, τ12, τ21, τ22}
with

τ11 = c13c21 − c12 τ12 = c11c13 − c13c22 + c12c23

τ21 = c21c23 − c22 τ22 = c13c21 − c12.

For details on how we construct these polynomials we refer to Chapter 2. By Proposi-

tion 3.2.6, the polynomials from T are homogeneous with respect to the arrow grading.

Let us give their arrow degrees:

degW (τ11) = (1, 1), degW (τ12) = (2, 1), degW (τ21) = (0, 1), degW (τ22) = (1, 1)

Next we compute the Jacobian matrix and get the following matrix as a result.

Jac(T ) =




∂τ11
∂c11

. . . ∂τ11
∂c23

...
. . .

...
∂τ22
∂c11

. . . ∂τ22
∂c23


 =




0 −1 c21 c13 0 0

c13 c23 c11 − c22 0 −c13 c12

1 0 0 c23 −1 c21

0 −1 c21 c13 0 0


 .

Let us check whether Jac(T ) is a homogeneous matrix (see Definition 3.2.3) or not.

First we find suitable vectors e and d such that e = (e1, e2, e3, e4) determines the degree

of the rows and d = (d1, ..., d6) determines the degree of the columns. Consider

ej − di = degW (
∂τpq
∂ckl

),

where ckl is the i
th element of C and τpq is the j

th element of T . Choosing ej = degW (τpq)

and di = degW (ckl) gives us the desired vectors. Thus the Jacobian matrix Jac(T ) is

a homogenous matrix with the degree pair (d, e) where e = ((1, 1), (2, 1), (0, 1), (1, 1))

and d = ((0, 1), (1, 0), (2, 0), (0, 1), (1, 0)).
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Lemma 6.1.3. Let O ⊂ Tn be an order ideal with µ elements. Let m be the number

of polynomials in T . Then the Jacobian matrix Jac(T ) is a homogeneous matrix with

respect to the arrow grading, with the degree pair (e, d) ∈ (Zn)nµ × (Zn)m, where ei =

degW (τ klpq) ∈ Zn and dj = degW (crs) ∈ Zn, for the ith element τ klpq of T and the jth

element crs of C. Consequently, the minors of Jac(T ) are homogeneous polynomials

and the Jacobian ideal is a homogeneous ideal.

Let τ klpq be the ith element of T and let crs be the jth element of C.

Proof. By Proposition 3.2.6, every polynomial in T is homogeneous with respect to the

arrow grading. Then the polynomial
∂τklpq

∂crs
is homogeneous with respect to the arrow

grading, as well. By Corollary 6.1.1, we have

∂τ klpq
∂crs

=





±1 if crs ∈ Supp(τ klpq),

linear polynomial in K[C] if crs | c, c is a quadratic monomial in Supp(τ klpq)

0 otherwise.

Note that 0 is homogenous of every degree. Then the arrow degree of the polynomial

above is

degW (
∂τ klpq
∂crs

) = degW (τ klpq)− degW (crs). (6.2)

Since τ klpq is the ith polynomial in T and crs is the jth indeterminate in C, we let

degW (τ klpq) = ei and degW (crs) = dj. Then by Corollary 6.1.1, the degree of the ho-

mogeneous element
∂τklpq

∂crs
in the matrix is (ei − dj). Thus the Jacobian matrix is a

homogeneous matrix with respect to the degree pair (e, d) (see Definition 3.2.3).

Furthermore, every sub-matrix of the Jacobian matrix is also a homogeneous ma-

trix. Therefore r-rowed minors are homogeneous polynomials of degree
∑r

i=1(e
′
i − d′i)

where d′i ∈ {d1, ..., dµ·ν} and e′i ∈ {e1, ..., em}. In particular, the Jacobian ideal is a

homogeneous ideal with respect to the arrow grading.

Remark 6.1.4. In Chapter 4 we showed that the arrow grading is in general nei-

ther of positive nor of non-negative type. Although the Jacobian ideal is homogenous

with respect to the arrow grading, it is not necessarily included in the maximal ideal

〈c11, ...., cµν〉 (see Example 3.2.12).
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6.2 An Affine Space Criterion

Unless stated otherwise, throughout this section we use the following notation.

• We let P denote the polynomial ring K[x1, ..., xn]. We assume that K is a perfect

field.

• Let O = {t1, ..., tµ} ⊂ Tn be an order ideal and let ∂O denote its border ∂O =

{b1, ..., bν}.

• Let C denote the set of indeterminates {c11, ..., cµν}. Let K[C] be the polynomial

ring K[c11, ..., cµν ].

• The ideal I(BO) is the vanishing ideal of the border basis scheme BO. It is gen-

erated by the set T = {τ klpq | p, q ∈ {1, ...µ}, k < l k, l ∈ {1, .., n}}, which is

defined in Chapter 2.3.

• According to Lemma 2.3.19, the polynomials from the set T are of degree two

with no constant. Let us pick a polynomial from T , say τκ. Then we write the

polynomial τκ as

τκ = τ (2)κ + τ (1)κ ∈ T (6.3)

where τ
(2)
κ ∈ K[C] is a homogenous polynomial of degree 2 with respect to the

standard grading and τ
(1)
κ ∈ K[C] is a homogenous polynomial of degree 1 with

respect to the standard grading. Recall that the set Supp(τ
(1)
κ ) has at most two

linear monomials.

Remark 6.2.1. The field K is isomorphic to BO/m(BO)m and the point o = (0, ..., 0) ∈
K.

6.2.1 Border Bases Scheme with the Smooth Monomial Point

Throughout this subsection we make the following assumptions.

• The field K is a perfect field.

• The point o = (0, .., 0) is a smooth point on the scheme BO.

Now let us recall the necessary notations for this subsection.

• Letm denote the maximal ideal of BO generated by the elements of C = {c̄11, ..., c̄nµµν} ⊂
BO. Then (BO)m is a regular local ring.
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• The set E denotes the set of non-zero equivalence classes modulo m2.

• Since o is a smooth point of BO, according to Theorem 4.2.15, the set E has

exactly nµ different equivalence classes.

• The set S = {s1, ..., snµ} is constructed in a way that each [s̄i] represents a distinct

equivalence class in E. The set S is not unique.

• We let K[S] denote the polynomial ring K[s1, ...., snµ]. We let S̄ = {s̄i ∈ BO | si ∈
S} ⊂ C̄.

• We let Ŝ = {ŝi ∈ m/m2 | si ∈ S} denote a basis set of the vector space m/m2.

• We denote the elements of C \ S as d1, ...., dm, where m = µν − nµ.

Remark 6.2.2. Let O ⊂ Tn denote an order ideal. In Chapter 7 of [Huib02] it is

proved that the O-border basis scheme is an affine space (see Theorem 7.4.1, [Huib02]),

if n is 2 and the order ideal O has a special shape. For further information on this topic

we refer to Chapter 7 of [Huib02]. Note that in this section we present a condition that

is valid for n > 2 and independent of the shape of O

Let us introduce the necessary notation we use frequently throughout this section

and next section.

Notation 6.2.3. Let O ⊂ Tn be an order ideal that has µ terms. If we let the number

of elements in the ith equivalence class in E to be ki, then by picking exactly one element

from each equivalence class, we can construct k1 × ...× knµ many different sets S. We

denote the number of such sets by nS .

nS := k1 × ...× knµ (6.4)

For the rest of the section let us fix one such set S.

Lemma 6.2.4. For each element di of C \ S there exists at least one polynomial τi in

T that contains the term di in its support. If the polynomial τi has the term dj that is

distinct from di in its support, then there exists a polynomial τj ∈ T such that τi 6= τj

and τj contains the term dj in its support.

Proof. Let si be an indeterminate from S. We write elements in the equivalence class

[s̄i] as follows,

[s̄i] = {s̄i, d̄i1 , ..., d̄ik} (6.5)
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and hence this equivalence class has k + 1 elements. If we have k = 0, then by

Proposition 4.1.6c), there exists no polynomial in T that contains the term si in its

support. If we have k > 1 in (6.5), then by Proposition 4.1.6b), for each element dij
of {d̄i1 , ..., d̄ik} ∈ C \ S there exists a polynomial in T that contains the term dij in its

support. Additionally, if we have d̄j ∈ m2, then dj ∈ C \ S and by Proposition 4.1.6a),

there exist polynomials in T that contain dj in their support. To prove our next claim,

we let τk be a polynomial in T that contains the distinct terms dk and dj in its support.

Keep in mind that di and dj are both in C\S. To get a contradiction, we suppose neither
the term dj nor the term di is in the support of a polynomial in T except for τk. Using

this assumption with Proposition 4.1.6 b) gives us that [d̄j] = {d̄i, d̄j}. By Proposition

4.1.6 a), neither d̄i nor d̄j is in m2. Then we have [d̄j] ∈ E. As a result of the construction

of S, either di or dj must be in S. This contradicts with the assumption that di and dj

are both in C \ S.

By Lemma 6.2.4 for each di ∈ C \ S there exists at least one polynomial in T , say

τi, such that di ∈ Supp(τi). By Corollary 6.1.1, for the polynomial τi ∈ T we have

∂τi
∂di

= ±1. (6.6)

By using these two results we construct a subset of T that depends on S.

Construction 6.2.5. According to the Lemma 6.2.4 we form a subset of T , where

for each di ∈ C \ S, we pick exactly one polynomial τi ∈ T that satisfies (6.6). We

let TS denote this set. Recall that m = µν − nµ is the number of elements of C \ S.
Then there are exactly m polynomials in TS . By using the elements of TS and C \ S,
we construct the following m×m matrix.




d1 . . . dm

τ1 ±1 ⋆ ⋆
...

...
. . .

...

τm ⋆ ⋆ ±1


 =




∂τ1
∂d1

. . . ∂τ1
∂dm

...
. . .

...
∂τm
∂d1

. . . ∂τm
∂dm


 (6.7)

We denote the matrix in (6.7) by MS .

Remark 6.2.6. Note that there can be more than one τi for each di ∈ M. Hence the

set TS is not uniquely determined.
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Let us compute the Jacobian matrix Jac(T ).

Jac(T ) =




c11 . . . cµ ν

τ 1211
∂τ1211

∂c11
. . .

∂τ1211

∂cµ ν

...
...

. . .
...

τn−1n
µµ

∂τn−1n
µµ

∂c11
. . .

∂τn−1n
µµ

∂cµ ν


 (6.8)

The matrix MS is a sub-matrix of Jac(T ). We rearrange the rows and the columns of

(6.8) as follows.

Jac(T ) =

(
MS ⋆

⋆ ⋆

)
(6.9)

Recall that we denote the Jacobian matrix evaluated at the point o = (0, ..., 0) ∈ BO

as Jac(T )o.

Lemma 6.2.7. By applying row and column operations on the matrix Jac(T )o in (6.9)

without exchanging rows and columns, we get a matrix of rank µν−nµ of the following

shape.

Jac(T )o ∼
(

Im 0

0 0

)
(6.10)

The matrix Im is the unit matrix of rank m and it is the matrix MS evaluated at the

point o = (0, ..., 0).

Proof. By Lemma 6.1.1, the entries of the matrix Jac(T ) are 0 or ±1 or a homogenous

(with respect to the standard degree) linear polynomial in K[C]. If we evaluate the

matrix Jac(T ) at the point o = (0, ..., 0), we substitute 0 instead of each indeterminate

cij in the matrix Jac(T ), then the homogenous linear polynomials become 0 and the

entries of the matrix Jac(T )o are 0 or ±1. Moreover the monomial point o = (0, ..., 0)

is a smooth point of the scheme BO. Then by Theorem 2.1.18 the matrix Jac(T )o has

rank m. Hence by row and column operations we get 6.10.

6.2.2 Border Basis Schemes with an Arbitrary Monomial Point

Throughout this section we make no assumptions on the monomial point o of BO. Let

us recall some of the necessary notations and claims from Chapter 4 that we will use

in this subsection.

i) The set E denotes the set of non-zero equivalence classes modulo m2.
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ii) According to Theorem 4.2.9, the set E has at least nµ different equivalence classes.

iii) The set S = {s1, ..., snµ} ⊆ C is constructed in a way that each [s̄i] represents a

distinct equivalence class in E. The set S is not unique. For further information

we refer to Chapter 4.

iv) According to Lemma 4.2.12, the elements of Ŝ = {ŝi ∈ m/m2 | si ∈ S} are linearly
independent and the K-vector space 〈Ŝ〉K is a subspace of m/m2 of dimension at

least nµ.

v) We denote the elements of the set C \ S as {d1, ..., dm}, where m = µν − nµ.

Our next lemma shows that if we can find a maximal minor of the Jacobian matrix,

which is ±1, then the point o is a smooth point of the O-border basis scheme.

Lemma 6.2.8. If there exists a set S as given in Notation 6.2.3 with nµ elements

such that the determinant of the matrix MS in (6.7) is ±1, then the monomial point

o ∈ BO is a smooth point.

Proof. The matrix MS is an m × m matrix. Since the determinant of MS is ±1,

the rank of the matrix MS evaluated at any point including o = (0, ..., 0) ∈ BO is

m = νµ − nµ. The matrix MS is a submatrix of the matrix Jac(T ). Hence we have

the following inequality.

Rank(Jac(T )o) > Rank(MSo) = νµ− nµ = m

By Theorem 2.1.18a), the rank of the matrix Jac(T )o=(0,...,0) is less than or equal to

µν − nµ.

Rank(Jac(T )o) 6 µν − nµ.

Hence we have Rank(Jac(T )o) = µν − nµ. Then by Theorem 2.1.18c), o is a smooth

point of BO.

Lemma 6.2.9. Let us pick a polynomial τk ∈ T . If the entries of the matrix MS given

in (6.7) are in K[S], then each monomial in the support of τ
(2)
k is either of the form

sidj ∈ (K[S])[d1, ..., dm] or a quadratic monomial spsq ∈ K[S].

Proof. Suppose the matrix MS ∈ Matm(K[S]) and there exists a monomial djdl ∈ τ
(2)
k .

Then in position (k, j) of MS we have ∂τk
∂dj

= dl and in (k, l) position of MS we have
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∂τk
∂dl

= dj This contradicts to the assumption that the entries of the matrix MS are in

K[S].

Notation 6.2.10. Suppose that the entries of the matrix MS in 6.7 are from K[S].
Then, by Lemma 6.2.9, the polynomial τk is of the form.

τk = ±
α∑

i=1

skidli ±
β∑

j

spjsqj ± dk ± t, (6.11)

where t = 0 or t ∈ C.Notice that±∑β

j spjsqj ∈ K[S], and±∑α

i=1 skidli ∈ (K[S])[d1,...,dm ].
Let us give a closer look into all the possibilities for t.

case 1) If t is 0, then we let gk(S) = ±∑β

j spjsqj ∈ K[S].

case 2) If we have t ∈ K[S], then we let gk(S) = ±∑β

j=1 spjsqj ± t ∈ K[S].

case 3 If we have t ∈ C \ S, then we let gk(S) = ±∑β

j=1 spjsqj ∈ K[S] and we have
∂τk
∂dl

= ±1 is in K[S].

Then we rewrite the polynomial τk as follows.

τk = ±
α∑

i=1

∂τk
dli

dli ±
β∑

j

spjsqj ±
∂τk
dk

dk ± t

= ±
α∑

i=1

∂τk
dli

dli ±
∂τk
dk

dk + gk(S)

Notice that for j /∈ {l1, ..., lα, k} we have ∂τk
dj

= 0. This leads us to the following equality.




τ1(S)
...

τm(S)


 =




∂τ1
∂d1

. . . ∂τ1
∂dm

...
. . .

...
∂τm
∂d1

. . . ∂τm
∂dm


 .




d1
...

dm


+




g1(S)
...

gm(S)




Recall that we construct the set TS by picking exactly one polynomial, τi from T
for each element di such that

∂τi
∂di

= ±1.

Notation 6.2.11. If we let S = {s1, ..., snµ}, then by Lemma 4.2.12, the vector space

〈S̄〉K is a subspace of m/m2 of dimension nµ. Let J ⊂ K[C] denote the ideal generated
by the set TS = {τ1, ..., τm} ⊂ T and we let Z(J ) = V . Let the coordinate ring of V



134 6. Border Basis Schemes and Affine Spaces

be denoted by K[V ]. Let us denote the image of an indeterminate cij in K[V ] as c̃ij

and let us denote the set of such elements by C̃. We denote the maximal ideal that is

generated by the elements {c̃11, ...., c̃µν} ∈ K[V ] by n. Moreover, the Jacobian matrix

of TS is as follows.

Jac(TS) =




d1 . . . dm s1 . . . snµ

τ1 ±1 ⋆ ⋆ ⋆ ⋆ ⋆
...

...
. . .

...
...

. . .
...

τm ⋆ ⋆ ±1 ⋆ ⋆ ⋆


 =




∂τ1
∂d1

. . . ∂τ1
∂dm

∂τ1
∂s1

. . . ∂τ1
∂snµ

...
. . .

...
...

. . .
...

∂τm
∂d1

. . . ∂τm
∂dm

∂τm
∂s1

. . . ∂τm
∂snµ


 .

Since the ideal J is a subset of 〈cij〉, the monomial point o = (0, ..., 0) ∈ BO is also

contained in V . Since TS ⊂ T holds where I(BO) = 〈T 〉, we have BO ⊂ V . Moreover,

the shape of the Jacobian matrix of TS is as follows;

Jac(TS) =
(

MS ⋆
)

(6.12)

Let us consider the following map.

h : K[cij]/J −→ K[cij]/I(BO)

n 7−→ m

n2 7−→ m2

Since J ⊂ I(BO) holds, the map h is a canonical surjective K-algebra homomor-

phism.

Lemma 6.2.12. In Setting (6.2.11), suppose MS ∈ Matm(K[S]) and the determinant

of this matrix is ±1. Then the point o is a smooth point of V . Moreover, the dimension

of the local ring K[V ]n is nµ.

Proof. Since the determinant of the matrix MS is ±1, the rank of it is µν−nµ at any

point of V including the point o. Then the rank of (Jac(TS))o is µν − nµ. Let K[V ]
denote the coordinate ring of V . Let n be the maximal ideal generated by the elements

in the set {c̃11, ..., c̃nµ} ⊂ K[V ]. By Theorem 2.1.18a), we have Rank(Jac(TS))o) 6

µν − dim(K[V ]n). Then the following holds.

dim(K[V ]n) 6 nµ (6.13)
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On the other hand, by Lemma 6.2.8 the point o is a smooth point of BO ⊆ V and the

dim((BO)m) is nµ. Then the following holds.

dim(K[V ]n) > nµ (6.14)

By Inequalities (6.13) and (6.14), we have dim(K[V ]n) = nµ. Then by Theorem 2.1.18c),

the point o is a smooth point of V .

Lemma 6.2.13. In Setting (6.2.11), if the corresponding matrix MS ∈ Matm(K[S])
has determinant ±1, then the elements of the set S̃ = {s̃i | si ∈ S} form a K-vector

space basis of n/n2.

Proof. By Lemma 6.2.8 the point o = (0, ..., 0) of BO is smooth of dimension nµ and

by Lemma 6.2.12 the point (0, ..., 0) is a smooth point of V of dimension nµ. Hence

we have dimK(m/m2) = dimK(n/n
2) = nµ. Moreover, by Lemma 4.2.12 the elements

of the set Ŝ = {s̄i + m2 ∈ BO | si ∈ S} form a K-vector space basis of m/m2. As a

result of the canonical surjective K-algebra homomorphism h, the canonical K-algebra

homomorphism

ǫ : m/m2 −→ n/n2

s̄i +m2 7−→ s̃i + n2.

is surjective. Since both m/m2 and n/n2 have the same dimension, the K-algebra

homomorphism is an isomorphism. Hence the elements of S̃ are K-linearly independent

with dimension nµ. Then they form a K-vector space basis of n/n2.

Recall that, as given in Definition 3.1.12, the ring grn(K[V ]n) is called the graded

ring of K[V ]n.

Lemma 6.2.14. In the setting 6.2.11, the ring grn(K[V ]n) is isomorphic to the poly-

nomial ring K[S]. In particular, the system {s̃1, ..., s̃nµ} is independent.

Proof. By Lemma 6.2.13 the set of residue classes of the elements of S̃ form a basis of

the K-vector space n/n2. Then by Nakayama’s Lemma 2.1.11, it follows that n(K[V ]n)
is minimally generated by the elements of S̃. Since the monomial point o is smooth, any

minimal system of generators are regular system of parameters of (K[V ])n. Hence the

elements of S̃ form an K[V ]n-regular sequence. Then from the implication from a) to
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b) of [Ku85] Chapter V, Corollary 5.13 , it follows that the K-algebra homomorphism

θ : K[S] −→ grn(K[V ]n)
si 7−→ s̃i + n2

is an isomorphism.

Lemma 6.2.15. Let ϕ denote the K-algebra homomorphism

ϕ : K[S] −→ K[V ] (6.15)

si 7−→ s̄i.

Then the K-algebra homomorphism ϕ is injective.

Proof. Our aim is first to show that the K-algebra homomorphism

Γ : K[S] −→ K[V ]n
si 7−→ s̃i.

is injective. Our strategy is to show that the elements of {s̃1, ..., s̃nµ} are algebraically

independent in K[V ]n. Let F be a polynomial in K[V ]n[x1, ..., xnµ] such that F (s̃1, ..., s̃nµ) =

0. By Lemma 6.2.14 the system of parameters {s̃1, ..., s̃nµ} are independent. As a re-

sult of Definition 2.1.16 the set of coefficients of F are contained in Rad(s̃1, ..., s̃nµ).

For F ∈ K[V ]n[x1, ..., xnµ] the set of coefficients of F are contained in Rad(s̃1, ..., s̃nµ)∩
K[V ]n = n ∩ K[V ]n. Then the coefficients of F are 0, and the elements of {s̃1, ..., s̃nµ}
are algebraically independent. Hence the map Γ is injective.

Now we prove that the set K[V ] \ n has no zero divisors. Let a + J and b + J be

two elements in K[V ] \ n. The maximal ideal n is generated by the elements of C̃. Then
both a and b polynomials with constant terms and ab has a constant term. Recall

that the ideal J is generated by the polynomials τκ ∈ TS that have no constants in

their support. Hence the polynomial ab is not in J . Thus the set K[V ] \ n has no zero

divisors. Hence the K-algebra homomorphism from K[V ] to the localization K[V ]n is

injective. Consequently, the K-algebra homomorphism ϕ is injective.

Lemma 6.2.16. In Setting (6.2.11), if the corresponding matrix MS ∈ Matm(K[S])
has determinant ±1, then the coordinate ring of V is isomorphic to the polynomial ring
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K[S]. In particular, V is a smooth ideal-theoretic complete intersection.

Proof. By Lemma 6.2.15, the K-algebra homomorphism ϕ given in (6.15) is injective.

We prove our claim by showing that ϕ is surjective i.e., for each di ∈ C \ S there

exists a polynomial fi ∈ K[S] such that ϕ(fi) = d̄i ∈ K[V ]. We assumed that the entries

of MS are in K[S].

MS =




d1 . . . dm

τ1 ±1 ⋆ ⋆
...

...
. . .

...

τm ⋆ ⋆ ±1


 =




∂τ1
∂d1

. . . ∂τ1
∂dm

...
. . .

...
∂τm
∂d1

. . . ∂τm
∂dm


 ∈ Matm(K[S])

By Lemma 6.2.9, the polynomial τk ∈ TS can be written as follows.

τ1 =
∂τ1

∂d2
d2 ± · · · ± ∂τ1

∂dk
dk ± · · · ± ∂τ1

∂dm
dm + g1(S)∓ d1 (6.16)

...

τm =
∂τm

∂d1
d1 ± · · · ± ∂τm

∂dk
dk ± · · · ± ∂τm

∂dm−1
dm−1 + gm(S)∓ dm.

where for each k ∈ {1, ...,m} the polynomial gk(S) is in K[S] and for each i ∈ {1, ...,m}
the polynomial ∂τk

∂di
is in K[S], as well. By keeping Equation (6.16) in mind, we consider

the following system of linear equations over the ring K[C].



∂τ1
∂d1

. . . ∂τ1
∂dm

...
. . .

...
∂τm
∂d1

. . . ∂τm
∂dm


 .




x1

...

xm


 = −




g1(S)
...

gm(S)


 . (6.17)

By Cramer’s rule for rings, if (a1, ..., am) ∈ K[C] is a solution of (6.17), then for i =

1, ...,m we have

Det(MS)ai = Det(Mi),

where Mi is the matrix MS in which the ith column has been replaced by




g1(S)
...

gm(S)


 .

Since MS ∈ Matm(K[S]) holds, for each i ∈ {1, ...,m} the matrix Mi ∈ Matm(K[S]).
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Then Det(Mi) is in K[S]. Since we assumed that Det(MS) is ±1, for each index

i ∈ {1, ...,m}, the element ai is ±Det(Mi). We claim that fi = ai = ±Det(Mi)

satisfies ϕ(fi) = d̄i. In the ring K[V ] the equation system (6.16) becomes

M̄S




d̄1
...

d̄m


 = −




g1(S)
...

gm(S)




Under the map ϕ the equation system (6.17) becomes,

M̄S




ϕ(f1)
...

ϕ(fm)


 = −




g1(S)
...

gm(S)


 = M̄S




d̄1
...

d̄m


 .

Since the matrix MS has determinant ±1 it is invertible in K[S], we have the following
equality. 


ϕ(f1)

...

ϕ(fm)


 =




d̄1
...

d̄m




Then for each di ∈ C \ S we have a polynomial fi, ϕ(fi) = d̄i ∈ BO. Moreover, by the

Cramer’s Rule we have for each di ∈ C \ S have a polynomial fi = Det(Mi) ∈ K[S].
This shows that the injective K-algebra homomorphism ϕ is surjective, as well.

Remark 6.2.17. The proof of Lemma 6.2.16 does not only introduce a condition that

makes the map ϕ an isomorphism, it also illustrates a method to find the pre-images

of the elements of the set C \ S concretely.

Let us apply the preceding result to an example.

Example 6.2.18. Let us recall Example 4.1.8, where the order ideal isO = {1, x1, x2, x1x2}.
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In Example 3.2.12 we show that I(BO) is generated by the following 12 polynomials.

τ22 = c21c32 + c23c42 − c24 τ33 = c21c32 + c34c41 − c33

τ44 = c34c41 − c23c42 − c24 + c33 τ32 = c31c32 + c33c42 + c12 − c34

τ12 = c11c32 + c13c42 − c14 τ34 = c23c32 − c31c34 − c34c43 + c33c44 − c14

τ13 = c12c21 + c14c41 − c13 τ24 = c22c23 − c21c34 − c24c43 + c23c44 + c13

τ23 = c21c22 + c24c41 + c11 − c23 τ42 = c32c41 + c42c43 + c22 − c44

τ43 = c21c42 + c41c44 + c31 − c43 τ14 = c12c23 − c11c34 − c14c43 + c13c44

In Example 4.1.8, we have computed the set E = {[c̄11], [c̄21], [c̄31], [c̄41], [c̄12], [c̄22], [c̄32], [c̄42]},
where [c̄31] = {c31, c43}, [c̄11] = {c11, c23}, [c̄22] = {c22, c44}, [c̄12] = {c12, c34}. By choos-

ing one element from each equivalence class, we get a set S (see Lemma 4.2.12). Let

us construct this set as S = {c21, c23, c32, c34, c41, c42, c43, c44}. Let M be the set C \ S.
Then the set C \ S is

{c33, c24, c22, c31, c12, c11, c13, c14}.

Note that by Proposition 4.1.6a), no matter which elements from an equivalence class

of E we choose, the elements c14, c13, c24, c33 in C \ S cannot be replaced. As a result of

O ⊂ T2, Corollary 4.2.17 implies that the monomial point o is the smooth point of the

O-border basis scheme where the dimension of the regular local ring (BO)m is 2µ = 8.

Then as given in (6.15), there exists an injective homomorphism

ϕ : K[S] −→ K[C]/I(BO)

si 7−→ s̄i.

We show that the map ϕ is surjective, as well. By Proposition 5.1.23, the scheme BO is

an ideal-theoretic complete intersection where the vanishing ideal of it is generated by

a subset TS of T . We compute the generating set TS = {τ22, τ33, τ42, τ43, τ23, τ24, τ32, τ34}
by using our ApCoCoA package bbsmingensyz. For further information on how to do

the computations we refer to Chapter 5.

ϕ−1(c̄33) = τ33 + c33 = c21c32 + c34c41 = g33(S) ∈ BO,

ϕ−1(c̄24) = τ22 + c24 = c21c32 + c23c42 = g24(S) ∈ BO,

ϕ−1(c̄22) = τ42 − c22 = c32c41 + c42c43 − c44 = g22(S) ∈ BO,
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ϕ−1(c̄22) = τ42 − c22 = c32c41 + c42c43 − c44 = g22(S) ∈ BO,

ϕ−1(c̄31) = τ43 − c31 = c21c42 + c41c44 − c43 = g31(S) ∈ BO,

ϕ−1(c̄12) = ϕ−1(c̄31)c̄32 + ϕ−1(c̄33)c̄42 − c̄34 = ϕ−1(c̄31)c̄32 + ϕ−1(c̄33)c̄42 − g12(S) ∈ BO,

ϕ−1(c̄11) = c21c22 + ϕ−1(c̄24)c̄41 − c̄23 = ϕ−1(c̄24)c̄41 + g11(S) ∈ BO,

ϕ−1(c̄13) = c22c23 − c21c34 − ϕ−1(c̄24)c43 + c23c44 = −ϕ−1(c̄24)c43 + g13(S) ∈ BO,

ϕ−1(c̄14) = c23c32 − ϕ−1(c̄31)c34 − c34c43 + c33c44 = −ϕ−1(c̄31)c34 + g14(S) ∈ BO.

For each cij ∈ M if we let fij := ϕ−1(c̄ij), then we have

f24 := τ22 + c24 = c21c32 + c23c42,

f11 :=
∂τ23

∂c24
f24 +

∂τ23

∂c23
f22 − c23,

f13 := −∂τ24

∂c24
f24 +

∂τ24

∂c22
f22 − c21c34 + c23c44,

f12 :=
∂τ32

∂c31
f31 +

∂τ32

∂c33
f33 − c34,

f33 := τ33 + c33 = c21c32 + c34c41,

f14 := −∂τ34

∂c31
f31 +

∂τ34

∂c33
f33 + c23c32 − c34c43,

f22 := τ42 − c22 = c32c41 + c42c43 − c44,

f31 := τ43 − c31 = c21c42 + c41c44 − c43.

Let us recall the following equality

MS =




∂τ22
∂c24

∂τ22
∂c11

. . . ∂τ22
∂c31

...
. . .

...
∂τ43
∂c24

∂τ43
∂c11

. . . ∂τ43
∂c31


×




f24

f11
...

f31




=




g24(S)
g11(S)

...

gm(S)




,

which in this example leads us to the following equality.

MS =





























−1 0 0 0 0 0 0 0

c41 1 0 0 0 0 c21 0

c43 0 1 0 0 0 c23 0

0 0 0 1 c42 0 0 c32

0 0 0 0 −1 0 0 0

0 0 0 0 −c44 −1 0 −c34

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





























×





























f24

f11

f13

f12

f33

f14

f22

f31





























=





























c21c32 + c23c42

c23

−c21c34 + c23c44

c34

c21c32 + c34c41

c23c32 − c34c43

c32c41 + c42c43 − c44

c21c42 + c41c44 − c43





























.

The matrix MS is in Mat8(K[S]) and the determinant of it is 1. Then BO is isomorphic

to an affine space A8. Let us find explicitly the pre-images of the elements c̄ij ∈ BO,
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where cij ∈ M. Let us start with c24.

M24 =




c21c32 + c23c42 0 0 0 0 0 0 0

c23 1 0 0 0 0 c21 0

c21c34 + c23c44 0 1 0 0 0 c23 0

c34 0 0 1 c42 0 0 c32

c21c32 + c34c41 0 0 0 −1 0 0 0

c23c32 − c34c43 0 0 0 −c44 −1 0 −c34

c32c41 + c42c43 − c44 0 0 0 0 0 1 0

c21c42 + c41c44 − c43 0 0 0 0 0 0 1




Then f24 = Det(M24) = c21c32 + c23c42 ∈ K[S]. By using the same method we have

f11 = Det(M11) = −c21c32c41 − c23c41c42 ∈ K[S]
f13 = Det(M13) = c23c32c41 − c21c32c43 + c21c34 − 2c23c44 ∈ K[S]
f12 = Det(M12) = −c34c41c42 + c32c41c44 − c32c43 − c34 ∈ K[S]
f33 = Det(M33) = c21c32 + c34c41 ∈ K[S]
f14 = Det(M14) = c21c34c42 − c21c32c44 + c23c32 − 2c34c43 ∈ K[S]
f22 = Det(M22) = c32c41 + c42c43 − c44 ∈ K[S]
f31 = Det(M31) = c21c42 + c41c44 − c43.

The image of f33 under the map ϕ is as follows.

ϕ(f33) = c21c32 ± c34c41 = c̄21c̄32 ± c̄34c̄41 = c̄33

In the same way, we have ϕ(f24) = c̄24, ϕ(f22) = c̄22, ϕ(f31) = c̄31, ϕ(f12) = c̄12, ϕ(f11) =

c̄11, ϕ(f13) = c̄13, and finally ϕ(f24) = c̄24.

Recall how we constructed the Matrix (6.7) where {d1, ..., dm} = C \ S and TS =

{τ1, ..., τm}, which is a subset of T that consists of the polynomials, whose supports

contain di. Our goal is to get rid of the condition that the vanishing ideal of a given

O-border basis scheme must be generated by the set TS ⊂ T . In order to reach this

goal let us recall some notation and introduce new ones.

In Chapter 2, Proposition 2.1.19 states that if I ⊂ K[x1, ..., xn] is a prime ideal and

K is a perfect field, then the Jacobian ideal defines the singular locus of Z(I). This is
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a crucial part of the proof of our next claim. Before stating the lemma let us recall

Definition 2.4.4, i.e. the principal component of BO is an irreducible component of BO

whose vanishing ideal is Ker(Φ) in 2.8. The principal component is denoted by CO.

Lemma 6.2.19. Let O denote an order ideal with µ terms from K[x1, ..., xn]. If there

exists a set S̄ ⊂ C̄ with nµ elements such that the entries of the corresponding matrix

MS are in the polynomial ring K[S] and the determinant of this matrix is ±1, then

CO is smooth of dimension nµ.

Proof. Recall from Chapter 2.5 that the principal component CO is irreducible and

contained in BO. Let J denote the ideal that is generated by a set TS . Then we have

I(CO) ⊇ I(BO) ⊇ J where J is generated by TS ⊆ T . Thus the matrix MS in

Notation (6.2.11) is a submatrix of the Jacobian matrix of the generators of I(CO).

By Theorem 2.4.5, the principal component has the dimension nµ at its smooth

points. Then the submatrices of the Jacobian matrix that have the rank µν−nµ give the

maximal minors of it, which generate the Jacobian ideal. Since MS is a submatrix of

the Jacobian matrix of the generators of I(CO) with rank µν−nµ, the Det(MS) = ±1

is one of the maximal minors of the Jacobian matrix. Then the Jacobian ideal is a unit

ideal. The ideal I(CO) is a prime ideal and K is a perfect field. Then by Theorem

2.1.19 the Jacobian ideal defines the singular locus of K[C]/I(CO). As a result of the

Corollary 2.1.21, CO is smooth of dimension nµ.

Theorem 6.2.20. Let O denote an order ideal with µ terms from K[x1, ..., xn]. If there

exists a set S̄ ⊂ C̄ with nµ elements such that the entries of the corresponding matrix

MS are in the polynomial ring K[S] and the determinant of this matrix is ±1, then

BO is isomorphic to an affine space of dimension nµ.

Proof. W e have I(CO) ⊇ I(BO) ⊇ J where J is generated by TS ⊆ T . Then we have

V ⊇ BO ⊇ CO. (6.18)

By Lemma 6.2.16, the zero set V is an affine space of dimension nµ and it contains

the principal component CO. By Lemma 6.2.19 the principal component is smooth of

dimension nµ. From those results follows that CO is an affine space of nµ. Since we have

(6.18), the O-border basis scheme BO is an affine space of dimension nµ, as well.

Remark 6.2.21. Note that for a given O-border basis scheme Theorem 6.2.20 implies
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that if there exists a maximal minor of Jac(T ) that is ±1 and the corresponding sub-

matrix is in Matm(K[S]), then the O-border basis scheme is isomorphic to an affine

space. It is also worth mentioning that it is not necessary to check all the minors of

the Jacobian matrix, since it is enough to construct the set S and pick polynomials

τi ∈ T , for each di ∈ M with the property that ∂τi
∂di

= ±1. This way of constructing the

candidate minors of the Jacobian matrix of T is more efficient than blindly checking

all the minors of it.

Remark 6.2.22. If an O-border basis scheme satisfies Theorem 6.2.20, then it is an

ideal theoretic complete intersection where the vanishing ideal is generated by TS .

In general, affine spaces of dimension smaller than 5 need not be an ideal theoretic

complete intersection (see [Kum77]).

Corollary 6.2.23. Let O denote the order ideal {1, x1, x2} ⊂ K[x1, x2, x3]. Then the

O-border basis scheme is isomorphic to an affine space A9.

Proof. The border of O is ∂O = {x3, x2x3, x1x3, x
2
2, x1x2, x

2
1}. The generators of the

vanishing ideal of the O-border basis scheme are as follows.

Polynomials with arrow degree (2, 1, 0)

τ 1 21 2 = c1 6c2 5 − c1 5c2 6 + c1 5c3 5 − c1 4c3 6

Polynomials with arrow degree (1, 2, 0)

τ 1 21 3 = c1 6c2 4 − c1 5c2 5 + c1 5c3 4 − c1 4c3 5

Polynomials with arrow degree (1, 1, 0)

τ 1 22 2 = c2 5c3 5 − c2 4c3 6 + c1 5

τ 1 23 3 = −c2 5c3 5 + c2 4c3 6 − c1 5

Polynomials with arrow degree (0, 2, 0)

τ 1 22 3 = −c22 5 + c2 4c2 6 + c2 5c3 4 − c2 4c3 5 + c1 4

Polynomials with arrow degree (2, 0, 1)

τ 1 31 2 = −c1 1c1 6 + c1 6c2 3 − c1 3c2 6 + c1 5c3 3 − c1 2c3 6,

Polynomials with arrow degree (0, 2, 1)

τ 2 31 3 = −c1 1c1 4 + c1 5c2 2 − c1 3c2 4 + c1 4c3 2 − c1 2c3 4

Polynomials with arrow degree (1,−1, 1)

τ 1 33 1 = c3 1c3 5 + c2 1c3 6 − c3 3
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Polynomials with arrow degree (2, 0, 0)

τ 1 23 2 = −c2 6c3 5 + c23 5 + c2 5c3 6 − c3 4c3 6 − c1 6

Polynomials with arrow degree (1, 0, 1)

τ 1 31 1 = c1 6c2 1 + c1 5c3 1 − c1 3

τ 1 32 2 = −c1 6c2 1 + c2 5c3 3 − c2 2c3 6 + c1 3

τ 1 33 3 = −c1 5c3 1 − c2 5c3 3 + c2 2c3 6

τ 2 33 2 = −c1 5c3 1 − c2 5c3 3 + c3 3c3 4 + c2 3c3 5 − c3 2c3 5 + c1 3

Polynomials with arrow degree (1, 1, 1)

τ 1 31 3 = −c1 1c1 5 + c1 6c2 2 − c1 3c2 5 + c1 5c3 2 − c1 2c3 5

τ 2 31 2 = −c1 1c1 5 + c1 5c2 3 − c1 3c2 5 + c1 4c3 3 − c1 2c3 5

Polynomials with arrow degree (0, 0, 1)

τ 1 32 1 = c2 1c2 6 + c2 5c3 1 + c1 1 − c2 3

τ 2 33 1 = c3 1c3 4 + c2 1c3 5 + c1 1 − c3 2

Polynomials with arrow degree (0, 1, 1)

τ 1 32 3 = −c1 5c2 1 − c2 3c2 5 + c2 2c2 6 + c2 5c3 2 − c2 2c3 5 + c1 2

τ 2 31 1 = c1 5c2 1 + c1 4c3 1 − c1 2

τ 2 32 2 = −c1 5c2 1 + c2 4c3 3 − c2 2c3 5

τ 2 33 3 = −c1 4c3 1 − c2 4c3 3 + c2 2c3 5 + c1 2

Polynomials with arrow degree (2,−1, 1)

τ 1 33 2 = −c1 6c3 1 − c2 6c3 3 + c3 3c3 5 + c2 3c3 6 − c3 2c3 6

Polynomials with arrow degree (−1, 1, 1)

τ 2 32 1 = c2 1c2 5 + c2 4c3 1 − c2 2

Polynomials with arrow degree(−1, 2, 1)

τ 2 32 3 = −c1 4c2 1 − c2 3c2 4 + c2 2c2 5 + c2 4c3 2 − c2 2c3 4

As we did in Chapter 4.1, by the help of Proposition 4.1.6, we compute the set of

equivalence classes by using the polynomials in T .

E = {[c̄23], [c̄24], [c̄25], [c̄26], [c̄31], [c̄21], [c̄34], [c̄35], [c̄36]}

The cardinality of E is 9 which is nµ. Then by Theorem 4.2.15, o is a smooth point

of BO. Since o is the smooth point of the O-border basis scheme, the dimension of



6.2.2. Border Basis Schemes with an Arbitrary Monomial Point 145

the regular local ring (BO)m is 3µ = 9. By observing the equivalence classes in E, we

deduce that except for

[c̄23] = {c̄23, c̄11, c̄32},

all the other equivalence classes contain exactly one element. Then there are exactly 3

different bases of the K-vector space m/m2. Then there are three different possibilities

for the set S. Let us choose the elements of S as follows.

S = {c23, c24, c25, c26, c31, c21, c34, c35, c36}

The set TS is not unique, either. Since for each element di ∈ M a polynomial τi ∈ TS

satisfies

∂τi
∂di

= ±1, (6.19)

the polynomials that are homogenous of standard degree 2 are not in TS . Moreover,

the polynomials τ 2321 , τ
13
31 , τ

12
32 , τ

12
23 , τ

23
31 , τ

13
21 are the only polynomials that satisfy Equality

(6.19) for the elements c22, c33, c11, c32, c16, c14 of M and hence they must be TS . The

rest of the elements of TS depend on our choice. For example, for the indeterminate c15

both of the polynomials τ 1222 , τ
12
33 satisfy Equality 6.19 and we choose τ 1222 . By choosing

exactly one polynomial for each remaining element of M we get

TS = {τ 1222 , τ 1223 , τ 1232 , τ 2332 , τ 1321 , τ 2331 , τ 2333 , τ 1331 , τ 2321 }.

Keep in mind that if by using this choice of TS we get a non-constant polynomial as

determinant, then we check other possibilities. Now we have all we need to construct

the matrix MS .

MS =




c11 c12 c13 c14 c15 c16 c22 c32 c33

τ1222 0 0 0 0 1 0 0 0 0

τ1223 0 0 0 1 0 0 0 0 0

τ1232 0 0 0 0 0 −1 0 0 0

τ2332 0 0 1 0 −c31 0 0 −c35 −c25 + c34

τ1321 1 0 0 0 0 0 0 0 0

τ2331 1 0 0 0 0 0 −1 0

τ2333 0 1 0 −c31 0 0 c35 0 −c24

τ1331 0 0 0 0 0 0 0 0 −1

τ2321 0 0 0 0 0 0 −1 0 0




∈ Mat9(K[S]).



146 6. Border Basis Schemes and Affine Spaces

We observe that entries of the matrix MS are in K[S], and the determinant of this

matrix is −1. By Theorem 6.2.20, BO is isomorphic to the affine space A9.

Lemma 6.2.24. Let O ⊂ K[x1, ..., xn] be an order ideal. Let BO be the coordinate ring

of the O-border basis scheme BO. Let BO be a smooth scheme. If the vanishing ideal

I(BO) is generated by TS , then the elements of TS forms an K[C]-regular sequence.

Proof. The O-border basis scheme is smooth. By Theorem 2.4.5 the dimension of the

Principal component at smooth points is nµ. Hence the dimension of O-border basis

scheme has dimension nµ. The set TS has µν − nµ elements, where µν − nµ is the

codimension. Then the border basis scheme is an ideal theoretic complete intersection.

Thus the elements of TS form a regular sequence.

For further research we strongly believe that Theorem 6.2.20 can be generalized to

give the following criterion.

Conjecture 6.2.25. Let O ⊂ K[x1, ..., xn] be an order ideal. Let K be a perfect field.

The border basis scheme BO is isomorphic to an affine space, if there exists a spanning

set S̄ of m/m2 such that Det(MS) = ±1 holds.

Algorithm 6.2.26. Let O ⊂ K[x1, ..., xn] be an order ideal. Let E represent the set

of equivalence classes modulo m2. Let Si represents a set, where each element is chosen

from different equivalence classes of E. Let Mi denote the set C \Si. Let TS denote the

set of polynomials that for each dk ∈ Mi there exists exactly one τk in TS

Step 1) If the cardinality of E is larger than nµ, return ”the O-border basis scheme is

not isomorphic to an affine space”. Else proceed with the next step.

Step 2) Compute nS as in (6.4). Let E := {[c̄ij] | the number of elements of [c̄ij] is more than 1}.
Let S0 := {cij ∈ C | [c̄ij] ∈ E0}. We set i := 0.

Step 3) i := i+ 1 and construct the following set

Si = Si−1∪{choose exactly one cij from each of the equivalence classes [c̄ij] ∈ E},

where for j < i, Si 6= Sj holds.

Step 4) Construct Mi := C \ Si and the matrix MS i and compute the determinant of

MS i.
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Step 5) If the determinant of MS i is ±1 and MS i ∈ K[Si], then return ”BO is isomorphic

to an affine space of dimension nµ and it is isomorphic to K[Si] ”. If the deter-

minant of MS i is a non-constant polynomial and i 6 nS , then return to step 3)

and construct a different Si. Otherwise, the algorithm is inconclusive.

Step 6) If the determinant of MS i is ±1 and i 6 nS then return to step 3) and construct

a different Si. If the index i is equal to the number of all possible sets S, nS , then
the algorithm is inconclusive.

Under the above assumptions, this algorithm finds out whether O-border basis scheme

is isomorphic to an affine space.

Proof. This follows from Theorems 4.2.15 and 6.2.20.

For further research, our calculations using Algorithm 6.2.26 which is derived from

Theorem 1.3.2 and Theorem ?? also suggest the following result.

Conjecture 6.2.27. Let O = {t1, ..., tµ} ⊂ T2 be an order ideal. Let O′ = {t1, ..., tµ} ⊂
Tn be the same order ideal whose border is in Tn. If the O-border basis scheme is isomor-

phic to an affine space of dimension 2µ, then the O′-border basis scheme is isomorphic

to an affine space of dimension nµ.

6.3 Segment Border Basis Scheme is an Affine Space

We start Section 6.3 by proving that the monomial point of a segment border basis

scheme is smooth of dimension nµ. (see Proposition 6.3.4 ). Then by using Theorem

6.2.20, we prove that a segment border basis is isomorphic to an affine space of dimen-

sion nµ (see Proposition 6.3.6). This result was also shown in [Ro09],Corollary 3.13 by

a different method. In this section we verify this with our method.

Let C denote a set of indeterminates {c11, ..., cµν}. Let K[C] be the polynomial ring

K[c11, ..., cµν ]. Let O denote the segment order ideal {1, x1, ...., x
µ−1
1 }. Then the border

of the order ideal O is ∂O = {xn, ..., x2, xn, b2x1, ..., x
µ−1
1 x2, x

µ
1} and with respect to

our notation we have t1 = 1, t2 = x1, ...., tµ = xµ−1
1 , b1 = xn, ..., bn−2 = x2, bn−1 =

xn, bn = b2x1, ..., bν−1 = xµ−1
1 x2 and bν = xµ

1 . By Corollary 5.3.15, the vanishing ideal

of a segment border basis scheme BO is generated by the set {τ 1lpq | p = 1, ..., µ q =

1, ..., µ − 1 l ∈ {2, ..., n}}. We shall name this set as Tseg. Let o denote the point

(0, ..., 0) ∈ BO. We let m denote the maximal ideal of BO that is generated by the

elements of C̄ = {c̄ij ∈ BO | cij ∈ C}. Moreover, for the sake of simplicity we assume
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that (BO)m/m is isomorphic to the field K. Then the space m/m2 is an K-vector space.

Let E denote the set of the equivalence classes modulo m2. Let us take a closer look at

the elements of TSeg.

Lemma 6.3.1. The quadratic monomials in the support of the polynomial τ 1lpq ∈ Tseg

are of the form cpνcµj, where 1 6 j < ν, 1 < p < µ and 1 < q < µ− 1.

Proof. Let τ 1lpq be a polynomial from Tseg. Let tq be an order ideal term such that

xltq = bm ∈ ∂O and xlt1 = b(n+1)−l = bk. The polynomial τ 1lpq is the entry in position

(p, q) of the matrix

A1Al −AlA1.

By Lemma 5.3.12, for i > 1 the generic multiplication matrix Ai has the following form

A1 = (etr2 | ... | etrµ | ctrν ) (6.20)

For the indices l > 1 the generic multiplication matrix Al has the following form

Al = (ctrk | ... | ctrk+(j−1)(n−1) | ... | ctrk+(µ−1)(n−1)) (6.21)

where the index k = (n + 1) − l. Then by using the generic multiplication matrices

above, we have

τ 1lpq = ep[(e
tr
2 | ... | etrµ | ctrν )(ctrk | ... | ctrk+(j−1)(n−1) | ... | ctrk+(µ−1)(n−1))]e

tr
q

−ep[(c
tr
k | ... | ctrk+(j−1)(n−1) | ... | ctrk+(µ−1)(n−1))(e

tr
2 | ... | etrµ | ctrν )]etrq

= cpνcµj ± g

where g is a linear polynomial from K[C] and j ∈ {1, .., µ}.

Recall that the vanishing ideal of the O-border basis scheme is generated by the

set Tseg = {τ 1lpq | p = 1, ..., µ q = 1, ..., µ− 1, l ∈ {2, ..., n}} that has exactly µν − nµ.

Lemma 6.3.2. Let O = {1, x1, ..., x
µ−1
1 } denote a segment order ideal in K[x1, ..., xn].

a) Let τ 1lpq be a polynomial from Tseg. Then we have degW (τ 1lpq) = αe1 + el, where

−µ+ 1 < α < µ.

b) A polynomial τ 1lpq ∈ Tseg has only one indeterminate from C in its support if and

only if we have p = 1.
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c) A polynomial τ 1lrs ∈ Tseg has a non-standard arrow degree if and only if there exists

an order ideal term tq such that degW (τ 1l1q) = qe1 + el = degW (τ 1lrs).

d) The equivalence classes [c̄1ν ], [c̄2ν ], ..., [c̄µν ], [c̄µ(ν−1)] ∈ E have only one element in

C̄.

Proof. a) A polynomial τ 1lpq ∈ Tseg has the following arrow degree

degW (τ 1lpq) = log(x1xltq)− log(tp) = log(xlx
q
1)− log(xp−1

1 ) = (q − p+ 1)e1 + el.

For each order ideal term tp and tq we have −µ+ 1 < (q − p+ 1) < µ.

b) For each index l ∈ {2, ..., µ}, the generic multiplication matrix Al does not have

any constant entry and only the first row of the generic multiplication matrix A1

does not have the entry 1. If a polynomial τ 1lpq ∈ Tseg has only one indeterminate

in its support, then the polynomial τ klpq is located in the first row of the matrix

[A1,Al] i.e., p = 1. For the converse let bj = xltq. Then we have the following.

τ 1l1q = e1[(e
tr
2 | ... | etrµ | ctrν )(ctrk | ... | ctrk+(j−1)(n−1) | ... | ctrk+(µ−1)(n−1))]e

tr
q

−e1[(c
tr
k | ... | ctrk+(j−1)(n−1) | ... | ctrk+(µ−1)(n−1))(e

tr
2 | ... | etrµ | ctrν )]etrq

= g1p ± c1j

c) Let tq be an order ideal term and xl be from {x2, ..., xn}. Consider the polynomial

τ 1l1q ∈ Tseg. The arrow degree of τ 1l1q is non-standard as follows.

degW (τ 1l1q) = qe1 + el

For the converse let τ 1lrs ∈ Tseg with a non-standard arrow degree. Then by part

a) we have µ > s − r + 1 > 0 and there exists tq where 0 < q = s − r + 1 < µ

such that degW (τ 1lrs) = degW (τ 1l1q).

d) For each index 1 < k < µ the indeterminate ckν has the following arrow degree

degW (ckν) = log(bν)− log(tk) = log(xµ
1)− log(xk

1) = (µ− k)e1.

By part a), there is no polynomial in Tseg with this given arrow degree and by

Proposition 4.1.6 c), the claim follows.
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Corollary 6.3.3. Let O denote a segment order ideal in K[x1, ..., xn] with µ terms.

For c̄ij ∈ BO we have c̄ij ∈ m2 if and only if the arrow degree of the indeterminate cij

is non-standard.

Proof. This follows from Lemma 6.3.2 b), c) and Proposition 4.1.6 a).

Proposition 6.3.4. Let O ⊂ Tn be a segment order ideal. Then the monomial point

o = (0, ..., 0) ∈ BO is smooth. Moreover, let Sseg denote the set

{c1ν , c2ν , ..., cµν , cµ(ν−1), ...., cµ1}.

Then the set S̄seg = {c̄ij ∈ BO | cij ∈ Sseg} is a basis of the K-vector space m/m2.

Proof. Let us examine the border of the segment order ideal. The minimal generating

set of the border term ideal is {b1, b2, ...., bn−1, bν}, where b1 = x2, b2 = x3, ..., bn−1 = xn

and bν = xµ−1
1 which are pure power terms. Recall Lemma 4.2.5 which states that if

the border term ideal is generated by pure power terms. Hence the set E has exactly

nµ. Then by Theorem 4.2.15, the monomial point o is smooth.

The set Sseg has exactly µ+ ν − 1 = µ+ [(n− 1)µ+ 1]− 1 = nµ distinct elements.

We show that those elements are K-linearly independent in the vector space m/m2. By

Lemma 6.3.2 d), [c̄1ν ], [c̄2ν ], ..., [c̄µν ], [c̄µ(ν−1)] ∈ E have only one element in C̄. Then by

Proposition 4.1.6c), we have [c̄1ν ] 6= [c̄2ν ] 6=, ..., 6= [c̄µν ] 6= [c̄µ(ν−1)]. We now focus on the

rest of the elements in the set Sseg. Since for each border term bi ∈ {b1, ..., bν−2} ⊂ ∂O,

the index i is smaller than ν, for α < 0 the arrow degree of cµi is as follows.

degW (cµi) = log(bi)− log(tµ) = log(xlx
s
1)− log(xµ−1

1 ) = αe1 + el

Consequently, we have the inequality µ − 1 > s. Then each cij ∈ {cµ(ν−2), ...., cµ1} is

standard and by Corollary 6.3.3, the equivalence class c̄ij is not in m2. Moreover, for

distinct border terms bj and bk we have degW (cµj) 6= degW (cµk). Then by Lemma 4.1.5,

[c̄µj] 6= [c̄µk]. Thus the set S̄seg is a set of K-linear independent indeterminates in m/m2

with nµ elements, which is by the smoothness of o the exact number of elements in E.

Hence the proposition follows.

Corollary 6.3.5. Let O ⊂ Tn be a segment order ideal. Let τ 1lpq be a polynomial in

TSeg. The polynomial τ 1lpq is of the following form (τ 1lpq)
(2)+(τ 1lpq)

(1), where (τ 1lpq)
(1) ∈ K[C]

is a linear polynomial and (τ 1lpq)
(2) is homogenous polynomial of standard degree 2 and

it is in K[Seg].
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Proof. This follows from Lemma 2.3.19, Proposition 6.3.4 and Lemma 6.3.1.

Proposition 6.3.6. Let P denote the polynomial ring K[x1, ..., xn]. Let

O = {1, x1, .., x
µ−1
1 } ⊂ K[x1, ..., xn]

be a segment order ideal. Then BO is isomorphic to an affine space of dimension nµ.

Proof. By Proposition 6.3.4, the set

S̄seg = {c̄1ν , c̄2ν , ..., c̄µν , c̄µ(ν−1), ...., c̄µ1}

is a K-vector basis of m/m2. Let M denote the set of indeterminates C \ Sseg. The set

M has exactly µν − nµ elements. By the Corollary 5.3.15, the vanishing ideal of the

segment border basis scheme BO is generated by the set

Tseg = {τ 1lpq | p = 1, ..., µ q = 1, ..., µ− 1 l ∈ {2, ..., n}},

which has µν − nµ elements, as well. Note that by Proposition 4.1.6a) and b), for

each di ∈ M there exists a polynomial τi ∈ Tseg such that ∂τi
∂di

= ±1. We construct the

following matrix.

MSseg =




d1 . . . dm

τ1
∂τ1
∂d1

. . . ∂τ1
∂dm

...
...

. . .
...

τm
∂τm
∂d1

. . . ∂τm
∂dm


 =




d1 . . . dm

τ1 ±1 ⋆ ⋆
...

...
. . .

...

τm ⋆ ⋆ ±1




Since the set Tseg is a set of generators of I(BO), the Jacobian matrix is as follows:

Jac(Tseg) =
(

MSseg ∗
)

(6.22)

By Corollary 6.3.5, a polynomial τ 1lpq ∈ Tseg, is of the following shape

τ 1lpq = (τ 1lpq)
(2) ± (τ 1lpq)

(1),

where (τ 1lpq)
(2) ∈ K[Sseg] and (τ 1lpq)

(1) ∈ K[C] is a linear polynomial that has at most two

terms in its support. Then by Corollary 6.1.1, the entries of MSseg
are only ±1 and 0.

Since the monomial point o = (0, .., 0) is a smooth point of BO, by Theorem 2.1.18c,

the rank of the matrix Jac(Tseg)o is µν − nµ. Since the entries of MSseg
are either ±1
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or 0, it is a sub-matrix of Jac(Tseg)o, as well. Then the matrix MSseg
has the rank

µν − nµ. By applying row operations, we have

MSseg
=




d1 . . . dm

τ1 ±1 ⋆ ⋆
...

...
. . .

...

τm ⋆ ⋆ ±1


 ∼




±1 0 . . . 0

0 ±1 0 0
...

. . . . . .
...

0 . . . 0 ±1




= Em.

Hence, the determinant of the matrix MSseg
is ±1. Thus by Theorem 6.2.20, the

segment border basis scheme is isomorphic to an affine space of dimension nµ.

Example 6.3.7. Let O denote the segment order ideal {1, x1, x
2
1} ⊂ K[x1, x2, x3].

Then the border of O is

∂O = {x3, x2, x1x3, x2x3, x
2
1x3, x2x

2
1, x

3
1},

so that in our terminology we have

t1 = 1, t2 = x1, t3 = x2
1, b1 = x3, b2 = x2, b3 = x1x3, b4 = x2x3, b5 = x2

1x3, b6 = x2x
2
1, b7 = x3

1.

By Propositions 5.3.14, the defining equations are as follows.

τ 1211 = c17c32 − c14 τ 1311 = c17c31 − c13

τ 1222 = c27c34 + c14 − c26 τ 1322 = c27c33 + c13 − c25

τ 1212 = c17c34 − c16 τ 1312 = c17c33 − c15

τ 1221 = c27c32 + c12 − c24 τ 1321 = c27c31 + c11 − c23

τ 1232 = c34c37 + c24 − c36 τ 1332 = c33c37 + c23 − c35

τ 1231 = c32c37 + c22 − c34 τ 1331 = c31c37 + c21 − c33

By Lemma 6.3.4, the set S̄seg = {c̄17, c̄27, c̄37, c̄31, c̄32, c̄33, c̄34, c̄35, c̄37} is a spanning set

of m/m2. By Proposition 6.3.6, the scheme BO is isomorphic to an affine space of

dimension nµ.

Let us illustrate this result. Recall that the homomorphism

ϕ : K[Sseg] −→ K[C]/I(BO),

cij 7−→ c̄ij
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is injective (see Chapter 6.2, Map 6.15).

To show that ϕ is surjective, we compute the determinant of the matrix MSseg
.

Clearly, this matrix is in Mat12(K[SSeg]) and the determinant of this matrix is 1. By

Theorem 6.2.20, the scheme BO is isomorphic to an affine space of dimension nµ. Now

we illustrate the way to get fi ∈ K[S] for each di ∈ M, concretely. Recall from Chapter

6 that we have the following equation.

MSSeg
×




f1
...

fm


 =




g1(S)
...

gm(S)


 ,

For each cij ∈ M, we define fij, which are the pre-images of each cij ∈ M as follows.

f14 := τ 1211 − c14 = c17c32 f13 := τ 1311 + c13 = c17c31

f26 := c27c34 − f14 f25 := c27c33 + f13

f16 := τ 1212 + c16 = c17c34 f15 := τ 1312 + c15 = c17c33

f24 := τ 1232 − c24 = c34c37 − c36 f23 := τ 1332 − c23 = c33c37 − c35

f12 := c27c32 + f24 f11 := c27c31 + f23

f22 := τ 1231 − c22 = c32c37 − c34 f21 := τ 1331 − c21 = c31c37 − c33.

Then the matrix MSSeg
is as follows.

MSSeg
=




c11 c12 c13 c14 c15 c16 c21 c22 c23 c24 c25 c26

τ 1321 1 0 0 0 0 0 0 0 −1 0 0 0

τ 1221 0 1 0 0 0 0 0 0 0 −1 0 0

τ 1311 0 0 −1 0 0 0 0 0 0 0 0 0

τ 1211 0 0 0 −1 0 0 0 0 0 0 0 0

τ 1312 0 0 0 0 −1 0 0 0 0 0 0 0

τ 1212 0 0 0 0 0 −1 0 0 0 0 0 0

τ 1331 0 0 0 0 0 0 1 0 0 0 0 0

τ 1231 0 0 0 0 0 0 0 1 0 0 0 0

τ 1332 0 0 0 0 0 0 0 0 1 0 0 0

τ 1232 0 0 0 0 0 0 0 0 0 1 0 0

τ 1322 0 0 1 0 0 0 0 0 0 0 −1 0

τ 1222 0 0 0 1 0 0 0 0 0 0 0 −1
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Now let us verify the entries of the column matrix

G =




g1(S)
...

gm(S)


 ,

which are by Corollary 6.3.5 all in the polynomial ring K[SSeg] as follows.

g14 = c17c32, g13 = c17c31 g26 = c27c34, g25 = c27c33

g16 = c17c34, g15 = c17c33, g24 = c34c37 − c36, g23 = c33c37 − c35

g12 = c27c32, g11 = c27c31, g22 = c32c37 − c34, g21 = c31c37 − c33

By Proposition 6.3.6, all the polynomials that we defined above f11, f12, ..., f26 are from

the polynomial ring K[c17, c27, c37, c31, c32, c33, c34, c35, c37] = K[Sseg]. We let cij ∈ M

and dk = cij. Hence, for each dk ∈ M there exists an fk ∈ K[Sseg] such that fk =

Det(Mk) ∈ K[Sseg], where Det(Mk) is the determinant of the matrix MSSeg
that has

the the column G in the kth column. In this example, it is straightforward to verify

the polynomials fk by simple substitution. For example, f14 = c17c32 ∈ K[SSeg] and

f26 can be found by substituting f14 by c17c32 and hence we get f26 = c27c34 − c17c32.

By proceeding this way, we get

f14 := c17c32 f13 := c17c31

f26 := c27c34 − c17c32 f25 := c27c33 + c17c31

f16 := c17c34 f15 := c17c33

f24 := c34c37 − c36 f23 := c33c37 − c35

f12 := c27c32 + c34c37 − c36 f11 := c27c31 + c33c37 − c35

f22 := c32c37 − c34 f21 := c31c37 − c33.
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6.4 Special Order Ideals from T2

Before starting the main part of this section, let us present the necessary notation and

definitions. Unless stated otherwise, throughout this section the polynomial ring in use

is P = K[x, y] and O is an order ideal in T2.

1) Let an element xryl of the order ideal O be denoted by trl.

2) The set of indeterminates of C are of the form crl j, where j is the index of bj and

rl are such that trl is an element of the order ideal O.

3) For i > 0 and j > 0 we place the term xiyj at position (i, j) of a diagram in

order to visualize O and ∂O. Let us illustrate how we place the terms and how

the diagram of O is constructed with an example.

Example 6.4.1. Let O denote the order ideal

{1, x, y, xy, x2, y2, x2y, xy2, x3, y3, x3y, y4} ⊂ T2.

Then the border of O is ∂O = {xy3, x2y2, x4, y5, xy4, x3y2, x4y}.

y5 = b7 xy5 = b6
y4 xy4 x2y4 = b5
y3 xy3 x2y3 x3y3 = b4
y2 xy2 x2y2 x3y2 x4y2 = b3
y xy x2y x3y x4y x5y = b2
1 x x2 x3 x4 x5 = b1

Table 6.1: Diagram of O

As given above we have xryl = trl. In the diagram of O, for l = 0, we have

t0 0 = 1, t1 0 = x, ..., t4 0 = x4, b1 = x5.

4) Let L denote the number of rows and R denote the number of columns. In

Diagram 6.1 we have 6 rows, i.e. R = 6 and 6 columns, i.e. L = 6.

5) Let Rl denote the number of terms placed in the row l and Lr denote the number

of terms placed in the column r. For example, in the third row we have l = 2,

Diagram 6.1 has 5 terms, i.e. R2 = 5 and in the fourth column it has 3 terms,

i.e. L4 = 3.
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Definition 6.4.2. An order ideal has the sawtooth form if the diagram of O is of the

form such that every step width, except possibly the topmost, and every step height,

except possibly the rightmost, is of size one.

. . .

Table 6.2: Diagram of O has the sawtooth form

Let O be an order ideal that has the sawtooth form. Let ∂O = {b1, ...., bν} denote

the border of O, with ν elements. Observe that, except for the top row which consists

of only border terms, each row has exactly one border term. We enumerate the border

term on the jth row as bj+1 = xRjyj, where 0 6 j < L−1. For example, in Diagram 6.1

border elements are indexed beginning from b1 to b6 in an ascending order between the

top row and the bottom row. There are ν border terms and if the border term is on the

top row then we enumerate the border terms as bj = xν−jyL−1 where ν > j > L− 1.

In [Huib02] by using Proposition 7.1.2 and Corollary 7.2.2 the following theorem

was proven.

Theorem 6.4.3. Let O = {t1, ..., tµ} be an order ideal in T2. If the order ideal O has

the sawtooth form then BO is isomorphic to an affine space.

In this section our aim is to prove the above theorem by applying Theorem 6.2.20

instead of using Proposition 7.1.2 [Huib02]. The main reason is to show that Theorem

6.2.20 is not only a good tool to check whether a given O-border basis scheme is an

affine space, but it can be used to give genral results for a specific shape of order ideals

like sawtooth. Moreover, it holds for larger dimensional polynomial rings, not just for

two dimensional cases.

Next we translate very useful notions introduced in [Huib02] to our notation, that

are called the exposable term, exposed term.

Definition 6.4.4. Let O ∈ K[x, y] be an order ideal. Let trl be a term in O and bj be

a term from ∂O.

1. If we have xtrl = bj then we call bj as an x-exposed border term and trl is called
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an x-exposable order ideal term.

2. If we have ytrl = bj then we call bj an y-exposed border term and trl is called

a y-exposable term.

3. If bj is either x-exposed or y-exposed, then crl j is called an exposed indeter-

minate.

4. Let bj be an y-exposed border term and tfk is an x-exposable term in the order

ideal. Then the indeterminate cfk j is called yx-exposed indeterminate.

5. Let bj be an x-exposed border term and tfk is an y-exposable term in the order

ideal. Then the indeterminate cfk j is called xy-exposed indeterminate.

Construction 6.4.5. Let O be an order ideal that has the sawtooth form. Let S be

a subset of C that contains xy-exposed indeterminates and yx-exposed indeterminates.

Corollary 6.4.6. Let O = {t1, ..., tµ} be an order ideal in T2. Let S be constructed as

in Construction 6.4. Then the set S̄ is a basis of the K-vector space m/m2.

Proof. By Proposition 2.4 of [Hai98] the set S̄ is a spanning set of m/m2 and there are

exactly 2µ elements in S̄. By Corollary 4.2.17, the monomial point o is a smooth point

of BO and the dimension of m/m2 is 2µ. Hence the set S̄ is a basis set of m/m2.

We let m = µν − 2µ. The elements of C \ S are denoted by dp for p ∈ {1, ...,m}.
Recall that for each dp we choose exactly one polynomial τ in T with the property
∂τ
∂dp

= ±1. We index this polynomial τ as τp and we call the set of these polynomials

as TS . We note that TS is not unique.

We write each polynomial in T with respect to our new notation. Recall that two

distinct border terms bi, bj satisfying xkbi = bj are called xk-next door neighbors where

in our setting we have xk ∈ {x, y}.
For the order ideal that has sawtooth form, y-next door neighbors are located only

on the rightmost column, i.e. yb1 = b2, ..., ybLR−1 = bLR
. Let bj and bi be distinct

border terms in {b1, ..., bLR
} that are y-next door neighbors, i.e. ybj = bi By the

enumeration on the border elements, we have bj = bi−1. Recall Construction 2.3.17c)

of the polynomial τpq ∈ ND(i, j) which is a result of y-next door neighbors bi and bj. In

order to rewrite the polynomial τpq in the notation of this section, we use trl and tr′l′

for tp and tr, respectively. Note that tr′l′ is y-exposable and bm = ytr′l′ is a y-exposed
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border term. Hence the polynomial in Construction 2.3.17c) that is constructed by

lifting y-next door neighbors.

Yrl−1 i−1 = crl i − crl−1 i−1 −
∑

tr′l′∈O
ytr′l′=bm∈∂O

cr′l′ i−1crlm (6.23)

Next recall Construction 2.3.17c) for the x-next door neighbors. We use trl and tr′l′

instead of tp and tr, respectively. Note that tr′l′ is y-exposable and bn = xtr′l′ is an

x-exposed border term. Moreover, as a result of the enumeration of the border terms,

for x-next door neighbor border terms bi and bj, we have j = i− 1 (see Example 6.4.1).

The border elements with x-next door neighbor relation are located only on the top

row of Diagram 6.2, we have bL = xbL+1, bL+1 = xbL+2..., bν − 1 = xbν . Let bi and bi−1

be two distinct border terms in {bL, ..., bν}. Then we get the following polynomial by

lifting x-next door neighbors.

Xr−1l i = crl i−1 − cr−1l i −
∑

tr′l′∈O
xtr′l′=bn∈∂O

cr′l′ icrl n (6.24)

The neighbor relation that we focus on is the across the street neighbors. Since the

order ideal in use has the sawtooth form, the border terms we consider are {bLR
, ..., bL}

and bj = bi+1. We use trl and tr′l′ and tr”l” instead of tp, tr and ts respectively. The

term tr′l′ is x-exposable and tr”l” is y-exposable. We let ytr”l” = bp and xtr′l′ = bq.

The border term bq is an x-exposed term and the border term bp is an y-exposed term.

Then the polynomial that we get by lifting across the street neighbors bi and bi−1 with

xbi = ybi−1, is as follows.

Ar−1l+1 i = crl i−1 − cr−1l+1 i −
∑

tr′l′∈O
xtr′l′=bq∈∂O

cr′l′ i−1cr+1l q +
∑

tr”l”∈O
ytr”l”=bm∈∂O

cr”l” icr+1l m (6.25)

Lemma 6.4.7. Let O ⊂ T2 be an order ideal that has the sawtooth form. Let S be

as given in Construction 6.4. Then the following statements are true for polynomials

Xrl−1 i−1,Yr−1l i and Ar−1l+1 i.

i) Consider the polynomial Yrl i. For each tr′l′ ∈ O with ytr′l′ ∈ ∂O the indetermi-

nate cr′l′ i−1 in Yr−1l i is in S.

ii) Consider the polynomial Xr−1l i−1. For each tr′l′ ∈ O with xtr′l′ ∈ ∂O the inde-
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terminate cr′l′ i−1 in Xr−1l i−1 is in S.

iii) Consider the polynomial Ar−1l+1 i. For each tr′l′ ∈ O with xtr′l′ ∈ ∂O the inde-

terminate cr′l′ i and for each tr”l” ∈ O with ytr”l” ∈ ∂O the indeterminate cr”l” i−1

are both in S.

Proof. The first statement i) is a result of the definition of xy-exposed indeterminate,

since the border terms on the last column (see, for example, Table 6.1) are x-exposed

and tr′l′ is y-exposable. The second statement is a result of the definition of yx-exposed

indeterminate, since the border terms on the top row are y-exposed and both tr”l” x-

exposable. The last statement follows similarly to i) and ii).

Lemma 6.4.8. Let O ∈ T2 be an order ideal of the shape sawtooth. Then the matrix

MS is an element of Matm(K[S]).

Proof. The set TS consists of polynomials of the form X ,Y and A. Let τk be an element

from TS with τk = τ
(1)
k + τ

(2)
k where τ

(2)
k represents the homogenous (with res. standard

grading) part of τ of degree 2. Recall that the element in position (k, j) of the matrix

MS is
∂τk
∂dj

, (6.26)

where di ∈ C \ S. By Lemma 6.4.7, the monomials in Supp(τ
(2)
k ) are of the form ±sp,

where p ∈ C and s ∈ S. Then if p = du is in C \ S then we have

∂τk
∂du

= s.

If p is in S, then 6.26 is 0. Moreover, by Lemma 2.3.19 Supp(τ
(1)
k ) has maximum 2

elements and as a result of the choice of Tk one of them is dk. Hence the entries of the

matrix MS is either s, 0 or ±1.

Recall that the set TS is not a uniquely chosen set.

Lemma 6.4.9. Let O ⊂ T2 be an order ideal. Let TS be a subset of T which is defined

in Construction 6.2.5. Then the O-border basis scheme BO is a complete intersection

and the vanishing ideal I(BO) is generated by TS .

Proof. By Proposition 5.1.23 the scheme BO is a complete intersection and I(BO) is

generated by a subset T ′ of T with µν − 2µ polynomials. Our aim is to show that for
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each di ∈ C \ S there exists a polynomial τi ∈ T ′ such that ∂τi
∂di

= ±1. This will show

that T ′ is TS .

By Corollary 4.2.17 the monomial point o of BO is smooth and by Lemma the

elements of S form a K-vector space basis of the space m/m2, then for each di ∈ C \ S
di ∈ m2 holds. Then by Proposition 4.1.6 we have di =

∑m

k=1 αkτk where αk = ±1 and

τk ∈ T ′. Hence for each di ∈ C \ S there exists at least one polynomial, τi in the set T ′

such that ∂τi
∂di

= ±1. Since there are exactly m elements in both sets T ′ and C \ S, the
set T ′ is one possible TS .

Let di1 = cr1l1 j1 and di2 = cr2l2 j2 be two distinct elements in C \ S, where tl1r1
and tl2r2 are order ideal terms and bj1 and bj2 are border terms. Let τi1 and τi2 be

polynomials in TS which correspond to di1 and di2 , respectively. We say

di1 ≺ di2 (6.27)

if and only if one of the following statements is true.

i) r1 > r2

ii) For the case r1 = r2, we have l1 > l2

iii) For the case r1 = r2 and l1 = l2, the polynomial τi1 is of the form Ar1l1 j1 and τi2
is either of the form Yr2l2 j2 or Xr2l2 j2 .

iv) For case r1 = r2 and l1 = l2, the polynomial τi1 is of the form Yr1l1 j1 and τi2 is of

the form Xr2l2 j2 .

Lemma 6.4.10. Let bj1 and bj2 be two distinct border terms and neighbors. Let τp be

the polynomial which satisfies τ
(1)
p = ci1k1 j1 − ci2k2 j2 and τ

(2)
p =

∑
λ crλqλ lλsλ. If we let

sλ be an element in S, then we have ci1k1 j1 ≺ ci2k2 j2 and for each λ, crλqλ lλ ≺ ci2k2 j2 .

Proof. This is a result of ” ≺ ” with polynomials Yi2k2 j2 ,Xi2k2 j2 and Ai2k2 j2 .

Lemma 6.4.11. Let dp and ds be two distinct elements in C \ S. Let apu be the entry

in position (p, u) and asv be the entry in position (s, v) of the matrix MS , where u, v ∈
{1, ...,m}. If dp ≺ ds holds, then for each u > v we have apu = 0 and for each v > s

we have asv = 0. Moreover, we have app = ±1 and ass = ±1. Then the pth and the sth

row and the column of the matrix MS have the following shape.
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( d1 . . . dp dp+1 . . . ds ds+1 . . . dm

τp ap1 . . . ±1 0 . . . 0 0 . . . 0

τs as1 . . . asr as p+1 . . . ±1 0 . . . 0

)
(6.28)

Proof. We prove the claim by descending induction on 0 6 l 6 L−1 and on 0 6 r 6 Rl.

In order to visualize the process, reducing l represents moving through the rows starting

from the top row that contains order ideal terms and reducing r represents moving

through the elements of the row starting from the x-exposable ones (See Diagram 6.1).

step 1) Our first step is l = L − 1. By Constructions 6.4 and 2.3.17 the only neighbor

relation we have to consider is the x-next door neighbor relations and the poly-

nomials in TS that are calculated as a result of this relation. We focus on the

polynomials Xrl i−1 and we claim that for each 0 6 r 6 Rl the polynomial

∑

tr′l′∈O
xtr′l′=bq∈∂O

cr′l′ jcrl q,

is in K[S]. To prove this claim we proceed by descending induction on 1 6 r 6 Rl.

sub-step 1) Let l = R − 1 and r = Rl. Recall that Rl represents the number of order

ideal elements in the row l. By Lemma 6.4.7 i) for each j ∈ {1, ..., R − 1}
the indeterminates cr′l′ j is in S. Moreover, trl is on the top row and y-

exposable and bq is an x-exposed term. Therefore for each x-exposed bq the

indeterminate crl q, that is in Xrl i−1, is in S. Then the entries of MS in the

row p are 0 or ±1.

sub-step 2) Now we assume that l = R − 1 and r < Rl. By Lemma 6.4.7 i), for each

j ∈ {1, ..., Lr − 1} the indeterminate cr′l′ j is in S. By Lemma 6.4 ii), for

i 6 R − 1 the indeterminate crl i−1 is in S. This holds, since each bi−1 is

x-exposed and trl is y-exposable. If we let dk = crl i−1 and ds = cr−1l i, then

as a result of 6.27 we have dk ≺ ds. By using the induction hypothesis for

each u > r, the element aru in position (s, u) of the matrix MS is 0, and

for each v < v, we have aru ∈ K[S]. Hence the kth and the sth rows of the

matrix MS have the following shape.

( d1 . . . dk dk+1 . . . ds ds+1 . . . dm

τk aru . . . 1 0 . . . 0 0 . . . 0

τs 0 . . . −1 0 . . . 1 0 . . . 0

)
(6.29)
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step 2) We assume l = l−n, where 1 6 n 6 L−1. We proceed with descending induction

on 0 6 r 6 Rl−n. (Note that the number of indeterminates of the polynomial

ring K[x, y] is fixed in this section and it is 2.)

sub-step 1)) For l = l − n and r = Rl−n, the term in the order ideal that is indexed as

tl−nRl−n
is x-exposable. In this case only y-next door border elements will

result with non-trivial results. These next door relations are between the

border terms located on the rightmost column of the diagram of O. Hence it

suffices to consider 1 6 i 6 LR. Let us focus on the polynomial, say τs, that

is constructed as a result of lifting y-neighbors, i.e. the polynomial Yrl−n+1 i.

crl−n+1 i − crl−n i−1 −
∑

tr′l′∈O
ytr′l′=bm∈∂O

cr′l′ i−1crl−n+1m

We claim that the polynomial
∑

tr′l′∈O
ytr′l′=bm∈∂O

cr′l′ i−1crlm is in K[S]. By Lemma

6.4.7 ii) the indeterminate cr′l′ i−1 is in S.Moreover, for eachm ∈ {LR, ..., ν},
the indeterminate crlm is in S, since each border term bm is y-exposed and

the term t(l−n+1)(Rl−n) is x-exposable. This proves the claim that the degree

two homogenous part of Yrl−n+1 i is in K[S]. If we let dk = crl−n+1 i and

ds = crl−n i−1 with l − n+ 1 > l − n, then by 6.27 we have dk ≺ ds and the

rth and the sth rows of the matrix MS are the same as 6.29.

sub-step 2) For the last induction step, we assume 0 6 r < Rl−n.

1) As a result of the property iii) of ” ≺ ” given in 6.27, we first focus on

Xr−1l−n+1 i, which is constructed as a result of the lifting of across the

street neighbors.

crl−n i−1−cr−1l−n+1 i−
∑

tr′l′∈O
xtr′l′=bq∈∂O

cr′l′ i−1cr+1l−n q+
∑

tr”l”∈O
ytr”l”=bm∈∂O

cr”l” icr+1l−nm

If we let dk = cr−1l−n+1 i and ds = crl−n i−1, then we have dk ≺ ds. By

Lemma 6.4.8 we can write the degree two homogenous part τ
(2)
s as a

product of an element from C \ S, say dp, and an element from S. By
Lemma 6.4.7 iii), the terms cr′l′ i−1 and cr”l” i in the above equation are

in S. Then dp ∈ C \ S can be crl−n+1 q or crl−n+1m. In each case, as a

result of Property i) of ” ≺ ”, for l − n + 1 > l − n we have dp ≺ ds.
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Moreover, by Property ii) of ” ≺ ”, for each 1 6 i 6 ν indeterminate

dp ≺ cr−1l−n+1 i = dk, since we have r − 1 < r. Then by the induction

hypothesis for each index u > k the element in position (k, u) of MS

is 0 and for each index v > p the element in position (p, v) of MS is 0.

Hence the kth, pth and sth rows of MS have the following form.




d1 . . . dp . . . dk dk+1 . . . ds ds+1 . . . dm

τp ap1 . . . ±1 . . . 0 0 . . . 0 0 . . . 0

τk ak1 . . . akp . . . 1 0 . . . 0 0 . . . 0

τs as1 . . . asp . . . −1 0 . . . 1 0 . . . 0


 (6.30)

Thus the rows of the matrix MS have the desired form. By Lemma

6.4.8 the entries of the matrix MS are in K[S]. The entries which are

represented by aij are elements of K[S].

2) Now we consider the polynomials in TS that are constructed as a result

of lifting y-next door neighbors. We focus on polynomial Yrl−n i−1 which

has the degree 2 homogenous part

crl−n+1 i − crl−n i−1 −
∑

tr′l′∈O
ytr′l′=bm∈∂O

cr′l′ i−1crl−n+1m.

By Lemma 6.4.7ii), the term cr′l′ i−1 in the above equation is in S.
Similarly, the border term bm is y-exposed, but the indeterminate crl−nm

is not necessarily in S. If we let crl−n+1m = dp, dk = crl−n+1 i and

ds = crl−n i−1, then we have dk ≺ ds and dp ≺ ds. By the induction

hypothesis, the kth and pth rows of MS satisfy the claim that in the kth

row, after the kth column there are only zeros and in the pth row, after

the pth column there are only zeros. There are cases which τp is a result

of across the street relation. Then by the relation ≺, dp ≺ dk holds.

And there are cases which τp′ is a result of x-next door relations. Then

by the relation ≺, dk ≺ dp′ holds. Then for u ∈ {p, k, p′} we have

∂τu
∂dv

= 0

if du ≺ dv holds and
∂τu
∂du

= ±1.
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Then for the row and columns p, k, p′ the matrix MS has the following

form.




d1 . . . dp . . . dk dk+1 . . . dp′ dp′+1 . . . dm

τp ap1 . . . ±1 . . . 0 0 . . . 0 0 . . . 0

τk ak1 . . . akp . . . 1 0 . . . 0 0 . . . 0

τp′ ap′1 . . . ap′p . . . ap′k ap′k+1 . . . ±1 0 . . . 0




Since we have

∂τs
∂dv

= 0 for dv /∈ {dp, dk, dp′ , ds}

and
∂τs
∂ds

= ±1

Consequently with

dp ≺ dk ≺ dp′ ≺ ds,

the rows and the columns p, k, p′, s of the matrix MS have the following

form.




d1 . . . dp . . . dk dk+1 . . . dp′ . . . ds . . . dm

τp ap1 . . . ±1 . . . 0 0 . . . 0 . . . 0 . . . 0

τk ak1 . . . akp . . . 1 0 . . . 0 . . . 0 . . . 0

τp′ ap′1 . . . ap′p . . . ap′k ap′k+1 . . . ±1 . . . 0 . . . 0

τs as1 . . . asp . . . −1 as k+1 . . . asp′ . . . 1 . . . 0




(6.31)

Note that by Lemma 6.4.8 the entries of the matrix MS are in K[S].

3) By the property iv) of 6.27, the last step is to consider the polynomials

in TS , that are constructed as a result of the x-next door neighborhood

relation. Their form is given in Polynomial 6.24.

crl−n i−1 − cr−1l−n i −
∑

tr′l′∈O
xtr′l′=bq∈∂O

cr′l′ icrl−n q

By Lemma 6.4.7 i) for each i ∈ {1, ..., ν} the indeterminate cr′l′ i is in

S. If we let ds = cr−1l−n i and dk = crl−n i−1 and for i ∈ {1, .., ν} we

let crl−n q = dp, then we have dk ≺ ds and dp ≺ ds. In this case such
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ds does not exist. Since the border term bi is y-exposed, for each τp
that corresponds to dp is a result of either an y-next door neighborhood

relation or an across the street neighborhood relation, where order ideal

elements were located on the row l − n and column r. By considering

the properties iii) and iv) of 6.27 , we have dp ≺ dk. Hence by applying

the induction hypotheses, the kth and sth rows of MS are as follows.




d1 . . . dp . . . dk dk+1 . . . ds . . . dm

τp ap1 . . . ±1 . . . 0 0 . . . 0 . . . 0

τk ak1 . . . akp . . . 1 0 . . . 0 . . . 0

τs as1 . . . asp . . . −1 0 . . . 1 . . . 0


 (6.32)

Then by the induction hypothesis the rows p and s of the matrix MS where dp ≺ ds

is of the form 6.28.

Recall that an indeterminate cij is called standard, if the arrow degree degW (cij)

has exactly one positive component. Otherwise it is called non-standard. We let

xk ∈ {x, y}. An indeterminate cij is called xk-standard, if only the kth component of

the degree vector degW (cij) is positive.

Remark 6.4.12. Let us summarize what we showed until now. Recall that TS is a

system of the generators of the vanishing ideal I(BO). As a result of the construction

of TS for each element τp of TS , there is an element, dp in C \S with ∂τp
∂dp

= ±1. For two

distinct neighbors bj1 and bj2 we denote the homogenous (with respect to the standard

degree) of degree 1 part of τp by τ
(1)
p = ci1k1 j1 − ci2,k2 j2 and homogenous of degree 2

part of τp by τ
(2)
p =

∑
λ crλqλ lλsλ. As seen, there are two possibilities for dp. As a result

of ≺, we have ci1j1 ≺ ci2j2 and for each λ, we have crλqλ lλ ≺ ci2k2 j2 . By Lemma 6.4.10

and Lemma 6.4.11, the choice of dp = ci2k2 j2 is made with respect to the ” ≺ ”. If

theindeterminatedp is a non-standard indeterminate or an x-standard indeterminate,

then by constructing the polynomial τp by neighbor relations of bj2 results with the

following two possible conclusions. First the indeterminate ci1k1 j1 does not exist and the

second one is that the indeterminate ci1k1 j1 is in S. Moreover, by choosing dp = ci2k2 j2
for τp and proceeding this way will place ∂τp

∂dp
= ±1 in the diagonal. If τp is an y-standard

polynomial and we choose dp = ci2k2,j2 , then there are two cases to consider. The first

case is that ti1k1 is x-exposable or the border terms bj1 and bj2 have only x-next door

neighbors. Then ci1k1 j1 is in S and this case is similar to the previous argument. The

second case is that one of the border terms bj1 or bj2 has an across the street neighbor.
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We investigate this case in the next proof in detail and show that the matrix is lower

triangular.

Lemma 6.4.13. Let O ∈ T2 be an order ideal. If the order ideal O has the sawtooth

form then the matrix MS is similar to a lower triangular matrix that have ±1 on the

diagonal.

Proof. It suffices to show that row operations on the rows, say the pth row, where the

the arrow degree of τp is y-standard, will result with the lower diagonal matrix that

has ±1 on the diagonal, since as stated in Remark 6.4.12 the other rows are already

in the desired shape. Let us illustrate why the case which y-standard polynomial τp is

different than the other cases. Let the homogenous component of τp of degree 1 be

τ (1)p = crl i−1 − cr−1l i.

We assume τp is constructed as a result of x-next door neighbor relation of bi−1 and

bi. By Lemma 6.4.10 and Lemma 6.4.11, we have dp = cr−1l i. Then let τk and τs be

polynomials constructed as result of across the street neighbors bi−1, bi−2 and bi−2, bi−3

respectively. We let τ
(1)
k = crl i−1 − cr+1l−1 i−2 and τ

(1)
s = cr+1l−1 i−2. As above we have

dk = cr+1l−1 i−2 and ds = cr+1l−1 i−2. Moreover, we have dp ≺ dk = ds and we let

d = crl i−1. Hence the corresponding rows and the columns of the matrix MS are as

follows where we let aij denote the element of K[S] in position (i, j) of MS .




d1 . . . dq dq+1 . . . dp . . . dk dk+1 . . . dm

τp ap1 . . . 1 apq+1 . . . −1 . . . 0 0 . . . 0

τk ak1 . . . 1 akq+1 . . . akp . . . −1 0 . . . 0

τs as1 . . . asq asq+1 . . . asp . . . 1 0 . . . 0


 (6.33)

Clearly this matrix is not a lower triangular matrix, since dk = ds and there are

two different polynomials are indexed the same. Since this is only an enumeration

problem, we fix it as follows. First we claim that aki = 0 for q < i < p. This follows

from the fact that in Polynomial 6.25 we have cr+1l n ≺ crl i−1 ≺ cr−1l+1 i and cr+1l m ≺
crl i−1 ≺ cr−1l+1 i. Then we claim that api = 0 for q 6 i < k. This follows from the

fact that in Polynomial 6.24 we have crl i−1 ≺ cr−1l i and crl n ≺ cr−1l i. Since the border

term bn is x-exposed, either crl n ∈ S or crl n = dr where τr is a result of either across

the street or y-next door relation. As a result of the property (iv) of ≺, we have

crl n ≺ crl i−1 ≺ cr−1l i. Our last claim is asi = 0 for q 6 i < k. This follows from the
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fact that in Polynomial 6.25. For τ
(1)
s = cr+1l−1 i−2 we have

τ (2)s =
∑

tr′l′∈O
xtr′l′=bq∈∂O

cr′l′ i−3cr+2l−1 q +
∑

tr”l”∈O
ytr”l”=bm∈∂O

cr”l” i−2cr+2l−1m.

As a result of the first property of ≺, cr+2l−1m and cr+2l−1 q come before dk, dp and ds.

Hence the claim follows. Then the above matrix has the following shape.




d1 . . . dq dq+1 . . . dp . . . dk dk+1 . . . dm

τp ap1 . . . 1 0 . . . −1 . . . 0 0 . . . 0

τk ak1 . . . 1 0 . . . 0 . . . −1 0 . . . 0

τs as1 . . . 0 0 . . . 0 . . . 1 0 . . . 0


 (6.34)

There are row operations that can be applied on the above matrix which make it a

lower triangular matrix having ±1 on the diagonal. Matrix 6.34 represents the pth, kth

and the sth rows of the matrix MS for polynomials τp, τk and τs with y-standard

arrow degrees. If the polynomials are not of the y-standard arrow degree, they already

satisfy the property of Lemma 6.4.11 and the above problem is avoided as a result of

the properties (i) and (ii) of ≺ .

Proposition 6.4.14. Let O = {t1, ..., tµ} be an order ideal in T2. If the order ideal O
is of the form of a sawtooth then the O-border basis scheme, BO is isomorphic to an

affine space.

Proof. By Lemma 6.4.13 the determinant of the matrix MS is ±1 and by Lemma 6.4.8

the entries of this matrix are in K[S]. Then by Theorem 6.2.20 the O-border basis

scheme BO is an affine space.

Definition 6.4.15. An order ideal has the deformed sawtooth form if the diagram of

O is of the form such that every step, width is decreasing, except possibly the topmost,

and every step height, except possibly the rightmost, is of size one (see, for example,

Diagram 6.3).

Let O = {t1, ..., tµ} be an order ideal in T2. If O has the sawtooth form then the

only y-next door neighbors are on the top row. if the ∂O has deformed sawtooth form,

then there are border elements which are not located on the top row but are y-next

door neighbors. The next example shows that Theorem 6.2.20 is not useful to verify
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whether O-border basis scheme is isomorphic to an affine space, if the order ideal O
has the deformed sawtooth shape.

Example 6.4.16. LetO = {1, x, y, xy, x2, y2, x2y, xy2, x3, y3, x2y2, x3y, xy3, x3y2, x4, y4,

x4y, x5, x5y, x6, x6y, x4y2, x5y2, x2y3, x3y3}. Then the border of it is

∂O = {y5, xy4, x2y4, x3y4, x4y3, x7, x5y3, x6y2, x7y}.

Let us draw the diagram of O.

y5

y4 xy4 x2y4 x3y4

y3 xy3 x2y3 x3y3 x4y3 x5y4

y2 x2y x3y2 x3y2 x4y2 x5y2 x6y2

y xy x2y x3y x4y x5y x6y x7y
1 x x2 x3 x4 x5 x6 x7

Table 6.3: Diagram of O

We compute the generating set T of I(BO), by using ApCoCoA and focus on the

following polynomials.

τ4 16 = −c4 2c13 2 + c4 2c16 1 − c4 1c16 2 + c4 6c20 1 + c4 9c21 1 − c4 8c21 2

−c4 5c22 2 + c4 8c23 1 − c4 7c23 2 − c4 3c24 2 + c4 5c25 1 − c4 4c25 2 − c2 2 + c3 1,

τ5 13 = c5 2c16 2 + c5 6c20 2 + c5 9c21 2 + c5 8c23 2 + c5 5c25 2 + c2 2 − c5 3,

sτ9 24 = c9 2c16 3 + c9 6c20 3 + c9 9c21 3 + c9 8c23 3 + c9 5c25 3 + c5 3 − c9 4,

τ5 15 = −c13 5c15 2 + c15 2c16 4 − c15 1c16 5 + c15 6c20 4 + c15 9c21 4 − c15 8c21 5 − c15 5c22 5

+c15 8c23 4 − c15 7c23 5 − c15 3c24 5 + c15 5c25 4 − c15 4c25 5 + c9 4,

τ12 16 = −c12 2c13 2 + c12 2c16 1 − c12 1c16 2 + c12 6c20 1 + c12 9c21 1 − c12 8c21 2 − c12 5c22 2

+c12 8c23 1 − c12 7c23 2 − c12 3c24 2 + c12 5c25 1 − c12 4c25 2 + c7 1 − c9 2,

τ15 13 = c15 2c16 2 + c15 6c20 2 + c15 9c21 2 + c15 8c23 2 + c15 5c25 2 + c9 2 − c15 3,

τ18 24 = c16 3c18 2 + c18 6c20 3 + c18 9c21 3 + c18 8c23 3 + c18 5c25 3 + c15 3 − c18 4,

τ20 25 = −c16 5c20 1 − c13 5c20 2 + c16 4c20 2 + c20 4c20 6 + c20 9c21 4 − c20 8c21 5 − c20 5c22 5

+c20 8c23 4 − c20 7c23 5 − c20 3c24 5 + c20 5c25 4 − c20 4c25 5 + c18 4,

τ16 24 = c16 2c16 3 + c16 6c20 3 + c16 9c21 3 + c16 8c23 3 + c16 5c25 3 − c16 4,
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By Proposition 4.1.6 a) c̄16 4 and c̄18 4 are both in m2 and hence they are in C \ S. By
Proposition 4.1.6 a) and b)

c2 2, c31, c5 3, c9 4, c9 2, c7 1, c15 3, c18 4, c20 5, c22 5

are in m2 and hence in C \S, as well. Therefore for every possible S, the set TS contains

the polynomial τ9 24 = c9 2c16 3 + c9 6c20 3 + c9 9c21 3 + c9 8c23 3 + c9 5c25 3 + c5 3 − c9 4 where
∂τ9 24

∂c16 3
= c92 ∈ M and ∂τ16 3

∂c9 2
= c16 3 ∈ C \ S. Then for any S the matrix MS is not in

Matm(K[S]). But we note that for S that is given in Construction 6.4, the determinant

MS is 1.

The Example indicates that Theorem 6.2.20 can’t be applied directly to the case

which the order ideal has deformed sawtooth form, since the conditionMS ∈ Matµν−2µ(K[S])
is not satisfied.

Using Theorem 6.2.20 to prove that BO is an affine space, where O is of the shape

sawtooth, is not simpler than the proof [Huib02]. But we note that, Proposition 7.1.2 of

[Huib02] only holds for two dimensional cases whereas Theorem 6.2.20 holds for every

number of dimensions. We conjecture that our theorem can be generalized further in

Conjecture 6.2.25. It asks whether any given O-border basis scheme is an affine space

if the determinant of the matrix MS , which is not necessarily in K[S], is ±1.
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Chapter 7

Appendix

Function 7.0.17. (WMat) This function computes the Weight Matrix with respect

to the arrow grading.

WMat(OO,BO,N) :

WMat(OO : LIST,BO : LIST,N : INTEGER) : MATRIX

InPut:The order ideal OO, the border BO and the number of Indeterminates of the

Polynomial Ring.

OutPut: Weight Matrix.

Example 7.0.18. Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);

BO:=BB.Border(OO);

N:=Len(Indets());

W:=BBSGen.Wmat(OO,BO,N);

W;

Mat([

[0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],

[2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]

])

-----------------------------
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Function 7.0.19. (NonStand) : This function computes the non-standard Indeter-

minates in the Coordinate Ring of Border Basis Scheme, BO.

NonStand(OO,BO,N,W);

NonStand(OO : LIST,BO : LIST,N : INTEGER,W : MATRIX) : LIST

InPut:The order ideal OO, border of OO, N the number of Indeterminates of the

Polynomial Ring and the Weight Matrix.

OutPut: List of Indeterminates and their degree with respect to the arrow grading.

Example 7.0.20. Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=2;----Number of indeterminates in the ring R.

W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.NonStand(OO,BO,N,W);

[[c[1,3], [R :: 1, R :: 2]], [c[1,4], [R :: 2, R :: 1]],

[c[2,3], [R :: 1, R :: 1]], [c[3,4], [R :: 1, R :: 1]]]

-------------------------------

Function 7.0.21. (TraceSyzFull) : Let τ klij := t[k, l, i, j] be the(i, j)th entry of ma-

trix the operation [Ak, Al]. The result of the Trace Syzygy computation is K[C]-linear
combination of τ klij that is equal to 0. This function computes such Trace Syzygy polyno-

mials. This function, because of the growth of the polynomials during the computation,

may not give result for the ring with three indeterminates.

TraceSyzFull(OO,BO,N);

TraceSyzFull(OO : LIST,BO : LIST,N : INTEGER) : LIST

InPut:The order ideal OO, border BO, the number of Indeterminates of the Polyno-

mial.

OutPut: The list of Trace Syzygy polynomial.
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Example 7.0.22. Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);

BO:=BB.Border(OO);

W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

N:=2; -----Number of indeterminates in the ring R.

BBSGen.TraceSyzFull(OO,BO,N);

[

c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] +

c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] +

c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4],

2c[1,1]t[1,2,2,1] + 2c[2,1]t[1,2,2,2] + 2c[3,1]t[1,2,2,3] +

2c[4,1]t[1,2,2,4] + 2c[1,3]t[1,2,4,1] + 2c[2,3]t[1,2,4,2] +

2c[3,3]t[1,2,4,3] + 2c[4,3]t[1,2,4,4] + 2t[1,2,1,2] + 2t[1,2,3,4],

c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] +

c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] +

t[1,2,1,3] + t[1,2,2,4],

2c[1,2]c[3,1]t[1,2,2,1] + 2c[1,4]c[4,1]t[1,2,2,1] + 2c[2,2]c[3,1]t[1,2,2,2] +

2c[2,4]c[4,1]t[1,2,2,2] + 2c[3,1]c[3,2]t[1,2,2,3] + 2c[3,4]c[4,1]t[1,2,2,3] +

2c[3,1]c[4,2]t[1,2,2,4] + 2c[4,1]c[4,4]t[1,2,2,4] + 2c[1,2]c[3,3]t[1,2,4,1] +

2c[1,4]c[4,3]t[1,2,4,1] + 2c[2,2]c[3,3]t[1,2,4,2] + 2c[2,4]c[4,3]t[1,2,4,2] +

2c[3,2]c[3,3]t[1,2,4,3] + 2c[3,4]c[4,3]t[1,2,4,3] + 2c[3,3]c[4,2]t[1,2,4,4] +

2c[4,3]c[4,4]t[1,2,4,4] + 2c[1,1]t[1,2,2,3] + 2c[2,1]t[1,2,2,4] +

2c[1,4]t[1,2,3,1] + 2c[2,4]t[1,2,3,2] + 2c[3,4]t[1,2,3,3] +

2c[4,4]t[1,2,3,4] + 2c[1,3]t[1,2,4,3] + 2c[2,3]t[1,2,4,4] + 2t[1,2,1,4]]

-------------------------------

-- Done.

------------------------------

NOTE: As one can see in the example some syzygies might appear more than once.

Function 7.0.23. (TraceSyzLin) Let τ klij := t[k, l, i, j] be the(i, j)th entry of matrix

the operation [Ak, Al]. The result of the Trace Syzygy computation is K[C]-linear com-

bination of τ klij that is equal to 0. This function only computes the summands of Trace



174 7. Appendix

Syzygy, which has constant and non-zero coefficient.

TraceSyzLin(OO,BO,N);

TraceSyzLin(OO : LIST,BO : LIST,N : INTEGER) : LIST

InPut: The order ideal OO, border BO, the number of Indeterminates of the Polyno-

mial.

OutPut: List of polynomials τ kli , which have constant coefficients in the Trace Syzygy

polynomial.

Example 7.0.24.

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);

BO:=BB.Border(OO);

W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

N:=2; ------Number of indeterminates in the ring R.

BBSGen.TraceSyzLin(OO,BO,N);

[

t[1,2,1,3] + t[1,2,2,4],

2t[1,2,1,2] + 2t[1,2,3,4],

t[1,2,1,3] + t[1,2,2,4],

2t[1,2,1,4]]

-------------------------------

-- Done.

---------------------

Function 7.0.25. (TraceSyzStep) Let τ klij := t[k, l, i, j] be the(i, j)th entry of ma-

trix the operation [Ak, Al]. The result of the Trace Syzygy computation is K[C]-linear
combination of τ klij that is equal to 0. This function only computes the trace syzygy for

the degree of the given monomial(not necessarily a target monomial).

TraceSyzStep(Mon,X,OO,BO,N);

TraceSyzStep(Mon : MON,X : INDET,OO : LIST,BO : LIST,N : INT) : POLY
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InPut:The Monomial Mon, the distinguished indterminate of choice, order ideal OO,

border BO, the number of Indeterminates of the Polynomial.

OutPut: Trace syzygy of the degree of the given monomial.

Example 7.0.26. Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=2; ----Number of indeterminates in the ring R.

Mon:=x[1]^2x[2];----------Target Monomial

X:=x[1]; ---------------Choice of the Indeterminate

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.TraceSyzStep(Mon,X,OO,BO,N);

c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] +

c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] +

c[1,4]t[1,2,4,1] +

c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] +

c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4]

-------------------------------

-- Done.

-------------------------------

Function 7.0.27. (JacobiFull) Let R = K[x1, ..., xn] and Ai is the generic multipli-

cation matrix for xi. Let τ
kl
ij := t[k, l, i, j] be the entry in position (i, j) of matrix the

operation [Ak, Al]. This function computes the entries of the Jacobi identity

[Ai[Ak, Al]] + [Ak[Al, Ai]] + [Al[Ai, Ak]] = 0,

where i, k, l is from {1...n}. Note that this function does not work for the case, where

n = 2.

JacobiFull(OO,BO,N);

JacobiFull(OO : LIST,BO : LIST,N : INTEGER) : MATRIX
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InPut:Order ideal OO, border BO, the number of Indeterminates of the Polynomial.

OutPut: The entries of the Jacobi Identity.

Example 7.0.28. Use R::=QQ[x[1..3]];

OO:=[1,x[1]];

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=3;------Number of indeterminates in the ring R.

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.JacobiFull(OO,BO,N);

[[ [c[1,1]t[1,2,1,1] + c[1,3]t[1,2,2,1] +

c[1,2]t[1,3,1,1] + c[1,4]t[1,3,2,1] + c[1,5]t[2,3,2,1],

c[1,1]t[1,2,1,2] + c[1,3]t[1,2,2,2] + c[1,2]t[1,3,1,2] +

c[1,4]t[1,3,2,2] + c[1,5]t[2,3,2,2]],

[ c[2,1]t[1,2,1,1] + c[2,3]t[1,2,2,1] + c[2,2]t[1,3,1,1] +

c[2,4]t[1,3,2,1] + c[2,5]t[2,3,2,1] + t[2,3,1,1],

c[2,1]t[1,2,1,2] + c[2,3]t[1,2,2,2] +

c[2,2]t[1,3,1,2] + c[2,4]t[1,3,2,2] + c[2,5]t[2,3,2,2] + t[2,3,1,2]]]]

-------------------------------

-- Done.

-------------------------------

Function 7.0.29. (JacobiLin) Let R = K[x1, ..., xn] and Ai is the generic multipli-

cation matrix for xi. Let τ
kl
ij := t[k, l, i, j] be the entry in position (i, j) of the matrix

the operation [Ak, Al]. This function computes the entries of the Jacobi identity

[Ai[Ak, Al]] + [Ak[Al, Ai]] + [Al[Ai, Ak]] = 0,

where i, k, l is from {1...n}, which has constant coefficients. Note that this function

does not work for the case, where n = 2.

JacobiLin(OO,BO,N);

JacobiLin(OO : LIST,BO : LIST,N : INT) : MATRIX

InPut:Order ideal OO, border BO, the number of Indeterminates of the Polynomial.
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OutPut: The entries of the Jacobi Identity.

Example 7.0.30.

Use R::=QQ[x[1..3]];

OO:=[1,x[1]];

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=3;-------Number of indeterminates in the ring R.

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.JacobiLin(OO,BO,N);

[ [ [

-t[2,3,1,2],

0],

[

t[2,3,1,1] - t[2,3,2,2],

t[2,3,1,2]]]]

-------------------------------

-- Done.

-------------------------------

Function 7.0.31. Class This function computes the equivalent indeterminates in

the cotangent space mathfrakm/m2 of border basis scheme BO (BBS) and gives these

equivalent indeterminates in the first list and the elements of m2 in the second list that

starts with 0. The base ring is K[x1, .., xn].

Class(OO,BO,W,N);

Class(OO : LIST,BO : LIST,N : INTEGER,W : MATRIX) : LIST

InPut:The order ideal OO.

OutPut:The list of K-linearly independent indeterminates in the cotangent space.

Example 7.0.32. Use R::=QQ[x[1..2]];

OO:=[1,x[1],x[2],x[1]x[2]];

BO:=BB.Border(OO);

Mu:=Len(OO);
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Nu:=Len(BO);

W:=BBSGen.Wmat(OO,BO,N);

N:=2;------Number of indeterminates in the ring R.

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.Class(OO,BO,W,N);

[

[

[

c[2,3],

c[1,1]],

[

c[3,4],

c[1,2]],

[

c[4,4],

c[2,2]],

[

c[4,3],

c[3,1]]],

[

0,

c[1,4],

c[1,3],

c[2,4],

c[3,3]]]

-------------------------------

-- Done.

-------------------------------

Function 7.0.33. EqClass Computes the equivalence classes of the elements in the

coordinate ring of border basis scheme modulo the ideal m2 by using the defining equa-

tions of the given OO-border basis scheme. The ideal m is the maximal which is ho-

mogenous with respect to the arrow grading.

EqClass(OO,BO,W,N);

EqClass(OO : LIST,BO : LIST,W : MAT,N : INT) : LIST
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InPut:The order ideal OO, Border of the order ideal BO, the weight matrix W, the

number of indeterminates of the ground ring.

OutPut:List of the list of equivalence classes modulo m2.

Example 7.0.34.

Use R::=QQ[x[1..2]];

OO:=[1,x[1],x[2],x[1]x[2]];

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=2;---- Number of indeterminates in the ring R.

W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.EqClass(OO,BO,W,N);

[

[

c[2,3],

c[1,1]],

[

c[3,4],

c[1,2]],

[

c[4,4],

c[2,2]],

[

c[4,3],

c[3,1]]]

Function 7.0.35. IsMonSmooth Compares the number of bases elements in m/m2

and the dimension of the pronciple component of the OO-border basis scheme which is

N ∗Mu, where N is the number of indeterminates of the ring which OO is defined and

Mu is the number of terms in OO.

IsMonSmooth(OO,BO,W,N);

IsMonSmooth(OO : LIST,BO : LIST,W : MAT,N : INT) : BOOL
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InPut:The order ideal OO, border of the order ideal BO, the weight matrix W, the

number of indeterminates of the ground ring.

OutPut:BOOL (True or False)

Example 7.0.36.

Use R::=QQ[x[1..2]];

OO:=[1,x[1],x[2],x[1]x[2]];

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=2;---- Number of indeterminates in the ring R.

W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.IsMonSmooth(OO,BO,W,N);

The monomial point of the BB scheme is smooth.True

-------------------------------

-- Done.

-------------------------------

Function 7.0.37. IsAffine This function checks possible minors of the jacocian ma-

trix of the defining equations of border basis scheme. Instead of checking the minors

directly, we construct possible sub-matrices by computing the possible generators of the

vanishing ideal of the OO-border basis scheme and possible basis sets for the vector

space m/m2. Because of the rapid growth of the elements in the Cartesian product, for

border basis schemes with slightly large number of generators, one should not always

expect result. We recommend the function IsAffineEff in that case .

IsAffine(OO,BO,N,W,M, S,PolDeg,Pol);

IsAffine(OO : LIST,BO : LIST,W : MAT,N : INT,M : LIST,PolDeg : LIST,Pol : LIST)

: BOOL,LIST

InPut:The order ideal OO, Border of the order ideal BO, the weight matrix W, the

number of indeterminates of the ground ring N, the list possible basis elements S, the

list of the sets of elements that S does not contain M, List of defining equations of

border basis scheme and PolDeg.

OutPut: BOOL (True or False)
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Example 7.0.38.

Use R::=QQ[x[1..2]];

OO:=[1,x[1],x[2],x[1]x[2]];

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=2;---- Number of indeterminates in the ring R.

W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

BBSGen.IsAffine(OO,BO,N,W);

The monomial point of the BB scheme is smooth.

The Coordinate Ring of the given BB scheme is

isomorphic to a polynomial ring K[S].

K[S]=K[

c[2,1],

c[3,2],

c[4,1],

c[4,2],

c[2,3],

c[3,4],

c[4,4],

c[4,3]]

The scheme can be generated by the polynomials[

c[1,2]c[2,1] + c[1,4]c[4,1] - c[1,3],

c[2,3]c[3,2] - c[3,1]c[3,4] + c[3,4]c[4,3] - c[3,3]c[4,4] - c[1,4],

-c[2,1]c[3,2] - c[2,3]c[4,2] + c[2,4],

c[2,1]c[3,2] + c[3,4]c[4,1] - c[3,3],

c[2,1]c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3],

-c[3,1]c[3,2] - c[3,3]c[4,2] - c[1,2] + c[3,4],

-c[3,2]c[4,1] - c[4,2]c[4,3] - c[2,2] + c[4,4],

c[2,1]c[4,2] + c[4,1]c[4,4] + c[3,1] - c[4,3]]

True

-------------------------------

-- Done.

-------------------------------
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Function 7.0.39. IsAffineEff This function checks possible minors of the Jaco-

bian matrix of the defining equations of border basis scheme. Instead of checking the

minors directly, we construct possible sub-matrices by computing the possible gener-

ators of the vanishing ideal of the OO-border basis scheme and possible basis sets

for the vector space m/m2. This function is more efficient version of the function

IsAffineEff(OO,BO,N,W,M, S,PolDeg,Pol). Instead of computing all the possible re-

dundant polynomial candidates in I(BO), we compute them step by step. After each

step we check the determinant of the matrix MS, and proceed to the next possible candi-

dates if the determinant is not ±1. Note that not all the possibilities in the generating

set are computed.

IsAffineEff(OO,BO,N,W,M, S,PolDeg,Pol).

IsAffineEff(OO : LIST,BO : LIST,W : MAT,N : INT,M : LIST,PolDeg : LIST,Pol : LIST)

: BOOL,LIST

InPut:The order ideal OO, Border of the order ideal BO, the weight matrix W, the

number of indeterminates of the ground ring N, the list possible basis elements S, the

list of the sets of elements that S does not contain M, List of defining equations of

border basis scheme and PolDeg.

OutPut: BOOL (True or False)

Example 7.0.40.

Use R::=QQ[x[1..2]];

OO:=[1,x[1],x[2],x[1]x[2]];

BO:=BB.Border(OO);

Mu:=Len(OO);

Nu:=Len(BO);

N:=2;---- Number of indeterminates in the ring R.

W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];

M:=BBSGen.FindM(OO,BO,W,N); ---The elements in m^2 wrt the given S.

PolDeg:=$apcocoa/bbsmingensys.OrganizePolDeg(OO,BO,W,N);

----Gives the tau’s with degrees and their position on the mult matrix

Pol:= $apcocoa/bbsmingensys.OrganizePoly(OO,BO,W,N);

---Gives the defining equations of border basis scheme

-- in K[C] that excludes the homogenous of degree 2 polynomials.
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The monomial point of the BB scheme is smooth.

The number of possible subsets is 8

Is the matrix in K[S]?

The matrix M_s is in K[S]

The matrix isMat([

[-1, -c[4,2], 0, 0, 0, 0, 0, 0],

[c[4,1], 1, 0, 0, 0, 0, 0, 0],

[0, 0, 1, c[4,1], 0, 0, 0, 0],

[0, -c[3,2], 0, 1, 0, 0, 0, 0],

[c[2,1], 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, c[2,1], 0, -1, 0, 0],

[0, 0, 0, 0, -c[3,2], 0, 1, 0],

[0, 0, 0, 0, -c[4,2], 0, 0, -1]

])

Computing the Determinant for the evaluated matrix

Determinant is -c[4,1]c[4,2] + 1

The evaluated Determinant is-c[4,1]c[4,2] + 1

Is the matrix in K[S]?

The matrix M_s is in K[S]

The matrix isMat([

[-1, 0, 0, 0, 0, 0, 0, 0],

[c[4,1], -1, 0, 0, 0, 0, 0, 0],

[0, 0, 1, c[4,1], 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0],

[c[2,1], 0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, c[2,1], 0, -1, 0, 0],

[0, -c[3,4], 0, 0, -c[3,2], 0, 1, 0],

[0, -c[4,4], 0, 0, -c[4,2], 0, 0, -1]

])

Computing the Determinant for the evaluated matrix

Determinant is -1

Computing the Full determinant

The evaluated Determinant is-1

The Coordinate Ring of the given BB scheme is isomorphic to a polynomial ring K[S]
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K[S]=K[[

c[2,1],

c[2,3],

c[3,2],

c[3,4],

c[4,1],

c[4,2],

c[4,3],

c[4,4]]]

The scheme can be generated by the polynomials[

c[1,3],

c[1,2]c[2,1] + c[1,4]c[4,1] - c[1,3],

c[1,4],

c[2,3]c[3,2] - c[3,1]c[3,4] + c[3,4]c[4,3] - c[3,3]c[4,4] - c[1,4],

c[2,4],

-c[2,1]c[3,2] - c[2,3]c[4,2] + c[2,4],

c[1,1],

c[2,1]c[2,2] + c[2,4]c[4,1] + c[1,1] - c[2,3],

c[1,2],

-c[3,1]c[3,2] - c[3,3]c[4,2] - c[1,2] + c[3,4],

c[2,2],

-c[3,2]c[4,1] - c[4,2]c[4,3] - c[2,2] + c[4,4],

c[3,1],

c[2,1]c[4,2] + c[4,1]c[4,4] + c[3,1] - c[4,3],

c[3,3],

c[2,1]c[3,2] + c[3,4]c[4,1] - c[3,3]]

True

-------------------------------

-- Done.

-------------------------------
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