
Structural and Evolutionary
Analysis of Developer Networks

Mitchell Joblin

February 18, 2017

Dissertation zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

eingereicht an der Fakultät für Informatik und Mathematik
der Universität Passau

Dissertation submitted to
the Department of Informatics and Mathematics of

the University of Passau
in Partial Fulfillment of Obtaining

the Degree of a Doctor in the Domain of Science

Betreuer / Advisors:

Prof. Dr. Sven Apel

Prof. Dr. Wolfgang Mauerer

Externer Gutachter / External Examiner:

Prof. Dr. Massimiliano Di Penta

Abstract

Large-scale software engineering projects are often distributed among a number
sites that are geographically separated by a substantial distance. In globally
distributed software projects, time zone issues, language and cultural barriers,
and a lack of familiarity among members of different sites all introduce coordi-
nation complexity and present significant obstacles to achieving a coordinated
effort.

For large-scale software engineering projects to satisfy their scheduling and
quality goals, many developers must be capable of completing work items in
parallel. A key factor to achieving this goal is to remove interdependencies
among work items insofar as possible. By applying principles of modularity,
work item interdependence can be reduced, but not removed entirely. As a result
of uncertainty during the design and implementation phases and incomplete
or misunderstood design intents, dependencies between work items inevitably
arises and leads to requirements for developers to coordinate. The capacity
of a project to satisfy coordination needs depends on how the work items
are distributed among developers and how developers are organizationally
arranged, among other factors. When coordination requirements fail to be
recognized and appropriately managed, anecdotal evidence and prior empirical
studies indicate that this condition results in decreased product quality and
developer productivity. In essence, properties of the socio-technical environment,
comprised of developers and the tasks they must complete, provides important
insights concerning the project’s capacity to meet product quality and scheduling
goals.

In this dissertation, we make contributions to support socio-technical analy-
ses of software projects by developing approaches for abstracting and analyzing
the technical and social activities of developers. More specifically, we propose a
fine-grained, verifiable, and fully automated approach to obtain a proper view
on developer coordination, based on commit information and source-code struc-
ture, mined from version-control systems. We apply methodology from network
analysis and machine learning to identify developer communities automatically.
To evaluate our approach, we analyze ten open-source projects with complex
and active histories, written in various programming languages. By surveying
53 open-source developers from the ten projects, we validate the accuracy of
the extracted developer network and the authenticity of the inferred community
structure. Our results indicate that developers of open-source projects form
statistically significant community structures and this particular network view
largely coincides with developers’ perceptions.

Equipped with a valid network view on developer coordination, we extend
our approach to analyze the evolutionary nature of developer coordination. By
means of a longitudinal empirical study of 18 large open-source projects, we
examine and discuss the evolutionary principles that govern the coordination
of developers. We found that the implicit and self-organizing structure of
developer coordination is ubiquitously described by non-random organizational
principles that defy conventional software-engineering wisdom. In particular,
we found that: (a) developers form scale-free networks, in which the majority of
coordination requirements arise among an extremely small number of developers,
(b) developers tend to accumulate coordination requirements with more and
more developers over time, presumably limited by an upper bound, and (c)
initially developers are hierarchically arranged, but over time, form a hybrid
structure, in which highly central developers are hierarchically arranged and all
other developers are not. Our results suggest that the organizational structure
of large software projects is constrained to evolve towards a state that balances
the costs and benefits of coordination, and the mechanisms used to achieve this
state depend on the project’s scale.

As a final contribution, we use developer networks to establish a richer
understanding of the different roles that developers play in a project. Developers
of open-source projects are often classified according to core and peripheral
roles. Typically, count-based operationalizations, which rely on simple counts
of individual developer activities (e.g., number of commits), are used for this
purpose, but there is concern regarding their validity and ability to elicit
meaningful insights. To shed light on this issue, we investigate whether count-
based operationalizations of developer roles produce consistent results, and
we validate them with respect to developers’ perceptions by surveying 166
developers. We improve over the state of the art by proposing a relational
perspective on developer roles, using our fine-grained developer networks, and
by examining developer roles in terms of developers’ positions and stability
within the developer network. In a study of 10 substantial open-source projects,
we found that the primary difference between the count-based and our proposed
network-based core–peripheral operationalizations is that the network-based
ones agree more with developer perception than count-based ones. Furthermore,
we demonstrate that a relational perspective can reveal further meaningful
insights, such as that core developers exhibit high positional stability, upper
positions in the hierarchy, and high levels of coordination with other core
developers, which confirms assumptions of previous work.

Overall, our research demonstrates that data stored in software repositories,
paired with appropriate analysis approaches, can elicit valuable, practical, and
valid insights concerning socio-technical aspects of software development.

ii

Acknowledgements

A doctoral dissertation cannot be successfully completed in isolation. Instead,
one must rely on the earlier efforts of individuals that provided the solid
epistemic foundation on which future work could build upon. I am grateful
to these countless individuals for their formidable efforts and I hope that my
contributions to the field provide a useful basis for future research. During my
time as a student, I was also extremely fortunate to have the direct support of
incredibly talented and inspiring people.

First and foremost, I would like to express gratitude to my advisor Sven
Apel. A great idea often begins in a fragile state and can be swiftly crushed
by only a few words. Sven’s ability to foster an idea, patiently develop it and
deliver criticism with a degree of sensitivity, is a truly valuable and unique
quality. I have incredible respect for his enthusiasm for doing scientific work and
seemingly limitless dedication to supporting students. It is with this attitude
that a positive environment where research can thrive is made possible. His
strong appreciation for nuance has had a profound influence on my development
as a person and as a researcher. It has been an absolute privilege to work with
Sven.

I would also like to thank my second advisor Wolfgang Mauerer. In the
ideal case, software engineering research should be aimed at providing a benefit
to practitioners. For this reason, I am extremely grateful for all of Wolfgang’s
helpful comments and guidance coming from an industry perspective. The
involvement of an industry partner has undoubtedly made the outcome of my
work valuable to a broader audience.

I would also like to thank my external examiner Massimiliano Di Penta.
Evaluating a doctoral thesis is an arduous task, and I am very appreciative for
your willingness to accept this duty.

I want to thank the research group at the University of Passau. It was
always such a pleasure for me to visit. Thank you to Norbert Siegmund, Janet
Siegmund, Claus Hunsen, and Olaf Lessenich for the helpful comments and
involvement with the empirical studies.

Lastly, I want to thank my friends and family. I am especially thankful to my
parents for supporting me in all my pursuits and tolerating me as a child, who
at times, experimented a little too often with testing the boundaries. It is with
your enduring patience that my passion for experimentation and exploration
was not crushed at childhood. To my partner Dianna, your relentless pursuit
of perfection, work ethics, and courage in the face of an equation has been an
inspiration to me. The countless hours of thought provoking discussions on my
research and yours has certainly made me question our sanity at times, but
also improved the work considerably. Thank you.

iii

Contents

1 Introduction 1
1.1 Problem and Motivation . 1
1.2 Thesis Goal . 4
1.3 Contributions . 5
1.4 Outline . 8

2 Background 9
2.1 Coordination in Software Engineering 9
2.2 Software-Project Analysis . 13

2.2.1 Source Code . 14
2.2.2 Version-Control Systems 17
2.2.3 Mailing Lists . 21
2.2.4 Mining Repositories . 23

2.3 Network Analysis . 25
2.3.1 A Network Perspective 26
2.3.2 Graphs . 27
2.3.3 Vertex-Level Metrics . 28
2.3.4 Random Network Theory 31
2.3.5 Scale-Free Networks . 35
2.3.6 Modularity . 38
2.3.7 Hierarchy . 42
2.3.8 Network Evolution . 43

2.4 Developer Networks . 46
2.4.1 General Framework . 47
2.4.2 Types of Developer Networks 49

iv

CONTENTS

3 Community Detection and Validation with Fine-grained De-
veloper Networks 55
3.1 Approach . 58

3.1.1 Network Construction 58
3.1.1.1 Function-based Method 58
3.1.1.2 Committer–Author-based Method 61

3.1.2 Network Analysis . 64
3.1.2.1 Community Detection 64
3.1.2.2 Community Verification 65

3.2 Evaluation & Results . 69
3.2.1 Hypotheses . 69
3.2.2 Subject Projects . 70
3.2.3 Existence of Statistically Significant Communities 71
3.2.4 Comparison of File-Based and Function-based

Methods . 72
3.2.5 Tag-Based and Committer–Author-Based Network Simi-

larity . 76
3.2.6 Network Validation . 77

3.3 Threats to Validity . 84
3.4 Related Work . 85
3.5 Summary . 87

4 Evolutionary Trends of Developer Coordination 91
4.1 Motivation and Research Questions 91

4.1.1 Organizational Principles 92
4.1.2 Research Questions . 93

4.2 Methodology . 94
4.2.1 Network Construction 94
4.2.2 Developer Network Stream 97
4.2.3 Scale Freeness . 99
4.2.4 Modularity . 99
4.2.5 Hierarchy . 100

4.3 Study & Results . 100
4.3.1 Hypotheses . 100
4.3.2 Subject Projects . 103
4.3.3 Scale Freeness . 105
4.3.4 Modularity . 112
4.3.5 Hierarchy . 115

4.4 Threats to Validity . 118
4.5 Discussion & Perspectives . 119
4.6 Related Work . 123

v

CONTENTS

4.7 Summary . 124

5 Classifying Developers into Core and Peripheral Roles 127
5.1 Motivation and Contributions 128
5.2 Operationalizations of Developer Roles 131

5.2.1 Count-based Operationalizations 132
5.2.2 A Network Perspective on Developer Roles 133

5.2.2.1 Developer Networks 133
5.2.2.2 Network-based Operationalizations 135

5.3 Empirical Study . 139
5.3.1 Subject Projects . 140
5.3.2 Research Questions . 140
5.3.3 Hypotheses . 141
5.3.4 Developer Perception . 143

5.4 Results . 145
5.4.1 RQ1: Consistency of Count-Based

Operationalizations . 145
5.4.2 RQ2: Core and Peripheral Manifestations in

Developer Networks . 146
5.4.3 Agreement: Network-Based vs. Count-Based 151
5.4.4 RQ3: Developer Perception vs. Network-Based and

Count-Based Operationalization 151
5.4.5 Further Support for a Relational Perspective 153

5.5 Threats to Validity . 154
5.6 Related Work . 155
5.7 Summary . 157

6 Conclusion and Future Work 159
6.1 Contributions . 161
6.2 Future Work . 165

6.2.1 Alternative Views on Coordination 166
6.2.2 Coordination Over Complete Software Life Cycle 167
6.2.3 Analysis of Developer Network Structure Using Manual

Inspections & Interviews 168
6.2.4 A Developer Network Growth Model 169

Appendix A 189
A.1 Developer Communities Questionnaire

Solicitation E-mail . 189
A.2 Analysis Window Selection . 190
A.3 Semantic Coupling . 190

vi

List of Figures

2.1 Example of developer task interdependence 11
2.2 Linearlize version-control system history with analysis windows 20
2.3 Example of mailing list message meta data 21
2.4 Local and global network centrality metrics 29
2.5 Vertex-level clustering coefficient range 30
2.6 Scale-free network and ER random network degree distribution . 32
2.7 Configuration model for random graphs 34
2.8 Network community structure characteristics 39
2.9 ER random network compared to hierarchical network 44
2.10 A Markov chain for nodes transitions between three states. . . . 46
2.11 Software repositories link developers and artifacts 47
2.12 Version-control system data and developer networks 50
2.13 Mailing-list data and developer networks 52

3.1 Developer network construction heuristic 60
3.2 Developer network edge weight example calculation 62
3.3 Example of data contained in a commit 63
3.4 Overlapping community structure 65
3.5 Statistical significance test for community structure 72
3.6 File-based versus function-based community conductance 74
3.7 Density plot of mean community conductance 75
3.8 Developer networks constructed from QEMU v1.1 76
3.9 Tag-based versus committer–author-based network similarity . . 77
3.10 Example developer survey question 79
3.11 Example developer survey network visualization 80

vii

LIST OF FIGURES

3.12 Developer survey responses . 82
3.13 Edge validity terminology . 83

4.1 Developer networks considering artifact coupling 94
4.2 Three developers make commits to three different functions. . . 97
4.3 Sliding-window approach for analyzing version-control system data 98
4.4 Evolutionary profile for entire history of LLVM 106
4.5 Evolutionary profile for entire history of Node.js 107
4.6 Power-law degree distribution for Linux 109
4.7 Evolutionary profile for entire history of PHP. 109
4.8 Clustering-coefficient time series for all subject projects. 113
4.9 Evolution in mean clustering coefficient 114
4.10 Clustering coefficient versus network size for the history of Django115
4.11 Early and late stage hierarchy of Mozilla Firefox 117
4.12 Evolution of hierarchy for entire history of LLVM 118

5.1 The developer-group stability for QEMU 137
5.2 Core–periphery block model . 139
5.3 Example developer survey question 144
5.4 QEMU time series representation of pairwise agreement 146
5.5 QEMU’s developer hierarchy during four development periods . 147
5.6 Developer stability for QEMU 150
5.7 Time-averaged agreement in terms of Cohen’s kappa for QEMU 152

viii

List of Tables

3.1 Overview of subject projects for a 90-day development window. 71
3.2 Comparison of community conductance for the original (ob-

served) and randomized (rewired) networks. 73

4.1 Overview of subject projects . 104
4.2 Developer network structural measurements 111

5.1 Overview of subject projects . 140
5.2 Results for block-model edge probabilities and hierarchy 148
5.3 Agreement with developer perception 153

ix

CHAPTER 1

Introduction

1.1 Problem and Motivation

Software is playing an increasingly central role in society. In part, this is due
to the fact that software is no longer restricted to controlling primitive systems
with a highly limited ability to influence the real world. Critical infrastructure
(nuclear reactors, power transmission, telecommunications), transportation
vehicles (airplanes, trains, automobiles, sea vessels), and medical equipment
(imaging modalities, radiotherapy treatment, surgical robotics) are just a few
examples of domains that pose a substantial threat to public safety and the
global economy when software fails to behave according to expectations [Kni02;
SCC+12]. As more and more industries aggressively invest in software solutions,
it is imperative that software engineering matures into a discipline that can
efficiently and reliably generate high quality assets [And11]. Although conjec-
ture of a “software gap”—which posits the existence of a widening gap between
ambitions and achievements in software engineering—has been discussed as far
back as the 1960s [NR69], the severe risks associated with software-intensive
systems are still present today. Significant achievements have been made since
the 1960s in terms of tools and techniques to support efficient production
of high quality software, however, progress still appears to be outpaced by
ambitions. To this day, it is not uncommon for software projects to experience
substantial delays, deployment of severely inadequate systems, and high failure
rates, which are indicative of a discipline in its infancy [ES13; EK08; Mar;
SCC+12].

1

1.1. PROBLEM AND MOTIVATION

Recently, in an effort to comply with aggressive project deadlines and bud-
gets, yet still satisfy incredibly ambitious software requirements intrinsic to large
and complex systems, software engineering challenges have changed considerably.
In particular, the changes have had a substantial impact in terms of human
factors and their influence on project success. A key trend occurring in software
engineering is the transition from small collocated projects towards large-scale
globally-distributed projects. Time zone issues, language and cultural barriers,
and unfamiliarity with co-workers, all present formidable challenges to achieving
project success in large-scale multi-site projects [ESKH07; HM03a; HMFG00].
To overcome these challenges, human factors must be considered in the context
of technical factors, not simply viewed in isolation or ignored all together.
On this basis, many researchers, including us, find it absolutely necessary to
adopt a socio-technical view point on software projects [BMB+07; BNM+11;
CH13; dSR11; ESKH07; MWSO08]. Specifically, developer coordination—the
management of dependencies among tasks [MC90]—is substantially more dif-
ficult in a globally distributed work environment. Work items must be split,
assigned to individuals or teams, independently completed in parallel, and
then coherently assembled into a functionally complete system. Depending on
how work items are divided, assigned, and temporally ordered, the complexity
of coordinating the efforts of developers can vary substantially [CH13]. In
two recent high-profile case studies, the deployment of HealthCare.gov1 and
NASA’s Mars Climate Orbiter, factors related to inadequate coordination were
cited as primary causes in the failure investigation reports. Specific statements
regarding the causes of failure for HealthCare.gov include “. . . lack of an overar-
ching project leader complicated the system’s development because contractors
received absolutely conflicting direction between the various entities within
CMS [Centers for Medicare & Medicaid Services]” [ES13]. In the case of the
Mars Climate Orbiter “Inadequate communications between project elements”
was cited as one of the eight main causes of the disaster [Mar].

Software engineering researchers have made notable progress in terms of
the development of tools and techniques for managing coordination complexity.
Issue and bug trackers (Jira2, Bugzilla3), version-control systems (Subversion4,

1The Obama administration dedicated one of their principal initiatives to making health-
care easily and affordably available to every citizen. HealthCare.gov was the Web site which
served as the primary interface to this initiative. Serious technical issues lead to a situation
where thousands of people thought they had healthcare insurance, when in reality, they did
not. The initial budget for the Web site’s development was $93.7 million and grew to $1.7
billion at completion.

2www.atlassian.com/software/jira/
3www.bugzilla.org/
4www.subversion.apache.org/

2

www.atlassian.com/software/jira/
www.bugzilla.org/
www.subversion.apache.org/

CHAPTER 1. INTRODUCTION

Git5), software process models (waterfall model, agile practices), software
project management tools (launchpad6), private e-mail messaging and instant
messaging services, public mailing lists, virtual meetings (Skype), social coding
platforms (Github7), wikis and product structure (modularity, information
hiding, component-based software engineering), can all be viewed in one way or
another as approaches for supporting coordination among software engineers.
Interestingly, some projects seem to benefit more than others from a given
approach, what works in one case, fails miserably in another [HPB05]. The
myriad of available options is a testament to the importance of supporting
coordination in software engineering, however, we still lack a fundamental
understanding of how each approach impacts developer coordination and which
specific coordination problem is appropriately solved by which specific solution.
Essentially, the primary means of recourse, that is currently at our disposal, is
to exhaustively search the densely populated landscape of tools and techniques
until one is found that seems to produce the intended outcome. This search
process is obviously resource intensive and often reaches only suboptimal
solutions in the end, if at all.

Problems of coordination arise in many situations and we can draw in-
spiration from more mature fields providing hints for how we can establish
foundational knowledge regarding coordination among people in software engi-
neering projects. A related area that is substantially more well developed and
understood is parallel computing, which requires solutions to similar problems
we face in the coordination of people. For example, program parallelization
requires an appropriate decomposition of a large problem into smaller sub-
problems that can be quickly solved independently and concurrently, insofar as
possible, such that the results of the sub-problems can be efficiently reconciled
into a complete solution [Kum02]. Parallel program execution requires careful
consideration of resource dependencies and specialized mechanisms and policies
(e.g., scheduling, mutual exclusion, synchronization points) to control how
parallel execution is able to proceed in order to avoid violating rules that would
invalidate the result. The critical foundation required for realizing program
parallelization is fundamental knowledge of dependencies between program
elements. For example, a deep understanding of how control structures in the
program and utilization of common resources (e.g., disk, memory) influence
the complexity and overhead of parallel execution. It is with this fundamental
knowledge that we are capable of recognizing when the overhead associated
with parallelization outweigh the benefit of concurrent execution and how to

5www.git-scm.com/
6www.launchpad.net/
7www.github.com/

3

www.git-scm.com/
www.launchpad.net/
www.github.com/

1.2. THESIS GOAL

strategically and automatically optimize a sequence of operations to achieve
a maximal benefit from parallelization [BEN+93]. In the case of coordination
among people, an immensely beneficial piece of information is knowing when
adding developers to a project will not achieve a benefit in terms of faster
development or higher product quality [Bro78]. In the developer coordination
problem, we currently lack the fundamental understanding of the structure and
evolution of coordination dependencies among developers to establish theories
of coordination and coordination policies for software development. In this
thesis, we strive to shed light on this area by adopting a first principles approach
through reasoning from the basic elements of coordination, in terms of the
pairwise activity of developers, up to the global structure that emerges from
viewing those pairwise interactions as one collective system representing the
overall coordination structure of a software project.

1.2 Thesis Goal

Overall, our goal is to enable quantitative analysis on socio-technical aspects of
software development by leveraging data stored in commonly available software
repositories. In particular, we address the question of how techniques and
theory from network science (e.g., relational abstraction, social network analysis,
random graph theory) can be applied to model and analyze properties of
developer coordination. We develop, evaluate, and compare different approaches
of abstracting the activities of developers into a network representation. We also
explore and validate techniques for extracting structural and temporal patterns
from complex networks that are a representation of the global coordination
structure of a software project. We demonstrate how a network perspective
can provide richer insights and outperform standard variable representations
in certain tasks (e.g., classifying developers according to the role they fulfill).
Our focus in this thesis is on developer coordination during the implementation
and maintenance phases of the software life cycle. While there are certainly
other phases where coordination is required, implementation and maintenance
typically represent the longest and most expensive phases [BR00]. On this basis,
we reason that improvement in coordination during these phases results in the
largest benefit to a project in terms of achieving scheduling and budgeting
goals.

4

CHAPTER 1. INTRODUCTION

1.3 Contributions

In this thesis, we make several contributions to facilitate the analysis and
understanding of socio-technical aspects of software development. The extent
of our contributions include (1) proposing and evaluating approaches for ab-
stracting the activities of software developers into a network representation,
known as developer networks, (2) identifying several organizational principles
that manifest as structural and temporal patterns in developer networks, (3)
validating insights drawn from developer networks in terms of both statisti-
cal and real-world significance. We employ empirical research methodology
using both independent and direct data collection techniques [LSS05] to study
the socio-technical structure of numerous high-profile software projects with
wide-spread deployment (e.g., Linux Kernel, Mozilla Firefox, and Apache Web
Server). We utilize independent data collection techniques by analyzing the
output and by-products of software engineering work using software repository
mining and static analysis approaches. We validate insights elicited from the
analysis based on the independent techniques with data collected using the di-
rect technique of Web-based personal opinion surveys of open-source developers.
Specifically, we make the following three main contributions.

1. Authentic Developer Network: Our first contribution is to develop an
approach of abstracting task-based interdependencies among developers
as a complex network. We measure success based on the extent to which
the network represents an authentic view on the developer organizational
structure by exhibiting real-world validity. We compare the performance
of several network construction approaches, all of which are based on data
stored in the version-control system. In particular, the approaches that we
evaluate make use of various data including: source-code files, manually
reported references to developer participation, commit metadata, and a
novel approach using source-code structure. We perform an empirical
study on 10 substantial open-source projects and conduct a survey of
56 open-source developers drawn from these 10 subject projects. Our
results indicate that developer networks constructed using our proposed
fine-grained technique—which uses static source-code analysis to localize
software changes to source-code entities—are an authentic reflection of
most developers perception of the project’s organization. An additional
benefit of our fine-grained approach is that it allows us to infer the
developer community structure using unsupervised machine learning
techniques, which is not possible with other approaches. We found that
the communities represent both a statistically significant organizational

5

1.3. CONTRIBUTIONS

pattern and reflect most developers’ perception of which developer groups
are involved in highly interdependent tasks.

2. Network Structural & Temporal Patterns: Our second contribu-
tion is to extend the developer network construction approach, which
was conceived and validated in contribution 1, to identify evolutionary
principles that govern the evolution of developer coordination. We adapt
the network construction approach to include a time component by gen-
erating a sequence of developer networks that model the time-varying
structure of developer coordination. We perform a longitudinal study
of 18 substantial open-source projects, in some cases, consisting of more
than 20 years and 500,000 commits of software development history. The
results of our study indicate that the structural evolution of developer
coordination changes over time according to several non-random organi-
zational principles and that the socio-technical conditions in early project
phases are fundamentally transformed as the project matures and grows.
In particular, as a project grows, the coordination burden shifts towards
severe inequality so that the majority of coordination is managed by an
extremely small portion of developers. We found that this shift towards
inequality coincides with projects that are capable of achieving sustain-
able super-linear growth in the number of contributing developers. We
found that in the early phases of a project, developers are structurally
arranged in a hierarchy, but as the project matures, this global hierarchy
decomposes as the organization becomes more distributed. However, the
highly active developers of a project appear to always remain hierarchi-
cally structured regardless of project phase. These patterns and insights
provide direction as to which coordination challenges the project faces
during particular project phases. Furthermore, the results suggest that
depending on a developer’s position in the organizational structure, the
nature of the coordination challenges they face are substantially different.
In essence, different tools and techniques are needed to support different
positions in the organization and during different periods of time during
the project’s development.

3. Developer Role Classification: In our third contribution, we make
use of the validated network construction approach (contribution 1) and
the network’s structural and temporal patterns (contribution 2) to au-
tomatically classify developers according to specific roles. Open-source
developers fulfill different roles that each have distinctive qualities and
purposes. For example, developers in a core role typically have long-
term involvement, extremely well-developed technical knowledge and

6

CHAPTER 1. INTRODUCTION

strong leadership positions, while developers in a peripheral role typically
contribute irregularly and their technical contributions are occasionally in-
adequate (e.g., violate design rules, introduce defects) [FPB+15; TRC10].
Still, successful open-source projects are ubiquitously comprised of a
relatively small core developer group with a comparatively enormous
peripheral group, and it appears that the interplay between these groups
is critical to project success [JS07; Ray99]. Typically, developer roles are
operationalized as simple one-dimensional metrics that count the activity
of a developer (e.g., number of commits contributed). Unfortunately,
these simple counts provide very limited insight into the relationship be-
tween developers occupying the same or different roles. As a contribution,
we propose operationalizations based in relational abstraction in terms
of the inter-developer relationships captured by our developer networks.
We also include information on developer–developer communication by
mining the projects’ e-mail archives. More specifically, we utilize knowl-
edge of a developer’s position and stability within the organizational
structure to identify their role. We performed an empirical study on
10 substantial open-source projects to compare the results generated
by the different operationalizations. Our results indicate that core and
peripheral developers are not only defined based on their levels of activ-
ity or engagement within a project, but they represent organizationally
distinctive entities with substantially different coordination challenges.
For example, we find that core developers are positionally stable and
located at the top of the organizational hierarchy and that they con-
stitute the most heavily coordinated group. In comparison, peripheral
developers tend to be positionally unstable and are more likely to work
on tasks that are coordinated by members of the core group rather than
other peripheral developers. To evaluate which operationalizations most
closely reflect developer perception, we conducted a Web-based survey
of 166 open-source developers drawn from the 10 subject projects. We
found that to a large extent developer perception substantiates all op-
erationalizations. However, a network-based operationalization always
outperforms the corresponding count-based operationalization in terms of
more closely reflecting developer perception. Overall, the network-based
operationalizations deliver more meaningful insights into the interplay
between developer roles and holds greater real-world validity compared
to non-relational operationalizations. From the survey we conducted, we
found that developers often define roles in terms of modes of interaction
with other developers. For example, one developer commented “core main-
tainers participate in discussions on areas outside the ones they maintain”.

7

1.4. OUTLINE

We think that the relational operationalizations perform better because
they are able to capture the rich interaction patterns among developers,
which provide meaningful insight that count-based metrics cannot.

1.4 Outline
In Chapter 2 (Background) we provide an overview of the background concepts
to establish the foundational basis on which the research in this dissertation
is built. In particular, we introduce the problem of coordination in software
engineering and factors that cause an inevitable need for developers to coordi-
nate their efforts. Next, we introduce software repositories as a means to elicit
insight into the social and technical activities of developers. Network science
plays an important role in our work and for this reason we provide an overview
of both the tools and techniques of network analysis in addition to emphasizing
the fundamentals of a network perspective and the nuances concerned with
abstracting real-world phenomena as a network. We conclude the chapter with
a introduction to the basics of constructing developer networks from software
repository data. In Chapter 3 (Community Detection and Validation with Fine-
grained Developer Networks), we introduce our novel approach for constructing
developer networks, based on knowledge of source-code structure. In addition,
we make comparisons with the the state-of-the-art approach by examining
the networks’ community structure in terms of both statistical and real-world
significance. In Chapter 4 (Evolutionary Trends of Developer Coordination),
we add in the time component to explore developer network dynamics that
influence the evolution of developer coordination. We identify a number of
evolutionary patterns that manifest in terms of fundamental transformations
in the structural features of the network. In Chapter 5 (Classifying Developers
into Core and Peripheral Roles), we make use of developer networks and the
associated evolutionary patterns to perform the task of classifying developers
into the role they fulfill. In this chapter, we emphasize the practical value of
developer networks by demonstrating a situation in which a network perspective
outperforms alternative representations. Finally, in Chapter 6 (Conclusion and
Future Work), we discuss the broader implications of our work for analyzing
and understanding socio-technical aspects of software engineering and provide
opportunities for future work.

8

CHAPTER 2

Background

This chapter provides a concise introduction to the foundational concepts that
support the research in this dissertation. We begin by examining coordination
in software engineering with attention given to the mechanisms that cause
an inevitable need for developers to coordinate their work. This is followed
by the introduction of software repositories as a means to evaluate software
projects and elicit meaningful insights that are relevant to the field of software
engineering. Next, we discuss networks as a relational abstraction on real-world
phenomena, in comparison to standard variable representations, and introduce
the tools of complex network analysis. The chapter concludes with a discussion
on network abstractions of the social and technical activities that developers
engage in during software development.

2.1 Coordination in Software Engineering

In Watts Humphrey’s seminal work on software quality, he concluded the follow-
ing: “People are the organization’s most important asset” [Hum96]. Humphrey’s
rationale was based on the principle that expecting the introduction of defects
to software and then employing a reactive strategy to fix them is inefficient and
costly. By changing the focus to people and how they performed their work,
quality could be assured earlier in the software process resulting in cost and
efficiency advantages. In the almost 20 years since Humphrey’s realization, the
importance of people and how they perform their work has only increased. As
a response to severe pressure to reduce time-to-market and the desire to remain

9

2.1. COORDINATION IN SOFTWARE ENGINEERING

competitive by tapping into global talent pools, organizations are increasingly
adopting global software development practices. These organizations now face
more and more challenges stemming from the need to coordinate large numbers
of individuals working on tasks that span geographic, cultural, and language
boundaries [BMB+07; HG99; HMFG00; ORM03].

Concurrent development The benefit of involving a large number of devel-
opers in the construction of a software system is achieved through concurrent
work assignment. Typically, managers use high-level design documents to divide
the development effort into task assignments that are independent enough to
be completed in isolation from the vast majority of system elements [Con68;
EWSG94; SGCH01]. The effectiveness of this divide-and-conquer strategy
relies heavily on a sensible decomposition of the overall software system into
elements that are minimally interdependent. The primary assumption here is
that a modular design structure leads to a modular task structure. In theory,
by reducing the interdependence between system elements, the likelihood of
changes in one element causing unintentional side-effects in another elements,
is reduced, so that task assignments can be safely carried out in parallel. In
Parnas’ highly influential work on modularity, he recognized that the criteria
used to decompose a system affects the efficacy of concurrent development and
that modules should be thought of as work assignments [Par72]. By using
principles of information hiding, he demonstrated that independent develop-
ment of software modules can be successfully realized. Despite this important
insight, ideal system decompositions are most often stifled by over-simplified
views on technical dependencies and diminishing similarity between task and
product structure over time [BMB+07; GGH+07]. The result is that, in reality,
many developer’s tasks inevitably become interdependent in ways that are
often unexpected and unavoidable [BMB+07; KS95].

Coordination breakdowns At some point in time, independently devel-
oped modules must be composed to generate a functionally complete system.
A primary cause of task interdependence is tasks that span one or more tech-
nical dependencies [HG99; KS95; ORM03]. An example of this is when one
developer’s task involves the consumption of data that is produced by a module
implemented or modified by another developer. A depiction of this scenario
is shown in Figure 2.1. In this example, the task interdependency stems from
a data-flow dependency between modules, but similar issues can arise from
a variety of dependency mechanisms (e.g., structural dependency, behavior
dependency, evolutionary dependency, shared resource, state management,
project scheduling) [BMB+07; CMRH09]. When assumptions embedded in the

10

CHAPTER 2. BACKGROUND

Figure 2.1: Two developers are assigned tasks that required modifications to
modules A and B. There is a data dependency that exists between the modules
that leads to a coordination requirement between the developers. Developer 1
is constrained by modifications performed by developer 2 that in any way affect
the nature of data exchanged.

format or content of the exchanged data are not sufficiently understood by the
developers involved, the resulting implementation is likely to contain defects.
In a famous high profile example, a mishap investigation board determined
that the Mars Climate Orbiter disaster was primarily a result of inadequate
coordination between two geographically distributed teams [Mar]. In this case,
the teams failed to adequately coordinate, which led to the misinterpretation
of units of measurement that were exchanged between two independently de-
veloped modules. Consequently, a coordination requirement exists between the
developers by virtue of the task interdependence. The coordination requirement
represents a constraint or set of constraints that must be satisfied to successfully
complete the corresponding tasks. Through implicit or explicit means, the
developers must coordinate their efforts to avoid introducing defects. Explicit
means of coordination occur when developers rely on direct interactions (e.g.,
face-to-face discussions, e-mails, phone calls) to exchange knowledge and resolve
coordination requirements [KS95]. In some cases, the artifacts themselves (e.g.,
code comments or the code itself) or historical information provided by previous
changes to the code provide sufficient information to satisfy a coordination
requirement without resorting to explicit means of coordination [Hey07]. In
large-scale, globally-distributed projects, it is not possible for a single person,
or even a small group of people, to have detailed and complete knowledge of
all coordination requirements between developers [CKI88; HMFG00; KS95].
This leads to project conditions where developers can easily lose awareness of
the coordination requirements relevant to them or become overwhelmed by
too many coordination requirements [dSQTR07]. There is a growing body of
empirical evidence suggesting that complexity in coordination requirements,
and the inability to adequately manage them, poses a significant threat to

11

2.1. COORDINATION IN SOFTWARE ENGINEERING

project success factors [CH13]. Cataldo et al. found that the number of coordi-
nation requirements centered on a file is more indicative of its failure proneness
than the number of structural dependencies (e.g., data flow and function call)
involving that file [CMRH09]. In a similar line of work, Wolf et al. showed that
build failures can be successfully predicted based on information representing
the coordination of developers on shared work assignments [WSDN09]. In other
research, a comparison of models for predicting fault proneness in Windows
Vista binaries demonstrated that models composed of metrics based on de-
velopers and their arrangement in the organizational structure outperformed
models composed of metrics based on source code (e.g, churn, complexity) and
structural dependencies [NMB08]. The influence of coordination requirements
are not limited to product quality, but can also negatively affect developer
productivity. In a study of the alignment between communication channels
and coordination requirements, the authors found that if a coordination re-
quirement between developers is paired with a corresponding communication
channel between developers, productivity increases [CH13]. These studies and
others indicate that considering the developers in light of the technical work
they do can be far more informative than perspectives focused solely on the
technical dimension.

Coordination and teaming As developers work together to complete their
work assignments, a number of factors impact the likelihood of a successful
and timely outcome. Through team work, members of the team accumulate
experience about the task domain and about each other, which helps to develop
shared mental models and a common knowledge base [FSE07]. The presence of
familiarity between team members has shown to improve team performance,
particularly on tasks that are high in coordination complexity [ESKH07]. In-
tuitively, one could reason that coordination requirements that span a team
boundary—one which is physical or virtual—is more challenging than coordi-
nation requirements occurring within a single team, because of the difference
between inter- and intra-team familiarity. Not only does this expectation
make sense intuitively, it has been confirmed several times empirically [CKI88;
ESKH07; HM03a; KS95]. Specifically, one study found that work items span-
ning team boundaries took two-and-a-half times longer to complete than similar
work items involving only one team [HM03a]. On this basis, software projects
stand to benefit from the identification of developer groups that persists over a
period of time and that are familiar with one another so that tasks with high
coordination complexity can be strategically allocated to those groups [CH13].
More generally, the positioning of coordination requirements relative to an

12

CHAPTER 2. BACKGROUND

organization contains valuable information to support this kind of strategic
task allocation approach.

Evolving coordination Throughout their lifetime, software systems are ex-
pected to undergo changes to their artifacts and artifacts’ dependency structure.
In terms of Lehman’s first law of software evolution [LR03], “E-type systems
must be continually adapted else they become progressively less satisfactory.”
As a software system evolves, particularly with respect to the system component
dependencies, the need for developers to coordinate can be affected. Even
minor changes to the architecture can create significant coordination challenges
for the organization because of the impact the architectural change has on
task interdependencies [HC90]. While it is still a major topic of discussion,
some researchers believe that it is beneficial for software projects to align
organizational structure with product structure [CH13; SER04], which is an
idea originating from Conway’s law. Conway’s law, which in fact is more of a
conjecture than a law, is the idea that organizations are constrained to produce
designs that are copies of the communication channels between elements of the
organization [Con68]. The implication is that a change in the product structure
should be met with a corresponding change in the organization to avoid socio-
technical misalignment between the organization and the architecture [BMB+07;
SER04]. Consequently, to understand the nature of coordination requirements
completely, a static view point is simply insufficient because it would neglect
the intrinsic dynamic nature.

In summary, principles of modular design are critical to achieving a suc-
cessful implementation of a complex software system in a large-scale globally-
distributed project. A modular design will help support concurrent work
assignment, but modularity as an approach on its own is insufficient. Re-
gardless of how perfectly a system is decomposed into modules, concurrent
task assignment gives rise to coordination requirements between developers.
Without sufficient awareness of coordination requirements and a correspond-
ingly appropriate organizational structure to adequately manage coordination
requirements, the project will likely suffer in terms of developer productivity
and software quality.

2.2 Software-Project Analysis

Software development is inherently complex. In this ambitious endeavor, tens,
or in some cases hundreds, of individuals work together on intellectually and
technically challenging tasks to construct systems comprised of millions of lines
of code. A successful outcome depends on a high degree of regularity, discipline,

13

2.2. SOFTWARE-PROJECT ANALYSIS

and order. In an attempt to tame the potential chaos of software development,
developers use a number of systems to help coordinate their efforts, collectively
referred to as software repositories. As a side effect of using software repositories,
a vast quantity of data are generated that provide an opportunity to study
several important facets of software engineering. For example, the source
code itself is a collection of information-rich artifacts. The version-control
system (VCS) stores detailed information regarding every change made to
the software. Issue or bug trackers document the enhancements that need to
be implemented and defects that need to be fixed. In open-source software
projects, communication between developers occurs primarily on a publicly
visible forum, creating yet another important source of data. By integrating the
information across multiple repositories into a single coherent representation,
important questions regarding socio-technical aspects of software development
can be addressed.

Recently, researchers have begun to leverage the wealth of information con-
tained in software repositories to analyze software projects. Unfortunately, the
intention behind software repositories was originally dedicated to static record
keeping, so there are often substantial technical barriers to entering this line of
research. Fortunately, the effort invested in analyzing software repositories is
often returned with valuable context because they contain information not only
on the present state of a project, but also indispensable historical data. The
present state of a project is often sufficient to identify problems and support
prescriptive solutions for how to fix the problem. What is missing from this
viewpoint is historical context to understand the sequence of events that are
responsible for generating the project conditions that lead to the problem.
The historical context may be critical for uncovering the root cause of many
problems that are faced during software development. We now introduce the
data sources in more detail and discuss aspects of these sources that will play
key roles in the development of ideas and techniques in the chapters that follow.

2.2.1 Source Code

There are numerous artifacts that are useful for analyzing a software project
(e.g., requirements documents, design specifications, class diagrams, use cases).
Source code is special in this regard because it is the only artifact that is
guaranteed to be produced (barring project cancellations) and so it often takes
a central role in software-project analysis. Source code also lends itself well to
analysis because it is written with the intention to be complied or interpreted
automatically, and so it adheres closely to a strict syntactic format that is easier
to analyze through automated means than other types of artifacts designed
with the primary intention to be human readable. As is the case for many

14

CHAPTER 2. BACKGROUND

complex systems, the elements of a software system can be grouped together
according to various granularities. Researchers have dedicated significant effort
to identifying sensible ways to group together the constituents of a software
systems, and this plays a critical role in the ensuing analysis and resulting
insights. Source code elements are typically grouped together according to the
following categories.

• System: At the highest level of granularity there is the system level.
This level encompasses the aggregate of every source code artifact that
comprised the entire software system. Analysis techniques that operate
at this granularity are often simple to design and implement because
there is no need for sophisticated algorithms to identify which source code
correspond to the system level. Insights generated by project analyses
performed at the system level are helpful for high-level overviews and
crude comparisons between different projects (e.g., counts of developers,
files, changes, lines of code) but have limited insight into more detailed
aspects of the project [LRW+97; MFH02].

• Subsystem: Moving to the subsystem level takes a step towards a
more fine-grained view on the project. The subsystems are typically
a collection of files that are related at a high-level abstraction of the
system. For example, some of the subsystems of the Linux Kernel
are: Networking, Filesystem, and Memory management [Mau08]. The
subsystems are typically inspired by the conceptual architecture and are
reflected (although at times only imprecisely) by the project’s directory
structure. The range of sophistication for localizing source code to their
corresponding subsystems varies from simple, by considering a subsystem
to be a folder in the top level directory of the project, to complex, using
sophisticated reengineering techniques to extract higher-order abstractions
from the dependency structure of lower-level artifacts [MTW93].

• Source Code File: A source-code file represents yet another step to-
wards finer granularity. In many programming languages (e.g., Python,
C/C++, or Java) the abstract notion of modules is often mapped to indi-
vidual files that contain the definitions for functions, methods, classes, and
variables. According to principles of modular programming, a good sys-
tem design involves modules with high cohesion and low coupling [AKC01;
Par72]. On this basis, it is reasonable to expect that the lines of code
within a single file are more interdependent than the code located in
separate files. Given their nature, files are easy to identify and access, so
localizing source code to its corresponding file does not require sophisti-
cated approaches.

15

2.2. SOFTWARE-PROJECT ANALYSIS

• Source Code Entity: In our final step towards finer granularity there
is the level of source code entities. The set of source-code entities that
can be defined depends on the given programming language. Most
programming languages include the realization of a subroutine (e.g., a
function) to group related code together that serves a single relatively
narrow purpose. In object oriented languages (e.g., C++, Java, Python),
entities include classes and methods. Identifying source-code entities
is more complex than identifying source-code files, and relies to some
extent on parsing and analyzing the source code. A number of static code
analyzers exist for this purpose. If multi-language support is crucial and
only basic information regarding the starting point of source code entities
is required, the open-source tool Exuberant Ctags1 provides sufficient
functionality [Hie]. Doxygen is another open-source tool supporting many
of the popular programming languages and provides both the start and
end points of the source code entities [vHee].

Software projects can be analyzed at any of the above granularities. The
appropriateness of the chosen granularity for a particular analysis is based
on the characteristics of the phenomenon to be analyzed and the goals of the
analysis results. By choosing the incorrect granularity, details of practical
importance about the project can be concealed. For example, consider that
the phenomenon being analyzed is source-code quality operationalized by the
presence or absence of known bugs in the source code. At the system-level
granularity, we may determine that there are N bugs in the system. On this
basis, we decide to increase testing resources on all source code to try and
bring the presence of bugs down. Alternatively, if bugs have been localized to
the source code at the file-level granularity, the important insight that defects
are non-uniformly distributed across the system would have been clear [FO00].
It is common that faults are described by a Pareto distribution.2 With this
information, we could strategically focus the testing resources on the small
number of files that are likely to contain the majority of the bugs. In essence,
the choice to use a finer granularity revealed important details regarding the
statistical distribution of bugs, which was concealed by the system level analysis
results.

1http://ctags.sourceforge.net/
2In this case, the data described by a Pareto distribution implies that most of the faults

are contained in very small number of files.

16

http://ctags.sourceforge.net/

CHAPTER 2. BACKGROUND

2.2.2 Version-Control Systems

The version-control system is the primary tool for tracking modifications made
to the software. Although, there is a number of different version-control systems,
but in general, these systems all record the additions and deletions made to the
software along with a collection of meta data about the modification. The VCS
makes it possible to reconstruct the state of the software at any point along
its development history. Git is a widely deployed distributed version-control
system and we limit the following discussion of VCS specifics to Git [Tor]. In
general, most VCS variants function in a similar manner with the primary
differences arising from whether it is distributed or centralized [dAS09].

The unit of change in a VCS is a commit and is comprised of the following
elements.

• Commit Hash: Each commit is assigned a unique identifier, which also
corresponds to global revision numbers. The commit hash can be used
to checkout the version that corresponds to the state of the software
immediately after applying the changes in a given commit.

• Author: The author information typically includes the first and last
name and the e-mail address of the individual responsible for authoring
the changes.

• Author Date: The author date is a timestamp for when the author
wrote the code contained in the commit and includes the date, time of
day, and the author’s time zone.

• Committer: In open-source projects, it is common that one individual
writes code that is submitted in the form of a patch that is then applied
(i.e., committed) to the software by a second individual on the author’s
behalf. The second individual is called the committer and is typically
responsible for checking the quality of the change to make sure that it sat-
isfies the guidelines specified by the project. The committer information
includes the committer’s first and last name and e-mail address.

• Commit Date: The commit date format is identical to the author date
format but specifics the time when the patch is applied (i.e., committed)
to the software by the committer.

• Commit Message: In the commit message, the author has an oppor-
tunity to describe the changes that are made by the commit in natural
language. The commit message is typically very concise and gives a global
overview of what the change included, the type of change (e.g., bug fix,
enhancement, new feature), and why it was necessary.

17

2.2. SOFTWARE-PROJECT ANALYSIS

• Sign-off Tags: A commit message can include a reference to a number
of individuals other than the author and committer (e.g., testers or
reviewers) in the form of Sign-off tags. Sign-off tags allow these other
individuals to document the nature of their participation on a change. If
a project is disciplined with including the sign-off tags, they can provide
valuable information regarding roles and responsibilities of individual in
the project.

• Files Changed: The filename and full path of any file that is affected
by the changes introduced by the commit are documented.

• Lines Changed: For each commit, a diff can be generated for every
changed file that expresses all added and deleted lines between two
revisions.

In addition to the information contained in the VCS for analyzing software
evolution, there are valuable data linking the software to the individuals
responsible for it. More specifically, for any point along the development
history, it is possible to determine the state of the source code and a reference
to the responsible individuals down to the line of code granularity. In Git,
the feature that provides this information is called “blame”. This feature is
particularly useful for studying socio-technical aspects of software developer
because connecting people to the technical work they do is a critical piece of
information.

When analyzing VCS data, it is often necessary to group commits together
to study the collective changes as a set. There are two primary reasons for
grouping commits together. One reason is that processing the projects on an
individual commit basis is computationally intensive because of the need to
reconstruct the state of the project before and after every commit. By grouping
the commits together, only the project state for the first and last commit need
to be reconstructed. The disadvantage is that some information can be lost.
For example, if a line of code is changed multiple times, only the last change is
identified. This concern can be mitigated by ensuring the commit range is not
too large (i.e., a range that defines a set of commits to include). The second
reason for grouping commits together is to capture natural cycles that are
present in the project’s development. For example, the Linux Kernel employs a
number of phases, initially a merge window is opened to focus on the addition
of new features, followed by a phase of stabilizing accepted features, then only
bug fixes are made, and finally a release is cut (i.e., marking the end of a cycle)
once the software it is deemed sufficiently stable [Mau08]. For some project
analysis, it may be of interest to group together commits that correspond to

18

CHAPTER 2. BACKGROUND

these phases or all the changes that constitutes one complete development
cycle.

To group commits together, a window or range must be defined to specify
how the commits should be grouped. At a high level there are two approaches
to specifying the grouping of commits:

• Revision-based: In the revision-based approach, a range is specified by
a pair of revisions. For example, if the range is specified by (Rev1, Rev2),
the collection of commits are those that occur after Rev1 and not after
Rev2. More technically, it is the commits that are reachable from Rev2,
but not reachable from Rev1.3 In some cases, there are revisions that
correspond to important events or project milestones. Git offers a tagging
feature to reference these revisions with special tag. These tags can
then be used to analyze a project based on a collection of commits that
correspond to project milestones. Unfortunately, projects often use tags
differently or sometimes without any particular regularity or meaning.
This fact can make it difficult to make sensible comparisons with projects
that have been analyzed on a revision bases.

• Time-based: In the time-based approach, commits are grouped accord-
ing to calendar time by specifying a pair of dates. For example, if the
range is specified by (Date1, Date2), the collection of commits are those
that contain an author date (or commit date, depending on the configu-
ration) that occurs after Date1 and not after Date2. The benefit to using
a time-based approach is that a date range has the same meaning regard-
less of the project it is being applied to. For this reason, it is sensible
to use a the time-based approach for performing project comparisons.
The challenge with applying a time-based approach is to determine an
appropriate time-window size.

In Figure 2.2, a linearized history of nine commits is shown with edges between
commits expressing parent-child relationships. Three revision tags mark the
point at which revisions were cut at commits C1, C5, and C9 corresponding
to revision Rev1, Rev2 and Rev3, respectively. Calendar time references are
represented as dotted vertical lines separated by one month for a three month
period of the development history. In a revision-based approach for the range
(Rev1, Rev2), the commits selected for analysis are {C2, C3, C4, C5}. In a time-
based approach for the range January – February, the commits selected for

3Commits in the VCS are arrange as a directed acyclic graph where nodes are commits
and edges point to the parent of the commit. Reachable in this sense means the commit
exists on some path (by traversing the graph without violating edge directionality) with a
specified origin.

19

2.2. SOFTWARE-PROJECT ANALYSIS

Figure 2.2: A linearized history, three months in length, is shown containing
nine commits. Two revision tags indicate which commits mark the end points
for three major revisions, Rev1, Rev2, and Rev3. The notion of a time-based
range and a revision-based range are represented.

analysis are {C1, C2, C3, C4, C5, C6, C7}. Based on time, it is clear that January–
February was a uniquely productive or active period compared to the following
months. From the revision-based range, this insight is missed because the
revision cycles are not necessarily related to calendar time but rather to project
specific details (e.g., completing milestones). The benefit of using a time-based
range is that all projects, at all times, are subject to the same units of calendar
time, but what constitutes a new revision is more ambiguous. When considering
the activities of developers, we also need to remain cognizant of the impacts of
temporal proximity in the activities. If the activities are separated significantly
in time, the relationship or interpretation of those events may be different. For
example, if two developers work intensively on a single artifact over a short
period of time, this may imply a strong need for the developers to coordinate
their work to ensure that the concurrent development does not lead to changes
that interfere with each other in unexpected ways. If the changes made by
each developer are instead separated by two years, the nature of the event is
different since it is less likely for their changes to have unintended side effects.
The later developer is able to see all of the initial developers changes, and
introduce new changes to the artifact without as much uncertainty. Essentially,
the nature of concurrent development and sequential development has different
implications on the need for coordination and to differentiate between these
two cases temporal considerations are of utmost importance.

20

CHAPTER 2. BACKGROUND

Meta Data
From: John Doe <j.doe@mail.com>
Date: Mon, 18 May 2015 22:30:51 -0300
Message-ID: <CAKaZCX7tt@mail.com>
In-Reply-To: <14319961.588@mail.com>
To: dev@cassandra.apache.org

Body
I propose the following artifacts for
release as 2.1.6.
sha1: e469f32be180a1e493...

Figure 2.3: Example of the information that is contained in a single message
that is posted to a mailing list.

2.2.3 Mailing Lists

In closed-source or commercial software projects, most of the communication
is accomplished via private e-mail or messaging services, face-to-face discus-
sions, or phone calls. Instead of these communication mediums, open-source
projects typically use public forums called mailing lists as the primary means
of communication between individuals [BPD+08; DOS99]. On a public mailing
list, anyone can view the messages that are exchanged and anyone can post a
message for everyone else to view and respond to. The participants of open-
source project mailing lists include developers, bug reporters, and users. Often
projects host multiple mailing lists to separate technical development topics
from user related questions.

In mailing lists focused on technical discussions many of the contributors
are also developers or have had substantial prior experience as a developer on
the project. The discussion topics—while primarily technical in nature—serve
a variety of purposes. Some projects have very strict policies that make it
mandatory for design decisions, proposals for features, and any source-code
changes to first be posted to the mailing list, where they can be discussed
openly before making final decisions [Cor]. For example, if someone has found
a bug and fixed it, they can submit a patch to the mailing list. At this point,
members of the community have an opportunity to comment on the patch and
either approve it or make recommendations for improvement. In this regard,
the mailing list is a fundamental element of the governance process supporting
the broader philosophy of open-source development, which dictates that all
suggestions for change should be open to public scrutiny and only then will the
best ideas prevail [DOS99]. The mailing lists of open-source projects contains

21

2.2. SOFTWARE-PROJECT ANALYSIS

a wealth of information regarding the communication channels that exists
between developers. The contents of a mailing list can be obtained as a set of
mails in a plain text file format referred to as MBOX. The mail format contains
the message content in addition to several pieces of meta data. Instead of
giving a complete overview of the mail format, we focus on the details that are
most relevant.4 An example message is shown in Figure 2.3, and a description
of each field is given below.

• From: The “From:” field contains the name and e-mail address of the
individual responsible for writing the message. In some cases automated
services send e-mail notifications to the mailing list (e.g., Github will
send mails for activity in the VCS), so people are not responsible for all
messages. This needs to be considered when analyzing the mailing list to
avoid overestimating developer activity.

• Date: The “Date:” field contains the timestamp for when the mail was
sent by the author. This information includes the date, time, and local
timezone.

• Message-ID: The “Message-ID:” field contains a unique identifier for
each message. This field is designed to be machine readable so that a
chain of messages can be automatically reconstructed by using this field
to cross reference.

• In-Reply-To: The “In-Reply-To:” field contains the Message-ID for one
or more messages. When a message M1 is sent in response to another
message M2, the “In-Reply-To:” field of M1 contains the Message-ID of
M2. In the case of multiple reply messages, the Message-ID of all prior
messages is stored as a list in the “In-Reply-To:” field. For example, in the
case of the message depicted in Figure 2.3, any future message containing
the value “In-Reply-To: <CAKaZCX7tt@mail.com>”, is recognized as
pertaining to a common thread of communication.

• To: The “To:” field contains the e-mail addresses of the intended recipients
of the message. In the case of mailing lists, this is the e-mail address of
the specific mailing list (e.g., the mailing list for technical discussion or a
user oriented mailing list).

• Body: The message body contains the primary textual content written
by the author of the message.

4For a complete technical documentation of the Internet Message Format specification,
please refer to: http://www.rfc-base.org/rfc-5322.html.

22

http://www.rfc-base.org/rfc-5322.html

CHAPTER 2. BACKGROUND

Individual messages contain useful information in that they connect people to
the content they write about, but that does not reveal a lot about the community
or groups of individuals. To capture information about the community, we first
need to understand the mechanism behind initiating messages. On a mailing
list, if an individual has a topic they want to discuss, and this particularly
topic is not currently already under discussion, the individual will post a new
message directly to the mailing list by sending an e-mail to the mailing list
address. Everyone who has already subscribed to the mailing list will receive a
notification of this new message. If this new topic is interesting for someone,
they may wish to post a message in reply to the original message. By tracing
the Message-IDs that appear in the “In-Reply-To:” field of the messages, a
thread of communication can be reconstructed from the MBOX file. The
assumption is that the series of messages that appear in the “In-Reply-To:” field
have a relatively narrow focus and the individuals contributing to a common
thread are not only aware of each other, but also share a common interest.
This assumption is reasonable because many open source projects rely on the
mailing list as a form of documentation for frequently asked questions. For this
reason, projects request that threads remain focused on a single topic to make
it easier for others to identify relevant information based on the thread’s subject
line and benefit issues that have already been discussed. By grouping mails
together based on the thread concept, one is able to gain further insight not
only on individuals, but also at a community level. For example, the number of
messages composing the thread and number of unique individuals contributing
to the thread may indicate the relative importance of a topic to the community.
Topics with many responses from a varied set of individuals is likely to be
highly relevant or interesting to the project and its contributors.

2.2.4 Mining Repositories

The discipline of mining software repositories has emerged in response to the
challenges and rewards of analyzing data in VCS, issue trackers, and mailing
lists. A wide variety of techniques have been established to elicit meaningful and
actionable insights from software repositories to improve software development
by using data-driven reasoning [KCM07]. Developing these techniques is
challenging because the data in software repositories is often unstructured and
can suffer from low data quality (e.g., data consistency and integrity). The VCS
can have missing meta data, a rewritten history that does not reflect the original
commit sequence, or a non-linear commit ancestry making a linearized view
difficult or impossible without losing information [BRB+09]. In mailing lists,
messages can be duplicated but contain different Message-IDs and incorrectly

23

2.2. SOFTWARE-PROJECT ANALYSIS

formatted fields that deviate in unexpected ways from the RFC 5322 format
specification.

In many applications it is necessary to attribute all activities performed by
one individual, across multiple repositories, to a single unique identity. To give
a concrete example, if a developer makes commits to the VCS and enters into
discussions on the mailing list, we would like to resolve these two activities to
the same individual. This way, we are able to address questions that span the
socio-technical boundary like, do developers making lots of contributions to
the code base also communicate a lot on the mailing list? There are however
technical problems with this because, in general, there exists no formal reference
between the contributions made by single individual to multiple repositories.
For this reason, string matches on names and e-mail addresses are often the
basis of an imperfect solution to this problem. The solution is inadequate
in some cases because a developer may use multiple aliases or change their
identify over time. For example, LLVM developer Greg Bedwell has used the
E-mail address greg_bedwell@sn.scee.net and gregbedwell@gmail.com to make
contributions to the project. For this reason, error tolerant string matching
using a probabilistic approach is needed to resolve the identify to a single
individual. More sophisticated error tolerant string matching approaches that
make use of the Levenshtein edit distance have shown improvement over the
basic string match approach, but still fail under some circumstances [BGD+06].

To make practical steps forward in this domain of imperfect data sources, a
set of assumptions is often necessary. For example, in the analysis of mailing
lists there is often the assumption that a thread of communication has a
relatively narrow and stable focus [BGD+06; BPD+08; PBD08]. Though,
in reality, a thread may exhibit concept drift and diverge from its original
purpose, especially when a thread involves many messages over a long period of
time. The same is true for approaches applied to the VCS. For example, there
is often the assumption that a file contains code that is highly interrelated,
though, in reality a file may provide a wide variety of utilities. In abstract
terms, there are two important considerations to be made. Firstly, because
of imperfect data, practical assumptions will often fail to cover 100% of cases,
that is, completeness is rarely achievable. As with the case of aliases, by taking
on a probabilistic approach, we can build in error tolerance to help avoid
making overly strict assumptions. Probabilistic analysis approaches are a way
to mitigate the negative consequences of our assumptions by providing the
foundation to systematically reason about data sources that are noisy and
imperfect. From this perspective, probability theory is an extended theory
of logic that incorporates the ability to reason about situations with inherent
uncertainty or where only incomplete knowledge is available. Secondly, any

24

CHAPTER 2. BACKGROUND

assumptions being made in the approach need to be tested for validity and
met with a sufficient degree of skepticism and attention to detail. Testing for
validity is often challenging in this discipline because there is often no widely
accepted ground-truth, and if one exists, it is often not easily attainable. If the
goals of the analysis are to model real-world phenomena, then one option is to
test how well insights derived from a model are consistent with the real-world.
In the case of mailing list analyses, one goal is to establish accurate knowledge
of which developers are aware of each other and the tasks they work on. A
reasonable test of validity would be to ask developers if the individuals we
expect them to be aware of, based on software repository mining techniques,
agree with their perceptions. The outcome of such a test would be how accurate
is the approach, under which conditions does it succeed or fail, and lead to new
refinements on the approach that increase the validity of insights. For example,
we may learn that extremely long mail threads have likely diverged and so
we eliminate threads with more than X number of messages when inferring
relationships between developers.

2.3 Network Analysis

The term “network” is used to denote a relational perspective on data. However,
the term is used in a large variety of domains (e.g., electrical circuits, communi-
cation networks, transportation systems, bioinformatics, etc.), so we explicitly
state our focus on networks to their application for modeling complex systems.
From this it follows that “network analysis” is the collection of techniques used
to study the structure of complex systems, which are formalized in a network
representation. The ubiquity of networks is often referenced as a testament to
their importance and relevance with phrases like "networks are everywhere."
It is our intention to emphasize that networks are often an abstraction of a
real-world phenomenon, and that networks do not simply appear out of nothing.
Rather, the abstraction is accompanied by a set of nontrivial steps that should
be made with a degree of delicacy and thoughtfulness. The construction of
networks is not the primary focus of network analysis, but it is important to
maintain a critical stance toward the steps that were taking prior to performing
analysis on the network. If the steps taking to abstract a phenomenon into a
network representation are not sensibly made, no level of sophistication in the
network analysis will elicit meaningful insights.

25

2.3. NETWORK ANALYSIS

2.3.1 A Network Perspective

Before delving into the details and formalizations of networks and network
analysis, we take a short detour to investigate the choice of using a network
perspective. While there are certainly benefits to representing a set of data
as a network, it should be noted that complex networks are often very high
dimensional structures, which presents significant challenges in terms of algo-
rithmic complexity. It is often the case that only algorithms with exponential
complexity are available. Even for extremely fundamental mathematical opera-
tions, such as testing two networks for equality (i.e., graph isomorphism), only
nonpolynomial time algorithms are known today. For this reason, a justification
that outweighs the mathematical convenience of alternative representations is
necessary to rationalize the choice to model data as a network. To illustrate
the benefits of a network perspective, we make a brief comparison between
standard data representation and network data representation to emphasize
the fundamental difference.

In the standard representation, the unit of observation is an entity with
corresponding attributes. For example, the entity “vehicle” has attributes
that express the vehicle’s engine size, efficiency, and color. For each entity
in the set, all the same attributes are measured and each entity is assumed
to be independent. Essentially, there is no structure expressed between the
entities, the collection is simply treated as an unordered set of observations.
There is even the often explicit condition that the observations are statistically
independent. Independence is this case means that the sequence of observations
is equally likely to appear as any permutation of the observed sequence, which
justifies treating the observations as an unordered (i.e., unstructured) set. Any
dependence between entities is typically viewed as a nuisance relationship that
should be eliminated. For example, the observation of a red vehicle is not
expected to impact the probability of observing any particular colored vehicle
in the following observation. Typically, goals of the analysis are primarily
concerned with examining relationships between attributes of the entities, not
the entities themselves, like a vehicle’s efficiency and engine size. In this analysis,
we want to avoid any relationship between the entities that may influence the
relationship between attributes efficiency and engine size (e.g., many vehicles
in the sample are hybrid electric).

In contrast, a network is defined on a domain of overlapping dyads. In the
network representation, there are still entities and attributes, but there are now
also ties to express relationships between entities. In a scientific co-authorship
network, ties indicate that the entities have both participated in authoring a
single scientific publication [POM10]. Here, the unit of observation is pairs
of entities, where each entity can appear in multiple dyads. A single author

26

CHAPTER 2. BACKGROUND

may participate in authoring papers with a number of different individuals
on a number of different papers. The network representation is inherently
focused on within-variable associations. If the within-variable associations are
totally independent, then there is not much benefit to a network perspective.
In the case of scientific authorship, typically groups of scientists form around
topics, resources and shared interests, so there are meaningful insights that
are a product of correlations between the entities of a co-authorship network
that give rise to structure [POM10]. In the evolution of affiliation networks,
a common process is that of triadic closure, where there is a bias for edges
to form between entities that have a mutual acquaintance[KW06]. This is
once again draws attention to the emphasis on within-variable dependence
that is observable from a network perspective. When we later look at random
networks, we will see that several meaningful network organizational principles
that arise from interdependence between ties. We will see that the dependence
among ties is the mechanism that gives rise to self-organization and patterns of
evolution in the network. Tie dependences also explains the structure of many
empirical networks, so it is not just an academic curiosity.

In essence, when there is interdependence between entities, a network view
can provide an opportunity to explore the rich structure that emerges from
those interdependent relationships. Where in the standard representation,
entity interdependence was a nuisance factor, in the network representation,
entity interdependence is the primary interest. In the following subsections,
several different notions of organized structure that emerges from non-random
entity interdependencies are introduced and formalized.

2.3.2 Graphs

So far, we have spoking of networks in abstract terms as a collection of entities
that can exhibit ties between the elements to form dyads. The notation of
graphs fits very naturally to this conceptualization and so we make heavy use
of graph notation to formalized the following network analysis concepts.

Formally, a graph G = (V,E) is composed of a finite set V of vertices
(nodes) and a set E of edges (links), denoted by V (G) and E(G), respectively.
The edge set is generated by linking vertices according to E ⊆ V × V . Edges
are defined by pairs of vertices u and v, so that u ∈ V and v ∈ V . In a directed
graph, the edges are specified by ordered pairs 〈u, v〉 where u is considered to
be the source vertex and v to be the target vertex. In an undirected graph, the
edges are specified as sets so that {u, v} = {v, u}. If two vertices are connected
by an edge, they are considered to be adjacent vertices or neighbors. The
collection of neighbors of a vertex v is denoted by N(v). In a weighted graph,
edges are assigned a weight according to a function w : E → R, which assigns

27

2.3. NETWORK ANALYSIS

to each edge e ∈ E a real-valued weight w(e). For unweighted graphs, edges
it can be considered a special variant of a weighted graph where w(e) = 1 for
all e ∈ E. The interpretation of the edge weight is specific to the domain of
application. In some cases, the weight can indicate the strength of relationship
between the vertices or the distance between them.

A commonly used and mathematically convenient way to express a graph
is in matrix form. The adjacency matrix A = (ai,j)n×n for a graph G = (V,E)
is an N ×N matrix where N = |V (G)| defined by

ai,j =

{
1 if (vi, vj) ∈ E
0 otherwise

(2.1)

such that elements of the adjacency matrix are assigned according to Ai,j = 1
if vertex vi and vertex vj of graph G are adjacent and Ai,j = 0 if the vertices
are not adjacent.

A graph can be divided into subgraphs that represent a portion of the
original graph’s topology. The graph G1 = (V1, E1) is a subgraph of the graph
G2 = (V2, E2) if V (G1) ⊆ V (G2) and E(G1) ⊆ E(G2). In the more strict case
where E1 = E2 ∩ V1 × V1, G1 is referred to as the vertex-induced subgraph of
G2.

2.3.3 Vertex-Level Metrics

There are various metrics that quantify some property of a vertex relative
to its local or global environment. Centrality metrics assign a value to each
vertex based on its relative position in the graph. The simplest of the centrality
metrics is degree centrality and is defined to be the number of edges in E
that involve a given vertex v. For a vertex v, degree centrality is denoted
by deg(v) and measures local centrality, because it is computed using only
knowledge of the immediate neighbors of v. In Figure 2.4 the degree centrality
for the filled and unfilled vertices is four and one, respectively. In the case of
a directed network, degree centrality is split into two values, where in-degree
is the number of edges terminating at v, and out-degree is the number of
edges originating from v. In the case of a weighted graph, degree centrality is
computing by summing over the relevant edge weights. In another variety of
centrality metrics, the centrality measure indicates not simply how central a
vertex is based on the local neighborhood, but rather on the centrality of the
vertices in the local neighborhood. In other words, the centrality of vertex v is
defined recursively based on the centrality of the neighbors of v. To illustrate
the intuition, consider that a president of a country is not typically important
by virtue of direct contact to an enormous number of subordinates (i.e., a high

28

CHAPTER 2. BACKGROUND

Figure 2.4: A network comprised of 17 vertices and 16 edges. The degree
centrality for all filled vertices is four. The larger central vertex intuitively
appears more important than the other filled nodes, despite the equivalent
degree centrality. Eigenvalue centrality assigns the highest centrality to the
larger node (center) because all it’s neighbors exhibit relatively high degree
centralities (each neighbor has degree four). In comparison, The smaller filled
nodes are each connected to three nodes with degree one and a single node
with degree four.

degree centrality). Instead, the importance of a president stems from the fact
that the few subordinates that are directly in contact with the president are
highly important individuals. A minimal example of this intuition is provided in
Figure 2.4, where the president is depicted as a large filled vertex at the center
connected to subordinates represented by smaller filled vertices. Eigenvector
centrality is a commonly used variant of centrality that captures this notion of
vertex importance in a network. The basics of eigenvector centrality are most
easily explained in terms of the adjacency matrix representation of a graph.
The eigenvalue centrality for vertex i is then represented by xi according to

xi =
1

λ

∑
j∈N(i)

xj, (2.2)

where N(i) are all direct neighbors of vertex i and λ is a proportionality
constant. This can be rewritten using the adjacency matrix as

xi =
1

λ

N∑
j=1

Ai,jxj, (2.3)

and in matrix notation the summation can be rewritten as x = 1
λ
Ax. From

this point the equation can be recognized as eigenvector equation Ax = λx.

29

2.3. NETWORK ANALYSIS

Figure 2.5: Three networks illustrating decreasing clustering coefficients (left
to right) for the filled node. In network 1 the clustering coefficient is highest,
because many neighbors of the filled node are connected. The neighbors of
the filled node in network 2 are less connected compared to network 1, thus
reducing the filled node’s clustering coefficient. In network 3, none of the
neighbors are connected and therefore the clustering coefficient is zero.

A unique solution to this equation is guaranteed by solving for the largest
real eigenvalue corresponding to a strictly positive eigenvector [Bon87]. The
ith component of the eigenvector then corresponds to the centrality score for
vertex i. Google’s PageRank algorithm for ranking the importance of a Web
page based on its centrality within a network composed of Web pages (the
vertices) and hyperlinks (the edges) is fundamentally based on the principles of
eigenvector centrality [Fra11]. The key differences are that PageRank computes
a probability that a random walk visits a given vertex, and a damping factor is
used that corresponds to the probability that the random walk terminates and
begins again on a randomly selected vertex [PBMW99].

Beyond centrality metrics, a vertex can be assigned a quantity based on theclustering
coefficient local neighborhood connectivity. The clustering coefficient is an example of

a metric of this type. The clustering coefficient represents the likelihood that
neighbors of a vertex are also connected to one another. Essentially, the metric
indicates to what extent a vertex is embedded in a densely interconnected set
of vertices, called a cluster. In this respect, the clustering coefficient is an
indicator of the modularity. The vertex clustering coefficient is defined as

ci =
2ni

ki(ki − 1)
, (2.4)

where ci is the clustering coefficient of vertex i, ki is the number of vertices
adjacent to vertex i (i.e., ki = |N(i)|), and ni is the number of edges between

30

CHAPTER 2. BACKGROUND

the vertices adjacent to vertex i. The intuition is that ki(ki − 1)/2 number of
edges can exist between ki nodes, and the clustering coefficient is a ratio that
reflects the fraction of existing edges between neighbors divided by the total
number of possible edges. In Figure 2.5, three example networks are shown in
which the filled vertex has a decreasing clustering coefficient from left to right.

2.3.4 Random Network Theory

The goals of random graph theory strive to explain the properties of a graph,
or a graphs generative process, in terms of probabilistic notions. Interestingly,
many important topological properties of real-world networks are described
by incredibly simple probabilistic models, which makes probability theory an
attractive tool to reason about the complexity of large real-world networks.
Initially, Erdős and Rényi proposed a very simple model to describe the gener-
ative process of a complex network, which produces the so-called ER random
graph. In this model, a set of n vertices is specified and the probability of an
edge occurring between any two vertices is fixed with a probability p [ER59].
This initial model captured some interesting properties, such as that the short-
est path between two randomly selected vertices grows proportionally to the
logarithm of the number of vertices in the network, a property referred to as
the small-world property. The ER random graph served an important purpose
in triggering a substantial interest in the field of random graph theory, but
was later shown to have limited use because it failed to explain many other
fundamental properties of real-world networks.

The degree distribution of a graph is a statistical property that has important degree
distributionimplications on the graph’s topology. Recall that the degree of a vertex, denoted

by deg(v), is the number of edges incident on vertex v. The degree distribution
for given graph is defined as, Pr(deg(v) = k), which represents the probability
of observing a vertex v with a given degree k. In the case of ER random graphs
with a large number of nodes, the degree distribution converges to a Poisson
distribution (a member of the exponential family). Contrary to this result
for ER random graphs, many real-world network exhibit degree distributions
described by a class of heavy-tailed distributions [DM03].5 This observation
triggered significant interest to look for other plausible generative models that
could explain the formation of a heavy-tailed degree distribution. In Figure 2.6,
a comparison between exponential scaling, which occurs in ER random graphs,
and power-law scaling, which occurs in many real-world networks, is shown.
The heavy-tail of the power-law distribution leads to a fundamentally different

5A heavy-tailed distribution exhibits slower than exponential decay. This leads to signifi-
cant weight in the tail so that the probability of observing extreme values is not negligible.

31

2.3. NETWORK ANALYSIS

Exponential Power-Law

Figure 2.6: A network with an exponential degree distribution (top left),
and power-law degree distribution (top right). The corresponding degree
distribution for exponential Pr(k; γ) = e−γk and power-law Pr(k; γ) = k−γ are
show (bottom). The power-law distribution contains significantly more weight
in the right tail compared to the exponential distribution. The heavy tail
gives rise to the organized structure of the network with a power-law degree
distribution (top right) where a small number of nodes are hubs and low degree
nodes collect around these hubs.

network topology because it is far more probable to observe a vertex with
a degree that is significantly larger than the mean. The right tail of the
exponential distribution contains much less weight than the power law, so it is
extremely unlikely to observe a vertex with degree much larger than 2.

The implication of a heavy-tailed degree distribution is that a few verticespreferential
attachment

32

CHAPTER 2. BACKGROUND

will form hubs that have a degree that is significantly larger than most other
vertices in the network. Another way to view this is that a severe inequality,
or bias, exists in the distribution of edges among nodes. In the ER random
graph model, the probability that any node has an incident edge is fixed by the
probability p, so that any inequality in the distribution of edges is a result of
stochastic uncertainty rather than a systematic bias in the generative process.
That is why in Figure 2.6, the network with the exponential degree distribution
has a typical vertex, and the degree of other vertices deviate from the typical
vertex only slightly. This is not the case in the network with a heavy-tailed
degree distribution, where a small number of vertices are connected to the
majority of edges. To explain this curious inequality in the distribution of edges
among vertices, the model of preferential attachment was proposed [BA99]. In
preferential attachment, there is a bias in the generative model that favors
attachment of new edges toward vertices that already have a high degree.
A variety of preferential attachment models exist that differ in how strong
the bias is and by the functional relationship the bias follows (e.g., linear or
exponential) [NBW06]. Here, we illustrate only a single model capturing linear
scaling in the degree proposed by Barabási et al. [BA99], defined as

pi =
∑
j∈V

deg(i)

deg(j)
, (2.5)

where pi is the probability that a new node is attached to vertex i, which is
proportional to the degree of vertex i. According to this formulation, vertices
with a high degree are more likely to receive the attachment to the new vertex
then vertices with a low degree. The success of preferential attachment is largely
a product of its ability to generate graphs that obey the same heavy-tailed
degree distribution of many real-world networks [DM03].

As we have seen, the degree distribution is a fundamental characteristic of configuration
modelcomplex networks by explaining the existence of certain topological properties

and hinting at plausible evolutionary processes. For this reason, there is
significant interest in generating graphs with a specified degree distribution, but
uniformly random in all other aspects of how the vertices are connected. This
approach is very useful to identify what topological properties are explained
as a consequence of specific degree distributions [MKI+03]. For example, does
a heavy-tailed degree distribution always lead to a low clustering coefficient
and the formation of clusters of vertices that associate strongly with each other
or is the low clustering coefficient a consequence of a separate organizational
principle? It may be the case that an empirical network exhibits structures that
stem from organizational principles that extend beyond what is a product of its
degree distribution. This model allows us to generate a family of graphs, all of

33

2.3. NETWORK ANALYSIS

Input Output

Figure 2.7: An input graph (left) containing five vertices with specified de-
gree. After applying the configuration model to the input graph, an output
graph (right) is generated containing the identical number of vertices and
degree sequence. As a consequence of applying the configuration model to
the input graph, the preference for {v1, v2, v3} to associate is destroyed by the
randomization process.

which can exhibit different characteristics, but have the unifying characteristic
that the degree distribution is held constant. The ER random graph model and
the model of preferential attachment were parameterized based on a number
of nodes and a function or constant to define the probabilistic mechanism
for attaching nodes to each other. In this random graph model, the input
parameter is a degree distribution or a degree sequence and is referred to
as the configuration model. The configuration model plays in important role
in generating null models from empirical networks that can be used to test
for the presence of structural properties that are not explained solely by a
specific degree distribution plus uniform randomness [MKI+03]. In Figure 2.7,
an empirical network is shown as the input graph and the output graph is
shown after applying the configuration model. Notice that the degree of each
node remains constant between the input and output graphs, but now the
two isolated subgraphs in the input graph are connected into one component.
Algorithms for generating random graphs based on the configuration model are
rather complex, however, intuitively, the process can be described rather simply.
First, a sequence of vertices with their corresponding degrees are provided.
Each vertex is then represented with a number of half edges (edges with only
one vertex connected) corresponding to its intended degree. Uniformly at
random, two half edges are chosen and joined together to form an complete
edge. This process is carried out until there are no more remaining half edges.

34

CHAPTER 2. BACKGROUND

2.3.5 Scale-Free Networks

The degree distribution of many real-world networks tend to have a heavy tail,
which results in the likely formation of hub nodes (i.e., nodes with a significantly
larger degree than the mean degree). It turns out that one type of heavy-tailed
distribution appears to be nearly ubiquitous in nature: the Pareto distribution
or power-law distribution. A network that exhibits a degree distribution that
is described by a power law, formalized as

P (deg(v) = k) = ak−γ γ > 0, (2.6)

is referred to as a scale-free network. The name “scale free” is a reference to
the lack of characteristic scale exhibited by power-law functions. This property
can be shown by scaling the input of by a multiplicative factor. Provided that
f(x) = x−γ then

f(ax) = (ax)−γ = a−γx−γ = cx−γ ∝ f(x), (2.7)

which demonstrates that, for this function, scaling the input x does not change
the shape of the function because it exhibits scale invariance.

Practical Implications Beyond the apparent ubiquity of power-law de- network
robustnessgree distributions in real-world networks (e.g., Internet, scientific paper co-

authorship, power grid, biological systems), scale free networks have a number
of practical implications [DM03]. For example, the failure characteristics of
complex systems are of primary interest for domains such as the power grid or
the Internet, where a catastrophic failure in the operation of these networks has
widespread and costly consequences. The topology of a network determines the
severity of impact from disruptions or perturbations to the network. A network
perturbation manifests as an edge or vertex deletion, and different types of
perturbations can be realized by altering the mechanism used to select an edge
or vertex for deletion. In the case of random perturbations, the selection is
made uniformly at random by assigning an equal probability of selection to
all elements (edges or vertices) of the network. In a network comprised of
a company’s employees and edges expressing the organizational structure, a
source of perturbations to this type of network arise from employee turn-over.
Depending on the network’s structure, the effects turn-over may impact the
disseminate of knowledge in the company and hinder progress. In targeted
perturbations, elements of the network are selected for deletion based on their
location or function in the network (e.g., a highly central vertex). For the
employee network, a source of targeted perturbations are layoffs, which are
often intentionally localized to a specific department or team such that not
every employee is subject to the same probability of losing their job.

35

2.3. NETWORK ANALYSIS

Using simulation techniques, it has been shown several times that scale-
free networks are incredibly robust to random perturbations, but extremely
vulnerable to targeted perturbations. The results demonstrate that the path
length between vertices in the network composed of Internet routers increases
only slightly even when a large number of routers fail at random [DM03].
It is important to recognize that the cost of robustness to random failures
is paid with susceptibility to targeted attacks. The point is that the claim
of robustness as a benefit to scale-free networks is limited to specific failure
conditions. If the main threat to a network is a small number of targeted
attacks that are intentionally designed to inflict maximal destruction, scale-free
networks present an enormous risk because the deletion of a small number of
hub nodes can fracture a connected graph into disjoint subgraphs [CEbH01].
The overall message is that the optimal structure of a network is intimately
connected to the environmental conditions in which the network operates. By
studying networks, structural deficiencies or other weakness can be identified. It
is with this knowledge that strategies can then be developed to most effectively
compensate for weaknesses and maximize benefits from advantages. In the case
of the Internet, optimizations could be realized by maximizing proliferation of
the Internet by using cheap router hardware (where random failure robustness
is exploited) and substantial security efforts made to protect hub routers (where
vulnerability to tarted attacks is mitigated). For companies, the implication of
a scale-free organizational structure implies that turn-over is generally tolerable
but retainment of key individuals is absolutely critical.

Identifying Scale-freeness TestingScale-free
hypothesis

test

for the presence a scale-free network in
empirical data is a matter of invoking appropriate statistical machinery, but
there are certain non-trivialities involved. The uninformed or inexperienced
individual may conclude that linear regression forms the basis of a sufficient
statistical test after applying a logarithmic transformation to the data. The
rationale is that, since a power-law distribution is defined by f(x) = ax−γ then
log(f(x)) = log(ax−γ) = −γlog(ax), which is a linear model in terms of the
model parameter γ. The problem with this approach is that many functions,
not only power functions, can appear roughly linear (especially within a small
range of values) after applying a logarithmic transform, so this criterion is
necessary but insufficient [CSN09]. Another problem is that only in rare cases
the degree distribution of a scale free network obeys a power law for all values.
More often, there is a minimum degree xmin, where for values greater than
xmin, the data is distributed according to a power-law distribution, but for
values less than xmin, the data is distributed differently. This means that

36

CHAPTER 2. BACKGROUND

the identification of a power-law distribution in empirical data amounts to
estimating two parameters, xmin and the scaling parameter γ.

By using the method of maximum likelihood, one is able to estimate the maximum
likelihoodmodel parameters on the basis of maximizing the likelihood function. The

likelihood function assigns a probability of observing a given set of data with
a specific value assigned to the model parameters. Let f(x; γ) be the param-
eterized function for which we wish to determine the maximum likelihood
estimate of parameter γ. Assuming that the data is independent and identically
distributed6, the joint probability of observing the empirical data with a given
parameter is

Pr(X1 = xi, X2 = xi, ..., Xn = xn) =
n∏
i=1

f(xi; γ), (2.8)

which is the equivalent to the likelihood function denoted by L(γ;xi). For
our specific case, the xi denote the vertex degrees from the network (i.e.,
the observed data). The joint probability over every observation is then
computed by using the product rule for independent events, Pr(x, y) = Pr(x) ·
Pr(y). The likelihood function then represents the probability of observing this
particular degree sequence assuming that it is sampled from a specific power-law
distribution. By finding the value of the model parameter γ that maximizes the
likelihood function, we can identify the specific power-law distribution that is
mostly likely to have generated the observed data. For power-law distributions
there is no exact closed form maximum likelihood solution, but an accurate
approximation can be made for large sample sizes [CSN09]. The approximation
for the scaling parameter is

γ̂ = max
γ
L(γ) ' 1 + n

[
n∑
i=1

ln
xi

xmin − 1
2

]−1

. (2.9)

This maximum likelihood estimator relies on knowing the value of xmin which,
in general, needs to also be estimated. The selection of xmin is important
because, if too low of a value is selected, then we will try to fit a power-law
to data which is obviously not power-law distributed. In the case of choosing
xmin to be too large, we throw away valuable data and decrease the accuracy
(e.g., increase statistical error and bias from finite sample size) in estimating
γ. The xmin can be found by performing a grid search of the parameter space

6The independence assumption means that Pr(x, y) = Pr(x) · Pr(y | x) = Pr(x) · Pr(y),
and identically distributed means that all observations are stemming from the same power-law
distribution.

37

2.3. NETWORK ANALYSIS

to find the power law that best fits the observed data using a goodness-of-fit
test [CSN09].

Themodel fitness goodness-of-fit test is of crucial importance because the maximum
likelihood estimate only indicates to us which power law best explains the data,
but not if a power law is plausible model. It could very well be the case that
the data could arise from a similarly shaped but fundamentally different kind of
distribution (e.g., a distribution of the exponential family such as the Poisson
distribution). The output of the goodness-of-fit test is a p value that quantifies
the plausibility of the hypothesis. To test for the goodness-of-fit, we generate
samples from the fitted power-law and compare these synthetically generated
data to the empirical data. Formally, this is done using a Kolmogorov-Smirnov
(KS) statistic. The KS statistic measures the distance between a set of sampled
data and a hypothesized probability distribution. To perform this test, samples
are drawn from the hypothesized model, in our case the fitted power-law, to
generate an ensemble of synthetic data sets. For each synthetic data set, a
power law is fitted using the maximum likelihood approach discussed earlier.
The KS statistic is then computed between the synthetic data sets and their
corresponding fitted power law. The p value is then computed as the fraction
of KS statistics, from the synthetically generated set, that are larger than the
KS statistic computed between the empirical data and its corresponding fitted
power law. What this procedure tests is to what extend the disparity between
the empirical data and fitted power law is explained by effects of finite sampling.
If the disparity is significantly larger than what is expected from finite sample
size effects, then we reject the hypothesis that the data could be plausibly
explained by a power law distribution.

2.3.6 Modularity

Complex systems typically exhibit organized substructures, where elements
of the system group together to serve a related function or capability. In
the human body, cells make up the specialized substructures in the form of
organs. A deep understanding of these substructures and their relationships
to each other is critical to the scientific development of diagnostic tests for
illnesses, effective treatment regimes, and preventative medicine to sustain good
health and well-being. Similarly in complex networks, there is an interest in
quantifying the extent to which a complex system is organized into modules
and to identify the modules. Knowledge of the modules can help to understand
functionally similar nodes in a network that may be especially well suited
for a particular purpose. In software projects, the arrangement of software
developers is often organized into a number of teams that persist over a period
of time to help achieve efficient coordination as a result of familiarity and shared

38

CHAPTER 2. BACKGROUND

Figure 2.8: An example network that exhibits community structure. The key
features of a community (gray circle) are (1) many within community edges
(solid edges), and (2) comparatively few edges between distinct communities
(dotted edges).

mental models (cf. Section 2.1). Since teaming as such an effective approach to
managing coordination complexity that is inherent to software engineering, it is
highly valuable to be able to identify and measure this organizational principle.

In a network, modules are synonymous with the terms clusters or communi-
ties, and are defined as subgraphs that exhibit the property of being internally
densely connected (i.e., many edges between members of the subgraph) but ex-
ternally sparsely connected (i.e., few edges between a member and non-member
of the subgraph) (cf. Figure 2.8). To quantify the extent to which nodes of a
network are organized into clusters, it is not necessarily required to identify
the clusters. For example, the vertex clustering coefficient (cf. Section 2.3.3)
captures notions of modularity at the vertex level. Since vertices of a cluster
are internally densely connected, most of the neighbors of a vertex should be
connected to vertices of the same cluster and therefore the neighbors will be
densely connected. This is visible in Figure 2.8, where the nodes have a high
clustering coefficient because most of each nodes neighbors are within the same
cluster and within a single cluster the connection density is high so there is a
high likelihood that the nodes neighbors are also connected. This type of graph
topology results in the frequent occurrence of vertices with a higher clustering
coefficient. This property is relative to a network exhibiting lower levels of
modularity, where nodes do not associate into densely connected clusters, and
so it is less likely for the neighbors a node to be connected. A nice property
of using the clustering coefficient to quantify modularity is that it does not

39

2.3. NETWORK ANALYSIS

require partitioning of the network into clusters. That is beneficial because
identifying an optimal partitioning is computationally difficult and often relies
on probabilistic algorithms that maybe biased towards identifying clusters with
certain properties (e.g., small clusters) [FB07].

In a complex network, the modules are often unknown a priori. Community
detection or graph clustering algorithms are designed to identify the modules
of a network based on topological properties. The goal of these algorithms is
to partition the network into clusters that are maximally modular according to
a modularity metric. Since the number of possible partitionings is large, even
for moderately size graphs, a brute force search for the optimal partitioning is
impractical. In general, the graph partitioning problem falls into the complexity
category of NP-complete problems [Sch07]. The size of the solution space is large
and grows quickly because a graph of size n has

(
n
n/2

)
number of partitionings.

For this reason, graph clustering algorithms necessarily rely on heuristics to
generate close approximations to the optimal partitioning. Cluster quality
metrics play a critical role in clustering algorithms by providing a means to
measure if one partitioning is better than another. Many clustering algorithms
work through iterative steps of moving nodes around to different clusters based
on a heuristic. After each step, the modularity metric is evaluated. If an
improvement is made the change in the previous step is maintained, otherwise
the change is reversed. This is carried out until a convergence criterion is met
or a maximum number of iterations is executed [Sch07].

Allcluster
quality
metrics

clusters exists somewhere on a spectrum where one end point is a
completely isolated subgraph and the opposite end point is a subgraph with
no internal edges. Cluster quality metrics measure where a cluster or set of
clusters exists on this spectrum. Arguably, the most common metric of cluster
quality is modularity and is defined as

Q =
1

2M

∑
i 6=j

(
Ai,j −

kikj
2M

)
δ(ci, cj), (2.10)

where M = |E(G)|, the number of edges in the graph. The ci terms represents
the cluster identifier that vertex i is a member of so that the δ-function zeros
the summation term when the two vertices are assigned to different clusters.
Inside the summation, Ai,j is the network adjacency matrix and ki = deg(i),
the degree of vertex i. If connections are made uniformly at random, then the
fraction of edges occurring between vertex i and j is kikj

2M
. Overall, the equation

computes the difference between the observed fraction of within-cluster edge
minus the fraction of edges expected to be within-cluster when edges occur
between nodes at random. When a larger number of edges occur within clusters
is much more frequent than what is expected from randomness, then modularity

40

CHAPTER 2. BACKGROUND

is high. Some deficiencies of modularity are that it is an overall evaluation of
a given graph partitioning, that means nothing about the individual clusters
is reflected. Modularity is also known to suffer from a resolution limit, that
results in a bias toward large clusters [FB07].

Quality Metrics A number of other cluster quality metrics have been pro-
posed in the literature. While all metrics suffer from one weakness or another,
the conductance metric has shown to have good performance for a variety of
cluster topologies and sizes [AGMZ11]. Additionally, conductance can reflect
the quality of a single cluster. The conductance of a single cluster C in graph
G is

φG(C) :=
| cut(C,G \ C)|

min {deg(C), deg(G \ C)}
, (2.11)

where the cut operator computes the cut-set of a graph cut, that is the set of
edges with exactly one end point in the cluster, and G \C is the vertex induced
subgraph comprised of vertices in G but not in C. The sum of the vertex
degrees in a subgraph is denoted by deg(C). If a cluster has zero within-cluster
edges, then conductance is one. If all edges connected to vertices of the cluster
are within-cluster edges, then conductance is zero. A potential disadvantage
of conductance is that it does not included any kind of normalization for
randomness, as is the case for the modularity metric. Therefore, conductance
indicates the quality of the cluster, but not how likely it is for that level
of conductance to occur with all edges of the graph are connected together
uniformly at random.

One of the major challenges to overcome with using graph clustering al-
gorithms is how to interpret the result. The problem stems from the fact
that essentially all networks exhibit some level of clustering. Regardless of
the network’s topological properties or underlying organizational principles
that give rise to the topology, clustering algorithms will in general produce
an output containing one or more clusters. Still, the question of interest that
motivates the use of clustering algorithms is whether there are relationships
between elements of a common cluster that causes a bias towards the formation
of within-cluster edges instead of edges crossing a cluster boundary. In a social
network, groups of individuals may closely associate with each other as a result
of shared interests [FLG00]. In the model of preferential attachment, the bias
caused nodes to attach more frequently to nodes with a high degree. In the case
of modularity, the bias causes a collection of vertices to associate more strongly
with each other, and less strongly with vertices outside the cluster. Again, this
is an example of a specific structure that is not explain by uniform randomness,
but instead relies on a bias or preference in how edges form between vertices.

41

2.3. NETWORK ANALYSIS

Essentially, the preference represents a departure from uniform randomness
and implies the existence of self-organization.

Scale-free networks are particularly interesting because they are unlikely
to arise from the ER random graph model. Structures that are a departure
from uniform randomness are interesting because it is an indication of an
organizational principle that can help to understand what forces influence the
structure of a complex network. The scale-freeness property is a property of
the degree distribution of a network, so the appropriate corresponding null
model to represent a scenario with uniform randomness is the ER random
graph. Similarly, to determine if a network partitioning (i.e., the output
of a clustering algorithm) of an empirical network is significant in terms of
identifying structures that are not a product of uniform randomness, a null
model is also needed. An appropriate null model must be as closely related as
possible to the empirical network, and only represent randomness in terms of the
organizational principle under examination. For modularity, the organizational
principle is a preference to attach to nodes that are members of a common
cluster. On this basis, an ideal null model would then maintain all graph
properties except exhibit uniform randomness with regard to this particular
preference. However, the ER random graph model is an inappropriate null
model for this purpose because it destroys not only preferences of modularity
but also preferences in the degree distribution. A more appropriate null model
for testing principles of modularity is the configuration model (cf. Section 2.3.4).
Recall that the configuration model works by generating a network with a
prescribed degree distribution, but then connects the nodes together uniformly
at random. This model will maintain the number of nodes, number of edges,
and the degree of each node, but does exhibit uniform randomness in terms
of how collections of nodes are associated. Provided with a single empirical
network, the configuration model can be used to generate an ensemble of
synthetic networks that lack the organization principle leading to modularity. A
clustering algorithm can then be applied to the synthetic networks to determine
the level of clustering that is present in the graphs when no preference exists
between elements of the network. This can then be compared to the empirical
network clusters using cluster quality metrics to determine if the empirical
network has clusters that are unlikely to occur from uniform randomness using
standard hypothesis testing approaches.

2.3.7 Hierarchy

Scale freeness and modularity were discussed earlier as organizing principles
that manifest as preferences for the nodes of a network to attach and associate
with one another in ways that cannot be explained by uniform randomness.

42

CHAPTER 2. BACKGROUND

The concept of hierarchy is a third organization principle that brings these
two concepts together by expressing how local groups are arranged relative
to each other. In a hierarchical network, there exists stratification within the
network that stems from cohesive groups being embedded within larger and
less cohesive groups. This stratification is manifested as a relationship between
the node clustering coefficient and the number of connections, that is, the
node degree [RB03]. A comparison between the topology and key features that
differentiate a hierarchical network from an ER random network is shown in
Figure 2.9.In a hierarchical network, nodes with high degree and low clustering
coefficient represent the top of the hierarchy and span multiple cluster. This
property is visible in Figure 2.9, where the node located in the center of the
hierarchical network is the highest degree node, but connected to nodes that
are members of different cluster. At the bottom of the hierarchy are the low
degree nodes that have a high clustering coefficient. This property is visible in
Figure 2.9, where the low degree nodes are organized into clusters surround the
central node. This topology is in contrary to the ER random network which
does not exhibit these properties.

The key feature of a hierarchical network is a dependence between node
degree and clustering coefficient and is described by C(k) ∝ k−β, where c(k) is
the clustering coefficient for a node with degree k [RB03]. In Figure 2.9, the
scatter plot for an ER random network and hierarchical network is illustrated.
Note that in the ER random network, there is no dependence between clustering
coefficient and degree. To test for the presence of hierarchy, linear regression
techniques can be used to solve for the optimal linear model satisfying the
functional form Y = β0 + β1X, where the clustering coefficient is the response
variable denoted by Y and node degree is the predictor variable denoted by
X. If the optimal linear model has a nonzero slope (i.e., β1 < 0) and the slope
parameter is statistically difference from zero, such that p < 0.05 where p is
that probability that β1 = 0, one can conclude that hierarchy is present.

Intuitively, this relationship implies that nodes of high degree tend to be
connected to many different groups that are themselves loosely coupled to each
other. What makes hierarchy particularly interesting is that it is not explained
solely by preferential attachment and therefore indicates an entirely separate
organizational principle [RB03]. Hierarchy is also indicative of the existence of
an organizational structure that transcends the local network structure.

2.3.8 Network Evolution

So far, the discussion on networks and their structural properties have primarily
been from a static view point. However, many of the phenomena that are
represented as a network are actually dynamic and thus have a time-varying

43

2.3. NETWORK ANALYSIS

Random Network Hierarchical Network

Figure 2.9: ER random network (left) and hierarchical network (right) with
corresponding scatter plot of node degree k versus clustering coefficient C(k).
The hierarchical network topology deviates from randomness by having small
cohesive clusters that are embedded withing larger and less cohesive clusters.
The hierarchical topology manifests as a dependence between node degree and
clustering coefficient, which is not present in ER random networks.

behavior. For exampled, the network structure of the World Wide Web (WWW),
the Internet, and social networks, are all examples of networks that change with
time. In software projects, the relationships between developers, the tasks they
are assigned to, the people they work with, also change over time (cf. Section 2.1).
If we wish to use network to model aspects of software development, then a
dynamic perspective is also necessary. We first hinted at the dynamic properties
of a network in Section 2.3.4 with the model of preferential attachment as one
possible explanation for the generative process that leads to scale-free networks.
By studying the time varying nature of networks, we are able to test hypothesis
like preferential attachment. While static network properties explain important

44

CHAPTER 2. BACKGROUND

structural features, dynamic network properties explain by what process the
structural features are generated.

In a static perspective, a network is representative of a single snapshot
taking at some point in time. For the WWW network composed of Web pages
and hyperlinks between Web pages, the static network reflects the state of
the network at time t. By taking multiple snapshots at different points in
time and placing them in time resolved sequence, a stream of graphs can
be generated that represent the time varying structure of the network. The
dynamic representation of graphs is simply a sequence of snapshots denoted by
G1, G2, . . . , Gn where each Gt represents the graph snapshot at a time t. All of
the static properties of graphs already discussed can then be computed for each
graph in sequence to obtain the graph’s evolution with respect to a specific
graph property. For example, the degree of a vertex can be tracked through
time by computing deg(vi,t), where vi,t ∈ V (Gt).

Adding the time dimension to study networks can lead to new insights, but sequential
data
model

there is also additional complexity in the modeling process. To explore the
dynamics of networks, we need to understand the transitions that occur as the
network evolves from Gt to Gt+1. For this purpose, sequential modeling tech-
niques are particularly well suited and are designed to model the relationships
of events that occur in sequence [Bis06]. The discrete time Markov chain is
an example of a probabilistic sequential model that describes the probabilities
of transitions between a set of states from time ti to ti+1. For example, let Xt

be a random variable for the state of a node in a network. In this example, a
node can be in one of three mutual exclusive states Xi ∈ {s1, s2, s3} defined to
be the following.
• s1: node is absent from graph
• s2: node is present but isolated
• s3: node is present and not isolated

For each node, a sequence represents the state that the node had at all points
in time, X1 = x1, X2 = x2, . . . , Xt = xt. The Markov chain enables us to
compute a probability that expresses the likelihood that a node in one state
will transition to another state in the next iteration of the sequence. More
formally, the probability we would like to compute is Pr(Xt+1 = x|X1 =
x1, X2 = x2, . . . , Xt = xt), that is the probability that the next state of the
node is x, conditioned on all previous states. In many cases, the long range
effect of state transitions is low, meaning that the most recent states contain
the most information about the next state to occur in the sequence. The
Markov assumption takes advantage of this common property by estimating
the transition probability by Pr(Xt+1 = x|Xt = xt) [Bis06]. The Markov
model can then compactly represent the transitions between states using only

45

2.4. DEVELOPER NETWORKS

Connected

Isolated Absent

11%
5%

83%

16%

0.5%
84%

Figure 2.10: A Markov chain for nodes transitions between three states.

a small number of parameters, which makes them highly interpretable and
computationally efficient to work with. In Figure 2.10, a Markov chain is shown
with three states and the respective transition probabilities between states.

2.4 Developer Networks

The combination of software development being a labor intensive process and
the widespread deployment of software repositories leads to the generation of
data connecting individuals to the social and technical activities they participate
in during software development. By identifying when two developers participate
in a common activity, dyadic relationships between developers can be elicited
from software repository data. The composition of all dyadic relationships
involving all developers in a software project represents a network that captures
the global topology of developer activity interdependence. Networks of this type
are referred to as developer networks and can be generated by applying a variety
of heuristics to a number of data sources with the overall goal of identify when
developers are engaged in interdependent activities. A number of questionable
assumptions and non-trivial leaps are necessary to abstract the real-world
phenomenon of developer activities into a network representation, which may
compromise the validity of the developer network in terms of reflecting accurate
relationships. In the following sections, the general approach that is taken to
abstract developer activities into a network structure from software repository
data is described in detail to draw attention to where non-trivial leaps and
simplifying assumptions are made and potential threats to validity exist. This is
followed by specifics about how VCS and mailing-list data are used to construct
developer networks.

46

CHAPTER 2. BACKGROUND

Figure 2.11: The information in software repositories provides explicit links
between developers and the artifacts they generate or change.

2.4.1 General Framework

Despite the common claim that “networks are everywhere”, we intend to show
that a number of non-trivial operations are necessary to represent a real-world
phenomenon as a network. We begin the process by reasoning directly from
the relationships that are made explicit from the software repositories and then
methodically step towards the final developer network. In Section 2.2, the
version-control systems and mailing lists were introduced in terms of the data
they store. In these repositories, links between people and the artifacts they
touch are explicitly provided.7 The data provided by software repositories is
shown for three developers and three artifacts in Figure 2.11.

We see that what is depicted in Figure 2.11 is not a developer network
with edges between developers but rather an affiliation or bipartite network
with edges between mutually exclusive sets of nodes. One of these node sets
is the collection of individuals that contribute to the project. In fact, even
at this stage, it is important to recognize that we have made a strong claim
that it is sensible and useful to represent the developers together as a collective
set. This step can be rationalized by arguing that the collection of developers
form one system and that the structure that emerges from the collective set of
dyadic relationships between developers is of fundamental importance. The
other node set that composes the bipartite network is that of artifacts (e.g., a
subsystem, source-code file, source-code entity, etc.). For this set, a decision
needs to be made about what constitutes an appropriate element of this set.
Ideally, the contents that make up an artifact should be related as to suggest

7In this case, an artifact is essentially any tangible product of the work done by people
(e.g., source-code files or e-mails).

47

2.4. DEVELOPER NETWORKS

that anyone touching a common artifact is likely to be performing related tasks
or is involved in interdependent activities. Still, there is a whole spectrum
of options that can be realized by either breaking down artifacts into smaller
constituents, thereby moving towards finer-granularity, or aggregating several
artifacts together, thereby moving toward coarser-granularity.

Formally, the bipartite graph is defined by two mutually exclusive sets, the
developers D = {d1, d2, . . . , dn} and the artifacts A = {a1, a2, . . . , am}, and
a set of edges E composed from one element of each set E ⊆ D × A. The
bipartite network in Figure 2.11 can be equivalently expressed in matrix form
as

B =

a1 a2 a3[]d1 1 0 0
d2 0 1 1
d3 0 0 1

(2.12)

To make the leap to a network composed of edges between developers, again
implies a set of non-trivial claims. The typical operation that is used to
generate a developer network, though often not explicitly stated, is a one-mode
projection of the bipartite graph defined by the following matrix operation

Cdev = B ×B> (2.13)

=

1 0 0
0 1 1
0 0 1

×
1 0 0

0 1 0
0 1 1

 (2.14)

=

d1 d2 d3[]d1 1 0 0
d2 0 2 1
d3 0 1 1

(2.15)

where Cdev is an adjacency matrix expressing relationships between developers
based on their contributions to common artifacts. It should be immediately
clear by this point that the one-mode projection of the original bipartite graph
is less informative as it is in general a projection onto the subspace comprised
of the developer set. The most obvious claim that we have made here is that
two developers touching a common artifact implies something significant about
those developers. A claim which is highly dependent on the nature of the
artifact. We have also implicitly made the claim that all artifacts are essentially
equivalent, though in reality, some artifacts may be connected to a large number

48

CHAPTER 2. BACKGROUND

of developers and are therefore indicative of a different kind of relationship.
On the side of developers, we face a related simplification where we are now
ignorant to whether a high degree developer is the result of touching a lot of
artifacts or only a few artifacts that have many other contributors.

The nature of virtually any modeling process involves a set of assumptions.
The main message here is that abstracting a real-world phenomenon into a
network is non-trivial and requires assumptions that should be met with a
healthy dose of criticism to ensure that the final representation maintains real-
world validity. Without appreciation for the delicacy involved in constructing a
developer network, any insight drawn from the network will have very limited
value at best.

2.4.2 Types of Developer Networks

The basic information that is necessary to extract a developer network is
traceability between developers and the artifacts they generate or contribute
to. From this traceability, we are able to glean insight into the activities of
developers. The nature of developer activities broadly fall into categories of
social and technical and there are complementary developer networks that can
also be broadly categorized according to this dichotomy.

Developer Coordination Network In developer networks of the technical
variety, the relationship between developers that is expressed by edges in the
network stems from activities that are technical in nature. Technical developer
networks are primarily concerned with relationships that emerge from the
development of source-code artifacts. By mining the version-control system,
developers can be linked to all the code that they develop (cf. Section 2.2). The
changes made to source code are group together according to a heuristic that
defines the granularity of the artifact. In Figure 2.12, the information provided
explicitly by the VCS and the resulting developer coordination networks are
shown for two granularities.

Developer coordination networks can be constructed at various granularities.
At the most coarse-grained side of the spectrum, source-code files are grouped
together based on the project’s top level directory structure [dSFD05; HL05;
LRGH09; LRG+04]. The assumption is that the top level directory reflects
the subsystem-level decomposition of the software (cf. Section 2.2). The
link between developers and the files they commit to can be easily obtained
from the VCS and then the file-level contributions can be aggregated based
the organization of the project’s directory structure. While the technical
difficulty involved in constructing this type of developer network is low, the

49

2.4. DEVELOPER NETWORKS

Version-Control System

File-Based Network Entity-Based Network

Figure 2.12: An illustration of the data provided by the version-control system
(top), and the resulting developer coordination networks using a file-level
granularity (bottom left) and entity-level granularity (bottom right).

real-world validity is questionable. While most software systems are divided
into a number of subsystems, it is not clear whether that is always reflected
by the projects top-level directory structure. It is also not clear whether two
developers working on the same subsystem implies a meaningful relationship
in terms of identifying whether the developers are engaged in interdependent
activities. These subsystem-level developer networks exhibit heavy-tailed degree
distributions and show evidence of being small-world networks, but in general
very little is known about the topology, organizational principles, and real-world
validity [HL05; LRGH09; LRG+04]. In an effort to identify alternative network
construction approaches that are more indicative of meaningful socio-technical
relationships between developers, researchers have pursued the use of finer-
grained artifacts. For example, instead of using top-level folders to group
source-code, individual files are used to construct the developer network [JSS11;

50

CHAPTER 2. BACKGROUND

MW09; MW11; PBD+14; SMWH09]. In an abstract sense, a file can be viewed
as a bundle of interdependent design decisions that results in code which is
highly interdependent, but then more loosely related to the code in other files (cf.
Section 2.2). Developers making changes to common files are thus expected to
be engaged in interdependent activities. Developer networks of this kind exhibit
real-world validity [MW11], but suffer from problems of over-connectedness
that make it difficult to decompose the developer network into clusters without
applying filters to remove edges [JSS11].

The edge weights of technical developer networks reflect the strength of the
tie between two developers. This information is important because the activities
of developers can exhibit varying degrees of interdependence. For example, an
isolated change that is an atypical development task for a developer leads to
edges in the developer network. In another case, multiple developers may work
intensively on tasks thats persist over a long period of time leading to edges
that are of a different nature. Ideally, the weighting function should be capable
of differentiating between these scenarios. In the case of a binary weighting
function, zero is assigned to an edge when two developers exhibit no relationship,
and one is assigned when at least one commit has be made to a common
artifact [LRGH09; LRG+04]. This weighting function is simple, but is incapable
of expressing relationship strengths. Another common weighting function uses
the number of commits to common artifacts to assign weights [JSS11]. A third
option is to count the lines of code that are contributed to common artifacts to
assign weights [dSFD05].

Developer Communication Network In developer networks of the social
variety, the relationship between developers that is expressed by edges in the
network stems from activities that are social in nature. As developers work
towards accumulating the necessary knowledge to complete their tasks and
provide guidance to others, communication channels form between developers.
An approximation to the complete set of communication channels between de-
velopers is expressed in the mailing lists of open-source projects (cf. Section 2.2).
In Figure 2.13, a subset of data that is explicitly provided by the mailing list
archives is shown along with the corresponding developer communication net-
work. A developer network can be constructed by linking developers to the
threads that they contribute, and then performing the one-mode project to
generate the developer-developer edges [BPD+08; PBD+14]. The assumption is
that developers that contribute to a common thread implies a personal interest
in the discussion topic and awareness of the other individuals contributing
to the thread. The major weakness and source of validity concerns in this
approach is the content of the message is ignored. For this reason, it is unclear

51

2.4. DEVELOPER NETWORKS

Mailing List Communication Network

Figure 2.13: A depiction of the data provided by mailing list archives (left)
is shown for three individuals that composed three e-mails in a single thread.
The mailing list data provides links between individuals and the e-mails they
have authored in addition to links between e-mails that expresses the Reply-to
relationships. The corresponding developer communication network (right)
stemming from activities in the mailing list is also shown.

whether a contribution to a thread has a positive sentiment (e.g., praise for
good work) or a negative sentiment (e.g., criticism for inappropriate coding
practices), or entirely off topic (e.g., vacation plans). While it is important
to recognized that the developer network is certainly a simplification on the
complexity of human communication, the network still contains insightful in-
formation. Social developer networks of several successful open-source projects
have shown that mailing list communication between developers is correlated
with activities in the source code [BPD+08; XF14]. So, the social developer
network also provide important information regarding where developers tend
to have interdependencies in there tasks. The major difference between the
social and technical developer networks is that the social relationships are
more direct, and more strongly imply awareness of a coordination requirement,
whereas with technical developer networks the relationships are more implicit
and awareness of the interdependence is less strongly implied.

The edge weights are important in social developer networks for similar
reasons as in technical developer networks. The intensity of communication
between developers can vary significantly and familiarity with each other is
expectedly higher the more frequent and temporally close the communication
occurs. A binary weighting function, where zero weight indicates no commu-
nication, and one indicates at least one contribution to a common thread, is
simplest but neglects the intensity of communication. A second and better

52

CHAPTER 2. BACKGROUND

option is to define the weighting function as the number of e-mails submitted
to a common thread.

53

CHAPTER 3

Community Detection and Validation with Fine-grained
Developer Networks

This chapter shares material with the ICSE’15 paper “From De-
veloper Networks to Verified Communities: A Fine-Grained Ap-
proach” [JMA+15].

Software development tasks (i.e. individual assignments of work) often
exhibit some level of interdependence, which, to a large extent, stem from tech-
nical dependencies between source-code elements (e.g., data-flow dependencies).
When interdependent tasks are assigned to distinct developers, these developers
must coordinate their source-code modifications to avoid violated constraints
that are imposed by the tasks’ interdependence. Information about source-code
changes (e.g., what code was changed and by whom) and source-code structure
(e.g., which code is interdependent) provides important evidence of where coor-
dination requirements exist between developers. From this evidence, developer
networks can be constructed that represent the project’s coordination struc-
ture. Although this rationale relies heavily on valid evidence of coordination
requirements, and the validity of the resulting developer network, concerns
regarding validity are, at this point in time, insufficiently addressed by the
research community.

In Chapter 2, we introduced the notion of coordination requirements, the
mechanisms that give rise to them, and how they present a significant threat
to large-scale globally-distributed projects. As evidence of this threat, we
discussed a high-profile software project where failure to adequately manage
coordination requirements was the primary source of the project’s failure. We

55

also introduced teaming as a commonly used and highly effective technique
for managing coordination requirements. Teaming is valuable because teams
typically persist over a period of time, team members are familiar with one
another and each others work assignments, and often have shared mental models
making it easier for them to communicate effectively (cf. Section 2.1). While
teams are known to be relatively effective at achieving adequate coordination,
inter-team coordination is often the source of coordination breakdowns, because
individuals are less familiar and may be unaware of each others actions. As
an approach for modeling developer activity in software repositories, we intro-
duced developer networks as an opportunity to gain perspective on the project’s
coordination structure (cf. Section 2.4). The theory of random graphs and
techniques of network analysis are at our disposal to determine whether higher
order structure is an inherent property of developer networks (cf. Section 2.3.
In particular, community-detection algorithms are able to infer communities,
which in many ways are similar to teams, that emerge from the arrangement of
coordination requirements among developers (cf. Section 2.3.6)). In a practical
sense, knowledge of the developers coordination structure, particularly, how
they are arranged into teams, is enormously helpful to identify and bring aware-
ness to potentially risky inter-team coordination requirements. Furthermore,
knowledge about the developer organization helps to understand how well an
organization is equipped to manage their coordination requirements. In essence,
knowing which developers are members of which communities, and how those
communities interact is of primary importance to managing coordination in
software engineering.

Based on prior work from other researchers on developer networks (cf.
Section 2.4), we identified that the most widely used approaches rely exclusively
on a file-level or coarser (e.g., subsystems) granularity, to identify developer
coordination requirements. At this level of granularity, any pair of developers
that make modifications to the same file (or subsystem) are linked together.
Since files can contain many hundred of lines of code and provide a multitude
of independent functionality, modifications at the file level may be an unreliable
source of evidence of coordination requirements by generating many false
positives. In pursuit of more reliable evidence of coordination requirements,
we propose two approaches. First, a fine-grained approach that relies on
knowledge of source-code structure to identify lines of code that are more likely
to be interdependent. Second, an approach that uses the VCS committer and
author meta data to identify coordination between contributors that author
source-code changes and the individuals that approve and integrate the changes
(cf. Section 2.2). We also propose refinements on the network abstraction
of developer coordination to include the temporal order of modifications by

56

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

using edge directionality, and an edge weighting function to estimate the
magnitude of coordination requirement. To investigate whether the finer-
grained approach reveals a more realistic network, we compared the approaches
and found that: (1) the fined-grained developer networks exhibit statistically
significant community structures, that fail to appear in the file-based developer
network counterpart and (2) the developer communities identified in the fine-
grain network largely agree with developer perception and thus have real-
world validity. To statistically evaluate developer communities, we propose a
simulation technique that makes use of the configuration model for random
graphs (cf. Section 2.3.4) to generate a null model, and an unbiased community
quality metric to objectively measure community strength (cf. Section 2.3.6). To
evaluate the developer networks with regard to real-world validity, we conducted
a web-based survey of 53 developers from ten open-source projects. The results
of this work provide the foundation on which to build tools and techniques for
managing developer coordination in large-scale projects. Without the validity
of the underlying developer network, no matter how sophisticated the tool or
technique is, the impact generated by this line of work is limited and potentially
damaging to the field of software engineering.

We have applied our approach to empirically study ten open-source projects,
listed in Table 3.1. We chose the projects to demonstrate our methods’ ap-
plicability to a wide range of projects, from a variety of domains, written in
various programming languages, and ranging in size from tens of developers to
thousands.

In this chapter, we make the following contributions:
• We define a general approach for automatically constructing developer net-
works based on source-code structure and commit information, obtained
from a VCS, that is applicable to a wide variety of software projects.

• We study ten popular open-source projects and demonstrate that the
state-of-the art method of constructing developer networks is unsuitable
to identify fine-grained organizational features, while our approach is
suitable.

• We demonstrate that committer–author information can be used to
automatically construct developer networks with similar information as
developer networks constructed using the manual certificate-of-origin
reporting system for documenting the responsibility of code changes.

• We present an approach to statistically evaluate the existence of developer-
network communities using state-of-the-art machine-learning algorithms
and network-analysis techniques suitable for directed, weighted networks
with overlapping communities.

57

3.1. APPROACH

• We validate our approach by questioning 53 open-source developers from
ten different projects, and show that most developers agree that the
networks accurately capture reality and the identified communities have
real-world meaning.

3.1 Approach

We now present the details of our method for constructing fine-grained developer
networks, based on information from the VCS and source-code structure, to
identify when two developers are engaged in interdependent activities. Following
the network construction, we introduce the statistical techniques we use to
infer and verify developer communities.

3.1.1 Network Construction

We propose two methods for constructing developer networks, each of which
captures different views on developer coordination. First, we introduce the
function-based method that makes use of source-code structure to identify
relationships between developers. Second, we introduce the committer–author-
based method, which makes use of meta data from commits in the VCS to
identify developer relationships. For background material on the fundamentals
of developer networks and network construction, refer to Section 2.4.

3.1.1.1 Function-based Method

To construct a developer network, we use a heuristic for identifying when two
developers are engaged in a coordinated effort. Coordination theory has estab-
lished that the demand for coordination arises from inter-dependencies between
the tasks carried out by a set of individuals [MC90]. Therefore, the validity
of the heuristic is based on how accurately it can identify inter-dependent
developer tasks. Previous research relied on file-based heuristic where develop-
ers were said to be coordinated when they made a contribution to a common
file [JSS11; LRGH09; LRG+04]. Advantages of using a file-based heuristic
include ease of computation, programming-language independence, and suit-
ability for heterogeneous documents (e.g., source-code and configuration files).
The file-based method has certainly proved useful for studying global network
properties (e.g., vertex degree distribution, average clustering coefficient, aver-
age shortest path length) [LRG+04], however, we identified specific limitations
of the file-based method that hinder community detection and justify a more
fine-grained method (cf. Section 3.2).

58

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

Dyad Definition The activity of contributing code to a common file does
not always demand or imply a coordinated effort because files often contain
a multitude of different functionalities. In our function-based method, we use
a more fine-grained heuristic based on code structure, where the event of two
developers contributing code to a common function block is considered to be
evidence of a coordination requirement between the developers.1 An illustration
of the function-based method is shown in Figure 3.1 for three developers working
on two functions within a single file. The rationale is that code within a function
block is inter-dependent as a result of accomplishing a relatively small task,
which is the key principle of functional and procedural abstraction, and which
indicates that the developers of that function are engaged in a coordinated
effort. A finer-grained heuristic will invariably result in identifying a subset of
the developer relationships implied by a coarser-grained heuristic. By using the
function-based method, we consciously sacrifice some edges between developers
in the corresponding developer network to gain the ability to detect developer
communities and identify relationships between developers that are a more
reliable indication of coordination needs. In Section 3.2.6, we empirically
address this trade-off by testing whether the sacrificed edges are authentic with
respect to capturing real-world coordination. In Section 3.2.4, we discuss how
the file-based and function-based heuristics perform with respect to identifying
developer communities.

Using the author information acquired from the VCS, together with struc-
tural information provided by Exuberant Ctags, we construct a weighted and
directed developer network. Vertices of the network represent developers who
authored the code, and edges are included between two developers only when
both had made a contribution to a common function block.

To support numerous programming languages with our approach, we use the
source-code indexing tool Exuberant Ctags to obtain the necessary structural
information. Exuberant Ctags supports over 40 programming languages and is
able to process thousands of files in seconds. It is necessarily based on heuristics
for recognizing function blocks, but this is not problematic for our use case, as
we discuss in Section 3.3.

Edge Direction Software development is achieved through incremental con-
tributions, where one builds on previous work to introduce or improve features
or functionality through commits, which are typically only a few lines of
code [RKS12]. We capture this notion of incremental contributions by using
the commits’ timestamp for identifying the appropriate directions of the edges

1for example, the same function implemented in C or the same method or constructor
implemented in Java

59

3.1. APPROACH

Developer Activity Developer Network

Figure 3.1: Three developers make modifications to two functions in a single
file (left). The corresponding developer network from these modifications using
the function-based heuristic is shown (right).

in the network. For example, developer A creates a new function without the
need to collaborate closely with any other developer. At a later point, when
that functionality is modified, developer B must understand and adhere to
the constraints imposed by the remaining contribution of developer A. Thus,
the dependency is unidirectional (developer A does not need to be aware of
the contribution of developer B). By using directed edges, we enhance the
graph by modeling an additional dimension of developer coordination, which
is utilized by the community detection algorithm to more accurately identify
communities.

Edge Weight Source-code modifications vary in size (e.g., in the number of
lines of code) and vary in time (i.e. when the change is made). Depending on
the modification’s size and the time it’s made, it will influence the work of other
developers’ modifications differently. For example, if two developers contribute
many lines of code to implement a function, it is more likely that these developers
are working on related tasks than if both developers only contributed one line of
code. Time influences the nature of the relationship between developers because
if one developer’s code precedes the other, the first developer may never become
aware of the later developer’s changes. On the contrary, the later developer
is constrained by the earlier developers modifications and must understand
them to avoid violating assumptions imposed by existing code. To model these
varying degrees of interaction between two developers from contributing to a
common software artifact, we assign a weight to each developer relation in the
network. To define the weighting function, we first need to introduce some
notation. Let τd1 denote the set of time indices for modifications made by
developer d1 arranged in chronological order. For example, if developer d1
makes modifications at time t = 1 and t = 8 then τd1 = {1, 8}. Let slocd1(t, f)

60

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

represent the set of lines added or modified (neglecting white space additions)
by developer d1 at time t to function f , then | slocd1(t, f)| is the set cardinality.
To represent the number of lines of code contributed to a function by a developer
within a given time interval [to, to+∆], we define

G(to, to+∆, f) =

to+∆∑
i=to

| slocd1(i, f)|. (3.1)

We define the edge-weighting function ωd1,d2(f) for developers d1 and d2 col-
laborating on function f according to:

ωd1,d2(f) =
n∑
i=1

[
| slocd2(τd2,i, f)|+G(τd2,i, τd2,i−1, f)

]
· δ(G(τd2,i, τd2,i−1, f)),

(3.2)

where δ(x) is given by,

δ(x) =

{
1 x > 0
0 otherwise.

(3.3)

Equation 3.2 reflects the expected degree of coordination requirement between
developers as a function of both temporal location and amount of contributed
code made through successive changes. The inner summation captures the
consecutive nature of one commit building upon the development work of
all previous commits. The outer summation sums over all commits made by
developer d2 to function f . Equation 3.2 considers directionality of edges,
therefore ωd1,d2(f) 6= ωd2,d1(f) in general. Finally, the total weight between d1
and d2 is

wd1,d2 =
∑
f∈F

wd1,d2(f), (3.4)

where F is the set of all functions. An example calculation for the edge weights
based on source-code changes is provided in Figure 3.2.

3.1.1.2 Committer–Author-based Method

Our second method is inspired by earlier work that used sign-off tags on commit
messages to build developer networks [BRB+09]. In this method, tags are used
to identify relationships between all people that contributed to a common
commit, including authors, reviewers, and testers. An example of a commit
that contains various tags is shown in Figure 3.3. In this particular commit,

61

3.1. APPROACH

Developer Activity

Edge Weight

Figure 3.2: Three developers modify a single function block with a series of
commits indexed according to time (top). The edge weight calculation is shown
for the three developers that result from their modifications (bottom).

we are aware of three different individual that are involved in the change, that
included reporting an issue (Andy), implementation of a change to address
the issue (Michael), testing (Andy), and committing the change to the reposi-
tory (Linus). A tag-based network contains important information about the
software-development process, workflow, and developers with related interests
and knowledge [BRB+09]. Sign-off tags are self-reported acknowledgments
of participation on a commit, therefore the tag-based networks undoubtedly
capture real-world coordination. Unfortunately, only a small number of projects
currently use the tag convention.

Our solution for projects that lack the tagging convention is to use the
distinct author-and-committer information captured by Git to construct the
network. For every commit, we place a unidirectional edge pointing from the

62

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

Meta data
commit: 2ac46030331e2952a56c...
Author: Michael S. Tsirkin <mst@redhat.com>
Committer: Linus Torvalds <torvalds@linux.org>
Date: Sun Nov 15 15:11:00 2015 +0200

Commit Message
virtio-net: Stop doing DMA from stack

Once virtio starts using the DMA API, we won’t be able to
safely DMA from the stack. virtio-net does a couple of config
DMA requests...

Reported-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux.org>
Tested-by: Andy Lutomirski <luto@kernel.org>

Figure 3.3: Example of the information that is contained in a commit, including
“Sign-off” tags documenting the trail of individuals responsible for reporting,
testing, and fixing the issue.

committer to the author. In reference to the commit shown in Figure 3.3, an
edge would be placed between the author Michael S. Tsirkin, pointing toward
the committer Linus Torvalds. The direction is important, since relationships
of this type are not necessarily reciprocal and the role of author and role of
committer is fundamentally different. A weight for each edge is the sum of the
number of commits with a common author-and-committer pair. Formally, we
define the weighting function as

ωd1,d2 =
n∑
i=1

committer(d1, ci) · author(d2, ci), (3.5)

where the operator committer(dj, ci) is equal to 1 when developer dj is the
committer of commit ci, and 0 otherwise. Similarly, the operator author(dj, ci)
is equal to 1 when developer dj is the author of commit ci, and 0 otherwise.

Since tag-based networks represent factual real-world collaborative struc-
tures, we use them (if available) to validate the structures of the automatically
constructed committer–author-based networks. In Section 3.2.5, we show that
the committer–author network of Linux is able to capture the same information
as the corresponding tag-based network.

63

3.1. APPROACH

3.1.2 Network Analysis

We now discuss how we use network-analysis and statistical methods to infer
statistically significant communities. Statistical significance is an important
factor because all networks, even ones with nodes connected uniformly at
random, exhibit some level of community structure. In this case, statistical
significance allows us to determine if the developer organization is a consequence
of non-random organizational principles or just random behavior. An example of
a non-random organizational principle may be that of teaming, where developer
associate strongly with a group of individuals that have share responsibilities,
interests, or skills. For an introduction to the mathematical notation of graphs
that is used in the following and for an introduction to network analysis basics,
refer to Section 2.3. Additionally, in Section 3.2.6, we validate the community’s
real-world significance by surveying the developers that participate in the
detected communities.

3.1.2.1 Community Detection

In the most fundamental sense, community-detection algorithms allow us to
decompose an arbitrary network into communities without a-priori information
about the communities (e.g., number of communities, their size, etc.) [BHKL06;
EM12; LRRF11]. For further details on community detection principles, refer to
Section 2.3.6. One important technical limitation of most community-detection
algorithms is the inability to handle weighted and directed graphs, and many
more are unable to identify overlapping communities. The implication of non-
overlapping communities is that community membership is unique (i.e. each
developer is a member of exactly one community). In the case of developer
networks, we expect important developers to lie at the boundary between two or
more communities. If overlapping communities are not permitted, a developer
will be incorrectly forced to exist in one community.

For community detection, we use the order statistics local optimization
method (OSLOM), which has not been done before on developer networks. The
OSLOM is an improvement over other community detection methods because
the optimality criterion is based on a fitness measure that is parameterized
using notions of the statistical significance of a cluster. Most other community
detection techniques rely solely on optimizing modularity (cf. Section 2.3.6), but
these approaches can result in identifying clusters that are still statistically likely
to occur in a random network [LRRF11]. Instead, OSLOM defines the fitness
of each cluster based on the probability of finding the given cluster in a class of
networks without any community structure. Nodes that lessen the statistical
significance of a cluster are then pruned or added to alternative clusters. The

64

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

result is that if a random graph containing no community structure is feed into
OSLOM, the output will contain few clusters or none at all. An additional
feature of the OSLOM approach is that it is one of the few methods that is
able to handle weighted and directed networks and to identify overlapping
communities [LRRF11]. As is shown in Figure 3.4, it is not uncommon that
a node exhibits similar levels of connectivity to two distinct communities.
Without allowing for overlapping communities, the red node in Figure 3.4 is
forced to exist in a single community using an arbitration rule. By forcing the
node’s membership into a single community, any relationship that node had
with members of other communities is completely lost and neglected.

Figure 3.4: Nodes belonging to a blue community and green community are
shown. The red node exists at the boundary of the communities by having
similar levels of connectivity to both communities. Without allowing for
overlapping communities, the red node is forced to be a member of a single
community. The dotted gray boundary demonstrates how each community
could reasonably expand its boundary to include the red node.

During the development of our approach, we experimented with several
other community-detection algorithms and experienced generally poor per-
formance from basic techniques, such as random-walk or eigenvector based
methods [KVV04]. A statistical-mechanics approach using spin-glasses had
comparable performance to OSLOM, but it does not produce overlapping
communities [EM12].

3.1.2.2 Community Verification

The validity and interpretation of the identified communities is often unclear
because community-detection techniques inherently rely on principles of unsu-
pervised learning. Alternatively, a ground-truth naturally exists in the case
of supervised learning approaches that can be conveniently used to establish
a basis for model validation by means of a technique known as cross valida-
tion [Bis06]. In the unsupervised learning approach, an important step that is

65

3.1. APPROACH

often neglected is to validate the output of community detection algorithms by
determining whether the identified communities are meaningful [LRRF11]. A
meaningful community, in this sense, is one that indicates an organized process
or an organization principle that binds members of a community together. In
contrast, a community that arises simply by random chance occurrence is not
meaningful and probably elicits no interpretable insight.

We assess the validity of the observed communities by computing the
probability of observing the community in an equivalent class of null-model
graphs that lack a community structure. The experimental setup is such that
our null hypothesis is that developer networks contain no meaningful community
structure. Therefore, the null model reflects the developer network under a
scenario where developers’ activities are as usual (i.e. developers still contribute
code at their usual rate and coordinate with the same number of people),
except the developers do not associate (i.e. have coordination requirements)
with a particular group of individuals. For the null model to be valid, it must
represent a typical development process (i.e. the same number of developers,
the same commit rate, etc.), and only differ in the variable that we want
to investigate, that is the variable of community structure. Since we do not
know a priori which developer networks contain meaningful communities, after
all that is exactly what we wish to determine, we make use of a simulation
procedure to construct the null model developer networks from the empirical
(i.e. observed) developer networks. Then we are able to compare the strength
of the communities in the null model networks and the empirical networks. If
the community strength in the observed and null model networks is equivalent,
then the observed communities must not be meaningful because they can arise
from a random process.

To generate the null model, we use a standard approach called the configu-
ration model for random graphs (described in Section 2.3.4), where nodes are
joined uniformly at random with the constraint that the degree distribution is
identical to the input graph [GMZ03]. Since the degree distribution is main-
tained, the null model generation procedure does not alter the activity level
of a developer (i.e. the amount of code contributed), or the number of people
a developer has coordination requirements with. If it is possible to detect a
statistically significant difference, in terms of community strength, between the
null model and observed developer communities, we can conclude that it is
improbable that the topological structure of the observed developer network
arose from a uniformly random process and is more likely explained by an
organized process, such as a coordinated development effort and teaming.

The structure of a community, or set of communities, is measured according
to community-quality metrics, of which several have been proposed in the

66

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

literature [AGMZ11]. In basic terms, nodes that are members of the same
community are densely connected and comparatively loosely connected to nodes
that are not members of the same community. A variety of communities are
realized by varying the amount of internal density and external sparsity of
edges. Community quality metrics are used to measure the extent to which
a subgraph adheres to the theoretical properties of a community. For an
introduction to network modularity and community-quality metrics, refer to
Section 2.3.6. In our approach, we avoid the commonly used modularity metric
in favor of conductance for four reasons [LLM10]. First, modularity is known to
suffer from a “resolution limit”, meaning it is unable to reliably measure small
communities [FB07]. Second, modularity is often the optimization criterion
used by community-detection algorithms. By using conductance, we avoid
topological-structure bias introduced by the optimality criterion imposed by the
community-detection algorithms. Third, conductance allows us to characterize
an individual community, whereas modularity is a global metric that considers
all identified communities and does not have a meaningful interpretation for a
single community [KVV04]. Fourth, modularity is known to increase with the
number of communities and nodes, making it inappropriate to compare projects
of different size [For10]. Although all known community-quality metrics suffer
from some type of bias, conductance has been shown to exhibit reliable behavior
for a wide range of cases [For10].

Formally, conductance φ ∈ [0, 1] of a community C in graph G, such that
V (C) ⊆ V (G), is defined as:

φG(C) :=
| cut(C,G \ C)|

min {deg(C), deg(G \ C)}
, (3.6)

where cut is the cut-set of a graph cut, and deg is the total degree of a
graph [AGMZ11]. Intuitively, φ is the probability that a random edge leaves
the vertex set that composes the community. An isolated community, with no
edges leaving the community-vertex set, has zero conductance. Conversely, a
community with every edge leaving the community-vertex set has a conductance
of one. It is important to recognize that φ is a function of both intra-cluster
and inter-cluster edges.

To discriminate between identifying statistically significant communities
and purely random topological features of the network, we employ a stochastic
simulation. Given a developer network G with N ≡ |V (G)| vertices (develop-
ers) and E edges (connections between developers), we apply a community-
detection algorithm to identify a set of communities C = {C1, C2, . . . , Ci} where
V (Ci) ⊆ V (G) ∀i. Mean conductance over all communities is given by

67

3.1. APPROACH

qG(C) =

∑
C∈C φG(C)

|C|
. (3.7)

Using this input data, we generate a null model that represents an equivalent
developer network but with disorganized activity. To generate the null model,
we randomize the original network according to the configuration model using a
graph-rewiring technique, with which the pairs of edges are selected uniformly
at random and the end points swapped, such that an edge pair (u, v) and
(s, t) is rewired to (u, t) and (s, v) [GMZ03]. The rewiring procedure maintains
the amount of connectivity (i.e. number of edges) for each developer, but
destroys the preference to attach to a particular group of developers. The
reason for destroying this preference is that the resulting network will not
contain community structure that is a product of an organized process. Any
communities that remain will exhibit properties that reflect random associations
between developers. The rewiring procedure is executed m times2 to generate
a set R = {R1, R2, . . . , Rm} of rewired graphs with V (Ri) = V (G) ∀i. This
set of rewired graphs represent a family of networks that all contain various
amounts of community structure, but all of which are a product of a random
process. From this distribution of networks, we gain insight into which kinds
of communities are likely and unlikely to occur in a developer network where
there is no preference (i.e. organizational principle) for developers to associate
with particular groups.

It is important to recognize that this randomization process is highly
constrained compared to the ER random graph model described in Section 2.3.4
because it maintains the degree distribution, edge weights, and edge direction.
The degree distribution, which represents the amount of participation by
each developer, is given by PC(k) = |{c ∈ C| deg(c) = k}|/|N |. The rewiring
procedure is intentionally designed to maintain the original degree distribution,
that is,

PRi(k) = PG(k) ∀Ri ∈ R . (3.8)

For each rewired graph Ri, we calculate the mean conductance qRi(C) and
define the probability distribution as

PR(Q) =
|{i ∈ [1, |R|] | qRi(C) = Q}|

|R|
. (3.9)

With standard hypothesis testing, we can then evaluate whether the coordina-
tion structure is statistically significant. We check whether it is possible that

2We ensured that our choice m = 3000 was sufficiently large by checking the convergence
of all derived results.

68

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

the observed graph could be described by the generated null model with the
equivalent degree distribution as the observed graph; if this is not the case, we
conclude that our observation is not described by a uniformly random process.

More precisely, the null hypothesis H0 that the observed mean conductance
qG(C) is described by the conductance distribution of the rewired (null model)
graphs with a nonvanishing probability is given by,

H0 : PR(Q = qG(C)) > ε , (3.10)

with the alternative hypothesis given by H1 : PR(·) ≤ ε.
We use a one-sample t test to evaluate the hypothesis with the standard

significance level of 0.05. Since the t test is robust against the deviation from
a normal distribution with large sample sizes (i.e., larger than 30), we do not
need to check our data for a normal distribution. We present the results of the
statistical test for all subject projects next.

3.2 Evaluation & Results
We now present our hypotheses and findings on the network properties of
developer networks we constructed for ten open-source projects. To address our
hypotheses, we compare developer networks constructed using the prevalent file-
based method (cf. Section 2.4) and the more fine-grained methods we propose
(cf. Section 3.1.1.1). In Section 3.2.6, we present the results of a developer
survey to address the validity of our approach with respect to capturing real-
world coordination. Our overall goal is to determine whether the methods
generate network representations of developers’ activities that exhibit higher-
order structures, in terms of developer communities, and exhibit real world
validity. With a valid network representation, we are able to derive value
from knowing which developers are likely working with each other on common
or related tasks. In addition, a valid and significant community structure is
indicative of mechanisms that give rise to a pattern and is suggestive of an
organized development process.

3.2.1 Hypotheses

In order to derive value and utility from developer networks, previous work has
largely assumed that the networks are an accurate representation of developer
coordination and this strong assumption has been challenged in only a limited
scope [MW11]. We challenge this fundamental assumption about developer
networks by investigating the local topological features that should be present
if the network is indeed an authentic representation of developer coordination.

69

3.2. EVALUATION & RESULTS

Though other views are possible, we then validate that this particular view on
coordination aligns with developers’ perceptions (cf. Section 3.2.6).

Software development is an organized process and, if a developer network
faithfully captures real-world developer coordination, it should also exhibit an
organized structure.

H1—Developer networks exhibit identifiable communities that significantly
exceed the magnitude of organization that is expected from an equivalent unor-
ganized process.

By an equivalent unorganized process, we mean a situation that is equivalent
to the original process except that developers’ contributions to the software
system are randomly distributed across various system components, showing
no particular organized responsibility toward a particular aspect of the system.

The standard method of constructing developer networks relies on file-level
information to identify collaborating developers. We show that this method
is insufficient for identifying the latent community structure as a result of
over-connecting developers in the network. Dense networks are known to hinder
community-detection algorithms [BGW03]; furthermore, prior work has shown
this problem arises for file-based developer networks [JSS11].

H2—Developer networks constructed using the standard file-based method fail
to identify statistically meaningful communities, whereas a more fine-grained
function-based method is able to identify statistically meaningful communities.

The manual process of tagging a commit is an intentional acknowledgment
of one’s participation in a commit. Each developer only tags a commit once
they have made a contribution to the code. Therefore, a developer network con-
structed on the basis of commit tags can be regarded as a faithful representation
of real-world coordination. To evaluate the validity of the committer–author-
based method, we quantify congruence between the ground truth tag-based
network and our automatically-constructed committer–author network.

H3—Tag-based developer networks constructed from the manual process of
tagging commits are highly congruent with automatically determined committer–
author-based networks.

3.2.2 Subject Projects

We selected ten open-source projects, listed in Table 3.1, to evaluate the meth-
ods we proposed; the projects vary by the following dimensions: (a) size (lines
of source code from 50KLOC to over 16MLOC, number of developers from 15
to 500), (b) age (days since first commit), (c) technology (programming lan-
guage, libraries used), (d) application domain (operating system, development,

70

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

Table 3.1: Overview of subject projects for a 90-day development window.

Project Developers MLOC Lang Domain

Linux 580 16 C OS
Chromium 500 6.5 C, C++ User
Firefox 400 9.3 C++, JS User
GCC 70 6.2 C, C++ Devel
QEMU 50 0.78 C OS
PHP 50 2.2 PHP, C Devel
Joomla 30 1.3 PHP, JS Devel
Perl 30 4.5 Perl, C Devel
Apache http 15 2.2 C Server
jQuery 15 0.05 JS Library

productivity, etc.), (e) development process employed, and (f) VCS used (Git,
Subversion).

For each project, we analyze the VCS for a 90 day window starting in
the second quarter of 2014. While window size certainly influences the re-
sulting network, the impact of enlarging the window beyond 3 months is
marginal [MW11].

3.2.3 Existence of Statistically Significant Communities

To test hypothesis H1, we used our function-based method to construct de-
veloper networks for all subject projects. We expected statistically significant
communities to exist as a result of an organized software-development process
in, at least, some of the subject projects, and we now evaluate whether our
method is able to identify the communities using the community-verification
procedure described in Section 3.1.2.2.

As an example, taken from QEMU, of the primary result, Figure 3.5
shows the histogram and kernel density estimation (Gaussian kernel) for the
conductance samples drawn from the set of 3000 rewired networks. The majority
of the probability mass is located between a conductance value of 0.5 and 0.625.
This range of values represents what is expected from a network with no
meaningful community structure. Recall that smaller conductance indicates a
stronger community, and equivalently, higher levels of organization. The data
indicates that observing a community with a conductance smaller than 0.5
is extremely unlikely to occur in the null model. In Figure 3.5, the observed
conductance (i.e. from the non-rewired network), is represented as a solid point
located at 0.38. Notice that the this point lies significantly left of (stronger

71

3.2. EVALUATION & RESULTS

●

t test: p value < 2.2e−16

0

5

10

15

0.3 0.4 0.5 0.6 0.7
Conductance

D
en

si
ty

Figure 3.5: Community significance test on the observed mean community con-
ductance (black dot) against the distribution of mean community conductance
for 3000 rewired graphs for QEMU development from 14.2.2014 to 14.5.2014.
Vertical lines represent the 95% confidence intervals.

community) than any of the samples from the rewired networks. This clearly
shows the separation between the observed developer-network conductance of
QEMU and the conductance distribution for the unorganized (rewired) network.
The small p value of the t test indicates that the observed communities are
statistically significant. Table 3.2 summarizes the results for all the subject
projects: The function-based method identifies strong communities in several
of the subject projects and for all, a statistically significant difference between
the observed and rewired networks.

In conclusion, we reject the null hypothesis that the observed developer
networks exhibit communities with properties that could plausibly arise from
an unorganized process. Thus, we accept H1.

3.2.4 Comparison of File-Based and Function-based
Methods

To test hypothesis H2, we performed a comparison between the file-based
method and the function-based method for constructing developer networks
(cf. Section 3.1.1.1). The comparison draws attention to limitations of the file-
based method that manifest as the inability to identify statistically significant
communities. In particular, we evaluated the mean community conductance
and mean community density for two revisions of each subject project. Graph

72

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

Table 3.2: Comparison of community conductance for the original (observed)
and randomized (rewired) networks.

Project
Observed

conductance
Rewired

conductance

Linux 0.05 0.88
Chromium 0.20 0.74
Firefox 0.11 0.79
GCC 0.01 0.48
QEMU 0.39 0.56
PHP 0.15 0.80
Joomla 0.57 0.84
Perl 0.49 0.66
Apache http 0.27 0.80
jQuery 0.49 0.75

density is a measure of graph connectedness, where a complete graph has
density 1, and a graph with no edges has density 0. Figure 3.6 shows a scatter
plot of mean community conductance versus mean community density, in which
each point represents a three month project revision. We see an approximate
but distinct separation between the file-based and function-based networks.
Communities identified in the function-based network are both internally dense
and exhibit low conductance (i.e., strong community structure). In contrast, the
file-based communities are dense, which we would expect because of the overall
high density of the network, but exhibit high conductance (i.e., weak community
structure). From this result, we can conclude that the edges that are neglected
by the function-based method are the ones which cross community boundaries.
For this reason, we see the function-based and file-based communities exhibit
similar levels of internal density, but the conductance in the function-based
communities is lower. In Section 3.2.6, we address the relevance and validity of
the file-based edges that are crossing a community boundary and ignored by
the function-based method. In summary, this result demonstrates that the finer
granularity of the function-based method enables the discovery of statistically
significant communities, but is not excessively fine such that it destroys the
connectedness of the graph.

The probability density plot shown in Figure 3.7 further illustrates the signif-
icant difference between the function-based and file-based network communities.
There is a clear separation between the distributions where the function-based
method identifies significantly stronger communities compared to the file-based
method. We performed a paired t test to evaluate whether the difference in

73

3.2. EVALUATION & RESULTS

● ●

●

●

● ●

●●●●

●●

●
●

●●

● ●
0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6
Mean conductance

M
ea

n
de

ns
ity

Method ● File−based (old) Function−based (new)

Figure 3.6: Scatter plot of projects analyzed using both file-based and function-
based methods for two different revisions. A clustering by crosses (left) and
circles (right) is visible; the function-based method is able to resolve more
significant communities without compromising density.

the distributions is statistically significant. Before performing the t test, we
checked the distributions for normality using a Shapiro-Wilk test. It produced
p values of 0.99 and 0.075 for the file-based and function-based distributions,
respectively. The following t test generated a p value of 1.29×10−5. Thus, we
can confidently reject the null hypothesis that the difference between the two
measurements has a zero mean value.

To draw further attention and insight to the differences between file-based
and function-based communities, we visualize the developer networks of QEMU
in Figure 3.8. It illustrates the inability of the file-based method to identify
statistically meaningful communities with the example of the QEMU developer
network. Each bounding box represents a single community of developers. The
border color of each box uniquely identifies each community, and pie charts
are used to represent each developer’s relative participation in a community.
A box’s background color is used to represent the significance of each commu-
nity, calculated according to the conductance distribution (cf. Section 3.1.2.2).
Green represents a significant (strong) community and yellow represents an
insignificant (weak) community. Intra-community edges are shown in black,
and inter-community edges are shown in red. The edge thickness represents the

74

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6
Mean conductance

D
en

si
ty

Method File−based (old) Function−based (new)

Figure 3.7: Density plot of mean community conductance computed for each
project comparing the file-based and function-based methods.

strength of a relationship. We use PageRank centrality to identify important
developers, denoted by the size of each node.3

In Figure 3.8, all communities identified by the file-based method (left side)
for QEMU are insignificant. The conductance of the communities is on the
order of what is expected from a unorganized (rewired) network, represented
by the yellow background color; it indicates that the file-based method failed
to capture the organized structure of developer coordination. In contrast, the
function-based method is capable of identifying several significant communities
in the same project. Notice further that the file-based method has generated
an extremely dense network, in which nearly every developer is contributing
in every community, visible by the large number of multicolored nodes. In
comparison, the developer network constructed using the function-based method
is less dense; it has identified developers that make contributions only within
one or two communities, which is visible by the large number of single-colored
nodes.

In summary, we conclude that the file-based method fails to identify sta-
tistically meaningful communities as indicated by high conductance values
that are statistically equivalent to the unorganized networks. In contrast, the
function-based method was able to identify the latent community structure that

3To reduce clutter, we filter the inter-community edges by aggregating the edge multiplicity
between two communities into a single edge, connecting the two most important developers.
The weight of an inter-community edge represents the total coordination between all nodes
in the connected communities.

75

3.2. EVALUATION & RESULTS

(a) File-based developer network (b) Function-based developer network

Figure 3.8: Developer networks constructed from QEMU v1.1. All commu-
nities in the file-based network are insignificant (yellow background color).
The function-based method identified several significant communities (green
background color).

was concealed by the file-based method. We emphasize that we use conductance
here to evaluate whether the topological structure exhibits statistically signifi-
cant communities, but we have not made any judgment about the communities
quality beyond strictly topological features. Thus, we accept H2.

3.2.5 Tag-Based and Committer–Author-Based Network
Similarity

To test hypothesis H3, we opt for an alternative approach to validating the
network structure because we have access to a ground-truth network constructed
using commit tags. We constructed developer networks for three revisions of
the Linux kernel using the tag-based method (as provided by Linux’s VCS)
and the committer–author-based method (automatically constructed by us, as
described in Section 3.1.1.2). We chose Linux as the sole test subject, because
it enforces a strict tagging convention for every commit, which the other subject
projects do not.

For each revision, we compute the similarity between the tag-based and
committer–author-based networks using a graph matching strategy based on
the Jaccard index [For10]. Figure 3.9 shows the results as a density plot. We see

76

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
Vertex Neighborhood Similarity

D
en

si
ty

Development Cycle 3.5 3.6 3.7

Figure 3.9: Comparison between tag-based and committer–author-based net-
works. Each curve represents a single revision of Linux. The similarity between
each developer neighborhood is shown as a density plot with a mean of 70%
similarity.

a bimodal distribution with peaks at 100% similarity (perfect match) and 50%
similarity. The average taken over the three revisions is 70% match between
the two networks. The probability of having a 70% match between two labeled
random graphs, with equivalent size of the committer–author-based network, is
less than a half of one percent; hence, we conclude that the committer–author-
based network is an authentic representation of developer coordination, and we
accept H3.

3.2.6 Network Validation

So far, we have not addressed whether the developer-network edges accurately
represent real-world coordination, and if the detected communities have real-
world significance. To address these unknowns, we conducted a developer survey
to gather ground-truth data about developer coordination and communities.

Goals We now address whether the function-based method accurately cap-
tures real-world developer coordination by means of a survey. There is no
need to include committer-author networks in the survey because they are
constructed from direct references to developer coordination. Specifically, we
address two research questions (RQ). First, we want to validate the network

77

3.2. EVALUATION & RESULTS

edges with respect to capturing real-world collaborative relationships according
to developers who participate in the project.

RQ1—Do the network edges, weights, and directions, accurately represent
real-world collaborative relationships as they are understood by developers in
the project?

Second, we want to validate the real-world significance of the identified com-
munities. Since community-detection algorithms are aware of only topological
structure, there is no guarantee that the identified communities coincide with
real-world communities that have vastly non-topological characteristics (e.g.,
common interests or development responsibilities).

RQ2—Do the identified communities represent developer communities that
have real-world significance?

In Section 3.1.1.1, we identified that the function-based networks contain less
edges than the file-based networks. What is not clear at this point is how those
edges impact the developer communities. In particular, we are interested in the
file-based edges that cross a community boundary (i.e. inter-community edges),
since those are the ones that prevent the community detection algorithms from
identifying the latent community structure.

RQ3—Are inter-community edges that are present in the file-based networks
but missing in the function-based authentic with respect to developer perception?

Participants We selected participants that made a contribution to one of
our subject projects shown in Table 3.1 within the previous year, whose contact
data we extracted from commit messages of publicly available VCSs. For each
project, we constructed the developer networks and decomposed them into
developer communities of, at least, five developers (fewer developers typically
contain an insignificant number of coordinations). From the population of
6704 developers, we randomly selected 521 developers of different levels of
involvement (e.g., single contributor to project lead), responsibilities (e.g.,
developers from various subsystems), and roles (e.g., tester, reviewer, bug
fixer).

Experimental Material We conducted the survey online. It included,
among others, demographic questions and the following survey questions (SQ):

SQ1.a—Whom did you collaborate closely with during the development of
version X?

SQ1.b—What was the magnitude of collaboration you had with the following
individuals during the development of version X?

78

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

Figure 3.10: An example of a survey question to determine the real-world
relationships between developers. The developers shown in this list are all
sampled from the developer network so that we could compare each developer’s
response with the corresponding developer network.

SQ2—Does the following network accurately represent collaborative relation-
ships between developers?

SQ3—Do the developers shown in the above network represent a developer
community?

For SQ1.a, we provided auto-completion (obtained from analyzing the VCS)
to help with recall and correct spelling of developers’ names, for cross-referencing
purposes. In a supporting question (SQ1.b), we presented a set of 10 developers
sampled from the developer network and displayed the developers’ name and
e-mail address. An example of this is shown in Figure 3.10. For SQ2 and
SQ3, we displayed a resizable visualization of the community network (not the
entire developer network), labeled with the developer names. Both questions
had to be answered on a five-point Likert scale [Lik32], ranging from strongly
disagree to strongly agree. Additionally, participants could enter a free-format
response where the participant could indicate any problems they experienced
and elaborate on their responses. A pilot of the survey with ten testers did not
reveal any significant issues.

79

3.2. EVALUATION & RESULTS

Figure 3.11: An example of the network visualization used in the developer
questionnaire. The network represents a single developer community. The
individual completing the questionnaire is represented by a solid red node.

An example of the information that we provided to participants for the
purpose of answering SQ2 and SQ3 is shown in Figure 3.11. The network
shown in the questionnaire represents the developer community that the survey
participant is a member of. The survey participant is represented by a solid red
node, in this example the developer is Andreas Färber. Node labels indicate
the identify of the developer based on information that we acquired from the
VCS. The edge thickness in the visualization reflects the edge weight between
two developers (i.e. strength of relationship). On the left side, the adjustments
for the visualization are presented, the Likert scale response buttons, and the
free-form text field.

Procedure To recruit survey participants, we sent a solicitation e-mail di-
rectly to the addresses found in the VCS. The solicitation e-mail contained an
explanation of the goals of the survey in addition to a link where the survey

80

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

could be found. The full text contained in the solicitation e-mail is provided in
the appendix (page 189). Due to the nature of the survey delivery mechanism,
the participants were able to fill out the survey in any environment they desired.
We did not directly supervise the participants, and no time constraint was im-
posed. Upon completion of the survey, the participant electronically submitted
the survey, and the responses were sent to our database where the participants
information (e.g., unique id, e-mail address, cluster id etc.), project data (e.g.,
name and revision), and survey responses were automatically stored.

Analysis: Network Validity (RQ1) and Community Validity (RQ2)
In total, 53 developers of the 521 that we contacted completed the survey. We
show the responses to the Likert-scale questions in Figure 3.12. Regarding RQ1
(left in the figure): Almost half of the participants agree or strongly agree, and
a quarter disagrees or strongly disagrees that the network accurately captured
developer collaborative relationships. For RQ2, we see a similar distribution
for the community-authenticity question (right in Figure 3.12): 53.9% of the
participants strongly agree or agree that the communities have real-world
significance.

Furthermore, we received a number of written responses for each question
and categorized them manually. Regarding network accuracy, 13 written re-
sponses were given: 8 referenced missing developers or coordination, 3 referenced
incorrect coordination, and 4 made various comments, such as, “Interesting
Survey!”. With respect to the validity of the edges, we received responses such
as, “Many missing edges, but the ones that are present are ok.” Regarding
community authenticity, 14 responses were given: 8 stated that the network
is accurate and provided a real-world meaning to the community, 2 responses
stated that the network is accurate, 3 responses stated the identified communi-
ties are partially accurate, and 2 responses stated the network was inaccurate.
Some example responses regarding community validity and interpretation are,
“Most developers in the network are indeed people that I collaborate with.”
We also found evidence that the communities are representative of developers
with related tasks. One developer wrote the following about a particular com-
munity: “All developers worked on the sfc driver, as employees or contractors
of [company name].” Another wrote, “[developer name 1], [developer name 2]
and myself work on similar system feature.” Lastly, another participant wrote,
“That [community] network is part of Kernel Media subsystem.”

Analysis: Inter-community Edges (RQ3) We now address whether miss-
ing edges in the function-based network that are present in the file-based network
(cf. Section 3.1.1.1) distort the view on coordination by neglecting authentic

81

3.2. EVALUATION & RESULTS

Figure 3.12: Developer survey responses to questions stated in Section 3.2.6
(SQ2 left, SQ3 right).

relationships. Unfortunately, we are unable to directly compare the file-based
and function-based communities, because the file-based networks are extremely
dense and hinder community-detection algorithms [JSS11]. Instead, we focus
our attention to the edges that cross a community boundary, because these
edges conceal the community structure and the results of Section 3.2.4 indi-
cate that most missing edges are in fact cross-community edges. We used
the responses from SQ1 to test the authenticity of cross-community edges
neglected by the function-based method. To accomplish this test, we first
identified the communities using the function-based method. We then used the
function-based communities to identify all the edges that crossed community
boundaries in the equivalent file-based network (i.e., same project and revision).
We then removed all developers from the network who did not answer the
survey. Finally, we calculated the percent of file-based cross-community edges
that were confirmed by survey responses. For two subject systems (Linux and
QEMU), we collected a sufficient amount of data (148 ground-truth edges). For
QEMU, we acquired 47 ground-truth edges between 25 developers. Among the
25 developers, we found 82 file-based edges that cross a community boundary
and were neglected by the function-based method. On average, 15.3% of the
edges crossing a community boundary are authentic with a median of 7.7%.
For Linux, we acquired 101 confirmed edges, and none of the 27 file-based
edges crossing a community boundary were authentic. From these results we

82

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

conclude that most of the edges that obscure the community structure in the
file-based method are in fact unconfirmed by developers that answered the
survey and appear to be an artifact of the method.

Interpretation & Discussion Both histograms in Figure 3.12 illustrate a
substantial quantity of agreement responses for both the network-accuracy
(RQ1) and community-authenticity (RQ2) questions. Additionally, in the
written responses, we see that developers largely agree that the networks are
accurate and that the identified communities have real-world meaning. We
conceptualize the primary result using the information retrieval concept of
precision and recall, using the terms defined in Figure 3.13, according to:

Edge Validity Terminology

Confirmed Unconfirmed

Present Authentic Edge Unauthentic Edge

Absent Missing Edge Not Applicable

Figure 3.13: An edge between a pair of developers is classified according to four
possibilities. Confirmed means that a relationship is confirmed by a developer
in the project. Unconfirmed means that no developer made any comment
regarding the relationship. In the developer network, an edge may be present
or absent. The Cartesian product of these sets produce the four categories. For
example, a relationship that is confirmed and appears in the developer network
is referred to as an authentic edge.

Precision =
|Authentic Edges|

|Authentic Edges|+ |Unauthentic Edges|
(3.11)

Recall =
|Authentic Edges|

|Authentic Edges|+ |Missing Edges|
. (3.12)

Interestingly, the responses indicate that our approach has good precision
because the identified coordination relationships between developers and the
developer communities are largely confirmed by developer perception, but the
approach has imperfect recall, because some confirmed edges are absent from
the developer network. Compared to the file-based method, we noted that
the function-based method contains less edges (cf. Section 3.1.1.1). For Linux

83

3.3. THREATS TO VALIDITY

and QEMU, we were able to investigate the authenticity of missing edges
that influence the community structure (RQ3). Overall, we found that very
few file-based edges that are not captured in the function-based method were
authentic. This means that the file-based method fails to exhibit significant
community structures because it incorrectly connects members of different
communities with edges that are not reflective of real-world relationships.
In contrast, the finer-grained function-based method contains less of these
erroneous inter-community edges of the file-based method so that we are able to
detect significant community structure. In essence, the function-based method
prioritizes precision over recall so that latent structure can be detected in the
developer network. Given that our approach is fully automated and based
on a single data source, this is a very encouraging result. To be fair, it was
not to be expected that our approach achieves perfect recall rates, since not
every mode of coordination is manifested in the VCS. Still, despite this lack of
information, many developers agree that the identified communities capture a
logical partitioning of developers.

3.3 Threats to Validity

External We applied our approach to ten manually selected subject projects,
which threatens external validity. We chose projects of different but substantial
sizes, with long and active development histories, and from different application
domains to cover a considerable range of projects. Despite the diversity of our
subject projects, they still represent only a fraction of the total diversity of
software projects. The projects we considered appropriate for our study are
mature and largely successful in many dimensions (e.g., highly active, with
many developers and users). Meaningful community structure in developer
networks may be limited to these kinds of projects. In unsuccessful projects,
developers may be less aware of coordination requirements and so they are less
reflective of real-world relationships between developers. Furthermore, it is
unclear as to whether our results generalize to commercial projects since all
of the subject projects are open source. Commercial project data is generally
well protected, making such studies difficult. For the tag-based networks, only
a few projects employ a strict tagging convention, so we cannot generalize the
results.

Internal We realize that incomplete or incorrect recollection of a developer’s
collaborative relationships could compromise the survey responses. To help
mitigate the consequences, we displayed the labeled developer network beside
the survey questions. The compromise is that developers may only recall the

84

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

collaborative relationships that are shown in the network and still forget others.
However, this only influences the completeness and not the correctness of the
responses. Since we already characterize our method as partially incomplete,
the consequences of displaying the developer network does not affect our
conclusions. A control group formed by including a secondary survey with
randomized networks could increase confidence in the results, however, we
recognized that the response rate is low and a control group would further
reduce the already small experimental group size.

Construct The use of Ctags to identify indications of coordination require-
ments at the function level is based on heuristics. This leaves room for intro-
ducing misclassified lines of code by attributing them to the wrong function
block. However, this threat to validity is minor, as only many misclassifications
would influence the outcome of the statistical analyses we applied. As Ctags is
widely used in practice, this is not to be expected. In a sense, we accept this
minor threat in exchange for an approach that is language independent. To
establish a weight on edges in the developer network, we use a metric based on
the lines of code and the time in which the change was made. Lines of code is
only one possible indicator of effort or involvement in the implementation of
a function and it is unclear at this point whether other metrics (e.g., commit
count) would be more appropriate. Nevertheless, the weights have played a
central role in the identification of meaningful and valid community structure,
which is a testament to the appropriateness of the edge weighting function for
this particular purpose.

3.4 Related Work

Developer networks constructed from VCS data was first done by Lopez-
Fernandez et al., where developers were linked based on contributions to a
common module [LRGH09; LRG+04]. Huang et al. improved Fernandez’s work
by automating module classification using knowledge of file directories [HL05].
The results indicated that modules may not provide detailed enough informa-
tion to be useful. Improvements were made by narrowing the coordination
assumption to common file contributions to identify more fine-grained coordina-
tion [JSS11]. Narrowing the definition of coordination helped to identify more
subtle features than with the module-based assumption, but the authors noted
that the networks were still too dense to identify community structure. In our
approach, we use an even finer-grained definition of coordination to further
reduce the density of the network, which enabled us to uncover community
structures, in the first place. Previous work mostly applied metrics that do

85

3.4. RELATED WORK

not produce rich visualizations, such as degree distributions or centrality plots,
and no one has visualized community structure [HL05; LRGH09; LRG+04;
MW11; TMB10]. We are aware of one paper focusing on visualization of
developer coordination using a file-based method, but community-detection was
not possible without edge filtering due to the extreme density of the developer
networks [JSS11].

Toral et al. applied social-network analysis to investigate participation
inequality in the Linux mailing list that contributes to role separation between
core and peripheral contributors [TMB10]. Bird et al. investigated developer
organization and community structure in the mailing list of four open-source
projects and used modularity as the community-significance measure to confirm
the existence of statistically significant communities [BPD+08]. Panichella et
al. constructed developer networks based on mailing-list and issue-tracker data
to identify developer teams and examine the driving forces behind splitting
and merging teams during system evolution [PCDO14]. Our work differs by
constructing networks from source-code contributions, instead of communication
networks based on e-mail archives or issue trackers. Additionally, we apply our
approach to a diverse set of projects and show that our findings have real-world
significance.

Bird et al. examined the influence of code ownership on defect proneness
at the component level of two commercial software products [BNM+11]. They
operationalize ownership based on the percentage of commits to a compo-
nent made by a single developer, however, in open-source projects component
ownership is rarely dominated by a single individual [WOB08]. Our work
is complementary by supporting the identification of developer communities,
which can be used to study ownership at the community level instead of the
developer level.

Cataldo et al. examined the concept of socio-technical congruence and
its impact on development productivity and software quality [CH13; CHC08].
Based on knowledge of work dependencies and technical dependencies, they
identified coordination requirements. The “fit” between the actual coordina-
tion and required coordination was examined with the conjecture that high
congruence is a desirable property. To establish the actual developer coordina-
tion, they used a-priori knowledge of developer teams, manual investigation
of communication logs, and modification requests. Our work contributes to
their framework by providing a fully automated method to identify modes of
coordination using only data from the VCS.

Previous work utilized the Linux tagging convention to construct a developer
network consisting of people involved in reviewing, acknowledging, and testing
commits [BRB+09]. We extended this work by proposing a method to extract

86

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

similar information for projects that do not use the manual tagging convention,
to automate the approach, and we validated it against the tag-based network
for Linux.

Meneely et al. addressed the question of whether networks constructed from
VCSs using the file-based method captured real-world coordination [MW11].
They concluded that the file-based networks were largely representative of
developer perception, but that the networks suffered from errors in missing
coordination and also falsely suggesting coordination. In contrast, our survey
revealed that the more fine-grained method mainly suffers from missing edges.
Furthermore, we extended on the original questionnaire format by allowing
the participants to observe the developer network directly, instead of only
displaying a list of names.

3.5 Summary

Task interdependencies, and consequently the need for developers to coordi-
nate their modifications to source code, are intrinsic to software development.
Information stored in the VCS provides valuable evidence of where task interde-
pendencies exist by providing traceability between developers and source-code
they modified. This information provides the basis for constructing developer
networks that are a representation of the overall coordination structure for a
software project. In order to derive value from these networks, they must be
an authentic representation of the real-world. In this chapter, we proposed new
approaches for constructing developer networks: (1) based on fine-grained infor-
mation, by exploiting source-code structure to localize changes to source-code
entities (cf. Section 3.1.1.1), and (2) based on commit meta data to identify
committer–author relationships (cf. Section 3.1.1.2), which should, in theory,
lead to more authentic developer networks compared to approaches that make
use of only file-level information. We compared our fine-grained method to
the existing file-based method (cf. Section 3.2.4) and compared our committer–
author networks to tag-based networks that are constructed from manually
reported “Sign-off” tags (cf. Section 3.2.5). We stated a set of hypotheses
regarding the existence and statistical significance of community structure in
developer networks (cf. Section 3.2.1). We then used developer communities as
the basis for conducting a survey to determine whether our developer networks
are valid with respect to developer perception (cf. Section 3.2.6). To address
the hypotheses, we analyzed 10 open-source projects from a variety of domains,
implemented in a number of different programming languages.

First, we found that the current file-based method for constructing developer
networks from the VCS generates networks that are extremely dense. We

87

3.5. SUMMARY

found that by using a finer-grained heuristic, based on source-code structure,
the network density is lower and the communities we are able to infer are
stronger (according to conductance), compared to file-based developer networks
(cf. Section 3.2.4). The statistical verification procedure (cf. Section 3.1.2.2)
revealed that in the file-based networks, the communities are too weak to be
statistically significant. In the case of the fine-grained developer networks, the
communities are statistically significant, indicating that the developers are
arranged according to the non-random organizational principle of modularity.
In essence, the file-based heuristic obscures the self-organizing nature of software
developers in open-source projects because, at this coarse granularity, developers
appear to associate with each other randomly. In Section 2.3, we introduced
the philosophy of a network perspective and that the primary interest is
that of within-variable relationships that stem from tie dependences. In this
regard, one major contribution made here is a new method for abstracting
developer activities (the real-world phenomenon) into a network representation
that exhibits tie dependence, a property that was missing from the file-based
abstraction. Without tie dependence, there is little justification for applying a
network abstraction to this particular phenomenon. With tie dependence comes
the emergence of structural patterns that can be exploited for practical insights
to support software development. For example, the pattern of communities
helps us to understand where costly and risky inter-community coordination
requirements exists that should be closely monitored and supported to avoid
coordination failures.

Second, we found convincing evidence that the fine-grained developer net-
works align well with developer perception. The results of our survey of 53
developers indicate that our fine-grained approach is precise, in that the net-
works and communities are an authentic representation of the real-world, but
is not a complete representation because some developer relations are missing
(cf. Section 3.2.6). We were also able to show that the reason the file-based
networks fail to exhibit latent community structure is because the method
introduces many unauthentic edges that cross the community boundaries, which
conceals the community structure (cf. Section 3.2.6). While no ground-truth
developer network exists, by determining that fine-grained developer networks
align well with developer perception, we have brought real-world meaning to
the networks. In Section 2.3, we discussed how the process of abstracting
real-world phenomena into a network representation often requires non-trivial
leaps and that one must always remain cognizant and critical of assumptions
that are made during the abstraction procedure to ensure real-world validity
is not significantly compromised, distorted, or lost. Specifically in developer
networks, there are a number of questionable assumptions that stem from the

88

CHAPTER 3. COMMUNITY DETECTION AND VALIDATION WITH
FINE-GRAINED DEVELOPER NETWORKS

artifact granularity of existing approaches for constructing developer networks
(cf. Section 2.4). In this chapter, we have demonstrated how to use source-code
structure to reduce the strength of assumptions regarding relationships between
developers’ modifications to source code and how this improvement has a
substantial impact on the appearance of higher-order structures in the resulting
developer network and its real-world validity.

In this chapter, we have taken a strictly static view point on developer
activities and relationships between developers. However, we recognize that
many important socio-technical factors of software development are dynamical
in nature (cf. Section 2.1). Now that we have a valid view on the coordination
structure of software projects, we are able to add in the time component
to study evolutionary principles of developer coordination. In the following
chapter, we will continue to examine a number of non-random organizational
principles (e.g., modularity, scale-freeness, and hierarchy) from an evolutionary
perspective. This will shed light on how the developer organizational structure
adapts as a project grows, how new developers enter a project, and how a
developer’s position in the network changes over time.

89

CHAPTER 4

Evolutionary Trends of Developer Coordination

This chapter shares material with the EMSE paper “Evolutionary
Trends of Developer Coordination: A Network Approach” [JAM17].

In Chapter 3, we found that source-code changes provide valuable evidence
of which developers are engaged in a coordinated effort. From this source of
information, we constructed developer networks that represent the global devel-
oper coordination structure. In particular, we found that localizing source-code
changes to source-code entities (e.g., functions), instead of files, has a substan-
tial impact on the structure of the resulting developer network. Specifically,
fine-grained developer networks, based on function-level information, exhibit a
statistically significant community structure, and the network and correspond-
ing communities largely coincide with developer perception. The weakness we
identified was that some real-world relationships between developers are not
expressed in the developer network, but that is balanced by the fact that edges
that do appear in the network are authentic.

4.1 Motivation and Research Questions

The perspective we adopted in Chapter 3 was primarily a static one where
we took snapshots of mature projects at a late stage of their development.
A static view point is very limiting because change in software is inevitable,
and the constant pressure to adapt to a changing environment is a major
challenge that all software projects encounter. A primary source of pressure

91

4.1. MOTIVATION AND RESEARCH QUESTIONS

to change is a consequence of assumptions embedded in the software’s design
and implementation that become invalid over time and if a project fails to
respond to adaptation pressure, the degree of satisfaction provided by the
software decreases with time [LRW+97]. While the pressure to change can
arise from numerous sources, the influence of this pressure is not isolated to
the software design and implementation, it permeates through all artifacts and
facets of a project including the entire organizational structure. As the software
evolves, the organizational structure building the software must also evolve to
maintain effective coordination between developers. In the ideal case, a match
or congruence is achieved between the coordination requirements implied by the
project’s technical artifact structure and the coordination mechanisms implied
by the developer’s organizational structure [CHC08]. In this chapter, we take
on a dynamic view point by examining the evolution of developer coordination
with respect to three fundamental organizational principles.

By gaining an understanding of the evolutionary patterns of developer
coordination, software engineering practitioners will be in a better position
to identify and respond to changing coordination requirements. For example,
it is a well known phenomenon that adding developers to a project typically
reduces overall productivity [Bro78; SMS15], but the precise mechanism behind
this phenomenon is not yet well understood. It may be the case that adding
developers to a project negatively interferes with coordination requirements by
introducing additional complexity, which in turn causes decreases in productiv-
ity. To address this unknown, we need to better understand the effect of adding
developers on the coordination structure. Once we have this understanding,
we can establish processes for integrating new developers that minimize the
decrease of overall productivity by minimizing the influence to the existing
coordination structure.

4.1.1 Organizational Principles

In this chapter, we apply a sliding-window technique to transform discrete
software changes, recorded in the version-control system, into a stream of
evolving developer networks. Each developer network represents one snapshot
in time, but the temporal distance between two snapshots is small as to capture
the stepwise nature of evolution in the network topology. We construct the
developer networks using fine-grained information to ensure that the network is
an authentic representation of real-world developer relationships (cf. Chapter 3).
We then examine the developer network with respect to the following three
well-known and statistically well-founded organizational principles:

92

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

• Scale freeness. Scale-free networks are characterized by the existence
of hub nodes with an extraordinarily large number of connections, which
results in several beneficial characteristics including robustness and scala-
bility (cf. Section 2.3.5). Developer networks of this kind are conjectured
to tolerate substantial breakdowns in coordination without significant
consequences to software quality [CH13; DM03].

• Modularity. The local arrangement of nodes into groups that are inter-
nally well connected gives rise to a modular structure (cf. Section 2.3.6).
Modularity is a notable characteristic of many complex systems and
indicates the specialization of functional modules [DM03]. In the case
of developer organization, this is the primary organizational principle
used to reduce system-wide coordination overhead and increase produc-
tivity [Bro78].

• Hierarchy. The global arrangement of nodes into a layered structure,
where small cohesive groups are embedded within larger and less cohesive
groups, forms a hierarchy (cf. Section 2.3.7). Hierarchy is an organizational
principle distinct from modularity and scale freeness, and has been shown
to improve the coordination of distributed teams [HM06]. For developer
networks, hierarchy suggests the existence of stratification within the
developer roles, and it indicates a centralized governance structure where
decisions are primarily made at the top and passed down through a chain
of command.

4.1.2 Research Questions

By means of a longitudinal empirical study on the evolution of 18 well-known
open-source software projects, we will address the following two main research
questions (RQ):

RQ1: Change—What evolutionary adaptations are observable in the history
of long-lived open-source software projects concerning the three organizational
principles?

RQ2: Growth—What is the relationship between properties of the three
organizational principles and project scale?

93

4.2. METHODOLOGY

Figure 4.1: Three developers edit two semantically coupled functions in separate
files (top). The resulting developer network from applying the original function-
based construction method is shown bottom left. The resulting developer
network from applying our enhanced construction approach that includes the
coupling between artifacts is shown bottom right.

4.2 Methodology

4.2.1 Network Construction

In software projects, developers often work on distinct functions that are
conceptually related to other functions that are written and maintained by other
developers. For example, suppose that a developer provides a set of functions
to perform logging of user information and a second developer makes extensive
use of these functions for logging user triggered events in the graphical interface.
To some extent the developers become constrained by each others development
activities. If logging functions are changed substantially, the user of the
functions may introduce bugs or unexpected behavior to the software. Therefore,
a coordination requirement between the developers is implied by virtue of the
relationship between the artifacts they change. A major disadvantage of the
approach for constructing developer networks adopted in prior research [JSS11;
JMA+15; LRGH09; MRGO08; MW11; MWSO08] is that developer relations
are solely based on mutual contributions to a single artifact so that higher-order
developer coordination requirements, which stem from contributions to artifacts

94

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

that are conceptually related but physically separated, will be omitted. This
is particularly relevant for analyzing projects that are in an early phase of
development because much of the implementation effort produces new code,
which suggests there is a low likelihood of multiple developers contributing to
the same function block. Since all phases of development are of importance for
our study, we need a network construction approach that is appropriate for all
phases of the project’s development.

To capture a more complete model of the developer coordination, we
augment the function-based developer network by enhancing it with semantic
artifact-coupling information (cf. Figure 4.1). In Chapter 3, we demonstrated
how the state of the art network construction approaches, which use a file-level
heuristic, are too coarse gained to reveal the community structure of open-source
developers. While our more fine-grained function-level heuristic is capable
of capturing the community structure, and has shown evidence of reflecting
developers’ perceptions of the project’s organization (cf. Section 3.2.6). However,
the developer survey revealed that the main disadvantage of our approach is
some missing edges in the network (cf. Section 3.2.6). By augmenting the
developer network with semantic artifact-coupling information, we achieve
a balance between the fine-grained approach, which misses edges when two
developers work on separate functions, but we avoid the overly coarse-grain
assumption of earlier file-level network construction approaches, which assume
that all code within a single file is highly interdependent [JSS11; LRGH09;
MRGO08; MW11; MWSO08].

Our approach is inspired by the socio-technical framework proposed by
Cataldo et al. for identifying coordination requirements between developers
working on interrelated tasks [CHC08]. While our implementation is one
variation that uses a function-level artifact and semantic coupling, this ap-
proach naturally extends to accommodate other artifacts (e.g., configuration
files, requirements, documentation etc.) and coupling mechanisms (e.g., dy-
namic, structural, co-change etc.). Figure 4.1 provides an illustration of the
network-construction approach. Specifically, we reconcile the developer-artifact
contribution (cf. Section 2.4) and software-artifact coupling information as fol-
lows: We begin by first identifying all developers’ contributions to all functions
in the system and express the contributions of M developers to N functions in
an M ×N matrix as

Acontrib =

 f(d1, a1) . . . f(d1, aN)
...

f(dM , a1) . . . f(dM , aN)

 , (4.1)

95

4.2. METHODOLOGY

where Acontrib is the function-contribution matrix and f(di, aj) represents con-
tributions to artifact aj by developer di. If a contribution to this artifact was
made by this developer, then the element is 1, otherwise it is zero. Figure 4.2
depicts a situation where multiple developers make commits to multiple func-
tions, some of which are coupled. With respect to Figure 4.2, all of the commit
edges between developers and the functions they contributed to are expressed
in Acontrib, and the coupling relationships between functions are expressed in
another matrix described below.

We compute a matrix that represents the semantic coupling between artifacts
using latent semantic indexing (LSI) (cf. Appendix A.3). We have chosen
this specific approach because it has shown promising results in reflecting
developers’ perception of software coupling [BDO+13]. A detailed description
of the approach is contained in the appendix (page 190). We represent the
coupling for N artifacts in an N ×N matrix as

Acoupling =

φ(a1, a1) . . . φ(a1, aN)
...

φ(aN , a1) . . . φ(aN , aN)

 , (4.2)

where Acoupling is the artifact-coupling matrix and φ(ai, aj) = 1 if the two
artifacts ai and aj are coupled and φ(ai, aj) = 0 otherwise. In our study, this
matrix represents the semantic coupling between functions. In reference to
Figure 4.2, the coupling edges between all artifacts are expressed in Acoupling.

Finally, we combine the information contained in both matrices using the
following operation

Dcoord = Acontrib × Acoupling × A>contrib, (4.3)

where Dcoord is the developer-coordination matrix, with elements that represent
whether a coordination requirement between two developers exists. Intuitively,
the matrix operation expressed in Equation 4.3 is computing the developers’
mutual dependence based on contributions to common artifacts and artifacts
that are semantically coupled. The resulting matrix Dcoord is symmetric with
respect to the principal diagonal.

We will now go through a minimal example to illustrate precisely how this
procedure operates. Suppose that developer d1 makes a commit to function
f1, developer d2 makes a commit to function f2 and f3, and developer d3

makes a commit to function f3. Suppose also that the functions f1 and f2 are

96

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

Figure 4.2: Three developers make commits to three different functions. Func-
tions f1 and f2 are shown to have a coupling relationship between them.

semantically coupled. Figure 4.2 illustrates this particular situation. In our
framework, the resulting contribution and coupling matrices are as follows.

Acontrib =

f1 f2 f3[]d1 1 0 0
d2 0 1 1
d3 0 0 1

Acoupling =

f1 f2 f3[]f1 1 1 0
f2 1 1 0
f3 0 0 1

(4.4)

To compute the developer network, we combine the two matrices according to
Equation 4.3.

Dcoord =

1 0 0
0 1 1
0 0 1

×
1 1 0

1 1 0
0 0 1

×
1 0 0

0 1 0
0 1 1

 (4.5)

=

d1 d2 d3[]d1 1 1 0
d2 1 2 1
d3 0 1 1

(4.6)

The adjacency matrix correctly expresses an edge between d1 and d2 because
of their commits to coupled functions f1 and f2. Additionally, an edge exists
between developers d2 and d3 because they both contributed to function f3.

4.2.2 Developer Network Stream

In a second step, we capture the time-resolved evolution of developer organi-
zation by applying a graph-data-stream model to the network-construction

97

4.2. METHODOLOGY

Figure 4.3: A sequence of commits are shown in chronological order labeled
{c1, . . . , c9}. Two subsequent analysis windows denoted by W0 and W1 define
which commits are included in each analysis window. The corresponding
parameters for ∆step and ∆window used to define the sliding window process
are also shown. Notice that both W0 and W1 include {c4, c5, c6} so that
there is continuity in temporally close activities performed by developers over
subsequent analysis windows.

procedure; a project’s history is segmented into sequential overlapping obser-
vation windows, where each observation window captures a finite range of
development activity. To linearize the development history, we flatten the mas-
ter branch of the version-control system, which is essentially the linearization
of a directed acyclic graph. All commits are then temporally ordered using the
commit time. The nth observation window is defined as a set Wn of commits,
such that Wn = {committ | t ∈ [t0 + n ·∆step, t0 + n ·∆step + ∆window]}. Where
committ is the commit occurring at time t, t0 is the time of the initial commit,
∆window is the window size, and ∆step is the step size. A depiction of two subse-
quent analysis windows generated from the sliding-window approach is shown
in Figure 4.3. Since software projects typically have long-term temporal trends
(e.g., number of contributing developers), the evolution is temporally dependent
and must be treated as a nonstationary process. This implies that the statistics
(e.g., mean and variance of the metrics) will vary depending on when the project
is observed. To properly analyze project evolution, we use a small enough

98

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

observation window (90 days) for which the development activity has been
shown to be quasi stationary [MW11]—a technique that is frequently employed
in other domains with temporally-dependent processes [HSL+98]. To avoid
artifacts that arise from aliasing and discontinuities between the edges of the
observation windows, we opted for an overlapping-window technique [HSL+98]
with a step size that is half of the window size. While smaller step sizes may
be better, because of greater temporal resolution, we observed that using a
smaller step size did not change the results, but did significantly add to the
computational costs. In contrast, increasing the step size so that the windows
did not overlap obscured periodic components in the data.

For each time window, we construct a network to represent the topology
of developer coordination during a finite time range. The sequence of all
finite windows generates the graph stream capturing the dynamic evolution of
developer coordination over the entire project history. Each graph stream is then
processed to extract a multivariate time series composed of the measurements
that quantify the concepts of scale freeness, modularity, hierarchy, in addition
to other context features, such as network size.

4.2.3 Scale Freeness

To identify a scale-free network, one must show that the degree distribution
is described by p(k) ∝ k−α, where p(k) is the probability of observing a node
with k connections and α as the power-law scaling parameter. In Section 2.3.5,
we will discussed in detail how to determine the scaling parameter α and verify
whether the model accurately describes the observed network.

When there are too few samples for statistical tests to be reliable, which is
common early in the project history, we instead use the Gini coefficient [Atk70]
to characterize the amount of inequality in the network’s degree distribution.
The Gini coefficient is bounded between 0 and 1, where 1 indicates strong
inequality (i.e., possibly scale free); 0 indicates strong equality (i.e., not scale
free). By definition, scale-free networks contain hub nodes, and as a result
there is strong inequality in the distribution of edges connecting nodes. From
this we conclude that a high Gini coefficient is a necessary condition for scale
freeness, and if the network has a low Gini coefficient, it cannot be scale free.

4.2.4 Modularity

To quantify modularity, we use the well studied clustering coefficient :

ci =
2ni

ki(ki − 1)
, (4.7)

99

4.3. STUDY & RESULTS

where ni is the number of edges between the ki neighbors of node i [BLM+06].
The intuition is that ki(ki − 1)/2 edges can exist between ki nodes, and the
clustering coefficient is a ratio that reflects the fraction of existing edges between
neighbors divided by the total number of possible edges (cf. Section 2.3.3).
For example, if a node has a high clustering coefficient, then many edges exist
between the neighbors of this node. Conversely, if a node has a low clustering
coefficient, then only a few edges exist between neighbors of this node.

4.2.5 Hierarchy

Hierarchy manifests as a relationship between the node clustering coefficient
and node degree (cf. Section 2.3.7). To test for the presence of hierarchy, we
apply robust linear regression to solve for the optimal model parameters of the
following model:

log (CC(v)) = β0 + β1 · log (deg(v)) , (4.8)

where CC(v) is the clustering coefficient of vertex v and deg(v) is the degree of
vertex v. If the optimal linear model has a nonzero slope (i.e., β1 < 0) and the
slope parameter is statistically difference from zero, such that p < 0.05 where p
is that probability that β1 = 0, one can conclude that hierarchy is present.

4.3 Study & Results

4.3.1 Hypotheses

We now present and discuss three hypotheses regarding the evolution of de-
veloper coordination networks. The hypotheses refine our research questions
concerning the patters observed in the evolution of developer networks and the
relationship between the patterns and project scale. The mapping between our
research questions and hypotheses is the following: H1 and H3 are related to
RQ1 and RQ2, H2 is related to RQ1.

H1—Long-term sustained growth, in the number of developers contributing to
the project, coincides with a scale-free developer coordination structure.

It is almost folklore that adding developers to a project often has the oppo-
site of the intended outcome, which is that adding developers will accelerate
development [Bro78]. On this basis, there are important insights that can be
gleaned from observing the changes that occur in the organizational structure
as the project grows. Coordination of a large number of developers demands
specialized coordination mechanisms, because the number of potential inter-
actions among developers is quadratic in the number of developers [Bro78].

100

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

Additionally, the peripheral developer group, representing the vast majority
of open-source software developers [NYN+02], are characterized by irregular,
infrequent participation and high turnover rate [CH05; Koc04; MFH02; OJ07].
The implication is that a healthy developer network must be robust to node
removals, which is the case for scale-free networks (cf. Section 2.3.5). Therefore,
we expect that large developer groups self-organize into scale-free networks
as an optimization for mitigating the coordination overhead and achieving
resilience to coordination breakdowns (cf. Section 2.3.5). Following the rea-
soning of Brooks [Bro78], as the developer network grows, we expect, at some
point, the developer count should stagnate or decrease, because of ineffective
coordination leading to a loss of productivity and developers’ motivation to
participate. It has been shown that, in some situations, Brooks’ law does not
apply to open-source software projects [Koc04], and we hypothesize that scale
freeness is a reasonable principle to explain this observation. Therefore, we
expect very large projects to exhibit the scale-freeness property as a mechanism
to maintaining productivity despite the potentially enormous coordination
costs and risks imposed by a large but unstable peripheral developer group.
Finally, scale freeness is an emergent property of a self-organizing system that
is motivated by necessity. Since small developer groups do not benefit from a
scale-free network structure as much as large developer groups, we do not expect
small projects with a small number of developers to form scale-free networks.
If scale freeness is required for sustainable project growth, this information
helps us to identify healthy growth profiles in large projects. Practitioners can
make use of this information to establish policies that encourage the addition
of developers to a project in a similar manner as preferential attachment (cf.
Section 2.3.4) so that the organizational structure reaches a scale-free state.

H2—Developers initially form loosely connected groups that are not internally
well connected (i.e., that have a low modularity). As time proceeds, developer
groups tend to become more strongly connected in terms of the clustering
coefficient until an upper bound is reached.

As a project evolves, several factors encourage developers to coordinate, but
there are also opposing forces. Based on prior experience and empirical ev-
idence, software evolution tends to cause an increase along several project
dimensions (e.g., lines of code, complexity, number of developers etc.) and
will demand increasing levels of coordination between developers to avoid sys-
tem degradation [LRW+97; LR01]. Furthermore, it is reasonable to expect
that developers will become more familiar with each other and rely on the
external knowledge of others for support in the completion of development
tasks. Empirical evidence from studies on various open-source software projects
also suggests that developers tend to specialize on particular artifacts (e.g.,

101

4.3. STUDY & RESULTS

subsystems or files) and form groups with common responsibilities and shared
mental models [JMA+15; Koc04]. These influences increase modularity in the
developer network by causing additional edges to form in local sub-networks
that are dedicated to a particular responsibility. The opposing force arises
from the quadratic scaling between the number of developers and potential
coordination relationships, where the cost of coordination can easily dominate
the benefit achieved from coordination [Bro78]. Therefore, developer coor-
dination is constrained to evolve in a manner that balances these opposing
forces. We expect that an equilibrium exists between the benefit and cost of
coordination, and this will govern the evolution of developer coordination. If
this hypothesis is confirmed, it suggests that the socio-technical environment
in which developers work changes substantially over time. As a result, there
are presumably changes in the coordination challenges that developers face
and they would likely benefit from different techniques and tools to support
coordination during different phases of the project.

H3—In early project phases, the developer-coordination structure is hierarchi-
cally arranged. As a project grows and matures, the developer-coordination
structure will gradually converge to a network that does not exhibit hierarchy,
as the command-and-control structure becomes more distributed.

A project’s command-and-control structure is responsible for directing the
work of others in a coordinated manner. In the early phases of a project, it is
conceivable that the small number of initial developers have a comprehensive
understanding of the global project details and are capable of effectively co-
ordinating the work with others in a centralized configuration. In these early
project conditions, hierarchy is an effective organizational structure because it
promotes efficiency through regularity and is appropriate when the developer
network is stable [Kot14]. As the project evolves and grows in the number
of developers and system size, developer coordination becomes increasingly
formidable, especially, once the peripheral developer group has grown to be
significantly larger than the core developer group [CH05; Koc04; MFH02]. Em-
pirical evidence indicates that efficiency in large open-source software projects is
the result of self-organizing cooperative and highly decentralized work [Koc04],
which becomes increasingly important as a project grows. The result is that
the command-and-control structure must evolve to become more distributed,
because no single person could reasonably have a comprehensive understanding
of the global project state, and distributed self-organization must take over.
Furthermore, hierarchy is an intrinsically inflexible organizational structure
that strongly promotes regularity [Kot14], but as the project evolves, organiza-
tional flexibility becomes increasingly important so that the project can avoid
the detrimental misalignment of organizational structure and the technical

102

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

structure as a result of evolution [SER04]. For practitioners, it is often unclear
which organizational structures are suitable for different project conditions. It
may be the case that different organizational structures are more appropriate
during early project conditions and others during late projects conditions. By
addressing this hypothesis we gather evidence of how successful open-source
software projects evolve with respect to hierarchy.

4.3.2 Subject Projects

For the purpose of our study, we selected 18 open-source software projects
as listed in Table 4.1. The subject projects vary in the following dimensions:
(a) size (source lines of code, from 50KLOC to over 16MLOC, number of
developers from 25 to 1000), (b) age (days since first commit), (c) technology
(programming language, libraries), (d) application domain (operating system,
development, productivity, etc.), and (e) version-control system used (Git,
Subversion). We chose these projects because they are all widely deployed, and
have long development histories.

103

4.3. STUDY & RESULTS
Ta

bl
e
4.
1:

O
ve
rv
ie
w

of
su
bj
ec
t
pr
oj
ec
ts

D
ev
el
op

er
co
un

t

P
ro
je
ct

D
om

ai
n

La
ng

P
er
io
d

SL
O
C

C
om

m
it
s

C
ur
.

M
ax

M
in

A
pa

ch
e
H
T
T
P

Se
rv
er

C
05

/9
9–

06
/1

5
2M

73
K

13
26

2
C
hr
om

iu
m

U
se
r

C
/+

+
,J

S
07

/0
8–

06
/1

5
16

M
53

3K
64

2
10

56
71

D
ja
ng

o
D
ev
el

P
yt
ho

n
07

/0
5–

01
/1

5
40

0K
38

K
98

10
5

3
F
ir
ef
ox

U
se
r

C
/+

+
,J

S
03

/9
8–
06

/1
5

12
M

23
0K

41
7

47
4

62
G
C
C

D
ev
el

C
/+

+
06

/9
1–

01
/1

5
7M

13
7K

11
7

12
2

2
H
om

eb
re
w

U
se
r

R
ub

y
05

/0
9–

06
/1

5
10

0K
42

K
47

3
52

5
3

Jo
om

la
C
M
S

P
H
P

09
/0

5–
06

/1
5

40
0K

20
K

53
78

2
jQ

ue
ry

D
ev
el

JS
03

/0
6–

06
/1

5
65

K
12

K
5

30
2

Li
nu

x
O
S

C
04

/0
5–

05
/1

5
17

M
57

0K
14

45
15
12

48
1

LL
V
M

D
ev
el

C
/+

+
06

/0
1–

06
/1

5
1.
2M

12
0K

12
7

12
8

3
M
on

go
D
at
ab

as
e

C
/+

+
,J

S
10

/0
7–

06
/1

5
60

0K
28

K
45

53
2

N
od

e.
js

D
ev
el

C
/+

+
,J

S
04

/0
9–

05
/1

5
5M

23
K

19
53

2
P
H
P

D
ev
el

P
H
P,

C
04

/9
9–

05
/1

5
2.
5M

10
0K

46
66

9
Q
E
M
U

O
S

C
11

/0
5–
06

/1
5

1M
37

K
11

6
15

7
2

Q
t
4

D
ev
el

C
+
+

03
/0

9–
04

/1
5

1.
5M

36
K

7
12

2
5

R
ai
ls

D
ev
el

R
ub

y
11

/0
4–

06
/1

5
20

0K
49

K
14

6
21

3
2

Sa
lt

D
ev
el

P
yt
ho

n
02

/1
1–

06
/1

5
20

0K
44

K
20

4
20

5
3

U
-B

oo
t

D
ev
el

C
12

/0
2–
06

/1
5

1.
2M

32
K

11
4

13
4

2

104

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

4.3.3 Scale Freeness

We now discuss the results of applying the procedure described in Section 4.2.3
to address H1. The primary goal is to determine whether a power-law degree
distribution is a plausible model for describing the observed developer networks
and thus can be characterized as scale-free networks. We must eliminate Apache
HTTP from this evaluation because the project has too few developers, and
the statistical error with small sample sizes can lead to inaccurate conclusions.
For the remaining 17 projects, if the goodness-of-fit p value is greater than 0.05,
we can confidently conclude that the network is scale free.

Temporal Dependence One primary finding, which is true for all 17 subject
projects, is that the scale-freeness property is temporally dependent, which
means that this property is not universally present with respect to time. This
is notable because it is a distinctly different view point from prior studies
that approached the topic of scale freeness from a temporally static perspec-
tive [LRGH09]. To illustrate this result, a typical chronological profile is shown
in the left portion of Figure 4.4, taken from LLVM. The top figure illustrates
the network growth in terms of the number of developers contributing to the
project, and the bottom figure illustrates the Gini coefficient. Each sample
point represents a measurement for a single developer network that is computed
for a single development time window. The shape of the sample point represents
whether the network is scale free during the given development window. To
help draw attention to the general trends in the data, a smooth curve has
been fitted using locally weighted scatterplot smoothing, with 99% confidence
intervals in gray. The evolutionary profile of a project is typically composed of
the following three distinct temporal phases.

Phase I: Stagnation The initial phase, which can last for a number of years,
is characterized by extremely limited growth in the number of contributing
developers. In Figure 4.4, for LLVM, this phase occurs from the project’s
beginning in 2002 until 2006. During this period, the network exhibits high
levels of coordination equality, because most developers are similar with respect
to the degree of coordination with other developers and so the coordination
requirements are uniformly distributed among all developers. The magnitude of
coordination equality in the network is quantified using the Gini coefficient of
the corresponding degree distribution. This is shown in Figure 4.4, for LLVM,
where we see an initially low Gini coefficient (i.e., high equality). A low Gini
coefficient indicates that, during this initial phase, most developers are similar
in their degree of coordination with others, and the network is not scale free
(i.e., it lacks the characteristic hub nodes discussed in Section 2.3.5).

105

4.3. STUDY & RESULTS

0

50

100

0.0

0.2

0.4

D
eveloper C

ount
G

ini C
oefficient

2003 2005 2007 2009 2011 2013 2015

Time

Not Scale Free

Scale Free

Figure 4.4: Evolutionary profile for entire history of LLVM. Time series are
shown for the Gini coefficient (bottom) and the number of developers (top).
A smooth curve is fitted to the observations with the 99% confidence interval
shown in gray. The shape of the data points indicates whether the network
was scale free for a given point in time.

Phase II: Transition In the second phase, we see that projects reach a
critical mass point, at which a positive trend component is visible in the
number of contributing developers. For LLVM (cf. Figure 4.4), this transition
point occurred in late 2006 to early 2007 and the second phase lasts until mid
2011. Following the transition point, super-linear growth with an increasing
slope occurs until the end of the analysis period. During that time, the Gini
coefficient also has a positive trend component, indicating that the network
has progressively less equality, because hub nodes, with significantly more
coordination requirements than the average developer, begin to form. During
this phase, the scale-freeness property emerges for the first time, but the state
of being scale free is initially unstable. Most of the projects become scale free

106

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

0

20

40

0.0

0.1

0.2

0.3

0.4

D
eveloper C

ount
G

ini C
oefficient

2011 2013 2015

Time

Not Scale Free

Scale Free

Figure 4.5: Evolutionary profile for entire history of Node.js. Time series are
shown for the Gini coefficient (bottom) and the number of developers (top).
A smooth curve is fitted to the observations with the 99% confidence interval
shown in gray. The shape of the data points indicates whether the network
was scale free for a given point in time.

once the network size has reached roughly 50 developers, but in none of the
subject projects does a network exceed a size of 86 developers without first
becoming scale free. The number of developers contributing to the project
when the first appearances of scale freeness occurs is shown in Table 4.2 for all
projects under the column label “SF Size”. Overall, the two important results
from this phase are that, during time periods with much less than 50 developers,
developer equality is relatively high and scale freeness is not a common property.
In contrast, during periods that significantly exceed 50 developers, developer
networks are predominantly scale free. Essentially, the scale-freeness property
appears to be dependent on the network size and the time of observation.

107

4.3. STUDY & RESULTS

Phase III: Stabilization In 12 projects (Chromium, Django, Firefox, GCC,
Homebrew, Joomla, Linux, LLVM, QEMU, Rails, Salt, and U-Boot), a third
phase is visible in which the scale-freeness property stabilizes and is rarely lost.
In Figure 4.4 for LLVM, this phase begins shortly after mid 2011 and extends
until the end of the analysis period. By means of a visual inspection of the
time-series data, a number of patterns is clearly visible. In all of the projects
that achieve stable scale freeness (i.e., a scale-free state that is maintained over
several consecutive analysis windows), they demonstrate the capability of long-
term sustained (e.g., over the period of several years), and often accelerating,
growth in the number of contributing developers. This is visible in Figure 4.4
for LLVM, where we observe an increasing slope in the number of developers
year over year, and growth continues on until the end of the analysis period.
In the other 6 projects (Apache HTTP, jQuery, Mongo, Node.js, Qt 4, and
PHP), scale freeness is either never achieved, remains unstable indefinitely,
or is lost indefinitely. The growth profile in these 6 projects is very different
from the projects that achieve stable scale freeness and growth appears to
be unsustainable because project growth rates decrease with time and often
the number of contributing developers even drops. An example of these two
distinct cases is presented in Figure 4.4, where LLVM reaches stable scale
freeness and has long term accelerating growth. In contrast, Node.js, presented
in Figure 4.5 does not achieve stable scale freeness and has unsustainable
growth with long-term loss of developers. The percentage of time each project
spends in a scale-free state is shown in Table 4.2 under column “% SF”. The
measurements indicate that the large projects that have had long term growth
spend a significantly larger percentage of time in a scale-free state in comparison
to projects without long-term sustained growth.

Degree Cut-off A scale-free network is characterized based on whether the
tail of the degree distribution is described by a power law (cf. Section 4.2.3). A
rarely addressed yet important factor, though, is the proportion of nodes that
are described by the power law. We illustrate this point in Figure 4.6, where the
tail region described by the power law excludes the majority of developers of the
Linux kernel. We found that, in all projects, the proportion of developers that
are described by the power law is low and typically ranges between 20%–50%.
We saw that, there is an inverse relationship between the network size and the
percentage of developers that are characterized by a power law. We illustrate
the results for all projects in Table 4.2, where column “kmin” represents the
lower bound for the power-law distribution, column “% Dev SF” represents
the percentage of developers the are described by the power-law distribution,
and column “SF Dev” represents the absolute number of developers described

108

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

kmin

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
Vertex degree

D
en

si
ty

Observed

Power law (fitted)

Figure 4.6: Power law fitted to the degree distribution for Linux. The power-
law distribution describes the developers with a degree greater than kmin, the
majority of low degree developers are not described by a power law.

by the power-law distribution. These measurements are taken from the most
recent analysis period and the corresponding analysis windows are provided in
Table 4.2.

Outliers We found two interesting outlier projects with respect to the pres-
ence of the scale-freeness property. For PHP and jQuery, the network size
reached a peak at roughly 50 developers for several months yet never reached a
stable scale-free state. After the peak, both projects then experienced years
of continuous loss of developers and never recovered (cf. Figure 4.7). Another

Figure 4.7: Evolutionary profile for entire history of PHP.

109

4.3. STUDY & RESULTS

interesting outlier is Firefox, where during the period of September 2009 to
December 2009 the network was frequently and unexpectedly not scale free.
While the definitive cause of the disruption is unknown, we learned that, during
this period, Firefox experienced severe release problems resulting in a major
revision being released one year late.1 It is interesting to note that the network-
structure disturbances were observable several months before the first public
announcement of release problems.

In summary, our study suggests that open-source software projects lack a
scale-free structure in the initial phases while the developer network scale is
small. In developer networks where growth significantly exceeds 50 developers,
we always observe the emergence of scale freeness and no project ever grew
beyond 86 developers without first becoming scale free. The caveat is that the
scale-freeness property is temporally dependent, and in some projects, remains
in an oscillatory state indefinitely. Overall, we accept H1.

1http://www.cnet.com/news/mozilla-pushes-back-firefox-3-6-4-0-deadlines/

110

http://www.cnet.com/news/mozilla-pushes-back-firefox-3-6-4-0-deadlines/

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

Ta
bl
e
4.
2:

D
ev
el
op

er
ne
tw

or
k
st
ru
ct
ur
al

m
ea
su
re
m
en
ts

Sc
al
e
Fr
ee

M
od

ul
ar
ity

H
ie
ra
rc
hy

P
ro
je
ct

S.
F
.s

iz
e

%
S.
F
.

k
m
in

%
D
ev

S.
F
.

#
D
ev

S.
F
.

µ
cc

σ
2 cc

β
1
e
a
r
ly

β
1
la
te

A
pa

ch
e
H
T
T
P

N
/A

0.
00

7
0.
46

6
0.
49

0.
12

-1
.1
4

-0
.8
5

C
hr
om

iu
m

71
97

.6
0

10
12

0.
08

53
0.
44

0.
04

-0
.4
0

-0
.3
5

D
ja
ng

o
42

25
.0
0

49
0.
60

59
0.
57

0.
04

-2
.3
2

-0
.5
1

F
ir
ef
ox

73
90

.6
0

48
1

0.
07

30
0.
48

0.
05

-0
.4
3

-0
.2
7

G
C
C

36
55

.9
0

16
4

0.
26

30
0.
43

0.
04

-0
.7
3

-0
.4
0

H
om

eb
re
w

80
87

.5
0

35
5

0.
49

23
0

0.
61

0.
02

-1
.2
8

-0
.2
9

Jo
om

la
55

20
.0
0

2
0.
66

35
0.
38

0.
16

-1
.6
7

-0
.6
6

jQ
ue
ry

30
1.
41

5
0.
80

4
0.
47

0.
10

-2
.0
9

-1
.6
6

Li
nu

x
51

5
98

.8
0

15
21

0.
05

69
0.
58

0.
05

-0
.2
8

-0
.2
5

LL
V
M

46
32

.7
0

51
0.
24

30
0.
45

0.
08

-2
.2
2

-0
.3
9

M
on

go
51

3.
28

30
0.
67

30
0.
38

0.
07

-2
.3
0

-0
.5
3

N
od

e.
js

35
16

.3
0

1
0.
47

9
0.
16

0.
10

-2
.3
0

-1
.3
3

P
H
P

46
14

.6
0

29
0.
65

30
0.
45

0.
08

-0
.8
5

-0
.4
4

Q
E
M
U

37
61

.0
0

88
0.
27

31
0.
53

0.
05

-2
.1
9

-0
.3
5

Q
t
4

86
43

.8
0

3
0.
86

6
0.
68

0.
12

-0
.5
0

-0
.9
2

R
ai
ls

38
69

.2
0

55
0.
21

30
0.
58

0.
08

-2
.1
7

-0
.3
4

Sa
lt

32
82

.2
0

89
0.
36

74
0.
55

0.
07

-0
.9
5

-0
.3
1

U
-B

oo
t

41
64

.6
0

41
0.
58

66
0.
60

0.
05

-1
.3
9

-0
.2
9

S
.F
.
si
ze

–
n
et
w
or
k
si
ze

at
fi
rs
t
ap

p
ea
ra
n
ce

of
sc
al
e
fr
ee
n
es
s

%
S
.F
.
–
p
er
ce
n
t
of

ti
m
e
th
e
p
ro
je
ct

ex
h
ib
it
s
sc
al
e
fr
ee
n
es
s

k
m

in
–
m
in
im

u
m

b
ou

n
d
on

th
e
p
ow

er
-l
aw

d
is
tr
ib
u
ti
on

%
D
ev

S
.F
.
–
p
er
ce
n
t
of

d
ev
el
op

er
s
d
es
cr
ib
ed

b
y
th
e
p
ow

er
-l
aw

d
is
tr
ib
u
ti
on

#
D
ev

S
.F
.
–
n
u
m
b
er

of
d
ev
el
op

er
s
d
es
cr
ib
ed

b
y
th
e
p
ow

er
-l
aw

d
is
tr
ib
u
ti
on

µ
c
c
–
m
ea
n
va
lu
e
of

cl
u
st
er
in
g
co
effi

ci
en
t
fo
r
la
te
st

d
ev
el
op

m
en
t
cy
cl
e

σ
2 c
c
–
va
ri
an

ce
of

cl
u
st
er
in
g
co
effi

ci
en
t
fo
r
la
te
st

d
ev
el
op

m
en
t
cy
cl
e

β
1
e
a
r
ly

–
sl
op

e
p
ar
am

et
er

fo
r
an

ea
rl
y
d
ev
el
op

m
en
t
cy
cl
e

β
1
la

t
e
–
sl
op

e
p
ar
am

et
er

fo
r
th
e
m
os
t
re
ce
n
t
d
ev
el
op

m
en
t
cy
cl
e

111

4.3. STUDY & RESULTS

4.3.4 Modularity

The clustering coefficient is a means to measure the extent to which developers
form cohesive groups. In Figure 4.8, we present the evolution of developer
networks with respect to their clustering coefficients for all subject projects. The
evolution of each project is illustrated by a time series that represents the mean
clustering coefficient with a light gray boundary to indicate the 99.5% confidence
interval. There is one evolutionary profile, in particular, that describes the
majority of the subject projects. This profile is characterized by a positive
trend component (i.e., increasing clustering coefficient) that smoothly converges
to a clustering coefficient range of 0.45–0.55. For the projects that do not fit
this profile, the positive trend component is not observable, possibly because
we do not have a complete project history. For example, the development of
the Linux kernel was started in 1996, but the publicly available Git repository
only has commits dating back until early 2005. In Table 4.2, we present the
results of the mean clustering coefficients (column “µcc”) and variances (column
“σ2

cc”) for the most recent revisions of each project.
The only project which does not closely adhere to the general pattern of

convergence is Qt. The exceptional behavior seen in Qt is likely a consequence
of the significant decrease in the number of active developers and possibly
represents an evolutionary anti-pattern. The number of developers contributing
to Qt is high until 2011 (cf. Figure 4.9), but this period is followed by several
years of rapid decline. Similarly, we see that the mean clustering coefficient
profile fits the general pattern until 2011, where the value suddenly drops
and then oscillates before a radical upswing. It is worth noting that Qt is
the only subject project exhibiting this pattern, and it is similarly the only
subject project that has had such significant decline in number of contributing
developers.

For the majority of the projects, the fact that they do not ever significantly
exceed a clustering coefficient of 0.55 suggests that there is a limitation to the
distribution of coordination requirements in the local developer neighborhood.
To give a reference point, a clustering coefficient of 0.5 for a node means that
there are edges between half of the nodes neighbors. We observe that there is a
preference to achieve a state where roughly half of every developer’s neighbors
also have a coordination requirement (i.e., an edge). The evolutionary profiles
of our subject projects indicate that developer networks evolve according to a
process that promotes coordination requirements increasing up to a maximum,
but that prevents the formation of coordination requirements between too many
developers. There appears to be no non-zero lower bound on the clustering
coefficient, but in all cases, an initially low clustering coefficient does tend to
converge towards a clustering coefficient of 0.5. The implication of a bound is

112

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

Figure 4.8: Clustering-coefficient time series for all subject projects. The light
gray area indicates the 99.5% confidence interval.

113

4.3. STUDY & RESULTS

Figure 4.9: Developer count and mean clustering coefficient evolution for Qt
with the standard error bars for the mean clustering coefficient included. The
significant decline in developer count coincides with instability in the clustering
coefficient, indicating that departing developers have a significant impact on
the local connectivity of the developer network.

that no observation, under any circumstance, should ever violate the bound by
crossing it. In this sense, we are not able to prove that the upper limit that
we observed will never be violated. The statement that we are able to make
at this point is that the observations made on these 18 subject projects are
evidence that a bound likely exists. Particularly, the smooth convergences (i.e.,
a gradual decrease in the first derivative) to this upper limit is indicative of a
bound this is not likely to be crossed in the future.

To better understand the mechanism behind the tendency for developers
to form cohesive groups, we examined the relationship between network size
(i.e., number of developers) and clustering coefficient. In all cases, we found
that the clustering coefficient increases with the network size, however, this

114

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

dependency decreases as the network size increases. This relationship is shown
for subject project Django in Figure 4.10, which illustrates a roughly logarithmic
relationship between network size and clustering coefficient. This is a notable
result because, in the ER random graph model described in Section 2.3.4,
the clustering coefficient decreases with network size, and in many real-world
networks, clustering coefficient and network size are independent [AB02]. From
this observation, we conclude that, in terms of modularity, developer networks
form groups according to a non-random organizational principle that is also
different from the preferential-attachment model used to explain many real-
world scale-free networks (cf. Section 2.3.4).

0.2

0.3

0.4

0.5

0.6

0 25 50 75 100

Network Size

M
ea

n
C

lu
st

er
in

g
C

oe
ffi

ci
en

t

Figure 4.10: Clustering coefficient versus network size for the history of Django,
with a light gray boundary to indicate the 99.5% confidence intervals.

It has been hypothesized that, at a critical upper bound, the cost incurred
from the overhead of coordination exceeds the benefit of coordinating [Bro78].
Our results indicate that this bound indeed does exist and that developer
coordination is constrained to evolve in a manner that promotes groups to form
but not to exceed an upper bound. The evidence shown here is not definitive
proof of a bound, but it is supportive of the conjecture that a bound exists.
Thus, we accept H2.

4.3.5 Hierarchy

In Section 4.2.5, we introduced the concept of hierarchy in terms of its relation to
scale freeness and modularity: hierarchy in complex networks is operationalized
by a linear dependence between the log-transformed clustering coefficient and
the node degree. We illustrate the results of applying the method described
in Section 4.2.5 in Figure 4.11, where the evolution of hierarchy in an early

115

4.3. STUDY & RESULTS

stage (top) and late state (bottom) is shown for Firefox. In the early state,
we are able to see that the network exhibits global hierarchy, because a linear
model of the form Y = β0 + β1X describes the observed data, where X is the
degree of a developer and Y is the clustering coefficient. In Section 4.2.5, we
showed that a hierarchical network has the property that the log-transformed
degree and log-transformed clustering coefficient exhibit a linear dependence.
The results indicates that the linear model achieves a good fit, which is evident
by an R2 value of 0.894. Furthermore, the p value indicates that the linear
model slope parameter β1 is significantly different from zero, and so we can
conclude that global hierarchy is present. In the late stage (bottom figure), the
linear model no longer describes the global set of developers, instead it only
describes the high degree nodes. In this case, we can conclude that a global
hierarchy is no longer present and hierarchy predominantly exists in the high
degree developer group.

The principal evolutionary trend with respect to hierarchy is the following:
In early stages, developers are arranged in a global hierarchy. In later stages,
a hybrid structure emerges, where only the core developers are hierarchically
arranged, but the global hierarchy is no longer present. We observed that there
is a smooth transition between the early and late stages shown for Firefox in
Figure 4.11, which leads to a gradual deconstruction of the global hierarchy.
The gradual deconstruction process is shown in Figure 4.12, where we illustrate
the continuous evolution of hierarchy over the entire history of LLVM. Each
sample represents the slope parameter β1 of the linear model describing the
hierarchy in the project at a single point in time. We see that hierarchy is
most significant (largest negative slope) at the start and is progressively lost
until virtually no global hierarchy is present (i.e., near zero slope) in the most
recent revision. The results for all projects are shown in Table 4.2, where
column “β1early ” represents the linear-model slope parameter at an early stage
and column “β1late” represents the slope parameter at a late stage. The early
stage represents the earliest analysis window with more than five developers
present, and the late stage represents the most up-to-date analysis window. We
are able to see that in all projects except one (Qt 4), β1early < β1late indicating
that the hierarchy has diminished over time.

The results certainly suggest that, from a global perspective, developer
hierarchy diminishes with time, but the mechanism responsible for the trans-
formation is not obvious. To investigate this process further, we examined the
high-degree nodes (i.e. highly central, and thus important developers) and found
that they are hierarchically arranged at all times. Furthermore, the mechanism
for decomposing the global hierarchy is established through the introduction of
low-degree and mid-degree nodes, which do not obey the hierarchy established

116

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

R^2 = 8.94e−01
p value = 7.77e−58

R^2 = 9.10e−01
p value = 2.42e−82

1999−06−21

2015−06−27

1.00

0.50

0.25

1.00

0.50

0.25

10 100

Node Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Figure 4.11: Early stage and late stage hierarchy of Firefox. The fitted linear
model is superimposed on a scatter plot of node degree versus clustering
coefficient. In the early stage (top), the linear model describes the complete
data set indicating global hierarchy. In the late stage (bottom), global hierarchy
is not present since only the high-degree nodes are described by the linear
model. The linear model in the late stage has been fitted only to the high
degree nodes.

by the high degree nodes. In essence, the developers become divided into
two high-level organizational structures: The highest-degree nodes (developers
with many coordination requirements) are hierarchically arranged and the
mid-to-low-degree nodes (developers that are less central in the organizational
structure) are not hierarchically arranged. This is visible in the late stage
scatter plot of Figure 4.11, where beyond the break point (at a degree of roughly
250), the nodes obey a linear dependence and are thus hierarchically arranged.
This evidence suggests that the differences between developers are not entirely
explained by their distinct participation levels, but they also fundamentally
differ in how they are structurally embedded in the organization.

As a project grows and becomes more complicated along numerous di-
mensions, we expected changes in the command-and-control structure. The
expected trend was towards greater distribution of influence, which would

117

4.4. THREATS TO VALIDITY

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●

●●●●

●●
●

●

●●●●
●●

●
●

●
●

●
●

●
●●

●
●

●

●●
●

●

●
●●●●●●●●

●
●●

●
●●●

●●●●

−2.0

−1.5

−1.0

−0.5

0.0

2004 2006 2008 2010 2012 2014

Time

Li
ne

ar
 M

od
el

 S
lo

pe

Figure 4.12: Evolution of hierarchy for the entire history of LLVM. The light
gray boundary indicates the 99% confidence interval and error bars indicate
the standard error on the slope estimate. The trend indicates that hierarchy is
decreasing over time as the linear model slope β1 tends towards zero.

manifest as the elimination of a global hierarchy. Our results indicate that,
over time, hierarchy vanishes by the introduction of a large number of low and
mid-degree developers that do not arrange into a hierarchy. We did also find
evidence that extremely high-degree developers remain hierarchically arranged
over time, though, they only constitute a very small faction of the project’s
developers. Overall, we accept H3, because the hypothesis is a statement
regarding the global structure and, in that sense, the evidence indicates that
global hierarchy vanishes over time.

4.4 Threats to Validity

External Validity We draw our conclusions from a manual selection of 18
open-source software projects. The manual selection and the choice to analyze
only open-source software projects is a threat to external validity. We mitigated
the consequences by choosing a wide variety of projects that differ in many
dimensions and constitute a diverse population. Furthermore, we considered
the entire history to prevent temporally biasing our results. We specifically
chose only large projects with very active histories because our contributions
are focused on understanding complexity in developer coordination, and in
small projects (e.g., less than 10 developers), the coordination challenges are
less severe. Due to certain limitations of our current infrastructure, we are

118

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

unable to include complete analyses of software ecosystem projects, such as
Eclipse2, because they are typically distributed among multiple repositories.

Internal Validity We examined the evolution of developer networks over
time, however, it is conceivable that factors other than time have an influence
on the observed trends, threatening internal validity. By considering the
influence of network size, we accounted for the most likely confounding factor.
Furthermore, we found that the trends are often consistent across several
projects, and we rigorously employed statistical methods to avoid drawing
conclusions from insignificant fluctuations in the data.

Construct Validity Our methodology relies, to some extent, on the integrity
of the data in the version-control system to generate a valid developer network,
threatening construct validity. Since the version-control system is a critical
element of the software-engineering process, it is unlikely that the data would
be significantly corrupt. In terms of network construction, the heuristics we
rely on have been shown to generate authentic developer networks, but do
omit some edges [JMA+15]. However, a few omitted edges would not severely
impact the conclusions of our study. Furthermore, our enhancement of this
form of developer networks to recover omitted edges is based on a technique
that has been shown to authentically represent system coupling [BDO+13]. The
operationalizations of scale freeness, modularity, and hierarchy are thoroughly
studied and well-established concepts in the area of network analysis. Although
the application concepts from social network analysis to socio-technical de-
veloper networks is relatively new, empirical evidence is accumulating that
suggests the metrics are reliable and valid [JMA+15; MW11].

4.5 Discussion & Perspectives

The results of our study on the evolution of developer networks revealed several
intriguing patterns. We will now discuss the relevance and potential explanation
for these network patterns by linking them to software-engineering principles.
Specifically, we discuss a likely model for growth of a project, a source of
pressure for developers to become more coordinated with time, and the benefits
of a hybrid organizational structure that is hierarchical for core developers and
non-hierarchical for peripheral developers.

2https://eclipse.org/

119

https://eclipse.org/

4.5. DISCUSSION & PERSPECTIVES

RQ1: Change Our first research question asked what evolutionary adapta-
tions are observable in the evolution of developer networks. In terms of scale
freeness, we saw that projects do not begin in a scale-free state, instead this
property emerges over time. Initially, the structure of developers exhibits high
homogeneity and then, over time, hub nodes (i.e., very involved developers)
appear that are responsible for a disproportionately large number of coordina-
tion requirements. We also saw that adaptations occur in the modularity of
developer networks. Developers are loosely clustered initially, but, over time,
clustering increases and gradually converges to a state where half of every
developer’s neighbors have coordination requirements. Finally, the structural
property of hierarchy also changes over the course of time. Initially, projects
have a globally hierarchical organization. Over time hierarchy is lost, as low
degree developers are introduced to the network, which do not assimilate into
the hierarchy. Still, hierarchy is always maintained for the highly-connected
developers.

RQ2: Growth Our second research question focused on the relationship
between these changes in the organizational structure and the scale of a project.
Most of our subject projects experience steady growth over time. Presumably,
many of the evolutionary principles we observed are closely related to the
increasing scale of the project. For a couple of projects, we saw the growth
stagnate or the overall size decrease. In these projects, we saw the reverse of
what was seen during project growth. For example, the scale-free property
was lost and clustering decreases. At this point, our results suggest a strong
dependence between the scale of a project and the properties of its organizational
structure. It appears that projects of different size exhibit different structural
features of the organization. This result is interesting to the general software-
engineering community, because it suggests that, when determining how to
organize developers, it is crucial to consider how many developers will be
involved in the implementation. In projects with few developers (e.g., less than
30), it may not be necessary to have developers that are highly dedicated to
coordinating the work of others, and each developer can essentially occupy
equivalent structural positions in the organization. However, in a very large
project (e.g., 30 or more), it may be crucial to have developers entirely dedicated
to coordinating the work of other developers and to occupy hub positions that
span the organizational structure.

Scale freeness To better understand the growth behavior of developer net-
works, we examined the relationship between a project’s growth state (increasing
or decreasing) and the scale-freeness property of its developer network. The

120

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

model of preferential attachment, which is the predominant generative model
for scale-free networks, has the simultaneous requirements that the network
must grow and that new nodes have a preference to attach to already well-
connected nodes [BA99]. We found that, in this regard, the evolution of
developer networks into a scale-free state is consistent with the model for
preferential attachment. For several projects, the scale-freeness property is
only observable during network growth and is lost during periods of growth
stagnation or decrease, shown for Node.js in Figure 4.5. Furthermore, the loss
of the scale-freeness property often precedes the stagnation or loss of developers.
While it would be premature to make any strong statement about causality, the
combination of correlation and preceding in time makes the loss of the scale-free
state a conceivable predictor for the loss of growth in the project. These
results suggest that, if a project grows beyond a certain size, the coordination
structure will exhibit strong inhomogeneity in the distribution of coordination
requirements among developers. It seems that there is a driving force that
encourages a relatively small group of developers to bear the majority of the
coordination burden. As a project achieves a large size (50 developers or more),
the need for hub nodes in the coordination structure appears to be more critical.
Software engineers should consider the project size when determining how to
distribute the tasks among developers and how modes of collaboration between
the multiple development sites should be realized.

Modularity In Section 4.3.4, we noted that an increasing clustering coeffi-
cient is a common evolutionary trend. This is a curious result because, in the
ER random graph model (cf. Section 4.2.3), the clustering coefficient decreases
with increasing network size, while in the preferential-attachment model, the
clustering coefficient is independent of network size [RB03]. So, this result begs
the question of what the driving force behind this unique evolutionary trend is.
From the theory of software evolution, we expect that the natural tendency for
an architecture is to become more strongly coupled over time, as complexity in-
creases and initially clean abstraction layers deteriorate [LR01], which has been
observed also in practice [MFD08]. Additionally, Conway’s law suggests that
the organizational structure and the structure of technical artifacts produced by
the organization are constrained to mirror each other [Con68]. Based on these
principles, we hypothesize that the evolution of the artifact structure is the
driving force that influences developers to become more coordinated. Software
engineers should be conscientious of the increasing demand on developers to
coordinate with more developers as the software evolves. In the later stages of
a projects, it may be critical to shift more attention towards mechanisms that
support effective coordination between developers. It may even be necessary

121

4.5. DISCUSSION & PERSPECTIVES

to reduce the task load on developers in later stages of a project, to ensure
that the coordination requirements are given sufficient attention and resources;
otherwise a decrease in software quality is a legitimate threat.

Hierarchy One of the most intriguing characteristics of open-source software
projects is the strongly inhomogeneous distribution of effort between core and
peripheral contributors [Koc04; MFH00; TMB10]. This characteristic is distinct
from typical commercial development setups and is conceivably responsible
for enabling open-source software projects to scale without reducing overall
productivity, which violates conventional software-engineering wisdom [Bro78;
Koc04]. Typically, core and peripheral developers are classified based on the
number of commits, lines of code, or e-mails they contributed. Interestingly, we
discovered that a dichotomy is also observable in the organizational structure,
where one group of highly central developers is hierarchically organized, but the
another group of less central developers is not hierarchically organized. We think
that the reason for low degree developers not assimilating into the hierarchy
stems from pressures to form a hybrid organizational structure that promotes
regularity while also remaining flexible and robust to volatile developers. The
process of software development demands a high degree of consistency and,
for this reason, hierarchies are appropriate organizational structures. However,
hierarchies are intrinsically inflexible structures [Kot14]. In open-source software
projects, there is pressure for the organizational structure to remain flexible
because, open-source software projects have high developer turnover rates for the
peripheral developers, who constitute the majority of the contributors [OJ07].
It is conceivable that the existence of a hybrid organizational structure is even a
signal of project health by indicating that the organization has responded to the
adaptation pressures that are present in open-source software development. To
the wider software-engineering community, this result indicates that a software
project may benefit from embedding developers into the organizational structure
differently depending on their experience level and likelihood of leaving the
project. For example, a hierarchy can be an efficient structure when the
members of the hierarchy a not likely to leave the organization. In the same
way that open-source software development avoids embedding the volatile low
degree developers into the hierarchy composed of highly central developers, it
may be beneficial for any software project to avoid integrating inexperienced or
potentially volatile developers into their hierarchical organizational structure.

122

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

4.6 Related Work

Lopez et al. first studied developer coordination by linking developers based
on mutual contributions to modules for a static snapshot of three open-source
software projects. They found that developer networks are not scale free,
based on a visual inspection of the cumulative degree distribution [LRGH09].
Jermakovics et al. constructed networks based on contributions to files for three
projects, and they developed a graph-visualization technique to represent the
developer organizational structure [JSS11]. Toral et al. constructed developer
communication networks based on the Linux kernel e-mail archives between 2001
and 2006 [TMB10]. They found that participation inequality is present in the
communication network, and they introduced a core developer and peripheral-
developer classification scheme. We differentiate our work by analyzing the
entire project history and viewing developer coordination as an evolutionary
process. Our network-construction procedure has demonstrated valid results
with respect to capturing developers’ perception of who they collaborate with
and reveals a statistically significant community structure, which is obscured
by the more coarse-grained approaches used in prior work [JMA+15]. Addition-
ally, we use a fully automated and statistically rigorous framework to reduce
subjectivity, and we draw our conclusions from 18 projects instead of just two
or three. We build on prior work by explaining the commonly observed network
features (e.g., participation inequality) in terms of the important structural
concepts of scale freeness, modularity, and hierarchy.

Louridas et al. studied structural dependencies between classes and packages
of 9 software systems using static source-code analysis techniques [LSV08].
They found that power-law distributions are a ubiquitous phenomenon in the
dependency structure by fitting a line to the log-scale degree distribution. Our
work is complementary by identifying power-law distributions in developers’
coordination requirements. This is a step towards an empirical validation of
Conway’s law by showing that a necessary condition is met regarding the match
between the organizational structure and technical artifact structure.

While there is a number of theories regarding developer turnover and its
effects, current empirical results are limited. Foucault et al. examined the
relationship between internal and external developer turnover on software
quality in terms of bug density [FPB+15]. Consistent with current theories,
they found that high external turnover has a negative influence on module-level
bug density. Others have explored factors that contribute to developer turnover
and motivations for long-term involvement [HPN10; SLW12; YBH12]. Mockus
found that developers leaving the projects negatively influence code quality,
while new developers entering the project have no influence [Moc10]. Oddly, the
results of Mockus and Foucault et al. do not agree, which may suggest that the

123

4.7. SUMMARY

influence of turnover is dependent on additional context factors. In our work,
we primarily focused on the relationship between the turnover characteristics
of core and peripheral developer groups and how these distinct groups are
structurally embedded in the organization. We use the distinct turnover rates
to rationalize the evolution of the developer network as an optimization process.

Godfrey et al. were the first to study software evolution in open-source
software and found that the Linux kernel violates principles of software evolution
by achieving super-linear growth at the system level [GT00]. This was later
supported by evidence extracted from the version control system of 8621 projects
on SourceForge.net [Koc04]. Koch found that large open-source software
projects violate several laws of software evolution established for commercial
projects [Koc04]. Specifically, they showed that developer productivity is
independent of the number of developers in the project—a direct violation of
Brooks’ law [Bro78]. Furthermore, participation inequality is common and
increases with the system size—a result that we confirmed—but the increase in
inequality does not influence developer productivity. Koch proposed that strict
modularization, self-organization, and highly decentralized work are responsible
for the high efficiency seen in open-source software projects, but this was never
verified [Koc04]. In our study, we found that our more detailed methodology,
which considers source-code structure and software coupling, supports prior
observations. Furthermore, we were able to extend the body of knowledge by
directly studying the evolution of coordination structures that are conjectured
to be responsible for the remarkable properties of open-source software projects.

In a different, but nonetheless related field, researchers have shown that a
network representing the collaborative organization of knowledge in Wikipedia,
based on references between articles, is a scale-free network and the network
growth is described by the law of preferential attachment [SL08]. By showing
that power laws are present in open-source software project, we add to the
evidence that healthy collaborative enterprises are ubiquitously scale-free.

4.7 Summary

In Chapter 3, we determined that developer networks constructed from fine-
grained information are an authentic representation of the organizational
structure of software developers that stems from coordination requirements. We
found that fine-grained developer networks exhibit structure that is substantially
more organized than uniform randomness and these highly organized structures
exhibit statistical significance and real-world validity. In this Chapter, we
extended our approach to generate a sequence of developer networks that
capture the time-varying behavior of the network. We applied our approach to

124

CHAPTER 4. EVOLUTIONARY TRENDS OF DEVELOPER
COORDINATION

conduct a longitudinal empirical study of 18 substantial open-source software
projects with respect to three fundamental organizational principles: scale
freeness, modularity, and hierarchy. In this evolutionary study of developer
networks we were able to identify several important insights that are concealed
by the temporally static perspective adopted by prior studies.

Based on our study of 18 open-source software projects, we found that, in
projects exceeding 50 developers, the coordination structure becomes scale free.
The implication is that coordination is disproportionally concentrated around
an extremely small faction of developers. We also found that developers tend to
have an increasing number of coordination requirements with other developers,
but the increasing trend is limited by an upper bound, where coordination
requirements exist between roughly half of every developers neighbors. Addi-
tionally, we discovered that developers are hierarchically arranged in the early
phases of a project, but in later phases the global hierarchy vanishes and a
hybrid structure emerges, where highly central developers exist in the hierarchy
and lower degree developers exist outside the hierarchy. Overall, the adaptations
that we observed in the structural features balance the opposing constraints
of supporting effective coordination and achieving robustness to developer
withdrawal. From the results it is clear that significant structural changes
occur in the coordination structure of a project over time, and particularly as
developers are added.

In this chapter, we observed indicators of an organizational dichotomy with
respect to the positioning of developers in the developer network. One group
of developers is located in highly central positions, is involved in a dispro-
portionately large number of coordination requirements, and is hierarchically
organized. The other group tends to be less centrally located, bear very little
of the total coordination burden, and are not hierarchically arranged. Prior
researchers have observed a dichotomy in open-source software projects that
corresponds to distinctly different roles that developers can fulfill, termed
core and peripheral. Operationalizations of these roles are typically based on
simple counts of individual developer activity such as the number of commits
or lines of code contributed, but these operationalizations lack any relational
information regarding developer–developer relationships. While the results in
this chapter certainly encourage a deeper investigation into the organizational
dichotomy, it is unclear if this dichotomy corresponds to developer roles. We
also do not know how the organizationally defined dichotomy relates to existing
operationalizations of developer roles, and more importantly, how well these
operationalizations align with the perception of developers. In the following
chapter, we will address these exact issues. We expect that the richer devel-
oper network, that explicitly captures developer–developer relations, should

125

4.7. SUMMARY

outperform the simpler representations in terms of reflecting meaningful divi-
sions in developer roles. By demonstrating that developer networks are more
expressive than simpler representations, we make important steps forward by
providing practical justification for a network representation instead of the
existing simpler non-network models.

126

CHAPTER 5

Classifying Developers into Core and Peripheral Roles

This chapter shares material with the ICSE’17 paper “Classifying
Developers into Core and Peripheral: An Empirical Study on Count
and Network Metrics” [JAHM17].

In this chapter, we utilize developer networks as a basis for classifying
developers into roles depending on their position and stability within the orga-
nizational structure. In Chapter 3, we introduced a fine-grained approach for
constructing developer networks that exhibit real-world validity. We found that
fine-grained developer networks display qualities of self-organizing systems in
terms of higher-order structure manifested as developer communities. Building
on this work in Chapter 4, we adapted our approach to generate a sequence of
networks to capture the time-varying dynamics of developer networks. Again,
we found several more indications that the network’s evolution is defined by
organizational principles that represent a significant departure from random
behavior. In addition, we observed a dichotomy in the organizational principles
where there appears to be two distinct developer groups with fundamentally
different features. One group exhibits high centrality, hierarchical embedding,
high positional stability, and is densely interconnected, while the second group
exhibits low centrality, no hierarchical embedding, low positional stability, and
is sparsely interconnected. What we will address in this chapter is whether we
can derive practical value from developer networks by exploiting the aforemen-
tioned distinctive patterns to elicit meaningful insights about the different roles
that developers play in the project. The insights that we elicit in this work
shed light on how developer roles manifest in the mode of interaction among

127

5.1. MOTIVATION AND CONTRIBUTIONS

developers fulfilling the same or different roles, and in the developers’ relative
positioning and stability within the organizational structure.

5.1 Motivation and Contributions

Developer Roles In open-source software development, there are numerous
roles that contributors adopt, each with distinct characteristics and responsibil-
ities. The popular “onion” model—first proposed by Nakakoji et al. [NYN+02]—
comprises eight roles typically appearing in open-source software projects.
These roles extend from passive users of the software, to testers and, active
developers. According to this model, there is a clear and intentional expression
of the substantial difference in scale between the group sizes fulfilling each
role. That is to say, two groups fulfilling different roles will often differ in size
by a significant margin. Quantitative evidence from several empirical studies
substantiates this model by showing that the number of code contributions
per developer is described by heavy-tailed distributions, which implies that a
very small fraction of developers is responsible for performing the majority of
work [CWLH06; DB05; MFH02]. The form of this distribution also implies
that most developers contributing to a project make only few or irregular
contributions. On the basis of these results, the distinction between different
roles of developers is often coarsely represented as a dichotomy comprised of
core and peripheral developers [CWLH06]. Core developers typically play an
essential role in developing the system architecture and forming the general
leadership structure, are characterized by prolonged, consistent, and intensive
participation in the project, and they often have extensive knowledge of the
system design and strong influence on project decisions [CWLH06; MFH02].
In contrast, peripheral developers are typically involved in bug fixes or small
enhancements and are characterized by irregular, and often short-lived, par-
ticipation in the project. The peripheral developer group is the larger of the
two, by a significant margin, but core developers are responsible for doing most
of the work [CH05; CWLH06; MFH02]. While peripheral developers are an
abundant human resource, they also introduce risk and consume resources.
For example, empirical evidence indicates that changes made by peripheral
developers introduce more architectural complexity than changes made by core
developers [TRC10]. Therefore, a stable and knowledgeable core developer
group is imperative for ensuring system integrity in the presence of potentially
inadequate changes introduced by peripheral developers. However, it appears to
be ubiquitously true that successful open-source software projects are capable
of benefiting from a large number of volatile peripheral developers, while at
the same time mitigating the associated risks.

128

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Role Stability All software projects face the situation that developers with-
draw at some point and need to be replaced by new, often less experienced,
developers. This process of developer turnover is known to present enormous
risks to commercial projects, because crucial knowledge is often lost with de-
parting developers [Boe89; Hus95; Moc10]. Researchers have shown evidence
that developer turnover negatively impacts code quality, in terms of bug den-
sity [FPB+15]. Another consequence of turnover is that replacement developers
initially require mentorship, thereby consuming additional human resources by
placing a burden on more experienced developers in the project. This is one
factor that contributes to the well-known phenomenon that adding developers
to a late project causes further delays [Bro78]. In open-source software projects,
developer turnover exists in an extreme variation because the vast majority of
developers have occasional, short-term participation, and generally only a very
small number of core developers have consistent long-term participation [CH05;
Koc04; MFH02]. It is extraordinary that open-source software projects are
able to thrive under the extreme conditions of high developer turnover. For
this reason, we dedicate attention to study the stability patterns of developer
that fulfill different roles in the project.

Importance of Peripheral Developers At first glance, it seems that the
larger group of peripheral developers represents an unnecessary threat to project
success, as their volatile nature results in the known problems of knowledge
loss and inadequate changes [TRC10]. However, there is evidence that supports
an alternative story: peripheral developers are just as critical to the project’s
success as core developers [Ray99]. Without the peripheral group, there is
limited opportunity for a vetting process to identify and promote appropriate
developers [JS07]. This process is critical to establishing informed decisions
regarding which developers are appropriate candidates for core positions. If a
project wishes to remain robust to developer turnover and achieve sustainable
growth, then there must be an adequate talent pool from which to draw new
core developers. Furthermore, peripheral developers are crucial to the “many
eyes” hypothesis—which posits that all bugs become shallow when the source
code is scrutinized by a sufficiently large number of people—that is often
referenced as an explanation for why open-source development will inevitable
result in a high-quality product [Ray99]. Since core developers are in short
supply, peripheral developers are the key for the project to benefiting from the
consequences of many eyes.

Role Operationalizations Despite having a substantial understanding
about the defining characteristics of core and peripheral developers and recog-

129

5.1. MOTIVATION AND CONTRIBUTIONS

nizing the importance of the interplay between these roles, there is significant
uncertainty around core–peripheral operationalizations. A valid and reliable
core–peripheral operationalization is crucial for testing empirical evidence of pro-
posed theories regarding collaborative aspects of software development [HM03b;
SSS07]. While several basic operationalizations have been proposed and loosely
justified by abstract notions, they may be overly simplistic. For example, one
common approach is to apply thresholding on the number of lines of code
contributed by each developer [MFH02], but this could result in incorrectly
classifying developers who just make large numbers of trivial cleanups. Further
evidence suggests that, as a developer moves into a core role, their activity in
terms of commit count or lines of code decreases substantially, because they shift
their efforts to coordinating the work of others [JSW11]. The major weakness
of existing core–peripheral operationalizations stems from the fact that they
are primarily based on counting individual developer activity (e.g., lines of code,
number of commits, number of e-mails sent), which lack any explicit considera-
tion of inter-developer relationships. Since many of the defining characteristics
developer roles are concerned with how they, or their actions, interact with
other developers [JSW11; OSdO+12], we see inter-developer relationships to be
of primary importance for the operationalization of developer roles.

Contributions The contributions of this chapter can be summarized by two
main achievements. Firstly, we statistically evaluate the agreement between the
operationalizations of core and peripheral developers most commonly applied
by researchers. We perform our study by examining data stored in the version-
control systems (VCS) and developer mailing lists of 10 substantial open-source
projects. The common operationalizations are termed “count-based” since they
are simply based on counting individual developer activities, such as the number
of commits or lines-of-code contributed. All count-based operationalizations
claim to capture the same high-level concept which implies that if they are all
valid operationalizations, they should reach consistent conclusions regarding
the role of a given developer. Secondly, we establish and evaluate richer notions
of developer role characteristics with a basis in relational abstraction. More
specifically, we adopt a network-analytic perspective to explore manifestations
of core and peripheral characteristics in the evolving organizational structure
of software projects, as operationalized by fine-grained developer networks (cf.
Chapter 3 & 4). For evaluation, we performed a survey among 166 developers
to establish a ground-truth classification of developer roles to test whether
the existing operationalizations and our network-based insights are consistent
with respect to each other and valid with respect to developer perception.
Our conjecture is that, if the abstract characteristics of core and peripheral

130

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

developers proposed in the literature and supported by empirical evidence
are accurate, these roles should also manifest in ways that transcend simple
counts of individual developer contributions. In particular, we explore stability
patterns and structural embeddings of core and peripheral developers in the
global organizational structure of a project, which contains more actionable
information regarding organizational or collaborative issues than just a count
of code contributions.

In summary, we make the following contributions:

• We statistically evaluate the agreement between classifications of core
and peripheral developers generated from commonly used operationali-
zations—henceforth called count-based operationalizations—by studying
10 substantial open-source projects, over at least one year of development,
with data from two sources (version-control system and mailing list).

• We conducted a survey among 166 developers to establish a ground truth
composed of 982 samples, which we use to evaluate the validity of several
core–peripheral operationalizations with respect to developer perception.

• We identify structural and temporal patterns in the project’s organiza-
tional structure that operationalize core–peripheral roles using network-
analysis techniques, referred to as the network-based operationalizations.

• We demonstrate that network-based operationalizations exhibit moderate
to substantial agreement with the existing count-based operationalizations,
but the network-based operationalizations are more reflective of developer
perception than the count-based operationalizations.

• We highlight and discuss a number of insights from our network-based
operationalizations that are incapable of being expressed by count-based
operationalizations, such as positional stability, hierarchical embeddings,
and interaction patterns between core and peripheral developers.

5.2 Operationalizations of Developer Roles

We now introduce the count-based operationalizations, which attempt to differ-
entiate core–peripheral roles by counting individual developer activities. This
will be followed by the network-based operationalizations that capture core–
peripheral roles by means of explicit modeling of inter-developer relationships.

131

5.2. OPERATIONALIZATIONS OF DEVELOPER ROLES

5.2.1 Count-based Operationalizations

Based on a review of the existing literature, we have identified three variations
of count-based operationalizations of core–peripheral roles [BGD+07; CWLH06;
dSFD05; MFH02; OSdO+12; RGH09; RG06; TRC10]. In the literature, metrics
are used with a quantile threshold to define a dichotomy composed of core
and peripheral developers. We apply the standard 80th percentile threshold,
because of its wide use and its justification based on the data following a
Zipf distribution (cf. Section 5.6). Two operationalizations capture technical
contributions to the version-control system and one captures social contributions
to the developer mailing list.

Commit count is the number of commits a developer has authored (merged
to the master branch). A commit represents a single unit of effort for making
a logically related set of changes to the source code. Core developers typically
make frequent contributions to the code base and should, in theory, achieve a
higher commit count than peripheral developers.

Lines of code (LOC) count is the sum of added and deleted lines of
code a developer has authored (merged to the master branch). Counting LOC,
as it relates to developer roles, follows a similar rationale as commit count. As
core developers are responsible for the majority of changes, they should reach
higher LOC counts than peripheral developers. A potential source of error is
that developers writing inefficient code or changing a large number of lines
with trivial alterations (e.g., whitespace changes) could artificially affect the
classification.

Mail count is the number of mails a developer contributed to the developer
mailing list. Core developers often posses in-depth technical knowledge, and
the mailing list is the primary public venue for this knowledge to be exchanged
with others. Core developers offer their expertise in different forms: making
recommendations for changes, discussing potential integration challenges, or
providing comments on proposed changes from other developers. Typically,
peripheral developers ask questions or ask for reviews on patches they propose.
Core developers often participate more intensively and consistently and have
greater responsibilities than peripheral developers, in general. This should
result in core developers making a large number of contributions to the mailing
list. This is still only a very basic metric because a developer answering many
questions and one asking many questions will appear to be similar, and there
is no inter-developer information, so who is speaking with whom or with how
many people is completely ignored.

Each of the above metrics has a foundation rooted in our current empirical
understanding of the characteristics of core and peripheral developers, but in
the end, they are all relatively simple abstractions of a potentially multifaceted

132

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

and complex concept [DB05]. A comparison between the resulting classification
of developers from these different metrics will provide valuable insights into
whether systematic errors exist in these count-based operationalizations, which
we perform in Section 5.4.1. However, as the focus of these metrics is still only to
assign developers exclusive membership to one of two unordered sets—without
relational information between sets or within the sets—the insights offered by
the classification are of limited practical value. To address this shortcoming,
we propose a relational view on developer coordination and communication as
the basis for developer-role operationalizations.

5.2.2 A Network Perspective on Developer Roles

A developer network is a relational abstraction that represents developers as
nodes and relationships between developers as edges (cf. Section 2.4). The
promise of a network perspective is greater practical insights concerning the
organizational and collaborative relationships between developers [BPD+08;
CH13; CHC08; dSFD05; MW11]. But to what extent can this promise be
fulfilled? So far, we know that developer networks, when carefully constructed
on version-control-system (cf. Chapter 3) and mailing-list data [BPD+08], can
be both accurate in reflecting developer perception and reveal important func-
tional substructure, or communities, with related tasks and goals. What can be
elicited from developer networks regarding the core–peripheral dichotomy has
not yet been greatly explored, especially in comparison to non-network-based
approaches, which is our intention in this work. Practical opportunities for
network insights are, for example: identifying core developers that are over-
whelmed by the peripheral developers they need to coordinate with; structural
equivalence (that is two nodes with the same neighbors) could reveal which
core developers have similar knowledge or technical abilities, which helps to
determine appropriate developers for sharing or shifting development tasks;
structural holes between core developers may indicate deteriorating coordina-
tion; or a single globally central core developer may indicate an important
organizational risk.

5.2.2.1 Developer Networks

We now present the details of our network-analytic approach for analyzing
data from version-control systems and mailing lists to examine relational
characteristics of core and peripheral developers. Intuition and prior research
led us to the conclusion that the role a developer fulfills can change over
time [JS07]. For this reason, we analyze multiple contiguous periods of each
project over one year using overlapping analysis windows. We apply the same

133

5.2. OPERATIONALIZATIONS OF DEVELOPER ROLES

approach described in Section 4.2 for studying developer network evolution.
Each analysis window is three months in length, and each subsequent analysis
period is separated by two weeks (cf. Section 4.2.2). We chose three-month
analysis windows, because it has been shown that, beyond this window size, the
development community does not change significantly, but temporal resolution
in their activities is lost [MW11].

E-mail networks The e-mail exchanges between members of an open-source
project provide complementary information to the version-control system data
that we have focused on in Chapter 3 and Chapter 4. Mailing list archives
are particularly important in the operationalization of roles because core
developers are often regarded as having a primary responsibility to coordinate
the work of others, which requires them to communicate heavily on the mailing
list (cf. Section 5.1 and Section 2.2.3). Furthermore, empirical studies have
shown that, as a developer progresses towards a core role, their activity in
the version-control system typically decreases because they shift to project
management and leadership roles that results in reduced version-control system
activity and increased mailing list activity [JSW11]. To obtain the e-mail
correspondence for a given project, we download the mailing list archives
either from gmane using nntp-pull or directly from the project’s homepage
to obtain an mbox formatted file containing all messages sent to the mailing
list. Most projects have different mailing lists for different purposes. We
consider only the primary mailing list for development-related discussions. We
apply several preprocessing steps to remove duplicated messages, normalize
author names, and organize the mails into threads using the Message-IDs and
In-Reply-To-IDs (cf. Section 2.2.3). Furthermore, we decompose the From
lines of each mail into a 〈name, e-mail address〉 pair. In some cases, only an
e-mail address or only a name is possible to recover, and this can present
issues with identifying all e-mails that a single person sent. To resolve multiple
aliases to a single identity, we use a basic heuristic approach similar to the one
proposed by Bird et al. [BGD+06]. Despite the potential problems regarding
author-name resolution—as developers accumulate valuable credibility through
contributions to the mailing list—it is counterproductive for highly active
individuals to use multiple aliases and conceal their identity. To construct a
network representation of developer communication, we apply the standard
approach, where edges are added between individuals who make subsequent
contributions to a common thread of communication (cf. Section 2.4.2).

Version-control-system networks Data in version-control systems are
organized in a tree structure composed of commits. We analyze only the

134

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

main branch of development, as a linearized history, by flattening all branches
merged to master. Furthermore, we analyze only the authors of commits,
not the committer (which are expressed differently in Git), and attribute
the commit to a unique individual using the same aliasing algorithm as for
the mailing-list data. We count lines of code for each commit based on
diff information, where the total line count is the sum of added and deleted
lines. The network representation of developer activities in the version-control
system is constructed using fine-grained function-level information, which was
observed to produce authentic networks that agree with developer perception
(cf. Chapter 3). In this approach, changes are localized to function blocks using
source-code structure to identify when two developers edit interdependent lines
of code. We enhance the network with semantic-coupling relationships between
functions (cf. Section 4.2), which has shown to also reflect developer perception
of artifact coupling [BDO+13].

5.2.2.2 Network-based Operationalizations

Based on the known characteristics of core and peripheral developers (cf.
Section 5.1), we expect that characteristics of core and peripheral developers
manifest in ways that transcend the count-based operationalizations introduced
in Section 5.2.1—an expectation that is also supported by a survey among 166
open-source developers (cf. Section 5.4.5).

Typically, metrics used to classify a developer as core or peripheral generally
quantify the amount of participation a developer has in the project, such as
lines of code or number of commits contributed [CH05; RGH09; TRC10]. A
developer is then assigned to the core group if their level of participation
is in the upper 20th percentile; all other developers are considered to be
peripheral [RGH09; TRC10]. For our network-based operationalizations, we
adopt a similar percentile defined threshold to classify the developers. Since
our metrics are based on networks, an individual can appear in the network,
yet be assigned a value of zero. A person can also fail to appear in the network
because they make no contributions to the project at that time period. We
differentiate between these cases by assigning developer to classes according to
the following.

Core: developers with metric value in the upper 20th percentile

Peripheral : non-core developers with non-zero metric value

Isolated : developers with a metric value equal to zero

Absent : developers that did not participate

135

5.2. OPERATIONALIZATIONS OF DEVELOPER ROLES

We consider developers with a metric value equal to zero to be distinct from the
peripheral group since these developers tend have extremely low activity, often
with only a single contribution. We want to prevent the isolated developers
distinct character from distorting the analysis of the peripheral developer group,
so we analyze them separately. Next, we introduce the five network-based
operationalizations that are rooted in the structure and evolution of developer
networks (cf. Section 5.2.2.1).

Degree centrality aims at measuring local importance. It represents the
number of ties (edges) a developer has to other developers [BE05]. As essential
members of the leadership and coordination structure, core developers associate
with other core members and with peripheral developers that require their
technical guidance. Peripheral developers are likely involved in only a small
number of isolated changes and thus have only a limited number of interactions
with other members of the development community. The expectation is that
core developers then have a larger degree than peripheral developers.

Eigenvector centrality is a global centrality metric that represents the ex-
pected importance of a developer by either connecting to many developers or by
connecting to developers that are themselves in globally central positions [BE05].
Since core developers are critical to the leadership and coordination structure,
we expect them to occupy globally central positions in the developer network.

Hierarchy is present in networks that have nodes arranged in a layered
structure, such that small cohesive groups are embedded within large, less
cohesive groups (cf. Section 2.3.7). In a hierarchical network, nodes with high
degree tend to have edges that span across cohesive groups, thereby lowering
their clustering coefficient [RB03]. In Chapter 3, we presented results which
demonstrated that developers tend to form cohesive communities, and we expect
core developers to play a role in coordinating the effort of these communities
of developers. We further found evidence in Chapter 4 that highly central
developers are arranged hierarchically, but developers with low centrality are
not. Based on this evidence, the core developers should have a high degree and
low clustering coefficient, placing them in the upper region of the hierarchy,
while peripheral developers should exhibit a comparatively low degree and high
clustering coefficient, placing them in the lower region of the hierarchy.

Role stability is a temporal property of how developers switch between
roles. As core developers typically attain their credibility through consistent
involvement and often have accumulated knowledge in particular areas of the
system over substantial time periods, we expect their stability in the developer
network to be higher than for peripheral developers. Developer turnover—the
process by which developers enter and withdraw from a project—provides
important insights into the stability of the organizational structure of a project.

136

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Peripheral

Core

Isolated

Absent

11%
5%

83%

1.7%

16% 0.5%

84%

0.1%
0% 16%

51%

33%

0%

0.8%

0.1%

99.1%

Figure 5.1: The developer-group stability for QEMU shown in the form of a
Markov Chain. In some states, the addition of outgoing edge probabilities may
not equal unity due to rounding errors.

We operationalize developer stability by estimating the probability that a
developer in a given role leaves the project by not participating for, at least,
90 days. We also expand on this concept by not only studying the likelihood
that developers leave a project but also the likelihood of transitioning between
different roles in the project. Particularly, we employ sequential-data modeling
techniques to formally address this concept. We make use of the discrete state
Markov model by assigning a discrete state to every developer in the project for
each time window (cf. Section 2.3.8). In the appendix (page 190), we discuss
the trade-off involved in the choice of analysis windows and the influence it has
on the Markov model. In this model, a developer is assigned to one of the four
states defined above (core, peripheral, isolated, or absent) for each time window.
To compute the transition probabilities, each developer’s state transitions are
expressed by a sequence of random variables Xt ∈ {s1, s2, s3, s4} that can take
on any of the four states. We then employ the Markov property such that
Pr(Xt+1 = x|X1 = x1, X2 = x2, . . . , Xt = xt) = Pr(Xt+1 = x|Xt = xt). The

137

5.2. OPERATIONALIZATIONS OF DEVELOPER ROLES

assumption is that, to determine the next state transition, only information
about the previous state is required. Using this assumption, we are able to
represent developer transitions from state to state as an N × N transition
matrix, in which each element indicates the probability of transitioning from
any state in the state space N to any other state during the entire project’s
evolution. We used maximum-likelihood estimation to solve for each state
transition parameter of the Markov model [Bis06]. We experimented with
second order Markov chains, more formally Pr(Xt+1 = x|Xt = xt, Xt−1 = xt−1),
to test the validity of our assumptions, but the overall insights do not change
and so we only show results for the simpler first order Markov chain.1 Figure 5.1
provides an example developer transition Markov chain: The core developers
stay in the core state in the following release with a 84% probability, transition
to the peripheral state with 5% probability, with 0.1% probability transition to
the isolated state, and with 0.5% probability to the absent state. All transition
probabilities are between 0 and 1, and the sum of all transitions from a single
state is equal to 1, to ensure that the conditions for a probability function are
maintained.

Core–peripheral block model is a formalization, proposed in the social-
network literature, that captures the notion of core–periphery structure based
on an adjacency-matrix representation. A network exhibiting core–periphery
structure and the corresponding block model is shown in Figure 5.2. The block
model specifies the core–core region of the matrix as a 1-block (i.e., completely
connected) shown in orange, the core–peripheral regions as imperfect 1-blocks
shown in green, and the peripheral–peripheral region as a 0-block shown in
white [ZMN15]. Intuitively, this model describes a network as a set of core
nodes, with many edges linking each other, surrounded by a loosely connected
set of peripheral nodes that have no edges connecting each other. Of course,
this idealized block model is rarely observed in empirical data [BE00]. Still, we
are able to draw practical consequences from this formalization by estimating
the edge presence probability of each position to test if core and peripheral
developers (operationalized by degree centrality) occupy core and peripheral
network positions according to this block model. From the block model, one can
mathematically reason that the probability of observing an edge in each block is
distinct and related according to pcore–core > pcore–periph > pperiph–periph [ZMN15].
This model aligns with empirical data that indicate that core developers are
typically well-coordinated and are expected to be densely connected in the
developer network [MFH02]. Since peripheral developers often rely on the

1The second order Markov chain is more complex by including the random variable Xt−1

in the model, but the vast majority of variance for our data is explained by the first order
Markov chain. We concluded that the increase in model complexity is not justified by the
improvement in the model’s fit.

138

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Core–Periphery Core–Periphery
Network Block-model

Id 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 1
2 1 1 1 1 0 1 0 0 0 0
3 1 1 1 1 1 0 1 0 1 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0 0 0
9 0 1 0 0 0 0 0 0 0 0

Figure 5.2: (left) Developer network exhibiting core–periphery structure with
the characteristic densely interconnected core group (orange nodes) and loosely
coupled periphery group (green nodes). (right) Ideal block model of core–
periphery structure, rows and columns are colored according to which group
each block in the matrix corresponds to in the developer network. Not all nodes
in the network are represented in the block model due to spatial constraints.

knowledge and support of core developers to complete their tasks, it follows
that peripheral developers often coordinate with core developers, and only
in rare cases would we expect substantial coordination between peripheral
developers. This expected behavior aligns very well to the formalized notion of
core–periphery positions from social-network analysis.

5.3 Empirical Study

We now present the details of our empirical study to test for agreement between
the different count-based operationalizations of core and peripheral developer
roles and to identify richer relational characteristics of these roles represented
by our proposed network-based operationalizations. By means of a developer
survey, we then evaluate each operationalization on the basis of how well it
reflects developer perception.

139

5.3. EMPIRICAL STUDY

5.3.1 Subject Projects

We selected ten open-source projects, listed in Table 5.1, to study the core–
peripheral developer roles. We intentionally chose a diverse set of projects
to avoid biasing the results. The projects vary by the following dimensions:
(a) size (source lines of code from 50KLOC to over 16 MLOC, number of
developers from 15 to 1000), (b) age (days since first commit), (c) technology
(programming language, libraries used), (d) application domain (operating
system, development, productivity, etc.), (e) development process employed.
Developers of the project referred to as Project X have requested that their
project name remains anonymous.

Table 5.1: Overview of subject projects

Project Domain Lang Devs SLOC Commits Date

Project X User C/++, JS 826 10M 276K 2015/12/05
Django Devel Python 100 430K 41K 2015/12/06
FFmpeg User C 103 1M 78K 2015/11/08
GCC Devel C/++ 122 7.5M 144K 2015/11/03
Linux OS C 1467 18M 637K 2015/12/05
LLVM Devel C/++ 180 1.1M 62K 2015/11/02
PostgreSQL Devel C 17 1M 40K 2015/12/05
QEMU OS C 134 1M 43K 2015/11/02
U-Boot Devel C 142 1.3M 35K 2015/11/01
Wine User C 62 2.8M 110K 2015/11/06

5.3.2 Research Questions

While each of the approaches for classifying core and peripheral developers is
inspired by common abstract notions rooted in empirical results, it has not
been shown that the approaches agree. It may be the case that they capture
orthogonal dimensions of the same abstract concept, which gives rise to our
first research question:

RQ1: Consistency—Do the commonly applied operationalizations of core
and peripheral developers based on version-control-system and mailing-list data
agree with each other?

Compared to the extent of our knowledge regarding the characteristics
of core and peripheral developers, existing count-based operationalizations
are relatively simple. Since core developers often have strong ownership over

140

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

particular files and play a central role in coordinating the work of others on
those artifacts [CHC08; JSW11; MFH02], we would expect core developers
to differ, in a relational sense, from peripheral developers in how they are
embedded in the communication and coordination structure. Furthermore, as
core developers typically achieve their status through long-term and consistent
involvement [JS07], we expect their temporal stability patterns to differ from
peripheral developers.

RQ2: Positions & Stability—Do the differences between core and periph-
eral developers manifest in relational terms within the communication and
coordination structure with respect to their positions and stability?

The utility offered by an operationalization is limited by the extent to which
the operationalization is able to accurately capture a real-world phenomenon.
So far, it is unclear to what extent the core–peripheral operationalizations
reflect developer roles as seen by their peers. We explore whether relational
abstraction, as in the network-based operationalizations, offers improvements
over the count-based operationalizations by more accurately reflecting developer
perception through explicit modeling of developer–developer interactions.

RQ3: Developer Perception—To what extent do the various count-based
and network-based operationalizations agree with developer perception?

5.3.3 Hypotheses

The existing count-based operationalizations of core and peripheral developers
discussed in Section 5.2.1 claim to be valid measures, and if this is a matter
of fact, we expect to reach consistent conclusions about whether a given
developer is core or peripheral. Due to finite random sampling and sources of
noise, we expect imperfect agreement between two operationalizations even if
they are consistent in capturing the same abstract concept. However, if the
operationalizations are consistent, the level of agreement should be significantly
greater than the case of random assignment of developer roles. Our null
model for zero agreement is the amount of agreement that results from two
operationalizations that assign classes according to a Bernoulli process.2 To
operationalize agreement between two binary classifications (core or peripheral)
of a given set of developers, we use Cohen’s kappa, κ = (po − pe)/(1 − pe),
where po is the number of times the two classifications agree on a role of
a developer, divided by the total number of developers and where pe is the

2A Bernoulli process generates a sequence of binary-valued random variables that are
independent and identically distributed according to a Bernoulli distribution. The process is
essentially simulating repeated coin flipping.

141

5.3. EMPIRICAL STUDY

expected probability of agreement when there is random assignment of roles to
developers, but the proportion of each class is maintained. Cohen’s kappa is
more robust than simple percent agreement because it incorporates the effect
of agreement that occurs by chance [LK77]. This characteristic is particularly
important in our case since the frequency of roles is highly asymmetric as
the majority of developers are peripheral and only a small fraction are core.
The ranges for Cohen’s kappa and corresponding strengths of agreement are:
0.81–1.00 almost perfect, 0.61–0.80 substantial, 0.41–0.6 moderate, 0.21–0.40
fair, 0.00–0.20 slight, and < 0.00 poor [LK77].

H1—Existing count-based operationalizations of core and peripheral developers
based on version-control-system and mailing-list data are statistically consistent
in classifying developer roles.

The characteristics of core and peripheral developers discussed in Section 5.1
draws attention to the multitude of facets in which the two groups differ (e.g.,
contribution patterns, knowledge, level of engagement, organization, responsibil-
ity, etc.). While existing operationalizations of core and peripheral developers
are primarily based on simple metrics of counting high-level activities of de-
velopers, these metrics largely ignore the richness in the definition of core
and peripheral roles. In particular, the dimension of time is largely ignored,
though time plays a central role in the developer-advancement process [JS07].
For example, over time, developers withdraw from projects and there are
potentially severe consequences as a result of the loss of knowledge and the ad-
ditional resources required to mentor replacement developers [Moc10]. However,
many successful open-source software projects have adapted to benefit from
an abundant supply of inherently unstable developers by ensuring that a more
stable developer group exists and plays a substantial role in coordinating the
efforts the more unstable developers [CH05; JS07; JSW11; MFH02]. Therefore,
we expect that turnover characteristics to be of fundamental importance for
determining developer roles. Additionally, in the count-based metrics, the
relative positioning of developer in the organizational structure are ignored.
But a difference in how core and peripheral developers are embedded in the
organizational structure is to be expected, since core developers have exten-
sive involvement in the coordination of specific technical artifacts and preside
over peripheral developers. Therefore, we expect to see manifestations of the
differences between the two distinct groups of developers in the developer
network.

H2—The well-known abstract characteristics of core developers will manifest as
distinct structural and temporal features in the corresponding developer network:

142

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Core developers will exhibit globally central positions, relatively high positional
stability, and hierarchical embedding.

As core developers form the primary coordination structure, we expect to
observe: many edges in the developer network between core developers, less
edges between core and peripheral developers, and even fewer edges between
peripheral developers. We investigate this hypothesis in terms of preferences
between the groups to associate based on the probability of an edge occurring
between them according to the core–peripheral block model (cf. Section 5.2.2.2).

H3—Core developers have a preference to coordinate with other core developers;
peripheral developers have a preference to coordinate with core developers instead
of other peripheral developers.

We expect developer networks to reveal core and peripheral developers,
albeit in a richer representation, with comparable precision to the currently
accepted operationalizations. More specifically, we expect developer networks
capture the core–peripheral property to an equally high standard as the currently
accepted operationalizations; any disagreement should be on the order of the
discrepancy between existing operationalizations.

H4—The core–peripheral decomposition obtained from developer networks will
be consistent with the core–peripheral decomposition obtained from the prior
accepted operationalizations. The discrepancy in agreement will not exceed the
amount observed between the existing operationalizations.

As the count-based operationalizations appear to reasonably capture simple
aspects of developer roles, we expect a certain level of agreement between these
operationalizations and developer perception. In the case of the network-based
operationalizations, we expect even higher agreement with developer percep-
tion since the relational abstraction explicitly captures developer–developer
interactions, which are neglected by the count-based operationalizations.

H5—Count-based operationalizations agree with developer perception, but
network-based operationalizations exhibit higher agreement.

5.3.4 Developer Perception

To establish a ground-truth classification of developer roles, we designed an
online survey in which we asked developers to report the roles of developer’s in
their project according to their perception. The goal of acquiring these data is
to test whether the core–peripheral operationalizations are valid with regard to
developer perception (not only to other operationalizations). A sample of the
survey instrument can be found at the supplementary Web site.

143

5.3. EMPIRICAL STUDY

We recruited participants for the study from the version-control-system data
of our ten subject projects by identifying the e-mail addresses of individuals that
made a commit within the three months prior to the survey date (cf. Table 5.1).
This was to ensure that the selected developers have current knowledge of
the project state, so that their answers are temporally consistent with our
analysis time frame. One subject project, GCC, was excluded from the survey
because the developer e-mail addresses are not available in the version-control
system. For the remaining 9 projects, we sent recruitment e-mails to 3369
developers of which 166 elicited a complete response. In total, we obtained 982
role classifications. The distribution of responses from the projects was 41%
for Linux, 7% for Django, 8% for QEMU, 15% for LLVM, 8% for PostgreSQL,
13% for Wine, and 7% for FFmpeg.

Figure 5.3: Example survey question. Participants were instructed to classify
each developer and rank them relative to each other based on the role the
developer fulfills.

The survey includes two primary sections: The first section contains ques-
tions that require the developers to self-report their role in the project (core or
peripheral) and to provide a textual description of the nature of their partici-

144

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

pation. This question is useful for identifying potential sampling-bias problems
and to determine if developers’ self-reported role is consistent with the answers
provided by their peers. The second section includes a list of 12 developers,
identified by name and e-mail address, sampled from their specific project. An
example of this question is provided in Figure 5.3 with a shortened developer
list (10 names instead of 12) to save space. For each developer appearing in
the list, the respondent was asked to provide a classification of the developer’s
role. Appropriate options are also available if the respondent did not know
the developer in question or was unsure of the role. We applied the following
sampling strategy to select the list of twelve developers: Five developers were
randomly selected from the core group and five from the peripheral group,
classified according the the commit count-based operationalization (cf. Sec-
tion 5.2.1). The remaining two developers were randomly selected from the
direct neighbors, in the developer network, of the survey participant. We chose
to use neighbors because it is likely that neighbors work directly together and
are aware of each other’s roles.

5.4 Results

We now present the results of our empirical study and address the five hypotheses
stated in Section 5.3.3. For practical reasons, we are only able to present figures
for a single project that is representative of the general results. Please refer to
the supplementary Web site for the remaining project figures.

5.4.1 RQ1: Consistency of Count-Based
Operationalizations

To address H1, we compute the pairwise agreement between all count-based
metrics for a given project. For this purpose, we analyze each subject project
in a time-resolved manner using a sliding-window approach (cf. Section 4.2.2)
to generate time-series data that reflect the agreement for a particular three-
month development period. An example time series is shown in Figure 5.4
for QEMU. While being only one project, the insights are consistent with
the results from the other projects. The figure illustrates the agreement
for Cohen’s kappa, and we see that, for all comparisons, the agreement is
greater than fair (e.g., greater than 0.2), which significantly exceeds the level
of agreement expected by chance (cf. Section 5.3.3). This is evidence that the
different count-based operationalizations do not contradict each other. For
operationalizations that are based on the same data source (i.e., version-control
system), we typically see substantial agreement (0.61–0.8). One reason for the

145

5.4. RESULTS

Figure 5.4: QEMU time series representation of pairwise agreement between
count-based operationalizations. The data indicate that agreement is fair to
substantial and is temporally stable (i.e., mean and variance are time invariant)

.

lower cross-archive agreement could be due to problems of multiple aliases,
which will be discussed in detail in Section 5.5. Another interesting result
is that the agreement is relatively stable over time, which is again visible in
Figure 5.4 for QEMU. More specifically, the arithmetic mean and variance
do not significantly change over time—a property referred to as “wide-sense
stationary” in the time-series analysis literature [Ham94]. This feature of the
data is a testament to the validity of the operationalizations, as we would
not expect the agreement between operationalizations to change drastically
from one development window to the next. The wide-sense stationary property
is also important because it permits us to aggregate the data by averaging
over the time windows to attenuate noise and generate more concise overviews
without sacrificing scientific rigor or interpretability of the result.

Overall, the results demonstrate that the count-based operationalizations
largely produce consistent results regarding the classification of developers into
core and peripheral groups. We therefore accept H1.

5.4.2 RQ2: Core and Peripheral Manifestations in
Developer Networks

146

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Figure 5.5: QEMU hierarchy during four development periods. The linear
dependence between clustering coefficient and degree expresses the hierarchy.
Core developers should appear clustered at the top of the hierarchy (bottom
right region) and peripheral developers at the bottom of the hierarchy (upper
left region)

Hierarchy In a hierarchical network, nodes at the top of the hierarchy
have a high degree and low clustering coefficient; nodes at the bottom of the
hierarchy have a low degree and high clustering coefficient (cf. Section 2.3.7).
If hierarchy exists in a developer network, we should see mutual dependence
between the clustering coefficient and the degree of nodes in the network that
serves to separate the core group from the peripheral group. The hierarchical

147

5.4. RESULTS

relationship for QEMU is shown in Figure 5.5; there is an dependence between
the node degree and clustering coefficient and there is an obvious separation
between the core and peripheral groups. Nodes with a high degree are seen
to exclusively have very low clustering coefficient and are indicative of core
developers according to Section 5.2.2.2; low degree nodes have consistently
higher clustering coefficients and are indicative of peripheral developers. For the
remaining subject projects we present the dependence in a more compact form
in terms of Spearman’s correlation coefficient between clustering coefficient and
degree (cf. Table 5.2 “Hierarchy”). We see that, for all projects, there is a strong
negative correlation, which suggests that core and peripheral roles manifest
in the hierarchical embedding of developers in the coordination structure.
In Section 5.4.4, we will evaluate whether developer perception confirms or
rejects the hypothesis that a developer’s relative position in the hierarchy is an
organizational manifestation of their particular role.

Table 5.2: Results for block-model edge probabilities and hierarchy

Edge Probabilities Hierarchy

Project C–C C–P P–P Rho1 p value

Project X 9.75e-02 4.19e-03 2.70e-03 -0.552 5.51e-33
Django 2.95e-01 9.09e-03 3.08e-03 -0.812 1.28e-06
FFmpeg 5.50e-01 2.44e-02 5.16e-03 -0.725 7.10e-06
GCC 4.07e-01 1.84e-02 1.01e-02 -0.646 1.12e-04
Linux 2.39e-02 5.93e-04 3.60e-04 -0.689 6.06e-62
LLVM 7.80e-01 5.54e-02 2.62e-02 -0.778 8.72e-24
PostgreSQL 1.00e+00 1.62e-01 5.13e-02 -0.871 1.31e-03
QEMU 3.20e-01 1.95e-02 1.16e-02 -0.756 4.76e-07
U-Boot 2.00e-01 7.59e-03 4.20e-03 -0.728 8.27e-05
Wine 3.46e-01 2.91e-02 1.28e-02 -0.832 1.04e-05
1 Spearman’s correlation coefficient

Stability Developers who fulfill a particular role within a project and who
maintain participation over subsequent development periods are defined to
be stable (cf. Section 5.2.2.2). We study this characteristic by examining the
developers’ transitions from one state to another (e.g., core to peripheral) in a
time-resolved manner. The result of examining the developer transitions over
one year of development for QEMU are shown in Figure 5.6. In this figure,
the transition probabilities between developer states are shown in the form
of a Markov chain. We applied the procedure described in Section 5.2.2.2 to

148

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

construct a Markov chain representing the transitions between the four possible
developer states (core, peripheral, isolated, and absent). The Markov chain
for QEMU will be described as a representative of the primary result. For
developers in the “core” state, we see they are very unlikely to leave the project
with only a 0.5% chance of occurring. In comparison to developers in the
peripheral state and isolated state, the chance of becoming absent is 11% and
16% respectively. We see that it is a common result that the core developers
are 5 to 10 times less likely to leave a project in comparison to peripheral
developers. This result is convincing evidence that the groups of peripheral and
isolated developers, or more generally non-core developers, are significantly less
stable than core developers. Furthermore, we see that, once a developer enters
the absent state, there is an overwhelming probability that the developer will
not return to the project. This result suggests, once a developer becomes absent
for a single revision, in most cases, she will not participate in contributing
code in the future. Since entering the absent state most likely indicates a total
lost of the individual and any valuable knowledge they possess, the peripheral
developers are a potential source of risk because of their high volatility. The
overall observation is that developers in a core state are substantially less likely
to transition to the absent state (i.e., leave the project) or isolated state (i.e.,
have no neighbors in the developer network by working exclusively on isolated
tasks), in comparison to developers in a peripheral state. Based on this result,
the core developers represent a more stable group than peripheral developers.

Core–periphery block model The core–periphery block model describes
the core and peripheral groups, formalized as positions in a network, as a
particular two-class partitioning of nodes (cf. Section 5.2.2.2). To test whether
our empirical data are plausibly described by the core–periphery block model,
we must compute the edge-presence probabilities for core–core, core–peripheral,
and peripheral–peripheral edges. If the edge-presence probabilities are arranged
according to, pcore–core > pcore–periph > pperiph–periph, then we can conclude that
core developers constitute the most coordinated developers in the project,
peripheral developers coordinate primarily with core developers, and peripheral
developers rarely coordinate with other peripheral developers. This provides
an example of a relational perspective that captures intra- and inter-relational
information on developer roles (cf. Section 5.2.2.2).

The edge-presence probabilities for all projects are shown in Table 5.2
(column “Edge Probabilities”). In all projects, the inequality holds, indicating
that the model plausibly describes our projects. The edge-presence probability
for core–core has a mean value of 4.02× 10−1, for core–peripheral edges it
is significantly lower with a mean value of 3.30× 10−2, and the peripheral–

149

5.4. RESULTS

Peripheral

Core

Isolated

Absent

11%
5%

83%

16%

0.5%
84%

0.1%
0% 16%

51%

Figure 5.6: Developer-group stability for QEMU shown in the form of a Markov
Chain. A few less important edges have been omitted for visual clarity.

peripheral edge probability is lower yet with a mean value of 1.28× 10−2. The
interpretation is that peripheral developers are twice as likely to coordinate
with core developers as opposed to other peripheral developers.

Two projects are noteworthy outliers, but are still described by the core–
periphery block model: Linux and PostgreSQL. For Linux, the edge-presence
probabilities are notably lower in all cases, and the difference in scale between
core–core edge probabilities and the others is two orders of magnitude. In
the case of PostgresSQL, we see an outlier in the opposite direction. The
core–core edge probability is 1, notably higher than for all other projects, much
like core–peripheral edges. It is interesting that both of these projects are
also outliers in terms of the size of the developer community: Linux is much
larger than most projects (1510 developers), PostgreSQL is much smaller (18
developers). From this result, it appears that the scale of a project influences
how likely it is for developers to coordinate, and this influence has a greater
effect on the coordination of peripheral developers.

Overall, the network-based operationalizations illustrate clear manifesta-
tions of core and peripheral developer roles that are consistent with known
characteristics of these roles established by earlier empirical work. We also
found evidence in terms of the core–peripheral block model that developer roles

150

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

imply specific coordination preferences. On the basis of these results, we accept
H2 and H3.

5.4.3 Agreement: Network-Based vs. Count-Based

So far, our results have provided evidence that the count-based operational-
izations produce consistent classifications of developers, which is a testament
to their validity, and that developer networks exhibit specific characteristics
that are indicative of core and peripheral developer roles. Next, we present
the results to relate the network-based to the count-based operationalizations
of core and peripheral developers. We approach this evaluation again using
Cohen’s kappa by averaging the level of agreement over one year of development.
QEMU is used as an example project and the pairwise agreement for each
operationalization is illustrated in Figure 5.7. The stability and core–periphery
block-model operationalizations do not show up explicitly since they are derived
from degree centrality.

In general, the level of agreement always exceeds 0, which indicates that
the strength of agreement between all operationalizations significantly exceeds
what is expected by chance. The rows/columns beginning with “VCS” are
based on data stemming from the version-control system, and those with “E-
mail” are based on the mailing list. We again see that agreement between
operationalizations defined on same data source typically have substantial
agreement (0.6–0.8).

Overall, the results indicate that the network-based and count-based oper-
ationalizations are mostly consistent. While the agreement is imperfect, the
results show that the divergence from perfect agreement is similar what is seen
among the count-based operationalizations. We therefore accept H4.

5.4.4 RQ3: Developer Perception vs. Network-Based and
Count-Based Operationalization

To establish a ground-truth classification of developers based on the perception
of our survey participants, we computed the number of core and peripheral
votes for each developer from the survey responses (cf. Section 5.3.4). For each
developer, we assigned the ground truth role by determining which role was
given the highest number of votes and, if the vote count for core and peripheral
was equal, the developer was removed from the study. Upon inspection of
the responses, we found that they were largely consistent regarding a given
developer’s role. The condition of having equal number of votes for core and
peripheral was extremely rare. The results of comparing both the count and

151

5.4. RESULTS

Figure 5.7: Time-averaged agreement in terms of Cohen’s kappa for QEMU.
The pairwise agreement is shown for the count-based and network-based opera-
tionalizations

network-based operationalizations to the ground-truth classification are shown
in Table 5.3. Agreement was computed for 163 ground-truth samples provided
by the survey participants. Three participant responses were eliminated because
they were incomplete.

The nominal agreement values, in terms of Cohen’s kappa, exceed 0 indi-
cating that all operationalizations agree with developer perception significantly
more than what is expected by chance (cf. Section 5.3.3). The highest and
second highest agreement is seen in the node degree metric for the E-mail

152

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Table 5.3: Agreement with developer perception

Cohen’s kappa p value
C

ou
nt

s Commit Count 0.387 3.12e-06
LOC Count 0.355 1.91e-05
E-mail Count 0.421 2.08e-05

N
et

w
or

ks

VCS Degree 0.465 4.48e-08
VCS Hierarchy 0.437 2.22e-07
VCS Eigen. Cent. 0.404 1.74e-06
E-mail Degree 0.497 8.23e-07
E-mail Eigen. Cent. 0.427 1.26e-05

network and VCS network, respectively. The lowest agreement is seen for
the count-based version-control-system metrics (Commit and LOC count). In
general, all network-based operationalizations agree better (albeit in some
cases only slightly) with developer perception than the basic version-control-
system count-based metrics. Focusing on the comparison between different
data archives, the agreement for the mailing lists metrics have even greater
agreement than the corresponding version-control-system metric. However,
network-based metrics always outperform the count-based metrics when the
data source is fixed.

In general, the mailing list is most accurate in capturing characteristics that
reflect developer perception of roles. However, in many projects communication
archives are not available, and in this case a network perspective on version-
control system data can closely resemble the insights (regarding developer
roles) provided by the communication archive. Overall, we see that a network
perspective always improves the agreement with developer perception over the
simpler count-based operationalizations. To this end, we accept H5.

5.4.5 Further Support for a Relational Perspective

In addition to providing data for testing our hypotheses, the developer survey
provides additional evidence for and insights into the usefulness of a relational
perspective on developer roles. Our survey results suggest that developer roles
are often defined in terms of differences in the mode of interaction between
developers. For example, one developer wrote “core maintainers participate in
discussions on areas outside the ones that they maintain”. Only a relational
perspective is able to capture this view, for example, in terms of core developers
having a higher degree than peripheral developers, because they interact with

153

5.5. THREATS TO VALIDITY

developers working in areas that are distinct from the ones that they main-
tain. In the same vein, core developers are likely to occupy upper positions
in a hierarchy, as they provide coordination bridges between the peripheral
developers that have a comparatively narrow focus. Another core developer
mentioned, “I may not be contributing as much as I did in past years, but I am
still active and available to answer questions from and provide guidance to other
developers.” Again, the developer has emphasized their role based on a mode
of interaction with other developers. Another survey participant commented:
“The Wine project has lots of committers and a very loose structure. It’s very
hard to know who does what.” A relational view on the global organizational
structure has practical value to support this kind of developer awareness that is
currently missing. Beside static network properties, we argue that the temporal
dimension is needed to accurately operationalize developers roles, which is also
supported by survey responses: “The boundaries are fuzzy and can change over
time — sometimes I’m a core developer on libvirt, while at the present I’m only
a peripheral developer” or “I tend to classify contributors as regular opposed to
occasional.” This is especially important as count-based operationalizations do
not capture temporal relationships.

5.5 Threats to Validity

Construct Validity Quantifying the extent to which the operationalizations
of developer roles represent the real world is one of the primary contributions
of this work. We used the concept of mutual agreement as a testament to
the validity of the operationalizations, however, one explanation for observing
mutual agreement could be that all the operationalizations consistently reach the
same wrong conclusion. While this would be a rather improbable explanation,
we carried out a developer survey to provide additional evidence for that the
operationalizations are valid.

For the network-based operationalizations, we used developer networks and
network-analysis techniques to establish a relational basis for studying core and
peripheral developers. This poses the threat that the networks and metrics do
not accurately capture reality. This threat is minor as there is already evidence
indicating that both the networks and the metrics are authentic in reflecting
developer perception [JMA+15; MW11]. One concern we have is regarding the
unification of developers contributions, across multiple archives (i.e., mailing
list and version-control system), to a single alias. However, core developers
have an interest in being recognized for each contribution they make, therefore,
maintaining multiple aliases would not be productive. For this reason, we think
this issue has limited influence on developer classifications.

154

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Internal Validity We quantify the agreement between different operational-
izations in terms of Cohen’s kappa. For these experimental conditions, we
required a probabilistic definition of agreement, because a non-error-tolerant
agreement metric would be too strict to yield practical results. Cohen’s kappa
requires some degree of interpretation though, so we have conservatively chosen
thresholds that have been established in the literature.

The results of the developer survey depend partially on individual percep-
tions. To limit this threat, we designed the questionnaire such that multiple
developers classified the same developer and we then took the average classifi-
cation to limit individual bias.

External Validity The results of our study are based on the analysis of 10
open-source projects. Although, the projects do represent a broad spectrum in
several dimensions, they are still limited to relatively successful, mature, and
large projects. Nevertheless, the results may not be relevant to immature or very
small projects. Likewise, some projects, while having significant commercial
involvement (e.g., Linux), are still in the end open source and it is not yet clear
if these results hold for commercial projects.

5.6 Related Work

Core–Peripheral Roles A substantial body of research on core and pe-
ripheral developers has established an understanding of the characteristics
possessed by each group. Researchers have examined the core and peripheral
developer roles from two distinct perspectives: from a social perspective, by
studying communication and collaboration patterns [CHC08; DB05; JSW11;
MVV14; MFH02], and from a technical perspective, by studying patterns
of contributions of developers to technical artifacts [CWLH06; DB05; JS07;
JSW11; MFH02; TRC10]. Regarding social characteristics, core developers
play a central role in the communication and leadership structure [CHC08]
and have substantial communication ties to other core developers, especially in
projects with a small developer community (10–15 people) [MVV14; MFH02].
Regarding technical characteristics, core developers typically exhibit strong
ownership over particular files that they manage, they often have detailed
knowledge of the system architecture, and they have demonstrated themselves
to be extremely competent [CWLH06; JS07; MFH02; TRC10]. In contrast,
peripheral developers are primarily involved in identifying code-quality issues
and in proposing fixes, while also participating moderately in development-
related discussions [MFH02]. Since the roles of developers are not static, prior
research has also investigated temporal characteristics of core and peripheral

155

5.6. RELATED WORK

developers in terms of the advancement process to achieving core-developer
status. Advancement is typically merit-based and often involves long-term,
consistent, and intensive involvement in a project [CH05; JS07; JSW11; MFH02;
YK03].

Operationalizing Roles Many of the aforementioned studies applied empir-
ical methods based on interviews, questionnaires, personal experience reports,
and manual inspections of data archives to identify characteristics of core
and peripheral developers. An alternative line of research has attempted to
operationalize the roles of core and peripheral developers using data available
in software repositories, such as version-control systems [dSFD05; MFH02;
OSdO+12; RGH09; RG06; TRC10], bug trackers [CWLH06], and mailing
lists [BGD+07; OSdO+12]. By operationalizing the notion of core and periph-
eral developers, these studies took important steps towards gaining insight
that is not attainable with (more) manual approaches, including evaluating
and basing conclusions on results from hundreds of projects [CH05]. Numer-
ous studies have made use of core–peripheral operationalizations [CWLH06;
JSW11; MFH02; RGH09; RG06; TRC10]. Most operationalizations are single-
dimension values that represent the developer’s activity level (e.g., the number
of commits made, lines of code contributed, E-mail sent). A threshold is defined
based on a prescribed percentile to divide the developer into either the core or
peripheral group. The most commonly used approach is to count the number
of commits made by each developer, and then to compute a threshold at the
80% percentile [CWLH06; MFH02; RGH09; RG06; TRC10]. This threshold
was rationalized by observing that the number of commits made by developers
typically follows a Zipf distribution (which implies that the top 20% of con-
tributors are responsible for 80% of the contributions) [CWLH06]. Following a
similar direction, Mockus et al. found empirical evidence for Mozilla browser
and Apache Web server that a small number of developers are responsible
for approximately 80% of the code modifications [MFH02]. However, in a
replication study performed on FreeBSD, the results indicated that a set of
“top developers” are responsible for approximately 80% of the changes, but this
group does not coincide well with the elected core developer group [DB05].
More recently, attempts have been made to investigate the difference between
core and peripheral developers by using basic social-network centrality metrics
and a corresponding threshold [BGD+07; dSFD05; OSdO+12]. In these cases,
developer networks have been constructed on a dyadic domain of either mutual
contributions to mailing-list threads or source-code files.

156

CHAPTER 5. CLASSIFYING DEVELOPERS INTO CORE AND
PERIPHERAL ROLES

Validity of Role Operationalizations While many approaches exist to
classify developers into core and peripheral, no substantial evidence has been
accumulated to evaluate the validity and consistency of these different opera-
tionalizations. Crowston et al. [CWLH06] investigated three operationalizations
of core and peripheral developers, but they focused only on bug-tracker data and
neglected code authorship entirely. Olivia et al. [OSdO+12] dedicated attention
on developing a more detailed characterization of so-called “key developers”,
which is similar to the core-developer dichotomy. They investigated mailing lists
and version-control systems with three operationalizations to classify developers
as core or peripheral. Their results indicate that there is some evidence of
agreement between the different operationalizations, but this was only shown
for a one release of a single small project with only 16 developers, in total,
and 4 core developers. We improve over the state of the art by considering
a larger and more diverse set of projects with larger developer communities,
by using more metrics, and by analyzing, at least, one year of development,
to evaluate the temporal stability of our results. Additionally, we base our
operationalizations on developer network models that we have shown to exhibit
real-world validity (cf. Chapter 3).

5.7 Summary

Software developers can play different roles in software projects. Information
on these roles is crucial to understanding the collaborative dynamics of soft-
ware projects. In particular, knowing the role of a developer provides insight
regarding from whom do they likely need support or to whom could they
offer support, given their current skill set and knowledge. In large, globally-
distributed projects, this kind of insight can provide enormous benefits by
reducing the overhead associated with developer coordination [CH13; dSR11].

In this chapter, we conducted an empirical study of 10 substantial open-
source projects and established evidence that commonly used count-based
operationalizations of developer roles reach consistent conclusions. In particu-
lar, we found that the pairwise agreement between the operationalizations is
significant and especially high when comparing operationalizations based on
the same archive type. Furthermore, the agreement is temporally stable over
time, which is a further testament to its validity.

Nevertheless, while offering some utility for identifying developer roles, the
insights that count-based operationalizations can provide are clearly limited, in
particular, with regard to the manifold relationships between developers, which
may even vary over time. As a novel contribution, we use developer networks,
constructed from versions-control system (cf. Chapters 3 & 4) and mailing list

157

5.7. SUMMARY

data, to establish a relational perspective on developer roles in terms of the
network’s structural and evolutionary features.

A key hypothesis, that we confirm in this chapter, is that developer roles
manifest distinctly in the organizational structure of software projects, which
is substantiated by a survey among 166 developers. To this end, we have
proposed a number of corresponding network metrics, such as positional sta-
bility, hierarchy, and a core–peripheral block model, to explore structural and
evolutionary characteristics that emphasize differences between core and pe-
ripheral developers. Analyzing our 10 subject projects, we found that the
network-based operationalizations exhibit moderate to substantial agreement
with the count-based operationalizations.

While both the count-based and network-based operationalizations of de-
veloper roles hold face validity, it has not yet been shown to what extent they
reflect developer perception. Based on a survey among 166 developers, we
established a ground-truth classification to address this open question. We
found that all operationalizations agree with developer perception, but some
align more closely than others. In particular, we found that, for count-based op-
erationalizations, mailing-list data are more accurate in representing developer
perception of roles than the version-control system. Regarding network-based
operationalizations, we found that using a network perspective always out-
performs the corresponding count-based operationalization with respect to
agreeing with developer perception.

Furthermore, our study of the temporal dimension revealed a distinction
between core and peripheral developers, which is again consistent with real-
world interpretations. We find this to be an important result because the
count-based operationalizations do not capture temporal relationships. For
example, a developer making 100 commits in one week, will appear to be equal
to a developer making 2 commits per week for 50 weeks in a row, provided that
the analysis window is sufficiently large.

Our results suggest that a network perspective can offer valuable insights
regarding developer roles that are concealed by non-relational operationaliza-
tions. For example, the core group is comprised of the most heavily coordinated
developers, and peripheral developers are more likely to coordinate with core
developers than with other peripheral developers. We also found that core
developers are relatively stable in the organizational structure, whereas pe-
ripheral developers tend to be more volatile. These insights are a testament
to the richness of a network perspective and demonstrate a unique quality of
developer networks to capture real-world phenomena with greater precision
than alternative representations.

158

CHAPTER 6

Conclusion and Future Work

The relatively recent shift from small co-located software projects to large-scale
globally distributed ones has resulted in the appearance of new factors that
pose significant threats to project success. In this new globally-distributed
development environment, coordination among developers constitutes one of the
biggest challenges that a project faces. More specifically, the management of task
interdependencies among developers is critical to developer productivity and
product quality. By understanding the structure of coordination requirements
among developers and how they evolve over time, we are able to conceive of
strategies for improving coordination based on principled approaches rather
than arbitrarily drawing samples from a collection tools and techniques. To
increase the maturity of our scientific discipline, we should strive to establish a
knowledge base concerning the fundamental properties of developer coordination
so that we are able to propose and test theories of coordination and prescribe
specific solutions to address specific coordination challenges.

For a software project to achieve a benefit from a large number of devel-
opers, software developers must be capable of working both efficiently and
concurrently on development tasks. Principles of modularity and information
hiding are imperative for achieving this goal, but cannot entirely eliminate the
need for developers to coordinate. Regardless of how ingeniously a system is
decomposed into loosely coupled parts, uncertainty present at the design phase
and assumptions embedded in the implementation inevitably cause a need for
developers to coordinate their efforts. By adopting a socio-technical perspective
on software project analyses, one is able to gain insight into how the influence
of technical decisions propagate into the project’s organizational structure by

159

altering the need for developers to coordinate. For practitioners, this kind of in-
formation can be used to estimate the organizational impact of an architectural
change or whether a given project is an appropriate candidate for offshoring.
For researchers, this kind of information provides insight into how and why
certain methods and tools for supporting coordination succeed or fail in a given
project context. For example, does introducing an instant messaging service
for developers help them to become more aware of coordination requirements
that are relevant to them and overcome geographical barriers that are intrinsic
to globally distributed projects, or does the messaging service simply add to
coordination overhead by encouraging frivolous contact with colleagues?

While a socio-technical perspective on software projects certainly has value,
obtaining an accurate representation of this perspective is non-trivial. One of
the major challenges stems from the intrinsic human factor and the need to
model the multifaceted concept of inter-developer relationships based solely on
seemingly rudimentary indicators. Software repositories provide insight into the
activities of developers, but this is not the primary intended purpose of these
archives. The consequence is that software repositories alone do not provide
adequate information for this purpose. A version-control system provides infor-
mation on what elements of the software a developer changes and at what point
in time a change was made, while a mailing list provides information about
which developers communicate with each other. By examining the patterns
in contributions of developers to software repositories, we can get a first-order
approximation to whether there exists a requirement for two developers to
coordinate. By composing all pairwise interactions among every developer in a
project into a single representation, we can generate a network that represents
the overall coordination structure of a software project. To improve over the
current state-of-the-art, we have augmented the basic information provided by
software repositories to elicit insights that capture higher-order organizational
properties that are an accurate depiction of real-world relationships among de-
velopers. We achieve this result by means of static-program analysis, relational
abstraction, network analysis, and statistical techniques. By doing so, we have
developed strategies to overcome some limitations imposed by data that are
immediately available from software repositories. Using our analysis strategies,
we have conducted multiple empirical studies that have led to the discovery
of fundamental structural and evolutionary properties of developer coordina-
tion that shed light on previously unknown territory. With this knowledge,
we now have a better understanding of the socio-technical environment that
developers work within, how that environment changes overtime, and what a
developer’s embedding within that socio-technical environment indicates about
the particular role they fulfill in the project.

160

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Contributions
In this thesis we made the following contributions:

1. In Chapter 3 (Community Detection and Validation with Fine-grained
Developer Networks), we investigated approaches for abstracting the
activities of developers, as events in version-control systems, into a network
representation. Specifically, we focused attention to understanding the
influence of various heuristics, which are used to identify whether two
developers are engaged in interdependent activities, on the real-world
authenticity of the developer network edges and high-order structures (i.e.
developer communities). Our investigation included heuristics based on:
localizing changes at a file-level granularity, manually reported references
to developers’ participation in a change, and commit metadata regarding
committer and author participation a change. Additionally, we proposed
a fine-grained heuristic based on localizing changes at a source-code entity
granularity. To study the developer networks’ higher-order structure,
we applied sophisticated community-detection algorithms that rely on
principles of unsupervised machine learning and are capable of operating
on weighted and directed graphs. Since the output of community detection
algorithms are not definitive proof that developers are arranged according
to a non-random organizational principle, we devised a test to evaluate the
statistical significance of the community structure. Finally, we performed
a survey of 53 open-source developers to determine whether the networks
are an accurate depiction of developer perception.

We evaluated our fine-grained approach against the file-level heuristic
on 10 diverse open-source projects, with complex and active histories,
from a variety of domains, written in various programming languages, and
of different sizes. We found that developer networks constructed using
our fine-grained approach exhibited statistically significant community
structure. In contrast, developer networks constructed using the file-
level heuristic exhibited a greater density of edges among groups of
developers, thereby concealing the statistically significant community
structure. In essence, the finer-grained heuristic enabled the identification
of an organizational principle that was previously unobserved in open-
source projects.

From our survey of 53 open-source developers, we learned that most
developers agree that the fine-grained network accurately depicts reality
and the developer communities have real-world meaning. Furthermore,
we found that the predominant source of error in our approach was from
missing links; the links that were identified are largely accurate. We were

161

6.1. CONTRIBUTIONS

able to show that, while the finer-granularity of our approach inherently
sacrifices some edges, only a small percentage of edges concealing the
community structure in the file-based networks are authentic. Given the
abstract nature of a human-centric concept, such as coordination and
community structure, and our fully automated method of detection, we
find these results to be supportive of the validity of our approach.

2. Equipped with an authentic representation of developer coordination,
we continued in Chapter 4 (Evolutionary Trends of Developer Coordi-
nation) by adding in the time component to study developer networks’
dynamic properties. To generate a temporally ordered sequence of devel-
oper networks, we paired our fine-grained approach with a sliding-window
technique so that we are able to capture development continuity among
subsequent networks. We then applied our approach to study 18 sub-
stantial open-source projects. Our first research question focused on the
observable changes in three fundamental organizational principles, namely,
scale freeness, modularity, and hierarchy. Our second research question
focused on the relationship between the developer networks structural
properties and project scale. The results of the study suggest that the
organizational structure of large projects is constrained to evolve towards
a state that balances the costs and benefits of developer coordination,
and the mechanisms used to achieve this state depend on the project’s
scale.

Based on our longitudinal study of 18 open-source software projects,
we found that, in projects exceeding 50 developers, the coordination struc-
ture becomes scale free. Interestingly, all projects that were capable of
achieving long-term sustained growth, in terms of the number contribut-
ing of developers, were also scale-free developer networks. Scale freeness
is potentially one possible arrangement of developer coordination require-
ments that leads to sustainable project growth or is possibly an indication
of a healthy socio-technical environment. We also found that there is a
tendency for an increasing number of coordination requirements to appear
among groups of developers, but the increasing trend is likely limited by
a particular upper bound, where coordination requirements exist between
roughly half of every developers neighbors. The implication is that as a
project matures, the coordination burden on developers increases. On
this basis, we argued that the amount of necessary for coordinating with
other developer and the techniques used for achieving a coordinated effort
are presumably different depending on the project’s state of maturity. Ad-
ditionally, we discovered that developers are hierarchically arranged in the
early phases of a project, but in later phases the global hierarchy vanishes

162

CHAPTER 6. CONCLUSION AND FUTURE WORK

and a hybrid structure emerges, where core developers form the hierarchy
and peripheral developers exist outside the hierarchy. It is plausible that
global hierarchies are simply not flexible enough during later project
phases because of the introduction of many peripheral developers that
are highly volatile in nature. With this result, we demonstrated that core
and peripheral developers—which are traditionally defined based on their
level of participation—also differ in how they are structurally embedded
in the project’s coordination structure. Overall, the adaptations that we
observed in the structural features balance the opposing constraints of
supporting effective coordination and achieving robustness to developer
withdrawal. Finally, we discussed how these structural features enable
a project in benefiting from a large, but volatile, peripheral developer
group, while at the same time, supporting effective coordination and
regularity between the much more stable core developer group. From
these results, it is clear that significant structural changes occur in the
coordination structure of a project over time, and particularly as devel-
opers are added. These insights provide valuable information to software
engineering practitioners by highlighting the impact that adding develop-
ers has on the coordination structure. With this knowledge we can begin
to establish strategies for integrating new developers that try to minimize
the disruption to the existing coordination structure.

Apart from the general patterns that explain the majority of subject
projects, we also noted a number of interesting deviations from the gen-
eral patterns. For example, during a period of time, when Firefox was
experiencing notable project delays and turmoil within the developer com-
munity, we observed that scale freeness suddenly disappeared. In Node.Js,
there was an oscillatory behavior to the number of contributing developers
and the scale-freeness property was lost whenever the project was not in
a growing state. Finally, for the few projects that never became scale
free, or only for a brief time, a developer group larger than 60 was never
sustainable and the number of contributing developers decreased shortly
after reaching a maximum, as was the case for PHP, jQuery, and Apache
HTTP. It was often the case that projects deviating significantly from the
general patterns were experiencing other negative project conditions such
as significant loss in the number of active developers. Further exploration
of structural and evolutionary differences between the developer networks
of successful and unsuccessful projects is a promising avenue for future
work.

3. Based on our validated approach for constructing developer networks and
the structural and temporal patterns that govern the network’s evolution,

163

6.1. CONTRIBUTIONS

in Chapter 5 (Classifying Developers into Core and Peripheral Roles)
we developed and evaluated approaches for classifying developers into
the role they fulfill in a project. In an empirical study of 10 substantial
open-source projects, we established evidence that operationalizations
based on a network representation are capable of outperforming the more
commonly applied standard variable representations.

As a first contribution, we determined that the prevalent count-based
operationalizations of developer roles generate consistent results. In
particular, we found that the pairwise agreement between the operational-
izations is statistically significant and especially high when comparing
two operationalizations based on the same archive type. Furthermore, the
agreement is temporally stable over time, which is a further testament to
its validity.

Nevertheless, while offering some utility for identifying developer
roles, the insights count-based operationalizations can provide are clearly
limited, in particular, with regard to the manifold relationships between
developers, which may even vary over time. As a novel contribution, we
use developer networks to establish a relational perspective on developer
roles. A key hypothesis is that developer roles should manifest distinctly
in the organizational structure, which is also substantiated by a survey we
conducted among 166 open-source developers and our observations of an
organizational dichotomy in the network evolution study (cf. Chapter 4).
To this end, we have proposed a number of corresponding network metrics,
such as positional stability, hierarchy, and a core–peripheral block model,
to explore structural characteristics that capture differences between core
and peripheral developers.

While both the count-based and network-based operationalizations
of developer roles hold face validity, it has not yet been shown to what
extent they reflect developer perception. Based on a survey among 166
developers, we established a ground-truth classification of developer roles
to address this open question. We found that the operationalizations
exhibit moderate to substantial agreement with developer perception, in
terms of Cohen’s kappa. More specifically, we found that, for count-based
operationalizations, mailing-list data are more accurate in represent-
ing developer perception of roles than the version-control system data.
Regarding network-based operationalizations, we found that adopting
a network perspective, instead of the alternative, always increases the
agreement with developer perception.

164

CHAPTER 6. CONCLUSION AND FUTURE WORK

Furthermore, our study of the temporal dimension revealed a distinc-
tion between core and peripheral developers, which is again consistent
with real-world interpretations. We find this to be an important result
because the count-based operationalizations do not capture temporal
relationships. For example, a developer making 100 commits in one week,
will appear to be equal to a developer making 2 commits per week for 50
weeks in a row, provided that the analysis window is sufficiently large.

Our results suggest that a network perspective can offer valuable
insights regarding developer roles that are concealed by non-relational
operationalizations. For example, the core group is comprised of the
most heavily coordinated developers, and peripheral developers are more
likely to coordinate with core developers than with other peripheral
developers. We also found that core developers are relatively stable in
the organizational structure, whereas peripheral developers tend to be
more volatile.

With the realization of an approach for constructing authentic developer
networks, we have made a contribution to establishing the ground-work needed
to study the fundamental properties of developer coordination. We have demon-
strated that our developer networks are structured according to a number of
organizational principles and identified common evolutionary trends of success-
ful open-source projects. Lastly, we have shown that developer networks contain
rich inter-developer insights that are concealed by non-relational perspectives
and that network representations of developer activity are able to outperform
standard variable representations in the task of classifying developers according
to the role they fulfill.

6.2 Future Work

In the process of conducting the research found in this dissertation, we have
identified four promising future research directions:

• Alternative Views on Coordination

• Coordination Over Complete Software Life Cycle

• Analysis of Developer Network Structure Using Manual Inspections &
Interviews

• A Developer Network Growth Model

165

6.2. FUTURE WORK

6.2.1 Alternative Views on Coordination

One of the major contributions in this dissertation is an approach for construct-
ing developer networks that are an authentic representation of the real-world.
Our approach generates a single view, but there are likely alternative views that
hold equally valuable information concerning socio-technical aspects of software
development. The basic elements required to construct a developer network
are: (1) a traceable link between an artifact and the developers that contribute
to the artifact and (2) a notion of artifact relationships. By drawing a selection
from the wealth of different artifacts and artifact relationships, one is presum-
ably capable of generating alternative views on developer coordination. For
example, a software feature—a collection of code that implements a particular
requirement—raises the artifact concept to a semantic level. It is plausible
that features correspond to artifacts that imply a substantial coordination need
among developers contributing to the feature, however, this is not yet known.
The semantic quality of features is particularly interesting because it could
better represent developers’ perception of related code than files or functions.
Fortunately tools such as cppstats1 exist to identify features implemented with
#ifdef directives, substantially lowering the barrier to conducting feature-based
analyses [LvRK+13]. Alternatively, using structural and evolutionary dependen-
cies among files and clustering algorithms, high-order relationships between sets
of files, termed design rule spaces, can be identified [XCK14]. These so-called
design rules spaces are a reflection of the architectural decisions that decouple
a system into modules. Design rules spaces are a sensible candidate artifact
to explore the coordination requirements among developers that arise from
architectural decisions. In this approach, the design rules spaces provide the
information regarding files and file relations, and the version-control system pro-
vides the link between developers and files they contribute to. There are many
unexplored avenues in terms of how different coupling mechanisms influences
the need for developers to coordinate as well. The only exception is co-change
coupling—a coupling mechanism based on files that are frequently involved
in a common commit—which has already been shown to impact developer
productivity and code quality [CH13]. However, the influence of dynamic de-
pendencies, semantic dependencies, and remote procedure dependencies, among
others [CSA11; MMP00], on developer coordination is virtually unexplored.
Other opportunities for future work are exploring dependencies among artifacts
that are less often recognized, but nonetheless have shown to influence the need
for developers to coordinate. The primary sources of these other dependencies

1http://fosd.de/cppstats/

166

http://fosd.de/cppstats/

CHAPTER 6. CONCLUSION AND FUTURE WORK

stemmed from scheduling strategies, management of shared resources, and state
synchronization [BMB+07].

6.2.2 Coordination Over Complete Software Life Cycle

The approaches, analyses, and insights we presented in this dissertation are
primarily focused on the coding phases of the software life cycle without
particular attention to which changes are new feature code, maintenance, or
testing related. While these phases are typically regarded as the longest and
most expensive [BR00], there are certainly rational arguments for applying our
approaches on other phases. It is plausible that improper assignment of tasks
among people, and consequently, a lack of adequate coordination in phases prior
to coding, manifests as software quality problems in later phases. Since the cost
of fixing defects becomes exorbitantly more expensive in later phases compared
to earlier ones [Mad94], there is a substantial interest in addressing the source
of a problem rather than its consequence. An opportunity for future work is to
examine the coordination requirements implied by the artifacts generated during
other phases of the software life cycle (e.g., requirements documents, use cases,
data models, workflow diagrams, organizational charts, etc.). For example,
with information about which individuals are responsible for defining which
software requirements and a notion of requirement interdependence, a network
representing coordination among individuals in the requirements engineering
phase could be generated. Essentially, the same idea could be applied to any
phase provided that artifacts are generated by individuals, traceability exists
between people and the artifacts, and notions of interdependencies among the
artifacts that imply a coordination requirement can be defined.

Another promising avenue is to apply our approaches to the transitions
between subsequent software life-cycle phases by focusing on the hand offs
that occur around artifacts. For example, the individuals responsible for
requirements analysis can be different from those doing the design work. In
the transition between theses phases, ideas, concepts, and decisions need to
persist across those different groups of people. The artifacts (e.g., requirements
documents) may contain ambiguities or are in someway insufficient to completely
convey all the required information for the design work to proceed with perfect
adherence to the intentions of the requirements engineers. When the designers
fail to understand the intentions of the requirements engineers, the design likely
will not fully address the requirement, but this may only be discovered after
the implementation phase. By representing the hand offs that occur between
the individuals participating in different phases of the software life cycle as a
coordination network, we may better understand where there are likely to be
coordination needs among people. Information contained in the coordination

167

6.2. FUTURE WORK

network spanning the hand offs between requirements and design phases could
help to achieve a smoother transition between groups involved in different
phases by mitigating coordination breakdowns. In the Mars Climate Orbiter
disaster, the primary cause of failure was that two different suppliers, that
were geographical separated by a substantial distance, producing two distinct
but coupled components failed to establish a common understanding of the
requirements regarding units of measurement [Mar]. A coordination need would
have been recognized by virtue of both groups needing to adhere to a common
requirement. The main point is that mistakes will occur, but communication
channels should exists between appropriate individuals to catch and correct
the mistakes when they do inevitably occur. The coordination networks serve
as means to identify who are those appropriate individuals so that not every
single person in the project needs to communicate and overwhelm the process
frivolous interactions.

6.2.3 Analysis of Developer Network Structure Using
Manual Inspections & Interviews

As part of our approach to studying developer networks, we conducted developer
surveys to validate and gain insight into the developer network’s structural
properties. In Chapter 3, we made use of surveys to establish real-world validity
of the network edges and developer communities. Similarly, in Chapter 5
we used developer surveys to test the validity of results produced by our
network-based operationalizations of developer roles. It is important to remain
cognizant of the fact that developer networks are an abstraction of complex real-
world phenomena. To a large extent, the value offered by developer networks
is dependent on their ability to accurately capture nuances about the real-
world relationships among developers. For this reason, it is imperative that
more work is done on the feedback loop leading from the network insights
back to the real-world phenomena we originally intended to abstract. In
particular, we identified a number of organizational principles in Chapter 4
such as scale freeness, modularity, and hierarchy. In each of these properties is
an opportunity to perform an in-depth study to better understand the effect
of the property on a project. For example, there are theoretic robustness
benefits to a scale-free network, but it is not yet known if such benefits are
realized in a software project. In terms of hierarchy, the lack of a hierarchical
arrangement in peripheral developers should allow the organizational structure
to be more flexible. Again, the flexible quality has not been shown to exist. In
terms of modularity, we observed a general increasing trend. It is not clear
if this coincides with increase familiarity among developers that are densely

168

CHAPTER 6. CONCLUSION AND FUTURE WORK

interconnected, or increase communication on the mail list. These are a couple
examples of many important questions that could be answered by performing
an in-depth analysis through a combination manual inspections of the developer
networks and corresponding interviews with the developers to better understand
real-world implications of the structural properties we have identified.

6.2.4 A Developer Network Growth Model

In Chapter 4, we discussed relationships between the structural properties of
developers networks and the network’s growth over time. We noted several
intriguing results, one of which was that the nodes clustering coefficients
typically increase as the network size increases. We also found that networks
exhibiting this feature are also simultaneously scale free. This particular result
is interesting because the predominant growth model used to explain the
formation of scale free networks is preferential attachment (cf. Section 2.3.4),
however, the model of preferential attachment does not explain the increasing
clustering with increasing network size. From this result, we reason that
the growth of developer networks is presumably described by an alternative
growth model. A direction for future work is to identify a growth model that
better describes the observations we have found. In essence, the elements of
a growth model provide a description of how edges and nodes are added and
removed in the network over time. Typically, the growth process is described
probabilistically. Probability distribution functions are used to define the
mechanism by which nodes and edges are added or removed based on local or
global network properties. A major component of developing the growth model
is to find what network properties should be used in the parametrization of the
growth model. A basic example of such a parameterization is to use the local
property of node degree to define the probability that two nodes form an edge.
The developer network evolution study we performed in Chapter 4 provides
valuable information as to what an appropriate parameterization may be, but
many open questions remain. The evolution study provides observations on
the developer network’s growth over sequential time periods. This information
could be used to either infer a growth model from the observed data or to test
the fitness of a hypothesized model against real-world data [PDS+12].

In the fields of ecology and epidemiology, knowledge about growth models
concerning networks have proven to offer both valuable and practical insights.
In ecology, network growth models provide insight into which specific condi-
tions (e.g., in terms of birth rates or competition for resources) lead to the
decimation of species [May72]. In epidemiology, network growth models have
enabled disease prevention techniques through modeling the spread of infectious
diseases with networks, which has been instrumental in establishing effective

169

6.2. FUTURE WORK

public health policy and protocols for mitigating the transmission of infectious
diseases [KE05; May72]. In the case of developer networks, a growth model
can help to reason about the complex microinteractions among developers at
a higher level of abstraction. The microinteractions in developer networks
encompass the small-scale interactions among pairs of developers. It is likely
the case that the diverse interactions among pairs of developers gives rise to a
common, and relatively simple, collective behavior in much the same way that
the diverse interactions among a large number of independent random variables
are ubiquitously captured by the Gaussian distribution, a phenomenon that
is well known and proven by the central limit theorem [DN15]. If this kind of
universality also exists in developer networks, the growth model would allow
us to forgo a deep understanding underlying mechanisms driving the system at
a microscopic level, yet still be capable of understanding the overall collective
behavior to a high degree of accuracy. Since the developers that make up
a network are not independent in their behavior—we have found first had
evidence of this in many cases where correlations among sets of developers often
give rise to higher-order structure—developer networks are likely governed by
different models than those that are justified using the central limit theorem.
One distribution that has seen success in modeling complex systems with corre-
lated random variables, and presumably has applications in modeling network
growth, is the Tracy Widom distribution [TW02]. In the field of ecology, the
Tracy Widom distribution has played a key role in determining the conditions
under which a set of species occupying a local region is in a stable and unstable
phase and where the phase transition occurs.

The practical consequences of identifying a growth model for developer
coordination networks could very well result in a valuable contribution to
the field of software engineering. If an appropriate growth model is found, it
could provide insight into important phases and phase transitions that occur
in the coordination structure during software development. That in turn could
provide hints at healthy and unhealthy growth processes. In the domain of
ecology, notions of phase transitions have been used to show that certain
conditions lead a phase of equilibrium among different species, while other
conditions lead another phase where the species’ populations have a tendency
to rapidly approach zero or infinity. Interestingly, the transition is not at all
gradual. Instead, there appears to be a tipping point that signifies an abrupt
change between these two drastically different phases [May72]. It may be the
case that some phases in developer networks correspond to a similar type of
instability that results in software quality problems stemming from coordination
breakdowns. With a deeper understanding of these phases, one may be able
to even control the network dynamics towards a more positive direction by

170

CHAPTER 6. CONCLUSION AND FUTURE WORK

encouraging phase transitions towards a healthier or more stable phase. Based
on Conway’s law, there is reason to believe that changes made to the software
architecture may even trigger destabilization in the developer coordination
structure [Con68]. At the very least, awareness of when a project is in an
unstable phase is already a benefit. During unstable phases, one could dedicate
more effort and time towards coordination activities to avoid coordination
breakdowns during this fragile state.

171

Bibliography

[AB02] R. Albert and A.-L. Barabási, “Statistical mechanics of complex
networks”, Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[AKC01] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen, “Measuring cou-
pling and cohesion of software modules: An information-theory
approach”, in Proceedings of the International Symposium on
Software Metrics (METRICS), IEEE Computer Society, 2001.

[AGMZ11] H. Almeida, D. Guedes, W. Meira, and M. J. Zaki, “Is there a best
quality metric for graph clusters?”, in Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in
Databases, Springer, 2011, pp. 44–59.

[And11] M. Andreessen, “Why software is eating the world”, The Wall
Street Journal, Aug. 20, 2011.

[Atk70] A. B. Atkinson, “On the measurement of inequality”, Journal of
Economic Theory, vol. 2, no. 3, pp. 244–263, 1970.

[BHKL06] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and
evolution”, in Proceedings of the ACM International Conference
on Knowledge Discovery and Data Mining, ACM, 2006, pp. 44–54.

[BR+99] R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information
retrieval. Addison-Wesley, 1999.

[BEN+93] U. Banerjee, R. Eigenmann, A. Nicolau, D. A. Padua, et al.,
“Automatic program parallelization”, Proceedings of the IEEE, vol.
81, no. 2, pp. 211–243, 1993.

173

BIBLIOGRAPHY

[BA99] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks”, Science, vol. 286, no. 5439, pp. 509–512, 1999.

[BMB+07] M. Bass, V. Mikulovic, L. Bass, J. Herbsleb, and M. Cataldo,
“Architectural misalignment: An experience report”, in Proceedings
of the IEEE/IFIP Conference on Software Architecture, IEEE
Computer Society, 2007.

[BDO+13] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers’ perception of
software coupling”, in Proceedings of the International Conference
on Software Engineering (ICSE), IEEE, 2013, pp. 692–701.

[BR00] K. H. Bennett and V. T. Rajlich, “Software maintenance and
evolution: A roadmap”, in Proceedings of the International Con-
ference on Software Engineering (ICSE), ACM, 2000, pp. 73–
87.

[BGD+06] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks”, in Proceedings of the International
Workshop on Mining Software Repositories, ACM, 2006, pp. 137–
143.

[BGD+07] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu,
“Open borders? Immigration in open source projects”, in Proceed-
ings of the International Workshop on Mining Software Reposito-
ries, IEEE, 2007.

[BNM+11] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu,
“Don’t touch my code!: Examining the effects of ownership on
software quality”, in Proceedings of the European Software En-
gineering Conference and the International Symposium on the
Foundations of Software Engineering (ESEC/FSE), ACM, 2011,
pp. 4–14.

[BPD+08] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “La-
tent social structure in open source projects”, in Proceedings of the
International Symposium on Foundations of Software Engineering
(FSE), ACM, 2008, pp. 24–35.

[BRB+09] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German,
and P. Devanbu, “The promises and perils of mining git”, in
Proceedings of the IEEE International Working Conference on
Mining Software Repositories, IEEE Computer Society, 2009,
pp. 1–10.

174

BIBLIOGRAPHY

[Bis06] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[BLM+06] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang,
“Complex networks: Structure and dynamics”, Physics reports, vol.
424, no. 4, pp. 175–308, 2006.

[Boe89] B. W. Boehm, Ed., Software risk management. IEEE, 1989.

[Bon87] P. Bonacich, “Power and centrality: A family of measures”, Amer-
ican Journal of Sociology, vol. 92, no. 5, pp. 1170–1182, 1987.

[BE00] S. P. Borgatti and M. G. Everett, “Models of core/periphery
structures”, Social networks, vol. 21, no. 4, pp. 375–395, 2000.

[BE05] U. Brandes and T. Erlebach, Network analysis: Methodological
foundations. Springer, 2005.

[BGW03] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph
clustering algorithms”, in Proceedings of the European Symposium
on Algorithms, Springer, 2003, pp. 568–579.

[Bro78] F. P. Brooks Jr., The mythical man-month: Essays on software
engineering. Addison-Wesley, 1978.

[CSA11] T. B. Callo Arias, P. Spek, and P. Avgeriou, “A practice-driven
systematic review of dependency analysis solutions”, Empirical
Software Engineering, vol. 16, no. 5, pp. 544–586, 2011.

[CH13] M. Cataldo and J. D. Herbsleb, “Coordination breakdowns and
their impact on development productivity and software fail-
ures”, IEEE Transactions on Software Engineering, vol. 39, no. 3,
pp. 343–360, 2013.

[CHC08] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: A framework for assessing the impact of technical
and work dependencies on software development productivity”, in
Proceedings of the International Symposium on Empirical Software
Engineering and Measurement, ACM, 2008, pp. 2–11.

[CMRH09] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Soft-
ware dependencies, work dependencies, and their impact on fail-
ures”, IEEE Transactions on Software Engineering, vol. 35, no. 6,
pp. 864–878, 2009.

[CSN09] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law
distributions in empirical data”, SIAM Review, vol. 51, no. 4,
pp. 661–703, 2009.

175

BIBLIOGRAPHY

[CEbH01] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, “Breakdown
of the internet under intentional attack”, Physical Review Letters,
vol. 86, pp. 3682–3685, 16 Apr. 2001.

[Con68] M. E. Conway, “How do committees invent”, Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[Cor] J. Corbet, http://www.linuxfoundation.org/content/22-
lifecycle-patch, Accessed: 2016-04-28.

[CH05] K. Crowston and J. Howison, “The social structure of free and
open source software development”, First Monday, vol. 10, no. 2,
2005.

[CWLH06] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery
in free/libre and open source software team communications”, in
Proceedings of the International Conference on System Sciences,
IEEE, 2006, pp. 118–127.

[CKI88] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software
design process for large systems”, Communications of the ACM,
vol. 31, no. 11, pp. 1268–1287, 1988.

[dAS09] B. de Alwis and J. Sillito, “Why are software projects moving
from centralized to decentralized version control systems?”, in
Proceedings of the International Workshop on Cooperative and
Human Aspects of Software Engineering, IEEE Computer Society,
2009, pp. 36–39.

[dSR11] C. R. B. de Souza and D. F. Redmiles, “The awareness network,
to whom should I display my actions? and, whose actions should
I monitor?”, IEEE Transactions on Software Engineering, vol. 37,
no. 3, pp. 325–340, 2011.

[dSQTR07] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles, “Support-
ing collaborative software development through the visualization
of socio-technical dependencies”, in Proceedings of the Interna-
tional ACM Conference on Supporting Group Work, ACM, 2007,
pp. 147–156.

[dSFD05] C. de Souza, J. Froehlich, and P. Dourish, “Seeking the source:
Software source code as a social and technical artifact”, in Pro-
ceedings of the International Conference on Supporting Group
Work, ACM, 2005, pp. 197–206.

[DOS99] C. DiBona, S. Ockman, and M. Stone, Eds., Open sources: Voices
from the open source revolution. O’Reilly, 1999.

176

http://www.linuxfoundation.org/content/22-lifecycle-patch
http://www.linuxfoundation.org/content/22-lifecycle-patch

BIBLIOGRAPHY

[DB05] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project:
A replication case study of open source development”, IEEE
Transactions on Software Engineering, vol. 31, no. 6, pp. 481–494,
2005.

[DM03] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks:
From biological nets to the internet and www. Oxford University
Press, 2003.

[DN15] R. M. D’Souza and J. Nagler, “Anomalous critical and supercritical
phenomena in explosive percolation”, Nature Physics, vol. 11, no.
7, pp. 531–538, 2015.

[EM12] E. Eaton and R. Mansbach, “A spin-glass model for semi-
supervised community detection”, in Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI Press, 2012, pp. 900–
906.

[ES13] J. Eilperin and S. Somashekhar, “Private consultants warned of
risks before Healthcare.gov’s Oct. 1 launch”, The Washington
Post, Nov. 18, 2013.

[EK08] K. E. Emam and A. G. Koru, “A replicated survey of it software
project failures”, IEEE Software, vol. 25, no. 5, pp. 84–90, 2008.

[EWSG94] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, “A
model-based method for organizing tasks in product development”,
Research in Engineering Design, vol. 6, no. 1, pp. 1–13, 1994.

[ER59] P. Erdős and A. Rényi, “On random graphs”, Publicationes Math-
ematicae, vol. 6, pp. 290–297, 1959.

[ESKH07] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb,
“Familiarity, complexity, and team performance in geographically
distributed software development”, Organization Science, vol. 18,
no. 4, pp. 613–630, 2007.

[FO00] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system”, IEEE Transactions on
Software Engineering, vol. 26, no. 8, pp. 797–814, 2000.

[FLG00] G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identification
of web communities”, in Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining, ACM, 2000,
pp. 150–160.

177

BIBLIOGRAPHY

[FSE07] W. Fong Boh, S. A. Slaughter, and J. A. Espinosa, “Learning
from experience in software development: A multilevel analysis”,
Management Science, vol. 53, no. 8, pp. 1315–1331, 2007.

[For10] S. Fortunato, “Community detection in graphs”, Physics Reports,
vol. 486, no. 3–5, pp. 75–174, 2010.

[FB07] S. Fortunato and M. Barthélemy, “Resolution limit in community
detection”, Proceedings of the National Academy of Sciences, vol.
104, no. 1, pp. 36–41, 2007.

[FPB+15] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R.
Falleri, “Impact of developer turnover on quality in open-source
software”, in Proceeding of the International Symposium on Foun-
dations of Software Engineering, ACM, 2015.

[Fra11] M. Franceschet, “Pagerank: Standing on the shoulders of giants”,
Communications of the ACM, vol. 54, no. 6, pp. 92–101, 2011.

[GGH+07] R. Garcia, P. Greenwood, G. Heineman, R. Walker, Y. Cai, H. Y.
Yang, E. Baniassad, C. V. Lopes, C. Schwanninger, and J. Zhao,
“Assessment of contemporary modularization techniques”, ACM
SIGSOFT Software Engineering Notes, vol. 35, pp. 31–37, 2007.

[GMZ03] C. Gkantsidis, M. Mihail, and E. Zegura, “The markov chain
simulation method for generating connected power law random
graphs”, in Proceedings of the Workshop on Algorithm Engineering
and Experiments (ALENEX), 2003.

[GT00] M. W. Godfrey and Q. Tu, “Evolution in open source software:
A case study”, in Proceedings of the International Conference on
Software Maintenance, IEEE, 2000, pp. 131–140.

[Ham94] J. D. Hamilton, Time series analysis. Princeton University Press,
1994, vol. 2.

[HC90] R. M. Henderson and K. B. Clark, “Architectural innovation: The
reconfiguration of existing product technologies and the failure
of established firms”, Administrative Science Quarterly, pp. 9–30,
1990.

[HG99] J. D. Herbsleb and R. E. Grinter, “Splitting the organization and
integrating the code: Conway’s law revisited”, in Proceedings of
the International Conference on Software Engineering (ICSE),
ACM, 1999, pp. 85–95.

178

BIBLIOGRAPHY

[HM03a] J. D. Herbsleb and A. Mockus, “An empirical study of speed
and communication in globally distributed software develop-
ment”, IEEE Transactions on Software Engineering, vol. 29, no.
6, pp. 481–494, 2003.

[HM03b] J. D. Herbsleb and A. Mockus, “Formulation and preliminary test
of an empirical theory of coordination in software engineering”,
in Proceedings of the European Software Engineering Conference
and the International Symposium on the Foundations of Software
Engineering (ESEC/FSE), Helsinki, Finland: ACM, 2003, pp. 138–
137.

[HMFG00] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“Distance, dependencies, and delay in a global collaboration”,
in Proceedings of the ACM Conference on Computer Supported
Cooperative Work, ACM, 2000, pp. 319–328.

[HPB05] J. D. Herbsleb, D. J. Paulish, and M. Bass, “Global software devel-
opment at siemens: Experience from nine projects”, in Proceedings
of the International Conference on Software Engineering (ICSE),
ACM, 2005, pp. 524–533.

[Hey07] F. Heylighen, “Why is open access development so successful?
stigmergic organization and the economics of information”, Open
Source Jahrbuch, 2007.

[Hie] D. Hiebert, Exuberant ctags, http://ctags.sourceforge.net/,
Accessed: 2016-04-25.

[HM06] P. Hinds and C. McGrath, “Structures that work: Social structure,
work structure and coordination ease in geographically distributed
teams”, in Proceedings of the ACM Conference on Computer
Supported Cooperative Work, ACM, 2006, pp. 343–352.

[HSL+98] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q.
Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical
mode decomposition and the hilbert spectrum for nonlinear and
non-stationary time series analysis”, Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 454, no. 1971, pp. 903–995, 1998.

[HL05] S.-K. Huang and K.-m. Liu, “Mining version histories to verify
the learning process of legitimate peripheral participants”, in
Proceedings of the International Workshop on Mining Software
Repositories, ACM, 2005, pp. 1–5.

179

http://ctags.sourceforge.net/

BIBLIOGRAPHY

[Hum96] W. Humphrey, Introduction to the personal software process.
Addison-Wesley Professional, 1996.

[Hus95] M. A. Huselid, “The impact of human resource management prac-
tices on turnover, productivity, and corporate financial perfor-
mance”, Academy of Management journal, vol. 38, no. 3, pp. 635–
672, 1995.

[HPN10] P. Hynninen, A. Piri, and T. Niinimaki, “Off-site commitment
and voluntary turnover in GSD projects”, in Proceedings of the
International Conference on Global Software Engineering, IEEE,
2010, pp. 145–154.

[JS07] C. Jensen and W. Scacchi, “Role migration and advancement
processes in OSSD projects: A comparative case study”, in Pro-
ceedings of the International Conference on Software Engineering
(ICSE), IEEE, 2007, pp. 364–374.

[JSW11] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: Mi-
gration in open source ecosystems”, in Proceedings of the European
Software Engineering Conference and the International Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE),
ACM, 2011, pp. 70–80.

[JSS11] A. Jermakovics, A. Sillitti, and G. Succi, “Mining and visualizing
developer networks from version control systems”, in Proceedings
of the International Workshop on Cooperative and Human Aspects
of Software Engineering, ACM, 2011, pp. 24–31.

[JAHM17] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying de-
velopers into core and peripheral: An empirical study on count and
network metrics”, in Proceedings of the International Conference
on Software Engineering (ICSE), IEEE, 2017.

[JAM17] M. Joblin, S. Apel, and W. Mauerer, “Evolutionary trends of
developer coordination: A network approach”, Empirical Software
Engineering, pp. 1–45, 2017.

[JMA+15] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle,
“From developer networks to verified communities: A fine-grained
approach”, in Proceedings of the International Conference on
Software Engineering (ICSE), IEEE, 2015, pp. 563–573.

[KCM07] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy
of approaches for mining software repositories in the context
of software evolution”, Journal of Software Maintenance and
Evolution, vol. 19, no. 2, pp. 77–131, 2007.

180

BIBLIOGRAPHY

[KVV04] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad
and spectral”, Journal of the ACM, vol. 51, no. 3, pp. 497–515,
2004.

[KE05] M. J. Keeling and K. T. Eames, “Networks and epidemic models”,
Journal of the Royal Society Interface, vol. 2, no. 4, pp. 295–307,
2005.

[Kni02] J. C. Knight, “Safety critical systems: Challenges and directions”,
in Proceedings of the International Conference on Software Engi-
neering (ICSE), ACM, 2002, pp. 547–550.

[Koc04] S. Koch, “Profiling an open source project ecology and its pro-
grammers”, Electronic Markets, vol. 14, no. 2, pp. 77–88, 2004.

[KW06] G. Kossinets and D. J. Watts, “Empirical analysis of an evolving
social network”, Science, vol. 311, no. 5757, pp. 88–90, 2006.

[Kot14] J. P. Kotter, Accelerate: Building strategic agility for a faster-
moving world. Harvard Business Review Press, 2014.

[KS95] R. E. Kraut and L. A. Streeter, “Coordination in software devel-
opment”, Communications of the ACM, vol. 38, no. 3, pp. 69–81,
1995.

[Kum02] V. Kumar, Introduction to parallel computing. Addison-Wesley,
2002.

[LRRF11] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato,
“Finding statistically significant communities in networks”, PLoS
ONE, vol. 6, no. 4, pp. 1–18, Apr. 2011.

[LK77] J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data”, Biometrics, vol. 33, no. 1, pp. 159–
174, 1977.

[LRW+97] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W. M. Turski, “Metrics and laws of software evolution - the
nineties view”, in Proceedings of the International Symposium on
Software Metrics (METRICS), IEEE, 1997.

[LR01] M. M. Lehman and J. F. Ramil, “Rules and tools for software
evolution planning and management”, Annals of Software Engi-
neering, vol. 11, no. 1, pp. 15–44, 2001.

[LR03] M. M. Lehman and J. F. Ramil, “Software evolution: Background,
theory, practice”, Information Processing Letters, vol. 88, no. 1-2,
pp. 33–44, 2003.

181

BIBLIOGRAPHY

[LLM10] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison
of algorithms for network community detection”, in Proceedings
of the International Conference on World Wide Web, ACM, 2010,
pp. 631–640.

[LSS05] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software
engineers: Data collection techniques for software field studies”,
Empirical Software Engineering, vol. 10, no. 3, pp. 311–341, 2005.

[LvRK+13] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C.
Lengauer, “Scalable analysis of variable software”, in Proceedings
of the European Software Engineering Conference and the Inter-
national Symposium on the Foundations of Software Engineering
(ESEC/FSE), ACM, 2013, pp. 81–91.

[Lik32] R. Likert, “A technique for the measurement of attitudes”, Archives
of Psychology, vol. 22, pp. 1–55, 1932.

[LRGH09] L. López-Fernández, G. Robles, J. M. Gonzalez-Barahona, and
I. Herraiz, “Applying social network analysis techniques to
community-driven libre software projects”, Integrated Approaches
in Information Technology and Web Engineering: Advancing Or-
ganizational Knowledge Sharing, vol. 1, pp. 28–50, 2009.

[LRG+04] L. López-Fernández, G. Robles, J. M. Gonzalez-Barahona, et
al., “Applying social network analysis to the information in CVS
repositories”, in Proceedings of the International Workshop on
Mining Software Repositories, 2004, pp. 101–105.

[LSV08] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software”,
ACM Transactions on Software Engineering and Methodology, vol.
18, no. 1, p. 2, 2008.

[Mad94] R. J. Madachy, “A software project dynamics model for process
cost, schedule and risk assessment”, PhD thesis, 1994.

[MC90] T. W. Malone and K. Crowston, “What is coordination theory and
how can it help design cooperative work systems?”, in Proceedings
of the ACM Conference on Computer Supported Cooperative Work,
ACM, 1990, pp. 357–370.

[MVV14] C. Manteli, B. Van Den Hooff, and H. Van Vliet, “The effect
of governance on global software development: An empirical re-
search in transactive memory systems”, Information and Software
Technology, vol. 56, no. 10, pp. 1309–1321, 2014.

182

BIBLIOGRAPHY

[Mar] Mars Climate Orbiter Mishap Investigation Board, Mars climate
orbiter mishap investigation board phase I report, ftp://ftp.hq.
nasa.gov/pub/pao/reports/1999/MCO_report.pdf, Accessed:
2016-04-25.

[MRGO08] J. Martinez-Romo, G. Robles, J. M. Gonzalez-Barahona, and M.
Ortuño-Perez, “Using social network analysis techniques to study
collaboration between a FLOSS community and a company”,
in Proceedings of the International Conference on Open Source
Systems, Springer, 2008, pp. 171–186.

[Mau08] W. Mauerer, Professional linux kernel architecture. Wrox Press,
2008.

[May72] R. M. May, “Will a large complex system be stable?”, Nature, vol.
238, pp. 413–414, 1972.

[MMP00] N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a taxon-
omy of software connectors”, in Proceedings of the International
Conference on Software Engineering (ICSE), ACM, 2000, pp. 178–
187.

[MW09] A. Meneely and L. Williams, “Secure open source collaboration:
An empirical study of linus’ law”, in Proceedings of the ACM
Conference on Computer and Communications Security, ACM,
2009, pp. 453–462.

[MW11] A. Meneely and L. Williams, “Socio-technical developer networks:
Should we trust our measurements?”, in Proceedings of the In-
ternational Conference on Software Engineering, ACM, 2011,
pp. 281–290.

[MWSO08] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
failures with developer networks and social network analysis”, in
Proceedings of the International Symposium on Foundations of
Software Engineering (FSE), ACM, 2008, pp. 13–23.

[MFD08] T. Mens, J. Fernández-Ramil, and S. Degrandsart, “The evolution
of eclipse”, in Proceedings of the International Conference on
Software Maintenance, IEEE, 2008, pp. 386–395.

[MKI+03] R. Milo, N. Kashtan, S. Itzkovitz, M. E. Newman, and U. Alon,
“On the uniform generation of random graphs with prescribed
degree sequences”, ArXiv preprint, 2003.

183

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf

BIBLIOGRAPHY

[MFH00] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: The Apache server”, in Proceedings
of the International Conference on Software Engineering (ICSE),
2000, pp. 263–272.

[Moc10] A. Mockus, “Organizational volatility and its effects on software
defects”, in Proceeding of the International Symposium on Foun-
dations of Software Engineering, ACM, 2010, pp. 117–126.

[MFH02] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of open source software development: Apache and Mozilla”, ACM
Transactions on Software Engineering and Methodology, vol. 11,
no. 3, pp. 309–346, 2002.

[MTW93] H. A. Müller, S. R. Tilley, and K. Wong, “Understanding software
systems using reverse engineering technology perspectives from
the Rigi project”, in Proceedings of the Conference of the Centre
for Advanced Studies on Collaborative Research, IBM Press, 1993,
pp. 217–226.

[NMB08] N. Nagappan, B. Murphy, and V. Basili, “The influence of organi-
zational structure on software quality: An empirical case study”,
in Proceedings of the International Conference on Software Engi-
neering (ICSE), ACM, 2008, pp. 521–530.

[NYN+02] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y.
Ye, “Evolution patterns of open-source software systems and
communities”, in Proceedings of the International Workshop on
Principles of Software Evolution, ACM, 2002, pp. 76–85.

[NR69] P. Naur and B. Randell, “Software engineering: Report of a confer-
ence sponsored by the Nato science committee”, Scientific Affairs
Division, 1969.

[NBW06] M. Newman, A.-L. Barabasi, and D. J. Watts, The structure and
dynamics of networks. Princeton University Press, 2006.

[OJ07] W. Oh and S. Jeon, “Membership herding and network stability in
the open source community: The Ising perspective”, Management
Science, vol. 53, no. 7, pp. 1086–1101, 2007.

[OSdO+12] G. A. Oliva, F. W. Santana, K. C. M. de Oliveira, C. R. B. de
Souza, and M. A. Gerosa, “Characterizing key developers: A case
study with Apache Ant”, in Proceedings of the International Con-
ference on Collaboration and Technology, Springer, 2012, pp. 97–
112.

184

BIBLIOGRAPHY

[ORM03] P. Ovaska, M. Rossi, and P. Marttiin, “Architecture as a coordi-
nation tool in multi-site software development”, Software Process:
Improvement and Practice, vol. 8, no. 4, pp. 233–247, 2003.

[PBMW99] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web.”, Technical Report
1999-66, 1999.

[PBD+14] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, and G. An-
toniol, “How developers’ collaborations identified from different
sources tell us about code changes”, in International Conference
on Software Maintenance and Evolution, IEEE, 2014, pp. 251–260.

[PCDO14] S. Panichella, G. Canfora, M. Di Penta, and R. Oliveto, “How the
evolution of emerging collaborations relates to code changes: An
empirical study”, in Proceedings of the International Conference
on Program Comprehension, ACM, 2014, pp. 177–188.

[Par72] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules”, Communications of the ACM, vol. 15, no. 12,
pp. 1053–1058, 1972.

[PDS+12] R. Patro, G. Duggal, E. Sefer, H. Wang, D. Filippova, and C.
Kingsford, “The missing models: A data-driven approach for
learning how networks grow”, in Proceedings of the International
Conference on Knowledge Discovery and Data Mining, ACM,
2012, pp. 42–50.

[PBD08] D. S. Pattison, C. A. Bird, and P. T. Devanbu, “Talk and work: A
preliminary report”, in Proceedings of the International Working
Conference on Mining Software Repositories, ACM, 2008, pp. 113–
116.

[POM10] A. Perianes-Rodríguez, C. Olmeda-Gómez, and F. Moya-Anegón,
“Detecting, identifying and visualizing research groups in co-
authorship networks”, Scientometrics, vol. 82, no. 2, pp. 307–
319, 2010.

[RB03] E. Ravasz and A.-L. Barabási, “Hierarchical organization in com-
plex networks”, Physical Review E, vol. 67, 2 2003.

[Ray99] E. Raymond, “The cathedral and the bazaar”, Knowledge, Tech-
nology and Policy, vol. 12, no. 3, pp. 23–49, 1999.

[RKS12] D. Riehle, C. Kolassa, and M. A. Salim, “Developer belief vs.
reality: The case of the commit size distribution.”, in Software
Engineering, 2012, pp. 59–70.

185

BIBLIOGRAPHY

[RGH09] G. Robles, J. Gonzalez-Barahona, and I. Herraiz, “Evolution of the
core team of developers in libre software projects”, in Proceedings
of the International Working Conference on Mining Software
Repositories, IEEE, 2009, pp. 167–170.

[RG06] G. Robles and J. M. Gonzalez-Barahona, “Contributor turnover in
libre software projects”, in Open Source Systems, Springer, 2006,
pp. 273–286.

[SMWH09] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesser-
act: Interactive visual exploration of socio-technical relationships
in software development”, in Proceedings of the International Con-
ference on Software Engineering (ICSE), IEEE Computer Society,
2009, pp. 23–33.

[Sch07] S. E. Schaeffer, “Graph clustering”, Computer Science Review, vol.
1, no. 1, pp. 27–64, 2007.

[SLW12] A. Schilling, S. Laumer, and T. Weitzel, “Who will remain? An
evaluation of actual person-job and person-team fit to predict
developer retention in FLOSS projects”, in Proceedings of the
International Conference on System Sciences, IEEE, 2012.

[SMS15] I. Scholtes, P. Mavrodiev, and F. Schweitzer, “From Aristotle
to Ringelmann: A large-scale analysis of team productivity and
coordination in open source software projects”, Empirical Software
Engineering, pp. 1–42, 2015.

[SSS07] F. Shull, J. Singer, and D. I. Sjøberg, “Guide to advanced empirical
software engineering”, in, Springer, 2007, pp. 312–336.

[SCC+12] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly, M.
Kwiatkowska, J. Mcdermid, and R. Paige, “Large-scale complex it
systems”, Communications of the ACM, vol. 55, no. 7, pp. 71–77,
2012.

[SER04] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, “The misalign-
ment of product architecture and organizational structure in
complex product development”, Management Science, vol. 50, no.
12, pp. 1674–1689, 2004.

[SL08] D. Spinellis and P. Louridas, “The collaborative organization of
knowledge”, Communications of the ACM, vol. 51, no. 8, pp. 68–
73, 2008.

186

BIBLIOGRAPHY

[SGCH01] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The struc-
ture and value of modularity in software design”, in Proceedings
of the European Software Engineering Conference and the Inter-
national Symposium on the Foundations of Software Engineering
(ESEC/FSE), ACM, 2001, pp. 99–108.

[TRC10] A. Terceiro, L. R. Rios, and C. Chavez, “An empirical study
on the structural complexity introduced by core and peripheral
developers in free software projects”, in Proceeding of the Brazilian
Symposium on Software Engineering, IEEE, 2010, pp. 21–29.

[TMB10] S. L. Toral, M. R. Martínez-Torres, and F. Barrero, “Analysis of
virtual communities supporting OSS projects using social network
analysis”, Information and Software Technology, vol. 52, no. 3,
pp. 296–303, 2010.

[Tor] L. Torvalds, Git, https://git-scm.com/, Accessed: 2016-04-26.
[TW02] C. A. Tracy and H. Widom, “Distribution functions for largest

eigenvalues and their applications”, Higher Education Press, 2002,
pp. 587–596.

[vHee] D. van Heesch, Doxygen, http://www.stack.nl/~dimitri/
doxygen/, Accessed: 2016-04-25.

[WOB08] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Do too many
cooks spoil the broth? Using the number of developers to enhance
defect prediction models”, Empirical Software Engineering, vol.
13, no. 5, pp. 539–559, 2008.

[WSDN09] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communica-
tion”, in Proceedings of the International Conference on Software
Engineering (ICSE), IEEE Computer Society, 2009, pp. 1–11.

[XCK14] L. Xiao, Y. Cai, and R. Kazman, “Design rule spaces: A new
form of architecture insight”, in Proceedings of the International
Conference on Software Engineering (ICSE), ACM, 2014, pp. 967–
977.

[XF14] Q. Xuan and V. Filkov, “Building it together: Synchronous devel-
opment in OSS”, in Proceedings of the International Conference
on Software Engineering (ICSE), ACM, 2014, pp. 222–233.

[YK03] Y. Ye and K. Kishida, “Toward an understanding of the moti-
vation open source software developers”, in Proceedings of the
International Conference on Software Engineering (ICSE), IEEE,
2003, pp. 419–429.

187

https://git-scm.com/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

BIBLIOGRAPHY

[YBH12] Y. Yu, A. Benlian, and T. Hess, “An empirical study of volunteer
members’ perceived turnover in open source software projects”, in
Proceedings of the International Conference on System Sciences,
IEEE, 2012, pp. 3396–3405.

[ZMN15] X. Zhang, T. Martin, and M. E. J. Newman, “Identification of
core-periphery structure in networks”, Physical Review E, vol. 91,
3 2015.

188

APPENDIX A

A.1 Developer Communities Questionnaire
Solicitation E-mail

Dear Open-source developer,

The University of Passau is hosting a survey to evaluate the use of data in the
version control system to quantitatively and accurately infer social relationships,
collaborative patterns and community structures in open-source projects. You
have been selected for this survey because of your contributions to [project name]
during the development of [revision]. By participating, you are contributing
towards a better understanding of the important social and collaborative factors
that lead to prosperity in open-source software development. You will also be
able to see the community structure that you participate in and have a chance
to comment on it’s accuracy. All your information will be kept confidential.
We have no interest in judging you as a person, we are merely interested in
learning about your experience as an open-source developer.

The survey is composed of 8 questions and should take around 10-15 min-
utes to complete. Each and every survey response is important to us and we
sincerely hope you will take the time to participate. Upon completion of the
survey you may include your return e-mail address so that we can send you
the survey results.

We thank you for your time and effort.

189

A.2. ANALYSIS WINDOW SELECTION

A.2 Analysis Window Selection

We chose to use a sliding-window approach in our study to generate the
time-resolved series of developer networks. Another option would have been
to analyze the project using non-overlapping windows, but this can lead to
problematic edge discontinuities between the analysis windows. For example,
a set of several related changes to the software could be divided between
two different analysis windows, even though the changes occurred temporally
close together. For this reason, a sliding-window approach superior to the
alternative for our purposes, but we also recognized that overlapping windows
could influence the appearance of developer transitions (see Section 5.2.2.2),
because a commit can appear in two contiguous analysis windows. To test
whether the overlapping windows distorts the overall outcome, we compared
all Markov chains using non-overlapping windows with those using overlapping
windows. The comparison revealed that, in all projects, our conclusion that
core developers are more stable than peripheral developers is true regardless
of which windowing strategy is used. In most cases, using non-overlapping
windows increased the probability that a core or peripheral developer leaves
the project, but peripheral developers are always significantly more likely to
leave. For example, in QEMU, using overlapping windows, core and peripheral
developers leave a project with 0.5% and 10.9% chance respectively. In the
case of non-overlapping window this changes to 13% chance for core and 55%
chance for peripheral.

A.3 Semantic Coupling

To determine function-level semantic coupling, we first extracted the implemen-
tation for each function in the system, including all source code and comments.
We then employed well-established text-mining preprocessing operations with
minor modifications for our specific domain requirements. In this framework,
each function is treated as a “document” in the text-mining sense of the word,
and then the document collection was processed use the following processing
operations.

Preprocessing The preprocessing stage primarily focuses on reducing word
diversity and elimination of words that contain little information. Stemming is
to used to reduce words to their root form by removing suffixes (e.g., “ing”, “ly”,
“er”, etc.) from each word in the document. Stemming is necessary because,
even though a root word may have several forms by adding suffixes, it typically
refers to a relatively similar concept in all forms. In software engineering,

190

APPENDIX A.

there is a number of variable-naming conventions, such as letter-case separated
(e.g., CamelCase) or delimiter separated words that need to be tokenized
appropriately. We added additional preprocessing stages to specifically handle
proper tokenization of popular naming conventions. For example, the function
identifier “get_user” or “getUser” are separated into the two words “get” and
“user”. One simple example of why this is important is that getters and setters
interacting with the same attribute would be incorrectly understood as distinct
concepts without appreciating the variable-naming conventions. The final stage
of the preprocessing is to remove words that are known not to contain useful
information based on a-priori knowledge of the language. For example, words
such as “the” are not helpful in determining the domain concept of a document.
Removing these words is beneficial for the computational complexity and results
by reducing the problem’s dimentionality and attenuating noise in the data.

Term Weighting After the preprocessing stage, we arrange all remaining
data into a term–document matrix, for mathematical convenience. A term–
document matrix is anM×N matrix with rows representing terms and columns
representing documents. For example, an element of the term–document ma-
trix TDi,j is non-zero when document dj contains term ti. All elements of
the term–document matrix are integer weights that indicate the frequency
of occurrence of a given term in a given document. We then apply a weight
transformation to the term–document matrix based on the statistics of occur-
rence for each term. Intuition suggests that not all terms in a document are
equally important with regard to identifying the domain concept. The goal of
the weighting transformation is to increase the influence of terms that help to
identify distinct concepts and decrease the influence of the remaining terms.
The particular weighting scheme we applied is called term frequency-inverse
document frequency :

tf-idft,d = tft × log
N

dft
. (A.1)

The term tf t represents the global term frequency across all documents. The
second term is the logarithm of the inverse document frequency, where N
is the number of documents in the total collection and dft is the number of
documents that term t appears. Upon closer inspection, one can recognize
that Equation A.1 is: (a) greatest when a term is very frequent, but only
appears in a small number of documents, (b) lowest when a term is present
in all documents, and (c) between these two extreme cases when a term is
infrequent in one document or occurs in many documents.

191

A.3. SEMANTIC COUPLING

Latent Semantic Indexing Even for a modest-sized software project, the
number of terms used in the implementation vocabulary easily exceeds the
thousands. The problem with this becomes evident when adopting the vector-
space model, where we consider a document as a vector that exists in a space
spanned by the terms that comprise the document collection. Fortunately, this
very high dimensional space is extremely sparse, which allows us to project
the documents into a lower dimensional subspace which makes the semantic
similarity computation tractable. We achieve this using a matrix decompo-
sition technique that relies on the singular value decomposition called latent
semantic indexing. An added benefit of this technique is that it is capable
of correctly resolving the relationships of synonymy and polysemy in natural
language [BR+99]. Furthermore, latent semantic indexing has shown evidence
to be valid and reliable in the software-engineering domain [BDO+13].

Semantic Similarity In the final step of the analysis, we determine semantic
coupling by computing the similarity between all document vectors projected
onto the lower dimensional subspace attained from applying latent semantic
indexing. We operationalize the similarity between two document vectors in
the latent space using cosine similarity

similarity(~da, ~db) =
~da · ~db∥∥∥~da∥∥∥∥∥∥~db∥∥∥ , (A.2)

where the numerator is the dot product between the two document vectors and
the denominator is the multiplication of the magnitude of the two document
vectors. Intuitively, cosine similarity expresses the difference in the angle
between the two document vectors; it equals 1, when the two vectors are parallel,
and 0, if they are orthogonal. Two source-code artifacts are then considered to
be semantically coupled if the cosine similarity exceeds a given threshold. We
experimented extensively with a number of thresholds by manually inspecting
the results and judging whether the functions were, in fact, semantically related
using architectural knowledge of a well-known project. We found that a
threshold of 0.65 was able to identify most semantic relationships with only
a very small number of false positives. We did, however, cautiously chose the
threshold to optimize to avoid false positives rather than false negatives.

192

	Introduction
	Problem and Motivation
	Thesis Goal
	Contributions
	Outline

	Background
	Coordination in Software Engineering
	Software-Project Analysis
	Source Code
	Version-Control Systems
	Mailing Lists
	Mining Repositories

	Network Analysis
	A Network Perspective
	Graphs
	Vertex-Level Metrics
	Random Network Theory
	Scale-Free Networks
	Modularity
	Hierarchy
	Network Evolution

	Developer Networks
	General Framework
	Types of Developer Networks

	Community Detection and Validation with Fine-grained Developer Networks
	Approach
	Network Construction
	Function-based Method
	Committer–Author-based Method

	Network Analysis
	Community Detection
	Community Verification

	Evaluation & Results
	Hypotheses
	Subject Projects
	Existence of Statistically Significant Communities
	Comparison of File-Based and Function-based Methods
	Tag-Based and Committer–Author-Based Network Similarity
	Network Validation

	Threats to Validity
	Related Work
	Summary

	Evolutionary Trends of Developer Coordination
	Motivation and Research Questions
	Organizational Principles
	Research Questions

	Methodology
	Network Construction
	Developer Network Stream
	Scale Freeness
	Modularity
	Hierarchy

	Study & Results
	Hypotheses
	Subject Projects
	Scale Freeness
	Modularity
	Hierarchy

	Threats to Validity
	Discussion & Perspectives
	Related Work
	Summary

	Classifying Developers into Core and Peripheral Roles
	Motivation and Contributions
	Operationalizations of Developer Roles
	Count-based Operationalizations
	A Network Perspective on Developer Roles
	Developer Networks
	Network-based Operationalizations

	Empirical Study
	Subject Projects
	Research Questions
	Hypotheses
	Developer Perception

	Results
	RQ1: Consistency of Count-Based Operationalizations
	RQ2: Core and Peripheral Manifestations in Developer Networks
	Agreement: Network-Based vs. Count-Based
	RQ3: Developer Perception vs. Network-Based and Count-Based Operationalization
	Further Support for a Relational Perspective

	Threats to Validity
	Related Work
	Summary

	Conclusion and Future Work
	Contributions
	Future Work
	Alternative Views on Coordination
	Coordination Over Complete Software Life Cycle
	Analysis of Developer Network Structure Using Manual Inspections & Interviews
	A Developer Network Growth Model

	Appendix
	Developer Communities Questionnaire Solicitation E-mail
	Analysis Window Selection
	Semantic Coupling

