

UNIVERSITÄT PASSAU

Abstract

Fakultät für Informatik und Mathematik

Dr. rer. nat.

Fault Tolerance Aspects of Virtual Massive MIMO Systems

by Victor Tomashevich

Employment of a very large number of antennas is seen as the key technology to provide

future users with very high data rates. At the same time, the implementation complexity

will rise due to large memories required and sophisticated signal processing algorithms

employed. Continuous technology downscaling allows implementation of such complex

digital designs. At the same time, its inherent variability and vulnerability to physical

disturbances violate the assumption of perfectly reliable hardware operation.

This work considers Unique Word OFDM which represents the alternative to the stan-

dard Cyclic Prefix OFDM providing superior detection quality. The generalization of

Unique Word OFDM to a MIMO system is performed which allows interpretation as a

virtual massive MIMO system with only few physical antennas. Detection methods for

the introduced generalization are discussed and their performance is quantified. Because

of the large memory size required, linear detection represents the cost and performance

effective solution. The possible memory errors due to radiation effects or voltage scaling

are addressed and the nonlinear MMSE detection algorithm is proposed. This algorithm

keeps track of the memory errors and is able to significantly mitigate their effect on the

quality of the estimated data.

Apart of memory issues, reliability of the actual computational hardware which con-

stitutes the receiver is of concern in this work. An own implementation of the MMSE

Sorted Givens Rotations is subjected to transient fault injection. The impact of faults

in various parts of the implemented circuit on the detection performance is quantified.

Most vulnerable components of the implemented circuit in terms of reliability are iden-

tified.

Security is another major address of this work, since most current implementations

include cryptographic devices. Fault-based attacks on such systems are known to be

able to extract the secret key in feasible time. The remaining part of this work addresses

such fault injection-based malicious attacks. Countermeasures based on a combination

iii

of information and hardware redundancy are considered. Recently introduced robust

codes target such attacks by providing guaranteed detection capability. The performance

of these codes is assessed by application to actual cryptographic and general purpose

circuits. The work introduces metrics that help to identify fault locations in the circuit

which could escape detection with high probability. These locations are targeted by

transistor resizing that renders fault injection unfeasible.

Acknowledgements

First of all, I want to thank my supervisor, Professor Ilia Polian for his valuable sugges-

tions, support and guidance throughout my Ph. D. studies. He encouraged me to work

on this interdisciplinary topic and helped me to overcome the challenges in my research.

It is also my pleasure to express my gratitude to Professor Tirkkonen for agreeing to act

as an external co-examiner of my Ph. D. thesis and to all members of the examination

committee.

I am very grateful to my co-authors Sudarshan Srinivasan, Raghavan Kumar, Christina

Gimmler-Dumont, Christian Fesl, Fabian Förg, Yaara Neumeier, Professor Osnat Keren

and Professor Norbert Wehn for fruitful collaboration and valuable discussions. With-

out their profound expertise and great commitment this work would not have been

completed. Special thanks goes to my colleagues at the chair of computer engineer-

ing Jie Jiang and Alexandru Paler for providing excellent work environment and lively

discussions sometimes far from the main field of research.

I would like to thank my parents for inculcating in me the interest in science and for

teaching me to never rest on the laurels. My heartfelt gratitude goes to my beloved wife,

Maria. Her patience, love and encouragement have been my major support. Finally and

most importantly, I want to thank my daughters for being an endless source of fun and

inspiration.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Literature review . 2

1.3 Contributions . 5

1.4 Outline . 7

2 Background 9

2.1 Wireless communication . 9

2.1.1 Multipath channels . 9

2.1.1.1 Delay spread . 12

2.1.1.2 Coherence bandwidth . 13

2.1.1.3 Doppler power spectrum 15

2.1.1.4 Coherence time . 16

2.1.1.5 Frequency selective channel model 17

2.1.2 Orthogonal frequency division multiplexing 19

2.1.2.1 Cyclic prefix OFDM . 20

2.1.2.1.1 Encoder / decoder. 20

2.1.2.1.2 Modulation / demodulation 21

2.1.2.1.3 Cyclic prefix . 22

2.1.2.2 Unique word OFDM . 26

2.1.2.2.1 Systematic generation of UW 27

2.1.2.2.2 Non-systematic generation of UW 29

2.2 MIMO . 31

2.2.1 Channel model . 33

2.2.2 MIMO cyclic prefix OFDM . 35

2.2.3 Detection . 39

2.2.3.1 LMMSE . 39

v

Contents vi

2.2.3.1.1 Soft output generation 41

2.2.3.1.2 Cyclic prefix . 43

2.2.3.2 Maximum likelihood . 43

2.2.3.2.1 Sphere decoding 44

2.2.3.2.1.1 Soft output generation 47

2.2.3.2.2 Likelihood ascent search 49

2.3 Fault tolerance . 50

2.3.1 Faults and errors . 51

2.3.2 Redundancy . 54

2.3.3 Stochastic computation . 57

2.3.4 Unified channel and memory error model 60

2.3.5 Fault-based attacks and countermeasures 63

3 Detection of virtual massive MIMO systems 65

3.1 MIMO unique word OFDM . 66

3.1.1 LMMSE detection . 70

3.1.1.1 Complexity-reduced LMMSE for systematic MIMO UW-
OFDM . 70

3.1.2 Sphere decoding for MIMO UW-OFDM 72

3.1.3 LAS for MIMO UW-OFDM . 72

3.1.3.1 Maximum a posteriori probability LAS 73

3.1.3.1.1 Soft output generation 76

3.1.3.2 LAS performance improvement using Ǧ′′
s 77

3.1.4 Performance comparison . 78

3.1.4.1 Simulation parameters . 78

3.1.4.2 Simulation results . 78

3.1.4.3 Complexity comparison 82

3.2 Memory error resilient detection . 83

3.2.1 NMMSE-based single error correction 88

3.2.1.1 log-NMMSE . 91

3.2.2 Iterative NMMSE-based multiple error correction 93

3.2.3 Resilient likelihood ascent search 95

3.2.4 Simulation results . 99

3.3 Summary . 101

4 Reliability analysis of QR decomposition 109

4.1 Givens rotations . 110

4.1.1 Systolic array . 112

4.2 MMSE sorted Givens rotations . 115

4.2.1 Hardware implementation . 117

4.2.1.1 Real-time requirements 118

4.2.1.2 Architecture . 119

4.2.1.3 Synthesis results . 123

4.3 Reliability analysis of combinational components 125

4.3.1 Simulation chain . 126

4.3.2 Fault injection . 127

4.3.3 Simulation results . 127

Contents vii

4.4 Summary . 133

5 Evaluation of robust codes 135

5.1 Robust codes . 135

5.1.1 Quadratic sum code . 137

5.1.2 Punctured cubic code . 137

5.2 Evaluation methodology . 138

5.2.1 Fault-based metrics . 138

5.2.2 Fault injection platform . 141

5.3 Cross-level protection . 142

5.3.1 Implementation of code-based protection 143

5.3.2 Selective hardening of individual gates 144

5.3.3 Synthesis and evaluation of circuit with hardened gates 145

5.3.4 Experimental results . 145

5.3.4.1 Evaluation of hardening for single faults 147

5.3.4.2 Multiple faults . 150

5.4 Application to cryptographic circuits . 153

5.4.1 Results . 153

5.5 Summary . 157

6 Conclusion 159

A Convolutional codes 161

Bibliography 169

List of Figures

2.1 Multipath propagation . 10

2.2 Time-varying multipath channel . 11

2.3 Doppler effect . 11

2.4 Power delay profile . 13

2.5 Spaced-frequency correlation function . 14

2.6 Fading channel frequency response . 16

2.7 Tapped delay line . 18

2.8 OFDM vs FDM . 19

2.9 OFDM in a deep fade . 19

2.10 CP-OFDM transceiver . 20

2.11 Interleaving . 20

2.12 4-QAM Gray mapping . 21

2.13 4-QAM scatter plot . 22

2.14 Cyclic prefix . 23

2.15 UW vs CP frame structure . 26

2.16 Non-systematic generator matrices . 30

2.17 Diversity vs spatial multiplexing . 31

2.18 Reception by two neighboring antennas 34

2.19 MIMO CP-OFDM transceiver . 36

2.20 Tree search . 45

2.21 Repeated tree search . 48

2.22 Stateflow of 3-LAS algorithm . 50

2.23 Stuck-at-0 fault . 51

2.24 Voltage overscaling . 52

2.25 Carry ripple adder . 52

2.26 Logical masking of SEU . 53

2.27 N-modular redundancy . 54

2.28 Multiplication by an AND gate . 57

2.29 Algorithmic noise tolerance . 58

2.30 Algorithmic soft error tolerance . 58

2.31 Soft NMR . 59

2.32 MIMO receiver with faulty buffer memory 60

2.33 Faulty buffer memory . 61

2.34 Pdf of memory error . 62

2.35 Simple duplication with complementary redundancy 64

3.1 MIMO UW-OFDM non-systematic generator matrices 77

3.2 LMMSE uncoded performance . 79

ix

List of Figures x

3.3 LMMSE coded performance . 79

3.4 1-LAS vs LMMSE, uncoded . 80

3.5 M-LAS vs SD, Ǧ′′
s , uncoded . 81

3.6 Proposed MAP 1-LAS vs 1-LAS, Ǧ′, coded 81

3.7 M-LAS vs SD, Ǧ′, coded . 82

3.8 Addressing faulty memory in LMMSE . 84

3.9 Pdf of receive vector element . 85

3.10 MIMO CP-OFDM, uncoded BER performance, Pe = 10−3 100

3.11 MIMO CP-OFDM, coded BER performance, Pe = 10−3 101

3.12 MIMO CP-OFDM, uncoded BER performance, Pe = 10−4 102

3.13 MIMO CP-OFDM, coded BER performance, Pe = 10−4 102

3.14 MIMO UW-OFDM, Ǧ′′
s , uncoded BER performance, Pe = 10−3 103

3.15 MIMO UW-OFDM, Ǧ′, coded BER performance, Pe = 10−3 103

3.16 MIMO UW-OFDM, Ǧ′′
s , uncoded BER performance, Pe = 10−4 104

3.17 MIMO UW-OFDM, Ǧ′, coded BER performance, Pe = 10−4 104

3.18 LAS (NMMSE), coded BER performance, Pe = 10−3, mit = 3 105

3.19 LAS (NMMSE), coded BER performance, Pe = 10−3, mit = 6 105

3.20 LAS (NMMSE), coded BER performance, Pe = 10−4, mit = 3 106

3.21 LAS (NMMSE), coded BER performance, Pe = 10−4, mit = 6 106

4.1 Rotation . 110

4.2 Systolic array . 112

4.3 Boundary and internal cells of the systolic array 113

4.4 Systolic array with unitary matrix . 115

4.5 MMSE sorted Givens QRD architecture 120

4.6 Rotation processing . 120

4.7 State machine of QR decomposition . 121

4.8 Timing results . 124

4.9 Cycles/QRD vs cost . 125

4.10 Simulation chain . 126

4.11 Fault injection architecture . 127

4.12 Fault injection controller . 128

4.13 Boundary cell and internal cell under fault injection 129

4.14 Fault injection, ψ = 10−10 . 129

4.15 Fault injection, ψ = 10−9 . 130

4.16 Fault injection, ψ = 10−8 . 130

4.17 Fault injection, ψ = 10−7 . 131

4.18 Fault injection, ψ = 10−6 . 131

4.19 Fault injection, ψ = 10−5 . 132

4.20 Fault injection, ψ = 10−4 . 132

5.1 Error detecting architecture . 136

5.2 Possible detection status of errors at the input of the EDN in Fig. 5.1 . . 136

5.3 General architecture for EDN of the QS code 137

5.4 General architecture for EDN of the PC code 138

5.5 Additive error assumption . 140

5.6 Mismatch between structural fault and additive error 140

List of Figures xi

5.7 Fault injection framework . 141

5.8 Implementation of error detecting architecture 143

5.9 Histograms of ASR values of single faults, Braun multiplier 147

5.10 Histograms of ASR values of single faults, b20 148

5.11 ASR distribution for various hardening scenarios, QS GF (4), Braun mul-
tiplier . 150

5.12 ASR classes for different codes with four RB (percentages) 157

A.1 Rate 1/2 convolutional encoder . 162

A.2 Rate 1/2 (171, 133) recursive systematic encoder 164

A.3 Trellis section . 165

A.4 Hard-decision decoding, one error . 166

A.5 Hard-decision decoding, two errors . 166

A.6 Soft-decision decoding, two errors . 168

List of Tables

3.1 Complexity comparison . 72

3.2 MIMO system parameters . 78

3.3 Run-time comparison . 83

4.1 Implementation using multicycle constraints 123

4.2 Implementation using register stages . 123

4.3 Area results . 125

5.1 Gate counts of individual protection schemes 145

5.2 ASR classes (no hardening) for Braun multiplier, single faults 146

5.3 ASR classes (no hardening) for b20, single faults 146

5.4 Different hardening scenarios, single faults 149

5.5 Faults of different multiplicity, Braun multiplier 151

5.6 Faults of different multiplicity, b20 . 152

5.7 Mean ASR and SDC, PRINCE circuit . 154

5.8 Mean ASR and SDC, faults in original device only 155

5.9 Mean ASR and SDC, exploitable fault locations 155

5.10 Distribution of ASR values over individual faults, one round of PRINCE . 156

xiii

Chapter 1

Introduction

1.1 Motivation

Massive multiple-antenna (MIMO) systems have recently gained attention as potential

means to improve spectral efficiency, link quality and coverage compared to contempo-

rary small-scale MIMO [1]. This is achieved by employing hundreds of antennas. The

improvements come at the cost of the computational complexity increase at the receiver

[2].

Realization of such complex architectures should become possible thanks to the con-

tinuous shrinking of complementary metal oxide semiconductor (CMOS) devices during

recent years. However, continuous downscaling reached a point, where the expected

characteristics of the produced devices cannot be guaranteed [3]. For example, leakage

and drive currents vary from one produced die to the other. Sources of such variations

include fluctuations of geometric dimensions due to lithographic and etching techniques

and variable number of dopant atoms [4]. Furthermore, reducing transistor size makes

it susceptible to temperature variations, which accelerate the wear-out. Reducing scale

makes the CMOS devices more vulnerable to ionizing radiation, such as alpha particles

or high-energy neutrons from cosmic radiation. The latter do not damage the device

permanently, but may change the values of the processed or stored logic values, leading

to errors that could manifest themselves in wrongly computed variables of the algorithm

that is run on this device and compromise the algorithm’s correctness and/or perfor-

mance. It has to be concluded that the assumption of perfectly reliable hardware does

not hold anymore.

Whereas the above conclusions are drawn for hardware in general, their impact on imple-

mentations of prospect communication systems has not been largely addressed. Assum-

ing systems with hundreds of antennas, application of classical fault-tolerance measures

such as modular redundancy [5] is infeasible due to large number of components. Usage

of commercial off-the-shelf components renders radiation hardening not suitable either.

As massive MIMO systems require memories of large size, applying classical error de-

tecting code protection [5] will prove costly in terms of area and power consumption

increase. Fault tolerance requirement and the nature of operation of communications

systems are related, since the latter always process noisy data and therefore already

1

Chapter 1. Introduction 2

possess some inherent resilience. Therefore, recent research trend is to modify the de-

tection algorithm, taking into account the variability of the underlying hardware, such

that the graceful performance degradation is achieved [6]. This controlled degradation

is then traded off for reduction of power consumption, allowing energy efficient design

[7]. However, these developments consider only generic signal processing subsystems or

small-scale MIMO receivers and no results on massive MIMO systems were available so

far. One objective of this thesis is to propose detection algorithms for large-scale MIMO

systems that take memory errors into account.

The reliability of computational components (apart from memory) that constitute the

sub-blocks of the detection algorithm(s) has not been largely addressed either. It is gen-

erally not clear, whether one part of the implemented computation is more vulnerable to

hardware imperfections than the other. This issue is addressed in this work by analyzing

the effect of transient faults in individual sub-components of the QR decomposition (one

of the receivers’ principal blocks) on the overall detection quality.

As by far most current systems (and communication systems are not an exception) in-

clude cryptographic components, security is another focus of this thesis. The reliability

and security are related issues in nanoscale electronics, susceptibility of circuits to dis-

turbances allows performing fault-based attacks. These malicious fault injections can

be used to perform cryptanalysis and gain access to sensitive information such as secret

keys. Among other countermeasures, a class of nonlinear error detecting codes referred

to as robust codes has been proposed [8]. Theoretically, robust codes guarantee detec-

tion of errors caused by malicious attacks. However, their construction and performance

characteristics are based on simplifying assumptions and do not take the structure of

actual circuits into account. This work assesses the performance of robust codes applied

to actual circuits and refines their theoretical characteristics.

1.2 Literature review

Recently the authors of [9] introduced new variant of orthogonal frequency division

multiplexing (OFDM) which is closely related to massive MIMO. It is denoted as unique

word (UW) OFDM. The difference lies in the encoding of sub-carriers, such that they

can be regarded as a virtual (massive) MIMO system, whereas in standard cyclic prefix

OFDM (CP-OFDM), the sub-carriers represent orthogonal channels. The size of the

resulting virtual channel matrix is governed by the number of sub-carriers employed.

The unique word signaling has been initially introduced for single-antenna systems

(SISO). The inherent coding across sub-carriers allows much better detection quality

compared to SISO CP-OFDM [10, 11]. This is achieved by inherent coding gain and

ability to apply MIMO detection algorithms such as linear minimum mean square er-

ror (LMMSE) or sphere decoding (SD), which are not applicable to single antenna

CP-OFDM. Application of sphere decoding to UW-OFDM has been published in [12].

However, the exponential complexity of SD restricted its use only to systems with low

number of sub-carriers [12, 13]. The relation to massive MIMO has not been yet elab-

orated and detection algorithms specifically developed for large scale systems have not

been considered.

Chapter 1. Introduction 3

A fair comparison of SISO UW-OFDM to SISO CP-OFDM is impossible in general.

UW-OFDM clearly outperforms CP-OFDM in SISO case [10, 11], due to the fact that

it is essentially a (massive) MIMO system. However, current standards employ MIMO

with Mt transmit and Mr receive physical antennas. UW-OFDM should be extended to

support multiple physical transmit and receive antennas and its performance compared

to MIMO CP-OFDM.

Continuous shrinking of CMOS devices allowed implementation of complex and low

power designs both in general purpose computing and in application specific computing.

They are susceptible to process variations and soft errors that introduce computational

errors affecting the performance of higher layers [4]. Addressing this issue by up scaling

the power supply voltage contradicts with the low power requirement. Using traditional

hardware redundancy methods introduces additional area overhead and in turn increases

the power consumption.

The novel approaches to provide hardware variation resilient operation can be classi-

fied to circuit-architecture co-design approaches and algorithm-architecture code-design

approaches. The examples of circuit-architecture level techniques are RAZOR [14] and

CRISTA [15]. RAZOR uses dynamic detection and correction of circuit timing errors

by using a shadow latch. The key idea of RAZOR is to tune the supply voltage by mon-

itoring the error rate during circuit operation, thereby eliminating the need for voltage

margins and exploiting the data dependence of circuit delay [14]. CRISTA allows volt-

age overscaling (VOS) by prediction-based elastic clocking [15]. It isolates the critical

paths of the design and provides an extra clock cycle for these paths. These methods

are applicable to general purpose computing.

Algorithm-architecture co-design methods are advantageous when information from the

application can be used. For example, signal processing applications are working on

noisy data and do not require correction of all occurring errors. The resilience measures

take the application metrics such as signal-to-noise ratio (SNR) or bit error ratio (BER)

into account. Based on these performance metrics some amount of computational errors

caused by variations of the underlying hardware can be potentially tolerated, leading to

energy-efficient design. These methods can be roughly classified into significance driven

approach (SDA) [16–18] and stochastic computing [19], however there is no strict dis-

tinction between these classes and the concrete algorithms may share common features.

The SDA uses the fact that not all computations of a particular algorithm are equally

important for the quality of the algorithm output. Significant parts of the algorithm

are constrained to be computed in a fraction of a cycle time. This approach has been

applied to video processing designs [16].

The idea of stochastic computing is to treat the computational errors caused by timing

errors or transient faults due to particle strikes as additional source of noise. The error

correction is then performed in statistical sense, such that some cost function defined

by the application is optimized. Stochastic computing features methods like algorithmic

noise tolerance (ANT) [20, 21] and soft N-modular redundancy (soft NMR) [22]. ANT

targets timing errors introduced by voltage overscaling. The architecture contains the

main device, which is allowed to produce wrong outputs due to VOS and an estimator

block which computes the same function as the main device, but produces a known

systematic error. With the knowledge of the statistics of the correct output of the main

Chapter 1. Introduction 4

device and the systematic error introduced by the estimator block, the decision device

picks either one of them such that the overall error is minimized [23].

Soft NMR differs from the classical NMR in the voter algorithm [22]. The voter in soft

NMR treats the outputs of the N identical devices as multiple noisy measurements of

some parameter. It then uses estimation theory to design decision rule, which optimizes

some given cost function. It does not mask the error by majority voting but corrects

the errors in the statistical sense. For example, if the error is known to have Gaussian

distribution and the cost function is the minimum mean square error (MMSE), the

corrected output of the soft NMR voter is simply the average value of the N outputs.

In terms of MIMO receivers, an algorithm that uses stochastic computing or a sort of soft

NMR has been proposed in [24]. The outputs of Mr receive antennas are treated as out-

puts of N identical modules. Here, the compound noise term is formed that comprises

the errors introduced by hardware and the errors due to noise in the communication

channel. This compound noise is modeled by a mixture distribution, where the Gaus-

sian distribution of the channel noise is picked with probability 1 − ε and an arbitrary

contaminant distribution is picked with probability ε. Next, robust statistics are used to

seek for outliers and robust LMMSE estimate of the transmit symbol vector is obtained.

Unfortunately, there are no details given on how to pick a particular contaminant dis-

tribution and how it relates to actual hardware induced errors. Also, no insights are

provided on how to identify the outliers and most importantly, the performance of the

method in terms of detection quality has not been assessed.

A related work has been performed by authors of [25]. Here, a model that combines

channel noise and memory errors due to VOS has been proposed. Based on this model,

they proposed modified detection algorithm that uses the combined model in deciding

on the transmitted symbol [6]. However, their work addresses solely small-scale MIMO

systems and therefore uses simplifying assumptions on memory error distribution. The

proposed model, with necessary refinements, will be the used in this work to modify

detection algorithms suitable for large-scale MIMO systems.

Other memory components of MIMO receiver have been addressed as well. It has been

shown in [26] that when the hardware errors occur in the input buffers of the channel

decoder it is still possible to recover even from high error rates by simply increasing the

number of decoding iterations. The hardware errors in the log-likelihood ratio (LLR)

buffer have been analyzed in [27]. These errors are not critical, as the LLR represents the

confidence in the decoded bit (positive for 0 and negative for 1). Thus, it is essentially

only necessary to protect the sign bit of the stored LLR value [28].

The channel preprocessing block turns out to be the most critical. It has been shown

in [29] that the errors in the input buffer to the channel preprocessing drastically spoil

the receivers’ performance even at low error rates, due to propagation to successor

blocks. In general, errors lead to mismatch between decomposed channel matrix and re-

ceived vector, rendering further detection and decoding useless. The QR decomposition

that implements channel preprocessing is a simple and stable algorithm when working

with fixed point arithmetic. Apart from that stability it does not posses any inher-

ent resilience. It is suggested in [28] to protect it by low level techniques. The actual

computational components of the receiver implementation have not been yet addressed.

Chapter 1. Introduction 5

Cryptographic circuits and further security-related devices are vulnerable to malicious

attacks by fault injection [30, 31]. A circuit which processes protected data is run while

being subjected to physical disturbances, and the outcome of calculation, observed at the

circuit’s outputs, is analyzed. One such technique is differential fault analysis [32]: the

difference between fault-affected and fault-free executions is used to derive the secret

information stored in the device. A number of fault-injection techniques have been

suggested, ranging from rather imprecise voltage or clock-frequency manipulation [30]

to highly accurate pinpointed impact by laser pulses [33] or electromagnetic emissions

[34]. Successful attacks have been reported for a variety of well-known ciphers [35–37],

under different assumption of the attacker’s capability to inject faults. While a number

of techniques to advertently inject faults into a circuit are known [30], the most promising

method with high spatial and temporal resolution uses a laser beam to generate carriers

(electrons and holes) that induce parasitic currents and ultimately result in a bit flip.

The latest generation of fault-based attacks against state-of-the-art ciphers [35, 38–41]

requires only very few successful fault injections, but the exact time and location of each

performed fault injection must be controlled with a very high precision.

Countermeasures mainly consist of making the device physically inaccessible or em-

ploying fault detection [30]. The device is put into a tamper-proof case with intrusion

detection. Fault detection techniques included duplication / modular redundancy and

respective variations thereof with voting on the outputs. The drawback of these meth-

ods is the large imposed overhead. Another approach is to apply error detecting codes.

Usually linear codes are used, however more powerful nonlinear (robust) codes have been

recently proposed [8].

1.3 Contributions

This thesis aims at achieving fault-tolerant large-scale MIMO communication systems,

taking into account their specific properties. The individual chapters address different

aspects of this global goal. The key contributions of this thesis are summarized below:

• Generalization of UW-OFDM to a MIMO system is performed. The resulting sys-

tem is interpreted as a virtual massive MIMO system allowing application of quasi

maximum likelihood detection – likelihood ascent search (LAS). It is found that

encoding the individual data streams (relative to transmit antennas) by distinct

non-systematic UW generator matrices improves LAS BER performance. The

soft output LAS does not perform well in a MIMO UW-OFDM coded system.

Therefore, the LAS algorithm is modified to take into account the log likelihood

ratios provided by its initial solution. The resulting maximum a posteriori prob-

ability LAS and proposed soft output computation deliver better performance in

a coded system than the original LAS algorithm. Thorough simulations of MIMO

UW-OFDM and standard MIMO CP-OFDM are performed and their performance

compared.

• A novel memory error resilient nonlinear MMSE-based detection algorithm for

memory dominated massive MIMO system is proposed. The algorithm builds

up on the linear MMSE detection with moderate additional computational effort.

Chapter 1. Introduction 6

The single-element single-bit flip assumption is relaxed, and the proposed solution

targets the multiple-element single flip scenario. The simulation results show that

even for high memory error rates, the proposed algorithm is able to significantly

reduce the impact of the memory errors on the overall receiver performance in

terms of BER.

• An architecture for MMSE sorted QR decomposition based on Givens rotations

implemented by conventional fixed point arithmetic is introduced. It is derived

directly from the classical systolic array implementation of conventional Givens

rotations. To the best of the author’s knowledge, this is the first non-Gram-

Schmidt MMSE sorted QR decomposition implementation using conventional fixed

point arithmetic that meets the real-time constraints imposed by the long-term

evolution (LTE) standard.

• The first analysis of reliability of the implemented QR decomposition block by

actually injecting faults into the hardware, whereas actual works assume solely

memory errors. The computational sub-modules yielding the most performance

degradation are identified and the degradation is quantified in terms of the frame

error ratio (FER) floor.

• A cross-level protection solution, where a light-weight error-detecting code is com-

bined with hardening of insufficiently protected gates using transistor resizing is

proposed. Such gates are determined by FPGA-supported fault injection. A thor-

ough electrical analysis is performed in order to modify the electrical parameters

of these gates such that faults are highly unlikely. Area and power overhead

for a number of error-detecting codes are reported. To the best of the author’s

knowledge, this is the first work which co-optimizes fault handling by information

redundancy and by hardening individual circuit elements. In contrast to high-

level error models considered previously, faults within the combinational logic of

the circuit are considered and distinguished from errors, which are effects of faults

at the circuit’s outputs. The novel attack success rate (ASR) metric of a fault is

proposed that indicates the difficulty to inject a fault that is not detected.

• Robust error-detecting codes that specifically target malicious attacks and guaran-

tee minimal bounds on detection probability are systematically investigated. The

study is based on FPGA-supported fault injection campaigns on the circuit imple-

mentation of a recent lightweight block cipher and its sub-modules. The detection

capabilities of different robust and non-robust codes with respect to both random

faults and malicious attacks, as well as the required overheads are quantified. For

the first time, the performance of a novel punctured cubic code on actual crypto-

graphic circuitry is reported. Experimental results show that robust codes with

a certain number of redundant bits have better detection properties in security

context and higher predictability than their conventional linear counterparts.

Chapter 1. Introduction 7

1.4 Outline

The rest of this thesis is organized as follows:

Chapter 2 provides necessary background on wireless communication and details cyclic

prefix and unique word OFDM waveform design. Next, MIMO detection algorithms used

as a basis in this work are introduced. The classical fault tolerance measures along with

approaches specific for signal processing systems are shortly outlined. Finally, details

on fault based attacks and common countermeasures are provided.

Chapter 3 deals with generalization of UW-OFDM to a MIMO system. Simulation

results of detection algorithms specifically tailored for MIMO UW-OFDM are provided.

The results of this research are accepted for publication in [42]. Thereafter, nonlinear

MMSE-based detection algorithms are proposed and their performance is quantified by

simulation for both OFDM waveforms and different memory bit flip probabilities. Main

results of this work are submitted to [43].

Chapter 4 introduces own implementation of MMSE sorted Givens rotations and details

architecture and synthesis results. The implementation is published in [44]. Next, fault

injection experiments are performed that provide insights on most vulnerable computa-

tional components of the implementation. This work is published in [45].

Chapter 5 starts with background on robust codes. Then, fault-based metrics are in-

troduced together with the fault-injection framework. Results on cross-level protection

technique which combines robust codes with hardening of critical fault locations are pro-

vided. This research is published in [46]. Finally, application of robust codes to modern

low-power cipher PRINCE is investigated. This work is published in [47].

Chapter 6 concludes the thesis. It puts its outcomes into perspectives, summarizes the

achievements and indicates future research directions.

Chapter 2

Background

This chapter starts with theoretical background on the problem of communication

through wireless multipath channels. The OFDM signaling which is deployed in cur-

rent standards is introduced together with its two versions addressed in this thesis,

namely cyclic prefix and unique word OFDM. Section 2.1.1 discusses the characteristics

of multipath channels and introduces channel classification based on the latter. Here,

the particular channel type that is used later in this thesis is isolated. Section 2.1.2

provides details on CP- and UW-OFDM signaling and highlights their differences. This

section also introduces main building blocks of the transceiver such as channel coding

and modulation. Next, in Sec. 2.2 MIMO CP-OFDM is introduced, followed by relevant

detection algorithms. Finally, Sec. 2.3 provides background on fault tolerance mech-

anisms for contemporary signal processing systems, fault-based attacks and respective

countermeasures.

2.1 Wireless communication

2.1.1 Multipath channels

Data transmission over wireless channels is obscured by physical phenomena of scatter-

ing, reflection and diffraction of radio waves. This situation is illustrated in Fig. 2.1. At

the receiver, the receive signal is the superposition of the transmit signal copies asso-

ciated with different propagation paths. The path depicted in solid is the line of sight

path (LOS). Remaining paths are due to distinct scatterers or the clusters of scatterers.

These paths are depicted by dashed lines, where the different dash patterns indicate dif-

ferent amount of delay with respect to the LOS path. In case the delays of the respective

paths are close, they can be combined to a single propagation path with the same delay.

The modulated or bandpass transmit signal can be expressed as [48]

x́(t) = <
{

x(t)ei(2πfct+φ0)
}

(2.1)

9

Chapter 2. Background 10

transmitter
receiver

Figure 2.1: Multipath propagation

where x(t) is the complex baseband equivalent [49], fc is the carrier frequency and φ0 is

the initial phase offset.

Assume φ0 = 0. The bandpass receive signal is obtained as the superposition of delayed

versions of x́(t), coming from L(t) propagation paths, which are characterized by their

complex amplitudes al(t) and delays τl(t), l = 0, . . . , L:

ý(t) = <

L(t)
∑

l=0

al(t)x(t− τl(t))e
i(2π(fc+fdl)(t−τl(t)))

= <

L(t)
∑

l=0

al(t)e
i(−2π(fc+fdl)τl(t)+2πfdl t)x(t− τl(t))e

i2πfct

= <

L(t)
∑

l=0

al(t)e
−iφl(t)x(t− τl(t))

 ei2πfct

(2.2)

Looking at the bracketed term reveals that it can be regarded as the complex base-

band equivalent y(t) of the bandpass receive signal ý(t). It can be concluded that the

baseband representation of the receive signal is given as the superposition of scaled and

phase shifted copies of the baseband transmit signal. Using the equivalent baseband

representation allows removing the carrier frequency related term from the subsequent

analysis. The phase shift φl(t) may cause the versions of the transmit signal x(t) to

cancel each other out at the receiver, causing severe receive power drops which is known

as fading.

Finally, considering the above conclusions, the multipath channel is characterized by its

impulse response

h(t, τ) =

L(t)
∑

l=0

al(t)e
−iφl(t)δ(τ − τl(t)) (2.3)

where δ(τ − τl(t)) is the Dirac delta function [50]. The phase shift φl(t) is formulated as

φl(t) = 2π(fc + fdl)τl(t)− 2πfdlt. (2.4)

The channel impulse response (CIR) in Eq. 2.3 is time-varying. The complex amplitude

al(t) depends on the characteristics of reflecting/scattering materials and changes slowly

Chapter 2. Background 11

transmitter
receiver

(a) Channel at time t1

transmitter

receiver

(b) Channel at time t2

Figure 2.2: Time-varying multipath channel

over time relative to changes of the phase shift φl(t). This phase shift depends on the

time-varying delays τl(t), where each delay is associated with a distinct propagation

path l. The overall number L of propagation paths and the values of the respective

delays change over time as the receiver moves around in the multipath environment.

Consider an example in Fig. 2.2. At time t1, there are propagation paths defined by their

amplitudes al, delays τl and angles of arrival (AoA) θl(t). The l = 0 path corresponds

to the LOS. The AoA is measured with respect to the antenna broadside. That is, if

the transmitter and receiver are right in front (LOS path in Fig. 2.2a), AoA = 0o. In

the next time instance t2, the receiver has moved to another location and now there are

only two propagation paths. The path parameters α′
i, τ

′
i , θ

′
i are marked with prime to

emphasize their time-varying nature.

The overall phase shift φl(t) also depends on the Doppler frequency fdl . The Doppler

effect manifests itself as the change of the perceived carrier frequency at the receiver due

to the relative movement of the transmitter, receiver and/or the multipath environment

[48, 50]. The Doppler frequency quantifies the amount of this change. Consider the

moving receiver depicted in Fig. 2.3 The receiver moves with speed v, and it requires

receiver

transmitter

A B

Figure 2.3: Doppler effect

the time ∆t to move from point A to point B. The difference in distance which the wave

has to travel is given by ∆d, measured in wavelengths. The introduced phase shift due

to ∆d is obtained as

∆φ =
2π∆d

λ
=

2π

λ
v∆t cos θ (2.5)

Chapter 2. Background 12

where λ is the wavelength and θ is the AoA. The Doppler frequency is then obtained

from the given phase shift as

fd =
∆φ

2π∆t
=
v

λ
cos θ = fc

v

c
cos θ (2.6)

where fc is the carrier frequency and c is the speed of light. Therefore, the Doppler

frequency is the function of the carrier frequency, speed and AoA. It increases with

increasing the carrier frequency. Doppler shift is also directly proportional to the receiver

speed v. Given the carrier frequency and the receiver speed, the Doppler frequency is

maximal if θ = 0o:

fd,max = fc
v

c
(2.7)

The AoAs also change over time as the receiver moves around in the scattering environ-

ment as indicated in Fig. 2.2, thereby contributing to changing Doppler frequencies and

associated phase shifts.

Therefore, the multipath channel can be parametrized with respect to delay τ and time t.

The values of the parameters allow channel classification in terms of their frequency and

temporal variation. These parameters and the respective classification are introduced

next.

2.1.1.1 Delay spread

The time domain parameter related to τ is the delay spread Td, which is defined as the

difference between the arrival time of the transmit signal over the LOS propagation path

and the arrival time of the last delayed transmit signal copy [48]. The value of the delay

spread with respect to the symbol duration Ts indicates whether the channel is able to

introduce inter-symbol interference (ISI). In case Ts � Td, the delayed symbol versions

arrive far outside the duration of the symbol and would affect the subsequent symbols,

resulting in ISI. Conversely, if symbol duration is much longer than the delays spread,

Ts � Td, all echoes of the symbol still arrive within its duration and do not affect the

subsequent symbols. In this case the ISI is negligible.

As the CIR of the channel is a random process, the delay spread is a random variable.

It is obtained in terms of the auto-correlation function of the CIR. The CIR auto-

correlation function is defined as

R(τ1, τ2, t,∆t) = E {h∗(τ1, t)h(τ2, t+∆t)} (2.8)

In the general case, the auto-correlation function is computed for all possible combina-

tions of t and τ . The CIR random process is considered wide sense stationary (WSS),

meaning that its auto-correlation function does not depend on the time instant t at

which it is measured, but depends solely on the time shift ∆t [48]. Also the delays τ1
and τ2 of distinct multipath components are considered uncorrelated [48]. Therefore the

auto-correlation function is rewritten as

R(τ,∆t) = E {h∗(τ)h(τ,∆t)} (2.9)

Chapter 2. Background 13

Figure 2.4: Power delay profile

The auto-correlation function defines the channel power with respect to the propagation

delay τ and the time shift ∆t. The power with respect to the propagation delay is

maximal when ∆t = 0. The CIR auto-correlation function in this case is referred to as

the power delay profile (PDP)

R(τ) = R(τ,∆t = 0) (2.10)

The PDP shows the distribution of power as a function of delay τ . The PDP provides

information on how much power is concentrated in each of the propagation paths that

are associated to the distinct values of τ . In case some paths are conveying very low

power their contribution to the ISI will be negligible. Therefore they can be excluded

from further processing. This way the complexity of reducing ISI is eased. The mean

delay τ̄ and the root mean square delay spread στ are obtained form PDP as

µTd =

∞∫

0

τR(τ)dτ

∞∫

0

R(τ)dτ

(2.11)

and

σTd =

√
√
√
√
√
√
√

∞∫

0

(τ − µTd)
2R(τ)dτ

∞∫

0

R(τ)dτ

(2.12)

Consider an exponentially distributed PDP depicted in Fig. 2.4. The value of Td for

which R(τ) ≈ 0 for all τ > Td is referred to as the delay spread. In this case usually

the standard deviation of the PDP is chosen as the value of the delay spread Td. In

case of exponentially distributed PDP, the mean and standard deviation are the same,

therefore any one of the moments can be chosen to represent the delay spread.

2.1.1.2 Coherence bandwidth

In the frequency domain the parameter related to τ is the coherence bandwidth [48]. In

order to capture the time-varying channel in frequency domain, the Fourier transform

Chapter 2. Background 14

Figure 2.5: Spaced-frequency correlation function

of its CIR is performed with respect to τ .

H(f, t) =

∞∫

−∞

h(τ, t)e−i2πfτdτ (2.13)

Its auto-correlation function is formulated as

R(f1, f2, t,∆t) = E {H∗(f1, t)H(f2, t+∆t)} (2.14)

Assuming wide-sense stationary and uncorrelated scattering, the auto-correlation func-

tion is simplified as

R(f1, f2,∆t) = E

∞∫

−∞

h∗(τ1, t)e
i2πf1τ1dτ1

∞∫

−∞

h(τ2, t+∆t)e−i2πf2τ2dτ2

(2.15)

=

∞∫

−∞

∞∫

−∞

E {h∗(τ1, t)h(τ2, t+∆t)} ei2πf1τ1e−i2πf2τ2dτ1dτ2

=

∫ ∞

−∞
R(τ,∆t)e−i2pi(f2−f1)τdτ

= R(∆f,∆t)

where ∆f = f2 − f1. Therefore, the auto-correlation of the channel transfer function

H(f, t) in frequency depends only on the frequency difference ∆f . At ∆t = 0 this

function is referred to as the spaced-frequency correlation function and is defined as the

Fourier transform of the PDP.

R(∆f) =

∞∫

−∞

R(τ)e−i2π∆fτdτ (2.16)

Consider the spaced-frequency correlation function depicted in Fig. 2.5. It is obtained

from the exponential PDP in Fig. 2.4. The frequency range Bc, where R(∆f) = 0 for any

∆f > Bc is referred to as the coherence bandwidth. In other words, coherence bandwidth

Bc is the range of frequencies for which the amount of fading can be considered identical.

As the coherence bandwidth is obtained from the PDP, it is proportional to the inverse

of the delay spread: Bc ≈ 1
Td
.

Chapter 2. Background 15

The multipath channel can be classified with respect to the discussed parameters as

follows [48–50]:

• Frequency flat channel. With respect to the coherence bandwidth, the channel

is considered frequency flat if Bs � Bc. This means that the whole bandwidth

occupied by the signal undergoes the same amount of fading. Conversely, in time

domain this implies Ts � Td. This condition ensures that the amount of ISI

introduced by the channel is negligible. In particular, the symbol duration should

be at least an order of magnitude larger that the delay spread [48].

• Frequency selective channel. The channel is considered frequency selective if Bs �
Bc. Thereby, the different portions of the signal bandwidth undergo different

distortion introduced by the channel. Conversely, in time domain the frequency

selectivity implies Ts � Td. In particular, if the symbol duration is an order of

magnitude less than the delay spread, a frequency selective channel will introduce

significant ISI.

A communication system can be classified as narrow-band or wide-band only with re-

spect to coherence bandwidth or the delay spread of the channel. Given Td, increasing

the Ts with respect to it would result in decreasing the signal bandwidth Bs. Decreas-

ing Ts relative to Td increases the signal bandwidth Bs and introduces ISI. Therefore,

systems referred to as wide-band are considered to be affected by ISI. Consider a re-

alization of the channel transfer function illustrated in Fig. 2.6. The signal bandwidth

Bs1 spreads across two significant power drops (fades). This indicates that the signal

bandwidth most likely exceeds the channels coherence bandwidth. The signal bandwidth

Bs2 is on the contrary so narrow, that the channel transfer function is almost constant

across it. This indicates that Bs2 is very likely much narrower than Bc. In this case, for

the communication system with Bs2 the channel can be considered a flat fading channel,

whereas the same channel is considered frequency selective for the system with Bs1 .

OFDM communication systems considered in this thesis are classified as wide-band and

are therefore passing the data through a frequency selective channel that introduces ISI.

The ISI is handled by introduction of the cyclic prefix. This process will be explained

in subsequent sections. Along with the parameters related to τ , the parameters related

to the time evolution of the multipath channel are of interest.

2.1.1.3 Doppler power spectrum

The first parameter related to t is the Doppler power spectrum. Consider the scattering

function which is defined as the Fourier transform of the CIR auto-correlation function

with respect to ∆t

S(τ, fd) =

∞∫

−∞

R(τ,∆t)e−i2πfd∆td∆t (2.17)

The scattering function identifies the average power of the multipath channel with re-

spect to the delay τ and Doppler shift fd [48]. The Doppler power spectrum is obtained

Chapter 2. Background 17

The auto-correlation function R(∆t) shows the variation of the channel with respect to

time t. The range of values of t for which R(∆t) is nonzero is denoted the coherence time

Tc. The value of coherence time gives the time frame in which the CIR is considered

constant. Obviously, the coherence time is approximately inversely proportional to the

Doppler spread of the channel: Tc ≈ 1
Bd

.

With respect to the introduced time-related channel parameters, the multipath channels

are classified as follows [48, 50]:

• Slow-fading channel. If the channel varies slower than the symbol duration, Ts �
Tc it is considered slow fading. As coherence time is inversely proportional to the

Doppler spread, slow fading implies that Bs � Bd. For example, in the 802.11n

channel model [51], the receiver and the transmitter are considered stationary

and people and/or objects are moving between them. The maximal speed of the

environment was picked v = 1.2 km/h in order to fit the Doppler power spectrum

measurement results [51]. The maximum Doppler frequency is therefore fd = 3

Hz at fc = 2.4 GHz. The channel coherence time is then equal to Tc =
1

2fd
= 0.17

s. The symbol duration in 802.11n is Ts = 0.061 µs which is much shorter than

the Tc. It can be concluded that the 802.11n channel is a slow fading channel.

• Fast-fading channel. In case the coherence time is less than the symbol duration,

Ts > Tc, or respectively Bs < Bd, the channel is considered fast varying or fast

fading channel.

2.1.1.5 Frequency selective channel model

It is convenient to model the frequency selective channel as the discrete-time tapped

delay line. It is derived as outlined next [49].

Consider sampling of the transmit signal according to the sampling theorem [52]:

x(t) =

∞∑

l=−∞
x (lT)

sin
(
π(t−lT)

T

)

π(t−lT)
T

(2.22)

where T is the sampling period. According to the sampling theorem, the sampling

frequency must be at least twice higher than the highest frequency present in the x(t).

The Fourier transform of the transmit signal is given as

X(f) =

T
∞∑

l=−∞
x(lT)e−i2πflT , |f | ≤ 1

2T

0 , otherwise

(2.23)

Chapter 2. Background 18

Figure 2.7: Tapped delay line

Using Eq. 2.2 and the fact that the convolution in time domain results in multiplication

in frequency domain, the baseband equivalent of the receive signal is given as

y(t) =

∞∫

−∞

H(f, t)X(f)ei2πftdf (2.24)

=

∞∫

−∞

H(f, t)T
∞∑

l=−∞
x(lT)ei2πf(t−lT)df

= T

∞∑

l=−∞
x(lT)

∞∫

−∞

H(f, t)ei2πf(t−lT)df

= T
∞∑

l=−∞
x(lT)h((t− lT), t)

= T

∞∑

l=−∞
h(lT, t)x(t− lT)

=

∞∑

l=−∞
(Th(lT, t))x(t− lT)

Now, the delay τ is given in terms of the discrete intervals lT . Assuming the delay

spread of Td, the number of taps L in the delay line is given as L = Td/T . Assuming

discrete time t = kT , k = 0, 1 . . . and setting T = 1, the receive signal is finally given as

y(k) =

L−1∑

l=0

hl(k)x(k − l) (2.25)

The resulting tapped delay line model is depicted in Fig. 2.7. The channel coefficients

hl are modeled as complex numbers, where both the real and imaginary parts are zero

mean Gaussian distributed random variables [49, 53]. This is reasonable, because each

channel coefficient at particular delay l is produced by a superposition of a large number

of random events.

The frequency selective channel is transformed to more attractive frequency flat channel

in current standards by OFDM. This technique will be dealt with in subsequent sections.

Chapter 2. Background 20

Channel

encoder

Inter

leaver

Channel

decoder

Deinter

leaver
Detector

Modulator S/P

IFFT(TX)

FFT(RX)

P/S

Add

CP

Delete

 CP

Channel

input

data

output

data

Pilot

Insertion

 De

modulator

P/S

S/P

Figure 2.10: CP-OFDM transceiver

2.1.2.1 Cyclic prefix OFDM

An OFDM single antenna communication system model featuring the standard compo-

nents is depicted in Fig. 2.10. The rest of this section will guide the reader through the

system and explain the relevant transmit/receive building blocks in detail.

2.1.2.1.1 Encoder / decoder.

The user generated binary data is first encoded by a linear error correcting code. The

linear codes can be classified as block or convolutional. The standard rate 1/2 (171, 133)

convolutional code [54] is used in simulations performed in this thesis.

The encoding introduces redundancy which is exploited at the receiver in order to correct

bit errors. Linear codes are powerful against single errors. In case of error bursts,

their performance is significantly degraded. Interleaving is employed to cope with burst

errors [54–56]. An interleaver scrambles the bit positions within the codeword according

to some rule. The interleaved codeword is transmitted through a channel, which can

introduce a burst of errors (Fig. 2.11). Such situation is common for a wireless channel,

as a deep fade over a codeword duration renders the latter completely incorrect. At the

receiver, the codeword is deinterleaved, effectively spreading the multiple errors within

a burst over a number of codewords. This results in a number of codewords each having

just a single error, which can be effectively corrected by the linear code (Fig. 2.11).

The soft-decision Viterbi decoding is used in all simulations in this thesis if not stated

otherwise. The details on the construction and decoding of convolutional codes are

outlined in Appendix A.

Interleaved Data

bits 1 2 3 45 6 7 89 10 1213 14 15 16

bits
1 2 3 4 5 6 7 8 9 10 1211

11

13 14 15 16

Deinterleaved Data

error burst

errors spread out

Figure 2.11: Interleaving

Chapter 2. Background 21

The performance of a communication system is measured at the output of the channel

decoder in terms of BER for a range of SNR values. The SNR is denoted as the ratio of

bit energy Eb to the additive white Gaussian noise (AWGN) power spectral density N0.

2.1.2.1.2 Modulation / demodulation

Next, the encoded binary data has to be mapped to physical signals (sine and cosine)

for transmission through the air. This task is performed by modulation. Modulation

defines the mapping of bits to a symbol. A symbol is a combination of sine and cosine

waves with a given amplitude and phase shift [49]. A modulation scheme is defined by

the modulation alphabet A. For example, 4-quadrature amplitude modulation (4-QAM)

[49] alphabet contains following symbols: A = {−1− 1i,−1 + 1i,+1 + 1i,+1− 1i}. The
size of modulation alphabet |A| defines the number of bits nb that are mapped to a

modulation symbol through a following relation:

nb = log2(|A|) (2.26)

That is, in case of 4-QAM, two bits are mapped to each of the four allowed symbols.

The mapping of four bit tuples {00, 01, 10, 11} to a particular symbol can be done in a

number of ways. One of the possible mappings is illustrated in Fig. 2.12

10 00

0111

Figure 2.12: 4-QAM Gray mapping

The depicted constellation diagram represents the Gray-mapped 4-QAM modulation

[49]. It can be observed, that bit 0 is mapped to +1 and bit 1 is mapped to −1.

Therefore, the modulation operation can be expressed in vector form as

x = vT c (2.27)

where x is the resulting symbol, v =
[

1 i

]T
in case of 4-QAM and c is the (code) bit

tuple where bit values are mapped to {−1,+1} as discussed above.

The main advantage of Gray mapping is that the nearest symbols differ in only one

bit. At the receiver, the symbols affected by AWGN have to be mapped back to the

symbols from the modulation alphabet. This operation is referred to as demodulation.

The scatter plot of 4-QAM Gray-mapped constellation is depicted in Fig. 2.13. It shows

the noisy symbols as blue crosses. These noisy symbols are quantized to the nearest

symbols from A in the Euclidean distance sense.

Chapter 2. Background 22

10 00

0111

noisy received

symbol

Figure 2.13: 4-QAM scatter plot

Assume that the symbol 11 → −1 − 1i was transmitted. The wrong misinterpretation

as −1 + 1i or +1− 1i due to noise is more likely than the misinterpretation to +1 + 1i

because of the largest Euclidean distance between −1− 1i and +1+1i. Therefore, with

Gray mapping, a symbol error results in a single bit error. It is easy to verify that it is

not the case for a different mapping.

Next, the vector of modulated data symbols, forming the t-th OFDM symbol vector,

is defined in frequency domain as x̃(t) ∈ C
N×1, where N is the number of orthogonal

sub-carriers. The vector of time domain symbols is formed by applying IFFT of size N .

x(t) =

x(tN)
...

x(tN +N − 1)

N×1

=
1

N
FHN x̃(t) (2.28)

where 1
NFHN is the IFFT matrix of size N ×N . The IFFT matrix is given as

1

N
FHN =

1

N

f00 f10 · · · f(N−1)0

f01 f11 · · · f(N−1)1
...

...
. . .

...

f0(N−1) f1(N−1) · · · f(N−1)(N−1)

(2.29)

with fnk = ej
2π
N
nk, n, k = 0, . . . , N − 1. The FFT matrix is denoted FN .

2.1.2.1.3 Cyclic prefix

Although OFDM sub-carriers are orthogonal to each other, the channel may introduce

inter-symbol interference in time domain as explained in Sec. 2.1.1. The reflected ver-

sions of the (t − 1)-th time domain symbol vector may arrive at the receiver exactly

at same time the t-th time domain symbol vector arrives at the receiver when channel

delay spread is larger than the symbol duration. In order to mitigate the ISI, OFDM

time domain symbol vector x(t) is cyclically extended, by copying last Ng data symbols

to the front. This is illustrated in Fig. 2.14. With Ng picked larger or equal to the

maximum delay spread of the channel, the ISI lands exactly within the duration of the

cyclic prefix and does not affect the user data.

Chapter 2. Background 23

no cyclic prefix

symbol symbol

reflected versions

of symbol

CP

with cyclic prefix

symbol

symbol

symbol CP CP

reflected versions

of symbol

Figure 2.14: Cyclic prefix

The addition of the cyclic prefix can be expressed as a matrix operation

xcp(t) = Acpx(t) (2.30)

where

Acp =

0 INg

IN−Ng 0

0 INg

(N+Ng)×N

is the cyclic prefix insertion matrix. The length of the cyclically extended OFDM symbol

vector is now given in data symbols by Ntot = N +Ng.

The cyclically extended OFDM symbol vector is then transmitted through the quasi-

static frequency selective fading channel [49]. “Quasi-static” means that the CIR is

constant during the transmission of the whole t-th OFDM symbol vector. The multipath

spread of the channel is characterized by maximum delay spread L, measured in data

symbols. As described in 2.1.1, this channel is modeled as a tap delay line with L taps.

Hence, in order to combat ISI, Ng has to be picked larger or equal to L. The CIR vector

h(t) is

h(t) =

h0(t)
...

hL−1(t)

L×1

where the index t is kept to highlight that the channel may vary from one OFDM symbol

vector to the next. The k-th (0 ≤ k ≤ Ntot − 1) received data symbol from the t-th

OFDM symbol vector is given by the discrete time convolution with the CIR vector:

ycp(tNtot + k) =
L−1∑

l=0

hl(t)xcp(tNtot + k − l) + n(tNtot + k) (2.31)

Chapter 2. Background 24

Here, n(tNtot + k) is the element of the AWGN noise vector, and is zero mean with

variance 1
2σn

2 per complex dimension.

Consider an OFDM symbol vector at time t = 1. The 0-th received data symbol from

that OFDM symbol vector is obtained from Eq. 2.31 as

ycp(Ntot + 0) = h0(1)xcp(Ntot − 0) + h1(1)xcp(Ntot − 1) + · · ·
· · ·+ hL−1(1)xcp(Ntot − (L− 1)) + n(Ntot + 0)

(2.32)

Obviously, the terms with index less than Ntot are coming from the previous (t− 1)-th

OFDM symbol vector and are representing the ISI. For the t-th receive OFDM symbol

vector convolution with CIR is expressed in matrix form as

ycp(t) = Htoep(t)xcp(t) +HISI
toep(t)xcp(t− 1) + n(t) (2.33)

where Htoep(t) and HISI
toep(t) of size Ntot × Ntot are Toeplitz matrices [57], defined as

follows

Htoep(t) =

h0(t)
...

. . .

hL−1(t) · · · h0(t)
. . .

...
. . .

hL−1(t) · · · h0(t)

(2.34)

HISI
toep(t) =

hL−1(t) · · · h1(t)
. . .

...

hL−1(t)

(2.35)

The removal of ISI terms HISI
toep(t) is performed by cutting off the first Ng data symbols

of the OFDM symbol vector ycp(t). In matrix form this operation is expressed as

y(t) =

[

y(tN)

y(tN +N − 1)

]

N×1

= ADEcpycp(t) (2.36)

where

ADEcp =
[

0 IN

]

N×Ntot

(2.37)

is the cyclic prefix removal matrix.

Chapter 2. Background 25

Hence, the frequency domain receive symbol vector is given by

ỹ(t) = FNy(t)

= FN (ADEcpycp(t))

= FN (ADEcp(Htoep(t)xcp(t) +HISI
toep(t)xcp(t− 1) + n(t)))

= FN (ADEcpHtoep(t)xcp(t) +ADEcpn(t))

= FN (}ADEcpHtoep(t)Acp
1

N
FHN x̃(t) +ADEcpn(t))

=
1

N
FN (ADEcpHtoep(t)Acp)F

H
N x̃(t) + FNADEcpn(t)

=
1

N
(FNHcir(t)F

H
N)x̃(t) + ñ(t) (2.38)

The matrix Hcir(t) = ADEcpHtoep(t)Acp is a circulant matrix [57] and has the following

form

Hcir(t) =

h0(t) 0 · · · 0 · · · hL−1(t) hL−2(t) · · · h1(t)

h1(t) h0(t) 0 · · · 0 0 hL−1(t) · · · h2(t)
...

...
. . .

...
...

...
...

. . .
...

hL−2(t) · · · · · · h0(t) 0 · · · · · · 0 hL−1(t)

hL−1(t) · · · · · · · · · h0(t) 0 · · · · · · 0

0 hL−1(t) · · · · · · · · · h0(t) 0 · · · 0
...

. . .
. . .

...
...

...
. . .

...
...

...
. . .

. . .
. . .

...
...

. . .
. . .

...

0 · · · · · · 0 hL−1(t) hL−2(t) · · · · · · h0(t)

N×N
(2.39)

As can be seen from Eq. 2.39, the circulant matrix is a Toeplitz matrix where each row

is rotated one element to the right, relative to the preceding row. Circulant matrices

possess following properties [57]:

1. The eigenvectors of any circulant matrix are the columns of FHN

2. The eigenvalues of any circulant matrix equal the FFT of the first column of the

matrix itself. That is

h̃0

h̃1
...

h̃N−1

= FN

h0
...

hL−1

0(N−L)×1

Chapter 2. Background 26

Regarding these properties the eigenvalue decomposition of Hcir(t) is given as

Hcir(t) =
1

N
FHN

h̃0
. . .

h̃N−1

FN =

1

N
FHNH̃d(t)FN (2.40)

where H̃d is the diagonal matrix with elements h̃k =
L−1∑

l=0

hle
−j 2π

N
kl, with 0 ≤ k ≤ N .

Plugging Eq. 2.40 into Eq. 2.38 and dropping the OFDM symbol vector index t, the

system equation for single antenna or single-input single-output (SISO) CP-OFDM is

obtained as follows:

ỹ = FN
1

N
FHNH̃dFN

1

N
FHN x̃+ ñ

= H̃dx̃+ ñ
(2.41)

Hence, for each of the N orthogonal sub-carriers the frequency selective channel is trans-

formed to a frequency flat channel with single tap weight h̃k. The data is easily recovered

by multiplying the received frequency domain symbol vector by the inverse of the diag-

onal channel matrix H̃d
ˆ̃x = H̃−1

d ỹ (2.42)

The estimated symbol data is then passed to channel decoding.

2.1.2.2 Unique word OFDM

OFDM systems require insertion of a guard interval (GI) of duration TGI into the time

domain data frame in order to combat inter-symbol interference caused by multipath

propagation. Conventional OFDM systems use the cyclic prefix, which is simply a copy

of a data fraction, and is therefore random. On the contrary, UW-OFDM signaling uses

a deterministic sequence in the GI, denoted as the unique word [9]. Frame structures of

CP-OFDM compared with UW-OFDM are outlined in Fig. 2.15.

CP1CP1 CP2 CP2 CP3

UWUW UW

DATA DATA

DATA DATA

Figure 2.15: UW vs CP frame structure

Since UW is a known sequence, it can be used for synchronization or channel estimation

purposes. The spectral efficiency of UW system remains unaffected. It can be observed

from Fig. 2.15 that UW is the part of the FFT interval of duration TFFT , whereas CP

is not. Therefore, the length of the UW-OFDM frame is reduced from TFFT + TGI to

TFFT , thus retaining the overall spectral efficiency [10].

Chapter 2. Background 27

More importantly, UW generation introduces a form of coding across sub-carriers [58].

UW can be generated by both systematic and non-systematic encoding [11].

2.1.2.2.1 Systematic generation of UW

In UW-OFDM the available N = Nd+Nr sub-carriers are shared by data and redundant

symbols [9]. The Nd sub-carriers are occupied by data symbols and the remaining

Nr sub-carriers are dedicated to redundant symbols. Therefore the frequency domain

symbol vector x̃ ∈ C
N×1 can be denoted as consisting of data and redundant parts

x̃ =
[

d̃H x̃Hr

]H
, where d̃H ∈ C

Nd×1 is the part reserved for data, and x̃Hr ∈ C
Nr×1

contains redundancy. UW is generated in two steps [9]:

1. A zero UW is generated, such that the time domain OFDM symbol vector is given

as x =
[

xHd 0

]H
and x = 1

NFHN x̃.

2. The nonzero UW uH ∈ C
Nr×1 is added in the time domain resulting in x′ =

x+
[

0 uH
]H

.

The redundancy is added during the first step, and it is considered in detail here. The

IFFT on the frequency domain symbol vector must yield

1

N
FHNP

[

d̃

x̃r

]

=

[

xd

0

]

(2.43)

Here, P is the introduced permutation matrix that allocates data and redundant sub-

carriers in such a way that energy contribution of the redundant sub-carrier symbols is

minimal. The matrix in Eq. 2.43 can be renamed as

1

N
FHNP = M =

[

M11 M12

M21 M22

]

where Mij are sub-matrices of an appropriate size. From matrix multiplication in

Eq. 2.43

M21d̃+M22x̃r = 0

The generation of redundant sub-carrier symbols x̃r from the data symbols follows di-

rectly as

x̃r = Td̃ (2.44)

where T = −M−1
22 M21, T ∈ C

Nr×Nd .

In style of block coding theory, the frequency domain symbol vector x̃ can be interpreted

as a code word of a complex RS (Reed-Solomon)-code [58]:

x̃ = P

[

d̃

x̃r

]

= P

[

I

T

]

d̃ = Gd̃ (2.45)

where G ∈ C
(Nd+Nr)×Nd is the code generator matrix that introduces correlations within

the symbol vector x̃. The interpretation as the RS code is valid, because it is defined as

Chapter 2. Background 28

a set of codewords whose Fourier transform produces a consecutive set of zeroes. This

is exactly the case in Eq. 2.43 with the only difference that the encoding is performed

on the set of complex numbers [11].

The second step adds the UW in the time domain. The transmit UW-OFDM symbol

vector is now denoted x′ = x+
[

0H uH
]H

. The frequency domain version ũ ∈ C
Nr×1

of the unique word is obtained as

ũ = FN

[

0

u

]

This allows the transmit time domain symbol vector to be rewritten as

x′ =
1

N
FHN (x̃+ ũ) =

1

N
FHN (Gd̃+ ũ) (2.46)

Next, x′ is transmitted over the same multipath channel, characterized by the CIR vector

h(t) =

h0(t)
...

hL−1(t)

L×1

, as indicated in Sec. 2.1.2.1.

Consider two time domain transmit symbol vectors

[

x′(t− 1)

x′(t)

]

=

d(t− 1)

u(t− 1)

d(t)

u(t)

(2.47)

It can be recognized that the ISI terms caused by of x′(t− 1) fall within the duration of

UW vector u(t− 1).

The receive symbol vector is the result of the discrete convolution of the CIR and the

transmit symbol vector, which is expressed as multiplication with Htoep(t) as given in

Eq. 2.35:

y(t) = Htoep(t)

u(t− 1)

d(t)

u(t)

+ n(t) (2.48)

The structure of the transmitted UW-OFDM frame is now equivalent to the frame

with added cyclic prefix in case of CP-OFDM. The inclusion of u(t− 1) is modeled by

multiplication with a copy matrix Θc, similar to cyclic prefix insertion matrix given in

Eq. 2.1.2.1.3:

Θc =

0 INr

IN−Nr 0

0 INr

(2.49)

Chapter 2. Background 29

The t-th time domain receive symbol vector is given as

y(t) = ΘxHtoep(t)Θcx
′(t) (2.50)

where Θx is the UW extraction matrix similar to cyclic prefix removal matrix given in

Eq. 2.37:

Θx =
[

0N×Nr IN

]

(2.51)

Clearly, the matrix given below

Hcir(t) = Θ̌xHtoep(t)Θ̌c (2.52)

is the same block circulant matrix as in Eq. 2.39, as the UW insertion and extraction

matrices transform the block convolution matrix in the same way as the CP insertion

and removal matrices. Therefore, the block eigenvalue decomposition of Hcir is the same

as in the CP-OFDM case.

Dropping the time index t for simplicity, the receive symbol vector is therefore reformu-

lated as

ỹ = FNHcirx
′ + FNn

=
1

N
FNHcirF

H
N (Gd̃+ ũ) + FNn (2.53)

Using the eigenvalue decomposition of the circulant matrix in Eq. 2.40, the system

equation for UW-OFDM is given as

ỹ = H̃dGd̃+ H̃dũ+ ñ (2.54)

where H̃d is the same diagonal matrix as in Eq. 2.41, containing flat fading tap coeffi-

cients on the main diagonal. Subtracting the known component H̃dũ from the frequency

domain receive symbol vector ỹ yields the final UW-OFDM system equation

ỹ − H̃dũ = H̃dGd̃+ H̃dũ+ ñ− H̃dũ

ỹ′ = H̃dGd̃+ ñ
(2.55)

2.1.2.2.2 Non-systematic generation of UW

Opposed to systematic UW generation, where the redundancy is placed at dedicated sub-

carriers, non-systematic UW generation spreads the redundancy among all sub-carriers

[11]. The generator matrix is now denoted Ḡ, and is given as

Ḡ = AP

[

I

T̄

]

(2.56)

where A ∈ R
(Nd+Nr)×(Nd+Nr) is non-singular, and permutation matrix P is same as with

the systematic UW generation. The generator matrix still has to produce zeroes at the

Chapter 2. Background 31

have shown that due to these properties, the system with G′′ outperforms the system

with G′ in a scenario where no outer channel code is used. In a coded system, however,

the UW-OFDM system with G′ outperforms the one with G′′ in terms of BER.

As the obtained generator matrices distribute portions of a single data symbol over

a number of codeword symbols they can be interpreted as a combination of channel

independent precoder and a channel encoder [11]. Since G′′ is obtained with random

initialization, it is possible to obtain multiple random generator matrices. These random

G′′ generator matrices introduce another degree of freedom to the system in Eq. 2.55.

2.2 MIMO

The multiple-input multiple-output or MIMO is referred to multiple inputs to the chan-

nel from a number of transmit antennas and multiple outputs from the channel to

a number of receive antennas respectively. MIMO systems have been researched thor-

oughly over the past decade [59–62] and are now part of most wireless standards [51, 63].

Systems with multiple antennas at either or both ends of the communication link can

be subdivided in two classes [62]:

• The ones that try to overcome multipath fading effects by providing diversity.

• The others that exploit multipath fading by performing spatial multiplexing.

Systems employing multiple antennas at either the transmitter (MISO) or the receiver

(SIMO) provide diversity and have been used already in the last century in order to

improve the communication reliability [64, 65]. The purpose of these systems is to

overcome the effects of fading by combining multiple independent versions of the same

transmit symbol. The receive diversity is illustrated in Fig. 2.17a. Note that in case of

c
o
m
b
i
n
e
r

(a) Receive Diversity

d
e
m
u
x

(b) Spatial Multiplexing

Figure 2.17: Diversity vs spatial multiplexing

just one antenna at both sides of the link the transmit signal can be severely degraded.

TheMr versions of the same transmitted signal will very likely undergo different amount

of fading. Then a gain in BER is achieved by combining these received copies. The well-

known types of receive diversity combining are selective combining, equal gain combining

(EGC) and maximum ratio combining (MRC) [66–68]. With selective combining the

Chapter 2. Background 32

copy with the largest channel coefficient is picked for the output. With EGC, the copies

of the transmitted signal are added together. With MRC, the copies are scaled according

to the values of channel coefficients and added to produce the output.

Transmit diversity is referred to combining symbols from multiple transmit antennas

at a single receive antenna. The transmit symbols can not be identical copies, as the

receive antenna would get simply a scaled superposition of the same transmit symbol.

A form of space-time coding has to be employed at the transmitter. This is realized by

space-time codes [69, 70].

Systems with multiple antennas on both the receiver and transmitter side (MIMO) can

provide either diversity or spatial multiplexing [71]. This thesis addresses the latter and

leaves the diversity topic out of scope.

Spatial multiplexing is illustrated in Fig. 2.17b. It offers throughput increase, as ide-

ally Mt data streams can be transmitted simultaneously [72] over same time slot and

frequency band. The operation of spatial multiplexing is explained next.

The generic spatial multiplexing MIMO system equation is given below

y = Hx+ n (2.61)

The transmit data is composed of Mt streams forming transmit symbol vector x. Each

transmission path between any transmit/receive antenna pair (i, j) is characterized by a

channel coefficient hij . These coefficients form the channel matrix H which is assumed

to be known at the receiver side. In reality, this matrix is estimated from pilot signals by

channel estimation, but it is out of scope of this work. The vector of receive symbols is

denoted y and n is the vector of AWGN. It should be noted that, as system equation is

generic, superscripts denoting OFDM frequency domain are omitted. In later sections,

detection algorithms used in this work will be first explained for this generic system

equation. Only then they will be cast for CP- or UW-OFDM.

The goal of the receiver in a spatial multiplexing MIMO system is to retrieve the transmit

symbol vector x, knowing y and H. Assuming no noise at the receiver for simplicity

and square H, the transmit vector is obtained as

x = H−1y (2.62)

The unambiguous solution exists only if the channel matrix contains linearly independent

rows and is invertible. This is the case with very high probability, when elements of the

channel matrix are independently identically distributed (i.i.d) [73]. Physically, this

situation corresponds to existence of a large number of scatters and a lot of independent

transmission paths. In that sense the multipath environment is exploited at the receiver

and the transmitted data can be recovered. However, the i.i.d channel model represents

an ideal case and is used for computation of upper bounds on achievable throughput.

In reality, there is some amount of spatial correlation between the channel responses

observed by adjacent antennas. This correlation reduces the achievable throughput of

a spatial multiplexing system [62]. It is therefore necessary to use the accurate channel

Chapter 2. Background 33

model to obtain realistic simulation results. The MIMO channel model is elaborated in

detail in the next section.

2.2.1 Channel model

A number of models for MIMO channels have been proposed recently [74]. Geometric

models are based on the layout of physical surroundings (scatterers). Parametric models

abstract physical layout and propagation in order to describe the channel by a set of

paths with statistically known AoA and angle of departure (AoD) characteristics. These

angles are defined as the azimuth angle of incoming or departing plane wave with respect

to the broadside of the receive or transmit antenna. Correlation based models specify

the spatial correlation between the channel matrix entries. A number of standardized

models has been developed that share the aspects of the aforementioned model classes

[73].

The UW-OFDM single-antenna system has been assessed against the 802.11a standard

[10]. Consequently, the related MIMO supporting CP-OFDM standard 802.11n is ad-

dressed in this work. The standardized 802.11n channel model [75] will be therefore

used in simulations throughout this chapter.

The purpose of a MIMO channel model is to specify the correlation between adjacent

antennas on both the transmitter and receiver side. Each channel impulse response

between any antenna pair is a superposition of numerous propagation paths. Therefore

channel matrix elements are complex Gaussian distributed random variables, where h

is vectorized version of H:

p(h) =
1

πMtNrdetCH
exp(−hHC−1

H h) (2.63)

The matrix CH specifies the correlation between the elements of h. Zero correlation

reduces the model to independent identically distributed variables. In that case CH =

σ2I. The i.i.d model has been used initially in MIMO channel modeling and is still

useful for identifying upper bounds on system performance.

The complex correlation coefficient between two receive antennas i and j is defined in

the following. The channel coefficients at two receive antennas are denoted as hmi and

hmj , assuming transmit path m is fixed. Assuming a frequency selective channel, the

correlation coefficient for each of the L tap delays is

c
Rxij
Txm

=
E{hmih∗mj} − E{hmi}E{h∗mj}

√

σ2hmi
σ2hmj

(2.64)

As the channel matrix entries are random variables with zero mean and unit variance

[76], the correlation coefficient reduces to

c
Rxij
Txm

= E{hmih∗mj} (2.65)

The spatial correlation between adjacent antennas depends on AoA, AoD statistics and

power azimuth spectrum (PAS) [77]. PAS identifies the distribution of the received

Chapter 2. Background 34

power as a function of AoA. The 802.11n model defines several clusters of scatterers

characterized by same mean AoA and mean AoD. For each cluster, PAS is found to follow

the Laplacian distribution [78]. Another parameter impacting the spatial correlation is

the angular spread, which is obtained from PAS. First the PAS is normalized in order

to fulfill the properties of a probability density function.

Pnorm(ϕ) =
P (ϕ)

∫
P (ϕ)dϕ

(2.66)

The angular spread is then defined as the square root of the second central moment of

PAS, where ϕo is the mean AoA.

σa =

√
∫

(ϕ− ϕ0)2P (ϕ)dϕ (2.67)

direction of

 propagation

plane wave antenna array

Figure 2.18: Reception by two neighboring antennas

The PAS and spatial correlation coefficient form a Fourier transform pair. Therefore, the

correlation coefficient can be obtained as IFFT of PAS. The other method of computation

of spatial correlation between two adjacent antennas is to directly obtain the correlation

between their channel impulse responses, given the PAS.

Consider the receive antenna array, consisting of antennas a and b depicted in Fig. 2.18.

The antennas are separated by a distance d. Assuming plane wave propagation, the

wave requires to travel additional d sinϕ distance to reach antenna b, with respect to

antenna a. The channel impulse response at both antennas is obtained from PAS as

given in Eq. 2.68 and 2.69, where ψ is some initial phase.

ha(ϕ) =

∫ π

−π
ejψ
√

P (ϕ)dϕ (2.68)

hb(ϕ) =

∫ π

−π
ej(ψ+

2πd sinϕ
λ

)
√

P (ϕ)dϕ (2.69)

The correlation between the two responses is then obtained as

c(d, ϕ0) = E{ha(ϕ)h∗b(ϕ)} =

∫ π

−π
e−

j2πd sinϕ
λ P (ϕ)dϕ (2.70)

= crr(d, ϕ0) + jcri(d, ϕ0) (2.71)

Chapter 2. Background 35

where crr is the correlation between the real parts of channel impulse responses and

cri is the correlation between the real and the imaginary parts. In the extreme case of

ϕ0 = 0o and σa = 0o, it is evident that the correlation is maximal. The wave arrives

perpendicular to the array and does not incur any time difference between the antennas,

while zero angular spread means that there is no angular variation in the received power.

Defining the normalized distance between antennas as D = 2πd
λ the spatial correlation

coefficients are finally obtained as

crr(D,ϕ0) =

∫ π

−π
cos(D sinϕ)P (ϕ)dϕ (2.72)

cri(D,ϕ0) =

∫ π

−π
sin(D sinϕ)P (ϕ)dϕ (2.73)

It can be observed from Eq. 2.72 and 2.73 that the spatial correlation depends on the

distance between the antennas: the larger the distance, the less correlation. It also

depends on the angular spread. When angular spread is small, most power would arrive

to both antennas from the same angle. This would imply that the magnitudes of the

responses at both antennas are almost identical, only with the difference in phase, due

to antenna separation D, leading to high correlation.

After correlation coefficients are obtained for both transmitter and receiver, the transmit

and receive correlation matrices CTx and CRx are formed. Thereafter the 802.11n

model applies to the Kronecker model [79] to form the final channel matrix, with spatial

correlation taken into account.

The Kronecker model assumes that the correlation matrices at the transmitter and

receiver are separable. The overall correlation matrix equals the Kronecker product of

transmit and receive correlation matrices.

CH = CTx ⊗CRx (2.74)

Finally the channel matrix is computed as follows, where Hi.i.d is the matrix with un-

correlated coefficients.

H = C
1/2
RxHi.i.dC

1/2
Tx (2.75)

The computation in Eq. 2.75 is repeated for each tap delay.

2.2.2 MIMO cyclic prefix OFDM

Consider the MIMO CP-OFDM transceiver model depicted in Fig. 2.19. The general-

ization of CP-OFDM signal model to the MIMO case is straight forward. There are Mt

parallel data symbol vectors x̃m , 1 ≤ m ≤Mt that are transmitted simultaneously over

Mt transmit antennas. Hence, on each k-th sub-carrier, k = 0, . . . , N − 1, the Mt data

symbols from respective data symbol vectors are transmitted simultaneously over Mt

Chapter 2. Background 36

Channel

encoder

Inter

leaver

Channel

decoder

Deinter

leaver
DEMUX

Modulator

S
/
P

P
/
S

DeCP

input

data

output

data

F
F
T

P
/
S

F
F
T

S
/
P P
/
S

I
F
F
T

I
F
F
T

S
/
P

Demodulator

 MUX

DeCP

S
/
P

P
/
S

CP

CP

Figure 2.19: MIMO CP-OFDM transceiver

antennas. Therefore, x̃(k) is now a vector, given as

x̃(k) =

x̃1(k)
...

x̃Mt(k)

Mt×1

(2.76)

Here, the compound vector of transmitted symbols with respect to sub-carriers and

transmit antennas is denoted as

x̃ =

x̃(0)
...

x̃(N − 1)

MtN×1

(2.77)

where x̃(k) is from Eq. 2.76.

Each data stream fed to the respective transmit antenna is transformed to the time

domain by a IFFT block. The Mt IFFT blocks work in parallel as outlined in Fig. 2.19.

Mathematically, this parallel operation is expressed as the Kronecker product of the

IFFT matrix and the identity matrix of size Mt -
1
N (FHN ⊗ IMt). As the data on sub-

carriers and transmit antennas is regarded as a single compound vector x̃, the compound

time domain vector x is formulated as

x =
1

N
(FHN ⊗ IMt)x̃ (2.78)

Chapter 2. Background 37

In more detail:

x =
1

N

fH11IMt fH12IMt · · · fH1NIMt

fH21IMt fH22IMt · · · fH2NIMt

...
...

...
...

fHN1IMt fHN2IMt · · · fHNNIMt

MtN×MtN

x̃1(0)
...

x̃Mt(0)

x̃1(1)
...

x̃Mt(1)

...

x̃1(N − 1)
...

x̃Mt(N − 1)

MtN×1

(2.79)

The insertion of the cyclic prefix is expressed as multiplication by the Ǎcp matrix anal-

ogous to Sec. 2.1.2.1

xcp = Ǎcpx (2.80)

where Ǎcp is the SISO cyclic prefix insertion matrix augmented to the appropriate size

by the Kronecker product with the identity matrix of size Mt

Ǎcp =

0 INg

IN−Ng 0

0 INg

⊗ IMt (2.81)

The multipath channel between the i-th transmit and j-th receive antennas is modeled

as a L− 1 tapped delay line with coefficients hij(l), l = 0, . . . , L− 1 generated from the

802.11n channel model. Therefore, in MIMO case, the CIR is a matrix

H =

H0
...

HL−1

(2.82)

where the sub-matrices Hl contain the channel coefficients of all paths between the Mt

transmit and Mr receive antennas relative to the tap delay l:

Hl =

h11(l) · · · h1Mt(l)
...

. . .
...

hMr1(l) · · · hMrMt(l)

Chapter 2. Background 38

Again, to remove ISI, first MrNg elements of receive OFDM time domain symbol vector

ycp are removed analogous to the single-antenna CP-OFDM by multiplying with CP

removal matrix ǍDEcp

y = ǍDEcpycp (2.83)

where ǍDEcp is the SISO CP removal matrix augmented to appropriate size by the

Kronecker product with the identity matrix of size Mr

ǍDEcp =
[

0 IN

]

⊗ IMr (2.84)

At the receiver side, the compound frequency domain received symbol vector ỹ ∈
CNMr×1 is given analogous to Eq. 2.38:

ỹ = (FN ⊗ IMr)y

= (FN ⊗ IMr)(ǍDEcpHtoepxcp + ǍDEcpn)

=
1

N
(FN ⊗ IMr)(ǍDEcpHtoepǍcp)(F

H
N ⊗ IMt)x̃+ (FN ⊗ IMr)ǍDEcpn

=
1

N
((FN ⊗ IMr)Hcir(F

H
N ⊗ IMt))x̃+ ñ

(2.85)

where Hcir = ǍDEcpHtoepǍcp is a block circulant matrix. It has the following form:

Hcir =

H0 0 · · · 0 · · · HL−1 HL−2 · · · H1

H1 H0 0 · · · 0 0 HL−1 · · · H2
...

...
. . .

...
...

...
...

. . .
...

HL−2 · · · · · · H0 0 · · · · · · 0 HL−1

HL−1 · · · · · · · · · H0 0 · · · · · · 0

0 HL−1 · · · · · · · · · H0 0 · · · 0
...

. . .
. . .

...
...

...
. . .

...
...

...
. . .

. . .
. . .

...
...

. . .
. . .

...

0 · · · · · · 0 HL−1 HL−2 · · · · · · H0

NMr×Mt

(2.86)

Assuming the eigenvalue decomposition of the block circulant matrix Hcir as given in

Eq. 2.40, and performing FFT at the receiver side, the system equation for MIMO

CP-OFDM is obtained as follows:

ỹ =
1

N
(FN ⊗ IMr)(F

H
N ⊗ IMt)H̃b

1

N
(FN ⊗ IMr)(F

H
N ⊗ IMt)x̃+ (FN ⊗ IMr)n

= H̃bx̃+ ñ
(2.87)

Chapter 2. Background 39

Here, H̃b is a block diagonal matrix given as

H̃b =

H̃(0)
. . .

H̃(k)
. . .

H̃(N − 1)

(2.88)

where the diagonal block H̃(k) contains the flat fading frequency domain coefficients

of all existent paths between Mt transmit and Mr receive antennas relative to the sub-

carrier k, k = 0, . . . , N − 1.

H̃(k) =

h̃11(k) h̃12(k) · · · h̃1Mt(k)

h̃21(k) h̃22(k) · · · h̃2Mt(k)
...

...
. . .

...

h̃Mr1(k) h̃Mr1(k) · · · h̃MrMt(k)

Mr×Mt

2.2.3 Detection

The transmitted data in a spatial multiplexing MIMO system can be recovered by linear

and nonlinear detection. In case of linear detection the estimate of the transmit data

vector is obtained by linearly combining the elements of the receive data vector. Among

linear schemes, linear minimum mean square error (LMMSE) detection performs the

best [80]. Nonlinear detection is represented by successive interference cancellation [72]

and maximum likelihood (ML) detection. In terms of BER, ML detection outperforms

other linear and nonlinear methods [81], however its complexity increases exponentially

with the number of antennas and constellation size [82]. Even though LMMSE is inferior

to ML in terms of BER it is still attractive because of its very low complexity. Successive

interference cancellation is in between in terms of performance and complexity.

Based on the above, only LMMSE and ML detection will be considered in this work, as

they represent the lower/upper bounds in terms of complexity/performance respectively.

In the following sections, both methods are outlined for the general linear model given

in Eq. 2.61.

2.2.3.1 LMMSE

The objective of LMMSE estimator is to minimize the mean square error between the

transmit symbol vector x and the estimate of the transmit symbol vector x̂. The mini-

mum mean square error is given as

mmse = minE{(x− x̂)2} (2.89)

Chapter 2. Background 40

where E{·} denotes expectation. By constraining the estimator to be linear, the estimate

of the transmit symbol vector is written as [83]

x̂ = WHy (2.90)

where W is the linear estimator, also called the linear combiner.

Therefore, the goal is to find the optimal WH , that minimizes Eq. 2.89. Expanding

Eq. 2.89 and plugging Eq. 2.90 into Eq. 2.89 the cost function is obtained as

E{(x− x̂)2} = E{(x− x̂)(x− x̂)H}
= −E{xyH}W + E{xxH}+WHE{yyH}W −WHE{yxH}
= −Cxy +Cxx +WHCyyW −WHCxy

(2.91)

where Cxx is the transmit covariance matrix, Cyy is the receive covariance matrix and

Cxy is the transmit/receive covariance matrix.

The minimum of the mean square error cost function in Eq. 2.91 is found by taking the

derivative with respect to W and setting it to zero. Thereby, WH is obtained as

WH = CxyC
−1
yy (2.92)

Now, the covariance matrix Cxy in Eq. 2.92 is expanded as

Cxy = E{x(Hx+ n)H}
= E{xxH}HH + E{xnH}

︸ ︷︷ ︸

0

= CxxH
H

(2.93)

The receive covariance matrix Cyy is expanded as follows

Cyy = E{(Hx+ n)(Hx+ n)H}
= HE{xxH}HH +HE{xnH}

︸ ︷︷ ︸

0

+E{nxH}
︸ ︷︷ ︸

0

HH + E{nnH}

= HCxxH
H +Cnn

(2.94)

In the latter equations, the respective expectations are zero due to the fact that the

transmit symbol vector x and AWGN noise vector n are uncorrelated. The matrix Cnn

is the noise covariance matrix.

Hence, the LMMSE estimate in Eq. 2.90 is given as

x̂ = CxxH
H(HCxxH

H +Cnn)
−1y (2.95)

It is easy to rewrite the estimate in a more convenient form. This is is achieved by

allowing the following identity [84]

CxxH
H(HCxxH

H +Cnn)
−1 = (HHC−1

nnH
H +C−1

xx)
−1HHC−1

nn (2.96)

Chapter 2. Background 41

It can be easily shown that the identity is correct by left multiplying with (HHC−1
nnH

H+

C−1
xx) and right multiplying with (HCxxH

H +Cnn) both sides of Eq. 2.96.

Thus, using the identity in Eq. 2.96, the LMMSE estimate is equivalently reformulated

as

x̂ = (HHC−1
nnH+C−1

xx)
−1HHC−1

nny (2.97)

This form of the estimate is favorable, because the size of the matrix to be inverted is

smaller than that of the matrix to be inverted in Eq. 2.95.

Assuming i.i.d. Gaussian distributed transmit data and additive noise, the data and

noise covariance matrices are

Cxx = σ2xI

Cnn = σ2nI

where σ2n is the AWGN noise variance and σ2x is the transmit data variance. The LMMSE

estimate is in this case given as

x̂ =

(

HHH+
σ2n
σ2x

I

)−1

HHy (2.98)

2.2.3.1.1 Soft output generation

In order to improve BER performance, the decoder should take the a priori probabilities

of the input bits into account. This information is defined in terms of log-likelihood

ratios and has to be passed from the detector to the channel decoder. The LLRs are

computed for each bit of the estimated transmit symbol vector x. In the binary domain,

the symbol vector x is regarded as a two-dimensional array, where index j refers to the

symbol position within the symbol vector and index b refers to the b-th bit of the j-th

symbol.

The LLR for each bit xj,b equals

Lj,b = log
P (xj,b = 1|y,H)

P (xj,b = 0|y,H)
(2.99)

where P (·) denotes probability of an event. Using Bayes theorem (Eq. A.21) and as-

suming equal probability of transmit bit values, the LLR is expressed as

Lj,b = log

∑

x∈χ1
j,b

p(y|x,H)

∑

x∈χ0
j,b

p(y|x,H)

(2.100)

where χ1
j,b and χ0

j,b are sets of all transmission vectors with bit position b of symbol j

equal to one or zero respectively and p(·) denotes probability density function (pdf).

Chapter 2. Background 42

The multivariate complex Gaussian probability densities in Eq. 2.100 are given as

p(y|x,H) =
1

(πσ2n)
Mr

exp

(

−‖Hx− y‖22
σ2n

)

(2.101)

Therefore, the LLR is reformulated as

Lj,b = log

∑

x∈χ1
j,b

exp
(

−‖Hx−y‖22
σ2
n

)

∑

x∈χ0
j,b

exp
(

−‖Hx−y‖22
σ2
n

)

= log
∑

x∈χ1
j,b

exp

(

−‖Hx− y‖22
σ2n

)

− log
∑

x∈χ0
j,b

exp

(

−‖Hx− y‖22
σ2n

)

(2.102)

The number of terms that have to be evaluated in Eq. 2.102 equals 2nbMt , where nb is

the number of bits per modulation symbol.

Using max-log approximation (log
∑

s
as = max as) [85], Eq. 2.102 is simplified as given

below

Lj,b ≈
1

σ2n

(

min
x∈χ0

j,b

‖y −Hx‖22 − min
x∈χ1

i,b

‖y −Hx‖22

)

(2.103)

Now, direct computation of probabilities and logarithm is eliminated, but still 2nbMt

Euclidean distances need to be computed. The complexity of this computation grows

exponentially with nb and Mt and is therefore not well tailored for hardware implemen-

tation.

Further simplification was proposed in [86]. Instead of computing LLR on the receive

symbol vector y, the output x̂ of the LMMSE is considered. It can be reformulated as

x̂ = WHy

= x+ (WHH− IMt)x+WHn
(2.104)

where the second term is the residual interference. Assuming the residual interference

(WHH−IMt)x to be approximately Gaussian, the model in Eq. 2.104 can be considered

as a set of Mt independent SISO Gaussian channels.

Therefore, the approximate LMMSE-based LLR is computed for each of the Mt inde-

pendent streams or elements of the transmit symbol vector x

L̄j,b ≈
1

σ2e

(

min
xj∈χ0

b

|x̂j − xj |2 − min
xj∈χ1

b

|x̂j − xj |2
)

(2.105)

where σ2e is the diagonal element of the MMSE matrix Cee, which is given as

Cee = σ2n

(

HHH+
σ2n
σ2d

I

)−1

(2.106)

Chapter 2. Background 43

The sets χ0
b and χ1

b contain all binary representations of symbol j, for which the bit at

position b equals zero or one respectively. Therefore, the number of Euclidean distances

to be evaluated has been reduced to 2nbMt. Furthermore, it is to note that in case of

QAM modulation and Gray mapping L̄j,b is a piecewise linear function that depends

only on the real or the imaginary part of x̂j [86].

For example, in case of 4-QAM and Gray mapping used in this work, the LLRs are

computed separately for in-phase and quadrature components

L̄j,1 =
4

σ2e
<{x̂j} (2.107)

L̄j,2 =
4

σ2e
={x̂j} (2.108)

2.2.3.1.2 Cyclic prefix

In case of MIMO CP-OFDM the frequency domain system equation is given in Eq. 2.87.

As H̃b is a block diagonal matrix, the detection can be regarded as solvingN independent

linear systems. Each system is equivalent to generic MIMO system equation (Eq. 2.61),

where vectors and matrices are defined in frequency domain

ỹ(k) =

ỹ1(k)

ỹ2(k)
...

ỹMr(k)

= H̃(k)

x̃1(k)

x̃2(k)
...

x̃Mt(k)

+ ñ(k) (2.109)

Thus, for each sub-carrier k, and with Cnn = Nσ2nI, Cxx = σ2xI, the LMMSE estimate

is given as

ˆ̃x(k) =

(

H̃H(k)H̃(k) +
Nσ2n
σ2x

I

)−1

H̃H(k)ỹ(k) (2.110)

2.2.3.2 Maximum likelihood

As the name suggests ML estimation seeks to maximize the likelihood of received symbol

vector y, given the transmit symbol vector x.

x̂ = argmax
x∈AMt

py|x(y|x) (2.111)

The pdf in Eq. 2.111 is exactly the multivariate Gaussian pdf, given in Eq. 2.101. The

maximizazion of pdf in Eq. 2.101 can be performed on its logarithm, since logarithm

is a strictly monotonic function. The constant term in Eq. 2.101 is irrelevant for the

maximization.

x̂ = argmax
x∈AMt

(

−‖Hx− y‖22
σ2n

)

(2.112)

To maximize the term in Eq. 2.112 it is sufficient to minimize the Euclidean distance

between the receive signal vector y and the transmit symbol vector x. Hence, the

Chapter 2. Background 44

maximization is replaced by minimization as expressed in Eq. 2.113

x̂ = argmin
x∈AMt

‖y −Hx‖22 (2.113)

The brute force approach to solving this minimization problem is to search through

all possible transmit symbol vectors and pick the one with the minimum Euclidean

distance. This approach is not practical for MIMO OFDM systems, as its complexity

grows exponentially with increasing the constellation size and the number of antennas

[82].

In order to solve the ML problem with practical complexity the sphere decoding algo-

rithm has been proposed.

2.2.3.2.1 Sphere decoding

Sphere decoding (SD) relates to the problem of finding a closest vector in a lattice

which was initially introduced in [87]. The algorithm was soon adapted to the problem

of maximum likelihood detection of received data in a MIMO communication system

[88]. The algorithm has rapidly gained close attention from the research community and

a number of versions have been developed [89, 90]. Subsequent improvements aimed

at reducing the algorithm complexity [91, 92]. Versions of the algorithm particularly

suitable for hardware implementation were proposed by the authors of [93].

The idea underlying the SD is to map the minimization problem in Eq. 2.113 to a

tree search. First, the QR decomposition of the channel matrix H is performed. The

result of this decomposition is the unitary matrix Q and the upper triangular matrix R.

Next, the system equation (Eq. 2.61) is transformed by multiplication with the complex

conjugate of Q

ȳ = Rx+QHn (2.114)

where ȳ = QHy. The quality of the received signal is not affected by the latter trans-

formation. The reason is that the altered noise vector n̄ = QHn has the same statistics

as the initial noise vector n due to the properties of Q [57]. Therefore, the minimization

problem can be reformulated as

x̂ = argmin
x∈AMt

‖ȳ −Rx‖22 (2.115)

The Euclidean distance to be minimized in Eq. 2.115 is denoted as ∆(x)

∆(x) = ‖ȳ −Rx‖22 (2.116)

This Euclidean distance is to be computed for a particular transmit symbol vector x. As

R is upper-triangular, ȳ−Rx is an upper triangular system of equations. This implies

that the Euclidean distance ∆(x) can be obtained by parts corresponding to the partial

symbol vectors, x(i) of size Mt − i+ 1, i =Mt, . . . , 1.

The upper triangular system of equations can be mapped to a tree. The number of

levels in the tree, excluding the root, is given by Mt. Each node on the level i below the

Chapter 2. Background 45

root represents a possible value of the partial transmit symbol vector x(i). Each node

is labeled with a partial Euclidean distance (PED), denoted as ∆i(x
(i)). The PED of

each child node on level i can be easily computed from the PED of the respective parent

node on level i+ 1 [93].

∆i(x
(i)) = ∆i+1(x

(i+1)) + |δi(x(i))|2 (2.117)

Here, |δi(x(i))| is the positive Euclidean distance increment mapped to the branch con-

necting the parent node on level i+1 to the child node on level i. The distance increments

are easily obtained from Eq. 2.116 as follows

|δi(x(i))|2 = |ȳi −
Mt∑

j=i+1

rijsj − riixi|2 (2.118)

The mapping of a MIMO system withMt =Mr = 3 and real valued modulation alphabet

{+1,−1} to a tree is shown in Fig. 2.20.

root

level 3

level 2

level 1

Figure 2.20: Tree search

The leaf nodes of the tree represent all possible transmit symbol vectors. The search

through the tree is initiated to obtain the leaf node with the smallest Euclidean distance

to the receive symbol vector.

The search through the tree can be performed either by breadth-first or depth-first tree

traversal [94]. The breadth-first tree traversal is a non-recursive scheme which starts at

the root and traverses the tree in downward direction only, whereas depth-first traversal

is a recursive scheme.

Irrespective of the tree traversal strategy, visiting all available nodes in the tree corre-

sponds to exhaustive ML search. Therefore, in order to decrease the number of visited

nodes, the parts of the tree have to be pruned. The search is restricted to nodes, whose

corresponding PEDs lie inside a hypersphere of radius ρ

‖ȳ −Rx‖22 < ρ2 (2.119)

Chapter 2. Background 46

Equation 2.119 is referred to as the sphere constraint (SC) [93]. If PED of a node violates

the SC:

∆i(x
(i)) > ρ2 (2.120)

that node and all its children will be pruned from the tree.

The sphere decoding algorithm is summarized in Alg. 1

• The algorithm starts at the root and initializes the PED of the root and the SC

(line 2).

• The depth first tree traversal is initiated. Starting from the level below the root,

a level specific list Si containing the transmit symbols from the alphabet A is

established (line 4, function listInit). For each symbol in the list its Euclidean

distance increment δ(x(i)) is computed by Eq. 2.118. The distance increments are

then sorted in ascending order [95]. The value of the receive vector ȳ(i) is stored

as well. Its value is specific for the current level, therefore it is labeled with index

i.

As the Euclidean distance increments are sorted in ascending order, the one which

adds the least amount to the overall Euclidean distance is used to obtain the PED

of level i by Eq. 2.117. The used symbol is removed from the list (line 6).

• If the PED of the node on current level does not violate the SC (line 11), the

symbol value is fixed. It is necessary to subtract the portion of xi from the current

receive symbol vector ȳ(i). This update is performed as follows:

ȳ(i−1) = ȳ(i) − rixi (2.121)

where ri is the i-th column of R.

• If a leaf node is not yet reached, the algorithm moves one level down (line 14). The

list initialization is called with the updated version of the receive symbol vector

(line 15).

• If a leaf node is reached (line 16), the current best solution vector is found. The

SC is tightened by setting it equal to the overall Euclidean distance corresponding

to the reached leaf node (line 18).

• SC violation by PED of a node at level i implies that all children of that nodes

will also violate the SC as the Euclidean distance increments of branches leading

to them would only increase the PED. Hence, it is moved up one level (line 22).

The best ML solution is sought with the next symbol from Si (line 6).

• If the list on the current level is empty, it is moved up one level (line 8).

• The search terminates when the root is reached (line 5).

Chapter 2. Background 47

Algorithm 1 Sphere decoding algorithm

1: Input: ȳ, R,A. Output: x̂ML.
2: ∆Mt+1(x

(Mt+1)) = 0, ρ2 = ∞
3: i =Mt

4: Si = listInit(i, ȳ(i),R,A)
5: while i < Mt + 1 do
6: get first xi and its |δi(x(i))|2 from Si. Remove these entries from Si.
7: if isempty(Si) then
8: i = i+ 1
9: else

10: ∆i(x
(i)) = ∆i+1(x

(i+1)) + |δi(x(i))|2 . update PED
11: if ∆i(x

(i)) < ρ2 then
12: if i > 1 then . not at a leaf node yet
13: update ȳ(i) (Eq. 2.121)
14: i = i− 1
15: Si = listInit(i, ȳ(i),R,A)
16: else . new best ML solution found
17: x̂ = x(1)

18: ρ2 = ∆i(x
(i))

19: i = i+ 1;
20: end if
21: else
22: i = i+ 1
23: end if
24: end if
25: end while
26: function Si =listInit(i, ȳ(i),R,A)
27: for all xi ∈ A do
28: compute Euclidean distance increments (Eq. 2.118)

29: si =
[

xi δi(x
(i))
]

30: end for
31: Sort the rows si of Si in ascending order
32: end function

2.2.3.2.1.1 Soft output generation

Consider the LLR computation in Eq. 2.103. Here, for every bit, one of the minima

corresponds to the ML metric, obtained by the SD algorithm.

λML =
1

σ2n
‖y −Hx̂‖22 (2.122)

where x̂ = xML is the ML solution of Eq. 2.113, obtained by SD. The other minimum

corresponds to the ML solution vector with the flipped b-th bit of the j-th symbol.

λML
j,b =

1

σ2n
min

x∈χ
(xML

j,b
)

j,b

‖y −Hx‖22 (2.123)

Here, xML
j,b is the bit-wise complement of the ML solution, or the ML counter-hypothesis.

Chapter 2. Background 48

root

00 01 10 11

inital search

second searchthird search

pruned before third search
pruned before second search

Figure 2.21: Repeated tree search

Using the above definitions, the LLR is reformulated as

Lj,b =

λML − λML
j,b if xML

j,b = 0

λML
j,b − λML if xML

j,b = 1
(2.124)

For each bit, the ML metric λML is obtained by the SD algorithm. Thereafter, for each

bit it is necessary to obtain the ML counter-hypothesis λML
j,b .

This solution to this problem was initially provided by the repeated tree search (RTS)

sphere decoding [96]. Consider the example tree given in Fig. 2.21. It corresponds

to a MIMO system with Mt = 3 transmit and Mr = 3 receive antennas and 4-QAM

Gray mapped modulation alphabet. Therefore, the transmitted symbol is mapped to

B
2 ∈ {0, 1}2.

The binary version of the ML solution vector obtained by first run of the SD is highlighted

in red. During this first run, the ML metric λML is computed. Next, the ML counter-

hypothesis metric of the first bit of the first symbol λML
1,1 has to be computed. The

first bit of the first symbol of the ML solution (bit 0) is complemented and fixed. This

fixing corresponds to pre-pruning the root left-hand side of the tree. Thereafter the SD

is rerun on that reduced tree and λML
1,1 is obtained. The third run of the SD computes

the ML counter-hypothesis λML
1,2 for the second bit of the first symbol. The search starts

from the initial tree. The second bit of the ML solution (bit 1) is complemented and

fixed. This fixing corresponds to pruning the second and fourth branches from the root.

The SD then searches through this reduced tree and obtains λML
1,2 . The tree pre-pruning

and SD search is repeated for all remaining Lj,b. Each new run, the SD operates on a

newly reduced tree. However, the complexity increase is given by nbMt additional runs.

This increase in complexity has been addressed in the single tree search (STS) SD [97].

The complexity reduction is achieved by searching for the ML solution and all counter-

hypotheses concurrently. The main idea is in formulating update rules and the pruning

criterion on a list containing the ML λML and counter ML λML
j,b metrics.

Chapter 2. Background 49

2.2.3.2.2 Likelihood ascent search

Likelihood ascent search is the quasi-ML detection algorithm developed for massive

MIMO systems [98–100]. Therefore, it is a natural candidate for MIMO UW-OFDM.

The algorithm performs a sequence of local searches based on an initial solution vector

in order to arrive as close as possible to the ML solution. The local search operates on

the neighborhood of the initial solution. The neighborhood is defined as a set of vectors

that differ from initial vector in up to η positions. For example, the 1-neighborhood of

a vector x = [+1− 1− 1 + 1] contains the following vectors

S1(x) = {[−1− 1− 1 + 1], [+1 + 1− 1 + 1], [+1− 1 + 1+ 1], [+1− 1− 1− 1]}
(2.125)

In general, the size of η-neighborhood is given as

|Sη(x)| =
(

Mt

η

)

(2.126)

In case η =Mt, the neighborhood contains all possible solution vectors, and the search

within this neighborhood corresponds to the global search. It has been shown that the

local search provides good results for η ≤ 3 for massive MIMO systems with hundreds

of antennas [98].

The stateflow of LAS algorithm with search within up to S3(x) is depicted in Fig. 2.22.

The LAS algorithm starts with some initial solution vector x(0), for example the LMMSE

estimate.

Next, the search within S1(x
(0)) is initiated. If a vector with shorter Euclidean distance

is found, it is declared the current solution. The search is continued within the 1-

neighborhood of the current solution. This sub-procedure is denoted 1-LAS. If no vector

with shorter Euclidean distance can be found, current solution vector represents a local

minimum.

An attempt to escape from this local minimum is performed by initiating a search within

2-neighborhood of the current solution vector. This sub-procedure is denoted 2-LAS. If

a better vector is found, it is declared the current solution and the search restarts with

1-LAS.

If a better vector is not found in 2-neighborhood, a search within S3(x) of the current

solution vector. This sub-procedure is denoted 3-LAS. If this search is successful, the

search goes on with 1-LAS. Otherwise, the current solution vector is declared the final

solution.

The number of performed search stages can be varied and represents the tradeoff between

performance and complexity. Running solely 1-LAS features the least complexity, but

the risk to get stuck in the local minimum is significant. Running all three search stages

is expected to provide the closest to ML solution at the cost of much longer run-time

due to large size of the 3-neighborhood.

Chapter 2. Background 50

computeO

initialOsolutionO

1-LAS

PerformO1-symbolOupdateO

LocalOminimumOreached?OO

2-LAS

PerformO2-symbolOupdate

3-LAS

PerformO3-symbolOupdate

DoesOthisOvectorO

haveObetterOcostO

thanOlocalOminimum?

DoesOthisOvectorO

haveObetterOcostO

thanOlocalOminimum?

DeclareOlocalOminimum

OtheOsolutionOvector

NO

YESO

YESO

NO

NO

YESO

Figure 2.22: Stateflow of 3-LAS algorithm

2.3 Fault tolerance

Fault tolerance is the property of the system to operate properly in the event of a

failure (or multiple faults) within its components [5]. Traditionally, fault tolerance was

of concern in safety critical applications such as aviation or spacecraft [5]. The reliability

R(t) is a traditional measure of fault tolerance of a software/ hardware system. It is

defined as the probability that the system will be functional up to the time t, given that

it was operational at time 0:

R(t) = P (T > t) (2.127)

where T is the lifetime of the system. This classical fault tolerance measure is suitable

for systems that can fail permanently. This is the case for the general purpose computing

Chapter 2. Background 51

systems. For example, a fault in the control path of a microprocessor will most likely

put it out of order.

Opposed to general purpose computing, digital signal processing (DSP) systems gen-

erally do not fail completely (if only data processing is concerned), but rather their

performance is gracefully degraded. DSP applications are characterized by their per-

formance metrics such as BER or SNR. Therefore, faults in these systems will degrade

the quality of the output in terms of the performance metrics [16]. Recent trends in the

fault tolerant design of DSP systems trade off slight degradation in quality for signifi-

cant energy savings. Opposed to general purpose computing, where all faults could be

critical, DSP systems allow certain amount of faults. Consequently the new fault toler-

ance measures designed specifically for DSP applications differ from the classical fault

tolerance measures. For example, new DSP fault tolerance measures address correcting

errors in the statistical sense [19].

Fault tolerant design addresses the means to mitigate the effect of faults on the sys-

tem’s behavior/performance. For any system, this is done by exploiting some sort of

redundancy. Usually, hardware, information or time redundancy, or a combination of

these is employed [5]. In that sense, fault tolerance has parallels to communications,

where information redundancy or time redundancy is used to mitigate the influence of

the communication channel [19]. For example, the memory can be regarded as a channel

too. Hence, application of error detecting/correcting codes is similar to communications,

whereas different error profiles necessitate the use of different codes.

2.3.1 Faults and errors

In terms of fault tolerance, the notions of “fault” and “error” are distinguished. By

definition, the fault is a model of a defect or other deviation in the hardware circuit

[5]. A fault does not necessarily result in an error. Consider an AND logic gate with

stuck-at-0 fault at its output. This fault permanently sets the output of the gate to

logical-0. This fault will result in an error only if both inputs of the AND gate would

be set to logical-1. Therefore, an error is defined as the manifestation of a fault.

AND

Figure 2.23: Stuck-at-0 fault

In terms of duration, the faults are classified as permanent, transient and intermittent

[5]. A permanent fault sets a hardware component permanently out of use. These faults

are addressed by testing [101]. A transient fault causes a temporary malfunction, but is

gone after some time and the normal operation is restored. An intermittent fault causes

the component to oscillate between normal and faulty states.

The transient faults are in the scope of this work. One source of transient faults is the

voltage overscaling [102, 103]. VOS refers to setting the supply voltage of the hardware

Chapter 2. Background 52

R
e
g

R
e
g

comb

clk clk

Figure 2.24: Voltage overscaling

circuit below the value, for which the correct operation is guaranteed. Consider a circuit

depicted in Fig. 2.24. The input to the combinational part is stored in the left register.

The combinational part computes a function of the input and stores the result in the

right register. The registers are operated with the clock frequency fclk. The critical

path delay Tcp of the combinational part is defined as the wost case delay over all

possible input transitions [102]. The correct operation is ensured when the clock period

Tclk =
1
fclk

is greater or equal than the critical path delay

Tclk ≥ Tcp (2.128)

The gates forming the combinational part are driven by the supply voltage Vdd. The

supply voltage has to be set such that the condition in Eq. 2.128 is satisfied. The relation

between supply voltage Vdd and circuit delay τc is given by [104]

τc =
CLVdd

β(Vdd − Vt)α
(2.129)

where CL is the load capacitance, α is the velocity saturation index, β is the gate

transconductance and Vt is the device threshold voltage. The voltage for which Tclk = Tcp
is referred to Vdd−crit. Obviously, reducing the supply voltage below Vdd−crit leads to

an error at the output in case the critical path through the circuit is excited. Hence,

Vdd−crit is a lower bound on the supply voltage.

VOS introduces input-dependent errors whenever a critical delay path through the cir-

cuit is excited. Consider that the combinational part in Fig. 2.24 is a five-bit carry ripple

adder (CRA) [105] depicted in Fig. 2.25. It is made of five full adders (FA)s. The inputs

to the CRA are a = 00111 and b = 01011. Assume that the delay of the full adder is

TFA = 3 ns. The critical path delay is Tcp = 5TFA as the carry bit in the least significant

bit (LSB) propagates all the way to the most significant bit (MSB). Assuming Tclk = 15

FA FA FA FA FA

Figure 2.25: Carry ripple adder

Chapter 2. Background 53

clk

SEU

control value

Figure 2.26: Logical masking of SEU

ns, the operation condition (Eq. 2.128) is satisfied, and the correct result c = 100010 is

written to its output register.

Suppose now the supply voltage is reduced such that TFA = 5 ns. This implies that

the accurate result will be available up to its MSB in Tcp = 25 ns. However, the clock

period is still Tclk = 15 ns. Therefore, by the end of the clock period, only three

bits of the output will be written to the output register and the stored output will be

c = 00010 instead of c = 10010. The erroneous output of the adder will propagate

further (Fig. 2.24 can be a sub-block of a larger system). If the inputs do not excite the

critical path, the output of the adder will be stored correctly. For example, this is the

case with a = 000110 and b = 000001.

Another major source of transient faults are the hits by highly energetic particle (protons,

neutrons, alpha particles), also referred to as the single event upset (SEU) [106, 107].

As it passes through an electronic device, the particle creates additional charge along

its path. If this charge is collected at a sensitive node of a circuit, the logical value

at this node may get flipped, potentially causing a soft error [108]. Soft error in a

memory element (flip-flop) persists until the memory element is rewritten [109]. SEU in

combinational logic will result in a soft error only if the wrong value would propagate to

the next memory element [110]. This is the case if three possible masking effects do not

occur. Logical masking prevents the propagation of the SEU, if any of the subsequent

gates on the path is driven by the control value, as illustrated in Fig. 2.26. Electrical

masking occurs when the wrong logical value is attenuated by the electrical properties

of gates on the path, such that the resulting pulse is of insufficient magnitude to be

reliably stored in a memory element. Timing masking occurs, when the wrong logical

value reaches the memory element outside its clocking interval.

An expression for estimating the soft error rate is given by [111]

Ps ∝ AF exp

(

−Qcrit
Qs

)

(2.130)

where A is the area, F is the particle flux, Qcrit is the critical charge required to flip the

logic value at a node, and Qs is the collection efficiency. As the technology scales, Qcrit
reduces proportionally as well as Qs. Therefore, the probability of an effective particle

hit at a node remains approximately the same. However, the number of nodes per chip

Chapter 2. Background 54

V
o
t
e
r

Figure 2.27: N-modular redundancy

increases while the clock period and pipeline depth reduces [110]. Thus, the chip-level

soft error rate will increase.

Additionally, the hardware faults can be classified as benign and malicious [5]. A benign

fault simply puts the component out of order. A malicious fault alters the output of

the component or the result of the computation in such a way that it looks reasonable.

However, such altered result can be used in gaining information about secret keys stored.

Therefore, malicious attacks on cryptographic circuits are based on injecting such faults.

2.3.2 Redundancy

The redundancy used for fault tolerance can be classified as hardware, information and

time redundancy. In hardware redundancy, the classical approach is the N-modular

redundancy (NMR) or M -out-N redundancy[5]. Here, the component is duplicated N

times as depicted in Fig. 2.27. The voter performs majority voting on N outputs. The

system is functional as long as M components are functional and fails (majority voting

chooses wrong value), when more than M components fail. Given the reliability of the

component R(t), the reliability of an NMR system (under assumption of uncorrelated

failures in the components and reliable infrastructure) is the probability that at least M

component are functional at time t

RNMR(t) =

N∑

i=M

(

N

i

)

Ri(t)(1−R(t))N−1 (2.131)

The most common example of NMR is the triple modular redundancy (TMR). Taking

the reliability of the voter Rvoter(t) into account, the reliability of a TMR system is

given by [5]

RTMR(t) = Rvoter(t)

3∑

i=2

(

3

i

)

Ri(t)(1−R(t))3−i (2.132)

= Rvoter(t)(3R
2(t)− 2R3(t))

NMR is able to mask permanent and transient faults. Extensions of NMR include

dynamic and hybrid redundancy [5]. In dynamic redundancy, one component is active at

Chapter 2. Background 55

a time, and N − 1 component form a reserve. In case the fault of the active component

is detected, it is replaced by one from the reserve. Hybrid redundancy employs N

modules organized in NMR and K spare modules. The system constantly monitors

the components forming the NMR in order to avoid the situation when more than M

components are out of order. In case one out of N components is out of order, it is

replaced by the component from the K spare ones.

Information redundancy uses error detecting /correcting codes. Codes are commonly

applied to protect memories against transient faults. Since soft errors due to particle

strikes are relatively rare, single error detecting/correcting block codes are employed

(parity, Hamming code) [5]. The usage of more powerful codes such as Berger or cyclic

codes is less widespread, since they introduce a large amount of overhead in terms of area

and power consumption. The NMR system considered previously can be interpreted as

a repetition code, where outputs of the N components represent the codeword. The

voter then performs majority decoding.

In order to detect faults in arithmetic circuits, arithmetic codes are used. These codes

are preserved under arithmetic operations [5].

Algorithm based fault tolerance (ABFT) is another information redundancy based ap-

proach. The redundancy is implemented at the application level by introducing redun-

dant computations. As the exact computations depend on the particular algorithm,

the implementation will differ for from one class of applications to the other. ABFT

has been implemented for matrix computations (matrix multiplication, matrix inversion,

etc) [112]. The redundancy is implemented using a checksum code [113]. Given a matrix

A, the column checksum matrix Ac is defined as

Ac =

[

A

eTA

]

(2.133)

where eT =
[

1 1 . . . 1

]

Similarly, the row checksum matrix is defined as

Ar =
[

A Ae

]

(2.134)

Finally, the full checksum matrix is given as

Af =

[

A Ae

eTA eTAe

]

(2.135)

Full checksum matrix allows error detection and correction. Consider an example matrix

A:

A =

[

1 2

1 3

]

Chapter 2. Background 56

The respective full checksum matrix is given as

Af =

1 2 3

1 3 4

2 5 7

Now assume that an error has happened at the element a12 of matrix A:

Af =

1 4 3

1 3 4

2 5 7

Recomputing the row and column checksum matrices indicates that the parities do not

match for row 1 and column 2. Hence, the position of the erroneous element is identified.

The error is corrected by finding the difference between the recomputed row checksum

and the current checksum and adding the difference to the affected element [112]. The

same can be performed for column checksums. That is, for the considered example, the

difference d between row checksums is given as

d = a13 − (a11 + a12) = −2

and the corrected element is obtained as

â12 = a12 + d = 2

In matrix multiplication, if the terms are protected by the column and row checksum

matrices respectively, the resulting matrix is protected by the column and row checksums

of the matrix product [112]

AcBr =

[

A

eTA

]
[

B Be

]

=

[

AB ABe

eTAB eTABe

]

(2.136)

Therefore, the error protection is maintained for matrix multiplication. ABFT has been

extended to weighted checksum codes [114] and generalized for real-number codes [115].

The main advantage of ABFT is small hardware overhead. The drawbacks are the time

penalty, lack of general applicability and the need to recompute in case of high error

rates [116].

Stochastic logic [117] presents a different computing paradigm compared to the conven-

tional logic. Stochastic circuits operate on probabilities instead of logical or arithmetic

values used in conventional logic. This allows using simple logic gates to perform arith-

metic operations. For instance, the multiplication is performed by just a single AND

gate [118]. The input to the gate are two independent random bit streams X1 and X2

as shown in Fig. 2.28. The number of ones in the input stream X identifies the input

probability value x. The output is the random bit stream Y , with output probability y

given as

y = P (Y = 1) = P (X1 = 1 and X2 = 1) = P (X1 = 1)P (X2 = 1) = x1x2 (2.137)

Chapter 2. Background 57

Figure 2.28: Multiplication by an AND gate in a stochastic circuit

Therefore, an AND gate implements multiplication. Scaled addition is implemented with

a multiplexer [118]. The precision depends on the number of bits in the input/output

stream. The stochastic logic exhibits inherent redundancy. A single error at the gate

output due to transient fault will not affect the result, given the number of bits in the

stream is sufficiently large. This requirement is at the same time the main drawback of

the stochastic logic. Large bit streams require random number generators of large size

and introduce a time penalty. Another issue is that the correct operation requires ran-

dom streams to be uncorrelated. Despite these drawbacks, stochastic logic has been used

to implement several DSP systems, such as low density parity check (LDPC) decoder

[119] and image processing [120].

2.3.3 Stochastic computation

Conventional hardware redundancy systems try to correct or mask all occurring errors.

Stochastic computation [19] (not to be confused with stochastic circuits from the last

section), on the contrary, treats hardware errors as additional source of noise and tries

to provide good enough results from the application perspective. From the application

perspective, exact correction of all hardware errors may not be necessary. Such situation

arises in DSP applications that process inherently noisy data. Stochastic computation

is the extension of conventional hardware redundancy that tries to correct the errors in

statistical sense [121]. It does not strive to ensure completely error free operation, but

seeks to optimize the application specific metrics such as BER or SNR.

Most of the proposed stochastic computation systems target VOS-induced errors [19].

These systems are able to mitigate the impact of VOS, trading off slight performance

degradation for significant energy savings due to reduction of the power supply voltage.

Stochastic computation design has been applied to a variety of DSP applications, such

as digital filtering [122], FFT [123] and Viterbi decoder [124].

The key representative of stochastic computation approach is the algorithmic noise tol-

erance (ANT) [21]. The ANT architecture is depicted in Fig. 2.29. The main block

computes its output ya, which can be affected by the VOS-induced error η due to crit-

ical path delay violation. Parallel to the main block there is a low complexity replica

which computes the estimate of the main block output ye. This low complexity replica

is termed the estimator. Due to its lower complexity, for example by use of reduced pre-

cision [23], the reduction in Vdd does not incur any error. However, reducing precision

truncates the LSB and the output of the estimator contains a precision error e compared

to the error free output y0 of the main block. Further, the difference in statistics of η

Chapter 2. Background 58

and e is exploited. The final output is picked according to the following decision rule

ŷ =

ya, if |ya − ye| < Th

ye, otherwise
(2.138)

The output of the main block is used if the difference between the output of the main

block and the estimator is below a certain threshold Th. Otherwise, the error is detected

and the low precision output of the estimator is used. The value of the threshold Th
is chosen as the maximum difference between the correct output of the main block and

the estimator

Th = argmax
∀input

|y0 − ye| (2.139)

Figure 2.29: Algorithmic noise tolerance

Algorithmic soft error tolerance (ASET) is the extension of ANT which addresses soft

errors in addition to VOS-induced errors [125]. In ANT, the estimator block is assumed

error free. Since a particle can also hit the estimator circuit, this assumption is relaxed

in ASET. Now, the assumption is that during a clock cycle at most one internal node

in the main block or the estimator can have a logic value flipped. The ASET system is

depicted in Fig. 2.30. In addition to the main block, the estimator is now built of two

identical blocks, E1 and E2. The decision rule is outlined in Eq. 2.140. The decision

block compares the main block output ya and the output of the first estimator ye1. If

the difference dE(ya, ye1) (Euclidean distance) between them is less than the threshold

Th, output of the main block is used as the final output. Otherwise, an additional

comparator checks whether the outputs of the estimators ye1, ye2 are equal. If it is the

Figure 2.30: Algorithmic soft error tolerance

Chapter 2. Background 59

S
o

ft
 v

o
te

r

Figure 2.31: Soft NMR

case, the single SEU assumption implies that the main block is erroneous and the output

of the second estimator is used as the final output. In case the outputs of the estimators

are different, the same assumption implies that the error has occurred in either one of

them. Then, the output of the main block is passed to the overall output.

ŷ[n] =

ya, if dE(ya, ye1) ≤ Th

ya, if dE(ya, ye1) > Th

and dH(ye1, ye2) = 1

ye2, if dE(yaye1) > Th

and dH(ye1, ye2) = 0

(2.140)

Another similar approach is termed soft NMR by the authors of [22]. The soft NMR

system is depicted in Fig. 2.31. In contrast to traditional NMR, the voter in soft NMR

is a Bayesian detector that treats the N available outputs as noisy observations, con-

taminated by the additive error ηi, whose statistics pη(η) are assumed to be known or

can be obtained experimentally. It then combines in order to optimize some predefined

cost function. The advantage over the conventional NMR is that the soft NMR is able

to produce good estimate even if all N outputs are erroneous. This is achieved by using

the error statistics. The soft NMR treats the computations in the N modules as a noisy

communications channel.

The soft voter is considered a realization of a Bayesian detector. The latter tries to

minimize the associated cost in making a decision. Define C(ŷ, y0) the cost in choos-

ing ŷ as the correct value, given that y0 is indeed the correct value. Denoting the

δ(y1, . . . , yN) = ŷ the decision rule based on the N observations, the average cost is

given as

E{C(δ(y1, . . . , yN), Y0)} (2.141)

where Y0 is the random variable representing the correct output. The goal is to find the

decision rule that minimizes the average cost. The detector must be constrained to a

predefined hypothesis set H such that ŷ ∈ H.

The average cost is application dependent. For example, in DSP applications, the ap-

propriate metric is the MMSE. The MMSE cost function is C = (ŷ − y0)
2. In case of

Chapter 2. Background 60

M
U
X Buffering

memory
Detection

Figure 2.32: MIMO receiver with faulty buffer memory

Gaussian error statistics, it is known that the cost function is minimized when ŷ is the

mean of the observations. Thus, the soft voter chooses the output out of the set of

allowed outputs H that is closest to the mean of the observations.

ŷ = argmin
∀y0∈H

∣
∣
∣
∣
∣
∣
∣
∣
∣

y0 −

N∑

i=1
yi

N

∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.142)

2.3.4 Unified channel and memory error model

Stochastic computation approaches represent a form of hardware redundancy and are

therefore applicable to computational sub-components of a larger DSP implementation.

Concerning MIMO receivers, the authors of [126] argue that due to the memory dom-

inance of the respective implementations it is worth to concentrate on memory errors,

and develope a unified statistical model that combines memory errors due to VOS and

channel noise.

Based on this model, the Viterbi algorithm [127] and the breadth-first search detector

[6] have been modified to take the VOS-induced errors within the receiver’s buffering

memory into account. These memory error resilient algorithms trade off slight BER

performance degradation for significant reduction in power consumption due to VOS.

The statistical memory and channel noise model is outlined next.

Consider a MIMO receiver depicted in Fig. 2.32. As the buffering memory stores the

real and imaginary parts separately, the system model in Eq. 2.61 is considered real

valued in this section.

It should be noted that the buffering memory contains m receive symbol vectors y

corresponding to the period of time where the channel matrix H is constant (channel

coherence time). The elements of the receive vectors may be either contaminated by the

memory errors (highlighted in red) or be memory error free as shown in Fig. 2.33.

The memory errors in model developed in [126] are due to VOS. The effect of volt-

age scaling on embedded memories has been researched extensively [128–130]. The

induced error can be modeled as spatially uniformly distributed random variable where

the probability of failure for each cell in the memory is the same Pe(Vdd) for a fixed

supply voltage, Vdd, and linearly increases in the logarithmic domain with reduction of

the supply voltage [129, 130].

Chapter 2. Background 61

Figure 2.33: Faulty buffer memory

The receive symbols are stored in the buffering memory in fixed point representation.

That is, for each complex yi, two fixed point numbers for real and imaginary parts

are stored, both possibly containing memory errors. The fixed point representation is

defined by two parameters:

• d - length (number of bits) of integer part.

• f - length (number of bits) of fractional part.

The length l of the fixed point number is l = d + f . Therefore any bit stored in the

buffering memory can be flipped with the same probability Pe. For a fixed point number

of length l, each bit position from 0 to l − 1 can be flipped with same probability Pe.

Hence, the probability to have k bits flipped is given by

P (k) =

(

l

k

)

P ke (1− Pe)
l−k (2.143)

The value of the error at a particular bit position j depends on the fixed point format

[d].[f] and the error free bit value yji of i-th element of the receive symbol vector y

eji =

+2(j−f) when yji = 0

−2(j−f) when yji = 1
(2.144)

The pdf of the i-th element of the receive vector after the memory is in general given as

p(ȳi) =

l∑

k=0

P (k)p(yi, k) (2.145)

The pdf p(yi, 0) defines the distribution of ȳi when there is no bit flip and in this case

ȳi = yi. The pdf p(yi, 1) defines the distribution of ȳi when there is just a single bit flip.

This pdf is given as

p(yi, 1) =
l−1∑

j=0

pj(yi, 1) (2.146)

Chapter 2. Background 62

e
-10 -8 -6 -4 -2 0 2 4 6 8 10

p
(e

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 2.34: Pdf of memory error

where pj(yi, 1) is the pdf of ȳi given the error at bit position j, where the error value is

given in Eq. 2.144 Defining pj,g(yi, 2) as the pdf of ȳi given two bit flips at bit positions

j and g, the pdf of ȳi given two bit flips is

p(yi, 2) =
1

2!

l−1∑

j=0

l−1∑

g=0,
g 6=j

pj,g(yi, 2) (2.147)

In general, in case of k bit flips

p(yi, k) =
1

k!

l−1∑

j1=0

l−1∑

j2=0,
j2 6=j1

. . .
l−1∑

jk=0,
jk 6=j1,

... ,jk 6=jk−1

pj1,j2,... ,jk(yi, k) (2.148)

As Pe is typically a low value, the probability to have multiple bit flips within same yi is

negligible. Figure 2.34 illustrates the probability density function of the memory errors

for the [4].[8] fixed point format and Pe = 10−1. It can be observed that even for such

high bit flip probability, the pdf contains prominent peaks at zero and ±2(j−f). Indeed,
this pdf can be approximated by a discrete probability mass function with nonzero values

at 0 and ±2(j−f), j = 0, . . . , l − 1, that correspond to single bit flips at bit positions

j = 0, . . . , l − 1.

Hence, pdf of i-th element of receive vector after the memory ȳi = yi+e
j
i , j = 0, . . . , l−1

is

p(ȳi) = P (0)p(yi, 0) + P (1)p(yi, 1)

= P (0)p(yi, 0) + P (1)

l−1∑

j=0

pj(yi, 1)
(2.149)

Chapter 2. Background 63

where P (0) = (1− Pe)
l and P (1) = Pe(1− Pe)

l−1.

2.3.5 Fault-based attacks and countermeasures

Cryptographic algorithms are employed in most contemporary systems. An example of

such algorithms are ciphers, constructed such that the secret key can not be obtained

by any other means except the brute force guessing, and the latter is not realizable in a

practical amount of time [131].

Unfortunately, it has been recently shown that even though the algorithm itself is math-

ematically invincible, information that can be used to guess the secret key in a practical

amount of time, can be gained from its actual implementation [30]. For example, power

consumption of the circuit can be related to the individual steps of the encryption algo-

rithm which in turn can be correlated to the secret key. Such attacks are referred to as

side channel attacks [132].

Fault-based attacks are a sub-class of side-channel attacks [31]. By maliciously injecting

faults to a specific location of a circuit that implements the cipher the attacker obtains

a distorted cipher-text. By comparing the distorted cipher-text and the correct one the

number of key candidates may be drastically reduced, such that the brute force search

becomes feasible. This technique is denoted differential fault analysis (DFA) [32, 133].

A number of fault-based attacks on classical ciphers has been reported [134]. A number

of fault-based attacks on the advanced encryption standard (AES) implementation has

been reported in [34, 38, 135]. The attacks on state-of-the-art lightweight ciphers, such

as LED [136] and PRESENT [137] has been reported in [35, 39–41]. The attacks can

be mounted with very few fault injections, given the ability of the attacker to precisely

control the time and location of the injection.

The methods to inject fault can be classified based on their cost and precision. The low

cost methods comprise power supply variation, tampering the clock signal, overheating

the circuit, illumination with high energy light source such as ultraviolet lamp [31].

Reducing the supply voltage introduces transient faults. Their impact grows with lower

supply voltage. This method is not precise, but has been reported effective on large

circuits [138]. Altering the clock cycle length results in multiple errors in stored byte

or multiple bytes [139]. Temperature rise has been reported to cause multiple bit flips

in a dynamic random access memories [140]. The main advantage of this method is its

simplicity. The main drawback is the risk of destroying the circuit.

The high cost and precision methods include using laser or x-ray beams. Commercially

available fault injection workstations contain a laser emitter, focusing lens and stepper

motors that allow very precise targeting of circuits [31].

Countermeasures against fault-based attacks include protective techniques that com-

plicate fault-injection, such as shielding or placing the critical structures into physical

locations that are hard to access, and methods to detect the faults once they happen

[30, 31]. The detection approaches can be further subdivided into methods that identify

physical fault-injection attempts and error-detection techniques working on the logical

level. Instances of physical detectors are light sensors which are activated when the

circuit packaging is being opened in order to gain access to its internal structures, or

Chapter 2. Background 64

C
o
m
p
a
r
a
t
o
r

Fault detected

Figure 2.35: Simple duplication with complementary redundancy

voltage-level detectors that report attempts to lower the power-supply voltage in order

to introduce delay faults. These countermeasures are complicating the analysis, but can

be overcome by a sophisticated attacker with access to state-of-the-art equipment.

Logic-level detection employs hardware redundancy, time redundancy and information

redundancy. Hardware redundancy is based on NMR and its variations [30]. Examples

of these methods are simple duplication with comparison where results of two identical

cryptographic blocks are compared and multiple duplication with comparison which is

a standard NMR with fault detection. Simple duplication with complementary redun-

dancy (SDCR) is depicted in Fig. 2.35. The duplicated circuit operates on the com-

plemented input. In case the outputs of the two circuits match, the attack is detected.

SDCR protects against multiple errors, since it is difficult to inject different errors with

complementary effects.

Time redundancy is implemented by running the circuit several times with the same

input and comparing the results. One of such method is referred to as simple or multiple

time redundancy with comparison depending on the number of redundant computations

[141]. Recomputing with swapped operands is performed by first computing the result

with big endian and little endian bits of the input swapped. Finally, with recomputing

with shifted operands [142], the cryptographic function is recomputed with the operands

shifted by a given number of bits. The result is shifted backward and compared to the

original result.

The main drawback of hardware redundancy methods is the introduced significant area

and power overhead. The drawback of time based redundancy is in the time penalty,

introduced by the need of running the same encryption or decryption algorithm several

times.

Information redundancy is based on error-detecting or error-correcting codes [5] and its

application to circuit protection is treated in detail in Chapter 5.

Chapter 3

Detection of virtual massive

MIMO systems

Unique word signaling introduces correlations between individual sub-carriers. There-

fore, the UW system model (Eq. 2.55) can be interpreted as a MIMO system with the

number of virtual receive antennas given by the number of sub-carriers N . As N is a

large number (N = 64 in 802.11n) [51], UW system can be treated as a virtual massive

MIMO system from the detection viewpoint.

Unique word signaling has been initially introduced for single-antenna systems. The

inherent coding across sub-carriers results in BER performance gain compared to SISO

CP-OFDM [10, 11]. MIMO-like system model allows linear and maximum likelihood

MIMO detection [12], which is not applicable to SISO CP-OFDM. However, exponential

complexity of sphere decoding restricted its use only to UW-OFDM systems with low

number of sub-carriers [12, 13].

UW-OFDM clearly outperforms CP-OFDM in the SISO case [9–11]. However, as current

standards employ MIMO withMt transmit andMr receive physical antennas [51, 63], it

makes sense to employ it in UW-OFDM too. This chapter introduces the generalization

of UW-OFDM scheme to a MIMO system and compares its performance against a

MIMO CP-OFDM system. The comparison is conducted for both linear and nonlinear

receivers. The employment of multiple antennas increases the system size further and

MIMO UW-OFDM can be regarded as a virtual massive MIMO system with hundreds

of virtual antennas. It is therefore impossible to apply SD to MIMO UW-OFDM. Thus,

direct comparison of ML performance cannot be done. Hence, it is resorted to quasi-ML

algorithms initially introduced for massive MIMO systems [143].

First, likelihood ascent search algorithm [98, 99] is adapted to MIMO UW-OFDM.

Next, concentrating on the virtual massive MIMO interpretation of MIMO UW-OFDM,

this chapter addresses the problem of memory dominance of the receiver. It has been

shown that the traditional small-scale MIMO receivers are memory dominated, as dif-

ferent buffering memories occupy up to 50% of chip area [144]. In MIMO UW-OFDM

this memory dominance is even more pronounced due to much larger system size. As

discussed in the background chapter of this thesis, the aggressive technology downscal-

ing denies the assumption of deterministic hardware operation. Therefore, the detection

65

Chapter 3. Detection of virtual massive MIMO systems 66

will be modified such that it takes the possibility of faulty memory into account. The

proposed method is developed using the statistical model of channel noise and memory

errors, outlined in Sec. 2.3.4. The novelty of the proposed solution is emphasized by

its ability to handle multiple memory errors, whereas previous schemes assumed single

memory errors only [6]. It is to note that the proposed algorithm is suited to massive

MIMO systems in the general sense. MIMO UW-OFDM is taken here as an example of

a system employing several hundreds of (virtual) receive antennas.

The MIMO UW-OFDM is introduced and its performance comparison to MIMO CP-

OFDM is treated in Sec. 3.1. Memory error resilient detection that builds up on the

detection methods introduced for MIMO-UW OFDM in Sec. 3.1 is outlined in Sec. 3.2.

3.1 MIMO unique word OFDM

The generalization of UW-OFDM to a MIMO system is performed similarly to the CP-

OFDM case (Sec. 2.1.2). There are again Mt parallel transmit data symbol vectors

d̃ ∈ C
Nd×1. Grouping to the compound transmit frequency domain data symbol vector

with respect to sub-carriers and transmit antennas is done as follows:

d̃ =

d̃(0)
...

d̃(Nd − 1)

NdMt×1

=

d̃1(0)
...

d̃Mt(0)

d̃1(1)
...

d̃Mt(1)

...

d̃1(Nd − 1)
...

d̃Mt(Nd − 1)

(3.1)

The generation of the encoded compound frequency domain symbol vector x̃ ∈ C
NMt×1

is done as in Eq. 2.45. The difference to SISO case is the generator matrix Ǧ obtained by

augmenting the SISO generator matrix to the appropriate size by the Kronecker product

Chapter 3. Detection of virtual massive MIMO systems 67

with IMt .

Ǧ = G⊗ IMt = (3.2)

=

g11IMt g12IMt · · · g1Nd
IMt

g21IMt g22IMt · · · g2Nd
IMt

...
...

...
...

gN1IMt gN2IMt · · · gNNd
IMt

(Nd+Nr)Mt×NdMt

The encoded frequency domain compound symbol vector is therefore given as

x̃ = Ǧd̃ = (3.3)

= Ǧ

d̃1(0)
...

d̃Mt(0)

d̃1(1)
...

d̃Mt(1)

...

d̃1(Nd − 1)
...

d̃Mt(Nd − 1)

Random initialization introduced in Sec. 2.1.2.2 produces random non-systematic gen-

erator matrices G′′ every time the optimization algorithm is run. This allows encoding

each of the Mt data streams by a different generator matrix G′′
m, where m = 1, . . . ,Mt.

In this case the compound frequency domain transmit symbol vector is obtained as

x̃ = Ǧ′′
s d̃ (3.4)

where Ǧ′′
s is generated as follows

Ǧ′′
s = G′′

1 ⊗

1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

+ · · ·+G′′
Mt

⊗

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 1

(3.5)

The transformation to the time domain is performed as in the CP case by theMt parallel

IFFT modules. Therefore, the compound time domain symbol vector is obtained similar

Chapter 3. Detection of virtual massive MIMO systems 68

to Sec. 2.2.2 as

x =
1

N
(FHN ⊗ IMt)Ǧd̃ (3.6)

Next, the vector of non-zero UWs is added to x, similar to the SISO case.

x′ = x+
[

0 uH
]H

(3.7)

Here, the compound vector of non-zero UWs is given as

u =

u(Nd)
...

u(N − 1)

NrMt×1

=

u1(Nd)
...

uMt(Nd)

u1(Nd + 1)
...

uMt(Nd + 1)

...

u1(N − 1)
...

uMt(N − 1)

The frequency domain version of the compound unique word vector is obtained by FFT

as given below

ũ = (FN ⊗ IMt)
[

0 uH
]H

(3.8)

Therefore, the compound time domain transmit symbol vector is the following

x′ =
1

N
(FHN ⊗ IMt)(Ǧd̃+ ũ) (3.9)

The latter symbol vector is transmitted over the same MIMO multipath channel, dis-

cussed in Sec. 2.2.2. The linear block convolution matrix is given in the MIMO case

as

Htoep =

H0
...

. . .

HL−1 · · · H0

. . .
...

. . .

HL−1 · · · H0

(N+Nr)Mr×(N+Nr)Mt

(3.10)

Here again, as with SISO UW-OFDM, the ISI terms fall within the duration of the UW

vector u(t − 1) of x′(t − 1). At the receiver side, neglecting the AWGN vector, the

Chapter 3. Detection of virtual massive MIMO systems 69

compound time domain receive symbol vector y(t) is given similar to Eq. 2.48:

y(t) = Htoep(t)

u(t− 1)

d(t)

u(t)

(3.11)

The structure of the transmitted compound OFDM symbol vector is equivalent to the

signal with added cyclic prefix in case of CP-OFDM. The inclusion of u(t−1) is modeled

by multiplication with a copy matrix Θ̌c, similar to cyclic prefix insertion matrix in

Eq. 2.81:

Θ̌c =

0 INr

IN−Nr 0

0 INr

⊗ IMt (3.12)

where Θ̌c is obtained from the SISO copy matrix, augmenting it to the appropriate size

by the Kronecker product with the identity matrix of size Mt.

The t-th compound time domain receive symbol vector, neglecting the AWGN, is given

as

y(t) = Θ̌xHtoep(t)Θ̌cx
′(t) (3.13)

where Θ̌x is the UW extraction matrix similar to cyclic prefix removal matrix in Eq. 2.84.

It is obtained from SISO UW extraction matrix by augmenting it to the appropriate

size by the Kronecker product with the identity matrix of size Mr:

Θ̌x =
[

0N×Nr IN

]

⊗ IMr (3.14)

Clearly, the matrix given below

Hcir = Θ̌xHtoepΘ̌c (3.15)

is the same block circulant matrix as in Eq. 2.86, as the UW insertion and extraction

matrices transform the block convolution matrix in the same way as the CP insertion

and removal matrices. Therefore, the block eigenvalue decomposition of Hcir is the same

as in the CP-OFDM case.

Thereby, dropping the time index t, the compound receive frequency domain symbol

vector is obtained at the receiver side by Mr parallel FFT blocks as

ỹ = (FN ⊗ IMr)Hcirx
′ + (FN ⊗ IMr)n

=
1

N
(FN ⊗ IMr)Hcir(F

H
N ⊗ IMt)(Ǧd̃+ ũ) + (FN ⊗ IMr)n

(3.16)

Eigenvalue decomposition of Hcir results in the following compound receive frequency

domain symbol vector

ỹ = H̃bǦd̃+ H̃bũ+ ñ (3.17)

where H̃b is the block diagonal matrix, with blocks containing MIMO flat fading channel

coefficients relative to the sub-carriers, as given in Eq. 2.88.

Chapter 3. Detection of virtual massive MIMO systems 70

Subtracting the known part H̃bũ at the receiver side results in final MIMO UW-OFDM

system equation

ỹ′ = H̃bǦd̃+ ñ (3.18)

3.1.1 LMMSE detection

The system equation (Eq. 3.18) for MIMO UW-OFDM looks similar to the one of the

MIMO CP-OFDM. However, the sub-carriers are not independent anymore. Recall the

general form of the LMMSE estimate of the transmit frequency domain symbol vector

x̃:
ˆ̃x =

(

H̃H
b C

−1
nnH̃b +C−1

xx

)−1
H̃H
b C

−1
nn ỹ

′ (3.19)

where the noise covariance matrix is Cnn = E
{
ññH

}
= Nσ2nI and the transmit symbol

vector covariance matrix is Cxx = E
{
x̃x̃H

}
= σ2dǦǦH . As in UW-OFDM only the

data part d̃ of x̃ is of interest, its LMMSE estimate is obtained as follows:

ˆ̃
d = Ǧ−1

(

H̃H
b H̃b +

(
ǦǦH

)−1 Nσ2n
σ2d

I

)−1

H̃H
b ỹ

′

=

(

H̃H
b H̃bǦ+ (ǦH)−1Ǧ−1Ǧ

Nσ2n
σ2d

I

)−1

H̃H
b ỹ

′

=

(

ǦHH̃H
b H̃bǦ+

Nσ2n
σ2d

I

)−1

ǦHH̃H
b ỹ

′

(3.20)

In case of random non-systematic generator matrices Ǧ′′
m, m = 1, . . .Mt the LMMSE

estimate is of the form

ˆ̃
d =

(

Ǧ′′H
s H̃H

b H̃bǦ
′′
s +

Nσ2n
σ2d

I

)−1

Ǧ′′H
s H̃H

b ỹ
′ (3.21)

where Ǧ′′
s is given in Eq. 3.5.

Due to the correlation between sub-carriers introduced by generator matrix Ǧ, the

LMMSE estimate is calculated once for all sub-carriers and data streams, as opposed to

the CP-OFDM case. However, it is to note that the size of the matrix to be inverted has

increased from Mr ×Mt to less favorable NdMr × NdMt. This increase in complexity

can be tackled as discussed further.

3.1.1.1 Complexity-reduced LMMSE for systematic MIMO UW-OFDM

The complexity of the LMMSE estimator for MIMO UW-OFDM is dominated by the

matrix inversion in Eq. 3.20. The size of the matrix to be inverted is NdMr×NdMt. Ex-

ploiting the structure of the systematic generator matrix Ǧ, reduced-complexity version

of the LMMSE is obtained similar to SISO UW-OFDM [13].

The receive frequency domain symbol vector ỹ′ has to be resorted by multiplying with

transposed permutation matrix P̌T . This matrix is obtained from the SISO permutation

Chapter 3. Detection of virtual massive MIMO systems 71

matrix by the Kronecker product with the identity matrix of size Mr

P̌T = PT ⊗ IMR
(3.22)

The resorted receive symbol vector is then given as

ỹ′ = P̌T 1

N
(FN ⊗ IMr)Hcir(F

H
N ⊗ IMt)Ǧd̃+ P̌T ñ (3.23)

The resorted H̃b is in this case defined as follows

H̃b = P̌T 1

N
(FN ⊗ IMr)Hcir(F

H
N ⊗ IMt)P̌ (3.24)

After resorting, the block channel matrix Ȟb is easily decomposed into information and

redundancy parts:

H̃b =

[

H̃b,d 0

0 H̃b,r

]

(3.25)

where H̃b,d ∈ C
NdMr×NdMt and H̃b,r ∈ C

NrMr×NrMt .

Using the unsorted systematic generator matrix Ǧu,

Ǧu =

[

I

T

]

⊗ IMt (3.26)

it can be easily shown that

H̃bǦu =

[

H̃b,d 0

0 H̃b,r

][

I

T

]

⊗ IMt =

[

H̃b,d

H̃b,r(T⊗ IMt)

]

(3.27)

The matrix to be inverted from Eq. 3.20 can be reformulated as

(

ǦH
u H̃

H
b H̃bǦu +

Nσ2n
σ2d

I

)−1

=

=

(

H̃H
b,dHb,d + (T⊗ IMt)

HH̃H
b,rH̃b,r(T⊗ IMt) +

Nσ2n
σ2d

I

)−1
(3.28)

Next, two block diagonal matrices are defined

Dd = H̃H
b,dH̃b,d +

Nσ2n
σ2d

I, Dd ∈ C
NdMr×NdMt (3.29)

Dr = H̃H
b,r, Dr ∈ C

NrMr×NrMt (3.30)

Applying the matrix inversion lemma [145] to the right hand side of Eq. 3.28, and

renaming T ⊗ IMt = Ť , reduced complexity LMMSE estimate of the transmit symbol

vector is defined as follows:

ˆ̃
d = (D−1

d −D−1
d ŤH(ŤD−1

d ŤH +D−1
r)−1ŤD−1

d)
[

H̃H
b,d ŤHH̃H

b,r

]

ỹ′ (3.31)

Chapter 3. Detection of virtual massive MIMO systems 72

The inversion of block diagonal matrices Dd and Dr is reduced to Nd + Nr matrix

inversions of size Mr ×Mt. The same number of matrix inversions is performed in the

MIMO CP-OFDM LMMSE detection. Additionally, the inversion ofNrMr×NrMt -sized

matrix (ŤD−1
d ŤH +D−1

r)−1 has to be performed. Thus, the complexity is comparable

for both methods, due to the systematic structure of the UW-OFDM generator matrix.

Obviously, this simplification is not applicable in the case of non-systematic MIMO

UW-OFDM.

The complexities of both algorithms are compared in terms of number of matrix inver-

sions. The results are depicted in Table 3.1.

Table 3.1: Complexity comparison

Algorithm MIMO-CP LMMSE MIMO-UW Red. Compl. LMMSE

Operation Size Count Size Count

Inversion Mr ×Mt N Mr ×Mt Nd +Nr = N

Inversion ∅ ∅ NrMr ×NrMt 1

3.1.2 Sphere decoding for MIMO UW-OFDM

By regarding H̃dG as a virtual channel matrix, SISO UW-OFDM can be regarded as a

virtual MIMO system. Therefore, SD has been applied to SISO UW-OFDM detection

[12]. However, the exponential complexity of SD restricted its use only to systems with

a low number (N = 24) of sub-carriers [12], [13]. MIMO UW-OFDM can be interpreted

as a virtual massive MIMO system, where the virtual channel matrix is H̃bǦ. In this

case the ML solution is given as

ˆ̃
d = argmin

d̃∈ANdMt

∥
∥
∥ỹ′ − H̃bǦd̃

∥
∥
∥

2

2
(3.32)

The size of the transmit symbol vector is increased to NdMt× 1, leading to a very large

tree and prohibitive complexity.

Therefore, SD will only be used for MIMO CP-OFDM detection in this work. It will

provide a ML performance reference for MIMO-UW OFDM.

3.1.3 LAS for MIMO UW-OFDM

Since MIMO UW-OFDM can be interpreted as a virtual massive MIMO system, LAS

detection algorithm can be directly applied. The MIMO UW-OFDM system model can

be transformed to real numbers

y′ = Hd+ n (3.33)

with the real-value decomposition

[

<(ỹ′)

=(ỹ′)

]

=

[

<(H̃bǦ) −=(H̃bǦ)

=(H̃bǦ) <(H̃bǦ)

][

<(d̃)
=(d̃)

]

+

[

<(ñ)
=(ñ)

]

(3.34)

Chapter 3. Detection of virtual massive MIMO systems 73

Now the size of vectors and matrices has doubled: y′ ∈ R
(2MrN×1), H ∈ R

(2MrN×2MtNd),

d ∈ R
(2MtNd×1), n ∈ R

(2MrN×1).

LAS sub-procedures, with necessary extensions relative to the original algorithm, are

detailed in next section.

3.1.3.1 Maximum a posteriori probability LAS

The original LAS algorithm starts with the initial solution given by

d(0) = Q(d̂lmmse) (3.35)

where Q(.) quantizes the LMMSE estimate to the nearest neighbor in A
2NdMt [143].

It will be shown in simulation reported later in Sec. 3.1.4 that the quality of the soft

outputs computed according to Eq. 3.55 is not adequate for coded MIMO UW-OFDM.

The performance of soft decision decoded LAS is worse than the performance of soft

decision decoded LMMSE. As LAS algorithm quantizes the LMMSE estimate, it ignores

the LLR provided by latter (Eq. 2.105). Therefore it makes sense to modify the initial

LAS algorithm such that it takes the soft output of LMMSE as its initial solution.

As LAS is essentially an improvement of LMMSE solution, the LLR provided by LMMSE

can be used as a priori information in deciding which symbols have to be updated

during LAS search procedures (Sec. 2.2.3.2.2). The detection method that uses a-priori

probability of the transmit symbol is referred to as maximum a posteriori probability

(MAP) [146]. The MAP estimate of data symbol vector d is given as

d̂MAP = argmax
d∈A2NdMt

P (d|y′,H) (3.36)

Using Bayes theorem, Eq. 3.36 can be reformulated as

d̂MAP = argmax
d∈A2NdMt

(

p(y′|d,H)
P (d)

p(y′)

)

(3.37)

= argmax
d∈A2NdMt

(
p(y′|d,H)P (d)

)

where the second equality is given by the fact that the pdf of y′ does not depend on d.

The first term in the second equality is exactly the likelihood in Eq. 2.111. Taking the

logarithm of Eq. 3.37, the maximization is turned into minimization

d̂MAP = argmin
d∈A2NdMt

(‖y′ −Hd‖22
σ2n

− logP (d)

)

(3.38)

where the second term is the a priori probability of the transmit vector d. It is given as

the product of probabilities of individual symbols.

P (d) =

2NdMt∏

j=1

P (dj) (3.39)

Chapter 3. Detection of virtual massive MIMO systems 74

Assuming 4-QAM with Gray mapping, the values of symbols represent the bit values,

dj,b = dj . Symbol probabilities P (dj = +1) and P (dj = −1) are obtained from LMMSE

LLR given in Eq. 2.107 as [55]

P (dj = +1) =
exp(L̄j)

1 + exp(L̄j)
(3.40)

P (dj = −1) =
1

1 + exp(L̄j)
(3.41)

Hence, the initial MAP cost is given as

C(0) = ‖y′ −Hd(0)‖22 − log(P (d(0))) (3.42)

If the a priori probabilities of the individual symbols are the same, the second term

in minimization of Eq. 3.38 is neglected and the MAP cost of initial solution vector is

identical to the ML cost of the original LAS

C(0) = ‖y′ −Hd(0)‖22 = d(0)THTHd(0) − 2yTHd(0) (3.43)

In 1-LAS, the search in the one symbol neighborhood of the current solution vector

is performed by updating one symbol position of current solution vector per iteration.

Consider the j-th symbol, j = 1, . . . , 2NdMt, changed in (i+1)-th iteration. The update

is formulated as

d(i+1) = d(i) + γ
(i)
j uj (3.44)

where uj is the unit vector with j-th element set to one. For any iteration i, it is

necessary that d ∈ A
2NdMt . This implies that γ(i) is restricted to certain integer val-

ues. For example, in case of 16-QAM, the real-valued symbol alphabet is given as

A = {−3,−1,+1,+3} and γ(i) is therefore restricted to {−6,−4,−2,+2,+4,+6} [143].

In case of 4-QAM, the symbol alphabet is A = {−1,+1} and allowed γ(i) values are

{−2,+2}.

Updating a symbol at position j results in the probability change for that symbol from

P (dj) to P (d̄j). Here, symbol d̄j represents the sign flipped version of symbol dj . In-

troducing matrix Υ = HTH with elements υij and vector z(i) = HT (y −Hd(i)), with

elements z
(i)
j , the change of MAP cost from iteration i to i+ 1 is given by

∆Ci+1
j = C(i+1) − C(i)

= ‖y′ −H(d(i) + γ
(i)
j uj)‖

2

2
− logP (d(i) + γ

(i)
j uj)− ‖y′ −Hd(i)‖22 + logP (d(i))

= γ
(i)2

j υjj − 2γ
(i)
j z

(i)
j + logP (dj)− logP (d̄j)

(3.45)

The last equality contains the difference between a priori probabilities of two possible

values of the symbol which is changed at position j. The probabilities of symbols at

positions different from j do not change from iteration i to iteration i + 1, and are

therefore canceled out in the subtraction. This way, MAP LAS takes the confidence in

the individual symbols provided by the LMMSE initial estimate into account.

Chapter 3. Detection of virtual massive MIMO systems 75

In order to decrease the the overall MAP cost, the MAP cost change should be negative.

Hence, the symbol position p with minimum MAP cost difference is obtained:

p = argmin
j=1,... ,2NdMt

∆Ci+1
j (3.46)

If ∆Ci+1
p < 0, vectors d(i) and z(i) for the (i+ 1)-th iteration are updated as follows

d(i+1) = d(i) + γ(i)p up (3.47)

z(i+1) = z(i) − γ(i)p υp (3.48)

where υp is the p-th column of matrix Υ. If ∆Ci+1
p > 0, then a 1-neighborhood local

minimum (which may be or may be not the global minimum) is reached and the 1-LAS

sub-procedure is terminated. The resulting vector d is the solution of 1-LAS algorithm.

The algorithm then tries to escape from the assumed local minimum and improve the

MAP cost further by initiating the 2-LAS sub-procedure (Fig. 2.22). 2-LAS searches for

a two-symbol update that would further increase the likelihood. There are

(

2NdMt

2

)

two symbol position combinations. Denote the tuple of symbol positions to be updated

as t = {j, q}. The update rule for the i+ 1 iteration can then be written as

d(i+1) = d(i) + γ
(i)
j uj + γ(i)q uq (3.49)

The MAP cost difference for the two-symbol update is written as

∆Ci+1
t (γ

(i)
j , γ(i)q) = C(i+1) − C(i) =

= γ
(i)2

j υjj + γ(i)
2

q υqq − 2γ
(i)
j γ(i)q υjq − 2γ

(i)
j z

(i)
j − 2γ(i)q z(i)q +

+ logP (dj)− logP (d̄j) + logP (dq)− logP (d̄q)

(3.50)

In order to find the optimum values the brute-force method is to evaluate [143]

(γ̇
(i)
j , γ̇(i)q) = argmin

j,q
∆Ci+1

t (γ
(i)
j , γ(i)q) (3.51)

In case of 4-QAM, however, search for optimum γ̇
(i)
j is not necessary, as it may take

only values from {−2,+2}, depending on the sign of d
(i)
j . The MAP cost differences

are computed for all t = {j, q}-tuples and the tuple o = {p, r} with the minimum cost

difference is obtained

o = argmin
t

∆Cm+1
t (γ

(i)
j , γ(i)q) (3.52)

Finally, if ∆Ci+1
o (γ

(i)
p , γ

(i)
r) < 0 the update rule for d(i+1), z(i+1) vectors is given by

d(i+1) = d(i) + γ(i)p up + γ(i)r ur (3.53)

z(i+1) = z(i) − (γ(i)p υp + γ(i)r υr) (3.54)

2-LAS terminates after a single iteration. If the 2-symbol update improved the MAP

Chapter 3. Detection of virtual massive MIMO systems 76

cost, the 1-LAS sub-procedure is initiated again (Fig. 2.22). Otherwise, 3-LAS sub-

procedure starts a 3-neighborhood search. The computations are similar to the ones in

2-LAS and can be derived in a straightforward way. If the iteration of 3-LAS is able to

improve the MAP cost, 1-LAS is initiated again. If not, the algorithm terminates and

the current solution vector d is declared the final solution.

3.1.3.1.1 Soft output generation

Soft output generation for the original LAS is proposed in [143]. The confidence in each

bit is formulated as

Rj,b ≈
‖y′ −Hd̂b=1

j ‖2
2
− ‖y −Hd̂b=0

j ‖2
2

‖hj‖22
(3.55)

where d̂b=1
j and d̂b=0

j are the LAS solution vectors with b-th bit of symbol j set to 1 or

0, respectively, hj is the j-th column of H. It is to note that the soft output in Eq. 3.55

represents a rather coarse approximation of max-log LLR in Eq. 2.103, as other vectors

belonging to χ1
j,b and χ

0
j,b are simply neglected.

The derived soft value is efficiently reformulated in terms of z and Υ, which are readily

available upon the termination of the LAS algorithm. Note that d̂b=0
j and d̂b=1

j differ

only in the j-th entry, and hence

d̂b=1
j = d̂b=0

j + γjuj (3.56)

As d̂b=1
j and d̂b=0

j are available, γj is obtained from Eq. 3.56. Substituting Eq. 3.56 in

Eq. 3.55 yields

Rj,b‖hj‖22 = ‖y′ −Hd̂b=0
j − γj,bhi‖

2

2
− ‖y −Hd̂b=1

j ‖2
2

= γ2j ‖hj‖22 − 2γj,bh
T
j (y

′ −Hd̂b=0
j)

= −γ2j ‖hj‖22 − 2γj,bh
T
j (y

′ −Hd̂b=1
j)

(3.57)

In case of 4-QAM and real-valued system, it holds d̂j,b = d̂j . If d̂j = 0 then d̂j=0 = d̂,

and dividing Eq. 3.57 by ‖hj‖22 yields

Rj = γ2j − 2γj
zj
υjj

= 4 + 4
zj
υjj

(3.58)

If d̂j = 1, then d̂j=1 = d̂, then

Rj = −γ2j − 2γj
zi
υjj

= −4 + 4
zi
υjj

(3.59)

For proposed MAP LAS, the max-log MAP LLR for each symbol/bit is given as

Lj = min
d∈χ(−1)

j

(

‖y′ −Hd‖22
σ2n

− logP (d)

)

− min
d∈χ(+1)

j

(

‖y′ −Hd‖22
σ2n

− logP (d)

)

(3.60)

where χ
(−1)
j and χ

(+1)
j are sets of transmit symbol vectors with symbol at position j

being −1 or +1.

Chapter 3. Detection of virtual massive MIMO systems 77

Equation 3.60 requires computation of 22NdMt Euclidean distances. In order to reduce

the computational complexity, a following approximation is proposed (Eq. 3.61): In case

MAP LAS changes the symbol, its hard-decision value is taken as the soft output. In

case the symbol is not changed, the LLR provided by LMMSE initial solution is used.

L̇j =

dj when sign(dj) 6= sign(L̄j)

L̄j when sign(dj) = sign(L̄j)
(3.61)

3.1.3.2 LAS performance improvement using Ǧ′′
s

As discussed in Sec. 2.1.2.2, non-systematic generator matrices G′ and G′′ exhibit band
and full structures respectively. The MIMO version of these matrices share the same

structure as depicted in Fig. 3.1. Therefore, it is to expect that MIMO UW-OFDM

system with Ǧ′′ outperforms the one with Ǧ′ in the uncoded scenario.

In a coded system, the system with Ǧ′ will perform better than Ǧ′′. In an uncoded

(a) Ǧ′ (b) Ǧ
′′

Figure 3.1: MIMO UW-OFDM non-systematic generator matrices

system, the BER performance of LAS can be improved when the Mt data streams are

coded with differentG′′
m, yielding a compound generator matrix Ǧ′′

s . The LAS algorithm

regards the virtual channel matrix HbǦ
′′ as a true massive MIMO channel matrix. It

has been shown that LAS performance degrades when the channel matrix is correlated

[143]. Therefore, for LAS it is important that the entries of the matrix are as much

uncorrelated as possible. This is not the case for UW-OFDM, as generator matrix G′′

introduces correlations between diagonal blocks of Hb. Therefore, by using generator

matrix Ǧ′′
s , the introduced correlation in HbǦ′′

s is less, as this matrix is made of Mt

distinct G′′ (Eq. 3.5). Hence, it is to expect that using Ǧ′′
s would bring additional LAS

performance improvement.

Chapter 3. Detection of virtual massive MIMO systems 78

Table 3.2: MIMO system parameters

OFDM system 802.11n UW

FFT size N 64 64

data subcarriers Nd 52 40

guard interval/ redundant subcarriers Ng/ Nr 16 16

redundant sub-carrier indices

{2, 6, 10, 14, 17, 21,
Ir {} 24, 26, 38, 40, 43,

47, 50, 54, 58, 62}
zero subcarriers Nz 8 8

zero subcarrier indices Iz {0, 29, 30,. . . , 35}
transmit antennas Mt 4 4

receive antennas Mr 4 4

3.1.4 Performance comparison

Simulation of MIMO CP- and UW-OFDM systems is performed in order to obtain BER

results. Next, the gains in dB are compared for MIMO CP- and UW-OFDM systems in

case of LMMSE and ML detection at BER = 10−6.

3.1.4.1 Simulation parameters

Parameters of UW-OFDM system are where possible picked same as in CP-OFDM based

802.11n standard. The system parameters are summarized in Table 3.2.

The recorded 10,000 multipath channel realizations are used in all simulations. The

channel coefficients are obtained from standardized 802.11n channel model (model C)

[75]. The channel is assumed constant for 100 OFDM symbol vectors. Modulation is

4-QAM with Gray mapping. In case of a coded system, information bits are encoded by

(133, 171) convolutional code with constraint length 7 and code rate 1/2 (Sec. 2.1.2.1).

At the receiver side, the detected bits are decoded by soft-decision Viterbi decoder

implemented in a Matlab routine.

3.1.4.2 Simulation results

The BER results for LMMSE detection are depicted in Fig. 3.2 and 3.3. MIMO UW-

OFDM clearly outperforms 802.11n in both uncoded and coded systems. In an uncoded

system, using non-systematic generator matrix Ǧ′′ provides maximum gain over 802.11n.

In a coded system, the advantage of the UW system with generator matrix Ǧ′ over
802.11n is most pronounced. The performance of these generator matrices in coded and

uncoded systems coincides with the SISO OFDM case [11]. The system with systematic

generator matrix Ǧ performs worse than the systems with non-systematic generator

matrices Ǧ′ and Ǧ′′ in both coded and uncoded scenarios.

Chapter 3. Detection of virtual massive MIMO systems 83

Table 3.3: Run-time comparison

MIMO CP-OFDM (802.11n) MIMO UW-OFDM

LMMSE 1 1.08

SD 2.22 ∅
1-LAS ∅ 1.3

2-LAS ∅ 4.0

3-LAS ∅ 309.0

The complexity of LMMSE MIMO-UW OFDM is therefore almost the same as the com-

plexity of LMMSE MIMO CP-OFDM. In order to achieve better than SD performance

in uncoded scenario, 3-LAS requires two orders of magnitude more time. In coded sce-

nario, even with this complexity increase, 3-LAS still performs slightly worse than SD.

1-LAS shows little complexity increase relative to LMMSE detected MIMO CP-OFDM,

and requires almost twice less time than SD. It also is able to get relatively close to SD

in terms of performance in both uncoded and coded scenarios, as shown in simulation

results.

3.2 Memory error resilient detection

It has been shown in Sec. 3.1 that the LMMSE detection is attractive for MIMO UW-

OFDM, since its complexity grows linearly with the number of antennas. In this section

the LMMSE will be modified to take the memory errors discussed in Sec. 2.3.4 into

account.

Consider a general complex number MIMO system equation

yc = Hcxc + nc (3.62)

The system model in Eq. 3.62 can be decomposed to real-valued numbers

y = Hx+ n (3.63)

using the real-value decomposition given in Eq. 3.64

(

<{yc}
={yc}

)

=

(

<{Hc} −={Hc}
={Hc} <{Hc}

)(

<{xc}
={xc}

)

+

(

<{nc}
={nc}

)

(3.64)

It is to note that this is not a compulsory step. However, now all operations considered

further are real-valued, at the cost of doubling the size of vectors and matrices.

The receive symbol vector y is stored in a buffering memory prior to detection (Fig. 2.32).

As the channel is constant for the duration of multiple symbol vectors, the memory can

be regarded as a matrix (Fig. 2.33). The number of columns (m) equals the number

of symbol vectors, received during the coherence time of the channel. Number of rows

equals Mr ×N , for both MIMO CP- and UW-OFDM. The memory may be faulty and

Chapter 3. Detection of virtual massive MIMO systems 85

7y
-10 -8 -6 -4 -2 0 2 4 6 8 10

p
(7y

)

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 3.9: Pdf of receive vector element

The LMMSE estimate in Eq. 2.95 is optimal in minimum mean square sense when

the transmit symbol vector x and the noise vector n are independent and Gaussian

distributed [83]. Due to memory errors, this assumption does not hold anymore. Figure

3.9 depicts the distribution of an element of the receive symbol vector ȳ stored in the

[4].[8] fixed point format. Clearly, this distribution is not Gaussian. The difference to

Gaussian bell curve is most prominent at the tails of the depicted distribution. Therefore,

in presence of memory errors, the LMMSE estimate is expected to produce a poor result.

It is known that any distribution can be well approximated by a mixture of Gaussian

distributions [148, 149]. Hence, the framework of Gaussian mixture (GM) model can be

used as a starting point for derivation of a suitable detection scheme that takes memory

errors into account. The pdf of a Gaussian mixture distributed random vector r is given

as [150]

p(r) =
M∑

m=1

PmN(µmr ,C
m
rr) (3.65)

where µmr is the mean of m-th component, Cm
rr is the covariance matrix of m-th com-

ponent and Pm is the probability of drawing the m-th component from available M

components. Obviously,
M∑

m=1
Pm = 1.

At first glance, it makes sense to regard the joint effect of AWGN and memory errors as a

GM distributed noise vector n̄, with component covariance matrices σ2nmI. As transmit

Chapter 3. Detection of virtual massive MIMO systems 86

symbol vector x and noise vector n̄ are independent, their joint pdf can be written as

p(x, n̄) = N(µx,Cxx)
M∑

m=1

PmN(µmn̄ ,C
m
n̄n̄) (3.66)

=
M∑

m=1

PmN(µm,Cm) (3.67)

Thus, the joint pdf of x and n̄ is GM distributed as shown in Eq. 3.67 [151], with

µm =

[

µx

µmn̄

]

,Cm =

[

Cxx 0

0 Cm
n̄n̄

]

(3.68)

A following relation can be derived from the system equation [150]:

[

y

x

]

=

[

Hx+ n̄

x

]

=

[

H I

I 0

][

x

n̄

]

= H̄

[

x

n̄

]

(3.69)

Equation 3.69 shows that

[

y

x

]

is related to x through a linear transformation. This

implies that if x and n̄ are jointly GM distributed, then so are x and y [83]. Therefore,

the joint distribution of x and y is

p(y,x) =
M∑

m=1

PmN(H̄µm, H̄CmH̄T) (3.70)

where H̄µm is given as

H̄µm =

[

µmy

µx

]

=

[

Hµx + µmn̄

µx

]

(3.71)

and

H̄CmH̄T =

[

Cm
yy Cm

yx

Cm
xy Cm

xx

]

=

[

HCxxH
T +Cm

n̄n̄ HCxx

CxxH
T Cxx

]

(3.72)

Since the joint distribution is available, it is possible to derive the conditional mean

E{x|y} which is the MMSE estimator [83]. The marginal pdf of y is [152]

p(y) =

M∑

m=1

Pmp
m(y) (3.73)

where pm(y) is Gaussian with mean µmy and covariance matrix Cm
yy.

Chapter 3. Detection of virtual massive MIMO systems 87

Joint distribution and conditional distribution are connected by Bayes’ rule [83]:

p(x|y) = p(y,x)

p(y)
=

M∑

m=1
Pmp

m(y,x)

M∑

m=1
Pmpm(y)

=

M∑

m=1
Pmp

m(y)pm(x|y)
M∑

m=1
Pmpm(y)

=

M∑

m=1

αm(y)p
m(x|y)

(3.74)

where

αm(y) =
Pmp

m(y)
M∑

m=1
Pmpm(y)

=

Pm
1

(
√
2π)2Mr |HCxxHT+Cm

n̄n̄
|
1
2
e−

1
2
(y−(Hµx+µmn̄))T (HCxxH

T+Cm
n̄n̄

))−1(y−(Hµx+µmn̄))

∑M
m=1 Pm

1

(
√
2π)2Mr |HCxxHT+Cm

n̄n̄
|
1
2
e−

1
2
(y−(Hµx+µmn̄))T (HCxxHT+Cm

n̄n̄
))−1(y−(Hµx+µmn̄))

(3.75)

The coefficient αm(y) can be regarded as the probability that n̄ is drawn from component

pdf m, given the receive vector y. Obtaining the mean of the conditional distribution

p(x|y):

E{x|y} =

∫

xp(x|y)dx

=

∫

x
M∑

m=1

αm(y)p
m(x|y)dx

=
M∑

m=1

αm(y)

∫

xpm(x|y)dx

(3.76)

As pm(y|x) is conditional density of joint Gaussian pm(y,x), pm(y|x) is also Gaussian.

The integrals of the individual m components are then the LMMSE estimators of that

particular m-th component as given in Eq. 2.95.

Therefore, the MMSE estimate for a Gaussian mixture is given as

x̂ =
M∑

m=1

αm(y)(µx +CxxH
T (HCxxH

T +Cm
n̄n̄))

−1(y − (Hµx + µmn̄)) (3.77)

The MMSE estimator for a GM is nonlinear, as the coefficients αm(y) are non-linear in

y. Taking into account that transmit symbol vector and the m noise components are

zero mean with Cxx = σ2xI and Cn̄n̄ = σ2nmI the nonlinear MMSE (NMMSE) estimate

Chapter 3. Detection of virtual massive MIMO systems 88

is given in a more convenient form as

x̂ =
M∑

m=1

αm(y)σ
2
xIH

T (Hσ2xIH
T + σ2nmI)−1y (3.78)

with coefficients αm(y)

αm(y) =

Pm
1

(
√
2π)2Mr |Hσ2

xIH
T+σ2

nmI|
1
2
e−wm

∑M
m=1 Pm

1

(
√
2π)2Mr |Hσ2

xIH
T+σ2

nmI|
1
2
e−wm

(3.79)

where the exponents wm are given as

wm =
1

2
yT (Hσ2xIH

T + σ2nmI)−1y (3.80)

It is to observe that if there is only one noise component, M = 1, the coefficient α1(y)

equals one and the MMSE estimate coincides with the LMMSE estimate in Eq. 2.95.

3.2.1 NMMSE-based single error correction

The general NMMSE estimator is next adapted to mitigate the effect of memory errors.

First, the attention is restricted to single bit flips within the integer part, as they cause

the largest error values. In this case the mixture component probabilities Pm are: the

probability to have no memory errors P (k = 0) and d equal probabilities P (k = 1) to

have a single bit flip at one of of the integer bit positions j, j ∈ {l−1, . . . , f}. Therefore,
there would be d + 1 noise components: nominal channel AWGN noise n in case there

are no memory errors and d components where each noise term includes the bit flip at

bit position j, j ∈ {l − 1, . . . , f}.

The problem with this approach is that according to memory error model in Sec. 2.3.4,

the value of eji actually depends on the value of yji . Thus, it is not possible to separate out

eji from ȳi and form n̄i = ni+ eji . Therefore, the same channel AWGN noise vector with

covariance matrix σ2nI is present in all d+ 1 mixture components. The first component

assumes receive vector to be memory error free (ȳ = y), while remaining components

assume that some elements of receive vector are affected by bit flips at position j,

ȳj = y + eju (3.81)

where ej are the error values given in Eq. 2.144. Vector u contains ones at i-th position

for which the bit flip at bit position j occurs and zero otherwise. First, the assumption

of having single bit flip in just a single element i of the receive vector taken in [6] is

considered valid. Therefore, the receive vector ȳ may contain single element i affected

by a single bit flip at position j, j ∈ {l− 1, . . . , f}. This implies that vector u is a unit

vector.

Finally the mixture contains: receive vector y with no memory errors with component

probability P (k = 0) and d components where receive vector ȳj has a bit flip at position

j, j ∈ {l − 1, . . . , f} at some element i with same component probability P (k = 1).

Since possible error values are known, the position i of error-affected vector element can

Chapter 3. Detection of virtual massive MIMO systems 89

be identified. When an element of the receive vector contains a flip in the integer part,

the pdf of ȳ will deviate from the nominal multivariate Gaussian distribution given in

the nominator of the NMMSE coefficient α(m=1)(ȳ) in Eq. 3.79. The exponent w(m=1)

given in Eq. 3.80 will assume a large value and the coefficient α1(ȳ) will be close to zero.

The receiver has the potentially error-affected vector at its disposal, but does not know

whether the error has occurred, nor the affected element of the vector. Therefore, for

each possible bit flip position j (corresponding to mixture components, m > 1), the

single bit flip correction values βji are computed for all i elements of the receive vector.

Since the value of the assumed bit flip depends on the value of the receive vector, the

correction values are obtained as

βji =

(2ȳji − 1)2(j−f) when j = l − 1

(−2ȳji + 1)2(j−f) when j 6= l − 1
(3.82)

The exponents wji are obtained with applied single-bit corrections

wji =
1

2
(ȳ + βjiui)

T (Hσ2xIH
T + σ2nI)

−1(ȳ + βjiui) (3.83)

where ui is the unit vector containing one at position i and zeros at other positions.

When the applied single-bit correction indeed corrects the error, the deviation from

the nominal Gaussian density would decrease and the respective wji will decrease too.

Otherwise, the correction actually introduces an error, forcing respective wji to increase.

By finding the minimal exponent wji for a given j, j ∈ {l − 1, . . . , f}, the index i of the

receive vector element where the bit flip at position j occurred is identified.

Next, the coefficients αm(ȳ) are obtained with minimal exponent values. It is to note

that as the division by the sum of nominators in Eq. 3.79 is just scaling, the nominator

of coefficient and the coefficient itself will be used interchangeably.

αm(y) = Pm
1

(
√
2π)2Mr |Hσ2xIHT + σ2nI|

1
2

e−w
j
min (3.84)

Finally, the NMMSE estimate is computed by Eq. 3.78 with component coefficients

computed previously. The single error correction algorithm is summarized in Alg. 2 for

MIMO CP-OFDM. Real-valued frequency domain vectors and matrices are assumed.

Its detailed operation is outlined next:

• The algorithm is executed sequentially for all N sub-carriers.

• The bit values ¯̃yji of the integer part of all elements ¯̃yi of receive vector ¯̃y are

extracted by bitGet function in line 5 of Alg. 2.

• For each integer part bit position j of all elements i of receive vector ¯̃y, the cor-

rection values are computed by Eq. 3.82, assuming that a single-flip occurred at

exactly this position.

• For each integer part bit position j and all elements i of ¯̃y, compute exponents wji
by Eq. 3.83 with correction values applied.

Chapter 3. Detection of virtual massive MIMO systems 90

Algorithm 2 NMMSE-based single error correction for MIMO CP-OFDM

1: for k = 1, . . . , N do
2: for j = f, . . . , l − 1 do
3: for i = 1, . . . , 2Mr do
4: ¯̃yji (k) =bitGet(¯̃y(k), j)
5: end for
6: end for
7: for j = f, . . . , l − 1 do
8: for i = 1, . . . , 2Mr do
9: if j = l − 1 then

10: βji = (2¯̃yji (k)− 1)2(j−f)

11: else
12: βji = (−2¯̃yji (k) + 1)2(j−f)

13: end if
14: end for
15: end for
16: for j = f, . . . , l − 1 do
17: for i = 1, . . . , 2Mr do
18: wji =

1
2(
¯̃y(k) + βjiui)

T (H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + βjiui)
19: end for
20: end for
21: for all j do
22: wjmin = min

i
wji

23: end for
24: for all m do

25: αm(¯̃y(k)) =
Pm

1

(
√
2π)2Mr |H̃(k)σ2

xIH̃T (k)+σ2
nI|

1
2

e−w
j
min

∑(d+1)
m=1 Pm

1

(
√
2π)2Mr |H̃(k)σ2

xIH̃T (k)+σ2
nI|

1
2

e−w
j
min

26: end for
27: for j = f, . . . , l − 1 do
28: wjmin → βjsm
29: end for

30: ˆ̃x(k) =
d+1∑

m=1
αm(¯̃y(k))σ

2
xIH̃

T (k)(H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + βjsmusm)

31: end for

• For each integer bit position j, obtain minimum exponent wjmin. Recall that the

j-th bit flip position corresponds to the mixture component m > 1. For m = 1,

minimization is not required, since ȳ is assumed memory error free and w(m=1) is

obtained by Eq. 3.80.

• Compute component coefficients αm(¯̃y) with obtained wjmin and w(m=1) by Eq. 3.84.

• Finally, the NMMSE estimate is computed by Eq. 3.78 with correction values βjsm
applied, where sm are the indexes of vector elements for which minimum exponent

values wjmin were obtained.

The inverse of H̃(k)σ2xIH̃
T (k) + σ2nI and its determinant can be precomputed for all N

sub-carriers for the duration when the channel matrix H̃b is constant. The correction val-

ues βji can be stored in a look-up table, because their values are predefined for a specific

Chapter 3. Detection of virtual massive MIMO systems 91

fixed point format. The remaining operation are simply matrix-vector multiplications,

except the exponentiation in Eq. 3.79.

It has been found by numerical simulation that the optimal fixed point format for MIMO

CP-OFDM is [4].[8]. The component probabilities are

P1 = P (k = 0) = (1− Pe)
4

P2...5 = P (k = 1) = Pe(1− Pe)
3

For example, if j = l − 1 = 11 and ¯̃yji (k) = 1, the assumed correct value of the sign bit

is ỹji (k) = 0. This implies that the bit flip in the sign bit from 0 to 1 has happened, and

the error value is −2(j−f) = −23. Therefore, the correction value is computed as +23.

In case the error has really occurred at this bit position of this receive vector element,

the corresponding wji will be the minimum for this j and the corrections applied to j-th

bit position of other elements only introduce the error.

The NMMSE estimator will be

ˆ̃x(k) =α1(¯̃y(k))σ
2
xIH̃

T (k)(H̃(k)σ2xIH̃
T (k) + σ2nI)

−1 ¯̃y(k)+

α2(¯̃y(k))σ
2
xIH̃

T (k)(H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + β11s2us2)+

α3(¯̃y(k))σ
2
xIH̃

T (k)(H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + β10s3us3)+

α4(¯̃y(k))σ
2
xIH̃

T (k)(H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + β9s4us4)+

α5(¯̃y(k))σ
2
xIH̃

T (k)(H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + β8s5us5)

(3.85)

where usm is the unit vector with one at position sm and zero at all other positions. The

exponent values w
(j 6=11)
i for the bit positions other than j = 11 will be all very large, due

to the single-flip single element assumption. The corrections introduced for these bit

positions will only introduce the actual error. Therefore, the coefficients αm(ȳ) will for

j 6= 11 will all be near zero, effectively leaving only the LMMSE estimate with corrected

receive symbol vector (ȳ(k) + β11s2us2) in Eq. 3.85.

3.2.1.1 log-NMMSE

It is convenient to transform the computation of coefficients to log domain:

αm(ȳ) = log

(

Pm
1

(
√
2π)2Mr |Hσ2xIHT + σ2nI|

1
2

e−w
j
min

)

= log (Pm)− log
(

(
√
2π)2Mr |Hσ2xIHT + σ2nI|

1
2

)

− wjmin

(3.86)

The first two terms have to be computed once for the particular channel matrix H.

Further, it is not necessary to compute NMMSE estimate as given in Eq. 3.85. Instead,

maximum coefficient αmax(ȳ) is found:

αmax(ȳ) = max
m

αm(ȳ) (3.87)

Chapter 3. Detection of virtual massive MIMO systems 92

Algorithm 3 log-NMMSE for MIMO CP-OFDM

1: for k = 1, . . . , N do
2: for j = f, . . . , l − 1 do
3: for i = 1, . . . , 2Mr do
4: ¯̃yji (k) =bitGet(¯̃y(k), j)
5: end for
6: end for
7: for j = f, . . . , l − 1 do
8: for i = 1, . . . , 2Mr do
9: if j = l − 1 then

10: βji = (2¯̃yji (k)− 1)2(j−f)

11: else
12: βji = (−2¯̃y(k)ji + 1)2(j−f)

13: end if
14: end for
15: end for
16: for j = f, . . . , l − 1 do
17: for i = 1, . . . , 2Mr do
18: wji =

1
2(
¯̃y(k) + βjiui)

T (H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + βjiui)
19: end for
20: end for
21: for all j do
22: wjmin = min

i
wji

23: end for
24: for all m do
25: αm(¯̃y(k)) = log (Pm)− log

(

(
√
2π)2Mr |H̃(k)σ2xIH̃

T (k) + σ2nI|
1
2

)

− wjmin
26: end for
27: αmax(¯̃y(k)) = max

m
αm(ȳ(k))

28: αmaxm (¯̃y(k)) → βzs
29: ˆ̃x(k) = σ2xIH̃

T (k)(H̃(k)σ2xIH̃
T (k) + σ2nI)

−1(¯̃y(k) + βzsus)
30: end for

The maximum coefficient identifies the single error that caused the maximal deviation

from the nominal Gaussian pdf. The value of this error is given by the maximal coefficient

index m that corresponds to the bit flip position j. The vector element i where this

error has occurred is given by the index for which the minimal exponent was obtained

for the maximal coefficient.

The LMMSE estimate corresponding to αmax(ȳ) is declared the final solution.

x̂ = σ2xIH
T (Hσ2xIH

T + σ2nI)
−1(ȳ + βzsu) (3.88)

where βzs is the correction value corresponding to index s of vector element for which

minimum exponent value wjmin was obtained for αmax(ȳ).

The proposed log-NMMSE for MIMO CP-OFDM is outlined in Alg. 3, where the lines

different to Alg. 2 are highlighted, while the unchanged lines are shaded gray.

Chapter 3. Detection of virtual massive MIMO systems 93

3.2.2 Iterative NMMSE-based multiple error correction

In case of MIMO UW-OFDM, or in massive MIMO in general, the assumption of sin-

gle error within the receive symbol vector does not hold. The generalization of the

algorithms developed in Sec. 3.2.1 to the multiple error scenario is performed next.

Again, the mixture is assumed to contain d+ 1 components, where the first component

assumes receive vector to be memory error free, while the remaining components assume

that some elements of receive vector are affected by bit flips at position j, as given by

Eq. 3.81. Vector u contains ones at i-th position for which the bit flip at bit position

j occurs and zero otherwise. The simplifying assumption of having single bit flip in

just a single element i of the receive vector taken in [6] cannot be fulfilled in MIMO

UW-OFDM due to large memory size required. Therefore, the receive vector ȳ may

contain multiple elements i affected by a single bit flip at position j, j ∈ {l− 1, . . . , f}.
This implies that vector u may contain multiple ones.

Similarly, the mixture contains: receive vector ȳ with no memory errors with component

probability P (k = 0) and d components where receive vector ȳj has a bit flip at position

j, j ∈ {l − 1, . . . , f} at some elements i with same component probability P (k = 1).

Since possible error values are known, the positions i of error-affected vector elements

can be identified one by one. When an element of the receive vector contains a flip

in the integer part, the pdf of ȳ will deviate from the nominal multivariate Gaussian

distribution given in the nominator of the NMMSE coefficient α(m=1)(ȳ) in Eq. 3.79.

The exponent w(m=1) given in Eq. 3.80 will assume a large value and the coefficient

α1(ȳ) will be close to zero.

The receiver has the potentially error-affected vector at its disposal, but does not know

whether or how many error(s) have occurred, nor the affected element(s) of the vector.

Therefore, for each possible bit flip position j (corresponding to mixture components,

m > 1), the single-bit flip correction values βji are computed for all i elements of the

receive vector. Since the value of the assumed bit flip depends on the value of the receive

vector, the correction values are obtained by Eq. 3.82.

The exponents wji are obtained with applied single-bit corrections by Eq. 3.83. When the

applied single-bit correction indeed corrects the error, the deviation from the nominal

Gaussian density would decrease and the respective wji will decrease too. Otherwise, the

correction actually introduces an error, forcing respective wji to increase. By finding the

minimal exponent wji for a given j, j ∈ {l − 1, . . . , f}, the index i of the receive vector

element where the bit flip at position j occurred is identified.

Next, the coefficients αm(ȳ) with minimal exponent values are obtained. The direct

computation of coefficients by Eq. 3.79 reveals a numeric instability that is caused by

the multiple errors within the receive vector. Assume that ȳ contains two bit flips: one

at (l− 1)-th bit position in element s and the other at (l− 2)-th bit position in element

z. The minimum exponent value for (l − 1)-th bit flip position will be obtained with

the bit flip corrected, however, due to the remaining bit flip in element z, the value of

w
(l−1)
min may still be large. This would result in the zero coefficient for (l − 1)-th bit flip

position. The same would happen for w
(l−2)
min , due to influence of bit flip in element s.

This way all coefficients would be computed to zero, rendering the algorithm useless.

Chapter 3. Detection of virtual massive MIMO systems 94

The direct way to overcome this is to compute the minimum of the wjmin instead of

computing the coefficients:

wmin = min
m

wjmin (3.89)

The index of wmin would then identify the bit flip value and the position of the single-flip

value that caused the largest deviation from the nominal Gaussian pdf. The problem

with this direct approach is that the component probabilities Pm are not taken into

account. Therefore, the performance of this version of the iterative algorithm will be

suboptimal, as the simulation results in Sec. 3.2.4 will indicate.

The better way to avoid the numeric issue due to multiple errors is to compute the

coefficients in log domain by Eq. 3.86. In this case, the maximum coefficient identifies

the single error that caused the maximal deviation from the nominal Gaussian pdf. The

value of this error is given by the maximal coefficient index m that corresponds to the

bit flip position j. The vector element i where this error has occurred is given by the

index for which the minimal exponent was obtained for the maximal coefficient.

This way the correction is performed iteratively starting from the memory error which

caused the largest deviation and correcting one error per iteration. The iterative al-

gorithm with error position identification by Eq. 3.89 is summarized in Alg. 4 and the

iterative algorithm with coefficient computation in log domain is summarized in Alg. 5

for MIMO UW-OFDM. Real-valued frequency domain vectors and matrices are assumed.

The function and respective differences of the two algorithms are highlighted next.

• the initial receive vector ¯̃y′ is read from the buffering memory.

• Next, the main loop is executed until maximum number of iterationsmit is reached.

• Within an iteration, first the bit values ¯̃y′ji of the integer part of all elements ¯̃y′i of
receive vector ¯̃y′ are extracted by bitGet function in line 5 of Alg. 4, Alg. 5.

• For each integer part bit position j of all elements i of receive vector ¯̃y′, the

correction values are computed by Eq. 3.82, assuming that a single flip occurred

at exactly this position.

• For each integer part bit position j and all elements i of ¯̃y, exponents wji by

Eq. 3.83 with correction values applied are computed.

• For each integer bit position j, minimum exponent is obtained. Recall that the

j-th bit flip position corresponds to the mixture component m > 1. For m = 1,

minimization is not required, since ¯̃y′ is assumed memory error free and w(m=1) is

obtained by Eq. 3.80.

• In Alg. 4 compute wmin by Eq. 3.89. In Alg. 5 compute component coefficients

αm(¯̃y
′) with obtained wjmin and w(m=1) in log domain by Eq. 3.86.

• In Alg. 4, if wmin corresponds tom = 1, the algorithm is terminated as all errors are

assumed to have been corrected and LMMSE estimate of the current ¯̃y′(it) is output
(Eq. 3.90). In Alg. 5 the maximum component coefficient is obtained. If αmax(ȳ)

Chapter 3. Detection of virtual massive MIMO systems 95

corresponds to m = 1, the algorithm is terminated as all errors are assumed to

have been corrected and LMMSE estimate of the current ¯̃y′(it) is output (Eq. 3.90).

ˆ̃
d = σ2dIǦ

THT
b (HbǦσ

2
dIǦ

THT
b + σ2nI)

−1 ¯̃y′(it) (3.90)

• Otherwise, the correction value βzs corresponding to αmax(¯̃y
′) in Alg. 5 or to wmin

in Alg. 4, where z indicates the bit flip position within the s-th vector element

where the memory error has occurred, is applied to ¯̃y′

¯̃y′(it+1) = ¯̃y′(it) + βzs (3.91)

• The subsequent iteration is started with ¯̃y′(it+1)

• In the last iteration, the LMMSE estimate with the last found correction value is

output as the final solution

ˆ̃
d = σ2dIǦHT

b (HbǦσ
2
dIǦ

THT
b + σ2nI)

−1(¯̃y′(mit) + βzsus) (3.92)

The number of iterations mit can be picked arbitrarily and is the design parameter that

trades off computational complexity and performance.

It is worth to mention that the [4].[8] fixed point format does not fit the range of values

in MIMO UW-OFDM. It has been found by numeric experiment that the fixed point

format optimal for MIMO-UW is [6].[8]. In this format, the possible error values are

{±25,±24,±23,±22,±21,±20} with probability P (k = 1) = Pe(1 − Pe)
5. It is obvious

that the largest possible memory error value is larger in case of MIMO UW-OFDM

compared to MIMO CP-OFDM.

3.2.3 Resilient likelihood ascent search

Any ML based detection algorithm can be modified to incorporate knowledge of memory

errors [6]. Here, this modification is performed for MIMO UW-OFDM LAS algorithm

from Sec. 3.1.3 following the approach in [6]. The derivation will be performed for MIMO

UW-OFDM (real-valued system in Eq. 3.33). Although it has been argued that the

single-flip single element assumption is not valid for MIMO UW-OFDM, the derivation

will be first performed under this assumption for clarity of exposition.

As the attention is restricted to errors in integer part only, the likelihood for any element

of the receive vector after the memory ȳ′ can be written as

p(ȳ′i|d) = P (k = 0)p(y′i, k = 0|d) + P (k = 1)

l−1∑

j=d

pj(y′i, k = 1|d) (3.93)

Assuming that elements of receive symbol vector contain independent Gaussian noise

and memory errors, the likelihood for ȳ′ can be expressed as

p(ȳ′|d) =
2NdMt∏

i=1

p(ȳ′i|d) (3.94)

Chapter 3. Detection of virtual massive MIMO systems 96

Algorithm 4 Iterative NMMSE for MIMO UW-OFDM

1: Initialize ¯̃y′(it=1) = ¯̃y′

2: for it = 1, . . . ,mit do
3: for j = f, . . . , l − 1 do
4: for i = 1, . . . , 2NMr do
5: ˜̄y′ji =bitGet(¯̃y′, j)
6: end for
7: end for
8: for j = f, . . . , l − 1 do
9: for i = 1, . . . , 2NMr do

10: Compute βji by Eq. 3.82
11: end for
12: end for
13: for j = f, . . . , l − 1 do
14: for i = 1, . . . , 2NMr do
15: Compute wji by Eq. 3.83
16: end for
17: end for
18: for all j do
19: wjmin = argmin

i
wji

20: end for
21: Compute wmin by Eq. 3.89
22: if it 6= mit then
23: if m = 1 then
24: Output LMMSE estimate of ¯̃y′(it) (Eq. 3.90)
25: else
26: wmin → βzs
27: Update ¯̃y′(it+1) by Eq. 3.91
28: end if
29: else
30: wmin → βzs
31: Output LMMSE estimate with final correction, Eq. 3.92
32: end if
33: end for

Plugging Eq. 3.93 into Eq. 3.94:

p(ȳ′|d) =
2NdMt∏

i=1

P (k = 0)p(y′i, k = 0|d) + P (k = 1)

l−1∑

j=d

pj(y′i, k = 1|d)

 (3.95)

In [6] it is assumed that as P (k = 1) is much smaller than P (k = 0), terms of second

order or higher of P (k = 1) in Eq. 3.95 can be ignored, as their contribution is negligible.

Therefore, it is assumed that the vector contains either one bit flip or none (actually

valid only for MIMO CP-OFDM).

Chapter 3. Detection of virtual massive MIMO systems 97

Algorithm 5 Iterative log-NMMSE for MIMO UW-OFDM

1: Initialize ¯̃y′(it=1) = ¯̃y′

2: for it = 1, . . . ,mit do
3: for j = f, . . . , l − 1 do
4: for i = 1, . . . , 2NMr do
5: ¯̃y′ji =bitGet(¯̃y′, j)
6: end for
7: end for
8: for j = f, . . . , l − 1 do
9: for i = 1, . . . , 2NMr do

10: Compute βji by Eq. 3.82
11: end for
12: end for
13: for j = f, . . . , l − 1 do
14: for i = 1, . . . , 2NMr do
15: Compute wji by Eq. 3.83
16: end for
17: end for
18: for all j do
19: wjmin = argmin

i
wji

20: end for
21: for m = 1, . . . , d+ 1 do
22: Compute αm(¯̃y

′) by Eq. 3.86
23: end for
24: αmax(¯̃y

′) = argmax
m

αm(¯̃y
′)

25: if it 6= mit then
26: if m = 1 then
27: Output LMMSE estimate of ¯̃y(it) (Eq. 3.90)
28: else
29: αmax(¯̃y

′) → βzs
30: Update ¯̃y′(it+1) by Eq. 3.91
31: end if
32: else
33: αmax(¯̃y

′) → βzs
34: Output LMMSE estimate with final correction, Eq. 3.92
35: end if
36: end for

The likelihood is then expressed as follows

p(ȳ′|d) = P 2NdMt(k = 0)

2NdMt∏

i=1

p(y′i, k = 0|d)+

+ P (k = 1)P 2NdMt−1(k = 0)

2NdMt∑

s=1

l−1∑

j=d

p(yis|d)
2NdMt∏

i=1,i 6=s
pj(y′i, k = 0|d)

(3.96)

Chapter 3. Detection of virtual massive MIMO systems 98

Furthermore,

p(ȳ′|d) = P 2NdMt(k = 0)

(πNσ2n)
2NdMt

exp

(

−‖Hd− y′‖22
Nσ2n

)

+

+
P (k = 1)P 2NdMt(k = 0)

(πNσ2n)
2NdMt

2NdMt∑

s=1

l−1∑

j=d

exp

(

−‖Hd− y′ ± 2(j−f)u‖22
Nσ2n

) (3.97)

As given in Eq. 2.112 the maximization yields the ML estimate. Therefore, in case of

the likelihood given in Eq. 3.97 the maximization becomes

d̂ = argmax
d∈A2NdMt

log(p(ȳ′|d)) (3.98)

where

log(p(ȳ′|d)) = log

(

P 2NdMt(k = 0)

(πNσ2n)
2NdMt

exp

(

−‖Hd− y′‖22
Nσ2n

)

+

+
P (k = 1)P 2NdMt(k = 0)

(πNσ2n)
2NdMt

2NdMt∑

s=1

l−1∑

j=d

exp

(

−‖Hd− y′ ± 2j−fu‖22
Nσ2n

))

(3.99)

Next, Eq. 3.99 can be further reformulated as

log(p(ȳ′|d)) = log

(

exp

(

log c0 − ‖Hd− y′‖22
Nσ2n

)

+

+

2NdMt∑

s=1

l−1∑

j=d

exp

(

log c1 − ‖Hd− y′ ± 2(j−f)u‖22
Nσ2n

)) (3.100)

where

log c0 = Nσ2n log

(
P 2NdMt(k = 0)

(πNσ2n)
2NdMt

)

(3.101)

log c1 = Nσ2n log

(
P (k = 1)P 2NdMt(k = 0)

(πNσ2n)
2NdMt

)

(3.102)

Using max-log approximation the ML estimate is the given as

d̂ = argmax
d∈A2MtNd ,j=f,... ,l−1

(

log c0 − ‖ȳ′ −Hd‖22, log c1 − ‖(ȳ′ ± 2(j−f)u−Hd)‖22
)

(3.103)

Therefore, the respective minimization in case of memory errors is given as

d̂ = argmin
d∈A2MtNd ,j=f,... ,l−1

(

‖ȳ′ −Hd‖22 − log c0, ‖ȳ′ ± 2(j−f)u−Hd‖22 − log c1

)

(3.104)

Recall that in original LAS, the ML cost function afterm-th iteration is given in Eq. 3.43.

Now, looking at the minimization in Eq. 3.104, the ML cost function after m-th iteration

Chapter 3. Detection of virtual massive MIMO systems 99

in case there are no memory errors is given as

Cm0 = ‖ȳ′ −Hd(i)‖22 − log c0 = d(m)THTHd(m) − 2ȳ′THd(m) − log c0 (3.105)

In case of memory errors the ML cost function after m-th iteration is of the form

Cm1 = ‖(ȳ′ ± 2(j−f)u)−Hd(m)‖22−log c1 = d(m)THTHd(m)−2(ȳ ± 2(j−f)u)
T
Hd(m)−log c1

(3.106)

The cost difference Cm+1
0 is therefore same as in original LAS:

∆Cm+1
0 = Cm+1

0 − Cm0 = γ
(m)2

i υii − 2γ
(m)
i z

(m)
i (3.107)

where z(m) = HT (y′ − Hd(m)), z
(m)
i is the i-th entry of z(m), and υii is the (i, i) - th

entry of the Υ = HTH matrix. The cost difference Cm+1
1 is given as

∆Cm+1
1 = Cm+1

1 − Cm1 = γ
(m)2

i υii − 2γ
(m)
i z̄

(m)
i (3.108)

where z̄(m) = HT ((ȳ ± 2(j−f))−Hd(m)), z̄
(m)
i is the i-th entry of z̄(m).

It can be concluded that the number of cost differences to be evaluated per iteration

is increased from 2NdMt in original LAS to (d + 1)2NdMt in single-flip single element

resilient version. This represents a severe increase in complexity, taking into account

the assumption of a single error within the receive symbol vector. As single-flip multiple

element is the true situation in MIMO UW-OFDM, the complexity of this approach is

daunting.

As LAS is just an extension of LMMSE in MIMO UW-OFDM, it makes more sense to

run iterative log-NMMSE first to correct most of the errors and thereafter run original

LAS on top of it. In this case, the complexity increase is only from log-NMMSE and

LAS could improve the BER further.

3.2.4 Simulation results

The BER results are obtained for both 802.11n and MIMO UW-OFDM system with

parameters from Table 3.2 in a coded scenario. The bit flip probabilities are set to

Pe = 10−3 and Pe = 10−4. In coded scenario, MIMO UW-OFDM system is simulated

with Ǧ′, as it provides the best performance. In uncoded scenario, MIMO UW-OFDM

is generated with Ǧ′′
s matrix, since it provides additional gain compared to Ǧ′′ when

LAS is employed.

Simulation results for MIMO CP-OFDM system under memory errors are shown in

Fig. 3.10, 3.11, 3.12, 3.13. The baseline LMMSE curve, where the memory is completely

error free is plotted in blue for reference. The LMMSE result under memory errors with

Pe bit flip probability is shown in red.

It can be observed that in the low SNR range, channel errors outweigh memory errors

and therefore the BER curves are identical to the memory error free case. As the SNR

increases, the memory errors outweigh the channel errors and introduce an error floor.

This floor is independent of SNR and depends solely on Pe.

Chapter 3. Detection of virtual massive MIMO systems 107

MIMO UW-OFDM is able to outperform SD of MIMO CP-OFDM in uncoded case. In

coded system ML MIMO CP-OFDM performance cannot be achieved.

It can be concluded that MIMO UW-OFDM can be used as an intermediate solution

between LMMSE MIMO CP-OFDM and ML MIMO CP-OFDM in a system employ-

ing four transmit and receive antennas. In case of 1-LAS, MIMO UW-OFDM exhibits

lower complexity than ML MIMO CP-OFDM and is able to achieve close to ML MIMO

CP-OFDM performance in both coded and uncoded setups. Obviously, the above con-

clusions are made without consideration of hardware implementation issues.

Proposed NMMSE iterative memory error resilient detection significantly reduces the

impact of memory errors on the system performance in terms of BER. The impact of

memory errors is more pronounced for MIMO UW-OFDM, since it represents a virtual

massive MIMO system. Here, multiple memory errors within the receive vector have

to be dealt with, opposed to MIMO CP-OFDM, where only single errors exist in the

receive vector. Running LAS on top of the proposed log-NMMSE is able to remove the

impact of memory errors completely for Pe = 10−4.

The proposed modified detection algorithms include memory error detection and correc-

tion and can be regarded as a dynamic redundancy solution. Opposed to static memory

error correcting codes, which have to be implemented in hardware, consuming area and

power, proposed algorithms use available matrix-vector multiplication. Depending on

the current value of SNR and the memory error rate, it could be chosen dynamically

between standard LMMSE and proposed NMMSE-based algorithm. For example, in

case of low memory error rate (Pe < 10−6), LMMSE estimate is computed. In case of

high memory error rate (Pe ≤ 10−4), the NMMSE-based detection is activated in order

to reduce the impact of memory errors on the BER.

It is to note that there exist SNR regions (lower SNR range), where the channel errors

still outweigh the memory errors. The proposed detection can be deactivated in that

region. As SNR increases, the memory errors start to outweigh the channel errors and

proposed detection should be activated. In future work it would be reasonable to obtain

a threshold value of SNR for a given value of Pe. It should be also stressed that for

high Pe and high SNR range, an error floor is inevitable even with proposed detection.

However, as the memory errors are considered to be the result of VOS, it should be

taken into account that this BER floor is traded off for a memory power reduction of

50% for Pe = 10−3 [6].

Chapter 4

Reliability analysis of QR

decomposition

QR decomposition (QRD) encountered in Sec. 2.2.3.2 enables the tree based search used

in sphere decoding. In the virtual massive MIMO context, the QR decomposition can be

used for computation of matrix inverse [153] in the LMMSE estimate. Since hardware

implementation of MIMO UW-OFDM is not yet available, QR decomposition is treated

in the sphere decoding context. An implementation of a MIMO CP-OFDM closed loop

sphere decoding [97] is used in simulations within this chapter.

The QR decomposition can be performed by three distinct algorithm families, namely

Gram-Schmidt orthogonalization process, Givens rotations and Householder reflections

[57]. These algorithms perform the same task, differ however in underlying linear alge-

braic transformations and the number of required arithmetic operations. Gram-Schmidt

process produces a unitary matrix from the input matrix by transforming it to an or-

thonormal basis. The upper triangular matrix, required for tree search is obtained as

a side product. Givens rotations zeroes an element of the input matrix one by one by

series of plane rotations until an upper triangular form is obtained. The unitary matrix

is obtained as a side product. The Householder transformation tries to zero out the

most elements of each column vector by reflection operations. The upper-triangular

matrix is derived after each Householder transform matrix is applied to each column

sequentially. A good comparison of these algorithms in terms of numerical complexity

is found in [154]. In terms of hardware implementation, the Householder reflections

reveal the highest complexity, since the Householder transformation matrices have to be

multiplied sequentially in order to obtain the unitary matrix. Modified Gram-Schmidt

process is used for MIMO channel preprocessing due to its numerical stability, compared

to classical Gram-Schmidt process which is prone to rounding errors [155]. Givens ro-

tations possess excellent numeric stability due to unitary rotations involved. For large

matrices, the inherent parallelism of Givens rotations makes the algorithm more suitable

for hardware implementation compared to other methods [154].

First, this chapter recapitulates the Givens rotations algorithm. Next, the basic hard-

ware implementation, namely the systolic array along with its variants, is discussed. In

terms of MIMO, the optimum performance is obtained if the QRD incorporates MMSE

109

Chapter 4. Reliability analysis of QR decomposition 110

Figure 4.1: Rotation

sorting of the matrix columns [156]. However, sorting does not allow the direct applica-

tion of the systolic array architecture. The architecture of a new version of the MMSE

sorted Givens rotations algorithm based on conventional logic is next introduced [44].

The architecture is targeted for FPGA and synthesis results are discussed.

Finally, this chapter addresses the reliability analysis of combinational logic components

of the implemented QR decomposition algorithm. Fault injection is performed in order

to identify the the computational modules with the strongest impact of the overall

performance of sphere decoding in terms of FER [45].

4.1 Givens rotations

As mentioned previously, Givens rotations seeks to null out the elements of the input

matrix in order to obtain the upper-triangular form [157]. Consider a 1-by-Mt input

matrix H,

H =

[

h11 h12 . . . hMT

h21 h22 . . . hMT

]

In order to bring it to upper-triangular form, h21 element has to be nulled. This is

equivalent to rotating the vector
[

h11 h∗21

]H
along the angle ϕ as shown in Fig. 4.1.

Thereby, along with nulling the h21 coordinate, the h11 coordinate becomes equal to the

norm r of the vector
[

h11 h∗21

]H
.

In matrix form, the rotation is defined by the unitary matrix QH [57],

QH =

[

cosϕ sin∗ ϕ

− sinϕ cosϕ

]

(4.1)

where (∗) is the complex conjugate operation.

In general form, the rotation is given as

QHH = R (4.2)

or, in case of an example 1-by-Mt matrix

[

cosϕ sin∗ ϕ

− sinϕ cosϕ

]

·
[

h11 h12 . . . hMT

h21 h22 . . . hMT

]

=

[

r h′12 . . . h′MT

0 h′22 . . . h′MT

]

Chapter 4. Reliability analysis of QR decomposition 111

The sine and cosine of the rotation angle ϕ, as well as the vector norm are given as

cosϕ =
h11
r

sinϕ =
h21
r

r =

√

h211 + |h21|2

The matrix multiplication in Eq. 4.2 also updates the remaining elements of the two

rows involved in the rotation

h′1,2: MT
= cos ·h1,2: MT

+ sin∗ ·h2,2: MT
(4.3)

h′2,2: MT
= − sin ·h1,2: MT

+ cos ·h2,2: MT
(4.4)

For the arbitrary input matrix H, the matrix elements are nulled one by one until upper-

triangular form R is obtained. The nulling of i, j -th element of H, is performed by the

corresponding unitary matrix QH(i, j). The later is formed from the identify matrix I

of the appropriate size where the required elements are set as follows:

qHjj(i, j) = cosϕ

qHji (i, j) = sin∗ ϕ

qHij (i, j) = − sinϕ

qHii (i, j) = cosϕ

The resulting rotation matrix is given in general form as

QH(i, j) =

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . cosϕ . . . sin∗ ϕ . . . 0
...

...
. . .

...
...

0 . . . − sinϕ . . . cosϕ . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1

(4.5)

Chapter 4. Reliability analysis of QR decomposition 112

Figure 4.2: Systolic array

The input matrix is brought to upper-triangular form by sequential multiplication with

element rotation matrices QH(i, j). Consider an example of 4-by-4 initial matrix

H =

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

QH(2, 1)−−−−−−→

? ? ? ?

0 ? ? ?

? ? ? ?

? ? ? ?

QH(3, 1)−−−−−−→

? ? ? ?

0 ? ? ?

0 ? ? ?

? ? ? ?

QH(4, 1)−−−−−−→

? ? ? ?

0 ? ? ?

0 ? ? ?

0 ? ? ?

(4.6)

QH(3, 2)−−−−−−→

? ? ? ?

0 ? ? ?

0 0 ? ?

0 ? ? ?

QH(4, 2)−−−−−−→

? ? ? ?

0 ? ? ?

0 0 ? ?

0 0 ? ?

QH(4, 3)−−−−−−→

? ? ? ?

0 ? ? ?

0 0 ? ?

0 0 0 ?

The overall unitary matrix QH is obtained by sequentially multiplying the individual

rotation matrices

QH = QH
n . . .Q

H
2 QH

1 (4.7)

where n is the overall number of required rotations.

4.1.1 Systolic array

The inherent parallelism of Givens rotations is exploited by the systolic array architec-

ture [158]. The systolic array is depicted in Fig. 4.2. The array takes the form of the

resulting upper-triangular matrix. The input matrix is fed to the top row of the array

row wise, starting from the first row. After the decomposition is performed, the elements

of the resulting upper-triangular matrix R are stored within the registers of the array

elements.

Chapter 4. Reliability analysis of QR decomposition 113

REG

REG

Boundary cell

Internal cell

to other internal cells

Figure 4.3: Boundary and internal cells of the systolic array

The array contains two types of elements: the boundary cell (denoted by a circle) and the

internal cell (denoted by a square). A boundary cell computes the rii diagonal element

of R. It also computes the sinϕ and cosϕ and passes them to the internal cell. An

internal cell computes the update of the remaining non-diagonal elements of the current

row, rij , i < j (Eq. 4.4).

Consider the architecture of the boundary cell, depicted in Fig. 4.3. As the first row of

the matrix,
[

h11 h12 h13

]

is fed to the array, the new value r′b of the diagonal element

is computed as

r′b =
√

(r2b + |hb|2) (4.8)

During the first cycle, the value rb stored in the register is still zero (array has been

initialized) and the value at the input of the register equals the norm of the complex

diagonal element: r′b = |h11|. Therefore, the boundary element stores the diagonal value

Chapter 4. Reliability analysis of QR decomposition 114

normalized to a real number. The rotation parameters are computed as follows:

s = sinϕ =
hb
r′b

(4.9)

c = cosϕ =
rb
r′b

(4.10)

In the first cycle, s = h11/|h11| and c = 0, because rb = 0. The rotation parameters c

and s are then passed to the internal cells.

The architecture of the internal cell is depicted in Fig. 4.3. The internal cells gets as its

inputs the off-diagonal element hi of the input matrix row and the rotation parameters

c and s. The new off-diagonal row element r′i at the input of the register is computed as

r′i = cri + s∗hi (4.11)

As c = 0 in the first cycle, r′i =
h∗11
|h11|hi, where hi = h12, h13. The value that is passed to

the next row of the array, h′i, is computed as

h′i = chi − sri (4.12)

during the first cycle this value equals zero, due to c = 0 and ri = 0. Therefore, in the

first cycle, the diagonal element of the input row is transformed to a real number and the

remaining row elements are normalized by the conjugate of the diagonal element divided

by its norm. No actual nulling has been yet performed. This architecture however

allows the rotation matrix given by Eq. 4.1, where the cosϕ assumes real values. This

also implies that the right hand side multiplier and the right hand side divider of the

boundary cell are real value circuits. The remaining multipliers and dividers as well as

all computational elements of the internal cell are complex value circuits.

During the second cycle, the second row of the matrix,
[

h21 h22 h23

]

is fed to the

top row of the array. The boundary cell now computes the final diagonal element of

the resulting upper-triangular matrix by Eq. 4.8. Obviously, r′b =
√

|h11|2 + |h21|2.
The rotation parameters are computed by Eq. 4.10 and passed the to internal cells. The

internal cells of the first row update the remaining elements of the first row of the upper-

triangular matrix by Eq. 4.11. The updated elements of the second row are computed

by Eq. 4.12 and passed to the second row of the array, where the normalization of the

diagonal element and the remaining elements of the second input row is performed.

During the third cycle, the third row of the input matrix is fed to the top row of the

array. The top row performs nulling of the element h31, whereas the second row of the

array performs nulling of the element h32. The third row computes the diagonal element

r33 of R.

The array therefore requires as many cycles as there are matrix rows to output the upper-

triangular matrix. It can be observed that the array cells include square root and division

operations that are quite costly in hardware. A number of array modifications have been

proposed that try to remove these costly operations. The most prominent modifications

are Squared Givens Rotations [159] and Modified Squared Givens Rotations [160] that

exclude the square root operation and square root and division free Givens rotations

proposed by the authors of [161]. Unfortunately all mentioned methods violate the

Chapter 4. Reliability analysis of QR decomposition 115

Figure 4.4: Systolic array with unitary matrix

unitarity of resulting Q and are therefore not applicable for QR decomposition in the

context of sphere decoding. Multiplying the noise vector with a non-unitary matrix in

Eq. 2.114 may lead to a severe noise enhancement.

The discussed systolic array keeps R in the registers of its cells. However, it does not

produce the overall unitary matrix QH . This matrix can be easily obtained using the

following identity

QH
n . . .Q

H
2 QH

1 I = QH (4.13)

In terms of the systolic array this relation is implemented by adding the respective num-

ber of internal cells. The augmented array for the complete decomposition is depicted in

Fig. 4.4. The additional internal cells are fed with an identity matrix of the respective

size. Since the rotation parameters c and s are passed in each row from the boundary

cell to all internal cells, the array simply produces the elements of QH in the registers

of the additional internal cells. The functionality of the array elements is not affected.

4.2 MMSE sorted Givens rotations

In Sec. 2.2.3.2 it has been shown that the QR decomposition of the channel matrix

(Eq. 2.61) yields a triangular system of equations, where the i-th symbol of the receive

vector ȳ is given as

ȳi = riixi +

Mt∑

j=i+1

rijxj + n̄i (4.14)

Since ȳMt is totally free of interference from subsequent levels, its value divided by 1
rMtMt

is used to obtain the estimate of xi. Proceeding further through the tree, interference free

estimates of the transmit vector x are obtained, given decisions on each level are correct.

The SNR of i-th level is determined by |rii|2, assuming σx = IMt [156]. It therefore makes

sense to start with the symbol with largest rii, in order to minimize error propagation.

In that sense the columns of R and Q have to be sorted appropriately.

Chapter 4. Reliability analysis of QR decomposition 116

The approach in Eq. 4.14 does not take the noise statistics into account [156]. The

LMMSE estimate incorporates the noise variance. In order to incorporate MMSE crite-

rion into the QR decomposition, an augmented channel matrix is introduced

H̄ =
[

HT σnI

]

(4.15)

Then, Givens rotations operate on the composite matrix

Z(0) =

[

H I

σnI 0

]

(4.16)

such that the sequence of rotations, performed by unitary rotation matrices QH
i yields

Z(N) = QH
n · · ·QH

1 Z(0) =

[

R QH
a

0 QH
c

]

(4.17)

where R is the desired upper triangular matrix, and QH
a is the overall rotation matrix.

In terms of sphere decoding, MMSE criterion and proper sorting would decrease the

computational complexity [162]. The MMSE sorted Givens rotations algorithm is sum-

marized in Alg. 6. As discussed previously, the last diagonal element of R, rMtMt should

be the largest after the decomposition to allow optimal detection order. The problem

is that QRD starts from the first diagonal element, r11. Therefore, rii is minimized

in the order it is computed (1, . . . ,Mt) instead of being maximized in the order of de-

tection Mt, . . . , 1 [163]. Before computing r11, the column norms of H̄ are obtained,

and the column with the minimum norm is placed first (lines 6 and 7 of Alg. 6). The

column norms do not have to be computed again before obtaining r22. they are updated

iteratively (line 10 of Alg. 6).

Algorithm 6 MMSE sorted Givens rotations algorithm

1: Z = Z(0), p =
[

1 . . .MT

]

2: for j = 1, . . . ,MT do
3: νj = ‖hj‖ . initial column norms
4: end for
5: for i = 1, . . . ,MT do
6: k = argminj=i,... ,MT

νj
7: exchange columns i and k in permutation vector p and in the first MR + i − 1

rows of H̄
8: perform Givens Rotations using matrices such that rows i + MR, . . . , i + 1 of

column zi become zero
9: for j = i, . . . ,MT do

10: νj = νj − ‖zij‖2 . update column norms
11: end for
12: end for

Chapter 4. Reliability analysis of QR decomposition 117

4.2.1 Hardware implementation

The main drawback of sorting is that the systolic array architecture can not be applied

directly. After nulling all elements of current column, the columns need to be resorted,

based on their updated norms. Therefore, Z has to be stored in the memory and updated

after nulling of elements under a diagonal element is completed. Therefore, the rotation

processing can be performed by just a single line of systolic array.

It is open to decide how the Givens rotations are computed. Alg. 7 depicts Givens

rotations which follow the operation of systolic array cells in Fig. 4.3. Alg. 7 assumes

rotation matrix in Eq. 4.1. With this algorithm, a single rotation requires two cycles: one

for transforming the complex diagonal element to real domain and row normalization,

and second for the actual rotation.

Algorithm 7 Givens rotations 1

1: R = H, QH = I
2: for j = 1, . . . ,MT do

3: l =
√

rjj · r∗jj . normalize diagonal entry

4: n = r∗jj/l
5: rj(j : MT) = rj(j : MT) · n . normalize row j

6: QH = QH(j, j) ·QH , QH
jj(j, j) = n

7: for i = j + 1, . . . ,MR do

8: l =
√

r2jj + rij · r∗ij
9: cosϕ = rjj/l

10: sinϕ = rij/l
11: rj(j : MT) = cosϕ · rj(j : MT) + sin∗ ϕ · ri(j : MT) . perform rotation
12: ri(j : MT) = − sinϕ · rj(j : MT) + cosϕ · ri(j : MT)

13: QH = QH(i, j) ·QH . update rotation matrix
14: end for
15: end for

The transformation of diagonal element to real domain can be omitted by using the

rotation matrix

QH =

[

cos∗ ϕ sin∗ ϕ

− sinϕ cosϕ

]

(4.18)

The corresponding Givens rotations algorithm is summarized in Alg. 8. Here, with

one line of systolic array, one rotation is performed in a single cycle. This speed up

is gained at the cost of having all computational blocks complex-valued. Only the last

diagonal element has to be transformed to real domain, as it remains complex after

matrix multiplications by QH(i, j). Assuming MMSE sorting, this is not a problem due

to the structure of H̄. For example, consider augmented matrix H̄, obtained from 4x4

Chapter 4. Reliability analysis of QR decomposition 118

channel matrix H:

H̄ =

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

σn 0 0 0

0 σn 0 0

0 0 σn 0

0 0 0 σn

(4.19)

Nulling the σn in row 2MT also normalizes the resulting diagonal element r44. Of course,

care has to be taken as sorting could change the columns, such that all elements in rows

below row MT in column MT are zero. In case if rotations are performed on each

element, without checking if it is already zero, diagonal element will be transformed to

real domain anyway. If such check is performed and respective rotation is skipped, a

rotation counter can be used for the last column. If the counter is zero, just a single

rotation has to be performed on any element of the column Mt in rows below row MT

and the diagonal element r44 will be transformed to real domain.

Algorithm 8 Givens rotations 2

1: R = H, QH = I
2: for j = 1, . . . ,MT do
3: for i = j + 1, . . . ,MR do

4: l =
√

rjj · r∗jj + rij · r∗ij
5: cosϕ = rjj/l
6: sinϕ = rij/l
7: rj(j : MT) = cos∗ ϕ · rj(j : MT) + sin∗ ϕ · ri(j : MT) . perform rotation
8: ri(j : MT) = − sinϕ · rj(j : MT) + cosϕ · ri(j : MT)

9: QH = QH(i, j) ·QH . update rotation matrix
10: end for
11: end for
12:

Alg. 8 is preferable over Alg. 7 due to less required cycles. However, complex division

operations that are costly in hardware are still required. In order to trade off divisions

for multiplications, inverse square root version of Givens rotations can be performed.

The respective algorithm is summarized in Alg. 9.

With fixed point arithmetic, the inverse square root operation can be efficiently imple-

mented using only shift operations and additions/subtractions [164]. Alg. 9 will be used

for rotation processing implementation.

4.2.1.1 Real-time requirements

In order to provide truly real-time compliant implementation, the QRD must satisfy the

stringent requirements posed by the current standards. Since the channel matrix evolves

over time, the QRD must be computed at a sufficient rate. The time span during which

Chapter 4. Reliability analysis of QR decomposition 119

Algorithm 9 Givens rotations using inverse square root

1: R = H, QH = I
2: for j = 1, . . . ,MT do
3: for i = j + 1, . . . ,MR do
4: l2 = rjj · r∗jj + rij · r∗ij
5: inv sqrt = 1√

l2
; l = l2 · inv sqrt

6: cosϕ = rjj · inv sqrt; sinϕ = rij · inv sqrt
7: Perform Rotation
8: rj(j : MT) = cosϕ∗ · rj(j : MT) + sinϕ∗ · ri(j : MT)

9: ri(j : MT) = − sinϕ · rj(j : MT) + cosϕ · ri(j : MT)

10: Update Rotation Matrix QH

11: end for
12: end for

H is valid (coherence time) is calculated by tcoh = c/(vr ·f), where c is the speed of light,

vr is the relative speed of the receiver, and f is the frequency. In LTE standards [63],

f = 2.4 GHz and vr is either 250 or 500 km/h, implying the coherence time of 1.8 ms

or 0.9 ms for vr = 250 km/h or vr = 500 km/h, respectively. During the coherence time

QRD must be performed for each of 1021 sub-carriers. This yields real-time constraints

of 1.763 µs or 0.881 µs for the complete QRD [164].

4.2.1.2 Architecture

The developed hardware architecture operates on fixed point numbers of the format

[M].[N] = [4].[8], which represents the best tradeoff between word length and numeric

accuracy, obtained from numeric experiments.

As already mentioned, systolic array cannot be used directly as MMSE sorted Givens

rotations requires column sorting. Therefore, the architecture incorporates a central

memory element to store the composite matrix Z, which is updated after the subsequent

rotations are performed. It also contains INNER PRODUCT block required for initial

column norm computation. The result is stored in NORM VECTOR memory. This

memory is updated by the NORM UPDATE block after column sorting is performed.

The PERMUTATION VECTOR block updates and stores the permutation vector to

keep track of the performed sorting.

The rotation processing is implemented by a single line of a systolic array. Compared

to the line of the classical systolic array in Fig. 4.4, which processes one matrix row at a

time, the current implementation is able to perform one nulling operation on two rows of

Z at the same time. Figure 4.5 depicts the QRD circuit architecture for Mt =Mr = 4.

The line of systolic array, used for rotation processing, contains two types of elements:

the BOUNDARY CELL, which computes the new diagonal element and cosϕ and sinϕ

values, and the INTERNAL CELL, which updates the remaining row elements. The

architectures of the boundary and internal cells are depicted in Fig. 4.6. They are

implemented according to Alg. 9. The boundary cell contains only real value processing

elements, since norm squared of the complex number in line 4 of Alg. 9 can be computed

by real-value operations. The internal cell contains complex value adders and multipliers.

Chapter 4. Reliability analysis of QR decomposition 121

IDLE

OUTPUT
4 cycles

RESET

START

INNER

PRODUCT
4 cycles

SWAP
1 cycle

SWAP

MATRIX
1 cycle

NORM

UPDATE
1 cycle

ROTATION
8-14 cycles

VALID

OUTPUT
START

REQUEST OUT

Figure 4.7: State machine of QR decomposition

Mt =Mr = 4 system. Other matrix memory regions are initialized according to Eq. 4.16.

Thereafter, the state machine changes to the INNER PRODUCT state.

INNER PRODUCT - This state is held for Mr cycles. In every cycle a column of the

matrix H̄ is read out from the matrix memory and its norm is computed. Therefore,

the matrix memory is switched to column mode. Thereafter, the state machine changes

to SWAP state.

SWAP - This state lasts for one cycle. Here, the column norms are compared, and the

permutation vector is obtained and stored in the PERMUTATION VECTOR register.

Thereafter, the state machine moves to SWAP MATRIX state, in case the column of

the matrix have to be permuted. If it is not the case, the state machine moves directly

to the ROTATION state.

SWAP MATRIX - The matrix column are permuted in this state in a single cycle,

according to the permutation vector obtained in the SWAP state. The matrix memory

is switched to the two column read and write mode.

ROTATION - In this state the actual nulling of the matrix element is performed. The

state lasts a variable number of cycles. The boundary cell computes the new value of

the diagonal element in one cycle. In the next cycle the internal cells compute the new

values of the off-diagonal elements. The state is held as long as all elements under the

diagonal element of the current column are zeroed out. Thereafter, the state machine

moves to NORM UPDATE state if further permutation of columns is possible. If not,

but other columns are to be rotated, the state machine moves again to the ROTATION

state. Otherwise, the state machine moves to VALID OUTPUT state. The matrix

memory is set to the two rows read and write mode.

NORM UPDATE - In this state the column norms are updated in a single cycle. There-

after, the state machine moves to SWAP state.

Chapter 4. Reliability analysis of QR decomposition 122

VALID OUTPUT - In this state, the result of the QR decomposition is available in the

matrix memory. If the resulting matrices are requested (request out signal), the state

machine changes to the OUTPUT state. In case the start signal is applied, the state

machine moves to the IDLE state without outputting the result of the decomposition.

OUTPUT - In this state the upper triangular and orthogonal matrices are read out

column-wise and the state machine moves to IDLE state. The read out takes again Mt

number of cycles.

The number of cycles required to zero out elements of one columns varies from 8 cycles

for the Mt-th column and 14 cycles for the first column of H̄. In order to decrease the

number of cycles required by rotation, it is checked if a value to be zeroed out already

equals zero. In such a case, the rotation in the current row is skipped. This way, six

cycles can be saved, and for Mt ×Mr matrix H with Mt =Mr = 4, the overall number

of cycles required for complete rotation equals (22− 6) · 2 + 6 = 38. It is illustrated by

the following example:

H̄ =

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

σn 0 0 0

0 σn 0 0

0 0 σn 0

0 0 0 σn

4∗2+3−−−−→
cycles

h h h h

0 h h h

0 h h h

0 h h h

0 h h h

0 σn 0 0

0 0 σn 0

0 0 0 σn

4∗2+2−−−−→
cycles

h h h h

0 h h h

0 0 h h

0 0 h h

0 0 h h

0 0 h h

0 0 σn 0

0 0 0 σn

4∗2+1−−−−→
cycles

h h h h

0 h h h

0 0 h h

0 0 0 h

0 0 0 h

0 0 0 h

0 0 0 h

0 0 0 σn

4∗2−−−→
cycles

h h h h

0 h h h

0 0 h h

0 0 0 h

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

The actual sorting of columns of matrix H̄ takes 2 cycles (one for the search for the

column with the smallest norm, and one for the actual column swap). However, the

number of swaps is variable, as it could possibly occur, that the columns of H̄ are

initially in the proper order. This leads to the variable number of cycles for the whole

QRD, between 55 cycles in absence of swaps and 58 cycles if all three possible swaps

were required.

Chapter 4. Reliability analysis of QR decomposition 123

Table 4.1: Implementation using multicycle constraints

Multi- Cycles Cycles STRATIX III STRATIX V

cycles per per Fmax Execution Fmax Execution

rotation QRD [MHz] time [µs] [MHz] time [µs]

0 2 55 - 58 37.54 1.54∗ 49.17 1.17∗

1 3 71 - 74 67.47 1.09∗ 98.9 0.75∗∗

2 4 88 - 91 74.28 1.22∗ 102.99 0.88∗∗

3 5 103 - 106 80.69 1.31∗ 99.81 1.06∗

Table 4.2: Implementation using register stages

Register Cycles Cycles STRATIX III STRATIX V

stages per per Fmax Execution Fmax Execution

rotation QRD [MHz] time [µs] [MHz] time [µs]

0 2 55 - 58 37.54 1.54∗ 49.17 1.17∗

2 4 88 - 91 79.6 1.14∗ 106.44 0.85∗∗

3 5 103 - 106 77.39 1.37∗ 122.96 0.86∗∗

4.2.1.3 Synthesis results

The architecture has been synthesized for Stratix III FPGA (EP3SL70F780C2) and

Stratix V FPGA (5SEE9H40C2). These FPGAs are manufactured with 65 nm and 28

nm technology processes respectively. The ultimate goal of the implementation is the

achievement of real-time requirements derived from the LTE standard, 1.763 µs or 0.881

µs for the complete QRD, depending on the maximal allowed relative receiver speed.

The time required for the QRD is the product of the number of cycles and the duration

of one clock cycle. The time-critical operation of QRD is the boundary cell of the systolic

array. Two speed-up techniques have been applied to that cell: multi-cycle and register

insertion. Both techniques increase the number of cycles per rotation (and therefore for

the entire QRD) but significantly decrease the cycle time.

The synthesis results are summarized in Tables 4.1 and 4.2. The reported clock frequency

assumes the fast process corner and temperature of 0◦ C. The execution times that fulfill

the real-time requirement of 1.763 µs and of 0.881 µs are marked by one asterisk (*)

and two asterisks (**), respectively. Figures 4.8a and 4.8b visualize the execution times;

both real-time constraints are shown by horizontal lines.

The basic design without optimizations fulfills the lower real-time requirement, and the

stricter requirement can be achieved using multi-cycles or register stages. However, their

number should be low, since increasing this number beyond a certain threshold leads

to too many clock cycles, an increase that cannot be compensated by clock frequency

improvement. The extent of execution-time reduction is similar for both optimization

techniques. Note that multi-cycles are inserted automatically by the synthesis tool,

whereas registers are placed manually by the designer.

Chapter 4. Reliability analysis of QR decomposition 124

58 74 91 106
0 us

0,5 us

0,881 us

1,2 us

1.5 us

1,763 us

Max Cycles / QRD

E
x
e
c
u
ti
o
n
 T

im
e

STRATIX III

STRATIX V

(a) Multicycle constraints

58 91 106
0 us

0,5 us

 0,881 us

1,2 us

1,5 us

1,763 us

Max Cycles / QRD

E
x
e
c
u
ti
o
n
 t
im

e

STRATIX III

STRATIX V

(b) Register stages

Figure 4.8: Timing results

Chapter 4. Reliability analysis of QR decomposition 125

Table 4.3: Area results

FPGA
Combinational Dedicated Total DSP

ALUTs(%) registers(%) Pins(%) blocks(%)

STRATIX III 46 3 84 65

STRATIX V 5 <1 78 42

1 2 3 4

34

41

58

Lines of rotation processing

C
y
c
le

s
/Q

R
D

1 2 3 4

9.932

19.864

29.768

39.728

C
o
s
t
(1

0
0
0
 A

L
U

T
s
)

Figure 4.9: Cycles/QRD vs cost

To assess the speed gain of the hardware architecture, time measurements of respective

software implementation have been performed, measuring roughly 5.4 milliseconds for

a single QRD. This is orders of magnitude slower than the hardware implementation

which works within a few microseconds. The area results for both FPGA families are

presented in Table 4.3. The circuit easily fits onto the respective FPGA.

In case of stricter execution time constraints, the design is easily scalable, by adding

processing lines to the architecture. Each rotation, or operation on two rows requires

one processing line. One additional processing line allows two nulling operations in one

cycle, with linear area cost increase. Figure 4.9 shows the cost and the number of cycles

required for the complete QRD depending on number of rotation processing lines.

4.3 Reliability analysis of combinational components

The reliability of individual computational sub-modules of implemented MMSE sorted

QRD is assessed by gate level FPGA-based fault injection.

Chapter 4. Reliability analysis of QR decomposition 126

ChannelA

encoder
Interleaver

ChannelA

decoder
Deinterleaver

SphereA

decoder

MIMOAchannel

ChannelApreprocessing:

MMSEAsorted

QRADecomposition

(FPGA)

Interleaver

Mapper

Figure 4.10: Simulation chain

4.3.1 Simulation chain

Since virtual massive MIMO hardware is not yet available, the closed loop small-scale

MIMO system is used in simulation. The simulation chain of MIMO transmission and

reception system is depicted in Fig. 4.10. The channel encoder adds redundant bits to

the information word (same rate 1/2 convolutional encoder is used). The interleaver re-

duces dependencies between adjacent codeword bits. Next, the encoded word is 16-QAM

modulated, and finally a vector x of Mt symbols is formed and transmitted over Mt an-

tennas at the same time and in the same frequency. The MIMO channel is characterized

by the channel matrix H which contains gains associated with individual transmission

paths. The size of the channel matrix is Mr ×Mt, where Mr is the number of receive

antennas. The received symbol vector y is defined in Eq. 2.61.

The channel preprocessing block performs MMSE sorted QR decomposition on the chan-

nel matrix H. The result of the decomposition is the upper triangular matrix R and

unitary matrix Q. Equation 2.61 is then transformed to Eq. 2.114 by unitary matrix

QH .

The resulting triangular system of equations is then mapped to a tree search performed

by the sphere decoder. The soft-input soft-output SD determines the likelihood of the

bits demodulated from received vector ȳ using the a priori information La from the

channel decoder. Only the extrinsic information λe = λ − La is passed on to the soft

Viterbi decoder. The channel decoder uses the a priori information λa from the sphere

decoder for calculation of the estimated codeword and the a posteriori log-likelihood

ratios Λ of the codeword. The extrinsic information Le = Λ − λa is then returned to

the SD, closing the loop. As the channel decoder itself is operating with two iterations,

the MIMO receiver represents a doubly iterative architecture.

The system level performance is characterized by FER at the the output of the channel

decoder. The channel preprocessing block is implemented on an FPGA, allowing access

to individual gates of the design for fault injection. The remaining blocks of the simula-

tion chain are implemented in software (IT++ library [165]), using the same fixed point

number format and arithmetic as the hardware component.

Chapter 4. Reliability analysis of QR decomposition 127

1FaultAInjectionAunit

SubmoduleAn

ChannelApreprocessing

NIOSAII

Processor

toA/Afrom

SWAchain

FPGA

MUX

XOR

fault_activ

gateAoutput

nAgates

Figure 4.11: Fault injection architecture

4.3.2 Fault injection

The hardware errors in various sub-modules of channel preprocessing are assumed to be

the effects of transient faults at the outputs of the gates comprising the netlist. The

transient faults are simulated by fault injection similar to the work in [166].

First, the injection requires modification of the HDL (hardware description language)

design files to include redundant multiplexers and exclusive-or (XOR) gates as shown in

Fig. 4.11. The XOR gate flips the value of the gate output, and the multiplexer passes

the flipped value further, when the fault activ control signal is high. After the files

are automatically modified, the fault injection unit is connected to the respective sub-

module of the channel preprocessing block. The NIOS II processor receives the channel

matrix input data from the software part of the simulation chain and passes it to the

MMSE sorted QRD. After the decomposition is done, it sends the R and Q matrices

back to the software part of the simulation chain. It also sets the value of the fault

injection rate.

The architecture of the fault injection unit is depicted in Fig. 4.12. It takes as the

input a stream of m · 64-bit random numbers and outputs vectors of fault injection

stimuli with a configurable rate of ones. First, the random number inputs are fed into

m 64 : 6 Priority Encoders. As the received random number stream can be assumed

to be uniformly distributed, outputs of the Priority Encoders correspond to certain

probabilities.

Controlled via the parameter port rate outputs of the Priority Encoders are used to

generate in parallel m bits of a bit-stream with a certain rate of ones by the Rate

Adjustment block. This stream is then fed into an n-bit shift register that receives m

bits per clock cycle. The output of the shift register is connected to the fault activ

ports of the sub-module under injection. The fault injection unit allows generation of

ten distinct transient fault rates ψ, from 10−12 to 10−4.

4.3.3 Simulation results

Consider the channel preprocessing architecture depicted in Fig. 4.5. The INNER

PRODUCT, NORM VECTOR and NORM UPDATE blocks are required by sorting.

Sorting does not improve the FER performance, it reduces the complexity of the tree

search performed by the SD. Thus, the hardware errors in these blocks would not affect

Chapter 4. Reliability analysis of QR decomposition 128

64-Bitl

RNG

clk

64:6lPriority

Encoder

mlinstances

Ratel

Adjustment

n-BitlShiftl

Register
Control

FaultlInjectionlUnit

rst
en

Rate

fault_activ

Rate

m*64 m*6

m

n

44

Figure 4.12: Fault injection controller

the FER, but would increase the number of tree passes, as the search would be started

from the suboptimal starting point. This complexity increase can be quantified, but it

is out of scope of this work. The errors in the internal memory can be countered by

standard protection techniques [167]. In general, protecting only integer parts of the

stored fixed point numbers may be sufficient.

The boundary and internal cells are the components actually performing the computa-

tion of the resulting Q and R matrices. Hence, the hardware errors within these com-

binational blocks will definitely affect the FER. The impact of hardware errors within

the boundary cell outweighs the impact of hardware errors within internal cells. This

is due to the fact that the sinϕ and cosϕ values computed by the boundary cell are

propagated to internal cells. Wrong sinϕ and cosϕ values will cause error propagation

and yield further computation of the rotation completely wrong.

FER results for faults injected at random locations of the boundary cell and random

internal cells, are shown in Fig. 4.13. For all fault injection rates the FER performance

is shown after the second iteration of the SD.

Starting from the SNR value of 10 dB the hardware errors start to outweigh the errors

introduced by the channel. It can be observed that in this high SNR region, for low

fault injection rates the FER performance is affected more by the errors within the

boundary cell. For fault injection rate of 10−9, for instance, FER for faults injected

in the boundary cell is almost one order of magnitude worse than the FER for faults

injected into the internal cells for all SNR values. As the fault injection rate increases,

it can be observed that the location of hardware errors has less and less impact on the

overall FER performance. It can be observed that faults injected into boundary cell

introduce the FER floor of 10−3 for fault injection rate of 10−9, FER floor of 10−2 for

fault injection rate of 10−6 and FER floor of 10−1 for fault injection rate of 10−5.

Consider the architecture of the boundary cell, depicted in Fig. 4.6. The upper four real

valued multipliers and three real valued adders are computing the 2-norm squared of the

rotated vector according to line 4 of Alg. 9. Next, the inverse square root is computed.

The left-side real valued multiplier obtains the main diagonal element of the R matrix

by multiplying the result of the inverse square root module by the 2-norm squared. The

Chapter 4. Reliability analysis of QR decomposition 129

6 7 8 9 10 11 12 13 14 15
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

FI rate = 0

FI rate = 10
−9

, boundary cell

FI rate = 10
−9

, internal cell

FI rate = 10
−8

, boundary cell

FI rate = 10
−8

, internal cell

FI rate = 10
−6

, boundary cell

FI rate = 10
−6

, internal cell

FI rate = 10
−5

, boundary cell

FI rate = 10
−5

, internal cell

FI rate = 10
−4

, boundary cell

FI rate = 10
−4

, internal cell

Figure 4.13: Boundary cell and internal cell under fault injection

6 7 8 9 10 11 12 13 14 15

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

2−Norm squared

Inverse sqrt

Real multiplier

Figure 4.14: Fault injection, ψ = 10−10

Chapter 4. Reliability analysis of QR decomposition 130

6 7 8 9 10 11 12 13 14 15

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

2−Norm squared

Inverse sqrt

Real multiplier

Figure 4.15: Fault injection, ψ = 10−9

6 7 8 9 10 11 12 13 14 15

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

2−Norm squared

Inverse sqrt

Real multiplier

Figure 4.16: Fault injection, ψ = 10−8

Chapter 4. Reliability analysis of QR decomposition 131

6 7 8 9 10 11 12 13 14 15

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

2−Norm squared

Inverse sqrt

Real multiplier

Figure 4.17: Fault injection, ψ = 10−7

6 7 8 9 10 11 12 13 14 15

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

2−Norm squared

Inverse sqrt

Real multiplier

Figure 4.18: Fault injection, ψ = 10−6

Chapter 4. Reliability analysis of QR decomposition 132

6 7 8 9 10 11 12 13 14 15

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

2−Norm squared

Inverse sqrt

Real multiplier

Figure 4.19: Fault injection, ψ = 10−5

6 7 8 9 10 11 12 13 14 15

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

2−Norm squared

Inverse sqrt

Real multiplier

Figure 4.20: Fault injection, ψ = 10−4

Chapter 4. Reliability analysis of QR decomposition 133

hardware errors in that real valued multiplier would affect only the computation of the

main diagonal element. The hardware errors within the inverse square root block and the

2-norm squared calculation will propagate to both the new main diagonal value and the

sinϕ and cosϕ values. The errors that occur in the four right-side real valued multipliers

only affect the sinϕ and cosϕ values. The FER results when faults are injected into

2-norm squared, inverse square root and real multiplier hardware are depicted in Figures

4.14 to 4.20.

It can be observed that FER is less affected by the errors occurring in the inverse square

root block. For fault injection rate from 10−7 and to 10−5, the FER floor for faults

injected in the inverse square root is almost one order of magnitude lower than the

FER floors introduced by the errors within real multiplier and 2-norm squared. The

computation performed by the boundary cell is iterative. The newly computed diagonal

element is fed back to the boundary cell, for computing the next rotation. The 2-norm

squared and real multiplier are all taking part in computing the value of the diagonal

element, a hardware error within any one of them would render subsequent rotations

wrong. The inverse square root is also used when computing new diagonal element value

and it also computes the values of sinϕ and cosϕ. The results indicate that wrong new

diagonal value, due to errors within the real multiplier, affects the FER more than wrong

both new diagonal element and the sinϕ and cosϕ values, caused by errors in the square

root computation. The same holds for wrong both new diagonal element and the sinϕ

and cosϕ values due to errors in the 2-norm squared.

4.4 Summary

This chapter considered a new architecture for MMSE sorted QR decomposition which

meets the real-time constraints of the LTE standard. The architecture is based on

Givens rotations and incorporates circuitry that implements sorting. The high speed

is achieved by applying design optimizations (multicycles or register stage insertion) on

the base architecture. Higher speed can be easily achieved at the cost of area.

A fault injection based reliability analysis of computational components of implemented

MMSE sorted QRD is performed. The most vulnerable block within the channel pre-

processing is identified as the boundary cell. Errors occurring in the boundary cell have

more impact on the FER performance than errors occurring within the internal cells’

hardware. This FER degradation is quantified as a FER floor in the high SNR region.

Within the boundary cell, the inverse square root turns out to be the least critical.

The real multiplier has more impact, even as it only computes the new diagonal value,

whereas the 2-norm squared and inverse square root affect both the new diagonal element

and sinϕ and cosϕ values. The experimental results show that due to the iterative

function of the boundary cell, the incorrect value of new diagonal is impacting the FER

performance stronger than incorrectly computed sinϕ and cosϕ values.

Therefore, the fault tolerant implementation of the boundary cell must specifically ad-

dress the protection of the new diagonal element computation. As the errors in the latter

rotations are less critical, it can be considered to provide varying amount of protection

to first and subsequent iterations of the boundary cell.

Chapter 5

Evaluation of robust codes

Traditional methods to protect circuits against faults, such as triple modular redun-

dancy [5], are impractical in most instances as they incur unacceptable area and, more

importantly, power overhead. Error-detecting codes (EDC) [168] are typically associ-

ated with lower cost but are effective only against well-specified errors. For example,

the parity code applied to a circuit’s outputs cannot detect a single fault within the

circuit which propagated to an even number of outputs. The interest in effectiveness of

EDCs recently lead to the development of robust codes specifically optimized for mali-

cious fault injection (rather than random faults due to radiation and noise) [169, 170].

This chapter starts with the background on robust codes, which have been developed for

security applications. Then, the performance of these codes is investigated when applied

to protection of general purpose circuits. Since the performance of robust codes has been

evaluated based on information-theoretic measures, this chapter first introduces the cir-

cuit or fault-based measures that capture the input–fault–error relationship. Next, a

cross-level protection scheme is introduced which identifies faults that escape detection

and targets them by selective hardening. Finally, robust codes are applied to an ac-

tual cryptographic circuit and their performance is quantified in terms of introduced

fault-based metrics.

5.1 Robust codes

The general error detecting architecture is depicted in Fig. 5.1 [5, 168]. The k output

bits of the original device are denoted by y(x). The input vector x of the device is

concurrently applied to the inputs of a combinational predictor, which generates the r

redundant bits (RB) p(x). A further combinational block EDN (error-detection network)

evaluates the consistency of the original device’s outputs y(x) and the check bits p(x).

More formally, EDN checks whether the pair y(x).p(x) is a codeword c of a predefined

code C.

The design of error detecting codes against fault-based attacks is based on the assump-

tion [169] that injected faults manifest themselves as additive errors at the output, i.e.,

in a presence of a fault a fault-free output vector c becomes y = c ⊕ e, where e is an

error vector. There are three types of errors that are also illustrated in Fig. 5.2:

135

Chapter 5. Evaluation of robust codes 136

Original

Device

Predictor

E
D

N

Input

Output

Error

Figure 5.1: Error detecting architecture

• Errors that are always detected: ∀ c ∈ C, c⊕ e /∈ C.

• Errors that are never detected: ∀ c ∈ C, c⊕ e ∈ C.

• Errors that may be detected or not detected depending on the codeword: ∃ ca, cb ∈
C such that ca ⊕ e /∈ C but cb ⊕ e ∈ C.

The set that contains all the errors that are not detected by any codeword is called the

kernel of the code, and is denoted by Kd. The error-masking probability Q(e) is defined

as the ratio between the number of codewords that are masked in the presence of the

error e, and the total number of codewords:

Q(e) =
| {c | c ∈ C and c⊕ e ∈ C} |

| C | (5.1)

This definition implicitly assumes that the output of a circuit is uniformly distributed.

The maximal error masking probability of a code is defined as

Qmc = max
e/∈Kd

Q(e) (5.2)

Robust codes are EDC that detect all nonzero errors with some nonzero probability.

More formally, they satisfy the condition

Q(e) < 1 for all e 6= 0 (5.3)

(This definition is equivalent to Kd = {0}.) For a given k and r, the maximal error

masking probability is lower bounded by Qmc ≥ {2−k+1, 2−r} [171]. A code that meets

this bound is called an optimal code.

The rate of a code is denoted by R = k
k+r . Most robust codes are of relatively small

rate [172–174]. There are two codes with rate greater than 0.5, the quadratic sum (QS)

code [175] and the punctured cubic (PC) code [176]. Before describing these codes, some

notations are introduced.

Figure 5.2: Possible detection status of errors at the input of the EDN in Fig. 5.1

Chapter 5. Evaluation of robust codes 137

r
 b

it
s

MultiplierMultiplier Multiplier

r
 b

it
s

r
 b

it
s

r
 b

it
s

r
 b

it
s

r
 b

it
s

r bits

Figure 5.3: General architecture for EDN of the QS code

A binary vector can be referred to as an element in a finite field. For example, a k-bit

vector can be regarded as a vector in k-dimensional space F
k
2 with (F2 = GF (2)), but

can also be referred to as an element of the finite field F2k = GF (2k). The following

constructions use both representations. For example, the expression x3P where P is a

binary k× r matrix, should be read as: refer to x as an element in F2k and compute x3,

then refer to the result as a vector in F
k
2 and multiply it by the matrix P modulo 2; the

outcome of this operation is an element in F
r
2. Note that addition of two elements of Fk2

means coordinate-wise addition modulo 2 (XOR).

5.1.1 Quadratic sum code

The quadratic sum code [175] is defined by C = {(x,w) : x = (x1, . . . x2s) ∈ F2k , xi ∈
F2r , w ∈ F2r , w = x1x2 ⊕ x3x4 ⊕ · · · ⊕ · · ·x2s−1x2s}. It can be shown that for k = 2sr

and s > 0, the maximal error-masking probability of the QS code is Qmc = 2−r. As

a result, the QS code is an optimal robust code for k = 2sr and s > 0. The minimal

distance of the QS code is 1, therefore, this code has no error correction capabilities.

Let 0 6= l ≤ 2r. A code of dimension k = 2sr − l is called a shortened QS (SQS)

code. A SQS code is constructed by appending l zeros to the information word (These

extra zeros are only used for calculating redundant bits and are not explicitly included

into the word). A code designer can choose where to place the l additional zeros. This

choice determines the value of Qmc. If xi and xi+1 (where i is odd) are both appended

with zeros, then the resulted code is not optimal. If an entire xi is appended with

zeros, the resulted code is not robust. The error masking probability of a SQS code is

Qmc ≥ max(2d
l
2s

e2−r, 2−b k
2
c) [177]. As a result, there are pairs of k and r for which no

optimal SQS code can be constructed.

The architecture of the EDN for the QS code has two parts. The first part consists

of s finite filed multipliers in GF(2r) [178] (in the simplest case of GF(2), these are

AND2 gates), and the second part is a XOR network that XORs of the results of the

multipliers. This is illustrated in Fig. 5.3.

5.1.2 Punctured cubic code

The construction of the punctured cubic code [176] is based on a binary k × r matrix

P of rank r ≤ k. The code is then defined by C = {(x,w) : x ∈ F2k , w = x3P ∈ F2r}.

Chapter 5. Evaluation of robust codes 138

Punctured

Multiplier

k bits
k bits

r bits

Figure 5.4: General architecture for EDN of the PC code

The maximal error masking probability of the PC code is Qmc ≤ 2−r+1 [179]. If k is

even and r is small enough, then it is possible to find matrix P such that the resulting

PC code has Qmc = 2−r and the resulted code is optimal. In other cases, if r is large

enough it is possible to construct PC code with minimal distance d ≥ 2 [177].

For example, for k = 10, r = 4 the SQS code is not optimal but there is an optimal PC

codes for these parameters. On the other hand, for k = 10, r = 5 the QS code is optimal

but there is no optimal PC code for these parameters.

The architecture of the EDN of the PC code consists of two modules. The first module

computes z = x2, and the second computes (x ∗ z)P . The easiest way to implement

the PC code is by choosing P = [I|0]T . In this case, a multiplication by P is done by

simply disregarding some of the outputs of (x ∗ z). As a result, in order to calculate

(x ∗ z)P , it is sufficient to implement only part of the multiplier. Such a multiplier is

called a punctured multiplier. This is illustrated in Fig. 5.4. In this work, the PC code

is implemented for k = 64. A simple implementation is chosen using P = [0|I], for
r = 1, 2, 3, 4. For example, for r = 1, the redundancy is the LSB of x3.

5.2 Evaluation methodology

A key difficulty in transferring theoretical properties of codes to faults in actual circuits

is the difference between additive errors on the information-theoretical level (discussed

above) and faults in actual circuit structures. This requires specific metrics [46] which

are explained next.

5.2.1 Fault-based metrics

When a fault occurs in a circuit equipped by an error-detecting architecture, four distinct

outcomes are possible:

• Masked fault: A fault in the device does not affect y(x) and Err = 0. For example,

the fault-affected logic gate may drive a gate with a controlling value on its side

input.

• Detected fault: A fault affects y(x) and Err = 1. This happens when y(x) becomes

inconsistent with p(x) due to the fault and the EDN identifies that y(x).p(x) is a

non-codeword.

• Silent data corruption (SDC) [180]: A fault affects y(x) and is not detected: Err =

0. This may happen if the fault-induced changes to y(x) and/or p(x) still result

in y(x).p(x) being a codeword, or when a fault affects the EDN itself.

Chapter 5. Evaluation of robust codes 139

• False alarm: A fault does not affect y(x) but error detection is reported: Err = 1.

This scenario is possible for errors in the EDN and for faults in the predictor which

influence p(x).

Obviously, the faults which could critically influence the circuit operation are of concern.

This is not the case for masked faults or false alarms, even though the latter might

trigger unnecessary recovery. Moreover, detected faults are considered uncritical as the

system is aware of the fault and can initiate corrective measures. In contrast, SDC is

considered critical. The definition of SDC does not distinguish between root causes of

a fault. The faults could be induced by random noise phenomena or introduced by a

malicious adversary who is interested in the fault-based attack being undetected.

It is to distinguish between the notions of a fault and an error. A fault f affects internal

logic gates and lines of the circuit. Single and multiple stuck-at faults on logic gate

outputs within the architecture (device, predictor and EDN) are considered. In contrast,

error e(f) is the effect of the fault on the device’s output y. If the fault-free response of

the device to input x is y(x) and the response of the device affected by fault f is yf (x),

then the error e(f(x)) is defined as e(f(x)) := y(x) ⊕ yf (x). It is important that the

error depends not only on the fault but also on the input vector applied. The same fault

could be masked, detected or undetected depending on the input vector. Therefore, the

efficiency of error detecting code in the context of fault detection cannot be calculated

analytically but rather has to be evaluated by simulations of the actual circuit.

Let the set of possible input vectors be I. Let the set of input vectors for which a fault

f is detected be IDET(f), and let the set of input vectors for which it results in an SDC

be ISDC(f). Let the sizes of the sets (the number of the respective input vectors) be |I|,
|IDET(f)| and |ISDC(f)|, respectively. In context of random transient faults, the silent

data corruption scenario is considered critical, and detected faults as well as faults with

no effect can be excluded from further consideration [181]. Therefore, an appropriate

metric with respect to reliability aspects is the SDC rate:

SDC(f) =
|ISDC(f)|

|I| (5.4)

SDC(f) = 0 means that fault f never goes undetected. A higher value of SDC(f)

means a higher chance that a silent data corruption takes place. Note that this definition

implicitly assumes uniformly distributed inputs I.

From the perspective of a malicious attacker, the undetected faults are of interest. If a

fault is masked, the attacker can simply repeat the attack. However, if a fault is detected,

countermeasures could be invoked. For instance, the device may be deactivated or the

secret key exchanged, making the attack useless. Therefore, an attacker is interested

in faults that will not be detected assuming they have manifested themselves. This

conditional probability is expressed by the attack success rate(ASR):

ASR(f) =
|ISDC(f)|

|ISDC(f)|+ |IDET(f)|
(5.5)

An ASR(f) of 0 means that the attacker has no chance to inject the fault f without

being detected. An ASR(f) of 1 identifies particularly critical faults which are never

Chapter 5. Evaluation of robust codes 140

Original

Device

Predictor

E
D

N

Input

Output

Error

Figure 5.5: Additive error assumption

ANDAND

inputs fault-free g-stuck-at-0

Figure 5.6: Mismatch between structural fault and additive error

detected. ASR(f) is related to the classical definitions of fault-secure and self-testing

circuits [182] as follows. If the circuit is fault-secure with respect to fault f , then SDC(f)

is empty and ASR(f) = 0. If the circuit is self-testing with respect to f , then at least

one input vector detects f and ASR(f) < 1.

ASR(f) obviously depends both on the fault f and on the employed EDC. Previous

work [169, 170] analyzed the detection properties of various codes based on the additive-

error model defined on the outputs of the original device and the predictor (Fig. 5.5).

An additive error e would transform the combined output y(x).p(x) into the erroneous

output ye(x).pe(x) = y(x).p(x)⊕ e. Note that the additive error e is independent from

the input vector x. For linear codes C, there are additive errors e 6= 0 which are never

detected, as for any possible output c = y(x).p(x) with c ∈ C, the erroneous output has

the property c ⊕ e ∈ C and is a codeword. For a given code C and an additive error

e 6= 0, the error-masking probability Qe (Eq. 5.1) can be viewed as the probability that

error e leads to an SDC, assuming that all the codewords (output vectors) occur with

uniform probability.

There are important differences between structural faults considered along with ASR(f)

and the additive errors from the previous works which are the foundation for Q(e). For

a fault f (e. g., a stuck-at fault), the induced error ef on the outputs changes the value

for different input vectors, and may even disappear (ef = 0) for a considerable number

of input vectors. Moreover, fault detection cannot be guaranteed even if robust codes

are employed. It follows from the definition of Q(e) that, for e 6= 0, there is at least one

c′ ∈ C with c′+e /∈ C. The implicit assumption is that such c′ has a non-zero probability

of occurrence and therefore the error can be detected. When considering actual circuits,

some codewords may never show up on the circuit’s outputs, and codewords that can be

produced on the outputs may fail to detect error e. More generally, uniform distribution

of input vectors does not always result in a uniform distribution of output vectors.

Therefore, bounds on Q(e) (Eq. 5.2) obtained assuming that all codewords are equally

likely, may not be accurate.

Chapter 5. Evaluation of robust codes 141

For instance, consider the two-input, two-output circuit in Fig. 5.6. Assume it is pro-

tected by the QS code C with one redundant bit p = y1y2 (i.e., C = {000, 010, 100, 111}).
This code is robust, as for each e 6= 0 there is a c ∈ C such that c+ e /∈ C (every additive

error is detected by at least one codeword). However, injecting the single-stuck-at-0 fault

at line g in the circuit results in a change of its Boolean function (see table in Fig. 5.6),

while it is not detected by comparison of redundant bit p for any of the inputs (in fact, p

is always 0). Therefore, the fault is never detected. Note that the additive error induced

by the g-stuck-at-0 is not constant for different inputs: it is 010 for x1x2 = 01 and 000

for all other inputs.

In summary, theoretical results on robust codes cannot be directly applied to analyz-

ing effects of faults in the circuit’s structure. Note that this observation holds only

when considering faults within a circuit. It does not hold for faults in memories or

communication channels for which the additive-error model is accurate.

5.2.2 Fault injection platform

The faults are simulated by fault injection. The fault injection platform is implemented

on an Altera Cyclone IV FPGA. The overview of the framework is depicted in Fig. 5.7.

It allows injecting stuck-at faults of arbitrary multiplicity to any logic gate of the device,

the predictor and the EDN. In order to use the platform, HDL design files are automat-

ically modified to include the redundant multiplexers required for fault injection. Fault

injection takes place at a location if the control input fault act of the multiplexer at

that location is high. The value of injected fault (stuck-at-0 or stuck-at-1) is carried by

the multiplexer input fault val. The inputs to the device under injection are either fed

by a pseudo-random source (an LFSR) or provided by the injection software, which runs

on the NIOS II processor. The control information (fault locations and stuck-at values)

are shifted in through scan chains.

The NIOS II controls the execution of the injection campaign. It computes the number

of cycles the scan chain needs to be shifted, such that the fault arrives to the gate to

be injected. It then passes the computed number of cycles to the scan chain controller.

Orig.XDevice

Predictor

E
D

N

Output

Input

Error

NIOSXII

ScanXchains

Clean
Device

ScanXchain
controller

LFSR

M
U

X

fault-injection

MUX

fault_val

fault_act

fault_act

information

fault_val

Figure 5.7: Fault injection framework

Chapter 5. Evaluation of robust codes 142

The framework also includes a “clean” copy of the original device without fault-injection

logic, in order to identify faults which altered the device’s output but did not lead to

a detected error. This allows to exclude the event of a false alarm. The output of the

fault-affected device, the clean device and the error status calculated by the EDN are fed

back to the processor for further analysis. Basic preprocessing of the results is done on

the on-chip processor, and the intermediate results are transmitted to the workstation,

where desired numbers such as ASR(f) for each fault are calculated.

Note that the fault injection framework is independent of the particular EDC used.

Moreover, it does not require any low-level information. If some of the gates have been

selected for hardening (introduced in next section), then the multiplexers performing

fault injection at these gates are simply deactivated.

5.3 Cross-level protection

The objective of proposed cross-level protection is to achieve a required level of protection

of a given circuit by combining error-detecting capabilities of the architecture from

Fig. 5.1 with low-level hardening of insufficiently protected logic gates by eliminating

the possibility of faults f with large values of ASR(f). To do so, ASR(f) is first

computed for all modeled faults using large-scale fault-injection campaigns and order

the fault list by these values. Then a number of logic gates involved in faults with large

ASR(f) is selected for hardening. Hardening is implemented by resizing the gate such

that it becomes immune to physical disturbances such as particle strikes (in case of soft

errors) or charge generation by a laser (in case of malicious attacks).

It is possible to use two alternative approaches to select the gates to be hardened:

1. Identify faults whose attack success rate exceeds some threshold and harden gates

involved in these faults.

2. Allocate a budget for gates (e.g., 10%) which can be hardened and select the gates

involved in faults with the largest ASR(f).

For each selected gate, the resizing factor needed to render it tolerant against noise is

determined.

The resulting circuit is synthesized assuming a mix of hardened and unhardened gates

and its area and power overhead is estimated. The fault characterization is re-run

excluding fault effects on the hardened gates: faults affecting hardened gates are masked,

and multiple faults on a mixture of hardened and unhardened gates are transformed to

faults of lower multiplicity on unhardened gates only.

Note that the aim is the minimization of ASR(f). It could have been equally possible

to minimize the probability of undetected fault occurrence
(
|ISDC(f)|

|I|

)

or to maximize

the fault detection probability
(
|IDET(f)|

|I|

)

instead . Using a different objective would

result in a selection of a different subset of gates for hardening.

Chapter 5. Evaluation of robust codes 143

Original

Device

Predictor

C
o
m

p
a

re

Input

Output

Error

Encoder

Encoder

Logically equivalent to predictor

Logically equivalent to EDN

Figure 5.8: Implementation of error detecting architecture

5.3.1 Implementation of code-based protection

Here, four codes are investigated: linear parity code and robust QS codes over Galois

fields GF (2), GF (4) and GF (16).

For a circuit with 8 outputs y1, . . . , y8, the linear parity code has one redundant bit

p = y1 ⊕ · · · ⊕ y8

The QS code over GF (2) has one redundant bit

p = y1y2 ⊕ y3y4 ⊕ y5y6 ⊕ y7y8

The nonlinear parity code over GF (4) has two redundant bits

p1 = y1y3 ⊕ y2y4 ⊕ y5y7 ⊕ y6y8

p2 = y1y4 ⊕ y2y4 ⊕ y2y3 ⊕ y5y8 ⊕ y6y7 ⊕ y6y8

The nonlinear parity code over GF (16) has four redundant bits

p1 = y0y4 ⊕ y1y7 ⊕ y2y6 ⊕ y3y5

p2 = y0y5 ⊕ y1y4 ⊕ y1y7 ⊕ y2y6 ⊕ y2y7 ⊕ y3y5 ⊕ y3y6

p3 = y0y6 ⊕ y1y5 ⊕ y2y4 ⊕ y2y7 ⊕ y3y6 ⊕ y3y7

p4 = y0y7 ⊕ y1y6 ⊕ y2y5 ⊕ y3y4 ⊕ y3y7

To generate predictor and EDN from Fig. 5.1, the generic procedure outlined in Fig. 5.8

is used. The predictor is composed of a copy of the original device and the code generator

(e.g., an XOR gate for the linear parity code). Similar, the EDN is created from another

copy of the code generator and a bit-wise comparator. The original device, the predictor

and the EDN are then, in isolation, synthesized by Synopsys Design Compiler, in order

to avoid optimizations which compromise the protection. All three blocks are mapped

to a sub-set of the Nangate Open Cell Library [183] which consists of INV, and 2- and

3-input NOR, and NAND gates.

It is important that the three blocks are synthesized in isolation, as synthesizing them

together would result in identification and elimination of many common sub-expressions,

which, in turn, would impair the protection. For instance, if the synthesis tool would

process the original device and the predictor, which includes one copy of the original

Chapter 5. Evaluation of robust codes 144

device, it would simply delete this copy from the predictor and wire the output of the

original device into the predictor. While such an architecture would be much more

compact, it provides little protection against errors.

No special effort has been put to further optimize the predictor and the EDN beyond

the simplifications done by the synthesis tool. This is because the objective is to study

errors in the original device and their interaction with errors in the predictor and the

EDN. An arbitrary implementation of the predictor and the EDN which is functional

but not necessarily optimal is sufficient for these purposes.

5.3.2 Selective hardening of individual gates

Once the gates to be hardened have been specified, appropriate electrical parameters

(transistor sizes) are identified for each of the gates such that charge deposition due

to particle strike or laser pulse does not lead to a faulty signal (bitflip) at this gate’s

output.

Note that transistor resizing is not effective against upsets of very large energy. However,

resizing can facilitate detection of such excessive-energy upsets. Since the size of the

transistors is always increased, there is no delay overhead but power overhead.

The upsets only at gate outputs are considered because disturbances of gate-internal

nodes must propagate through one or multiple transistors before having any visible effect

on the gate outputs. In general, the possibility of a bit flip depends on the following

factors [184]:

1. Total charge deposited at the node at which the particle strike occurs.

2. The drive strength of gate that drives the node.

3. Total capacitance of the node which includes the fanin and the fanout gates from

the node

Transistor resizing employed here increases the critical charge Qcrit of a selected gate

by improving its drive strength and capacitance. (Qcrit is the minimal charge that must

be generated in order to upset the node [185].) The resizing is performed such that

Qcrit matches realistic charges. Hence, the charge deposition is modeled as a double

exponential current pulse [186]:

I(t) =
Qdep

Tα − Tβ

(

e−t/Tα − e−t/Tβ
)

(5.6)

where Qdep denotes the charge deposited, Tα is collection time constant of the junction

and Tβ is the ion-track establishment time constant. According to [187], Tα is set to 10

ps and Tβ is set to 5 ps. The worst-case charge that could be deposited is taken to be

130 fc.

The worst case condition for particle strike occurs, when the site of particle strike is at

the output of the gate, since the particle strike could effectively contribute logic changes

Chapter 5. Evaluation of robust codes 145

Table 5.1: Gate counts of individual protection schemes

EDC Braun (150 gates) b20 (14159)

Predictor EDN Total Predictor EDN Total

Linear 165 35 350 16025 3139 33323

QS GF (2) 127 18 295 14659 1460 30278

QS GF (4) 165 45 360 17035 3721 34915

QS GF (16) 228 88 466 20896 7658 42713

at the fanout gates. A gate selected for hardening is simulated, along with its fanout,

assuming that the above-mentioned worst-case charge has been deposited at its output.

The size of the gate is increased until the peak transient at its output falls below 0.5

Vdd.

5.3.3 Synthesis and evaluation of circuit with hardened gates

As mentioned above, the circuits used for experiments were synthesized and mapped

to a library consisting of INV, 2-input NOR, 2-input NAND, 3-input NOR and 3-input

NAND gates. Spice libraries for 45nm technology were obtained from Predictive Tech-

nology Models [24]1.

After selective hardening, the area of the circuit is derived from the cell library. For

computing the power consumption, a large number of random input test cases is gener-

ated in the test bench of the design to create switching activity file using Synopsys VCS

which is then used by Synopsys Power Compiler to estimate dynamic power.1

5.3.4 Experimental results

The combinational 4 × 4 Braun array multiplier circuit [188] (synthesized using opti-

mizations from [189]) and the ITC-99 benchmark circuit b20 is considered in the ex-

periments. These circuits are representative, as the multiplier is a small and highly

structured arithmetic block and b20 is an instance of a larger random-logic circuit. The

exhaustive simulation of all 256 possible input vectors was employed for the Braun mul-

tiplier and 1, 000 random vectors for b20. Four EDC-based protection architectures were

synthesized for these circuits using linear parity and QS codes over GF (2), GF (4) and

GF (16). These codes employ 1, 1, 2 and 4 redundant bits, respectively. The composi-

tion of the architectures is shown in Table 5.1 (recall that it is not an objective of this

work to optimize the predictor and the EDN).

For each of the architectures, an exhaustive fault-injection campaign for all single-stuck-

at faults is performed. For each fault f (single-stuck-at-0 and single-stuck-at-1), the sets

|IDET(f)| of input vectors that detect the fault and |ISDC(f)| of faults which are not

detected (silent data corruptions) are obtained. From the cardinalities of these sets, the

attack success rate ASR(f) is obtained.

1This study has been conducted by research partner Sudarshan Srinivasan

Chapter 5. Evaluation of robust codes 146

Table 5.2: ASR classes (no hardening) for Braun multiplier, single faults

EDC ASR class

0 (0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1) 1

Linear 66 39 65 57 41 18 6 6 1 1 0 0

QS GF (2) 5 0 0 1 5 12 112 88 36 20 7 14

QS GF (4) 18 4 16 29 40 52 48 59 28 3 0 3

QS GF (16) 54 22 64 123 34 3 0 0 0 0 0 0

Table 5.3: ASR classes (no hardening) for b20, single faults

EDC ASR class

0 (0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1) 1

Linear 7237 572 714 1010 795 572 529 185 61 22 8 148

QS GF (2) 651 3 86 434 934 3997 4941 1120 381 157 3 641

QS GF (4) 1385 208 1376 5993 1534 464 476 169 21 6 0 220

QS GF (16) 3258 5044 968 257 92 9 62 7 0 0 0 47

Each fault is assigned into an ASR class, as shown in Tables 5.2 and 5.3. Class 0

includes faults f with ASR(f) = 0, i. e., faults which are always detected. Class (0,

0.1) includes faults f with 0 < ASR(f) < 0.1; class [0.1, 0.2) includes faults f with

0, 1 ≤ ASR(f) < 0.2; and so forth. Note that a square bracket indicates that the value

is included into the class while a round bracket denotes that the value is excluded. Faults

from a class with larger boundaries are more critical than faults from a class with smaller

boundaries, as the malicious attacker has a higher probability that the advertent fault

injection is undetected; his chances to escape detection are perfect for faults from class

1. Note that faults that are always masked (redundant) have no valid ASR value are

not included in the table.

Tables 5.2 and 5.3 allow some interesting insights. As expected, QS codes using 2 and

4 redundant bits perform better than the QS code over GF (2) with only one redundant

bit. However, predictions made using the additive error model at the outputs are not

confirmed. It has been shown in [169] that Q(e) ≤ Qmc where Qmc = 1/2 if the QS code

over GF (2) is employed; for its counterparts over GF (4) and GF (16), the value of Qmc
equals 1/4 and 1/16, respectively. When considering the distribution of codes to ASR

classes for these codes, ASR(f) is by no means bounded by these values. Moreover,

some of the faults are never detected, creating a large vulnerability. As pointed out

above, the mismatch between Q(e) and ASR(f) is due to two modeling deviations.

Q(e) is defined for an additive error e on the circuit’s outputs, while ASR(f) assumes

stuck-at faults within the circuit’s combinational logic. Furthermore, Q(e) assumes that

the circuit’s output values are distributed uniformly and therefore all codewords have a

nonzero probability of showing up. In contrast, ASR(f) is based on the presumption

that the circuit’s input vectors are uniformly distributed, meaning that some of the

output vectors may never be produced.

Figures 5.9 and 5.10 depict the exact histograms of ASR classes for both Braun multiplier

and b20 circuits. These histograms visualize the data of Tables 5.2 and 5.3

Since ASR(f) is a random variable itself, its mean can be obtained by averaging over

all possible faults

ASR =
1

|F |
∑

f∈F
ASR(f) =

1

|F |
∑

f∈F

|ISDC(f)|
|ISDC(f)|+ |IDET(f)|

(5.7)

Chapter 5. Evaluation of robust codes 149

Table 5.4: Different hardening scenarios, single faults

Braun multiplier b20

Scenario Gates hardened Area [µm2] Power [µW] ASR SDC Gates hardened Area [µm2] Power [µW] ASR SDC

Linear code

None – 217.9 24.84 0.188 0.028 – 21243 2.4631 0.129 0.0021

ASR0.9 No hardening necessary 56 21265 2.6049 0.126 0.0020

ASR0.5 9 225.9 30.58 0.165 0.025 648 21488 2.7493 0.006 0.0001

10% 15 227.5 31.79 0.155 0.023 1415 21775 2.9399 0.075 0.0008

50% 75 245.6 42.16 0.066 0.006 7080 24893 4.6543 0.004 0.0001

QS GF (2)

None – 217.9 24.84 0.627 0.129 – 21243 2.4631 0.5 0.0152

ASR0.9 18 223.2 28.74 0.601 0.109 90 21283 2.6170 0.500 0.0153

ASR0.5 148 262.6 54.45 0.470 0.001 7200 24331 4.5108 0.500 0.2158

10% 15 223.2 28.74 0.606 0.113 1415 21838 2.8712 0.500 0.2157

50% 75 242.4 40.91 0.549 0.058 7080 24278 4.4807 0.501 0.2157

QS GF (4)

None – 217.9 24.84 0.457 0.088 – 21243 2.4631 0.256 0.0058

ASR0.9 3 217.9 25.16 0.451 0.086 66 21273 2.6102 0.254 0.0054

ASR0.5 103 253.5 48.52 0.291 0.016 153 21311 2.6345 0.250 0.0054

10% 15 226.4 31.51 0.434 0.076 1415 21847 2.9743 0.252 0.0941

50% 75 244.5 41.11 0.339 0.032 7080 24289 4.4795 0.250 0.0467

QS GF (16)

None – 217.9 24.84 0.172 0.028 – 21243 2.4631 0.063 0.0019

10% 15 225.4 31.03 0.161 0.024 1415 21656 2.8552 0.062 0.0011

50% 75 240.8 41.62 0.129 0.011 7080 24660 4.8600 0.062 0.0003

when the attacker can accurately control the location of fault injection while SDC is a

measure of the attacker’s chances of success in absence of such capability.

It can be seen that relatively few gates are associated with ASR(f) > 0.9, and therefore

scenario ASR0.9 has rather low additional cost. Scenario ASR0.5 requires the hard-

ening of a large number of gates (almost all gates in some cases) Even in such cases the

area increase is limited. This is because the hardened cells with resized transistors are

often not much larger than their unhardened counterparts (the sizes are sometimes even

identical). In contrast, power consumption grows almost linearly with the number of

the hardened gates and is largely independent from the actual selection of gates. It can

be concluded that the main cost of selective hardening is power overhead, which tends

to scale with the number of selected gates.

The mean ASR reported for the larger circuit b20 for nonlinear codes matches well with

theoretical predictions from [190] (Q(e) is bounded by 0.5, 0.25 and 0.00625 for the

nonlinear code over GF (2), GF (4) and GF (16), respectively). The deviations of the

measured mean ASR from these values are much larger for the Braun multiplier. This is

probably due to the fact that a uniform distribution of vectors at the multiplier’s inputs

results in a very non-uniform distribution of output vectors. Hardening improves mean

ASR for the linear code and for the Braun multiplier but has almost no effect for the

nonlinear code in b20. This is because almost all faults have very similar ASR(f) and

eliminating some of them by hardening does not improve the mean ASR. However, mean

SDC is significantly improved by hardening, even though the selection of the gates was

driven by a different metric (ASR).

Figure 5.11 depicts the effect of hardening for various scenarios for Braun multiplier

protected by QS over GF(4).

Chapter 5. Evaluation of robust codes 151

Table 5.5: Faults of different multiplicity, Braun multiplier

Scenario Power overh.[%] Single faults Double faults Multiple faults

ASR SDC ASR SDC ASR SDC

Linear code

None – 0.1878 0.0280 0.3674 0.0275 0.4720 0.0257

ASR0.5 23.1 0.1654 0.0246 0.3556 0.0169 0.4703 0.0247

10% 28.0 0.1553 0.0229 0.3492 0.0163 0.4682 0.0241

50% 69.7 0.0661 0.0058 0.2773 0.0241 0.4466 0.0150

QS GF (2)

None – 0.6269 0.1290 0.6015 0.0508 0.5632 0.0343

ASR0.9 15.7 0.6006 0.1093 0.5879 0.0443 0.5588 0.0311

ASR0.5 119.2 0.4702 0.0005 0.4778 0.0003 0.5103 0.0003

10% 15.7 0.6061 0.1132 0.5912 0.0458 0.5598 0.0317

50% 64.7 0.5492 0.0575 0.5555 0.1245 0.5449 0.0203

QS GF (4)

None – 0.4574 0.0875 0.4304 0.0221 0.3639 0.0202

ASR0.9 1.3 0.4507 0.0859 0.4273 0.0217 0.3631 0.0199

ASR0.5 95.3 0.2907 0.0158 0.3017 0.0047 0.2980 0.0059

10% 26.9 0.4341 0.0757 0.4150 0.00195 0.3571 0.0185

50% 65.5 0.3389 0.0318 0.3226 0.0102 0.3236 0.0102

QS GF (16)

None – 0.1718 0.0283 0.1653 0.0043 0.1257 0.0060

10% 24.9 0.1609 0.0242 0.1579 0.00035 0.1223 0.0054

50% 67.6 0.1289 0.0110 0.1138 0.00012 0.1138 0.0031

mean SDC). Therefore, if the attacker is capable to target specific gates, hardening some

of them is not likely to prevent an undetected attack. The protection must be based on

a sufficient performance of the code employed.

One basic assumption on the hardening scheme is that the gate resizing is sufficient

to protect against all possible errors and consequently no error effects on the hardened

gates are possible. The good values of SDC achieved by most codes provide support

for an additional level of protection if the attacker employs laser pulses with energy

larger than the maximal values used during transistor resizing. In this case, excessive

charge carriers may flip the output of the hardened gate. However, they are highly likely

to simultaneously flip the outputs of neighboring gates, resulting in (random) multiple

errors, which are relatively easy to detect as suggested by low values of SDC. Moreover,

excessive charge carriers will take time to dissipate, likely imposing (single or multiple)

errors in subsequent clock cycle. It has been reported in [190] that such multi-cycle faults

have a much higher probability of detection by robust codes than single-cycle faults.

The QS code over GF (2) has the lowest hardware overhead of all protection schemes

Chapter 5. Evaluation of robust codes 152

Table 5.6: Faults of different multiplicity, b20

Scenario Power overh.[%] Single faults Double faults Multiple faults

ASR SDC ASR SDC ASR SDC

Linear code

None – 0.1289 0.0021 0.1350 0.0031 0.3565 0.0072

ASR0.5 5.8 0.1257 0.0020 0.1324 0.0031 0.3478 0.0069

10% 11.6 0.0056 0.0001 0.1205 0.0025 0.3399 0.0063

50% 19.4 0.0752 0.0008 0.0975 0.0020 0.3168 0.0055

QS GF (2)

None – 0.4997 0.0152 0.4996 0.0118 0.4991 0.0120

ASR0.9 6.2 0.4999 0.0153 0.4997 0.0116 0.4994 0.0120

ASR0.5 83.1 0.5000 0.2158 0.4999 0.0464 0.5003 0.0500

10% 16.6 0.4998 0.2157 0.4996 0.0477 0.5003 0.0500

50% 81.9 0.5008 0.2157 0.5001 0.0477 0.5007 0.0500

QS GF (4)

None – 0.2555 0.0058 0.2549 0.0059 0.2557 0.0052

ASR0.9 5.9 0.2542 0.0054 0.2542 0.0054 0.2552 0.0052

ASR0.5 6.9 0.2501 0.0054 0.2537 0.0054 0.2511 0.0052

10% 20.8 0.2521 0.0941 0.2520 0.0233 0.2511 0.0251

50% 81.9 0.2501 0.0467 0.2502 0.0232 0.2503 0.0250

QS GF (16)

None – 0.0629 0.0019 0.0621 0.000622 0.0634 0.0013

10% 15.9 0.0615 0.0011 0.0621 0.0006 0.0631 0.0013

50% 86.1 0.0615 0.0003 0.0620 0.0006 0.0626 0.0012

considered. It turns out to have the worst detection capabilities of single faults for

most scenarios, in terms of both ASR and SDC. This is unexpected, as QS codes are

robust and should outperform linear codes in terms of ASR. The two-redundant bit QS

code over GF (4) and the linear parity code are, by and large, comparable. The four-

redundant bit QS code over GF (16) has much better detection properties but requires

around 30% additional gates than other codes.

Selective hardening appears to be a useful alternative to exclude large vulnerabilities

(faults which can be injected with no or little chance of detection), as evidenced by

relatively small number of gates to be hardened in scenarioASR0.9. On the other hand,

ASR-guided selection of gates is not suitable to compensate for systematic deficiencies

of the basic protection scheme used. If the code misses faults with a high probability,

the hardening technique is only effective if almost all gates in the circuit are hardened.

It is a legitimate question whether using a better code with a higher area overhead or

employing a weaker code in combination with hardening selected gates is a better design

alternative. When comparing the unhardened design using the QS code over GF (16)

and the hardened versions based on other codes, there is no clear conclusion.

Chapter 5. Evaluation of robust codes 153

5.4 Application to cryptographic circuits

In previous section robust codes have been applied to protection of general purpose

circuits. This section addresses application of robust codes to protection of the com-

binational circuit implementation of the lightweight block cipher PRINCE [191]. The

PRINCE algorithm is organized in 10 rounds, and each round is composed of four opera-

tions. The own circuit implementation was designed which is fully unrolled and performs

all 10 rounds of encryption in one cycle. It is purely combinational and consists of 8,320

gates (the reference combinational implementation from [191] requires 8,260 gates).

In order to investigate the granularity of protection, the flow introduced in Sec. 5.2 is

applied to the complete 10-round circuit; the portion of the unrolled circuit correspond-

ing to one round; and one SBox, which is the only nonlinear operation of the cipher.

The complete circuit and one round have 64 inputs and 64 outputs, whereas the SBox

has four inputs and four outputs.

Following linear codes are employed, along with the single parity code from previous

section: interlaced parity code with two through four parity bits responsible for non-

overlapping groups of information bits. The extended (8, 4) Hamming code is employed

solely for protection of the SBox of PRINCE.

Along with QS codes from previous section, QS code over GF (8) is employed. This code

has three redundant bits (RB) and its maximal error masking probability isQmc = 0.125.

Additionally, PC codes with same number of RBs and same Qmc as the QS codes are

employed. It is to note that the robust codes with multiple RBs are not applied to the

SBox of PRINCE due to the fact that the latter has only four outputs.

Three different fault-injection campaigns for each considered code and circuits were per-

formed: one assuming single stuck-at-1 and stuck-at-0 faults of one clock cycle duration

at all lines of the circuit, the predictor and the EDN, one assuming 10,000 randomly

selected double faults, and one assuming 10,000 faults of higher multiplicity. All cam-

paigns were run using random input sequences of 10,000 vectors.

5.4.1 Results

The mean ASR and SDC results are shown in Table 5.7. It can be seen that the linear

parity codes outperform the robust codes for single faults in SBox and one round of

PRINCE and a low number of redundant bits. This observation holds for both ASR

and SDC.

The good performance of linear codes might indicate that many single faults within

the circuit structure tend to manifest themselves as single errors at the circuit outputs.

This is plausible for cryptographic hardware composed of mostly reversible (bijective)

modules. Since linear codes have a minimal Hamming distance of 2, they are effective

in detecting such faults. For example, the 4-bit parity code x1⊕x2⊕x3⊕x4 will always

detect a single bit-flip at the first output in x1. On the other hand, the QS code over

GF (2) x1x2 ⊕ x3x4 will only detect the same bit-flip if x2 = 1.

Chapter 5. Evaluation of robust codes 154

Table 5.7: Mean ASR and SDC, PRINCE circuit

Code RB Single faults Double faults Multiple faults

ASR SDC ASR SDC ASR SDC

S
B
ox

Parity 1 0.0677 0.0434 0.2754 0.1145 0.4210 0.2788

QS GF (2) 1 0.4422 0.2598 0.5063 0.2255 0.5140 0.3452

Punctured Cubic 1 0.4453 0.2254 0.5134 0.2565 0.5230 0.3012

QS GF (4) 2 0.2565 0.0155 0.2476 0.0456 0.2402 0.0174

Parity interlaced 2 0.0348 0.0184 0.1238 0.0502 0.1962 0.0119

Punctured Cubic 2 0.2587 0.0245 0.2357 0.0395 0.2335 0.0234

QS GF (8) 3 0.1245 0.0245 0.1235 0.0424 0.1221 0.0301

Punctured Cubic 3 0.1256 0.0245 0.1251 0.0234 0.1254 0.0326

Hamming 4 0 0 0.0137 0.0039 0.0283 0.0014

QS GF (16) 4 0.0634 0.0155 0.0627 0.0532 0.0633 0.0134

Punctured Cubic 4 0.0678 0.0201 0.0626 0.0133 0.0625 0.0223

O
n
e
ro
u
n
d

Parity 1 0.0980 0.0467 0.3424 0.0232 0.4727 0.0568

QS GF (2) 1 0.4970 0.1708 0.5007 0.0321 0.5007 0.0568

Punctured Cubic 1 0.4988 0.0264 0.5004 0.0267 0.5001 0.0588

Parity interlaced 2 0.0667 0.0057 0.1979 0.0025 0.2500 0.0068

QS GF (4) 2 0.2481 0.0743 0.2506 0.0140 0.2509 0.0256

Punctured Cubic 2 0.2503 0.0102 0.2501 0.0022 0.2502 0.0047

QS GF (8) 3 0.1344 0.0408 0.1330 0.0370 0.1291 0.0659

Punctured Cubic 3 0.1239 0.0047 0.1257 0.0011 0.1257 0.0024

Parity interlaced 4 0.0439 0.0042 0.1051 0.0015 0.1121 0.0031

QS GF (16) 4 0.0623 0.0025 0.0626 0.0005 0.0630 0.0011

Punctured Cubic 4 0.0624 0.0023 0.0625 0.0013 0.0623 0.0030

F
u
ll
ci
rc
u
it

Parity 1 0.4614 0.2219 0.4755 0.1829 0.4912 0.3223

QS GF (2) 1 0.5008 0.1157 0.5001 0.0639 0.5003 0.1094

Punctured Cubic 1 0.4996 0.1311 0.4999 0.1352 0.4999 0.2487

Parity interlaced 2 0.2305 0.0908 0.2392 0.0308 0.2435 0.0012

QS GF (4) 2 0.2501 0.0505 0.2502 0.0319 0.2501 0.0546

Punctured cubic 2 0.2503 0.0587 0.2507 0.0676 0.2501 0.0123

QS GF (8) 3 0.1325 0.0501 0.1298 0.0056 0.1267 0.0035

Punctured cubic 3 0.1250 0.0014 0.1251 0.0111 0.1248 0.0004

Parity interlaced 4 0.0568 0.0150 0.0600 0.0061 0.0609 0.0003

QS GF (16) 4 0.0624 0.0103 0.0625 0.0080 0.0626 0.0101

Punctured cubic 4 0.0628 0.0014 0.0630 0.0056 0.0625 0.0002

The situation changes when faults of higher multiplicity, more elaborate codes or larger

circuits are considered. The performance of the QS code over GF (2) is quite close to

the parity code for the SBox and is practically indistinguishable from the parity code

for the larger circuits. Robust codes with four RBs tend to outperform their linear

Chapter 5. Evaluation of robust codes 155

Table 5.8: Mean ASR and SDC, faults in original device only

Code RB Single faults Double faults Multiple faults

ASR SDC ASR SDC ASR SDC
F
u
ll
ci
rc
u
it

Parity 1 0.4611 0.0182 0.4694 0.0059 0.4859 0.0085

QS GF (2) 1 0.4998 0.0194 0.5002 0.0063 0.5002 0.0087

Punctured Cubic 1 0.4999 0.0131 0.5002 0.0063 0.4999 0.0087

Parity interlaced 2 0.2312 0.0091 0.2361 0.0029 0.2426 0.0042

QS GF (4) 2 0.2494 0.0096 0.2502 0.0031 0.2501 0.0043

Punctured cubic 2 0.2502 0.0059 0.2500 0.0031 0.2499 0.0043

QS GF (8) 3 0.1321 0.0034 0.1245 0.0056 0.1239 0.0028

Punctured cubic 3 0.1253 0.0026 0.1251 0.0015 0.1248 0.0021

Parity interlaced 4 0.0571 0.0022 0.0588 0.0007 0.0607 0.0010

QS GF (16) 4 0.0626 0.0023 0.0625 0.0008 0.0625 0.0010

Punctured cubic 4 0.0624 0.0014 0.0625 0.0008 0.0624 0.0010

Table 5.9: Mean ASR and SDC, exploitable fault locations

Code RB Single faults Double faults Triple faults

ASR SDC ASR SDC ASR SDC

P
R
IN

C
E

ro
u
n
d
8/

9

Parity 1 0.5001 0.2501 0.5001 0.5633 0.4996 0.4371

QS GF (2) 1 0.5412 0.2707 0.5065 0.5729 0.5042 0.4424

Parity interlaced 2 0.3119 0.1560 0.2603 0.2969 0.2564 0.2262

QS GF (4) 2 0.2505 0.1253 0.2501 0.2817 0.2501 0.2188

Punctured cubic 3 0.1981 0.0990 0.1375 0.1590 0.1329 0.1184

Parity interlaced 4 0.1404 0.0702 0.0756 0.0901 0.0708 0.0644

QS GF (16) 4 0.0622 0.0311 0.0624 0.0703 0.0625 0.0547

Punctured cubic 4 0.1407 0.0703 0.0756 0.0898 0.0708 0.0643

counterparts. It is interesting that ASR almost perfectly matches Qmc for all fault

multiplicities. This is different compared with the significant deviations reported in

Sec. 5.3 for Braun multiplier design.

The reason is the high degree of reversibility of cryptographic circuits: the output code-

words are uniformly distributed, whereas a multiplier produces only a small subset of

output bit combinations. Comparing both classes of robust codes with each other, the

SDC of the punctured cubic codes tends to track with SDC of linear codes, while their

ASR closely matches the ASR of quadratic sum codes. They appear to combine the

best of the worlds, even though their construction is more complex.

Table 5.8 shows the results for faults injected only in the original device, whereas predic-

tor and EDN are fault-free. The numbers do not deviate from the results when all parts

of the architecture were considered during fault injection, indicating the high stability

of the predictions.

Chapter 5. Evaluation of robust codes 156

Table 5.10: Distribution of ASR values over individual faults, one round of PRINCE

Code RB Number of faults with ASR in indicated range

0.0 0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 1.0

si
n
gl
e
fa
u
lt
s

Parity 1 855 0 23 33 11 7 9 14 3 1 0 64

QS GF (2) 1 0 0 0 1 5 526 483 5 0 0 0 0

Punctured Cubic 1 0 0 0 0 5 514 496 5 0 0 0 0

Parity interlaced 2 58 0 4 8 4 0 0 0 0 0 0 8

QS GF (4) 2 0 0 46 941 33 0 0 0 0 0 0 0

Punctured Cubic 2 0 0 33 945 41 1 0 0 0 0 0 0

QS GF (8) 3 0 91 883 33 0 3 5 0 0 0 0 4

Punctured Cubic 3 0 102 916 2 0 0 0 0 0 0 0 0

Parity interlaced 4 174 0 0 0 0 0 0 0 0 0 0 8

QS GF (16) 4 0 182 0 0 0 0 0 0 0 0 0 0

Punctured Cubic 4 0 1012 8 0 0 0 0 0 0 0 0 0

d
ou

b
le

fa
u
lt
s

Parity 1 164 936 2858 3128 2081 2842 2844 248 235 140 32 43

QS GF (2) 1 16 0 4 9 54 7130 7348 80 20 5 2 26

Punctured Cubic 1 0 0 0 0 8 1413 1486 11 0 0 0 1

Parity interlaced 2 1341 288 539 411 222 340 396 15 19 39 6 9

QS GF (4) 2 17 4 390 12409 392 16 10 6 1 0 0 9

Punctured Cubic 2 0 0 74 2256 64 0 0 0 0 0 0 1

QS GF (8) 3 4 969 11653 306 58 51 24 12 5 5 3 13

Punctured Cubic 3 0 207 2209 6 0 0 0 0 1 0 0 1

Parity interlaced 4 2361 469 319 92 87 190 189 25 19 37 5 18

QS GF (16) 4 0 2322 0 2 0 0 0 0 0 0 0 0

Punctured Cubic 4 2 2394 27 0 0 0 0 0 0 0 0 0

m
u
lt
ip
le

fa
u
lt
s

Parity 1 0 9 105 520 1600 9564 7116 82 13 5 1 1

QS GF (2) 1 0 0 4 10 50 9014 9510 79 11 3 0 0

Punctured Cubic 1 0 0 0 1 12 2882 3012 22 1 0 0 0

Parity interlaced 2 424 466 1030 3634 868 663 249 10 5 1 1 1

QS GF (4) 2 3 3 276 17206 357 16 11 5 1 2 1 0

Punctured Cubic 2 0 0 120 4701 136 1 1 0 0 0 0 0

QS GF (8) 3 3 860 16765 238 30 20 5 1 2 1 0 0

Punctured Cubic 3 0 354 4579 17 0 0 0 1 0 0 0 0

Parity interlaced 4 1602 2582 1814 940 258 177 49 11 7 0 0 0

QS GF (16) 4 0 4859 17 4 0 1 0 0 0 0 0 0

Punctured Cubic 4 2 4977 61 1 0 0 0 0 0 0 0 0

In order to study the behavior of the codes in an actual attack scenario, faults were in-

jected according to the requirements of the multi-stage algebraic attack on the PRINCE

cipher [39]. The 64-bit state of PRINCE is organized into 4-bit nibbles, and the attacker

must flip an arbitrary number of bits in a single nibble without affecting other bits for

successful cryptanalysis. The attack is mounted in two stages: in the first stage the

fault is injected in a nibble in the state during round 9 (out of 10), and in the second

stage the injection is done into a state nibble in round 8. Three locations from the same

state nibble in round 9 were selected and a fault-injection campaign on all single, double

and triple faults on these locations was performed. This models an attacker who targets

these three locations by a probabilistic injection technique (such as laser illumination)

in order to obtain some modification of the nibble with a high probability. The same

procedure is repeated for other three suitable locations in round 8. The results are

shown in Table 5.9. They are quite similar to the result for larger fault lists from Table

5.7, and the match with the theoretical Qmc is even closer.

Table 5.10 shows the distribution of ASR values over individual faults for one round of

PRINCE. The findings discussed above are supported: linear codes are quite effective

for single and, to some extent, also double faults, but are inferior for multiple faults.

Robust codes always exhibit a clear profile: the vast majority of faults is collected in

Chapter 5. Evaluation of robust codes 157

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ASR

P
ro

b
(A

S
R

)

Linear codes

QS codes

Punctured Cubic codes

Figure 5.12: ASR classes for different codes with four RB (percentages)

the class(es) which contains Qmc of the code. For example, the quadratic sum code over

GF (4) has two redundant bits and Qmc = 0.25, which belongs to class 0.2–0.3. This

class contains by far most faults.

An important observation about robust codes is that the number of faults with high

ASR(f) (1.0 or somewhat below) is much lower compared with linear codes with the

same number of RBs. In particular, robust codes with four RBs have no high-ASR faults.

This is important in security context, where an attacker is free to pick any desired fault.

A fault with a high ASR(f) is likely (and a fault with an ASR(f) of 1 is certain) to

escape detection, thus allowing the adversary to complete the attack. This finding is

consistent with the purpose of the robust codes: to avoid the worst-case scenario which

the attacker could make use of. Figure 5.12 visualizes the ASR(f) distributions for

different codes with four RB.

5.5 Summary

A cross-level protection solution for digital circuits which combines information redun-

dancy (error-detecting codes) and low-level hardening was introduced. The results show

that spots vulnerable to undetected faults exist in the circuit for any code considered.

This is also true if advanced robust QS codes specifically designed for eliminating un-

detected faults or bounding their probability are employed. From a malicious attacker’s

point of view, such spots provide an opportunity to manipulate circuit operation without

being noticed. This capability of the attacker is modeled by the new formalism of attack

Chapter 5. Evaluation of robust codes 158

success rate, and the relation between ASR and the value Qmc previously used in formal

analysis of robust codes is investigated. It is demonstrated that pinpointedly hardening

vulnerable spots is feasible and associated with limited area and power overhead. On the

other hand, ASR-guided selection of gates is not suitable to compensate for systematic

deficiencies of the basic protection scheme used. If the code misses faults with a high

probability, the hardening technique is only effective if almost all gates in the circuit are

hardened. An efficient solution for a given circuit must combine an effective code with

a good selection strategy for gate hardening.

The application of robust codes to protection of a cryptographic block against malicious

attacks was also investigated. The error-detection capabilities of quadratic-sum and

punctured cubic codes were determined and compared with the respective numbers

for linear codes. Robust codes were demonstrated to provide better security against

rare worst-case scenarios and also exhibited a good match to theoretical information-

level predictions. Punctured cubic codes showed detection properties comparable to

quadratic-sum codes with respect to malicious attacks and outperformed them when

random transient faults were considered.

Chapter 6

Conclusion

Current CMOS technology is affected by process variations and is susceptible to physical

disturbances such as ionizing radiation. This thesis aimed at improving fault tolerance

of MIMO detection algorithms and underlying hardware. The trend in wireless com-

munications is the usage of large scale antenna arrays which leads to integration of

very large memories. This work addressed UW-OFDM in its interpretation as a vir-

tual massive MIMO system. Consequently, detection algorithms initially introduced

for generic large scale MIMO have been adopted to MIMO UW-OFDM. In particu-

lar, the modification of likelihood ascent search, which uses the soft information of the

LMMSE initial solution, denoted MAP LAS was proposed. In coded scenario, the pro-

posed MAP LAS algorithm outperforms the standard LAS algorithm. As far as the ML

detection is concerned, MIMO UW-OFDM with LAS detection is able to outperform

MIMO CP-OFDM with sphere decoding in uncoded scenario. However, associated com-

putational complexity is overwhelming and not suited for real-time implementation. In

coded scenario MIMO CP-OFDM with sphere decoding still performs better. It is to

conclude that MIMO UW-OFDM represents performance/complexity tradeoff between

MIMO CP-OFDM with LMMSE and MIMO CP-OFDM with sphere decoding (compa-

rable to successive interference cancellation). The large sizes of required memories (as

in MIMO UW-OFDM) renders their protection by standard means like error detecting

codes costly. The errors in the receive buffer memory are therefore treated as additional

non-Gaussian noise. This work proposed detection algorithms, derived from nonlinear

MMSE estimator, that take memory errors into account when deciding on the detected

symbols. The proposed log-NMMSE algorithm is able to significantly lower the BER

floor introduced by the memory errors even for very high bit-flip probability of 10−3.

When LAS is applied on top of the proposed algorithm, the BER performance is shown

to be very close to the memory error free case. With bit-flip probability of 10−4, the

effect of memory errors is canceled out. It has been shown, that allowing memory errors

with bit-flip probability of 10−4 by reducing the supply voltage of the memory circuit

would reduce the power consumption by 40%. Therefore, the proposed algorithm with

LAS run on top would allow significant power savings, without sacrificing the perfor-

mance. Future work could address other quasi-ML algorithms implemented recently

(reactive tabu search, belief propagation on factor graphs, Markov chain Monte Carlo

methods). Another interesting direction is the hardware implementation/optimization

of proposed memory error resilient algorithms.

159

Chapter 6. Conclusion 160

Actual hardware implementation of a MIMO receiver contains not only the detection

algorithm but also some preprocessing (QR decomposition) or post-processing (channel

decoding) blocks. Faults in different components of the receiver have different impact

on the detection quality. QR decomposition represents the critical point for the cor-

rect operation of the whole reception chain. In order to quantify this impact, the QRD

based on MMSE sorted Givens rotation was implemented fulfilling the stringent real-

time requirements of the LTE standard. The implementation was then targeted by fault

injection. The transient faults were injected into diverse computational components of

the implementation. The novelty of this experiment is stressed out by the fact that

previous works considered faults in internal buffering memories only. The implemented

QRD was integrated into the precise bit-accurate system-level simulation that allowed

to quantify the effect of faults injected into distinct computational sub-components on

the system performance in terms of FER. The results indicated that the affected com-

putation of the new diagonal element has the major impact on FER. Future research

should therefore consider fault tolerant implementation of the boundary cell, specifically

addressing the protection of the new diagonal element computation. As the errors in

the latter rotations are less critical, it can be considered to provide varying amount of

protection to first and subsequent iterations of the boundary cell.

Inherent vulnerability of contemporary hardware to physical disturbances makes it ac-

cessible to fault-based attacks. These attacks have been proven to be effective against

cryptographic components, present in by far most current systems (communications sys-

tems for example). This work addressed countermeasures against fault based attacks.

Here, robust codes were applied to actual circuits. In order to perform analysis of these

codes, new fault-based metrics have been introduced opposed to standard error-centric

metrics used previously. The introduced formalisms of attacks success rate and silent

data corruption allowed to identify critical location of stuck-at-faults within the circuits

which could escape detection. In order to remove these options for the possible attacker,

hardening of these locations has been proposed. The proposed combined solution can

be considered as a cross-level protection scheme that combines information and hard-

ware redundancy. Also, the classes of circuits where the robust codes are not able to

guarantee their properties have been identified. Finally, robust codes have been applied

to protection of actual low-power PRINCE cipher implementation. The performance of

robust codes and linear codes has been compared in terms of the introduced metrics.

It has been shown that robust codes are indeed superior over linear codes in terms of

ASR. Future work could concentrate on construction of codes that cover both malicious

attacks and random transient faults and empirical investigation of their properties.

Appendix A

Convolutional codes

Convolutional codes are linear codes. The difference from the block linear codes lies in

the encoding procedure. The encoding of K information bits to N code is performed in

one time step. The redundant bit depends on the current value of the information bit

and on the values of the information bits fed into the encoder at past time steps. The

encoding operation is not memoryless [56]. Usually, K and N are small numbers (1,2,3),

whereas for block codes K and N are large (N = 2048 for Reed-Solomon code). Due to

the memory of the encoder, convolutional codes are able to perform well for small K and

N . The memoryless encoder of a block code would produce poor codes for small K, N .

Convolutional codes and block codes are closely related. In fact, a convolutional code

can be regarded as a block code, with the generator matrix having special structure,

such that the encoding operation is expressed as convolution [55].

For an information bit sequence b, partitioned into blocks of length K:

b = (b0,b1, . . .) (A.1)

bi = (b
(1)
i , b

(2)
i , . . . , b

(K)
i)

the encoder outputs the encoded bit sequence c, partitioned into blocks of length N

c = (c0, c1, . . .) (A.2)

ci = (c
(1)
i , c

(2)
i , . . . , c

(N)
i)

The index i denotes the time step or the time index. In general, N > K code bits are

generated at each time step from K information bits, yielding the code rate:

R =
K

N
(A.3)

Consider an example rate 1/2 encoder depicted in Fig. A.1 The encoder contains a mem-

ory element and an exclusive-or element. Since the first code bit equals the information

bit - c
(1)
i = bi, it is a systematic encoder. In a non-systematic encoder, it is not possible

to separate the information bits and the code bits within the codeword. The second

code bit is obtained as c
(2)
i = bi+ bi−1. Initially, the memory element is set to zero. The

161

Appendix A Convolutional codes 162

Figure A.1: Rate 1/2 convolutional encoder

delay, until the code values are produced is defined by the number of time steps (cycles)

required to feed all memory elements of the encoder.

Looking at the example encoding circuit it is easy to identify the parameters of a con-

volutional code [54, 55]:

• maximal delay M is the number of time steps until valid code bits are produced

by the encoder circuit. For the example encoder in Fig. A.1 the maximal delay is

M = 1.

• code memory is the minimal number of registers required to construct the encoder

circuit. It is at most M ×K.

• constraint length lc is the overall number of information bits affecting code bits

generated at time step i, including the information bits fed into the encoder up to

M time steps back in time.

lc =MK +K = (M + 1)K (A.4)

A convolutional code is called systematic if the N code bits generated at time step i

contain K information bits. For the example code it is the case and it is obviously

systematic.

The codes with larger constraint length tend to provide better error correcting perfor-

mance, hence one of the main design goals of the convolutional codes is to obtain a code

with the maximum constraint length, while trying to keep the delay (number of required

memory elements) and thus the complexity of the encoder as low as possible [56].

Convolutional codes are linear codes, therefore the encoding can be described by multi-

plication with a generator matrix G [55]

c = GbT (A.5)

where

G =

G0 G1 G2 · · · GM

G0 G1 G2 · · · GM

G0 G1 G2 · · · GM

. . .
. . .

. . .

(A.6)

Appendix A Convolutional codes 163

The K ×N sub-matrices Gm, m = 0, 1, . . . ,M , with elements from GF (2) specify how

an information bit block bi−m, delayed m steps in time, affects the code bit block xi:

xi =
M∑

m=0

Gmb
T
i−m, ∀i (A.7)

For the code in Fig. A.1 two sub-matrices of size 1× 2 have to be specified:

The sub-matrix G0 defines how ui affects the generation of code bits x
(1)
i , x

(2)
i . Hence

this matrix is G0 =
[

1 1

]

. The sub-matrix G1 identifies the code bits affected by the

ui−1, obviously, it equals G1 =
[

0 1

]

.

Alternatively, a convolutional code is defined by K × N polynomial generator matrix

[56], [54]

G(D) =

g
(1)
1 (D) g

(2)
1 (D) · · · g

(N)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) · · · g

(N)
2 (D)

...
...

...

g
(1)
K (D) g

(2)
K (D) · · · g

(N)
K (D)

(A.8)

where the matrix elements are polynomials over GF (2)

g
(j)
i (D) = g

(j)
i,0 + g

(j)
i,0D + g

(j)
i,2D

2 + · · ·+ g
(j)
i,MD

M (A.9)

The j-th row of G(D) specifies how the j-th entry uji of each information bit block ui
affects the code bit block x.

The information bit sequence and code bit sequence can be described by vectors of

polynomials

b = (b(1)(D), b(2)(D), · · · b(K)(D)) (A.10)

where b(j)(D) = b
(j)
0 + b

(j)
1 D + · · ·+ b

(j)
i Di + · · · , j = 1, 2, · · · ,K,

c = (c(1)(D), c(2)(D), · · · c(N)(D)) (A.11)

where c(j)(D) = c
(j)
0 + c

(j)
1 D + · · ·+ c

(j)
i Di + · · · , j = 1, 2, · · · , N ,

The encoding equation for the polynomial representation is therefore

c(D) = G(D)bT (D) (A.12)

The polynomial matrix G(D) is obtained from G as follows:

g
(j)
i,m = gm(i, j) (A.13)

i = 1, · · ·K, j = 1, · · · , N , m = 0, · · · ,M , where gm(i, j) is the (i, j)-th entry of Gm.

The code parameter M defines the largest degree of all polynomials g
(j)
i (D).

For the example code in Fig. A.1, two generator polynomials g
(1)
1 (D) and g

(2)
1 (D) need

to be constructed to specify G(D) =
[

g
(1)
1 (D) g

(2)
1 (D)

]

. The first polynomial specifies

Appendix A Convolutional codes 164

Figure A.2: Rate 1/2 (171, 133) recursive systematic encoder

how the information bit, shifted in time up toM time steps, affects the first code bit. As

the first code bit is simply bi and does not depend on bi−1, the first generator polynomial

is given as g
(1)
1 (D) = 1 + 0 ·D = 1.

The second code bit is affected by both the current information bit bi and the information

bit, residing in the memory element, namely bi−1. Therefore the generator polynomial

is g
(2)
1 (D) = 1 + 1 ·D = 1 +D. The generator polynomial matrix is commonly given in

octal notation. In that format the polynomial generator matrix for the example code is

G(d) =
[

1 1 +D

]

=
[

1002 1102

]

=
[

48 68

]

(A.14)

The octal notation is practical as it specifies the information about the generator polyno-

mial of the code and consequently the corresponding encoding circuit in compact form.

For example, the industry standard rate 1/2 convolutional code is defined in octal nota-

tion as (171, 133) [54]. Disregarding the leading zeros in the octal notation the generator

polynomials are read as:

g
(1)
1 (D) = 171 = (00)1111001 = 1 +D +D2 +D3 +D6 (A.15)

g
(2)
1 (D) = 133 = (00)1011011 = 1 +D2 +D3 +D5 +D6

The resulting code is not systematic, as the first code bit is not just the current infor-

mation bit itself. In order to obtain a systematic code, the non-systematic generator

matrix has to be divided by the the first generator polynomial.

The resulting systematic polynomial generator matrix is

Gsys =
[

1 1+D2+D3+D5+D6

1+D+D2+D3+D6

]

(A.16)

The first code bit is just the current information bit itself, rendering the code systematic.

The second polynomial is now a fraction of the two initial polynomials. The polyno-

mial in the nominator specifies the feed-forward connections and the polynomial in the

denominator specifies the feedback connection in the encoding circuit. Such systematic

convolutional codes are denoted as recursive systematic.

The resulting recursive systematic circuit of the rate 1/2 (171, 133) convolutional code

is depicted in Fig. A.2.

The decoding of convolutional codes is based on their trellis representation [55]. A

trellis is a directed graph, whose nodes are labeled with the variables s
(j)
i ∈ GF (2),

Appendix A Convolutional codes 165

j = 0, 1, . . . ,MK−1. The vector si =
[

s
(0)
i s

(1)
i · · · s

(MK−1)
i

]

combining all memory

element contents at time step i is called the state of the encoder at time step i. Therefore,

at each time step i there are S = 2MK nodes in a trellis. Each state node has 2K incoming

and outgoing branches. The branch labels contain the values of the information bit input

to the encoder at time step i and the resulting code bit values.

In order to obtain the trellis of a given convolutional code it is first necessary to find

out how state at each time step i depends on the information bit bi−m and possibly on

the state si−m,m > 0. In the example code depicted in Fig. A.1 the state is defined

as si = bi−1. Secondly, it must be defined how the code bits are generated from the

information bits and the state values. In the example code (Fig. A.1), the first code bit

is given by the information bit itself and does not depend on the state - c
(1)
i = bi. The

second code bit is computed from the current information bit and the value si stored in

the memory element - c
(2)
i = bi + si = bi + bi−1. Based on these two relationships the

trellis section of the example code is depicted in Fig. A.1.

At the receiver the encoded data possibly containing errors is denoted r. The convolu-

tional codes are decoded by the Viterbi algorithm [56]. At each time step i corresponding

to a section of the trellis the node and the branch metrics are computed. The branch

metric is given as

λi =
N∑

j=1

λji (A.17)

where the bit metric λji is the Hamming distance between the receive and the code bit

λji =

0 when c
(j)
i = r

(j)
i

1 when c
(i)
j 6= r

(j)
i

(A.18)

For each node the metrics for all 2K incoming branches Λi are computed as follows:

Λi =

λi , i = 0

Λi−1 + λi , i > 0
(A.19)

Out of 2K branches merging into a node, choose the one with the smallest metric Λi.

The other branches are discarded. The path through the trellis obtained so far is referred

to as the survivor path. If some metrics are equal, the survivor path is chosen by some

Figure A.3: Trellis section

Appendix A Convolutional codes 166

1

Figure A.4: Hard-decision decoding, one error

11

11 1

Figure A.5: Hard-decision decoding, two errors

arbitrary rule. For example, the upper/lower branch can be preferred or the branch can

be picked randomly.

After the algorithm processed l trellis sections or more, the node with the smallest overall

metric is chosen. The path which lead to this node through the trellis identifies the code

bit sequence which has the minimum Hamming distance to the receive bit sequence r.

The branches of the final survivor path identify the output information bit sequence.

The parameter l is the decision delay of the algorithm and specifies how many received

symbols have to be processed until the first block of decoded bits is available. As a rule

of thumb, the decision delay is often set to 5M .

Consider an example code sequence c =
[

00 00 00 00 00 00 00 00

]

output from

the example 1/2 rate convolutional encoder in Fig. A.1. Assume that during the trans-

mission an error has occurred as indicated in red in Fig. A.4 and the received code bit

sequence is r =
[

00 10 00 00 00 00 00 00

]

. The branches are labeled with the

branch metrics λi and the nodes are labeled with the Λi metric of the survivor path.

The discarding of paths is shown by crossing. The algorithm moves through the trellis,

and finally, there are two survivor paths with Λ7 = +1 and Λ7 = +3. The path with

the smallest metric is picked as the final survivor and is traced back to the beginning of

the trellis. The corresponding error corrected code sequence is obtained.

In case of multiple errors in the same transmitted code sequence, the received code

sequence is r =
[

00 11 00 00 00 00 00 00

]

as illustrated in Fig. A.5. It can

be observed that again the final survivor path is the one with Λ7 = +1, however, the

errors caused three decoding errors due to the changes in the path. Finally, there is one

information bit error.

Appendix A Convolutional codes 167

In order to improve the performance, soft-decision decoding is employed [55]. The soft

decision decoding uses the confidence information expressed as log-likelihood ratio (LLR)

[192]. The LLR of a coded bit ci is expressed as the ratio of probabilities of ci being

zero and one, respectively:

L(ci) =
P (ci = 0)

P (ci = 1)
(A.20)

Assume the following mapping of binary bit values to real values: 0 → +1, 1 → −1.

Using Bayes rule, the probability to guess the transmitted code bit ci, given the received

code bit ri is expressed as:

P (ci|ri) = p(ci, ri)/p(ri) = p(ri|ci)P (ci)/p(ri) (A.21)

Therefore, the LLR of the transmitted code bit, given the received code bit is

L(ci|ri) = log
P (ci = +1|ri)
P (ci = −1|ri)

= log
p(ri|ci = +1)P (ci = +1)/p(ri)

p(ri|ci = −1)P (ci = −1)/p(ri)

= log
p(ri|ci = +1)P (ci = +1)

p(ri|ci = −1)P (ci = −1)

(A.22)

Assuming equal probability of transmitted code bits being +1 or −1, the LLR is further

simplified

L(ci|ri) = log
p(ri|ci = +1)

p(ri|ci = −1)
(A.23)

In case of binary input additive white Gaussian noise (AWGN) channel, the receive code

bit is given as [192]

ri = ci + ni (A.24)

where ni is the AWGN noise sample, with zero mean and variance σ2n. The conditional

probabilities in Eq. A.23 are therefore Gaussian

p(ri|ci = 1) =
1

√

2πσ2n
exp

(

−(ri − 1)2

2σ2n

)

(A.25)

p(ri|ci = −1) =
1

√

2πσ2n
exp

(
(ri + 1)2

2σ2n

)

(A.26)

The closed-form expression for LLR is then obtained as

L(ci|ri) = log

1√
2πσ2

n

exp
(

− (ri−1)2

2σ2

)

1√
2πσ2

n

exp
(

− (ri+1)2

2σ2
n

)

= log exp

(

−(ri − 1)2

2σ2n
+

(ri + 1)2

2σ2n

)

=
1

2σ2n
(−(r2i − 2ri + 1) + (r2i + 2ri + 1))

=
2

σ2n
ri

(A.27)

Appendix A Convolutional codes 168

-0.5 -0.5

Figure A.6: Soft-decision decoding, two errors

The sign of the LLR gives the value of the of the transmitted code bit ci, and the

magnitude of LLR identifies the confidence in the taken decision. The positive sign of

LLR indicates p(ci = 0|ri) being larger than p(ci = 1|ri), resulting in decision for ci = 0.

The magnitude of LLR of +0.0043 would give less confidence in the decision compared

to the LLR of +2.5, as it indicates that the p(ci = 0|ri) is just slightly larger than

p(ci = 1|ri). As Eq. A.27 indicates that LLR magnitude depends on the AWGN noise

variance, in case of bad channel condition (large σ2n), the decision will be less certain

that in case of good channel condition (small σ2n).

Consider the same transmitted code sequence mapped to real values

c =
[

+1 + 1 +1 + 1 +1 + 1 +1 + 1 +1 + 1 +1 + 1 +1 + 1 +1 + 1

]

.

Assume that the errors happened due to bad channel conditions and the LLR val-

ues of the erroneous bits are −0.5. The correct bits are received while the channel

was reliable and their LLR values equal +2. The receive code sequence is therefore

r =
[

+2 + 2 −0.5− 0.5 +2 + 2 +2 + 2 +2 + 2 +2 + 2 +2 + 2 +2 + 2

]

. The

branch metric is now computed as Euclidean distance between the LLR of the received

bit and the code bit.

λji = (L(ri)− ci)
2 (A.28)

The soft decision decoding is illustrated in Fig. A.6. It can be observed that, with

Euclidean distance metric computation, the correct path is taken through the trellis and

the errors are corrected.

Bibliography

[1] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and

F. Tufvesson. Scaling Up MIMO: Opportunities and Challenges with Very Large

Arrays. IEEE Signal Processing Magazine, 30(1):40–60, Jan 2013.

[2] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer. Large-Scale

MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations. IEEE

Journal of Selected Topics in Signal Processing, 8(5):916–929, Oct 2014.

[3] M. Stanisavljevic, A. Schmid, and Y. Leblebici. Reliability of Nanoscale Circuits

and Systems: Methodologies and Circuit Architectures. Springer New York, 2010.

[4] G. Karakonstantis, A. Chatterjee, and K. Roy. Containing the Nanometer

Pandora-Box: Cross-Layer Design Techniques for Variation Aware Low Power

Systems. Emerging and Selected Topics in Circuits and Systems, IEEE Journal

on, 1(1):19–29, March 2011.

[5] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1st edition, 2007.

[6] M.S. Khairy, Chung-An Shen, A.M. Eltawil, and F. Kurdahi. Error resilient MIMO

detector for memory-dominated wireless communication systems. In Global Com-

munications Conference (GLOBECOM), 2012 IEEE, pages 3566–3571, Dec 2012.

[7] M.S. Khairy, Chung-An Shen, A.M. Eltawil, and F.J. Kurdahi. Algorithms and

Architectures of Energy-Efficient Error-Resilient MIMO Detectors for Memory-

Dominated Wireless Communication Systems. Circuits and Systems I: Regular

Papers, IEEE Transactions on, 61(7):2159–2171, July 2014.

[8] M. Karpovsky and A. Taubin. New class of nonlinear systematic error detecting

codes. IEEE Transactions on Information Theory, 50(8):1818–1819, Aug 2004.

[9] M. Huemer, C. Hofbauer, and J. B. Huber. The Potential of Unique Words in

OFDM. In Proceedings of the 15th International OFDM-Workshop 2010 (InOWo’

10), pages 140 – 144, September 2010.

[10] C. Hofbauer and M. Huemer. A study of data rate equivalent UW-OFDM and

CP-OFDM concepts. In Signals, Systems and Computers (ASILOMAR), 2012

Conference Record of the Forty Sixth Asilomar Conference on, pages 173–177,

Nov 2012.

169

Bibliography 170

[11] M. Huemer, C. Hofbauer, and J.B. Huber. Non-Systematic Complex Number RS

Coded OFDM by Unique Word Prefix. Signal Processing, IEEE Transactions on,

60(1):285–299, Jan 2012.

[12] A. Onic and M. Huemer. Sphere Decoding for Unique Word OFDM. In Global

Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pages 1–5, Dec

2011.

[13] Alexander Onic. Receiver Concepts for Unique Word OFDM. PhD thesis, Jo-

hannes Keppler Universitaet Linz, 2013.

[14] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on

circuit-level timing speculation. In Microarchitecture, 2003. MICRO-36. Proceed-

ings. 36th Annual IEEE/ACM International Symposium on, pages 7–18, Dec 2003.

[15] S. Ghosh, S. Bhunia, and K. Roy. CRISTA: A New Paradigm for Low-Power,

Variation-Tolerant, and Adaptive Circuit Synthesis Using Critical Path Isolation.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 26(11):1947–1956, Nov 2007.

[16] G. Karakonstantis, N. Banerjee, and K. Roy. Process-Variation Resilient and

Voltage-Scalable DCT Architecture for Robust Low-Power Computing. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 18(10):1461–1470, Oct

2010.

[17] Jung Hwan Choi, N. Banerjee, and K. Roy. Variation-Aware Low-Power Synthesis

Methodology for Fixed-Point FIR Filters. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 28(1):87–97, Jan 2009.

[18] V. Gupta, G. Karakonstantis, D. Mohapatra, and K. Roy. VEDA: Variation-aware

energy-efficient Discrete Wavelet Transform architecture. In Computer Design

(ICCD), 2010 IEEE International Conference on, pages 260–265, Oct 2010.

[19] N.R. Shanbhag, R.A. Abdallah, R. Kumar, and D.L. Jones. Stochastic compu-

tation. In Design Automation Conference (DAC), 2010 47th ACM/IEEE, pages

859–864, June 2010.

[20] R. Hegde and N.R. Shanbhag. Energy-efficient signal processing via algorithmic

noise-tolerance. In Low Power Electronics and Design, 1999. Proceedings. 1999

International Symposium on, pages 30–35, Aug 1999.

[21] R. Hegde and N.R. Shanbhag. Soft digital signal processing. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 9(6):813–823, Dec 2001.

[22] E.P. Kim and N.R. Shanbhag. Soft N-Modular Redundancy. Computers, IEEE

Transactions on, 61(3):323–336, March 2012.

[23] Byonghyo Shim, S.R. Sridhara, and N.R. Shanbhag. Reliable low-power digital

signal processing via reduced precision redundancy. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 12(5):497–510, May 2004.

Bibliography 171

[24] S. Narayanan. Estimation-theoretic Framework for Robust and Energy-efficient

System Design. PhD thesis, University of Illinois, 2010.

[25] M.S. Khairy, A. Khajeh, A.M. Eltawil, and F.J. Kurdahi. FFT processing through

faulty memories in OFDM based systems. In GLOBECOM Workshops (GC Wk-

shps), 2010 IEEE, pages 1946–1951, Dec 2010.

[26] M. May, M. Alles, and N. Wehn. A Case Study in Reliability-Aware Design: A

Resilient LDPC Code Decoder. In Design, Automation and Test in Europe, 2008.

DATE ’08, pages 456–461, March 2008.

[27] C. Novak, C. Studer, A. Burg, and G. Matz. The effect of unreliable LLR stor-

age on the performance of MIMO-BICM. In Signals, Systems and Computers

(ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference

on, pages 736–740, Nov 2010.

[28] Christina Gimmler-Dumont and Norbert Wehn. A Cross-Layer Reliability Design

Methodology for Efficient, Dependable Wireless Receivers. ACM Trans. Embed.

Comput. Syst., 13(4s):137:1–137:29, April 2014.

[29] Christina Gimmler-Dumont, Christian Brehm, and Norbert Wehn. Reliability

study on system memories of an iterative MIMO-BICM system. In VLSI and

System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th International Conference on,

pages 255 –258, oct. 2012.

[30] H. Bar-El et al. The Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE,

94:370–382, 2006.

[31] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault Injection Attacks

on Cryptographic Devices: Theory, Practice and Countermeasures. Proc. IEEE,

99, 2012.

[32] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.

In Annual Int’l Cryptology Conf. (LNCS 1294), pages 513–525, 1997.

[33] O. Derouet. Secure smartcard design against laser fault injection attacks. In

Works. Fault Diagnosis and Tolerance in Cryptography, 2007.

[34] A. Dehbaoui et al. Electromagnetic transient faults in-jection on a hardware and

a software implementations of AES. In Works. Fault Diagnosis and Tolerance in

Cryptography, pages 7–15, 2007.

[35] P. Jovanovic, M. Kreuzer, and I. Polian. A Fault Attack on the LED Block Ci-

pher. In Int’l Workshop on Constructive Side-channel Analysis and Secure Design

(LNCS 7275), pages 120–134, 2012.

[36] Chong Hee Kim and Jean-Jacques Quisquater. Information Security Theory and

Practices. Smart Cards, Mobile and Ubiquitous Computing Systems: First IFIP

TC6 / WG 8.8 / WG 11.2 International Workshop, WISTP 2007, Heraklion,

Crete, Greece, May 9-11, 2007. Proceedings, chapter Fault Attacks for CRT Based

RSA: New Attacks, New Results, and New Countermeasures, pages 215–228.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

Bibliography 172

[37] M. Tunstall, D. Mukhopadhyay, and S. Ali. Differential fault analysis of the

Advanced Encryption Standard using a single fault. In Workshop in Information

Security Theory and Practice (LNCS 6633), pages 224–233, 2011.

[38] M. Tunstall, D. Mukhopadhyay, and S. Ali. Differential Fault Analysis of the

Advanced Encryption Standard Using a Single Fault. LNCS, 6633:pp. 224–233,

2011.

[39] Philipp Jovanovic, Martin Kreuzer, and Ilia Polian. Multi-Stage Fault Attacks on

Block Ciphers. Cryptology ePrint Archive, Report 2013/778, 2013.

[40] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. New Differential Fault

Analysis of PRESENT. EURASIP Journal on Advances in Signal Processing, 2013

(1):1–10, 2013.

[41] Ling Song and Lei Hu. Differential Fault Attack on the PRINCE Block Cipher.

Cryptology ePrint Archive, Report 2013/043, 2013.

[42] Victor Tomashevich and Ilia Polian. Detection Performance of MIMO Unique

Word OFDM. In 20th ITG Workshop on Smart Antennas, 2016.

[43] Victor Tomashevich and Ilia Polian. Memory Error Resilient Detection for Massive

MIMO Systems. Submitted to the 2016 European Signal Processing Conference

(EUSIPCO), 2016.

[44] Victor Tomashevich, Christina Gimmler-Dumont, Christian Fesl, Norbert Wehn,

and Ilia Polian. A New Architecture for Minimum Mean Square Error Sorted

QR Decomposition for MIMO Wireless Communication Systems. In Design and

Diagnostics of Electronic Circuits and Systems, 2014 IEEE 17th Symposium on,

pages 246 –250, april 2014.

[45] V. Tomashevich, C. Gimmler-Dumont, N. Wehn, and I. Polian. Reliability analysis

of MIMO channel preprocessing by fault injection. In Wireless for Space and

Extreme Environments (WiSEE), 2014 IEEE International Conference on, pages

1–6, Oct 2014.

[46] V. Tomashevich, S. Srinivasan, F. Foerg, , and I. Polian. Cross-level protection of

circuits against faults and malicious attacks. In IEEE Int’l On-Line Test Symp.,

2012.

[47] V. Tomashevich, Y. Neumeier, R. Kumar, O. Keren, and I. Polian. Protecting

cryptographic hardware against malicious attacks by nonlinear robust codes. In

Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2014

IEEE International Symposium on, pages 40–45, Oct 2014.

[48] Andrea Goldsmith. Wireless Communications. Cambridge University Press, New

York, NY, USA, 2005.

[49] Proakis. Digital Communications 5th Edition. McGraw Hill, 2007.

[50] Gordon L. Stüber. Principles of Mobile Communication (2Nd Ed.). Kluwer Aca-

demic Publishers, Norwell, MA, USA, 2001.

Bibliography 173

[51] IEEE. IEEE Standard for Information technology– Local and metropolitan area

networks– Specific requirements– Part 11: Wireless LAN Medium Access Control

(MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for

Higher Throughput. IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-

2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std

802.11y-2008, and IEEE Std 802.11w-2009), pages 1–565, Oct 2009.

[52] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals and Systems

(2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[53] Michel C. Jeruchim, Philip Balaban, and K. Sam Shanmugan, editors. Simula-

tion of Communication Systems: Modeling, Methodology and Techniques. Kluwer

Academic Publishers, Norwell, MA, USA, 2nd edition, 2000.

[54] Todd K. Moon. Error Correction Coding: Mathematical Methods and Algorithms.

Wiley-Interscience, 2005.

[55] Shu Lin and Daniel J. Costello. Error Control Coding, Second Edition. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[56] Martin Bossert. Channel Coding for Telecommunications. John Wiley & Sons,

Inc., New York, NY, USA, 1st edition, 1999.

[57] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University

Press, 1996.

[58] C. Hofbauer, M. Huemer, and J.B. Huber. Coded OFDM by unique word prefix. In

Communication Systems (ICCS), 2010 IEEE International Conference on, pages

426–430, Nov 2010.

[59] A. Alexiou and M. Haardt. Smart antenna technologies for future wireless systems:

trends and challenges. Communications Magazine, IEEE, 42(9):90–97, Sept 2004.

[60] P.F. Driessen and G.J. Foschini. On the capacity formula for multiple input-

multiple output wireless channels: a geometric interpretation. Communications,

IEEE Transactions on, 47(2):173–176, Feb 1999.

[61] David Tse and Pramod Viswanath. Fundamentals of Wireless Communication.

Cambridge University Press, New York, NY, USA, 2005.

[62] Jerry R. Hampton. Introduction to MIMO Communications. Cambridge University

Press, 2013. Cambridge Books Online.

[63] Juho Lee, Jin-Kyu Han, and Jianzhong Zhang. MIMO Technologies in 3GPP LTE

and LTE-advanced. EURASIP J. Wirel. Commun. Netw., 2009:3:1–3:10, March

2009.

[64] R. Adams. Simplified Baseband Diversity Combiner. Communications Systems,

IRE Transactions on, 8(4):247–249, December 1960.

[65] M. Schwartz, W. Bennett, and S. Stein. Linear Diversity Combining Techniques,

pages 416–489. Wiley-IEEE Press, 1996.

Bibliography 174

[66] T. Eng, Ning Kong, and L.B. Milstein. Comparison of diversity combining tech-

niques for Rayleigh-fading channels. Communications, IEEE Transactions on, 44

(9):1117–1129, Sep 1996.

[67] B. Solaiman, A. Glavieux, and A. Hillion. Equal gain diversity improvement in fast

frequency hopping spread spectrum multiple-access (FFH-SSMA) communications

over Rayleigh fading channels. Selected Areas in Communications, IEEE Journal

on, 7(1):140–147, Jan 1989.

[68] T.K.Y. Lo. Maximum ratio transmission. Communications, IEEE Transactions

on, 47(10):1458–1461, Oct 1999.

[69] S. Alamouti. A simple transmit diversity technique for wireless communications.

Selected Areas in Communications, IEEE Journal on, 16(8):1451–1458, Oct 1998.

[70] Vahid Tarokh, N. Seshadri, and A.R. Calderbank. Space-time codes for high

data rate wireless communication: performance criterion and code construction.

Information Theory, IEEE Transactions on, 44(2):744–765, Mar 1998.

[71] Lizhong Zheng and D.N.C. Tse. Diversity and multiplexing: a fundamental trade-

off in multiple-antenna channels. Information Theory, IEEE Transactions on, 49

(5):1073–1096, May 2003.

[72] P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R. Valenzuela. V-BLAST:

an architecture for realizing very high data rates over the rich-scattering wire-

less channel. In Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI

International Symposium on, pages 295–300, Sep 1998.

[73] Tim Brown, Elisabeth De Carvalho, and Persefoni Kyritsi. Practical Guide to the

MIMO Radio Channel with MATLAB Examples. Wiley, 1 edition, 2012.

[74] P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. Degli-Esposti, H. Hofstet-

ter, P. Kyosti, D. Laurenson, G. Matz, A. Molisch, C. Oestges, and H. Ozcelik.

Survey of Channel and Radio Propagation Models for Wireless MIMO Systems.

EURASIP Journal on Wireless Communications and Networking, 2007(1):019070,

2007.

[75] Vinko Erceg, Laurent Schumacher, and Persefoni Kyritsi. IEEE P802.11 Wireless

LANs, TGn Channel Models. IEEE 802.11-03/940r4, May 2004.

[76] M. Debbah and R. Muller. MIMO channel modeling and the principle of maximum

entropy. Information Theory, IEEE Transactions on, 51(5):1667–1690, May 2005.

[77] L. Schumacher, K.I. Pedersen, and P.E. Mogensen. From antenna spacings to

theoretical capacities - guidelines for simulating MIMO systems. In Personal,

Indoor and Mobile Radio Communications, 2002. The 13th IEEE International

Symposium on, volume 2, pages 587–592 vol.2, Sept 2002.

[78] K.I. Pedersen, P.E. Mogensen, and B.H. Fleury. A stochastic model of the tem-

poral and azimuthal dispersion seen at the base station in outdoor propagation

environments. Vehicular Technology, IEEE Transactions on, 49(2):437–447, Mar

2000.

Bibliography 175

[79] J.P. Kermoal, L. Schumacher, K.I. Pedersen, P.E. Mogensen, and F. Frederiksen.

A stochastic MIMO radio channel model with experimental validation. Selected

Areas in Communications, IEEE Journal on, 20(6):1211–1226, Aug 2002.

[80] C. Michalke, E. Zimmermann, and G. Fettweis. Linear Mimo Receivers vs. Tree

Search Detection: A Performance Comparison Overview. In Personal, Indoor

and Mobile Radio Communications, 2006 IEEE 17th International Symposium

on, pages 1–7, Sept 2006.

[81] D. Seethaler and F. Hlawatsch. Detection techniques for MIMO spatial multiplex-

ing systems. Elektrotechnik und Informationstechnik, 122(3):91–96, 2005.

[82] Sergio Verdú. Computational Complexity of Optimum Multiuser Detection. AL-

GORITHMICA, 4(3):303–312, 1989.

[83] Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[84] David G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons,

Inc., New York, NY, USA, 1st edition, 1997.

[85] W. Koch and A. Baier. Optimum and sub-optimum detection of coded data

disturbed by time-varying intersymbol interference. In Global Telecommunica-

tions Conference, 1990, and Exhibition. ’Communications: Connecting the Fu-

ture’, GLOBECOM ’90., IEEE, pages 1679–1684 vol.3, Dec 1990.

[86] I.B. Collings, M.R.G. Butler, and M.R. McKay. Low complexity receiver design

for MIMO bit-interleaved coded modulation. In Spread Spectrum Techniques and

Applications, 2004 IEEE Eighth International Symposium on, pages 12–16, Aug

2004.

[87] U. Fincke and M. Pohst. Improved Methods for Calculating Vectors of Short

Length in a Lattice, Including a Complexity Analysis. Mathematics of Computa-

tion, 44(170):463–471, 1985.

[88] Wai Ho Mow. Maximum likelihood sequence estimation from the lattice viewpoint.

Information Theory, IEEE Transactions on, 40(5):1591–1600, Sep 1994.

[89] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices.

Information Theory, IEEE Transactions on, 48(8):2201–2214, Aug 2002.

[90] O. Damen, A. Chkeif, and J.-C. Belfiore. Lattice code decoder for space-time

codes. Communications Letters, IEEE, 4(5):161–163, May 2000.

[91] M.O. Damen, H. El Gamal, and G. Caire. On maximum-likelihood detection and

the search for the closest lattice point. Information Theory, IEEE Transactions

on, 49(10):2389–2402, Oct 2003.

[92] B. Hassibi and H. Vikalo. On the sphere-decoding algorithm I. Expected complex-

ity. Signal Processing, IEEE Transactions on, 53(8):2806–2818, Aug 2005.

[93] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei.

VLSI implementation of MIMO detection using the sphere decoding algorithm.

Solid-State Circuits, IEEE Journal of, 40(7):1566–1577, July 2005.

Bibliography 176

[94] Steven Skiena. Implementing discrete mathematics - combinatorics and graph

theory with Mathematica. Addison-Wesley, 1990.

[95] C. P. Schnorr and M. Euchner. Lattice Basis Reduction: Improved Practical

Algorithms and Solving Subset Sum Problems. In Math. Programming, pages

181–191, 1993.

[96] R. Wang and G.B. Giannakis. Approaching MIMO channel capacity with soft

detection based on hard sphere decoding. Communications, IEEE Transactions

on, 54(4):587–590, April 2006.

[97] C. Studer and H. Bolcskei. Soft Input Soft Output Single Tree-Search Sphere

Decoding. Information Theory, IEEE Transactions on, 56(10):4827–4842, Oct

2010.

[98] A. Chockalingam. Low-complexity algorithms for large-MIMO detection. In Com-

munications, Control and Signal Processing (ISCCSP), 2010 4th International

Symposium on, pages 1–6, March 2010.

[99] S.K. Mohammed, A. Chockalingam, and B. Sundar Rajan. A Low-complexity

near-ML performance achieving algorithm for large MIMO detection. In Infor-

mation Theory, 2008. ISIT 2008. IEEE International Symposium on, pages 2012–

2016, July 2008.

[100] Peng Li and R.D. Murch. Multiple output selection-LAS algorithm in large MIMO

systems. Communications Letters, IEEE, 14(5):399–401, May 2010.

[101] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and

Testable Design. Computer Science Press, 1990.

[102] R. Hegde and N.R. Shanbhag. A voltage overscaled low-power digital filter IC.

Solid-State Circuits, IEEE Journal of, 39(2):388–391, Feb 2004.

[103] G. Karakonstantis and K. Roy. Voltage over-scaling: A cross-layer design perspec-

tive for energy efficient systems. In Circuit Theory and Design (ECCTD), 2011

20th European Conference on, pages 548–551, Aug 2011.

[104] R. Hegde and N.R. Shanbhag. Energy-efficient signal processing via algorithmic

noise-tolerance. In Low Power Electronics and Design, 1999. Proceedings. 1999

International Symposium on, pages 30–35, Aug 1999.

[105] John F. Wakerly. Digital Design: Principles and Practices. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 3rd edition, 2000.

[106] P.E. Dodd and L.W. Massengill. Basic mechanisms and modeling of single-event

upset in digital microelectronics. Nuclear Science, IEEE Transactions on, 50(3):

583–602, June 2003.

[107] E. Normand. Single event upset at ground level. Nuclear Science, IEEE Transac-

tions on, 43(6):2742–2750, Dec 1996.

[108] R.C. Baumann. Radiation-induced soft errors in advanced semiconductor tech-

nologies. Device and Materials Reliability, IEEE Transactions on, 5(3):305–316,

Sept 2005.

Bibliography 177

[109] R. Baumann. Soft errors in advanced computer systems. Design Test of Comput-

ers, IEEE, 22(3):258–266, May 2005.

[110] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling

the effect of technology trends on the soft error rate of combinational logic. In

Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International

Conference on, pages 389–398, 2002.

[111] P. Hazucha and C. Svensson. Impact of CMOS technology scaling on the atmo-

spheric neutron soft error rate. Nuclear Science, IEEE Transactions on, 47(6):

2586–2594, Dec 2000.

[112] Kuang-Hua Huang and J.A. Abraham. Algorithm-Based Fault Tolerance for Ma-

trix Operations. Computers, IEEE Transactions on, C-33(6):518–528, June 1984.

[113] V.S.S. Nair and J.A. Abraham. General linear codes for fault-tolerant matrix

operations on processor arrays. In Fault-Tolerant Computing, 1988. FTCS-18,

Digest of Papers., Eighteenth International Symposium on, pages 180–185, June

1988.

[114] C.J. Anfinson and F.T. Luk. A linear algebraic model of algorithm-based fault

tolerance. Computers, IEEE Transactions on, 37(12):1599–1604, Dec 1988.

[115] V.S.S. Nair and J.A. Abraham. Real-number codes for fault-tolerant matrix op-

erations on processor arrays. Computers, IEEE Transactions on, 39(4):426–435,

Apr 1990.

[116] A.A. Al-Yamani, N. Oh, and E.J. McCluskey. Performance evaluation of checksum-

based ABFT. In Defect and Fault Tolerance in VLSI Systems, 2001. Proceedings.

2001 IEEE International Symposium on, pages 461–466, 2001.

[117] B. R. Gaines. Stochastic Computing. In Proceedings of the April 18-20, 1967,

Spring Joint Computer Conference, AFIPS ’67 (Spring), pages 149–156, New York,

NY, USA, 1967. ACM.

[118] Weikang Qian, Xin Li, M.D. Riedel, K. Bazargan, and D.J. Lilja. An Architec-

ture for Fault-Tolerant Computation with Stochastic Logic. Computers, IEEE

Transactions on, 60(1):93–105, Jan 2011.

[119] S.S. Tehrani, S. Mannor, and W.J. Gross. Fully Parallel Stochastic LDPC De-

coders. Signal Processing, IEEE Transactions on, 56(11):5692–5703, Nov 2008.

[120] A. Alaghi, Cheng Li, and J.P. Hayes. Stochastic circuits for real-time image-

processing applications. In Design Automation Conference (DAC), 2013 50th

ACM/EDAC/IEEE, pages 1–6, May 2013.

[121] E.P. Kim and N.R. Shanbhag. Statistical analysis of algorithmic noise tolerance.

In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on, pages 2731–2735, May 2013.

[122] R. Hegde and N.R. Shanbhag. A low-power digital filter IC via soft DSP. In

Custom Integrated Circuits, 2001, IEEE Conference on., pages 309–312, 2001.

Bibliography 178

[123] S.R. Sridhara and N.R. Shanbhag. Low-power FFT via reduced precision redun-

dancy. In Signal Processing Systems, 2001 IEEE Workshop on, pages 117–124,

2001.

[124] R.A. Abdallah and N.R. Shanbhag. Error-Resilient Low-Power Viterbi Decoder

Architectures. Signal Processing, IEEE Transactions on, 57(12):4906–4917, Dec

2009.

[125] Byonghyo Shim and N.R. Shanbhag. Energy-efficient soft error-tolerant digital sig-

nal processing. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 14(4):336 –348, april 2006.

[126] A. Khajeh, K. Amiri, M.S. Khairy, A.M. Eltawil, and F.J. Kurdahi. A Uni-

fied Hardware and Channel Noise Model for Communication Systems. In Global

Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pages 1–5, Dec

2010.

[127] A.M.A. Hussien, M.S. Khairy, A. Khajeh, K. Amiri, A.M. Eltawil, and F.J. Kur-

dahi. A combined channel and hardware noise resilient Viterbi decoder. In Sig-

nals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty

Fourth Asilomar Conference on, pages 395–399, Nov 2010.

[128] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure probability

and statistical design of SRAM array for yield enhancement in nanoscaled CMOS.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 24(12):1859–1880, Dec 2005.

[129] A.K. Djahromi, A.M. Eltawil, F.J. Kurdahi, and R. Kanj. Cross Layer Error

Exploitation for Aggressive Voltage Scaling. In Quality Electronic Design, 2007.

ISQED ’07. 8th International Symposium on, pages 192–197, March 2007.

[130] K. Agarwal and S. Nassif. The Impact of Random Device Variation on SRAM Cell

Stability in Sub-90-nm CMOS Technologies. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 16(1):86–97, Jan 2008.

[131] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of

Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[132] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s).

In Int’l Workshop on Cryptographic Hardware and Embedded Systems (LNCS

2523), pages 29–45, 2003.

[133] Kahraman D. Akdemir, Zhen Wang, Mark Karpovsky, and Berk Sunar. Fault

Analysis in Cryptography, chapter Design of Cryptographic Devices Resilient to

Fault Injection Attacks Using Nonlinear Robust Codes, pages 171–199. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012.

[134] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of elimination errors

in cryptographic computations. Jour. Cryptology, 14:101–119, 2001.

[135] D. Mukhopadhyay. An Improved Fault Based Attack of the Advanced Encryption

Standard. LNCS, 5580:pp. 421–434, 2009.

Bibliography 179

[136] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. The LED Block Cipher.

LNCS, 6917:pp. 326–341, 2011.

[137] A. Bogdanov et al. PRESENT: An ultra-lightweight block cipher. In Int’l Work-

shop on Cryptographic Hardware and Embedded Systems (LNCS 4727), pages 450–

466, 2007.

[138] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi. Low

voltage fault attacks to AES. In Hardware-Oriented Security and Trust (HOST),

2010 IEEE International Symposium on, pages 7–12, June 2010.

[139] Frederic Amiel, Christophe Clavier, and Michael Tunstall. Fault Diagnosis and

Tolerance in Cryptography: Third International Workshop, FDTC 2006, Yoko-

hama, Japan, October 10, 2006. Proceedings, chapter Fault Analysis of DPA-

Resistant Algorithms, pages 223–236. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2006.

[140] Sudhakar Govindavajhala and Andrew W. Appel. Using Memory Errors to Attack

a Virtual Machine. In Proceedings of the 2003 IEEE Symposium on Security and

Privacy, SP ’03, pages 154–, Washington, DC, USA, 2003. IEEE Computer Society.

[141] L. Anghel and M. Nicolaidis. Cost reduction and evaluation of a temporary faults

detecting technique. In Design, Automation and Test in Europe Conference and

Exhibition 2000. Proceedings, pages 591–598, 2000.

[142] J. H. Patel and L. Y. Fung. Concurrent Error Detection in ALU’s by Recomputing

with Shifted Operands. IEEE Transactions on Computers, C-31(7):589–595, July

1982.

[143] A. Chockalingam and B. Sundar Rajan. Large MIMO Systems. Cambridge Uni-

versity Press, 2014. Cambridge Books Online.

[144] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart,

P. Vivet, and N. Wehn. A 477mW NoC-based digital baseband for MIMO 4G

SDR. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

2010 IEEE International, pages 278–279, Feb 2010.

[145] William W. Hager. Updating the Inverse of a Matrix. SIAM Review, 31(2):221–

239, 1989.

[146] B.M. Hochwald and S. ten Brink. Achieving near-capacity on a multiple-antenna

channel. Communications, IEEE Transactions on, 51(3):389–399, March 2003.

[147] MATLAB version 8.5.0.197613 (R2015a) Documentation. The Mathworks, Inc.,

Natick, Massachusetts, 2015.

[148] H. W. Sorenson and D. L. Alspach. Recursive Bayesian Estimation Using Gaussian

Sums. Automatica, 7(4):465–479, July 1971.

[149] Jonathan Q. Li and Andrew R. Barron. Mixture Density Estimation. In IN

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, pages

279–285. MIT Press, 1999.

Bibliography 180

[150] A. Kundu, S. Chatterjee, A. Sreenivasa Murthy, and T.V. Sreenivas. GMM based

Bayesian approach to speech enhancement in signal / transform domain. In Acous-

tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Con-

ference on, pages 4893–4896, March 2008.

[151] J.T. Flam, S. Chatterjee, K. Kansanen, and T. Ekman. On MMSE Estimation:

A Linear Model Under Gaussian Mixture Statistics. Signal Processing, IEEE

Transactions on, 60(7):3840–3845, July 2012.

[152] J.T. Flam, D. Zachariah, M. Vehkapera, and S. Chatterjee. The Linear Model

Under Mixed Gaussian Inputs: Designing the Transfer Matrix. Signal Processing,

IEEE Transactions on, 61(21):5247–5259, Nov 2013.

[153] M. Karkooti, J. R. Cavallaro, and C. Dick. FPGA Implementation of Matrix

Inversion Using QRD-RLS Algorithm. In Signals, Systems and Computers, 2005.

Conference Record of the Thirty-Ninth Asilomar Conference on, pages 1625–1629,

October 2005.

[154] Zheng-Yu Huang and Pei-Yun Tsai. Efficient Implementation of QR Decomposi-

tion for Gigabit MIMO-OFDM Systems. Circuits and Systems I: Regular Papers,

IEEE Transactions on, 58(10):2531 –2542, oct. 2011.

[155] Gabriel Luca Nazar, Christina Gimmler, and Norbert Wehn. Implementation

comparisons of the QR decomposition for MIMO detection. In Proceedings of

the 23rd symposium on Integrated circuits and system design, SBCCI ’10, pages

210–214, New York, NY, USA, 2010. ACM.

[156] D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer. MMSE extension of V-

BLAST based on sorted QR decomposition. In Vehicular Technology Conference,

2003. VTC 2003-Fall. 2003 IEEE 58th, volume 1, pages 508–512 Vol.1, Oct 2003.

[157] W. Givens. Computation of Plain Unitary Rotations Transforming a General

Matrix to Triangular Form. Journal of the Society for Industrial and Applied

Mathematics, 6(1):26–50, 1958.

[158] Richard Lewis Walke. High sample-rate Givens rotations for recursive least

squares. PhD thesis, University of Warwick, 1997.

[159] R. Doehler. Squared Givens Rotation. IMA Journal of Numerical Analysis, 11(1):

1–5, 1991.

[160] Lei Ma, K. Dickson, J. McAllister, and J. Mccanny. QR Decomposition-Based

Matrix Inversion for High Performance Embedded MIMO Receivers. Signal Pro-

cessing, IEEE Transactions on, 59(4):1858 –1867, april 2011.

[161] J. Goetze and U. Schwiegelshohn. A Square Root and Division Free Givens Ro-

tation for Solving Least Squares Problems on Systolic Arrays. SIAM J. Sci. Stat.

Comput., 12(4):800–807, May 1991.

[162] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner. VLSI Imple-

mentation of a High-Speed Iterative Sorted MMSE QR Decomposition. In Circuits

and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pages 1421

–1424, may 2007.

Bibliography 181

[163] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, and K. D. Kammeyer. Efficient

algorithm for decoding layered space-time codes. Electronics Letters, 37(22):1348–

1350, Oct 2001.

[164] P. Salmela, A. Burian, H. Sorokin, and J. Takala. Complex-valued QR decompo-

sition implementation for MIMO receivers. In Proc. IEEE Int. Conf. Acoustics,

Speech and Signal Processing, pages 1433–1436, 2008.

[165] IT++ 4.3.1 user guide, 2014.

[166] D. May and W. Stechele. An FPGA-based probability-aware fault simulator. In

Embedded Computer Systems (SAMOS), 2012 International Conference on, pages

302–309, July 2012.

[167] Veit B. Kleeberger, Christina Gimmler-Dumont, Christian Weis, Andreas Herkers-

dorf, Daniel Mueller-Gritschneder, Sani R. Nassif, Ulf Schlichtmann, and Norbert

Wehn. A Cross-Layer Technology-Based Study of How Memory Errors Impact

System Resilience. IEEE Micro, 33(4):46–55, 2013.

[168] M. Gössel, V. Ocheretny, E. Sogomonyan, and D. Marienfeld. New Methods of

Concurrent Checking. Springer, 2008.

[169] M. Karpovsky, K. J. Kulikowski, and A. Taubin. Robust protection against fault-

injection attacks on smart cards implementing the advanced encryption standard.

In Dependable Systems and Networks, 2004 International Conference on, pages

93–101, June 2004.

[170] Konrad J. Kulikowski, Mark G. Karpovsky, and Er Taubin. Robust Codes for Fault

Attack Resistant Cryptographic Hardware. In Fault Diagnosis and Tolerance in

Cryptography, 2nd International Workshop, pages 1–12, 2005.

[171] Zhen Wang, Mark Karpovsky, and Konrad J Kulikowski. Design of memories with

concurrent error detection and correction by nonlinear SEC-DED codes. Journal

of Electronic Testing, 26(5):559–580, 2010.

[172] Konrad J Kulikowski, Zhen Wang, and Mark G Karpovsky. Comparative analysis

of robust fault attack resistant architectures for public and private cryptosystems.

In Works. Fault Diagnosis and Tolerance in Cryptography, pages 41–50. IEEE,

2008.

[173] Mark Karpovsky and Alexander Taubin. New class of nonlinear systematic error

detecting codes. Information Theory, IEEE Transactions on, 50(8):1818–1819,

2004.

[174] Konrad J Kulikowski, Mark G Karpovsky, and Alexander Taubin. Fault attack

resistant cryptographic hardware with uniform error detection. In Works. Fault

Diagnosis and Tolerance in Cryptography, pages 185–195. Springer, 2006.

[175] Mark G Karpovsky, Konrad J Kulikowski, and Zhen Wang. Robust Error Detec-

tion in Communication and Computational Channels. Int’l Workshop on Spectral

Techniques, 2007.

Bibliography 182

[176] Yaara Neumeier and Osnat Keren. Punctured Karpovsky-Taubin binary robust

error detecting codes for cryptographic devices. In IEEE Int’l On-Line Testing

Symp., pages 156–161. IEEE, 2012.

[177] Yaara Neumeier and Osnat Keren. Robust Generalized Punctured Cubic Codes.

IEEE Transactions on Information Theory, 2013.

[178] Jorge Guajardo, Tim Güneysu, Sandeep S Kumar, Christof Paar, and Jan Pelzl.

Efficient hardware implementation of finite fields with applications to cryptogra-

phy. Acta Appl. Math., 93(1-3):75–118, 2006.

[179] Nir Admaty, Simon Litsyn, and Osnat Keren. Puncturing, expurgating and ex-

panding the q-ary BCH based robust codes. In IEEE Convention of Electrical &

Electronics Engineers in Israel, pages 1–5. IEEE, 2012.

[180] Shubu Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2008.

[181] S. Frehse, G. Fey, and R. Drechselr. A Better-than-worst-case Robustness Measure.

In DDECS, 2010.

[182] J. E. Smith and P. Lam. A Theory of Totally Self-Checking System Design. IEEE

Transactions on Computers, C-32(9):831–844, Sept 1983.

[183] Nangate Open cell library, www.nangate.com, 2012.

[184] Quming Zhou and K. Mohanram. Gate sizing to radiation harden combinational

logic. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 25(1):155–166, Jan 2006.

[185] B. S. Gill, C. Papachristou, F. G. Wolff, and N. Seifert. Node sensitivity analysis

for soft errors in CMOS logic. In Test Conference, 2005. Proceedings. ITC 2005.

IEEE International, pages 9 pp.–972, Nov 2005.

[186] M. P. Baze and S. P. Buchner. Attenuation of single event induced pulses in CMOS

combinational logic. IEEE Transactions on Nuclear Science, 44(6):2217–2223, Dec

1997.

[187] P. Bhattacharya. Architecture and algorithm for mitigating soft errors in nanoscale

VLSI circuits. PhD thesis, University of south Florida, 2009.

[188] Stephen D. Brown, Zvonko G. Vranesic, and Zvonko Vranesic. Fundamentals of

Digital Logic with VHDL Design. McGraw-Hill Higher Education, 1st edition,

1999.

[189] Gregory C. Ahlquist, Brent Nelson, and Michael Rice. Field Programmable Logic

and Applications: 9th International Workshop, FPL’99, Glasgow, UK, August 30

- September 1, 1999. Proceedings, chapter Optimal Finite Field Multipliers for

FPGAs, pages 51–60. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[190] M. G. Karpovsky, K. J. Kulikowski, and Z. Wang. Robust error detection in com-

munication and computation channels. In Int’l Workshop on Spectral Techniques,

2007.

Bibliography 183

[191] J. Borghoff et al. PRINCE: A low-latency block cipher for pervasive computing

applications. In ASIACRYPT, 2012.

[192] Sarah J. Johnson. Iterative Error Correction: Turbo, Low-Density Parity-Check

and Repeat- Accumulate Codes. Cambridge University Press, jan 2010.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Wireless communication
	2.1.1 Multipath channels
	2.1.1.1 Delay spread
	2.1.1.2 Coherence bandwidth
	2.1.1.3 Doppler power spectrum
	2.1.1.4 Coherence time
	2.1.1.5 Frequency selective channel model

	2.1.2 Orthogonal frequency division multiplexing
	2.1.2.1 Cyclic prefix OFDM
	2.1.2.1.1 Encoder / decoder.
	2.1.2.1.2 Modulation / demodulation
	2.1.2.1.3 Cyclic prefix

	2.1.2.2 Unique word OFDM
	2.1.2.2.1 Systematic generation of UW
	2.1.2.2.2 Non-systematic generation of UW

	2.2 MIMO
	2.2.1 Channel model
	2.2.2 MIMO cyclic prefix OFDM
	2.2.3 Detection
	2.2.3.1 LMMSE
	2.2.3.1.1 Soft output generation
	2.2.3.1.2 Cyclic prefix

	2.2.3.2 Maximum likelihood
	2.2.3.2.1 Sphere decoding
	2.2.3.2.1.1 Soft output generation

	2.2.3.2.2 Likelihood ascent search

	2.3 Fault tolerance
	2.3.1 Faults and errors
	2.3.2 Redundancy
	2.3.3 Stochastic computation
	2.3.4 Unified channel and memory error model
	2.3.5 Fault-based attacks and countermeasures

	3 Detection of virtual massive MIMO systems
	3.1 MIMO unique word OFDM
	3.1.1 LMMSE detection
	3.1.1.1 Complexity-reduced LMMSE for systematic MIMO UW-OFDM

	3.1.2 Sphere decoding for MIMO UW-OFDM
	3.1.3 LAS for MIMO UW-OFDM
	3.1.3.1 Maximum a posteriori probability LAS
	3.1.3.1.1 Soft output generation

	3.1.3.2 LAS performance improvement using ''s

	3.1.4 Performance comparison
	3.1.4.1 Simulation parameters
	3.1.4.2 Simulation results
	3.1.4.3 Complexity comparison

	3.2 Memory error resilient detection
	3.2.1 NMMSE-based single error correction
	3.2.1.1 log-NMMSE

	3.2.2 Iterative NMMSE-based multiple error correction
	3.2.3 Resilient likelihood ascent search
	3.2.4 Simulation results

	3.3 Summary

	4 Reliability analysis of QR decomposition
	4.1 Givens rotations
	4.1.1 Systolic array

	4.2 MMSE sorted Givens rotations
	4.2.1 Hardware implementation
	4.2.1.1 Real-time requirements
	4.2.1.2 Architecture
	4.2.1.3 Synthesis results

	4.3 Reliability analysis of combinational components
	4.3.1 Simulation chain
	4.3.2 Fault injection
	4.3.3 Simulation results

	4.4 Summary

	5 Evaluation of robust codes
	5.1 Robust codes
	5.1.1 Quadratic sum code
	5.1.2 Punctured cubic code

	5.2 Evaluation methodology
	5.2.1 Fault-based metrics
	5.2.2 Fault injection platform

	5.3 Cross-level protection
	5.3.1 Implementation of code-based protection
	5.3.2 Selective hardening of individual gates
	5.3.3 Synthesis and evaluation of circuit with hardened gates
	5.3.4 Experimental results
	5.3.4.1 Evaluation of hardening for single faults
	5.3.4.2 Multiple faults

	5.4 Application to cryptographic circuits
	5.4.1 Results

	5.5 Summary

	6 Conclusion
	A Convolutional codes
	Bibliography

