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Abstract

Border bases of zero-dimensional ideals have turned out to be a very useful generalization
of Grobner bases in recent research in computational commutative algebra. Though
border bases share many properties with Grobner bases, they are still limited to zero-
dimensional ideals in polynomial rings. This doctoral thesis is devoted to generalize
border bases to the module setting and to apply them in various ways.

In the first part of this thesis, we generalize border bases of zero-dimensional ideals in a
polynomial ring P = K{z1,...,z,], where K denotes a field, to border bases of submod-
ules of free P-modules of finite rank with finite K-codimension. In particular, we prove
their existence and uniqueness, characterize them in various ways, and give an algorithm
for their computation that is based on linear algebra techniques. Then we introduce
generalized border bases of submodules of arbitrary finitely generated P-modules with
finite K-codimension. We characterize these generalized border bases by lifting them
to border bases in free modules and show that we can compute them under certain cir-
cumstances. As an application of generalized border bases, we are able to characterize
subideal border bases in various new ways and give an algorithm for their computation
that is based on linear algebra techniques instead of Grébner bases techniques. Moreover,
we prove Schreyer’s Theorem for border bases of submodules of free P-modules of finite
rank with finite K-codimension, i.e. we prove that the set of all neighbor liftings of such
a border basis forms a Grobner basis of the first syzygy module of the border basis with
respect to specific term orderings and we explicitly construct such a term ordering. As a
byproduct, we deduce a new, alternative proof of the characterization of border bases via
liftings of border syzygies which—in contrast to all previous proofs—does not depend on
the characterization of border bases via commuting matrices.

In the second part of this thesis, we study the effect of homogenization to border bases
of zero-dimensional ideals in P and applications of border bases in algebraic geometry.
This yields the new concept of projective border bases of homogeneous one-dimensional
ideals in P[x¢], where x( denotes the homogenizing indeterminate. We prove that deho-
mogenization and homogenization yield a one-to-one correspondence between projective
border bases in P[zg] and border bases in P of a specific shape. Then we explicitly de-
scribe the multiplicative structure of both a residue class ring R of P[zy] modulo a pro-
jective border basis and of the canonical module of R by means of formal multiplication
matrices that only depend on the projective border basis. After that, we turn our atten-
tion to algebraic geometry and show that there is a one-to-one correspondence between
projective border bases and zero-dimensional closed subschemes of weighted projective
spaces that have no point on the hyperplane at infinity. This correspondence allows us to
study schemes that satisfy certain uniformity conditions, e.g. Cayley-Bacharach schemes
or schemes in uniform position, by means of the multiplicative structure of their coordi-
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nate ring and the corresponding canonical module. In particular, this approach allows us
to characterize (i, j)-uniform zero-dimensional closed subschemes of weighted projective
spaces that have a K-rational support in various ways without assuming that the base
field K is algebraically closed or that the subscheme is reduced. If the base field K is
algebraically closed or if the subscheme is reduced, we show that these characterizations
immediately yield algorithms that allow us to check whether a given zero-dimensional
closed subscheme is (4, j)-uniform or not. Finally, we introduce the projective O-border
basis scheme Bp,* with respect to a given order ideal O as a specific subscheme of the
O-border basis scheme Bn. We show that the projective O-border basis scheme ]B%poroj
parametrizes all zero-dimensional closed subschemes of a weighted projective space whose
defining ideals possess a projective O-border basis. Applying the above methods in this
general setting and assuming that the base field K is algebraically closed, we are able
to prove that the set of all closed points of Bp,* that correspond to an (i, j)-uniform
subscheme is a constructive set with respect to the Zariski topology.

vi



Zusammenfassung

In der jiingeren Forschung in der berechnenden kommutativen Algebra haben sich Rand-
basen von null-dimensionalen Idealen als eine niitzliche Verallgemeinerung von Grébner-
basen herausgestellt. Obwohl Randbasen viele Eigenschaften mit Grébnerbasen gemein
haben, sind sie immer noch auf das Studium null-dimensionaler Ideale in Polynomringen
limitiert. Die folgende Doktorarbeit dient dazu, eine Theorie der Randbasen in endlich er-
zeugten Moduln iiber Polynomringen einzufithren und Randbasen auf verschiedene Arten
anzuwenden.

Im ersten Teil dieser Arbeit verallgemeinern wir Randbasen von null-dimensional Idea-
len in einem Polynomring P = K[xi,...,x,], wobei K einen Korper bezeichne, zu
Randbasen von Untermoduln von freien P-Moduln von endlichem Rang mit endlicher
K-Kodimension. Dabei beweisen wir insbesondere deren Existenz und Eindeutigkeit,
charakterisieren sie auf vielfdltige Art und Weise und geben einen auf linearer Algebra
basierenden Algorithmus zu ihrer Berechnung an. Im Anschluss daran fithren wir verallge-
meinerte Randbasen von Untermoduln von beliebigen endlich erzeugten P-Moduln mit
endlicher K-Kodimension ein. Diese verallgemeinerten Randbasen charakterisieren wir
dann, indem wir Sie auf Randbasen in freien P-Moduln zuriickfithren. Unter bestimmten
Voraussetzungen konnen wir damit verallgemeinerte Randbasen berechnen. Als eine An-
wendung von verallgemeinerten Randbasen finden wir einige neue Charakterisierungen
fiir Unterideal-Randbasen und kénnen einen Algorithmus zu deren Berechnung angeben,
der auf linearer Algebra statt einer Grobnerbasis-Berechnung beruht. Des Weiteren be-
weisen wir den Satz von Schreyer fiir Randbasen von Untermoduln von freien P-Moduln
von endlichem Rang mit endlicher K-Kodimension, d.h. wir zeigen dass die Menge al-
ler Nachbarliftungen einer solchen Randbasis beziiglich spezieller Termordnungen eine
Grobnerbasis des ersten Syzygienmoduls der Randbasis bildet und wir konstruieren ei-
ne solche Termordnung explizit. Als Nebenprodukt des Beweises zum Satz von Schreyer
erhalten wir einen neuen, alternativen Beweis fiir die Charakterisierung von Randbasen
mittels Liftungen von Randsyzygien, der im Gegensatz zu allen bisherigen Beweisen nicht
auf der Charakterisierung von Randbasen mittels kommutierender Matrizen beruht.

Im zweiten Teil dieser Arbeit studieren wir den Effekt von Homogenisierungen auf
Randbasen von null-dimensionalen Idealen in P und Anwendungen von Randbasen in
der algebraischen Geometrie. Dies fiihrt zur Definition von projektiven Randbasen von
homogenen ein-dimensionalen Idealen in P[zg], wobei hier zy die Homogenisierungs-
unbestimmte bezeichne. Wir beweisen, dass die projektiven Randbasen in P[xo] durch
Dehomogenisierung und Homogenisierung eineindeutig den Randbasen in P einer spezi-
ellen Form entsprechen. Weiter beschreiben wir die multiplikative Struktur sowohl eines
Restklassenrings R von P[xo] modulo einer projektiven Randbasis als auch des kano-
nischen Moduls von R mithilfe von formalen Multiplikationsmatrizen, welche nur von
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Zusammenfassung

der projektiven Randbasis abhidngen. Anschlieffend wenden wir uns der algebraischen
Geometrie zu und beweisen, dass projektive Randbasen eineindeutig null-dimensionalen
abgeschlossenen Unterschemata eines gewichteten projektiven Raumes entsprechen, wel-
che keinen Punkt der unendlich fernen Hyperebene enthalten. Durch diese Beziehung
kénnen wir das Studium gewisser uniformer Schemata, z. B. Cayley-Bacharach Schema-
ta oder Schemata in uniformer Lage, auf das Studium der multiplikativen Struktur des
zugehorigen Koordinatenrings und dessen kanonischen Moduls zuriickfithren. Dieser An-
satz ermoglicht es uns, (7, j)-uniforme null-dimensionale abgeschlossene Unterschemata
von gewichteten projektiven Rdumen mit K-rationalem Trager auf verschiedene Arten
zu charakterisieren, ohne dabei anzunehmen, dass der Grundkorper K algebraisch ab-
geschlossen oder das Unterschema reduziert sei. Falls der Grundkoérper algebraisch ab-
geschlossen oder das Unterschema reduziert ist, liefern diese Charakterisierungen direkt
einen Algorithmus zum Test auf (i, j)-Uniformitét. Schlieslich fiihren wir noch das pro-
jektive O-Randbasisschema IB%IOJ beziiglich eines gegebenen Ordnungsideals O als ein
spezielles Unterschema des O-Randbasisschemas B ein. Wir zeigen, dass IB%%mj alle null-
dimensionalen abgeschlossenen Unterschemata eines gewichteten projektiven Raumes pa-
rametrisiert, deren definierendes Ideal eine projektive O-Randbasis besitzen. Indem wir
die obigen Methoden auf diese allgemeine Situation anwenden und annehmen, dass der
Grundkorper K algebraisch abgeschlossen ist, konnen wir beweisen, dass die Menge al-
ler abgeschlossenen Punkte von IB%%YOJ, die einem (i, j)-uniformen Schema entsprechen,
beziiglich der Zariski-Topologie eine konstruierbare Menge bildet.

viii
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1 Introduction

Since the introduction of Buchberger’s Algorithm in 1965, cf. |Buc65] and [Buc06], Grob-
ner bases have become a standard tool in computational algebra. Though their compu-
tation is quite hard in general, namely it is exponential space hard as it was shown in
[MMS82|, Grobner bases allow us to constructively solve many problems both theoreti-
cally and computationally, cf., for instance, [KR00| and [KR05]. Unfortunately, even if
we restrict ourselves to the class of zero-dimensional ideals, Grobner bases do not be-
have very well in an approximate setting as described in [Ste04, Subsect. 8.4.4]. This
drawback has led to a more general notion of bases, e.g. to the notion of border bases
of zero-dimensional ideals. Though border bases behave more nicely in an approximate
setting, they can only be applied to zero-dimensional ideals. Nevertheless, border bases
turned out to be a good choice and much effort is put in the study of them. The theory
of border bases can be divided into two parts. First one is particularly interested in their
numerical behaviour. This is due to the fact that we can use them to approximately
model a physical system that is described by a finite amount of data and thus yields a
zero-dimensional ideal in a suitable polynomial ring. We refer, for instance, to [Ste04],
[Lim14], [HKPP09], and [KPR10] for such numerical analyses and applications and draw
the attention in this thesis to the second part, namely the algebraic behaviour of border
bases and their applications in the exact setting.

The study of border bases of zero-dimensional ideals has brought to light that they
share many of the nice properties Grobner bases have. E.g. there is an explicit division
algorithm by [KKRO03, Subsext. 4.3.2|, they share many characterizations according to
[KKO05], and they can be computed according to [KK06|. But border bases do not only
share many properties of Grobner bases. Some theorems are true for border bases but
have no analogous version in the theory of Grébner bases. For us, the main advantage
of border bases is a characterization which has no analogon in the theory of Grébner
bases, namely the characterization via commuting multiplication matrices, which was in-
troduced in [Mou99, Thm. 3.1|. This theorem states that we only have to check whether
the matrices that represent the multiplication by an indeterminate are pairwise commut-
ing. Though there were many advances in the theory of border bases, many well-known
results from Grobner bases lack a border basis version, e.g. the theory of border bases
is not applicable to modules and there is no analogon of Schreyer’s Theorem for border
bases, cf. [Sch80] or [KR00, Prop. 3.1.4] for the Grobner bases version.

The first part of this thesis, namely the Chapters 2 and 3, solve these disparities be-
tween Grobner and border bases. In the second part, namely in Chapter 4, we study
the behaviour of border bases under homogenization. During the last part of this thesis,
which consists of the Chapters 5 and 6, we apply the previous results to zero-dimensional
closed subschemes of weighted projective spaces in order to study uniformity conditions.



1 Introduction

We now describe the content of each chapter in detail. To this end, we let K be an
arbitrary field, P = K{z1,...,x,] be the polynomial ring over K in n € N\ {0} indeter-
minates, and we denote the set of all terms in P by T".

In Chapter 2, we develop a theory of border bases for finitely generated P-modules. To
achieve this goal, we introduce border bases of P-submodules of finite K-codimension in
the free P-module P" where we have r € N\ {0}. Let {ei,...,e,} denote the canonical
P-module basis of P" and let T"(eq, ..., e,) be the set of terms in P". We define order
ideals in T"(eq, ..., e,) to be unions of sets of terms of the form O = O1-e;U---UO, - e,
by Definition 2.1.6. Here Oy,..., O, are order ideals in T", i.e. sets of terms that are
closed under forming divisors. In other words, order ideals O in T"(ey,...,e,) consist
of n order ideals O; in T", one for every component of P". Note that in contrast to
the definition of order ideals of other authors, e.g. the one in [KR05, Defn. 6.4.3], our
version in Definition 2.1.1 regards the empty set as an order ideal, too. Then we define
the border 0O of O to be the set O = 901 - e; U--- U IO, - e, by Definition 2.1.7.
Here the border of the order ideal O; in T™ is 00; = (z1 - O; U---Ux, - O; U{1})\ O;
according to Definition 2.1.2. As for border bases of zero-dimensional ideals, for a finite
order ideal O in T"(ey,...,e,), we define an O-border prebasis G = {g, | b € 90} in
Definition 2.1.14 to be a set of vectors in P" of the following specific form: for every
bedO, gp=b—3 coarpt € P" with a;p, € K for all t € O. An O-border prebasis G is
called an O-border basis of a P-submodule U C P" if G C U and if the residue classes
of the elements of O in P"/U form a K-vector space basis of P"/U. In particular, for
r = 1, this definition yields nothing but the usual border bases of zero-dimensional ideals
in the polynomial ring P.

With this definition, we are able to generalize the Border Division Algorithm in Theo-
rem 2.2.1, prove the existence and uniqueness of border bases in Proposition 2.3.2, and
compute border bases in Theorem 2.5.3 using linear algebra techniques in the module
setting. The whole Section 2.4 is dedicated to characterizations of border bases. In de-
tail, we characterize border bases via a special generation property in Theorem 2.4.1, via
border form modules in Theorem 2.4.5, via rewrite rules in Theorem 2.4.13, via commut-
ing matrices in Theorem 2.4.19, via liftings of border syzygies in Theorem 2.4.26, and
we derive a Buchberger Criterion in Theorem 2.4.31. Altogether, we see that most of
the concepts of border bases of zero-dimensional ideals in P can be carried over to the
module setting if the P-module is free and of finite rank.

The final Section 2.6 of this chapter then establishes a border bases theory in arbitrary
finitely generated P-modules. Every finitely generated P-module M = (mg,...,m;)
induces a P-module epimorphism ¢ : P" — M, e; — m; for all ¢ € {1,...,r}. We
define a (generalized) order ideal in ¢(T"™(e1,...,€e,)) to be the image of an order ideal
in T"(e1,...,e,) under ¢ in Definition 2.6.1 and a (generalized) ¢(QO)-border prebasis
to be the image of an O-border prebasis in P" under ¢ in Definition 2.6.3. As in the
case of free modules, a ¢(O)-border prebasis G C M is called a p(O)-border basis of a
P-submodule U C M if G C U and if the residue classes of the elements of ¢(O) in M /U
form a K-vector space basis of M/U. Instead of reestablishing all ideas of the previous
sections again, we introduce a process of lifting a ¢(O)-border prebasis in M to an O-
border prebasis in ¢~} (M) = P". If such a lifting exists, we can use it to characterize the



corresponding border prebasis in M according to Corollary 2.6.10. Moreover, if we can
compute the kernel of ¢, we show that we can even compute ¢(Q)-border bases of arbi-
trary P-submodules U C M with finite K-codimension in M using Corollary 2.6.12. In
particular, since there are algorithms to compute syzygy modules of polynomials in P, we
can apply the whole new theory to so-called subideal border bases as defined in [KP11].
This yields a way to compute arbitrary subideal border bases using linear algebra tech-
niques and the computation of a single syzygy module, cf. Example 2.6.13. As indicated
in [KP11, Sect. 6], the “standard approach” for the computation of subideal border bases
by now needs a Grobner basis computation instead of the linear algebra techniques.

As indicated at the beginning of the introduction and as described in [KP11, Sect. 7],
(subideal) border bases can be used in the modelling of physical systems and this was
our starting point of the theory of border bases in the module setting. Note that there
is a preprint version of this chapter available, cf. [Kril3].

Chapter 3 is devoted to prove an analogon of Schreyer’s Theorem for border bases in
free P-modules of finite rank as introduced in Chapter 2. Schreyer’s Theorem, as first
proven in [Sch80| or stated using our notation in [KR00, Prop. 3.1.4], says that given
a Grobner basis of a P-submodule U C P", the set of all liftings corresponding to the
S-vectors forms a Grobner basis of the (first) syzygy module of the given Grobner basis
with respect to a suitably chosen term ordering. For border bases, the analogon of this
theorem can be stated as follows: given an O-border basis G C P" of a P-submodule
U C P", the set of neighbor liftings forms a Grobner basis of the (first) syzygy module
of the given border basis with respect to a suitably chosen term ordering. One part of
this theorem, namely that the neighbor liftings generate the syzygy module, was proven
for border bases in P in [Hui06]. The corresponding proof makes use of two special
operations called “degree lowering” and “column clearing”. By applying these operations
in a specific way, the author of [Hui06|] was able to show that every syzygy can be
reduced to zero by substracting suitable multiples of neighbor liftings. Based on these
proofs, we were able to prove Schreyer’s Theorem for border basis in P in [KK14]. We
turned the two operations degree lowering and column clearing into explicit algorithms
and deduced an algorithmic version of the reduction process used in the proofs of [Hui06].
Moreover, we also showed that the reduction process can actually be interpreted as a set
of reduction steps using the rewrite rule defined by the neighbor liftings as defined in
[KROO, Defn. 2.2.1] with respect to specific term orderings. Such a specific term ordering
was also algorithmically constructed by us. Altogether, we concluded that Schreyer’s
Theorem holds for border bases in P.

In order to prove that Schreyer’s Theorem also holds for border bases in P, we generalize
the concepts of [KK14| to the module setting. In particular, we have to take empty order
ideals into account. The full version of Schreyer’s Theorem for border bases in P” is a
direct consequence of the Theorems 3.4.1 and 3.4.5. As a byproduct, we are also able
to give an alternative proof of the characterization of border bases in P" via liftings
of border syzygies in Corollary 3.3.9. This alternative proof is quite remarkable since,
in stark contrast to the standard proof in the literature, cf. Theorem 2.4.26, it does not
depend on the characterization of border bases via commuting matrices in Theorem 2.4.19
but only on the characterizations via the special generation property in Theorem 2.4.1
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and via rewrite rules in Theorem 2.4.13. Thus this proof might yield a possible way to
characterize border bases in a non-commutative setting, e.g. as defined in [BTBQMO00].

As described above, the Chapters 4 to 6 are dedicated to study zero-dimensional closed
subschemes of weighted projective spaces with the help of border bases. In Chapter 4,
we lay the algebraic foundation of this process, i.e. we find a generalization of border
bases that is suitable for homogeneous ideals in P = P[xg] and that are, in particular,
one-dimensional. Therefore, we equip P with the grading defined by a positive matrix
W € Maty ,(Z) in the sense of [KR05, Defn. 4.1.6 and 4.2.4] and we let xy be the
homogenizing indeterminate. Then P = Plxg] = Kl[wo,...,%,] is equipped with the
induced grading given by the positive matrix W = (1 | W) € Mat ,4+1(Z). The main
idea is then based on [KR05, Thm. 4.3.22] which states that for a proper ideal I C P,
P/I"™ is a free K[xg]-module. This led to the definition of projective border bases in
Definition 4.1.2. A projective O-border prebases for some finite order ideal O in T" is a
set of polynomials G = {g; | b € 0O} of the form g, = b — ", aspt with a;p € Kz
for all b € 0O and t € O. It is said to be a projective O-border basis of a homogeneous
ideal I C P if G C I and if the residue classes of the elements of the order ideal @ in f/ I
form a K|[xg]-module basis of P/I. Then it turns out that this definition implies many
interesting properties of projective border bases in Proposition 4.1.7. The most important
ones are that the elements of a projective O-border basis of a homogeneous ideal I C P
are homogeneous and of a uniquely determined shape, that dehomogenization yields a
border basis of 19" which is also a Macaulay basis (also called H-basis) with respect to
the grading given by W, and that it indeed generates the ideal I. In particular, we get
the (Projective) Border Basis Correspondence in Corollary 4.1.9 which can be visualized
as follow.

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 | W) with a positive matrix W € Maty ,(Z)

dehomogenization homogenization

O-border bases of ideals in P with b € DFy(g,) for all b € 00
where g, denotes the O-border basis element corresponding to b

With these properties in mind, we are able to characterize and eventually compute pro-
jective border bases in the Corollaries 4.1.10 and 4.1.14 and we can explicitly describe
the elements of the residue class ring of P modulo a projective @-border basis by means
of O according to Proposition 4.1.15.

In the second section of Chapter 4, we study the multiplicative structure of a residue
class ring P/I were I is given by a projective O-border basis. It turns out that the
characterization of border bases via commuting matrices in Theorem 2.4.19 allows us to
explicitly describe the multiplicative structure of P/I by means of O and the multipli-
cation matrices in the Propositions 4.2.5 and 4.2.8. After that, we study the canonical



module of P/I, i.e. the dual module of P/I, in the third section. After proving some
basic facts of the canonical module, we describe its multiplicative structure, again, in
terms of O and the multiplication matrices in the Propositions 4.3.8 and 4.3.10. These
descriptions of the multiplicative structure will turn out to be very helpful in the study
of geometric properties in the last two chapters of this thesis.

In Chapter 5, we study zero-dimensional closed subschemes of weighted projective
spaces Py (W). First we recall basic facts about weighted projective spaces. As before,
we equip P with the grading given by a positive matrix W € Mat; ,(Z), let zo be the
homogenizing indeterminate, and equip P = Plzg] = K|xo,...,z,] with the grading
given by the matrix W = (1| W) € Mat ;,4+1(Z). Then the weighted projective space of
type W over K is defined to be the projective scheme Px (W) = Proj(P) corresponding
to the Z-graded K-algebra P in Definition 5.1.1. We are particularly interested in zero-
dimensional closed subschemes X of P (W) and determine their structure. In particular,
in Proposition 5.1.8, it turns out that there is a projective border basis of the defining
ideal Z(X) C P of a non-empty zero-dimensional closed subscheme X if and only if no
point of X lies on the hyperplane at infinity. In Proposition 5.1.10, we prove that in
most cases, e.g. if K is infinite and P standard graded, there is a generic homogeneous
linear change of coordinates such that the above equivalence relation is satisfied. The
remainder of this chapter is then dedicated to the study of the correspondence between
geometric properties of the non-empty zero-dimensional closed subscheme X C Px (W)
and algebraic properties of the residue class ring of P modulo the defining ideal Z(X)

of X. We can visualize this correspondence as follows.

zero-dimensional closed subschemes X of weighted projective spaces P (W)
that have no point on the hyperplane at infinity

projective border basis projective subscheme
of the defining ideal defined by the
ITX)CcP homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 | W) with a positive matrix W € Maty ,(Z)

The main geometric properties we are interested in in this thesis are uniformity condi-
tions as defined in Definition 5.2.1. The most general uniformity condition, namely the
(i, j)-uniformity, can (in the reduced case) be geometrically interpreted as follows: given
a set of projective points X, is there a subset X of i points of X and ‘a homogeneous
polynomial p of degree j in P such that p vanishes in all points of X \ X but not in all
points of X. If no such subset of i points exists, X is said to be (i, 7)-uniform. In the
standard graded setting, some special cases of this question, e.g. whether the scheme
has the Cayley-Bacharach property or is in uniform position, have already been studied.
For instance, under the assumption that the base field is algebraically closed, i-uniform
zero-dimensional closed subschemes of the projective n-space have been characterized
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in [Kre94| and [Kre98| with the help of the multiplicative structure of the correspond-
ing canonical module. In [Kre0l], the same author described algorithms to check this
property for reduced subschemes under the same assumptions. Another totally different
approach was used by the authors in [MP04]. They have characterized and described an
algorithm to check (i, j)-uniformity conditions using Chow forms under the assumptions
that the given subscheme is reduced and that the base field is of characteristic zero or
its characteristic is large enough.
Our approach in the second section of this chapter is also based on the idea that the
multiplicative structure of the canonical module of the projective coordinate ring of the
given subscheme X contains information about the geometry of X. As we have already
noted above, we can describe the multiplicative structure of the canonical module by
means of the multiplication matrices if the defining ideal of X possesses a projective bor-
der basis, i.e. if no point of X lies on the hyperplane at infinity. With this assumption
and the additional assumption that X has a K-rational support, i.e. that all the prime
ideals of the support of X are homogeneous vanishing ideals of a K-rational projective
point by Definition 5.1.5, we characterize (i, j)-uniform subschemes of weighted projec-
tive spaces Px (W) in Theorem 5.2.7. Note that the first condition is often satisfied
after a generic homogeneous linear change of coordinates and that the second assump-
tion trivially holds by Hilbert’s Nullstellensatz if the base field K is algebraically closed.
Therefore, our results also hold in the non-reduced case as well as in the non-standard
graded setting. In particular, this affirmatively answers (generalizations of) [Kre01, Ques-
tions 1 and 3|. In the third section of that chapter, we turn the methods of Section 5.3
to check uniformity conditions into explicit algorithms.

Finally, in Chapter 6, we combine the results of the Chapters 4 and 5. The following
figure shows the intersection of the two previous chapters.

zero-dimensional closed subschemes X of weighted projective spaces Py (W)
that have no point on the hyperplane at infinity

projective border basis projective subscheme
of the defining ideal defined by the
IT(X)CP homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 | W) with a positive matrix W € Maty ,(Z)

dehomogenization homogenization

O-border bases of ideals in P with b € DFyy(gp) for all b € 00

where g, denotes the O-border basis element corresponding to b

We use this intersection to study uniformity conditions for all ideals that possess a pro-



jective O-border basis for some given order ideal O in T", at once. Let O = {t1,...,t,}
be a finite, non-empty order ideal in T™ with border 00 = {b;,...,b,}. In [KROS|
and [Rob09], the authors introduced the O-border bases scheme B, cf. Definition 6.1.1,
as an affine scheme that parametrizes all zero-dimensional ideals in the polynomial ring P
that possess an O-border basis. The construction was done as follows: First they defined
the generic O-border prebasis by replacing the scalar a;; € K of every border basis ele-

ment g; = bj — > " a;jt; by a newly introduced indeterminate ¢;; for all ¢ € {1,...,u}
and j € {1,...,v}. Then they considered the corresponding formal multiplication matri-
ces of that generic O-border prebasis and ensured that an affine point a = (a11,...,au)

is contained in By if and only if the multiplication matrices are pairwise commuting
after applying the substitution homomorphism ¢;; + a;;. Since border bases can be
characterized via commuting matrices by Theorem 2.4.19 and are unique by Proposi-
tion 2.3.2, Bp parametrizes all zero-dimensional ideals in P that possess an O-border
basis. The projective O-border basis scheme is then defined in Definition 6.1.5 to be
the subscheme of By that parametrizes all zero-dimensional ideals in P that possess an
O-border basis {g1, ..., .} and additionally satisfy b; € DFy (g;) for all j € {1,...,v}.
As indicated by the above figure and defined in Definition 6.4.2, the projective border
basis schemes parametrize all zero-dimensional closed subschemes of Py (W) that have
no point on the hyperplane at infinity. The main goal of this chapter is to show that the
subset of BYy* that parametrizes all zero-dimensional closed subschemes of Py (W) that
have no point on the hyperplane at infinity and that are (7, j)-uniform is a constructible
set with respect to the Zariski topology in Theorem 6.4.4.

More precisely, we do the following: In Definition 6.1.5, we introduce the projective
O-border basis scheme Bgoj, its coordinate ring B(%m“', and the corresponding universal

projective O-border basis family Bgmj — U(%roj. Then we prove that the residue classes

of the elements of @ in US® form a B [zg]-module basis of US® in Theorem 6.1.13,

In the second section, we then study the multiplicative structure of U, goj by means of the
generic (projective) multiplication matrices in the Propositions 6.2.4 and 6.2.7. In the
third section, we define the generic canonical module of U5 in Definition 6.3.2, show
that it is also a free Bgmj [zo]-module and that the dual objects of the elements in O form
the corresponding basis in Proposition 6.3.4, and also study the multiplicative structure
of the generic canonical module of Ung by means of the generic (projective) multipli-
cation matrices in the Propositions 6.3.5 and 6.3.7. In the final section of this chapter,
we additionally assume that the base field K is algebraically closed. This ensures that
for all zero-dimensional closed subschemes X of Pg (W), every element of the support
of X is, by Hilbert’s Nullstellensatz, the vanishing ideal of a K-rational projective point.
Therefore, we can apply the characterizations of (7, j)-uniform subschemes of Section 5.2
to all zero-dimensional closed subschemes X parametrized by ]B%?)roj. As a main result, we

characterize all points of the projective O-border basis scheme B?;Oj that correspond to

an (i, j)-uniform zero-dimensional closed subscheme of Px (W) in Theorem 6.4.4. In par-
ticular, we show that the set of all points of the projective O-border basis scheme By,

with the property that the corresponding zero-dimensional closed subschemes of Pg (W)
are (i, 7)-uniform is constructible with respect to the Zariski topology in Theorem 6.4.4.



1 Introduction

For the whole thesis, we assume that the reader is familiar with the basics of algebra
as, for instance, taught in a two semester course at university and has basic knowledge
about Grobner bases as, for instance, introduced in [KR00] or [AL94]. If not mentioned
otherwise, we use the notation and terminology of [KR00| and [KRO05]. In particular, the
set of natural numbers N = {0,1,2,...} contains zero, we let K be an arbitrary field,
and P = K|[z1,...,x,] be the polynomial ring in n € N\ {0} indeterminates over K.
By terms, we denote polynomials in P = K[x1,...,2,] of the form z{*---z%" with
ai,...,a, € N. The monoid of all terms in P is denoted by T"™. We let P" denote the
free P-module of rank r € N\ {0} with the P-module basis {ei, ..., e,} and a term in P"
is an element of the form te; where t € T" and ¢ € {1,...,7}. The set of all terms in P"
is denoted by T"(eq, ..., e,). Products of a scalar and a term are called monomials. For a
subset S of a Z-graded module M = 69762 M., and for all v € Z, we denote S, = SNM,,
S<y=5nN @z,zfoo M., and similarly for S>,, S, and S~,. In algorithms, we often
need an ordering on the elements of a given set, e.g. G = {g1,...,9,}. If no confusion
arises, we always keep that ordering in mind and treat the set as if it was a tuple during

algorithms.



2 Border Bases of Finitely Generated
Modules

Border bases of zero-dimensional ideals in a polynomial ring have been studied for several
years in various ways, cf., for instance, [Mou99|, [Ste04], [Hui06], [KRO08], [Rob09], and
[KPR10]. But despite of the special case of subideal border bases, cf. [KP11], the theory
of border bases is restricted to zero-dimensional ideals in a polynomial ring. The goal of
this chapter is to overcome this limitation and generalize the concept of border bases to
finitely generated P-modules. To this end, we first introduce a border bases theory for
submodules of free modules of finite rank over the polynomial ring P in the Sections 2.1
to 2.5. After that, we introduce a border basis theory for submodules of finitely generated
P-modules in Section 2.6. More precisely, we do the following.

In Section 2.1, we generalize the basic concepts needed for a border basis theory in P"
with r € N\ {0}, namely order ideals in Definition 2.1.6, borders of order ideals in
Definition 2.1.7, and border prebases and border bases in Definition 2.1.14. Moreover,
we introduce the index with respect to an order ideal in Definition 2.1.11, which allows
us to measure the distance between an arbitrary term and the order ideal.

After the introduction of the basic concepts, we prove a division algorithm and direct
consequences of it in Section 2.2. The Border Division Algorithm in Theorem 2.2.1.
allows us to divide an arbitrary vector v € P" by a border prebasis G C P" and thus
compute a representative of ¥ in the residue class module P"/(G), cf. Corollary 2.2.5.
Moreover, we show that border bases of submodules can be used to define normal forms
in Definition 2.2.9.

Section 2.3 is dedicated to study whether every P-submodule U C P" that has a finite
K-codimension in P" possesses a border bases or not. We affirmatively answer this
question in Proposition 2.3.2. Moreover, we show that border bases in P" are unique
in Proposition 2.3.2 and we prove that reduced Groébner bases of submodules U C P"
with finite K-codimension in P" are special border bases in Proposition 2.3.5. As a
consequence, we give a first naive algorithm based on a Grobner basis computation that
allows us to compute border bases in P" in Remark 2.3.6.

In Section 2.4, we characterize border bases in various ways. We characterize border
bases via a special generation property in Theorem 2.4.1. After that, we characterize
them via border form modules, which are the border bases analogon of leading term
modules, in Theorem 2.4.5. Then we define rewrites rules associated to border prebases
in Definition 2.4.7 and prove that a border prebasis is a border basis if and only if
the corresponding rewrite rule is confluent in Theorem 2.4.13. In Theorem 2.4.19, we
characterize border bases via commuting multiplication matrices. This characterization
will play a key role in the latter part of this thesis since the multiplication matrices allow
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us to explicitly describe the multiplicative structure of a residue class module P"/U
if U is given by a border basis. In particular, we will use this description in Chapter 5
to study geometric properties of zero-dimensional projective schemes that are given by
a border basis. Finally, we characterize border bases via liftings of border syzygies in
Theorem 2.4.26 and prove a Buchberger Criterion for border bases in Theorem 2.4.31.
As already mentioned above, there is a naive way to compute border bases with Grobner
bases techniques. Section 2.5 is dedicated to find a more efficient algorithm for the
computation of border bases which uses linear algebra techniques. This refined Border
Bases Algorithm is proven in Theorem 2.5.3.

All the concepts of the Sections 2.1 to 2.5 are generalizations (with minor changes)
of the corresponding well-known concepts for border bases in P. The corresponding
version of the results in the Sections 2.1 to 2.5 for border bases in polynomial rings are
summarized in [KR05, Section 6.4]. In particular, the characterizations in Section 2.4 are
due to [Mou99|, where commuting matrices were used for the first time to characterize
ideal bases, and [KKO05], where the notion of border bases was already developed and
the above characterizations were proven for the first time. The general framework for
an algorithm for the computation of border bases without the need of a Grobner basis
computation was laid in [Mou99] and was turned into an explicit algorithm in [KKO06].

Up to that point, we were able to generalize border bases in a straightforward way
to free P-modules of finite rank. In Section 2.6, we go another step further and enter
unfamiliar territory by developing a border bases theory in arbitrary finitely generated
P-modules. To this end, we first generalize order ideals and their borders in Defini-
tion 2.6.1 and then define generalized border prebasis and generalized border bases in
Definition 2.6.3. Then, under certain assumptions, we lift questions about generalized
border bases to questions about border bases in P". In this way, we are able to character-
ize generalized border bases in Theorem 2.6.8 and can reformulate the characterizations
of Section 2.4 in the generalized case in Corollary 2.6.10. Moreover, if we can compute
certain kernels, we are even able to compute generalized border bases according to Corol-
lary 2.6.12. Finally, we apply the theory of generalized border bases in Example 2.6.13
to subideal border bases as introduced in [KP11]. This allows us to characterize subideal
border bases in various ways and to compute arbitrary subideal border bases with one
syzygy module computation and linear algebra techniques. This heavily extends the the-
ory of subideal border bases introduced in [KP11] where subideal border bases are only
characterized via a special generation property and can only be computed with a naive
algorithm that is based on Grébner bases computations.

If not mentioned otherwise, we equip P with the standard grading and for all v € Z,
we write T (e1,...,er) = {tex € T"(e1,...,e;) | deg(t) = ~} for the set of all terms
in P of degree . Similarly, we define T2 (e1, ..., er), Tgﬂy(el, ...,er), ete. for all v € Z.
In particular, for all v € Z, the set T%ﬁxel, ..., e is then a K-vector space basis of Pz,

10



2.1 Basic Definitions

2.1 Basic Definitions

In this section, we generalize the basic concepts of border bases in the polynomial ring P
to free P-modules of finite rank. More precisely, we define order ideals in T"(eq, ..., e,) in
Definition 2.1.6, their border in Definition 2.1.7, the index with respect to an order ideal
in Definition 2.1.11, and border prebases and border bases in P" in Definition 2.1.14. We
refer to [KRO05, Section 6.4] for the corresponding definitions and theorems about border
bases in P.

The definition of order ideals in T™ in the literature, for instance in [KR05, Defn. 6.4.3],
does not consider the empty set as an order ideal. But it turns out in Remark 2.5.5 that
empty order ideals in T™ might also occur during the computation of border bases in P".
Therefore, we consider the empty set as an order ideal in T™, too. For the sake of com-
pleteness, we give explicit proofs for the basic properties of order ideals in T™ and their
border in this more general setting.

The following two definitions generalize [KR05, Defn. 6.4.3 and 6.4.4].

Definition 2.1.1. A set @ C T" is called an order ideal in T" if it is closed under
forming divisors.

Definition 2.1.2. Let O be an order ideal in T™.

a) We call the set 9'0 = 90 = ((T} - O) U {1})\ O C T" the (first) border of O.

The (first) border closure of O is the set 910 = 00 = O U0 C T".

b) For every k € N\ {0}, we inductively define the (k + 1)5* border of O by the rule
OF10 = 9(0kO) C T" and we define the (k 4+ 1)t border closure by the rule
OF+1O = 9O U 91O C T™. For convenience, we let 9°0 = 900 = O.

The following proposition yields the basic properties of borders as in [KR05, Prop. 6.4.6]
and also takes the empty set into account.

Proposition 2.1.3. Let O be an order ideal in T™.
a) For every k € N, we have a disjoint union kO = Uf:o 0'0.
b) We have a disjoint union T = |22, 0°O.
c) For every k € N\ {0}, we have

(Ty - O\ (T2 - O) i O #0,

90 = (T - O) UT} 1) \ (T2 - O) = {Tn o
k-1 =V

d) Lett € T" be a term. Then there exists a factorization of the form t = t'b with a
term t' € T" and b € 90 if and only if t € T"\ O.

11
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Proof. First we prove claim a) by induction on k € N. For k = 0, Definition 2.1.2 yields
0 =00 = UZ 00'0. For k € N\ {O} Definition 2.1.2 and the induction hypothesis
imply that 9F10 = kO U 10O = |Jr_, 80 U 1O = U} 9°0O. Moreover, for all
i,j € N with i # j, the borders 9'O and 07O are disjoint according to Definition 2.1.2
and the first claim follows.

Since every term in T" is in 8O for some i € N by Definition 2.1.2, claim b) is a direct
consequence of claim a).

Next we prove claim c) by induction on k € N\ {0}. For the induction start k = 1,
Definition 2.1.2 yields 'O = (T} - O)U{1})\ O = ((T} - O)UTE) \ (T?, - O). For the
induction step, let now & > 1. In this situation, Definition 2.1.2 and claim a) imply that
"0 = 9(0F10) = d(UF~) 90). 1f O = ), the induction hypothesis and Definition 2.1.2
yield 9O = o(UFy TP ) = O(T%,_,) = T2 . f O # (), we have 1 € O. Thus if O # 0,
the induction hypothesls and Definition 2.1.2 yield

k—1
"0 =9 (U((T?-O) \Tzv))

i=0
8(T<k1 0)

= (T7 -T2y, - OU{IP\ (T, - O)
= (T - O)\ (T, - O)

and claim c) follows.

Finally, we prove claim d). We distinguish two cases. For the first case, suppose that
O = (). Then we have 9O = {1} by Definition 2.1.2 and for every term t € T"\ O = T",
there is the factorization ¢ = t - 1. For the second case, suppose that O # (). Let
t € T"\ O. Then there exists a k € N\ {0} such that ¢ € 9*O = (T} - 0) \ (T%, - O)
according to b), c), and Definition 2.1.2. In particular, we can write ¢ = x4t1to with
¢ e {l,...,n}, t1 € T}_;, and ta € O. Assume that x4ty € O. Then we get the
contradiction ¢ = t1(zet2) € T2, - O. Thus Definition 2.1.2 yields xsty € 0O and the
first implication follows from t = ¢;(xt3). For the converse implication, let ¢ € T™ and
b € 00. Assume that b € O. Then Definition 2.1.1 yields the contradiction b € O.
Thus we have t'b € T™ \ O and the claim follows. O

This result enables us to define the index with respect to an order ideal in T"™ just as
in [KRO5, Defn. 6.4.7]. The index measures the distance from a term to an order ideal.

Definition 2.1.4. Let O be an order ideal in T™.

a) For every term ¢ € T", the number i € N such that ¢t € 9°O, which is unique
according to Proposition 2.1.3, is called the O-index of ¢ and denoted by indp(t).

b) For a polynomial p € P\ {0}, we define indp(p) = max{indp(¢) | t € Supp(p)} to
be the O-index of p.

The following proposition gathers the basic properties of the index with respect to an
order ideal in T™. It is a generalization of [KR05, Prop. 6.4.8].

12
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Proposition 2.1.5. Let O be an order ideal in T™.

a) For atermt € T"\ O, the number i = indp(t) is the smallest natural number such
that there is a factorization t = t'b with t' € T | and b € JO.

b) Given a term t € T and a term t' € T™, we have indp(tt') < deg(t) + indp(t').

¢) For two polynomials p,q € P\ {0} such that p 4+ q # 0, we have the inequality
indo(p + ¢) < max{indo(p),indo(q)}-

d) For two polynomials p,q € P\ {0}, we have indp(pq) < deg(p) + indp(q).

Proof. For the proof of a), let t € T"\ O and i = indp(t) € N. Then i > 0 and t € 90O?
by the Definitions 2.1.4 and 2.1.7. If O = (), 1 € O by Definition 2.1.2 and 9°0O = T? ,
by Proposition 2.1.3. Thus t =t -1 is a factorization with the desired properties in this
situation. Suppose now that O # (). According to Proposition 2.1.5 and Definition 2.1.2,
there is a factorization ¢ = zytite with ¢ € {1,...,n}, t; € T} ;, and t € O, and
t ¢ T2, - O. In particular, zpty ¢ O. Thus 24ty € 0O by Definition 2.1.2 and t = 1 (xt2)
is a desired factorization. Assume that there is a factorization ¢ = ¢'b such that t’ € T, 1
and b € 90. Then b = z,,,t"”" with m € {1,...,n} and ¢ € O by Definition 2.1.2. In this
situation, we get the contradiction ¢ = (z,,t")t” € T2, - O and the claim follows.

Claim b) follows immediately from claim a). Since Supp(p + ¢q) C Supp(p) U Supp(q),
claim c) follows immediately from Definition 2.1.4. At last, claim d) follows from claim b)

since Supp(pgq) C {tt' | t € Supp(p),t” € Supp(q)}. O

Now we are able generalize order ideals in T™ to the module setting. The key idea is
that for each component of P", we consider a separate order ideal in T".

Definition 2.1.6. Let Oq,...,O, be order ideals in the monoid of terms T™. Then we
call theset O =01 -1 U---UQO, -e, CT"ey,...,e.) an order ideal in T"(eq, ..., e,).

Definition 2.1.7. Let Oq,...,O, be order ideals in T" and let O = O1e1 U---U O,e,
be the corresponding order ideal in T"(eq,...,e,).

a) We call the set 910 = 90 = ((T} - O) U {e1,...,e.}) \ O C T%ey,...,e) the
(first) border of O. The (first) border closure of the order ideal O is defined
by 010 =00 = OUIO C T ey, ..., e).

b) For every k € N\ {0}, we inductively define the (k + 1)5* border of O by the rule
k1O = 9(0kO) C T™{ey, ..., e.) and the (k + 1)t border closure by the rule
OFH10 = kO U1 O C T™(eq, ..., e,). For convenience, we let 3°0 = 990 = O.

Remark 2.1.8. Let Oq,...,O, be order ideals in T" and let O = O1e1U---UO,e, be
the corresponding order ideal in T"{eq,...,e,). The P-module structure of P" and the
Definitions 2.1.2 and 2.1.7 yield that for all k € N, we have 0O = 0*O;-e1U- - -UI* O, -e,
and OkOQ = 0FO1 - eq U --- U O*O, - e,.

13
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Example 2.1.9. Let P = Q[z,y]. The sets O; = {1,y,2} and Oy = {1, 2,22} are
both order ideals in T2 with first borders d0; = {y?, zy, 22} and 00y = {y, zy, 2y, 23},
and second borders 0201 = {y3, zy?, 2%y, 23} and 020y = {y? 292, 2%y?, 23y, 21}, re-
spectively, according to the Definitions 2.1.1 and 2.1.2. Let {ej,es} be the canonical
P-module basis of P2. Then the set O = {el,yel,xel,eg,xeg,xzeg} is an order ideal
in T?(eq, o) with first border 00 = {y%e1, zye1, 2%e1, yea, xyes, 2yes, x3es} and second
border 920 = {y?e1, xy’er, 22yer, x3e1, yPea, xyes, v2y?eq, 23yes, vtes} by the Defini-
tions 2.1.6 and 2.1.7. By identifying terms with their logarithms, i.e. their exponent
vectors, we can visualize the order ideal O in T?{eq, e2) and its first and second borders
as follows.

=< terms in O ® terms in 00 A terms in 9020
Y o,
Y O,
A A A
[ ] A [ ] [ ] A
x o —4A —— T
Order ideals and their borders in T"(ey,...,e,) behave similarly as order ideals and

their borders in T™. The following proposition is a module version of Proposition 2.1.3.

Proposition 2.1.10. Let O4,..., O, be order ideals in T™ and let O = O1e1U---UO, e,
be the corresponding order ideal in T™(eq, ..., e.).

a) For every k € N, we have a disjoint union kO = Uf:() 0'0.
b) We have a disjoint union T"(e1, ..., e,) = o, 0'O.
¢) For every k € N\ {0}, we have
OO = (T} - O)UTP_1{e1,. .. en)) \ (T% - O)
=(Tp-O\T%-0)u | Tiy-e

ie{1,...,n}
0;=0

d) Let tey, € T"(e1,...,e,) be a term. Then there exists a factorization of the form
ter, = t'bey, with a term t’ € T™ and bey, € OO if and only if tey, € T™(eq,...,e.)\O.

Proof. For all s € {1,...,r}, we have {(p1,...,pr) € O | ps # 0} = Ose; according to
Definition 2.1.6. Thus the claim immediately follows from Proposition 2.1.3 and Defini-
tion 2.1.7. O
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Proposition 2.1.10 gives rise to the definition of the index with respect to an order
ideal in T™(ey,...,e,). This index measures the distance between a term and a given
order ideal.

Definition 2.1.11. Let O be an order ideal in T"(ey, ..., e,).

a) For every term tey € T"(eq,...,e,), the number i € N such that tey € 9'O, which is
unique according to Proposition 2.1.10, is called the O-index of te; and is denoted
by indp(teg).

b) For a vector v € P\ {0}, we define indp(v) = max{indp(tey) | tex, € Supp(v)} to
be the O-index of v.

Example 2.1.12. Let O = {e1, ye1, ey, e, vea, v2e2} be the order ideal in T?(eq, e2)
of Example 2.1.9, again.

< terms in O ® terms in 00 A terms in 020
Yy )
Yy Oy
A A A
[ J A ([ J [ J A
x o —A — T

Then indp(ze1) = 0, indp(2%y%e2) = 2, and hence indp(ze; + x2y?es) = max{0,2} = 2
according to Definition 2.1.11.

This definition allows us to prove a module version of Proposition 2.1.5.

Proposition 2.1.13. Let O4,...,0, be order ideals in T™ and O = O1e1 U---U O,e,
be the corresponding order ideal in T™(eq, ..., e.).

a) For every term tey € T™(e1,...,er) \ O, the number i = indp(tey) is the smallest
natural number such that there is a factorization t = t'b with t' € T ; and b € 0O,.

b) Forallt € T" and t'e, € T"(eq, ..., e,), we have indp(tt'e;) < deg(t) +indp(t'eg).

c¢) For two vectors v,w € P" \ {0} such that v+ w # 0, we have the inequality
indp (v + w) < max{indp(v),indp(w)}.

d) For a vector v € P"\ {0} and a polynomial p € P\ {0}, we have the inequality
indp(pv) < deg(p) + indp(v).

15
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Proof. Let s € {1,...,7}. Then we have {(p1,...,p,) € O | ps # 0} = Oges by
Definition 2.1.6. Thus the claim follows immediately from Definition 2.1.11 and Propo-
sition 2.1.5. O

After all the basic concepts concerning order ideals in T" (e, ..., e,), we are now able
to define border bases in P". If r = 1, our notion of border bases exactly yields the usual
border bases as, for instance, defined in [KR05, Defn. 6.4.10 and 6.4.13|.

Definition 2.1.14. Let O be a finite order ideal in T"(e1, ..., e,). We write the order
ideal O = {t1€a;, ..., tuea,} and 00 = {bieg,,...,byeg, } with u,v € N, t;,b; € T", and
with oy, 85 € {1,...,r}forallie {1,...,u} and j € {1,...,v}.

a) A set of vectors G = {g1,...,9,} C P" is called an O-border prebasis if the
vectors have the form g; = bjes, — oM aijtieq, with a;; € K for alli e {1,...,u}
and j € {1,...,v}.

b) Let G = {g1,...,9,} € P" be an O-border prebasis and U C P" be a P-submodule.
We call G an O-border basis of U if G C U and if the residue classes of the
elements of O in P"/U form a K-vector space basis of P"/U.

Example 2.1.15. Consider the order ideal O in T?{e1, e3) of Example 2.1.12, again.
Recall that P = Qlx, 9], that O = {eq, we1, ye1, e2, xea, ¥%es}, and that the border was of
the form 00 = {y?e1, xyer, x%e1, yeo, vyes, v2yes, v3es}. Let G = {g1,...,97} C P? be
with g1 = y?e1 —zea, g2 = zyer — €2, g3 = x%e1 — ye1 + €2, g1 = yea — €1 — yey — xe — €3,
g5 = wyes + 3e1, g5 = xyes — e — en, and g7 = x3e3 — e;. Then G is an O-border
prebasis according to Definition 2.1.14. Since we have xgs — g¢ = 3xe; + e1 + ea, we get
0 = 3we; +e1+e3 in P?/(G). Thus G is not an O-border basis of (G) by Definition 2.1.14.

Remark 2.1.16. If » = 1, there is a canonical P-algebra isomorphism between the
free P-module P" and the polynomial ring P. To shorten the notation, we use the
correspondence given by this P-module isomorphism without mention.

2.2 The Border Division Algorithm

The following section is dedicated to the introduction of a division algorithm for border
prebases. It serves as the basic part of many of the latter proofs in this chapter. In
particular, it allows us to compute representatives of elements of residue class modules
P"/(G) for any border prebasis G and enables us to define a normal form with respect
to a submodule U C P" that are given by a border basis.

For the whole section, we let O = {t1eq4,,...,t eq,} be an order ideal in T" (e, ..., e;)
with border 00 = {bieg,,...,byeg,} where we have pu,v € N, t;,b; € T", and where
a;, B €{1,...,r}forallie {1,...,u}and j € {1,...,v}. Welet G ={g1,...,9,} C P"
always be an O-border prebasis and for all j € {1,...,v}, we let ayj,...,a,; € K be
such that g; = bjes, — > 1 ajjtiea,.
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2.2 The Border Division Algorithm

The following division algorithm allows us to divide any vector v € P" by the O-border
prebasis G' and get a representative of the residue class of v in P"/(G) that is contained
in the K-vector space (O) . It is a generalization of [KR05, Prop. 6.4.11].

Algorithm 1: divAlg(v,G)

Input:

v € P

G =1{g1,...,9,} € P" is an O-border prebasis where O = {t1eq,,...,tu€q, }, and
00 = {51651, .. .,byeﬁy} with p,v € N, t;,b; € T" and Oéi,ﬁj € {1, e ,7"} for all
ie{l,...,u}and j€{l,...,v};

1(p1,...,p,/)1:0€PV

2 (q1,---,qr) =0

3 while (q1,...,4,) # 0 and indo((¢q1,...,¢-)) > 0 do

4 choose te, € Supp((qi, ..., q)) with indp(tex) = indo((q1, - - -, qr))-
5 Determine the smallest index j € {1,...,v} such that there exists a term ' € T"

with deg(t') = indo((q1,---,¢r)) — 1 and tey = t'bjes, .

6 Let a € K be the coefficient of tey = t'bjes; in (q1,- .-, q).

7 p; =p; + at’

8 (@1, qr) = (q1,...,q) — at'g;

9 end
10 Determine ci,...,c, € K such that (q1,...,q) = citiea; + - + cutpeq, .
11 return ((p1,...,0v), (C15-.-,Cu))

Theorem 2.2.1. (The Border Division Algorithm)
Let v € P". Then Algorithm 1 is actually an algorithm and the result

(Do -1 P0)s (€1, -, cp)) o= divhlg(v, G)
of Algorithm 1 applied to the input data v and G satisfies the following conditions.

i) The result ((p1,...,pv),(C1,-..,cu)) is a tuple in P x K and it does not depend
on the choice of the term tey in line 4.

ii) We have v = p1g1 + -+ + pugu + c1t1€a, + -+ + Cutueau-
ii) For all j € {1,...,v} with p; # 0, we have deg(p;) < indp(v) — 1.

Proof. First we show that every step of the procedure can be computed. We start to
consider an iteration of the while-loop starting in line 3. Let (¢1,...,¢,) € P" be as
in line 4 and let m = indo((q1,...,¢)). Then (q1,...,¢-) # 0 and m > 0. Thus
the existence of a term tex € Supp((qi,-..,qr)) such that indp(tex) = m in line 4
follows from Definition 2.1.11. We now take a closer look at line 5. Since the while-
loop in line 3 is executed, we have indp(te) > 0, i.e. tep € T(e1,...,e) \ O by the
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2 Border Bases of Finitely Generated Modules

Definitions 2.1.2 and 2.1.11. By Proposition 2.1.13, there is a factorization tey = t/bjegj
with a term ¢ € T™ of degree deg(t') = indp(tex) —1 = m—1 and an index j € {1,...,v}.
At last, in line 10, the while-loop has already been executed, i.e. (q1,...,¢-) = 0 or
indo((q1,---,9-)) = 0. In this situation, we have Supp((q1,...,¢)) € O according to
Definition 2.1.11 and can hence compute line 10. Altogether, we see that every step of
the procedure can actually be computed.

In order to prove the termination, we show that the while-loop starting in line 3 is
executed only finitely many times. Let j € {1,...,v} be defined as in line 5 and let
m = indp((q1, . ..,q-)) in this situation. Taking a closer look at the subtraction in line 8,
we see that we subtract the vector at'g; = at'bjeg, — at’ 3 I | ajjtieq, from (q1,. .., ).
By the choices of j € {1,...,v} and ¢ € T?,_; in line 5 and the choice of a € K in
line 6, it follows that the term te, = #' bjes; with O-index m is replaced by terms of

the form t't;e,, € 0™~1O with i € {1,..., u}, which have strictly smaller O-index than
tep = t' bjes; according to Proposition 2.1.13. The procedure hence terminates after
finitely many steps because there are only finitely many terms in the support of a given
vector whose O-index is smaller than or equal to the O-index of a given term. Altogether,
we see that the procedure is actually an algorithm.

Next we prove the correctness. To this end, we start to prove that the equation
v=pig1+-+pg + (q,...,q) is an invariant of the while-loop in line 3. Before
the first iteration of the while-loop, we have p; = --- =p, =0 and (q1,...,q¢,) = v, i.e.
the invariant is obviously satisfied. We now consider the changes of (p1,...,p,) € P”
and (q1,...,q.) € P" during one iteration of the while-loop. Let (p1,...,p,) € P
and (q1,...,¢:) € P" be such that the invariant holds, and let (p},...,p]) € P¥ and
(q},...,q.) € P" be the values of (p1,...,p,) and (q1,..., ¢ ) after one iteration of the
while-loop. The values of the vectors (p1,...,p,) € P¥ and (¢1,...,q,) € P" are only
changed in the lines 7 and 8. Let j € {1,...,v} and ¢’ € T™ be as in line 5. Then we have
Py =pj+at’, p;=p;forallie {1,...,v}\ {j}, and (¢},...,q) = (q1,-..,q) — at'g;.
This yields

v=pigi+ -+ g + (@1, )
_ / / / ! / / / / !
=pig1+ -+ 0j1gj-1+ (0 — at’)g; + pipgi + o+ pLg + (4,5 qp) +at'gy)
=plgi+ - v90+ (d1, .-, q),

i.e. the invariant is also satisfied after one iteration of the while-loop. By induction on
the number of iterations of the while-loop, we see that the invariant is always satisfied.

As we have already seen in the proof of the termination, the term ¢’ in line 5 always has
at most the degree indp(v) — 1. Since the support of the polynomials py, ..., p, consists
precisely of these terms ' by the lines 1 and 7, it follows that deg(p;) < indp(v) — 1
for all j € {1,...,v} with p; # 0 at the end of the algorithm. In line 10, we have
v=p1g1+ -+ gy +(q1, -, q) = P1g1+ - F pugy Fcitiea, + -+ cutpeq, with
scalars c1,...,¢, € K. Thus the algorithm returns a tuple with the claimed properties
in line 11.

Finally, we prove that the result does not depend on the choice of the term teg in line 4.
This fact follows from the observation that tey in (q1,...,q,) is replaced by terms of
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2.2 The Border Division Algorithm

strictly smaller O-index in line 8 during every iteration of the while-loop in line 3. Thus
different choices of the term tej in line 4 do not interfere with one another. Altogether,
we see that the final result, after all terms of maximal O-index have been rewritten, is
independent of the ordering in which they are handled. O

For every vector v € P", the Border Division Algorithm 2.2.1 can be used to compute
a representative of the residue class of v in P"/(G) that is a K-linear combination of the
elements of O. This gives rise to the following definition of the normal remainder with
respect to the O-border prebasis G.

Definition 2.2.2. Let v € P". We apply the Border Division Algorithm 2.2.1 to v
and G to obtain a representation v = p1g1 + -+ + pugy + citi€a, + - + Cutp€a, With
Pl,---,0v € P, c1,...,cy € K, and such that for all j € {1,...,v} where p; # 0,
deg(p;) < indp(v) — 1. Then the vector NRg(v) = citiea, + -+ cutpea, € (O)x € P"
is called the normal remainder of v with respect to G.

Example 2.2.3. In order to illustrate Algorithm 1, we consider the O-border prebasis
G C P? of Example 2.1.15, again.

=< terms in O ® terms in 00

Y o

b
‘1 Yy O,

by by b5 bg
to

.bg x .b7 x
t t3 ty t5 173

Recall that P = Q[x,y], {e1,e2} was the canonical P-module basis of P2 that we had
O = {e1,ye1,ze1, e, xe2, 7%} = {ti€a; - --,t6€aq}, that the border of O was of the
form 00 = {y%e1,zyey, 21, yea, xyes, v2yes, x3es} = {bieg,,...,bres, }, and that we
had G = {g1,...,g7} with g1 = y?e1 — zea, g2 = ayer — €2, g3 = €1 — ye1 + €2,
g4 = yeg —e1 —ye| —Tey — e, gs = xyes +3e1, g = $2y€2 —e1 —eg, and g7 = 3336’2 —e1.
We now consider the steps of the Border Division Algorithm 1 applied to the input data
v =231 + zye; + z3yes € P? and G in detail.

The initialization process in the lines 1 and 2 yields (pi,...,p7) = (0,0,0,0,0,0,0)
and (q1,¢2) = (#® + wy, 23y). Since indp((q1, ¢2)) = indp (z3e1) = indp(x3yes) = 2 > 0,
the while-loop in line 3 is executed.

We choose the term 23yes in line 4. Then we have 5 = 6 and get the factorization
iyes = x-x?yes = x-bgeg, in line 5. After line 7, we have (p1,...,p7) = (0,0,0,0,0,z,0)
and after line 8, we have (q1,q2) = (2 + zy, 23y) —x - (=1, 2%y — 1) = (23 + 2y + =, 7).
Now the O-index is indp((q1,¢2)) = indp(x3e1) = 2 > 0.

Thus we must choose the term z3e; in line 4. Then we have j = 3 and get the factoriza-
tion 3e; = x-2%e; = x - bseg, in line 5. This yields (p1,...,p7) = (0,0,z,0,0,z,0) after

19



2 Border Bases of Finitely Generated Modules

line 7 and (q1,q2) = (2®* + 2y +z,2) —x- (22 —y,1) = (22y + 2,0) after line 8. Now the
O-index has decreased to indp((q1, g2)) = indp(xye;) =1 > 0.

Hence we must choose the term xye; in line 4. Then we have j = 2 and get the factor-
ization zye; = 1-xye; = 1- bgeg, in line 5. This yields (p1,...,p7) = (0,2,2,0,0,z,0)
after line 7 and (q1,q2) = 22y + 2,0) — 2 - (zy, —1) = (z,2) after line 8.

After that, (¢1,¢2) # 0 and indo((q1,¢2)) = 0. As (q1,q2) = (2,2) = tzeqy + 2tseq,,
the algorithm returns the tuple ((0,2,x,0,0,2,0),(0,0,1,2,0,0)) € P” x K% in line 10.
Moreover, this yields that v = 23e; + zye; + 23yes = 290 + x93 + g6 + NRg(v) with
NRg(v) = ze1 + 2e9 € (O) i according to Theorem 2.2.1 and Definition 2.2.2.

As a first consequence, we can prove that an O-border basis of a P-submodule U C P"
is indeed a basis, i.e. that G generates U. This generalizes [KR05, Prop. 6.4.15] to the
module setting.

Corollary 2.2.4. Assume that G is an O-border basis of a P-submodule U C P". Then
we have (G) =U.

Proof. According to Definition 2.1.14, we have (G) C U. For the converse implication,
we let v € U. We apply the Border Division Algorithm 2.2.1 to v and G to obtain a
representation v = w + citieq, + - + cutuea, with w € (G) C U and ¢c1,...,¢, € K.
It follows that 0 = U = cil1eq; + -+ + cutpeq, in P7/U. Since G is an O-border basis
of U, the residue classes of the elements of O form a K-vector space basis of P"/U by
Definition 2.1.14. Thus we get ¢; = --- = ¢, = 0 and this implies v = w € (G). O

The Border Division Algorithm 2.2.1 also allows us to compute representatives of
residue classes modulo (G).

Corollary 2.2.5.  The residue classes of the elements of O in P"/(G) generate the
K -vector space P"/{(G). In particular, for every vector v € P", the normal remainder
NR¢a(v) € (O)k of v with respect to G is a representative of the residue classv € P" /{G).

Proof. Let v € P". We apply the Border Division Algorithm 2.2.1 to v and G to obtain a
representation v = p1g1 + -+ -+ pugy + NRg(v) with p1,...,p, € P and NRg(v) € (O)k.

Thus v = NRg(v) in P"/(G). The converse inclusion follows trivially from O C P". [

Another consequence is this first characterization of border bases.

Corollary 2.2.6. Let U C P" be a P-submodule with G C U. Then the following
conditions are equivalent.

i) The O-border prebasis G is an O-border basis of U.
ii) We have U N (O)x = {0}.

iii) We have P" =U @ (O) k.
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Proof. First we prove that i) implies ii). Let v € UN(O) k. Then there are ¢y, ...,¢c, € K
with v = ci1tieq, + -+ + cutyeq,. In P" /U, this yields 0 =0 = cit1eq, + -+ + Culpay, -
As G is an O-border basis of U, it follows that ¢; = --- = ¢, = 0 by Definition 2.1.14
and thus v = 0. Since 0 € U N (O) i trivially holds, the claim follws.

Next we prove that ii) implies iii). As we have U N (O)x = {0}, it suffices to prove
that P = U + (O) k. Obviously, we have P" D U+ (O) k. In order to prove the converse
inclusion, we let v € P". According to Corollary 2.2.5, v = w + NRg(v) with w € (G)
and NRg(v) € (O) k. The hypothesis G C U hence yields the claim.

Finally, we prove that iii) implies i). Let ci,...,¢, € K be coefficients such that
citieq, + -+ cutyeq, = 0in P7/U. Then we have citieq, + -+ cutpeq, € UN(O)k.
Because of P" = U @ (O), we see that citieq, + -+ cutueq, = 0. As O is K-linearly
independent, it follows that ¢; = --- = ¢, = 0. Hence the residue classes of the elements
of O in P"/U are K-linearly independent. Moreover, every vector v € P" can be written
in the form v = w 4+ NRg(v) where w € (G) according to Corollary 2.2.5. As G C U
and as NRg(v) € (O)k by Definition 2.2.2, we see that the residue classes of O in P"/U
form also a K-generating set of P"/U. The claim now follows from Definition 2.1.14. [J

As we have seen in Corollary 2.2.5, we can use the Border Division Algorithm 2.2.1
to compute normal remainders with respect to the O-border prebasis G of every vector
v € P" and that NRg(v) = vin P"/(G). But normal remainders are not unique since they
depend on the ordering of the elements of G used during the computation. Therefore,
we cannot use normal remainders to decide whether two vectors in P" represent the
same residue class modulo (G). Fortunately, it turns out that we have unique normal

remainders if the O-border prebasis G is an O-border basis of (G).

Lemma 2.2.7. Let U C P" be a P-submodule and let G and G' be two O-border bases
of U. Then we have NRg(v) = NR¢(v) for every vector v € P'.

Proof. Let v € P". We apply the Border Division Algorithm 2.2.1 to v and G, and
to v and G’ in order to obtain two representations w + NRg(v) = v = w’ + NRg (v)
with vectors w,w’ € (G) and NRg(v),NRe(v) € (O)k. As G and G’ are O-border
bases of U, Corollary 2.2.6 implies that U N (O)x = {0}. Thus the claim follows from
NRg(v) = NRer(v) = —w 4w’ € (G)N(O)xk CUN(O)k = {0}. O

Remark 2.2.8. Let v € P" be a vector. Similar to the situation of Gréobner bases and
border bases in P, the normal remainder of v with respect to the O-border prebasis G
is a representative of the residue class v € P"/(G) by Corollary 2.2.5. But the normal
remainder of v with respect to G depends on the particularly chosen O-border prebasis G
and on the ordering of the elements in G by Definition 2.2.2. Fortunately, if G is even
an O-border basis of (G), Lemma 2.2.7 shows that the normal remainder of v is inde-
pendent of the particularly chosen O-border basis G and the ordering of the elements
in G. Thus the normal remainder defines a normal form of v with respect to (G) in this
situation. In particular, we can also compute this normal form with the Border Division
Algorithm 2.2.1.

21
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If G is an O-border basis of a P-submodule U C P", Corollary 2.2.4 and Remark 2.2.8
give rise to a normal form with respect to U. This normal form generalizes the normal
form defined in [KRO05, Defn. 6.4.20].

Definition 2.2.9. Let GG be an O-border basis of a P-submodule U C P" and let
v € P". Then we call the vector NFp r7(v) = NRg(v) € (O)x C P", which is unique
according to Remark 2.2.8, the normal form of v with respect to O and U.

Before we end this section, we prove the basic properties of the normal form NFo i/
as defined in Definition 2.2.9 and compare it with the normal form NF,;; defined by
a term ordering o as in [KR00, Defn. 2.4.8| for a given P-submodule U C P". This
proposition generalizes [KR05, Prop. 6.4.21] to the module setting. Recall that, for

every term ordering o on T"(eq,...,e,) and every submodule U C P, the complement
O,(U) =T"(e1,...,er) \LT;{U} of the monomodule of all leading terms of the elements
of U is an order ideal in T™(eq, ..., e,) as defined in Definition 2.1.6.

Proposition 2.2.10. Let G be an O-border basis of a P-submodule U C P".

a) Assume that there exists a term ordering o on T™(ey, ..., e,) such that O = O (U).
Then we have NFo 17(v) = NF, ¢ (v) for allv € PT.

b) We have NFp i(cv + dv') = ¢NFo y(v) + ¢ NFo (V') for all ¢,d € K and for
all v,v' € PT.

c¢) For every v € P", we have NFo y(NFo 7(v)) = NFo v (v).
d) For allp € P and v € P", we have NFo yy(pv) = NFo 7(p NFo,r(v)).

Proof. Claim a) follows since for all v € P", both NFo 7(v) and NF, 17(v) are equal to
the unique vector in © € P"/U whose support is contained in O = O,(U) according
to Definition 2.2.9 and |[KR00, Defn. 2.4.8]. The other claims follow from the same
uniqueness. O

2.3 Existence and Uniqueness

In this section, we prove that every submodule U C P" with finite K-codimension in P"
possesses an O-border basis if we do not a priori fix the order ideal O in T"(eq, ..., ;).
Moreover, we show that O-border bases are unique for a predetermined order ideal O
in T"(eq,...,e.) and we give a method to deduce reduced Grobner bases from border
bases if the corresponding order ideal comes from a term ordering on T"(ey, ..., e,).

Before we start with the proofs, we recall the definition of fields of definitions of [KR00,
Defn. 2.4.14].
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Definition 2.3.1. Let U C P" be a P-submodule.

a) Let k C K be a subfield. We say that U is defined over £k if there exist elements
in (k[x1,...,zy])" which generate U as a P-module.

b) A subfield k¥ C K is called a field of definition of U if U is defined over k and
there exists no proper subfield k' C k such that U is defined over k’.

Now we are able prove the existence and uniqueness of border bases in P". The
following proposition generalizes [KR05, Prop. 6.4.17| to the module setting.

Proposition 2.3.2. (Existence and Uniqueness of Border Bases)

Let U C P" be a P-submodule and let O be a finite order ideal in T"(ey, ..., ey). More-
over, assume that the residue classes of the elements of O in P"/U form a K-vector
space basis of P"/U.

a) There exists a unique O-border basis of U.
b) Let G be an O-border prebasis with G C U. Then G is the O-border basis of U.

c) Let K' be the field of definition of U. Then the O-border basis of U is contained
in K'lxy,...,x,).

Proof. In order to prove a), we write the order ideal O = {tieq,,...,t eq,} and its
border 00 = {biegs,,...,beg, } with p,v € N, t;,0; € T", and oy, 85 € {1,...,r} for all
i€{l,...,puyand j € {l,...,v}. Let j € {1,...,v}. As bjes, ¢ O by Definition 2.1.7
and as the residue classes of the elements of O in P"/U form a K-vector space basis
of P"/U by assumption, there are aij,...,a,; € K with Z)JT% = ayjtiea, +- -+ ayituca,
in P"/U. In particular, g; = bjes, — Si . aijtieq, € U. Thus G = {g1,...,9,} CU is
an O-border prebasis by Definition 2.1.14. As the residue classes of the elements of O
in P"/U form a K-vector space basis of P"/U, G is even an O-border basis of U by
Definition 2.1.14.
It remains to prove the uniqueness. Let G’ = {g},...,g,} C U be another O-border
basis of U where gj = bjeg, — D1, aj;tiea, and aj; € K for all i € {1,...,u} and
je{l,...,v}. Assume that there exist an ¢ € {1,...,u} and a j € {1,...,v} such that
a;j # a;;. Then Corollary 2.2.6 yields the contradiction 0 # g; — g7 € U N (O)x = {0}.
Altogether, claim a) follows.

Next we show claim b). Since the residue classes of the elements of O in P"/U form
a K-vector space basis of P"/U, we see that G is an O-border basis of U by Defini-
tion 2.1.14.

Finally, we prove ¢). Let P/ = K'[x1,...,2,] and U' = U N (P’)". Moreover, let o be
a term ordering on T"(ey, ..., e,;). Then the P-submodules U C P" and U’ C (P’)" have
the same reduced o-Grobner basis and LT,{U} = LT,{U’} by [KR00, Lemma 2.4.16].
Hence we see that dimg ((P")"/U’) = dimg (P"/U) = #0O according to Macaulay’s Basis
Theorem [KR00, Thm. 1.5.7]. Moreover, the elements of O are contained in (P’)" and
they are K-linearly independent modulo U’ C U. Thus the residue classes of the elements
of O in (P")" /U’ form a K-vector space basis of (P’)"/U’. According to a), there exists
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2 Border Bases of Finitely Generated Modules

a unique O-border basis G C P" of U’. Since G’ is an O-border prebasis with G’ C U,
claim c) follows from b). O

Next we show that for all term orderings o on T"{ey,...,e,), the reduced o-Grébner
basis of a P-submodule U C P" which has a finite K-codimension in P" is subset of the
O, (U)-border bases of U. Recall that for a term ordering o on T"{ey, ..., e,), we denote
the complement of the momonodule LT,{U} of all leading terms with respect to o of a
P-submodule U by O,(U) = T"(eq,...,er) \ LT;{U} and that O,(U) is an order ideal
in T"(ey, ..., e,) by Definition 2.1.6.

Definition 2.3.3. Let O be an order ideal in T"(eq, ..., e,). We call the elements of
the minimal generating set of the monomial submodule T"(e1,...,e,) \ O the corners
of O.

Example 2.3.4. Let O = {e1,ye1, ey, e, vea, v2e2} be the order ideal in T?(eq, es) of
Example 2.1.9, again.

< terms in O ® terms in 00 [ ] corners of O

terms generated by a corner of O
Oy

@] @)

o] x o] x

Then y2e1, xyeq, x2e1, yes, and x3ey are precisely the corners of O by Definition 2.3.3.

Proposition 2.3.5. Let U C P" be a P-submodule and let o be a term ordering
on T™ey,...,er). Then there exists a unique O, (U)-border basis G of U and the reduced
o-Grobner basis of U is the subset of G corresponding to the corners of Oy (U).

Proof. By Macaulay’s Basis Theorem [KR00, Thm. 1.5.7], the residue classes of the
elements of O, (U) in P" /U form a K-vector space basis of P"/U. Thus Proposition 2.3.2
implies the existence of a unique O, (U)-border basis G of U.

For the other claim, let bey, € LT,{U} with b € T" and k € {1,...,r} be a corner of the
order ideal O,(U). According to the definition of the reduced o-Grébner basis of U, cf.
[KRO0O, Defn. 2.4.12|, the corners of O, (U) are precisely the leading terms of the elements
of the reduced o-Grébner basis of U. Moreover, the element of the reduced o-Grobner
basis of U with leading term bey, has the form bey — NF, yy(bey) = bex — NFo_ 1) v € G
and the claim follows. ]
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Remark 2.3.6. The proof of Proposition 2.3.5 gives rise to a naive algorithm for
the computation of a border basis of a given P-submodule U C P" that has a fi-
nite K-codimension in P". Let o be any term ordering on T"(ey,...,e,). We first
have to compute a o-Grébner basis H of P"/U to determine the order ideal O, (U)
in T"(eq,...,e,) with Macaulay’s Basis Theorem [KR00, Thm. 1.5.7]. Then we com-
pute its border 00, (U) = {bieg,,...,byeg, }. Recall that NF, y = NFo_() ¢ according
to Proposition 2.2.10. Using H and the Division Algorithm for Grébner Bases [KROO,
Thm. 1.6.4], we then compute g; = bjes, —NFq 7 (bjes;) = bjes, —NRy m(bjes,) € U C PT
for all j € {1,...,v}. According to Proposition 2.3.2, the set G = {g1,...,g,} C P" is
then the O, (U)-border basis of U.

2.4 Characterizations

Now that we know that every submodule of P" with finite K-codimension in P" indeed
possesses a border basis, we want to characterize border bases in several ways. All the
characterizations of this section are generalizations of the corresponding ones in [KKO05]
and [KRO05, Subsection 6.4.B]. More precisely, we want to determine whether a given
O-border prebasis G C P is the O-border basis of (G).

First we prove that G is the O-border basis of (G) if and only if G satisfies a certain
special generation property in Theorem 2.4.1. After that, we show that G is the O-border
basis of (G) if and only if its border form module is generated by the border forms of
the elements of G in Theorem 2.4.5. Here the border form of a vector is a generalization
of the concept of leading terms that is also applicable if the order ideal does not come
from a term ordering. Then we introduce rewrite rules corresponding to border prebases
and show that such a rewrite rule is confluent if and only if we have a border bases
in Theorem 2.4.13. In Definition 2.4.24, we introduce the notion of liftings of border
syzygies. We prove that G is the O-border basis of (G) if and only if we are able to
lift the neighbor syzygies with respect to O in Theorem 2.4.26. Here the neighbors with
respect to O are the border basis analogon of the critical pairs of Grobner bases. Finally,
we also prove a Buchberger Criterion for border bases in P" in Theorem 2.4.31. It allows
us to easily check whether we are given a border bases or not by applying the Border
Division Algorithm to the S-vectors corresponding to the neighbors with respect to O.

All the previously mentioned characterizations have analogous versions for Grobner
bases, cf., for instance, [KR00, Thm. 2.4.1]. But we will also prove a characterization
of border bases that has no analogon in the Grébner bases theory. The characterization
in Theorem 2.4.19 says that we only have to check whether the formal multiplication
matrices with respect to G, i.e. certain matrices that describe the multiplication by an
indeterminate in the residue class module P"/(G), are pairwise commuting. For border
bases in P, this characterization was first proven in [Mou99|. It will play an important
role in the latter part of this thesis, namely in the Chapters 4 to 6. For instance, we can
study geometric properties of zero-dimensional closed subschemes of weighted projective
spaces by taking a careful look at the multiplicative structure of the corresponding pro-
jective coordinate rings which, in fact, is fully determined by the corresponding formal
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2 Border Bases of Finitely Generated Modules

multiplication matrices.

For the whole section, we let O = {t1eq,,. . .,tueq,} be an order ideal in T"(e1, ..., e;)
with border 00 = {bies,,...,b,eg,} where we have u,v € N, t;,b; € T" and where
a;,B; € {1,...,r} for all i € {1,...,pu} and j € {1,...,v}. Let G = {g1,..., 9.}
be an O-border prebasis and for all j € {1,...,v}, let aij,...,a,; € K be such that
9 = bjes, — 321 aijtiea; € PT.

2.4.1 Special Generation

The first characterization shows that border bases are precisely the border prebases which
satisfy a special generation property. For border bases in P, this characterization was
first proven in [KK05, Prop. 9| and can also be found in [KR05, Prop. 6.4.23].

Theorem 2.4.1. (Border Bases and Special Generation)
The O-border prebasis G is the O-border basis of (G) if and only if the following equivalent
conditions are satisfied.

Ay) For every vector v € (G) \ {0}, there exist polynomials p1,...,p, € P such that
v=pi1g1 + -+ gy and deg(p;) <indp(v) —1 for all j € {1,...,v} with p; # 0.

Ag) For every vector v € (G) \ {0}, there exist polynomials p1,...,p, € P such that
v=pig1 + -+ pugy and max{deg(p;) | j € {1,...,v},p; # 0} = indp(v) — 1.

Proof. In order to show that A;) holds if G is the O-border basis of (G), let v € (G)\{0}.
We apply the Border Division Algorithm 2.2.1 to v and G to obtain a representation
v=p1g1+ -t gy T atiea; + 0+ cutpéa, with p1,...,p, € P, c1,...,¢, € K, and
deg(p;) < indp(v) — 1 for all j € {1,...,v} with p; # 0. Since v € (G), this yields that
0=7=citieq, + -+ culyeq, in P"/(G). As G is the O-border basis of (G), we have
c1 = --- = ¢, = 0 by Definition 2.1.14 and the claim follows.

Next we prove that A;) implies As). Let v € (G) \ {0} and let v = p1g1 + -+ + pPugo
be written with pi,...,p, € P as in Ay), i.e. such that p; = 0 or deg(p;) < indp(v) — 1
for all j € {1,...,v}. If p; # 0 and deg(p;) < indp(v) — 1 for some j € {1,...,v},
Proposition 2.1.13 yields indp(p;g;) < deg(p;) + indo(g;) = deg(p;) + 1 < indo(v).
Moreover, as v # 0, indp(v) < max{indp(p;g;) | 7 € {1,...,v},p; # 0} < indp(v) is
also a consequence of Proposition 2.1.13. Altogether, we see that there has to be at least
one index j € {1,...,v} such that p; # 0 and deg(p;) = indp(v) — 1.

At last, we show that G is the O-border basis of (G) if A3) holds. Let v € (G) N (O) k.
Assume that v # 0. Then Ajg) yields the existence of polynomials pi,...,p, € P such
that v = pig1 + - -+ + pugy and such that p; = 0 or deg(p;) < indp(v) —1 = —1 for
all j € {1,...,v}. Thus we see that py = --- = p, = 0 and this contradicts v # 0.
Altogether, we have (G) N (O)k = {0} and the claim follows from Corollary 2.2.6. [

Example 2.4.2.  Consider the O-border prebasis G = {g1,...,97} € P? of Ex-
ample 2.2.3, again. Recall that P = Q[z,y|, that the order ideal in T?{e1,es) was
O = {e1, e, ye1, 2, xez, 2263}, and that g5 = wyes + 3e; and gg = x2yes — e1 — ea.
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Then we have g5 — gs = 3ze1 + e1 + e2 € (O)g and thus indp(zgs — gs) = 0 by Def-
inition 2.1.11. In particular, as there are no non-zero polynomials of degree less than
or equal to indp(xgs — gs) — 1 = —1, Condition A;) of Theorem 2.4.1 cannot be sat-
isfied for xgs — g6 € (G) \ {0}. Thus G is not the O-border basis of (G) according to
Theorem 2.4.1. Note, that this result coincides with Example 2.1.15.

2.4.2 Border Form Modules

In this subsection, we introduce the notion of border forms. It serves as a generalization
of the concept of leading terms and is also applicable if the order ideal O in T" (e, ..., e;)
does not come from a term ordering on T"(eq, . .., e,). For border bases in the polynomial
ring P, this characterization was first proven in [KKO05, Prop. 11] and can also be found
in [KRO5, Prop. 6.4.25].

Definition 2.4.3. a) Let v € P"\ {0}. We write v in the form v = cjuj + - - - + csus
where s € N\ {0}, ¢1,...,¢cs € K\ {0} are scalars, and uy,...,us € T"(e1,...,e,)
are terms such that indp(uy) > indp(ug) > -+ > indp(us). Let j € {1,... s}
be the maximal index such that indp(u;) = indp(v). Then we call the vector
BFp(v) = 25:1 ciu; € P" the border form of v with respect to O.

b) Let U C P" be a P-submodule. Then the border form module of U with respect
to O is defined to be the P-submodule BFp(U) = (BFp(v) |v € U\ {0}) C P".

Example 2.4.4. Consider the O-border prebasis G = {g1,...,97} € P? of Exam-
ple 2.2.3, again. Recall that we had P = Q[z,y], that {e;,e2} denoted the canonical
P-module basis of P2, that O = {el,xel,yel,eg,xeg,x262}, and that g5 = xyes + 3e;
and gg = x2yes —e1 — ea. Then we have zg5 — 3xgs = —3z3yes + x2yes + 6xeq + 3xes and
xgs — g = 3wey + e1 + eg, i.e. indp(xgs — 3zgs) = 2 and indp(zgs — g¢) = 0 by Defini-
tion 2.1.11. Thus we have BFp (295 —32g6) = —323yes and BFo (295 —g6) = 3ze1+e1+ez
according to Definition 2.4.3.

Theorem 2.4.5. (Border Bases and Border Form Modules)
The O-border prebasis G is the O-border basis of (G) if and only if the following equivalent
conditions are satisfied.

By1) For every v € (G) \ {0}, we have Supp(BFp(v)) C T"(e1,...,eq) \ O.
By) We have BFo((G)) = (BFo(g1),...,BFo(g,)) = (biega,, ..., bueg,).

Proof. First we prove that condition Bj) is satisfied if G is the O-border basis of (G).
Let v € (G) \ {0}. Assume that BFp(v) contains a term of O in its support. Then we
have indp(v) = 0 and thus v = BFp(v) C (O) g by Definition 2.4.3. Now Corollary 2.2.6
yields the contradiction v € (G) N (O)x = {0}. Thus BFp(v) does not contain a term
of O in its support and the claim follows.

Next we show that B;) implies By). For all j € {1,...,v}, we have g; € (G) \ {0}
and thus bjes, = BFo(g;) € BFo((G)) by Definition 2.4.3. For the converse inclusion,
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2 Border Bases of Finitely Generated Modules

let v € (G) \ {0}. Then B;) implies that Supp(BFop(v)) C T"(ey,...,e;) \ O. Thus
Proposition 2.1.10 yields that every term in the support of BFp(v) is divisible by a term
in 00 = {bieg,,...,byes, }. In other words, BFo(v) € (bieg,,...,bueg,).

Finally, we prove that G is the O-border basis of (G) if Bs) is satisfied. Assume
that there exists a vector v € (G) N (O)k \ {0}. Then we have indp(v) = 0 and as
a consequence we have BFp(v) = v C (O)g by Definition 2.4.3. Condition Bs) and
Proposition 2.1.10 now yield the contradiction v = 0. Altogether, the claim follows from
Corollary 2.2.6. O

Example 2.4.6. Consider the O-border prebasis G = {g1,...,g7} C P? of Exam-
ple 2.4.4, again. Recall that P = Q[z,y], that {e1,e2} denoted the canonical P-module
basis of P2, and that BFo(2g5 — gs) = 3we1 + €1 + e2 € (O)g. Then Condition Bj)
of Theorem 2.4.5 does not hold for G. Therefore, G is not the O-border basis of (G)
according to Theorem 2.4.5. Note, that this result coincides with Example 2.4.2.

2.4.3 Rewrite Rules

In this subsection, we define rewrite rules defined by border prebases. Though these
rewrite rules are, in general, not Noetherian according to Remark 2.4.11, it turns out
that they are confluent if and only if the corresponding border prebasis is a border basis.
For border bases in P, this characterization was first proven in [KKO05, Prop. 14] and can
also be found in [KR05, Prop. 6.4.28|.

Definition 2.4.7. a) Let v € P"\ {0} and let tey € Supp(v) be such that there
exists a factorization te, = t'bjeg, with ¢ € T" and j € {1,...,v}. Let c € K be
the coefficient of tey in v. Then the vector v — c¢t’'g; € P" does not contain the
term tey, in its support anymore. We say that v reduces to v —ct’g; in one step
using the rewrite rule I, defined by g; and write v v — ct’gj. The passage
from v to v — ct’g; is also called a reduction step using g;.

b) The reflexive, transitive closure of the rewrite rules %5 defined by g; for all indices

j €{1,...,v}iscalled the rewrite relation associated to G and is denoted by <.

¢) The equivalence relation generated by 9, is denoted by &

Example 2.4.8. Consider the O-border prebasis G = {g1,...,g7} C P? of Exam-
ple 2.2.3, again. Recall that P = Q[z,y], that {e;,ea} denoted the canonical P-module
basis of P2, that the order ideal in T?{e1, e2) was O = {e1,we1,ye1, e2, vez, x2es}, and
that go = xye; —ea, g6 = r2yes—e1 —eq, and g7 = x3ea—e;. Since we have z1y? = 23y-zy
and 2%y = x - 2%y = y - 2%, we see that 2z*y’e; EEN 2zty2er — 203ygy = 223yes,
2a3yes ELN 223yey — 2wgs = 2xe; + 2xey, and 2x3yes AN 2a%yey — 2yg7 = 2yey by
Definition 2.4.7. Therefore, it follows that z%y? i> 2ye; and 2ze; + 2xeq <i> 2yeq
according to Definition 2.4.7.
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The following proposition gathers the basic properties of rewrite rules and generalizes
[KKO05, Prop. 13] and [KR05, Rem. 6.4.27] to the module setting. In particular, we give
an explicit, complete proof of it.

Proposition 2.4.9. a) If vi,vy € P satisfy v; <, vg and if c € K and t € T",

G
then we have ctvy — ctvs.

b) If vi,vy € P" satisfy v1 LR for j e {l,...,v} and if v3 € P", then there exists
a vector vqg € P" such that vi + vg i vy and vy + v3 i V4.

c) If vi,v9,v3,v4 € P" satisfy vy @ vo and v <i> vy, then vy + v <i> Vg + V4.
d) If vi,va € P" satisfy v1 é ve and if p € P, then we have pvy <i> PU3.
e) For a vector v € P", we have v AN if and only if v € (G).

f) For vectors vi,ve € P", we have v, & vg if and only if vi — vy € (G).

Proof. First we prove a). Let ¢ € K and t € T™. If ¢ = 0, nothing needs to be shown.
Thus suppose that ¢ # 0. By induction on the number of reduction steps, it suffices to
prove the claim for a single reduction step using g; where j € {1,...,v}. Let vi,vo € P"
and j € {1,...,v} be such that v; N vo. Then Definition 2.4.7 yields the existence of a
term fegj € Supp(v1), a term ¢’ € T, and a coefficient ¢ € K such that vo = v; — dt'g;
does not contain the term fegj =t bjes, in its support anymore. Therefore, the vector
ctvy = ctvy — ctc't'g; does also not contain the term tfegj = tt'bjeg, in its support
anymore, i.e. we have ctvg N ctvy by Definition 2.4.7.

Next we show b). Let vy, v9,v3 € P" be such that v; 9, vy for some j € {1,...,v}.
According to Definition 2.4.7, there exist a term tbjes;, € Supp(v1) where t € T" and a
coefficient ¢ € K \ {0} such that vo = v; — ctg; and such that vy does not contain the
term tbjep; in its support anymore. Let ¢ € K be the coefficient of thjep; in vs. We
distinguish two cases. If ¢ = —¢, we have v1 + v3 = vg + ctgj + vz = v2 + v3 — 'tg;
and vg + v3 — ¢'tg; does not contain the term tbjep; in its support anymore, i.e. we have

V1 + U3 9, vy + v3. The claim now follows with vy = vy + v3. If ¢ # —c, we define
vy =v1 +v3 — (c+ d)tg; = va + ctg; + vy — (¢ + )tg; = va + v3 — tg;. Then we see
that v4 does not contain the term tbjeg; in its support anymore and the claim follows.

For the proof of c), we let v1,...,v4 € P" be such that v, é vg and vs é v4. Then
by Definition 2.4.7, there are vectors v(,...,v; € P" where k € N satisfying vy = vy,

v, = vg, and v_, N V) or vy, Ze vy where i, € {1,...,v} for all £ € {1,...,k}.
By b), for all £ € {1,...,k}, there is a 0, € P" satisfying v;_; + v3 G, 0y & vy + vs.
Therefore, for all indices ¢ € {1,...,k}, we have v, ; + v3 PN vy + v3 and induction
onte{l,...,k} yields vi+uvs & vo+v3 by Definition 2.4.7. An analogous construction
yields the claim vo + v4 <i> Vo + U3 <i> v] + v3.
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2 Border Bases of Finitely Generated Modules

In order to show d), we let v;,v9 € P" be vectors such that vy <i> vy and we let
p=ciul +---+csus € PbewithseN, c,...,cs € K, and uy,...,us € T". Then we
have c;u;v1 FAEIN ciujvy for all i € {1,...,s} by a). Induction on i € {1,...,s} and c)
now yield the claim pv; = cjuqvy + - - - + csusv <i> Clu1vg + - - - + CsUgVy = PUa.

For the proof of €), let v € P". If v PN 0, we collect the monomials used in the various

reduction steps and get polynomials p1,...,p, € P such that v = p1g1 +---+p,g, € (G).
For the converse implication, suppose that v € (G). Then there exist p1,...,p, € P such

that v = p1g1 + -+ + pugy € (G). Obviously, we have g; PN by Definition 2.4.7 and
thus d) yields p;g; <5 0 for all j € {1,...,v}. Therefore, induction on j € {1,...,v}
together with claim c¢) shows v = p1g1 + -+ PGy &,

Finally, we show the equivalence in f). Let vi,v2 € P". We have v s v for all
v € P" by Definition 2.4.7. In particular, we see that —uvg PN —uvg. Thus the condition

U1 <i> V9 is equivalent to the condition v; — vg <i> vy —v2 = 0 by ¢). Hence f) is a
direct consequence of e). O

After we have introduced rewrite rules and seen basic properties of them concerning
specific elements in P", we are now particularly interested in the overall properties of
rewrite rules.

Definition 2.4.10. a) A vector v; € P" is called irreducible with respect to the
rewrite relation i if there are no j € {1,...,v} and vo € P" such that v; 9, V9.

b) The rewrite relation %, is called Noetherian if there is no infinitely descending
chain vg ﬂvl ﬂng T2 with ij €{l,...,v} and v; € P" for all j € N.

. . G . . .
c) The rewrite relation — is called confluent if for all vectors vy, ve,v3 € P" satis-
. G G . G
fying v1 — v9 and vy — w3, there exists a vector v4 € P" such that v9 — v4
G
and v3 — v4.

()
/ T G
U1 - V4
x - -
v3 .
Remark 2.4.11. a) For r = 1, border bases in P" coincide with the usual border

bases in P by Remark 2.1.16. Thus [KR05, Exmp. 6.4.26] shows that the rewrite

. G . . .
relation — is not Noetherian, in general.
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b) A vector v € P" is irreducible with respect to -, ifand only if v € (O) g according
to Proposition 2.1.10 and the Definitions 2.4.7 and 2.4.10.

c¢) Considering the steps of the Border Division Algorithm 2.2.1 in detail, we see that
it performs reduction steps using g; where j € {1,...,v} to compute the normal
remainder with respect to G of a given vector. Thus for every v € P", we have

v - NR¢(v). In particular, NRg(v) € (O)k is irreducible with respect to N
by b).

Example 2.4.12. Consider the O-border prebasis G = {g1,...,97} € P? of Exam-

ple 2.4.8, again. Recall that P = Q[z,y], that {e1,e2} denoted the canonical P-module

basis of P2, O = {e1,ye1, xey, 62,1’62,1’262}, and that 2ze; + 2zes <i 2a:3yeg i) 2ye;.
Since 2ze;+2zes, 2ye; € (O)q, the vectors 2ze; +2xey and 2ye; are both irreducible with

respect to S, by Remark 2.4.11. In particular, it follows that the rewrite relation N
is not confluent according to Definition 2.4.10.

Now we have all ingredients to characterize border bases via rewrite rules. The fol-
lowing theorem generalizes [KK05, Prop. 14| and [KR05, Prop. 4.2.28| to the module
setting.

Theorem 2.4.13. (Border Bases and Rewrite Rules)
The O-border prebasis G is the O-border basis of (G) if and only if the following equivalent
conditions are satisfied.

C1) For allv € P", we have v ) if and only if v € (G).
Csy) Ifv € (G) is irreducible with respect to i, then we have v = 0.

Cs3) For allv € P, there is a unique vector w € P" such that v G w and such that w

1s irreducible with respect to N

Cy) The rewrite relation G s confluent.

Proof. First we show that C) implies C3). Let v € (G) be irreducible with respect

to -%5. As we have v -%5 0 by C1), v must be zero by the Definitions 2.4.7 and 2.4.10.
Next we show that Cy) implies C3). Let v € P". According to Remark 2.4.11, NRg(v)
is a vector with the claimed properties. In order to show the uniqueness, we let w € P" be

irreducible with respect to Y, and satisfying v S, w. Then we see that NRg(v) & w
by Definition 2.4.7 and it follows NRg(v) — w € (G) according to Proposition 2.4.9.
Additionally, Remark 2.4.11 yields that NRg(v) — w € (O) is irreducible with respect

to —Z5. Thus the claim follows from C3).

In order to prove that C3) implies Cy), we let v1, v9,v3 € P" be satisfying vy N v9 and
V1 N v3. According to Remark 2.4.11, we see that v; EEN V9 HEN NRg(v2) € (O)k and
v1 N U3 N NRg(v3) € (O)k, and that both NRg(v2) and NRg(v3) are irreducible
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with respect to the rewrite relation S, Thus C3) implies NRg(v2) = NRg(v3) and the
claim follows by Definition 2.4.10.

For the proof that Cy) implies C7), let v € P" be satisfying v -, 0. Then Proposi-
tion 2.4.9 yields v € (G). For the converse implication, we let v € (G). Then Propo-
sition 2.4.9 yields v 0. Let v, ...,V € P" with & € N be such that vy = v,
v = 0, and vp_q N Vp OT Vy_q & ve for all ¢ € {1,...,k}. If there exists no index
¢e{1,...,k} such that vy & vy, the claim follows immediately from Definition 2.4.7.
Thus suppose that v,_q & vy for some ¢ € {1,...,k}. By Definition 2.4.7, we see that
Vi—1 g vp =0. Let s € {1,...,k—1} be maximal such that vs_1 & vs. Then we have
Vg i> 0 and vy i) vs—1. Moreover, 0 € (O)x and thus 0 is irreducible with respect

to £> according to Remark 2.4.11. C}y) and Definition 2.4.10 thus yield vs_; i 0.
If we replace the sequence vy, ...,vi_1,0 with the shorter sequence vg,...,vs_1,0, we

see that the claim follows by induction on the number of reduction steps vy_1 & vy
where ¢ € {1,...,k}.
Next we show that condition C1) is satisfied if G is the O-border basis of (G). If a

vector v € P' satisfies v~ 0, we have v € (G) by Proposition 2.4.9. Conversely, let

v € (G). Then v EN NRg(v) € (O)k follows from Remark 2.4.11. Since v € (G), we
also have NRg(v) € (G) according to Definition 2.4.7. By Corollary 2.2.6, we see that
NRg(v) € (G) N (O)k = {0} and the claim follows.

Finally, we prove that G is the O-border basis of (G) if C3) holds. Assume that there

exists a v € (G) N (O)k \ {0}. Then v is irreducible with respect to S, according to
Remark 2.4.11 and C3) yields the contradiction v = 0. The claim hence follows from
Corollary 2.2.6. O

Example 2.4.14. Consider the O-border prebasis G = {g1,...,97} € P? of Exam-

ple 2.4.12, again. Recall that the rewrite relation 9, was not confluent. Therefore, G is
not the O-border basis of (G) by Theorem 2.4.13. Note that this result coincides with
Example 2.4.6.

2.4.4 Commuting Matrices

Next we characterize border bases via commuting matrices. This characterization is
due to [Mou99|. It is outstanding as there is no Grobner bases analogon of it. The
theorem states that it suffices to consider the formal multiplication matrices, i.e. matrices
depending only on G that describe the multiplication by an indeterminate in the residue
class module P"/(G), and check whether these matrices are pairwise commuting. This
is quite remarkable because by knowing that these matrices commute, we can explicitly
describe the whole multiplicative structure of the residue class module P"/(G). Based
on this explicit description of the multiplicative structure, we study geometric properties
of zero-dimensional schemes in the Chapters 4 to 6.
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Definition 2.4.15. Given s € {1,...,n}, we define the s** formal multiplication
matrix X, = (6))1<p <, € Mat,(K) of G by

5(5) _ Ori  if xstpeq, = tieq, € O,
ke ap;j if zeteeq, = bj€5j € 00.

Example 2.4.16. Consider the O-border prebasis G C P? of Example 2.2.3, again.
Recall that P = Q[x,y], that {e1,e2} was the canonical P-module basis of P? that we
had O = {ey,ye1, zeq, e2, xea, 222} = {t1€ay, - - -, t6€aq}, and that G = {g1,..., g7} was
given by g = y261*$€2, g2 = Tye;—ez, gz = $261*y€1+627 g4 = Yez—€1—Yye1—re1—E€2,
g5 = xTyes+3e1, g = x2yes —e1 —eg, and gy = x3ey —eq. Then the formal multiplication
matrices X', ) € Matg(Q) of G are

00 0 O0O01 0001 -3 1
00 1 0O0O 1001 0 O
10 0 000 0001 0 O
= 01 -1 00 0}° V= 0011 0 1
00 0 10O 0100 0 O
00 0 010 0000 O O

Remark 2.4.17. Similar to the interpretation of the formal multiplication matrices of
a border prebasis in P in [KR05, p. 434|, we can interpret the multiplication matrices of
the O-border prebases G C P" the following way: Let s € {1,...,n} be an index and
let X5 € Mat,(K) be the s formal multiplication matrix of G. We can identify every
vector v = citieq, + -+ + cplyeq, € (O)k with the corresponding coordinate vector
(c1,...,¢u)" € K*. Then the vector (¢}, ...,¢,)" = X (c1,..., )" € K* corresponds
to the vector cjtieq, + -+ + cgtue% = NRg(zsv) € (O)xg C P". In particular, we have
Ahtiea, + -+ ctpea, = T3o in PT/(G) in this situation.

Before we actually prove the characterization of border bases via commuting matrices,
we show that if the formal multiplication matrices are pairise commuting, then (O)x can
be equipped with a P-module structure.

Lemma 2.4.18. Assume that p # 0, i.e. O # (. Let Xy,..., X, € Mat,(K) be the
formal multiplication matrices of G and assume that X1, ..., X, are pairwise commuting.
Then the K -vector subspace (O)x C P is a P-module with scalar multiplication

po(citiea; + - +cutpea,) = (t1€ay, s tpea,) - (X1, ..., &) - (c1, - .. ,cu)tr

for allp € P and all ¢1,...,c, € K. Moreover, the set {e1,...,e,} N O generates the
P-module (O)k and for all c € K and i € {1,...,u}, we have (ct;) o e, = ctieq,.

Proof. Since the order ideal O is K-linearly independent, the map o is well-defined.
Moreover, the K-vector subspace (O)x C P is obviously an additive group. For all
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2 Border Bases of Finitely Generated Modules

p,q € P and ci,...,¢4,d1,...,d, € K, the commutativity of the formal multiplication
matrices A1, ..., X, with respect to G yields

Lo (citieq, + -+ cutpeq,)
= (t1€ay, - - t#eau) (X, Xn) - (e1yeenycn)™
= (t1€ay,- - - #ea#)-IM-(cl,...,cu)tr
= citieq, + -+ cutpea,,
and
(pQ) (Cltleal + o+ Cutueau)
= (t1€0y, - - #e%) (pq)(X1,..., %) (c1,. .. ,c#)tr
= (t1€0y, - - ,tuea#) p(Xi, ., ) - q( X, . &) - (e, ,cy)tr
=po((tieay,- - tuea,)  q(X1, ..., &) - (c1,... ,cu)tr)
=po (q © (Cltleal T+t Cﬂtﬂeau))a
and
(p + Q) o (Cltlecn +eee Cutueau)
= l1€ays- -+ lp€ay,) - \P q 1ye+-9etn) \Cly...,Cpy
(t tuea,) - (p+ @) (X Xn) - ( "
= (t1€0y,- - ,tﬂe%) (p(X,y e, X)) + (X, ) - (e ,c“)tr
= (t1€0y,- - ,t#eau) p(Xi, ., ) - (e, . .,cﬂ)tr
+ (tleal, e at/.teoz#) . q(Xl, . 7Xn) . (Cl, e ,C#)tr
= (po(citiea; + -+ cutpea,)) + (o (crtiea, + -+ + cutpea,)),
and
((cltleal -+ Cutueau) + (dltleal + -+ dutueau))
=po((c1 + all)tlea1 + o (ep+dy)tuea,)
:(16a1,.. Meau) (Xl,...,Xn) (Cl+d1,-- Cu—i-d )
= (t1€0y, - - #eau) p(Xi, ..., X)) - ((er,y. .., ) + (dy,...,d, )
= 1601,...,u6a P 1y---5tp Ci,.
(t tuea,) - P(X Xn) - ( )
+ (tiear, - tuea,) - P(X1, .., n)~(d1,...,du)“

= (po(citiea, + -+ cutpeq,)) + (po (ditieq, + -+ +dutuea,)).

Altogether, we see that that ((O)x,+,0) is indeed a P-module.

It remains to prove that the P-module (O)x is generated by {ei,...,e;} N O. Let
O1,...,0, be order ideals in T™ such that O = O1e1U- - -UO, e, as in Definition 2.1.6 and
for all s € {1,...,n}, write Xy = (5,({;)) € Mat, (K) as in Definition 2.4.15. Without loss
of generality we suppose that eq,...,ep € O and egy1,...,e, ¢ O for some £ € {1,...,7}
and that tre,, = ey forallk € {1,...,¢}. Let {&,...,E,} denote the canonical K-vector
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space basis of K* and let k € {1,...,¢}. We prove by induction on the degree of ¢ that
t o e = teg for all t € O. For the induction start, we have

loep = (t1eay, - tuea,) - 1(X1, ..., &) - EF
= (t1€ays-- - tuea,) - Ly EF
= (t1€ays-- - tuca,) - EF
= tpeq,

= €.

For the induction step, suppose that there is a t € Oy with deg(t) > 0. Then we have
tey = tiea, = wstjeq; for some i,j € {1,...,u} and s € {1,...,n} by Definition 2.1.6.
The induction hypothesis yields t o ey = (zstj) 0 €a; = 750 (tj0eqn;) = Ts0 (tjeq,). Thus
we see that

toer =50 (tjeq;)
= (t1€ay, - s tuta,) - Ts(X1, ..., Ap) - €;r
= (t1€ay, -+ tuta,) - Xs- S;r
= (t1€ay, - tuea,) - (65, €80
= d1it1€a; + - + Opitpea,
= t;eq,
= teg

by Definition 2.4.15 i.e. the above claim has been proven by induction. For all ¢ € K
and i € {1,...,u}, we also have

cotiea, = (t1€ays - tu€a,) - c(Xi, ..., Xy,) - EF

= (t1€ay, -+ tuta,) - I, - Er
= (t1€ay,-- > tuta,) - cE}r
= cli€q;-

Altogether, since ¢ € {1,...,r} is chosen such that {e1,...,e;,} N O = {e1,... ez}, it
follows that (c1t1)oeq, +- -+ (culy) 0€a, = citiea, +- - +cutyeq, forallcy, ..., c, € K,
i.e. the P-module (O) is generated by {e1,...,e;,} NO. O

After all, we are now able to prove the characterization of border bases via commuting
matrices. Note that we do not generalize the original proof in [Mou99, Thm. 3.1] for
border bases in P. We rather generalize the proofs of [KK05, Prop. 16] and [KRO05,
Thm. 6.4.30]. Moreover, we explicitly determine equations which the coefficients of a
border prebasis must satisfy to determine a border basis. The corresponding proof of
these vanishing conditions for border bases in P can be found in the proof of [KKO05,
Prop. 16| and in [KR05, Prop. 6.4.32].
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2 Border Bases of Finitely Generated Modules

Theorem 2.4.19. (Border Bases and Commuting Matrices)
For all s € {1,...,n}, we let X5 = (51532))19,@9 € Mat, (K) denote the formal multipli-
cation matriz of G as in Definition 2.4.15 and we define the map

J o if xstieq;, = tiea; € O,

s {l,...,u} =N, i
0s 4 it {kz if xstieq, = breg, € 00.

Let O = {tiea,, ..., tu€q, } denote the image of O in P"/(G). Then the O-border preba-
sis G is the O-border basis of (G) if and only if the following equivalent conditions are
satisfied.

Dy) The formal multiplication matrices Xy, ..., X, of G are pairwise commuting.

Do) Forallp € {1,...,u} and all s,u € {1,...,n} with s # u, the following equations
are satisfied:

1) If zstiea, = tjea,, Tutiea, = brep,, and xsbres, = beeg, with i,j € {1,...,u}
and k, 0 € {1,...,v}, we have

Z Opos (m) Amk + Z Apos(m)Amk = Qp¢-

me{l,...,u} me{l,...,u}
Tstmea,, €O Tstmea,, €00

2) If we have xstieq, = bjes; and xytieq; = breg, with indices i € {1,...,u} and
J,ke{l,...,v}, we have

Z Opos (m) @mk + Z Apgs(m)dmk

me{l,...,u} me{l,...,u}
Tstmea,, €O ZTstmea,, €00
= Z Opg, (m)mj + Z Apoy (m)Amy -
me{l,...,u} me{l,...,u}
afutnLeameO xutmeameao
If these equivalent conditions are satisfied, then for every s € {1,...,n}, the formal

multiplication matriz Xs represents the multiplication endomorphism of the K-vector
space P"/(G) defined by v — Ty0, where v € P, with respect to the K-vector space
basis O.

Proof. If p =0, i.e. if O = () and 00 = {ey,...,e,} = G, the claim is obviously true.
Thus suppose that ;o # 0 and let {&1,...,&,} denote the canonical K-vector space basis
of K*.

First we prove that condition D;) is satisfied if G is the O-border basis of (G), i.e.
that O is a K-vector space basis of P"/(G) by Definition 2.1.14. Let s € {1,...,n}. The
formal multiplication matrix X defines a K-vector space endomorphism ¢4 of P"/(G)
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with respect to the K-vector space basis O. We show that ¢4(v) = Zzv for all v € P",
i.e. that ¢ is the multiplication by x,. Consider the expansions

s

¢S(tleo¢1) = fﬁ)tlem +o gl(ll)tueau’

bs(tuea,) = {S’Btleal +- 4+ 5&275#6%.

Let u € {1,...,u}. Then we see that xst,e,, € 0O according to Definition 2.1.7. If
we have xstyen, = tiea, € O for some i € {1,...,u}, Definition 2.4.15 yields that
bs(tuta,) = O1itieay + - + duituea, = tita; = Tslula,. If Tstuea, = bjeg, € 0O for
some j € {1,...,v}, we have @s(tueq,) = arjtia, + -+ + aujluea, = bjes, = Tstyea,
in P"/(G) by Definition 2.4.15. Therefore, ¢ represents the multiplication by s with
respect to O. Since the multiplication in P"/(G) is commutative and since the formal
multiplication matrices Xy, ..., X, represent the endomorphisms ¢1,...,¢, of P"/(G)
with respect to the K-vector space basis O, it follows that the formal multiplication
matrices A7, ..., A, are pairwise commuting.

Next we show that G is the O-border basis of (G) if D;) holds. As {e1,...,e,} NO
generates the P-module (O) g according to Lemma 2.4.18, the map

ey if e € 07
er,....erf = (O)k, ep i
{ 1 r} < > {Z?:l aijtieai if e, = €3, € 00

induces the P-module epimorphism

if e, € O,
(p:Pr—»<O>K, ep > Ck 1 “
doimy aijtiea; if e = eg, € 00
by the Universal Property of the Free Module P". Thus the Isomorphism Theorem
induces the P-module isomorphism

€k if e € O,

?: P /ker(p) = (O)k, & +—
SD / (SO) < >K k {Z/;:l aijtieai lf €L = eﬁj S 60

In particular, as O is a K-vector space basis of (O) g, it follows that p~1(0), i.e. the set of
residue classes of the elements of O in P"/ker(y), is a K-vector space basis of P/ ker(¢y).
We now show that (G) C ker(y). Without loss of generality we may suppose that
er,...,eq € Oandepyy, ... e ¢ O for some index ¢ € {1,...,r} and that tie,, = e for
all k € {1,...,¢}. Furthermore, we let j € {1,...,v}. We have to distinguish two cases.
For the first case, suppose that eg, € dO. Then we have b; = 1 by Definition 2.1.7.
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2 Border Bases of Finitely Generated Modules

Hence Lemma 2.4.18 yields

n
©(gj) = ¢ (bjeﬁj - Zaz‘jtieai>
“w
=bjop(es,) Zawtz o ¢(€q;)
=1

=1lo E aijtieai— E aijtieai
©

= a;jtieq, E ajtieq,
i=1

I
e

For the second case, suppose now that O, € O. Then deg(b;) > 1 and there hence exist
an s € {1,...,n} and a k € {1,..., u} such that bjes, = wstyeq, by Definition 2.1.7. In
particular, we see that §; = oy, and bj = xst;. Thus Lemma 2.4.18 yields

m
e(g5) = (bj% -> az‘jtieai>
=1

I

=bjoples,) — Y (aijts) o plea;)
=1
w
=bjoes — ) (aijti) o ea,
=1

= tk o eak Z a;jtieq;
= 7fkea,c Zawt €q;
m
= (tleala .. atuea#) . xs(Xl, RN Xn) . g,zr — Zaij . gltr
=1
W
T-D ai &
i=1
o
5 (s) gtr Z aij - 5;“
=1
m
Qg - gztr Z aij . gztr

= (tleal, e Meau

M:

1

i

= (t1€ay,- -+ tutay,)

M:

1 =1

i

= (tleal, e Me% <

=0.
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Altogether, it follows that (G) C ker(yp).
The Universal Property of the Residue Class Module P"/(G) now induces the P-module
epimorphism

€L if e, € O,

: PTG P"/k o Ck tieq.
(0 J(G) = P"[ker(¢), e {Zé;laijtieai if e = eg; € 90.

Moreover, we have ¥(0) = $1(0). Since O generates the K-vector space P"/(G) by
Corollary 2.2.5 and since 3~ 1(0O) is a K-vector space basis of P"/ker(y), we see that O
is also a K-vector space basis of P"/(G), i.e. that G is the O-border basis of (G) by
Definition 2.1.14.

Finally, we prove that D;) and Dj) are equivalent. Let p,i € {1,...,u} and let
s,u € {1,...,n} be such that s # u. In order to show this equivalence, we translate the
commutativity condition &,XX,EF = E,X,X:EF back into the language of (O)k. As
the resulting condition depends on the position of ¢;e,, relative to the border of O, we
distinguish four cases.

tk‘eak tfeag
tieai tjeaj

First case: z,z,tieq, € O

Since O is an order ideal in T"(ey,...,eq), it follows that zstieq,,zutica, € O by
Definition 2.1.6. Say, xstieq, = tiea;, Tulia;, = tkeay, and zsrutieq; = teeq, with
Jyk,0e{1,...,u}. Then we have

E XX ED = EXEN = €18 = 6,0 = € = £,X,E1 = £, X, X, EL,

i.e. the commutativity condition holds in this case by Definition 2.4.15.

treq, bgeﬁg
tieai tjeaj

Second case: xxytie,, € 00 and zstieq,, Tytiea, € O

Say, zstieq, = tiea;, Tuti€a; = tg€ay, and Tswylieq, = bpeg, with j, k € {1,...,u} and
¢e{l,...,v}. Then we have

E XX EN = EXEN = €58) = apy = €Y = £,2,68 = E,X, X,

PJ

i.e. the commutativity condition holds in this case by Definition 2.4.15, again.

bkeﬁk bgegz
tieai tjeaj

Third case: ztien, € O and wz,tieq, € 00

Since O and O are both order ideals in T"{ey, ..., e,), we see that Tsxylieq, € 00 by the
Definitions 2.1.6 and 2.1.7. Say, zstieq;, = tjeq;, Tutia; = breg,, and zsxytiea, = beeg,
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2 Border Bases of Finitely Generated Modules

with j € {1,...,u} and k, £ € {1,...,v}. Then we have

EPXSXugitr = Sst(alk, . ,auk)tr

I
=3 Bl
m=1
= Z 517@3(7”) amk + Z aPQs(m) Amk
me{l,...,u} me{l,...,u}
Tstmean, €O ZTstmeay, €00

and

EpXu X EN = E,X,EN =€) = ayy

by Definition 2.4.15. Thus the commutativity condition holds in this case if and only if
equation 1) is satisfied for s, u and p.

bkeﬁk *

Fourth case: x.te,, € 00 and zutieq, € 00

tieq, bjegj

Say, wstieq, = bjeg, and wytieq, = breg, with j k € {1,...,v}. Then we have

5stXu5itr =EXs(aig, ... ,aﬂk)tr

I
=D Eommm
m=1
= Z Opos (m)Amk + Z Gpos(m)dmk
me{l,...,u} me{l,...,u}
Tstmea,, €O Tstmea,, €00

and

5pXqugitr = EpXulay, ..., aﬂj)tr

n
oL
m=1
= Z 51791/. (m)am] + Z Opoy (m) Amyj -
me{l,...,,u} me{l,...,u}
Tutmea,, €O Tultmea,, €00

according to Definition 2.4.15. Thus the commutativity condition holds in this case if
and only if equation 2) is satisfied for s, u and p.

Altogether, we have regarded all possible cases and have seen that condition Dy) holds if
and only if the equations 1) and 2) are satisfied for all s,u € {1,...,n} such that s # u
and for all p € {1,...,u}, i.e. if and only if Dy) is satisfied. O
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Example 2.4.20. Consider Example 2.4.16, again. We have seen that the formal
multiplication matrices X,) € Mat7(Q) of G are

00 0 00 1 000 1 -3 1
00 1 000 1001 0 0
10 0 00 O 0001 0 0
=101 100 ol Y=loo11 0 1
00 0 100 0100 0 0
00 0 010 0000 0 O
Since
0000 O O 01 -1 -3 1 0
0001 0 0 01 -1 0 01
0001 -3 1 01 -1 0 00
;c.y_100000¢11_1010_y.x,
0011 0 1 00 1 0 00
0100 0 0 00 0 0 00

condition Dj) of Theorem 2.4.19 is not satisfied. Thus G is not the O-border basis of (G)
according to Theorem 2.4.19. Note that this result coincides with Example 2.4.14.

2.4.5 Liftings of Border Syzygyies

Next we characterize border bases via liftings of border syzygies. Border syzygies are
syzygies of (bieg,,...,byep,) and can sometimes be lifted to syzygies of (g1,...,9,). The
goal of this subsection is to prove that we can lift all syzygies induced by neighbors with
respect to O to syzygies in (g1,...,9y) if and only if G is an O-border basis of (G).
The proof of this characterization in Theorem 2.4.26 is based on the characterization via
commuting matrices. In Corollary 3.3.9, we will give an alternative proof of this theorem
that is not based on the characterization via commuting matrices but on a deeper insight
into the structure of liftings of border syzygies. All ideas of this subsection follow the
corresponding concepts of [KK05, Section 5].

Since we study border syzygyies and their liftings, we must distinguish between the
elements of P" in which G lives and the elements of P¥ in which the syzygies live. There-

fore, we denote the canonical basis of the P-module P” by {e1,...,¢,} in contrast to the
canonical basis of the P-module P" which is, as usual, denoted by {eq,...,e,}.
First we introduce neighbors with respect to the order ideal O in T"(ey, ..., e,) and the

corresponding border syzygies. These neighbor syzygies play the same role for border
bases as the critical pairs do for Grobner bases. For the definition of neighbors with
respect to an order ideal in T™, we refer to [KKO05, Defn. 17| and [KRO05, Defn. 6.4.33|.
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Definition 2.4.21. Let O = O1e1 U---U O,e, be with order ideals O, ..., O, in T".

a) A syzygy (q1,...,qv) € Syzp(bieg,,...,byes,) C P" is called a border syzygy
with respect to O.

b) For all i,j € {1,...,v} with 3; = 3;, the fundamental syzygy of b;es, and bjes,

is defined to be 0y; = lcm(fv"’b")si — lcm(b,"’bj)ej.

b]
c) Let i,j € {1,...,v} be with 8; = 5; and let o;; be the corresponding fundamental
SyzZygy.

1) The border terms bieg;,bjep; € OO are called next-door neighbors with
respect to O if B; = B; and if b;,b; € 00, are next-door neighbors with
respect to Op,, i.e. if we have xyxbeg, = bjep, for some k € {1,...,n}. In
this case, the border syzygy o0;; = xre; — € is called a next-door neighbor
syzygy with respect to O.

2) The border terms b;ep,, bjes, € 0O are called across-the-street neighbors
with respect to O if 8; = 3; and if b;, b; € 0Og, are across-the-street neighbors
with respect to Og,, i.e. if we have wxbies, = w¢bjep; for some k, £ € {1,...,n}
with k # ¢. In this case, the border syzygy o;; = xpe; — x4, is called an
across-the-street neighbor syzygy with respect to O.

3) The border terms b;eg,, bjes; € 0O are called neighbors with respect to O if
Bi = Bj and if b;,b; € 00p, are neighbors with respect to Og,, i.e. if they are
next-door or across-the-street neighbors with respect to O. In this case, the
corresponding border syzygy o;; is called a neighbor syzygy with respect
to O.

Example 2.4.22. Consider the O-border prebasis G C P? of Example 2.2.3, again.
Recall that {e1, ez} denoted the canonical P-module basis of P? and that the border

of O was 90 = {y?e1, zye1, x2e1, yes, zyes, x?yea, x3ea} = {bregs,, ..., breg, }.
® terms in 00 --- next-door neighbors with respect to O
< terms in O across-the-street neighbors with respect to O
Y
O1
b1 Yy
° )
ba by b5 _bg
° ---e---@
bs bz
L x @ X

We see that z - byeg, = wyes = bseg, and z - bseg, = x?yes = bgeg,, i.e. the border
terms byeg, and bseg,, and the border terms bseg; and bgegg are next-door neighbors with

42



2.4 Characterizations

respect to O. Moreover, z - bieg, = :cy261 =y - baeg,, T - boeg, = a:2y61 =y - bzeg,, and
x-beegy = 3yes = y-breg,, i.e. the border terms bieg, and baeg,, the border terms byeg,
and bseg,, and the border terms bgeg, and breg, are across-the-street neighbors with
respect to O. Obviously, there are no further neighbors with respect to O.

The following proposition shows that the set of all neighbor syzygies with respect to
the order ideal O generates Syzp(bieg,,...,b.eg,). This is another example of the key
role neighbors with respect to O play for border bases. The proposition is a module
version of [KK05, Prop. 21].

Proposition 2.4.23. The set of all neighbor syzygies with respect to O generates the
P-submodule Syzp(biegs,,...,byeg,) C PY.

Proof. For all 4,5 € {1,...,v} with 8; = j;, we let 0;; be the fundamental syzygy
of bieg, and bjes; as in Definition 2.4.21. By [KR00, Thm. 2.3.7], the P-submodule
Syzp(bieg,,-..,byeg,) C P” is generated by ¥ = {oy; | 4,5 € {1,...,v},i < j,5; = B}
If ¥ = (), the claim follows trivially. Thus suppose that ¥ # () and let i,5 € {1,...,v}
be such that i < j and 8; = ;. We now prove that the fundamental syzygy o;; is a
P-linear combination of neighbor syzygies with respect to O. Let b;; = lcm(b%bj) and
bj; = lcm(b#bj) and let O = O1e1 U --- U O,e, be with order ideals O1,...,0, in T".
Since (; :Jﬁj, we see that b;, b; € 00g, by Definition 2.1.7 and thus o0;; is also a syzygy
of (b1,...,b,). Moreover, [KKO05, Prop. 21] yields that o;; is a P-linear combination of
fundamental syzygies oy such that k, ¢ € {1,...,v}, by, by € 00g,, i.e. B, = B¢ = B;, and
such that by, by € 00g, are neighbors with respect to Og,. Furthermore, we see that two
border terms by, by € 00p, with k, ¢ € {1,...,v} are neighbors with respect to Og, if and
only if brpeg, and bgeg, are neighbors with respect to O by Definition 2.4.21. Altogether,
it follows that the fundamental syzygy o;; is also a P-linear combination of neighbor
syzygies oge such that k,¢ € {1,...,v} and such that byeg, is a neighbor of breg, with
respect to O. O

Next we introduce the notion of liftings of border syzygies. Liftings of border syzygies
in P were introduced in [KKO05, Defn. 22].

Definition 2.4.24. a) Let (p1,...,pv) € Syzp(bies,,-..,byeg,) be a border syzygy
with respect to O. Then we call a syzygy (P1,...,P,) € Syzp(g1,-..,9,) a lifting
of (p1,...,py), if one of the following conditions holds for v = p1g1 + - - + pugy.-

e We have v =0 and (P1,...,P,) = (p1,...,pv).

e We have v # 0 and deg(P; —p;) < indp(v) —1 for all j € {1,...,v} such that
Pj—p; #0.
In this situation, we also say that the border syzygy (p1,...,py) with respect to O
lifts to the syzygy (Pi,...,P,) of (g1,...,9)-

b) Let 4,5 € {1,...,v} be such that 8; = 3; and let o;; be the fundamental syzygy
of bieg, and bje/gj.
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1) If beg,, bjes;, € 0O are next-door neighbors with respect to O, we call every
lifting A;j € Syzp(g1,...,9,) of 0i; a next-door neighbor lifting of o;;.

2) If bieg,, bjes, € OO are across-the-street neighbors with respect to O, we call
every lifting \ij € Syzp(g1,...,9,) of 0;; an across-the-street neighbor
lifting of o;.

3) If bieg,,bjes;, € OO are neighbors with respect to O, we call every lifting
Xij € Syzp(g1,- .., 9v) of 0i; a neighbor lifting of o;;.

Example 2.4.25. Consider the O-border prebasis G = {g1,...,97} C P? of the
Examples 2.2.3 and 2.4.22, again. Recall that P = Q[z,y], {e1,e2} was the canonical
P-module basis of P2, that the border terms bseg; and bgeg, are next-door neighbors
with respect to O and that g5 = zyes + 3e; and g = z%yes — 1 — ea. The vector
(0,0,0,0,2,—1,0) € P7 is a next-door neighbor syzygy with respect to O according to
Definition 2.4.24. As g5 — g6 = 3ze; +e1+e2 € (O)g \ {0}, we have indp(xgs — gs) = 0
according to Definition 2.1.11. In particular, since there is no polynomial p € P\ {0}
such that deg(p) < indp(zgs — gs) — 1 = —1 and since xgs — g¢ # 0, there exists no
next-door neighbor lifting of (0,0,0,0,z, —1,0) according to Definition 2.4.24.

Finally, we are now able to generalize |[KKO05, Prop. 25| to the module setting and
characterize border bases in P" via liftings of border syzygies.

Theorem 2.4.26. (Border Bases and Liftings of Border Syzygies)
The O-border prebasis G is the O-border basis of (G) if and only if the following equivalent
conditions are satisfied.

E1) Every border syzygy with respect to O lifts to a syzygy of (g1,.--,9v)-
Ey) Every neighbor syzygy with respect to O lifts to a syzygy of (g1,-..,9y)-

Proof. First we show that condition Fj) is satisfied if G is the O-border basis of (G).
Let (p1,...,pv) be a border syzygy with respect to O and v = p1g1 + -+ + pugy. If
v = 0, we see that (p1,...,p,) is a lifting of (p1,...,py,) by Definition 2.4.24. Thus
suppose that v # 0. Since v € (G) \ {0}, condition A;) of Theorem 2.4.1 yields a
representation v = pig1 + - + pugy = @191 + --- + qg, such that ¢q1,...,q, € P
and such that ¢; = 0 or deg(g;) < indp(v) — 1 for every index j € {1,...,v}. Let
(Pr,...,P) = (p1,---sov) — (q¢15---,qy). Then (Py,...,P,) is a syzygy of (g1,...,9v)
by construction. Moreover, we have deg(P; — p;) = deg(—g¢;) < indp(v) — 1 for all
je{l,...,v} with P;—p; #0, ie. (p1,...,py) lifts to (P1,..., P,) by Definition 2.4.24.

Since FE7) logically implies Fs) according to Definition 2.4.21, it remains to prove
that G is the O-border basis of (G) if E3) holds. For all s € {1,...,n}, we let

J it astiea, = tjeq, € O,

s:{l,...,u =N, i—
os n {k if xstieq;, = breg, € 00.

be as in Theorem 2.4.19. We have to distinguish two cases.
Given next-door neighbors byeg, ,beeg, € 0O with respect to O, say xsbreg, = beeg,
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where s € {1,...,n} and k,¢ € {1,...,v}, the corresponding next-door neighbor syzygy
with respect to O is of the form oy = zse1 — &4 by Definition 2.4.21. Let Axp be a lifting
of ope. If v =msgK — g¢ # 0, Proposition 2.1.13 yields indp(zsgr — g¢) < 1. Hence there
exist ¢1,...,¢, € K such that Ay = xeep, —ep — Y. CwEw and Ay is also a syzygy
of (g1,-..,9v) by Definition 2.4.24. Thus we have

v

0==Tsgk — g — Y Cubu

w=1
7 2
= Ts bkeﬁk - Z amktmeam - bfeﬁg - Z amétmeam
m=1 m=1
v Iz
— Z Cw <bw€5w - Z amwtmeam>
w=1 m=1

7 7 v v I
= - § amk(xstmeam) + Z amétmeam - § Cwbweﬁw + Z Cw Z amwtmeam
m=1 m=1 w=1 w=1 m=1

== Z Amikl o, (m)Corgy(m) Z Amkbo, (m) €8, (m)
Tstmea,, €O Tstmean, €00

2 v v 2
+ E ametmea,, — Z cwbweg, + E Cuw E AmwtmCan, -
m=1 w=1 w=1 m=1

As 00 is K-linearly independent, comparison of the coefficients of the term b,eg, for all
w e {1,...,v} yields

—amy  if byeg, = Tstmea,, € 50,
C =
Y 0 if byeg, ¢ 0.

As O is K-linearly independent, comparison of the coefficients of the term tyeq, for all
pe{l,...,u} yields

v
0=~ >  amkfppim +ape+ ) Culpu
me{l,...,,u} w=1
ZTstmea,, €O
== Z UmkOpo,(m) T Apt — Z Amklpos(m)s
me{l,...,u} me{l,...,u}
Tstmean, €O Tstmeamy, €00

i.e. the equations 1) of condition Dy) of Theorem 2.4.19 are satisfied.

Given across-the-street neighbors breg, ,bjeg;, € JO with respect to the order ideal O,
say rsbres, = wubjes; where s,u € {1,...,n} and k,j € {1,...,v}, the corresponding
across-the-street neighbor syzygy with respect to O is of the form oy; = e — 2uej
according to Definition 2.4.21. Let Ay; be a lifting of oy;. If v = xegr — vug; # 0,
Proposition 2.1.13 yields indp(zs9x — z4gj) < 1. Hence there exist scalars ci,...,¢, € K
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such that \gj = @sep — Tuej — D uq CwEw and g is also a syzygy of (g1,..

w=1

Definition 2.4.24. Thus we have

v
0= Togk — Tugj — Y, Cubu
w=1
i g
=z, | breg, — Z Amktm€an, | — Tu | bjep; — Z AmjtmCan
m=1 m=1
v 1
- Z Cw (bweﬂw - Z amwtmeam>
w=1 m=1
g "
=— Z amk(Tstmea,, ) + Z amj(Tutmean, )
m=1 m=1

v v o
- E Cwbweﬁw + E Cw E amwtmeam
w=1 w=1 m=1

== Z Akl g (m)€ap, (m) — Z Umkbo, (m)€B,, (m)
Tstmea,, €O Tstmea,y, €00

Y mite,mCapm T D Wmibeu(m)Byim
Tutmea,, €O Tutmea,, €00

v v o
— g cwbweg, + g Cw g Gmwtmea,, -
w=1 w=1 m=1

. 791/) by

As 90 is K-linearly independent, comparison of the coefficients of the term b,eg,, for all

w e {l,...,v} yields

—mk + Ay i byeg, = Tstmea,, = Tutmea, , € 250 N1, O,

S — Ak if byeg, = Tstmea,, € 0 \ 2,0,
v -y if byeg, = Tulmrea, , € 2,0\ 250,
0 if byeg, ¢ .0 U x,0.

As O is K-linearly independent, comparison of the coefficients of the term t,e,, for all

pe{l,...,p} yields

v

0=- Z AmkOpg, (m) + Z WmjOpg, (m) + E : CuwGpw
mée{l,...,u} me{l,...,u} w=1
Tstmea,, €O Tutmea,, €O

= Z AmkOpg, (m) + Z Wmj0pg, (m)
me{l,...,u} me{l,...,u}
Tstmea,, €O Tutmea,, €O
- g AmkQpos(m) + E : Amjpo,(m)>

me{l,...,u} me{l,...,u}
Tstmea,, €00 Tulmea,, €00
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i.e. the equations 2) of condition Dg) of Theorem 2.4.19 are satisfied.
Altogether, we see that the condition D3) of Theorem 2.4.19 is satisfied and thus G is
the O-border basis of (G). O

Example 2.4.27. Consider the O-border prebasis G = {g1,...,97} € P? of Exam-
ple 2.4.25, again. Recall that (0,0,0,0,z,—1,0) € Syzp(bieg,, ..., breg,) is a next-door
neighbor syzygy with respect to O that cannot be lifted to a syzygy of (g1,...,97), i.e.
condition Fj) of Theorem 2.4.26 is not satisfied. Therefore, G is not the O-border basis
of (G) according to Theorem 2.4.26. Note that this result coincides with Example 2.4.20.

It is important to remark that the proof of the preceding theorem yields an algorithmic
way to compute liftings of border syzygies with respect to O if G is the O-border basis
of (G) and that liftings of neighbor syzygies with respect to O are uniquely determined
and only depend on G.

Remark 2.4.28. a) Suppose that G is the O-border basis of (G). Given an arbi-
trary border syzygy (p1,...,pv), we have seen in the proof of Theorem 2.4.26 that
every special generation p1g1+- - +pugy = 191+ -+qug, with q1,...,q, € P asin
condition A;) of Theorem 2.4.1 implies that (p1—q1,...,p0—qv) € Syzp(g1,--.,9v)
is a lifting of (p1,...,py). In particular, as shown in the proof of Theorem 2.4.1,
we can compute such a special generation by applying the Border Division Al-
gorithm 2.2.1 to the input data p1g1 + --- 4+ p,g, and G. Note that the Border
Division Algorithm 2.2.1 depends on the ordering of the elements in G and thus
also the lifting depends on this ordering. Hence the lifting (p1 — q1,...,p0 — qv) is,
in general, not uniquely determined by the O-border basis G.

b) Let k,¢ € {1,...,v} be such that byes,,breg, € 0O are neighbors with respect
to O, and let oge denote the corresponding neighbor syzygy with respect to O.
Suppose that there exists a neighbor lifting Axy of oge.

1) Suppose that bies, ,beeg, € 0O are next-door neighbors with respect to O, i.e.
there exists an s € {1,...,n} such that z;byes, = breg, by Definition 2.4.21.
As shown in the proof of Theorem 2.4.26, the lifting Agp of oy has the form
Aee = Opg — 161 — - -+ — ¢y with 1, ..., ¢, € K and for every w € {1,...,v},
we have

amp  if byeg, = Tstmea,, € 50,
C g
b 0 if byeg, ¢ z50.

2) Suppose that breg, ,breg, € 0O are across-the-street neighbors with respect
to O, i.e. there exist s,u € {1,...,n} such that x byes, = xybee, by Defini-
tion 2.4.21. As shown in the proof of Theorem 2.4.26, the lifting Ags of o
has the form Ay = oy — 161 — -+ — e, With ¢1,...,¢, € K and for every
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2 Border Bases of Finitely Generated Modules

w € {1,...,v}, we have

Ak — Ao if byep, = Tstmea,, = Tutmea,, € 5O Nz, O,

. Ok if byeg, = Tstmea,, € 0\ 2,0,
v — Q! if bweﬁw = xutm/eam, € z,0 \ x50,
0 if byes, ¢ 0 Ux,0.

In both cases, the neighbor lifting Ays of oy is uniquely determined and solely
depends on the O-border basis G.

Remark 2.4.29. The proof of the preceding theorem is based on the characterization
of border bases via commuting matrices as shown in Theorem 2.4.19. In Corollary 3.3.9,
we give another proof of this theorem that does not depend on Theorem 2.4.19 but on a
deeper insight into the structure of the neighbor liftings of a border basis.

2.4.6 Buchberger’s Criterion

In the final subsection of this section, we introduce S-vectors and prove a border bases
version of Buchberger’s Criterion in Theorem 2.4.31. Again, the neighbors with respect
to O play the key role in this theorem. Moreover, this characterizations allows us to
easily and algorithmically check whether a given border prebasis is a border basis or not.
The corresponding version for border bases in P can be found in [KKO05, Prop. 18| and
[KRO5, Prop. 6.4.34].

As in the previous subsection, we let {e1,...,£,} denote the canonical basis of the free
P-module P”.

Definition 2.4.30. Let i,j € {1,...,v}. Then the S-vector of g; and g; is defined by
lem(b;,b; lem(b;,b;
S(gi, 9;) = = (bl. i) g, — ¢ (bj i) g € (G) C P

Theorem 2.4.31. (Buchberger’s Criterion for Border Bases)
The O-border prebasis G is the O-border basis of (G) if and only if the following equivalent
conditions are satisfied.

Fy) We have NR¢(S(gi,g5)) =0 for alli,j € {1,...,v}.

Fy) We have NRG(S(gi,95)) =0 for alli,j € {1,...,v} such that beg;, bjes, € 00 are
neighbors with respect to O.

Proof. First we show that condition F}) is satisfied if G is the O-border basis of (G). Let
i, € {1,...,v}. We apply the Border Division Algorithm 2.2.1 to the S-vector S(g;, g;)
and G to obtain a representation S(g;, g;) = v+ NRqg(S(gs,95)) with v € (G) and with
NR¢(S(gi,95)) € (O) k. As S(gi, g5) € (G) by Definition 2.4.30 and as G is the O-border
basis of (G), Corollary 2.2.6 implies NR¢(S(gi,95)) = S(gi,95) —v € (G) N (O)k = {0}.

Since F) follows logically from F1), it remains to prove that G is the O-border basis
of (G) if F5) holds. If there are no neighbors with respect to O, the claim follows trivially
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from Theorem 2.4.26. Thus suppose that there are ¢,j € {1,...,v} such that beg,
and bjep; are neighbors with respect to O and let o;; be the corresponding neighbor
syzygy. We distinguish two cases.

First suppose that bjes, and bjes; are next-door neighbors with respect to O, i.e. there
is an s € {1,...,n} with zsbies, = bjes, by Definition 2.4.21. Then 0;; = wse; — €5 by
Definition 2.4.21 and S(g;,9;) = =s9; — g; by Definition 2.4.30. If S(g;,9;) = 0, we see
that oy; is a lifting of 0;; according to Definition 2.4.24. Thus suppose that S(g;, g;) # 0.
Since NR¢(S(g4,95)) = 0 according to F»), the Border Division Algorithm 2.2.1 applied
to S(gi, 9;) and G yields S(gi, g;) = p1g1 -+ +pvgv +NRa(S(9:, 95)) = pro1+- - +pugv
for some polynomials p1,...,p, € P that satisfy py = 0 or deg(p,) < indo(S(gs,9;5)) —1
for all £ € {1,...,v}. We now prove that (Py,...,P,) € P¥ defined by P; = x5 — p;,
P;=1-pj,and P, = —p,forall ¢ € {1,...,v}\{4, 7} is a lifting of 0;;. By construction,
we see that (Pp,...,P,) € Syzp(g1,...,9,). Moreover, we have P; — xs = —p; = 0 or
deg(P; — xs) = deg(—p;) < indp(S(gi,g;5)) — 1, we have P; — 1 = —p; = 0 or we have
deg(P; — 1) = deg(—p;) < indo(S(gi,g;)) — 1, and for all £ € {1,...,v}\ {4, }, we have
Py — 0= —py =0 or deg(P, — 0) = deg(—py) < indp(S(gs,95)) — 1. Hence (P,...,DP,)
is a lifting of 0;; according to Definition 2.4.24.

Now suppose that bieg,, bjes; € 0O are across-the-street neighbors with respect to O, i.e.
wsbieg, = zubjeg, for some s,u € {1,...,n} by Definition 2.4.21. Then o;; = zs&; — Tyt
by Definition 2.4.21 and S(g;, g;) = ®s9i —2ug; by Definition 2.4.30. If S(g;, 9;) = 0, 035 is
a lifting of 0;; according to Definition 2.4.24. Thus suppose that S(g;, g;) # 0. Since we
have NR¢(S(gi, g5)) = 0 by F3), the Border Division Algorithm 2.2.1 applied to S(g;, g;)
and G yields S(gi, g;) = p1g1 + - + pugy + NRG(S(gi5 95)) = prg1 + - - - + pygo for some
polynomials pq,...,p, € P that satisfy pp = 0 or deg(p) < indo(S(gi,g;)) — 1 for all
¢e{1,...,v}. Wenow prove that (Py,..., P,) € P” defined by P; = z3—p;, Pj = x4, —pj,
and Py = —pg for all £ € {1,...,v} \ {i,7} is a lifting of of the border syzygy o;;. By
construction, (Py,...,P,) € Syzp(g1,...,9,). Moreover, we have P, — x5 = —p; = 0
or deg(P; — z;) = deg(—p;) < indo(S(9i,9;)) — 1, we have P; — 2, = —p; = 0 or
deg(Pj — ) = deg(—p;) < indp(S(gi,g5)) — 1, and for all £ € {1,...,v}\ {3,j}, we
have Py — 0 = —p; = 0 or deg(P;, — 0) = deg(—p¢) < indp(S(gs,9;)) — 1. Hence the
vector (P1,...,P,) is a lifting of 0;; according to Definition 2.4.24.

Altogether, we have proven that every neighbor syzygy with respect to O lifts to a syzygy
of (g1,-..,9,). Therefore, condition Es) of Theorem 2.4.26 yields that G is the O-border
basis of (G). O

Example 2.4.32.  Consider the O-border prebasis G = {g1,...,97} C P? of Ex-
ample 2.4.22, again. Recall that P = Q[z,y], that {e1,e2} denoted the canonical
basis of the free P-module P?, that gs = xyes + 3e; and gg = x2yeg —e] — eg,
and that bseg; = wyes and bgegy = x?yey are neighbors with respect to O. Since
NR¢(S(g5,96)) = NRa(zg5 — g6) = 3xer + e1 + e # 0, condition Fy) of Buchberger’s
Criterion for border bases 2.4.31 yields that G is not the O-border basis of (G). Note
that this result coincides with Example 2.4.27.
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2.5 Computation

After all the characterizations in the previous section, we now continue Section 2.3. We
have proven in Proposition 2.3.2 that every submodule of finite K-codimension in P"
possesses a border basis. Moreover, we have also given a first naive algorithm for the
computation of border bases in Remark 2.3.6, which depends on a Grobner basis com-
putation. In this section, we introduce an algorithm that uses linear algebra techniques
instead to compute a border basis. A first generic form of this algorithm for border
bases in P was given in [Mou99, Algo. 4.3|. Building upon this generic algorithm, a first
explicit form of an algorithm to compute border bases in P was given in [KK06|. We
now generalize the latter to the module setting.

For the whole section, we let W = (wy,...,w,) € Mat; ,(Z) be a positive matrix
in the sense of [KR05, Defn. 4.2.4], i.e. such that w; > 0 for all i € {1,...,n}. Then
the matrix W induces a Z-grading on P which satisfies degy, (z;) = w; for all indices
i € {1,...,n} according to [KR05, Defn. 4.1.6]. In particular, P = P,z P where
we have P, = {p € P | degy(t) = for all t € Supp(p)} for all v € Z. By defining
the set of all homogeneous components of the free P-module P" of degree v € Z to
be Py = {(p1,....,pr) € P" | pi€ Pyforalli € {1,...,r}}, P" = P,y P} becomes a
Z-graded free P-module, cf. [KR00, Defn. 1.7.4 and 1.7.6]. We always consider P and P"
as Z-graded P-modules using the above Z-gradings.

Definition 2.5.1. Let r,s € N\ {0}.

a) Let (c1,...,¢5) € K*, (d1,...,ds) € K°\ {0}, and let ¢ € {1,...,s} be minimal
such that d; # 0. Then the i*" component of (cy,...,cs) — Z(di,... . ds) is zero. If
¢i # 0 in this situation, we say that (dy,...,ds) is a reducer of (cy,...,cs).

b) Let v € K* and M € Mat, ,(K). We say that v can be reduced against M if
there is a row w € K* of M such that w is a reducer of v.

Lemma 2.5.2. Let v € N, let o € N\ {0}, let V. = (v1,...,v9) € PZ  with
{v1,..., v} © PLA\{0} be a K -vector subspace such that (V+z1V+- - +x,V)NPL, =V,
and let o be a term ordering on T™ that is compatible with degy,. Then Algorithm 2 is
actually an algorithm and the result

O = computeOrderIdeal(y, {v1,...,v,}, W,0)

of Algorithm 2 applied to the input data v, {v1,...,v,}, W, and o satisfies the following
conditions.

1) The set O C TZ (e1,...,€) is an order ideal in T"(e1, ..., €;).

2) The residue classes of the elements of the order ideal O in P;V/V form a K -vector
space basis of PZ,/V.
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2.5 Computation

Algorithm 2: computeOrderIdeal(y,{vi,..., v}, (w1,...,wy),0)

Input:

vEN;

0 € N\ {0} and {v1,...,v,} € PZ \ {0}

V= (vi,...,09)K C PZ_ is a K-vector subspace with the property that
(V+x1V+---+ﬂ:nV)ﬂP£,y =V;

(wi, ..., wy) € Maty ,(Z) such that w; > 0 for all i € {1,...,n};

o is a term ordering on T" that is compatible with deg(,,, . w,):

1 Let 41,...,¢; € T" be terms and uq,...,us € {1,...,7} be indices such that
T%»Y<€17 S 6r> = {Eleuly e ’gseus} and 1€y, >0 Pos £2€uy >0 Pos *** >0 Pos LsCu,-
Determine a K-vector space basis {v1,...,0t} C PZ of V.
for i :=1to k do
‘ Determine ¢;1, ..., cis € K such that v; = cjiliey, + -+ + cislsen,.
end
V= (Cij)lgigk,lgjgs S Mat;as(K).
Compute a row echolon form Ve Maty, s(K) of V using row operations.

® N O oA W N

Let O C L be the set of terms in L corresponding to the pivot-free columns of 177 ie.

the columns of V in which no row of V has its first non-zero entry.
9 return O

Proof. First we show that the procedure is actually an algorithm. All the operations
in the lines 2, 4, and 7 can be computed with linear algebra techniques. Moreover,
the procedure obviously stops after a finite amount of time. Thus the procedure is an
algorithm.

Next we show the correctness of the algorithm. We start to prove that the residue
classes of the elements of O in PZ JV form a K-vector space basis of Pz, /V. We write
T2 (e1s- .- er) = {lieu;,. .., boey, } with s € N, £y, s € T, ua, ... us € {1,..., 7},
and f1ey,, >5Pos ¥2€u, >oPos *** >oPos Ls€u, as in line 2, and let {v1,...,0;} C Pz,
with & € N be a K-vector space basis of V' as in line 2. For all indices i € {1,...,k},
we let ¢j1,...,¢is € K be such that v; = cinliey, + -+ + ¢islsey, as in line 4. Let
V = (cij)i<i<k,i<j<s € Maty (K) be as in line 6 and let V € Maty (K) be a row
echolon form of V as in line 7. Moreover, let O = {{j ey, ,...,¢j ey, } with 4 € N
and with ji,...,7, € {1,...,7} be as in line 8, and let ci,...,¢, € K be such that
v=cilj ey + o tepljeq, €V. Let {€1,..., &} denote the canonical K-vector space
basis of K*. Then the corresponding vector ¢1&j; + -+ + ¢,&j, € K® of v has all its
non-zero entries in the columns corresponding to elements of O by line 8. As % is in
row echolon form according to line 7, this vector cannot be further reduced against V by
Definition 2.5.1. Since the rows of V correspond to the K-vector space basis {v1,...,0}
of V' according to line 4, since V corresponds to K-linear combinations of these basis
elements by the lines 2 and 7, and since we also have v € V, it follows that v = 0. Thus
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we get ¢ = -+ = ¢, = 0, i.e. the residue classes of the elements of O in PZ /V are
K-linearly independent. Let w = diliey, + - - + dslsey, € ng be with dq,...,ds € K.
Then the corresponding vector d1&1+- - -+ds&€s € K*® can be reduced against the matrix y
to obtain a vector di&j, + -+ +d,&;, € K* with dy,...,d), € K by Definition 2.5.1 and
line 8. Let w' = dilj ey, +---+d,lj, ey, € (O)k be the corresponding element in (O) k.
Since the vector w’ was constructed from w by a reduction against the matrix V and since
the rows of V correspond to the K-vector space basis {01, ...,0;} of V according to the
lines 2, 4, 6, and 7, we get w = w' in PZ /V. Hence the residue classes of the elements
of O in PZ / V form also a generating set of the K-vector space P / V. Altogether,
we have proven that the residue classes of the elements of O form K- Vector space basis

of PZ, /V.
Finally, we prove that O is an order ideal in T"(ej,...,e,). If O = T%7<€1, ceser),
then O is an order ideal in T"(ey,...,e,) according to Definition 2.1.6. Thus suppose

that O C TZ (e1,...,e). Let i € {1,...,s} be such that lie,, € TZ (e1,...,€e;) \ O
and let t € T” be such that t/;e,, € T” J{et,...,er). The set O is an order ideal
in T"(eq,...,er) by Definition 2.1.6 if we show that tliey, € TZ (e1,...,er) \ O. As
liey, € T%V(el, ...,er) \ O, one row of V has the form 0,...,0,¢i,...,cs) € K° where
¢ #0 according to the construction of O in line 8. The corresponding vector in PZ is
v =ciliey, + -+ cslsey, € PZ. . Moreover, line 1 yields that liey, = LT 5 pos(v). Hence
we see that tl;e,, = LT, pos(tv) Since the term ordering ¢ is compatible with degy;,
and since W = (wy,...,wy) satisfies w, > 0 for all k& € {1,...,n}, it follows that
Supp(tv) € TZ (e1,...,€). Since every line of the matrix V' corresponds to a vector
in V by line 4 and since V is constructed from V using row operation by line 7, we see
that v € V. Hence the hypothesis (V + 21V + -+ +2,V) N P, =V and induction on
the degree of ¢ imply tv € V. Thus we see that the vector in K % corresponding to tv
can be reduced against V to zero according to Definition 2.5.1. In particular, we have
to reduce the entry of this vector that corresponds to t/;e,,, i.e. there has to be one row
in V which has its first non-zero entry in the column that corresponds to the term t/;e,,.
Altogether, line 8 yields tl;e,, € T2, (e1,...,e;) \ O and the claim follows. O

Theorem 2.5.3. (The Border Basis Algorithm)

Letk € N and U = (v1,...,v;) € P" with vectors vy, ...,v, € P"\{0} be a P-submodule
such that codimg (U, P") < oo, and let o be a term ordering on T™ that is compatible
with degy,. Then Algorithm 3 is actually an algorithm and the result

(O, G) :=moduleBB({vy,...,v;}, W, 0)

of Algorithm 3 applied to the input data {vi,...,vi}, W, and o satisfies the following
conditions.

1) The set O is an order ideal in T™(e1,. .., er).

2) The set G C P" is the O-border basis of U.
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2.5 Computation

Algorithm 3: BBasis({vi1,..., v}, (w1,...,wy),0)

Input:

k € Nand {vy,...,vp} € P"\ {0} such that codimg ({v1,...,vg), P") < o0;
(w1, ..., wy) € Maty »(Z) such that w; > 0 for all i € {1,...,n};

o is a term ordering on T" that is compatible with deg(,,, . w,);

1 V= <U1,...,Uk>K

2 v :=max{deg(t) | ¢ € {1,...,k}, te, € Supp(uvy)}

3 repeat

4 | Vi=V+oV+-+z,V)NPL

5 while V # V' do

6 V=V

7 V’::(V—i-mV—i—---—i—a:nV)ﬂng

8 end

9 Compute o € N and {0v1,...,0,} € P2\ {0} with V' = (v1,...,7,)k-
10 O := computeOrderIdeal(y, {v1,...,0,}, (w1,...,wy),0)
11 yi=7v+1

12 until 00 C TZ (e1, ..., er)

[
w

Let p € N, let t1,...,t, € T", and let al,...,aue{l,...,r} be such that
O = {tieas, -, tuea, }
14 Let v € N, let by,...,b, € T", and let 51,...,0, € {1,...,r} be such that
00 = {blegl,...,byeﬁu}.

15 G:=10

16 for j:=1to v do

17 Determine aij,...,a,; € K such that % =Y aijtieq, in P"/V.
18 G =GU {bjegj — Zle aijtieai}

19 end

20 return (O, G)

3) For all g € G, we have LT,pos(g) € 00. In particular, the degree form of an
element of G with respect to W contains the corresponding border term.

Proof. First we prove that every step of the procedure can be computed. As r € N\ {0}
and as codimg (U, P") < oo, we see that k # 0 and thus the maximum in line 2 can
be computed. In particular, it follows that dimg (V) > 1 in line 1. We can compute
the intersection of K-vector spaces for the computation of V' in the lines 4 and 7 with
linear algebra techniques. In line 10, the while-loop starting in line 5 has already been
finished. In this situation, the construction of V' in line 1 and during the while-loop in
line 5 yields o > dimg (V) > Land V = V' = (V + a1V + -+ + 2,V) N PZ after the
while-loop. In other words, the input data v, {v1,...,0,}, W, and o in line 9 satisfy the
requirements of Algorithm 2. Thus we can compute an order ideal O C TZ ;(e1,...,e;)
in T"(ey,...,e,) in line 10 such that the residue classes of the elements of O in PV
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2 Border Bases of Finitely Generated Modules

form a K-vector space basis of PZ_/V according to Lemma 2.5.2. Moreover, the repeat-
until-loop starting in line 3 only stops if 00 C TZ (el, ...,er). Thus we can compute
the coefficients a1j,...,a,; € K for all j € {1,...,v} in line 17 with linear algebra
techniques, too. All the other steps of the procedure can be trivially computed.

Second we show that the procedure stops after a finite amount of time. We start to show
that the while-loop in line 5 eventually terminates. By the construction of V' and V' in
the lines 1, 4, 6, and 7, we see that we always have V C V'’ C Pz, . Assume that V # V'
in this situation, i.e. the while-loop in line 5 is executed at least one time. For every ¢ € N,
we let V/ denote the K-vector subspace V! C PZ_ after the it? iteration of the while-
loop. Smce we have dimg (PZ,) = #T2 (e1, .. er) < 00, the chain Vj C V/ C VJ C
eventually gets stationary. In this situation, we have V! = V! | for some i € N\ {0} and,
therefore, V =V’ in line 5. Thus the while-loop terminates after the i*? iteration.
Third we prove that the repeat-until-loop starting in line 3 stops after a finite amount of
time. Let H = {h1,...,hy} C P" with n € N be the reduced o Pos-Grobner basis of U.
Since k > 0, we have U # {0} and thus see that n > 0. For every index j € {1,...,n},
there exist polynomials pji,...,pji € P such that h; = pjiv1 + -+ + pjpvr. We denote
7 =max{deg(t) | j € {1,...,n}, L € {1,...,k}, te, € Supp(pjeve)}. As we have already
seen above, 7 > 0 and k£ > 0 and thus this maximum exists. Then we have H C PZ
after the while-loop in the case that v = 7. Now suppose that we are in the situation
that v = 4 during the repeat-until-loop. Since V. = (V 4+ 21V +--- + 2,V) N Pz, after
the while-loop starting in line 5, we then have H C V. Let O be the result of Algorithm 2
computed in line 10. Then O is an order ideal in T"(ey,...,e,) such that the residue
classes of the elements of O in PZ_ /V form a K-vector space ba81s of PZ_/V according to
Lemma 2.5.2. Moreover, we let ’]I'<7<el, coser) ={l1eyy, ... lsey, } with £q,... 0s € T
and uy,...,us € {1,...,r} be such that liey;, >oPos *** >oPos Ls€u, as in line 1 of
Algorithm 2 during the computation of O in line 10. Furthermore, we let V € Mat,, s(K)
with m € N be the matrix in row echolon form as in line 7 of Algorithm 2 used during
the computation of O in line 10. Let j € {1,...,n} and h; = c1liey, + - + cslsey, be
with ¢1,...,¢s € K. Then the vector (c1,...,cs) € K® corresponds to the Grobner basis
element hj € H. Let LT;pos(hj) = ey, be with w € {1,...,s}. Then it follows that
(c1,...,¢5) =(0,...,0,1,cp1, ..., Cs) according to [KROO, Defn. 2.4.12|. Since h; € V,
we see that there exists a vector in K*® corresponding to a vector in V' which has its first
non-zero entry in the w* column of 9, namely the vector (0,...,0,1,cyq1,...,c5) € K*
corresponding to h; € H. Therefore, the construction of O in line 8 of Algorithm 2
yields that LT, pos(hj) ¢ O. In particular, this implies LT, pos{U} N O = () and thus
O C T e1,...,er) \ LTopos{U} = Oy pos(U). Now the Definitions 2.1.6 and 2.1.7 and
HCPZ, yleld 00 C 00 C 8OGPOS(U) C TZ (e1,...,er). Hence the repeat-until-loop
termlnates in the case that v = +/. Altogether, we see that the procedure is actually an
algorithm.

It remains to prove the correctness. As the set O is computed in line 10 with the
use of Algorithm 2, Lemma 2.5.2 yields that O is an order ideal in T"(eq,...,e,), i.c.
claim 1) holds. For every index j € {1,...,v}, we let g; = bjeg, — > 1" ajjtieq, € P"
with a1;,...,a,; € K be as in line 18. Then G = {g1,...,6,} C V is an O-border
prebasis by Definition 2.1.14.
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Next we prove 3). Let j € {1,...,v} and consider the matrix V € Mat,, s(K) and

Oy, lsey, € T27<€17 ...,ep) as above, again. Write g; = ciliey, + -+ + cslseqy,
with ¢q,...,¢s € K. Then the vector (c1,...,cs) € K*, which corresponds to g;, repre-
sents a K-linear dependency between the terms in the set T27<61, ..., €r). Assume that

LT, pos(hj) = Lweu,, # bjes, for some w € {1,...,5}. Aso is compatible with degy, and
as W = (wy,...,w,) satisfies wy, > 0 for all £ € {1,...,n}, (c1,...,cs) € K*® is a vector
which has its first non-zero entry in the column corresponding to the term ¢ye,, € O.
But this is a contradiction to the construction of the order ideal O in line 8 of Algo-
rithm 2, i.e. we have LT, pos(g;) = bjes; € 00 and claim 3) follows.

Finally, we show claim 2) by proving that the normal remainders of all S-vectors of all
neighbors with respect to O vanish. Let bieg,,bjes;, € 00 with i,j € {1,...,v} be neigh-
bors with respect to O. We have already shown that 90 C TTéV(el, ...,ep) at the end

of the algorithm. In particular, G C (00)x N V. Moreover, by the construction of V'
in the lines 1, 4, 6, and 7, we have V. N a1V N---Nx,V = V. Since bieg,, bjes, € 00
are neighbors with respect to O, we hence get S(g;, g;) € V' by Definition 2.4.21. Using
the Border Division Algorithm 2.2.1 applied to S(g;, g;) and G, we can compute scalars
ci,...,¢, € K such that NRG(S(gi, 95)) = S(94,95) — D ney Cwbw € (O) k. Since we have
also already seen that G C V', we get 0 = NR¢(S(gi, 95)) in P;,Y/V. In particular, as the
residue classes of the elements of O in PZ /V form a K-vector space basis of P2 /V,
we see that NR¢(S(g4,95)) € VN (O)k = {0}. Altogether, we see that condition F)
of Buchberger’s Criterion for border bases 2.4.31 holds, i.e. G actually is the O-border
basis of (G).

Therefore, the claim follows if we show that G generates U. For every j € {1,...,v}, we
have already seen that g; € V C U, i.e. we have (G) C U. For the converse inclusion, we
let we {1,...,k}. We apply the Border Division Algorithm 2.2.1 to v,, and G to obtain
a representation v,, = v, + NRg(vy) with v}, € (G) and NRg(vy) € (O)k. During the
Border Division Algorithm 2.2.1, we always subtract multiples of the form tg; with ¢t € T"
and j € {1,...,v} to eliminate the term tbjes,. Since o is a term ordering on T" that is
compatible with degy,, since W = (wy, ..., w,,) satisfies wy > 0 forall ¢ € {1,...,n}, and
since we have bjegj = LT, pos(g;), it follows that all the vectors that are used for these
reductions satisfy tg; € Pz, Thus we have v], € V C Pz, because G C V. Altogether,

we see that 0 = U, = NRg(vw) in PZ,/V. Since the residue classes of the elements
of O in PZ_ /V form a K-vector space basis of PZ /V by Lemma 2.5.2, it follows that
NR¢(vyw) € VN {(O)k = {0}. In particular, we get v, = vl, + NRg(vy) = v, € (G).
Therefore, we see that U = (vy,...,vx) C (G). Altogether, we have proven that G is the
O-border basis of U. O

Example 2.5.4. Let P = Q[z,y], {e1,e2} be the canonical basis of the P-module P?,
W = (1,1) € Mat; 2(Z), and 0 = DegRevLex. Then o is compatible with degyy, i.e.
compatible with the standard grading. Furthermore, we let U = (v1,...,v5) € P? be
with the vectors v; = (—2,3x — 1), v = (3x +4,2), v3 = (0,y — 1), v4 = (y — 1,0), and
vs = (x+y+1,—x +y). Then zeq, zer,yea,ye; € LT, pos(U). Thus Macaulay’s Basis
Theorem [KR00, Thm. 1.5.7] yields codim (U, P?) = #04 pos(U) < #{e1,e2} = 2 < 00.
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2 Border Bases of Finitely Generated Modules

In particular, the requirements of the Border Basis Algorithm 3 are satisfied.

In order to illustrate it, we consider the steps of the Border Basis Algorithm 3 applied
to the input data {vi,...,v5}, W, and o in detail. We initialize V' = (v1,...,v5)q in
line 1 and thus have v = 1 in line 2. Moreover, we compute V' = (V+zV+yV)NP2, =V
with linear algebra techniques in line 4. Thus the while-loop in line 5 does not need to
be executed and we have {vy,...,05} = {v1,...,v5} in line 9.

Next we consider the computation of O in line 10 by applying Algorithm 2 to the input
data 1, {v1,...,vs5}, W, and 0. We order the terms in L according to o Pos decreasingly
and compute the matrix

0 3 00 -2 —1
3.0 00 4 2

V=0 0 01 0 -1|cMatss(Q)
00 10 -1 0
1 -1 11 1 0

as in line 6 of Algorithm 2. The (reduced) row echolon form of V needed in line 7 of
Algorithm 2 is then

1000 3 32

N 0100—?%—3%

V=00 10 -1 0 |€Mats;sQ),
0001 ~1
0000 0 0

i.e. we get the order ideal O = {e1, e} in T?(eq, es) after line 10 of Algorithm 3.

As the border of O satisfies 00 = {we1, zes,yer,yea} C T2 (e1,e2), we stop the com-
putation of the repeat-until-loop in line 3. We proceed with the computation of the
for-loop in line 16 and get the set G = {g1,...,g94} C P? with g; = ze; + %61 + %62,
go = xeg — %61 — %62, gs = ye1 — e1, and g4 = yes — ea. According to Theorem 2.5.3,
the set O is an order ideal in T?{e, e5) and G is the O-border basis of U. In particular,
since the set of all corners of O is precisely {xe1,zes,yer,yea} by Definition 2.3.3, the

set G is also the reduced o Pos-Grébner basis of U according to Proposition 2.3.5.
Now we are able to give the reason for allowing empty order ideals in Section 2.1.

Remark 2.5.5. In contrast to the theory of border bases as in [KR05, Section 6.4]
or [KKO05|, we have explicitly allowed that order ideals in T™ may be empty by Defini-
tion 2.1.1. The reason for that is as follows: Let W € Mat; ,(Z) be with w; > 0 for
all i € {1,...,n}, let o be a term ordering on T" that is compatible with degy,, and
let £ € N\ {0}. Consider vectors {v1,...,vx} € P"\ {0} such that the P-submodule
U = (v1,...,v;) C P" satisfies codimg (U, P") < co. Moreover, assume that r > 2 and
e1 —eg € U, i.e. U contains a K-linear dependency between the elements of {ey,...,e,}.
Then the resulting order ideal O in line 10 of the Border Bases Algorithm 2.5.3 applied
to {v1,...,vk}, W, and o does not contain all the elements of {eq,...,e,}, namely the
above K-linear dependency yields e; ¢ O as e1 >, pos €2. By allowing empty order ideals
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2.6 Generalized Border Bases

in Definition 2.1.1, this fact does stills occur but the result of the algorithm is still an
order ideal in T"(ey, ..., e,) according to Definition 2.1.6.

2.6 Generalized Border Bases

In the Sections 2.1 to 2.5, we have generalized the notion of border bases from the
polynomial ring P to free P-modules of finite rank. This was done by generalizing the
corresponding concepts of border bases in P. The goal of the final section of this chapter
is to establish a border bases theory for arbitrary finitely generated P-modules. A border
prebasis in a finitely generated P-module M = (my,...,m,) is defined to be the image
of a border prebasis in P" under the P-module epimorphism P" — M, ex — my for
all indices k € {1,...,r} induced by M. Unfortunately, it turns out that we cannot
simply refine the theory established in the previous sections but we have to invent a
totally different one. The reason is that the image of an order ideal under the above
epimorphism does not behave like an order ideal in T"(ey,...,e,) at all. E.g. we will
see in Example 2.6.2 that the order ideal and its border can have common elements.
Therefore, the basic propositions of Section 2.1 do no longer hold in this general setting.
Nevertheless, we can characterize and compute border bases if the corresponding order
ideal is not degenerated. More precisely, we do the following.

First we introduce generalized border prebases and border bases in Definition 2.6.3.
A generalized border prebasis is the image of a border prebasis in P" and a generalized
border basis has the additional property that the residue classes of the images of the el-
ements of the order ideal form a K-vector space basis of the corresponding residue class
module. Then we introduce the notion of characterizing order ideals and characterizing
border prebases in Definition 2.6.5. If the generalized order ideal of a given generalized
border prebasis is not degenerated, we can use the corresponding characterizing border
prebasis to characterize the given generalized border basis in Theorem 2.6.8. This is the
key result of this section and yields a characterization of generalized border bases via the
characterizations introduced in Section 2.4 in Corollary 2.6.10. Moreover, if we know the
kernel of the P-module epimophism induced by the finitely generated P-module in which
we want to establish a border bases theory, we can even compute generalized border bases
according to Corollary 2.6.12. Finally, we apply the theory of generalized border bases
to subideal border bases in Example 2.6.13. Subideal border bases were introduced in
[KP11] and, by now only a characterization via a special generation property and an
algorithm that uses Grobner bases techniques for their computation is known. Our new
theory allows us to characterize subideal border bases in various other ways and to com-
pute them with linear algebra techniques.

For the whole section, we let M = (mq,...,m,) be a finitely generated P-module and
we let ¢ : P" — M, e, — my for all k € {1,...,7} be the corresponding P-module
epimophism.
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2 Border Bases of Finitely Generated Modules

First we introduce the notion of generalized order ideals as images of order ideals
in T"(eq, ..., e.).

Definition 2.6.1. Let Oq,..., O, be order ideals in T" and O = O1e1 U---U O,e, be
the corresponding order ideal in T"(eq,...,e,).

a) We call the set p(O) = O1-p(e1)U---UO, - p(e,) C M a (generalized) order
ideal in o(T"(eq,...,er)).

b) The set dp(O) = p(00) = 00; - p(e1)U---UIO, - ¢(e,) C M is called the (first)
border of ¢(O).

The following example shows that generalized order ideals do not behave like order
ideals in T™(eq,...,e,) at all.

Example 2.6.2. Let P = Q[z,y], let {e1,e2} be the canonical P-module basis of P?,
and let S = (vyes—ze;) C P2. Consider the P-module M = P?/S and the corresponding
canonical P-module epimorphism ¢ : P? — M, e; + €, es + €. Additionally, let
O1 ={l,2} CT?, Oy = {1,y,y?} C T?, and O = Ore; U Ozes C T?{e1,e3). Then the
set p(0) = 01 -8 U Oy -8 = {€1,7€1, 2, yes,y*e2} is an order ideal in o(T?{eq, e2))
with the border dp(0O) = dO; - &1 U 00, - &3 = {ye1, ryey, v°ey, xés, xyes, ry’es, y>ea}
according to Definition 2.6.1.

Since ze; = xyes in M, we see that ze; = xyes € ¢(O) N dp(O), i.e. an analogous
version of Proposition 2.1.10 does not hold true. Moreover, generalized order ideals
in p(T"(eq,...,e)) are not closed under forming divisors in contrast to order ideals
in T"(eq, ..., e), cf. Definition 2.1.6, since y - zeéy = xyes = xe; € p(O) but xes ¢ p(O).

Now we are able introduce generalized border basis.

Definition 2.6.3. Let Oq,..., O, be finite order ideals in T"™ and O = O1e1U---UO, e,
be the corresponding order ideal in T" (e, ..., e,). We write O = {t1eq,,...,tyeq,} and
the border 00 = {bieg,,...,byeg, } with p,v € N, t;,b; € T", and o4, 5; € {1,...,7}
for all i € {1,...,pu} and for all j € {1,...,v}. Moreover, we let G = {¢1,...,9,} C P"
be an O-border prebasis with g; = bjeﬁj — Zle aijtieqa; where ayj,...,a,; € K for all
indices j € {1,...,v}.

a) The set p(G) = {p(g1),---,¢(g)} C M, where p(g;) = bjmp; — SoE L agitime, for
all j € {1,...,v}, is called a (generalized) ¢(O)-border prebasis.

b) Let U C M be a P-submodule. The ¢(O)-border prebasis ¢(G) C M is called an
(generalized) ¢(O)-border basis of U if ¢(G) C U and if the residue classes of
the elements of p(Q) in M /U form a K-vector space basis of M/U.

One might think that all the definitions and propositions about border bases in free
P-modules of the Sections 2.1 to 2.5 can be generalized to generalized border bases
in arbitrary finitely generated P-modules in a straightforward way. Unfortunately, the
situation is more complicated than expected. We have already seen one big difference
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concerning border bases and generalized border bases in Example 2.6.2. Namely we
have seen that it can happen that a generalized order ideal and its border have some
elements in common, i.e. the straightforward, analogous version of Proposition 2.1.10 is
wrong, and that generalized order ideals are not closed under forming divisors. Since
most of the propositions of the Sections 2.1 to 2.5 are based upon these properties, the
theory of generalized border bases needs much more care in the definitions and proofs.
Nevertheless, some results can be extended to generalized border bases. The following
proposition shows that generalized border bases are unique just as it was the case for
border bases in free P-modules in Proposition 2.3.2.

Proposition 2.6.4. (Uniqueness of Generalized Border Bases)
Let Of be a finite order ideal in o(T"(e1,...,er)), let U C M be a P-submodule, and let
G?,G'"? C M be two O¥-border bases of U. Then we have G¥ = G'?.

Proof. Write 0% = {tima,, ..., tyme, } and 00¥ = {bimg,,...,bymg,} with y,v € N,
terms t;,b; € T", and o;,06; € {1,...,r} for all 4 € {1,...,u} and j € {1,...,v}.
Then the O%-border bases G¥ and G'? are of the form G¥ = {¢7,...,9/} C M with
gf = bjmg, — SE | aiitime, where ayj,...,q,; € K for all j € {1,...,v}, and of the
form G = {g\?,..., g} C M with g;w =bjmg, —y I, a;jtima, where ay;, ... a,; € K
or all j € {1,...,v} by Definition 2.6.3. Assume that a;; # agj for some i € {1,...,u}
and j € {1,...,v}. As G? ,G'? C U according to Definition 2.6.1, we then see that
0=g7— g;‘p = Y1 (—akj + ap;)tkma, in M/U. Since G is an O%-border basis of U,
Definition 2.6.3 yields the contradiction a;; = a;j. Thus the claim follows. O

Next we introduce the notion of characterizing order ideals and characterizing border
prebases. These exist if a given generalized order ideal is not degenerated and will later
turn out to be very useful to characterize generalized border bases.

Definition 2.6.5. Let G¥ C M be an O¥-border prebasis. We write the order
ideal 0% = {t1ma,,...,tyma,} € M in p(T"(e1,...,e;)) and the corresponding border
00% = {bymg,,...,bymg, } € M with p,v € N and t;,b; € T" and o, 5; € {1,...,7}
for all i € {1,...,u} and j € {1,...,v}. Moreover, we write G¥ = {¢7,..., g/} with
gf = bjmg, — Y I aijma, where ayj,...,a,; € K forall j € {1,...,v}.

a) An order ideal O in T"(ey,...,e,) is said to characterize O¢ if (O) = O¥ and
if the restriction ¢|p of ¢ to O is injective.

b) Let O C T"(ey,...,e,) be an order ideal that characterizes O¥. By choosing
suitable preimages and reordering the elements of O¥ and dO¥, we can without
loss of generality assume that we have O = {tieq,,...,tu€q,} and that O has
the form 00 = {biegs,,...,byep,,b,y1€5,.,,...,bues,} With w € N, w > v, and
bj e T" and ; € {1,...,r} forall j € {v+1,...,w}. Forall j € {l,...,v}, we
define g; = bjeg, — > 1" ajjtiea, € P". For all j € {v 4 1,...,w}, there exists
a unique index k € {1,...,v} such that bymps, = p(bjes;) = p(breg,) = bpmg,
according to Definition 2.6.1 and we define g; = bjes;, — Yoy aiktieq, € PT. We
say that the O-border prebasis G = {¢1,...,9,} C P" characterizes G¥.
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Example 2.6.6. Consider the generalized order ideal O¥ = ¢(O) of Example 2.6.2,
again. Recall that P = Q|x,y], that {e;,e2} denoted the canonical P-module basis
of P2 that we had ¢ : P2 — M, e ~ €, es — € where we had M = P?/S with
S = (wyes — we1) C P?, and that the generalized order ideal in (T?(eq, e2)) was of the
form 0% = {1,z} - & U {1,y,y*} - @&2. Moreover, since zy*e; = zye; in M, the border
of 0% is 00¥ = {y, xy, 2%} - &1 U {x, vy, 292, v3} - &2 = {ye1, zyer, 2%e1, xe2, 2yes, y3ea}.
Then the set G¥ = {¢7,...,95} C M with g7 = ye; — & — €2, g5 = zye; — yeo,
g% = z%e; — a2y + @9, gf = 78y — €2, g = zyes + €1, and gf = y>es — x€) + yes is an
O¥-border prebasis according to Definition 2.6.3.

Let O = {1,2} - e1 U{l,y,5?} - 2. Then O is an order ideal in T?(ey,es) that char-
acterizes 0¥ by Definition 2.6.5. Its is 00 = {ye1,zye1, x’e1, vea, Tyea, vy’ea, yies}
Furthermore, as we have x?yes = xye; in M, the set G = {g1,...,97} C P? with
g1 =ye1 —e1 — eg, g2 = TYe1 — yea, g3 = Tley — Tey + €z, gy = Tey — €g, g5 = TYe + €1,
g6 = yea — ey + yeq, and gr = xyes — yeq is the O-border prebasis characterizing G¥
by Definition 2.6.5. Note that #G¥ = 6 < 7 = #G and that the construction yields
¢(g7) = 2y’es — yeo = zyer — ye2 = p(g2) = g5.

Before we give the main proof of this section, we need an auxiliary lemma.

Lemma 2.6.7. Let vy,...,v; € P" be with k € N and let v; = ¢(vg) € M be for all
¢ e {1,...,k}. Furthermore, let U = (vi,...,v5) € P" and U¥ = (vf,...,v]) C M.
Then o(U) = U%¥ and o1 (U¥) = U +ker(p). In particular, if G¥ C M is an O?-border
prebasis and there exists an O-border prebasis G C P characterizing G¥, then we have

P((G)) = (G¥) and ¢ ((G¥)) = (G) + ker(yp).

Proof. Since the definitions of U and U% immediately yield the first equality ¢(U) = U?,
it suffices to prove the second equality =1 (U?) = U + ker(p). For the first inclusion, we
let v = prv1 + -+ + prvg + w be with py,...,pr € P and w € ker(p). Then we see that
o(v) = p1vy + -+ ppvf + p(w) = prvf + - -+ proy, € U?. For the converse inclusion,
we let w € =1 (U®) C P". Then there exist polynomials py,...,pr € P such that
o(w) = p1vf + -+ prvy = p(pror + - -+ + prog). Thus w — (pro1 + -+ + prog) € ker(p)
and this yields w € U + ker(y). The other claims are a direct consequence of this. [

Now we have all ingredients to prove the main result of this section. Under the as-
sumption that the generalized order ideal O¥ is not degenerated, i.e. that there is an
order ideal O in T"(ey,...,e,) that characterizes Of, we prove that a given general-
ized O¥-border prebasis is a generalized O¥-border basis if and only if its characterizing
O-border prebasis is an O-border basis which generates a submodule that contains the
kernel of ¢.

Theorem 2.6.8. (Characterization of Generalized Border Bases)
Let G¥ C M be an O%-border prebasis and assume that there exists an O-border preba-
sis G C P" that characterizes G¥. Then the following conditions are equivalent.

i) The O%-border prebasis G¥ is the O¥-border basis of (G¥).
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2.6 Generalized Border Bases

ii) The O-border prebasis G is the O-border basis of (G) and ker(¢) C (G).

Proof. Let O = {tieqa,,...,tuea,} € T e1,...,e,) and 00 = {bieg,,...,byes,}, let
0% = {timay, ..., tyMa,} € M and 00¥ = {bymg,,...,bymg,} be with pu,v,w € N,
v <w, and t;,b; € T" and «;, 35 € {1,...,r} foralli € {1,...,u} and j € {1,...,w},
and let G = {g1,...,9.} C P" and G¥ = {¢7,...,g/} C M be with ¢(g;) = g}p for all
je{l,...,v}and p(gr) € G¥ for all k € {v+1,...,w} as in Definition 2.6.5.

First we prove that ker(¢) C (G) if G¥ is the O%-border basis of (G¥). Suppose
that G¥ is the O¥-border basis of (G¥). Assume that there exists a v € ker(p) \ (G).
We apply the Border Division Algorithm 2.2.1 to v and G to obtain a representation
V=Dp1g1+ -+ Pugw + Citi€a, + -+ cutpea, with p1,...,p, € Pand ¢q,...,¢, € K.
Since v ¢ (G), there exists an ¢ € {1,..., u} such that ¢; # 0. Moreover, Definition 2.6.5
and Lemma 2.6.7 yield 0 = ¢(v) = c1tima, + -+ cutyma, in M/(G?). As ¢(O) = O¥
and ¢|e is injective according to Definition 2.6.5 and as ¢; # 0, the residue classes of the
elements of O in M /(G¥) are K-linearly dependent in contradiction to Definition 2.6.3.
Altogether, we have proven that ker(¢) C (G).

Second we prove the claimed equivalence. Suppose that ker(p) C (G) holds. Then
Lemma 2.6.7 yields that ¢~ }((G¥)) = (G) and hence ¢ induces a P-module isomorphism
P"/(G) = P /o L({G¥)) = o(P")/(G¥) = M/(G¥) according to the Second Noetherian
Isomorphism Theorem. As ¢(O) = O¥ and as ¢|p is injective by Definition 2.6.5, the
Definitions 2.1.14 and 2.6.3 yield that G is the O-border basis of (G) if and only if G¥ is
the O¥-border basis of (G¥). O

Example 2.6.9. Let P = Q[z,y] and {e1, ez} be the canonical P-module basis of P2.
Furthermore, let s = (x +y + 1,—x +y) € P2, M = P?/(s), and ¢ : P? - M, e1 v €1,
eo — €9 be the corresponding canonical P-module epimorphism. Consider the order
ideal O = {eq,ea} in T?(eq,e2) and the O-border prebasis G = {g1,...,g4} C P? with
g1 = xey + 3e1 + Sex, go = Tea — 31 — 3€2, g3 = ye1 —e1 , and gy = yes — ep. In
Example 2.5.4, we have shown that G is the O-border basis of U = (v1, v2, v3,v4, s) C P2
where v; = (—2,3z—1), v2 = (32+4,2), v3 = (0,y—1), and v4 = (y—1,0). In particular,
we have U = (G) by Corollary 2.2.4.

Let Of = ¢(O) = {e1,e2} € M and let G¥ = {g{,...,9y} = ¢(G) C M be with
9 = o(g1) = aer + %51 + %Em g5 = ¢(g2) = aes — %él - %52, g}f = ¢(g3) = ye1 — e,
g5 = ¢(94) = yéa — e2. Then we see that O is an order ideal characterizing O¥ and G is
the O-border prebasis characterizing the O¥-border prebasis G¥ by Definition 2.6.5. As
we also have ker(p) = (s) C (G) and as G is the O-border basis of (G), Theorem 2.6.8
yields that G¥ is the O¥-border basis of (G¥) = (¢(G)) = (G)/(s).

As a first corollary, we can apply the characterizations of Section 2.4 to generalized
border bases.

Corollary 2.6.10. (Characterizations of Generalized Border Bases)

Let G¥ C M be an O%-border prebasis and assume that there exists an O-border preba-
sis G C P" that characterizes G¥. Then G¥ is the O¥-border basis of (G¥) if and only
if ker(p) C (G) and one of the following conditions is satisfied.
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2 Border Bases of Finitely Generated Modules

A) The O-border prebasis G has the special generation property of Theorem 2.4.1.

B) The border form module BFo((G)) satisfies the conditions of Theorem 2.4.5.

C) The rewrite rule N defined by G satisfies the conditions of Theorem 2.4.13.

D) The formal multiplication matrices with respect to G are pairwise commuting, cf.
Theorem 2.4.19.

E) The border syszygies with respect to O can be lifted, cf. Theorem 2.4.26.

F) The O-border prebasis G satisfies Buchberger’s Criterion for border bases, cf. The-
orem 2.4.31.

Proof. These equivalences are a direct consequence of Theorem 2.6.8 and the correspond-
ing characterizations in Section 2.4. O

The assumption of Theorem 2.6.8 that there exists an O-border prebasis G that charac-
terizes the O%-border prebasis G¥, i.e. the existence of an order ideal O in T" (e, ..., e;)
that characterizes the order ideal O% in ¢(T"(ey,...,e,)) according to Definition 2.6.5,
cannot be omitted as the following example shows.

Example 2.6.11. Let P = Q[xz,y], {e1,e2} be the canonical P-module basis of P?,
M = P%/S be with S = (ze; —yes) € P2 and o : P2 — M, e + €1, ey — €. Consider
the order ideal O¥ = {1,z,22} -& U {l1,y,y?} &2 = {1} -&, U {1,y,9%, zy} - & C M.
Since ze; = yey € O, we have #0O = 5. Moreover, we see that z2e; = xyeé; € O%.

Assume that there exists an order ideal O in T?(ey,e3) that characterizes O%. Since
we have yey, x3e1, vés, Y36y ¢ OF, we get yer,x3er, xes, y3es ¢ O. Therefore, we see
that O C {1,2,2%} - e; U {1,y,y%} - e2. As p|o is injective by Definition 2.6.5 and as
p(zer) = p(yez), we have xe; ¢ O or yea ¢ O and thus #O < 4 by Definition 2.1.6. In
particular, we get the contradiction 5 = #0% = #0 < 4.

Thus there exists no order ideal in T?(eq, e2) that characterizes O¥. In particular, we
see that we cannot apply the characterization of Theorem 2.6.8 to arbitrary O¥-border
prebases.

Another consequence of Theorem 2.6.8 is that it allows us to compute generalized
border bases if we can compute the kernel of .

Corollary 2.6.12. (Computation of Generalized Border Bases)
Let U? = (vf,...,v7) C M with k € N and vf,...,v] € M\ {0} be a P-submodule such
that codimg (U, M) < 0o and for all j € {1,...,k}, letv; € P be such that p(v;) = v .
Moreover, let ker(p) = (k1,...,k¢) C P" be with £ € N and k1,...,k; € P\ {0}. Use
Algorithm 3 to compute an O-border basis G C P" of (v1,...,vx) + (k1,...,ke¢). Then
©(G) € M is the o(O)-border basis of U?.

Note that we can use any matric W = (w1, ..., wy) € Maty ,(Z) with the property that
w; > 0 foralli € {1,...,n} and any term ordering o on T™ that is compatible with degy,
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for the computation of G, e.g. we can use the standard grading defined by W = (1,...,1)
and 0 = DegRevlex.

Proof. Let U = (v1,...,v) + (w1,...,wp) = (v1,...,0) + ker(p) C P", let OF = p(0O),
and let G¥ = ¢(G). By the Definitions 2.6.1 and 2.6.3, G¥ is an O¥-border prebasis.

First we prove that we can use Algorithm 3 to compute the O-border basis of U, i.e.
that codimy (U, P") < co. Since ¢ 1 (U%®) = (v1,...,vx) + ker(p) = U by Lemma 2.6.7,
it follows that P"/U = P" /=Y (U¥) = o(P")/U¥ = M/U¥ by the Second Noetherian
Isomorphism Theorem. In particular, we get codimg (U, P") = codimg (U%, M) < oo
and the requirements of Algorithm 3 are satisfied.

Next we show that O characterizes O%. As U is generated by G according to Corol-
lary 2.2.4, Lemma 2.6.7 shows that U? = ¢(U) = ¢((G)) = (¢(GQ)) = (G¥). We write
O = {tiea;;---,tpea,} with p € N, t1,...,t, € T", and a1,...,a, € {1,...,7}. Let
i,j € {1,...,pu} be such that p(t;eq,) = ¢(tjeq,). According to the definition of U, we
then get tieq, — tjea; € ker(p) N (O)xk € UN(O)k. As G is the O-border basis of U,
Corollary 2.2.6 yields t;e, = tjeq,. Hence the restriction ©|o is injective and thus O
characterizes O¥ = ¢(O) by Definition 2.6.5.

Finally, we show that G characterizes G¥ C M. Therefore, let by,...,b, € T™ and
Bi,..., B €{1,...,r} with w € N be such that 00 = {bieg,,...,b,es,}. Additionally,
we write G = {g1,..., g} with g; = bjes, — S aijtieq, where aqj,...,a,; € K for
all j € {1,...,w}. Let k,¢ € {1,...,v} be indices such that ¢(bges, ) = p(breg,). Then
bkzeﬂk_bﬁeﬁg € ker(go) C U and Zé‘:l(aik—aig)tieai = (bkegk—bge@_,)—(gk—gg) eU. AsG
is the O-border basis of U, this implies a;;, = a; for alli € {1,..., u} by Definition 2.1.14.
Altogether, we see that G is the O-border prebasis that characterizes G¥ according to
Definition 2.6.5. In particular, as G is the O-border basis of U, G¥ is the O¥-border
basis of (G¥) = U¥ by Theorem 2.6.8. O

In [KP11], border bases of zero-dimensional polynomial ideals were generalized to
border bases of zero-dimensional polynomial ideals that are contained in another ideal,
a so-called subideal. In the following example, we show that these subideal border bases
are special cases of generalized border bases. It turns out that our methods allow us to
characterize subideal border bases in various ways and that we can compute them with
linear algebra techniques. By now the only characterization of subideal border bases
was proven in [KP11, Cor. 3.6] and characterized subideal border bases via a special
generation property. Moreover, the only general approach to compute subideal border
bases was described in [KP11, Section 6] and needs one syzygy computation to determine
the kernel of a certain P-linear map and one Grébner basis computation. Our method is
based on the same syzygy computation. But after that, we use linear algebra techniques
instead of a Grobner basis computation.

Example 2.6.13. (Application to Subideal Border Bases)

Let I = (p1,...,pr) € P where k € N and p1,...,pr € P\ {0} be a zero-dimensional
ideal and let J = (F) C P where F' = {f1,..., fo} with £ € N and f1,...,f, € P\ {0}
be another ideal. We let {e1,...,ex ¢} be the canonical P-module basis of P*+¢ and
let ¢ : P**¢ — T + J be the P-module epimorphism defined by e; — p; for every
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i€ {l,....k} and by e; — fi_ for every i € {k+1,...,k + ¢}, which is induced by
the Universal Property of the Free Module P**¢. According to [KP11, Defn. 2.1], the
ideal I is said to have an Op-subideal border basis if there are order ideals O1,..., Oy
in T™ such that the residue classes of the elements of Op = O1 - f1 U---U Oy - fy
in J/INJ form a K-vector space basis of J/I N .J. Moreover, in this situation, we see
that Op = O1-¢(eg41)U---UOp-@(egte), i.e. Op is an order ideal in p(T"(eq, ..., €xte))
according to Definition 2.6.1. By the First Noetherian Isomorphism Theorem, there is
a canonical K-algebra isomorphism J/INJ = I+ J/I and thus an Op-subideal border
basis of I as defined in [KP11, Defn. 2.1] is nothing but a generalized Op-border basis
of I C I+ J as defined in Definition 2.6.3. In particular, the characterizations of border
bases in Corollary 2.6.10 also hold for subideal border bases. By now there was only one
characterization for subideal border bases, namely the characterization via the special
generation property in [KP11, Coro. 3.6].

Furthermore, we are now able to compute arbitrary subideal border bases using the
method of Corollary 2.6.12, as follows. The kernel of the P-module epimorphism ¢
is ker(¢) = Syzp(p1, ... ks f1,---» ft) € P¥H¢ and we can compute it with standard
Grobner bases techniques, e.g. using the method described in [KR00, Thm. 3.1.8|. Let
ker(¢) = (s1,...,5m) be with m € N and with vectors s1,..., s, € P*\ {0} and let
U={e1,...,ex 51,...,5m) C P**. By Lemma 2.6.7, we have U = ¢~ (I). According
to the Second Noetherian Isomorphism Theorem, ¢ induces the canonical P-module
isomorphism P+ /U = P /p=1(I) = o(P**)/I = I + J/I C P/I. In particular,
we get codimp (U, P**) = codimg (1,1 + J) < codimg (I, P) < oo since I C P is
a zero-dimensional ideal and we can hence use Algorithm 3 to compute the O-border
basis G C P*** of U. By Corollary 2.6.12, o(G) C I + J/I is the ©(O)-border basis
of I +J/I.

Remark 2.6.14. Although we have already seen before that we cannot reuse all the
results about border bases in P” in a straightforward way, we can use Theorem 2.6.8 to
identify border prebases in M with their characterizing border prebases in P" if such
exist. This allows us to define many concepts about border bases in P" for border
bases in M. The following example shows such a generalization of the Border Division
Algorithm 2.2.1 and of the normal remainder defined in Definition 2.2.2.

Let G¥ = {g{,...,9/} € M be an O%-border prebasis and assume that there exists
an O-border prebasis G = {g1,...,9,} C P" that characterizes G¥. We write the order
ideal O = {t1ea,,..-,tpq,} in T"(e1,...,e,) with p € N, t; € T, and o;; € {1,...,7}
for all i € {1,...,u}. Given v¥ € M, we first have to determine a preimage v € P"
of v under ¢ and after that we have to apply the Border Division Algorithm 2.2.1 to v
and G to obtain a representation v = p1g1 + -+ + pugw + c1ti€a, + -+ + cutu€q, with
Pl,..-,Pw € Pand cq,...,c, € K. Then we must apply ¢ to this result and get a similar
representation of v¥ € M, namely

v = plcp(gl) + -+ pwc,o(gw) +citimg, +--- + C,ﬂf;ﬂnaM
= Q1gf +---+ QVg;/p +catime, + -+ C,utumau

with polynomials q1,...,q, € P, cf. Lemma 2.6.7 and Definition 2.6.5. We can then
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define the element cit1ma, +- - +cutma, € M, which is a representative of the residue
class v# € M/(G¥), to be the normal remainder of v¥ with respect to G¥ and v. In
particular, using this construction, we are then able to generalize the Corollaries 2.2.4
and 2.2.5 to border bases in M.

Many other concepts could be defined for border bases in M the same way, e.g. an
O¥-index as in Definition 2.1.11 or the special generation property in Theorem 2.4.1.
But note that the result of the last step, namely applying ¢ to the result in P", can lead
to inconsistencies if we do not distinguish between different preimages. The following
example shows such a inconsistency: We consider Example 2.6.2, again. Recall that the
canonical basis of the free P-module P? was {e1,e2} and that %€, = zyes € 0¥ NOOY.
Then the above construction assigns z%€; the O¥-index indp(z%e;) = 0, whereas the
same element zyes is also assigned the O¥-index indp(zyes) = 1.

Altogether, we see that we can reuse the concepts of Sections 2.1 to 2.5 but we some-
times must not directly define these concepts for a given element in M but only for a
specific preimage of it in P".
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In this chapter, we devote our attention to the (first) syzygy module of border bases. As
we have already seen in Theorem 2.4.26, we can characterize border bases via liftings of
the neighbor syzygyies with respect to the given order ideal. But these liftings have also
other nice properties. If we think about Grobner bases, we see that the liftings of the
syzygies corresponding to S-vectors also form a Grobner basis of the (first) syzygy module
with respect to a specific term ordering. This theorem is known as Schreyer’s Theorem
and was first proved in [Sch80]. A version of Schreyer’s Theorem for Grobner bases using
our notation can be found in [KR00, Prop. 3.1.4]. Unfortunately, the methods used for
the proof of the Grobner bases version are not applicable for border bases. The reason
is that the structure of border bases does not depend on an underlying term ordering
but only on an order ideal. There are even O-border bases of ideals in Q[x, y] such that
O # O, for every term ordering o on T?. An example of such a border basis can be
found in Remark 6.1.15.

The main goal of this chapter is to prove a version of Schreyer’s Theorem that is
applicable for border bases of submodules of free modules of finite rank in Theorem 3.4.5.
More precisely, for a given O-border basis G = {g1,...,9,} of a P-submodule U C P"
as defined in Definition 2.1.14, we prove that the corresponding set of neighbor liftings A
with respect to O as defined in Definition 2.4.24 is a 7-Grobner basis of the (first) syzygy
module of (g1,...,9,). Here 7 is a term ordering that we can explicitly construct with
the help of Algorithm 7. This generalizes the corresponding result in [KK14, Thm. 6.5]
to border bases of free modules of finite rank and it generalizes the results of [Hui06,
Thm. 22|. In the latter theorem, the author of [Hui0O6] proved that the set of neighbor
liftings A with respect to O of a border basis of an ideal of a polynomial ring generates the
(first) syzygy module of the border basis. In order to reach the above goal, the author

reduces arbitrary vectors in PY in a very special way using the rewrite relation A,
defined by A as defined in [KR00, Defn. 2.2.1]. The corresponding procedures called
“degree lowering” and “column clearing” served as the basis for the proof of Schreyer’s
Theorem for border bases of polynomial ideals in [KK14, Thm. 6.5]. The authors of that
paper turn the methods “degree lowering” and “column clearing” into explicit algorithms
and deduce Schreyer’s Theorem for border bases of polynomial ideals.

We now go another step further and generalize these methods to border bases of sub-
modules of free modules of finite rank. In Section 3.1, we divide the border terms of order
ideals in different parts depending on the structure of the border terms. More precisely,
in Definition 3.1.1, we divide the set of border terms into faces, and into non-exposable,
extreme and non-extreme border terms. Non-exposable border terms were introduced
by us in order to be able to handle order ideals in T"(ey,...,e,) as defined in Defini-
tion 2.1.6 with an empty component, i.e. such that e ¢ O for some k € {1,...,r}. Such
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a strange situation cannot happen in the polynomial case. But we cannot thrust aside
such situations in the module case, cf. Remark 2.5.5. After that we formulate the proce-
dures of “degree lowering” and “column clearing” as explicit algorithms in Section 3.2. We
then combine these methods in Section 3.3 to get an algorithmic version of the reduction
process used in [Hui06, Lemma 33|. Moreover, we prove a generalized version of [Hui06,
Thm. 22| and use these results in order show that the set of neighbor liftings A with
respect to O generates the (first) syzygy module of an O-border basis. As a byproduct,
we give an alternative proof for the characterization of border bases via liftings of border
syzygies with respect to O in Corollary 3.3.9. It is remarkable that, in stark contrast the
proof in Theorem 2.4.26 and other proofs of this theorem, this proof does not depend
on commuting matrices, at all. After that we have all ingredients to prove Schreyer’s
Theorem in Section 3.4, First we deduce conditions on a term ordering 7 in T"(ey, ..., e,)
in order for A to be a 7-Grobner basis of the (first) syzygy module of the corresponding
border basis in P" in Theorem 3.4.1. Finally, we algorithmically construct such term
orderings in Theorem 3.4.5.

In this chapter, we use the following notation. For every t = leh e xi" e ™
with 61,...,d, € N and some 7 € {1,...,n}, we denote the x;-degree by deg, (t) = d;,
and for p € P\ {0}, we denote the z;-degree by deg, (p) = max{deg, (t) |t € Supp(p)}.
Moreover, we let G C P" be an O-border prebasis. As in Definition 2.1.14, we can
write the order ideal O = {t1eq,,...,t,eq, } and its border 00 = {bieg,,...,b,eg, } with
p,v €N, and t;,b; € T" and o, 85 € {1,...,r} foralli € {1,...,u} and j € {1,...,v},
and we let G be of the form G = {g1,..., g, } with polynomials g; = b; — Yt | a;jtieq,,
where a;; € K foralli € {1,...,p} and j € {1,...,v}.

3.1 Extreme and Non-Extreme Border Terms

In this section, we divide the border terms into different parts. In particular, we gener-
alize the definitions and results about extreme and non-extreme border terms of [Hui06]
and [KK14, Section 2| to the module setting.

First of all, we define a generalization of extreme and non-extreme border terms that
is suitable for the module setting. In particular, we introduce a new kind of border term
that cannot occur in the ideal setting, namely non-exposable border terms. With these
non-exposable border terms, we are capable of order ideals that do not contain all the
basis vectors ey, ...,e,. The following definition generalizes [KK14, Defn. 2.1| to the
module setting and is based on the corresponding definitions in [Hui06].

Definition 3.1.1. Let j € {1,...,v} and k € {1,...n}.
a) The border term bjes, € 9O is called ri-exposable (or simply exposable) if there

exists a factorization bjes, = zptieq, for some i € {1,..., u}. If b; = 1, the border
term bjes, = eg, € 0O is called non-exposable.
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b) The border term bjes, € 9O is said to be on face k of O if bjes, is xj-exposable,
but not xg-exposable for all £ € {k+1,...,n}. We call the set of all border terms
on face k the k' face set of O and denote it by F¢(O).

c) A border term bjes, € Fi(O) is called extreme if we have b; € K[z1,..., 7).
Otherwise, the border term bjes; is called non-extreme.

The ideal version of following lemma has been stated in [Hui06, Lemma 17] and has
been proved in [KK14, Prop. 2.2].

Proposition 3.1.2. The set of all face sets of O is a partition of the set of all exposable
border terms in 0O, i.e. of the set 00 \ {e1,..., e }.

Proof. By Definition 3.1.1, a border term bjeg, € 00 with j € {1,...,v} is exposable
if and only if b; # 1. Thus 0O \ {e1,...,e,} is exactly the set of all exposable border
terms. If O = 0, then 0O \ {e1,...,e,} = 0 by the Definitions 2.1.6 and 2.1.7 and the
claim follows trivially. Thus suppose that O # 0, i.e. that 0O \ {e1,...,e.} # 0. Let
J €{1,...,v} besuch that bjeg, € 0O \{e1,...,e,} and such that bjes. € Fr(O)NF,(O)
for some k,¢ € {1,...,n}. Without loss of generality, we may assume that & < ¢. Then
the border term bjeg, is not xp,-exposable for all m € {k+1,...,n} but xp-exposable
by Definition 3.1.1. Therefore, we have £ < k and hence k = ¢. The claim now follows as
every border term in 9O \ {e1, ..., e,} is by the Definitions 2.1.7 and 3.1.1 z,,-exposable
for some m € {1,...,n}. O

Therefore, we can define a map which associates to each border term contained in the
set 00 \ {e1,...,e,} the index of the face set containing it. This definition generalizes
[KK14, Def. 2.3] to the module setting.

Definition 3.1.3.  According to Proposition 3.1.2, there exists a well-defined map
face : 00 \ {e1,...,e,} — {1,...,n} which associates to every exposable border term
bjes, with j € {1,...,v} the unique index k € {1,...,n} such that bjes, € F(O). We
call this map the face (index) map.

The following example will guide us through the remainder of this chapter. It illustrates
all the basic concepts used in [Hui06| and in [KK14]| as well as our generalizations of these
definitions and results.

Example 3.1.4. Let K be a field, P = KJz,v, 2], {e1,e2,e3} denote the canonical
P-module basis of P3, and

0= {172797 2'2’3/2,2’373%3} rer U 0- ez U {17y} - €3.
Then O is an order ideal in T3{eq, ..., e,) with border

00 = {bl,...,b14} '61U{bl5}~62U{b16,...,b20} - e3
= {337y%xzyl'y:Z/2271’22>y2za$y27z473133737Z373/3273/47xy3} - €1

U {1} ~eg U {Z,-ZU,yZ, yQ,xy} T €3
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3 Syzygies of Border Bases

by the Definitions 2.1.6 and 2.1.7. The only non-exposable border term is biseg,, = e

and the face sets of O are

Fi1(0) = {x,azz,:cy,xz2,xy2,:n23,xy3} cep U{z,xzy} - es,

Fo(0) = {yz%,y2%,y'} - e1 U {y?} - e,

F3(0) = {yz, 9%z, 2 y*2} - e1 U {2, yz} - es.

according to Definition 3.1.1. By identifying terms with their logarithms, i.e. with their
exponent vectors, we can illustrate all these sets with the following pictures.

z
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A (@] O
) ]
[ ]
) o
[ ]
A A A A
[ |
L Yy
u n n
X
z
Os
Yy
xr
X

terms in O

non-exposable border terms
border terms in F3(O)
border terms in F2(O)

border terms in F3(O)

N

Moreover, we see that the set of all extreme border terms is

{.’IJ, yzay2z7 2'473432,344} -e1 U {11?, Z7y27 yZ} t €3

and the set of all non-extreme border terms is

{$Z,$y, y227 .%'22, xyzayzsaxzsvxyg} -e1 U {xy} - €3.

Next we subdivide the set of non-extreme border terms in an even finer way. The
corresponding notion in the ideal setting was first introduced in [Hui06, Section 6.5] and

can also be found in [KK14, Defn. 2.5|.
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3.1 Extreme and Non-Extreme Border Terms

Definition 3.1.5. Letic {1,...,n—1} and j € {1,...,v} be such that bjes, € F;(O)
is a non-extreme border term. Let d1,...,0, € N be such that b; = x‘il "'1‘2” and let
k=min{f € {i+1,...,n}|d; > 0}. Then we call the set

Col(bjep;) = {a:ibjegj e Fi(0) |t e Z,xf;bjeﬁj non-extreme, , | z5b;}
the column containing bjes;. We say that it is in the zx-direction.

In the ideal setting, the following description of the column containing a non-extreme
border term bjes, with j € {1,...,v} is contained in [Hui06, Lemma 28|. We generalize
the corresponding formulation in [KK14, Lemma 2.6] to the module setting.

Lemma 3.1.6. Letj € {1,...,v} be such that bjeg, is non-extreme, let i = face(bjes; ),
and let k € {i+1,...,n} be such that Col(bjes;) is in the xy-direction. Then there exist
natural numbers s,t € N such that

Col(bjep,) = {x},°bj, z g, kb by ) es;-

In addition, for every £ € {1,...,v} such that beeg, € Col(bjes,), we have xp, { by for all
me{i+1,....k—1}.

Proof. In order to prove the claim, we define s = max{¢ € N | x;fbjeﬁj € Col(bjep;)}
and t = max{¢ € N | zfbjes. € Col(bjes,)}. Note that both of these maxima exist
since we have bjeg, € Col(bjes;) # () and since #(Col(bjes;)) < #0900 = v < oo. Let
¢ € {—s,...,t}. Then the first claim follows if we show that x{bjes € Col(bjes,). As
:c,;sbjeﬂj,x’,;bjegj € Col(bjes;) € 9O by Definition 3.1.5, we get xibjegj € 00 according
to the Definitions 2.1.6 and 2.1.7. Moreover, we have x, °b; # 1 by Definition 3.1.1 as
7, °bjep, is non-extreme.

First we prove that face(xibjeﬁj) = i. Since zjbjes, € Col(bjep,), face(z}bjes;) =i by
Definition 3.1.5. Therefore, it follows @egj € O from Definition 3.1.1 and ¢ < t yields
mf;bj

~£Zep, € O by Definition 2.1.6. In particular, we get face(xf;bjegj) > i according to Def-

K3

inition 3.1.1. Assume that face(:z;f;bjegj) =m for some m € {i+1,...,n}. Then we have

%ﬁjegj € O by Definition 3.1.1 and thus —s < /¢ yields %egj € O by Definition 2.1.6.
Therefore, it follows that face(z; *bjeg,) > m > i from Definition 3.1.1. As we also have
face(x; *bjep;) = i according to Definition 3.1.5, we get a contradiction. Altogether, it
follows that face(xibjelgj) = 1.

Next we show that xf;bjeﬂj € 00 is non-extreme. As x, °b; # 1 by Definition 3.1.5 and
as —s < £, it follows xibj # 1, ie. xibjegj is exposable by Definition 3.1.1. Assume
that xibjeﬁj is extreme. Then we have xibj € Klzi,...,z;] by Definition 3.1.1. In
particular, it follows that z; *bjes. € F;(O) is contained in K[z1,..., ;] and, therefore,
extreme according to Definition 3.1.1. As x; *bjeg, € Col(bjep;) is non-extreme accord-
ing to Definition 3.1.5, we get a contradiction. Thus we have proven that the border
term :Eibjeﬁj is non-extreme.
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3 Syzygies of Border Bases

In order to show the remaining claim, let m € {i+1,...,k —1}. Assume that z,, | z{b;.
Then, as m < k, we get x,, | b; in contradiction to Definition 3.1.5. Thus we see that
there exists no index m € {i +1,...,k — 1} such that z,, | z}bjeg,. O

Our next lemma shows that the columns form a partition of the non-extreme border
terms in dO. The corresponding ideal version can be found in [KK14, Lemma 2.7|.

Lemma 3.1.7. The set of all columns is a partition of the set of all non-extreme border
terms in 00.

Proof. Let i,j € {1,...,v} be such that both border terms bieg,,bjes, € JO are non-
extreme and let k, £ € {2,...,n} be such that the column Col(b;eg,) is in the z4-direction
and such that Col(bjes;) is in the x,-direction. Suppose that there exists an index
m € {1,...,v} such that byeg, € Col(b;es;) N Col(bjep;). Then Definition 3.1.5 implies
that s = face(bjeg,) = face(bmes,,) = face(bjes;). Without loss of generality, we let
k < {¢. Assume that k < ¢. Then we have s < k < ¢ according to Definition 3.1.5. Since
bmeg,, € Col(bjes;) and since Col(beg;) is in the xj-direction, we see that xy, | by, by
Definition 3.1.5. But, as we also have by,eg,, € Col(bjes;) and as Col(bjep;) is in the
xp-direction with s < k < ¢, it follows xy t b, from Lemma 3.1.6. This is obviously
a contradiction. Thus we get k& = £ and hence Col(bieg,) = Col(bjes;) according to
Definition 3.1.5. The claim now follows from the observation that every non-extreme
border term is contained in a column by Definition 3.1.5. O

As in [Hui06, Lemma 28| and [KK14, Def. 2.8|, the terms below and above every
column receive special names as follows.

Definition 3.1.8. Let j € {1,..., v} be such that the border term bjeg, is non-extreme
and let k& € {2,...,n} be such that Col(bjeg;) is in the xj-direction. Let s, € N be
such that Col(bjeg,) = {z} °bj, ..., x},b;j} - eg,. Then the term lch(bjes;) = mlzsflbjeﬂj is
called the lower (column) bound of Col(bjes;) and the term ucb(bjeps;) = x};“bjeﬂj

is called the upper (column) bound of Col(bjeg, ).

In [Hui06, Lemma 28|, the following properties of the upper and lower bound of a
column in 9O are proven. We generalize these results to the module setting.

Lemma 3.1.9. Letj € {1,...,v} be such that the border term bjes, is non-extreme, let
i = face(bjes; ), and let k € {i+1,...,n} be such that Col(bjes,) is in the xy-direction.
Let s,t € N be such that Col(bjeg,) = {x;°bj,...,x}.bj} - eg,.

a) Evactly one of the following conditions holds for uch(bjes;) = xfjl
1) ucb(bjeg,) ¢ 9O.
2) ucb(bjep;) € Fo(O) for some £ € {1,...,i—1}.

bjegj.

b) Ezactly one of the following conditions holds for lcb(bjes;) = :U,;sflbje/gj.
1) leb(bjep;) € Fi(O) is extreme.
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3.1 Extreme and Non-Extreme Border Terms

2) leb(bjes;) € Fi(O) is non-extreme and belongs to a column in the x¢-direction
for some £ € {k+1,...,n}. In particular, we have xy, J[x,zs_lbj.

3) leb(bjep;) € Fo(O) for some £ € {k,...,n}.

Proof. First we prove claim a). According to Definition 3.1.5, we have x};bjegj € 00.
Thus by the Definitions 2.1.6 and 2.1.7, we have ucb(bjeg,) ¢ O. In particular, it follows
ucb(bjeg;) € DO or uch(bjes,) ¢ dO. Suppose that ucb(bjeg,) € dO. Since Col(bjeg, ) is
in the zj-direction, xy | b; by Definition 3.1.5. As t € N, this implies z, | iL‘Zj_lbj.

For a contradiction, assume that face(ucb(bjeg,)) = i. Since xy | ziT1b;, it follows that
ucb(bjes;) = xzﬂbj ¢ Klx1,...,7, i.e. uch(bjes,) is non-extreme by Definition 3.1.1.
Then Definition 3.1.5 yields ucb(bjes;) € Col(bjes;) in contradiction to Definition 3.1.8.
Altogether, we see that face(ucb(bjep;)) # .

Now assume that face(uch(bjes;)) = £ for some ¢ € {i + 1,...,n}. Then we have
xt+1bj

——eg; € O by Definition 3.1.1. In particular, as zpbjes, € Col(bjes;) € 0O by
Definition 3.1.5, it follows k # ¢ from the Definitions 2.1.6 and 2.1.7. Thus we get x/ | b;
and this implies i—';eﬁj € O by Definition 2.1.6, i.e. we get face(bjes;) > £ > i by
Definition 3.1.1 and this clearly contradicts face(bjes;) = i. Altogether, we see that
face(bjep;) < i and claim a) follows.

Next we show claim b). According to Definition 3.1.5, we have xz, | x; °b;. Thus
leb(bjes;) = a:,;sflbjegj € 00 by the Definitions 2.1.6 and 2.1.7. Assume that we have
leb(bjes;) € O. Then w,°bjes, = x)lcb(bjes;) is zp-exposable by Definition 3.1.1. As
we have face(r; *bjes;) = i by Lemma 3.1.6 and as i < k by Definition 3.1.5, this is a
contradiction. Hence we get lcb(bjes;) € 90.

As face(r, *bjep,;) = i according to Lemma 3.1.6, it follows Libjegj € 0. Since we also
have i < k by Definition 3.1.5 and since we have already shown that lcb(bjes;) € 00,

—s—1
T, b;

we see that ==——eg. € O by the Definitions 2.1.6 and 2.1.7. In particular, it follows

1

leb(bjeg,) € F¢(O) for some £ € {i,...,n} from Definition 3.1.1.

For every ¢ € {i+1,...,k—1}, since xy { b; by Definition 3.1.5, it also follows z, { x,;sflbj.
Therefore, we see that lcb(bjes;) € Fo(O) with £ € {i} U {k,...,n}. In particular,
the only remaining part of the proof is that, if lcb(bjes;) € Fi(O) is non-extreme,
then Col(lcb(bjep;)) is in the z,-direction for some £ € {k +1,...,n}.

Suppose that lcb(bjeg,) is non-extreme. Assume that zj | x,:s_lbj. Then we have
leh(bjes,) € Col(bjes;) by Definition 3.1.5. Since this is clearly a contradiction to Defi-
nition 3.1.8, it follows xy 1 :L“,;S*lbj. Moreover, we have already shown that xy { x,;sflbj
for all £ € {i +1,...,k —1}. Altogether, Col(bjes;) is in the x,-direction for some
¢e{k+1,...,n} according to Definition 3.1.5. O

Example 3.1.10. Consider the order ideal O in T3(ey, €2, e3) of Example 3.1.4, again.
Recall that the set of all extreme border terms was

{:E,yz,sz,z4,y3z,y4} e U {l‘,Z,yQ,yZ} T €3 C 00
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3 Syzygies of Border Bases

and the set of all non-extreme border terms was

{acz,:cy,yzQ,:er,:I:yQ,yz?’,mz?’,:Uy?’} ~e1 U{zy} -e3 C 00.

We compute all columns and get

Col(bgeg,) = Col(bges,) = Col(bries,,) = {wz, 22, 2%} - e1 C F1(0),
Col(bseg,) = Col(bges,) = Col(bises,,) = {zy, 2y?, 2y*} - e1 C F1(0),
Col(bsep,) = Col(biges,,) = {y2?, vz} - e1 C F2(0),

Col(baoegs,,) = {zy} - es € F2(O)

by Definition 3.1.5. Here both Col(bseg,) and Col(bseg,) are in the z-direction, and
both Col(bseg,) and Col(bagegs,,) are in the y-direction. Moreover, all the lower bounds

leb(bsep,) = lcb(bges,) = Ieb(brieg,,) = xer € F1(O),
lcb(bses,) = leb(bgeg,) = leb(bisep,,) = zer € F1(O),
lcb(bseg, ) = leb(bioep,,) = yze1 € F3(0),
leb(bages,,) = zes € Fi(O)

are extreme, and the upper bounds are of the form

zzte; ¢ 00,
zy'er ¢ 00,
bioes,,) = yz'er ¢ 00,
uch(baoeg,,) = zyles ¢ 00

ucb(bzeg,) = ucb(bgeg;) = ucb(biieg,,

ucb

( )
qu(b4€54) = UCb(bseﬂg) = qu(b146514)
uch(bses,) = ( )

( )

according to Definition 3.1.8. The following sketch illustrates the columns of 90O:

74



3.2 Degree Lowering and Column Clearing
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3.2 Degree Lowering and Column Clearing

In this section, we prepare some material from [Hui06, Sect. 6.4 and 6.5| for its appli-
cation in the proof of the main theorem of this chapter. In particular, we formulate
everything in our notation and transform some proofs into explicit algorithms. A similar
work in the ideal setting was already done in [KK14, Section 4|. In this way, we are able
to achieve an explicit reduction algorithm, i.e. an effectively implementable version of
the proof of [Hui06, Lemma 33]. For the intuitive meaning of the processes of “degree
lowering” and “column clearing”, we refer to [Hui06, Sect. 6.4 and 6.5].

As in Subsection 2.4.5, we use the following notation. We let {ej,...,e,} denote the
canonical P-module basis of P" and we let {¢1,...,e,} denote the canonical P-module
basis of P¥. Moreover, we assume that the O-border prebasis G is the O-border basis
of (G). For every i,j € {1,...,v} such that bies, and bjes, are neighbors with respect
to O, we denote the corresponding neighbor syzygy with respect to O by o0;; as in Def-
inition 2.4.21 and according to Remark 2.4.28, 0;; can be lifted to a unique neighbor
lifting A;; with respect to O as defined in Definition 2.4.24. Moreover, we denote the set
of all neighbor liftings with respect to O by A.
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The special shape of neighbor liftings with respect to O that was described in Re-
mark 2.4.28 gives us more insight into the structure of neighbor liftings and serves as a
basic part of [Hui06] and of this section. In particular, though deduced in a totally dif-
ferent way, it is a reformulated version of [Hui06, Lemma 19|. Because of its importance,
we recall it using the definitions of Section 3.1.

Remark 3.2.1. Letid,je{1,...,v}.

a) Suppose that bes, and bjes; are next-door neighbours with respect to O, i.e. that
there exists an index k € {1,...,n} such that xybes; = bjes;. Then we have
em ¢ Supp(\ij — 0y5) for all m € {1,...,v} such that byeg,, is non-exposable or
face(bmeg,,) < k according to Remark 2.4.28 and Definition 3.1.1.

b) Suppose that bjes, and bjes; are across-the-street neighbours with respect to O,
i.e. that there are k,£ € {1,...,n} such that zzbes, = z¢bjes,. Then we have
em ¢ Supp(N\ij — oyj) for all m € {1,...,v} such that byeg,, is non-exposable or
face(bmeg,,) < min{k, £} according to Remark 2.4.28 and Definition 3.1.1.

The following proposition can be shown using a suitably adapted version of the proof
of [Hui06, Lemma 27|. For the ideal setting, the corresponding result was proven in
|[KK14, Prop. 4.1]. We generalize this proposition to the module setting.

Proposition 3.2.2. (Properties of Degree Lowering)

Leti€{1,...,n—1} and let j € {1,...,v} be such that bjes, is exposable and such that
k = face(bjeg,) > i. Given (p1,...,py) € P” with p; # 0, let d € N be mazimal such that
:L‘f divides one of the terms in the support of pj. Then there exist unique polynomials
p' € P\ {0} and p" € P such that pj = p'zé + p", and such that no term in the support
of p" is divisible by z¢.

In this situation, there exists an exposable border term bgeg,, where £ € {1,...,v}, with
the property that beeg, = w;bjes;, or that wpbres, = w;bjes, and face(bees,) > i. In
particular, the border terms bjes, and beeg, are neighbors with respect to O.

Assume that d > 0. Then the vector

d—
(@15 @) = (015, 00) = P'ef Ao,
satisfies the following conditions.

1) For every o € {1,...,v} such that byeg, is non-exposable or face(byeps,) < i, we
have g, = p,.

2) Let p € {1,...,v} and s € {1,...,i} be any indices such that both p, and p; are
contained in K|xs, ... ,zy]. Then we have q, € K|zg, ..., xy).

3) Forall p € {1,...,v}, every term in the support of q, that is divisible by acf-l 1S also
contained in the support of p,.

4) We have q; =0 or deg,. (q;) <d—1.
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Proof. The existence and uniqueness of the polynomials p’ € P\ {0} and p” € P such
that p; = p’xf + p” is clear. Hence we start by proving the existence of an exposable
border term byeg,, where £ € {1,...,v}, with the property that bseg, = x;bjes;, or that
wrbeeg, = wibjes, and face(breg,) > i. As face(bjeg,) = k, there exists a u € {1,...,u}
such that zptyeq, = bjeg, by Definition 3.1.1. Then we have either z;t,eq, € O or
Zityeq, € 00 by Definition 2.1.7.

If we have z;t,eq, € 00, there is an £ € {1,...,v} such that z;t,eq, = beeg, and this
yields zpbres, = zpxityeaq, = xibjegj. In this first case, byeg, = x;tye€q, is Ti-exposable
and thus face(beeg,) > i by Definition 3.1.1. For the second case, zityen, € O, we
note that the term xg(zityeq,) = zibjep; is contained in JO by the Definitions 2.1.6
and 2.1.7. This shows that there exists an index £ € {1,...,v} such that byeg, = x;bjeg,;.
In particular, by Definition 3.1.1, we see that breg, = xp(zityeq, ) is xp-exposable and
thus face(beeg,) > k > i in this second case.

Now we investigate the shape of the neighbor lifting Aj;. Let Ajo = (f1,..., f,) be with
polynomials fi,..., f, € P. According to Remark 2.4.28, the lifting \jy is either of the

form \jy = x;ej —ep—c161 — - - —cyey, or of the form \jy = @ie; —xper —c1e1—- - — ey
with ¢1,...,¢, € K. Hence for all o € {1,...,v}\ {j,¢}, we have f, = —c,, we have
fj = x; — ¢j, and we have either fy = —1 —c¢por f = —xp — cy.

For all indices ¢ € {1,...,v} such that the border term b,eg, is non-exposable or such

that face(byep,) < i < k, Remark 3.2.1 yields ¢, = 0. As face(bjes;) > i, and as we
have already seen that face(bgeg,) > i, it follows that f, = 0 for all p € {1,...,v}
such that byeg, is non-exposable or face(byeg,) < i. Claim 1) is now a consequence of

(Q17~~7QV) = (pla" '7pl/) _p,l‘zc'l_l(flw . 'afl/)~

To prove claim 2), let p € {1,...,v} and s € {1,...,i} be any indices such that both p,
and p; are contained K|[xs, ..., z,|. Then the construction of p’ yields p’ € K|z, ..., xy]
and hence g, = p, — p’x?flfg € Klzg, ...,z

For the claims 3) and 4), we note that by the construction of the polynomial p/, we
have p’ € K[x1,...,%i—1,%i41,...,2y] and that for every index o € {1,...,v}\ {j}, we
have p'z¢ ' f, = 0 or deg,. (p'z% f,) < d — 1. Moreover, the descriptions of p’ and X
show that all the terms in the support of p; with x;-degree greater than or equal to d
cancel in g; = p; —p’mfflfj =pj —p’xffl(xi —¢;). Thus the claims 3) and 4) follow. [

Based on this proposition, we can formulate an algorithm for performing degree lower-
ing steps that generalizes [KK14, Prop. 4.2] to the module setting. Note that the following
algorithm proceeds differently from the method in the proof of [Hui06, Lemma 27]: we
do not reduce the x;-degree of a single component of maximal x;-degree of a vector, but
of all such components.
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Algorithm 4: LowerDegree(i, (p1,...,pv), A)

Input:

ie{l,...,n—1}

(p1,...,pv) € P” such that there exists an index j € {1,...,r} with the properties
that bjes; is exposable, face(bjegj) > 1, and the support of p; contains a term that is
divisible by x;

A={Njli,j€{l,...,v},bieg and bjeg, are neigbhors with respect to O}

=

Let d € N\ {0} be maximal such that there exists an index j € {1,...,r} with the
properties that bjes; is exposable, face(bjeﬁj) > ¢, and the support of p; contains a
term that is divisible by xﬁl.

foreach j € {1,...,v} such that bjeg, is exposable, face(bjes;) > i, p; # 0, and
deg, (pj) = d do

N

3 if sz‘bjegj € 00 then
4 ‘ Let £ € {1,...,v} be such that x;bjes, = byeg,.
5 else
6 k = face(bjes;)
7 Let £ € {1,...,v} be such that x;bjes, = zpbeeg,.
8 end
9 while there exists a ¢ € Supp(p;) with deg,, (t) = d do
10 choose t € Supp(p;) with deg, (t) = d.
11 Let a € K be the coefficient of ¢ in p;.
12 (P1,--,p0) = (Pl,u-,pu)—afi)\je
13 end
14 end
15 return (p1,...,py)

Proposition 3.2.3. (Algorithmic Version of Degree Lowering)

Leti € {1,...,n — 1}, let (p1,...,pv) € P, and let d € N be mazimal with the fol-
lowing properties: there exists an index j € {1,...,v} such that bjes, is exposable, such
that face(bjeﬁj) > i, and such that the support of p; contains a term that is divisible
by $§l. Assume that d > 0. Then Algorithm /4 is actually an algorithm and its result

(q1,--.,q,) = LowerDegree(i, (p1,...,pu), \)

applied to the input data i, (p1,...,pv), and A is independent of the choice of t in line 10
and satisfies the following conditions.

1) For every o € {1,...,v} such that byeg, is non-exposable or face(byes,) < i, we

have q, = p,.

2) Let o € {1,...,v} and s € {1,...,i} be any indices such that p, and every poly-
nomial in {p, | v € {1,...,v},byeg, exposable,face(byep,) > i} are contained
in Klzg,...,x,). Then we have q, € K[z, ..., zp].
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3.2 Degree Lowering and Column Clearing

3) For all p € {1,...,v}, every term in the support of q, that is divisible by xf is also
contained in the support of p,.

4) For every o € {1,...,v} such that byeg, is exposable and such that face(byeg,) > 1,
we have q, = 0 or deg, (q,) < d—1.

5) We have (p1,...,pv) +(A) = (q1, ..., q) + (A) in P"/(A).

Proof. First we prove that every step of the procedure can actually be computed and that
the procedure terminates after finitely many steps. The existence of an £ € {1,...,v} as
required in the if-else-clause starting in line 3 follows from Proposition 3.2.2. Moreover,
the foreach-loop in line 2 is obviously finite. Therefore, it suffices to prove that the while-
loop starting in line 9 is processed only finitely many times. In order to show this, we
prove that the number of terms in the support of (p1,...,p,) with maximal x;-degree
decreases at least by one after every loop iteration. Let ¢t € Supp(p;) with deg,, () = d
be chosen as in line 10. We write t = xgt’ with a term ¢ € T" that is not divisible by x;.
By the construction in the if-else-clause starting in line 3, the terms bjes, and beeg, are
neighbours with respect to 0. According to Remark 2.4.28, the corresponding lifting A,
has exactly one term with x;-degree greater than or equal to 1 in its support, namely
x;€j. Let a € K be the coefficient of ¢ in p; as in line 11. Then the term te; cancels in
the reduction (p1,...,py) — ax%)\jg = (p1,---,00) — axfflt’)\jg of line 12. As all terms
in Supp(Aj¢) \ {zic;} have x;-degree 0, no new term with z;-degree d is added to the
support of (p1,...,p,) in line 12. Hence the number of terms with the maximal x;-degree
in the support of p; decreases exactly by one. Since the number of terms in the support
of (p1,...,p,) with maximal x;-degree is finite, the while-loop eventually terminates.
Next we prove the correctness of the algorithm. Considering the while-loop in line 9 in
detail, we see that we always subtract a vector of the form aa:gl_lt’ Aje from (p1,...,py)
where ¢ € T™ is a term that is not divisible by z;. As we have already seen above,
exactly one term in the support of (pi,...,p,) with maximal x;-degree d cancels in
line 12, namely the term te; = x;-it’ gej. If we collect all terms te; in the iterations of the
while-loop, we see that, after the while-loop, we have altogether subtracted a vector of the
form p’a:f_l/\jg from (p1,...,py), where p’ € P\{0}. In particular, we have p; = p'z¢+p"
with a polynomial p” € P such that no term in the support of p” is divisible by :Ef In
other words, the conditions of Proposition 3.2.2 are satisfied during every iteration of the
foreach-loop in line 2 and the claims 1) to 3) follow immediately from the corresponding
claims in Proposition 3.2.2 and induction on j. In particular, we see that the result of
the algorithm does not depend on the choice of ¢ in line 10, since exactly one term with
xi-degree d vanishes in each reduction in line 12. The foreach-loop in line 2 iterates
over all exposable border terms that are on faces greater than i. So claim 4) follows by

induction on j from claim 4) of Proposition 3.2.2. Since the vector (p1,...,p,) is only
changed in line 12 of the algorithm and since we always subtract multiples of \;, € A,
claim 5) follows, too. O

79



3 Syzygies of Border Bases

Example 3.2.4. Consider the order ideal O in T3(ey, ea, e3) of Example 3.1.10, again.
Recall that P = Q[z,y, 2], that {ey, e, e3} denoted the canonical P-module basis of P3,
and that we could illustrate the order ideal O = {1,z2,y,2%,vy% 23,43} - e1 U {1,y} - e3
in T3(eq, e, e3) and its border 00 = {breg,, ..., bages,, } with the following figures.

z =< terms in O
b
o’ 01 B non-exposable border terms
b1o ® cxtreme border terms
b11
b5 A non-extreme border terms
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Let G = {g1,...,920} C P be with g1 = ze1 —e3, g2 = yze1, g3 = wze1, g4 = TYE1 —Yes,
g5 = yz’e1, g¢ = w2’e1, g7 = yze1, gs = wy’e1, go = 2'e1, gio = y2e1, g1 = z2’ey,
gi2 = y32’€1, g13 = y461, g14 = $y3€17 gi5 = €2, gie = z€3, gi7 = T€3, gig = Yze€s3,
g19 = y2es, gao = wyes. Using Theorem 2.4.31, one can easily check that the set G is the
O-border basis of (G). Let {e1,...,20} be the canonical P-module basis of P?°. For all
i,j € {1,...,20} such that beg, and bjes; are neighbors with respect to O, we denote
the corresponding neighbor syzygy with respect to O by o;; as in Definition 2.4.21 and
the corresponding neighbor lifting with respect to O by A;; as in Definition 2.4.24. Using
Remark 2.4.28, we can compute the set of all neighbor liftings A C Syzp(g1, .. ., g20) with
respect to O. In particular, it turns out that for all 4,5 € {1,...,20} such that i < j,
such that (i,7) ¢ {(1,3),(2,4),(3,4), (4,8)}, and such that b;es, and bjes, are neighbors
with respect to O, we have )\,’j = 0y, and that )\173 = 01,3 + €16, )\274 = 02,4 — YE16,
)\3’4 = 03,4 — YE16, /\4,8 = 048 + €19. Let v = (pl, - ,ng) = —2451 + xEg — 23516 e P,
We now consider the Degree Lowering Algorithm 4 applied to the input data i = 1, v,
and A in detail. Note that this means that we lower the z-degree of all components p;
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3.2 Degree Lowering and Column Clearing

with j € {1,...,20} where bjeg, is expsoable, face(bjes;,) > 1, and p; has maximal
x-degree.

In our situation, the only non-zero components of v correspond to the exposable border
terms xe; = bieg, € F1(0), zler = bgeg, € F3(O), and zes = biges,, € F3(O) by
Definition 3.1.1. As x € Supp(pyg) is divisible by x, the requirements of Algorithm 4
are satisfied. Starting with line 1, we see that the maximal x-degree of terms that need
to be considered is d = deg,(z) = deg,(pg) = 1. As deg,(p1) = deg,(pig) = 0, we
only need to consider the index j = 9 during the foreach-loop starting in line 2. Since
x - boeg, = rzte; ¢ O, the else-clause starting in line 5 is executed. In line 6, we get
k = face(z%e;) = 3. As z - boeg, = xzte; = z - biies,,, we see that £ =11 in line 7. Now
the while-loop starting in line 9 is executed. The only term of x-degree 1 in the support
of pg is . Thus we have to choose x € Supp(p;) in line 10 and get a = 1 in line 11.
Since the neighbor lifting Ag 11 is of the form Ag 11 = 09,11 = xeg — 2¢11, we update the
value of (p1,...,p20) in line 12 to

4 3 4 3
(pl, ce ,pgo) — )\9,11 = —Z€1+XE9g — 2"€16 — )\9,11 = —Zz'€1+2z2€11 — 2°€16-

Now the while-loop starting in line 9 stops. Since p1; = z has z-degree 0, the foreach-loop
starting in line 2 also stops. The algorithm finally returns the vector —zte1 2611 — €16

in line 15.

Next we examine the operation of “column clearing” as given in [Hui06, Lemma 29
and Coro. 30]. The following proposition provides particular versions of these results
adapted to our setting. For the ideal version of this proposition, we refer to [KK14,
Prop. 4.3].

Proposition 3.2.5. (Properties of Column Clearing)

Let j € {1,...,v} and k € {2,...,n} be such that bjeg, is non-extreme and such
that Col(bjep,) is in the xy-direction. We write Col(bjes) = {x;°bj,...,x}b;} - ep,
with natural numbers s,t € N and we let ug,...,usyt41 € {1,...,v} be such that

_s—1 _

bquﬁuO =x, s bjeﬁj = lcb(bjegj), bmeﬁul =x, Sbjegj, ceey bus+t+165us+t+1
Given (p1,...,pv) € PY, we assume that there exists an index v € {1,...,s+t+ 1} such
that py, # 0, i.e. such that at least one of the components of (p1,...,py) corresponding
to border terms in Col(bjeg,) is not zero. Let £ € {1,...,s+t+ 1} denote the mazimal
index such that p,, # 0. Then

_th.
—xkbjeﬁj.

(q17 <o 7ql/) = (plv oo 7pl/) - puz)‘uzug_l
satisfies the following conditions are satisfied.

1) Forall o € {1,...,v} \ {ug, up—1} such that the border term byep, is non-exposable
or face(byeg,) < k, we have g, = p,.

2) For every o € {1,...,v} and every w € {1,...,n}\ {k}, we have either ¢q,—p, =0
or the x-degree of q, — po s equal to the x,,-degree of py,.
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3 Syzygies of Border Bases

3) For every o € {1,...,v} such that the border term boes, is non-extreme, such that
bees, & Col(bjes;), and such that the column of byeg, is in the x,-direction for
some w € {2,...,k}, we have q, = p,.

4) For everyv e {{,...,s+t+ 1}, we have g, = 0.

Proof. Let Ayyu, , = (f1,-.., fu) bewith fi,..., f, € P. By Remark 2.4.28, the neighbor
lifting Ay, u, , is of the form Ay, | = €y, —ThEw, , —C1€1—"--—cpe, Witheq,..., ¢, € K.
Hence we see that f, = —c, for all o € {1,...,v} \ {ug,ug_1}. As the column Col(bjeg;)
is in the zp-direction, we have face(by,eg,,) < k for every index v € {1,...,s +t + 1}
by Definition 3.1.5. Moreover, for every index o € {1,...,v} such that the border
term byeg, is non-exposable or face(b,eg,) < k, Remark 3.2.1 yields ¢, = 0. Therefore,
we see that f,, = 1—c¢, =1 and that f,, |, = -2 —cy, , = —x3 if £ > 1. In
particular, for every index ¢ € {1,...,v}\ {ug, ug_1} such that byeg, is non-exposable or
face(byes,,) < k, we have g, = p, — fo = pp and claim 1) follows.

For all p € {1,...,v}\ {ug, u—1} such that g, —p, # 0 and for all w € {1,...,n}\{k},
the shape of Ay, , yields deg, (g, —p,) = deg, (—pu,co) = deg, (pu,). Since we have
already seen that f,, = 1, qu, = pu, — Pu, - 1 = 0. The equality f,, , = —zr — cy,_,
thus yields deg, (Gu,, — Pu,_,) = deg,, (—Pu, - (—2% — cy,_,)) = deg, (pu,) for all
w e {1,...,n}\ {k}. This proves claim 2).

In order to prove 3), suppose that there exists a o € {1,...,v} such that byeg, € 00
is non-extreme, such that byes, ¢ Col(bjeg;), and such that the column Col(byes,) is
in the x,-direction for some w € {2,...,k}. Then we have face(byses,) < w < k. By
Lemma 3.1.9, we see that byeg, # lcb(bjes; ). Hence we have f, = —c, = 0. Therefore,
we get o = Po — Pu, - 0 = p, and claim 3) follows.

For every index v € {£+1,...,s +t + 1}, we have face(by,eg,, ) = face(bjes;) < k by
Definition 3.1.5 and thus ¢, = p,, = 0 by the choice of ¢ and by claim 1). Since we have
already shown that ¢, = 0, claim 4) follows. O

The following proposition provides an algorithmic version of the process of “column
clearing”, cf. [Hui06, Lemma 32|. Since it is an essential building block for the main theo-
rem of this chapter, we provide a detailed proof. For the ideal setting, the corresponding
result was proven in [KK14, Prop. 4.4]. We generalize this proposition to the module
setting.
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3.2 Degree Lowering and Column Clearing

Algorithm 5: ClearColumns(i, (p1,...,pu),A)

N =

© 0w N A w

10
11
12
13
14
15
16

Input:
ie{l,...,n—1}
(p1,---,pv) € PV
A={Njli,j€{l,...,v},bieg and bjeg, are neigbhors with respect to O}
fork=i+1,...,ndo
foreach j € {1,...,v} such that bjeg, is non-extreme, such that Col(bjeg;) is in
the z-direction, such that i < face(bjep; ), and such that p; # 0 do
Let s,t € N be such that Col(bjes;) = {x; *bj, ..., x}b;} - ep,.
for {:=0tos+t+1do
‘ Let ug € {1,...,v} be such that byeg,, = xf;_s_lbjegj.
end
for {:=s+t+1tolstep —1do
while p,, # 0 do
choose t' € Supp(py,)
Let a € K be the coefficient of ¢ in p,, .
(p1,--pv) = (D1, Dy) — at’ Ayyuy,_,
end

end
end

end
return (p1,...,py)

Proposition 3.2.6. (Algorithmic Version of Column Clearing)
Letie{l,...,n—1} and (p1,...,pv) € P”. Then Algorithm 5 is actually an algorithm

a

applied to the input data i, (p1,...,p,), and A is independent of the choice of t' in line 9

a

nd its result

(q1,--.,q) = ClearColumns(i, (p1,...,pv), A)

nd satisfies the following conditions.
1) For every o € {1,...,v} such that byeg, in non-exposable or face(byes,) < i, we
have g, = p,.

2) For every o € {1,...,v} and every w € {1,...,i}, we have either g, — p, = 0
or the x,,-degree of q, — p, 15 less than or equal to the mazimal x,,-degree of the
polynomials in {p, | u € {1,...,v},py # 0,byeg, non-extreme, face(byeg,) > i}.

8) For every o € {1,...,v} such that byeg, is non-extreme and face(byeg,) > i, we
have g, = 0.

4) We have (p1,...,pv) + (A) = (q1,.-.,q,) + (A) in P"/(A).
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3 Syzygies of Border Bases

Proof. First we prove that every step of the procedure can actually be executed, that
the procedure terminates after finitely many steps, and that the result does not depend
on the choice of the term ¢ in line 9. The existence of the natural numbers s,t € N
as in line 3 follows from Lemma 3.1.6. According to Definition 3.1.5 and Lemma 3.1.9,
every element of {lcb(bjes;)} U Col(bjes,) is contained in 9O. Thus there exist indices
UQy - -+, Us+t+1 € {1,...,v} as required in line 5 during the for-loop starting in line 4.
Now it only remains to prove termination of the procedure. Since there are only finitely
many border terms, the foreach-loop starting in line 2 stops after finitely many steps.
Thus it remains to show that the while-loop in line 8 is finite. Let £ € {1,...,s+t+ 1}
be chosen as in line 7. According to Definition 3.1.5, byeg,, € Col(bjes;) yields that
1 < face(bweguz) = face(bjep;) < k. Let Ayyu,, = (f1,..., fu) be with f1,...,f, € P.
Then Remark 3.2.1 yields f,, = 1. Let ¢ € Supp(py,) be as in line 9 and let a € K be
the coeflicient of ¢’ in p,, as in line 10. Since f,, = 1, the construction of @ and ¢’ implies
that the term ¢’ is not contained in the support of p,, —at’ f,, = py, —at’ in line 11. Thus
the number of terms in the support of p,, decreases exactly by one during each iteration
of the while-loop and hence the while-loop is finite. In particular, as f,, = 1, we see that
exactly the term ¢ cancels in p,, — at’f,, = py, — at’ in line 11. Since the while-loop
starting in line 8 iterates over all terms contained in the support of p,,, it follows that
different choices of ¢ in line 9 do not interfere with one another. Hence the final result
of the while-loop, and hence the whole algorithm, is independent of the order in which
the terms in the support of p,, are handled.

Next we consider the for-loop starting in line 7. Let k € {i + 1,...,n} be chosen as in
line 1. Moreover, let j € {1,...,v} be such that the border term bjes, is non-extreme,
such that the column Col(bjep;) is in the zy-direction, and such that i < face(bjep;) as
in line 2. Let s,t € N be such that Col(bjes,) = {z; °bj,...,z}b;}-ep, as in line 3 and let
Ug, ..., Uste1 € {1,..., v} be such that byeg,, = xi‘s_lbjegj forall¢ € {0,...,s+t+1}
as in line 5 during the for-loop starting in line 4.

We now show by downward induction on the loop variable ¢ € {s+¢+1,...,1} of the for-
loop starting in line 7 that the following two properties are satisfied: At the beginning
of each iteration of this for-loop that changes the value of (p1,...,p,) in line 11, the
assumptions of Proposition 3.2.5 are satisfied. And at the end of each iteration of this
for-loop, we have py,,,., = Pu,ye =+ = Py, = 0.

For the induction start, we let ¢ = s +t + 1. If we have p,, = 0 here, the while-loop
starting in line 8 has no effect. Suppose that p,, # 0. Collecting all monomials at
occurring during the reduction steps in line 11, we see that their sum is exactly p,,.
Thus considering all reductions in line 11 during the while-loop simultaneously, we see
that the assumptions of Proposition 3.2.5 are satisfied at the beginning of this iteration
of the for-loop starting in line 7. In particular, claim 4) of Proposition 3.2.5 yields
Pugier1 = Pu, = 0 after the first iteration of the for-loop starting in line 7.

Now let £ € {s+t+1,...,1} and assume that py, .1 = Puysy = *+ = Pups, = 0.
If we have p,, = 0 here, the while-loop starting in line 8 has no effect. Thus suppose
that p,, # 0. Considering all reductions of the inner for-loop simultaneously as in the
induction start, we see that the assumptions of Proposition 3.2.5 are satisfied at the
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3.2 Degree Lowering and Column Clearing

beginning of this iteration of the for-loop. Moreover, claim 4) of Proposition 3.2.5 yields
Pugiiyr = Pusye = 7" = Puy = 0.

Next we show that the four claims hold. As face(bjes;) > i by line 2, Lemma 3.1.9
yields face(lcb(bjep,;)) > i. Thus the claims 1) and 2) follow immediately from the
claims 1) and 2) of Proposition 3.2.5. Now we show claim 3) by considering the changes
of (p1,...,pv) during the consecutive iterations of the outer for loop starting in line 1.
We begin with the first iteration, i.e. with k = i+ 1. Let j € {1,...,v} be chosen as
in line 2, i.e. such that the border term bjes; is non-extreme, such that Col(bjes;) is
in the z;41-direction, and such that face(bjes;) = i. As we have already proven in the
induction above, we have p, = 0 for all ¢ € {1,...,v} such that byeg, € Col(bjes,)
at the end of the inner for-loop starting in line 7. Moreover, we have also shown that
Proposition 3.2.5 always holds for the reductions in line 11 during the while-loop start-
ing in line 8. Thus claim 3) of Proposition 3.2.5 implies that for all p € {1,...,v} such
that b,eg, is non-extreme, such that Col(bseg,) # Col(bjes; ), and such that Col(bsegs,)
is in the x,-direction with w € {2,...,7 + 1}, the component p, remains unchanged. In
other words, we have cleared the components of (p1,...,p,) corresponding to the border
terms in Col(bjeﬁj), whereas all the components corresponding to non-extreme border
terms which are contained in a column different from Col(bjes;) and whose column is in
the x,,-direction for some w € {2,...,7+ 1} remain unchanged. In particular, we see that
two different iterations of the foreach-loop starting in line 2 do not affect one another.
Thus induction on the loop variable of the foreach-loop starting in line 2 yields that for
every o € {1,...,v} such that b,eg, is non-extreme, such that face(bgegg) > 4, and such
that Col(byes,) is in the z;41-direction, we have p, = 0 at the end of the execution of
the outer for-loop with £k =14 + 1.

Now we consider the next iteration of the outer for-loop starting in line 1, i.e. the iter-
ation with k = i + 2. As before, this iteration clears all the components of (p1,...,p,)
corresponding to non-extreme border terms which are contained in faces greater than
or equal to 7 and whose columns are in the x;;9o-direction, whereas all the components
corresponding to non-extreme border terms which are contained in a column that is in
the z,-direction for some w € {2,...,i + 1} remain unchanged. In particular, all the
components corresponding to non-extreme border terms which are contained in a column
that is in the x;41-direction, i.e. all the components that have been cleared during the
previous iteration, remain unchanged. After the second iteration of the outer for-loop
starting in line 1, we have then cleared all the components of (p1,...,p,) corresponding
to non-extreme border terms which are on faces greater than or equal to ¢ and whose
columns are in the z,-direction where w € {i + 1,7 + 2}.

Continuing in this way, induction on k shows that at the end of the algorithm, we have
cleared all the components of (p1,...,p,) corresponding to non-extreme border terms
which are on faces greater than or equal to ¢ and whose columns are in the x,,-direction
for some w € {i+1,i+2,...,n}. In other words, claim 3) has been proven. Furthermore,
claim 4) follows immediately as the vector (pi,...,p,) is only changed in line 11 during
the whole algorithm. O
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3 Syzygies of Border Bases

Example 3.2.7. Consider the situation of Example 3.2.4, again. Recall that we had
P = Q[z,y, 2], that {e1, ez, e3} denoted the canonical P-module basis of P3, and that we
could illustrate the order ideal O = {1, z,y, 22,52, 23, 4%} - e1 U {1,y} - e3 in T3(eq, €9, e3)
and its border 00 = {bieg,, ..., baoes,, } with the following figures.

z =< terms in O
b
o’ 01 B non-exposable border terms
b1o ® cxtreme border terms
b11
b5 A non-extreme border terms
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Moreover, G = {g1,...,920} € P? denoted the O-border basis of (G), {e1,...,c20}
denoted the canonical P-module basis of P?°, and A C Syzp(gi,...,g20) denoted the
set of all neighbor liftings with respect to O. For all 4,5 € {1,...,20} such that ¢ < j,
(4,7) & {(1,3),(2,4),(3,4),(4,8)}, and such that bies, and bjes, are neighbors with
respect to O the corresponding neighbor liftings with respect to O were of the form
Aij = 045, and we saw that A1 3 = 013 + €16, Aoy = 024 — Y€16, N34 = 034 — YE16,
Mg = 048 + €19. We now consider the Column Clearing Algorithm 5 applied to i = 1,
v=(p1,...,p20) = (—2* +9y>)e1 + 269 — £14 — 2316 + ye19, and A in detail.

In line 1, we start with k = ¢ +1 = 2. Since bjeg, = weq, bgeg, = e, bises,s = 2€3,
and bigeg,, = y?es are all extreme border terms by Definition 3.1.1, we only have to
consider the non-extreme border term byseg,, = :vygel € F1(0O) during the foreach-loop
starting in line 2, i.e. the case j = 14. According to Definition 3.1.5 and Lemma 3.1.6,
COl(b146514) = {y_2b147y_1b147b14} " €81y = {:ﬂy,ny,:L‘y3} te1 = {b4eﬂ4>b86587b146,314}'
Moreover, lcb(biseg,,) = ze1 = bieg, by Definition 3.1.8. Thus we have s =2 and t =0
after line 3 and we have ug = 1, u; = 4, ug = 8, and us = 14 after the for-loop starting in
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line 4. During the first iteration of the for-loop starting in line 7, we have ¢ = s+t+1 = 3.

The while-loop starting in line 8 is executed as p,, = pu; = p14 = —1 # 0. In line 9, we
hence have to choose the term ¢ = 1 € Supp(p14) and, therefore, get a = —1 in line 10.
Since Ayyu, = A48 = 0148 = €14 — Yeg, we update the value of (p1,...,pao) to

(p1,- -+ p20) + Mag = (—2* +y°)e1 + 269 — e14 — 23e16 + ye10 + M1ag

= (—2* + y%)e1 — yeg + xeg — 23e16 + ye10.

Since we have p14 = 0, now the while-loop terminates and the next iteration of the for-
loop starting in line 7 with ¢ = 2 begins. The while-loop starting in line 8 is executed
as Py, = Pup, = pg = —y # 0. Inline 9, we hence have to choose the term ¢t = y € Supp(ps)
and, therefore, get @ = —1 in line 10. Since Ay, 4, = A4 = 084 — €19 = €8 — Y€1 — €19,
we update the value of (p1,...,p20) to

(P15 P20) + Y- Asa = (—2" +y°)e1 — yes + weg — 2°e16 + ye19 + ¥ - Asa
= (=2 + y2)e1 — yPey + 269 — 2335
Since we have pg = 0, now the while-loop terminates and the next iteration of the for-
loop starting in line 7 with £ = 1 begins. In the next iteration, we subtract the vector
y2 . )\471 where )\471 = 04,1 = €4 — Y€1 from (pl, ... ,pgo) and get

(P1s---sp20) — ¥ - M1 = (=2t +yP)er — yPes + weg — 2Pe16 + 9 A
= —2451 + xeg — 2’3516.

Now the for-loop starting in line 7 terminates. Moreover, as all components of the vector
(p1,...,p20) = —z*e1 + weg — 2316 belonging to non-extreme border terms are zero, the
foreach-loop starting in line 2 also terminates.

In the next iteration of the for-loop starting in line 1, nothing happens as there is no
component of (p1,...,pe) belonging to non-extreme border terms that is not equal to
zero and thus the foreach-loop starting in line 2 has no effect. Altogether, the algorithm
terminates and returns the vector (pi,...,p20) = —zie1 + xe9 — 23216 in line 16.

3.3 The Reduction Algorithm

In this Section, we combine the Degree Lowering and the Column Clearing Algorithms
in a way which is similar to the method in [Hui06, Section 6.6]. However, we turn the
method indicated by the proof of [Hui06, Lemma 33| into an explicit algorithm. This
algorithm will be suitable to serve as a basis for the construction of certain term orderings
for which the set of neighbor liftings A with respect to O form a Groébner basis of the
syzygy module of the O-border basis G. For the ideal setting, the corresponding result
was proven in [KK14, Section 5]. We generalize this proposition to the module setting.

As in the previous section, we let {e1,...,£,} denote the canonical P-module basis
of P” and we assume that G is the O-border basis of (G). For all 7,5 € {1,...,v} such
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3 Syzygies of Border Bases

that b;eg, and bjeg, are neighbors with respect to O, we let 0;; denote the corresponding
neighbor syzygy with respect to O and we let \;; denote the corresponding neighbor lift-
ing with respect to 0. Moreover, we denote the set of all neighbor liftings with respect
to O by A.

As in [Hui06, Section 6.6] and [KK14, Defn. 5.1|, we measure the progress of the
reduction algorithm using the following notion.

Definition 3.3.1. Let i € {1,...,n}. We say that a vector (pi1,...,p,) € P” is
i-reduced if the following conditions are satisfied for every j € {1,...,v}.

a) If the border term bjeg, is non-extreme, we require that p; = 0.

b) If the border term bjep; is extreme, we let £ = min{i, face(b;jes;)}. Then we require
that pj € K[l’g, RN :En]

The following lemma provides an extended explicit version of some arguments con-
tained in the proof of [Hui06, Lemma 33]. As before, an ideal version of it can be found
in [KK14, Lemma 5.2].

Lemma 3.3.2. Leti € {1,...,n—1} and let (p1,...,p,) € P¥ be i-reduced. We assume
that d = max{deg,, (p;) | j € {1,...,v},p; # 0,bjep, is exposable, face(bjep;) > i} exists
and that this number is strictly positive. We let

(q1,-..,q) = ClearColumns(i, LowerDegree(i, (p1,...,pv),A), A)

be the result of first applying Algorithm 4 and then Algorithm & to the input data 1,
(p1,---,0v), and A. Then the following conditions are satisfied.

1) The vector (q1,--.,qy) is i-reduced.

2) For every j € {1,...,v} such that bjep, is exposable and such that face(bjep;) > 1,
we have q¢; = 0 or deg, (¢;) <d— 1.

3) We have (p1,...,pv) +(A) = (q1,...,q,) + (A) in PY/(A).

Proof. To ease the notation, we let

(q,-..,q,) = LowerDegree(i, (p1,...,py), A)
be the result of applying Algorithm 4 to the input data i, (p1,...,p,), and A.

We start by proving that (qi,...,q,) is i-reduced. According to Definition 3.3.1, we
have to distinguish two cases.
First suppose that there is a j € {1,...,v} such that bjes; is non-extreme. Since the
vector (pi,...,py) is i-reduced, we have p; = 0 by Definition 3.3.1. If face(bjes,) < i, the
claims 1) of the Propositions 3.2.3 and 3.2.6 yield ¢; = q} =p; = 0. If face(bjes;) > i,
claim 3) of Proposition 3.2.6 yields ¢; = 0.
Second we let j € {1,...,v} be such that bjeg, € JO is extreme. Let k = face(bjep;)
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3.3 The Reduction Algorithm

and ¢ = min{¢, k}. Since (p1,...,py) is i-reduced, we have p; € Klxy,...,xy,] by Def-
inition 3.3.1. Moreover, for every u € {1,...,v} such that b,eg, is exposable and
face(byeg,) > 1, Definition 3.3.1 yields p, € Kl;, ..., x| C K[zy,...,2,). Thus claim 2)
of Proposition 3.2.3 implies q; € Klzg,...,xy]. If kK < i, claim 1) of Proposition 3.2.6
yields ¢; = q;- € Klxy,...,z,]. Thus we may suppose that k£ > ¢. Then we have ¢ = i.
Suppose there exists a w € {1,...,v} such that b,eg, is non-extreme and face(b,eg,) > i.
Then, similar to above, claim 2) of Proposition 3.2.3 together with Definition 3.3.1 yield
q, € K[zi,...,x,] as (p1,...,py) is i-reduced. In particular, for every w € {1,...,i—1},
we have g, = 0 or the z,-degree of ¢, equals 0. Since we have ¢; € K[z;,..., 2],
it follows now that ¢; — qé- € Klzi,...,x,) by claim 2) of Proposition 3.2.6 and thus
¢; € Klz;,...,xy,]. Altogether, the conditions of Definition 3.3.1 are satisfied, i.e. we
have proved that (q1,...,q,) is i-reduced.

Next we show that claim 2) holds. Let j € {1,...,v} be such that bjeg, is exposable
and face(bjes;) > i. If bjes; is non-extreme, we have ¢; = 0 by claim 3) of Propo-
sition 3.2.6. Thus we may suppose that bjes, is extreme by Definition 3.1.1. Then
we have ¢; = 0 or deg,,(¢j) < d —1 by claim 4) of Proposition 3.2.3. Addition-
ally, suppose that there exists a u € {1,...,v} such that b,eg, is non-extreme and
such that face(byeg,) > 4. Since (pi,...,p,) is i-reduced, we have p, = 0. Hence we
have ¢, = 0 or the z;-degree of ¢/, is less than or equal to d — 1 according to claim 3) of
Proposition 3.2.3. Altogether, claim 2) of Proposition 3.2.6 now implies that either ¢; = 0
or the z;-degree of g; is less than or equal to d — 1. Thus claim 2) follows.

Claim 3) is a direct consequence of claim 5) of Proposition 3.2.3 and claim 4) of
Proposition 3.2.6. O

Now we are ready to present the main result of this section: an explicit Reduction
Algorithm whose result is a vector which is equivalent to the given vector modulo the
submodule (A) C P¥ generated by the set of neighbor liftings with respect to O and which
is n-reduced. This proposition generalizes [KK14, Prop. 5.3] to the module setting. The
corresponding idea was originally presented in the proof of [Hui06, Lemma 33|.

Algorithm 6: Reduce((p1,...,py),A)

Input:

(p17"'7pu) € pP”
A={Njli,je{l,...,v}, bieg, and bjeg, are neigbhors with respect to O}

1 (p1,...,py) = ClearColumns(1, (p1,...,pv), )

2 fori:=1ton—1do

3 while there exist a j € {1,...,v} and a t € Supp(p;) such that bjes; is
exposable, such that face(bjes;) > 4, and such that deg,,(t) > 0 do

4 ‘ (p1,...,pv) == ClearColumns(i, LowerDegree(i, (p1,...,pu), A), A)
5 end

6 end

7 return (p1,...,p,)
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3 Syzygies of Border Bases

Theorem 3.3.3. (The Reduction Algorithm)
Let (p1,...,pv) € PY. Then Algorithm 6 is actually an algorithm and its result

(q1,-..,q,) = Reduce((p1,...,pv), A)
applied to the input data (p1,...,py) and A satisfies the following conditions.

1) The vector (q1,-..,q,) is n-reduced.
2) We have (p1,...,pv) + (A) = (q1,.-.,q) + (A) in PV/(A).

Proof. As the vector (pi,...,p,) in Algorithm 6 is only changed in the lines 1 and 4,
claim 2) follows by induction from claim 4) of Proposition 3.2.6 and from claim 3) of
Lemma 3.3.2.

Thus it remains to prove claim 1). We let

(pgo), ..,pY) := ClearColumns(1, (p1,...,pv), A),

i.e. we let (pgo), . ,pl(,o)) denote the value of (p1,...,py) before the first iteration of the

for-loop starting in line 2. Moreover, for all i € {1,...,n—1}, we let (pgi), e ,p(yi)) e pPv
be the value of (pi,...,p,) during Algorithm 6 applied to the input data (pi,...,p,)
and A after the i-th iteration of the for-loop which starts in line 2. We prove by induction
oni€{0,...,n— 1} that (pgi), . ,pl(,i)) is (i + 1)-reduced.

In order to prove the induction start ¢ = 0, we note that claim 3) of Proposition 3.2.6
implies that p(.o) = 0 for every index j € {1,...,v} such that bjes, is non-extreme.

j
According to Definition 3.3.1, this means that (pgo), ol pl(,o)) is 1-reduced.

For the induction step, let now ¢ € {1,...,n—1}. Then the induction hypothesis says that

(pgi_l), . ,pl(,i_l)) is i-reduced. In other words, for every j € {1,...,v} such that bjeg, is

(i-1)
J
and such that ¢ = min{i, face(bjep;)}, we have pg-l_l) € Klxy,...,xy,] by Definition 3.3.1.

non-extreme, we have p =0, and for every j € {1,...,v} such that bjep, is extreme

If the while-loop in line 3 is not executed, we have pg-i_l) € K[zit1,...,xy,) for every
J € {l,...,v} such that bjes; is extreme and such that face(bjes;) > i. Hence we see

that the vector (p(lz), .. ,p,(f)) = (p(lz_l), .. ,pl(,l_l)) is (i + 1)-reduced by Definition 3.3.1
in this case. If the while-loop in line 3 is executed, Lemma 3.3.2 shows that after each
iteration of the while-loop starting in line 3, the resulting vector continues to be i-reduced
and that for every j € {1,...,v} such that p; # 0, such that bjes; is exposable, and
such that face(bjes,) > 4, the maximal z;-degree of the component p; has decreased at
least by 1. In particular, it follows that the while-loop, and thus the whole procedure, is
finite. After finitely many iterations of the while-loop in line 3, for every j € {1,...,v}

such that the border term bjep; is exposable and such that face(bjeg,) > 4, we eventually
(1) (4)

have p; = 0 or deg,.(p;) = 0. Hence the resulting vector (p;’,...,py") is (i +1)-reduced.
Altogether, we see that (q1,...,q) = (pgnfl), e ,pl(,nfl)) is n-reduced and claim 1) is
proven. O
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3.3 The Reduction Algorithm

Example 3.3.4. Consider the situation of Example 3.2.4 again. Recall that we had
P = Q[z,y, 2], that {e1, ez, e3} denoted the canonical P-module basis of P3, and that we
could illustrate the order ideal O = {1, z,y, 22,52, 23, 4%} - e1 U {1,y} - e3 in T3(eq, €9, e3)
and its border 00 = {bieg,, ..., baeg,, } with the following figures.

z =< terms in O
b
o’ 01 B non-exposable border terms
b1o ® cxtreme border terms
b11
b5 A non-extreme border terms
be b b, b
(o] o o [ ] lower column bounds
b b
3 o3 y
bsl A & &>
by bg  bus
x
z 0,
b b
z O, 16 o 18
b
bis ) @ 19 )
. bir o (a0
bao
T

Moreover, G = {g1,...,g20} C P? denoted the O-border basis of (G), we denoted the
canonical P-module basis of P?° by {1,...,e20}, and A C Syzp(g1, ..., goo) denoted the
set of all neighbor liftings with respect to O. For all 4,5 € {1,...,20} such that b;eg,
and bjes, are neighbors with respect to /, let o;; denote the corresponding neighbor syzygy
with respect to / as in Definition 2.4.21 and let \;; denote the corresponding neighbor
lifting with respect to / as in Definition 2.4.24. For all indices ,7 € {1,...,20} such
that i < j, such that (i,7) ¢ {(1,3),(2,4),(3,4),(4,8)}, and such that bes, and bjep,
are neighbors with respect to O, we had \;; = 0;; and we saw that A\ 3 = 013 + €16,
A24 = 024 — YE16, A3,4 = 034 — YE16, A\u,8 = 048 + £19. We now consider the Reduction
Algorithm 6 applied to v = (p1, ..., p20) = (—2* +y3)e1 + w9 — €14 — 23216 +ye19 and A
in detail.

In line 1, we have to apply the Column Clearing Algorithm 5 to the input data 1, v,
and A. We have already seen in Example 3.2.7 that (p1,...,p20) = —2c1 +xe9 — 23¢16 is
the result of the algorithm. As bgeg, is exposable with face(bgeg,) = 3 > 1 according to
Definition 3.1.1 and as t € Supp(py) has z-degree 1 > 0, the while-loop starting in line 3
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3 Syzygies of Border Bases

is executed. First we have to apply the Degree Lowering Proposition 3.2.3 to the input
data 1, (p1,...,p20), and A. Again, we have already computed in Example 3.2.4 that
the result is (q1,...,q20) = —z%e1 + 2611 — 23e16. Second we have to apply the Column
Clearing Algorithm 5 to the input data 1, (¢1,...,q20), and A. Similar to the situation
in Example 3.2.7, we see that we have to clear the component g1 = 2z as biieg,, = xz3eq
is non-extreme by Definition 3.1.1. Summing up the corresponding reduction steps in
line 11 of Algorithm 5, we first update (¢1,. .., q20) to the vector

4 3 4 2 3
(q1s---5920) — 2 M16=—2¢€1+ze11 — % €16 — z(€11 — 28¢) = —2"€1 + 276 — 216,
then we update it to
2 4 2 3 2 4 3 3
(q1,---,q20) — 27 - Xe3 = —2"€1 + 27e6 — 2°c16 — 27 (€6 — 263) = —2"€1 + 2”3 — 2°€1g,

and finally update (g1, ..., q20) to the vector

(ql, ey QQo) — Z3 . )\3,1 = —Z4€1 + Z353 — 23616 — 23 . (63 — Z&1 — 816) =0.
In particular, the while-loop starting in line 3 terminates and we have (p1,...,p2) =0
after it. Moreover, this while is not executed anymore, as (pi,...,p20) = 0 and the
algorithm returns (pi,...,p20) = 0 in line 7.

Note that this result is not a coincident. The vector v is a syzygy of (g1,...,920).
Thus the result of the Reduction Algorithm 6 applied to v and A must be zero as we will
prove in Theorem 3.3.7.

The remaining part of this section is devoted to give an alternative proof of the charac-
terization of border bases via liftings of border syzygies in Theorem 2.4.26 that does not
use commuting matrices at all. Therefore, we have to generalize [Hui06, Lemma 26| to
the module setting. But first we prove the following auxiliary lemma that is a generalized
version [Hui06, Lemma 25].

Lemma 3.3.5. Let j € {1,...,v} be such that the border term bjes; is extreme and
let k = face(bjep,). Let y1,...,v € N be such that b; = a'---xlk, let Oy, ..., 0, €N,

and let t = z]" - xzk_*ll:zi’“ e xf{‘ € T". Moreover, assume that either teg, € O, or that
teg; € 00 and x¢-exposable for some { € {k+1,...,n}. Then d < .

Proof. For a contradiction, assume that oy > vx. If teg; € O, we see that
(a:i’“_’y’“xi'f:f i )bjes, = teg, € O.
If teg; € OO and zp-exposable for some ¢ € {k+1,...,n}, we see that ; > 1 and

Sk =k, Ok+1 001, 8,—1, 0et1 Sn\7, ot
(zy P xSy w a)bjeg, = Soep, €O

according to Definition 3.1.1. As O is an order ideal and as bjes, € 0O, both cases
contradict the Definitions 2.1.6 and 2.1.7. O
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3.3 The Reduction Algorithm
The next lemma encapsulates some arguments used in the induction during the proof

of [Hui06, Lemma 26| and generalizes them to the module setting.

Lemma 3.3.6. Let (p1,...,p,) € P¥ be n-reduced and let k € {1,...,n} be such that
for all indices j € {1,...,v}, we have p; = 0, or bjep, is extreme and face(bjes,) > k.
Moreover, we denote J, = {j € {1,...,v} | pj # 0,bjes, € Fr(O)}, assume that
Ji # 0, and let j € Jy, be such that deg,, (pj) > deg,, (p;/) for every index j' € Jy. Write
pj = asxi+- - Farrptag € K[wpqq,. .., xn)[xr] withs €N, ag, ... a5 € K[Tpq1,..., 20,
and ag # 0. Let t € Supp(as). Then the following conditions hold.

1) We have %\J/‘zbjegj € Supp(p;bjes;)-

2) We have tszbjegj ¢ Supp(pjbjep,,) for all i e e\ {j}.

3) We have ?xzbjegj ¢ Supp(pj (g5 — byeg,)) for all j € Jy.
4) We have fxibjegj ¢ Supp(pjrg;r) for all j € {1,..., v} \ Ji.

.{n other words, the term fxibjegj occurs in the sum p1g1+- - -+puLg, exactly once, namely
in pjbjeg; .

Proof. As bjeg, € Fi(0) is extreme, we can write b; = x|' ---2)* with y1,...,7 € N
according to Definition 3.1.1. By construction, we have s = deg,, (p;) > deg, (p;) for
all j/ € Jg. Moreover, since (pi,...,py) is n-reduced, we have deg,,(pj) = 0 for all

¢e{l,...,k—1} and j* € Ji by Definition 3.3.1. We will use these facts during this
proof without mention.

Since 1) follows immediately from the definitions of j, as, and t, we start with the
proof of claim 2). If J; \ {j} = 0 or if B # B; for all j' € Ji, \ {j}, claim 2) follows
trivially. Thus assume that there exists a j' € Ji \ {j} with 8 = ;. As byreg, € Fi(O)
is extreme, we can write by = xfl e xi’c with d1,...,dr € N by Definition 3.1.1. Assume
that v, = 6y for every £ € {1,...,k —1}. Then b; # b implies v, # 0. If v > 0p, we
have :Ezkﬂ;k*lbj/eﬁj, = i—;eﬁj ¢ O by the Definitions 2.1.6 and 2.1.7. If v, < g, we have

azi’“_%_lbjegj = Z;J—;egj, ¢ O by the Definitions 2.1.6 and 2.1.7. So both cases yield a
contradiction to bjeg;, bjes,, € Fi(O) and Definition 3.1.1 and we see that there exists
an ¢ € {1,...,k — 1} such that ~, # d,. For all t' € Supp(p;/), we hence get

degzz (t/bj’) = degxg (t,) + degmg(bj')
=0+d
F0+0+y
= deg,, () + deg,, («}) + deg,, (b;)
= deg,, (fx}b)),

ie. txjbjes; & Supp(pybyeg,).
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Next we prove 3). Let ¢ € {1,...,u}, d1,...,0, € N be such that ¢, = :c(flw-arfln,
J' € Ji, and t' € Supp(pj). If v, # &, for some ¢ € {1,...,k — 1}, we get

deg,, (t't;) = deg,, (t') + deg,, (t;)
=0+d
Z0+04+
= deg,, (f) + deg,, («}) + deg,, (b))
= deg,, (tz;b;).

If vg =dp for all £ € {1,...,k — 1}, Lemma 3.3.5 yields d; < vy, and hence we get

deg,, (t't;) = deg,, (t') + deg,, (t:)
< s+
<0+ s+
= deg,, (£) + deg,, (x}) + deg,, (b))
= deg,, (tz;b;).

In both cases we get tszbjegj ¢ Supp(pjitieqa,;). Since Supp(gj — bj/egj,) C O by Defini-
tion 2.1.14, it follows %izbjegj ¢ Supp(p;(g;: — bjrep,,)) and claim 3) follows.

Finally, we prove 4). If {1,...,v}\ Jx = (), nothing needs to be shown. Thus suppose
that there is a j' € {1,...,v} \ Ji. Since claim 4) holds trivially if p;; = 0, we suppose
that pjs # 0. The border term bj/egj, € 00 is extreme by Definition 3.3.1 as (p1,...,pv)
is n-reduced. Moreover, we have face(bjreg,,) > k according to the definition of k and Jj.
In particular, as (p1,...,py) is n-reduced, we see that deg,,(p;) = 0 forall £ € {1,... k}
by Definition 3.3.1. Let t' € Supp(p;), t € Supp(g;/), and d1,...,0, € N be such that
t=alt o adn If 4y # 6, for some £ € {1,...,k—1}, we get

deg,, (t't) = deg,, (t') + deg,, (t)
=0+4
#0040+
= deg,, (f) + deg,, («}) + deg,, (b;)
= deg,, (tzibj).
If yp=0dp forall £ € {1,...,k — 1}, Lemma 3.3.5 yields d; < -y and hence we get

deg,, (t't) = deg,, (') + deg,, (t)

=0+ 0k
<0+ s+
= deg,,, (£) + deg,, (2}) + deg,, (b;)
 deg, (Eaity).
In both cases we see that fxibjeﬁj ¢ Supp(p;rg;) and claim 4) follows. O
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Using these two lemmata, we can now prove a generalization of [Hui06, Lemma 26|.

Theorem 3.3.7. Let (p1,...,p,) € P¥ be n-reduced with p1g1 + -+ + p,gy € (O)k.
Then (p1,...,pv) = 0.

Proof. Since (p1,...,py) is n-reduced, we have p; = 0 for every j € {1,...,v} such
that bjes, € 0O is non-extreme by Definition 3.3.1. Assume that there exists an index
J €{1,...,v} such that bjes; is non-exposable and such that p; # 0. Let ¢t € Supp(p;).
As bjep; is non-exposable, it follows e, = bjeg, € JO by Definition 3.1.1. In particular,
it follows from the Definitions 2.1.6 and 2.1.7 that §; # «; for every i € {1,...,u} and
B; # Bj for every j' € {1,...,v}\ {j}. Thus the term tbjes. € Supp(p;g;) cannot cancel
in the sum p1g1 +- - -+ pugy and we get thjeg, € Supp(p1g1+---+pugy) € O. Therefore,
by Definition 2.1.6, we get bjeg, € O and this clearly contradicts Definition 2.1.7. Thus
we see that p; = 0 for all j € {1,...,v} such that bjes; is non-exposable. Now we prove
by induction on k € {1,...,n} that p; = 0 for every j € {1,...,v} with the properties
that bjes, € JO is extreme and face(bjes,) < k.

For the induction start k = 1, let J1 = {j € {1,...,v} [ p; # 0,bjes, € F1(O)}. If we
show that J; = (), the induction start is proven. For a contradiction, assume that J; # (.
Then there exists an index j € J; such that deg,, (p;) > deg,, (p;/) for all indices j" € Ji.
We write the polynomial p; = asxf + -+ + a121 + ap € Klxg, ..., xy][z1] with s € N,
ag,...,as € Kz, ... ,z,], and as # 0. Let te Supp(as). As O is an order ideal and
as bjeg, € 00, it follows fx{bjegj ¢ O from the Definitions 2.1.6 and 2.1.7. Moreover,
Lemma 3.3.6 shows that the term fx‘fbje,gj occurs in the sum p1g1 + - - + p g, exactly
once, namely in p;bjes.. Since p1g1 + -+ +pugy € (O)k, we hence get the contradiction
tAx{bje/gj € O. Thus it follows J; = () and the induction start is proven. In particular, if
n = 1, the claim follows from the induction start.

For the induction step, assume that there is a k € {2,...,n} and that the claim holds
for k — 1. Recall that p; = 0 for all j € {1,...,v} such that bjes. is non-exposable or
non-extreme. Let Jp = {j € {1,...,v} | pj # 0,bjes, € Fr(O)}. As in the induction
start, it suffices to prove that J, = (). For a contradiction, assume that J; # (). Then
there exists an index j € Jy such that deg, (p;) > deg,, (py) for all j' € Jp. As
bjeg, € Fi(O) is extreme and as (p1,...,py,) is n-reduced, we have p; € K[y, ..., 2]
by Definition 3.3.1. We write p; = asxf + -+ + 12 + ag € K[xpq1,...,Ty)[zg] with
s €N, ag,...,as € K[xgi1,...,2y], and as # 0. Let te Supp(as). As O is an order
ideal and as bjes, € 00, it follows %\xzbjegj ¢ O according to the Definitions 2.1.6
and 2.1.7. Moreover, the induction hypothesis yields that p;; = 0 for all j' € {1,...,v}
such that bjeg, € OO is extreme and such that face(bjeg,) < k—1. Thus Lemma 3.3.6

implies that fxzbjeﬁj occurs in the sum p1g1 +- - - +py gy exactly once, namely in p;bjes; .
Since p1g1 + -+ + Py € (O)k, we get the contradiction tAbejegj € 0. It follows
that J, = () and the induction step is proven. ]

Now we are able to prove the non-trivial implication of [Hui06, Thm. 22|, namely that

the set of neighbor liftings is a system of generators of the (first) syzygy module of a
border basis, in the module setting. We improve upon this result in the next section.
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The following formulation generalizes [KK14, Coro. 5.4].
Corollary 3.3.8. We have (A) = Syzp(g1,.-.,9.).

Proof. As the neighbour liftings with respect to O in A are all syzygies of (g1, ..., gy) ac-
cording to Definition 2.4.24, we have (A) C Syzp(gi,...,g,). For the converse inclusion,

we let (p1,...,pv) € Syzp(g1,...,9.). Let

(q1,...,q,) = Reduce((p1,...,pv), A)

be the result of Algorithm 6 applied to the input data (p1,...,p,) and A. Then The-
orem 3.3.3 yields that (p1,...,p,) — (q¢1,--.,q,) € (A) C Syzp(g1,-..,9,) and thus
(q1,.-.,qv) € Syzp(g1,--.,9,). In particluar, it follows that ¢1g1+---+¢qug, = 0 € (O) k.
As (q1,--.,q) is n-reduced by Theorem 3.3.3, Theorem 3.3.7 implies (q1,...,¢,) = 0 and
we see that (p1,...,p) € (A). O

We end this section with an alternative proof of the characterization of border bases
via liftings of border syzygies as in Theorem 2.4.26. This proof is remarkable since,
in stark contrast to all previous proofs of this characterization, it does not depend on
the characterization of border bases via commuting matrices in Theorem 2.4.19, but
only needs the characterizations via the special generation property in Theorem 2.4.1
and via rewrite rules in Theorem 2.4.13. Thus this proof might yield a possible way to
characterize border bases in a non-commutative setting, e.g. as defined in [BTBQMO0].

Corollary 3.3.9. (Border Bases and Liftings of Border Syzygies)
The O-border prebasis G is the O-border basis of (G) if and only if the following equivalent
conditions are satisfied.

E1) Every border syzygy with respect to O lifts to a syzygy of (g1,--,9v)-
Es) Every neighbor syzygy with respect to O lifts to a syzygy of (g1,---,9v)-

Proof. First we show that condition F7) is satisfied if G is the O-border basis of (G).
Let (p1,...,pv) be a border syzygy with respect to O and v = p1g1 + -+ + pugy. If
v = 0, we see that (p1,...,py) is a lifting of (p1,...,p,) by Definition 2.4.24. Thus
suppose that v # 0. Since v € (G) \ {0}, condition A;) of Theorem 2.4.1 yields a
representation v = pig1 + -+ + pugy = @191 + --- + qvg, such that ¢q1,...,q, € P
and such that ¢;j = 0 or deg(g;) < indp(v) — 1 for every index j € {1,...,v}. Let
(Pr,...,P) = (p1,---sov) — (@15---,qy). Then (Pi,...,P,) is a syzygy of (g1,...,9v)
by construction. Moreover, we have deg(P; — p;) = deg(—g¢;) < indp(v) — 1 for all
je{l,...,v} with P —p; #0, ie. (p1,...,py) lifts to (P1,..., P,) by Definition 2.4.24.

Since Fj) logically implies Es) by Definition 2.4.21, it remains to prove that G is the
O-border basis of (G) if Fs) holds. By E»), every neighbor syzygy with respect to O lifts
to a neighbor lifting with respect to 0. Let A C P" be the set of all neighbor liftings with
respect to O and let p1,...,p, € P be such that v = p1g1+---+pug, € (G) is irreducible

with respect to 9, Thenv ¢ (O)k by Remark 2.4.11. By Theorem 3.3.3, there exists
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3.4 Grobner Bases for the Syzygy Modules of Border Bases

an n-reduced vector (qi,...,q,) € PY such that (p1,...,p,) — (q1,...,q,) € (A). As
A C Syzp(g1,--.,9,) by Definition 2.4.24, it follows

v=pig1+ -+ DG
=pigi+-+pg—P1—q)gn— - — P — W)
=q191 ++QVQV

In particular, the n-reduced vector (qi,...,q,) satisfies 191 + -+ + qugp = v € (O).
Hence Theorem 3.3.7 implies (q1,...,q,) = 0 and this yields v = 0. Altogether, we have
proven that condition Cy) of Theorem 2.4.13 is satisfied and thus G is the O-border basis
of (G). O

3.4 Grobner Bases for the Syzygy Modules of Border Bases

In the final section of this chapter, we use the above results in order to prove a version
of Schreyer’s Theorem for border bases of submodules of free modules of finite rank. For
polynomial ideals, Schreyer’s Theorem was already proven in [KK14, Section 6]. We now
generalize the ideas of that paper to the module setting.

Continuing to use the setting of the previous section, we let {e1,...,£,} denote the
canonical P-module basis of P” and, if not mentioned otherwise, we assume that G is the
O-border basis of (G). For all i,j € {1,...,v} such that beg, and bjeg, are neighbors
with respect to O, we let 0;; denote the corresponding neighbor syzygy with respect
to O and \;; denote the corresponding neighbor lifting with respect to O. Moreover, we
denote the set of all neighbor liftings with respect to O by A.

As done for the ideal setting in [KK14, Thm. 6.1], we can give explicit conditions that
a term ordering 7 on T"(eq,...,e,) must satisfy to imply that A is a 7-Grobner basis
of SyZP(gh s agl/)'

Theorem 3.4.1. (Griébner Bases for the Syzygy Modules of Border Bases)
Let T be a module term ordering on the set of terms in P which satisfies the following
conditions for every i € {1,...,n — 1} and every j € {1,...,v}.

1) Ifbjep, is extreme, if face(bjes;) > i, and if k € {1,...,v} is chosen such that breg,
is exposable and face(bges,) > i, then we have xiej >; €.

2) If bjeg, is extreme, if xibjes, ¢ 00, if k = face(bjes;) > i, and if £ € {1,...,v} is
the unique index such that xibjegj = xibeeg,, then we have x5 >; w180,

8) If bjep, is non-extreme, if k € {i +1,...,n} is chosen such that Col(bjes;) is in

the xy-direction, and if ¢ € {1,...,v} is chosen such that bgeg, is exposable and
face(beeg,) > k, then we have € >, 4.
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3 Syzygies of Border Bases

4) If bjeg, is non-extreme, if k € {i+1,...,n} is chosen such that Col(bjeg,) is in the
xg-direction, and if £ € {1,...,v} denotes the unique index with bjeg, = zrbeeg,,
then we have € >, Tyep.

Then the set of all neighbor liftings A with respect to O is a T-Grébner basis of the syzygy
module Syzp(g1,...,9v)-

Proof. First we prove that every execution of line 12 of the LowerDegree Algorithm 4
can be interpreted as a reduction step with respect to A as defined in [KR00, Defn. 2.2.1].
Let i € {1,...,n—1}, (p1,...,pv) € P”, j €{1,...,v}, and d € N\ {0} be as in the
LowerDegree Algorithm 4, i.e. such that bjep; is extreme, such that face(bjegj) > ¢, and
such that the support of p; contains a term that is divisible by a:fl but the support of p;
does not contain a term that is divisible by mi”l. In order to prove that LT (\j,) = ¢
in line 12 of Algorithm 4, we have to distinguish two cases: either z;bjes, € 00 as in
line 3 of Algorithm 4 or z;bjes, ¢ OO as in line 5 of Algorithm 4.

For the first case, assume that x;bjes, € 0O, and let £ € {1,...,v} be the index such
that z;bjeg, = beeg,. We have already shown in the proof of Proposition 3.2.2 that beeg,
is exposable, that face(bseg,) > 4, and that A\jy = x5 — ey — c161 — -+ — ce, With
c1,...,¢, € K where we have ¢ = 0 for every index k € {1,...,v} such that byeg, is
non-exposable or face(byeg,) < i. According to condition 1), we have x;e; >, ¢ for
all k € {1,...,v} such that byeg, is exposable and face(bgeg,) > i. Thus it follows
that LT-(\j¢) = x;¢; in this first case.

For the second case, assume now that z;bjes, ¢ 00. Let k = face(bjes,). Then we
have already shown in the proof of Proposition 3.2.2 that there exists a unique index
¢ e {1,...,v} such that zibjes, = xbeeg,, such that byeg, is exposable, and such that
face(bgeg,) > i. According to condition 2), we have x;e; >, xpge. Moreover, we have
also shown in the proof of Proposition 3.2.2 that \j; = ze; — xpep — c161 — -+ — &0
with ¢1,...,¢, € K, where we have ¢; = 0 for every index k € {1,...,v} such that byeg,
is non-exposable or face(byeg,) < i. According to condition 1), we have x;6; >, &, for
all uw € {1,...,v} such that b,eg, is exposable and face(b,eg,) > i. Thus it follows that
LT-(\j¢) = x;e; in this second case.

Let t € Supp(p;) be such that deg, () = d as in line 10 of Algorithm 4 and let a € K be
the coefficient of ¢ in p; as in line 11 of Algorithm 4. Since the term te; = é -LT7(Aje)
cancels in (p1,...,py) — ax%)\jg, it follows that line 12 of the LowerDegree Algorithm 4
actually is a reduction step with respect to A according to [KR00, Defn. 2.2.1].

Second we prove that every execution of line 11 of the ClearColumns Algorithm 5 can
be interpreted as a reduction step with respect to A as defined in [KR00, Defn. 2.2.1].
Weletie {l,...,n—1}, (p1,...,pv) € P, k€ {i+1,...,n},and j € {1,...,v} be asin
the ClearColumns Algorithm 5, i.e. such that bjes; is non-extreme, such that Col(bjeg;)
is in the zp-direction, and such that i < face(bjelgj). Moreover, let s,t € N be such that
Col(bjes;) = {x},°bj, ..., xbj} -ep,, let £ € {1,... s+t +1}, let up_y,up € {1,...,v} be
such that bw_leﬂué,l = xi_s_ijegj and bweguz = a:f;_s_lbjegj, and assume that p,, # 0,
i.e. as in lines 3 to 9 of Algorithm 5. We now prove that LT (Ay,u, ) = €u,-

In the proof of Proposition 3.2.5, we have already shown that the neighbor lifting Ay,u, ,
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3.4 Grobner Bases for the Syzygy Modules of Border Bases

is of the form Ay, , = €y, — Th€u,_, — 161 — -+ — &y, With ¢1,...,¢, € K, where we
have ¢, = 0 for all ¢ € {1,...,v} such that byeg, is non-exposable or face(byes,) < k.
According to condition 4), we see that €,, >, ey, _,. Moreover, for every o € {1,...,v}

such that byeg, is exposable and face(b,eg,) > k, condition 3) yields €,, > €,. Thus it
follows that LT (Ay,u,_,) = €u,-

Furthermore, since face(byeg,,) = face(bjes;) < k, we have ¢,, = 0, i.e. the uf® com-
ponent of Ay, , is equal to 1. Let ¢ € Supp(py,,) be as in line 9 of Algorithm 5 and
let a € K be the coefficient of ¢ in p,, as in line 10 of Algorithm 5. Since the term
t'ey, =t - LT+ (Ayyu,_,) cancels in (p1,...,py) — at’ Ay,u,_,, it follows that line 11 of the
ClearColumns Algorithm 5 is actually a reduction step with respect to A as defined in
[KROO, Defn. 2.2.1].

Finally, we prove that A is a 7-Grébner basis of the syzygy module Syzp(g1,...,9,).

Let (p1,-..,pv) € Syzp(g1,---,gy) be irreducible with respect to the rewrite rule LI
defined in [KRO0O, Defn. 2.2.1] and let

(q1,---,q,) = Reduce((p1,...,pv),A)

be the result of the Reduction Algorithm 6 applied to the input data (p1,...,p,) and A.
The Reduction Algorithm 6 calls LowerDegree and ClearColumns in a certain order to
compute the vector (qi,...,q, ). We have proven above that line 12 of the LowerDegree
Algorithm 4 and line 11 of the ClearColumns Algorithm 5 can be interpreted as reduc-
tion steps with respect to A as defined in [KR00, Defn. 2.2.1]. In particular, we get

(p1y---y00) A, (q1,--.,qy). According to Theorem 3.3.3, we see that (q1,...,q,) is
n-reduced. As (p1,...,p,) and thus also (q1,...,q) is a syzygy of (g1,...,9,), Theo-

rem 3.3.7 now yields (qi1,...,q,) = 0. In particular, it follows that (p1,...,py) A0, As

we assumed (p1,...,p,) to be irreducible with respect to i>, we get (p1,...,pv) = 0.
The claim now follows from a standard characterization of Grobner bases using rewrite
rules, cf. [KR00, Thm. 2.4.1]. O

In the remaining part of this section, we show that module term orderings 7 satisfying
the conditions of this theorem do exist. For the construction of such module term order-
ings, we use the idealization P of P” as defined in [KR05, Defn. 4.7.12], i.e. we consider
the polynomial ring P = Pley, .. .,&,] where we regard €1,. .., ¢, as indeterminates. We
identify the elements of P¥ with the corresponding elements of the idealization P as
described in [KRO5, Prop. 4.7.14].

The following algorithm is a generalization of [KK14, Prop. 6.2] and constructs a
weight matrix W € Mat 4., (Z) which we later use to explicitly determine module term
orderings 7 on the terms of P which satisfy the conditions of Theorem 3.4.1. During the
algorithm, we assign weights to the indeterminates of P. We use the symbolic value null
to state that an indeterminate has not been assigned its final weight yet.

99



3 Syzygies of Border Bases

Algorithm 7: ConstructWeight(O)

© 00 N O O~ W N

[
w N = O

14
15
16
17

18
19
20
21
22
23
24
25
26
27

Input:
O is an order ideal in T"(eq, ..., e,) with border 00 = {bieg,,...,byeg,}

fort:=1ton—1do
‘ Wy, = null
end
Wy, =1
foreach j € {1,...,v} such that bjeg, is non-exposable or extreme do
‘ we; =1
end
foreach j € {1,...,v} such that bjeg, is non-extreme do
‘ We; =null
end
1 =n
while i > 1 do
if we; #null for all j € {1,...,v} such that bjes, is non-extreme and such
that Col(bjes,) is in the z;-direction then
Wy, = max{wWe,; + Wy, | j € {1,..., v}, we,; # null}
t=1—1
else
choose any j € {1,...,v} such that bjeg, is non-extreme, such
that Col(bjeg,) is in the z;-direction, and such that we; = null
Let Col(bjes,) = {z; *b;, z; **'bj,...,alb;} - e, be with s,t € N.
for {:=0tos+t+1do
‘ Let ug € {1,...,v} be such that buep,, = xf_s_lbjegj.
end
for {:=1tos+t+1do
‘ We,, "= We,, , + wg,; +1
end
end
end
return (wg,, ..., Wy, , We,,...,Ws,)

The next proposition shows that this procedure defines indeed an algorithm and that

the result of the algorithm is a positive matrix in the sense of [KR05, Defn. 4.2.4].

1
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3.4 Grobner Bases for the Syzygy Modules of Border Bases

Proposition 3.4.2. Algorithm 7 is actually an algorithm and its result
W := ConstructWeight(O)

applied to the input data O is a matric W € Mat) p4.(Z) whose entries are positive
integers. In particular, the matriz W is positive and W does not depend on the choice of
the index j in line 17.

Proof. First we prove that W € Maty ,,4,,(Z) and that every component of W is a positive
integer. Obviously, we see that the result W is a 1 X (n + v)-matrix. At the beginning
of the while-loop starting in line 12, ie. for i = n, we have w,, = 1 € N\ {0} for
every j € {1,...,v} such that bjep, is non-exposable or extreme by line 6 and we have
wg,, =1 € N\ {0} by line 4. In particular, there is an v € {1,...,v} such that byeg is
of the form b eg, = x{e; for some § € N. As the border term byeg, = ze; is obviously
non-exposable or extreme by Definition 3.1.1, it follows that w., = 1. Tt suffices now to
show that w., € N\ {0} for all j € {1,...,v} such that bjes, is non-extreme and that
wg, € N\ {0} for all i € {1,...,n — 1}. We now prove by downward induction on the
loop variable ¢ € {n,n —1,...,2} in line 12 that w,,,,...,w;,_, € N\ {0} and that we
have we; € N\ {0} for all j € {1,...,v} and all k € {n,n —1,...,i} such that bjes, is
non-extreme and Col(bjeg,) is in the zg-direction.

We start the induction with ¢ = n. If there is no index j € {1,...,v} such that the
border term bjeg, is non-extreme and its column Col(bjes;) is in the w,-direction in
line 13, we have wy, , = w-, +wg, =1+ 1€ N\ {0} in line 14. Thus we may assume
that there is a j € {1,...,v} such that the border term bjes, is non-extreme and such
that its column Col(bjeg,) is in the x,-direction. The existence of s, € N as in line 18
is a consequence of Lemma 3.1.6. Let s,t € N be such numbers, i.e. that they satisfy
Col(bjes;) = {x,,°bj,..., b} - eg;. The existence of ug,...,usie41 € {1,...,v} such
that by.es,, = :rfjsflbje/gj for all £ € {0,...,s+t+ 1} as in line 20 during the for-
loop starting in line 19 follows from Definition 3.1.5 and Lemma 3.1.9. In particular,
Definition 3.1.8 and Lemma 3.1.9 also yield that the border term by,ep, = leb(bjeg;) is
extreme. Therefore, we get we,, =1 and we,, = we,, +wy, +1=14+1+1=3 € N\ {0}
in the first two iterations of line 23 during the for-loop starting in line 22. By induction on
the natural numbers ¢ € {1,..., s+t + 1}, the definition of we,, in line 23 immediately
yields that we,, = we,,  +wg, +1 = 1w,  +2 € N\{0}. Recall that the set of
all columns forms a partition of the set of all non-extreme border terms according to
Lemma 3.1.7. By induction on all columns in the z,-direction, we get w., € N\ {0}
for all indices o € {1,...,v} such that byeg, is non-extreme and such that Col(byes,) is
in the x,-direction. Since there is at least one non-exposable or extreme border term,
namely bweg7 = x‘fel, we get wy, | > We, + Wy, = 1+ wy, =1+1=2 and hence
Wy, , € N\ {0} by the definition of w,, , in line 14.

For the induction step, we let i € {n —1,n —2,...,2}. By the induction hypothesis, we
have we; € N\{0} forall j € {1,...,v} such that bjeg, is non-extreme and Col(bjes,) is in
the zy-direction for some k € {n,n—1,...,i+1}. Furthermore, the induction hypothesis
yields wy,,, ..., wy; € N\ {0}. If there is no index j € {1,...,v} such that bjeg, € 9O is
non-extreme and such that the column Col(bjegs;) is in the z;-direction in line 13, we get
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wg, , € N\ {0} in line 14 as in the induction start. Thus we may assume that there exists
an index j € {1,...,v} such that bjes; is non-extreme and such that Col(bjeg,) is in the
x;-direction. As in the induction start, there exist natural numbers s,t € N, and indices
ug, ..., usyir1 € {1,...,v} such that Col(bjes,) = {x;°bj,...,zb;} - eg, in line 18,
and by,ep, = o *'bieg, for all £ € {0,..., s+t + 1} in line 20. By Definition 3.1.8
and Lemma 3.1.9, the border term by,eg, = lcb(bjeg; ) is extreme or Col(bpeg, ) is in the
zp-direction with k € {i +1,...,n}. If byyep,, is extreme, we have we, =1 € N\ {0}
according to line 6. If byyep, is non-extreme and Col(by,eg,, ) is in the zg-direction with
k € {i +1,...,n}, the induction hypothesis yields w.,, € N\ {0}. As the induction
hypothesis also yields w,, € N\ {0}, we get we,, = we, +wy +1 € N\ {0} in
line 23 in both cases. By induction on ¢ € {1,...,s + ¢ + 1}, we immediately get
We,, = We,,  +wy,+1 € N\{0} in each iteration of line 23 during the for-loop starting in
line 22. By induction on all the columns in the x;-direction, recalling again Lemma 3.1.7,
we get w., € N\ {0} forall p € {1,...,v} and m € {n,n—1,...,i} such that Col(b,eg,)
is in the xy,-direction. Finally, the induction hypothesis yields w,, € N\ {0} and we see
that wy, | > ws, +we, = wy, +1 and w,,_, € N\ {0} in line 14.

In particular, we have shown that the matrix W € Mat 4, (Z) is positive in the sense
of [KRO5, Defn. 4.2.4].

Next we show that the choice of j in line 17 has no effect to the result of the algorithm.
The loop variable ¢ of the while-loop starting in line 12 is decreased in line 15 during the
if-clause starting in line 13. Hence the else-clause starting in line 16 is executed as long as
there exists an index j € {1,...,v} such that bjegs; is non-extreme, such that Col(bjeg;)
is in the x;-direction, and such that w.; = null. By Lemma 3.1.7, the set of all columns
is a partition of the set of all non-extreme border terms. In each execution of the else-
clause during the while-loop starting in line 12, we always assign weights not equal to
null exactly to we, for all ¢ € {1,...,v} such that byeg, € Col(bjes,). Thus we see that
the choice of j in line 17 only has an effect to the ordering in which the algorithm assigns
the weights but not to the weights itself. In other words, the result of the algorithm is
independent of the choice of j in line 17.

Finally, we prove that every step of the algorithm can actually be executed and that
the algorithm stops after finitely many steps. The existence of s,¢ € N in line 18 has
already been shown above. Moreover, we have also seen in the proof of the correctness
that we can perform the addition in line 23 and that the set in line 14 is non-empty.
Thus every step of the algorithm can be executed.

In order to prove termination, we need to show that the while-loop in line 12 is finite.
Taking a closer look at this while-loop, for all j € {1,...,v} such that Col(b;eg,) is in the
ri-direction with i € {2,...,n} and for all ¢ € {1,...,v} such that byeg, € Col(bjeg,),
we see that the for-loop that starts in line 22 assigns values not equal to null to wg,.
Thus in every iteration of the while-loop, the number of non-extreme border terms which
have not yet been assigned a weight decreases by at least one. Using Lemma 3.1.7,
again, we see that every column and thus every non-extreme border term is considered
only once during the algorithm. In particular, it follows that the condition of the if-
clause is eventually satisfied and ¢ is decreased by one. Induction on the loop variable ¢
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in line 12 now yields that ¢ decreases to 1 after finitely many steps and the algorithm
terminates. ]

To get a better understanding of Algorithm 7, we consider the following example.

Example 3.4.3. Let us apply Algorithm 7 to the order ideal O in T3{ej, es,e3) of
Example 3.3.4. Recall that we can illustrate O = {1, z,y, 22,42, 23,43} - e1 U {1,y} - e3
and its border 00 = {bieg,, ..., baep,, } with the following figures.

z < terms in O
by
® 01 B non-exposable border terms
b1o ® cxtreme border terms
b11
bs A non-extreme border terms
be b2 by by
o o ° [ ] lower column bounds
b b
3 o3 y
hjel A 4 a>
by bg  bu
x
z 0,
: o, bis 'b18
b1g
bis Yy o Yy
. by o Ca)
b2o
T
Let {e1,...,e90} denote the canonical P-module basis of P?°. We consider the inter-

mediate results of the weight matrix W = ConstructWeight(O) during Algorithm 7 in
detail. To ease the notation, we record the intermediate value of the matrix

W = (wxv wy7 Wy, w€17 sty wf:‘zo)
by a table which looks like
Wy Wy Wy, We,  Wey Wey We, Wey Weg Wep  Weg
null null 1 1 1 null null null null 1 null

Weg  Weyy Weyy Wep Weyz Weyy Weyy Weg  Weyp  Weig Weyg  Wey

1 null null 1 1 null 1 1 1 1 1 null

103



3 Syzygies of Border Bases

after the initialization steps of the lines 1 to 10.

Then we have ¢ = 3 in line 11 and start with the first iteration of the while-loop. There
are five non-extreme border terms that have not yet been assigned weights and whose
columns are in the z-direction, namely the border terms in

{b3,b6,b11} - €1 U{bs,b10} - e1 = {$z,$z2,$23} -e1 U {yzQ, yz3} eq.

We choose bseg, = xzeq in line 17 and get ug = 1, u1 = 3, uz = 6, and uz = 11 after the
for-loop starting in line 19. As w,, = 1, line 23 of the algorithm yields

Wey =W, +w, +1=1+14+1=3,
Weg = Wey T W, +1=3+1+1=35,
Wey =Weg +W,+1=5+14+1=T7.

The intermediate table then looks like

Wy Wy W, We,  Wey Weg Wey Wes Weg Wer  Weg

null null 1 1 1 3 null null 5 1 null
Weg  Weyg Weyy Weg Weyg Weyy Weys Weyg  Weyp  Weig Weyg  Wegg

1 null 7 1 1 null 1 1 1 1 1  null

at the end of the for-loop starting in line 22. As there are still two non-extreme border
terms which have not yet been assigned weights and whose columns are in the z-direction,
namely the border terms in

{bs,b10} - €1 = {yzzayzg} " €1,

the if-clause starting in line 13 is not executed and we proceed with the next iteration
of the while-loop without changing <. We now choose bseg, = yz%eq in line 17 and get
we, = 3 and we,, = b after the for-loop starting in line 22. The intermediate table then
looks like

Wy wy Wy Wy  Wey Wey Wey, Wy Weg Wep  Weg

null null 1 1 1 3 null 3 5 1 null

Weg  Weyg Weyy Weyg Weyg Weyy Weys Weyg Wepr Wepg Weyg  Weyg

1 5 7 1 1 null 1 1 1 1 1 null

For every j € {1,...,20} such that bjes, is non-extreme and such that Col(bjeps;) is
in the z-direction, we then have w.; # null. Thus the if-clause starting in line 13 is
executed and we get

wy = max{we; +w, | j €{1,...,20},w;; #null} =7+1=38
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which yields

Wy Wy W, We,  Wey Wey Wey Wey Weg Wep  Weg

null 8 1 1 1 3 null 3 5 1 null

Weg Weyg Weyy Wey Weyg Weyy Weps Weyg Wepp Weg Weyg  Weyg

1 ) 7 1 1 null 1 1 1 1 1 null

and 7 = 2 at the end of the if-clause.

At the beginning of the next iteration of the while-loop, there are four non-extreme
border terms which have not yet been assigned weights and whose columns are in the
y-direction, namely the border terms in

{4, bs, bra} - €1 U {bao} - e3 = {wy, zy®, y°} - e1 U {zy} - es.
We choose bseg, = zye; in line 17 and the algorithm yields

Wey = Wey +wy +1=1+8+1=10,
Weg = Wey + Wy +1=10+8+1 =19,
Weyy = Weg +wy +1 =19+ 8+ 1= 28.

The intermediate table then has the following form

Wy, wy W, We, Wey Wey Wey Wey Weg Wep Weg

null 8 1 1 1 3 10 3 5 1 19

Wey Weyg Weyy Wepp Wepz Wey Weys Weg Weyp Weg Weg  Weyg

1 ) 7 1 1 28 1 1 1 1 1  null

We now choose bapeg,, = ryes in line 17 and get w.,, = 10 after the for-loop in line 22.
This yields

Wy Wy Wy We,  Wey Wey Wey Wey  Weg  Wep  Weg

null 8 1 1 1 3 10 3 5 1 19

Weg Weyg Weyy Wepp Wez Weyy Weyy Weg Weyr Weg Weyg Weyg

1 ) 7 1 1 28 1 1 1 1 1 10

For every j € {1,...,20} such that bjes, is non-extreme and such that Col(bjes;) is
in the y-direction, we then have w.; # null. Hence the if-clause starting in line 13 is
executed and we get

wy = max{we; +wy, | j € {1,...,20},w,; #null} = 28 4 8 = 36.
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Moreover, i is decreased to 1 in line 15, i.e. the algorithm terminates. The final table
now has the following form:

Wy Wy W, Wey Wy Wey Wey Wey Weg Wep Weg

36 8 1 1 1 3 10 3 5 1 19

Weg Weyg Weyy Weyy Weyg Weyy Weys Weyg Weyp Weyg Weyg  Weyg

1 ) 7 1 1 28 1 1 1 1 1 10

Thus the algorithm returns the matrix
W =(36,8,1,1,1,3,10,3,5,1,19,1,5,7,1,1,28,1,1,1,1,1,10) € Mat; 23(Z).

In Theorem 3.4.5, we will see that for all term orderings 7 on T3(eq, s, e3) that are
compatible with degy, the set of all neighbor liftings A forms a 7-Grébner basis of the
syzygy module Syzp(g1,...,g20) where G = {g1,...,920} is a O-border basis.

Before we prove the main result of this chapter, namely that every term ordering on
the terms of the idealization P = Pley,...,¢&,] that is compatible with the grading degy,
where the matrix W := ConstructWeight(QO) is the result of Algorithm 7 applied to
the input data O induces a module term ordering 7 on the terms of P” that satisfies
the conditions of Theorem 3.4.1, we want to show the following auxiliary lemma. It is a
generalization of [KK14, Lemma. 6.4].

Lemma 3.4.4. Let
W = (Wgy, ..+, Wy, , Wey,-..,Ws,) = ConstructWeight(O)
be the result of Algorithm 7 applied to the input data O and let i € {2,...,n}. Then

Wy, , = max{we; +wg, | j € {1,.. .,V},bjegj 18 non-exposable or extreme

or Col(bjeg;) is in the xy-direction where k € {i,... ,n}}.

In particular, this mazimum exists and we have wy, > wy, for all k.0 € {1,...,n} such
that k < £.

Proof. Taking a closer look at Algorithm 7, we see that during the execution of the
while-loop starting in line 12, the algorithm assigns weights to the non-extreme border
terms column by column with descending column direction. During the algorithm, w,,
is assigned a weight not equal to null in the if-clause starting in line 13. This if-clause

is executed exactly if for all j € {1,...,v} such that the border term bjeg, is non-
extreme and its column Col(bjep;) is in the xj-direction with k € {i,...,n}, we, has
previously been assigned a weight not equal to null. Moreover, for all j € {1,...,v}

such that bjeg, is non-exposable or extreme, w;; is assigned the weight 1 at the beginning
of the algorithm. Thus exactly all non-exposable and extreme border terms and the non-
extreme border terms on columns in the zj-direction with k& € {i,...,n} have been
assigned a weight not equal to null when line 14 is executed.
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As there is at least one non-exposable or extreme border term, namely the border term
of the form x‘lsel for some d € N is non-exposable or extreme according to Definition 3.1.1,
the maximum always exists. In particular, Proposition 3.4.2 implies w,, > w,, > 0 for
all k,¢ € {1,...,n} such that k < £. O

Now we are ready to prove the main result of this chapter, namely Schreyer’s The-
orem for border bases of submodules of free modules of finite rank. The theorem is a
generalization of [KK14, Thm. 6.5]. Recall that

W = (wgy,...,Ws,, We,,...,Ws,) = ConstructWeight(O)

defines the Z-grading of the idealization P = K[z1,...,Zn,€1,...,&,] that is given by
degy (z;) = wy, for all i € {1,...,n} and degy (¢j) = we; for all j € {1,...,v},
cf. [KR05, Defn. 4.1.6].

Theorem 3.4.5. (Schreyer’s Theorem for Border Bases)
Let

W = (wWgy,..., Wy, , Wey,-..,Ws,) = ConstructWeight(O)

be the result of Algorithm 7 applied to the input data O. Then the following conditions
are satisfied for everyi € {1,...,n— 1} and every j € {1,...,v}.

1) Let bjeg, be extreme, let face(bjes;) > i, and let k € {1,...,v} be such that byeg,
is exposable and face(byeg,) > i. Then we have degy, (v:e5) > degy (ek).

2) Let bjeg, be extreme and such that xibjes, ¢ 0O, let k = face(bjes,) > i, and
let ¢ € {1,--- v} be the unique index such that zibjes, = wxbees,. Then we have
degyy (z:€5) > degyy (zkee).

8) Let bjeg, be non-extreme, let k € {i+1,...,n} be such that the column Col(bjeg,)
is in the xy-direction, and let £ € {1,...,v} be such that the border term beeg, is
exposable and face(beeg,) > k. Then we have degy, (5) > degy(ep).

4) Let bjeg, be non-extreme, let k € {i+1,...,n} be such that Col(bjes,) is in the
xp-direction, and let £ € {1,--- ,v} be the unique index with bjep, = wibees,. Then
we have degy;(e5) > degy (zrer).

In particular, every term ordering T on the terms of P that is compatible with degy,
induces a module term ordering T on the terms of P¥ such that A is a T-Grébner basis
of Syzp(g1,---,9v), and we can explicitly construct such term orderings.

Proof. Let i € {1,...,n — 1} and let j € {1,...,v}. Since we use Proposition 3.4.2
and Lemma 3.4.4 to show all inequalities of this proof, we will apply them without
mention.

First we prove condition 1). Assume that bjes; is extreme and face(bjes;) > 4. Let
k € {1,...,v} be such that the border term byeg, is exposable and face(byeg,) > i.
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If breg, is non-extreme, then Col(bgeg, ) is in the x4-direction for some d € {i+1,...,n}
by Definition 3.1.5. Thus we have

degyy (z:€5) = Wy, + we,

> wy,

= max{w:, + Wg, , | 0 € {1,...,v},byes, is non-exposable or extreme
or Col(byes,) is in the zs-direction where s € {i +1,...,n}}

> we,

= degy (ex).

Next we prove condition 2). Assume that bjeg, is extreme, that x;bjes. ¢ 0O, and that
k = face(bjes,) > i. Let £ € {1,...,v} be the unique index with x;bjes, = zpbees,. The
existence and uniqueness of this index £ has been shown in Proposition 3.2.2. We have also
shown in the proof of Proposition 3.2.2 that bseg, is exposable and that face(beeg,) > i.
In particular, the border term beg, is extreme or Col(beeg,) is in the zg4-direction for
some d € {i+1,...,n} by Definition 3.1.5. Thus we have

degyy (wigj) = Wy, + we,
> Wy,
= max{we, + We,,, | 0 € {1,...,v},bsep, is non-exposable or extreme
or Col(b,eg,) is in the x,-direction where s € {i+1,...,n}}
> Wey + Way 4

> We, + Wai o

> We, + Wy,

= degW (:L’keg).

Now we prove condition 3). Assume that the border term bjes; is non-extreme and let
k€ {i+1,...,n} be such that the column Col(bjes;) is in the xj-direction. According
to Definition 3.1.5 and Lemma 3.1.9, there exists an index m € {1,...,v} such that
bjegj = xbmeg,,. Moreover, in view of the construction of We, In line 23 of Algorithm 7,
we see that we; = we,, +wy, +1. Let £ € {1,...,v} be such that bseg, is exposable and
face(beeg,) > k. If beeg, is extreme, we have

degy (gj) = we; = We,, +wg,, +1>1=w,, = degy (e¢).

If beeg, is non-extreme, we see that k& < n and Col(bseg,) is in the x4-direction for some
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de{k+1,...,n} by Definition 3.1.5. In this situation, we have

degW(gj) = w&j
= wem + ka + 1

> W,

= max{we, + We,, | 0 € {1,...,v},byep, is non-exposable or extreme
or Col(b,eg,) is in the x,-direction where s € {k+1,...,n}}

> we,

= degyy (er).

Next we show that condition 4) holds. Assume that bjes; is non-extreme and let
k € {i+1,...,n} be such that Col(bjes;) is in the zj-direction. By Definition 3.1.5
and Lemma 3.1.9, there exists a unique index ¢ € {1,...,v} such that bjes, = w1beg,.
Moreover, considering the construction of we; in line 23 of Algorithm 7, we see that

degyy(g5) = We; = W, + Wy, + 1> Wy + Wy, = degy (zrer).

Finally, we prove all further claims of this theorem. Since we have shown in Proposi-
tion 3.4.2 that W is a positive matrix in the sense of [KR05, Defn. 4.2.4], we can easily find
a term ordering 7 on the terms of P that is compatible with degy, according to [KRO05,
Defn. 4.2.1 and Prop. 4.2.3]. Then the term ordering 7 on the terms of P = Pley,...,&,]
induces a module term ordering 7 on the terms of P” according to [CS99, Thm. 17].
Since the conditions 1) to 4) hold, this module term ordering 7 satisfies the conditions 1)
to 4) of Theorem 3.4.1 and the claims follow. O

It is important to note that, just as in the ideal setting in [KK14, Rem. 6.6], the
construction of the degree matrix W does not depend on the specific border basis G.

Remark 3.4.6. The construction of the degree matrix W € Maty ,4,(Z) in the
ConstructWeight Algorithm 7 only uses the shape of the border dO, which, in turn,
only depends on the order ideal O in T"(ey,...,e,). In particular, the constructed ma-
trix W is independent of the specific O-border basis and the corresponding first syzygy
module of (g1,...,9,).

As a first application of the above theorem, we can generalize the method described in
[KK14, Rem. 6.7] to quickly compute a free resolution of a submodule of P" with finite
K-codimension in P".

109



3 Syzygies of Border Bases

Remark 3.4.7. Let U C P" be a P-submodule with codimg (U, P") < co. According
to Theorem 2.5.3, we can compute an O-border basis G = {g1,...,g,} C P" of U
and by Remark 2.4.28, we can then compute the corresponding set of neighbor liftings
A C Syzp(g1,-..,9,) with respect to @. As Theorem 3.4.5 shows, we can compute a
term orderings 7 on PY such that the set of neighbor liftings A is a 7-Grobner basis
of the first syzygy module of (g1,...,9,). Thus we can compute the second syzygy
module of (g1, ..., g,) using Schreyer’s Theorem for Grébner bases as in [Sch80] or [KROO,
Prop. 3.1.4]. Continuing to use Schreyer’s method, we can iteratively compute a free
resolution of U. Notice that we are, in general, not in a homogeneous situation. Hence
this algorithm yields, in general, neither a graded nor a minimal resolution of U.
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The remaining chapters of this thesis are dedicated to the study of zero-dimensional
closed subschemes of weighted projective spaces by means of border bases. More pre-
cisely, we want to represent the defining ideal of the subscheme by a border basis. This
enables us to describe the multiplicative structure of the corresponding coordinate very
explicitly by only regarding the multiplication matrices of this border basis as follows. If
we want to study a geometric property of a given subscheme which is based on specific
properties of multiplication maps in the corresponding coordinate ring, we can use the
explicit description of the multiplication in the coordinate ring using the multiplication
matrices of the corresponding border basis. One example of such a geometric property
are uniformity conditions, i.e. is the subscheme in some sense in a uniform position?
We will apply these ideas in Chapter 5 to generalizations of the uniformity condition of
|[Kre98, Defn. 7.12] and [Kre0l, Defn. 2.1] and particularly answer [Kre0l, Question 1].
Since border bases are a priori not homogeneous, cf. Definition 2.1.14, we must homoge-
nize them in order to use them in a projective setting. The following chapter is dedicated
to the study of the effect of homogenization to border bases.

As described above, we are interested in border bases of polynomial rings, i.e. we can
restrict ourselves to border bases in P = K[x1,...,zy] for the remainder of this the-
sis. We equip the polynomial ring P = K][x1,...,z,] with the grading defined by a
matrix W = (wy,...,w,) € Mat; ,,(Z) where w; > 0 for all i € {1,...,n}. Moreover,
we choose a homogenizing indeterminate zo and equip P = P[xg] = K[zo, ..., z,] with
the grading defined by W = (1 | W) € Maty ,11(Z). By [KRO05, Defn. 4.1.6 and 4.2.4],

both P =@, ¢z Py and P= @D, <z P~ are positively Z-graded K-algebras.

In this setting, we want to use the idea of [KR05, Thm. 4.3.22| which states that for a
proper ideal I C P, P/I"™ is a free K[zo]-module. This idea led to the definition of pro-
jective border bases of homogeneous ideals in P in Definition 4.1.2. A projective O-border
prebasis for some order ideal O = {t1,...,t,} in T" with border 00 = {b1,...,b,} is aset
of polynomials G = {g1, ..., g, } of the form g; = b;— > | a;;t; with ayj, ..., a,; € Kz
for all j € {1,...,v}. It is said to be a projective O-border basis of a homogeneous ideal
I C P if the set of residue classes of the elements of O in P/I form a K|[xg]-module
basis of P/I. In Proposition 4.1.7, it then turns out that such a projective border ba-
sis G C P of a homogeneous ideal I C P is uniquely determined, its dehomogenization
{g" | g € G} C P is a border bases in P and a Macaulay basis (also called H-basis)
with respect to the grading given by W, and that G indeed generates the ideal I. In
particular, we prove the (Projective) Border Bases Correspondence in Corollary 4.1.9
which states that every projective border basis of a homogeneous ideal in P induces a
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border basis of an ideal in P of a specific shape and vice versa. This correspondence can
be illustrated as follows.

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 | W) with a positive matrix W € Maty ,,(Z)

dehomogenization homogenization

O-border bases of ideals in P with b € DFy(gp) for all b € 00
where g, denotes the O-border basis element corresponding to b

In particular, this correspondence allows us to generalize the concepts and propositions of
Chapter 2 to projective border bases. For instance, we can to characterize and eventually
compute projective border bases in the Corollaries 4.1.10 and 4.1.14 and we are able
to describe the elements of the residue class ring of P modulo a projective O-border
basis by means of O in Proposition 4.1.15. Based on these results, we describe the
multiplicative structure of the residue class ring P modulo a projective O-border basis G
of a homogeneous ideal I by means of O and formal multiplication matrices, which solely
depend G, in Section 4.2.

Since it is often useful to consider dual objects of a given object, we study the graded
dual module of the residue class ring R = P/(G) where G is a projective O-border basis
in Section 4.3. In this setting, the graded dual K[zg]-module of R turns out to be the
canonical module wgr of R in Definition 4.3.4 and Remark 4.3.5. The remaining part of
Section 4.3 is then devoted to describe the K[zo]-module multiplication of wgr. Again, we
show that the order ideal @ and formal multiplication matrices allow us to describe the
elements of wg in Proposition 4.3.7 and the K[zg]-module multiplication in the Propo-
sitions 4.3.8 and 4.3.10, explicitly.

Recall that for a Z-graded module M = EB,YeZ M., a subset S C M, and for an integer
v € Z, we denote Sy, = SN My, Sy = 7l Sy, S>y = U?’D:W S.s, etc. Moreover,

y'=-00
for every Z-graded module M = €p, 7 M, and for all 4" € Z, we let M(y') denote the
module obtained from M by shifting degrees by /. Here the Z-grading of M (v) is given

by (M(v'))y = M4 for all ¥ € Z, cf. [KR05, Defn. 1.7.6].

4.1 The (Projective) Border Bases Correspondence

In this subsection, we introduce projective border bases and we show that there is a one-
to-one correspondence between projective border bases of homogeneous ideals in P and
specific border bases of ideals in P in Corollary 4.1.9. Moreover, we explicitly describe
the elements of the residue class ring of P modulo a projective O-border basis by means
of the residue classes of the elements of © in Proposition 4.1.15.
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The main idea behind the definition of projective border bases is based on [KR05,
Thm. 4.3.22|. This theorem states that for a proper ideal I C P, the residue class
ring P/I"™ is a free K[zo]-module. In the fashion of this result and starting with a ho-
mogeneous ideal I C P, we define a projective O-border basis in Definition 4.1.2 as a set
of polynomials G = {g1,...,g,} of the form g; = b; — > " | a;;t; € I, where a;j € KE:O]
with the property that the residue classes of the elements of the order ideal O in P/I
form a K[zo]-module basis of P/I. Here O = {t1,...,t,} is a finite order ideal in T"
with border O = {b1,...,b,}. In particular, {gf", ..., gd8} C [ is an O-border
prebasis in this situation. Now two questions immediately arise from this definition: Is
{gseh ... gdeh} even the O-border basis of I9°"? And the other way round, does every
O-border basis of an ideal in P induce a projective O-border basis after homogeniza-
tion? We will answer these questions in the (Projective) Border Bases Correspondence
in Corollary 4.1.9.

But before we can introduce projective border bases, we need to introduce a natural
Z-graded Kxo]-module structure for arbitrary residue class rings of P modulo a homo-
geneous ideal I C P.

Proposition 4.1.1. Let I C P be a homogeneous ideal. Then the map
Klxo) x P/I — P/I, (p,r)+ pr
turns the ring P/I into a Z-graded K [xo]-algebra.

Proof. The canonical K-algebra homomorphism Klzg] — K[To] — P/I, where we
have Ty € P/I, equips the ring P/I with the given Z-graded K [z]-module structure. [

The above K [xo]-module structure allows us to define projective border bases.

Definition 4.1.2. Let O = {t1,...,t,} € T" with u € N be a finite order ideal in T"
and let 00 = {by1,...,b,} with v € N be its border.

a) A set of polynomials G = {g1,...,9,} C P is called a projective O-border
prebasis if the polynomials have the form g; = b; — Y% | a;;t; with a;; € K|xzo]
forallie {1,...,u} and j € {1,...,v}.

b) Let G = {g1,...,9,} € P be a projective O-border basis and let I C P be a
homogeneous ideal. We call G a projective O-border basis of I if G C I and if
the residue classes of the elements of O in P/I form a K [zg]-module basis of P/I.

Example 4.1.3. Let P = Q|z,y| be standard graded, i.e. graded by the matrix
W = (1,1) € Mat; 5(Z), let t be a homogenizing indeterminate, and let P = Q[t, z,y]
also be standard graded by W = (1,1,1) € Maty 3(Z). Moreover, let O = {1,y, z,y?, zy}
and let G = {g1,...,94} € P be with g = 22 — 1 — (2 + t)y, go = y> — 2t + y,
g3 = xy> —t —y — 2y, and g4 = 2%y + t* — 2y. Then G is a projective O-border
prebasis by Definition 4.1.2. The decomposition of g; into its homogeneous components
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is g1 = (—t%y) + (2% — ty) + (—1). Using a Grébner basis computation as, for instance,
described in [KROO, Prop. 2.4.10], we can easily check that —1 ¢ (G). Therefore, (G) is
not homogeneous by [KR00, Prop 1.7.10] and G is thus not a projective O-border basis
of (G) according to Definition 4.1.2.

The specific shape of projective O-border prebases G as defined in Definition 4.1.2
immediately yields that {g3" | g € G} C P is a border prebasis as defined in Defini-
tion 2.1.14. In particular, we can use this fact and the Border Division Algorithm 2.2.1
to deduce a division algorithm.

Proposition 4.1.4. (The Projective Border Division Algorithm)

Let O = {t1,...,t,} with p € N be a finite order ideal in T" and 00 = {b1,...,b,}
with v € N be its border. Let G = {g1,...,g9,} C P with gj = bj — > ', a;jt;, be a
projective O-border prebasis and let p € P. We identify p and the elements of G with
their images under the embedding P = K[xo,z1,...,2s] — K(xo0)[x1,...,7,] and let
Ply--Pv € K(x0)[T1,...,20] and cq, ..., ¢, € K(x0) be the result of the Border Division
Algorithm 1 applied to the input data p € K(xo)[z1,...,2,] and G C K(xo)[x1,...,Tn],
i.e. such that p=pig1 + -+ pugy +cit1 + -+ cuty by Theorem 2.2.1. Then we have
P1y.--sPy € P and cy,. .., c, € Klxg).

Proof. Consider the steps of Algorithm 1 in detail. The coefficient a € K (z() chosen in

line 6 is always an element of K[zg] as p € P. Thus the polynomials p1,...,p, in line 7,
which are initiated by 0 € P in line 1, remain in P during the whole algorithm. Therefore,
at the end of the algorithm in line 10, we get ci1t1 +---cuty =p —p1g1 — - —PuGy € P
and this implies cq,..., ¢, € K|xg). O

Example 4.1.5. Consider the projective O-border prebasis G C P = Q[t,z,y] of
Example 4.1.3, again. Recall that we had O = {1,y,z,y? zy} and G = {g1, ..., g4} with
g =22—1—(+t)y, g2 =y>—2t+vy, g3 = 2y* —t—y—ay, and g4 = 22y +t* —zy. Let
p = 22y? + 23 € P. Imitating the steps of the Border Division Algorithm 2.2.1 applied
to the input data p € Q(¢)[z,y] and G C Q(t)[z, y], we get

p=a%2 4+ a8
:x-xy2+x3
=z-g3—a-(—wy—y—t)+a°
=$g3+$3+$2y+xy+t:v
=93+ (vg1 + (* + t)zy + x) + 2%y + 2y + t
=ag +ags+ 2’y + E +t+ Dy + (t+ Dz
=xg1 + x93+ (g4 + 2y —t) + (E +t+ Day + (t+ 1)a
—zgi+ x93+ g+ P+t +2ay+ (t+Dax —t*

Before we study the basic properties of projective O-border bases, we need an auxiliary
lemma.
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Lemma 4.1.6. Let I C P be a homogeneous ideal. Then the following conditions are
equivalent.

i) The element xo € P is a non-zero divisor for P/I.
i) We have I = I 15 (x0)*°.

Proof. First we prove that i) implies ii). The inclusion I C I : 5 (20)* trivially holds.
Let p € I :5 (w0)™, i.e. xkp € I for some k € N. In P/I, this means that x§p = 0. By i),
we get p=01in P/I,ie. p € I.

For the converse implication, let p € P be such that xgp € I. Then ii) implies p € I,
i.e. p=01in P/I. In other words, x¢ is a non-zero divisor for P/I. O

Now we are able to prove the basic properties of projective border bases. In particular,
we prove the first part of the (Projective) Border Basis Correspondence 4.1.9, namely
that the dehomogenization of a projective O-border basis of a homogeneous ideal I in P
is indeed an O-border basis of 1d¢h C P.

Proposition 4.1.7. (Properties of Projective Border Bases)

Let O = {t1,...,t,} with p € N be a finite order ideal in T" and let 00 = {b1,...,b,}
with v € N be its border. Let G = {g1,...,g,} C P with gj = b; — > I a;;t; be a
projective O-border basis of a homogeneous ideal I C P.

a) We have I = (G).

b) The element xo € P is a non-zero divisor for P/I.

c¢) The element xo — 1 € P is a non-zero divisor for P/I.

d) We have (I9P)hom = T i (20)>° = I.

e) The set {g{", ..., g8} C P is an O-border basis of 1.

f) For all j € {1,...,v}, we have b; € Supp(DFW(g}ieh)) and g; = (g;ieh)hom. In
particular, g; is homogeneous, a;j = aij(l)azgegW(bj)_degW(ti) forallie{1,...,u}

and j € {1,...,v}, and the O-border basis G of I is unique.

g) The set {g{", ... g3t} C P is a Macaulay basis of 19" with respect to the grading
given by W.

Proof. First we prove a). By Definition 4.1.2, we have (G) C I. For the converse, let
p € I. Then the Projective Border Division Algorithm 4.1.4 yields pq,...,p, € P and
c1,...,¢u € Klxo] such that p = prg1 + -+ +ppgy +cit1 + -+ cuty. In P/I, we get
0= cit1+- - cuty. As G is the projective O-border basis of I, we have ¢; = -+ =¢, =0
by Definition 4.1.2 and thus p = p1g1 + -+ + pugy € (G).

Next we show b). As G is the projective O-border basis of I, the residue classes of
the elements of O in P/I form a K|[zo]-module basis of P/I by Definition 4.1.2. For a
contradiction, assume that there exists a p € P\ I such that zop € I. Since p ¢ I there
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4 Border Bases and Homogenization

exist unique polynomials c1, . .., ¢, € K[zo] such that p = ¢1t;+- - -+¢,t, in P/I and such
that ¢; # 0 for some i € {1,...,u}. As zop € I, it follows 0 = xop = c1zot1 +- - - +cuzol,
in P/I and, therefore, cizg = -+ = ¢, 29 = 0 by Definition 4.1.2. In particular, we get

cizg = 0. Since K[zg] is an integral domain, this clearly contradicts ¢; # 0. Thus xg € P
is a non-zero divisor for P/I.

In order to prove c), assume that there exists a p € P\ I such that (zg — 1)p € I. If
DFy (p) € I, p—DFyw (p) ¢ I and (z—1)(p—DFw (p)) = (z0—1)p—(z0—1) DFw (p) € I.
By subtracting DFyy(p) multiple times, we can thus without loss of generality assume
that DFy (p) ¢ I. As I is homogeneous, we then have DFy ((xg—1)p) = o DFw (p) € I
according to [KR05, Defn. 4.2.8 and Rem. 4.2.12| and [KR00, Prop. 1.7.10]. But this is
a contradiction to b) and thus zg — 1 € P is a non-zero divisor for P/I.

The first equality in d) follows from [KRO05, Prop. 4.3.5] and the second one is a
direct consequence of b) and Lemma 4.1.6. Thus we go on with the proof of claim e).
For all j € {1,...,v}, the dehomogenization gdeh of the polynomial g; is of the form

deh =0bj — E” 1 ‘zi]ehtZ € P with adeh = a;;(1) € K by |[KRO05, Defn. 4.3.1]. Therefore,
{ngh .., g3} C P is an O-border prebasm by Definition 2.1.14. Let p € I9h N (O) g
Then there are c1,...,c, € K with p=cit1 +---+cut, € Ideh - Assume that p # 0 and
let d = degy, (p). Then pho™ = clxg_deg“’(tl)tl +- cua:g*deg‘”(t“)tu € ([dehyhom — 1
by d). As G is the projective O-border basis of I, it follows cingdegW(ti) = 0 for
all i € {1,...,u} by Definition 4.1.2. Since K|[x¢] is an integral domain, we see that
cp = - = ¢, = 0. In particular, we get the contradiction that p = 0. Altogether, we
have proven that 19" N (O) - = {0} and Corollary 2.2.6 implies that {g", ..., gdeh} is
the O-border basis of 9",

In order to prove claim f), let 5 € {1,...,v}. As g deh = b; — Y H a1t we
have b; € Supp(g deh) and thus degy (g deh) 2 degyy (b; ) Let d = degy (g deh). Since
g; € G C I according to Definition 4.1.2 and since I = (I9eh)bom by d) it follows that

I>z d degyy (b )g (gzleh)hom

1 hom
d degW (b - Zaw ) — (bj —Zaij(l)tZ)
=1

2 2
d—d b; d d bj d—d b; d—d t;
= egyy ( J)bj _ Z iy egyy ( ) t; — g egyy ( ])bj + Zaij(l)mo eg ( )ti

i=1 i=1
i
d—d d—d
:Z( aijTg egy (b; )+CLU(1) g egyy (ti )) t;.
;=1

As G is a projective O-border basis of I, we get a;;x g degw (b)) _ aij(1)x, d=deg (i) g5

all © € {1,...,u} by Definition 4.1.2. Assume that there is an i € {1,... ,u} such that
degyy (b;) < degyy(t;) and such that a;;(1) # 0. As ai; € K[zo] and as 0 # a;(1) € K,
we see that d — degy,(bj) < d — degy,(tx). Clearly, this yields degy, (b;) > degy, (tx) in
contradiction to our assumption. Therefore, degy(b;) > degy,(¢;) for all i € {1,..., u}
such that a;;(1) # 0 and this implies b; € Supp(DFw (g deh)). In particular, we see that
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d = degyy (b)) and thus a;; = aij(l)xgeg‘”(b i)~ degw () g all § € {1,...,u}. Therefore,

W
d d (b; d—d t;
(gjleh)hom = g egw ( )b Z aZ] egw ( )ti = bj — Z aijl; = gj.

Finally, we show g). Claim f) together with [KR08, Thm. 2.4] yield that the set
{DFw ("), ..., DFy (g™} is an O-border basis of DFyy (I9¢"). Hence Corollary 2.2.4
implies DFyy (191) = (DFyy(g{"), ..., DFw (gdh)), ie. {gdh, ..., gdeh} is a Macaulay
basis of I with respect to the grading given by W according to [KR05, Defn. 4.2.13]. O

Proposition 4.1.7 yields that given a projective O-border basis G C P of a homogeneous
ideal I C P, its dehomogenization {g%" | g € G} C P is an O-border basis of [9h C P
with the additional property that the support of the degree form DFyy(g°") with respect
to W of every polynomial ¢ € G contains the corresponding border term of g9¢". Next we
start the other way round and consider the second part of the (Projective) Border Bases
Correspondence 4.1.9. Given an O-border basis of an ideal I C P, we want to decide
whether its homogenization is a projective O-border basis of I"™ < P. Obviously, the
above result yields the necessary condition that every border term must be contained
in the support of the degree form with respect to W of the corresponding border basis
element. The next proposition shows that that every border basis with this additional

property indeed induces a projective border basis.

Proposition 4.1.8. Let O = {t1,...,t,} with p € N be a finite order ideal in T"
and let 00 = {b1,...,b,} with v € N be its border. Let G = {g1,...,9,} C P with
gj = bj — >t aiti be an O-border basis of an ideal I C P. Moreover, assume that
bj € Supp(DFW(g])) forallj € {1,...,v}. Then {gho™, ..., ghom} C P is the projective
(’)—border basis of Iho™,

Proof. For every index j € {1,...,v}, the assumption b; € Supp(DFyy(g;)) implies that
gjhom =bj—> " ayx gegW(bj)*degW(ti)ti. Thus {gh°™, ..., gho™} is a projective O-border
prebasis accordlng to Definition 4.1.2. Since G = {g1,...,9,} C I by Definition 2.1.14,
we get {giom, ..., ghom} C 1hom Let ¢y, ..., c, € K[xo] be such that ¢1fy +- - +cuf, =0
in P/I"™, By Definition 4.1.2, the claim follows if we prove that ¢; = --- = ¢y = 0. For
alli € {1,...,u} such that ¢; # 0, we can write ¢; = d;(xg—1)* with a unique polynomial
d; € K[x] that satisfies d;(1) # 0 and a unique k; € N. Assume that ¢, # 0 for some
r€{1,...,u}. Then thereisan s € {1,. ..,,u}withks =min{k; |1 € {1,...,u},c; #0}.
and we get that (zg — 1)% (di(mo — 1)M %% + - + dy(zo — 1)ke=kF,) = 0 in P/1hom.
According to [KR05, Prop. 4.3.5], 9 € P is a non-zero divisor for P/I"™. Just as we
did in the proof of Proposition 4.1.7.c, we can deduce that g — 1 € P is also a non-
zero divisor for P/I"™, Thus we get (dq(zg — 1)F1 %8 + - + d,(zg — 1)keksF,) =0
in P/I"™, Dehomogenization now yields dy(1)-0F1=Fs.F +...4d,-0ku=ks.T, = 0 in P/I.
As G is the O-border basis of I, we get the contradiction 0 = d,(1) - 0Fs=Fs = d (1) # 0
by Definition 2.1.14. Thus ¢; = --- = ¢, = 0 and the claim follows. O

As a consequence of the previous two propositions, we are now able to prove the
(Projective) Border Basis Correspondence and deduce consequences of it. In particular,
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4 Border Bases and Homogenization

we can use this correspondence to characterize projective border bases in Corollary 4.1.10
and to compute them in Corollary 4.1.14.

Corollary 4.1.9. (The (Projective) Border Basis Correspondence)

Let O CT" be a non-empty order ideal in T™. Then there is a one-to-one correspondence
between the homogeneous ideals in P possessing a projective O-border basis and the ideals
in P possessing an O-border basis with the property that if b € 00 and g, denotes
the O-border basis element corresponding to b, then we have b € Supp(DFw(gp)). In
particular, this correspondence is given by dehomogenization and homogenization and
can be visualized as follows.

_ projective O;border bases of homogeneous ideals in P
where P is graded by W = (1 | W) with a positive matriz W € Mat ,(Z)

dehomogenization homogenization

O-border bases of ideals in P with b € DFy (gp) for all b € 00
where gy denotes the O-border basis element corresponding to b

Proof. This is a direct consequence of the Propositions 4.1.7 and 4.1.8. [

Corollary 4.1.10. (Characterization of Projective Border Bases)

Let O be a non-empty order ideal in T" and let G C P be a projective O-border prebasis.
Then G is the projective O-border basis of (G) if and only if the following conditions are
satisfied.

1) Let b € 00 and let g, € G denote the projective O-border basis element correspond-
ing to b. Then we have b € Supp(DFy (gih)).

2) The O-border prebasis {g%" | g € G} is the O-border basis of (g%" | g € G) C P.

In particular, we can algorithmically check whether G is the projective O-border basis of

the ideal (G).

Proof. The equivalence is a direct consequence of Corollary 4.1.9. The second claim
follows since we can use the characterizations described in Section 2.4 in order to check 2).
O

Definition 4.1.11. An order ideal O of T" is said to have a maxdegy -border if
degyy (t) < degyy (b) for all t € O and all b € 00.

Corollary 4.1.12. Let O C T" be a non-empty order ideal in T™ which possesses a
maxdegy-border. Then there is a one-to-one correspondence between the homogeneous
ideals in P possessing a projective O-border basis and the ideals in P possessing an
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4.1 The (Projective) Border Bases Correspondence

O-border basis. In particular, this correspondence is given by dehomogenization and
homogenization.

Proof. Let G C P be an O-border basis of an ideal in P, let b € 00 and let g, € G
be the border basis element corresponding to b. As O has a maxdegy-border, we have
degyy (b) > degyy (t) for all t € O by Definition 4.1.11. Thus we get b € Supp(DFy (gih))
by Definition 2.1.14 and the claim follows from Corollary 4.1.9. O

The following example shows that there are zero-dimensional ideals in P which do not
possess an O-border basis with an order ideal O in T" that has a maxdegy -border.

Example 4.1.13. Let P = Q[z,y], let ¢t be a homogenizing indeterminate, and let
P = Q[t,z,y], Moreover, we let ws € N and we equip P respectively P with the grad-
ing given by (1,ws) € Mat 2(Z) respectively (1,1, ws) € Mat; 3(Z). Using the method
of Corollary 4.1.10, one can easily check that G = {y, zy, 2%y, 23 — 3tx? + 2z} C P is the
projective {1, z, 22}-border basis of the ideal I = (y, 2> — 3tx? +t?z) C P. Moreover, we
have y € 19" and 2% — 322 + 2 € I According to Corollary 4.1.9 and Definition 2.1.6,
there is no projective O-border basis of I for an order ideal O # {1, x, 2%} in T2. There-
fore, we see that the ideal I has a projective O-border basis where O is an order ideal
in T? with a maxdeg; ,,)-border if and only if wy > 2 according to Definition 4.1.11.
In particular, this condition is not satisfied in the standard graded case, i.e. for we = 1,
whereas {1, z, 2%} has maxdeg; »)-border.

Corollary 4.1.14. (Computation of Projective Border Bases)

Let I C P be a homogeneous ideal such that dim(P/I) = 1 and such that the element
o9 € P is a non-zero divisor for P/I. We use the Border Basis Algorithm 2.5.3 to
compute an O-border basis G C P of 19" C P. Then the set {g"°™ | g € G} C P is the
projective O-border basis of 1.

Proof. By Lemma 4.1.6 and [KR05, Prop. 4.3.5], we have I = [ :5 (x0)> = ([deh)hom,
Moreover, as n € N\ {0} and dim(P/I) = 1, we have I C P. Thus [KRO05, Prop. 5.6.12]
implies that dim(P/I9") = dim(P/I) — 1 =0, i.e. I9°" C P is a zero-dimensional ideal.
Therefore, we can use the Border Basis Algorithm 2.5.3 in order to compute an O-border
basis G C P of the ideal T9". Moreover, for all b € O, the corresponding border basis
element g satisfies b € Supp(DFy(gp)) by Theorem 2.5.3. Thus {g"™ | g € G} C P is
a projective O-border basis of (I9¢h)hom — T by Corollary 4.1.9. O

Finally, we explicitly describe the homogeneous components of the residue class ring
of P modulo a projective O-border basis where O is non-empty order ideal in T" by means
of O. As a consequence, we prove that such a residue class ring is a one-dimensional
Cohen-Macaulay ring and that we can easily read off its (multigraded) Hilbert function.

Proposition 4.1.15. Let G C P be the projective O-border basis of a homogeneous
ideal I C P and R=P/I. Let H : 7 — Z, v+ #{k € {1,...,u} | degy (tx) < v} and
let AH : 7 — Z, v~ H(y) — H(y — 1) denote its first difference function. Moreover,
we write the order ideal O = {t1,...,t,} with p € N and terms t,...,t, € T" that
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satisfy degyy (t1) < --- < degy (t,) and for all v € Z and i € {1,...,pu}, we denote
dy; =~ — degy (t;) € Z.

a) There are canonical isomorphisms of Z-graded K [xo|-algebras

K degyy (tp)
R = @K[xo](— degyy (L)) = @ (K[':UO](_'-Y))AH(’Y).
i=1 =0

In particular, we have H = HF .

b) Let Oy = Uiy TEO. Then the residue classes of the elements of Oy in R form a
K -vector space basis of R. In particular, for every v € Z, the residue classes of the

d
e;ements of (Op)y = {xg”’ltl, ce xOW’H(“’)tH(V)} in R form a K-vector space basis
of R,.

Proof. The first claim is a direct consequence of O to be a KJ[zg]-module basis of R
according to Definition 4.1.2. Thus it suffices to prove the second claim. Let v € Z. For
all i € {H(y) +1,...,u}, we have degy,(t;) > 7 as the elements ¢1,...,t, are ordered
increasingly with respect to degy;,. Hence a) yields that the residue classes of the elements
of (Op)y = (Uplp2tO) N P,y = {acg”’ltl, . .,xg”’H”)tH(V)} in R form a K-vector space
basis of R,. O

Corollary 4.1.16. Let G C P be the projective O-border basis of a homogeneous ideal
I CPandlet R=P/I.

a) The ring R is a one-dimensional Cohen-Macaulay ring.

b) Let J C R be a homogeneous ideal and S = R/J be such that xy € P is a non-zero
divisor for S. Then S is a one-dimensional Cohen-Macaulay ring.

Proof. First we prove a). By Proposition 4.1.7, zg € P is a non-zero divisor for R. Thus
the R-module homomorphism 7, : R — R, r — ¢ - r, the multiplication by zo € P,
is injective. Let m C R be a maximal ideal. Then the induced R,-module homomor-
phism (7z)m : R — R, £+ 25 = ETO - =, the multiplication by ETO € R, is also
injective according to [Kun85, Rule II1.4.7]. Therefore, ¢ € Ry is also a non-zero
divisor for Ry. In particular, the depth of Ry, satisfies 1 < depth(Rn) < dim(Ry) by
[Kun85, Defn. VI.3.3 and Prop. VI1.3.9]. Moreover, by Definition 4.1.2, the residue classes
of the elements of O in R form a KJzg]-module basis of R. This yields a Noetherian
normalization K[zg] — R by [Kun85, Defn. I11.3.3] and thus dim(R) = 1 by |[Kun85,
Prop. 11.3.4]. Now [Kun85, Prop. II1.4.12] yields dim(Ry) < dim(R). Altogether, we
get 1 < depth(Rnm) < dim(Ry) < 1. Therefore, depth(Ry) = 1 = dim(Ry), i.e. Ris a
one-dimensional Cohen-Macaulay ring according to [Kun85, Defn. VI.3.10].

Finally, we prove claim b). Let € : P — R denote the canonical K [zg]-algebra epimor-
phism. Then the Second Noetherian Isomorphism Theorem yields the existence of the
canonical K[zg]-algebra isomorphism S = R/J = (P)/J = P/e~'(J). Since 7y € P
is a non-zero divisor for S = P/e~!(J) and as dim(S) < dim(R) = 1, we can show
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dim(S) = 1 just as we did it for R in the proof of a). According to Corollary 4.1.14,
there exists a projective O'-border basis of the ideal 51(J) C P. Therefore, claim b)
follows from the canonical K-algebra isomorphism S = P/e~1(J) and a). O

4.2 The Multiplicative Structure of a Residue Class Ring
Modulo a Projective Border Prebasis

Based on the results of the previous section, we now take a closer look at the multiplica-
tive structure of the residue class ring R = P/I modulo a homogeneous ideal I C P
that is given by a projective O-border prebasis. In particular, we show that the addi-
tional knowledge that I possesses a projective O-border prebasis allows us to describe
the multiplication in R only by means of O and formal multiplication matrices which
solely depend on the projective O-border prebasis.

For the whole section, we let O = {t1,...,t,} with u € N\ {0} be a finite order ideal
in T" such that degy, (t1) < --- < degy,(t,) and we let 00 = {b1,...,b,} with v € N be
its border. Moreover, let G = {g1,...,g,} C P be a projective O-border prebasis and
let R = P/(G). According to Proposition 4.1.4, the residue classes of the elements of O
in the ring R form a K[z¢]-module generating set of R and thus the residue classes of the
elements of [ J,~, a:’é(’) in R form a K-vector space generating set of R. The goal of this
section is to describe the multiplicative structure of the ring R with respect to the above
generating sets by means of matrices as explicitly as possible. To shorten the notation,
we define the integer function H : Z — Z, v — #{k € {1,...,u} | degy (tx) < v} and
its first difference function AH : Z — Z, v~ H(y) — H(y — 1).

First we introduce the formal projective multiplication matrices. Similarly to the
situation of formal multiplication matrices of border prebases in P, cf. Definition 2.4.15
and Remark 2.4.17, these matrices describe the multiplication in the K |[zo]-module R by
an indeterminate.

Definition 4.2.1. For all indices j € {1,...,v}, we let the elements of the projective
O-border prebasis G = {g1,...,9,} C P be of the form g; = b; — > 1, a;;t; where we
have a1j,...,a,; € Kzo). Let XY™ = 2T, € Mat,(K|zo]) and for all r € {1,...,n},
let 2P0 = (£{7P™D),_y pc )y € Mat, (K [zo]) be defined by

é&(7",proj) _ 61% if Trtg =1; € Oa
ke ak; if ztp = bj € 00.

Then for every r € {0,...,n}, we call X the rt® formal projective multiplication
matrix of G.

Example 4.2.2. Let P = Q[z,y] be standard graded, i.e. graded by the grading
given by the matrix W = (1,1) € Mat; 2(Z). Moreover, we let ¢t be a homogenizing
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indeterminate let P = Q[t, z, y] also be standard graded, i.e. graded by the grading given
by the matrix W = (1,1,1) € Mat; 3(Z), and we let G = {g1,...,96} C P be defined
by the polynomials g = y® + 2t%y — 3ty?, g2 = x%y — xy?, g3 = xy> + 2t2xy — 3twy?,
g4 = 22y? + 2t%xy — 3txy?, g5 = 3y + 2t2xy — 3txy?, and g6 = x* — 632 + 11222 — 6ta>.
Let O = {t1,...,ts} = {1,y,z,9% 2y, 2, zy* 23}. Applying Corollary 4.1.10, we see
that the set G is the projective O-border basis of (G). Let R = P/(G). For all t € O
and for all b € 90, we have degy, (t) = deg(f) < 3 < deg(b) = degyy (b), i.e. the order
ideal O has a maxdegy,-border by Definition 4.1.11. According to Definition 4.2.1, the
projective multiplication matrices 7P™J, XPrl YProl ¢ Matg(Q[t]) of G are

t 0000000 00 0O0O0O0 O 0
0t 00O0O0GO 0O 00 0O0O0OO0 O 0
00t 0O0O0O0O0 100000 O 63

71Jlr(n.:ooo:foooo Xprojzooooooo 0
000O0T¢ETO0O0O0]|’ 010000 =262 0 |’
000O0O0OTETO0O 001000 0 —11¢
000O0O0GO 0T O 000110 3t 0
000O0GO0TO OO0t 000O0O0OT1 O 6t

and

000 O 00 O 0
1 00 =22 00 0 0
000 O 0O0 O 0
ypmj_o1o3t000 0
“loo1 0o 00 —2t2 —22
000 O 00 O 0
000 0O 1 1 3t 3t
000 O 00 O 0

The following definition specializes [KR05, Defn. 4.7.1 and 4.7.5| to our setting.

Definition 4.2.3. Let M = (fi;)1<i<ki1<j<¢ € Maty o(P) with k,¢ € N be a matrix,
let = (ry,...,r) € Z*, and let ¢ = (cq,. .., ¢) € ZF.

a) The matrix M is called homogeneous with respect to the degree pair given by r
for the rows and ¢ for the columns if for all « € {1,...,k} and j € {1,...,¢}, the
polynomial f;; is homogeneous of degree ¢; — r;.

b) The matrix M is called degree-ordered with respect to degree pair given by r
for the rows and c for the columns if M is homogeneous with respect to the degree
pair given by r for the rows and ¢ for the columns and if r; < 7y < --- < 7 and
cp << <oy

The formal multiplication matrices of a border prebasis in P are homogeneous ma-
trices in the sense of Definition 4.2.3, cf. [KR08, Rem. 5.2| for a more general version.
The following proposition shows that the formal projective multiplication matrices of a
projective border basis are also homogeneous matrices in the sense of Definition 4.2.3.
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Proposition 4.2.4. Let the elements of the projective O-border prebasis G C P be of the
form g; = b; — ZH(degW(bj)) aiijA”t- where a;; € K and A;; = degyy (b;) —degy, (t;) € N

=1
forallje{l,...,v} andi e {1,..., H(degy (b;))}. Let Xpm] L, A € Mat, (K [xo))
be the formal projective multz’plicatzon matrices of G.

a) For every index r € {0,...,n}, the matriz X s q homogeneous degree-ordered
matriz with respect to the degree pair given by (degy-(t1),...,degy(ty)) for the
rows and (degy(z,rt1), ..., degy(x,t,)) for the columns.

b) For allr,s € {0,...,n}, the matrices Xfroj/'tfmj and Xfronfroj — Xspron,Proj are

both homogeneous degree-ordered matrices with respect to the degree pair given by

(degy(t1), ..., degyr(ty)) for the rows and (degy(zrxsty), . .., degy-(zr24t,)) for
the columns.

In particular, the above assumptions hold if G is the projective O-border basis of (G).

Proof. For all r € {0,...,n}, we write &P = ( li;’pmj))lgk,ggu € Mat, (K[zo]). Note
that all entries of the matrices A ol .., XP™ are homogeneous.

For the proof of a), we let r € {0,...,n}. If AP =0, nothing needs to be shown.
Thus assume that there are k,¢ € {1,..., u} such that & (rproi) £ 0. If 7 = 0, §k’pr°J #0
implies k£ = ¢ and thus

,proj) )

degy (ékg = degyr(wo) = degyr(wot) — degyy(tr)

by Definition 4.2.1. Now suppose that r # 0. If xz,ty = t; for some i € {1,...,u},
ki =& ,g?pmj) # 0 implies k = i by Definition 4.2.1. Thus we get

degy-(&,p (r,proj) ) = degpr (ki) = degpr(1) = 0 = degppr(arte) — degpr(ts)

according to Definition 4.2.1. If z,t, = b; for some j € {1,...,v}, we get

7,pro Aps
degW(§ /Proj) ) = degyr(agjzg MY = degyr(by) — degyr(tr) = degpr(x,te) — degpr(te)

by Definition 4.2.1. In all cases, X*™ is homogeneous with respect to the degree pair
given by (degg(t1), ..., degy-(t,)) for the rows and (degy-(2rt1), . . ., degy-(w,t,,)) for the
columns and as degp-(t1) < --- < degy(t,), it is also degree-ordered by Definition 4.2.3.

In order to prove b), we let now r, s € {0, ...,n}. By a), X" is a homogeneous degree-
ordered matrix with respect to the degree pair given by (degy-(t1), . .., degy(t,)) for the
rows and (degy(2,t1),...,degy(2rt,)) for the columns and XP™ is a homogeneous
degree-ordered matrix with respect to the degree pair given by (degy-(t1), . .., degy-(t.))
for the rows and (degpr(zst1), ..., degyr(2st,)) for the columns. In particular, AP
is also a homogeneous degree-ordered matrix with respect to the degree pair given
by (degpr(zrt1),.. ., degyr(arty)) for the rows and (degpr(z,ast1),. .., degyr(zrwsty))
for the columns accordmg to Definition 4.2.3. If AP™xP™ = 0, x} prOJX P trivially
satisfies the claimed properties. Thus assume that there are k,¢ € {1,...,u} with
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4 Border Bases and Homogenization

il el brol) g Letm € {1,..., u} be such that €77V 2 0 and €57 £ 0.

km mel ] . mel
Since the matrices X" and XY are homogeneous degree-ordered matrices with respect

to the above degree pairs, we get
degg (€ Ve ") = (degyp(wrtm) — degp(th)) + (deggp(@r@ste) - degi(artin)

= degyr(z,xsty) — degp(tr)

and AP XP g a homogeneous degree-ordered matrix with respect to the degree pair
given by (degyr(t1), ..., degy(t,)) for the rows and (degy(zrzst1), ..., degy(wr2sty))
for the columns according to Definition 4.2.3. By interchanging the role of r and s, we see
that XP" X" is a homogeneous degree-ordered matrix with respect to the same degree
pair, too. In particular, XXX — AP AP is also a homogeneous degree-ordered
matrix according to Definition 4.2.3.

The remaining claim is a direct consequence of Proposition 4.1.7.f. O

The formal projective multiplication matrices allow us to explicitly describe the mul-
tiplication by homogeneous elements in R by means of O.

Proposition 4.2.5. For all indices j € {1,...,v}, we let the elements of the projective
O-border prebasis G = {g1,...,g9,} C P be of the form gj = b;— >t | a;jt; where we have
aij,...,au; € Klxg]. Let Xopmj, ¢ = Mat,, (K [xo]) denote the formal projective
multiplication matrices of G, let c1,...,c, € K[xo], and let p=cit1 + -+ + c,t, € P.

a) For every k € {0,...,n}, we have
Tp-p=(t1,...,t,)- leroj (et e)™
i R. In particular, we have
iy B) - APOXPT (e, 00) = (e ) - AP (e, )

in R for all k,£ € {0,...,n}.

b) For every p' € P, we have
P D=, ty) P (A, AP (er,. )T
mn R.

Proof. Let {&1,...,&,} denote the canonical K[xo]-module basis of (K[zo])".
In order to prove the equality of a), let £ € {1,..., u}. Then we have

xo - oty = (b1, ..., ) - 2oLy - czé’gr = (t1,...,tu) - Xé)roj . czggr
in R. Let k € {1,...,n}. If 2ty =t; € O for some i € {1,...,u}, we have

Tk . Cgfg = C(ﬂ' = (El, e ,EH) . (5116@, e ,5m'Cg)tr = (fl, e ,f‘u) . Xé)mj . nggr
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4.2 The Multiplicative Structure of a Residue Class Ring Modulo a Proj. Border Prebasis

in R. If a3ty = b; for some j € {1,...,v}, we have
Tk, - coly = cob;
= alijAljcﬁl +- 4 al,,ijA“jcﬁu
= (t1,...,tu) - (alj:ﬁOA”c@, cee auijA”ng)tr
= (F1, .- b) - AP €
in R. Altogether, we see that for all k¥ € {0,...,n},

m

I
Te D= Tp-cio=> (b, tu) - AP el = (b1, 8) - AP (er, o)™
/=1

(=1

in R. In particular, we have proved that for all k£ € {0,...,n}, &Y ") describes the
multiplication by T in R. Since the multiplication in R is commutative, it follows that

(Fry . B) - XPOIAPS (¢ e = Ty

= (F1y ey B) - XPIAPO (g, )

in R for all k,¢ € {0,...,n}.

Next we prove b). We start to prove the claim for homogeneous polynomials.

p' € P, with v € Z. If v <0, we have p’ € K and thus

T)’.T):p’.(clfl +"'+Cu%,u)
=pati+---+peuty
ti,...,ty) -p’I# (e, ,cﬂ)tr
(F1y e ) - DA™ AP0 (e, )™

—

Let

in R. For the induction start v = 1, there are dy,...,d, € K with p = doxg + - - - dpxy.

By a), we get

= (1, B) - () (XG5 ) (e, )™

n . . .
— (1 ) (Z dmxm> EO A (e e
m=1

= (B, B) - p (RPN (eg, o)

in R and the induction start is proven. For the induction step, suppose now that v > 1.
Then we can write p’ = ¢t} +-- -+t withs e N, ¢},...,c, € K,and |, ... ,t. € ']I‘Q“.
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4 Border Bases and Homogenization

For every r € {1,...,s}, there exist a k. € {0,...,n} and a term u, € TZ‘;l such that
t!. = x, ur. Then the induction hypothesis and a) yield
Cly D = Tk, - (C;“ﬂr ‘D)
=Tk, - ((t1, ..., ) - (uy) (X, . L AP (¢ ep)™)
= (T B) - AP (g ) (A AP (e, )
= (1,5 L) - (T, - ) (AR AP (e, )T

= (1 B) - ()P X0 (eg, ey

in R for every r € {1,...,s}. Altogether, we get
S
— — —=/ —
P-p=) ¢t p
r=1
S .
= (1, B - ()AL, AR (e, )
r=1

S
= (t1,. ., t,) - (Zc;t;p> (AP AP (eq, )T

r=1

= (1, B) - P (R AP (e, )

in R and the claim follows in the homogeneous case.
In order to prove the claim for arbitrary polynomials, we let p' = >, p/, be the de-

composition of p’ € P into its homogeneous components. Then

YEZ

= Z(Eh s )Eu) 'pfy(X(I];)rOj, .. .,Xgro‘j) : (Cl, ce ,Cu)tr
YEZ

= (t1, -, 1) - (Zm)wgmj,...,xgmi) eyt

YEZ
= (Ela S 7%,114) 'p/(X(?rOJ’ s 7X7§)roj) ’ (Cla s 7C,Lt>tr

in R from the homogeneous case. O

Corollary 4.2.6. Assume that G is the projective O-border basis of (G) and let O
denote the image of the order ideal O in R. Moreover, let Xg’mj, N ¢ e = Mat,, (K [xo))
denote the formal projective multiplication matrices of G, let v € Z, and let p € FV. Then
the matrix p(?(éjmj, - S Mat,, (K [zo]) represents the homogeneous K [xo]-algebra
homomorphism my : R(j) — R, v+ D -1, the multiplication by p € R, with respect to
the K|[xo]-module basis O of R.

In particular, the formal projective multiplication matrices XJ ol AP gre pairwise
commuting in this situation.
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4.2 The Multiplicative Structure of a Residue Class Ring Modulo a Proj. Border Prebasis

Proof. According to Definition 4.1.2, O is a K[zo]-module basis of R. Let {&1,...,E,}
denote the canonical K|xo]-module basis of (K[zo])*. Then Proposition 4.2.5 implies
that 75(8;) =Dt = (T1, .., 0u) - p(AF, .., XN - EF for every i € {1,...,pu} and the
claim follows.

In particular, for all k € {0,...,n}, X,fmj represents the K [xg]-algebra endomorphism
of R defined by 7 — Ty - r for all r € R, i.e. the multiplication by T) in R. Since the
multiplication in the ring R is commutative, it follows that the matrices X3, ... A3
are pairwise commuting. O

Example 4.2.7. Consider Example 4.2.2 in the standard graded ring P = Ql[t, x, ],
again. Recall that G C P was the projective O-border basis of (G) with the order ideal
O = {l,y,z,y% 2y, 22 2y?, 23}, which has a maxdegy, -border, that R = P/(G), and
that the projective multiplication matrices 7P, xXProl YProi ¢ Matg(Q[t]) of G were

t 00 0O0O0O0O 000O0O0OO0O O 0
0t 000000 00 0O0O0O0 O 0
00t 0O0O0O00 0 1 0000O0 O 63
71mj:o()(Jtoooo Xprojzooooooo 0
00 0O0T¢O0O0O0]° 010000 =22 0 |
00 0O0O0TEXO0O0 001000 0 —112
00 0O0O0O0TEO 000110 3t 0
00 0O0O0O0O0 ¢t 00 0O0O0OT1 0 6t
and
000 O 00 0 0
1 00 =22 00 0 0
000 O 00 0 0
ypmj:()lo:atooo 0
001 0 0 0 —2t2 —22
000 O 00 0 0
000 O 1 1 3t 3t
000 O 00 0 0

Let O denote the image of O in R, let p = 22 + ty € P, and let 75 : R(—2) — R,
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4 Border Bases and Homogenization

r +— D - r be the multiplication by p € Re. Then the matrix
p(7—proj, Xproj,yproj) —_ (Xproj)Q + 7—proj X yproj

000 O 0 0 0 0

t 00 =22 0 0 0 0

000 O 0 6t3 0 36t
ot 0 3* 0 0 0 0
o 0 t —2t2 —2t? 0 —8t3  —2t3

1 00 O 0 —11> 0 —60t3

01 0 3t At t 1062 3t?

001 0 0 6t 0 25t2
€ Matg(QJt])

represents the Q[t]-algebra homomorphism 75 with respect to the Q[t]-module basis O
according to Corollary 4.2.6.

In the remaining part of this section, we do not consider the multiplication by a
homogeneous element in the whole ring R but we restrict the multiplication to one
homogeneous component of R. In this setting, the formal multiplication matrices of the
O-border prebasis {g%" | ¢ € G} C P can be used to explicitly describe the multiplication
map only by means of O.

Proposition 4.2.8. Assume that the elements of G = {g1,...,9,} C P are of the form
gj = b; — Zfi(ldeg”’(bj)) aij:UOAijt,; where a;; € K and A;j = degy (bj) — degy (t;) € N
forall j € {1,...,v} and i € {1,...,H(degy, (b;))}. Let dy; = v — degy (t;) € Z be
for all v € Z and i € {1,...,u}, let Xy,..., X, € Mat,(K) denote the multiplication
matrices of the O-border prebasis {g‘feh, . ,gf}eh} C P, let c1y...,cp) € K, and let

d d -
p= 1wyttt ey V) € Py
a) We have

— d _
2o = (x5, 2y T 1), 0, 0)
'Iﬂ' (Cl,...,CH(,y),O,...,O)tr
in R and for every k € {1,...,n}, we have

- = w17 Ay g, H (vhwg) 7
Tp-p=(xy " t1,...,xy " Mt H (vwg)s 05 -+ -5 0)

-Xk . (01,...,cH(7),0,...,0)tr
in R. In particular, if we denote wg =1 and Xy =1, we have

Aytwp 4wy, 17 d7+wk+wng(7+wk+wg)*
(.C[,‘O t yo ey L tH

t
“ XXy - (1,5 CH(y), 0,5+, 0)7
dytwy+wy,137 oy twg, H(vwp+wg)
:(1’0 k ¢ t17...,l‘0 k ¢ k ZtH(’y—‘r’wk—Q—’w,g)?O?’O)

. Xng . (Cl,... ,CH(,Y),O,...,O)tr

O 0)
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4.2 The Multiplicative Structure of a Residue Class Ring Modulo a Proj. Border Prebasis

in R for all k,£ € {0,...,n}.
b) For every ' € Z and every p' € P r, we have

d, - d. -
= .5 +v/1 + L H(v+")
p-p:(r];OWAY tl,...,xovw i tH(7+,y),0,...,0)

pI(IIH Xl, ce ,Xn) . (Cl, ce ,CH('y)7O7 ceey O)tr
mn R.
In particular, the above assumptions hold if G is the projective O-border basis of (G).

Proof. For every s € {1,...,n}, we denote X; = (51(6‘2))19,@3“ € Mat,(K) as in Defi-
nition 2.4.15 and we let {&,...,&,} denote the canonical K-vector space basis of K*.
Moreover, we denote wg = 1 and Xy = Z,,. If v < 0, we have P, = {0} and the claims
follow trivially. Thus suppose that v > 0.

The first equality of a) follows as we have

_ dy 17
To-P=2xp- (Clajoy’lh +ee ey ) )tH('y))
d d +1-
— ¢ xO«, 1+1 T4+t CH(’Y)'%.O%H(’Y) tH('y)

d =< d -
— Cll‘ow'l’ltl 4+ 4+ CH(y)T W+17H(’Y)tH('Y)

d d H 1
= (zy" M, xg ot )tH(7+1)0 -ao)'Iu'(Clv'-'7cH(7)’O""’0>tr

in R. In order to prove the second equality, let k € {1,...,n} and £ € {1,...,H(y)}. If
xpte = t; € O for some i € {1,...,u}, we have degy(t;) = degy (t¢) + wy and hence

— d N d'y+w T
mk-:cO” ty = 0 7

H(y+wy) J
Z 5mix0’y+wk7mgm

m=1
(y+wg)

= Z iy "
- meTo

d'y+w 17 L H (y+wi) tr
=(zy 1,y F LH(y4uwy)> 05+, 0) - Xk - &

in R. If xt, = bj € 0O for some j € {1,...,v}, we get degy (b;) = degy (t¢) + wi, and
for every index m € {1,..., H(degy (b;))}, it follows that

dy g+ Amj = v — degyy (tr) + degy (by) — degyy (tm)
= v — degyy (te) + degy (tr) + wy, — degyy (tm)
= v+ wy — degyy (tm)

= dytuwy,m
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4 Border Bases and Homogenization

Altogether, we get

_ dy o7 dy o1
Ty - xow’etg = xow’ebj

H(degy (b5)) A
+Am,
= Z am] O’YZ Jt
m=1

H(y+wy)
— dywy, my
- Z gm@ 0
_ (l,d’Yerk,l% xd’VJf“’ka(V*wk)f 0 0) X E
— 4y 1y---52g H(y+wg)s Yoo k-¢y

in R. The first part of a) now follows as

H(y)
Tp D= Z CNCO7 t
=
i ) d d
= Z (ant 1t1, N ,IL’07+wk’H(W+wk)fH(,y+wk), O, ey 0) . Xk . C[g;r
(=
d w d Wi, w) g
= (zg ",y T T ) 0y, 0) - X (e, ey, 0,1, 0)
in R. In particular, we have proven that for all k € {0,...,n}, Xy can be used to describe

the multiplication by 7y in R,. Since the multiplication in R is commutative, it follows
that

dyig d 7
(CU(]%ltla . ,«TOW’H(’Y)tH(W)v 07 v 70) ' Xka : (617 T ’CH(’Y)’O’ Tt O)tr
= TpT¢p
= TyTkP
d d I
= (zy"' 1, .. -, OW’H(W)L‘H

(73 05 -5 0) - XpXy - (C1,- -+, Ch(y), 0y, 0)"

in R for all k,¢ € {0,...,n}.
Next we prove by induction on 7/ € N that b) holds in general. For ' = 0, it follows
that p’ € K and thus

_ d _
ﬁ’ D= p/clgjgmltl + .- +p/CH('y)x[)%H(V)tH(7)
H(y) 0, ,0) - p'T - (c1, ..o epgy), 0, ., 0)"

dy17 d 7 r
= (xov’ltl, ce ,I‘O%H(th(v),O, ey 0) 'p/(Iﬂ’ Xl, ce ,Xn) : (Cl, ce 7CH('y)707 ey O)t

dy17 d -
— (xo’y’ltl, o 7xo“/,H(v)t

in R. This shows the claim for v/ = 0. For the induction step, let now 7/ > 0. Then there
exist an s € N\ {0}, ¢},...,c, € K,and t},...,t, € ’]I‘z,ﬂ such that p’ = jt] +-- -+ c,tl.
For all r € {1,...,s}, there are k, € {0,...,n} and u, € ']I'ZJ;,I such that ¢, = xp u,.
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4.2 The Multiplicative Structure of a Residue Class Ring Modulo a Proj. Border Prebasis

Hence the induction hypothesis together with a) yield

Cﬁ; P =T, - (¢, D)

() (T, Xy X)) - (e, - s CH(y)s 0+ o ,0)™)
= (:Uﬁ””/‘lfl, . ,ngJ’”/’H("’J’"’/)fH(VJW/), 0,...,0)

(X, - (Gu) (T, Xy, X)) - (e, - CHA), 05 - - - ,0)™
= (@ 3y T 0, ,0)

. (c’rmkrur)(l'u, X1, X)) (1, CH(y)s 05 - - - ,O)tr
= (azgw"/’lfl, . ,:L“gW”,’H(7+“’/>fH(7+7/), 0,...,0)

. (C;t;)(fu,)ﬁ, ce ,Xn) . (Cl,. . .,CH(,Y),O, e ,O)tr

in R for all r € {1,...,s}. The claim for ' > 0 now follows as
S
— -/ —
REDILLS:
r=1
= d
= (2w T 4, 0,10, 0)
r=1
At ) Ty Xy X)) - (C1s - el 05, OO
d ! -_ d ' 1\ —
= (.%'OWW ’1t1, e ,JZ’O’YJF’Y Hty )tH('er'y/)a o0,... ,0)

s
. <Zcidt;> (Z#,Xl, ce ,Xn) : (Cl, ce 7CH(’y)70?' . .,O)tr
r=1

doy 11— d =
_ +v01 L H(v+")
—(IEO’Y K tl,...,l'o’y 7 R tH

(7+7,),0,... ,0)
-pI(IM,Xl, cee ,Xn) : (Cl,. . .,CH(,Y),O, cee ,O)tr

in R.

The remaining claim is a direct consequence of Proposition 4.1.7.f. O

Corollary 4.2.9. Assume that G is the projective O-border basis of the ideal (G).
We let d; = v — degy (t;) € Z be for all v € Z and for all indices i € {1,...,u}, let
Xy,..., X, € Mat,(K) denote the multiplication matrices of {g{°", ..., gd*} C P, and
let Oy denote the image of Oy = Useo #EO in R. Moreover, we lety,y' € Z andp € P.,.
Then the submatriz of p(Z,,, X1, ..., X,) € Mat,(K) consisting of the first H(y+7") rows
and the first H(vy) columns represents the K-algebra homomorphism 7y : Ry — Ryq.y,
r = D -1, the multiplication by p € R, with respect to the K-vector space bases (60)7

of Ry and (Op)yqry 0f Ryyyr.

Proof. Let {&1,...,&,} denote the canonical K-vector space basis of K*. According to
Proposition 4.1.15, the sets (Og)~ and (Op)- .+ are K-vector space bases of Ry and Ry,
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respectively. If v < 0, R, = {0} by Proposition 4.1.15 and the claim follows trivially.
Thus suppose that v > 0. For all k € {1,..., H(v)}, Proposition 4.2.8 yields

~ de g~ _ de .+
wﬁ(xoﬁ”ktk) =P xow’ktk

do 1= doy N
= (zy"" ey HOt >tH(7+7’)a 0,...,0) - p(Zy, X1,..., &) - EF
and the claim is a direct consequence of this. O

Example 4.2.10. Consider the projective O-border basis G in the standard graded
ring P = Q[t, z,y] of Example 4.2.7, again. Recall that W = (1,1) € Mat; 5(Z) defines
the standard grading, that G = {g1, ..., ge} where g = y3 + 2t%y — 3ty?, go = 2%y — 232,
g3 = zy® + 2t2xy — 3tay?, gy = 2%y + 2t%xy — 3txy?, g5 = 23y + 2t2xy — 3txy?, and
ge = vt — 6632 + 114222 — 6tx3, and that O = {t1,...,ts} = {1,y,z,y% 2y, 22, 29?23}
had a maxdegy,-border. Moreover, we denote R = P/(G) and we denote H : Z — Z,
v #{k e {1,...,8} | degy (tx) < ~}. By Proposition 4.1.15, the Hilbert function of R
is HFg = H : 1,3,6,8,8,... and by Corollary 4.1.12, {g%* | g € G} C P = Qlx,9] is
the O-border basis of the ideal (g9" | g € G) C P. According to Definition 2.4.15, the
formal multiplication matrices X, € Matg(Q) of {g4" | g € G} are

000000 0 O 000 0 00 0O 0
000000 0 0 100 -200 0 0
100000 0O 6 000 0 00 0 0
y_|o0o0000 0 o y_|oro 3 00 0 o0
010000 -2 0 |’ 001 0 00 —2 -2
001000 0 —11 000 0 00 0 0
000110 3 0 000 0 11 3 3
000001 0 6 000 0 00 0 0
Let p = 22 +ty € Py. Then
000 0 0O 0 0 0
100 -2 0 0 0 0
000 0 O 6 0 36
Ty =15y =|0 o0 2 0 0 O | e M@
100 0 0 —11 0 —60
010 3 4 1 10 3
001 0 0 6 0 25
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By Corollary 4.2.9, the submatrix

0 00
1 0 0
0 00
8 (1) (1) € Mat&g((@)
1 0 0
010
0 01

of p(Zs, X,Y) consisting of the first H(3) = 8 rows and the first H(1) = 3 columns
represents the homogeneous Q[t]-algebra homomorphism 75 : Ry — R3, r +— D - r, the
multiplication by p € Re, with respect to the Q-vector spaces {t,y,Z7} C R of Ry and
{13,627, 2T, ty?, t77, ta2, xy2, 23} C R of R3. Note that this result can also be deduced
from Example 4.2.7 by dehomogenization.

4.3 Projective Border Bases and Dualization

In the final section of this chapter, we study the graded dual of a residue class ring of P
modulo a homogeneous ideal in P that is given by a projective border basis.

Before we actually start with that, we recall that for two Z-graded R-modules M
and N, the homogeneous R-module homomorphisms M — N induce a Z-graded submod-
ule of the set of all (not necessarily homogeneous) R-module homomorphisms M — N.
For a more general introduction to gradings and graded dual modules, we refer to [KR00,
Sect. 1.7] and [Bou89, Sect. I1.§11].

Definition 4.3.1. Let R be a Z-graded ring and let M and N be Z-graded R-modules.
An R-module homomorphism ¢ : M — N is called a homomorphism of Z-graded
R-modules or a homogeneous R-module homomorphism if ¢(M,) C N, for all
v € Z. The set of all homogeneous R-module homomorphisms M — N is denoted
by Homp (M, N).

Proposition 4.3.2. Let R be a Z-graded ring and M and N be Z-graded R-modules.
Then Homp(M,N) = @,z Homgr(M, N (7)) is a Z-graded R-module. If, in addition,
M s finitely generated as an R-module, then Homp (M, N) coincides with the set of all
R-module homomorphism M — N.

Proof. This follows immediately from [Bou89, Subsect. 11.§11.6]. O

Now we can start with the study of the graded dual module of the residue class ring
of P modulo a projective border basis. Given a projective O-border basis G of a ho-
mogeneous ideal I C P, we know that R = P/I is a free K[z¢]-module and that the
residue classes of the elements of the order ideal O in R form a K[zg]-module basis of R.
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Thus the dual K[zg]-module of R is precisely the graded dual K[zg]-module of R, i.e. the
Z-graded K[zo|-module Hom e, (R, K[zo]) = @D, cz Hompy,) (R, K[2o](7)) by Propo-
sition 4.3.2. Moreover, the dual objects of the residue classes of the elements of O in R
form a K[z]-module basis of Hom y, (R, K[z0]) according to [Bou89, 11.§2.6, Prop. 11
and Defn. 7]. In Lemma 4.3.3, we will see that Hom [, 1 (R, K[zo]) has also the struc-
ture of a Z-graded R-module in this setting. The main goal of this section is to describe
this R-module multiplication by means of O and the (projective) formal multiplication
matrices of G as explicitly as possible.

For the remainder of this section, we let O = {t1,...,t,} with 4 € N\ {0} be a finite
order ideal in T™ such that degy, (t1) < -+ < degy (t,) and we let 00 = {b1,...,b,}
with v € N be its border. Moreover, let G C P be the projective O-border basis
of the ideal (G) and let R = P/(G). Again, to shorten the notation, we denote the
integer function H : Z — Z, v — #{k € {1,...,p} | degy (tx) < 7} and its first
difference function by AH : Z — Z, v — H(vy) — H(y — 1). Recall that H = HFp
by Proposition 4.1.15. Then for all j € {1,...,v}, the element g; € G is of the form

gj = bj - Zi}i(ldegW(bj)) al'j.%'oAijti with a,;j € K and Aij = degW(bj) - degW(ti) €N for
all t € {1,..., H(degy(b;))} according to Proposition 4.1.7.

Lemma 4.3.3. Let J C R be a homogeneous ideal and let S = R/J. Moreover, let
M = Hom (S, Ko]).

a) The map
RxS8S—S, (ro+J)y—r"+J (r,7”€R)
equips the Z-graded ring S with the structure of a Z-graded R-algebra.
b) The map
RxM—M, (re—=@+J=pr-('+J)) (rr'eR)

equips the Z-graded K[xg]-module M with the structure of a Z-graded R-module. In
particular, the K[zg]-module structure of M as in Proposition 4.5.2 is compatible
with this R-module structure.

Proof. Claim a) follows from [KR00, Rem. 1.7.9].
In order to prove b), let r,7’, 7" € R and ¢, ¢’ € M. Using a), we see that

(1)) = (1 7") = (),
le.1-p=¢,
(') - @)") = (') - 7) = 0" (7)) = (- ) -7) = (- (7 )",

Le. (rr')-o=1r-(r-

~

(0 + 1) @)T") = ol +1) ") = (- 7) 07 7) = (- D)) + (7 )
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4.3 Projective Border Bases and Dualization

Le. (r+r)-o=r-p+1r ¢, and

Le.r-(p+¢)=r-p+r-¢. Thus the given map turns M into an R-module which is
obviously compatible with the K[zo]-module structure of M of Proposition 4.3.2. O

Next we prove that the dual K[zg]-module of R with its degrees shifted by 1 is precisely
the canonical module of R.

Definition 4.3.4. Let J C R be a homogeneous ideal and S = R/J be such that
xo € P is a non-zero divisor for S. Then

ws = Hom e, (S, Kzo])(—1)

is called the canonical module of S. If J = {0}, we identify R with R/J and also
write wg instead of wg, ;.

Remark 4.3.5. Let J C R be a homogeneous ideal and S = R/J be such that
the polynomial zo € P is a non-zero divisor for S. According to Corollary 4.1.16, the
Z-graded R-algebras R and S are one-dimensional Cohen-Macaulay rings, and accord-
ing to [Kun85, Prop. I1.3.4], the Z-graded K|[z¢]-algebra K[z¢] is a one-dimensional
ring. Let mp = @ff:l R, = (To,...,Tp), let mg = @:():1 S, = (Zo,...,Tn), and
let mgip) = D52 Klzo] = (v0) denote the maximal homogeneous ideals of R, S,
and K[zo], respectively. As introduced in [HK71, Defn. 5.6] and as also defined in [GWT78,
Defn. 2.1.2], the R-modules wr = Hom (Hy, . (R),K) and ws = Homy (Hy, (5), K),
and the K[zo]-module wi/,, = Hom  (H. (K|xo]), K) are called the canonical mod-

MK )

ules of R, S, and KJxg], respectively. Here we denote by ﬂ‘hR(R), Hy . (S), and
7}‘%[%](}([:50]) the first local cohomology groups of R, S, and K][xo], respectively.
As R and S are one-dimensional Cohen-Macaulay rings, the canonical R-algebra epi-
morphism R — R/I = S induces a canonical homogeneous R-module isomorphism
ws = Hom(Hy (S), K) according to [GWT8, Prop. 2.2.9 and Prop. 2.1.6]. As the
residue classes of the elements of O in R form a K[zg]-module basis of R according to
Proposition 4.1.15, [GWT78, Prop. 2.1.5] yields the existence of a canonical homogeneous
K [z0]-module isomorphism Hom ¢ (H}, (S), K) = Hom (5,1 (S; Wic[zp])- Moreover, there
is a canonical homogeneous K [z¢]-algebra isomorphism w(,,,) & K[zo](—1) according to
[GWT8, Prop. 2.2.8]. Altogether, we get a canonical homogeneous K [z]-algebra isomor-
phism wg = Hom g1,1(S, Kzo](—1)) = Hom g, (S, K[xo])(—1) and with the R-module
structure defined in Lemma 4.3.3, we see that our definition of the canonical module in
Definition 4.3.4 coincides with the one introduced in [HK71, Defn. 5.6].

The next two propositions describe the structure of such canonical modules. In par-
ticular, we determine the canonical module of the residue class ring of R modulo a
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homogeneous ideal J C R in Proposition 4.3.6 and describe wr and its homogeneous
components by means of O in Proposition 4.3.7.

Proposition 4.3.6. a) The element xo € K[xo] is a non-zero divisor for wg.

b) Let J C R be a homogeneous ideal and let S = R/J. Then there exists a canonical
homogeneous R-module isomorphism

ws Z{p ewr|J ¢ ={0}}.

Proof. First we prove a). Assume that there exists a homomorphism ¢ € wg \ {0} such
that g = 0. Then there exists an element r € R such that ¢(r) # 0 and Lemma 4.3.3
yields 0 = 0(r) = (xop)(r) = @(xo - 1) = 0 - p(r). Since p(r) € Kzo] \ {0} and G is
the O-border basis of (G) C P, this is a contradiction to Proposition 4.1.7. Thus zg is a
non-zero divisor for wg.

Next we prove b). Let M = {p € wr | J- ¢ = {0}}. For all p1,¢p2 € M, r1,72 € R,
and s € J, we have

(s (p1 = @2))(r1) = (1 — p2)(s71)
= p1(sr) — p2(sr1)
= (s-1)(r) — (s p2)(r1)
=0(r1) + 0(r1)
—0,

ie. J- (o1 — p2) ={0} and thus ¢1 — @9 € M, and since r1s € J, we have

(5 (r1-91))(r2) = (r1 - ¢1)(sr2) = p1(r1sr2) = ((r15) - 1) (r2) = 0(r2) =0,

ie. J-(r;-¢1)={0} and thus r; - ¢; € M. Altogether, it follows that the set M is an
R-submodule of wg.
For every ¢ € M and all s € J, we have

p(s) =@(s-1) = (s-9)(1) =0(1) = 0

and hence J C ker(y). Let ¢ : R — S = R/J be the canonical K[zg]-module epimor-
phism. Then for every ¢ € M, the Universal Property of the Residue Class Module S
induces a unique K[xp]-module homomorphism @ : S — K[xo] which satisfies ¢ = P oe
and p € wg. In other words, every element ¢ € M induces a unique element ¥ € wg.
Thus the map

¢: M — ws, wr—p suchthat p=poe
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4.3 Projective Border Bases and Dualization

is well-defined. For all 1,9 € M and r1,79 € R, we have

P(r1 - (o1 —p2))(r2 +J) =11 (o1 — p2)(r2 + J)
= (r1- (1 — ©2))(r2)
= (1 — p2)(r172)

1(r1r2) — p2(rir2)

(rirg + J) — @o(rire + J)

D1 — Po)(rire + J)

(1) — 9(p2))(rir2 + J)

((p1) — P(w2)))(r2 + J),

Le. d(r1-(p1—p2)) =711 (P(p1) — d(p2)). Altogether, it follows that ¢ is an R-module
homomorphism. For all v,7" € Z, r € R, and ¢ € M./, we also have

$p)(r+J) =B(r+J) = p(r) € (Klzo])(+' = 1))y = (Kol (=1)) 1y,

i.e. ¢(¢) € (ws)y. Thus the R-module homomorphism ¢ is homogeneous.

Next we show that ¢ is an R-module isomorphism. For all ¥ € wg and for all s € J,
@ =poe € wp satisfies (s-p)(1) = ¢(s) =@(s +J) =5(0) =0, i.e. s- ¢ =0 and thus
J - ={0}. In particular, for all € wg, poec € M and ¢(poe) = p. Altogether, it
follows that ¢ is surjective. For every ¢ € ker(¢), we have ¢ = ¢(p)oe =00e =0, i.e.
ker(¢) = {0} and ¢ is hence injective. O

@
=%
= (@
= (¢
= (n

For the remainder of this thesis, we identify the elements of wg for a residue class
ring S = R/J with the elements of the corresponding submodule of wr as proven in
Proposition 4.3.6 without mention.

Next we determine the Hilbert function of wgr and give K-vector space bases of the
homogeneous components of wr by means of O. The ideas of the following proposition
follow [GKR93, Prop. 3.1].

Proposition 4.3.7. Let dy; = v—degy (t;) € Z be for all vy € Z and alli € {1,...,pu},
let O = {t1,...,t,} C R denote the image of O in R, and let O" = {t},..., u} C wg be
the dual K[xo]-module basis of O, i.e. we have

Ez:R—)K[l‘o}, fji—>5¢j (jE{l,...,u})

for everyi e {1,...,u}.

a) The set O is a K[xg]-module basis of wr and there are canonical isomorphisms of
Z-graded K [xg)-modules

degyy (tu)

o @ Klal(deg ()~ 1) @ (Klanlly — D},

=0

In particular, HF,,(—y) = p — H(y) = p — HFr(7) for all v € Z.
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b) Let Oy denote the image of Oy = JreozhO in R and let Oy C wr be the set
of dual objects of the elements in Og. Then for every integer v € Z, the set
(O)— = {xad”“’H(”)“f*H(v)H, ceey :L‘ad”“"‘f;;} C (wr)—y is a K-vector space ba-
sis of (WR)—~-

Proof. First we prove a). Since G is the projective O-border basis of (G), O C R is a
K [xo]-module basis of R according to Definition 4.1.2. Thus the dual basis O of O is a
K [xp]-module basis of wr by [Bou89, 11.§2.6, Prop. 11 and Defn. 7|. According to [Bou89,

I1.§1.6, Coro. 1 and I1.§11.6, Rem.]), there exists a canonical homogeneous K [xo]-module
isomorphism

p I
Hom gy (@ Klxo](— degyy (:)), K[$0]> = (B Hom ) (K o] (— degyy (i), K [w]).
i1 i=1

Moreover, there are a canonical homogeneous K [zg]-module isomorphism
Iz B Iz
R = @ K[xo] = @ K[xo](— degW(ti))
i=1 i=1
by Proposition 4.1.15 and a canonical homogeneous K [zy]-module isomorphism
Hom g ) (K [wo], K[zo]) = K [2o]
by [Bou89, 11.§11.6, p. 376]. Altogether, we get the canonical isomorphism

wr = Hom e[y (R, K[zo])(—1)

In
Hom g, (@ Ko (— degy (t:)), K[wo}> (=1)

=1

12

1

o
@ Hom ey, (K 0] (— degyy (1)), Klo])(~1)
=1

= €D Hom oy (K o). Kao]) (degyy (1) — 1)

D

Klzo](degy (ti) — 1)
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of Z-graded K[zo]-modules and the claim follows. In particular, for all v € Z, we have

degyy (tu)

@r)r = [ D (Krol(5 - 1)>1O)

= (K[xo]’y—l—w)AHm

and as O is ordered increasingly with respect to degy, this implies

degyy (tu)

HF,, = P AH(H) = H(degy (tp) — H(y) = p— H(y).
F=v+1

As HF g = H by Proposition 4.1.15, the remaining equality follows.
In order to prove b), let v € Z. For all i € {1,...,u}, we have

t; (ti) = 1 € Koo = (K[xo](— degy (i) degyy (t:)>

and 7; (;) = 0 € (K[xo](— degyy (ti)))deg,y () for all indices j € {1,. ..,,u} \ {i}, i.e. we
have ; € (WR)— degyy (t)+1- Moreover, for every index i € {H(y) + 1,...,u}, we get
—dyt1i = —y — 1 + degy (t;) € N and thus =z, "’+“t € (WR)—~. Slnce t;(t;) = 0y
for all 4,5 € {1,...,u} and since HF, (=) = p — H( ) according to a), it follows
that (Op)_ = {7, ~hr, H(”)“tH(v)H, e ,xad”“”‘@t} C (wp)—~ is a K-vector space basis
of (wR)_v. L]

Just as we did for the multiplicative structure of R in Proposition 4.2.5 and Corol-
lary 4.2.6, we can use the formal projective multiplication matrices of G to explicitly
describe the R-module multiplication of wg.

Proposition 4.3.8. Let O = {f1,...,t,} C R denote the image of the order ideal O
in R and let O" = {7,... 7*} C wgr be the dual K[zo]-module basis of O. Moreover, let

Xé)roj, .., AP e Mat u(K[x0]) be the formal pmjectwe multiplication matrices of G, let
Cly..oycy € Klmo), and let ¢ = c1t] + - +c#t € wg. Then for all y € Z and p € P,
we have

P = (F,ee B) - pUAT™)T, o (AFO)T) - (e )™

in wg, i.e. the matrix p((Xproj)tr . (aprohyiry ¢ Mat,, (K [xo]) represents the homoge-
neous K[xo|-module homomorphism 75 : wr(—7y) — W, o = D@, the multiplication
by p € R, with respect to the K[xg]- module basis O of wp.
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Proof. Let 4y € Z and p € P,. By Corollary 4.2.6, p(X>™ ..., xP)) € Mat,,(K|[zo))
represents the homogeneous K [z]-module homomorphism 75 : R(—y) — R, r +— D -,
the multiplication by P, with respect to the K[zo]-module basis O. Since the dual
K[zol-module of R is R* = Hom . (R, K[zo]) = wr(1), it follows that the induced
homogeneous K[ro]-module homomorphism 77 : wr(—7y) = wr, ¢’ = ¢’ o =D ¢,
cf. Lemma 4.3.3, with respect to the dual K[zq]-module basis O is represented by the
matrix p(X", ..., A" € Mat, (K[zo]) according to [Bous9, 11.§10.4, Prop. 3| and
Corollary 4.2.6. Moreover, as G is the projective O-border basis of (G) the matrices
Xé) roj, e ,)(}froj are pairwise commuting according to Corollary 4.2.6. The claim now
follows from p(XP™ ... PN = p((AProTyr L (ARt O

Example 4.3.9. Consider the projective O-border basis G C P of the standard
graded Q-algebra P = Q[t,z,y] of Example 4.2.7, again. Recall that the order ideal
O = {1,y,z,y? zy, 22, xy?, 23} has a maxdegy,-border, that R = P/(G), and that the
projective multiplication matrices 7P™J, APl YProl ¢ Matg(Q[t]) of G are

t 00 0O0O0O0O0 000O0O0GO0 O 0
0t 0O0O0UO0TU 0O 000O0O0TO0 O 0
00 ¢t 000U 00O 1 00000 O 613
71m~:000t0000 yproj _ (00 0000 0 0
000O0T¢tO0O00O 010000 =22 o0 |
000O0O0OTEOO 001000 0 —11¢2
000O0O0OUOTO 000110 3t 0
000O0O0UO0O0 ¢t 000O0O0OT1 © 6t
and
000 O 0O O 0
1 00 —22 00 0 0
000 O 0O O 0
yproj_0103t000 0
“lo0o1 0 00 —22 —2t2
000 O 0O O 0
000 O 1 1 3t 3t
000 O 0O O 0

Moreover, we had p = z? + ty € Py. Let T Wr(=2) — WR, ¢ = D¢ be the
multiplication by p € Ry, let @ C R be the image of @ in R, and let @ C wp be its
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dual Q[t]-module basis. Then the matrix

p((Tproj)tr, (Xproj)tr, (yproj)tr) _ ((Xproj tr)2 + (Tproj)tr . (Xproj)tr

~—

0 ¢ 0 0 0 1 0 0
0 0 0 t 0 0 1 0
0 0 0 0 t 0 0 1

o =23 0 32 22 0 3t 0

“ 10 0 0 0 =22 0 4 0
0 0 62 0 0 —11t* t 6t
0 0 0O 0 =83 0 102 0
0 0 36t 0 —2t2 —60t2 3t2 25¢2

€ Matg(Qlt])

represents the homogeneous Q[t]-module homomorphism 7% with respect to the dual

Q[t]-module basis O" of wr according to Proposition 4.3.8. Note that the matrices
TProi xprol Yproj ¢ Matg(Qlt]) are pairwise commuting and, therefore, we see that
p((TProd)tr (xprojytr (yprojytry — (p(FProi yproj yproijtr - In particular, the above re-
sult coincides with the result of Example 4.2.7.

Finally, we restrict the R-module multiplication of wg to a homogeneous component R,
with v € Z. As done in Proposition 4.2.5 for the multiplication in R, we can use the
formal multiplication matrices of {g4" | g € G} C P to explicitly describe the R-module
multiplication by a homogeneous element.

Proposition 4.3.10.  Let d,; =~y — degyy (ti) € Z be for all v € Z and for all indices
ie{l,...,u}, let O = {ti,...,t,} C R denote the image of the order ideal O in R,

and let O = {fi,...,f;} C wr be the dual K|xg]-module basis of O. Moreover, let
Xy,..., X, € Mat,(K) be the formal multiplication matrices of {gi", ..., gl"}, v € Z,

— Ay 1, H(y)+1 5% —dryg1, 7%
CH() 1 Cu € K, and ¢ = ez T i1+ ey 1, € (WR) -

a) We have
Ay H(y—1)+17% — oy, g%
zo-p=(0,...,0,x, L (y=1)+15 -+ g tﬂ)
t
'Iu' (0""707CH(’7)+17“'7CM) r
in wr and for every k € {1,...,n}, we have
_ —dy 41, H(y—wp, ) +1 7% —dy—wp 41, 7%
Tk -9 =(0,...,0,z5 " T (w410 0 T,
t t
-Xkr~ (07""07CH(’Y)+17"'7CH) r
N WR.
b) For every ' € Z and every p' € ?7/, we have
—d / ’ — —d ’ -
—/ — — ! 41, H (y—~")+1 7% — — 1,0
Poo=1(0,...,0,z, IO, LTy T

(T, XL, XY (0,0, CH(y)+1s - - - eu)'”
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M WR.

Proof. For every s € {1,...,n}, we denote X; = (5,2?)15%5” € Mat,(K) as in Defini-
tion 2.4.15 and we let {&£1,...,&,} denote the canonical K-vector space basis of K. If
v > degyy (tu), we have (wr)—y = {0} and the claims follow trivially. Thus we suppose
that v < degyy (tu).

First we prove a). For every i € {1,...,u}, we have

—dyt1i+1=—(y+1—degy(t) +1=—(y —degw(ti)) = —dy,i
and get

d'y+1 ut )

—d _
Y+1,H(y)+1p*
tH(y)+1 T T Cug

zo - 9 = 20 * (CH(7)+1%g

—dyiq, H(7)+1+1t* —dyp1 g

(7)4_11‘ ( )+1 + -+ Cu.l‘ u

* —d —
— CH(7)+1xO (’Y)+1t (,Y)J’,l + + Cuxo W”ut’ul
— d —
= (0, o .. 707 :I:O H<’Y 1)+1tH(,Y )+1, o .. 7'1:077”25:)
‘IM . (0,...,O,CH(,Y)+1,...,CM)tr
in wgr. For the second part, let k € {1,...,n}. Moreover, let i € {H(v) + 1,...,pu},
¢e{l,...,u}, and 5 = degy (t¢) + wg. Then Proposition 6.2.7 yields

(T, - ;) (B0) = T; (Thte)
= f;k((:ng7 Y, ... ,:Bg&’Hme@), 0,...,0)- X - &F)
0 if degyy, (t;) >
T eWag it degyy(t) <
0 if degyy () < degW( i) — W
- {f,ff)xg&’i if degyy (te) > degyy (t;) — wy '

Assume that there is an £ € {1,...,u} such that v +1—wy, < degy (t7) < degyy (t;) —
and such that 51,(;) # 0. Then v+ 1 < degy (t;) + wy < degyy (t;). We distinguish two
cases. If yt; =t € O for some r € {1,...,u}, we have degy, (t;) + wy = degy, (t,). In
particular, we see that r # ¢ and thus fff) = d; = 0 by Definition 2.4.15 in this situation.
If zit; = by € 00 for some s € {1,...,v}, degy (t;) > degy (t;) + wr = degy(bs).
As G is the projective O-border basis of the ideal (G), Proposition 4.1.7 implies that
gs = bg — Zm(_degW(b +)) amsonmstm and thus we have fi(g) = 0 by Definition 2.4.15 in this
situation. Since both cases yield a contradiction, there is no such index /. In particular,
this implies that

e - 0 if degyy (ty) <v—wi +1
@k - 1) (t) =4 k) dss . :
§p g if degyy (te) > v —wg + 1
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Moreover,

—dyy1i +dyi = —(y+ 1 —degy () +7 — degyy (t;)
= —7 — 1 +degy (te) +wp

= _dw—wk—i—l,f'
Altogether, we get

d'\/+1 [
Ty - Gixg tl

- (k) _—d
wp.+1,7%
- E & ciry T,
{=H(y—wi)+1

—d 1,H 1 —d— lu<
— (0 .0, z, Y—wp+1,H(y—wg)+ Y—wg+ Mt:)~Xtr- Zgztr

tH(’Y wy)+1s e y Lo

in wgp and thus

o
Tp-p = g Tg - Gy y+1, T

i=H(y)+1
a —d d

o Y—wp+1,H(y—wp)+17 T Oy —wp+1,ppk tr Lotr
= E 0 tH(’y wk)+1,...,l‘0 tu)Xk 'Cz(c:i

i= H('y)Jrl

—d —d~— —

_ Y—wp+1,H(y—wp)+17 Y—wg+1,upk
—(0, 0 Lo tH('\/ wk)+1""7$0 t )

Xk .(0’”_70,CH(7)+17.”,CM)U

in wg.

Next we prove b). For all v/ € Z with 7/ < 0, we have P., = {0} and b) holds trivially.
We prove by induction on 4/ € N that b) holds in general. For 4/ = 0, it follows that
p’ € K and thus

dyt1,H(y)+17

Po= pICH(»y)Jrll’o tH(fy)Jrl +-+p Cuxy

—d —d
_ y+1,H(v)+17* v+1,p
—(O,...,O,ﬂfo tH(«/)+1a-"v$0 tu)

tr

—dy+1, ut

p'Z,-(0,... 20, CH ()15 -+ -5 Cu)
—d _ _d _
= (0, o .. ,O, .’EO W+1,H(’Y)+1t;[(,y)+1, o .. ,l‘o ’Y+11Ht:)
P (L, XY .. , XM (0,...,0, CH(Y) 415+ cu)tr
in wr. For the induction step, let now 4/ > 0. Then there exist an s € N, },...,c, € K,
and t;,...,t, € T2*! such that p’ = ¢jt] + - + ¢t,. For every r € {1,...,s}, there
isak, €{0,...,n} and a u, € ']I‘Zﬁl such that ¢, = . u,. Let wg =1, Xy = Z,, and

for all indices r € {1,...,s}, let 4 = v — 7' + wg,. Then the induction hypothesis,
the commutativity of the formal multiplication matrices of {gdeh ...,g%} C P, which
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follows from Proposition 4.1.7 and Theorem 2.4.19, together with a) yield

Al =Tp, - (T - p)

=, - ((0,...,0,2, —dg 11, H”’Hlt}( L ’xadwﬂ,ug;)
. (C'Tur)(I XX - (0,...,0 s CH(y) 415 - - - )™
—ds, —w P LHFr—wp, ) +1 —dy,. —w AL
= (O 0 .IO k " k tH('Yr_wkT)‘f'l’ ceey $0 " k Ht:)
: (XkT () (T, XL, X)) (0,0, CH(y)+1s - > cu)™)
—d —d ’ —
— (0 .0 , T y=~'+1,H(y— ’YH—ItH(’Y ARTRNN el H’”t;)
. (cra:kTur)(I XXy (0, 0, CH(p 415 - - ,cu)tr)
—d —d, -
:(O 0 , T y—~'+1,H(y— ’Y)-HtH('y ’y)+17_“,x0 Y= H’“t;)
. (crt;)(Iﬂ, XL Xﬁr) -(0,...,0, CH(y) 41+ s cu)tr)
in wg. Thus it follows that
S
ﬁ/‘SOZZC;tr'(p
d —d. .-
_Z y=v'+1,H(y— ’Y)+1tH(,y LS EERRRR( Y “/+1,ut::)

(AN (T X, XY (0,50, Crmyats - )

—d

—d.,_ . -
_ Y= +1,H(y—~")+17 y='+1,pp*
=(0,...,0,z, t,)

tH(’Y ’Y)+17"‘7‘T0

- 5 tr 5 tr
. <Zc;t;)(Iu,Xl vy X ) (0,00, ety )
r=1

—d

—d
_ y='+1,H(y=")+17
=(0,...,0,z,

tH(’Y A)HL :L'O
p(z,“)(1 sy ) (0,0, Ch )1 - )

/ -
Y=y +1ug*
t,)

in wg and the claim follows for 4" > 0. O

Corollary 4.3.11. Letd,; =y —degy (t;) € Z be for ally € Z and all i € {1,..., u},
let X1,...,X, € Mat,(K) denote the multiplication matrices of {gdeh, c,gdehy C P
let O = {t1,...,t,} C R denote the image of O in R and let O = {1, ot} C wr
be the dual K|xo]-module basis of O. Moreover, let Oy be the image of Oy = Ui, x’SO
in R and @3 C wpg be the set of dual objects of the elements in Oy. Let v,y € Z be
integers and p € P.,. Then the submatriz of p(Z,, X{*,..., X)) € Mat,(K) obtained
by deleting the first H(y —«') rows and the first H(~y) columns represents the K -vector
space homomorphism 75 : (WR)—y = (WR)—y+~/, ¢ = P+, the multiplication by the ele-
ment p € R, with respect to the K-vector space bases (Og)_, of (wg)_, and (@S)_WJW/
of (WR)—’y-i-'y"
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Proof. Let {&1,...,&,} denote the canonical K-vector space basis of K*. According to
Proposition 4.3.7, the sets (68),7 and (6;)_7+7/ are K-vector space bases of (wr)_-
and (WR)_y4-, respectively. If v > degy(t,), we have (wr)—, = {0} according to
Proposition 4.3.7 and the claim follows trivially. Thus suppose that v < degy,(t,). For
all indices k € {H(y) +1,...,u}, Proposition 4.3.10 yields

il )

— —d +1,k %
=D-xy Tl
—d ” —d

— N +1,H(y—~")+17 —~ 1,k t t t
=(0,...,0,2 O @ ) p(T, X A - ER
and the claim is a direct consequence of this. O

Example 4.3.12. Consider the Q-algebra R = P/(G) which is defined by the projec-
tive O-border basis G C P = Q[t, z,y] of the Examples 4.2.10 and 4.3.9, again. Recall
that P was standard graded and that O = {t1,...,ts} = {1,y,z,y% 2y, 22 zy? 23} has a
maxdegy-border. Moreover, we had H : Z — Z, v — #{k € {1,...,8} | degy (tx) <},
the Hilbert function of R was HFr = H : 1,3,6,8,8,..., the multiplication matri-
ces X, Y € Matg(Q) of {g4°" | g € G} were

000O0O0OO0O O 0 000 0 OO0 O O
000O0O0OGO 0O O 0 100 -200 0 O
100 00O0 O 6 000 0 O0O0O O O
y— 000O0O0OGO0O O 0 Y= 010 3 00 0 O
010000 -2 0| 001 0 00 -2 =2]’
001000 0 -11 000 0 OO0 O O
000110 3 0 o000 0o 11 3 3
000O0O0OT1 O 6 000 0 OO0 O O

and we had p = 2% + ty € Py. Let 75t (Wr)—2 = (WR)o, ¥ = D~ ¢ be the multiplication
by p € Re. Then

p(I& Xtr7ytr) _ (Xtr)Z +IS X ytr

0 1 0 0 O 1 0 O

0O 0 0 1 o0 0 1 0

0 0 0 0 1 0 0 1
10 -2 0 3 =2 0 3 0
o 0o 0 0 -2 0 4 0

0 0 6 0 0 —-11 1 6

0O 0 0 0 -8 0 10 O

0 0 36 0 -2 —60 3 25
EMatg(@).
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4 Border Bases and Homogenization

By Corollary 4.3.11, the submatrix

1 0

0 1

3 0

4 0 | € Matro (Q)
1 6
10 0

3 25

of the matrix p(Zg, X', V') obtained by deleting the first H(0) = 1 rows and the first

H(2) = 6 columns represents the homogeneous Q-vector space homomorphism 7?% with

respect to the Q-vector space basis {@*75*} C wp of (wg)—2 and the Q-vector space
basis {@*,T*,tyZ*,tTy*,tw2*,t2my2*,t23:3*} C wp of (wgr)o-
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5 Projective Border Bases and Algebraic
Geometry

After the algebraic foundations in Chapter 4, we now use projective border bases for the
study of zero-dimensional closed subschemes of weighted projective spaces. The main goal
of this chapter is to show that we can translate geometric properties of zero-dimensional
closed subschemes of weighted projective spaces to algebraic properties of residue class
rings of the Z-graded K-algebra P = P[xg] = K|[zo,...,Zs]. In this thesis, we are par-
ticularly interested in uniformity conditions of zero-dimensional closed subschemes and
try to characterize them. Uniformity conditions, e.g. the Cayley-Bacharach property
or the uniform position property, have frequently been studied, for instance in [Har80],
[Rat87|, [Kre98|, [Kre94|, [GKRI3|, and [MP04]. The most general notion of uniformity
we consider, namely the concept of (4, j)-uniformity as defined in Definition 5.2.1, is due
to |[Kre98, Defn. 7.12| and [Kre01, Defn. 2.1|. This uniformity condition generalizes both
the Cayley-Bacharach property as well as the uniform position property and we charac-
terize (i,7)-uniform subschemes by means of algebraic properties of the corresponding
projective coordinate ring and its canonical module in Theorem 5.2.7, Corollary 5.2.9,
and Theorem 5.2.14. In the final section, we turn these characterizations into algorithms
that allow us to check whether a given zero-dimensional closed subscheme is (4, 7)-uniform
or not. More precisely, we do the following.

In the first section of this chapter, we recall the basic facts about zero-dimensional
closed subschemes of weighted projective spaces. The weighted projective space Px (W)
with respect to a positive matrix W € Mat ,,41(Z) is the projective scheme which is de-
fined by the Z-graded K-algebra P = P[xg] = K|y, ..., ¥y according to Definition 5.1.1.
As in the previous chapter, x¢ denotes a homogenizing indetermine and the Z-gradings
of P respectively P are defined by the matrices W = (w1, ..., wy,) € Maty ,,(Z) with the
property that w; > 0 for all i € {1,...,n} respectively W = (1 | W) € Maty ,,+1(Z).
Then in Proposition 5.1.8, we show that a zero-dimensional subscheme X C P (W) has
no point on the hyperplane at infinity if and only if there exists a projective border basis
of its defining ideal Z+(X) C P. This condition can often be satisfied after a generic
linear change coordinates, cf. Proposition 5.1.10. Thus we get a one-to-one correspon-
dence between the zero-dimensional subschemes X C Py (W) that have no point on the
hyperplane at infinity and projective border bases of homogeneous ideals in P that can

be illustrated as follows:
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5 Projective Border Bases and Algebraic Geometry

zero-dimensional closed subschemes X of weighted projective spaces P (W)
that have no point on the hyperplane at infinity

projective border basis projective subscheme
of the defining ideal defined by the
I*(X)CcP homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 | W) with a positive matrix W € Maty ,(Z)

Moreover, we additionally assume that X has a K-rational support, i.e. that the common
zeroes of the defining ideal of X are K-rational by Definition 5.1.5. Note that this
condition is trivially satisfied if K is algebraically closed. Under the assumptions that X
has a K-rational support and that no point of X lies on the hyperplane at infinity, we show
in Proposition 5.1.19 that for all subschemes Y C X and for all i € {deg(Y),...,deg(X)},
there is a subscheme Y’ C X of degree i that satisfies Y C Y’. This proposition enables
us to study uniformity conditions of X by means of the projective coordinate ring of X
and its canonical module in the remaining part of this chapter.

In Section 5.2, we use the properties of zero-dimensional closed subschemes X C P (W)
shown in Section 5.1 and the additional knowledge of the existence of a projective border
basis of the defining ideal of X in order to determine whether X is (¢, j)-uniform or not.
After the definition of various uniformity conditions in Definition 5.2.1, we show that we
can use (i, 7)-uniformity conditions to characterize all the other uniformity conditions in
Proposition 5.2.6. Then we characterize (4, j)-uniform subschemes by means of the mul-
tiplicative structure of the canonical module of the corresponding projective coordinate
ring in Theorem 5.2.7. Since we assume that there is a projective border basis of the
defining ideal of X, we are then able to use the explicit description of the multiplicative
structure of the corresponding canonical module as developed in Section 4.3. This ad-
ditional piece of information about the multiplicative structure yields a characterization
of (i, 7)-uniform schemes by means of zero sets of a specific ideal in Corollary 5.2.9. In
particular, if K is algebraically closed, we only have to apply several radical membership
tests in order to check whether a given zero-dimensional closed subscheme is (4, j)-uniform
or not. In the second subsection, we then restrict ourselves to the reduced case and show
that a given reduced zero-dimensional closed subscheme is (i, j)-uniform if and only if
certain sets are K-linear independent in Theorem 5.2.14.

In the final section of this chapter, we sum up various ways to check uniformity con-
ditions and turn all the results of Section 5.2 into explicit algorithms.

As in the previous chapter, we let the polynomial ring P be Z-graded by the matrix
W = (wr,...,w,) € Maty ,(Z) with w; > 0for alli € {1,...,n}. Moreover, xy denotes a
homogenizing indeterminate and P = P[xzo] = K[z, ..., ¥,] is Z-graded by the positive
matrix W = (1 | W) € Maty ,4+1(Z). The algebraic closure of the base field K is denoted
by K.
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5.1 Zero-Dimensional Schemes in Weighted Projective Spaces

Note that we always consider closed subschemes and closed points and thus simply say
subscheme and point instead of closed subscheme and closed point for the whole thesis.

5.1 Zero-Dimensional Schemes in Weighted Projective
Spaces

In the first section of this chapter, we recall some of the basic properties of weighted pro-
jective spaces and their subschemes and show that projective border bases are suitable
to study these subschemes under certain conditions. For a more general introduction
to weighted projective spaces, we refer to [IF00], [Dol82|, and [Har92| and for a general
introduction to algebraic geometry, we refer to [Kun85|, [Har77], and [EHO00].

First we introduce weighted projective spaces. By [Kun85, Defn. .5.15], the homo-
geneous spectrum Proj(P) of the Z-graded K-algebra P = 7, P, denotes the set of

all homogeneous prime ideals of P that do not contain the homogeneous maximal ideal
o =
m= @7:1 Py = (xg,...,2n).

Definition 5.1.1. Let m = 72, P, = (zy,...,x,) denote the homogenous maximal
ideal of the Z-graded K-algebra P = D2 p,.

a) The projective scheme Px (W) = Proj(P) is called the weighted projective
space of type W over K. In the standard graded case, i.e. for W = (1,...,1),

we also write P instead of Px (W) and call P} the n-dimensional projective
space over K.

b) Let the multiplicative group K \ {0} act on A%t = Spec(P) via
A (xoy .oy zn) = Az, AP 21, .., Ay,

Then P (W) is the quotient of A%\ {0} by K \ {0}. The equivalence class of a
point (co,...,cp) € A?(H under the above action is called a (projective) point

in Pr (W) and is denoted by (co: --- :¢p) € Pr(W).

c) Let X C Py (W) be a subscheme, let R be the coordinate ring of X, and let J C R
be a homogeneous ideal. Then we call J%* = {r € R | m’r C J for some i € N}
the saturation of J. If J = J% we say that .J is saturated.

d) Let X C Px (W) be a subscheme. The largest ideal in P that defines X scheme-
theoretically is called the defining ideal of X and is denoted by Z7(X). In this
situation, the coordinate ring of X is P/Z*(X).

e) Let X C Pg(W) and Y C X be subschemes. The largest ideal in the coordinate
ring P/ZT(X) of X that defines Y scheme-theoretically is called the defining ideal
of Y and is denoted by Z (Y).
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5 Projective Border Bases and Algebraic Geometry

Proposition 5.1.2. Let X C IP’K(W) be a non-empty subscheme, we let R = P/TT(X)
and let m = @%Z = (xg,...,xn) be the homogeneous mazximal ideal of the Z-graded

K -algebra P.

a) There is a one-to-one correspondence between the subschemes of X and the satu-
rated homogeneous ideals of R. In particular, the defining ideal Ig(Y) of a sub-
scheme Y C X is saturated and two ideal I,J C R define the same subscheme of X
if and only if 1% = Jsat,

b) Let J C R = P/TT(X) be a homogeneous ideal and let ¢ : P — R denote the
canonical P-algebra epimorphism. The saturation J% of J is a homogeneous ideal
that contains J and we have the equality J%* = e(e~1(J) 13 m™). In particular,
we can compute J53%¢,

Proof. According to the Second Noetherian Isomorphism Theorem, the ideals of R are
in one-to-one correspondence to the ideals in P that contain ZT(X). Claim a) follows
from this correspondence and |[Har77, Exer. 11.5.10].

Next we prove claim b). By Definition 5.1.1, J% trivially contains J. According to
Definition 5.1.1 and [KR00, Defn. 3.5.7],

J? = {r ¢ R|m'r € J for some i € N}
={e(p) | p € P, m'p € e (J) for some i € N}
— {e() | pe () )
=e(e71(J) 15 m™).

Since J C R is homogeneous, J = (f;,...,f,) where s € N and fi,...,fs € P are
homogeneous by [KR00, Prop. 1.7.10]. By Lemma 2.6.7, e~ 1(J) = (f1,..., fs) + TT(X).
Again, [KR00, Prop. 1.7.10] yields that (fi,..., fs) is homogeneous. Since ZT(X) is
also homogeneous by Definition 5.1.1 and since m is homogeneous, [KR05, Prop. 4.1.11]
implies that both e7*(J) :3 m* and thus J%% = g(e7!(J) 13 m®) are homogeneous,
too. Moreover, we can compute J** = e(¢71(J) :3 m*) using [KR00, Thm. 3.5.13] and
Lemma 2.6.7. O

Definition 5.1.3. Let K C L be a field extension and K be the algebraic closure of K.

a) According to [IF00, Prop. 5.3|, the map ¢o : Spec(P) = A — Pg (W) = Proj(P),
(e1y..-y¢n) = (Liep: -+ iey) is injective. For a subscheme X C Py (W), we call
X Ne(A%) C Px(W) the affine part of X and we identify it with its preimage
X =15 M (X Neo(A%)) C A%,

b) Let f € P be a homogeneous polynomial. A projective point (co: -+ :¢,) € Pr(W)
is said to be a zero of f in Py (W) if f(cg,...,cn) = 0. The set of all zeros of f
in Pr(W) is denoted by Z; (f). For a zero (co: -+ :¢,) of f in P?(WLwe simply

call (co:---:cp) a zero of f and for the set of all zeros of f in Pi(WW) we also
write Z1(f) instead of Z%(f)
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5.1 Zero-Dimensional Schemes in Weighted Projective Spaces

¢) The set H™ = ZF(z9) C Pg (W) is called the hyperplane at infinity of P (W).

d) For a subscheme X C Px (W), the points on X N H™ are called the points at
infinity of X.

e) For a homogeneous ideal I C P, the projective zero-set of I in Py (W) is defined
as the set

ZH(I) ={(co: -+ :¢n) €PL(W) | f(co,---,¢n) =0 for all homogeneous f € I'}.

Again, we simply call the zero-set of I in Pz(W) the projective zero-set of I
and denote it by Z*(I).

f) Let S be a set of projective points in Pz, (W). Then the homogeneous ideal
I7(S) = (f € P| f homogeneous, f(p) =0 for all p € S)
is called the homogeneous vanishing ideal of S.

Lemma 5.1.4. Let S be a set of projective points in Px(W). Then TT(S) C P is a
homogeneous radical ideal.

Proof. If S = (), Definition 5.1.3 yields Z*(S) = P and the claim follows trivially. Thus
suppose that S # (). By Definition 5.1.3, the homogeneous vanishing ideal Z7(S) is an
ideal in P and it is generated by homogeneous polynomials. Thus Z*(S) is also homo-
geneous according to [KR00, Prop. 1.7.10]. Moreover, \/Z+(S) C P is a homogeneous
ideal by [KRO05, Prop. 4.1.11]. Let f € /Z1(S) and let f = Z:O:O fy be the decom-

position of f into its homogeneous components. Then f, € /Z+(S) for all v € N by
[KROO, Prop. 1.7.10]. Let v € N. Then there exists a k£ € N such that f$ €Z7(S). Let
(co:---:cy) € 5. Since K is a field and since 0 = f¥(co,...,cn) = (fy(co, .-, cn))* by
Definition 5.1.3, it follows f,(co,...,¢,) = 0. Thus f, € ZT(S). In particular, we see
that f =372, fy € Z7(S) and Z7(S) = /ZT(S) is a homogeneous radical ideal. ~ [

Next we give a necessary and sufficient condition for the defining ideal of a sub-
scheme X C Py (W) to possess a projective border basis. Later we study such subschemes
and explicitly use the additional structure given by the projective border bases, e.g. to

characterize (7, j)-uniform subschemes in Corollary 5.2.9.

Definition 5.1.5. a) A projective point (co: --- :¢,) € Pir(W) with o, ..., ¢, € K
is called K-rational

b) A subscheme X C Pg (W) is said to have a K-rational support if all points of
the zero set ZT(Z1(X)) C Pi(W) are K-rational.

Proposition 5.1.6. Letp= (l:c1:--- :¢y) € Px(W) be a K-rational point. Then we
have Tt ({p}) = (x1 — c1zg*, ..., 2 — cpzg™) and ZH(Z1({p})) = {p}.
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5 Projective Border Bases and Algebraic Geometry

Proof. Since It ({p}) 2 (x1 —c1zg", ..., xn — cpay™) obviously holds by Definition 5.1.3,
it suffices to prove the converse inclusion. Let f € Z7({p}) \ {0}. Then Definition 5.1.3
yields 0 = f(1,¢1,...,¢n) = f¥(cy,...,¢,). Thus [KRO5, Exmp. 6.3.2] implies that
fdeh e T({(e1,...,en)}) = (w1 —c1,..., 20 — ) Moreover, [KRO5, Prop. 4.3.2] yields
that f = x(fiP)rom € Z({(c1,...,cn)})Po™ for some s € N. Let o be a term ordering
on T" that is compatible with degy,. Then {1 —c1,..., 2, — ¢, } is a 0-Grobner basis of
Z({(c1,...,cn)}) according to [KR00, Coro. 2.5.10|. Now [KRO05, Prop. 4.2.15] shows that
{z1—c1,...,2y—cp} is also a Macaulay basis of Z({(c1, ..., c,)}) with respect to W and
thus f € Z({(c1,...,cn) D™ = (21 — c1ay", ..., 2n — cpxy™) by [KRO5, Thm. 4.3.19].
The other claim is a direct consequence of this and Definition 5.1.3. ]

If not mentioned otherwise, we let X C P (W) be a non-empty, zero-dimensional
subscheme that has a K-rational support, let R = P/Z"(X) be the coordinate ring of X,
and let m = @30:1? = (zo,...,%n) denote the homogeneous maximal ideal of the

Z-graded K-algebra P = @:’;0 ?7 for the remainder of this section.

Proposition 5.1.7. Let ZT(X) = q1N---Nqs with s € N\ {0} and q1,...,qs C P be the
reduced homogeneous primary decomposition of T+ (X) as in [KR05, Prop. 5.6.21]. For
every i € {1,...,s}, let p; = \/q,. Then the support of X is Supp(X) = {p1,...,ps} and
for everyi € {1,...,s}, there is a K -rational point p; € Pi (W) such that p; = T ({p;}).

Proof. Let i € {1,...,s}. The radical ideal p; = /q, of the homogeneous primary

ideal q; C P is a homogeneous prime ideal according to [KRO05, Prop. 4.1.11] and
[Kun85, Rem. V.4.3|. Since X C Px (W) is a non-empty zero-dimensional subscheme,
we get ZT(X) € m. As the primary decomposition is reduced, we get p; C m. Al-
together, we have the following chain of homogeneous ideals Z7(X) C p; C m. Con-
sider the corresponding vanishing ideals in the affine space A%H = Spec(K|xg, ..., xy]).
Since both p; and m are prime ideals, they are also radical ideals according to [Kun85,
Defn. 1.1.6]. As p; C m, the Ideal-Variety Correspondence [CLO07, Thm. 4.2.7| yields
the chain A" D Z(Z*(X)) 2 Z(pi) D Z(m) = {0}. Thus there is an affine point
(coy---ycn) € Z(pi) \ {0} € Z(Z1(X)). In particular, the corresponding projective point
(co: -+ :cn) € P=(W) is also a zero of the homogeneous ideal Z+(X) C p;. Since X
has a K-rational support, it follows (co: -+ :¢,) € Px (W) from Definition 5.1.5. Let
p=ZI"({co: - :cy}). Then p; C p by Definition 5.1.3. Let f,g € P be homogeneous
polynomials with fg € p. Then we have f(co,...,cn)g(co,...,cn) = (fg)(co,...,cn) =0
by Definition 5.1.3. As K is a field, we thus see that f(cg,...,c,) = 0or g(cg,...,cn) =0,
ie. f € p or g € p by Definition 5.1.3. Now [KR00, Prop. 1.7.12| implies that p
is a homogeneous prime ideal. In particular, we get the chain of homogeneous ideals
IT(X) Cp; CpCm As X C Pg(W) is zero-dimensional and as p; and p are both ho-
mogeneous prime ideals, it follows that p; = p. Thus we see that Supp(X) D {p1,...,ps}
and that for all i € {1,...,s}, pi = ZT({p;}) for some point p; € P (W).

For the converse inclusion, let p C m be a homogeneous ideal with the property
that ZT(X) C p. As above, there is a zero p € Px(W) of p and since the subscheme

X C Pg (W) is zero-dimensional, it follows p = Z*({p}). Thus Z+(X) C p = Z7({p}),
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5.1 Zero-Dimensional Schemes in Weighted Projective Spaces

Zt(p;) = Z(q;) for all i € {1,...,s}, together with Definition 5.1.3 and Proposi-
tion 5.1.6 yield

p€ZN(ITT({p}))

czhz* (X))

=ZM(qiN---Nqy)

= Z%(p) U UZ*(ps)

= Z+(I+({pl})) U ZH(Z({ps}))

= {ply"'aps}

Thus there is an index i € {1,..., s} such that p = p; and we get p = p;. Altogether, we
see that Supp(X) C {p1,...,ps} and the claim follows. O

The following proposition generalizes [KR05, Prop. 6.3.21.e| to our setting.
Proposition 5.1.8. The following conditions are equivalent.
i) No point of X lies on the hyperplane at infinity of Px(W), i.e. XN H™ = (.
ii) The element xo € P is a non-zero divisor for R = P/ (X).
iii) There ist a projective border basis of the homogeneous vanishing ideal T+ (X) C P.

Proof. Let Zt(X) = q1 N --- N gs be the reduced homogeneous primary composition
of ZTt(X) C P as in [KR05, Prop. 5.6.21] and for all ¢ € {1,...,s}, let p; = \/q,. As
we have seen in Proposition 5.1.7, we have p; = Z7({p;}) where p; € Px (W) for all
ie{l,...,s} and Supp(X) = {p1,...,ps}-

Now we prove that i) implies ii). Since we assume that X N H™ =, it follows that
ro ¢ I ({m})U---UZ ({ps}) =p1U---Ups = /4, U---U/q,. Thus zg is a non-zero
divisor for P/(q; N---Nqs) = R according to [KR05, Prop. 5.6.17.c|.

Next we prove that ii) implies i). By the Second Noetherian Isomorphism Theorem,
we have R/(To) = P/(Z1(X) + (z0)) and the prime ideals of R/(Zy) are in one-to-one
correspondence to the prime ideals of R that contain Tp. Assume that xo € p; for some
i€ {l,...,s}. Let p; and m denote the images of the prime ideals p; and m in the ring R,
respectively. Then we get the chain of prime ideals (Zp) C p; C m C R. Thus the Krull
dimension of R/(Z) is greater than or equal to 1. According to [KR05, Thm. 5.6.36],
this implies dim(R/(Zo)) > 1. Since xg is a non-zero divisor for R, it follows from [KRO05,
Prop. 5.6.33] that dim(R/(Zo)) = dim(P/(ZT(X) + (Zp))) < dim(R) — 1 = 0. This is
clearly a contradiction and we get zo ¢ p; = ZT({p;}) for alli € {1,...,s} and i) follows.

The equivalence of ii) and iii) is a direct consequence of Proposition 4.1.7 and Corol-
lary 4.1.14 O

Next we show that we can often find a suitable linear change of coordinates such that
no point of X is on the hyperplane at infinity in this new coordinate system.
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5 Projective Border Bases and Algebraic Geometry

Definition 5.1.9. A homogeneous isomorphism P — P is also called a homogeneous
linear change of coordinates.

The following proposition follows the ideas of [MR93, beginning of Section 2.1| re-
spectively [KR05, Lemma 6.3.20 and Prop. 5.5.23.a] and generalizes the result to our
setting.

Proposition 5.1.10.  Assume that K is an infinite field and X 0 ZT(T7) = 0.
Then there is a generic homogeneous linear change of coordinates such that XN H™ = (.

Proof. According to Proposition 5.1.7, there are K-rational points pi,...,ps € Pr (W)
where s € N\ {0} such that Supp(X) = {ZT({p1}),...,Z7({ps})}. Foralli e {1,...,s},
we write p; = (cjo: -+ :¢in) With ¢, ..., cin € K. Without loss of generality, suppose
that the indeterminates 1, ..., x, are ordered increasingly with respect to degy,. Then
T?H = {z0,...,2z;} for some j € {0,...,n}. Let f =[]’ (cioxo + cinz1 + - + ¢ijxj).
Since we assume that X N 2% ((xo, ..., z;)) = 0, it follows f # 0. Let A% = Spec(P).
The set U = A?{H \ Zx(zof) is open with respect to the Zariski topology and it is not
empty by [KRO05, Prop. 5.5.21]. Let a = (ao,...,a;) € U. Then we have ag # 0. Let
by, = %(mo — a1y — - —ajxj) € Py and let &, : P — P, zg — Ly, x; +— x; for all
i € {1,...,n} be the K-algebra homomorphism induced by the Universal Property of
the Polynomial Ring P.

We show that ®, is a homogeneous linear change of coordinates. As ®,(xg) = ¢, € Py,
it follows that &, is a homogeneous K-algebra homomorphism. Moreover, we have
zo = aple + a121 + - - - ajx; = Po(agzro + - - - + ajx;) € im(P®,) and x; = Py (z;) € im(P,)
for all i € {1,...,n}, i.e. ®, is surjective. Let p € ker(®,). For every ¢ € P\ {0}, the
xo-degree of ®,(q) is exactly the zo-degree of q. Hence we get ¢ € P. Since ®,|p = id,
it follows that 0 = ®,(q) = ¢. Therefore, ker(®,) = {0} and P, is injective. Altogether,
®, is a homogeneous linear of change of coordinates by Definition 5.1.9.

Finally, we show that after the homogeneous linear change of coordinates ®,, no
point of the support Supp(X) lies on the hyperplane at infinity H™. Therefore, let
i1 €{1,...,s}. After applying ®,, the point p; = (¢jp: - -+ :¢in) € X has the new coordi-
nates (P, (z0) (i), ..., P, (xn)(pi)) = (aocio + -+ + ajcijicin: - icin). As a € U, we
have apcio + - -+ ajci; # 0, e p; ¢ Hinf,

Altogether, we have proven that every point of U defines a homogeneous linear change
of coordinates with the property that XN H™ = (). By [KR05, Defn. 5.5.19], this means
that there exists a generic homogeneous linear change of coordinates. ]

The assumptions of the above proposition are necessary as the following example shows.

Example 5.1.11. a) Let X C IP’IQF2 be the reduced zero-dimensional subscheme con-
centrated at the points of {(1:0:0),(0:1:0),(0:0:1),(0:1:1),(1:1:1)}. Then
there does obviously not exist a homogeneous linear change of coordinates such
that X N H™ = (). The reason for this is that the projective space ]P’I%2 does not
contain enough points.
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b) Let P = Q[xzg,z1, 2] be Z-graded by the matrix W = (1,1,2) € Mat; 3(Z) and
we let X C Pg(W) be the reduced zero-dimensional subscheme concentrated at the
point (0:0:1). Let ® : P — P be a homogeneous linear change of coordinates. In
the new coordinate system, the projective point (0:0:1) then has the coordinates
(@ 1(20)(0,0,1): &1 (21)(0,0,1) : @~ 1(22)(0,0,1)). As ® is homogeneous accord-
ing to Definition 5.1.9 and as z9 € Pj, we have ®~1(x9) € P;. Since the set
T$ = {x0, 21} is a Q-vector space basis of Py, we see that there exist ag,a; € Q
such that ®~1(xg) = apzo + aiz1. In particular, in the new coordinate system, the
point (0:0:1) has the xg-coordinate ®~1(x()(0,0,1) = (agzo + a121)(0,0,1) = 0.
Thus there is no homogeneous linear change of coordinates such that X N H™ = ()
in the new coordinates.

Remark 5.1.12. Assume that K is infinite.

a) Assume that XN ZT((T7)) = §. Then Proposition 5.1.10 implies the existence of
a generic linear change of coordinates such that XN H™ = (). Thus there is a high
chance that a random choice of a linear change of coordinates yields X N H™ = ().
For practical purposes, repeatedly choosing random linear changes of coordinates

until X N H™ = () holds is enough.

b) Assume that P is standard graded, i.e. graded by W = (1,...,1) € Maty ,,+1(Z).
Then the condition X N Z+((TT)) = XN ZF((x, ..., 2n)) = 0 is trivially holds.
As described in a), one can guess a suitable linear change of coordinates such that
X N H™ = ( holds. Moreover, there are also deterministic methods to choose
such a linear change of coordinates. An explicit description of such a deterministic
method, which is based on a result in [GH91, Subsection 2.3.3], can be found
in [MR93, Section 2.1]|.

The final part of this section is devoted to prove a version of [Kre94, Lemma 2.2] in
our setting. This lemma states that for a given subscheme Y C X, we can find specific
subschemes Y/ C X with Y C Y’.

The following lemma generalizes [Kre94, Lemma 1.2| and gives an easier description
of the saturation of a homogeneous ideal in our setting.

Lemma 5.1.13. Let J C R be a homogeneous ideal and let € : P — R denote the
canonical P-algebra epimorphism. Assume that X N H™ = (. Then the saturation J**
is given by J* = {1’ € R | z{r' € J for some i € N} and J** = e(e71(J) 5 (20)>).

Proof. As x¢ € m, the inclusion J%** C {r € R | {r € J for some i € N} trivially holds
according to Definition 5.1.1. For the converse inclusion, let » € R and ¢ € N be such
that zir € J. Since X N H™ = (), there is a projective O-border basis of Z%(X) by
Proposition 5.1.8. Since X C Py (W) is a non-empty subscheme, Z+(X) # P and hence
O # 0. Let ox = max({degy (t) | t € O}) — 1. Then Proposition 4.1.15 implies
Royi14m = T0' Ryt for all m € N. In particular, mo* 1ty = moxtlgly C J ie.
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r € J% according to Definition 5.1.1. In particular,

J? = {r c R|alyr c J for some i € N}
={e(p) | p € P, xfp € e (J) for some i € N}
={ep) [p € e7'(J) 5 (x0)}
= (7 (J) 5 (20)™)-

according to Definition 5.1.1 and [KR00, Defn. 3.5.7]. O

Next we consider the local structure of the subscheme X at the points of its support.
The following two lemmata generalize [CLO05, Thm. 4.§2.2.2| to arbitrary fields.

Lemma 5.1.14. Let A}, = Spec(P) and let I C P be a zero-dimensional ideal such
that Z(I) = {p1,...,ps} € A}, i.e. such that all zeros of I are K-rational. For all
1e{l,...,s}, welet my =Z({p;}) C P be the mazximal ideal corresponding to p;.

a) There exists an exponent d € N\ {0} such that (m;N---Nmg)¢ C I.

b) There exist ey, ...,es € P such that the following properties hold.
1) We have e; ¢ wy; for alli e {1,...,s}.
2) We havee; +---+¢€s=11in P/I.
3) We have € =¢; for alli € {1,...,s} in P/I.
4) We have e;ej =0 for all i,j € {1,...,s} withi# j in P/I.
5) Foralli€{1,...,s} and for all f; € P\ wy, there exists a polynomial h; € P
such that f;h; =¢€; in P/I.

Proof. First we prove a). Let 9 = m;N---Nmg and q1, ..., ¢ € P withr € N\{0} be such
that 9 = (q1,...,¢-) and let Q = K|[z1,...,x,]. Since the points in Z(I) = {p1,...,ps}

are K-rational, m@Q), ..., msQ are precisely the maximal ideals in ) containing I(Q by
[KROO, Prop. 2.6.11|. Foralli € {1,...,r}, we have ¢; € 9t and thus [KR00, Coro. 2.6.17|
implies that ¢; € v/I. In particular, for every i € {1,...,r}, there exists an exponent

d; € N\ {0} such that q;li € I. Let d = r-max{dy,...,d,} € N\ {0}. According to
[KROO, Rem. 3.2.1], we have M9 = (g, -~ qj, | j1,---,ja € {1,...,7}) and thus we get
md C I

Next we prove b). For all i € {1,...,s}, [KR05, Prop. 6.3.6] yields the existence
of a separator g; € P of p; from the affine point set {pi,...,pi—1,Pi+1,---,Ds}, i.€. an
element with the property that g;(p;) = d0;; for all j € {1,...,s}. In particular, g; € m;
and g;—1 € m; foralli,5 € {1,...,s} withi # j. For every index i € {1,..., s}, we define
ei=1—(1-ghd=-37, (Z)(—gid)k. Then for all ¢+ € {1,...,s}, we have ¢;(p;) =1
and thus e; ¢ m;. Moreover, let i, € {1,...,s} be with i # j. Then g¢ € m? and thus we

see that e; € m?. Furthermore, it follows that e; — 1 = —(1 — ¢g¢)? € m¢ and hence we get
e1+--tes—l=er+-+e1+(e;—1)+e1+---+es € mén---Nmd. Since the maximal
ideals my,...,my; C P are radical ideals by [Kun85, Defn. 1.1.6] and pairwise comaximal,
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[AM69, Prop. 1.16 and 1.10] yield that m¢ N ---Nmé = m{...m¢ = M¢ C I. Thus
€1+---+es = 1in P/I. Moreover, we see that e;e; € m‘llﬂ- . -ﬂmg C I and hence e;e; =0
in P/I. Combining these two results, we get €2 = €61+ +¢;€s = ¢;- (€1 +---+€s) = &
in P/1. For the proof of the last condition, let f; € P\m;. Then c = f;(p;) € K\{0}. Let
fl=1f, € P. Then we have 1— f/ € m;. We define h} = (1+(1—f/)+---+(1—f)4 e;.
Then f/h} = (1 — (1 — f)ht = (1 — (1 — f)Be; = e; — (1 — f)%e;. We have already

seen above that e; € m? for all j € {1,...,s}\ {i}. Moreover, (1 — f/)? € m¢. Hence we
get flhl —e; €emin---Nmd =M C I. Therefore, if we define h; = ch!, it follows that
== - = == .

Lemma 5.1.15. Let A}, = Spec(P) and let I C P be a zero-dimensional ideal such
that Z(I) = {p1,...,ps} C A%, i.e. such that all zeros of I are K-rational. For all
i€ {l,...,s}, welet m;y = Z({pi}) C P be the mazximal ideal corresponding to p; and
we let O; = Py, be the localization of P at m;. Then there exists a canonical K-algebra
isomorphism P/I = O1 /101 x --- x Og/10Os.

Proof. For every index ¢ € {1,...,s}, there is a canonical K-algebra homomorphisms
vi: P — O; - 0;/10;. According to the Universal Property of the Direct Product
O1/101 x---xO;/I0;, these canonical K-algebra homomorphisms induce the canonical
K-algebra homomorphism ¢ = ¢ X -+ X @5 : P — O1/I01 x -+ x Og/10s. For all
ie{l,...,s} and for all ¢ € P, we denote the coset of ¢ in O;/10; by [q];.

First we prove that ker(¢) = I. For every ¢ € I and all i € {1,...,s}, we have
vi(q) = [q]; = [0]; and thus I C ker(yp). For the converse inclusion, let f € ker(¢). Then
for alli € {1,...,s}, we have f € IO;, i.e. there exists an f; € P\ m; such that ff; € I.
For all i € {1,...,s}, let e;,h; € P be as in Lemma 5.1.14, i.e. such that f;h; = &;
in P/I. Then we have f(fih1 + -+ fshs) = (ffi)h1 + -+ (ffs)hs € I and thus it
follows that 0 = f(fih1 + -+ fohs) = f(e1 + -+ + &) = f in P/I. Altogether, we get
f € I and hence I = ker(p).

According to the Homomorphism Theorem, the claim follows if ¢ is surjective. Let
r€ O01/I0; x---xOs/I0;. Forallie {1,...,s}, there are r; € P and ¢; € P\ m; such

that r = ([t];, ..., [22];). By Lemma 5.1.14.b, there exists a u; € P such that g;u; =€;
in P/I for allie {1,...,s}. Let F =Y.  rue; € Pandje€ {l,...,s}. According to
62-—6j

Lemma 5.1.14, we have e; ¢ m; and thus é € O;. In particular, e; — 1 = Jej € 10;
and e; = 2L € JO; for all i € {1,...,s}\ {4} by Lemma 5.1.14. Altogether, it follows

Ej . )
that ; (F) = [o7_ roweil; = 307 Fefl; = [ Geily = [, 1o o(F) =r. Thus ¢
is surjective and the claim follows. O

Next we generalize [Kre94, Lemma 1.1] to our setting.

Lemma 5.1.16. Assume that XN H™ = (). Then deh : R — P/TT(X)dh p s pdeh
for all p € P is a K-algebra epimorphism with ker(deh) = (Zo — 1) C R. In particular,
if we denote ox = max{y € Z | AHFx(v) # 0} — 1, the restriction ﬁ‘R(;X—H of deh
to Roy4+1 15 a K-vector space isomorphism.
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Proof. Consider the K-algebra epimorphism ¢ : P deb P — P/T*(X)%" induced by
dehomogenization and the canonical K-algebra epimorphism. By Lemma 2.6.7, we have
ker(¢) = deh™H(ZT(X)dh) = Z+(X) + ker(deh) = ZH(X) + (z¢ — 1). Thus we see that
T%(X) C ker(p) and the Universal Property of the Residue Class K-Algebra P/Z+(X)deh
induces the K-algebra epimorphism deh : P/ZT(X) = R — P/ZT(X)%" defined by
P+ ¢(p) = peh for all p € P. In particular, ker(deh) = ker(p)/Z7(X) = (Zp — 1) C R.
As XN H™ = @, Proposition 5.1.8 implies the existence of a projective O-border basis G
of Z+(X). In particular, it follows that ox + 1 = max{degy (t) | t € O} and thus
dimg (Roy+1) = #0O according to Proposition 4.1.15. Moreover, Proposition 4.1.7 yields
that the set {g%" | ¢ € G} C P is an O-border basis of Z+(X)4°h and thus we have
dim g (P/Z7(X)%h) = #0 = dimg (Ryy41) < 00 by Definition 2.1.14. In particular, the
elements of P/ZT(X) are K-linear combinations of the residue classes of the elements
(xgx-i-l—dcgw(l')p)

of O, i.e. of the form p with p € P<,, 1. Since we have deh = p and

a:gXH_degW(p)p € Pyyi1 forallp € P<yyia, ﬁ’RaX_‘_l is a K-algebra epimorphism. Since

dim g (Roy+1) = dimg (P/Z7(X)9h) < oo, it is even a K-vector space isomorphism and
the claim follows. O

Before we are able to generalize [Kre94, Lemma 2.2] to our setting, we need to define
the concept of separators.

Definition 5.1.17. Let X C Pg(WW) be an arbitrary non-empty zero-dimensional
subscheme and let R = P/ZT(X) be the corresponding coordinate ring.

a) Since X is a zero-dimensional subscheme, the Hilbert function HFx = HFp gets
eventually stationary. Its maximum value deg(X) = max{HFx(v) | v € Z} € N is
called the degree of X.

b) Let Y C X be a non-empty subscheme of degree deg(Y) = deg(X) — 1. The natural
number ax(Y) = min{y € Z | (Z (Y)), # 0} is called the initial degree of Z; (Y).

c) Let Y C X be a non-empty subscheme of degree deg(Y) = deg(X) — 1. We call
every element of (Z3 (Y))ay(v) \ {0} 2 minimal separator of Y and every element
of (Zg (Y))oy+1 \ {0} is called a separator of Y.

Proposition 5.1.18. Let X C P (W) be an arbitrary non-empty zero-dimensional
subscheme with coordinate ring R = P/ZT(X), let Y C X be a non-empty subscheme of
degree deg(Y) = deg(X) — 1, and let ax(Y) = min{y € Z | (Z£ (Y)) # 0} be the initial
degree of I (Y). Moreover, let ox = max{y € Z | HFx(v) < deg(X)}.

a) The Hilbert function of Y satisfies

HFx(7) if v < ax(Y)

HFv(7) = {HFX(’Y) -1 ify > ax(Y)

for all v € Z. In particular, we get ay(X) < ox + 1.
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b) Let f3 € (T3 (Y))agv) \ {0}, Then we have (I (Y)), = K - ngaX(Y)f{} for all
v € Z with v > ax(Y).

Proof. This is proven in [Kre94, Section 1| for K being algebraically closed and P being
standard graded. In our setting, the proof stays just the same. O

Finally, we are now able to generalize [Kre94, Lemma 2.2] to our setting.

Proposition 5.1.19. Assume that XN H™ = (. Moreover, we let A% = Spec(P) and
denote ox = max({y € Z | HFx(v) < deg(X)}).

a) The ideal T (X)4M C P is a zero-dimensional ideal and Z(Z*(X)dh) C A% i.e.
all the zeros of T+ (X)) are K-rational.

b) Let k € N and r € Ry \ {0}. Then there exists an v’ € Ryyy1, a subscheme Y C X
with deg(Y) = deg(X) — 1, and a separator fy € Ryyi1 of Y such that rr’ = xk fy.

c) If Y C X is a subscheme and k € N satisfies deg(Y) < k < deg(X), then there
exists a subscheme Y' C X such that deg(Y') = k and such that Y C Y.

Proof. First we prove a). We denote I = ZT(X)4h.  According to Lemma 5.1.16
and Definition 5.1.17, we have dimg (P/I) = dimg (Ryy41) = deg(X) < oo, ie. I C P
is a zero-dimensional ideal according to [KR00, Defn. 3.7.2]. By the Finiteness Cri-
terion [KROO, Prop. 3.7.1], the zero set Z(I) C A% = Spec(K|[z1,...,x,]) is finite.
Let Z(I) = {p1,....ps} C A% be where s € N. Since X is assumed to be non-
empty, we also have dimg(Rsy+1) = deg(X) > 0. According to Lemma 5.1.16, it
follows that dimg(P/I) = dimg(Rsy4+1) > 0, i.e. I C P. By the Weak Nullstellen-
satz [KR0O, Thm. 2.6.13], we hence get Z(I) # 0, i.e. s > 1. Let i € {1,...,s} and
write p; = (pi1, ..., pin) € A% With pi1,... pin € K. As XN H™ = () by assumption,
we have ZT(X) = "™ according to Proposition 5.1.8 and [KR05, Prop. 4.3.5]. Let
F € I*(X) be a homogeneous polynomial and let d € N be maximal such that zg di-
vides F. By [KR05, Prop. 4.3.2.h], we have F' = zd(Fdeh)hom Tn particular, we see that
F(l,pil, e 7pin> = ([Eg(Fdeh)hom)(l,pil, R 7pin> = Fdeh(pz‘l, . ,pm) = 0 since Fdeh ¢ T
and since p; € Z(I). In other words, the projective point (1:p;1: -+ :piy) 1S & common
zero of the ideal Z1(X). Since the zeros of Z1(X) are assumed to be K-rational, we see
that p; = (pi1, ..., pin) is also K-rational and hence Z(I) C A% follows.

Next we prove the second claim. For all ¢ € {1,...,s}, let m; = Z({p;}) € P be
the maximal ideal corresponding to the point p; and let O; = Py, be the localization
of P at my. Let o : P/T = O1/I0; x --- x O4/IO; be the K-algebra isomorphism
of Lemma 5.1.15, let deh : R — P/I be the K-algebra epimorphism of Lemma 5.1.16,
and let ¢+ = p o deh. Note that since the restriction LR, 1 Of L t0 Royt1 is a K-vector
space isomorphism according to Lemma 5.1.16, we have ™ *({f}) N Ryy+1 # 0 for all
f€01/IO; x -+ x Og/IO,. We distinguish two cases.

For the first case, suppose that k < ox+1. Let (r1,...,75) = L(a:SXH*kr). Since we have
r # 0, there exists an ¢ € {1,...,s} such that r; # 0. The K-algebra O; is Noetherian
by [Kun85, Coro. I11.4.11] and it is a local ring with maximal ideal m;O; according to
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[Kun85, Exmp. d in IIL.3]. Let p C O; be a prime ideal with IO; C p. Assume that
p # m;O;. Since m;O; is the maximal ideal of the local ring O;, we get the chain of ideals
I0; Cp C mO;in O;. ie. dim(O;/10;) > 0. As P/I1 =2 O1/10; %+ --x0Os/10; according
to Lemma 5.1.15 and as I is zero-dimensional by a), 0 = dim(P/I) > dim(O;/10;) > 0.
Hence it follows that p = m;0;. By [Kun85, Defn. 1.1.6], this means that m;O; is the
only minimal prime divisor of the ideal IO; and 10; C O; is thus an m;O;-primary ideal
by [Kun85, Lemma V.4.4]. Now we consider the socle &(0;/10;) of the ring O;/I0;,
i.e. the set G(OZ‘/IOZ') = {? € Oi/IOi ‘ fe (’)i,mi(’)i-f = {0}} - Oi/IOi. Asr; £ 0,
[Kun85, p. 189] implies the existence of an element r, € O0;/I0; and a socle element
si € 6(0; /I(’) ) such that rirg =s;. Let fy € .71((0,...,0,5;,0,...,0)) N Ryyy1 and let
€ 171((0,...,0,75,0,...,0)) N Ryy11. Then we have

s by

(o1 x‘““fy)

(g ttr ) (r') = (el fy)
=(r1,...,rs)(0,...,0,75,0,...,0) — (1,...,1)(0,...,0,5;0,...,0)

s g

0,...,O,riri,0,...,0)—(O,...,O,si,O,...,O)

Lx

I
-

—~

—~

I
o

9

ie. :L‘SXH Ryl — UXny € ker(1)a(oy+1). We have ker(1) = ker(deh) = (zg — 1) C R
by Lemma 5.1.16. Let p € R be such that :BUXH Ryl — UXHfY = p(zg —1). In
particular, p(zg — 1) is homogeneous of degree 2(ox +1). Let p = > 7 py be the
decomposition of p in its homogeneous components. Assume that p % 0. Then the
elements m = min{y € Z | p, # 0} and d = max{y € Z | p, 75 0} exist and we get
p(To — 1) = pazo + P — Pm € Ry(oy4+1) With an element p € @7 ma1 By As z0 is a
non-zero divisor for R by Proposition 5.1.8 and as 1 is obviously a non-zero divisor for R,
it follows that d < d+1 = m in contradiction to the choice of m and d. Thus we get p = 0
and this implies 3% (r — & fiyy) = 25 Fpr — 2357 £ = 0. Since the element g
is a non-zero divisor for R by Proposition 5.1.8, we get the equality ' — z fy =0. It
remains to prove that fy is a separator of a subscheme Y C X with deg(Y) = deg(X) —1.
Let Y C X be the subscheme of X defined by the saturated ideal (fy)s** C R. For
all k € {1,...,n}, we have o((zx — pirzy®) fy) = (0,...,0, (xk — pir)si,0,...,0) = 0 as
T — pik, € My and s; € S(0;/10;). Thus (z — piag*) fy € ker(t)oy+14w, and in an
analogous fashion as above, we get (zx — pirxy*) fy = 0 and thus xy fy = pigay” fy for
all k € {1,...,n}. In particular, we see that ((fy)*®), = K - 21”7 ' fy for all v € Z
with v > ox + 1 and thus deg(Y) = deg(X) — HF f)sat(0x + 1) = deg(X) — 1. By
Definition 5.1.17, fy is a separator of Y and the claim follows in the case k < ox + 1.

For the second case, suppose now that k > ox + 1. As XN H™ = (), Proposition 5.1.8
yields the existence of a projective O-border basis of Zt(X). In particular, it follows
that ox + 1 = max{degy (t) | t € O}. Now Proposition 4.1.15 implies that r is of the
form r = :clg_gx_ 7 for some 7 € Ryy41. As we have already shown in the first case,
there exists a subscheme Y C X of degree deg(Y) = deg(X) — 1, a separator fy € Ry, 1
of Y, and an element ' € Ry, 41 such that '’ = xoxH fy. Altogether, we see that

rr _l'lg ox g _l'g 7585t fy = af fy and b) follows.
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Finally, we prove claim c). Let Y C X be a subscheme and let ¥ € N be a natural
number such that deg(Y) < k < deg(X). We prove the claim by downward induction
on k € {deg(X),...,deg(Y)}. Since the induction start k = deg(X) follows trivially, we
only have to prove the claim for k < deg(X). If deg(Y) = k, the claim follows trivially.
Thus suppose that deg(Y) < k. By the induction hypothesis, there is a subscheme Y” C X
such that deg(Y”) =k +1and Y C Y”. Welet S = P/ZT(Y”). As Y’ C X is a non-
emtpy subscheme, ZT(Y”) 2 Z7(X) and, therefore, ZT(ZT(Y")) C Z¥(Z7 (X)), i.e. the
subscheme Y” C X has K-rational support, and we get Y/ N H™ C Xn H™ = . As
deg(Y) < deg(Y”), there exist a natural number m € N with (Z{,(Y)),, # {0}. Let
s € (Zgn(Y))m \ {0} € Sy, \ {0}. Now b) implies the existence of an element s’ € Sy, 41,
of a subscheme Y’ C Y” such that deg(Y') = deg(Y”) — 1 = k, and of a separator
Jy € Soyu+1 of Y, such that ss' = x{" fy. Hence Proposition 5.1.18 and Lemma 5.1.13
yield Zg, (Y') = (fy)® C (s)** C Z3,(Y). Thus we have Y C Y’ and the claim
follows. O

5.2 Projective Border Bases and Uniformity Conditions

In this section, we study zero-dimensional closed subschemes of weighted projective
spaces as introduced in Section 5.1. We restrict ourselves to the study of zero-dimensional
subschemes with K-rational support, cf. Definition 5.1.5, and with the property that no
point of the subschemes lies on the hyperplane H™ = Z+(z() at infinity. By Proposi-
tion 5.1.10, there often exists a generic linear change of coordinates such that the second
property holds. More precisely, we do the following.

In the first subsection, we introduce the notion of certain uniformity conditions in Defi-
nition 5.2.1. We are particularly interested in the study of (4, j)-uniform zero-dimensional
subschemes since all the other uniformity condition of Definition 5.2.1 are special cases
of them, cf. Proposition 5.2.6. Since we assume that no point of the support of the
given subscheme X lies on the hyperplane at infinity H™, we know that there exists a
projective O-border basis G of the corresponding defining ideal Z(X) C P. Moreover,
the formal (projective) multiplication matrices of G fully determine the multplicative
structure of the coordinate ring R = P/Z"(X) and the corresponding canonical mod-
ule wg, cf. Chapter 4. Those properties provide additional information that allow us
to characterize (i, j)-uniform subschemes by means of the multiplicative structure of the
corresponding canonical module in Theorem 5.2.7. As a direct consequence, we can char-
acterize (i, j)-uniform schemes via certain vanishing conditions in Corollary 5.2.9, which
allow us reduce the question whether X is (7, j)-uniform to certain radical membership
tests if the base field K is algebraically closed.

In the second subsection, we additionally assume that the subscheme X is reduced. In
this case, we can characterize (7, j)-uniform subschemes using separators as introduced
in Definition 5.1.17. In particular, we prove that the scheme X is (i, j)-uniform if and
only if certain sets are K-linearly independent in Theorem 5.2.14.
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For the whole section, we let X C Px (W) be a non-empty zero-dimensional projective
subscheme with K-rational support and assume that X N H™ = (). We want to study
uniformity conditions with the help of the canonical module wg of the projective coordi-
nate ring R = P/Z"(X). Let HFx = HFp : Z — Z, v — dimg (R,) be the multigraded
Hilbert function of X and let AHFx : Z — Z, v — HFx(y) — HFx(y — 1) denote its
Castelnuovo function. Moreover, the invariant

ox = max{i € Z | HFx(i) < deg(X)}

will play an important role throughout this section. According to [IK99, Thm. 1.69],
ox + 2 is exactly the Castelnuovo-Mumford regularity based on [Mum66, Lect. 14| in the
standard graded case. In order to achieve our goals, we study subschemes Y C X. We
define the Hilbert function HFy and the invariant oy similarly to the definitions above.
Recall that we always consider closed subschemes and thus simply say subscheme instead
of closed subscheme for the whole thesis.

5.2.1 The General Case

The study of projective point sets in uniform position over an algebraically closed field
of characteristic zero started with the Uniform Position Lemma in [Har80, Section 2.
Over algebraically closed fields of positive characteristic, projective point sets in uniform
position were studied in [Rat87]. In [Kre94, Section 3|, the uniform position property
was refined to the notion of i-uniformity and applied to non-reduced zero-dimensional
subschemes. In [Kre98, Section 7|, [Kre00, Section 5|, and [Kre0l, Section 2| the author
further generalized this notion to (i, j)-uniform zero-dimensional subschemes. The au-
thors of [MPO04] also studied (7, j)-uniform reduced zero-dimensional subschemes. Note
that, as described in [MP04, Rem. 2|, their notion slightly differs from ours in Defini-
tion 5.2.1, which coincides with the one in [Kre01, Defn. 2.1] in the standard graded case.
Similarly, the Cayley-Bacharach Theorem, which is named after theorems in [Cay43] and
[Bac86|, was first generalized in [Kre94, Section 2| to non-reduced zero-dimensional sub-
schemes over algebraically closed fields.

Our notion of (4, 7)-uniformity in Definition 5.2.1, unifies and generalizes all these
concepts and allows us to apply them to non-reduced zero-dimensional subschemes of
weighted projective spaces over arbitrary fields.

Definition 5.2.1. Leti e {1,...,deg(X) -1} and j € {1,...,0x}.
a) We say that X is an i-uniform scheme if for every subscheme Y C X that satisfies
deg(X) — i < deg(Y) < deg(X), we have HFy = min{HF¥, deg(Y)}. In particular,

we say that X is in uniform position if X is (deg(X) — 1)-uniform.

b) We say that X is an (i, j)-uniform scheme if for all subschemes Y C X that satisfy
deg(Y) = deg(X) — i, we have HFy(j) = HFx(j).

162



5.2 Projective Border Bases and Uniformity Conditions

c) We say that the scheme X has the Cayley-Bacharach property of degree j,
if X is (1,j)-uniform. In particular, if X has the Cayley-Bacharach propery of
degree ox, we call X a Cayley-Bacharach scheme.

Example 5.2.2. Let P = Q[zg, z1, z2] be standard graded, i.e. graded by the matrix
W = (1,1,1) € Mat; 3(Z), and consider the ideal I = p3 N p? Np3 C P with the homo-
geneous vanishing ideals pg = ZT({(1:0:0)}), pr = ZT({(1:0:1)}), and with the ideal
pa =Z({(1:1:0)}) of P as defined in Definition 5.1.3. According to Proposition 5.1.6,
we have pg = (21, 22), p1 = (z1, 22 — x¢), and pa = (x] — x0, x2) and thus we can easily
compute I according to [KR00, Rem. 3.2.1 and Prop. 3.2.7]. By [KRO00, Prop. 1.7.10] and
[KRO5, Prop. 4.1.11], I is homogeneous. Let X C }P’(Q@ be the subscheme that is scheme-
theoretically defined by I. By construction, X is zero-dimensional and concentrated at
the “fat points” (1:0:0), (1:0:1), and (1:1:0). The Hilbert function of the scheme X,
which can be computed using Proposition 4.1.15 and Corollary 4.1.14, is of the form
HFx : 1,3,6,9,9,.... Let J = p2 N (x1, (w2 — 20)?) N ((x1 — m0)%,22) C P. Then J
is homogeneous by [KR00, Prop. 1.7.10] and [KRO05, Prop. 4.1.11]. Since I C J, the
homogeneous ideal J scheme-theoretically defines a zero-dimensional subscheme Y C X.
Using Proposition 4.1.15 and Corollary 4.1.14, again, we compute HFy : 1,3,5,7,7,...
and conclude that the scheme X is not (2, 2)-uniform by Definition 5.2.1.

As a first consequence of Definition 5.2.1, we show that higher (4, j)-uniformity condi-
tions imply lower ones.

Proposition 5.2.3. Leti e {1,...,deg(X) —1}, j € {1,...,0x}, and assume that the
scheme X is (i, j)-uniform.

a) We have i < deg(X) — HFx(j).
b) If j > 1, then X is (i,7 — 1)-uniform.
c) If i > 1, then X is (i — 1, j)-uniform.

Proof. First we prove a). For a contradiction, assume that ¢ > deg(X) — HFx(j). By
Proposition 5.1.19, there is a subscheme Y C X with deg(Y) = deg(X) — ¢ < HFx(j).
Since X is (4, j)-uniform, it follows HFx(j) = HFy(j) < deg(Y) < HFx(j) from Defini-
tions 5.1.17 and 5.2.1. This is clearly a contradiction and thus ¢ < deg(X) — HFx(j).

Next we prove b). Let Y C X be a subscheme with deg(Y) = deg(X) —4 and let j > 1.
As X is (7, 7)-uniform, we have HFy(j) = HFx(j) according to Definition 5.2.1. This
yields HFy(j — 1) = HFx(j — 1), i.e. Y is (¢,j — 1)-uniform by Definition 5.2.1.

In order to prove claim c), we let Y C X now be a subscheme of the zero-dimensional
scheme X such that deg(Y) = deg(X) — (i — 1) and let ¢ > 1. According to Proposi-
tion 5.1.19, there exists a subscheme Y’ C Y with deg(Y’) = deg(Y) — 1 = deg(X) — 1.
Since X is (7, j)-uniform, we have HFy/(j) = HFx(j). As Y C Y C X, we also have
HFy/ (j) < HFy(j) < HFx(j). Altogether, we see that HFy(j) = HFx(j), i.e. X is
(i — 1, j)-uniform according to Definition 5.2.1 O
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The Cayley-Bacharach property is obviously a special kind of (4, j)-uniformity ac-
cording to Definition 5.2.1. Next we show that it suffices to consider (i, j)-uniformity
conditions by proving that a subscheme is ¢-uniform if and only if it satifies certain
(1, )-uniformity conditions in Proposition 5.2.6.

Lemma 5.2.4. Leti € {1,...,AHFx(ox + 1)}. Then the following conditions are
equivalent.

i) The zero-dimensional scheme X is i-uniform.
ii) The zero-dimensional scheme X is (i, ox)-uniform.

Proof. First we prove that i) implies ii). Suppose that the zero-dimensional scheme X
is i-uniform. Let Y C X be a subscheme such that deg(Y) = deg(X) — i. Since X is
an i-uniform scheme, we have HFy = min{HF¥, deg(Y)} according to Definition 5.2.1.
Moreover, as we also have deg(Y) = deg(X) — i > deg(X) — AHFx(ox + 1) = HFx(0%),
it follows that HFy(ox) = min{HFx(ox),deg(Y)} = HFx(0x), i.e. X is (4, ox)-uniform
by Definition 5.2.1.

In order to prove that ii) implies i), suppose now that X is (i, ox)-uniform. Let Y C X
be a subscheme with deg(X) — i < deg(Y) < deg(X). Let j = deg(X) — deg(Y). Then
j < i and Proposition 5.2.3 implies that X is (j, ox)-uniform. By Definition 5.2.1, this
means that HFy(ox) = HFx(ox). Hence we get HFy(m) = HFx(m) for all m € Z
with m < ox. As oy < ox, it follows that HFy(m) = deg(Y) for all m € Z with
m > ox + 1. Altogether, we see that HFy = min{HFx, deg(Y)}, i.e. X is i-uniform
according to Definition 5.2.1. O

Lemma 5.2.5. Letj € {l,...,0x}. Then the following conditions are equivalent.
i) The zero-dimensional scheme X is (deg(X) — HFx(j))-uniform.

ii) The zero-dimensional scheme X is (deg(X) — HFx(k), k)-uniform for every ele-
ment k € {j,...,0x}.

Proof. First we prove that i) implies ii). Let k € {j,...,0x} and Y C X be a subscheme
with deg(Y) = deg(X)—(deg(X)—HFx(k))). Asj < k, we get HFx(j) < HFx(k) and thus
deg(X) — (deg(X) — HFx(j)) < deg(Y) < deg(X). Since the zero-dimensional scheme X
is (deg(X) — HFx(j))-uniform, we have HFy = min{HFx, deg(Y)} by Definition 5.2.1.
In particular, as deg(Y) = HFx(k), this implies that HFy(k) = HFx(k). Thus X is
(deg(X) — HFx(k), k)-uniform by Definition 5.2.1.

Next we prove that ii) implies i) by downward induction on j € {ox,...,1}. Since
AHFx(ox + 1) = deg(X) — HFx(ox), the induction start j = ox is a consequence of
Lemma 5.2.4. For the induction step, let now j < ox and suppose that the claim holds
for all elements greater than j. Assume that X is (deg(X) — HFx(k), k)-uniform for all
k€ {j,...,ox}. Then X is (deg(X) — HFx(j + 1))-uniform according to the induction
hypothesis. For all subschemes Y C X with HFx(j + 1) < deg(Y) < deg(X), we thus
get HFy = min{HF¥, deg(Y)} by Definition 5.2.1. Let Y C X be a subscheme such
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that HFx(j) < deg(Y) < HFx(j + 1). By Proposition 5.1.19, there exists a subscheme
Y’ C Y with the property that deg(Y') = HFx(j) = deg(X) — (deg(X) — HFx(j)). As X
is (deg(X) — HFx(j), j)-uniform, we get HFx(j) = HFy/(j) < HFy(j) < HFx(j), i.e.
HFy(j) = HFx(j) and thus HFy(m) = HFx(m) for all m € Z with m < j. Accord-
ing to Proposition 5.1.19, there also exists a subscheme Y’ C X with Y C Y” and
deg(Y”) = HFx(j + 1). Again, since X is (deg(X) — HFx(j + 1))-uniform according to
the induction hypothesis, we get HFy» = min{HFx,deg(Y”)} by Definition 5.2.1. In
particular, HFy»(j 4+ 1) = deg(Y"”) and this implies oy < oy» < j + 1. Hence it follows
HFy(m) = deg(Y) for all m € Z with m > j 4+ 1 from Definition 5.1.17. Altogether,
HFy = min{HFY, deg(Y)}, i.e. X is (deg(X) — HFx(j))-uniform by Definition 5.2.1. O

Finally, we are now able to prove that i-uniform subschemes can be characterized by
certain (7, j)-uniformity conditions, in general. Similar ideas have been used to give an
algorithm to check arbitrary i-uniformity conditions in [BK96, after Rem. 8.4] if K is
algebraically closed and P standard graded.

Proposition 5.2.6. Leti € {1,...,deg(X) — 1} and let j € {1,...,0x} be the unique
natural number with HFx(j) < deg(X) — i < HFx(j + 1). Then the following conditions
are equivalent.

i) The zero-dimensional scheme X is i-uniform.

ii) The zero-dimensional scheme X is (i, j)-uniform and (deg(X)—HFx(k), k)-uniform
forallk e {j+1,...,0x}.

Proof. First we prove that i) implies ii), As we have i > deg(X) — HFx(j + 1) and
as X is ¢-uniform, X is also (deg(X) — HFx(j + 1))-uniform by Definition 5.2.1. Thus
Lemma 5.2.5 implies that X is (deg(X) — HFx(k), k)-uniform for all k € {j +1,...,0x}.
Let Y C X be a subscheme with deg(Y) = deg(X) — 4. Since X is ¢-uniform, we have
HFy(j) = min{HFx(j),deg(Y)} by Definition 5.2.1. As deg(Y) = deg(X) —i > HFx(j),
it follows that HFy(j) = HFx(j). Hence X is (4, j)-uniform by Definition 5.2.1.

Next we prove that ii) implies i). Since X is (deg(X) — HFx(k), k)-uniform for all
ke {j+1,...,0x}, Lemma 5.2.5 yields that X is (deg(X) — HFx(j + 1))-uniform.
Hence for every subscheme Y C X with HFx(j + 1) < deg(Y) < deg(X), we have
HFy = min{HFx,deg(Y)} by Definition 5.2.1. Let Y C X be a subscheme such that
deg(X) — i < deg(Y) < HFx(j + 1). According to Proposition 5.1.19, there exists a
subscheme Y’ C Y with the property that deg(Y’) = deg(X) — 4. Since the scheme X
is (7, 7)-uniform, we get HFx(j) = HFy/ (j) < HFy(j) < HFx(j), i.e. HFy(j) = HFx(y)
and thus HFy(m) = HFx(m) for all m € Z with m < j. According to Proposition 5.1.19,
there exists a subscheme Y” C X with Y C Y” and deg(Y”) = HFx(j + 1). As we have
already shown above, HFy» = min{HFx, deg(Y"”)}. In particular, HFx(j +1) = deg(Y")
yields HFy» (5 + 1) = deg(Y"”). This implies oy < oy» < j and thus HFy(m) = deg(Y)
for every m € Z with m > j + 1. Altogether, we get HFy = min{HFx, deg(Y)}, i.e. X is
i-uniform by Definition 5.2.1. O
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The next theorem is the most important result of this chapter. It allows us to charac-
terize (i, j)-uniform subschemes by means of linear algebra. Note that we do not need to
assume that K is algebraically closed or X is reduced and that it does not only hold in P
but in the weighted projective space Py (W) for every positive matrix W € Maty ,,+1(Z).

Theorem 5.2.7. (Characterization of (i, j)-Uniform Schemes)

Let wg be the canonical module of R, leti € {1,...,deg(X)—1}, let j € {1,...,0x}, and
for allr € R;, let 7 : (wr)—j = (WR)o, @ = 1 - ¢ be the multiplication by r. Then the
following conditions are equivalent.

i) The zero-dimensional scheme X is (i, j)-uniform.
i) For every r € R; \ {0}, we have dimg (ker(7;)) < deg(X) — HFx(j) — 1.

Proof. First we prove that i) implies ii). Suppose that X is (7, j)-uniform. If R; = {0},
nothing has to be shown. Thus suppose that R; # {0} and let » € R; \ {0}. Assume
that d = dimg (ker(7))) > deg(X) — HFx(j) —i. Let Y C X be the subscheme that
is scheme-theoretically defined by (r) C R. Write r = p € R with p € P;. Since
p € ZIT(Y)\ZT(X), we have HFy(j) < HFx(j). As X is (4, j)-uniform, Definition 5.2.1
yields deg(Y) # deg(X) —i. For a contradiction, assume that deg(Y) > deg(X) — i.
Then Proposition 5.1.19 yields the existence of a subscheme Y C Y such that such
that deg(Y) = deg(X) — i. As the scheme X is (4, j)-uniform, we get the contradiction
HFx(j) = HF(j) < HFy(j) < HFx(j). Thus we have deg(Y) < deg(X)—i. According to
Proposition 5.1.19, there is a subscheme Y C X with Y C Y’ and deg(Y’) = deg(X) — 1.
Let S = R/Z{(Y') be the projective coordinate ring of Y’ and wg be its canonical
module. As X is (i, j)-uniform, HF, (—j) = deg(Y’) — HFy/(j) = deg(X) — i — HFx(j)
according to Proposition 4.3.7 and the Definitions 5.1.17 and 5.2.1. Moreover, we let
{e1,..., 94} C (wr)—; be a K-vector space basis of ker(7;). For every k € {1,...,d},
we then have r - ¢ = Ti(pr) = 0, ie. (r) - ¢r = {0}. As zp is a non-zero divisor
for the canonical module wgr by Proposition 4.3.6, Proposition 5.1.2 and Lemma 5.1.13
imply that Z (Y) - ¢ = (1) - @), = {0} for every k € {1,...,d}. Since Y C Y, we
also have Z{ (Y) D Zg (Y') and thus Z (Y') - ¢ = {0} for every k € {1,...,d}. Hence
Proposition 4.3.6 yields that {¢1,..., ¢4} C (ws)—;. Altogether, we get the contradiction
d < dimg((ws)—j) = HF,4(—j) = deg(X) — ¢ — HFx(j) < d. Thus it follows that
d < deg(X) — HFx(j) — i

Next we prove that ii) implies i). Therefore, let now Y C X be a subscheme such that
deg(Y) = deg(X)—i holds. Then we have HFy(j) < HFx(j). For a contradiction, assume
that HFy(j) < HFx(j). Then there is an r € (Z{ (Y)); \ {0}. Let d = dimg (ker(7})).
According to claim ii), we have d < deg(X) — HFx(j) — 4. Let S = R/Z{(Y) be the
projective coordinate ring of Y and wg be its canonical module. Then Proposition 4.3.7
yields the inequality HF, (—j) = deg(Y) — HFy(j) > deg(X) — i — HFx(j) > d. Let
{¢1,...,¢e} € (wg)—; be a K-vector space basis of (wg)—;. In particular, £ > d and for
every k € {1,...,(}, Proposition 4.3.6 implies that 7}(¢x) =1 - @1 € T (Y) - ¢ = {0}.
Thus we see that {p1,...,¢r} C ker(7)). As {¢1,...,0¢} is K-linearly independent,
we get the contradiction dimg (ker(7))) = d < ¢ < dimg(ker(7})). Thus we have
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HFy(j) = HFx(j) and X is (¢, j)-uniform by Definition 5.2.1. O

Example 5.2.8. Consider the zero-dimensional subscheme X C ]P’(Q@ of Example 5.2.2,
again. Recall that the defining ideal of the scheme X in the standard graded polynomial
ring P = Q[zo,z1,72], was I = ZT({(1:0:0)1)?2NZT{(1:0: D})2NZH({(1:1:0)})2.
Using the method described in Example 5.2.2 to compute I and Corollary 4.1.14, we can
compute the projective O-border basis G = {g1,...,96} C P of I with the order ideal
O ={t1,...,to} = {1,290, 01,23, 1179, 23, 23, 2123, 23} and g1 = 23w0 + 2123 — PoT 122,
g2 = 93‘21 — 2930z§ + x%x%, g3 = xla:% — [L‘(]l‘le%, g4 = x%x%, gs = .17:{)332 + :coazla:g — 95%131562,
and g¢ = 27 — 279z} + x323. By Definition 2.4.15, the formal multiplication matrices

Xy, Xy € Matg(Q) of the O-border basis {g%" | g € G} C P = Q[x1, 22] are

0000 O OO0OTO0O O 000O0O0OTO0O O O O
000O0O O O0OO0OGO0O O 10000 O O O O
1000 0 O0OO O 000O0O0OTO0O O O O
000O0 O OOTO0O O 01000 O -1 0 O
Xr=1]0100 1 000 O], =001 00 1 0 0 1
0010 0 O0O0OO0O -1 000O0O0OO0O O O O
0000 O O0OOO0O O 00010 0 2 00
0001 -101°0 O 00001 -1 0 1 -1
0000 O 1TO0O0 2 000O0O0OTO0O O 0 O

Let R = P/I, let wg be the canonical module of R, let p = —23 — x129 + 921 € P2,
and let %% : (wr)—2 = (wRr)o, ¢ — P - ¢ be the multiplication by p € Ry. We have

0010 -1 -100 0
0000 0 0 00 O
0000 -1 1 01 —1
0000 0 0 00 O
P(To, X, X)) = —(A)2 — A A+ Ty X =0 000 0 0 00 0
0000 -1 1 01 —1
0000 0 0 00 O
0000 0 0 00 O
0000 -1 1 01 —1

Recall that O determines both HFx = HF r by Proposition 4.1.15 and HF,, by Proposi-

tion 4.3.7. In particular, ((’)0) 9 = {:U2 ,ajlxg*,:nl } is a Q-vector space ba51s of (wg)—2

and ((’)0)0 = {zx*, 71 ,xoat% , LOT1T2 ,xgx% ,$%x% ,x%xlx%*,xoxl } is a Q-vector space
basis of (wg)o by Proposition 4.3.7. With respect to the Q-vector space bases (Op")_o
of (wr)—2 and (Og")g of (wgr)o, the Q-vector space homomorphism 7 is represented by

the submatrix C € Mats 3(Q) of p(Zy, X{*, X5*) € Matg(Q) obtained by deleting the first
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HFx(0) = 1 rows and the first HFx(2) = 6 columns according to Corollary 4.3.11, i.e.

00 0
01 —1
00 0
C = 8 (1) _01 S Matg,g (Q)
00 O
00 0
01 —1

In particular, dimg(ker(75)) = dimg(ker(C)) =2 > 1 =9-6—2 = deg(X) - HFx(2) - 2.
Therefore, Theorem 5.2.7 implies that the zero-dimensional subscheme X C ]P’?@ is not
(2, 2)-uniform.

Corollary 5.2.9. Let G C P be a projective O-border of T+ (X) C P where we have
O = {t1,...,t,} with degy (t1) < --- < degy (ty) and let Xy,..., &, € Mat,(K) be
the formal multiplication matrices of {g" | g € G} C P. Let j € {1,...,0x}, let
i€{l,...,deg(X)—HFx(j)}, and let {y1,...,yury(j)} be a set of further indeterminates.
For every k € {1,...,HFx(j)}, we let Tp € Mat,_1 ,,_ur,(j)(K) denote the submatriz
of te(Xf*, ..., X)) € Mat,(K) obtained by deleting the first row and the first HFx(j)
columns. Furthermore, let J C K[y, ...,yury(j)] be the ideal generated by the set of all
i-minors of the matriz y1T1 +- - +Yury () Tary () € Mat,—1 y—urye () (K15 - - Yary ()))-

Consider the affine zero set Zy(J) C Ang(j) = Spec(K[y1,-- -, Ynry(j)l)- Then the
following conditions are equivalent.

i) The zero-dimensional scheme X is (i, j)-uniform.
ii) We have Zx(J) C {0}.
iii) We have Zx(J) = {0}.

If, in addition, K is algebraically closed, then the above conditions are equivalent to the
following ones.

iv) We have VJD (Y1, ... 73/HFX(j)>'
v) We have VJ = (Y1, .- ayHFx(j)>'

Proof. Let wr denote the canonical module of the coordinate ring R = P/Z%(X) and
for all v € Z, let (O")_, = {w(;d”“’HFX(W)Hf*HFX(V)H, e ,xad”“’“f:}. Then (O)_,, is
a K-vector space basis of (wgr)_, for every v € Z according to Proposition 4.3.7. For
every k € {1,... HFx(j)}, we have (z0"t)(Z,, X, ..., X)) = tp(XF, ..., X%) and
degW(xgj’ktk) = j — degy (tx) + degy (tx) = j. Thus Corollary 4.3.11 yields that, for
every k € {1,...,HFx(j)}, the matrix 7} represents the K-vector space homomorphism
(wr)—j — (WR)o, @ — :Ugj’kfk - ¢, the multiplication by :Egj’kfk € Rj, with respect to the
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K-vector space bases (O7)_; of (wg)_j and (O)g of (wr)o. Moreover, for all v € Z and
ke {l,...,u}, welet dyj =~ — degy (tx).

Now we prove that claim i) implies claim ii). Assume that there exists an element

(c1,-- s curye(g)) € ZK(J) \ {0}. Let r = clazgj’lfl + ot CHFX(j)ng’HFX(”fHFX(j) Then
Proposition 4.1.15 yields r € R; \ {0}. As X is (¢, j)-uniform, Theorem 5.2.7 shows that
the K-vector space homomorphism 7% : (wgr)—; = (wWr)o, ¢ — 7 - ¢, the multiplication
by r, satisfies dimg (ker(7))) < deg(X) — HFx(j) — ¢. Moreover, Proposition 4.3.7 shows
that dimK((wR)_j) e HFWR(—j) = deg(X) — HFx(j). Let M, € Mat,ufl,ufHFX(j)(K)

denote the matrix representing 7* with respect to (O")_; and (O 0. As we have shown
p g Ty p J

above, T represents the multiplication by xgj *1 with respect to the same K-vector space
bases for every k € {1,...,HFx(j)}. Thus M, = 171+ -+ cupy(j) Tary(j)- Altogether,
tkx(M,) = dimg ((wr)—;) — dimg (ker(;)) > i and hence there exists a non-vanishing
i-minor of M,. This clearly contradicts (ci,...,cupy(j)) € Zx(J) and thus it follows
that ZK(J) - {0}

As the element 0 is obviously an element of the affine zero set Zx(J), claim iii) is
obviously equivalent to ii). Thus it remains to prove that ii) implies i). If R; = {0}, the
claim follows trivially from Theorem 5.2.7. Suppose that R; # {0} and let r € R; \ {0}.

According to Proposition 4.1.15, there exists an element (ci, ..., cary(j)) € A x(7) \ {0}

such that r = clxgj’lfl + o+ CHFX(j)xgj’HFX(j>fHFX(j). Let M, € Mat,,_; ,_nr, ;) (K)
be the matrix representing the K-vector space homomorphism 7 : (wr)—; — (wr)o,
@ +— 1 -, the multiplication by the element r, with respect to the K-vector space
bases (O")_; of (wr)_j and (O")g of (wg)o. Then, just as we have shown above, we get
M, =c1Ti + -+ + cupy () Tary(j)- Assume that dimg (ker(7))) > deg(X) — HFx(j) — 7.
By Proposition 4.3.7, we have dimg ((wr)—;) = HFy,(—7) = deg(X) — HFx(j). Thus we
see that rkg (M,) = dimg ((wr)—;) — dimg (ker(7))) < ¢ and hence every i-minor of M,
vanishes. This is a contradiction to (c1,...,cur,(;)) € ZK(J) \ {0} = 0 by ii). Thus
dimg (ker(7))) < deg(X) — HFx(j) — ¢ and X is (4, j)-uniform by Theorem 5.2.7.

For the remaining conditions, assume that K is algebraically closed. According to
[KRO5, Exmp. 6.3.2], we have Z({0}) = (y1,- - -, Ynr,(j))- Thus the Ideal-Variety Corre-
spondence [CLOO07, Thm. 4.§2.7] and Hilbert’s Nullstellensatz [KR00, Thm. 2.6.16] yield
the equivalence of ii) and iv) and the equivalence of iii) and v). O

Example 5.2.10. Consider the zero-dimensional subscheme X C ]P%) of Example 5.2.8,
again. Recall that the polynomial ring P = Q[zg,z1,z2] was standard graded, that
It (X) € P = Q[wg,z1, 2] possessed a projective O-border basis G, where the order
ideal O was of the form O = {t1,...,to} = {1, 22, 71,23, 1179, 23, 3, 123, 23}, and that
the formal multiplication matrices of the O-border basis {g%" | g € G} C P = Q[x1, 2]
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were of the form
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Moreover, O determines both HFx = HF p by Proposition 4.1.15 and HF,, by Proposi-
tion 4.3.7. For all k € {1,...,6}, we let T € Matg 3(Q) be the submatrix of ¢ (X", X4")
obtained by deleting the first row and the first HFx(2) = 6 columns. Then we have

0 0 O 0O 0 O 0O 0 O
0 0 0 0 0 O 0O 0 O
0 0 O 1 0 O 0O 1 O
0 0 O 0O 1 0 0O -1 0
T= 00 0}’ T2 = 0o -1 0}’ Ts = o o0 1}’
1 00 2 0 0 0O 1 0
01 0 0 1 0 0O 0 O
0 0 1 0 -1 0 0O 0 2
1 00 0 1 0 0O -1 0
01 0 0 -1 0 0O 0 1
2 00 0 1 O 0O 0 O
01 0 0 0 O 0O -1 0
Ta= 00 0}’ Ts = 0 -1 o0}’ Te = 0O 0 2
3 00 0 1 0 O 0 O
01 0 0O 0 O 0O 0 O
00 0 0 -1 0 0 0 3
Let {y1,...,y6} be a set of further indeterminates. Then
Y4 Y5 — Y6 0
0 Ys — Ys Y6
Y2 + 2y4 Y3+ ys 0
0 Y2 — Y3+ Y4 — Y6 0
T+ +ysTe =
i vele 0 —Y2 — U5 Y3 + 2y6

Y1+ 2y2 + 3y4 Y3+ s 0
0 Y1 +y2 +Ys 0

0 —Y2—Ys Y1 + 2y3 + 3ys

Let J C Q[yi,...,ys] be the ideal that is generated by the set of all 2-minors of the
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matrix y1 71 + - + yeTe € Matg 3(Q[y1,...,y6]). Then J = (f1,..., fu1) with

f1=vi — yays,
Jo = yaye,
f3 = ysys — Ya,

J1=Y3Yys — Y2ys5 — Yays5 + Y26 + 2Y1Ys,

f5 = yoys — y3ya + Y3 — Yave,

J6 = —y2y4 — yays,

f7 = Y3ya + 2y4ys,

fs = ysys — ysys + 2ys¥6 — 29g,

Jo = Ysys — Y1ys5 — 2y295 — 2yaYs + Y1Y6 + 2y296 + 3yaYe,
fio = yiya + yoys + y3,

J11 = Y1ya + 2y3ya + 3yaye,

fi2 = y1ys + 2ysys — y1Y6 — 2YsYe + 3YsYs — 3Yg

f13 = —yoya — 2y3 + yays + 2yays,

J1a = —y2y6 — 2yaYs,

f15 = —Y3Y6 — YsYs6»

fie = —y2ys + Y3ys — yays + Vg,

Ji7 = y3ya — y3ys + y2v6 + 2YaYs — YsYe,

f18 = —y1ya — 2yoys — 3y + Y1ys + 2y2y5 + 3yays,

J19 = =196 — 2y296 — 3YaYs,

J20 = —Y1Y6 — Y2Y6 — YaYe,

J21 = y1ya + 2y3ys — y1ys — 2y3ys + Y2y6 + 34y — 2y5Ye,
faz = Y5 — yoys + 3y2ys — 2ysya + 293 — Y2Ys — 2YaYe,
fas = —y3 — 2y2y4 — Y2ys — 2yays,

Joa = Y2y3 + 2y3ya + 2y2y6 + 4yays,

fo5 = Y3 + ysys + 2y3y6 + 256,

J26 = —Y1Y3 — Y2U3 — Y3Ya — Y1Ys — Y25 — YaYs,

for = y1ya + v5 + 2y1y4 + 3yoys + 2v3,

fos = Y1y + 2y2y3 + 2y1y4 + 4y3ya + 3y2y6 + 6y4ys,

f20 = Y193 + 23 + y1ys + 2y3ys + 3Y3Ye + 3Ysys,

f30 = Y2y3 — ¥3 + y3ys + 2y296 — 3Y3ye + 2yays — 202,

f31 = —y1y2 — 2u5 + y1ys + 2923 — Y1Ya — 5Y2y4 + 3y3ya — 3Y5 + Y16 + 2y296 + 3YaYs,
f32 = y1y2 — y1y3 + 2y2y3 — 293 + Y1ya + 2y3ys — Y16 + 3Y2v6 — SYsye + 3yaye — 3V,
f33 = Y12 + 293 + 3yaya + v1y5 + 29295 + 3yays,

J34 = =193 — 2y2y3 — 3y3ys — 241y — 4y296 — 6YaYs,
f35 = =3 — y3y5 — 2y3Y6 — 2YsYe,
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f36 = —Y1Y3 — Y2U3 — Y3Ya — 2Y1Y6 — 2Y2Y6 — 2Y4Y6,

f31 = —Y1y2 — Y23 — Y1Ys — Y3Ys — Y2Y6 — Y5Y6;

fss =7 + 3y1y2 + 2y3 + 4y1ya + 5y2ya + 3y3,

f30 = —y1y2 — 205 — 3y2us — Y1Ys — 2y2Y5 — 3Yays,

f10 =7 + 20152 + 2013 + 4y2ys + 3y1ya + 63y + 3y1Ys + 6y296 + 9yays,
fir =y} + 1y + 2013 + 2923 + Y1ya + 2ysys + 3y1Ys + 3y2Ys + 3yas-

Since f((0,0,1,0,—1,—1)) = 0 for every index k € {1,...,41}, we see that the point
0 # (0,0,1,0,—1,—-1) € Z(J) and thus X C IP’?@ is not (2,2)-uniform according to
Corollary 5.2.9. Note that this result coincides with the result of Example 5.2.8.

The remaining part of this subsection is devoted to specific uniformity conditions,
namely the Cayley-Bacharach property and i-uniformity condition, cf. Definition 5.2.1.

Definition 5.2.11. Let 7: U®g V — W be a K-vector space homomorphism of finite
dimensional K-vector spaces U, V', and W. We call 7 biinjective if for all u € U and
veV, n(u®wv) =0 implies u =0 or v =0.

Remark 5.2.12. Let wr denote the canonical module of R.

a) Let m : Ryy ®K (WR)—0yx — (WR)o, 7 ® ¢ — 1 - ¢ be the multiplication map.
Since zg € R is non-zero divisor for R according to Proposition 5.1.8, we have
zg* - # 0 for all ¢ € (WRr)—oy \ {0}, ie. 7 is non-degenerate in the second
argument. By Definition 5.2.1 and Theorem 5.2.7, the scheme X is a Cayley-
Bacharach scheme if and only if for every element r € Ry, \ {0}, the K-vector
space homomorphism 7 : (Wgr)—oyx — (WR)o, ¥ — 7 -, the multiplication by r,
satisfies dimg (ker(7))) < deg(X) — HFx(ox) — 1. According to Proposition 4.3.7,
dimg ((WRr)-0y) = HFy,(—0ox) = deg(X) — HFx(ox). Thus X is (¢, j)-uniform if
and only if there is no r € Ry, that satisfies r - (wgr)_o, = {0}, i.e. if and only if
7 is non-degenerate in the first argument. Altogether, it follows that X is a Cayley-
Bacharach scheme if and only if the multiplication map 7 is non-degenerate. In
particular, with the assumption that the base field K is algebraically closed and
that P is standard graded, this coincides with a previous result in [Kre94, Thm. 2.6].

b) Let i« € N. By Lemma 5.2.5 and Theorem 5.2.7, X is (deg(X) — HFx(¢))-uniform
if and only if for all k € {i,...,ox} and for all » € Ry \ {0}, the K-vector space
homomorphism 7' : (wg)r — (wr)o, ¢ — 7 - ¢, the multiplication by r, satisfies
dimg (ker(7))) = 0. Equivalently, for all k € {i,...,0x}, r € Ry, and ¢ € (wgr)_k,
7+ = 0 implies 7 = 0 or ¢ = 0. In other words, X is (deg(X) — HFx(7))-uniform
if and only if the multiplication map Ry ®x (wr)—k — (WRr)o, T ®@ ¢ — 1 - ¢ is
biinjective for every k € {i,...,ox}. Note that, with the assumption that the base
field K is algebraically closed and that P is standard graded, this result coincides
with [Kre94, Thm. 3.2].
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5.2.2 The Reduced Case

In this subsection, we additionally assume that the subscheme X C Pg (W) is re-
duced. Since X is supposed to have a K-rational support, Proposition 5.1.7 yields that
Supp(X) = {p1,. .., Paegx)} Where for all i € {1,...,deg(X)}, p;i = Z+({pi}) is the
homogeneous vanishing ideal of a K-rational pomt pi € PK(W). Moreover, for every
i € {1,...,deg(X)}, there is a subscheme X; € X with Supp(X;) = Supp(X) \ {p;} and
it satisﬁes deg(X;) = deg(X) — 1. For all i € {1,...,deg(X)}, we let f; € Rsy 41 be a
separator of the subscheme FEZ C X as defined in Definition 5.1.17.

The following proposition states that the separators fi,..., faeg(x) € Rox+1 allow us
to describe the structure of the subschemes of X. Note that the second result has been
proven in [GKR93, Prop. 1.13| for the base field K being algebraically closed and P being
standard graded

Proposition 5.2.13. Leti € {1,...,deg(X)}, let v1,...,v; € {1,...,deg(X)} be pair-
wise distinct elements, and let Y C X be the subscheme with Supp(Y) = {py,,. .., v, }-

a) We have I (Y) = (fu,, ..., fu,)" C R.

b) For every j € N with j > ox + 1, the set {x (ox+1) fyl,...,acé_(UX+1)fyi} s a
K -vector space basis of ({fu,, .. fyl))

Proof. For all k € {1,...,deg(X)}, let Fy, € Py, 41 be such that fy = Fy. According
to Definition 5.1.17, we have Fj(ps) = g for all k,¢ € {1,...,deg(X)}, i.e. the set
{for,- -, fv;} € Rpyy1 is K-linearly independent.

First we prove a). Let Y C X be the subscheme that is scheme-theoretically defined
by (furs---s fo;) CZE(Y). Then Y D Y. Since {fu,,..., f1;} C Royt1 is K-linearly in-
dependent and since Supp(Y) = {p,,...,pu, }, we get deg(Y’') =i = deg(Y). Therefore,
Y’ =Y and Proposition 5.1.2 yields that i (Y) = (fu,, ..., fu,)%"

In order to prove claim b), let 7 € N be such that j > ox + 1. Since Y C X implies
that YN H™ C XN H™ = (), Proposition 5.1.8 and the Second Noetherian Isomorphism
Theorem imply that the element z( € P is a non-zero divisor for R/Z{ (Y) = P/I(Y).
Therefore, the set {xé (ox+1) fonseeo, @ ~(ox+1) fv;} € Rj is K-linearly independent, too.
Asoy+1<ox+1<j, weget HFy(j) = deg(Y) =i and the claim follows. O

Now we can characterize reduced (4, j)-uniform schemes by means of the separators.

Theorem 5.2.14. (Characterization of Reduced (i, j)-Uniform Schemes)
Let i € {1,...,deg(X) — 1} and let j € {1,...,0x}. Then the following conditions are
equivalent.

i) The reduced zero-dimensional scheme X is (i, j)-uniform.

ii) Every subset of i elements from {71,...,?deg(x)} C R/(fgx+l_j> is K-linearly
independent.
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Proof. First we prove that i) implies ii). Suppose that the reduced zero-dimensional
scheme X is (4, j)-uniform. Let v1,...,v; € {1,...,deg(X)} be pairwise distinct elements
and let Y C X be the subscheme that satisfies Supp(Y) = Supp(X) \ {pu,,--., Py, }- Then
we have deg(Y) = deg(X) — 4. For a contradiction, assume that the set of residue classes
{fu,-- [} C R/@gXH_J) is K-linearly dependent. Then there exist a g € R; \ {0}
and A1,...,A; € K such that ngH_jg = Mfy, + -+ Aify,. In this situation, we
have (fu,,..., fu.) € I+ (Y) by Proposition 5.2.13. As the scheme X is (4, j)-uniform,
HFy(j) = HFx(j) according to Definition 5.2.1 and thus (Z (Y)); = {0}. Moreover,
(forseeos for) C {fonseees fo,)%® = I (Y) by the Propositions 5.1.2 and 5.2.13 and the
ideal Z; (Y) is saturated by Proposition 5.1.2. Hence a:SXH_jg € (fuys---, fv;) together
with Lemma 5.1.13 imply g € (Z¢ (Y)); \ {0} in contradiction to (Z (Y)); = {0}. Alto-
gether, it follows that {f,,,...,f,,} € R/ (ngH_j ) is K-linearly independent.

Next we prove that ii) implies i). Suppose that all subsets of i elements from the
set {fq,..- ,fdeg(x)} C R/ (ngH_j ) are K-linearly independent and let Y C X be a
subscheme with deg(Y) = deg(X) —i. As X is reduced and Supp(X) = {p1,.. ., Pdeg(x)}>
there are pairwise distinct elements vq,...,v; € {1,...,deg(X)} with the property that
Supp(Y) = Supp(X) \ {pui,. .-+ P }. By Proposition 5.2.13, ZF(Y) = (fu,, ..., fu,)*
Assume that HFy(j) # HFx(j). Then we have HFy(j) < HFx(j) as Y C X and this
implies the existence of an element g € (Z; (Y)); \ {0}. In particular, Lemma 5.1.13
and Proposition 5.2.13 yield x’ég € (furs.-., fu;) for some k € N. Since f, € Ryy 41
for all r € {1,...,deg(X)} by Definition 5.1.17, we have ({f,,,..., fy;))¢ = {0} for all
¢ e€{0,...,0x}. As XN H™ = (), 27 is a non-zero divisor for R by Proposition 5.1.8.
Thus it follows that £ > ox +1— 7, i.e. K+ j > ox + 1. By Proposition 5.2.13, there
exist scalars A1, ..., \; € K such that zfg = Alxlgﬂ_(UXH)fyl 4t /\ixlgﬂ_(aml)fw.
Since we have X N H™ = (), 24 is a non-zero divisor for R by Proposition 5.1.8. Thus
a:gXH_jg = wlg_(kﬂ_(UXH))g = A fy, +- -+ Aify, and this implies 0 = /\171,1 +-- "FAJW
in R/@FH Y. As {f,,....f,} C R/ (@J*T77) is K-linearly independent, we get
A1 = - = \; = 0 and, therefore, :CgXH*jg = 0. Since zg is a non-zero divisor for R,
we get the contradiction g = 0. Altogether, it follows that HFy(j) = HFx(j) and X is
(1, 7)-uniform by Definition 5.2.1. O

Remark 5.2.15. Let i € {1,...,AHFx(ox + 1)}. According to Lemma 5.2.4, X is
i-uniform if and only if X is (7, ox)-uniform. By Theorem 5.2.14, this is equivalent for
every subset of i elements from {f;, ... 7?deg(X)} C R/(%o) to be K-linearly independent.
Note that, with the additional assumption that the base field K is algebraically closed
and that P is standard graded, this result coincides with [Kre94, Prop. 3.4].

The next example shows a reduced subscheme that is not (4, 2)-uniform with respect to
the standard grading but (4, 2)-uniform with respect to a certain non-standard grading
and give a geometric interpretation of (4, j)-uniform schemes in the reduced case.

Example 5.2.16. Let P = Q|x1, z2] be Z-graded by the matrix (w;,ws) € Mat 2(Z)
with wy, wy € N\{0} and let P = Q[z, z1, x2] be Z-graded by W = (1 | W) € Mat 3(Z).

Moreover, let X C Pg(W) = Proj(P) be the reduced zero-dimensional subscheme of de-
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5.2 Projective Border Bases and Uniformity Conditions

gree deg(X) = 11 with Supp(X) = {p1,...,p11} where p; = ZT(p;) for alli € {1,...,11}
and p; = (1:0:0), po = (1:0:1), p3 = (1:0:2), py = (1:1:0), ps = (1:1:%),
pe = (1:3:-3), pr = (1:2:2), ps = (1:3:-1), pg = (1:3:1), pro = (1:4:-1),
and p1; = (1:4:1). Then XN H™ = () and all the points above are Q-rational. By
Definition 5.1.3 we can identify the points of X, with the corresponding affine part
in A?Q = Spec(P) as in the following picture.
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Let R = P/Z7(X). Using Proposition 5.1.6 and [KR00, Prop. 3.2.7], we can compute
It (X) = p1 N---Np11. Therefore, we can compute the Hilbert function HFx = HF g
of the scheme X using Proposition 4.1.15 and Corollary 4.1.14. We check whether X is
(4, 2)-uniform in two cases.

a) First let W = (1,1) € Mat 5(Z), i.e. we equip P with the standard grading. Then
HFx :1,3,6,10,11,11,... and thus ox = 3. Let I}, Fg, Fy, F19g € P4 be defined by

F = %x% — %xox? — %x(ﬂ%m — %ﬂ)xlx% + %xoxg

+ %x%x% + %x%mxz — %x%m% — %x%xl - %x%xz + wé,
Fg = —%w% + %xox‘% — %xox%m — %moxlx% — %xox%

- %x%x% + %x%xﬂg + %m%x% + %x%xl — %x%:@,
Iy = 4%%325”% - 216906367370%? - %on%@ - 17713715%950551”5% - 28?}%95033%

+ 30877071 + S30ri 07172 + SRR TOTS — 56037 T0T1 — GarzaTor2,
Fig = —%mg + %xox? — %xgﬁm — %xww% + %x(wg

— %x%x% + %x%xn@ + %azgz‘g + %x%xl — gi’iix%:@
and for all i € {1,6,9,10}, let f; = F; € Ry. For all i € {1,6,9,10} and for
all j € {1,...,11}, we have Fj(p;) = 0y, i.e. the element f; € R4 is a separator
of the subscheme X; C X with Supp(?@) = Supp(X) \ {p;} by Definition 5.1.17.
In the residue class ring R/(Z2), we have 100f; + 69f5 — 60fy — 20f1, = 0, i.e.
{1, fe: fo, F10} € R/(T?) is Q-linearly dependent. According to Theorem 5.2.14,

the zero-dimensional subscheme X is thus not (4, 2)-uniform with respect to the
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176

standard grading.

Geometrically, we can interpret this result as follows. As indicated in the picture
above, there exists an ellipse that passes through all projective points in the set
{p1,---,p11} \ {P1, D6, P9, P10}. But since this ellipse that does not pass through all
points in {p1,...,p11}, the value of the Hilbert function of the subscheme Y C X
with Supp(Y) = Supp(X) \ {p1,ps, P9, P10} at position 2 is less than the value
of the Hilbert function of X at position 2. Therefore, X is not (4,2)-uniform by
Definition 5.2.1.

Second we let W = (1,2) € Maty 2(Z). Then HFx : 1,2,4,6,9,11,11,... and thus
ox =4. Let Fq,...,F11 € Pg) be with
= 3505010371 15095?362 - %gggmox‘l‘ + égmoxlm + xgm%

381 2807 ,.3,.2 _ 3 4883
+ l‘OZL‘l + 40m0331x2 — Sap LoT1 — *1’02132 + 1000:1)01'1 + :L'O,

3053 5 12767 4 37 2
Fy = —4m5521 + z1x2+ T300 ToT1 — 309301:1562 xgscz—f-%xoxlaa

_ 1183323 | 145013 2 30599 .4
150 01+ 360 x0x1+2x0x ~ 1500 3709”17

_ 467 .5 _ 17 .3 1913 2
F3 = {50021 — 12027122 — 400m0x1+ x0x1x2+ xOxQ

250323 _ 169 .2 2059 8299
+ 50 L0%1 — 120L0%1%2 — Tgo 1‘05”1 25“0932Jr 3000 Y01,

29,5 _ 5.3 581, .4 | 35 . 2
Fy = 5527 — grize — 66:603;1—1—@9603:1:52

683,23 _ 10,2 1498 256 .4
+ 22 ToT] — 11T0%1%2 — 33 xoml + 7 Zo%1,

_ 175, 4 _ 35
F5 = le + 661’1:1:2 + 33 x0Ty — 66x0m1w2

_590,2.3 , 10,2 805 .3 .2 1244
33 Lo%] + 7T0T1%2 + 33221 — T LoT1,

32,5 | 64, .4 224,23 32032 256 .4
Fg = — T2+ Frox] — 5 apx] + S5 rpr] — T5ToT,

2
F; = %x? lfﬂcoxl + SISUOl‘? — Qx%xl + 93303:1,

_ 1.5 3 43 4 5 2
F8 = 30371 + ﬁxle — ﬁl’ofl - ﬁ$0$1$2
145,.2,..3 49,..3,.2 112 4
+ 12 xol;l + xoxle xoxl + 15 xol’l,

43,5 1 163, .4 , 5 2
Fg = 90.%'1 $1$2 + 36 XoTq + 12 L0T1L2
2 2 2 4
5333:01‘? 1x0m1332 + 176:6%1‘1 — &moazl,

61 .5 1 239 2
Fio = —g5521 — 24x1x2+240xga:1+ Loox?a,

67,23 1.2 217,32 413 4
— 20%0T1 — gToT1T2 + Y Tox] — 55T0T1,

Fii1 = 67010331 + 4.23:{)1'2 ggg$0l‘1 éazox%m
+ 2213301:1 + xoxlxg 24385338x% + gggazém

and for all i € {1,...,11}, let f; = F; € R5. For all i, € {1,...,11}, we have
Fi(p;j) = dij, i.e. fi € Rs is a separator of the subscheme X; C X that satisfies
Supp(X;) = Supp(X) \ {p;} by Definition 5.1.17. Using linear algebra techniques,
we can easily check that all subsets of four elements of {f1,..., f11} C R/(z) are
Q-linearly independent. Thus the zero-dimensional subscheme X is (4, 2)-uniform
in this non-standard graded case according to Theorem 5.2.14.
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Geometrically, we can interpret this result, too. Consider the above picture, again.
Since xo has degree 2 and x, has degree 1, the only possible type of a curve of
degree 2 that destroys the (4, 2)-uniformity is a hyperbola. But we see that there
is obviously no hyperbola passing through all but four points of X. Therefore, the
value of the Hilbert function of any subscheme Y C X with deg(Y) = 7 at position 2
equals the value of the Hilbert function of X at position 2, i.e. X is (4, 2)-uniform
by Definition 5.2.1.

5.3 Algorithms for Checking Uniformity Conditions

In this section, we turn the results of the previous section into algorithms that check
uniformity conditions of non-empty zero-dimensional subschemes of Py (W). These al-
gorithms provide an affirmative answer to (generalizations of ) [Kre01, Questions 1 and 3|.
Whereas [Kre01, Question 1| was already affirmatively answered in the reduced case in
[MP04] using Chow forms, cf. Remark 5.3.6, no answer to [Kre0l, Question 3| has been
known up to now.

As in the previous section, we fix the following notation. We let X C Pg (W) al-
ways be a non-empty zero-dimensional projective subscheme with K-rational support
and XN H™ = ). Moreover, we let R = P/Z*(X) be the projective coordinate ring of X
and wg be the canonical module of R. The multigraded Hilbert function of X is denoted
by H =HFx = HFRr : Z — Z, v — dimg (R,), its Castelnuovo function by AH : Z — Z,
v+ H(y)— H(y—1), and we let ox = max{i € Z | H(i) < deg(X)}.

First we study the general case. In this situation, we assume that the subscheme X
is given by a generating set of its defining ideal Zt(X). Then for an arbitrary index
ke {1,...,0x}, we determine necessary and sufficient conditions for the multiplication
map Ry ®r (wr)—r — (Wr)o, " ® ¢ — 1 - ¢ to be biinjective in Proposition 5.3.1.
If K is algebraically closed, we can use these characterizations to check whether X is
(deg(X) — H(j))-uniform for arbitrary j € N as shown in Remark 5.3.2. After that,
we turn Corollary 5.2.9 into an algorithm in Proposition 5.3.3. This allows us to check
whether X is (7, j)-uniform for arbitrary j € N and ¢ € {1,...,deg(X) — HFx(j)} in the
algebraically closed case.

In the second subsection, we restrict ourselves to the reduced case. In this situation,
we assume that X is given by its support, i.e. the set of all points vanishing on Z7(X). We
start with an appropriate version of the Buchberger-Méller Algorithm in Proposition 5.3.7
for border bases that also takes the underlying grading W into account in order to
compute the defining ideal of X. After that, we turn Theorem 5.2.14 into an algorithm
in Proposition 5.3.9.

5.3.1 The General Case

For the whole subsection, we assume that the base field K is algebraically closed. This
is necessary since all the methods of this subsection are based on Hilbert’s Nullstellen-
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5 Projective Border Bases and Algebraic Geometry

satz [KROO, Thm. 2.6.16]. Recall that X N H'™ = {) yields the existence of a projective
O-border basis of ZT(X) according to Proposition 5.1.8.

First we give two algorithms that allow us to check whether for £ € N, the multipli-
cation map 7 : Ry ®k (wWr)_r — (WRr)o, ¥ ® ¢ — 1 - ¢ is biinjective, i.e. an algorithm
that checks whether - ¢ = m(r ® ¢) = 0 implies r = 0 or ¢ = 0 for all » € Ry, and
¢ € (wr)—k according to Definition 5.2.11. The first one of the following two methods of
Proposition 5.3.1 generalizes [BK96, Rem. 8.3| to our setting. The second one applies the
results of [Eis88, Sect. 1] to the special map 7 and thus generalizes the method described
in [BK96, Rem. 8.4] to our setting. For the sake of completeness, we provide detailed
proofs of both methods. Recall that for a square matrix A = (ai;)1<i j<s € Mats(K) of
size s € N\ {0}, the trace of A is defined by trace(A) =aj; +--- + ass € K.

Proposition 5.3.1. (Biinjectivity Tests)

Let G C P be a projective O-border basis of Z+(X). Moreover, we write O = {t1,...,t,}
with degyy (t1) < --- < degy(t,) and let Xy, ..., X, € Mat,(K) be the formal multi-
plication matrices of {g%" | g € G} C P. Let {&1,...,E,} denote the canonical basis
of the K-vector space KM, let k € {1,...,0x}, and let 7 : Ry @k (wr)—r — (wWRr)o,
r® @ — 1@ be the multiplication map. Furthermore, for every index £ € {2,..., u},
let Cp = (crse)1<r<mH(k),H(k)+1<s<u € Maty(k) u—m®)(K) be the matriz with the entries
Crse = &gt (X, XY EF € K forallr €{1,...,H(k)} and s € {H(k) +1,...,u}
and let d; =~ — degy (t;) € Z be for ally € Z and i € {1,...,u}.

a) Let Q = KIY1,- s YH(k)+1> ZH(k)+1s - - - » 2u) be with a set of further indetermi-
nates {Y1, .-, YH(k) ZH(k)+1> - - -» 2u} and for all indices £ € {2,...,u}, we let
fo= - yamw)  Co- ZH)+1>- - - 2,)" € Q. Then the multiplication map w is

biinjective if and only if (Y12m)+15- - YrE) 20) SV (f2r o5 fu)-

b) Let {¢1,...,04} C (wgr)o with a natural number d € N be a K-vector space basis
of im(w). For all i € {1,...,d}, we write ¢; = bigwgdl’ziz 4o+ waadlvﬂfz
with scalars by,...,by, € K and we let B; = bjCe + -+ + b;,C,.  Moreover,
we let {D1,..., Dy} C Mat,_ gy, mm (K) be a K-vector space basis of the set
M+ = {D ¢ Mat,_ k), m(k) (K) | trace(DBz) = --- = trace(DB,) = 0} and
we let Q@ = Klyi,...,ym]| be where {y1,...,ym} is a set of further indetermi-
nates. Let J C @Q denote the ideal generated by the set of all 2-minors of the
matriz y1D1 + -+ + YymDm € Mat,_ gy, mk)(Q). Then the map w is biinjective if

and only if (y1,...,ym) C VJ.

Ay H(k) 7
i) tH

Proof. According to Proposition 4.1.15, the set {xgk’lfl, ST (k)} is a K-vector

. o —d _ _ _
space basis of Ry, and by Proposition 4.3.7, the sets {x, k“’H(kHlt;{(k)H, ST dk“’”t;}
and {xadl’Zfz, o ,xadl’”f;;} are K-vector spaces of (wgr)_ and (wg)o, respectively.
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5.3 Algorithms for Checking Uniformity Conditions

First we show a). For all r € {1,...,H(k)} and s € {H(k) + 1,...,u}, we have

dkrtr xodk+1bt - (0 ‘,L'Od1 2t27"- dl Ht ) ( )( Xltrw-'a‘)('rsr)'g;r
:(0 oy P dl“t) te(Ty, X, X)L E
- Z (- (AT, LX) - €y Ty
—dy s
= Zcrswo l’gtz
(=2

according to Proposition 4.3.10. Let a1,...,agw), bgk)+1,---, by, € K. Then

W
d 7 —d _
([(astr) o 3wt

s=H(k)+1
H(k) p 3 4
- arzy™ "ty Z bsg THE
=1 s=H(k)+1

o
Ky _dk-&-l,sf*
= Z aybs(zy "ty - ty)

H(k) 7 w
= Z arbs Z Crst ZtZ
r=1 s=H(k)+1 (=2
)

(=2 \ r=1 s=H(k)+1
- d
= Z((ah cank) - Co (brgyt1s- - bu) )z T
(=2
7 s
= Z fg(al, <o OH(K) bH(k)—‘rlv R ,bu)xo 1’et€.
(=2

By Definition 5.2.11, 7 is biinjective if and only if fy(a1,. .., agw), barr)+1,--->0u) =0
for all £ € {2,...,u} implies that a; = -+ = agp) = 0 or by(p)y41 = -+ =b, = 0. In
other words, 7 is biinjective if and only if

Z((f2r- 0 fu)) € ZQyns - yam)) Y Z(Za k) 415 -5 20)-

By [CLOO07, Lemma 1.§2.2], we have

Z((y1,--- ayH(k)>) U Z<<ZH(k)+1a s Zp)) = Z(<912H(k)+17 e 73/H(k)zu>)-
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5 Projective Border Bases and Algebraic Geometry

Now the Ideal-Variety Correspondence [CLOO07, Thm. 4.§2.7], Hilbert’s Nullstellensatz
[KR0O, Thm. 2.6.16], and [KR05, Coro. 4.1.12] yield that 7 is biinjective if and only if

\/<f2, oy fu) 2 \/<y12H(k)+17 S YHE)Zn) = WYIZH() 1 - - - > YH (k)2

Next we prove claim b). By taking adjoints, the map 7 induces the dual K-vector space

monomorphism 7 : (wg)o* — (Rx ®k (wr)—_k)", defined by (xgdl’eiz) — (xadl"gﬁ) o

for all £ € {2,...,u}. As above, for all aq,...,ag@), bg@)+1,---,bu € K, we have

H(k) @
- Z aTxgk,rfr ® Z bsxadkﬂ,sfz
r=1 s=H(k)+1
m
= Z((al, .. ,aH(k)) -Cy - (bH(k)—I—l? RN bu)tr)l‘adl’éﬁ.
=2

Thus for all indices ¢ € {2,...,u}, the matrix C; € Mat gy ,—p(x)(K) represents the
_ .k
K-vector space homomorphism 7*((z, dljt;) ) with respect to the K-vector space bases

{J:gk‘lfl, . ,a:gk’H(k)fH(k)} of Ry and {xgd”f;, . ,xo_dl“‘f;} of (wr)—k. Since the map
7 : Ry @k (wr)-_k — im(m) is surjective, the restriction | () of 7 to (im(m))* is
injective according to [Bou89, Prop. 11.§2.6.9]. As {¢1,...,¢q} is a K-vector space basis
of im(), and since 7| (i (x))* is injective, it follows that

d *
(im(r))* = (@ K%)
=1
d
= @D Kby B + -+ + by )
=1

d
-~ —d —d
= EB K(biawy" *Ca+ -+ + bipzy "Cp)
i=1

d
@

i=1
C Mat g (k) rr(r) (5)-

Moreover, since we have seen above that Ry, (wgr)_g, and (wg)o are all finite-dimensional
K-vector spaces, [Bou89, Subsection 11.§4.2, p. 271] yields the canonical K-vector space
isomorphism

Ry @r (wr)-1 = (R})" ®K (wr)-x = Hompg (R, (Wr)—k) = Mat,_ g k), m (k) (K)-
We now prove that (Mat g —mk) (K))* = Mat,_gx), g (K). Let

P MatH,H(k)’H(k) (K) — (MatH(k)#,H(k) (K))*, A (B — trace(.AB)).
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5.3 Algorithms for Checking Uniformity Conditions

For all A, A" € Mat,,_ gy, m) (K), A € K, and B € Mat g i) —r(x) (), we have

D(AA + A")(B) = trace((\A + A")B)
= trace(AAB + A'B)
= M trace(AB) + trace(A'B)
= AQ(A)(B) + ©(A')(B),

ie. P(ANA + A') = AP(A) + (A’). Thus ® is a K-vector space homomorphism. Let
A € ker(®). Let ¢ € {1,...,u— H(k)}, j € {1,...,H(k)}, and let a;; € K be the
entry of A in the i** row and the 5 column. Let Mi; € Maty ), u—m () be the matrix
with 1 in the entry of the j* row and i*" column and 0 in all other entries. Then
a;; = trace(AM;;) = 0 since A € ker(®). We see that A = 0 and thus @ is injective.
Since dimK(Mat#_H(k)’H(k)(K)) = (u—H(k))-H(k) = dimK((MatH(k),u—H(k)(K))*)a
the map ® is a K-vector space isomorphism.

Altogether, we see that we can consider m as a K-vector space epimorphism

d *
™ Ry @k (wr)—k = Matp ) ) (K))" — (@ KBi) = (im(m)")" = im()

with M = @7, KB; € Maty ), mx (K). By [Eis88, Prop. 1.1], it follows that 7 is
biinjective if and only if (M1); = 0, i.e. if and only if for all scalars cy,...,cm € K,
tkrg(e1D1 + -+ + ¢Dy) < 1 implies that ¢; = -+- = ¢, = 0. In other words, the
map 7 is biinjective if and only if Z(J) € Z((y1,...,ym) and by the Ideal-Variety
Correspondence |[CLO07, Thm. 4.§2.7|, Hilbert’s Nullstellensatz [KR00, Thm. 2.6.16],
and [KR05, Coro. 4.1.12], this is equivalent to v/.J D (y1, ..., Ym). O

The previous proposition can be used to check i-uniformity conditions in special cases.

Remark 5.3.2. Let j € {1,...,0x}. According to Remark 5.2.12, the scheme X is
(deg(X) —HFx(j))-uniform if and only if the multiplication map Ry ®k (wr)—r — (WRr)o,
r® @ — 1 - is biinjective for all k € {j,...,0x}. Since we can algorithmically check
radical membership by [KR00, Coro. 3.5.15], we can use the methods of Proposition 5.3.1
to algorithmically check whether the scheme X is (deg(X) — HFx(j))-uniform. In Re-
mark 5.3.5, we describe a new method to check whether X is i-uniform where i € N can
be an arbitrary natural number, which is based on Corollary 5.2.9.

Next we turn Corollary 5.2.9 into an explicit algorithm. Note that we assume that the
subscheme X is given by a generating set of its defining ideal ZT(X).
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5 Projective Border Bases and Algebraic Geometry

Algorithm 8: CheckUniformity({fi,..., fr},4,7)

Input:
r€Nand {fi,..., fr} C P is a generating set of the homogeneous vanishing

ideal Z7 (X) of a non-empty zero-dimensional subscheme X C Py (W) over an
algebraically closed field K satisfying X N H™™ = ),

i,j € N\ {0}

1 Compute a projective O-border basis G of (f1,..., f.) C P.

© ®w N o U A

10

11
12
13

14
15
16
17
18
19

Let p € N and t1,...,t, C T™ be terms such that O = {t1,...,t,} and such that
Let X1,..., &, € Mat,(K) be the formal multiplication matrices of the O-border
basis {g4°" | g € G} C P.

ox = degy(t,) — 1
Hj :=max{k € {1,...,p} | degy (tx) < j}
if i >p— Hjor j > ox then
‘ return false
end
for k:=1to H; do

Let T € Mat,, 1, g, (K) be the submatrix of t,(X{*,..., X3¥) € Mat, (K)
obtained by deleting the first row and the first H; columns.
end
Let {y1,...,yn,} be a set of further indeterminates.
Let J C K[y1,...,yn;] be the ideal generated by the set of all i-minors of the
matrix y1 71 + -+ + ijTHj S Matu_w_Hj (K[yl, RN ij]).
for k:=1to H; do
if yi ¢ V/J then
‘ return false
end
end
return true

Proposition 5.3.3. (The (i, j)-Uniformity Test — The General Case)
Let {f1,..., fr} € P with r € N be a generating set of the defining ideal Z+(X) and let
i,7 € N\ {0}. Then Algorithm 8 is actually an algorithm and the result

CheckUniformity({fi,..., fr},%,7)

of Algorithm 8 applied to the input data {f1,...,fr}, i, and j is a boolean value that
determines whether the scheme X is (i, j)-uniform.
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5.3 Algorithms for Checking Uniformity Conditions

Proof. First we show that Algorithm 8 is actually an algorithm. As X C Px (W) is a
non-empty zero-dimensional subscheme, we can compute a projective O-border basis G
of ZH(X) C P as in line 1 according to Proposition 5.1.8 and Corollary 4.1.14. By
Proposition 4.1.7, the set {g4" | g € G} C P is an O-border basis of Z+(X)%" and thus
we can compute the corresponding formal multiplication matrices in line 3. In line 13,
we have i < u — Hj since otherwise the procedure would have stopped in line 6. As X
is non-empty, 1 € O by Definitions 2.1.6 and 4.1.2 and hence p — H; < p— 1. Thus
we can compute the ¢-minors of y1 71 + -+ + Y Th, € Mat,—u, u1(K[y1,...,yn,]), and
hence also J as in line 13 using linear algebra techniques. The condition of the if-clause
in line 15 can be algorithmically checked, for instance, with the Radical Membership
Test [KR0O, Coro. 3.5.15]. Since all the other steps of the procedure can be trivially
computed and since the procedure obviously stops after a finite amount of time, it is
actually an algorithm.

Next we prove the correctness. Since X C Pg (W) is a non-empty subscheme, we have
(fi,..., fr) C P. Let G C P be the projective O-border basis of ZT(X) as in line 1, let
p € Nandty,...,t, CT" besuch that O = {t1,...,t,} and degy, (t1) < --- < degyy (tu)
as in line 2, and let A3,..., &, € Mat,(K) denote the formal multiplication matrices
of {g9" | g € G} asin line 3. Since (f1,..., f,) # P and G is a projective O-border basis
of the ideal Z*(X), it follows O # () and thus p > 1 from Definition 4.1.2. Therefore,
ox = degy (ty) — 1 as in line 4 and H; = max{k € {1,...,u} | degy (tx) < j} as
in line 5 exist. Since we have degy,(t1) < -+ < degy(tu), it follows p = deg(X),
ox = max{k € Z | HFx(k) < deg(X)}, and H; = HFx(j) from Proposition 4.1.15
and Definition 5.1.17. If i > u — H; = deg(X) — HFx(j) or j > ox, the subscheme X
is not (i, j)-uniform according to Proposition 5.2.3 and Definition 5.2.1 and the correct
boolean value is returned in line 7. For the other case, assume that i < u — H;. Let
{y1,.--,yn;} be a set of further indeterminates as in line 12, T € Mat, 1, (K) be
the submatrix of ¢ (X{",..., X") € Mat,(K) obtained by deleting the first row and the
first H; columns as in line 10, and let J C K[yi,...,yn,] be the ideal generated by the
set of all 4-minors of y171 + -+ +ypu, T, € Mat, 1, (K[y1, ... ,ij]) as in line 13.
If the algorithm stops in line 16, then there exists a k € {1,..., H;} such that yx ¢ v/J
by line 15. In this situation, (y1,...,yn;) & v/J and Corollary 5.2.9 imply that X is
not (4, j)-uniform and the correct boolean value is returned in line 16. If the algorithm
stops in line 19, then y; € v/J for all k € {1,...,H;} by line 15. In this situation,
(y1,---,yn;) € VJ and Corollary 5.2.9 imply that X is (i, j)-uniform and the correct
boolean value is returned in line 19. O

Example 5.3.4. Let X¢ = X Xgpee(q) Spec(C) C PZ = Proj(Clag, z1,22]) be the
zero-dimensional subscheme X regarded over C where X C IP’?@ is the zero-dimensional
subscheme of the Examples 5.2.2, 5.2.8, and 5.2.10. Recall that X¢ was defined by
the ideal I = pZ N p? N p3 where po = ZT({(1:0:0)}), p1 = ZT({(1:0:1)}), and
p2 = Z1({(1:1:0)}) were homogeneous vanishing ideals in C[z¢, x1, x2]. In particular, we
have Supp(Xc) = {po, p1,p2} and Xc N H™ = (). Applying the method described in Ex-
ample 5.2.2, we can compute the homogeneous generating set { f1, ..., fa} C Clzg, x1, z2]

of the ideal I where we have f; = x%:pg + :1:1563 — xox1T2, fo = x% — 23:0:5% + x%w%,
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5 Projective Border Bases and Algebraic Geometry

f3 = 2123 — 202123, and fi = 2] —2wox + 2322, Altogether, the input data {f1,..., fa},
i = 2, and j = 2 satisfy the assumptions of Algorithm 8. We now consider the steps of
Algorithm 8 applied to these input data in detail.

In the initialization process of the lines 1 to 3, we compute the projective O-border ba-
sis G where O = {t1,...,to} = {1, 22, 21,23, ¥122, 7%, 23, x123, 2} } and the corresponding
formal multiplication matrices X7, Xs € Matg(C) just as we did in Example 5.2.10. In
line 4, we have ox, = degy (73) — 1 = 2. Since we have degy, (ts) = deg(z?) = 2
and degy, (t7) = degy (23) = 3 > 2, we get H; = 6 in line 5. Asi =2 < 9— H; and
Jj =2 = ox,, the if-clause in line 6 is not executed. Let 71, ..., Ts € Matg 3(C) be the ma-
trices that are computed in line 10 during the for-loop starting in line 9, let {y1,...,ys} be
a set of further indeterminates as in line 12, and let J C Clyy, ..., ys] be the ideal gener-
ated by the set of all 2-minors of the matrix y1 71+ - - +y676 € Matg 3(Cly1, ..., y6]). Re-
call that we already computed the matrices 71, ..., Tg and the ideal J in Example 5.2.10.
Using the Radical Membership Test [KR00, Coro. 3.5.15], we see that y; € v/J whereas
yo ¢ v/J. Thus the condition of the if-clause in line 15 is satisfied and the algorithm
returns the boolean value false in line 16.

By Proposition 5.3.3, the zero-dimensional subscheme X¢ C P2 is not (2, 2)-uniform.
Note that this result coincides with Example 5.2.10.

Finally, we sum up all the methods introduced in this subsection to check ¢-uniformity
and (4, j)-uniformity conditions in the general, i.e. non-reduced, case. Recall again, that
all these methods assume that the base field K is algebraically closed.

Remark 5.3.5. Let ¢,5 € N\ {0}. Then we have the following possibilities to check
whether the scheme X is i- respectively (i, j)-uniform.

a) According to Proposition 5.3.3, we can algorithmically check whether the scheme X
is (7, j)-uniform. Note that, we do not need to assume that X is reduced but only
that K is algebraically closed. In this general setting, no algorithm to check the
(i, j)-uniformity conditions has been known by now.

b) Combining the Propositions 5.2.6 and 5.3.3, we can algorithmically check whether
the scheme X is i-uniform. Note that by now it was only possible to check the
i-uniformity condition if we had i = deg(X) — HFx(k) for some k € N by applying
the method described in Remark 5.3.2.
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5.3.2 The Reduced Case

In this subsection, we do no longer assume that the base field K is algebraically closed but
instead assume that the subscheme X C Py (W) is reduced. Before we start to transform
the results of Section 5.2 into explicit algorithms, we recall the results of [MP04]| about
(4, 7)-uniform subschemes of P.. Note that the authors of that paper use a slightly
different but equivalent notion of (4, j)-uniformity, cf. [MP04, Rem. 2|, compared to ours

in Definition 5.2.1, which is due to [Kre98, Defn. 7.12] and [Kre01, Defn. 2.1].

Remark 5.3.6. Let I C P be an ideal that set-theoretically defines a zero-dimensional
subscheme X C P} and assume that char(K) = 0 or char(K) > deg(X) holds. In [MP04,
Prop. 18], the authors describe an algorithm that checks whether X is (i, j)-uniform for
arbitrary ¢, 7 € N. The authors of that paper use a different approach than the one we will
use later, namely they use Chow forms. The benefit of their method is that, in contrast
to ours, they do not need to know the zero set of the ideal Z(X) but only an ideal that
defines X set-theoretically and they do not need to assume that XN H™ = (. However, if
the ideal I is not a radical ideal, they need to compute its radical ideal /I = ZH(X). If K
is finitely generated over a perfect field, this task can be algorithmically done, cf. [KLI1]
if char(K) = 0 and [Kem02, Mat01] if char(K) > 0. Note that if 0 < char(K) < deg(X)
or if P is not standard graded, no algorithm to check the (i, j)-uniformity condition for
arbitrary natural numbers i € {1,...,deg(X) —1} and j € {1,...,0x} is known by now.

As before, the reduced subscheme X is assumed to have a K-rational support. Thus the
support of X consists of deg(X) vanishing ideals of K-rational projective points in Px (W)
according to Proposition 5.1.7. For the whole subsection, we assume that X is given by
these K-rational projective points.

Before we are able to transform Theorem 5.2.14 into an explicit algorithm, we need to
determine an algorithm for the computation of the separators of the subschemes Y C X
with deg(Y) = deg(X) — 1, cf. Definition 5.1.17. This task can be done with a suitable
generalization of the Buchberger-Méller Algorithm introduced in [MB82|. The original
Buchberger-Moller Algorithm computes a reduced Grébner basis of the vanishing ideal of
a finite set of affine points in A% = Spec(P). Though a version that computes a border
basis instead of a reduced Grobner basis was stated in [KP11, Algo. 4.1] and explicitly
proved in [Lim14, Thm. 3.4.1], all these versions use the standard grading. This can
sometimes lead to problems. For instance, if we compute an O-border basis G with one
of these versions of the Buchberger-Moller Algorithm, it can happen that a border term
b € 00 is not contained in the degree form with respect to W of the corresponding border
basis element g, € G, i.e. that there is a term ¢ € Supp(gp) such that degy, (t) > degy (b).
In this situation, homogenization of G does not yield a projective O-border bases accord-
ing to Corollary 4.1.9. Since we are particularly interested in projective O-border bases
and need them in Algorithm 10, we generalize the Buchberger-Moller Algorithm to be
capable of handling gradings given by the positive matrix W.
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5 Projective Border Bases and Algebraic Geometry

Algorithm 9: BM((p1,...,pu), (wi,...,wy),0)

Input:
(p1,...,pu) € (A% )H is a tuple consisting of p € N\ {0} pairwise distinct affine
points in A% = Spec(P),

(w1, ..., wy) € Maty ,(Z) such that w; >0 for all ¢ € {1,...,n}

o is a term ordering on T" that is compatible with deg

1:=0

O:=10

M € Mat,, ;(K)

G=0

d:=0

while (00)>q # 0 do

Let r € N and let #1,...,¢, € T" be terms such that (00)y = {¢1,...,¢,} and
such that £, >, --- >, £7.

A= (Ce(pr)s s b (D) [+ | (1), - 1 (pp)) | M) € Maty 40 (K)
Compute a matrix B € Maty, j4,(K) with k£ € N rows such that the rows of B
form a K-vector space basis of ker(.A).

10 Let C € Maty, ;1 (K) be the reduced row echolon form of B.

11 Let g1,...,9x € P be such that C- (£, ... 01,5, ... t1)" = (g1, ., gk)".

12 G:=GU{g,..., 9}

W1,ee s Wn)

i =T 1 S N R U

©

13 for j:=1tor do

14 if £; ¢ {LT5(91),...,LT(gr)} then

15 1:=14+1

16 ti =14

17 O =0U{t}

18 M = ((ti(p1), .- -, ti(pp))™ | M) € Mat,, ;(K)
19 end

20 end

21 d=d+1

22 end

23 S= (ti,...,t1) - M1
24 return (0,G,S)

Proposition 5.3.7. (The Buchberger-Moller Algorithm)

Let (p1,...,pu) € (A%)* be a tuple consisting of p € N\ {0} pairwise distinct affine
points in A% = Spec(P), let X* = {p1,...,pu}, and let o be a term ordering on T™ that
s compatible with degy,. Then Algorithm 9 is actually an algorithm and the result

(0,G,S) =BM((p1,- - -,pu), W,0)

of Algorithm 9 applied to the input data (p1,...,pu), W, and o satisfies the following
conditions.
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1) The set O CT™ is an order ideal in T™.
2) The set G C P is the O-border basis of the vanishing ideal Z(X®) of X*.

3) For all g € G, we have LT,pos(g) € 00. In particular, the degree form of an
element of G with respect to W contains the corresponding border term.

4) We have S = (s1,...,s,) € ((O)k)* and for all i € {1,...,u}, the polynomial s;
is a separator of p; from the affine point set X\ {p;}, i.e. an element satisfying
si(pj) = 0i5 for all j € {1,..., u}.

Proof. First we show that Algorithm 9 is actually an algorithm. Later in the proof of the
correctness, we will show that O is an order ideal in T™ during the whole procedure. Hence
we can compute its border in the lines 6 and 7. The matrices B,C € Mat, ;1,(K) as in
the lines 9 and 10 can be computed using standard linear algebra techniques. Moreover,
we will see in the proof of the correctness that after the while-loop starting in line 6,
we have ¢ = p and the rows of the matrix M € Mat,(K) are K-linearly independent.
Therefore, we can compute (Z,,...,t1) - M~1in line 23 using standard linear algebra
techniques. All the other steps of the procedure can trivially be computed.

In order to show that the procedure stops after a finite amount of time, it suffices to show
that the while-loop starting in line 6 eventually stops. The natural number ¢ is initiated
with 0 in line 1. Thus O has ¢ = 0 elements in line 2 and the matrix M has i = 0 columns
in line 3. Every time ¢ is increased by 1 in line 15, the element ¢; is added to O in line 17
and the evaluation vector (¢;(p1),...,ti(py))" € K* is appended to M as a new first
column in line 18. As O is only changed in line 17 and as M is only changed in line 18, we
see that during the whole algorithm, O = {t1,...,t;} and the columns of M € Mat,, ;(K)
are the precisely the evaluation vectors of the elements in O at (p1,...,pu). Moreover,
we will later prove that the columns of M are K-linearly independent during the whole
algorithm. Since M has exactly p € N rows, it hence follows that O can at most consist
of p terms. As d is increased at the end of every iteration of the while-loop in line 21,
we eventually have (00)>q = 0 in line 6 and the while-loop terminates. Therefore, the
procedure stops after a finite amount of time and is thus an algorithm.

Next we prove the correctness of the algorithm. We consider one iteration of the
while-loop starting in line 6 in detail. Let d € N and O = {t1,...,t;} C T™ be such
that (00)>q # 0 as in line 6. Since the elements of O have been added in a previous
iteration of the while-loop and since d is increased at the end of every iteration of the
while-loop in line 21, we see that degy, (tx) < d for all k € {1,...,i}. Let r € N and
l1,...,4, € T" be terms such that (00)q = {¢1,...,%,} and such that £, >, --- >, {1 as
in line 7. Consider the iterations of the for-loop starting in line 13. As the for-loop runs
from 1 to r, as ¢, >, --- >, £1, and as the algorithm only adds elements to O in line 17,
it follows that £, >, -+ >5 {1 >, t; >4 -+ >, t1 at the beginning of the for-loop in
line 13. Let A = (((p1), -, br(p) | -+ | (1), -, (py)) | M) € Maty i (K)
be as in line 8 and let C € Maty ;4,(K) be a matrix in reduced row echolon form with
k € N rows such that the rows of C form a K-vector space basis of ker(.A) as in line 10.
Moreover, let g1,...,gx € P be such that C - (r,... . 01,t; ..., t1)" = (g91,...,91)" as
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in line 11. By construction, there is a K-linear dependency between the evaluation
vectors of £.,...,01,t;,...,t1 if and only if the corresponding columns of the matrix A
are K-linearly dependent and this equivalent for the same columns of the matrix C to
be K-linearly dependent. An element ¢ is added to O in line 17 if and only if it is not
the leading term with respect to o of one of the elements in {gi,...,gx} by line 14.
And since £, >, -+ >5 1 >5 t; >4 -+ >, t1, this is equivalent for the evaluation
vector (t(p1),...,t(pu))™ of t at (p1,...,pu)" as in line 18 to be K-linearly independent
of M. Thus induction on the loop-variable j of line 13 and induction on d of line 6 yield
that M consists of K-linearly independent columns during the whole algorithm.

Now we prove that O is an order ideal in T™. Let t € O and t/,t” € T" be with t = 't”.
According to Definition 2.1.1, it suffices to prove that ¢ € O. For a contradiction, assume
that ¢ ¢ O. As the algorithm considers the terms degree-by-degree and as the weight
vector W satisfies w; > 0 for all i € {1,...,n}, it follows degy, (¢') < degy (t). Thus
the algorithm considers ¢’ before ¢ in the while-loop. Since we have t' ¢ O, t' = LT, (g)
for some g € G by the lines 14 and 17. As we have already seen above, every element
g1,--.,9x € P of line 11 vanishes on (p1,...,p,). The set G is only changed in line 12.
Hence the elements g and gt” both vanish on (p1,...,pu). As o is a term ordering on T",
we have LT, (gt") = LT, (g)t" = t't" =t by [KR00, Prop. 1.5.3]. In particular, o is also
degy-compatible and hence degy, (t) = degy (gt”) by [KR05, Defn. 4.2.1]. Therefore,
the element gt” yields a K-linearly dependency of the corresponding columns of C and
is thus an element of {g1,...,gx} in line 11 during the corresponding iteration of the
while-loop. As t = LT,(gt”) = LT,(gs) for some s € {1,...,k}, the condition of the
if-clause in line 14 is not fulfilled and ¢ is not added to O in line 17. This is clearly a
contradiction to our assumption and thus it follows that O is an order ideal.

Next we show that G is the O-border basis of the vanishing ideal Z(X%). Obviously
every border term b € 90O is considered once during the algorithm and is the leading
term of a polynomial in G by the lines 10 to 12 and the lines 14 and 17. Moreover, as the
matrix C in line 10 is in reduced row echolon form and as all the elements that are not
leading terms of the elements of G are added to O by the lines 14 and 17, the set G is an
O-border prebasis by Definition 2.1.14. We now use Buchberger’s Criterion for border
bases 2.4.31 to show that G is the O-border basis of Z(X%). Let b,b’ € 9O be neighbors
with respect to O and let g, giy € G be the corresponding elements of G. Then the normal
remainder NRg(S(gp, g»)) € (O) i of the S-vector S(gp, gr) € (G) of gp and gy is an
element of (G)N(O) i according to the Definitions 2.2.2 and 2.4.30. We have already seen
above that all the elements in G vanish on (p1,...,p,) and that the evaluation vectors
of the elements of O at (p1,...,p,) are K-linearly independent. As an element of (G),
the polynomial NR¢(S(gp, gp/)) vanishes at (p1,...,pu). As NRG(S(gs, 91) € (O)k and
as the evaluation vectors of the elements of O at (p1,...,p,) are K-linearly independent,
it follows that NR¢(S(gs, g»)) = 0. Hence Buchberger’s Criterion for border bases 2.4.31
yields that G is the O-border basis of (G). We have already seen above that M is
a matrix consisting of u rows whose columns are the K-linear independent evaluation
vectors of the elements in O at (p1,...,p,) and that, therefore, #0O < u. Recall that
O,(Z(X)) = T"\LT;(Z(X)). We have seen that all the elements in 0O are leading terms
of elements in G C Z(X?), i.e. 00 C LT, {(G)} C LT,{Z(X*)}. In particular, we get
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U, 0*O C LT, {(G)} C LT, {Z(X%)} C T" and O = T" \ | J;2, 0O D O,(Z(X?)) by
Definition 2.1.7 and Proposition 2.1.10. Macaulay’s Basis Theorem [KR00, Thm. 1.5.7]
and [KRO5, Prop. 6.3.3] hence yield p > #0 > #0,(Z(X%)) = p. Altogether, we see
that #0 = p = i and O = O,(Z(X)) at the end of the while-loop starting in line 6
and that we have LT, {(G)} D (32, 0O = T" \ O = LT,{Z(X%)}. As we also have
G C I(X%), |[KRO5, Prop. 2.4.10] yields (G) = Z(X®). Thus we have proved that G is
the O-border basis of (G) = Z(X?).

In order to prove claim 3), let b € 0O and let g, € G be the corresponding O-border
basis element. Then we had b = LT, (gp) during the algorithm in line 14 since otherwise b
would have been added to O in line 17. As o is compatible with degyy,, it follows that
b € DFw (gp) and claim 3) follows.

Finally, we show 4). Let i € {1,...,u}. We have already seen above that the columns
of M are the evaluation vectors of the elements in O = {t1,...,t,} at (p1,...,pu) and
that these vectors are K-linearly independent at the end of the algorithm in line 23, More
precisely, we have

tu(p1) -+ ti(p1)
M=| = | eMatu(K)

tu(pp) - ti(py)

and M is invertible in this situation. Thus we have S = (t,,...,t1) - M1 € ((O) k)"
in line 23. Let sq,...,s, € P be such that S = (s1,...,s,) and let {&1,...,&,} be

the canonical K-vector space basis of K*. Write M1 . EF = (cyy...,c1)" with scalars
c1,...,¢y € K. Then we have s; = c1tq +--- + ¢,t, and
tu(p1) - ta(p1) Cu citi(pr) + -+ + cutp(pr) si(p1)
=1 )= : = |
tupu) -+ talpu) ¢ citr(pu) + -+ + Cutu(pu) $i(Pu)
i.e. s; is a separator of p; from the affine point set X*\ {p;} and claim 4) follows. O

Example 5.3.8. Consider the polynomial ring P = Qx1, 2] which is graded by the
matrix W = (1,3) € Mat; 2(Z) and let X* = {p1,...,p7} C Aé where A?Q = Spec(P)
be the affine point set with p; = (0,0), p2 = (1,0), ps = (2,0), ps = (3,0), ps = (0,1),
Ps = (1,2), and p7 = (2,3). Moreover, let 0 = 0rd(}$). Then o is a term ordering by
[KROO, Prop. 1.4.12] and it is compatible with degy, by [KR05, Exmp. 4.2.2]. Thus X%,
W, and o satisfy the assumption of Algorithm 9. We now consider all the steps of the
Buchberger-Moller Algorithm 9 applied to the input data (p1, ..., p7), W, and o in detail.

After the initialization process in the lines 1 to 5, we have ¢ = 0, O = (), the empty
matrix M = () € Matyo(Q) with seven rows and zero columns, G = (), and d = 0.
Since O = 0, we have 0O = {1} by Definition 2.1.2 and hence (90)>q4 = {1} # 0. Thus

the while-loop starting in line 6 is executed.
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In line 7, we have (00)4 = (00)¢ = {1}, i.e. r =1 and ¢; = 1. Thus we have

£4(0,0) 1
41(1,0) 1
12 (2, O) 1
A=14 (3, 0) =11]¢€ Mat771(Q)
£1(0,1) 1
0(1,2) 1
01(2,3) 1

after line 8 and therefore B = C = ( ) € Mato1(Q), i.e. kK = 0, in the lines 9 and 10.
As k = 0, nothing needs to be done in the lines 11 and 12. Since ¢; = 1 is not the leading
term with respect to o of an element in (), the if-clause starting in line 14 is executed.
After the if-clause in line 19, we have t =1, t; = 1, O = {1}, and

1

S Matm((@).

Il
S g S g Sy

In particular, the for-loop is finished as r = 1 and we get d = 1 after line 21. In this
situation, 9O = {x2, z1} and thus (00)>4 = {x2, 1} # 0 and the while-loop is executed,
once again.

Now we have (00)yg = (00); = {1}, i.e. r =1 and ¢; = x1. Thus we get

1 0

S Mat7,2 (Q)

— = e e e e

— = = =
N = O W N =

in line 8 and, therefore, B = C = () € Matg2(Q), i.e. k = 0, after the lines 9 and 10.
Since k = 0, we see that nothing changes in the lines 11 and 12. Moreover, £; = 1 is
not the leading term of an element of () with respect to o and the if-clause in line 14 is
executed. After this if-clause, we have i = 2, to = z1, O = {1,21}, and

€ Matzg((@),

I
N = O W = O
g S gy
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and after the for-loop starting in line 13, d = 2. In this situation, 00 = {23, x9, z172}
and thus (00)sq = {22, 29, 2122} # 0 and the while-loop is executed, again.

The next two iterations of the while-loop are handled similarly. At the end of these two
iterations, we then have i = 5, t3 = 22, t4 = x9, t5 = 23, O = {1, 21, 22, 29, 23},

0 000 1
1 0111
8 0 4 2 1

M=127 0 9 3 1| €&Matr5(Q),
0 1001
1 211 1
8 3 4 2 1

and d = 4. As (00)>q = ({z122, 71, 2229, 22, 2300}) 54 = {21292, 21, 2320, 23, 2320} # 0,
the while-loop is iterated another time.

In line 7 of this next iteration, we have (00)4 = {172,271}, i.e. r = 2, £1 = 2122, and
o = x}. The computation of the matrices in the lines 8 to 10 yields

5(0,0) £1(0,0) 0 0 0 0 1 000 000 1

6,(1,0) ¢(1,0) 1 0 1 1 1 1 0 1 0111

0:(2,0) £(2,0) 8 0 4 2 1 16 0 8 0 4 2 1
A=|0(3,00 £,(3,00 27 0 9 3 1[=]81 0 27 0 9 3 1| eMatr7(Q),

6,(0,1) £,(0,1) 0 1 0 0 1 000 1001

0(1,2) 4(1,2) 1 21 1 1 1 21 2111

0:(2,3) 4(2,3) 8 3 4 2 1 16 6 8 3 4 2 1

and
B=C=(1 0 —6 0 11 —6 0)€ Mat;7(Q),
i.e. k = 1. After the lines 11 and 12, we have G = {g;} with g; = 2} — 623 + 112? — 621.

As by = 2129 ¢ {27} = {LT,(g1)} and as ly = 21 = LT,(g1), it follows that i = 6,
te = 112, O = {1, 21, 2%, 19, 23, 1172},

0 = O

S Mat776 (@),

<

Il
AN OO O OO

[N}

AN
W= OOoO oo
== O O = O
N — O W~ O
e e e e e

o = O

and d = 5 at the end of this iteration of the while-loop.
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After another iteration, we have i = 7, t; = 23x9, O = {1, 21,23}, 12, 23, 2172, 2322},

0 0 0 00O01
0 01 0111
0 0 8 04 21
M=10 027 0 9 3 1| eMaty7(Q),
0 0 01001
2 21 2111
12 6 8 3 4 2 1

d =6, and (aO)Zd = ({{L’%,{E%,ZE?I‘Q,LBlZE%,ZL‘%iE%})EEj = {JJ%,ZE?Z’Q,l‘lZL‘%, x%xg} e 0. In the
following iteration, we have (00)g = {73, x3x2}, i.e. r = 2, {1 = 22, and ly = 232y after
line 7. The computation of the matrices in the lines 8 to 9 yields

00000 0O0TO01
0000 1 0111
00 00 8 0421

A=]10 0 0 0 27 0 9 3 1| eMatro(Q)
01 0001001
2 4 2 2 1 2111
24 9 12 6 8 3 4 2 1

and
1 2 -3 00 -2 000
5= (o 1 0 10 1 00 0) € Matz,(Q),
i.e. k = 2. The reduced row echolon form of B as in line 10 is then

10 -3 200 000
C‘(o 1 0 -1 0 -10 0 o)eMat“(Q)

and after line 12 we have G = {g1, 92,93} with the polynomials go = #3 — z172 — 22
and g3 = 33‘%.7}2 — 3;10%332 + 2z1x9. Moreover, no new elements are added to O in the
if-clause.

After three further iterations of the while-loop, we have the following situation: i = 7,
O = {1,21,23, 29,23, 2172, V372 },

0 0 0 00O01
0 01 0111
0 0 8 04 21
M=10 027 0 9 3 1| eMaty7(Q),
0 0 01001
2 2 1 2111
12 6 8 3 4 2 1
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, g5} with g4 = T1T5 — r1x2 — 122 and g5 = x{T5 —

5.3 Algorithms for Checking Uniformity Conditions

2,2 4x%a:2 + 2z 29,

and (00)sq = ({1, 23, 329, 2123, 2223})>9 = 0. Thus the while-loop terminates.

Finally, since

M=

D=

we get S = (s1, ..

S1 =
So =
83 =
S4 =
S5 —
S —

S7 =

By Proposition 5.3.7,

-3 3 -1 0 3 -3 1
9 -6 1 0 -9 6 -1
-1 3 -3 1 0 0 0
6 0 0 0 6 0 0 |eMatr7(Q),
6 —15 12 -3 0 0 0
~11 18 -9 2 0 0 0
6 0 0 0 0 0 0

.,87) € ({(O)k)T in line 23 where the polynomials in S are of the form

1,2 3 1.3 2 1
—5T1T2 + 5102 — gx] — T2 + a1 — Fao1 + 1,

1.2 1.3 5,.2
5L1T2 — T1X2 + 5T1 — 5T1 + 3:131,

1.2 1 1.3 2 _ 3
—§X1x2 + §r1x2 — 527 + 227 — 571,

iz —1af + ioy,
%xfﬂﬂz - %961562 + x2,
—%x%l‘g + x129,
%x%xg — é.%'l.l‘g.

the set G = {g1,...,95} with

g1 =z} — 61 + 112% — 627,
g2 = T35 — 19 — T1T9,

g3 = :U:{’@ + 2x170 — 3:):%352,
g4 = 331963 —T1x2 — 93%1‘2,

gs = x%x% + 2x129 — 4x%x2

is the O-border basis of the vanishing ideal Z(X®) and for every i € {1,...,7}, the
element s; is a separator of the point p; from the affine point set X%\ {p;}.

Now we have all ingredients to transform Theorem 5.2.14 into an algorithm. Note

that we assume that X is given by K-rational points p1, ..

- Pdeg(x) € P (W) such that

the points are not contained in the hyperplane at infinity H™ = Z*(xp) and such that

Supp(X) = {Z*({p1}), -

s I ({Paeg(x)})}, cf. Proposition 5.1.7.
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Algorithm 10: CheckUniformityReduced((pi,...,pu), % J, (Wi,. .., wy),0)

© W NS TR W N =

Input:

(p1s---,pu) € (Px(W))H is a tuple consisting of ;4 € N\ {0} pairwise distinct
K-rational projective points in Py (W) satisfying p, ¢ H™ for all k € {1,...,u},
i,j € N\ {0},

(wi,...,wy) € Maty ,,(Z) such that w; >0 for all i € {1,...,n},

o is a term ordering on T" that is compatible with deg(,, . w,)

for k=1 to pu do
Let pk1, .., Pkn € K be such that pp = (1:pg1: -+ : Dkn)-
Py = (Pr1,- - Dkn) € A = Spec(P)

end

(0,G,S) =BM((pf,---,p}), (W1, ..., wn),0)

Let t1,...,t, € T" be with O = {t1,...,t,} and degy, (1) < --- < degy (L)
Let s1,...,5, € (O)k be such that S = (s1,...,s,).

ox = degy(ty) — 1

Hj :=max{k € {1,...,p} | degy (tx) < j}

10 if i > p— Hj or j > ox then

11 return false

12 end

13 foreach subset {v1,...,v;} C{1,...,u} do
14 for k:= H; +1 to p do

15 for /:=1to i do

16 ‘ Let cpe € K denote the coefficient of ¢, in s,,.
17 end

18 end

19 | C = (cke)m;+1<h<p1<e<i € Maty—p; i(K)
20 if ker(C) # {0} then

21 ‘ return false

22 end

23 end

24 return true

Proposition 5.3.9. (The (i, j)-Uniformity Test — The Reduced Case)

Let o be a term ordering on T™ that is compatible with degy, and (p1,...,pu) € (Px(W))*
be a tuple of pn € N\{0} pairwise distinct K -rational projective points in Pi(W). Assume
that pr, ¢ H™ and let pp = ZT({px}) denote the homogeneous vanishing ideal of py
for all k € {1,...,u}. Moreover, we let X C Pg (W) be the reduced zero-dimensional
subscheme with the property that Supp(X) = {p1,...,p.} and we let i, j € N\ {0}. Then

Algorithm 10 is actually an algorithm and the result

CheckUniformityReduced((p1,...,pu),%, J, W,0)
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of Algorithm 10 applied to the input data (p1,...,pu), i, j, W, and o is a boolean value
that determines whether the reduced scheme X is (i, j)-uniform.

Proof. First we show that the procedure is an algorithm. For all k € {1,...,u}, we have

pr ¢ H™ and thus there are pyi,...,pe, € K with pp = (1:pg1: -+ :Prp) as in line 2.
For all k € {1,...,pu}, let p} = (pkl,; ,Dkn) € A = Spec(P) be as in line 3. Since
the projective points p1,...,p, € Px(W) are pairwise distinct, the corresponding affine

points p{,...,p% € A’ are also pairwise distinct. Hence the input data (p{,...,p%), W,
and o in line 5 satisfy the requirements of Algorithm 9. Let (O, G,S) be the result of
Algorithm 9 as in line 5 and let I = Z({p{,...,p%}) C P be the vanishing ideal of the
affine point set {p{,...,p%} C A%. Then Proposition 5.3.7 yields that the set G C P is
the O-border basis of I. By [KRO05, Prop. 6.3.3|, we have dimg (P/I) = u. Thus we see
that #0O = u according to Definition 2.1.14, i.e. we can find terms t1,...,¢, € T" such
that O = {t1,...,t,} and such that degy, (t1) < --- < degyy(t,) as in line 6. Since u > 1,
ox = degy,(t,) —1 as in line 8 and H; = max{k € {1,..., u} | degy (tx) < j} as in line 9
exist. Moreover, p = deg(X), ox = max{k € Z | HFx(k) < deg(X)}, and H; = HFx(j)
according to Definition 5.1.17 and Proposition 4.1.15. By Proposition 5.3.7, there exist
51,-..,54 € (O)k such that S = (s1,...,5,). Moreover, we can check whether the kernel
of a rectangular matrix over K is trivial or not as in line 20 using standard linear algebra
techniques. All the other steps of the procedure can obviously be computed. Since the
procedure obviously stops after a finite amount of time, it is actually an algorithm.
Next we prove the correctness. Since X C Py (W) is reduced, there is a subscheme
X), C X with Supp(Xy) = Supp(X) \ {p} and it satisfies deg(X;) = deg(X) — 1 for all
ke{l,...,u}. Forall k,£ € {1,..., u}, the polynomial s;, € (O)k satisfies s;(p}) = dxe
by Proposition 5.3.7. In particular, s; # 0 and degy, (si) < ox+ 1 for all k € {1,...,u}.
Let Fy = ngH*degW(s’“)s}éom be for all k € {1,...,u}. For all k,¢ € {1,...,pu},

Fi(pe) = (ag 08w R ghomy(1 por o pgn) = sk, o) = sk(0f) = Spes Le,
Fy € TH(Xg) \ T+(X). Hence for all k € {1,...,u}, the residue class fi = Fy € Pyyi
in R is a separator of FAQ;C according to Definition 5.1.17.

Finally, we consider all the different situation that can occur for the algorithm to stop.
If the algorithm stops in line 11, then ¢ > p — Hj or j > ox in line 10. In both cases,
the scheme X is trivially not (i, j)-uniform by Proposition 5.2.3 and Definition 5.2.1
and the correct boolean value is returned. Suppose that the algorithm does not stop in
line 11. Then we have i € {1,...,u — H;} and j € {1,...,0x} according to line 10.
Let {v1,...,v5} € {1,...,u} be a subset consisting of i elements as in line 13. For

all k € {H; +1,...,u}, and £ € {1,...,i}, let ¢y € K be the coefficient of ¢ in s,,

. . . ox+1—de Sy .
as in line 16. Since we have F),, = xOX gw ( ‘Z)shom, cpe € K is also the coefhi-

vy
cient of :rgXH_degW(t’“)tk in F,, for all k € {H; +1,...,u} and £ € {1,...,i}. Let
the matrix C = (cpe)H,+1<k<pi<e<i € Mat, g, ;(K) be defined as in line 19. As we
have degy, (t1) < -+ < degy(t,) according to line 6, we see that for all k € {1,...,u},
ox + 1 —degy, (tx) < ox + 1 — j holds if and only if £ > H;. Since the residue classes
of the elements of {a;gXH_degW(tl)tl, e ,xSXH*degW(t“)tu} in R form a K-vector space
basis of Rs,11 according to Proposition 4.1.15, it follows that the residue classes of
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ox+1—degy (tm;+1)- ox+1—degyy () +1—
the elements of {x, EH 415> T WIE Y C Ryyi1 in R/(ZGFHT)

form a K-vector space basis of (R/(Z; e Moys1. In particular, we see that for all
¢ e {1,...,i}, (CgH lse-osCop) € K“ Hj is the corresponding coordinate tuple of
the residue class of f,, = F,, € Ryy41 in R/( Zoe 1= ]>. Hence the residue classes
of the elements of {f,,...,f,,} C R/(fUXH 7y are K-linearly dependent if and only
if ker(C) # {0}. In other words, the algorithm stops in line 21 if and only if there
exists a subset {v1,...,1;} C {1,...,u} such that the residue classes of the elements
of {f,.--» [} C R/(@J*T'77) are K-linearly dependent. By Theorem 5.2.14, this is
equivalent for X to be not (4, 7)-uniform and the correct boolean value is returned in
line 20. If no such K-linearly dependent subset exists, the algorithm stops in line 24. In
this situation, the scheme X is (7, j)-uniform by Theorem 5.2.14 and the correct boolean
value is returned in line 24. O

Example 5.3.10. Consider the reduced zero-dimensional subscheme X C IF’?Q of Ex-
ample 5.2.16.a, again. Recall that X C P?@ was the reduced zero-dimensional sub-
scheme of degree deg(X) = 11 with Supp(X) = {p1,...,p11} where p; = ZT(p;) for
all i € {1,...,11} and p; = (1:0:0), p2 = (1:0:1), p3 = (1:0:2), ps = (1:1:0),
ps = (1:1:4), pg = (1:3:-2), pr = (1:2:2), ps = (1:3:-1), pg = (1:3:1),
pio = (1:4:—1), and p;; = (1:4:1). We have already seen in Example 5.2.16 that
XN H™ = (), that X is not (4, 2)-uniform with respect to the standard grading defined
by W = (1,1) € Mat;2(Z), and that the reason for that was that an ellipse passes
through the points in {p1,...,p11} \ {p1, 6, P9, P10}. By Definition 5.1.3, we can identify
the points of X, with the corresponding affine part in A?Q = Spec(Q[z1, z2]) as in the
following picture.
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Let o = DegRevLex. Then the term ordering o on T" is compatible with degy,. Moreover,
we let P = Q[xo, z1, x2] also be Z-graded by the matrix W = (1 | W) € Mat; 3(Z). In
order to illustrate Algorithm 10, we apply it to the input data (p1,...,p11), i =4, j =2,
W, and o.

After the for-loop starting in line 1, (p{, . ..,pf;) € (AG)' with p§ = (0,0), p

p3 - (072)a p4 - (170)7 b5 = (13 11) pg

(% %) p? = (272)7 pg = (3a _1) pg = (3a 1)a

196



5.3 Algorithms for Checking Uniformity Conditions
o = (4,—1), and p{; = (4,1). The result of the Buchberger-Méller Algorithm 9 applied
to the input data (p§,...,pJ;), W, and o is
0= {tla ey tll} = {17 €r2,T1, ZL’%, 122, x%a .7}%, .2911‘%, l‘%l’g, x?v .7,‘%} - T2

and S = (s1,...,511) € ((O)g)! where

_ 1154 _ 302 .3 203 .2, _ 137 2, 809 .3
51 = 3g93%1 — 239371 — 23937172 — 28932172 1 578672
2317 .2 |, 1421 52 .2 4908 5681
1 580371 T 28037172 — 26372 — 280371 — mrger2 + L,
4375 .4, 2600 .3 _ 4000 .2 . _ 2800,. .2 _ 38753
86 = —52074%2 T 2603771 — 26037 X172 ~ 3679 L1%2 — Rgro L2
14200,.2 , 28000 9125 2 |, 11600 12125
— 26037 L1 T 260377172 t 173472 T 2603721 — o9 L2
g — 9775 .4 1966 .3 _ 6322 2. 715, .2 8135 3
9 = 1165922 ~ 26037Y1 ~ 26037Y1Y2 T 17358Y1L2 T 2314402
11405 .2 | 62471 33715 .2 9439 39035
+ 2603721 T 52074122 T 3787272 ~ 2603741 — Goaz2 L2
7475 oA, 142 03 441 2. 695 2, 4935 3
$10 = —7g288%2 T 289371 — 28937172 — 5786172 T 2314472
553 2 | 3281 20652 |, 411 12555

— 289371 t 5786 X172 + J208 2 T 239371 — 2314472

We have ox = degy(t11) —1 = 3 and H; = max{k € {1,...,11} | degy (tx) <2} =6
after the lines 8 and 9. As ¢ =4 <5 =11 - Hj and as j = 2 < 3 = o, the if-clause
in line 10 is not executed. Let {v1,...,v4} C {1,...,11} with 1y =1, vy = 6, v3 = 9,
and v4 = 10 be chosen in line 13. After the two for-loops starting in the lines 14 and 15,
we get

58248 —186000 —146430 88830
—19728 —134400 —-170760 —50040
—29232 —64000 —101152 —63504 | € Mats4(Q)
—43488 41600 —31456 20448
16560  —35000 9775 —67275

=_1 .
C = 1ie5m

in line 19. Since we have ker(C) = ((100, 69, —60, —20)"") # {0}, the if-clause starting in
line 20 is executed and the boolean value false is returned in line 21. Note that this
result coincides with the result of Example 5.2.16.a.

Finally, we sum up all the methods introduced in this section to check ¢-uniformity
and (i, j)-uniformity.

Remark 5.3.11. Let X C Pgx (W) be a non-empty (not necessarily reduced) zero-
dimensional subscheme and assume that X N H™ = (). Let i, € N\ {0}. Then we have
the following possibilities to check whether X is i- respectively (i, j)-uniform.

a) If K is algebraically closed and X is given by a generating set of its defining
ideal Z7(X), we can use Proposition 5.3.3 to check whether X is (i, j)-uniform.
In particular, combined with Proposition 5.2.6, we can use this to check whether X
is ¢-uniform. Note that by now it was only possible to check the i-uniformity condi-
tion in the case that i = deg(X) — HFx(k) for some k € N by applying the method
described in Remark 5.3.2.
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5 Projective Border Bases and Algebraic Geometry

b) If X is reduced and given by the set of points in Px (W) in its support, we can
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use Proposition 5.3.9 to check whether X is (4, j)-uniform. In particular, combined
with Proposition 5.2.6, we can check whether X is ¢-uniform. Note that by now it
was only possible to check the i-uniformity condition in the reduced case if K is
algebraically closed and i € {1,...,AH(ox+1)} respectively i = deg(X) — HFx (k)
for some k € N as described in a) respectively Remark 5.2.15, or if char(K) = 0 or
char(K) > deg(X) as described in Remark 5.3.6. Moreover, note that we do not
need to restrict the base field K, at all. Thus our approach extends the method
described in Remark 5.3.6.



6 The (Projective) Border Basis Scheme

In this final chapter, we combine the results of the Chapters 4 and 5. In Chapter 4,
we have introduced projective border bases. In particular, we proved the (Projective)
Border Bases Correspondence in Corollary 4.1.9, which states that there is a one-to-one
correspondence between projective O-border bases and specific O-border bases. Then in
Chapter 5, we have studied zero-dimensional subschemes of weighted projective spaces
and uniformity conditions that these subschemes satisfy. In particular, we have seen
that there is a one-to-one correspondence between projective border bases and specific
zero-dimensional subschemes of weighted projective spaces in Proposition 5.1.8. Let K
be a field, n € N\ {0}, P = K|z1,...,2,], and P = Plxg] = K|[zo,...,z,]). Then the

following figure shows the intersection of the previous two sections.

zero-dimensional closed subschemes X of weighted projective spaces P (W)
that have no point on the hyperplane at infinity

projective border basis projective subscheme
of the defining ideal defined by the
ITX)cP homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 | W) with a positive matrix W € Maty ,(Z)

dehomogenization homogenization

O-border bases of ideals in P with b € DFyy(gp) for all b € 00

where g, denotes the O-border basis element corresponding to b

The above correspondence is the starting point of this chapter. Let O be a non-empty
order ideal in T". In [KRO8| and [Rob09], the authors parametrized all zero-dimensional
ideals in P that possess a O-border basis by introducing the O-border basis scheme Be.
We introduce the subscheme BY* of the O-border basis scheme B, called the pro-
jective O-border basis scheme, that parametrizes all one-dimensional homogeneous ideal
in P that possess a projective O-border basis in Definition 6.1.5. Then we introduce
the corresponding universal projective O-border basis family B(meJ — UgoJ and show

that the residue classes of the elements of O form a Bgmj [zo]-module basis of U(poroj in
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6 The (Projective) Border Basis Scheme

Theorem 6.1.13. This allows us to explicitly describe the multiplicative structure of the
coordinate ring of IB%%TOJ and its dual module by means of multiplication matrices in the
Sections 6.2 and 6.3. In Section 6.4, we then explicitly describe the points of the projec-
tive O-border basis scheme B,™ that correspond to an (¢, j)-uniform zero-dimensional
subscheme. The main result of this chapter is Theorem 6.4.4 and yields that for 7,5 € N,
the set of all points of By,” with the property that the corresponding zero-dimensional

subscheme is (i, j)-uniform is a constructible set with respect to the Zariski topology.

As in the previous two chapters, let the K-algebra P = @VGZ P, be Z-graded by a
matrix W = (wi,...,w,) € Maty,(Z) with w; > 0 for all i € {1,...,n}. Moreover,
let o denote the homogenizing indeterminate and let P = P[zg] = K[z, ..., 2,]. Then
P = @%ZFV is positively Z-graded by the matrix W = (1 | W) € Maty ,4+1(K)
according to [KR05, Defn. 4.1.6 and 4.2.4]. Let O = {t1,...,t,} with p € N\ {0} be
a finite order ideal in T™ and assume that degy (¢1) < --- < degy (t,). We denote its
border by 00 = {b1,...,b,} with v € N\ {0}. As before, we define the integer function
H:7Z —7Z,v— #{k e {l,...,u} | degy (tx) < v} and its first difference function
AH:7Z —7Z,v— H(y)— H(y—1).

6.1 The (Projective) Border Basis Scheme

In this section, we introduce and study the projective O-border basis scheme and the
corresponding universal projective O-border basis family B(p9rOJ — Ugmj. The main result
of this section is Theorem 6.1.13 and yields that the residue classes of the elements of O

in U5 form a B [zo]-module basis of UX™.

First we recall the definition of the O-border basis scheme By, which is due to
[KRO8|, in Definition 6.1.1. The key idea of the O-border basis scheme is to replace
the scalars a;; € K of the elements of a O-border prebases as in Definition 2.1.14 by
newly introduced indeterminates c¢;;. This yields the so-called generic O-border preba-
sis and allows us to consider all O-border prebasis at once. In particular, the generic
O-border prebasis induces generic multiplication matrices. The image of these matrices
under the substitution ¢;; — a;; are pairwise commuting if and only if the image of
the generic O-border prebasis under the substitution ¢;; + a;; is actually an O-border
basis. This way, the generic multiplication matrices define an affine scheme By which
parametrizes all O-border bases. One of the main results about Be is that the residue
classes of the elements of O form a module basis of the corresponding universal family,
cf. Theorem 6.1.3.

After this summary of the O-border basis scheme, we newly introduce the projective
O-border basis scheme B, in Definition 6.1.5. The projective O-border basis scheme
is the subscheme of Bp that parametrizes all projective O-border bases. The remaining
part of this section is then dedicated to the study of B}*. In particular, we generalize
Theorem 6.1.3 to the projective setting in Theorem 6.1.13.
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6.1 The (Projective) Border Basis Scheme

Before we introduce the projective O-border basis scheme IB%%YOJ, we recall the definition
of the O-border basis scheme By as introduced in [KR08, Defn. 3.1 and 3.3].

Definition 6.1.1. Let {¢;; |i € {1,...,u},7 € {1,...,v}} be a set of further indeter-
minates.

a) The set G = {g1,...,9,} defined by

I
gj = bj — Zcijti € P[CH, ce 7CW’]
=1

is called the generic O-border prebasis.

b) Let G C Pleci, . .., cu) be the generic O-border prebasis. For every r € {1,...,n},

let X, = (5,22))19,5# € Mat,(Klei1,...,cuw]) be the 78 formal multiplication
matrix of G as defined in Definition 2.4.15, i.e.

r) Opi Hapty=t; €O,
MO ey if moty = by € 0O

for all k,¢ € {1,...,u}. It is also called the r** generic multiplication matrix
with respect to O.

c) Let &y,..., &, € Mat,(Klci1, ..., cu]) be the generic multiplication matrices with
respect to O. The affine scheme Bp C A%’ = Spec(K|ci1, ..., cu]) defined by
the ideal Z(Bp) that is generated by the entries of the matrices X, Xs — XX
with r,s € {1,...,n} is called the O-border basis scheme. Its coordinate
ring Klci1,. .., cu]/Z(Bo) is denoted by Bo.

d) Let G C Plcii, . . ., ¢u) be the generic O-border prebasis, Bp be the coordinate ring
of the O-border basis scheme Bp, and Up = Bop|z1,...,2,]/(G)Bolz1,. .., zy].
Then the canonical K-algebra homomorphism By < Bop[zi,...,z,] — Up is
called the universal O-border basis family.

Example 6.1.2. Let P = Q[z1, z2] be equipped with the standard grading, i.e. graded
by W = (1,1) € Mat12(Z). The set O = {ti1,...,t} = {1, 72,21, 7120, 23, 23} is
an order ideal in T? and the set 0O = {by,...,bs} = {23, 2123, 2329, 2312, 2} is the
corresponding border according to the Definitions 2.1.6 and 2.1.7. Moreover, we let
{ecij | i e {1,...,6},5 € {1,...,5}} be a set of further indeterminates. Then the set
G={g91,.-..,95} C Q[Cn, RN 665] with g; = bj—clj—czjxg—c;z,j:cl—C4jx1x2—05jx%—c6jx:{’
for all 7 € {1,...,5} is the generic O-border prebasis according to Definition 6.1.1. Then

0 0 0 ci3 0 ecy5 0 ci1 0 ci2 c13 cua
0 0 0 co3 0 co5 1 co1 0 co2 c23 cos
X, = 1 0 0 ¢33 0 c35 Xy = 0 c31 0 c32 €33 c3a
0 1 0 ¢3 0 ey5” 0 ca1 1 cao ca3 caa
0 0 1 ¢53 0 c55 0 c51 0 c50 53 csa
0 0 0 ce3 1 cg5 0 1 0 c2 c63 Coa
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6 The (Projective) Border Basis Scheme

are the generic multiplication matrices X1, Xo € Matg(Qlc11, .. ., cg5]) with respect to O.
By Definition 6.1.1, the O-border basis scheme Bp C A%O = Spec(Q[eii, - - ., c65]) 1s
defined by the ideal I(Bo) = <f1, ceey f24> Q Q[CH, ey 065] with

f1 = ci3ca1 + ci5¢61 — c12

f2 = —c11c23 + c13C42 — C12€43 — €13C53 + C15C62 — €14C63
f3 = c13c43 + C15C63 — C14
f4 = —C11C25 + C13C44 — C12C45 — C13C55 + C15C64 — C14C65

f5 = cascq1 + casc1 — o2

fe = —ca1¢23 + C23C42 — C22C43 — C23C53 + Ca5C62 — C24C63 — C13
fr = cascaz + ca5C63 — 24
fs = —c21¢25 + C23C44 — C22C45 — C23C55 + Ca5C64 — C24C65 — C15

fo = c33c41 + c35¢61 + €11 — €32
f10 = —c23c31 + €33¢42 — 3243 — €33C53 + C35C62 — C34C63 + C12
f11 = c33€43 + €35C63 + €13 — €34
J12 = —ca5€31 + €33C44 — C32€C45 — €33C55 + C35C64 — C34C65 + C14
f13 = ca1¢43 + ca5c61 + C21 — 42
f14 = —c23€41 — C43C53 + Ca5C62 — C44C63 + C22 — €33
f15 = cis + casces + 23 — Cad
f16 = —cCa5¢41 + Ca3C44 — Ca2€45 — C43C55 + C45C64 — C44C65 + C24 — C35
Ji7 = ca1c53 + c55C61 + €31 — Ch2
J18 = —C23C51 — C43C52 + Ca2053 — C%g + C55C62 — C54C63 + C32
J19 = c43¢53 + C55C63 + €33 — C54
f20 = —ca5¢51 — €45C52 + C44C53 — C53C55 + C55C64 — C54C65 + C34

f21 = ca1¢c63 + co1C65 + €51 — Co2

fo2 = —ca3ce1 — Ca3Cea + ca2C63 — C53C63 — C63C64 + C62C65 + C52
f23 = ca3ce3 + Ce3C65 + C53 — Co4
foa = —ca5c61 — Ca5Ce2 + Ca4C3 — C55C63 + C54

and its coordinate ring is Bop = Qlc11, .. ., ¢cs5]/Z(Bo).

The order ideal is not only used to define the O-border basis scheme By, the residue
classes of its elements in Up also form a Bp-module basis of Up by [KR08, Thm. 3.4].

Theorem 6.1.3. (The Universal Border Basis Family)
Let Bo — Up be the universal O-border basis family. Then the residue classes of the
elements of O in Up form a Bp-module basis of Up.

Proof. This theorem was shown in [KR08, Thm. 3.4]. O
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6.1 The (Projective) Border Basis Scheme

The O-border basis scheme By parametrizes all O-border bases. An O-border basis
induces a projective O-border basis if and only if every border term is contained in
the support of the degree form with respect to W of the corresponding border basis
element according to the (Projective) Border Bases Correspondence 4.1.9. The following
proposition makes use of this fact.

Proposition 6.1.4. Let Bo be the coordinate ring of the O-border basis scheme Beo
and let B be the subscheme of Bo defined by the ideal

15" = (@ i€ {1,...,n}, 5 € {1,..., v}, degy (t;) > degy (b)) < Bo.

Then the points of the scheme Bproj are in one-to-one correspondence to the homogeneous
ideals in P that possess a pm]ectwe O-border basis. In particular, there is a canonical
K-algebra isomorphism between the coordinate ring BprOJ of IB%prOJ and the K-algebra

Klei, .- cuw]/Z(Bo) + IproJ where

IO = (cij lie {1,...,u},j € {1,...,v},degy (t;) > degy (b)) C Klen, - -, -

Proof. By Lemma 2.6.7 and the Second Noetherian Isomorphism Theorem, there is a
canonical K-algebra isomorphism

BR = Bo/IX = (Klei1,- . -, ] /Z(Bo)) /IR = Kleii, - . . c] /Z(Bo) + 15

Next we prove that every point of B%mj induces a unique homogeneous ideal in P
that possesses a projective O-border basis. Let a = (a11,...,0u) € Bproj. Then a is
a zero of the ideal Z(Bp) + :fgmj. Let G = {g1,.--, 9} Wlth g; = bj — Yt a;;t; for
all j € {1,...,v} be the O-border prebasis induced by a and let X1,..., X, € Mat,(K)
be the formal multiplication matrices of G' as in Definition 2.4.15. Since a is a zero
of Z(Bp), the matrices A7, ..., X, are pairwise commuting according to Definition 6.1.1.
Hence Theorem 2.4.19 and Proposition 2.3.2 yield that G is the unique O-border basis
of (G). Moreover, as a is also a zero of IprOJ we have a;; = 0 for all degyy (t;) > degy (b)),
i.e. bj € DFy (g;). By Corollary 4.1.9, the corresponding homogeneous ideal (G)Po™ C P
possesses a projective O-border basis.

For the converse correspondence, let I C P be a homogeneous ideal that possesses a
projective O-border basis G = {g1,...,9,}. Forallie {1,...,u} and j € {1,...,v}, let
A;j = degy(b;j) — degy (i) € Z. According to Proposition 4.1.7, there exists a point
a = (ai,...,au) € A such that g; = b; — Y i 1al]x0 t; for all j € {1,...,v} and
such that a;; = 0 for all ie{l,...,u} w1th degyy (t;) > degyy(b;j). Hence a is a zero

of fgmj. Moreover, Proposition 4.1.7 also yields that {g{®", ..., g} C Pleiq, ..., cu)]
is an O-border basis. Thus Theorem 2.4.19 implies the commutativity of the formal
multiplication matrices of {g{°", ..., g} and thus a is also a zero of Z(Bp) by Defini-
tion 6.1.1. Altogether, a is a zero of Z(Bo) + I5* and thus a point of B2,

Since all the operations above were uniquely determined, the claim follows. O
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6 The (Projective) Border Basis Scheme

Now we are able to define the projective O-border basis scheme IB%%rOj. Recall that the
integer function H is defined by H : Z — Z, v — #{k € {1,..., u} | degy (tx) < v} and
its first difference function is AH : Z — Z, v — H(y) — H(y — 1).

Definition 6.1.5. a) The subscheme B2 of the O-border basis scheme Be defined
by the ideal

X = (@ lie {1,...,u},j € {1,...,v},degy (t;) > degy (b)) C Bo

is called the projective O-border basis scheme. Its coordinate ring is denoted
by By,

b) Foralli € {1,...,u} and j € {1,...,v}, we let A;; = degy,(b;) — degy, (t;) € Z.
Then the set G = {g1,...,9,} defined by

Hdegw (®) .
gj = bj — Z Cij T Yt = bj — Z CijZg Yt € P[CH, . ,C/“,]
i=1 i€{l,...;}

degyy (bj)>degyy (ti)
for all j € {1,...,v} is called the generic projective O-border prebasis.

¢) Let G C Pleyy, ..., cu] be the generic projective O-border prebasis, let B(p;oj de-
note the coordinate ring of the projective O-border basis scheme IB%%IOJ, and we

let Ugroj == B(%mj [0, ..., xn]/<G>B(p9roj [0, ...,2yp]. Then the canonical K-algebra
homomorphism BY™ < B [xg,...,z,) — UL is called the universal pro-

jective O-border basis family.

Example 6.1.6. Consider the order ideal @ in T? the O-border basis scheme Bp, and
the universal O-border basis family Bo — Up of Example 6.1.2, again. Recall that O
lived in the standard graded polynomial ring P = Q[x1, 2], i.e. that P graded by the
matrix W = (1,1) € Mat;2(Q), that O = {t1,...,t6} = {1, 29,21, 172,22, 23}, and
that its border was 00 = {by,...,bs} = {23, z123, 329, ¥379, 21}. For all i € {1,...,6}
and j € {1,...,5} with (4, 7) # (6,1), we have degy,(t;) = deg(t;) < deg(b;) = degyy(b;)
and we have degy, (ts) = deg(z}) = 3 > 2 = deg(x3) = degy, (b1). By Definition 6.1.5,
the projective O-border basis scheme Blg)mj is thus the subscheme of the O-border basis
scheme By defined by Igoj = (¢61) € Bo = Q[c11,.-.,¢65]/Z(Bo). Let the Q-algebra
P = Qlxg, x1,x2] be standard graded. Then G = {g1,...,95} C Plci1,...,ce5] where
the polynomials are of the form g1 = x% — 0113:(2) — C91T0%2 — C31LOL1 — C41L1TY — 65156%,
gj =bj —cljarg —Cijng —03]-3:(2):61 — C45TOT1T2 —C5jx0.’13% — chac“;’ for all indices j € {2, 3},
and g; = b; —Cljﬂfé—Cijg:Eg —03j:z8x1 —04]'56%131%2 —65]-3:%:5% —C()*jl‘ol‘:f forall j € {4,5} is
the generic projective O-border prebasis according to Definition 6.1.5. Moreover, there
is a canonical Q-algebra isomorphism between the coordinate ring B™ of By and
Qleit, -+ -, 065/ /Z(Bp) + (c61) by Proposition 6.1.4.

To ease the notation of this section, we let {ci1,...,¢cu} be a set of further inde-
terminates, @ = Plci1,...,cu), and @ = Plcir, ..., cu). Then Q = @762 @~ and
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6.1 The (Projective) Border Basis Scheme

Q= D,z Q., are non-negatively Z-graded by the matrices V = (W | 0) € Maty 4, (Z)
and V = (W | 0) € Maty 4140 (Z), respectively, by [KR05, Defn. 4.1.6 and 4.2.4].
Let B» denote the O-border basis scheme and Bp — Up the universal O-border ba-
sis family as in Definition 6.1.1. For all i € {1,...,u} and all j € {1,...,v}, we let
A;j = degyy (bj) —degyy (t;) € Z. Moreover, let G = {g1,...,9,} C Q be the generic pro-
jective O-border prebasis, let IB%Ig)roj be the projective O-border basis scheme, I, groj C Bo
be its defining ideal, and let Bgoj — Ugoj be the universal projective O-border basis
family as in Definition 6.1.5.

The projective O-border basis scheme Bgoj differs from the homogeneous O-border
basis scheme Bgom introduced in [KRO08, Section 5| as the following remark shows.

Remark 6.1.7. In [KRO8, Section 5|, the authors introduced the homogeneous
O-border basis scheme Egom in the standard graded case. In our setting, the homo-
geneous O-border basis scheme B}é"m is is the subscheme of By defined by the ideal

I =Gy |ie{1,...,u},j €{1,...,v},degy (t;) # degy (b;)) € Bo.

The idea behind this definitions was to parametrize all the zero-dimensional homoge-
neous ideals of P that possess an O-border basis. To reach this goal, they defined the
generic homogeneous O-border prebasis to be of the form G = {g1,...,9,} C Q with the
homogeneous polynomials

H(degw (b;))
gj = bj — Z cijt; = bj — Z Cijti € Qdegw(bj)
i=H (degy, (bj)—1)+1 ie{l,...,u}

degyy (bj)=degy, (t:)

for all j € {1,...v}. Note hat their approach strongly differs from ours. They regard all
O-border bases in P with the additional property to be homogeneous whereas we regard
all O-border bases in P with the additional property to be Macaulay bases with respect
to the grading given by W, cf. Corollary 4.1.9 and Proposition 4.1.7. Since IH* C 15™,
the homogeneous O-border basis scheme is related to the (projective) O-border basis
scheme via the following chain of subschemes B}é‘)m C By™ C Bo.

The remaining part of this section is devoted to prove an analogous version of Theo-
rem 6.1.3 for the projective O-border scheme IB%I();O‘], i.e. to prove that the residue classes

of the elements of @ in US® form a B [zg]-module basis of U5, in Theorem 6.1.13.
Proposition 6.1.8. The map

B xo] x UST = UB (p,r) v pr
turns the ring US™ into a BY [zo]-algebra.

Proof. The canonical B(%mj [20]-algebra homomorphism B(pgrf)j [zo] — B [zo] — US,
where we have T € Ugroj, equips UgmJ with the given B(%roj [xo]-module structure. [
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6 The (Projective) Border Basis Scheme

Proposition 6.1.9. There are canonical K-algebra isomorphisms
U5 = Q/I(BY)Q + (G)
and
B[] & Kz, c11, - -+ s |/ BRI K [0, ¢11, - - -, -
Proof. The substitution K-algebra epimomorphism ¢ : Q —» B(%roj [T0, ..., 2] defined by
cij — Cij € B for all i € {1,...,u} and j € {1,...,v} satisfies ker(¢) = Z(Bo)Q.
Moreover, we have ¢ '((G)BS 7 [zo,...,z,]) = ker(p) + (G) = I(Bo)Q + (G) by

Lemma 2.6.7. The Second Noetherian Isomorphism Theorem and Definition 6.1.5 thus
yield the first canonical K-algebra isomorphism

UB® = BE o, ... wal/(G)BY o, ... )

= ¢(Q)/(C) B [xo, ..., wa]
Q/e " (G@BE w0, - a))
=Q/I(Bo)Q + (G).

Since the restriction ||

12

of ¢ to the K-algebra K[z, ci1,...,cy) satisfies

37070117---7C;uz}

ker(@’K[mo,Cn,...,cHU]) = I(BO)K[ajOy C11y .- - ac,ul/] and im((p|K[mo,cll,...,c,w]) = B%rOJ [.To], the
second canonical K-algebra isomorphism follows from the Homomorphism Theorem. [

Lemma 6.1.10.  Assume that K is algebraically closed and let m C BN [xq] be a
mazimal ideal. Then the residue classes of the elements of O in UY™ /mUS form a
K -vector space basis of Ugoj/ngmJ.

Proof. For the whole proof, we identify the elements of Ugmj and B%roj [xo] with their
images under the canonical K-algebra isomorphisms US™ = Q/Z(B5™)Q + (G) and

B2 xo) = Klzo,c11,- -+, ) JZ(BR) K 2o, 11, - - -, €] of Proposition 6.1.9, respec-
tively, without mention.

Let m = m/Z(B)”) K [z, ¢11, - - - , ¢u] be with a maximal ideal m C K[z, ¢11, . . . , ¢
that satisfies 7 (B}goj)K [z0, c11, .., cw]) € m. As K is algebraically closed and as m is a
maximal ideal, [KR05, Coro. 2.6.9] implies the existence of d,a11,...,au, € K such that
I’{l = <.7}0—d, C11—0a11,y-- - ,Cuy—a“y>. Let 1/1\1 = <611 — a1y - - 7C#V_a“l/> Q K[Cll, e ,C#U].

As I(Brgoj)K[mo, cit, - -+, ] € m, it follows that Z(Bp) C I(IB%IZ,)TOJ) C m. Thus we get
mUR = (m/Z(BYS) K 20,11, - -, ) (Q/Z(BRQ + (G))
= (mQ + Z(BE™)Q + (G)/(Z(BH™)Q + (G))
= (W + (xo — d))Q + (&) /(Z(BH)Q + (G))

and the Second Noetherian Isomorphism Theorem yields the canonical K-algebra iso-
morphism

UG [mUE™ = (Q/(Z(BF*)Q + (GN)/ (8 + (x0 — d))Q +(G)/(ZBZ™)Q + (G))
=~ Q/(® + (w0 — d))Q + ().
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6.1 The (Projective) Border Basis Scheme

Consider the substitution K-algebra epimorphism ¢ : @ — P, defined by c¢;; — a;; for
alli € {1,...,u} and j € {1,...,v}. As ker(¢) = m@Q, Lemma 2.6.7 yields

¢~ ({20 — d) + (¢(G))) = ¢~ ((z0 — d) + ¢((G)))

Hence the canonical K-algebra isomorphism

UZ fmUg = Q

=Q/¢ ' ({xo — d) + (@(G
©(Q)/((zo — d) + (p(G)

= P/({zo — d) + (¢(G)))

is a consequence of the Second Noetherian Isomorphism Theorem. Next we show that the
image (G) C P of the generic projective O-border prebasis G under ¢ is the projective
O-border basis of (¢(G)) C P. For all k € {1,...,n}, let X} € Mat,(K) be the image
of the k' generic multiplication matrix Xy € Mat,(K[ci1, ... ,cu]) with respect to O as
defined in Definition 6.1.1 under ¢. Then for all k € {1,...,n}, Xy is exactly the k" for-
mal multiplication matrix of {p(g1)%", ... »(g,)%*"} C P. Since Z(Bp) C m C ker(y),
XXy = XX, forall k, £ € {1,...,n} by Definition 6.1.1. Thus {¢(g1)%", ..., ¢(g,)%"}
is the O-border basis of {©(g1)%", ..., ©(g,)%") = (p(G))4" by Theorem 2.4.19. More-
over, for all j € {1,...,v}, we have

 —
~
~—

)

H (degyy (bs)) A deh H(degyy (b;))
Lp(gj)deh = (bj — Z ai; T ”ti> =b; — Z a;ijt;

=1 =1

by Definition 6.1.5 and thus b; € Supp(DFw (¢(g;)")) and (¢(g;)3m)hom = (g;). Since
{o(g1)%, ... 0(g,)%PY} is the O-border basis of (p(G))4" and since O # (), we have
(p(G))%" ¢ P by Definition 2.1.14. According to Proposition 4.1.8, ¢(G) is the pro-
jective O-border basis of ({p(G))%P)hom By Proposition 4.1.7, {¢(g1)%, ..., ¢(g,)%*"}
is a Macaulay basis of (¢(G))4°" with respect to the grading given by W. Therefore,
[KRO5, Thm. 4.3.19] yields (p(G)) = ({(G))deh)hom i e (@) C P is the projective
O-border basis of (¢(G)). Altogether, [KR05, Thm. 4.3.22] yields

P/DFw ((p(G))*") if d =0,

VB mUE™ 2 P((ag — d) + ((G) ")) = {P/@(G»deh ifd 0.

Since the K-algebra isomorphism on the left side is canonical and since the proof of
[KRO05, Thm. 4.3.22] shows that the K-algebra isomorphisms on the right side satisfy
t; — cit; with ¢; € K\ {0} for all i € {1,...,u}, it suffices to show that the residue
classes of the elements of O in P/ DFy ((p(G))4") if d = 0 respectively in P/{p(G))deh
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6 The (Projective) Border Basis Scheme

if d # 0 form a K-vector space basis of P/ DFy({¢(G))4e") respectively of P/{p(G))deh.
We have already seen above that (p(G))4°h possesses an O-border basis, i.e. the residue
classes of the elements of O in P/{p(G))4" form a K-vector space basis of P/{p(G))dh
by Definition 2.1.14. If d = 0, [KR08, Thm. 2.4] yields that DFy ((p(G))%") C P
possesses an O-border basis. Thus if d = 0, the residue classes of the elements of O
in P/ DFw ({¢(G))4") form a K-vector space basis of P/ DFyy ({¢(G))") according to
Definition 2.1.14. O

Lemma 6.1.11. The residue classes of the elements of O in Ugoj generate U(groj as a
BYy? [zo)-module.

Proof. Foralli € {1,...,u},let&; € US® denote the residue class of t; € O in U, Ac-
cording to [Kuns85, Coro. IV.1.6], we have US™ = (7y,...,%,) as B2 [xo]-modules if and

only if for all maximal ideals m C BprOJ [zo], (Ugroj)m = ((t1,.. . ty))m = <tT1, e %“) as

(B2 [g))m-modules. For all maximal ideals m C B%* [zo], the localisation (B5™ [z0])m
is a local ring with maximal ideal m(BprOJ [z0])m according to [Kun85, Exmp. d in Sec-
tion II1.3]. Thus a corollary of the Lemma of Nakayama [Kun85, Coro. IV.2.3] yields

that we have Ugroj = (t1,...,t,) as Bgroj [zo]-modules if and only if for all maximal ideals
m C BY[xo], we have (UBN) /(UG = (B 4+ m(US )y, %+ m(US) ) as

(BS [20])m/m(BY 2] Jm-vector spaces.

By [Kun85, Rule I11.4.15], there exists a canonical (B(%roj [20])m-module isomorphism
(B [z0])m)/ (m(BE[ao])m) = (BE*[ao]/m)m. Thus we get the chain of field exten-
sions K C Bp ?[xo|/m C (B ?[xo])m)/(m(BY” [20])m). Therefore, UG = (t1,...,,)
as Bgroj [z0]-module follows if we show that for all maximal ideals m C Bgroj [0], we have
(U5 /m(US ) = (%Tl (U, -, 2+ m(US) ) as K-vector spaces. In other
words, it suffices to show that for every maximal ideal m C Bgroj [1o], the identity map
<¥T1 + m(Ugroj), ce tT“ + m(Ugmj» — (Ugoj)m/m(Ugoj)m is a K-algebra epimorphism.
According to [KR00, Prop. 3.6.6], a K-algebra homomorphism is surjective if and only if
a specific Grobner basis contains specific elements. Since Grobner bases do not change
under field extensions by [KR00, Lemma 2.4.16], we can without loss of generality assume
that K is algebraically closed.

Let m C B(pgrOj [zo] be a maximal ideal. According to [Kun85, Rule II1.4.15], there
is a canonical (Bgroj [70])m-module isomorphism (Ugroj)m /111(Ué,’)r°j)m = (Ugmj/ ngmj)m.
Using this isomorphism, we see that the claim follows if we show that the identity map

T +mUB) f“—s—mUpmj
(—1%. .-, ) —

(Ugoj /ngrOj)m is a K-algebra epimorphism. Since the

identity map (f; + mU prOJ, B ngoj> — U prOJ /mUg, PToJ is a K-algebra isomorphism
according to Lemma 6.1.10, the claim follows from [Kun85 Rule I11.4.7]. t

Lemma 6.1.12. For ally € Z and i € {1,...,u}, we let dy; = v — degy (t;) € Z.
Let M = @, Bproj[ o] - ti C B(%roj [0, ..., 2], i.e. the Z-graded Bpro‘] [x0]-submodule
of B(pgroj [T0, ..., xn] with Bgmj [w0]-module basis O. Let X1,...,X, € Matu(Bpmj) be the
images of the generic multiplication matrices with respect to O in Matu(BpmJ) For all
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6.1 The (Projective) Border Basis Scheme

v,Y € Z, for all ci, ..., cr(y) € B(poroj, and for all g € Q./, we define

d d
q* (c1wg 4+ criy g V)

d
17...7(170 (7+7/),0,..-,0)

q(Ly, Xe, .. Xy - (01,...,CH(,Y)70,...,O)“.

— (xg“/+7’,1t ’Y+’YI»H(’Y+’Y,)tH

Then x equips M with the structure of a Z-graded B(%roj [0, ..., Zp]-module and M is
cyclically generated by t1 = 1 as a Z-graded B(p;oJ [z0, ..., Tn]-module. In particular, for

every i € {1,...,u}, we have t; x t; = t;.

Proof. The Z-grading of Q defined by the matrix V = (W | 0) induces a Z-grading
of M C BY?[xo,...,x,). By Definition 6.1.1, the matrices X1,..., X, € Mat,(B5™)

are pairwise commuting. Let c1,. .., cp(y), ¢}, - - ’C/H('y) € B(pgroj, 0.4 € 67’7 and § € @W’
where 7,7/,v" € Z. Since the matrices X1, ..., X, are pairwise commuting, we get

d

d
L (gt + -+ ez )
d d = =
= (2" 1,2y by, 0,00, 0) - W, Xy, X)) < (e1, -+ epigy), 0, ., 0)
d d r
= (l’o’y’ltl, e ,CBO%HW)tH(W),O, .. ,0) 'IH : (Cl, e 7CH(7)707 .. .,O)t

d d
= eyt e T ),
and

d d
(@) (erzp" 1+ + ezt )

_ (J;g'v-!-'y’-k'v”,l t, ... ’xgw+v’+~/”,H(w+w’+v”>tH(W_q/_M”)’ 0,... ’0)
(99)(Zy, X1, ..., Xp) - (ca, - - s CH(7)5 05 - - - ,0)"
_ (xg'v+'y’+'v”,l t, ... 7:ngv’Jrv”,H(wﬂ’M”)tH(W+7,+,y”)’ 0,... ,O)
(L X,y X)) (L, Xy X)) - (c1ye s CH(v) 05+ - - 0)tr
= E]V* ((xg’ﬁ-w”ltl’ ce ,xgﬂﬁwl’H(wvl)tH(,Y_;'_v/), 0,..., 0)

'Q(I,uayla ce 7?n) . (Cl, .. -aCH('y)aov ce ,O)tr)

d

~ d
=q* (q * (Clxomltl + .+ CH(’Y)‘TO’YYHH)tH

(1))
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6 The (Projective) Border Basis Scheme

and
(a+4) * (cxg tu+ -+ erpyay ™ Pty
= (xg"’ﬂl’ltl, . ,a:gw”,’H(w”/)tH(v_,_v/), 0,...,0)
(q+ q’)(Imfl, R 0 R (- P s CH(7)5 0; - ,0)"
= (xg"’ﬂl’ltl, . ,a:gw”,’H““/)tH(w_,_v/), 0,...,0)
. (q(I#,fl, .. 7?71) + q'(l’#,?b . ,?n)) (c1y - s CH(v) 05 -+, 0)“r
= ($§7+7,’1t1, e ,a:g”ﬂ/’H(”H/)tH(w_,_v/), 0,...,0)
q(Zy X1, X)) - (cay - CH(y), 0; - - - ,0)"
+ (xg”“’*ltl, ... ,a:g”””H”””tH(,yﬂ,), 0,...,0)
g (L X1y e X)) - (1, s CH ()5 05 - - - ,0)t
= (g (clacg”’ltl +--+ cH(V)xg"”H(”)tH(V)))
(¢ * (a4 -+ ey ™t y))s
and

/

d d d d
g+ ((arzy" b+ + e mo ™" ) + (ag” e+ gz V)

d d
= q* ((c1 +)ag" t+ -+ (Cry) + Ce)ro”" taey)

[ d,
= (x0w+v ’1t1, e .IIO’YJF’Y ’H(’Y+’Y>tH(,Y+,y/), 0,..., 0)
'Q(I;L)Xl)"'an) -(61+C,17...,CH(,7)+C}{(,‘/),0,...,O)tr
d ’ d ’ /
= (.’EO’H_W ’ltl, ey JIO’YJF’Y H Oty )tH(7+'Y/)’ O7 . ,O)
-q(Zu,Xl,...,Xn)-(01,...,0H(7),0,...,0)tr
d., d, /
+ (%OAHM/ ’1t1, R 7:1:0’y+7 Hrty )tH('er'y’)? o0,... ,0)

cq(Ty X, X)) - (e ,c}{(v),O, L0
d d
= (g* (g™ i+ + e Vta)))

d

d
+ (g * (o™t + -+ C;I(v)xomHth

1))-

Thus (M, +, %) is a Z-graded B(%roj [z0, . .., xy]-module.
Let {&1,...,&u} be the canonical B “-module basis of (Bpy™)*. We prove by induc-
tion on ¢ € {1,...,u} that t; xt; = ¢;. For i = 1, we have

tyxty =1xty = (t1,0,...,0) - (T, X1,..., Xp) - EF = (t1,0,...,0) - T, - EF = ;.

For the induction step, we let ¢ > 1. As O C T" is an order ideal in T" and as
degy(t1) < -+ < degy(ty), there exist a k € {1,...,n} and an £ € {1,...,i — 1}
such that t; = apte. Let 7 = degy, (t;)) = degy (t¢) + wy and write the k" generic
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6.1 The (Projective) Border Basis Scheme
multiplication matrix Xy = (&))<, 4<p € Mat,(K[c11,. .., cu]) as in Definition 6.1.1.
Since 7 = degy (t;), we have ¢ < H(¥) and the induction hypothesis yields

ti * tl = (xktg) * tl
xp * (te* 1)

=T x1y
d= d= s - -
= (womltl, .. ,1‘0’Y’H(’Y>tHﬁ), o0,... 0) : xk(IM, X1, Xn) : ggr
d~ d= 1o~ —
= (:Eov’ltl, e ,:L'O%H(’Y)tHﬁ), 0,... 0) - Xy - Sgr
(k) _dz, (k) 45 0
=& wy i+ + fﬁrﬁ)ﬂo7 Hth(ﬁ)
d= d= b~
= duzg t+ e )
d=
= t;.
Altogether, we see that the Z-graded Bgroj [T0, ..., 2s]-module M is cyclically generated
by t; = 1. ]
Finally, we have all ingredients to prove an analogous version of Theorem 6.1.3 for IB%Ing.

Theorem 6.1.13. (The Universal Projective Border Basis Family) .
The residue classes of the elements of O in U form a BY ™ [x]-module basis of UY .

Proof. Let X1,...,X, € Matu(Bng) be the images of the generic multiplication matri-
ces with respect to O in MatM(Bng). The matrices X1, ..., X, are pairwise commuting
according to Definition 6.1.1. Let M, %, and d,; for all v € Z and i € {1,...,u} be
defined as in Lemma 6.1.12. Then © : Bgroj[azo,...,xn] — M, pr pxt; = pxl
satisfies ©(t;) = t; % t; = t; for all s € {1,...,u} and is a B[z, ...,z,]-module epi-
morphism by Lemma 6.1.12. Moreover, for all 7,7 € Z and ci,...,cp(y) € B(%roj, we
have

o4 dy 1 o1 (9)
Ty * (Cl.%'oﬂ/ t1 4+ -+ CH(y)xoV tH(’y))
d d

— +v/,1 +v/ H(v+7)
= (:L‘Oﬂ/ K 151,...,1‘07 7 WW tH(W-I—W’)?O"“’O)
o4 B 5% t
xg (Lyy X1y, &) - (€155 CH (1), 0500, 0)FF
d ! d ! ! /
o +47 1 +' H(v++") t
—(.13077 151,...,.%'07ﬂY a tH('erfy’)va”-aO)‘IZ'(617--'7CH(7)707---70)r

d. do
= cle“HW ’ltl 4+ .4+ CH(’y)xOV-M ’H(’th(’y)‘

Let j € {1,...,v}. Then there exist indices k¥ € {1,...,n} and £ € {1,...,u} such
that b; = ayte by Definition 2.1.7. Let {&1,...,&,} be the canonical BY*-module basis
of (BR)H, let y = degyy (b;), and let Xy = (57(«’;))19759 € Mat,(K|ci1,...,cuw]) be as
in Definition 6.1.1. Then degy, (1) < --- < degyy(t,) yields that v > degy,(¢;) for all
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6 The (Projective) Border Basis Scheme

ie{l,...,H(y)}. Letg; € BY (g, . .., x,] be the image of g; € @ in BY[xq, ..., xn).
By Definition 6.1.5, we have ¢;; =0 € Bo™ for alli € {i +1,...,u} and thus get

H(v) A
O(g;) =0 | bj— > Ejzy 't
i=1
H(v)
— Ai’j
- Z cijxo * @(tz)
H(v
=bj*t1 — Z cwazo” *1;
H(v) A
= T * (tg * tl) — Z Cijxg "It
i=1
H(v)
=xp xty — Z 6ij$gidegW(ti)ti
i=1

H(v)
d d - _ dy
= (:L'Ov’ltl,...,l’OW’H(W)tH(v),O,...,0) - X SE — E CijZL'OW’ t;
=1

d~, d,, —=(k)
:(;UO’Yltl,...,.’EO’YH(’Y)ISH(,Y),O,...,0)'(glé ""7‘5;15 ZC”Z'O tz
. J H(v)
= (wow’ltl, .. ,HTOW’H(W)tH(,Y), 0,... ,O) : (Elj, R 76H(’Y),jv Yo Z CZ]‘TOW "t i
H(v) . H(v)
= Z Cijry 't — Z Cijxo 't
i=1 i=1
=0,
i.e. we have <G>Bgoj [0, ...,2n] C ker(©). This induces the Bgroj [zo, ..., Tp]-module

epimorphism © : B(p9roj [0, ... ,xn]/<G>Bgr0j [0, ..., 2n] = U(%mj — M, p+— pxty by
Definition 6.1.5. Let O denote the image of O in US®. Since O(0) = O and since
O C M is a BY[xo]-module basis of M, it follows that O C U5 is B [zo]-linearly
independent. The claim now follows from Lemma 6.1.11, Wthh yields that the set O
also generates UY™ as a BY*[z¢]-module. O

pI‘OJ pI‘OJ

As a direct consequence, we can give explicit B, '-module bases of Uy ™ and its

homogeneous components.
Corollary 6.1.14. For ally € Z andi € {1,...,u}, we let dy; = v — degy (t;) € Z.

a) The element xqy € B(p;oJ [xo] is a non-zero divisor for Ugmj.
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6.1 The (Projective) Border Basis Scheme

b) There are canonical isomorphisms of Z-graded B(pgroj [zo]-modules

) o ) degyy (tu) )
U5 = @D BY ol (— degyy (t:) = @D (BB [wo)(—)) .
i=1 =0

In particular, Tk gpro; ((Ugmj)ﬂ,) = H(y) for ally € Z.
o

¢) Let Oy = Uy 25O. Then the residue classes of the elements of Og in Ugoj form
a B -module basis of UZ ™. In particular, for every vy € Z, the residue classes of
d . .
the elements of (Oo)y = {:Eg”’ltl, . ,:EOW’H(W)tH(A/)} in U™ form a BY®-module
basis of (UH™)s.

Proof. In order to prove a), let r € Ugoj be such that zg - r = 0. By Theorem 6.1.13,
there exist ¢1,...,¢, € B(p;oj [zo] such that r = cit1 + -+ + ¢,t, in Ugoj. Thus we
get 0 = xo -7 = crxol1 + -+ - + cuxoty. Since the residue classes of O in UgrOJ form a
B(pgmj [zo]-module basis of Ugroj, we see that cizg = -+ = c, 20 = 0 in Bgmj [zo]. Thus we
getcp=--=c,=0andr=0,ie x9 € B(%roj [zo] is a non-zero divisor for U(If)roj.

The claims b) and c) are direct consequences of Theorem 6.1.13 and the definitions of
the maps H and AH. O

The final remark compares the projective O-border basis scheme with the Grobner
basis scheme as introduced in [Rob09].

Remark 6.1.15. Let o be a term ordering and, without loss of generality, assume
that the elements of the border of O are ordered such that {bi,...,b,} C 0O with
n € {1,...,v} contains precisely the corners of O, cf. Definition 2.3.3. Moreover, let

SO,O’ = {CZj ’ZG {lyau}vj € {17777}71% >0 tz} C {clly-“?Cp,V}
and
L@J: (Cij|i€ {1,...,/1,},j S {1,...,V},ti > bj} gK[CH,...,Cuy].

In [Rob09, Defn. 2.4|, the author introduces the (O, 0)-Grébner basis scheme Go
as the subscheme of Af(so"’ = Spec(K[So,,]) defined by the ideal

lo, = (Z(Bo) + LQU) N K[SOJ] - K[S@,U]

The idea behind that was to parametrize all the zero-dimensional ideals of P that possess
a o-Grobner basis with the property that the corresponding leading term ideal is (0O).
To reach this goal, the author defined the generic (O, o)-Grébner prebasis to be of the
form G’ = {g},...,9,} C P where for all j € {1,...7},

g} = bj — Z cijt; € P[Soﬁ].

i€ {1, 1}
bj>oti

213



6 The (Projective) Border Basis Scheme

Similar to [Rob09, Defn. 2.4 and 2.6|, we denote the coordinate ring of Gop » by Go e,
let Unos = Goglxi, ... 20]/(G)Goslx1,. .., 2,], and call the the canonical K-algebra
homomorphism Go » = Go s[z1,. .., 2] = Up,s the universal (O, 0)-Grébner basis
family. Note that, as done in Proposition 6.1.9 for the canonical K-algebra isomorphism
U5 = Q/I(Bo)Q + (G), one can prove that there exists a canonical K-algebra iso-
morphism Up , = P[Sos]/l0.+P[S0,s] + (G'), i.e. the above definition of Up, indeed
coincides with the one in [Rob09, Defn. 2.6]. Then [Rob09, Thm. 2.9| yields that the
residue classes of the elements of O in Up, form a G s-module basis of Up ,. More-
over, if the term ordering o is compatible with degy,, the o-Grobner bases parametrized
by Gp,, are also Macaulay bases with respect to W. Thus we see that Gp , shares all
the crucial properties of IB%I(’QrOj that we explicitly needed to study uniformity conditions of
zero-dimensional projective subschemes of weighted projective spaces Pg (W) given by
their defining ideal as we have done in Chapter 5.

But using the (O, 0)-Grobner basis scheme Go,, instead of the projective O-border
basis scheme IB%%mj has also some disadvantages.

First of all, projective O-border bases are more general as the following example shows.
Consider the set H = {z179 — 22 — 22, 23, 123, 2229, 23} C Q[x1, 2] and the order ideal
O = {1,292, 71,23, 23} in T2 Then H is an O-border basis of the ideal (H) C Q[z1, z2]
as one can easily check using Theorem 2.4.19. Furthermore, H is a Macaulay basis with
respect to the grading given by W as one can easily check using [KR05, Thm. 4.3.19]
and [KR0O, Prop. 2.4.19]. But there exists no term ordering o on T? such that H is a
o-Grébner basis of (H) with the property that LT, ((H)) = (00). In other words, the
set H does not correspond to a point on the (O, ¢)-Grébner basis scheme Go , where o
is any arbitrary term ordering on T?. But since the set H is the projective O-border
basis of (H)h™ by Proposition 4.1.8, the set H corresponds to a point on the projective
O-border basis scheme B

Another benefit of projective O-border bases is that their multiplicative structure is fully
determined by the corresponding (projective) multiplication matrices as we have seen in
Section 4.2 and that these matrices can immediately be read off from a given projective
O-border basis, cf. the Definitions 2.4.15 and 4.2.1. This enables us to study uniformity
conditions using the multiplicative structure of the coordinate ring of a zero-dimensional
projective subscheme as we have done in Section 5.2 much more explicitly.

6.2 The Multiplicative Structure of the Universal Projective
Border Basis Family

In this section, we study the multiplicative structure of the universal projective O-border
basis family U} . Similar to Section 4.2, we first introduce the generic projective multi-
plication matrices with respect to O in Definition 6.2.1 and show that they are homoge-
neous matrices in Proposition 6.2.3. Then we show that the BYy[zo]-module structure
of Ugroj can be completely described by the generic projective multiplication matrices
with respect to O in Proposition 6.2.4 and Corollary 6.2.5. After that, we prove that we
can also use the generic multiplication matrices with respect to O to explicitly describe
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6.2 The Multiplicative Structure of the Universal Projective Border Basis Family
the multiplicative structure of Ugoj in Proposition 6.2.7 and Corollary 6.2.8.

To ease the notation of this section, we let Q = Pleiq, ..., ¢u] and Q = Plery, . . ., ),
again. Then Q = P,z @y and Q = P,z @, are non-negatively Z-graded by the ma-
trices V.= (W | 0) € Maty pq(Z) and V = (W | 0) € Maty p414u(Z), respectively,
according to [KR05, Defn. 4.1.6 and 4.2.4]. We let By denote the O-border basis scheme
and Bp — Up the universal O-border basis family as in Definition 6.1.1. For all indices
ie{l,...,pu}and j € {1,...,v}, we let A;; = degy(b;) — degy (t;) € Z. Moreover,
let G ={g1,...,9,} € Q denote the generic projective O-border prebasis, let B%mj C Bo
be the projective O-border basis scheme, let I(%mj C Bp be its defining ideal, and let
Bgoj — Ugroj be the universal projective O-border basis family as in Definition 6.1.5.

First we introduce the generic projective multiplication matrices with respect to O.
Definition 6.2.1. For every index r € {0,...,n}, let &P € Mat, (K |[zo, 11, - - - , )

be the 7" formal projective multiplication matrix of G as defined in Definition 4.2.1, i.e.
P = 20T, and AT = (¢0PVY, 4, with

Oki if ,tp =t €O
S,QZ’WOJ) = cijOAkj if z,tp = bj € 00 and degy,(t;) < degy (b))
0 if z,t; = b; € 00 and degy,(tx) > degy (b;)

forallr € {1,...,n}and k,£ € {1,...,u}. Forallr € {0,...,n}, we call the matrix X"
the r*? generic projective multiplication matrix with respect to O.

Example 6.2.2. Consider the order ideal O of Example 6.1.6, again. Recall that the
order ideal was O = {t1,...,ts} = {1, 29, 21, 7122, 2%, 23} and that its border was of the
form 00 = {by,...,bs} = {23, 1123, 2229, 2319, 21}. Moreover, G = {g1,...,95} C Q
where the polynomials are of the form ¢g; = x%—cnx%—cmxoxz—cmxoxl —C41$’1$2—C511‘%,
g; = bj — 133 — cojxdae — 357371 — cajroT1T2 — 557073 — co 2 for all indices j € {2, 3},
and g; = b; — cljxé — Cij%;rg — 03jx8x1 — C4jm%x1x2 — C5jx(2)x% - c6jxom§’ for all j € {4,5}
was the generic projective O-border prebasis. Then the generic projective multiplication

matrices Xé)mj, lemj, XQij € Matg(Q[xo, c11, - - -, c5]) With respect to O are

Zo 0 0 0 0 0 00 0 ci3zd 0 cysal

0 20 0 0 0 O 0 0 0 cog22 0 copad

: 0 0 2 0 0 O ; 1 0 0 e3322 0 casad

proj __ _ proj __ 0 0
Y=l 0 0 0 w0 00 M T o1 0 cmro 0 cwad |

0 0 0 0 i) 0 0 0 1 C532( 0 0551’%

0 0 0 0 0 ) 0 0 0 C63 1 Ce5T(
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and
0 011:6% 0 6121178 0133;8 014:66
1 C21X0 0 CQQJ’% 6231'(2) 6241}3
szroj _ |0 euzo O 3273 c337d C3491?§
0 cyn 1 caomo ca3To  Ca47
0 e 0 csamo cr3mo  C5axd
0 0 0 C62 C63 CaX(Q

according to Definition 6.2.1.

Next we show that the generic projective multiplication matrices with respect to O
are homogeneous degree-ordered matrices as defined in Definition 4.2.3.

Proposition 6.2.3.  Let X[?roj,...,/l’ﬁroj € Mat,(K[zo,c11,...,cu]) be the formal
projective multiplication matrices of G.

a) For every index r € {0,...,n}, the matriz P s a homogeneous degree-ordered
matriz with respect to the degree pair given by (degy(t1), ..., degy(t,)) for the rows
and (degy(z,ty1), ..., degy(z,t,)) for the columns.

b) For allr,s € {0,...,n}, the matrices XP" I XP™ and P xPrT — P xProl e
both homogeneous degree-ordered matrices with respect to the degree pair given by
(degy(t1), ..., degy(ty)) for the rows and (degy(z,xst1), - .., degy(z,rxsty,)) for the
columns.

Proof. For all r € {0,...,n}, let X = (3% (rproj) )1<ij<u € Maty(K[zo, c11,. .., cu])-
Note that all entries of the matrices X(l)o mJ, .. ,X}froj are homogeneous.
For the proof of a), we let r € {0,...,n}. If X' =0, nothing needs to be shown.

Thus assume that there are k,¢ € {1,... 7,u,} such that &, (r,proj) #£0. If r =0, {k’pmj £ 0
implies k£ = ¢ and thus

5(0,pr0J )

degy( = degy-(z0) = degy(zoty) — degy(tr)

by Definition 6.2.1. Now suppose that r # 0. If x,t, = t; for some i € {1,...,u},
Sks = £ o£ 0 implies k = i by Definition 6.2.1. Thus we get

degp(£1;") = degp (1) = degpr(1) = 0 = degp(w,te) — degp(tk)
according to Definition 6.2.1. If x,t, = b; for some j € {1,... v}, we get

(€t (r, PrOJ))

AN
degyr degyr(ckjzg ™) = degyr(by) — degy(ti) = degyr(xrt) — degy(tx)

by Definition 6.2.1. In all cases, &’ ro) ig homogeneous with respect to the degree pair

given by (degy-(t1),...,degy(t,)) for the rows and (degy-(z,t1), ..., degy(x,t,)) for the
columns and as deg-(t1) < --- < degy-(t,), it is also degree-ordered by Definition 4.2.3.
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In order to prove b), we let now r, s € {0, ...,n}. By a), X" is a homogeneous degree-
ordered matrix with respect to the degree pair given by (degy-(t1),...,degy(t,)) for
the rows and (degy-(2,t1), ..., degy(2,t,)) for the columns and XP™ is a homogeneous
degree-ordered matrix with respect to the degree pair given by (degy-(t1), ..., degy(tu))
for the rows and (degy(wst1),...,degy(xst,)) for the columns. In particular, xprol
is also a homogeneous degree-ordered matrix with respect to the degree pair given by
(degyr(@rt1), . . ., degy(arty)) for the rows and (degy(zrast1), .. ., degy(zrast,)) for the
columns accordlng to Definition 4.2.3. If AP™IxP = 0, the matrix XX triv-
1ally satisfies the claimed properties. Thus assume that there are k,¢ € {1,..., u} with

1 §(T -pro] 5(5 -proj) #0. Let m € {1,...,u} be such that £(T’prOJ # 0 and f(s -proj) # 0.
As the matrices X" and X" are homogeneous degree-ordered matrices with respect
to the above degree pairs, we get

deg (fk; prOJ)f sproj) )= (degv(xrtm) - degV(tk)) + (degv(xrxstf) - degv(xrtm))
= degy(zraste) — degy(tk)

and AP XP™ is a homogeneous degree-ordered matrix with respect to the degree pair
given by (degy-(t1),...,degy(t,)) for the rows and (degy-(z,xst1), . . ., degy(zr24t,,)) for
the columns according to Definition 4.2.3. By interchanging the roles of r and s, we see
that X2 P is a homogeneous degree-ordered matrix with respect to the same degree
pair, too. In particular, it follows that AP AP — AP AP™ is also a homogeneous
degree-ordered matrix according to Definition 4.2.3. 0

The next two propositions show that the generic projective multiplication matrices
with respect to O can be used to explicitly describe the multiplicative structure of the

universal projective O-border basis family U proj,

Proposition 6.2.4. Let Xproj, O Mat,, (BX* [z0]) denote the images of the

generic projective formal multiplication matrices with respect to O in Matu(Bgoj [z0]),
let c1,... ¢y € By Pwo), and let ¢ = city + -+ - + cuty € By Pwo, ..., xp).

a) For every k € {0,...,n}, we have

Tp-q=(t1,...,t,)" XproJ (c ,...,cu)tr.
in Uy Dol particular, the matrices ?groj, .. ,yzroj are pairwise commauting.
b) For every q' € B(p;oj [%0, ..., 2], we have
) — prOJ —5DProj
q - q:(th SRR ) (X . '?Xn )'(Clﬂ"'vcu)tr
m Uproj.

217



6 The (Projective) Border Basis Scheme

Proof. Let {&1,...,E,} denote the canonical B%® [zo]-module basis of (B2 [z])*.
In order to prove the equality of a), let £ € {1,..., u}. Then we have

zo - cotp = (t1y ..o ty) - 0Ly, - o = (t1,...,t,) -?S“’j &Y
in Ugoj. Let k € {1,...,n}. lf zxty =t; € O for some i € {1,...,u}, we have
Ti - ey = e = (1, . ) - (Brice, -, Opice)™ = (F1, .. Ey) - Ao cp&lr
in Ugoj. If xity = b; for some j € {1,...,v}, we have

Ty - Cﬁg = ngj

Ay _ A (degy (b)) | 7
= C1jTy " Cgtr + o+ CH(degyy (b;)),5%0 CetH (degyy (b))

< < Ay _ AH (degyy (b)), ¢
(t1,. .. ty) - (Cjzg oy - s CH(degyy (b7)),5 %0 e, 0,...,0)"

(F1y . L) - AP el

in Ugoj. Altogether, we see that for all k € {0,...,n},
# . .
T 7 n 7 n > PTO T T —>PTro
xk'q:Zxk-Cgtg:Z(tl,...,tu)-Xg Vo = () - A ey e))T

in U5, As the residue classes of the elements of O in U5 form a B [zo]-module basis
of Ugoj according to Theorem 6.1.13, we have also proved that for all k& € {0,...,n},
E}ij represents the Bgmj [x0]-algebra endomorphism of U, goj defined by ¢’ + Tq for all
¢ € @, i.e. the multiplication by T}, in Ugoj, with respect to this Bgoj [xo]-module basis.

In particular, the commutativity of Ugoj thus yields that the matrices Xg *,..., X5

are pairwise commuting.

Next we prove b). We start to prove the claim for homogeneous polynomials. Let
¢ € (B5[xo,...,an])y be with v € Z. If v <0, we have ¢’ € B3 and thus

q:q, (lel_'—”'—i_cﬂfﬂ)
=qdcati+ -+ ety
Ty ty) d Ty (caye e vy cp)

e B (XN (e, )T

tr

in Ugoj. We prove the claim for v € N\ {0} by induction on «y. For the induction start
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~ =1, there exist dy,...,d, € Bgoj such that ¢ = doxg + - - - dpzy. By a), we get

n
7= ) dnTm-7
m=1
n . .
— — 5 Ppr > Pro,
= (Fry oo 8) - (dimem) (X o X0 ) (e1y ey )™
m=1

n
= (%17 ce 7¥H) ’ ( Z dml‘m) (ESTOJ" .. ajgmj) ' (Cla s 7cﬂ)tr
m=1

= (E, o E) g AT (e )T

n

in Ugmj and the induction start is proven. For the induction step, suppose now that
v > 1. Then we can write ¢ = ¢jt}) + --- + djt, with s € N, ¢},...,¢, € Bj™, and
th,...,t, € T2t For every r € {1,...,s}, there exist a k. € {0,...,n} and a term
Uy € TZJ,;l such that zg,u, = t,.. Then the induction hypothesis and a) yield

(- t) - (c/rurq)(?gro“], .. ,?zm]) “(c1y. .. ,cu)tr)
Ty by) X0 (urg) (XY X ) - (ery ey e))
Ty by) - (g, Curg) (X0 X0 (e1y ey )T

o) - () (X0 X)) - (ery )™

=S () - () (XD R (e, )

S
= (t1,. . ty) - (Zcﬁ#q) (5, N (e, )t
r=1

= (t1,...,ty) - (q’q)(?ﬁroj, .. ,?ﬁroj) “(c1y. .. ,cu)tr

in Ugoj and the claim follows in the homogeneous case.
In order to prove the claim for arbitrary ¢’ € Bgmj [z0, ..., 25, welet ¢ = Z’yEZ qﬁ/ be
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6 The (Projective) Border Basis Scheme

the decomposition of ¢’ into its homogeneous components. Then

7-a=) d,-q

YEZ

=S ) ) e, )
YEZ

— o) () ) ()

YEZ
= (F1y e B) - (AT (e, )

in U5 from the homogeneous case. O

Corollary 6.2.5. Let O = {t,...,1,} C Ugoj denote the image of the order ideal O
n Ugoj. Moreover, let ?Smj, . ,?ij IS MatH(B(p;Oj [0]) be the images of the generic
projective multiplication matrices with respect to O in Mat,(BE ' [xo]), v € Z, and
q € (B?)rOj (€0, ..., %n])y. Then q(ygmj, e ,?ﬁmj) € 1\/[atu(Bgoj [xo]) represents the ho-
mogeneous By [xo]-algebra homomorphism wg : US ™ (—=y) — UZY, r — q-r, the
multiplication by q € (US™), with respect to the By [zq]-module basis O of UH™.

Proof. By Theorem 6.1.13, O is a B(p;oj [g]-module basis of Ugoj. Let {&1,...,&,}
denote the canonical B ”[zo]-module basis of (Bg *'[zo])*. Then the claim follows since
we have mg(t;) = G-t = (F1,. .., Lu) - q(XG s, X0 ) - EX for every i € {1,...,u} by
Proposition 6.2.4. O

Example 6.2.6. Let P = Qx1,x2] be standard graded, i.e. graded by the matrix
W = (1,1) € Maty 2(Z) and let P = Q[zg, ¥1, 2] also be standard graded, i.e. graded
by the matrix W = (1 | W) = (1,1,1) € Mat; 3(Z). According to the Definitions 2.1.6,
2.1.7, and 4.1.11, the set O = {t1,...,ts} = {1,292, 71,23, 2172, 23, 2772, 23} is an order
ideal in T? with maxdegy,-border 00 = {by,...,bs} = {23, 2123, 2323, 2329, 21}, Let
{ci |ie{1,...,8},7 € {1,...,5}}, be a set of further indeterminates. let Bo be the
O-border basis scheme and Bo — Up be the universal O-border basis family as defined
in Definition 6.1.1. Furthermore, we let IB%%mJ C Bp be the projective O-border basis
scheme, Igoj C Bp its defining ideal, and B(%mj — Ugmj be the universal projective
O-border basis family as defined in Definition 6.1.5. Since the order ideal O has a
maxdegyy-border, we have I = {0}, i.e. By coincides with Bo.

Let G = {g1,...,95} C Ple11,...,cs5] be the generic projective O-border prebasis.
Then g; = bj —clj:cg —ngxg.rg —03jx(2)x1 —04]‘1’01:% —C55T0T1T2 —66]‘1’0%% —C7j$%$2 —ngxzf
for every index j € {1,2}, and for every index j in the set {3,4,5}, the polynomial
gj = bj - cljxé - ngxgl'g - 03]-378961 — C4jx(2]l‘% — C5jx%x1w2 — cﬁjx%x% — C7j56027%$2 — ngxow%.
The images ?gro‘],flfmj,?gmj IS Matg(B(%mj [xo]) of the generic projective multiplica-
tion matrices Xgroj,Xfroj,Xfroj € Matg(K[xo,c11,---,c85]) with respect to O in the
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ring Matg(B% [z0]) are

zx 0 O O 0 0 0 O
0 g O O O O 0 O
0O 0 ¢ O O O O O
yproj . 0 0 0 o 0 0 0 0
O 710 0 0 0 z 0 0 0
0 0 0 O 0 =z 0 O
0O 0 0 0 0 0 =2 O
0O 0 0 O 0 0 0 =z
000 5121‘% 0 0 514:6% me%
0 0 0 522.%'(2) 0 0 524.228 525.%'8
1 0 0 Eggl‘% 0 0 534.%% Eg5x%
?proj: 0 0 0 Cgpxg 0 O 544.1‘(% E45$%
1 0 1 0 Cxag 0 O 654333 655.1:% ’
0 0 1 ¢grg 0 O 66451;(2) 565113%
0 0 0 ©p 1 0 Cuxg Crsxg
0 0 0 ©¢g 0 1 ecgaxg cg570
and
000 5115E8 Elgxg 0 513566l 5141‘6
1 00 62133‘(2) 6221’% 0 523.7}% 6241‘8
000 Eglx% 5321’% 0 533.%% Eg4$%
XprOJ _ 0 1 0 ¢ynxg Ca229 O 543{[,‘% 5441‘(2)
2 0 0 1 ex1xg Csexg9 O 65333(2] 554.%%
0 0 0 ©Cgrzg cgaxog O 663$% 564.%(2)
0 00 @en cr2 1 Cr3wg Crxo
0 0 0 es g2 0 Cgzrp Cgamo

by Definition 6.1.5. Let O be the image of O in U(%mj, q = x2+mwo29 € (B(]%mj [0, ..., Tn])2,
and let g : U™ (=2) — UG, 7+ q - r be the multiplication by g € (U%™)2. Then by
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Corollary 6.2.5, the matrix

q(ygroj ’ ?g)roj : ?groj)
_ (yll)mJ)Q + XgrOJ ) y};ro_]

0 0 0 miyg mis mig miz7 mig
zg 0 0 M2 mas m26 mar mog
— 3 — 4 — 4
0 0 0 mgq+crory mss ms3e m37 + C14T5  Mma3s + C157
10 =z O M4y mys M6 myz M4
= — 2 — .3 — .3
0 0 xo msg+Coary Mmss M6 ms7 + Co4Zy  Mss + CasTy
— 2 — —
1 0 0 mes+c3xi mes mee me7 + 034333 mes + 635333
- 2 — 2
0 1 0 mrs+Cs2m0 mzs mre + o Mr7 + Csaxy Mg + C557
- . — 2
0 0 1 mga+7Ce2xo mss  mge Mgy + Ceaky Mg + Co5%)
proj
S Matg(BO [.%'0])
where we have
_ _ _ _ 4—deg(t;)
mis = (Ci2Ca2 + CiaCra + Ci5C2 + Ci1) Ty e
_ _ 4—deg(t;)
mis = (Cia + Cia) Y,
— 4—deg(t;)
Mmig = Ci5x v,
_ _ R _ 5—deg(t;
mi7 = (Ci2Caa + CiaCra + Ci5Ca + Ci3 ), ®),
_ _ ~ = — 5—deg(t;)
mig = (CiaCa5 + CiaCrs + CisCss + Cia) T '
for all ¢ € {1,...,8} represents the homogeneous By *[zo]-algebra homomorphism 7z

with respect to the B?)mj [z0]-module basis O of U(%roj.

In the remaining part of this section, we prove that the generic multiplication matrices
with respect to O can also be used to explicitly describe the multiplicative structure of
the universal projective O-border basis family UgOJ.

Proposition 6.2.7. Let dy; = v — degy (t;) € Z be for ally € Z and i € {1,...,u},
let Xq,...,X, € MatM(Bff)mJ) denote the images of the generic multiplication matrices

with respect to the order ideal O in Matu(Bgmj), let c1,...,cu(y) € B(p;oj, and we let

d d i
g=cizy" 4+ cH(V)xOW‘Hth(V) € (B30, - - - Tn))y-
a) We have

= _ (ndv+11g dy41,H(v+1)7 0 0
1’0'(]—(1‘0 tl?"'vaj() tH(’y—i—l)? L) )

Ty - (01,...,CH(,Y),O,...,0)tr

in Ugoj and for every k € {1,...,n}, we have
— — 1w 17 d wi., wy)
T -q = (xO’YJr k 1t1, ce ,.%‘O’YJr R H O+ k)tH('y—i—wk)’ O, ce ,0)
?k (Cl,...,CH(,y),O,...,O)tr
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. 0]
in U5,

b) For every v € Z and every ¢' € (Bgroj [z0, ..., Zp])y, we have

d7+w’»H(v+7’)¥

d /1=
/01
T, T

q/,g: (1;0 H(W_i_,y/),o,...,O)
/ v v tr
q(I“,Xl,...,Xn)-(Cl,...,CH(V),O,...,O)

. 7 7proj
in Uy ™.

Proof. For all s € {1,...,n}, let Xy = (E,(:g))lgk,ggu S MatH(B(pgroj) be as in Defini-
tions 6.1.1 and 6.1.5 and let {&;,...,E,} be the canonical B(p;oj—module basis of (B(p;oj)“.
Moreover, we denote wg = 1 and Xy = Z,,. If v < 0, we have (Bgroj [x0, ..., xn])y = {0}
and the claims follow trivially. Thus suppose that v > 0.

The first equality of a) follows as we have

H(v)

dyy117 doyi1,H(v) T
= ey Mt e )

_ Ao
xo-q=z0- (1@ytr+ -+ Cp(y ):1:0

d’y 1+

+17
=1z, th+-+ CH(A{)JJOW‘HW t

d In dryy1,H 1 r
= ($07+1’1t1, cee 71,0’y+1 o+ )tH('y+1) 0 . ,0) : IM : (01, ce 7CH('y)v 0, ce ,O)t

in UR®. In order to prove the second equality, let k € {1,...,n} and £ € {1,..., H(y)}.
If zity =t; € O for some i € {1,...,u}, we have degy,(¢;) = degy (t¢) + wy and hence

d i—
T+ 330 tg ’Y+wk’lti
H(y+wy)
dytw m
- Z Omitg" "
H(y+wy)
— § dﬂ'wk ¥
- meL tm
d'erwk,l* dw+wk H (v+wg ) v tr
:(xo tl,...,l‘o tH(’H-wk) 0 ,0)~Xk-gg

in Ugoj. If xite = b; for some j € {1,...,v}, we get degy, (b;) = degy, (t7) + wy, and for
every m € {1,..., H(degy (b))}, it follows that

dyo+ Amj = v — degyy (tr) + degy, (by) — degyy (tm)
=y — degyy (te) + degy (tr) + wy, — degyy (tm)
=+ wy — degyy (tm)

= dytwym
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Altogether, we get

—_ dy g dy o7
Ty * l’ow’ltg = ﬂ?ow’lbj

H(degw (b)) A
— +Amj7
— Z cm]xow Ttm
m=1
H(y+wg)
_ é— k) d’Y+wk m
- meLo
d"/+w 17 Ay twp H (v +wg) 7 > t
:(IO k tl,...,.’l?o k ktH('\H-wk)va'”yO)'Xk gzr
in UY®. Claim a) now follows as
H(y)
T Q= Z - cpry "y
l=
T ) d d,
y+w 1* Y+wy , H(v+wy,) = t
= Z By T g 0 -+ -5 0) - X - coEfF
{=
dwrw 1 Ay twp H (vHwg) t
= (% k> ces X k ktH(7+wk),0,...,0)~Xk'(Cl,...,CH(,Y),O,...,O)r
in UprOJ.

Next we prove b). For all 4/ € Z with 7/ < 0, we have Q., = {0} and b) holds trivially.
We prove by induction on 4" € N that b) holds in general. For 4/ = 0, it follows that
¢ € By and thus

- dy1g d i
7 -q=dazy b+ + d ez e
_ d _
( dy, ltl, ce ,:L‘O%H(’Y)tH(,y),O, ce ,O) . q/I# : (Cl, ce >CH('y)7O7 .. .,O)tr
d _
(.7307 tl, ce ,xOW'HW)tH(,Y),O, ce ,O) . q/(Iu7X17 .. ,Xn) . (Cl, ce 7CH(’y)707 ce ,O)tr

in Ugoj. This shows the claim for v/ = 0. For the induction step, we let 7/ > 0.
T/hen there exist an s € N\ {0}, ¢},...,¢, € Bo™, and #),....t, € Tzﬂ'l such that

¢ =ty + -+ dt,. For all indices r € {1,...,s}, there are k, € {0,...,n} and
r € ']I‘ZJ;,I such that ¢, = zy,u,. Hence the induction hypothesis, the commutativity of
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the matrices X1, ..., X, which follows from Definition 6.1.1, together with a) yield

jk?r : (C’:‘UT : q)

d

dw-&-w’—wkwl Yy —wp H (v —wp, ) £

:fkr'((xo fl,...,:po tH(V'F’Y'—wkr)’O”"’O)
() (L, X1, Xp) - (e1, -, CH (), 0,0 .., 0))
d / —_ d / 1y —
= (1’0W+W ’ltl, R ,JJO’Y+’Y HOt >tH(’y+'y’)7 0,..., 0)
(X, - (up) (L, X1, X)) - (e1, -, CH(y), 0,00, 0)
d / —_ d / 1\ —
= (1’,’0W+W ’ltl, ce ,JZO’Y+’Y H Ot >tH(7+'y’)7 0,..., 0)

(g ) (L, X, .. Xp) - (c1y e s CH(y)5 0s - - - ,0)%

in Ugroj for all » € {1,...,s}. The claim for 4/ > 0 hence follows as

S
7-a=) T, (a9
r=1

s
d - d —
= Z((l.o’wr’v’,ltl’ o ’x0w+w’7H(w+w’)tH(7+7,)’ 0,... ’0)
r=1
: (c;mkrur)(lu,fl, cee 7?71) . (Cl, e 7CH(’y)7 0, cee ,O)tr)
d - d -
= (:EO’HJY/JIH, ce ,$O’Y+’YI’H(’Y+’Y,)I§H(,Y+,Y/), 0,... ,O)

. (chﬁkrur) (Iu,yl, I o R (e P s CH(y)5 0; - - ,0)t

r=1

dv+7’,1{

d ’ -
_ Y+ H(y+v")
= (2 ly

1y++-5%g (’er,-y/),O’...’O)

g (T, X1y, X)) (c1,-- 5 Ch(7), 0. ., 0)tr
in US. O

Corollary 6.2.8. Let d,; =~y —degy (t;) € Z be for ally € Z and all i € {1,...,u},
let X1,...,X, € Mat“(B(p;Oj) denote the images of the gemeric multiplication matrices
with respect to the order ideal O in Matu(B%mj), and we let Oy denote the image of the
set Og = Uply 760 in Ugroj. Moreover, we let v,7 € Z and q € (Bgoj [0, ..., Tn])y-
Then the submatriz of the matriz q(Z,, X,...,X,) € Mat,(By™) consisting of the
first H(y +«') rows and the first H(vy) columns represents the B(%roj—algebm homomor-
phism &g : (US), — (US), ., v+ G- 7, the multiplication by § € (U™, with
respect to the Boy™-module bases (Op)~ of (UN), and (Op)y 1y of (US)ysrr.

Proof. Let {&1,...,&,} denote the canonical B(%mj-module basis of (Bgmj)“. According
to Corollary 6.1.14, the sets (Op)y and (Op)y4+, are B “-module bases of (U5™),
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6 The (Projective) Border Basis Scheme
and (US®).,, s, respectively. For all k € {1,..., H(y)}, Proposition 6.2.7 yields

~

Raley " T) = - 2" T

do 1= d o H(y+y)- — _
:(azowv tl,...,xoﬂﬁ_v tH('er»y/),Oy-u,O)'Q(Iley--',Xn)'S]zr
and the claim is a direct consequence of this. O

Example 6.2.9. Consider the projective O-border basis scheme Blgoj C Bp and the
corresponding universal projective O-border basis family B(%mj — Ugmj of Example 6.2.6,
again. Recall that we had O = {t1,...,ts} = {1, 29, 21,73, 2172, 23, 2312, 23} with the
maxdegy,-border 00 = {b1,...,bs} = {23, 7123, 2222, 2329, 71} and that the polynomi-
als lived in the standard graded rings P = Q[x1, 23] respectively P = Q[xg, x1,z2]. The
generic projective O-border basis was of the form G = {g1,...,g5} C Plc11, ..., css] with
g9; = bj — cljxg — ngl%xg — 03ja:3m1 — C4j3?0.%‘§ — C55T0T1T2 — chxom% — C7j1‘%.%’2 - ng.’L"rlS
for all indices j € {1,2} and for every index j in the set {3,4,5}, the polynomial
gj = bj - cljm% - ngx%m’z - 03]-368301 — C4j3331’% — C5jx%x1x2 — C@'JI%.@% — C7j$01’%x2 — ngxo.%‘:%.
According to Definition 6.1.1, the images X1, X5 € Matg(Bgmj) of the generic multipli-
cation matrices X7, Xo € Matg(Q[ci1, .. ., cs5]) with respect to O in Matg(Bgoj) are

0 0 0 ¢o 0 0 ¢4 ci5 0 0 0 ¢1 ¢2 0 ¢i3 cuig
0 0 0 ¢ 0 0 ¢y ©Co5 1 0 0 ¢ €y 0 ©Cog Cog
1 0 0 ¢e339 0 0 ©¢34 ¢35 0 0 O ¢31 c32 0 ¢33 ¢34
?1 _ 0 0 0 ¢ 0 0 ©cyq4 cey5 ?2 _ 0 1 0 ¢4 ¢C49 0 C43 Cyy
0 1 0 G 0 0 ¢4 C551° 0 0 1 ¢ c¢52 0 ©¢s3 ©Csa
0 0 1 ¢ 0 O ©csa Cgs 0 0 O ¢ ©cCg2 0O Cgz Cgs
0 0 0 ¢ 1 0 ¢y Crs 0 0 0 ¢1 ¢ 1 ¢33 Ty
0 0 0 ¢cgo 0O 1 &©egq4 css 0 0 O ¢g1 cga 0 ©Cg3 Csg

Consider the polynomial ¢ = 22 + zow2 € (Pleit, ..., cs5))2 and the map H : Z — Z,
v #{k e {1,...,8} | deg(tx) <~}. Then

q(Is, X1, X2) = I? +Ig - Xo
000 M4 mis  Miye my7 m1s
1 00 Moy Mas Mg M7 Mg
0 0 0 m3q+Ci2 M35  Mm3e M3y +Cia M38+Cis
10 1 0 M44 Mys5 e M7 48
|0 0 1 Msa+Cn sy Msg  Msy+Coa Misg + Cos
1 0 0 mes+cC32 Mes  Mes  Mer +C3a Mes + C35
0 1 0 mp-+csy g mgg+1 Mgy +Csa Mizg + Css
0 0 1 mgy+3Ce2 gy  ge Mgy +Cea 7Mgs + Co5

€ Mats(BS™)
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6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

where we have
M4 = Ci2C42 + Ci4Cr2 + Ci5C82 + Ci,s
mi5 = Ci2 + Ci4,
Mig = Ci5,
M7 = Cj2C44 + CigCr4 + Ci5C84 + C;3,

Mig = C;j2C45 + CiaCrs + Ci5Cs5 + Ciq

for all i € {1,...,8}. By Corollary 6.2.8, the submatrix

€ Matg,g (B(pgroj )

OO+ O OO~ Oo
O OO+, OOoOOo
_ O O = OO oo

of q(Zs, X1, X2) consisting of the first H(3) = 8 rows and the first H(1) = 3 columns
represents the homogeneous By “-algebra homomorphism 75 : (U5™)1 — (U5™)s,
r +— g - r, the multiplication by § € (Ugroj)g, with respect to the Bgoj—module bases
{wo,fg,fl} C Ugroj of (U(groj)l and {x3, 23T, 2371, 2023, 20T1T2, w022, 2379, T3} C Ugoj
of (U5)s. Note that since all the entries of the above matrix are in the base field Q,
the matrix is independent of the coefficients of the generic projective O-border preba-
sis G. Therefore, this matrix describes the multiplication by g for any arbitrary projective
O-border basis.

6.3 The Generic Canonical Module of the Universal
Projective Border Basis Family

After the study of the multiplicative structure of the universal projective O-border ba-
sis family U5 in Section 6.2, we now want to consider the dual Bp*[zo]-module
of Ugoj. Recall Section 4.3. For every homogeneous ideal I C P with the prop-
erty that it possesses a projective O-border basis, we can explicitly describe the dual
K|xg]-module of the quotient ring R = P/I, which is precisely the canonical mod-
ule wp of R by Remark 4.3.5, and its multiplicative structure, cf. the Propositions 4.3.8
and 4.3.10 and Corollary 4.3.11. Moreover, we have seen that projective O-border bases
are unique by Proposition 4.1.7 and that thus the projective O-border basis scheme By,
parametrizes the one-dimensional homogeneous ideals in P that possess a projective
O-border basis in Section 6.1 This yields the question whether we can parametrize all
canonical modules wp of quotient rings R = P/I where I possesses a projective O-border
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6 The (Projective) Border Basis Scheme

basis using IB%Ing. In this section, we show that this can actually be done. More precisely,
we do the following.

First we introduce the generic canonical module of U2 /.J where J € U5 is a homo-
geneous ideal as the dual B(pgroj [zo]-module of Ugmj /J in Definition 6.3.2. Then we prove
that the residue classes of the elements of O in U, goj immediately yield Bgroj [x0]- respec-
tively B(%roj—module bases of the generic canonical module w; pro; of Ugroj respectively
its homogeneous components in Proposition 6.3.4. After that, we study the multiplica-
tive structure of Wypros and describe it as explicitly as possible by means of the generic

(projective) multiplication matrices with respect to O in the Propositions 6.3.5 and 6.3.7
and Corollary 6.3.8. In particular, Corollary 6.3.8 is the crucial part of the proof of
the main result of this chapter, namely Theorem 6.4.4, which states that the set of all
points of the projective O-border basis scheme IB%%rOJ that correspond to (4, j)-uniform

zero-dimensional subschemes of Pg (W) is constructible.

As in the previous section, we denote Q) = Plciy,...,cu| and Q = Pleig,. .. oMk
Then Q = @'yeZ Qy and Q = G%ez Q. are non-negatively Z-graded by the matrices
V = (W ]0)e Matiptuw(Z) and V = (W | 0) € Maty p414m(Z), respectively. For
all i € {1,...,u} and j € {1,...,v}, let A;; = degy (bj) — degy (t;) € Z. Moreover,
let G = {g1,...,9,} € Q be the generic projective O-border prebasis, let IB%Igoj be the
projective O-border basis scheme with coordinate ring Bgoj, and let Bgoj — Ugroj be
the universal projective O-border basis family as defined in Definition 6.1.5.

Before we start, we briefly recall Definition 4.3.1 and Proposition 4.3.2. For a Z-
graded ring R and Z-graded R-modules M and N, we defined Homp (M, N) in Defini-
tion 4.3.1 to be the set of all homogeneous R-module homomorphisms M — N and we
saw that Homp (M, N) = @, ez (Homp(M, N))y = @D, ez Hompr(M, N (7)) is a Z-graded
R-module.

Lemma 6.3.1. Let J C Ugoj be a homogeneous ideal and let S = Ugoj/J. Moreover,
we let M = Hom (S, B5 " [x0]).

B%roj [mO]

a) The map
Ugoj xS—=8 (rnr'+J)—=r'+J (r,re Ugoj)
equips the Z-graded ring S with the structure of a Z-graded Ugmj-algebm.
b) The map
Ugroj XM — M, (r,o)— (r'+— o(r-r))

turns the Z-graded BgrOj [xo]-module M into a Z-graded Ugmj-module. In particular,
the B(%rOJ [xo]-module structure of M as in Proposition 4.5.2 is compatible with this

U(%TOJ -structure.
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6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

Proof. Claim a) follows from [KR00, Rem. 1.7.9].
In order to prove b), let r,7’, 7" € UY™ and ¢, ¢’ € M. Using a), we see that

(1)) = p(1-7") = o).
fe. 1 =0,
(') - @) = (1) 7) = plo” - (7)) = (- ) 7) = (- (0" ) ()
e (') p=r-(r' ),
(0 +1)- D)) = ol +7) - 7) = olr-7) + 90" 7) = (- )(7) + (- £) )

Le. (r+r)-o=r-p+1r ¢, and

ie.r-(p+¢)=r-p+r-¢. Thus the given map turns M into a Ugoj—module, which is
obviously compatible with the BY *[z¢]-module structure of M given in Proposition 4.3.2.
O

Next we define the generic canonical module of Ugmj /J where J C Ugoj is a ho-
mogeneous ideal as the dual Bgmj [x0]-module of Ugmj. Note that after applying the
substition ¢;; + a;; for some point (ai1,...,au,) € Bgoj, this construction coincides
with the one in Definition 4.3.4. In other words, By)* parametrizes the canonical mod-
ules of all the residue class rings P/I where I is a homogeneous ideal that possesses a
projective O-border basis.

Definition 6.3.2. Let J C US™ be a homogeneous ideal and S = U5 /J. Then
s = Hom s 8 B ]} (1)

is called the generic canonical module of S. If J = {0}, we identify U5 with UZ® /.J

and also write w ; instead of w i1
U(};I'O‘] U(%I‘OJ/J

This definition immediately yields the following properties of wypro;.
O

Proposition 6.3.3. a) The element x(y € Bgoj [o] is a non-zero divisor for Ugmj.

b) The element xo € By ?[zo] is a non-zero divisor for wypro; .
O
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6 The (Projective) Border Basis Scheme

¢) Let J C US® be a homogeneous ideal and let S = US/J. Then there exists a
canonical homogeneous Ugoj-module 1somorphism

ws = {p € Wypres | J - ={0}}.
Proof. First we prove a). Assume that there exists a homomorphism ¢ € w;pro; \ {0} such
O

that zop = 0. Then there is an element r € U5 such that ¢(r) # 0 and Lemma 6.3.1

yields 0 = 0(r) = (zop)(r) = @(xo - 1) = xo - (). Since @(r) € B(poroj [zo] \ {0}, this is a
contradiction to Corollary 6.1.14. Thus x( is a non-zero divisor for Wy proj -
O

Next we prove claim b). Let M = {¢ € wypro; | J - = {0}}. For all 1,09 € M,
O

ri,m2 € U5, and s € J, we have

(s (p1 = 92))(r1) = (o1 — p2)(s71)
= ¢1(sr) — pa(sr1)
= (s-p1)(r) = (s p2)(r1)
=0(r1) +0(r1)
= O’
ie. J- (o1 — p2) ={0} and thus ¢ — @9 € M, and since r1s € J, we have

(s (r1-@1))(r2) = (r1 - ¢1)(sr2) = pa(risra) = ((r1s) - p1)(r2) = 0(r2) = 0,
ie. J-(r1-p1) = {0} and thus r - ¢ € M. Altogether, it follows that the set M is a
Ugroj—submodule of Wy proj -

For every ¢ € M and all s € J, we have
p(s) =p(s-1) = (s-¢)(1) =0(1) =0

and hence J C ker(p). Let ¢ : Ugoj - S = Ugmj/J be the canonical B(%roj [zo]-module
epimorphism. Then for every ¢ € M, the Universal Property of the Residue Class
Module S induces a unique By ™ [z]-module homomorphism % : S — Bi“[zo] which
satisfies ¢ = Poe and P € wg. In other words, every element ¢ € M induces a unique
element ¥ € wg. Thus the map

o: M — ws, @ suchthat p=poce
is well-defined. For all 1,02 € M and rq,79 € Ugoj, we have

P(r1 - (o1 —p2))(r2 + J) =11 (1 — p2)(r2 + J)
(r1- (1 — 2))(r2)
— p2)(rir2)
(r1r2) — p2(rir2)
(rirg +J) — @o(rira + J)
= (71 —@2)(r1r2 + J)
= (1) — (p2)) (1172 + J)
= (r1- (¢(p1) — d(p2)))(r2 + J),

(
1
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6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

ie. o(r1- (o1 —w2)) = r1- (¢(p1) — é(p2)). Altogether, it follows that the map ¢ is a
U *-module homomorphism. Since for all v,+ € Z, r € (U5™),, and ¢ € M./, we also
have

$(p)(r+T) = 2(r+J) = ¢(r) € (BE"[20] (' = 1))y = (B [20)(— 1)),

i.e. ¢(¢) € (ws)y, the UY-module homomorphism ¢ is homogeneous.

Next we prove that ¢ is bijective. For every ¢ € wg, the Ugoj—module homomorphism
P =Poe € wypr; satisfies (s - )(1) = ¢(s) =p(s+ J) = p(0) = 0 for every s € J, i.e.
s+ =0 and thus J - ¢ = {0}. In particular, for every ¥ € wg, we have poe € M and
d(@oe) =p. Altogether, it follows that ¢ is surjective. For every ¢ € ker(¢), we have
p=¢(p)oe=00e =0, ie. ker(¢) = {0} and ¢ is hence injective. O

In the remaining parts of this thesis, for all homogeneous ideals J C Ugmj, we identify
the elements of Wyyproi ) g with the corresponding elements in {¢ € wproi | J - = {0}} as
(@} (@]

proven in Proposition 6.3.3 without mention.

Next we show that the residue classes of the elements of O yield Bgmj [x0]- respectively

B(p;OJ—module bases of ngmj.

Proposition 6.3.4. Let d,; =y—degy (t;) € Z be for ally € Z and alli € {1,..., u},
let O = {t1,...,t,} C UH denote the image of the order ideal O in US, and let
0" = {t3,. .. ,f;} C wyjpro; be the dual B(poJ [x0]-module basis of O, i.e. we have

O

T UN = BY o), T —dy (Ge{l,...,u})

for everyi € {1,...,u}.

a) The set O is a B(p;oj [z0]-module basis of wyprei. In particular, there are canonical
(@]

isomorphisms of Z-graded B(pgmj [x0]-modules

122 ) degw(tu) )
Wyyproi 22 Q_? BY o] (degyy () — 1) = @ (B2 [zg](y — 1))AHO),

In particular, I‘kB%roj((wU(%roj)_,y) =pu—H(y)=p— rkB%mj((U(groj)y) for all v € Z.

b) Let Oy denote the image of Oy = Upey kO in Ugoj and let @; C wyproi be
- O
the set of dual objects of the elements in Oy. For every integer v € Z, the set
_ —d _ _ _ . i
(Og)—y = {z, "’“’HW)Ht*H( L1re- X d”“’“tZ} C (WU(,;YOJ)_AY is a By -module

7)
basis of (wU(;;roj )— -
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6 The (Projective) Border Basis Scheme

Proof. First we prove a). Since @ C US® is a BY® [zo]-module basis of US® according
to Lemma 6.1.12, the dual basis O is a BY o] [zo]-module basis of Wypros according to
[Bou89, 11.§2.6, Prop. 11 and Defn. 7|. By [Bou89, I1.§1.6, Coro. 1 and 1L §11.6, Rem.|),

there is a canonical homogeneous By J[l’o] module isomorphism

w
—HC’mB‘(’;‘)j [zo] (@ B [wo](— degy (t:)), By ™ [xo])

=1

m
g@ Om PYOJ[ ]Bp J[‘TO]( degW( )) BPTOJ[ ])
=1

Moreover, there exists a canonical homogeneous By, [x]-module isomorphism

p p

UE™ = €D BE ol - T = €B B [wo] (— degip (1))
i=1 =1

by Corollary 6.1.14 and a canonical homogeneous Bgmj [xo]-module isomorphism
@B%mj (o] (B M [zo), B ™ [x0]) = By o]
by [Bou89, I1.§11.6, p. 376]. Altogether, we get the canonical isomorphism

Wypros = mB%roj [zo](UgTOJ’ B2¥zg])(~1)

M .
> Hom o (GBB%“J[:UOM degyy (1), BE®[x ]) (-1)
=1

M .
D Hom i, (BE [wo] (— degyy (£), B ™ ol ) (—1)

=1
= @Homem[ o (BE o], BE [xo]) (degyy (t) — 1)
=~ @ B (o) (degyy (t:) — 1)
=1
degyy (tu) )
= P (B ol(y - 1)
v=0
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of Z-graded B(%roj []-modules and the claim follows. In particular, for all v € Z, we have

degyy (tu) . )
()2 | D (BEwo)(5 — 1)1
5=0
-
degW(t#) ) _
= D (BE"[xol(7 - 1))
5=0
d‘SgW(tu) . _
= D B o).
5=0
and as O is ordered increasingly with respect to degy,, we get
degyy (tu)
s (o) ) = @) AH() = H(degyy (1) ~ H(y) =~ H(x).
y=v+1

As 1rk(Upmj)7 = H() for all v € Z by Corollary 6.1.14, the remaining equality follows.
O
In order to prove b), let v € Z. For all i € {1,..., u}, we have

# (1) = 1 € By [zolo = (BE [z0)(— degyy (1)) degyy (1)

and 7; (;) = 0 € (BY o] (— degy (:)))
have %;k € (wUproj),
(@}

degyy (t;) Tor all indices j € {1,...,u}\{i}, i.e. we

degyy (t:)+1- Moreover, for every index i € {H(v)+1,...,u}, we get

—dyt1,; = —y — 1+ degy (t;) € N and thus xad”“”f;‘ € (ngroj>_ry. Since t; (¢;) = ;; for

all i,7 € {1,...,u} and since rkBproj((wU(p:))roj)_n/) = pu — H(y) according to a), it follows
5 —dyi10g :

that (08)77 = {zg doyt1,H() +1tj‘q( )15+ -2 T “/+17th} - (wU(%mj),,y is a K-vector space

basis of (UJUproj )= ]
(@]

Next we explicitly describe the B(%roj [z0]-module structure of wyproj by means of the
(@)

generic projective multiplication matrices with respect to O.

Proposition 6.3.5. Let O = {ty,...,{,} C Ugmj denote the image of the order ideal O

in Ugoj and let O = {ﬂk,...,f:} C Wypres be the dual B(p;Oj [z0]-module basis of O.
Moreover, let Xproj, o, A0 € Mat, (BR ¥ [x0]) be the images of the generic projective
multiplication matrices with respect to O in Mat, (B ?[xo)), let c1,...,c, € BH ™[z,
and let o = c1ty +--- + cut € Wyypres- Then for all v € Z and q € (BY™[z0,. .., Zn))~,
we have

Gop =1, 1) (X0 )", (AN)) - (e,
in Wyproi s i.e. the matriz q((?groj)tr, cee (yerJ)tr) € Matu(B(%roj [x0]) represents the ho-

mogeneous B(%roj [zo]-module homomorphism 7%+ wiprei (=) — wyproi, ¥+ G- @, the
(@) (@)

multiplication by q € (U(%mj)y, with respect to the Bgroj [xo]-module basis O of Wy proj -
(@)
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6 The (Projective) Border Basis Scheme

Proof. Let v € Z and we let ¢ € (B(%roj [z0,...,xn])y. According to Corollary 6.2.5,
q(Xg™, ... ) € Mat, (BS [z0]) represents the homogeneous BY™ [zo]-module ho-
momorphism 7y : UgOJ(—v) — UgrOJ, r +— @ - r, the multiplication by g, with respect
to the BY*[zg]-module basis O. The dual module of the free BY[zo]-module U5
. i ¥ 1 i .

is (U5 = HomB(p;oj[a:O](U(]gmj,B(p;OJ [zo]) = ngoj(l). Thus the induced homoge-

proj ; . . . _—_ g
neous By, ™ [xo]-module homomorphism 77 : ngOJ(—’y) = Wyprei, ¥ 9O =G

with respect to the dual B(p;Oj [zo]-module basis O" of O is represented by the ma-
trix q(Xp ..., & Ot e Matu(B(p;oj [zo]) according to [Bou89, 11.§10.4, Prop. 3| and

Corollary 6.2.5. Moreover, the matrices ?groj, . ,?Emj, and hence also the matrices
(X (fgm)tr, are pairwise commuting by Proposition 6.2.4 and the claim fol-
lows from q(Xg5 ..., X0 = q((g ™), ..., (&Y, O

Example 6.3.6. Consider the projective O-border basis scheme IB%Fng and the corre-
sponding universal projective O-border family Bgoj — Ugoj of Example 6.2.6, again.
Recall that the polynomial rings P = Q[x1, x2] respectively P = Q[xg, x1, z2] were stan-
dard graded, i.e. graded by the gradings given by W = (1,1) € Mat 2(Z) respectively
W = (1,1,1) € Maty 3(Z), and that O = {t1,...,ts} = {1, 29, 21, 23, 2120, 22, 2329, 23}
had the maxdegy,-border 00 = {b,...,bs} = {a3, z123, 2323 329, 2]}. Moreover,
we saw that the images X °, X} °, Xy " € Matg(B(p;Oj [zo]) of the generic projective
multiplication matrices with respect to O in 1\/Iat8(B(p9rOj [zo]) are

zx 0 O O 0 O 0 O
0 g O O O O 0 O
0 0 20 O O O O O
yproj _ 0 0 0 i) 0 0 0 0
0 0 0 0 0 % 0 0 0]’
0 0 0 0O 0 =z 0 O
0O 0 0 0 0 0 =zo O
0O 0 0 0 0 0 0 =x
0 0 0 512.T(3) 0 0 514566 515.%%
0 0 0 522.%(2) 0 0 624338 525.%%
1 00 532:E(2) 0 0 534563 5351‘%
XprOJ _ 0 0 0 cgoxg 0 O 544.%% 5451'(2)
1 0 1 0 ¢sag 0 O 554.1?% E55$(2) ’
0 0 1 cgxg 0 O 664-75(2) 6651'(2)
0 0 0 ©¢p 1 0 Cuxg Crsxo
0 0 0 ©eg 0 1 @eg4xg9 Cs570

234



6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

and
0 0 0 5111‘8 6121‘8 0 513.7)3 5141'%
1 0 0 5211% 522.73(2) 0 Eggxg 624.1:%
0 0 0 5311‘(2) 532%'(2) 0 53321)8 5341‘8
yproj _ 0 1 0 ¢g1xg Ca970 O E43$3 544.%%
2 0 0 1 ¢s51z9 c5920 O E53$(2) 554.%(2)
0 0 0 ¢cgrxg Cgaxpg O 663333 564.%%
000 en Ccr2 1 Crzxg Cramo
0 0 0 @ea Ccs2 0 Cgzrp Cgaxo
Let ¢ = 22 + zoxy € (Bgoj[a:o, .+, @p))2 and let 77 - ngmj(—Q) = Wypres, @ G

be the multiplication by g € (Ugroj)g. Furthermore, let O C Ugoj be the image of O
in UR and let O C wy;pro; be the dual B [zo]-module basis of O. Then the matrix
(@)

(™) ()", (25)')
= (7)) 4 (2™ - ()

0 To 0 0 0 1 0 0
0 0 0 o 0 0 1 0
0 0 0 0 To 0 0 1
_ | maa moa mzst E125133 Myq M54+ 622933 meq + E32933 Mr4 + C5220 Mg4 + C62%0
mis M2s mss mys mss mes mrs mgs
mie M2 mse mye mse mee mre + Zo mse

4 —~ 3 —~ 3 . —~ 9
miy Mgy M37 + ClaTy M4y Ms7 + Co4Xy Mer + C34T5 Mrr + C54T5  Mg7 + Ceay

1 - 3 — 3 — .2 — 2
mig Mmaog M3g + Ci5X5 M4g Msg + Casxy Mes + C35T5 Mrs + C55TF Mss + Ces5%

€ Matg(B(%roj [.CE[)])

where we have

mis = (CiaC42 + CiaCra + Ci5Cs2 + Eﬂ)xé_deg(ti),
mis = (2 + i)y 20,

mig = Ez‘5$é_deg(ti),

mi7 = (Ci2Ca4 + CiaCra + CisCsa + Ei3)$gideg(ti),

_ R ~ = — 5—deg(t;)
m;g = (Ci2Ca5 + CiaCrs + Ci5Css + Cia) T !

for all indices @ € {1,...,8} represents the homogeneous Bgoj [zo]-module homomor-

phism 77 with respect to the B(p;oj [z0]-module basis O of wyproj. Note that the matrices
(@]

Igmj, ?Ifmj, ngj € Matg(Bgroj [0]) are pairwise commuting and, therefore, we see that
q((XG e (N (5 = (¢(Xy ), 27, 25 ). In particular, the above result
coincides with the result of Example 6.2.6.
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6 The (Projective) Border Basis Scheme

Finally, we explicitly describe the B(%roj—module structure of w;pro; by means of the

generic multiplication matrices with respect to . In particular, Corollary 6.3.8 will
turn out to be the crucial part of the proof of the main result of this chapter, namely
Theorem 6.4.4, which states that the set of all points of the projective O-border basis
scheme BY* that correspond to (i, j)-uniform zero-dimensional subschemes of Pg (W) is
constructible with respect to the Zariski topology.

Proposition 6.3.7. Let d,; = v —degy(t;) € Z be for all v € Z and i € {1,..., u},
let O = {t1,...,t,} C UH denote the image of the order ideal O in US, and let

o0 = {?{,...,f;} C w,proj be the dual B%mj[:no]-module basis of O. Moreover, we

UO
let Xq,...,X, € Mat,(By™) denote the images of the generic multiplication matri-
ces with respect to O in Mat,(Bp™), let v € Z, let cy(yys1,---,cu € BE™, and let

—d - —d —%
— Y+1,H(y)+15% y+1,1 .
$ = CH(y)+17Tg CH(y)+1 T+ cu by € (Wypres)—-

a) We have
_ —doy, H(y—1)+17* —dy, gk
'1"0'()0_(07"'703'170 tH('y—l)+1""7x0 t'u)
t
Ly (0,50, (y) 155 Cu) "
n Wypres and for every k € {1,...,n}, we have
— — (0 0 _d'yfwk+l,H('yfwk)+l** _d'yf'wk+l,u**
Ty -9 =(0,...,0,x tH (y—wi)+10 - -+ Lo t,)
—tr t
'Xk . (0""?07CH(’Y)+1?"'7CM) r
7;77/ w roj .
e
b) For every v € Z and every ¢’ € (B [xo, ..., xn]), we have
—/ _ L H (=) 1 =y 1 g
q 'QO—(O,...,O,%’O tH(’y—’y’)—‘rl?"‘?‘rO tﬂ)

=t =t
-q'(IM,Xlr,...,an) . (0,...,O,CH(W)_H,...,CM)M

m w proj -
UO

Proof. For every s € {1,...,n}, we denote Xy = (E,(j))lgk,ggu € Matu(Bgmj) as in Def-
initions 6.1.1 and 6.1.5 and we let {&£1,...,&,} denote the canonical B(poroj—module basis
of (Bgroj)ﬂ, If v > degyy(tu), we have (ngoj),y = {0} and the claims follow trivially.
Thus we suppose that v < degy (£,).

First we prove a). For every i € {1,...,u}, we have

—dyt1,i+1=—(y+1—degy(t) +1=—(y—degw(t)) = —dy,i
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6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

and get

—d —d
v+1,H(v)+1 7% Y+1,p
th 7))

zo P = o (CH(y)+1%g (m)+1 T euy

—d +1x —d +1o%
_ Y+1,H(v)+1 Y411
= CH(y)+1 xo t H(y)+1 + - Fepxg t#
— H()+17 —dy
= ety Eryer + oo+ Gug

—d H(y—=1)+17% Ay g%
:(07...707.'130 TR tH(’y 1)+1,...,.'1:0’y#tu)

'I#' (0,...,O,CH(,Y)_H,...,C#)t

in wyproj. For the second part, let k € {1,...,n}. Moreover, let i € {H(y) +1,..., u},
(@]
te{l,...,u}, and 5 = degy (t¢) + wg. Then Proposition 6.2.7 yields

Tk - 1) (Fe) = T; (Tule)
4 (

— B (@, D 5,0, ,0) £ir)
0 if degyy () > 7
=\ w(k) dy -
Eio wg " if degy (ti) <7
0 if degyy (t¢) < degyy(t;) — wy
—(k
Exg™if degyy (tr) > degyy (t:) — wi

Assume that there is an £ € {1,...,u} such that v +1 —wy, < degy (t7) < degyy (t;) —

and such that ég) # 0. Then we have y+1 < degyy (t7) +wi < degy,(t;). We distinguish
two cases. If xt; = ¢, € O for some r € {1,...,u}, we get degy (t;) + wyp = degy, (t).

In particular, we see that r # i and thus Ef.;f) = J;r = 0 according to Definition 6.1.1
in this situation. If we have x3t; = bs € 0O for some index s € {1,...,v}, then
degyy (t;) > degyy (t7) +wy, = degyy (bs). Since G is the generic projective O- border ba51s

Definition 6.1.5 implies that g; = b —Zm(_dfgW(bs)) msTp mstm and thus we have §u7 =0
by Definition 6.1.1 in this situation. Since both cases yield a contradiction, there is no

such index £. In particular, this implies that

@k - &) () =

(k) d5

0 if degyy (te) < v —wp +1
&y it degyy(te) >y —wp + 1

Moreover, we have

—dyy1i +dyi = —(y + 1 —degy (t;)) + 75 — degy (t;)
= —v — 1+ degy (te) + wy

= _d'y—wk—i—l,Z-
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6 The (Projective) Border Basis Scheme

Altogether, we get

_ d i Tk
Tk ciry U

i
I

F(k) | —dy—wpt1,epx
= Z §ig Citg T
ZZH(’Y—’U]}C)-{-I

—d.,_ _ _ —d— — —tr
_ Ymwp L H(y—wg )+ 17 Y-wgt1p gk _otr
—(0,...,0,%0 tH('Y*wk)‘i’l"'.’xO tu)Xk 'CZSZ'
in Wy proj and thus
o
w
a7 — y+1,57%
Tg - = E Tk - G t;
i=H(v)+1
a d d t
_ Ty w1, H(y—wy )+ 1k TOly—wp+1,pgx pir tr
= E 0,...,0,z CH (y—wp) 410 - - - » T ty) Xy - a&
i=H(v)+1
—d.,_ _ _ —d~_ _
. Y—wg+1,H(y—wp ) +1 7% y—wp+1,u %
=(0,...,0,z, Eiy )41 - - -2 T &)

(0,0, (g gy s )T

in w proj .
UO

Next we prove b). Let 7/ € Z and ¢ € (B(%mj (@0, ..., xp])y. Forally' € Z withy' <0,
we have ¢' = 0 and b) holds trivially. We prove by induction on 4" € N that b) holds in
general. For 7/ = 0, it follows ¢’ € Bng and thus

_ —d . —dyi1
/ _ Y+1,H(v)+13* / Y+1,pu*
q P =qCH(v)+1Tg (41 T dcuzy ty
_d _ _d _
_ Y+1,H(y)+17* +1,pn7*
= (0, ,O,xo tH(,y)_;’_l,...,ajO v utu)
/ tr
“qL (0,0, CH(y) 415> Cu)
_d _ _d _
_ Y+1,H (y)+1 7% +1,u*
= (0,...,0,.’,5'0 tH(,y)_;’_l,...,ajO v utu)

-t ——t
(L, X X) (0,0, ¢y 1155 )™

in wyproj. For the induction step, let now ~" > 0. Then there exist a natural number
O .

s € N\ {0}, ¢},...,c, € By”, and t,....t}, € T:frl such that ¢/ = it} + -+ + ctl.

Then for every r € {1,...,s}, there are a k, € {0,...,n} and a u, € 'H‘ny/l such that

t = xp,up. Let wo =1, Xg =1, and for all r € {1,..., s}, let 4 = — v + wg, . Then
the induction hypothesis, the commutativity of the matrices Xy, ..., X, which follows
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6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

from Definition 6.1.1, together with a) yield

At o =Th, - () - )

=, - ((0,...,0,2, —dg 11, H(w)+1ka(%)+17 . ’xad‘errl,uZ;)
(dup) (T, ,xl,...,xff) (0,0, Cpp(ypas -5 )

(0,0, g TG e e, )41 - -+ T dﬁ"""’w“*”f;)
(X () (T, XY 20 - (04,0, s - -5 €)™)

—(0,...,0, %dv 541 H (7 WHtH(w AL T —dy L ")
(g, ) (T Xy oy X ) (0, 0, Chr(gyans - -+ €)™)

— (0,. Oxodw 51, H (3~ w)+1tH(77)+17_“’$ dy ’Y+1ut)

tr

: (crtT)(IM,Xlr, Y (0,0, s )

in Wy proj for all 7 € {1,...,s}. Thus it follows that
O

S
— -/
7= § crly

—d.,_ —.
_Z Aoyl 41, H (7 — w)+1tH(A/ Y 1s e T y v+1,ut;)
—tr
(chth)(Z,, Xl,...,Xn)-(0,...,o,cH(Wl,...,cM)tr)
—d —do . -
— (0 .0 , T Y= +1,H(y— ’Y)-HtH(’y SN T v v+1,ut:)

< 5t 5t T
: (Za;) (T, X7 5 0) (0,0, 0, ¢p7(y) 115 - C)
r=1

—d / —d ’ -
_ Y= +1,H(v—~")+1F y=v'+1,u7*
(0 0 L tH('Y ,Y)Jrl,...,l‘o t,u)

—tr
q(I,Lnle--'aXn)'(07"'>OvcH('y)+17"'7C/$)tr

in Wy proj and the claim follows for 7/ > 0. O
(@}

Corollary 6.3.8. Let dy; =~ — degy (t;) € Z be for ally € Z and all i € {1,..., pu},
let O = {t1,...,t,} C gOJ denote the image of the order ideal O in Ugoj, and let
o ={,... L) C Wypred be the dual B [x¢]-module basis of O. Moreover, we let Og
be the image of Oy = Up—y 9315(9 mn UprOJ, we let @S C Wypros be the dual objects of
the elements in Oy, and we let X1,...,X, € MatM(Bgroj) denote the images of the
generic multiplication matrices with respect to O in Mat#(B(p;Oj). Furthermore, we let
v,Y € Z and q € (B(poroj (€0, ..., Tn])y. Then the submatriz obtained from deleting the
first H(y — +') rows and the first H(y) columns of q(IH,?ir, . ,y:lr) € MatH(BprOJ)
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6 The (Projective) Border Basis Scheme

proj . ~x . _
represents the B~ -module homomorphism 77 : (ngroj)_7 — (ngroj)_7+7/, p=q-p,

~, with respect to the B(%mj-module
bases (Ogy)—~ of (ngmj),ﬂY and (Og) —y4 of (w U(%roj)_,y_i_,y/.

i.e. the multiplication by the element q € (UprOJ)

Proof. Let {&,...,&,} denote the canonical B?)mj module basis of (B(pgroj)“. Accord-
ing to Proposition 6.3.4, the sets (Op)_ = {z, ¢ T H(y) 410 - - ,xad”l’uf:} and
—% / —d ’, j

(Of) yiy = {zy i 1 H - (i1 2 T v “t;} are B *-module bases

of (wyjproi)—n and (Wy;proi) 4+, Tespectively. For all indices k € {H(y) + 1,...,p},
(9 (@]
Proposition 6.3.7 yields

Y

_  —d -
=7z, ’H—l,kt*

—d N —tr —tr
'HLH (=) 1 —y L tr
=(0,...,0,25 " T tH('yv)—l-l’ vz ) (T, Xy X)) - &

and the claim is a direct consequence of this. ]

Example 6.3.9. Consider the projective O-border basis scheme Elgoj and its universal
projective O-border basis family Bgmj — Ugmj of Example 6.2.9, again. Recall that
the polynomial rings P = Q[z1, x2] respectively P = Q|xq, x1, 23] were standard graded,
i.e. graded by W = (1,1) € Mat; o(Z) respectively W = (1,1,1) € Mat; 3(Z), that
the order ideal was of the form O = {t1,...,ts} = {1, afg,xl,xg,xlxg,x%,w%xg,xl} and
that O had the maxdegyy-border 00 = {br,...,bs} = {23, x123, 2323, 2370, 21}, We
also saw that the images X1, Xy € Mats(Bp) 1) of the generic multiplication matrices

X1, Xy € Matg(Qern, . . ., css]) with respect to O in Matg(BS™) were

0 0 0 ¢ 0 0 ¢4 ci5 0 0 0 €1 ¢2 0 ¢33 cia

0 0 0 €y 0 0 ¢y ©Co5 1 0 0 ¢ €y 0 ©Coz3 ©Cog

1 0 0 ¢ 0 0 ©C3g es5 0 O O ¢33 ¢32 0 ¢33 ¢34

T — 0 0 0 ¢ 0 0 ©cyq c45 T, — 0O 1 0 €4 ©¢42 0 C43 Cpa
! 0 1 0 ¢ 0 0 ©e54 G55 2 0 O 1 ¢ ¢ 0 ¢33 Csa

0 0 1 ¢ 0 O ©cgqa cCgs 0 O O ¢ c¢cg2 0 ©¢3 Ceu

0 0 0 o 1 0 ©¢g crs 0 0 0 ¢q1 ¢ 1 ¢713 T

0 0 0 ¢cgo 0 1 ©egy css 0 O O cgy ¢cgo 0 <Cg3 Csq

Moreover, ¢ = 22 + zowy € (B(%rOj [0, %1, %2])2 and we denoted the map H : Z — Z,
v #{k € {1,...,8} | deg(ty) <~} Let 7y : (wU(p;oj),g — (ngoj)o, @ — q - ¢ be the
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multiplication by g € (U5™)a. Then
—tr =5t
q(IS7 Xlra XQI)
= (X)) + s Xy

0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
| Mg Mog M3q+Ti2 Mg Mg + Co2 Mes +C32 Mya + Cs2  Mga + Ce2
| s mos m3s Mys5 M55 Me5 mrs mgs
mie  Mae m36 M6 M6 Me6 mre + 1 mge
M1y Moy M37+Cla M4y Ms7+ Coa Mer +C34 Myy + Csa Mgy + Coa

mig MMag M3g + Ci5 Mag Msg + Cos Mg + C35 Mg + Cs5 Mgy + Cos
€ Matg(B(p;oJ)
where we have

Mia = Ci2C42 + CiaCr2 + CisCsa + Cit,

M5 = Ci2 + Cid,

mi6 = Cis,

M7 = Cj2C44 + CigCr4 + Ci5C84 + C;3,

Mig = C;2C45 + CiyCrs + Ci5C85 + Cig

for all i € {1,...,8}. By Corollary 6.3.8, the submatrix

1 0
0 1
M7y + Cs2 Mgy + Co2 _
T/I\l75 ’r/fL85 S Mat7,2(Bng)
m7e + 1 mge
M77 + Cs4 Mgy + Coa

mrg + Cs5 Mg + Cos

of the matrix q(Ig,?tlr,?;r) obtained by deleting the first H(0) = 1 rows and the

first H(2) = 6 columns represents the homogeneous Bg,*-module homomorphism 7%

q
. proj e o2 F T3* ) . i

with respect to the By, '-module basis {z{zy ,z7 } C Wypro of (ngOJ)_Q and with re-

*

spect to the B(p;oj

Of (ngroj )0 .

s w o —% 2% o 95 —* o 3*
-module basis {Z2*, 71", zoz5 , voT122", xox] , r{TiT2 ,x5T] F C Wypres

6.4 Uniformity Conditions

In the final section, we use the results of the previous two sections in order to explicitly
describe the points of the projective O-border basis scheme IEB%TOJ that correspond to
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6 The (Projective) Border Basis Scheme

an (i, j)-uniform zero-dimensional subscheme. The main result of this chapter is The-
orem 6.4.4 and yields that for ¢, 5 € N, the set of all points of IB%%TOJ with the property
that the corresponding zero-dimensional subscheme is (i, j)-uniform is a constructible set
with respect to the Zariski topology.

In this section, we additionally assume that the base field K is algebraically closed.
This assumption is crucial since we want to apply Corollary 5.2.9 and thus need to
ensure that every zero-dimensional subscheme of Py (W) that corresponds to a point
of the projective O-border basis scheme IB%?;O‘] has a K-rational support. Since K is
assumed to be algebraically closed, this condition trivially holds. As before, we denote
the polynomial rings @ = Pleit, ..., ] and Q@ = Pleqy, ..., ¢u]. Then the polynomial
rings @ = 69762 Qy and Q = @WGZ @,y are non-negatively Z-graded by the matrices
V = (W |0) € Maty piuw(K) and V = (W | 0) € Maty ni14(K), respectively. Let Bo
denote the O-border basis scheme and let Bo — Up the universal O-border basis family.
As in Definition 6.1.5, we let IB%%TOJ C Bp denote the projective O-border basis scheme,

i.e. the subscheme of the O-border basis scheme defined by the ideal
15 = (e i € {1,..., 1}, € {1,...,v}, degyy (t:) > degyy (b)) € Bo,

we let G = {g1,...,90} C Q@ be the generic projective O-border prebasis, and we
let By™ — U5 be the universal projective O-border basis family.

First we prove that every point of the projective O-border scheme IB%Png induces a
zero-dimensional subscheme of Py (W) with the property that none of its points lies on
the hyperplane at infinity H™,

Proposition 6.4.1.  FEvery point a € ]B%mj induces a unique zero-dimensional sub-
scheme X C Pi(W) with K-rational support and with the property that X, N H™ = ().

Proof. Let a € IB%Ing. According to Proposition 6.1.4, there is a unique homogeneous
ideal I, C P that possesses a projective O-border basis corresponding to a. Since O # 0,
we have I, C P. Let X, C PK(W) be the subscheme that is scheme-theoretically de-
fined by the ideal I,. According to Corollary 4.1.16, P/I, is a one-dimensional ring and
thus X, C Pg (W) is a zero-dimensional subscheme. Moreover, the Propositions 4.1.7
and 5.1.8 yield that I, = I, :5 (x0)*, i.e. I, is saturated by Lemma 5.1.13, and that
XoNH™ = . Since the base field K is algebraically closed, X, trivially has a K-rational
support by Definition 5.1.5. In particular, since there is a one-to-one correspondence be-
tween the subschemes of Px (W) and the saturated homogeneous ideals of P by Proposi-
tion 5.1.2 and since border bases are unique by Proposition 4.1.7, the uniqueness of the

induced zero-dimensional subscheme X, C P (W) follows. O

In the Propositions 6.1.4 and 6.4.1, we have seen that every zero-dimensional subscheme
of Pr (W) with the property that it has a K-rational support and that none of its points
lies on the hyperplane at infinity H™ induces a unique point of BY* and vice versa.

The following definition is based on this one-to-one correspondence.
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Definition 6.4.2. a) For every homogeneous ideal I C P that possesses a projec-
tive O-border basis, the unique point a; € Blgoj corresponding to I as in Propo-
sition 6.1.4 is called the point on the projective O-border basis scheme
induced by I.

b) For every point a € E‘goj on the projective O-border basis scheme, the unique zero-

dimensional subscheme X, C Pg (W) corresponding to a as in Proposition 6.4.1 is
called the zero-dimensional scheme induced by a.

The remaining part of this section is used to characterize and study the points of the
projective O-border basis scheme IBB%YOJ that correspond to an (i, j)-uniform subscheme

of Px(W). Before we do that, we need the definition of constructible sets as, for instance,
in [CLOO05, Section I1.1.1].

Definition 6.4.3. Let (X, 7) be a Noetherian topologial space. A subset F C X is
called constructible if there is an m € N and closed subsets Uy, Vi,...,Upn, Vin € X
with respect to 7 such that E = |~ (U; \ V).

At last, we are now able to state and prove the main result of this chapter, namely that

the set of all points of IB%%rOj with the property that the corresponding zero-dimensional

subscheme of Px (W) is (4, j)-uniform is constructible with respect to the Zariski topology.

Theorem 6.4.4. (The (i,j)-Uniform Subschemes Form a Constructible Set)

Leti € {1,...,u— H(j)}, let j € {1,...,degy (tu) — 1}, let {y1,...,yu)} be a set
of further indeterminates, and let T = Klci1,...,CuvsY1,--- ,yH(j)}. Moreover, we let
Xi,..., X, € Mat,(K[ci1,...,cw]) denote the generic multiplication matrices with re-
spect to O and for every k € {1,...,H(j)}, we let Tp € Mat,,_q g (K[c11,- - -, cuw])
be the submatriz of tx(Z,, X{*, ..., X)) € Mat,(K[ci1, ..., cu]) obtained by deleting the
first row and the first H(j) columns. Moreover, let J C T be the ideal generated by
the set of all i-minors of the matriz y1T1 + -+ + yu ;) Ta() € Mat,_1 ,— ;) (T) and let

T = Spec(K[cit, ..oy s Y1, - -, Yr(j)] = A‘;(VJFHU) — AR = Spec(K|ci1, ..., cu]) be

the projection to the first uv components. Then for every point a € IB%Igoj, the following
conditions are equivalent.

i) We have a € mu, (Z(J)\ Z((y1, - Y 3))))-

ii) The zero-dimensional subscheme X, C Pr (W) induced by a, as defined in Defini-
tion 6.1.5, is not (i, j)-uniform.

In particular, the set of all points a € Bgoj with the property that the zero-dimensional

subscheme X, C P (W) induced by a is (i, j)-uniform is a constructible set with respect
to the Zariski topology.

Proof. Let a = (ai1,...,au) € Brgoj, let X, C Px (W) be the zero-dimensional scheme
induced by a as in Definition 6.1.5, and let J, € K[y1,...,Ym(;)] be the image of J under
the substitution K-algebra epimorphism 7' — K[y1, ..., yg(;)] defined by c;; + a;; for all
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ie{l,...,pyandj e {1,....v}. As Z((y1, ..., yn())) = ALY x {0} € AT we have
a € T (Z(J)\Z{y1,- -, Yu()))) if and only if there is a (c1, . . ., ch(j)) € Agb)\{o} and

(@11, -+ auusciy .- em)) € Z(J), where Ag(j) = Spec(K[y1,-.,Yu(j)l). Moreover,
(a11, -y @, c1,- - cp(y)) € Z(J) if and only if (c1,...,ch(;)) € Z(Ja). Altogether,
a € mu(Z(J)\ Z({y1, - - -, Yu(j)))) if and only if there is a (c1, ..., ch(;)) € Z2(Ja) \ {0}
By Proposition 6.4.1, the zero-dimensional scheme X, induced by a has a K-rational
support and satisfies X, N H™ = ). Hence Corollary 5.2.9 shows that the existence of
an element (c1,...,cp;)) € Z(Ja) \ {0} is equivalent for the subscheme X, C Pg (W) to
be not (7, j)-uniform. _

Thus it remains to prove that the set of all points a € IB%I();OJ with the property that the
zero-dimensional subscheme X, C Py (W) induced by a is (i, j)-uniform is a constructible
set with respect to the Zariski topology. The zero sets Z(J) and Z((y1,--.,Ym(j))) are
closed with respect to the Zariski topology. Thus the set Z(J) \ Z({y1,-..,yn())) is
a constructible set by Definition 6.4.3. The projection 7, is obviously a polynomial
map. Thus the image 7., (Z(J) \ Z({y1,---,Ym()))) is also a constructible set with
respect to the Zariski topology according to [Kem07, Algo. 1.6]. Moreover, the points
of the subscheme B)” C A* are given by Z(Z(Bp) + I5 ™) C Klein, ..., ¢, where
we let fgmj = (cij | degy (t;) > degy (b5), € {1,...,u},j € {1,...,v}), and also
form a constructible set by Definition 6.4.3 with respect to the Zariski topology. Since
(U1 \ V1) N (U2\ Vo) = (U1 NU2) \ (V1 U V3) for any arbitrary sets Uy, V1, Uz, and Vs,
the set Z(Z(Bo) + 15 ) N (Z(J)\ Z({y1, - - -, Ym(;)))) is also a constructible set with
respect to the Zariski topology by Definition 6.4.3 and the claim follows. O

Example 6.4.5. Consider the situation of Examples 6.1.2 and 6.1.6 over C, again.
Recall that Clxg, 21, z2] was standard graded, i.e. graded by W = (1,1,1) € Mat; 3(Z),
that the order ideal in T? was O = {t1,...,ts} = {1, ¥, 1, 129, 2%, ¥}, with the border
00 = {by,...,bs} = {23, 2123 2229, 2329, 23}, Let {y1,...,y5} be a set of further
indeterminates, let T' = Cleyy, - . ., C65, Y1, - - -, Y5}, and let Xp, Xy € Matg(Cler, - - -, cos))
denote the generic multiplication matrices with respect to O. As in Example 6.1.2,

0 0 0 ci3 0 eci5 0 ci1 0 ci2 c13 cus
0 0 0 ca3 0 co5 1 co1 0 coo2 co3 co4
X = 1 0 0 c33 0 c35 X, = 0 c31 0 c32 ¢33 c34
01 0 cai3 0 eg5]’ 0 cin 1 ca2 ca3 cyy
0 0 1 c53 0 o35 0 cs1 0 cs52 c53 54
0 0 0 cg3 1 cq5 0 c1 0 ce2 c63 coa

Let fi,..., foa € Clc1q,. .., ce5] be the polynomials of Example 6.1.2 with the property
that I(Bo) = <f1,. . .,f24> and let a = (au, - ,a65) be with as1 = ago = —1, ags = 1,
and a;; = 0foralli € {1,...,6} and j € {1,...,5} such that (4, j) ¢ {(5,1),(6,2),(6,3)}.
Then a € Z({f1,..., fu}) = Z(Z(Bp)). For all i € {1,...,6} and j € {1,...,5}, we
have degyy (t;) > degyy (b;) if and only if (4, j) = (6,5). Thus we get a € Z(Z(Bo)+(ce1)),
i.e. a € BS® by Proposition 6.1.4.

Let H :Z — Z, v — #{k € {1,...,6} | degy (tx) < v} and for all k € {1,...,5},
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let T € Mats 1(Cleit, - .., cu]) be the submatrix of ¢ (Zs, X1*, X3*) obtained by deleting
the first row and the first H(2) = 5 columns. Then we have

0 0 C61
0 0 0
Ti=|(0], To=]ce3 |, Ts=]ce2 |,
0 1 C63
1 C65 C64
and
C62 €63
C63 1
Ta = | ca3ce1 + ca3ce2 + C53¢63 + Co3C64 | » Ts = | casce3 + ce3ce5 + C53
C64 65
€25C61 + C45C62 + C55C63 + C4Ce5 C45C63 + 0%5 + ¢55

In particular, the ideal J C Q|c11, ..., ¢65,Y1,---,Ys| generated by the 1-minors of the
matrix 171 + - + y5Ts € Qlen, - -+, Co5, Y1, - - -, Ys) is of the form J = (hq,..., hs) with

h1 = ysce1 + Yace2 + Ysces,

ha = yaces + ys,

h3 = yace3 + y3ce2 + ya(cazce1 + ca3ce2 + C53¢63 + C63C64) + Ys(Ccasces + o365 + C53),
hy = y2 + y3¢63 + YyacCes + Y5Ce5,

hs = Y1 + Yaces + Y3cea + ya(cascer + cascer + 5563 + Coaces) + Ys(casos + g5 + C55).

Let ¢ denote the substitution C-algebra epimorphism defined by ¢;; + a;; for all in-
dices i € {1,...,6} and j € {1,...,5} and let w3 : AP — A3 where we have
A¥ = Spec(Clett, - - -, o5, Y1, - - -, y5]) and AY = Spec(Cleyy, . . ., cgs]) be the projection
to the first 30 components. Then ¢(hy) = —y4 + y5, ©(h2) = ya + ys5, ©(h3) = y2 — ys,
¢(he) = y2 +y3, p(hs) = y1, ie. Z(p(J)) = {0} € A% = Spec(Cly1, . .., ys]), and thus
a ¢ mo(Z(J)\ Z((y1,---,y5))). By Theorem 6.4.4, the zero-dimensional subscheme
X, C IP’(% induced by a is (1, 2)-uniform, i.e. X, is a Cayley-Bacharach scheme by Defini-
tion 5.2.1.

Corollary 6.4.6. Letic {1,...,n— H(j)} andlet j € {1,...,degy (t,) —1}. We let
{y1,- - ym()} be a set of further indeterminates and T = Klc11, ., Cuw, Y1, - - YH()]-
Let I = (cij | i e {1,...,u},5 € {1,..., v}, degy (t;) > degy (b)) € Klcin,-- .,
and let Xy,..., X, € Mat,(K[ci1,...,cw]) denote the generic multiplication matrices
with respect to O. For all k € {1,...,H(j)}, let Ty € Mat,_y g (K[ci1,- .-, cuw])
be the submatriz of tx(Z,, X", ..., X)) € Mat,(K[ci1, ..., cu]) obtained by deleting the
first row and the first H(j) columns. Moreover, let J C T be the ideal generated by the
set of all i-minors of the matriz y1T1 + - + Y ;) Ta) € Mat,—1 — ) (T)-

a) The zero set Z(Z(Bp) + fgmj +((J 1 (Y1, ymGy) N K[cu., oo cw])) €AY
where A}, = Spec(K[cy1, ..., cuw]) contains all points a € B> with the property

that the zero-dimensional scheme X, C P (W) induced by a is not (i, j)-uniform.
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6 The (Projective) Border Basis Scheme

b) If a € B‘goj and a ¢ Z ((J 7 (1, yn()) N Klew, ..., cw]), then the zero-

dimensional scheme X, C Pr (W) induced by a is (i, 7)-uniform.

c¢) If we have \/(J i (Y1, YrG)) N Klen, - ew] € 4/ Z(Bo) _|_’f(%r0j’ there is an

element a € Bgoj with the property that the zero-dimensional scheme X C Py (W)

induced by a is (i, j)-uniform.

Proof. First we prove a). According to Proposition 6.1.4, there is a canonical K-algebra
isomorphism BH ™ = Kleyi, . .., cw]/Z(Bo) + 15, Thus Z(Z(Bo)+ 15 ™) C A% where
A% = Spec(K|eit, . . -, ¢uw]) contains precisely the points of the projective O-border basis
scheme IB%%rOj. Consider the projection to the first v components 7, : A’;(V—FH@ ) AR
where AMKV—'—HO) = Spec(K[c11, - -+ Cuvs Y15 - - -, Yr(5)]). According to Theorem 6.4.4,

Z(I(Bo) +I5°) N muw (Z2()\ 2((1,- - ym(s))

is exactly the set of all points a € ]B%léroj on the projective O-border basis scheme such that

the zero-dimensional scheme X, C Px (W) induced by a is not (4, j)-uniform. By [CLOO07,
Thm. 4.§4.7|, we have

Z(NDN\ 2y, - yagy)) € 2 (Y1, -, Ymg)
and [CLO07, Thm. 4.§4.2| yields
T (Z( o (Y15 ym)) € 2 (T o (i, ymGy) O Kle, - el -
Altogether, it follows
Z(I(Bo) +I5°) N (Z()\ 2(W1- - ym (i)
cz <I<B(’)> + j’(%rOj) + ((J T <y1, ... 7yH(j)>) N K[CH, ... ,CW,])>

from [CLOO07, Thm. 4.§3.4].
Now we start to prove b). By [CLO07, Thm. 4.§3.4|, we have

Z(Z(Bo) + IZNNZ((J o (y1s- - ym) N Klerns - - cu))
= Z(I(Bo) + I8 + (J i1 (y1, -, yu()) N Kleits - ., cu))).

Therefore, claim a) yields that for every point a € IB%%mj such that

a ¢ Z(((J 1 (s ymG)) N Klew, - cuwl)),s

the induced zero-dimensional scheme X, C Py (W) is (4, j)-uniform.
For the proof of ¢), suppose that

\/((J 7 (1, ymg)) N Kleis . cw]) €\ I(Bo) + 15,
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Then we have

VIBO) + 5% + ((J i1 (s, y) N Ko, o)) € \/Z(Bo) + 5%
and the Ideal-Variety Correspondence [CLO07, Thm. 4.§2.7| yields
2 (Z(Bo) + 15™ + (1 i7 {1, ym))) O Klewt, - cw)) ) 2 Z(Z(Bo) + I5°Y).
By [CLO07, Thm. 4.§3.4|, we have
Z(Z(Bo) + I + ((J o7 (Y1, -, yn)) N Klen, - cuw)))
= 2(Z(Bo) + I5”) N Z((J 7 (.- yap) N Klen, - cu])
and this implies that
Z(Z(Bo) + 15N N Z((J o1 (y1,-- - ymp) N Klens, - ew]) 2 Z2(Z(Bo) + 15™).
Since this is equivalent to

Z(I(Bo) + I5°)\ Z((J i1 (W1, - ym(n) O Klenns - ) # 0,

claim c) follows from b). O

Example 6.4.7. Consider the situation of Example 6.4.5, again. Recall that we had
the order ideal O = {t1,...,ts} = {1,x2, 21,7179, 23,23}, had the maxdegy, -border
00 = {by,...,bs} = {22, 122, 23x9, 322, v{}. Moreover, a = (a1, ...,ag5) € Iﬁ%goj was
of the form as; = ag2 = —1, agg3 =1, and a;; =0 for all i € {1,...,6} and j € {1,...,5}
with (i,7) ¢ {(5,1),(6,2),(6,3)} and we had J = (h1,...,hs) C Clei1, ..., 65, Y1y - - -5 Ys)
with the polynomials

h1 = ysce1 + yYace2 + YsCe3,

ha = yaces + ys,

hs = yace3 + y3ce2 + Ya(c23ce1 + cazcez + c53¢63 + Co3C64) + Ys(Ca3ce3 + Ce3¢65 + C53),
hy = ya + y3¢63 + Yacea + Ys5Ces,

hs = y1 + yaces + Ysces + ya(cascer + casoa + C55¢63 + Coaces) + Ys(Casces + Cas + Cs5).

The ideal (J :¢ey,,....co5,01,my5] (Y155 ¥5))NClen, ..., co5] € Clent, - . ., cos) is a principal
ideal generated by the polynomial p = c43¢61¢25 + Cig — Ca3cZ; — ca3ce1Co2 — 2C62Ce3 + C2o.
Since p(a) = 4 # 0, Corollary 6.4.6 implies the existence of a point a € Bgoj such that
the zero-dimensional subscheme X, C ]P% induced by a is a Cayley-Bacharach scheme.
Note that this result coincides with Example 6.4.5.

Remark 6.4.8. Every algebraically closed field, and thus also K, is perfect. Therefore,
we can compute radical ideals in polynomial rings over K, cf. [KL91] if char(K) = 0
and [Mat01, Kem02| if char(K) > 0. Moreover, we can compute sums of ideals, colon
ideals, respectively elimination ideals, with standard Grobner basis techniques, cf. [KR0O,
Rem. 3.2.1, Prop. 3.2.15, respectively Thm. 3.4.5|. Altogether, we see that condition c)
of Theorem 6.4.4 can be checked algorithmically.
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7 Conclusion and Outlook

In this thesis, we have generalized and applied border bases in various ways.

Before this thesis, the theory of border basis was restricted to zero-dimensional ideals
in polynomial rings. In Chapter 2, we extended the theory to finitely generated modules
over polynomial rings. Our contribution in the Sections 2.1 to 2.5 was to generalize all the
well-known definitions, concepts, characterizations, and algorithms that hold for border
bases of zero-dimensional ideals in a polynomial ring to border bases of submodules of free
modules of finite rank over a polynomial ring with finite codimension. In Section 2.6,
we established generalized border bases of submodules of arbitrary finitely generated
modules over a polynomial ring with finite codimension. By a process of lifting these
generalized border bases to the free setting, we were able to characterize and, under
certain circumstances, also compute generalized border bases in this general setting.
As a byproduct, we saw that this new border bases theory was applicable for subideal
border bases and immediately yielded many new characterizations and an algorithm
for their computation that uses linear algebra techniques. By now there has only been
one characterization available for subideal border bases and the only algorithm for the
computation of subideal border bases has needed much more effort than ours.

After the theoretical introduction of border bases for modules in this thesis, one could
look for applications different from subideal border bases. Another possibility of further
research could be to take a closer look at numerical aspects of these border bases. Just as
it was done, for instance, in [Lim14| for border bases and in [KP11] for subideal border
bases, (generalized) border bases might be a good tool to model real word applications in
a data-driven setting. A natural question to ask is whether we can apply and make use
of the newly introduced concepts and the more general bases in such numerical settings.

In Chapter 3, we proved Schreyer’s Theorem for border bases in free modules of finite
rank over polynomial rings. To this end, we generalized the results of [KK14| to the
module setting. As a byproduct, we found a totally new proof of the characterization of
border bases via liftings of border syzygies. This proof is quite remarkable since it does
not depend on the characterization of border bases via commuting matrices but it only
depends on the characterizations of border bases via the special generation property and
via rewrite rules.

Many of the nice properties of border bases do use or are related to the characterization
of border bases via commuting matrices. Obviously, this theorem cannot be generalized
to a non-commutative setting. The study of border bases in a non-commutative setting
started with [BTBQMOO]: the authors of that paper introduced border bases in free
associative algebras over a field and used them to compute Grébner bases by FGLM
techniques in a non-commutative setting. But the authors of that paper neither further
developed the basic concepts of border bases nor characterized border bases in a non-
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commutative setting. By proving a non-commutative version of the characterizations via
the special generation property and via rewrite rules, our new proof of the characteriza-
tion of border bases via liftings of border syzygies might yield a possible way to develop
a general border basis theory in a non-commutative setting.

Whereas the first two chapters of this thesis dealt with border bases in a module setting,
the remaining part of this thesis was then dedicated to the effect of homogenization to
border bases in a polynomial ring and to applications of such homogenizations of border
bases. In Chapter 4, we introduced the notion of projective border bases of homogeneous
ideals in a polynomial ring and we showed that projective border bases are related to
specific border bases. Then we studied the multiplicative structure of a polynomial ring
modulo a projective border basis and of its canonical module in detail. In particular,
we described these multiplicative structures explicitly by means of formal multiplication
matrices. These explicit descriptions turned out to be very useful in Chapter 5 for the
study of zero-dimensional closed subschemes of weighted projective spaces. In Chap-
ter 6, we introduced the projective O-border basis scheme B%roj as a subscheme of the
O-border basis scheme Bp. Then we showed that the points of Egoj are in one-to-one
correspondence to specific zero-dimensional closed subschemes of a weighted projective
space and studied the set of points on B, that correspond to (i, j)-uniform schemes.
Besides the introduction of projective border bases and the projective O-border basis
scheme Blgoj, the main contribution in the Chapters 4 to 6 are the characterizations of
(1, 7)-uniform zero-dimensional subschemes of weighted projective spaces if the defining
ideals of these subschemes possess a projective border basis. We can prove these char-
acterizations for arbitrary 7,7 € N in weighted projective spaces over arbitrary fields
whereas by now the only ways to characterize such (4, j)-uniform subschemes were re-
stricted to special base fields, e.g. to algebraically closed fields, reduced subschemes, or
to the standard grading. If the base field is algebraically closed or if the given zero-
dimensional closed subscheme is reduced, our characterizations even yielded algorithms
that allow us to check whether the subscheme is (7, j)-uniform or not. Furthermore, we
proved that the set of all points on the projective O-border basis scheme B,* that cor-
respond to (i, j)-uniform schemes is constructible with respect to the Zariski topology.
An obvious way to do further research in this area is to study the constructible set of all
points on the projective O-border basis scheme IB%?;OJ that correspond to (4, 7)-uniform
schemes. One could ask, for instance, whether this constructible set has any special
algebraic or geometric properties. Another path could be to restrict oneself to sub-
schemes that satisfy certain (7, j)-uniformity conditions, e.g. Cayley-Bacharach schemes
or schemes in uniform position. Instead of regarding (i, j)-uniform schemes in weighted
projective spaces, one could also transform the notion of (4, j)-uniform schemes to the
affine setting. This could be done by carefully reformulating the definitions and results
of this thesis. For instance, the defintion of (4, j)-uniform subschemes uses Hilbert func-
tions of projective coordinate rings. By replacing these Hilbert functions by affine Hilbert
functions, cf. [KRO05, Section 5.6], of the coordinate rings of subschemes of affine spaces,
one could define and study (7, j)-uniform schemes in the affine setting.
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Notation

The following list gives a brief overview of most of the notation used in this thesis.

Sets and Maps

H a ®B o N

=

char(K)

ACB
ACB
A\ B
#A

A— B
A—»B
A= B
Yoy

id 4

set of natural numbers {0,1,2,...}
set of integers

set of rational numbers

set of real numbers

set of complex numbers

finite field with ¢ elements
arbitrary field

algebraic closure of a field K

characteristic of a field K

set A is a (not necessarily proper) subset of set B
set A is a proper subset of set B

set difference of A and B

number of elements of a finite set A

injective map A — B

surjective map A — B

bijective map A — B

composition of two maps ¢: A — Band ¢ : B — C
identity map on a set A

dual of a linear map ¢
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Notation

ker(p)
im(p)

olu

kernel of a homomorphism ¢
image of a map ¢

restriction of p: A > BtoU C A

Elements, Gradings, and Matrices

*

p

p

deg(p)
deg,, (p)

degyy (p)

DFw (p)

hom

deh

p(X, ..., Xn)

Matk(K)

Matk’g(f(j

Atr
(A[B)

rk(.A)

Kronecker delta, i.e. §;; =1if ¢ = j and d;; = 0 else
dual element of p

residue class of p

degree of a polynomial p € P\ {0}
x;-degree of a polynomial p € P\ {0}

degree of a polynomial p € P\ {0} with respect to the grad-
ing given by a matrix W

degree form of a polynomial p € P\ {0} with respect to the
grading given by a matrix W

homogenization of an element p
dehomogenization of an element p

evaluation of a polynomial p € P at (&1,...,4&,), i.e. apply-
ing the substitution xp — X

set of all k x k-matrices over K
set of all £ x f-matrices over K
identity matrix of size k x k
transposed matrix of a matrix A

€ Maty ¢4m (), concatenation of a matrix A € Maty, ¢(K)
and a matrix B € Maty, ,,, (K)

rank of a matrix A

trace(A) = a1 + - -+ + agp  trace of a square matrix A = (a;5)1<i j<k
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Vector Spaces, Modules, and Ideals

dim (V)
codimp (V, W)
(O)k

rkr(M)

<U1,...,vk>

My & Mo
IM

N:p M

N iy I

VI
Syzp(g1s---,9v)
MP

e

WR

Ihom

Ideh

dimension of a K-vector space V'
codimension of a K-vector subspace VC W
K-vector subspace generated by O

rank of a free R-module M

submodule generated by {vi,..., v}

direct sum of two groups or modules

submodule of module M generated by products of the form
pm where p e I, m € M,

C P, colon ideal of a module N by a module M

C M, saturation of a module N by an ideal I in M
radical of an ideal

first syzygy module of (¢g1,...,9,)

localization of a module M at the prime ideal p
dual module of a module M

canonical module of R

homogenization of an ideal I

dehomogenization of an ideal I

= D,ez(M(Y))y = D,ez My4y, Z-graded module ob-
tained from the Z-graded module M = @ ., M., by shifting

YEZ
degrees by v € Z

set of all homogeneous elements of degree v of a subset S of
a graded module M = @%Z M,

= @1,_:1 _ oo Sy, set of all homogeneous elements of degree

less than v € Z of a subset S of a Z-graded module M

= 69?:7 Sy, set of all homogeneous elements of degree
greater than or equal to v € Z of a subset S of a Z-graded
module M
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HF

AHF

v +— dimg (M,,), Hilbert function of a Z-graded module M

v+ HF () — HF p (v — 1), Castelnuovo function of HF s
of a Z-graded module M

Polynomials, Vectors, and Term Orderings

o
DegRevLex
0rd(V)

o Pos

LC,(p)

LM, (p)

LT, (I)

LT,{I}

NF, 1 (p)

PT‘
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term ordering
degree-reverse-lexicographic term ordering
term ordering associated to a matrix V'

term ordering “o first, then position”

polynomial ring over K in the indeterminates xi,..., %y,
n € N\ {0}

term in P, aq,...,a, €N

logarithm of a term t = z{* - - - 24", log(t) = (ai,...,an)

monoid of all terms in P
monomial in P, ce K,t e T"

€ T", leading term of a polynomial p € P\ {0} with respect
to a term ordering o

€ K, leading coefficient of a polynomial p € P\ {0} with
respect to a term ordering o

= LC,(T) - LT,(t), leading monomial of p € P\ {0} with
respect to a term ordering o

= (LT,(p) | p € P\ {0}) C P, leading term ideal of an ideal
I C P with respect to a term ordering o

={LT,(p) | p € P\ {0}} C T", monoideal of leading terms
of an ideal I C P with respect to a term ordering o

€ (O,(I))k, normal formal of a polynomial p € P with
respect to a term ordering ¢ and an ideal I C P

free P-module with canonical basis {e1,...,e.}, r € N\ {0}



teg term in P, t € T" ke {l,...,r}

T (e1,...,ep) monoid of all terms in P"
ctey, monomial in P", ce K, t € T" ke {l,...,r}
LT, (v) € T(ey,...,e), leading term of a vector v € P" \ {0} with

respect to a term ordering o

LC,(v) € K, leading coefficient of a vector v € P"\ {0} with respect
to a term ordering o

LM, (v) = LC,(v) - LT, (v), leading monomial of v € P"\ {0} with
respect to a term ordering o

LT,(U) = (LT,;(v) | v € P"\ {0}) C P", leading term module of a
P-submodule U C P" with respect to a term ordering o

LT, {U} ={LT,(v) |ve P"\{0}} C T"(ey,...,er), monomodule of
leading terms of a P-submodule U C P" with respect to a
term ordering o

O0,(U) = T"(e1,...,er) \ LT;{U}, order ideal of a P-submodule
U C P" with respect to a term ordering o

NF, 7 (v) € (O,(U)) K, normal formal of a vector v € P" with respect
to a term ordering ¢ and a P-submodule U C P"

(Projective) Border Bases

O ={t,....tu} order ideal in T"

00 = {by,...,b,} border of an order ideal O in T™

O = {tieas, -, tuea,} order ideal in T"(eq, ..., e;)

00 = {bieg,,...,byeg,}  border of an order ideal O in T"(e1,...,e;)

O% = {t1may, .., tyMa, } (generalized) order ideal in p(T"(e1, ..., e,)) with respect to
@:P"—> M= (my,...,my), e —m;

00% = {bimg,,...,bymg,} border of (generalized) order ideal in p(T"(e1,...,e,)) with

respect to ¢ : P" — M = (mq,...,my,), ; — m;
oFO k*™™ border of an order ideal O
kO k*™™ border closure of an order ideal ©@
G={g91,...,9,} CP O-border prebasis, g; = bj — > % a;;t; where a;j € K
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G:{glr"?gll}gPT
G={g1,-..,9v} C Plxo
indp(v)

NRg(v) € (O)k

NFou(v) € (O)k

)

A
X, € Mat,,(K)

AP e Mat,, (K[xo))

Ayj
dy

H:Z—1Z
AH:Z 1T

S(gi, 95)
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O-border prebasis, g; = bjeﬁj — Zle ajjtieqn; where a;; € K

(generalized) O-border prebasis, g}p = bjmpg, =Y M agitima,
where a;; € K with respect to ¢ : P" — M = (mq,...,m,),
€; —r m;

projective O-border prebasis, g; = b; — Y ! a;jt; where we
have a;; € K|z

index of v with respect to an order ideal O

normal remainder of v with respect to an O-border preba-
sis G

normal formal of v with respect to an order ideal O and a
P-submodule U

border form of a vector v € P"\ {0} with respect to an order
ideal O in T"(eq,...,e,)

border form module of a P-submodule U C P" with respect
to an order ideal O in T"(eq, ..., e;)

reduction step using g;

rewrite relation associated to G
equivalence relation generated by <,

neighbor syzygy of the neighbors b;ep, and bjes; with respect
to O

neighbor lifting of the neighbors b;eg, and bjes, with respect
to O

set of all neighbor liftings with respect to O

k*® formal multiplication matrix with respect to an O-border
prebasis

k'™ formal projective multiplication matrix with respect to
a projective O-border prebasis

= degyy (bj) — degyy (ti)

=7 — degy (i), v € Z

v #k e {1, ) | degy (tr) <7}

v+ H(y) — H(y — 1), first difference function of H

S-vector of g; and g;



(Projective) Border Basis Schemes

Bo C A%/
Bo
Bo — Up

{611, e >Cuu}

X € Matu(K[cij])

Bl C Bo
proj
By

proj proj
By — Uy

AP e Mat,, (Ko, ¢ij])

O-border basis scheme
cordinate ring of Bp

universal O-border basis family

:{Cij|’i€{1,...,u},j€{1,...,y}}

k' generic multiplication matrix with respect to an order

ideal O in T™

projective O-border basis scheme
. . proj
cordinate ring of B,

universal projective O-border basis family

k'™ generic projective multiplication matrix with respect to

an order ideal @ in T"

Algebraic Geometry

A

n-dimensional affine space over K

n-dimensional projective space over K

weighted projective space over K with respect to the ma-

trix W

closed point of the scheme X
closed subscheme of the scheme X
spectrum of a ring R

homogeneous spectrum of a Z-graded ring R

(saturated) defining ideal of a subscheme X C Py (W)

(saturated) defining ideal of a subscheme Y C X

v+ dimg ((P/Z1(X)),), Hilbert function of a closed sub-

scheme X C Py (W)
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Notation

AHF
deg(X)

oxX

axx (Y)

Zr(f) €A}

ZL(I) € A}
Z(f) C A%
Z(I) C AL
(S)C P

H™ = Z* (o)

I+(S) Q P[xo]

Miscellaneous

1 =1+1
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v = HF 3 (y) —HF 3y (7—1), Castelnuovo function of a closed

subscheme X C Py (W)

= max{HFx(vy) | v € Z} for a non-empty closed zero-
dimensional subscheme X C Px (W)

= max{y € Z | HFx(v) < deg(X)} for a non-empty closed
zero-dimensional subscheme X C Py (W)

=min{y € Z | (I (Y)), # 0}, initial degree of a non-empty

subscheme Y of a zero-dimensional subscheme X C Py (W)

set of zeros of a polynomial f € P in an extension field
KCL

set of zeros of an ideal I C P in an extension field K C L

set of zeros of a polynomial f € P in the algebraic closure K

set of zeros of an ideal I C P in the algebraic closure K

vanishing ideal of a subset of affine points S in the affine
space A’

set consisting of all projective zeros of a homogeneous poly-
nomial f € P[xo] in an extension field K C L

set of projective zeros of a homogeneous ideal I C P[zy] in
an extension field K C L

set consisting of all projective zeros of a homogeneous poly-
nomial f € P[zg] in the algebraic closure K

set of projective zeros of a homogeneous ideal I C P[xg] in
the algebraic closure K

hyperplane at infinity

homogeneous vanishing ideal of a subset of projective points S

in the projective space Py (W)

assignment in an algorithm
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