
Advanced Slicing
of

Sequential and Concurrent
Programs

Jens Krinke

April 2003

Dissertation zur Erlangung des Doktorgrades in den Naturwissenschaften

ii

Acknowledgments

First of all, I wish to thank my adviser Gregor Snelting for providing the sup-
port, freedom and protection to do research without pressure. A big ‘sorry’
goes to him, to the second reviewer, Tim Teitelbaum, and to David Melski, be-
cause this thesis has become longer than expected—thanks for reading it and
the valuable comments.

Without the love and support of Uta von Holten, this work would not have
been possible. She always believed in me, although this thesis took too long to
finish. I thank my parents for enabling my career.

A big ‘thank you’ goes to my students who helped a lot by implement-
ing parts of the presented techniques. First of all the former students at TU
Braunschweig: Frank Ehrich, who implemented the user interface of the VAL-
SOFT system (14.1.6) including the graphical visualization of program depen-
dence graphs, slices and chops (9.1), Christian Bruns implemented the constant
propagation (11.2.2), Torsten Königshagen implemented the call graph con-
struction (11.2.1), Stefan Konst implemented the approximate dynamic slicing
(14.1.8), and Carsten Schulz implemented the common subexpression elimina-
tion (11.2.3). Students from Universität Passau were: Silvia Breu implemented
the chop visualization (10.4), Daniel Gmach implemented the textual visual-
ization of slices (9.2) and duplicated code (12.2.2), Alexander Wrobel imple-
mented the distance-limited slicing (10.1), and Thomas Zimmermann imple-
mented some chopping algorithms (10.2).

Special thanks go to my colleagues in Passau, Torsten Robschink, Mirko
Streckenbach, and Maximilian Störzer, who took over some of my teaching
and administration duties while I finished this thesis. I also have to thank my
former colleagues from Braunschweig, Bernd Fischer and Andreas Zeller for
inspiration; they had the luck to finish their thesis earlier.

The Programming group at Universität Passau kindly provided the com-
puting power that was needed to do the evaluations. Silvia Breu helped to
improve the English of this thesis.

GrammaTech kindly provided the CodeSurfer slicing tool and Darren Atkin-
son provided the Icaria slicer.

The VALSOFT project started as a cooperation with the Physikalisch-Tech-
nische Bundesanstalt (PTB) and LINEAS GmbH in Braunschweig, funded by
the former Bundesministerium für Bildung und Forschung (FKZ 01 IS 513

iv

C9). Later on, funding was provided by the Deutsche Forschungsgemeinschaft
(FKZ Sn11/5-1 and Sn11/5-2).

Abstract

Program slicing is a technique to identify statements that may influence the
computations in other statements. Despite the ongoing research of almost 25
years, program slicing still has problems that prevent a widespread use: Some-
times, slices are too big to understand and too expensive and complicated to be
computed for real-life programs. This thesis presents solutions to these prob-
lems: It contains various approaches which help the user to understand a slice
more easily by making it more focused on the user’s problem. All of these ap-
proaches have been implemented in the VALSOFT system and thorough eval-
uations of the proposed algorithms are presented.

The underlying data structures used for slicing are program dependence
graphs. They can also be used for different purposes: A new approach to
clone detection based on identifying similar subgraphs in program depen-
dence graphs is presented; it is able to detect modified clones better than other
tools.

In the theoretical part, this thesis presents a high-precision approach to slice
concurrent procedural programs despite that optimal slicing is known to be
undecidable. It is the first approach to slice concurrent programs that does not
rely on inlining of called procedures.

vi

Contents

1 Introduction 1
1.1 Slicing . 2

1.1.1 Slicing Sequential Programs 3
1.1.2 Slicing Concurrent Programs 4

1.2 Applications of Slicing . 6
1.3 Overview . 8
1.4 Accomplishments . 9

I Intraprocedural Analysis 11

2 Intraprocedural Data Flow Analysis 13
2.1 Control Flow Analysis . 13
2.2 Data Flow Analysis . 15

2.2.1 Iterative Data Flow Analysis 15
2.2.2 Computation of def and ref for ANSI C 18
2.2.3 Control Flow in Expressions 21
2.2.4 Syntax-directed Data Flow Analysis 22

2.3 The Program Dependence Graph 25
2.3.1 Control Dependence . 25
2.3.2 Data Dependence . 26
2.3.3 Multiple Side Effects . 27
2.3.4 From Dependences to Dependence Graphs 27

2.4 Related Work . 29

3 Slicing 31
3.1 Weiser-style Slicing . 31
3.2 Slicing Program Dependence Graphs 33
3.3 Precise, Minimal, and Executable Slices 35
3.4 Unstructured Control Flow . 36
3.5 Related Work . 37

3.5.1 Unstructured Control Flow 37
3.5.2 Other Forms of Slicing . 38

viii CONTENTS

4 The Fine-Grained PDG 39
4.1 A Fine-Grained Representation 39
4.2 Data Types . 42

4.2.1 Structures . 42
4.2.2 Arrays . 44
4.2.3 Pointers . 45

4.3 Slicing the Fine-Grained PDG . 46
4.4 Discussion . 47
4.5 Related Work . 49

5 Slicing Concurrent Programs 51
5.1 The Threaded CFG . 51
5.2 The Threaded PDG . 56

5.2.1 Control Dependence . 57
5.2.2 Data Dependence . 57
5.2.3 Interference Dependence 59
5.2.4 Threaded Program Dependence Graph 60

5.3 Slicing the tPDG . 61
5.4 Extensions . 65

5.4.1 Synchronized Blocks . 67
5.4.2 Communication via Send/Receive 67

5.5 Related Work . 68

II Interprocedural Analysis 73

6 Interprocedural Data Flow Analysis 75
6.1 Interprocedural Reaching Definitions 75
6.2 Interprocedural Realizable Paths 77
6.3 Analyzing Interprocedural Programs 79

6.3.1 Effect Calculation . 80
6.3.2 Context Encoding . 80

6.4 The Interprocedural Program Dependence Graph 81
6.4.1 Control Dependence . 81
6.4.2 Data Dependence . 82

6.5 Related Work . 84

7 Interprocedural Slicing 85
7.1 Realizable Paths in the IPDG . 85
7.2 Slicing with Summary Edges . 86
7.3 Context-Sensitive Slicing . 88

7.3.1 Explicitly Context-Sensitive Slicing 90
7.3.2 Limited Context Slicing 93
7.3.3 Folded Context Slicing . 93
7.3.4 Optimizations . 95

7.4 Evaluation . 96

CONTENTS ix

7.4.1 Precision . 98
7.4.2 Speed . 99
7.4.3 Influence of Data Flow Analysis Precision 101

7.5 Related Work . 102

8 Slicing Concurrent Interprocedural Programs 105
8.1 A Simple Model of Concurrency 106
8.2 The Threaded Interprocedural CFG 106
8.3 The Threaded Interprocedural PDG 109
8.4 Slicing the tIPDG . 110
8.5 Extensions . 115
8.6 Conclusions and Related Work 116

III Applications 117

9 Visualization of Dependence Graphs 119
9.1 Graphical Visualization of PDGs 119

9.1.1 A Declarative Approach to Layout PDGs 120
9.1.2 Evaluation . 123

9.2 Textual Visualization of Slices . 123
9.3 Related Work . 125

9.3.1 Graphical Visualization 125
9.3.2 Textual Visualization . 126

10 Making Slicing more Focused 127
10.1 Distance-Limited Slices . 127
10.2 Chopping . 129

10.2.1 Context-Insensitive Chopping 131
10.2.2 Chopping with Summary Edges 131
10.2.3 Mixed Context-Sensitivity Chopping 133
10.2.4 Limited/Folded Context Chopping 133
10.2.5 An Improved Precise Algorithm 136
10.2.6 Evaluation . 137
10.2.7 Non-Same-Level Chopping 142

10.3 Barrier Slicing and Chopping . 143
10.3.1 Core Chop . 146
10.3.2 Self Chop . 146

10.4 Abstract Visualization . 150
10.4.1 Variables or Procedures as Criterion 150
10.4.2 Visualization of the Influence Range 151

10.5 Related Work . 154
10.5.1 Dynamic Slicing . 154
10.5.2 Variations of Dynamic Slicing 156

x CONTENTS

11 Optimizing the PDG 157
11.1 Reducing the Size . 157

11.1.1 Moving to Coarse Granularity 158
11.1.2 Folding Cycles . 158
11.1.3 Removing Redundant Nodes 163

11.2 Increasing Precision . 168
11.2.1 Improving Precision of Call Graphs 168
11.2.2 Constant Propagation . 169
11.2.3 Common Subexpression Elimination 170

11.3 Related Work . 172

12 Identifying Similar Code 175
12.1 Identification of Similar Subgraphs 177
12.2 Implementation . 181

12.2.1 Weighted Subgraphs . 181
12.2.2 Visualization . 181

12.3 Evaluation . 183
12.3.1 Optimal Limit . 185
12.3.2 Minimum Weight . 186
12.3.3 Running Time . 186

12.4 Comparison with other Tools . 189
12.5 Related Work . 190

13 Path Conditions 193
13.1 Simple Path Conditions . 193

13.1.1 Execution Conditions . 194
13.1.2 Combining Execution Conditions 195
13.1.3 SSA Form . 196

13.2 Complex Path Conditions . 198
13.2.1 Arrays . 198
13.2.2 Pointers . 200

13.3 Increasing the Precision . 201
13.4 Interprocedural Path Conditions 202

13.4.1 Truncated Same-Level Path Conditions 202
13.4.2 Non-Truncated Same-Level Path Conditions 203
13.4.3 Truncated Non-Same-Level Path Conditions 203
13.4.4 Non-Truncated Non-Same-Level Path Conditions 204
13.4.5 Interprocedural Execution Conditions 204

13.5 Multi-Threaded Programs . 206
13.6 Related Work . 207

14 VALSOFT 209
14.1 Overview . 209

14.1.1 C Frontend . 209
14.1.2 SDG Library . 209
14.1.3 Analyzer . 210

CONTENTS xi

14.1.4 The Slicer . 212
14.1.5 The Solver . 212
14.1.6 The GUI . 212
14.1.7 The ‘Tool Chest’ . 212
14.1.8 An Approximate Dynamic Slicer 213
14.1.9 The Duplicated Code Detector 213

14.2 Other Systems . 214

15 Conclusions 217

A Additional Plots 219

Bibliography 223

xii CONTENTS

List of Algorithms

2.1 Iterative computation of the MFP solution 18
3.1 Slicing in PDGs . 34
4.1 Slicing Fine-Grained PDGs . 48
5.1 Slicing in tPDGs . 64
7.1 Summary Information Slicing (in SDGs) 87
7.2 Computing Summary Edges . 89
7.3 Explicitly Context-Sensitive Slicing 91
7.4 Folded Context-Sensitive Slicing 94
8.1 Slicing Algorithm for tIPDGs, Sθ 114
8.2 Improved Slicing Algorithm for tIPDGs 115
10.1 Context-Insensitive Chopping . 132
10.2 Chopping with Summary Edges 133
10.3 Mixed Context-Sensitivity Chopping 134
10.4 Explicitly Context-Sensitive Chopping 135
10.5 Merging Summary Edges . 136
10.6 Computation of Blocked Summary Edges 145
11.1 Removing Redundant Nodes . 166
11.2 Removing Unrealizable Calls . 168
12.1 Generate Gk

n1
and Gk

n2
. 180

xiv LIST OF ALGORITHMS

List of Figures

1.1 A program dependence graph 3
1.2 A procedure-less program . 3
1.3 A program with two procedures 4
1.4 A program with two threads . 5
1.5 Another program with two threads 6

2.1 Example program and its CFG 14
2.2 A simple grammar with assignments as expressions 19
2.3 Computation of def, ref and acc 19
2.4 Computation of may- and must-versions 23
2.5 Computation of may- and must-versions of gen and kill 24
2.6 The program dependence graph for figure 2.1 28
2.7 Example program and its CFG 29
2.8 Modified CFG and its PDG . 30

3.1 Sliced example program and its PDG 34

4.1 Excerpt of a fine-grained PDG 42
4.2 Partial PDG for a use of structures 43
4.3 Slices as computed by different slicers 44
4.4 Partial PDG for a use of arrays 45
4.5 Partial PDG for a use of pointers 46

5.1 A threaded program . 52
5.2 A threaded CFG . 53
5.3 A tCFG prepared for control dependence 58
5.4 A threaded PDG . 60
5.5 A program with nested threads 61
5.6 The tPDG of Figure 5.5 . 62
5.7 Calculation of Sθ(4) . 66
5.8 A tCFG with communication dependence 69
5.9 Control dependence for tCFG from figure 5.8 70

6.1 Simple example for reaching definitions 76

xvi LIST OF FIGURES

6.2 Interprocedural control flow graph 77
6.3 ICFG with data dependence . 82

7.1 A simple example with a procedure 86
7.2 Counter example for Agrawal’s ECS 92
7.3 Details of the test-case programs 96
7.4 Precision of kLCS and kFCS (avg. size) 97
7.5 Context-insensitive vs. context-sensitive slicing 98
7.6 Precision of kLCS (avg. size) . 99
7.7 Runtimes of kLCS and kFCS (sec.) 100

9.1 The graphical user interface . 122
9.2 A small code fragment with position intervals 124
9.3 Intervals after transformation 125

10.1 Evaluation of length-limited slicing 128
10.2 Distance visualization of a slice 130
10.3 Precision of MCC, kLCC and kFCC (in %) 138
10.4 Context-insensitive vs. context-sensitive chopping 139
10.5 Approximate vs. context-sensitive chopping 140
10.6 Precision of kFCC (avg. size) . 140
10.7 Runtimes of kLCC and kFCC (in sec.) 141
10.8 An example . 147
10.9 A chop for the example in figure 10.8 148
10.10 Another chop for the example in figure 10.8 149
10.11 Visualization of chops for all global variables 152
10.12 GUI for the chop visualization 153

11.1 Example for a PDG with cycles 159
11.2 Size reduction and effect on slicing 160
11.3 Size reduction and effect on chopping 162
11.4 Size reduction and effect of context-insensitive folding 162
11.5 Example for a SDG with redundant nodes 163
11.6 Size reduction (amount of nodes and edges removed) 167
11.7 A flawed C program . 170
11.8 PDG before common subexpression elimination 172
11.9 PDG after common subexpression elimination 173

12.1 Two similar pieces of code from agrep 176
12.2 Two simple graphs . 178
12.3 Visualization of similar code fragments 182
12.4 Results for bison . 185
12.5 Running times of bison . 187
12.6 Running times of compiler . 187
12.7 Results for compiler . 188
12.8 Results for twmc . 188

LIST OF FIGURES xvii

12.9 Results for test case cook . 190

13.1 Simple fragment with program dependence graph 194
13.2 Slice of the fragment . 194
13.3 Execution conditions . 195
13.4 Example with multiple definitions for variable x 196
13.5 Example in SSA form . 197
13.6 Example for an interprocedural path condition 205
13.7 Computation of PC2

NN(7, 10) for example 13.6 205

14.1 VALSOFT architecture . 210

xviii LIST OF FIGURES

List of Tables

7.1 Precision . 102

11.1 Fine-grained vs. coarse-grained SDGs 158
11.2 Time needed to fold cycles in SDGs 160
11.3 Evaluation . 167

12.1 Some test cases . 183
12.2 Running times . 184
12.3 Sizes . 184
12.4 Participants . 189

14.1 Code size of the VALSOFT components 213

xx LIST OF TABLES

Chapter 1

Introduction

Program slicing is a method for automatically decompos-
ing programs by analyzing their data flow and control
flow. Starting from a subset of a program’s behavior, slic-
ing reduces that program to a minimal form which still
produces that behavior. The reduced program, called a
“slice”, is an independent program guaranteed to repre-
sent faithfully the original program within the domain of
the specified subset of behavior.

Mark Weiser [Wei84]

Program slicing answers the question “Which statements may affect the
computation at a different statement?”, something every programmer asks
once in a while. After Weiser’s first publication on slicing in 1979, almost 25
years have passed and various approaches to compute slices have evolved.
Usually, inventions in computer science are adopted widely after around 10
years. Why are slicing techniques not easily available yet? William Griswold
gave a talk at PASTE 2001 [Gri01] on that topic: Making Slicing Practical: The
Final Mile. He pointed out why slicing is still not widely used today. The two
main problems are:

1. Available slicers are slow and imprecise.

2. Slicing ‘as-it-stands’ is inadequate to essential
software-engineering needs.

Not everybody agrees with his opinion. However, his first argument is based
on the observation that research has generated fast and precise approaches but
scaling the algorithms for real-world programs with million lines of code is still
an issue. Precision of slicers for sequential imperative languages has reached a
high level, but it is still a challenge for the analysis of concurrent programs—
only lately is slicing done for languages with explicit concurrency like in Ada

2 Introduction

or Java. The second argument is still valid: Usually, slices are hard to under-
stand. This is partly due to bad user interfaces, but is mainly related to the
problem that slicing ‘dumps’ the results onto the user without any explana-
tion.

This thesis will try to show how these problems and challenges can be tack-
led. Therefore, the three main topics are:

1. Present ways to slice concurrent programs more precisely.

2. Help the user to understand a slice more easily
by making it more focused on the user’s problem.

3. Give indications of the problems and consequences
of slicing algorithms for future developers.

Furthermore, this thesis gives a self-contained introduction to program slic-
ing. It does not try to give a complete survey because since Tip’s excellent sur-
vey [Tip95]1 the literature relevant to slicing has exploded: CiteSeer [LGB99]
recently reported 257 citations of Weiser’s slicing article [Wei84] (and 95 for
[Wei82]). This thesis only contains 187 references where at least 108 have been
published after Tip’s survey.

1.1 Slicing

A slice extracts those statements from a program that potentially have an influ-
ence on a specific statement of interest, which is the slicing criterion. Originally,
slicing was defined by Weiser in 1979; he presented an approach to compute
slices based on iterative data flow analysis [Wei79, Wei84]. The other main
approach to slicing uses reachability analysis in program dependence graphs
[FOW87]. Program dependence graphs mainly consist of nodes representing
the statements of a program and control and data dependence edges:

• Control dependence between two statement nodes exists if one statement
controls the execution of the other.

• Data dependence between two statement nodes exists if a definition of a
variable at one statement might reach the usage of the same variable at
another statement.

An example PDG is shown in figure 1.1 on the facing page, where control de-
pendence is drawn in dashed lines and data dependence in solid ones. How
control and data dependence is computed will be presented in chapter 2.

1Tip’s survey [Tip95] has been followed by some others [BG96, HG98, DL01, HH01].

1.1 Slicing 3

Entry

read(n) i := 1 s := 0 p := 1 write(s)while (i<=n) write(p)

i := i + 1p := p * is := s + i

read(n)

p := 1

i := 1

while (i<=n)

p := p * i
i := i + 1

write(s)
write(p)

s := s + i

s := 0

Figure 1.1: A program dependence graph

1.1.1 Slicing Sequential Programs

Example 1.1 (Slicing without Procedures): Figure 1.2 shows a first example where
a program without procedures shall be sliced. To compute the slice for the
statement print a, we just have to follow the shown dependences backwards.
This example contains two data dependences and the slice includes the assign-
ment to a and the read statement for b.

read a

read b

a = 2*b

print a

read c

Figure 1.2: A procedure-less program

In all examples of this introduction, we will ignore control dependence and
just focus on data dependence for simplicity of presentation. Also, we will
always slice backwards from the print a statement.

Slicing without procedures is trivial: Just find reachable nodes in the PDG
[FOW87]. The underlying assumption is that all paths are realizable. This means
that a possible execution of the program exists for any path that executes the
statements in the same order. Chapter 3 will discuss this in detail.

4 Introduction

read a

read b

a = 2*b

print a

proc Q():

a = a+1Q()

Q()

proc P():

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Trace:

P: read a

P: read b

Q: a = a+1

P: a = 2*b

Q: a = a+1

P: print a

Figure 1.3: A program with two procedures

Example 1.2 (Slicing with Procedures): Now, the example is extended by adding
procedures in figure 1.3. If we ignore the calling context and just do a traversal
of the data dependences, we would add the read a statement into the slice for
print a. This is wrong because this statement has clearly no influence on the
print a statement. The read a statement just has an influence on the first call
of procedure Q but a is redefined before the second call to procedure Q through
the assignment a=2*b in procedure P.

Such an analysis is called context-insensitive because the calling context is ig-
nored. Paths are now considered realizable only if they obey the calling con-
text. Thus, slicing is context-sensitive if only realizable paths are traversed.
Context-sensitive slicing is solvable efficiently—one has to generate summary
edges at call sites [HRB90]: Summary edges represent the transitive depen-
dences of called procedures at call sites. How procedural programs are ana-
lyzed will be discussed in chapter 6.

Within the implemented infrastructure to compute PDGs for ANSI C pro-
grams, various slicing algorithms have been implemented and evaluated. One
of the evaluations in chapter 7 will show that context-insensitive slicing is
very imprecise in comparison with context-sensitive slicing. This shows that
context-sensitive slicing is highly preferable because the loss of precision is not
acceptable. A surprising result is that the simple context-insensitive slicing is
slower than the more complex context-sensitive slicing. The reason is that the
context-sensitive algorithm has to visit many fewer nodes during traversal due
to its higher precision.

1.1.2 Slicing Concurrent Programs

Now, let’s move on to concurrent programs. In concurrent programs that share
variables another type of dependence arises: interference. Interference occurs
when a variable is defined in one thread and used in a concurrently executing
thread.

1.1 Slicing 5

read a

b = d

a = 2*b

print a

thread Q:thread P:
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

d = c

read c
.
.
.
.

Trace #1:

P: read a

Q: d = c

P: b = d

P: read c

P: a = 2*b

P: print a

Trace #2:

P: read a

P: b = d

P: read c

Q: d = c

P: a = 2*b

P: print a

Figure 1.4: A program with two threads

Example 1.3 (Slicing Concurrent Programs): In the example in figure 1.4 we have
two threads P and Q that execute in parallel. In this example, there are two
interference dependences: One is due to a definition and a usage of variable d,
the other is due to accesses to variable c.

A simple traversal of interference during slicing will make the slice imprecise
because interference may lead to unrealizable paths again. In the example in
figure 1.4, a simple traversal will include the read c statement into the slice.
But there is no possible execution where the read c statement has an influ-
ence on the assignment b=d. A matching execution would require time travel
because the assignment b=d is always executed before the read c statement.
A path through multiple threads is now realizable if it contains a valid execu-
tion chronology. However, even when only realizable paths are considered, the
slice will not be as precise as possible. The reason for this imprecision is that
concurrently executing threads may kill definitions of other threads.

Example 1.4: In the example in figure 1.5 on the next page, the read a state-
ment is reachable from the print a statement via a realizable path. But there is
no possible execution where the read statement has an influence on the print
statement when assuming that statements are atomic. Either the read state-
ment reaches the usage in thread Q but is redefined afterwards through the
assignment a=2*b in thread P, or the read statement is immediately redefined
by the assignment a=2*b before it can reach the usage in thread Q.

Müller-Olm has shown that precise context-sensitive slicing of concurrent
programs is undecidable in general [MOS01]. Therefore, we have to use con-
servative approximations to analyze concurrent programs. A naive approx-
imation would allow time travel, causing an unacceptable loss of precision.
Also, we cannot use summary edges to be context-sensitive because summary
edges would ignore the effects of parallel executing threads. Again, reverting
to context-insensitive slicing would cause an unacceptable loss of precision.

To be able to provide precise slicing without summary edges, new slicing
algorithms presented in chapter 7 have been developed based on capturing

6 Introduction

read a

read b

a = 2*b

print a

thread Q:

a = a+1

thread P:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

read c

.

.

.

.

Trace #1:

P: read a

P: read b

P: read c

Q: a = a+1

P: a = 2*b

P: print a

Trace #2:

P: read a

P: read b

P: read c

P: a = 2*b

Q: a = a+1

P: print a

Figure 1.5: Another program with two threads

the calling context through call strings [SP81]. Call strings can be seen as a
representation of call stacks. They are used frequently for context-sensitive
program analysis, e.g. pointer analysis. The call strings are propagated along
the edges of the PDG: At edges that connect procedures the call string is used
to check that a call always returns to the right call site. Thus, call strings are
never propagated along unrealizable paths.

The basic idea for the high-precision approach to slice concurrent programs
presented in chapter 8 is the adaption of the call string approach to concurrent
programs. The context is now captured through one call string for each thread.
The context is then a tuple of call strings which is propagated along the edges
in PDGs.

A combined approach avoids combinatorial explosion of call strings: Sum-
mary edges are used to compute the slice within threads. Additionally, call
strings are only generated and propagated along interference edges if the slice
crosses threads. With this approach many fewer contexts are propagated.

This only outlines the idea of the approach—this thesis will present in its
first two parts the foundations and algorithms for slicing sequential and con-
current programs in detail. Additionally, a major third part of this thesis will
presents optimizations and advanced applications of slicing.

1.2 Applications of Slicing

Slicing has found its way into various applications. Nowadays it is probably
mostly used in the area of software maintenance and reengineering. In the
following some applications are mentioned to show the broadness but most
will not be brought up in this thesis again.

1.2 Applications of Slicing 7

Debugging

Debugging was the first application of program slicing: Weiser [Wei82] real-
ized that programmers mentally ignore statements that cannot have an influ-
ence on a statement revealing a bug. Program slicing computes this abstraction
and allows one to focus on potentially influencing statements. Dicing [LW87]
can be used to focus even more, when additional statements with correct be-
havior can be identified. Dynamic slicing can be used to focus on relevant
statements for one specific execution revealing a bug [ADS93]. More work can
be found in [FR01].

Testing

Program slicing can be used to divide a program into smaller programs spe-
cific to a test case [Bin92]. This reduces the time needed for regression testing
because only a subset of the test cases has to be repeated [Bin98].

In [HD95] robustness slices, which give approximate answer to the question
whether a program is robust, are presented. Equivalent mutants can be de-
tected by slicing [HHD99].

Other work to be mentioned can be found in [GHS92, BH93b].

Program Differencing and Integration

Program differencing is the problem of finding differences between two pro-
grams (or between two versions of a program). Semantic differences can be
found using program dependence graphs. Program integration is the problem
of merging two program variants into a single program. With program de-
pendence graphs it can be assured that differences between the variants have
no conflicting influence on the shared program parts [HPR89, Hor90, HR91,
HR92, RY89].

Software Maintenance

If a change has to be applied to a program, forward slicing can be used to iden-
tify the potential impact of the change: The forward slice reveals the part of the
program that is influenced by a criterion statement and therefore is affected by
a modification to that statement. Decomposition slicing [GL91] uses variables
instead of statements as criteria.

Function Extraction and Restructuring

Slicing can also be used for function extraction [LV93, LV97]: Extractable func-
tions are identified by slices specified by a set of input variables, a set of output
variables and a final statement. Function restructuring separates a single func-
tion into independent ones; such independent parts can be identified by slicing
[LD98, LD99].

8 Introduction

Cohesion Measurement

Ott et al [OT89, Ott92, OT93, BO94, OB98] use slicing to measure functional co-
hesion. They define data slices which are a combination of forward and back-
ward slices. Such slices are computed for output parameters of functions and
the amount of overlapping indicates weak or strong functional cohesion.

Other Applications

Slicing is used in model construction to slice away irrelevant code, transition
system models are only build for the reduced code [HDZ00]. Slicing is also
used to decompose tasks in real-time systems [GH97]. It has even been used
for debugging and testing spreadsheets [RRB99] or type checking programs
[DT97, TD01].

1.3 Overview

This thesis is structured into three parts: First, intraprocedural analysis, sec-
ond, interprocedural analysis and slicing of sequential and concurrent pro-
grams, and last, another main part: applications of dependence graphs and
slicing.

The first part starts with an introduction to data flow analysis in the next
chapter. It is followed by an introduction to slicing based on Weiser’s original
definition and on program dependence graphs. Chapter 4 presents fine-grained
program dependence graphs and how ANSI C programs can be represented
with them. The last chapter of the first part presents an approach to slicing
concurrent programs (without procedures).

The second part is structured similarly to the first one: It starts with an in-
troduction to interprocedural data flow analysis. Interprocedural slicing based
on program dependence graphs is presented next in chapter 7, which also con-
tains an evaluation of various algorithms. The last chapter of part two de-
scribes the new approach to slicing concurrent procedural programs.

The third and main part contains applications. The starting chapter presents
two approaches to visualize dependence graphs both graphically and textually.
Chapter 10 contains various solutions to the problem that a traditional slice is
not focused and usually too large. That chapter also presents and evaluates
various chopping algorithms. Chapter 11 shows some approaches to reducing
the size of dependence graphs and to increasing their precision. Clone detec-
tion based on program dependence graphs is addressed in chapter 12. Path
conditions answer the question why a specific statement is in a slice; they are
presented in chapter 13. Chapter 14 describes the VALSOFT system in which
most of the presented work has been implemented. The last chapter completes
this thesis with conclusions.

1.4 Accomplishments 9

1.4 Accomplishments

This thesis is self-contained as much as possible and therefore contains presen-
tations of other authors’ work. Besides a thorough presentation of slicing, the
accomplishments of this thesis are:

• A fine-grained program dependence graph (chapter 4), which is able to
represent ANSI C programs including non-deterministic execution order.
It is a self-contained intermediate representation and the base of clone
detection and path condition computation.

• A high-precision approach to slicing concurrent procedure-less programs
(chapter 5). A preliminary version has been published as [Kri98].

• A new approach to slicing concurrent procedural programs (chapter 8).
This context-sensitive approach reaches a high precision, despite that
precise or optimal slicing is undecidable. This is the first approach that
does not need inlining and is able to slice concurrent recursive programs.

• Some variations of slicing and chopping algorithms within interprocedu-
ral program dependence graphs and a thorough evaluation of these algo-
rithms (sections 7.3, 7.4, 10.2). Most of this has already been published in
[Kri02].

• Fundamental ideas to visualizing dependence graphs (chapter 9), real-
ized in Ehrich’s master’s thesis [Ehr96].

• Some methods to make the results of slicing more focused (sections 10.1
and 10.3) or more abstract (section 10.4).

• Techniques to reduce the size of program dependence graphs without
worsening the precision of slicing (section 11.1).

• An approach to clone detection based on program dependence graphs
(chapter 12). This approach has a higher detection rate for modified
clones than other approaches, because it identifies similar semantics in-
stead of similar texts. After publication in [Kri01], the benefits and draw-
backs of this approach have been evaluated in a clone detection contest.

• Methods to generate path conditions for complex data structures, proce-
dures and concurrent programs (sections 13.2, 13.4 and 13.5). The general
approach of path conditions was introduced by Snelting [Sne96] and de-
veloped further by Robschink [Rob, RS02, SRK03].

• The design of the VALSOFT system and implementation of the data flow
analysis, dependence graph construction and various slicing and chop-
ping algorithms within it (chapter 14).

10 Introduction

Part I

Intraprocedural Analysis

Chapter 2

Intraprocedural Data Flow
Analysis

The following introduction to intraprocedural data flow analysis is based on
the problem of Reaching Definitions. A definition is a statement that assigns
some value to a variable. Usually, reaching definitions are not defined by the
statements in a program, but in terms of the control flow graph, which repre-
sents the flow of control between the statements of a program. A definition is
said to reach a given statement if there is a path from the definition to the given
statement without another definition of the same variable. Such a second def-
inition would kill the first—which will no longer reach the given statement on
that path (it may still reach the given statement on a different path).

2.1 Control Flow Analysis

To analyze a program, the control flow—the possible execution sequences of
the statements—must be understood first. This is obvious with only well-
structured constructs. However, as soon as constructs like goto statements are
involved that may lead to unstructured programs, the identification of possi-
ble control flow is non-trivial. For this reason, a graph-based representation is
usually used. This so-called flow graph is built out of the nodes representing the
statements and the edges representing the flow of control in between. In con-
trast to analysis for optimization purposes, we don’t merge statements to basic
blocks—instead, our goal is that any node represents at most one side effect.

A control flow graph (CFG) is a directed attributed graph G = (N, E, ns, ne, ν)
with node set N and edge set E. The statements and predicates are represented
by nodes n ∈ N and the control flow between statements is represented by
control flow edges (n, m) ∈ E, written as n ⇀ m. E contains control flow edge e,
iff the statement represented by node target(e) may immediately be executed
after the statement represented by source(e), i.e. no other statement is executed

14 Intraprocedural Data Flow Analysis

1 sum = 0
2 mul = 1
3 a = 1
4 b = read()
5 while (a <= b) {
6 sum = sum + a
7 mul = mul * a
8 a = a + 1
9 }
10 write(sum)
11 write(mul)

Figure 2.1: Example program and its CFG

in between. Two special nodes ns ∈ N and ne ∈ N are distinguished, the
START node ns and the EXIT node ne, which represent beginning and end of
the program. Node ns does not have predecessors and node ne does not have
successors. The function ν : E → {true, false, ε} is a mapping of the edges to
their attributes: If the statement represented by source(e) has an out-degree
> 1, it contains a predicate controlling which statement is executed afterwards
and the outgoing edges are attributed with true or false—the outcome of the
predicate. Other edges are marked with ε, which means not attributed.

Example 2.1: Figure 2.1 shows a small program and its control flow graph. The
nodes are numbered with the corresponding line number of the represented
statement.

The variables that are referenced at node1 n are denoted by ref(n), the variables
that are defined (or assigned) at n are denoted by def(n). Both functions can
be bound more formally to the nodes by extending the definition of the control
flow graph to G = (N, E, ns, ne, µ, ν), where µ is a function mapping nodes
to their attributes. It is defined as µ(n) = (def(n), ref(n)) or µdef(n) = def(n),
µref(n) = ref(n).

Most interesting problems are questions as to whether something (some
information or property) at a node n reaches a different node m. Part of such
a question is whether node m is reachable from n at all. Formally, a node n

is reachable (m ⇀? n) from another node m, if there is a path 〈m, . . . , n〉 in G,
i. e. “⇀?” is the transitive, reflexive closure of “⇀”. Normally it is assumed

1In the rest of this work we will use “node” and “statement” interchangeable, as they are bijec-
tively mapped.

2.2 Data Flow Analysis 15

that for any path in the CFG a corresponding execution of the program exists,
such that all statements are executed in the same order as the nodes of the path.
Of course, this is only a conservative approximation, as paths might exist that
are actually unrealizable. However, in general this is undecidable and therefore
all paths are assumed realizable.

If we pick some statements out of the node sequence of a path they are a
witness of a possible path:

Definition 2.1 (Witness)
A sequence 〈n1, . . . , nk〉 of nodes is called a witness, iff ni ⇀? ni+1 for all
1 6 i < k.

This means that a sequence of nodes is a witness, if all nodes are part of a path
through the CFG in the same order as in the sequence. Of course, every path is
a witness of itself, but a sequence can be a witness of multiple different paths.

Normally, the nodes of the flow-graph can be constructed in a syntax-directed
way during parsing. Most of the edges can be constructed that way, too. Edges
for goto statements etc. can be back-patched.

2.2 Data Flow Analysis

The purpose of data flow analysis is to compute the behavior of the analyzed
program in respect to the generated data, usually used for program optimiza-
tions, i.e. to check the circumstances for the application of optimizations. The
easiest and most widespread solutions are analyses that iterate over the con-
trol flow graph (called iterative data flow analysis). Another approach omits the
control flow graph and does the analysis directly on top of the (abstract) syn-
tax tree (called syntax-directed data flow analysis). Both approaches are presented
next.

2.2.1 Iterative Data Flow Analysis

The discussion of the reaching definitions example is resumed by formalizing
the problem:

Definition 2.2 (Reaching Definitions)
For any node n ∈ N in flow-graph G, let def(n) be the set of variables defined
at n. A definition of variable v at a node n (v ∈ def(n)) reaches a (not necessarily
different) node n ′, if a path P = 〈n1, . . . , nk〉 in G exists, such that

1. k > 1

2. n1 = n ∧ nk = n ′

3. ∀1 < i < k : v /∈ def(ni)

16 Intraprocedural Data Flow Analysis

The computation of reaching definitions can be described within a data
flow analysis framework. Therefore, the local abstract semantics are described
with a transfer function over the set of definitions x that reach a node n:

[[n]](x) =
(
x − kill(n)

)
∪ gen(n)

This equation means that definitions reaching the entry of a node n which are
not killed by n, reach the exit of n together with definitions generated by n.
Definitions can be represented in multiple ways. One possibility is to represent
them by node-variable pairs (n, v) containing the variable v that is defined at
n:

gen(n) = {(n, v) | v ∈ def(n)}

kill(n) = {(n ′, v) | v ∈ def(n) ∧ v ∈ def(n ′)}

Such representations can be simplified by enumerating all occurring defini-
tions: the set D contains all definitions of a program, the sets Dv contain all
definitions for a specific variable v and the sets Dn contain all definitions at a
node n. Then the equations are

gen(n) = Dn

kill(n) =
⋃

v∈def(n)

Dv

which are constant functions.
The next step is to define the abstract semantics over a path p = 〈n1, . . . , nk〉,

with the identity function [[]]id(x) = x:

[[p]] =

{
[[]]id p = 〈〉
[[〈n2, . . . , nk〉]] ◦ [[n1]] otherwise

A definition reaches a node n, if a path from the START node ns to n exists, on
which the definition is not killed according to definition 2.2 on the page before.
At the START node, no definition is available (an empty set of definitions). If
there exists more than one path, the reaching definitions of all paths are merged
(by union in this case):

RDMOP(n) =
⋃

p=〈s,...,n〉
[[p]](∅)

This is an instance of a meet-over-all-paths (MOP) solution. In presence of loops
there are infinite paths, which make the computation of the MOP solution im-
possible. Therefore, only the minimal-fixed-point (MFP) solution2 is computed:

RDMFP(n) =

{
∅ n = s

[[n]](
⋃

m⇀n RDMFP(m))

2Depending on the data flow problem, it can also be the maximal fixed point.

2.2 Data Flow Analysis 17

Because of the properties of the transfer functions and the data flow sets, the
MFP and the MOP solution coincide: The data flow sets form a (complete)
semi-lattice and the transfer functions form a distributive function space:

Definition 2.3 (Lattice)
A lattice L = (C,u,t) consists of a set of values C, a meet operation u and a join
operation t, such that

1. ∀x ∈ C : xt x = x and xu x = x (idempotency)

2. ∀x, y ∈ C : xt y = yt x ∧ xu y = yu x (commutativity)

3. ∀x, y, z ∈ C : (x t y) t z = x t (y t z) ∧ (x u y) u z = x u (y u z) (associa-
tivity)

4. ∀x, y ∈ C : xt (xu y) = x and xu (xt y) = x (absorption)

With only one operator L = (C,t) is a semi-lattice. A (semi-) lattice induces a
partial order v on the elements of C.

Lattices are used to represent the data flow facts, in the example of reaching
definitions the sets of definitions. Most data flow facts are sets, where the lattice
is the powerset. This can be represented as bit-vectors: if the set of data flow
facts is D, than C = 2D.

Definition 2.4 (Monotone Function Space)
A set of functions F defined on semi-lattice L = (C,t) is a monotone function
space, if

1. ∀f ∈ F : ∀x, y ∈ C : x v y ⇒ f(x) v f(y) (monotonicity)

2. ∃fid ∈ F : ∀x ∈ C : fid(x) = x (identity function)

3. ∀f, g ∈ F : f ◦ g ∈ F ∧ ∀x ∈ C : f ◦ g(x) = f(g(x))
(closed under composition)

Definition 2.5 (Data Flow Analysis Framework)
A monotone data flow analysis framework A = (L, F,t) consists of

1. the (complete) semi-lattice L = (C,t) with meet t for the data flow facts,
and

2. the monotone function space F defined on L.

A monotone data flow analysis framework is a distributive data flow analysis
framework, if ∀f ∈ F : ∀x, y ∈ C : f(xt y) = f(x)t f(y).

The iterative algorithm 2.1 on the following page of a monotone data flow
analysis framework computes the MFP solution; the monotonicity guarantees
termination and the existence of a fix-point. The MFP solution is a correct
albeit not necessarily precise solution of the data flow problem. It coincides

18 Intraprocedural Data Flow Analysis

Algorithm 2.1 Iterative computation of the MFP solution

Input: The control flow graph G = (N, E, ns, ne)
The function space F of transfer function [[n]]
The semi-lattice L = (C,t) of the data flow information
An initial value i ∈ C

Output: The mapping in from nodes to its data flow information

foreach n ∈ N do
in[n] = ⊥

in[ns] = i

Initialize the worklist:
W = {n | ns ⇀ n ∈ E}

while W 6= ∅, worklist is not empty do
W = W/{n}, remove one element from worklist
v =

⊔
m⇀n∈E[[m]](in[m])

if v 6= in[n] then
in[n] = v

W = W ∪ {m | n ⇀ m ∈ E}

return in

with the correct and precise MOP solution if it is based on a distributive data
flow analysis framework.

The equations of the reaching definitions fit in a distributive data flow anal-
ysis framework:

• The semi-lattice L is the powerset of the set D of all definitions in a pro-
gram (C = 2D), with meet operator t = ∪.

• The function space F is the set of all transfer functions [[n]] including the
identity [[]]id.

It can be proved that the function space is a distributive function space and
therefore the algorithm for the MFP solution computes the correct and precise
MOP solution.

2.2.2 Computation of def and ref for ANSI C

Up to now, the existence of def and ref has been assumed. However, the com-
putation of def and ref are non-trivial in presence of complex data structures.
This thesis focuses on the analysis of ANSI C [Int90], which makes the analysis
of expressions a complex task when the original program is not transformed
into a simpler intermediate representation first. The execution order in expres-
sions is (mostly) undefined in ANSI C and expressions cannot be represented in
a control flow graph structure. Therefore the expressions’ subtrees are copied
from the abstract syntax tree into the nodes of the control flow graph. The rest

2.2 Data Flow Analysis 19

E → s

E → c

E → E1+E2

E → E1=E2

Figure 2.2: A simple grammar with assignments as expressions

E1 → s2 : (d1, r1, a1) = (∅, ∅, {(n, vs)})

E1 → c : (d1, r1, a1) = (∅, ∅, ∅)
E1 → E2+E3 : (d1, r1, a1) = (d2 ∪ d3, r2 ∪ r3 ∪ a2 ∪ a3, ∅)
E1 → E2=E3 : (d1, r1, a1) = (d2 ∪ d3 ∪ a2, r2 ∪ r3 ∪ a3, ∅)

Figure 2.3: Computation of def, ref and acc

of this section shows how def and ref can be computed in a syntax-directed
way via the copied expression subtrees.

Figure 2.2 shows a grammar for simple expressions to start with. As in C,
expressions can be used as l- or r-values, which means as targets of assignments
(to the left) or as expressions to be evaluated (to the right of assignments). This
has to be distinguished if a variable s (a symbol) is accessed in an expression.
Therefore, a third set acc is used in addition to def and ref which captures the
accessed variables. For production E → s the access of s if represented by (n, v):
variable v is accessed at the node n in the abstract syntax tree. Because it is not
clear if the access to v is a use or a definition, only acc is set to {(n, v)}, while
ref and def are empty. An access to a constant (E → c) generates no access to
a variable. An operation on expressions like in production E → E1+E2 causes
the evaluation of E1 and E2 and any variable that is accessed in E1 or E2 must
now be put into ref. A definition through an assignment E → E1=E2 causes
the variables accessed in E1 to be defined and put into def, while the variables
accessed in E2 are evaluated and put into ref. This behavior is represented as
equations in figure 2.3, where (d, r, a) is used as a shorthand for (def, ref, acc).

Arrays

Now, a production E → a[E1] is added to allow array usage in the program.
In general it is undecidable if two array usages a[E1] and a[E2] access the
same array element. Therefore all elements of an array are accesses to the array
variable. An assignment to an array element only kills one element and leaves
the other untouched. There are two approaches to modeling this:

20 Intraprocedural Data Flow Analysis

1. Any assignment to an array element is assumed to be a non-killing assign-
ment, i.e. a new definition is created, but none eliminated. The equations
are extended with

E1 → E2[E3] : (d1, r1, a1) = (d2 ∪ d3, r2 ∪ r3 ∪ a3, a2)

and also the previous definition of kill(n) must be changed that no array
variable is killed:

kill(n) = {(n ′, v) | v ∈ def(n) ∧ v ∈ def(n ′) ∧ v is not an array}

2. Any assignment to an array element is assumed to be a killing modifica-
tion, i.e. the array is used before killed (the array is modified). Then the
equations are extended with

E1 → E2[E3] : (d1, r1, a1) = (d2 ∪ d3, r2 ∪ r3 ∪ a3 ∪ a2, a2)

and the definition of kill(n) stays unchanged.

Both approaches are conservative approximations and must be chosen depen-
dent on the intended application. Due to other reasons which will be explained
later, the killing modification is the preferred way in this work.

Structures and Unions

ANSI C allows aggregation of types to complex data types, called structures
and unions. A variable of structure or union type contains fields that can be
accessed without accessing the other fields. To handle structures and unions
scalar replacement is used. Any access to a variable (or a field of a variable) is
replaced by accesses to the contained fields as scalar variables. Because fields
can be structures or unions themselves, this is done recursively. Let SR(v) re-
turn the set of variables generated by scalar replacement for a variable v. Then
the equations are extended and modified with:

E1 → E2.f : (d1, r1, a1) = (d2, r2, {(n, vi.f) | (n, vi) ∈ a2})

The scalar replacement is done in the kill(n) and gen(n) functions:

gen(n) = {(n, v) | v ′ ∈ def(n) ∧ v ∈ SR(v)}

kill(n) = {(n ′, v) | v ′ ∈ def(n) ∧ v ′ ∈ def(n ′) ∧ v ∈ SR(v ′)}

Unions cause a slight problem because the fields of a union share the same
space: an access to a field may access some other fields of the union, too. Again,
this is handled through the scalar replacement: Let UR(v) return the set of
variables which share a union with variable v.

gen(n) = {(n, v) | v ′ ∈ def(n) ∧ v ∈ SR(v ′)∪UR(v ′)}

kill(n) = {(n ′, v) | v ′ ∈ def(n) ∧ v ′ ∈ def(n ′) ∧ v ∈ SR(v ′)}

Because it is compiler dependent which other fields of a union share the space
with an accessed field, a definition must not kill other fields of the union.

2.2 Data Flow Analysis 21

Pointer Usage

A real problem is the presence of pointers: They cannot be tackled by a simple
solution like scalar replacement. A special data flow analysis is needed which
also handles the combination with structures, unions and arrays. Pointer anal-
ysis is too complex to be discussed here and we assume a function PT(v, n)
that returns—for an access to a variable v—the set of variables v can point to
at n. Again, this function is integrated into the kill(n) and gen(n) functions us-
ing the scalar replacement. An extensive amount of literature exists for pointer
and alias analysis and among hundreds of works, [HP00, Hin01] can be used
for an introduction. For the analysis system which will be discussed later, a
flow-insensitive but context-sensitive alias analysis of Burke et al [BCCH95]
has been implemented.

The equations are extended to obey pointer usage:

E1 → &E2 : (d1, r1, a1) = (d1, r1, {(n, &v) | (n, v) ∈ a2}

E1 → *E2 : (d1, r1, a1) = (d1, r1, {(n, ∗v) | (n, v) ∈ a2}

E1 → E2->f : (d1, r1, a1) = (d1, r1, {(n, ∗v.f) | (n, v) ∈ a2}

Other Forms of Assignments

ANSI C knows a series of special forms of assignments that are trivial to ana-
lyze:

E1 → E2+=E3 : (d1, r1, a1) = (d2 ∪ d3 ∪ a2, r2 ∪ r3 ∪ a3, a2)

E1 → ++E2 : (d1, r1, a1) = (d2 ∪ a2, r2 ∪ a2, a2)

where += stands for any modifying assignment and ++ stands for any pre- or
post-modifying operator.

2.2.3 Control Flow in Expressions

For some expressions, ANSI C defines an execution order. It even allows some
expressions to be evaluated or not. Examples for such expressions are:

Comma operator. Expressions separated by the comma operator are evalu-
ated in left-to-right order and the rightmost expression is used as result.
All expressions to the left of a comma are evaluated (r-value expressions)
and the last expression can be used as a r-value or even as an l-value, e.g.
(a,b,c).f or (x,y)=(a,b) is possible.

Question-mark operator. The question-mark operator is like an ‘if’ for expres-
sions. Depending on the outcome of the predicate to the left of the ques-
tion operator ?, one of the two expressions to the right is used as r- or
l-value, e.g. a=x?y:z or even x?y:z=a.

22 Intraprocedural Data Flow Analysis

Shortcut operator. Predicates using logical shortcut operators || or && allow
to skip the evaluation of the expression to the right of the operator if the
result of the complete expression is clear after evaluating the expression
to the left. For example in p || q the expression q must not be evaluated
if p has been evaluated to true.

For compiling purposes, such expressions are normally transformed to state-
ments first, so that a control flow graph can be used and all expressions are
free of control flow. Again, if transformations are not allowed, these expres-
sions need special attention. First of all, definitions (and uses) have to be dis-
tinguished between must happen and may happen: a definition to the left of
a shortcut operator must happen, if the complete expression is evaluated, but
a definition to the right may or may not happen. Second, all equations must
be extended to compute def, ref and acc in may- and must-versions. The may-
versions are notated as d?, r?, a? and the must-versions as d!, r!, a!. Some of the
equations are shown in figure 2.4 on the next page.

Because these three classes of operations define control flow inside expres-
sions, the killing of uses and definitions must be obeyed. The presented equa-
tions ignore killing so far. Instead of changing def, ref and acc, the equations
are extended to already compute kill and gen. For presentation purposes, only
some extended equations are shown in figure 2.5 on page 24 and aliasing and
scalar replacement is ignored.

2.2.4 Syntax-directed Data Flow Analysis

A different approach to the problem of reaching definitions is to ignore the
control flow graph and to solve it based on the abstract syntax tree. The key
insight is that in well-structured programs the control flow is obvious. The
following equations show how the transfer functions are combined:

[[if E then S1 else S2]] = ([[S1]]∪ [[S2]])[[E]]

[[S1]];[[S2]] = [[S2]][[S1]]

[[ε]] = [[]]id

Under the condition that [[S]][[S]] = [[S]] holds (for reaching definitions), the fol-
lowing equation is valid:

[[while E do S1]] = [[E]]∪ ([[E]][[S1]][[E]])

This might raise the impression that a syntax-directed approach is easier to
implement than an iterative framework. However, this is a wrong impression—
looking at the syntax-directed computation of gen and kill in the previous sec-
tions, you get a glimpse of an implementation’s complexity. The problem is not
the theoretical complexity, but the sheer amount of implementation work. De-
spite that, the implementation of the analysis tool presented in the next chap-
ters includes a traditional as well as a syntax-directed computation of reaching
definitions for evaluation and debugging purposes.

2.2 Data Flow Analysis 23

E1 → s2 :

(d!
1, r!

1, a!
1) = (∅, ∅, {(n, vs)})

(d?
1, r?

1, a?
1) = (∅, ∅, ∅)

E1 → c :

(d!
1, r!

1, a!
1) = (∅, ∅, ∅)

(d?
1, r?

1, a?
1) = (∅, ∅, ∅)

E1 → E2+E3 :

(d!
1, r!

1, a!
1) = (d!

2 ∪ d!
3, r!

2 ∪ r!
3 ∪ a!

2 ∪ a!
3, ∅)

(d?
1, r?

1, a?
1) = (d?

2 ∪ d?
3, r?

2 ∪ r?
3 ∪ a?

2 ∪ a?
3, ∅)

E1 → E2=E3 :

(d!
1, r!

1, a!
1) = (d!

2 ∪ d!
3 ∪ a!

2, r!
2 ∪ r!

3 ∪ a!
3, ∅)

(d?
1, r?

1, a?
1) = (d?

2 ∪ d?
3 ∪ a?

2, r?
2 ∪ r?

3 ∪ a?
3, ∅)

E1 → E2?E3:E4 :

(d!
1, r!

1, a!
1) = (d!

2, r!
2 ∪ a!

2, ∅)
d?

1 = d?
2 ∪ d?

3 ∪ d?
4 ∪ d!

3 ∪ d!
4

r?
1 = r?

2 ∪ r?
3 ∪ r?

4 ∪ a?
2 ∪ r!

3 ∪ r!
4

a?
1 = a?

3 ∪ a?
4 ∪ a!

3 ∪ a!
4

E1 → E2||E3 :

(d!
1, r!

1, a!
1) = (d!

2, r!
2 ∪ a!

2, ∅)
d?

1 = d?
2 ∪ d?

3 ∪ d!
3

r?
1 = r?

2 ∪ r?
3 ∪ a?

2 ∪ a?
3 ∪ r!

3 ∪ a!
3

a?
1 = ∅

E1 → E2, . . . ,En :

d!
1 =

⋃
26i6n d!

i

r!
1 =

⋃
26i6n r!

i ∪
⋃

26i<n a!
i

a!
1 = a!

n

d?
1 =

⋃
26i6n d?

i

r?
1 =

⋃
26i6n r?

i ∪
⋃

26i<n a?
i

a?
1 = a?

n

Figure 2.4: Computation of may- and must-versions

24 Intraprocedural Data Flow Analysis

E1 → s2 :

(d!
1, r!

1, a!
1, g!

1, k!
1) = (∅, ∅, {(n, vs)}, ∅, ∅)

(d?
1, r?

1, a?
1, g?

1, k?
1) = (∅, ∅, ∅, ∅, ∅)

E1 → E2+E3 :

g!
1 = g!

2 ∪ g!
3

k!
1 = k!

2 ∪ k!
3

g?
1 = g?

2 ∪ g?
3

k?
1 = k?

2 ∪ k?
3

E1 → E2 = E3 :

g!
1 = g!

2 ∪ g!
3 ∪ a!

2
k!

1 = k!
2 ∪ k!

3 ∪ {v|(n, v) ∈ a!
2}

g?
1 = g?

2 ∪ g?
3 ∪ a?

2
k?

1 = k?
2 ∪ k?

3 ∪ {v|(n, v) ∈ a?
2}

E1 → E2?E3:E4 :

g!
1 = {(n, v) | (n, v) ∈ g!

2 ∪ a!
2 ∧ v /∈ k!

3 ∩ k!
4}

k!
1 = k!

2 ∪ (k!
3 ∩ k!

4))

g?
1 = {(n, v) | (n, v) ∈ g?

2 ∪ a?
2 ∧ v /∈ k!

3 ∩ k!
4}∪ g?

3 ∪ g?
4 ∪ g!

3 ∪ g!
4

k?
1 = k?

2 ∪ k?
3 ∪ k?

4 ∪ (k!
3 − k!

4)∪ (k!
4 − k!

3))

Figure 2.5: Computation of may- and must-versions of gen and kill

2.3 The Program Dependence Graph 25

The syntax-directed approach is even possible with well-structured jumps
like break, continue or return statements. This is based on a simple trick: every
statement (which may contain other statements) is assumed to be left through
one of four possible exits:

1. The statement is entered, computation proceeds and it is left normally;
no jump is encountered.

2. The statement is entered and left by a return statement (after some com-
putation).

3. The statement is left by a break statement, or

4. by a continue statement.

Now, for every statement four matching transfer functions are defined describ-
ing the data flow on each of the four possible executions.

2.3 The Program Dependence Graph

A program dependence graph [FOW87] is a transformation of a CFG, where the
control flow edges have been removed and two other kinds of edges have
been inserted: control dependence and data dependence edges. These edges repre-
sent the effects of control flow and reaching definitions more directly: control
dependence exists, if one statement is controlling the execution of a different
statement. Data dependence exists, if a definition at a node reaches a different
node and is used there.

2.3.1 Control Dependence

Node m is called a post-dominator of Node n, if any path from n to the EXIT node
ne must go through m. A node n is called a pre-dominator of m if any path from
the START node ns to m must go through n. In typical programs, statements in
loop bodies are pre-dominated by the loop entry and post-dominated by the
loop exit.

Definition 2.6 (Control Dependence)
A node m is called (direct) control dependent on node n, if

1. there exists a path p from n to m in the CFG (n ⇀? m),

2. m is a post-dominator for every node in p except n, and

3. m is not a post-dominator for n.

This basically means that at node n at least two outgoing edges exist: all paths
to the EXIT node along one edge pass through m and all paths along the other
edge don’t.

26 Intraprocedural Data Flow Analysis

Depending on the definition whether a node post- or pre-dominates itself, a
node can be control dependent on itself. Some authors do not allow this, some
do. If a node post-dominates itself, the predicate of a while loop is control
dependent on itself. On the other hand, if a node never post-dominates itself,
the control dependences of while loops and if-statements are identical.

There are two ways to compute control dependence: the traditional and the
syntax-directed approach, which will both be presented next.

Syntax-directed Computation of Control Dependence

Within well-structured programs that just contain if-statements and loops with-
out jump statements like goto, break, continue or return, the control depen-
dence can easily be computed during traversal of the abstract syntax tree:

• Every statement is directly control dependent on its enclosing if- or loop-
statement predicate.

• If nodes post-dominate themselves, every loop-statement predicate is
control dependent on itself.

An important observation is that when nodes never post-dominate them-
selves, the control dependence subgraph of a well-structured program is a tree.

Traditional Computation of Control Dependence

The traditional approach to compute control dependence is to first compute
the post-dominator tree with the fast Lengauer-Tarjan algorithm [LT79]. The
second step is to traverse all control flow edges: For every m ⇀ n the ances-
tors of n in the post-dominator tree are traversed backwards to the parent of
m, marking all visited nodes as control dependent on m (see [FOW87] for a
detailed description).

2.3.2 Data Dependence

Two nodes are data dependent on each other, if a definition at one node might
be used at the other node:
Definition 2.7 (Data Dependence)
A node m is called data dependent on node n, if

1. there is a path p from n to m in the CFG (n ⇀? m),

2. there is a variable v, with v ∈ def(n) and v ∈ ref(m), and

3. for all nodes k 6= n of path p, v /∈ def(k) holds.

This is very much similar to the problem of reaching definitions: if a defini-
tion of a variable v at node n is a reaching definition at m and m uses variable
v, then m is data dependent on n. Thus, the computation of data dependence
is straightforward: compute the reaching definitions first and then check every
node if it uses a variable of a reaching definition.

2.3 The Program Dependence Graph 27

2.3.3 Multiple Side Effects

Up to now, the possibility of multiple side effects in expressions has been ig-
nored. Because assignments are expressions, an expression may contain multi-
ple assignments. In ANSI C it is common to make use of multiple assignments:
pre- and post-modifying operators are very comfortable and typically used as
in x = a[i++]. But what happens inside a single expression if a variable has a
side effect and is accessed a second time? The ANSI C standard [Int90] allows
an undefined behavior under such circumstances. This is adequate for com-
pilers, but not for reverse engineering, program understanding or debugging
purposes. There are two ways to deal with this:

1. Follow the ANSI C standard and ignore data dependence inside expres-
sions. This might be awkward for users especially in conjunction with
procedure calls (an example will be given in section 4.1).

2. Allow data dependence inside expressions. However, these dependences
cannot be ‘back-patched’ while computing kill and gen: an expression
like x = x+1 contains a use and a definition of x, but has no inside data
dependence. Therefore the equations for (d, r, a, g, k) must be extended
to compute the generated data dependences.

The implemented analysis system uses the second approach. However, the
extensions to the equations will provide no new insights and thus are not pre-
sented here.

2.3.4 From Dependences to Dependence Graphs

Once the control and data dependence have been computed, it is a simple task
to build a dependence graph: The program dependence graph (PDG) consists of

the nodes of the CFG, control dependence edges n
cd
⇀ m for nodes m which are

control dependent on nodes n, and data dependence edges n
dd
⇀ m for nodes

m which are data dependent on nodes n.

Example 2.2: Figure 2.6 on the next page shows the PDG for the example in
figure 2.1 on page 14. The nodes are exactly those of the corresponding control
flow graph, except for the absent EXIT node.

Without modifications, the control dependence subgraphs have no single
root because the top most statements will not be control dependent on any-
thing. On the other hand, it is desirable that there exists a single root, which
should be the START node. This is usually achieved by inserting an irrelevant
control flow edge from the START to the EXIT node. The effect is that no other
node than the EXIT node post-dominates the START node and the START node will
be the root in the control dependence subgraph. Normally, the EXIT node will
be omitted from the program dependence graph, as it has no in- or outgoing
dependence edges. The irrelevant edge is ignored during data flow analysis.

28 Intraprocedural Data Flow Analysis

Figure 2.6: The program dependence graph for figure 2.1

This special handling of the START node can be seen as the introduction of
a region node that joins nodes of a region. In [FOW87] such nodes are inserted
at several places. It is observed that control dependence is nonintuitive, as a
predicate node has more than one outgoing control dependence edge marked
with true and mixed with more than one marked with false. The purpose
of region nodes is to summarize the set of outgoing control dependence edges
with the same attribute and group together all nodes with incoming control
dependence edges coming from the same node with the same attribute. The
result is that predicate nodes have only two successors like in the control flow
graph. An algorithmic solution which inserts such region nodes is given in
[FOW87]. Instead, it is now shown how such region nodes can be inserted by
a modified construction of the control flow graph.

Remember the insertion of an irrelevant edge to make START a region node.
The insertion of irrelevant edges can also be used for insertion of other region
nodes. In well structured programs, the regions which should be summarized
can be identified clearly as single-entry-single-exit blocks. Between the pred-
icate node and the entry of such a block a control flow edge attributed with
true or false exists. The first step is to insert a region node before the entry
node, an unattributed control flow edge from the region to the entry node and
redirect the attributed control flow edge to the region node instead. The region
node will use the identity transfer function [[]]id and therefore this modification
has no influence on the results of the data flow analysis. The second modifica-
tion is to insert an irrelevant edge from the region node to the successor of the
block’s exit node. Because the program is well structured, the node has only
one successor.

Example 2.3: Figure 2.7 on the next page shows a small program and its (tra-
ditional) CFG. First, the modifications will insert an irrelevant edge between
START and EXIT. Next, two new region nodes are inserted for the two single-
entry-single-exit regions consisting of nodes 3/4 and 6/7. They are also con-
nected to the predicate node and the last node of their region (nodes 4 resp. 7).
The resulting CFG is shown in Figure 2.8 on page 30, together with the result-

2.4 Related Work 29

1 a = read()
2 if (a>0) {
3 b = a + 1
4 c = a * 2
5 } else {
6 b = a - 1
7 c = a / 2
8 }
9 write(b)
10 write(c)

Figure 2.7: Example program and its CFG

ing PDG. The nodes of the two branches are now cleanly separated under the
two region nodes.

2.4 Related Work

Broad discussions of intraprocedural data flow analysis are contained in [Hec77,
MJ81, ASU85, Muc97, NNH99]. The data flow analysis frameworks have been
introduced and proved in [Kil73, KU77].

Dependence graphs have long been an intermediate representation in com-
piler optimizations [KKP+81], mostly representing variations of data depen-
dence. Control dependence is the main contribution of program dependence
graphs, which have been introduced in [OO84, FOW87], targeted as an inter-
mediate representation for optimization and as an representation for software
development environments. Horwitz et al [HPR88] show that program depen-
dence graphs capture a program’s behavior. Cartwright and Felleisen [CF89]
show that a PDG has the same semantics as the program it represents. Selke
[Sel89] also worked on semantics of dependence graphs.

A syntax-directed approach to construct program dependence graphs is
presented in [HMR93, HR96]. This approach basically constructs the control
dependence subgraph like presented in section 2.3.1. Because the control de-
pendence subgraph is ordered, it is used instead of the control flow graph for
iterative computation of the data dependences. In presence of unstructured
control flow, the control dependence subgraph is adjusted and additional in-
formation is inserted.

Program dependence graphs also have many applications in software en-
gineering [HR92]. A main application there is program slicing, which will be
discussed in the next chapter.

30 Intraprocedural Data Flow Analysis

Figure 2.8: Modified CFG and its PDG

Chapter 3

Slicing

Mark Weiser showed in [Wei82] that programmers mentally build abstractions
of programs while debugging. These abstractions, called slices, are informally
defined as statements that may have an influence on a statement under con-
sideration. In [Wei84] he gave a formal definition of slices and an algorithm to
compute them. Since Weiser’s publishings many variations and applications
of his original definitions arose. In the following, his original approach (called
Weiser-style slicing) and another widespread approach based on program de-
pendence graphs will be presented.

3.1 Weiser-style Slicing

Weiser has formally defined a slice as any subset of a program, that preserves a
specific behavior with respect to a criterion. The criterion, also called the slicing
criterion, is a pair c = (s, V) consisting of a statement s and a subset V of the
analyzed program’s variables.

Definition 3.1 (Weiser-style Slice)
A slice S(c) of a program P on a slicing criterion c is any executable program
P ′, where

1. P ′ is obtained by deleting zero or more statements from P,

2. whenever P halts on a given input I, P ′ will halt for that input, and

3. P ′ will compute the same values as P for the variables of V on input I.

The most trivial (but irrelevant) slice of a program P is always the program
P itself. Slices of interest are as small as possible:

Definition 3.2 (Statement-Minimal Slice)
A slice S(c) of a program P with respect to a criterion c is a statement-minimal
slice, iff no other slice of P with respect to c with fewer statements exists.

32 Slicing

In general, it is undecidable if a slice S(c) is statement minimal [Wei84].
Weiser presented an approximation based on identifying relevant variables
and statements. Implemented as an iterative data flow analysis, the directly
relevant variables and statements with respect to criterion c are computed:

R0
c(n) =

⋃
n⇀m

{v ∈ R0
c(m) | v /∈ def(n)}

∪
⋃

n⇀m

{v ∈ ref(n) | def(n)∩ R0
c(m) 6= ∅}

S0
c =

⋃
n⇀m

{n | def(n)∩ R0
c(m) 6= ∅}

A variable v is relevant at a node n, v ∈ R0
c(n), iff it is relevant at a successor m

of n and not defined (killed) at n, or v is referenced (used) at n and a variable
w exists that is defined at n and relevant at a successor m. A statement n is
relevant, s ∈ S0

c, iff a variable v which is defined at n exists and is relevant at a
successor m of n. R0

c can be written as a transfer function:

[[n]]R0
c
(x) = (x − def(n))∪ {v ∈ ref(n) | x∩ def(n) 6= ∅}

For a criterion c = (s, V), the framework is initialized with R0
c(s) = V and

∀n 6= s : R0
c(n) = ∅. The computed minimal fixed point of S0

c contains basically
the reaching definitions for variables from V at s together with the transitive
data dependent nodes. The next step is to trace control dependence: the range
of influence INFL(n) contains the statements that are control dependent on n.
The results from the first step are now expanded iteratively until a fixed point
is reached:

Bk
c = {m | Sk

c ∩ INFL(m) 6= ∅}
Rk+1

c (n) = Rk
c(n)∪

⋃
m∈Bk

c

R0
(m,ref(m))(n)

Sk+1
c = Bk

c ∪
⋃

n⇀m

{n | def(n)∩ Rk+1
c (m) 6= ∅}

The indirectly relevant variables Rk
c and statements Sk

c are expanded by the set
Bk

c of all statements on which the relevant statements are control dependent:

• The relevant variables Rk
c(n) are expanded by variables directly rele-

vant to the statements in Bk
c : Basically, new criteria (m, ref(m)) are con-

structed, consisting of the statements m ∈ Bk
c and the referenced vari-

ables at m. The directly relevant variables are computed for the new
criteria and added to the indirectly relevant variables.

• The relevant statements Sk
c are computed from the statements of Bk

c and
all statements having relevant variables.

The final slice S(c) is the minimal fixed point for Sk
c .

3.2 Slicing Program Dependence Graphs 33

3.2 Slicing Program Dependence Graphs

Ottenstein and Ottenstein [OO84] were the first who suggested the use of pro-
gram dependence graphs to compute Weiser’s slices. Slicing on the PDG of
a sequential program is a simple graph reachability problem, because control
and data dependence is transitive.

Definition 3.3
A node m is called transitive dependent on node n, if

1. there is a path p = 〈n1, . . . , nk〉 with n = n1 and m = nk where every
ni+1 is control or data dependent on ni, and

2. p is a witness in the CFG.

Note that the composition of control and data dependence is always tran-
sitive: A dependence between x and y and a dependence between y and z

imply a path between x and z resulting from the definition of control and data
dependence.

Observation 3.1 A path in a PDG implies a path in the CFG:

m ⇀? n in the PDG =⇒ m ⇀? n in the CFG

Definition 3.4 (Slice)
The (backward) slice S(n) of a PDG at node n consists of all nodes on which n

(transitively) depends:
S(n) = {m | m ⇀? n}

The node n is called the slicing criterion.

This definition of a slice depends on a different slicing criterion than in
Weiser-style slicing. Here, a criterion is a node in the program dependence
graph, which identifies a statement together with the variable used in it. There-
fore, these criteria are more restricted than Weiser-style criteria, where slices
can be computed at statements for any set of variables. If a slice is to be com-
puted at a node n for a variable that is not referenced at n, the program must
be modified before analysis begins: a negligible use of that variable must be
inserted at n.

The definition of a slice in program dependence graphs is implemented
easily through a graph reachability algorithm: A (backward) slice to a node (the
slicing criterion) is the set of nodes from which the criterion node is reachable
(algorithm 3.1 on the next page).

Example 3.1: Figure 3.1 on the following page shows the example program
from the last chapter (figures 2.1 on page 14 and 2.6 on page 28). The shown
slice is S(11) = {2, 3, 4, 5, 7, 8, 11}: the computation of the sum has no influence
on the computation of the product.

34 Slicing

Algorithm 3.1 Slicing in PDGs

Input: A PDG G = (N, E)
A slicing criterion s ∈ N

Output: The slice S ⊆ N

W = {s}

S = {s}, mark s as visited
while W 6= ∅, worklist is not empty do

W = W/{w}, remove one element from worklist
foreach v ⇀ w ∈ E do

if v /∈ S, reached node is not yet marked then
W = W ∪ {v}

S = S∪ {v}, mark reached node as visited
return S, the set of all visited nodes

1 sum = 0
2 mul = 1
3 a = 1
4 b = read()
5 while (a <= b) {
6 sum = sum + a
7 mul = mul * a
8 a = a + 1
9 }
10 write(sum)
11 write(mul)

Figure 3.1: Sliced example program and its PDG

3.3 Precise, Minimal, and Executable Slices 35

While backward slicing identifies the statements that have an influence on
the statement identified by the criterion, forward slicing identifies the statements
that are influenced by the criterion:

Definition 3.5 (Forward Slice)
The forward slice SF(n) of a PDG at node n consists of all nodes that (transi-
tively) depend on n:

SF(n) = {m | n ⇀? m}

Algorithm 3.1 on the preceding page can be used to compute forward slices,
if “v ⇀ w ∈ E” is replaced by “w ⇀ v ∈ E”.

3.3 Precise, Minimal, and Executable Slices

A slice computed by graph reachability or in Weiser-style is only an approxi-
mation of a (statement) minimal slice. The presented approaches do not neces-
sarily compute good approximations, as they sometimes cannot identify irrel-
evant statements.

Example 3.2: Slices computed for statement 7 in the following program will
usually contain the complete program, despite that only statement 1 has an
influence on statement 7 (and the statement-minimal slice would only contain
lines 1 and 7).

1 read(a)
2 read(b)
3 c = 2 * b
4 a = a - b
5 a = a + c
6 a = a - b
7 write(a)

Some of such constructs can be identified, if techniques from optimization
like constant-propagation are applied before computing program dependence
graphs and slices. More complex constructs can be identified by symbolic exe-
cution techniques. However, even with the most sophisticated techniques, the
minimal slice stays undecidable in general.

As long as procedures are ignored, both presented approaches generate ex-
ecutable slices, i.e. the computed slice is an executable subset of the original
program. If this requirement is dropped, such that the computed slice only
contains relevant statements but must not produce the same behavior when
executed, statement-minimal slices will even be smaller.

36 Slicing

Example 3.3:

1 read(x)
2 read(y)
3 y = y + x
4 x = y - x
5 y = y - x
6 write(x)
7 write(y)

In this example1, the values of x and y are swapped (assuming x and y are inte-
gers). A minimal slice for line 7 will only contain lines 1 and 7. An executable
minimal slice must contain all statements except line 6 to behave correctly.

Both examples rely on “tricks” with expressions. Even when such tricks are
not used, the computation of precise slices remains complex. Therefore Weiser
has considered data flow minimal slices [Wei79], where unrealizable paths and
exact semantics of expressions are ignored. For that purpose, program schemas
are used [LPP70]: A schema of a program is generated by replacing all expres-
sions with symbolic expressions in the form f(v1, . . . , vn), where f is a function
or predicate.

Definition 3.6 (Data Flow Minimal Slices)
Let S be a given schema and T a schema obtained by deleting statements from
S. T is data flow minimal, if under all interpretations i, T(i) is a slice of S(i) and
it is not possible to delete more statements.

As yet, it is not clear if such data flow minimal slices are computable; no known
algorithm computes a data flow minimal slice.

3.4 Unstructured Control Flow

The original slicing algorithms assumed a language without jump statements.
Such statement cause a small problem: because the (correct) control flow graph
only contains a single outgoing edge, no other node can be control depen-
dent on the jump statement. Therefore, a (backward) slice will never contain
the jump statements (jump statements have no outgoing data dependence).
The exclusion of jump statements makes executable slices incorrect and non-
executable slices uneasy to comprehend. Various approaches handle this prob-
lem differently: Ball and Horwitz [BH93a] augment the CFG by adding non-
executable edges between the jump statement and the immediate following
statement. This makes both the statements at the jump target and the one
following the jump statement control dependent on the jump. During data
dependence computation, the non-executable edges are ignored. The resulting

1Kindly provided by Mark Harman. Such code was used to swap register contents in the days
when memory access was very expensive.

3.5 Related Work 37

program dependence graph can be sliced with the normal slicing algorithm,
except that labels (the jump targets) are included in the slice if a jump to that
label is in the slice.

3.5 Related Work

Slicing based on PDGs was introduced in [OO84] and proved to compute cor-
rect slices in [RY89]. The relation of program slicing and program specializa-
tion has been presented in [RT96]. A foundation of slicing and dependence on
term rewriting systems has been presented by Field and Tip [FT98].

A characterization of slices similar to data flow minimal slices has been
used in [MOS01]: optimal slices. However, a definition of optimal slices is not
given.

A parallel version of Weiser’s slicing algorithm is presented in [DHS95]; it
is based on conversion into networks of concurrent processes.

Bergeretti and Carré [BC85] presented an algorithm which is neither Weiser-
style nor dependence graph based. Their algorithm uses the concept of infor-
mation flow relations. Hausler [Hau89] and Venkatesh [Ven91] independently
developed denotational approaches for slicing.

Not only imperative programs can be sliced: In [SH96] tree-like structures
are sliced. More specific approaches are slicing of hierarchical state machines
[HW97], software architecture descriptions [Zha98], web applications [RT01],
class hierarchies [TCFR96], knowledge-based systems [VA00], logical programs
[Vas99], Prolog [SD96], hardware description languages [INIY96, CFR+99] and
hardware-software codesign [Rus02]. Problems of implementing Weiser-style
slicing for C are discussed in [JZR91].

More related work for slicing of object-oriented programs will be presented
in chapter 7.

3.5.1 Unstructured Control Flow

The algorithm of Ball and Horwitz [BH93a] is basically the same approach as
Choi and Ferrante’s first algorithm in [CF94]. Their second algorithm com-
putes a normal slice first (which does not include the jump statements) and
then adds goto statements until the slice is correct. This algorithm produces
slices that are more precise than slices from the first algorithm, but the addi-
tional gotos may not be part of the original program and the computed slices
do not match the definition of a slice. Agrawal [Agr94] presents an algorithm
which also adds jump statements to a normal slice to make it correct. However,
the added statements are always part of the original program. Harman and
Danicic present another algorithm [HD98], which is an extension of Agrawal’s.

Kumar and Horwitz [KH02] present an improved algorithm, which is based
on the augmented control flow graph, and a modified definition of control
dependence using both the augmented and the non-augmented control flow

38 Slicing

graph. They also present a modified definition of a slice based on semantic ef-
fects (similar to the semantic dependence of [PC90]), which basically inverts the
definition of a slice: A statement x of program P has a semantic effect on a
statement y, iff a program P ′ exists, created by modifying or removing x from
P, and some input I exists such that P and P ′ halt on I and produce different
values for some variables used at y. However, such a slice may be a super-
set of a Weiser’s slice because a statement like “x = x;” has a semantic effect
according to their definition.

3.5.2 Other Forms of Slicing

Section 10.5.1 contains a discussion of dynamic slicing: There a slice is computed
for a specific execution defined by the input variables’ values. In amorphous
program slicing [HD97], a slice is generated by any simplifying transformation,
not only by statement deletion. Binkley [Bin99] has shown how to compute
amorphous slices with dependence graphs.

Errors in programs are normally ignored during slicing, [HSD96] presents
an approach to handle errors explicitly for slicing.

Chapter 4

The Fine-Grained PDG

Traditional dependence graphs contain back-references to intermediate rep-
resentations that were used to construct them, either high-level representa-
tions like the abstract syntax tree or low-level representations like quadruples
(low-level representations can also be embedded in the nodes of a dependence
graph). Without back-references, advanced applications of dependence graphs
like the ones presented in chapter 11 or even a visualization of slices in the
source code are not possible.

Our variant of the program dependence graph is a specialization of the
traditional one [HRB90], which has been adapted to the following goals:

• The PDG should be as similar to the AST and the source code as possible
to enable an instinctive mapping and understanding of the (visualized)
graph.

• The PDG should be a complete (intermediate) representation, without
references to other representations except positions in source code.

Because of these goals, transformations like SSA [CFR+91] (static single as-
signment form) were not applicable and the possibility of multiple side effects
in expressions had to be dealt with directly (see section 2.3.3). Therefore a
fine-grained representation is used and kept similar to both the AST and the
traditional PDG: On the level of statements and expressions, the AST nodes are
almost mapped one to one onto PDG nodes.

In this chapter it will be shown how such a fine-grained PDG is represented
and constructed.

4.1 A Fine-Grained Representation

To carry the needed information, the nodes have three main attributes: They
may be attributed with a class, an operator and a value. The class specifies the
kind of node: statement, expression, procedure call etc. The operator specifies

40 The Fine-Grained PDG

it further, e.g. binary expression, constant etc. The value carries the exact oper-
ator, like “+” or “–”, constant values or identifier names. Other attributes are
the enclosing procedure and a mapping to the source text.

To handle the specialized nodes we must specialize the edges, too. In most
cases the execution order of expression components is undefined in ANSI C
[Int90] which results in representation problems. For example, consider the
statement z=f()+g(): It is undefined if f() is evaluated and called before g()
or vice versa. It is only defined that both have been evaluated before the re-
turned values will be added. This behavior can not be represented in a normal
CFG because it does not allow non-deterministic execution orders. For opti-
mization purposes, the ANSI C standard allows the compiler to choose an ar-
bitrary execution order. If such an expression contains conflicting side-effects
(a location is accessed at least twice and at least one access is a write), the stan-
dard declares the behavior as completely undefined. Most compilers accept
such programs silently, however, software maintenance tools should handle
this behavior, either reporting or handling it intelligently.

Example 4.1: Consider the following example, where procedures f and g have
conflicting assignments to global variable a. In the example three statements
are marked as slicing criteria for backward slices (lines 4, 9 and 16). A software
maintenance tool should either reject this program because the behavior of line
15 is undefined or should compute slices that allow both possible execution
orders of f() and g(). Therefore, line 5 should be included in slices A and C,
but not in B, and line 10 should be included in slices A and B, but not in C.

1 int a, b, c;
2
3 int f() {
4 b = a; /* slice criterion B */
5 a = 1; /* must be included in A and C */
6 return 1;
7 }
8 int g() {
9 c = a; /* slice criterion C */
10 a = 2; /* must be included in A and B */
11 return 1;
12 }
13 int main () {
14 int z;
15 z = f() + g();
16 return a; /* slice criterion A */
17 }

A short experiment with this example shows that tools that just employ
traditional optimization techniques accept this program silently and assume
an arbitrary execution order. CodeSurfer1 [AT01] and Icaria are two available

1As of version 1.8, users can specify an order of evaluation, either left-to-right or right-to-left.

4.1 A Fine-Grained Representation 41

slicing tools (presented in section 14.2). Both assume that g() executes after
f(), and their backward slices at A do not include line 4. Even worse, Icaria
computes empty slices for criteria B and C. Strictly speaking, both tools are
correct, because the behavior is undefined. However, this might confuse the
user and the fine-grained approach does a better job.

The representation of an expression z=x+y in the fine-grained PDG is that
the nodes of x and y are control dependent on the “+” node. This control de-
pendence is called expression (control) dependence because it is local to expres-
sions. Expression dependence allows arbitrary execution order. To be able to
compute slices for any node in the PDG the data flow between the expression
components had to be represented in it. Here, the value of the addition is de-
pendent on the value of x and y. If simple data dependence edges would have
been added between the nodes of + and x and the nodes of + and y, cycles
would have been induced between the nodes. One way to solve this would be
to split the node of + into a “before evaluation of subcomponents” node and
an “after evaluation of subcomponents” node. A different approach has been
taken that introduces another specialized edge: the value dependence edge, which
is like a data dependence edge between expression components. The resolu-
tion of the arising cycles has been delegated to the slicer and the other tools.
Another specialized edge was needed to represent the assignments of values
to variables: The reference dependence edges are similar to the value dependence
edges, except that they do not induce cycles.

Definition 4.1
Let n and m be two nodes of the same expression.

1. The expression node n is expression dependent on expression node m if n

and m are always executed together and m is executed after n.

2. The expression node n is value dependent on expression node m if the
value computed at m is needed at node n.

3. The expression node n is reference dependent on (assignment) expression
node m if the value computed at m is stored into a variable at n.

Example 4.2: Figure 4.1 on the following page shows an excerpt of the PDG for
lines 4 and 5 of the following code.

1 a = 1;
2 b = 2;
3 c = 3;
4 x = a * (y = b + c);
5 z = x + y;

The nodes are all expression nodes with different operators. For example, node
20 is an expression node with operator kind “binary” and value “+”. Note
that assignments are expressions, e.g. node 13 is an expression node with an
operator “assign” and no value.

42 The Fine-Grained PDG

Figure 4.1: Excerpt of a fine-grained PDG

4.2 Data Types

The use of composite data types and pointers introduces new problems, which
will be discussed next. Not only the analysis of data types is relevant, but also
the representation in the fine-grained PDG, too. Agrawal et al. [ADS91] use ab-
stract memory locations and define the following situations for two expression
e1 and e2, where e1 is a definition and e2 is a usage:

Complete intersection: The locations corresponding to e1 are a superset of the
locations corresponding to e2.

Maybe intersection: It cannot be determined statically whether or not the lo-
cations corresponding to e1 and e2 coincidence.

Partial intersection: The locations corresponding to e1 are a subset of the lo-
cations corresponding to e2.

Examples for these three situations will be presented in the next three sections,
where the three main classes of data types are discussed.

4.2.1 Structures

Structures are aggregates of fields. The selection of such a field introduces com-
plete or partial intersection between the selected field and the complete vari-
able. Maybe intersection is impossible with normal structures, it is introduced
only by unions.

4.2 Data Types 43

b/1
declaration
6

assign
8

b/1
reference
9

a/1
reference
10

assign
11

a/1
reference
12

y
select
13

b/1
reference
14

x
select
15

assign
16

b/1
reference
17

a/1
reference
18

Figure 4.2: Partial PDG for a use of structures

Example 4.3:

1 struct s {
2 int x, y;
3 } a, b;
4 a = b;
5 b.x = a.y;
6 a = b;

A partial PDG for this fragment is shown in figure 4.2. The usage of b in the
first assignment a = b is a complete intersection and therefore is represented
like a simple variable in node 9 with a data dependence between nodes 6 and
9. The selection of field y of variable a is modeled through an expression node
with an operator “select” and a value of y (nodes 12 and 13). The use of a.y at
node 13 has a complete intersection with the definition of a at node 10 (not vice
versa), therefore a data dependence between nodes 10 and 13 exists (note that
node 12 has no data dependence). The definition of b.x at node 15 is a partial
intersection with the use of b at node 17. Therefore node 17 is data dependent
on node 15 (partial intersection) and the earlier definition of b at node 6 (the
declaration), where a complete intersection exists.

All this does not need special handling for the fine-grained PDG, as the
data flow analysis already handles the different types of intersection by scalar
replacement of aggregates (section 2.2.2). However, the scalar replacement is
only virtual and does not change the original program, which causes a loss of
precision.

Example 4.4: Figure 4.3 on the following page presents an example for scalar
replacement: The first column shows a small program and the second column
shows the precise slice for statement 8 as criterion. The third column shows
the slice as computed by the presented slicer. Because statement 7 is a usage of
variable b, both assignments to fields of b are included in the slice, despite that

44 The Fine-Grained PDG

Program Slice VALSOFT CodeSurfer Icaria
1 int x;
2 t a, b;
3 a.x = 1; a.x = 1; a.x = 1; a.x = 1; a.x = 1;
4 b.x = 2; b.x = 2; b.x = 2; b.x = 2; b.x = 2;
5 a.y = 3; a.y = 3; a.y = 3; a.y = 3; a.y = 3;
6 b.y = 4; b.y = 4; b.y = 4; b.y = 4; b.y = 4;
7 a = b; a = b; a = b; a.y = b.y; a = b;

a.x = b.x;
8 x = a.y; x = a.y; x = a.y; x = a.y; x = a.y;

Figure 4.3: Slices as computed by different slicers

statement 4 has no influence on statement 8. If scalar replacement is applied
before analyzing the program, the slice will be precise (see column four). This
technique is used by CodeSurfer [AT01].

If the structure s of the earlier example had been a union (fields x and y are
mapped to the same location), the PDG in figure 4.2 on the page before would
not be different. However, in general, unions must be handled differently—
again, the data flow analysis already takes care about that.

4.2.2 Arrays

The use of arrays may also introduce complete, maybe and partial intersection.

Example 4.5: The three different types of intersection are shown at the follow-
ing code:

1 int i, x;
2 int a[20];
3 a[1] = 0;
4 a[i] = 1;
5 x = a[1];

Figure 4.4 on the facing page shows the matching fragment from the fine-
grained PDG. Access to array element is represented by an “array” node, which
has two subtrees, one for the accessed array and one for the index expression.

In this example, the value of x may be 0 or 1, which is dependent on the
value of i. The statement a[i] = 1 might kill the definition in the previous
statement a[1] = 0 because i might be 1.

In general, it is undecidable if two accesses to two array elements of the
same array access the same element. Therefore a maybe intersection is as-
sumed. Usually, a maybe intersection is assumed to be a non-killing definition
of all elements in an array. In this example this would generate three data de-
pendences: between line 2 and 5 (complete intersection), between line 3 and 5

4.2 Data Types 45

a/1
declaration
7

assign
9

0
intconst
10

1
intconst
11

a/1
reference
12

array
13

assign
14

1
intconst
15

i/1
reference
16

a/1
reference
17

array
18

assign
19

1
intconst
20

a/1
reference
21

array
22

x/1
reference
23

Figure 4.4: Partial PDG for a use of arrays

and between line 4 and 5 (both maybe intersections). However, with this rep-
resentation, the information that statement 4 might kill the definition at state-
ment 3 is lost. This is undesirable for the main application of the fine-grained
program dependence graph—the generation of path conditions presented in
chapter 13.

Therefore a different approach2 is taken as shown in figure 4.4. An assign-
ment to an array element is considered a killing modification: an assignment to
an array element uses the (complete) array before the specified element is de-
fined. Therefore the definitions at nodes 13 and 18 (lines 3 and 4) are “uses”,
too and data dependence edges 7 ⇀ 13 (from line 3 to 4) and 13 ⇀ 18 (from
line 4 to 5) between definitions have been inserted. There is no direct depen-
dence between node 13 and 22, only a transitive dependence. The handling
of array elements has already been done during data flow analysis, and the
desired representation does not need special handling.

4.2.3 Pointers

The use of pointers introduces aliasing. The problem of determining potential
aliases is undecidable in general and a conservative approximation is used.
The potential aliases are already computed during data flow analysis through
alias or points-to analysis (see section 2.2.2). Again, only the representation is
important here.

Special expression nodes have been introduced for that purpose: the “re-
fer” operator represents the creation of an address and the “derefer” opera-
tor represents the dereferencing of a pointer. The data dependence edges are
inserted according to the points-to set at those points of the program where
pointers are used or defined.

2This has no effect on slicing. It is only needed for reasons explained in section 13.2.1 on
page 198.

46 The Fine-Grained PDG

assign
10

x/1
reference
11

refer
12

p/1
reference
13

assign
14

0
intconst
15

p/1
reference
16

derefer
17

x/1
reference
18

Figure 4.5: Partial PDG for a use of pointers

Example 4.6:

1 int x, *p;
2 p = &x;
3 *p = 0;
4 x;

A partial PDG of this code is shown in figure 4.5. At node 18 (line 4) the value
of variable x is used, which is dependent on node 17, where an alias of it be-
comes defined (line 3). The alias has been introduced at node 13 (line 2), which
adopts a data dependence edge 13 ⇀ 16. Note that the address operation from
statement 2 does not introduce any dependence from x to p (absence of a value
dependence edge 11 ⇀ 12).

Complete pointer analysis must include special analysis of structures and
arrays, too. Therefore, structures and arrays are analyzed in two different
ways: Once for the pointer analysis and a second time during computation
of data dependence. One could be tempted to leave out the special analysis
of structures and arrays, just do the complete pointer analysis—however, this
may cause imprecision. Icaria is a slicer using this approach, computing an
imprecise slice for the example in figure 4.3 on page 44.

4.3 Slicing the Fine-Grained PDG

The slicing algorithm is a direct adaption of algorithm 3.1 on page 34 with spe-
cial handling of the cycles induced by value dependence edges. The algorithm
is based on an implicit splitting of nodes that are sources of expression de-
pendence edges and targets of value dependence edges. (The subexpressions

4.4 Discussion 47

that are represented by the target nodes of expression dependence edges are
evaluated before the value is used at the target node of the value dependence
edges.) The slicing algorithm does not traverse value dependence edges if the
current node has been reached by an expression dependence edge and vice
versa. Different from the earlier algorithm 3.1 on page 34 the slicing algorithm
for fine-grained PDGs 4.1 on the next page works with marking edges instead
of nodes.

Example 4.7: Lets do a forward slice from node 12 in figure 4.1 on page 42 and
see what impact a change to variable a has. The algorithm will first include
node 11 into the slice. The algorithm will not follow the expression depen-
dence edge from node 11 to 13, because it has reached node 11 through a value
dependence edge. The algorithm will continue and add the following nodes to
the slice: 10, 18, 21, 20, 19 and 23. Again, node 22 will not be reached. Now, let
node 22 be the slicing criterion for a backward slice: the algorithm will include
the nodes 17, 13, 11 and 10 probably first. It will also include nodes 14, 15 and
16. But it will not include node 12, because node 11 has been entered via a
value dependence edge.

The algorithm must also handle the problem that a node can be reached
a second time via a different edge, invalidating the restrictions of an earlier
visit. Consider a backward slice for node 20 as an example. The algorithm
might first reach node 22 and computes the backward slice from there as shown
before, excluding node 12. Now, the algorithm also reaches node 21 which
leads to node 18. There, node 10 must be visited a second time, because it had
been entered via an expression dependence edge in the first place and is now
entered via a reference dependence edge. For the same reason, nodes 11 and
13 are visited again via a value dependence edge and node 12 is now reached
for the first time.

4.4 Discussion

The presented approach of fine-grained program dependence enabled slicing
and other analyses with one single intermediate representation. The following
chapters (especially chapters 11–13) will show some applications that therefore
don’t need another intermediate representation. The usage of a single interme-
diate representation is efficient: A second intermediate representation would
have caused additional efforts in building it, linking between the representa-
tions and keeping both representations synchronized while manipulating one
representation.

The direct handling of multiple side effects in conjunction with undefined
execution order was only possible with this approach—traditional intermedi-
ate representations must revert to arbitrarily chosen execution orders. So far,
present slicers (except the one based on this work) may assume behavior dif-
ferent to the actual behavior of executed programs.

48 The Fine-Grained PDG

Algorithm 4.1 Slicing Fine-Grained PDGs

Input: A PDG G = (N, E)
A slicing criterion s ∈ N

Output: The slice S ⊆ N

W = {e | e = n ⇀ s ∈ E}

M = W, mark all e as visited
S = {s}

while W 6= ∅, worklist is not empty do
W = W/{e = m ⇀ n}, remove one element from worklist
S = S∪ {m}

foreach e ′ = m ′ ⇀ m ∈ E do
if e /∈ M, edge is not yet marked then

if e is an expression dependence edge then
if e ′ is not a value dependence edge then

M = M∪ {e ′}
W = W ∪ {e ′}

elsif e is a value dependence edge then
if e ′ is not an expression dependence edge then

M = M∪ {e ′}
W = W ∪ {e ′}

else
M = M∪ {e ′}
W = W ∪ {e ′}

return S, the set of all visited nodes

4.5 Related Work 49

All these advantages come not without disadvantages. There are two main
obstacles: First, some algorithms are more complex when using the fine-grained
instead of the traditional program dependence graphs. For example, algo-
rithm 4.1 on the preceding page must handle cycles due to expression and
value dependence edges. Second, the fine-grained representation is very de-
tailed, causing some implementation overhead.

4.5 Related Work

The original definition of program dependence graphs already was prepared
for a fine-grained representation [OO84, FOW87]. The imprecision problem of
multiple side-effects in statements has also been identified in [LC94b], and a
fine-grained PDG based on parse trees is used. The approach in [Ste98] does
not construct a PDG at all, but instead inserts dependence edges directly into
the AST, which is then used for slicing. The imprecision problem of multiple
side-effects is solved in statement based slicer by transforming the program
into a single-side-effect form before analysis. Another fine-grained but highly
specialized representation are value dependence graphs (VDG) [WCES94], which
also can be used for slicing [Ern94].

The effect of complex data structures on program slicing have been dis-
cussed for pointers [ADS91, LB93, LH99b, FTAM99] and for aliasing of param-
eters [Bin93b].

Libraries and system calls are usually analyzed through stubs or models, i.e.
replaced by source code with the desired behavior in respect to the analysis.
Further problems with I/O are discussed in [SHD97].

50 The Fine-Grained PDG

Chapter 5

Slicing Concurrent Programs

Today, even small programs use concurrent execution and languages like Ada
or Java have required features built-in. The analysis of programs where some
statements may explicitly be executed concurrently is not new. The static anal-
ysis of these programs is complicated, because the execution order of concur-
rently executed statements is dynamic. Testing and debugging of concurrent
programs have increased complexity: They may produce different behavior
even with the same input. The nondeterministic behavior of a program is hard
to understand and finding harmful nondeterministic behavior is even harder.
Therefore, supporting tools are required. Unfortunately, most tools for sequen-
tial programs are not applicable to threaded programs as they cannot cope with
the nondeterministic execution order of statements. One simple way to cir-
cumvent these problems is to simulate these programs through sequentialized
or serialized programs [UHS97]. These are “product” programs, in which every
possible execution order of statements is modeled through a path where the
statements are executed sequentially. This may lead to exponential code explo-
sion, which is unacceptable for analysis. Therefore, special representations of
concurrent programs have been developed.

In the following a new notation of threaded programs is introduced by ex-
tending the control flow graph (CFG) and program dependence graph (PDG)
to their threaded counterparts tCFG and tPDG. Based on tPDGs a more precise
slicing algorithm is presented and it is shown how to extend the basic model
of concurrency to allow synchronization and communication.

5.1 The Threaded CFG

A thread is a part of a program that must be executed on a single processor.
Threads may be executed concurrently on different processors or interleaved
on a single processor. In the model used it is assumed that threads are created
through cobegin/coend statements and that they are properly synchronized
on statement level (statements are assumed to be atomic). Let the set of threads

52 Slicing Concurrent Programs

1 x = ...;
2 i = 1;

cobegin {
if (x>0) {

3 x = -x;
4 i = i+1;

} else {
5 i = i+1;

}
}{

6 i = i+1;
7 z = y;

} coend;
8 ... = i;

Figure 5.1: A threaded program

be Θ = {θ0, θ1, . . . , θk}. For simplicity we consider the main program to be
thread θ0.

Example 5.1: A sample program with two threads is shown in Figure 5.1. Thread
θ1 is the block of statements 3, 4 and 5, the thread θ2 is the block with 6 and 7.
1, 2 and 8 are part of the main program θ0.

A threaded CFG (tCFG) extends the CFG with two special nodes COSTART
and COEXIT that represent the cobegin and coend statements. The enclosed
threads are handled like complete procedures and will be represented by whole
CFGs, which are embedded in the surrounding CFG. The START and EXIT nodes
of these CFGs are connected to the COSTART and COEXIT nodes with special par-

allel flow edges. The edges are distinguished through n
cf
⇀ m for a sequential

control flow edge between nodes n and m and n
pf
⇀ m for a parallel flow edge.

Until further notice, n ⇀+ m means that there is a non empty path from n to

m via control flow (cf
⇀) and parallel flow (

pf
⇀) edges.

Example 5.2: Figure 5.2 on the next page shows the tCFG for the example pro-
gram of Figure 5.1.

Definition 5.1 (Threads and Concurrent Execution)
1. θ(n) is a function that returns its innermost enclosing thread for every

node n. In the example we have θ(2) = θ0, θ(4) = θ1 and θ(6) = θ2. This
function is statically decidable and can be generated during parsing and
constructing the tCFG.

2. Π(t) is a function that returns for every thread t the set of threads that can
potentially execute concurrently with t, e. g. Π(θ1) = {θ2} or Π(θ0) = ∅.

5.1 The Threaded CFG 53

x = -x

START

... = i

STARTSTART

COSTART

i = 1

x = ...

i = i+1

i = i+1

i = i+1
if (x>0)

z = y

EXIT EXIT

COEXIT

EXIT

1

2

4

5

6

8

control flow

parallel flow

3

7

Figure 5.2: A threaded CFG

54 Slicing Concurrent Programs

As the concurrent execution relation is symmetric, t ′ ∈ Π(t) ⇐⇒ t ∈ Π(t ′)
holds. Note that the relation is neither reflexive nor transitive.

For concurrent programs without synchronization, Π can be computed eas-
ily. In presence of synchronization it is undecidable, but good approximations
can be computed efficiently [MH89, NA98, NAC99].

The definition of witnesses in CFGs may also be applied to tCFGs. But this
does not take the possible interleaving of nodes into account and we have to
extend the definition:

Definition 5.2 (Threaded Witness)
A sequence l = 〈n1, . . . , nk〉 of nodes is a threaded witness in a tCFG, iff

∀1 6 i 6 k : ∀1 6 j < i : θ(nj) ∈ Π(θ(ni)) ∨ nj
cf,pf
⇀ + ni

Basically this means that all nodes in a thread must be reachable from its pre-
decessors if they cannot execute in parallel.1

Intuitively, a threaded witness can be interpreted as a witness in the se-
quentialized CFG. Every ordinary (not threaded) witness in the tCFG is auto-
matically a threaded witness.

Example 5.3: In Figure 5.2 on the page before, 〈1, 4, 6〉 and 〈1, 2, 8〉 are threaded
witnesses but 〈5, 6, 4〉 or 〈1, 4, 5〉 are not. The sequence 〈1, 2, 8〉 is also an ordi-
nary witness, the sequence 〈1, 4, 6〉 is not.

Having a threaded witness l = 〈n1, . . . , nk〉 and a node n, it can be de-
cided whether l ′ = 〈n1, . . . , nk, n〉 is a threaded witness without checking the
threaded witness properties of l ′:

Theorem 5.1 (Appending/Prepending to a Threaded Witness)
Let the sequence l = 〈n1, . . . , nk〉 be a threaded witness.

1. Appending: l ′ = 〈n1, . . . , nk, n〉 is a threaded witness, iff

∀1 6 i 6 k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ n

2. Prepending: l ′ = 〈n, n1, . . . , nk〉 is a threaded witness, iff

∀1 6 i 6 k : θ(ni) ∈ Π(θ(n)) ∨ n ⇀+ ni

Proof 5.1
Both variants follow directly from definition 5.2. 2

1This definition of a threaded witness is more precise than the previous definition in [Kri98]:
with the previous definition, 〈5, 8, 6〉 was a threaded witness.

5.1 The Threaded CFG 55

Definition 5.3
Let sequence l = 〈n1, . . . , nk〉 be a threaded witness, t ∈ Θ. L(l, t) and F(l, t)
are defined as follows:

L(l, t) =

{
ni ∃i : θ(ni) /∈ Π(t) ∧ ∀i < j 6 k : θ(nj) ∈ Π(t)
⊥ otherwise (5.1)

F(l, t) =

{
ni ∃i : θ(ni) /∈ Π(t) ∧ ∀1 6 j < i : θ(nj) ∈ Π(t)
⊥ otherwise (5.2)

The result is basically the last (or first) node of l relevant for the execution of
thread t (if such a node exists).

Theorem 5.2 (Simplified Appending/Prepending to a Threaded Witness)
Let l = 〈n1, . . . , nk〉 be a threaded witness.

1. l ′ = 〈n1, . . . , nk, n〉 is a threaded witness, iff

L(l, θ(n)) = ⊥∨ L(l, θ(n)) ⇀+ n

2. l ′ = 〈n, n1, . . . , nk〉 is a threaded witness, iff

F(l, θ(n)) = ⊥∨ n ⇀+ F(l, θ(n))

Proof 5.2
Only the “forward” direction (appending) is proved by contradiction. Basically
the proof for the “backward” direction (prepending) is the same. Assume the
opposite:

L(l, θ(n)) 6= ⊥∧ L(l, θ(n)) 6⇀? n

⇐⇒ ∃1 6 i 6 k : ni = L(l, θ(n)) ∧ ni 6⇀? n

From definition 5.3 follows θ(ni) /∈ Π(θ(n)). Altogether:

∃1 6 i 6 k : θ(ni) /∈ Π(θ(n)) ∧ ni 6⇀? n

However, this is a contradiction to theorem 5.1 because l and l ′ are threaded
witnesses and therefore theorem 5.2 must hold. 2

Having a threaded witness l = 〈n1, . . . , nk〉 and an edge nk ⇀ n, can it
be decided if l ′ = 〈n1, . . . , nk, n〉 is a threaded witness without checking the
threaded witness properties of l ′?

Theorem 5.3
Let l = 〈n1, . . . , nk〉 be a threaded witness.

1. If an edge nk ⇀ n exists, then l ′ = 〈n1, . . . , nk, n〉 is a threaded witness.

2. If an edge n ⇀ n1 exists, then l ′ = 〈n, n1, . . . , nk〉 is a threaded witness.

Proof 5.3
Again, only the “forward” direction is proved.

There exist three possibilities for nk ⇀ n: traditional control flow edges
and parallel flow edges starting and ending threads.

56 Slicing Concurrent Programs

1. From nk
cf
⇀ n follows θ(nk) = θ(n) and with theorem 5.1:

(∀1 6 i < k : θ(ni) ∈ Π(θ(nk)) ∨ ni ⇀+ nk) ∧ nk ⇀+ n

=⇒ (∀1 6 i < k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ nk) ∧ nk ⇀+ n

=⇒ (∀1 6 i < k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ n) ∧ nk ⇀+ n

=⇒ ∀1 6 i 6 k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ n

which is theorem 5.1 itself.

2. Assume nk
pf
⇀ n:

(a) nk is a START node, therefore Π(θ(nk)) ⊂ Π(θ(n)) and with theorem
5.1:

(∀1 6 i < k : θ(ni) ∈ Π(θ(nk)) ∨ ni ⇀+ nk) ∧ nk ⇀+ n

=⇒ (∀1 6 i < k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ nk) ∧ nk ⇀+ n

=⇒ (∀1 6 i < k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ n) ∧ nk ⇀+ n

=⇒ ∀1 6 i 6 k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ n

which is theorem 5.1.
(b) n is a COEXIT node, therefore Π(θ(nk)) ⊃ Π(θ(n)). Let T = Π(θ(nk))−

Π(θ(n)). T can only contain the other threads that end at nk and all
nodes contained in these threads must reach nk:

(∀t ∈ T : ∀n ′, θ(n ′) ∈ Π(t) : n ′ ⇀+ nk) ∧ nk ⇀+ n

=⇒ ∀t ∈ T : ∀n ′, θ(n ′) ∈ Π(t) : n ′ ⇀+ n

=⇒ ∀t ∈ Π(θ(nk)) ∧ t /∈ Π(θ(n)) : ∀n ′, θ(n ′) ∈ Π(t) : n ′ ⇀+ n

=⇒ ∀1 6 i < k : (θ(ni) ∈ Π(θ(nk)) ∧ θ(ni) /∈ Π(θ(n))) −→ ni ⇀+ n

From theorem 5.1 follows:

(∀1 6 i < k : θ(ni) ∈ Π(θ(nk)) ∨ ni ⇀+ nk) ∧ nk ⇀+ n

=⇒ ∀1 6 i 6 k : θ(ni) ∈ Π(θ(nk)) ∨ ni ⇀+ n

with the previous result:

=⇒ ∀1 6 i 6 k : θ(ni) ∈ Π(θ(n)) ∨ ni ⇀+ n

which is theorem 5.1 again.

2

Theorem 5.2 and 5.3 will later be used for an efficient algorithm that does
not have to check all paths for the threaded witness property.

5.2 The Threaded PDG

As threaded programs have a special representation in the control flow graph,
they also need special representation in the program dependence graph to en-
able precise slicing. Threading not only influences control and data depen-
dence, but also necessitates the special treatment of interference, when a vari-
able is accessed by threads running in parallel.

5.2 The Threaded PDG 57

5.2.1 Control Dependence

The extension of the CFG to the tCFG influences both domination and control
dependence. Post-dominance is defined based on paths in the CFG and must
be adapted to tCFGs. Based on intuition, the following observations can be
made:

• A COEXIT node n post-dominates its COSTART node and all nodes of the
threads ending at n.

• A node n belonging to a thread and post-dominating the thread’s START
node also post-dominates the thread’s COSTART node.

However, it follows that nodes belonging to a thread cannot be control depen-
dent on the thread’s START or COSTART node.

Example 5.4: In figure 5.2 on page 53, nodes 1, 2, 6 and 7 would all be con-
trol dependent just on the START node. More intuitive would be that node 6
and 7 are control dependent on the thread’s START node, which itself is control
dependent on the COSTART node.

Therefore, post-dominance in the tCFG is defined by viewing parallel flow
edges as standard control flow edges, which makes the START nodes control
dependent on their COSTART node. Also, “irrelevant” control flow edges are
inserted between START and EXIT of threads, just like the control flow edge be-
tween the START and EXIT node of traditional control flow graphs.

Example 5.5: Figure 5.3 on the next page shows the prepared tCFG of figure 5.2 on
page 53.

5.2.2 Data Dependence

Data dependence in traditional CFGs is based on reaching definitions. How-
ever, this is inadequate for tCFGs, because reaching definitions include defini-
tions of concurrently executing threads. For example, in figure 5.2 on page 53
not only the definitions of statements 1 and 2 reach statement 6 but also all def-
initions of the other thread at 3, 4 and 5. For slicing purposes it is desirable to
separate reaching definitions from concurrent threads, which makes the data
dependence in non-concurrent threads computable by almost standard tech-
niques for sequential programs. Data dependence between concurrent threads
will be discussed in the following section and the rest of this section focuses on
data dependence between non-concurrent threads.

Data dependence in non-concurrent threads can be divided into two classes:

1. Data dependence from a definition at a node n that reaches a node m in
the same thread (θ(n) = θ(m)).

2. Data dependence from a definition at a node n that reaches a node m in
a different thread (θ(n) 6= θ(m)).

58 Slicing Concurrent Programs

x = -x

START

... = i

STARTSTART

COSTART

i = 1

x = ...

i = i+1

i = i+1

i = i+1
if (x>0)

z = y

EXIT EXIT

COEXIT

EXIT

1

2

4

5

6

8

control flow

parallel flow

3

7

irrelevant flow

Figure 5.3: A tCFG prepared for control dependence

5.2 The Threaded PDG 59

Even when we ignore data dependence between concurrent threads, the non
concurrent threads are relevant because of possible killing definitions.

Example 5.6: Consider again the program fragment of figure 5.1 on page 52:
Assume that the definition of x at statement 1 is a definition of z. This definition
never reaches statement 8, as it must be killed at statement 7.

A definition reaching a COSTART node cannot reach the corresponding COEXIT
node if it must be killed by any of the threads between these two nodes. Tradi-
tional data flow frameworks [Kil73, KU77] cannot handle this and specialized
frameworks have been developed [GS93, KSV96]. These frameworks rely on
the special handling of killing [GS93] or destruction [KSV96]. The usage of such
a framework is assumed in the following. If a traditional framework is used
instead, the result is still correct but imprecise because the killing information
is not sharp.

5.2.3 Interference Dependence

When a variable is defined in one thread and referenced in another concur-
rently executing thread, interference occurs, which must be explicitly repre-
sented.

Example 5.7: In Figure 5.1 on page 52 we have an interference for the variable
i between θ1 and θ2. The value of i at statement 6 may be the value computed
at 2, 4 or 5. The value of i at statement 8 may be the value computed at 4, 5 or
6. However, if the statements 4, 5 and 6 are properly synchronized, the value
of i will always be 3.

Definition 5.4
A node m is called interference dependent on node n, if

1. there is a variable v, such that v ∈ def(n) and v ∈ ref(m), and

2. θ(n) ∈ Π(θ(m)) (n and m may potentially be executed in parallel).

The dependences introduced by interference cannot be handled with nor-
mal data dependence because normal dependence is transitive but interference
dependence is not: The transitivity of the data and control dependence results
from their definitions, where a sequential path between the dependent nodes is
required. The composition of paths in the CFG always results in a path again.
Interference dependence is not transitive: If a statement x is interference de-
pendent on a statement y, which is interference dependent on z, then x is only
dependent on z iff there is a possible execution where these three statements
are executed one after another: The sequence 〈x, y, z〉 of the three statements
has to be a threaded witness in the tCFG.

Example 5.8: In Figure 5.4 on the following page statement 4 is interference de-
pendent on statement 6, which in turn is interference dependent on statement
5. However, there is no possible execution where 4 is executed after 5 and

60 Slicing Concurrent Programs

x = -x

START

... = i

STARTSTART

COSTARTi = 1x = ...

i = i+1 i = i+1

i = i+1if (x>0) z = y

1 2

4 5

6

8

control or parallel flow

data dependence
control dependence

interference dependence

3

7

A

B

DC

E

Figure 5.4: A threaded PDG

thus 4 cannot be interference dependent on 5. Thus, 〈5, 6, 4〉 is not a threaded
witness.

A simple version would implement Π according to [MH89] or [NA98, NAC99].

An interference dependence edge n
id
⇀ m will be inserted for all (n, m) if there

is a variable v that is defined at n, referenced at m and θ(n) ∈ Π(θ(m)) holds.

5.2.4 Threaded Program Dependence Graph

A threaded program dependence graph (tPDG) consists of the nodes and the edges
of the tCFG with the addition of control, data and interference dependence
edges. In contrast to the standard PDG, where the control flow edges have
been removed, the control and parallel flow edges will be needed for reasons
that are explained later. As usual, the EXIT and COEXIT nodes can be removed
provided the control and parallel flow edges are adapted accordingly.

Example 5.9: The tPDG for the running example is shown in Figure 5.4.

5.3 Slicing the tPDG 61

1 i = 1;
cobegin {
while (z>0) {
cobegin {

2 x = i;
}{

3 y = x;
} coend;

}
}{

4 z = y;
} coend;

5 x = z;

Figure 5.5: A program with nested threads

More complicated structures like loops or nested threads may be handled
in the same way. If threads are embedded in loops, multiple instances of the
same thread may exist. Such a thread may both execute concurrently and non-
concurrently with respect to a different thread.

Example 5.10: An example is shown in Figure 5.5. In the tPDG in Figure 5.6 on
the next page there is both a data and an interference dependence edge be-
tween statement 2 and 3. Both statements and their threads may be executed
concurrently (thus the interference dependence). The statements and their
threads may also be executed sequentially through different iterations of the
enclosing loop.

5.3 Slicing the tPDG

Slicing on the PDG of sequential programs is a simple graph reachability prob-
lem because control and data dependence are transitive. As interference de-
pendence is not transitive, this definition of a slice for PDGs is not valid for
tPDGs and hence the standard algorithms are not adequate.2

The basic idea of our approach stems from a simple observation: Because
every path in the PDG is a witness in the corresponding CFG, every node n

that is reachable from a node m in the PDG is also reachable from m in the cor-
responding CFG. This does not hold for the threaded variants. The definition
of a slice in the tPDG establishes a similar property because it demands that
the tPDG contains a threaded witness between every node in the slice and the
slicing criterion.

2The “classical” definition of a slice is any subset of a program that does not change the behavior
with respect to the criterion: a program is a correct slice of itself. Therefore, if interference is
modeled with normal data dependence, the resulting slices are correct but imprecise.

62 Slicing Concurrent Programs

x = i

START

STARTSTART

COSTARTi = 1

COSTART

y = x

while(z>0) z = y

S1

S2 S3

S4

control or parallel flow

data dependence

control dependence

interference dependence

x = z
S5

Figure 5.6: The tPDG of Figure 5.5

Definition 5.5 (Threaded Realizable Paths)
A path P = 〈n1, . . . , nk〉 in a tPDG is called a threaded realizable path, iff

1. the path contains no control flow edge:

n1
d1⇀ . . .

dk−1
⇀ nk ∧ ∀16i<kdi 6= cf

and

2. a threaded witness W exists corresponding to the path P: W = P.

If such a path exists, n1 is said to reach nk via a threaded realizable path: n1 ⇀?
R

nk.

5.3 Slicing the tPDG 63

Definition 5.6
The (backward) slice Sθ(n) of a tPDG at a node n consists of all nodes m on
which n transitively depends via a threaded realizable path:

Sθ(n) = {m | m ⇀?
R n}

Example 5.11: A slice from the statement 4 of the example program in Fig-
ure 5.1 on page 52 is shown in Figure 5.4 on page 60 as framed nodes. The
responsible edges are drawn in a thicker style. Note that there are interference
edges between statement 6 and 5, which do not force the inclusion of statement
5 into the slice because 4 is not reachable from 5 in the tCFG. The standard slic-
ing algorithm would include statement 5 into the slice, which is inaccurate,
albeit correct.

The algorithm to slice sequential programs is a simple reachability algo-
rithm. However, it is not easy to transform the definition of a threaded slice
into an algorithm because the calculation of threaded witnesses would be too
costly. Therefore we present a different slicing algorithm 5.1 on the following
page based on theorem 5.2 and 5.3. Its basic idea is the coding of possible ex-
ecution states of all threads in tuples (t0, t1, . . . , t|Θ|−1), where the ti are nodes
in the tPDG. The value ti represents the fact that it is still possible to reach
node ti in thread θi (a value of ⊥ does not restrict the state of execution). This
is used to keep track of the node n where a thread has been left by following an
interference edge. If another interference edge is followed back into the thread
at node m, the reachability of n from m can be checked, which assures that
paths over interference edges are always threaded witnesses in the tCFG. This
is the reason why the control and parallel flow edges have to be kept in the
tPDG.

We denote the extraction of the ith element ti for thread θi in a tuple T =
(t0, t1, . . . , tn) with T [θi]. The substitution of the ith element ti for thread θi in
a tuple T = (t0, t1, . . . , tn) with a value x will be denoted as T [θi] = x.

The algorithm keeps a worklist of pairs of nodes and state tuples that have
to be examined. Every edge reaching the current node is examined and han-
dled based on its type. In case of a control or data dependence edge, a new pair
consisting of the source node and the modified state tuple is inserted into the
worklist. According to theorem 5.3 this is done without checking the threaded
witness property. In the other case it is an interference dependence edge. It
may only be considered if the state node relevant to the source node thread
is reachable from the source node in the tCFG (all examined paths are still
threaded witnesses). Then, the new pair with the updated state tuple is in-
serted into the worklist. The resulting slice is the set of nodes constructed from
the first elements of the inserted pairs.

Example 5.12: In the following an application of the algorithm to calculate a
backward slice for node 4 is demonstrated. The worklist w is initialized with
the element (4, (4, 4,⊥)). This element is removed immediately from the work-

list and all edges reaching 4 are examined. The edge E
cd
⇀ 4 does not cross

64 Slicing Concurrent Programs

Algorithm 5.1 Slicing in tPDGs

Input: The slicing criterion s, a node of the tPDG
Output: The slice S, a set of nodes of the tPDG

Initialize the worklist with an initial state tuple:

T = (t0, . . . , t|Θ|), ti =

{
s θ(s) /∈ Π(θi)
⊥ otherwise

worklist w = {s, T }

slice S = {s}

repeat
remove the next element c = (m, T) from w

Examine all reaching edges:

foreach edge e = n
cd,dd
⇀ m do

Concatenation of e results in a threaded witness (theorem 5.3)
Update T for definition 5.3:
foreach t /∈ Π(θ(n)):

T [t] = n

c ′ = (n, T)
if c ′ has not been already calculated then

mark c ′ as calculated
w = w∪ {c ′}
S = S∪ {n}

foreach edge e = n
id
⇀ m do

n ′ = T [θ(n)]

if n ′ = ⊥ or n
cf,pf
⇀ + n ′ then

Concatenation of e results in a threaded witness (theorem 5.2)
Update T for definition 5.3:
foreach t /∈ Π(θ(n)) do

T [t] = n

c ′ = (n, T)
if c ′ has not been already calculated then

mark c ′ as calculated
w = w∪ {c ′}
S = S∪ {n}

until worklist w is empty
return S

5.4 Extensions 65

threads and the state of the thread θ(4) = θ(E) is updated before the created el-

ement (E, (E, E,⊥)) is inserted into the worklist. The edge 2 dd
⇀ 4 crosses threads

and creates a new element (2, (2, 2, 2)). The edge 6 id
⇀ 4 creates (6, (6, 4, 6)), be-

cause the state of θ(6) is ⊥. Let us step forward in the calculation and assume
the worklist is {(6, (6, 4, 6)), (C, (C, C,⊥)), . . .}. There are four edges reaching 6:

1. 2 dd
⇀ 6 crosses threads and creates the element (2, (2, 2, 2)). As this element

has already been visited it is not inserted into the worklist again.

2. D
cd
⇀ 6 does not cross threads and inserts the element (D, (D, 4, D)) into

the worklist.

3. 5 id
⇀ 6: as (6, 4, 6)[θ(5)] = 4 and the condition 5

cf,pf
⇀ + 4 is not fulfilled,

this edge has to be ignored.

4. 4 id
⇀ 6: 4

cf,pf
⇀ + 4 cannot be fulfilled and the edge has to be ignored.

In the third step, the edge has to be ignored because it would destroy the prop-
erty that every node in the slice is part of a threaded witness. The condition
that is not satisfiable in step four may be relaxed if we drop our assumption
that the program is properly synchronized on statement level. The remaining
calculations are presented in Figure 5.7 on the next page.

If we assume that the analyzed program has no threads, Θ = {θ0}, then this
algorithm is similar to the sequential slicing algorithm. In that case, the second
iteration over all interference dependence edges will not be executed and the
worklist will only contain tuples of the form (n, (n)), where n is a node of
the PDG. Hence the standard slicing algorithm on PDGs is a special case of our
algorithm, with the same time and space complexity for the non-threaded case.

In the threaded case the reachability n
cf,pf
⇀ + m has to be calculated iter-

atively. This determines the worst case for time complexity in the number of
interference edges: the traversal of these edges might force another visit of
all nodes that may reach the source of the edge. Therefore, the worst case is
exponential in the number of interference dependence edges. The number of
interference edges is potentially quadratic, however, we believe that the num-
ber of interference dependence edges will be very small in every program, as
interference is error prone, hard to understand and to debug. The required
calculation time will be much less than the time required to analyze serialized
programs.

5.4 Extensions

For simplicity, additional features of concurrent programs like synchronization
have been ignored so far. Most models of concurrent execution include some
methods of synchronization. Two such methods are synchronized blocks and
send/receive communication, which will be discussed in the following.

66 Slicing Concurrent Programs

w : {(4, (4, 4,⊥))}

E
cd
⇀ 4 ⇒ (E, (E, E,⊥))

2 dd
⇀ 4 ⇒ (2, (2, 2, 2))

6 id
⇀ 4 ⇒ (6, (6, 4, 6))

w : {(E, (E, E,⊥)), (2, (2, 2, 2)), (6, (6, 4, 6))}

C
cd
⇀ E ⇒ (C, (C, C,⊥))

1 dd
⇀ E ⇒ (1, (1, 1, 1))

w : {(2, (2, 2, 2)), (6, (6, 4, 6)), (C, (C, C,⊥)), (1, (1, 1, 1))}

A
cd
⇀ 2 ⇒ (A, (A, A, A))

w : {(6, (6, 4, 6)), (C, (C, C,⊥)), (1, (1, 1, 1)), (A, (A, A, A))}

2 dd
⇀ 6 ⇒ (2, (2, 2, 2)) already visited

D
cd
⇀ 6 ⇒ (D, (D, 4, D))

5 id
⇀ 6 ⇒ 5

cf,pf
⇀ + 4 is not fulfilled (T [θ(5)] = 4)

4 id
⇀ 6 ⇒ 4

cf,pf
⇀ + 4 is not fulfilled (T [θ(4)] = 4)

w : {(C, (C, C,⊥)), (1, (1, 1, 1)), (A, (A, A, A)), (D, (D, 4, D))}

B
cd
⇀ C ⇒ (B, (B, B, B))

w : {(1, (1, 1, 1)), (A, (A, A, A)), (D, (D, 4, D)), (B, (B, B, B))}

A
cd
⇀ 1 ⇒ (A, (A, A, A)) already in worklist

w : {(A, (A, A, A)), (D, (D, 4, D)), (B, (B, B, B))}
no edge reaching A exists

w : {(D, (D, 4, D)), (B, (B, B, B))}

B
cd
⇀ D⇒ (B, (B, B, B)) already in worklist

w : {(B, (B, B, B))}

A
cd
⇀ B ⇒ (A, (A, A, A)) already visited

⇒ Sθ(4) = {4, E, 2, 6, C, 1, A, D, B}

Figure 5.7: Calculation of Sθ(4)

5.4 Extensions 67

5.4.1 Synchronized Blocks

Synchronized blocks are blocks of statements that are executed atomically: In-
terference cannot arise inside such a block. An example for an instance are
monitors:

Example 5.13:

...
5 synchronized {
6 x = y;
7 if (z > 0)
8 x = x + z;
9 }

...

In this example, interference cannot happen to the variables x, y and z while
the synchronized block is executing: The usage of x in line 8 can only be data
dependent on line 6. However, both definitions in line 6 and line 8 can interfere
with any usage or definition of the same variable in other threads.

One possibility is to ignore the synchronization statement and treat syn-
chronized blocks as normal blocks. This is a conservative approximation and
will only add unrealizable interference. The precise solution is to compute the
set of definitions that reach the end of the synchronized block and the set of
usages that reach the entry.

Definition 5.7
A node m is interference dependent on node n, if

1. there is a variable v, such that v ∈ def(n) and v ∈ ref(m),

2. n is not embedded in a synchronized block or the definition at n reaches
the exit of the synchronized block,

3. m is not embedded in a synchronized block or the usage at m reaches the
entry of the synchronized block, and

4. θ(n) ∈ Π(θ(m)) (n and m may potentially be executed in parallel) or
the synchronized blocks of n and m would potentially execute in parallel
without synchronization.

5.4.2 Communication via Send/Receive

If two threads exchange information via send and receive communication, the
execution of the receiving thread may block until the sending thread has sent
some information. This has three effects on control and data dependence:

68 Slicing Concurrent Programs

1. The exchange of information creates a data dependence between the send-
ing and receiving statement. To distinguish it from normal data depen-
dence, such dependence may be called communication dependence. In
order to omit time travel, communication dependence must be treated
like interference dependence during slicing.

2. Because the execution at a receive may be blocked until some other thread
sends some data, the computation of Π becomes more complex. How-
ever, a conservative approximation is to ignore such blocking, as the Π

function will still return an (imprecise) superset of the realizable rela-
tions.

3. A receiving statement that may block (together with its successors) can
be seen as control dependent on the sending statement. This control de-
pendence can be computed simply by inserting the communication de-
pendence into the control flow graph and treat it as a control flow edge.

Example 5.14: Consider the example of figure 5.3 on page 58 again and assume
that statements 4 and 5 are send statements that send information to state-
ment 6, the latter is assumed to be a receive statement. Therefore the control
flow graph in figure 5.8 on the next page contains two communication depen-
dence edges. If control dependence is computed with this extended control
flow graph, statements 6 and 7 will be control dependent on statement 4 and
5, which can be interpreted as statements 6 and 7 will only be executed if one
of the statements 4 or 5 has executed. The control dependence graph for this
control flow graph is shown in figure 5.9 on page 70.

5.5 Related Work

An earlier, less precise version of the presented work has been published in
[Kri98].

There are many variations of the program dependence graph for threaded
programs like parallel program graphs [SS93, Che97, Che93, DGS92, CXZY02].
Most approaches to static or dynamic slicing of threaded programs are based
on such dependence graphs.

Dynamic slicing of threaded or concurrent programs has been approached by
different authors [MC88, CMN91, DGS92, KF92, KK95, GM00] and is surveyed
in [Tip95]. Probably the first approach for static slicing of threaded programs
was the work of Cheng [Che93, ZCU96, Che97]. He introduced some depen-
dences, which are needed for a variant of the PDG, the program dependence net
(PDN). His selection dependence is a special kind of control dependence and
his synchronization dependence is basically control dependence resulting from
the previously presented communication dependence. Cheng’s communication
dependence is a combination of data dependence and the presented communi-
cation dependence. Although the tPDG is not mappable to his PDN and vice

5.5 Related Work 69

START

STARTSTART

COSTART

send i

send i

receive i

EXIT EXIT

COEXIT

EXIT

1

2

4

5

6

8

control flow

parallel flow

3

7

irrelevant flow

communication dep.

Figure 5.8: A tCFG with communication dependence

70 Slicing Concurrent Programs

START

STARTSTART

COSTART

send i

receive i

1 2

4 5

6

8

control dependence

3

7

A

B

DC

E

send i

Figure 5.9: Control dependence for tCFG from figure 5.8

5.5 Related Work 71

versa, both graphs are similar in the number of nodes and edges. Cheng de-
fines slices simply based on graph reachability. The resulting slices are not
precise, as they do not take into account that dependences between concur-
rently executed statements are not transitive. Therefore, the integration of his
technique of slicing threaded programs into slicing threaded object oriented
programs [ZCU96, ZCU98, Zha99a, Zha99b] has the same problem. After the
first publication of [Kri98] more work on precise static slicing of concurrent
programs has been done: [NR00] improves the earlier version of our work in
[Kri98]. Their improvements are not needed in this chapter’s approach, where
cleaner definition avoid the earlier drawbacks. [CX01a] is a different approach
but is also based on dependence graphs.

There is a series of works that use static slicing of concurrent programs but
treat interference transitively and accept the imprecision: [HCD+99, DCH+99]
present the semantics of a simple multi-threaded language that contains syn-
chronization statements similar to the JVM. For this language, they introduce
and define additional types of dependence: divergence dependence, synchro-
nization dependence and ready dependence. [MT98, MT00] applies Cheng’s
approach to slice Promela for model checking purposes.

Data flow analysis frameworks exist also for concurrent programs: [KSV96]
uses essentially the same cobegin/coend model of concurrency and its paral-
lel flow graph is similar to the tCFG. To represent valid node sequences the
restriction of G∗-well-formedness is used, which is similar to the threaded wit-
ness property. Seidl [SS00] presents a framework for the problems of strong
copy constant propagation and (ordinary) liveness of variables in concurrent
programs and proves that these problems have the same complexity in both
sequential and concurrent cases. Slicing is a harder problem than reaching def-
initions. Proofs for lower bounds can be found in [MOS01, Ram00]. Both show
that precise slicing is undecidable in the interprocedural case. Despite the un-
decidability results, chapter 8 will present a high-precision approximation for
interprocedural slicing of concurrent programs.

72 Slicing Concurrent Programs

Part II

Interprocedural Analysis

Chapter 6

Interprocedural Data Flow
Analysis

The first part of this thesis presented the fundamentals of analyzing and slicing
programs without procedures. Of course, real world programs without proce-
dures don’t exist. In the second part of this thesis the work of the first part is
therefore extended to programs with procedures. Interprocedural analysis is
not a simple extension to intraprocedural analysis—it will be shown that anal-
ysis in the right calling context is the main problem.

A main focus for this part are variants of interprocedurally realizable paths. For
procedure-less programs, it was assumed that every path through the control
flow and program dependence graph is realizable. Now paths are interproce-
dural realizable, if every called procedure returns to the call site it was called
from. Interprocedural data flow analysis is usually defined in terms of inter-
procedurally realizable paths and the next chapter will define program slicing
based on those paths.

This chapter will give a short introduction to interprocedural data flow
analysis first by revisiting the problem of reaching definitions. The main sec-
tion will discuss the problem of interprocedurally realizable paths, which are
needed in the following section about data flow analysis. The last section will
introduce the interprocedural version of the program dependence graph: the
interprocedural program dependence graph (IPDG).

6.1 Interprocedural Reaching Definitions

The problem of reaching definitions was clear and simple in the intraproce-
dural case. However, in the interprocedural case it is more complicated: a
definition in one procedure might reach a statement in a different procedure
by various means.

76 Interprocedural Data Flow Analysis

1 int a, b, c;
2
3 void q () {
4 int z = 1;
5 a = 2;
6 b = 3;
7 p(4, z);
8 z = a;
9 c = 5;
10 p(6, c);
11 }

12 void p (int x, int& y) {
13 static int d = 6;
14 a = c;
15 if (x) {
16 d = 7;
17 p(8, x);
18 } else {
19 b = 9;
20 }
21 y = 0;
22 }

Figure 6.1: Simple example for reaching definitions

Example 6.1: Consider the program in figure 6.1, which contains multiple defi-
nitions: a, b, c and d are global variables, z is a local variable, x a call-by-value
parameter and y a call-by-reference parameter.

• The definition of global a in line 5 reaches lines 6–7, but not lines 8–11,
as it is killed by line 14 through the call in line 7. It also reaches lines
13–14 but not 15–22. The definition of global c in line 9 reach lines 13–22
through the call in line 10.

• More complex are the definitions of global b: the definition in line 6 can-
not reach lines 8–10 or 21, as line 19 kills it—any call of p must execute
line 19 to terminate the recursion. Also, the definition in line 19 reaches
line 13–19, as it might reach the call in line 10 by procedure p returning
from the call in line 7.

• The variable d is global and only visible inside procedure p: the definition
in line 16 may reach lines 13–16 because of the call in line 17. Through
procedure p returning from the call in line 7, both definitions (line 13 and
16) may reach lines 8–10 and therefore also line 13–16 and 18–22.

• Locals like z are (usually) only visible in procedures they are defined in.
Call-by-value parameters are like locals, with a definition at the proce-
dure entry: x is defined in line 12.

• Call-by-reference introduces a simple form of aliasing and make other-
wise invisible variables available in called procedures.

For the moment, call-by-reference and aliasing are ignored and only scalar local
or global variables and call-by-value parameters will be discussed.

6.2 Interprocedural Realizable Paths 77

Figure 6.2: Interprocedural control flow graph

6.2 Interprocedural Realizable Paths

In the intraprocedural case all paths in the CFG were assumed to be executable
and therefore realizable. In the interprocedural case this is more complicated:

The individual procedures of a program are represented in control flow
graphs Gp = (Np, Ep, ns

p, ne
p) for each procedure p. An interprocedural control

flow graph (ICFG) is a directed graph G = (N?, E?, ns
0 , ne

0), where N? =
⋃

p Np

and E? = EC ∪
⋃

p Ep. One procedure q is the program’s main procedure, its
START and EXIT nodes are the main START and EXIT nodes: ns

0 = ns
q and ne

0 = ne
q.

The calls are represented by call and return edges in EC: A call edge e ∈ EC is
going from a call node n ∈ Np to the START node ns

q of the called procedure q.
A return edge e ∈ EC is going from the EXIT node ne

q of the called procedure q

back to the immediate successor of the call node n ∈ Np.1

Example 6.2: Figure 6.2 shows the ICFG for the reaching definition example.
Note that there are control flow edges between call nodes and their immediate
successors.

If any path through the ICFG is assumed to be a realizable path, data flow
analysis will become imprecise, as clearly unrealizable paths can be traversed:
Consider the definition of global c in line/node 9, which reaches the called
procedure via the call edge at line/node 10. All paths through p are free of
definitions for c and the definition gets propagated along the return edges: via

1There are two common variants: First, the immediate successor of a call node is an explicitly
defined return node. Second, the return edge is going from the EXIT node to the call node itself.

78 Interprocedural Data Flow Analysis

the return edge for the call in line/node 8 the definition may reach line/node 9.
However, this is clearly an interprocedurally unrealizable path, because the path
does not return to the matching successor in line/node 10.

One way to describe interprocedurally realizable paths is via context-free
language reachability: The intraprocedural control flow graph can be seen as
a finite automaton and the intraprocedurally realizable paths are words of its
accepted language. Therefore, reachability in the control flow graph is an in-
stance of regular language reachability. The problem in interprocedural reacha-
bility is the proper matching of call edges to return edges. This can be achieved
by defining a context-free language on top of the ICFG: Edges from Ep are
marked with the empty word ε and edges from EC are marked according to
their source and target nodes:

• Call edges between a call node m and a START node ns
p are marked with

“(
ns

p
m ”.

• Return edges between an EXIT node ne
p and a (return) node n are marked

with “)
ns

p
m ”, where m is the predecessor of n (the corresponding call node

m) and ns
p is the START node of p.

• Edges between a call node n and its successor (the return node) are marked
with ⊥.

Let Σ be the set of all edge labels in an ICFG G. Every path in G induces a
word over Σ by concatenating the labels of the edges on the path. A path is an
interprocedural matched path if it is a word of the context-free language defined
by:

M → MM

| (
ns

p
m M)

ns
p

m ∀(n
s
p

m ∈ Σ

| ε

This grammar assures the proper matching of calls and returns by simulating
an abstract call stack. Notice the absence of ⊥ from the grammar: this assures
that paths must pass through called procedures. On the other hand, it is some-
times desirable to allow paths to bypass calls—in that case edges between call
and return are labeled with the empty word ε instead.

Interprocedural matched paths require their start and end node to be in the
same procedure. Interprocedurally realizable paths with start and end node in
different procedures have only partially matching calls and returns: dependent
if the end node is lower or higher in the abstract call stack, the paths are right-
balanced or left-balanced. A path is an interprocedural right-balanced path if it
is a word of the context free language defined by:

R → MR

| (
ns

p
m R ∀(n

s
p

m ∈ Σ

| ε

6.3 Analyzing Interprocedural Programs 79

Here, every)
ns

p
m is properly matched to a (

ns
p

m to the left, but the converse need
not hold. A path is an interprocedural left-balanced path if it is a word of the
context free language defined by:

L → LM

| L)
ns

p
m ∀(n

s
p

m ∈ Σ

| ε

An interprocedurally realizable path is an interprocedurally right- or left-balanced
path.

I → L

| R

Definition 6.1 (Interprocedural Reachability)
A node n is interprocedurally reachable from node m, iff an interprocedurally
realizable path from m to n in the ICFG exists, written as m ⇀?

R n.

The concept of a witness (see 2.1 on page 15) must also be transfered to the
interprocedural case:

Definition 6.2 (Interprocedural Witness)
A sequence 〈n1, . . . , nk〉 of nodes is called an interprocedurally (realizable) wit-
ness, iff nk is interprocedurally reachable from n1 via an interprocedurally re-
alizable path p = 〈m1, . . . , ml〉 with:

1. m1 = n1, ml = nk, and

2. ∀1 6 i < k : ∃x, y : x < y ∧ mx = ni ∧ my = ni+1.

6.3 Analyzing Interprocedural Programs

Ignoring parameters, the interprocedural meet-over-all-paths (IMOP) solution of
a data flow problem can be defined just by using the definition of interproce-
durally realizable paths. For example, the interprocedural reaching definition
problem is:

RDIMOP(n) =
⋃

p=〈ns
0 ,...,n〉

[[p]](∅)

where all p are interprocedurally realizable paths. As in the intraprocedural
case, the computation of the IMOP solution is impossible in general. There-
fore only the interprocedural minimal-fixed-point (IMFP) solution is computed.
However, complete paths are no longer analyzed, it is impossible to check for
interprocedurally realizable paths and different approaches must be applied:

• Procedures can be inlined: calls get replaced by the called procedure and
the resulting program can be analyzed like an intraprocedural one. How-
ever, this is not possible in the presence of recursion and even without,
the size of the inlined programs may grow exponentially.

80 Interprocedural Data Flow Analysis

• The effects of procedures are computed first and represented in a transfer
function that maps flow information at a call site from the call to the
return. Thus the call statements are ordinary statements with transfer
functions and intraprocedural techniques can be applied.

• The calling context of a procedure is encoded explicitly and the procedure
is analyzed for each calling context separately. Again, in the presence of
recursion the set of calling contexts may be infinite, depending on the
encoding of the calling context.

The inlining approach can only be used for non realistic small programs
without recursion. Therefore, only the two remaining approaches are relevant:

6.3.1 Effect Calculation

This approach, also called the functional approach [SP81], computes a func-
tion for every procedure that maps the data flow information at the entry of
a procedure to the information that holds at the exit. The computed function
can be used in the transfer functions at the call statements and intraprocedural
data flow analysis can then be used in a second pass. The first pass is basi-
cally a data flow analysis where the data flow information are functions and
the transfer functions are function compositions. For some data flow problems
the resulting data flow information is infinite function compositions and there-
fore not computable. For a large class of data flow problems these computed
functions reduce to simple mappings where the composition can be computed
instantly.

6.3.2 Context Encoding

One way to encode the calling context is to capture the “history” of calls that
lead to a node n in form of a call string [SP81]. This is basically an abstraction
of the call stack of the machine executing the program. With this approach the
lattice of the data flow facts is replaced by a lattice whose elements combine
calling context and the former data flow facts. The transfer functions are ex-
tended to handle the additional calling context. In the presence of recursion
the number of such call strings is infinite, which disables the use of this ap-
proach with recursive functions. To overcome this problem, the length of the
call strings can be limited to a certain length k. Calling context that would
have a call string longer than k are shortened such that the “oldest” elements
are removed first (called call-string suffix approximation [SP81]). This approach
may be imprecise if there exist calling contexts that have the same k “newest”
elements in their k limited call strings: these calling contexts will not be distin-
guished in the data flow analysis.

The complexity of the (full) call-string approach is not different from the
one using inlining: Let procedure p have the set Cp of possible call-strings.
With inlining, p is replicated |Cp| times. On the other hand with the (full) call-
string approach, p is analyzed |Cp| times.

6.4 The Interprocedural Program Dependence Graph 81

The ideas of both approaches can be combined: The calling context c ∈ C

is encoded through the data flow facts that hold at the entry to a procedure
p ∈ P. From that the data flow facts c ′ that hold at the exit of the procedure
are computed and stored in a mapping C× P → C. At every call node n of
a procedure p the data flow facts c are then bound to data flow facts c ′ =
bind(c) that hold at the entry node of p. If the effect of p for c ′ has already been
computed, it can be reused from the mapping which contains the data flow
facts c ′′ holding at the exit of p. After back-binding the effect to the call site,
the effect c ′′′ = bind−1(c ′′) holds at the exit of the call node n.

6.4 The Interprocedural Program Dependence Graph

An interprocedural version of the program dependence graph can be con-
structed by just using the intraprocedural version with interprocedural data
dependence computed from interprocedural reaching definitions. However,
this has a disadvantage: A path in such a dependence graph no longer has a
corresponding interprocedurally realizable path in the ICFG.

Example 6.3: In the earlier example (figure 6.1 on page 76) the definition of c
at node 9 is an interprocedurally reaching definition at the use of c in node
14, which creates a data dependence between nodes 9 and 14. The definition
of a at node 14 reaches the usage in node 8 and creates a data dependence
between 14 and 8 (see figure 6.3 on the next page). The resulting path on both

data dependence edges 9 dd
⇀ 14 dd

⇀ 8 has no corresponding interprocedurally
realizable path.

Data dependence based on interprocedurally realizable paths is called in-
terprocedural data dependence:

Definition 6.3 (Interprocedural Data Dependence)
A node m is called interprocedurally data dependent on node n, if

1. there is an interprocedurally realizable path p from n to m in the ICFG
(p = n ⇀?

R m),

2. there is a variable v, with v ∈ def(n) and v ∈ ref(m), and

3. for all nodes k 6= n of path p, v /∈ def(k) holds.

As transitive interprocedural data dependence may result in unrealizable paths,
it is not adequate for interprocedural slicing. Therefore, the interprocedural
version of the PDG, the interprocedural program dependence graph (IPDG), mod-
els each procedure as a single PDG and connects these with special edges.

6.4.1 Control Dependence

Each procedure is assumed to be a single-entry-single-exit region. It is also
assumed that all procedures terminate. Because of these assumptions, the exe-
cution of the successor of a call node is never controlled by a node in the called

82 Interprocedural Data Flow Analysis

Figure 6.3: ICFG with data dependence

procedure. Therefore control dependence is computed only intraprocedural,
where the edges between call nodes and their successors are assumed to be
normal control flow edges.

6.4.2 Data Dependence

For representation in the PDGs of the procedures, data dependence is com-
puted only intraprocedural:

Definition 6.4
Let G = (N?, E?, ns

0 , ne
0) be an ICFG. A node m ∈ N? is data dependent on node

n ∈ N?, if

1. there is an interprocedurally matched path p from n to m in the ICFG,

2. there is a variable v, with v ∈ def(n) and v ∈ ref(m), and

3. for all nodes k 6= n of path p, v /∈ def(k) holds.

The difference to interprocedural data dependence is the restriction on inter-
procedurally matched paths. This variant of data dependence can be com-
puted with a slightly modified version of interprocedural reaching definitions
RDIMFP.

Without global variables (and call-by-reference and aliasing) the analysis
would be even simpler, as called procedures would have no effects in the call-
ing procedure and the intraprocedural computation of RDMFP would be suf-
ficient. Therefore an approach that eliminates global variables is used, where

6.4 The Interprocedural Program Dependence Graph 83

global variables are substituted by local variables in every procedure. At call
sites the global variables are modeled as call-by-value-result parameters, which
is correct without call-by-reference parameters and aliasing. With a simple
flow-insensitive data flow analysis the introduction of call-by-value-result pa-
rameters can be effectively reduced to the (global) variables that may be used
or modified inside a procedure:

• GMOD(p): the set of all variables that might be modified if procedure p

is called.

• GREF(p): the set of all variables that might be referenced if procedure p

is called.

To compute the effect at the calling node n of procedure q calling procedure p

(p ∈ calls(q)), the GMOD and GREF sets of p must be back-binded, i.e. without
call-by-reference parameters and aliasing this is just removing local variables:

bind−1(S, p) = S − locals(p)

GMOD(n) = bind−1(GMOD(p))

GREF(n) = bind−1(GREF(p))

To compute the GMOD and GREF sets for a procedure p, first the set of all di-
rectly modified or referenced variables in p, IMOD(p) and IREF(p), are com-
puted. This can already be done during parsing or while constructing the
CFGs. Second, the effects of all calls in p (= calls(p)) must be included:

GMOD(q) = IMOD(q)∪
⋃

p∈calls(q)

bind−1(GMOD(p), p)

GREF(q) = IREF(q)∪
⋃

p∈calls(q)

bind−1(GREF(p), p)

Again, these equations are recursively defined and the minimal fixed point
solution is computed iteratively with empty GMOD and GREF sets as initial-
izations.

Any variable v that may be modified by a call to procedure p (v ∈ GMOD(p))
is assumed to be used and modified at the call site itself. Under this assump-
tion the data dependence computation is done via the intraprocedural MFP
framework for RDMFP with special def and ref sets for the transfer function at
the call nodes:

def(n) = GMOD(n)

ref(n) = GMOD(n)∪GREF(n)

The extension of the PDG for interprocedural programs introduces more nodes
and edges: For every procedure a procedure dependence graph is constructed,
which is basically a PDG with formal-in and -out nodes for every formal param-
eter of the procedure. A procedure call is represented by a call node and actual-
in and -out nodes for each actual parameter. The call node is connected to the

84 Interprocedural Data Flow Analysis

entry node by a call edge, the actual-in nodes are connected to their matching
formal-in nodes via parameter-in edges and the actual-out nodes are connected to
their matching formal-out nodes via parameter-out edges. Such a graph is called
Interprocedural Program Dependence Graph (IPDG). The System Dependence Graph
(SDG) is an IPDG, where summary edges between actual-in and actual-out have
been added representing transitive dependence due to calls [HRB90]. The con-
cept of summary edges and the system dependence graph will be explained in
the next chapter.

6.5 Related Work

There exists a lot of previous work for interprocedural analysis which cannot
be discussed here; any good book on compilers can serve as an introduction,
e.g. [ASU85, Muc97]. The two principle approaches for interprocedural analy-
sis of section 6.3 have been introduced in [SP81]. The concept of interprocedu-
rally realizable paths in section 6.2 has been taken from [Rep98].

Knoop [KS92, Kno98] presents an interprocedural data flow analysis frame-
work that can be used to compute interprocedural data flow analysis problems
efficiently. A complete system that generates interprocedural data flow anal-
yses from specifications is presented in [Mar99, AM95]. It uses an intrapro-
cedural approach that does not fit into the three approaches on page 79. A
number of program analysis problems can be transformed to context-free lan-
guage reachability problems, which can be seen as another framework [Rep98,
RHS95].

Harrold et al [HRS98, SHR01] present interprocedural control dependence which
occurs if a procedure can be left abnormally by an embedded halt statement.
They extend the IPDG with corresponding edges and show how to compute
slices within the extended graph [SHR99]. An efficient approach to compute
interprocedural control dependence is presented in [EBP01].

Chapter 7

Interprocedural Slicing

To slice programs with procedures, it is not enough to perform interprocedu-
ral data flow analysis as presented in the last chapter. If the intraprocedural
slicing algorithm 3.1 on page 34 from section 3.2 is used on IPDGs or SDGs,
the resulting slices are not accurate, as the calling context is not preserved: The
algorithm may traverse a parameter-in edge coming from a call site into a pro-
cedure, may traverse some edges there and may traverse a parameter-out edge
going to a different call site. The sequence of traversed edges (the path) is an
unrealizable path: It is impossible for an execution that a called procedure does
not return to its call site. We consider an interprocedural slice to be precise if all
nodes included in the slice are reachable from the criterion by a realizable path.

The next short section will transfer the notion of a realizable path in the
ICFG to realizable paths in the IPDG and define slicing in those terms. The
following section will explain summary edges and how they can be used for
efficient computation of slices. A section about slicing without summary edges
will follow. The last section will present an evaluation of the presented slicing
algorithms.

7.1 Realizable Paths in the IPDG

Even when we performed precise interprocedural data flow analysis, the un-
constrained traversal of the dependences will result in imprecise slices.

Example 7.1: Figure 7.1 on the following page shows a fragment of a program
that contains two calls to procedure p in lines 3 and 6. Assume that the param-
eters are passed by call-by-reference. A backward slice for variable y in line 9
will include line 4, despite that it has no influence on y at line 9. The reason
is that the call in line 3 is forcing line 11–13 into the slice. Line 13 forces the
inclusion of line 4, because parameter a is bound to variable x at the call in line
6. A precise algorithm should obey the calling context and omit line 4 from the
slice.

86 Interprocedural Slicing

1 read x
2 read y
3 p(y,x)
4 x = x + 1
5 y = y + 1
6 p(x,y)
8 print x
9 print y

10 proc p(a,b):
11 b = b + 1
12 c = b / 2
13 a = a + c
14 end

Figure 7.1: A simple example with a procedure

There is a correspondence between realizable paths in the ICFG and paths
in the IPDG. Interprocedurally realizable paths in the IPDG are defined exactly
like interprocedural realizable paths in the ICFG: The edges are marked with
bracket symbols and a grammar checks the interprocedural realizability. This
is similar to section 6.2 and straightforward, thus not presented here again.

Definition 7.1 (Slice in an IPDG)
The (backward) slice S(n) of an IPDG at node n consists of all nodes on which n

(transitively) depends via an interprocedurally realizable path:

S(n) = {m | m ⇀?
R n}

A slice can also be defined for a criterion set of nodes C:

S(C) = {m | m ⇀?
R n ∧ n ∈ C }

These definition s cannot be used in an algorithm directly because it is im-
practical to check whether paths are interprocedurally realizable. The next
section will present an efficient algorithm for slicing that complies with the
definitions.

7.2 Slicing with Summary Edges

Accurate slices can be calculated with a modified algorithm on SDGs. The ben-
efit of SDGs is the presence of summary edges that represent transitive depen-
dence due to calls. Summary edges cam be used to identify actual-out nodes
that are reachable from actual-in nodes by an interprocedurally realizable path
through the called procedure without analyzing it. The idea of the slicing algo-
rithm using summary edges [HRB90, RHSR94] is first to slice from the criterion
only ascending into calling procedures, and then to slice from all visited nodes
only descending into called procedures. The algorithm 7.1 on the next page
is a variant of the original algorithm in [HRB90]. It is a two-phase technique
which first computes a descending slice for the criterion, and computes an as-
cending slice from the result of the first phase. The original algorithm does not

7.2 Slicing with Summary Edges 87

Algorithm 7.1 Summary Information Slicing (in SDGs)

Input: G = (N, E) the given SDG
s ∈ N the given slicing criterion

Output: S ⊆ N the slice for the criterion s

Wup = {s}

Wdown = ∅
S = {s}

first pass, descending slice
while Wup 6= ∅ worklist is not empty do

Wup = Wup/{n} remove one element from the worklist
foreach m ⇀ n ∈ E do

if m /∈ S then
if m ⇀ n is a parameter-out edge (m

po
⇀ n) then

Wdown = Wdown ∪ {m}

S = S∪ {m}

else
Wup = Wup ∪ {m}

S = S∪ {m}

second pass, ascending slice
while Wdown 6= ∅ worklist is not empty do

Wdown = Wdown/{n} remove one element from the worklist
foreach m ⇀ n ∈ E do

if m /∈ S then

if m ⇀ n is not a parameter-in or call edge (m
pi,cl
⇀ n) then

Wdown = Wdown ∪ {m}

S = S∪ {m}

return S the set of all visited nodes

traverse parameter-out edges in the first phase, ignores parameter-in and call
edges in the second phase and uses the result of the first phase as slicing crite-
rion for the second phase. This has the effect that many nodes will be visited
twice. The new algorithm 7.1 is therefore improved in that every node is never
visited more than once. This improvement is quite obvious and has been used
in CodeSurfer from the beginning, though has not been published. This algo-
rithm is correct, because the nodes inserted into the down-worklist are formal-
out nodes that can only be reached by traversing parameter-out edges and will
never be visited in the first phase via different edges. In the following, this
algorithm is called context-sensitive slicing (CSS). It computes a non-truncated
backward slice, where non-truncated means that nodes in called procedures are
included. With small modifications it can be made to compute other variants
of slicing:

88 Interprocedural Slicing

Forward slicing. All edges are traversed in the opposite direction.

Truncated slicing. A truncated (backward) slice does not contain nodes from
called procedures; it does not ascend into them. To compute it, the second
pass is left out (because it computes exactly those nodes).

Same-level slicing. A same-level (backward) slice does not contain nodes from
calling procedures; it does not descend into them. To compute it, the first
pass has to ignore parameter-in and call edges.

All variants can be combined: for example, a same-level truncated slice only
contains nodes of the procedure containing the criterion node. This is differ-
ent from computing a non-truncated non-same-level slice and removing nodes
from other procedures: Due to recursion some nodes of the procedure may
only be reached by ascending or descending at call sites.

Generation of Summary Edges

The algorithm to compute summary edges in [HRB90] is based on attributed
grammars. A more efficient algorithm was presented in [RHSR94], which will
be used in the following and is shown in algorithm 7.2 on the next page. This
algorithm starts on an IPDG without summary edges and checks for all pairs of
formal-in and -out nodes, if a path in the dependence graph between the nodes
exists and corresponds to a same-level realizable (matched) path in the control
flow graph. If such a path exists, a summary edge between the corresponding
actual-in and -out node is inserted. Because the insertion of summary edges
will make more paths possible, the search iterates until a minimal fixed point is
found. The algorithm only follows data dependence, control dependence and
summary edges. Therefore any path consisting of these edges must correspond
to a same-level realizable path. This algorithm is basically of cubic complexity
[RHSR94].

7.3 Context-Sensitive Slicing

There are situations in which summary edges cannot be used: In presence of
interference in concurrent programs dependence is no longer transitive (see
chapter 5), which is a requirement for summary edges. As interference depen-
dence crosses procedure boundaries, it cannot be summarized by summary
edges. Under such circumstances the calling context has to be preserved ex-
plicitly during the traversal of the (threaded) IPDG.

The computation and usage of summary edges can be seen as an instance
of effect calculation, one of the two approaches discussed in section 6.3. Call
strings, the other approach, are now used for slicing where the calling context
is encoded explicitly during analysis.

Let each call node and its actual-in and -out nodes in the IPDG G be given
a unique call site index si. A sequence of call sites c = si1 ...sin is a call string.

7.3 Context-Sensitive Slicing 89

Algorithm 7.2 Computing Summary Edges

Input: G = (N, E), the given IPDG
Output: G ′ = (N, E ′), the corresponding SDG

Initialization
W = ∅, worklist
P = ∅
foreach n ∈ N which is a formal-out node do

W = W ∪ {(n, n)}
P = P ∪ {(n, n)}

Iteration
while W 6= ∅ worklist is not empty do

W = W/{(n, m)} remove one element from the worklist
if n is a formal-in node then

foreach n ′ pi
⇀ n which is a parameter-in edge do

foreach m
po
⇀ m ′ which is a parameter-out-edge do

if n ′ and m ′ belong to the same call site then
E = E∪n ′ su

⇀ m ′ add a new summary edge
foreach (m ′, x) ∈ P ∧ (n ′, x) /∈ P do

P = P ∪ {(n ′, x)}
W = W ∪ {(n ′, x)}

else

foreach n ′ dd,cd,su
⇀ n do

if (n ′, m) /∈ P then
P = P ∪ {(n ′, m)}
W = W ∪ {(n ′, m)}

return G the SDG

90 Interprocedural Slicing

During traversal of a parameter-out edge from a call site s going down into the
called function, a new, longer call string c ′ = sc is generated. If a parameter-
in or call edge is traversed back up to a call site s ′, this call site must match the
current leading element of the call string (c = s ′c ′). Using call strings a context-
sensitive slicing method which is as precise as context-sensitive slicing based
on summary edges can be defined: is precise in respect to realizable paths.

7.3.1 Explicitly Context-Sensitive Slicing

In Figure 7.3 on the facing page a general slicing algorithm obeying calling
context via call strings is shown. Variants of the algorithm come from the defi-
nition of down, up, match and equals. The simplest definition is as follows1:

down(c, s) → cons(s, c)

up(c) →
{

cdr(c) c 6= ε

ε c = ε

match(s, c) → c = ε ∨ s = car(c)
equals(c1, c2) → c1 = c2

In presence of recursion this simple approach fails, as neither the set of call
strings nor the call strings themselves are finite. Agrawal and Guo presented
an improved algorithm named ECS in [AG01a], where the call strings are cycle
free. They define down as follows (up and equals are as above):

down(c, s) →
{

cons(s, c) c = s1s2 . . . sk ∧ ∀si
: s 6= si

si . . . sk c = s1s2 . . . sk ∧ s = si

However, using this definition the resulting slices are not correct as they might
leave out nodes (statements) of the slices. The incorrectness is based on the
following observation: As soon as a call string c would form the string c =
sxsy1 ..synsxsz1 ...szm , it is replaced by c ′ = sxsz1 ...szm to remove the cycle.
Now, the algorithm fails to propagate the effects with call string c ′ (which in-
cludes effects with call string c) back to the call site sy1 , because the call string
c ′′ = sy1 ..synsxsz1 ...szm is not generated by up(c ′).

Example 7.2: A simple counter example based on this observation is given in
Figure 7.2 on page 92, where two procedures are shown as an IPDG. Procedure
1 contains its entry node 1 and a call site A, composed from the call node A1,
two actual-in nodes A2 and A3, and an actual-out node A4. The second pro-
cedure contains its entry node 2, two formal-in nodes 3 and 4, a formal-out
node 6, a node if for an if-statement, and a call site B, composed from the call
node B1, two actual-in nodes B2 and B3, and an actual-out node B4. The nodes

1equals will be replaced by an optimized version in section 7.3.4. The following algorithm are
already prepared for that version—therefore the check “m has not been marked with a context c ′

for which equals(c, c ′) holds”.

7.3 Context-Sensitive Slicing 91

Algorithm 7.3 Explicitly Context-Sensitive Slicing

Input: G = (N, E), the given IPDG
s ∈ N, the given slicing criterion

Output: S ⊆ N the slice for the criterion s

Initialization
W = {(s, ε)}, worklist
while W 6= ∅ worklist is not empty do

W = W/{(n, c)} remove one element from the worklist
S = S∪ {n}

foreach m ⇀ n ∈ E do
if m has not been marked with a context c ′

for which equals(c, c ′) holds then
if m ⇀ n is a parameter-in or call edge then

Let sm be the call site of m

if match(sm, c) then
c ′ = up(c)
W = W ∪ {(m, c ′)}
mark m with c ′

elsif m ⇀ n is a parameter-out edge then
Let sn be the call site of n

c ′ = down(c, sn)
W = W ∪ {(m, c ′)}
mark m with c ′

else
W = W ∪ {(m, c)}
mark m with c

return S,the set of all visited nodes

92 Interprocedural Slicing

1

A1

A2 A3 A4

2

3 4 if 6

B1

B2 B3 B4

CD

DD

PI/PO

Figure 7.2: Counter example for Agrawal’s ECS

inside the procedures are connected by control and data dependence edges.
Also, procedure 1 calls procedure 2 at call site A, and procedure 2 calls itself
at call site B. The actual-in/-out nodes are properly connected to their formal-
in/-out nodes by parameter-in/-out edges; the call edges are not shown. Let
us do a backward slice from A4: The initial worklist is {(A4, ε)}. A4 is reachable
from A1 and 6, and the worklist will contain {(A1, ε), (6, A)}. Next, A1 is visited,
which is reachable from 1, and this leaves the worklist as {(6, A)}. Node 6 is
reached (transitively) from 2, 3, B1, B4, and if, which are all marked with the
call string A. B4 is reached from 6 by recursion. At this point, the worklist
is {(3, A), (6, BA)} and node 6 has two marks: A and BA. Node 3 is reachable
from A2, where the call string matches (at this point, node 3 is only marked
with A). It is also reachable from B2, but the call string doesn’t match. From
node 6 the call string BA is now propagated to 2, 3, B1, B4, and if. Because
node 3 is now marked with BA, A is propagated to B2, which is visited the first
time. B2 is reachable from node 4 and transitively from A3. At this point, only
B3 has not been visited yet, the nodes 1 and A1–A4 are marked with ε; 2, 3, if,
6, B1, and B4 are marked with A and BA, and 4 and B2 are only marked with A.
Now, the worklist only contains {(B4, BA)}. Due to the recursive call, a new call
string BBA would be generated and propagated to node 6. However, the cycle
removal in down folds BBA into BA, which has previously been used at node 6.
The ECS algorithm now terminates (the worklist is empty) but the generated
slice doesn’t contain B3 which is wrong: a propagation of BBA would visit B3.

7.3 Context-Sensitive Slicing 93

7.3.2 Limited Context Slicing

One popular approach to circumvent the infinity problems of call strings is the
limitation of their length (call string suffix approximation in [SP81]). For a given
k, the call string is not allowed to be longer than k elements. If the call string is
already k elements long before concatenation, the oldest element is removed:

down(c, s) →
{

cons(s, c) c = s1s2 . . . sl ∧ l < k

ss1 . . . sk−1 c = s1s2 . . . sl ∧ l = k

We can use the general algorithm of Figure 7.3 on page 91 with these modi-
fications. This variant is called k-limited context slicing (kLCS). This approach
becomes quite imprecise (but is still correct) in presence of recursion: Consider
a call string of maximal length k. If this call string is propagated into a recursive
procedure, it may be propagated k times into the called recursive procedure.
The result is a call string that only contains call sites in the recursive procedure.
This call string may then be propagated k times back into the calling recursive
procedure. Now, the resulting call string is empty and all procedures that call
the recursive one are marked with the empty call string. This makes the analy-
sis context-insensitive for procedures calling recursive procedures (directly or
indirectly) and causes a reduced precision.

7.3.3 Folded Context Slicing

As seen, a way to make the call strings finite is to remove cycles and main-
tain correctness additionally. Instead of removing them explicitly a different
approach is presented: First, the calling context graph is built. This is a graph
where the nodes are the call sites and the edges (n, m) represent calls that lead
from call site n into a procedure that contains call site m. In that graph, the
strongly connected components are folded into one single node and the call
sites of such a component are replaced by one single call site. During that pro-
cess all recursive call sites are marked.

The definitions of down etc. are then adapted not to iterate through the cy-
cles, making the contexts finite. Therefore they use the replacement [s] of a call
site s:

down(c, s) →
{

c [s] = car(c)
cons([s], c) otherwise

up(c) →
{

cdr(c) c 6= ε

ε c = ε

match(s, c) → c = ε ∨ [s] = car(c)
equals(c1, c2) → c1 = c2

This definition of down does not create new contexts if the old and the new call
site are in the same recursive cycle.

This variant will be called unlimited folded context slicing (UFCS). If it is used
within the algorithm of Figure 7.3 on page 91, the same incorrectness as in

94 Interprocedural Slicing

Algorithm 7.4 Folded Context-Sensitive Slicing

Input: G = (N, E) the given SDG
s ∈ N the given slicing criterion

Output: S ⊆ N the slice for the criterion s

Initialization
W = {(s, ε)}, worklist
while W 6= ∅ worklist is not empty do

W = W/{(n, c)} remove one element from the worklist
S = S∪ {n}

foreach m ⇀ n ∈ E do
if m has not been marked with a context c ′

for which equals(c, c ′) holds then
if m ⇀ n is a parameter-in or call edge then

Let sm be the call site of m

if match(sm, c) then
if sm is marked as recursive

and m has not been marked with a context c ′

for which equals(c, c ′) holds then
W = W ∪ {(m, c)}
mark m with c

c ′′ = up(c)
W = W ∪ {(m, c ′′)}
mark m with c ′′

elsif m ⇀ n is a parameter-out edge then
Let sn be the call site of n

if sn is marked as recursive
and car(c) = sn then
W = W ∪ {(m, c)}
mark m with c

else
c ′ = down(c, sn)
W = W ∪ {(m, c ′)}
mark m with c ′

else
W = W ∪ {(m, c)}
mark m with c

return S, the set of all visited nodes

7.3 Context-Sensitive Slicing 95

Agrawal’s algorithm is obtained. Figure 7.4 on the facing page presents a cor-
rected algorithm, modified as follows:

1. If the algorithm descends into a called recursive function, it propagates
two call strings: the call string generated by up and the actual call string
(because of the possible recursion).

2. If the algorithm ascends into a calling recursive function, it propagates
the actual call string if the actual call site is already present either in (the
first element of) the call string or the call string generated by down.

This modified algorithm is general enough to also be used in an k-limited ver-
sion which is defined by:

down(c, s) →

 c [s] = car(c)
cons([s], c) c = [s1][s2] . . . [sl] ∧ [s] 6= [s1] ∧ l < k

[s][s1] . . . [sk−1] c = [s1][s2] . . . [sl] ∧ [s] 6= [s1] ∧ l = k

This variants will be called k-limited folded context slicing (kFCS). The evalu-
ation will show that the unlimited variant is impractical due to combinatorial
explosion of the set of call strings.

7.3.4 Optimizations

During early test-case evaluations it was observed that implementation deci-
sions have a high impact on runtime. To prevent an evaluation where bad
results stem from inefficient implementations, a considerable amount of time
has been spent on experiments with different optimizations.

Subsuming Call Strings

To reduce the amount of generated call strings, the following observation has
been used: Call strings that are prefixes of other call strings subsume the other
call strings. Consider the context c = c ′s. If a node is marked with both call
strings c and c ′, the propagation of c ′ reaches a superset of the nodes that are
reached by the propagation of c. Therefore the definition of equals has to be
replaced:

equals(c1, c2) → c1 = s1s2 . . . sk ∧ c2 = s1s2 . . . sksk+1 . . . sk+l

With this definition, only the shorter call strings are propagated and the amount
of propagated call strings is much smaller.

Worklist Ordering

One of the important optimizations was the handling of the worklists. Dif-
ferent combinations of appending (depth-first) and prepending (breadth-first)
showed differences up to 300% in runtime of summary slicing. With limited

96 Interprocedural Slicing

LOC proc nodes slices edges summ. % time
A gnugo 3305 38 3875 281 10657 2064 16 0.03
B ansitape 1744 76 6733 1082 18083 12746 41 0.15
C assembler 3178 685 13393 2401 97908 114629 54 3.58
D cdecl 3879 53 5992 697 17322 9089 34 0.08
E ctags 2933 101 10042 1621 24854 20483 45 0.24
F simulator 4476 283 9143 1019 22138 5022 18 0.06
G rolo 5717 170 37839 6540 264922 170108 39 5.53
H compiler 2402 49 15195 1017 45631 58240 56 0.80
I football 2261 73 8850 818 30474 17605 37 0.35
J agrep 3968 90 11922 1403 35713 12343 26 0.19
K bison 8313 161 25485 3744 84794 29739 26 0.72
L patch 7998 166 20484 3099 104266 83597 44 4.39
M flex 7640 121 38508 5191 235687 144496 38 4.19
N diff 13188 181 46990 10130 471395 612484 57 28.2

Figure 7.3: Details of the test-case programs

context slicing, a badly chosen combination can cause a combinatorial explo-
sion of call strings (and thus runtime). To follow the most general call strings
first and therefore subsume all less general call strings, elements with a more
general (shorter) call string get prepended to the worklist and elements with a
less general (longer) call string get appended. This is only done by looking at
the type of the traversed edge; no sorting is involved.

We also tried a priority queue2, sorted with respect to the length of the con-
texts. This caused no optimization but an increased runtime due to the over-
head (in comparison to the best combination of prepending and appending to
the unsorted worklist).

7.4 Evaluation

All slicing algorithms of the previous sections have been implemented to eval-
uate them completely. The details of the analyzed programs are shown in
Figure 7.3. The programs stem from two different sources: ctags, patch and
diff are the GNU programs. The rest are from the benchmark database of the
PROLANGS Analysis Framework (PAF) [RLP+01]. The ‘LOC’ column shows
lines-of-code (measured via wc -l), the ‘proc’ column the number of proce-
dures (the number of entry nodes in the PDG) and the ‘nodes’ column shows
the number of nodes in the IPDG. Like Agrawal and Guo, the formal-in nodes
had been selected as slicing criteria to make the results comparable; the amount
of resulting slicing criteria (the number of formal-in nodes) is shown in column

2Basically an array of k + 1 worklists was used, one worklist for every possible context length
up to limit k. Thus insertion is a constant operation.

7.4 Evaluation 97

CIS CSS 1LCS 2LCS 3LCS 4LCS 5LCS 6LCS
A 1861 1798 100 100 100 100 100 100
B 2909 1645 7 74 74 74 74 100
C 6458 4286 48 48 48 100 100 100
D 1039 880 99 99 100 100 100 100
E 3207 2010 100 100 100 100 100 100
F 5455 3212 83 83 100 100 100 100
G 12819 7766 46 57 84 92 92 92
H 7474 6731 22 26 26 26 26 26
I 3081 2593 100 100 100 100 – –
J 3521 3183 41 49 59 100 100 100
K 7215 1859 74 96 96 97 97 97
L 9680 7965 92 99 99 100 100 100
M 14558 6172 29 29 29 29 29 29
N 19641 9179 88 98 98 98 98 –

1FCS 2FCS 3FCS 4FCS 5FCS 6FCS
A 100 100 100 100 100 100
B 7 74 74 74 74 100
C 48 48 48 100 100 100
D 99 99 100 100 100 100
E 100 100 100 100 100 100
F 83 83 100 100 100 100
G 46 57 84 92 92 92
H 22 30 32 46 73 73
I 100 100 100 100 100 100
J 41 49 59 100 100 100
K 74 96 96 98 100 100
L 92 99 99 100 100 100
M 29 30 30 32 98 100
N 88 98 99 99 100 –

Figure 7.4: Precision of kLCS and kFCS (avg. size)

98 Interprocedural Slicing

Figure 7.5: Context-insensitive vs. context-sensitive slicing

‘slices’. The limited size of the test-case programs is due to the number of slices,
which caused a quadratic runtime for one complete test.

A first evaluation shows how expensive the generation of summary edges
is: As seen in column ‘time’ of Figure 7.3 on page 96, it is not that expensive: the
time needed to construct the summary edges is always below one second and
greatly depends on the number of summary edges. All programs contain very
high numbers of summary edges (column ‘summ.’), sometimes every second
edge is a summary edge (column ‘%’). This causes a blowup of the SDG in
comparison with the corresponding IPDG. For larger programs that are not
shown here, SDGs were encountered where 90% of the edges are summary
edges.

7.4.1 Precision

How precise are the new algorithms kLCS and kFCS? How is precision mea-
sured? Context-insensitive slicing (CIS) is the most simple (and imprecise)
algorithm—considered to have 0% precision. Slicing with summary edges
(CSS) is precise with respect to realizable paths and considered as 100% pre-
cise.

In Figure 7.4 on the page before, the precision of the four different algo-
rithms is presented. The amount of memory and time in which all slices had to
be calculated had been limited: The tests marked with “–” needed more than
300MB core memory or didn’t finish in fewer than eight hours on 1GHz ma-

7.4 Evaluation 99

Figure 7.6: Precision of kLCS (avg. size)

chines with 512MB. The CIS column gives the average size of a CIS slice and
the CSS column the average size of a CSS slice. There is already a big variation:
The average CIS slice is 3%–300% larger than the average CSS slice. This is
shown in Figure 7.5 on the facing page.

Many programs have a high precision for even small k in both kLCS and
kFCS. This can be seen in Figure 7.6, where the precision for kLCS is shown
in percentage. In some cases (shown in bold in Figure 7.4 on page 97) the
precision of kFCS is higher than of kLCS. In only one case (flex, M) the precision
of 1FCS is slightly less than 1LCS (less than 0.1%, shown in italics).

7.4.2 Speed

In Figure 7.7 on the next page the runtimes of the test-cases for the different
slicing algorithms can be seen (in sec.). The given times are for the computation
of the complete set of slicing criteria. To get the average time for a single slice
one has to divide by the number given in the ‘slices’ column of Figure 7.3 on
page 96. The average time is not shown because most numbers would be sub-
second. In the first two columns of Figure 7.7 and also in Figure 7.5 it can be
seen that the time needed to do CSS slices is less than the time for CIS slices if
the CSS slices have a much higher precision: the quadratic complexity of CSS is
more than compensated by the smaller amount of nodes that are visited. Only

100 Interprocedural Slicing

CIS CSS 1LCS 2LCS 3LCS 4LCS 5LCS 6LCS
A 1,13 1,23 3,05 5,99 14,8 54,1 267 1357
B 7,37 5,56 17,8 18,8 29,7 73,6 240 845
C 81,5 118 158 206 228 171 177 143
D 1,65 1,76 3,70 5,18 8,49 11,5 10,6 8,30
E 11,1 9,83 17,2 24,0 38,3 148 352 574
F 12,4 7,88 27,4 97,4 97,4 121 176 206
G 480 447 768 1033 1174 1511 2007 2738
H 21,3 31,0 68,9 200 470 1461 5123 19140
I 6,01 7,33 14,3 29,0 75,6 621 – –
J 12,8 11,6 30,3 39,1 52,0 39,7 59,5 120
K 83,5 30,4 108 162 323 373 335 284
L 119 133 227 313 382 402 398 424
M 287 151 586 918 1289 1672 1899 2259
N 1824 1307 1170 1580 2737 6675 20849 –

1FCS 2FCS 3FCS 4FCS 5FCS 6FCS
A 2,65 4,36 8,65 11,0 11,4 12,5
B 17,8 18,0 26,1 49,8 82,5 77,0
C 160 207 230 174 178 144
D 3,75 5,13 8,48 11,6 10,8 8,18
E 17,3 24,3 41,6 137 343 579
F 27,4 87,5 98,2 121 178 208
G 749 964 1077 1355 1804 2600
H 48,0 200 487 2030 5220 8540
I 13,9 25,2 29,6 41,1 46,3 45,3
J 29,9 38,3 49,8 31,5 31,9 30,6
K 109 165 334 430 397 374
L 229 315 384 404 400 426
M 591 1088 2127 4571 2102 2420
N 1109 1341 1946 3182 9227 –

Figure 7.7: Runtimes of kLCS and kFCS (sec.)

7.4 Evaluation 101

when the precision of CSS is not much better, is the CIS algorithm faster (see
A, C, D, H, I, L).

A typical problem of call string approaches is the combinatorial explosion
of the generated call strings. This is also present in kLCS (figure 7.7, see A, B,
E, H, I, N) and kFCS (see E, H, N). However, the increased precision and the
resulting smaller number of visited nodes reduced runtimes for higher k (see C,
D, K for kLCS and B, C, D, K for kFCS). Often kFCS is much faster than kLCS—
it also is less likely to suffer from combinatorial explosion. In many other cases
it is slightly slower than kLCS resulting from the overhead propagating two call
strings. In some situations kFCS is much slower than kLCS. This is not related
to a problem specific to kFCS but stems from the higher precision of kFCS in
these cases (see Figure 7.4 for comparison).

A further-increased k (not shown here) causes many test-cases to suffer
from combinatorial explosion up to a point where slicing is not any longer pos-
sible with kLCS or kFCS (e.g. test-case I for k > 4). The previously-described
effect of higher speed for increased k is never compensating the combinatorial
explosion and the experience of Agrawal and Guo [AG01a] who successfully
used an unlimited call string slicing algorithm could not be shared. This ex-
perience is backed up by Atkinson and Griswold in [AG96], who reported the
same for the Weiser style control flow graph approach.

Comparing the runtimes of kLCS and kFCS with CSS, it can be seen that
even for k = 1 the runtimes of kLCS and kFCS are much higher than those of
CSS. This leads to the conclusion that as long as summary edges are available,
one should use CSS for slicing. This stays the same if we consider the overhead
of calculating the summary edges: The generation of summary edges is part
of the analysis to generate the PDG, which is expensive even without their
generation. The overhead is only not affordable in situations where only one
or two slices have to be done; in those situations the use of the Weiser-style
control-flow-graph based slicing may probably be better anyway.

If summary edges are not available and the imprecision of context-insensitive
algorithms is unacceptable, one must revert to k-limiting algorithms, where
kFCS is preferable to kLCS.

7.4.3 Influence of Data Flow Analysis Precision

The measured precision of slicing is always dependent on the precision of the
underlying data flow analysis. This section shows a simple experiment to eval-
uate the effect of the underlying data flow analysis. For that reason, the flow-
sensitive computation of data dependence was replaced by two versions:

1. An experiment with an analysis where a definition of a variable is never
killed by any other definition: If a path from a definition to a usage ex-
ists, the definition reaches the usage—independent of other definitions
on that path. This is still flow-sensitive.

2. An experiment with a flow-insensitive analysis. Again, the reason is to
check for effects of points-to analysis, which is itself flow-insensitive.

102 Interprocedural Slicing

Program A B C A/B A/C
agrep 47 50 56 6 19
ansitape 24 25 45 4 88
assembler 34 34 43 0 26
bison 11 13 17 18 55
cdecl 32 33 34 3 6
compiler 44 45 48 2 9
ctags 24 24 25 0 4
diff 33 36 50 9 52
flex 31 33 52 6 68
football 25 26 26 4 4
gnugo 59 62 70 5 19
lex315 26 45 47 73 81
loader 22 23 26 5 18
patch 47 49 49 4 4
plot2fig 23 24 24 4 4
rolo 25 25 30 0 20
simulator 47 49 54 4 15

Table 7.1: Precision

To conduct these experiments, SDGs have been constructed for several pro-
grams and exactly 1000 slices have been computed from 1000 evenly distributed
nodes in every SDG. The results are presented in table 7.1. Column A shows
the average size of the slice as percentage of the number of nodes in the SDG.
Column B shows the same percentage for the non-killing analysis (experiment
1) and column C for the flow-insensitive analysis (experiment 2). Columns
A/B and A/C show how much bigger the sizes in average are compared to the
precise analysis (in percent). This shows that flow-sensitivity has a high impact
on the precision of slices. On the other hand, killing has not that big effect: on
average, the computed slices are only 5% larger if definitions are never killed.

7.5 Related Work

The system dependence graph has been introduced in [HRB90] as the inter-
procedural extension of the program dependence graph [FOW87]. There, the
computation of summary edges was done with a linkage grammar. This has
later been superseded by a more efficient algorithm [RHSR94] for computing
summary edges. Another approach to building system dependence graphs is
presented in [LJ00]: The summary edges are computed in reverse procedure
invocation order, so that the transitive effects of called procedures are known
at call sites. In the presence of recursion incomplete summary information is
used and later expanded until a fixed point is reached. The same optimization
is used in [FG97].

7.5 Related Work 103

The original slicing algorithm from [HRB88, HRB90] is a two-phase ap-
proach: first, slice and descend into called procedures; second, slice from there
and ascend into calling procedures. This algorithm is used in CodeSurfer with
an improvement similar to the one in Section 7.2. In [Lak92] another improved
algorithm is presented, where nodes are marked with three (unvisited, first,
second) instead of two values (unvisited, visited). Similar to our approach,
this enables an algorithm where every node and edge is visited only once. The
implementation is evaluated and compared to the original algorithm, which
shows that the improved algorithm has fewer edge visits. However, it has not
been implemented optimally and some edges are still visited twice.

System-dependence-graph based slices are not executable because different
call sites may have different parameters included in the slice. Binkley [Bin93a]
shows how to extend slicing in system dependence graphs to produce exe-
cutable slices.

System dependence graphs assume procedures to be single-entry-single-
exit, which does not hold in presence of exceptions or interprocedural jumps.
[HC98] obeys interprocedural control dependence from embedded halt state-
ments.

An earlier approach to slicing recursive procedures precisely is [HDC88]:
Starting with an intraprocedural slice, all called procedures present in the slice
are inlined and the slice is redone. This is repeated until a fixed point is reached
and the slice does not change anymore.

Extensive evaluations of different slicing algorithms have not been done
yet—for control-flow-graph based algorithms some data reported by Atkinson
and Griswold can be found in [BAG00, AG01b, AG96]. The only evaluation
of program-dependence-based algorithms that the author is aware of has been
conducted by Agrawal and Guo [AG01a] and just compares two algorithms,
where one has flaws (as shown in this chapter).

The effect of the precision of the underlying data flow analysis and points-
to analysis has been studied in a series of works [SH97, AG98, BL98, LH99a,
OSH01a, MACE02].

Slicing for object-oriented programs is more complex than slicing for proce-
dural languages because of virtual functions and the distinction of classes and
objects. Malloy et al [MMKM94] have introduced the object-oriented program
dependence graph which is used for slicing. Larsen and Harrold [LH96] have
also extended the system dependence graph to a class dependence graph rep-
resenting dependences in object-oriented programs. It has been improved by
Tonella et al [TAFM97] and Liang and Harrold [LH98]. Other works for slicing
object-oriented programs are [ZCU96, CW97, Zha99b, CX01b].

104 Interprocedural Slicing

Chapter 8

Slicing Concurrent
Interprocedural Programs

After suitable preparation through the previous chapters, this chapter will pre-
sent an approach to slicing concurrent interprocedural programs. As seen be-
fore, the main problem for precision is context-sensitivity. In concurrent pro-
grams it is even harder: Müller-Olm has shown that precise context-sensitive
slicing of concurrent programs is undecidable in general [MOS01]. He used a
reduction onto two-counter-state-machines. Another important result has been
proven by Ramalingam [Ram00]. He showed that context-sensitive analysis of
concurrent programs with procedures and synchronization is undecidable in
general. This applies not only to slicing but also to any data flow analysis.
Therefore, conservative approximations have to be used to analyze concur-
rent programs. First of all, synchronization can be ignored. In that case, the
results are still correct, but are imprecise because unrealizable paths are now
allowed. The other simple approximation would be to do context-insensitive
slicing, which is unacceptable due to much lower precision.

All approaches to slicing concurrent interprocedural programs rely on in-
lining to remove procedures. Therefore, no approach is able to slice recursive
programs. This chapter will present an interprocedural version of the approach
presented in chapter 5.

The basic idea is the adaption of the call string approach to concurrent pro-
grams. It is assumed that a concurrent program consists of separate threads
that do not share code and communicate via shared variables. The context is
now captured through one call string for every thread. The context is then a
tuple of call strings that is propagated along the edges in IPDGs. The traversal
of intraprocedural edges does not change the call string of the enclosing thread
and the context can simply be propagated. During traversal of interprocedural
edges the call string of the enclosing thread is used to check that a call always
returns to the right call site. This may generate a single new context.

106 Slicing Concurrent Interprocedural Programs

The traversal of interference edges is much more complicated: The call
string of the newly reached thread is used to check that the reached node is
reachable from a node with the old (saved) call string. To do that, every call
string that the reached node can possibly have is checked. This can generate a
set of new call strings that have to be propagated.

To avoid combinatorial explosion of call strings, a combined approach is
pursued: using summary edges to compute the slice within threads. Addition-
ally, call strings are generated and propagated along interference edges only
if the slice crosses threads. With this approach many fewer contexts are prop-
agated. This only outlines the idea of this chapter’s approach, which will be
formalized in the following sections.

The next section will present the underlying simple model of concurrent
programs. It is followed by a section about threaded interprocedural con-
trol flow graphs and how to define reachability in them. Section three de-
fines threaded interprocedurally realizable paths and the threaded interproce-
dural PDG. Section four defines slices based on these graphs and presents an
algorithm to compute them. This chapter closes with a discussion about exten-
sions to the concurrency model before drawing conclusions.

8.1 A Simple Model of Concurrency

For easier presentation, a different model of concurrency than the one of chap-
ter 5 will be used. A concurrent program is assumed to consist of a set of
threads Θ = {θ1, . . . , θn}. Threads may be executed in parallel on different
processors or interleaved on a single processor. All threads are started imme-
diately after the program’s start and the program exits after all threads have
finished. The threads do not share any code, communication is done via global
variables, and every statement is assumed to be atomic and synchronized prop-
erly. Every thread consists of a series of procedures that may call each other but
may not call a procedure from a different thread. One of the procedures for ev-
ery thread is the main procedure, which is called from the runtime system after
the corresponding thread has started. The corresponding thread stops after the
main procedure returns. Similar to chapter 5, synchronization is ignored for
now.

8.2 The Threaded Interprocedural CFG

Every thread t ∈ Θ can be represented with its interprocedural control flow
graph Gt = (N?

t , E?
t , ns

t , ne
t). Because all threads are independent, no edges

exist between the control flow graphs of two different threads. The threaded
interprocedural CFG (tICFG) G = (NΠ, EΠ, SΠ, XΠ) simply consists of the union
of all ICFGs for the different threads:

NΠ =
⋃

t∈Θ

N?
t

8.2 The Threaded Interprocedural CFG 107

EΠ =
⋃

t∈Θ

E?
t

SΠ = {ns
t | t ∈ Θ}

XΠ = {ne
t | t ∈ Θ}

Similar to definition 5.1 on page 52 the existence of function Π(t) that re-
turns the set of threads that may execute in parallel to thread t. In this under-
lying simple model, this is trivial: Π(t) = {t ′ ∈ Θ | t ′ 6= t}. However, the
following will not rely on that to make more complex models possible later on.

The main problem is context-sensitivity again. In this chapter, this problem
is handled with explicit context through virtual inlining. It is assumed that the
execution state of a thread is encoded by a context in the form of a (possibly
infinite) call string (see section 6.3.2). The call string is represented as a stack of
nodes, where the topmost node represents the currently executing statement.
Then, all definitions are modified to use such contexts instead of nodes—this
is called virtual inlining.

We first define when a context reaches another context:
Definition 8.1 (Context)
The execution state c of thread t is a context c = n0 . . . nk representing an execu-
tion stack of nodes ni ∈ N?

t with the topmost node T(c) = n0 (context c belongs
to the current node n0). The ‘pop’ function P is defined as P(c) = n1 . . . nk. Let
θ(c) = θ(T(c)).

A context c directly reaches another context c ′: c ⇀R c ′, iff one of the follow-
ing alternatives holds:

1. an edge n ⇀ n ′ ∈ E?
t exists and n ⇀ n ′ /∈ EC

t ∧ T(c) = n ∧ T(c ′) = n ′ ∧

P(c) = P(c ′) (a corresponding edge in the CFG of a procedure exists),

2. a call edge n ⇀ n ′ ∈ EC
t exists and T(c) = n ∧ T(c ′) = n ′ ∧ c = P(c ′) (a

corresponding call edge exists), or

3. a return edge n ⇀ n ′ ∈ EC
t exists and

(a) T(c) = n ∧ T(c ′) = n ′ ,
(b) P(P(c)) = P(c ′) , and
(c) T(P(c)) ⇀ n ′ ∈ (E?

t − EC
t) .

(A corresponding return edge exists that returns to an immediate succes-
sor of the last call node—a return node.)

A context c reaches another context c ′: c ⇀+
R c ′, iff a series of contexts c1, . . . , cn

exists, with c = c1 ∧ c ′ = cn ∧ ∀16i<nci ⇀R ci+1 . The set of possible con-
texts for ICFG Gt = (N?

t , E?
t , ns

t , ne
t) is Ct = {c ′ | ns

t ⇀+
R c ′ ∨ c ′ = ns

t }.

Note that c ⇀+
R c ′ implies the existence of an interprocedurally realizable

path from T(c) to T(c ′). Also, θ(c) 6= θ(c ′) ⇒ c 6⇀+
R c ′ because the ICFGs are

disjunct.
The threaded interprocedural witness is now defined in terms of contexts, not

nodes:

108 Slicing Concurrent Interprocedural Programs

Definition 8.2 (Threaded Interprocedural Witness)
A sequence l = 〈c1, . . . , ck〉 of contexts (execution stacks) is a threaded interpro-
cedural witness in a tICFG, iff

∀1 6 j < i 6 k : θ(cj) ∈ Π(θ(ci)) ∨ cj ⇀+
R ci

Basically this means that all contexts in a thread must be reachable from its
predecessors if they cannot execute in parallel.

Intuitively, a threaded interprocedural witness can be interpreted as a sequence
of contexts that form a valid execution chronology.

The virtual inlining is also applied to the other definitions and theorems of
chapter 5. For simplicity, only prepending is presented: Having a threaded wit-
ness l = 〈c1, . . . , ck〉 and a context c, it can be decided whether l ′ = 〈c, c1, . . . , ck〉
is a threaded witness without checking the threaded witness properties of l ′:

Theorem 8.1 (Prepending to a Threaded Interprocedural Witness)
Let sequence l = 〈c1, . . . , ck〉 be a threaded interprocedural witness. Then l ′ =
〈c, c1, . . . , ck〉 is a threaded interprocedural witness, iff

∀1 6 i 6 k : θ(ci) ∈ Π(θ(c)) ∨ c ⇀+
R ci

Proof 8.1
Follows from definition 8.2.

Definition 8.3
Let l = 〈c1, . . . , ck〉 be a threaded interprocedural witness and thread t ∈ Θ.
F(l, t) is defined as:

F(l, t) =

{
ci ∃i : θ(ci) /∈ Π(t) ∧ ∀1 6 j < i : θ(cj) ∈ Π(t)
⊥ otherwise

The result is basically the first context of witness l relevant for the execution of
thread t (if such a context exists).

Theorem 8.2 (Simplified Prepending)
Let sequence l = 〈c1, . . . , ck〉 be a threaded interprocedural witness. Then se-
quence l ′ = 〈c, c1, . . . , ck〉 is a threaded interprocedural witness, iff

F(l, θ(c)) = ⊥ ∨ c ⇀+
R F(l, θ(c))

Proof 8.2
Proof by contradiction. Assume:

F(l, θ(c)) 6= ⊥ ∧ c 6⇀+
R F(l, θ(c))

⇐⇒ ∃1 6 i 6 k : ci = F(l, θ(c)) ∧ c 6⇀+
R ci

From definition 8.3 follows θ(ci) /∈ Π(θ(c)). Altogether:

∃1 6 i 6 k : θ(ci) /∈ Π(θ(c)) ∧ c 6⇀+
R ci

However, this is a contradiction to theorem 8.1 because l and l ′ are threaded
witnesses and therefore theorem 8.2 holds. 2

8.3 The Threaded Interprocedural PDG 109

Having a threaded witness l = 〈c1, . . . , ck〉 and an edge n ⇀ n ′ with
T(c1) = n ′ and T(c) = n, it can be decided whether l ′ = 〈c, c1, . . . , ck〉 is a
threaded witness without checking the threaded witness properties of l ′:

Theorem 8.3 (Prepending an Edge)
Let l = 〈c1, . . . , ck〉 be a threaded interprocedural witness. If an edge T(c) ⇀
T(c1) exists, then l ′ = 〈c, c1, . . . , ck〉 is a threaded interprocedural witness.

Proof 8.3
Three possibilities for T(c) ⇀ T(c1) exist: traditional control flow, call or return
edges. Let n = T(c) and n1 = T(c1). From n ⇀ n1 ∈ E∗t follows θ(n) = θ(n1)
and θ(c) = θ(c1). Using theorem 8.1:(

∀1 < i 6 k : θ(ci) ∈ Π(θ(c1)) ∨ c1 ⇀+
R ci

)
∧ c ⇀+

R c1
=⇒

(
∀1 < i 6 k : θ(ci) ∈ Π(θ(c)) ∨ c1 ⇀+

R ci

)
∧ c ⇀+

R c1
=⇒

(
∀1 < i 6 k : θ(ci) ∈ Π(θ(c)) ∨ c ⇀+

R ci

)
∧ c ⇀+

R c1
=⇒ ∀1 6 i 6 k : θ(ci) ∈ Π(θ(c)) ∨ c ⇀+

R ci

which is theorem 8.1 itself. 2

The concept of threaded interprocedural witnesses is needed to define slices
in concurrent interprocedural programs based on the threaded interprocedural
PDG, which is presented next.

8.3 The Threaded Interprocedural PDG

Control and data dependence is computed for the different threads, assum-
ing that every thread is independent from all the others. This results in a set
of non-connected interprocedural program dependence graphs—one IPDG for
each thread. The next step is to compute the interference dependence between
threads. This is done exactly as in section 5.2.3: If a variable is defined in one
thread and referenced in another parallel executing thread, an interference de-
pendence edge is generated between the corresponding nodes.

The threaded interprocedural PDG (tIPDG) is the union of the IPDGs for each
thread, connected by the interference dependence edges. The control flow,
call and return edges from the ICFG are also present in the tIPDG. The usual
call edges in IPDGs have to be distinguished from the control flow call edges.
Therefore, control flow edges will be denoted with ⇀ and dependence edges
with ⇁. The different types of dependence edges are distinguished by a label

d in d
⇁, e.g. dd for a data dependence edge dd

⇁.

Definition 8.4 (Threaded Interprocedural Realizable Paths)
A path P = 〈n1, . . . , nk〉 in a tIPDG is a threaded interprocedurally realizable path,
iff

1. the path contains no edge from the control flow graph (control flow edges,
control flow call or return edges):

n1
d1⇁ . . .

dk−1
⇁ nk,

110 Slicing Concurrent Interprocedural Programs

2. every sub-path without an interference edge is an interprocedurally real-
izable path in the containing IPDG:

∀1 6 i < k, i < j 6 k : (∀i 6 m < j : dm 6= id) ⇒
〈ni, . . . , nj〉 is interprocedurally realizable,

and

3. a threaded interprocedural witness W exists and corresponds to path P:

∃W = 〈c1, . . . , ck〉 : P = 〈T(c1), . . . , T(ck)〉

If a node n is reachable from n ′ via a threaded interprocedurally realizable
path, it is denoted as n ′ ⇁?

R n.

Similar to the previous chapters, slicing is now defined in terms of threaded
interprocedurally realizable paths:

Definition 8.5
The (backward) slice Sθ(n) of a tIPDG at a node n consists of all nodes m on
which n depends transitively via a threaded interprocedurally realizable path:

Sθ(n) = {m | m ⇁?
R n}

Definition 8.6
The slice Sθ(c) in a tIPDG for a context c consists of all contexts c ′ for which
T(c) depends transitively on T(c ′) via a threaded interprocedurally realizable
path:

Sθ(c) = {c ′ | ∃P = 〈T(c ′), . . . , T(c)〉 : T(c ′) ⇁?
R T(c)}

with the additional constraint that P’s threaded interprocedural witness W is
W = 〈c ′, . . . , c〉. This definition stays the same for a slice S(c) restricted to an
IPDG.

These definitions of threaded interprocedural paths and slices are not com-
putable because the set C of possible contexts is infinite when recursion exists
in the analyzed program. However, the next section will show a way to make
the set of possible contexts finite and thus make slices computable.

8.4 Slicing the tIPDG

For reachability the number of recursive calls is irrelevant and cycles in the
ICFG can be folded into a single node representing the strongly connected re-
gion. There are two sources for cycles in the ICFG:

1. Loops in the program cause cycles only in the intraprocedural part of the
CFG and have no ‘stacking’ influence on the number of possible contexts.

8.4 Slicing the tIPDG 111

2. Recursive calls cause cycles over call and return edges. If such cycles are
replaced by a single node, reachability is not realizable interprocedurally
because call and return edges are not matched correctly.

The cycles are replaced by a two pass approach to keep the matching of call
and return edges intact. The first pass finds and folds strongly connected com-
ponents in the ICFGs consisting of control flow and call edges but ignores
return edges. The second pass finds and folds cycles in the resulting graph
consisting of control flow and return edges (now ignoring call edges). This
replacement generates a function ρ that maps nodes from the original ICFG
G = (N?, E?, ns

0 , ne
0) to the new graph G = (N

?, E?, ns
0 , ne

0):

ρ(n ∈ N?) =

{
n if ∀n d1⇀ . . .

dk⇀ n : ∃i, j : di = call ∧ dj = return
n ′ /∈ N? otherwise

ρ(n) 6= n ⇔ ∀n d1⇀ n1 . . . nk−1
dk⇀ n :(

∀i, j : di 6= call ∧ dj 6= return
)
⇒

(
∀i : ρ(ni) = ρ(n)

)
N

?
= {ρ(n) | n ∈ N?}

Every interprocedurally realizable path in the resulting graph has a correspond-
ing realizable path in the original graph. Due to unrealizable matchings of call
and return edges, there are still cycles in the graph.1

Based on the newly created graph G the set of contexts and the ‘reaches’
relation between contexts are redefined: The execution state c ∈ Ct of thread t

is a stack c = n0 . . . nk of nodes ni ∈ N
?
t with the topmost node T(c) = n0. The

‘pop’ function P is defined as before: P(c) = n1 . . . nk.

Definition 8.7
A context c1 ∈ Ct reaches directly another context c2 ∈ Ct: c1 ⇀R c2, iff one of
the following alternatives holds

1. an edge n1 ⇀ n2 ∈ E?
t exists with n1 ⇀ n2 /∈ EC

t and where T(c1) = ρ(n1) ∧

T(c2) = ρ(n2) ∧ P(c1) = P(c2)
(corresponding edge in the CFG of a procedure exists),

2. a call edge n1 ⇀ n2 ∈ EC
t exists and

(a) T(c1) = ρ(n1) ∧ T(c2) = ρ(n2),

(b) T(c1) 6= T(c2) → c1 = P(c2) , and

(c) T(c1) = T(c2) → c1 = c2

(corresponding call edge exists), or

1There are even cycles due to realizable paths, for example “f(); f();” creates a cycle from
the entry to “f” to itself. However, those paths are not matched paths as defined in section 6.2.

112 Slicing Concurrent Interprocedural Programs

3. a return edge n1 ⇀ n2 ∈ EC
t exists and

(a) T(c1) = ρ(n1) ∧ T(c2) = ρ(n2) ,

(b) T(c1) 6= T(c2) →
P(P(c1)) = P(c2) ∧ ∃n3 ⇀ n2 ∈ (E?

t − EC
t) : ρ(n3) = T(P(c1)) ,

and

(c) T(c1) = T(c2) → c1 = c2

(corresponding return edge exists, leading to a return node which matches
the last call node.)

A context c reaches another context c ′: c ⇀+
R c ′, iff a series of contexts c1, . . . , cn

exists with c = c1 ∧ c ′ = cn ∧ ∀16i<nci ⇀R ci+1 . The set of possible contexts
for ICFG Gt = (N?

t , E?
t , ns

t , ne
t) is Ct = {c ′ | ρ(ns

t) ⇀+ c ′ ∨ c ′ = ρ(ns
t) }.

With this definition Ct must be finite because traversing call edges does not
‘stack’ call nodes inside recursive cycles.

Observation 8.1 A context c1 = n0 . . . nk reaches another context c2 = m0 . . . ml

(c1, c2 ∈ Ct) in terms of definition 8.1, iff c1 = n0 . . . nk ′ reaches c2 = m0 . . . ml ′

in terms of definition 8.7 (c1, c2 ∈ Ct), where ρ(n0) . . . ρ(nk) = n0
i1 . . . nk ′ik ′ ∧

ρ(m0) . . . ρ(ml) = m0
j1 . . . ml ′

jl ′ .

Based on this observation, definition 8.7 can now be used in the definitions and
theorems about threaded interprocedural witnesses. Hence it is decidable and
computable whether a path in a tIPDG is threaded interprocedurally realizable.
Thus, slices Sθ(c) can be computed using definition 8.7, denoted as Sθ(c) and
S(c).

A naive implementation would enumerate the possible paths to the slic-
ing criterion node and check them to be threaded interprocedurally realiz-
able paths. This is way too expensive, so approaches from previous chapters
are combined to create a more efficient approach for slicing based on tIPDGs,
shown in algorithm 8.1 on page 114. There, the extraction of the ith element ci

in a tuple Γ = (c1, . . . , cn) is denoted by Γ [i]. The substitution of the ith element
ci in a tuple Γ = (c1, . . . , cn) with a value x will be denoted as [x/i]Γ .

Its basic idea is the coding of possible execution states of all threads in tu-
ples (c1, . . . , c|Θ|−1), where the ci are contexts (in the tIPDG). The value ci rep-
resents that it is still possible to reach context ci in thread θi (a value of ⊥ does
not restrict the state of execution). This is used to keep track of the context ci

where thread θi has been left by following an interference edge. If another in-
terference edge is followed back into the thread at node q, the reachability of c

from the contexts c ′ of q (q = T(c ′)) can be checked. It assures that paths over
interference edges are always threaded witnesses in the tICFG. This is the rea-
son why the control flow edges have to be kept in the tIPDG. Reachability can
be computed without checking threaded witness properties, because the sim-
plified prepending theorem 8.2 allows checking based on the last reached con-
text in a thread (the first element of a threaded witness relevant to the thread).

8.4 Slicing the tIPDG 113

The algorithm keeps a worklist of pairs of contexts and state tuples that
have to be examined. For computation of the slice S(c) inside a thread (not
shown in algorithm 8.1 on the following page), every edge reaching the top
node of the current context is examined and handled depending on its type. A
new pair consisting of the new context and the modified state tuple is inserted
into the worklist. According to theorem 8.3 this is done without checking the
threaded witness property.

Interference edges are ignored while computing S(c), they are handled ex-
plicitly in algorithm 8.1 on the next page. An interference dependence edge
may only be considered if the (old) context relevant to the source node thread
is reachable from a context at the source node in the tICFG (all examined paths
are still threaded witnesses). Then, the new pair with the updated state tu-
ple is inserted into the worklist. The resulting slice is the set of nodes that is
constructed out of the first elements of the inserted pairs.

Algorithm 8.1 on the following page contains two bottlenecks that are eased
in the following: the computation of Ct(n) and S(c). The idea of subsuming
call strings in section 7.3.4 is used to build subsuming contexts: With subsum-
ing contexts, Ct(n) just contains one element n� that subsumes all contexts
nn1 . . . nk ∈ Ct(n). Now, the third constraint of definition 8.7 has an alterna-
tive:

A return edge n1 ⇀ n2 ∈ EC
t exists and either constraint 3 of defi-

nition 8.7 holds or

1. c1 = ρ(n1)� ∧ T(c2) = ρ(n2) and

2. T(c1) = T(c2) → c1 = c2

(return edge exists that returns to a node matching � automatically).

In particular, traversal of a return edge n1 ⇀ n2 from a context ρ(n1)� leads to
a context ρ(n2)�.

The second bottleneck is the computation of slice S(c). Section 7.4 showed
that the computation based on explicit context may suffer from combinatorial
explosion. Because the computation is restricted to an IPDG, summary edges
can be generated and used for more efficient slicing. Instead of computing an
expensive slice S(c), a traditional slice using summary edges is computed. In
this slice, all nodes are identified with at least one incoming interference de-
pendence edge. For each of these nodes, a chop is computed between the node
and the original slicing criterion. This chop is truncated non-same-level which
can be computed efficiently (see section 10.2.6). Now, only along nodes in this
chop the more expensive slice S(c) is computed. This is much more efficient
because a far smaller set of nodes is visited. In algorithm 8.2 on page 115, only
the modifications to algorithm 8.1 on the following page implementing this
improvement are shown.

114 Slicing Concurrent Interprocedural Programs

Algorithm 8.1 Slicing Algorithm for tIPDGs, Sθ

Input: The tIPDG G = (NΠ, EΠ, SΠ, XΠ)

The slicing criterion s ∈ NΠ

Output: The slice S, a set of nodes of the tIPDG

Let Ct(n) be a function which returns the set of possible contexts
for a node n in IPDG Gt.

Initialize the worklist with an initial state tuple:
Γ = (ne

θ1
, . . . , ne

θ|Θ|
), every thread is at its end node

W = {(c, Γ ′) | t = θ(s) ∧ c ∈ Ct(s) ∧ Γ ′ = [c/t]Γ }

M = W, Mark the contents of the worklist

repeat
Remove the next element w = (c, Γ) from W:
W = W − {w}

S = S∪ {n | ρ(n) = T(c)}

Compute a slice S(c) for c in the IPDG Gt.

I = {c ′ ∈ S(c) | ∃n ∈ NΠ : n
id
⇁ T(c ′)}

The top node has >1 incoming interference dependence edges.
foreach i ∈ I do

foreach edge n
id
⇁ n ′, ρ(n ′) = T(i)do

t = θ(T(i))
t ′ = θ(n)
Γ ′ = [i/t]Γ
Γ ′′ = [c/t ′]Γ

′

C ′ = {c ′ | c ′ ∈ Ct ′(n) ∧ c ′ ⇀+
R Γ [t ′]}

foreach w ′ ∈ {(c ′′, Γ ′′) | c ′′ ∈ C ′} do
if w ′ /∈ M then

M = M∪ {w ′}
W = W ∪ {w ′}

until W = ∅
return S

8.5 Extensions 115

Algorithm 8.2 Improved Slicing Algorithm for tIPDGs
...
foreach t ∈ Θ do

Generate summary edges and transform IPDG Gt into a SDG
...
repeat

Remove the next element w = (c, Γ) from W:
W = W − {w}.
Nc = {n | ρ(n) = T(c)}
S = S∪Nc

Compute a slice S(n ′) for one n ′ ∈ Nc in the SDG Gt.

IN = {n1 ∈ S(n ′) | ∃n2 ∈ NΠ : n1
id
⇁ n1}

Nodes in the slice with >1 incoming interference dependence edges.
foreach iN ∈ IN do

Compute a truncated non-same-level chop CTN(iN, n ′)
Compute a slice S(c) only along nodes in CTN(iN, n ′).
foreach i ∈ S(c) | T(c) = ρ(iN) do

foreach incoming interference dependence edge n
id
⇁ T(i)do

...
until W = ∅
return S

8.5 Extensions

The simple model of concurrency is similar to the Ada concurrency mecha-
nism, except for synchronization. The extensions from chapter 5 to enable syn-
chronization can also be applied here. For example, the send/receive-style
communication can also be used to model the Ada-style rendezvous. To im-
prove the precision of the interference dependence edges, the ‘may-happen-in-
parallel (MHP)’ information in [NA98, NAC99] can be used.

The send/receive-style synchronization can also be used to simulate a cobe-
gin/coend parallelism within the presented model: The branches of the cobe-
gin/coend statement are transformed into single threads. At cobegin, synchro-
nization statements that start the newly created threads are introduced, and
at coend, synchronization statements are introduced to wait until the newly
created threads have finished. This requires a modified Π-function—the ear-
lier trivial definition of Π has never been exploited in a proof and thus, the
presented theorems are not weakened.

To allow code sharing between threads, the duplication of the shared code
is sufficient. Every thread will then have its own instance of the shared code.

116 Slicing Concurrent Interprocedural Programs

The synchronization extensions can be used to represent a concurrency
model where the different threads are allowed to be started and stopped from
other threads. This is similar to the concurrency model of Java. However, in
Java, threads are generated dynamically, which cannot be represented in the
simple concurrency model. Therefore, data flow analysis is needed to compute
a conservative approximation of the set of possible threads. The static set can
be represented in the simple concurrency model with synchronization exten-
sions, enabling more precise slicing of concurrent Java programs.

8.6 Conclusions and Related Work

All previous approaches known to the author to slice concurrent programs pre-
cisely rely on the inlining of called procedures to slice concurrent interproce-
dural programs ([NR00, CX01a], see chapter 5 for a discussion). The presented
approach is the first that is able to slice concurrent recursive interprocedural
programs accurately.

See section 5.5 for more related work.
The presented approach is precise up to threaded interprocedurally realiz-

able paths. The undecidability result in [Ram00] does not apply to the simple
model as it does not contain synchronization. Our approach is not optimal in
terms of [MOS01]—their undecidability results apply to the model used here:
It is possible that a thread kills a definition in a different thread. Within the pre-
sented approach we have ignored such killing. To explore how much precision
is lost through this approach, the results from experiment 1 of section 7.4.3 for
sequential execution can be used: There, a definition is never killed by another
definition, which adds more data dependences to the IPDG. On average, the
generated slices are only 5% larger than before. This cannot be worse in the
concurrent case, and thus, the ignoring of killing for interference must have
a similar effect. With this result we argue that ignoring the killing effects of
concurrently executing threads has only a small influence on precision.

Part III

Applications

Chapter 9

Visualization of Dependence
Graphs

The program dependence graph itself and the computed slices within the pro-
gram dependence graph are results that should be presented to the user if not
used in following analyses. As graphical presentations are often more intuitive
than textual ones, a graphical visualization of PDGs is desirable. This chapter
describes how a layout for the PDGs can be generated to enable an appealing
presentation. However, experience shows that the graphical presentation is
less helpful than expected and a textual presentation is superior. Therefore sec-
tion 9.2 contains an approach to textually present slices in fine-grained PDGs
in source code.

9.1 Graphical Visualization of PDGs

Layout of graphs is a widely explored research field with many general solu-
tions available in many graph drawing tools. Some of these tools have been
tested to lay out PDGs:

daVinci a visualization system for generating high-quality drawings of di-
rected graphs [FW95].

VCG (Visualization of Compiler Graphs) is targeted at the visualization of
graphs that typically occur as data structures in programs [San95].

dot is a widely-used tool to create hierarchical layouts of directed graphs [KN96,
GNV88].

The experience with these tools has been disappointing. The resulting lay-
outs were visually appealing but unusable, as it was not possible to compre-
hend the graph. The reason is that the viewer has no cognitive mapping back
to the source code, which is the representation he is used to. The user expects a

120 Visualization of Dependence Graphs

representation that is either similar to the abstract syntax tree (as a presentation
of the syntactical structure), or a control-flow-graph like presentation.

In a second experiment the layout was influenced as much as possible to
generate a presentation that enables the viewer to map the graph structure to
the syntactical structure based on the control-dependence subgraph. The con-
trol dependence subgraph is tree-like, and in structured programs it resembles
the abstract syntax tree. The possibilities of influencing the layout were quite
different in the evaluated tools, where dot had the greatest flexibility. However,
it was not possible to manipulate the layout in a way that generated compre-
hensible presentations.

9.1.1 A Declarative Approach to Layout PDGs

As the general algorithmic approach to layout PDGs had failed, a declarative
approach has been implemented. It is based on the following observations:

1. The control-dependence subgraph is similar to the structure of the ab-
stract syntax tree.

2. Most edges in a PDG are data dependence edges. Usually, a node with a
variable definition has more than one outgoing data dependence edge.

The first observation leads to the requirement to have a tree like layout of
the control dependence subgraph with the additional requirement that the or-
der of the nodes in a hierarchy level should be the same as the order of equiv-
alent statements in the source code. The second observation leads to an ap-
proach where the data dependence edges should be added to the resulting lay-
out without modifying it. As most data dependence edges would now cross
large parts of the graph, a Manhattan layout is adequate. This enables an or-
thogonal layout of edges with fixed start and end points.

Layout of the Control Dependence Graph

Instead of a specialized tree layout, an available implementation of the Sugiyama
algorithm [STT81] has been reused, consisting of three phases:

1. The nodes are arranged into a vertical hierarchy where the number of
levels crossed by edges is minimized.

2. Nodes in a horizontal level of the hierarchy are ordered to minimize the
number of edge crossings.

3. The coordinates of the nodes are calculated such that long edges are as
straight as possible.

Because the control dependence graph is mainly a tree, phase one is simple
and very fast. Phase two has been replaced completely as the order of nodes is
defined by the statement order in the source code and is not allowed to change.
In Phase three the original algorithm has been extended with a “rubber-band”
improvement of [San95].

9.1 Graphical Visualization of PDGs 121

Layout of Data Dependence Edges

The layout of data dependence edges is basically a routing between fixed start
and end points. As most edges in a PDG are data dependence edges, the rout-
ing must be fast and efficient. Based on the observations at the beginning of
this section, the routing is done with the following principles:

1. The route of an edge is separated into three parts:

• A vertical segment between the start node and the level above the
end node,

• a horizontal segment to the position of the end node, and

• a vertical end segment to the end node.

2. Edges leaving the same node share the same first segment.

The layout of the three segments is done independently: The starting verti-
cal segment is laid out straight if a node that would be crossed can be pushed
aside. If this is not possible, the segment is split to circumvent the node. The
horizontal segment is laid out with a sweep-line algorithm to minimize the
space that routes passing a level take. The third segment is routed to its entry
point into the end node.

Presentation of System Dependence Graphs

The presented approach to laying out PDGs has been implemented in a tool
that visualizes system dependence graphs [Ehr96]. Starting from a graphical
presentation of the call graph, the user can select procedures and visualize their
PDGs. Through selection of nodes, slices can be calculated and are visualized
through inverted nodes in the laid out PDGs.

Example 9.1: A visualization can be seen in Figure 9.1 on the next page, where
a slice is visualized in the dependence graph and source code through high-
lighting.

Navigation

The user interface for the visualized graph contains extensive navigation aids:

• Nodes and edges can be searched for by their attributes.

• Edges can be followed forward or backward.

• A set of nodes can be expanded with all nodes reachable by traversing
one edge.

• The visualization can be focused on each node of a node set by stepping
through the set.

122 Visualization of Dependence Graphs

Figure 9.1: The graphical user interface

9.2 Textual Visualization of Slices 123

• Node sets can be saved and restored.

• Two node sets can be combined to a new node set by set operations.

• Node sets can be “filtered” through external tools; slicing and chopping
is implemented that way.

• To compress the visualized graph, node sets can be folded to a single
node.

9.1.2 Evaluation

Experience with the presented tool shows that the layout is very comprehen-
sible for medium sized procedures and the user easily keeps a cognitive map
from the structure of the graph to the source code and vice versa. This map-
ping is supported by the possibility of switching to a source code visualization
of the current procedure and back: Sets of nodes marked in the graph can be
highlighted in the source code and marked regions in the source code can be
highlighted in the graph (see Figure 9.1 on the facing page for an example).
Together with the navigation aids, it is easy to see what statements influence
which other statements and how.

However, experience has shown that the graphical visualization is still too
complex. For larger procedures the number of nodes and edges is too big and
it takes very long to follow edges across multiple pages by scrolling.

9.2 Textual Visualization of Slices

The graphical visualization presented in the previous section has been found
to be overly complex for large programs and non-intuitive for visualization of
slices. Therefore the graphical visualization has been extended with a visu-
alization in source code. Because of the fine-grained structure, this causes a
non-trivial projection of nodes onto source code. The technique presented in
this section not only visualizes slices (and chops) in source code, but any set of
nodes.

The source code is represented as a continuous sequence of characters, such
that any piece of source code can be represented as an interval in that sequence.
Such an interval is described by a file/row/column position for start and end.
During parsing while constructing the abstract syntax tree, every node is at-
tributed with an interval. During analysis, the nodes of the abstract syntax tree
are transformed into nodes in the program dependence graph, which still have
the source code interval attribute.

Example 9.2: Consider the following example:

if (x < y) {
x = x + z;

}

124 Visualization of Dependence Graphs

1 : [1 − 15]
2 : [3 − 7]
3 : [4 − 4]
4 : [6 − 6]
5 : [9 − 14]
6 : [9 − 9]
7 : [11 − 13]
8 : [11 − 11]
9 : [13 − 13]

Figure 9.2: A small code fragment with position intervals

This program is represented as a sequence of characters, each character having
a position, as shown in the following table (whitespace is ignored):

i f (x < y) { x = x + z ; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

During transformation of this fragment in its program dependence graph the
nodes are attributed with the position interval as shown in Figure 9.2.

If the visualization would just highlight the intervals of the nodes, the re-
sult would be catastrophic: any visualization of a set that includes node 1 will
highlight the complete fragment. The problem here is the nesting of intervals:
an interval r = [xr − yr] is nested in an interval q = [xq − yq], written as r ⊆ q

, if xq < xr < yr < yq. The intervals generated during construction of the
abstract syntax tree have two properties:

1. All intervals are properly nested: ∀r, q : r ⊆ q ∨ q ⊆ r.

2. All intervals are unique: ∀r, q, r 6= q : xr 6= xq ∨ yr 6= yq.

If follows ∀r, q : r ⊂ q ∨ q ⊂ r.
Any position should only be highlighted if the smallest enclosing interval

belongs to a node included in the highlighted set. An interval r is the smallest
enclosing interval of a position x, if there is no interval q such that q encloses
x (x ∈ q) and r (r ⊃ q). Therefore the interval attribute of the nodes is changed
to a set of attributes: If a node has an interval q that encloses an interval r of a
different node, the interval r is removed by splitting the original interval r: Let
r = [xr − yr] be nested in interval q = [xq − yq], the new interval is split into
two new intervals q1 = [xq − xr[and q2 =]yr − yq]. If this transformation is
applied thoroughly, every interval will be unique.

Example 9.3: The resulting intervals for the example are shown in Figure 9.3 on
the facing page.

The nodes are now mapped to non-overlapping intervals. To highlight any
set of nodes, the sets of intervals of the nodes are joined and only the intervals
in the resulting set are highlighted.

9.3 Related Work 125

1 : [1 − 2], [15 − 15]
2 : [3 − 3], [5 − 5], [7 − 7]
3 : [4 − 4]
4 : [6 − 6]
5 : [10 − 10], [14 − 14]
6 : [9 − 9]
7 : [12 − 12]
8 : [11 − 11]
9 : [13 − 13]

Figure 9.3: Intervals after transformation

Example 9.4: The fragment below shows the visualization of a backward slice
for node 9, which consists of the node set {1, 2, 3, 4, 5, 7, 9}:

if (x < y) {
x = x + z;

}

The next example shows the node set {1, 5, 6} highlighted.

if (x < y) {
x = x + z;

}

We have presented only the basic visualization techniques. However, vi-
sualization of standard slices has only a limited benefit in program compre-
hension as too much data is presented at once. Therefore, the next chapter will
present some more focused slicing techniques together with their visualization.

9.3 Related Work

9.3.1 Graphical Visualization

In [Bal01] the same problems with visualizing dependence graphs are reported
and a decomposition approach is presented: groups of nodes are collapsed into
one node. The result is a hierarchy of groups, where every group is visualized
independently. Three different decompositions are presented: The first decom-
position is to group the nodes belonging to the same procedure together, the
second is to group the nodes belonging to the same loop and the third is a
combination of both. The result of the function decomposition is identical to
the visualization of the call graph and the PDGs of the procedures presented
in Section 9.1.1.

The CANTO environment [AFL+97] has a visualization tool PROVIS based
on dot which can visualize PDGs (besides other graphs). Again, problems with

126 Visualization of Dependence Graphs

excessively large graphs are reported, which are omitted by only visualizing
the subgraph which is reachable from a chosen node via a limited number of
edges.

ChopShop [JR94b, JR94a] is a tool to visualize slices and chops, based on
highlighting text (in emacs) or laying out graphs (with dot and ghostview). It
is reported that even the smallest chops result in huge graphs. Therefore, only
an abstraction is visualized: normal statements (assignments) are omitted, pro-
cedure calls of the same procedure are folded into a single node and connecting
edges are attributed with data dependence information.

The decomposition slice visualization of Surgeon’s Assistant [Gal96, GO97]
visualizes the inclusion hierarchy of decomposition slices as a graph using
VCG [San95].

An early system with capabilities for graphical visualization of dependence
graphs is ProDAG [ROMA92]. Another system to visualize slices is [DKN01].

9.3.2 Textual Visualization

Every slicing tool visualizes its results directly in the source code. However,
most tools are line based, highlighting only complete lines. CodeSurfer [AT01]
has textual visualization with highlighting parts of lines, if there is more than
one statement in a line. The textual visualization includes graphical elements
like pop-ups for visualization and navigation along e.g. data and control de-
pendence or calls. Such aids are necessary as a user cannot identify relevant
dependences easily from source text alone. Such problems have also been iden-
tified by Ernst [Ern94] and he suggested similar graphical aids. However, his
tool, which is not restricted to highlighting complete lines, does not have such
aids and offers depth-limited slicing instead (see Section 10.1).

Steindl’s slicer for Oberon [Ste98, Ste99a, Ste99b] also highlights only parts
of lines, based on the individual lexical elements of the program.

SeeSlice [BE94] is a more advanced tool for visualizing slices. Files and
procedures are not presented through source code but with an abstraction rep-
resenting characters as single pixels. Files and procedures that are not part of
computed slices are folded, such that only a small box is left. Slices highlight
the pixels corresponding to contained elements.

CodeSurfer [AT01] also has a project viewer, which has a tree-like structural
visualization of the SDG. This is useful for seeing “hidden” nodes, such as
nodes that do not correspond to any source text.

Chapter 10

Making Slicing more Focused

In the last chapter we have seen that slicing alone does not meet the expec-
tations. Usually, slices contain to much data to be comprehensible. Griswold
stated in [Gri01] the need for “slice explainers” that answer the question why
a statement is included in the slice and the need for “filtering”. Chapter 13
will present a solution for the first need while this chapter contains various
“filtering” approaches to slicing.

10.1 Distance-Limited Slices

One of the problems in understanding a slice for a criterion is to decide why a
specific statement is included in that slice and how strong the influence of that
statement is onto the criterion. A slice cannot answer these questions as it does
not contain any qualitative information. Probably the most important attribute
is locality: Users are more interested in facts that are near the current point of
interest than on those far away. A simple but very useful aid is to provide the
user with navigation along the dependences: For a selected statement, show
all statements that are directly dependent (or vice versa). Such navigation is
central to the VALSOFT system (chapter 14) or to CodeSurfer [AT01].

A more general approach to accomplish locality in slicing is to limit the
length of a path between the criterion and the reached statement. Using paths
in program dependence graphs has an advantage over paths in control flow
graphs: a statement having a direct influence on the criterion will be reached by
a path with the length one, independent of the textual or control flow distance.

Definition 10.1 (Distance-Limited Slice)
The distance-limited slice S(C, k) of a PDG for the slicing criterion nodes of set
C consists of all nodes on which a node n ∈ C (transitively) depends on a
realizable path consisting of at most k edges:

S(C, k) = {m ∈ N | p = m ⇀?
R n ∧ n ∈ C ∧ p = 〈n1, . . . , nl〉∧ l < k}

128 Making Slicing more Focused

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f t
he

 fu
ll

sl
ic

e

length limit k

flex
gnugo
cdecl

plot2fig
agrep

football
simulator

patch
assembler

bison
lex315

ctags
diff

ansitape
rolo

compiler

Figure 10.1: Evaluation of length-limited slicing

A node m is said to have a distance l = d(m, n) from a node n, if a realizable
path from m to n consisting of l edges exists and no other path with fewer
edges exists:

d(m, n) = min({l | p = m ⇀?
R n ∧ p = 〈n1, . . . , nl〉})

An efficient distance-limited slicing algorithm is a modified version of the
interprocedural slicing algorithm 7.1 on page 87. To omit a priority queue
sorted by the actual distance, a breadth-first search is done where the work-
list is implicitly sorted.

Figure 10.1 shows an evaluation: For a series of test cases the average size
of 1000 length limited slices has been computed, where the length limit ranges
from 1 to 100 (x-axis). The y-axis shows the reached percentage of the full
slices. This evaluation shows that length limited slices behave quite similar
and independent of the analyzed program.

A more fine-grained approach is to replace the counting of edges by sum-
marizing distances that have been assigned to the edges. Such distances can be
used to give different classes of edges different weights. For example, a node
that is reachable by a data dependence edge might be considered nearer than
a node that is reachable by a summary edge. If the worklist is replaced by a
priority queue sorted by the current sum of distances, the previous algorithm
is able to compute such distance-limited slices.

10.2 Chopping 129

Distance-limited slices can be visualized with the techniques presented in
the last chapter without any modification. Another possibility is to illustrate
the distances from the (slicing) criterion for any node in the (possibly distance-
limited) slice. The textual visualization from section 9.2 is therefore modified
not only to highlight the nodes in the textual representation, but to give any
source code fragment a color representing the distance of the equivalent nodes
to the criterion. The slicing algorithm need not be changed to accommodate
the distance computation—it is sufficient to remember the distance of a node
during breadth-first search.

Example 10.1: Figure 10.2 on the next page shows an example visualization of
a slice. A backward slice for variable u_kg in line 33 is displayed. Parts of the
program that have a small distance to the slicing criterion are darker than those
with a larger distance. With this presentation one can see that the initialization
in lines 8–10 and 13–14 have a close influence on the criterion. It can also be
seen that the first few lines of the loop (17–19) have a close influence and that
the whole next if-statement has a varying influence, where lines 26 and 28 have
the strongest effect. Such information would not be visible in a simple slice
visualization.

10.2 Chopping

Slicing identifies statements in a program that may influence a given state-
ment (the slicing criterion), but it cannot answer the question why a specific
statement is part of a slice. A more focused approach can help: Jackson and
Rollins [JR94b] introduced Chopping, which reveals the statements involved in
a transitive dependence from one specific statement (the source criterion) to
another (the target criterion). A chop for a chopping criterion (s, t) is the set of
nodes that are part of an influence of the (source) node s onto the (target) node
t. This is basically the set of nodes that lie on a path from s to t in the PDG.

Definition 10.2 (Chop)
The chop C(s, t) of an IPDG G = (N, E) from the source criterion s ∈ N to
the target criterion t ∈ N consists of all nodes on which node t (transitively)
depends via an interprocedurally realizable path from node s to node t:

C(s, t) = {n ∈ N | p = s ⇀?
R t ∧ p = 〈n1, . . . , nl〉∧ ∃i : n = ni}

Again, we can extend the chopping criteria to allow sets of nodes: The chop
C(S, T) of an IPDG from the source criterion nodes S to the target criterion
nodes T consists of all nodes on which a node of T (transitively) depends via
an interprocedurally realizable path from a node of S ⊆ N to the node in T ⊆ N:

C(S, T) = {n ∈ N | p = s ⇀?
R t ∧ s ∈ S ∧ t ∈ T ∧ p = 〈n1, . . . , nl〉∧ ∃i : n = ni}

130 Making Slicing more Focused

Figure 10.2: Distance visualization of a slice

10.2 Chopping 131

Jackson and Rollins restricted s and t to be in the same procedure and only
traversed control dependence, data dependence and summary edges but not
parameter or call edges. The resulting chop is called a truncated same-level
chop CTS; “truncated” because nodes of called procedures are not included. In
[RR95] Reps and Rosay presented more variants of precise chopping. A non-
truncated same-level chop CNS is like the truncated chop but includes the nodes
of called procedures. They also present truncated and non-truncated non-same-
level chops CTN and CNN (which they call interprocedural), where the nodes of
the chopping criterion are allowed to be in different procedures. The following
focuses on non-truncated same-level chopping first.

10.2.1 Context-Insensitive Chopping

In the intraprocedural or context-insensitive case a chop for a chopping crite-
rion (s, t) can basically computed by the intersection of a backward slice for t

with a forward slice for s: C(s, t) = SF(s)∩ SB(t). An algorithm would not use
intersection because set operations are expensive for large sets like slices. In-
stead, algorithm 10.1 on the following page is a two-phase approach: The first
phase computes the backward slice and in the second phase the forward slice
is done, where only nodes that have been visited during the backward phase
are considered. This algorithm will be called context-insensitive chopping (CIC).

10.2.2 Chopping with Summary Edges

The precise context-sensitive chopping algorithm 10.2 on page 133 uses sum-
mary edges. It basically starts with an intraprocedural chop, which is done
with algorithm 10.1 on the following page. There is a slight modification to
that algorithm: It has to do a chop only inside one single procedure and is
not allowed to traverse parameter or call edges (but it is required to traverse
summary edges). This is a truncated same-level chop CTS.

From the calculated chop all pairs of actual-in/-out nodes which are con-
nected by a summary edge are extracted and the initial worklist is filled with
the pairs of the corresponding formal-in/-out nodes. Now, for every pair in
the worklist a new intraprocedural chop is generated and added to the starting
chop. Again, all summary edges are extracted and the pairs of the correspond-
ing formal-in/-out nodes are added to the worklist if they have not been added
before. This is repeated as long as there are elements in the worklist. The now
extended chop is the resulting precise interprocedural chop.

The algorithm generates a same-level non-truncated chop CSN: both nodes
of the chopping criterion have to be in the same procedure. This algorithm
is called context-sensitive chopping (CSC). The intraprocedural version (algo-
rithm 10.1 on the next page) is a same-level truncated chop.

This algorithm can be optimized by computing and caching slices instead
of using algorithm 10.1. An intraprocedural chop for (n ′, m ′) is now computed
by intersecting slices: C(n ′, m ′) = SF(n ′)∩SB(m ′). However, every computed

132 Making Slicing more Focused

Algorithm 10.1 Context-Insensitive Chopping

Input: G = (N, E) the given IPDG
(s, t) ∈ N×N the given chopping criterion

Output: The context-insensitive chop

Initialization
WB = {t}, mark t as visited in the backward phase
B = {t}

while WB 6= ∅ worklist is not empty do
WB = WB/{n} remove one element from the worklist
foreach m ⇀ n ∈ E do

if m /∈ B m is not yet marked then
mark m as visited in the backward phase
WB = WB ∪ {m}

B = B∪ {m}

if s ∈ B s has been marked in the backward phase then
mark s as visited in the forward phase
WF = {s}

F = F∪ {s}

while WF 6= ∅ worklist is not empty do
WF = WF/{n} remove one element from the worklist
foreach n ⇀ m ∈ E do

if m ∈ B m has been marked in the backward phase
and m /∈ F m has not yet been marked in the forward phase then

mark m as visited in the forward phase
WF = WF ∪ {m}

F = F∪ {m}

return F the set of all in the forward phase visited nodes

10.2 Chopping 133

Algorithm 10.2 Chopping with Summary Edges

Input: G = (N, E) the given SDG
(s, t) ∈ N×N the given chopping criterion

Output: The context-sensitive chop

Let C be the intraprocedural chop for (s, t)
W = {n ⇀ m|n, m ∈ C, n ⇀ m is a summary edge}
M = ∅
while W 6= ∅ worklist is not empty do

W = W/{n ⇀ m} remove one element from the worklist
Let n ′ be the to n corresponding formal-in node
Let m ′ be the to m corresponding formal-out node
if (n ′, m ′) /∈ M n ′, m ′ has not been marked then

mark n ′, m ′ as visited
M = M∪ (n ′, m ′)
Let C ′ be the intraprocedural chop for (n ′, m ′)
C = C∪C ′

W = W ∪ {n ⇀ m|n, m ∈ C ′, n ⇀ m is a summary edge}
return C

slice is cached such that each slice is only computed once, which causes an
asymptotic speedup together with some more optimizations [RR95].

10.2.3 Mixed Context-Sensitivity Chopping

Chopping with summary edges has a high asymptotic complexity and is ex-
pensive in practice. A simple improvement is to combine context-sensitive
slicing with summary edges with context-insensitive chopping. The same two-
phase approach as in context-insensitive chopping is used, but with context-
sensitive slicing using summary edges instead of context-insensitive slicing.
Besides, because same-level chopping is done, only descending into called pro-
cedures is needed.

Algorithm 10.3 on the following page, called Mixed context-sensitivity chop-
ping (MCC), is surprisingly precise as shown later. It approximates a context-
sensitive chop (conservatively).

10.2.4 Limited/Folded Context Chopping

Now, the kLCS slicing algorithm from section 7.3.2 can be adapted for chop-
ping (algorithm 10.4 on page 135). Again, a two-phase approach is used: First,
the backward slice is done and all nodes are marked with the encountered call
strings. Second, a forward slice is computed, only considering nodes which
have been marked with a matching call string in the first phase. They also

134 Making Slicing more Focused

Algorithm 10.3 Mixed Context-Sensitivity Chopping

Input: G = (N, E) the given SDG
(s, t) ∈ N×N the given chopping criterion

Output: An approximate chop

mark t as visited in the backward phase
WB = {t}

B = {t}

while WB 6= ∅ worklist is not empty do
WB = WB/{n} remove one element from the worklist
foreach m ⇀ n ∈ E not a parameter-in or call edges do

if m /∈ B m is not yet marked then
mark m as visited in the backward phase
WB = WB ∪ {m}

B = B∪ {m}

if s ∈ B s has been marked in the backward phase
mark s as visited in the forward phase
WF = {s}

F = {s}

while WF 6= ∅ worklist is not empty do
WF = WF/{n} remove one element from the worklist
foreach n ⇀ m ∈ E not a parameter-out edge do

if m ∈ B m has been marked in the backward phase
and m /∈ F m has not yet been marked in the forward phase then

mark m as visited in the forward phase
WF = WF ∪ {m}

F = F∪ {m}

return F the set of all in the forward phase visited nodes

10.2 Chopping 135

Algorithm 10.4 Explicitly Context-Sensitive Chopping

Input: G = (N, E) the given IPDG
(s, t) ∈ N×N the given chopping criterion

Output: A chop

WB = {(t, ε)}, mark t with (B, ε)
while WB 6= ∅WB is not empty DO

remove one element (m, c) from WB

foreach n ⇀ m ∈ E do
if n has not been marked with (B, c ′)

for which equals(c, c ′) holds then
if n ⇀ m is a parameter-in or call edge then

Let sn be the call site of n

if match(sn, c) then
c ′ = up(c)
WB = WB ∪ {(n, c ′)}, mark n with (B, c ′)

elsif n ⇀ m is a parameter-out edge then
Let sm be the call site of m

c ′ = down(c, sm)
WB = WB ∪ {(n, c ′)}, mark n with (B, c ′)

else
WB = WB ∪ {(n, c)}, mark n with (B, c)

if s has been marked with (B, ε) then
WF = {(s, ε)}, mark s with (F, ε)
while WF is not empty do

remove one element (m, c) from WF

foreach m ⇀ n ∈ E do
if n has been marked with (B, c ′)

for which equals(c ′, c) holds then
if n has not been marked with (F, c ′)

for which equals(c, c ′) holds then
if m ⇀ n is a parameter-out edge then

Let sn be the call site of n

if match(sn, c) then
c ′ = up(c)
WF = WF ∪ {(n, c ′)}, mark n with (F, c ′)

elsif m ⇀ n is a parameter-in or call edge then
Let sm be the call site of m

c ′ = down(c, sm)
WF = WF ∪ {(n, c ′)}, mark n with (F, c ′)

else
WF = WF ∪ {(n, c)}, mark n with (F, c)

return the set of all in the forward phase visited nodes

136 Making Slicing more Focused

Algorithm 10.5 Merging Summary Edges

Input: G = (N, E) the given SDG
(s, t) ∈ N×N the given chopping criterion

Output: The context-sensitive chop

Let C be the intraprocedural chop for (s, t)
W = ∅
foreach call site c in C do

W ∪ {{n ⇀ m|n, m ∈ C, n ⇀ m is a summary edge at c}}

M = ∅
while W 6= ∅ worklist is not empty do

S = ∅
T = ∅
W = W/{L} remove one element (set) from the worklist
foreach m ⇀ n ∈ L do

Let n ′ be the to n corresponding formal-in node
Let m ′ be the to m corresponding formal-out node
if (n ′, m ′) /∈ M n ′, m ′ has not been marked then

mark n ′, m ′ as visited
M = M∪ (n ′, m ′)
S = S∪n ′

T = T ∪m ′

Let C ′ be the intraprocedural chop for (S, T)
C = C∪C ′

foreach call site c in C ′ do
W ∪ {{n ⇀ m|n, m ∈ C, n ⇀ m is a summary edge at c}}

return C

have still to be unmarked with any matching context from the second phase.
The definitions of down, up, match and equals are the same as in kLCS. This
algorithm is called k-limited context chopping (kLCC).

In the same style the kFCS slicing algorithm can be adapted to chopping.
As this is straightforward (and due to space limitations) the algorithm is not
presented here (but it has been implemented and will be evaluated later in this
chapter). This algorithm will be called k-limited folded context chopping (kFCC).

10.2.5 An Improved Precise Algorithm

Now, an improved precise chopping algorithm is presented which has a much
higher speed. The earlier CSC algorithm of Section 10.2.2 calculates a new
chop for every pair of formal-in and -out nodes that have a summary edge
between the corresponding actual-in and -out nodes included in the chop. The
following observation has been made: If two summary edges of one call site

10.2 Chopping 137

are included in the chop, it is not needed to compute chops for corresponding
pairs of formal-in/-out nodes separately. Instead, a single chop between the
set of corresponding formal-in nodes and the set of corresponding formal-out
nodes can be done without changing precision.

Proof 10.1
Let S be the set of all summary edges of one single call site which are all in-
cluded in the starting chop. Let (i1, o1) ∈ S and (i2, o2) ∈ S be a randomly
chosen pair of summary edges. Let (i ′1, o ′

1) and (i ′2, o ′
2) be the corresponding

pairs of formal-in/-out nodes. Let C1 be the chop C(i ′1, o ′
1) and C2 = C(i ′2, o ′

2).
Let C0 be the chop C({i ′1, i ′2}, {o

′
1, o ′

2}), which is a superset of C1 ∪ C2 because
C({x1, x2}, {y1, y2}) = C(x1, y1)∪C(x1, y2)∪C(x2, y1)∪C(x2, y2).

A problem can only be caused by a node that is included in C0 but not
in C1 ∪ C2. For any c ∈ C0, c /∈ C1, c /∈ C2 one of the same-level paths
i ′1 ⇀∗ c ⇀∗ o ′

2 or i ′2 ⇀∗ c ⇀∗ o ′
1 must exist. Therefore, a summary edge

(i1, o2) or (i2, o1) must exist. If such a summary edge exists, it must be in-
cluded in the starting chop (and thus also in S) because i1, i2, o1, o2 are all in
the starting chop. Because of these summary edges, the chop C3 = C(i ′1, o ′

2)
or C4 = (i ′2, o ′

1) will be added into the resulting chop and therefore c will be
added to the resulting chop anyways. 2

Algorithm 10.5 on the facing page is based on merging of summary edges
dependent on their call site and is therefore called summary-merged chopping
(SMC). After computing the starting chop, all new summary edges of visited
call sites are collected. Then a new chop is done for every call site between
the set of the corresponding formal-in nodes and the set of the corresponding
formal-out nodes. The resulting nodes are added to the starting chop and the
procedure is repeated with the new resulting summary edges until there are
no more new summary edges left. This causes low runtimes because a much
smaller number of chops is computed.

10.2.6 Evaluation

To the authors knowledge, an evaluation of chopping algorithms has never
been done, [RR95] reports only limited experience. All presented chopping
algorithms (CIC, CSC, SMC, MCC, kLCC and kFCC) have been implemented
to evaluate them completely. As chopping criteria every tenth of all same-level
pairs of formal-in/-out nodes has been chosen. The time needed to do the
complete set of chops is measured, as the average time to calculate one chop is
sub-second.

Precision

To measure the precision of the different algorithms, the same approach as in
section 7.4 is followed: CIC is considered to have 0% precision and CSC (or
SMC) to have 100% precision. The results are shown in Figure 10.3: The first
column contains the amount of chopping criteria (= amount of chops done) and

138 Making Slicing more Focused

chops CIC CSC SMC MCC 1LCC 2LCC 3LCC 4LCC 5LCC 6LCC
A 196 1050 262 262 96 6 6 6 6 6 6
B 2802 1373 259 259 97 9 48 50 52 52 68
C 16098 5177 – 794 99 26 26 26 57 57 57
D 2709 228 83 83 96 28 28 28 28 28 28
E 5303 1000 233 233 98 83 83 83 83 83 83
F 848 3562 700 700 97 63 64 75 75 75 75
G 33994 5573 – 818 99 37 42 48 56 56 56
H 2676 5399 1984 1984 99 5 7 7 7 – –
I 1528 1450 767 767 94 43 43 43 – – –
J 4892 551 169 169 95 34 36 38 73 73 73
K 21839 3298 41 41 99 88 99 99 99 99 99
L 15672 6370 – 1855 98 42 46 46 46 46 46
M 42442 5265 – 522 99 29 30 30 30 30 –

1FCC 2FCC 3FCC 4FCC 5FCC 6FCC
A 6 6 6 6 6 6
B 9 48 50 52 52 68
C 26 26 26 57 57 57
D 28 28 28 28 28 28
E 83 83 83 83 83 83
F 63 64 75 75 75 75
G 37 42 48 56 56 56
H 5 7 8 12 – –
I 43 43 43 44 44 44
J 34 36 38 73 73 73
K 88 99 99 99 99 99
L 42 46 46 46 46 46
M 29 30 30 – 91 93

Figure 10.3: Precision of MCC, kLCC and kFCC (in %)

10.2 Chopping 139

Figure 10.4: Context-insensitive vs. context-sensitive chopping

the next three columns give the average size of CIC, CSC and SMC chops. The
first thing to see is that there are four cases where it was impossible to finish
CSC in the given time boundaries. Therefore, a direct comparison between the
context-insensitive and -sensitive algorithm is only shown for CIC and SMC in
figure 10.4: context-insensitive chopping is very imprecise (in the most extreme
case the context-insensitive algorithm produces chops 80 times larger than the
chops computed by the context-sensitive one).

The simple MCC algorithm is surprisingly precise: Usually it has around
96% precision (figure 10.5) and is always more precise than 6LCC or 6FCC (fig-
ure 10.3). This shows that the main source of imprecision in chopping is the loss
of the same-level property which is kept by the approximate algorithm MCC.
The other experiences are in a kind of contrast to the experiences with the slic-
ing algorithms: All other algorithms than CSC, SMC and MCC are much less
precise and with increased k the precision of kLCC and kFCC is only increasing
slowly (shown for kFCC in figure 10.6 on the next page).

Speed

The most important observation while comparing the runtimes of CSC and
SMC is that SMC is always much faster. To denote an extremum, SMC only
needs 1% of CSC’s runtime in test case I. The MCC algorithm is not only sur-
prisingly precise but also fast. For the larger test cases it is much faster than
any of the other algorithms.

140 Making Slicing more Focused

Figure 10.5: Approximate vs. context-sensitive chopping

Figure 10.6: Precision of kFCC (avg. size)

10.2 Chopping 141

CIC CSC SMC MCC 1LCC 2LCC 3LCC 4LCC 5LCC 6LCC
A 1,35 2,54 0,35 0,47 4,07 7,88 20,5 78,3 384 1964
B 32,4 242 11,8 10,7 88,2 108 185 371 1069 2663
C 1145 – 4691 451 2293 3389 4670 3113 2613 2101
D 9,60 31,1 3,44 5,60 20,0 29,6 45,5 68,9 65,0 49,5
E 59,7 511 18,0 30,4 85,0 125 223 787 2061 3581
F 20,3 14,6 3,45 5,58 40,9 154 159 226 451 530
G 3985 – 4172 1171 6647 8721 11884 16844 21892 28437
H 112 9098 153 75,4 420 993 2884 9253 – –
I 18,1 2003 21,1 13,3 51,3 177 1778 – – –
J 60,8 44,1 9,63 25,2 140 185 268 323 1218 7921
K 1038 247 29,6 183 1127 1460 3137 3846 3167 2472
L 1202 – 2358 609 2302 3134 3967 4285 4119 4082
M 4037 – 2045 957 8452 13062 19314 25121 29800 –

1FCC 2FCC 3FCC 4FCC 5FCC 6FCC
A 3,67 5,63 11,3 14,4 15,4 15,8
B 87,8 106 171 296 511 379
C 2295 3381 4697 3106 2612 2107
D 20,0 29,7 45,1 68,6 64,9 49,5
E 85,2 125 234 746 2087 3640
F 41,1 155 160 227 454 532
G 6486 8260 11081 15173 20264 28753
H 309 1131 3623 17486 – –
I 46,2 91,7 122 176 232 214
J 138 179 237 151 159 154
K 1134 1476 3191 4104 3459 2858
L 2301 3134 3974 4288 4114 4099
M 8465 14981 28793 – 22959 24958

Figure 10.7: Runtimes of kLCC and kFCC (in sec.)

142 Making Slicing more Focused

The comparison of kLCC with kFCC in terms of runtime reveals the same
results as for kLCS and kFCS: In many cases kFCC is much faster than kLCC
and less likely to suffer from combinatorial explosion. Also, increased k may
sometimes result in lower runtime.

In section 7.4 it was seen that usually the context-sensitive slicing algorithm
SIS is not slower than the context-insensitive algorithm CIS. This is not the case
with chopping: In only three test cases CIC is slower than CSC, and in five test
cases CIC is even faster than SMC (figure 10.4 on page 139). This is due to the
much higher complexity of chopping with summary edges in comparison to
slicing with summary edges. However, in cases where CIC is faster than SMC
(circled in figure 10.5 on page 140), the approximate algorithm MCC can be
used instead: It is much faster in those cases (it is always faster than CIC).

If the speed of kLCC and kFCC is compared against CSC and SMC, different
results as in slicing are experienced: nine test cases are faster in chopping with
1LCC or 1FCC than CSC and one is even faster than SMC.

The results for chopping are not as clear as in slicing, but they lead to the
same recommendation: due to the high precision SMC is preferable to all other
chopping algorithms. In cases where SMC is slower than CIC, the approximate
algorithm MCC can be used with acceptable loss of precision. The call string
approaches most often have a poor precision.

10.2.7 Non-Same-Level Chopping

Thus far, only same-level chopping has been presented. This section will show
how to compute chops for start and target nodes in different procedures. Again,
a truncated and a non-truncated variant will be shown. A truncated chop is not
allowed to contain nodes of called procedures: All nodes must lie on truncated
non-same-level paths from source to target nodes. A truncated non-same-level
path P can be split in two parts p1 and p2 with p = p1p2, such that p1 does
not contain parameter-in and call edges and p2 does not contain parameter-
out edges. Why is this restriction needed? If p would contain a parameter-out
edge e1 to the right of a parameter-in or call edge e2, it had also to contain a call
or parameter-in edge e3 (probably e3 = e2), where e3 and e2 have matching call
sites (because p must be realizable). Such a path would violate the truncated
restriction, because e3 enters a called procedure and e1 returns from it.

Instead of encoding this restriction into the algorithm, Reps and Rosay
[RR95] found a more simple way to compute truncated non-same-level chops:
A truncated non-same-level chop is computed by set operations on restricted
forward and backward slices:

• SB
↑ (n) is a backward slice that does not traverse parameter-out edges.

• SB
↓ (n) is a backward slice not traversing parameter-in or call edges.

• SF
↑(n) is a forward slice that does not traverse parameter-out edges.

• SF
↓(n) is a forward slice that does not traverse parameter-in or call edges.

10.3 Barrier Slicing and Chopping 143

The truncated non-same-level chop CTN is now computed according to:

W(S, T) = SF
↓(S)∩ SB

↑ (T)

CTN(S, T) =
(
SF
↓(S)∩ SB

↓ (W(S, T))
)
∪

(
SF
↑(W(S, T)∩ SB

↑ (T)
)

The non-truncated non-same-level chop CNN is computed by extending
CTN with same-level chops for all included summary edges similar to the ex-
tension presented in the previous sections.

10.3 Barrier Slicing and Chopping

The presented slicing and chopping techniques compute very fixed results
where the user has no influence. However, during slicing and chopping a user
might want to give additional restrictions or additional knowledge to the com-
putation:

1. A user might know that a certain data dependence cannot happen. Be-
cause the underlying data flow analysis is a conservative approximation
and the pointer analysis is imprecise, it might be clear to the user that a
dependence found by the analysis cannot happen in reality. For example,
the analysis assumes a dependence between a definition a[i]=... and a
usage ...=a[j] of an array, but the user discovers that i and j never have
the same value. If such a dependence is removed from the dependence
graph, the computed slice might be smaller.

2. A user might want to exclude specific parts of the program that are of no
interest for his purposes. For example, he might know that certain state-
ment blocks are not executed during runs of interest; or he might want
to ignore error handling or recovery code, when he is only interested in
normal execution.

3. During debugging, a slice might contain parts of the analyzed program
that are known (or assumed) to be bug-free. These parts should be re-
moved from the slice to make the slice more focused.

Both points have been tackled independently: For example, the removal of de-
pendences from the dependence graph by the user has been applied in Steindl’s
slicer [Ste98, Ste99a]. The removal of parts from a slice has been presented by
Lyle and Weiser [LW87] and is called dicing.

The following approach integrates both into a new kind of slicing, called
barrier slicing, where nodes (or edges) in the dependence graph are declared to
be a barrier that transitive dependence is not allowed to pass.

Definition 10.3 (Barrier Slice)
The barrier slice S#(C, B) of an IPDG G = (N, E) for the slicing criterion C ⊆ N

with the barrier set of nodes B ⊆ N consists of all nodes on which a node

144 Making Slicing more Focused

n ∈ C (transitively) depends via an interprocedurally realizable path that does
not pass a node of B:

S#(C, B) = {m ∈ N | p = m ⇀?
R n ∧ n ∈ C

∧ p = 〈n1, . . . , nl〉
∧ ∀1 < i 6 l : ni /∈ B}

The barrier may also be defined by a set of edges; the previous definition is
adapted accordingly.

From barrier slicing it is only a small step to barrier chopping:

Definition 10.4 (Barrier Chop)
The barrier chop C#(S, T , B) of an IPDG G = (N, E) from the source criterion
S ⊆ N to the target criterion T ⊆ N with the barrier set of nodes B consists of
all nodes on which a node of T (transitively) depends via an interprocedurally
realizable path from a node of S to the node in T that does not pass a node of
B ⊆ N:

C#(S, T , B) = {n | p = s ⇀?
R t ∧ s ∈ S ∧ t ∈ T

∧ p = 〈n1, . . . , nl〉∧ ∃i : n = ni

∧ ∀1 < j < l : nj /∈ B}

The barrier may also be defined by a set of edges; the previous definition is
adapted accordingly.

Again, the forward/backward, truncated/non-truncated, same-level/non-
same-level variants can be defined, but are not presented here.

The computation of barrier slices and chops cause a minor problem: The
additional constraint of the barrier destroys the usability of the summary edges
as they do not obey the barrier. Even when the summary edges would comply
with the barrier, the advantage of summary edges is lost: They can no longer
be computed once and used for different slices and chops, because they have
to be computed for each barrier slice and chop individually. However, the
algorithm 7.2 on page 89 can be adapted to compute summary edges which
obey the barrier: The new version (algorithm 10.6 on the next page) is based on
blocking and unblocking summary edges. First, all summary edges stemming
from calls that might call a procedure with a node from the barrier at some time
are blocked. This set is a very conservative approximation and the second step
unblocks summary edges where a barrier-free path exists between actual-in
and -out nodes. The first phase replaces the initialization phase of the original
algorithm and the second phase does not generate new summary edges, but
unblocks them. Only the version where the barrier consists of nodes is shown.

This algorithm is cheaper than the complete recomputation of summary
edges, because it only propagates node pairs to find barrier-free paths be-
tween actual-in/-out nodes if a summary edge and therefore a (not necessarily
barrier-free path) exists.

10.3 Barrier Slicing and Chopping 145

Algorithm 10.6 Computation of Blocked Summary Edges

Input: G = (N, E) the given SDG
B ⊂ N the given barrier

Output: A set S of blocked summary edges

Initialization
S = ∅, W = ∅
Block all reachable summary edges
foreach n ∈ B do

Let P be the procedure containing n

Let SP be the set of summary edges for calls to P

S = S∪ SP

W = W ∪ {(n, n) | n is a formal-out node of P}

repeat
S0 = S

foreach x ⇀ y ∈ S do
Let P be the procedure containing x

Let SP be the set of summary edges for calls to P

S = S∪ SP

W = W ∪ {(n, n) | n is a formal-out node of P}

until S0 = S

Unblock some summary edges
P = W
while W 6= ∅ worklist is not empty do

W = W/{(n, m)} remove one element from the worklist
if n is a formal-in node then

foreach n ′ pi
⇀ n which is a parameter-in edge do

foreach m
po
⇀ m ′ which is a parameter-out-edge do

if n ′ su
⇀ m ′ ∈ S then

S = S − {n ′ su
⇀ m ′} unblock summary edge

foreach (m ′, x) ∈ P ∧ (n ′, x) /∈ P do
P = P ∪ {(n ′, x)}
W = W ∪ {(n ′, x)}

else

foreach n ′ dd,cd
⇀ n do

if n ′ /∈ B ∧ (n ′, m) /∈ P then
P = P ∪ {(n ′, m)}
W = W ∪ {(n ′, m)}

foreach n ′ su
⇀ n do

if n ′ /∈ B ∧ n ′ su
⇀ n /∈ S ∧ (n ′, m) /∈ P then

P = P ∪ {(n ′, m)}
W = W ∪ {(n ′, m)}

return S the set of blocked summary edges

146 Making Slicing more Focused

Example 10.2: Consider the example in figure 10.8 on the facing page: If a slice
for u_kg in line 33 is computed, almost the complete program is in the slice:
Just lines 11 and 12 are omitted. One might be interested why the variable
p_cd is in the slice and has an influence on u_kg. Therefore a chop is computed:
The source criterion are all statements containing variable p_cd and the target
criterion is u_kg in line 33. The computed chop is shown in figure 10.9 on
page 148. In that chop, line 19 looks suspicious, where the variable u_kg is
defined, using variable kal_kg. Another chop from all statements containing
variable kal_kg to the same target consists only of lines 14, 19, 26, 28 and 33
(figure 10.10 on page 149). A closer look reveals that statements 26 and 28
“transmit” the influence from p_cd on u_kg. To check that no other statement
is responsible, a barrier chop is computed: The source are the statements with
p_cd again, the target criterion is still u_kg in line 33, and the barrier is line 26
and 28. The computed chop is empty and reveals that lines 26 and 28 are the
“hot spots”.

10.3.1 Core Chop

A specialized version of a barrier chop is a core chop where the barrier consists
of the source and target criterion nodes.

Definition 10.5 (Core Chop)
A core chop C◦(S, T) is defined as:

C◦(S, T) = C#(S, T , S∪ T)

It is well suited for chops with large source and target criterion sets: Only
the statements connecting the source to the target are part of the chop. Here is
important that a barrier chop allows barrier nodes to be included in the criteria.
In that case, the criterion nodes are only start or end nodes of the path and are
not allowed elsewhere.

10.3.2 Self Chop

When slices or chops are computed for large criterion sets, it is sometimes
important to know which parts of the criterion set influence themselves and
which statements are part of such an influence. After identifying such state-
ments, they can specially be handled during following analyses. They can be
computed simply by a self chop, where a set is both source and target criterion:

Definition 10.6 (Self Chop)
A self chop C1(S) is defined as:

C1(S) = C(S, S)

It computes the strongly connected components of the SDG which contain
nodes of the criterion. These components can be of special interest to the user,
or they are used to make core chops even stronger:

10.3 Barrier Slicing and Chopping 147

1 #define TRUE 1

2 #define CTRL2 0

3 #define PB 0

4 #define PA 1

5

6 void main()

7 {

8 int p_ab[2] = {0, 1};

9 int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float kal_kg = 1.0;

15

16 while(TRUE) {

17 if ((p_ab[CTRL2] & 0x10)==0) {

18 u = ((p_ab[PB] & 0x0f) << 8) + (unsigned int)p_ab[PA];

19 u_kg = (float) u * kal_kg;

20 }

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_puf[idx] == ’+’)

26 kal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 kal_kg *= 0.99;

29 }

30 }

31 e_puf[idx] = ’\0’;

32 }

33 printf("Artikel: %7.7s\n %6.2f kg ",e_puf,u_kg);

34 }

35 }

Figure 10.8: An example

148 Making Slicing more Focused

1 #define TRUE 1

2 #define CTRL2 0

3 #define PB 0

4 #define PA 1

5

6 void main()

7 {

8 int p_ab[2] = {0, 1};

9 int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float kal_kg = 1.0;

15

16 while(TRUE) {

17 if ((p_ab[CTRL2] & 0x10)==0) {

18 u = ((p_ab[PB] & 0x0f) << 8) + (unsigned int)p_ab[PA];

19 u_kg = (float) u * kal_kg;

20 }

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_puf[idx] == ’+’)

26 kal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 kal_kg *= 0.99;

29 }

30 }

31 e_puf[idx] = ’\0’;

32 }

33 printf("Artikel: %7.7s\n %6.2f kg ",e_puf,u_kg);

34 }

35 }

Figure 10.9: A chop for the example in figure 10.8

10.3 Barrier Slicing and Chopping 149

1 #define TRUE 1

2 #define CTRL2 0

3 #define PB 0

4 #define PA 1

5

6 void main()

7 {

8 int p_ab[2] = {0, 1};

9 int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float kal_kg = 1.0;

15

16 while(TRUE) {

17 if ((p_ab[CTRL2] & 0x10)==0) {

18 u = ((p_ab[PB] & 0x0f) << 8) + (unsigned int)p_ab[PA];

19 u_kg = (float) u * kal_kg;

20 }

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_puf[idx] == ’+’)

26 kal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 kal_kg *= 0.99;

29 }

30 }

31 e_puf[idx] = ’\0’;

32 }

33 printf("Artikel: %7.7s\n %6.2f kg ",e_puf,u_kg);

34 }

35 }

Figure 10.10: Another chop for the example in figure 10.8

150 Making Slicing more Focused

Definition 10.7 (Strong Core Chop)
A strong core chop C•(S, T) is defined as:

C•(S, T) = C#(S∪C1(S), T ∪C1(T), S∪ T ∪C1(S)∪C1(T))

A strong core chop only contains statements that connect the source criterion
to the target criterion, none of the resulting statements will have an influence
on the source criterion, and the target criterion will have no impact on the
resulting statements.

Thus, the strong core chop only contains the most important nodes of the
influence between the source and target criterion.

10.4 Abstract Visualization

For program understanding-in-the-large the presented visualization techniques
are not very helpful. If an unknown program is analyzed, the very detailed
information of program dependence and slices is overwhelming and a much
less detailed information is needed. The understanding starts with variables
and procedures and not statements. This section will show how slicing and
chopping can help to visualize programs in a more abstract way, illustrating
relations between variables or procedures.

10.4.1 Variables or Procedures as Criterion

It is possible to define slices for variables or procedures informally:

1. A (backward) slice for a criterion variable v is the set of statements (or
nodes in the PDG) which may influence variable v at some point of the
program.

2. A (backward) slice for a criterion procedure P is the set of statements (or
nodes in the PDG) which may influence a statement of P.

The example in the last section already used this to compute some chops. The
only effort needed is to compute the node sets that match the above criterion
definitions:

Variables as Criterion

Through the fine-grained representation it is easy to identify all nodes that ac-
cess a criterion variable v: Such nodes are nodes with the “reference” operator
(µop, see chapter 4) and the variable v as value (µval). The slice to be computed
is defined as:

S(v) = S({n | µop(n) = reference ∧ µval(n) = v})

10.4 Abstract Visualization 151

Procedures as Criterion

Again, it is very easy to identify all nodes of a procedure P, because nodes of
the fine-grained PDG contain an attribute µprc that links a node to the embed-
ding procedure:

S(P) = S({n | µprc(n) = P})

The adaption to the various slicing and chopping variants is obvious.

10.4.2 Visualization of the Influence Range

To understand a previously unknown program, it is helpful to identify the ‘hot’
procedures and global variables—the procedures and variables with the high-
est impact on the system. A simple measurement is to compute slices for every
procedure or global variable and record the size of the computed slices. How-
ever, this might be too simple and a slightly better approach is to compute
chops between the procedures or variables. A visualization tool has been im-
plemented that computes a n× n matrix for n procedures or variables, where
every element ni,j of the matrix is the size of a chop from the procedure or vari-
able nj to ni. The matrix is painted using a color for every entry, corresponding
to the size—the bigger, the darker. Figure 10.11 on the next page shows such a
visualization for the ansitape program. The columns show variables 0–34 as
source criteria and the rows as target criteria. This matrix can be interpreted
like the following examples:

• The global variables stdin (column two), stdout (3) and stderr (4) have
empty chops with all other variables (light columns 2–4). This is obvious
for stdout and stderr while stdin has no influence because the program
does only read from tapes.

• The variable stdout (row 3) is not influenced (empty chops with stdout
as target criterion), but stderr (row 4) is. The ansitape program normally
writes all messages to stderr and produces no other output.

• Row 12 has the biggest chops (and is the darkest row). This is variable
tcb, the tape control block, which is the main global variable of the pro-
gram.

An implementation is shown in figure 10.12 on page 153: The three win-
dows contain the chop matrix visualization (in this case for procedure-procedure-
chops), a color scale and a window that shows the names of the procedures and
their chop’s size for the last chosen matrix element. With this tool, it is easy
to get a first impression of the software to analyze. Important procedures or
global variables can be identified on first sight and their relationship be stud-
ied. Doing this as a preparing stage aids in later, more thorough investigations
with traditional slicing visualizations like the ones presented in the previous
chapter 9.

152 Making Slicing more Focused

Figure 10.11: Visualization of chops for all global variables

10.4 Abstract Visualization 153

Figure 10.12: GUI for the chop visualization

154 Making Slicing more Focused

10.5 Related Work

Chopping as presented here has been introduced by Jackson and Rollins [JR94b]
and extended by Reps and Rosay [RR95]. The only other tool able to compute
precise chops is CodeSurfer [AT01]. The evaluation of chopping algorithms in
section 10.2 is the first study (previously published in [Kri02]) while Reps and
Rosay [RR95] only report limited experience.

The SeeSlice slicing tool [BE94] already included some of the presented fo-
cusing and visualization techniques, e.g. the distance-limited slicing, visual-
izing distances, etc. The slicer of the CANTO environment [AFL+97] can be
used in a stepping mode which is similar to distance-limited slicing: At each
step the slice grows by considering one step of data or control dependence.

A decomposition slice [GL91, Gal96, GO97] is basically a slice for a variable
at all statements writing that variable. The decomposition slice is used to form
a graph using the partial ordering induced by proper subset inclusion of the
decomposition slices for all variables.

Beck and Eichmann [BE93] use slicing to isolate statements of a module that
influence an exported behavior. Their work uses interface dependence graphs and
interface slicing.

Steindl [Ste98, Ste99a] has developed a slicer for Oberon where the user can
choose certain dependences to be removed from the dependence graph.

Set operations on slices produce various variants: Chopping uses intersec-
tion of a backward and a forward slice. The intersection of two forward or two
backward slices is called a backbone slice. Dicing [LW87] is the subtraction of
two slices. However, set operations on slices need special attention because
the union of two slices may not produce a valid slice [DLHHK03].

Orso et al [OSH01b] presents a slicing algorithm which augments edges
with types and restricts reachability onto a set of types, creating slices restricted
to these types. Their algorithm needs to compute the summary edges specific
to each slice (similar to algorithm 10.6 on page 145). However, it only works
for programs without recursion.

10.5.1 Dynamic Slicing

During debugging not all possible executions of a program are of interest. Usu-
ally, only one test case where a problem arises is in focus. Therefore, Korel and
Laski have introduced dynamic slicing [KL88]: Dynamic Slicing focuses on a
single execution of a program instead of all possible executions like in Weiser’s
(static) slicing. The slicing criterion for a dynamic slice additionally specifies
the (complete) input for the program. The criterion is now a triple c = (I, s, V)
consisting of the input I, a statement s and a subset V of the variables of the
analyzed program.

Definition 10.8 (Dynamic Slice)
A dynamic slice S(c) of a program P on a slicing criterion c is any executable
program P ′, where

10.5 Related Work 155

1. P ′ is obtained by deleting zero or more statements from P,

2. whenever P halts for the given input I, P ′ will halt for the input, and

3. P ′ will compute the same values as P for the variables of V on input I.

Korel and Laski also presented an algorithm to compute dynamic slices based
on the computation of sets of dynamic def-use relations. However, the algo-
rithm has been shown to be imprecise in [AH90]. The algorithm of Gopal
[Gop91], based on dynamic versions of information-flow relations [BC85], may
compute non-terminating slices under certain loop conditions.

Miller and Choi [MC88] introduced a dynamic version of program depen-
dence graphs which they use for flowback analysis. Agrawal and Horgan
[AH90] have developed dynamic slicing on top of dependence graphs. They
present four algorithms differing in precision and complexity:

1. During execution of the program the nodes of the executed statements
are marked. The approximate dynamic slice is then computed by doing
a static slice on the node induced subgraph of the program’s PDG.

2. During execution the dependence edges relating to the data and control
dependence of the executed statements are marked. The approximate
dynamic slice is done on the edge induced subgraph.

3. For each execution of a statement a new node is generated. The data and
control dependence of the executed statement to a certain execution of
another statement generates an edge between the related node instances.
The resulting graph is called Dynamic Dependence Graph. This algorithm
is much more precise than the first two, however, its space requirement
is much larger: In worst case it is equivalent to the amount of executed
statements.

4. To reduce the space requirement of the third algorithm, a reduction can
be used that merges nodes with the same transitive dependences, result-
ing in a Reduced Dynamic Dependence Graph.

This work has been extended to interprocedural dynamic slicing in [ADS91].
Kamkar’s algorithms [KSF92, Kam93, KFS93a] are similar and focus on inter-
procedural dynamic slicing. An approach to interprocedural flowback analysis
is presented in [CMN91].

If the computed dynamic slices have to be executable, the use of unstruc-
tured control flow requires special treatment, like in static slicing. Algorithms
for such circumstances have been developed by Korel [Kor95, Kor97] and Huynh
[HS97].

To overcome the space requirements of dynamic dependence graphs, Goswami
and Mall [GM02] have suggested to compute the graphs based on the paths be-
tween loop entries and exits. If the same path is traversed in a later iteration of
the loop, the earlier execution of the path is ignored. Obviously, this produces
incorrect dynamic slices: Consider a loop that contains two alternating paths

156 Making Slicing more Focused

A and B through the loop. Assume an execution where the loop is iterated at
least four times and the B path is executed at last; such an execution will be
similar to . . . ABAB. The suggested algorithm will now only consider AB as an
execution and will omit dependences originating from statements in B going
to statements in A.

A correct and efficient technique has been presented by Mund et al [MMS02]:
Their dynamic slicing algorithm uses the standard PDG where unstable edges
are handled specially. Unstable edges are data dependence edges with the
same target node and where the source nodes define the same variable. During
execution the unstable edges are marked corresponding to which of them has
been executed lately and the dynamic slice for each node is updated accord-
ingly. Its space complexity is O(n2) where n is the number of statements in the
program. The authors claim that the time complexity is also O(n2), which is
clearly wrong as it must be dependent on the number of executed statements
N. The time complexity must be at least O(nN).

Beszédes et al [BGS+01] have developed a technique that computes dy-
namic slices for each executed statement during execution. They employ a
special representation, which combines control and data dependence. During
execution, the presented algorithm keeps track of the points of the last defini-
tion for any used variable. An implementation of the algorithm is able to slice
C including unstructured control flow and procedure calls.

Dynamic slicing has been formalized based on natural semantics in [GM99].
This lead to a generic, language-independent dynamic slicing analysis, which
can be instantiated for imperative, logic or functional languages.

Extensions for object-oriented programs are straightforward [OHFI01]. Ex-
tensions to dynamic slicing for concurrent programs have been presented in
[KF92, DGS92, Che93, KK95, GM00].

Another work on dynamic slicing is [OHFI01], which includes lightweight
tracing information like tracing procedure calls [NJKI99, TOI01]. Such an ap-
proach, called hybrid slicing, has been presented earlier by Gupta and Soffa
[GS95].

10.5.2 Variations of Dynamic Slicing

Hall [Hal95] has presented another form of dynamic slicing: simultaneous dy-
namic slicing, where a dynamic slice for a set of inputs is computed. This is not
just the union of the dynamic slices for each of the inputs, as the union may not
result in a correct dynamic slice for an input. Beszédes [BFS+02] uses unions
of dynamic slices to approximate the minimal static slice.

Between static and dynamic slicing lies quasi static slicing, presented by
Venkatesh [Ven91], where only some of the input variables have a fixed value
(as specified in the slicing criterion) and the others may vary like in static slic-
ing. A generalization is conditioned slicing [DLFM96, CCD98, DFHH00]: The
input variables are constrained by first order logic formula. A similar approach
is parametric program slicing, presented by Field et al [FRT95].

A survey on dynamic slicing approaches can be found in [Tip95, KR98].

Chapter 11

Optimizing the PDG

Two things matter for slicing and chopping based on program dependence
graphs: size and precision. Previous chapters have shown that larger graphs
cause higher runtimes and bad precision can cause an avalanche effect on the
size of computed chops. Program dependence graphs have originally been
developed for intermediate representation for optimizations in compilers. So
why not use optimization techniques to decrease the size and increase the pre-
cision of program dependence graphs? This is exactly what this chapter is
about. The next section will present graph compression techniques that have
no influence on precision. The second section contains more advanced tech-
niques from compiler optimization, which mainly increase the precision of the
program dependence graphs. These optimization can also increase the preci-
sion of path condition computation, which will be discussed in chapter 13.

11.1 Reducing the Size

A way to reduce the running time of algorithms working in dependence graphs
is to make the graphs smaller. However, many approaches to reduce the size
are based on abstraction and approximation: The reduced graph causes a re-
duced precision of algorithms working on it. This is undesirable for program
slicing and chopping, where highest precision is important. For that reason
the following sections will present three techniques to reduce the size of inter-
procedural program dependence graphs and/or system dependence graphs,
which will not cause a loss of precision. The first approach reduces fine-grained
to coarse-grained graphs (similar to traditional dependence graphs), the sec-
ond approach folds cycles and the last technique removes redundant nodes
representing actual and formal parameters. As will be shown, this removal
causes a significant size reduction. However, the folding technique has the
highest impact: around 40% size reduction.

158 Optimizing the PDG

Program time |N| |E| |N ′| |E ′| rN rE

agrep 0.04 22820 71328 20812 67375 8% 5%
ansitape 0.02 8501 35086 7353 32901 13% 6%
assembler 0.07 16049 247920 15046 245955 6% 0%
bison 0.06 33158 141231 30906 136796 6% 3%
cdecl 0.03 13383 62259 7092 49672 47% 20%
compiler 0.03 16833 97897 16167 96687 3% 1%
ctags 0.02 12958 51917 12075 50203 6% 3%
diff 0.29 65682 1288579 62207 1281892 5% 0%
flex 0.19 48098 680973 42957 670711 10% 1%
football 0.03 18879 63729 16948 59950 10% 5%
gnugo 0.01 7786 20357 6993 18856 10% 7%
loader 0.00 3718 8870 3447 8353 7% 5%
patch 0.08 30774 237832 26520 229496 13% 3%
plot2fig 0.00 2938 8154 2647 7606 9% 6%
rolo 0.18 42272 682510 40582 679279 3% 0%
simulator 0.02 14699 39319 13096 36259 10% 7%

∅ 10.2% 4.4%

Table 11.1: Fine-grained vs. coarse-grained SDGs

11.1.1 Moving to Coarse Granularity

For most applications the fine-grained representation of dependence graphs is
not needed and the standard representation, where nodes represent complete
statements, is good enough. Such a coarse-grained PDG can be constructed
from a fine-grained by folding the nodes of an expression. Because an expres-
sion can contain multiple side effects, the expression nodes are separated into
equivalence classes: All nodes of an equivalence class belong to an expression
with at most one side effect. After folding the nodes of each equivalence class
into one node, the resulting smaller graph is similar to a standard PDG.

Table 11.1 shows the comparison of the fine and coarse grained SDGs: The
first column shows the name of the analyzed program, the second the time
needed (in seconds) to construct the coarse grained SDG. The next columns
show the sizes of the fine and the coarse grained SDGs in amount of nodes (|N|

and |N ′|) and edges (|E| and |E ′|). The last two columns show the size reduction
in percent: rN = (|N| − |N ′|)/|N| and rE = (|E| − |E ′|)/|E|. The size reduction is
significant though smaller than expected: On average, the coarse grained SDG
has only 10% fewer nodes and only 4% fewer edges.

11.1.2 Folding Cycles

For reachability problems like slicing and chopping, cycles in graphs have the
effect that if any node of a cycle is in the slice or chop, all other nodes of the
cycle must be part of it, too. A simple but very effective technique is to replace

11.1 Reducing the Size 159

1 sum = 0
2 mul = 1
3 a = 1
4 b = read()
5 while (a <= b) {
6 sum = sum + a
7 mul = mul * a
8 a = a + 1
9 }
10 write(sum)
11 write(mul)

Figure 11.1: Example for a PDG with cycles

the cycles, which form strongly connected components, with one single node.
This technique is called folding. It does not cause loss of precision, because as
soon as one node of the strongly connected component is included in a chop
or a slice, all other nodes of the component must be included too.

Example 11.1: Figure 11.1 shows a program and its PDG with a cycle that con-
tains nodes 5 and 8. Any slice or chop that contains one of these nodes must
also contain the other. Both nodes can be replaced by a single one.

In this example, the size reduction is very small, only one node is eliminated.
However, an evaluation will show that in real programs the folding has high
impact.

The folding of strongly connected components is simple for programs with-
out procedures. Folding cycles that span multiple procedures invalidates the
interprocedurally realizable path property: Slices or chops will lose context-
sensitivity and that will cause a reduced precision. Therefore, the strongly
connected components must be restricted to control dependence, data depen-
dence, and summary edges, which are intraprocedural edges. If only cycles
from those edges are folded, the interprocedural structure will stay intact.

This reduction technique can be applied to both fine- and coarse-grained
SDGs. Because the results are very similar, only the results for the fine-grained
graphs are presented. This technique is very fast because it has linear complexity—
for the analyzed programs it is always sub-second, as shown in table 11.2 on
the following page. Again, the first column shows the analyzed program and
the next two columns show the time (in seconds) for identifying the strongly
connected components in fine-grained SDGs (tSCC) and for folding the compo-
nents into one single node (tfold). Figure 11.2 on the next page shows the size
reduction of the modified SDG (amount of removed nodes and edges): On av-
erage1 41% of the nodes and 43% of the edges are removed due to folding. For
every program, 1000 backward slices have been computed in both the original

1The average over all measured percentages.

160 Optimizing the PDG

Program tSCC tfold
agrep 0.04 0.06
ansitape 0.02 0.02
assembler 0.07 0.06
bison 0.07 0.09
cdecl 0.03 0.04
compiler 0.04 0.05
ctags 0.03 0.05
diff 0.39 0.45
flex 0.22 0.30
football 0.04 0.05
gnugo 0.01 0.02
loader 0.01 0.01
patch 0.09 0.15
plot2fig 0.00 0.01
rolo 0.21 0.31
simulator 0.03 0.04

Table 11.2: Time needed to fold cycles in SDGs

Figure 11.2: Size reduction and effect on slicing

11.1 Reducing the Size 161

and the folded graph. Because a mapping between original and folded nodes
was kept, the slices in the folded graph were computed for the corresponding
criterion nodes in the original graph. The time to compute the slices and the
average number of nodes in a slice were measured for both graphs. The rela-
tive values show a high impact on slicing: On average, slicing needs only 46%
of the original time and generates slices with 43% of the original size (no influ-
ence on precision; if the nodes are unfolded in the resulting slice it will contain
100% of the original nodes). There is a clear correspondence between the size
of the folded graph and the slicing time or slice sizes—the higher the reduc-
tion of the graph, the higher the reduction in slicing. The average numbers
show that this technique has high impact: The reduced SDGs will only contain
around 60% of its original size—without any loss of precision!

Chopping in Folded Graphs

Precise chopping is possible In the presented folded graphs. However, the effi-
cient algorithm for precise chopping relies on the presence of summary edges
that can be clearly mapped to call sites. Because folding may merge nodes and
edges of different call sites, this mapping is not recoverable from the folded
graph. It could easily be maintained externally to the graph, but different to
that an experiment has been done, where the folding of parameter and call
nodes has been prohibited. Though the reached size reduction will be smaller,
no external mapping is required and the chopping algorithm can be applied
without modification.

Figure 11.3 on the following page shows the evaluation. Because parameter
and call nodes are not allowed to be folded, the size reduction due to folding
is much less—it is now only 26% of the nodes and 16% of the edges. Therefore
the time needed to chop as well as the average amount of nodes in a chop is not
as much reduced: On average, 86% of the original time is needed and produces
chops with 64% of the primary size.

Folding Interprocedural Cycles

When interprocedural cycles (i.e. cycles with parameter and call edges) are
folded, context-sensitive analyses like slicing and chopping cannot ensure the
interprocedurally realizable path property any longer. As presented in sec-
tions 7.4 and 10.2.6, the loss of context-sensitivity can cause high imprecision.
Because the amount of imprecision is not clear at first sight in this case, an-
other experiment has been conducted. Within the same setup 1000 slices are
computed again for every program. Now, the folding disregards the type of
nodes and edges and simply folds all nodes and edges of a strongly connected
region together. The results, shown in figure 11.4 on the next page, are catas-
trophic: The folded graph only contains 34% of the original nodes and only
24% of the edges, but the computed slices are extremely imprecise: On aver-
age, they have more than four times more nodes if the nodes are unfolded in
the resulting slices. In one case (bison) the resulting slices are more than eleven

162 Optimizing the PDG

Figure 11.3: Size reduction and effect on chopping

Figure 11.4: Size reduction and effect of context-insensitive folding

11.1 Reducing the Size 163

1 f(x,y) {
2 x = 2*y
3 y = y+1
4 }
5 g() {
6 a = 1
7 b = 2
8 f(a,b)
9 print a
10 }

Figure 11.5: Example for a SDG with redundant nodes

times larger! Because the slices are bigger, the time needed for slicing increases
instead. These results are backed up by section 10.2.6, where the catastrophic
effect of context-insensitivity has already been noted.

11.1.3 Removing Redundant Nodes

One obvious source of imprecision is the usage of GMOD and GREF sets for
computation of the nodes representing actual and formal parameters: Because
they are based on flow-insensitive computation, it is assumed that any vari-
able modified or referenced in a called procedure is live, i.e. a definition-free
path to a usage exists. This is a conservative approximation. It is also assumed
that a modified variable is always killed, i.e. no definition-free path through
the called procedure exists. This is not a conservative approximation, but if
a variable is not killed, a summary edge will be generated restoring the cor-
rectness. The opposite assumption that a definition-free path exists would add
inaccurate dependence edges, if, in fact, no such path exists.

An interprocedural flow-sensitive analysis could check if all paths through
a called procedure are either free of references to variable v or all usages of v

must happen after a definition of v (v is not live). If no other path exists, the
actual- and formal-in nodes for this variable can be omitted.

Example 11.2: Figure 11.5 shows such an SDG with redundant nodes. In this
example the called procedure f never uses but always defines the parameter
x and its formal-in node is redundant (together with the actual-in node for a).
Also, the value of b is not used and its actual-out node is redundant (b is not
live at the call site). Because this is the only call site of f, the formal-out node
for y is redundant, too (y is not live at the exit of the procedure).

164 Optimizing the PDG

If the redundant nodes are removed, slicing will be a little bit more precise:
Because of the redundant nodes, a forward slice from line 6 will include the call
in line 8. However, line 6 has no impact on the call and can safely be omitted
from the slice. The same slice on a graph without redundant nodes will not
include the call.

Two independent approaches [FG97] and [LC94b] are based on this insight
and presented solutions using flow-sensitive data flow analysis. The approach
of [FG97] uses live variables to compute only needed actual and formal nodes.
[LC94b] computes for every global and formal parameter if it is sometimes, al-
ways or never modified by a call to its function.

Flow-sensitive data flow analysis may be expensive. The following new
approach is based on the observation that it is possible to eliminate redundant
actual- and formal-in nodes after construction of the IPDG or SDG.

• A formal-in node n of a variable that is not live, i.e. always defined before
used on all paths through the procedure belonging to n, cannot have
an incident data dependence edge. It can be removed from the IPDG
including its adjacent actual-in nodes.

• An actual-out node n of a variable that is not live, i.e. always defined
before used on all paths to the EXIT node of the procedure belonging to n,
cannot have an incident data dependence edge. It can be removed from
the IPDG. If the adjacent formal-out node has no other adjacent actual-
out node, it can be removed, too.

During the removal of nodes the incident edges are removed, too. If a pro-
cedure p does not use or define a variable v directly, but only through calls
of other procedures, the IPDG will contain data dependence edges between
actual or formal nodes. If such edges are removed because an incident node
is removed, the adjacent node must be checked and may probably removed,
too. Algorithm 11.1 on page 166 is a worklist algorithm for this approach. The
worklist may contain actual or formal nodes, where the four variants are han-
dled differently:

1. A formal-in node can be removed, if it has no incident data dependence
edges (which must be outgoing) and therefore no other node is data de-
pendent on it. All incident actual-in nodes are also removed by inserting
them into the worklist.

2. A formal-out node can be removed, if it has no incident parameter-out
edges—all incident parameter-out edges have been removed at this time
due to removal of the adjacent actual-out nodes. If the incident data
dependence edges are coming from actual-out or formal-in nodes, such
nodes are inserted into the worklist, because the data dependence edge
may be the last or only incident data dependence edge.

3. An actual-out node can be removed, if it has no incident data depen-
dence edges (which must be outgoing) and therefore no other node is

11.1 Reducing the Size 165

data dependent on it. All incident formal-out nodes are inserted into the
worklist, because the connecting parameter edge may be the last or only
one.

4. An actual-in node can be removed, if it has no incident parameter-in
edges—all incident parameter-in edges have been removed at this time
due to removal of the adjacent formal-in nodes. If the incident data de-
pendence edges are coming from actual-out or formal-in nodes, such
nodes are inserted into the worklist, because the connecting data depen-
dence edge may be the last or only one.

Be aware that the handling of the actual-in and formal-out nodes is similar
enough to be merged, which is also possible for the handling of the actual-out
and formal-in nodes.

The evaluation of this algorithm has been done on fine- and coarse-grained
SDGs. Only the results for the fine-grained SDGs are shown, as the results
for coarse-grained SDGs are almost the same. The needed times are shown in
table 11.3 on page 167 and the amount of removed nodes and edges is shown
in figure 11.6 on page 167. The assessment basically shows:

• The time needed to remove the redundant nodes and edges is very small.
For the examples it is always sub-second.

• On average, 9% of the nodes and 13% of the edges are removed. This
shows that a significant amount of nodes and edges are redundant.

This approach can easily be modified so that the removal is done in linear time
O(|N|), if only nodes are added to the worklist when they have no incident
data dependence resp. parameter edges. In that case, each node is visited only
once.

The results cannot be compared to the similar approaches of [FG97, LC94b],
because these approaches have not been evaluated. However, the approach of
[LC94b] can neither identify nor remove redundant actual- or formal-in nodes
and will still generate them.

It should be noted that this new reduction of the IPDG size has no negative
influence on the precision of slicing. As a benefit, it has a slightly increased
precision because of omitted call statements. If this approach is extended to
traverse nodes that are normal statements, too, it can be used to detect redun-
dant statements. Such statements have no outgoing edges (no other statement
is dependent on them) and can be removed. In the example of figure 11.5 on
page 163, this would remove nodes 3 and 6 (the computations of a and y). This
only requires that nodes producing user-visible output are linked to special
output nodes (such nodes have already been suggested for other reasons in
[OO84]).

Because the presented approach is of linear complexity, we believe that it
is more efficient than expensive flow-sensitive and context-sensitive data flow
analysis for IPDG computation.

166 Optimizing the PDG

Algorithm 11.1 Removing Redundant Nodes

Input: An IPDG G = (N, E)
Output: A probably smaller IPDG G ′ = (N ′, E ′)

W = {n ∈ N | n is a formal-in or actual-out node}

while W is not empty do
W = W/{n}, remove one node n from W

if n is a formal-in node then
if n has no incident data dependence edges then

foreach parameter edge m ⇀ n ∈ E do
add all adjacent (actual-in) nodes to the worklist
W = W ∪ {m}

remove n

N = N/{n}

E = E/{e | e = n ⇀ x ∨ e = x ⇀ n}

if n is a formal-out node then
if n has no incident parameter edges then

foreach data dependence edge m ⇀ n ∈ E do
add all adjacent actual or formal nodes to the worklist
if m is an actual or formal node then

W = W ∪ {m}

remove n

N = N/{n}

E = E/{e | e = n ⇀ x ∨ e = x ⇀ n}

if n is a actual-out node then
if n has no incident data dependence edges then

foreach parameter edge m ⇀ n ∈ E do
add all adjacent (formal-out) nodes to the worklist
W = W ∪ {m}

remove n

N = N/{n}

E = E/{e | e = n ⇀ x ∨ e = x ⇀ n}

if n is a actual-in node then
if n has no incident parameter edges then

foreach data dependence edge m ⇀ n ∈ E do
add all adjacent actual or formal nodes to the worklist
if m is an actual or formal node then

W = W ∪ {m}

remove n

N = N/{n}

E = E/{e | e = n ⇀ x ∨ e = x ⇀ n}

return G, the reduced IPDG

11.1 Reducing the Size 167

Program time
agrep 0.03
ansitape 0.02
assembler 0.07
bison 0.06
cdecl 0.02
compiler 0.02
ctags 0.02
diff 0.30
flex 0.17
football 0.03
gnugo 0.01
loader 0.00
patch 0.09
plot2fig 0.01
rolo 0.19
simulator 0.01

Table 11.3: Evaluation

Figure 11.6: Size reduction (amount of nodes and edges removed)

168 Optimizing the PDG

11.2 Increasing Precision

As already been seen in section 11.1.3, the system dependence graphs contain
enough information to do analyses equivalent to intra- and interprocedural
flow- and context-sensitive data flow analysis. This information can be used to
revert the influence of imprecise data flow analysis used for construction of the
system dependence graph. Section 11.1.3 contains the first application, which
compensates the flow-insensitive interprocedural data flow analysis for GREF
and GMOD. The following sections will present more applications like improv-
ing the precision of call graphs, constant propagation and common subexpres-
sion elimination.

11.2.1 Improving Precision of Call Graphs

As presented in Section 14.1.3, the call graph in the VALSOFT system is com-
puted by a very imprecise solution: First, it is assumed that function variables
can only contain functions that have been used in an expression. Also, at call
sites that use function variables is assumed that all functions with matching
signatures can be called. This approach results in an imprecise call graph. In-
stead of using a more precise call graph construction approach, this section
will present the approach of removing calls that cannot be realized from the
program dependence graph.

This approach relies on a special feature of the program dependence graph:
If a procedure p can be called at a call site c, the function constant p must reach
c via a realizable path of data dependence and parameter edges. This leads to
a straightforward technique, where for any call edge c ⇀ p is checked that p

is used as a function constant in a backward data slice SD(c). A data slice is a
slice that ignores control dependence and call edges, traversing only data de-
pendence and parameter edges. If the function constant p is not used in SD(c),
the call c ⇀ p can safely be removed from the program dependence graph to-
gether with its parameter edges. The algorithm 11.2 repeats this removal until
a (maximal) fixed point is reached.

Algorithm 11.2 Removing Unrealizable Calls

Input: G = (N, E) the given IPDG
Output: G ′ = (N, E ′) the IPDG with unrealizable calls removed

repeat
foreach call edge c ⇀ p do

if ∃n ∈ SD(c) : n uses function constant p then
Remove c ⇀ p and all corresponding parameter edges from E

until no more edges are removable
return G ′ = (N, E)

11.2 Increasing Precision 169

This algorithm has four weak spots:

1. The computed call graph includes calls from dead procedures (proce-
dures that are never called). This can easily be fixed by removing dead
code first2.

2. If the data slice SD is computed within the system dependence graph
using summary edges, the summary edges must be computed differently
to ignore control dependence edges. Otherwise a small imprecision of SD

would be caused.

3. With real world but flawed C programs, the algorithm may encounter a
procedure p used as function constant in a node reaching a call site c

which does not call p. In these situations, the procedure p has a signature
that does not match the signature of the call at c and the approximation
of the call graph will not record that p may be called at c. Figure 11.7 on
the following page shows such an example: Despite that procedure f
has a signature that does not match the signature of p1, the assignments
circumvent the type rules leading to an illegal call of f with too few ar-
guments.

Such situations are considered flawed programs and are reported to the
user, who has the obligation to fix the program.

4. The IPDG may contain invalid dependence edges because the pointer
analysis which is needed to compute the data dependences has used the
inaccurate call graph.

An evaluation has showed that the approach to first compute a simple ap-
proximation of the call graph and improving it on demand within the program
dependence graph is sensible. In typical C programs, function variables are
rarely used and if they are used, the signatures are distinct. In the presented
set of test cases, only two test cases had imprecise call graphs that could be
improved with algorithm 11.2 on the preceding page.

11.2.2 Constant Propagation

The goal of constant propagation is to find all variable accesses of a program
where the variable always has the same (constant) value. If a compiler can
identify such variable accesses, it can replace the variable by the constant. If
the constants are propagated through the program, it may be possible that
more variable accesses will be constant. It may even be possible to eliminate
branches of an if-statement if the predicate is constant. Constant propagation
can also be used in program dependence graphs to replace variable accesses by
constants, eliminate data dependence edges or eliminate complete branches
of if-statements. Binkley [Bin94] has presented such an approach, based on

2Dead code removal increases the precision of backward slicing, because dead code may reach
the criterion but actually cannot influence the criterion.

170 Optimizing the PDG

void f (int x, int y) {
...

}

void main (void) {
void (*p0)();
void (*p1)(int);
p0 = f;
p1 = p0;
p1(1);

}

Figure 11.7: A flawed C program

Selke’s graph rewriting semantics for program dependence graphs [Sel89]. The
idea is to find all nodes containing constant values. The constant value is then
propagated along the outgoing data dependence edges. A variable usage in a
node may be replaced by a constant if all incoming data dependence edges
propagate the same constant value. The replacement will eventually make
more nodes constant and the propagation and replacement is repeated until
no more constants are found. If a predicate of an if-statement is found to be
constant, the statement is replaced by the statements of one branch. Loops
are unrolled if such a transformation makes the predicate constant for some
iterations.

Binkley has used this approach to find constants and enable a compiler to
use that information. For the analysis system underlying this thesis his ap-
proach has been implemented to make the program dependence graph smaller
by eliminating nodes.

11.2.3 Common Subexpression Elimination

Common subexpression elimination is another compiler optimization technique.
It is basically used to identify situations where a computation is repeated. The
second computation is not needed because the result of the first can be reused
(if it is stored temporarily). The elimination inserts assignments that save the
result of the first computation and replaces the second computation by the tem-
porary variable.

Example 11.3: The following example shows how a code fragment is optimized:

...
a = b + c + d;
e = b + c + q;
...

is transformed to

11.2 Increasing Precision 171

...
t = b + c;
a = t + d;
e = t + q;
...

Data flow analysis is needed to identify common subexpressions, because
the used variables are not allowed to change between the execution of the first
and second subexpression.

Example 11.4: The following code cannot be transformed because variable c
might change in between:

...
a = b + c + d;
if (...)
c = x;

e = b + c + q;
...

Common subexpression elimination can also be used to compute smaller
program dependence graphs. One way is to employ common subexpressions
during data flow analysis and compute the program dependence graph based
on the optimized code. However, it is also possible to compute the fine-grained
program dependence graph as before and do common subexpression elimina-
tion directly in the graph: The fine-grained structure enables the identification
of subexpressions with the same composition (except of commutative opera-
tions) and the data dependence edges can be used to ensure that both subex-
pressions compute a common subexpression.

Definition 11.1 (Common Subexpressions in the PDG)
Two subexpressions in a PDG are common subexpressions, iff

1. The subgraphs consisting of nodes and value and expression dependence
edges are isomorphic.

2. The composition is the same except for commutativity.

3. The incoming data dependence edges for equivalent nodes are coming
from the same nodes.

This definition ensures that the subgraphs are common subexpressions and the
requirement for the data dependence edges ensures that one subexpression can
be eliminated without changing the result.

The elimination is straightforward, because no temporary variables are needed.
Common subexpressions always form a subgraph with one incoming expres-
sion dependence edge, one outgoing value dependence edge and the set of
incoming data dependence edges. One of the subexpressions can be elimi-
nated by first rerouting the value and expression dependence edge to the other
subexpression and removing the nodes as well as the incoming data depen-
dence edges.

172 Optimizing the PDG

main/0
entry
2

compound
3

(declaration_list)
compound
4

a/1
declaration
5

b/1
declaration
6

c/1
declaration
7

d/1
declaration
8

q/1
declaration
9

(stat_list)
compound
10

assign
11

+
binary
12

q/1
reference
13

+
binary
14

b/1
reference
15

c/1
reference
16

a/1
reference
17

assign
18

+
binary
19

d/1
reference
20

+
binary
21

b/1
reference
22

c/1
reference
23

c/1
reference
24

Figure 11.8: PDG before common subexpression elimination

Example 11.5: Figure 11.8 shows a fragment of a PDG before common subex-
pression elimination (the PDG corresponds to the earlier example). The sub-
tree consisting of nodes 14, 15 and 16 is isomorphic to the subtree consisting of
nodes 21, 22 and 23. Because the incoming data dependence edges are coming
from the same nodes (not shown), one of the subtrees can be eliminated. Fig-
ure 11.9 on the next page shows the modified PDG. The second subexpression
is connected to node 19 and the connecting value and expression dependence
edges have been rerouted to the first subexpression at node 14. The nodes 21,
22 and 23 of the second subexpression have been eliminated together with in-
cident edges.

Of course, program dependence graphs where common subexpressions
have been eliminated have no higher precision, only a decreased size. For
slicing, a slight unpleasantness is caused: If a slicing criterion which includes
a node from a common subexpression is chosen, all equivalent nodes in the
other subexpressions will also be included into the criterion.

11.3 Related Work

[FG97] also eliminates redundant nodes for actual and formal parameters us-
ing interprocedural data flow analysis instead of GMOD and GREF. Another
similar approach is [LC94b], which computes may-modify, must-modify and
kill sets at call sites.

In [HHD+01] a theory to merge nodes of control flow graphs is presented:
a node coarsening calculi.

The presented folding of cycles is not restricted to dependence graphs and
slicing. Cycle elimination is a very general optimization, for example, it is

11.3 Related Work 173

main/0
entry
2

compound
3

(declaration_list)
compound
4

a/1
declaration
5

b/1
declaration
6

c/1
declaration
7

d/1
declaration
8

q/1
declaration
9

(stat_list)
compound
10

assign
11

+
binary
12

q/1
reference
13

+
binary
14

b/1
reference
15

c/1
reference
16

a/1
reference
17

assign
18

+
binary
19

d/1
reference
20

c/1
reference
24

Figure 11.9: PDG after common subexpression elimination

essential for fast pointer analysis [FFSA98, RC00, HT01]. It is applicable to all
graph based reachability problems. Even for context-free language reachability
problems [Rep98, RHS95], where (not necessarily procedure based) context-
sensitive analyses are done, the folding technique can reduce the size of the
graphs.

The presented removal of unrealizable calls in dependence graphs is sim-
ilar to Lakhotia’s approach [Lak93] to construct call graphs from dependence
graphs. He uses the (incomplete) system dependence graph to propagate func-
tion constants to call sites where function variables are used. If a function
constant reaches such a call site, a call to the function is inserted there. How-
ever, Lakhotia’s approach cannot be used for programs with global variables or
pointers (unlike the approach in section 11.2.1). Besides using the dependence
graphs for constant propagation [Bin94] or call graph construction [Lak93],
Bodik and Gupta [BG97] presented partial dead code elimination with depen-
dence graphs and slicing.

The applications of the system dependence graphs in this chapter to do
analyses equivalent to data flow analyses are similar to program analysis via
context-free language reachability [Rep98, RHS95], which bases the analysis on
reachability problems in (interprocedural) graphs.

174 Optimizing the PDG

Chapter 12

Identifying Similar Code

Duplicated code is common in all kinds of software systems. Although cut-
copy-paste (-and-adapt) techniques are considered bad practice, every pro-
grammer uses them once in a while. Code duplication is easy and cheap during
software development, but it makes software maintenance more complicated:

• Errors may have been duplicated together with the duplicated code.

• Modifications of the original code often must also be applied to the du-
plicated code.

Especially for software renovation projects, it is desirable to detect duplicated
code; a number of approaches have been developed [KH01, DRD99, BYM+98,
Kon97, MLM96]. These approaches are graph-based [KH01], text-based (and
language independent) [DRD99], syntax-based [BYM+98] or based on metrics
(syntax- and/or text-based) [Kon97, MLM96]. Some approaches can only de-
tect (textual or structural) identical duplicates, which are not typical in soft-
ware systems as most duplicates are adapted to the environment where they
are used.

In Figure 12.1 on the following page two similar pieces of code in main.c
from the agrep program are shown that have been detected as duplicates by
our prototype tool. Assuming that the left part is the original and the right part
is the duplicate, some typical modifications in the duplicate can be identified:

1. Parts of the code will be executed under different circumstances (lines
742 and 743 have been moved into an if statement in lines 473-476).

2. Variables and/or expressions are changed (lines 743/478, 747/483, . . .).

3. Parts of the code are inserted or deleted (“lasti = i-1” in line 758).

4. Code is moved to different locations (“j++” in line 481/748).

Modifications disturb the structure of the code and duplicated code is more
complicated to identify. This causes a trade-off between precision (amount

176 Identifying Similar Code

740 if(c != Newline)

741 {

742 r1 = Init1 & r3;

743 r2 = (Next[r3] & CMask) | r1;

744 }

745 else {

746 r1 = Init1 & r3;

747 r2 = Next[r3] & CMask | r1;

748 j++;

749 if(TAIL) r2 = Next[r2] | r2 ;

750 if((r2 & 1) ^ INVERSE) {

751 if(FILENAMEONLY) {

752 num_of_matched++;

753 printf("%s\n", CurrentFileName);

754 return;

755 }

756 r_output(buffer, i-1, end, j);

757 }

758 lasti = i - 1;

759 r3 = Init0;

760 r2 = (Next[r3] & CMask) | Init0;

761 }

762 c = buffer[i++];

763 CMask = RMask[c];

...

472 if(c != Newline)

473 { if(CMask != 0) {

474 r1 = Init1 & r3;

475 r2 = ((Next[r3>>hh] | Next1[r3&LL]) & CMask) | r1;

476 }

477 else {

478 r2 = r3 & Init1;

479 }

480 }

481 else { j++;

482 r1 = Init1 & r3;

483 r2 = ((Next[r3>>hh] | Next1[r3&LL]) & CMask) | r1;

484 if(TAIL) r2 = (Next[r2>>hh] | Next1[r2&LL]) | r2;

485 if((r2 & 1) ^ INVERSE) {

486 if(FILENAMEONLY) {

487 num_of_matched++;

488 printf("%s\n", CurrentFileName);

489 return;

490 }

491 r_output(buffer, i-1, end, j);

492 }

493 r3 = Init0;

494 r2 = (Next[r3>>hh] | Next1[r3&LL]) & CMask | Init0;

495

496 }

497 c = buffer[i++];

498 CMask = Mask[c];

...

Figure 12.1: Two similar pieces of code from agrep

12.1 Identification of Similar Subgraphs 177

of false positives) and recall (amount of undiscovered duplicates) in text- or
structure-based detection methods. To also detect non-identical but similar
duplicates (increased recall), the methods have to ignore certain properties.
However, this may lead to false positives (reduced precision). This trade-off
has been studied in [Kon97]. Some of the approaches suffer the split duplicates
symptom: A simple modification in a duplicate causes a detection of two in-
dependent duplicates: one duplicate for the code before the modifications and
one after it. If the unchanged parts are too small, the duplicate cannot be iden-
tified.

The following approach is not affected by the trade-off between recall and
precision and modified duplicates can still be detected. Such an approach can-
not just be based on text or syntax but has to consider semantics, too. The
presented approach is based on the fine-grained program dependence graphs,
which represent the structure of a program and the data flow within it. In these
graphs, we try to identify similar subgraph structures which stem from dupli-
cated code. Identified similar subgraphs can be mapped back directly onto the
program code and presented to the user.

The benefit of fine-grained program dependence graphs is the structural
representation of expressions and the richness of the attributes that ease the
identification of similar or identical nodes and edges. This is presented next,
including a prototype implementation together with an evaluation, showing
that this approach is feasible even with the non-polynomial complexity of the
problem.

12.1 Identification of Similar Subgraphs

Program dependence graphs are attributed directed graphs, where the node at-
tributes are the class, the operator and the value of the nodes and the edge
attributes are the class and the label of the edges.

An attributed directed graph is a 4-tuple G = (N, E, µ, ν) where N is the set
of nodes, E ⊆ N×N is the set of edges, µ : N → AN maps nodes to the node
attributes and ν : E → AE maps edges to the edge attributes. Let ∆ : E →
AN ×AE ×AN be the mapping ∆(n1, n2) = (µ(n1), ν(n1, n2), µ(n2)).

Definition 12.1 (Node-Edge-Path)
A node-edge-path is a finite sequence n0, e1, n1, e2, n2, . . . , el, nl of edges and
nodes where ei = (ni−1, ni) for all 1 6 i 6 l. A k-limited node-edge-path is
a path n0, e1, n1, e2, . . . , el, nl with l 6 k.

Different to normal paths, node-edge-paths contain both visited edges and
nodes.

Two attributed directed graphs G1 = (N1, E1, µ1, ν1) and G2 = (N2, E2, µ2, ν2)
are isomorphic, if a bijective mapping φ : N1 → N2 exists with:

(ni, nj) ∈ E1 ⇐⇒ (φ(ni), φ(nj)) ∈ E2,
∆1(ni, nj) = ∆2(φ(ni), φ(nj))

178 Identifying Similar Code

1 2

3

4

5

6

7

10

11

12

14

15

16
17

13

8

A

A

B

B

B

C

D

E A

E

A

A

C

B

B

B
C

D

E

F

F

C

Figure 12.2: Two simple graphs

This means that two graphs are isomorphic iff every edge is matched bijec-
tively to an edge in the other graph and the attributes of the edges and incident
nodes are the same. The question whether two given graphs are isomorphic is NP-
complete in general.

Example 12.1: In Figure 12.2 two simple attributed graphs are shown, where
the edge labels represent the complete attribute-tuple of the node and edge
attributes. There is no single pair of maximal isomorphic subgraphs, at least
three exist with six nodes each:

φ1 :

1 ↔ 10
4 ↔ 11
3 ↔ 12
7 ↔ 13
5 ↔ 15
6 ↔ 16

φ2 :

1 ↔ 10
2 ↔ 11
4 ↔ 12
8 ↔ 13
5 ↔ 14
7 ↔ 17

φ3 :

1 ↔ 10
2 ↔ 11
3 ↔ 12
8 ↔ 13
5 ↔ 14
6 ↔ 15

12.1 Identification of Similar Subgraphs 179

For the current purpose it is more interesting to look at similar subgraphs
which do not have to be isomorphic. Defining something to be similar is al-
ways tricky, as similarity is nothing precise but something vague. Neverthe-
less, similarity between graphs is defined by relaxing the mapping between
edges:

Definition 12.2 (Matching Paths)
A node-edge-path n0, e1, n1, e2, . . . , ek, nk is matching another node-edge-path
n ′

0, e ′1, n ′
1, e ′2, . . . , e ′k, n ′

k, if the sequence of node and edge attributes are identi-
cal:

∀1 6 i 6 k : ∆(ei) = ∆ ′(e ′i)

Definition 12.3 (Similar Graphs)
Two graphs G and G ′ are considered to be similar graphs if for every path
n0, e1, n1, e2, . . . , ek, nk in one graph a matching path n ′

0, e ′1, n ′
1, e ′2, . . . , e ′k, n ′

k
exits in the other graph. Additionally, all paths have to start at a single node n

in G and at n ′ in G ′ (n0 = n, n ′
0 = n ′ for all such paths).

A naive approach to identify the maximal similar subgraphs would now
calculate all (cycle free) paths starting at n and n ′ and would do a pairwise
comparison afterwards. Of course, this is infeasible and even if the paths are
length limited, the maximal length would be unusable small.

Our approach constructs the maximal similar subgraphs by induction from
the starting nodes n and n ′ and matching length limited paths. What makes
this approach feasible is that it considers all possible matchings at once. In
many cases, an edge under consideration can be matched to more than one
other edge. Instead of checking every possible pair, the algorithm checks the
complete set of matching edges.

Example 12.2: This approach can be seen best at the example in figure 12.2 on
the facing page:

1. The algorithm starts with n = 1 and n ′ = 10. These nodes are considered
the endpoints of matching paths of the length zero.

2. Now, the matching paths are extended: The incident edges are parti-
tioned into equivalence classes based on the attributes. There is only one
pair of equivalence classes that share the same attributes in both graphs:
{(1, 2), (1, 3), (1, 4)}A and {(10, 11), (10, 12)}A.

3. The reached nodes are now marked as being part of the maximal similar
subgraphs and the algorithm continues with the sets of reached nodes
{2, 3, 4} and {11, 12}.

4. Again the incident edges are partitioned into the first pair of edge sets
{(2, 5), (3, 5), (3, 6)}B and {(11, 14), (12, 15), (12, 16)}B and the second pair
{(4, 7), (2, 8)}C and {(11, 13), (12, 17)}C. The algorithm continues recur-
sively for both pairs.

180 Identifying Similar Code

5. The reached nodes {5, 6} and {14, 15, 16} are marked as parts of the maxi-
mal similar subgraphs. No edges are leaving these nodes.

6. The other set pair of reached nodes {7, 8} and {13, 17} are marked. No
edges leave these nodes.

7. As no more set pairs exist, the algorithm terminates.

In the end, the algorithm has marked the set {1, 2, 3, 4, 5, 6, 7, 8} together with
{10, 11, 12, 13, 14, 15, 16, 17} which induce the maximal similar subgraphs. By
accident, this is identical to the union of all maximal isomorphic subgraphs. In
general, it will only be similar to maximal isomorphic subgraphs.

A simplified version of the algorithm is shown in Figure 12.1. It calcu-
lates the maximal similar subgraphs G1 and G2 which are induced by k-limited
paths starting at the nodes n1 in G1 and n2 in G2. We call these graphs maximal
similar k-limited path induced subgraphs Gk

n1
and Gk

n2
.

Algorithm 12.1 Generate Gk
n1

and Gk
n2

Input: An attributed directed graph G = (N, E, µ, ν)
Start nodes n1 ∈ N and n2 ∈ N

Maximal path length k

Output: Similar subgraphs Gk
n1

and Gk
n2

proc propagate(N1, N2, l):
N1 ⊂ N and N2 ⊂ N are the endpoints of similar paths
if l 6 k then

Let E1 and E2 be the edges leaving the nodes of N1 and N2
Partition E1 and E2 into equivalence classes Ei

1 and Ei
2 based on ∆

foreach Ei
1 with their corresponding Ei

2 do
Add edges from Ei

1 and Ei
2 to Gk

n1
and Gk

n2
Let Ni

1 and Ni
2 be the nodes reached by the edges in Ei

1 and Ei
2

Call propagate(Ni
1, Ni

2, l + 1)

Initialize Gn1 and Gn2 to be empty
Call propagate({n1}, {n2}, 1)

return Gk
n1

and Gk
n2

as result

Before maximal similar k-limited path induced subgraphs Gk
n and Gk

n ′ can
be found, the possible pairs (n, n ′) have to be detected. A naive approach
would check all pairs N×N, leading to a complexity of O(|N|2) (independent
of the complexity of the subgraphs’ generation themselves). Even with smarter
approaches, this complexity cannot be reduced. Therefore, only a subset of N

should be considered as “starting” nodes, as most other nodes are reached dur-
ing the construction of the maximal subgraphs. This subset should be based on
specific features of the nodes which are highly application specific.

12.2 Implementation 181

12.2 Implementation

To find similar code based on identifying maximal similar subgraphs in fine-
grained PDGs, the subset of the nodes has to be identified that are used in the
pairwise construction of the subgraphs. The chosen nodes are entry and pred-
icate nodes: Starting at entry nodes the algorithm will identify similar proce-
dures. Starting at predicate nodes it finds similar code fragments independent
of procedures. For every pair of predicate or entry nodes (n1, n2) the maxi-
mal similar Gk

n1
and Gk

n2
are generated. The generation is basically a recursive

implementation of the induction from algorithm 12.1 on the facing page.

12.2.1 Weighted Subgraphs

Taking the subgraphs as direct result, they just represent structural similarity
which can also be achieved via less expensive techniques like [BYM+98]. The
subgraphs can be large even if they do not have a similar semantic. The reason
is that the data dependence edges may not match and the subgraphs are mainly
induced by control dependence edges. For example, two nodes A and B may
be included in the subgraph because they are reached by control dependence
edges which match in the similar subgraph. It is possible that a data depen-
dence edge from A to B is not included in the subgraph, because there is no
matching edge in the similar subgraph. Only if the data dependence edges are
considered special it is guaranteed that the subgraphs have a similar semantic.

Therefore the constructed subgraphs have to be weighted. A simple crite-
rion is just the number of data dependence edges in the subgraphs. As our
evaluation in the next section shows, this criterion is good enough. However,
other, more sophisticated criteria are possible like the percentage of data de-
pendence edges or the amount and length of paths induced by data, value and
reference dependence edges.

Another possibility would be to reduce the constructed subgraphs, which
are edge induced, to a connected node induced component. In that case no
pair of nodes exists that is connected by an edge not included in the subgraph.

12.2.2 Visualization

To visualize the detected fragments of similar code, a tool has been imple-
mented that shows the fragments as HTML files to be presented in any browser:
For any pair of identified similar subgraphs, the nodes are projected onto ranges
in the source code (see section 9.2). The identified ranges are then highlighted
in the source code of the enclosing procedures.

Example 12.3: Figure 12.3 on the next page shows the visualization for the agrep
program: To the left a list of identified pairs of similar code is presented. If one
of that entries is selected, the similar fragments of that pair is shown in the
upper and lower window.

182 Identifying Similar Code

Figure 12.3: Visualization of similar code fragments

12.3 Evaluation 183

Project LOC Edges Nodes
agrep 3968 69032 22588
bison 8303 79030 28071
cdecl 3879 40578 12939
compiler 2402 99219 16497
ctags 2933 45249 12446
diff 17485 169508 43518
fft 3242 35701 16446
flex 7640 124730 37073
football 2261 63833 18718
larn 10410 817432 158077
patch 7998 196106 29766
rolo 5717 50816 17438
simulator 4476 34939 14438
spim 19739 1338294 122819
twmc 24950 1605532 181281

Table 12.1: Some test cases

12.3 Evaluation

As any other k-limited technique, the presented work had to be ‘tuned’ to find
an appropriate value for k. Therefore, a set of test programs stemming from dif-
ferent sources was checked for duplicated code. Early evaluations showed that
points-to information has a small negative influence on the precision of identi-
fied subgraphs. Because the used points-to information is flow-insensitive, it
normally just adds data dependence edges. This enables more possible simi-
lar paths in a subgraph and therefore larger similar subgraphs. The test cases
shown in Table 12.1 are all PDGs generated without points-to information. The
size of the programs are given in terms of lines of code and the number of
nodes and edges in the PDG.

The running times can be seen for some examples in Table 12.2 on the next
page. For different limits between k = 10 and k = 50 the running times are
given (measured in seconds of user time spent). Some plots, showing the run-
ning times in more detail for different k, will follow; more plots can be found in
the Appendix. A direct relation between the size of a program and the running
time does not exist as the running time is mostly dependent on the size and the
amount of similar subgraphs within a program. However, due to the pairwise
comparison a quadratic complexity is expected.

Table 12.3 on the following page shows the amount of discovered dupli-
cates with a minimum weight of 10, 20 and 50. The limit used was k = 20 and
only minimal differences exist for larger k (except for twmc). Again, some plots
will follow, showing the amount of discovered duplicates in more detail—
completed by more plots in the Appendix.

184 Identifying Similar Code

Project Time f. limit k (sec)
k=10 k=20 k=30 k=40 k=50 k=100

agrep 26.4 207.9 1465 7150 38848 -
bison 8.9 47.4 249.2 714.5 920.3 921.6
cdecl 0.6 0.6 0.6 0.6 0.6 0.6
compiler 226.8 237.6 237.6 237.6 237.6 237.6
ctags 0.6 0.8 0.8 0.8 0.8 0.8
diff 2.5 9.1 32.0 61.4 63.6 63.6
fft 6.0 53.4 297.2 892.9 1292 1296
flex 3.3 3.8 4.2 4.3 4.3 4.3
football 30.3 49.9 54.7 54.7 54.7 54.7
larn 271.4 4242 5878 5905 5867 5876
patch 6.3 7.5 8.6 9.2 9.3 9.2
rolo 0.7 0.7 0.7 0.7 0.7 0.7
simulator 1.4 2.4 2.6 2.6 2.6 2.6
spim 525.9 703.5 798.5 809.1 809.1 807.2
twmc 918.4 24263 - - - -

Table 12.2: Running times

Project Duplicates
>10 >20 >50

agrep 155 91 12
bison 34 22 0
cdecl 0 0 0
compiler 94 67 51
ctags 0 0 0
diff 40 10 0
fft 16 14 8
flex 16 0 0
football 50 2 0
larn 91 53 6
patch 2 0 0
rolo 0 0 0
simulator 0 0 0
spim 30 16 0
twmc 1383 992 639

Table 12.3: Sizes

12.3 Evaluation 185

bison

 100
 50

0 5 10 15 20 25 30 35 40 45
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140

duplicates found
with min. weight

Figure 12.4: Results for bison

12.3.1 Optimal Limit

To ensure highest possible recall, a very high k-limit is desirable. However,
this is not possible due to the exponential complexity of the graph comparison
(e.g. test case twmc did not finish within the limit of 50 hours for k larger than
25). Now, the claim is that a small k is sufficient and that a limit above this
value will not increase recall. It was found to be true for almost any test case.
A typical case is bison, for which the results are shown in Figure 12.4. All
test cases were repeated for limits 0 6 k 6 30 (y-axis). Also shown is how
many duplicates (z-axis) are reported being above a specific minimum weight
(y-axis). As it can be seen, for very small k (< 5 − 10) almost no duplicates
are reported. For larger (but still small) k (< 15 − 20) the amount of reported
duplicates is increasing fast, for larger k (> 20) it is not changing any more.
This has been found to be the same for almost any other test case—a k-limit
around 20 seems to be sufficient for highest recall.

Because the running times are exalting for large k, the presented algorithm
is a good candidate for an any-time algorithm. Any-time algorithms can be in-
terrupted at any time and still give usable results. The longer the algorithm
runs, the better results it produces. An any-time version of the presented algo-
rithm would use iterative-deepening [Kor85], because a breadth-first version
produces exponentially growing temporary data that cannot be stored. The
iterative-deepening version starts from a small k and analyzes the complete
program very fast with that small k; the results are stored. Then, the process
is redone with an increased k (e.g. k ′ = k + 1). If the process is not inter-
rupted, the results replace the last stored results. This repeats until the process

186 Identifying Similar Code

is interrupted or a maximal k is reached, then the stored results for the last k

are returned. As long as the running times increase exponentially for larger k

(which is the case for many analyzed programs, see the Appendix), the repeti-
tion of computations for small k has only a small effect on running times.

12.3.2 Minimum Weight

The other “tunable” parameter in the presented technique is the minimum
weight that a similar subgraph must have to be reported. This value is not
critical like the k-limit, as it does not influence the comparison itself. Usu-
ally, all possible duplicates are identified independent of their weights and the
minimum weight just changes the amount of reported duplicates. The bison
test case is an ideal example: for small minimum weights, many duplicates
are reported. For larger minimum weights this changes quickly, which shows
that the majority of duplicates are small pieces of code. For minimum weights
between 10 and 40, around 40 duplicates are reported. For minimum weights
above 45, no duplicates are reported, which shows that the maximum weight
of all duplicates is less than 45.

It has been discovered that there is no “ideal” minimum weight as every
test case has different amounts of reported duplicates with varying minimum
weights. This is not unexpected, as duplication is different in every program.
Different from k, the minimum weight can be tuned after the identification has
finished, during presentation to the user.

12.3.3 Running Time

Figure 12.5 on the facing page shows the times for the bison example, which
are increasing exponentially for large k. It was claimed that a k-limit around
20 is optimal for recall: 47 seconds are needed to analyze bison under this
limit. For some test cases an interesting behavior has been found—the running
time does not increase exponentially but reverse logarithmic for increased k.
This is shown in Figure 12.6 on the next page for the test case compiler. In
figure 12.7 on page 188 it can also be seen that for k-limits larger than ten the
amount of reported duplicates stays the same (50 duplicates with a weight
larger than 50). This means that there are no similar paths longer than 10 edges
in that software and the limit is not reached for larger k-limits. The result is
that the time needed to calculate the similar graphs is independent of k for
k > 10. Thus, the overall needed time is not changing above that. The same
behavior can be seen for most of the test cases in Figure 12.2 on page 184: Only
two of the test cases have differences in running time for the limits k = 50
and k = 100. For all others, even the amount of reported duplicates does not
change for k > 20 (not shown).

One of the test cases (see figure 12.8 on page 188) was different from all
the others: First of all, k-limits larger than 25 could not be tested because the
running time was already at 46 hours. Also, the amount of reported duplicates
was incredibly high: more than 500 with a weight larger than 50 and more

12.3 Evaluation 187

1

10

100

1000

0 5 10 15 20 25 30

tim
e

se
c

limit k

bison

Figure 12.5: Running times of bison

1

10

100

1000

0 5 10 15 20 25 30

tim
e

se
c

limit k

compiler

Figure 12.6: Running times of compiler

188 Identifying Similar Code

compiler

 150
 100
 50

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140
160
180

duplicates found
with min. weight

Figure 12.7: Results for compiler

twmc

 2000
 1500
 1000
 500

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25

limit k

0
500

1000
1500
2000
2500

duplicates found
with min. weight

Figure 12.8: Results for twmc

12.4 Comparison with other Tools 189

Tool Technique
B. Baker Dup lexical [Bak95]
I. Baxter CloneDR structural [BYM+98]
T. Kamiya CCFinder lexical [KKI02]
J. Krinke Duplix dependence
E. Merlo CLAN metric [MLM96]
M. Rieger Duploc lexical [DRD99]

Table 12.4: Participants

than 1000 with a weight larger than 20. These extremely high numbers stem
from massive code duplication in that particular software: It contains a high
amount of files, which just have been copied and changed a bit for slightly
different purposes.

12.4 Comparison with other Tools

The presented approach has participated in a comparison study done by Bellon
[Bel02]. The participants of this study are shown in table 12.4.

The reported duplicates (or clones) where categorized in identical, parameter-
ized and modified clones. Each category has been compared individually for the
six tools. The study showed:

• This technique (despite the mentioned recall problems) was best in de-
tecting modified clones of which many were not discovered by any other
technique. The results for the test case “cook” are shown in figure 12.9 on
the following page: Our tool had a recall of 56% for modified clones—
well above the recall for any other tool in that category.

• Our technique is slower than all others (which was expected because of
the high complexity).

• This technique had worse precision than the others for identical and pa-
rameterized duplicates. This was also expected because of a very re-
stricted definition of a clone: It had to be a continuous source code range.
As this technique focuses on detection of similar code, it may report frag-
mented and distributed code. A projection onto a continuous source code
range usually results in a large fragment that is not considered as a (pre-
cise) clone.

• This technique had worse recall than the others for identical and param-
eterized duplicates—which was unexpected. However, a closer examina-
tion revealed the following reasons:

– To speed-up computation, a pair of clones was not allowed to be in
the same procedure (the reference test data contains such clones).

190 Identifying Similar Code

Figure 12.9: Results for test case cook

– Due to k-limiting, reported clones may be smaller than they actually
are (the reference test data contains huge clones).

– The used implementation had a ‘bug’: entry nodes were not used
as starting nodes. Therefore a lot of small cloned functions have not
been identified.

This experience is shared with the other tools that are not based on lex-
ical comparison: Our tool has a recall of 17%, Baxter’s structure based
tool also has 17% and Merlo’s metric based tool has a recall of 12% only.
The tools with higher recall numbers all use a similar approach based on
lexical comparison.

Another interesting observation was that often similar code has not been
cloned (or duplicated), because programs frequently contain repeating pat-
terns of accesses to data structures.

12.5 Related Work

A very similar approach is [KH01], based on (traditional) program dependence
graphs. Starting from every pair of matching nodes, they construct isomorphic
subgraphs for ideal clones that can be replaced by function calls automatically.
Different from the presented approach, their subgraphs are only subtrees that
are not maximal, as they visit every node only once during subgraph construc-
tion. They cannot analyze big programs due to limitations of the underlying
PDG generating infrastructure, too.

12.5 Related Work 191

Another structure-comparing work is [BYM+98], where a program under
observation is transformed to an AST first. For every subtree in the AST a
hash value is computed and identical subtrees are identified via identical hash
values. To also detect similar (not identical) subtrees, the subtrees have to be
compared pairwise. The authors suggest improvements as future work that
are similar to our approach.

An approach that obeys but that does not compare syntactical structure is
[MLM96], where metrics are calculated from names, layout, expression and
(simple) control flow of functions. Two functions are considered to be clones if
their metrics are similar. This work can only identify similar functions but not
similar pieces of code. A language-independent approach is [DRD99], which
looks for specific patterns in a comparison of every line to each other. Other
text-based approaches are [Bak95, KKI02]. These approaches can be used to
analyze very large programs as they are not relying on pairwise comparison.

An application in the same setting is the detection of plagiarism: Given two
programs, one has to detect whether one program is duplicated partly or com-
pletely in the other. Most plagiarism detecting systems are comparing the lex-
ical structure of the programs [PMP00, Wis92]. Other systems are based on
metrics again; however, studies show that metric-based systems are only partly
successful because of the trade-off between recall and precision, both for detec-
tion of plagiarism [VW96] and detection of similar code [Kon97].

The opposite problem to identifying similar or identical parts of programs
is identifying the differences between programs. [HPR89, HR92] is an ap-
proach to identify program differences based on program dependence graphs.
However, that approach relies on the existence of a mapping φ that maps every
node of one program to a node of the other if the representing program compo-
nents are the same in both programs. The authors suggest a special program
editor that keeps such a mapping. Instead, it can be found by the presented
approach.

The matching of similar (attributed) graphs is used in other areas like com-
puter vision [KO90] and graph visualization [Bac00], too.

The presented definition of similar paths and graphs have equivalences in
process algebra [vG01] if the graphs are seen as process graphs where the tran-
sitions (s, a, t) are defined by the mapping ∆: (s, ∆(s, t), t). However, in its
present state the presented algorithm does not even preserve trace equivalence.
Future algorithms could be made more precise by only identifying trace equiv-
alent nodes (or requiring even stronger equivalence classes).

192 Identifying Similar Code

Chapter 13

Path Conditions

Slicing can answer the question which statements have an influence on statement
X?, chopping can answer the question how does statement Y influence statement
X?, but neither slicing nor chopping can answer the question why statement Y
influences statement X.

Example 13.1: Consider Figure 13.1 on the next page for an example: First, the
question which statements influence the output of variable y in line 8 is simply an-
swered by computing a slice for this criterion. Figure 13.2 on the following
page shows the result: Just one statement or node does not influence the cri-
terion. Now, why is statement 1 included in the slice and how does statement
1 influence statement 8? This can be answered by a chop between statement 1
and statement 8. However, the result is a chop identical to the previous slice—
which does not help at all.

Here, the computation of path conditions can assist. Path conditions give neces-
sary conditions under which a transitive dependence between the source and
target (criterion) node exists. These conditions give the answer to “why is this
statement in the slice?” which Griswold [Gri01] categorized as a hard question.

This chapter will first introduce the basic concepts of path conditions and
how they can be extended for array and pointer usage. The third section will
show how path conditions can be computed for programs with procedures,
followed by a section where path conditions are even adapted for programs
with concurrently executing threads.

13.1 Simple Path Conditions

A simple approach to compute path conditions between two nodes x and y in
a program dependence graph consists of the following steps:

1. Compute all paths pi from x to y in the program dependence graph.

194 Path Conditions

1 if (i > 0)
2 a = x;
3 j = b;
4 c = z;
5 if (j < 5)
6 if (i < 8)
7 y = a;
8 print(y);

1 8

2 3

4 5

7

6

Figure 13.1: Simple fragment with program dependence graph

1 if (i > 0)
2 a = x;
3 j = b;
4
5 if (j < 5)
6 if (i < 8)
7 y = a;
8 print(y);

1 8

2 3

4 5

7

6

Figure 13.2: Slice of the fragment

2. For every node n, that is part of a path pi, compute the execution condition
E(n).

3. Combine the execution conditions to compute the path condition PC(x, y).

These three steps will be discussed next.

13.1.1 Execution Conditions

The execution condition E(n) gives the conditions under which a node n may
be executed. This can simply be computed by following the incoming control
dependence edges and collecting the predicates of the ancestor nodes until the
root (START) node is reached. In the example of Figure 13.1, the execution con-
dition for statement 7 is E(7) = (j < 5) ∧ (i < 8). More generally, an execution
condition for a node n is computed by

E(n) =
∧

n
cd
⇀m|START cd

⇀?n
cd
⇀m

cd
⇀?n

γ(n
cd
⇀ m)

γ(n
cd
⇀ m) =

µE(n) if ν(n

cd
⇀ m) = true

¬µE(n) if ν(n
cd
⇀ m) = false

µE(n) = ν(n
cd
⇀ m) otherwise

13.1 Simple Path Conditions 195

E(1) = true
E(2) = i > 0
E(3) = i > 0
E(5) = true
E(6) = j < 5
E(7) = (j < 5) ∧ (i < 8)
E(8) = true

Figure 13.3: Execution conditions

where µE(n) returns the (predicate) expression of a node n and ν(e) returns
the label of edge e. Control dependence edges leaving predicates of if- and
while-statements are labeled with either true or false and control dependence
edges leaving expressions of switch statements are labeled with the constant of
the target case.

Example 13.2: Figure 13.3 shows the execution conditions for each of the exam-
ple’s statements.

In the presence of unstructured control flow the control dependence sub-
graph may not be a tree and there may be more than a single path from the
root to the node of interest. Under such circumstances, the execution condi-
tions compute as follows:

E(p) =
∧

n
cd
⇀m|p=START cd

⇀?n
cd
⇀m

cd
⇀?n

γ(n
cd
⇀ m)

E(n) =
∨

p=START cd
⇀?n

E(p)

In presence of unstructured control flow, the control dependence subgraph
may even be cyclic which causes the set of possible paths to be infinite. Snelt-
ing [Sne96] proved that cycles in execution conditions can be ignored and thus
execution conditions are only computed over the finite set of cycle-free paths.

Other provisions to handle unstructured control flow are not necessary.
Even approaches like the augmented control flow and program dependence
graph from Section 3.4 are not needed because jump statements are predicate-
less.

13.1.2 Combining Execution Conditions

The execution conditions are used to form the path conditions. For a path p in
a program dependence graph, the execution conditions are conjunctively com-
bined to result in the conditions under which this path may be taken during
execution:

196 Path Conditions

1 x = a
2 while (x<7) {
3 x = y + x
4 if (x == 8)
5 p(x)
6 }

E(1) = true
E(2) = true
E(3) = x < 7
E(4) = x < 7
E(5) = (x < 7) ∧ (x = 8)

Figure 13.4: Example with multiple definitions for variable x

PC(p) =
∧

n|p=〈...,n,...〉
E(n) (13.1)

Usually more than one path exists between two nodes x and y and the path
conditions for the single paths are combined disjunctively to form the path
condition PC(x, y):

PC(x, y) =
∨

p=x⇀?y

PC(p) (13.2)

A program dependence graph is typically cyclic which may result in an infinite
number of paths between two nodes. Again, cycles in paths can be ignored
[Sne96] and only cycle-free paths are used.

Example 13.3: The example of figure 13.1 on page 194 contains two paths from
statement 1 to 8: p1 = 〈1, 2, 7, 8〉 and p2 = 〈1, 3, 5, 6, 7, 8〉. Their path conditions
are:

PC(p1) = true ∧ (i > 0) ∧ (j < 5) ∧ (i < 8) ∧ true
= (i > 0) ∧ (j < 5) ∧ (i < 8)

PC(p2) = true ∧ (i > 0) ∧ true ∧ (j < 5) ∧ (j < 5) ∧ (i < 8) ∧ true
= (i > 0) ∧ (j < 5) ∧ (i < 8)

Both path conditions can be combined disjunctively and simplified: The path
condition from statement 1 to 8 is then PC(1, 8) = (i > 0) ∧ (j < 5) ∧ (i < 8).

13.1.3 SSA Form

In presence of multiple definitions of a single variable, the presented approach
does not succeed:

Example 13.4: Consider Figure 13.4, where the execution condition of each state-
ment is shown to the right. The execution condition for statement 5 is E(7) =
(x < 7) ∧ (x = 8), which cannot be fulfilled.

The problem here is that the two usages of variable x are not the same instance,
because x gets redefined at statement 3. A simple solution is to use SSA form
[CFR+91], so that every variable has a single definition.

13.1 Simple Path Conditions 197

1 x1 = a
2 while (x2 = φ(x1,x3),

x2 < 7) {
3 x3 = y1 + x2
4 if (x3 == 8)
5 p(x3)
6 }

E(1) = true
E(2) = true
E(3) = x2 < 7
E(4) = x2 < 7
E(5) = (x2 < 7) ∧ (x3 = 8)

Figure 13.5: Example in SSA form

Example 13.5: Figure 13.5 shows the example program in SSA form. Because
the usages of variable x in lines 2 and 3 may use the definitions of x in line 1
or 3; a new assignment to x has been inserted. This new assignment may use
either the definition from line 1 or 3, modeled as a φ-function. Also, all variable
definitions and uses have been replaced with a new (numbered) variable, so
that for every usage of a variable a single definition exists.

But there is a problem with SSA form, too: Because SSA form just captures
static behavior, it does not distinguish different instances due to loops.

Example 13.6: Consider the following code:

1 int n, a, b, c, x, y, z;
2 a = y;
3 while (n > 0) {
4 x = ...;
5 if (x > 0)
6 b = a;
7 else
8 c = b;
9 }
10 z = c;

This fragment is already in SSA form: Every variable has a single assignment.
If the path condition PC(2, 10) is computed, the single path between statement
2 and 10 will be traversed:

PC(2, 10) = PC(2 ⇀ 6 ⇀ 8 ⇀ 10)

= E(2) ∧ E(6) ∧ E(8) ∧ E(10)

= true ∧ (x > 0) ∧ (n > 0) ∧ ¬(x > 0) ∧ (n > 0) ∧ true

= false

Of course, this result is incorrect: The execution conditions E(6) and E(8) are
using different instances of variable x, dependent on the loop iteration.

The key to a correct solution is loop-carried data dependence: the data de-
pendence between statement 6 and 8 is a loop-carried data dependence, be-
cause it only exists if the back edge of the loop is executed at least once. The

198 Path Conditions

path conditions are decomposed at loop-carried data dependence edges: Let
the analyzed path be p = p1p2 . . . pn, where all pi are loop-carried dependence-
free subpaths and all pi are connected to pi+1 via a loop-carried dependence.
The correct equation is now:

PC(p) =
∧

16i6n

PC(pi, i)

where PC(px, x) is a path condition PC(px) for path px and every occurrence
of a variable v has been replaced by vx, a new instance of v.

Example 13.7: The computation of PC(2, 10) now results in:

PC(2, 10) = PC(2 ⇀ 6 ⇀ 8 ⇀ 10)

= PC(2 ⇀ 6, 1) ∧ PC(8 ⇀ 10, 2)

= true ∧ (x1 > 0) ∧ (n1 > 0) ∧ ¬(x2 > 0) ∧ (n2 > 0) ∧ true

= (x1 > 0) ∧ (n1 > 0) ∧ (x2 6 0) ∧ (n2 > 0)

which can be interpreted as: the loop has to be iterated at least twice, where in one
iteration x > 0 holds and in a later iteration x 6 0 holds.

Such path conditions are not only correct conservative approximations, but
they also contain more information. On the other hand, the execution condi-
tion may contain variables which must not be distinguished in different in-
stances when a more complex embedding of loops and if-statements exists. A
replacement of such different instances by a single one makes the path condi-
tions smaller, but not more precise. How this is done is presented in [Rob].

From now on, SSA form is assumed—further examples will be free of mul-
tiple definitions of a single variable or loop-carried data dependence.

13.2 Complex Path Conditions

The presented path conditions can handle only intraprocedural programs lim-
ited to simple variables. The following will extend the path conditions step-
wise to handle complex data structures like array and pointer usage, too.

13.2.1 Arrays

If array elements are distinguished, additional constraints for index expres-
sions will be generated for data dependences concerning array elements.

Example 13.8: This fragment is an example of an array usage:

1 a[i + 3] = x
2 if (i > 10)
3 y = a[2*j - 42]

13.2 Complex Path Conditions 199

A path condition PC(1, 3) exists only if a path from 1 to 3 exists. This requires
a data dependence between 1 and 3 which only exists if i+ 3 = 2j− 42.

In general, any data dependence edge n1 ⇀ n2 with µE(n1) = a[E1] and
µE(n2) = a[E2] generates a constraint E1 = E2. For a path in the dependence
graph, all such constraints along its edges are added conjunctively to the path
condition. Thus, the general equation 13.1 to compute a path condition for a
path becomes

PC(p) =
∧

n|p=〈...,n,...〉
E(n) ∧

∧
n⇀m|p=〈...,n⇀m,...〉

δ(n ⇀ m) (13.3)

where

δ(n1 ⇀ n2) =

{
E1 = E2 if (µE(n1) = a[E1]) ∧ (µE(n2) = a[E2])
true otherwise (13.4)

The resulting path conditions may contain complex conditions for index val-
ues, and it is well known that arbitrary constraints over integers cannot be
solved. But many solvers can deal with constant or linear index expressions or
even Presburger arithmetic [PW98].

When several definitions of an array element reach the same program point,
the situation becomes even more complex as the dependence edges themselves
must be modified in order to take care of possible aliases.

Example 13.9: Consider

1 a[i] = x;
2 a[j] = y;
3 z = a[k];

The standard approach (shown in section 4.2.2) is to assume assignments to ar-
ray elements to be non-killing definitions (i.e. no previous assignment is killed).
This generates data dependence edges 1 ⇀ 3 and 2 ⇀ 3. However, this is
problematic for path conditions, as knowledge of the execution order of state-
ments 1 and 2 is not available from the control and data dependence alone.
The knowledge that statement 2 may kill the definition at statement 1 is lost.
With the additional constraint that i equals j, the path condition is too weak:
(i = j) ∧ PC(1, 3) = (i = j) ∧ (i = k). However, this should evaluate to false.

Therefore, assignments to array elements are assumed to be killing modifica-
tions: An assignment to an array element uses the (complete) array before the
specified element is defined. This approach does not change slices or chops
for any criterion node x except where x is an assignment to an array element1.
Now, the example has data dependence edges 1 ⇀ 2 and 2 ⇀ 3, where edge
1 ⇀ 2 is going from a definition to a definition and 2 ⇀ 3 is going from a
definition to a use. The δ-constraints for edges going from a definition to a

1It does change distant slicing results from chapter 10.

200 Path Conditions

definition are negations of the above equations, as the array element defined at
the source is only used at the target if the array indices are not the same.

For the killing variant, the δ-constraints of equation 13.3 and 13.4 are more
complex and only valid for a specific path under examination, because all data
dependence edges between definitions of array elements must be followed
backwards:

PC(p) =
∧

n|p=〈...,n,...〉
E(n) ∧

∧
n⇀m|p=〈...,n⇀m,...〉

δ(n ⇀ m, p) (13.5)

Let ddchain(e, p) be a function that maps a (cycle-free) path p = 〈e1, . . . , en〉 to
a maximal subpath p ′ = 〈ei, . . . , ej〉, such that ej = e and all edges ei . . . ej−1
are data dependence edges between two array element definitions. The edge
e = ej must be a data dependence edge from a definition to a usage of an
array element. Path p ′ is not maximal if edge ei−1 exists and that edge is a
data dependence edge between two array element definitions. Also, let the
function A(n) return the expression E of a node n, where µE(n) = a[E].

δ(n ⇀ m, p) = let p ′ = ddchain(n ⇀ m, p)
with p ′ = 〈n1 ⇀ n2, n2 ⇀ n3, . . . , nk ⇀ m〉∧ nk = n

in (A(n1) = A(m)) ∧
(∧

1<i6k A(ni) 6= A(m)
)

(13.6)
If path p does not contain edges between two definitions of array elements,
equations 13.5 and 13.6 reduce to equations 13.3 and 13.4.

Example 13.10: The example path condition PC(1, 3) is now computed with the
new equations:

PC(1, 3) = PC(〈1 ⇀ 2, 2 ⇀ 3〉)
= E(1) ∧ E(2) ∧ E(3)

∧ δ(1 ⇀ 2, 〈1 ⇀ 2, 2 ⇀ 3〉)
∧ δ(2 ⇀ 3, 〈1 ⇀ 2, 2 ⇀ 3〉)

= true ∧ true ∧ true
∧ true
∧ (i = k) ∧ (j 6= k)

= (i = k) ∧ (j 6= k)

This result is stronger than the first path condition which was PC(1, 3) = (i =
k) and makes the possible killing of i clear.

13.2.2 Pointers

Even more complex than array usage is the presence of pointers in the analyzed
program.

Example 13.11: Consider the following fragment:

13.3 Increasing the Precision 201

1 *q = x;
2 *p = y;
3 if (a > 7)
4 p = q;
5 z = *p;

Besides the data dependence 4 ⇀ 5, also the data dependences 1 ⇀ 5 and
2 ⇀ 5 exist due to pointer dereferencing. The path condition PC(1, 5) is simply
true.

Again, the path conditions can be made stronger with additional δ-constraints
that represent the additional requirements of aliasing. Equation 13.4 is ex-
tended for data dependence due to pointer usage:

δ(n1 ⇀ n2) =

E1 = E2 if µE(n1) = ∗E1 ∧ µE(n2) = ∗E2
&E1 = E2 if µE(n1) = E1 ∧ µE(n2) = ∗E2
E1 = &E2 if µE(n1) = ∗E1 ∧ µE(n2) = E2
E1 = E2 if µE(n1) = a[E1] ∧ µE(n2) = a[E2]
true otherwise

These equations handle only a subset of possible pointer expressions. More
complex pointer expressions use the fall-through of true as a conservative ap-
proximation: The path conditions are correct but not as precise as possible. The
path condition PC(1, 5) of the small example now computes to PC(1, 5) = (q =
p). Of course, the pointer extensions can also be applied together with the more
complex definition of δ in equation 13.6.

13.3 Increasing the Precision

One reason of the optimizations in chapter 11 was to increase the precision of
path conditions.

Example 13.12: Consider the following fragment:

1 if(x > 0)
2 b = a;
3 y = x;
4 if (y < 0)
5 c = b;

Here, PC(2, 5) is computed as PC(2, 5) = (x > 0) ∧ (y < 0), whereas PC(2, 5) =
false would be more precise (and still correct).

If copy propagation is applied first, both variables x and y are unified and the
path condition will now be computed as PC(2, 5) = (x > 0) ∧ (y < 0) = false.
Besides the optimizations from section 11.2, other optimizations techniques
like global value numbering and value flow analysis [ASU85] could increase
the accuracy of path conditions.

202 Path Conditions

13.4 Interprocedural Path Conditions

So far, single procedure programs have been assumed. To generate path con-
ditions for programs with procedures, the problem of unrealizable paths must
be revisited. First, interprocedural path conditions are categorized:

Truncated same-level path conditions are path conditions PCTS(x, y) where x

and y are nodes of the same procedure and the condition is built only
from the procedure itself. Called procedures are obeyed without gener-
ating new conditions.

Non-truncated same-level path conditions are path conditions PCNS(x, y) where
x and y are nodes of the same procedure and the condition is built from
the procedure itself together with the called procedures.

Truncated non-same-level path conditions are path conditions PCTN(x, y) where
x and y are nodes of not necessarily the same procedure and the condi-
tion is built only from the procedures of x and y together with necessary
calling procedures.

Non-truncated non-same-level path conditions are path conditions PCNN(x, y)
where x and y are nodes of not necessarily the same procedure and the
condition is built from all involved procedures.

The concept of non-same-level path conditions will be made clear later in this
section; first, the same-level variants are explained.

13.4.1 Truncated Same-Level Path Conditions

The computation of truncated same-level path conditions just needs a restric-
tion on allowed paths for equation 13.2 on page 196: A path p in the system
dependence graph has to be a truncated same-level path, i.e. it is not allowed to
contain parameter or call edges.

PCTS(x, y) =
∨

p=x⇀?y

PCTS(p) and all p are truncated same-level paths

PCTS(p) =
∧

n|p=〈...,n,...〉
E(n) ∧

∧
n⇀m|p=〈...,n⇀m,...〉

δ(n ⇀ m)

Now, the only different case to the intraprocedural path condition is the pres-
ence of summary edges. Because effects of called procedures have to be ig-
nored, no extension to the δ-constraint is necessary and summary edges just
use the fall-through true for the δ-constraint.

13.4 Interprocedural Path Conditions 203

13.4.2 Non-Truncated Same-Level Path Conditions

Non-truncated same-level path conditions are like their truncated counterparts,
except that effects of called procedures should be used to make the path con-
ditions stronger. This is achieved by extending the δ-constraints for summary
edges. A summary edge x ⇀ y between actual parameter nodes shows the ex-
istence of a transitive dependence between the corresponding formal parame-
ter nodes. The conditions under which this dependence exists can be computed
by path condition PC(x ′, y ′) between the formal parameter nodes x ′, y ′ corre-
sponding to x, y. This path condition must be bound to the call site by binding
together the variables of the actual and formal parameter nodes. But this is not
enough, because the instance problem of section 13.1.3 exists here, too. There-
fore, all variables in the path condition through the called procedure must be
replaced by a new instance with PC(x ′, y ′, i), where i has not been used be-
fore. Let v be the variable of the actual-in node x (µE(x) = v), w the variable
of the actual-out node (µE(y) = w) and let v ′ and w ′ be the variables of the
corresponding formal parameter nodes (v ′ = µE(x ′), w ′ = µE(y ′)). Then

PCNS(x, y) =
∨

p=x⇀?y

PCNS(p) and all p are truncated same-level paths

PCNS(p) =
∧

n|p=〈...,n,...〉
E(n) ∧

∧
n⇀m|p=〈...,n⇀m,...〉

δNS(n ⇀ m)

δNS(x ⇀ y) =

 (v = v ′i) ∧ (w = w ′
i) ∧ PCNS(x

′, y ′, i)
if x ⇀ y is a summary edge

δ(x ⇀ y) otherwise

In presence of recursion the generated path conditions can be recursive them-
selves: The previous equations are similar to inlining called procedures. To
prevent unlimited unfolding, only k-truncated same-level path conditions are
computed, where unfolding stops after k levels:

PCk
NS(x, y) =

∨
p=x⇀?y

PCk
NS(p) and all p are truncated same-level paths

PCk
NS(p) =

∧
n|p=〈...,n,...〉

E(n) ∧
∧

n⇀m|p=〈...,n⇀m,...〉
δk

NS(n ⇀ m)

δk
NS(x ⇀ y) =

 (v = v ′i) ∧ (w = w ′
i) ∧ PCk−1

NS (x ′, y ′, i)
if k > 1 ∧ x ⇀ y is a summary edge

δ(x ⇀ y) otherwise

If unlimited unfolding (k = ∞) is allowed, PCNS(x, y) = PC∞
NS(x, y) holds.

13.4.3 Truncated Non-Same-Level Path Conditions

The restriction that both nodes x and y for a path condition must be in the same
procedure is relaxed and x and y may now be in different procedures. How-
ever, the path condition is still truncated, i.e. summary edges are not expanded.

204 Path Conditions

Therefore, the paths between x and y have to be truncated non-same-level paths.
A truncated non-same-level path P can be split in two parts p1 and p2 with
p = p1p2, such that p1 does not contain parameter-in and call edges and p2
does not contain parameter-out edges (see section 10.2.7 for an explanation).
This restriction will exclude automatically all unrealizable paths, because after
following a parameter-in edge it is impossible to follow a parameter-out edge.
The equations are similar to those of the truncated same-level path conditions:

PCTN(x, y) =
∨

p=x⇀?y

PCTN(p) and all p are truncated non-same-level paths

PCTN(p) =
∧

n|p=〈...,n,...〉
E(n) ∧

∧
n⇀m|p=〈...,n⇀m,...〉

δ(n ⇀ m)

13.4.4 Non-Truncated Non-Same-Level Path Conditions

The expansion of truncated non-same-level path conditions to non-truncated
ones is not different to the expansion of same-level path conditions:

PCk
NN(x, y) =

∨
p=x⇀?y

PCk
NN(p) and all p are truncated non-same-level paths

PCk
NN(p) =

∧
n|p=〈...,n,...〉

E(n) ∧
∧

n⇀m|p=〈...,n⇀m,...〉
δk

NN(n ⇀ m)

δk
NN(x ⇀ y) =

 (v = v ′i) ∧ (w = w ′
i) ∧ PCk−1

NN (x ′, y ′, i)
if k > 1 ∧ x ⇀ y is a summary edge

δ(x ⇀ y) otherwise

Again, PCNN(x, y) = PC∞
NN(x, y) holds.

13.4.5 Interprocedural Execution Conditions

The execution conditions of the presented path conditions are computed just
intraprocedural, because only the control dependence subgraph of the enclos-
ing procedure is traversed. This is almost sufficient for interprocedural path
conditions as the execution of a called procedure is controlled by the execution
condition for the call site.

Example 13.13: Figure 13.6 on the next page contains a program with two pro-
cedures p and q. The path condition for a dependence between statement 7
and 10 is computed as shown in figure 13.7 on the facing page. The resulting
path condition (x < 8) ∧ (x > 3) can be made stronger by including the call-
ing context of the criterion statements: Statement 7 and statement 10 are only
executed if procedure q is called.

13.4 Interprocedural Path Conditions 205

01 proc p():
02 if (x > 3)
03 z = y
04 end
06 proc q():
07 y = 3
08 if (x < 8)
09 p()
10 print(z)
11 end
12
13 read(x)
14 if (x < 0)
15 q()

Figure 13.6: Example for an interprocedural path condition

PC2
NN(7, 10) = PC2

NN(7 ⇀ 9yin ⇀ 9zout ⇀ 10)
= E(7) ∧ E(9yin) ∧ E(9zout) ∧ E(10)

∧ δ2
NN(7 ⇀ 9yin)

∧ δ2
NN(9yin ⇀ 9zout)

∧ δ2
NN(9zout ⇀ 10)

= true ∧ (x < 8) ∧ (x < 8) ∧ true
∧ true

∧ (x = x1) ∧ (z = z1) ∧ PC1
NN(1xin , 4zout , 1)

∧ true

= (x < 8) ∧ (x = x1) ∧ (z = z1) ∧ PC1
NN(1xin , 4zout , 1)

PC1
NN(1xin , 4zout) = PC1

NN(1yin ⇀ 3 ⇀ 4zout)
= E(1yin) ∧ E(3) ∧ E(4zout)

∧ δ1
NN(1yin ⇀ 3) ∧ δ1

NN(3 ⇀ 4zout)
= true ∧ (x > 3) ∧ true ∧ true ∧ true
= (x > 3)

PC2
NN(7, 10) = (x < 8) ∧ (x = x1) ∧ (z = z1) ∧ PC1

NN(1xin , 4zout , 1)
= (x < 8) ∧ (x = x1) ∧ (z = z1) ∧ (x1 > 3)

Figure 13.7: Computation of PC2
NN(7, 10) for example 13.6

206 Path Conditions

The calling context can induce additional execution conditions which can sim-
ply be computed by not only traversing control dependence but also call edges:

EIP(p) =
∧

n
cd,cl
⇀ m|p=START cd

⇀?n
cd
⇀m

cd,cl
⇀ ?n

γ(n
cd
⇀ m)

EIP(n) =
∨

p=START
cd,cl
⇀ ?n

EIP(p)

The traversal of call edges includes the execution conditions at the call sites,
which control the execution of the called procedures. The equations for inter-
procedural path conditions are extended to:

PCIP(x, y) = EIP(x) ∧ EIP(y) ∧
∨

p=x⇀?y

PCIP(p)

In this equation, PCIP can be substituted by any of the four variants PCTS,
PCk

NS, PCTN or PCk
NN to form the complete version.

Example 13.14: With this modified equations, the resulting example path con-
dition is:

PC2
NN(7, 10) = EIP(7) ∧ EIP(10) ∧ PC2

NN(7 ⇀ 9yin ⇀ 9zout ⇀ 10, 1)

= (x < 0) ∧ (x < 0) ∧ PC2
NN(7 ⇀ 9yin ⇀ 9zout ⇀ 10, 1)

= (x < 0) ∧ (x < 8) ∧ (x = x1) ∧ (z = z1) ∧ (x1 > 3)
= false

The outcome is as strong as it can become: In the example PC(7, 10) = false
holds—a dependence between 7 and 10 is impossible.

13.5 Multi-Threaded Programs

As described so far, path conditions can handle only sequential programs. In
this section, the approach of chapter 5 is used to extend the path conditions
for intraprocedural programs with concurrently executing threads. As yet,
threaded interprocedural programs can only be handled by inlining called pro-
cedures at call sites.

The most simple approach to compute path conditions in the tPDG of chap-
ter 5 is to replace all interference dependence edges with normal data depen-
dence edges and compute the path conditions as usual. The resulting path
conditions are always correct because the replacement of interference depen-
dence is a conservative approximation. However, the resulting path conditions
are imprecise as they allow impossible paths.

Example 13.15: Consider the following program fragment: It is impossible that
statement 2 is executed after statement 3. However, due to the interference
dependences 3 ⇀ 6 and 6 ⇀ 2, there exists a path from 3 to 2 and the path
condition computes to PC(3, 2) = x > 0.

13.6 Related Work 207

thread 1: thread 2:
1 a = b; 5 if (x>0)
2 c = d; 6 d = e;
3 e = a; 7 if (y>0)

8 d = a;

Chapter 5 introduced the notion of a threaded witness, which is the witness
of a possible program execution where its nodes execute in the same order. The
same chapter showed how paths in the tPDG can be constructed so that they
are always threaded witnesses. This can simply be used to refine the general
equation 13.2 for path conditions:

PC(x, y) =
∨

p = x ⇀? y

p is a threaded witness

PC(p)

The example path condition PC(3, 2) is now simply false—no valid path from
3 to 2 being a threaded witness exists in the tPDG.

13.6 Related Work

Path conditions have been introduced by Snelting [Sne96] as a way to vali-
date measurement software. The main problem to compute path conditions is
scalability and efficiency. Therefore a divide-and-conquer strategy is applied:
Paths and path conditions are decomposed before computation as shown in
[Sne96, KS98] and [RS02, SRK03, Rob], which also contain case studies and
evaluations.

208 Path Conditions

Chapter 14

VALSOFT

Most of the techniques presented in the previous chapters have been imple-
mented in the VALSOFT system. The system is a set of tools that are used
to analyze C source code to help the engineer to understand and validate the
code. This chapter will present the system in terms of its architecture and men-
tion other slicing tools highlighting some of their features.

14.1 Overview

The overall architecture of the system is presented in figure 14.1 on the next
page. Its parts will be discussed in the following. Table 14.1 on page 213 shows
the sizes of the different parts1 in terms of lines of code (LOC, counted by ‘wc
-l’), non-blank, non-comment lines (NLOC) and modules/classes (MOD) as
counted by CCCC [Lit01].

14.1.1 C Frontend

The ‘CParse’ library is a frontend (scanner/parser etc.) for ANSI C. It reads
(preprocessed) sources, constructs an attributed abstract syntax tree and a sym-
bol table, and “links” all corresponding symbols of different sources together.
This library has been implemented by LINEAS GmbH, Braunschweig. The
only client of this library is the analyzer that constructs the program depen-
dence graph for the set of a program’s sources.

14.1.2 SDG Library

All tools of the VALSOFT system generate or use program (or system) depen-
dence graphs. All functionality related to such graphs has been put into a
‘SDG’ library. It contains functionality

1The author’s share of the implementation is around 45.000 LOC, 25.000 NLOC, 250 modules.

210 VALSOFT

C sources
ANA

CParse

CSE

Slicer

CGI

Solver

CP

GUI

toolchest

Duplix

ADS

GDB

GCC

PDG/SDG

ACV

Figure 14.1: VALSOFT architecture

• to build, modify, save, restore and traverse general graphs, program and
system dependence graphs,

• to generate summary edges in an interprocedural program dependence
graph, and

• to compute forward and backward slices.

The only data that is exchanged between different tools are files containing
program (or system) dependence graphs. Most tools use this library to read,
write or work with program dependence graphs.

14.1.3 Analyzer

The ‘ANA’ tool is the analyzer and program dependence constructor. This tool
consists of multiple passes:

1. A traversal of the AST (as built from ‘CParse’) creates a simple approxi-
mation of the call graph. At call sites, where function pointers are used, it
is assumed that all procedures with a matching signature may be called.
This is a crude but sufficient analysis for most C programs2. If a higher

2In only two of the used test-case programs this crude approach was imprecise.

14.1 Overview 211

precision is needed, the program dependence graph may be refined later
on with the ‘CG’ tool.

2. Another traversal of the AST does a simple, flow-insensitive data flow
analysis. It calculates the IMOD and IREF sets.

3. The alias (points-to) analysis is a further traversal of the AST. It is a flow-
insensitive but context-sensitive alias analysis developed by Burke et al
[BCCH95].3

4. The information of the first passes is now used to compute the later on
needed GMOD and GREF sets in an interprocedural analysis (section 6.4).

5. The last traversal over the AST generates the control flow graph for ev-
ery procedure. The control flow graphs will be expanded in later passes
to fully-blown program dependence graphs. For well-structured pro-
cedures the control dependence edges are computed syntax-directed al-
ready during this pass.

6. For procedures with unstructured jumps, the control dependence edges
are now computed traditionally according to section 2.3.1. For debugging
or evaluation purposes, the conventionally computation can also be used
for well-structured procedures, and the results can be compared to the
syntax-directed approach.

7. As presented in section 6.4, a flow-sensitive computation of data depen-
dence edges follows. For well-structured procedures, this can be done
in two ways: A syntax-directed approach computes the reaching defini-
tions and the data dependence edges through a one-pass traversal of the
abstract syntax tree. The other approach is using a traditional iterative
framework and iterates over the control flow graph. The results from
both approaches can be used for debugging4 and evaluation again. For
procedures with unstructured jumps, only the iterative approach is used.

8. The last pass connects the program dependence graphs for all procedures
to the interprocedural program dependence graph. This is achieved by
inserting the call and parameter edges between the call sites and the
called procedures. If wanted, summary edges can also be computed in
this pass.

The created system dependence graph is persistently saved to disk and all
other tools work with the saved graph. As presented in chapter 4, the pro-
gram dependence graphs are fine-grained, such that client tools do not need
other intermediate representations.

3A Steensgaard points-to analysis [Ste96] has also been implemented but not integrated.
4Through comparison of the results, some errors in implementation have been identified and

removed. Because both approaches generate the same results in principle now, there is high confi-
dence in both approaches.

212 VALSOFT

14.1.4 The Slicer

The slicing and chopping algorithms of the SDG library have been made acces-
sible by a slicer tool that can be used as a command-line tool or server to which
other programs can connect. In server mode, the GUI connects to the server
to compute the slices and chops, so that GUI and server may run on different
machines. In command line mode, the slicer is able to compute slices or chops
and visualize the results as source code or HTML files that can be displayed in
any browser (as presented in section 9.2 and 10.1).

14.1.5 The Solver

Robschink [Rob] has developed the generation of path conditions as presented
in chapter 13. The implementation is similar to the slicer: The solver can also be
used as a command-line tool or server. The solver contains highly specialized
techniques to decompose graphs and simplify path conditions.

14.1.6 The GUI

The graphical user interface mainly contains the visualization of dependence
graphs as presented in section 9.1. It uses the external slicer and solver to
compute slices, chops and path conditions.

The GUI is used for navigation in the PDGs and the source. It visualizes
the program’s call graph where the user may select any procedure node and
the GUI visualizes the corresponding PDG. Every node is selectable and the
corresponding parts of the source may be visualized in a textual manner. The
user may select a set of nodes as a slicing criterion and let the GUI execute
the slicer. The resulting set of nodes is visualized both in the graph based and
textual presentations.

The implementation was done by Frank Ehrich [Ehr96] in cooperation with
LINEAS GmbH.

14.1.7 The ‘Tool Chest’

Various tools have been grouped together into a tool ‘chest’. It mainly pro-
vides a test bed for experimentation with new approaches (e.g. the slicing and
chopping algorithms from chapters 7 and 10). It also contains various tools for
PDG manipulation, e.g. the three approaches to reduce the graphs’ size from
section 11.1. Some tools have moved from the tool chest into independent ap-
plications:

• The call graph improver (‘CGI’) eliminates redundant call edges in pres-
ence of function pointers as described in Section 11.2.1.

• The common subexpression eliminator (‘CSE’) identifies common subex-
pressions and replaces them by a shared subgraph (section 11.2.3).

14.1 Overview 213

LOC NLOC MOD
CParse 17515 5912 36
SDG 11935 5992 103
ANA 16744 9285 105
Tool Chest 17792 11091 44
Slicer 1897 701 14
Solver 26314 13358 172
Duplix 1903 1313 18
ADS 1325 620 5
CP 4196 2706 20
CGI 1467 674 15
CSE 2188 1066 15
ACV 1094 588 24
GUI 59790 33702 175
Σ 170377 88419 613

Table 14.1: Code size of the VALSOFT components

• The constant propagator (‘CP’) does constant propagation over the SDGs
and tries to simplify them (eliminating edges and nodes) as described in
section 11.2.2.

• The chop visualizer (‘ACV’) provides a display of relationships between
procedures or variables in terms of chop size (section 10.4).

14.1.8 An Approximate Dynamic Slicer

The ‘ADS’ tool provides a simple technique for approximate dynamic slicing
[ADS93]: By an analysis of the program dependence graph a program is in-
strumented to trace entries to statement blocks. The set of visited statements
and their corresponding nodes are inferred from such a trace. A static slice that
only traverses visited nodes is an approximation of a dynamic slice. It is less
precise than a real dynamic slice but has much smaller runtime complexity.

The ADS tool instruments the program by generating breakpoints for the
GDB debugger. Every breakpoint, that is hit during execution emits a trace en-
try and deletes itself afterwards. Therefore every breakpoint is never executed
more than once and the runtime overhead is only equivalent to the program
size.

14.1.9 The Duplicated Code Detector

The last tool (‘Duplix’) is the implementation of the approach to identify similar
code from chapter 12.

214 VALSOFT

14.2 Other Systems

Instead of a section for related work, this chapter closes with a list of other
slicing systems. Most of the slicing systems had been research prototypes and
were not available or vanished in the last years. This list is not supposed to be
complete. Some comparative studies have been done to subsets of the follow-
ing list [HKF95].

Aristotle

The Aristotle Analysis System [HR97, HC98] is targeted at the development of
software engineering tools and provides program analysis information. One
part of the system is a control flow graph based slicer. It is able to analyze C
programs.

CANTO

The CANTO environment [AFL+97] integrates fine-grained information for
source code with architectural views. It has a slicer built in, together with
a graph tool PROVIS based on dot which can visualize PDGs (besides other
graphs). To slice a program, it is transformed into an intermediate control flow
graph language first.

ChopShop

ChopShop was a reverse engineering tool to help programmers to understand
unfamiliar C code. It accepts full ANSI C and generates program slices in tex-
tual and pictorial form. Chopping was introduced by this tool, though only
intraprocedural chops could be computed [JR94b, JR94a].

CodeSurfer

The commercially available CodeSurfer [AT01] is the successor of the Wiscon-
sin Program-Integration System. It is the most advanced, complete and stable
slicing tool. Its primary target is program understanding of ANSI C programs.

It can visualize call graphs graphically, procedures are textually visualized.
For better usability, other elements like variables or files can be browsed hier-
archically. Programs can be sliced and chopped in various way.

Similar to our tool, the main data structure is the system dependence graph
of a program. CodeSurfer can be programmed using its scripting language
(Scheme). The scripting has access to the complete dependence graphs through
an API. Thus, CodeSurfer can be used as an infrastructure for other program
analyses, e.g. model checking [ERT01].

14.2 Other Systems 215

FOCUS

FOCUS has been developed by Lyle to evaluate the usability of slicing for de-
bugging [Lyl84]. Although first built to slice FORTRAN programs, it was ex-
tended to support C programs. The implemented slicer solves data flow equa-
tions to compute intraprocedural slices.

Ghinsu

Ghinsu is a SDG-based environment to compute and visualize slices (both for-
ward and backward), dices, and dependences. Similar to our approach, the
SDG is not statement based, but based on tokens from the abstract syntax tree
[LR92, LA93, LC94a, LC94b, LJ00]. Ghinsu is targeted at ANSI C. However,
unstructured control flow (goto, break, continue and long jumps) is not al-
lowed and pointers are not analyzed (only pointers to pass variables as call-
by-reference).

Osaka

The Osaka slicer can do static, dynamic and call-mark slicing on a pascal subset
(no pointers) [NJKI99].

PELAS

The PELAS debugging environment has been extended with an dynamic slic-
ing tool [KR97a]. Besides normal dynamic slices, the tool can compute partial
dynamic slices which are restricted to subsequences of traces.

Slash

This research prototype tool was implemented to evaluate Kamkar’s slicing
algorithms [Kam93]. Its main focus is dynamic slicing of Pascal programs (only
a subset of the language can be used). The algorithms are based on program
dependence graphs. A graphical view visualizes the execution tree and the
resulting slice.

Sprite

Sprite is a slicing tool built on top of Icaria and Ponder [AG96, AG98, BAG00,
AG01b, MACE02]. Ponder is a language independent infrastructure to build
tools for performing syntactic and semantic analyses of large software sys-
tems. Icaria is the language dependent component for ANSI C and contains the
Sprite tool, which is able to slice ANSI C. It contains a textual visualization of
slices and is able to do typical set operations on slices. The implemented slicing
tool uses a Weiser-style algorithm via data flow analysis iterating over a con-
trol flow graph. All three tools are freely available; a comparison to CodeSurfer
has been done in [BAG00].

216 VALSOFT

Spyder

Spyder [Agr91, ADS93] is a tool to do static and dynamic slicing (although
the focus of the research prototype was dynamic slicing). It is built on top of
the GNU compiler GCC and its debugger GDB and acts as a graphical user
interface to the debugger. These tools have been extended to compute and use
program dependence graphs. Static and dynamic slices can be highlighted in
the source code.

Steindl’s slicer

Steindl’s slicer [Ste98, Ste99a, Ste99b] is a slicer for Oberon built on top of
an Oberon infrastructure. The (textual) visualization includes graphical ele-
ments like pop-ups for visualization and navigation along data dependences
and calls. It also features bidirectional feedback: The user of the slicer can
disable potential aliases between variables, enabling more precise slices.

Surgeon’s Assistant

The Surgeon’s Assistant is a prototype implementation of decomposition slic-
ing which allows selection of variables for slicing and then textually displays
the decomposition slices. It contains a Decomposition Slice Display System
(DSDS) which visualizes the relationships between the decomposition slices in
a graphical display. An integrated editor can be restricted to allow changes
only inside or outside slices [Gal90, GL91, Gal92, Gal96, GO97].

Unravel

Unravel [LW97] is a prototype tool that can be used to evaluate ANSI C source
code statically by using program slicing. In its target to evaluate high integrity
software it is most similar to the presented VALSOFT system. However, it
is limited to computing forward and backward slices, which can be combined
using set operations. The implemented Weiser-style algorithm is based on data
flow equations and control flow graphs.

WPIS

The Wisconsin Program-Integration System [Rep93] is not only able to com-
pute forward and backward slices (and visualizes them in source code and as
dependence graphs), but also provides program differencing and integration
based on system dependence graphs [HR92]. It is able to do various forward
and backward, inter- and intraprocedural slices. The slices are visualized tex-
tually in source code. It has been superseded by CodeSurfer.

Chapter 15

Conclusions

Almost 25 years ago, Weiser invented slicing: Slices are program abstractions
onto a subset of the original statements where the reduced program has the
same behavior at a specified statement. Besides a thorough presentation of
underlying theory of slicing and chopping, this thesis examined different al-
gorithms in depth and compared them to newly developed variants. The im-
plementation of the various slicing and chopping algorithms for the VALSOFT
system led to several implications:

• The main problem for for precision and scalability is not slicing itself,
but the data flow analysis that is needed for building the interprocedural
program dependence graph. The handling of data structures, especially
the pointer analysis, is responsible for imprecision and complexity.

• A syntax-directed approach to data flow analysis is appealing at first
glance. However, an implementation is much more complex than a tradi-
tional data flow analysis. In the implemented system, the syntax-directed
approach does not even have advantages in runtime.

• The decision to omit a transformation of C programs into an intermediate
representation before performing data flow analysis is justified by the
requirements of path condition generation. Without such demands, it is
advisable to transform programs first: To analyze ANSI C directly, an
implementation has to consider every (obscure) detail of this language.

Because both time and space complexity of slicing algorithms depend mainly
on the size of the results in terms of nodes and edges in dependence graphs,
this thesis investigated techniques to compress those graphs without any loss
of precision. Folding nodes and edges provided a substantial size reduction of
dependence graphs, resulting in a much smaller runtime for slicing and chop-
ping.

In an digression, this thesis showed another new application of depen-
dence graphs independent from slicing: the detection of duplicated or ‘cloned’

218 Conclusions

code. An advantage of the presented complex approach is the ability to detect
(highly) modified clones, confirmed in an external clone detection competition.

Precise slicing of concurrent programs is still a challenge: This thesis pre-
sented the first technique to slice concurrent (recursive procedural) programs
accurately. This high-precision approach has a high complexity both in space
and time but any cheaper approach would cause an unacceptable loss of pre-
cision. Future work should develop approximations to the presented solution
with lower space and time requirements. Furthermore, the trade-off between
approximated and precise solution should be evaluated with real programs.

Visualization of dependence graphs together with slices is important for
program understanding. Two main approaches have been discussed: textual
and graphical representation. The presented specialized dependence graph
layout has considerable advantages over general layout techniques and pro-
vides comprehensible diagrams for medium sized procedures. However, graph-
ical layout of large procedures is not reasonable.

‘Pure’ slicing is an inadequate mean for a software-(re)engineer: A slice pre-
sented as source code or dependence graph does not contain (enough) informa-
tion to explain why a statement or node affects a criterion. This thesis identified
some new slicing and chopping extensions which generate slices and chops
more focused to the user’s problems. A more advanced ‘slice explainer’—the
generation of path conditions—has been extended for procedural and concur-
rent programs as well as complex data structures. Path conditions give suffi-
cient conditions under which an influence from one statement to another may
occur. Other work [RS02, SRK03] has already revealed their usefulness, and
the thesis of Robschink [Rob] can be seen as a sequel to this work.

Appendix A

Additional Plots

The following plots show data for some of the test cases in Table 12.1 on page 183
for chapter 12, where a technique to identify similar code has been presented.
To the left, the running time of the algorithm is shown dependent of the chosen
limit k for the maximal path length. To the right, the number of the identified
duplicates is shown dependent on limit k and the chosen minimum weight,
that a duplicate has to have before it gets reported.

1

10

100

1000

10000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

agrep agrep

 250
 200
 150
 100
 50

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
50

100
150
200
250
300

duplicates found
with min. weight

1

10

100

1000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

bison bison

 100
 50

0 5 10 15 20 25 30 35 40 45
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140

duplicates found
with min. weight

220 Additional Plots

10

100

1000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

compiler compiler

 150
 100
 50

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140
160
180

duplicates found
with min. weight

1

10

100

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

diff diff

 100
 80
 60
 40
 20

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120

duplicates found
with min. weight

1

10

100

1000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

fft fft

 40
 30
 20
 10

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
5

10
15
20
25
30
35
40
45

duplicates found
with min. weight

1

10

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

flex flex

 50
 40
 30
 20
 10

0
5

10
15

20
minimum weight 0

5
10

15
20

25
30

limit k

0
10
20
30
40
50
60

duplicates found
with min. weight

221

1

10

100

1000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

football football

 80
 70
 60
 50
 40
 30
 20
 10

0
5

10
15

20
minimum weight 0

5
10

15
20

25
30

limit k

0
10
20
30
40
50
60
70
80
90

duplicates found
with min. weight

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

larn larn

 300
 200
 100

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
50

100
150
200
250
300
350
400

duplicates found
with min. weight

1

10

100

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

patch patch

 40
 30
 20
 10

0 2 4 6 8 10 12 14 16
minimum weight 0

5
10

15
20

25
30

limit k

0
5

10
15
20
25
30
35
40
45
50

duplicates found
with min. weight

1

10

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

simulator simulator

 60
 50
 40
 30
 20
 10

0 2 4 6 8 10
minimum weight 0

5
10

15
20

25
30

limit k

0
10
20
30
40
50
60
70

duplicates found
with min. weight

222 Additional Plots

100

1000

10000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

spim spim

 150
 100
 50

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140
160
180

duplicates found
with min. weight

100

1000

10000

100000

1e+06

0 5 10 15 20 25

tim
e

se
c

limit k

T-W-MC T-W-MC

 2000
 1500
 1000
 500

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25

limit k

0
500

1000
1500
2000
2500

duplicates found
with min. weight

Bibliography

[ADS91] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford.
Dynamic slicing in the presence of unconstrained pointers. In
Symposium on Testing, Analysis, and Verification, pages 60–73, 1991.

[ADS93] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford.
Debugging with dynamic slicing and backtracking. Software,
Practice and Experience, 23(6):589–616, June 1993.

[AFL+97] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, and
E. Merlo. Program understanding and maintenance with the
CANTO environment. In International Conference on Software
Maintenance, pages 72–81, 1997.

[AG96] Darren C. Atkinson and William G. Griswold. The design of
whole-program analysis tools. In Proceedings of the 18th Interna-
tional Conference on Software Engineering, pages 16–27, 1996.

[AG98] Darren C. Atkinson and William G. Griswold. Effective whole-
program analysis in the presence of pointers. In Foundations of
Software Engineering, pages 46–55, 1998.

[AG01a] Gagan Agrawal and Liang Guo. Evaluating explicitly context-
sensitive program slicing. In Workshop on Program Analysis for
Software Tools and Engineering, pages 6–12, 2001.

[AG01b] Darren C. Atkinson and William G. Griswold. Implementation
techniques for efficient data-flow analysis of large programs. In
Proc. International Conference on Software Maintenance, pages 52–
61, 2001.

[Agr91] Hiralal Agrawal. Towards Automatic Debugging of Computer Pro-
grams. PhD thesis, Purdue University, 1991.

[Agr94] Hiralal Agrawal. On slicing programs with jump statements. In
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 302–312, 1994.

224 BIBLIOGRAPHY

[AH90] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slic-
ing. In Proceedings of the ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, pages 246–256, 1990.

[AM95] Martin Alt and Florian Martin. Generation of efficient interpro-
cedural analyzers with PAG. In Static Analysis Symposium, pages
33–50, 1995.

[ASU85] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1985.

[AT01] P. Anderson and T. Teitelbaum. Software inspection using
codesurfer. In Workshop on Inspection in Software Engineering (CAV
2001), 2001.

[Bac00] Sabine Bachl. Erkennung isomorpher Subgraphen und deren Anwen-
dung beim Zeichnen von Graphen. Dissertation, Universität Passau,
2000. (In German).

[BAG00] L. Bent, D. Atkinson, and W. Griswold. A comparative study of
two whole-program slicers for C. Technical Report CS2000-0643,
Univer. of California at San Diego, 2000.

[Bak95] Brenda S. Baker. On finding duplication and near-duplication in
large software systems. In Proceedings: Second Working Conference
on Reverse Engineering, pages 86–95, 1995.

[Bal93] Thomas Jaudon Ball. The Use of Control-Flow and Control De-
pendence in Software Tools. PhD thesis, University of Wisconsin-
Madison, 1993.

[Bal01] Françoise Balmas. Displaying dependence graphs: a hierarchical
approach. In Proc. Eigth Working Conference on Reverse Engineering,
pages 261–270, 2001.

[BC85] Jean-Francois Bergeretti and Bernard A. Carré. Information-flow
and data-flow analysis of while-programs. ACM Transactions on
Programming Languages and Systems, 7(1):37–61, January 1985.

[BCCH95] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind.
Flow-insensitive interprocedural alias analysis in the presence of
pointers. In Proceedings of the 7th Workshop on Languages and Com-
pilers for Parallel Computing, volume 892 of LNCS, pages 234–250.
Springer, 1995.

[BE93] Jon Beck and David Eichmann. Program and interface slicing for
reverse engineering. In IEEE/ACM 15th Conference on Software
Engineering (ICSE’93), pages 509–518, 1993.

BIBLIOGRAPHY 225

[BE94] Thomas Ball and Stephen G. Eick. Visualizing program slices. In
IEEE Symposium on Visual Languages, pages 288–295, 1994.

[Bel02] Stefan Bellon. Vergleich von Techniken zur Erkennung du-
plizierten Quellcodes. Diplomarbeit, Universität Stuttgart, 2002.
(In German).

[BFS+02] Árpád Beszédes, Csaba Faragó, Zsolt Mihály Szabó, János Csirik,
and Tibor Gyimóthy. Union slices for program maintenance. In
International Conference on Software Maintenance (ICSM’02), pages
12–21, 2002.

[BG96] David Binkley and Keith Brian Gallagher. Program slicing. Ad-
vances in Computers, 43:1–50, 1996.

[BG97] Rastislav Bodik and Rajiv Gupta. Partial dead code elimination
using slicing transformations. In Conference on Programming Lan-
guage Design and Implementation, pages 159–170, 1997.

[BGS+01] Árpád Beszédes, Tamás Gergely, Zsolt Mihály Szabó, János
Csirik, and Tibor Gyimothy. Dynamic slicing method for mainte-
nance of large C programs. In Proceedings of the Fifth Conference on
Software Maintenance and Reengineering, CSMR 2001, pages 105–
113, 2001.

[BH93a] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary
control-flow. In Automated and Algorithmic Debugging, pages 206–
222, 1993.

[BH93b] Samual Bates and Susan Horwitz. Incremental program testing
using program dependence graphs. In Conference Record of the
Twentieth ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 384–396, 1993.

[Bin92] D. Binkley. Using semantic differencing to reduce the cost of re-
gression testing. In Proceedings of the International Conference on
Software Maintenance, pages 41–50, 1992.

[Bin93a] David Binkley. Precise executable interprocedural slices. ACM
Letters on Programming Languages and Systems, 2(1-4):31–45, 1993.

[Bin93b] David Binkley. Slicing in the presence of parameter aliasing. In
Proceedings of the 1993 Software Engineering Research Forum, pages
261–268, 1993.

[Bin94] David Binkley. Interprocedural constant propagation using de-
pendence graphs and a data-flow model. In Proceedings of the
Fifth International Conference on Compiler Construction, volume 786
of LNCS, pages 374–388, 1994.

226 BIBLIOGRAPHY

[Bin98] David Binkley. The application of program slicing to regression
testing. Information and Software Technology, 40(11–12):583–594,
1998.

[Bin99] David Binkley. Computing amorphous program slices using de-
pendence graphs and a data-flow model. In ACM Symposium on
Applied Computing, pages 519–525, 1999.

[BL98] David W. Binkley and James R. Lyle. Application of the pointer
state subgraph to static program slicing. The Journal of Systems
and Software, pages 17–27, 1998.

[BO94] James M. Bieman and Linda M. Ott. Measuring functional co-
hesion. IEEE Transactions on Software Engineering, 20(8):644–657,
August 1994.

[BYM+98] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract syn-
tax trees. In Proceedings; International Conference on Software Main-
tenance, pages 368–378, 1998.

[CCD98] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Con-
ditioned program slicing. Information and Software Technology,
40(11–12):595–607, 1998.

[CF89] R. Cartwright and M. Felleisen. The semantics of program de-
pendence. In Proceedings of the ACM SIGPLAN ’89 Conference on
Programming Language Design and Implementation, 1989.

[CF94] Jong-Deok Choi and Jeanne Ferrante. Static slicing in the pres-
ence of goto statements. ACM Transactions on Programming Lan-
guages and Systems, 16(4):1097–1113, 1994.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. Efficiently computing static single as-
signment form and the control dependence graph. ACM Transac-
tions on Programming Languages and Systems, 13(4):451–490, 1991.

[CFR+99] Edmund M. Clarke, Masahiro Fujita, Sreeranga P. Rajan,
Thomas W. Reps, Subash Shankar, and Tim Teitelbaum. Program
slicing of hardware description languages. In Conference on Cor-
rect Hardware Design and Verification Methods, pages 298–312, 1999.

[Che93] Jingde Cheng. Slicing concurrent programs. In Automated and
Algorithmic Debugging, 1st International Workshop, AADEBUG’93,
volume 749 of LNCS, pages 223–240. Springer, 1993.

[Che97] J. Cheng. Dependence analysis of parallel and distributed pro-
grams and its applications. In International Conference on Advances
in Parallel and Distributed Computing, 1997.

BIBLIOGRAPHY 227

[CMN91] J.-D. Choi, B. Miller, and R. Netzer. Techniques for debugging
parallel programs with flowback analysis. ACM Transactions on
Programming Languages and Systems, 13(4):491–530, October 1991.

[CW97] Jiun-Liang Chen and Feng-Jian Wang. Slicing object-oriented
programs. In Proceedings of the 4th Asia-Pacific Software Engineering
and International Computer Science Conference (APSEC’97/ICSC’97),
1997.

[CX01a] Zhenqiang Chen and Baowen Xu. Slicing concurrent java pro-
grams. ACM SIGPLAN Notices, 36(4):41–47, 2001.

[CX01b] Zhenqiang Chen and Baowen Xu. Slicing object-oriented java
programs. ACM SIGPLAN Notices, 36(4):33–40, 2001.

[CXZY02] Zhenqiang Chen, Baowen Xu, Jianjun Zhao, and Hongji Yang.
Static dependency analysis for concurrent ada 95 programs. In
7th Ada-Europe International Conference on Reliable Software Tech-
nologies, volume 2361 of LNCS, pages 219–230, 2002.

[DCH+99] Matthew B. Dwyer, James C. Corbett, John Hatcliff, Stefan
Sokolowski, and Hognjun Zheng. Slicing multi-threaded java
programs: A case study. Technical Report KSU CIS TR 99-7, De-
partment of Computing and Information Sciences, Kansas State
University, 1999.

[DFHH00] S. Danicic, C. Fox, M. Harman, and R. Hierons. Consit: A con-
ditioned program slicer. In International Conference on Software
Maintenance, pages 216–226, 2000.

[DGS92] E. Duesterwald, R. Gupta, and M. L. Soffa. Distributed slicing
and partial re-execution for distributed programs. In 5th Work-
shop on Languages and Compilers for Parallel Computing, volume 757
of LNCS, pages 497–511. Springer, 1992.

[DHS95] Sebastian Danicic, Mark Harman, and Yoga Sivagurunathan. A
parallel algorithm for static program slicing. Information Process-
ing Letters, 56(6):307–313, 1995.

[DKN01] Yunbo Deng, Suraj Kothari, and Yogy Namara. Program slice
browser. In Ninth International Workshop on Program Comprehen-
sion (IWPC’01), pages 50–59, 2001.

[DL01] Andrea De Lucia. Program slicing: Methods and applications.
In IEEE workshop on Source Code Analysis and Manipulation (SCAM
2001), 2001. Invited paper.

[DLFM96] A. De Lucia, A. R. Fasolino, and M. Munro. Understanding func-
tion behaviors through program slicing. In 4th IEEE Workshop on
Program Comprehension, pages 9–18, 1996.

228 BIBLIOGRAPHY

[DLHHK03] Andrea De Lucia, Mark Harman, Rob Hierons, and Jens Krinke.
Unions of slices are not slices. In 7th European Conference on Soft-
ware Maintenance and Reengineering, 2003.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A lan-
guage independent approach for detecting duplicated code. In
Proceedings; IEEE International Conference on Software Maintenance,
pages 109–118, 1999.

[DT97] T. B. Dinesh and F. Tip. A case-study of a slicing-based ap-
proach for locating type errors. In Proceedings of the 2nd Interna-
tional Workshop on the Theory and Practice of Algebraic Specifications
(ASF+SDF’97), 1997.

[EBP01] James Ezick, Gianfranco Bilardi, and Keshav Pingali. Efficient
computation of interprocedural control dependence. Technical
Report TR2001-1850, Cornell University, 2001.

[Ehr96] Frank Ehrich. Entwurf und Implementierung eines Werkzeugs
zur Visualisierung von Programmabhängigkeitsgraphen. Diplo-
marbeit, TU Braunschweig, 1996. (In German).

[Ern94] Michael D. Ernst. Practical fine-grained static slicing of optimized
code. Technical Report MSR-TR-94-14, Microsoft Research, Red-
mond, WA, July 1994.

[ERT01] James Ezick, David W. Richardson, and Tim Teitelbaum. Practi-
cal model checking and example generation for context-free pro-
cesses. Technical Report TR2002-1851, Cornell University, 2001.

[FFSA98] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexan-
der Aiken. Partial online cycle elimination in inclusion constraint
graphs. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 85–96, 1998.

[FG97] Istvan Forgács and Tibor Gyimóthy. An efficient interprocedural
slicing method for large programs. In Proceedings of SEKE’97, the
9th International Conference on Software Engineering & Knowledge
Engineering, pages 279–287, 1997.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The pro-
gram dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319–349, July
1987.

[FR01] M. A. Francel and S. Rugaber. The value of slicing while debug-
ging. In Proceedings of the 7th International Workshop on Program
Comprehension, pages 151–169, 2001.

BIBLIOGRAPHY 229

[FRT95] John Field, G. Ramalingam, and Frank Tip. Parametric program
slicing. In Conference Record of the 22nd ACM Symposium on Prin-
ciples of Programming Languages, pages 379–392, 1995.

[FT98] John Field and Frank Tip. Dynamic dependence in term rewriting
systems and its application to program slicing. Information and
Software Technology, 40(11–12):609–636, 1998.

[FTAM99] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. Points-to anal-
ysis for program understanding. The Journal of Systems and Soft-
ware, 44(3):213–227, 1999.

[FW95] M. Fröhlich and M. Werner. Demonstration of the interactive
graph visualization system davinci. In R. Tamassia and I. G.
Tollis, editors, Graph Drawing, DIMACS International Workshop
GD’94, volume 894 of LNCS. Springer, 1995.

[Gal90] Keith B. Gallagher. Surgeon’s assistant limits side effects. IEEE
Software, 7(64), 1990.

[Gal92] Keith Brian Gallagher. Evaluating the surgeon’s assistant: Results
of a pilot study. In Proceedings of the International Conference on
Software Maintenance, pages 236–244, 1992.

[Gal96] Keith B. Gallagher. Visual impact analysis. In Proceedings of the In-
ternational Conference on Software Maintenance, pages 52–58, 1996.

[GH97] Richard Gerber and Seongsoo Hong. Slicing real-time programs
for enhanced schedulability. ACM Transactions on Programming
Languages and Systems, 13(3):525–555, 1997.

[GHS92] Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. An ap-
proach to regression testing using slicing. In Proceedings of the
IEEE Conference on Software Maintenance, pages 299–308, 1992.

[GL91] K. B. Gallagher and J. R. Lyle. Using program slicing in soft-
ware maintenance. IEEE Transactions on Software Engineering,
17(8):751–761, 1991.

[GM99] Valerie Gouranton and Daniel Le Metayer. Dynamic slicing: a
generic analysis based on a natural semantics format. Journal of
Logic and Computation, 9(6):835–871, 1999.

[GM00] D. Goswami and R. Mall. Dynamic slicing of concurrent pro-
grams. In High Performance Computing - HiPC 2000, 7th Interna-
tional Conference, volume 1970 of LNCS, pages 15–26, 2000.

[GM02] D. Goswami and R. Mall. An efficient method for computing
dynamic program slices. Information Processing Letters, pages 111–
117, 2002.

230 BIBLIOGRAPHY

[GNV88] E. R. Gansner, S. C. North, and K. P. Vo. DAG - A program
that draws directed graphs. Software, Practice and Experience,
18(11):1047–1062, 1988.

[GO97] Keith Gallagher and Liam O’Brien. Reducing visualization com-
plexity using decomposition slices. In Software Visualization Work-
shop, pages 113–118, 1997.

[Gop91] Rajiv Gopal. Dynamic program slicing based on dependence rela-
tions. In Conference on Software Maintenance, pages 191–200, 1991.

[Gri01] William G. Griswold. Making slicing practical: The final mile,
2001. Invited Talk, PASTE’01.

[GS93] D. Grunwald and H. Srinivasan. Data flow equations for explic-
itly parallel programs. In Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 1993.

[GS95] Rajiv Gupta and Mary Lou Soffa. Hybrid slicing: An approach for
refining static slices using dynamic information. In Proceedings of
SIGSOFT’95 Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 29–40, 1995.

[Hal95] R. J. Hall. Automatic extraction of executable program subsets
by simultaneous dynamic program slicing. Automated Software
Engineering, 2(1):33–53, March 1995.

[Hau89] Philip A. Hausler. Denotational program slicing. In 22nd Annual
Hawaii International Conference on System Sciences, pages 486–495,
1989.

[HC98] Mary Jean Harrold and Ning Ci. Reuse-driven interprocedural
slicing. In Proceedings of the 20th International Conference on Soft-
ware Engineering, pages 74–83, 1998.

[HCD+99] John Hatcliff, James C. Corbett, Matthew B. Dwyer, Stefan
Sokolowski, and Hongjun Zheng. A formal study of slicing for
multi-threaded programs with JVM concurrency primitives. In
Static Analysis Symposium, volume 1694 of LNCS, pages 1–18.
Springer, 1999.

[HD94] M. Harman and S. Danicic. A new approach to program slicing.
In 7th International Quality Week, 1994.

[HD95] Mark Harman and Sebastian Danicic. Using program slicing
to simplify testing. Software Testing, Verification and Reliability,
5(3):143–162, September 1995.

[HD97] Mark Harman and Sebastian Danicic. Amorphous program slic-
ing. In 5th IEEE International Workshop on Program Comprenhesion
(IWPC’97), pages 70–79, 1997.

BIBLIOGRAPHY 231

[HD98] M. Harman and S. Danicic. A new algorithm for slicing unstruc-
tured programs. Journal of Software Maintenance, 10(6):415–441,
1998.

[HDC88] J. C. Hwang, M. W. Du, and C. R. Chou. Finding program
slices for recursive procedures. In Proceedings COMPSAC 88: The
Twelfth International Computer Software and Applications Conference,
pages 220–227, 1988.

[HDZ00] John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing
software for model construction. Higher-Order and Symbolic Com-
putation, 13(4):315–353, 2000.

[Hec77] M. S. Hecht. Flow Analysis of Computer Programs. The Computer
Science Library: Programming Language Series. North-Holland,
New York, 1977.

[HG98] Mark Harman and Keith Brian Gallagher. Program slicing. Infor-
mation and Software Technology, 40(11–12):577–581, 1998.

[HH01] Mark Harman and Rob Hierons. An overview of program slicing.
Software Focus, 2(3):85–92, 2001.

[HHD99] Robert M. Hierons, Mark Harman, and Sebastian Danicic. Using
program slicing to assist in the detection of equivalent mutants.
Software Testing, Verification and Reliability, 9(4):233–262, 1999.

[HHD+01] Mark Harman, Robert M. Hierons, Sebastian Danicic, John
Howroyd, Mike Laurence, and Chris Fox. Node coarsening cal-
culi for program slicing. In Working Conference on Reverse Engi-
neering, 2001.

[Hin01] Michael Hind. Pointer analysis: Haven’t we solved this prob-
lem yet? In 2001 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE’01), 2001.

[HKF95] Tommy Hoffner, Mariam Kamkar, and Peter Fritzson. Evalua-
tion of program slicing tools. In 2nd International Workshop on
Automated and Algorithmic Debugging (AADEBUG), pages 51–69,
1995.

[HMR93] Mary Jean Harrold, Brian A. Malloy, and Gregg Rothermel. Ef-
ficient construction of program dependence graphs. In Interna-
tional Symposium on Software Testing and Analysis, pages 160–170,
1993.

[Hor90] Susan Horwitz. Identifying the semantic and textual differences
between two versions of a program. In Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Im-
plementation, pages 234–245, 1990.

232 BIBLIOGRAPHY

[HP00] Michael Hind and Anthony Pioli. Which pointer analysis should
i use? In International Symposium on Software Testing and Analysis,
pages 113–123, 2000.

[HPR88] Susan Horwitz, Jan Prins, and Thomas Reps. On the adequacy of
program dependence graphs for representing programs. In Con-
ference Record of the Fifteenth Annual ACM Symposium on Principles
of Programming Languages, pages 146–157, 1988.

[HPR89] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating nonin-
terfering versions of programs. ACM Transactions on Programming
Languages and Systems, 11(4):345–387, July 1989.

[HR91] S. Horwitz and T. Reps. Efficient comparison of program slices.
Acta Informatica, 28:713–732, 1991.

[HR92] Susan B. Horwitz and Thomas W. Reps. The use of program de-
pendence graphs in software engineering. In Proceedings of the
Fourteenth International Conference on Software Engineering, pages
392–411, 1992.

[HR96] Mary Jean Harrold and Gregg Rothermel. Syntax-directed con-
struction of program dependence graphs. Technical Report OSU-
CISRC-5/96-TR32, The Ohio State University, May 1996.

[HR97] M. Harrold and G. Rothermel. Aristotle: A system for research
on and development of program-analysis-based tools. Technical
Report OSU-CISRC-3/97-TR17, Department of Computer and In-
formation Science, The Ohio State University, 1997.

[HRB88] Susan B. Horwitz, Thomas W. Reps, and David Binkley. Inter-
procedural slicing using dependence graphs. In Proceedings of
the ACM SIGPLAN ’88 Conference on Programming Language De-
sign and Implementation, volume 23(7) of ACM SIGPLAN Notices,
pages 35–46, 1988.

[HRB90] Susan B. Horwitz, Thomas W. Reps, and David Binkley. Inter-
procedural slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26–60, January 1990.

[HRS98] Mary Jean Harrold, Gregg Rothermel, and Saurabh Sinha. Com-
putation of interprocedural control dependence. In International
Symposium on Software Testing and Analysis, pages 11–20, 1998.

[HS97] D. Huynh and Y. Song. Forward computation of dynamic slicing
in the presence of structured jump statements. In Proceedings of
ISACC’97, pages 73–81, 1997.

BIBLIOGRAPHY 233

[HSD96] Mark Harman, Dan Simpson, and Sebastian Danicic. Slicing pro-
grams in the presence of errors. Formal Aspects of Computing,
8(4):490–497, 1996.

[HT01] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis
using CLA: A million lines of c code in a second. In SIGPLAN
Conference on Programming Language Design and Implementation,
pages 254–263, 2001.

[HW97] Mats P. E. Heimdahl and Michael W. Whalen. Reduction and slic-
ing of hierarchical state machines. In Proceedings of the Sixth Eu-
ropean Software Engineering Conference (ESEC/FSE 97), pages 450–
467, 1997.

[INIY96] M. Iwaihara, M. Nomura, S. Ichinose, and H. Yasuura. Program
slicing on vhdl descriptions and its applications. In Asian Pacific
Conference on Hardware Description Languages (APCHDL), pages
132–139, 1996.

[Int90] International Organization for Standardization. ISO/IEC
9899:1990: Programming languages – C. International Organiza-
tion for Standardization, 1990.

[JR94a] Daniel Jackson and Eugene J. Rollins. Abstraction mechanisms
for pictorial slicing. In Proceedings of the IEEE Workshop on Program
Comprehension, pages 82–88, 1994.

[JR94b] Daniel Jackson and Eugene J. Rollins. A new model of program
dependences for reverse engineering. In Proceedings of the second
ACM SIGSOFT Symposium on Foundations of Software Engineering,
pages 2–10, 1994.

[JZR91] J. Jiang, X. Zhou, and D. J. Robson. Program slicing for C – The
problems in implementation. In International Conference on Soft-
ware Maintenance, pages 182–190, 1991.

[Kam93] Mariam Kamkar. Interprocedural dynamic slicing with applications
to debugging and testing. PhD thesis, Department of Computer
Science and Information Science, Linköping University, Sweden,
1993.

[Kam98] Mariam Kamkar. Application of program slicing in algorithmic
debugging. Information and Software Technology, 40(11–12):637–
645, 1998.

[KF92] Bogdan Korel and R. Ferguson. Dynamic slicing of distributed
programs. Applied Mathematics and Computer Science Journal,
2(2):199–215, 1992.

234 BIBLIOGRAPHY

[KFS93a] Mariam Kamkar, P. Fritzson, and N. Shahmerhi. Three ap-
proaches to interprocedural dynamic slicing. Microprocessing and
Microprogramming, 38:625–636, 1993.

[KFS93b] Mariam Kamkar, Peter Fritzson, and Nahid Shahmehri. Inter-
procedural dynamic slicing applied to interprocedural data how
testing. In Proceedings of the Conference on Software Maintenance,
pages 386–395, 1993.

[KH01] Raghavan Komondoor and Susan Horwitz. Using slicing to iden-
tify duplication in source code. In Eigth International Static Analy-
sis Symposium (SAS), volume 2126 of LNCS, 2001.

[KH02] Sumit Kumar and Susan Horwitz. Better slicing of programs with
jumps and switches. In Proceedings of FASE 2002: Fundamental
Approaches to Software Engineering, volume 2306 of LNCS, pages
96–112. Springer, 2002.

[Kil73] Gary A. Kildall. A unified approach to global program optimiza-
tion. In Conference Record of the ACM Symposium on Principles of
Programming Languages, pages 194–206, 1973.

[KK95] Mariam Kamkar and P. Krajina. Dynamic slicing of distributed
programs. In International Conference on Software Maintenance,
pages 222–231, 1995.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone detection sys-
tem for large scale source code. IEEE Transactions on Software En-
gineering, 28(7):654–670, July 2002.

[KKP+81] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In Conference
Record of the Eighth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 207–218, 1981.

[KL88] Bogdan Korel and Janusz Laski. Dynamic program slicing. Infor-
mation Processing Letters, 29(3):155–163, October 1988.

[KL90] Bogdan Korel and Janusz Laski. Dynamic slicing in computer
programs. Journal of Systems and Software, 13(3):187–195, 1990.

[KN96] Eleftherios Koutsofios and Stephen C. North. Drawing graphs with
dot. Murray Hill, NJ, 1996.

[Kno98] Jens Knoop. Optimal Interprocedural Program Optimization, volume
1428 of LNCS. Springer, 1998.

[KO90] Heikki Kälviäinen and Erkki Oja. Comparisons of attributed
graph matching algorithms for computer vision. Technical re-
port, Lappeenranta University Of Technology, Finland, 1990.

BIBLIOGRAPHY 235

[Kon97] Kostas Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. In Proceedings
Fourth Working Conference on Reverse Engineering, pages 44–54,
1997.

[Kor85] Richard E. Korf. Depth-first iterative deepening: An optimal ad-
missable tree search. Artificial Intelligence, 27:97–109, 1985.

[Kor95] Bogdan Korel. Computation of dynamic slices for programs with
arbitrary control flow. In 2nd International Workshop on Automated
Algorithmic Debugging (AADEBUG’95), 1995.

[Kor97] Bogdan Korel. Computation of dynamic slices for unstructured
programs. IEEE Transactions on Software Engineering, 23(1):17–34,
1997.

[KR97a] Bogdan Korel and Juergen Rilling. Application of dynamic slic-
ing in program debugging. In Automated and Algorithmic Debug-
ging, pages 43–58, 1997.

[KR97b] Bogdan Korel and Juergen Rilling. Dynamic program slicing in
understanding of program execution. In 5th IEEE International
Workshop on Program Comprenhesion (IWPC’97), pages 80–89, 1997.

[KR98] Bogdan Korel and Juergen Rilling. Dynamic program slicing
methods. Information and Software Technology, 40(11–12):647–659,
1998.

[Kri98] Jens Krinke. Static slicing of threaded programs. In Proc. ACM
SIGPLAN/SIGFSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE’98), pages 35–42. ACM Press, 1998.
ACM SIGPLAN Notices 33(7).

[Kri01] Jens Krinke. Identifying similar code with program dependence
graphs. In Proc. Eigth Working Conference on Reverse Engineering,
pages 301–309, 2001.

[Kri02] Jens Krinke. Evaluating context-sensitive slicing and chopping.
In International Conference on Software Maintenance, pages 22–31,
2002.

[KS92] Jens Knoop and Bernhard Steffen. The interprocedural coinci-
dence theorem. In International Conference on Compiler Construc-
tion, pages 125–140, 1992.

[KS98] Jens Krinke and Gregor Snelting. Validation of measurement soft-
ware as an application of slicing and constraint solving. Informa-
tion and Software Technology, 40(11-12):661–675, December 1998.

236 BIBLIOGRAPHY

[KSF92] Mariam Kamkar, Nahid Shahmehri, and Peter Fritzson. Inter-
procedural dynamic slicing. In Proceedings of the 4th Conference
on Programming Language Implementation and Logic Programming,
pages 370–384, 1992.

[KSV96] Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Parallelism
for free: Efficient and optimal bitvector analyses for parallel pro-
grams. ACM Transactions on Programming Languages and Systems,
18(3):268–299, May 1996.

[KU77] J. B. Kam and J. D. Ullman. Monotone data flow analysis frame-
works. Acta Informatica, 7:309–317, 1977.

[KY94] Bogdan Korel and S. Yalamanchili. Forward derivation of dy-
namic slices. In Symposium on Testing, Analysis, and Verification,
pages 66–79, 1994.

[LA93] Panos E. Livadas and Scott D. Alden. A toolset for program un-
derstanding. In Bruno Fadini and Vaclav Rajlich, editors, Proceed-
ings of the IEEE Second Workshop on Program Comprehension, 1993.

[Lak92] Arun Lakhotia. Improved interprocedural slicing algorithm.
Technical Report CACS TR-92-5-8, University of Southwestern
Louisiana, 1992.

[Lak93] Arun Lakhotia. Constructing call multigraphs using dependence
graphs. In ACM SIGACT/SIGPLAN Symposium on Principles of
Programming Languages (POPL’93), pages 273–284, 1993.

[LB93] James R. Lyle and David Binkley. Program slicing in the presence
of pointers. In Proceedings of the 1993 Software Engineering Research
Forum, pages 255–260, 1993.

[LC94a] P. Livadas and S. Croll. A new algorithm for the calculation of
transitive dependences. Journal of Software Maintenance, 6:100–
127, 1994.

[LC94b] Panos E. Livadas and Stephen Croll. System dependence graphs
based on parse trees and their use in software maintenance. In-
formation Sciences, 76(3-4):197–232, 1994.

[LD98] Arun Lakhotia and Jean-Christophe Deprez. Restructuring pro-
grams by tucking statements into functions. Information and Soft-
ware Technology, 40(11–12):677–690, 1998.

[LD99] Arun Lakhotia and Jean-Christophe Deprez. Restructuring func-
tions with low cohesion. In Working Conference on Reverse Engi-
neering, pages 36–46, 1999.

BIBLIOGRAPHY 237

[LGB99] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries
and Autonomous Citation Indexing. IEEE Computer, 32(6):67–71,
1999.

[LH96] L. Larsen and M. J. Harrold. Slicing object-oriented software. In
18th International Conference on Software Engineering, pages 495–
505, 1996.

[LH98] Donglin Liang and Mary Jean Harrold. Slicing objects using sys-
tem dependence graphs. In Proceedings of the International Confer-
ence On Software Maintanence, pages 358–367, 1998.

[LH99a] Donglin Liang and Mary Jean Harrold. Efficient points-to anal-
ysis for whole-program analysis. In Proceedings of the 7th Euro-
pean Software Engineering Conference and 7th ACM SIGSOFT Foun-
dations of Software Engineering, pages 199–215, 1999.

[LH99b] Donglin Liang and Mary Jean Harrold. Reuse-driven interproce-
dural slicing in the presence of pointers and recursion. In Proceed-
ings of the International Conference On Software Maintanence, 1999.

[Lit01] Tim Littlefair. An Investigation into the Use of Software Code Metrics
in the Industrial Software Development Environment. PhD thesis,
Faculty of Communications, Health and Science, Edith Cowan
University, 2001.

[LJ00] Panos E. Livadas and Theodore Johnson. An optimal algorithm
for the construction of the system dependence graph. Information
Sciences, 125(1-4):99–131, 2000.

[LPP70] D. C. Luckham, D. M. R. Park, and M. S. Paterson. On for-
malised computer programs. Journal of Computer and System Sci-
ences, 4(3):220–249, June 1970.

[LR92] Panos E. Livadas and Prabal K. Roy. Program dependence analy-
sis. In Proceedings of the International Conference on Software Main-
tenance, pages 356–365. IEEE Computer Society Press, 1992.

[LT79] T. Lengauer and R. E. Tarjan. A fast algorithm for finding domina-
tors in a flow graph. ACM Transactions on Programming Languages
and Systems, 1(1):121–141, July 1979.

[LV93] F. Lanubile and G. Visaggio. Function recovery based on program
slicing. In Proceedings of the International Conference on Software
Maintenance, pages 396–405, 1993.

[LV97] Filippo Lanubile and Giuseppe Visaggio. Extracting reusable
functions by flow graph-based program slicing. IEEE Transactions
on Software Engineering, 23(4):246–259, April 1997.

238 BIBLIOGRAPHY

[LW87] James R. Lyle and Mark Weiser. Automatic program bug location
by program slicing. In 2 International Conference on Computers and
Applications, pages 877–882, 1987.

[LW97] J. Lyle and D. Wallace. Using the unravel program slicing tool to
evaluate high integrity software. In Proceedings of Software Quality
Week, 1997.

[Lyl84] James R. Lyle. Evaluating Variations of Program Slicing for Debug-
ging. PhD thesis, University of Maryland, 1984.

[MACE02] Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J.
Eggers. Improving program slicing with dynamic points-to data.
In Proceedings of the 10th International Symposium on the Founda-
tions of Software Engineering, 2002.

[Mar99] Florian Martin. Generating Program Analyzers. PhD thesis, Uni-
versität des Saarlandes, Saarbrücken, Germany, 1999.

[MC88] B. P. Miller and J.-D. Choi. A mechanism for effiecient debugging
of parallel programs. In ACM SIGPLAN’88 Conference on Program-
ming Language Design and Implementation, pages 135–144, 1988.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging con-
current programs. ACM Computing Surveys, 21(4):593–622, De-
cember 1989.

[MJ81] Steven S. Muchnick and Neil D. Jones, editors. Program Flow Anal-
ysis: Theory and Applications. Prentice-Hall, 1981.

[MLM96] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the au-
tomatic detection of function clones in a software system using
metrics. In Proceedings of the International Conference on Software
Maintenance, pages 244–254, 1996.

[MMKM94] B. A. Malloy, J. D. Mcgregor, A. Krishnaswamy, and
M. Medlkonda. An extensible program representation for
object-oriented software. ACM SIGPLAN Notices, 29(12):38–47,
1994.

[MMS02] G.B. Mund, R. Mall, and S. Sarkar. An efficient dynamic program
slicing technique. Information and Software Technology, 44(2):123–
132, 2002.

[MOS01] Markus Müller-Olm and Helmut Seidl. On optimal slicing of par-
allel programs. In STOC 2001 (33th ACM Symposium on Theory of
Computing), pages 647–656, 2001.

[MT98] L. Millett and T. Teitelbaum. Slicing promela and its applications
to model checking. In Proceedings of the 4th International SPIN
Workshop, 1998.

BIBLIOGRAPHY 239

[MT00] Lynette I. Millett and Tim Teitelbaum. Issues in slicing promela
and its applications to model checking, protocol understanding,
and simulation. International Journal on Software Tools for Technol-
ogy Transfer, 2(4):343–349, 2000.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[NA98] G. Naumovich and G. S. Avrunin. A conservative data flow al-
gorithm for detecting all pairs of statements that may happen in
parallel. In Proceedings of 6th International Symposium on the Foun-
dations of Software Engineering, pages 24–34, 1998.

[NAC99] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An ef-
ficient algorithm for computing mhp information for concurrent
java programs. In O. Nierstrasz and M. Lemoine, editors, 7th
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, volume 1687 of LNCS, pages 338–354. Springer, 1999.

[NJKI99] Akira Nishimatsu, Minoru Jihira, Shinji Kusumoto, and Katsuro
Inoue. Call-mark slicing: An efficient and economical way of
reducing slice. In International Conference of Software Engineering,
pages 422–431, 1999.

[NNH99] F. Nielson, H. Nielson, and C. Hankin. Principles of program anal-
ysis. Springer, 1999.

[NR00] Mangala Gowri Nanda and S. Ramesh. Slicing concurrent pro-
grams. In International Conference on Software Testing and Analysis
(ISSTA 2000), pages 180–190, 2000.

[OB98] Linda M. Ott and James M. Bieman. Program slices as an abstrac-
tion for cohesion measurement. Information and Software Technol-
ogy, 40(11-12):691–700, 1998.

[OHFI01] Fumiaki Ohata, Kouya Hirose, Masato Fujii, and Katsuro Inoue.
A slicing method for object-oriented programs using lightweight
dynamic information. In Proceedings of the 8th Asia-Pacific Software
Engineering Conference, 2001.

[OO84] Karl J. Ottenstein and Linda M. Ottenstein. The program depen-
dence graph in a software development environment. In Proceed-
ings of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments, volume 19(5)
of ACM SIGPLAN Notices, pages 177–184, 1984.

[OSH01a] A. Orso, S. Sinha, and M. Harrold. Effects of pointers on data
dependences. In Proc. of the 9th International Workshop on Program
Comprehension, 2001.

240 BIBLIOGRAPHY

[OSH01b] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Incre-
mental slicing based on data-dependences types. In International
Conference on Software Maintenance, 2001.

[OT89] Linda M. Ott and J. J. Thuss. The relationship between slices and
module cohesion. In Proceedings of the 11th ACM conference on
Software Engineering, pages 198–204, 1989.

[OT93] Linda M. Ott and Jeff J. Thuss. Slice based metrics for estimat-
ing cohesion. In Proceedings of the IEEE-CS International Metrics
Symposium, pages 71–81, 1993.

[Ott92] Linda M. Ott. Using slice profiles and metrics during software
maintenance. In Proceedings of the 10th Annual Software Reliability
Symposium, pages 16–23, 1992.

[PC90] Andy Podgurski and Lori A. Clarke. A formal model of pro-
gram dependences and its implications for software testing, de-
bugging and maintenance. IEEE Transactions on Software Engineer-
ing, 16(9):965–979, September 1990.

[PMP00] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. JPlag:
Finding plagiarisms among a set of programs. Technical Report
2000-1, Fakultät für Informatik, Universität Karlsruhe, Germany,
2000.

[PW98] William Pugh and David Wonnacott. Constraint-based array de-
pendence analysis. ACM Transactions on Programming Languages
and Systems, 20(3):635–678, May 1998.

[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive
analysis is undecidable. ACM Transactions on Programming Lan-
guages and Systems, 22(2):416–430, 2000.

[RC00] Atanas Rountev and Satish Chandra. Off-line variable substitu-
tion for scaling points-to analysis. In Proceedings of the 2000 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 47–56, 2000.

[Rep93] Thomas Reps. The Wisconsin Program-Integration System 2.0 Refer-
ence Manual. University of Wisconsin, Madison, 1993.

[Rep98] Thomas Reps. Program analysis via graph reachability. Informa-
tion and Software Technology, 40(11–12):701–726, 1998.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise inter-
procedural dataflow analysis via graph reachability. In Conference
Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 49–61, 1995.

BIBLIOGRAPHY 241

[RHSR94] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve
Rosay. Speeding up slicing. In Proceedings of the ACM SIGSOFT
’94 Symposium on the Foundations of Software Engineering, pages
11–20, 1994.

[RLP+01] Barbara G. Ryder, W. Landi, B. Philip, A. Stocks, S. Zhang, and
R. Altucher. A schema for interprocedural modification side-
effect analysis with pointer aliasing. ACM Transactions on Pro-
gramming Languages and Systems, 23(2):105–186, March 2001.

[Rob] Torsten Robschink. Phd thesis. In preparation.

[ROMA92] Debra J. Richardson, T. Owen O’Malley, Cynthia Tittle Moore,
and Stephanie Leif Aha. Developing and integrating prodag into
the arcadia environment. In Proceedings of the Fifth Symposium on
Software Development Environments, pages 109–119, 1992.

[RR95] Thomas Reps and Genevieve Rosay. Precise interprocedural
chopping. In Proceedings of the 3rd ACM Symposium on the Foun-
dations of Software Engineering, pages 41–52, 1995.

[RRB99] James Reichwein, Gregg Rothermel, and Margaret M. Burnett.
Slicing spreadsheets: An integrated methodology for spreadsheet
testing and debugging. In Conference on Domain Specific Lan-
guages, pages 25–38, 1999.

[RS02] Torsten Robschink and Gregor Snelting. Efficient path conditions
in dependence graphs. In Proceedings of the 24th International Con-
ference of Software Engineering (ICSE), pages 478–488, 2002.

[RT96] Thomas Reps and Todd Turnidge. Program specialization via
program slicing. In Proceedings of the Dagstuhl Seminar on Partial
Evaluation, volume 1110 of LNCS, pages 409–429, 1996.

[RT01] Filippo Ricca and Paolo Tonella. Web application slicing. In Inter-
national Conference on Software Maintenance, pages 148–157, 2001.

[Rus02] Jeffry Russel. Program slicing for codesign. In Tenth International
Symposium on Hardware/Software Codesign, 2002.

[RY89] Thomas Reps and Wuu Yang. The semantics of program slicing
and program integration. In Proceedings of the Colloquium on Cur-
rent Issues in Programming Languages, volume 352 of LNCS, pages
360–374. Springer, 1989.

[San95] Georg Sander. Graph layout through the VCG tool. In Roberto
Tamassia and Ioannis G. Tollis, editors, Proc. DIMACS Int. Work.
Graph Drawing, GD’94, number 894 in LNCS, pages 194–205.
Springer, 1995.

242 BIBLIOGRAPHY

[SD96] Stephane Schoenig and Mireille Ducasse. A backward slicing al-
gorithm for prolog. In Static Analysis Symposium, pages 317–331,
1996.

[Sel89] Rebecca Parsons Selke. A rewriting semantics for program de-
pendence graphs. In Conference Record of the Sixteenth ACM Sym-
posium on Principles of Programming Languages, pages 12–24, 1989.

[SH96] Anthony M. Sloane and Jason Holdsworth. Beyond traditional
program slicing. In International Symposium on Software Testing
and Analysis, pages 180–186, 1996.

[SH97] M. Shapiro and S. Horwitz. The effects of the precision of pointer
analysis. In Proceedings from the 4th International Static Analysis
Symposium, volume 1302 of LNCS, pages 16–34, 1997.

[SHD97] Yoga Sivagurunathan, Mark Harman, and Sebastian Danicic. lic-
ing, I/O and the implicit state. In 3rd International Workshop on
Automated Debugging (AADEBUG’97), pages 59–65, 1997.

[SHR99] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel.
System-dependence-graph-based slicing of programs with arbi-
trary interprocedural control flow. In International Conference on
Software Engineering, pages 432–441, 1999.

[SHR01] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. In-
terprocedural control dependence. ACM Transactions on Software
Engineering and Methodology, 10(2):209–254, 2001.

[Sne96] Gregor Snelting. Combining slicing and constraint solving for
validation of measurement software. In Static Analysis Sympo-
sium, volume 1145 of LNCS, pages 332–348. Springer, 1996.

[SP81] Micha Sharir and Amir Pnueli. Two approaches to interproce-
dural data flow analysis. In Program Flow Analysis: Theory and
Applications, pages 189–233. Prentice-Hall, 1981.

[SRK03] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient
path conditions in dependence graphs for software safety analy-
sis. Submitted for publication, 2003.

[SS93] V. Sarkar and B. Simons. Parallel program graphs and their clas-
sification. In Proc. 6th Workshop on Languages and Compilers for
Parallel Computing, volume 768 of LNCS, pages 633–655. Springer,
1993.

[SS00] Helmut Seidl and Bernhard Steffen. Constraint-based inter-
procedural analysis of parallel programs. In Proceedings of
ESOP’00, 9th European Symposium on Programming, volume 1782
of LNCS, 2000.

BIBLIOGRAPHY 243

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In
Symposium on Principles of Programming Languages, pages 32–41,
1996.

[Ste98] Christoph Steindl. Intermodular slicing of object-oriented pro-
grams. In International Conference on Compiler Construction, vol-
ume 1383 of LNCS, pages 264–278. Springer, 1998.

[Ste99a] Christoph Steindl. Benefits of a data flow-aware programming
environment. In Workshop on Program Analysis for Software Tools
and Engineering (PASTE’99), 1999.

[Ste99b] Christoph Steindl. Program Slicing for Object-Oriented Program-
ming Languages. PhD thesis, Johannes Kepler University Linz,
1999.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods
for visual understanding of hierarchical system structures. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-11(2):109–125,
February 1981.

[TAFM97] Paolo Tonella, Giuliano Antoniol, Roberto Fiutem, and Ettore
Merlo. Flow insensitive C++ pointers and polymorphism analy-
sis and its application to slicing. In Proceedings of the 19th Interna-
tional Conference on Software Engineering (ICSE ’97), pages 433–444,
1997.

[TCFR96] F. Tip, J-D Choi, J. Field, and G. Ramalingam. Slicing class hier-
archies in C++. In Conference on Object-oriented Programming Sys-
tems, Languages and Applications, pages 179–197, 1996.

[TD01] Frank Tip and T. B. Dinesh. A slicing-based approach for locating
type errors. ACM Transactions on Software Engineering and Method-
ology, 10(1):5–55, January 2001.

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of
programming languages, 3(3), September 1995.

[TOI01] T. Takada, F. Ohata, and K. Inoue. Dependence-cache slicing: A
program slicing method using lightweight dynamic information.
In Proceedings of the 10th International Workshop on Program Com-
prehension, pages 169–177, 2001.

[UHS97] N. Uchihira, S. Honiden, and T. Seki. Hypersequential program-
ming. IEEE Concurrency, pages 44–54, 1997.

[VA00] Wamberto Weber Vasconcelos and Marcelo A. T. Aragao. Slicing
knowledge-based systems: Techniques and applications. Knowl-
edge Based Systems, 13(4), 2000.

244 BIBLIOGRAPHY

[Vas99] Wamberto Weber Vasconcelos. A flexible framework for dynamic
and static slicing of logic programs. In Proceedings of PADL’99,
volume 1551 of LNCS, pages 259–274, 1999.

[Ven91] Guda A. Venkatesh. The semantic approach to program slicing.
In Proceedings of the ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation, pages 26–28, 1991.

[Ven95] G. A. Venkatesh. Experimental results from dynamic slicing of C
programs. ACM Transactions on Programming Languages and Sys-
tems, 17(2):197–216, March 1995.

[vG01] R. van Glabbeek. Handbook of Process Algebra, chapter The Linear
Time - Branching Time Spectrum I: The Semantics of Concrete,
Sequential Processes. Elsevier, 2001.

[VW96] K. L. Verco and M. J. Wise. Plagiarism à la mode: a comparison
of automated systems for detecting suspected plagiarism. The
Computer Journal, 39(9):741–750, 1996.

[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steens-
gaard. Value dependence graphs: Representation without taxa-
tion. In Proceedings of the Twenty-First ACM Symposium on Princi-
ples of Programming Languages (POPL), pages 297–310, 1994.

[Wei79] Mark Weiser. Program slices: formal, psychological, and practical in-
vestigations of an automatic program abstraction method. PhD thesis,
University of Michigan, Ann Arbor, 1979.

[Wei82] Mark Weiser. Programmers use slices when debugging. Commu-
nications of the ACM, 25(7):446–452, 1982.

[Wei84] Mark Weiser. Program slicing. IEEE Transactions on Software En-
gineering, 10(4):352–357, July 1984.

[Wis92] Michael J. Wise. Detection of similarities in student programs:
YAP’ing may be preferable to plague’ing. In Proceedings of the
23rd Technical Symposium on Computer Science Education, SIGSCE
Bulletin, 1992.

[ZCU96] Jianjun Zhao, Jingde Cheng, and Kazuo Ushijima. Static slicing
of concurrent object-oriented programs. In Proceedings of the 20th
IEEE Annual International Computer Software and Applications Con-
ference, pages 312–320, 1996.

[ZCU98] Jianjun Zhao, Jingde Cheng, and Kazuo Ushijima. A dependence-
based representation for concurrent object-oriented software
maintenance. In Procedings of the 2nd Euromicro Conference on Soft-
ware Maintenance and Reengineering, pages 60–66, 1998.

BIBLIOGRAPHY 245

[Zha98] Jianjun Zhao. Applying slicing technique to software architec-
tures. In Proceedings of 4th IEEE International Conference on Engi-
neering of Complex Computer Systems, pages 87–98, 1998.

[Zha99a] Jianjun Zhao. Multithreaded dependence graphs for concurrent
java programs. In Proceedings of 1999 International Symposium on
Software Engineering for Parallel and Distributed Systems, pages 13–
23, 1999.

[Zha99b] Jianjun Zhao. Slicing concurrent Java programs. In Proceedings
of the 7th IEEE International Workshop on Program Comprehension,
pages 126–133, 1999.

	Introduction
	Slicing
	Slicing Sequential Programs
	Slicing Concurrent Programs

	Applications of Slicing
	Overview
	Accomplishments

	I Intraprocedural Analysis
	Intraprocedural Data Flow Analysis
	Control Flow Analysis
	Data Flow Analysis
	Iterative Data Flow Analysis
	Computation of def and ref for ANSI C
	Control Flow in Expressions
	Syntax-directed Data Flow Analysis

	The Program Dependence Graph
	Control Dependence
	Data Dependence
	Multiple Side Effects
	From Dependences to Dependence Graphs

	Related Work

	Slicing
	Weiser-style Slicing
	Slicing Program Dependence Graphs
	Precise, Minimal, and Executable Slices
	Unstructured Control Flow
	Related Work
	Unstructured Control Flow
	Other Forms of Slicing

	The Fine-Grained PDG
	A Fine-Grained Representation
	Data Types
	Structures
	Arrays
	Pointers

	Slicing the Fine-Grained PDG
	Discussion
	Related Work

	Slicing Concurrent Programs
	The Threaded CFG
	The Threaded PDG
	Control Dependence
	Data Dependence
	Interference Dependence
	Threaded Program Dependence Graph

	Slicing the tPDG
	Extensions
	Synchronized Blocks
	Communication via Send/Receive

	Related Work

	II Interprocedural Analysis
	Interprocedural Data Flow Analysis
	Interprocedural Reaching Definitions
	Interprocedural Realizable Paths
	Analyzing Interprocedural Programs
	Effect Calculation
	Context Encoding

	The Interprocedural Program Dependence Graph
	Control Dependence
	Data Dependence

	Related Work

	Interprocedural Slicing
	Realizable Paths in the IPDG
	Slicing with Summary Edges
	Context-Sensitive Slicing
	Explicitly Context-Sensitive Slicing
	Limited Context Slicing
	Folded Context Slicing
	Optimizations

	Evaluation
	Precision
	Speed
	Influence of Data Flow Analysis Precision

	Related Work

	Slicing Concurrent Interprocedural Programs
	A Simple Model of Concurrency
	The Threaded Interprocedural CFG
	The Threaded Interprocedural PDG
	Slicing the tIPDG
	Extensions
	Conclusions and Related Work

	III Applications
	Visualization of Dependence Graphs
	Graphical Visualization of PDGs
	A Declarative Approach to Layout PDGs
	Evaluation

	Textual Visualization of Slices
	Related Work
	Graphical Visualization
	Textual Visualization

	Making Slicing more Focused
	Distance-Limited Slices
	Chopping
	Context-Insensitive Chopping
	Chopping with Summary Edges
	Mixed Context-Sensitivity Chopping
	Limited/Folded Context Chopping
	An Improved Precise Algorithm
	Evaluation
	Non-Same-Level Chopping

	Barrier Slicing and Chopping
	Core Chop
	Self Chop

	Abstract Visualization
	Variables or Procedures as Criterion
	Visualization of the Influence Range

	Related Work
	Dynamic Slicing
	Variations of Dynamic Slicing

	Optimizing the PDG
	Reducing the Size
	Moving to Coarse Granularity
	Folding Cycles
	Removing Redundant Nodes

	Increasing Precision
	Improving Precision of Call Graphs
	Constant Propagation
	Common Subexpression Elimination

	Related Work

	Identifying Similar Code
	Identification of Similar Subgraphs
	Implementation
	Weighted Subgraphs
	Visualization

	Evaluation
	Optimal Limit
	Minimum Weight
	Running Time

	Comparison with other Tools
	Related Work

	Path Conditions
	Simple Path Conditions
	Execution Conditions
	Combining Execution Conditions
	SSA Form

	Complex Path Conditions
	Arrays
	Pointers

	Increasing the Precision
	Interprocedural Path Conditions
	Truncated Same-Level Path Conditions
	Non-Truncated Same-Level Path Conditions
	Truncated Non-Same-Level Path Conditions
	Non-Truncated Non-Same-Level Path Conditions
	Interprocedural Execution Conditions

	Multi-Threaded Programs
	Related Work

	VALSOFT
	Overview
	C Frontend
	SDG Library
	Analyzer
	The Slicer
	The Solver
	The GUI
	The `Tool Chest'
	An Approximate Dynamic Slicer
	The Duplicated Code Detector

	Other Systems

	Conclusions
	Additional Plots
	Bibliography

