
University of Passau

Delay Testing in Nanoscale Technology

under Process Variations

Author:

Jie Jiang

Supervisor:

Prof. Dr. Ilia Polian

Prof. Dr. Joan Figueras

A thesis submitted in partial fulfillment for the

degree of Doctor of Computer Science

in the

Faculty of Computer Science and Mathematics

Department of Computer Engineering

April 2016

http://www.uni-passau.de
file:jie.jiang@uni-passau.de
file:ilia.polian@uni-passau.de
file:joan.figueras@upc.edu
http://www.fim.uni-passau.de/en/csm_faculty/
http://www.fim.uni-passau.de/en/computer-engineering

Declaration of Authorship

I, JIE JIANG, declare that this thesis titled, ‘Delay Testing in Nanoscale Technology

under Process Variations’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at the University of Passau.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at the University of Passau or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“Learn from yesterday, live for today, hope for tomorrow. The important thing is not to

stop questioning.”

Albert Einstein

Abstract

In modern CMOS technology, process variations have significantly increased impact on

the circuit behavior with continuously scaled transistor sizes. Manufactured devices tend

to have different performances due to parameter variations during manufacturing and

in the operating context. Conventional tests generated regardless of variations could

fail to rule out devices with low performance and even functional failure caused by

extreme variations; the unreliability in shipped products is in turn raised. To tackle

the problem, many existing test approaches have focused on identifying and testing a

number of critical paths in the circuit, and aimed at the efficiency of the searching

process. However, the statistical circuit model, which better describes the circuit timing

behavior under variations, is not yet sufficiently investigated and employed by existing

testing methodologies.

This thesis work proposes Opt-KLPG and MIRID, which can be utilized by a statisti-

cal delay testing flow. Opt-KLPG—a K Longest Paths Generation (KLPG) algorithm

for optimal solutions under memory constraints—can pin-pointedly generate tests for

small delay defects, which are common small timing deviations under process variations,

based on the traditional KLPG algorithm. In contrast to KLPG, Opt-KLPG guaran-

tees the optimality of the solution (the K longest sensitizable paths indeed). MIRID is

a mixed-mode timing-aware simulator, incorporating effects of power-supply noise and

combining an event-driven logic simulation engine with interfaces to provided electrical

models. MIRID aims at evaluating delay tests in presence of process variations efficiently

yet accurately, by performing logic simulation at the gate level while determining the

gate delays using simplified electrical modes. The electrical models applied by the simu-

lator focus on the IR drop effect. Electrical parameters mainly contributing to the effect

are incorporated into the model. The simulator is generic and flexible to be adapted

by modifying the interfaces with minor effort. Both applications were verified in vari-

ous aspects by experiments for academical/industrial circuits, and turned out to have

satisfiable effectiveness and performance.

Acknowledgements

Firstly, I would like to express the deepest appreciation to my advisor Prof. Dr. Ilia

Polian for the continuous support of my Ph.D study and related research, for his patience,

motivation and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor and mentor

for my Ph.D study.

Besides my advisor, I would like to offer my special thanks to Prof. Dr. Joan Figueras

to be the second supervisor of this thesis.

My sincere thanks also goes to my collaboration partners: Prof. Dr. Michel Renovell,

Prof. Dr. Mariane Comte and Dr. Marina Aparicio Rodriguez from Montpellier; Prof. Dr.

Bernd Becker, Dr. Matthias Sauer, Dr. Alexander Czutro from Freiburg; and Prof. Dr.

Hans-Joachim Wunderlich, Michael E. Imhof and Abdullah Mumtaz from Stuttgart,

not only for their precious collaboration but also for their insightful comments and

encouragement.

Last but not the least, I would like to thank my family: my parents Yanfen Song and

Ping Jiang, and my husband Yujiong Chen, for supporting me spiritually throughout

writing this thesis and my life in general.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Background and State-of-the-art . 2

1.1.1 Process Variation in Nanoscale Technologies 2

1.1.2 Delay Testing Under Process Variations 5

1.1.2.1 Delay Fault Models . 6

1.1.2.2 Timing Analysis . 8

1.1.3 State-of-the-art Approaches . 8

1.1.3.1 Statistical Design Approaches 9

1.1.3.2 Statistical Testing Approaches 10

1.2 Statistical Testing flow . 11

1.2.1 Overview of a Statistical Testing Flow 11

1.2.2 Statistical Fault Coverage . 12

1.2.3 SDD Tesing and KLPG Algorithm 14

1.2.4 Variation-aware Fault Simulation 16

2 KLPG: K Longtest Path Generation 19

2.1 Motivation . 19

2.2 Preliminaries . 21

2.2.1 Classification of Path Delay Faults 21

2.2.2 SAT-solver and SAT-based ATPG 24

2.3 Walker’s KLPG Algorithm . 25

2.4 Opt-KLPG: K Longest Path Generation for Optimal Solutions Under
Memory Constraints . 27

2.4.1 Algorithm Overview . 28

2.4.2 Esperance Computation . 30

v

Contents vi

2.4.3 KLPG Module . 35

2.4.4 Sensitization check . 38

2.4.4.1 Direct Implication . 39

2.4.4.2 ATPG using TIGUAN 42

2.5 Application of Opt-KLPG by Variation-aware Fault Grading 45

2.5.1 Modeling for Variation-aware Delay Testing 45

2.5.2 Variation-aware Fault-grading Procedure 46

2.5.3 Path-oriented Delay ATPG . 47

2.6 Experimental Results . 48

2.6.1 On the Optimality of KLPG Algorithms 48

2.6.2 Fault-grading Procedure using Opt-KLPG 53

3 MIRID: Mixed-mode IR Drop Induced Delay Simulator 56

3.1 Motivation . 56

3.1.1 Mixed-mode Simulation . 58

3.2 Preliminaries . 59

3.2.1 Power Distribution Network (PDN) 59

3.2.2 IR Drop Effect . 60

3.2.3 Power-aware Test . 61

3.3 Simulation Overview . 63

3.3.1 Event-driven Logic Simulation . 63

3.3.2 Interfaces to Electrical Models . 65

3.4 Electrical Models . 68

3.4.1 PDN Configuration . 68

3.4.1.1 Structural Assumption 68

3.4.1.2 Parasitic Elements in PDN 70

3.4.1.3 Mapping to the Logic Block 71

3.4.2 Current Distribution in PDN Grids 72

3.4.3 Electrical Models at the Gate Level 76

3.4.3.1 Dynamic Current Model 77

3.4.3.2 Gate Delay Model . 80

3.5 Simulator . 81

3.5.1 Logic Library . 82

3.5.2 Simulation Preprocessing . 87

3.5.3 Logic Simulation . 90

3.5.3.1 Zero-delay Logic Simulation 91

3.5.3.2 Timing-aware Event-driven Simulation 93

3.5.4 Interface Functions For Electrical Models 98

3.5.4.1 Estimation of Dynamic Currents 98

3.5.4.2 Distribution of Currents in PDNs 100

3.5.4.3 Estimation of Gate Delays 102

3.6 Application to Self-adaptive Better-than-worst-case Design 103

3.6.1 Short-path Invalidation . 104

3.6.2 Detection Conditions . 107

3.6.2.1 Simplified Variability Model 107

3.6.2.2 Mitigation by Buffer Padding 108

3.6.2.3 Mitigation by Latch Placement 109

Contents vii

3.6.3 Strategies of Mitigation . 112

3.7 Experimental Results . 113

3.7.1 Accuracy Validation . 113

3.7.2 Investigation on IR Drop induced Delay 120

3.7.3 Performance for Large Circuits . 123

3.7.4 Mitigation of the Short-path Problem using Buffers and Latches . 125

4 Conclusion 128

Bibliography 134

List of Figures

1.1 Overview of the variation classification . 3

1.2 Overview of the statistical test flow [1] . 11

2.1 An example of the longest path . 20

2.2 Testability classification of PDFs [2] . 22

2.3 An example of the invalidation by a non-robust test 23

2.4 Opt-KLPG overview . 28

2.5 Path store initialization . 29

2.6 PERT delays under different delay assignments 30

2.7 Computation of PERT delays for a signal driving a fan-out 31

2.8 Iterative computation of PERT delays . 34

2.9 KLPG module . 36

2.10 New Path submodule . 37

2.11 KLPG flowchart . 38

2.12 Examples of direct implication . 40

2.13 An example of sensitization check using direct implication 40

2.14 A false path that cannot be identified using direct implication 43

2.15 An example of CMS@ derivation . 44

2.16 Experimental results for circuit p35k. Runtimes are shown by lines; num-
ber of gates with shorter paths are shown by bars. 53

3.1 A two-layer power distribution grid . 60

3.2 Schematic illustration of the simulator . 65

3.3 Two sets of Vdd and Gnd lines . 69

3.4 PDN grids . 70

3.5 Gates connected to Vdd and Gnd power supply nodes 72

3.6 Current distribution in Vdd PDN . 73

3.7 Central, corner and band areas in a 100× 100 grid 74

3.8 A high-level view of the power grid over a chip with 9 blocks 75

3.9 Supply and input voltage swings and gate delay 80

3.10 Definition of the gate object . 83

3.11 Definition of the signal object . 84

3.12 Definition of the pin object . 84

3.13 A circuit containing an inverter and two NAND gates 85

3.14 Examples of constructed gate objects . 85

3.15 Examples of constructed signal and pin objects 86

3.16 Symbolic presentation of operations for matrices in different areas in PDN 88

3.17 Event-driven simulation applying an event queue 95

viii

List of Figures ix

3.18 Calculation of voltage level at PDN node N(i, j) 99

3.19 Update current array current′ . 102

3.20 Short-path invalidation in Razor design 105

3.21 Mitigation by latch placement . 106

3.22 Input-to-latch invalidation . 110

3.23 Strong latch-to-output invalidation . 110

3.24 Weak latch-to-output invalidation . 111

3.25 14-inverters model for validation . 114

3.26 Current validation for 14-inverters chain 115

3.27 Voltage validation for 14-inverters chain 115

3.28 Current validation for c17 . 117

3.29 Voltage validation for c17 . 118

3.30 Current validation for c17 with 10−1ps precision 119

3.31 Voltage validation for c17 with 10−1ps precision 119

3.32 8-inverter chains connected to a 2× 2 grid 121

3.33 Model of 9 inverter chains . 122

3.34 Correlation of the IR drop induced delay and X 122

List of Tables

2.1 Experimental results under functional sensitization criterion 52

2.2 Comparison of KLPG and Opt-KLPG under different model assumptions
for circuit c7552 . 53

2.3 Comparison of KLPG and Opt-KLPG under different model assumptions
for industrial circuit p45k . 53

2.4 Statistical fault coverages for 101 instances, 100 random faults and 9 fault
sizes . 55

3.1 Difference of currents in 14-inverter chain reported by MIRID and SPICE 116

3.2 Difference of voltages in 14-inverter chain reported by MIRID and SPICE 117

3.3 Difference of current and voltage at N(50, 50) in c17 reported by MIRID
and SPICE . 119

3.4 Simulation for ISCAS and NXP circuits 124

3.5 Experimental results for buffer padding and latch placement 126

x

Abbreviations

ATPG Automatic Test Pattern Generation

VLSI Very-Large-Scale Integration

CMOS Complementary Metal Oxide Semiconductor

VDSM Very Deep Sub-Micron

CUT Circuit Under Test

SDD Small Delay Defect

IC Integrated Circuit

TF Transition Fault

PDF Path Delay Fault

KLPG K Longest Paths Generation

PDN Power Distribution Network

MIRID Mixed-mode IR-drop Induced Delay Simulator

BUT Block Under Test

SAT Boolean Satisfiability Problem

CNF Conjunctive Normal Form

MLR Multiple-Linear Regression

NRMSE Normalized Root Mean Square Error

IFA Inductive Fault Aanlysis

xi

Chapter 1

Introduction

Reliability is a very important issue in Complementary Metal Oxide Semiconductor

(CMOS) manufacturing. Devices delivered to customers should operate not only cor-

rectly as required by the specification, but also reliably during the whole life time and

in all expected operation conditions. However, nothing is perfect—due to the intrinsic

physical limitations of the fabrication process, the uncertainties in the parameters of

fabricated devices and in the operating environment during the lifetime are not avoid-

able; the situation is even getting more severe as technology scales. These uncertainties

contributes to the source of process variations—variations in parameters of transistors

or interconnects—and in turn impair the performance of devices or even cause operation

failures.

In today’s semiconductor manufacturing technology, up to 30% variation in operating

frequency and 5 to 10 times variation in leakage power are expected [3]. Due to the effect

of variations, the behavior of the fabricated design in terms of performance and power

differs from what designer intended; the unreliability in the design rises. Numerous

solutions that require change in design methodologies, such as adaptive body bias [4],

or self-adaptive technique to lower the rate of dynamic errors [5], have been proposed

to combat the variations. In context of testing, the impact of variations is also signif-

icant. Traditionally, test for Integrated Circuit (IC) uses fault models that abstract

from defect-specific parameters affecting the circuit behavior. However, in presence of

process variations, defects can manifest themselves differently, especially in affecting cir-

cuit timing; tests targeting the abstracted fault could fail to detect these defects. The

1

Chapter 1. Introduction 2

increased impact of process variations could lower the defect coverage and in turn im-

pair the reliability of the device under test. Though a number of testing approaches

have been proposed and contributed to raise the defect coverage under process varia-

tions [6–12], a statistical testing flow, which involves fault modeling, fault simulation

and test generation with consideration of process variations, has not been sufficiently

investigated.

The motivation of this thesis work is to propose variation-aware Automatic Test Pattern

Generation (ATPG) and simulation methodologies that could be integrated into the sta-

tistical testing flow. The objective is two-fold: on one hand, the methodologies have to

be capable of dealing with benchmark/industrial circuits and thus efficiency is an impor-

tant concern; on the other hand, to increase the defect coverage the impact of process

variations need to be taken into account by the methodologies, which in turn requires

the accuracy in estimating the impact. The remainder of this chapter is organized as fol-

lows: Section 1.1 introduces background knowledge and the state-of-the-art approaches;

Section 1.2 presents a statistical testing flow with test methodologies that are especially

of interest and could be employed by the flow.

1.1 Background and State-of-the-art

1.1.1 Process Variation in Nanoscale Technologies

The uncertainty in device parameters, which is called manufacturing-related variation,

is caused by equipment imprecision and process limitations. As CMOS technology con-

tinues to scale, manufacturing process is getting more complex while process precision

control needs to remain relatively accurate at the same time. As a result, a number of

steps throughout the manufacturing process are prone to fluctuations [13], e. g., optical

proximity effects (variations in the linewidth of a feature as a function of the proximity

of other nearby features) can be caused by patterning features smaller than the wave

length of light [14]. These manufacturing imperfections can result in variations in phys-

ical parameters of devices and interconnects, such as gate length, gate-oxide thickness,

channel doping concentration, and the thickness and height of interconnects. Further-

more, variations in physical parameters cause variations in electrical characteristics of

Chapter 1. Introduction 3

devices and interconnects, such as the threshold voltage, the drive strength of transis-

tors, and the resistance and capacitance of interconnects, which finally affect the circuit

timing behavior. It is important to note that correlations can exist between electrical

variations that depend on common physical parameters. Also, physical parameters can

be correlated themselves under the impact of a particular equipment variation. Analysis

to determine the variations and correlations in physical parameters is very complex and

impractical due to the high number of equipment-related parameters. Hence, physi-

cal parameters are often assumed to be random variables that are independent or have

well-understood correlations by statistical timing analysis (analysis that determines the

timing behavior of circuit elements statistically) [13].

Process Variation

Systematic Non-Systematic

Within-Die Die-to-Die

Spatially
Correlated

Independent

Figure 1.1: Overview of the variation classification

Manufacturing-related process variations can be further divided into two categories: sys-

tematic and non-systematic, as presented in Figure 1.1. Systematic variations are com-

ponents of physical parameter variations that follow a well-understood behavior and

can be predicted by analyzing the designed layout, e. g., the optimal proximity effects.

Nonsystematic or random variations represent the truly uncertain component of physi-

cal parameter variations, such as line edge roughness and random dopant fluctuations.

Nonsystematic variations can be further divided into groups of die-to-die and within-die

variations according to their act on different spatial scales. In past technologies, it

was sufficient to model die-to-die variations while in modern nanoscale technologies,

within-die variations have become equally important [15]. Finally, within-die variations

can be categorized into spatially correlated and independent variations. Many underlying

processes tend to affect closely spaced devices in a similar manner, making these devices

more likely to have similar characteristics than those placed far apart. The component

Chapter 1. Introduction 4

of variation that exhibits such a spatial dependence is known as spatially correlated

variation. The residual variability of a device that is statistically independent from all

other devices is referred to as independent variation. It has been observed that the

contribution of independent within-die random variations is increasing with continued

process scaling [13].

The other source of process variation is the uncertainty in the operating environment of

a particular device during its lifetime, represented by variations related to the operating

context, such as temperature, supply voltage and lifetime wear-out. These variations can

depend on the functionality of individual circuit block and the applied input sequences.

For example, the power density across a die varies for different rates of activities in a

circuit block. Higher activity in a block puts more demand on the power distribution

network, resulting in resistive and inductive voltage drops; the time-dependent supply

voltage variation is in turn created. Moreover, the high rate of activities in a block raises

the temperature in this area and creates the so-called hot spots, which in turn results

in the temperature variation across the die. Also, aging has a significant impact on

the transistor performance. Studies have shown that a transistor’s saturation current

degrades over years because of oxide wear-out and hot-carrier degradation effects [3].

This degradation is expected to become worse as the transistor size continues to shrink.

Unlike the dynamic sources of variations that exhibit themselves during the operating

cycle, such as voltage supply and temperature, variations caused by manufacturing im-

perfections and aging mechanisms are static or quasi-static, that is, they could exhibit

long time constants. With respect to the exhibited time constant, the sources of process

variations can be briefly divided into two groups from the time aspect:

• Physical factors including variations in the electrical and physical parameters

characterizing the behavior of devices, mainly caused by manufacturing imper-

fections and various wear-out mechanisms. They exhibit long time constants,

typically measured in years.

• Environmental factors including power supply voltage and temperature. These

factors highly depend on the design and are typically measured by time constants

in similar scale to the clock frequency.

Chapter 1. Introduction 5

1.1.2 Delay Testing Under Process Variations

The timing of Very Deep Sub-Micron (VDSM) devices is considerably affected by pro-

cess variations. As reported in [16], defects that cause delay have typically represented

1% to 5% of the total defect population observed. Delay defects can cause delayed sig-

nal propagations exceeding the maximum operating frequency, i.e., the circuit fails to

operate in time when these signal propagations are required. Under impact of process

variations, which generally do not have fixed values and usually follow a probability

distribution, delays induced by the variations will also follow a similar distribution and

vary between different circuit instances.

To avoid the overall delay behavior of devices, raising the operation frequency is im-

practical because it contradicts the requirement for high performance. Typically, man-

ufacturers will choose an operating frequency of the product to meet requirements from

the customer and the market, as well as to make the economic trade-off between the

yield loss below the operating frequency and the higher performance of the product. To

screen the units that could operate slower than the desired frequency, the speed of the

paths with the longest delays, called critical paths, are often tested under worst-case

conditions.

The objective of tests is to rule out defective parts from manufacturing devices. which

means, the tests should be designed such that by observing the responses from the

Circuit Under Test (CUT) must lead to detection of the defects [17]. Classically, most

delay testing techniques apply Boolean logic values to the CUT and observe its response

at some clock frequency. Some delay defects, especially those resulting from process

variation, can also be detected through analysis of the response of process monitors1

[18]. For the mostly used Boolean delay-defect testing, two major related questions can

arise:

• What kind of test patterns should be applied?

• An what clock frequencies to apply the test patterns and at what clock frequencies

to capture the output responses?

1Process monitors are carefully designed special circuit structures monitoring manufacturing-process
characteristics, such as ring oscillators and trees of NAND gates with controlled delays.

Chapter 1. Introduction 6

However, due to the fact that an extraordinary volume of defects can exhibit themselves

in a circuit (and not all possible defects may be known), it is almost infeasible to derive

appropriate tests for defects individually. A fault model that extracts the faulty behavior

common in the target defects is therefor used, to facilitate analysis of defects and the

derivation of tests. Targeting on the modeled faults, dedicated tests can be generated,

with time information when to apply the test and when to observe the output.

1.1.2.1 Delay Fault Models

Two fault models are often used by delay testing: the Transition Fault (TF) model and

the Path Delay Fault (PDF) model [2]. Traditionally, the TF model is often used by the

industry for delay testing. It assumes the delay caused by the defect to be larger than

the specification time, which usually refers to the system clock period. Test generation

for such a fault model takes advantage of the rather low number of faults, which is linear

to the circuit size. Moreover, existing tools that test and simulate stuck-at faults—a

very common and mostly used fault model—can be used with minor modifications to

generate tests for TFs. However, the TF has significant limits. Under assumption of the

defect size larger than the clock period, any path through the fault site can be selected

to propagate the transition to the output. Indeed, ATPG tools, which are very often

used by test generation, tend to seek the easiest path to excite the fault and propagate

the fault effect. It implies that the selected path has relatively few gates and can be

very short. Then, for defects with smaller sizes, that is, the extra delay caused by the

defect is shorter than the clock period, propagation of the delay along such a short path

is likely to finish during the clock period, resulting in the capture of a correct logic value

at the output, i.e., the target defect escapes detection.

In fact, modern manufacturing process tends to produce defects inducing small delays.

Many electrical phenomena in VDSM process technologies, such as process variations,

crosstalk noise, power-supply noise, resistive shorts and opens, can induce small delay

variations in the circuit components [19]. Such small delay variations are referred to as

Small Delay Defect (SDD) [20, 21], which have received increased attentions over the

last few decades. As reported in [22, 23], the distribution of delay-related failures is

skewed toward the smaller delays. That is, small delay defects contribute to the failure

Chapter 1. Introduction 7

of the majority of devices that fail due to delay defects. Targeting these SDDs can lowers

the test escape rate and thus improve the reliability of the shipped products.

Obviously the TF model, which assumes the delay exceeds system clock period, does

not match the faulty behavior caused by a SDD properly. PDF is more preferred by

testing SDDs as it assumes that a path propagates the desired transition with a total

amount of time exceeding the specification time. The small delays could be detected by

exercising some paths through them so that the total path propagation delay exceeds

the clock period. Thus, searching for such paths are often required by testing small

delays, i.e., paths through the defect site that most probably propagate the small delays

to the observation point are searched, and sensitized by tests under certain sensitiza-

tion conditions. The sensitization condition is often related to the timing variations of

side-inputs—inputs that are not on the path and drive the on-path gates, which can

affect the fault detection. To avoid such situations, tests that guarantee the detection of

delay faults regardless of timing variation in the rest of the circuit, called robust tests,

are targeted. Robust tests are very powerful because they detect the target fault in-

dependent of the presence of other delay faults. However, as indicated in [24], robust

tests only exist for a relatively small part of delay faults in today’s Very-Large-Scale

Integration (VLSI) circuits. Thus, non-robust tests should also be targeted by the test

generation and applied with robust tests to raise the defect coverages totally. It should

be noted that PDF is the fault model that can be used for testing SDD; where and how

the delays are distributed on the path are not concerned by the model itself while a SDD

is related to a specific defect site. The PDF model takes advantage of the scalability

of delay sizes of detectable defects. Nonetheless, for VLSI circuits the test generation

using PDF model could be very time-consuming since the number of paths is normally

very large and even exponential to the circuit size in worst case.

Tests that detect a PDF need to launch the desired transition—assignments of opposite

logic values in two consecutive clock cycles—at the input of the path, and propagate the

transition through the path to its output. Furthermore, the propagation of the transition

to the output implies a necessary condition that the output value settles in a logic value

opposite to its initial value. Depending on sensitization condition for the test, such as a

robust or non-robust test, more value constrains for signals, especially the side-inputs,

need to be considered by the test generation. Moreover, a large part of the PDFs can

be functionally redundant, i.e., no tests exist that propagate the transition along the

Chapter 1. Introduction 8

path. For example, it has been shown that up to 81% PDFs in ISCAS’85 circuits are

functional redundant [25]. Thus, an efficient identification of redundant PDFs could

help to improve the performance of test generation significantly.

1.1.2.2 Timing Analysis

Timing analysis that characterizes the timing behavior of circuit elements is very impor-

tant for an accurate delay estimation required by timing-aware testing methodologies. It

is performed during the design flow and can be static or dynamic. Static Timing Analy-

sis checks static delay requirements of the circuit independent of input vectors whereas

dynamic timing analysis verifies the functionality of the design without any timing vio-

lations for applied input vectors by simulating using timing information [13, 26].

In the past few decades, static timing analysis has been a widely adopted tool in the

VLSI design and served as the timing engine in test generation, mainly because of its

efficiency and conservatism in the sense that it takes the worst-case into account. How-

ever, static timing analysis is deterministic and calculates the circuit delay for a specific

process condition, i.e., all parameters that affect the circuit timing are assumed to be

fixed and are uniformly applied to all the devices in the design [13]. As process varia-

tions have become significantly more pronounced in nanoscale regime, the conventional

characterization of circuit elements with fixed delays becomes inappropriate to be used.

A statistical timing assignment [13, 26, 27] is preferred since process variations and their

influences in circuit timing are statistically distributed in nature.

The need for an effective modeling of process variations in circuit timing has led to a num-

ber of statistical approaches, such as numerical integration over the process-parameter

space to compute the delay of critical paths [28], path-based statistical timing analysis

considering spatial correlations [27], and statistical dynamic timing analysis to effectively

identify false paths [26].

1.1.3 State-of-the-art Approaches

Variability in circuit parameters has become a very important concern from both design

and test sides as technology scales into the nano-regime. Designing for the worst-case

conditions is unrealistic as it would contradict the performance requirement, and lead

Chapter 1. Introduction 9

to excessive area and power consumption. Thus, design approaches are often based on

statistical timing assumptions, and aim at mitigating the effects of variability. However,

even with the most sophisticated approaches, the electrical models employed are inca-

pable of exactly representing the device performance, which means that there is always

the possibility of variations being outside model predictions [17]. The reason is that

causes of variability could be very sophisticated and depend on manufacturing tech-

nologies; and even if the causes are well understood, predicting the results of variations

on devices is a serious challenge. Moreover, as variation has a continuous distribution,

situations are inevitable that parameter variations will produce a small difference in spec-

ifications, among which circuit delay is particularly interested, from allowable extremes

[17]. In brief, variation effects cannot be exactly predicted by design models and totally

compensated. Moreover, delay variations in devices that could lead to malfunctions are

inevitable. Test methodologies are therefore required by high-quality manufacturing, to

rule out such devices that could present delay defects under process variations. In this

section, the state-of-the-art approaches are briefly reviewed, in both the design (1.1.3.1)

and the test areas (1.1.3.2).

1.1.3.1 Statistical Design Approaches

Numerous works have been contributed to the statistical-based design that considers

the impact of process variations, both at the gate level [29] or at a high level [30].

Moreover, a number of techniques have been used to mitigate the impact of process

variations in modern technologies [31]. The impact of process variations can be reduced

by tuning certain operating parameters, such as the threshold voltage (“body bias”),

the supply voltage and the frequency. Based on methods that adjust these parameters,

self-calibration designs are proposed to compensate and correct the performance devia-

tions induced by process variations adaptively [4, 32, 33]. Dynamic calibration during the

operating process often requires additional hardwares (e. g., sensors), and mechanisms of

fault detection and correction. For example, the RAZOR processor [5] scales the supply

voltage dynamically during the process according to the computed error rate in terms

of the frequency of the delayed transitions. For the purpose of monitoring and correct-

ing errors, the processor applies extra memory elements clocked later than the system

clock to capture the correct values that are possibly delayed. A similar fault-tolerant

architecture that combines latch-based design and time redundancy is presented in [34].

Chapter 1. Introduction 10

Also, other circuit techniques for variability mitigation have emerged recently, such as

clock-tuning in Intel Montecito processor [35], the adaptive and self-healing architecture

ElastIC [36], and the variation-tolerant network design using self-calibrating links [37].

1.1.3.2 Statistical Testing Approaches

Existing test approaches focus on identifying a number of testable critical paths for

each possible fault site and generating tests that excite the transition propagated along

the paths. These paths are commonly the longest testable ones given a static timing

assignment, which implies, they have the minimum timing slack between the path prop-

agation time and the operating frequency and thus most probably delay the propagated

transitions under process variations. As the search space of paths for large circuits

can be very huge, many approaches aim at the efficiency of the searching process, such

as by pruning paths from the search space based on structural correlation [7, 38] and

process-variation correlation [6]. Moreover, a number of approaches have explicitly con-

sidered process variations during test generation, usually based on statistical timing

analysis that describes the timing behavior of circuit elements under process variations.

In [8] an approach was proposed that intelligently selects n-detection test patterns (tests

that detect each target fault at least n times) based on a gate-delay defect probability

model. More sophisticated methods that employ a suitable defect-coverage metric were

used to guide the test generation process. Park et al. were the first to propose the

concept of statistical delay-fault coverage [9]. In [10] the impact of statistical variations

including specific noise effects on circuit performance was analyzed, and further consid-

ered by a novel defect-driven path selection methodology for test generation. Shintani

et al. introduced a metric called parametric fault coverage that was utilized to guide an

adaptive test flow [11]. A process variation-aware test generation method targeting on

resistive bridging faults was proposed in [12], which uses a metric called test robustness

to quantify the impact of process variation on test quality.

Chapter 1. Introduction 11

1.2 Statistical Testing flow

1.2.1 Overview of a Statistical Testing Flow

Though variability has been considered by many existing testing approaches, a testing

flow based on statistical timing analysis, which involves fault modeling, fault simulation

and test generation, has not yet been sufficiently investigated. The basic concept of

a statistical test flow [1] is illustrated in Figure 1.2. The “statistical” concept can be

adopted by approaches at various abstraction levels of the test flow, from the fault

modeling at electrical level to test strategies at system level.

Statistical Fault Modeling at Electrical Level

Statistical
 Fault Simulation

ATPG for fixed
parameter values

P
ar

am
et

er
 Y

Parameter X

Process parameters
covered so far

Test Strategy at System Level
(Yield Optimization, "Quality Binning")

Figure 1.2: Overview of the statistical test flow [1]

The statistical fault modeling can be obtained by a systematic approach for a primitive

cell library with injected defects [1]. In this approach electrical fault simulations with

randomly changing circuit parameters were performed to achieve the delay distribution

for injected defects, i.e., the statistical characterization of library cells in terms of the

timing behavior for an injected defect approximated across all parameter variations.

Chapter 1. Introduction 12

Regarding the test flow at the gate level (bounded with dashed lines in Figure 1.2), due

to the complexity of test generation, ATPG for fixed parameters values can be combined

to the statistical fault simulation, to cover the whole parameter space incrementally. The

fault coverage reported by the simulation should also be statistically defined, to evaluate

the test quality under process variations and guide the iterative test flow.

1.2.2 Statistical Fault Coverage

Classically the fault coverage FC is defined as in Equation 1.1.

FC := #detected faults/#modeled faults (1.1)

Under the impact of process variations, the new metric of fault coverage should be defined

based on the configuration of process parameters and the corresponding statistical fault

modeling.

Provided with manufacturing data, a finite list of parameters that could have impact

on the timing-behavior of circuit elements and the range of possible values for each

parameter are modeled by {P1, P2, . . . , PN} and ∆i (1 ≤ i ≤ N), respectively. Due

to the complexity of modeling possible correlations between process parameters, the

parameters are assumed to be uncorrelated.

Given a circuit represented by a set of gates and interconnect lines between gates, a

delay assignment for the circuit refers to the estimated propagation time for each gate,

usually called gate delay. (The interconnect delay is not considered by this thesis work.)

The gate delay can differ for different gate inputs and input edges. Thus, it can be

modeled by the propagation time from a gate input to the output for a rising or falling

transition. For each combination of parameter values p := (p1, p2, . . . , pN) ∈ P where

P is the parameter space (P := ∆1 × ∆2 × · · · × ∆N), the circuit exhibits the cor-

responding timing behavior, given by the delay assignment. A circuit instance that

affected by a variation combination p is denoted by Cp. Moreover, assuming a normal

or well-understood distribution of parameter variations, the probability density function

of a possible combination of parameter values p can be derived, denoted by π(p).

Chapter 1. Introduction 13

Then, given a delay fault f := (g, s) where gate g is the fault location and s is the delay

size (that could refer to a gate input and the transition edge depending on the delay

model), f is detected in Cp by a test set T if at least one test leads to an incorrect response

in Cp at time point tobs, where the correct response is given by the fault-free nominal

circuit (in absence of variations) at time tobs. The observation time tobs is commonly

chosen such that all circuit outputs have stabilized after the test pattern is applied.

Considering process variations, tobs equals to the maximal delay of the circuit in absence

of variations, multiplied with a safety margin greater than 1. The detectability of f by

T in circuit instance Cp is denoted by detCp(f, T) (detCp(f, T) equals to 1 if f is detected

and 0 otherwise). Finally, using πp to denote the probability of an actual manufactured

circuit having the parameter configuration p, the circuit coverage of f by T is determined

by Equation 1.2. In contrast to the conventional fault coverage (Equation 1.1), i.e., the

percentage of faults detected by a test set in a representative circuit with fixed parameter

values, Equation 1.2 describes the percentage of the manufactured circuit instances with

distributed parameter values in which the test set detects a given fault.

CCcov(f, T) =

∫
p∈P

detCp(f, T)π(p)dp (1.2)

Moreover, according to the statistical fault modeling, the delay behavior of a circuit

element is given by a probability density function of delay sizes, denoted by ρ(s). Con-

sidering a continuous range of sizes S, the fault coverage of f with all possible delay

sizes can be statistically defined by integration of the circuit coverage over the delay size

s, as given in Equation 1.3.

FC(f, T) :=

∫
s∈S

CCcov(f, T)ρ(s)ds (1.3)

The statistical test flow must try to maximize the fault coverage and generate (com-

pact) test sets identifying the fault in as many circuit instances as possible. For this

purpose, statistical fault simulation is performed iteratively for each combination in the

parameter space. For the sake of simplicity, only the space for two parameters X and Y

is illustrated in Figure 1.2. The area marked by the shadow represents the parameter

combinations covered so far. The variation-unaware ATPG is invoked with fixed param-

eter values to cover a further parameter combination in the space. This flow is iterated

Chapter 1. Introduction 14

until an acceptable coverage of the complete range is achieved and can be followed by a

compaction of the obtained test set.

Using the finally obtained tests, which are of high quality and variation-aware, it is

possible to explore test strategies at system level, such as to separate circuit instances

into classes, or called “bins”, according to the frequency and voltage they can handle or

according to the robustness of a system. Nevertheless, such systematic approaches are

not focused by this thesis work. The test approaches at the gate level including ATPG

for small delay defects and variation-aware fault simulation are more interested, which

also motivate this thesis work.

1.2.3 SDD Tesing and KLPG Algorithm

The scaled technology tends to bring an increasing number of small delays defects,

which puts more importance on SDD testing. An SDD is only tolerable if all functional

paths (those paths could be exercised by normal circuit operations) that go through

the defect site excite a delayed transition (slow-to-rise or slow-to-fall) at the site, and

finish propagating within the clock period. Obviously, under assumption of static timing

assignment, generating tests for the longest path through the target defect will allow

detection of the defect with the minimum possible size; no other paths through the

defect site need to be considered.

However, depending on the accuracy of the timing analysis, and mostly due to the

impact of process variations, the selected path may not be the longest indeed. An

alternative approach is to test all functional paths through the defect site, which is

however impractical for large circuits when all possible delay defects are targeted. It

has been observed that the contribution of within-die random variations not spatially

correlated is increasing with continued process scaling [13], which implies that delay

defects caused by random variations can appear anywhere in a circuit. However, even

a circuit of a reasonable size can contain billions of paths [16]. It is not possible to test

and simulate all of them due to the time and cost constraints. As a compromise, test for

a number of longest paths that go through the SDD is of interest. Similar to the idea

of “n-detection”, using tests generated for multiple longest paths raises the probability

of detection.

Chapter 1. Introduction 15

Though it is easy to find the structurally longest paths by graph-traversal algorithms,

many found paths are unsensitizable (or called false paths), i.e., no tests can be found to

propagate desired transitions along these paths, and hence useless in practical applica-

tions. An efficient algorithm that identifies the longest sensitizable paths, which implies

test generation for these paths (modeled as PDFs), is therefor required to tackle this

problem. The test generation for PDF is very challenging because a large number of

logic interdependency constrains have to be satisfied for the path sensitization. Such an

algorithm that aims at identification of K (multiple) longest sensitizable paths through

a given defect site, is called KLPG algorithm.

ATPG algorithms can be applied to verify the path sensitization by means of generating

tests for the path modeled as PDF; the false path is identified if no tests can be found.

Using traditional ATPG algorithms, tests are searched by means of assignments and

justifications of signal values during the propagation of fault effect (D-Algorithm [39]);

an implicit enumeration approach using path propagation constrains to limit the search

space and backtrace (PODEM algorithm [40]); or approaches that improve the efficiency

of the search by reducing the number of backtraces [41, 42]. Moreover, it has recently

been shown that for several classes of faults a SAT-based ATPG [43–45], by which

an ATPG problem is reduced to a Boolean Satisfiability Problem (SAT) instance and

solved using a SAT solver [46], outperforms the structural approaches. Especially for

the fault classes that could contain a large part of redundant faults (faults that are not

testable), SAT-based ATPG is very efficient in contrast to the structural approach. The

redundant faults can be quickly identified by SAT-based ATPG that takes techniques to

prove the unsatisfiability of the Boolean formula. The performance of SAT-based ATPG

can be significantly improved by utilizing learning strategies [47]. It is also possible to

support non-standard fault models by a SAT-based ATPG tool, e. g., TIGUAN [44],

by which tests are generated for conditional multiple stuck-at fault model that can be

converted from non-standard faults. In [45], a SAT-based framework is proposed that

can be integrated into the KLPG application by mapping the path search problem to

SAT problem while the timing information is encoded directly into the SAT formula.

As gate delays are encoded as integer numbers by the application, rounding errors of

real-valued delays are inevitable; rounding strategies have to be applied to mitigate the

error.

Chapter 1. Introduction 16

The conventional approach of KLPG [38] is to explore the structural search space con-

taining sub-paths. As long as a sub-path is proved to be a false path, the sub-space

containing all extensions of this sub-path is trimmed off immediately. Sub-paths in the

search space are sorted by their largest possible length of a complete extension. Thus,

the sub-path that can be potentially extended to the longest path will be tried first. The

sensitizability of each extension from a sub-path to the next gate is verified. As long

as the extension is proved to be incapable of propagating the desired transition without

causing any conflict, the extended sub-path is eliminated from the search space; as a

result all possible extensions from this path will not be considered. The next sub-path

in order is taken into account. The verification can apply specific techniques that may

efficiently identify the potential false paths but not all of these. To ultimately verify

the sensitization of a completely extended path, ATPG algorithms can be used to gen-

erate tests that sensitize the path. A problem with the structural approach is that

the number of sub-paths in the searching space can increase exponentially during the

searching process. A size limitation has to be imposed to the searching space to ensure

the efficiency of the application for testing large circuits. The arbitrary size can have

an impact on the optimality of the solution since overflows beyond the limited space,

among which the optimal solution can exist, are out of consideration. In presence of

process variations, the possible sub-optimal solution of KLPG can cause a worse rate of

defect escape. In this thesis work, an algorithm called Opt-KLPG is proposed. It aims

at investigating the impact of the size of the search space on the optimality of the KLPG

solutions. Moreover, it provides an iterative procedure that ensures all sub-paths will be

considered and thus an optimal solution is guaranteed. Chapter 2 details the algorithm

and presents experimental results for academic/industrial circuits.

1.2.4 Variation-aware Fault Simulation

Depending on the complexity of ATPG, the effectiveness of generated tests could be

limited in terms of the ability of detecting target faults and the test application time

proportional to the number of applied tests. High-quality and possibly compact test

sets are preferred to minimize the cost of applying tests, which can be translated into

the timing and memory requirements of test equipment, and to avoid the cost due to

delivering defective or unreliable devices escaped from the tests. To obtain high-quality

tests, fault simulation [2, p. 75] is required to efficiently evaluate the tests and report

Chapter 1. Introduction 17

the fault coverage, based on which the tests could be chosen. Moreover, test sets can be

compacted without sacrificing the fault coverage before applied to actual devices.

Fault simulation commonly consists of two logic simulation runs that evaluate the logic

functions of gates in their structural order, in the fault-free circuit and in the same

circuit with the injected fault (by simulating the fault effect). The detection of the

fault is determined if the difference in at least one output of both simulation runs is

observed. In context of delay testing under process variations, the fault simulation

needs to estimate the timing behavior of circuit elements affected by process variations

with both static and dynamic sources (variations in physical parameters during the

manufacturing and in electrical parameters during the operation). Dynamic variations

depending on the applied tests, such as the fluctuations in supply voltage, could have

a large impact on the gate delays. To accurately simulate these effects, the simulation

should incorporate important sources of variations and estimate their impact on circuit

timing based on a relatively accurate electrical model.

As technology scales into the VDSM regime, power supply noise, which explicitly refers

to noise appearing on the supply and ground nets of the chip and in turn affecting the

voltage supplied to gates, has become one of the major variation sources [48–50]. With

the continuously scaled sizes of transistors, more transistors are allowed to be packed

into an area while the improved transistor performance has resulted in a large increase

in frequency. As a result, the increased density of switching devices and frequency can

lead to the power density problem [51]. That is, the amount of current to be delivered

increases significantly with a simultaneous reduction in power supply voltages, which

could be localized according to instantaneous switching of gates, and results in excessive

gate delays.

These voltage fluctuations on the power and ground distribution networks, referred by

power supply noise, originate from the currents flowing through the parasitic elements of

both the on-chip and package supply networks. The power supply noise can be further

divided into two groups depending on whether they are caused by the rate of change of

the instantaneous currents flowing through parasitic inductive elements of the network

(L.di/dt) or by the instantaneous currents flowing through the resistive elements of the

network (IR) [52–54]. This thesis work focuses on the IR drop, which is the mainly

Chapter 1. Introduction 18

produced noise on the on-chip Power Distribution Network (PDN) since it is predomi-

nantly resistive [55]. Targeting on an accurate yet efficient circuit simulation under the

impact of the IR drop effect, an electrical model that estimates the gate delay depend-

ing on important electrical parameters has to be established. Moreover, a timing-aware

event-driven logic simulation is proposed, which benefits from the time complexity of

the simulation algorithm while keeping the accuracy by employing the electrical model.

This application can be used to estimate IR drop effect given the electrical models, and

further adapted to electrical models that incorporate more electrical parameters to raise

the accuracy. By injecting faults, it is also possible to perform variation-aware fault

simulations, explicitly considering the impact of IR drop. The developed simulator has

been applied to large circuits (up to more that 70K gates) with reasonable performance.

Chapter 3 introduces the electrical model and details the simulation algorithm as well

as the experimental results.

Chapter 2

KLPG: K Longtest Path

Generation

2.1 Motivation

Small manufacturing defects increasingly affect the timing behavior of the circuit as

technology scales and in turn degrade the circuit performance by inducing extra delays

[17]. PDF [2, 17] is a conventional fault model that can be used to test such manufac-

turing defects. The circuit is considered faulty by testing a PDF if the propagation of an

input transition through the target path exceeds the maximum allowed timing period,

which usually refers to the clock cycle. In context of SDD testing, any path through the

defect site can be modeled as a PDF. A two-pattern test applied in two consecutive time

frames for the PDF launches an input transition and propagates the transition along

the path. The delay assignment, which refers to the assignment of a delay (a number

or a range) to each connection and transition (rising or falling) [2], is often required to

estimate the circuit timing. The total cumulated delay along the path can be compared

to the specification time, at which the output will be observed and should stabilize at its

correct value in the fault-free case, to determine if the circuit behaves faulty in presence

of the target fault. If such a test exists, the path is said to be sensitizable, and sensitized

by the test, otherwise the path is called a false path.

The main problem with the PDF model is the large amount of the paths in a real circuit;

the exhaustive testing that tries to cover all paths is very expensive and almost infeasible

19

Chapter 2. KLPG: K Longest Path Generation 20

for many circuits. Instead, most approaches try to find the test that sensitizes a given

path, and verify if any faulty behavior presents itself under this test for all possible

delay sizes caused by manufacturing defects. The quality of the test can be evaluated by

how close the minimum actually detected delay fault sizes are to the minimum possible

detectable fault sizes [56]. Obviously, for tests sensitizing shorter paths, more delay

sizes might not be detected since it takes less propagation time through these paths

than longer ones. For instance, Figure 2.1 presents a circuit containing gates with

different delays according to a delay assignment. Commonly the gate delay is given by

a set of pin-to-pin (from an input to the output) propagation times depending on the

input transition. In this example, all pin-to-pin delays for the same gate are assumed

to be identical. The inverter G0 has the delay 2, the AND gate G1 and the NAND gate

G2 have the delay 3 while the NAND gate Gf where the defect lies has a larger delay

4. Assuming that the clock period is 8, the delay fault can only be detected by a test

sensitizing the longest path c→ c′ → e→ f since the propagation time cumulated along

the path is 9, which exceeds the clock period. For tests sensitizing other paths, only

delay sizes larger than 4 can be detected.

3

4

2

a

b

c

d

e

f

3

c'

Gf

G0

G1

G2

Figure 2.1: An example of the longest path

Thus, tests that sensitize the longest path are commonly preferred by small delay test-

ing to achieve better fault coverages. Furthermore, instead of the global longest path,

sensitization of the longest path through a given defect site is required by testing local

defects, such as resistive opens or shorts.

Under process variations, different instances of a circuit design can exhibit various tim-

ing behaviors. Thus, the longest paths selected based on the nominal delay assignment,

which can be obtained by timing analysis for the circuit design, might not be the actual

longest path. Multiple longest paths through the fault site need to be identified and

sensitized to raise the probability of detection. For this purpose, the KLPG algorithm is

Chapter 2. KLPG: K Longest Path Generation 21

proposed [38] that targets on searching K longest sensitized paths through each possible

fault sites efficiently. The approach employs graph traversal search algorithm and a

data structure called path store to store all sub-paths to be considered during the search

process. Under the consideration of efficiency, an arbitrary size is exposed on the path

store to limit the searching space that could be extraordinarily large in practice. The ap-

proach also applies a number of speed-up techniques that help to identify false sub-paths

in advance and remove them from the path store immediately. Overflows from the path

store will be discarded without consideration, which may lead to a sub-optimal solution

with shorter or less paths found instead. To investigate the impact of the store size on

the solution optimality, this thesis work proposes a new algorithm called Opt-KLPG

that guarantees the optimality of the KLPG solution.

The remainder of the chapter is organized as follows: Section 2.2 gives preliminary

knowledge related to the algorithm; the KLPG flow proposed by Walker et al. [38] is

introduced in Section 2.3 briefly; Section 2.4 details the Opt-KLPG Algorithm [57];

Section 2.5 presents the application of Opt-KLPG in a statistical delay testing flow

under process variations and Section 2.6 reports the experimental results.

2.2 Preliminaries

2.2.1 Classification of Path Delay Faults

A PDF can be classified according to its testability under various conditions. One of

the most popular classifications of PDF is Cheng’s classification [2], given as follows:

robustly testable, non-robustly testable, functionally sensitizable and functionally re-

dundant PDFs. Figure 2.2 presents the relation between classified PDF sets. Subset

relations can be observed that the functional sensitizable set contains the non-robustly

testable set, which further contains the robustly testable set.

Every superset of PDF has a looser test condition—the condition required by a test to

detect the PDF—than its subset. The following definitions are used to describe the test

condition. A path in a circuit is a sequence of signals denoted by s0s1 . . . sn, where s0 is

a primary input, s1 . . . sn−1 are gate outputs and sn is a primary output. An on-input

is a connection between two gates along the path. An off-path input (or a side-input) is

Chapter 2. KLPG: K Longest Path Generation 22

robustly testable

non-robustly testable

functionally sensitizable

functionally redudant

Figure 2.2: Testability classification of PDFs [2]

any input of a gate on the path other than its on-input. The test for a PDF consists of

two patterns (P1, P2) applied to the circuit consecutively.

A PDF is functionally sensitizable if there exists an input vector P2 such that all

the side-inputs settle to non-controlling values1 on P2 when the on-inputs have the

non-controlling values. Otherwise, it is called functionally unsensitizable. A PDF is

functionally redundant if the corresponding path is a false path—the path cannot be

sensitized by any test—under all delay assignments. A functional unsensitizable path is

also functionally redundant. However, this is a sufficient condition but not a necessary

one. The reason is that functional sensitization is only defined with respect to the sec-

ond pattern P2 while the test for a PDF requires two patterns; even if P2 satisfying the

functional sensitizable condition can be found, it does not mean the initialization vector

P1 can always be found such that the two-pattern test sensitizes the path.

A PDF is non-robustly testable if and only if there exists a two-pattern test (P1, P2)

satisfying the following conditions:

• it launches the desired logic transition at the primary input of the target path;

• all side-inputs of the path settle to non-controlling values under P2.

A PDF is robustly testable if and only if there exists a two-pattern test (P1, P2) that sat-

isfies the condition for the non-robust test, and, whenever the transition at an on-input

is from the non-controlling value to the controlling value, a steady non-controlling value

1An input of a gate is said to have a controlling value if it uniquely determines the gate output
independent of other gate inputs. Otherwise, the value is said to be non-controlling.

Chapter 2. KLPG: K Longest Path Generation 23

is required at every side-input of the same gate. A robust test can detect the target PDF

independent of the delays in the rest of the circuits, i.e., it guarantees the detection of

the target fault in presence of other PDFs, whereas the detection is not guaranteed by

a non-robust test in the same circumstance. The reason is that a non-robust test allows

the output to change before the on-path transition is propagated, which can invalidate

the test result. An example of such an invalidation is presented in Figure 2.3.

b

c

d

e

fG3

G2

G1

G0
a

S1

ts

0

1
a

0

1
c

0

1
d

0

1
e

0

1
f

Timet0 ts

Figure 2.3: An example of the invalidation by a non-robust test

A two-pattern test {(0, 1), (1, 1)} is applied to the circuit in the left under a given delay

assignment. The path corresponding to the target PDF a ↑ c ↓ d ↑ f ↓ (↑ and ↓ denote

the rising and falling transitions, respectively) is marked with bold lines. Signals in the

circuit are initialized by the first vector (0, 1), and stabilize before the time point t0. The

signal transitions after t0 are represented in the timing diagram right. After applying

the second vector (1, 1), a rising transition is launched on the primary input a while b

remains a static value of 1, denoted by S1. The output of G0 c falls from 1 to 0 after

the gate delay of G0. A glitch 1→ 0→ 1 at the output of G1 d is caused by the input

transitions at a and c with different arrival times. Assuming that the rising transition

at the output of G2 e is earlier than the first transition of d under the given gate delays,

consequently the output f has a switching value of 1 → 0 → 1 → 0. If the observation

point is ts, the target PDF will not be detected by the test since the correct value 0

is observed at the output. The test is invalidated though the PDF is present, i.e., the

transition propagated along the corresponding path is delayed (the 1 → 0 transition

after ts at f). For the same circuit, an example of the robust test for PDF a ↑ d ↓ f ↑

is {(0, 0), (1, 0)}. It satisfies the non-robust condition, and the additional condition for

Chapter 2. KLPG: K Longest Path Generation 24

the robust test in that the side-input e steadily remains 1 when the on-input d switches

from the non-controlling value 1 to the controlling value 0.

2.2.2 SAT-solver and SAT-based ATPG

SAT is the problem of determining whether there exists an interpretation that satisfies a

given Boolean formula. In other words, the problem is defined by whether every variable

in the given Boolean formula can be assigned with a logic value TRUE or FALSE so

that the formula evaluates to TRUE. If such variable assignments exist, the formula is

called satisfiable, otherwise the formula is unsatisfiable.

Solvers for SAT are powerful formal proof engines that determine an assignment to

variables of a Boolean function Φ : {0, 1}n → {0, 1} such that Φ evaluates to 1 or prove

that no such assignment exists [58]. As given by the function notation, the n variables of

the function are assigned with either 1 or 0, which corresponds to the logic value TRUE

or FALSE; the function evaluates to 1 or 0 indicating that the formula is satisfied by the

assignment or not. The function is given in Conjunctive Normal Form (CNF), which

is a conjunction of clauses; a clause is a disjunction of literals and a literal is a Boolean

variable in its positive form (x) or negative form (x). SAT and extensions thereof are

well investigated problems, for which efficient solving algorithms have been proposed in

the past (e. g., [59–61]).

ATPG is a technology used to find a sequence of tests that can be applied to a digital

circuit to distinguish between correct and faulty circuit behaviors caused by defects. A

SAT-based ATPG requires a transformation of the problem description into a Boolean

formula in CNF as defined above. Each signal in the circuit can be assigned with a

Boolean variable representing its logic value 0 or 1. The functionality of each gate can

be transformed into a set of clauses using Boolean variables to represent its inputs and

output. Using truth tables or algebraic conversion a CNF can be easily derived for each

gate type. Then the complete circuit is represented by a conjunction of all CNFs derived

for gates, which is a CNF itself. Given a fault to be tested, additional constrains for

fault excitation and propagation of the faulty behavior to some observation point can be

formulated and given as a CNF. The conjunction of the CNF for the circuit and the CNF

for the fault construct the SAT instance to be satisfied or proved to be not satisfiable by

a SAT-solver. Each assignment of variables in the SAT instance corresponds to a test

Chapter 2. KLPG: K Longest Path Generation 25

for the given fault that excites the fault and propagates the fault effect for observation.

If the SAT-solver proves that no such assignments exist, the fault is not testable.

The algorithm Opt-KLPG applies the SAT-based ATPG tool TIGUAN from the Uni-

versity of Freiburg [44] to verify the sensitizability of the found longest paths. The tool

is originally designed for detection of conditional multiple stuck-at (CMS@) faults in

multiple time frames. A CMS@ fault consists of a list of arbitrary assignments of logic

values in a two consecutive time frames and a list of stuck-at faults, denoted as follows:

• a list of s@0 ← v or s@1 ← v where 0 or 1 behind @ denotes the first or second

time frame, respectively; v denotes the logic value assigned to signal s in the

corresponding time frame, and

• a list of stuck-at 0 or stuck-at 1 faults.

The algorithm that constructs the CMS@ fault for a path will be given in 2.4.4.2. If a test

for the constructed fault can be found by TIGUAN, the corresponding path is proved

to be testable, otherwise it is a false path and will be excluded from the solution—the

K longest sensitizable paths.

2.3 Walker’s KLPG Algorithm

The KLPG algorithm proposed in [38] is to find K longest sensitizable path through a

target gate Gf . The delay assignment is given in advance for every gate in terms of a

set of propagation time of the rising or falling input transition from each input to the

output. The minimum-maximum delay from each gate to a primary output without

considering logical constrains, which is called min-max PERT delay, is computed as

well. Gates that are neither in input-cone nor in output-cone of Gf are first identified.

(The input- and output-cones of a gate refer to the circuit blocks driving and driven by

the gate, respectively.) They are not considered by computation of PERT delays since

these gates can never be added to a path through Gf . The computation is performed

iteratively in the reversed order of gate level. Obviously the PERT delay is zero for

primary outputs. For signals driving gates, the PERT delay is given by the sum of gate

delay and the PERT delay from the gate output. For signals driving a fan-out, PERT

Chapter 2. KLPG: K Longest Path Generation 26

delays for branches are computed at first, the minimum and maximum among them

correspond to the max and min PERT delays of the stem, respectively; the associated

branches are noted as well.

A data structure called path store is used to store sub-paths considered at the same

time. It is initialized by sub-paths, each corresponds to a rising or falling primary input

in input-cone of Gf . Assuming that input-cone of Gf contains n primary inputs, 2× n

sub-paths are inserted into the path store. It is sorted by the max esperance of the

sub-paths. The max (min) esperance of a sub-path is the sum of the path length and

the max (min) PERT-delay of its last node. In other words, it corresponds to the upper

(lower) bound of the path delay when it grows to a complete sensitizable path. These

two bounds can be used by false path elimination techniques to speed up the searching.

During the search process, the sub-path with the largest max esperance is considered

first since it will potentially grow to a complete path with the maximum delay. The

sub-path will be extended to the next gate associated with the max PERT delay from

its last node. If the sub-path before extension drives a fan-out, a copy of it is inserted into

the path store. The min and max esperances for the copy is newly calculated without

consideration of the branch already extended; the path store is sorted again. After each

extension, constrains to propagate transitions through the added gate are applied. All

side-inputs must settle to non-controlling values or remain non-controlling depending on

certain sensitization condition required for the test. Direct implication is an operation

that imply inputs or output values of a gate from known inputs or output of the same

gate. It is used to propagate the constrains throughout the circuit. If any conflict is

caused after the operation, the sub-path is dropped immediately and a new iteration

starts by considering the next sub-path with the maximum esperance, otherwise the

currently considered sub-path will be extended further. Since min esperance is only

used by some other false path elimination techniques that will not be introduced in

detail, in the remaining text of this thesis, max esperance is shortened to esperance

for the simplicity of reading. Note that direct implication and false path elimination

techniques may not exclude all sub-paths that are not testable. After a sub-path is

extended completely, a justification process (a justification algorithm based on the FAN

[41] style decision tree) is performed to get the test pattern and finally decide if the

path is sensitizable. The search process terminates when K longest sensitizable paths

are found or all paths in the path store are considered.

Chapter 2. KLPG: K Longest Path Generation 27

2.4 Opt-KLPG: K Longest Path Generation for Optimal

Solutions Under Memory Constraints

Modern nanoscale circuits may contain tens of thousands or even millions of gates.

As given in Section 2.3, if a sub-path drives a fan-out and is extended to one of its

branches, a copy of the sub-path with updated esperance is inserted into the path store.

Consequently, the search space for paths can grow exponentially during the KLPG flow

in worst case. It might cost immense memory for saving the paths, and take a long

time to find the longest sensitizable ones. Due to the memory and time constrains, the

path store used by the KLPG algorithm is bounded in size. Sub-paths with the smallest

esperance are removed from the search space immediately if the number of paths in

the path store exceeds the size. In case that some of the K longest sensitizable paths

are extensions of the removed sub-paths, they are missed by KLPG and a sub-optimal

solution will be found instead.

In this section a new algorithm called Opt-KLPG aiming at the optimality of KLPG

solution is proposed. The overflows from the path store, which are not investigated

by KLPG, are stored in a buffer. The flow calls KLPG iteratively as long as there

exist overflows. In each iteration the path store is emptied and filled with overflows.

No solutions that belong to the K longest sensitizable paths will be possibly missed

since all sub-paths are investigated by the flow. In contrast to the path store, the

size of the buffer is not limited. In extreme cases that each extension of a sub-path

in the path store results in an overflow, the number of overflows grows linearly in the

number of paths in the path store during the current iteration. Furthermore, in case

that a solution consisting of K longest sensitizable paths is already found by the current

call of KLPG, sub-paths in the buffer that are not potentially better than the existing

one can be dropped instantly. Therefore, an unlimited size of the buffer is acceptable.

Experimental result shows that an extraordinary large buffer is not required for even a

very small path store and large circuits.

The remainder of this section is organized as follows: an overview of the Opt-KLPG

algorithm is given in 2.4.1; 2.4.2 presents the method of esperance computation; the

KLPG module applied by the Opt-KLPG flow is detailed in 2.4.3; finally, 2.4.4 introduces

the techniques used for the sensitization check.

Chapter 2. KLPG: K Longest Path Generation 28

2.4.1 Algorithm Overview

As illustrated in Figure 2.4, the algorithm consists of three functional modules: the Init,

Overflow and KLPG modules.

KLPG
Module

Preproceesing

END
Are there

overflow paths?

Y

N

Initialize path store;
Sort paths;

Path store
is empty.

Insert overflows into path store;
Sort path store;

K longest sensitizable
paths found?

Drop overflows with experance
less than the minimum length

of found paths.

N

Y

Init
Module

Overflow
Module

START

Figure 2.4: Opt-KLPG overview

The algorithm starts by running the Init module. In preprocessing first a user-defined

size is assigned to the path store. The topological information of the circuit including

delays for each gate instance is collected. Pin-to-pin delays, i.e., delays from an input pin

to the output pin, are given for both rising and falling input transitions. For a given fault,

which corresponds to a possible defect site, the PERT delays are computed for signals in

input- and output-cones of the fault. A detailed introduction of the computation is given

in Section 2.4.2. After that the path store is initialized by sub-paths containing solely

primary inputs in input-cone of the target fault. Note that each sub-path is considered

twice for both rising and falling transition launched on the primary input due to possible

different timing behaviors. That means, for n primary inputs in the input-cone of the

fault, 2 × n sub-paths are inserted into the path store. The paths in path store are

Chapter 2. KLPG: K Longest Path Generation 29

sorted in descending order of the path esperance. Figure 2.5 shows an example of the

initialization of the path store. The input-cone of a possible defect site Gf is marked in

bold lines. In the case shown in Figure 2.5a, the path store is initialized by sub-paths

a ↑ →, a ↓ → , b ↑ → , b ↓ → , c ↑ → and c ↓ → , where ↑ and ↓ denote the rising and

falling transitions launched at signal lines. In the case shown in Figure 2.5b, the gate

driving e is the target fault. Then only sub-paths b ↑ → , b ↓ → , c ↑ → and c ↓ →

need to be investigated and thus inserted into the path store; a sub-path from a is not

considered since no extension from it to Gf is possible.

a

b

c

d

e

f

c'

Gf

(a) Case 1

a

b

c

d

e

f

c' Gf

(b) Case 2

Figure 2.5: Path store initialization

After the initialization of the path store, KLPG module is called for the first iteration.

Unlike Walker’s algorithm, in which overflows from the path store are dropped instantly,

the module stores the overflows in buffer for the next iteration. Section 2.4.3 details the

implementation of the module. The first iteration of KLPG ends if the path store be-

comes empty, which means that sub-paths in the path store have been either considered

for extension or dropped without consideration if their esperances are less than the min-

imum length of the currently found solution. The later case is under the assumption

that K longest sensitizable paths, which may not construct the final optimal solution,

are already found during the iteration. Due to the fact that the esperance of a sub-path

corresponds to the upper bound of its possible length after a complete extension, these

sub-paths dropped in the latter case will not affect the optimality of the final solution.

Overflows are dealt with by the Overflow module when the path store becomes empty.

For the same reason given above, overflows with esperances less than the minimum

length of an existing solution are dropped without consideration. The path store is

filled with the rest overflows and sorted by their esperances in descending order. A new

iteration of KLPG begins after that. During the iteration the solution will be updated

if any longer sensitizable paths are found. New overflows are inserted into the buffer

when the path store becomes full again. The Overflow module calls KLPG iteratively

Chapter 2. KLPG: K Longest Path Generation 30

as long as there exist overflows. Finally it gives an optimal solution if it exists, i.e. the

K longest sensitizable paths indeed.

2.4.2 Esperance Computation

Like in Walker’s flow [38], the term “esperance” is used to describe the maximum possible

length of a sub-path after its full growth. As the max PERT delay of a signal indicates

the maximum possible length of an extension from the signal, the esperance of a sub-path

can be given by the sum of the path length and the max PERT delay from the last node

on the path. For the simplicity of reading, the max PERT delay is shortened as PERT

delay in the remaining text of this thesis.

The PERT delay of a signal s depends on the launched transition on s, and is always

related to a successor, which is the next signal on the corresponding extension from s

(with the length of the PERT delay).

s0

s1

s2

s3

s4

(2,2)

(1,1)

(2,2)

(2,2)

(a) Case 1

s0

s1

s2

s3

s4

(2,2)

(1,2)

(1,2)

(2,2)

(b) Case 2

Figure 2.6: PERT delays under different delay assignments

Figure 2.6 presents an example of computing PERT delays under two delay assignments.

For each gate the propagation delays from an input to the gate output for both rising

and falling transitions are given in the form of (d1, d2). In Figure 2.6a, d1 and d2 for

all gates are assumed to be same. Thus PERT delay of s0 is computed regardless of

the launched transitions. Possible extensions from s0 to primary outputs s3 and s4 are

s0 → s1 → s3 and s0 → s2 → s4 that have the lengths of 4 and 3, respectively. The

PERT delay of s0 corresponds to the length of the longest extension 4, associated with

the PERT successor s1. In Figure 2.6b different gate delays are assigned for rising and

falling input transitions. Depending on the transition launched on s0, the PERT delay

of s0 could be different for both rising and falling transitions. For a rising transition

launched on s0, the length of s0 ↑ → s1 ↓ → s3 ↑ is given by adding up the gate delay of

the first inverter on the extension when s0 rises and the gate delay of the second inverter

Chapter 2. KLPG: K Longest Path Generation 31

when s1 falls, which results in 4. Analogously the length of s0 ↑ → s2 ↓ → s4 ↑ is given

by 3. Thus the PERT delay of s0 for a rising transition is 4 with the successor s1. For

a falling transition on s0, the lengths of s0 ↓ → s1 ↑ → s3 ↓ and s0 ↓ → s2 ↑ → s4 ↓ are

3 and 4, respectively; the corresponding PERT delay is 4 with the successor s2.

During preprocessing the PERT delays are computed iteratively for signals in input- and

output-cones of the target defect site in reverse topological order, which means, primary

outputs in the output-cone are first considered. Obviously no extension is possible from

a primary output, thus a zero PERT delay and a null object for the successor are given

for every primary output (in the output-cone). For a signal driving downstream gates,

assuming that PERT delays for all downstream gates are computed in advance, then the

PERT delay of the signal corresponds to the largest sum of the delay of a downstream

gate and the PERT delay from the same gate; the gate output is referred to as the PERT

successor. A simple example is presented in Figure 2.7. Assuming that no difference of

gate delays is given for rising and falling input transitions, signal s0 drives two gates G1

and G2 with gate delays 2 and 3, respectively. Outputs of G1 and G2 are not primary

outputs and have PERT delays 5 and 3, respectively. Adding up the PERT delay from

the output of G1 and its gate delay gives 7 while adding up the PERT delay from the

output of G2 and its gate delay gives 6. The PERT delay of s0 corresponds to the larger

sum 7 and the successor is s1.

s0

G1

G2

s1

s2

PERT delay = 5

PERT delay = 3

d=2

d=3

G0

Figure 2.7: Computation of PERT delays for a signal driving a fan-out

In the example above, the gate delays for rising and falling input transitions are assumed

to be same. In general gate delays could be different for the rising and falling input

transitions. Thus PERT delays need to be computed for both transition edges launched

on the same signal individually. For signals driving downstream gates, the inversion of

the downstream gate needs to be considered by selecting the corresponding PERT delay

from the downstream gate. The gate inversion is defined to 1 for gates whose output

Chapter 2. KLPG: K Longest Path Generation 32

is the inversion of the input when other inputs remain the non-controlling value, such

as gates INV, NAND and NOR. For other gates, the inversion is defined to 0. Next,

the algorithm that computers the PERT delay of the signal s with a rising or falling

transition will be given.

For the sake of simplicity, only the pseudo code that computers for s with a rising

transition is shown in Algorithm 1. The corresponding PERT delay and successor are

denoted by delays and successors, respectively. The initial value of delays is zero while

successors is assigned with a null object. If s is a primary output, these initial values

are returned, otherwise all downstream gates driven by s are considered iteratively. For

each downstream gate G with output s′, the gate delay of G for the rising driving input

s, denoted by d, is assumed to be known. Moreover, the PERT delay of s′ with a

falling or rising transition depending on whether the inversion of G is 1 is assumed to be

already computed. A variable tmp is used to save the PERT delay of s′ corresponding

to the gate inversion. If the sum of tmp and d is larger than the present delays, delays

is updated by the sum and successors newly refers to s′. Finally, delays settles to the

largest sum and successors corresponds to the related successor. The PERT delay of s

with a falling transition can be computed analogously.

Algorithm 1: Computation of the PERT delay of s with a rising transition

Input: signal s
Output: PERT delay of s with a rising transition
begin

delays = 0;
successors = null;
if s is a primary output then

return;

else
foreach gate G driven by s do

s′ ←− output signal of G;
d←− gate delay of G for the rising transition on s;
if inversion of G is 1 then

tmp←− PERT delay of s′ with a falling transition;

else
tmp←− PERT delay of s′ with a rising transition;

if tmp+ d > delays then
delays = tmp+ d;
successors = s′;

Chapter 2. KLPG: K Longest Path Generation 33

As given in Section 2.4.1, only the longest paths through the fault site, given by a gate

output or a primary input, are targeted by the algorithm. It is unnecessary to compute

PERT delays for signals outside the input- and output-cones of the fault site since they

cannot be on any target path. Moreover, they need not to be considered when computing

the PERT delays of signals driving them. For example, signal s is in the input-cone of

the fault site, and s drives the gate g, which is neither in the input-cone nor in the

output-cone. Then, by computation of the PERT delay of s, g should not be considered

as any extension from s to g will not pass the fault site and grow into the target path.

A modified version of Algorithm 1 is thus proposed that takes a list S as an extra input,

as shown in Algorithm 2. The list contains all signals whose PERT delays should not

be computed or considered by computation of the PERT delay of its upstream signal.

That means, if the target s is in the list, the initial value of the PERT delay is returned.

Otherwise, if the output of a downstream gate s′ is in S, the downstream gate is ignored

and the iteration continues for the next downstream gate.

In preprocessing of Opt-KLPG, signals are sorted in reverse topological order and their

PERT delays are computed in the sorted order by applying Algorithm 2 iteratively. The

iterative process starts for the primary outputs, which have the highest topological level

and are assigned with the initial value of PERT delay. For a signal driving downstream

gates, as the PERT delays for all downstream signals are computed beforehand during

the iterative process, its PERT delay will always be returned by Algorithm 2.

Figure 2.8 presents an example of the iterative process. The gate delays are given in the

form of (dr, df) where dr and df are delays for the rising and falling input transitions,

respectively. Without loss of generality of the algorithm, different inputs of a gate are

assumed to have the same delays. The signals are sorted by their topological level

decreasingly: inputs a, b, c of level 1, d of level 2, e and f of level 3 and output g of

level 4. The computation is performed for signals in queue: g, e, f, d, a, b and c. No

particular order is given for signals of the same level.

First the primary output g is considered, its PERT delay is zero and its PERT successor

refers to a null object by default. The next signal in queue is e. The PERT delay of e with

a rising or falling transition equals to the gate delay of Gf for the same input transition.

Signal g is the successor for both transitions. The same PERT delay and successor are

assigned to the next signal in queue f . Signal d drives a NAND gate whose inversion is

Chapter 2. KLPG: K Longest Path Generation 34

Algorithm 2: Computation of the PERT delay of s with a rising transition

Input: signal s, list S
Output: PERT delay of s with a rising transition
begin

delays = 0;
successors = null;
if s ∈ S then

return;

if s is a primary output then
return;

else
foreach gate G driven by s do

s′ ←− output signal of G;
d←− gate delay of G for a rising transition on s;
if s′ ∈ S then

continue;

if inversion of G is 1 then
tmp←− PERT delay of s′ with a falling transition;

else
tmp←− PERT delay of s′ with a rising transition;

if tmp+ d > delays then
delays = tmp+ d;
successors = s′;

a

b

c
d

e

f

Gf

(5,5)

(3,2)

(4,6)

(4,6)
G1

G2

level 4level 3level 1 level 2

g

G0

Figure 2.8: Iterative computation of PERT delays

1, then the PERT delay of d with a rising transition is the sum of the rising gate delay 4

and the PERT delay of f with a falling transition 6, which is 10. Analogously the PERT

delay for the falling transition of d is computed and given by 10. The PERT successor

for both transitions is f . Signal a drives an AND gate, then the PERT delay of a with

a rising transition is computed by adding up the delay of G1 for the rising input 5 and

Chapter 2. KLPG: K Longest Path Generation 35

the PERT delay of e with a rising transition 4, which gives 9; e is the PERT successor.

Analogously the PERT delay for the falling transition of a is computed and given by 11

with the successor e. The next signal in queue is b, which drives two downstream gates:

AND G1 and NAND G2. For the rising transition of b, adding up the gate delay of G1

5 and the PERT delay of e with a rising transition 4 gives 9 while adding up the gate

delay of G2 4 and the PERT delay of f with a falling transition 6 gives 10. The PERT

delay equals to the larger one, which is 10 associated with the successor f . Analogously

for the falling transition of b, the PERT delay is computed and given by 11 with the

successor e. The last signal in queue c drives an inverter G0 whose inversion is 1, thus

the PERT delay for the rising transition of c is computed by adding up the gate delay

for the rising input 3 and the PERT delay of d with a falling transition 10, which gives

13 and the corresponding successor d. Analogously 12 and d are given for the PERT

delay and successor of c with a falling transition.

2.4.3 KLPG Module

In this section, the KLPG module is introduced in detail. In Figure 2.9 the Init and

Overflow modules are illustrated as boxes with dashed lines while the KLPG module is

detailed by a flowchart that contains a sub-module dealing with new paths.

An iterative process is performed by the KLPG module as long as the path store is not

empty. In each iteration the sub-path with the largest esperance is selected from the

path store and considered first since it will potentially grow to the longest path. It is

extended to the gate associated with the PERT delay of the last signal on the path.

If the signal drives a fan-out, the New Path module is called to generate copy of the

path with updated esperance. After the extension of the currently considered sub-path,

direct implications are applied to check if any conflicts are caused by the extension.

If the sub-path passes the check and is not complete yet, it is further extended and

checked iteratively till it becomes complete. Anytime the check using direct implication

fails, i.e., a conflict is caused by the extension, the sub-path is identified to be false and

dropped instantly; the KLPG module starts a new iteration for the next sub-path with

the largest esperance.

Note that the sensitizability of the path is not guaranteed by successful extensions

checked only using direct implication. After the full growth of the currently considered

Chapter 2. KLPG: K Longest Path Generation 36

Path store
is empty?

Extend the path
with one more gate

Does the path
drive a fan-out?

Direct implication
 succeeds?

Drop the path

Is the path
complete?

Y

Y

Y

N

YN

N

N

Init
Module

Overflow
Module

Derive a fault from the path;
Run ATPG for the fault;

Test patterns
found?

Y

N

Consider the path with
the largest esperance

New Path
Module

Update Lmin;
Insert the path into the solution;

Drop paths in path store with
esperances less than Lmin;

KLPG
Module

STARTEND

Figure 2.9: KLPG module

sub-path, ATPG is run to find test patterns sensitizing the path and finally verify the

sensitizability. A SAT-based ATPG tool TIGUAN [44] is used for the test generation.

If ATPG fails, the considered path is dropped as it is not sensitizable, otherwise it is

marked as one of the K longest sensitizable paths. A variable Lmin is used to denote

the minimum path length in the existing solution. By default it is set to zero if not all

K longest sensitizable paths are found, otherwise the value is updated by the minimum

length of the K found paths. Whenever Lmin is updated, all sub-paths with esperances

less than Lmin are removed from the path store and dropped instantly.

Figure 2.10 presents the function implemented in the New Path submodule. After a

sub-path is extended to one of the branches in the fan-out, a copy of the original path

with updated esperance needs to be generated. The new path can be extended to any

other branches but the one already extended. That means, the PERT delay of the signal

at the stem of the fan-out is newly computed considering the possibility of extension to

branches that have not been tried yet. For the example shown in Figure 2.8, b drives a

fan-out. For a falling transition of b, the sub-path b ↓ → is extended to e, which is the

PERT successor of b. A copy of b ↓ → is generated and inserted into the path store. It

Chapter 2. KLPG: K Longest Path Generation 37

Generate a new path pnew

Is path store full?

Save pnew in
overflow buffer;

Sort paths;

Insert pnew

into path store;
Sort paths;

Y N

Is esperance of pnew

 less than Lmin?
Y N

Drop pnew

New Path
Module

Figure 2.10: New Path submodule

can be further extended to other branches of b except the one leading to e. The PERT

delay of b is updated by applying Algorithm 2. Since the extension to e exists already,

e is included in list S and thus ignored by the computation. The computation gives the

new PERT delay 10 and PERT successor f . Consequently, the esperance of the new

path is updated by adding up the path length and the new PERT delay of the stem.

If the esperance of the new path is less than Lmin, the minimum length of the existing

K-path solution, it can be dropped instantly. Otherwise, the new path is inserted into

the path store or the overflow buffer depending on whether the path store is full.

As given in Section 2.4.1, the conventional KLPG algorithm [38] can miss the optimal

solution due to the limited size of path store. To investigate the impact of store size

on the solution optimality, an application based on the conventional KLPG algorithm

was implemented and used in experiments. Since the purpose of the implementation

is not to achieve computation speed that exceeds existing KLPG algorithms, a few

false path elimination techniques applied by existing approaches were not integrated

into the implementation. As shown in the flowchart illustrated in in Figure 2.11, unlike

Opt-KLPG, the KLPG tool does not take the overflows into account; it terminates when

K longest sensitizable paths are found or all paths in the path store are investigated.

Actually, it constitutes the first iteration of Opt-KLPG.

Chapter 2. KLPG: K Longest Path Generation 38

K longest sensitizable
paths found or

path store is empty?

Extend the path with one more gate

Does the path
drive a fan-out?

Sensitization
check succeeds?

Drop the path

Is the path
complete?

Generate a new path pnew

Y

Y

Y

N

Y

N

Insert pnew into path store;
Sort paths;

N

N

Derive a fault from the path;
Run ATPG for the fault;

Test patterns
found?

YN

Consider the path with the largest esperance

Preproceesing

Initialize path store;
Sort paths;

START

END

Insert the path
into the solution

Figure 2.11: KLPG flowchart

2.4.4 Sensitization check

A path is said to be sensitizable if and only if there exist a two-pattern test that launches

an input transition and allows the propagation of the transition through the path to its

Chapter 2. KLPG: K Longest Path Generation 39

output. During the flow the considered sub-path is extended iteratively. The sensitiza-

tion of the path implies that each extension can propagate the transition of the on-input

to the output of the added gate. If this requirement cannot be satisfied, the sub-path

is false, which means that it can never grow to a sensitizable path, and thus can be

dropped instantly. Methods that identify a false sub-path can be performed after each

extension from the considered path. By eliminating these false sub-paths the search

space can be trimmed off dramatically since all possible extensions from these paths,

which are false either, are in turn not explored.

However, due to the complexity of sensitization check, it is not easy to implement meth-

ods that can guarantee the effectiveness and the efficiency at the same time. One variant

is to execute direct implications based on value assignments required by the sensitiza-

tion. If any conflict after the execution is observed, the considered sub-path is identified

to be false. Using this method most false paths can be identified efficiently, as reported

in [62]. But not all the false paths are guaranteed to be eliminated in this way, which

means that a sub-path can be false while no conflict is caused by the execution of direct

implications. Thus in the flow, ATPG is performed to finally verify the sensitization of

the completely extended paths. If no tests can be found that sensitize the considered

path, it is identified to be false and dropped by the flow. Both methods used for the sen-

sitization check, by executing direct implications and by performing ATPG, are detailed

in 2.4.4.1 and refssec:atpg, respectively.

2.4.4.1 Direct Implication

Direct implication is an operation that implies values at the inputs or outputs of a circuit

element directly from the values of other inputs and outputs. The operation proceeds

either forwardly in the fan-out of the element, or backwardly in its fan-in [2]. Values at

lines are implied based on the logic behavior of the circuit elements. Examples of forward

and backward direct implications for an AND gate are presented in Figure 2.12. To be

distinguished from the values already known, the implied values are boxed by lines. As

shown in Figure 2.12a, given a zero at one input and a don’t care value, denoted by X,

at the other input and the output (the figure above), a zero can be implied forwardly at

the output according to the logic behavior of the AND gate (the figure below). Figure

Chapter 2. KLPG: K Longest Path Generation 40

2.12b presents a backward direct implication. The assignment of 1 to the output implies

that both inputs of the AND must be 1.

0
X

0

X

0
X

(a) Forward direct implication

1
1

1

1
X

X

(b) Backward direct implication

Figure 2.12: Examples of direct implication

The sensitizability of an extension from a sub-path requires that the transition on the

path can be propagated through the extension. According to various sensitization crite-

ria, different conditions are given to meet the requirement. For example, non-controlling

values should be assigned to side-inputs of the extension by the second pattern in the

two-pattern test according to the non-robust criterion. New assignments can be further

derived from existing ones using direct implication. If any conflict is observed during the

process, i.e., two opposite values are assigned to the same signal, the extended sub-path

is false and can be dropped instantly since the conditions of propagation are violated.

Figure 2.13 presents an example of the sensitization check using direct implication. As-

sume that a falling transition, marked by a down arrow ↓, is imposed on primary input

a and is to be propagated through gate G1. According to non-robust sensitization crite-

rion, the side input of the added gate G1 b should settle to non-controlling value of AND,

which is 1. Since b drives an inverter G2, a zero is assigned to its output d (given in the

red box) by direct implication. No conflict is observed by now, the sub-path is further

extended to e, which requires the assignment of the non-controlling value of NAND 1 to

the side-input of G3 d. A conflict is observed: the new value of d differs from the one

assigned already. It indicates the failure of the sensitization check for the extension to

e; sub-path a ↓ → c ↓ → e ↑ → can be dropped instantly.

a

b

c

d

eG3

1

10

G1

G2

Figure 2.13: An example of sensitization check using direct implication

Chapter 2. KLPG: K Longest Path Generation 41

The method of executing direct implications for sensitization check is described in Al-

gorithm 3. Assuming the non-robust sensitization criterion, for the currently considered

sub-path, extension to one of its downstream gates requires that each side-input of the

gate, denoted by s, must settle to the non-controlling value vnew. In preprocessing,

all possible direct implication operations for each circuit element are saved in lookup

tables, as functions that imply input or output values from known value assignments

(using three-valued logic).

Algorithm 3: Sensitization check using direct implication CheckForAssignment

Input: signal s, logic value vnew
Output: TRUE or FALSE
begin

vold ←− the current value of s;
if vold 6= don’t care AND vold 6= vnew then

return FALSE;

if vold = vnew then
return TRUE;

Assign vnew to s;
if s is not the primary input then

Gup ←− upstream gate of s;
if DirectImplicationOnGate(Gup) == FALSE then

/* conflict */

return FALSE;

if s is not the primary output then
foreach downstream gate Gdown driven by s do

if DirectImplicationOnGate(Gdown) == FALSE then
/* conflict */

return FALSE;

return TRUE;

Algorithm 4: Perform direct implications on a gate DirectImplicationOnGate

Input: gate G
Output: TRUE or FALSE
begin

Imply values according to the implication function of G;
foreach signal s with the implied value v do

if CheckForAssignment(s, v) == FALSE then
/* conflict */

return FALSE;

return TRUE;

Chapter 2. KLPG: K Longest Path Generation 42

For each new value assignment s ← vnew, sensitization check using direct implication

will be executed recursively, by calling CheckForAssignment(s, vnew) (Algorithm 3).

First, the current value of s (don’t care by default if it is not assigned yet) is checked. If

it is already assigned, depending on whether it differs to vnew, the Boolean value FALSE

or TRUE will be returned. The former case indicates the failure of sensitization check

while the latter case implies that the same assignment has been checked using direct

implication before. Only for an unassigned s (with a don’t care value), it is assigned

with vnew. Then, for the upstream gate driving s (if s is not a primary input) and

every downstream gate of s (if s is not a primary output), DirectImplicationOnGate

(Algorithm 4) is called that performs the direct implication operation corresponding to

the predefined function, and CheckForAssignment(s′, v′) for any newly implied value

v′ on s′. By any conflicts, the recursive process is aborted and returns FALSE. In

that case, the considered path extension is identified to be not sensitizable; no further

checks are required for other side-inputs. In the other case that the recursive process

succeeds without conflicts and finally returns TRUE (when no more values can be di-

rectly implied), the side-input assignment is validated while other side-inputs need to

be checked using the same method. The sub-path is successfully extended only when all

assignments of side-inputs pass the sensitization check using direct implication; newly

assigned/implied values due to the extension are considered validated. Note that for the

new path copied from a sub-path driving a fan-out, all validated signal assignments for

the original sub-path should not be violated either during further extensions of the new

one.

2.4.4.2 ATPG using TIGUAN

Search for direct implications helps to identify most false paths in advance before they

are extended completely. However, it is possible that some false paths do not have any

conflicts after performing direct implications during the growth procedure. Figure 2.14

presents an example. The sensitization of the path marked with bold lines requires

logic 0, the non-controlling value of OR, on both side inputs, which are outputs of two

AND gates. Assuming that the algorithm does not know the inputs of either AND gate

are tied together, i.e., they should have the same value, no direct implications can be

performed since neither input must be 0 or 1. Indeed, the inputs of both AND gates

have to be 0 to get the logic 0 on their outputs. It causes the conflict since the inputs

Chapter 2. KLPG: K Longest Path Generation 43

of the two AND gates are connected by an inverter. The path is false but it cannot be

identified by the method using direct implication.

0

0

?

?

?

?

Figure 2.14: A false path that cannot be identified using direct implication

To eliminate all false paths and generate tests for sensitizable paths, the ATPG tool

TIGUAN [44] is used to sensitize the completely extended paths. CMS@ faults—the

dedicated fault model used by the tool—need to be derived for the considered paths, as

presented in Algorithm 5. The path P is given by a sorted list of signals s0, s1, . . . , sn,

each with the corresponding rising or falling transition. As defined in Section 2.2.2, the

CMS@ fault to be derived comprises a list of value assignments A, denoted by s@n← v

where n ∈ {0, 1}, and a list of stuck-at faults F . First, the launched input transition on

the path is translated into two corresponding assignments, which are inserted into A.

Then, depending on the sensitization criteria [2, p. 386], assignments of non-controlling

values on the side-inputs are inserted into A as well. In case of the non-robust criterion,

the assignment of non-controlling value to each side input in the second timing frame

is inserted into A. The stuck-at faults included by the CMS@ definition need not to be

specified, which leaves the list F empty.

Note that the CMS@ fault has a limitation that the value assignments in a time frame

corresponds to the finally stabilized value, which means glitches before stabilization or

a stable value (no glitches) can not be modeled by the fault. For that reason, the ATPG

does not target on robust tests since the robust criterion requires a stable non-controlling

value of side-inputs in both time frames whenever an on-input has the transition from

a non-controlling value to a controlling value.

An example of deriving a CMS@ fault from a PDF is given in Figure 2.15. The target

path c ↑ → d ↓ → f ↑ → g ↓ is illustrated by bold lines. The up arrow ↑ and down

arrow ↓ denote the rising and falling transitions on the lines, respectively. According to

non-robust test criterion, a two-pattern test (P1, P2) sensitizing the target path launches

the desired logic transition at the input of the path, and all side-inputs on the path settle

Chapter 2. KLPG: K Longest Path Generation 44

Algorithm 5: Derivation of the CMS@ fault according to non-robust sensitization cri-
terion
Input: Path P : s0, s1, . . . , sn with corresponding transitions
Output: CMS@: list A and list F
begin

if s0 has a rising transition then
Insert s0@0← 0 and s0@1← 1 into A;

else
/* s0 has a falling transition */

Insert s0@0← 1 and s0@1← 0 into A;

foreach signal s on P do
Gate G←− the gate driven by s;
v ←− non-controlling value of G;
foreach input i of G do

if i 6= s then
/* i is a side-input */

Insert i@1← v into A;

to their non-controlling values under P2. The conditions can be interpreted by a list

of assignments of logic values defined in a CMS@. Launching the rising transition on

primary input c is interpreted by two assignments c@0← 0 and c@1← 1, which indicate

that c is assigned with logic 0 and logic 1 in the first and second time frames when P1

and P2 are applied, respectively. Requirements of non-controlling values settled on side

inputs in the second time frame are interpreted by assignments b@1← 1 and e@1← 1,

which indicate that the side inputs b and e settle to the non-controlling value of G2

and Gf in the second time frame, respectively. A CMS@ fault is constructed by these

assignments, and used to generate the two-pattern test by the ATPG tool.

a

b

c
d

f

Gf

G1

G2G0

e

g

Figure 2.15: An example of CMS@ derivation

Chapter 2. KLPG: K Longest Path Generation 45

2.5 Application of Opt-KLPG by Variation-aware Fault

Grading

The work described in this section [63] is a collaboration work with the partner from Uni-

versities of Freiburg and Stuttgart within the project RealTest [64]2. The contribution

of this thesis work in the collaboration work is to provide test patterns for testing cir-

cuit instances affected by variations using Opt-KLPG. In the remainder of this section,

2.5.1 presents the problem modeling for testing delay faults under process variations and

2.5.2 introduces briefly the variation-aware fault-grading procedure that generates tests

maximizing the modeled fault coverage

2.5.1 Modeling for Variation-aware Delay Testing

As introduced in 1.2.1, a statistical test flow targeting variation-aware tests combines the

ATPG for fixed process parameter values with the statistical fault simulation. In the con-

text of delay testing, the relevance of parameter variations lies in their effect on the delays

of individual circuit elements, e. g., gate delays. Let N be the number of gate delays

that can be affected by variation. A parameter configuration p = (p1, p2, . . . , pN) ∈ P is

a list of actual values of every modeled gate delay, and P is the space of all possible pa-

rameter configurations. A circuit instance corresponding to the parameter configuration

p is denominated by Cp.

The infinite set P of parameter configurations is approximated by a finite set I of circuit

instances. Every circuit instance i ∈ I has fixed gate delays that can be chosen randomly

according to a gate delay distribution (or statistically based on actual measurements).

Instance 0, called the nominal circuit instance, is defined to have no variations (each

gate delay is the mean of the gate delay distribution). All the other instances (i > 0)

are affected by variations with randomly or statistically determined gate delays.

Assuming the equiprobable distribution of circuit instance, circuit coverage CCcov(f, T)

of a delay fault f by a test set T (Equation 1.2) can be adapted for the circuit instances

i ∈ I, and defined by Equation 2.1 where deti(f, T) equals to 1 if f is detected in i and

0 otherwise.

2Parts of the collaboration work were supported by the German Research Foundation (DFG) (under
grants BE 1176/14-2, PO 1220/2-2, GRK 1103, WU 245/5-1 and WU 245/5-2).

Chapter 2. KLPG: K Longest Path Generation 46

CCcov(f, T) =

∑
i∈I

deti(f, T)

|I|
(2.1)

Furthermore, considering a fault list F , the statistical fault coverage can be defined

by aggregation of circuit coverages for all faults in F , as given in Equation 2.2. The

statistical fault coverage corresponds to the percentage of circuit instances in which the

target faults F are detected by the test set T .

SFC(F, T) =

∑
f∈F

CCcov(f, T)

|F |
=

∑
f∈F

∑
i∈I

deti(f, T)

|F | · |T |
(2.2)

The statistical test generation aims at maximizing the circuit coverage for the faults

and the overall statistical fault coverage SFC, that means, as many faults from F in as

many circuit instances from I should be detected by the test set T .

2.5.2 Variation-aware Fault-grading Procedure

To tackle the problem modeled above, a variation-aware fault-grading procedure is pro-

posed that aims at maximizing SFC by performing ATPG combined with Monte-Carlo

fault simulation [63]. An initial set of test pairs is generated for the nominal circuit

instance. Then delay fault simulation is performed using a new highly parallel algo-

rithm for General-Purpose Graphics Processing Units (GPGPU), explicitly considering

all faults from F and all circuit instances from I. The simulation determines the faults

affected by variation configurations in terms of fault-instance-pairs that are not cov-

ered by the initial test set and thus lower the SFC. These faults will be targeted by

timing-aware ATPG, e. g., the KLPG algorithm, to generate tests that are more likely

to detect the fault under variations. The newly generated tests will be verified by the

fault simulations and improve SFC by detecting by far uncovered fault-instance com-

binations. The GPGPU-based parallel algorithm can efficiently handle an extremely

large number of fault-instance-pairs by assigning different circuit instances to different

GPGPU cores. The flow outlined above could result in a very large amount of tests.

A test compaction technique, called Tmin-algorithm, was used to bring an aggressive

compaction while preserving the SFC achieved by the original test set.

Chapter 2. KLPG: K Longest Path Generation 47

2.5.3 Path-oriented Delay ATPG

The timing-aware ATPG needs to pin-pointedly generate tests for a delay fault f = (g, s)

that excite the desired transition on the fault site g and propagate the transition along

the path with the minimum slack less than or equal to the delay size s. The KLPG

algorithm can be used to generate such tests that sensitize multiple longest paths through

the fault site and thus raise the probability of detecting the fault under variations.

The path-oriented delay ATPG described above can employ two methods as follows:

• KLPG approach that works directly on the circuit structure, and extends sub-paths

that could be potentially longest and sensitizable while pruning false paths from

the searching space at the same time [38, 57]; and

• SAT-based approach that transforms the ATPG problem into Boolean formula and

generates tests in terms of solutions satisfying the formula [65].

The KLPG flow considers the search space of sub-paths that could be extraordinarily

large for modern circuits; the number of considered paths has to be arbitrarily limited

due to the efficiency requirement. The optimality of the KLPG solution could be affected

by the limitation since overflow paths are out of consideration. Opt-KLPG guarantees

the optimality by applying an extra data structure that saves the overflows and iter-

atively performing KLPG processes until all paths including overflows are considered.

The purely SAT-based ATPG benefits from the efficient search optimization techniques

incorporated into modern SAT-solvers. However, it represents delays by integer numbers

and has to employ sophisticated rounding strategies to compensate for the inaccuracies

induced by the representation.

Moreover, a combination of several sensitization conditions (as described in 2.2.1) could

be helpful in construction of test sets during the fault grading. Robust tests are par-

ticularly powerful because of their capability of detecting faults independently of delays

elsewhere in the circuit. However, due to the tightened sensitization constrains, the

number of robust tests is usually very limited and thus could result in a low cover-

age. Other sensitization conditions, such as non-robust and functional sensitization,

use looser constrains for the side-inputs. On one hand, these weaker constrains could

lead to invalidation of fault detection due to delays in other parts of the circuit. On

Chapter 2. KLPG: K Longest Path Generation 48

the other hand, they often allow sensitization of longer paths than robust tests, which

might improve the SFC. Therefore, no sensitization condition is universally optimal; a

combination of sensitization conditions can be applied by the fault grading procedure

aiming at maximizing SFC. For example, in cases of uncovered faults by robust tests,

tests will be generated using weaker conditions in the next iteration.

The contribution of this thesis work in the fault-grading procedure is to generate tests for

all considered fault-instance-pairs using Opt-KLPG, according to non-robust and func-

tional sensitization conditions, which are not supported by the SAT-based approach. In

the following section, experimental results from the investigation on the KLPG optimal-

ity (2.6.1), as well as the fault-grading procedure (2.6.2) will be reported.

2.6 Experimental Results

2.6.1 On the Optimality of KLPG Algorithms

As given in 2.4.1, using the existing KLPG algorithm [38] sub-optimal solutions, less or

shorter sensitizable paths instead of the longest ones, may be found due to the limited

size of the path store. For the first time, the effects of missing some of the longest

sensitizable paths on the defect coverage were investigated. Experimental results from

both KLPG and Opt-KLPG flows performed in the same experimental environment

were compared.

Both implementations of KLPG and Opt-KLPG were applied to ISCAS’85 benchmark

circuits [66], which are known to be small but have a large amount of reconvergencies

thus are challenging for path-selections. The experiments were also run for combina-

tional cores of ITC’99 benchmark circuits [67] and industrial circuits provided by NXP

with up to 70K gates. The gate-level net-lists and the corresponding real-valued delays

were obtained by mapping original structural specifications (Verilog) to the NanGate

45nm Open Cell Library [68] using Synopsys Design Compiler. The real-valued delays

for circuit instances were saved in SDF files, which contain pin-to-pin gate delays given

by three values for each gate and both rising and falling transitions on every gate input:

the minimum, nominal and maximum delays. The nominal delays were used by the ex-

periments. For circuit c6288, a multiplier with a large number of long non-sensitizable

Chapter 2. KLPG: K Longest Path Generation 49

paths, the results were omitted due to the enormous requirement for memory and run-

time. In [38], a specific technique called Smart-PERT was developed in order to handle

circuit c6288 (a multiplier with a large number of false paths); this technique is not

included in this implementation.

For each circuit, KLPG and Opt-KLPG were run for a number of possible defect sites and

different path store sizes between 10 and 30,000. Each gate is considered as a possible

defect site. For ISCAS’85 circuits all gates were investigated whereas for ITC and NXP

circuits randomly selected 1,000 gates were considered since it is very time-consuming

to investigate all gates due to the enormous circuit size. A fault list containing all target

gates was given for each circuit. K was set to 5 for both flows, i.e., (up to) 5 longest

sensitizable paths are to be found for each target gate. Non-robust and functional

sensitization criteria were used by the ATPG process in both KLPG and Opt-KLPG

flows.

Table 2.1 summarizes the results of both flows for functional sensitization criterion.

Column 1 gives the name of each circuit and its gate count in parentheses. The size of

the path store πmax is set to values between 10 and 30,000 as presented in column 2.

Experimental results returned by KLPG and by Opt-KLPG are contained in columns 3

through 6 and columns 7 through 11, respectively. The results of both flows comprise of

the total number of overflows encountered during the flow (columns 3 and 7), the total

length of the (up to) 5 paths identified by both flows (columns 4 and 9), the total CPU

runtime (columns 5 and 10) as well as the time excluding the calls of the SAT-ATPG

engine (“Excl SAT”, columns 6 and 11); “Excl SAT” describes the actual efforts spent

in searching of paths. As given in Section 2.4.1, Opt-KLPG calls the KLPG module

iteratively. The average number of iterations per SDD, which corresponds to a gate in

the fault list, is give in column 8.

From the KLPG results, it can be seen that very small sizes of the path store typically

result in large amounts of overflows. As shown in column 3, the number of overflows

tends to decrease as πmax increases. However, it does not always holds. For example,

143,619 overflows were encountered by running KLPG for c1908 when πmax was set to

10 while 215,713 overflows were encountered when πmax was set to 50. The reason is

that a larger path store may contain a sub-path which in turn results in generation of

more sub-paths; a smaller path store may simply not contain this sub-path. In case that

Chapter 2. KLPG: K Longest Path Generation 50

the number of overflows is zero, the result of KLPG is optimal, which means the total

length of found paths are the same for both flows (columns 4 and 9). The minimum

value of πmax by which no overflows were encountered varies among different circuits and

does not always grow with circuit sizes. For most ITC and NXP circuits a path store

with size limit 30,000 satisfies the requirement of optimality. Moreover, if there exist

overflows, KLPG may fail to find the optimal solution but an optimal solution is still

possible to be found. For example, for c7552 and πmax = 500 an optimal solution was

found though there exist 509 overflows. It means that none of these overflows can grow

to one of longest sensitizable paths. Note that the path lengths are real numbers rounded

to to the nearest integer. For instance, KLPG fails to find the optimal solution for p45k

with πmax = 30, 000, but the reported length of 4659 corresponds to the optimal length

due to rounding artifacts. As for the runtime, it rises with growing πmax in general. An

exception happened to p35k, for which the runtime by πmax = 30, 000 is more than 50%

faster than by πmax = 3, 000 while for p45k and p78k the situation is rather the reverse.

The reason for the exception is that for πmax = 3, 000 many sub-paths in the path store

could be false whereas for πmax = 30, 000 sub-paths which are more likely sensitizable

are included and investigated first after sorting newly; the runtime is thus shortened.

Columns 7 through 11 present experimental results from Opt-KLPG. Column 7 contains

the number of overflows encountered during the complete run of all the iterations. This

number is always higher than the number of overflows encountered by KLPG (Column

3) since KLPG actually constitutes the first iteration of Opt-KLPG. Column 8 gives the

average number of re-iterations of KLPG module per fault, that is, iterations required

by the flow after the initial run of KLPG. The number is always zero if no overflows

are encountered. Note that some reported average numbers are zero due to rounding

artifacts though there exist overflows. The sum of lengths of the found paths is reported

in column 9. This number is independent from the size limit of the path store since

Opt-KLPG always gives an optimal solution. Columns 10 and 11 contain the runtimes.

The trend observed from the result of KLPG, that the runtime tends to be longer for

a larger πmax, is less pronounced here. For the same πmax, Opt-KLPG requires more

time than KLPG due to the possible re-iterations. However, for the same target on

an optimal solution, less time can be spent by Opt-KLPG than KLPG. For instance,

c1908 requires πmax = 30, 000 in order to avoid overflows altogether; this necessitates

a total runtime of 815 CPU-seconds. However, Opt-KLPG achieve the same result for

Chapter 2. KLPG: K Longest Path Generation 51

πmax = 500 using 306 CPU-seconds. Furthermore, even though running Opt-KLPG

with πmax = 10 results in a larger number of re-iterations per gate, the total runtime

of 346 CPU-seconds is still less than for KLPG with πmax = 30, 000. It shows that

an appropriate value of πmax, by which Opt-KLPG yields the optimal solution most

efficiently (with the shortest run time), varies for different circuits. The value can be

given according to the circuit size or empirically. For KLPG, it may be the minimal value

of πmax by which the optimality is maintained. For Opt-KLPG, since the optimality

is always guaranteed, the runtime is the only metrics of the selection. For example,

πmax = 30, 000 for p35k and πmax = 1, 500 for p78k may be good choices for Opt-KLPG

aiming at the optimal solution with the best performance.

Moreover, in contrast to the FAN algorithm which can be seamlessly integrated into the

KLPG framework in [38], the SAT-based ATPG tool TIGUAN [44] is used by the path

sensitization that requires a lengthy process: a path is mapped onto a CMS@ fault for

which an ATPG-instance is constructed, which in turn is mapped onto a SAT-instance

and solved. Even though the employed SAT-ATPG engine can perform these tasks in a

fraction of a second, the large number of paths to be evaluated results in a large amount

of SAT-ATPG instances and in turn high runtime requirements. In addition to the total

runtime (column 5 and 10), the runtime excluding the time spent in solving the path

sensitization is reported (column 6 and 11), labeled by “Excl SAT”.

The last three columns evaluate the coverage problems due to sub-optimal path selecting

by the KLPG algorithm. Column 12 shows the ratio between the total length of paths

found by KLPG (column 4) and by Opt-KLPG (column 9). This ratio is rather large

for very small values of πmax; it tends to be within 1% for πmax ≥ 500. This is because

for many gates the solution are not affected by overflows or the identified paths are not

much shorter than the optimal ones. The second-to-last column contains the number of

SDD locations (gates) through which KLPG found less paths than are in existence. This

is a severe situation with a significant impact on testability under process variations.

It rarely occurs for πmax > 10. The final column shows the number of gates for which

the total length of paths identified by KLPG was shorter than the optimum. This

corresponds to a coverage impact for the SDD associated with this particular gate. In

some of the manufactured instances of the circuit, such SDDs will not be adequately

tested. A significant number of gates turn out to be vulnerable to this problem even

for large values of πmax. Figure 2.16 shows, in graph form, the number of such gates

Chapter 2. KLPG: K Longest Path Generation 52

in circuit p35k, accompanied by runtimes for KLPG and Opt-KLPG (which are not

affected by this problem).

Table 2.1: Experimental results under functional sensitization criterion

Circuit πmax KLPG Opt-KLPG Comparison
(gate cnt) #Overflows Path CPU time[s] #Overflows Ave. Path CPU time[s] ∆ Path Gates with Gates with

length Total Excl SAT #re-iterations length Total Excl SAT length [%] less paths shorter paths

c1908 10 143619 75569 36 4 332249 42.25 86185 346 26 14.05 15 671
(795) 50 215713 82819 76 8 280743 7.56 86185 337 22 4.06 1 352

100 125803 85717 68 8 163067 2.46 86185 309 21 0.55 0 118
500 13356 86155 82 13 29950 0.08 86185 306 42 0.03 0 4

1000 14932 86181 122 30 23696 0.03 86185 343 77 0.00 0 2
1500 16278 86181 177 56 20164 0.02 86185 386 122 0.00 0 2
3000 12902 86181 375 186 12902 0.01 86185 526 252 0.00 0 2

30000 0 86185 815 510 0 0.00 86185 774 490 0.00 0 0

c5315 10 117690 201540 60 7 170043 8.02 215813 147 9 7.08 8 1306
(2228) 50 68354 215615 94 8 74667 0.97 215813 126 8 0.09 0 96

100 33548 215770 111 9 35998 0.26 215813 131 8 0.02 0 21
500 1402 215812 132 11 1402 0.01 215813 134 11 0.00 0 1

1000 0 215813 134 11 0 0.00 215813 134 11 0.00 0 0
1500 0 215813 134 12 0 0.00 215813 134 11 0.00 0 0
3000 0 215813 134 11 0 0.00 215813 133 11 0.00 0 0

30000 0 215813 134 12 0 0.00 215813 135 12 0.00 0 0

c7552 10 210254 249957 141 17 258557 9.19 260443 324 22 4.20 25 1858
(2952) 50 102766 259465 211 17 110967 1.06 260443 277 20 0.38 0 382

100 49843 260108 237 20 52150 0.30 260443 268 20 0.13 0 125
500 509 260443 265 23 509 0.00 260443 264 22 0.00 0 0

1000 0 260443 264 22 0 0.00 260443 265 22 0.00 0 0
1500 0 260443 264 23 0 0.00 260443 265 22 0.00 0 0
3000 0 260443 269 23 0 0.00 260443 264 23 0.00 0 0

30000 0 260443 264 23 0 0.00 260443 270 23 0.00 0 0

b14 10 214621 97653 127 15 1417923 21.03 126305 5688 336 29.34 19 931
(6763) 50 475719 113633 367 19 1360685 4.09 126305 5792 147 11.15 2 662

100 573137 121862 490 23 1201388 1.84 126305 5255 114 3.65 0 550
500 485778 125788 1745 48 761236 0.26 126305 5214 131 0.41 0 90

1000 378266 126103 2614 108 560882 0.11 126305 5559 246 0.16 0 38
1500 309834 126169 3084 175 414736 0.05 126305 5378 320 0.11 0 32
3000 221434 126252 3825 360 267347 0.02 126305 4984 511 0.04 0 14

30000 0 126305 6959 2717 0 0 126305 7928 3566 0 0 0

b15 10 185349 50203 138 58 879949 9.9 69250 5268 944 37.94 61 700
(8931) 50 231739 61128 270 78 823864 1.88 69250 5249 903 13.29 15 530

100 250348 62495 398 97 799232 0.93 69250 5306 941 10.81 15 484
500 252861 69093 1357 341 373079 0.09 69250 4406 850 0.23 0 51

1000 179548 69188 2239 578 250773 0.03 69250 4727 1002 0.09 0 20
1500 150366 69219 2948 803 198749 0.02 69250 5003 1215 0.04 0 12
3000 78511 69223 4279 1404 97662 0.01 69250 5872 1910 0.04 0 10

30000 0 69250 7151 3242 0 0 69250 8545 4244 0 0 0

p35k 10 293796 7395 542 40 360685 1.83 8223 1218 55 11.19 0 852
(23267) 50 270197 7813 589 40 342143 0.36 8223 1329 51 5.25 0 219

100 263782 7869 701 39 359731 0.19 8223 2178 63 4.49 0 160
500 242401 7988 1095 48 368222 0.04 8223 2959 95 2.94 0 116

1000 268786 8091 1749 69 285228 0.02 8223 2644 92 1.62 0 87
1500 216978 8150 1451 74 226846 0.01 8223 1710 92 0.90 0 51
3000 159280 8196 1594 116 160445 0.00 8223 1887 150 0.33 0 40

30000 0 8223 506 57 0 0.00 8223 489 55 0.00 0 0

p45k 10 80796 3824 142 58 609588 2.68 4569 8048 647 19.47 17 699
(25679) 50 122172 4376 261 68 480945 0.43 4569 7715 265 4.41 0 342

100 115619 4494 470 82 425049 0.19 4569 6717 240 1.66 0 169
500 111723 4555 1105 123 326295 0.03 4569 9029 549 0.30 0 50

1000 100109 4562 1580 216 267548 0.01 4569 7105 947 0.15 0 32
1500 102996 4563 1703 312 239735 0.01 4569 6102 1153 0.12 0 24
3000 98656 4568 2898 849 195398 0.00 4569 7082 2276 0.03 0 12

30000 7513 4569 20185 15750 7513 0.00 4569 20211 15756 0.00 0 1

p78k 10 166206 6342 240 101 689810 1.20 7149 7139 418 12.72 8 901
(70475) 50 177257 7039 391 112 501469 0.18 7149 5451 198 1.56 0 722

100 99069 7147 335 108 373759 0.07 7149 5483 174 0.03 0 96
500 135763 7148 703 125 321940 0.01 7149 5240 245 0.01 0 5

1000 150340 7148 1168 180 299284 0.01 7149 7062 413 0.01 0 6
1500 151226 7149 1344 208 283626 0.00 7149 5099 498 0.00 0 2
3000 148676 7149 2257 461 243633 0.00 7149 5545 927 0.00 0 2

30000 0 7149 10590 5859 0 0.00 7149 10560 5840 0.00 0 0

Tables 2.2 and 2.3 contain the comparison between KLPG and Opt-KLPG (as in the

final three columns of Table 2.1) under non-robust sensitization conditions (as opposed

to functional sensitization in Table 2.1) for two alternative delay models: gate delays

extracted from the technology library and unit-delay model which assumes that each

gate has a delay of 1. The influence of the model assumptions tends to be limited.

Similar observation were made for further benchmarks which are not reported here.

Chapter 2. KLPG: K Longest Path Generation 53

900

800

700

600

500

400

300

200

100

0
10 50 100 500 1000 1500 3000 30000

Number of Gates KLPG Runtime Opt-KLPG Runtime

πmax

3000

2500

2000

1500

1000

500

0

N
u

m
b

er
 o

f
G

at
es

C
P

U
 R

u
n

tim
e[s]

Figure 2.16: Experimental results for circuit p35k. Runtimes are shown by lines;
number of gates with shorter paths are shown by bars.

Table 2.2: Comparison of KLPG and Opt-KLPG under different model assumptions
for circuit c7552

πmax

Non-robust Unit delay, Unit delay,
sensitization functional sens. non-robust sens.

∆path #Gates w. #Gates w. ∆path #Gates w. #Gates w. ∆path #Gates w. #Gates w.
length[%] less paths short paths length[%] less paths short paths length[%] less paths short paths

10 3.95 19 1603 4.22 32 1638 4.60 33 1755
50 0.24 0 197 0.40 0 407 0.37 0 354

100 0.10 0 81 0.12 0 118 0.12 0 106
300 0.00 0 2 0.00 0 7 0.00 0 2
500 0.00 0 0 0.00 0 0 0.00 0 0

1000 0.00 0 0 0.00 0 0 0.00 0 0
1500 0.00 0 0 0.00 0 0 0.00 0 0
3000 0.00 0 0 0.00 0 0 0.00 0 0

30000 0.00 0 0 0.00 0 0 0.00 0 0

Table 2.3: Comparison of KLPG and Opt-KLPG under different model assumptions
for industrial circuit p45k

πmax

Non-robust Unit delay, Unit delay,
sensitization functional sens. non-robust sens.

∆path #Gates w. #Gates w. ∆path #Gates w. #Gates w. ∆path #Gates w. #Gates w.
length[%] less paths short paths length[%] less paths short paths length[%] less paths short paths

10 22.17 25 698 17.12 19 673 21.02 27 676
50 5.59 1 358 4.36 0 310 6.11 2 338

100 2.01 1 180 2.08 0 156 2.79 1 178
300 0.51 1 62 0.67 0 57 0.76 0 58
500 0.33 1 44 0.47 0 47 0.50 0 44

1000 0.13 0 23 0.27 0 32 0.25 0 28
1500 0.08 0 14 0.21 0 27 0.12 0 19
3000 0.01 0 5 0.08 0 13 0.02 0 5

30000 0.00 0 0 0.00 0 0 0.00 0 0

2.6.2 Fault-grading Procedure using Opt-KLPG

The variation-aware fault-grading procedure was performed for the combinational cores

of industrial NXP circuits synthesized using the Nangate 45nm open cell library [68].

To obtain delays appropriate for state-of-the-art 22nm technology, the observation time

point tobs and the nominal rising and falling delays of every gate were scaled by 0.75 [69].

Chapter 2. KLPG: K Longest Path Generation 54

The delay of each gate was modeled by a Gaussian distribution with the mean equal

to the scaled nominal delay and the variance of 20%. Instance 0 was assumed to have

no variations thus every gate in the instance has the nominal delay. In other instances,

a fixed delay was randomly chosen from the distribution for every gate. In total, one

nominal circuit and 100 circuit instances affected by variations comprise the set of in-

stances, referred by I100. A fault list was used that consists of 100 randomly chosen fault

locations and 9 fixed fault sizes (0.1 ·tobs, . . . , 0.9 ·tobs). In total, (1+100) ·100 ·9 = 90900

simulation runs were performed for a two-pattern test.

The initial test set T1 was generated by a commercial ATPG tool targeting on TFs at

the fault locations in the nominal circuit instance. To compare the effectiveness of the

traditional n-detection ATPG [70]3 to the ATPG applied by the procedure, 5-detect test

set T5 was generated using the same tool. Moreover, a synthesis tool was used to deter-

mine tobs under pessimistic safety margins implicitly accounting for process variations

while the generation of T1 and T5 does not take process variations into account.

Using the timing-aware path-oriented ATPG (purely SAT-based ATPG and Opt-KLPG),

the test set TATPG was generated for faults uncovered by the initial test set T1. The

number of tests in each test set (T1, T5 and the union of T1 and TATPG) and the corre-

sponding SFC obtained by fault simulations for several NXP circuits are listed in Table

2.4. Column 1 and 2 present the circuit name and the total number of gates in the

circuit, respectively.

Columns 3 through 6 give the number of tests and the obtained SFC by fault simu-

lations in circuit instances I100 for T1 and T5, which are generated for the TFs. It

can be seen that the SFC achieved by these variation-unaware test sets is rather low.

Furthermore, using T5 can only achieve a marginally better SFC than using T1 for all

circuits except p35k, which has very low SFC values for both test sets anyway. The

very limited improvement in SFC by using n-detection technique shows that traditional

variation-unaware ATPG methods might be very insufficient in testing for nanoscale

technologies affected by massive variations.

The last three columns report the performance of the initial set T1 augmented with

TATPG generated by the variation-aware test flow for faults not covered by T1, in terms

3The n-detection TF ATPG aims at generating the test set that detects each TF at least n times (if
existing).

Chapter 2. KLPG: K Longest Path Generation 55

of the total number of tests (Column 7) and the SFC values obtained by the fault-grading

procedure (Column 8 and 9). A significant improvement of SFC can be observed that

the SFC is almost doubled compared to the value for T5 (generated using n-detection

technique). To verify these results, the generated test pairs were applied to a new

collection of 200 random circuit instances I200 . The SFC measured for this new set of

circuit instances (Column 9) has only minimal difference to the results for I100 (Column

8), which underscores the validity of the variation-aware tests. Note that the absolute

numbers of SFC are rather low. The reason is that no redundancy proof engine was

integrated into the flow to rule out the undetectable faults, which can constitute a large

portion of the undetected faults and thus lower the SFC significantly.

Table 2.4: Statistical fault coverages for 101 instances,
100 random faults and 9 fault sizes

Test sets for TFs T1
⋃
TATPG

T1 T5 I100 I200

Circuit #Gates #Tests SFC #Tests SFC #Tests SFC SFC

p35k 23267 216 0.50 838 5.17 16997 29.23 29.01
p45k 25679 53 17.12 195 18.84 4305 29.16 28.86
p78k 70479 31 34.06 69 35.50 6333 54.37 54.16
p89k 58638 44 14.69 178 16.80 5650 27.65 27.35
p100k 61006 38 16.22 133 17.41 8080 29.02 28.85

It is reported in [63] that using the test compaction technique the variation-aware tests

can be reduced to a size that is comparable to the size of the n-detection sets without

lowering the detection capability. In other words, using a variation-aware test-generation

flow can significantly improve SFC with pattern counts similar to n-detection test sets.

The results are not reported here as the compaction technique is irrelevant to the con-

tribution of this thesis work.

In summary, experimental results show that Opt-KLPG, as an enabler technology, helps

in detecting SDDs under process variations with much higher probability, compared to

conventional ATPG technologies such as N-detection.

Chapter 3

MIRID: Mixed-mode IR Drop

Induced Delay Simulator

3.1 Motivation

Deep-submicron CMOS technology tends to increase transistor density significantly due

to scaling of feature sizes and growing demands for transistors. Furthermore, the require-

ment for high performance of VLSI integrated circuits implies a raised clock frequency.

Both factors, the ultra-high transistor density and the raised frequency, lead to a power

density problem that requires a large amount of current from the PDN. As a result,

power supply noise rises that leads to reduction of the actual voltage levels supplied to

the gates. Excessive power supply noise can degrade circuit performance by inducing

additional signal delay, or even lead to functional failure of logic gates [49]. Therefore,

power supply noise has become a critical concern in chip manufacture for reliability and

high performance.

Compared to package interconnect, PDN includes predominantly resistive elements, such

as metal wires and vias to deliver power throughout the chip, but as well as capacitive

and inductive parasitic elements. Two fundamental sources of power supply noise are

inductive voltage noise and resistive voltage noise, commonly denoted by Ldi/dt and

IR, respectively. The former depends on the rate of change of the instantaneous current

flowing through parasitic inductive elements of PDN while the latter depends on the

instantaneous currents flowing through the resistive elements of the network [71]. As

56

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 57

PDN is predominantly resistive, the voltage drop due to IR noise, called IR drop, is

especially important for the supply network [72]. In this thesis work, IR drop in on-chip

PDN is focused on.

IR drop has been studied in both design and test domains. In context of PDN design

optimization, the purpose is to estimate the IR voltage noise and reduce overall IR drop

effect as much as possible at the chip level. Different supply network and circuit models

have been proposed [52, 73–75] to estimate power supply noise due to IR drop. These

models can be used to identify critical areas of the chip and provide information that

helps the designer by improving supply network design. Most of these works targeted on

predicting the spatial effects of IR drop using statistic models and performed analysis

based on SPICE-like electrical models. However, such analysis is almost infeasible for

pattern-dependent approaches due to the prohibitive simulation cost in terms of antic-

ipating all possible operational conditions on the chip to establish an electrical model

required by an accurate estimation at the chip level.

Approaches in test domain concern not only the spatial effect but also the temporal

effect induced by IR drop. Simulations applying test patterns are necessary to verify

whether the chip present any functional failure due to excessive delays induced by IR

drop. Furthermore, in context of SDD testing under process variation, estimation of

IR drop induced delays is important for evaluating test patterns that sensitize paths

through targeted SDDs. These paths are commonly selected based on nominal gate

delays whereas extra delays due to supply noise can cause variations in circuit timing

and thus affect the fault coverage. By estimation of the extra delay for generated test

patterns, these exacerbating IR drop effect are preferred for a higher fault coverage.

Moreover, power-aware test is an important concern that requires reduction of power

dissipation in circuits during the test mode. For example, minimization of IR drop effect

is essential for scan testing. It is well known that switching activities tend to increase

during the test cycle and result in supply noise that affects the fault coverage. Thus

peak power consumption during test cycle of scan testing has to be controlled to avoid

noise phenomena [76]. For all the purposes given above, an accurate pattern-dependent

simulation of IR drop induced delay is required. However, due to the high costs of

simulation and memory constrains, grossly simplified electrical models were used by

most of the approaches in test domain. The challenge here is to develop more accurate

and yet efficient pattern-dependent simulation of IR drop induced delays.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 58

In brief, simulation at electrical level is prohibitively expensive for large circuits and

pattern counts thus a vector-based simulation is almost infeasible by electrical simula-

tions. However, to estimate IR drop induced delay accurately for applied test vectors,

the electrical effects have to be considered by the time-aware simulation of logic blocks.

As a trade-off between the accuracy and efficiency, a mixed-mode simulator can be con-

sidered that takes advantage of the efficiency of the logic simulation and the accuracy

benefited from integration of electrical models.

3.1.1 Mixed-mode Simulation

In previous works, a number of mixed-mode simulation technologies that integrate elec-

trical models into simulations at high levels have been proposed. In [77], a simula-

tion method for CMOS bridging faults is proposed, which employs a set of tables de-

rived by using electrical simulation tool (SPICE [78]) to exactly characterize bridging

faults. The Inductive Fault Aanlysis (IFA) approach is described in [79] that char-

acterizes faults by drawing conclusions based on analyzing the particulars of low-level

fault-inducing mechanisms and simulates the extracted faults. An extension of IFA with

a new simulation-based fault modeling methodology is presented in [80] that uses the

three-dimensional contamination-defect-fault simulator CODEF to directly relate effects

of process-induced contamination to circuit-level malfunctions.

In context of simulating IR drop induced delay, a mixed-mode simulation that combines a

timing-aware logic simulation with electrical models of the power supply network, named

Mixed-mode IR-drop Induced Delay Simulator (MIRID) [81], is developed by this the-

sis work. For the first time, the PDN configuration is integrated into the mixed-mode

simulation, which is necessary for simulating electrical phenomena related to the sup-

ply networks. This is a joint work partially funded by a French-German collaboration

project1. The electrical models employed by MIRID are proposed by the project part-

ner, the team led by Prof. Renovell [55]. They also provide the pre-characterization

library, based on which the electrical models are established. The contribution of this

these work includes the implementation of the mixed-mode simulation flow, along with

appropriate interfaces to electrical models, and the integration of electrical models into

1BFHZ project (FK 39-10) of University of Passau and LIRMM (Laboratory of Informatics, Robotics
and Microelectronics, Montpellier, France)

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 59

the simulation flow based on the provided pre-characterization library. Moreover, ex-

periments were performed that help in validating the accuracy of employed electrical

models and evaluating the performance of the simulator for large circuits.

The remainder of this chapter is organized as follows: 3.2 introduces basic concepts about

PDN and IR drop effect as well as the state-of-the-art approaches of power-aware test;

3.3 gives a brief overview of the simulation algorithm; the employed electrical models are

presented in 3.4; implementation of the simulator is detailed in 3.5; 3.6 introduces the

application of MIRID for mitigating the short-path problem in a self-adaptive design;

finally, 3.7 presents the experimental results.

3.2 Preliminaries

3.2.1 Power Distribution Network (PDN)

The on-chip supply nets, consisting of the power (Vdd) and ground (Gnd) nets, connect

each cell (the logical or functional unit built from various components in the chip design)

to the supply source. As each cell must have both Vdd and Gnd connections, the supply

nets are large enough to span across the entire chip, and are routed first before any

routing of signals that connect between components or to the external environment. In

many applications one power net and one ground net are sufficient while some ICs, such

as mixed-signal or low-power designs, can have multiple power and ground nets [82].

Typically power and ground nets have multiple dedicated metal layers to avoid consum-

ing signal routing resources. Between the layers sufficient vias, connections of routing

structures on different layers, are used to carry current while avoiding reliability issues

like electromigration [83].

A commonly used structure of the PDN in integrated circuits of high complexity and

high performance is the grid structure, which is also used by the electrical model in this

thesis work. Each layer of the grid consists of many equidistantly placed power and

ground lines of equal width. The direction of lines within each layer is orthogonal to

the direction of lines in the adjacent layers. Each power and ground line is connected

by vias to other power and ground lines in the adjacent layers at the overlap sites,

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 60

respectively. Typically, the lower the layer is, smaller are the width and pitch of lines

[82]. An example of a two-layer power distribution grid is illustrated in Figure 3.1.

via

power line ground line

Figure 3.1: A two-layer power distribution grid

3.2.2 IR Drop Effect

A chip can contain various resistive elements, such as resistance of the on-chip wires

and vias, resistances of the bond wires or solder bumps to the package, resistances of

the package planes or traces, and resistances of the printed circuit board planes. Be-

cause the package planes and printed circuit board typically have much lower resistance

than on-chip wires, the on-chip network dominates the resistive drop [71]. IR drop is

commonly associated with the resistive element in power supply network. It refers to

the voltage drop across the resistance R of a power supply grid between the supply pin

and the block drawing current I from the networks; the voltage drop is given by I ×R

according to the Ohm’s law.

Static and dynamic IR drops can occur on a chip. The former is the average voltage

drop for the design whereas the latter depends on the instantaneous current caused by

switching activities in the logic block [53]. The instantaneous current flowing through

resistive elements in the power supply network can be much higher than the average

current demand. This is because spikes of current draw are likely to occur locally near

the clock edge when many gates switch simultaneously. Due to raised transistor den-

sity and functional frequency with the scaled technology, more gates tend to switch

simultaneously and in turn demand a large amount of instantaneous current draws from

the supply networks. Because of the high instantaneous current draws, fluctuations of

voltage levels across inherent parasitic elements of PDNs are produced. Gates can be

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 61

powered with a lower-than-normal Vdd and/or higher-than-normal Gnd, which results

in an increased gate delay. Moreover, as technology scales, gate delay becomes more

sensitive to power supply noise. It was reported that in 180nm technology voltage fluc-

tuations of 10% increases gate delay by 8% [84], while in 130nm technology fluctuations

of 10% can cause up to 30% increase in gate delay [85] and even 1% fluctuation of power

supply adds nearly 4% of gate delay in 90nm technology [51].

Bypass capacitances near the switching gates2 can supply much of the instantaneous

current, and thus only low enough resistance are needed to deliver the average current

demand. This is not necessarily true for the peak current. Concerning SDD testing,

when many gates in a logic block switch simultaneously, current draws that are not

compensated by the bypass capacitances can lower the voltage supplied to gates thus

cause extra delays, which in turn affect the fault coverage for the applied test patterns.

3.2.3 Power-aware Test

Modern CMOS circuits are often required to have high performance and transistor den-

sity, however, this comes at the cost of increased power dissipation. Potential conse-

quences are higher system costs (packaging/cooling) and, for battery operated embed-

ded systems, shorter battery lifetimes. This trend forces the designer to be power-aware,

i.e., to develop various power managements and low-power-design techniques.

Furthermore, power consumption is not only an important design dimension, but also

a major manufacturing test consideration. In fact, concerns about power consumption

stand out during various test modes of circuit operations, not just restricted to the

functional mode [86]. Generally, a circuit consumes more power in test mode than in

functional mode, mainly due to the higher switching activity in test mode and parallel

testing used to reduce test application time [87]. (It has been shown that the power

consumed during test could be twice as high as the power consumed during normal

operations [88].) Excessive test power could induce problems related to higher tem-

perature and current density during test, such as extra cost for removal of excessive

heat and electromigration [83]—an electrical effect that decreases the CUT reliability.

2Bypass capacitances are often placed between supply connections of circuit elements to supply
transient current and thus mitigate the supply noise [82].

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 62

This phenomenon is even more severe for circuits with built-in self-test (BIST) architec-

ture, which might be tested frequently, especially for battery-powered portable systems.

Moreover, the recent trend to implement high-performance, low-power devices that oper-

ate within specified power consumption budgets makes the power management a critical

parameter in test development, e. g., the Razor processor proposed by Ernst et al. [5].

Reduction of test power is therefore required to save product cost, reduce difficulties in

performance verification and enhance the circuit reliability.

Addressing the problem of power-aware tests (tests that can ensure reduced power con-

sumption), test techniques in various categories have been proposed. The first category

includes the power-aware ATPG techniques that generate test patterns able to reduce

the test power in addition to meeting classic ATPG objectives. Wang and Gupta [89]

propose a new version of the conventional ATPG algorithm PODEM [40] where the

clever assignment of don’t-care bits minimizes the number of transitions between two

consecutive vectors; the power dissipation during test application is therefore decreased.

Another ATPG technique proposed in [89] reduces power dissipation during the test of

sequential circuits. The proposed approach exploits some redundancy introduced during

the test pattern generation and selects a subset of sequences that reduces the consumed

power without lowering the fault coverage. The other category consists of ordering tech-

niques that reduce the switching activity, by modifying the order in which test vectors

are applied [90–92] and, for scan based circuits (circuits with a scan path structure), the

order in which scan flip-flops are chained [93]. Power dissipation during scan test can

also be reduced by modifying the conventional test vector compaction technique, e. g.,

selecting the merging order of test cube pairs during static compaction [94], and trans-

forming the conventional scan architecture [95]. Moreover, as demonstrated in [96], the

clock tree is a major contributor of the test power. Techniques that modify the clocking

scheme are proposed to minimize the average and peak power dissipation, by disabling

clocks of some scan chains for portions of the test set [97] and using a gated-clock scheme

for the scan path and the clock tree feeding the path [98]. In addition to the external

testing techniques mentioned above, various BIST techniques have been proposed to

cope with the power problems during BIST, such as by scheduling the execution of ev-

ery BIST element [88], by modifying test pattern generators [99, 100] and by partitioning

the circuit for parallel BIST [101].

Estimation of test power consumption is important to evaluate the reduction of test

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 63

power by power-aware tests. Methodologies for the evaluation haven been developed

and widely employed by commercial tools, such as PrimeRail [102] and RedHawk [103].

With respect to IR drop effect, the RedHawk tool provides a dynamic simulator which

uses an internal statistical approach towards dynamic IR drop analysis. However, the

approach is vectorless, which means, it aims at an efficient computation of the upper

bound on the worst-case drop, but not input-vector dependent and thus cannot be used

to identify chips with functional failures caused by excessive delay due to IR drop.

3.3 Simulation Overview

The aim of the simulator is to validate test patterns applied to the logic block on a chip

with consideration of IR drop effect as accurately as possible while within a reasonable

simulation time. As it is almost infeasible to perform electrical simulation of a larger

logic block due to the very high simulation cost, the simulation core is developed using

logic simulation algorithm [2, p. 64], which is usually performed at the gate level and

much faster than the electrical simulation.

3.3.1 Event-driven Logic Simulation

In logic simulation, the logic behavior as well as delays of each logic element are consid-

ered, to imply the logic values at circuit lines and/or timing of each logic value transition

and hazard caused due to the applied input pattern. Traditionally, two algorithms have

been used in logic simulation: “compiled-code” and “event-driven” algorithms [104].

The former evaluates every logic element at each time step while the latter evaluates

a logic element only if one of its input has changed, that is, an event has occurred.

It has been reported that the event activities in a large circuit is extremely low [105],

and the percentage activity decreases with the increase in circuit size [106]; thus, the

event-driven simulation has the advantage of saving much of the simulation execution

time in large circuits.

Moreover, the increase in complexity of modern VLSI design could raise the simulation

execution time enormously. Thus, parallelism has become an important consideration by

developing event-driven logic simulation algorithms. Two approaches have been pursued

on that purpose. One is based on a parallelization of the “synchronous” simulation

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 64

algorithm; the other is a class of “asynchronous” (or known as “distributed”) algorithms

[104]. The synchronous simulation algorithm handles all events in the order of their

times; the simulation time does not advance until all (simultaneous) events in the current

simulation time are processed. The simultaneous events can be processed in parallel,

which requires that the circuit (data structures representing the logic elements) and the

event list can be divided among different processors. In asynchronous simulation there

is no global simulation time control, instead each value assignment carries its own time

information known as a time stamp. The evaluation of a circuit element occurs when all

the input tokens (a data value and its time stamp are referred to as a token) are available.

The lack of global time control allows asynchronous algorithm to concurrently process

events that belong to different instances of time. Asynchronous logic simulation can

bring more performance benefits compared to synchronous simulation. For example,

two independent gates can be evaluated concurrently using asynchronous simulations

while they have to be evaluated sequentially using synchronous simulations. Despite the

potential benefits of the asynchronous algorithm, it has its limitation, e. g., deadlocks

[104]—none of the elements are able to evaluate because all of them have at least one

missing token on an input—could occur in circuits with feedbacks.

In context of simulating IR drop induced delay, a global time control is essential because

the event processing includes not only the evaluation of logic elements, but also the

current distribution throughout the supply networks due to the switching, which further

affects the voltage supplied to the next switching gate and its delay. In that sense,

there are no two switching events totally independent. Thus a synchronous event-driven

simulation algorithm is preferred by the logic simulation. Furthermore, parallelization

in processing simultaneous events by the synchronous simulation is possible but might

not help much in improving the performance. In that case, the current distributed over

PDN need to be updated additively for all changes due to the simultaneous events be-

fore the global simulation time is advanced. Moreover, the probability of simultaneous

switching events is very low for the timing resolution of 1ps used by MIRID; among such

a small timing slot not many switching activities could take place and thus be said to

be “simultaneous”. Consequently, considering the limited effectiveness of parallelism (in

improving the simulation performance) and its complexity (in partitioning the circuit

optimally onto available processors to achieve the maximized runtime concurrency and

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 65

the minimized interprocessor communication), MIRID was implemented without apply-

ing parallelization techniques. However, there is still possibility of extending MIRID,

which currently targets on simulation in a logic block, to parallel simulation of different

logic blocks on the chip. This possibility is discussed in 3.4.2.

3.3.2 Interfaces to Electrical Models

As given in 3.2.2, IR drop is an electrical phenomenon related to the PDN structure

and current distribution in resistive elements in the networks. The impact of IR drop

on the time-aware simulation is reflected in extra gate delays induced by power fluc-

tuations in PDNs due to instantaneous current, drawn by switching activities in the

logic block. Thus the simulation requires an electrical model of PDNs that defines the

network topologically and estimates the current demanded by the switching gates and

distributed throughout the networks. Furthermore, delays of switching gates depend

on the supplied voltage levels and other electrical parameters; an electrical model that

approximates the gate delays is required as well. As illustrated in Figure 3.2, the simu-

lation implementation consists of the logic simulation engine and two electrical models

for PDNs (PDN model) and the circuit timing (timing model).

PDN Model

Logic Simulation

vddn

gndn

switching events
S-Event(s, t, v)

patterns delays

gate delay
Vswing1

Vswing2

Cload

Timing Model

Figure 3.2: Schematic illustration of the simulator

A set of two-pattern tests patterns is applied to the logic block containing gate instances

and interconnects between them. The simulation is time-aware and reports the propa-

gation delays of transitions delays induced by the applied two-pattern test. Moreover,

currents flowing through resistive elements in PDNs and voltage drops resulted after each

switching activity can be optionally recorded. Two time modes are implemented by the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 66

simulation algorithm, that is, the gate delays are either given by the nominal timing

assignment, or determined dynamically according to the active simulation environment

considering IR drop effect. For the former, the implementation functions like a tradi-

tional time-aware event-driven simulator without integration of the electrical models.

For the latter, delays induced by IR drop are computed according to electrical models,

and used to update the execution time for next events. For each switching event emitted

by the logic simulation S-event(s, t, v), where s is the switching input of a gate and v is

the logic value newly assigned at time t, voltage levels on supply nodes connected to the

gate, denoted by vddn and gndn, are returned by the PDN model. The timing model is

established to determine gate delay according to the active simulation environment. The

gate delay δ might differ from its nominal value due to the IR drop effect. It is obtained

by the interface function between the logic simulation and the timing model, which takes

parameter values from the active simulation environment, such as the voltage swing of

the upstream gate Vswing1, the voltage swing of the switching gate Vswing2 and the load

capacitance of the switching gate Cload. New switching event S-event(sout, t+ δ, v′) will

be generated after the delay δ if the output of the switching gate sout is assigned with a

new value v′. Events generated during the simulation are inserted into an event queue,

sorted by the time and processed in this order. The simulation flow terminates after

processing all events in queue iteratively, which implies that the queue becomes empty.

The simulation design has a two-fold goal: the accuracy in delay prediction and the

efficiency in simulation runtime. On one hand, the simulation accuracy highly depends

on the employed electrical models and can be improved by incorporating more electrical

parameters into the models. Thus a versatile interface design is important to make

sure that least effort will be required by the adaption to more complex and accurate

electrical models. The principle of the interface design is to define interface functions

that only return necessary values required by the logic simulation while the function

bodies can be modified without/least affecting the simulation core. On the other hand,

as the simulation runtime mostly depends on the complexity of the applied electrical

models, possibly simplified electrical models without much loss of accuracy in the gate

delay prediction are preferred. Two aspects are especially considered by establishing the

electrical models:

• In the simulated logic block, SPICE-like simulation at transistor level is complex

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 67

and unnecessary in context of estimation of IR drop induced delay. Not all elec-

trical parameters are related closely to the IR drop phenomenon and thus can be

neglected by the estimation. Only two parameter are of interest here: the current

draw caused by the switching activity and the gate delay.

• In PDNs, the voltage fluctuations need to be estimated accurately since the gate

delay depends directly on the supplied voltage level. Hence an accurate electri-

cal model is required for PDNs. The most relevant parasitic elements should be

included in the model.

Furthermore, currents flowing through the resistive elements, which determine the volt-

age fluctuation, should be monitored during the simulation. That means, the current

flowing through each resistive element as a function of time has to be known for the

computation of voltage levels supplied to a switching gate. Initially no current is as-

sumed to flow throughout the PDN grids when each signal in the circuit stabilizes at a

logic value after the first test pattern is applied. As a gate switches due to the second

applied pattern, it draws currents from the PDN grids; the current waveforms in grid

resistors need to be updated correspondingly. In addition to the current waveforms in

PDN grids, an accurate computation of voltage requires the grid resistor information to

be extracted as accurately as possible, and presented by resistances in different areas

according to the actual configuration. The mapping between power supply nodes and

gates is also important as it determines the current draw caused by switchings combined

with the topological structure of the PDNs. As given in 3.2.1, two independent but very

similar PDNs, Vdd and Gnd networks that distribute power and ground voltages to chip

cells, respectively, are designed for ICs. Then, each gate can be mapped to Vdd and

Gnd supply nodes; the voltage levels supplied to the gate at the corresponding nodes

are considered by the estimation of gate delays.

In experiments, based on a pre-characterization library containing results of SPICE

simulation given a PDN configuration, the employed electrical models are established.

Due to the time constrains, the capacitive and inductive elements are not considered by

the configuration. Interface functions between the logic simulation and electrical models

are derived according to the PDN configuration and the pre-characterization library.

The generic interfaces can be adapted for more accurate electrical models, for example,

the PDN configuration that includes capacitive elements.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 68

3.4 Electrical Models

As given above, the logic simulation requires interface functions of mapping the logic

gates to power supply nodes, the voltage levels on power supply nodes, and the gate

delay induced by IR drop. The implementation of these functions highly depends on the

PDN configuration including the structural assumption and the distribution of parasitic

elements, and the used CMOS technology. An accurate simulation of the voltage drops

is possible only when the currents drawn by switching gates and distributed in PDN

grids are estimated accurately. Aiming at simulating IR drop induced delays for applied

input patterns, a pre-characterization of standard gates in terms of the current draw and

the delay due to switching activities, as well as the pre-characterization of the current

distribution in the PDN are required to derive the functions. The electrical models

introduced in this section are proposed by our collaboration partners from LIRMM in

Montpellier, France [55].

In the remainder of this section, PDN configuration used by the electrical model is

introduced in 3.4.1; the pre-characterization of current distribution factors throughout

the PDNs is detailed in 3.4.2; electrical models at the gate level evaluating current draw

and gate delay for switching gates are presented in 3.4.3.

3.4.1 PDN Configuration

3.4.1.1 Structural Assumption

PDN is a complex system that delivers power to the whole integrated circuit containing

many layers. Usually it is organized as a set of parallel large wires located in the upper

metal layers covering the whole circuit surface [54]. The topological assumption of the

PDN model highly depends on the physical structure. In this thesis work, the PDN

arrangement is considered as a simplified structure of three levels, which are given as

follows:

• At the top level, two sets of parallel metal lines are placed orthogonally in two

layers one upon the other. An example is illustrated in Figure 3.3 from the top

view. Every two parallel lines dedicate to a Vdd line (the white stripe) and a

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 69

Gnd line (the grey stripe). Vdd and Gnd lines in the layer above are connected

to the Vdd and Gnd lines below by vias (the small circles), respectively. In this

way, Vdd and Gnd distribution networks can be considered as two independent

two-dimensional networks3. This structure corresponds to the high metal levels of

the chip that consists of long metal lines spreading over the whole chip size.

• Intermediate metal layer connects the layers at the top/bottom level. Parallel

metal lines are placed regularly over the chip.

• In the bottom metal levels of the chip, Vdd and Gnd lines typically have smaller

lengths and form irregular shapes corresponding to logic cells they feed. Parallel

multiple vias are often used to connect the intermediate layer.

Among the parasitic elements implied by the PDN structure, resistive elements are

predominant compared to the capacitive and inductive ones. Therefore, an accurate

representation of resistive elements is important for the PDN modeling. As given above,

the top level of the structure is comprised of long parallel wires and vias spreading

over the whole chip. Compared to the reduced resistive behavior of metal lines in the

bottom level due to much smaller lengths and multiple parallel vias, the resistances at

the top level are determinant for the current distribution throughout the network, which

in turn mainly contributes to the IR drop phenomenon. For this reason, the top level

can be modeled as two-dimensional resistive grids while the low level is neglected. The

intermediate level has similar structure to the top level and thus can be represented by

the model too.

Figure 3.3: Two sets of Vdd and Gnd lines

3In this example, each PDN is represented by a 4 × 4 grid.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 70

Rh(1,1) Rh(1,2) Rh(1,4)Rh(1,3)

Rh(2,1) Rh(2,2) Rh(2,4)Rh(2,3)

Rh(3,1) Rh(3,2) Rh(3,4)Rh(3,3)

Rh(4,1) Rh(4,2) Rh(4,4)Rh(4,3)

Rh(5,1) Rh(5,2) Rh(5,4)Rh(5,3)

R
V
(1
,1
)

R
V
(2
,1
)

R
V
(3
,1
)

R
V
(4
,1
)

R
V
(1
,2
)

R
V
(2
,2
)

R
V
(3
,2
)

R
V
(4
,2
)

R
V
(1
,3
)

R
V
(2
,3
)

R
V
(3
,3
)

R
V
(4
,3
)

R
V
(1
,4
)

R
V
(2
,4
)

R
V
(3
,4
)

R
V
(4
,4
)

R
V
(1
,5
)

R
V
(2
,5
)

R
V
(3
,5
)

R
V
(4
,5
)

(a) Resistive Grid

R
V
(1
,1
)

R
V
(2
,1
)

R
V
(3
,1
)

R
V
(4
,1
)

R
V
(1
,2
)

R
V
(2
,2
)

R
V
(3
,2
)

R
V
(4
,2
)

R
V
(1
,3
)

R
V
(2
,3
)

R
V
(3
,3
)

R
V
(4
,3
)

R
V
(1
,4
)

R
V
(2
,4
)

R
V
(3
,4
)

R
V
(4
,4
)

R
V
(1
,4
)

R
V
(2
,4
)

R
V
(3
,4
)

R
V
(4
,4
)

Rh(5,1) Rh(5,2) Rh(5,4)Rh(5,3)

Rh(4,1) Rh(4,2) Rh(4,4)Rh(4,3)

Rh(3,1) Rh(3,2) Rh(3,4)Rh(3,3)

Rh(2,1) Rh(2,2) Rh(2,4)Rh(2,3)

Rh(1,1) Rh(1,2) Rh(1,4)Rh(1,3)

N(1,2) N(1,3) N(1,4)

N(2,1) N(2,2) N(2,3) N(2,4)

N(3,1) N(3,2) N(3,3) N(3,4)

N(4,1) N(4,2) N(4,3) N(4,4)

N(5,1) N(5,2) N(5,3) N(5,4)

N(1,5)

N(2,5)

N(3,5)

N(4,5)

N(5,5)

N(1,1)

(b) Symbolic Grid

Figure 3.4: PDN grids

In brief, the electrical model of PDNs contains two independent power supply networks,

which have symmetrical structures of grids with resistive elements. The capacitive and

inductive elements are not included in the first version of the PDN model applied by

the experiments. A future version can consider the capacitive elements to raise the

precision of the IR drop estimation while the inductive elements can be neglected since

their impacts on the IR drop are typically very small.

3.4.1.2 Parasitic Elements in PDN

The representation of resistive elements in the model depends on the PDN topology, the

technology and the types of metal in the PDN. Based on the extracted resistance values

from the PDN metal levels by commercial design tools, the value of each grid resistor

can be determined. Commonly it can be assumed for the grid structure that all grid

resistances have the same value.

A 4 × 4 resistive grid is presented in Figure 3.4a. It contains 5 × 4 and 4 × 5 re-

sistances parallel placed in horizontal and orthogonal directions, denoted by Rh(x, y)

(1 ≤ x ≤ 5, 1 ≤ y ≤ 4) and Rv(x, y) (1 ≤ x ≤ 4, 1 ≤ y ≤ 5), respectively. To simplify

the presentation, a symbolic grid, where each segment implicitly represents a resistance

at the corresponding position, is used in the remaining text of this thesis. Figure 3.4b

illustrates an example of the 4×4 grid. The nodes at the crossings of lines represent vias

in PDNs, through which the logic block is connected to the supply networks. Resistance

of vias are neglected by the model due to their small values. Each segment between nodes

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 71

N(x, y) and N(x, y+1) represents the horizontal resistance Rh(x, y) while each segment

between nodes N(x, y) and N(x+ 1, y) represents the vertical resistance Rv(x, y).

3.4.1.3 Mapping to the Logic Block

The Block Under Test (BUT) on the chip is represented by a set of gates and the

interconnects. Each gate is mapped to certain power supply nodes in Vdd and Gnd

networks depending on the chip design. As PDNs are modeled as two independent

resistive grids, the mapping is given by Gi → V dd(x, y) and Gi → Gnd(x′, y′) where Gi

is a gate with index i, V dd(x, y) and Gnd(x′, y′) are nodes located at coordinates (x, y)

in Vdd network and (x′, y′) in Gnd network, respectively. Note that the assigned nodes

to a gate in Vdd and Gnd grids are not necessarily at the same coordinates.

Mapping of supply nodes to gates can have significant impact on the IR drop effect.

When many gates connected closely in the logic block switch almost simultaneously,

the voltage drops can be high due to a large sum of currents flowing through adjacent

nodes in PDNs. Considering the example illustrated in Figure 3.5, gate G1 is connected

to nodes V dd(x, y) and Gnd(x′, y′) while its downstream gate G2 is connected to nodes

V dd(n,m) andGnd(n′,m′). When the upstream gateG1 switches, instantaneous current

draws appear at its supply nodes V dd(x, y) and Gnd(x′, y′). The current flowing through

each grid resistor is updated by adding the distribution of the instantaneous current. The

closer the nodes are to the location where the instantaneous current appears, the higher

the corresponding distribution factors for the nodes. Gates located nearby tend to be

connected to adjacent supply nodes or even to the same node due to space constrains of

the chip design. Then assuming that V dd(x, y) and V dd(n,m) are adjacent in Vdd grid,

and so are the nodes Gnd(x′, y′) and Gnd(n′,m′) in Gnd grid, the instantaneous currents

due to switching of G1 have a high distribution to the raised currents at V dd(n,m) and

Gnd(n′,m′), which might hardly decline for a little while. G2 can switch very shortly

and result in even higher currents flowing throughout the neighboring area, followed by

exacerbated voltage drops.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 72

Vdd PDN

Gnd PDN

Logic Block

G1

G2

Vdd(x,y)

Vdd(n,m)

Gnd(x',y')

Gnd(n',m')

Figure 3.5: Gates connected to Vdd and Gnd power supply nodes

3.4.2 Current Distribution in PDN Grids

The instantaneous current caused by a switching event dissipates throughout the resistive

grid, and affects the voltage drops in the neighboring area. In area far from where the

instantaneous current appears, the current distributed in resistances is very small thus

its impact on voltage drops can be neglected. To accurately simulate the impacts of

the current draw on voltage drops, the current distribution in PDN grids (or only in

neighboring area for the sake of efficiency) needs to be estimated as precisely as possible.

A predefined area called current window is given by establishing the electrical models.

In this area, the current-distribution factors for all grid segments are calculated. Though

a closed-form mathematical calculation would be ideal, it is difficult to derive equations

due to the non-trivial grid topology. Instead the fractions of current distribution are

determined by pre-characterization of the grid using the simulation tool SPICE.

The SPICE simulation is performed for a resistive grid with nominal supply voltage

Vdd at the edges. The approach can be easily adapted to the Gnd PDN by setting

the supply voltage to the nominal ground value. Figure 3.6a presents an example to

explain the principle of the approach. A 4× 4 PDN grid is supplied by nominal power

voltage Vdd at the surrounding edges. The current window has the same size as the grid.

Considering a switching inverter connected to the grid node N(i, j), the current draw

I(i, j) due to the switching activity spreads over the whole grid. The distribution of the

current in horizontal and vertical resistances in the current window, denoted by Ih(x, y)

(1 ≤ x ≤ 4, 1 ≤ y ≤ 3) and Iv(m,n) (1 ≤ m ≤ 3, 1 ≤ n ≤ 4), respectively, need to be

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 73

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

VddVdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

VddN(i, j)

Iv(m,n)Ih(x,y)

I(i, j)

(a) Current distribution
for a switching INV

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

VddVdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

VddN(i, j)

cv(m,n)ch(x,y)

(b) Current distribution
for a unitary current source

Figure 3.6: Current distribution in Vdd PDN

calculated. For the same configuration of PDNs, the current distributed in each resistor

is proportional to a constant distribution factor, which varies for different resistors but

is independent on the current draw. Based on this property, the distributing factors

can be obtained by connecting a unitary current source to N(i, j) and simulating the

current distribution in SPICE. As illustrated in Figure 3.6b, the currents distributed

in 4 × 3 horizontal resistances and 3 × 4 vertical resistances correspond to the desired

distributing factors, denoted by ch(x, y) and cv(m,n), respectively. Then, given the

estimated amount of current draw I(i, j) due to the switching activity at supply node

N(i, j), the current distributed in the horizontal resistor Ih(x, y) or in the vertical resistor

Iv(m,n) equals to I(i, j) multiplied with the corresponding factor at the same position

(ch(x, y) or cv(m,n)).

In general, the distribution factor matrix, consisting of distribution factors in horizontal

or vertical grid resistors, varies for the location where the instantaneous current appears

in PDN. Since the goal of the pre-characterization is to approximate current distribution

not only accurately but also efficiently, a slight error is allowed for the approximation,

by using the same distribution matrix for instantaneous currents located nearby. The

electrical model employed by the experiments achieves an error inferior to 1% in the ap-

proximation, by using dedicated distribution factor matrices for instantaneous currents

in different PDN areas. The error is estimated by comparing the approximated current

with the current given by SPICE simulation. The former is obtained by computing dis-

tributed currents in all horizontal and vertical resistors using the dedicated distribution

factor matrix assuming that a unit of current draw appears at the concerned node. The

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 74

latter is obtained by performing a SPICE simulation that connects a unitary current

source to the concerned node and reports the current distributed in all resistors. Mean-

while, the selected current window must be large enough to contain all current fractions

higher than 1%. In other words, all distribution factors outside the current window are

less than 1% and their impact on the voltage drops are disregarded by the simulation.

In experiments, three sets of distribution factors were used to approximate current dis-

tribution in central, corner and band areas in a 100 × 100 PDN, which is symbolically

illustrated in Figure 3.7. The central area corresponds to a 40×40 sub-grid in the middle

of the grid while each corner area corresponds to a 30 × 30 sub-grid in the corner; the

rest of the grid consists of band areas.

Band
Area

Band
Area

Band
Area

Band
Area

Corner
Area

Corner
Area

Corner
Area

Corner
Area

Central
Area

0 30 70 100

30

70

100

Figure 3.7: Central, corner and band areas in a 100× 100 grid

The dedicated distribution factor matrix for the central area is obtained by SPICE

simulation that connects the unitary current source at the middle node N(50, 50) in

PDN. For nodes outside the central area, the same distribution factor matrix for the

central node is not applicable due to the edge effect caused by the proximity of the power

supply at the grid edges. Dedicated factor matrices for nodes in corner and band areas

are obtained by SPICE simulation in which a unitary current source is connected to

nodes at coordinates (15,15) and (15, 50), respectively. Note that the obtained matrices

are appropriate for nodes in left-top corner area and top band area, however, nodes

in other corner and band area can use transformed matrices due to the symmetrical

structure of the grid. As given above, the approximated current distribution using the

dedicated matrices in different PDN areas has an error less than 1%.

In context of the power supply at the chip level, supply grids with nominal supply volt-

ages at the edges are used for the whole chip. However, it is impossible to simulate the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 75

whole chip (using SPICE) for the pre-characterization because of the prohibitive simula-

tion time. Only a sub-grid is therefore simulated where the power supply at the borders

of the sub-grid can vary from the nominal voltage value due to the activities in neighbor-

ing blocks. Though the SPICE simulation for the whole chip is not feasible, an overall

static effect resulting from the average activity of the neighboring blocks can be esti-

mated and taken into account by the pre-characterization. The average power consump-

tion of the neighboring blocks can be estimated by statistical approximations [52, 54].

In addition, commercial tools such as RedHawk [103] allow estimation of the power con-

sumption using statistical analysis of the power supply noise. A pre-characterization

of the sub-grid considers the effective voltage levels around the sub-grid, and gives the

corresponding distribution factors. Figure 3.8 illustrates a high-level view of the power

grid over a chip with 9 blocks. Nominal voltages are supplied surrounding the whole

chip. Extreme nodes at the borders of BUT can have different voltage levels consid-

ering the static influence of the average activities in neighboring blocks. Assuming

that the effective voltage levels around sub-grids over different blocks on the chip and

the corresponding pre-characterizations are given, parallel simulation technologies can

be considered to enhance the performance of MIRID at the chip level, by simulating

sub-grids concurrently for different logic blocks.

BUT
Block2

Block3

Block4

Block1

Block5

Block8

Block7

Block6

Vdd Vdd

Vdd Vdd

VddVdd

Vdd

Vdd

Figure 3.8: A high-level view of the power grid over a chip with 9 blocks

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 76

3.4.3 Electrical Models at the Gate Level

As given in Section 3.3, two electrical phenomena at the gate level are essential with

respect to the IR drop: the current draw and the delay induced by the switching activities

in the logic block. Both of them highly depend on the active simulation environment.

For an accurate yet efficient simulation, electrical parameters that are most relevant to

these two phenomena need to be derived and considered by establishing corresponding

electrical models. Important parameters regarding a switching gate could be given as

follows:

• Edge: rising or falling transition of the gate input;

• Input voltage swing: voltage swing of the upstream gate Vswing1 defined in

equation 3.1 where V dd1(t) and Gnd1(t) are the power supply and ground levels

of the upstream gate;

Vswing1(t) = V dd1(t)−Gnd1(t) (3.1)

• Supply voltage swing: voltage swing of the considered gate Vswing2 defined in

equation 3.2 where V dd2(t) and Gnd2(t) are the power supply and ground levels

of the considered gate;

Vswing2(t) = V dd2(t)−Gnd2(t) (3.2)

• Load capacitance: equivalent capacitance Cload of the downstream gates (fan-out)

connected to the gate output.

Due to the complexity of deriving equations for modeling these two electrical phenomena,

SPICE simulations were performed to pre-characterize the current draw and the gate

delay for every standard gate, for a given technology and under all conditions likely to

occur in practice; the electrical models are established based on the simulation results.

For the experiments, the pre-characterization library is constructed

• for 45nm CMOS technology, and under conditions including

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 77

• all combinations of input and supply voltage swings varying from 80% to 100% of

the nominal voltage swing,

• load capacitance varying from one to five times the elementary equivalent capaci-

tance, and

• both (rising and falling) input transition edges for all standard gates.

Pre-characterizations of the current draw due to switching activity and the gate delay

are introduced in 3.4.3.1 and 3.4.3.2, respectively.

3.4.3.1 Dynamic Current Model

Intrinsic currents due to electrical behavior of a logic gate are traditionally classified

into two classes: static and dynamic currents. The former is the current that flows

regardless of the switching activity. The latter appears when the gate output is switching.

According to results from SPICE simulations for the pre-characterization, static currents

are in the order of magnitude of 10−9A, which is much smaller than the maximum current

draw in the order of magnitude of 10−4A when a gate is switching. Since the dynamic

current mainly contributes to the IR drop effect, it is focused by the electrical model.

The dynamic current is created as a gate switches, and dissipates throughout the PDN

grid as the time flows—it is a function of time. During the simulation, the current

draw due to the switching activity is evaluated; the distribution of the current draw is

computed using the distribution factors. Consequently, the current flowing through each

resistor in PDN is updated by adding the distribution of the active current draw. It is

necessary to store and update the current waveform in each resistor because the voltage

drops are estimated based on the values of currents flowing through the resistive grid.

Instead of representing the current waveform by a closed-form time-dependent function,

an array of current values is used for the sake of simplicity in updating current values

during a time interval. The n-th element in the array represents a discrete current value

after n units of time. The time unit of the array corresponds to the precision of the

simulation, i.e., the time step of the simulation. Using a higher precision raises the

accuracy of the estimated voltage drops while the simulation cost grows enormously.

In experiments, picosecond resolution is used by the simulation, and the current array

has a size of 100 since all possible instantaneous currents in experiments will surely

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 78

settle down to zero within the time interval of 100 ps. As Vdd and Gnd PDNs can be

considered independently, only amplitude values of currents are used though the currents

from the two networks have opposite directions. In summary, the current waveform in

each resistor of Vdd or Gnd PDN is stored as an array of 100 amplitude values with

picosecond resolution.

SPICE simulations were run for all standard gates in NanGate 45nm Open Cell Library

[68] with all possible input transitions that bring to the output switching. Constant

voltage supply levels were applied to the gate to be characterized and the upstream gate;

an inverter was used as the upstream gate. The output of the gate to be characterized

was connected to a load capacitance representing the fan-out of the gate. Moreover,

combinations of variable parameters that likely occur in a realistic environment (Vswing1

and Vswing2 between 80% and 100% of the nominal voltage swing, Cload between 1 and 5

times elementary equivalent capacitances) were taken into account. SPICE simulations

were performed individually for each variable parameter varying in the range while the

other two were kept to their nominal values (100% of nominal voltage swing for Vswing1

and Vswing2, one elementary equivalent capacitance for load capacitance). Transient

current draws from the power and ground supplies were reported as results.

The current model is established analytically based on the results from SPICE simu-

lations. The current curves for a variable Vswing2 (and the other two parameters with

nominal values) can be derived from the reference curve, the one with all three param-

eters of nominal values, by reduction of the amplitudes based on the analytic results.

Thus using a single multiplying factor is sufficient to derive the current curves from the

reference one for different values of Vswing2 within its realistic range. Compared to the

reference curve, a similar reduction of the amplitude can be observed when Vswing1 varies

while the other two are kept to their nominal values. In addition, a shift in time presents

in this case. Thus it is possible to approximate the impact of Vswing1 on the reference

current by applying shifting and multiplying operations. Corresponding factors for the

shifting and multiplying operations are computed by Multiple-Linear Regression (MLR)

given in Equations 3.3 and 3.4, respectively.

Both equations contain terms of Vswing1, Vswings and the product of them, which reflects

the multiplicative interaction between the two parameters.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 79

sh = e0 + e1 · Vswing1 + e2 · Vswing2 + e3 · Vswing1 · Vswing2 (3.3)

mul = f0 + f1 · Vswing1 + f2 · Vswing2 + f3 · Vswing1 · Vswing2 (3.4)

The impact of the load capacitance seems to be more complicated and cannot be ap-

proximated using only shifting and multiplying factors. As only five values of the load

capacitance (one to five times elementary equivalent capacitances) are considered, all five

current arrays (Vswing1 = 100%, Vswing2 = 100%, Cload = one to five times elementary

equivalent capacitances) are used as reference currents. That means, for a given gate

with a given switching input, and a value combination of the three variable parameters,

a reference current curve is selected according to the load capacitance4, from which the

dedicated current curve is derived by applying corresponding shifting and multiplying

operations.

Consequently, the pre-characterization library contains sets of a reference current array

and polynomial coefficients (e0–e3 in Equation 3.3 and f0–f3 in Equation 3.4) to com-

pute the corresponding shifting and multiplying factors applied on the reference array.

Each set refers to a standard gate, a switching input of the gate, the rising or falling

transition edge, the load capacitance, the Vdd or Gnd PDN from where the current is

drawn. That means, according to the active simulation environment, the current draws

from both PDNs caused by a switching activity can be approximated by applying ap-

propriate transformation factors to a dedicated reference array. The approximation is

evaluated by the average Normalized Root Mean Square Error (NRMSE) between the

approximated values and the current value from SPICE simulation in the same environ-

ment. Simulations performed in Montpellier [55] showed that in average the estimated

error, given by the average NRMSE, is as low as 1.15%. Compared to the simple trian-

gular function [50, 107] and the trapezoidal function [49, 108], this current model seems

to be more accurate.

4The value of load capacitance corresponds to the number of downstream gates in this electrical
model.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 80

Gnd1

Gnd2

Vdd1

Vdd2

Gnd

Vdd

Time

Vswing2/2

Vswing1/2

Voltage

V
sw
in
g
1

V
sw
in
g
2

t0 t1

Vinput

Voutput

Vdd1

Gnd1

G1

Vdd2

Gnd2

G2 G3

Cload

Figure 3.9: Supply and input voltage swings and gate delay

3.4.3.2 Gate Delay Model

The propagation delay of a gate is conventionally defined as the duration between the

time when the input signal of the gate crosses half of its excursion (the change in voltage

on the input in a short period, which also corresponds to the nominal voltage swing in

an ideal case without IR drop), and the time when the output signal crosses half of its

excursion. Concerning the IR drop effect, different supply and input swings need to be

simulated by the pre-characterization to derive an accurate model of gate delay. Thus, as

illustrated in Figure 3.9, for the characterized inverter G2 with a rising input transition

that is connected to an upstream gate G1 and the load capacitance Cload representing

the fan-out of G2, the propagation delay δ is defined as the duration between the time

t0 when the input voltage level Vinput crosses half of its specific excursion (Vswing1/2)

and the time t1 when the output voltage level Voutput crosses half of its specific excursion

(Vswing2/2).

SPICE simulations were performed for all standard gates with all possible input transi-

tions when the three variable parameter were set to the most possible values in a realistic

environment (Vswing1 and Vswing2 between 80% and 100% of the nominal voltage swing,

Cload between 1 and 5 times elementary equivalent capacitances). A linear approxima-

tion of the gate delay was derived individually for each parameter that varies when the

other two hold to their nominal values. The simulation result shows that the gate delay

increases almost linearly when Vswing2 falls; the same yet slightly less linear dependence

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 81

of the gate delay on Vswing1 is observed. The latter can also be linearly approximated

with an average error inferior to 0.5%, which is quite acceptable. Though the relation

between the delay and the load capacitance fits an exponential curve generally, in a small

range from one to five times elementary equivalent capacitances a linear approximation

of the delay can be derived.

As the three variable parameters are dependent, the effect of one parameter on the

delay is affected by values of the other two. Thus, the gate delay is modeled by an

MLR equation with multiplicative interactions containing terms of the three parameters

and all possible products of the parameters, i.e., a polynomial of the first order for each

parameter and for all combinations of the parameters. For the rising or falling edge on

each input of a standard gate, the coefficients of an MLR equation is given by the model

correspondingly. As shown in Equation 3.5, the delay function is defined by an MLR

equation where coefficients c0–c7 depend on the concerned gate, its switching input and

the transition edge.

δ = c0 + c1 · Vswing1 + c2 · Vswing2 + c3 · Cload

+ c4 · (Vswing1 · Vswing2) + c5 · (Vswing1 · Cload) + c6 · (Vswing2 · Cload)

+ c7 · (Vswing1 · Vswing2 · Cload)

(3.5)

To evaluate the accuracy of the established delay model, the worst relative error and the

average relative error are computed by comparing the gate delay approximated according

to the model and the results from SPICE simulation. The average relative error is as

low as 0.35% and appears to be satisfactory. The worst relative error was up to 5%, but

it was observed only in corner cases when both input and voltage swings are very close

to 80% of the nominal swing.

3.5 Simulator

As described in Section 3.3, MIRID consists of three parts, a logic simulation engine

driven by switching events of gates, electrical models used to estimate the voltage drops

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 82

and the induced gate delays, and generic interfaces that takes active simulation envi-

ronment as inputs and return values of electrical parameter according to the electrical

models. Furthermore, a library containing objects of circuit elements needs to be estab-

lished for an object-oriented implementation. Provided with the pre-characterization

library containing look-up tables, electrical models are integrated into the simulation

by building interface functions and converting the pre-characterization library into cor-

responding objects that can be accessed by the interface functions efficiently, e. g., to

obtain the required electrical parameters values in constant time. The challenge of the

implementation is to develop the logic simulation with flexibility of adapting to various

electrical models. As introduced in Section 3.4, electrical models applied by the experi-

ments still have the potential for raising the accuracy of estimated electrical effects, such

as distribution of the current throughout the PDN grid where capacitive elements are

also present. As the principle of the logic simulation does not depend on the applied

electrical models, the part of the logic simulation and the part of the electrical models

should be implemented individually, between which the interactions are realized by in-

terface functions. Thus, the overall implementation can be easily adapted to the update

of electrical models by only modifying the corresponding interface functions.

In the remainder of this section, 3.5.1 introduces the logic library containing objects

of circuit elements used by both the logic simulation and the interface functions; pre-

processing of the simulation is detailed in 3.5.2; the principle of the event-driven logic

simulation is presented in 3.5.3; finally, 3.5.4 gives a brief introduction of interfaces

functions that are adapted to the current version of electrical models and can be further

extended.

3.5.1 Logic Library

The logic block under test is represented by a set of logic gates and interconnects, which

can be converted into corresponding C++ (an object-oriented programming language)

[109] objects. Pseudo codes that loosely follow C++ syntax are presented here to avoid

bulky parts for the sake of readability.

A synthesized netlist in Verilog [110] is given for establishing the logic library of the

circuit. Information on the gates and interconnects is extracted from the Verilog file

and converted into C++ objects. The definition of objects for circuit elements must

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 83

represent the logic structure of the circuit. In addition, the object definition should

include references to other related objects for an efficient logic simulation. For example,

after evaluating the function of a gate G0, its downstream gates to be simulated next

can be accessed in constant time through references to the corresponding object.

object gate{
string name;

GateType t type;

unsigned int id;

unsigned int level;

unsigned int fanin;

set<pin&> input pins;

pin& output pin;

};

Figure 3.10: Definition of the gate object

Three basic objects of gate, signal and pin are defined in the implementation. As given

in Figure 3.10, the structure of a gate object includes seven members listed in the curly

bracket. Each member is given by a pair of a data type and an identifier. The member

name is the name of the corresponding gate instance defined in the Verilog file. Its

data type string indicates that the member is saved as a sequence of characters. The

member type identifies the type of the gate in a standard library of the used technology.

Its data type GateType t is not a built-in type in C++ but a user-defined enumeration

of identifiers for standard gates used by the 45nm technology. The members id, level

and fanin have the type of unsigned int, which is a positive integer. They indicate the

unique identifier of the gate object, the level of the gate in the circuit and the number

of its inputs, respectively. The member input pins is a set of references of input pins

given as pin objects. (The reference of an object is denoted by the ampersand (&) after

the object type in the declaration of the object or before the object identifier when it

is referred to.) The reference of the output pin of the gate is saved in the member

output pin.

The interconnects between gates are represented by a collection of signal objects. As

given in Figure 3.11, the members name, id and level for the signal object are similarly

defined as for the gate object. The type of a signal object is given by a named value

from the enumeration SignalType t, which corresponds to the classification of signals

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 84

object signal{
string name;

SignalType t type;

unsigned int id;

unsigned int level;

unsigned int fanout;

set<pin&> input pins;

pin& output pin;

};

Figure 3.11: Definition of the signal object

based on their roles in the circuit, such as primary inputs, primary outputs and wires

connecting two gates. The member fanout is the number of the gates fed by the signal,

i.e., the fan-out of the upstream gate driving the signal. Moreover, references to input

and output pins connected to the signal are saved in members input pins and output pin,

respectively.

object pin{
gate& the gate;

signal& the signal;

array<Time t> delays;

};

Figure 3.12: Definition of the pin object

As given above, the gate and signal objects refer to a set of input pins and an output pin

to which they are connected. Correspondingly, a pin object referring back to the gate

and the signal is defined as shown in Figure 3.12. The members the gate and the signal

refer to the corresponding gate and signal objects. In addition, since gate delays can

vary for different inputs of each gate instance, delay information related to a single

input pin are saved in the member delays. The member has the data type of an array of

the user-defined type Time t for possible maximum, minimum and nominal delays with

presence of a rising or falling input transition; Time t can be defined as an appropriate

primitive number type according to the timing resolution used by the simulator. In the

scenario of IR drop simulation, gate delays are computed during the simulation process

according to the active environment. The nominal delays are used by the timing-aware

simulation if IR drop is not taken into account. The simulation result using nominal

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 85

delays can be compared to the estimated IR drop induced delays, for evaluating the

impact of the IR supply noise.

G2

G0

G1

PI0

PI1

PI2

PO0

PO1

S0
i0

i1

i2

i3

i4

o0

o1

o2

Figure 3.13: A circuit containing an inverter and two NAND gates

G0{
name G0;

type INV;

id 0;

level 0;

fanin 1;

input pins {&i0};
output pin &o0;

};

G1{
name G1;

type NAND2;

id 1;

level 1;

fanin 2;

input pins {&i1, &i2};
output pin &o1;

};

G2{
name G2;

type NAND2;

id 2;

level 1;

fanin 2;

input pins {&i3, &i4};
output pin &o2;

};

Figure 3.14: Examples of constructed gate objects

Figure 3.13 presents a circuit containing an inverter G0 and two NAND gates G1 and

G2. Examples of constructed gate objects for G0, G1 and G2 are presented in Figure

3.14. For instance, the gate object G1 has the name of G1; its type is NAND2 indicating

a NAND gate with two inputs; the member id is assigned with 1 which is its unique

identifier; its level in the circuit is 1; fanin of 2 indicates that it has two inputs; the

references of two pin objects i1 and i2 are saved in the member input pins while the

member output pin refers to the output pin o1. Objects G0 and G1 are analogously

constructed.

Corresponding signal objects are also constructed for primary inputs PI0, PI1 and PI2,

primary outputs PO0 and PO1, and the wire connecting gates S0. Input pins i0–i4 and

output pins o0–o2 are given as pin objects as well. Note that members for which no

values are given or required by the simulation can be set to null. For instance, primary

inputs are connected to input pins exclusively thus the member output pin is null in

corresponding objects. Examples of the signal objects PI0, S0 and the pin object i2

are presented in Figure 3.15. For object PI0, the member type is PI, a value from the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 86

PI0{
string PI0;

type PI;

id 0;

level 0;

fanout 1;

input pins {&i1};
output pin null;

};

S0{
string S0;

type WIRE;

id 3;

level 1;

fanout 2;

input pins {&i2, &i3};
output pin &o0;

};

i2{
the gate &G1;

the signal &S0;

delays [1, 2, 3, 1, 2, 3];

};

Figure 3.15: Examples of constructed signal and pin objects

enumeration SignalType t indicating that the signal is a primary input. It is connected

to the input pin i1 of G1, hence its fanout is 1 and input pins includes the reference of

i1 while the output pin is null. Object S0 has the type of WIRE indicating that it is

an internal signal. The signal connects the upstream gate G0 to downstream gates G1

and G2 individually. Correspondingly, its fanout is 2; the member input pins contains

the reference of i2 and i3, which are the input pins connected by the signal; the member

output pin refers to o0, the output pin of G0. The pin object i2 consists of the references

to G1 and S0, and a timing assignment given as a sequence of delays.

The logic library including the three types of objects can be established based on the

netlist given in Verilog. Each gate object and each signal object is assigned with a

unique identifier by a simple numeration. The levels of gates and signals are decided

based on the circuit topology. A gate’s output has the level i+ 1 if the maximum level

of the gate inputs is i. Assuming that primary inputs have the level of 0, then levels

of all signals in the circuit can be computed iteratively. The level of the gate is defined

to be the same as the maximum level of its inputs. Note that for a fan-out system

with a stem and branches, such as S0 is Figure 3.13, a common approach of levelization

considers the stem and branches separately and assigns the level of branches with the

level of the stem incremented by one. However, in the gate library established for the

simulation, the fan-out system is considered as a single signal since no different effects

will be assumed on the stem and branches in the scenario of IR drop simulation. As a

result, no difference of level is assumed for the stem and branches in a fan-out. Finally,

the signal and gate objects can be organized as lists sorted by the levels. The library

also provides methods to access an object by its id within a constant time, which allows

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 87

a configuration for indexed objects that can be applied by the simulator efficiently.

3.5.2 Simulation Preprocessing

Electrical models are established based on a pre-characterization library containing

look-up tables for current waveforms, distribution factors of current in PDNs and coeffi-

cients for computing gate delays, provided by the collaboration partner in Montpellier.

These models have to be integrated into the implementation and compatible to the in-

terfaces provided by the simulator. In preprocessing, the look-up tables are parsed and

converted into C++ containers organizing data extracted from the look-up tables. These

containers are categorized by combinations of different parameter values used by the

pre-characterization, corresponding to different simulation environments of SPICE.

As given in Section 3.4.2, the current distribution factors in PDNs were obtained by

SPICE simulations that connect a unitary current source in one of the three areas of

the Vdd or Gnd PDN, the center, the left-top corner and the top band. Assuming that

the current window is an X × X grid, then for each simulation, two matrices of the

distribution factors were returned: a (X−1)×X matrix for the horizontal resistors and

an X× (X−1) matrix for the vertical resistors. Since Vdd and Gnd PDNs are assumed

to have identical structures, distribution of currents should have the same behavior in

both PDNs. Consequently, in total six matrices of distribution factors in horizontal

and vertical resistors for nodes in these three areas are saved in look-up tables. In

preprocessing, the look-up tables are parsed and converted into two-dimensional arrays

with corresponding sizes. Note that the matrices for nodes in corner and band areas

are dedicated to the left-top corner and top band where the current draw appears.

These matrices can be converted into matrices for nodes in other corner and band areas

by mirroring rows and columns and transpositions according to various edge effects.

For instance, assuming the current window is a 4 × 4 grid, the matrices of horizontal

distribution factors for the nodes in left-top corner Ah and the distribution factors for

nodes in the right-top corner obtained by mirroring columns A′h are given as follows:

Ah =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

 A′h =


a1,4 a1,3 a1,2 a1,1

a2,4 a2,3 a2,2 a2,1

a3,4 a3,3 a3,2 a3,1



Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 88

Central
Area

Ah Ah

Ah Bh Ah

Bh
T T

Bh

Bh

Figure 3.16: Symbolic presentation of operations for matrices
in different areas in PDN

For nodes in other corner and band areas, operations that must be applied to obtain

corresponding matrices are illustrated in Figure 3.16. Assume that Ah and Bh are X×Y

distribution factors in horizontal resistors for nodes in the left-top corner and the top

band, respectively. Then the matrix for nodes in the right-top area can be obtained

by mirroring the column vectors in Ah, i.e., switching the first column and the Y -th

column, the second column and the (Y − 1)-th column, and so on. The operation is

denoted by the ↔ symbol. The matrix for nodes in the left-bottom corner is obtained

by mirroring rows, denoted by the l symbol. Applying both operations to Ah results in

the matrix for nodes in right-bottom corner. For nodes in the bottom band, operation of

mirroring rows in Bh is applied to obtain the distribution factors in horizontal resistors.

For nodes in left and right bands, the situation is somewhat different in that the same

edge effect reflected by factors in Bh occurs in vertical resistors instead of horizontal

resistors. Distribution factors in vertical resistors for nodes in left band corresponds to

the transposed matrix BT
h . For nodes in right band, mirroring columns in BT

h results in

the desired distribution factors in vertical resistors. Provided with distribution factors in

vertical resistors for nodes in the left-top corner Av and in the top band Bv, matrices for

nodes in other corner or band areas can be obtained by applying appropriate operations

analogously.

In preprocessing, provided with the six matrices by the pre-characterization, other ma-

trices can be transformed as given above and saved in C++ containers. However, it may

cost excessive memory in case of a large current window. Instead, functions mapping the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 89

index in a transformed matrix to the index in the original are defined for the three trans-

formation operations. Assuming the provided original matrix has the size of X ×Y , the

mapping functions for mirroring rows, mirroring columns and the transpose are given in

Equations 3.6, 3.7 and 3.8, respectively, where (x, y) are coordinates in the transformed

matrix given as a vector. Then the required distribution factor can be obtained from the

original at coordinates mapped using corresponding functions. For example, for nodes

in right-bottom corner, the distribution factor at coordinates (x, y) corresponds to the

value in the matrix for nodes in top-left corner at coordinates (F2(F1(x, y))).

F1((x, y)) = (X − x+ 1, y) (3.6)

F2((x, y)) = (x, Y − y + 1) (3.7)

F3((x, y)) = (y, x) (3.8)

For electrical models at the gate level, SPICE simulations were run for standard gates

with different inputs. By analyzing the simulation results, information needed to model

the current draw induced by a switching activity and the gate delay is extracted and

saved in look-up tables, which are categorized by the following parameters:

1. standard gates such as buffer, inverter, NAND or NOR with inputs up to 4;

2. the index of the switching input;

3. the rising or falling input edge of the switching input.

As given in 3.4.3.2, the gate delay is modeled by a polynomial function of all combinations

of three variables: the input voltage swing Vswing1, the supply voltage swing Vswing2 and

the load capacitance Cload (Equation 3.5). Each look-up table for the delay model

contains eight polynomial coefficients corresponding to the delay function for a gate

with a rising or falling input. During the course of preprocessing, sets of coefficients are

saved in arrays with three dimensions of the categorizing parameters enumerated above.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 90

For the current model, reference currents that obtained by SPICE simulations with

nominal values of variable parameters are provided by the pre-characterization library.

The shifting and multiplying factors are defined as well to derive approximated current

waveforms from the reference currents for all combinations of parameter values that most

possibly occur in a realistic environment. Due to the complexity of deriving approxi-

mated current waveform for different load capacitances, five current waveforms for each

combination of the categorizing parameters have been determined by SPICE simulations

for load capacitance varying from one to five elementary equivalent capacitances when

the other two variables Vswing1 and Vswing2 are kept to the nominal value. Furthermore,

currents drawn from Vdd and Gnd PDNs due to a switching activity are considered

independently. Thus two extra parameters should be added to the enumeration above

to categorize the corresponding look-up tables:

4. load capacitance varying from one to five elementary equivalent capacitances;

5. Vdd or Gnd PDN;

All look-up tables saving the reference currents, represented by 100 discrete current

values for each, are converted into arrays with dimensions of the five categorizing pa-

rameters. Corresponding shifting and multiplying factors to derive currents for various

values of Vswing1 and Vswing1 are taken from the pre-characterization library and saved

in arrays with the same dimensions of the reference arrays.

3.5.3 Logic Simulation

As given in Section 3.3, MIRID combines a time-aware event-driven simulation per-

formed at the gate level with the IR drop effect reflected by extra gate delays induced

by the reduced voltage supplies. In other words, the approach modifies the conventional

time-aware event-driven logic simulation by evaluating gate delays using provided elec-

trical models. One of the challenges encountered by the implementation is to develop

the core of the simulator that is most possibly independent from the electrical models,

i.e., the simulator needs to be modified at least cost by updating of electrical models,

which is likely to occur due to the requirement for raising the accuracy by integration

of more electrical parameters. For this purpose, the simulator consists of two parts: the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 91

simulation core that runs an event-driven simulation with modified timing configuration,

and interface functions that return parameters required by the logic simulation, e. g.,

the gate delay, to the simulation core, and compute/update IR drop related electrical

parameters according to the electrical models. In this section, the algorithm of the

simulation core is introduced in detail.

Conventionally, an accurate logic simulation implies the evaluation of logic values at

lines for applied test patterns, as well as the timing of each logic value transition. It also

determines hazards, that is, the output of a logic system momentarily changes to a new

value after the input changes, and settles back to the old value. For logic simulations

that focus on the steady-state logic values implied at circuit lines, the temporal circuit

behavior, including the timing of transition occurrences and the hazards, are often out

of consideration. A zero-delay simulation is commonly performed in this scenario, by

which the logic value at each gate output is evaluated by the gate function assuming that

a line is assigned with the newly evaluated value without any delay. In this thesis work,

as the target of the simulation is to evaluate IR drop induced delay due to instantaneous

current requirement of switching activities, the timing analysis considering the temporal

circuit behavior is necessary for the simulation. The simulation flow consists of two

time frames for a two-pattern test. In the first time frame, the zero-delay simulation is

performed since only the steady-state logic values at lines need to be evaluated. These

values correspond to the initial state of lines in the timing-aware simulation performed

in the next time frame.

In the remaining part of this section, algorithms for the zero-delay logic simulation

(3.5.3.1) and the timing-aware simulation (3.5.3.2), which is a modified version of the

zero-delay simulation, will be presented.

3.5.3.1 Zero-delay Logic Simulation

As shown in Algorithm 6, for a circuit C applied with a test pattern P , the zero-delay

logic simulation assigns the test pattern to the primary inputs and evaluates logic values

at other lines in order of their levels. The evaluation of the logic value at a line which

is not a primary input considers two situations that the line is a gate output or it is a

branch in a fan-out. In the former situation, the output value is evaluated by computing

the logic function implemented by the gate. As lines are evaluated in order of level, it

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 92

is guaranteed that all gate inputs are already assigned by logic values when the gate

output is evaluated according to the gate function. In the latter situation, the logic

value of a branch is the same as the value of the stem.

Algorithm 6: Zero-delay Logic Simulation

Input: Circuit C , Test Pattern P = {p1, p2, . . . , pn}
Preprocessing:
begin

Levelize lines in the circuit;
Save lines in the list L sorted by their levels;

begin
foreach primary input PIi (i ∈ {1, 2, . . . , n}) do

PIi ←− pi;
foreach line l ∈ L do

if l is not a primary input then
Evaluate the logic value at l;

As given in Section 3.5.1, a logic library is built to represent the circuit. It contains

signal objects corresponding to lines in the circuit. The signals are saved in a list sorted

by their levels, thus the implementation of the simulation simply evaluate logic values

of signals in order of appearance in the list. In addition, a fan-out system is considered

as a single signal. Thus a signal is either assigned with the corresponding logic value in

the test pattern as a primary input, or evaluated by the computation of the related gate

function as a gate output.

Commonly, the gate function can be given as a three-valued truth table, which describes

the fault-free behavior of the gate. The three-valued logic contains components of logic

0, logic 1 and an unspecified value, usually denoted by symbol X called don’t care. An

example of the three-valued truth table for the NAND gate with two inputs i1 and i2 is

given as follows:

i1

0 1 X

0 1 1 1

i2 1 1 0 X

X 1 X X

Truth tables for all standard gates are given as functions in the implementation; each

takes the logic values of the input signals as inputs, and returns the logic value of the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 93

output. The three-valed logic is defined by a named enumeration LogicValue t that

contains the values: Logic 1, Logic 0 and Logic x. Then the declaration of the function

for a two-input gate can be given as follows:

LogicValue t GateFunction(LogicValue t i1, LogicValue t i2){. . . };

For an n-input gate (n > 2), which can be considered as a hierarchical system of

two-input gates, it is not necessary to save the truth table with a size of 3n. Its function

can be defined as an iterative call of the gate function of the corresponding two-input

gate. For instance, the output of a three-input NAND gate can be evaluated by call-

ing FunctionNAND2(FunctionNAND2(i1, i2), i3) where i1, i2 and i3 are input signals

and FunctionNAND2 is the gate function of a two-input NAND gate.

3.5.3.2 Timing-aware Event-driven Simulation

For the purpose of simulating IR drop induced by switching activities in the logic block,

two-pattern tests need to be applied to the circuit. For each two-test pattern, simulation

is performed in two consecutive time frames. In the first time frame, the zero-delay logic

simulation regardless of the timing behavior of circuit elements is performed. Each signal

in the circuit is assigned with a steady logic value after the simulation. In the next time

frame, the fault simulation commonly simulates the circuit with the faulty behavior

modeled for physical defects. However, in context of simulating IR drop induced delays,

no specific faulty behavior is given but the timing behavior affected by the IR drop has

to be simulated.

The simulation is accelerated by employing the event-driven technology [2, p. 69]. That

means, only the propagation of an input switching to the gate output will be considered

as an event and processed during the simulation. The intrinsic static currents drawn

by gates with only switching inputs or even without switching terminals have much less

impact on the IR drop effect, and are ignored by the simulation for the sake of efficiency.

Moreover, the situation that different inputs of the same gate switch simultaneously or

successively during a small slice of time (typically smaller than the gate delay) is not

taken into special consideration. That means, these input switchings are processed as

independent events, which implies a simple combination of independently estimated

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 94

electrical values (for the current draw and for the gate delay) during processing these

events. However, the actual resulted current draw and gate delay in this situation are

not the same as the simple combinations. This impreciseness is caused by the lack of

corresponding pre-characterization in electrical models. An exhaustive characterization

for all possible combinations of (nearly) simultaneous input switchings is not feasible

[111]. Fortunately, the probability of these simultaneous switchings is small and in

addition their impact is limited [111].

The transitions of logic values at signals are described by switching events, denoted by

S-event(s, t, v), where s is the switching signal, t is the simulation time in picoseconds

when the switching activity occurs and v is the logic value newly assigned to s. During

the simulation, switching events are generated and inserted into a queue sorted by the

time of events. Meanwhile, the simulation processes switching events in the sorted queue

iteratively. An example of the event simulation applying an event queue is illustrated

in Figure 3.17. Figure 3.17a presents three NAND gates G1, G2 and G3, each line is

assigned with a steady logic value by the zero-delay simulation for the first pattern. As-

suming that a falling transition is imposed at the input signal a at time t1 after applying

the second pattern, a switching event S-event(a, t1, 0), denoted by e1, is generated and

inserted into the event queue. The event queue is sorted by the time of events; the first

event in the queue will be processed by the simulator. As shown in Figure 3.17b, assum-

ing that e1 is the first event, the event is processed by updating the active simulation

time to t1 and evaluating the gate function of G1. It implies a rising transition on the

output c since the other input b has the non-controlling value of NAND. Moreover, us-

ing the provided interfaces to electrical models, the instantaneous current caused by the

switching event is estimated and distributed throughout the supply networks; the gate

delay of G1, denoted by d1, is estimated as well and returned to the logic simulation by

the interface function. Accordingly, a new switching event en+1 : S-event(c, t1 + d1, 1)

is generated, which indicates that the value of signal c is changed to 1 at the time

t1 + d1. After the removal of e1 and insertion of en+1, the event queue is newly sorted.

Assuming that en+1 has the earliest time in all events, it will be processed at the next.

Analogously the electrical parameters are updated by the interface functions; delays of

gates driven by c, d2 and d3, are returned to the logic simulation. As the transition on

c is propagated to outputs of the downstream gates f and g, two new switching events,

en+2 : S-event(f, t1 + d1 + d2, 0) and en+3 : S-event(g, t1 + d1 + d3, 0), are generated

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 95

and inserted into the queue. The event queue is newly sorted and the first event will be

processed in the next iteration.

a
b

c

d

e

f

g

1

1

1

1

0

0 1

1 0

1 0

G1

G2

G3

d1

d2

d3

(a) Logic simulation in a circuit

e1e2eien-1enen+1

e1: S-event(a, t1, 0)en+1: S-event(c, t1+d1, 1)

e1e2eien-1enen+2

en+2: S-event(f, t1+d1+d2, 0)

en+1

en+1: S-event(c, t1+d1, 1)

en+3

en+3: S-event(g, t1+d1+d3, 0)

tactive = t1:

tactive = t1+d1:

(b) Event queue applied by the simulation

Figure 3.17: Event-driven simulation applying an event queue

The iterative simulation flow is presented in Algorithm 7. The simulator is run for a cir-

cuit C represented by a logic library as described in 3.5.1, and a sequence of two-pattern

tests P . Each pattern in P contains n logic values where n is the number of primary

inputs in combinational circuits, or the total number of primary inputs and flip-flops in

sequential circuits. For sequential circuits, the values assigned at the state lines during

the first time frame are saved in the flip-flops, and are used to initialize the correspond-

ing lines in the next time frame, i.e., the test patterns are constructed by the values

newly assigned to the primary inputs and the values saved in flip-flops during the previ-

ous simulation run. Besides that, no difference is assumed for the simulation algorithm

regarding combinational circuits and sequential circuits.

The preprocessing of the algorithm consists of building a library of electrical models

compatible to the interfaces functions (Section 3.5.2) and mapping each gate object in the

logic library to Vdd and Gnd supply nodes. In practice, data from circuit layout should

be used for determining parts of the PDN, to which a specific logic gate is connected. If

the actual topological information is lacking, random connection between the gates and

supply nodes can be assumed, or even very rare mappings can be considered for special

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 96

Algorithm 7: IR Drop Simulation

Input: Circuit C , Patterns P
Preprocessing:
begin

Build a library of electrical models compatible to the interfaces functions;
Assign each gate to Vdd and Gnd supply nodes;

begin
foreach two-pattern test (p1, p2) ∈ P do

Run zero-delay simulation for p1;
foreach primary input PIi (1 ≤ i ≤ m) do

if val(PIi) 6= p2[i] then
Insert S-event(PIi, 0, p2[i]) into event queue EQ;

while EQ not empty do
S-event(s, t, v)←− first event in EQ;
tsim ←− t;
UpdateCurrent();
foreach gate g driven by s do

sout ←− gate output of g;
vold ←− logic value currently assigned to sout;
Evaluate sout according to the gate function of g;
vnew ←− logic value newly assigned to sout;
if vnew 6= vold then

δ ←− GetGateDelay();
Insert S-event(sout, t+ δ, vnew) into EQ;

Remove S-event(s, t, v) from EQ;
Sort EQ by the time of events;

investigation purposes, such as to provoke maximal IR drop by connecting all gates to

a single supply node.

After the preprocessing, all two-pattern tests (p1, p2) in P are applied to the simulator

iteratively. During each iteration, a zero-delay simulation is first performed for p1. All

signals are assigned with logic values by evaluating gate functions during the simulation.

Then the second pattern p2 is applied; the event queue EQ is initialized by switching

events of primary inputs, denoted by S-event(PIi, 0, p2[i]) indicating that the i-th pri-

mary input PIi is assigned with p2[i] that is different to its currently assigned value

val(PIi). The time of these events are initialized to an arbitrary value, e. g., the time

zero. Events inserted in EQ are sorted by the time. No particular order is given for

events with the same time in EQ.

As long as EQ is not empty, events in EQ will be processed iteratively in the sorted

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 97

order. During each iteration, the first event in EQ, denoted by S-event(s, t, v), is to

be considered. A global variable tsim, which denotes the active simulation time, is

updated by the event time t. The global time control facilitates synchronization of

updating currents flowing throughout PDN resistors, realized by the interface function

UpdateCurrent(). Note that the notation of functions in the algorithm does not con-

tain any input argument for the sake of readability. Detailed declaration of interface

functions including the input parameters will be given in 3.5.4. Electrical parameters

affected by the switching event and mainly contributing to the IR drop effect are up-

dated by the function. For example, the instantaneous current induced by the switching

activity is evaluated and distributed throughout the PDN grids. After the estimation of

electrical parameters according to active simulation environment, the logic simulation

is performed further. For each gate g driven by s, the gate output sout is evaluated by

the corresponding gate function, as described in 3.5.3.1. If the newly evaluated value

vnew differs from the current value of the gate output vold, the gate delay δ is deter-

mined using the interface function GetGateDelay()5. Meanwhile, a new switching event

S-event(sout, t+ δ, vnew) indicating that the gate output sout switches to the value vnew

after the delay δ is generated and inserted into EQ.

After all downstream gates are considered, the processed event S-event(s, t, v) is removed

from EQ. If there exist newly inserted events, EQ is sorted by the time of events. A new

iteration starts for the first encountered event in EQ. This iterative process continues

until EQ becomes empty, i.e., all events in queue are processed and removed from EQ.

No new events will be generated during the simulation when signal transitions cannot

be propagated to the primary outputs or all events regarding switching primary outputs

are processed.

For the test patterns generated for SDDs, the simulator propagates transitions along

the sensitized paths through the possible defect sites. Delays of the propagation are

compared to the propagation time under nominal delay assignment of gates. The extra

delay given by the comparison indicates the impact of IR drop induced by applying these

test patterns. Tests can be evaluated more accurately by the simulation when variations

due to IR drop are considered. For example, tests generated by KLPG may not turn out

as most effective after the evaluation. The tests that sensitize relatively shorter paths

under nominal timing assignment but launch a large amount of switching activities and

5The input parameters of the function are omitted for the sake of readability

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 98

in turn induce longer delays in presence of IR drop should be used for SDD testing.

Moreover, signal hazards due to different arrival times of input transitions are simulated

by the time-aware simulation. For example, events S-event(s, t, 1), S-event(s, t+ δ1, 0)

and S-event(s, t+δ1+δ2, 1) represent the hazard 0→ 1→ 0 at signal s. A signal hazard

may invalidate nonrobust test for a given PDF. Furthermore, in presence of IR drop, a

robust test generated under the nominal timing assignment may become invalid due to

the extra induced delay. Thus, MIRID can also be used to evaluate pairs of patterns

with respect to their testability. In context of power-aware test, IR drop has become an

important concern with the trend of low-power high-performance design. The increased

power consumption during test, e. g., during scan shift operation in scan based testing,

can lead to a significant IR drop and result in timing failures. By accurately estimating

the IR drop effect, it is possible for MIRID to evaluate various power-aware ATPG

approaches.

3.5.4 Interface Functions For Electrical Models

As given in Algorithm 7, the interfaces functions, denoted by UpdateCurrent and Get-

GateDelay, are called by processing switching events. Actually, the implementation of

UpdateCurrent includes two tasks: estimation of the instantaneous current drawn by

a switching gate and distribution of the current throughout PDN grids. Correspond-

ing functions CurrentEstimation and CurrentDistribution are presented in 3.5.4.1 and

3.5.4.2, respectively; the function GetGateDelay that determines gate delays is declared

in 3.5.4.3.

3.5.4.1 Estimation of Dynamic Currents

The function CurrentEstimation approximates the dynamic current induced by a switch-

ing activity during the simulation process. It is defined as an interface function that

takes active environmental parameters from the logic simulation, and estimates the in-

duced current according to the electrical model. The declaration of the function is given

as follows:

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 99

Array<Current t> CurrentEstimation(GateType t gate, Index t idx,

Edge t edge, PDN t pdn, Capacitance t Cload,

Voltage t Vswing1, Voltage t Vswing2)

{. . . };

The function returns an array of current values of the type Current t corresponding to a

floating-point number with user-defined precision. As given in 3.4.3.1, the array contains

100 distinct current values within the time interval of 100 picoseconds; the beginning

of the interval refers to the time of switching event. The function is called by the logic

simulation when the current drawn by a switching gate needs to be estimated. The

input values are given according to the active simulation environment, based on which

dedicated reference current array and operation factors are returned by the electrical

model for the current approximation. According to the employed electrical model for

dynamic current, the required input parameters are the type of the switching gate gate,

the index of the switching input idx, the rising or falling input edge edge, the Vdd or Gnd

PDN, the load capacitance Cload, the input voltage swing Vswing1 and the supply voltage

swing Vswing2. Each parameter has a user-defined data type specifying possible param-

eter values in a named enumeration, e. g., PDN t corresponds to a named enumeration

of {vdd, gnd}. For a modified electrical model, the implementation of the function needs

to be modified correspondingly; more input parameters are possibly required.

As given above, the approximated current array depends on the input and supply voltage

swings computed using equations 3.1 and 3.2. The computations require the voltage

levels at supply nodes in Vdd and Gnd PDNs for both the upstream gate and the

switching gate, which can be determined based on the active current distributions in

PDN grids and the grid resistances.

V(i,0)

I(i,0) I(i,1) I(i,j-1)
N(i,j)

R(i,1) R(i,j-1)R(i,0)

N(i,0)

V(i,j)

Figure 3.18: Calculation of voltage level at PDN node N(i, j)

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 100

Algorithm 8: CalculateVoltage

Input: gate g, time t, current arrays in grid resistors
Output: voltage V (i, j)
begin

N(i, j)←−supply node connected to g;
V (i, 0)←−left border voltage of i-th line;
V (i, j)←− V (i, 0);
for y from 0 to j − 1 do

R(i, y)←− grid resistance with coordinates (i, y);
I(i, y)←− current value in the corresponding resistor at time t;
V (i, j)←− V (i, j)− I(i, y)×R(i, y) ;

Algorithm 8 presents the computation of the voltage level supplied to gate g at time t,

provided with current values distributed in grid resistors. Assume that g is connected

to the supply node N(i, j) in a PDN, which refers to the grid node at i-th line and j-th

column in the PDN as illustrated in Figure 3.18. The voltage at N(i, j), denoted by

V (i, j), can be calculated by applying the Ohm’s law along the path from an extreme

node on the border to N(i, j). For example, the left extreme node of i-th line N(i, 0)

is supplied with a given voltage V (i, 0). Then the voltage at N(i, j) is computed by

the equation: V (i, j) = V (i, 0) −
∑j−1

y=0(I(i, y) × R(i, y)), assuming that the horizontal

resistances R(i, 0), . . . , R(i, j − 1) and the active current values flowing through the

resistors, denoted by I(i, 0), . . . , I(i, j−1), are known. In the electrical model applied by

the experiments, the Vdd and Gnd PDNs are supplied with nominal power and ground

voltage values at the borders, respectively. All horizontal and vertical grids have the

same resistance 0.4Ω. Given the currents flowing through resistors, the voltage levels on

supplied nodes connected to the considered gate in both PDNs can be calculated using

Algorithm 8. Note that the algorithm presents only a possible way of the computation.

Actually the Ohm’s law can be applied along a path from any extreme node to the

supply node of g to get the voltage level, which will always lead to the same result.

3.5.4.2 Distribution of Currents in PDNs

After the estimation of the instantaneous current drawn by the active switching event,

currents flowing through neighboring resistors are updated by adding distributions of

the current. The declaration of the corresponding function is given as follows:

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 101

void CurrentDistribution(Node t n, Array<Current t> current)

{. . . };

It takes the supply node connected to the switching gate and the current array returned

by CurrentEstimation as inputs. No returned value is required by the logic simulation

through the interface, which is indicated by the void before the function name. The

supply node is defined as an object Node t that contains information on the coordinates

of the node in PDN grid, the connected gate, etc.

Algorithm 9: CurrentDistribution

Input: PDN node N(i, j), Current array current appears at N(i, j)
begin

FX×Y ←− X × Y horizontal distribution factors for N(i, j);
RX×Y ←− X × Y neighboring horizontal resistors of N(i, j);
for x = 1→ X do

for y = 1→ Y do
current′ ←− saved current array in resistor R(x, y);
Update discrete current values in current′ using current and F (x, y)
(Equation 3.9);

As given in 3.5.2, two sets of factors regarding the current distribution in horizontal and

vertical resistors are given for nodes in different areas. Actually, it is not necessary to

update the current distributed in both the horizontal and vertical resistors. The reason

is that the voltage level at a supply node can be computed by applying the Ohm’s law

along a horizontal or vertical path, as given in 3.5.4.1. Consequently, only the currents

in either horizontal or vertical resistors are used by the computation and thus need to

be updated. Without loss of generality, Algorithm 9 presents the update of currents

saved in horizontal resistors in the neighboring area of N(i, j). The current window is

assumed to have a size of X × Y . The horizontal resistors in the neighboring area of

N(i, j), denoted by RX×Y , is defined to have the same size of the current window. As

given in 3.4.3.1, the pre-characterization library saves matrices of current distributing

factors in the sub-grid of PDN with the same size of the current window. According

to the position of N(i, j) in PDN, an appropriate matrix of current distribution factors

in horizontal resistors is selected, which is denoted by FX×Y . Each resistor R(x, y)

refers to a distributing factor F (x, y) (1 ≤ x ≤ X, 1 ≤ y ≤ Y). The current array

flowing through R(x, y), denoted by current′, is updated by adding the distribution of

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 102

the newly induced current, i.e., discrete values in current multiplied with F (x, y), to

corresponding values in current′. Assuming that the first value in current corresponds

to the active simulation execution time tsim, then only values after tsim in current′ need

to be updated, as given in Equation 3.9.

current′[m] = current′[m] + current[m]× F (x, y) (m ≥ tsim) (3.9)

Figure 3.19 presents an example of updating the values in a current array current′, given

as eight discrete values in the time interval t0–t7 in Figure 3.19a, using the estimated

current array current and a distribution factor. As current appears due to the active

switching event, the first value in the array corresponds to the active simulation time

tsim. Assuming that tsim has the value of t2, then only the values in current′ after t2 need

to be updated. As shown in Figure 3.19b, the updated current′ contains ten discrete

values. Values at t0 and t1 are not changed while values for t2–t9 are incremented by

the corresponding distributions of current.

Time

current' current

C
u
rr
en
t

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
tsim

(a) Current array before the update

Time

current' current

C
u
rr
en
t

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
tsim

(b) Current array after the update

Figure 3.19: Update current array current′

3.5.4.3 Estimation of Gate Delays

During the simulation gate delays are estimated by the function GetGateDelay, which

is declared as follows:

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 103

Time t GetGateDelay(GateType t gate, Index t idx, Edge t edge,

Capacitance t Cload, Voltage t Vswing1, Voltage t Vswing2)

{. . . };

As given in 3.4.3.2, the gate delay is computed by the polynomial (Equation 3.5) of

the input voltage Vswing1, the supply voltage Vswing2, the load capacitance Cload and all

possible combinations between them. Hence, the active values of the three parameters

must be given as function inputs when the function is called by the logic simulation.

Moreover, the function requires the information on the target gate gate, the index of its

switching input idx and the edge of the input transition edge to get dedicated coefficients

of the polynomial.

3.6 Application to Self-adaptive Better-than-worst-case De-

sign

As the core of the simulator is a time-aware logic simulation developed independently

on the electrical model, modifications adapted to various research purposes can be eas-

ily integrated into the core without affecting the original design. In this section, the

application of the simulator to self-adaptive better-than-worst-case design will be in-

troduced. Better-than-worst design [5, 32, 34] is a popular approach addressing the

large variability in state-of-the-art technology. The aim of the design is to overcome

worst-case clock timing requirements by employing a shorter clock period and allowing

occasional errors to occur. Low-cost error detection and correction techniques are often

used to detect and correct these errors. In contrast to the traditional, conservative design

style, better-than-worst-case circuits are run at an aggressive voltage-frequency operat-

ing point, which improves the circuit performance but does not guarantee the correct

timing behavior of the circuit; the reliability of operations is achieved by detection and

correction of errors, and the improvement in performance and/or energy consumption

can outweigh the overhead of error correction. Thus, better-than-worst-case architec-

tures are often self-adaptive: they may keep raising the frequency or lowering the voltage

if the error rate is under a limit; stop the process if the limit is exceeded.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 104

To detect timing-related errors in self-adaptive better-than-worst-case circuits, low-cost

solutions are well-studied. One extensively used technique [5, 34] equips flip-flops with

duplicated shadow memory elements triggered by a delayed clock. The delay is cho-

sen such that the extended clock window ensures the timing even in worst case, i.e., the

propagation delay through the longest path. Hence, the timing errors can be detected by

comparing the values in the main and the shadow memory elements. Such an error de-

tection approach has been proposed for a better-than-worst-case design called Razor [5],

and also for several experimental prototype designs in the industry [112, 113]. However,

this scheme does not work reliably when the flip-flop is driven by a path that is shorter

than the timing skew. Two solutions are known to mitigate the short-path problem:

padding the short paths with buffers until they become sufficiently long, or placing ad-

ditional latches on to the short paths. Aiming at reliable self-adaptive circuit operations,

possible invalidation scenarios that could prevent error detection in Razor-like designs

are investigated in [114]. The study also derives conditions to avoid such invalidations

and performs theoretical analysis of both solutions for the short-path problem based

on a simple model. A modified version of MIRID performs simulations for benchmark

circuits with buffers or latches placed according to the derived conditions.

The remaining text of this section is organized as follows: the short-path invalidations

and mitigation techniques by inserting buffers and latches are first reviewed in 3.6.1;

a brief introduction to the detection conditions for timing errors based on a simplified

model is given in 3.6.2; finally, the modified simulation flow of MIRID for mitigating the

short-path problem is presented in 3.6.3.

3.6.1 Short-path Invalidation

Razor memory elements consist of a main latch and a second “shadow” latch that is

driven by the same input but clocked with a certain delay δ after the main latch. The

value δ is chosen to ensure that the correct value will always be captured during the

delayed clock window while the incorrect value due to a delay fault is captured by the

main latch. The delay fault is detected in cases that values saved in both latches are

different. However, for short paths driving such a memory element, a false positive

detection is possible when the transition propagates too fast through the short path.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 105

path1 (long)

path2 (short)

Razor
Flip-flop

A

Razor
Flip-flop

B

Ain

Amain

Ashadow

Bin

Bmain

Bshadow

Tperiod1/2Tperiod 3/2Tperiod

Error
detected

Error detected
(false positive)

Delay fault < 1/2Tperiod

Next cycle finished
during the detection period

Figure 3.20: Short-path invalidation in Razor design

Figure 3.20 illustrates an example of the short-path invalidation. Razor memory ele-

ments A and B are driven by a long path (path1) and a short path (path2), respectively.

Given the clock period Tperiod of the main latch, the shadow latch is clocked with a delay

of 1/2 Tperiod. The timing diagram represents values of the latch inputs Ain and Bin,

the value in the main latches Amain and Bmain, and the values in the shadow latches

Ashadow and Bshadow of A and B, respectively. Assuming that the long path propagates

the transition with a delay shorter than 1/2 Tperiod, the main latch captures the wrong

value 0 at the clock edge Tperiod whereas the shadow captures the correct value 1 at

the clock edge 3/2 Tperiod, as illustrated in the timing diagram. Comparing these two

values using a XOR will flag an error and trigger a possible recovery, e. g., re-execution

of an instruction in a microprocessor. However, the error detection is invalidated when

the propagation time is shorter than 1/2 Tperiod along the short path. In this case, the

transition of Bin in the next cycle is finished within the detection period between one

and 3/2 Tperiod. The main latch captures the correct value 1 whereas the shadow latch

captures the value 0, which is the correct value of Bin after the transition in the next

cycle. An error is reported because of the difference of the two values. The detection is

false positive since no delay fault is actually present. The incorrect detection can cause

a repeated execution for the recovery, which leads to the same error again and results

in a deadlock.

Two ways are considered to alleviate this short-path invalidation: adding buffers to

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 106

a short path such as to guarantee a minimal delay of 1/2 Tperiod [115], or placing a

latch onto the short path [116]. For the latter, the inserted latch is opaque in the first

and transparent in the second half of the clock cycle. That means, the latch delays

the transition on the path beyond 1/2 Tperiod and thus excludes the possibility of the

invalidation. An example of the latch placement mitigating the short-path problem is

illustrated in Figure 3.21. A latch L is inserted into the short path so that the input

transition of the latch input is delayed beyond the opaque period of the latch in both

clock periods. Consequently, both the main and the shadow latches in the razor memory

element B captures the correct value; no error will be false-positively detected.

path2 (short)
Razor

Flip-flop

B

L

Lin

Lout

Bin

Bmain

Bshadow

Tperiod1/2Tperiod 3/2Tperiod

No error
detected

Correct value captured

L

opaque opaquetransparent transparent

0

Figure 3.21: Mitigation by latch placement

However, both mitigation techniques, buffer insertion and latch placement, are prone

to invalidations under extreme variations. A path that has been padded by buffers

to guarantee delay of 1/2Tperiod under maximal variation-induced speed-up may actu-

ally become potentially too long under maximal variation-induced slow-down. In the

case of latch-based mitigation, sub-paths from a circuit input to the placed latch or

from the latch to a circuit output may have delays that exceed Tperiod under maximal

variation-induced slow-down. If such a path is sensitized, the detection scheme will not

work and in turn worsen the robustness of the system operation. In the following section,

all these invalidations due to variations are investigated and analyzed based on a simple

model; closed-form conditions for a reliable detection are derived from the analysis.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 107

3.6.2 Detection Conditions

The purpose of the analysis in this section is to identify conditions for reliable detection

of errors in self-adaptive designs.6 The analysis yields two clock periods durations: the

safe clock period Tsafe for which all paths are guaranteed to complete switching and no

error can occur even under maximal slow-down; and the minimal clock period Tmin at

which errors can occur but are guaranteed to be detected under all variations (between

maximal slow-down and maximal speed-up). Operating the circuit at a frequency higher

than 1/Tmin may lead to unrecognized errors and thereby result in erroneous operations.

An adaptive frequency scaling strategy may choose a clock period T ∈ [Tmin, Tsafe]

and adaptively increase (decrease) it if the number of detected errors is over (under) a

user-specified threshold.

The statistical model is typically used by analysis of timing under variations. For ex-

ample, one could calculate the probability of a detected error and the overhead of cor-

rection, and determine the clock period that lead to the minimal expected execution

time. However, the requirements on the detection mechanism are much stricter, as even

one undetected error may lead to a deadlock or erroneous operation. For this reason,

the analysis focuses on identification of corner cases, even though their likelihood of

occurrence might be very low.

3.6.2.1 Simplified Variability Model

The analysis is performed based on a simplified model avoiding details that can be easily

incorporated into the model but would make the analysis bulky. The model assumes the

unit-delay timing of gates under maximal speed-up. Two sources of variations are consid-

ered: process-related variability p and pattern-dependent variability d. Process-related

variability incorporates factors such as line-edge roughness, grain alignment in the gate,

and atomic-scale dopant fluctuations. Parameter p may already assume values of 1.4

(±20%) in todays’s technologies displaying moderate variability, and can be expected

to assume values of 2 (2X) or more in future technologies, particularly in low power cir-

cuits operated at near-threshold or subthreshold supply voltages. If only process-related

6It is assumed that designs have no distinct voltage or power domains. The techniques discussed here
are applicable on individual domains of more complex designs.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 108

variability is considered, a given gate may assume the delay between 1 and p, and a path

of m gates may have a delay between m and mp time units for extreme corner cases.

Pattern-dependent variability refers to the influence of the patterns applied on the in-

puts of a switching gate on the delay. For example, the NAND3 gate may have three

times larger delay for the 111 → 011 at the inputs compared with the 111 → 000,

though both input transitions induce the same 0 → 1 at the output. It is possible to

construct an entire path composed of alternating NAND and NOR gates such that all

gates have minimal or maximal delay at the same time depending on their side-inputs.

The simplified model does not consider the side input explicitly and assumes that a gate

affected by pattern-dependent variability has a delay between 1 and d. Note that d can

be rather large even in conventional technologies with low process variability. Then,

if both sources of variations are present at the same time, the delay of a gate varies

between 1 and n where n := pd is the maximal cumulative variability.

3.6.2.2 Mitigation by Buffer Padding

As given in 3.6.1, a minimal delay of 1/2 Tperiod needs to be guaranteed for every path

when mitigating the short-path problem by buffer padding. Assuming that each gate has

the maximal delay n and the structurally longest path has m gates, the safe clock period

for which no errors can occur even under maximal slow-down is Tsafe = mn. Then, the

reliable error-detection is ensured for a raised clock frequency (or, equivalently, a reduced

clock period) if all paths have the minimal delay 1/2 Tsafe = 1/2 mn. The condition

n ≤ 2 is derived in [114] for buffer padding applied for all short paths with less than

m/2 gates without violating Tsafe = mn.

Moreover, it is assumed that buffers used for padding are prone to variability but possibly

to a lesser extent than regular gates, which means a buffer delay between 1 and b, where

b ≤ n. The reason is that a buffer has one input and is not affected by pattern-dependent

variability. (Variability-control techniques can also be employed to reduce its maximal

slow-down.) Then under variation n > 2, it is proved by inductive analysis ([114]) that

the buffer padding is impossible if b > n/(n − 1). However, some paths may not be

padded by buffers even if the buffers exhibit no variability at all (b = 1). Such an

invalidation for b = 1 can be addressed by extending Tsafe. Details of the performed

analysis are given in [114].

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 109

The minimal clock period Tmin is a relaxed clock period (Tmin < Tsafe) in which the

circuit is not guaranteed to finish switching but any errors are detected. To determine

the value of Tmin for which buffer padding is possible, first it must be ensured that the

circuit still meet the clock period Tsafe under the maximal slow-down after buffers have

been inserted. Then, to be detected, errors need to be visible up to half clock cycle after

the end of the clock period, otherwise the shadow latch will not catch the correct value.

That implies all paths will finish switching before 3/2 Tperiod. As it is known that all

paths will finish switching before Tsafe, the condition is fulfilled for Tperiod satisfying

3/2 Tperiod ≥ Tsafe. Therefore, Tmin = 2/3 Tsafe.

In summary, buffer padding is impossible if the variability n of gates exceeds 2× and

the variability b of the inserted buffers exceeds n/(n − 1). It requires a larger Tperiod

for certain path lengths even if the buffers are not affected by the variability at all. If

padding is possible, frequency scaling is reliable between [Tmin, Tsafe] = [2/3 mn,mn].

3.6.2.3 Mitigation by Latch Placement

Latch insertion can give rise to three invalidation scenarios: input-to-latch invalidation,

strong latch-to-output invalidation and weak latch-to-output invalidation. They are

discussed next based on the same model used for buffer padding.

Figure 3.22 presents the input-to-latch invalidation scenario: a latch L is inserted into

a path where the length of sub-path from the input to L exceeds Tperiod under maximal

slow-down. As the latch captures the wrong value of the unfinished transition and delays

it beyond the operating period of the error-detection circuitry, both the main and the

shadow latches capture the same value; the error is not detected. The reason why a latch

is inserted on such a long path may be the existence of a short path to which the latch

belongs. Thus, the algorithm that places latches on short paths must avoid locations

which also belong to long paths and could cause the input-to-latch invalidation.

As shown in Figure 3.23, the strong latch-to-output invalidation occurs if a sub-path

between the latch and an output has a delay of more than Tperiod under the maximal

slow-down. The cumulative delay of the path exceeds 3/2 Tperiod, and both the main

and the shadow latches capture the wrong value, such that no error is detected.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 110

path1 (long)
Razor

Flip-flop

A

L

Lin

Lout

Ain

Amain

Ashadow

Tperiod1/2Tperiod 3/2Tperiod

No error
detected

Wrong value captured

L

> Tperiod

opaque opaquetransparent transparent

0

> Tperiod

Figure 3.22: Input-to-latch invalidation

path1 (long)
Razor

Flip-flop

A

L

Lin

Lout

Ain

Amain

Ashadow

Tperiod1/2Tperiod 3/2Tperiod

No error
detected

Wrong value captured

L

> Tperiod

opaque opaquetransparent transparent

0

> Tperiod

Figure 3.23: Strong latch-to-output invalidation

In the weak latch-to-output invalidation (Figure 3.24), the delay from the latch to an

output exceeds 1/2 Tperiod under the maximal slow-down, and results in a detected error.

The error would not have occurred in absence of the latch if the cumulative delay of

the path going through the latch is less than Tperiod. In other words, avoiding the weak

latch-to-output invalidation reduces the variation-induced error rate. In contrast, the

input-to-latch and the strong latch-to-output invalidations cause undetected errors and

must be avoided. These two invalidation scenarios are collectively referred as strong

invalidations.

To analyze latch placement, the choice of Tsafe = mn, where m is the number of gates

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 111

path1 (long)
Razor

Flip-flop

A

L

Lin

Lout

Ain

Amain

Ashadow

Tperiod1/2Tperiod 3/2Tperiod

Error
detected

Wrong value captured

L

> 1/2Tperiod

opaque opaquetransparent transparent

0

> 1/2Tperiod

Figure 3.24: Weak latch-to-output invalidation

on the structural longest path and n is the maximal gate delay, is investigated. Unlike

buffer padding, by which this choice is problematic under certain circumstances, placing

a latch anywhere in a circuit will not yield any sub-path with more than m gates. That

means, no sub-path can have a delay exceeding Tsafe and thus the strong invalidations

are not possible in this case. Error-free operation is guaranteed if latches are placed

such that their maximal structural distance to an output does not exceed m/2 gates7.

It is possible to place latches such that the detection of all variation-induced errors is

guaranteed for the clock period mn/2, i.e., Tmin = mn/2. Undetected errors do not

occur for this clock period if the distance of all placed latches from the inputs and

to the output is less than or equal to m/2 gates; the strong invalidations are in turn

avoided. Furthermore, it takes advantages to place the latch as close to the end of the

path as possible without risking a strong invalidation (that is, at position m/2). The

reason is that placing a latch far from the end of the path raises the probability of a weak

latch-to-output invalidation: the transition is delayed at the latch until time Tmin/2; the

sub-path to the output takes longer than Tmin/2 to switch; and the total switching time

exceeds the clock period which results in a detected error, though the total switching

time of gates on the path could be less than Tmin.

In summary, reliable mitigation of the short-path problem by latches under extreme vari-

ability is always possible. Error-free operations avoiding all three described invalidations

7Under this condition, the transition of the sub-path from an input to the latch is delayed till mn/2
and the sub-path from the latch to an output cannot exceed mn/2. As a result, the total switching time
of the path is less than the clock period mn.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 112

is achieved at clock period Tsafe = mn, whereas reliable operation with guaranteed error

detection is possible at Tmin = 1/2 mn. It gives the reliable frequency scaling in range

[1/2 mn,mn], which is larger than its counterpart [2/3 mn,mn] for mitigation by buffer

padding.

3.6.3 Strategies of Mitigation

Based on the application conditions derived above for buffer padding and latch place-

ment, strategies of the mitigation are considered for the two techniques individually. For

buffer padding, the following procedure can be applied to insert buffers into short paths

while avoiding unnecessary delay increase of the long paths. Given a circuit C and vari-

abilities n and b, let S be the set of short paths that can include either all short paths

or only the sensitizable ones. First the condition n > 2 and b > n/(n− 1) is checked; if

it applies, padding is impossible as explained in 3.6.2.2. Then, if the condition does not

apply, for each gate g the slack is calculated, which is defined as slack(g) := m−(number

of gates on the structurally longest path through g).

As long as there are still short paths in S, a gate gmax with slack(gmax) > 0 that is on a

maximum number of short paths in S is determined. A buffer is inserted at the output

of gmax (at the fanout branches if the gate fans out). The short-path condition (the

number of gates on the path is less than 1/2 Tperiod) is evaluated for the paths from S

going through gmax, and if it no longer holds, the paths are removed from S. Moreover,

the slacks of gates in the input- and output-cones of gmax are updated. The procedure

terminates as soon as S becomes empty. The identified buffer placement guarantees

reliable operation for Tmin = 2/3 mn.

For mitigation by latch placement, the strategy is to place latches within every short

paths at the (unique) location with maximal structural distance m/2 from any input (or

at the end of a path if its distance from any input is less than m/2). This placement

eliminates the strong invalidations and minimizes the likelihood of weak invalidation

as explained in 3.6.2.3. Detailed experimental results of the both mitigation flows for

actual circuits are presented in 3.7.4.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 113

3.7 Experimental Results

Applying the electrical models introduced in 3.4, experiments were performed with var-

ious targets. The accuracy of the applied electrical models are validated by experiments

as given in 3.7.1; experiments presented in 3.7.2 aim at investigating the impact of

switching activity on IR drop effect; 3.7.3 shows the performance of MIRID in experi-

ments for large circuits; finally, solutions for mitigating short-path problem in Razor-like

self-adaptive designs are reported in 3.7.4.

3.7.1 Accuracy Validation

The first experiment aims at validating the accuracy of the electrical models by com-

paring the results reported by MIRID to results of SPICE simulation performed for

the same circuit. The results of SPICE simulations are provided by the collaboration

partner from LIRMM. As it is almost infeasible for SPICE to simulate large circuits

due to the excessive runtime, a simple schematic is used by the validation. As shown

in Figure 3.25, the schematic includes a chain of 14 inverters, each inverter is connected

to supply nodes in 100 × 100 resistive PDN grid. For the sake of simplicity, only two

lines in a PDN where the connected nodes lie and the inverter chain are drawn in the

Figure. (The connection to PDN nodes is marked with dashed line while the connec-

tion between inverters is marked with straight line.) The supply nodes are denoted by

N(i, j) (i ∈ {40, 60}, j = {47, . . . , 53}) and the resistors on these two horizontal lines

are denoted by R(i, j) (i ∈ {40, 60}, j = {46, . . . , 53}). The inverters are connections

to supply nodes in the other PDN in exactly the same way. A two-pattern test (1, 0)

is applied to the single primary input in both simulation flows. Note that half of the

inverters that are odd-numbered with a falling transition under the test are connected

to nodes on line 60. The other half of the inverters with a rising input transition are

connected to nodes on line 40.

As given in 3.4.3.1, additional currents will be drawn from the Vdd and Gnd PDNs by

a switching activity. Depending on the transition edge, one of the two current draws is

predominant on the other. The main benefit of using this schematic is that all inverters

connected to the same line have the same input transition and thus all their predominant

current draws appear in the same PDN. The IR drop effect caused by the switching of

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 114

N(60,47) N(60,48)

N(40,47) N(40,48)

N(60,50)

N(40,49) N(40,50)

N(60,52)

N(40,51) N(40,52)

N(60,49) N(60,51) N(60,53)

N(40,53)

Line 40

Line 60

R(40,47) R(40,48) R(40,49) R(40,50) R(40,51) R(40,52) R(40,53)R(40,46)

R(60,47) R(60,48) R(60,49) R(60,50) R(60,51) R(60,52) R(60,53)R(60,46)

Figure 3.25: 14-inverters model for validation

gates connected to the same line is in turn enlarged by the additive effect of these

predominant currents. Moreover, the weak current draws at connected nodes on the

same line also appear in the same PDN. The accuracy of the current model can be

relatively independently analyzed for the predominant current and the week current since

they appear at nodes on two different lines in a PDN with a distance of 20 nodes; the

impact on current distribution due to switching activities at such a distance is limited.

Figure 3.26 presents the current flowing through R(40, 50) in Vdd network (3.26a) and

in Gnd network (3.26b). In each figure, two waveforms are illustrated representing

the current values simulated by MIRID and SPICE. It can be observed that these two

waveforms have similar shapes and close amplitudes. As a rising transition is applied to

the inverter which is connected to N(40, 50), the current draw due to the input switching

is predominant in Gnd network. Correspondingly, the peak-to-peak amplitude of the

current waveform for R(40, 50) in Gnd network is about 4.5×10−5A, which is much larger

than the amplitude of current waveform for R(40, 50) in Vdd network. Moreover, the

voltages at N(40, 50) in Vdd and Gnd networks are presented in Figure 3.27a and Figure

3.27b, respectively. The voltage at N(40, 50) in Vdd PDN varies around the nominal

voltage 1.0V with a peak-to-peak amplitude up to 1.5×10−5V. The amplitude of voltage

waveform at the Gnd supply node is about 3.2 × 10−5V, which is much higher due to

the predominant current draw induced by the rising input transition of the connected

gate.

The difference between both current (voltage) waveforms for each supply node is mea-

sured by NRMSE, computed using Equation 3.10. Two sets of 100 discrete current

(voltage) values on the waveforms given by MIRID and SPICE, are denoted by yt and

ŷt (t = 1 . . . 100), respectively. The root mean square error is computed to measure

the difference of the two sets of values, and normalized by the range of ŷt, given by

ŷmax − ŷmin where ŷmax and ŷmin are the maximum and minimum values in the set.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 115

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

cu
rr

en
t

[A
]

time[ps]

× 10
-6

SPICE

MIRID

(a) Current waveform for R(40, 50)
in Vdd PDN

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

cu
rr

en
t

[A
]

time[ps]

× 10
-6

SPICE

MIRID

(b) Current waveform for R(40, 50)
in Gnd PDN

Figure 3.26: Current validation for 14-inverters chain

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 10 20 30 40 50 60 70 80 90 100

v
o
lt

ag
e

[V
]

time[ps]

× 10
-6

+1

SPICE

MIRID

(a) Voltage waveform at N(40, 50)
in Vdd PDN

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

v
o
lt

ag
e

[V
]

time[ps]

× 10
-6

SPICE

MIRID

(b) Voltage waveform at N(40, 50)
in Gnd PDN

Figure 3.27: Voltage validation for 14-inverters chain

Due to space constrains, only the values of NRMSE computed for connected supply

nodes and corresponding resistors are presented in Tables 3.1 and 3.2, respectively. In

the PhD thesis by M. A. Rodriguez [111], who has performed the SPICE simulations

for the experiments presented here, NRMSE is computed for an equivalent experiment

using a different range of samples and thus have different values.

NRMSE =

√∑100
t=1(yt − ŷt)2/100

ŷmax − ŷmin
(3.10)

The first column in Table 3.1 contains the coordinates of resistors on Line 40 in Vdd

and Gnd networks. Corresponding values of NRMSE by approximating currents flowing

through these resistors in Vdd and Gnd networks are presented in the second and third

columns, respectively. Columns 4 through 6 present the NRMSE for resistors on Line 60

in the same way. The average value of NRMSE is given for each set of resistors, grouped

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 116

depending on whether their positions are on Line 40 or 60 and in Vdd or Gnd PDN. It

turns out that the set of resistors on Line 60 in Gnd PDN (Column 6) has the largest

average error of current estimation 7.07%. As gates connected to corresponding supply

nodes (next to the resistors in this set) have falling input transitions, weak current draws

appear in Gnd PDN due to the falling switching activities. The largest average error for

this set of resistors implies an inferior accuracy in the weak current draw model. Note

that the impact of weak current model on the accuracy in the global current model is

limited since it has a smaller amplitude than the predominant current.

Table 3.1: Difference of currents in 14-inverter chain
reported by MIRID and SPICE

R(40,y) NRMSE[%] NRMSE[%] R(60,y) NRMSE[%] NRMSE[%]
(Vdd) (Gnd) (Vdd) (Gnd)

(40,47) 4.81 7.01 (60,47) 5.22 4.65

(40,48) 4.30 5.91 (60,48) 3.20 4.81

(40,49) 3.92 5.06 (60,49) 2.97 6.90

(40,50) 3.82 4.53 (60,50) 2.71 7.53

(40,51) 3.96 4.03 (60,51) 2.58 8.40

(40,52) 4.02 3.65 (60,52) 2.62 8.77

(40,53) 3.91 2.81 (60,53) 2.80 8.43

Average 4.10 4.71 Average 3.15 7.07

Table 3.2 presents the estimation of difference between voltages at the considered supply

nodes from both simulation flows. Column 1 and 4 contain the coordinates of the

considered supply nodes at Line 40 and 60 in PDNs, respectively. Values of NRMSE

are given in columns 2–3 and columns 5–6 correspondingly. For each set of NRMSE

values, the average value is computed. It can be seen that for supply nodes on Line 40,

the average NRMSE is higher in Vdd network than in Gnd network, while for nodes

on Line 60, the situation is in reverse. In both cases when a higher average NRMSE

is observed for nodes on Line 40 or on Line 60, a weak current is induced due to the

corresponding rising or falling transition of connected gates. This result also indicates a

probably lower accuracy in the modeling of the weak current compared to the modeling

of the predominant one. The reason could be that the week current is more complex

and more sensitive to the power voltage supply [111].

Validation of the additional delay induced by IR drop is not possible for this small circuit

since the additional delay has the order of magnitude 10−6ps, which is much smaller than

the time resolution of MIRID (1ps); the impact of voltage drop on the delay is almost

imperceivable.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 117

Table 3.2: Difference of voltages in 14-inverter chain
reported by MIRID and SPICE

N(40,y) NRMSE[%] NRMSE[%] N(60,y) NRMSE[%] NRMSE[%]
(Vdd) (Gnd) (Vdd) (Gnd)

(40,47) 25.46 19.49 (60,47) 12.30 26.73

(40,48) 26.72 17.27 (60,48) 15.19 27.26

(40,49) 27.69 17.38 (60,49) 16.47 30.16

(40,50) 28.35 17.79 (60,50) 17.13 30.33

(40,51) 28.14 18.26 (60,51) 17.56 29.38

(40,52) 26.98 19.08 (60,52) 18.01 29.14

(40,53) 26.89 20.60 (60,53) 18.83 27.57

Average 27.17 18.55 Average 16.49 28.65

Another experiment is performed to the ISCAS’85 circuit c17, which contains 2 INV, 3

NOR2 and 4 NAND2 gates, to validate the current model with respect to different gates

(and not only INV). To maximize the induced current, all gates are connected to a single

supply node N(50, 50) in both supply networks. A two-pattern test (01111, 01011) was

applied to the circuit. The current and voltage waveforms at the node given by MIRID

and SPICE are compared in Figure 3.28 and Figure 3.29, respectively. It can be seen

that the current (voltage) waveforms according to both simulations have the similar

shape with the difference of amplitude in order of magnitude 10−5A (V).

-1

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

cu
rr

en
t

[A
]

time[ps]

× 10
-5

SPICE

MIRID

(a) Current waveform for R(50, 50)
in Vdd PDN

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 10 20 30 40 50 60 70 80 90 100

cu
rr

en
t

[A
]

time[ps]

× 10
-5

SPICE

MIRID

(b) Current waveform for R(50, 50)
in Gnd PDN

Figure 3.28: Current validation for c17

The difference is also estimated using NRMSE as given in Table 3.3. It seems that

the error of current and voltage approximated by MIRID is limited (lower than 13%)

with the simulation resolution of 1ps. The impact of the error on the induced delay

has the order of magnitude 10−6ps, which is very slight and much smaller than the

simulation resolution. Though the difference of induced delays in both simulations is

almost neglectable in this case, for larger benchmark circuits a noticeable difference in

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 118

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0 10 20 30 40 50 60 70 80 90 100

v
o
lt

ag
e

[V
]

time[ps]

× 10
-5

+1

SPICE

MIRID

(a) Voltage waveform at N(50, 50)
in Vdd PDN

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

v
o
lt

ag
e

[V
]

time[ps]

× 10
-5

SPICE

MIRID

(b) Voltage waveform at N(50, 50)
in Gnd PDN

Figure 3.29: Voltage validation for c17

delay due to the simplified approximation by MIRID is still possible. Therefore, it is

desired to raise the accuracy of the delay prediction, however, at a comparatively low

cost of simulation as a trade-off between accuracy and runtime. To improve the accuracy,

which highly depends on the current approximation, a question first arises what is the

main cause of the difference between currents from both simulations. At the first glance,

it was suspected that the difference mainly originates from the rounding error of current

computed by MIRID in picosecond resolution. The same experiment was performed by

MIRID with a smaller time step of 10−1ps, in which the current was rounded with the

corresponding precision and in turn the total computation time was raised enormously.

The comparison of current and voltage waveforms from both simulations are given in

Figure 3.30 and 3.31, respectively. The difference for each comparison is computed and

also presented in Table 3.3. It turns out that the approximation using 10−1ps precision

does not improve the accuracy significantly. For approximations of current and voltage

in Gnd network, even a slightly larger error is observed. The reason may be that due

to the lack of SPICE simulation result using 10−1ps resolution, only 100 samples (the

current or voltage value at every picosecond on the waveforms) in each dataset are used

for the computation of NRMSE. Nevertheless, it can be predicted that the result would

not be much better if a larger dataset is used since the variation between samples is very

limited.

As shown above, the time precision is not the key point to explain the difference be-

tween results from MIRID and SPICE. As proposed by the collaboration partner from

LIRMM, who established the electrical model, a fundamental reason for the difference

could be the underestimated input capacitance of gates. For the sake of simplicity, the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 119

-1

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

cu
rr

en
t

[A
]

time[ps]

× 10
-5

SPICE

MIRID

(a) Current waveform for R(50, 50)
in Vdd PDN

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 10 20 30 40 50 60 70 80 90 100

cu
rr

en
t

[A
]

time[ps]

× 10
-5

SPICE

MIRID

(b) Current waveform for R(50, 50)
in Gnd PDN

Figure 3.30: Current validation for c17 with 10−1ps precision

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0 10 20 30 40 50 60 70 80 90 100

v
o
lt

ag
e

[V
]

time[ps]

× 10
-5

+1

SPICE

MIRID

(a) Voltage waveform at N(50, 50)
in Vdd PDN

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

v
o
lt

ag
e

[V
]

time[ps]

× 10
-5

SPICE

MIRID

(b) Voltage waveform at N(50, 50)
in Gnd PDN

Figure 3.31: Voltage validation for c17 with 10−1ps precision

Table 3.3: Difference of current and voltage at N(50, 50) in c17
reported by MIRID and SPICE

NRMSE[%]
Current Voltage

Node Precision Vdd Gnd Vdd Gnd

N(50,50) 1ps 10.84 9.68 12.94 9.82
N(50,50) 0.1ps 8.70 9.86 11.37 9.87

electrical model assumes that each standard gate has the equivalent input capacitance of

an inverter Cmin, which is lower than or equal to the real value of its input capacitance.

The load capacitance is given by n×Cmin where n is the fanout of the gate output, i.e.,

the number of its downstream gates. Thus, as far as the input capacitance of each down-

stream gate is likely to be underestimated, so is the total load capacitance. As given

in 3.4.3.1, the current approximation depends on various electrical parameters, among

which the load capacitance is very important; the amplitude and time duration of the

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 120

approximated current curve vary for different load capacitances. The underestimated

load capacitance could mainly affect the accuracy of the current approximation and in

turn cause the up to 13% error in Table 3.3. The error is expected to be reduced in the

future version of electrical models that take different input capacitances in function of

the type of gate rather than the fixed value Cmin.

3.7.2 Investigation on IR Drop induced Delay

The experiments above aim at the validation of the applied electrical models, especially

the model related to current approximation, which mainly determines the IR drop in a

resistive PDN. However, the impact on the additional delay induced by IR drop cannot

be validated by these experiments since the amount of additional delay is so tiny that

the difference between delays reported by both simulations is neglectable. To validate

the additional delay, a schematic is required that enables a relative high IR drop in PDN

which in turn produces a noticeable additional delay. This requirement implies that the

current draw caused by switching gates should be maximized, however, not too many

gates should be involved since SPICE is not capable of simulating large circuits. Two

aspects are considered by the design that satisfies the requirement: the dissipation of the

induced current in time and the very located current distribution in PDN. Regarding

the former, gates need to switch simultaneously to draw a totally significant amount

of current at the switching time. Due to the latter, which also means a dissipation of

voltage drop in a narrow neighborhood, a high density of gates connected to the small

area is required to enhance the IR drop. In summary, voltage drop increases in a PDN

area with a higher density of connected gates that switch simultaneously.

A dedicated design is therefore proposed for validating IR drop induced delay on a

sufficiently small circuit for SPICE simulations. The circuit consists of a basic structure

of an 8-inverter chain connected to a 2×2 PDN grid. As illustrated in Figure 3.32a, eight

inverters G0, . . . , G7 are connected in a chain with a primary input in1 and a primary

output out1. The inverters are connected to supply nodes in the following way: G0 and

G4 connected to node N(i, j − 1), G1 and G5 connected to node N(i − 1, j), G2 and

G6 connected to node N(i, j + 1), and G3 and G7 connected to node N(i + 1, j). To

increase the number of gates that switch simultaneously, a number of identical inverter

chains can be parallel connected to supply nodes in exactly the same way. An example

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 121

of the parallel connection of two inverter chains is presented in Figure 3.32b where only

the connected supply nodes and the inverter chains are drawn. The number of parallel

connected chains can be configured, which enables regulation of the level of the induced

voltage drop.

in1

out1

N(i,j)
N(i,j-1)

N(i-1,j)

N(i,j+1)
N(i+1,j)

G1

G2

G3

G0
G5

G6

G7

G4

(a) Connection of an 8-inverter chain

N(i,j-1) N(i-1,j) N(i,j+1) N(i+1,j)

chain1:

chain2:

(b) Parallel connection of two 8-inverter chains

Figure 3.32: 8-inverter chains connected to a 2× 2 grid

As illustrated in Figure 3.33a, a simplified schematic uses a diamond shape with dashed

lines to represent the 8-inverter chain connected to four adjacent nodes of N(i, j) as

given in Figure 3.32a. The experiment applies a design consisting of nine copies of

such a schematic as presented in Figure 3.33b. Each diamond shape has the center

at N(50, 50) or one of its neighboring node in a 100 × 100 PDN grid. Such a design

raises the density of switching gates connected to the neighboring area of N(50, 50);

the voltage drop at N(50, 50) is in turn enhanced. Moreover, by raising the number

of parallel connected inverter chains at each position of the nine diamond shapes, the

voltage drop at the center node can be further enhanced.

Simulations were performed by MIRID for the schematic illustrated in Figure 3.33b by

setting the number of parallel connected inverter chains X from 1 to 100. For each

inverter chain, a falling transition 1 → 0 was applied on its primary input. SPICE

simulations were also performed by the collaboration parter from LIRMM using the

same schematic and the same test. Both results show that the delay increases linearly

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 122

N(i,j)

N(i-1,j)

N(i+1,j)

N(i,j-1) N(i,j+1)

(a) Placement of one inverter chain

N(50,50)

(b) Placement of 9 inverter chains

Figure 3.33: Model of 9 inverter chains

with the number of chains in parallel. Using the delay reported by SPICE as a refer-

ence, the relative error of the estimated delay by MIRID is up to 1.17% according to

[111]8. The result seems satisfactory especially when taking into account that the error

is accumulated by the replicated computation of delay for all parallel connected gates.

It is also interesting to know the correlation between the additional delay induced by

IR drop and the number of switching events, which is proportional to the number of

inverter chains in parallel. Compared to the nominal delay of an 8-inverter chain when

IR drop is not considered, which is given by 35.64ps, the percental delay increase due

to IR drop σ is computed for X in {1 . . . 100}. Figure 3.34 illustrates the result and a

linear function F (X) that best fits the result. It can be seen that the deviation of the

linear approximation is very slight, which implies that the delay induced by IR drop

increases almost linearly with the value of X. As X is proportional to the number of

inverters, a linear relationship between the addition delay and the number of switching

activities can be derived in this case.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

l
d
el

ay
 i

n
cr

ea
se

 σ
[%

]

Number of parallel connected inverter chains X

σ[%]
F(X)

Figure 3.34: Correlation of the IR drop induced delay and X

8The SPICE simulation was performed for X from 1 to 80, thus the error was computed based on
the delays simulated by MIRID and SPICE in the same range of X.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 123

3.7.3 Performance for Large Circuits

MIRID is designed to estimate the IR drop induced delay as a compromise between

accuracy and efficiency. Thus, not only the validation of its accuracy, but also the

evaluation of its performance for larger circuits is very important.

The simulator was run for several ISCAS and NXP circuits. The in-house tool Opt-KLPG

was used to generate tests that sensitize the longest path through each gate under the

unit-delay assumption. By sensitizing the longest path, as many as possible gates propa-

gate the input transition along the path, which might result in the most switching events.

The diverse locations of target gates throughout the circuit also enables a simulation of

switching events evenly distributed in all parts of the circuit. For relatively small circuit

(ISCAS’85), tests (if existing) are generated for all gates considered as possible defect

sites; for larger NXP circuits, randomly selected 1000 gates are considered by the test

generation.

Rather than using full-custom layouts of the circuits, each gate is connected to the central

nodes in both 100 × 100 PDN grids. For each applied test, the IR drop induced delay

is estimated by comparing the transition propagation time under two scenarios, with or

without consideration of IR drop effect. In the latter case, the nominal gate delays are

used by a conventional timing-aware logic simulation. The transition propagation time

corresponds to the accumulated gate delay along the longest sensitized path.

The results are presented in Table 3.4. Column 2 contains the size of gates in each

circuit. Note that MIRID has used a re-synthesized netlist due to the constrains of the

electrical model9: each AND (OR) gate is replaced with a NAND (NOR) gate connected

to a NOT gate; for each gate feeding more than 5 downstream gates, buffers are inserted

to drive every 5 branches recursively. Thus, the actual number of gates in each simulated

circuit instance is higher than the number presented in column 2, however, in the same

order of magnitude. The number of applied tests is given in column 3. Column 4

and 5 present the average transition propagation time per test along the longest path

without or with consideration of IR drop effect, denoted by case 1 and 2, respectively.

The percental delay increase σ due to IR drop per test is given in column 6. The last

9Electrical models are established for standard gates excluding AND and OR gates, and for load
capacitance up to 5 elementary equivalent capacitance.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 124

two columns present the average number of switching activities and the average CPU

runtime per test, respectively.

As shown in the table, the increase of delay due to IR drop (σ[%]) is correlated with the

number of switching activities. A counterexample for the positive correlation is given

for p45 and p78. Compared to the result for p45, a high or average switching activity

occurs by simulating p78, however, a lower increase in delay is observed in this case.

The reason is that not only the number of switching gates but also other parameters

incorporate into the total increase in delay. For example, the circuit containing more

gates with longer IR-drop induced delays tends to have a larger total delay increase. A

positive relation to the number of switching gates can also be observed for the runtime,

which is not surprising as every switching event is processed in nearly constant time.

The circuit size has less impact on the delay increase, especially for the circuits of large

sizes that are structurally more complex. For the group of ISCAS’85 circuits that have

less that 3000 gates, a slight increase in σ is observed for the larger circuit. However,

for NXP circuits which are much larger, the positive relation of the circuit size to the

delay increase does not hold. For example, p35 has less gates than p45 and p78 but

with a more complex structure which implies possibly longer paths and more switching

events. The propagation time through the paths and the simulation runtime are in turn

longer. The largest percental delay increase due to IR drop is 2.24% for p35, which is

close to the value 3% reported previously in the literature [117]. Moreover, it can be

observed that for most simulated circuits, the average runtime is less than 10s, which is

quite acceptable.

Table 3.4: Simulation for ISCAS and NXP circuits

circuit #gates #patterns prop. time[ps] σ[%] #switching sim. time[s]
case 1 case 2 (CPU)

c432 322 322 130.89 131.04 0.11 300 <1

c1355 737 736 137.46 137.74 0.20 403 <1

c1908 795 795 188.83 189.24 0.22 951 2

c3540 1581 1581 249.18 249.89 0.29 1265 2

c7552 2952 2951 193.71 195.12 0.73 2554 5

p35 23267 1000 562.50 575.11 2.24 19488 50

p45 25679 1000 371.97 375.17 0.86 3052 6

p78 70475 1000 332.21 334.47 0.68 3213 7

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 125

3.7.4 Mitigation of the Short-path Problem using Buffers and Latches

The modified version of MIRID is used to empirically investigate the required number

of buffers and latches to mitigate the short-path problem (Section 3.6) in actual circuits.

Both procedures described in 3.6.3 are implemented accordingly. The core of the sim-

ulator, the timing-aware logic simulation, is basically not affected by the modification

except the decision of timing of switching events that needs to match the behavior of

inserted buffers and latches. The experiments were performed on re-synthesized versions

of several ISCAS’85 and ITC’99 circuits and a 4-bit carry-ripple adder.

Table 3.5 summarizes the experimental results from both mitigation procedures. Column

1 contains the circuit name and the value of m, which is the number of gates on the

structurally longest path; the variability of gates n and the calculated safe clock period

Tsafe = mn is given in column 2 and column 3, respectively; column 4 presents the

number of short paths in S.

For buffer padding, the variabilities n and b (column 5) and the number of buffers

(column 6) sufficient for padding all short paths are included. For n = 3, the numbers

of invalidated paths that cannot be padded because they have over 3/4 m gates are

reported in column 8 “inv”; note that such solutions are inherently unreliable.

For latch placement two experiments were performed. In Experiment 1, a short path is

equipped by a latch on position pos, where pos is the closest gate to the primary output

for which all sub-paths from a primary input to pos are not longer than m/2. This

placement guarantees the reliable operation for Tmin = 1/2 mn, which is better than

Tmin = 2/3 mn obtained by buffer padding. To objectively compare latch placement

with buffer padding, Experiment 2 was conducted for Tmin = 2/3 mn, which is the

same value of Tmin that guarantees the reliable operation by buffer padding. Latches

can be safely placed on locations that have maximal distance to all primary inputs and

outputs less or equal to 2/3 m. From these locations the one through which most short

paths go is selected; a latch is placed on the location and the corresponding short paths

are removed from S; this procedure continues until S becomes empty. The number of

latches determined in Experiment 1 and Experiment 2 are reported in columns “#l,

exp1” (column 8) and “#l, exp2” (column 9), respectively.

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 126

Table 3.5: Experimental results for buffer padding and latch placement

circuit n Tsafe |S| buffer padding latch placement
b #buf inv. #l, exp1 #l, exp2

c432
(m=24)

1.2 28.8 1305
1.0 246 -

47 19

1.2 264 -
1.5 36.0 4739 1.5 436 -

2.0 48.0 23006
1.5 989 -
2.0 985 -

3.0 72.0 23134 1.0 2003 16K

c1908
(m=32)

1.2 38.4 54700
1.0 1373 -

97 441.2 1386 -
1.5 48.0 191331 1.5 1810 -

b07
(m=15)

1.2 18.0 994
1.0 411 -

87 35

1.2 431 -
1.5 22.5 3715 1.5 771 -

2.0 30.0 8711
1.5 1144 -
2.0 1169 -

3.0 45.0 9051 1.0 2213 1579

b12
(m=17)

1.2 20.4 3819
1.0 1501 -

217 146

1.2 1510 -
1.5 25.5 8694 1.5 2120 -

2.0 34.0 13279
1.5 3458 -
2.0 3469 -

3.0 51.0 13297 1.0 6598 511

4-bit
carry
ripple
adder

(m=12)

1.2 14.4 159
1.0 46 -

10 7

1.2 47 -
1.5 18.0 195 1.5 58 -

2.0 24.0 253
1.5 103 -
2.0 105 -

3.0 36.0 261 1.0 203 40

It can be seen that the number of required buffers is large for moderate variability and

excessive for extreme variability. The number of latches is constant and much smaller

than the number of buffers. This is the case even for Experiment 1, where latches are

placed such as to guarantee Tmin = 1/2 mn, which outperforms Tmin = 2/3 mn obtained

by buffer padding. If the same Tmin as for buffer padding is acceptable, the solutions

become even more compact.

The latch behavior can be obtained by transformation of the preceding gate at the latch

position10. The area costs of such a transformation of a NAND gate amounts to two

transistors, which is comparable with the costs of one buffer. However, the latches

10Instead of inserting a physical memory element, it is possible to tri-state the preceding gate for the
required behavior (the gate output enters high-impedance state during the first half of the clock period).

Chapter 3. MIRID: Mixed-Mode IR-Drop Induced Delay Simulator 127

introduce further overhead for routing the clock signals to the latches and controlling

their skews.

In summary, MIRID was shown to be useful beyond its originally intended use case. Due

to its clearly defined interfaces between the logic simulation engine and electrical models,

it can be adapt to various timing-aware simulations by specifying interface functions to

dedicated timing models.

Chapter 4

Conclusion

The impact of process variations on the performance and reliability of VLSI circuits

has been increased significantly as technology scales into the nanometer regime. Due

to intrinsic limitations of fabrication process, variations in physical parameters are not

avoidable and in turn cause variations in electrical parameters that affect the circuit

timing. This negative impact of process variations has become a critical concern from

both the design and testing perspectives. Existing design approaches combating pro-

cess variations usually target on reduction of the impact by tuning certain operating

parameters or by compensating and correcting the performance deviations induced by

process variations adaptively. In context of testing under process variations, the target

is to rule out the devices with poor timing performance or even have functional failures

induced by extreme variations. Due to the random nature of parameter variations (that

could follow normal or more complicated distributions), each circuit instance can present

individual timing behavior. The challenge in this area is to develop a testing flow that

is “statistic”-oriented in various testing stages, including fault modeling, test generation

and fault simulation. However, due to the complexity of ATPG, it is impractical to

generate tests for all possible parameter combinations. A flow that combines the ATPG

for fixed parameter values with the statistical fault simulation over the whole parameter

space is therefor of interest and proposed in [63].

One of the contributions of this thesis work is the ATPG tool called “Opt-KLPG”

that can be integrated into the statistical testing flow and generate variation-aware

tests pin-pointedly for SDDs. Opt-KLPG is developed based on the traditional KLPG

128

Chapter 4. Conclusion 129

algorithm that aims at tests sensitizing multiple longest paths through the fault site

given a fixed timing assignment. One problem related to the KLPG algorithm is that the

search space could be extraordinarily large for benchmark circuits. Traditional KLPG

algorithms usually tackle this problem by exposing a limited size on the data structure,

called path store, that contains all paths to be considered. However, the limited size

could lead to a sub-optimal solution when the optimal one (the sensitizable longest paths

indeed) exists beyond the path store. For the first time, the optimality of the KLPG

algorithm has been studied systematically by this thesis work. The proposed Opt-KLPG

algorithm targets on the optimal solution by iteratively performing the KLPG flow for

all sub-paths without discarding overflows from the path store.

Opt-KLPG was validated by experiments performed on academic/industrial circuits with

up to 70K gates by showing the solution optimality under various configurations of path

store size, denoted by πmax. Moreover, by comparing both the KLPG and Opt-KLPG

solutions, it can be observed that conservative setting of πmax beyond 1000 does yield

optimal result for most of (but not all) the considered circuits. In contract, setting πmax

to very small values appears to have grave impact on the test quality, which means,

the SDDs could be insufficiently tested by sensitizing less or shorter paths through

them. Intuitively, a relatively large path store may be preferred for large circuits to

obtain the (nearly) optimal solutions while the runtime is proportional to the store size.

However, experimental results show that the minimum value of πmax used by KLPG

for the optimal solution does not always grow with circuit sizes. It suggests that an

appropriate πmax that results in the (nearly) optimal solution might be determined for

circuits individually and empirically used, for example, for the slightly changed timing

assignments due to variations.

The other interesting observation about runtime is that it rises with growing πmax in

general but with exceptions for certain circuits, in which the runtime can be more

than 50% shorter for larger πmax. In these circuits the potentially optimal solution are

contained in the larger store while excluded from the smaller one so that many false

paths need to be identified first as long as the solution is not found. It indicates that the

runtime depends on the effort in identifying the false paths to a large extent. In most

cases Opt-KLPG has similar or even better timing performance than KLPG targeting

on the optimal solution. The reason is that Opt-KLPG benefits from the reduction of

runtime by utilizing a smaller store, to find and update the solution iteratively while

Chapter 4. Conclusion 130

eliminating sub-paths that are not potentially better than the existing solution; however,

KLPG has to use a rather large store to find the optimal solution.

Metrics used to evaluate the optimality of KLPG solutions show that the optimal or

nearly optimal solutions are given for many faults by KLPG when πmax ≥ 500. More-

over, missed paths by KLPG for target faults could lead to escape of SDDs on these

fault sites from the test in certain circuit instances, which corresponds to a severe sit-

uation with a significant impact on the testability under process variations. However,

this situation rarely occurs when πmax ≥ 10. Faults with shorter paths found by KLPG

could be not adequately tested in circuit instances affected by variations. A significant

number of gates turn out to be vulnerable to this problem even for large values of πmax.

Integrated into a statistical delay testing flow that aims at maximizing fault coverage

under process variations, Opt-KLPG targets uncovered faults by the initial test set and

generates tests that are likely to detect these faults. Experimental results show that

the flow succeeds in generating tests that substantially outperform test sets obtained by

conventional tools.

In brief, the experimental result shows that both KLPG and Opt-KLPG can gener-

ate tests for SDDs in large circuits with acceptable timing performance. An appropriate

value of πmax can be determined empirically for each circuit that leads to a (nearly) opti-

mal solution and a reasonable runtime. Interestingly, when both KLPG and Opt-KLPG

target on the optimal solution, Opt-KLPG can have a similar or even better performance

than KLPG by using a smaller path store.

The other contribution of this thesis work is a timing-aware simulation tool called MIRID

for estimating the impact of IR drop, a major source of power supply noise in PDN, on

circuit timing. An accurate estimation of the pattern-dependent impact is important

for power-aware tests. As a compromise between simulation efficiency and accuracy, the

mixed-mode simulator combines an event-driven logic simulation with electrical models

incorporating electrical parameters that mainly contribute to the IR-drop effect, pro-

vided with interface functions between these two parts. The logic simulation is developed

independent of the electrical models, which means, it can be adapted to modified elec-

trical models with minor effort in editing the interfaces only. For the first time, the PDN

configuration is integrated into the mixed-mode simulation.

Chapter 4. Conclusion 131

Experiments were performed for various purposes. The accuracy of electrical models

applied by MIRID is evaluated by comparing results from both SPICE and MIRID

simulations for the same circuit design. The difference in results is represented by

NRMSE, which corresponds to the model accuracy. The impact of the difference in the

induced delay has the order of magnitude 10−6ps, which is slight and much smaller than

the simulation resolution (and thus almost neglectable). However, as only very simple

designs were used due to the complexity of SPICE, a noticeable difference in delay due

to the simplified approximation of electrical models is still possible for large benchmark

circuits. A fundamental reason for the difference could be the underestimated input

capacitance of gates, which is assumed by the electrical model to be the equivalent

input capacitance of an inverter for every standard gate. The accuracy of MIRID is

expected to be significantly improved by applying the electrical model with more realistic

assumptions.

The impact of IR drop on the circuit timing is estimated for a dedicated schematic

that tends to produce a noticeable additional delay. The relative error of the delay

estimated by MIRID (with reference to the SPICE result) is up to 1.17%, which seems

to be quite satisfactory. To evaluate the IR drop induced delay, MIRID simulations were

performed with or without consideration of IR drop effect, for the dedicated schematic

and academic/industrial circuits. Based on the delays reported in both scenarios, the

percental delay increase due to IR drop is calculated. A positive relation between the

percental delay increase and the rate of switching activity can be observed for most of the

considered circuits. The percental delay increase due to IR drop is up to 2.24%. However,

it should be noted that delay increase could be mitigated by the presence of capacitive

elements in PDN that compensate the voltage drop effect but are not considered by the

simplified electrical model. Moreover, it seems that the size of considered circuits has

less impact on the delay increase, especially for circuits of large sizes and are structurally

more complex.

The other important objective of the experiments is to evaluate the performance of

MIRID for large circuits, measured by the runtime. It can be observed that the runtime

rises as more gates switch, which is not surprising since every switching event is processed

in nearly constant time. For most simulated circuits, the average runtime is less than

10s, which suggests that the simulator can handle large academic/industrial circuits.

Chapter 4. Conclusion 132

In general, the simulator can be adapt to other applications that require a timing-aware

logic simulation, not restricted to simulating the IR drop induced delay. A first appli-

cation of the simulator reported in this thesis is to tackle the short-path problem of a

self-adaptive better-than-worst-case design [5], by buffer padding or latch placement in

the circuit. Short paths can cause the error-detection mechanism in the self-adaptive de-

sign to be unreliable. To mitigate this problem, application conditions for buffer padding

and latch placement are derived based on a simplified model; corresponding strategies

are developed and integrated into the simulation flow.

To verify the effectiveness of MIRID in mitigation of the short-path problem, experiments

were performed for several ISCAS’85 and ITC’99 circuits and a 4-bit carry-ripple adder

using both strategies of buffer padding and latch placements. It can be seen that the

number of required buffers is large for moderate variability and excessive for extreme

variability while the number of latches is constant and much smaller. Moreover, Tmin

(the minimum clock frequency for reliable operations) is guaranteed to be shorter by

the latch placement than by buffer padding. If the same Tmin as for buffer padding is

acceptable, the latch solutions become even more compact. However, it should be noted

that the latches introduce further overhead for routing the clock signals to the latches

and controlling their skews.

In future work, the ATPG tool Opt-KLPG can be accelerated by applying speed-up

techniques, such as using learning strategy during the path-searching process to trim

off the search space incrementally, or by investigating correlations between gates to

identify gates whose solutions can only belong to existing ones, and thus need not to

be considered. The accuracy of the MIRID simulator can be raised by applying more

accurate and complex electrical models. The adaption of the simulator for such electrical

models is associated with low effort due to a clear and versatile interface function design.

Moreover, algorithmic improvements that enhance the application performance, e. g.,

integration of the concurrent simulation method into the application, could be a part of

the future work.

In summary, the contribution of this thesis work consists of two approaches Opt-KLPG

and MIRID that generates high-quality tests targeting small delay faults and simulates

IR drop induced delay, respectively. Using the proposed ATPG tool Opt-KLPG, the

Chapter 4. Conclusion 133

impact of the path store size utilized by conventional KLPG algorithms on the solu-

tion optimality has been systematically investigated; the solution optimality is guar-

anteed by Opt-KLPG. And, for the first time, the PDN configuration is integrated

into the mixed-mode simulator MIRID to raise the simulation accuracy. These two

approaches can be incorporated into a statistical delay testing flow, by means of gener-

ating variation-aware tests and efficiently yet accurately simulating the impact of power

supply noises on circuit timing.

Bibliography

[1] F. Hopsch, B. Becker, S. Hellebrand, I. Polian, B. Straube, W. Vermeiren, and

H. Wunderlich. Variation-aware fault modeling. IEEE Asian Test Symp., pages

87–93, 2010.

[2] N. Jha and S. Gupta. Testing of Digital Systems. Cambridge University Press,

2003.

[3] S. Borkar. Designing reliable systems from unreliable components: the challenges

of transistor variability and degradation. IEEE Micro, 25:10–16, 2006.

[4] T. Chen and S. Naffziger. Comparison of adaptive body bias (ABB) and adap-

tive supply voltage (ASV) for improving delay and leakage under the presence of

process variation. IEEE Trans. on VLSI Systems, 11:888–899, 2003.

[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on

circuit-level timing speculation. IEEE/ACM Int’l Symp. on Microarchitecture, 36:

7–18, 2003.

[6] X. Lu, Z. Li, W. Qiu, D. M. H. Walker, and W. Shi. Longest-path selection for

delay test under process variation. IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, 24(12):1924–1929, 2005.

[7] S. Tani, M. Teramoto, T. Fukazawa, and K. Matsuhiro. Efficient path selection

for delay testing based on partial path evaluation. IEEE VLSI Test Symp., pages

188–193, 1998.

[8] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor. Test-pattern grading and pat-

tern selection for small-delay defects. IEEE VLSI Test Symp., pages 233–239,

2008.

134

Bibliography 135

[9] E. Park, M. Mercer, and T. Williams. Statistical delay fault coverage and defect

level for delay faults. IEEE Int’l. Test Conf., pages 492–499, 1988.

[10] J. Liou, A. Krstic, Y. Jiang, and K. Cheng. Modeling, testing, and analysis for

delay defects and noise effects in deep submicron devices. IEEE Trans. on CAD,

22(6):756–769, 2003.

[11] M. Shintani, T. Uezono, T. Takahashi, H. Ueyama, T. Sato, K. Hatayama,

T. Aikyo, and K. Masu. An adaptive test for parametric faults based on sta-

tistical timing information. IEEE Asian Test Symp., pages 151–156, 2009.

[12] U. Ingelsson, B. Al-Hashimi, S. Khursheed, S. M. Reddy, and P. Harrod. Process

variation-aware test for resistive bridges. IEEE Trans. on CAD, 28(8):1269–1274,

2009.

[13] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing analysis:

From basic principles to state of the art. IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, 27(4):589–607, 2008.

[14] L. Scheffer. Physical CAD changes to incorporate design for lithography and

manufacturability. IEEE Design Automation Conf., page 768–773, 2004.

[15] S. R. Nassif. Modeling and analysis of manufacturing variations. IEEE Conf. on

Custom Integrated Circuits, pages 223–228, 2001.

[16] K. S. Kim, S. Mitra, and P. G. Ryan. Delay defect characteristics and testing

strategies. IEEE Design & Test of Computers, 20:8–16, 2003.

[17] S. K. Goel and K. Chakrabarty. Testing for Small-Delay Defects in Nanoscale

CMOS Integrated Circuits. CRC Press, 2001.

[18] S. Mitra, E. Volkerink, E. J. McCluskey, and S. Eichenberger. Delay defect screen-

ing using process monitor structures. IEEE VLSI Test Symp., pages 43–48, 2004.

[19] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor. Test-pattern selection for screen-

ing small-delay defects in very-deep submicrometer integrated circuits. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, 29:760–773,

2010.

Bibliography 136

[20] N. Ahmed, M. Tehranipoor, and V. Jayaram. Timing-based delay test for screening

small delay defects. IEEE/ACM Design Autom. Conf., page 320–325, 2006.

[21] X. Lin, T. Kun-Han, W. Chen, M. Kassab, J. Rajski, T. Kobayashi, R. Klingen-

berg, Y. Sato, S. Hamada, and T. Aikyo. Timing-aware ATPG for high quality

at-speed testing of small delay defects. IEEE Asian Test Symp., pages 139–146,

2006.

[22] P. Nigh and A. Gattiker. Test method evaluation experiments and data. IEEE

Int’l Test Conf., pages 454–463, 2000.

[23] E. S. Park, M. R. Mercer, and T. W. Williams. Statistical delay fault coverage

and defect level for delay faults. IEEE Int’l Test Conf., pages 492–499, 1988.

[24] A. K. Pramanick and S. M. Reddy. On the detection of delay faults. IEEE Int’l

Test Conf., pages 845–856, 1988.

[25] K. T. Cheng and H. C. Chen. Delay testing for non-robust untestable circuits.

IEEE Int’l Test Conf., pages 954–961, 1993.

[26] J. Jung and T. Kim. Variation-aware false path analysis based on statistical

dynamic timing analysis. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 31(11):1684–1697, 2012.

[27] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, and

R. Panda. Statistical delay computation considering spatial correlations. IEEE

Design Automation Conf., pages 271–276, 2003.

[28] J. Jess, K. Kalafala, S. Naidu, R. Otten, and C. Visweswariah. Statistical tim-

ing for parametric yield prediction of digital integrated circuits. IEEE Design

Automation Conf., page 932–937, 2003.

[29] A. Srivastava, S. Shah, K. Agarwal, D. Sylvester, D. Blaauw, and S. Director.

Accurate and efficient gate-level parametric yield estimation considering correlated

variations in leakage power and performance. IEEE Design Automation Conf.,

pages 535–540, 2005.

[30] Y. Xie and Y. Chen. Statistical high-level synthesis under process variability.

IEEE Design & Test of Computers, 26(4):78–87, 2009.

Bibliography 137

[31] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, S. Wei-kai, S. Sivaku-

mar, G. Taylor, P. VanDerVoorn, and K. Zawadzki. Managing process variation

in Intel’s 45nm CMOS technology. Intel Technology Journal, 12(2), 2008.

[32] B. Stefano, D. Bertozzi, L. Benini, and E. Macii. Process variation tolerant pipeline

design through a placement-aware multiple voltage island design style. IEEE De-

sign, Automation and Test in Europe Conf., pages 967–972, 2008.

[33] J. W. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan,

and V. De. Adaptive body bias for reducing impacts of die-to-die and within-die

parameter variations on microprocessor frequency and leakage. IEEE Journal of

Solid-State Circuits, 37:1396–1402, 2002.

[34] M. Nicolaidis. GRAAL: a new fault tolerant design paradigm for mitigating the

flaws of deep nanometric technologies. IEEE Int’l Test Conf., pages 1–10, 2007.

[35] B. Doyle, P. Mahoney E. Fetzer, and S. Naffziger. Clock distribution on a dual-core,

multi-threaded Itanium R© family microprocessor. IEEE Int’l Conf. on Integrated

Circuit Design and Technology, pages 1–6, 2005.

[36] D. Sylvester, D. Blaauw, and E. Karl. ElastIC: An adaptive self-healing archi-

tecture for unpredictable silicon. IEEE Design & Test of Computers, 23:484–490,

2006.

[37] M. Simone, M. Lajolo, and D. Bertozzi. Variation tolerant NoC design by means of

self-calibrating links. IEEE Design, Automation and Test in Europe, 23:1402–1407,

2008.

[38] W. Qiu and D. M. H. Walker. An efficient algorithm for finding the K longest

testable paths through each gate in a combinational circuit. IEEE Int’l Test Conf.,

pages 592–601, 2003.

[39] J. P. Roth. Diagnosis of automata failures: A calculus and a method. IBM Journal

of Research and Development, 10(4):278–291, 1966.

[40] P. Goel. An implicit enumeration algorithm to generate tests for combinational

logic circuits. IEEE Trans. on Computers, 30(3):215–222, 1981.

[41] H. Fujiwara and T. Shinomo. On the acceleration of test generation algorithms.

IEEE Trans. on Computers, 32(12):1137–1144, 1983.

Bibliography 138

[42] I. Hamzaoglu and J. H. Patel. New techniques for deterministic test pattern

generation. IEEE VLSI Test Symp., pages 446–452, 1998.

[43] R. Drechsler, S. Eggersgluss, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and

D. Tille. On acceleration of SAT-based ATPG for industrial designs. IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems, 27(7):1329–1333,

2008.

[44] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. M. Reddy, and B. Becker.

Thread-parallel integrated test pattern generator utilizing satisfiability analysis.

Int’l Journal of Parallel Programming, 38:185–202, 2010.

[45] M. Sauer, B. Becker, and I. Polian. PHAETON: A SAT-based framework for

timing-aware path sensitization. IEEE Trans. on Computers, pages 1–14, 2015.

[46] M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-

nal of the ACM, 7(3):201–215, 1960.

[47] G. Fey, T. Warode, and R. Drechsler. Reusing learned information in SAT-based

ATPG. IEEE Int’l Conf. on VLSI Design, pages 69–76, 2007.

[48] K. L. Shepard and V. Narayanan. Noise in deep submicron digital design. IEEE

Int’l Conf. on Computer-Aided Design, pages 524–531, 1996.

[49] H. H. Chen and D. D. Ling. Power supply noise analysis methodology for deep

submicron VLSI design. IEEE Design Automation Conf., pages 638–643, 1997.

[50] Y. M. Jiang and K. T. Cheng. Analysis of performance impact caused by power

supply noise in deep submicron devices. IEEE Design Automation Conf., pages

760–765, 1999.

[51] C. Tirumurti, S. Kundu, S. K. Susmita, and Y. S. Change. A modeling approach

for addressing power supply switching noise related failures of integrated circuits.

IEEE Design, Automation and Test in Europe Conf., pages 1078–1083, 2004.

[52] K. Shakeri, R. Savari, and J. D. Meindl. Compact physical IR-drop models for

GSI power distribution networks. IEEE Int’l Interconnect Technology Conf., pages

54–56, 2003.

Bibliography 139

[53] S. K. Nithin, G. Shanmugam, and S. Chandrasekar. Dynamic voltage (IR) drop

analysis and design closure: Issues and challenges. IEEE Int’l Symp. on Quality

Electronic Design (ISQED), pages 611–617, 2010.

[54] J. Rius. IR-drop in on-chip Power Distribution Networks of ICs with nonuniform

power consumption. IEEE VLSI Test Symp., 21:512–522, 2013.

[55] M. Aparicio-Rodriguez, M. Comte, F. Azäıs, M. Renovell, J. Jiang, I. Polian, and

B. Becker. Pre-characterization procedure for a mixed mode simulation of IR-drop

induced delays. IEEE Latin-American Test Workshop, pages 1–6, 2013.

[56] V. Iyengar, B. K. Rosen, and I. Spillinger. Delay test generation. I. concepts and

coverage metrics. IEEE Int’l Test Conf., pages 857–866, 1988.

[57] J. Jiang, M. Sauer, A. Czutro, B. Becker, and I. Polian. On the optimality of

K longest path generation algorithm under memory constraints. IEEE Conf. on

Design, Automation and Test in Europe, pages 418–423, 2012.

[58] B. Becker, R. Drechsler, S. Eggersgluss, and M. Sauer. Recent advances in

SAT-based ATPG: Non-standard fault models, multi constraints and optimiza-

tion. IEEE Design & Technology of Integrated Systems In Nanoscale Era (DTIS),

pages 1–10, 2014.

[59] N. Eén and N. Sörensson. An extensible SAT solver. Int’l Conf. on Theory and Ap-

plications of Satisfiability Testing, ser. Lecture Notes in Computer Science, 2919:

502–518, 2004.

[60] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer

set solving. Int’l Joint Conf. on Artificial Intelligence, page 386–392, 2007.

[61] T. Schubert, M. Lewis, and B. Becker. Antom–solver description. SAT Race, 2010.

[62] J. Benkoski, E. V. Meersch, L. J. M. Claesen, and H. D. Man. Timing verification

using statically sensitizable paths. IEEE Trans. on Computer-Aided Design, 9(10):

1073–1084, 1990.

[63] A. Czutro, M. E. Imhof, J. Jiang, A. Mumtaz, M. Sauer, B. Becker, I. Polian,

and H. Wunderlich. Variation-aware fault grading. IEEE Asian Test Symp., pages

344–349, 2012.

Bibliography 140

[64] http://realtest.date.uni-paderborn.de/home.html.

[65] M. Sauer, J. Jiang, A. Czutro, I. Polian, and B. Becker. Efficient SAT-based search

for longest sensitisable paths. IEEE Asian Test Symp., pages 108–113, 2011.

[66] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinatorial benchmark circuits

and a target translator in FORTRAN. IEEE Int’l Symp. on Circuits and Systems,

1985.

[67] S. Davidson. ITC’99 benchmark circuits — preliminary results. IEEE Int’l Test

Conf., 1999.

[68] Nangate 45nm open cell library, http://www.nangate.com.

[69] Int’l. technology roadmap for semiconductors (ITRS), http://www.itrs.net. 2011.

[70] S. C. Ma, P. Franco, and E. J. McCluskey. An experimental chip to evaluate test

techniques experiment results. IEEE Int’l Test Conf., pages 663–672, 1995.

[71] N. H. E. Weste and D. M. Harris. CMOS VLSI Design. Addison-Wesley, 2011.

[72] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits. Pear-

son Education, Inc., 2003.

[73] S. R. Nassif and O. Fakhouri. Technology trends in power-grid-induced noise. Int’l

Workshop on System-level Interconnect Prediction, pages 55–59, 2002.

[74] T. Rahal-Arabi, G. Taylor, M. Ma, and C. Webb. Design and validation of the

Pentium III and Pentium 4 processors power delivery. Symp. on VLSI Circuits,

Digest of Technical Papers, pages 220–223, 2002.

[75] K. Shakeri and J. D. Meindl. Compact physical IR-drop models for chip/package

co-design of Gigascale Integration (GSI). IEEE Trans. on Electron Devices, 52(6):

1087–1096, 2005.

[76] N. Badereddine, P. Girard, S. Pravossoudovitch, and H. Wunderlich.

Structural-based power-aware assignment of don’t cares for peak power reduction

during scan testing. IEEE IFIP Int’l Conf., pages 403–408, 2006.

[77] C. Di and J. A. G. Jess. An efficient CMOS bridging fault simulator: with spice

accuracy. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-

tems, pages 1071–1080, 1996.

http://realtest.date.uni-paderborn.de/home.html

Bibliography 141

[78] L. W. Nagel and D. O. Pederson. SPICE (Simulation Program with Integrated Cir-

cuit Emphasis). EECS Department, University of California, Berkeley, Technical

Report No. UCB/ERL M382, 1973.

[79] F. J. Ferguson and J. P. Shen. Extraction and simulation of realistic CMOS faults

using inductive fault analysis. IEEE Int’l Test Conf., pages 475–484, 1988.

[80] J. Khare and W. Maly. Inductive contamination analysis (ICA) with SRAM ap-

plication. IEEE Int’l Test Conf., pages 552–560, 1995.

[81] J. Jiang, M. Aparicio-Rodriguez, M. Comte, F. Azäıs, M. Renovell, and I. Polian.

MIRID: Mixed-mode IR-drop induced delay simulator. IEEE Asian Test Symp.,

pages 177–182, 2013.

[82] A. B. Kahng, J. Lienig, I. L. Markow, and J. Hu. VLSI Physical Design: From

Graph Partitioning to Timing Closure. Springer Science & Business Media, 2011.

[83] J. R. Black. Electromigration—a brief survey and some recent results. IEEE

Trans. on Electron Devices, 16(4):338–347, 1969.

[84] R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser. Clock skew verification

in the presence of IR-drop in the power distribution network. IEEE Trans. on

Computer-Aided Design, 19(6):635–644, 2000.

[85] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and R. Panda. Vectorless anal-

ysis of supply noise induced delay variation. IEEE Int’l Conf. on Computer-Aided

Design, pages 184–191, 2003.

[86] S. Ravi. Power-aware test: Challenges and solutions. IEEE Int’l Test Conf., pages

1–10, 2007.

[87] P. Girard. Survey of low-power testing of VLSI circuits. IEEE Design & Test of

Computers, 19(3):80–90, 2002.

[88] Y. Zorian. A distributed BIST control scheme for complex VLSI devices. IEEE

VLSI Test Symp., pages 4–9, 1993.

[89] S. Wang and S. K. Gupta. ATPG for heat dissipation minimization during test

application. IEEE Int’l Test Conf., pages 250–258, 1994.

Bibliography 142

[90] S. Chakravarty and V. P. Dabholkar. Two techniques for minimizing power dis-

sipation in scan circuits during test application. IEEE Asian Test Symp., pages

324–329, 1994.

[91] P. Girard, C. Landrault, S. Pravossoudovitch, and D. Severac. Reducing power

consumption during test application by test vector ordering. IEEE Circuits and

Systems, 2:296–299, 1998.

[92] P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch. A test vector order-

ing technique for switching activity reduction during test operation. IEEE Ninth

Great Lakes Symp. on VLSI, 9:24–27, 1999.

[93] W. D. Tseng. Scan chain ordering technique for switching activity reduction during

scan test. IEEE Computers and Digital Techniques, 152(5):609–617, 2005.

[94] K. Sankaralingam, R. R. Oruganti, and N. A. Touba. Static compaction techniques

to control scan vector power dissipation. IEEE VLSI Test Symp., pages 35–40,

2000.

[95] L. Whetsel. Adapting scan architectures for low power operation. IEEE Int’l Test

Conf., pages 863–872, 2000.

[96] B. Pouya and A. L. Crouch. Optimization trade-offs for vector volume and test

power. IEEE Int’l Test Conf., pages 873–881, 2000.

[97] K. Sankaralingam, B. Pouya, and N. A. Touba. Reducing power dissipation during

test using scan chain disable. IEEE VLSI Test Symp., pages 319–324, 2001.

[98] Y. Bonhomme, P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch. A

gated clock scheme for low power scan testing of logic ICs or embedded cores.

IEEE Asia Test Symp., pages 253–258, 2001.

[99] S. Wang and S. K. Gupta. DS-LFSR: a new BIST TPG for low heat dissipation.

IEEE Int’l Test Conf., pages 848–857, 1997.

[100] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, and H. Wunderlich. A

modified clock scheme for a low power BIST test pattern generator. IEEE VLSI

Test Symp., pages 306–311, 2001.

Bibliography 143

[101] P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch. Low power BIST

design by hypergraph partitioning: methodology and architectures. IEEE Int’l

Test Conf., pages 652–661, 2000.

[102] http://www.synopsys.com/Tools/Implementation/SignOff/Pages/

PrimeRail.aspx.

[103] https://www.apache-da.com/products/redhawk.

[104] W. I. Baker, A. Mahmood, and B. S. Carlson. Parallel event-driven logic simula-

tion algorithms: tutorial and comparative evaluation. IEEE Proceedings-Circuits,

Devices and Systems, 143(4):177–185, 1996.

[105] L. Soule and T. Blank. Statistics for parallelism and abstraction level in digital

simulation. IEEE Design Automation Conf., pages 588–591, 1987.

[106] M. L. Bailey. How circuit size affects parallelism. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 11(2):208–215, 1992.

[107] H. Kriplani, F. N. Najm, and I. N. Hajj. Pattern independent maximum current

estimation in power and ground buses of CMOS VLSI circuits: Algorithms, signal

correlations, and their resolution. IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, pages 998–1012, 1995.

[108] L.-C. Wang, W. Qiu, S. Fancler, and D. M. H. Walker. Static compaction of delay

tests considering power supply noise. IEEE VLSI Test Symp., pages 235–240,

2005.

[109] http://www.open-std.org/jtc1/sc22/wg21/.

[110] IEEE Standard Verilog Hardware Description Language. http://ieeexplore.

ieee.org/servlet/opac?punumber=7578, 2001.

[111] M. Aparicio-Rodriguez. Modeling and simulation of the IR-Drop phenomenon in

integrated circuits. PhD thesis, University of Montpellier II, 2013.

[112] D. Bull, S. Das, K. Shivashankar, G. S. Dasika, K. Flautner, and D. Blaauw. A

power-efficient 32 bit ARM processor using timing-error detection and correction

for transient-error tolerance and adaptation to PVT variation. IEEE Journal of

Solid-State Circuits, 46:18–31, 2010.

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeRail.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeRail.aspx
https://www.apache-da.com/products/redhawk
http://www.open-std.org/jtc1/sc22/wg21/
http://ieeexplore.ieee.org/servlet/opac?punumber=7578
http://ieeexplore.ieee.org/servlet/opac?punumber=7578

Bibliography 144

[113] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S. L. Lu,

T. Karnik, and V. De. Energy-efficient and metastability-immune timing-error

detection and recovery circuits for dynamic variation tolerance. IEEE Journal of

Solid-State Circuits, 44:49–63, 2009.

[114] I. Polian, J. Jiang, and A. Singh. Detection conditions for errors in self-adaptive

better-than-worst-case designs. IEEE European Test Symp., pages 1–6, 2014.

[115] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli. Minimum padding to

satisfy short path constraints. IEEE Int’l Conf. On Computer Aided Design, pages

156–161, 1993.

[116] D. Bull and S. Das. Latch to block short path violation. US Patent 2008/0086624

A1, 2008.

[117] Z. Jiang, Z. Wang, J. Wang, and D. M. H. Walker. Levelized low cost delay test

compaction considering IR-drop induced noise. IEEE VLSI Test Symp., pages

52–57, 2011.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background and State-of-the-art
	1.1.1 Process Variation in Nanoscale Technologies
	1.1.2 Delay Testing Under Process Variations
	1.1.2.1 Delay Fault Models
	1.1.2.2 Timing Analysis

	1.1.3 State-of-the-art Approaches
	1.1.3.1 Statistical Design Approaches
	1.1.3.2 Statistical Testing Approaches

	1.2 Statistical Testing flow
	1.2.1 Overview of a Statistical Testing Flow
	1.2.2 Statistical Fault Coverage
	1.2.3 SDD Tesing and KLPG Algorithm
	1.2.4 Variation-aware Fault Simulation

	2 KLPG: K Longtest Path Generation
	2.1 Motivation
	2.2 Preliminaries
	2.2.1 Classification of Path Delay Faults
	2.2.2 SAT-solver and SAT-based ATPG

	2.3 Walker's KLPG Algorithm
	2.4 Opt-KLPG: K Longest Path Generation for Optimal Solutions Under Memory Constraints
	2.4.1 Algorithm Overview
	2.4.2 Esperance Computation
	2.4.3 KLPG Module
	2.4.4 Sensitization check
	2.4.4.1 Direct Implication
	2.4.4.2 ATPG using TIGUAN

	2.5 Application of Opt-KLPG by Variation-aware Fault Grading
	2.5.1 Modeling for Variation-aware Delay Testing
	2.5.2 Variation-aware Fault-grading Procedure
	2.5.3 Path-oriented Delay ATPG

	2.6 Experimental Results
	2.6.1 On the Optimality of KLPG Algorithms
	2.6.2 Fault-grading Procedure using Opt-KLPG

	3 MIRID: Mixed-mode IR Drop Induced Delay Simulator
	3.1 Motivation
	3.1.1 Mixed-mode Simulation

	3.2 Preliminaries
	3.2.1 Power Distribution Network (PDN)
	3.2.2 IR Drop Effect
	3.2.3 Power-aware Test

	3.3 Simulation Overview
	3.3.1 Event-driven Logic Simulation
	3.3.2 Interfaces to Electrical Models

	3.4 Electrical Models
	3.4.1 PDN Configuration
	3.4.1.1 Structural Assumption
	3.4.1.2 Parasitic Elements in PDN
	3.4.1.3 Mapping to the Logic Block

	3.4.2 Current Distribution in PDN Grids
	3.4.3 Electrical Models at the Gate Level
	3.4.3.1 Dynamic Current Model
	3.4.3.2 Gate Delay Model

	3.5 Simulator
	3.5.1 Logic Library
	3.5.2 Simulation Preprocessing
	3.5.3 Logic Simulation
	3.5.3.1 Zero-delay Logic Simulation
	3.5.3.2 Timing-aware Event-driven Simulation

	3.5.4 Interface Functions For Electrical Models
	3.5.4.1 Estimation of Dynamic Currents
	3.5.4.2 Distribution of Currents in PDNs
	3.5.4.3 Estimation of Gate Delays

	3.6 Application to Self-adaptive Better-than-worst-case Design
	3.6.1 Short-path Invalidation
	3.6.2 Detection Conditions
	3.6.2.1 Simplified Variability Model
	3.6.2.2 Mitigation by Buffer Padding
	3.6.2.3 Mitigation by Latch Placement

	3.6.3 Strategies of Mitigation

	3.7 Experimental Results
	3.7.1 Accuracy Validation
	3.7.2 Investigation on IR Drop induced Delay
	3.7.3 Performance for Large Circuits
	3.7.4 Mitigation of the Short-path Problem using Buffers and Latches

	4 Conclusion
	Bibliography

