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Abstract

Border bases of zero-dimensional ideals have turned out to be a very useful generalization
of Gröbner bases in recent research in computational commutative algebra. Though
border bases share many properties with Gröbner bases, they are still limited to zero-
dimensional ideals in polynomial rings. This doctoral thesis is devoted to generalize
border bases to the module setting and to apply them in various ways.
In the first part of this thesis, we generalize border bases of zero-dimensional ideals in a

polynomial ring P = K[x1, . . . , xn], where K denotes a field, to border bases of submod-
ules of free P -modules of finite rank with finite K-codimension. In particular, we prove
their existence and uniqueness, characterize them in various ways, and give an algorithm
for their computation that is based on linear algebra techniques. Then we introduce
generalized border bases of submodules of arbitrary finitely generated P -modules with
finite K-codimension. We characterize these generalized border bases by lifting them
to border bases in free modules and show that we can compute them under certain cir-
cumstances. As an application of generalized border bases, we are able to characterize
subideal border bases in various new ways and give an algorithm for their computation
that is based on linear algebra techniques instead of Gröbner bases techniques. Moreover,
we prove Schreyer’s Theorem for border bases of submodules of free P -modules of finite
rank with finite K-codimension, i.e. we prove that the set of all neighbor liftings of such
a border basis forms a Gröbner basis of the first syzygy module of the border basis with
respect to specific term orderings and we explicitly construct such a term ordering. As a
byproduct, we deduce a new, alternative proof of the characterization of border bases via
liftings of border syzygies which—in contrast to all previous proofs—does not depend on
the characterization of border bases via commuting matrices.
In the second part of this thesis, we study the effect of homogenization to border bases

of zero-dimensional ideals in P and applications of border bases in algebraic geometry.
This yields the new concept of projective border bases of homogeneous one-dimensional
ideals in P [x0], where x0 denotes the homogenizing indeterminate. We prove that deho-
mogenization and homogenization yield a one-to-one correspondence between projective
border bases in P [x0] and border bases in P of a specific shape. Then we explicitly de-
scribe the multiplicative structure of both a residue class ring R of P [x0] modulo a pro-
jective border basis and of the canonical module of R by means of formal multiplication
matrices that only depend on the projective border basis. After that, we turn our atten-
tion to algebraic geometry and show that there is a one-to-one correspondence between
projective border bases and zero-dimensional closed subschemes of weighted projective
spaces that have no point on the hyperplane at infinity. This correspondence allows us to
study schemes that satisfy certain uniformity conditions, e.g. Cayley-Bacharach schemes
or schemes in uniform position, by means of the multiplicative structure of their coordi-
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Abstract

nate ring and the corresponding canonical module. In particular, this approach allows us
to characterize (i, j)-uniform zero-dimensional closed subschemes of weighted projective
spaces that have a K-rational support in various ways without assuming that the base
field K is algebraically closed or that the subscheme is reduced. If the base field K is
algebraically closed or if the subscheme is reduced, we show that these characterizations
immediately yield algorithms that allow us to check whether a given zero-dimensional
closed subscheme is (i, j)-uniform or not. Finally, we introduce the projective O-border
basis scheme Bproj

O with respect to a given order ideal O as a specific subscheme of the
O-border basis scheme BO. We show that the projective O-border basis scheme Bproj

O
parametrizes all zero-dimensional closed subschemes of a weighted projective space whose
defining ideals possess a projective O-border basis. Applying the above methods in this
general setting and assuming that the base field K is algebraically closed, we are able
to prove that the set of all closed points of Bproj

O that correspond to an (i, j)-uniform
subscheme is a constructive set with respect to the Zariski topology.
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Zusammenfassung

In der jüngeren Forschung in der berechnenden kommutativen Algebra haben sich Rand-
basen von null-dimensionalen Idealen als eine nützliche Verallgemeinerung von Gröbner-
basen herausgestellt. Obwohl Randbasen viele Eigenschaften mit Gröbnerbasen gemein
haben, sind sie immer noch auf das Studium null-dimensionaler Ideale in Polynomringen
limitiert. Die folgende Doktorarbeit dient dazu, eine Theorie der Randbasen in endlich er-
zeugten Moduln über Polynomringen einzuführen und Randbasen auf verschiedene Arten
anzuwenden.
Im ersten Teil dieser Arbeit verallgemeinern wir Randbasen von null-dimensional Idea-

len in einem Polynomring P = K[x1, . . . , xn], wobei K einen Körper bezeichne, zu
Randbasen von Untermoduln von freien P -Moduln von endlichem Rang mit endlicher
K-Kodimension. Dabei beweisen wir insbesondere deren Existenz und Eindeutigkeit,
charakterisieren sie auf vielfältige Art und Weise und geben einen auf linearer Algebra
basierenden Algorithmus zu ihrer Berechnung an. Im Anschluss daran führen wir verallge-
meinerte Randbasen von Untermoduln von beliebigen endlich erzeugten P -Moduln mit
endlicher K-Kodimension ein. Diese verallgemeinerten Randbasen charakterisieren wir
dann, indem wir Sie auf Randbasen in freien P -Moduln zurückführen. Unter bestimmten
Voraussetzungen können wir damit verallgemeinerte Randbasen berechnen. Als eine An-
wendung von verallgemeinerten Randbasen finden wir einige neue Charakterisierungen
für Unterideal-Randbasen und können einen Algorithmus zu deren Berechnung angeben,
der auf linearer Algebra statt einer Gröbnerbasis-Berechnung beruht. Des Weiteren be-
weisen wir den Satz von Schreyer für Randbasen von Untermoduln von freien P -Moduln
von endlichem Rang mit endlicher K-Kodimension, d. h. wir zeigen dass die Menge al-
ler Nachbarliftungen einer solchen Randbasis bezüglich spezieller Termordnungen eine
Gröbnerbasis des ersten Syzygienmoduls der Randbasis bildet und wir konstruieren ei-
ne solche Termordnung explizit. Als Nebenprodukt des Beweises zum Satz von Schreyer
erhalten wir einen neuen, alternativen Beweis für die Charakterisierung von Randbasen
mittels Liftungen von Randsyzygien, der im Gegensatz zu allen bisherigen Beweisen nicht
auf der Charakterisierung von Randbasen mittels kommutierender Matrizen beruht.
Im zweiten Teil dieser Arbeit studieren wir den Effekt von Homogenisierungen auf

Randbasen von null-dimensionalen Idealen in P und Anwendungen von Randbasen in
der algebraischen Geometrie. Dies führt zur Definition von projektiven Randbasen von
homogenen ein-dimensionalen Idealen in P [x0], wobei hier x0 die Homogenisierungs-
unbestimmte bezeichne. Wir beweisen, dass die projektiven Randbasen in P [x0] durch
Dehomogenisierung und Homogenisierung eineindeutig den Randbasen in P einer spezi-
ellen Form entsprechen. Weiter beschreiben wir die multiplikative Struktur sowohl eines
Restklassenrings R von P [x0] modulo einer projektiven Randbasis als auch des kano-
nischen Moduls von R mithilfe von formalen Multiplikationsmatrizen, welche nur von
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Zusammenfassung

der projektiven Randbasis abhängen. Anschließend wenden wir uns der algebraischen
Geometrie zu und beweisen, dass projektive Randbasen eineindeutig null-dimensionalen
abgeschlossenen Unterschemata eines gewichteten projektiven Raumes entsprechen, wel-
che keinen Punkt der unendlich fernen Hyperebene enthalten. Durch diese Beziehung
können wir das Studium gewisser uniformer Schemata, z. B. Cayley-Bacharach Schema-
ta oder Schemata in uniformer Lage, auf das Studium der multiplikativen Struktur des
zugehörigen Koordinatenrings und dessen kanonischen Moduls zurückführen. Dieser An-
satz ermöglicht es uns, (i, j)-uniforme null-dimensionale abgeschlossene Unterschemata
von gewichteten projektiven Räumen mit K-rationalem Träger auf verschiedene Arten
zu charakterisieren, ohne dabei anzunehmen, dass der Grundkörper K algebraisch ab-
geschlossen oder das Unterschema reduziert sei. Falls der Grundkörper algebraisch ab-
geschlossen oder das Unterschema reduziert ist, liefern diese Charakterisierungen direkt
einen Algorithmus zum Test auf (i, j)-Uniformität. Schließlich führen wir noch das pro-
jektive O-Randbasisschema Bproj

O bezüglich eines gegebenen Ordnungsideals O als ein
spezielles Unterschema des O-Randbasisschemas BO ein. Wir zeigen, dass Bproj

O alle null-
dimensionalen abgeschlossenen Unterschemata eines gewichteten projektiven Raumes pa-
rametrisiert, deren definierendes Ideal eine projektive O-Randbasis besitzen. Indem wir
die obigen Methoden auf diese allgemeine Situation anwenden und annehmen, dass der
Grundkörper K algebraisch abgeschlossen ist, können wir beweisen, dass die Menge al-
ler abgeschlossenen Punkte von Bproj

O , die einem (i, j)-uniformen Schema entsprechen,
bezüglich der Zariski-Topologie eine konstruierbare Menge bildet.
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1 Introduction

Since the introduction of Buchberger’s Algorithm in 1965, cf. [Buc65] and [Buc06], Gröb-
ner bases have become a standard tool in computational algebra. Though their compu-
tation is quite hard in general, namely it is exponential space hard as it was shown in
[MM82], Gröbner bases allow us to constructively solve many problems both theoreti-
cally and computationally, cf., for instance, [KR00] and [KR05]. Unfortunately, even if
we restrict ourselves to the class of zero-dimensional ideals, Gröbner bases do not be-
have very well in an approximate setting as described in [Ste04, Subsect. 8.4.4]. This
drawback has led to a more general notion of bases, e.g. to the notion of border bases
of zero-dimensional ideals. Though border bases behave more nicely in an approximate
setting, they can only be applied to zero-dimensional ideals. Nevertheless, border bases
turned out to be a good choice and much effort is put in the study of them. The theory
of border bases can be divided into two parts. First one is particularly interested in their
numerical behaviour. This is due to the fact that we can use them to approximately
model a physical system that is described by a finite amount of data and thus yields a
zero-dimensional ideal in a suitable polynomial ring. We refer, for instance, to [Ste04],
[Lim14], [HKPP09], and [KPR10] for such numerical analyses and applications and draw
the attention in this thesis to the second part, namely the algebraic behaviour of border
bases and their applications in the exact setting.
The study of border bases of zero-dimensional ideals has brought to light that they

share many of the nice properties Gröbner bases have. E.g. there is an explicit division
algorithm by [KKR03, Subsext. 4.3.2], they share many characterizations according to
[KK05], and they can be computed according to [KK06]. But border bases do not only
share many properties of Gröbner bases. Some theorems are true for border bases but
have no analogous version in the theory of Gröbner bases. For us, the main advantage
of border bases is a characterization which has no analogon in the theory of Gröbner
bases, namely the characterization via commuting multiplication matrices, which was in-
troduced in [Mou99, Thm. 3.1]. This theorem states that we only have to check whether
the matrices that represent the multiplication by an indeterminate are pairwise commut-
ing. Though there were many advances in the theory of border bases, many well-known
results from Gröbner bases lack a border basis version, e.g. the theory of border bases
is not applicable to modules and there is no analogon of Schreyer’s Theorem for border
bases, cf. [Sch80] or [KR00, Prop. 3.1.4] for the Gröbner bases version.
The first part of this thesis, namely the Chapters 2 and 3, solve these disparities be-

tween Gröbner and border bases. In the second part, namely in Chapter 4, we study
the behaviour of border bases under homogenization. During the last part of this thesis,
which consists of the Chapters 5 and 6, we apply the previous results to zero-dimensional
closed subschemes of weighted projective spaces in order to study uniformity conditions.
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1 Introduction

We now describe the content of each chapter in detail. To this end, we let K be an
arbitrary field, P = K[x1, . . . , xn] be the polynomial ring over K in n ∈ N \ {0} indeter-
minates, and we denote the set of all terms in P by Tn.
In Chapter 2, we develop a theory of border bases for finitely generated P -modules. To

achieve this goal, we introduce border bases of P -submodules of finite K-codimension in
the free P -module P r where we have r ∈ N \ {0}. Let {e1, . . . , er} denote the canonical
P -module basis of P r and let Tn〈e1, . . . , er〉 be the set of terms in P r. We define order
ideals in Tn〈e1, . . . , er〉 to be unions of sets of terms of the form O = O1 · e1∪ · · ·∪Or · er
by Definition 2.1.6. Here O1, . . . ,Or are order ideals in Tn, i.e. sets of terms that are
closed under forming divisors. In other words, order ideals O in Tn〈e1, . . . , er〉 consist
of n order ideals Oi in Tn, one for every component of P r. Note that in contrast to
the definition of order ideals of other authors, e.g. the one in [KR05, Defn. 6.4.3], our
version in Definition 2.1.1 regards the empty set as an order ideal, too. Then we define
the border ∂O of O to be the set ∂O = ∂O1 · e1 ∪ · · · ∪ ∂Or · er by Definition 2.1.7.
Here the border of the order ideal Oi in Tn is ∂Oi = (x1 · Oi ∪ · · · ∪ xn · Oi ∪ {1}) \ Oi
according to Definition 2.1.2. As for border bases of zero-dimensional ideals, for a finite
order ideal O in Tn〈e1, . . . , er〉, we define an O-border prebasis G = {gb | b ∈ ∂O} in
Definition 2.1.14 to be a set of vectors in P r of the following specific form: for every
b ∈ ∂O, gb = b−

∑
t∈O at,bt ∈ P r with at,b ∈ K for all t ∈ O. An O-border prebasis G is

called an O-border basis of a P -submodule U ⊆ P r if G ⊆ U and if the residue classes
of the elements of O in P r/U form a K-vector space basis of P r/U . In particular, for
r = 1, this definition yields nothing but the usual border bases of zero-dimensional ideals
in the polynomial ring P .
With this definition, we are able to generalize the Border Division Algorithm in Theo-
rem 2.2.1, prove the existence and uniqueness of border bases in Proposition 2.3.2, and
compute border bases in Theorem 2.5.3 using linear algebra techniques in the module
setting. The whole Section 2.4 is dedicated to characterizations of border bases. In de-
tail, we characterize border bases via a special generation property in Theorem 2.4.1, via
border form modules in Theorem 2.4.5, via rewrite rules in Theorem 2.4.13, via commut-
ing matrices in Theorem 2.4.19, via liftings of border syzygies in Theorem 2.4.26, and
we derive a Buchberger Criterion in Theorem 2.4.31. Altogether, we see that most of
the concepts of border bases of zero-dimensional ideals in P can be carried over to the
module setting if the P -module is free and of finite rank.
The final Section 2.6 of this chapter then establishes a border bases theory in arbitrary
finitely generated P -modules. Every finitely generated P -module M = 〈m1, . . . ,mr〉
induces a P -module epimorphism ϕ : P r � M , ei 7→ mi for all i ∈ {1, . . . , r}. We
define a (generalized) order ideal in ϕ(Tn〈e1, . . . , er〉) to be the image of an order ideal
in Tn〈e1, . . . , er〉 under ϕ in Definition 2.6.1 and a (generalized) ϕ(O)-border prebasis
to be the image of an O-border prebasis in P r under ϕ in Definition 2.6.3. As in the
case of free modules, a ϕ(O)-border prebasis G ⊆ M is called a ϕ(O)-border basis of a
P -submodule U ⊆M if G ⊆ U and if the residue classes of the elements of ϕ(O) inM/U
form a K-vector space basis of M/U . Instead of reestablishing all ideas of the previous
sections again, we introduce a process of lifting a ϕ(O)-border prebasis in M to an O-
border prebasis in ϕ−1(M) = P r. If such a lifting exists, we can use it to characterize the
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corresponding border prebasis in M according to Corollary 2.6.10. Moreover, if we can
compute the kernel of ϕ, we show that we can even compute ϕ(O)-border bases of arbi-
trary P -submodules U ⊆ M with finite K-codimension in M using Corollary 2.6.12. In
particular, since there are algorithms to compute syzygy modules of polynomials in P , we
can apply the whole new theory to so-called subideal border bases as defined in [KP11].
This yields a way to compute arbitrary subideal border bases using linear algebra tech-
niques and the computation of a single syzygy module, cf. Example 2.6.13. As indicated
in [KP11, Sect. 6], the “standard approach” for the computation of subideal border bases
by now needs a Gröbner basis computation instead of the linear algebra techniques.
As indicated at the beginning of the introduction and as described in [KP11, Sect. 7],
(subideal) border bases can be used in the modelling of physical systems and this was
our starting point of the theory of border bases in the module setting. Note that there
is a preprint version of this chapter available, cf. [Kri13].
Chapter 3 is devoted to prove an analogon of Schreyer’s Theorem for border bases in

free P -modules of finite rank as introduced in Chapter 2. Schreyer’s Theorem, as first
proven in [Sch80] or stated using our notation in [KR00, Prop. 3.1.4], says that given
a Gröbner basis of a P -submodule U ⊆ P r, the set of all liftings corresponding to the
S-vectors forms a Gröbner basis of the (first) syzygy module of the given Gröbner basis
with respect to a suitably chosen term ordering. For border bases, the analogon of this
theorem can be stated as follows: given an O-border basis G ⊆ P r of a P -submodule
U ⊆ P r, the set of neighbor liftings forms a Gröbner basis of the (first) syzygy module
of the given border basis with respect to a suitably chosen term ordering. One part of
this theorem, namely that the neighbor liftings generate the syzygy module, was proven
for border bases in P in [Hui06]. The corresponding proof makes use of two special
operations called “degree lowering” and “column clearing”. By applying these operations
in a specific way, the author of [Hui06] was able to show that every syzygy can be
reduced to zero by substracting suitable multiples of neighbor liftings. Based on these
proofs, we were able to prove Schreyer’s Theorem for border basis in P in [KK14]. We
turned the two operations degree lowering and column clearing into explicit algorithms
and deduced an algorithmic version of the reduction process used in the proofs of [Hui06].
Moreover, we also showed that the reduction process can actually be interpreted as a set
of reduction steps using the rewrite rule defined by the neighbor liftings as defined in
[KR00, Defn. 2.2.1] with respect to specific term orderings. Such a specific term ordering
was also algorithmically constructed by us. Altogether, we concluded that Schreyer’s
Theorem holds for border bases in P .
In order to prove that Schreyer’s Theorem also holds for border bases in P r, we generalize
the concepts of [KK14] to the module setting. In particular, we have to take empty order
ideals into account. The full version of Schreyer’s Theorem for border bases in P r is a
direct consequence of the Theorems 3.4.1 and 3.4.5. As a byproduct, we are also able
to give an alternative proof of the characterization of border bases in P r via liftings
of border syzygies in Corollary 3.3.9. This alternative proof is quite remarkable since,
in stark contrast to the standard proof in the literature, cf. Theorem 2.4.26, it does not
depend on the characterization of border bases via commuting matrices in Theorem 2.4.19
but only on the characterizations via the special generation property in Theorem 2.4.1
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1 Introduction

and via rewrite rules in Theorem 2.4.13. Thus this proof might yield a possible way to
characterize border bases in a non-commutative setting, e.g. as defined in [BTBQM00].
As described above, the Chapters 4 to 6 are dedicated to study zero-dimensional closed

subschemes of weighted projective spaces with the help of border bases. In Chapter 4,
we lay the algebraic foundation of this process, i.e. we find a generalization of border
bases that is suitable for homogeneous ideals in P = P [x0] and that are, in particular,
one-dimensional. Therefore, we equip P with the grading defined by a positive matrix
W ∈ Mat1,n(Z) in the sense of [KR05, Defn. 4.1.6 and 4.2.4] and we let x0 be the
homogenizing indeterminate. Then P = P [x0] = K[x0, . . . , xn] is equipped with the
induced grading given by the positive matrix W = (1 | W ) ∈ Mat1,n+1(Z). The main
idea is then based on [KR05, Thm. 4.3.22] which states that for a proper ideal I ⊂ P ,
P/Ihom is a free K[x0]-module. This led to the definition of projective border bases in
Definition 4.1.2. A projective O-border prebases for some finite order ideal O in Tn is a
set of polynomials G = {gb | b ∈ ∂O} of the form gb = b −

∑
t∈O at,bt with at,b ∈ K[x0]

for all b ∈ ∂O and t ∈ O. It is said to be a projective O-border basis of a homogeneous
ideal I ⊆ P if G ⊆ I and if the residue classes of the elements of the order ideal O in P/I
form a K[x0]-module basis of P/I. Then it turns out that this definition implies many
interesting properties of projective border bases in Proposition 4.1.7. The most important
ones are that the elements of a projective O-border basis of a homogeneous ideal I ⊆ P
are homogeneous and of a uniquely determined shape, that dehomogenization yields a
border basis of Ideh which is also a Macaulay basis (also called H-basis) with respect to
the grading given by W , and that it indeed generates the ideal I. In particular, we get
the (Projective) Border Basis Correspondence in Corollary 4.1.9 which can be visualized
as follow.

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

dehomogenization homogenization

O-border bases of ideals in P with b ∈ DFW (gb) for all b ∈ ∂O
where gb denotes the O-border basis element corresponding to b

With these properties in mind, we are able to characterize and eventually compute pro-
jective border bases in the Corollaries 4.1.10 and 4.1.14 and we can explicitly describe
the elements of the residue class ring of P modulo a projective O-border basis by means
of O according to Proposition 4.1.15.
In the second section of Chapter 4, we study the multiplicative structure of a residue
class ring P/I were I is given by a projective O-border basis. It turns out that the
characterization of border bases via commuting matrices in Theorem 2.4.19 allows us to
explicitly describe the multiplicative structure of P/I by means of O and the multipli-
cation matrices in the Propositions 4.2.5 and 4.2.8. After that, we study the canonical
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module of P/I, i.e. the dual module of P/I, in the third section. After proving some
basic facts of the canonical module, we describe its multiplicative structure, again, in
terms of O and the multiplication matrices in the Propositions 4.3.8 and 4.3.10. These
descriptions of the multiplicative structure will turn out to be very helpful in the study
of geometric properties in the last two chapters of this thesis.
In Chapter 5, we study zero-dimensional closed subschemes of weighted projective

spaces PK(W ). First we recall basic facts about weighted projective spaces. As before,
we equip P with the grading given by a positive matrix W ∈ Mat1,n(Z), let x0 be the
homogenizing indeterminate, and equip P = P [x0] = K[x0, . . . , xn] with the grading
given by the matrix W = (1 |W ) ∈ Mat1,n+1(Z). Then the weighted projective space of
type W over K is defined to be the projective scheme PK(W ) = Proj(P ) corresponding
to the Z-graded K-algebra P in Definition 5.1.1. We are particularly interested in zero-
dimensional closed subschemes X of PK(W ) and determine their structure. In particular,
in Proposition 5.1.8, it turns out that there is a projective border basis of the defining
ideal I+(X) ⊆ P of a non-empty zero-dimensional closed subscheme X if and only if no
point of X lies on the hyperplane at infinity. In Proposition 5.1.10, we prove that in
most cases, e.g. if K is infinite and P standard graded, there is a generic homogeneous
linear change of coordinates such that the above equivalence relation is satisfied. The
remainder of this chapter is then dedicated to the study of the correspondence between
geometric properties of the non-empty zero-dimensional closed subscheme X ⊆ PK(W )
and algebraic properties of the residue class ring of P modulo the defining ideal I+(X)
of X. We can visualize this correspondence as follows.

zero-dimensional closed subschemes X of weighted projective spaces PK(W )
that have no point on the hyperplane at infinity

projective border basis
of the defining ideal

I+(X) ⊆ P

projective subscheme
defined by the
homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

The main geometric properties we are interested in in this thesis are uniformity condi-
tions as defined in Definition 5.2.1. The most general uniformity condition, namely the
(i, j)-uniformity, can (in the reduced case) be geometrically interpreted as follows: given
a set of projective points X, is there a subset X̂ of i points of X and a homogeneous
polynomial p of degree j in P such that p vanishes in all points of X \ X̂ but not in all
points of X. If no such subset of i points exists, X is said to be (i, j)-uniform. In the
standard graded setting, some special cases of this question, e.g. whether the scheme
has the Cayley-Bacharach property or is in uniform position, have already been studied.
For instance, under the assumption that the base field is algebraically closed, i-uniform
zero-dimensional closed subschemes of the projective n-space have been characterized
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1 Introduction

in [Kre94] and [Kre98] with the help of the multiplicative structure of the correspond-
ing canonical module. In [Kre01], the same author described algorithms to check this
property for reduced subschemes under the same assumptions. Another totally different
approach was used by the authors in [MP04]. They have characterized and described an
algorithm to check (i, j)-uniformity conditions using Chow forms under the assumptions
that the given subscheme is reduced and that the base field is of characteristic zero or
its characteristic is large enough.
Our approach in the second section of this chapter is also based on the idea that the
multiplicative structure of the canonical module of the projective coordinate ring of the
given subscheme X contains information about the geometry of X. As we have already
noted above, we can describe the multiplicative structure of the canonical module by
means of the multiplication matrices if the defining ideal of X possesses a projective bor-
der basis, i.e. if no point of X lies on the hyperplane at infinity. With this assumption
and the additional assumption that X has a K-rational support, i.e. that all the prime
ideals of the support of X are homogeneous vanishing ideals of a K-rational projective
point by Definition 5.1.5, we characterize (i, j)-uniform subschemes of weighted projec-
tive spaces PK(W ) in Theorem 5.2.7. Note that the first condition is often satisfied
after a generic homogeneous linear change of coordinates and that the second assump-
tion trivially holds by Hilbert’s Nullstellensatz if the base field K is algebraically closed.
Therefore, our results also hold in the non-reduced case as well as in the non-standard
graded setting. In particular, this affirmatively answers (generalizations of) [Kre01, Ques-
tions 1 and 3]. In the third section of that chapter, we turn the methods of Section 5.3
to check uniformity conditions into explicit algorithms.
Finally, in Chapter 6, we combine the results of the Chapters 4 and 5. The following

figure shows the intersection of the two previous chapters.

zero-dimensional closed subschemes X of weighted projective spaces PK(W )
that have no point on the hyperplane at infinity

projective border basis
of the defining ideal

I+(X) ⊆ P

projective subscheme
defined by the
homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

dehomogenization homogenization

O-border bases of ideals in P with b ∈ DFW (gb) for all b ∈ ∂O
where gb denotes the O-border basis element corresponding to b

We use this intersection to study uniformity conditions for all ideals that possess a pro-
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jective O-border basis for some given order ideal O in Tn, at once. Let O = {t1, . . . , tµ}
be a finite, non-empty order ideal in Tn with border ∂O = {b1, . . . , bν}. In [KR08]
and [Rob09], the authors introduced the O-border bases scheme BO, cf. Definition 6.1.1,
as an affine scheme that parametrizes all zero-dimensional ideals in the polynomial ring P
that possess an O-border basis. The construction was done as follows: First they defined
the generic O-border prebasis by replacing the scalar aij ∈ K of every border basis ele-
ment gj = bj −

∑µ
i=1 aijti by a newly introduced indeterminate cij for all i ∈ {1, . . . , µ}

and j ∈ {1, . . . , ν}. Then they considered the corresponding formal multiplication matri-
ces of that generic O-border prebasis and ensured that an affine point a = (a11, . . . , aµν)
is contained in BO if and only if the multiplication matrices are pairwise commuting
after applying the substitution homomorphism cij 7→ aij . Since border bases can be
characterized via commuting matrices by Theorem 2.4.19 and are unique by Proposi-
tion 2.3.2, BO parametrizes all zero-dimensional ideals in P that possess an O-border
basis. The projective O-border basis scheme is then defined in Definition 6.1.5 to be
the subscheme of BO that parametrizes all zero-dimensional ideals in P that possess an
O-border basis {g1, . . . , gν} and additionally satisfy bj ∈ DFW (gj) for all j ∈ {1, . . . , ν}.
As indicated by the above figure and defined in Definition 6.4.2, the projective border
basis schemes parametrize all zero-dimensional closed subschemes of PK(W ) that have
no point on the hyperplane at infinity. The main goal of this chapter is to show that the
subset of Bproj

O that parametrizes all zero-dimensional closed subschemes of PK(W ) that
have no point on the hyperplane at infinity and that are (i, j)-uniform is a constructible
set with respect to the Zariski topology in Theorem 6.4.4.
More precisely, we do the following: In Definition 6.1.5, we introduce the projective
O-border basis scheme Bproj

O , its coordinate ring Bproj
O , and the corresponding universal

projective O-border basis family Bproj
O → Uproj

O . Then we prove that the residue classes
of the elements of O in Uproj

O form a Bproj
O [x0]-module basis of Uproj

O in Theorem 6.1.13.
In the second section, we then study the multiplicative structure of Uproj

O by means of the
generic (projective) multiplication matrices in the Propositions 6.2.4 and 6.2.7. In the
third section, we define the generic canonical module of Uproj

O in Definition 6.3.2, show
that it is also a free Bproj

O [x0]-module and that the dual objects of the elements in O form
the corresponding basis in Proposition 6.3.4, and also study the multiplicative structure
of the generic canonical module of Uproj

O by means of the generic (projective) multipli-
cation matrices in the Propositions 6.3.5 and 6.3.7. In the final section of this chapter,
we additionally assume that the base field K is algebraically closed. This ensures that
for all zero-dimensional closed subschemes X of PK(W ), every element of the support
of X is, by Hilbert’s Nullstellensatz, the vanishing ideal of a K-rational projective point.
Therefore, we can apply the characterizations of (i, j)-uniform subschemes of Section 5.2
to all zero-dimensional closed subschemes X parametrized by Bproj

O . As a main result, we
characterize all points of the projective O-border basis scheme Bproj

O that correspond to
an (i, j)-uniform zero-dimensional closed subscheme of PK(W ) in Theorem 6.4.4. In par-
ticular, we show that the set of all points of the projective O-border basis scheme Bproj

O
with the property that the corresponding zero-dimensional closed subschemes of PK(W )
are (i, j)-uniform is constructible with respect to the Zariski topology in Theorem 6.4.4.
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1 Introduction

For the whole thesis, we assume that the reader is familiar with the basics of algebra
as, for instance, taught in a two semester course at university and has basic knowledge
about Gröbner bases as, for instance, introduced in [KR00] or [AL94]. If not mentioned
otherwise, we use the notation and terminology of [KR00] and [KR05]. In particular, the
set of natural numbers N = {0, 1, 2, . . .} contains zero, we let K be an arbitrary field,
and P = K[x1, . . . , xn] be the polynomial ring in n ∈ N \ {0} indeterminates over K.
By terms, we denote polynomials in P = K[x1, . . . , xn] of the form xα1

1 · · ·xαnn with
α1, . . . , αn ∈ N. The monoid of all terms in P is denoted by Tn. We let P r denote the
free P -module of rank r ∈ N\{0} with the P -module basis {e1, . . . , er} and a term in P r

is an element of the form tei where t ∈ Tn and i ∈ {1, . . . , r}. The set of all terms in P r

is denoted by Tn〈e1, . . . , er〉. Products of a scalar and a term are called monomials. For a
subset S of a Z-graded moduleM =

⊕
γ∈ZMγ and for all γ ∈ Z, we denote Sγ = S∩Mγ ,

S≤γ = S ∩
⊕γ

γ′=−∞Mγ′ , and similarly for S≥γ , S<γ , and S>γ . In algorithms, we often
need an ordering on the elements of a given set, e.g. G = {g1, . . . , gν}. If no confusion
arises, we always keep that ordering in mind and treat the set as if it was a tuple during
algorithms.
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2 Border Bases of Finitely Generated
Modules

Border bases of zero-dimensional ideals in a polynomial ring have been studied for several
years in various ways, cf., for instance, [Mou99], [Ste04], [Hui06], [KR08], [Rob09], and
[KPR10]. But despite of the special case of subideal border bases, cf. [KP11], the theory
of border bases is restricted to zero-dimensional ideals in a polynomial ring. The goal of
this chapter is to overcome this limitation and generalize the concept of border bases to
finitely generated P -modules. To this end, we first introduce a border bases theory for
submodules of free modules of finite rank over the polynomial ring P in the Sections 2.1
to 2.5. After that, we introduce a border basis theory for submodules of finitely generated
P -modules in Section 2.6. More precisely, we do the following.
In Section 2.1, we generalize the basic concepts needed for a border basis theory in P r

with r ∈ N \ {0}, namely order ideals in Definition 2.1.6, borders of order ideals in
Definition 2.1.7, and border prebases and border bases in Definition 2.1.14. Moreover,
we introduce the index with respect to an order ideal in Definition 2.1.11, which allows
us to measure the distance between an arbitrary term and the order ideal.
After the introduction of the basic concepts, we prove a division algorithm and direct
consequences of it in Section 2.2. The Border Division Algorithm in Theorem 2.2.1.
allows us to divide an arbitrary vector v ∈ P r by a border prebasis G ⊆ P r and thus
compute a representative of v in the residue class module P r/〈G〉, cf. Corollary 2.2.5.
Moreover, we show that border bases of submodules can be used to define normal forms
in Definition 2.2.9.
Section 2.3 is dedicated to study whether every P -submodule U ⊆ P r that has a finite
K-codimension in P r possesses a border bases or not. We affirmatively answer this
question in Proposition 2.3.2. Moreover, we show that border bases in P r are unique
in Proposition 2.3.2 and we prove that reduced Gröbner bases of submodules U ⊆ P r

with finite K-codimension in P r are special border bases in Proposition 2.3.5. As a
consequence, we give a first naive algorithm based on a Gröbner basis computation that
allows us to compute border bases in P r in Remark 2.3.6.
In Section 2.4, we characterize border bases in various ways. We characterize border
bases via a special generation property in Theorem 2.4.1. After that, we characterize
them via border form modules, which are the border bases analogon of leading term
modules, in Theorem 2.4.5. Then we define rewrites rules associated to border prebases
in Definition 2.4.7 and prove that a border prebasis is a border basis if and only if
the corresponding rewrite rule is confluent in Theorem 2.4.13. In Theorem 2.4.19, we
characterize border bases via commuting multiplication matrices. This characterization
will play a key role in the latter part of this thesis since the multiplication matrices allow
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2 Border Bases of Finitely Generated Modules

us to explicitly describe the multiplicative structure of a residue class module P r/U
if U is given by a border basis. In particular, we will use this description in Chapter 5
to study geometric properties of zero-dimensional projective schemes that are given by
a border basis. Finally, we characterize border bases via liftings of border syzygies in
Theorem 2.4.26 and prove a Buchberger Criterion for border bases in Theorem 2.4.31.
As already mentioned above, there is a naive way to compute border bases with Gröbner
bases techniques. Section 2.5 is dedicated to find a more efficient algorithm for the
computation of border bases which uses linear algebra techniques. This refined Border
Bases Algorithm is proven in Theorem 2.5.3.

All the concepts of the Sections 2.1 to 2.5 are generalizations (with minor changes)
of the corresponding well-known concepts for border bases in P . The corresponding
version of the results in the Sections 2.1 to 2.5 for border bases in polynomial rings are
summarized in [KR05, Section 6.4]. In particular, the characterizations in Section 2.4 are
due to [Mou99], where commuting matrices were used for the first time to characterize
ideal bases, and [KK05], where the notion of border bases was already developed and
the above characterizations were proven for the first time. The general framework for
an algorithm for the computation of border bases without the need of a Gröbner basis
computation was laid in [Mou99] and was turned into an explicit algorithm in [KK06].

Up to that point, we were able to generalize border bases in a straightforward way
to free P -modules of finite rank. In Section 2.6, we go another step further and enter
unfamiliar territory by developing a border bases theory in arbitrary finitely generated
P -modules. To this end, we first generalize order ideals and their borders in Defini-
tion 2.6.1 and then define generalized border prebasis and generalized border bases in
Definition 2.6.3. Then, under certain assumptions, we lift questions about generalized
border bases to questions about border bases in P r. In this way, we are able to character-
ize generalized border bases in Theorem 2.6.8 and can reformulate the characterizations
of Section 2.4 in the generalized case in Corollary 2.6.10. Moreover, if we can compute
certain kernels, we are even able to compute generalized border bases according to Corol-
lary 2.6.12. Finally, we apply the theory of generalized border bases in Example 2.6.13
to subideal border bases as introduced in [KP11]. This allows us to characterize subideal
border bases in various ways and to compute arbitrary subideal border bases with one
syzygy module computation and linear algebra techniques. This heavily extends the the-
ory of subideal border bases introduced in [KP11] where subideal border bases are only
characterized via a special generation property and can only be computed with a naive
algorithm that is based on Gröbner bases computations.

If not mentioned otherwise, we equip P with the standard grading and for all γ ∈ Z,
we write Tnγ 〈e1, . . . , er〉 = {tek ∈ Tn〈e1, . . . , er〉 | deg(t) = γ} for the set of all terms
in P r of degree γ. Similarly, we define Tn<γ〈e1, . . . , er〉, Tn≥γ〈e1, . . . , er〉, etc. for all γ ∈ Z.
In particular, for all γ ∈ Z, the set Tn≤γ〈e1, . . . , er〉 is then a K-vector space basis of P r≤γ .
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2.1 Basic Definitions

2.1 Basic Definitions

In this section, we generalize the basic concepts of border bases in the polynomial ring P
to free P -modules of finite rank. More precisely, we define order ideals in Tn〈e1, . . . , er〉 in
Definition 2.1.6, their border in Definition 2.1.7, the index with respect to an order ideal
in Definition 2.1.11, and border prebases and border bases in P r in Definition 2.1.14. We
refer to [KR05, Section 6.4] for the corresponding definitions and theorems about border
bases in P .

The definition of order ideals in Tn in the literature, for instance in [KR05, Defn. 6.4.3],
does not consider the empty set as an order ideal. But it turns out in Remark 2.5.5 that
empty order ideals in Tn might also occur during the computation of border bases in P r.
Therefore, we consider the empty set as an order ideal in Tn, too. For the sake of com-
pleteness, we give explicit proofs for the basic properties of order ideals in Tn and their
border in this more general setting.

The following two definitions generalize [KR05, Defn. 6.4.3 and 6.4.4].

Definition 2.1.1. A set O ⊆ Tn is called an order ideal in Tn if it is closed under
forming divisors.

Definition 2.1.2. Let O be an order ideal in Tn.

a) We call the set ∂1O = ∂O = ((Tn1 · O) ∪ {1}) \ O ⊆ Tn the (first) border of O.
The (first) border closure of O is the set ∂1O = ∂O = O ∪ ∂O ⊆ Tn.

b) For every k ∈ N \ {0}, we inductively define the (k+ 1)st border of O by the rule
∂k+1O = ∂(∂kO) ⊆ Tn and we define the (k + 1)st border closure by the rule
∂k+1O = ∂kO ∪ ∂k+1O ⊆ Tn. For convenience, we let ∂0O = ∂0O = O.

The following proposition yields the basic properties of borders as in [KR05, Prop. 6.4.6]
and also takes the empty set into account.

Proposition 2.1.3. Let O be an order ideal in Tn.

a) For every k ∈ N, we have a disjoint union ∂kO =
⋃k
i=0 ∂

iO.

b) We have a disjoint union Tn =
⋃∞
i=0 ∂

iO.

c) For every k ∈ N \ {0}, we have

∂kO = ((Tnk · O) ∪ Tnk−1) \ (Tn<k · O) =

{
(Tnk · O) \ (Tn<k · O) if O 6= ∅,
Tnk−1 if O = ∅.

d) Let t ∈ Tn be a term. Then there exists a factorization of the form t = t′b with a
term t′ ∈ Tn and b ∈ ∂O if and only if t ∈ Tn \ O.

11



2 Border Bases of Finitely Generated Modules

Proof. First we prove claim a) by induction on k ∈ N. For k = 0, Definition 2.1.2 yields
∂0O = ∂0O =

⋃0
i=0 ∂

iO. For k ∈ N \ {0}, Definition 2.1.2 and the induction hypothesis
imply that ∂k+1O = ∂kO ∪ ∂k+1O =

⋃k
i=0 ∂

iO ∪ ∂k+1O =
⋃k+1
i=0 ∂

iO. Moreover, for all
i, j ∈ N with i 6= j, the borders ∂iO and ∂jO are disjoint according to Definition 2.1.2
and the first claim follows.
Since every term in Tn is in ∂iO for some i ∈ N by Definition 2.1.2, claim b) is a direct

consequence of claim a).
Next we prove claim c) by induction on k ∈ N \ {0}. For the induction start k = 1,

Definition 2.1.2 yields ∂1O = ((Tn1 · O) ∪ {1}) \ O = ((Tn1 · O) ∪ Tn0 ) \ (Tn<1 · O). For the
induction step, let now k > 1. In this situation, Definition 2.1.2 and claim a) imply that
∂kO = ∂(∂k−1O) = ∂(

⋃k−1
i=0 ∂

iO). IfO = ∅, the induction hypothesis and Definition 2.1.2
yield ∂kO = ∂(

⋃k−1
i=0 Tni−1) = ∂(Tn≤k−2) = Tnk−1. If O 6= ∅, we have 1 ∈ O. Thus if O 6= ∅,

the induction hypothesis and Definition 2.1.2 yield

∂kO = ∂

(
k−1⋃
i=0

((Tni · O) \ Tn<i · O)

)
= ∂(Tn≤k−1 · O)

= (Tn1 · Tn≤k−1 · O ∪ {1}) \ (Tn≤k−1 · O)

= (Tnk · O) \ (Tn≤k−1 · O)

and claim c) follows.
Finally, we prove claim d). We distinguish two cases. For the first case, suppose that
O = ∅. Then we have ∂O = {1} by Definition 2.1.2 and for every term t ∈ Tn \O = Tn,
there is the factorization t = t · 1. For the second case, suppose that O 6= ∅. Let
t ∈ Tn \ O. Then there exists a k ∈ N \ {0} such that t ∈ ∂kO = (Tnk · O) \ (Tn<k · O)
according to b), c), and Definition 2.1.2. In particular, we can write t = x`t1t2 with
` ∈ {1, . . . , n}, t1 ∈ Tnk−1, and t2 ∈ O. Assume that x`t2 ∈ O. Then we get the
contradiction t = t1(x`t2) ∈ Tn<k · O. Thus Definition 2.1.2 yields x`t2 ∈ ∂O and the
first implication follows from t = t1(x`t2). For the converse implication, let t′ ∈ Tn and
b ∈ ∂O. Assume that t′b ∈ O. Then Definition 2.1.1 yields the contradiction b ∈ O.
Thus we have t′b ∈ Tn \ O and the claim follows.

This result enables us to define the index with respect to an order ideal in Tn just as
in [KR05, Defn. 6.4.7]. The index measures the distance from a term to an order ideal.

Definition 2.1.4. Let O be an order ideal in Tn.

a) For every term t ∈ Tn, the number i ∈ N such that t ∈ ∂iO, which is unique
according to Proposition 2.1.3, is called the O-index of t and denoted by indO(t).

b) For a polynomial p ∈ P \ {0}, we define indO(p) = max{indO(t) | t ∈ Supp(p)} to
be the O-index of p.

The following proposition gathers the basic properties of the index with respect to an
order ideal in Tn. It is a generalization of [KR05, Prop. 6.4.8].
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Proposition 2.1.5. Let O be an order ideal in Tn.

a) For a term t ∈ Tn \O, the number i = indO(t) is the smallest natural number such
that there is a factorization t = t′b with t′ ∈ Tni−1 and b ∈ ∂O.

b) Given a term t ∈ Tn and a term t′ ∈ Tn, we have indO(tt′) ≤ deg(t) + indO(t′).

c) For two polynomials p, q ∈ P \ {0} such that p + q 6= 0, we have the inequality
indO(p+ q) ≤ max{indO(p), indO(q)}.

d) For two polynomials p, q ∈ P \ {0}, we have indO(pq) ≤ deg(p) + indO(q).

Proof. For the proof of a), let t ∈ Tn \ O and i = indO(t) ∈ N. Then i > 0 and t ∈ ∂Oi
by the Definitions 2.1.4 and 2.1.7. If O = ∅, 1 ∈ ∂O by Definition 2.1.2 and ∂iO = Tni−1

by Proposition 2.1.3. Thus t = t · 1 is a factorization with the desired properties in this
situation. Suppose now that O 6= ∅. According to Proposition 2.1.5 and Definition 2.1.2,
there is a factorization t = x`t1t2 with ` ∈ {1, . . . , n}, t1 ∈ Tni−1, and t2 ∈ O, and
t /∈ Tn<i · O. In particular, x`t2 /∈ O. Thus x`t2 ∈ ∂O by Definition 2.1.2 and t = t1(x`t2)
is a desired factorization. Assume that there is a factorization t = t′b such that t′ ∈ Tn<i−1

and b ∈ ∂O. Then b = xmt
′′ with m ∈ {1, . . . , n} and t′′ ∈ O by Definition 2.1.2. In this

situation, we get the contradiction t = (xmt
′)t′′ ∈ Tn<i · O and the claim follows.

Claim b) follows immediately from claim a). Since Supp(p+ q) ⊆ Supp(p) ∪ Supp(q),
claim c) follows immediately from Definition 2.1.4. At last, claim d) follows from claim b)
since Supp(pq) ⊆ {tt′ | t ∈ Supp(p), t′′ ∈ Supp(q)}.

Now we are able generalize order ideals in Tn to the module setting. The key idea is
that for each component of P r, we consider a separate order ideal in Tn.

Definition 2.1.6. Let O1, . . . ,Or be order ideals in the monoid of terms Tn. Then we
call the set O = O1 · e1 ∪ · · · ∪ Or · er ⊆ Tn〈er, . . . , er〉 an order ideal in Tn〈e1, . . . , er〉.

Definition 2.1.7. Let O1, . . . ,Or be order ideals in Tn and let O = O1e1 ∪ · · · ∪ Orer
be the corresponding order ideal in Tn〈e1, . . . , er〉.

a) We call the set ∂1O = ∂O = ((Tn1 · O) ∪ {e1, . . . , er}) \ O ⊆ Tn〈e1, . . . , er〉 the
(first) border of O. The (first) border closure of the order ideal O is defined
by ∂1O = ∂O = O ∪ ∂O ⊆ Tn〈e1, . . . , er〉.

b) For every k ∈ N \ {0}, we inductively define the (k+ 1)st border of O by the rule
∂k+1O = ∂(∂kO) ⊆ Tn〈e1, . . . , er〉 and the (k + 1)st border closure by the rule
∂k+1O = ∂kO∪ ∂k+1O ⊆ Tn〈e1, . . . , er〉. For convenience, we let ∂0O = ∂0O = O.

Remark 2.1.8. Let O1, . . . ,Or be order ideals in Tn and let O = O1e1 ∪ · · · ∪Orer be
the corresponding order ideal in Tn〈e1, . . . , er〉. The P -module structure of P r and the
Definitions 2.1.2 and 2.1.7 yield that for all k ∈ N, we have ∂kO = ∂kO1 ·e1∪· · ·∪∂kOr ·er
and ∂kO = ∂kO1 · e1 ∪ · · · ∪ ∂kOr · er.
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2 Border Bases of Finitely Generated Modules

Example 2.1.9. Let P = Q[x, y]. The sets O1 = {1, y, x} and O2 = {1, x, x2} are
both order ideals in T2 with first borders ∂O1 = {y2, xy, x2} and ∂O2 = {y, xy, x2y, x3},
and second borders ∂2O1 = {y3, xy2, x2y, x3} and ∂2O2 = {y2, xy2, x2y2, x3y, x4}, re-
spectively, according to the Definitions 2.1.1 and 2.1.2. Let {e1, e2} be the canonical
P -module basis of P 2. Then the set O = {e1, ye1, xe1, e2, xe2, x

2e2} is an order ideal
in T2〈e1, e2〉 with first border ∂O = {y2e1, xye1, x

2e1, ye2, xye2, x
2ye2, x

3e2} and second
border ∂2O = {y3e1, xy

2e1, x
2ye1, x

3e1, y
2e2, xy

2e2, x
2y2e2, x

3ye2, x
4e2} by the Defini-

tions 2.1.6 and 2.1.7. By identifying terms with their logarithms, i.e. their exponent
vectors, we can visualize the order ideal O in T2〈e1, e2〉 and its first and second borders
as follows.

O1

x

y

O2

x

y

terms in O terms in ∂O terms in ∂2O

Order ideals and their borders in Tn〈e1, . . . , er〉 behave similarly as order ideals and
their borders in Tn. The following proposition is a module version of Proposition 2.1.3.

Proposition 2.1.10. Let O1, . . . ,Or be order ideals in Tn and let O = O1e1∪· · ·∪Orer
be the corresponding order ideal in Tn〈e1, . . . , er〉.

a) For every k ∈ N, we have a disjoint union ∂kO =
⋃k
i=0 ∂

iO.

b) We have a disjoint union Tn〈e1, . . . , er〉 =
⋃∞
i=0 ∂

iO.

c) For every k ∈ N \ {0}, we have

∂kO = ((Tnk · O) ∪ Tnk−1〈e1, . . . , er〉) \ (Tn<k · O)

= (Tnk · O \ Tn<k · O) ∪
⋃

i∈{1,...,n}
Oi=∅

Tnk−1 · ei

d) Let tek ∈ Tn〈e1, . . . , er〉 be a term. Then there exists a factorization of the form
tek = t′bek with a term t′ ∈ Tn and bek ∈ ∂O if and only if tek ∈ Tn〈e1, . . . , er〉\O.

Proof. For all s ∈ {1, . . . , r}, we have {(p1, . . . , pr) ∈ O | ps 6= 0} = Oses according to
Definition 2.1.6. Thus the claim immediately follows from Proposition 2.1.3 and Defini-
tion 2.1.7.
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2.1 Basic Definitions

Proposition 2.1.10 gives rise to the definition of the index with respect to an order
ideal in Tn〈e1, . . . , er〉. This index measures the distance between a term and a given
order ideal.

Definition 2.1.11. Let O be an order ideal in Tn〈e1, . . . , er〉.

a) For every term tek ∈ Tn〈e1, . . . , er〉, the number i ∈ N such that tek ∈ ∂iO, which is
unique according to Proposition 2.1.10, is called the O-index of tek and is denoted
by indO(tek).

b) For a vector v ∈ P r \ {0}, we define indO(v) = max{indO(tek) | tek ∈ Supp(v)} to
be the O-index of v.

Example 2.1.12. Let O = {e1, ye1, xe1, e2, xe2, x
2e2} be the order ideal in T2〈e1, e2〉

of Example 2.1.9, again.

O1

x

y

O2

x

y

terms in O terms in ∂O terms in ∂2O

Then indO(xe1) = 0, indO(x2y2e2) = 2, and hence indO(xe1 + x2y2e2) = max{0, 2} = 2
according to Definition 2.1.11.

This definition allows us to prove a module version of Proposition 2.1.5.

Proposition 2.1.13. Let O1, . . . ,Or be order ideals in Tn and O = O1e1 ∪ · · · ∪ Orer
be the corresponding order ideal in Tn〈e1, . . . , er〉.

a) For every term tek ∈ Tn〈e1, . . . , er〉 \ O, the number i = indO(tek) is the smallest
natural number such that there is a factorization t = t′b with t′ ∈ Tni−1 and b ∈ ∂Ok.

b) For all t ∈ Tn and t′ek ∈ Tn〈e1, . . . , er〉, we have indO(tt′ek) ≤ deg(t)+ indO(t′ek).

c) For two vectors v, w ∈ P r \ {0} such that v + w 6= 0, we have the inequality
indO(v + w) ≤ max{indO(v), indO(w)}.

d) For a vector v ∈ P r \ {0} and a polynomial p ∈ P \ {0}, we have the inequality
indO(pv) ≤ deg(p) + indO(v).
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2 Border Bases of Finitely Generated Modules

Proof. Let s ∈ {1, . . . , r}. Then we have {(p1, . . . , pr) ∈ O | ps 6= 0} = Oses by
Definition 2.1.6. Thus the claim follows immediately from Definition 2.1.11 and Propo-
sition 2.1.5.

After all the basic concepts concerning order ideals in Tn〈e1, . . . , er〉, we are now able
to define border bases in P r. If r = 1, our notion of border bases exactly yields the usual
border bases as, for instance, defined in [KR05, Defn. 6.4.10 and 6.4.13].

Definition 2.1.14. Let O be a finite order ideal in Tn〈e1, . . . , er〉. We write the order
ideal O = {t1eα1 , . . . , tµeαµ} and ∂O = {b1eβ1 , . . . , bνeβν} with µ, ν ∈ N, ti, bj ∈ Tn, and
with αi, βj ∈ {1, . . . , r} for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}.

a) A set of vectors G = {g1, . . . , gν} ⊆ P r is called an O-border prebasis if the
vectors have the form gj = bjeβj −

∑µ
i=1 aijtieαi with aij ∈ K for all i ∈ {1, . . . , µ}

and j ∈ {1, . . . , ν}.

b) Let G = {g1, . . . , gν} ⊆ P r be an O-border prebasis and U ⊆ P r be a P -submodule.
We call G an O-border basis of U if G ⊆ U and if the residue classes of the
elements of O in P r/U form a K-vector space basis of P r/U .

Example 2.1.15. Consider the order ideal O in T2〈e1, e2〉 of Example 2.1.12, again.
Recall that P = Q[x, y], that O = {e1, xe1, ye1, e2, xe2, x

2e2}, and that the border was of
the form ∂O = {y2e1, xye1, x

2e1, ye2, xye2, x
2ye2, x

3e2}. Let G = {g1, . . . , g7} ⊆ P 2 be
with g1 = y2e1−xe2, g2 = xye1−e2, g3 = x2e1−ye1 +e2, g4 = ye2−e1−ye1−xe1−e2,
g5 = xye2 + 3e1, g6 = x2ye2 − e1 − e2, and g7 = x3e2 − e1. Then G is an O-border
prebasis according to Definition 2.1.14. Since we have xg5 − g6 = 3xe1 + e1 + e2, we get
0 = 3xe1+e1+e2 in P 2/〈G〉. Thus G is not an O-border basis of 〈G〉 by Definition 2.1.14.

Remark 2.1.16. If r = 1, there is a canonical P -algebra isomorphism between the
free P -module P r and the polynomial ring P . To shorten the notation, we use the
correspondence given by this P -module isomorphism without mention.

2.2 The Border Division Algorithm

The following section is dedicated to the introduction of a division algorithm for border
prebases. It serves as the basic part of many of the latter proofs in this chapter. In
particular, it allows us to compute representatives of elements of residue class modules
P r/〈G〉 for any border prebasis G and enables us to define a normal form with respect
to a submodule U ⊆ P r that are given by a border basis.

For the whole section, we let O = {t1eα1 , . . . , tµeαµ} be an order ideal in Tn〈e1, . . . , er〉
with border ∂O = {b1eβ1 , . . . , bνeβν} where we have µ, ν ∈ N, ti, bj ∈ Tn, and where
αi, βj ∈ {1, . . . , r} for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}. We let G = {g1, . . . , gν} ⊆ P r
always be an O-border prebasis and for all j ∈ {1, . . . , ν}, we let a1j , . . . , aµj ∈ K be
such that gj = bjeβj −

∑µ
i=1 aijtieαi .

16



2.2 The Border Division Algorithm

The following division algorithm allows us to divide any vector v ∈ P r by the O-border
prebasis G and get a representative of the residue class of v in P r/〈G〉 that is contained
in the K-vector space 〈O〉K . It is a generalization of [KR05, Prop. 6.4.11].

Algorithm 1: divAlg(v,G)

Input:
v ∈ P r;
G = {g1, . . . , gν} ⊆ P r is an O-border prebasis where O = {t1eα1 , . . . , tµeαµ}, and
∂O = {b1eβ1 , . . . , bνeβν} with µ, ν ∈ N, ti, bj ∈ Tn and αi, βj ∈ {1, . . . , r} for all
i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν};

1 (p1, . . . , pν) := 0 ∈ P ν
2 (q1, . . . , qr) := v
3 while (q1, . . . , qr) 6= 0 and indO((q1, . . . , qr)) > 0 do
4 choose tek ∈ Supp((q1, . . . , qr)) with indO(tek) = indO((q1, . . . , qr)).
5 Determine the smallest index j ∈ {1, . . . , ν} such that there exists a term t′ ∈ Tn

with deg(t′) = indO((q1, . . . , qr))− 1 and tek = t′bjeβj .
6 Let a ∈ K be the coefficient of tek = t′bjeβj in (q1, . . . , qr).
7 pj := pj + at′

8 (q1, . . . , qr) := (q1, . . . , qr)− at′gj
9 end

10 Determine c1, . . . , cµ ∈ K such that (q1, . . . , qr) = c1t1eα1 + · · ·+ cµtµeαµ .
11 return ((p1, . . . , pν), (c1, . . . , cµ))

Theorem 2.2.1. (The Border Division Algorithm)
Let v ∈ P r. Then Algorithm 1 is actually an algorithm and the result

((p1, . . . , pν), (c1, . . . , cµ)) := divAlg(v,G)

of Algorithm 1 applied to the input data v and G satisfies the following conditions.

i) The result ((p1, . . . , pν), (c1, . . . , cµ)) is a tuple in P ν ×Kµ and it does not depend
on the choice of the term tek in line 4.

ii) We have v = p1g1 + · · ·+ pνgν + c1t1eα1 + · · ·+ cµtµeαµ.

iii) For all j ∈ {1, . . . , ν} with pj 6= 0, we have deg(pj) ≤ indO(v)− 1.

Proof. First we show that every step of the procedure can be computed. We start to
consider an iteration of the while-loop starting in line 3. Let (q1, . . . , qr) ∈ P r be as
in line 4 and let m = indO((q1, . . . , qr)). Then (q1, . . . , qr) 6= 0 and m > 0. Thus
the existence of a term tek ∈ Supp((q1, . . . , qr)) such that indO(tek) = m in line 4
follows from Definition 2.1.11. We now take a closer look at line 5. Since the while-
loop in line 3 is executed, we have indO(tek) > 0, i.e. tek ∈ Tn〈e1, . . . , er〉 \ O by the
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2 Border Bases of Finitely Generated Modules

Definitions 2.1.2 and 2.1.11. By Proposition 2.1.13, there is a factorization tek = t′bjeβj
with a term t′ ∈ Tn of degree deg(t′) = indO(tek)−1 = m−1 and an index j ∈ {1, . . . , ν}.
At last, in line 10, the while-loop has already been executed, i.e. (q1, . . . , qr) = 0 or
indO((q1, . . . , qr)) = 0. In this situation, we have Supp((q1, . . . , qr)) ⊆ O according to
Definition 2.1.11 and can hence compute line 10. Altogether, we see that every step of
the procedure can actually be computed.
In order to prove the termination, we show that the while-loop starting in line 3 is
executed only finitely many times. Let j ∈ {1, . . . , ν} be defined as in line 5 and let
m = indO((q1, . . . , qr)) in this situation. Taking a closer look at the subtraction in line 8,
we see that we subtract the vector at′gj = at′bjeβj − at′

∑µ
i=1 aijtieαi from (q1, . . . , qr).

By the choices of j ∈ {1, . . . , ν} and t′ ∈ Tnm−1 in line 5 and the choice of a ∈ K in
line 6, it follows that the term tek = t′bjeβj with O-index m is replaced by terms of
the form t′tieαi ∈ ∂m−1O with i ∈ {1, . . . , µ}, which have strictly smaller O-index than
tek = t′bjeβj according to Proposition 2.1.13. The procedure hence terminates after
finitely many steps because there are only finitely many terms in the support of a given
vector whose O-index is smaller than or equal to the O-index of a given term. Altogether,
we see that the procedure is actually an algorithm.
Next we prove the correctness. To this end, we start to prove that the equation

v = p1g1 + · · · + pνgν + (q1, . . . , qr) is an invariant of the while-loop in line 3. Before
the first iteration of the while-loop, we have p1 = · · · = pν = 0 and (q1, . . . , qr) = v, i.e.
the invariant is obviously satisfied. We now consider the changes of (p1, . . . , pν) ∈ P ν
and (q1, . . . , qr) ∈ P r during one iteration of the while-loop. Let (p1, . . . , pν) ∈ P ν

and (q1, . . . , qr) ∈ P r be such that the invariant holds, and let (p′1, . . . , p
′
ν) ∈ P ν and

(q′1, . . . , q
′
r) ∈ P r be the values of (p1, . . . , pν) and (q1, . . . , qr) after one iteration of the

while-loop. The values of the vectors (p1, . . . , pν) ∈ P ν and (q1, . . . , qr) ∈ P r are only
changed in the lines 7 and 8. Let j ∈ {1, . . . , ν} and t′ ∈ Tn be as in line 5. Then we have
p′j = pj + at′, p′i = pi for all i ∈ {1, . . . , ν} \ {j}, and (q′1, . . . , q

′
r) = (q1, . . . , qr) − at′gj .

This yields

v = p1g1 + · · ·+ pνgν + (q1, . . . , qr)

= p′1g1 + · · ·+ p′j−1gj−1 + (p′j − at′)gj + p′j+1gj+1 + · · ·+ p′νgν + ((q′1, . . . , q
′
r) + at′gj)

= p′1g1 + · · · p′νgν + (q′1, . . . , q
′
r),

i.e. the invariant is also satisfied after one iteration of the while-loop. By induction on
the number of iterations of the while-loop, we see that the invariant is always satisfied.
As we have already seen in the proof of the termination, the term t′ in line 5 always has
at most the degree indO(v)− 1. Since the support of the polynomials p1, . . . , pν consists
precisely of these terms t′ by the lines 1 and 7, it follows that deg(pj) ≤ indO(v) − 1
for all j ∈ {1, . . . , ν} with pj 6= 0 at the end of the algorithm. In line 10, we have
v = p1g1 + · · · + pνgν + (q1, . . . , qr) = p1g1 + · · · + pνgν + c1t1eα1 + · · · + cµtµeαµ with
scalars c1, . . . , cµ ∈ K. Thus the algorithm returns a tuple with the claimed properties
in line 11.
Finally, we prove that the result does not depend on the choice of the term tek in line 4.
This fact follows from the observation that tek in (q1, . . . , qr) is replaced by terms of
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2.2 The Border Division Algorithm

strictly smaller O-index in line 8 during every iteration of the while-loop in line 3. Thus
different choices of the term tek in line 4 do not interfere with one another. Altogether,
we see that the final result, after all terms of maximal O-index have been rewritten, is
independent of the ordering in which they are handled.

For every vector v ∈ P r, the Border Division Algorithm 2.2.1 can be used to compute
a representative of the residue class of v in P r/〈G〉 that is a K-linear combination of the
elements of O. This gives rise to the following definition of the normal remainder with
respect to the O-border prebasis G.

Definition 2.2.2. Let v ∈ P r. We apply the Border Division Algorithm 2.2.1 to v
and G to obtain a representation v = p1g1 + · · · + pνgν + c1t1eα1 + · · · + cµtµeαµ with
p1, . . . , pν ∈ P , c1, . . . , cµ ∈ K, and such that for all j ∈ {1, . . . , ν} where pj 6= 0,
deg(pj) ≤ indO(v)− 1. Then the vector NRG(v) = c1t1eα1 + · · ·+ cµtµeαµ ∈ 〈O〉K ⊆ P r
is called the normal remainder of v with respect to G.

Example 2.2.3. In order to illustrate Algorithm 1, we consider the O-border prebasis
G ⊆ P 2 of Example 2.1.15, again.

O1

x

y

t1

t2

t3

b1

b2

b3

O2

x

y

t4 t5 t6

b4 b5 b6

b7

terms in O terms in ∂O

Recall that P = Q[x, y], {e1, e2} was the canonical P -module basis of P 2, that we had
O = {e1, ye1, xe1, e2, xe2, x

2e2} = {t1eα1 . . . , t6eα6}, that the border of O was of the
form ∂O = {y2e1, xye1, x

2e1, ye2, xye2, x
2ye2, x

3e2} = {b1eβ1 , . . . , b7eβ7}, and that we
had G = {g1, . . . , g7} with g1 = y2e1 − xe2, g2 = xye1 − e2, g3 = x2e1 − ye1 + e2,
g4 = ye2− e1− ye1−xe1− e2, g5 = xye2 + 3e1, g6 = x2ye2− e1− e2, and g7 = x3e2− e1.
We now consider the steps of the Border Division Algorithm 1 applied to the input data
v = x3e1 + xye1 + x3ye2 ∈ P 2 and G in detail.
The initialization process in the lines 1 and 2 yields (p1, . . . , p7) = (0, 0, 0, 0, 0, 0, 0)

and (q1, q2) = (x3 + xy, x3y). Since indO((q1, q2)) = indO(x3e1) = indO(x3ye2) = 2 > 0,
the while-loop in line 3 is executed.
We choose the term x3ye2 in line 4. Then we have j = 6 and get the factorization
x3ye2 = x·x2ye2 = x·b6eβ6 in line 5. After line 7, we have (p1, . . . , p7) = (0, 0, 0, 0, 0, x, 0)
and after line 8, we have (q1, q2) = (x3 + xy, x3y)− x · (−1, x2y − 1) = (x3 + xy + x, x).
Now the O-index is indO((q1, q2)) = indO(x3e1) = 2 > 0.
Thus we must choose the term x3e1 in line 4. Then we have j = 3 and get the factoriza-
tion x3e1 = x ·x2e1 = x · b3eβ3 in line 5. This yields (p1, . . . , p7) = (0, 0, x, 0, 0, x, 0) after
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line 7 and (q1, q2) = (x3 + xy+ x, x)− x · (x2 − y, 1) = (2xy+ x, 0) after line 8. Now the
O-index has decreased to indO((q1, q2)) = indO(xye1) = 1 > 0.
Hence we must choose the term xye1 in line 4. Then we have j = 2 and get the factor-
ization xye1 = 1 · xye1 = 1 · b2eβ2 in line 5. This yields (p1, . . . , p7) = (0, 2, x, 0, 0, x, 0)
after line 7 and (q1, q2) = (2xy + x, 0)− 2 · (xy,−1) = (x, 2) after line 8.
After that, (q1, q2) 6= 0 and indO((q1, q2)) = 0. As (q1, q2) = (x, 2) = t3eα3 + 2t4eα4 ,
the algorithm returns the tuple ((0, 2, x, 0, 0, x, 0), (0, 0, 1, 2, 0, 0)) ∈ P 7 ×K6 in line 10.
Moreover, this yields that v = x3e1 + xye1 + x3ye2 = 2g2 + xg3 + xg6 + NRG(v) with
NRG(v) = xe1 + 2e2 ∈ 〈O〉K according to Theorem 2.2.1 and Definition 2.2.2.

As a first consequence, we can prove that an O-border basis of a P -submodule U ⊆ P r
is indeed a basis, i.e. that G generates U . This generalizes [KR05, Prop. 6.4.15] to the
module setting.

Corollary 2.2.4. Assume that G is an O-border basis of a P -submodule U ⊆ P r. Then
we have 〈G〉 = U .

Proof. According to Definition 2.1.14, we have 〈G〉 ⊆ U . For the converse implication,
we let v ∈ U . We apply the Border Division Algorithm 2.2.1 to v and G to obtain a
representation v = w + c1t1eα1 + · · · + cµtµeαµ with w ∈ 〈G〉 ⊆ U and c1, . . . , cµ ∈ K.
It follows that 0 = v = c1t1eα1 + · · · + cµtµeαµ in P r/U . Since G is an O-border basis
of U , the residue classes of the elements of O form a K-vector space basis of P r/U by
Definition 2.1.14. Thus we get c1 = · · · = cµ = 0 and this implies v = w ∈ 〈G〉.

The Border Division Algorithm 2.2.1 also allows us to compute representatives of
residue classes modulo 〈G〉.

Corollary 2.2.5. The residue classes of the elements of O in P r/〈G〉 generate the
K-vector space P r/〈G〉. In particular, for every vector v ∈ P r, the normal remainder
NRG(v) ∈ 〈O〉K of v with respect to G is a representative of the residue class v ∈ P r/〈G〉.

Proof. Let v ∈ P r. We apply the Border Division Algorithm 2.2.1 to v and G to obtain a
representation v = p1g1 + · · ·+ pνgν + NRG(v) with p1, . . . , pν ∈ P and NRG(v) ∈ 〈O〉K .
Thus v = NRG(v) in P r/〈G〉. The converse inclusion follows trivially from O ⊆ P r.

Another consequence is this first characterization of border bases.

Corollary 2.2.6. Let U ⊆ P r be a P -submodule with G ⊆ U . Then the following
conditions are equivalent.

i) The O-border prebasis G is an O-border basis of U .

ii) We have U ∩ 〈O〉K = {0}.

iii) We have P r = U ⊕ 〈O〉K .
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Proof. First we prove that i) implies ii). Let v ∈ U∩〈O〉K . Then there are c1, . . . , cµ ∈ K
with v = c1t1eα1 + · · · + cµtµeαµ . In P r/U , this yields 0 = v = c1t1eα1 + · · · + cµtµeαµ .
As G is an O-border basis of U , it follows that c1 = · · · = cµ = 0 by Definition 2.1.14
and thus v = 0. Since 0 ∈ U ∩ 〈O〉K trivially holds, the claim follws.
Next we prove that ii) implies iii). As we have U ∩ 〈O〉K = {0}, it suffices to prove

that P r = U+ 〈O〉K . Obviously, we have P r ⊇ U+ 〈O〉K . In order to prove the converse
inclusion, we let v ∈ P r. According to Corollary 2.2.5, v = w + NRG(v) with w ∈ 〈G〉
and NRG(v) ∈ 〈O〉K . The hypothesis G ⊆ U hence yields the claim.
Finally, we prove that iii) implies i). Let c1, . . . , cµ ∈ K be coefficients such that

c1t1eα1 + · · ·+ cµtµeαµ = 0 in P r/U . Then we have c1t1eα1 + · · ·+ cµtµeαµ ∈ U ∩ 〈O〉K .
Because of P r = U ⊕ 〈O〉K , we see that c1t1eα1 + · · ·+ cµtµeαµ = 0. As O is K-linearly
independent, it follows that c1 = · · · = cµ = 0. Hence the residue classes of the elements
of O in P r/U are K-linearly independent. Moreover, every vector v ∈ P r can be written
in the form v = w + NRG(v) where w ∈ 〈G〉 according to Corollary 2.2.5. As G ⊆ U
and as NRG(v) ∈ 〈O〉K by Definition 2.2.2, we see that the residue classes of O in P r/U
form also a K-generating set of P r/U . The claim now follows from Definition 2.1.14.

As we have seen in Corollary 2.2.5, we can use the Border Division Algorithm 2.2.1
to compute normal remainders with respect to the O-border prebasis G of every vector
v ∈ P r and that NRG(v) = v in P r/〈G〉. But normal remainders are not unique since they
depend on the ordering of the elements of G used during the computation. Therefore,
we cannot use normal remainders to decide whether two vectors in P r represent the
same residue class modulo 〈G〉. Fortunately, it turns out that we have unique normal
remainders if the O-border prebasis G is an O-border basis of 〈G〉.

Lemma 2.2.7. Let U ⊆ P r be a P -submodule and let G and G′ be two O-border bases
of U . Then we have NRG(v) = NRG′(v) for every vector v ∈ P r.

Proof. Let v ∈ P r. We apply the Border Division Algorithm 2.2.1 to v and G, and
to v and G′ in order to obtain two representations w + NRG(v) = v = w′ + NRG′(v)
with vectors w,w′ ∈ 〈G〉 and NRG(v),NRG′(v) ∈ 〈O〉K . As G and G′ are O-border
bases of U , Corollary 2.2.6 implies that U ∩ 〈O〉K = {0}. Thus the claim follows from
NRG(v)−NRG′(v) = −w + w′ ∈ 〈G〉 ∩ 〈O〉K ⊆ U ∩ 〈O〉K = {0}.

Remark 2.2.8. Let v ∈ P r be a vector. Similar to the situation of Gröbner bases and
border bases in P , the normal remainder of v with respect to the O-border prebasis G
is a representative of the residue class v ∈ P r/〈G〉 by Corollary 2.2.5. But the normal
remainder of v with respect to G depends on the particularly chosen O-border prebasis G
and on the ordering of the elements in G by Definition 2.2.2. Fortunately, if G is even
an O-border basis of 〈G〉, Lemma 2.2.7 shows that the normal remainder of v is inde-
pendent of the particularly chosen O-border basis G and the ordering of the elements
in G. Thus the normal remainder defines a normal form of v with respect to 〈G〉 in this
situation. In particular, we can also compute this normal form with the Border Division
Algorithm 2.2.1.
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If G is an O-border basis of a P -submodule U ⊆ P r, Corollary 2.2.4 and Remark 2.2.8
give rise to a normal form with respect to U . This normal form generalizes the normal
form defined in [KR05, Defn. 6.4.20].

Definition 2.2.9. Let G be an O-border basis of a P -submodule U ⊆ P r and let
v ∈ P r. Then we call the vector NFO,U (v) = NRG(v) ∈ 〈O〉K ⊆ P r, which is unique
according to Remark 2.2.8, the normal form of v with respect to O and U .

Before we end this section, we prove the basic properties of the normal form NFO,U
as defined in Definition 2.2.9 and compare it with the normal form NFσ,U defined by
a term ordering σ as in [KR00, Defn. 2.4.8] for a given P -submodule U ⊆ P r. This
proposition generalizes [KR05, Prop. 6.4.21] to the module setting. Recall that, for
every term ordering σ on Tn〈e1, . . . , er〉 and every submodule U ⊆ P r, the complement
Oσ(U) = Tn〈e1, . . . , er〉\LTσ{U} of the monomodule of all leading terms of the elements
of U is an order ideal in Tn〈e1, . . . , er〉 as defined in Definition 2.1.6.

Proposition 2.2.10. Let G be an O-border basis of a P -submodule U ⊆ P r.

a) Assume that there exists a term ordering σ on Tn〈e1, . . . , er〉 such that O = Oσ(U).
Then we have NFO,U (v) = NFσ,U (v) for all v ∈ P r.

b) We have NFO,U (cv + c′v′) = cNFO,U (v) + c′NFO,U (v′) for all c, c′ ∈ K and for
all v, v′ ∈ P r.

c) For every v ∈ P r, we have NFO,U (NFO,U (v)) = NFO,U (v).

d) For all p ∈ P and v ∈ P r, we have NFO,U (pv) = NFO,U (pNFO,U (v)).

Proof. Claim a) follows since for all v ∈ P r, both NFO,U (v) and NFσ,U (v) are equal to
the unique vector in v ∈ P r/U whose support is contained in O = Oσ(U) according
to Definition 2.2.9 and [KR00, Defn. 2.4.8]. The other claims follow from the same
uniqueness.

2.3 Existence and Uniqueness

In this section, we prove that every submodule U ⊆ P r with finite K-codimension in P r

possesses an O-border basis if we do not a priori fix the order ideal O in Tn〈e1, . . . , er〉.
Moreover, we show that O-border bases are unique for a predetermined order ideal O
in Tn〈e1, . . . , er〉 and we give a method to deduce reduced Gröbner bases from border
bases if the corresponding order ideal comes from a term ordering on Tn〈e1, . . . , er〉.

Before we start with the proofs, we recall the definition of fields of definitions of [KR00,
Defn. 2.4.14].
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Definition 2.3.1. Let U ⊆ P r be a P -submodule.

a) Let k ⊆ K be a subfield. We say that U is defined over k if there exist elements
in (k[x1, . . . , xn])r which generate U as a P -module.

b) A subfield k ⊆ K is called a field of definition of U if U is defined over k and
there exists no proper subfield k′ ⊂ k such that U is defined over k′.

Now we are able prove the existence and uniqueness of border bases in P r. The
following proposition generalizes [KR05, Prop. 6.4.17] to the module setting.

Proposition 2.3.2. (Existence and Uniqueness of Border Bases)
Let U ⊆ P r be a P -submodule and let O be a finite order ideal in Tn〈e1, . . . , er〉. More-
over, assume that the residue classes of the elements of O in P r/U form a K-vector
space basis of P r/U .

a) There exists a unique O-border basis of U .

b) Let G be an O-border prebasis with G ⊆ U . Then G is the O-border basis of U .

c) Let K ′ be the field of definition of U . Then the O-border basis of U is contained
in K ′[x1, . . . , xn].

Proof. In order to prove a), we write the order ideal O = {t1eα1 , . . . , tµeαµ} and its
border ∂O = {b1eβ1 , . . . , bνeβν} with µ, ν ∈ N, ti, bj ∈ Tn, and αi, βj ∈ {1, . . . , r} for all
i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}. Let j ∈ {1, . . . , ν}. As bjeβj /∈ O by Definition 2.1.7
and as the residue classes of the elements of O in P r/U form a K-vector space basis
of P r/U by assumption, there are a1j , . . . , aµj ∈ K with bjeβj = a1jt1eα1 + · · ·+aµjtµeαµ
in P r/U . In particular, gj = bjeβj −

∑µ
i=1 aijtieαi ∈ U . Thus G = {g1, . . . , gν} ⊆ U is

an O-border prebasis by Definition 2.1.14. As the residue classes of the elements of O
in P r/U form a K-vector space basis of P r/U , G is even an O-border basis of U by
Definition 2.1.14.
It remains to prove the uniqueness. Let G′ = {g′1, . . . , g′ν} ⊆ U be another O-border
basis of U where g′j = bjeβj −

∑µ
i=1 a

′
ijtieαi and a′ij ∈ K for all i ∈ {1, . . . , µ} and

j ∈ {1, . . . , ν}. Assume that there exist an i ∈ {1, . . . , µ} and a j ∈ {1, . . . , ν} such that
aij 6= a′ij . Then Corollary 2.2.6 yields the contradiction 0 6= gj − g′j ∈ U ∩ 〈O〉K = {0}.
Altogether, claim a) follows.
Next we show claim b). Since the residue classes of the elements of O in P r/U form

a K-vector space basis of P r/U , we see that G is an O-border basis of U by Defini-
tion 2.1.14.
Finally, we prove c). Let P ′ = K ′[x1, . . . , xn] and U ′ = U ∩ (P ′)r. Moreover, let σ be

a term ordering on Tn〈e1, . . . , er〉. Then the P -submodules U ⊆ P r and U ′ ⊆ (P ′)r have
the same reduced σ-Gröbner basis and LTσ{U} = LTσ{U ′} by [KR00, Lemma 2.4.16].
Hence we see that dimK((P ′)r/U ′) = dimK(P r/U) = #O according to Macaulay’s Basis
Theorem [KR00, Thm. 1.5.7]. Moreover, the elements of O are contained in (P ′)r and
they areK-linearly independent modulo U ′ ⊆ U . Thus the residue classes of the elements
of O in (P ′)r/U ′ form a K-vector space basis of (P ′)r/U ′. According to a), there exists
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2 Border Bases of Finitely Generated Modules

a unique O-border basis G′ ⊆ P r of U ′. Since G′ is an O-border prebasis with G′ ⊆ U ,
claim c) follows from b).

Next we show that for all term orderings σ on Tn〈e1, . . . , er〉, the reduced σ-Gröbner
basis of a P -submodule U ⊆ P r which has a finite K-codimension in P r is subset of the
Oσ(U)-border bases of U . Recall that for a term ordering σ on Tn〈e1, . . . , er〉, we denote
the complement of the momonodule LTσ{U} of all leading terms with respect to σ of a
P -submodule U by Oσ(U) = Tn〈e1, . . . , er〉 \ LTσ{U} and that Oσ(U) is an order ideal
in Tn〈e1, . . . , er〉 by Definition 2.1.6.

Definition 2.3.3. Let O be an order ideal in Tn〈e1, . . . , er〉. We call the elements of
the minimal generating set of the monomial submodule Tn〈e1, . . . , er〉 \ O the corners
of O.

Example 2.3.4. Let O = {e1, ye1, xe1, e2, xe2, x
2e2} be the order ideal in T2〈e1, e2〉 of

Example 2.1.9, again.

O1

x

y

O2

x

y

terms in O terms in ∂O corners of O

terms generated by a corner of O

Then y2e1, xye1, x2e1, ye2, and x3e2 are precisely the corners of O by Definition 2.3.3.

Proposition 2.3.5. Let U ⊆ P r be a P -submodule and let σ be a term ordering
on Tn〈e1, . . . , er〉. Then there exists a unique Oσ(U)-border basis G of U and the reduced
σ-Gröbner basis of U is the subset of G corresponding to the corners of Oσ(U).

Proof. By Macaulay’s Basis Theorem [KR00, Thm. 1.5.7], the residue classes of the
elements of Oσ(U) in P r/U form a K-vector space basis of P r/U . Thus Proposition 2.3.2
implies the existence of a unique Oσ(U)-border basis G of U .
For the other claim, let bek ∈ LTσ{U} with b ∈ Tn and k ∈ {1, . . . , r} be a corner of the

order ideal Oσ(U). According to the definition of the reduced σ-Gröbner basis of U , cf.
[KR00, Defn. 2.4.12], the corners of Oσ(U) are precisely the leading terms of the elements
of the reduced σ-Gröbner basis of U . Moreover, the element of the reduced σ-Gröbner
basis of U with leading term bek has the form bek −NFσ,U (bek) = bek −NFOσ(U),U ∈ G
and the claim follows.
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Remark 2.3.6. The proof of Proposition 2.3.5 gives rise to a naive algorithm for
the computation of a border basis of a given P -submodule U ⊆ P r that has a fi-
nite K-codimension in P r. Let σ be any term ordering on Tn〈e1, . . . , er〉. We first
have to compute a σ-Gröbner basis H of P r/U to determine the order ideal Oσ(U)
in Tn〈e1, . . . , er〉 with Macaulay’s Basis Theorem [KR00, Thm. 1.5.7]. Then we com-
pute its border ∂Oσ(U) = {b1eβ1 , . . . , bνeβν}. Recall that NFσ,U = NFOσ(U),U according
to Proposition 2.2.10. Using H and the Division Algorithm for Gröbner Bases [KR00,
Thm. 1.6.4], we then compute gj = bjeβj−NFσ,U (bjeβj ) = bjeβj−NRσ,H(bjeβj ) ∈ U ⊆ P r
for all j ∈ {1, . . . , ν}. According to Proposition 2.3.2, the set G = {g1, . . . , gν} ⊆ P r is
then the Oσ(U)-border basis of U .

2.4 Characterizations

Now that we know that every submodule of P r with finite K-codimension in P r indeed
possesses a border basis, we want to characterize border bases in several ways. All the
characterizations of this section are generalizations of the corresponding ones in [KK05]
and [KR05, Subsection 6.4.B]. More precisely, we want to determine whether a given
O-border prebasis G ⊆ P r is the O-border basis of 〈G〉.
First we prove that G is the O-border basis of 〈G〉 if and only if G satisfies a certain

special generation property in Theorem 2.4.1. After that, we show that G is the O-border
basis of 〈G〉 if and only if its border form module is generated by the border forms of
the elements of G in Theorem 2.4.5. Here the border form of a vector is a generalization
of the concept of leading terms that is also applicable if the order ideal does not come
from a term ordering. Then we introduce rewrite rules corresponding to border prebases
and show that such a rewrite rule is confluent if and only if we have a border bases
in Theorem 2.4.13. In Definition 2.4.24, we introduce the notion of liftings of border
syzygies. We prove that G is the O-border basis of 〈G〉 if and only if we are able to
lift the neighbor syzygies with respect to O in Theorem 2.4.26. Here the neighbors with
respect to O are the border basis analogon of the critical pairs of Gröbner bases. Finally,
we also prove a Buchberger Criterion for border bases in P r in Theorem 2.4.31. It allows
us to easily check whether we are given a border bases or not by applying the Border
Division Algorithm to the S-vectors corresponding to the neighbors with respect to O.
All the previously mentioned characterizations have analogous versions for Gröbner

bases, cf., for instance, [KR00, Thm. 2.4.1]. But we will also prove a characterization
of border bases that has no analogon in the Gröbner bases theory. The characterization
in Theorem 2.4.19 says that we only have to check whether the formal multiplication
matrices with respect to G, i.e. certain matrices that describe the multiplication by an
indeterminate in the residue class module P r/〈G〉, are pairwise commuting. For border
bases in P , this characterization was first proven in [Mou99]. It will play an important
role in the latter part of this thesis, namely in the Chapters 4 to 6. For instance, we can
study geometric properties of zero-dimensional closed subschemes of weighted projective
spaces by taking a careful look at the multiplicative structure of the corresponding pro-
jective coordinate rings which, in fact, is fully determined by the corresponding formal
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2 Border Bases of Finitely Generated Modules

multiplication matrices.

For the whole section, we let O = {t1eα1 , . . . , tµeαµ} be an order ideal in Tn〈e1, . . . , er〉
with border ∂O = {b1eβ1 , . . . , bνeβν} where we have µ, ν ∈ N, ti, bj ∈ Tn and where
αi, βj ∈ {1, . . . , r} for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}. Let G = {g1, . . . , gν}
be an O-border prebasis and for all j ∈ {1, . . . , ν}, let a1j , . . . , aµj ∈ K be such that
gj = bjeβj −

∑µ
i=1 aijtieαi ∈ P r.

2.4.1 Special Generation

The first characterization shows that border bases are precisely the border prebases which
satisfy a special generation property. For border bases in P , this characterization was
first proven in [KK05, Prop. 9] and can also be found in [KR05, Prop. 6.4.23].

Theorem 2.4.1. (Border Bases and Special Generation)
The O-border prebasis G is the O-border basis of 〈G〉 if and only if the following equivalent
conditions are satisfied.

A1) For every vector v ∈ 〈G〉 \ {0}, there exist polynomials p1, . . . , pν ∈ P such that
v = p1g1 + · · ·+ pνgν and deg(pj) ≤ indO(v)− 1 for all j ∈ {1, . . . , ν} with pj 6= 0.

A2) For every vector v ∈ 〈G〉 \ {0}, there exist polynomials p1, . . . , pν ∈ P such that
v = p1g1 + · · ·+ pνgν and max{deg(pj) | j ∈ {1, . . . , ν}, pj 6= 0} = indO(v)− 1.

Proof. In order to show that A1) holds if G is the O-border basis of 〈G〉, let v ∈ 〈G〉\{0}.
We apply the Border Division Algorithm 2.2.1 to v and G to obtain a representation
v = p1g1 + · · ·+ pνgν + c1t1eα1 + · · ·+ cµtµeαµ with p1, . . . , pν ∈ P , c1, . . . , cµ ∈ K, and
deg(pj) ≤ indO(v)− 1 for all j ∈ {1, . . . , ν} with pj 6= 0. Since v ∈ 〈G〉, this yields that
0 = v = c1t1eα1 + · · ·+ cµtµeαµ in P r/〈G〉. As G is the O-border basis of 〈G〉, we have
c1 = · · · = cµ = 0 by Definition 2.1.14 and the claim follows.
Next we prove that A1) implies A2). Let v ∈ 〈G〉 \ {0} and let v = p1g1 + · · · + pνgν

be written with p1, . . . , pν ∈ P as in A1), i.e. such that pj = 0 or deg(pj) ≤ indO(v)− 1
for all j ∈ {1, . . . , ν}. If pj 6= 0 and deg(pj) < indO(v) − 1 for some j ∈ {1, . . . , ν},
Proposition 2.1.13 yields indO(pjgj) ≤ deg(pj) + indO(gj) = deg(pj) + 1 < indO(v).
Moreover, as v 6= 0, indO(v) ≤ max{indO(pjgj) | j ∈ {1, . . . , ν}, pj 6= 0} ≤ indO(v) is
also a consequence of Proposition 2.1.13. Altogether, we see that there has to be at least
one index j ∈ {1, . . . , ν} such that pj 6= 0 and deg(pj) = indO(v)− 1.
At last, we show that G is the O-border basis of 〈G〉 if A2) holds. Let v ∈ 〈G〉∩ 〈O〉K .

Assume that v 6= 0. Then A2) yields the existence of polynomials p1, . . . , pν ∈ P such
that v = p1g1 + · · · + pνgν and such that pj = 0 or deg(pj) ≤ indO(v) − 1 = −1 for
all j ∈ {1, . . . , ν}. Thus we see that p1 = · · · = pν = 0 and this contradicts v 6= 0.
Altogether, we have 〈G〉 ∩ 〈O〉K = {0} and the claim follows from Corollary 2.2.6.

Example 2.4.2. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Ex-
ample 2.2.3, again. Recall that P = Q[x, y], that the order ideal in T2〈e1, e2〉 was
O = {e1, xe1, ye1, e2, xe2, x

2e2}, and that g5 = xye2 + 3e1 and g6 = x2ye2 − e1 − e2.
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Then we have xg5 − g6 = 3xe1 + e1 + e2 ∈ 〈O〉Q and thus indO(xg5 − g6) = 0 by Def-
inition 2.1.11. In particular, as there are no non-zero polynomials of degree less than
or equal to indO(xg5 − g6) − 1 = −1, Condition A1) of Theorem 2.4.1 cannot be sat-
isfied for xg5 − g6 ∈ 〈G〉 \ {0}. Thus G is not the O-border basis of 〈G〉 according to
Theorem 2.4.1. Note, that this result coincides with Example 2.1.15.

2.4.2 Border Form Modules

In this subsection, we introduce the notion of border forms. It serves as a generalization
of the concept of leading terms and is also applicable if the order ideal O in Tn〈e1, . . . , er〉
does not come from a term ordering on Tn〈e1, . . . , er〉. For border bases in the polynomial
ring P , this characterization was first proven in [KK05, Prop. 11] and can also be found
in [KR05, Prop. 6.4.25].

Definition 2.4.3. a) Let v ∈ P r \ {0}. We write v in the form v = c1u1 + · · ·+ csus
where s ∈ N \ {0}, c1, . . . , cs ∈ K \ {0} are scalars, and u1, . . . , us ∈ Tn〈e1, . . . , er〉
are terms such that indO(u1) ≥ indO(u2) ≥ · · · ≥ indO(us). Let j ∈ {1, . . . , s}
be the maximal index such that indO(uj) = indO(v). Then we call the vector
BFO(v) =

∑j
i=1 ciui ∈ P r the border form of v with respect to O.

b) Let U ⊆ P r be a P -submodule. Then the border form module of U with respect
to O is defined to be the P -submodule BFO(U) = 〈BFO(v) | v ∈ U \ {0}〉 ⊆ P r.

Example 2.4.4. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Exam-
ple 2.2.3, again. Recall that we had P = Q[x, y], that {e1, e2} denoted the canonical
P -module basis of P 2, that O = {e1, xe1, ye1, e2, xe2, x

2e2}, and that g5 = xye2 + 3e1

and g6 = x2ye2−e1−e2. Then we have xg5−3xg6 = −3x3ye2 +x2ye2 +6xe1 +3xe2 and
xg5 − g6 = 3xe1 + e1 + e2, i.e. indO(xg5 − 3xg6) = 2 and indO(xg5 − g6) = 0 by Defini-
tion 2.1.11. Thus we have BFO(xg5−3xg6) = −3x3ye2 and BFO(xg5−g6) = 3xe1+e1+e2

according to Definition 2.4.3.

Theorem 2.4.5. (Border Bases and Border Form Modules)
The O-border prebasis G is the O-border basis of 〈G〉 if and only if the following equivalent
conditions are satisfied.

B1) For every v ∈ 〈G〉 \ {0}, we have Supp(BFO(v)) ⊆ Tn〈e1, . . . , er〉 \ O.

B2) We have BFO(〈G〉) = 〈BFO(g1), . . . ,BFO(gν)〉 = 〈b1eβ1 , . . . , bνeβν 〉.

Proof. First we prove that condition B1) is satisfied if G is the O-border basis of 〈G〉.
Let v ∈ 〈G〉 \ {0}. Assume that BFO(v) contains a term of O in its support. Then we
have indO(v) = 0 and thus v = BFO(v) ⊆ 〈O〉K by Definition 2.4.3. Now Corollary 2.2.6
yields the contradiction v ∈ 〈G〉 ∩ 〈O〉K = {0}. Thus BFO(v) does not contain a term
of O in its support and the claim follows.
Next we show that B1) implies B2). For all j ∈ {1, . . . , ν}, we have gj ∈ 〈G〉 \ {0}

and thus bjeβj = BFO(gj) ∈ BFO(〈G〉) by Definition 2.4.3. For the converse inclusion,
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let v ∈ 〈G〉 \ {0}. Then B1) implies that Supp(BFO(v)) ⊆ Tn〈e1, . . . , er〉 \ O. Thus
Proposition 2.1.10 yields that every term in the support of BFO(v) is divisible by a term
in ∂O = {b1eβ1 , . . . , bνeβν}. In other words, BFO(v) ∈ 〈b1eβ1 , . . . , bνeβν 〉.
Finally, we prove that G is the O-border basis of 〈G〉 if B2) is satisfied. Assume

that there exists a vector v ∈ 〈G〉 ∩ 〈O〉K \ {0}. Then we have indO(v) = 0 and as
a consequence we have BFO(v) = v ⊆ 〈O〉K by Definition 2.4.3. Condition B2) and
Proposition 2.1.10 now yield the contradiction v = 0. Altogether, the claim follows from
Corollary 2.2.6.

Example 2.4.6. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Exam-
ple 2.4.4, again. Recall that P = Q[x, y], that {e1, e2} denoted the canonical P -module
basis of P 2, and that BFO(xg5 − g6) = 3xe1 + e1 + e2 ∈ 〈O〉Q. Then Condition B1)
of Theorem 2.4.5 does not hold for G. Therefore, G is not the O-border basis of 〈G〉
according to Theorem 2.4.5. Note, that this result coincides with Example 2.4.2.

2.4.3 Rewrite Rules

In this subsection, we define rewrite rules defined by border prebases. Though these
rewrite rules are, in general, not Noetherian according to Remark 2.4.11, it turns out
that they are confluent if and only if the corresponding border prebasis is a border basis.
For border bases in P , this characterization was first proven in [KK05, Prop. 14] and can
also be found in [KR05, Prop. 6.4.28].

Definition 2.4.7. a) Let v ∈ P r \ {0} and let tek ∈ Supp(v) be such that there
exists a factorization tek = t′bjeβj with t′ ∈ Tn and j ∈ {1, . . . , ν}. Let c ∈ K be
the coefficient of tek in v. Then the vector v − ct′gj ∈ P r does not contain the
term tek in its support anymore. We say that v reduces to v− ct′gj in one step
using the rewrite rule

gj−→ defined by gj and write v
gj−→ v − ct′gj . The passage

from v to v − ct′gj is also called a reduction step using gj .

b) The reflexive, transitive closure of the rewrite rules
gj−→ defined by gj for all indices

j ∈ {1, . . . , ν} is called the rewrite relation associated toG and is denoted by G−→.

c) The equivalence relation generated by G−→ is denoted by G←→.

Example 2.4.8. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Exam-
ple 2.2.3, again. Recall that P = Q[x, y], that {e1, e2} denoted the canonical P -module
basis of P 2, that the order ideal in T2〈e1, e2〉 was O = {e1, xe1, ye1, e2, xe2, x

2e2}, and
that g2 = xye1−e2, g6 = x2ye2−e1−e2, and g7 = x3e2−e1. Since we have x4y2 = x3y·xy
and x3y = x · x2y = y · x3, we see that 2x4y2e1

g2−→ 2x4y2e1 − 2x3yg2 = 2x3ye2,
2x3ye2

g6−→ 2x3ye2 − 2xg6 = 2xe1 + 2xe2, and 2x3ye2
g7−→ 2x3ye2 − 2yg7 = 2ye1 by

Definition 2.4.7. Therefore, it follows that x4y2 G−→ 2ye1 and 2xe1 + 2xe2
G←→ 2ye1

according to Definition 2.4.7.
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The following proposition gathers the basic properties of rewrite rules and generalizes
[KK05, Prop. 13] and [KR05, Rem. 6.4.27] to the module setting. In particular, we give
an explicit, complete proof of it.

Proposition 2.4.9. a) If v1, v2 ∈ P r satisfy v1
G−→ v2 and if c ∈ K and t ∈ Tn,

then we have ctv1
G−→ ctv2.

b) If v1, v2 ∈ P r satisfy v1
gj−→ v2 for j ∈ {1, . . . , ν} and if v3 ∈ P r, then there exists

a vector v4 ∈ P r such that v1 + v3
G−→ v4 and v2 + v3

G−→ v4.

c) If v1, v2, v3, v4 ∈ P r satisfy v1
G←→ v2 and v3

G←→ v4, then v1 + v3
G←→ v2 + v4.

d) If v1, v2 ∈ P r satisfy v1
G←→ v2 and if p ∈ P , then we have pv1

G←→ pv2.

e) For a vector v ∈ P r, we have v G←→ 0 if and only if v ∈ 〈G〉.

f) For vectors v1, v2 ∈ P r, we have v1
G←→ v2 if and only if v1 − v2 ∈ 〈G〉.

Proof. First we prove a). Let c ∈ K and t ∈ Tn. If c = 0, nothing needs to be shown.
Thus suppose that c 6= 0. By induction on the number of reduction steps, it suffices to
prove the claim for a single reduction step using gj where j ∈ {1, . . . , ν}. Let v1, v2 ∈ P r

and j ∈ {1, . . . , ν} be such that v1
gj−→ v2. Then Definition 2.4.7 yields the existence of a

term t̂eβj ∈ Supp(v1), a term t′ ∈ Tn, and a coefficient c′ ∈ K such that v2 = v1 − c′t′gj
does not contain the term t̂eβj = t′bjeβj in its support anymore. Therefore, the vector
ctv2 = ctv1 − ctc′t′gj does also not contain the term tt̂eβj = tt′bjeβj in its support

anymore, i.e. we have ctv1
gj−→ ctv2 by Definition 2.4.7.

Next we show b). Let v1, v2, v3 ∈ P r be such that v1
gj−→ v2 for some j ∈ {1, . . . , ν}.

According to Definition 2.4.7, there exist a term tbjeβj ∈ Supp(v1) where t ∈ Tn and a
coefficient c ∈ K \ {0} such that v2 = v1 − ctgj and such that v2 does not contain the
term tbjeβj in its support anymore. Let c′ ∈ K be the coefficient of tbjeβj in v3. We
distinguish two cases. If c′ = −c, we have v1 + v3 = v2 + ctgj + v3 = v2 + v3 − c′tgj
and v2 + v3 − c′tgj does not contain the term tbjeβj in its support anymore, i.e. we have

v1 + v3
gj−→ v2 + v3. The claim now follows with v4 = v2 + v3. If c′ 6= −c, we define

v4 = v1 + v3 − (c + c′)tgj = v2 + ctgj + v3 − (c + c′)tgj = v2 + v3 − c′tgj . Then we see
that v4 does not contain the term tbjeβj in its support anymore and the claim follows.

For the proof of c), we let v1, . . . , v4 ∈ P r be such that v1
G←→ v2 and v3

G←→ v4. Then
by Definition 2.4.7, there are vectors v′0, . . . , v′k ∈ P r where k ∈ N satisfying v′0 = v1,

v′k = v2, and v′`−1

gi`−→ v′` or v′`−1

gi`←− v′` where i` ∈ {1, . . . , ν} for all ` ∈ {1, . . . , k}.
By b), for all ` ∈ {1, . . . , k}, there is a ṽ′` ∈ P r satisfying v′`−1 + v3

G−→ ṽ′`
G←− v′` + v3.

Therefore, for all indices ` ∈ {1, . . . , k}, we have v′`−1 + v3
G←→ v′` + v3 and induction

on ` ∈ {1, . . . , k} yields v1+v3
G←→ v2+v3 by Definition 2.4.7. An analogous construction

yields the claim v2 + v4
G←→ v2 + v3

G←→ v1 + v3.
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2 Border Bases of Finitely Generated Modules

In order to show d), we let v1, v2 ∈ P r be vectors such that v1
G←→ v2 and we let

p = c1u1 + · · ·+ csus ∈ P be with s ∈ N, c1, . . . , cs ∈ K, and u1, . . . , us ∈ Tn. Then we
have ciuiv1

G←→ ciuiv2 for all i ∈ {1, . . . , s} by a). Induction on i ∈ {1, . . . , s} and c)
now yield the claim pv1 = c1u1v1 + · · ·+ csusv1

G←→ c1u1v2 + · · ·+ csusv2 = pv2.
For the proof of e), let v ∈ P r. If v G←→ 0, we collect the monomials used in the various

reduction steps and get polynomials p1, . . . , pν ∈ P such that v = p1g1 + · · ·+pνgν ∈ 〈G〉.
For the converse implication, suppose that v ∈ 〈G〉. Then there exist p1, . . . , pν ∈ P such
that v = p1g1 + · · · + pνgν ∈ 〈G〉. Obviously, we have gj

G←→ 0 by Definition 2.4.7 and
thus d) yields pjgj

G←→ 0 for all j ∈ {1, . . . , ν}. Therefore, induction on j ∈ {1, . . . , ν}
together with claim c) shows v = p1g1 + · · ·+ pνgν

G←→ 0.
Finally, we show the equivalence in f). Let v1, v2 ∈ P r. We have v G←→ v for all

v ∈ P r by Definition 2.4.7. In particular, we see that −v2
G←→ −v2. Thus the condition

v1
G←→ v2 is equivalent to the condition v1 − v2

G←→ v2 − v2 = 0 by c). Hence f) is a
direct consequence of e).

After we have introduced rewrite rules and seen basic properties of them concerning
specific elements in P r, we are now particularly interested in the overall properties of
rewrite rules.

Definition 2.4.10. a) A vector v1 ∈ P r is called irreducible with respect to the
rewrite relation G−→ if there are no j ∈ {1, . . . , ν} and v2 ∈ P r such that v1

gj−→ v2.

b) The rewrite relation G−→ is called Noetherian if there is no infinitely descending
chain v0

gi0−→ v1
gi1−→ v2

gi2−→ · · · with ij ∈ {1, . . . , ν} and vj ∈ P r for all j ∈ N.

c) The rewrite relation G−→ is called confluent if for all vectors v1, v2, v3 ∈ P r satis-
fying v1

G−→ v2 and v1
G−→ v3, there exists a vector v4 ∈ P r such that v2

G−→ v4

and v3
G−→ v4.

v2

v1 v4

v3

G

G

G

G

Remark 2.4.11. a) For r = 1, border bases in P r coincide with the usual border
bases in P by Remark 2.1.16. Thus [KR05, Exmp. 6.4.26] shows that the rewrite
relation G−→ is not Noetherian, in general.
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b) A vector v ∈ P r is irreducible with respect to G−→ if and only if v ∈ 〈O〉K according
to Proposition 2.1.10 and the Definitions 2.4.7 and 2.4.10.

c) Considering the steps of the Border Division Algorithm 2.2.1 in detail, we see that
it performs reduction steps using gj where j ∈ {1, . . . , ν} to compute the normal
remainder with respect to G of a given vector. Thus for every v ∈ P r, we have
v

G−→ NRG(v). In particular, NRG(v) ∈ 〈O〉K is irreducible with respect to G−→
by b).

Example 2.4.12. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Exam-
ple 2.4.8, again. Recall that P = Q[x, y], that {e1, e2} denoted the canonical P -module
basis of P 2, O = {e1, ye1, xe1, e2, xe2, x

2e2}, and that 2xe1 + 2xe2
G←− 2x3ye2

G−→ 2ye1.
Since 2xe1+2xe2, 2ye1 ∈ 〈O〉Q, the vectors 2xe1+2xe2 and 2ye1 are both irreducible with
respect to G−→ by Remark 2.4.11. In particular, it follows that the rewrite relation G−→
is not confluent according to Definition 2.4.10.

Now we have all ingredients to characterize border bases via rewrite rules. The fol-
lowing theorem generalizes [KK05, Prop. 14] and [KR05, Prop. 4.2.28] to the module
setting.

Theorem 2.4.13. (Border Bases and Rewrite Rules)
The O-border prebasis G is the O-border basis of 〈G〉 if and only if the following equivalent
conditions are satisfied.

C1) For all v ∈ P r, we have v G−→ 0 if and only if v ∈ 〈G〉.

C2) If v ∈ 〈G〉 is irreducible with respect to G−→, then we have v = 0.

C3) For all v ∈ P r, there is a unique vector w ∈ P r such that v G−→ w and such that w
is irreducible with respect to G−→.

C4) The rewrite relation G−→ is confluent.

Proof. First we show that C1) implies C2). Let v ∈ 〈G〉 be irreducible with respect
to G−→. As we have v G−→ 0 by C1), v must be zero by the Definitions 2.4.7 and 2.4.10.

Next we show that C2) implies C3). Let v ∈ P r. According to Remark 2.4.11, NRG(v)
is a vector with the claimed properties. In order to show the uniqueness, we let w ∈ P r be
irreducible with respect to G−→ and satisfying v G−→ w. Then we see that NRG(v)

G←→ w
by Definition 2.4.7 and it follows NRG(v) − w ∈ 〈G〉 according to Proposition 2.4.9.
Additionally, Remark 2.4.11 yields that NRG(v)− w ∈ 〈O〉K is irreducible with respect
to G−→. Thus the claim follows from C2).
In order to prove that C3) implies C4), we let v1, v2, v3 ∈ P r be satisfying v1

G−→ v2 and
v1

G−→ v3. According to Remark 2.4.11, we see that v1
G−→ v2

G−→ NRG(v2) ∈ 〈O〉K and
v1

G−→ v3
G−→ NRG(v3) ∈ 〈O〉K , and that both NRG(v2) and NRG(v3) are irreducible
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with respect to the rewrite relation G−→. Thus C3) implies NRG(v2) = NRG(v3) and the
claim follows by Definition 2.4.10.
For the proof that C4) implies C1), let v ∈ P r be satisfying v G−→ 0. Then Proposi-

tion 2.4.9 yields v ∈ 〈G〉. For the converse implication, we let v ∈ 〈G〉. Then Propo-
sition 2.4.9 yields v G←→ 0. Let v0, . . . , vk ∈ P r with k ∈ N be such that v0 = v,
vk = 0, and v`−1

G−→ v` or v`−1
G←− v` for all ` ∈ {1, . . . , k}. If there exists no index

` ∈ {1, . . . , k} such that v`−1
G←− v`, the claim follows immediately from Definition 2.4.7.

Thus suppose that v`−1
G←− v` for some ` ∈ {1, . . . , k}. By Definition 2.4.7, we see that

vk−1
G−→ vk = 0. Let s ∈ {1, . . . , k−1} be maximal such that vs−1

G←− vs. Then we have
vs

G−→ 0 and vs
G−→ vs−1. Moreover, 0 ∈ 〈O〉K and thus 0 is irreducible with respect

to G−→ according to Remark 2.4.11. C4) and Definition 2.4.10 thus yield vs−1
G−→ 0.

If we replace the sequence v0, . . . , vk−1, 0 with the shorter sequence v0, . . . , vs−1, 0, we
see that the claim follows by induction on the number of reduction steps v`−1

G←− v`
where ` ∈ {1, . . . , k}.
Next we show that condition C1) is satisfied if G is the O-border basis of 〈G〉. If a

vector v ∈ P r satisfies v G−→ 0, we have v ∈ 〈G〉 by Proposition 2.4.9. Conversely, let
v ∈ 〈G〉. Then v G−→ NRG(v) ∈ 〈O〉K follows from Remark 2.4.11. Since v ∈ 〈G〉, we
also have NRG(v) ∈ 〈G〉 according to Definition 2.4.7. By Corollary 2.2.6, we see that
NRG(v) ∈ 〈G〉 ∩ 〈O〉K = {0} and the claim follows.
Finally, we prove that G is the O-border basis of 〈G〉 if C2) holds. Assume that there

exists a v ∈ 〈G〉 ∩ 〈O〉K \ {0}. Then v is irreducible with respect to G−→ according to
Remark 2.4.11 and C2) yields the contradiction v = 0. The claim hence follows from
Corollary 2.2.6.

Example 2.4.14. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Exam-
ple 2.4.12, again. Recall that the rewrite relation G−→ was not confluent. Therefore, G is
not the O-border basis of 〈G〉 by Theorem 2.4.13. Note that this result coincides with
Example 2.4.6.

2.4.4 Commuting Matrices

Next we characterize border bases via commuting matrices. This characterization is
due to [Mou99]. It is outstanding as there is no Gröbner bases analogon of it. The
theorem states that it suffices to consider the formal multiplication matrices, i.e. matrices
depending only on G that describe the multiplication by an indeterminate in the residue
class module P r/〈G〉, and check whether these matrices are pairwise commuting. This
is quite remarkable because by knowing that these matrices commute, we can explicitly
describe the whole multiplicative structure of the residue class module P r/〈G〉. Based
on this explicit description of the multiplicative structure, we study geometric properties
of zero-dimensional schemes in the Chapters 4 to 6.
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Definition 2.4.15. Given s ∈ {1, . . . , n}, we define the sth formal multiplication
matrix Xs = (ξ

(s)
k` )1≤k,`≤µ ∈ Matµ(K) of G by

ξ
(s)
k` =

{
δki if xst`eα` = tieαi ∈ O,
akj if xst`eα` = bjeβj ∈ ∂O.

Example 2.4.16. Consider the O-border prebasis G ⊆ P 2 of Example 2.2.3, again.
Recall that P = Q[x, y], that {e1, e2} was the canonical P -module basis of P 2, that we
had O = {e1, ye1, xe1, e2, xe2, x

2e2} = {t1eα1 , . . . , t6eα6}, and that G = {g1, . . . , g7} was
given by g1 = y2e1−xe2, g2 = xye1−e2, g3 = x2e1−ye1+e2, g4 = ye2−e1−ye1−xe1−e2,
g5 = xye2 +3e1, g6 = x2ye2−e1−e2, and g7 = x3e2−e1. Then the formal multiplication
matrices X ,Y ∈ Mat6(Q) of G are

X =



0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 , Y =



0 0 0 1 −3 1
1 0 0 1 0 0
0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 0 0 0 0 0

 .

Remark 2.4.17. Similar to the interpretation of the formal multiplication matrices of
a border prebasis in P in [KR05, p. 434], we can interpret the multiplication matrices of
the O-border prebases G ⊆ P r the following way: Let s ∈ {1, . . . , n} be an index and
let Xs ∈ Matµ(K) be the sth formal multiplication matrix of G. We can identify every
vector v = c1t1eα1 + · · · + cµtµeαµ ∈ 〈O〉K with the corresponding coordinate vector
(c1, . . . , cµ)tr ∈ Kµ. Then the vector (c′1, . . . , c

′
µ)tr = Xs · (c1, . . . , cµ)tr ∈ Kµ corresponds

to the vector c′1t1eα1 + · · ·+ c′µtµeαµ = NRG(xsv) ∈ 〈O〉K ⊆ P r. In particular, we have
c′1t1eα1 + · · ·+ c′µtµeαµ = xsv in P r/〈G〉 in this situation.

Before we actually prove the characterization of border bases via commuting matrices,
we show that if the formal multiplication matrices are pairise commuting, then 〈O〉K can
be equipped with a P -module structure.

Lemma 2.4.18. Assume that µ 6= 0, i.e. O 6= ∅. Let X1, . . . ,Xn ∈ Matµ(K) be the
formal multiplication matrices of G and assume that X1, . . . ,Xn are pairwise commuting.
Then the K-vector subspace 〈O〉K ⊆ P r is a P -module with scalar multiplication

p ◦ (c1t1eα1 + · · ·+ cµtµeαµ) = (t1eα1 , . . . , tµeαµ) · p(X1, . . . ,Xn) · (c1, . . . , cµ)tr

for all p ∈ P and all c1, . . . , cµ ∈ K. Moreover, the set {e1, . . . , er} ∩ O generates the
P -module 〈O〉K and for all c ∈ K and i ∈ {1, . . . , µ}, we have (cti) ◦ eαi = ctieαi .

Proof. Since the order ideal O is K-linearly independent, the map ◦ is well-defined.
Moreover, the K-vector subspace 〈O〉K ⊆ P r is obviously an additive group. For all
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p, q ∈ P and c1, . . . , cµ, d1, . . . , dµ ∈ K, the commutativity of the formal multiplication
matrices X1, . . . ,Xn with respect to G yields

1 ◦ (c1t1eα1 + · · ·+ cµtµeαµ)

= (t1eα1 , . . . , tµeαµ) · 1(X1, . . . ,Xn) · (c1, . . . , cµ)tr

= (t1eα1 , . . . , tµeαµ) · Iµ · (c1, . . . , cµ)tr

= c1t1eα1 + · · ·+ cµtµeαµ ,

and

(pq) ◦ (c1t1eα1 + · · ·+ cµtµeαµ)

= (t1eα1 , . . . , tµeαµ) · (pq)(X1, . . . ,Xn) · (c1, . . . , cµ)tr

= (t1eα1 , . . . , tµeαµ) · p(X1, . . . ,Xn) · q(X1, . . . ,Xn) · (c1, . . . , cµ)tr

= p ◦ ((t1eα1 , . . . , tµeαµ) · q(X1, . . . ,Xn) · (c1, . . . , cµ)tr)

= p ◦ (q ◦ (c1t1eα1 + · · ·+ cµtµeαµ)),

and

(p+ q) ◦ (c1t1eα1 + · · ·+ cµtµeαµ)

= (t1eα1 , . . . , tµeαµ) · (p+ q)(X1, . . . ,Xn) · (c1, . . . , cµ)tr

= (t1eα1 , . . . , tµeαµ) · (p(X1, . . . ,Xn) + q(X1, . . . ,Xn)) · (c1, . . . , cµ)tr

= (t1eα1 , . . . , tµeαµ) · p(X1, . . . ,Xn) · (c1, . . . , cµ)tr

+ (t1eα1 , . . . , tµeαµ) · q(X1, . . . ,Xn) · (c1, . . . , cµ)tr

= (p ◦ (c1t1eα1 + · · ·+ cµtµeαµ)) + (q ◦ (c1t1eα1 + · · ·+ cµtµeαµ)),

and

p ◦ ((c1t1eα1 + · · ·+ cµtµeαµ) + (d1t1eα1 + · · ·+ dµtµeαµ))

= p ◦ ((c1 + d1)t1eα1 + · · ·+ (cµ + dµ)tµeαµ)

= (t1eα1 , . . . , tµeαµ) · p(X1, . . . ,Xn) · (c1 + d1, . . . , cµ + dµ)tr

= (t1eα1 , . . . , tµeαµ) · p(X1, . . . ,Xn) · ((c1, . . . , cµ)tr + (d1, . . . , dµ)tr)

= (t1eα1 , . . . , tµeαµ) · p(X1, . . . ,Xn) · (c1, . . . , cµ)tr

+ (t1eα1 , . . . , tµeαµ) · p(X1, . . . ,Xn) · (d1, . . . , dµ)tr

= (p ◦ (c1t1eα1 + · · ·+ cµtµeαµ)) + (p ◦ (d1t1eα1 + · · ·+ dµtµeαµ)).

Altogether, we see that that (〈O〉K ,+, ◦) is indeed a P -module.
It remains to prove that the P -module 〈O〉K is generated by {e1, . . . , er} ∩ O. Let
O1, . . . ,Or be order ideals in Tn such that O = O1e1∪· · ·∪Orer as in Definition 2.1.6 and
for all s ∈ {1, . . . , n}, write Xs = (ξ

(s)
k` ) ∈ Matµ(K) as in Definition 2.4.15. Without loss

of generality we suppose that e1, . . . , e` ∈ O and e`+1, . . . , er /∈ O for some ` ∈ {1, . . . , r}
and that tkeαk = ek for all k ∈ {1, . . . , `}. Let {E1, . . . , Eµ} denote the canonicalK-vector

34



2.4 Characterizations

space basis of Kµ and let k ∈ {1, . . . , `}. We prove by induction on the degree of t that
t ◦ ek = tek for all t ∈ Ok. For the induction start, we have

1 ◦ ek = (t1eα1 , . . . , tµeαµ) · 1(X1, . . . ,Xn) · Etr
k

= (t1eα1 , . . . , tµeαµ) · Iµ · Etr
k

= (t1eα1 , . . . , tµeαµ) · Etr
k

= tkeαk
= ek.

For the induction step, suppose that there is a t ∈ Ok with deg(t) > 0. Then we have
tek = tieαi = xstjeαj for some i, j ∈ {1, . . . , µ} and s ∈ {1, . . . , n} by Definition 2.1.6.
The induction hypothesis yields t ◦ ek = (xstj) ◦ eαj = xs ◦ (tj ◦ eαj ) = xs ◦ (tjeαk). Thus
we see that

t ◦ ek = xs ◦ (tjeαj )

= (t1eα1 , . . . , tµeαµ) · xs(X1, . . . ,Xn) · Etr
j

= (t1eα1 , . . . , tµeαµ) · Xs · Etr
j

= (t1eα1 , . . . , tµeαµ) · (ξ(s)
1j , . . . , ξ

(s)
µj )tr

= δ1it1eα1 + · · ·+ δµitµeαµ

= tieαi

= tek

by Definition 2.4.15 i.e. the above claim has been proven by induction. For all c ∈ K
and i ∈ {1, . . . , µ}, we also have

c ◦ tieαi = (t1eα1 , . . . , tµeαµ) · c(X1, . . . ,Xn) · Etr
i

= (t1eα1 , . . . , tµeαµ) · cIµ · Etr
i

= (t1eα1 , . . . , tµeαµ) · cEtr
i

= ctieαi .

Altogether, since ` ∈ {1, . . . , r} is chosen such that {e1, . . . , er} ∩ O = {e1, . . . , e`}, it
follows that (c1t1)◦eα1 + · · ·+(cµtµ)◦eαµ = c1t1eα1 + · · ·+cµtµeαµ for all c1, . . . , cµ ∈ K,
i.e. the P -module 〈O〉K is generated by {e1, . . . , er} ∩ O.

After all, we are now able to prove the characterization of border bases via commuting
matrices. Note that we do not generalize the original proof in [Mou99, Thm. 3.1] for
border bases in P . We rather generalize the proofs of [KK05, Prop. 16] and [KR05,
Thm. 6.4.30]. Moreover, we explicitly determine equations which the coefficients of a
border prebasis must satisfy to determine a border basis. The corresponding proof of
these vanishing conditions for border bases in P can be found in the proof of [KK05,
Prop. 16] and in [KR05, Prop. 6.4.32].

35



2 Border Bases of Finitely Generated Modules

Theorem 2.4.19. (Border Bases and Commuting Matrices)
For all s ∈ {1, . . . , n}, we let Xs = (ξ

(s)
k` )1≤k,`≤µ ∈ Matµ(K) denote the formal multipli-

cation matrix of G as in Definition 2.4.15 and we define the map

%s : {1, . . . , µ} → N, i 7→

{
j if xstieαi = tjeαj ∈ O,
k if xstieαi = bkeβk ∈ ∂O.

Let O = {t1eα1 , . . . , tµeαµ} denote the image of O in P r/〈G〉. Then the O-border preba-
sis G is the O-border basis of 〈G〉 if and only if the following equivalent conditions are
satisfied.

D1) The formal multiplication matrices X1, . . . ,Xn of G are pairwise commuting.

D2) For all p ∈ {1, . . . , µ} and all s, u ∈ {1, . . . , n} with s 6= u, the following equations
are satisfied:

1) If xstieαi = tjeαj , xutieαi = bkeβk , and xsbkeβk = b`eβ` with i, j ∈ {1, . . . , µ}
and k, ` ∈ {1, . . . , ν}, we have∑

m∈{1,...,µ}
xstmeαm∈O

δp%s(m)amk +
∑

m∈{1,...,µ}
xstmeαm∈∂O

ap%s(m)amk = ap`.

2) If we have xstieαi = bjeβj and xutieαi = bkeβk with indices i ∈ {1, . . . , µ} and
j, k ∈ {1, . . . , ν}, we have∑

m∈{1,...,µ}
xstmeαm∈O

δp%s(m)amk +
∑

m∈{1,...,µ}
xstmeαm∈∂O

ap%s(m)amk

=
∑

m∈{1,...,µ}
xutmeαm∈O

δp%u(m)amj +
∑

m∈{1,...,µ}
xutmeαm∈∂O

ap%u(m)amj .

If these equivalent conditions are satisfied, then for every s ∈ {1, . . . , n}, the formal
multiplication matrix Xs represents the multiplication endomorphism of the K-vector
space P r/〈G〉 defined by v 7→ xsv, where v ∈ P r, with respect to the K-vector space
basis O.

Proof. If µ = 0, i.e. if O = ∅ and ∂O = {e1, . . . , er} = G, the claim is obviously true.
Thus suppose that µ 6= 0 and let {E1, . . . , Eµ} denote the canonical K-vector space basis
of Kµ.
First we prove that condition D1) is satisfied if G is the O-border basis of 〈G〉, i.e.

that O is a K-vector space basis of P r/〈G〉 by Definition 2.1.14. Let s ∈ {1, . . . , n}. The
formal multiplication matrix Xs defines a K-vector space endomorphism φs of P r/〈G〉
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with respect to the K-vector space basis O. We show that φs(v) = xsv for all v ∈ P r,
i.e. that φs is the multiplication by xs. Consider the expansions

φs(t1eα1) = ξ
(s)
11 t1eα1 + · · ·+ ξ

(s)
µ1 tµeαµ ,

...

φs(tµeαµ) = ξ
(s)
1µ t1eα1 + · · ·+ ξ(s)

µµ tµeαµ .

Let u ∈ {1, . . . , µ}. Then we see that xstueαu ∈ ∂O according to Definition 2.1.7. If
we have xstueαu = tieαi ∈ O for some i ∈ {1, . . . , µ}, Definition 2.4.15 yields that
φs(tueαu) = δ1it1eα1 + · · · + δµitµeαµ = tieαi = xstueαu . If xstueαu = bjeβj ∈ ∂O for
some j ∈ {1, . . . , ν}, we have φs(tueαu) = a1jt1eα1 + · · · + aµjtµeαµ = bjeβj = xstueαu
in P r/〈G〉 by Definition 2.4.15. Therefore, φs represents the multiplication by xs with
respect to O. Since the multiplication in P r/〈G〉 is commutative and since the formal
multiplication matrices X1, . . . ,Xn represent the endomorphisms φ1, . . . , φn of P r/〈G〉
with respect to the K-vector space basis O, it follows that the formal multiplication
matrices X1, . . . ,Xn are pairwise commuting.
Next we show that G is the O-border basis of 〈G〉 if D1) holds. As {e1, . . . , er} ∩ O

generates the P -module 〈O〉K according to Lemma 2.4.18, the map

{e1, . . . , er} → 〈O〉K , ek 7→

{
ek if ek ∈ O,∑µ

i=1 aijtieαi if ek = eβj ∈ ∂O

induces the P -module epimorphism

ϕ : P r � 〈O〉K , ek 7→

{
ek if ek ∈ O,∑µ

i=1 aijtieαi if ek = eβj ∈ ∂O

by the Universal Property of the Free Module P r. Thus the Isomorphism Theorem
induces the P -module isomorphism

ϕ : P r/ ker(ϕ)
∼−→ 〈O〉K , ek 7→

{
ek if ek ∈ O,∑µ

i=1 aijtieαi if ek = eβj ∈ ∂O.

In particular, as O is aK-vector space basis of 〈O〉K , it follows that ϕ−1(O), i.e. the set of
residue classes of the elements of O in P r/ ker(ϕ), is aK-vector space basis of P r/ ker(ϕ).
We now show that 〈G〉 ⊆ ker(ϕ). Without loss of generality we may suppose that
e1, . . . , e` ∈ O and e`+1, . . . , er /∈ O for some index ` ∈ {1, . . . , r} and that tkeαk = ek for
all k ∈ {1, . . . , `}. Furthermore, we let j ∈ {1, . . . , ν}. We have to distinguish two cases.
For the first case, suppose that eβj ∈ ∂O. Then we have bj = 1 by Definition 2.1.7.
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Hence Lemma 2.4.18 yields

ϕ(gj) = ϕ

(
bjeβj −

µ∑
i=1

aijtieαi

)

= bj ◦ ϕ(eβi)−
µ∑
i=1

(aijti) ◦ ϕ(eαi)

= 1 ◦
µ∑
i=1

aijtieαi −
µ∑
i=1

aijtieαi

=

µ∑
i=1

aijtieαi −
µ∑
i=1

aijtieαi

= 0.

For the second case, suppose now that Oβj ∈ O. Then deg(bj) ≥ 1 and there hence exist
an s ∈ {1, . . . , n} and a k ∈ {1, . . . , µ} such that bjeβj = xstkeαk by Definition 2.1.7. In
particular, we see that βj = αk and bj = xstk. Thus Lemma 2.4.18 yields

ϕ(gj) = ϕ

(
bjeβj −

µ∑
i=1

aijtieαi

)

= bj ◦ ϕ(eβj )−
µ∑
i=1

(aijti) ◦ ϕ(eαi)

= bj ◦ eβj −
µ∑
i=1

(aijti) ◦ eαi

= xs ◦ (tk ◦ eαk)−
µ∑
i=1

aijtieαi

= xs ◦ (tkeαk)−
µ∑
i=1

aijtieαi

= (t1eα1 , . . . , tµeαµ) ·

(
xs(X1, . . . ,Xn) · Etr

k −
µ∑
i=1

aij · Etr
i

)

= (t1eα1 , . . . , tµeαµ) ·

(
Xs · Etr

k −
µ∑
i=1

aij · Etr
i

)

= (t1eα1 , . . . , tµeαµ) ·

(
µ∑
i=1

ξ
(s)
ik · E

tr
i −

µ∑
i=1

aij · Etr
i

)

= (t1eα1 , . . . , tµeαµ) ·

(
µ∑
i=1

aij · Etr
i −

µ∑
i=1

aij · Etr
i

)
= 0.
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Altogether, it follows that 〈G〉 ⊆ ker(ϕ).
The Universal Property of the Residue Class Module P r/〈G〉 now induces the P -module
epimorphism

ψ : P r/〈G〉� P r/ ker(ϕ), ek 7→

{
ek if ek ∈ O,∑µ

i=1 aijtieαi if ek = eβj ∈ ∂O.

Moreover, we have ψ(O) = ϕ−1(O). Since O generates the K-vector space P r/〈G〉 by
Corollary 2.2.5 and since ϕ−1(O) is a K-vector space basis of P r/ ker(ϕ), we see that O
is also a K-vector space basis of P r/〈G〉, i.e. that G is the O-border basis of 〈G〉 by
Definition 2.1.14.

Finally, we prove that D1) and D2) are equivalent. Let p, i ∈ {1, . . . , µ} and let
s, u ∈ {1, . . . , n} be such that s 6= u. In order to show this equivalence, we translate the
commutativity condition EpXsXuEtr

i = EpXuXsEtr
i back into the language of 〈O〉K . As

the resulting condition depends on the position of tieαi relative to the border of O, we
distinguish four cases.

tkeαk t`eα`
tieαi tjeαj

First case: xsxutieαi ∈ O

Since O is an order ideal in Tn〈e1, . . . , er〉, it follows that xstieαi , xutieαi ∈ O by
Definition 2.1.6. Say, xstieαi = tjeαj , xutieαi = tkeαk , and xsxutieαi = t`eα` with
j, k, ` ∈ {1, . . . , µ}. Then we have

EpXsXuEtr
i = EpXsEtr

k = ξ
(s)
pk = δp` = ξ

(u)
pj = EpXuEtr

j = EpXuXsEtr
i ,

i.e. the commutativity condition holds in this case by Definition 2.4.15.

tkeαk b`eβ`
tieαi tjeαj

Second case: xsxutieαi ∈ ∂O and xstieαi , xutieαi ∈ O

Say, xstieαi = tjeαj , xutieαi = tkeαk , and xsxutieαi = b`eβ` with j, k ∈ {1, . . . , µ} and
` ∈ {1, . . . , ν}. Then we have

EpXsXuEtr
i = EpXsEtr

k = ξ
(s)
pk = ap` = ξ

(u)
pj = EpXuEtr

j = EpXuXsEtr
i ,

i.e. the commutativity condition holds in this case by Definition 2.4.15, again.

bkeβk b`eβ`
tieαi tjeαj

Third case: xstieαi ∈ O and xutieαi ∈ ∂O

Since ∂O and O are both order ideals in Tn〈e1, . . . , er〉, we see that xsxutieαi ∈ ∂O by the
Definitions 2.1.6 and 2.1.7. Say, xstieαi = tjeαj , xutieαi = bkeβk , and xsxutieαi = b`eβ`
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with j ∈ {1, . . . , µ} and k, ` ∈ {1, . . . , ν}. Then we have

EpXsXuEtr
i = EpXs(a1k, . . . , aµk)

tr

=

µ∑
m=1

ξ(s)
pmamk

=
∑

m∈{1,...,µ}
xstmeαm∈O

δp%s(m)amk +
∑

m∈{1,...,µ}
xstmeαm∈∂O

ap%s(m)amk

and

EpXuXsEtr
i = EpXuEtr

j = ξ
(u)
pj = ap`

by Definition 2.4.15. Thus the commutativity condition holds in this case if and only if
equation 1) is satisfied for s, u and p.

bkeβk ∗
tieαi bjeβj

Fourth case: xstieαi ∈ ∂O and xutieαi ∈ ∂O

Say, xstieαi = bjeβj and xutieαi = bkeβk with j, k ∈ {1, . . . , ν}. Then we have

EpXsXuEtr
i = EpXs(a1k, . . . , aµk)

tr

=

µ∑
m=1

ξ(s)
pmamk

=
∑

m∈{1,...,µ}
xstmeαm∈O

δp%s(m)amk +
∑

m∈{1,...,µ}
xstmeαm∈∂O

ap%s(m)amk

and

EpXuXsEtr
i = EpXu(a1j , . . . , aµj)

tr

=

µ∑
m=1

ξ(u)
pmamj

=
∑

m∈{1,...,µ}
xutmeαm∈O

δp%u(m)amj +
∑

m∈{1,...,µ}
xutmeαm∈∂O

ap%u(m)amj .

according to Definition 2.4.15. Thus the commutativity condition holds in this case if
and only if equation 2) is satisfied for s, u and p.
Altogether, we have regarded all possible cases and have seen that condition D1) holds if
and only if the equations 1) and 2) are satisfied for all s, u ∈ {1, . . . , n} such that s 6= u
and for all p ∈ {1, . . . , µ}, i.e. if and only if D2) is satisfied.
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Example 2.4.20. Consider Example 2.4.16, again. We have seen that the formal
multiplication matrices X ,Y ∈ Mat7(Q) of G are

X =



0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 , Y =



0 0 0 1 −3 1
1 0 0 1 0 0
0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 0 0 0 0 0

 .

Since

X · Y =



0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 −3 1
1 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0

 6=


0 1 −1 −3 1 0
0 1 −1 0 0 1
0 1 −1 0 0 0
1 1 −1 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0

 = Y · X ,

condition D1) of Theorem 2.4.19 is not satisfied. Thus G is not the O-border basis of 〈G〉
according to Theorem 2.4.19. Note that this result coincides with Example 2.4.14.

2.4.5 Liftings of Border Syzygyies

Next we characterize border bases via liftings of border syzygies. Border syzygies are
syzygies of (b1eβ1 , . . . , bνeβν ) and can sometimes be lifted to syzygies of (g1, . . . , gν). The
goal of this subsection is to prove that we can lift all syzygies induced by neighbors with
respect to O to syzygies in (g1, . . . , gν) if and only if G is an O-border basis of 〈G〉.
The proof of this characterization in Theorem 2.4.26 is based on the characterization via
commuting matrices. In Corollary 3.3.9, we will give an alternative proof of this theorem
that is not based on the characterization via commuting matrices but on a deeper insight
into the structure of liftings of border syzygies. All ideas of this subsection follow the
corresponding concepts of [KK05, Section 5].

Since we study border syzygyies and their liftings, we must distinguish between the
elements of P r in which G lives and the elements of P ν in which the syzygies live. There-
fore, we denote the canonical basis of the P -module P ν by {ε1, . . . , εν} in contrast to the
canonical basis of the P -module P r which is, as usual, denoted by {e1, . . . , er}.

First we introduce neighbors with respect to the order ideal O in Tn〈e1, . . . , er〉 and the
corresponding border syzygies. These neighbor syzygies play the same role for border
bases as the critical pairs do for Gröbner bases. For the definition of neighbors with
respect to an order ideal in Tn, we refer to [KK05, Defn. 17] and [KR05, Defn. 6.4.33].
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Definition 2.4.21. Let O = O1e1 ∪ · · · ∪ Orer be with order ideals O1, . . . ,Or in Tn.

a) A syzygy (q1, . . . , qν) ∈ SyzP (b1eβ1 , . . . , bνeβν ) ⊆ P ν is called a border syzygy
with respect to O.

b) For all i, j ∈ {1, . . . , ν} with βi = βj , the fundamental syzygy of bieβi and bjeβj
is defined to be σij =

lcm(bi,bj)
bi

εi − lcm(bi,bj)
bj

εj .

c) Let i, j ∈ {1, . . . , ν} be with βi = βj and let σij be the corresponding fundamental
syzygy.

1) The border terms bieβi , bjeβj ∈ ∂O are called next-door neighbors with
respect to O if βi = βj and if bi, bj ∈ ∂Oβi are next-door neighbors with
respect to Oβi , i.e. if we have xkbieβi = bjeβj for some k ∈ {1, . . . , n}. In
this case, the border syzygy σij = xkεi − εj is called a next-door neighbor
syzygy with respect to O.

2) The border terms bieβi , bjeβj ∈ ∂O are called across-the-street neighbors
with respect to O if βi = βj and if bi, bj ∈ ∂Oβi are across-the-street neighbors
with respect to Oβi , i.e. if we have xkbieβi = x`bjeβj for some k, ` ∈ {1, . . . , n}
with k 6= `. In this case, the border syzygy σij = xkεi − x`εj is called an
across-the-street neighbor syzygy with respect to O.

3) The border terms bieβi , bjeβj ∈ ∂O are called neighbors with respect to O if
βi = βj and if bi, bj ∈ ∂Oβi are neighbors with respect to Oβi , i.e. if they are
next-door or across-the-street neighbors with respect to O. In this case, the
corresponding border syzygy σij is called a neighbor syzygy with respect
to O.

Example 2.4.22. Consider the O-border prebasis G ⊆ P 2 of Example 2.2.3, again.
Recall that {e1, e2} denoted the canonical P -module basis of P 2 and that the border
of O was ∂O = {y2e1, xye1, x

2e1, ye2, xye2, x
2ye2, x

3e2} = {b1eβ1 , . . . , b7eβ7}.

O1

x

y

b1

b2

b3

O2

x

y

b4 b5 b6

b7

terms in ∂O

terms in O

next-door neighbors with respect to O

across-the-street neighbors with respect to O

We see that x · b4eβ4 = xye2 = b5eβ5 and x · b5eβ5 = x2ye2 = b6eβ6 , i.e. the border
terms b4eβ4 and b5eβ5 , and the border terms b5eβ5 and b6eβ6 are next-door neighbors with
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respect to O. Moreover, x · b1eβ1 = xy2e1 = y · b2eβ2 , x · b2eβ2 = x2ye1 = y · b3eβ3 , and
x · b6eβ6 = x3ye2 = y · b7eβ7 , i.e. the border terms b1eβ1 and b2eβ2 , the border terms b2eβ2
and b3eβ3 , and the border terms b6eβ6 and b7eβ7 are across-the-street neighbors with
respect to O. Obviously, there are no further neighbors with respect to O.

The following proposition shows that the set of all neighbor syzygies with respect to
the order ideal O generates SyzP (b1eβ1 , . . . , bνeβν ). This is another example of the key
role neighbors with respect to O play for border bases. The proposition is a module
version of [KK05, Prop. 21].

Proposition 2.4.23. The set of all neighbor syzygies with respect to O generates the
P -submodule SyzP (b1eβ1 , . . . , bνeβν ) ⊆ P ν .

Proof. For all i, j ∈ {1, . . . , ν} with βi = βj , we let σij be the fundamental syzygy
of bieβi and bjeβj as in Definition 2.4.21. By [KR00, Thm. 2.3.7], the P -submodule
SyzP (b1eβ1 , . . . , bνeβν ) ⊆ P ν is generated by Σ = {σij | i, j ∈ {1, . . . , ν}, i < j, βi = βj}.
If Σ = ∅, the claim follows trivially. Thus suppose that Σ 6= ∅ and let i, j ∈ {1, . . . , ν}
be such that i < j and βi = βj . We now prove that the fundamental syzygy σij is a
P -linear combination of neighbor syzygies with respect to O. Let bij =

lcm(bi,bj)
bi

and

bji =
lcm(bi,bj)

bj
and let O = O1e1 ∪ · · · ∪ Orer be with order ideals O1, . . . ,Or in Tn.

Since βi = βj , we see that bi, bj ∈ ∂Oβi by Definition 2.1.7 and thus σij is also a syzygy
of (b1, . . . , bν). Moreover, [KK05, Prop. 21] yields that σij is a P -linear combination of
fundamental syzygies σk` such that k, ` ∈ {1, . . . , ν}, bk, b` ∈ ∂Oβi , i.e. βk = β` = βi, and
such that bk, b` ∈ ∂Oβi are neighbors with respect to Oβi . Furthermore, we see that two
border terms bk, b` ∈ ∂Oβi with k, ` ∈ {1, . . . , ν} are neighbors with respect to Oβi if and
only if bkeβi and b`eβi are neighbors with respect to O by Definition 2.4.21. Altogether,
it follows that the fundamental syzygy σij is also a P -linear combination of neighbor
syzygies σk` such that k, ` ∈ {1, . . . , ν} and such that bkeβk is a neighbor of b`eβ` with
respect to O.

Next we introduce the notion of liftings of border syzygies. Liftings of border syzygies
in P were introduced in [KK05, Defn. 22].

Definition 2.4.24. a) Let (p1, . . . , pν) ∈ SyzP (b1eβ1 , . . . , bνeβν ) be a border syzygy
with respect to O. Then we call a syzygy (P1, . . . , Pν) ∈ SyzP (g1, . . . , gν) a lifting
of (p1, . . . , pν), if one of the following conditions holds for v = p1g1 + · · ·+ pνgν .

• We have v = 0 and (P1, . . . , Pν) = (p1, . . . , pν).

• We have v 6= 0 and deg(Pj −pj) ≤ indO(v)−1 for all j ∈ {1, . . . , ν} such that
Pj − pj 6= 0.

In this situation, we also say that the border syzygy (p1, . . . , pν) with respect to O
lifts to the syzygy (P1, . . . , Pν) of (g1, . . . , gν).

b) Let i, j ∈ {1, . . . , ν} be such that βi = βj and let σij be the fundamental syzygy
of bieβi and bjeβj .
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1) If bieβi , bjeβj ∈ ∂O are next-door neighbors with respect to O, we call every
lifting λij ∈ SyzP (g1, . . . , gν) of σij a next-door neighbor lifting of σij .

2) If bieβi , bjeβj ∈ ∂O are across-the-street neighbors with respect to O, we call
every lifting λij ∈ SyzP (g1, . . . , gν) of σij an across-the-street neighbor
lifting of σij .

3) If bieβi , bjeβj ∈ ∂O are neighbors with respect to O, we call every lifting
λij ∈ SyzP (g1, . . . , gν) of σij a neighbor lifting of σij .

Example 2.4.25. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of the
Examples 2.2.3 and 2.4.22, again. Recall that P = Q[x, y], {e1, e2} was the canonical
P -module basis of P 2, that the border terms b5eβ5 and b6eβ6 are next-door neighbors
with respect to O and that g5 = xye2 + 3e1 and g6 = x2ye2 − e1 − e2. The vector
(0, 0, 0, 0, x,−1, 0) ∈ P 7 is a next-door neighbor syzygy with respect to O according to
Definition 2.4.24. As xg5− g6 = 3xe1 + e1 + e2 ∈ 〈O〉Q \ {0}, we have indO(xg5− g6) = 0
according to Definition 2.1.11. In particular, since there is no polynomial p ∈ P \ {0}
such that deg(p) ≤ indO(xg5 − g6) − 1 = −1 and since xg5 − g6 6= 0, there exists no
next-door neighbor lifting of (0, 0, 0, 0, x,−1, 0) according to Definition 2.4.24.

Finally, we are now able to generalize [KK05, Prop. 25] to the module setting and
characterize border bases in P r via liftings of border syzygies.

Theorem 2.4.26. (Border Bases and Liftings of Border Syzygies)
The O-border prebasis G is the O-border basis of 〈G〉 if and only if the following equivalent
conditions are satisfied.

E1) Every border syzygy with respect to O lifts to a syzygy of (g1, . . . , gν).

E2) Every neighbor syzygy with respect to O lifts to a syzygy of (g1, . . . , gν).

Proof. First we show that condition E1) is satisfied if G is the O-border basis of 〈G〉.
Let (p1, . . . , pν) be a border syzygy with respect to O and v = p1g1 + · · · + pνgν . If
v = 0, we see that (p1, . . . , pν) is a lifting of (p1, . . . , pν) by Definition 2.4.24. Thus
suppose that v 6= 0. Since v ∈ 〈G〉 \ {0}, condition A1) of Theorem 2.4.1 yields a
representation v = p1g1 + · · · + pνgν = q1g1 + · · · + qνgν such that q1, . . . , qν ∈ P
and such that qj = 0 or deg(qj) ≤ indO(v) − 1 for every index j ∈ {1, . . . , ν}. Let
(P1, . . . , Pν) = (p1, . . . , pν) − (q1, . . . , qν). Then (P1, . . . , Pν) is a syzygy of (g1, . . . , gν)
by construction. Moreover, we have deg(Pj − pj) = deg(−qj) ≤ indO(v) − 1 for all
j ∈ {1, . . . , ν} with Pj − pj 6= 0, i.e. (p1, . . . , pν) lifts to (P1, . . . , Pν) by Definition 2.4.24.
Since E1) logically implies E2) according to Definition 2.4.21, it remains to prove

that G is the O-border basis of 〈G〉 if E2) holds. For all s ∈ {1, . . . , n}, we let

%s : {1, . . . , µ} → N, i 7→

{
j if xstieαi = tjeαj ∈ O,
k if xstieαi = bkeβk ∈ ∂O.

be as in Theorem 2.4.19. We have to distinguish two cases.
Given next-door neighbors bkeβk , b`eβ` ∈ ∂O with respect to O, say xsbkeβk = b`eβ`
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where s ∈ {1, . . . , n} and k, ` ∈ {1, . . . , ν}, the corresponding next-door neighbor syzygy
with respect to O is of the form σk` = xsεk− ε` by Definition 2.4.21. Let λk` be a lifting
of σk`. If v = xsgk − g` 6= 0, Proposition 2.1.13 yields indO(xsgk − g`) ≤ 1. Hence there
exist c1, . . . , cν ∈ K such that λk` = xsεk − ε` −

∑ν
w=1 cwεw and λk` is also a syzygy

of (g1, . . . , gν) by Definition 2.4.24. Thus we have

0 = xsgk − g` −
ν∑

w=1

cwgw

= xs

(
bkeβk −

µ∑
m=1

amktmeαm

)
−

(
b`eβ` −

µ∑
m=1

am`tmeαm

)

−
ν∑

w=1

cw

(
bweβw −

µ∑
m=1

amwtmeαm

)

= −
µ∑

m=1

amk(xstmeαm) +

µ∑
m=1

am`tmeαm −
ν∑

w=1

cwbweβw +
ν∑

w=1

cw

µ∑
m=1

amwtmeαm

= −
∑

m∈{1,...,µ}
xstmeαm∈O

amkt%s(m)eα%s(m)
−

∑
m∈{1,...,µ}
xstmeαm∈∂O

amkb%s(m)eβ%s(m)

+

µ∑
m=1

am`tmeαm −
ν∑

w=1

cwbweβw +

ν∑
w=1

cw

µ∑
m=1

amwtmeαm .

As ∂O is K-linearly independent, comparison of the coefficients of the term bweβw for all
w ∈ {1, . . . , ν} yields

cw =

{
−amk if bweβw = xstmeαm ∈ xsO,
0 if bweβw /∈ xsO.

As O is K-linearly independent, comparison of the coefficients of the term tpeαp for all
p ∈ {1, . . . , µ} yields

0 = −
∑

m∈{1,...,µ}
xstmeαm∈O

amkδp%s(m) + ap` +

ν∑
w=1

cwapw

= −
∑

m∈{1,...,µ}
xstmeαm∈O

amkδp%s(m) + ap` −
∑

m∈{1,...,µ}
xstmeαm∈∂O

amkap%s(m),

i.e. the equations 1) of condition D2) of Theorem 2.4.19 are satisfied.
Given across-the-street neighbors bkeβk , bjeβj ∈ ∂O with respect to the order ideal O,
say xsbkeβk = xubjeβj where s, u ∈ {1, . . . , n} and k, j ∈ {1, . . . , ν}, the corresponding
across-the-street neighbor syzygy with respect to O is of the form σkj = xsεk − xuεj
according to Definition 2.4.21. Let λkj be a lifting of σkj . If v = xsgk − xugj 6= 0,
Proposition 2.1.13 yields indO(xsgk−xugj) ≤ 1. Hence there exist scalars c1, . . . , cν ∈ K
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such that λkj = xsεk − xuεj −
∑ν

w=1 cwεw and λkj is also a syzygy of (g1, . . . , gν) by
Definition 2.4.24. Thus we have

0 = xsgk − xugj −
ν∑

w=1

cwgw

= xs

(
bkeβk −

µ∑
m=1

amktmeαm

)
− xu

(
bjeβj −

µ∑
m=1

amjtmeαm

)

−
ν∑

w=1

cw

(
bweβw −

µ∑
m=1

amwtmeαm

)

= −
µ∑

m=1

amk(xstmeαm) +

µ∑
m=1

amj(xutmeαm)

−
ν∑

w=1

cwbweβw +
ν∑

w=1

cw

µ∑
m=1

amwtmeαm

= −
∑

m∈{1,...,µ}
xstmeαm∈O

amkt%s(m)eα%s(m)
−

∑
m∈{1,...,µ}
xstmeαm∈∂O

amkb%s(m)eβ%s(m)

+
∑

m∈{1,...,µ}
xutmeαm∈O

amjt%u(m)eα%u(m)
+

∑
m∈{1,...,µ}
xutmeαm∈∂O

amjb%u(m)eβ%u(m)

−
ν∑

w=1

cwbweβw +
ν∑

w=1

cw

µ∑
m=1

amwtmeαm .

As ∂O is K-linearly independent, comparison of the coefficients of the term bweβw for all
w ∈ {1, . . . , ν} yields

cw =


−amk + am′j if bweβw = xstmeαm = xutm′eαm′ ∈ xsO ∩ xuO,
−amk if bweβw = xstmeαm ∈ xsO \ xuO,
am′j if bweβw = xutm′eαm′ ∈ xuO \ xsO,
0 if bweβw /∈ xsO ∪ xuO.

As O is K-linearly independent, comparison of the coefficients of the term tpeαp for all
p ∈ {1, . . . , µ} yields

0 = −
∑

m∈{1,...,µ}
xstmeαm∈O

amkδp%s(m) +
∑

m∈{1,...,µ}
xutmeαm∈O

amjδp%u(m) +
ν∑

w=1

cwapw

= −
∑

m∈{1,...,µ}
xstmeαm∈O

amkδp%s(m) +
∑

m∈{1,...,µ}
xutmeαm∈O

amjδp%u(m)

−
∑

m∈{1,...,µ}
xstmeαm∈∂O

amkap%s(m) +
∑

m∈{1,...,µ}
xutmeαm∈∂O

amjap%u(m),
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i.e. the equations 2) of condition D2) of Theorem 2.4.19 are satisfied.
Altogether, we see that the condition D2) of Theorem 2.4.19 is satisfied and thus G is
the O-border basis of 〈G〉.

Example 2.4.27. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Exam-
ple 2.4.25, again. Recall that (0, 0, 0, 0, x,−1, 0) ∈ SyzP (b1eβ1 , . . . , b7eβ7) is a next-door
neighbor syzygy with respect to O that cannot be lifted to a syzygy of (g1, . . . , g7), i.e.
condition E2) of Theorem 2.4.26 is not satisfied. Therefore, G is not the O-border basis
of 〈G〉 according to Theorem 2.4.26. Note that this result coincides with Example 2.4.20.

It is important to remark that the proof of the preceding theorem yields an algorithmic
way to compute liftings of border syzygies with respect to O if G is the O-border basis
of 〈G〉 and that liftings of neighbor syzygies with respect to O are uniquely determined
and only depend on G.

Remark 2.4.28. a) Suppose that G is the O-border basis of 〈G〉. Given an arbi-
trary border syzygy (p1, . . . , pν), we have seen in the proof of Theorem 2.4.26 that
every special generation p1g1+· · ·+pνgν = q1g1+· · ·+qνgν with q1, . . . , qν ∈ P as in
condition A1) of Theorem 2.4.1 implies that (p1−q1, . . . , pν−qν) ∈ SyzP (g1, . . . , gν)
is a lifting of (p1, . . . , pν). In particular, as shown in the proof of Theorem 2.4.1,
we can compute such a special generation by applying the Border Division Al-
gorithm 2.2.1 to the input data p1g1 + · · · + pνgν and G. Note that the Border
Division Algorithm 2.2.1 depends on the ordering of the elements in G and thus
also the lifting depends on this ordering. Hence the lifting (p1− q1, . . . , pν − qν) is,
in general, not uniquely determined by the O-border basis G.

b) Let k, ` ∈ {1, . . . , ν} be such that bkeβk , b`eβ` ∈ ∂O are neighbors with respect
to O, and let σk` denote the corresponding neighbor syzygy with respect to O.
Suppose that there exists a neighbor lifting λk` of σk`.

1) Suppose that bkeβk , b`eβ` ∈ ∂O are next-door neighbors with respect to O, i.e.
there exists an s ∈ {1, . . . , n} such that xsbkeβk = b`eβ` by Definition 2.4.21.
As shown in the proof of Theorem 2.4.26, the lifting λk` of σk` has the form
λk` = σk`− c1ε1−· · ·− cνεν with c1, . . . , cν ∈ K and for every w ∈ {1, . . . , ν},
we have

cw =

{
amk if bweβw = xstmeαm ∈ xsO,
0 if bweβw /∈ xsO.

2) Suppose that bkeβk , b`eβ` ∈ ∂O are across-the-street neighbors with respect
to O, i.e. there exist s, u ∈ {1, . . . , n} such that xsbkeβk = xub`eβ` by Defini-
tion 2.4.21. As shown in the proof of Theorem 2.4.26, the lifting λk` of σk`
has the form λk` = σk` − c1ε1 − · · · − cνεν with c1, . . . , cν ∈ K and for every
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w ∈ {1, . . . , ν}, we have

cw =


amk − am′` if bweβw = xstmeαm = xutm′eαm′ ∈ xsO ∩ xuO,
amk if bweβw = xstmeαm ∈ xsO \ xuO,
−am′` if bweβw = xutm′eαm′ ∈ xuO \ xsO,
0 if bweβw /∈ xsO ∪ xuO.

In both cases, the neighbor lifting λk` of σk` is uniquely determined and solely
depends on the O-border basis G.

Remark 2.4.29. The proof of the preceding theorem is based on the characterization
of border bases via commuting matrices as shown in Theorem 2.4.19. In Corollary 3.3.9,
we give another proof of this theorem that does not depend on Theorem 2.4.19 but on a
deeper insight into the structure of the neighbor liftings of a border basis.

2.4.6 Buchberger’s Criterion

In the final subsection of this section, we introduce S-vectors and prove a border bases
version of Buchberger’s Criterion in Theorem 2.4.31. Again, the neighbors with respect
to O play the key role in this theorem. Moreover, this characterizations allows us to
easily and algorithmically check whether a given border prebasis is a border basis or not.
The corresponding version for border bases in P can be found in [KK05, Prop. 18] and
[KR05, Prop. 6.4.34].

As in the previous subsection, we let {ε1, . . . , εν} denote the canonical basis of the free
P -module P ν .

Definition 2.4.30. Let i, j ∈ {1, . . . , ν}. Then the S-vector of gi and gj is defined by
S(gi, gj) =

lcm(bi,bj)
bi

gi − lcm(bi,bj)
bj

gj ∈ 〈G〉 ⊆ P r

Theorem 2.4.31. (Buchberger’s Criterion for Border Bases)
The O-border prebasis G is the O-border basis of 〈G〉 if and only if the following equivalent
conditions are satisfied.

F1) We have NRG(S(gi, gj)) = 0 for all i, j ∈ {1, . . . , ν}.

F2) We have NRG(S(gi, gj)) = 0 for all i, j ∈ {1, . . . , ν} such that bieβi , bjeβj ∈ ∂O are
neighbors with respect to O.

Proof. First we show that condition F1) is satisfied if G is the O-border basis of 〈G〉. Let
i, j ∈ {1, . . . , ν}. We apply the Border Division Algorithm 2.2.1 to the S-vector S(gi, gj)
and G to obtain a representation S(gi, gj) = v + NRG(S(gi, gj)) with v ∈ 〈G〉 and with
NRG(S(gi, gj)) ∈ 〈O〉K . As S(gi, gj) ∈ 〈G〉 by Definition 2.4.30 and as G is the O-border
basis of 〈G〉, Corollary 2.2.6 implies NRG(S(gi, gj)) = S(gi, gj)− v ∈ 〈G〉 ∩ 〈O〉K = {0}.
Since F2) follows logically from F1), it remains to prove that G is the O-border basis

of 〈G〉 if F2) holds. If there are no neighbors with respect to O, the claim follows trivially
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from Theorem 2.4.26. Thus suppose that there are i, j ∈ {1, . . . , ν} such that bieβi
and bjeβj are neighbors with respect to O and let σij be the corresponding neighbor
syzygy. We distinguish two cases.
First suppose that bieβi and bjeβj are next-door neighbors with respect to O, i.e. there
is an s ∈ {1, . . . , n} with xsbieβi = bjeβj by Definition 2.4.21. Then σij = xsεi − εj by
Definition 2.4.21 and S(gi, gj) = xsgi − gj by Definition 2.4.30. If S(gi, gj) = 0, we see
that σij is a lifting of σij according to Definition 2.4.24. Thus suppose that S(gi, gj) 6= 0.
Since NRG(S(gi, gj)) = 0 according to F2), the Border Division Algorithm 2.2.1 applied
to S(gi, gj) and G yields S(gi, gj) = p1g1 + · · ·+pνgν +NRG(S(gi, gj)) = p1g1 + · · ·+pνgν
for some polynomials p1, . . . , pν ∈ P that satisfy p` = 0 or deg(p`) ≤ indO(S(gi, gj))− 1
for all ` ∈ {1, . . . , ν}. We now prove that (P1, . . . , Pν) ∈ P ν defined by Pi = xs − pi,
Pj = 1−pj , and P` = −p` for all ` ∈ {1, . . . , ν}\{i, j} is a lifting of σij . By construction,
we see that (P1, . . . , Pν) ∈ SyzP (g1, . . . , gν). Moreover, we have Pi − xs = −pi = 0 or
deg(Pi − xs) = deg(−pi) ≤ indO(S(gi, gj)) − 1, we have Pj − 1 = −pj = 0 or we have
deg(Pj − 1) = deg(−pj) ≤ indO(S(gi, gj))− 1, and for all ` ∈ {1, . . . , ν} \ {i, j}, we have
P` − 0 = −p` = 0 or deg(P` − 0) = deg(−p`) ≤ indO(S(gi, gj)) − 1. Hence (P1, . . . , Pν)
is a lifting of σij according to Definition 2.4.24.
Now suppose that bieβi , bjeβj ∈ ∂O are across-the-street neighbors with respect to O, i.e.
xsbieβi = xubjeβj for some s, u ∈ {1, . . . , n} by Definition 2.4.21. Then σij = xsεi−xuεj
by Definition 2.4.21 and S(gi, gj) = xsgi−xugj by Definition 2.4.30. If S(gi, gj) = 0, σij is
a lifting of σij according to Definition 2.4.24. Thus suppose that S(gi, gj) 6= 0. Since we
have NRG(S(gi, gj)) = 0 by F2), the Border Division Algorithm 2.2.1 applied to S(gi, gj)
and G yields S(gi, gj) = p1g1 + · · ·+ pνgν + NRG(S(gi, gj)) = p1g1 + · · ·+ pνgν for some
polynomials p1, . . . , pν ∈ P that satisfy p` = 0 or deg(p`) ≤ indO(S(gi, gj)) − 1 for all
` ∈ {1, . . . , ν}. We now prove that (P1, . . . , Pν) ∈ P ν defined by Pi = xs−pi, Pj = xu−pj ,
and P` = −p` for all ` ∈ {1, . . . , ν} \ {i, j} is a lifting of of the border syzygy σij . By
construction, (P1, . . . , Pν) ∈ SyzP (g1, . . . , gν). Moreover, we have Pi − xs = −pi = 0
or deg(Pi − xs) = deg(−pi) ≤ indO(S(gi, gj)) − 1, we have Pj − xu = −pj = 0 or
deg(Pj − xu) = deg(−pj) ≤ indO(S(gi, gj)) − 1, and for all ` ∈ {1, . . . , ν} \ {i, j}, we
have P` − 0 = −p` = 0 or deg(P` − 0) = deg(−p`) ≤ indO(S(gi, gj)) − 1. Hence the
vector (P1, . . . , Pν) is a lifting of σij according to Definition 2.4.24.
Altogether, we have proven that every neighbor syzygy with respect to O lifts to a syzygy
of (g1, . . . , gν). Therefore, condition E2) of Theorem 2.4.26 yields that G is the O-border
basis of 〈G〉.

Example 2.4.32. Consider the O-border prebasis G = {g1, . . . , g7} ⊆ P 2 of Ex-
ample 2.4.22, again. Recall that P = Q[x, y], that {e1, e2} denoted the canonical
basis of the free P -module P 2, that g5 = xye2 + 3e1 and g6 = x2ye2 − e1 − e2,
and that b5eβ5 = xye2 and b6eβ6 = x2ye2 are neighbors with respect to O. Since
NRG(S(g5, g6)) = NRG(xg5 − g6) = 3xe1 + e1 + e2 6= 0, condition F2) of Buchberger’s
Criterion for border bases 2.4.31 yields that G is not the O-border basis of 〈G〉. Note
that this result coincides with Example 2.4.27.
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2.5 Computation

After all the characterizations in the previous section, we now continue Section 2.3. We
have proven in Proposition 2.3.2 that every submodule of finite K-codimension in P r

possesses a border basis. Moreover, we have also given a first naive algorithm for the
computation of border bases in Remark 2.3.6, which depends on a Gröbner basis com-
putation. In this section, we introduce an algorithm that uses linear algebra techniques
instead to compute a border basis. A first generic form of this algorithm for border
bases in P was given in [Mou99, Algo. 4.3]. Building upon this generic algorithm, a first
explicit form of an algorithm to compute border bases in P was given in [KK06]. We
now generalize the latter to the module setting.

For the whole section, we let W = (w1, . . . , wn) ∈ Mat1,n(Z) be a positive matrix
in the sense of [KR05, Defn. 4.2.4], i.e. such that wi > 0 for all i ∈ {1, . . . , n}. Then
the matrix W induces a Z-grading on P which satisfies degW (xi) = wi for all indices
i ∈ {1, . . . , n} according to [KR05, Defn. 4.1.6]. In particular, P =

⊕
γ∈Z Pγ where

we have Pγ = {p ∈ P | degW (t) = γ for all t ∈ Supp(p)} for all γ ∈ Z. By defining
the set of all homogeneous components of the free P -module P r of degree γ ∈ Z to
be P rγ = {(p1, . . . , pr) ∈ P r | pi ∈ Pγ for all i ∈ {1, . . . , r}}, P r =

⊕
γ∈Z P

r
γ becomes a

Z-graded free P -module, cf. [KR00, Defn. 1.7.4 and 1.7.6]. We always consider P and P r

as Z-graded P -modules using the above Z-gradings.

Definition 2.5.1. Let r, s ∈ N \ {0}.

a) Let (c1, . . . , cs) ∈ Ks, (d1, . . . , ds) ∈ Ks \ {0}, and let i ∈ {1, . . . , s} be minimal
such that di 6= 0. Then the ith component of (c1, . . . , cs)− ci

di
(d1, . . . , ds) is zero. If

ci 6= 0 in this situation, we say that (d1, . . . , ds) is a reducer of (c1, . . . , cs).

b) Let v ∈ Ks and M ∈ Matr,s(K). We say that v can be reduced against M if
there is a row w ∈ Ks ofM such that w is a reducer of v.

Lemma 2.5.2. Let γ ∈ N, let % ∈ N \ {0}, let V = 〈v1, . . . , v%〉 ⊆ P r≤γ with
{v1, . . . , v%} ⊆ P r≤γ\{0} be a K-vector subspace such that (V +x1V +· · ·+xnV )∩P r≤γ = V ,
and let σ be a term ordering on Tn that is compatible with degW . Then Algorithm 2 is
actually an algorithm and the result

O := computeOrderIdeal(γ, {v1, . . . , v%},W, σ)

of Algorithm 2 applied to the input data γ, {v1, . . . , v%}, W , and σ satisfies the following
conditions.

1) The set O ⊆ Tn≤γ〈e1, . . . , er〉 is an order ideal in Tn〈e1, . . . , er〉.

2) The residue classes of the elements of the order ideal O in P r≤γ/V form a K-vector
space basis of P r≤γ/V .
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Algorithm 2: computeOrderIdeal(γ, {v1, . . . , v%}, (w1, . . . , wn), σ)

Input:
γ ∈ N;
% ∈ N \ {0} and {v1, . . . , v%} ⊆ P r≤γ \ {0};
V := 〈v1, . . . , v%〉K ⊆ P r≤γ is a K-vector subspace with the property that
(V + x1V + · · ·+ xnV ) ∩ P r≤γ = V ;
(w1, . . . , wn) ∈ Mat1,n(Z) such that wi > 0 for all i ∈ {1, . . . , n};
σ is a term ordering on Tn that is compatible with deg(w1,...,wn);

1 Let `1, . . . , `s ∈ Tn be terms and u1, . . . , us ∈ {1, . . . , r} be indices such that
Tn≤γ〈e1, . . . , er〉 = {`1eu1 , . . . , `seus} and `1eu1 >σPos `2eu2 >σPos · · · >σPos `seus .

2 Determine a K-vector space basis {ṽ1, . . . , ṽk} ⊆ P r≤γ of V .
3 for i := 1 to k do
4 Determine ci1, . . . , cis ∈ K such that ṽi = ci1`1eu1 + · · ·+ cis`seus .
5 end
6 V := (cij)1≤i≤k,1≤j≤s ∈ Matk,s(K).
7 Compute a row echolon form Ṽ ∈ Matk,s(K) of V using row operations.
8 Let O ⊆ L be the set of terms in L corresponding to the pivot-free columns of Ṽ, i.e.
the columns of Ṽ in which no row of Ṽ has its first non-zero entry.

9 return O

Proof. First we show that the procedure is actually an algorithm. All the operations
in the lines 2, 4, and 7 can be computed with linear algebra techniques. Moreover,
the procedure obviously stops after a finite amount of time. Thus the procedure is an
algorithm.

Next we show the correctness of the algorithm. We start to prove that the residue
classes of the elements of O in P r≤γ/V form a K-vector space basis of P r≤γ/V . We write
Tn≤γ〈e1, . . . , er〉 = {`1eu1 , . . . , `seus} with s ∈ N, `1, . . . , `s ∈ Tn, u1, . . . , us ∈ {1, . . . , r},
and `1eu1 >σPos `2eu2 >σPos · · · >σPos `seus as in line 2, and let {ṽ1, . . . , ṽk} ⊆ P r≤γ
with k ∈ N be a K-vector space basis of V as in line 2. For all indices i ∈ {1, . . . , k},
we let ci1, . . . , cis ∈ K be such that ṽi = ci1`1eu1 + · · · + cis`seus as in line 4. Let
V = (cij)1≤i≤k,1≤j≤s ∈ Matk,s(K) be as in line 6 and let Ṽ ∈ Matk,s(K) be a row
echolon form of V as in line 7. Moreover, let O = {`j1euj1 , . . . , `jµeujµ} with µ ∈ N
and with j1, . . . , jµ ∈ {1, . . . , r} be as in line 8, and let c1, . . . , cµ ∈ K be such that
v = c1`j1euj1 + · · ·+cµ`jµeujµ ∈ V . Let {E1, . . . , Es} denote the canonical K-vector space
basis of Ks. Then the corresponding vector c1Ej1 + · · · + cµEjµ ∈ Ks of v has all its
non-zero entries in the columns corresponding to elements of O by line 8. As Ṽ is in
row echolon form according to line 7, this vector cannot be further reduced against Ṽ by
Definition 2.5.1. Since the rows of V correspond to the K-vector space basis {ṽ1, . . . , ṽk}
of V according to line 4, since Ṽ corresponds to K-linear combinations of these basis
elements by the lines 2 and 7, and since we also have v ∈ V , it follows that v = 0. Thus
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we get c1 = · · · = cµ = 0, i.e. the residue classes of the elements of O in P r≤γ/V are
K-linearly independent. Let w = d1`1eu1 + · · ·+ ds`seus ∈ P r≤γ be with d1, . . . , ds ∈ K.
Then the corresponding vector d1E1+· · ·+dsEs ∈ Ks can be reduced against the matrix Ṽ
to obtain a vector d′1Ej1 + · · ·+ d′µEjµ ∈ Ks with d′1, . . . , d′µ ∈ K by Definition 2.5.1 and
line 8. Let w′ = d′1`j1euj1 +· · ·+d′µ`jµeujµ ∈ 〈O〉K be the corresponding element in 〈O〉K .
Since the vector w′ was constructed from w by a reduction against the matrix Ṽ and since
the rows of Ṽ correspond to the K-vector space basis {ṽ1, . . . , ṽk} of V according to the
lines 2, 4, 6, and 7, we get w = w′ in P r≤γ/V . Hence the residue classes of the elements
of O in P r≤γ/V form also a generating set of the K-vector space P r≤γ/V . Altogether,
we have proven that the residue classes of the elements of O form K-vector space basis
of P r≤γ/V .
Finally, we prove that O is an order ideal in Tn〈e1, . . . , er〉. If O = Tn≤γ〈e1, . . . , er〉,
then O is an order ideal in Tn〈e1, . . . , er〉 according to Definition 2.1.6. Thus suppose
that O ⊂ Tn≤γ〈e1, . . . , er〉. Let i ∈ {1, . . . , s} be such that `ieui ∈ Tn≤γ〈e1, . . . , er〉 \ O
and let t ∈ Tn be such that t`ieui ∈ Tn≤γ〈e1, . . . , er〉. The set O is an order ideal
in Tn〈e1, . . . , er〉 by Definition 2.1.6 if we show that t`ieui ∈ Tn≤γ〈e1, . . . , er〉 \ O. As
`ieui ∈ Tn≤γ〈e1, . . . , er〉 \ O, one row of Ṽ has the form (0, . . . , 0, ci, . . . , cs) ∈ Ks where
ci 6= 0 according to the construction of O in line 8. The corresponding vector in P r≤γ is
v = ci`ieui + · · ·+ cs`seus ∈ P r≤γ . Moreover, line 1 yields that `ieui = LTσPos(v). Hence
we see that t`ieui = LTσPos(tv). Since the term ordering σ is compatible with degW
and since W = (w1, . . . , wn) satisfies wk > 0 for all k ∈ {1, . . . , n}, it follows that
Supp(tv) ⊆ Tn≤γ〈e1, . . . , er〉. Since every line of the matrix V corresponds to a vector
in V by line 4 and since Ṽ is constructed from V using row operation by line 7, we see
that v ∈ V . Hence the hypothesis (V + x1V + · · · + xnV ) ∩ P r≤γ = V and induction on
the degree of t imply tv ∈ V . Thus we see that the vector in Ks corresponding to tv
can be reduced against Ṽ to zero according to Definition 2.5.1. In particular, we have
to reduce the entry of this vector that corresponds to t`ieui , i.e. there has to be one row
in Ṽ which has its first non-zero entry in the column that corresponds to the term t`ieui .
Altogether, line 8 yields t`ieui ∈ Tn≤γ〈e1, . . . , er〉 \ O and the claim follows.

Theorem 2.5.3. (The Border Basis Algorithm)
Let k ∈ N and U = 〈v1, . . . , vk〉 ⊆ P r with vectors v1, . . . , vk ∈ P r \{0} be a P -submodule
such that codimK(U,P r) < ∞, and let σ be a term ordering on Tn that is compatible
with degW . Then Algorithm 3 is actually an algorithm and the result

(O, G) := moduleBB({v1, . . . , vk},W, σ)

of Algorithm 3 applied to the input data {v1, . . . , vk}, W , and σ satisfies the following
conditions.

1) The set O is an order ideal in Tn〈e1, . . . , er〉.

2) The set G ⊆ P r is the O-border basis of U .
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Algorithm 3: BBasis({v1, . . . , vk}, (w1, . . . , wn), σ)

Input:
k ∈ N and {v1, . . . , vk} ⊆ P r \ {0} such that codimK(〈v1, . . . , vk〉, P r) <∞;
(w1, . . . , wn) ∈ Mat1,n(Z) such that wi > 0 for all i ∈ {1, . . . , n};
σ is a term ordering on Tn that is compatible with deg(w1,...,wn);

1 V := 〈v1, . . . , vk〉K
2 γ := max{deg(t) | ` ∈ {1, . . . , k}, teu ∈ Supp(v`)}
3 repeat
4 V ′ := (V + x1V + · · ·+ xnV ) ∩ P r≤γ
5 while V 6= V ′ do
6 V := V ′

7 V ′ := (V + x1V + · · ·+ xnV ) ∩ P r≤γ
8 end
9 Compute % ∈ N and {ṽ1, . . . , ṽ%} ⊆ P r≤γ \ {0} with V = 〈ṽ1, . . . , ṽ%〉K .

10 O := computeOrderIdeal(γ, {ṽ1, . . . , ṽ%}, (w1, . . . , wn), σ)
11 γ := γ + 1

12 until ∂O ⊆ Tn≤γ〈e1, . . . , er〉
13 Let µ ∈ N, let t1, . . . , tµ ∈ Tn, and let α1, . . . , αµ ∈ {1, . . . , r} be such that
O = {t1eα1 , . . . , tµeαµ}.

14 Let ν ∈ N, let b1, . . . , bν ∈ Tn, and let β1, . . . , βν ∈ {1, . . . , r} be such that
∂O = {b1eβ1 , . . . , bνeβν}.

15 G := ∅
16 for j := 1 to ν do
17 Determine a1j , . . . , aµj ∈ K such that bjeβj =

∑µ
i=1 aijtieαi in P

r/V .
18 G := G ∪ {bjeβj −

∑µ
i=1 aijtieαi}

19 end
20 return (O, G)

3) For all g ∈ G, we have LTσPos(g) ∈ ∂O. In particular, the degree form of an
element of G with respect to W contains the corresponding border term.

Proof. First we prove that every step of the procedure can be computed. As r ∈ N \ {0}
and as codimK(U,P r) < ∞, we see that k 6= 0 and thus the maximum in line 2 can
be computed. In particular, it follows that dimK(V ) ≥ 1 in line 1. We can compute
the intersection of K-vector spaces for the computation of V ′ in the lines 4 and 7 with
linear algebra techniques. In line 10, the while-loop starting in line 5 has already been
finished. In this situation, the construction of V in line 1 and during the while-loop in
line 5 yields % ≥ dimK(V ) ≥ 1 and V = V ′ = (V + x1V + · · · + xnV ) ∩ P r≤γ after the
while-loop. In other words, the input data γ, {ṽ1, . . . , ṽ%}, W , and σ in line 9 satisfy the
requirements of Algorithm 2. Thus we can compute an order ideal O ⊆ Tn≤d〈e1, . . . , er〉
in Tn〈e1, . . . , er〉 in line 10 such that the residue classes of the elements of O in P r≤γ/V
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form a K-vector space basis of P r≤γ/V according to Lemma 2.5.2. Moreover, the repeat-
until-loop starting in line 3 only stops if ∂O ⊆ Tn≤γ〈e1, . . . , er〉. Thus we can compute
the coefficients a1j , . . . , aµj ∈ K for all j ∈ {1, . . . , ν} in line 17 with linear algebra
techniques, too. All the other steps of the procedure can be trivially computed.
Second we show that the procedure stops after a finite amount of time. We start to show
that the while-loop in line 5 eventually terminates. By the construction of V and V ′ in
the lines 1, 4, 6, and 7, we see that we always have V ⊆ V ′ ⊆ P r≤γ . Assume that V 6= V ′

in this situation, i.e. the while-loop in line 5 is executed at least one time. For every i ∈ N,
we let V ′i denote the K-vector subspace V ′ ⊆ P r≤γ after the ith iteration of the while-
loop. Since we have dimK(P r≤γ) = #Tn≤γ〈e1, . . . , er〉 <∞, the chain V ′0 ⊆ V ′1 ⊆ V ′2 ⊆ · · ·
eventually gets stationary. In this situation, we have V ′i = V ′i−1 for some i ∈ N\{0} and,
therefore, V = V ′ in line 5. Thus the while-loop terminates after the ith iteration.
Third we prove that the repeat-until-loop starting in line 3 stops after a finite amount of
time. Let H = {h1, . . . , hη} ⊆ P r with η ∈ N be the reduced σPos-Gröbner basis of U .
Since k > 0, we have U 6= {0} and thus see that η > 0. For every index j ∈ {1, . . . , η},
there exist polynomials pj1, . . . , pjk ∈ P such that hj = pj1v1 + · · · + pjkvk. We denote
γ′ = max{deg(t) | j ∈ {1, . . . , η}, ` ∈ {1, . . . , k}, teu ∈ Supp(pj`v`)}. As we have already
seen above, η > 0 and k > 0 and thus this maximum exists. Then we have H ⊆ P r≤γ
after the while-loop in the case that γ = γ′. Now suppose that we are in the situation
that γ = γ′ during the repeat-until-loop. Since V = (V + x1V + · · ·+ xnV ) ∩ P r≤γ after
the while-loop starting in line 5, we then have H ⊆ V . Let O be the result of Algorithm 2
computed in line 10. Then O is an order ideal in Tn〈e1, . . . , er〉 such that the residue
classes of the elements of O in P r≤γ/V form a K-vector space basis of P r≤γ/V according to
Lemma 2.5.2. Moreover, we let Tn≤γ〈e1, . . . , er〉 = {`1eu1 , . . . , `seus} with `1, . . . , `s ∈ Tn
and u1, . . . , us ∈ {1, . . . , r} be such that `1eu1 >σPos · · · >σPos `seus as in line 1 of
Algorithm 2 during the computation of O in line 10. Furthermore, we let Ṽ ∈ Matm,s(K)
with m ∈ N be the matrix in row echolon form as in line 7 of Algorithm 2 used during
the computation of O in line 10. Let j ∈ {1, . . . , η} and hj = c1`1eu1 + · · ·+ cs`seus be
with c1, . . . , cs ∈ K. Then the vector (c1, . . . , cs) ∈ Ks corresponds to the Gröbner basis
element hj ∈ H. Let LTσPos(hj) = `weuw be with w ∈ {1, . . . , s}. Then it follows that
(c1, . . . , cs) = (0, . . . , 0, 1, cw+1, . . . , cs) according to [KR00, Defn. 2.4.12]. Since hj ∈ V ,
we see that there exists a vector in Ks corresponding to a vector in V which has its first
non-zero entry in the wth column of Ṽ, namely the vector (0, . . . , 0, 1, cw+1, . . . , cs) ∈ Ks

corresponding to hj ∈ H. Therefore, the construction of O in line 8 of Algorithm 2
yields that LTσPos(hj) /∈ O. In particular, this implies LTσPos{U} ∩ O = ∅ and thus
O ⊆ Tr〈e1, . . . , er〉 \ LTσPos{U} = OσPos(U). Now the Definitions 2.1.6 and 2.1.7 and
H ⊆ P r≤γ yield ∂O ⊆ ∂O ⊆ ∂OσPos(U) ⊆ Tn≤γ〈e1, . . . , er〉. Hence the repeat-until-loop
terminates in the case that γ = γ′. Altogether, we see that the procedure is actually an
algorithm.
It remains to prove the correctness. As the set O is computed in line 10 with the

use of Algorithm 2, Lemma 2.5.2 yields that O is an order ideal in Tn〈e1, . . . , er〉, i.e.
claim 1) holds. For every index j ∈ {1, . . . , ν}, we let gj = bjeβj −

∑µ
i=1 aijtieαi ∈ P r

with a1j , . . . , aµj ∈ K be as in line 18. Then G = {g1, . . . , gν} ⊆ V is an O-border
prebasis by Definition 2.1.14.
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Next we prove 3). Let j ∈ {1, . . . , ν} and consider the matrix Ṽ ∈ Matm,s(K) and
`1eu1 , . . . , `seus ∈ Tn≤γ〈e1, . . . , er〉 as above, again. Write gj = c1`1eu1 + · · · + cs`seus
with c1, . . . , cs ∈ K. Then the vector (c1, . . . , cs) ∈ Ks, which corresponds to gj , repre-
sents a K-linear dependency between the terms in the set Tn≤γ〈e1, . . . , er〉. Assume that
LTσPos(hj) = `weuw 6= bjeβj for some w ∈ {1, . . . , s}. As σ is compatible with degW and
as W = (w1, . . . , wn) satisfies w` > 0 for all ` ∈ {1, . . . , n}, (c1, . . . , cs) ∈ Ks is a vector
which has its first non-zero entry in the column corresponding to the term `weuw ∈ O.
But this is a contradiction to the construction of the order ideal O in line 8 of Algo-
rithm 2, i.e. we have LTσPos(gj) = bjeβj ∈ ∂O and claim 3) follows.
Finally, we show claim 2) by proving that the normal remainders of all S-vectors of all
neighbors with respect to O vanish. Let bieβi , bjeβj ∈ ∂O with i, j ∈ {1, . . . , ν} be neigh-
bors with respect to O. We have already shown that ∂O ⊆ Tn≤γ〈e1, . . . , er〉 at the end
of the algorithm. In particular, G ⊆ 〈∂O〉K ∩ V . Moreover, by the construction of V
in the lines 1, 4, 6, and 7, we have V ∩ x1V ∩ · · · ∩ xnV = V . Since bieβi , bjeβj ∈ ∂O
are neighbors with respect to O, we hence get S(gi, gj) ∈ V by Definition 2.4.21. Using
the Border Division Algorithm 2.2.1 applied to S(gi, gj) and G, we can compute scalars
c1, . . . , cν ∈ K such that NRG(S(gi, gj)) = S(gi, gj)−

∑ν
w=1 cwgw ∈ 〈O〉K . Since we have

also already seen that G ⊆ V , we get 0 = NRG(S(gi, gj)) in P r≤γ/V . In particular, as the
residue classes of the elements of O in P r≤γ/V form a K-vector space basis of P r≤γ/V ,
we see that NRG(S(gi, gj)) ∈ V ∩ 〈O〉K = {0}. Altogether, we see that condition F2)
of Buchberger’s Criterion for border bases 2.4.31 holds, i.e. G actually is the O-border
basis of 〈G〉.
Therefore, the claim follows if we show that G generates U . For every j ∈ {1, . . . , ν}, we
have already seen that gj ∈ V ⊆ U , i.e. we have 〈G〉 ⊆ U . For the converse inclusion, we
let w ∈ {1, . . . , k}. We apply the Border Division Algorithm 2.2.1 to vw and G to obtain
a representation vw = v′w + NRG(vw) with v′w ∈ 〈G〉 and NRG(vw) ∈ 〈O〉K . During the
Border Division Algorithm 2.2.1, we always subtract multiples of the form tgj with t ∈ Tn
and j ∈ {1, . . . , ν} to eliminate the term tbjeβj . Since σ is a term ordering on Tn that is
compatible with degW , sinceW = (w1, . . . , wn) satisfies w` > 0 for all ` ∈ {1, . . . , n}, and
since we have bjeβj = LTσPos(gj), it follows that all the vectors that are used for these
reductions satisfy tgj ∈ P r≤γ . Thus we have v′w ∈ V ⊆ P r≤γ because G ⊆ V . Altogether,
we see that 0 = vw = NRG(vw) in P r≤γ/V . Since the residue classes of the elements
of O in P r≤γ/V form a K-vector space basis of P r≤γ/V by Lemma 2.5.2, it follows that
NRG(vw) ∈ V ∩ 〈O〉K = {0}. In particular, we get vw = v′w + NRG(vw) = v′w ∈ 〈G〉.
Therefore, we see that U = 〈v1, . . . , vk〉 ⊆ 〈G〉. Altogether, we have proven that G is the
O-border basis of U .

Example 2.5.4. Let P = Q[x, y], {e1, e2} be the canonical basis of the P -module P 2,
W = (1, 1) ∈ Mat1,2(Z), and σ = DegRevLex. Then σ is compatible with degW , i.e.
compatible with the standard grading. Furthermore, we let U = 〈v1, . . . , v5〉 ⊆ P 2 be
with the vectors v1 = (−2, 3x− 1), v2 = (3x+ 4, 2), v3 = (0, y − 1), v4 = (y − 1, 0), and
v5 = (x + y + 1,−x + y). Then xe2, xe1, ye2, ye1 ∈ LTσPos(U). Thus Macaulay’s Basis
Theorem [KR00, Thm. 1.5.7] yields codimK(U,P 2) = #OσPos(U) ≤ #{e1, e2} = 2 <∞.
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In particular, the requirements of the Border Basis Algorithm 3 are satisfied.
In order to illustrate it, we consider the steps of the Border Basis Algorithm 3 applied

to the input data {v1, . . . , v5}, W , and σ in detail. We initialize V = 〈v1, . . . , v5〉Q in
line 1 and thus have γ = 1 in line 2. Moreover, we compute V ′ = (V +xV +yV )∩P 2

≤1 = V
with linear algebra techniques in line 4. Thus the while-loop in line 5 does not need to
be executed and we have {ṽ1, . . . , ṽ5} = {v1, . . . , v5} in line 9.
Next we consider the computation of O in line 10 by applying Algorithm 2 to the input
data 1, {v1, . . . , v5}, W , and σ. We order the terms in L according to σPos decreasingly
and compute the matrix

V =


0 3 0 0 −2 −1
3 0 0 0 4 2
0 0 0 1 0 −1
0 0 1 0 −1 0
1 −1 1 1 1 0

 ∈ Mat5,6(Q)

as in line 6 of Algorithm 2. The (reduced) row echolon form of V needed in line 7 of
Algorithm 2 is then

Ṽ =


1 0 0 0 4

3
2
3

0 1 0 0 −2
3 −1

3
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 0 0 0 0

 ∈ Mat5,6(Q),

i.e. we get the order ideal O = {e1, e2} in T2〈e1, e2〉 after line 10 of Algorithm 3.
As the border of O satisfies ∂O = {xe1, xe2, ye1, ye2} ⊆ T2

≤1〈e1, e2〉, we stop the com-
putation of the repeat-until-loop in line 3. We proceed with the computation of the
for-loop in line 16 and get the set G = {g1, . . . , g4} ⊆ P 2 with g1 = xe1 + 4

3e1 + 2
3e2,

g2 = xe2 − 2
3e1 − 1

3e2, g3 = ye1 − e1, and g4 = ye2 − e2. According to Theorem 2.5.3,
the set O is an order ideal in T2〈e1, e2〉 and G is the O-border basis of U . In particular,
since the set of all corners of O is precisely {xe1, xe2, ye1, ye2} by Definition 2.3.3, the
set G is also the reduced σPos-Gröbner basis of U according to Proposition 2.3.5.

Now we are able to give the reason for allowing empty order ideals in Section 2.1.

Remark 2.5.5. In contrast to the theory of border bases as in [KR05, Section 6.4]
or [KK05], we have explicitly allowed that order ideals in Tn may be empty by Defini-
tion 2.1.1. The reason for that is as follows: Let W ∈ Mat1,n(Z) be with wi > 0 for
all i ∈ {1, . . . , n}, let σ be a term ordering on Tn that is compatible with degW , and
let k ∈ N \ {0}. Consider vectors {v1, . . . , vk} ⊆ P r \ {0} such that the P -submodule
U = 〈v1, . . . , vk〉 ⊆ P r satisfies codimK(U,P r) < ∞. Moreover, assume that r ≥ 2 and
e1− e2 ∈ U , i.e. U contains a K-linear dependency between the elements of {e1, . . . , er}.
Then the resulting order ideal O in line 10 of the Border Bases Algorithm 2.5.3 applied
to {v1, . . . , vk}, W , and σ does not contain all the elements of {e1, . . . , er}, namely the
above K-linear dependency yields e1 /∈ O as e1 >σPos e2. By allowing empty order ideals
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in Definition 2.1.1, this fact does stills occur but the result of the algorithm is still an
order ideal in Tn〈e1, . . . , er〉 according to Definition 2.1.6.

2.6 Generalized Border Bases

In the Sections 2.1 to 2.5, we have generalized the notion of border bases from the
polynomial ring P to free P -modules of finite rank. This was done by generalizing the
corresponding concepts of border bases in P . The goal of the final section of this chapter
is to establish a border bases theory for arbitrary finitely generated P -modules. A border
prebasis in a finitely generated P -module M = 〈m1, . . . ,mr〉 is defined to be the image
of a border prebasis in P r under the P -module epimorphism P r � M , ek 7→ mk for
all indices k ∈ {1, . . . , r} induced by M . Unfortunately, it turns out that we cannot
simply refine the theory established in the previous sections but we have to invent a
totally different one. The reason is that the image of an order ideal under the above
epimorphism does not behave like an order ideal in Tn〈e1, . . . , er〉 at all. E.g. we will
see in Example 2.6.2 that the order ideal and its border can have common elements.
Therefore, the basic propositions of Section 2.1 do no longer hold in this general setting.
Nevertheless, we can characterize and compute border bases if the corresponding order
ideal is not degenerated. More precisely, we do the following.

First we introduce generalized border prebases and border bases in Definition 2.6.3.
A generalized border prebasis is the image of a border prebasis in P r and a generalized
border basis has the additional property that the residue classes of the images of the el-
ements of the order ideal form a K-vector space basis of the corresponding residue class
module. Then we introduce the notion of characterizing order ideals and characterizing
border prebases in Definition 2.6.5. If the generalized order ideal of a given generalized
border prebasis is not degenerated, we can use the corresponding characterizing border
prebasis to characterize the given generalized border basis in Theorem 2.6.8. This is the
key result of this section and yields a characterization of generalized border bases via the
characterizations introduced in Section 2.4 in Corollary 2.6.10. Moreover, if we know the
kernel of the P -module epimophism induced by the finitely generated P -module in which
we want to establish a border bases theory, we can even compute generalized border bases
according to Corollary 2.6.12. Finally, we apply the theory of generalized border bases
to subideal border bases in Example 2.6.13. Subideal border bases were introduced in
[KP11] and, by now only a characterization via a special generation property and an
algorithm that uses Gröbner bases techniques for their computation is known. Our new
theory allows us to characterize subideal border bases in various other ways and to com-
pute them with linear algebra techniques.

For the whole section, we let M = 〈m1, . . . ,mr〉 be a finitely generated P -module and
we let ϕ : P r � M , ek 7→ mk for all k ∈ {1, . . . , r} be the corresponding P -module
epimophism.
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First we introduce the notion of generalized order ideals as images of order ideals
in Tn〈e1, . . . , er〉.

Definition 2.6.1. Let O1, . . . ,Or be order ideals in Tn and O = O1e1 ∪ · · · ∪ Orer be
the corresponding order ideal in Tn〈e1, . . . , er〉.

a) We call the set ϕ(O) = O1 · ϕ(e1) ∪ · · · ∪ Or · ϕ(er) ⊆ M a (generalized) order
ideal in ϕ(Tn〈e1, . . . , er〉).

b) The set ∂ϕ(O) = ϕ(∂O) = ∂O1 ·ϕ(e1)∪ · · · ∪ ∂Or ·ϕ(er) ⊆M is called the (first)
border of ϕ(O).

The following example shows that generalized order ideals do not behave like order
ideals in Tn〈e1, . . . , er〉 at all.

Example 2.6.2. Let P = Q[x, y], let {e1, e2} be the canonical P -module basis of P 2,
and let S = 〈xye2−xe1〉 ⊆ P 2. Consider the P -moduleM = P 2/S and the corresponding
canonical P -module epimorphism ϕ : P 2 � M , e1 7→ e1, e2 7→ e2. Additionally, let
O1 = {1, x} ⊆ T2, O2 = {1, y, y2} ⊆ T2, and O = O1e1 ∪ O2e2 ⊆ T2〈e1, e2〉. Then the
set ϕ(O) = O1 · e1 ∪ O2 · e2 = {e1, xe1, e2, ye2, y

2e2} is an order ideal in ϕ(T2〈e1, e2〉)
with the border ∂ϕ(O) = ∂O1 · e1 ∪ ∂O2 · e2 = {ye1, xye1, x

2e1, xe2, xye2, xy
2e2, y

3e2}
according to Definition 2.6.1.
Since xe1 = xye2 in M , we see that xe1 = xye2 ∈ ϕ(O) ∩ ∂ϕ(O), i.e. an analogous

version of Proposition 2.1.10 does not hold true. Moreover, generalized order ideals
in ϕ(Tn〈e1, . . . , er〉) are not closed under forming divisors in contrast to order ideals
in Tn〈e1, . . . , er〉, cf. Definition 2.1.6, since y ·xe2 = xye2 = xe1 ∈ ϕ(O) but xe2 /∈ ϕ(O).

Now we are able introduce generalized border basis.

Definition 2.6.3. Let O1, . . . ,Or be finite order ideals in Tn and O = O1e1∪· · ·∪Orer
be the corresponding order ideal in Tn〈e1, . . . , er〉. We write O = {t1eα1 , . . . , tµeαµ} and
the border ∂O = {b1eβ1 , . . . , bνeβν} with µ, ν ∈ N, ti, bj ∈ Tn, and αi, βj ∈ {1, . . . , r}
for all i ∈ {1, . . . , µ} and for all j ∈ {1, . . . , ν}. Moreover, we let G = {g1, . . . , gν} ⊆ P r

be an O-border prebasis with gj = bjeβj −
∑µ

i=1 aijtieαi where a1j , . . . , aµj ∈ K for all
indices j ∈ {1, . . . , ν}.

a) The set ϕ(G) = {ϕ(g1), . . . , ϕ(gν)} ⊆M , where ϕ(gj) = bjmβj −
∑µ

i=1 aijtimαi for
all j ∈ {1, . . . , ν}, is called a (generalized) ϕ(O)-border prebasis.

b) Let U ⊆ M be a P -submodule. The ϕ(O)-border prebasis ϕ(G) ⊆ M is called an
(generalized) ϕ(O)-border basis of U if ϕ(G) ⊆ U and if the residue classes of
the elements of ϕ(O) in M/U form a K-vector space basis of M/U .

One might think that all the definitions and propositions about border bases in free
P -modules of the Sections 2.1 to 2.5 can be generalized to generalized border bases
in arbitrary finitely generated P -modules in a straightforward way. Unfortunately, the
situation is more complicated than expected. We have already seen one big difference
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concerning border bases and generalized border bases in Example 2.6.2. Namely we
have seen that it can happen that a generalized order ideal and its border have some
elements in common, i.e. the straightforward, analogous version of Proposition 2.1.10 is
wrong, and that generalized order ideals are not closed under forming divisors. Since
most of the propositions of the Sections 2.1 to 2.5 are based upon these properties, the
theory of generalized border bases needs much more care in the definitions and proofs.
Nevertheless, some results can be extended to generalized border bases. The following
proposition shows that generalized border bases are unique just as it was the case for
border bases in free P -modules in Proposition 2.3.2.

Proposition 2.6.4. (Uniqueness of Generalized Border Bases)
Let Oϕ be a finite order ideal in ϕ(Tn〈e1, . . . , er〉), let U ⊆M be a P -submodule, and let
Gϕ, G′ϕ ⊆M be two Oϕ-border bases of U . Then we have Gϕ = G′ϕ.

Proof. Write Oϕ = {t1mα1 , . . . , tµmαµ} and ∂Oϕ = {b1mβ1 , . . . , bνmβν} with µ, ν ∈ N,
terms ti, bj ∈ Tn, and αi, βj ∈ {1, . . . , r} for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}.
Then the Oϕ-border bases Gϕ and G′ϕ are of the form Gϕ = {gϕ1 , . . . , g

ϕ
ν } ⊆ M with

gϕj = bjmβj −
∑µ

i=1 aijtimαi where a1j , . . . , aµj ∈ K for all j ∈ {1, . . . , ν}, and of the
form G′ϕ = {g′ϕ1 , . . . , g

′ϕ
ν } ⊆M with g′ϕj = bjmβj−

∑µ
i=1 a

′
ijtimαi where a′1j , . . . , a

′
µj ∈ K

or all j ∈ {1, . . . , ν} by Definition 2.6.3. Assume that aij 6= a′ij for some i ∈ {1, . . . , µ}
and j ∈ {1, . . . , ν}. As Gϕ, G′ϕ ⊆ U according to Definition 2.6.1, we then see that
0 = gϕj − g

′ϕ
j =

∑µ
k=1(−akj + a′kj)tkmαk in M/U . Since G is an Oϕ-border basis of U ,

Definition 2.6.3 yields the contradiction aij = a′ij . Thus the claim follows.

Next we introduce the notion of characterizing order ideals and characterizing border
prebases. These exist if a given generalized order ideal is not degenerated and will later
turn out to be very useful to characterize generalized border bases.

Definition 2.6.5. Let Gϕ ⊆ M be an Oϕ-border prebasis. We write the order
ideal Oϕ = {t1mα1 , . . . , tµmαµ} ⊆M in ϕ(Tn〈e1, . . . , er〉) and the corresponding border
∂Oϕ = {b1mβ1 , . . . , bνmβν} ⊆ M with µ, ν ∈ N and ti, bj ∈ Tn and αi, βj ∈ {1, . . . , r}
for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}. Moreover, we write Gϕ = {gϕ1 , . . . , g

ϕ
ν } with

gϕj = bjmβj −
∑µ

i=1 aijmαi where a1j , . . . , aµj ∈ K for all j ∈ {1, . . . , ν}.

a) An order ideal O in Tn〈e1, . . . , er〉 is said to characterize Oϕ if ϕ(O) = Oϕ and
if the restriction ϕ|O of ϕ to O is injective.

b) Let O ⊆ Tn〈e1, . . . , er〉 be an order ideal that characterizes Oϕ. By choosing
suitable preimages and reordering the elements of Oϕ and ∂Oϕ, we can without
loss of generality assume that we have O = {t1eα1 , . . . , tµeαµ} and that ∂O has
the form ∂O = {b1eβ1 , . . . , bνeβν , bν+1eβν+1 , . . . , bωeβω} with ω ∈ N, ω ≥ ν, and
bj ∈ Tn and βj ∈ {1, . . . , r} for all j ∈ {ν + 1, . . . , ω}. For all j ∈ {1, . . . , ν}, we
define gj = bjeβj −

∑µ
i=1 aijtieαi ∈ P r. For all j ∈ {ν + 1, . . . , ω}, there exists

a unique index k ∈ {1, . . . , ν} such that bjmβj = ϕ(bjeβj ) = ϕ(bkeβk) = bkmβk

according to Definition 2.6.1 and we define gj = bjeβj −
∑ν

i=1 aiktieαi ∈ P r. We
say that the O-border prebasis G = {g1, . . . , gω} ⊆ P r characterizes Gϕ.
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Example 2.6.6. Consider the generalized order ideal Oϕ = ϕ(O) of Example 2.6.2,
again. Recall that P = Q[x, y], that {e1, e2} denoted the canonical P -module basis
of P 2, that we had ϕ : P 2 � M , e1 7→ e1, e2 7→ e2 where we had M = P 2/S with
S = 〈xye2 − xe1〉 ⊆ P 2, and that the generalized order ideal in ϕ(T2〈e1, e2〉) was of the
form Oϕ = {1, x} · e1 ∪ {1, y, y2} · e2. Moreover, since xy2e2 = xye1 in M , the border
of Oϕ is ∂Oϕ = {y, xy, x2} · e1 ∪ {x, xy, xy2, y3} · e2 = {ye1, xye1, x

2e1, xe2, xye2, y
3e2}.

Then the set Gϕ = {gϕ1 , . . . , g
ϕ
6 } ⊆ M with gϕ1 = ye1 − e1 − e2, g

ϕ
2 = xye1 − ye2,

gϕ3 = x2e1 − xe1 + e2, g
ϕ
4 = xe2 − e2, g

ϕ
5 = xye2 + e1, and g

ϕ
6 = y3e2 − xe1 + ye2 is an

Oϕ-border prebasis according to Definition 2.6.3.
Let O = {1, x} · e1 ∪ {1, y, y2} · e2. Then O is an order ideal in T2〈e1, e2〉 that char-

acterizes Oϕ by Definition 2.6.5. Its is ∂O = {ye1, xye1, x
2e1, xe2, xye2, xy

2e2, y
3e2}

Furthermore, as we have x2ye2 = xye1 in M , the set G = {g1, . . . , g7} ⊆ P 2 with
g1 = ye1 − e1 − e2, g2 = xye1 − ye2, g3 = x2e1 − xe1 + e2, g4 = xe2 − e2, g5 = xye2 + e1,
g6 = y3e2 − xe1 + ye2, and g7 = xy2e2 − ye2 is the O-border prebasis characterizing Gϕ
by Definition 2.6.5. Note that #Gϕ = 6 < 7 = #G and that the construction yields
ϕ(g7) = xy2e2 − ye2 = xye1 − ye2 = ϕ(g2) = gϕ2 .

Before we give the main proof of this section, we need an auxiliary lemma.

Lemma 2.6.7. Let v1, . . . , vk ∈ P r be with k ∈ N and let vϕ` = ϕ(v`) ⊆ M be for all
` ∈ {1, . . . , k}. Furthermore, let U = 〈v1, . . . , vk〉 ⊆ P r and Uϕ = 〈vϕ1 , . . . , v

ϕ
k 〉 ⊆ M .

Then ϕ(U) = Uϕ and ϕ−1(Uϕ) = U + ker(ϕ). In particular, if Gϕ ⊆M is an Oϕ-border
prebasis and there exists an O-border prebasis G ⊆ P r characterizing Gϕ, then we have
ϕ(〈G〉) = 〈Gϕ〉 and ϕ−1(〈Gϕ〉) = 〈G〉+ ker(ϕ).

Proof. Since the definitions of U and Uϕ immediately yield the first equality ϕ(U) = Uϕ,
it suffices to prove the second equality ϕ−1(Uϕ) = U + ker(ϕ). For the first inclusion, we
let v = p1v1 + · · ·+ pkvk + w be with p1, . . . , pk ∈ P and w ∈ ker(ϕ). Then we see that
ϕ(v) = p1v

ϕ
1 + · · ·+ pkv

ϕ
k + ϕ(w) = p1v

ϕ
1 + · · ·+ pkv

ϕ
k ∈ U

ϕ. For the converse inclusion,
we let w ∈ ϕ−1(Uϕ) ⊆ P r. Then there exist polynomials p1, . . . , pk ∈ P such that
ϕ(w) = p1v

ϕ
1 + · · ·+ pkv

ϕ
k = ϕ(p1v1 + · · ·+ pkvk). Thus w− (p1v1 + · · ·+ pkvk) ∈ ker(ϕ)

and this yields w ∈ U + ker(ϕ). The other claims are a direct consequence of this.

Now we have all ingredients to prove the main result of this section. Under the as-
sumption that the generalized order ideal Oϕ is not degenerated, i.e. that there is an
order ideal O in Tn〈e1, . . . , er〉 that characterizes Oϕ, we prove that a given general-
ized Oϕ-border prebasis is a generalized Oϕ-border basis if and only if its characterizing
O-border prebasis is an O-border basis which generates a submodule that contains the
kernel of ϕ.

Theorem 2.6.8. (Characterization of Generalized Border Bases)
Let Gϕ ⊆ M be an Oϕ-border prebasis and assume that there exists an O-border preba-
sis G ⊆ P r that characterizes Gϕ. Then the following conditions are equivalent.

i) The Oϕ-border prebasis Gϕ is the Oϕ-border basis of 〈Gϕ〉.
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2.6 Generalized Border Bases

ii) The O-border prebasis G is the O-border basis of 〈G〉 and ker(ϕ) ⊆ 〈G〉.

Proof. Let O = {t1eα1 , . . . , tµeαµ} ⊆ Tn〈e1, . . . , er〉 and ∂O = {b1eβ1 , . . . , bωeβω}, let
Oϕ = {t1mα1 , . . . , tµmαµ} ⊆ M and ∂Oϕ = {b1mβ1 , . . . , bνmβν} be with µ, ν, ω ∈ N,
ν ≤ ω, and ti, bj ∈ Tn and αi, βj ∈ {1, . . . , r} for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ω},
and let G = {g1, . . . , gω} ⊆ P r and Gϕ = {gϕ1 , . . . , g

ϕ
ν } ⊆ M be with ϕ(gj) = gϕj for all

j ∈ {1, . . . , ν} and ϕ(gk) ∈ Gϕ for all k ∈ {ν + 1, . . . , ω} as in Definition 2.6.5.
First we prove that ker(ϕ) ⊆ 〈G〉 if Gϕ is the Oϕ-border basis of 〈Gϕ〉. Suppose

that Gϕ is the Oϕ-border basis of 〈Gϕ〉. Assume that there exists a v ∈ ker(ϕ) \ 〈G〉.
We apply the Border Division Algorithm 2.2.1 to v and G to obtain a representation
v = p1g1 + · · ·+ pωgω + c1t1eα1 + · · ·+ cµtµeαµ with p1, . . . , pω ∈ P and c1, . . . , cµ ∈ K.
Since v /∈ 〈G〉, there exists an i ∈ {1, . . . , µ} such that ci 6= 0. Moreover, Definition 2.6.5
and Lemma 2.6.7 yield 0 = ϕ(v) = c1t1mα1 + · · ·+ cµtµmαµ in M/〈Gϕ〉. As ϕ(O) = Oϕ
and ϕ|O is injective according to Definition 2.6.5 and as ci 6= 0, the residue classes of the
elements of Oϕ in M/〈Gϕ〉 are K-linearly dependent in contradiction to Definition 2.6.3.
Altogether, we have proven that ker(ϕ) ⊆ 〈G〉.
Second we prove the claimed equivalence. Suppose that ker(ϕ) ⊆ 〈G〉 holds. Then

Lemma 2.6.7 yields that ϕ−1(〈Gϕ〉) = 〈G〉 and hence ϕ induces a P -module isomorphism
P r/〈G〉 = P r/ϕ−1(〈Gϕ〉) ∼= ϕ(P r)/〈Gϕ〉 = M/〈Gϕ〉 according to the Second Noetherian
Isomorphism Theorem. As ϕ(O) = Oϕ and as ϕ|O is injective by Definition 2.6.5, the
Definitions 2.1.14 and 2.6.3 yield that G is the O-border basis of 〈G〉 if and only if Gϕ is
the Oϕ-border basis of 〈Gϕ〉.

Example 2.6.9. Let P = Q[x, y] and {e1, e2} be the canonical P -module basis of P 2.
Furthermore, let s = (x+ y + 1,−x+ y) ∈ P 2, M = P 2/〈s〉, and ϕ : P 2 �M , e1 7→ e1,
e2 7→ e2 be the corresponding canonical P -module epimorphism. Consider the order
ideal O = {e1, e2} in T2〈e1, e2〉 and the O-border prebasis G = {g1, . . . , g4} ⊆ P 2 with
g1 = xe1 + 4

3e1 + 2
3e2, g2 = xe2 − 2

3e1 − 1
3e2, g3 = ye1 − e1 , and g4 = ye2 − e2. In

Example 2.5.4, we have shown that G is the O-border basis of U = 〈v1, v2, v3, v4, s〉 ⊆ P 2

where v1 = (−2, 3x−1), v2 = (3x+4, 2), v3 = (0, y−1), and v4 = (y−1, 0). In particular,
we have U = 〈G〉 by Corollary 2.2.4.
Let Oϕ = ϕ(O) = {e1, e2} ⊆ M and let Gϕ = {gϕ1 , . . . , g

ϕ
4 } = ϕ(G) ⊆ M be with

gϕ1 = ϕ(g1) = xe1 + 4
3e1 + 2

3e2, g
ϕ
2 = ϕ(g2) = xe2 − 2

3e1 − 1
3e2, g

ϕ
3 = ϕ(g3) = ye1 − e1,

gϕ4 = ϕ(g4) = ye2 − e2. Then we see that O is an order ideal characterizing Oϕ and G is
the O-border prebasis characterizing the Oϕ-border prebasis Gϕ by Definition 2.6.5. As
we also have ker(ϕ) = 〈s〉 ⊆ 〈G〉 and as G is the O-border basis of 〈G〉, Theorem 2.6.8
yields that Gϕ is the Oϕ-border basis of 〈Gϕ〉 = 〈ϕ(G)〉 = 〈G〉/〈s〉.

As a first corollary, we can apply the characterizations of Section 2.4 to generalized
border bases.

Corollary 2.6.10. (Characterizations of Generalized Border Bases)
Let Gϕ ⊆ M be an Oϕ-border prebasis and assume that there exists an O-border preba-
sis G ⊆ P r that characterizes Gϕ. Then Gϕ is the Oϕ-border basis of 〈Gϕ〉 if and only
if ker(ϕ) ⊆ 〈G〉 and one of the following conditions is satisfied.
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A) The O-border prebasis G has the special generation property of Theorem 2.4.1.

B) The border form module BFO(〈G〉) satisfies the conditions of Theorem 2.4.5.

C) The rewrite rule G−→ defined by G satisfies the conditions of Theorem 2.4.13.

D) The formal multiplication matrices with respect to G are pairwise commuting, cf.
Theorem 2.4.19.

E) The border syszygies with respect to O can be lifted, cf. Theorem 2.4.26.

F ) The O-border prebasis G satisfies Buchberger’s Criterion for border bases, cf. The-
orem 2.4.31.

Proof. These equivalences are a direct consequence of Theorem 2.6.8 and the correspond-
ing characterizations in Section 2.4.

The assumption of Theorem 2.6.8 that there exists an O-border prebasis G that charac-
terizes the Oϕ-border prebasis Gϕ, i.e. the existence of an order ideal O in Tn〈e1, . . . , er〉
that characterizes the order ideal Oϕ in ϕ(Tn〈e1, . . . , er〉) according to Definition 2.6.5,
cannot be omitted as the following example shows.

Example 2.6.11. Let P = Q[x, y], {e1, e2} be the canonical P -module basis of P 2,
M = P 2/S be with S = 〈xe1− ye2〉 ⊆ P 2, and ϕ : P 2 �M , e1 7→ e1, e2 7→ e2. Consider
the order ideal Oϕ = {1, x, x2} · e1 ∪ {1, y, y2} · e2 = {1} · e1 ∪ {1, y, y2, xy} · e2 ⊆ M .
Since xe1 = ye2 ∈ Oϕ, we have #Oϕ = 5. Moreover, we see that x2e1 = xye2 ∈ Oϕ.
Assume that there exists an order ideal O in T2〈e1, e2〉 that characterizes Oϕ. Since

we have ye1, x
3e1, xe2, y

3e2 /∈ Oϕ, we get ye1, x
3e1, xe2, y

3e2 /∈ O. Therefore, we see
that O ⊆ {1, x, x2} · e1 ∪ {1, y, y2} · e2. As ϕ|O is injective by Definition 2.6.5 and as
ϕ(xe1) = ϕ(ye2), we have xe1 /∈ O or ye2 /∈ O and thus #O ≤ 4 by Definition 2.1.6. In
particular, we get the contradiction 5 = #Oϕ = #O ≤ 4.
Thus there exists no order ideal in T2〈e1, e2〉 that characterizes Oϕ. In particular, we

see that we cannot apply the characterization of Theorem 2.6.8 to arbitrary Oϕ-border
prebases.

Another consequence of Theorem 2.6.8 is that it allows us to compute generalized
border bases if we can compute the kernel of ϕ.

Corollary 2.6.12. (Computation of Generalized Border Bases)
Let Uϕ = 〈vϕ1 , . . . , v

ϕ
k 〉 ⊆M with k ∈ N and vϕ1 , . . . , v

ϕ
k ∈M \ {0} be a P -submodule such

that codimK(Uϕ,M) <∞ and for all j ∈ {1, . . . , k}, let vj ∈ P r be such that ϕ(vj) = vϕj .
Moreover, let ker(ϕ) = 〈κ1, . . . , κ`〉 ⊆ P r be with ` ∈ N and κ1, . . . , κ` ∈ P r \ {0}. Use
Algorithm 3 to compute an O-border basis G ⊆ P r of 〈v1, . . . , vk〉 + 〈κ1, . . . , κ`〉. Then
ϕ(G) ⊆M is the ϕ(O)-border basis of Uϕ.
Note that we can use any matrix W = (w1, . . . , wn) ∈ Mat1,n(Z) with the property that

wi > 0 for all i ∈ {1, . . . , n} and any term ordering σ on Tn that is compatible with degW
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for the computation of G, e.g. we can use the standard grading defined by W = (1, . . . , 1)
and σ = DegRevLex.

Proof. Let U = 〈v1, . . . , vk〉+ 〈w1, . . . , w`〉 = 〈v1, . . . , vk〉+ ker(ϕ) ⊆ P r, let Oϕ = ϕ(O),
and let Gϕ = ϕ(G). By the Definitions 2.6.1 and 2.6.3, Gϕ is an Oϕ-border prebasis.
First we prove that we can use Algorithm 3 to compute the O-border basis of U , i.e.

that codimK(U,P r) <∞. Since ϕ−1(Uϕ) = 〈v1, . . . , vk〉+ ker(ϕ) = U by Lemma 2.6.7,
it follows that P r/U = P r/ϕ−1(Uϕ) ∼= ϕ(P r)/Uϕ = M/Uϕ by the Second Noetherian
Isomorphism Theorem. In particular, we get codimK(U,P r) = codimK(Uϕ,M) < ∞
and the requirements of Algorithm 3 are satisfied.
Next we show that O characterizes Oϕ. As U is generated by G according to Corol-

lary 2.2.4, Lemma 2.6.7 shows that Uϕ = ϕ(U) = ϕ(〈G〉) = 〈ϕ(G)〉 = 〈Gϕ〉. We write
O = {t1eα1 , . . . , tµeαµ} with µ ∈ N, t1, . . . , tµ ∈ Tn, and α1, . . . , αµ ∈ {1, . . . , r}. Let
i, j ∈ {1, . . . , µ} be such that ϕ(tieαi) = ϕ(tjeαj ). According to the definition of U , we
then get tieαi − tjeαj ∈ ker(ϕ) ∩ 〈O〉K ⊆ U ∩ 〈O〉K . As G is the O-border basis of U ,
Corollary 2.2.6 yields tieαi = tjeαj . Hence the restriction ϕ|O is injective and thus O
characterizes Oϕ = ϕ(O) by Definition 2.6.5.
Finally, we show that G characterizes Gϕ ⊆ M . Therefore, let b1, . . . , bω ∈ Tn and

β1, . . . , βω ∈ {1, . . . , r} with ω ∈ N be such that ∂O = {b1eβ1 , . . . , bωeβω}. Additionally,
we write G = {g1, . . . , gω} with gj = bjeβj −

∑µ
i=1 aijtieαi where a1j , . . . , aµj ∈ K for

all j ∈ {1, . . . , ω}. Let k, ` ∈ {1, . . . , ν} be indices such that ϕ(bkeβk) = ϕ(b`eβ`). Then
bkeβk−b`eβ` ∈ ker(ϕ) ⊆ U and

∑µ
i=1(aik−ai`)tieαi = (bkeβk−b`eβ`)−(gk−g`) ∈ U . As G

is the O-border basis of U , this implies aik = ai` for all i ∈ {1, . . . , µ} by Definition 2.1.14.
Altogether, we see that G is the O-border prebasis that characterizes Gϕ according to
Definition 2.6.5. In particular, as G is the O-border basis of U , Gϕ is the Oϕ-border
basis of 〈Gϕ〉 = Uϕ by Theorem 2.6.8.

In [KP11], border bases of zero-dimensional polynomial ideals were generalized to
border bases of zero-dimensional polynomial ideals that are contained in another ideal,
a so-called subideal. In the following example, we show that these subideal border bases
are special cases of generalized border bases. It turns out that our methods allow us to
characterize subideal border bases in various ways and that we can compute them with
linear algebra techniques. By now the only characterization of subideal border bases
was proven in [KP11, Cor. 3.6] and characterized subideal border bases via a special
generation property. Moreover, the only general approach to compute subideal border
bases was described in [KP11, Section 6] and needs one syzygy computation to determine
the kernel of a certain P -linear map and one Gröbner basis computation. Our method is
based on the same syzygy computation. But after that, we use linear algebra techniques
instead of a Gröbner basis computation.

Example 2.6.13. (Application to Subideal Border Bases)
Let I = 〈p1, . . . , pk〉 ⊆ P where k ∈ N and p1, . . . , pk ∈ P \ {0} be a zero-dimensional
ideal and let J = 〈F 〉 ⊆ P where F = {f1, . . . , f`} with ` ∈ N and f1, . . . , f` ∈ P \ {0}
be another ideal. We let {e1, . . . , ek+`} be the canonical P -module basis of P k+` and
let ϕ : P k+` � I + J be the P -module epimorphism defined by ei 7→ pi for every
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i ∈ {1, . . . , k} and by ei 7→ fi−k for every i ∈ {k + 1, . . . , k + `}, which is induced by
the Universal Property of the Free Module P k+`. According to [KP11, Defn. 2.1], the
ideal I is said to have an OF -subideal border basis if there are order ideals O1, . . . ,O`
in Tn such that the residue classes of the elements of OF = O1 · f1 ∪ · · · ∪ O` · f`
in J/I ∩ J form a K-vector space basis of J/I ∩ J . Moreover, in this situation, we see
that OF = O1 ·ϕ(ek+1)∪· · ·∪O` ·ϕ(ek+`), i.e. OF is an order ideal in ϕ(Tn〈e1, . . . , ek+`〉)
according to Definition 2.6.1. By the First Noetherian Isomorphism Theorem, there is
a canonical K-algebra isomorphism J/I ∩ J ∼= I + J/I and thus an OF -subideal border
basis of I as defined in [KP11, Defn. 2.1] is nothing but a generalized OF -border basis
of I ⊆ I + J as defined in Definition 2.6.3. In particular, the characterizations of border
bases in Corollary 2.6.10 also hold for subideal border bases. By now there was only one
characterization for subideal border bases, namely the characterization via the special
generation property in [KP11, Coro. 3.6].
Furthermore, we are now able to compute arbitrary subideal border bases using the

method of Corollary 2.6.12, as follows. The kernel of the P -module epimorphism ϕ
is ker(ϕ) = SyzP (p1, . . . , pk, f1, . . . , f`) ⊆ P k+` and we can compute it with standard
Gröbner bases techniques, e.g. using the method described in [KR00, Thm. 3.1.8]. Let
ker(ϕ) = 〈s1, . . . , sm〉 be with m ∈ N and with vectors s1, . . . , sm ∈ P k+` \ {0} and let
U = 〈e1, . . . , ek, s1, . . . , sm〉 ⊆ P k+`. By Lemma 2.6.7, we have U = ϕ−1(I). According
to the Second Noetherian Isomorphism Theorem, ϕ induces the canonical P -module
isomorphism P k+`/U = P k+`/ϕ−1(I) ∼= ϕ(P k+`)/I = I + J/I ⊆ P/I. In particular,
we get codimK(U,P k+`) = codimK(I, I + J) ≤ codimK(I, P ) < ∞ since I ⊆ P is
a zero-dimensional ideal and we can hence use Algorithm 3 to compute the O-border
basis G ⊆ P k+` of U . By Corollary 2.6.12, ϕ(G) ⊆ I + J/I is the ϕ(O)-border basis
of I + J/I.

Remark 2.6.14. Although we have already seen before that we cannot reuse all the
results about border bases in P r in a straightforward way, we can use Theorem 2.6.8 to
identify border prebases in M with their characterizing border prebases in P r if such
exist. This allows us to define many concepts about border bases in P r for border
bases in M . The following example shows such a generalization of the Border Division
Algorithm 2.2.1 and of the normal remainder defined in Definition 2.2.2.
Let Gϕ = {gϕ1 , . . . , g

ϕ
ν } ⊆ M be an Oϕ-border prebasis and assume that there exists

an O-border prebasis G = {g1, . . . , gω} ⊆ P r that characterizes Gϕ. We write the order
ideal O = {t1eα1 , . . . , tµeαµ} in Tn〈e1, . . . , er〉 with µ ∈ N, ti ∈ Tn, and αi ∈ {1, . . . , r}
for all i ∈ {1, . . . , µ}. Given vϕ ∈ M , we first have to determine a preimage v ∈ P r

of v under ϕ and after that we have to apply the Border Division Algorithm 2.2.1 to v
and G to obtain a representation v = p1g1 + · · · + pωgω + c1t1eα1 + · · · + cµtµeαµ with
p1, . . . , pω ∈ P and c1, . . . , cµ ∈ K. Then we must apply ϕ to this result and get a similar
representation of vϕ ∈M , namely

vϕ = p1ϕ(g1) + · · ·+ pωϕ(gω) + c1t1mα1 + · · ·+ cµtµmαµ

= q1g
ϕ
1 + · · ·+ qνg

ϕ
ν + c1t1mα1 + · · ·+ cµtµmαµ

with polynomials q1, . . . , qν ∈ P , cf. Lemma 2.6.7 and Definition 2.6.5. We can then
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define the element c1t1mα1 + · · ·+ cµtµmαµ ∈M , which is a representative of the residue
class vϕ ∈ M/〈Gϕ〉, to be the normal remainder of vϕ with respect to Gϕ and v. In
particular, using this construction, we are then able to generalize the Corollaries 2.2.4
and 2.2.5 to border bases in M .
Many other concepts could be defined for border bases in M the same way, e.g. an
Oϕ-index as in Definition 2.1.11 or the special generation property in Theorem 2.4.1.
But note that the result of the last step, namely applying ϕ to the result in P r, can lead
to inconsistencies if we do not distinguish between different preimages. The following
example shows such a inconsistency: We consider Example 2.6.2, again. Recall that the
canonical basis of the free P -module P 2 was {e1, e2} and that x2e1 = xye2 ∈ Oϕ ∩ ∂Oϕ.
Then the above construction assigns x2e1 the Oϕ-index indO(x2e1) = 0, whereas the
same element xye2 is also assigned the Oϕ-index indO(xye2) = 1.
Altogether, we see that we can reuse the concepts of Sections 2.1 to 2.5 but we some-

times must not directly define these concepts for a given element in M but only for a
specific preimage of it in P r.
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In this chapter, we devote our attention to the (first) syzygy module of border bases. As
we have already seen in Theorem 2.4.26, we can characterize border bases via liftings of
the neighbor syzygyies with respect to the given order ideal. But these liftings have also
other nice properties. If we think about Gröbner bases, we see that the liftings of the
syzygies corresponding to S-vectors also form a Gröbner basis of the (first) syzygy module
with respect to a specific term ordering. This theorem is known as Schreyer’s Theorem
and was first proved in [Sch80]. A version of Schreyer’s Theorem for Gröbner bases using
our notation can be found in [KR00, Prop. 3.1.4]. Unfortunately, the methods used for
the proof of the Gröbner bases version are not applicable for border bases. The reason
is that the structure of border bases does not depend on an underlying term ordering
but only on an order ideal. There are even O-border bases of ideals in Q[x, y] such that
O 6= Oσ for every term ordering σ on T2. An example of such a border basis can be
found in Remark 6.1.15.
The main goal of this chapter is to prove a version of Schreyer’s Theorem that is

applicable for border bases of submodules of free modules of finite rank in Theorem 3.4.5.
More precisely, for a given O-border basis G = {g1, . . . , gν} of a P -submodule U ⊆ P r

as defined in Definition 2.1.14, we prove that the corresponding set of neighbor liftings Λ
with respect to O as defined in Definition 2.4.24 is a τ -Gröbner basis of the (first) syzygy
module of (g1, . . . , gν). Here τ is a term ordering that we can explicitly construct with
the help of Algorithm 7. This generalizes the corresponding result in [KK14, Thm. 6.5]
to border bases of free modules of finite rank and it generalizes the results of [Hui06,
Thm. 22]. In the latter theorem, the author of [Hui06] proved that the set of neighbor
liftings Λ with respect to O of a border basis of an ideal of a polynomial ring generates the
(first) syzygy module of the border basis. In order to reach the above goal, the author
reduces arbitrary vectors in P ν in a very special way using the rewrite relation Λ−→
defined by Λ as defined in [KR00, Defn. 2.2.1]. The corresponding procedures called
“degree lowering” and “column clearing” served as the basis for the proof of Schreyer’s
Theorem for border bases of polynomial ideals in [KK14, Thm. 6.5]. The authors of that
paper turn the methods “degree lowering” and “column clearing” into explicit algorithms
and deduce Schreyer’s Theorem for border bases of polynomial ideals.
We now go another step further and generalize these methods to border bases of sub-

modules of free modules of finite rank. In Section 3.1, we divide the border terms of order
ideals in different parts depending on the structure of the border terms. More precisely,
in Definition 3.1.1, we divide the set of border terms into faces, and into non-exposable,
extreme and non-extreme border terms. Non-exposable border terms were introduced
by us in order to be able to handle order ideals in Tn〈e1, . . . , er〉 as defined in Defini-
tion 2.1.6 with an empty component, i.e. such that ek /∈ O for some k ∈ {1, . . . , r}. Such
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a strange situation cannot happen in the polynomial case. But we cannot thrust aside
such situations in the module case, cf. Remark 2.5.5. After that we formulate the proce-
dures of “degree lowering” and “column clearing” as explicit algorithms in Section 3.2. We
then combine these methods in Section 3.3 to get an algorithmic version of the reduction
process used in [Hui06, Lemma 33]. Moreover, we prove a generalized version of [Hui06,
Thm. 22] and use these results in order show that the set of neighbor liftings Λ with
respect to O generates the (first) syzygy module of an O-border basis. As a byproduct,
we give an alternative proof for the characterization of border bases via liftings of border
syzygies with respect to O in Corollary 3.3.9. It is remarkable that, in stark contrast the
proof in Theorem 2.4.26 and other proofs of this theorem, this proof does not depend
on commuting matrices, at all. After that we have all ingredients to prove Schreyer’s
Theorem in Section 3.4, First we deduce conditions on a term ordering τ in Tn〈e1, . . . , er〉
in order for Λ to be a τ -Gröbner basis of the (first) syzygy module of the corresponding
border basis in P r in Theorem 3.4.1. Finally, we algorithmically construct such term
orderings in Theorem 3.4.5.

In this chapter, we use the following notation. For every t = xδ11 · · ·xδnn ∈ Tn
with δ1, . . . , δn ∈ N and some i ∈ {1, . . . , n}, we denote the xi-degree by degxi(t) = δi,
and for p ∈ P \ {0}, we denote the xi-degree by degxi(p) = max{degxi(t) | t ∈ Supp(p)}.
Moreover, we let G ⊆ P r be an O-border prebasis. As in Definition 2.1.14, we can
write the order ideal O = {t1eα1 , . . . , tµeαµ} and its border ∂O = {b1eβ1 , . . . , bνeβν} with
µ, ν ∈ N, and ti, bj ∈ Tn and αi, βj ∈ {1, . . . , r} for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν},
and we let G be of the form G = {g1, . . . , gν} with polynomials gj = bj −

∑µ
i=1 aijtieαi ,

where aij ∈ K for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}.

3.1 Extreme and Non-Extreme Border Terms

In this section, we divide the border terms into different parts. In particular, we gener-
alize the definitions and results about extreme and non-extreme border terms of [Hui06]
and [KK14, Section 2] to the module setting.

First of all, we define a generalization of extreme and non-extreme border terms that
is suitable for the module setting. In particular, we introduce a new kind of border term
that cannot occur in the ideal setting, namely non-exposable border terms. With these
non-exposable border terms, we are capable of order ideals that do not contain all the
basis vectors e1, . . . , er. The following definition generalizes [KK14, Defn. 2.1] to the
module setting and is based on the corresponding definitions in [Hui06].

Definition 3.1.1. Let j ∈ {1, . . . , ν} and k ∈ {1, . . . n}.

a) The border term bjeβj ∈ ∂O is called xk-exposable (or simply exposable) if there
exists a factorization bjeβj = xktieαi for some i ∈ {1, . . . , µ}. If bj = 1, the border
term bjeβj = eβj ∈ ∂O is called non-exposable.
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b) The border term bjeβj ∈ ∂O is said to be on face k of O if bjeβj is xk-exposable,
but not x`-exposable for all ` ∈ {k + 1, . . . , n}. We call the set of all border terms
on face k the kth face set of O and denote it by Fk(O).

c) A border term bjeβj ∈ Fk(O) is called extreme if we have bj ∈ K[x1, . . . , xk].
Otherwise, the border term bjeβj is called non-extreme.

The ideal version of following lemma has been stated in [Hui06, Lemma 17] and has
been proved in [KK14, Prop. 2.2].

Proposition 3.1.2. The set of all face sets of O is a partition of the set of all exposable
border terms in ∂O, i.e. of the set ∂O \ {e1, . . . , er}.

Proof. By Definition 3.1.1, a border term bjeβj ∈ ∂O with j ∈ {1, . . . , ν} is exposable
if and only if bj 6= 1. Thus ∂O \ {e1, . . . , er} is exactly the set of all exposable border
terms. If O = ∅, then ∂O \ {e1, . . . , er} = ∅ by the Definitions 2.1.6 and 2.1.7 and the
claim follows trivially. Thus suppose that O 6= ∅, i.e. that ∂O \ {e1, . . . , er} 6= ∅. Let
j ∈ {1, . . . , ν} be such that bjeβj ∈ ∂O\{e1, . . . , er} and such that bjeβj ∈ Fk(O)∩F`(O)
for some k, ` ∈ {1, . . . , n}. Without loss of generality, we may assume that k ≤ `. Then
the border term bjeβj is not xm-exposable for all m ∈ {k + 1, . . . , n} but xk-exposable
by Definition 3.1.1. Therefore, we have ` ≤ k and hence k = `. The claim now follows as
every border term in ∂O\{e1, . . . , er} is by the Definitions 2.1.7 and 3.1.1 xm-exposable
for some m ∈ {1, . . . , n}.

Therefore, we can define a map which associates to each border term contained in the
set ∂O \ {e1, . . . , er} the index of the face set containing it. This definition generalizes
[KK14, Def. 2.3] to the module setting.

Definition 3.1.3. According to Proposition 3.1.2, there exists a well-defined map
face : ∂O \ {e1, . . . , er} → {1, . . . , n} which associates to every exposable border term
bjeβj with j ∈ {1, . . . , ν} the unique index k ∈ {1, . . . , n} such that bjeβj ∈ Fk(O). We
call this map the face (index) map.

The following example will guide us through the remainder of this chapter. It illustrates
all the basic concepts used in [Hui06] and in [KK14] as well as our generalizations of these
definitions and results.

Example 3.1.4. Let K be a field, P = K[x, y, z], {e1, e2, e3} denote the canonical
P -module basis of P 3, and

O = {1, z, y, z2, y2, z3, y3} · e1 ∪ ∅ · e2 ∪ {1, y} · e3.

Then O is an order ideal in T3〈e1, . . . , er〉 with border

∂O = {b1, . . . , b14} · e1 ∪ {b15} · e2 ∪ {b16, . . . , b20} · e3

= {x, yz, xz, xy, yz2, xz2, y2z, xy2, z4, yz3, xz3, y3z, y4, xy3} · e1

∪ {1} · e2 ∪ {z, x, yz, y2, xy} · e3
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by the Definitions 2.1.6 and 2.1.7. The only non-exposable border term is b15eβ15 = e2

and the face sets of O are

F1(O) = {x, xz, xy, xz2, xy2, xz3, xy3} · e1 ∪ {x, xy} · e3,

F2(O) = {yz2, yz3, y4} · e1 ∪ {y2} · e3,

F3(O) = {yz, y2z, z4, y3z} · e1 ∪ {z, yz} · e3.

according to Definition 3.1.1. By identifying terms with their logarithms, i.e. with their
exponent vectors, we can illustrate all these sets with the following pictures.

O1

x

y

z

O2

x

y

z

O3

x

y

z

terms in O

non-exposable border terms

border terms in F1(O)

border terms in F2(O)

border terms in F3(O)

Moreover, we see that the set of all extreme border terms is

{x, yz, y2z, z4, y3z, y4} · e1 ∪ {x, z, y2, yz} · e3

and the set of all non-extreme border terms is

{xz, xy, yz2, xz2, xy2, yz3, xz3, xy3} · e1 ∪ {xy} · e3.

Next we subdivide the set of non-extreme border terms in an even finer way. The
corresponding notion in the ideal setting was first introduced in [Hui06, Section 6.5] and
can also be found in [KK14, Defn. 2.5].
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Definition 3.1.5. Let i ∈ {1, . . . , n−1} and j ∈ {1, . . . , ν} be such that bjeβj ∈ Fi(O)

is a non-extreme border term. Let δ1, . . . , δn ∈ N be such that bj = xδ11 · · ·xδnn and let
k = min{` ∈ {i+ 1, . . . , n} | δ` > 0}. Then we call the set

Col(bjeβj ) = {x`kbjeβj ∈ Fi(O) | ` ∈ Z, x`kbjeβj non-extreme, xk | x`kbj}

the column containing bjeβj . We say that it is in the xk-direction.

In the ideal setting, the following description of the column containing a non-extreme
border term bjeβj with j ∈ {1, . . . , ν} is contained in [Hui06, Lemma 28]. We generalize
the corresponding formulation in [KK14, Lemma 2.6] to the module setting.

Lemma 3.1.6. Let j ∈ {1, . . . , ν} be such that bjeβj is non-extreme, let i = face(bjeβj ),
and let k ∈ {i+ 1, . . . , n} be such that Col(bjeβj ) is in the xk-direction. Then there exist
natural numbers s, t ∈ N such that

Col(bjeβj ) = {x−sk bj , x
−s+1
k bj , . . . , x

t−1
k bj , x

t
kbj} · eβj .

In addition, for every ` ∈ {1, . . . , ν} such that b`eβ` ∈ Col(bjeβj ), we have xm - b` for all
m ∈ {i+ 1, . . . , k − 1}.

Proof. In order to prove the claim, we define s = max{` ∈ N | x−`k bjeβj ∈ Col(bjeβj )}
and t = max{` ∈ N | x`kbjeβj ∈ Col(bjeβj )}. Note that both of these maxima exist
since we have bjeβj ∈ Col(bjeβj ) 6= ∅ and since #(Col(bjeβj )) ≤ #∂O = ν < ∞. Let
` ∈ {−s, . . . , t}. Then the first claim follows if we show that x`kbjeβj ∈ Col(bjeβj ). As
x−sk bjeβj , x

t
kbjeβj ∈ Col(bjeβj ) ⊆ ∂O by Definition 3.1.5, we get x`kbjeβj ∈ ∂O according

to the Definitions 2.1.6 and 2.1.7. Moreover, we have x−sk bj 6= 1 by Definition 3.1.1 as
x−sk bjeβj is non-extreme.
First we prove that face(x`kbjeβj ) = i. Since xtkbjeβj ∈ Col(bjeβj ), face(xtkbjeβj ) = i by

Definition 3.1.5. Therefore, it follows xtkbj
xi
eβj ∈ O from Definition 3.1.1 and ` ≤ t yields

x`kbj
xi
eβj ∈ O by Definition 2.1.6. In particular, we get face(x`kbjeβj ) ≥ i according to Def-

inition 3.1.1. Assume that face(x`kbjeβj ) = m for some m ∈ {i+ 1, . . . , n}. Then we have
x`kbj
x`
eβj ∈ O by Definition 3.1.1 and thus −s ≤ ` yields x−sk bj

xm
eβj ∈ O by Definition 2.1.6.

Therefore, it follows that face(x−sk bjeβj ) ≥ m > i from Definition 3.1.1. As we also have
face(x−sk bjeβj ) = i according to Definition 3.1.5, we get a contradiction. Altogether, it
follows that face(x`kbjeβj ) = i.
Next we show that x`kbjeβj ∈ ∂O is non-extreme. As x−sk bj 6= 1 by Definition 3.1.5 and
as −s ≤ `, it follows x`kbj 6= 1, i.e. x`kbjeβj is exposable by Definition 3.1.1. Assume
that x`kbjeβj is extreme. Then we have x`kbj ∈ K[x1, . . . , xi] by Definition 3.1.1. In
particular, it follows that x−sk bjeβj ∈ Fi(O) is contained in K[x1, . . . , xi] and, therefore,
extreme according to Definition 3.1.1. As x−sk bjeβj ∈ Col(bjeβj ) is non-extreme accord-
ing to Definition 3.1.5, we get a contradiction. Thus we have proven that the border
term x`kbjeβj is non-extreme.
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In order to show the remaining claim, let m ∈ {i+ 1, . . . , k− 1}. Assume that xm | x`kbj .
Then, as m < k, we get xm | bj in contradiction to Definition 3.1.5. Thus we see that
there exists no index m ∈ {i+ 1, . . . , k − 1} such that xm | x`kbjeβj .

Our next lemma shows that the columns form a partition of the non-extreme border
terms in ∂O. The corresponding ideal version can be found in [KK14, Lemma 2.7].

Lemma 3.1.7. The set of all columns is a partition of the set of all non-extreme border
terms in ∂O.

Proof. Let i, j ∈ {1, . . . , ν} be such that both border terms bieβi , bjeβj ∈ ∂O are non-
extreme and let k, ` ∈ {2, . . . , n} be such that the column Col(bieβi) is in the xk-direction
and such that Col(bjeβj ) is in the x`-direction. Suppose that there exists an index
m ∈ {1, . . . , ν} such that bmeβm ∈ Col(bieβi) ∩ Col(bjeβj ). Then Definition 3.1.5 implies
that s = face(bieβi) = face(bmeβm) = face(bjeβj ). Without loss of generality, we let
k ≤ `. Assume that k < `. Then we have s < k < ` according to Definition 3.1.5. Since
bmeβm ∈ Col(bieβi) and since Col(bieβi) is in the xk-direction, we see that xk | bm by
Definition 3.1.5. But, as we also have bmeβm ∈ Col(bjeβj ) and as Col(bjeβj ) is in the
x`-direction with s < k < `, it follows xk - bm from Lemma 3.1.6. This is obviously
a contradiction. Thus we get k = ` and hence Col(bieβi) = Col(bjeβj ) according to
Definition 3.1.5. The claim now follows from the observation that every non-extreme
border term is contained in a column by Definition 3.1.5.

As in [Hui06, Lemma 28] and [KK14, Def. 2.8], the terms below and above every
column receive special names as follows.

Definition 3.1.8. Let j ∈ {1, . . . , ν} be such that the border term bjeβj is non-extreme
and let k ∈ {2, . . . , n} be such that Col(bjeβj ) is in the xk-direction. Let s, t ∈ N be
such that Col(bjeβj ) = {x−sk bj , . . . , x

t
kbj} · eβj . Then the term lcb(bjeβj ) = x−s−1

k bjeβj is
called the lower (column) bound of Col(bjeβj ) and the term ucb(bjeβj ) = xt+1

k bjeβj
is called the upper (column) bound of Col(bjeβj ).

In [Hui06, Lemma 28], the following properties of the upper and lower bound of a
column in ∂O are proven. We generalize these results to the module setting.

Lemma 3.1.9. Let j ∈ {1, . . . , ν} be such that the border term bjeβj is non-extreme, let
i = face(bjeβj ), and let k ∈ {i+ 1, . . . , n} be such that Col(bjeβj ) is in the xk-direction.
Let s, t ∈ N be such that Col(bjeβj ) = {x−sk bj , . . . , x

t
kbj} · eβj .

a) Exactly one of the following conditions holds for ucb(bjeβj ) = xt+1
k bjeβj .

1) ucb(bjeβj ) /∈ ∂O.
2) ucb(bjeβj ) ∈ F`(O) for some ` ∈ {1, . . . , i− 1}.

b) Exactly one of the following conditions holds for lcb(bjeβj ) = x−s−1
k bjeβj .

1) lcb(bjeβj ) ∈ Fi(O) is extreme.
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2) lcb(bjeβj ) ∈ Fi(O) is non-extreme and belongs to a column in the x`-direction
for some ` ∈ {k + 1, . . . , n}. In particular, we have xk - x−s−1

k bj.

3) lcb(bjeβj ) ∈ F`(O) for some ` ∈ {k, . . . , n}.

Proof. First we prove claim a). According to Definition 3.1.5, we have xtkbjeβj ∈ ∂O.
Thus by the Definitions 2.1.6 and 2.1.7, we have ucb(bjeβj ) /∈ O. In particular, it follows
ucb(bjeβj ) ∈ ∂O or ucb(bjeβj ) /∈ ∂O. Suppose that ucb(bjeβj ) ∈ ∂O. Since Col(bjeβj ) is
in the xk-direction, xk | bj by Definition 3.1.5. As t ∈ N, this implies xk | xt+1

k bj .
For a contradiction, assume that face(ucb(bjeβj )) = i. Since xk | xt+1

k bj , it follows that
ucb(bjeβj ) = xt+1

k bj /∈ K[x1, . . . , xi], i.e. ucb(bjeβj ) is non-extreme by Definition 3.1.1.
Then Definition 3.1.5 yields ucb(bjeβj ) ∈ Col(bjeβj ) in contradiction to Definition 3.1.8.
Altogether, we see that face(ucb(bjeβj )) 6= i.
Now assume that face(ucb(bjeβj )) = ` for some ` ∈ {i + 1, . . . , n}. Then we have
xt+1
k bj
x`

eβj ∈ O by Definition 3.1.1. In particular, as xtkbjeβj ∈ Col(bjeβj ) ⊆ ∂O by
Definition 3.1.5, it follows k 6= ` from the Definitions 2.1.6 and 2.1.7. Thus we get x` | bj
and this implies bj

x`
eβj ∈ O by Definition 2.1.6, i.e. we get face(bjeβj ) ≥ ` > i by

Definition 3.1.1 and this clearly contradicts face(bjeβj ) = i. Altogether, we see that
face(bjeβj ) < i and claim a) follows.
Next we show claim b). According to Definition 3.1.5, we have xk | x−sk bj . Thus

lcb(bjeβj ) = x−s−1
k bjeβj ∈ ∂O by the Definitions 2.1.6 and 2.1.7. Assume that we have

lcb(bjeβj ) ∈ O. Then x−sk bjeβj = xk lcb(bjeβj ) is xk-exposable by Definition 3.1.1. As
we have face(x−sk bjeβj ) = i by Lemma 3.1.6 and as i < k by Definition 3.1.5, this is a
contradiction. Hence we get lcb(bjeβj ) ∈ ∂O.

As face(x−sk bjeβj ) = i according to Lemma 3.1.6, it follows x−sk bj
xi

eβj ∈ O. Since we also
have i < k by Definition 3.1.5 and since we have already shown that lcb(bjeβj ) ∈ ∂O,

we see that x−s−1
k bj
xi

eβj ∈ O by the Definitions 2.1.6 and 2.1.7. In particular, it follows
lcb(bjeβj ) ∈ F`(O) for some ` ∈ {i, . . . , n} from Definition 3.1.1.
For every ` ∈ {i+1, . . . , k−1}, since x` - bj by Definition 3.1.5, it also follows x` - x−s−1

k bj .
Therefore, we see that lcb(bjeβj ) ∈ F`(O) with ` ∈ {i} ∪ {k, . . . , n}. In particular,
the only remaining part of the proof is that, if lcb(bjeβj ) ∈ Fi(O) is non-extreme,
then Col(lcb(bjeβj )) is in the x`-direction for some ` ∈ {k + 1, . . . , n}.
Suppose that lcb(bjeβj ) is non-extreme. Assume that xk | x−s−1

k bj . Then we have
lcb(bjeβj ) ∈ Col(bjeβj ) by Definition 3.1.5. Since this is clearly a contradiction to Defi-
nition 3.1.8, it follows xk - x−s−1

k bj . Moreover, we have already shown that x` - x−s−1
k bj

for all ` ∈ {i + 1, . . . , k − 1}. Altogether, Col(bjeβj ) is in the x`-direction for some
` ∈ {k + 1, . . . , n} according to Definition 3.1.5.

Example 3.1.10. Consider the order ideal O in T3〈e1, e2, e3〉 of Example 3.1.4, again.
Recall that the set of all extreme border terms was

{x, yz, y2z, z4, y3z, y4} · e1 ∪ {x, z, y2, yz} · e3 ⊆ ∂O
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3 Syzygies of Border Bases

and the set of all non-extreme border terms was

{xz, xy, yz2, xz2, xy2, yz3, xz3, xy3} · e1 ∪ {xy} · e3 ⊆ ∂O.

We compute all columns and get

Col(b3eβ3) = Col(b6eβ6) = Col(b11eβ11) = {xz, xz2, xz3} · e1 ⊆ F1(O),

Col(b4eβ4) = Col(b8eβ8) = Col(b14eβ14) = {xy, xy2, xy3} · e1 ⊆ F1(O),

Col(b5eβ5) = Col(b10eβ10) = {yz2, yz3} · e1 ⊆ F2(O),

Col(b20eβ20) = {xy} · e3 ⊆ F2(O)

by Definition 3.1.5. Here both Col(b3eβ3) and Col(b5eβ5) are in the z-direction, and
both Col(b4eβ4) and Col(b20eβ20) are in the y-direction. Moreover, all the lower bounds

lcb(b3eβ3) = lcb(b6eβ6) = lcb(b11eβ11) = xe1 ∈ F1(O),

lcb(b4eβ4) = lcb(b8eβ8) = lcb(b14eβ14) = xe1 ∈ F1(O),

lcb(b5eβ5) = lcb(b10eβ10) = yze1 ∈ F3(O),

lcb(b20eβ20) = xe3 ∈ F1(O)

are extreme, and the upper bounds are of the form

ucb(b3eβ3) = ucb(b6eβ6) = ucb(b11eβ11) = xz4e1 /∈ ∂O,
ucb(b4eβ4) = ucb(b8eβ8) = ucb(b14eβ14) = xy4e1 /∈ ∂O,

ucb(b5eβ5) = ucb(b10eβ10) = yz4e1 /∈ ∂O,
ucb(b20eβ20) = xy2e3 /∈ ∂O

according to Definition 3.1.8. The following sketch illustrates the columns of ∂O:
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O1

x

y

z

Col(b3eβ3)

Col(b5eβ5)

Col(b4eβ4)

O2

x

y

z

O3

x

y

z

Col(b20eβ20)

terms in O

non-exposable border terms

extreme border terms

non-extreme border terms

lower column bounds

upper column bounds

3.2 Degree Lowering and Column Clearing

In this section, we prepare some material from [Hui06, Sect. 6.4 and 6.5] for its appli-
cation in the proof of the main theorem of this chapter. In particular, we formulate
everything in our notation and transform some proofs into explicit algorithms. A similar
work in the ideal setting was already done in [KK14, Section 4]. In this way, we are able
to achieve an explicit reduction algorithm, i.e. an effectively implementable version of
the proof of [Hui06, Lemma 33]. For the intuitive meaning of the processes of “degree
lowering” and “column clearing”, we refer to [Hui06, Sect. 6.4 and 6.5].

As in Subsection 2.4.5, we use the following notation. We let {e1, . . . , er} denote the
canonical P -module basis of P r and we let {ε1, . . . , εν} denote the canonical P -module
basis of P ν . Moreover, we assume that the O-border prebasis G is the O-border basis
of 〈G〉. For every i, j ∈ {1, . . . , ν} such that bieβi and bjeβj are neighbors with respect
to O, we denote the corresponding neighbor syzygy with respect to O by σij as in Def-
inition 2.4.21 and according to Remark 2.4.28, σij can be lifted to a unique neighbor
lifting λij with respect to O as defined in Definition 2.4.24. Moreover, we denote the set
of all neighbor liftings with respect to O by Λ.
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3 Syzygies of Border Bases

The special shape of neighbor liftings with respect to O that was described in Re-
mark 2.4.28 gives us more insight into the structure of neighbor liftings and serves as a
basic part of [Hui06] and of this section. In particular, though deduced in a totally dif-
ferent way, it is a reformulated version of [Hui06, Lemma 19]. Because of its importance,
we recall it using the definitions of Section 3.1.

Remark 3.2.1. Let i, j ∈ {1, . . . , ν}.

a) Suppose that bieβi and bjeβj are next-door neighbours with respect to O, i.e. that
there exists an index k ∈ {1, . . . , n} such that xkbieβi = bjeβj . Then we have
εm /∈ Supp(λij − σij) for all m ∈ {1, . . . , ν} such that bmeβm is non-exposable or
face(bmeβm) < k according to Remark 2.4.28 and Definition 3.1.1.

b) Suppose that bieβi and bjeβj are across-the-street neighbours with respect to O,
i.e. that there are k, ` ∈ {1, . . . , n} such that xkbieβi = x`bjeβj . Then we have
εm /∈ Supp(λij − σij) for all m ∈ {1, . . . , ν} such that bmeβm is non-exposable or
face(bmeβm) < min{k, `} according to Remark 2.4.28 and Definition 3.1.1.

The following proposition can be shown using a suitably adapted version of the proof
of [Hui06, Lemma 27]. For the ideal setting, the corresponding result was proven in
[KK14, Prop. 4.1]. We generalize this proposition to the module setting.

Proposition 3.2.2. (Properties of Degree Lowering)
Let i ∈ {1, . . . , n− 1} and let j ∈ {1, . . . , ν} be such that bjeβj is exposable and such that
k = face(bjeβj ) > i. Given (p1, . . . , pν) ∈ P ν with pj 6= 0, let d ∈ N be maximal such that
xdi divides one of the terms in the support of pj. Then there exist unique polynomials
p′ ∈ P \ {0} and p′′ ∈ P such that pj = p′xdi + p′′, and such that no term in the support
of p′′ is divisible by xdi .
In this situation, there exists an exposable border term b`eβ` , where ` ∈ {1, . . . , ν}, with
the property that b`eβ` = xibjeβj , or that xkb`eβ` = xibjeβj and face(b`eβ`) ≥ i. In
particular, the border terms bjeβj and b`eβ` are neighbors with respect to O.
Assume that d > 0. Then the vector

(q1, . . . , qν) = (p1, . . . , pν)− p′xd−1
i λj`,

satisfies the following conditions.

1) For every % ∈ {1, . . . , ν} such that b%eβ% is non-exposable or face(b%eβ%) < i, we
have q% = p%.

2) Let % ∈ {1, . . . , ν} and s ∈ {1, . . . , i} be any indices such that both p% and pj are
contained in K[xs, . . . , xn]. Then we have q% ∈ K[xs, . . . , xn].

3) For all % ∈ {1, . . . , ν}, every term in the support of q% that is divisible by xdi is also
contained in the support of p%.

4) We have qj = 0 or degxi(qj) ≤ d− 1.
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3.2 Degree Lowering and Column Clearing

Proof. The existence and uniqueness of the polynomials p′ ∈ P \ {0} and p′′ ∈ P such
that pj = p′xdi + p′′ is clear. Hence we start by proving the existence of an exposable
border term b`eβ` , where ` ∈ {1, . . . , ν}, with the property that b`eβ` = xibjeβj , or that
xkb`eβ` = xibjeβj and face(b`eβ`) ≥ i. As face(bjeβj ) = k, there exists a u ∈ {1, . . . , µ}
such that xktueαu = bjeβj by Definition 3.1.1. Then we have either xitueαu ∈ O or
xitueαu ∈ ∂O by Definition 2.1.7.
If we have xitueαu ∈ ∂O, there is an ` ∈ {1, . . . , ν} such that xitueαu = b`eβ` and this
yields xkb`eβ` = xkxitueαu = xibjeβj . In this first case, b`eβ` = xitueαu is xi-exposable
and thus face(b`eβ`) ≥ i by Definition 3.1.1. For the second case, xitueαu ∈ O, we
note that the term xk(xitueαu) = xibjeβj is contained in ∂O by the Definitions 2.1.6
and 2.1.7. This shows that there exists an index ` ∈ {1, . . . , ν} such that b`eβ` = xibjeβj .
In particular, by Definition 3.1.1, we see that b`eβ` = xk(xitueαu) is xk-exposable and
thus face(b`eβ`) ≥ k > i in this second case.
Now we investigate the shape of the neighbor lifting λj`. Let λj` = (f1, . . . , fν) be with
polynomials f1, . . . , fν ∈ P . According to Remark 2.4.28, the lifting λj` is either of the
form λj` = xiεj−ε`− c1ε1−· · ·− cνεν or of the form λj` = xiεj−xkε`− c1ε1−· · ·− cνεν
with c1, . . . , cν ∈ K. Hence for all % ∈ {1, . . . , ν} \ {j, `}, we have f% = −c%, we have
fj = xi − cj , and we have either f` = −1− c` or f` = −xk − c`.
For all indices % ∈ {1, . . . , ν} such that the border term b%eβ% is non-exposable or such
that face(b%eβ%) < i < k, Remark 3.2.1 yields c% = 0. As face(bjeβj ) > i, and as we
have already seen that face(b`eβ`) ≥ i, it follows that f% = 0 for all % ∈ {1, . . . , ν}
such that b%eβ% is non-exposable or face(b%eβ%) < i. Claim 1) is now a consequence of
(q1, . . . , qν) = (p1, . . . , pν)− p′xd−1

i (f1, . . . , fν).

To prove claim 2), let % ∈ {1, . . . , ν} and s ∈ {1, . . . , i} be any indices such that both p%
and pj are contained K[xs, . . . , xn]. Then the construction of p′ yields p′ ∈ K[xs, . . . , xn]
and hence q% = p% − p′xd−1

i f% ∈ K[xs, . . . , xn].

For the claims 3) and 4), we note that by the construction of the polynomial p′, we
have p′ ∈ K[x1, . . . , xi−1, xi+1, . . . , xn] and that for every index % ∈ {1, . . . , ν} \ {j}, we
have p′xd−1

i f% = 0 or degxi(p
′xd−1
i f%) ≤ d − 1. Moreover, the descriptions of p′ and λj`

show that all the terms in the support of pj with xi-degree greater than or equal to d
cancel in qj = pj−p′xd−1

i fj = pj−p′xd−1
i (xi− cj). Thus the claims 3) and 4) follow.

Based on this proposition, we can formulate an algorithm for performing degree lower-
ing steps that generalizes [KK14, Prop. 4.2] to the module setting. Note that the following
algorithm proceeds differently from the method in the proof of [Hui06, Lemma 27]: we
do not reduce the xi-degree of a single component of maximal xi-degree of a vector, but
of all such components.
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3 Syzygies of Border Bases

Algorithm 4: LowerDegree(i, (p1, . . . , pν),Λ)

Input:
i ∈ {1, . . . , n− 1}
(p1, . . . , pν) ∈ P ν such that there exists an index j ∈ {1, . . . , ν} with the properties
that bjeβj is exposable, face(bjeβj ) > i, and the support of pj contains a term that is
divisible by xi
Λ = {λij | i, j ∈ {1, . . . , ν}, bieβi and bjeβj are neigbhors with respect to O}

1 Let d ∈ N \ {0} be maximal such that there exists an index j ∈ {1, . . . , ν} with the
properties that bjeβj is exposable, face(bjeβj ) > i, and the support of pj contains a
term that is divisible by xdi .

2 foreach j ∈ {1, . . . , ν} such that bjeβj is exposable, face(bjeβj ) > i, pj 6= 0, and
degxi(pj) = d do

3 if xibjeβj ∈ ∂O then
4 Let ` ∈ {1, . . . , ν} be such that xibjeβj = b`eβ` .
5 else
6 k := face(bjeβj )

7 Let ` ∈ {1, . . . , ν} be such that xibjeβj = xkb`eβ` .
8 end
9 while there exists a t ∈ Supp(pj) with degxi(t) = d do

10 choose t ∈ Supp(pj) with degxi(t) = d.
11 Let a ∈ K be the coefficient of t in pj .
12 (p1, . . . , pν) := (p1, . . . , pν)− a t

xi
λj`

13 end
14 end
15 return (p1, . . . , pν)

Proposition 3.2.3. (Algorithmic Version of Degree Lowering)
Let i ∈ {1, . . . , n − 1}, let (p1, . . . , pν) ∈ P ν , and let d ∈ N be maximal with the fol-
lowing properties: there exists an index j ∈ {1, . . . , ν} such that bjeβj is exposable, such
that face(bjeβj ) > i, and such that the support of pj contains a term that is divisible
by xdi . Assume that d > 0. Then Algorithm 4 is actually an algorithm and its result

(q1, . . . , qν) := LowerDegree(i, (p1, . . . , pν), λ)

applied to the input data i, (p1, . . . , pν), and Λ is independent of the choice of t in line 10
and satisfies the following conditions.

1) For every % ∈ {1, . . . , ν} such that b%eβ% is non-exposable or face(b%eβ%) < i, we
have q% = p%.

2) Let % ∈ {1, . . . , ν} and s ∈ {1, . . . , i} be any indices such that p% and every poly-
nomial in {pu | u ∈ {1, . . . , ν}, bueβu exposable, face(bueβu) > i} are contained
in K[xs, . . . , xn]. Then we have q% ∈ K[xs, . . . , xn].
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3) For all % ∈ {1, . . . , ν}, every term in the support of q% that is divisible by xdi is also
contained in the support of p%.

4) For every % ∈ {1, . . . , ν} such that b%eβ% is exposable and such that face(b%eβ%) > i,
we have q% = 0 or degxi(q%) ≤ d− 1.

5) We have (p1, . . . , pν) + 〈Λ〉 = (q1, . . . , qν) + 〈Λ〉 in P ν/〈Λ〉.

Proof. First we prove that every step of the procedure can actually be computed and that
the procedure terminates after finitely many steps. The existence of an ` ∈ {1, . . . , ν} as
required in the if-else-clause starting in line 3 follows from Proposition 3.2.2. Moreover,
the foreach-loop in line 2 is obviously finite. Therefore, it suffices to prove that the while-
loop starting in line 9 is processed only finitely many times. In order to show this, we
prove that the number of terms in the support of (p1, . . . , pν) with maximal xi-degree
decreases at least by one after every loop iteration. Let t ∈ Supp(pj) with degxi(t) = d
be chosen as in line 10. We write t = xdi t

′ with a term t′ ∈ Tn that is not divisible by xi.
By the construction in the if-else-clause starting in line 3, the terms bjeβj and b`eβ` are
neighbours with respect to O. According to Remark 2.4.28, the corresponding lifting λj`
has exactly one term with xi-degree greater than or equal to 1 in its support, namely
xiεj . Let a ∈ K be the coefficient of t in pj as in line 11. Then the term tεj cancels in
the reduction (p1, . . . , pν) − a t

xi
λj` = (p1, . . . , pν) − axd−1

i t′λj` of line 12. As all terms
in Supp(λj`) \ {xiεj} have xi-degree 0, no new term with xi-degree d is added to the
support of (p1, . . . , pν) in line 12. Hence the number of terms with the maximal xi-degree
in the support of pj decreases exactly by one. Since the number of terms in the support
of (p1, . . . , pν) with maximal xi-degree is finite, the while-loop eventually terminates.
Next we prove the correctness of the algorithm. Considering the while-loop in line 9 in

detail, we see that we always subtract a vector of the form axd−1
i t′λj` from (p1, . . . , pν)

where t′ ∈ Tn is a term that is not divisible by xi. As we have already seen above,
exactly one term in the support of (p1, . . . , pν) with maximal xi-degree d cancels in
line 12, namely the term tεj = xdi t

′εj . If we collect all terms tεj in the iterations of the
while-loop, we see that, after the while-loop, we have altogether subtracted a vector of the
form p′xd−1

i λj` from (p1, . . . , pν), where p′ ∈ P \{0}. In particular, we have pj = p′xdi +p′′

with a polynomial p′′ ∈ P such that no term in the support of p′′ is divisible by xdi . In
other words, the conditions of Proposition 3.2.2 are satisfied during every iteration of the
foreach-loop in line 2 and the claims 1) to 3) follow immediately from the corresponding
claims in Proposition 3.2.2 and induction on j. In particular, we see that the result of
the algorithm does not depend on the choice of t in line 10, since exactly one term with
xi-degree d vanishes in each reduction in line 12. The foreach-loop in line 2 iterates
over all exposable border terms that are on faces greater than i. So claim 4) follows by
induction on j from claim 4) of Proposition 3.2.2. Since the vector (p1, . . . , pν) is only
changed in line 12 of the algorithm and since we always subtract multiples of λj` ∈ Λ,
claim 5) follows, too.
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Example 3.2.4. Consider the order ideal O in T3〈e1, e2, e3〉 of Example 3.1.10, again.
Recall that P = Q[x, y, z], that {e1, e2, e3} denoted the canonical P -module basis of P 3,
and that we could illustrate the order ideal O = {1, z, y, z2, y2, z3, y3} · e1 ∪ {1, y} · e3

in T3〈e1, e2, e3〉 and its border ∂O = {b1eβ1 , . . . , b20eβ20} with the following figures.
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b4 b8 b14
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b2
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z
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b19

terms in O

non-exposable border terms

extreme border terms

non-extreme border terms

lower column bounds

Let G = {g1, . . . , g20} ⊆ P 3 be with g1 = xe1−e3, g2 = yze1, g3 = xze1, g4 = xye1−ye3,
g5 = yz2e1, g6 = xz2e1, g7 = y2ze1, g8 = xy2e1, g9 = z4e1, g10 = yz3e1, g11 = xz3e1,
g12 = y3ze1, g13 = y4e1, g14 = xy3e1, g15 = e2, g16 = ze3, g17 = xe3, g18 = yze3,
g19 = y2e3, g20 = xye3. Using Theorem 2.4.31, one can easily check that the set G is the
O-border basis of 〈G〉. Let {ε1, . . . , ε20} be the canonical P -module basis of P 20. For all
i, j ∈ {1, . . . , 20} such that bieβi and bjeβj are neighbors with respect to O, we denote
the corresponding neighbor syzygy with respect to O by σij as in Definition 2.4.21 and
the corresponding neighbor lifting with respect to O by λij as in Definition 2.4.24. Using
Remark 2.4.28, we can compute the set of all neighbor liftings Λ ⊆ SyzP (g1, . . . , g20) with
respect to O. In particular, it turns out that for all i, j ∈ {1, . . . , 20} such that i < j,
such that (i, j) /∈ {(1, 3), (2, 4), (3, 4), (4, 8)}, and such that bieβi and bjeβj are neighbors
with respect to O, we have λij = σij , and that λ1,3 = σ1,3 + ε16, λ2,4 = σ2,4 − yε16,
λ3,4 = σ3,4 − yε16, λ4,8 = σ4,8 + ε19. Let v = (p1, . . . , p20) = −z4ε1 + xε9 − z3ε16 ∈ P 20.
We now consider the Degree Lowering Algorithm 4 applied to the input data i = 1, v,
and Λ in detail. Note that this means that we lower the x-degree of all components pj
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with j ∈ {1, . . . , 20} where bjeβj is expsoable, face(bjeβj ) > 1, and pj has maximal
x-degree.
In our situation, the only non-zero components of v correspond to the exposable border

terms xe1 = b1eβ1 ∈ F1(O), z4e1 = b9eβ9 ∈ F3(O), and ze3 = b16eβ16 ∈ F3(O) by
Definition 3.1.1. As x ∈ Supp(p9) is divisible by x, the requirements of Algorithm 4
are satisfied. Starting with line 1, we see that the maximal x-degree of terms that need
to be considered is d = degx(x) = degx(p9) = 1. As degx(p1) = degx(p16) = 0, we
only need to consider the index j = 9 during the foreach-loop starting in line 2. Since
x · b9eβ9 = xz4e1 /∈ O, the else-clause starting in line 5 is executed. In line 6, we get
k = face(z4e1) = 3. As x · b9eβ9 = xz4e1 = z · b11eβ11 , we see that ` = 11 in line 7. Now
the while-loop starting in line 9 is executed. The only term of x-degree 1 in the support
of p9 is x. Thus we have to choose x ∈ Supp(p1) in line 10 and get a = 1 in line 11.
Since the neighbor lifting λ9,11 is of the form λ9,11 = σ9,11 = xε9 − zε11, we update the
value of (p1, . . . , p20) in line 12 to

(p1, . . . , p20)− λ9,11 = −z4ε1 + xε9 − z3ε16 − λ9,11 = −z4ε1 + zε11 − z3ε16.

Now the while-loop starting in line 9 stops. Since p11 = z has x-degree 0, the foreach-loop
starting in line 2 also stops. The algorithm finally returns the vector −z4ε1 +zε11−z3ε16

in line 15.

Next we examine the operation of “column clearing” as given in [Hui06, Lemma 29
and Coro. 30]. The following proposition provides particular versions of these results
adapted to our setting. For the ideal version of this proposition, we refer to [KK14,
Prop. 4.3].

Proposition 3.2.5. (Properties of Column Clearing)
Let j ∈ {1, . . . , ν} and k ∈ {2, . . . , n} be such that bjeβj is non-extreme and such
that Col(bjeβj ) is in the xk-direction. We write Col(bjeβj ) = {x−sk bj , . . . , x

t
kbj} · eβj

with natural numbers s, t ∈ N and we let u0, . . . , us+t+1 ∈ {1, . . . , ν} be such that
bu0eβu0 = x−s−1

k bjeβj = lcb(bjeβj ), bu1eβu1 = x−sk bjeβj , . . . , bus+t+1eβus+t+1
= xtkbjeβj .

Given (p1, . . . , pν) ∈ P ν , we assume that there exists an index v ∈ {1, . . . , s+ t+ 1} such
that puv 6= 0, i.e. such that at least one of the components of (p1, . . . , pν) corresponding
to border terms in Col(bjeβj ) is not zero. Let ` ∈ {1, . . . , s+ t+ 1} denote the maximal
index such that pu` 6= 0. Then

(q1, . . . , qν) = (p1, . . . , pν)− pu`λu`u`−1

satisfies the following conditions are satisfied.

1) For all % ∈ {1, . . . , ν} \ {u`, u`−1} such that the border term b%eβ% is non-exposable
or face(b%eβ%) < k, we have q% = p%.

2) For every % ∈ {1, . . . , ν} and every w ∈ {1, . . . , n}\{k}, we have either q%−p% = 0
or the xw-degree of q% − p% is equal to the xw-degree of pu` .
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3) For every % ∈ {1, . . . , ν} such that the border term b%eβ% is non-extreme, such that
b%eβ% /∈ Col(bjeβj ), and such that the column of b%eβ% is in the xw-direction for
some w ∈ {2, . . . , k}, we have q% = p%.

4) For every v ∈ {`, . . . , s+ t+ 1}, we have quv = 0.

Proof. Let λu`u`−1
= (f1, . . . , fν) be with f1, . . . , fν ∈ P . By Remark 2.4.28, the neighbor

lifting λu`u`−1
is of the form λu`u`−1

= εu`−xkεu`−1
−c1ε1−· · ·−cνεν with c1, . . . , cν ∈ K.

Hence we see that f% = −c% for all % ∈ {1, . . . , ν} \ {u`, u`−1}. As the column Col(bjeβj )
is in the xk-direction, we have face(buveβuv ) < k for every index v ∈ {1, . . . , s + t + 1}
by Definition 3.1.5. Moreover, for every index % ∈ {1, . . . , ν} such that the border
term b%eβ% is non-exposable or face(b%eβ%) < k, Remark 3.2.1 yields c% = 0. Therefore,
we see that fu` = 1 − cu` = 1 and that fu`−1

= −xk − cu`−1
= −xk if ` > 1. In

particular, for every index % ∈ {1, . . . , ν} \ {u`, u`−1} such that b%eβ% is non-exposable or
face(b%eβm) < k, we have q% = p% − f% = p% and claim 1) follows.

For all % ∈ {1, . . . , ν}\{u`, u`−1} such that q%−p% 6= 0 and for all w ∈ {1, . . . , n}\{k},
the shape of λu`u`−1

yields degxw(q%− p%) = degxw(−pu`c%) = degxw(pu`). Since we have
already seen that fu` = 1, qu` = pu` − pu` · 1 = 0. The equality fu`−1

= −xk − cu`−1

thus yields degxw(qu`−1
− pu`−1

) = degxw(−pu` · (−xk − cu`−1
)) = degxw(pu`) for all

w ∈ {1, . . . , n} \ {k}. This proves claim 2).

In order to prove 3), suppose that there exists a % ∈ {1, . . . , ν} such that b%eβ% ∈ ∂O
is non-extreme, such that b%eβ% /∈ Col(bjeβj ), and such that the column Col(b%eβ%) is
in the xw-direction for some w ∈ {2, . . . , k}. Then we have face(b%eβ%) < w ≤ k. By
Lemma 3.1.9, we see that b%eβ% 6= lcb(bjeβj ). Hence we have f% = −c% = 0. Therefore,
we get q% = p% − pu` · 0 = p% and claim 3) follows.

For every index v ∈ {`+ 1, . . . , s+ t+ 1}, we have face(buveβuv ) = face(bjeβj ) < k by
Definition 3.1.5 and thus quv = puv = 0 by the choice of ` and by claim 1). Since we have
already shown that qu` = 0, claim 4) follows.

The following proposition provides an algorithmic version of the process of “column
clearing”, cf. [Hui06, Lemma 32]. Since it is an essential building block for the main theo-
rem of this chapter, we provide a detailed proof. For the ideal setting, the corresponding
result was proven in [KK14, Prop. 4.4]. We generalize this proposition to the module
setting.
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Algorithm 5: ClearColumns(i, (p1, . . . , pν),Λ)

Input:
i ∈ {1, . . . , n− 1}
(p1, . . . , pν) ∈ P ν
Λ = {λij | i, j ∈ {1, . . . , ν}, bieβi and bjeβj are neigbhors with respect to O}

1 for k = i+ 1, . . . , n do
2 foreach j ∈ {1, . . . , ν} such that bjeβj is non-extreme, such that Col(bjeβj ) is in

the xk-direction, such that i ≤ face(bjeβj ), and such that pj 6= 0 do
3 Let s, t ∈ N be such that Col(bjeβj ) = {x−sk bj , . . . , x

t
kbj} · eβj .

4 for ` := 0 to s+ t+ 1 do
5 Let u` ∈ {1, . . . , ν} be such that bu`eβu` = x`−s−1

k bjeβj .
6 end
7 for ` := s+ t+ 1 to 1 step −1 do
8 while pu` 6= 0 do
9 choose t′ ∈ Supp(pu`)

10 Let a ∈ K be the coefficient of t′ in pu` .
11 (p1, . . . , pν) := (p1, . . . , pν)− at′λu`u`−1

12 end
13 end
14 end
15 end
16 return (p1, . . . , pν)

Proposition 3.2.6. (Algorithmic Version of Column Clearing)
Let i ∈ {1, . . . , n− 1} and (p1, . . . , pν) ∈ P ν . Then Algorithm 5 is actually an algorithm
and its result

(q1, . . . , qν) := ClearColumns(i, (p1, . . . , pν),Λ)

applied to the input data i, (p1, . . . , pν), and Λ is independent of the choice of t′ in line 9
and satisfies the following conditions.

1) For every % ∈ {1, . . . , ν} such that b%eβ% in non-exposable or face(b%eβ%) < i, we
have q% = p%.

2) For every % ∈ {1, . . . , ν} and every w ∈ {1, . . . , i}, we have either q% − p% = 0
or the xw-degree of q% − p% is less than or equal to the maximal xw-degree of the
polynomials in {pu | u ∈ {1, . . . , ν}, pu 6= 0, bueβu non-extreme, face(bueβu) ≥ i}.

3) For every % ∈ {1, . . . , ν} such that b%eβ% is non-extreme and face(b%eβ%) ≥ i, we
have q% = 0.

4) We have (p1, . . . , pν) + 〈Λ〉 = (q1, . . . , qν) + 〈Λ〉 in P r/〈Λ〉.
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Proof. First we prove that every step of the procedure can actually be executed, that
the procedure terminates after finitely many steps, and that the result does not depend
on the choice of the term t in line 9. The existence of the natural numbers s, t ∈ N
as in line 3 follows from Lemma 3.1.6. According to Definition 3.1.5 and Lemma 3.1.9,
every element of {lcb(bjeβj )} ∪ Col(bjeβj ) is contained in ∂O. Thus there exist indices
u0, . . . , us+t+1 ∈ {1, . . . , ν} as required in line 5 during the for-loop starting in line 4.
Now it only remains to prove termination of the procedure. Since there are only finitely
many border terms, the foreach-loop starting in line 2 stops after finitely many steps.
Thus it remains to show that the while-loop in line 8 is finite. Let ` ∈ {1, . . . , s+ t+ 1}
be chosen as in line 7. According to Definition 3.1.5, bu`eβu` ∈ Col(bjeβj ) yields that
i ≤ face(bu`eβu` ) = face(bjeβj ) < k. Let λu`u`−1

= (f1, . . . , fν) be with f1, . . . , fν ∈ P .
Then Remark 3.2.1 yields fu` = 1. Let t′ ∈ Supp(pu`) be as in line 9 and let a ∈ K be
the coefficient of t′ in pu` as in line 10. Since fu` = 1, the construction of a and t′ implies
that the term t′ is not contained in the support of pu`−at′fu` = pu`−at′ in line 11. Thus
the number of terms in the support of pu` decreases exactly by one during each iteration
of the while-loop and hence the while-loop is finite. In particular, as fu` = 1, we see that
exactly the term t cancels in pu` − at′fu` = pu` − at′ in line 11. Since the while-loop
starting in line 8 iterates over all terms contained in the support of pu` , it follows that
different choices of t′ in line 9 do not interfere with one another. Hence the final result
of the while-loop, and hence the whole algorithm, is independent of the order in which
the terms in the support of pu` are handled.
Next we consider the for-loop starting in line 7. Let k ∈ {i + 1, . . . , n} be chosen as in
line 1. Moreover, let j ∈ {1, . . . , ν} be such that the border term bjeβj is non-extreme,
such that the column Col(bjeβj ) is in the xk-direction, and such that i ≤ face(bjeβj ) as
in line 2. Let s, t ∈ N be such that Col(bjeβj ) = {x−sk bj , . . . , x

t
kbj} ·eβj as in line 3 and let

u0, . . . , us+t+1 ∈ {1, . . . , ν} be such that bu`eβu` = x`−s−1
k bjeβj for all ` ∈ {0, . . . , s+t+1}

as in line 5 during the for-loop starting in line 4.
We now show by downward induction on the loop variable ` ∈ {s+t+1, . . . , 1} of the for-
loop starting in line 7 that the following two properties are satisfied: At the beginning
of each iteration of this for-loop that changes the value of (p1, . . . , pν) in line 11, the
assumptions of Proposition 3.2.5 are satisfied. And at the end of each iteration of this
for-loop, we have pus+t+1 = pus+t = · · · = pu` = 0.
For the induction start, we let ` = s + t + 1. If we have pu` = 0 here, the while-loop
starting in line 8 has no effect. Suppose that pu` 6= 0. Collecting all monomials at
occurring during the reduction steps in line 11, we see that their sum is exactly pu` .
Thus considering all reductions in line 11 during the while-loop simultaneously, we see
that the assumptions of Proposition 3.2.5 are satisfied at the beginning of this iteration
of the for-loop starting in line 7. In particular, claim 4) of Proposition 3.2.5 yields
pus+t+1 = pu` = 0 after the first iteration of the for-loop starting in line 7.
Now let ` ∈ {s + t + 1, . . . , 1} and assume that pus+t+1 = pus+t = · · · = pu`+1

= 0.
If we have pu` = 0 here, the while-loop starting in line 8 has no effect. Thus suppose
that pu` 6= 0. Considering all reductions of the inner for-loop simultaneously as in the
induction start, we see that the assumptions of Proposition 3.2.5 are satisfied at the
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beginning of this iteration of the for-loop. Moreover, claim 4) of Proposition 3.2.5 yields
pus+t+1 = pus+t = · · · = pu` = 0.
Next we show that the four claims hold. As face(bjeβj ) ≥ i by line 2, Lemma 3.1.9

yields face(lcb(bjeβj )) ≥ i. Thus the claims 1) and 2) follow immediately from the
claims 1) and 2) of Proposition 3.2.5. Now we show claim 3) by considering the changes
of (p1, . . . , pν) during the consecutive iterations of the outer for loop starting in line 1.
We begin with the first iteration, i.e. with k = i + 1. Let j ∈ {1, . . . , ν} be chosen as
in line 2, i.e. such that the border term bjeβj is non-extreme, such that Col(bjeβj ) is
in the xi+1-direction, and such that face(bjeβj ) = i. As we have already proven in the
induction above, we have p% = 0 for all % ∈ {1, . . . , ν} such that b%eβ% ∈ Col(bjeβj )
at the end of the inner for-loop starting in line 7. Moreover, we have also shown that
Proposition 3.2.5 always holds for the reductions in line 11 during the while-loop start-
ing in line 8. Thus claim 3) of Proposition 3.2.5 implies that for all % ∈ {1, . . . , ν} such
that b%eβ% is non-extreme, such that Col(b%eβ%) 6= Col(bjeβj ), and such that Col(b%eβ%)
is in the xw-direction with w ∈ {2, . . . , i+ 1}, the component p% remains unchanged. In
other words, we have cleared the components of (p1, . . . , pν) corresponding to the border
terms in Col(bjeβj ), whereas all the components corresponding to non-extreme border
terms which are contained in a column different from Col(bjeβj ) and whose column is in
the xw-direction for some w ∈ {2, . . . , i+1} remain unchanged. In particular, we see that
two different iterations of the foreach-loop starting in line 2 do not affect one another.
Thus induction on the loop variable of the foreach-loop starting in line 2 yields that for
every % ∈ {1, . . . , ν} such that b%eβ% is non-extreme, such that face(b%eβ%) ≥ i, and such
that Col(b%eβ%) is in the xi+1-direction, we have p% = 0 at the end of the execution of
the outer for-loop with k = i+ 1.
Now we consider the next iteration of the outer for-loop starting in line 1, i.e. the iter-
ation with k = i + 2. As before, this iteration clears all the components of (p1, . . . , pν)
corresponding to non-extreme border terms which are contained in faces greater than
or equal to i and whose columns are in the xi+2-direction, whereas all the components
corresponding to non-extreme border terms which are contained in a column that is in
the xw-direction for some w ∈ {2, . . . , i + 1} remain unchanged. In particular, all the
components corresponding to non-extreme border terms which are contained in a column
that is in the xi+1-direction, i.e. all the components that have been cleared during the
previous iteration, remain unchanged. After the second iteration of the outer for-loop
starting in line 1, we have then cleared all the components of (p1, . . . , pν) corresponding
to non-extreme border terms which are on faces greater than or equal to i and whose
columns are in the xw-direction where w ∈ {i+ 1, i+ 2}.
Continuing in this way, induction on k shows that at the end of the algorithm, we have
cleared all the components of (p1, . . . , pν) corresponding to non-extreme border terms
which are on faces greater than or equal to i and whose columns are in the xw-direction
for some w ∈ {i+1, i+2, . . . , n}. In other words, claim 3) has been proven. Furthermore,
claim 4) follows immediately as the vector (p1, . . . , pν) is only changed in line 11 during
the whole algorithm.
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Example 3.2.7. Consider the situation of Example 3.2.4, again. Recall that we had
P = Q[x, y, z], that {e1, e2, e3} denoted the canonical P -module basis of P 3, and that we
could illustrate the order ideal O = {1, z, y, z2, y2, z3, y3} · e1 ∪ {1, y} · e3 in T3〈e1, e2, e3〉
and its border ∂O = {b1eβ1 , . . . , b20eβ20} with the following figures.
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z
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b3

b6

b11

b4 b8 b14
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b2
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y

z

b20

b17

b16 b18

b19

terms in O

non-exposable border terms

extreme border terms

non-extreme border terms

lower column bounds

Moreover, G = {g1, . . . , g20} ⊆ P 3 denoted the O-border basis of 〈G〉, {ε1, . . . , ε20}
denoted the canonical P -module basis of P 20, and Λ ⊆ SyzP (g1, . . . , g20) denoted the
set of all neighbor liftings with respect to O. For all i, j ∈ {1, . . . , 20} such that i < j,
(i, j) /∈ {(1, 3), (2, 4), (3, 4), (4, 8)}, and such that bieβi and bjeβj are neighbors with
respect to O the corresponding neighbor liftings with respect to O were of the form
λij = σij , and we saw that λ1,3 = σ1,3 + ε16, λ2,4 = σ2,4 − yε16, λ3,4 = σ3,4 − yε16,
λ4,8 = σ4,8 + ε19. We now consider the Column Clearing Algorithm 5 applied to i = 1,
v = (p1, . . . , p20) = (−z4 + y3)ε1 + xε9 − ε14 − z3ε16 + yε19, and Λ in detail.
In line 1, we start with k = i+ 1 = 2. Since b1eβ1 = xe1, b9eβ9 = z4e1, b16eβ16 = ze3,

and b19eβ19 = y2e3 are all extreme border terms by Definition 3.1.1, we only have to
consider the non-extreme border term b14eβ14 = xy3e1 ∈ F1(O) during the foreach-loop
starting in line 2, i.e. the case j = 14. According to Definition 3.1.5 and Lemma 3.1.6,
Col(b14eβ14) = {y−2b14, y

−1b14, b14} · eβ14 = {xy, xy2, xy3} · e1 = {b4eβ4 , b8eβ8 , b14eβ14}.
Moreover, lcb(b14eβ14) = xe1 = b1eβ1 by Definition 3.1.8. Thus we have s = 2 and t = 0
after line 3 and we have u0 = 1, u1 = 4, u2 = 8, and u3 = 14 after the for-loop starting in
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line 4. During the first iteration of the for-loop starting in line 7, we have ` = s+t+1 = 3.
The while-loop starting in line 8 is executed as pu` = pu3 = p14 = −1 6= 0. In line 9, we
hence have to choose the term t = 1 ∈ Supp(p14) and, therefore, get a = −1 in line 10.
Since λu3,u2 = λ14,8 = σ14,8 = ε14 − yε8, we update the value of (p1, . . . , p20) to

(p1, . . . , p20) + λ14,8 = (−z4 + y3)ε1 + xε9 − ε14 − z3ε16 + yε19 + λ14,8

= (−z4 + y3)ε1 − yε8 + xε9 − z3ε16 + yε19.

Since we have p14 = 0, now the while-loop terminates and the next iteration of the for-
loop starting in line 7 with ` = 2 begins. The while-loop starting in line 8 is executed
as pu` = pu2 = p8 = −y 6= 0. In line 9, we hence have to choose the term t = y ∈ Supp(p8)
and, therefore, get a = −1 in line 10. Since λu2,u1 = λ8,4 = σ8,4 − ε19 = ε8 − yε4 − ε19,
we update the value of (p1, . . . , p20) to

(p1, . . . , p20) + y · λ8,4 = (−z4 + y3)ε1 − yε8 + xε9 − z3ε16 + yε19 + y · λ8,4

= (−z4 + y3)ε1 − y2ε4 + xε9 − z3ε16.

Since we have p8 = 0, now the while-loop terminates and the next iteration of the for-
loop starting in line 7 with ` = 1 begins. In the next iteration, we subtract the vector
y2 · λ4,1 where λ4,1 = σ4,1 = ε4 − yε1 from (p1, . . . , p20) and get

(p1, . . . , p20)− y2 · λ4,1 = (−z4 + y3)ε1 − y2ε4 + xε9 − z3ε16 + y2 · λ4,1

= −z4ε1 + xε9 − z3ε16.

Now the for-loop starting in line 7 terminates. Moreover, as all components of the vector
(p1, . . . , p20) = −z4ε1 + xε9− z3ε16 belonging to non-extreme border terms are zero, the
foreach-loop starting in line 2 also terminates.
In the next iteration of the for-loop starting in line 1, nothing happens as there is no
component of (p1, . . . , p20) belonging to non-extreme border terms that is not equal to
zero and thus the foreach-loop starting in line 2 has no effect. Altogether, the algorithm
terminates and returns the vector (p1, . . . , p20) = −z4ε1 + xε9 − z3ε16 in line 16.

3.3 The Reduction Algorithm

In this Section, we combine the Degree Lowering and the Column Clearing Algorithms
in a way which is similar to the method in [Hui06, Section 6.6]. However, we turn the
method indicated by the proof of [Hui06, Lemma 33] into an explicit algorithm. This
algorithm will be suitable to serve as a basis for the construction of certain term orderings
for which the set of neighbor liftings Λ with respect to O form a Gröbner basis of the
syzygy module of the O-border basis G. For the ideal setting, the corresponding result
was proven in [KK14, Section 5]. We generalize this proposition to the module setting.

As in the previous section, we let {ε1, . . . , εν} denote the canonical P -module basis
of P ν and we assume that G is the O-border basis of 〈G〉. For all i, j ∈ {1, . . . , ν} such
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that bieβi and bjeβj are neighbors with respect to O, we let σij denote the corresponding
neighbor syzygy with respect to O and we let λij denote the corresponding neighbor lift-
ing with respect to O. Moreover, we denote the set of all neighbor liftings with respect
to O by Λ.

As in [Hui06, Section 6.6] and [KK14, Defn. 5.1], we measure the progress of the
reduction algorithm using the following notion.

Definition 3.3.1. Let i ∈ {1, . . . , n}. We say that a vector (p1, . . . , pν) ∈ P ν is
i-reduced if the following conditions are satisfied for every j ∈ {1, . . . , ν}.

a) If the border term bjeβj is non-extreme, we require that pj = 0.

b) If the border term bjeβj is extreme, we let ` = min{i, face(bjeβj )}. Then we require
that pj ∈ K[x`, . . . , xn].

The following lemma provides an extended explicit version of some arguments con-
tained in the proof of [Hui06, Lemma 33]. As before, an ideal version of it can be found
in [KK14, Lemma 5.2].

Lemma 3.3.2. Let i ∈ {1, . . . , n−1} and let (p1, . . . , pν) ∈ P ν be i-reduced. We assume
that d = max{degxi(pj) | j ∈ {1, . . . , ν}, pj 6= 0, bjeβj is exposable, face(bjeβj ) > i} exists
and that this number is strictly positive. We let

(q1, . . . , qν) := ClearColumns(i, LowerDegree(i, (p1, . . . , pν),Λ),Λ)

be the result of first applying Algorithm 4 and then Algorithm 5 to the input data i,
(p1, . . . , pν), and Λ. Then the following conditions are satisfied.

1) The vector (q1, . . . , qν) is i-reduced.

2) For every j ∈ {1, . . . , ν} such that bjeβj is exposable and such that face(bjeβj ) > i,
we have qj = 0 or degxi(qj) ≤ d− 1.

3) We have (p1, . . . , pν) + 〈Λ〉 = (q1, . . . , qν) + 〈Λ〉 in P ν/〈Λ〉.

Proof. To ease the notation, we let

(q′1, . . . , q
′
ν) := LowerDegree(i, (p1, . . . , pν),Λ)

be the result of applying Algorithm 4 to the input data i, (p1, . . . , pν), and Λ.
We start by proving that (q1, . . . , qν) is i-reduced. According to Definition 3.3.1, we

have to distinguish two cases.
First suppose that there is a j ∈ {1, . . . , ν} such that bjeβj is non-extreme. Since the
vector (p1, . . . , pν) is i-reduced, we have pj = 0 by Definition 3.3.1. If face(bjeβj ) < i, the
claims 1) of the Propositions 3.2.3 and 3.2.6 yield qj = q′j = pj = 0. If face(bjeβj ) ≥ i,
claim 3) of Proposition 3.2.6 yields qj = 0.
Second we let j ∈ {1, . . . , ν} be such that bjeβj ∈ ∂O is extreme. Let k = face(bjeβj )
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and ` = min{i, k}. Since (p1, . . . , pν) is i-reduced, we have pj ∈ K[x`, . . . , xn] by Def-
inition 3.3.1. Moreover, for every u ∈ {1, . . . , ν} such that bueβu is exposable and
face(bueβu) > i, Definition 3.3.1 yields pu ∈ K[xi, . . . , xn] ⊆ K[x`, . . . , xn]. Thus claim 2)
of Proposition 3.2.3 implies q′j ∈ K[x`, . . . , xn]. If k < i, claim 1) of Proposition 3.2.6
yields qj = q′j ∈ K[x`, . . . , xn]. Thus we may suppose that k ≥ i. Then we have ` = i.
Suppose there exists a u ∈ {1, . . . , ν} such that bueβu is non-extreme and face(bueβu) ≥ i.
Then, similar to above, claim 2) of Proposition 3.2.3 together with Definition 3.3.1 yield
q′u ∈ K[xi, . . . , xn] as (p1, . . . , pν) is i-reduced. In particular, for every w ∈ {1, . . . , i−1},
we have q′u = 0 or the xw-degree of q′u equals 0. Since we have q′j ∈ K[xi, . . . , xn],
it follows now that qj − q′j ∈ K[xi, . . . , xn] by claim 2) of Proposition 3.2.6 and thus
qj ∈ K[xi, . . . , xn]. Altogether, the conditions of Definition 3.3.1 are satisfied, i.e. we
have proved that (q1, . . . , qν) is i-reduced.
Next we show that claim 2) holds. Let j ∈ {1, . . . , ν} be such that bjeβj is exposable

and face(bjeβj ) > i. If bjeβj is non-extreme, we have qj = 0 by claim 3) of Propo-
sition 3.2.6. Thus we may suppose that bjeβj is extreme by Definition 3.1.1. Then
we have q′j = 0 or degxi(q

′
j) ≤ d − 1 by claim 4) of Proposition 3.2.3. Addition-

ally, suppose that there exists a u ∈ {1, . . . , ν} such that bueβu is non-extreme and
such that face(bueβu) ≥ i. Since (p1, . . . , pν) is i-reduced, we have pu = 0. Hence we
have q′u = 0 or the xi-degree of q′u is less than or equal to d− 1 according to claim 3) of
Proposition 3.2.3. Altogether, claim 2) of Proposition 3.2.6 now implies that either qj = 0
or the xi-degree of qj is less than or equal to d− 1. Thus claim 2) follows.
Claim 3) is a direct consequence of claim 5) of Proposition 3.2.3 and claim 4) of

Proposition 3.2.6.

Now we are ready to present the main result of this section: an explicit Reduction
Algorithm whose result is a vector which is equivalent to the given vector modulo the
submodule 〈Λ〉 ⊆ P ν generated by the set of neighbor liftings with respect toO and which
is n-reduced. This proposition generalizes [KK14, Prop. 5.3] to the module setting. The
corresponding idea was originally presented in the proof of [Hui06, Lemma 33].

Algorithm 6: Reduce((p1, . . . , pν),Λ)

Input:
(p1, . . . , pν) ∈ P ν
Λ = {λij | i, j ∈ {1, . . . , ν}, bieβi and bjeβj are neigbhors with respect to O}

1 (p1, . . . , pν) := ClearColumns(1, (p1, . . . , pν),Λ)
2 for i := 1 to n− 1 do
3 while there exist a j ∈ {1, . . . , ν} and a t ∈ Supp(pj) such that bjeβj is

exposable, such that face(bjeβj ) > i, and such that degxi(t) > 0 do
4 (p1, . . . , pν) := ClearColumns(i, LowerDegree(i, (p1, . . . , pν),Λ),Λ)

5 end
6 end
7 return (p1, . . . , pν)
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3 Syzygies of Border Bases

Theorem 3.3.3. (The Reduction Algorithm)
Let (p1, . . . , pν) ∈ P ν . Then Algorithm 6 is actually an algorithm and its result

(q1, . . . , qν) := Reduce((p1, . . . , pν),Λ)

applied to the input data (p1, . . . , pν) and Λ satisfies the following conditions.

1) The vector (q1, . . . , qν) is n-reduced.

2) We have (p1, . . . , pν) + 〈Λ〉 = (q1, . . . , qν) + 〈Λ〉 in P ν/〈Λ〉.

Proof. As the vector (p1, . . . , pν) in Algorithm 6 is only changed in the lines 1 and 4,
claim 2) follows by induction from claim 4) of Proposition 3.2.6 and from claim 3) of
Lemma 3.3.2.
Thus it remains to prove claim 1). We let

(p
(0)
1 , . . . , p(0)

ν ) := ClearColumns(1, (p1, . . . , pν),Λ),

i.e. we let (p
(0)
1 , . . . , p

(0)
ν ) denote the value of (p1, . . . , pν) before the first iteration of the

for-loop starting in line 2. Moreover, for all i ∈ {1, . . . , n− 1}, we let (p
(i)
1 , . . . , p

(i)
ν ) ∈ P ν

be the value of (p1, . . . , pν) during Algorithm 6 applied to the input data (p1, . . . , pν)
and Λ after the i-th iteration of the for-loop which starts in line 2. We prove by induction
on i ∈ {0, . . . , n− 1} that (p

(i)
1 , . . . , p

(i)
ν ) is (i+ 1)-reduced.

In order to prove the induction start i = 0, we note that claim 3) of Proposition 3.2.6
implies that p(0)

j = 0 for every index j ∈ {1, . . . , ν} such that bjeβj is non-extreme.

According to Definition 3.3.1, this means that (p
(0)
1 , . . . , p

(0)
ν ) is 1-reduced.

For the induction step, let now i ∈ {1, . . . , n−1}. Then the induction hypothesis says that
(p

(i−1)
1 , . . . , p

(i−1)
ν ) is i-reduced. In other words, for every j ∈ {1, . . . , ν} such that bjeβj is

non-extreme, we have p(i−1)
j = 0, and for every j ∈ {1, . . . , ν} such that bjeβj is extreme

and such that ` = min{i, face(bjeβj )}, we have p
(i−1)
j ∈ K[x`, . . . , xn] by Definition 3.3.1.

If the while-loop in line 3 is not executed, we have p(i−1)
j ∈ K[xi+1, . . . , xn] for every

j ∈ {1, . . . , ν} such that bjeβj is extreme and such that face(bjeβj ) > i. Hence we see
that the vector (p

(i)
1 , . . . , p

(i)
ν ) = (p

(i−1)
1 , . . . , p

(i−1)
ν ) is (i+ 1)-reduced by Definition 3.3.1

in this case. If the while-loop in line 3 is executed, Lemma 3.3.2 shows that after each
iteration of the while-loop starting in line 3, the resulting vector continues to be i-reduced
and that for every j ∈ {1, . . . , ν} such that pj 6= 0, such that bjeβj is exposable, and
such that face(bjeβj ) > i, the maximal xi-degree of the component pj has decreased at
least by 1. In particular, it follows that the while-loop, and thus the whole procedure, is
finite. After finitely many iterations of the while-loop in line 3, for every j ∈ {1, . . . , ν}
such that the border term bjeβj is exposable and such that face(bjeβj ) > i, we eventually
have pj = 0 or degxi(pj) = 0. Hence the resulting vector (p

(i)
1 , . . . , p

(i)
ν ) is (i+1)-reduced.

Altogether, we see that (q1, . . . , qν) = (p
(n−1)
1 , . . . , p

(n−1)
ν ) is n-reduced and claim 1) is

proven.
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3.3 The Reduction Algorithm

Example 3.3.4. Consider the situation of Example 3.2.4 again. Recall that we had
P = Q[x, y, z], that {e1, e2, e3} denoted the canonical P -module basis of P 3, and that we
could illustrate the order ideal O = {1, z, y, z2, y2, z3, y3} · e1 ∪ {1, y} · e3 in T3〈e1, e2, e3〉
and its border ∂O = {b1eβ1 , . . . , b20eβ20} with the following figures.

O1

x

y

z

b5

b10

b3

b6

b11

b4 b8 b14

b1

b2

b9

b7 b12

b13

O2

x

y

z

b15

O3

x

y

z

b20

b17

b16 b18

b19

terms in O

non-exposable border terms

extreme border terms

non-extreme border terms

lower column bounds

Moreover, G = {g1, . . . , g20} ⊆ P 3 denoted the O-border basis of 〈G〉, we denoted the
canonical P -module basis of P 20 by {ε1, . . . , ε20}, and Λ ⊆ SyzP (g1, . . . , g20) denoted the
set of all neighbor liftings with respect to O. For all i, j ∈ {1, . . . , 20} such that bieβi
and bjeβj are neighbors with respect to ′, let σij denote the corresponding neighbor syzygy
with respect to ′ as in Definition 2.4.21 and let λij denote the corresponding neighbor
lifting with respect to ′ as in Definition 2.4.24. For all indices i, j ∈ {1, . . . , 20} such
that i < j, such that (i, j) /∈ {(1, 3), (2, 4), (3, 4), (4, 8)}, and such that bieβi and bjeβj
are neighbors with respect to O, we had λij = σij and we saw that λ1,3 = σ1,3 + ε16,
λ2,4 = σ2,4 − yε16, λ3,4 = σ3,4 − yε16, λ4,8 = σ4,8 + ε19. We now consider the Reduction
Algorithm 6 applied to v = (p1, . . . , p20) = (−z4 + y3)ε1 +xε9− ε14− z3ε16 + yε19 and Λ
in detail.
In line 1, we have to apply the Column Clearing Algorithm 5 to the input data 1, v,

and Λ. We have already seen in Example 3.2.7 that (p1, . . . , p20) = −z4ε1 +xε9−z3ε16 is
the result of the algorithm. As b9eβ9 is exposable with face(b9eβ9) = 3 > 1 according to
Definition 3.1.1 and as t ∈ Supp(p9) has x-degree 1 > 0, the while-loop starting in line 3
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is executed. First we have to apply the Degree Lowering Proposition 3.2.3 to the input
data 1, (p1, . . . , p20), and Λ. Again, we have already computed in Example 3.2.4 that
the result is (q1, . . . , q20) = −z4ε1 + zε11 − z3ε16. Second we have to apply the Column
Clearing Algorithm 5 to the input data 1, (q1, . . . , q20), and Λ. Similar to the situation
in Example 3.2.7, we see that we have to clear the component q11 = z as b11eβ11 = xz3e1

is non-extreme by Definition 3.1.1. Summing up the corresponding reduction steps in
line 11 of Algorithm 5, we first update (q1, . . . , q20) to the vector

(q1, . . . , q20)− z · λ11,6 = −z4ε1 + zε11 − z3ε16 − z(ε11 − zε6) = −z4ε1 + z2ε6 − z3ε16,

then we update it to

(q1, . . . , q20)− z2 · λ6,3 = −z4ε1 + z2ε6 − z3ε16 − z2(ε6 − zε3) = −z4ε1 + z3ε3 − z3ε16,

and finally update (q1, . . . , q20) to the vector

(q1, . . . , q20)− z3 · λ3,1 = −z4ε1 + z3ε3 − z3ε16 − z3 · (ε3 − zε1 − ε16) = 0.

In particular, the while-loop starting in line 3 terminates and we have (p1, . . . , p20) = 0
after it. Moreover, this while is not executed anymore, as (p1, . . . , p20) = 0 and the
algorithm returns (p1, . . . , p20) = 0 in line 7.
Note that this result is not a coincident. The vector v is a syzygy of (g1, . . . , g20).

Thus the result of the Reduction Algorithm 6 applied to v and Λ must be zero as we will
prove in Theorem 3.3.7.

The remaining part of this section is devoted to give an alternative proof of the charac-
terization of border bases via liftings of border syzygies in Theorem 2.4.26 that does not
use commuting matrices at all. Therefore, we have to generalize [Hui06, Lemma 26] to
the module setting. But first we prove the following auxiliary lemma that is a generalized
version [Hui06, Lemma 25].

Lemma 3.3.5. Let j ∈ {1, . . . , ν} be such that the border term bjeβj is extreme and
let k = face(bjeβj ). Let γ1, . . . , γk ∈ N be such that bj = xγ11 · · ·x

γk
k , let δk, . . . , δn ∈ N,

and let t = xγ11 · · ·x
γk−1

k−1 x
δk
k · · ·x

δn
n ∈ Tn. Moreover, assume that either teβj ∈ O, or that

teβj ∈ ∂O and x`-exposable for some ` ∈ {k + 1, . . . , n}. Then δk < γk.

Proof. For a contradiction, assume that δk ≥ γk. If teβj ∈ O, we see that

(xδk−γkk x
δk+1

k+1 · · ·x
δn
n )bjeβj = teβj ∈ O.

If teβj ∈ ∂O and x`-exposable for some ` ∈ {k + 1, . . . , n}, we see that δ` ≥ 1 and

(xδk−γkk x
δk+1

k+1 · · ·x
δ`−1

`−1 x
δ`−1
` x

δ`+1

`+1 · · ·x
δn
n )bjeβj = t

x`
eβj ∈ O

according to Definition 3.1.1. As O is an order ideal and as bjeβj ∈ ∂O, both cases
contradict the Definitions 2.1.6 and 2.1.7.

92



3.3 The Reduction Algorithm

The next lemma encapsulates some arguments used in the induction during the proof
of [Hui06, Lemma 26] and generalizes them to the module setting.

Lemma 3.3.6. Let (p1, . . . , pν) ∈ P ν be n-reduced and let k ∈ {1, . . . , n} be such that
for all indices j ∈ {1, . . . , ν}, we have pj = 0, or bjeβj is extreme and face(bjeβj ) ≥ k.
Moreover, we denote Jk = {j ∈ {1, . . . , ν} | pj 6= 0, bjeβj ∈ Fk(O)}, assume that
Jk 6= ∅, and let j ∈ Jk be such that degxk(pj) ≥ degxk(pj′) for every index j′ ∈ Jk. Write
pj = asx

s
k+· · ·+a1xk+a0 ∈ K[xk+1, . . . , xn][xk] with s ∈ N, a0, . . . , as ∈ K[xk+1, . . . , xn],

and as 6= 0. Let t̂ ∈ Supp(as). Then the following conditions hold.

1) We have t̂xskbjeβj ∈ Supp(pjbjeβj ).

2) We have t̂xskbjeβj /∈ Supp(pj′bj′eβj′ ) for all j′ ∈ Jk \ {j}.

3) We have t̂xskbjeβj /∈ Supp(pj′(gj′ − bj′eβj′ )) for all j′ ∈ Jk.

4) We have t̂xskbjeβj /∈ Supp(pj′gj′) for all j′ ∈ {1, . . . , ν} \ Jk.

In other words, the term t̂xskbjeβj occurs in the sum p1g1 +· · ·+pνgν exactly once, namely
in pjbjeβj .

Proof. As bjeβj ∈ Fk(O) is extreme, we can write bj = xγ11 · · ·x
γk
k with γ1, . . . , γk ∈ N

according to Definition 3.1.1. By construction, we have s = degxk(pj) ≥ degxk(pj′) for
all j′ ∈ Jk. Moreover, since (p1, . . . , pν) is n-reduced, we have degx`(pj′) = 0 for all
` ∈ {1, . . . , k − 1} and j′ ∈ Jk by Definition 3.3.1. We will use these facts during this
proof without mention.
Since 1) follows immediately from the definitions of j, as, and t̂, we start with the

proof of claim 2). If Jk \ {j} = ∅ or if βj′ 6= βj for all j′ ∈ Jk \ {j}, claim 2) follows
trivially. Thus assume that there exists a j′ ∈ Jk \ {j} with βj′ = βj . As bj′eβj′ ∈ Fk(O)

is extreme, we can write bj′ = xδ11 · · ·x
δk
k with δ1, . . . , δk ∈ N by Definition 3.1.1. Assume

that γ` = δ` for every ` ∈ {1, . . . , k − 1}. Then bj 6= bj′ implies γk 6= δk. If γk > δk, we
have xγk−δk−1

k bj′eβj′ =
bj
xk
eβj /∈ O by the Definitions 2.1.6 and 2.1.7. If γk < δk, we have

xδk−γk−1
k bjeβj =

bj′
xk
eβj′ /∈ O by the Definitions 2.1.6 and 2.1.7. So both cases yield a

contradiction to bjeβj , bj′eβj′ ∈ Fk(O) and Definition 3.1.1 and we see that there exists
an ` ∈ {1, . . . , k − 1} such that γ` 6= δ`. For all t′ ∈ Supp(pj′), we hence get

degx`(t
′bj′) = degx`(t

′) + degx`(bj′)

= 0 + δ`

6= 0 + 0 + γ`

= degx`(t̂) + degx`(x
s
k) + degx`(bj)

= degx`(t̂x
s
kbj),

i.e. t̂xskbjeβj /∈ Supp(pj′bj′eβj′ ).
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Next we prove 3). Let i ∈ {1, . . . , µ}, δ1, . . . , δn ∈ N be such that ti = xδ11 · · ·xδnn ,
j′ ∈ Jk, and t′ ∈ Supp(pj′). If γ` 6= δ` for some ` ∈ {1, . . . , k − 1}, we get

degx`(t
′ti) = degx`(t

′) + degx`(ti)

= 0 + δ`

6= 0 + 0 + γ`

= degx`(t̂) + degx`(x
s
k) + degx`(bj)

= degx`(t̂x
s
kbj).

If γ` = δ` for all ` ∈ {1, . . . , k − 1}, Lemma 3.3.5 yields δk < γk and hence we get

degxk(t′ti) = degxk(t′) + degxk(ti)

≤ s+ δk

< 0 + s+ γk

= degxk(t̂) + degxk(xsk) + degxk(bj)

= degxk(t̂xskbj).

In both cases we get t̂xskbjeβj /∈ Supp(pj′tieαi). Since Supp(gj′ − bj′eβj′ ) ⊆ O by Defini-
tion 2.1.14, it follows t̂xskbjeβj /∈ Supp(pj′(gj′ − bj′eβj′ )) and claim 3) follows.
Finally, we prove 4). If {1, . . . , ν} \ Jk = ∅, nothing needs to be shown. Thus suppose

that there is a j′ ∈ {1, . . . , ν} \ Jk. Since claim 4) holds trivially if pj′ = 0, we suppose
that pj′ 6= 0. The border term bj′eβj′ ∈ ∂O is extreme by Definition 3.3.1 as (p1, . . . , pν)
is n-reduced. Moreover, we have face(bj′eβj′ ) > k according to the definition of k and Jk.
In particular, as (p1, . . . , pν) is n-reduced, we see that degx`(pj′) = 0 for all ` ∈ {1, . . . , k}
by Definition 3.3.1. Let t′ ∈ Supp(pj′), t ∈ Supp(gj′), and δ1, . . . , δn ∈ N be such that
t = xδ11 · · ·xδnn . If γ` 6= δ` for some ` ∈ {1, . . . , k − 1}, we get

degx`(t
′t) = degx`(t

′) + degx`(t)

= 0 + δ`

6= 0 + 0 + γ`

= degx`(t̂) + degx`(x
s
k) + degx`(bj)

= degx`(t̂x
s
kbj).

If γ` = δ` for all ` ∈ {1, . . . , k − 1}, Lemma 3.3.5 yields δk < γk and hence we get

degxk(t′t) = degxk(t′) + degxk(t)

= 0 + δk

< 0 + s+ γk

= degxk(t̂) + degxk(xsk) + degxk(bj)

= degxk(t̂xskbj).

In both cases we see that t̂xskbjeβj /∈ Supp(pj′gj′) and claim 4) follows.
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Using these two lemmata, we can now prove a generalization of [Hui06, Lemma 26].

Theorem 3.3.7. Let (p1, . . . , pν) ∈ P ν be n-reduced with p1g1 + · · · + pνgν ∈ 〈O〉K .
Then (p1, . . . , pν) = 0.

Proof. Since (p1, . . . , pν) is n-reduced, we have pj = 0 for every j ∈ {1, . . . , ν} such
that bjeβj ∈ ∂O is non-extreme by Definition 3.3.1. Assume that there exists an index
j ∈ {1, . . . , ν} such that bjeβj is non-exposable and such that pj 6= 0. Let t ∈ Supp(pj).
As bjeβj is non-exposable, it follows eβj = bjeβj ∈ ∂O by Definition 3.1.1. In particular,
it follows from the Definitions 2.1.6 and 2.1.7 that βj 6= αi for every i ∈ {1, . . . , µ} and
βj 6= βj′ for every j′ ∈ {1, . . . , ν}\{j}. Thus the term tbjeβj ∈ Supp(pjgj) cannot cancel
in the sum p1g1 + · · ·+pνgν and we get tbjeβj ∈ Supp(p1g1 + · · ·+pνgν) ⊆ O. Therefore,
by Definition 2.1.6, we get bjeβj ∈ O and this clearly contradicts Definition 2.1.7. Thus
we see that pj = 0 for all j ∈ {1, . . . , ν} such that bjeβj is non-exposable. Now we prove
by induction on k ∈ {1, . . . , n} that pj = 0 for every j ∈ {1, . . . , ν} with the properties
that bjeβj ∈ ∂O is extreme and face(bjeβj ) ≤ k.
For the induction start k = 1, let J1 = {j ∈ {1, . . . , ν} | pj 6= 0, bjeβj ∈ F1(O)}. If we
show that J1 = ∅, the induction start is proven. For a contradiction, assume that J1 6= ∅.
Then there exists an index j ∈ J1 such that degx1(pj) ≥ degx1(pj′) for all indices j′ ∈ J1.
We write the polynomial pj = asx

s
1 + · · · + a1x1 + a0 ∈ K[x2, . . . , xn][x1] with s ∈ N,

a0, . . . , as ∈ K[x2, . . . , xn], and as 6= 0. Let t̂ ∈ Supp(as). As O is an order ideal and
as bjeβj ∈ ∂O, it follows t̂xs1bjeβj /∈ O from the Definitions 2.1.6 and 2.1.7. Moreover,
Lemma 3.3.6 shows that the term t̂xs1bjeβj occurs in the sum p1g1 + · · · + pνgν exactly
once, namely in pjbjeβj . Since p1g1 + · · ·+ pνgν ∈ 〈O〉K , we hence get the contradiction
t̂xs1bjeβj ∈ O. Thus it follows J1 = ∅ and the induction start is proven. In particular, if
n = 1, the claim follows from the induction start.
For the induction step, assume that there is a k ∈ {2, . . . , n} and that the claim holds
for k − 1. Recall that pj = 0 for all j ∈ {1, . . . , ν} such that bjeβj is non-exposable or
non-extreme. Let Jk = {j ∈ {1, . . . , ν} | pj 6= 0, bjeβj ∈ Fk(O)}. As in the induction
start, it suffices to prove that Jk = ∅. For a contradiction, assume that Jk 6= ∅. Then
there exists an index j ∈ Jk such that degxk(pj) ≥ degxk(pj′) for all j′ ∈ Jk. As
bjeβj ∈ Fk(O) is extreme and as (p1, . . . , pν) is n-reduced, we have pj ∈ K[xk, . . . , xn]
by Definition 3.3.1. We write pj = asx

s
k + · · · + a1xk + a0 ∈ K[xk+1, . . . , xn][xk] with

s ∈ N, a0, . . . , as ∈ K[xk+1, . . . , xn], and as 6= 0. Let t̂ ∈ Supp(as). As O is an order
ideal and as bjeβj ∈ ∂O, it follows t̂xskbjeβj /∈ O according to the Definitions 2.1.6
and 2.1.7. Moreover, the induction hypothesis yields that pj′ = 0 for all j′ ∈ {1, . . . , ν}
such that bj′eβj′ ∈ ∂O is extreme and such that face(bj′eβj′ ) ≤ k− 1. Thus Lemma 3.3.6
implies that t̂xskbjeβj occurs in the sum p1g1 + · · ·+pνgν exactly once, namely in pjbjeβj .
Since p1g1 + · · · + pνgν ∈ 〈O〉K , we get the contradiction t̂xskbjeβj ∈ O. It follows
that Jk = ∅ and the induction step is proven.

Now we are able to prove the non-trivial implication of [Hui06, Thm. 22], namely that
the set of neighbor liftings is a system of generators of the (first) syzygy module of a
border basis, in the module setting. We improve upon this result in the next section.
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The following formulation generalizes [KK14, Coro. 5.4].

Corollary 3.3.8. We have 〈Λ〉 = SyzP (g1, . . . , gν).

Proof. As the neighbour liftings with respect to O in Λ are all syzygies of (g1, . . . , gν) ac-
cording to Definition 2.4.24, we have 〈Λ〉 ⊆ SyzP (g1, . . . , gν). For the converse inclusion,
we let (p1, . . . , pν) ∈ SyzP (g1, . . . , gν). Let

(q1, . . . , qν) := Reduce((p1, . . . , pν),Λ)

be the result of Algorithm 6 applied to the input data (p1, . . . , pν) and Λ. Then The-
orem 3.3.3 yields that (p1, . . . , pν) − (q1, . . . , qν) ∈ 〈Λ〉 ⊆ SyzP (g1, . . . , gν) and thus
(q1, . . . , qν) ∈ SyzP (g1, . . . , gν). In particluar, it follows that q1g1+· · ·+qνgν = 0 ∈ 〈O〉K .
As (q1, . . . , qν) is n-reduced by Theorem 3.3.3, Theorem 3.3.7 implies (q1, . . . , qν) = 0 and
we see that (p1, . . . , pν) ∈ 〈Λ〉.

We end this section with an alternative proof of the characterization of border bases
via liftings of border syzygies as in Theorem 2.4.26. This proof is remarkable since,
in stark contrast to all previous proofs of this characterization, it does not depend on
the characterization of border bases via commuting matrices in Theorem 2.4.19, but
only needs the characterizations via the special generation property in Theorem 2.4.1
and via rewrite rules in Theorem 2.4.13. Thus this proof might yield a possible way to
characterize border bases in a non-commutative setting, e.g. as defined in [BTBQM00].

Corollary 3.3.9. (Border Bases and Liftings of Border Syzygies)
The O-border prebasis G is the O-border basis of 〈G〉 if and only if the following equivalent
conditions are satisfied.

E1) Every border syzygy with respect to O lifts to a syzygy of (g1, . . . , gν).

E2) Every neighbor syzygy with respect to O lifts to a syzygy of (g1, . . . , gν).

Proof. First we show that condition E1) is satisfied if G is the O-border basis of 〈G〉.
Let (p1, . . . , pν) be a border syzygy with respect to O and v = p1g1 + · · · + pνgν . If
v = 0, we see that (p1, . . . , pν) is a lifting of (p1, . . . , pν) by Definition 2.4.24. Thus
suppose that v 6= 0. Since v ∈ 〈G〉 \ {0}, condition A1) of Theorem 2.4.1 yields a
representation v = p1g1 + · · · + pνgν = q1g1 + · · · + qνgν such that q1, . . . , qν ∈ P
and such that qj = 0 or deg(qj) ≤ indO(v) − 1 for every index j ∈ {1, . . . , ν}. Let
(P1, . . . , Pν) = (p1, . . . , pν) − (q1, . . . , qν). Then (P1, . . . , Pν) is a syzygy of (g1, . . . , gν)
by construction. Moreover, we have deg(Pj − pj) = deg(−qj) ≤ indO(v) − 1 for all
j ∈ {1, . . . , ν} with Pj − pj 6= 0, i.e. (p1, . . . , pν) lifts to (P1, . . . , Pν) by Definition 2.4.24.
Since E1) logically implies E2) by Definition 2.4.21, it remains to prove that G is the
O-border basis of 〈G〉 if E2) holds. By E2), every neighbor syzygy with respect to O lifts
to a neighbor lifting with respect to O. Let Λ ⊆ P r be the set of all neighbor liftings with
respect to O and let p1, . . . , pν ∈ P be such that v = p1g1 + · · ·+pνgν ∈ 〈G〉 is irreducible
with respect to G−→. Then v ∈ 〈O〉K by Remark 2.4.11. By Theorem 3.3.3, there exists
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an n-reduced vector (q1, . . . , qν) ∈ P ν such that (p1, . . . , pν) − (q1, . . . , qν) ∈ 〈Λ〉. As
Λ ⊆ SyzP (g1, . . . , gν) by Definition 2.4.24, it follows

v = p1g1 + · · ·+ pνgν

= p1g1 + · · ·+ pνgν − (p1 − q1)g1 − · · · − (pν − qν)gν

= q1g1 + · · ·+ qνgν .

In particular, the n-reduced vector (q1, . . . , qν) satisfies q1g1 + · · · + qνgν = v ∈ 〈O〉.
Hence Theorem 3.3.7 implies (q1, . . . , qν) = 0 and this yields v = 0. Altogether, we have
proven that condition C2) of Theorem 2.4.13 is satisfied and thus G is the O-border basis
of 〈G〉.

3.4 Gröbner Bases for the Syzygy Modules of Border Bases

In the final section of this chapter, we use the above results in order to prove a version
of Schreyer’s Theorem for border bases of submodules of free modules of finite rank. For
polynomial ideals, Schreyer’s Theorem was already proven in [KK14, Section 6]. We now
generalize the ideas of that paper to the module setting.

Continuing to use the setting of the previous section, we let {ε1, . . . , εν} denote the
canonical P -module basis of P ν and, if not mentioned otherwise, we assume that G is the
O-border basis of 〈G〉. For all i, j ∈ {1, . . . , ν} such that bieβi and bjeβj are neighbors
with respect to O, we let σij denote the corresponding neighbor syzygy with respect
to O and λij denote the corresponding neighbor lifting with respect to O. Moreover, we
denote the set of all neighbor liftings with respect to O by Λ.

As done for the ideal setting in [KK14, Thm. 6.1], we can give explicit conditions that
a term ordering τ on Tn〈e1, . . . , er〉 must satisfy to imply that Λ is a τ -Gröbner basis
of SyzP (g1, . . . , gν).

Theorem 3.4.1. (Gröbner Bases for the Syzygy Modules of Border Bases)
Let τ be a module term ordering on the set of terms in P ν which satisfies the following
conditions for every i ∈ {1, . . . , n− 1} and every j ∈ {1, . . . , ν}.

1) If bjeβj is extreme, if face(bjeβj ) > i, and if k ∈ {1, . . . , ν} is chosen such that bkeβk
is exposable and face(bkeβk) ≥ i, then we have xiεj >τ εk.

2) If bjeβj is extreme, if xibjeβj /∈ ∂O, if k = face(bjeβj ) > i, and if ` ∈ {1, . . . , ν} is
the unique index such that xibjeβj = xkb`eβ` , then we have xiεj >τ xkε`.

3) If bjeβj is non-extreme, if k ∈ {i + 1, . . . , n} is chosen such that Col(bjeβj ) is in
the xk-direction, and if ` ∈ {1, . . . , ν} is chosen such that b`eβ` is exposable and
face(b`eβ`) ≥ k, then we have εj >τ ε`.
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4) If bjeβj is non-extreme, if k ∈ {i+1, . . . , n} is chosen such that Col(bjeβj ) is in the
xk-direction, and if ` ∈ {1, . . . , ν} denotes the unique index with bjeβj = xkb`eβ` ,
then we have εj >τ xkε`.

Then the set of all neighbor liftings Λ with respect to O is a τ -Gröbner basis of the syzygy
module SyzP (g1, . . . , gν).

Proof. First we prove that every execution of line 12 of the LowerDegree Algorithm 4
can be interpreted as a reduction step with respect to Λ as defined in [KR00, Defn. 2.2.1].
Let i ∈ {1, . . . , n − 1}, (p1, . . . , pν) ∈ P ν , j ∈ {1, . . . , ν}, and d ∈ N \ {0} be as in the
LowerDegree Algorithm 4, i.e. such that bjeβj is extreme, such that face(bjeβj ) > i, and
such that the support of pj contains a term that is divisible by xdi but the support of pj
does not contain a term that is divisible by xd+1

i . In order to prove that LTτ (λj`) = xiεj
in line 12 of Algorithm 4, we have to distinguish two cases: either xibjeβj ∈ ∂O as in
line 3 of Algorithm 4 or xibjeβj /∈ ∂O as in line 5 of Algorithm 4.
For the first case, assume that xibjeβj ∈ ∂O, and let ` ∈ {1, . . . , ν} be the index such
that xibjeβj = b`eβ` . We have already shown in the proof of Proposition 3.2.2 that b`eβ`
is exposable, that face(b`eβ`) > i, and that λj` = xiεj − ε` − c1ε1 − · · · − cνεν with
c1, . . . , cν ∈ K where we have ck = 0 for every index k ∈ {1, . . . , ν} such that bkeβk is
non-exposable or face(bkeβk) < i. According to condition 1), we have xiεj >τ εk for
all k ∈ {1, . . . , ν} such that bkeβk is exposable and face(bkeβk) ≥ i. Thus it follows
that LTτ (λj`) = xiεj in this first case.
For the second case, assume now that xibjeβj /∈ ∂O. Let k = face(bjeβj ). Then we
have already shown in the proof of Proposition 3.2.2 that there exists a unique index
` ∈ {1, . . . , ν} such that xibjeβj = xkb`eβ` , such that b`eβ` is exposable, and such that
face(b`eβ`) ≥ i. According to condition 2), we have xiεj >τ xkε`. Moreover, we have
also shown in the proof of Proposition 3.2.2 that λj` = xiεj − xkε` − c1ε1 − · · · − cνεν
with c1, . . . , cν ∈ K, where we have ck = 0 for every index k ∈ {1, . . . , ν} such that bkeβk
is non-exposable or face(bkeβk) < i. According to condition 1), we have xiεj >τ εu for
all u ∈ {1, . . . , ν} such that bueβu is exposable and face(bueβu) ≥ i. Thus it follows that
LTτ (λj`) = xiεj in this second case.
Let t ∈ Supp(pj) be such that degxi(t) = d as in line 10 of Algorithm 4 and let a ∈ K be
the coefficient of t in pj as in line 11 of Algorithm 4. Since the term tεj = t

xj
· LTτ (λj`)

cancels in (p1, . . . , pν) − a t
xi
λj`, it follows that line 12 of the LowerDegree Algorithm 4

actually is a reduction step with respect to Λ according to [KR00, Defn. 2.2.1].
Second we prove that every execution of line 11 of the ClearColumns Algorithm 5 can

be interpreted as a reduction step with respect to Λ as defined in [KR00, Defn. 2.2.1].
We let i ∈ {1, . . . , n−1}, (p1, . . . , pν) ∈ P ν , k ∈ {i+1, . . . , n}, and j ∈ {1, . . . , ν} be as in
the ClearColumns Algorithm 5, i.e. such that bjeβj is non-extreme, such that Col(bjeβj )
is in the xk-direction, and such that i ≤ face(bjeβj ). Moreover, let s, t ∈ N be such that
Col(bjeβj ) = {x−sk bj , . . . , x

t
kbj} · eβj , let ` ∈ {1, . . . , s+ t+ 1}, let u`−1, u` ∈ {1, . . . , ν} be

such that bu`−1
eβu`−1

= x`−s−2
k bjeβj and bu`eβu` = x`−s−1

k bjeβj , and assume that pu` 6= 0,
i.e. as in lines 3 to 9 of Algorithm 5. We now prove that LTτ (λu`u`−1

) = εu` .
In the proof of Proposition 3.2.5, we have already shown that the neighbor lifting λu`u`−1
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is of the form λu`u`−1
= εu` − xkεu`−1

− c1ε1 − · · · − cνεν with c1, . . . , cν ∈ K, where we
have c% = 0 for all % ∈ {1, . . . , ν} such that b%eβ% is non-exposable or face(b%eβ%) < k.
According to condition 4), we see that εu` >τ xkεu`−1

. Moreover, for every % ∈ {1, . . . , ν}
such that b%eβ% is exposable and face(b%eβ%) ≥ k, condition 3) yields εu` >τ ε%. Thus it
follows that LTτ (λu`u`−1

) = εu` .
Furthermore, since face(bu`eβu` ) = face(bjeβj ) < k, we have cu` = 0, i.e. the uth

` com-
ponent of λu`u`−1

is equal to 1. Let t′ ∈ Supp(pu`) be as in line 9 of Algorithm 5 and
let a ∈ K be the coefficient of t′ in pu` as in line 10 of Algorithm 5. Since the term
t′εu` = t′ · LTτ (λu`u`−1

) cancels in (p1, . . . , pν)− at′λu`u`−1
, it follows that line 11 of the

ClearColumns Algorithm 5 is actually a reduction step with respect to Λ as defined in
[KR00, Defn. 2.2.1].
Finally, we prove that Λ is a τ -Gröbner basis of the syzygy module SyzP (g1, . . . , gν).

Let (p1, . . . , pν) ∈ SyzP (g1, . . . , gν) be irreducible with respect to the rewrite rule Λ−→ as
defined in [KR00, Defn. 2.2.1] and let

(q1, . . . , qν) := Reduce((p1, . . . , pν),Λ)

be the result of the Reduction Algorithm 6 applied to the input data (p1, . . . , pν) and Λ.
The Reduction Algorithm 6 calls LowerDegree and ClearColumns in a certain order to
compute the vector (q1, . . . , qν). We have proven above that line 12 of the LowerDegree
Algorithm 4 and line 11 of the ClearColumns Algorithm 5 can be interpreted as reduc-
tion steps with respect to Λ as defined in [KR00, Defn. 2.2.1]. In particular, we get
(p1, . . . , pν)

Λ−→ (q1, . . . , qν). According to Theorem 3.3.3, we see that (q1, . . . , qν) is
n-reduced. As (p1, . . . , pν) and thus also (q1, . . . , qν) is a syzygy of (g1, . . . , gν), Theo-
rem 3.3.7 now yields (q1, . . . , qν) = 0. In particular, it follows that (p1, . . . , pν)

Λ−→ 0. As
we assumed (p1, . . . , pν) to be irreducible with respect to Λ−→, we get (p1, . . . , pν) = 0.
The claim now follows from a standard characterization of Gröbner bases using rewrite
rules, cf. [KR00, Thm. 2.4.1].

In the remaining part of this section, we show that module term orderings τ satisfying
the conditions of this theorem do exist. For the construction of such module term order-
ings, we use the idealization P of P ν as defined in [KR05, Defn. 4.7.12], i.e. we consider
the polynomial ring P = P [ε1, . . . , εν ] where we regard ε1, . . . , εν as indeterminates. We
identify the elements of P ν with the corresponding elements of the idealization P as
described in [KR05, Prop. 4.7.14].

The following algorithm is a generalization of [KK14, Prop. 6.2] and constructs a
weight matrix W ∈ Mat1,n+ν(Z) which we later use to explicitly determine module term
orderings τ on the terms of P ν which satisfy the conditions of Theorem 3.4.1. During the
algorithm, we assign weights to the indeterminates of P . We use the symbolic value null
to state that an indeterminate has not been assigned its final weight yet.
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Algorithm 7: ConstructWeight(O)

Input:
O is an order ideal in Tn〈e1, . . . , er〉 with border ∂O = {b1eβ1 , . . . , bνeβν}

1 for i := 1 to n− 1 do
2 wxi := null

3 end
4 wxn := 1
5 foreach j ∈ {1, . . . , ν} such that bjeβj is non-exposable or extreme do
6 wεj := 1
7 end
8 foreach j ∈ {1, . . . , ν} such that bjeβj is non-extreme do
9 wεj := null

10 end
11 i := n
12 while i > 1 do
13 if wεj 6= null for all j ∈ {1, . . . , ν} such that bjeβj is non-extreme and such

that Col(bjeβj ) is in the xi-direction then
14 wxi−1

:= max{wεj + wxi | j ∈ {1, . . . , ν}, wεj 6= null}
15 i := i− 1

16 else
17 choose any j ∈ {1, . . . , ν} such that bjeβj is non-extreme, such

that Col(bjeβj ) is in the xi-direction, and such that wεj = null

18 Let Col(bjeβj ) = {x−si bj , x
−s+1
i bj , . . . , x

t
ibj} · eβj be with s, t ∈ N.

19 for ` := 0 to s+ t+ 1 do
20 Let u` ∈ {1, . . . , ν} be such that bu`eβu` = x`−s−1

i bjeβj .
21 end
22 for ` := 1 to s+ t+ 1 do
23 wεu` := wεu`−1

+ wxi + 1

24 end
25 end
26 end
27 return (wx1 , . . . , wxn , wε1 , . . . , wεν )

The next proposition shows that this procedure defines indeed an algorithm and that
the result of the algorithm is a positive matrix in the sense of [KR05, Defn. 4.2.4].
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Proposition 3.4.2. Algorithm 7 is actually an algorithm and its result

W := ConstructWeight(O)

applied to the input data O is a matrix W ∈ Mat1,n+ν(Z) whose entries are positive
integers. In particular, the matrix W is positive and W does not depend on the choice of
the index j in line 17.

Proof. First we prove thatW ∈ Mat1,n+ν(Z) and that every component ofW is a positive
integer. Obviously, we see that the result W is a 1 × (n + ν)-matrix. At the beginning
of the while-loop starting in line 12, i.e. for i = n, we have wεj = 1 ∈ N \ {0} for
every j ∈ {1, . . . , ν} such that bjeβj is non-exposable or extreme by line 6 and we have
wxn = 1 ∈ N \ {0} by line 4. In particular, there is an γ ∈ {1, . . . , ν} such that bγeβγ is
of the form bγeβγ = xδ1e1 for some δ ∈ N. As the border term bγeβγ = xδ1e1 is obviously
non-exposable or extreme by Definition 3.1.1, it follows that wεγ = 1. It suffices now to
show that wεj ∈ N \ {0} for all j ∈ {1, . . . , ν} such that bjeβj is non-extreme and that
wxi ∈ N \ {0} for all i ∈ {1, . . . , n − 1}. We now prove by downward induction on the
loop variable i ∈ {n, n − 1, . . . , 2} in line 12 that wxn , . . . , wxi−1 ∈ N \ {0} and that we
have wεj ∈ N \ {0} for all j ∈ {1, . . . , ν} and all k ∈ {n, n − 1, . . . , i} such that bjeβj is
non-extreme and Col(bjeβj ) is in the xk-direction.
We start the induction with i = n. If there is no index j ∈ {1, . . . , ν} such that the
border term bjeβj is non-extreme and its column Col(bjeβj ) is in the xn-direction in
line 13, we have wxn−1 = wεγ + wxn = 1 + 1 ∈ N \ {0} in line 14. Thus we may assume
that there is a j ∈ {1, . . . , ν} such that the border term bjeβj is non-extreme and such
that its column Col(bjeβj ) is in the xn-direction. The existence of s, t ∈ N as in line 18
is a consequence of Lemma 3.1.6. Let s, t ∈ N be such numbers, i.e. that they satisfy
Col(bjeβj ) = {x−sn bj , . . . , x

t
nbj} · eβj . The existence of u0, . . . , us+t+1 ∈ {1, . . . , ν} such

that bu`eβu` = x`−s−1
n bjeβj for all ` ∈ {0, . . . , s + t + 1} as in line 20 during the for-

loop starting in line 19 follows from Definition 3.1.5 and Lemma 3.1.9. In particular,
Definition 3.1.8 and Lemma 3.1.9 also yield that the border term bu0eβu0 = lcb(bjeβj ) is
extreme. Therefore, we get wεu0 = 1 and wεu1 = wεu0 +wxn +1 = 1+1+1 = 3 ∈ N\{0}
in the first two iterations of line 23 during the for-loop starting in line 22. By induction on
the natural numbers ` ∈ {1, . . . , s+ t+ 1}, the definition of wεu` in line 23 immediately
yields that wεu` = wεu`−1

+ wxn + 1 = wεu`−1
+ 2 ∈ N \ {0}. Recall that the set of

all columns forms a partition of the set of all non-extreme border terms according to
Lemma 3.1.7. By induction on all columns in the xn-direction, we get wε% ∈ N \ {0}
for all indices % ∈ {1, . . . , ν} such that b%eβ% is non-extreme and such that Col(b%eβ%) is
in the xn-direction. Since there is at least one non-exposable or extreme border term,
namely bγeβγ = xδ1e1, we get wxn−1 ≥ wεγ + wxn = 1 + wxn = 1 + 1 = 2 and hence
wxn−1 ∈ N \ {0} by the definition of wxn−1 in line 14.
For the induction step, we let i ∈ {n− 1, n− 2, . . . , 2}. By the induction hypothesis, we
have wεj ∈ N\{0} for all j ∈ {1, . . . , ν} such that bjeβj is non-extreme and Col(bjeβj ) is in
the xk-direction for some k ∈ {n, n−1, . . . , i+1}. Furthermore, the induction hypothesis
yields wxn , . . . , wxi ∈ N \ {0}. If there is no index j ∈ {1, . . . , ν} such that bjeβj ∈ ∂O is
non-extreme and such that the column Col(bjeβj ) is in the xi-direction in line 13, we get
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wxi−1 ∈ N\{0} in line 14 as in the induction start. Thus we may assume that there exists
an index j ∈ {1, . . . , ν} such that bjeβj is non-extreme and such that Col(bjeβj ) is in the
xi-direction. As in the induction start, there exist natural numbers s, t ∈ N, and indices
u0, . . . , us+t+1 ∈ {1, . . . , ν} such that Col(bjeβj ) = {x−si bj , . . . , x

t
ibj} · eβj in line 18,

and bu`eβu` = x`−s−1
i bjeβj for all ` ∈ {0, . . . , s + t + 1} in line 20. By Definition 3.1.8

and Lemma 3.1.9, the border term bu0eβ0 = lcb(bjeβj ) is extreme or Col(b0eβ0) is in the
xk-direction with k ∈ {i + 1, . . . , n}. If bu0eβu0 is extreme, we have wεu0 = 1 ∈ N \ {0}
according to line 6. If bu0eβu0 is non-extreme and Col(bu0eβu0 ) is in the xk-direction with
k ∈ {i + 1, . . . , n}, the induction hypothesis yields wεu0 ∈ N \ {0}. As the induction
hypothesis also yields wxi ∈ N \ {0}, we get wεu1 = wεu0 + wxi + 1 ∈ N \ {0} in
line 23 in both cases. By induction on ` ∈ {1, . . . , s + t + 1}, we immediately get
wεu` = wεu`−1

+wxi+1 ∈ N\{0} in each iteration of line 23 during the for-loop starting in
line 22. By induction on all the columns in the xi-direction, recalling again Lemma 3.1.7,
we get wε% ∈ N \ {0} for all % ∈ {1, . . . , ν} and m ∈ {n, n− 1, . . . , i} such that Col(b%eβ%)
is in the xm-direction. Finally, the induction hypothesis yields wxi ∈ N \ {0} and we see
that wxi−1 ≥ wxi + wεγ = wxi + 1 and wxi−1 ∈ N \ {0} in line 14.
In particular, we have shown that the matrix W ∈ Mat1,n+ν(Z) is positive in the sense
of [KR05, Defn. 4.2.4].

Next we show that the choice of j in line 17 has no effect to the result of the algorithm.
The loop variable i of the while-loop starting in line 12 is decreased in line 15 during the
if-clause starting in line 13. Hence the else-clause starting in line 16 is executed as long as
there exists an index j ∈ {1, . . . , ν} such that bjeβj is non-extreme, such that Col(bjeβj )
is in the xi-direction, and such that wεj = null. By Lemma 3.1.7, the set of all columns
is a partition of the set of all non-extreme border terms. In each execution of the else-
clause during the while-loop starting in line 12, we always assign weights not equal to
null exactly to wε% for all % ∈ {1, . . . , ν} such that b%eβ% ∈ Col(bjeβj ). Thus we see that
the choice of j in line 17 only has an effect to the ordering in which the algorithm assigns
the weights but not to the weights itself. In other words, the result of the algorithm is
independent of the choice of j in line 17.

Finally, we prove that every step of the algorithm can actually be executed and that
the algorithm stops after finitely many steps. The existence of s, t ∈ N in line 18 has
already been shown above. Moreover, we have also seen in the proof of the correctness
that we can perform the addition in line 23 and that the set in line 14 is non-empty.
Thus every step of the algorithm can be executed.
In order to prove termination, we need to show that the while-loop in line 12 is finite.
Taking a closer look at this while-loop, for all j ∈ {1, . . . , ν} such that Col(bjeβj ) is in the
xi-direction with i ∈ {2, . . . , n} and for all % ∈ {1, . . . , ν} such that b%eβ% ∈ Col(bjeβj ),
we see that the for-loop that starts in line 22 assigns values not equal to null to wε% .
Thus in every iteration of the while-loop, the number of non-extreme border terms which
have not yet been assigned a weight decreases by at least one. Using Lemma 3.1.7,
again, we see that every column and thus every non-extreme border term is considered
only once during the algorithm. In particular, it follows that the condition of the if-
clause is eventually satisfied and i is decreased by one. Induction on the loop variable i
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in line 12 now yields that i decreases to 1 after finitely many steps and the algorithm
terminates.

To get a better understanding of Algorithm 7, we consider the following example.

Example 3.4.3. Let us apply Algorithm 7 to the order ideal O in T3〈e1, e2, e3〉 of
Example 3.3.4. Recall that we can illustrate O = {1, z, y, z2, y2, z3, y3} · e1 ∪ {1, y} · e3

and its border ∂O = {b1eβ1 , . . . , b20eβ20} with the following figures.
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b4 b8 b14
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y

z
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y

z

b20

b17

b16 b18

b19

terms in O

non-exposable border terms

extreme border terms

non-extreme border terms

lower column bounds

Let {ε1, . . . , ε20} denote the canonical P -module basis of P 20. We consider the inter-
mediate results of the weight matrix W := ConstructWeight(O) during Algorithm 7 in
detail. To ease the notation, we record the intermediate value of the matrix

W = (wx, wy, wz, wε1 , . . . , wε20)

by a table which looks like

wx wy wz wε1 wε2 wε3 wε4 wε5 wε6 wε7 wε8

null null 1 1 1 null null null null 1 null

wε9 wε10 wε11 wε12 wε13 wε14 wε15 wε16 wε17 wε18 wε19 wε20

1 null null 1 1 null 1 1 1 1 1 null
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after the initialization steps of the lines 1 to 10.
Then we have i = 3 in line 11 and start with the first iteration of the while-loop. There

are five non-extreme border terms that have not yet been assigned weights and whose
columns are in the z-direction, namely the border terms in

{b3, b6, b11} · e1 ∪ {b5, b10} · e1 = {xz, xz2, xz3} · e1 ∪ {yz2, yz3} · e1.

We choose b3eβ3 = xze1 in line 17 and get u0 = 1, u1 = 3, u2 = 6, and u3 = 11 after the
for-loop starting in line 19. As wε1 = 1, line 23 of the algorithm yields

wε3 = wε1 + wz + 1 = 1 + 1 + 1 = 3,

wε6 = wε3 + wz + 1 = 3 + 1 + 1 = 5,

wε11 = wε6 + wz + 1 = 5 + 1 + 1 = 7.

The intermediate table then looks like

wx wy wz wε1 wε2 wε3 wε4 wε5 wε6 wε7 wε8

null null 1 1 1 3 null null 5 1 null

wε9 wε10 wε11 wε12 wε13 wε14 wε15 wε16 wε17 wε18 wε19 wε20

1 null 7 1 1 null 1 1 1 1 1 null

at the end of the for-loop starting in line 22. As there are still two non-extreme border
terms which have not yet been assigned weights and whose columns are in the z-direction,
namely the border terms in

{b5, b10} · e1 = {yz2, yz3} · e1,

the if-clause starting in line 13 is not executed and we proceed with the next iteration
of the while-loop without changing i. We now choose b5eβ5 = yz2e1 in line 17 and get
wε5 = 3 and wε10 = 5 after the for-loop starting in line 22. The intermediate table then
looks like

wx wy wz wε1 wε2 wε3 wε4 wε5 wε6 wε7 wε8

null null 1 1 1 3 null 3 5 1 null

wε9 wε10 wε11 wε12 wε13 wε14 wε15 wε16 wε17 wε18 wε19 wε20

1 5 7 1 1 null 1 1 1 1 1 null

For every j ∈ {1, . . . , 20} such that bjeβj is non-extreme and such that Col(bjeβj ) is
in the z-direction, we then have wεj 6= null. Thus the if-clause starting in line 13 is
executed and we get

wy = max{wεj + wz | j ∈ {1, . . . , 20}, wεj 6= null} = 7 + 1 = 8
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which yields

wx wy wz wε1 wε2 wε3 wε4 wε5 wε6 wε7 wε8

null 8 1 1 1 3 null 3 5 1 null

wε9 wε10 wε11 wε12 wε13 wε14 wε15 wε16 wε17 wε18 wε19 wε20

1 5 7 1 1 null 1 1 1 1 1 null

and i = 2 at the end of the if-clause.
At the beginning of the next iteration of the while-loop, there are four non-extreme

border terms which have not yet been assigned weights and whose columns are in the
y-direction, namely the border terms in

{b4, b8, b14} · e1 ∪ {b20} · e3 = {xy, xy2, xy3} · e1 ∪ {xy} · e3.

We choose b4eβ4 = xye1 in line 17 and the algorithm yields

wε4 = wε1 + wy + 1 = 1 + 8 + 1 = 10,

wε8 = wε4 + wy + 1 = 10 + 8 + 1 = 19,

wε14 = wε8 + wy + 1 = 19 + 8 + 1 = 28.

The intermediate table then has the following form

wx wy wz wε1 wε2 wε3 wε4 wε5 wε6 wε7 wε8

null 8 1 1 1 3 10 3 5 1 19

wε9 wε10 wε11 wε12 wε13 wε14 wε15 wε16 wε17 wε18 wε19 wε20

1 5 7 1 1 28 1 1 1 1 1 null

We now choose b20eβ20 = xye3 in line 17 and get wε20 = 10 after the for-loop in line 22.
This yields

wx wy wz wε1 wε2 wε3 wε4 wε5 wε6 wε7 wε8

null 8 1 1 1 3 10 3 5 1 19

wε9 wε10 wε11 wε12 wε13 wε14 wε15 wε16 wε17 wε18 wε19 wε20

1 5 7 1 1 28 1 1 1 1 1 10

For every j ∈ {1, . . . , 20} such that bjeβj is non-extreme and such that Col(bjeβj ) is
in the y-direction, we then have wεj 6= null. Hence the if-clause starting in line 13 is
executed and we get

wx = max{wεj + wy | j ∈ {1, . . . , 20}, wεj 6= null} = 28 + 8 = 36.
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Moreover, i is decreased to 1 in line 15, i.e. the algorithm terminates. The final table
now has the following form:

wx wy wz wε1 wε2 wε3 wε4 wε5 wε6 wε7 wε8

36 8 1 1 1 3 10 3 5 1 19

wε9 wε10 wε11 wε12 wε13 wε14 wε15 wε16 wε17 wε18 wε19 wε20

1 5 7 1 1 28 1 1 1 1 1 10

Thus the algorithm returns the matrix

W = (36, 8, 1, 1, 1, 3, 10, 3, 5, 1, 19, 1, 5, 7, 1, 1, 28, 1, 1, 1, 1, 1, 10) ∈ Mat1,23(Z).

In Theorem 3.4.5, we will see that for all term orderings τ on T3〈e1, e2, e3〉 that are
compatible with degW , the set of all neighbor liftings Λ forms a τ -Gröbner basis of the
syzygy module SyzP (g1, . . . , g20) where G = {g1, . . . , g20} is a O-border basis.

Before we prove the main result of this chapter, namely that every term ordering on
the terms of the idealization P = P [ε1, . . . , εν ] that is compatible with the grading degW
where the matrix W := ConstructWeight(O) is the result of Algorithm 7 applied to
the input data O induces a module term ordering τ on the terms of P ν that satisfies
the conditions of Theorem 3.4.1, we want to show the following auxiliary lemma. It is a
generalization of [KK14, Lemma. 6.4].

Lemma 3.4.4. Let

W = (wx1 , . . . , wxn , wε1 , . . . , wεν ) := ConstructWeight(O)

be the result of Algorithm 7 applied to the input data O and let i ∈ {2, . . . , n}. Then

wxi−1 = max{wεj + wxi | j ∈ {1, . . . , ν}, bjeβj is non-exposable or extreme

or Col(bjeβj ) is in the xk-direction where k ∈ {i, . . . , n}}.

In particular, this maximum exists and we have wxk > wx` for all k, ` ∈ {1, . . . , n} such
that k < `.

Proof. Taking a closer look at Algorithm 7, we see that during the execution of the
while-loop starting in line 12, the algorithm assigns weights to the non-extreme border
terms column by column with descending column direction. During the algorithm, wxi
is assigned a weight not equal to null in the if-clause starting in line 13. This if-clause
is executed exactly if for all j ∈ {1, . . . , ν} such that the border term bjeβj is non-
extreme and its column Col(bjeβj ) is in the xk-direction with k ∈ {i, . . . , n}, wεj has
previously been assigned a weight not equal to null. Moreover, for all j ∈ {1, . . . , ν}
such that bjeβj is non-exposable or extreme, wεj is assigned the weight 1 at the beginning
of the algorithm. Thus exactly all non-exposable and extreme border terms and the non-
extreme border terms on columns in the xk-direction with k ∈ {i, . . . , n} have been
assigned a weight not equal to null when line 14 is executed.
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As there is at least one non-exposable or extreme border term, namely the border term
of the form xδ1e1 for some δ ∈ N is non-exposable or extreme according to Definition 3.1.1,
the maximum always exists. In particular, Proposition 3.4.2 implies wxk > wx` > 0 for
all k, ` ∈ {1, . . . , n} such that k < `.

Now we are ready to prove the main result of this chapter, namely Schreyer’s The-
orem for border bases of submodules of free modules of finite rank. The theorem is a
generalization of [KK14, Thm. 6.5]. Recall that

W = (wx1 , . . . , wxn , wε1 , . . . , wεν ) := ConstructWeight(O)

defines the Z-grading of the idealization P = K[x1, . . . , xn, ε1, . . . , εν ] that is given by
degW (xi) = wxi for all i ∈ {1, . . . , n} and degW (εj) = wεj for all j ∈ {1, . . . , ν},
cf. [KR05, Defn. 4.1.6].

Theorem 3.4.5. (Schreyer’s Theorem for Border Bases)
Let

W = (wx1 , . . . , wxn , wε1 , . . . , wεν ) := ConstructWeight(O)

be the result of Algorithm 7 applied to the input data O. Then the following conditions
are satisfied for every i ∈ {1, . . . , n− 1} and every j ∈ {1, . . . , ν}.

1) Let bjeβj be extreme, let face(bjeβj ) > i, and let k ∈ {1, . . . , ν} be such that bkeβk
is exposable and face(bkeβk) ≥ i. Then we have degW (xiεj) > degW (εk).

2) Let bjeβj be extreme and such that xibjeβj /∈ ∂O, let k = face(bjeβj ) > i, and
let ` ∈ {1, · · · , ν} be the unique index such that xibjeβj = xkb`eβ`. Then we have
degW (xiεj) > degW (xkε`).

3) Let bjeβj be non-extreme, let k ∈ {i+ 1, . . . , n} be such that the column Col(bjeβj )
is in the xk-direction, and let ` ∈ {1, . . . , ν} be such that the border term b`eβ` is
exposable and face(b`eβ`) ≥ k. Then we have degW (εj) > degW (ε`).

4) Let bjeβj be non-extreme, let k ∈ {i + 1, . . . , n} be such that Col(bjeβj ) is in the
xk-direction, and let ` ∈ {1, · · · , ν} be the unique index with bjeβj = xkb`eβ`. Then
we have degW (εj) > degW (xkε`).

In particular, every term ordering τ on the terms of P that is compatible with degW
induces a module term ordering τ on the terms of P ν such that Λ is a τ -Gröbner basis
of SyzP (g1, . . . , gν), and we can explicitly construct such term orderings.

Proof. Let i ∈ {1, . . . , n − 1} and let j ∈ {1, . . . , ν}. Since we use Proposition 3.4.2
and Lemma 3.4.4 to show all inequalities of this proof, we will apply them without
mention.
First we prove condition 1). Assume that bjeβj is extreme and face(bjeβj ) > i. Let

k ∈ {1, . . . , ν} be such that the border term bkeβk is exposable and face(bkeβk) ≥ i.
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If bkeβk is non-extreme, then Col(bkeβk) is in the xd-direction for some d ∈ {i+ 1, . . . , n}
by Definition 3.1.5. Thus we have

degW (xiεj) = wxi + wεj

> wxi

= max{wε% + wxi+1 | % ∈ {1, . . . , ν}, b%eβ% is non-exposable or extreme
or Col(b%eβ%) is in the xs-direction where s ∈ {i+ 1, . . . , n}}

> wεk
= degW (εk).

Next we prove condition 2). Assume that bjeβj is extreme, that xibjeβj /∈ ∂O, and that
k = face(bjeβj ) > i. Let ` ∈ {1, . . . , ν} be the unique index with xibjeβj = xkb`eβ` . The
existence and uniqueness of this index ` has been shown in Proposition 3.2.2. We have also
shown in the proof of Proposition 3.2.2 that b`eβ` is exposable and that face(b`eβ`) ≥ i.
In particular, the border term b`eβ` is extreme or Col(b`eβ`) is in the xd-direction for
some d ∈ {i+ 1, . . . , n} by Definition 3.1.5. Thus we have

degW (xiεj) = wxi + wεj

> wxi

= max{wε% + wxi+1 | % ∈ {1, . . . , ν}, b%eβ% is non-exposable or extreme
or Col(b%eβ%) is in the xs-direction where s ∈ {i+ 1, . . . , n}}

≥ wε` + wxi+1

> wε` + wxi+2

...
> wε` + wxk
= degW (xkε`).

Now we prove condition 3). Assume that the border term bjeβj is non-extreme and let
k ∈ {i + 1, . . . , n} be such that the column Col(bjeβj ) is in the xk-direction. According
to Definition 3.1.5 and Lemma 3.1.9, there exists an index m ∈ {1, . . . , ν} such that
bjeβj = xkbmeβm . Moreover, in view of the construction of wεj in line 23 of Algorithm 7,
we see that wεj = wεm +wxk + 1. Let ` ∈ {1, . . . , ν} be such that b`eβ` is exposable and
face(b`eβ`) ≥ k. If b`eβ` is extreme, we have

degW (εj) = wεj = wεm + wxk + 1 > 1 = wε` = degW (ε`).

If b`eβ` is non-extreme, we see that k < n and Col(b`eβ`) is in the xd-direction for some
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d ∈ {k + 1, . . . , n} by Definition 3.1.5. In this situation, we have

degW (εj) = wεj

= wεm + wxk + 1

> wxk
= max{wε% + wxk+1

| % ∈ {1, . . . , ν}, b%eβ% is non-exposable or extreme
or Col(b%eβ%) is in the xs-direction where s ∈ {k + 1, . . . , n}}

> wε`
= degW (ε`).

Next we show that condition 4) holds. Assume that bjeβj is non-extreme and let
k ∈ {i + 1, . . . , n} be such that Col(bjeβj ) is in the xk-direction. By Definition 3.1.5
and Lemma 3.1.9, there exists a unique index ` ∈ {1, . . . , ν} such that bjeβj = xkb`eβ` .
Moreover, considering the construction of wεj in line 23 of Algorithm 7, we see that

degW (εj) = wεj = wε` + wxk + 1 > wε` + wxk = degW (xkε`).

Finally, we prove all further claims of this theorem. Since we have shown in Proposi-
tion 3.4.2 thatW is a positive matrix in the sense of [KR05, Defn. 4.2.4], we can easily find
a term ordering τ on the terms of P that is compatible with degW according to [KR05,
Defn. 4.2.1 and Prop. 4.2.3]. Then the term ordering τ on the terms of P = P [ε1, . . . , εν ]
induces a module term ordering τ on the terms of P ν according to [CS99, Thm. 17].
Since the conditions 1) to 4) hold, this module term ordering τ satisfies the conditions 1)
to 4) of Theorem 3.4.1 and the claims follow.

It is important to note that, just as in the ideal setting in [KK14, Rem. 6.6], the
construction of the degree matrix W does not depend on the specific border basis G.

Remark 3.4.6. The construction of the degree matrix W ∈ Mat1,n+ν(Z) in the
ConstructWeight Algorithm 7 only uses the shape of the border ∂O, which, in turn,
only depends on the order ideal O in Tn〈e1, . . . , er〉. In particular, the constructed ma-
trix W is independent of the specific O-border basis and the corresponding first syzygy
module of (g1, . . . , gν).

As a first application of the above theorem, we can generalize the method described in
[KK14, Rem. 6.7] to quickly compute a free resolution of a submodule of P r with finite
K-codimension in P r.
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Remark 3.4.7. Let U ⊂ P r be a P -submodule with codimK(U,P r) < ∞. According
to Theorem 2.5.3, we can compute an O-border basis G = {g1, . . . , gν} ⊂ P r of U
and by Remark 2.4.28, we can then compute the corresponding set of neighbor liftings
Λ ⊆ SyzP (g1, . . . , gν) with respect to O. As Theorem 3.4.5 shows, we can compute a
term orderings τ on P ν such that the set of neighbor liftings Λ is a τ -Gröbner basis
of the first syzygy module of (g1, . . . , gν). Thus we can compute the second syzygy
module of (g1, . . . , gν) using Schreyer’s Theorem for Gröbner bases as in [Sch80] or [KR00,
Prop. 3.1.4]. Continuing to use Schreyer’s method, we can iteratively compute a free
resolution of U . Notice that we are, in general, not in a homogeneous situation. Hence
this algorithm yields, in general, neither a graded nor a minimal resolution of U .
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The remaining chapters of this thesis are dedicated to the study of zero-dimensional
closed subschemes of weighted projective spaces by means of border bases. More pre-
cisely, we want to represent the defining ideal of the subscheme by a border basis. This
enables us to describe the multiplicative structure of the corresponding coordinate very
explicitly by only regarding the multiplication matrices of this border basis as follows. If
we want to study a geometric property of a given subscheme which is based on specific
properties of multiplication maps in the corresponding coordinate ring, we can use the
explicit description of the multiplication in the coordinate ring using the multiplication
matrices of the corresponding border basis. One example of such a geometric property
are uniformity conditions, i.e. is the subscheme in some sense in a uniform position?
We will apply these ideas in Chapter 5 to generalizations of the uniformity condition of
[Kre98, Defn. 7.12] and [Kre01, Defn. 2.1] and particularly answer [Kre01, Question 1].
Since border bases are a priori not homogeneous, cf. Definition 2.1.14, we must homoge-
nize them in order to use them in a projective setting. The following chapter is dedicated
to the study of the effect of homogenization to border bases.

As described above, we are interested in border bases of polynomial rings, i.e. we can
restrict ourselves to border bases in P = K[x1, . . . , xn] for the remainder of this the-
sis. We equip the polynomial ring P = K[x1, . . . , xn] with the grading defined by a
matrix W = (w1, . . . , wn) ∈ Mat1,n(Z) where wi > 0 for all i ∈ {1, . . . , n}. Moreover,
we choose a homogenizing indeterminate x0 and equip P = P [x0] = K[x0, . . . , xn] with
the grading defined by W = (1 | W ) ∈ Mat1,n+1(Z). By [KR05, Defn. 4.1.6 and 4.2.4],
both P =

⊕
γ∈Z Pγ and P =

⊕
γ∈Z P γ are positively Z-graded K-algebras.

In this setting, we want to use the idea of [KR05, Thm. 4.3.22] which states that for a
proper ideal I ⊂ P , P/Ihom is a free K[x0]-module. This idea led to the definition of pro-
jective border bases of homogeneous ideals in P in Definition 4.1.2. A projectiveO-border
prebasis for some order idealO = {t1, . . . , tµ} in Tn with border ∂O = {b1, . . . , bν} is a set
of polynomials G = {g1, . . . , gν} of the form gj = bj−

∑µ
i=1 aijti with a1j , . . . , aµj ∈ K[x0]

for all j ∈ {1, . . . , ν}. It is said to be a projective O-border basis of a homogeneous ideal
I ⊆ P if the set of residue classes of the elements of O in P/I form a K[x0]-module
basis of P/I. In Proposition 4.1.7, it then turns out that such a projective border ba-
sis G ⊆ P of a homogeneous ideal I ⊆ P is uniquely determined, its dehomogenization
{gdeh | g ∈ G} ⊆ P is a border bases in P and a Macaulay basis (also called H-basis)
with respect to the grading given by W , and that G indeed generates the ideal I. In
particular, we prove the (Projective) Border Bases Correspondence in Corollary 4.1.9
which states that every projective border basis of a homogeneous ideal in P induces a
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border basis of an ideal in P of a specific shape and vice versa. This correspondence can
be illustrated as follows.

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

dehomogenization homogenization

O-border bases of ideals in P with b ∈ DFW (gb) for all b ∈ ∂O
where gb denotes the O-border basis element corresponding to b

In particular, this correspondence allows us to generalize the concepts and propositions of
Chapter 2 to projective border bases. For instance, we can to characterize and eventually
compute projective border bases in the Corollaries 4.1.10 and 4.1.14 and we are able
to describe the elements of the residue class ring of P modulo a projective O-border
basis by means of O in Proposition 4.1.15. Based on these results, we describe the
multiplicative structure of the residue class ring P modulo a projective O-border basis G
of a homogeneous ideal I by means of O and formal multiplication matrices, which solely
depend G, in Section 4.2.
Since it is often useful to consider dual objects of a given object, we study the graded

dual module of the residue class ring R = P/〈G〉 where G is a projective O-border basis
in Section 4.3. In this setting, the graded dual K[x0]-module of R turns out to be the
canonical module ωR of R in Definition 4.3.4 and Remark 4.3.5. The remaining part of
Section 4.3 is then devoted to describe the K[x0]-module multiplication of ωR. Again, we
show that the order ideal O and formal multiplication matrices allow us to describe the
elements of ωR in Proposition 4.3.7 and the K[x0]-module multiplication in the Propo-
sitions 4.3.8 and 4.3.10, explicitly.

Recall that for a Z-graded moduleM =
⊕

γ∈ZMγ , a subset S ⊆M , and for an integer
γ ∈ Z, we denote Sγ = S ∩Mγ , S<γ =

⋃γ−1
γ′=−∞ Sγ′ , S≥γ =

⋃∞
γ′=γ Sγ′ , etc. Moreover,

for every Z-graded module M =
⊕

γ∈ZMγ and for all γ′ ∈ Z, we let M(γ′) denote the
module obtained from M by shifting degrees by γ′. Here the Z-grading of M(γ′) is given
by (M(γ′))γ = Mγ+γ′ for all γ ∈ Z, cf. [KR05, Defn. 1.7.6].

4.1 The (Projective) Border Bases Correspondence

In this subsection, we introduce projective border bases and we show that there is a one-
to-one correspondence between projective border bases of homogeneous ideals in P and
specific border bases of ideals in P in Corollary 4.1.9. Moreover, we explicitly describe
the elements of the residue class ring of P modulo a projective O-border basis by means
of the residue classes of the elements of O in Proposition 4.1.15.
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The main idea behind the definition of projective border bases is based on [KR05,
Thm. 4.3.22]. This theorem states that for a proper ideal I ⊂ P , the residue class
ring P/Ihom is a free K[x0]-module. In the fashion of this result and starting with a ho-
mogeneous ideal I ⊆ P , we define a projective O-border basis in Definition 4.1.2 as a set
of polynomials G = {g1, . . . , gν} of the form gj = bj −

∑µ
i=1 aijti ∈ I, where aij ∈ K[x0]

with the property that the residue classes of the elements of the order ideal O in P/I
form a K[x0]-module basis of P/I. Here O = {t1, . . . , tµ} is a finite order ideal in Tn
with border ∂O = {b1, . . . , bν}. In particular, {gdeh

1 , . . . , gdeh
ν } ⊆ Ideh is an O-border

prebasis in this situation. Now two questions immediately arise from this definition: Is
{gdeh

1 , . . . , gdeh
ν } even the O-border basis of Ideh? And the other way round, does every

O-border basis of an ideal in P induce a projective O-border basis after homogeniza-
tion? We will answer these questions in the (Projective) Border Bases Correspondence
in Corollary 4.1.9.

But before we can introduce projective border bases, we need to introduce a natural
Z-graded K[x0]-module structure for arbitrary residue class rings of P modulo a homo-
geneous ideal I ⊆ P .

Proposition 4.1.1. Let I ⊆ P be a homogeneous ideal. Then the map

K[x0]× P/I → P/I, (p, r) 7→ pr

turns the ring P/I into a Z-graded K[x0]-algebra.

Proof. The canonical K-algebra homomorphism K[x0] � K[x0] ↪→ P/I, where we
have x0 ∈ P/I, equips the ring P/I with the given Z-graded K[x0]-module structure.

The above K[x0]-module structure allows us to define projective border bases.

Definition 4.1.2. Let O = {t1, . . . , tµ} ⊆ Tn with µ ∈ N be a finite order ideal in Tn
and let ∂O = {b1, . . . , bν} with ν ∈ N be its border.

a) A set of polynomials G = {g1, . . . , gν} ⊆ P is called a projective O-border
prebasis if the polynomials have the form gj = bj −

∑µ
i=1 aijti with aij ∈ K[x0]

for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}.

b) Let G = {g1, . . . , gν} ⊆ P be a projective O-border basis and let I ⊆ P be a
homogeneous ideal. We call G a projective O-border basis of I if G ⊆ I and if
the residue classes of the elements of O in P/I form a K[x0]-module basis of P/I.

Example 4.1.3. Let P = Q[x, y] be standard graded, i.e. graded by the matrix
W = (1, 1) ∈ Mat1,2(Z), let t be a homogenizing indeterminate, and let P = Q[t, x, y]
also be standard graded byW = (1, 1, 1) ∈ Mat1,3(Z). Moreover, let O = {1, y, x, y2, xy}
and let G = {g1, . . . , g4} ⊆ P be with g1 = x2 − 1 − (t2 + t)y, g2 = y3 − 2t + y,
g3 = xy2 − t − y − xy, and g4 = x2y + t4 − xy. Then G is a projective O-border
prebasis by Definition 4.1.2. The decomposition of g1 into its homogeneous components
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is g1 = (−t2y) + (x2 − ty) + (−1). Using a Gröbner basis computation as, for instance,
described in [KR00, Prop. 2.4.10], we can easily check that −1 /∈ 〈G〉. Therefore, 〈G〉 is
not homogeneous by [KR00, Prop 1.7.10] and G is thus not a projective O-border basis
of 〈G〉 according to Definition 4.1.2.

The specific shape of projective O-border prebases G as defined in Definition 4.1.2
immediately yields that {gdeh | g ∈ G} ⊆ P is a border prebasis as defined in Defini-
tion 2.1.14. In particular, we can use this fact and the Border Division Algorithm 2.2.1
to deduce a division algorithm.

Proposition 4.1.4. (The Projective Border Division Algorithm)
Let O = {t1, . . . , tµ} with µ ∈ N be a finite order ideal in Tn and ∂O = {b1, . . . , bν}
with ν ∈ N be its border. Let G = {g1, . . . , gν} ⊆ P with gj = bj −

∑µ
i=1 aijti, be a

projective O-border prebasis and let p ∈ P . We identify p and the elements of G with
their images under the embedding P = K[x0, x1, . . . , xn] ↪→ K(x0)[x1, . . . , xn] and let
p1, . . . , pν ∈ K(x0)[x1, . . . , xn] and c1, . . . , cµ ∈ K(x0) be the result of the Border Division
Algorithm 1 applied to the input data p ∈ K(x0)[x1, . . . , xn] and G ⊆ K(x0)[x1, . . . , xn],
i.e. such that p = p1g1 + · · ·+ pνgν + c1t1 + · · ·+ cµtµ by Theorem 2.2.1. Then we have
p1, . . . , pν ∈ P and c1, . . . , cµ ∈ K[x0].

Proof. Consider the steps of Algorithm 1 in detail. The coefficient a ∈ K(x0) chosen in
line 6 is always an element of K[x0] as p ∈ P . Thus the polynomials p1, . . . , pν in line 7,
which are initiated by 0 ∈ P in line 1, remain in P during the whole algorithm. Therefore,
at the end of the algorithm in line 10, we get c1t1 + · · · cµtµ = p− p1g1 − · · · − pνgν ∈ P
and this implies c1, . . . , cµ ∈ K[x0].

Example 4.1.5. Consider the projective O-border prebasis G ⊆ P = Q[t, x, y] of
Example 4.1.3, again. Recall that we had O = {1, y, x, y2, xy} and G = {g1, . . . , g4} with
g1 = x2−1− (t2 + t)y, g2 = y3−2t+y, g3 = xy2− t−y−xy, and g4 = x2y+ t4−xy. Let
p = x2y2 + x3 ∈ P . Imitating the steps of the Border Division Algorithm 2.2.1 applied
to the input data p ∈ Q(t)[x, y] and G ⊆ Q(t)[x, y], we get

p = x2y2 + x3

= x · xy2 + x3

= x · g3 − x · (−xy − y − t) + x3

= xg3 + x3 + x2y + xy + tx

= xg3 + (xg1 + (t2 + t)xy + x) + x2y + xy + tx

= xg1 + xg3 + x2y + (t2 + t+ 1)xy + (t+ 1)x

= xg1 + xg3 + (g4 + xy − t4) + (t2 + t+ 1)xy + (t+ 1)x

= xg1 + xg3 + g4 + (t2 + t+ 2)xy + (t+ 1)x− t4.

Before we study the basic properties of projective O-border bases, we need an auxiliary
lemma.
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Lemma 4.1.6. Let I ⊆ P be a homogeneous ideal. Then the following conditions are
equivalent.

i) The element x0 ∈ P is a non-zero divisor for P/I.

ii) We have I = I :P 〈x0〉∞.

Proof. First we prove that i) implies ii). The inclusion I ⊆ I :P 〈x0〉∞ trivially holds.
Let p ∈ I :P 〈x0〉∞, i.e. xk0p ∈ I for some k ∈ N. In P/I, this means that xk0p = 0. By i),
we get p = 0 in P/I, i.e. p ∈ I.
For the converse implication, let p ∈ P be such that x0p ∈ I. Then ii) implies p ∈ I,

i.e. p = 0 in P/I. In other words, x0 is a non-zero divisor for P/I.

Now we are able to prove the basic properties of projective border bases. In particular,
we prove the first part of the (Projective) Border Basis Correspondence 4.1.9, namely
that the dehomogenization of a projective O-border basis of a homogeneous ideal I in P
is indeed an O-border basis of Ideh ⊆ P .

Proposition 4.1.7. (Properties of Projective Border Bases)
Let O = {t1, . . . , tµ} with µ ∈ N be a finite order ideal in Tn and let ∂O = {b1, . . . , bν}
with ν ∈ N be its border. Let G = {g1, . . . , gν} ⊆ P with gj = bj −

∑µ
i=1 aijti be a

projective O-border basis of a homogeneous ideal I ⊂ P .

a) We have I = 〈G〉.

b) The element x0 ∈ P is a non-zero divisor for P/I.

c) The element x0 − 1 ∈ P is a non-zero divisor for P/I.

d) We have (Ideh)hom = I :P 〈x0〉∞ = I.

e) The set {gdeh
1 , . . . , gdeh

ν } ⊆ P is an O-border basis of Ideh.

f) For all j ∈ {1, . . . , ν}, we have bj ∈ Supp(DFW (gdeh
j )) and gj = (gdeh

j )hom. In

particular, gj is homogeneous, aij = aij(1)x
degW (bj)−degW (ti)
0 for all i ∈ {1, . . . , µ}

and j ∈ {1, . . . , ν}, and the O-border basis G of I is unique.

g) The set {gdeh
1 , . . . , gdeh

ν } ⊆ P is a Macaulay basis of Ideh with respect to the grading
given by W .

Proof. First we prove a). By Definition 4.1.2, we have 〈G〉 ⊆ I. For the converse, let
p ∈ I. Then the Projective Border Division Algorithm 4.1.4 yields p1, . . . , pν ∈ P and
c1, . . . , cµ ∈ K[x0] such that p = p1g1 + · · · + pνgν + c1t1 + · · · + cµtµ. In P/I, we get
0 = c1t1 + · · · cµtµ. As G is the projective O-border basis of I, we have c1 = · · · = cµ = 0
by Definition 4.1.2 and thus p = p1g1 + · · ·+ pνgν ∈ 〈G〉.
Next we show b). As G is the projective O-border basis of I, the residue classes of

the elements of O in P/I form a K[x0]-module basis of P/I by Definition 4.1.2. For a
contradiction, assume that there exists a p ∈ P \ I such that x0p ∈ I. Since p /∈ I there
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exist unique polynomials c1, . . . , cµ ∈ K[x0] such that p = c1t1+· · ·+cµtµ in P/I and such
that ci 6= 0 for some i ∈ {1, . . . , µ}. As x0p ∈ I, it follows 0 = x0p = c1x0t1 + · · ·+cµx0tµ
in P/I and, therefore, c1x0 = · · · = cµx0 = 0 by Definition 4.1.2. In particular, we get
cix0 = 0. Since K[x0] is an integral domain, this clearly contradicts ci 6= 0. Thus x0 ∈ P
is a non-zero divisor for P/I.
In order to prove c), assume that there exists a p ∈ P \ I such that (x0 − 1)p ∈ I. If

DFW (p) ∈ I, p−DFW (p) /∈ I and (x0−1)(p−DFW (p)) = (x0−1)p−(x0−1) DFW (p) ∈ I.
By subtracting DFW (p) multiple times, we can thus without loss of generality assume
that DFW (p) /∈ I. As I is homogeneous, we then have DFW ((x0−1)p) = x0 DFW (p) ∈ I
according to [KR05, Defn. 4.2.8 and Rem. 4.2.12] and [KR00, Prop. 1.7.10]. But this is
a contradiction to b) and thus x0 − 1 ∈ P is a non-zero divisor for P/I.
The first equality in d) follows from [KR05, Prop. 4.3.5] and the second one is a

direct consequence of b) and Lemma 4.1.6. Thus we go on with the proof of claim e).
For all j ∈ {1, . . . , ν}, the dehomogenization gdeh

j of the polynomial gj is of the form
gdeh
j = bj −

∑µ
i=1 a

deh
ij ti ∈ P with adeh

ij = aij(1) ∈ K by [KR05, Defn. 4.3.1]. Therefore,
{gdeh

1 , . . . , gdeh
ν } ⊆ P is an O-border prebasis by Definition 2.1.14. Let p ∈ Ideh ∩ 〈O〉K .

Then there are c1, . . . , cµ ∈ K with p = c1t1 + · · ·+ cµtµ ∈ Ideh. Assume that p 6= 0 and
let d = degW (p). Then phom = c1x

d−degW (t1)
0 t1 + · · · + cµx

d−degW (tµ)
0 tµ ∈ (Ideh)hom = I

by d). As G is the projective O-border basis of I, it follows cix
d−degW (ti)
0 = 0 for

all i ∈ {1, . . . , µ} by Definition 4.1.2. Since K[x0] is an integral domain, we see that
c1 = · · · = cµ = 0. In particular, we get the contradiction that p = 0. Altogether, we
have proven that Ideh ∩ 〈O〉K = {0} and Corollary 2.2.6 implies that {gdeh

1 , . . . , gdeh
ν } is

the O-border basis of Ideh.
In order to prove claim f), let j ∈ {1, . . . , ν}. As gdeh

j = bj −
∑µ

i=1 aij(1)ti, we
have bj ∈ Supp(gdeh

j ) and thus degW (gdeh
j ) ≥ degW (bj). Let d = degW (gdeh

j ). Since
gj ∈ G ⊆ I according to Definition 4.1.2 and since I = (Ideh)hom by d), it follows that

I 3 xd−degW (bj)
0 gj − (gdeh

j )hom

= x
d−degW (bj)
0

(
bj −

µ∑
i=1

aijti

)
−

(
bj −

µ∑
i=1

aij(1)ti

)hom

= x
d−degW (bj)
0 bj −

µ∑
i=1

aijx
d−degW (bj)
0 ti − x

d−degW (bj)
0 bj +

µ∑
i=1

aij(1)x
d−degW (ti)
0 ti

=

µ∑
i=1

(
−aijx

d−degW (bj)
0 + aij(1)x

d−degW (ti)
0

)
ti.

As G is a projective O-border basis of I, we get aijx
d−degW (bj)
0 = aij(1)x

d−degW (ti)
0 for

all i ∈ {1, . . . , µ} by Definition 4.1.2. Assume that there is an i ∈ {1, . . . , µ} such that
degW (bj) < degW (ti) and such that aij(1) 6= 0. As aij ∈ K[x0] and as 0 6= aij(1) ∈ K,
we see that d − degW (bj) ≤ d − degW (tk). Clearly, this yields degW (bj) ≥ degW (tk) in
contradiction to our assumption. Therefore, degW (bj) ≥ degW (ti) for all i ∈ {1, . . . , µ}
such that aij(1) 6= 0 and this implies bj ∈ Supp(DFW (gdeh

j )). In particular, we see that
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d = degW (bj) and thus aij = aij(1)x
degW (bj)−degW (ti)
0 for all i ∈ {1, . . . , µ}. Therefore,

(gdeh
j )hom = x

d−degW (bj)
0 bj −

µ∑
i=1

aij(1)x
d−degW (ti)
0 ti = bj −

µ∑
i=1

aijti = gj .

Finally, we show g). Claim f) together with [KR08, Thm. 2.4] yield that the set
{DFW (gdeh

1 ), . . . ,DFW (gdeh
ν )} is an O-border basis of DFW (Ideh). Hence Corollary 2.2.4

implies DFW (Ideh) = 〈DFW (gdeh
1 ), . . . ,DFW (gdeh

ν )〉, i.e. {gdeh
1 , . . . , gdeh

ν } is a Macaulay
basis of I with respect to the grading given by W according to [KR05, Defn. 4.2.13].

Proposition 4.1.7 yields that given a projectiveO-border basisG ⊆ P of a homogeneous
ideal I ⊂ P , its dehomogenization {gdeh | g ∈ G} ⊆ P is an O-border basis of Ideh ⊆ P
with the additional property that the support of the degree form DFW (gdeh) with respect
toW of every polynomial g ∈ G contains the corresponding border term of gdeh. Next we
start the other way round and consider the second part of the (Projective) Border Bases
Correspondence 4.1.9. Given an O-border basis of an ideal I ⊂ P , we want to decide
whether its homogenization is a projective O-border basis of Ihom ⊂ P . Obviously, the
above result yields the necessary condition that every border term must be contained
in the support of the degree form with respect to W of the corresponding border basis
element. The next proposition shows that that every border basis with this additional
property indeed induces a projective border basis.

Proposition 4.1.8. Let O = {t1, . . . , tµ} with µ ∈ N be a finite order ideal in Tn
and let ∂O = {b1, . . . , bν} with ν ∈ N be its border. Let G = {g1, . . . , gν} ⊆ P with
gj = bj −

∑µ
i=1 aijti be an O-border basis of an ideal I ⊂ P . Moreover, assume that

bj ∈ Supp(DFW (gj)) for all j ∈ {1, . . . , ν}. Then {ghom
1 , . . . , ghom

ν } ⊆ P is the projective
O-border basis of Ihom.

Proof. For every index j ∈ {1, . . . , ν}, the assumption bj ∈ Supp(DFW (gj)) implies that
ghom
j = bj−

∑µ
i=1 aijx

degW (bj)−degW (ti)
0 ti. Thus {ghom

1 , . . . , ghom
ν } is a projective O-border

prebasis according to Definition 4.1.2. Since G = {g1, . . . , gν} ⊆ I by Definition 2.1.14,
we get {ghom

1 , . . . , ghom
ν } ⊆ Ihom. Let c1, . . . , cµ ∈ K[x0] be such that c1t1 + · · ·+cµtµ = 0

in P/Ihom. By Definition 4.1.2, the claim follows if we prove that c1 = · · · = cµ = 0. For
all i ∈ {1, . . . , µ} such that ci 6= 0, we can write ci = di(x0−1)ki with a unique polynomial
di ∈ K[x0] that satisfies di(1) 6= 0 and a unique ki ∈ N. Assume that cr 6= 0 for some
r ∈ {1, . . . , µ}. Then there is an s ∈ {1, . . . , µ} with ks = min{ki | i ∈ {1, . . . , µ}, ci 6= 0}.
and we get that (x0 − 1)ks(d1(x0 − 1)k1−kst1 + · · ·+ dµ(x0 − 1)kµ−kstµ) = 0 in P/Ihom.
According to [KR05, Prop. 4.3.5], x0 ∈ P is a non-zero divisor for P/Ihom. Just as we
did in the proof of Proposition 4.1.7.c, we can deduce that x0 − 1 ∈ P is also a non-
zero divisor for P/Ihom. Thus we get (d1(x0 − 1)k1−kst1 + · · · + dµ(x0 − 1)kµ−kstµ) = 0
in P/Ihom. Dehomogenization now yields d1(1)·0k1−ks ·t1+· · ·+dµ ·0kµ−ks ·tµ = 0 in P/I.
As G is the O-border basis of I, we get the contradiction 0 = ds(1) · 0ks−ks = ds(1) 6= 0
by Definition 2.1.14. Thus c1 = · · · = cµ = 0 and the claim follows.

As a consequence of the previous two propositions, we are now able to prove the
(Projective) Border Basis Correspondence and deduce consequences of it. In particular,
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we can use this correspondence to characterize projective border bases in Corollary 4.1.10
and to compute them in Corollary 4.1.14.

Corollary 4.1.9. (The (Projective) Border Basis Correspondence)
Let O ⊆ Tn be a non-empty order ideal in Tn. Then there is a one-to-one correspondence
between the homogeneous ideals in P possessing a projective O-border basis and the ideals
in P possessing an O-border basis with the property that if b ∈ ∂O and gb denotes
the O-border basis element corresponding to b, then we have b ∈ Supp(DFW (gb)). In
particular, this correspondence is given by dehomogenization and homogenization and
can be visualized as follows.

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

dehomogenization homogenization

O-border bases of ideals in P with b ∈ DFW (gb) for all b ∈ ∂O
where gb denotes the O-border basis element corresponding to b

Proof. This is a direct consequence of the Propositions 4.1.7 and 4.1.8.

Corollary 4.1.10. (Characterization of Projective Border Bases)
Let O be a non-empty order ideal in Tn and let G ⊆ P be a projective O-border prebasis.
Then G is the projective O-border basis of 〈G〉 if and only if the following conditions are
satisfied.

1) Let b ∈ ∂O and let gb ∈ G denote the projective O-border basis element correspond-
ing to b. Then we have b ∈ Supp(DFW (gdeh

b )).

2) The O-border prebasis {gdeh | g ∈ G} is the O-border basis of 〈gdeh | g ∈ G〉 ⊆ P .

In particular, we can algorithmically check whether G is the projective O-border basis of
the ideal 〈G〉.

Proof. The equivalence is a direct consequence of Corollary 4.1.9. The second claim
follows since we can use the characterizations described in Section 2.4 in order to check 2).

Definition 4.1.11. An order ideal O of Tn is said to have a maxdegW -border if
degW (t) ≤ degW (b) for all t ∈ O and all b ∈ ∂O.

Corollary 4.1.12. Let O ⊆ Tn be a non-empty order ideal in Tn which possesses a
maxdegW -border. Then there is a one-to-one correspondence between the homogeneous
ideals in P possessing a projective O-border basis and the ideals in P possessing an
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O-border basis. In particular, this correspondence is given by dehomogenization and
homogenization.

Proof. Let G ⊆ P be an O-border basis of an ideal in P , let b ∈ ∂O and let gb ∈ G
be the border basis element corresponding to b. As O has a maxdegW -border, we have
degW (b) ≥ degW (t) for all t ∈ O by Definition 4.1.11. Thus we get b ∈ Supp(DFW (gdeh

b ))
by Definition 2.1.14 and the claim follows from Corollary 4.1.9.

The following example shows that there are zero-dimensional ideals in P which do not
possess an O-border basis with an order ideal O in Tn that has a maxdegW -border.

Example 4.1.13. Let P = Q[x, y], let t be a homogenizing indeterminate, and let
P = Q[t, x, y], Moreover, we let w2 ∈ N and we equip P respectively P with the grad-
ing given by (1, w2) ∈ Mat1,2(Z) respectively (1, 1, w2) ∈ Mat1,3(Z). Using the method
of Corollary 4.1.10, one can easily check that G = {y, xy, x2y, x3−3tx2 + t2x} ⊆ P is the
projective {1, x, x2}-border basis of the ideal I = 〈y, x3− 3tx2 + t2x〉 ⊆ P . Moreover, we
have y ∈ Ideh and x3−3x2 +x ∈ Ideh. According to Corollary 4.1.9 and Definition 2.1.6,
there is no projective O-border basis of I for an order ideal O 6= {1, x, x2} in T2. There-
fore, we see that the ideal I has a projective O-border basis where O is an order ideal
in T2 with a maxdeg(1,w2)-border if and only if w2 ≥ 2 according to Definition 4.1.11.
In particular, this condition is not satisfied in the standard graded case, i.e. for w2 = 1,
whereas {1, x, x2} has maxdeg(1,2)-border.

Corollary 4.1.14. (Computation of Projective Border Bases)
Let I ⊆ P be a homogeneous ideal such that dim(P/I) = 1 and such that the element
x0 ∈ P is a non-zero divisor for P/I. We use the Border Basis Algorithm 2.5.3 to
compute an O-border basis G ⊆ P of Ideh ⊆ P . Then the set {ghom | g ∈ G} ⊆ P is the
projective O-border basis of I.

Proof. By Lemma 4.1.6 and [KR05, Prop. 4.3.5], we have I = I :P 〈x0〉∞ = (Ideh)hom.
Moreover, as n ∈ N \ {0} and dim(P/I) = 1, we have I ⊂ P . Thus [KR05, Prop. 5.6.12]
implies that dim(P/Ideh) = dim(P/I)− 1 = 0, i.e. Ideh ⊂ P is a zero-dimensional ideal.
Therefore, we can use the Border Basis Algorithm 2.5.3 in order to compute an O-border
basis G ⊆ P of the ideal Ideh. Moreover, for all b ∈ ∂O, the corresponding border basis
element gb satisfies b ∈ Supp(DFW (gb)) by Theorem 2.5.3. Thus {ghom | g ∈ G} ⊆ P is
a projective O-border basis of (Ideh)hom = I by Corollary 4.1.9.

Finally, we explicitly describe the homogeneous components of the residue class ring
of P modulo a projectiveO-border basis whereO is non-empty order ideal in Tn by means
of O. As a consequence, we prove that such a residue class ring is a one-dimensional
Cohen-Macaulay ring and that we can easily read off its (multigraded) Hilbert function.

Proposition 4.1.15. Let G ⊆ P be the projective O-border basis of a homogeneous
ideal I ⊂ P and R = P/I. Let H : Z → Z, γ 7→ #{k ∈ {1, . . . , µ} | degW (tk) ≤ γ} and
let ∆H : Z → Z, γ 7→ H(γ) − H(γ − 1) denote its first difference function. Moreover,
we write the order ideal O = {t1, . . . , tµ} with µ ∈ N and terms t1, . . . , tµ ∈ Tn that
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satisfy degW (t1) ≤ · · · ≤ degW (tµ) and for all γ ∈ Z and i ∈ {1, . . . , µ}, we denote
dγ,i = γ − degW (ti) ∈ Z.

a) There are canonical isomorphisms of Z-graded K[x0]-algebras

R ∼=
µ⊕
i=1

K[x0](−degW (ti)) ∼=
degW (tµ)⊕
γ=0

(K[x0](−γ))∆H(γ).

In particular, we have H = HFR.

b) Let O0 =
⋃∞
k=0 x

k
0O. Then the residue classes of the elements of O0 in R form a

K-vector space basis of R. In particular, for every γ ∈ Z, the residue classes of the
elements of (O0)γ = {xdγ,10 t1, . . . , x

dγ,H(γ)

0 tH(γ)} in R form a K-vector space basis
of Rγ.

Proof. The first claim is a direct consequence of O to be a K[x0]-module basis of R
according to Definition 4.1.2. Thus it suffices to prove the second claim. Let γ ∈ Z. For
all i ∈ {H(γ) + 1, . . . , µ}, we have degW (ti) > γ as the elements t1, . . . , tµ are ordered
increasingly with respect to degW . Hence a) yields that the residue classes of the elements
of (O0)γ =

(⋃∞
k=0 x

k
0O
)
∩ P γ = {xdγ,10 t1, . . . , x

dγ,H(γ)

0 tH(γ)} in R form a K-vector space
basis of Rγ .

Corollary 4.1.16. Let G ⊆ P be the projective O-border basis of a homogeneous ideal
I ⊂ P and let R = P/I.

a) The ring R is a one-dimensional Cohen-Macaulay ring.

b) Let J ⊆ R be a homogeneous ideal and S = R/J be such that x0 ∈ P is a non-zero
divisor for S. Then S is a one-dimensional Cohen-Macaulay ring.

Proof. First we prove a). By Proposition 4.1.7, x0 ∈ P is a non-zero divisor for R. Thus
the R-module homomorphism πx0 : R → R, r 7→ x0 · r, the multiplication by x0 ∈ P ,
is injective. Let m ⊆ R be a maximal ideal. Then the induced Rm-module homomor-
phism (πx0)m : Rm → Rm, r

s 7→
x0·r
s = x0

1 ·
r
s , the multiplication by x0

1 ∈ Rm, is also
injective according to [Kun85, Rule III.4.7]. Therefore, x0

1 ∈ Rm is also a non-zero
divisor for Rm. In particular, the depth of Rm satisfies 1 ≤ depth(Rm) ≤ dim(Rm) by
[Kun85, Defn. VI.3.3 and Prop. VI.3.9]. Moreover, by Definition 4.1.2, the residue classes
of the elements of O in R form a K[x0]-module basis of R. This yields a Noetherian
normalization K[x0] ↪→ R by [Kun85, Defn. II.3.3] and thus dim(R) = 1 by [Kun85,
Prop. II.3.4]. Now [Kun85, Prop. III.4.12] yields dim(Rm) ≤ dim(R). Altogether, we
get 1 ≤ depth(Rm) ≤ dim(Rm) ≤ 1. Therefore, depth(Rm) = 1 = dim(Rm), i.e. R is a
one-dimensional Cohen-Macaulay ring according to [Kun85, Defn. VI.3.10].
Finally, we prove claim b). Let ε : P � R denote the canonical K[x0]-algebra epimor-

phism. Then the Second Noetherian Isomorphism Theorem yields the existence of the
canonical K[x0]-algebra isomorphism S = R/J = ε(P )/J ∼= P/ε−1(J). Since x0 ∈ P
is a non-zero divisor for S ∼= P/ε−1(J) and as dim(S) ≤ dim(R) = 1, we can show
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dim(S) = 1 just as we did it for R in the proof of a). According to Corollary 4.1.14,
there exists a projective O′-border basis of the ideal ε−1(J) ⊆ P . Therefore, claim b)
follows from the canonical K-algebra isomorphism S ∼= P/ε−1(J) and a).

4.2 The Multiplicative Structure of a Residue Class Ring
Modulo a Projective Border Prebasis

Based on the results of the previous section, we now take a closer look at the multiplica-
tive structure of the residue class ring R = P/I modulo a homogeneous ideal I ⊂ P
that is given by a projective O-border prebasis. In particular, we show that the addi-
tional knowledge that I possesses a projective O-border prebasis allows us to describe
the multiplication in R only by means of O and formal multiplication matrices which
solely depend on the projective O-border prebasis.

For the whole section, we let O = {t1, . . . , tµ} with µ ∈ N \ {0} be a finite order ideal
in Tn such that degW (t1) ≤ · · · ≤ degW (tµ) and we let ∂O = {b1, . . . , bν} with ν ∈ N be
its border. Moreover, let G = {g1, . . . , gν} ⊆ P be a projective O-border prebasis and
let R = P/〈G〉. According to Proposition 4.1.4, the residue classes of the elements of O
in the ring R form a K[x0]-module generating set of R and thus the residue classes of the
elements of

⋃∞
k=0 x

k
0O in R form a K-vector space generating set of R. The goal of this

section is to describe the multiplicative structure of the ring R with respect to the above
generating sets by means of matrices as explicitly as possible. To shorten the notation,
we define the integer function H : Z → Z, γ 7→ #{k ∈ {1, . . . , µ} | degW (tk) ≤ γ} and
its first difference function ∆H : Z→ Z, γ 7→ H(γ)−H(γ − 1).

First we introduce the formal projective multiplication matrices. Similarly to the
situation of formal multiplication matrices of border prebases in P , cf. Definition 2.4.15
and Remark 2.4.17, these matrices describe the multiplication in the K[x0]-module R by
an indeterminate.

Definition 4.2.1. For all indices j ∈ {1, . . . , ν}, we let the elements of the projective
O-border prebasis G = {g1, . . . , gν} ⊆ P be of the form gj = bj −

∑µ
i=1 aijti where we

have a1j , . . . , aµj ∈ K[x0]. Let X proj
0 = x0Iµ ∈ Matµ(K[x0]) and for all r ∈ {1, . . . , n},

let X proj
r = (ξ

(r,proj)
k` )1≤k,`≤µ ∈ Matµ(K[x0]) be defined by

ξ
(r,proj)
k` =

{
δki if xrt` = ti ∈ O,
akj if xrt` = bj ∈ ∂O.

Then for every r ∈ {0, . . . , n}, we call X proj
r the rth formal projective multiplication

matrix of G.

Example 4.2.2. Let P = Q[x, y] be standard graded, i.e. graded by the grading
given by the matrix W = (1, 1) ∈ Mat1,2(Z). Moreover, we let t be a homogenizing

121



4 Border Bases and Homogenization

indeterminate let P = Q[t, x, y] also be standard graded, i.e. graded by the grading given
by the matrix W = (1, 1, 1) ∈ Mat1,3(Z), and we let G = {g1, . . . , g6} ⊆ P be defined
by the polynomials g1 = y3 + 2t2y − 3ty2, g2 = x2y − xy2, g3 = xy3 + 2t2xy − 3txy2,
g4 = x2y2 + 2t2xy−3txy2, g5 = x3y+ 2t2xy−3txy2, and g6 = x4−6t3x+ 11t2x2−6tx3.
Let O = {t1, . . . , t8} = {1, y, x, y2, xy, x2, xy2, x3}. Applying Corollary 4.1.10, we see
that the set G is the projective O-border basis of 〈G〉. Let R = P/〈G〉. For all t̃ ∈ O
and for all b ∈ ∂O, we have degW (t̃) = deg(t̃) ≤ 3 ≤ deg(b) = degW (b), i.e. the order
ideal O has a maxdegW -border by Definition 4.1.11. According to Definition 4.2.1, the
projective multiplication matrices T proj,X proj,Yproj ∈ Mat8(Q[t]) of G are

T proj =



t 0 0 0 0 0 0 0
0 t 0 0 0 0 0 0
0 0 t 0 0 0 0 0
0 0 0 t 0 0 0 0
0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t


, X proj =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 6t3

0 0 0 0 0 0 0 0
0 1 0 0 0 0 −2t2 0
0 0 1 0 0 0 0 −11t2

0 0 0 1 1 0 3t 0
0 0 0 0 0 1 0 6t


,

and

Yproj =



0 0 0 0 0 0 0 0
1 0 0 −2t2 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 3t 0 0 0 0
0 0 1 0 0 0 −2t2 −2t2

0 0 0 0 0 0 0 0
0 0 0 0 1 1 3t 3t
0 0 0 0 0 0 0 0


.

The following definition specializes [KR05, Defn. 4.7.1 and 4.7.5] to our setting.

Definition 4.2.3. Let M = (fij)1≤i≤k,1≤j≤` ∈ Matk,`(P ) with k, ` ∈ N be a matrix,
let r = (r1, . . . , rk) ∈ Zk, and let c = (c1, . . . , c`) ∈ Z`.

a) The matrixM is called homogeneous with respect to the degree pair given by r
for the rows and c for the columns if for all i ∈ {1, . . . , k} and j ∈ {1, . . . , `}, the
polynomial fij is homogeneous of degree cj − ri.

b) The matrix M is called degree-ordered with respect to degree pair given by r
for the rows and c for the columns ifM is homogeneous with respect to the degree
pair given by r for the rows and c for the columns and if r1 ≤ r2 ≤ · · · ≤ rk and
c1 ≤ c2 ≤ · · · ≤ c`.

The formal multiplication matrices of a border prebasis in P are homogeneous ma-
trices in the sense of Definition 4.2.3, cf. [KR08, Rem. 5.2] for a more general version.
The following proposition shows that the formal projective multiplication matrices of a
projective border basis are also homogeneous matrices in the sense of Definition 4.2.3.
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Proposition 4.2.4. Let the elements of the projective O-border prebasis G ⊆ P be of the
form gj = bj−

∑H(degW (bj))
i=1 aijx

∆ij

0 ti where aij ∈ K and ∆ij = degW (bj)−degW (ti) ∈ N
for all j ∈ {1, . . . , ν} and i ∈ {1, . . . ,H(degW (bj))}. Let X proj

0 , . . . ,X proj
n ∈ Matµ(K[x0])

be the formal projective multiplication matrices of G.

a) For every index r ∈ {0, . . . , n}, the matrix X proj
r is a homogeneous degree-ordered

matrix with respect to the degree pair given by (degW (t1), . . . ,degW (tµ)) for the
rows and (degW (xrt1), . . . ,degW (xrtµ)) for the columns.

b) For all r, s ∈ {0, . . . , n}, the matrices X proj
r X proj

s and X proj
r X proj

s − X proj
s X proj

r are
both homogeneous degree-ordered matrices with respect to the degree pair given by
(degW (t1), . . . ,degW (tµ)) for the rows and (degW (xrxst1), . . . ,degW (xrxstµ)) for
the columns.

In particular, the above assumptions hold if G is the projective O-border basis of 〈G〉.

Proof. For all r ∈ {0, . . . , n}, we write X proj
r = (ξ

(r,proj)
k` )1≤k,`≤µ ∈ Matµ(K[x0]). Note

that all entries of the matrices X proj
0 , . . . ,X proj

n are homogeneous.
For the proof of a), we let r ∈ {0, . . . , n}. If X proj

r = 0, nothing needs to be shown.
Thus assume that there are k, ` ∈ {1, . . . , µ} such that ξ(r,proj)

k` 6= 0. If r = 0, ξr,proj
k` 6= 0

implies k = ` and thus

degW (ξ
(0,proj)
k` ) = degW (x0) = degW (x0t`)− degW (tk)

by Definition 4.2.1. Now suppose that r 6= 0. If xrt` = ti for some i ∈ {1, . . . , µ},
δki = ξ

(r,proj)
k` 6= 0 implies k = i by Definition 4.2.1. Thus we get

degW (ξ
(r,proj)
k` ) = degW (δki) = degW (1) = 0 = degW (xrt`)− degW (tk)

according to Definition 4.2.1. If xrt` = bj for some j ∈ {1, . . . , ν}, we get

degW (ξ
(r,proj)
k` ) = degW (akjx

∆kj

0 ) = degW (bj)− degW (tk) = degW (xrt`)− degW (tk)

by Definition 4.2.1. In all cases, X proj
r is homogeneous with respect to the degree pair

given by (degW (t1), . . . ,degW (tµ)) for the rows and (degW (xrt1), . . . ,degW (xrtµ)) for the
columns and as degW (t1) ≤ · · · ≤ degW (tµ), it is also degree-ordered by Definition 4.2.3.
In order to prove b), we let now r, s ∈ {0, . . . , n}. By a), X proj

r is a homogeneous degree-
ordered matrix with respect to the degree pair given by (degW (t1), . . . ,degW (tµ)) for the
rows and (degW (xrt1), . . . ,degW (xrtµ)) for the columns and X proj

s is a homogeneous
degree-ordered matrix with respect to the degree pair given by (degW (t1), . . . ,degW (tµ))

for the rows and (degW (xst1), . . . ,degW (xstµ)) for the columns. In particular, X proj
s

is also a homogeneous degree-ordered matrix with respect to the degree pair given
by (degW (xrt1), . . . ,degW (xrtµ)) for the rows and (degW (xrxst1), . . . ,degW (xrxstµ))

for the columns according to Definition 4.2.3. If X proj
r X proj

s = 0, X proj
r X proj

s trivially
satisfies the claimed properties. Thus assume that there are k, ` ∈ {1, . . . , µ} with
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∑µ
m=1 ξ

(r,proj)
km ξ

(s,proj)
m` 6= 0. Let m ∈ {1, . . . , µ} be such that ξ(r,proj)

km 6= 0 and ξ(s,proj)
m` 6= 0.

Since the matrices X proj
r and X proj

s are homogeneous degree-ordered matrices with respect
to the above degree pairs, we get

degW (ξ
(r,proj)
km ξ

(s,proj)
m` ) = (degW (xrtm)− degW (tk)) + (degW (xrxst`)− degW (xrtm))

= degW (xrxst`)− degW (tk)

and X proj
r X proj

s is a homogeneous degree-ordered matrix with respect to the degree pair
given by (degW (t1), . . . ,degW (tµ)) for the rows and (degW (xrxst1), . . . ,degW (xrxstµ))
for the columns according to Definition 4.2.3. By interchanging the role of r and s, we see
that X proj

s X proj
r is a homogeneous degree-ordered matrix with respect to the same degree

pair, too. In particular, X proj
r X proj

s − X proj
s X proj

r is also a homogeneous degree-ordered
matrix according to Definition 4.2.3.
The remaining claim is a direct consequence of Proposition 4.1.7.f.

The formal projective multiplication matrices allow us to explicitly describe the mul-
tiplication by homogeneous elements in R by means of O.

Proposition 4.2.5. For all indices j ∈ {1, . . . , ν}, we let the elements of the projective
O-border prebasis G = {g1, . . . , gν} ⊆ P be of the form gj = bj−

∑µ
i=1 aijti where we have

a1j , . . . , aµj ∈ K[x0]. Let X proj
0 , . . . ,X proj

n ∈ Matµ(K[x0]) denote the formal projective
multiplication matrices of G, let c1, . . . , cµ ∈ K[x0], and let p = c1t1 + · · ·+ cµtµ ∈ P .

a) For every k ∈ {0, . . . , n}, we have

xk · p = (t1, . . . , tµ) · X proj
k · (c1, . . . , cµ)tr.

in R. In particular, we have

(t1, . . . , tµ) · X proj
k X proj

` · (c1, . . . , cµ)tr = (t1, . . . , tµ) · X proj
` X proj

k · (c1, . . . , cµ)tr

in R for all k, ` ∈ {0, . . . , n}.

b) For every p′ ∈ P , we have

p′ · p = (t1, . . . , tµ) · p′(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in R.

Proof. Let {E1, . . . , Eµ} denote the canonical K[x0]-module basis of (K[x0])µ.
In order to prove the equality of a), let ` ∈ {1, . . . , µ}. Then we have

x0 · c`t` = (t1, . . . , tµ) · x0Iµ · c`Etr
` = (t1, . . . , tµ) · X proj

0 · c`Etr
`

in R. Let k ∈ {1, . . . , n}. If xkt` = ti ∈ O for some i ∈ {1, . . . , µ}, we have

xk · c`t` = c`ti = (t1, . . . , tµ) · (δ1ic`, . . . , δµic`)
tr = (t1, . . . , tµ) · X proj

k · c`Etr
`
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in R. If xkt` = bj for some j ∈ {1, . . . , ν}, we have

xk · c`t` = c`bj

= a1jx
∆1j

0 c`t1 + · · ·+ aµjx
∆µj

0 c`tµ

= (t1, . . . , tµ) · (a1jx
∆1j

0 c`, . . . , aµjx
∆µj

0 c`)
tr

= (t1, . . . , tµ) · X proj
k · c`Etr

`

in R. Altogether, we see that for all k ∈ {0, . . . , n},

xk · p =

µ∑
`=1

xk · c`t` =

µ∑
`=1

(t1, . . . , tµ) · X proj
k · c`Etr

` = (t1, . . . , tµ) · X proj
k · (c1, . . . , cµ)tr

in R. In particular, we have proved that for all k ∈ {0, . . . , n}, X proj
k describes the

multiplication by xk in R. Since the multiplication in R is commutative, it follows that

(t1, . . . , tµ) · X proj
k X proj

` · (c1, . . . , cµ)tr = xkx`p

= x`xkp

= (t1, . . . , tµ) · X proj
` X proj

k · (c1, . . . , cµ)tr

in R for all k, ` ∈ {0, . . . , n}.
Next we prove b). We start to prove the claim for homogeneous polynomials. Let

p′ ∈ P γ with γ ∈ Z. If γ ≤ 0, we have p′ ∈ K and thus

p′ · p = p′ · (c1t1 + · · ·+ cµtµ)

= p′c1t1 + · · ·+ p′cµtµ

= (t1, . . . , tµ) · p′Iµ · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · p′(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in R. For the induction start γ = 1, there are d0, . . . , dn ∈ K with p = d0x0 + · · · dnxn.
By a), we get

p′ · p =
n∑

m=1

dmxm · p

=

n∑
m=1

(t1, . . . , tµ) · (dmxm)(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) ·
( n∑
m=1

dmxm

)
(X proj

0 , . . . ,X proj
n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · p(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in R and the induction start is proven. For the induction step, suppose now that γ > 1.
Then we can write p′ = c′1t

′
1 + · · ·+c′st

′
s with s ∈ N, c′1, . . . , c′s ∈ K, and t′1, . . . , t′s ∈ Tn+1

γ .
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For every r ∈ {1, . . . , s}, there exist a kr ∈ {0, . . . , n} and a term ur ∈ Tn+1
<γ such that

t′r = xkrur. Then the induction hypothesis and a) yield

c′rt
′
r · p = xkr · (c′rur · p)

= xkr · ((t1, . . . , tµ) · (c′rur)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr)

= (t1, . . . , tµ) · X proj
kr
· (c′rur)(X

proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · (xkr · c′rur)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · (c′rt′r)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in R for every r ∈ {1, . . . , s}. Altogether, we get

p′ · p =
s∑
r=1

c′rt
′
r · p

=

s∑
r=1

(t1, . . . , tµ) · (c′rt′r)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) ·
( s∑
r=1

c′rt
′
rp

)
(X proj

0 , . . . ,X proj
n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · p′(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in R and the claim follows in the homogeneous case.
In order to prove the claim for arbitrary polynomials, we let p′ =

∑
γ∈Z p

′
γ be the de-

composition of p′ ∈ P into its homogeneous components. Then

p′ · p =
∑
γ∈Z

p′γ · p

=
∑
γ∈Z

(t1, . . . , tµ) · p′γ(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) ·
(∑
γ∈Z

p′γ

)
(X proj

0 , . . . ,X proj
n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · p′(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in R from the homogeneous case.

Corollary 4.2.6. Assume that G is the projective O-border basis of 〈G〉 and let O
denote the image of the order ideal O in R. Moreover, let X proj

0 , . . . ,X proj
n ∈ Matµ(K[x0])

denote the formal projective multiplication matrices of G, let γ ∈ Z, and let p ∈ P γ. Then
the matrix p(X proj

0 , . . . ,X proj
n ) ∈ Matµ(K[x0]) represents the homogeneous K[x0]-algebra

homomorphism πp : R(−γ)→ R, r 7→ p · r, the multiplication by p ∈ Rγ, with respect to
the K[x0]-module basis O of R.
In particular, the formal projective multiplication matrices X proj

0 , . . . ,X proj
n are pairwise

commuting in this situation.
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Proof. According to Definition 4.1.2, O is a K[x0]-module basis of R. Let {E1, . . . , Eµ}
denote the canonical K[x0]-module basis of (K[x0])µ. Then Proposition 4.2.5 implies
that πp(ti) = p · ti = (t1, . . . , tµ) · p(X proj

0 , . . . ,X proj
n ) · Etr

i for every i ∈ {1, . . . , µ} and the
claim follows.

In particular, for all k ∈ {0, . . . , n}, X proj
k represents the K[x0]-algebra endomorphism

of R defined by r 7→ xk · r for all r ∈ R, i.e. the multiplication by xk in R. Since the
multiplication in the ring R is commutative, it follows that the matrices X proj

0 , . . . ,X proj
n

are pairwise commuting.

Example 4.2.7. Consider Example 4.2.2 in the standard graded ring P = Q[t, x, y],
again. Recall that G ⊆ P was the projective O-border basis of 〈G〉 with the order ideal
O = {1, y, x, y2, xy, x2, xy2, x3}, which has a maxdegW -border, that R = P/〈G〉, and
that the projective multiplication matrices T proj,X proj,Yproj ∈ Mat8(Q[t]) of G were

T proj =



t 0 0 0 0 0 0 0
0 t 0 0 0 0 0 0
0 0 t 0 0 0 0 0
0 0 0 t 0 0 0 0
0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t


, X proj =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 6t3

0 0 0 0 0 0 0 0
0 1 0 0 0 0 −2t2 0
0 0 1 0 0 0 0 −11t2

0 0 0 1 1 0 3t 0
0 0 0 0 0 1 0 6t


,

and

Yproj =



0 0 0 0 0 0 0 0
1 0 0 −2t2 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 3t 0 0 0 0
0 0 1 0 0 0 −2t2 −2t2

0 0 0 0 0 0 0 0
0 0 0 0 1 1 3t 3t
0 0 0 0 0 0 0 0


.

Let O denote the image of O in R, let p = x2 + ty ∈ P 2, and let πp : R(−2) → R,
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r 7→ p · r be the multiplication by p ∈ R2. Then the matrix

p(T proj,X proj,Yproj) = (X proj)2 + T proj · Yproj

=



0 0 0 0 0 0 0 0
t 0 0 −2t3 0 0 0 0
0 0 0 0 0 6t3 0 36t4

0 t 0 3t2 0 0 0 0
0 0 t −2t2 −2t2 0 −8t3 −2t3

1 0 0 0 0 −11t2 0 −60t3

0 1 0 3t 4t t 10t2 3t2

0 0 1 0 0 6t 0 25t2


∈ Mat8(Q[t])

represents the Q[t]-algebra homomorphism πp with respect to the Q[t]-module basis O
according to Corollary 4.2.6.

In the remaining part of this section, we do not consider the multiplication by a
homogeneous element in the whole ring R but we restrict the multiplication to one
homogeneous component of R. In this setting, the formal multiplication matrices of the
O-border prebasis {gdeh | g ∈ G} ⊆ P can be used to explicitly describe the multiplication
map only by means of O.

Proposition 4.2.8. Assume that the elements of G = {g1, . . . , gν} ⊆ P are of the form
gj = bj −

∑H(degW (bj))
i=1 aijx

∆ij

0 ti where aij ∈ K and ∆ij = degW (bj) − degW (ti) ∈ N
for all j ∈ {1, . . . , ν} and i ∈ {1, . . . ,H(degW (bj))}. Let dγ,i = γ − degW (ti) ∈ Z be
for all γ ∈ Z and i ∈ {1, . . . , µ}, let X1, . . . ,Xn ∈ Matµ(K) denote the multiplication
matrices of the O-border prebasis {gdeh

1 , . . . , gdeh
ν } ⊆ P , let c1, . . . , cH(γ) ∈ K, and let

p = c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ) ∈ P γ.

a) We have

x0 · p = (x
dγ+1,1

0 t1, . . . , x
dγ+1,H(γ+1)

0 tH(γ+1), 0, . . . , 0)

· Iµ · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R and for every k ∈ {1, . . . , n}, we have

xk · p = (x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0)

· Xk · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R. In particular, if we denote w0 = 1 and X0 = Iµ, we have

(x
dγ+wk+w`,1
0 t1, . . . , x

dγ+wk+w`,H(γ+wk+w`)

0 tH(γ+wk+w`), 0, . . . , 0)

· XkX` · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+wk+w`,1
0 t1, . . . , x

dγ+wk+w`,H(γ+wk+w`)

0 tH(γ+wk+w`), 0, . . . , 0)

· X`Xk · (c1, . . . , cH(γ), 0, . . . , 0)tr
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in R for all k, ` ∈ {0, . . . , n}.

b) For every γ′ ∈ Z and every p′ ∈ P γ′, we have

p′ · p = (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ), 0, . . . , 0)

· p′(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R.

In particular, the above assumptions hold if G is the projective O-border basis of 〈G〉.

Proof. For every s ∈ {1, . . . , n}, we denote Xs = (ξ
(s)
k` )1≤k,`≤µ ∈ Matµ(K) as in Defi-

nition 2.4.15 and we let {E1, . . . , Eµ} denote the canonical K-vector space basis of Kµ.
Moreover, we denote w0 = 1 and X0 = Iµ. If γ < 0, we have P γ = {0} and the claims
follow trivially. Thus suppose that γ ≥ 0.
The first equality of a) follows as we have

x0 · p = x0 · (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))

= c1x
dγ,1+1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)+1

0 tH(γ)

= c1x
dγ+1,1

0 t1 + · · ·+ cH(γ)x
dγ+1,H(γ)

0 tH(γ)

= (x
dγ+1,1

0 t1, . . . , x
dγ+1,H(γ+1)
0 tH(γ+1), 0, . . . , 0) · Iµ · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R. In order to prove the second equality, let k ∈ {1, . . . , n} and ` ∈ {1, . . . ,H(γ)}. If
xkt` = ti ∈ O for some i ∈ {1, . . . , µ}, we have degW (ti) = degW (t`) + wk and hence

xk · x
dγ,`
0 t` = x

dγ+wk,i
0 ti

=

H(γ+wk)∑
m=1

δmix
dγ+wk,m
0 tm

=

H(γ+wk)∑
m=1

ξ
(k)
m`x

dγ+wk,m
0 tm

= (x
dγ+wk,1
0 t1, . . . , x

dγ+wk ,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · Xk · Etr
`

in R. If xkt` = bj ∈ ∂O for some j ∈ {1, . . . , ν}, we get degW (bj) = degW (t`) + wk and
for every index m ∈ {1, . . . ,H(degW (bj))}, it follows that

dγ,` + ∆mj = γ − degW (t`) + degW (bj)− degW (tm)

= γ − degW (t`) + degW (t`) + wk − degW (tm)

= γ + wk − degW (tm)

= dγ+wk,m.
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Altogether, we get

xk · x
dγ,`
0 t` = x

dγ,`
0 bj

=

H(degW (bj))∑
m=1

amjx
dγ,`+∆mj

0 tm

=

H(γ+wk)∑
m=1

ξ
(k)
m`x

dγ+wk,m
0 tm

= (x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · Xk · Etr
`

in R. The first part of a) now follows as

xk · p =

H(γ)∑
`=1

xk · c`x
dγ,`
0 t`

=

H(γ)∑
`=1

(x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · Xk · c`Etr
`

= (x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · Xk · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R. In particular, we have proven that for all k ∈ {0, . . . , n}, Xk can be used to describe
the multiplication by xk in Rγ . Since the multiplication in R is commutative, it follows
that

(x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · XkX` · (c1, . . . , cH(γ), 0, . . . , 0)tr

= xkx`p

= x`xkp

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · X`Xk · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R for all k, ` ∈ {0, . . . , n}.
Next we prove by induction on γ′ ∈ N that b) holds in general. For γ′ = 0, it follows

that p′ ∈ K and thus

p′ · p = p′c1x
dγ,1
0 t1 + · · ·+ p′cH(γ)x

dγ,H(γ)

0 tH(γ)

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · p′Iµ · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · p′(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R. This shows the claim for γ′ = 0. For the induction step, let now γ′ > 0. Then there
exist an s ∈ N\{0}, c′1, . . . , c′s ∈ K, and t′1, . . . , t′s ∈ Tn+1

γ′ such that p′ = c′1t
′
1 + · · ·+ c′st

′
s.

For all r ∈ {1, . . . , s}, there are kr ∈ {0, . . . , n} and ur ∈ Tn+1
<γ′ such that t′r = xkrur.
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Hence the induction hypothesis together with a) yield

c′rt
′
r · p = xkr · (c′rur · p)

= xkr · ((x
dγ+γ′−wkr ,1
0 t1, . . . , x

dγ+γ′−wkr ,H(γ+γ′−wkr )
0 tH(γ+γ′−wkr ), 0, . . . , 0)

· (c′rur)(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr)

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (Xkr · (c′rur)(Iµ,X1, . . . ,Xn)) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (c′rxkrur)(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (c′rt′r)(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R for all r ∈ {1, . . . , s}. The claim for γ′ > 0 now follows as

p′ · p =

s∑
r=1

c′rt
′
r · p

=
s∑
r=1

(x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (c′rt′r)(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

·
( s∑
r=1

c′rt
′
r

)
(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· p′(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in R.
The remaining claim is a direct consequence of Proposition 4.1.7.f.

Corollary 4.2.9. Assume that G is the projective O-border basis of the ideal 〈G〉.
We let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and for all indices i ∈ {1, . . . , µ}, let
X1, . . . ,Xn ∈ Matµ(K) denote the multiplication matrices of {gdeh

1 , . . . , gdeh
ν } ⊆ P , and

let O0 denote the image of O0 =
⋃∞
k=0 x

k
0O in R. Moreover, we let γ, γ′ ∈ Z and p ∈ P γ′.

Then the submatrix of p(Iµ,X1, . . . ,Xn) ∈ Matµ(K) consisting of the first H(γ+γ′) rows
and the first H(γ) columns represents the K-algebra homomorphism π̂p : Rγ → Rγ+γ′,
r 7→ p · r, the multiplication by p ∈ Rγ′ , with respect to the K-vector space bases (O0)γ
of Rγ and (O0)γ+γ′ of Rγ+γ′ .

Proof. Let {E1, . . . , Eµ} denote the canonical K-vector space basis of Kµ. According to
Proposition 4.1.15, the sets (O0)γ and (O0)γ+γ′ areK-vector space bases ofRγ andRγ+γ′ ,
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respectively. If γ < 0, Rγ = {0} by Proposition 4.1.15 and the claim follows trivially.
Thus suppose that γ ≥ 0. For all k ∈ {1, . . . ,H(γ)}, Proposition 4.2.8 yields

π̂p(x
dγ,k
0 tk) = p · xdγ,k0 tk

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0) · p(Iµ,X1, . . . ,Xn) · Etr

k

and the claim is a direct consequence of this.

Example 4.2.10. Consider the projective O-border basis G in the standard graded
ring P = Q[t, x, y] of Example 4.2.7, again. Recall that W = (1, 1) ∈ Mat1,2(Z) defines
the standard grading, that G = {g1, . . . , g6} where g1 = y3 + 2t2y−3ty2, g2 = x2y−xy2,
g3 = xy3 + 2t2xy − 3txy2, g4 = x2y2 + 2t2xy − 3txy2, g5 = x3y + 2t2xy − 3txy2, and
g6 = x4 − 6t3x + 11t2x2 − 6tx3, and that O = {t1, . . . , t8} = {1, y, x, y2, xy, x2, xy2, x3}
had a maxdegW -border. Moreover, we denote R = P/〈G〉 and we denote H : Z → Z,
γ 7→ #{k ∈ {1, . . . , 8} | degW (tk) ≤ γ}. By Proposition 4.1.15, the Hilbert function of R
is HFR = H : 1, 3, 6, 8, 8, . . . and by Corollary 4.1.12, {gdeh | g ∈ G} ⊆ P = Q[x, y] is
the O-border basis of the ideal 〈gdeh | g ∈ G〉 ⊆ P . According to Definition 2.4.15, the
formal multiplication matrices X ,Y ∈ Mat8(Q) of {gdeh | g ∈ G} are

X =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0
0 1 0 0 0 0 −2 0
0 0 1 0 0 0 0 −11
0 0 0 1 1 0 3 0
0 0 0 0 0 1 0 6


, Y =



0 0 0 0 0 0 0 0
1 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 3 0 0 0 0
0 0 1 0 0 0 −2 −2
0 0 0 0 0 0 0 0
0 0 0 0 1 1 3 3
0 0 0 0 0 0 0 0


.

Let p = x2 + ty ∈ P 2. Then

p(I8,X ,Y) = X 2 + I8 · Y =



0 0 0 0 0 0 0 0
1 0 0 −2 0 0 0 0
0 0 0 0 0 6 0 36
0 1 0 3 0 0 0 0
0 0 1 −2 −2 0 −8 −2
1 0 0 0 0 −11 0 −60
0 1 0 3 4 1 10 3
0 0 1 0 0 6 0 25


∈ Mat8(Q).
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By Corollary 4.2.9, the submatrix

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


∈ Mat8,3(Q)

of p(I8,X ,Y) consisting of the first H(3) = 8 rows and the first H(1) = 3 columns
represents the homogeneous Q[t]-algebra homomorphism π̂p : R1 → R3, r 7→ p · r, the
multiplication by p ∈ R2, with respect to the Q-vector spaces {t, y, x} ⊆ R of R1 and
{t3, t2y, t2x, ty2, txy, tx2, xy2, x3} ⊆ R of R3. Note that this result can also be deduced
from Example 4.2.7 by dehomogenization.

4.3 Projective Border Bases and Dualization

In the final section of this chapter, we study the graded dual of a residue class ring of P
modulo a homogeneous ideal in P that is given by a projective border basis.

Before we actually start with that, we recall that for two Z-graded R-modules M
andN , the homogeneous R-module homomorphismsM → N induce a Z-graded submod-
ule of the set of all (not necessarily homogeneous) R-module homomorphisms M → N .
For a more general introduction to gradings and graded dual modules, we refer to [KR00,
Sect. 1.7] and [Bou89, Sect. II.§11].

Definition 4.3.1. Let R be a Z-graded ring and letM and N be Z-graded R-modules.
An R-module homomorphism ϕ : M → N is called a homomorphism of Z-graded
R-modules or a homogeneous R-module homomorphism if ϕ(Mγ) ⊆ Nγ for all
γ ∈ Z. The set of all homogeneous R-module homomorphisms M → N is denoted
by HomR(M,N).

Proposition 4.3.2. Let R be a Z-graded ring and M and N be Z-graded R-modules.
Then HomR(M,N) =

⊕
γ∈Z HomR(M,N(γ)) is a Z-graded R-module. If, in addition,

M is finitely generated as an R-module, then HomR(M,N) coincides with the set of all
R-module homomorphism M → N .

Proof. This follows immediately from [Bou89, Subsect. II.§11.6].

Now we can start with the study of the graded dual module of the residue class ring
of P modulo a projective border basis. Given a projective O-border basis G of a ho-
mogeneous ideal I ⊆ P , we know that R = P/I is a free K[x0]-module and that the
residue classes of the elements of the order ideal O in R form a K[x0]-module basis of R.
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Thus the dual K[x0]-module of R is precisely the graded dual K[x0]-module of R, i.e. the
Z-graded K[x0]-module HomK[x0](R,K[x0]) =

⊕
γ∈Z HomK[x0](R,K[x0](γ)) by Propo-

sition 4.3.2. Moreover, the dual objects of the residue classes of the elements of O in R
form a K[x0]-module basis of HomK[x0](R,K[x0]) according to [Bou89, II.§2.6, Prop. 11
and Defn. 7]. In Lemma 4.3.3, we will see that HomK[x0](R,K[x0]) has also the struc-
ture of a Z-graded R-module in this setting. The main goal of this section is to describe
this R-module multiplication by means of O and the (projective) formal multiplication
matrices of G as explicitly as possible.

For the remainder of this section, we let O = {t1, . . . , tµ} with µ ∈ N \ {0} be a finite
order ideal in Tn such that degW (t1) ≤ · · · ≤ degW (tµ) and we let ∂O = {b1, . . . , bν}
with ν ∈ N be its border. Moreover, let G ⊆ P be the projective O-border basis
of the ideal 〈G〉 and let R = P/〈G〉. Again, to shorten the notation, we denote the
integer function H : Z → Z, γ 7→ #{k ∈ {1, . . . , µ} | degW (tk) ≤ γ} and its first
difference function by ∆H : Z → Z, γ 7→ H(γ) − H(γ − 1). Recall that H = HFR
by Proposition 4.1.15. Then for all j ∈ {1, . . . , ν}, the element gj ∈ G is of the form
gj = bj −

∑H(degW (bj))
i=1 aijx

∆ij

0 ti with aij ∈ K and ∆ij = degW (bj) − degW (ti) ∈ N for
all i ∈ {1, . . . ,H(degW (bj))} according to Proposition 4.1.7.

Lemma 4.3.3. Let J ⊆ R be a homogeneous ideal and let S = R/J . Moreover, let
M = HomK[x0](S,K[x0]).

a) The map

R× S → S, (r, r′ + J) 7→ rr′ + J (r, r′ ∈ R)

equips the Z-graded ring S with the structure of a Z-graded R-algebra.

b) The map

R×M →M, (r, ϕ) 7→ (r′ + J 7→ ϕ(r · (r′ + J))) (r, r′ ∈ R)

equips the Z-graded K[x0]-module M with the structure of a Z-graded R-module. In
particular, the K[x0]-module structure of M as in Proposition 4.3.2 is compatible
with this R-module structure.

Proof. Claim a) follows from [KR00, Rem. 1.7.9].
In order to prove b), let r, r′, r′′ ∈ R and ϕ,ϕ′ ∈M . Using a), we see that

(1 · ϕ)(r′′) = ϕ(1 · r′′) = ϕ(r′′),

i.e. 1 · ϕ = ϕ,

((rr′) · ϕ)(r′′) = ϕ((rr′) · r′′) = ϕ(r′ · (r · r′′)) = (r′ · ϕ)(r · r′′) = (r · (r′ · ϕ))(r′′),

i.e. (rr′) · ϕ = r · (r′ · ϕ),

((r + r′) · ϕ)(r′′) = ϕ((r + r′) · r′′) = ϕ(r · r′′) + ϕ(r′ · r′′) = (r · ϕ)(r′′) + (r′ · ϕ)(r′′)
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i.e. (r + r′) · ϕ = r · ϕ+ r′ · ϕ, and

(r · (ϕ+ ϕ′))(r′) = (ϕ+ ϕ′)(r · r′)
= ϕ(r · r′) + ϕ′(r · r′)
= (r · ϕ)(r′) + (r · ϕ′)(r′)
= (r · ϕ+ r · ϕ′)(r′),

i.e. r · (ϕ+ ϕ′) = r · ϕ+ r · ϕ′. Thus the given map turns M into an R-module which is
obviously compatible with the K[x0]-module structure of M of Proposition 4.3.2.

Next we prove that the dualK[x0]-module of R with its degrees shifted by 1 is precisely
the canonical module of R.

Definition 4.3.4. Let J ⊆ R be a homogeneous ideal and S = R/J be such that
x0 ∈ P is a non-zero divisor for S. Then

ωS = HomK[x0](S,K[x0])(−1)

is called the canonical module of S. If J = {0}, we identify R with R/J and also
write ωR instead of ωR/J .

Remark 4.3.5. Let J ⊆ R be a homogeneous ideal and S = R/J be such that
the polynomial x0 ∈ P is a non-zero divisor for S. According to Corollary 4.1.16, the
Z-graded R-algebras R and S are one-dimensional Cohen-Macaulay rings, and accord-
ing to [Kun85, Prop. II.3.4], the Z-graded K[x0]-algebra K[x0] is a one-dimensional
ring. Let mR =

⊕∞
γ=1Rγ = 〈x0, . . . , xn〉, let mS =

⊕∞
γ=1 Sγ = 〈x0, . . . , xn〉, and

let mK[x0] =
⊕∞

γ=1K[x0] = 〈x0〉 denote the maximal homogeneous ideals of R, S,
andK[x0], respectively. As introduced in [HK71, Defn. 5.6] and as also defined in [GW78,
Defn. 2.1.2], the R-modules ωR = HomK(H1

mR
(R),K) and ωS = HomK(H1

mS
(S),K),

and the K[x0]-module ωK[x0] = HomK(H1
mK[x0]

(K[x0]),K) are called the canonical mod-
ules of R, S, and K[x0], respectively. Here we denote by H1

mR
(R), H1

mS
(S), and

H1
mK[x0]

(K[x0]) the first local cohomology groups of R, S, and K[x0], respectively.
As R and S are one-dimensional Cohen-Macaulay rings, the canonical R-algebra epi-
morphism R � R/I = S induces a canonical homogeneous R-module isomorphism
ωS ∼= HomK(H1

mS
(S),K) according to [GW78, Prop. 2.2.9 and Prop. 2.1.6]. As the

residue classes of the elements of O in R form a K[x0]-module basis of R according to
Proposition 4.1.15, [GW78, Prop. 2.1.5] yields the existence of a canonical homogeneous
K[x0]-module isomorphism HomK(H1

mS
(S),K) ∼= HomK[x0](S, ωK[x0]). Moreover, there

is a canonical homogeneous K[x0]-algebra isomorphism ωK[x0]
∼= K[x0](−1) according to

[GW78, Prop. 2.2.8]. Altogether, we get a canonical homogeneous K[x0]-algebra isomor-
phism ωS ∼= HomK[x0](S,K[x0](−1)) = HomK[x0](S,K[x0])(−1) and with the R-module
structure defined in Lemma 4.3.3, we see that our definition of the canonical module in
Definition 4.3.4 coincides with the one introduced in [HK71, Defn. 5.6].

The next two propositions describe the structure of such canonical modules. In par-
ticular, we determine the canonical module of the residue class ring of R modulo a

135



4 Border Bases and Homogenization

homogeneous ideal J ⊆ R in Proposition 4.3.6 and describe ωR and its homogeneous
components by means of O in Proposition 4.3.7.

Proposition 4.3.6. a) The element x0 ∈ K[x0] is a non-zero divisor for ωR.

b) Let J ⊆ R be a homogeneous ideal and let S = R/J . Then there exists a canonical
homogeneous R-module isomorphism

ωS ∼= {ϕ ∈ ωR | J · ϕ = {0}}.

Proof. First we prove a). Assume that there exists a homomorphism ϕ ∈ ωR \ {0} such
that x0ϕ = 0. Then there exists an element r ∈ R such that ϕ(r) 6= 0 and Lemma 4.3.3
yields 0 = 0(r) = (x0ϕ)(r) = ϕ(x0 · r) = x0 · ϕ(r). Since ϕ(r) ∈ K[x0] \ {0} and G is
the O-border basis of 〈G〉 ⊂ P , this is a contradiction to Proposition 4.1.7. Thus x0 is a
non-zero divisor for ωR.
Next we prove b). Let M = {ϕ ∈ ωR | J · ϕ = {0}}. For all ϕ1, ϕ2 ∈ M , r1, r2 ∈ R,

and s ∈ J , we have

(s · (ϕ1 − ϕ2))(r1) = (ϕ1 − ϕ2)(sr1)

= ϕ1(sr)− ϕ2(sr1)

= (s · ϕ1)(r)− (s · ϕ2)(r1)

= 0(r1) + 0(r1)

= 0,

i.e. J · (ϕ1 − ϕ2) = {0} and thus ϕ1 − ϕ2 ∈M , and since r1s ∈ J , we have

(s · (r1 · ϕ1))(r2) = (r1 · ϕ1)(sr2) = ϕ1(r1sr2) = ((r1s) · ϕ1)(r2) = 0(r2) = 0,

i.e. J · (r1 · ϕ1) = {0} and thus r1 · ϕ1 ∈ M . Altogether, it follows that the set M is an
R-submodule of ωR.
For every ϕ ∈M and all s ∈ J , we have

ϕ(s) = ϕ(s · 1) = (s · ϕ)(1) = 0(1) = 0

and hence J ⊆ ker(ϕ). Let ε : R � S = R/J be the canonical K[x0]-module epimor-
phism. Then for every ϕ ∈ M , the Universal Property of the Residue Class Module S
induces a unique K[x0]-module homomorphism ϕ : S → K[x0] which satisfies ϕ = ϕ ◦ ε
and ϕ ∈ ωS . In other words, every element ϕ ∈ M induces a unique element ϕ ∈ ωS .
Thus the map

φ : M → ωS , ϕ 7→ ϕ such that ϕ = ϕ ◦ ε
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is well-defined. For all ϕ1, ϕ2 ∈M and r1, r2 ∈ R, we have

φ(r1 · (ϕ1 − ϕ2))(r2 + J) = r1 · (ϕ1 − ϕ2)(r2 + J)

= (r1 · (ϕ1 − ϕ2))(r2)

= (ϕ1 − ϕ2)(r1r2)

= ϕ1(r1r2)− ϕ2(r1r2)

= ϕ1(r1r2 + J)− ϕ2(r1r2 + J)

= (ϕ1 − ϕ2)(r1r2 + J)

= (φ(ϕ1)− φ(ϕ2))(r1r2 + J)

= (r1 · (φ(ϕ1)− φ(ϕ2)))(r2 + J),

i.e. φ(r1 · (ϕ1 −ϕ2)) = r1 · (φ(ϕ1)− φ(ϕ2)). Altogether, it follows that φ is an R-module
homomorphism. For all γ, γ′ ∈ Z, r ∈ Rγ , and ϕ ∈Mγ′ , we also have

φ(ϕ)(r + J) = ϕ(r + J) = ϕ(r) ∈ ((K[x0])(γ′ − 1))γ = (K[x0](−1))γ+γ′ ,

i.e. φ(ϕ) ∈ (ωS)γ′ . Thus the R-module homomorphism φ is homogeneous.
Next we show that φ is an R-module isomorphism. For all ϕ ∈ ωS and for all s ∈ J ,
ϕ = ϕ ◦ ε ∈ ωR satisfies (s · ϕ)(1) = ϕ(s) = ϕ(s+ J) = ϕ(0) = 0, i.e. s · ϕ = 0 and thus
J · ϕ = {0}. In particular, for all ϕ ∈ ωS , ϕ ◦ ε ∈ M and φ(ϕ ◦ ε) = ϕ. Altogether, it
follows that φ is surjective. For every ϕ ∈ ker(φ), we have ϕ = φ(ϕ) ◦ ε = 0 ◦ ε = 0, i.e.
ker(φ) = {0} and φ is hence injective.

For the remainder of this thesis, we identify the elements of ωS for a residue class
ring S = R/J with the elements of the corresponding submodule of ωR as proven in
Proposition 4.3.6 without mention.

Next we determine the Hilbert function of ωR and give K-vector space bases of the
homogeneous components of ωR by means of O. The ideas of the following proposition
follow [GKR93, Prop. 3.1].

Proposition 4.3.7. Let dγ,i = γ−degW (ti) ∈ Z be for all γ ∈ Z and all i ∈ {1, . . . , µ},
let O = {t1, . . . , tµ} ⊆ R denote the image of O in R, and let O∗ = {t∗1, . . . , t

∗
µ} ⊆ ωR be

the dual K[x0]-module basis of O, i.e. we have

t
∗
i : R→ K[x0], tj 7→ δij (j ∈ {1, . . . , µ})

for every i ∈ {1, . . . , µ}.

a) The set O∗ is a K[x0]-module basis of ωR and there are canonical isomorphisms of
Z-graded K[x0]-modules

ωR ∼=
µ⊕
i=1

K[x0](degW (ti)− 1) ∼=
degW (tµ)⊕
γ=0

(K[x0](γ − 1))∆H(γ).

In particular, HFωR(−γ) = µ−H(γ) = µ−HFR(γ) for all γ ∈ Z.
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b) Let O0 denote the image of O0 =
⋃∞
k=0 x

k
0O in R and let O∗0 ⊆ ωR be the set

of dual objects of the elements in O0. Then for every integer γ ∈ Z, the set
(O∗0)−γ = {x−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ} ⊆ (ωR)−γ is a K-vector space ba-

sis of (ωR)−γ.

Proof. First we prove a). Since G is the projective O-border basis of 〈G〉, O ⊆ R is a
K[x0]-module basis of R according to Definition 4.1.2. Thus the dual basis O∗ of O is a
K[x0]-module basis of ωR by [Bou89, II.§2.6, Prop. 11 and Defn. 7]. According to [Bou89,
II.§1.6, Coro. 1 and II.§11.6, Rem.]), there exists a canonical homogeneous K[x0]-module
isomorphism

HomK[x0]

(
µ⊕
i=1

K[x0](−degW (ti)),K[x0]

)
∼=

µ⊕
i=1

HomK[x0](K[x0](−degW (ti)),K[x0]).

Moreover, there are a canonical homogeneous K[x0]-module isomorphism

R =

µ⊕
i=1

K[x0] · ti ∼=
µ⊕
i=1

K[x0](−degW (ti))

by Proposition 4.1.15 and a canonical homogeneous K[x0]-module isomorphism

HomK[x0](K[x0],K[x0]) ∼= K[x0]

by [Bou89, II.§11.6, p. 376]. Altogether, we get the canonical isomorphism

ωR = HomK[x0](R,K[x0])(−1)

∼= HomK[x0]

(
µ⊕
i=1

K[x0](−degW (ti)),K[x0]

)
(−1)

∼=
µ⊕
i=1

HomK[x0](K[x0](−degW (ti)),K[x0])(−1)

=

µ⊕
i=1

HomK[x0](K[x0],K[x0])(degW (ti)− 1)

∼=
µ⊕
i=1

K[x0](degW (ti)− 1)

∼=
degW (tµ)⊕
γ=0

(K[x0](γ − 1))∆H(γ)
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of Z-graded K[x0]-modules and the claim follows. In particular, for all γ ∈ Z, we have

(ωR)−γ ∼=

degW (tµ)⊕
γ̃=0

(K[x0](γ̃ − 1))∆H(γ̃)


−γ

=

degW (tµ)⊕
γ̃=0

((K[x0](γ̃ − 1))−γ)∆H(γ̃)

=

degW (tµ)⊕
γ̃=0

(K[x0]γ̃−1−γ)∆H(γ̃)

and as O is ordered increasingly with respect to degW , this implies

HFωR(−γ) =

degW (tµ)⊕
γ̃=γ+1

∆H(γ̃) = H(degW (tµ))−H(γ) = µ−H(γ).

As HFR = H by Proposition 4.1.15, the remaining equality follows.
In order to prove b), let γ ∈ Z. For all i ∈ {1, . . . , µ}, we have

t
∗
i (ti) = 1 ∈ K[x0]0 = (K[x0](−degW (ti)))degW (ti),

and t∗i (tj) = 0 ∈ (K[x0](−degW (ti)))degW (ti) for all indices j ∈ {1, . . . , µ} \ {i}, i.e. we
have t∗i ∈ (ωR)− degW (ti)+1. Moreover, for every index i ∈ {H(γ) + 1, . . . , µ}, we get
−dγ+1,i = −γ − 1 + degW (ti) ∈ N and thus x−dγ+1,i

0 t
∗
i ∈ (ωR)−γ . Since t∗i (tj) = δij

for all i, j ∈ {1, . . . , µ} and since HFωR(−γ) = µ − H(γ) according to a), it follows
that (O∗0)−γ = {x−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ} ⊆ (ωR)−γ is a K-vector space basis

of (ωR)−γ .

Just as we did for the multiplicative structure of R in Proposition 4.2.5 and Corol-
lary 4.2.6, we can use the formal projective multiplication matrices of G to explicitly
describe the R-module multiplication of ωR.

Proposition 4.3.8. Let O = {t1, . . . , tµ} ⊆ R denote the image of the order ideal O
in R and let O∗ = {t∗1, . . . , t

∗
µ} ⊆ ωR be the dual K[x0]-module basis of O. Moreover, let

X proj
0 , . . . ,X proj

n ∈ Matµ(K[x0]) be the formal projective multiplication matrices of G, let
c1, . . . , cµ ∈ K[x0], and let ϕ = c1t

∗
1 + · · · + cµt

∗
µ ∈ ωR. Then for all γ ∈ Z and p ∈ P γ,

we have

p · ϕ = (t
∗
1, . . . , t

∗
µ) · p((X proj

0 )tr, . . . , (X proj
n )tr) · (c1, . . . , cµ)tr,

in ωR, i.e. the matrix p((X proj
0 )tr, . . . , (X proj

n )tr) ∈ Matµ(K[x0]) represents the homoge-
neous K[x0]-module homomorphism π∗p : ωR(−γ) → ωR, ϕ′ 7→ p · ϕ′, the multiplication
by p ∈ Rγ, with respect to the K[x0]-module basis O∗ of ωR.
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Proof. Let γ ∈ Z and p ∈ P γ . By Corollary 4.2.6, p(X proj
0 , . . . ,X proj

n ) ∈ Matµ(K[x0])
represents the homogeneous K[x0]-module homomorphism πp : R(−γ) 7→ R, r 7→ p · r,
the multiplication by p, with respect to the K[x0]-module basis O. Since the dual
K[x0]-module of R is R∗ = HomK[x0](R,K[x0]) = ωR(1), it follows that the induced
homogeneous K[x0]-module homomorphism π∗p : ωR(−γ) → ωR, ϕ′ 7→ ϕ′ ◦ πp = p · ϕ′,
cf. Lemma 4.3.3, with respect to the dual K[x0]-module basis O∗ is represented by the
matrix p(X proj

0 , . . . ,X proj
n )tr ∈ Matµ(K[x0]) according to [Bou89, II.§10.4, Prop. 3] and

Corollary 4.2.6. Moreover, as G is the projective O-border basis of 〈G〉 the matrices
X proj

0 , . . . ,X proj
n are pairwise commuting according to Corollary 4.2.6. The claim now

follows from p(X proj
0 , . . . ,X proj

n )tr = p((X proj
0 )tr, . . . , (X proj

n )tr).

Example 4.3.9. Consider the projective O-border basis G ⊆ P of the standard
graded Q-algebra P = Q[t, x, y] of Example 4.2.7, again. Recall that the order ideal
O = {1, y, x, y2, xy, x2, xy2, x3} has a maxdegW -border, that R = P/〈G〉, and that the
projective multiplication matrices T proj,X proj,Yproj ∈ Mat8(Q[t]) of G are

T proj =



t 0 0 0 0 0 0 0
0 t 0 0 0 0 0 0
0 0 t 0 0 0 0 0
0 0 0 t 0 0 0 0
0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t


, X proj =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 6t3

0 0 0 0 0 0 0 0
0 1 0 0 0 0 −2t2 0
0 0 1 0 0 0 0 −11t2

0 0 0 1 1 0 3t 0
0 0 0 0 0 1 0 6t


,

and

Yproj =



0 0 0 0 0 0 0 0
1 0 0 −2t2 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 3t 0 0 0 0
0 0 1 0 0 0 −2t2 −2t2

0 0 0 0 0 0 0 0
0 0 0 0 1 1 3t 3t
0 0 0 0 0 0 0 0


.

Moreover, we had p = x2 + ty ∈ P 2. Let π∗p : ωR(−2) → ωR, ϕ 7→ p · ϕ be the
multiplication by p ∈ R2, let O ⊆ R be the image of O in R, and let O∗ ⊆ ωR be its
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dual Q[t]-module basis. Then the matrix

p((T proj)tr, (X proj)tr, (Yproj)tr) = ((X proj)tr)2 + (T proj)tr · (X proj)tr

=



0 t 0 0 0 1 0 0
0 0 0 t 0 0 1 0
0 0 0 0 t 0 0 1
0 −2t3 0 3t2 −2t2 0 3t 0
0 0 0 0 −2t2 0 4t 0
0 0 6t3 0 0 −11t2 t 6t
0 0 0 0 −8t3 0 10t2 0
0 0 36t4 0 −2t3 −60t3 3t2 25t2


∈ Mat8(Q[t])

represents the homogeneous Q[t]-module homomorphism π∗p with respect to the dual
Q[t]-module basis O∗ of ωR according to Proposition 4.3.8. Note that the matrices
T proj,X proj,Yproj ∈ Mat8(Q[t]) are pairwise commuting and, therefore, we see that
p((T proj)tr, (X proj)tr, (Yproj)tr) = (p(T proj,X proj,Yproj)tr. In particular, the above re-
sult coincides with the result of Example 4.2.7.

Finally, we restrict the R-module multiplication of ωR to a homogeneous component Rγ
with γ ∈ Z. As done in Proposition 4.2.5 for the multiplication in R, we can use the
formal multiplication matrices of {gdeh | g ∈ G} ⊆ P to explicitly describe the R-module
multiplication by a homogeneous element.

Proposition 4.3.10. Let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and for all indices
i ∈ {1, . . . , µ}, let O = {t1, . . . , tµ} ⊆ R denote the image of the order ideal O in R,
and let O∗ = {t∗1, . . . , t

∗
µ} ⊆ ωR be the dual K[x0]-module basis of O. Moreover, let

X1, . . . ,Xn ∈ Matµ(K) be the formal multiplication matrices of {gdeh
1 , . . . , gdeh

ν }, γ ∈ Z,
cH(γ)+1, . . . , cµ ∈ K, and ϕ = cH(γ)+1x

−dγ+1,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ+1,µ

0 t
∗
µ ∈ (ωR)−γ.

a) We have

x0 · ϕ = (0, . . . , 0, x
−dγ,H(γ−1)+1

0 t
∗
H(γ−1)+1, . . . , x

−dγ,µ
0 t

∗
µ)

· Iµ · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ωR and for every k ∈ {1, . . . , n}, we have

xk · ϕ = (0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ)

· X tr
k · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ωR.

b) For every γ′ ∈ Z and every p′ ∈ P γ′, we have

p′ · ϕ = (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· p′(Iµ,X tr
1 , . . . ,X tr

n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr
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in ωR.

Proof. For every s ∈ {1, . . . , n}, we denote Xs = (ξ
(s)
k` )1≤k,`≤µ ∈ Matµ(K) as in Defini-

tion 2.4.15 and we let {E1, . . . , Eµ} denote the canonical K-vector space basis of Kµ. If
γ ≥ degW (tµ), we have (ωR)−γ = {0} and the claims follow trivially. Thus we suppose
that γ < degW (tµ).
First we prove a). For every i ∈ {1, . . . , µ}, we have

−dγ+1,i + 1 = −(γ + 1− degW (ti)) + 1 = −(γ − degW (ti)) = −dγ,i

and get

x0 · ϕ = x0 · (cH(γ)+1x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ+1,µ

0 t
∗
µ)

= cH(γ)+1x
−dγ+1,H(γ)+1+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ+1,µ+1
0 t

∗
µ

= cH(γ)+1x
−dγ,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ,µ
0 t

∗
µ

= (0, . . . , 0, x
−dγ,H(γ−1)+1

0 t
∗
H(γ−1)+1, . . . , x

dγ,µ
0 t

∗
µ)

· Iµ · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ωR. For the second part, let k ∈ {1, . . . , n}. Moreover, let i ∈ {H(γ) + 1, . . . , µ},
` ∈ {1, . . . , µ}, and γ̃ = degW (t`) + wk. Then Proposition 6.2.7 yields

(xk · t
∗
i )(t`) = t

∗
i (xkt`)

= t
∗
i ((x

dγ̃,1
0 t1, . . . , x

dγ̃,H(γ̃)

0 tH(γ̃), 0, . . . , 0) · Xk · Etr
` )

=

{
0 if degW (ti) > γ̃

ξ
(k)
i` x

dγ̃,i
0 if degW (ti) ≤ γ̃

=

{
0 if degW (t`) < degW (ti)− wk
ξ

(k)
i` x

dγ̃,i
0 if degW (t`) ≥ degW (ti)− wk

.

Assume that there is an ˜̀∈ {1, . . . , µ} such that γ+ 1−wk ≤ degW (t˜̀) < degW (ti)−wk
and such that ξ(k)

i˜̀
6= 0. Then γ + 1 ≤ degW (t˜̀) + wk < degW (ti). We distinguish two

cases. If xkt˜̀ = tr ∈ O for some r ∈ {1, . . . , µ}, we have degW (t˜̀) + wk = degW (tr). In
particular, we see that r 6= i and thus ξ(k)

i˜̀
= δir = 0 by Definition 2.4.15 in this situation.

If xkt˜̀ = bs ∈ ∂O for some s ∈ {1, . . . , ν}, degW (ti) > degW (t˜̀) + wk = degW (bs).
As G is the projective O-border basis of the ideal 〈G〉, Proposition 4.1.7 implies that
gs = bs−

∑H(degW (bs))
m=1 amsx

∆ms
0 tm and thus we have ξ(k)

i˜̀
= 0 by Definition 2.4.15 in this

situation. Since both cases yield a contradiction, there is no such index ˜̀. In particular,
this implies that

(xk · t
∗
i )(t`) =

{
0 if degW (t`) < γ − wk + 1

ξ
(k)
i` x

dγ̃,i
0 if degW (t`) ≥ γ − wk + 1

.
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Moreover,

−dγ+1,i + dγ̃,i = −(γ + 1− degW (ti)) + γ̃ − degW (ti)

= −γ − 1 + degW (t`) + wk

= −dγ−wk+1,`.

Altogether, we get

xk · cix
−dγ+1,i

0 t
∗
i

=

µ∑
`=H(γ−wk)+1

ξ
(k)
i` cix

−dγ−wk+1,`

0 t
∗
`

= (0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ) · X tr

k · ciEtr
i

in ωR and thus

xk · ϕ =

µ∑
i=H(γ)+1

xk · cix
−dγ+1,i

0 t
∗
i

=

µ∑
i=H(γ)+1

(0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ) · X tr

k · ciEtr
i

= (0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ)

· X tr
k · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ωR.
Next we prove b). For all γ′ ∈ Z with γ′ < 0, we have P γ′ = {0} and b) holds trivially.

We prove by induction on γ′ ∈ N that b) holds in general. For γ′ = 0, it follows that
p′ ∈ K and thus

p′ · ϕ = p′cH(γ)+1x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ p′cµx

−dγ+1,µ

0 t
∗
µ

= (0, . . . , 0, x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ)

· p′Iµ · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

= (0, . . . , 0, x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ)

· p′(Iµ,X tr
1 , . . . ,X tr

n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ωR. For the induction step, let now γ′ > 0. Then there exist an s ∈ N, c′1, . . . , c′s ∈ K,
and t′1, . . . , t

′
s ∈ Tn+1

γ such that p′ = c′1t
′
1 + · · · + c′st

′
s. For every r ∈ {1, . . . , s}, there

is a kr ∈ {0, . . . , n} and a ur ∈ Tn+1
<γ such that t′r = xkrur. Let w0 = 1, X0 = Iµ, and

for all indices r ∈ {1, . . . , s}, let γ̂r = γ − γ′ + wkr . Then the induction hypothesis,
the commutativity of the formal multiplication matrices of {gdeh

1 , . . . , gdeh
ν } ⊆ P , which
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4 Border Bases and Homogenization

follows from Proposition 4.1.7 and Theorem 2.4.19, together with a) yield

c′rt
′
r · ϕ = xkr · (c′rur · ϕ)

= xkr · ((0, . . . , 0, x
−dγ̂r+1,H(γ̂r)+1

0 t
∗
H(γ̂r)+1, . . . , x

−dγ̂r+1,µ

0 t
∗
µ)

· (c′rur)(Iµ,X tr
1 , . . . ,X tr

n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ̂r−wkr+1,H(γ̂r−wkr )+1

0 t
∗
H(γ̂r−wkr )+1, . . . , x

−dγ̂r−wkr+1,µ

0 t
∗
µ)

· (X tr
kr · (c

′
rur)(Iµ,X tr

1 , . . . ,X tr
n )) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· (c′rxkrur)(Iµ,X tr
1 , . . . ,X tr

n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· (c′rt′r)(Iµ,X tr
1 , . . . ,X tr

n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

in ωR. Thus it follows that

p′ · ϕ =

s∑
r=1

c′rtr · ϕ

=

s∑
r=1

((0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· (c′rt′r)(Iµ,X tr
1 , . . . ,X tr

n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

·
( s∑
r=1

c′rt
′
r

)
(Iµ,X

tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· p′(Iµ,X tr
1 , . . . ,X tr

n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ωR and the claim follows for γ′ > 0.

Corollary 4.3.11. Let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and all i ∈ {1, . . . , µ},
let X1, . . . ,Xn ∈ Matµ(K) denote the multiplication matrices of {gdeh

1 , . . . , gdeh
ν } ⊆ P ,

let O = {t1, . . . , tµ} ⊆ R denote the image of O in R and let O∗ = {t∗1, . . . , t
∗
µ} ⊆ ωR

be the dual K[x0]-module basis of O. Moreover, let O0 be the image of O0 =
⋃∞
k=0 x

k
0O

in R and O∗0 ⊆ ωR be the set of dual objects of the elements in O0. Let γ, γ′ ∈ Z be
integers and p ∈ P γ′ . Then the submatrix of p(Iµ,X tr

1 , . . . ,X tr
n ) ∈ Matµ(K) obtained

by deleting the first H(γ − γ′) rows and the first H(γ) columns represents the K-vector
space homomorphism π̂∗p : (ωR)−γ → (ωR)−γ+γ′ , ϕ 7→ p · ϕ, the multiplication by the ele-
ment p ∈ Rγ′, with respect to the K-vector space bases (O∗0)−γ of (ωR)−γ and (O∗0)−γ+γ′

of (ωR)−γ+γ′ .
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4.3 Projective Border Bases and Dualization

Proof. Let {E1, . . . , Eµ} denote the canonical K-vector space basis of Kµ. According to
Proposition 4.3.7, the sets (O∗0)−γ and (O∗0)−γ+γ′ are K-vector space bases of (ωR)−γ
and (ωR)−γ+γ′ , respectively. If γ ≥ degW (tµ), we have (ωR)−γ = {0} according to
Proposition 4.3.7 and the claim follows trivially. Thus suppose that γ < degW (tµ). For
all indices k ∈ {H(γ) + 1, . . . , µ}, Proposition 4.3.10 yields

π̂∗p(x
−dγ+1,k

0 t
∗
k)

= p · x−dγ+1,k

0 t
∗
k

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ) · p(Iµ,X tr

1 , . . . ,X tr
n ) · Etr

k

and the claim is a direct consequence of this.

Example 4.3.12. Consider the Q-algebra R = P/〈G〉 which is defined by the projec-
tive O-border basis G ⊆ P = Q[t, x, y] of the Examples 4.2.10 and 4.3.9, again. Recall
that P was standard graded and that O = {t1, . . . , t8} = {1, y, x, y2, xy, x2, xy2, x3} has a
maxdegW -border. Moreover, we had H : Z→ Z, γ 7→ #{k ∈ {1, . . . , 8} | degW (tk) ≤ γ},
the Hilbert function of R was HFR = H : 1, 3, 6, 8, 8, . . ., the multiplication matri-
ces X ,Y ∈ Mat8(Q) of {gdeh | g ∈ G} were

X =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0
0 1 0 0 0 0 −2 0
0 0 1 0 0 0 0 −11
0 0 0 1 1 0 3 0
0 0 0 0 0 1 0 6


, Y =



0 0 0 0 0 0 0 0
1 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 3 0 0 0 0
0 0 1 0 0 0 −2 −2
0 0 0 0 0 0 0 0
0 0 0 0 1 1 3 3
0 0 0 0 0 0 0 0


,

and we had p = x2 + ty ∈ P 2. Let π̂∗p : (ωR)−2 → (ωR)0, ϕ 7→ p · ϕ be the multiplication
by p ∈ R2. Then

p(I8,X tr,Ytr) = (X tr)2 + I8 · Ytr

=



0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 −2 0 3 −2 0 3 0
0 0 0 0 −2 0 4 0
0 0 6 0 0 −11 1 6
0 0 0 0 −8 0 10 0
0 0 36 0 −2 −60 3 25


∈ Mat8(Q).
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4 Border Bases and Homogenization

By Corollary 4.3.11, the submatrix

1 0
0 1
3 0
4 0
1 6
10 0
3 25


∈ Mat7,2(Q)

of the matrix p(I8,X tr,Ytr) obtained by deleting the first H(0) = 1 rows and the first
H(2) = 6 columns represents the homogeneous Q-vector space homomorphism π̂∗p with
respect to the Q-vector space basis {xy2

∗
, x3
∗} ⊆ ωR of (ωR)−2 and the Q-vector space

basis {y∗, x∗, ty2
∗
, txy∗, tx2

∗
, t2xy2

∗
, t2x3

∗} ⊆ ωR of (ωR)0.
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5 Projective Border Bases and Algebraic
Geometry

After the algebraic foundations in Chapter 4, we now use projective border bases for the
study of zero-dimensional closed subschemes of weighted projective spaces. The main goal
of this chapter is to show that we can translate geometric properties of zero-dimensional
closed subschemes of weighted projective spaces to algebraic properties of residue class
rings of the Z-graded K-algebra P = P [x0] = K[x0, . . . , xn]. In this thesis, we are par-
ticularly interested in uniformity conditions of zero-dimensional closed subschemes and
try to characterize them. Uniformity conditions, e.g. the Cayley-Bacharach property
or the uniform position property, have frequently been studied, for instance in [Har80],
[Rat87], [Kre98], [Kre94], [GKR93], and [MP04]. The most general notion of uniformity
we consider, namely the concept of (i, j)-uniformity as defined in Definition 5.2.1, is due
to [Kre98, Defn. 7.12] and [Kre01, Defn. 2.1]. This uniformity condition generalizes both
the Cayley-Bacharach property as well as the uniform position property and we charac-
terize (i, j)-uniform subschemes by means of algebraic properties of the corresponding
projective coordinate ring and its canonical module in Theorem 5.2.7, Corollary 5.2.9,
and Theorem 5.2.14. In the final section, we turn these characterizations into algorithms
that allow us to check whether a given zero-dimensional closed subscheme is (i, j)-uniform
or not. More precisely, we do the following.

In the first section of this chapter, we recall the basic facts about zero-dimensional
closed subschemes of weighted projective spaces. The weighted projective space PK(W )
with respect to a positive matrix W ∈ Mat1,n+1(Z) is the projective scheme which is de-
fined by the Z-gradedK-algebra P = P [x0] = K[x0, . . . , xn] according to Definition 5.1.1.
As in the previous chapter, x0 denotes a homogenizing indetermine and the Z-gradings
of P respectively P are defined by the matrices W = (w1, . . . , wn) ∈ Mat1,n(Z) with the
property that wi > 0 for all i ∈ {1, . . . , n} respectively W = (1 | W ) ∈ Mat1,n+1(Z).
Then in Proposition 5.1.8, we show that a zero-dimensional subscheme X ⊆ PK(W ) has
no point on the hyperplane at infinity if and only if there exists a projective border basis
of its defining ideal I+(X) ⊆ P . This condition can often be satisfied after a generic
linear change coordinates, cf. Proposition 5.1.10. Thus we get a one-to-one correspon-
dence between the zero-dimensional subschemes X ⊆ PK(W ) that have no point on the
hyperplane at infinity and projective border bases of homogeneous ideals in P that can
be illustrated as follows:
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5 Projective Border Bases and Algebraic Geometry

zero-dimensional closed subschemes X of weighted projective spaces PK(W )
that have no point on the hyperplane at infinity

projective border basis
of the defining ideal

I+(X) ⊆ P

projective subscheme
defined by the
homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

Moreover, we additionally assume that X has a K-rational support, i.e. that the common
zeroes of the defining ideal of X are K-rational by Definition 5.1.5. Note that this
condition is trivially satisfied if K is algebraically closed. Under the assumptions that X
has aK-rational support and that no point of X lies on the hyperplane at infinity, we show
in Proposition 5.1.19 that for all subschemes Y ⊆ X and for all i ∈ {deg(Y), . . . ,deg(X)},
there is a subscheme Y′ ⊆ X of degree i that satisfies Y ⊆ Y′. This proposition enables
us to study uniformity conditions of X by means of the projective coordinate ring of X
and its canonical module in the remaining part of this chapter.
In Section 5.2, we use the properties of zero-dimensional closed subschemes X ⊆ PK(W )

shown in Section 5.1 and the additional knowledge of the existence of a projective border
basis of the defining ideal of X in order to determine whether X is (i, j)-uniform or not.
After the definition of various uniformity conditions in Definition 5.2.1, we show that we
can use (i, j)-uniformity conditions to characterize all the other uniformity conditions in
Proposition 5.2.6. Then we characterize (i, j)-uniform subschemes by means of the mul-
tiplicative structure of the canonical module of the corresponding projective coordinate
ring in Theorem 5.2.7. Since we assume that there is a projective border basis of the
defining ideal of X, we are then able to use the explicit description of the multiplicative
structure of the corresponding canonical module as developed in Section 4.3. This ad-
ditional piece of information about the multiplicative structure yields a characterization
of (i, j)-uniform schemes by means of zero sets of a specific ideal in Corollary 5.2.9. In
particular, if K is algebraically closed, we only have to apply several radical membership
tests in order to check whether a given zero-dimensional closed subscheme is (i, j)-uniform
or not. In the second subsection, we then restrict ourselves to the reduced case and show
that a given reduced zero-dimensional closed subscheme is (i, j)-uniform if and only if
certain sets are K-linear independent in Theorem 5.2.14.
In the final section of this chapter, we sum up various ways to check uniformity con-

ditions and turn all the results of Section 5.2 into explicit algorithms.

As in the previous chapter, we let the polynomial ring P be Z-graded by the matrix
W = (w1, . . . , wn) ∈ Mat1,n(Z) with wi > 0 for all i ∈ {1, . . . , n}. Moreover, x0 denotes a
homogenizing indeterminate and P = P [x0] = K[x0, . . . , xn] is Z-graded by the positive
matrix W = (1 |W ) ∈ Mat1,n+1(Z). The algebraic closure of the base field K is denoted
by K.
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5.1 Zero-Dimensional Schemes in Weighted Projective Spaces

Note that we always consider closed subschemes and closed points and thus simply say
subscheme and point instead of closed subscheme and closed point for the whole thesis.

5.1 Zero-Dimensional Schemes in Weighted Projective
Spaces

In the first section of this chapter, we recall some of the basic properties of weighted pro-
jective spaces and their subschemes and show that projective border bases are suitable
to study these subschemes under certain conditions. For a more general introduction
to weighted projective spaces, we refer to [IF00], [Dol82], and [Har92] and for a general
introduction to algebraic geometry, we refer to [Kun85], [Har77], and [EH00].

First we introduce weighted projective spaces. By [Kun85, Defn. I.5.15], the homo-
geneous spectrum Proj(P ) of the Z-graded K-algebra P =

⊕∞
γ=0 P γ denotes the set of

all homogeneous prime ideals of P that do not contain the homogeneous maximal ideal
m =

⊕∞
γ=1 P γ = 〈x0, . . . , xn〉.

Definition 5.1.1. Let m =
⊕∞

γ=1 P γ = 〈x0, . . . , xn〉 denote the homogenous maximal
ideal of the Z-graded K-algebra P =

⊕∞
γ=0 P γ .

a) The projective scheme PK(W ) = Proj(P ) is called the weighted projective
space of type W over K. In the standard graded case, i.e. for W = (1, . . . , 1),
we also write PnK instead of PK(W ) and call PnK the n-dimensional projective
space over K.

b) Let the multiplicative group K \ {0} act on An+1
K = Spec(P ) via

λ · (x0, . . . , xn) = (λx0, λ
w1x1, . . . , λ

wnxn).

Then PK(W ) is the quotient of An+1
K \ {0} by K \ {0}. The equivalence class of a

point (c0, . . . , cn) ∈ An+1
K under the above action is called a (projective) point

in PK(W ) and is denoted by (c0 : · · · : cn) ∈ PK(W ).

c) Let X ⊆ PK(W ) be a subscheme, let R be the coordinate ring of X, and let J ⊆ R
be a homogeneous ideal. Then we call J sat = {r ∈ R | mir ⊆ J for some i ∈ N}
the saturation of J . If J = J sat, we say that J is saturated.

d) Let X ⊆ PK(W ) be a subscheme. The largest ideal in P that defines X scheme-
theoretically is called the defining ideal of X and is denoted by I+(X). In this
situation, the coordinate ring of X is P/I+(X).

e) Let X ⊆ PK(W ) and Y ⊆ X be subschemes. The largest ideal in the coordinate
ring P/I+(X) of X that defines Y scheme-theoretically is called the defining ideal
of Y and is denoted by I+

X (Y).
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Proposition 5.1.2. Let X ⊆ PK(W ) be a non-empty subscheme, we let R = P/I+(X),
and let m =

⊕
γ∈Z P γ = 〈x0, . . . , xn〉 be the homogeneous maximal ideal of the Z-graded

K-algebra P .

a) There is a one-to-one correspondence between the subschemes of X and the satu-
rated homogeneous ideals of R. In particular, the defining ideal I+

X (Y) of a sub-
scheme Y ⊆ X is saturated and two ideal I, J ⊆ R define the same subscheme of X
if and only if Isat = J sat.

b) Let J ⊆ R = P/I+(X) be a homogeneous ideal and let ε : P � R denote the
canonical P -algebra epimorphism. The saturation J sat of J is a homogeneous ideal
that contains J and we have the equality J sat = ε(ε−1(J) :P m∞). In particular,
we can compute J sat.

Proof. According to the Second Noetherian Isomorphism Theorem, the ideals of R are
in one-to-one correspondence to the ideals in P that contain I+(X). Claim a) follows
from this correspondence and [Har77, Exer. II.5.10].
Next we prove claim b). By Definition 5.1.1, J sat trivially contains J . According to

Definition 5.1.1 and [KR00, Defn. 3.5.7],

J sat = {r ∈ R | mir ∈ J for some i ∈ N}
= {ε(p) | p ∈ P , mip ∈ ε−1(J) for some i ∈ N}
= {ε(p) | p ∈ ε−1(J) :P m∞}
= ε(ε−1(J) :P m∞).

Since J ⊆ R is homogeneous, J = 〈f1, . . . , fs〉 where s ∈ N and f1, . . . , fs ∈ P are
homogeneous by [KR00, Prop. 1.7.10]. By Lemma 2.6.7, ε−1(J) = 〈f1, . . . , fs〉+ I+(X).
Again, [KR00, Prop. 1.7.10] yields that 〈f1, . . . , fs〉 is homogeneous. Since I+(X) is
also homogeneous by Definition 5.1.1 and since m is homogeneous, [KR05, Prop. 4.1.11]
implies that both ε−1(J) :P m∞ and thus J sat = ε(ε−1(J) :P m∞) are homogeneous,
too. Moreover, we can compute J sat = ε(ε−1(J) :P m∞) using [KR00, Thm. 3.5.13] and
Lemma 2.6.7.

Definition 5.1.3. Let K ⊆ L be a field extension and K be the algebraic closure of K.

a) According to [IF00, Prop. 5.3], the map ι0 : Spec(P ) = AnK → PK(W ) = Proj(P ),
(c1, . . . , cn) 7→ (1 : c1 : · · · : cn) is injective. For a subscheme X ⊆ PK(W ), we call
X ∩ ι0(AnK) ⊆ PK(W ) the affine part of X and we identify it with its preimage
Xa = ι−1

0 (X ∩ ι0(AnK)) ⊆ AnK .

b) Let f ∈ P be a homogeneous polynomial. A projective point (c0 : · · · : cn) ∈ PL(W )
is said to be a zero of f in PL(W ) if f(c0, . . . , cn) = 0. The set of all zeros of f
in PL(W ) is denoted by Z+

L (f). For a zero (c0 : · · · : cn) of f in PK(W ), we simply
call (c0 : · · · : cn) a zero of f and for the set of all zeros of f in PK(W ) we also
write Z+(f) instead of Z+

K
(f).
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c) The set H inf = Z+
K(x0) ⊆ PK(W ) is called the hyperplane at infinity of PK(W ).

d) For a subscheme X ⊆ PK(W ), the points on X ∩ H inf are called the points at
infinity of X.

e) For a homogeneous ideal I ⊆ P , the projective zero-set of I in PL(W ) is defined
as the set

Z+
L (I) = {(c0 : · · · : cn) ∈ PL(W ) | f(c0, . . . , cn) = 0 for all homogeneous f ∈ I}.

Again, we simply call the zero-set of I in PK(W ) the projective zero-set of I
and denote it by Z+(I).

f) Let S be a set of projective points in PL(W ). Then the homogeneous ideal

I+(S) = 〈f ∈ P | f homogeneous, f(p) = 0 for all p ∈ S〉

is called the homogeneous vanishing ideal of S.

Lemma 5.1.4. Let S be a set of projective points in PK(W ). Then I+(S) ⊆ P is a
homogeneous radical ideal.

Proof. If S = ∅, Definition 5.1.3 yields I+(S) = P and the claim follows trivially. Thus
suppose that S 6= ∅. By Definition 5.1.3, the homogeneous vanishing ideal I+(S) is an
ideal in P and it is generated by homogeneous polynomials. Thus I+(S) is also homo-
geneous according to [KR00, Prop. 1.7.10]. Moreover,

√
I+(S) ⊆ P is a homogeneous

ideal by [KR05, Prop. 4.1.11]. Let f ∈
√
I+(S) and let f =

∑∞
γ=0 fγ be the decom-

position of f into its homogeneous components. Then fγ ∈
√
I+(S) for all γ ∈ N by

[KR00, Prop. 1.7.10]. Let γ ∈ N. Then there exists a k ∈ N such that fkγ ∈ I+(S). Let
(c0 : · · · : cn) ∈ S. Since K is a field and since 0 = fkγ (c0, . . . , cn) = (fγ(c0, . . . , cn))k by
Definition 5.1.3, it follows fγ(c0, . . . , cn) = 0. Thus fγ ∈ I+(S). In particular, we see
that f =

∑∞
γ=0 fγ ∈ I+(S) and I+(S) =

√
I+(S) is a homogeneous radical ideal.

Next we give a necessary and sufficient condition for the defining ideal of a sub-
scheme X ⊆ PK(W ) to possess a projective border basis. Later we study such subschemes
and explicitly use the additional structure given by the projective border bases, e.g. to
characterize (i, j)-uniform subschemes in Corollary 5.2.9.

Definition 5.1.5. a) A projective point (c0 : · · · : cn) ∈ PK(W ) with c0, . . . , cn ∈ K
is called K-rational

b) A subscheme X ⊆ PK(W ) is said to have a K-rational support if all points of
the zero set Z+(I+(X)) ⊆ PK(W ) are K-rational.

Proposition 5.1.6. Let p = (1 : c1 : · · · : cn) ∈ PK(W ) be a K-rational point. Then we
have I+({p}) = 〈x1 − c1x

w1
0 , . . . , xn − cnxwn0 〉 and Z+(I+({p})) = {p}.
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Proof. Since I+({p}) ⊇ 〈x1− c1x
w1
0 , . . . , xn− cnxwn0 〉 obviously holds by Definition 5.1.3,

it suffices to prove the converse inclusion. Let f ∈ I+({p}) \ {0}. Then Definition 5.1.3
yields 0 = f(1, c1, . . . , cn) = fdeh(c1, . . . , cn). Thus [KR05, Exmp. 6.3.2] implies that
fdeh ∈ I({(c1, . . . , cn)}) = 〈x1 − c1, . . . , xn − cn〉 Moreover, [KR05, Prop. 4.3.2] yields
that f = xs0(fdeh)hom ∈ I({(c1, . . . , cn)})hom for some s ∈ N. Let σ be a term ordering
on Tn that is compatible with degW . Then {x1− c1, . . . , xn− cn} is a σ-Gröbner basis of
I({(c1, . . . , cn)}) according to [KR00, Coro. 2.5.10]. Now [KR05, Prop. 4.2.15] shows that
{x1−c1, . . . , xn−cn} is also a Macaulay basis of I({(c1, . . . , cn)}) with respect toW and
thus f ∈ I({(c1, . . . , cn)})hom = 〈x1 − c1x

w1
0 , . . . , xn − cnxwn0 〉 by [KR05, Thm. 4.3.19].

The other claim is a direct consequence of this and Definition 5.1.3.

If not mentioned otherwise, we let X ⊆ PK(W ) be a non-empty, zero-dimensional
subscheme that has a K-rational support, let R = P/I+(X) be the coordinate ring of X,
and let m =

⊕∞
γ=1 P γ = 〈x0, . . . , xn〉 denote the homogeneous maximal ideal of the

Z-graded K-algebra P =
⊕∞

γ=0 P γ for the remainder of this section.

Proposition 5.1.7. Let I+(X) = q1∩· · ·∩qs with s ∈ N\{0} and q1, . . . , qs ⊆ P be the
reduced homogeneous primary decomposition of I+(X) as in [KR05, Prop. 5.6.21]. For
every i ∈ {1, . . . , s}, let pi =

√
qi. Then the support of X is Supp(X) = {p1, . . . , ps} and

for every i ∈ {1, . . . , s}, there is a K-rational point pi ∈ PK(W ) such that pi = I+({pi}).

Proof. Let i ∈ {1, . . . , s}. The radical ideal pi =
√
qi of the homogeneous primary

ideal qi ⊆ P is a homogeneous prime ideal according to [KR05, Prop. 4.1.11] and
[Kun85, Rem. V.4.3]. Since X ⊆ PK(W ) is a non-empty zero-dimensional subscheme,
we get I+(X) ⊂ m. As the primary decomposition is reduced, we get pi ⊂ m. Al-
together, we have the following chain of homogeneous ideals I+(X) ⊆ pi ⊂ m. Con-
sider the corresponding vanishing ideals in the affine space An+1

K
= Spec(K[x0, . . . , xn]).

Since both pi and m are prime ideals, they are also radical ideals according to [Kun85,
Defn. I.1.6]. As pi ⊂ m, the Ideal-Variety Correspondence [CLO07, Thm. 4.2.7] yields
the chain An+1

K
⊇ Z(I+(X)) ⊇ Z(pi) ⊃ Z(m) = {0}. Thus there is an affine point

(c0, . . . , cn) ∈ Z(pi) \ {0} ⊆ Z(I+(X)). In particular, the corresponding projective point
(c0 : · · · : cn) ∈ PK(W ) is also a zero of the homogeneous ideal I+(X) ⊆ pi. Since X
has a K-rational support, it follows (c0 : · · · : cn) ∈ PK(W ) from Definition 5.1.5. Let
p = I+({c0 : · · · : cn}). Then pi ⊆ p by Definition 5.1.3. Let f, g ∈ P be homogeneous
polynomials with fg ∈ p. Then we have f(c0, . . . , cn)g(c0, . . . , cn) = (fg)(c0, . . . , cn) = 0
by Definition 5.1.3. AsK is a field, we thus see that f(c0, . . . , cn) = 0 or g(c0, . . . , cn) = 0,
i.e. f ∈ p or g ∈ p by Definition 5.1.3. Now [KR00, Prop. 1.7.12] implies that p
is a homogeneous prime ideal. In particular, we get the chain of homogeneous ideals
I+(X) ⊆ pi ⊆ p ⊂ m. As X ⊆ PK(W ) is zero-dimensional and as pi and p are both ho-
mogeneous prime ideals, it follows that pi = p. Thus we see that Supp(X) ⊇ {p1, . . . , ps}
and that for all i ∈ {1, . . . , s}, pi = I+({pi}) for some point pi ∈ PK(W ).
For the converse inclusion, let p ⊂ m be a homogeneous ideal with the property

that I+(X) ⊆ p. As above, there is a zero p ∈ PK(W ) of p and since the subscheme
X ⊆ PK(W ) is zero-dimensional, it follows p = I+({p}). Thus I+(X) ⊆ p = I+({p}),
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Z+(pi) = Z+(qi) for all i ∈ {1, . . . , s}, together with Definition 5.1.3 and Proposi-
tion 5.1.6 yield

p ∈ Z+(I+({p}))
⊆ Z+(I+(X))

= Z+(q1 ∩ · · · ∩ qs)

= Z+(p1) ∪ · · · ∪ Z+(ps)

= Z+(I+({p1})) ∪ · · · ∪ Z+(I+({ps}))
= {p1, . . . , ps}

Thus there is an index i ∈ {1, . . . , s} such that p = pi and we get p = pi. Altogether, we
see that Supp(X) ⊆ {p1, . . . , ps} and the claim follows.

The following proposition generalizes [KR05, Prop. 6.3.21.e] to our setting.

Proposition 5.1.8. The following conditions are equivalent.

i) No point of X lies on the hyperplane at infinity of PK(W ), i.e. X ∩H inf = ∅.

ii) The element x0 ∈ P is a non-zero divisor for R = P/I+(X).

iii) There isx a projective border basis of the homogeneous vanishing ideal I+(X) ⊆ P .

Proof. Let I+(X) = q1 ∩ · · · ∩ qs be the reduced homogeneous primary composition
of I+(X) ⊆ P as in [KR05, Prop. 5.6.21] and for all i ∈ {1, . . . , s}, let pi =

√
qi. As

we have seen in Proposition 5.1.7, we have pi = I+({pi}) where pi ∈ PK(W ) for all
i ∈ {1, . . . , s} and Supp(X) = {p1, . . . , ps}.
Now we prove that i) implies ii). Since we assume that X ∩H inf = ∅, it follows that

x0 /∈ I+({p1}) ∪ · · · ∪ I+({ps}) = p1 ∪ · · · ∪ ps =
√
q1 ∪ · · · ∪

√
qs. Thus x0 is a non-zero

divisor for P/(q1 ∩ · · · ∩ qs) = R according to [KR05, Prop. 5.6.17.c].
Next we prove that ii) implies i). By the Second Noetherian Isomorphism Theorem,

we have R/〈x0〉 ∼= P/(I+(X) + 〈x0〉) and the prime ideals of R/〈x0〉 are in one-to-one
correspondence to the prime ideals of R that contain x0. Assume that x0 ∈ pi for some
i ∈ {1, . . . , s}. Let pi and m denote the images of the prime ideals pi and m in the ring R,
respectively. Then we get the chain of prime ideals 〈x0〉 ⊆ pi ⊂ m ⊂ R. Thus the Krull
dimension of R/〈x0〉 is greater than or equal to 1. According to [KR05, Thm. 5.6.36],
this implies dim(R/〈x0〉) ≥ 1. Since x0 is a non-zero divisor for R, it follows from [KR05,
Prop. 5.6.33] that dim(R/〈x0〉) = dim(P/(I+(X) + 〈x0〉)) ≤ dim(R) − 1 = 0. This is
clearly a contradiction and we get x0 /∈ pi = I+({pi}) for all i ∈ {1, . . . , s} and i) follows.
The equivalence of ii) and iii) is a direct consequence of Proposition 4.1.7 and Corol-

lary 4.1.14

Next we show that we can often find a suitable linear change of coordinates such that
no point of X is on the hyperplane at infinity in this new coordinate system.
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Definition 5.1.9. A homogeneous isomorphism P → P is also called a homogeneous
linear change of coordinates.

The following proposition follows the ideas of [MR93, beginning of Section 2.1] re-
spectively [KR05, Lemma 6.3.20 and Prop. 5.5.23.a] and generalizes the result to our
setting.

Proposition 5.1.10. Assume that K is an infinite field and X ∩ Z+(〈Tn+1
1 〉) = ∅.

Then there is a generic homogeneous linear change of coordinates such that X∩H inf = ∅.

Proof. According to Proposition 5.1.7, there are K-rational points p1, . . . , ps ∈ PK(W )
where s ∈ N\{0} such that Supp(X) = {I+({p1}), . . . , I+({ps})}. For all i ∈ {1, . . . , s},
we write pi = (ci0 : · · · : cin) with ci0, . . . , cin ∈ K. Without loss of generality, suppose
that the indeterminates x1, . . . , xn are ordered increasingly with respect to degW . Then
Tn+1

1 = {x0, . . . , xj} for some j ∈ {0, . . . , n}. Let f =
∏s
i=1(ci0x0 + ci1x1 + · · ·+ cijxj).

Since we assume that X ∩ Z+(〈x0, . . . , xj〉) = ∅, it follows f 6= 0. Let An+1
K = Spec(P ).

The set U = An+1
K \ ZK(x0f) is open with respect to the Zariski topology and it is not

empty by [KR05, Prop. 5.5.21]. Let a = (a0, . . . , aj) ∈ U . Then we have a0 6= 0. Let
`a = 1

a0
(x0 − a1x1 − · · · − ajxj) ∈ P 1 and let Φa : P → P , x0 7→ `a, xi 7→ xi for all

i ∈ {1, . . . , n} be the K-algebra homomorphism induced by the Universal Property of
the Polynomial Ring P .
We show that Φa is a homogeneous linear change of coordinates. As Φa(x0) = `a ∈ P 1,

it follows that Φa is a homogeneous K-algebra homomorphism. Moreover, we have
x0 = a0`a + a1x1 + · · · ajxj = Φa(a0x0 + · · ·+ ajxj) ∈ im(Φa) and xi = Φa(xi) ∈ im(Φa)
for all i ∈ {1, . . . , n}, i.e. Φa is surjective. Let p ∈ ker(Φa). For every q ∈ P \ {0}, the
x0-degree of Φa(q) is exactly the x0-degree of q. Hence we get q ∈ P . Since Φa|P = id,
it follows that 0 = Φa(q) = q. Therefore, ker(Φa) = {0} and Φa is injective. Altogether,
Φa is a homogeneous linear of change of coordinates by Definition 5.1.9.
Finally, we show that after the homogeneous linear change of coordinates Φa, no

point of the support Supp(X) lies on the hyperplane at infinity H inf . Therefore, let
i ∈ {1, . . . , s}. After applying Φa, the point pi = (ci0 : · · · : cin) ∈ X has the new coordi-
nates (Φ−1

a (x0)(pi), . . . ,Φ
−1
a (xn)(pi)) = (a0ci0 + · · ·+ ajcij : ci1 : · · · : cin). As a ∈ U , we

have a0ci0 + · · ·+ ajcij 6= 0, i.e. pi /∈ H inf .
Altogether, we have proven that every point of U defines a homogeneous linear change

of coordinates with the property that X∩H inf = ∅. By [KR05, Defn. 5.5.19], this means
that there exists a generic homogeneous linear change of coordinates.

The assumptions of the above proposition are necessary as the following example shows.

Example 5.1.11. a) Let X ⊆ P2
F2

be the reduced zero-dimensional subscheme con-
centrated at the points of {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (0 : 1 : 1), (1 : 1 : 1)}. Then
there does obviously not exist a homogeneous linear change of coordinates such
that X ∩ H inf = ∅. The reason for this is that the projective space P2

F2
does not

contain enough points.
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b) Let P = Q[x0, x1, x2] be Z-graded by the matrix W = (1, 1, 2) ∈ Mat1,3(Z) and
we let X ⊆ PQ(W ) be the reduced zero-dimensional subscheme concentrated at the
point (0 : 0 : 1). Let Φ : P → P be a homogeneous linear change of coordinates. In
the new coordinate system, the projective point (0 : 0 : 1) then has the coordinates
(Φ−1(x0)(0, 0, 1) : Φ−1(x1)(0, 0, 1) : Φ−1(x2)(0, 0, 1)). As Φ is homogeneous accord-
ing to Definition 5.1.9 and as x0 ∈ P 1, we have Φ−1(x0) ∈ P 1. Since the set
T3

1 = {x0, x1} is a Q-vector space basis of P 1, we see that there exist a0, a1 ∈ Q
such that Φ−1(x0) = a0x0 + a1x1. In particular, in the new coordinate system, the
point (0 : 0 : 1) has the x0-coordinate Φ−1(x0)(0, 0, 1) = (a0x0 + a1x1)(0, 0, 1) = 0.
Thus there is no homogeneous linear change of coordinates such that X∩H inf = ∅
in the new coordinates.

Remark 5.1.12. Assume that K is infinite.

a) Assume that X∩Z+(〈Tn+1
1 〉) = ∅. Then Proposition 5.1.10 implies the existence of

a generic linear change of coordinates such that X∩H inf = ∅. Thus there is a high
chance that a random choice of a linear change of coordinates yields X∩H inf = ∅.
For practical purposes, repeatedly choosing random linear changes of coordinates
until X ∩H inf = ∅ holds is enough.

b) Assume that P is standard graded, i.e. graded by W = (1, . . . , 1) ∈ Mat1,n+1(Z).
Then the condition X ∩ Z+(〈Tn+1

1 〉) = X ∩ Z+(〈x0, . . . , xn〉) = ∅ is trivially holds.
As described in a), one can guess a suitable linear change of coordinates such that
X ∩ H inf = ∅ holds. Moreover, there are also deterministic methods to choose
such a linear change of coordinates. An explicit description of such a deterministic
method, which is based on a result in [GH91, Subsection 2.3.3], can be found
in [MR93, Section 2.1].

The final part of this section is devoted to prove a version of [Kre94, Lemma 2.2] in
our setting. This lemma states that for a given subscheme Y ⊆ X, we can find specific
subschemes Y′ ⊆ X with Y ⊆ Y′.

The following lemma generalizes [Kre94, Lemma 1.2] and gives an easier description
of the saturation of a homogeneous ideal in our setting.

Lemma 5.1.13. Let J ⊆ R be a homogeneous ideal and let ε : P � R denote the
canonical P -algebra epimorphism. Assume that X ∩H inf = ∅. Then the saturation J sat

is given by J sat = {r′ ∈ R | xi0r′ ∈ J for some i ∈ N} and J sat = ε(ε−1(J) :P 〈x0〉∞).

Proof. As x0 ∈ m, the inclusion J sat ⊆ {r ∈ R | xi0r ∈ J for some i ∈ N} trivially holds
according to Definition 5.1.1. For the converse inclusion, let r ∈ R and i ∈ N be such
that xi0r ∈ J . Since X ∩ H inf = ∅, there is a projective O-border basis of I+(X) by
Proposition 5.1.8. Since X ⊆ PK(W ) is a non-empty subscheme, I+(X) 6= P and hence
O 6= ∅. Let σX = max({degW (t) | t ∈ O}) − 1. Then Proposition 4.1.15 implies
RσX+1+m = xm0 RσX+1 for all m ∈ N. In particular, mσX+1+ir = mσX+1xi0r ⊆ J , i.e.
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r ∈ J sat according to Definition 5.1.1. In particular,

J sat = {r ∈ R | xi0r ∈ J for some i ∈ N}
= {ε(p) | p ∈ P , xi0p ∈ ε−1(J) for some i ∈ N}
= {ε(p) | p ∈ ε−1(J) :P 〈x0〉∞}
= ε(ε−1(J) :P 〈x0〉∞).

according to Definition 5.1.1 and [KR00, Defn. 3.5.7].

Next we consider the local structure of the subscheme X at the points of its support.
The following two lemmata generalize [CLO05, Thm. 4.§2.2.2] to arbitrary fields.

Lemma 5.1.14. Let AnK = Spec(P ) and let I ⊂ P be a zero-dimensional ideal such
that Z(I) = {p1, . . . , ps} ⊆ AnK , i.e. such that all zeros of I are K-rational. For all
i ∈ {1, . . . , s}, we let mi = I({pi}) ⊆ P be the maximal ideal corresponding to pi.

a) There exists an exponent d ∈ N \ {0} such that (m1 ∩ · · · ∩ms)
d ⊆ I.

b) There exist e1, . . . , es ∈ P such that the following properties hold.

1) We have ei /∈ mi for all i ∈ {1, . . . , s}.
2) We have e1 + · · ·+ es = 1 in P/I.

3) We have e2
i = ei for all i ∈ {1, . . . , s} in P/I.

4) We have eiej = 0 for all i, j ∈ {1, . . . , s} with i 6= j in P/I.

5) For all i ∈ {1, . . . , s} and for all fi ∈ P \mi, there exists a polynomial hi ∈ P
such that f ihi = ei in P/I.

Proof. First we prove a). LetM = m1∩· · ·∩ms and q1, . . . , qr ∈ P with r ∈ N\{0} be such
that M = 〈q1, . . . , qr〉 and let Q = K[x1, . . . , xn]. Since the points in Z(I) = {p1, . . . , ps}
are K-rational, m1Q, . . . ,msQ are precisely the maximal ideals in Q containing IQ by
[KR00, Prop. 2.6.11]. For all i ∈ {1, . . . , r}, we have qi ∈M and thus [KR00, Coro. 2.6.17]
implies that qi ∈

√
I. In particular, for every i ∈ {1, . . . , r}, there exists an exponent

di ∈ N \ {0} such that qdii ∈ I. Let d = r · max{d1, . . . , dr} ∈ N \ {0}. According to
[KR00, Rem. 3.2.1], we have Md = 〈qj1 · · · qjd | j1, . . . , jd ∈ {1, . . . , r}〉 and thus we get
Md ⊆ I.
Next we prove b). For all i ∈ {1, . . . , s}, [KR05, Prop. 6.3.6] yields the existence

of a separator gi ∈ P of pi from the affine point set {p1, . . . , pi−1, pi+1, . . . , ps}, i.e. an
element with the property that gi(pj) = δij for all j ∈ {1, . . . , s}. In particular, gi ∈ mj

and gi−1 ∈ mi for all i, j ∈ {1, . . . , s} with i 6= j. For every index i ∈ {1, . . . , s}, we define
ei = 1 − (1 − gdi )d = −

∑d
k=1

(
d
k

)
(−gdi )k. Then for all i ∈ {1, . . . , s}, we have ei(pi) = 1

and thus ei /∈ mi. Moreover, let i, j ∈ {1, . . . , s} be with i 6= j. Then gdi ∈ md
j and thus we

see that ei ∈ md
j . Furthermore, it follows that ei−1 = −(1− gdi )d ∈ md

i and hence we get
e1+· · ·+es−1 = e1+· · ·+ei−1+(ei−1)+ei+1+· · ·+es ∈ md

1∩· · ·∩md
s . Since the maximal

ideals m1, . . . ,ms ⊆ P are radical ideals by [Kun85, Defn. I.1.6] and pairwise comaximal,
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[AM69, Prop. 1.16 and 1.10] yield that md
1 ∩ · · · ∩ md

s = md
1 · · ·md

s = Md ⊆ I. Thus
e1+· · ·+es = 1 in P/I. Moreover, we see that eiej ∈ md

1∩· · ·∩md
s ⊆ I and hence eiej = 0

in P/I. Combining these two results, we get e2
i = eie1 + · · ·+eies = ei ·(e1 + · · ·+es) = ei

in P/I. For the proof of the last condition, let fi ∈ P \mi. Then c = fi(pi) ∈ K\{0}. Let
f ′i = 1

cfi ∈ P . Then we have 1−f ′i ∈ mi. We define h′i = (1+(1−f ′i)+· · ·+(1−f ′i)d−1)ei.
Then f ′ih

′
i = (1 − (1 − f ′i))h′i = (1 − (1 − f ′i)d)ei = ei − (1 − f ′i)dei. We have already

seen above that ei ∈ md
j for all j ∈ {1, . . . , s} \ {i}. Moreover, (1− f ′i)d ∈ md

i . Hence we
get f ′ih

′
i − ei ∈ md

1 ∩ · · · ∩md
s = Md ⊆ I. Therefore, if we define hi = ch′i, it follows that

f ihi = 1
cf
′
ichi = f

′
ih
′
i = ei in P/I.

Lemma 5.1.15. Let AnK = Spec(P ) and let I ⊂ P be a zero-dimensional ideal such
that Z(I) = {p1, . . . , ps} ⊆ AnK , i.e. such that all zeros of I are K-rational. For all
i ∈ {1, . . . , s}, we let mi = I({pi}) ⊆ P be the maximal ideal corresponding to pi and
we let Oi = Pmi be the localization of P at mi. Then there exists a canonical K-algebra
isomorphism P/I ∼= O1/IO1 × · · · × Os/IOs.

Proof. For every index i ∈ {1, . . . , s}, there is a canonical K-algebra homomorphisms
ϕi : P ↪→ Oi � Oi/IOi. According to the Universal Property of the Direct Product
O1/IO1×· · ·×Os/IOs, these canonical K-algebra homomorphisms induce the canonical
K-algebra homomorphism ϕ = ϕ1 × · · · × ϕs : P → O1/IO1 × · · · × Os/IOs. For all
i ∈ {1, . . . , s} and for all q ∈ P , we denote the coset of q in Oi/IOi by [q]i.

First we prove that ker(ϕ) = I. For every q ∈ I and all i ∈ {1, . . . , s}, we have
ϕi(q) = [q]i = [0]i and thus I ⊆ ker(ϕ). For the converse inclusion, let f ∈ ker(ϕ). Then
for all i ∈ {1, . . . , s}, we have f ∈ IOi, i.e. there exists an fi ∈ P \mi such that ffi ∈ I.
For all i ∈ {1, . . . , s}, let ei, hi ∈ P be as in Lemma 5.1.14, i.e. such that f ihi = ei
in P/I. Then we have f(f1h1 + · · · + fshs) = (ff1)h1 + · · · + (ffs)hs ∈ I and thus it
follows that 0 = f(f1h1 + · · ·+ fshs) = f(e1 + · · ·+ es) = f in P/I. Altogether, we get
f ∈ I and hence I = ker(ϕ).
According to the Homomorphism Theorem, the claim follows if ϕ is surjective. Let

r ∈ O1/IO1× · · · ×Os/IOs. For all i ∈ {1, . . . , s}, there are ri ∈ P and qi ∈ P \mi such
that r = ([ r1q1 ]1, . . . , [

rs
qs

]s). By Lemma 5.1.14.b, there exists a ui ∈ P such that qiui = ei
in P/I for all i ∈ {1, . . . , s}. Let F =

∑s
i=1 riuiei ∈ P and j ∈ {1, . . . , s}. According to

Lemma 5.1.14, we have ej /∈ mj and thus 1
ej
∈ Oj . In particular, ej − 1 =

e2j−ej
ej
∈ IOj

and ei =
eiej
ej
∈ IOj for all i ∈ {1, . . . , s} \ {j} by Lemma 5.1.14. Altogether, it follows

that ϕj(F ) = [
∑s

i=1 riuiei]j = [
∑s

i=1
ri
qi
e2
i ]j = [

∑s
i=1

ri
qi
ei]j = [

rj
qj

]j , i.e. ϕ(F ) = r. Thus ϕ
is surjective and the claim follows.

Next we generalize [Kre94, Lemma 1.1] to our setting.

Lemma 5.1.16. Assume that X ∩H inf = ∅. Then deh : R � P/I+(X)deh, p 7→ pdeh

for all p ∈ P is a K-algebra epimorphism with ker(deh) = 〈x0 − 1〉 ⊆ R. In particular,
if we denote σX = max{γ ∈ Z | ∆ HFX(γ) 6= 0} − 1, the restriction deh|RσX+1 of deh
to RσX+1 is a K-vector space isomorphism.
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Proof. Consider the K-algebra epimorphism ϕ : P
deh
−−� P � P/I+(X)deh induced by

dehomogenization and the canonical K-algebra epimorphism. By Lemma 2.6.7, we have
ker(ϕ) = deh−1(I+(X)deh) = I+(X) + ker(deh) = I+(X) + 〈x0 − 1〉. Thus we see that
I+(X) ⊆ ker(ϕ) and the Universal Property of the Residue Class K-Algebra P/I+(X)deh

induces the K-algebra epimorphism deh : P/I+(X) = R � P/I+(X)deh defined by
p 7→ ϕ(p) = pdeh for all p ∈ P . In particular, ker(deh) = ker(ϕ)/I+(X) = 〈x0 − 1〉 ⊆ R.
As X∩H inf = ∅, Proposition 5.1.8 implies the existence of a projective O-border basis G
of I+(X). In particular, it follows that σX + 1 = max{degW (t) | t ∈ O} and thus
dimK(RσX+1) = #O according to Proposition 4.1.15. Moreover, Proposition 4.1.7 yields
that the set {gdeh | g ∈ G} ⊆ P is an O-border basis of I+(X)deh and thus we have
dimK(P/I+(X)deh) = #O = dimK(RσX+1) <∞ by Definition 2.1.14. In particular, the
elements of P/I+(X) are K-linear combinations of the residue classes of the elements
of O, i.e. of the form p with p ∈ P≤σX+1. Since we have deh(x

σX+1−degW (p)
0 p) = p and

x
σX+1−degW (p)
0 p ∈ P σX+1 for all p ∈ P≤σX+1, deh|RσX+1 is aK-algebra epimorphism. Since

dimK(RσX+1) = dimK(P/I+(X)deh) < ∞, it is even a K-vector space isomorphism and
the claim follows.

Before we are able to generalize [Kre94, Lemma 2.2] to our setting, we need to define
the concept of separators.

Definition 5.1.17. Let X ⊆ PK(W ) be an arbitrary non-empty zero-dimensional
subscheme and let R = P/I+(X) be the corresponding coordinate ring.

a) Since X is a zero-dimensional subscheme, the Hilbert function HFX = HFR gets
eventually stationary. Its maximum value deg(X) = max{HFX(γ) | γ ∈ Z} ∈ N is
called the degree of X.

b) Let Y ⊆ X be a non-empty subscheme of degree deg(Y) = deg(X)− 1. The natural
number αX(Y) = min{γ ∈ Z | (I+

X (Y))γ 6= 0} is called the initial degree of I+
X (Y).

c) Let Y ⊆ X be a non-empty subscheme of degree deg(Y) = deg(X) − 1. We call
every element of (I+

X (Y))αX(Y) \ {0} a minimal separator of Y and every element
of (I+

X (Y))σX+1 \ {0} is called a separator of Y.

Proposition 5.1.18. Let X ⊆ PK(W ) be an arbitrary non-empty zero-dimensional
subscheme with coordinate ring R = P/I+(X), let Y ⊆ X be a non-empty subscheme of
degree deg(Y) = deg(X) − 1, and let αX(Y) = min{γ ∈ Z | (I+

X (Y))γ 6= 0} be the initial
degree of I+

X (Y). Moreover, let σX = max{γ ∈ Z | HFX(γ) < deg(X)}.

a) The Hilbert function of Y satisfies

HFY(γ) =

{
HFX(γ) if γ < αX(Y)

HFX(γ)− 1 if γ ≥ αX(Y)

for all γ ∈ Z. In particular, we get αY(X) ≤ σX + 1.
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b) Let f∗Y ∈ (I+
X (Y))αX(Y) \ {0}. Then we have (I+

X (Y))γ = K · xγ−αX(Y)
0 f∗Y for all

γ ∈ Z with γ ≥ αX(Y).

Proof. This is proven in [Kre94, Section 1] for K being algebraically closed and P being
standard graded. In our setting, the proof stays just the same.

Finally, we are now able to generalize [Kre94, Lemma 2.2] to our setting.

Proposition 5.1.19. Assume that X∩H inf = ∅. Moreover, we let AnK = Spec(P ) and
denote σX = max({γ ∈ Z | HFX(γ) < deg(X)}).

a) The ideal I+(X)deh ⊆ P is a zero-dimensional ideal and Z(I+(X)deh) ⊆ AnK , i.e.
all the zeros of I+(X)deh are K-rational.

b) Let k ∈ N and r ∈ Rk \ {0}. Then there exists an r′ ∈ RσX+1, a subscheme Y ⊆ X
with deg(Y) = deg(X)− 1, and a separator fY ∈ RσX+1 of Y such that rr′ = xk0fY.

c) If Y ⊆ X is a subscheme and k ∈ N satisfies deg(Y) ≤ k ≤ deg(X), then there
exists a subscheme Y′ ⊆ X such that deg(Y′) = k and such that Y ⊆ Y′.

Proof. First we prove a). We denote I = I+(X)deh. According to Lemma 5.1.16
and Definition 5.1.17, we have dimK(P/I) = dimK(RσX+1) = deg(X) < ∞, i.e. I ⊆ P
is a zero-dimensional ideal according to [KR00, Defn. 3.7.2]. By the Finiteness Cri-
terion [KR00, Prop. 3.7.1], the zero set Z(I) ⊆ An

K
= Spec(K[x1, . . . , xn]) is finite.

Let Z(I) = {p1, . . . , ps} ⊆ An
K

be where s ∈ N. Since X is assumed to be non-
empty, we also have dimK(RσX+1) = deg(X) > 0. According to Lemma 5.1.16, it
follows that dimK(P/I) = dimK(RσX+1) > 0, i.e. I ⊂ P . By the Weak Nullstellen-
satz [KR00, Thm. 2.6.13], we hence get Z(I) 6= ∅, i.e. s ≥ 1. Let i ∈ {1, . . . , s} and
write pi = (pi1, . . . , pin) ∈ An

K
with pi1, . . . , pin ∈ K. As X ∩ H inf = ∅ by assumption,

we have I+(X) = Ihom according to Proposition 5.1.8 and [KR05, Prop. 4.3.5]. Let
F ∈ I+(X) be a homogeneous polynomial and let d ∈ N be maximal such that xd0 di-
vides F . By [KR05, Prop. 4.3.2.h], we have F = xd0(F deh)hom. In particular, we see that
F (1, pi1, . . . , pin) = (xd0(F deh)hom)(1, pi1, . . . , pin) = F deh(pi1, . . . , pin) = 0 since F deh ∈ I
and since pi ∈ Z(I). In other words, the projective point (1 : pi1 : · · · : pin) is a common
zero of the ideal I+(X). Since the zeros of I+(X) are assumed to be K-rational, we see
that pi = (pi1, . . . , pin) is also K-rational and hence Z(I) ⊆ AnK follows.
Next we prove the second claim. For all i ∈ {1, . . . , s}, let mi = I({pi}) ⊆ P be

the maximal ideal corresponding to the point pi and let Oi = Pmi be the localization
of P at mi. Let ϕ : P/I

∼−→ O1/IO1 × · · · × Os/IOs be the K-algebra isomorphism
of Lemma 5.1.15, let deh : R � P/I be the K-algebra epimorphism of Lemma 5.1.16,
and let ι = ϕ ◦ deh. Note that since the restriction ι|RσX+1 of ι to RσX+1 is a K-vector
space isomorphism according to Lemma 5.1.16, we have ι−1({f}) ∩ RσX+1 6= ∅ for all
f ∈ O1/IO1 × · · · × Os/IOs. We distinguish two cases.
For the first case, suppose that k ≤ σX+1. Let (r1, . . . , rs) := ι(xσX+1−k

0 r). Since we have
r 6= 0, there exists an i ∈ {1, . . . , s} such that ri 6= 0. The K-algebra Oi is Noetherian
by [Kun85, Coro. III.4.11] and it is a local ring with maximal ideal miOi according to
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[Kun85, Exmp. d in III.3]. Let p ⊆ Oi be a prime ideal with IOi ⊆ p. Assume that
p 6= miOi. Since miOi is the maximal ideal of the local ring Oi, we get the chain of ideals
IOi ⊆ p ⊂ miOi inOi. i.e. dim(Oi/IOi) > 0. As P/I ∼= O1/IO1×· · ·×Os/IOs according
to Lemma 5.1.15 and as I is zero-dimensional by a), 0 = dim(P/I) ≥ dim(Oi/IOi) > 0.
Hence it follows that p = miOi. By [Kun85, Defn. I.1.6], this means that miOi is the
only minimal prime divisor of the ideal IOi and IOi ⊆ Oi is thus an miOi-primary ideal
by [Kun85, Lemma V.4.4]. Now we consider the socle S(Oi/IOi) of the ring Oi/IOi,
i.e. the set S(Oi/IOi) = {f ∈ Oi/IOi | f ∈ Oi,miOi · f = {0}} ⊆ Oi/IOi. As ri 6= 0,
[Kun85, p. 189] implies the existence of an element r′i ∈ Oi/IOi and a socle element
si ∈ S(Oi/IOi) such that rir′i = si. Let fY ∈ ι−1((0, . . . , 0, si, 0, . . . , 0)) ∩RσX+1 and let
r′ ∈ ι−1((0, . . . , 0, r′i, 0, . . . , 0)) ∩RσX+1. Then we have

ι(xσX+1−k
0 rr′ − xσX+1

0 fY)

= ι(xσX+1−k
0 r)ι(r′)− ι(xσX+1

0 )ι(fY)

= (r1, . . . , rs)(0, . . . , 0, r
′
i, 0, . . . , 0)− (1, . . . , 1)(0, . . . , 0, si, 0, . . . , 0)

= (0, . . . , 0, rir
′
i, 0, . . . , 0)− (0, . . . , 0, si, 0, . . . , 0)

= 0,

i.e. xσX+1−k
0 rr′ − xσX+1

0 fY ∈ ker(ι)2(σX+1). We have ker(ι) = ker(deh) = 〈x0 − 1〉 ⊆ R

by Lemma 5.1.16. Let p ∈ R be such that xσX+1−k
0 rr′ − xσX+1

0 fY = p(x0 − 1). In
particular, p(x0 − 1) is homogeneous of degree 2(σX + 1). Let p =

∑
γ∈Z pγ be the

decomposition of p in its homogeneous components. Assume that p 6= 0. Then the
elements m = min{γ ∈ Z | pγ 6= 0} and d = max{γ ∈ Z | pγ 6= 0} exist and we get
p(x0 − 1) = pdx0 + p̃ − pm ∈ R2(σX+1) with an element p̃ ∈

⊕d−1
γ=m+1Rγ . As x0 is a

non-zero divisor for R by Proposition 5.1.8 and as 1 is obviously a non-zero divisor for R,
it follows that d < d+1 = m in contradiction to the choice ofm and d. Thus we get p = 0
and this implies xσX+1−k

0 (rr′− xk0fY) = xσX+1−k
0 rr′− xσX+1

0 fY = 0. Since the element x0

is a non-zero divisor for R by Proposition 5.1.8, we get the equality rr′ − xk0fY = 0. It
remains to prove that fY is a separator of a subscheme Y ⊆ X with deg(Y) = deg(X)−1.
Let Y ⊆ X be the subscheme of X defined by the saturated ideal 〈fY〉sat ⊆ R. For
all k ∈ {1, . . . , n}, we have ι((xk − pikxwk0 )fY) = (0, . . . , 0, (xk − pik)si, 0, . . . , 0) = 0 as
xk − pik ∈ mi and si ∈ S(Oi/IOi). Thus (xk − pikxwk0 )fY ∈ ker(ι)σX+1+wk and in an
analogous fashion as above, we get (xk − pikxwk0 )fY = 0 and thus xkfY = pikx

wk
0 fY for

all k ∈ {1, . . . , n}. In particular, we see that (〈fY〉sat)γ = K · xγ−σX−1
0 fY for all γ ∈ Z

with γ ≥ σX + 1 and thus deg(Y) = deg(X) − HF〈fY〉sat(σX + 1) = deg(X) − 1. By
Definition 5.1.17, fY is a separator of Y and the claim follows in the case k ≤ σX + 1.
For the second case, suppose now that k > σX + 1. As X ∩H inf = ∅, Proposition 5.1.8
yields the existence of a projective O-border basis of I+(X). In particular, it follows
that σX + 1 = max{degW (t) | t ∈ O}. Now Proposition 4.1.15 implies that r is of the
form r = xk−σX−1

0 r̃ for some r̃ ∈ RσX+1. As we have already shown in the first case,
there exists a subscheme Y ⊆ X of degree deg(Y) = deg(X)− 1, a separator fY ∈ RσX+1

of Y, and an element r′ ∈ RσX+1 such that r̃r′ = xσX+1
0 fY. Altogether, we see that

rr′ = xk−σX−1
0 r̃r′ = xk−σX−1

0 xσX+1
0 fY = xk0fY and b) follows.
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Finally, we prove claim c). Let Y ⊆ X be a subscheme and let k ∈ N be a natural
number such that deg(Y) ≤ k ≤ deg(X). We prove the claim by downward induction
on k ∈ {deg(X), . . . ,deg(Y)}. Since the induction start k = deg(X) follows trivially, we
only have to prove the claim for k < deg(X). If deg(Y) = k, the claim follows trivially.
Thus suppose that deg(Y) < k. By the induction hypothesis, there is a subscheme Y′′ ⊆ X
such that deg(Y′′) = k + 1 and Y ⊆ Y′′. We let S = P/I+(Y′′). As Y′′ ⊆ X is a non-
emtpy subscheme, I+(Y′′) ⊇ I+(X) and, therefore, Z+(I+(Y′′)) ⊆ Z+(I+(X)), i.e. the
subscheme Y′′ ⊆ X has K-rational support, and we get Y′′ ∩ H inf ⊆ X ∩ H inf = ∅. As
deg(Y) < deg(Y′′), there exist a natural number m ∈ N with (I+

Y′′(Y))m 6= {0}. Let
s ∈ (I+

Y′′(Y))m \ {0} ∈ Sm \ {0}. Now b) implies the existence of an element s′ ∈ SσY′′+1,
of a subscheme Y′ ⊆ Y′′ such that deg(Y′) = deg(Y′′) − 1 = k, and of a separator
fY ∈ SσY′′+1 of Y, such that ss′ = xm0 fY. Hence Proposition 5.1.18 and Lemma 5.1.13
yield I+

Y′′(Y
′) = 〈fY′〉sat ⊆ 〈s〉sat ⊆ I+

Y′′(Y). Thus we have Y ⊆ Y′ and the claim
follows.

5.2 Projective Border Bases and Uniformity Conditions

In this section, we study zero-dimensional closed subschemes of weighted projective
spaces as introduced in Section 5.1. We restrict ourselves to the study of zero-dimensional
subschemes with K-rational support, cf. Definition 5.1.5, and with the property that no
point of the subschemes lies on the hyperplane H inf = Z+(x0) at infinity. By Proposi-
tion 5.1.10, there often exists a generic linear change of coordinates such that the second
property holds. More precisely, we do the following.

In the first subsection, we introduce the notion of certain uniformity conditions in Defi-
nition 5.2.1. We are particularly interested in the study of (i, j)-uniform zero-dimensional
subschemes since all the other uniformity condition of Definition 5.2.1 are special cases
of them, cf. Proposition 5.2.6. Since we assume that no point of the support of the
given subscheme X lies on the hyperplane at infinity H inf , we know that there exists a
projective O-border basis G of the corresponding defining ideal I+(X) ⊆ P . Moreover,
the formal (projective) multiplication matrices of G fully determine the multplicative
structure of the coordinate ring R = P/I+(X) and the corresponding canonical mod-
ule ωR, cf. Chapter 4. Those properties provide additional information that allow us
to characterize (i, j)-uniform subschemes by means of the multiplicative structure of the
corresponding canonical module in Theorem 5.2.7. As a direct consequence, we can char-
acterize (i, j)-uniform schemes via certain vanishing conditions in Corollary 5.2.9, which
allow us reduce the question whether X is (i, j)-uniform to certain radical membership
tests if the base field K is algebraically closed.

In the second subsection, we additionally assume that the subscheme X is reduced. In
this case, we can characterize (i, j)-uniform subschemes using separators as introduced
in Definition 5.1.17. In particular, we prove that the scheme X is (i, j)-uniform if and
only if certain sets are K-linearly independent in Theorem 5.2.14.
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For the whole section, we let X ⊆ PK(W ) be a non-empty zero-dimensional projective
subscheme with K-rational support and assume that X ∩ H inf = ∅. We want to study
uniformity conditions with the help of the canonical module ωR of the projective coordi-
nate ring R = P/I+(X). Let HFX = HFR : Z → Z, γ 7→ dimK(Rγ) be the multigraded
Hilbert function of X and let ∆ HFX : Z → Z, γ 7→ HFX(γ) − HFX(γ − 1) denote its
Castelnuovo function. Moreover, the invariant

σX = max{i ∈ Z | HFX(i) < deg(X)}

will play an important role throughout this section. According to [IK99, Thm. 1.69],
σX + 2 is exactly the Castelnuovo-Mumford regularity based on [Mum66, Lect. 14] in the
standard graded case. In order to achieve our goals, we study subschemes Y ⊆ X. We
define the Hilbert function HFY and the invariant σY similarly to the definitions above.
Recall that we always consider closed subschemes and thus simply say subscheme instead
of closed subscheme for the whole thesis.

5.2.1 The General Case

The study of projective point sets in uniform position over an algebraically closed field
of characteristic zero started with the Uniform Position Lemma in [Har80, Section 2].
Over algebraically closed fields of positive characteristic, projective point sets in uniform
position were studied in [Rat87]. In [Kre94, Section 3], the uniform position property
was refined to the notion of i-uniformity and applied to non-reduced zero-dimensional
subschemes. In [Kre98, Section 7], [Kre00, Section 5], and [Kre01, Section 2] the author
further generalized this notion to (i, j)-uniform zero-dimensional subschemes. The au-
thors of [MP04] also studied (i, j)-uniform reduced zero-dimensional subschemes. Note
that, as described in [MP04, Rem. 2], their notion slightly differs from ours in Defini-
tion 5.2.1, which coincides with the one in [Kre01, Defn. 2.1] in the standard graded case.
Similarly, the Cayley-Bacharach Theorem, which is named after theorems in [Cay43] and
[Bac86], was first generalized in [Kre94, Section 2] to non-reduced zero-dimensional sub-
schemes over algebraically closed fields.

Our notion of (i, j)-uniformity in Definition 5.2.1, unifies and generalizes all these
concepts and allows us to apply them to non-reduced zero-dimensional subschemes of
weighted projective spaces over arbitrary fields.

Definition 5.2.1. Let i ∈ {1, . . . ,deg(X)− 1} and j ∈ {1, . . . , σX}.

a) We say that X is an i-uniform scheme if for every subscheme Y ⊆ X that satisfies
deg(X)− i ≤ deg(Y) ≤ deg(X), we have HFY = min{HFX,deg(Y)}. In particular,
we say that X is in uniform position if X is (deg(X)− 1)-uniform.

b) We say that X is an (i, j)-uniform scheme if for all subschemes Y ⊆ X that satisfy
deg(Y) = deg(X)− i, we have HFY(j) = HFX(j).
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c) We say that the scheme X has the Cayley-Bacharach property of degree j,
if X is (1, j)-uniform. In particular, if X has the Cayley-Bacharach propery of
degree σX, we call X a Cayley-Bacharach scheme.

Example 5.2.2. Let P = Q[x0, x1, x2] be standard graded, i.e. graded by the matrix
W = (1, 1, 1) ∈ Mat1,3(Z), and consider the ideal I = p2

0 ∩ p2
1 ∩ p2

2 ⊆ P with the homo-
geneous vanishing ideals p0 = I+({(1 : 0 : 0)}), p1 = I+({(1 : 0 : 1)}), and with the ideal
p2 = I+({(1 : 1 : 0)}) of P as defined in Definition 5.1.3. According to Proposition 5.1.6,
we have p0 = 〈x1, x2〉, p1 = 〈x1, x2 − x0〉, and p2 = 〈x1 − x0, x2〉 and thus we can easily
compute I according to [KR00, Rem. 3.2.1 and Prop. 3.2.7]. By [KR00, Prop. 1.7.10] and
[KR05, Prop. 4.1.11], I is homogeneous. Let X ⊆ P2

Q be the subscheme that is scheme-
theoretically defined by I. By construction, X is zero-dimensional and concentrated at
the “fat points” (1 : 0 : 0), (1 : 0 : 1), and (1 : 1 : 0). The Hilbert function of the scheme X,
which can be computed using Proposition 4.1.15 and Corollary 4.1.14, is of the form
HFX : 1, 3, 6, 9, 9, . . .. Let J = p2

0 ∩ 〈x1, (x2 − x0)2〉 ∩ 〈(x1 − x0)2, x2〉 ⊆ P . Then J
is homogeneous by [KR00, Prop. 1.7.10] and [KR05, Prop. 4.1.11]. Since I ⊆ J , the
homogeneous ideal J scheme-theoretically defines a zero-dimensional subscheme Y ⊆ X.
Using Proposition 4.1.15 and Corollary 4.1.14, again, we compute HFY : 1, 3, 5, 7, 7, . . .
and conclude that the scheme X is not (2, 2)-uniform by Definition 5.2.1.

As a first consequence of Definition 5.2.1, we show that higher (i, j)-uniformity condi-
tions imply lower ones.

Proposition 5.2.3. Let i ∈ {1, . . . ,deg(X)− 1}, j ∈ {1, . . . , σX}, and assume that the
scheme X is (i, j)-uniform.

a) We have i ≤ deg(X)−HFX(j).

b) If j > 1, then X is (i, j − 1)-uniform.

c) If i > 1, then X is (i− 1, j)-uniform.

Proof. First we prove a). For a contradiction, assume that i > deg(X) − HFX(j). By
Proposition 5.1.19, there is a subscheme Y ⊆ X with deg(Y) = deg(X) − i < HFX(j).
Since X is (i, j)-uniform, it follows HFX(j) = HFY(j) ≤ deg(Y) < HFX(j) from Defini-
tions 5.1.17 and 5.2.1. This is clearly a contradiction and thus i ≤ deg(X)−HFX(j).
Next we prove b). Let Y ⊆ X be a subscheme with deg(Y) = deg(X)− i and let j > 1.

As X is (i, j)-uniform, we have HFY(j) = HFX(j) according to Definition 5.2.1. This
yields HFY(j − 1) = HFX(j − 1), i.e. Y is (i, j − 1)-uniform by Definition 5.2.1.

In order to prove claim c), we let Y ⊆ X now be a subscheme of the zero-dimensional
scheme X such that deg(Y) = deg(X) − (i − 1) and let i > 1. According to Proposi-
tion 5.1.19, there exists a subscheme Y′ ⊆ Y with deg(Y′) = deg(Y) − 1 = deg(X) − i.
Since X is (i, j)-uniform, we have HFY′(j) = HFX(j). As Y′ ⊆ Y ⊆ X, we also have
HFY′(j) ≤ HFY(j) ≤ HFX(j). Altogether, we see that HFY(j) = HFX(j), i.e. X is
(i− 1, j)-uniform according to Definition 5.2.1
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The Cayley-Bacharach property is obviously a special kind of (i, j)-uniformity ac-
cording to Definition 5.2.1. Next we show that it suffices to consider (i, j)-uniformity
conditions by proving that a subscheme is i-uniform if and only if it satifies certain
(i, j)-uniformity conditions in Proposition 5.2.6.

Lemma 5.2.4. Let i ∈ {1, . . . ,∆ HFX(σX + 1)}. Then the following conditions are
equivalent.

i) The zero-dimensional scheme X is i-uniform.

ii) The zero-dimensional scheme X is (i, σX)-uniform.

Proof. First we prove that i) implies ii). Suppose that the zero-dimensional scheme X
is i-uniform. Let Y ⊆ X be a subscheme such that deg(Y) = deg(X) − i. Since X is
an i-uniform scheme, we have HFY = min{HFX,deg(Y)} according to Definition 5.2.1.
Moreover, as we also have deg(Y) = deg(X)− i ≥ deg(X)−∆ HFX(σX + 1) = HFX(σX),
it follows that HFY(σX) = min{HFX(σX),deg(Y)} = HFX(σX), i.e. X is (i, σX)-uniform
by Definition 5.2.1.
In order to prove that ii) implies i), suppose now that X is (i, σX)-uniform. Let Y ⊆ X

be a subscheme with deg(X) − i ≤ deg(Y) ≤ deg(X). Let j = deg(X) − deg(Y). Then
j ≤ i and Proposition 5.2.3 implies that X is (j, σX)-uniform. By Definition 5.2.1, this
means that HFY(σX) = HFX(σX). Hence we get HFY(m) = HFX(m) for all m ∈ Z
with m ≤ σX. As σY ≤ σX, it follows that HFY(m) = deg(Y) for all m ∈ Z with
m ≥ σX + 1. Altogether, we see that HFY = min{HFX, deg(Y)}, i.e. X is i-uniform
according to Definition 5.2.1.

Lemma 5.2.5. Let j ∈ {1, . . . , σX}. Then the following conditions are equivalent.

i) The zero-dimensional scheme X is (deg(X)−HFX(j))-uniform.

ii) The zero-dimensional scheme X is (deg(X) − HFX(k), k)-uniform for every ele-
ment k ∈ {j, . . . , σX}.

Proof. First we prove that i) implies ii). Let k ∈ {j, . . . , σX} and Y ⊆ X be a subscheme
with deg(Y) = deg(X)−(deg(X)−HFX(k))). As j ≤ k, we get HFX(j) ≤ HFX(k) and thus
deg(X) − (deg(X) − HFX(j)) ≤ deg(Y) ≤ deg(X). Since the zero-dimensional scheme X
is (deg(X) − HFX(j))-uniform, we have HFY = min{HFX,deg(Y)} by Definition 5.2.1.
In particular, as deg(Y) = HFX(k), this implies that HFY(k) = HFX(k). Thus X is
(deg(X)−HFX(k), k)-uniform by Definition 5.2.1.
Next we prove that ii) implies i) by downward induction on j ∈ {σX, . . . , 1}. Since

∆ HFX(σX + 1) = deg(X) − HFX(σX), the induction start j = σX is a consequence of
Lemma 5.2.4. For the induction step, let now j < σX and suppose that the claim holds
for all elements greater than j. Assume that X is (deg(X) − HFX(k), k)-uniform for all
k ∈ {j, . . . , σX}. Then X is (deg(X) − HFX(j + 1))-uniform according to the induction
hypothesis. For all subschemes Y ⊆ X with HFX(j + 1) ≤ deg(Y) ≤ deg(X), we thus
get HFY = min{HFX, deg(Y)} by Definition 5.2.1. Let Y ⊆ X be a subscheme such
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that HFX(j) ≤ deg(Y) < HFX(j + 1). By Proposition 5.1.19, there exists a subscheme
Y′ ⊆ Y with the property that deg(Y′) = HFX(j) = deg(X)− (deg(X)− HFX(j)). As X
is (deg(X) − HFX(j), j)-uniform, we get HFX(j) = HFY′(j) ≤ HFY(j) ≤ HFX(j), i.e.
HFY(j) = HFX(j) and thus HFY(m) = HFX(m) for all m ∈ Z with m ≤ j. Accord-
ing to Proposition 5.1.19, there also exists a subscheme Y′′ ⊆ X with Y ⊆ Y′′ and
deg(Y′′) = HFX(j + 1). Again, since X is (deg(X) − HFX(j + 1))-uniform according to
the induction hypothesis, we get HFY′′ = min{HFX, deg(Y′′)} by Definition 5.2.1. In
particular, HFY′′(j + 1) = deg(Y′′) and this implies σY ≤ σY′′ ≤ j + 1. Hence it follows
HFY(m) = deg(Y) for all m ∈ Z with m ≥ j + 1 from Definition 5.1.17. Altogether,
HFY = min{HFX,deg(Y)}, i.e. X is (deg(X)−HFX(j))-uniform by Definition 5.2.1.

Finally, we are now able to prove that i-uniform subschemes can be characterized by
certain (i, j)-uniformity conditions, in general. Similar ideas have been used to give an
algorithm to check arbitrary i-uniformity conditions in [BK96, after Rem. 8.4] if K is
algebraically closed and P standard graded.

Proposition 5.2.6. Let i ∈ {1, . . . ,deg(X)− 1} and let j ∈ {1, . . . , σX} be the unique
natural number with HFX(j) < deg(X)− i ≤ HFX(j + 1). Then the following conditions
are equivalent.

i) The zero-dimensional scheme X is i-uniform.

ii) The zero-dimensional scheme X is (i, j)-uniform and (deg(X)−HFX(k), k)-uniform
for all k ∈ {j + 1, . . . , σX}.

Proof. First we prove that i) implies ii), As we have i ≥ deg(X) − HFX(j + 1) and
as X is i-uniform, X is also (deg(X) − HFX(j + 1))-uniform by Definition 5.2.1. Thus
Lemma 5.2.5 implies that X is (deg(X)−HFX(k), k)-uniform for all k ∈ {j + 1, . . . , σX}.
Let Y ⊆ X be a subscheme with deg(Y) = deg(X) − i. Since X is i-uniform, we have
HFY(j) = min{HFX(j),deg(Y)} by Definition 5.2.1. As deg(Y) = deg(X)− i > HFX(j),
it follows that HFY(j) = HFX(j). Hence X is (i, j)-uniform by Definition 5.2.1.

Next we prove that ii) implies i). Since X is (deg(X) − HFX(k), k)-uniform for all
k ∈ {j + 1, . . . , σX}, Lemma 5.2.5 yields that X is (deg(X) − HFX(j + 1))-uniform.
Hence for every subscheme Y ⊆ X with HFX(j + 1) ≤ deg(Y) ≤ deg(X), we have
HFY = min{HFX, deg(Y)} by Definition 5.2.1. Let Y ⊆ X be a subscheme such that
deg(X) − i ≤ deg(Y) < HFX(j + 1). According to Proposition 5.1.19, there exists a
subscheme Y′ ⊆ Y with the property that deg(Y′) = deg(X) − i. Since the scheme X
is (i, j)-uniform, we get HFX(j) = HFY′(j) ≤ HFY(j) ≤ HFX(j), i.e. HFY(j) = HFX(j)
and thus HFY(m) = HFX(m) for all m ∈ Z with m ≤ j. According to Proposition 5.1.19,
there exists a subscheme Y′′ ⊆ X with Y ⊆ Y′′ and deg(Y′′) = HFX(j + 1). As we have
already shown above, HFY′′ = min{HFX, deg(Y′′)}. In particular, HFX(j+ 1) = deg(Y′′)
yields HFY′′(j + 1) = deg(Y′′). This implies σY ≤ σY′′ ≤ j and thus HFY(m) = deg(Y)
for every m ∈ Z with m ≥ j + 1. Altogether, we get HFY = min{HFX, deg(Y)}, i.e. X is
i-uniform by Definition 5.2.1.
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The next theorem is the most important result of this chapter. It allows us to charac-
terize (i, j)-uniform subschemes by means of linear algebra. Note that we do not need to
assume that K is algebraically closed or X is reduced and that it does not only hold in PnK
but in the weighted projective space PK(W ) for every positive matrix W ∈ Mat1,n+1(Z).

Theorem 5.2.7. (Characterization of (i, j)-Uniform Schemes)
Let ωR be the canonical module of R, let i ∈ {1, . . . ,deg(X)−1}, let j ∈ {1, . . . , σX}, and
for all r ∈ Rj, let π̂∗r : (ωR)−j → (ωR)0, ϕ 7→ r · ϕ be the multiplication by r. Then the
following conditions are equivalent.

i) The zero-dimensional scheme X is (i, j)-uniform.

ii) For every r ∈ Rj \ {0}, we have dimK(ker(π̂∗r )) ≤ deg(X)−HFX(j)− i.

Proof. First we prove that i) implies ii). Suppose that X is (i, j)-uniform. If Rj = {0},
nothing has to be shown. Thus suppose that Rj 6= {0} and let r ∈ Rj \ {0}. Assume
that d = dimK(ker(π̂∗r )) > deg(X) − HFX(j) − i. Let Y ⊆ X be the subscheme that
is scheme-theoretically defined by 〈r〉 ⊆ R. Write r = p ∈ R with p ∈ P j . Since
p ∈ I+(Y) \ I+(X), we have HFY(j) < HFX(j). As X is (i, j)-uniform, Definition 5.2.1
yields deg(Y) 6= deg(X) − i. For a contradiction, assume that deg(Y) > deg(X) − i.
Then Proposition 5.1.19 yields the existence of a subscheme Ỹ ⊆ Y such that such
that deg(Ỹ) = deg(X) − i. As the scheme X is (i, j)-uniform, we get the contradiction
HFX(j) = HFỸ(j) ≤ HFY(j) < HFX(j). Thus we have deg(Y) < deg(X)−i. According to
Proposition 5.1.19, there is a subscheme Y′ ⊆ X with Y ⊆ Y′ and deg(Y′) = deg(X)− i.
Let S = R/I+

X (Y′) be the projective coordinate ring of Y′ and ωS be its canonical
module. As X is (i, j)-uniform, HFωS (−j) = deg(Y′) − HFY′(j) = deg(X) − i − HFX(j)
according to Proposition 4.3.7 and the Definitions 5.1.17 and 5.2.1. Moreover, we let
{ϕ1, . . . , ϕd} ⊆ (ωR)−j be a K-vector space basis of ker(π̂∗r ). For every k ∈ {1, . . . , d},
we then have r · ϕk = π̂∗r (ϕk) = 0, i.e. 〈r〉 · ϕk = {0}. As x0 is a non-zero divisor
for the canonical module ωR by Proposition 4.3.6, Proposition 5.1.2 and Lemma 5.1.13
imply that I+

X (Y) · ϕk = 〈r〉sat · ϕk = {0} for every k ∈ {1, . . . , d}. Since Y ⊆ Y′, we
also have I+

X (Y) ⊇ I+
X (Y′) and thus I+

X (Y′) · ϕk = {0} for every k ∈ {1, . . . , d}. Hence
Proposition 4.3.6 yields that {ϕ1, . . . , ϕd} ⊆ (ωS)−j . Altogether, we get the contradiction
d ≤ dimK((ωS)−j) = HFωS (−j) = deg(X) − i − HFX(j) < d. Thus it follows that
d ≤ deg(X)−HFX(j)− i.
Next we prove that ii) implies i). Therefore, let now Y ⊆ X be a subscheme such that

deg(Y) = deg(X)−i holds. Then we have HFY(j) ≤ HFX(j). For a contradiction, assume
that HFY(j) < HFX(j). Then there is an r ∈ (I+

X (Y))j \ {0}. Let d = dimK(ker(π̂∗r )).
According to claim ii), we have d ≤ deg(X) − HFX(j) − i. Let S = R/I+

X (Y) be the
projective coordinate ring of Y and ωS be its canonical module. Then Proposition 4.3.7
yields the inequality HFωS (−j) = deg(Y) − HFY(j) > deg(X) − i − HFX(j) ≥ d. Let
{ϕ1, . . . , ϕ`} ⊆ (ωS)−j be a K-vector space basis of (ωS)−j . In particular, ` > d and for
every k ∈ {1, . . . , `}, Proposition 4.3.6 implies that π̂∗r (ϕk) = r · ϕk ∈ I+

X (Y) · ϕk = {0}.
Thus we see that {ϕ1, . . . , ϕ`} ⊆ ker(π̂∗r ). As {ϕ1, . . . , ϕ`} is K-linearly independent,
we get the contradiction dimK(ker(π̂∗r )) = d < ` ≤ dimK(ker(π̂∗r )). Thus we have
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HFY(j) = HFX(j) and X is (i, j)-uniform by Definition 5.2.1.

Example 5.2.8. Consider the zero-dimensional subscheme X ⊆ P2
Q of Example 5.2.2,

again. Recall that the defining ideal of the scheme X in the standard graded polynomial
ring P = Q[x0, x1, x2], was I = I+({(1 : 0 : 0)})2 ∩ I+({(1 : 0 : 1)})2 ∩ I+({(1 : 1 : 0)})2.
Using the method described in Example 5.2.2 to compute I and Corollary 4.1.14, we can
compute the projective O-border basis G = {g1, . . . , g6} ⊆ P of I with the order ideal
O = {t1, . . . , t9} = {1, x2, x1, x

2
2, x1x2, x

2
1, x

3
2, x1x

2
2, x

3
1} and g1 = x2

1x2 + x1x
2
2 − x0x1x2,

g2 = x4
2 − 2x0x

3
2 + x2

0x
2
2, g3 = x1x

3
2 − x0x1x

2
2, g4 = x2

1x
2
2, g5 = x3

1x2 + x0x1x
2
2 − x2

0x1x2,
and g6 = x4

1 − 2x0x
3
1 + x2

0x
2
1. By Definition 2.4.15, the formal multiplication matrices

X1,X2 ∈ Mat9(Q) of the O-border basis {gdeh | g ∈ G} ⊆ P = Q[x1, x2] are

X1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 1 0 0
0 0 0 0 0 1 0 0 2


, X2 =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0
0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 2 0 0
0 0 0 0 1 −1 0 1 −1
0 0 0 0 0 0 0 0 0


.

Let R = P/I, let ωR be the canonical module of R, let p = −x2
1 − x1x2 + x0x1 ∈ P 2,

and let π̂∗p : (ωR)−2 → (ωR)0, ϕ 7→ p · ϕ be the multiplication by p ∈ R2. We have

p(I9,X tr
1 ,X tr

2 ) = −(X tr
1 )2 −X tr

1 · X tr
2 + I9 · X tr

1 =



0 0 1 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 1 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 1 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 1 −1


.

Recall that O determines both HFX = HFR by Proposition 4.1.15 and HFωR by Proposi-
tion 4.3.7. In particular, (O∗0)−2 = {x3

2

∗
, x1x2

2

∗
, x3

1

∗
} is a Q-vector space basis of (ωR)−2

and (O∗0)0 = {x2
∗, x1

∗, x0x2
2

∗
, x0x1x2

∗, x0x2
1

∗
, x2

0x
3
2

∗
, x2

0x1x2
2

∗
, x2

0x
3
1

∗
} is a Q-vector space

basis of (ωR)0 by Proposition 4.3.7. With respect to the Q-vector space bases (O0
∗
)−2

of (ωR)−2 and (O0
∗
)0 of (ωR)0, the Q-vector space homomorphism π̂∗p is represented by

the submatrix C ∈ Mat8,3(Q) of p(I9,X tr
1 ,X tr

2 ) ∈ Mat9(Q) obtained by deleting the first
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HFX(0) = 1 rows and the first HFX(2) = 6 columns according to Corollary 4.3.11, i.e.

C =



0 0 0
0 1 −1
0 0 0
0 0 0
0 1 −1
0 0 0
0 0 0
0 1 −1


∈ Mat8,3(Q)

In particular, dimQ(ker(π̂∗p)) = dimQ(ker(C)) = 2 > 1 = 9−6−2 = deg(X)−HFX(2)−2.
Therefore, Theorem 5.2.7 implies that the zero-dimensional subscheme X ⊆ P2

Q is not
(2, 2)-uniform.

Corollary 5.2.9. Let G ⊆ P be a projective O-border of I+(X) ⊆ P where we have
O = {t1, . . . , tµ} with degW (t1) ≤ · · · ≤ degW (tµ) and let X1, . . . ,Xn ∈ Matµ(K) be
the formal multiplication matrices of {gdeh | g ∈ G} ⊆ P . Let j ∈ {1, . . . , σX}, let
i ∈ {1, . . . ,deg(X)−HFX(j)}, and let {y1, . . . , yHFX(j)} be a set of further indeterminates.
For every k ∈ {1, . . . ,HFX(j)}, we let Tk ∈ Matµ−1,µ−HFX(j)(K) denote the submatrix
of tk(X tr

1 , . . . ,X tr
n ) ∈ Matµ(K) obtained by deleting the first row and the first HFX(j)

columns. Furthermore, let J ⊆ K[y1, . . . , yHFX(j)] be the ideal generated by the set of all
i-minors of the matrix y1T1 + · · ·+yHFX(j)THFX(j) ∈ Matµ−1,µ−HFX(j)(K[y1, . . . , yHFX(j)]).
Consider the affine zero set ZK(J) ⊆ AHFX(j)

K = Spec(K[y1, . . . , yHFX(j)]). Then the
following conditions are equivalent.

i) The zero-dimensional scheme X is (i, j)-uniform.

ii) We have ZK(J) ⊆ {0}.

iii) We have ZK(J) = {0}.

If, in addition, K is algebraically closed, then the above conditions are equivalent to the
following ones.

iv) We have
√
J ⊇ 〈y1, . . . , yHFX(j)〉.

v) We have
√
J = 〈y1, . . . , yHFX(j)〉.

Proof. Let ωR denote the canonical module of the coordinate ring R = P/I+(X) and
for all γ ∈ Z, let (O∗)−γ = {x

−dγ+1,HFX(γ)+1

0 t
∗
HFX(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ}. Then (O∗)−γ is

a K-vector space basis of (ωR)−γ for every γ ∈ Z according to Proposition 4.3.7. For
every k ∈ {1, . . . ,HFX(j)}, we have (x

dj,k
0 tk)(Iµ,X tr

1 , . . . ,X tr
n ) = tk(X tr

1 , . . . ,X tr
n ) and

degW (x
dj,k
0 tk) = j − degW (tk) + degW (tk) = j. Thus Corollary 4.3.11 yields that, for

every k ∈ {1, . . . ,HFX(j)}, the matrix Tk represents the K-vector space homomorphism
(ωR)−j → (ωR)0, ϕ 7→ x

dj,k
0 tk · ϕ, the multiplication by xdj,k0 tk ∈ Rj , with respect to the
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K-vector space bases (O∗)−j of (ωR)−j and (O∗)0 of (ωR)0. Moreover, for all γ ∈ Z and
k ∈ {1, . . . , µ}, we let dγ,k = γ − degW (tk).

Now we prove that claim i) implies claim ii). Assume that there exists an element
(c1, . . . , cHFX(j)) ∈ ZK(J) \ {0}. Let r = c1x

dj,1
0 t1 + · · · + cHFX(j)x

dj,HFX(j)

0 tHFX(j) Then
Proposition 4.1.15 yields r ∈ Rj \ {0}. As X is (i, j)-uniform, Theorem 5.2.7 shows that
the K-vector space homomorphism π̂∗r : (ωR)−j → (ωR)0, ϕ 7→ r · ϕ, the multiplication
by r, satisfies dimK(ker(π̂∗r )) ≤ deg(X)−HFX(j)− i. Moreover, Proposition 4.3.7 shows
that dimK((ωR)−j) = HFωR(−j) = deg(X) − HFX(j). Let Mr ∈ Matµ−1,µ−HFX(j)(K)

denote the matrix representing π̂∗r with respect to (O∗)−j and (O∗)0. As we have shown
above, Tk represents the multiplication by xdj,k0 tk with respect to the sameK-vector space
bases for every k ∈ {1, . . . ,HFX(j)}. ThusMr = c1T1 + · · ·+ cHFX(j)THFX(j). Altogether,
rkK(Mr) = dimK((ωR)−j)− dimK(ker(π̂∗r )) ≥ i and hence there exists a non-vanishing
i-minor of Mr. This clearly contradicts (c1, . . . , cHFX(j)) ∈ ZK(J) and thus it follows
that ZK(J) ⊆ {0}.

As the element 0 is obviously an element of the affine zero set ZK(J), claim iii) is
obviously equivalent to ii). Thus it remains to prove that ii) implies i). If Rj = {0}, the
claim follows trivially from Theorem 5.2.7. Suppose that Rj 6= {0} and let r ∈ Rj \ {0}.
According to Proposition 4.1.15, there exists an element (c1, . . . , cHFX(j)) ∈ AHFX(j)

K \ {0}
such that r = c1x

dj,1
0 t1 + · · · + cHFX(j)x

dj,HFX(j)

0 tHFX(j). Let Mr ∈ Matµ−1,µ−HFX(j)(K)
be the matrix representing the K-vector space homomorphism π̂∗r : (ωR)−j → (ωR)0,
ϕ 7→ r · ϕ, the multiplication by the element r, with respect to the K-vector space
bases (O∗)−j of (ωR)−j and (O∗)0 of (ωR)0. Then, just as we have shown above, we get
Mr = c1T1 + · · ·+ cHFX(j)THFX(j). Assume that dimK(ker(π̂∗r )) > deg(X)− HFX(j)− i.
By Proposition 4.3.7, we have dimK((ωR)−j) = HFωR(−j) = deg(X)−HFX(j). Thus we
see that rkK(Mr) = dimK((ωR)−j)−dimK(ker(π̂∗r )) < i and hence every i-minor ofMr

vanishes. This is a contradiction to (c1, . . . , cHFX(j)) ∈ ZK(J) \ {0} = ∅ by ii). Thus
dimK(ker(π̂∗r )) ≤ deg(X)−HFX(j)− i and X is (i, j)-uniform by Theorem 5.2.7.

For the remaining conditions, assume that K is algebraically closed. According to
[KR05, Exmp. 6.3.2], we have I({0}) = 〈y1, . . . , yHFX(j)〉. Thus the Ideal-Variety Corre-
spondence [CLO07, Thm. 4.§2.7] and Hilbert’s Nullstellensatz [KR00, Thm. 2.6.16] yield
the equivalence of ii) and iv) and the equivalence of iii) and v).

Example 5.2.10. Consider the zero-dimensional subscheme X ⊆ P2
Q of Example 5.2.8,

again. Recall that the polynomial ring P = Q[x0, x1, x2] was standard graded, that
I+(X) ⊆ P = Q[x0, x1, x2] possessed a projective O-border basis G, where the order
ideal O was of the form O = {t1, . . . , t9} = {1, x2, x1, x

2
2, x1x2, x

2
1, x

3
2, x1x

2
2, x

3
1}, and that

the formal multiplication matrices of the O-border basis {gdeh | g ∈ G} ⊆ P = Q[x1, x2]
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were of the form

X1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 1 0 0
0 0 0 0 0 1 0 0 2


, X2 =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0
0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 2 0 0
0 0 0 0 1 −1 0 1 −1
0 0 0 0 0 0 0 0 0


.

Moreover, O determines both HFX = HFR by Proposition 4.1.15 and HFωR by Proposi-
tion 4.3.7. For all k ∈ {1, . . . , 6}, we let Tk ∈ Mat8,3(Q) be the submatrix of tk(X tr

1 ,X tr
2 )

obtained by deleting the first row and the first HFX(2) = 6 columns. Then we have

T1 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


, T2 =



0 0 0
0 0 0
1 0 0
0 1 0
0 −1 0
2 0 0
0 1 0
0 −1 0


, T3 =



0 0 0
0 0 0
0 1 0
0 −1 0
0 0 1
0 1 0
0 0 0
0 0 2


,

T4 =



1 0 0
0 1 0
2 0 0
0 1 0
0 0 0
3 0 0
0 1 0
0 0 0


, T5 =



0 1 0
0 −1 0
0 1 0
0 0 0
0 −1 0
0 1 0
0 0 0
0 −1 0


, T6 =



0 −1 0
0 0 1
0 0 0
0 −1 0
0 0 2
0 0 0
0 0 0
0 0 3


.

Let {y1, . . . , y6} be a set of further indeterminates. Then

y1T1 + · · ·+ y6T6 =



y4 y5 − y6 0
0 y4 − y5 y6

y2 + 2y4 y3 + y5 0
0 y2 − y3 + y4 − y6 0
0 −y2 − y5 y3 + 2y6

y1 + 2y2 + 3y4 y3 + y5 0
0 y1 + y2 + y4 0
0 −y2 − y5 y1 + 2y3 + 3y6


.

Let J ⊆ Q[y1, . . . , y6] be the ideal that is generated by the set of all 2-minors of the
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matrix y1T1 + · · ·+ y6T6 ∈ Mat8,3(Q[y1, . . . , y6]). Then J = 〈f1, . . . , f41〉 with
f1 = y2

4 − y4y5,

f2 = y4y6,

f3 = y5y6 − y2
6,

f4 = y3y4 − y2y5 − y4y5 + y2y6 + 2y4y6,

f5 = y2y4 − y3y4 + y2
4 − y4y6,

f6 = −y2y4 − y4y5,

f7 = y3y4 + 2y4y6,

f8 = y3y5 − y3y6 + 2y5y6 − 2y2
6,

f9 = y3y4 − y1y5 − 2y2y5 − 2y4y5 + y1y6 + 2y2y6 + 3y4y6,

f10 = y1y4 + y2y4 + y2
4,

f11 = y1y4 + 2y3y4 + 3y4y6,

f12 = y1y5 + 2y3y5 − y1y6 − 2y3y6 + 3y5y6 − 3y2
6,

f13 = −y2y4 − 2y2
4 + y2y5 + 2y4y5,

f14 = −y2y6 − 2y4y6,

f15 = −y3y6 − y5y6,

f16 = −y2y6 + y3y6 − y4y6 + y2
6,

f17 = y3y4 − y3y5 + y2y6 + 2y4y6 − y5y6,

f18 = −y1y4 − 2y2y4 − 3y2
4 + y1y5 + 2y2y5 + 3y4y5,

f19 = −y1y6 − 2y2y6 − 3y4y6,

f20 = −y1y6 − y2y6 − y4y6,

f21 = y1y4 + 2y3y4 − y1y5 − 2y3y5 + y2y6 + 3y4y6 − 2y5y6,

f22 = y2
2 − y2y3 + 3y2y4 − 2y3y4 + 2y2

4 − y2y6 − 2y4y6,

f23 = −y2
2 − 2y2y4 − y2y5 − 2y4y5,

f24 = y2y3 + 2y3y4 + 2y2y6 + 4y4y6,

f25 = y2
3 + y3y5 + 2y3y6 + 2y5y6,

f26 = −y1y3 − y2y3 − y3y4 − y1y5 − y2y5 − y4y5,

f27 = y1y2 + y2
2 + 2y1y4 + 3y2y4 + 2y2

4,

f28 = y1y2 + 2y2y3 + 2y1y4 + 4y3y4 + 3y2y6 + 6y4y6,

f29 = y1y3 + 2y2
3 + y1y5 + 2y3y5 + 3y3y6 + 3y5y6,

f30 = y2y3 − y2
3 + y3y4 + 2y2y6 − 3y3y6 + 2y4y6 − 2y2

6,

f31 = −y1y2 − 2y2
2 + y1y3 + 2y2y3 − y1y4 − 5y2y4 + 3y3y4 − 3y2

4 + y1y6 + 2y2y6 + 3y4y6,

f32 = y1y2 − y1y3 + 2y2y3 − 2y2
3 + y1y4 + 2y3y4 − y1y6 + 3y2y6 − 5y3y6 + 3y4y6 − 3y2

6,

f33 = y1y2 + 2y2
2 + 3y2y4 + y1y5 + 2y2y5 + 3y4y5,

f34 = −y1y3 − 2y2y3 − 3y3y4 − 2y1y6 − 4y2y6 − 6y4y6,

f35 = −y2
3 − y3y5 − 2y3y6 − 2y5y6,
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f36 = −y1y3 − y2y3 − y3y4 − 2y1y6 − 2y2y6 − 2y4y6,

f37 = −y1y2 − y2y3 − y1y5 − y3y5 − y2y6 − y5y6,

f38 = y2
1 + 3y1y2 + 2y2

2 + 4y1y4 + 5y2y4 + 3y2
4,

f39 = −y1y2 − 2y2
2 − 3y2y4 − y1y5 − 2y2y5 − 3y4y5,

f40 = y2
1 + 2y1y2 + 2y1y3 + 4y2y3 + 3y1y4 + 6y3y4 + 3y1y6 + 6y2y6 + 9y4y6,

f41 = y2
1 + y1y2 + 2y1y3 + 2y2y3 + y1y4 + 2y3y4 + 3y1y6 + 3y2y6 + 3y4y6.

Since fk((0, 0, 1, 0,−1,−1)) = 0 for every index k ∈ {1, . . . , 41}, we see that the point
0 6= (0, 0, 1, 0,−1,−1) ∈ Z(J) and thus X ⊆ P2

Q is not (2, 2)-uniform according to
Corollary 5.2.9. Note that this result coincides with the result of Example 5.2.8.

The remaining part of this subsection is devoted to specific uniformity conditions,
namely the Cayley-Bacharach property and i-uniformity condition, cf. Definition 5.2.1.

Definition 5.2.11. Let π : U ⊗K V →W be a K-vector space homomorphism of finite
dimensional K-vector spaces U , V , and W . We call π biinjective if for all u ∈ U and
v ∈ V , π(u⊗ v) = 0 implies u = 0 or v = 0.

Remark 5.2.12. Let ωR denote the canonical module of R.

a) Let π : RσX ⊗K (ωR)−σX → (ωR)0, r ⊗ ϕ 7→ r · ϕ be the multiplication map.
Since x0 ∈ R is non-zero divisor for R according to Proposition 5.1.8, we have
xσX0 · ϕ 6= 0 for all ϕ ∈ (ωR)−σX \ {0}, i.e. π is non-degenerate in the second
argument. By Definition 5.2.1 and Theorem 5.2.7, the scheme X is a Cayley-
Bacharach scheme if and only if for every element r ∈ RσX \ {0}, the K-vector
space homomorphism π̂∗r : (ωR)−σX → (ωR)0, ϕ 7→ r · ϕ, the multiplication by r,
satisfies dimK(ker(π̂∗r )) ≤ deg(X)− HFX(σX)− 1. According to Proposition 4.3.7,
dimK((ωR)−σX) = HFωR(−σX) = deg(X) − HFX(σX). Thus X is (i, j)-uniform if
and only if there is no r ∈ RσX that satisfies r · (ωR)−σX = {0}, i.e. if and only if
π is non-degenerate in the first argument. Altogether, it follows that X is a Cayley-
Bacharach scheme if and only if the multiplication map π is non-degenerate. In
particular, with the assumption that the base field K is algebraically closed and
that P is standard graded, this coincides with a previous result in [Kre94, Thm. 2.6].

b) Let i ∈ N. By Lemma 5.2.5 and Theorem 5.2.7, X is (deg(X) − HFX(i))-uniform
if and only if for all k ∈ {i, . . . , σX} and for all r ∈ Rk \ {0}, the K-vector space
homomorphism π̂∗r : (ωR)k → (ωR)0, ϕ 7→ r · ϕ, the multiplication by r, satisfies
dimK(ker(π̂∗r )) = 0. Equivalently, for all k ∈ {i, . . . , σX}, r ∈ Rk, and ϕ ∈ (ωR)−k,
r · ϕ = 0 implies r = 0 or ϕ = 0. In other words, X is (deg(X)− HFX(i))-uniform
if and only if the multiplication map Rk ⊗K (ωR)−k → (ωR)0, r ⊗ ϕ 7→ r · ϕ is
biinjective for every k ∈ {i, . . . , σX}. Note that, with the assumption that the base
field K is algebraically closed and that P is standard graded, this result coincides
with [Kre94, Thm. 3.2].
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5.2.2 The Reduced Case

In this subsection, we additionally assume that the subscheme X ⊆ PK(W ) is re-
duced. Since X is supposed to have a K-rational support, Proposition 5.1.7 yields that
Supp(X) = {p1, . . . , pdeg(X)} where for all i ∈ {1, . . . ,deg(X)}, pi = I+({pi}) is the
homogeneous vanishing ideal of a K-rational point pi ∈ PK(W ). Moreover, for every
i ∈ {1, . . . ,deg(X)}, there is a subscheme X̂i ⊆ X with Supp(X̂i) = Supp(X) \ {pi} and
it satisfies deg(X̂i) = deg(X) − 1. For all i ∈ {1, . . . ,deg(X)}, we let fi ∈ RσX+1 be a
separator of the subscheme X̂i ⊆ X as defined in Definition 5.1.17.
The following proposition states that the separators f1, . . . , fdeg(X) ∈ RσX+1 allow us

to describe the structure of the subschemes of X. Note that the second result has been
proven in [GKR93, Prop. 1.13] for the base field K being algebraically closed and P being
standard graded

Proposition 5.2.13. Let i ∈ {1, . . . ,deg(X)}, let ν1, . . . , νi ∈ {1, . . . ,deg(X)} be pair-
wise distinct elements, and let Y ⊆ X be the subscheme with Supp(Y) = {pν1 , . . . , pνi}.

a) We have I+
X (Y) = 〈fν1 , . . . , fνi〉sat ⊆ R.

b) For every j ∈ N with j ≥ σX + 1, the set {xj−(σX+1)
0 fν1 , . . . , x

j−(σX+1)
0 fνi} is a

K-vector space basis of (〈fν1 , . . . , fνi〉)j.

Proof. For all k ∈ {1, . . . ,deg(X)}, let Fk ∈ P σX+1 be such that fk = F k. According
to Definition 5.1.17, we have Fk(p`) = δk` for all k, ` ∈ {1, . . . ,deg(X)}, i.e. the set
{fν1 , . . . , fνi} ⊆ RσX+1 is K-linearly independent.
First we prove a). Let Y′ ⊆ X be the subscheme that is scheme-theoretically defined

by 〈fν1 , . . . , fνi〉 ⊆ I+
X (Y). Then Y′ ⊇ Y. Since {fν1 , . . . , fνi} ⊆ RσX+1 is K-linearly in-

dependent and since Supp(Y) = {pν1 , . . . , pνi}, we get deg(Y′) = i = deg(Y). Therefore,
Y′ = Y and Proposition 5.1.2 yields that I+

X (Y) = 〈fν1 , . . . , fνi〉sat.
In order to prove claim b), let j ∈ N be such that j ≥ σX + 1. Since Y ⊆ X implies

that Y∩H inf ⊆ X∩H inf = ∅, Proposition 5.1.8 and the Second Noetherian Isomorphism
Theorem imply that the element x0 ∈ P is a non-zero divisor for R/I+

X (Y) ∼= P/I+(Y).
Therefore, the set {xj−(σX+1)

0 fν1 , . . . , x
j−(σX+1)
0 fνi} ⊆ Rj is K-linearly independent, too.

As σY + 1 ≤ σX + 1 ≤ j, we get HFY(j) = deg(Y) = i and the claim follows.

Now we can characterize reduced (i, j)-uniform schemes by means of the separators.

Theorem 5.2.14. (Characterization of Reduced (i, j)-Uniform Schemes)
Let i ∈ {1, . . . ,deg(X) − 1} and let j ∈ {1, . . . , σX}. Then the following conditions are
equivalent.

i) The reduced zero-dimensional scheme X is (i, j)-uniform.

ii) Every subset of i elements from {f1, . . . , fdeg(X)} ⊆ R/〈xσX+1−j
0 〉 is K-linearly

independent.
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Proof. First we prove that i) implies ii). Suppose that the reduced zero-dimensional
scheme X is (i, j)-uniform. Let ν1, . . . , νi ∈ {1, . . . ,deg(X)} be pairwise distinct elements
and let Y ⊆ X be the subscheme that satisfies Supp(Y) = Supp(X)\{pν1 , . . . , pνi}. Then
we have deg(Y) = deg(X)− i. For a contradiction, assume that the set of residue classes
{fν1 , . . . , fνi} ⊆ R/〈xσX+1−j

0 〉 is K-linearly dependent. Then there exist a g ∈ Rj \ {0}
and λ1, . . . , λi ∈ K such that xσX+1−j

0 g = λ1fν1 + · · · + λifνi . In this situation, we
have 〈fν1 , . . . , fνi〉 ⊆ I+

X (Y) by Proposition 5.2.13. As the scheme X is (i, j)-uniform,
HFY(j) = HFX(j) according to Definition 5.2.1 and thus (I+

X (Y))j = {0}. Moreover,
〈fν1 , . . . , fνi〉 ⊆ 〈fν1 , . . . , fνi〉sat = I+

X (Y) by the Propositions 5.1.2 and 5.2.13 and the
ideal I+

X (Y) is saturated by Proposition 5.1.2. Hence xσX+1−j
0 g ∈ 〈fν1 , . . . , fνi〉 together

with Lemma 5.1.13 imply g ∈ (I+
X (Y))j \ {0} in contradiction to (I+

X (Y))j = {0}. Alto-
gether, it follows that {fν1 , . . . , fνi} ⊆ R/〈x

σX+1−j
0 〉 is K-linearly independent.

Next we prove that ii) implies i). Suppose that all subsets of i elements from the
set {f1, . . . , fdeg(X)} ⊆ R/〈xσX+1−j

0 〉 are K-linearly independent and let Y ⊆ X be a
subscheme with deg(Y) = deg(X)− i. As X is reduced and Supp(X) = {p1, . . . , pdeg(X)},
there are pairwise distinct elements ν1, . . . , νi ∈ {1, . . . ,deg(X)} with the property that
Supp(Y) = Supp(X) \ {pν1 , . . . , pνi}. By Proposition 5.2.13, I+

X (Y) = 〈fν1 , . . . , fνi〉sat.
Assume that HFY(j) 6= HFX(j). Then we have HFY(j) < HFX(j) as Y ⊆ X and this
implies the existence of an element g ∈ (I+

X (Y))j \ {0}. In particular, Lemma 5.1.13
and Proposition 5.2.13 yield xk0g ∈ 〈fν1 , . . . , fνi〉 for some k ∈ N. Since fr ∈ RσX+1

for all r ∈ {1, . . . ,deg(X)} by Definition 5.1.17, we have (〈fν1 , . . . , fνi〉)` = {0} for all
` ∈ {0, . . . , σX}. As X ∩ H inf = ∅, x0 is a non-zero divisor for R by Proposition 5.1.8.
Thus it follows that k ≥ σX + 1 − j, i.e. k + j ≥ σX + 1. By Proposition 5.2.13, there
exist scalars λ1, . . . , λi ∈ K such that xk0g = λ1x

k+j−(σX+1)
0 fν1 + · · · + λix

k+j−(σX+1)
0 fνi .

Since we have X ∩ H inf = ∅, x0 is a non-zero divisor for R by Proposition 5.1.8. Thus
xσX+1−j

0 g = x
k−(k+j−(σX+1))
0 g = λ1fν1 + · · ·+λifνi and this implies 0 = λ1fν1 + · · ·+λifνi

in R/〈xσX+1−j
0 〉. As {fν1 , . . . , fνi} ⊆ R/〈xσX+1−j

0 〉 is K-linearly independent, we get
λ1 = · · · = λi = 0 and, therefore, xσX+1−j

0 g = 0. Since x0 is a non-zero divisor for R,
we get the contradiction g = 0. Altogether, it follows that HFY(j) = HFX(j) and X is
(i, j)-uniform by Definition 5.2.1.

Remark 5.2.15. Let i ∈ {1, . . . ,∆ HFX(σX + 1)}. According to Lemma 5.2.4, X is
i-uniform if and only if X is (i, σX)-uniform. By Theorem 5.2.14, this is equivalent for
every subset of i elements from {f1, . . . , fdeg(X)} ⊆ R/〈x0〉 to be K-linearly independent.
Note that, with the additional assumption that the base field K is algebraically closed
and that P is standard graded, this result coincides with [Kre94, Prop. 3.4].

The next example shows a reduced subscheme that is not (4, 2)-uniform with respect to
the standard grading but (4, 2)-uniform with respect to a certain non-standard grading
and give a geometric interpretation of (i, j)-uniform schemes in the reduced case.

Example 5.2.16. Let P = Q[x1, x2] be Z-graded by the matrix (w1, w2) ∈ Mat1,2(Z)
with w1, w2 ∈ N\{0} and let P = Q[x0, x1, x2] be Z-graded byW = (1 |W ) ∈ Mat1,3(Z).
Moreover, let X ⊆ PQ(W ) = Proj(P ) be the reduced zero-dimensional subscheme of de-
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gree deg(X) = 11 with Supp(X) = {p1, . . . , p11} where pi = I+(pi) for all i ∈ {1, . . . , 11}
and p1 = (1 : 0 : 0), p2 = (1 : 0 : 1), p3 = (1 : 0 : 2), p4 = (1 : 1 : 0), p5 = (1 : 1 : 11

5 ),
p6 = (1 : 3

2 :−4
5), p7 = (1 : 2 : 2), p8 = (1 : 3 :−1), p9 = (1 : 3 : 1), p10 = (1 : 4 :−1),

and p11 = (1 : 4 : 1). Then X ∩ H inf = ∅ and all the points above are Q-rational. By
Definition 5.1.3 we can identify the points of X, with the corresponding affine part
in A2

Q = Spec(P ) as in the following picture.

x1

x2

Let R = P/I+(X). Using Proposition 5.1.6 and [KR00, Prop. 3.2.7], we can compute
I+(X) = p1 ∩ · · · ∩ p11. Therefore, we can compute the Hilbert function HFX = HFR
of the scheme X using Proposition 4.1.15 and Corollary 4.1.14. We check whether X is
(4, 2)-uniform in two cases.

a) First let W = (1, 1) ∈ Mat1,2(Z), i.e. we equip P with the standard grading. Then
HFX : 1, 3, 6, 10, 11, 11, . . . and thus σX = 3. Let F1, F6, F9, F10 ∈ P 4 be defined by

F1 = 115
2893x

4
2 − 302

2893x0x
3
1 − 203

2893x0x
2
1x2 − 137

2893x0x1x
2
2 + 809

5786x0x
3
2

+ 2317
2893x

2
0x

2
1 + 1421

2893x
2
0x1x2 − 52

263x
2
0x

2
2 − 4908

2893x
3
0x1 − 5681

5786x
3
0x2 + x4

0,

F6 = − 4375
52074x

4
2 + 2600

26037x0x
3
1 − 4000

26037x0x
2
1x2 − 2800

8679x0x1x
2
2 − 3875

8679x0x
3
2

− 14200
26037x

2
0x

2
1 + 28000

26037x
2
0x1x2 + 9125

4734x
2
0x

2
2 + 11600

26037x
3
0x1 − 12125

8679 x
3
0x2,

F9 = 9775
416592x

4
2 − 1966

26037x0x
3
1 − 6322

26037x0x
2
1x2 − 7115

17358x0x1x
2
2 − 8135

23144x0x
3
2

+ 11405
26037x

2
0x

2
1 + 62471

52074x
2
0x1x2 + 33715

37872x
2
0x

2
2 − 9439

26037x
3
0x1 − 39035

69432x
3
0x2,

F10 = − 7475
46288x

4
2 + 142

2893x0x
3
1 − 441

2893x0x
2
1x2 − 695

5786x0x1x
2
2 + 4935

23144x0x
3
2

− 553
2893x

2
0x

2
1 + 3281

5786x
2
0x1x2 + 2065

4208x
2
0x

2
2 + 411

2893x
3
0x1 − 12555

23144x
3
0x2

and for all i ∈ {1, 6, 9, 10}, let fi = F i ∈ R4. For all i ∈ {1, 6, 9, 10} and for
all j ∈ {1, . . . , 11}, we have Fi(pj) = δij , i.e. the element fi ∈ R4 is a separator
of the subscheme X̂i ⊆ X with Supp(X̂i) = Supp(X) \ {pi} by Definition 5.1.17.
In the residue class ring R/〈x2

0〉, we have 100f1 + 69f6 − 60f9 − 20f10 = 0, i.e.
{f1, f6, f9, f10} ⊆ R/〈x2〉 is Q-linearly dependent. According to Theorem 5.2.14,
the zero-dimensional subscheme X is thus not (4, 2)-uniform with respect to the
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standard grading.
Geometrically, we can interpret this result as follows. As indicated in the picture
above, there exists an ellipse that passes through all projective points in the set
{p1, . . . , p11} \ {p1, p6, p9, p10}. But since this ellipse that does not pass through all
points in {p1, . . . , p11}, the value of the Hilbert function of the subscheme Y ⊆ X
with Supp(Y) = Supp(X) \ {p1, p6, p9, p10} at position 2 is less than the value
of the Hilbert function of X at position 2. Therefore, X is not (4, 2)-uniform by
Definition 5.2.1.

b) Second we let W = (1, 2) ∈ Mat1,2(Z). Then HFX : 1, 2, 4, 6, 9, 11, 11, . . . and thus
σX = 4. Let F1, . . . , F11 ∈ P 5 be with

F1 = 551
3000x

5
1 − 7

120x
3
1x2 − 2389

1200x0x
4
1 + 17

60x0x
2
1x2 + 1

2x0x
2
2

+ 381
50 x

2
0x

3
1 + 7

40x
2
0x1x2 − 2807

240 x
3
0x

2
1 − 3

2x
4
0x2 + 4883

1000x
4
0x1 + x5

0,

F2 = −3053
4500x

5
1 + 1

5x
3
1x2 + 12767

1800 x0x
4
1 − 37

30x0x
2
1x2 − x0x

2
2 + 37

30x
2
0x1x2

− 11833
450 x2

0x
3
1 + 14501

360 x3
0x

2
1 + 2x3

0x2 − 30599
1500 x

4
0x1,

F3 = 467
1000x

5
1 − 17

120x
3
1x2 − 1913

400 x0x
4
1 + 19

20x0x
2
1x2 + 1

2x0x
2
2

+ 2593
150 x

2
0x

3
1 − 169

120x
2
0x1x2 − 2059

80 x0x
2
1 − 1

2x0x2 + 38299
3000 x0x1,

F4 = 29
33x

5
1 − 5

66x
3
1x2 − 581

66 x0x
4
1 + 35

66x0x
2
1x2

+ 683
22 x

2
0x

3
1 − 10

11x
2
0x1x2 − 1498

33 x3
0x

2
1 + 256

11 x
4
0x1,

F5 = − 6
11x

5
1 + 5

66x
3
1x2 + 175

33 x0x
4
1 − 35

66x0x
2
1x2

− 590
33 x

2
0x

3
1 + 10

11x
2
0x1x2 + 805

33 x
3
0x

2
1 − 124

11 x
4
0x1,

F6 = −32
45x

5
1 + 64

9 x0x
4
1 − 224

9 x2
0x

3
1 + 320

9 x3
0x

2
1 − 256

15 x
4
0x1,

F7 = 1
2x

5
1 − 19

4 x0x
4
1 + 31

2 x
2
0x

3
1 − 81

4 x
3
0x

2
1 + 9x4

0x1,

F8 = 11
30x

5
1 + 1

12x
3
1x2 − 43

12x0x
4
1 − 5

12x0x
2
1x2

+ 145
12 x

2
0x

3
1 + 1

3x
2
0x1x2 − 49

3 x
3
0x

2
1 + 112

15 x
4
0x1,

F9 = −43
90x

5
1 − 1

12x
3
1x2 + 163

36 x0x
4
1 + 5

12x0x
2
1x2

− 533
36 x

2
0x

3
1 − 1

3x
2
0x1x2 + 176

9 x3
0x

2
1 − 44

5 x
4
0x1,

F10 = − 61
600x

5
1 − 1

24x
3
1x2 + 239

240x0x
4
1 + 1

6x0x
2
1x2

− 67
20x

2
0x

3
1 − 1

8x
2
0x1x2 + 217

48 x
3
0x

2
1 − 413

200x
4
0x1,

F11 = 71
600x

5
1 + 1

24x
3
1x2 − 269

240x0x
4
1 − 1

6x0x
2
1x2

+ 221
60 x

2
0x

3
1 + 1

8x
2
0x1x2 − 235

48 x
3
0x

2
1 + 443

200x
4
0x1

and for all i ∈ {1, . . . , 11}, let fi = F i ∈ R5. For all i, j ∈ {1, . . . , 11}, we have
Fi(pj) = δij , i.e. fi ∈ R5 is a separator of the subscheme X̂i ⊆ X that satisfies
Supp(X̂i) = Supp(X) \ {pi} by Definition 5.1.17. Using linear algebra techniques,
we can easily check that all subsets of four elements of {f1, . . . , f11} ⊆ R/〈x3

0〉 are
Q-linearly independent. Thus the zero-dimensional subscheme X is (4, 2)-uniform
in this non-standard graded case according to Theorem 5.2.14.
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Geometrically, we can interpret this result, too. Consider the above picture, again.
Since x2 has degree 2 and x1 has degree 1, the only possible type of a curve of
degree 2 that destroys the (4, 2)-uniformity is a hyperbola. But we see that there
is obviously no hyperbola passing through all but four points of X. Therefore, the
value of the Hilbert function of any subscheme Y ⊆ X with deg(Y) = 7 at position 2
equals the value of the Hilbert function of X at position 2, i.e. X is (4, 2)-uniform
by Definition 5.2.1.

5.3 Algorithms for Checking Uniformity Conditions

In this section, we turn the results of the previous section into algorithms that check
uniformity conditions of non-empty zero-dimensional subschemes of PK(W ). These al-
gorithms provide an affirmative answer to (generalizations of) [Kre01, Questions 1 and 3].
Whereas [Kre01, Question 1] was already affirmatively answered in the reduced case in
[MP04] using Chow forms, cf. Remark 5.3.6, no answer to [Kre01, Question 3] has been
known up to now.

As in the previous section, we fix the following notation. We let X ⊆ PK(W ) al-
ways be a non-empty zero-dimensional projective subscheme with K-rational support
and X∩H inf = ∅. Moreover, we let R = P/I+(X) be the projective coordinate ring of X
and ωR be the canonical module of R. The multigraded Hilbert function of X is denoted
by H = HFX = HFR : Z→ Z, γ 7→ dimK(Rγ), its Castelnuovo function by ∆H : Z→ Z,
γ 7→ H(γ)−H(γ − 1), and we let σX = max{i ∈ Z | H(i) < deg(X)}.

First we study the general case. In this situation, we assume that the subscheme X
is given by a generating set of its defining ideal I+(X). Then for an arbitrary index
k ∈ {1, . . . , σX}, we determine necessary and sufficient conditions for the multiplication
map Rk ⊗K (ωR)−k → (ωR)0, r ⊗ ϕ 7→ r · ϕ to be biinjective in Proposition 5.3.1.
If K is algebraically closed, we can use these characterizations to check whether X is
(deg(X) − H(j))-uniform for arbitrary j ∈ N as shown in Remark 5.3.2. After that,
we turn Corollary 5.2.9 into an algorithm in Proposition 5.3.3. This allows us to check
whether X is (i, j)-uniform for arbitrary j ∈ N and i ∈ {1, . . . ,deg(X)− HFX(j)} in the
algebraically closed case.
In the second subsection, we restrict ourselves to the reduced case. In this situation,

we assume that X is given by its support, i.e. the set of all points vanishing on I+(X). We
start with an appropriate version of the Buchberger-Möller Algorithm in Proposition 5.3.7
for border bases that also takes the underlying grading W into account in order to
compute the defining ideal of X. After that, we turn Theorem 5.2.14 into an algorithm
in Proposition 5.3.9.

5.3.1 The General Case

For the whole subsection, we assume that the base field K is algebraically closed. This
is necessary since all the methods of this subsection are based on Hilbert’s Nullstellen-
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5 Projective Border Bases and Algebraic Geometry

satz [KR00, Thm. 2.6.16]. Recall that X ∩H inf = ∅ yields the existence of a projective
O-border basis of I+(X) according to Proposition 5.1.8.

First we give two algorithms that allow us to check whether for k ∈ N, the multipli-
cation map π : Rk ⊗K (ωR)−k → (ωR)0, r ⊗ ϕ 7→ r · ϕ is biinjective, i.e. an algorithm
that checks whether r · ϕ = π(r ⊗ ϕ) = 0 implies r = 0 or ϕ = 0 for all r ∈ Rk and
ϕ ∈ (ωR)−k according to Definition 5.2.11. The first one of the following two methods of
Proposition 5.3.1 generalizes [BK96, Rem. 8.3] to our setting. The second one applies the
results of [Eis88, Sect. 1] to the special map π and thus generalizes the method described
in [BK96, Rem. 8.4] to our setting. For the sake of completeness, we provide detailed
proofs of both methods. Recall that for a square matrix A = (aij)1≤i,j≤s ∈ Mats(K) of
size s ∈ N \ {0}, the trace of A is defined by trace(A) = a11 + · · ·+ ass ∈ K.

Proposition 5.3.1. (Biinjectivity Tests)
Let G ⊆ P be a projective O-border basis of I+(X). Moreover, we write O = {t1, . . . , tµ}
with degW (t1) ≤ · · · ≤ degW (tµ) and let X1, . . . ,Xn ∈ Matµ(K) be the formal multi-
plication matrices of {gdeh | g ∈ G} ⊆ P . Let {E1, . . . , Eµ} denote the canonical basis
of the K-vector space Kµ, let k ∈ {1, . . . , σX}, and let π : Rk ⊗K (ωR)−k → (ωR)0,
r ⊗ ϕ 7→ r · ϕ be the multiplication map. Furthermore, for every index ` ∈ {2, . . . , µ},
let C` = (crs`)1≤r≤H(k),H(k)+1≤s≤µ ∈ MatH(k),µ−H(k)(K) be the matrix with the entries
crs` = E` · tr(X tr

1 , . . . ,X tr
n ) · Etr

s ∈ K for all r ∈ {1, . . . ,H(k)} and s ∈ {H(k) + 1, . . . , µ}
and let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and i ∈ {1, . . . , µ}.

a) Let Q = K[y1, . . . , yH(k)+1, zH(k)+1, . . . , zµ] be with a set of further indetermi-
nates {y1, . . . , yH(k), zH(k)+1, . . . , zµ} and for all indices ` ∈ {2, . . . , µ}, we let
f` = (y1, . . . , yH(k)) · C` · (zH(k)+1, . . . , zµ)tr ∈ Q. Then the multiplication map π is
biinjective if and only if 〈y1zH(k)+1, . . . , yH(k)zµ〉 ⊆

√
〈f2, . . . , fµ〉.

b) Let {ϕ1, . . . , ϕd} ⊆ (ωR)0 with a natural number d ∈ N be a K-vector space basis
of im(π). For all i ∈ {1, . . . , d}, we write ϕi = bi2x

−d1,2
0 t

∗
2 + · · · + biµx

−d1,µ
0 t

∗
µ

with scalars bi2, . . . , biµ ∈ K and we let Bi = bi2C2 + · · · + biµCµ. Moreover,
we let {D1, . . . ,Dm} ⊆ Matµ−H(k),H(k)(K) be a K-vector space basis of the set
M⊥ = {D ∈ Matµ−H(k),H(k)(K) | trace(DB2) = · · · = trace(DBµ) = 0} and
we let Q = K[y1, . . . , ym] be where {y1, . . . , ym} is a set of further indetermi-
nates. Let J ⊆ Q denote the ideal generated by the set of all 2-minors of the
matrix y1D1 + · · ·+ ymDm ∈ Matµ−H(k),H(k)(Q). Then the map π is biinjective if
and only if 〈y1, . . . , ym〉 ⊆

√
J .

Proof. According to Proposition 4.1.15, the set {xdk,10 t1, . . . , x
dk,H(k)

0 tH(k)} is a K-vector

space basis ofRk, and by Proposition 4.3.7, the sets {x−dk+1,H(k)+1

0 t
∗
H(k)+1, . . . , x

−dk+1,µ

0 t
∗
µ}

and {x−d1,20 t
∗
2, . . . , x

−d1,µ
0 t

∗
µ} are K-vector spaces of (ωR)−k and (ωR)0, respectively.
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First we show a). For all r ∈ {1, . . . ,H(k)} and s ∈ {H(k) + 1, . . . , µ}, we have

x
dk,r
0 tr · x

−dk+1,s

0 t
∗
s = (0, x

−d1,2
0 t

∗
2, . . . , x

−d1,µ
0 t

∗
µ) · (xdk,r0 tr)(Iµ,X tr

1 , . . . ,X tr
n ) · Etr

s

= (0, x
−d1,2
0 t

∗
2, . . . , x

−d1,µ
0 t

∗
µ) · tr(Iµ,X tr

1 , . . . ,X tr
n ) · Etr

s

=

µ∑
`=2

(E` · tr(X tr
1 , . . . ,X tr

n ) · Etr
s )x

−d1,`
0 t

∗
`

=

µ∑
`=2

crs`x
−d1,`
0 t

∗
`

according to Proposition 4.3.10. Let a1, . . . , aH(k), bH(k)+1, . . . , bµ,∈ K. Then

π

H(k)∑
r=1

arx
dk,r
0 tr

⊗
 µ∑
s=H(k)+1

bsx
−dk+1,s

0 t
∗
s


=

H(k)∑
r=1

arx
dk,r
0 tr

 ·
 µ∑
s=H(k)+1

bsx
−dk+1,s

0 t
∗
s


=

H(k)∑
r=1

µ∑
s=H(k)+1

arbs(x
dk,r
0 tr · x

−dk+1,s

0 t
∗
s)

=

H(k)∑
r=1

µ∑
s=H(k)+1

arbs

µ∑
`=2

crs`x
−d1,`
0 t

∗
`

=

µ∑
`=2

H(k)∑
r=1

µ∑
s=H(k)+1

arcrs`bs

x
−d1,`
0 t

∗
`

=

µ∑
`=2

((a1, . . . , aH(k)) · C` · (bH(k)+1, . . . , bµ)tr)x
−d1,`
0 t

∗
`

=

µ∑
`=2

f`(a1, . . . , aH(k), bH(k)+1, . . . , bµ)x
−d1,`
0 t

∗
` .

By Definition 5.2.11, π is biinjective if and only if f`(a1, . . . , aH(k), bH(k)+1, . . . , bµ) = 0
for all ` ∈ {2, . . . , µ} implies that a1 = · · · = aH(k) = 0 or bH(k)+1 = · · · = bµ = 0. In
other words, π is biinjective if and only if

Z(〈f2, . . . , fµ〉) ⊆ Z(〈y1, . . . , yH(k)〉) ∪ Z(〈zH(k)+1, . . . , zµ〉).

By [CLO07, Lemma 1.§2.2], we have

Z(〈y1, . . . , yH(k)〉) ∪ Z(〈zH(k)+1, . . . , zµ〉) = Z(〈y1zH(k)+1, . . . , yH(k)zµ〉).
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Now the Ideal-Variety Correspondence [CLO07, Thm. 4.§2.7], Hilbert’s Nullstellensatz
[KR00, Thm. 2.6.16], and [KR05, Coro. 4.1.12] yield that π is biinjective if and only if√

〈f2, . . . , fµ〉 ⊇
√
〈y1zH(k)+1, . . . , yH(k)zµ〉 = 〈y1zH(k)+1, . . . , yH(k)zµ〉.

Next we prove claim b). By taking adjoints, the map π induces the dualK-vector space
monomorphism π∗ : (ωR)0

∗ → (Rk ⊗K (ωR)−k)
∗, defined by (x

−d1,`
0 t

∗
` )
∗
7→ (x

−d1,`
0 t

∗
` )
∗
◦ π

for all ` ∈ {2, . . . , µ}. As above, for all a1, . . . , aH(k), bH(k)+1, . . . , bµ ∈ K, we have

π

H(k)∑
r=1

arx
dk,r
0 tr

⊗
 µ∑
s=H(k)+1

bsx
−dk+1,s

0 t
∗
s


=

µ∑
`=2

((a1, . . . , aH(k)) · C` · (bH(k)+1, . . . , bµ)tr)x
−d1,`
0 t

∗
` .

Thus for all indices ` ∈ {2, . . . , µ}, the matrix C` ∈ MatH(k),µ−H(k)(K) represents the

K-vector space homomorphism π∗((x
−d1,`
0 t

∗
` )
∗
) with respect to the K-vector space bases

{xdk,10 t1, . . . , x
dk,H(k)

0 tH(k)} of Rk and {x−d1,20 t
∗
2, . . . , x

−d1,µ
0 t

∗
µ} of (ωR)−k. Since the map

π : Rk ⊗K (ωR)−k � im(π) is surjective, the restriction π∗|(im(π))∗ of π∗ to (im(π))∗ is
injective according to [Bou89, Prop. II.§2.6.9]. As {ϕ1, . . . , ϕd} is a K-vector space basis
of im(π), and since π∗|(im(π))∗ is injective, it follows that

(im(π))∗ =

(
d⊕
i=1

Kϕi

)∗

=

d⊕
i=1

K(bi2x
−d1,2
0 t

∗
2 + · · ·+ biµx

−d1,µ
0 t

∗
µ)

∼=
d⊕
i=1

K(bi2x
−d1,2
0 C2 + · · ·+ biµx

−d1,µ
0 Cµ)

=
d⊕
i=1

KBi

⊆ MatH(k),µ−H(k)(K).

Moreover, since we have seen above that Rk, (ωR)−k, and (ωR)0 are all finite-dimensional
K-vector spaces, [Bou89, Subsection II.§4.2, p. 271] yields the canonical K-vector space
isomorphism

Rk ⊗K (ωR)−k ∼= (R∗k)
∗ ⊗K (ωR)−k ∼= HomK(R∗k, (ωR)−k) ∼= Matµ−H(k),H(k)(K).

We now prove that (MatH(k),µ−H(k)(K))∗ ∼= Matµ−H(k),H(k)(K). Let

Φ : Matµ−H(k),H(k)(K)→ (MatH(k),µ−H(k)(K))∗, A 7→ (B 7→ trace(AB)).
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For all A,A′ ∈ Matµ−H(k),H(k)(K), λ ∈ K, and B ∈ MatH(k),µ−H(k)(K), we have

Φ(λA+A′)(B) = trace((λA+A′)B)

= trace(λAB +A′B)

= λ trace(AB) + trace(A′B)

= λΦ(A)(B) + Φ(A′)(B),

i.e. Φ(λA + A′) = λΦ(A) + Φ(A′). Thus Φ is a K-vector space homomorphism. Let
A ∈ ker(Φ). Let i ∈ {1, . . . , µ − H(k)}, j ∈ {1, . . . ,H(k)}, and let aij ∈ K be the
entry of A in the ith row and the jth column. LetMij ∈ MatH(k),µ−H(k) be the matrix
with 1 in the entry of the jth row and ith column and 0 in all other entries. Then
aij = trace(AMij) = 0 since A ∈ ker(Φ). We see that A = 0 and thus Φ is injective.
Since dimK(Matµ−H(k),H(k)(K)) = (µ − H(k)) · H(k) = dimK((MatH(k),µ−H(k)(K))∗),
the map Φ is a K-vector space isomorphism.
Altogether, we see that we can consider π as a K-vector space epimorphism

π : Rk ⊗K (ωR)−k ∼= (MatH(k),µ−H(k)(K))∗ �

(
d⊕
i=1

KBi

)∗
= (im(π)∗)

∗ ∼= im(π)

with M =
⊕d

i=1KBi ⊆ MatH(k),µ−H(k)(K). By [Eis88, Prop. 1.1], it follows that π is
biinjective if and only if (M⊥)1 = 0, i.e. if and only if for all scalars c1, . . . , cm ∈ K,
rkK(c1D1 + · · · + cmDm) ≤ 1 implies that c1 = · · · = cm = 0. In other words, the
map π is biinjective if and only if Z(J) ⊆ Z(〈y1, . . . , ym) and by the Ideal-Variety
Correspondence [CLO07, Thm. 4.§2.7], Hilbert’s Nullstellensatz [KR00, Thm. 2.6.16],
and [KR05, Coro. 4.1.12], this is equivalent to

√
J ⊇ 〈y1, . . . , ym〉.

The previous proposition can be used to check i-uniformity conditions in special cases.

Remark 5.3.2. Let j ∈ {1, . . . , σX}. According to Remark 5.2.12, the scheme X is
(deg(X)−HFX(j))-uniform if and only if the multiplication map Rk⊗K (ωR)−k → (ωR)0,
r ⊗ ϕ 7→ r · ϕ is biinjective for all k ∈ {j, . . . , σX}. Since we can algorithmically check
radical membership by [KR00, Coro. 3.5.15], we can use the methods of Proposition 5.3.1
to algorithmically check whether the scheme X is (deg(X) − HFX(j))-uniform. In Re-
mark 5.3.5, we describe a new method to check whether X is i-uniform where i ∈ N can
be an arbitrary natural number, which is based on Corollary 5.2.9.

Next we turn Corollary 5.2.9 into an explicit algorithm. Note that we assume that the
subscheme X is given by a generating set of its defining ideal I+(X).
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Algorithm 8: CheckUniformity({f1, . . . , fr}, i, j)

Input:
r ∈ N and {f1, . . . , fr} ⊆ P is a generating set of the homogeneous vanishing
ideal I+(X) of a non-empty zero-dimensional subscheme X ⊆ PK(W ) over an
algebraically closed field K satisfying X ∩H inf = ∅,
i, j ∈ N \ {0}

1 Compute a projective O-border basis G of 〈f1, . . . , fr〉 ⊆ P .
2 Let µ ∈ N and t1, . . . , tµ ⊆ Tn be terms such that O = {t1, . . . , tµ} and such that

degW (t1) ≤ · · · ≤ degW (tµ).
3 Let X1, . . . ,Xn ∈ Matµ(K) be the formal multiplication matrices of the O-border
basis {gdeh | g ∈ G} ⊆ P .

4 σX := degW (tµ)− 1
5 Hj := max{k ∈ {1, . . . , µ} | degW (tk) ≤ j}
6 if i > µ−Hj or j > σX then
7 return false
8 end
9 for k := 1 to Hj do

10 Let Tk ∈ Matµ−1,µ−Hj (K) be the submatrix of tk(X tr
1 , . . . ,X tr

n ) ∈ Matµ(K)

obtained by deleting the first row and the first Hj columns.
11 end
12 Let {y1, . . . , yHj} be a set of further indeterminates.
13 Let J ⊆ K[y1, . . . , yHj ] be the ideal generated by the set of all i-minors of the

matrix y1T1 + · · ·+ yHjTHj ∈ Matµ−1,µ−Hj (K[y1, . . . , yHj ]).
14 for k := 1 to Hj do
15 if yk /∈

√
J then

16 return false
17 end
18 end
19 return true

Proposition 5.3.3. (The (i, j)-Uniformity Test – The General Case)
Let {f1, . . . , fr} ⊆ P with r ∈ N be a generating set of the defining ideal I+(X) and let
i, j ∈ N \ {0}. Then Algorithm 8 is actually an algorithm and the result

CheckUniformity({f1, . . . , fr}, i, j)

of Algorithm 8 applied to the input data {f1, . . . , fr}, i, and j is a boolean value that
determines whether the scheme X is (i, j)-uniform.
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Proof. First we show that Algorithm 8 is actually an algorithm. As X ⊆ PK(W ) is a
non-empty zero-dimensional subscheme, we can compute a projective O-border basis G
of I+(X) ⊂ P as in line 1 according to Proposition 5.1.8 and Corollary 4.1.14. By
Proposition 4.1.7, the set {gdeh | g ∈ G} ⊆ P is an O-border basis of I+(X)deh and thus
we can compute the corresponding formal multiplication matrices in line 3. In line 13,
we have i ≤ µ −Hj since otherwise the procedure would have stopped in line 6. As X
is non-empty, 1 ∈ O by Definitions 2.1.6 and 4.1.2 and hence µ − Hj ≤ µ − 1. Thus
we can compute the i-minors of y1T1 + · · ·+ ymTHj ∈ Matµ−Hj ,µ−1(K[y1, . . . , yHj ]), and
hence also J as in line 13 using linear algebra techniques. The condition of the if-clause
in line 15 can be algorithmically checked, for instance, with the Radical Membership
Test [KR00, Coro. 3.5.15]. Since all the other steps of the procedure can be trivially
computed and since the procedure obviously stops after a finite amount of time, it is
actually an algorithm.
Next we prove the correctness. Since X ⊆ PK(W ) is a non-empty subscheme, we have
〈f1, . . . , fr〉 ⊂ P . Let G ⊆ P be the projective O-border basis of I+(X) as in line 1, let
µ ∈ N and t1, . . . , tµ ⊆ Tn be such that O = {t1, . . . , tµ} and degW (t1) ≤ · · · ≤ degW (tµ)
as in line 2, and let X1, . . . ,Xn ∈ Matµ(K) denote the formal multiplication matrices
of {gdeh | g ∈ G} as in line 3. Since 〈f1, . . . , fr〉 6= P and G is a projective O-border basis
of the ideal I+(X), it follows O 6= ∅ and thus µ ≥ 1 from Definition 4.1.2. Therefore,
σX = degW (tµ) − 1 as in line 4 and Hj = max{k ∈ {1, . . . , µ} | degW (tk) ≤ j} as
in line 5 exist. Since we have degW (t1) ≤ · · · ≤ degW (tµ), it follows µ = deg(X),
σX = max{k ∈ Z | HFX(k) < deg(X)}, and Hj = HFX(j) from Proposition 4.1.15
and Definition 5.1.17. If i > µ − Hj = deg(X) − HFX(j) or j > σX, the subscheme X
is not (i, j)-uniform according to Proposition 5.2.3 and Definition 5.2.1 and the correct
boolean value is returned in line 7. For the other case, assume that i ≤ µ − Hj . Let
{y1, . . . , yHj} be a set of further indeterminates as in line 12, Tk ∈ Matµ−1,µ−Hj (K) be
the submatrix of tk(X tr

1 , . . . ,X tr
n ) ∈ Matµ(K) obtained by deleting the first row and the

first Hj columns as in line 10, and let J ⊆ K[y1, . . . , yHj ] be the ideal generated by the
set of all i-minors of y1T1 + · · · + yHjTHj ∈ Matµ−1,µ−Hj (K[y1, . . . , yHj ]) as in line 13.
If the algorithm stops in line 16, then there exists a k ∈ {1, . . . ,Hj} such that yk /∈

√
J

by line 15. In this situation, 〈y1, . . . , yHj 〉 6⊆
√
J and Corollary 5.2.9 imply that X is

not (i, j)-uniform and the correct boolean value is returned in line 16. If the algorithm
stops in line 19, then yk ∈

√
J for all k ∈ {1, . . . ,Hj} by line 15. In this situation,

〈y1, . . . , yHj 〉 ⊆
√
J and Corollary 5.2.9 imply that X is (i, j)-uniform and the correct

boolean value is returned in line 19.

Example 5.3.4. Let XC = X ×Spec(Q) Spec(C) ⊆ P2
C = Proj(C[x0, x1, x2]) be the

zero-dimensional subscheme X regarded over C where X ⊆ P2
Q is the zero-dimensional

subscheme of the Examples 5.2.2, 5.2.8, and 5.2.10. Recall that XC was defined by
the ideal I = p2

0 ∩ p2
1 ∩ p2

2 where p0 = I+({(1 : 0 : 0)}), p1 = I+({(1 : 0 : 1)}), and
p2 = I+({(1 : 1 : 0)}) were homogeneous vanishing ideals in C[x0, x1, x2]. In particular, we
have Supp(XC) = {p0, p1, p2} and XC ∩H inf = ∅. Applying the method described in Ex-
ample 5.2.2, we can compute the homogeneous generating set {f1, . . . , f4} ⊆ C[x0, x1, x2]
of the ideal I where we have f1 = x2

1x2 + x1x
2
2 − x0x1x2, f2 = x4

2 − 2x0x
3
2 + x2

0x
2
2,
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f3 = x1x
3
2−x0x1x

2
2, and f4 = x4

1−2x0x
3
1 +x2

0x
2
1. Altogether, the input data {f1, . . . , f4},

i = 2, and j = 2 satisfy the assumptions of Algorithm 8. We now consider the steps of
Algorithm 8 applied to these input data in detail.

In the initialization process of the lines 1 to 3, we compute the projective O-border ba-
sisG whereO = {t1, . . . , t9} = {1, x2, x1, x

2
2, x1x2, x

2
1, x

3
2, x1x

2
2, x

3
1} and the corresponding

formal multiplication matrices X1,X2 ∈ Mat8(C) just as we did in Example 5.2.10. In
line 4, we have σXC = degW (x3

1) − 1 = 2. Since we have degW (t6) = deg(x2
1) = 2

and degW (t7) = degW (x3
2) = 3 > 2, we get Hj = 6 in line 5. As i = 2 ≤ 9 − Hj and

j = 2 = σXC , the if-clause in line 6 is not executed. Let T1, . . . , T6 ∈ Mat9,3(C) be the ma-
trices that are computed in line 10 during the for-loop starting in line 9, let {y1, . . . , y6} be
a set of further indeterminates as in line 12, and let J ⊆ C[y1, . . . , y6] be the ideal gener-
ated by the set of all 2-minors of the matrix y1T1 + · · ·+y6T6 ∈ Mat8,3(C[y1, . . . , y6]). Re-
call that we already computed the matrices T1, . . . , T6 and the ideal J in Example 5.2.10.
Using the Radical Membership Test [KR00, Coro. 3.5.15], we see that y1 ∈

√
J whereas

y2 /∈
√
J . Thus the condition of the if-clause in line 15 is satisfied and the algorithm

returns the boolean value false in line 16.

By Proposition 5.3.3, the zero-dimensional subscheme XC ⊆ P2
C is not (2, 2)-uniform.

Note that this result coincides with Example 5.2.10.

Finally, we sum up all the methods introduced in this subsection to check i-uniformity
and (i, j)-uniformity conditions in the general, i.e. non-reduced, case. Recall again, that
all these methods assume that the base field K is algebraically closed.

Remark 5.3.5. Let i, j ∈ N \ {0}. Then we have the following possibilities to check
whether the scheme X is i- respectively (i, j)-uniform.

a) According to Proposition 5.3.3, we can algorithmically check whether the scheme X
is (i, j)-uniform. Note that, we do not need to assume that X is reduced but only
that K is algebraically closed. In this general setting, no algorithm to check the
(i, j)-uniformity conditions has been known by now.

b) Combining the Propositions 5.2.6 and 5.3.3, we can algorithmically check whether
the scheme X is i-uniform. Note that by now it was only possible to check the
i-uniformity condition if we had i = deg(X)−HFX(k) for some k ∈ N by applying
the method described in Remark 5.3.2.
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5.3.2 The Reduced Case

In this subsection, we do no longer assume that the base fieldK is algebraically closed but
instead assume that the subscheme X ⊆ PK(W ) is reduced. Before we start to transform
the results of Section 5.2 into explicit algorithms, we recall the results of [MP04] about
(i, j)-uniform subschemes of PnK . Note that the authors of that paper use a slightly
different but equivalent notion of (i, j)-uniformity, cf. [MP04, Rem. 2], compared to ours
in Definition 5.2.1, which is due to [Kre98, Defn. 7.12] and [Kre01, Defn. 2.1].

Remark 5.3.6. Let I ⊆ P be an ideal that set-theoretically defines a zero-dimensional
subscheme X ⊆ PnK and assume that char(K) = 0 or char(K) > deg(X) holds. In [MP04,
Prop. 18], the authors describe an algorithm that checks whether X is (i, j)-uniform for
arbitrary i, j ∈ N. The authors of that paper use a different approach than the one we will
use later, namely they use Chow forms. The benefit of their method is that, in contrast
to ours, they do not need to know the zero set of the ideal I+(X) but only an ideal that
defines X set-theoretically and they do not need to assume that X∩H inf = ∅. However, if
the ideal I is not a radical ideal, they need to compute its radical ideal

√
I = I+(X). If K

is finitely generated over a perfect field, this task can be algorithmically done, cf. [KL91]
if char(K) = 0 and [Kem02, Mat01] if char(K) > 0. Note that if 0 < char(K) ≤ deg(X)
or if P is not standard graded, no algorithm to check the (i, j)-uniformity condition for
arbitrary natural numbers i ∈ {1, . . . ,deg(X)− 1} and j ∈ {1, . . . , σX} is known by now.

As before, the reduced subscheme X is assumed to have aK-rational support. Thus the
support of X consists of deg(X) vanishing ideals ofK-rational projective points in PK(W )
according to Proposition 5.1.7. For the whole subsection, we assume that X is given by
these K-rational projective points.

Before we are able to transform Theorem 5.2.14 into an explicit algorithm, we need to
determine an algorithm for the computation of the separators of the subschemes Y ⊆ X
with deg(Y) = deg(X) − 1, cf. Definition 5.1.17. This task can be done with a suitable
generalization of the Buchberger-Möller Algorithm introduced in [MB82]. The original
Buchberger-Möller Algorithm computes a reduced Gröbner basis of the vanishing ideal of
a finite set of affine points in AnK = Spec(P ). Though a version that computes a border
basis instead of a reduced Gröbner basis was stated in [KP11, Algo. 4.1] and explicitly
proved in [Lim14, Thm. 3.4.1], all these versions use the standard grading. This can
sometimes lead to problems. For instance, if we compute an O-border basis G with one
of these versions of the Buchberger-Möller Algorithm, it can happen that a border term
b ∈ ∂O is not contained in the degree form with respect toW of the corresponding border
basis element gb ∈ G, i.e. that there is a term t ∈ Supp(gb) such that degW (t) > degW (b).
In this situation, homogenization of G does not yield a projective O-border bases accord-
ing to Corollary 4.1.9. Since we are particularly interested in projective O-border bases
and need them in Algorithm 10, we generalize the Buchberger-Möller Algorithm to be
capable of handling gradings given by the positive matrix W .
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5 Projective Border Bases and Algebraic Geometry

Algorithm 9: BM((p1, . . . , pµ), (w1, . . . , wn), σ)

Input:
(p1, . . . , pµ) ∈ (AnK)µ is a tuple consisting of µ ∈ N \ {0} pairwise distinct affine
points in AnK = Spec(P ),
(w1, . . . , wn) ∈ Mat1,n(Z) such that wi > 0 for all i ∈ {1, . . . , n}
σ is a term ordering on Tn that is compatible with deg(w1,...,wn)

1 i := 0
2 O := ∅
3 M∈ Matµ,i(K)
4 G := ∅
5 d := 0
6 while (∂O)≥d 6= ∅ do
7 Let r ∈ N and let `1, . . . , `r ∈ Tn be terms such that (∂O)d = {`1, . . . , `r} and

such that `r >σ · · · >σ `1.
8 A := ((`r(p1), . . . , `r(pµ))tr | · · · | (`1(p1), . . . , `1(pµ))tr | M) ∈ Matµ,i+r(K)
9 Compute a matrix B ∈ Matk,i+r(K) with k ∈ N rows such that the rows of B

form a K-vector space basis of ker(A).
10 Let C ∈ Matk,i+r(K) be the reduced row echolon form of B.
11 Let g1, . . . , gk ∈ P be such that C · (`r, . . . , `1, ti, . . . , t1)tr = (g1, . . . , gk)

tr.
12 G := G ∪ {g1, . . . , gk}
13 for j := 1 to r do
14 if `j /∈ {LTσ(g1), . . . ,LTσ(gk)} then
15 i := i+ 1
16 ti := `j
17 O := O ∪ {ti}
18 M := ((ti(p1), . . . , ti(pµ))tr | M) ∈ Matµ,i(K)

19 end
20 end
21 d := d+ 1

22 end
23 S := (ti, . . . , t1) · M−1

24 return (O, G,S)

Proposition 5.3.7. (The Buchberger-Möller Algorithm)
Let (p1, . . . , pµ) ∈ (AnK)µ be a tuple consisting of µ ∈ N \ {0} pairwise distinct affine
points in AnK = Spec(P ), let Xa = {p1, . . . , pµ}, and let σ be a term ordering on Tn that
is compatible with degW . Then Algorithm 9 is actually an algorithm and the result

(O, G,S) := BM((p1, . . . , pµ),W, σ)

of Algorithm 9 applied to the input data (p1, . . . , pµ), W , and σ satisfies the following
conditions.
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1) The set O ⊆ Tn is an order ideal in Tn.

2) The set G ⊆ P is the O-border basis of the vanishing ideal I(Xa) of Xa.

3) For all g ∈ G, we have LTσPos(g) ∈ ∂O. In particular, the degree form of an
element of G with respect to W contains the corresponding border term.

4) We have S = (s1, . . . , sµ) ∈ (〈O〉K)µ and for all i ∈ {1, . . . , µ}, the polynomial si
is a separator of pi from the affine point set Xa \ {pi}, i.e. an element satisfying
si(pj) = δij for all j ∈ {1, . . . , µ}.

Proof. First we show that Algorithm 9 is actually an algorithm. Later in the proof of the
correctness, we will show thatO is an order ideal in Tn during the whole procedure. Hence
we can compute its border in the lines 6 and 7. The matrices B, C ∈ Matµ,i+r(K) as in
the lines 9 and 10 can be computed using standard linear algebra techniques. Moreover,
we will see in the proof of the correctness that after the while-loop starting in line 6,
we have i = µ and the rows of the matrix M ∈ Matµ(K) are K-linearly independent.
Therefore, we can compute (tµ, . . . , t1) · M−1 in line 23 using standard linear algebra
techniques. All the other steps of the procedure can trivially be computed.
In order to show that the procedure stops after a finite amount of time, it suffices to show
that the while-loop starting in line 6 eventually stops. The natural number i is initiated
with 0 in line 1. Thus O has i = 0 elements in line 2 and the matrixM has i = 0 columns
in line 3. Every time i is increased by 1 in line 15, the element ti is added to O in line 17
and the evaluation vector (ti(p1), . . . , ti(pµ))tr ∈ Kµ is appended to M as a new first
column in line 18. As O is only changed in line 17 and asM is only changed in line 18, we
see that during the whole algorithm, O = {t1, . . . , ti} and the columns ofM∈ Matµ,i(K)
are the precisely the evaluation vectors of the elements in O at (p1, . . . , pµ). Moreover,
we will later prove that the columns ofM are K-linearly independent during the whole
algorithm. SinceM has exactly µ ∈ N rows, it hence follows that O can at most consist
of µ terms. As d is increased at the end of every iteration of the while-loop in line 21,
we eventually have (∂O)≥d = ∅ in line 6 and the while-loop terminates. Therefore, the
procedure stops after a finite amount of time and is thus an algorithm.
Next we prove the correctness of the algorithm. We consider one iteration of the

while-loop starting in line 6 in detail. Let d ∈ N and O = {t1, . . . , ti} ⊆ Tn be such
that (∂O)≥d 6= ∅ as in line 6. Since the elements of O have been added in a previous
iteration of the while-loop and since d is increased at the end of every iteration of the
while-loop in line 21, we see that degW (tk) < d for all k ∈ {1, . . . , i}. Let r ∈ N and
`1, . . . , `r ∈ Tn be terms such that (∂O)d = {`1, . . . , `r} and such that `r >σ · · · >σ `1 as
in line 7. Consider the iterations of the for-loop starting in line 13. As the for-loop runs
from 1 to r, as `r >σ · · · >σ `1, and as the algorithm only adds elements to O in line 17,
it follows that `r >σ · · · >σ `1 >σ ti >σ · · · >σ t1 at the beginning of the for-loop in
line 13. Let A = ((`r(p1), . . . , `r(pµ))tr | · · · | (`1(p1), . . . , `1(pµ))tr | M) ∈ Matµ,i+r(K)
be as in line 8 and let C ∈ Matk,i+r(K) be a matrix in reduced row echolon form with
k ∈ N rows such that the rows of C form a K-vector space basis of ker(A) as in line 10.
Moreover, let g1, . . . , gk ∈ P be such that C · (`r, . . . , `1, ti, . . . , t1)tr = (g1, . . . , gk)

tr as
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in line 11. By construction, there is a K-linear dependency between the evaluation
vectors of `r, . . . , `1, ti, . . . , t1 if and only if the corresponding columns of the matrix A
are K-linearly dependent and this equivalent for the same columns of the matrix C to
be K-linearly dependent. An element t is added to O in line 17 if and only if it is not
the leading term with respect to σ of one of the elements in {g1, . . . , gk} by line 14.
And since `r >σ · · · >σ `1 >σ ti >σ · · · >σ t1, this is equivalent for the evaluation
vector (t(p1), . . . , t(pµ))tr of t at (p1, . . . , pµ)tr as in line 18 to be K-linearly independent
ofM. Thus induction on the loop-variable j of line 13 and induction on d of line 6 yield
thatM consists of K-linearly independent columns during the whole algorithm.
Now we prove that O is an order ideal in Tn. Let t ∈ O and t′, t′′ ∈ Tn be with t = t′t′′.
According to Definition 2.1.1, it suffices to prove that t′ ∈ O. For a contradiction, assume
that t′ /∈ O. As the algorithm considers the terms degree-by-degree and as the weight
vector W satisfies wi > 0 for all i ∈ {1, . . . , n}, it follows degW (t′) < degW (t). Thus
the algorithm considers t′ before t in the while-loop. Since we have t′ /∈ O, t′ = LTσ(g)
for some g ∈ G by the lines 14 and 17. As we have already seen above, every element
g1, . . . , gk ∈ P of line 11 vanishes on (p1, . . . , pµ). The set G is only changed in line 12.
Hence the elements g and gt′′ both vanish on (p1, . . . , pµ). As σ is a term ordering on Tn,
we have LTσ(gt′′) = LTσ(g)t′′ = t′t′′ = t by [KR00, Prop. 1.5.3]. In particular, σ is also
degW -compatible and hence degW (t) = degW (gt′′) by [KR05, Defn. 4.2.1]. Therefore,
the element gt′′ yields a K-linearly dependency of the corresponding columns of C and
is thus an element of {g1, . . . , gk} in line 11 during the corresponding iteration of the
while-loop. As t = LTσ(gt′′) = LTσ(gs) for some s ∈ {1, . . . , k}, the condition of the
if-clause in line 14 is not fulfilled and t is not added to O in line 17. This is clearly a
contradiction to our assumption and thus it follows that O is an order ideal.
Next we show that G is the O-border basis of the vanishing ideal I(Xa). Obviously
every border term b ∈ ∂O is considered once during the algorithm and is the leading
term of a polynomial in G by the lines 10 to 12 and the lines 14 and 17. Moreover, as the
matrix C in line 10 is in reduced row echolon form and as all the elements that are not
leading terms of the elements of G are added to O by the lines 14 and 17, the set G is an
O-border prebasis by Definition 2.1.14. We now use Buchberger’s Criterion for border
bases 2.4.31 to show that G is the O-border basis of I(Xa). Let b, b′ ∈ ∂O be neighbors
with respect toO and let gb, gb′ ∈ G be the corresponding elements ofG. Then the normal
remainder NRG(S(gb, gb′)) ∈ 〈O〉K of the S-vector S(gb, gb′) ∈ 〈G〉 of gb and gb′ is an
element of 〈G〉∩〈O〉K according to the Definitions 2.2.2 and 2.4.30. We have already seen
above that all the elements in G vanish on (p1, . . . , pµ) and that the evaluation vectors
of the elements of O at (p1, . . . , pµ) are K-linearly independent. As an element of 〈G〉,
the polynomial NRG(S(gb, gb′)) vanishes at (p1, . . . , pµ). As NRG(S(gb, gb′) ∈ 〈O〉K and
as the evaluation vectors of the elements of O at (p1, . . . , pµ) are K-linearly independent,
it follows that NRG(S(gb, gb′)) = 0. Hence Buchberger’s Criterion for border bases 2.4.31
yields that G is the O-border basis of 〈G〉. We have already seen above that M is
a matrix consisting of µ rows whose columns are the K-linear independent evaluation
vectors of the elements in O at (p1, . . . , pµ) and that, therefore, #O ≤ µ. Recall that
Oσ(I(X)) = Tn \LTσ(I(X)). We have seen that all the elements in ∂O are leading terms
of elements in G ⊆ I(Xa), i.e. ∂O ⊆ LTσ{〈G〉} ⊆ LTσ{I(Xa)}. In particular, we get
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⋃∞
k=1 ∂

kO ⊆ LTσ{〈G〉} ⊆ LTσ{I(Xa)} ⊆ Tn and O = Tn \
⋃∞
k=1 ∂

kO ⊇ Oσ(I(Xa)) by
Definition 2.1.7 and Proposition 2.1.10. Macaulay’s Basis Theorem [KR00, Thm. 1.5.7]
and [KR05, Prop. 6.3.3] hence yield µ ≥ #O ≥ #Oσ(I(Xa)) = µ. Altogether, we see
that #O = µ = i and O = Oσ(I(X)) at the end of the while-loop starting in line 6
and that we have LTσ{〈G〉} ⊇

⋃∞
k=1 ∂

kO = Tn \ O = LTσ{I(Xa)}. As we also have
G ⊆ I(Xa), [KR05, Prop. 2.4.10] yields 〈G〉 = I(Xa). Thus we have proved that G is
the O-border basis of 〈G〉 = I(Xa).
In order to prove claim 3), let b ∈ ∂O and let gb ∈ G be the corresponding O-border
basis element. Then we had b = LTσ(gb) during the algorithm in line 14 since otherwise b
would have been added to O in line 17. As σ is compatible with degW , it follows that
b ∈ DFW (gb) and claim 3) follows.
Finally, we show 4). Let i ∈ {1, . . . , µ}. We have already seen above that the columns
ofM are the evaluation vectors of the elements in O = {t1, . . . , tµ} at (p1, . . . , pµ) and
that these vectors are K-linearly independent at the end of the algorithm in line 23, More
precisely, we have

M =

tµ(p1) · · · t1(p1)
...

. . .
...

tµ(pµ) · · · t1(pµ)

 ∈ Matµ(K)

and M is invertible in this situation. Thus we have S = (tµ, . . . , t1) · M−1 ∈ (〈O〉K)µ

in line 23. Let s1, . . . , sµ ∈ P be such that S = (s1, . . . , sµ) and let {E1, . . . , Eµ} be
the canonical K-vector space basis of Kµ. WriteM−1 · Etr

i = (cµ, . . . , c1)tr with scalars
c1, . . . , cµ ∈ K. Then we have si = c1t1 + · · ·+ cµtµ and

Etr
i =

tµ(p1) · · · t1(p1)
...

. . .
...

tµ(pµ) · · · t1(pµ)

 ·
cµ...
c1

 =

c1t1(p1) + · · ·+ cµtµ(p1)
...

c1t1(pµ) + · · ·+ cµtµ(pµ)

 =

si(p1)
...

si(pµ)

 ,

i.e. si is a separator of pi from the affine point set Xa \ {pi} and claim 4) follows.

Example 5.3.8. Consider the polynomial ring P = Q[x1, x2] which is graded by the
matrix W = (1, 3) ∈ Mat1,2(Z) and let Xa = {p1, . . . , p7} ⊆ A2

Q where A2
Q = Spec(P )

be the affine point set with p1 = (0, 0), p2 = (1, 0), p3 = (2, 0), p4 = (3, 0), p5 = (0, 1),
P6 = (1, 2), and p7 = (2, 3). Moreover, let σ = Ord( 1 3

1 1 ). Then σ is a term ordering by
[KR00, Prop. 1.4.12] and it is compatible with degW by [KR05, Exmp. 4.2.2]. Thus Xa,
W , and σ satisfy the assumption of Algorithm 9. We now consider all the steps of the
Buchberger-Möller Algorithm 9 applied to the input data (p1, . . . , p7),W , and σ in detail.
After the initialization process in the lines 1 to 5, we have i = 0, O = ∅, the empty

matrix M =
( )
∈ Mat7,0(Q) with seven rows and zero columns, G = ∅, and d = 0.

Since O = ∅, we have ∂O = {1} by Definition 2.1.2 and hence (∂O)≥d = {1} 6= ∅. Thus
the while-loop starting in line 6 is executed.
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In line 7, we have (∂O)d = (∂O)0 = {1}, i.e. r = 1 and `1 = 1. Thus we have

A =



`1(0, 0)
`1(1, 0)
`1(2, 0)
`1(3, 0)
`1(0, 1)
`1(1, 2)
`1(2, 3)


=



1
1
1
1
1
1
1


∈ Mat7,1(Q)

after line 8 and therefore B = C =
( )
∈ Mat0,1(Q), i.e. k = 0, in the lines 9 and 10.

As k = 0, nothing needs to be done in the lines 11 and 12. Since `1 = 1 is not the leading
term with respect to σ of an element in ∅, the if-clause starting in line 14 is executed.
After the if-clause in line 19, we have i = 1, t1 = 1, O = {1}, and

M =



1
1
1
1
1
1
1


∈ Mat7,1(Q).

In particular, the for-loop is finished as r = 1 and we get d = 1 after line 21. In this
situation, ∂O = {x2, x1} and thus (∂O)≥d = {x2, x1} 6= ∅ and the while-loop is executed,
once again.
Now we have (∂O)d = (∂O)1 = {x1}, i.e. r = 1 and `1 = x1. Thus we get

A =



`1(0, 0) 1
`1(1, 0) 1
`1(2, 0) 1
`1(3, 0) 1
`1(0, 1) 1
`1(1, 2) 1
`1(2, 3) 1


=



0 1
1 1
2 1
3 1
0 1
1 1
2 1


∈ Mat7,2(Q)

in line 8 and, therefore, B = C =
( )
∈ Mat0,2(Q), i.e. k = 0, after the lines 9 and 10.

Since k = 0, we see that nothing changes in the lines 11 and 12. Moreover, `1 = x1 is
not the leading term of an element of ∅ with respect to σ and the if-clause in line 14 is
executed. After this if-clause, we have i = 2, t2 = x1, O = {1, x1}, and

M =



0 1
1 1
2 1
3 1
0 1
1 1
2 1


∈ Mat7,2(Q),
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and after the for-loop starting in line 13, d = 2. In this situation, ∂O = {x2
1, x2, x1x2}

and thus (∂O)≥d = {x2
1, x2, x1x2} 6= ∅ and the while-loop is executed, again.

The next two iterations of the while-loop are handled similarly. At the end of these two
iterations, we then have i = 5, t3 = x2

1, t4 = x2, t5 = x3
1, O = {1, x1, x

2
1, x2, x

3
1},

M =



0 0 0 0 1
1 0 1 1 1
8 0 4 2 1
27 0 9 3 1
0 1 0 0 1
1 2 1 1 1
8 3 4 2 1


∈ Mat7,5(Q),

and d = 4. As (∂O)≥d = ({x1x2, x
4
1, x

2
1x2, x

2
2, x

3
1x2})≥4 = {x1x2, x

4
1, x

2
1x2, x

2
2, x

3
1x2} 6= ∅,

the while-loop is iterated another time.
In line 7 of this next iteration, we have (∂O)4 = {x1x2, x

4
1}, i.e. r = 2, `1 = x1x2, and

`2 = x4
1. The computation of the matrices in the lines 8 to 10 yields

A =



`2(0, 0) `1(0, 0) 0 0 0 0 1
`2(1, 0) `1(1, 0) 1 0 1 1 1
`2(2, 0) `1(2, 0) 8 0 4 2 1
`2(3, 0) `1(3, 0) 27 0 9 3 1
`2(0, 1) `1(0, 1) 0 1 0 0 1
`2(1, 2) `1(1, 2) 1 2 1 1 1
`2(2, 3) `1(2, 3) 8 3 4 2 1


=



0 0 0 0 0 0 1
1 0 1 0 1 1 1
16 0 8 0 4 2 1
81 0 27 0 9 3 1
0 0 0 1 0 0 1
1 2 1 2 1 1 1
16 6 8 3 4 2 1


∈ Mat7,7(Q),

and

B = C =
(
1 0 −6 0 11 −6 0

)
∈ Mat1,7(Q),

i.e. k = 1. After the lines 11 and 12, we have G = {g1} with g1 = x4
1− 6x3

1 + 11x2
1− 6x1.

As `1 = x1x2 /∈ {x4
1} = {LTσ(g1)} and as `2 = x4

1 = LTσ(g1), it follows that i = 6,
t6 = x1x2, O = {1, x1, x

2
1, x2, x

3
1, x1x2},

M =



0 0 0 0 0 1
0 1 0 1 1 1
0 8 0 4 2 1
0 27 0 9 3 1
0 0 1 0 0 1
2 1 2 1 1 1
6 8 3 4 2 1


∈ Mat7,6(Q),

and d = 5 at the end of this iteration of the while-loop.
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After another iteration, we have i = 7, t7 = x2
1x2, O = {1, x1, x

2
1, x2, x

3
1, x1x2, x

2
1x2},

M =



0 0 0 0 0 0 1
0 0 1 0 1 1 1
0 0 8 0 4 2 1
0 0 27 0 9 3 1
0 0 0 1 0 0 1
2 2 1 2 1 1 1
12 6 8 3 4 2 1


∈ Mat7,7(Q),

d = 6, and (∂O)≥d = ({x4
1, x

2
2, x

3
1x2, x1x

2
2, x

2
1x

2
2})≥6 = {x2

2, x
3
1x2, x1x

2
2, x

2
1x

2
2} 6= ∅. In the

following iteration, we have (∂O)6 = {x2
2, x

3
1x2}, i.e. r = 2, `1 = x2

2, and `2 = x3
1x2 after

line 7. The computation of the matrices in the lines 8 to 9 yields

A =



0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 1
0 0 0 0 8 0 4 2 1
0 0 0 0 27 0 9 3 1
0 1 0 0 0 1 0 0 1
2 4 2 2 1 2 1 1 1
24 9 12 6 8 3 4 2 1


∈ Mat7,9(Q)

and

B =

(
1 2 −3 0 0 −2 0 0 0
0 −1 0 1 0 1 0 0 0

)
∈ Mat2,9(Q),

i.e. k = 2. The reduced row echolon form of B as in line 10 is then

C =

(
1 0 −3 2 0 0 0 0 0
0 1 0 −1 0 −1 0 0 0

)
∈ Mat2,9(Q)

and after line 12 we have G = {g1, g2, g3} with the polynomials g2 = x2
2 − x1x2 − x2

and g3 = x3
1x2 − 3x2

1x2 + 2x1x2. Moreover, no new elements are added to O in the
if-clause.
After three further iterations of the while-loop, we have the following situation: i = 7,
O = {1, x1, x

2
1, x2, x

3
1, x1x2, x

2
1x2},

M =



0 0 0 0 0 0 1
0 0 1 0 1 1 1
0 0 8 0 4 2 1
0 0 27 0 9 3 1
0 0 0 1 0 0 1
2 2 1 2 1 1 1
12 6 8 3 4 2 1


∈ Mat7,7(Q),
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d = 9, G = {g1, . . . , g5} with g4 = x1x
2
2 − x2

1x2 − x1x2 and g5 = x2
1x

2
2 − 4x2

1x2 + 2x1x2,
and (∂O)≥d = ({x4

1, x
2
2, x

3
1x2, x1x

2
2, x

2
1x

2
2})≥9 = ∅. Thus the while-loop terminates.

Finally, since

M−1 = 1
6 ·



−3 3 −1 0 3 −3 1
9 −6 1 0 −9 6 −1
−1 3 −3 1 0 0 0
−6 0 0 0 6 0 0
6 −15 12 −3 0 0 0
−11 18 −9 2 0 0 0

6 0 0 0 0 0 0


∈ Mat7,7(Q),

we get S = (s1, . . . , s7) ∈ (〈O〉K)7 in line 23 where the polynomials in S are of the form

s1 = −1
2x

2
1x2 + 3

2x1x2 − 1
6x

3
1 − x2 + x2

1 − 11
6 x1 + 1,

s2 = 1
2x

2
1x2 − x1x2 + 1

2x
3
1 − 5

2x
2
1 + 3x1,

s3 = −1
6x

2
1x2 + 1

6x1x2 − 1
2x

3
1 + 2x2

1 − 3
2x1,

s4 = 1
6x

3
1 − 1

2x
2
1 + 1

3x1,

s5 = 1
2x

2
1x2 − 3

2x1x2 + x2,

s6 = −1
2x

2
1x2 + x1x2,

s7 = 1
6x

2
1x2 − 1

6x1x2.

By Proposition 5.3.7, the set G = {g1, . . . , g5} with

g1 = x4
1 − 6x1 + 11x2

1 − 6x3
1,

g2 = x2
2 − x2 − x1x2,

g3 = x3
1x2 + 2x1x2 − 3x2

1x2,

g4 = x1x
2
2 − x1x2 − x2

1x2,

g5 = x2
1x

2
2 + 2x1x2 − 4x2

1x2

is the O-border basis of the vanishing ideal I(Xa) and for every i ∈ {1, . . . , 7}, the
element si is a separator of the point pi from the affine point set Xa \ {pi}.

Now we have all ingredients to transform Theorem 5.2.14 into an algorithm. Note
that we assume that X is given by K-rational points p1, . . . , pdeg(X) ∈ PK(W ) such that
the points are not contained in the hyperplane at infinity H inf = Z+(x0) and such that
Supp(X) = {I+({p1}), . . . , I+({pdeg(X)})}, cf. Proposition 5.1.7.

193



5 Projective Border Bases and Algebraic Geometry

Algorithm 10: CheckUniformityReduced((p1, . . . , pµ), i, j, (w1, . . . , wn), σ)

Input:
(p1, . . . , pµ) ∈ (PK(W ))µ is a tuple consisting of µ ∈ N \ {0} pairwise distinct
K-rational projective points in PK(W ) satisfying pk /∈ H inf for all k ∈ {1, . . . , µ},
i, j ∈ N \ {0},
(w1, . . . , wn) ∈ Mat1,n(Z) such that wi > 0 for all i ∈ {1, . . . , n},
σ is a term ordering on Tn that is compatible with deg(w1,...,wn)

1 for k := 1 to µ do
2 Let pk1, . . . , pkn ∈ K be such that pk = (1 : pk1 : · · · : pkn).
3 pak := (pk1, . . . , pkn) ∈ AnK = Spec(P )

4 end
5 (O, G,S) := BM((pa1, . . . , p

a
µ), (w1, . . . , wn), σ)

6 Let t1, . . . , tµ ∈ Tn be with O = {t1, . . . , tµ} and degW (t1) ≤ · · · ≤ degW (tµ).
7 Let s1, . . . , sµ ∈ 〈O〉K be such that S = (s1, . . . , sµ).
8 σX := degW (tµ)− 1
9 Hj := max{k ∈ {1, . . . , µ} | degW (tk) ≤ j}

10 if i > µ−Hj or j > σX then
11 return false
12 end
13 foreach subset {ν1, . . . , νi} ⊆ {1, . . . , µ} do
14 for k := Hj + 1 to µ do
15 for ` := 1 to i do
16 Let ck` ∈ K denote the coefficient of tk in sν` .
17 end
18 end
19 C := (ck`)Hj+1≤k≤µ,1≤`≤i ∈ Matµ−Hj ,i(K)

20 if ker(C) 6= {0} then
21 return false
22 end
23 end
24 return true

Proposition 5.3.9. (The (i, j)-Uniformity Test – The Reduced Case)
Let σ be a term ordering on Tn that is compatible with degW and (p1, . . . , pµ) ∈ (PK(W ))µ

be a tuple of µ ∈ N\{0} pairwise distinct K-rational projective points in PK(W ). Assume
that pk /∈ H inf and let pk = I+({pk}) denote the homogeneous vanishing ideal of pk
for all k ∈ {1, . . . , µ}. Moreover, we let X ⊆ PK(W ) be the reduced zero-dimensional
subscheme with the property that Supp(X) = {p1, . . . , pµ} and we let i, j ∈ N \ {0}. Then
Algorithm 10 is actually an algorithm and the result

CheckUniformityReduced((p1, . . . , pµ), i, j,W, σ)
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of Algorithm 10 applied to the input data (p1, . . . , pµ), i, j, W , and σ is a boolean value
that determines whether the reduced scheme X is (i, j)-uniform.

Proof. First we show that the procedure is an algorithm. For all k ∈ {1, . . . , µ}, we have
pk /∈ H inf and thus there are pk1, . . . , pkn ∈ K with pk = (1 : pk1 : · · · : pkn) as in line 2.
For all k ∈ {1, . . . , µ}, let pak = (pk1, . . . , pkn) ∈ AnK = Spec(P ) be as in line 3. Since
the projective points p1, . . . , pµ ∈ PK(W ) are pairwise distinct, the corresponding affine
points pa1, . . . , pan ∈ AnK are also pairwise distinct. Hence the input data (pa1, . . . , p

a
n), W ,

and σ in line 5 satisfy the requirements of Algorithm 9. Let (O, G,S) be the result of
Algorithm 9 as in line 5 and let I = I({pa1, . . . , pan}) ⊆ P be the vanishing ideal of the
affine point set {pa1, . . . , pan} ⊆ AnK . Then Proposition 5.3.7 yields that the set G ⊆ P is
the O-border basis of I. By [KR05, Prop. 6.3.3], we have dimK(P/I) = µ. Thus we see
that #O = µ according to Definition 2.1.14, i.e. we can find terms t1, . . . , tµ ∈ Tn such
that O = {t1, . . . , tµ} and such that degW (t1) ≤ · · · ≤ degW (tµ) as in line 6. Since µ ≥ 1,
σX = degW (tµ)−1 as in line 8 and Hj = max{k ∈ {1, . . . , µ} | degW (tk) ≤ j} as in line 9
exist. Moreover, µ = deg(X), σX = max{k ∈ Z | HFX(k) < deg(X)}, and Hj = HFX(j)
according to Definition 5.1.17 and Proposition 4.1.15. By Proposition 5.3.7, there exist
s1, . . . , sµ ∈ 〈O〉K such that S = (s1, . . . , sµ). Moreover, we can check whether the kernel
of a rectangular matrix over K is trivial or not as in line 20 using standard linear algebra
techniques. All the other steps of the procedure can obviously be computed. Since the
procedure obviously stops after a finite amount of time, it is actually an algorithm.
Next we prove the correctness. Since X ⊆ PK(W ) is reduced, there is a subscheme

X̂k ⊆ X with Supp(X̂k) = Supp(X) \ {pk} and it satisfies deg(X̂i) = deg(X) − 1 for all
k ∈ {1, . . . , µ}. For all k, ` ∈ {1, . . . , µ}, the polynomial sk ∈ 〈O〉K satisfies sk(pa` ) = δk`
by Proposition 5.3.7. In particular, sk 6= 0 and degW (sk) ≤ σX + 1 for all k ∈ {1, . . . , µ}.
Let Fk = x

σX+1−degW (sk)
0 shom

k be for all k ∈ {1, . . . , µ}. For all k, ` ∈ {1, . . . , µ},
Fk(p`) = (x

σX+1−degW (sk)
0 shom

k )(1, p`1, . . . , p`n) = sk(p`1, . . . , p`n) = sk(p
a
` ) = δk`, i.e.

Fk ∈ I+(X̂k) \ I+(X). Hence for all k ∈ {1, . . . , µ}, the residue class fk = F k ∈ P σX+1

in R is a separator of X̂k according to Definition 5.1.17.
Finally, we consider all the different situation that can occur for the algorithm to stop.
If the algorithm stops in line 11, then i > µ − Hj or j > σX in line 10. In both cases,
the scheme X is trivially not (i, j)-uniform by Proposition 5.2.3 and Definition 5.2.1
and the correct boolean value is returned. Suppose that the algorithm does not stop in
line 11. Then we have i ∈ {1, . . . , µ − Hj} and j ∈ {1, . . . , σX} according to line 10.
Let {ν1, . . . , νi} ⊆ {1, . . . , µ} be a subset consisting of i elements as in line 13. For
all k ∈ {Hj + 1, . . . , µ}, and ` ∈ {1, . . . , i}, let ck` ∈ K be the coefficient of tk in sν`

as in line 16. Since we have Fν` = x
σX+1−degW (sν` )

0 shom
ν`

, ck` ∈ K is also the coeffi-
cient of xσX+1−degW (tk)

0 tk in Fν` for all k ∈ {Hj + 1, . . . , µ} and ` ∈ {1, . . . , i}. Let
the matrix C = (ck`)Hj+1≤k≤µ,1≤`≤i ∈ Matµ−Hj ,i(K) be defined as in line 19. As we
have degW (t1) ≤ · · · ≤ degW (tµ) according to line 6, we see that for all k ∈ {1, . . . , µ},
σX + 1 − degW (tk) < σX + 1 − j holds if and only if k > Hj . Since the residue classes
of the elements of {xσX+1−degW (t1)

0 t1, . . . , x
σX+1−degW (tµ)
0 tµ} in R form a K-vector space

basis of RσX+1 according to Proposition 4.1.15, it follows that the residue classes of
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the elements of {x
σX+1−degW (tHj+1)

0 tHj+1, . . . , x
σX+1−degW (tµ)
0 tµ} ⊆ RσX+1 in R/〈xσX+1−j

0 〉
form a K-vector space basis of (R/〈xσX+1−j

0 〉)σX+1. In particular, we see that for all
` ∈ {1, . . . , i}, (c`,Hj+1, . . . , c`µ) ∈ Kµ−Hj is the corresponding coordinate tuple of
the residue class of fν` = F ν` ∈ RσX+1 in R/〈xσX+1−j

0 〉. Hence the residue classes
of the elements of {fν1 , . . . , fνi} ⊆ R/〈xσX+1−j

0 〉 are K-linearly dependent if and only
if ker(C) 6= {0}. In other words, the algorithm stops in line 21 if and only if there
exists a subset {ν1, . . . , νi} ⊆ {1, . . . , µ} such that the residue classes of the elements
of {fν1 , . . . , fνi} ⊆ R/〈xσX+1−j

0 〉 are K-linearly dependent. By Theorem 5.2.14, this is
equivalent for X to be not (i, j)-uniform and the correct boolean value is returned in
line 20. If no such K-linearly dependent subset exists, the algorithm stops in line 24. In
this situation, the scheme X is (i, j)-uniform by Theorem 5.2.14 and the correct boolean
value is returned in line 24.

Example 5.3.10. Consider the reduced zero-dimensional subscheme X ⊆ P2
Q of Ex-

ample 5.2.16.a, again. Recall that X ⊆ P2
Q was the reduced zero-dimensional sub-

scheme of degree deg(X) = 11 with Supp(X) = {p1, . . . , p11} where pi = I+(pi) for
all i ∈ {1, . . . , 11} and p1 = (1 : 0 : 0), p2 = (1 : 0 : 1), p3 = (1 : 0 : 2), p4 = (1 : 1 : 0),
p5 = (1 : 1 : 11

5 ), p6 = (1 : 3
2 :−4

5), p7 = (1 : 2 : 2), p8 = (1 : 3 :−1), p9 = (1 : 3 : 1),
p10 = (1 : 4 :−1), and p11 = (1 : 4 : 1). We have already seen in Example 5.2.16 that
X ∩H inf = ∅, that X is not (4, 2)-uniform with respect to the standard grading defined
by W = (1, 1) ∈ Mat1,2(Z), and that the reason for that was that an ellipse passes
through the points in {p1, . . . , p11} \ {p1, p6, p9, p10}. By Definition 5.1.3, we can identify
the points of X, with the corresponding affine part in A2

Q = Spec(Q[x1, x2]) as in the
following picture.

x1

x2

Let σ = DegRevLex. Then the term ordering σ on Tn is compatible with degW . Moreover,
we let P = Q[x0, x1, x2] also be Z-graded by the matrix W = (1 | W ) ∈ Mat1,3(Z). In
order to illustrate Algorithm 10, we apply it to the input data (p1, . . . , p11), i = 4, j = 2,
W , and σ.
After the for-loop starting in line 1, (pa1, . . . , p

a
11) ∈ (A2

Q)11 with pa1 = (0, 0), pa2 = (0, 1),
pa3 = (0, 2), pa4 = (1, 0), pa5 = (1, 11

5 ), pa6 = (3
2 ,−

4
5), pa7 = (2, 2), pa8 = (3,−1), pa9 = (3, 1),
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pa10 = (4,−1), and pa11 = (4, 1). The result of the Buchberger-Möller Algorithm 9 applied
to the input data (pa1, . . . , p

a
11), W , and σ is

O = {t1, . . . , t11} = {1, x2, x1, x
2
2, x1x2, x

2
1, x

3
2, x1x

2
2, x

2
1x2, x

3
1, x

4
2} ⊆ T2

and S = (s1, . . . , s11) ∈ (〈O〉Q)11 where

s1 = 115
2893x

4
1 − 302

2893x
3
1 − 203

2893x
2
1x2 − 137

2893x1x
2
2 + 809

5786x
3
2

+ 2317
2893x

2
1 + 1421

2893x1x2 − 52
263x

2
2 − 4908

2893x1 − 5681
5786x2 + 1,

s6 = − 4375
52074x

4
2 + 2600

26037x
3
1 − 4000

26037x
2
1x2 − 2800

8679x1x
2
2 − 3875

8679x
3
2

− 14200
26037x

2
1 + 28000

26037x1x2 + 9125
4734x

2
2 + 11600

26037x1 − 12125
8679 x2,

s9 = 9775
416592x

4
2 − 1966

26037x
3
1 − 6322

26037x
2
1x2 − 7115

17358x1x
2
2 − 8135

23144x
3
2

+ 11405
26037x

2
1 + 62471

52074x1x2 + 33715
37872x

2
2 − 9439

26037x1 − 39035
69432x2,

s10 = − 7475
46288x

4
2 + 142

2893x
3
1 − 441

2893x
2
1x2 − 695

5786x1x
2
2 + 4935

23144x
3
2

− 553
2893x

2
1 + 3281

5786x1x2 + 2065
4208x

2
2 + 411

2893x1 − 12555
23144x2.

We have σX = degW (t11) − 1 = 3 and Hj = max{k ∈ {1, . . . , 11} | degW (tk) ≤ 2} = 6
after the lines 8 and 9. As i = 4 ≤ 5 = 11 − Hj and as j = 2 ≤ 3 = σX, the if-clause
in line 10 is not executed. Let {ν1, . . . , ν4} ⊆ {1, . . . , 11} with ν1 = 1, ν2 = 6, ν3 = 9,
and ν4 = 10 be chosen in line 13. After the two for-loops starting in the lines 14 and 15,
we get

C = 1
416592 ·


58248 −186000 −146430 88830
−19728 −134400 −170760 −50040
−29232 −64000 −101152 −63504
−43488 41600 −31456 20448
16560 −35000 9775 −67275

 ∈ Mat5,4(Q)

in line 19. Since we have ker(C) = 〈(100, 69,−60,−20)tr〉 6= {0}, the if-clause starting in
line 20 is executed and the boolean value false is returned in line 21. Note that this
result coincides with the result of Example 5.2.16.a.

Finally, we sum up all the methods introduced in this section to check i-uniformity
and (i, j)-uniformity.

Remark 5.3.11. Let X ⊆ PK(W ) be a non-empty (not necessarily reduced) zero-
dimensional subscheme and assume that X ∩H inf = ∅. Let i, j ∈ N \ {0}. Then we have
the following possibilities to check whether X is i- respectively (i, j)-uniform.

a) If K is algebraically closed and X is given by a generating set of its defining
ideal I+(X), we can use Proposition 5.3.3 to check whether X is (i, j)-uniform.
In particular, combined with Proposition 5.2.6, we can use this to check whether X
is i-uniform. Note that by now it was only possible to check the i-uniformity condi-
tion in the case that i = deg(X)−HFX(k) for some k ∈ N by applying the method
described in Remark 5.3.2.
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b) If X is reduced and given by the set of points in PK(W ) in its support, we can
use Proposition 5.3.9 to check whether X is (i, j)-uniform. In particular, combined
with Proposition 5.2.6, we can check whether X is i-uniform. Note that by now it
was only possible to check the i-uniformity condition in the reduced case if K is
algebraically closed and i ∈ {1, . . . ,∆H(σX +1)} respectively i = deg(X)−HFX(k)
for some k ∈ N as described in a) respectively Remark 5.2.15, or if char(K) = 0 or
char(K) > deg(X) as described in Remark 5.3.6. Moreover, note that we do not
need to restrict the base field K, at all. Thus our approach extends the method
described in Remark 5.3.6.
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6 The (Projective) Border Basis Scheme

In this final chapter, we combine the results of the Chapters 4 and 5. In Chapter 4,
we have introduced projective border bases. In particular, we proved the (Projective)
Border Bases Correspondence in Corollary 4.1.9, which states that there is a one-to-one
correspondence between projective O-border bases and specific O-border bases. Then in
Chapter 5, we have studied zero-dimensional subschemes of weighted projective spaces
and uniformity conditions that these subschemes satisfy. In particular, we have seen
that there is a one-to-one correspondence between projective border bases and specific
zero-dimensional subschemes of weighted projective spaces in Proposition 5.1.8. Let K
be a field, n ∈ N \ {0}, P = K[x1, . . . , xn], and P = P [x0] = K[x0, . . . , xn]. Then the
following figure shows the intersection of the previous two sections.

zero-dimensional closed subschemes X of weighted projective spaces PK(W )
that have no point on the hyperplane at infinity

projective border basis
of the defining ideal

I+(X) ⊆ P

projective subscheme
defined by the
homogeneous ideal

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

projective O-border bases of homogeneous ideals in P
where P is graded by W = (1 |W ) with a positive matrix W ∈ Mat1,n(Z)

dehomogenization homogenization

O-border bases of ideals in P with b ∈ DFW (gb) for all b ∈ ∂O
where gb denotes the O-border basis element corresponding to b

The above correspondence is the starting point of this chapter. Let O be a non-empty
order ideal in Tn. In [KR08] and [Rob09], the authors parametrized all zero-dimensional
ideals in P that possess a O-border basis by introducing the O-border basis scheme BO.
We introduce the subscheme Bproj

O of the O-border basis scheme Bproj
O , called the pro-

jective O-border basis scheme, that parametrizes all one-dimensional homogeneous ideal
in P that possess a projective O-border basis in Definition 6.1.5. Then we introduce
the corresponding universal projective O-border basis family Bproj

O → Uproj
O and show

that the residue classes of the elements of O form a Bproj
O [x0]-module basis of Uproj

O in

199



6 The (Projective) Border Basis Scheme

Theorem 6.1.13. This allows us to explicitly describe the multiplicative structure of the
coordinate ring of Bproj

O and its dual module by means of multiplication matrices in the
Sections 6.2 and 6.3. In Section 6.4, we then explicitly describe the points of the projec-
tive O-border basis scheme Bproj

O that correspond to an (i, j)-uniform zero-dimensional
subscheme. The main result of this chapter is Theorem 6.4.4 and yields that for i, j ∈ N,
the set of all points of Bproj

O with the property that the corresponding zero-dimensional
subscheme is (i, j)-uniform is a constructible set with respect to the Zariski topology.

As in the previous two chapters, let the K-algebra P =
⊕

γ∈Z Pγ be Z-graded by a
matrix W = (w1, . . . , wn) ∈ Mat1,n(Z) with wi > 0 for all i ∈ {1, . . . , n}. Moreover,
let x0 denote the homogenizing indeterminate and let P = P [x0] = K[x0, . . . , xn]. Then
P =

⊕
γ∈Z P γ is positively Z-graded by the matrix W = (1 | W ) ∈ Mat1,n+1(K)

according to [KR05, Defn. 4.1.6 and 4.2.4]. Let O = {t1, . . . , tµ} with µ ∈ N \ {0} be
a finite order ideal in Tn and assume that degW (t1) ≤ · · · ≤ degW (tµ). We denote its
border by ∂O = {b1, . . . , bν} with ν ∈ N \ {0}. As before, we define the integer function
H : Z → Z, γ 7→ #{k ∈ {1, . . . , µ} | degW (tk) ≤ γ} and its first difference function
∆H : Z→ Z, γ 7→ H(γ)−H(γ − 1).

6.1 The (Projective) Border Basis Scheme

In this section, we introduce and study the projective O-border basis scheme and the
corresponding universal projective O-border basis family Bproj

O → Uproj
O . The main result

of this section is Theorem 6.1.13 and yields that the residue classes of the elements of O
in Uproj

O form a Bproj
O [x0]-module basis of Uproj

O .
First we recall the definition of the O-border basis scheme BO, which is due to

[KR08], in Definition 6.1.1. The key idea of the O-border basis scheme is to replace
the scalars aij ∈ K of the elements of a O-border prebases as in Definition 2.1.14 by
newly introduced indeterminates cij . This yields the so-called generic O-border preba-
sis and allows us to consider all O-border prebasis at once. In particular, the generic
O-border prebasis induces generic multiplication matrices. The image of these matrices
under the substitution cij 7→ aij are pairwise commuting if and only if the image of
the generic O-border prebasis under the substitution cij 7→ aij is actually an O-border
basis. This way, the generic multiplication matrices define an affine scheme BO which
parametrizes all O-border bases. One of the main results about BO is that the residue
classes of the elements of O form a module basis of the corresponding universal family,
cf. Theorem 6.1.3.
After this summary of the O-border basis scheme, we newly introduce the projective
O-border basis scheme Bproj

O in Definition 6.1.5. The projective O-border basis scheme
is the subscheme of BO that parametrizes all projective O-border bases. The remaining
part of this section is then dedicated to the study of Bproj

O . In particular, we generalize
Theorem 6.1.3 to the projective setting in Theorem 6.1.13.
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Before we introduce the projective O-border basis scheme Bproj
O , we recall the definition

of the O-border basis scheme BO as introduced in [KR08, Defn. 3.1 and 3.3].

Definition 6.1.1. Let {cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}} be a set of further indeter-
minates.

a) The set G = {g1, . . . , gν} defined by

gj = bj −
µ∑
i=1

cijti ∈ P [c11, . . . , cµν ]

is called the generic O-border prebasis.

b) Let G ⊆ P [c11, . . . , cµν ] be the generic O-border prebasis. For every r ∈ {1, . . . , n},
let Xr = (ξ

(r)
k` )1≤k,`≤µ ∈ Matµ(K[c11, . . . , cµν ]) be the rth formal multiplication

matrix of G as defined in Definition 2.4.15, i.e.

ξ
(r)
k` =

{
δki if xrt` = ti ∈ O,
ckj if xrt` = bj ∈ ∂O

for all k, ` ∈ {1, . . . , µ}. It is also called the rth generic multiplication matrix
with respect to O.

c) Let X1, . . . ,Xn ∈ Matµ(K[c11, . . . , cµν ]) be the generic multiplication matrices with
respect to O. The affine scheme BO ⊆ AµνK = Spec(K[c11, . . . , cµν ]) defined by
the ideal I(BO) that is generated by the entries of the matrices XrXs − XsXr
with r, s ∈ {1, . . . , n} is called the O-border basis scheme. Its coordinate
ring K[c11, . . . , cµν ]/I(BO) is denoted by BO.

d) Let G ⊆ P [c11, . . . , cµν ] be the genericO-border prebasis, BO be the coordinate ring
of the O-border basis scheme BO, and UO = BO[x1, . . . , xn]/〈G〉BO[x1, . . . , xn].
Then the canonical K-algebra homomorphism BO ↪→ BO[x1, . . . , xn] � UO is
called the universal O-border basis family.

Example 6.1.2. Let P = Q[x1, x2] be equipped with the standard grading, i.e. graded
by W = (1, 1) ∈ Mat1,2(Z). The set O = {t1, . . . , t6} = {1, x2, x1, x1x2, x

2
1, x

3
1} is

an order ideal in T2 and the set ∂O = {b1, . . . , b5} = {x2
2, x1x

2
2, x

2
1x2, x

3
1x2, x

4
1} is the

corresponding border according to the Definitions 2.1.6 and 2.1.7. Moreover, we let
{cij | i ∈ {1, . . . , 6}, j ∈ {1, . . . , 5}} be a set of further indeterminates. Then the set
G = {g1, . . . , g5} ⊆ Q[c11, . . . , c65] with gj = bj−c1j−c2jx2−c3jx1−c4jx1x2−c5jx

2
1−c6jx

3
1

for all j ∈ {1, . . . , 5} is the generic O-border prebasis according to Definition 6.1.1. Then

X1 =



0 0 0 c13 0 c15

0 0 0 c23 0 c25

1 0 0 c33 0 c35

0 1 0 c43 0 c45

0 0 1 c53 0 c55

0 0 0 c63 1 c65

 , X2 =



0 c11 0 c12 c13 c14

1 c21 0 c22 c23 c24

0 c31 0 c32 c33 c34

0 c41 1 c42 c43 c44

0 c51 0 c52 c53 c54

0 c61 0 c62 c63 c64


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6 The (Projective) Border Basis Scheme

are the generic multiplication matrices X1,X2 ∈ Mat6(Q[c11, . . . , c65]) with respect to O.
By Definition 6.1.1, the O-border basis scheme BO ⊆ A30

Q = Spec(Q[c11, . . . , c65]) is
defined by the ideal I(BO) = 〈f1, . . . , f24〉 ⊆ Q[c11, . . . , c65] with

f1 = c13c41 + c15c61 − c12

f2 = −c11c23 + c13c42 − c12c43 − c13c53 + c15c62 − c14c63

f3 = c13c43 + c15c63 − c14

f4 = −c11c25 + c13c44 − c12c45 − c13c55 + c15c64 − c14c65

f5 = c23c41 + c25c61 − c22

f6 = −c21c23 + c23c42 − c22c43 − c23c53 + c25c62 − c24c63 − c13

f7 = c23c43 + c25c63 − c24

f8 = −c21c25 + c23c44 − c22c45 − c23c55 + c25c64 − c24c65 − c15

f9 = c33c41 + c35c61 + c11 − c32

f10 = −c23c31 + c33c42 − c32c43 − c33c53 + c35c62 − c34c63 + c12

f11 = c33c43 + c35c63 + c13 − c34

f12 = −c25c31 + c33c44 − c32c45 − c33c55 + c35c64 − c34c65 + c14

f13 = c41c43 + c45c61 + c21 − c42

f14 = −c23c41 − c43c53 + c45c62 − c44c63 + c22 − c33

f15 = c2
43 + c45c63 + c23 − c44

f16 = −c25c41 + c43c44 − c42c45 − c43c55 + c45c64 − c44c65 + c24 − c35

f17 = c41c53 + c55c61 + c31 − c52

f18 = −c23c51 − c43c52 + c42c53 − c2
53 + c55c62 − c54c63 + c32

f19 = c43c53 + c55c63 + c33 − c54

f20 = −c25c51 − c45c52 + c44c53 − c53c55 + c55c64 − c54c65 + c34

f21 = c41c63 + c61c65 + c51 − c62

f22 = −c23c61 − c43c62 + c42c63 − c53c63 − c63c64 + c62c65 + c52

f23 = c43c63 + c63c65 + c53 − c64

f24 = −c25c61 − c45c62 + c44c63 − c55c63 + c54

and its coordinate ring is BO = Q[c11, . . . , c65]/I(BO).

The order ideal is not only used to define the O-border basis scheme BO, the residue
classes of its elements in UO also form a BO-module basis of UO by [KR08, Thm. 3.4].

Theorem 6.1.3. (The Universal Border Basis Family)
Let BO → UO be the universal O-border basis family. Then the residue classes of the
elements of O in UO form a BO-module basis of UO.

Proof. This theorem was shown in [KR08, Thm. 3.4].
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6.1 The (Projective) Border Basis Scheme

The O-border basis scheme BO parametrizes all O-border bases. An O-border basis
induces a projective O-border basis if and only if every border term is contained in
the support of the degree form with respect to W of the corresponding border basis
element according to the (Projective) Border Bases Correspondence 4.1.9. The following
proposition makes use of this fact.

Proposition 6.1.4. Let BO be the coordinate ring of the O-border basis scheme BO
and let Bproj

O be the subscheme of BO defined by the ideal

Iproj
O = 〈cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, degW (ti) > degW (bj)〉 ⊆ BO.

Then the points of the scheme Bproj
O are in one-to-one correspondence to the homogeneous

ideals in P that possess a projective O-border basis. In particular, there is a canonical
K-algebra isomorphism between the coordinate ring Bproj

O of Bproj
O and the K-algebra

K[c11, . . . , cµν ]/I(BO) + Ĩproj
O where

Ĩproj
O = 〈cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, degW (ti) > degW (bj)〉 ⊆ K[c11, . . . , cµν ].

Proof. By Lemma 2.6.7 and the Second Noetherian Isomorphism Theorem, there is a
canonical K-algebra isomorphism

Bproj
O = BO/I

proj
O = (K[c11, . . . , cµν ]/I(BO))/Iproj

O
∼= K[c11, . . . , cµν ]/I(BO) + Ĩproj

O .

Next we prove that every point of Bproj
O induces a unique homogeneous ideal in P

that possesses a projective O-border basis. Let a = (a11, . . . , aµν) ∈ Bproj
O . Then a is

a zero of the ideal I(BO) + Ĩproj
O . Let G = {g1, . . . , gν} with gj = bj −

∑µ
i=1 aijti for

all j ∈ {1, . . . , ν} be the O-border prebasis induced by a and let X1, . . . ,Xn ∈ Matµ(K)
be the formal multiplication matrices of G as in Definition 2.4.15. Since a is a zero
of I(BO), the matrices X1, . . . ,Xn are pairwise commuting according to Definition 6.1.1.
Hence Theorem 2.4.19 and Proposition 2.3.2 yield that G is the unique O-border basis
of 〈G〉. Moreover, as a is also a zero of Ĩproj

O , we have aij = 0 for all degW (ti) > degW (bj),
i.e. bj ∈ DFW (gj). By Corollary 4.1.9, the corresponding homogeneous ideal 〈G〉hom ⊆ P
possesses a projective O-border basis.
For the converse correspondence, let I ⊆ P be a homogeneous ideal that possesses a

projective O-border basis G = {g1, . . . , gν}. For all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}, let
∆i,j = degW (bj) − degW (ti) ∈ Z. According to Proposition 4.1.7, there exists a point
a = (a11, . . . , aµν) ∈ AµνK such that gj = bj −

∑µ
i=1 aijx

∆i,j

0 ti for all j ∈ {1, . . . , ν} and
such that aij = 0 for all i ∈ {1, . . . , µ} with degW (ti) > degW (bj). Hence a is a zero
of Ĩproj

O . Moreover, Proposition 4.1.7 also yields that {gdeh
1 , . . . , gdeh

ν } ⊆ P [c11, . . . , cµν ]
is an O-border basis. Thus Theorem 2.4.19 implies the commutativity of the formal
multiplication matrices of {gdeh

1 , . . . , gdeh
ν } and thus a is also a zero of I(BO) by Defini-

tion 6.1.1. Altogether, a is a zero of I(BO) + Ĩproj
O and thus a point of Bproj

O .
Since all the operations above were uniquely determined, the claim follows.
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6 The (Projective) Border Basis Scheme

Now we are able to define the projective O-border basis scheme Bproj
O . Recall that the

integer function H is defined by H : Z→ Z, γ 7→ #{k ∈ {1, . . . , µ} | degW (tk) ≤ γ} and
its first difference function is ∆H : Z→ Z, γ 7→ H(γ)−H(γ − 1).

Definition 6.1.5. a) The subscheme Bproj
O of the O-border basis scheme BO defined

by the ideal

Iproj
O = 〈cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, degW (ti) > degW (bj)〉 ⊆ BO

is called the projective O-border basis scheme. Its coordinate ring is denoted
by Bproj

O .

b) For all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}, we let ∆i,j = degW (bj) − degW (ti) ∈ Z.
Then the set G = {g1, . . . , gν} defined by

gj = bj −
H(degW (bj))∑

i=1

cijx
∆i,j

0 ti = bj −
∑

i∈{1,...,µ}
degW (bj)≥degW (ti)

cijx
∆i,j

0 ti ∈ P [c11, . . . , cµν ]

for all j ∈ {1, . . . , ν} is called the generic projective O-border prebasis.

c) Let G ⊆ P [c11, . . . , cµν ] be the generic projective O-border prebasis, let Bproj
O de-

note the coordinate ring of the projective O-border basis scheme Bproj
O , and we

let Uproj
O = Bproj

O [x0, . . . , xn]/〈G〉Bproj
O [x0, . . . , xn]. Then the canonical K-algebra

homomorphism Bproj
O ↪→ Bproj

O [x0, . . . , xn] � Uproj
O is called the universal pro-

jective O-border basis family.

Example 6.1.6. Consider the order ideal O in T2 the O-border basis scheme BO, and
the universal O-border basis family BO → UO of Example 6.1.2, again. Recall that O
lived in the standard graded polynomial ring P = Q[x1, x2], i.e. that P graded by the
matrix W = (1, 1) ∈ Mat1,2(Q), that O = {t1, . . . , t6} = {1, x2, x1, x1x2, x

2
1, x

3
1}, and

that its border was ∂O = {b1, . . . , b5} = {x2
2, x1x

2
2, x

2
1x2, x

3
1x2, x

4
1}. For all i ∈ {1, . . . , 6}

and j ∈ {1, . . . , 5} with (i, j) 6= (6, 1), we have degW (ti) = deg(ti) ≤ deg(bj) = degW (bj)
and we have degW (t6) = deg(x3

1) = 3 > 2 = deg(x2
2) = degW (b1). By Definition 6.1.5,

the projective O-border basis scheme Bproj
O is thus the subscheme of the O-border basis

scheme BO defined by Iproj
O = 〈c61〉 ⊆ BO = Q[c11, . . . , c65]/I(BO). Let the Q-algebra

P = Q[x0, x1, x2] be standard graded. Then G = {g1, . . . , g5} ⊆ P [c11, . . . , c65] where
the polynomials are of the form g1 = x2

2 − c11x
2
0 − c21x0x2 − c31x0x1 − c41x1x2 − c51x

2
1,

gj = bj−c1jx
3
0−c2jx

2
0x2−c3jx

2
0x1−c4jx0x1x2−c5jx0x

2
1−c6jx

3
1 for all indices j ∈ {2, 3},

and gj = bj−c1jx
4
0−c2jx

3
0x2−c3jx

3
0x1−c4jx

2
0x1x2−c5jx

2
0x

2
1−c6jx0x

3
1 for all j ∈ {4, 5} is

the generic projective O-border prebasis according to Definition 6.1.5. Moreover, there
is a canonical Q-algebra isomorphism between the coordinate ring Bproj

O of Bproj
O and

Q[c11, . . . , c65]/I(BO) + 〈c61〉 by Proposition 6.1.4.

To ease the notation of this section, we let {c11, . . . , cµν} be a set of further inde-
terminates, Q = P [c11, . . . , cµν ], and Q = P [c11, . . . , cµν ]. Then Q =

⊕
γ∈ZQγ and
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Q =
⊕

γ∈ZQγ are non-negatively Z-graded by the matrices V = (W | 0) ∈ Mat1,n+µν(Z)

and V = (W | 0) ∈ Mat1,n+1+µν(Z), respectively, by [KR05, Defn. 4.1.6 and 4.2.4].
Let BO denote the O-border basis scheme and BO → UO the universal O-border ba-
sis family as in Definition 6.1.1. For all i ∈ {1, . . . , µ} and all j ∈ {1, . . . , ν}, we let
∆i,j = degW (bj)−degW (ti) ∈ Z. Moreover, let G = {g1, . . . , gν} ⊆ Q be the generic pro-
jective O-border prebasis, let Bproj

O be the projective O-border basis scheme, Iproj
O ⊆ BO

be its defining ideal, and let Bproj
O → Uproj

O be the universal projective O-border basis
family as in Definition 6.1.5.

The projective O-border basis scheme Bproj
O differs from the homogeneous O-border

basis scheme Bhom
O introduced in [KR08, Section 5] as the following remark shows.

Remark 6.1.7. In [KR08, Section 5], the authors introduced the homogeneous
O-border basis scheme Bhom

O in the standard graded case. In our setting, the homo-
geneous O-border basis scheme Bhom

O is is the subscheme of BO defined by the ideal

Ihom
O = 〈cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, degW (ti) 6= degW (bj)〉 ⊆ BO.

The idea behind this definitions was to parametrize all the zero-dimensional homoge-
neous ideals of P that possess an O-border basis. To reach this goal, they defined the
generic homogeneous O-border prebasis to be of the form G = {g1, . . . , gν} ⊆ Q with the
homogeneous polynomials

gj = bj −
H(degW (bj))∑

i=H(degW (bj)−1)+1

cijti = bj −
∑

i∈{1,...,µ}
degW (bj)=degW (ti)

cijti ∈ QdegW (bj)

for all j ∈ {1, . . . ν}. Note hat their approach strongly differs from ours. They regard all
O-border bases in P with the additional property to be homogeneous whereas we regard
all O-border bases in P with the additional property to be Macaulay bases with respect
to the grading given by W , cf. Corollary 4.1.9 and Proposition 4.1.7. Since Iproj

O ⊆ Ihom
O ,

the homogeneous O-border basis scheme is related to the (projective) O-border basis
scheme via the following chain of subschemes Bhom

O ⊆ Bproj
O ⊆ BO.

The remaining part of this section is devoted to prove an analogous version of Theo-
rem 6.1.3 for the projective O-border scheme Bproj

O , i.e. to prove that the residue classes
of the elements of O in Uproj

O form a Bproj
O [x0]-module basis of Uproj

O , in Theorem 6.1.13.

Proposition 6.1.8. The map

Bproj
O [x0]× Uproj

O → Uproj
O , (p, r) 7→ pr

turns the ring Uproj
O into a Bproj

O [x0]-algebra.

Proof. The canonical Bproj
O [x0]-algebra homomorphism Bproj

O [x0] � Bproj
O [x0] ↪→ Uproj

O ,
where we have x0 ∈ Uproj

O , equips Uproj
O with the given Bproj

O [x0]-module structure.
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Proposition 6.1.9. There are canonical K-algebra isomorphisms

Uproj
O
∼= Q/I(Bproj

O )Q+ 〈G〉

and

Bproj
O [x0] ∼= K[x0, c11, . . . , cµν , ]/I(Bproj

O )K[x0, c11, . . . , cµν ].

Proof. The substitution K-algebra epimomorphism ϕ : Q� Bproj
O [x0, . . . , xn] defined by

cij 7→ cij ∈ Bproj
O for all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν} satisfies ker(ϕ) = I(BO)Q.

Moreover, we have ϕ−1(〈G〉Bproj
O [x0, . . . , xn]) = ker(ϕ) + 〈G〉 = I(BO)Q + 〈G〉 by

Lemma 2.6.7. The Second Noetherian Isomorphism Theorem and Definition 6.1.5 thus
yield the first canonical K-algebra isomorphism

Uproj
O = Bproj

O [x0, . . . , xn]/〈G〉Bproj
O [x0, . . . , xn]

= ϕ(Q)/〈G〉Bproj
O [x0, . . . , xn]

∼= Q/ϕ−1(〈G〉Bproj
O [x0, . . . , xn])

= Q/I(BO)Q+ 〈G〉.

Since the restriction ϕ|K[x0,c11,...,cµν ] of ϕ to the K-algebra K[x0, c11, . . . , cµν ] satisfies
ker(ϕ|K[x0,c11,...,cµν ]) = I(BO)K[x0, c11, . . . , cµν ] and im(ϕ|K[x0,c11,...,cµν ]) = Bproj

O [x0], the
second canonical K-algebra isomorphism follows from the Homomorphism Theorem.

Lemma 6.1.10. Assume that K is algebraically closed and let m ⊆ Bproj
O [x0] be a

maximal ideal. Then the residue classes of the elements of O in Uproj
O /mUproj

O form a
K-vector space basis of Uproj

O /mUproj
O .

Proof. For the whole proof, we identify the elements of Uproj
O and Bproj

O [x0] with their
images under the canonical K-algebra isomorphisms Uproj

O
∼= Q/I(Bproj

O )Q + 〈G〉 and
Bproj
O [x0] ∼= K[x0, c11, . . . , cµν ]/I(Bproj

O )K[x0, c11, . . . , cµν ] of Proposition 6.1.9, respec-
tively, without mention.
Let m = m̃/I(Bproj

O )K[x0, c11, . . . , cµν ] be with a maximal ideal m̃ ⊆ K[x0, c11, . . . , cµν ]

that satisfies I(Bproj
O )K[x0, c11, . . . , cµν ] ⊆ m̃. As K is algebraically closed and as m̃ is a

maximal ideal, [KR05, Coro. 2.6.9] implies the existence of d, a11, . . . , aµν ∈ K such that
m̃ = 〈x0−d, c11−a11, . . . , cµν−aµν〉. Let m̂ = 〈c11−a11, . . . , cµν−aµν〉 ⊆ K[c11, . . . , cµν ].
As I(Bproj

O )K[x0, c11, . . . , cµν ] ⊆ m̃, it follows that I(BO) ⊆ I(Bproj
O ) ⊆ m̂. Thus we get

mUproj
O = (m̃/I(Bproj

O )K[x0, c11, . . . , cµν ])(Q/I(Bproj
O )Q+ 〈G〉)

= (m̃Q+ I(Bproj
O )Q+ 〈G〉)/(I(Bproj

O )Q+ 〈G〉)

= ((m̂ + 〈x0 − d〉)Q+ 〈G〉)/(I(Bproj
O )Q+ 〈G〉)

and the Second Noetherian Isomorphism Theorem yields the canonical K-algebra iso-
morphism

Uproj
O /mUproj

O = (Q/(I(Bproj
O )Q+ 〈G〉))/(((m̂ + 〈x0 − d〉)Q+ 〈G〉)/(I(Bproj

O )Q+ 〈G〉))
∼= Q/(m̂ + 〈x0 − d〉)Q+ 〈G〉.
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6.1 The (Projective) Border Basis Scheme

Consider the substitution K-algebra epimorphism ϕ : Q � P , defined by cij 7→ aij for
all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}. As ker(ϕ) = m̂Q, Lemma 2.6.7 yields

ϕ−1(〈x0 − d〉+ 〈ϕ(G)〉) = ϕ−1(〈x0 − d〉+ ϕ(〈G〉))
= ker(ϕ) + (〈x0 − d〉Q+ 〈G〉)
= m̂Q+ 〈x0 − d〉Q+ 〈G〉
= (m̂ + 〈x0 − d〉)Q+ 〈G〉.

Hence the canonical K-algebra isomorphism

Uproj
O /mUproj

O
∼= Q/(m̂ + 〈x0 − d〉)Q+ 〈G〉
= Q/ϕ−1(〈x0 − d〉+ 〈ϕ(G)〉)
∼= ϕ(Q)/(〈x0 − d〉+ 〈ϕ(G)〉)
= P/(〈x0 − d〉+ 〈ϕ(G)〉)

is a consequence of the Second Noetherian Isomorphism Theorem. Next we show that the
image ϕ(G) ⊆ P of the generic projective O-border prebasis G under ϕ is the projective
O-border basis of 〈ϕ(G)〉 ⊆ P . For all k ∈ {1, . . . , n}, let X k ∈ Matµ(K) be the image
of the kth generic multiplication matrix Xk ∈ Matµ(K[c11, . . . , cµν ]) with respect to O as
defined in Definition 6.1.1 under ϕ. Then for all k ∈ {1, . . . , n}, X k is exactly the kth for-
mal multiplication matrix of {ϕ(g1)deh, . . . , ϕ(gν)deh} ⊆ P . Since I(BO) ⊆ m̂ ⊆ ker(ϕ),
X kX ` = X `X k for all k, ` ∈ {1, . . . , n} by Definition 6.1.1. Thus {ϕ(g1)deh, . . . , ϕ(gν)deh}
is the O-border basis of 〈ϕ(g1)deh, . . . , ϕ(gν)deh〉 = 〈ϕ(G)〉deh by Theorem 2.4.19. More-
over, for all j ∈ {1, . . . , ν}, we have

ϕ(gj)
deh =

(
bj −

H(degW (bj))∑
i=1

aijx
∆i,j

0 ti

)deh

= bj −
H(degW (bj))∑

i=1

aijti

by Definition 6.1.5 and thus bj ∈ Supp(DFW (ϕ(gj)
deh)) and (ϕ(gj)

deh)hom = ϕ(gj). Since
{ϕ(g1)deh, . . . , ϕ(gν)deh} is the O-border basis of 〈ϕ(G)〉deh and since O 6= ∅, we have
〈ϕ(G)〉deh ⊂ P by Definition 2.1.14. According to Proposition 4.1.8, ϕ(G) is the pro-
jective O-border basis of (〈ϕ(G)〉deh)hom. By Proposition 4.1.7, {ϕ(g1)deh, . . . , ϕ(gν)deh}
is a Macaulay basis of 〈ϕ(G)〉deh with respect to the grading given by W . Therefore,
[KR05, Thm. 4.3.19] yields 〈ϕ(G)〉 = (〈ϕ(G)〉deh)hom, i.e. ϕ(G) ⊆ P is the projective
O-border basis of 〈ϕ(G)〉. Altogether, [KR05, Thm. 4.3.22] yields

Uproj
O /mUproj

O
∼= P/(〈x0 − d〉+ (〈ϕ(G)〉deh)hom) ∼=

{
P/DFW (〈ϕ(G)〉deh) if d = 0,

P/〈ϕ(G)〉deh if d 6= 0.

Since the K-algebra isomorphism on the left side is canonical and since the proof of
[KR05, Thm. 4.3.22] shows that the K-algebra isomorphisms on the right side satisfy
ti 7→ citi with ci ∈ K \ {0} for all i ∈ {1, . . . , µ}, it suffices to show that the residue
classes of the elements of O in P/DFW (〈ϕ(G)〉deh) if d = 0 respectively in P/〈ϕ(G)〉deh
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6 The (Projective) Border Basis Scheme

if d 6= 0 form a K-vector space basis of P/DFW (〈ϕ(G)〉deh) respectively of P/〈ϕ(G)〉deh.
We have already seen above that 〈ϕ(G)〉deh possesses an O-border basis, i.e. the residue
classes of the elements of O in P/〈ϕ(G)〉deh form a K-vector space basis of P/〈ϕ(G)〉deh

by Definition 2.1.14. If d = 0, [KR08, Thm. 2.4] yields that DFW (〈ϕ(G)〉deh) ⊆ P
possesses an O-border basis. Thus if d = 0, the residue classes of the elements of O
in P/DFW (〈ϕ(G)〉deh) form a K-vector space basis of P/DFW (〈ϕ(G)〉deh) according to
Definition 2.1.14.

Lemma 6.1.11. The residue classes of the elements of O in Uproj
O generate Uproj

O as a
Bproj
O [x0]-module.

Proof. For all i ∈ {1, . . . , µ}, let ti ∈ Uproj
O denote the residue class of ti ∈ O in Uproj

O . Ac-
cording to [Kun85, Coro. IV.1.6], we have Uproj

O = 〈t1, . . . , tµ〉 as Bproj
O [x0]-modules if and

only if for all maximal ideals m ⊆ Bproj
O [x0], (Uproj

O )m = (〈t1, . . . , tµ〉)m = 〈 t11 , . . . ,
tµ
1 〉 as

(Bproj
O [x0])m-modules. For all maximal ideals m ⊆ Bproj

O [x0], the localisation (Bproj
O [x0])m

is a local ring with maximal ideal m(Bproj
O [x0])m according to [Kun85, Exmp. d in Sec-

tion III.3]. Thus a corollary of the Lemma of Nakayama [Kun85, Coro. IV.2.3] yields
that we have Uproj

O = 〈t1, . . . , tµ〉 as Bproj
O [x0]-modules if and only if for all maximal ideals

m ⊆ Bproj
O [x0], we have (Uproj

O )m/m(Uproj
O )m = 〈 t11 + m(Uproj

O )m, . . . ,
tµ
1 + m(Uproj

O )m〉 as
(Bproj
O [x0])m/m(Bproj

O [x0])m-vector spaces.
By [Kun85, Rule III.4.15], there exists a canonical (Bproj

O [x0])m-module isomorphism
((Bproj
O [x0])m)/(m(Bproj

O [x0])m) ∼= (Bproj
O [x0]/m)m. Thus we get the chain of field exten-

sions K ⊆ Bproj
O [x0]/m ⊆ (Bproj

O [x0])m)/(m(Bproj
O [x0])m). Therefore, Uproj

O = 〈t1, . . . , tµ〉
as Bproj

O [x0]-module follows if we show that for all maximal ideals m ⊆ Bproj
O [x0], we have

(Uproj
O )m/m(Uproj

O )m = 〈 t11 +m(Uproj
O )m, . . . ,

tµ
1 +m(Uproj

O )m〉 as K-vector spaces. In other
words, it suffices to show that for every maximal ideal m ⊆ Bproj

O [x0], the identity map
〈 t11 + m(Uproj

O ), . . . ,
tµ
1 + m(Uproj

O )〉 ↪→ (Uproj
O )m/m(Uproj

O )m is a K-algebra epimorphism.
According to [KR00, Prop. 3.6.6], a K-algebra homomorphism is surjective if and only if
a specific Gröbner basis contains specific elements. Since Gröbner bases do not change
under field extensions by [KR00, Lemma 2.4.16], we can without loss of generality assume
that K is algebraically closed.
Let m ⊆ Bproj

O [x0] be a maximal ideal. According to [Kun85, Rule III.4.15], there
is a canonical (Bproj

O [x0])m-module isomorphism (Uproj
O )m/m(Uproj

O )m ∼= (Uproj
O /mUproj

O )m.
Using this isomorphism, we see that the claim follows if we show that the identity map

〈 t1+mUproj
O

1 , . . . ,
tµ+mUproj

O
1 〉 ↪→ (Uproj

O /mUproj
O )m is a K-algebra epimorphism. Since the

identity map 〈t1 +mUproj
O , . . . , tµ+mUproj

O 〉 ↪→ Uproj
O /mUproj

O is a K-algebra isomorphism
according to Lemma 6.1.10, the claim follows from [Kun85, Rule III.4.7].

Lemma 6.1.12. For all γ ∈ Z and i ∈ {1, . . . , µ}, we let dγ,i = γ − degW (ti) ∈ Z.
Let M =

⊕µ
i=1B

proj
O [x0] · ti ⊆ Bproj

O [x0, . . . , xn], i.e. the Z-graded Bproj
O [x0]-submodule

of Bproj
O [x0, . . . , xn] with Bproj

O [x0]-module basis O. Let X 1, . . . ,X n ∈ Matµ(Bproj
O ) be the

images of the generic multiplication matrices with respect to O in Matµ(Bproj
O ). For all
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6.1 The (Projective) Border Basis Scheme

γ, γ′ ∈ Z, for all c1, . . . , cH(γ) ∈ B
proj
O , and for all q ∈ Qγ′ , we define

q ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr.

Then ∗ equips M with the structure of a Z-graded Bproj
O [x0, . . . , xn]-module and M is

cyclically generated by t1 = 1 as a Z-graded Bproj
O [x0, . . . , xn]-module. In particular, for

every i ∈ {1, . . . , µ}, we have ti ∗ t1 = ti.

Proof. The Z-grading of Q defined by the matrix V = (W | 0) induces a Z-grading
of M ⊆ Bproj

O [x0, . . . , xn]. By Definition 6.1.1, the matrices X 1, . . . ,X n ∈ Matµ(Bproj
O )

are pairwise commuting. Let c1, . . . , cH(γ), c
′
1, . . . , c

′
H(γ) ∈ B

proj
O , q, q′ ∈ Qγ′ , and q̃ ∈ Qγ′′ ,

where γ, γ′, γ′′ ∈ Z. Since the matrices X 1, . . . ,X n are pairwise commuting, we get

1 ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · 1(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · Iµ · (c1, . . . , cH(γ), 0, . . . , 0)tr

= c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ),

and

(q · q̃) ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ)))

= (x
dγ+γ′+γ′′,1
0 t1, . . . , x

dγ+γ′+γ′′,H(γ+γ′+γ′′)
0 tH(γ+γ′+γ′′), 0, . . . , 0)

· (qq̃)(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′+γ′′,1
0 t1, . . . , x

dγ+γ′+γ′′,H(γ+γ′+γ′′)
0 tH(γ+γ′+γ′′), 0, . . . , 0)

· q̃(Iµ,X 1, . . . ,X n) · q(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= q̃ ∗ ((x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr)

= q ∗ (q̃ ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))),
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6 The (Projective) Border Basis Scheme

and

(q + q′) ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (q + q′)(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (q(Iµ,X 1, . . . ,X n) + q′(Iµ,X 1, . . . ,X n)) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

+ (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q′(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (q ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ)))

+ (q′ ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))),

and

q ∗ ((c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ)) + (c′1x
dγ,1
0 t1 + · · ·+ c′H(γ)x

dγ,H(γ)

0 tH(γ)))

= q ∗ ((c1 + c′1)x
dγ,1
0 t1 + · · ·+ (cH(γ) + c′H(γ))x

dγ,H(γ)

0 tH(γ))

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ)

0 tH(γ+γ′), 0, . . . , 0)

· q(Iµ,X 1, . . . ,X n) · (c1 + c′1, . . . , cH(γ) + c′H(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

+ (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q(Iµ,X 1, . . . ,X n) · (c′1, . . . , c′H(γ), 0, . . . , 0)tr

= (q ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ)))

+ (q ∗ (c′1x
dγ,1
0 t1 + · · ·+ c′H(γ)x

dγ,H(γ)

0 tH(γ))).

Thus (M,+, ∗) is a Z-graded Bproj
O [x0, . . . , xn]-module.

Let {E1, . . . , Eµ} be the canonical Bproj
O -module basis of (Bproj

O )µ. We prove by induc-
tion on i ∈ {1, . . . , µ} that ti ∗ t1 = ti. For i = 1, we have

t1 ∗ t1 = 1 ∗ t1 = (t1, 0, . . . , 0) · 1(Iµ,X 1, . . . ,X n) · Etr
1 = (t1, 0, . . . , 0) · Iµ · Etr

1 = t1.

For the induction step, we let i > 1. As O ⊆ Tn is an order ideal in Tn and as
degW (t1) ≤ · · · ≤ degW (tµ), there exist a k ∈ {1, . . . , n} and an ` ∈ {1, . . . , i − 1}
such that ti = xkt`. Let γ̃ = degW (ti) = degW (t`) + wk and write the kth generic
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6.1 The (Projective) Border Basis Scheme

multiplication matrix Xk = (ξ
(k)
rs )1≤r,s≤µ ∈ Matµ(K[c11, . . . , cµν ]) as in Definition 6.1.1.

Since γ̃ = degW (ti), we have i ≤ H(γ̃) and the induction hypothesis yields

ti ∗ t1 = (xkt`) ∗ t1
= xk ∗ (t` ∗ t1)

= xk ∗ t`

= (x
dγ̃,1
0 t1, . . . , x

dγ̃,H(γ̃)

0 tH(γ̃), 0, . . . 0) · xk(Iµ,X 1, . . . ,X n) · Etr
`

= (x
dγ̃,1
0 t1, . . . , x

dγ̃,H(γ̃)

0 tH(γ̃), 0, . . . 0) · X k · Etr
`

= ξ
(k)
1` x

dγ̃,1
0 t1 + · · ·+ ξ

(k)
H(γ̃),`x

dγ̃,H(γ̃)

0 tH(γ̃)

= δ1ix
dγ̃,1
0 t1 + · · ·+ δH(γ̃),ix

dγ̃,H(γ̃)

0 tH(γ̃)

= x
dγ̃,i
0 ti

= ti.

Altogether, we see that the Z-graded Bproj
O [x0, . . . , xn]-module M is cyclically generated

by t1 = 1.

Finally, we have all ingredients to prove an analogous version of Theorem 6.1.3 for Bproj
O .

Theorem 6.1.13. (The Universal Projective Border Basis Family)
The residue classes of the elements of O in Uproj

O form a Bproj
O [x0]-module basis of Uproj

O .

Proof. Let X 1, . . . ,X n ∈ Matµ(Bproj
O ) be the images of the generic multiplication matri-

ces with respect to O in Matµ(Bproj
O ). The matrices X 1, . . . ,X n are pairwise commuting

according to Definition 6.1.1. Let M , ∗, and dγ,i for all γ ∈ Z and i ∈ {1, . . . , µ} be
defined as in Lemma 6.1.12. Then Θ : Bproj

O [x0, . . . , xn] � M , p 7→ p ∗ t1 = p ∗ 1

satisfies Θ(ti) = ti ∗ t1 = ti for all i ∈ {1, . . . , µ} and is a Bproj
O [x0, . . . , xn]-module epi-

morphism by Lemma 6.1.12. Moreover, for all γ, γ′ ∈ Z and c1, . . . , cH(γ) ∈ B
proj
O , we

have

xγ
′

0 ∗ (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· xγ
′

0 (Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0) · Iγ′µ · (c1, . . . , cH(γ), 0, . . . , 0)tr

= c1x
dγ+γ′,1
0 t1 + · · ·+ cH(γ)x

dγ+γ′,H(γ)

0 tH(γ).

Let j ∈ {1, . . . , ν}. Then there exist indices k ∈ {1, . . . , n} and ` ∈ {1, . . . , µ} such
that bj = xkt` by Definition 2.1.7. Let {E1, . . . , Eµ} be the canonical Bproj

O -module basis
of (Bproj

O )µ, let γ = degW (bj), and let Xk = (ξ
(k)
rs )1≤r,s≤µ ∈ Matµ(K[c11, . . . , cµν ]) be as

in Definition 6.1.1. Then degW (t1) ≤ · · · ≤ degW (tµ) yields that γ ≥ degW (ti) for all
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6 The (Projective) Border Basis Scheme

i ∈ {1, . . . ,H(γ)}. Let gj ∈ B
proj
O [x0, . . . , xn] be the image of gj ∈ Q in Bproj

O [x0, . . . , xn].
By Definition 6.1.5, we have cij = 0 ∈ Bproj

O for all i ∈ {i+ 1, . . . , µ} and thus get

Θ(gj) = Θ

bj − H(γ)∑
i=1

cijx
∆i,j

0 ti


= Θ(bj)−

H(γ)∑
i=1

cijx
∆i,j

0 ∗Θ(ti)

= bj ∗ t1 −
H(γ)∑
i=1

cijx
∆i,j

0 ∗ ti

= xk ∗ (t` ∗ t1)−
H(γ)∑
i=1

cijx
∆i,j

0 ti

= xk ∗ t` −
H(γ)∑
i=1

cijx
γ−degW (ti)
0 ti

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · X k · Etr
` −

H(γ)∑
i=1

cijx
dγ,i
0 ti

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · (ξ(k)
1` , . . . , ξ

(k)
µ` )tr −

H(γ)∑
i=1

cijx
dγ,i
0 ti

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · (c1j , . . . , cH(γ),j , 0, . . . , 0)tr −
H(γ)∑
i=1

cijx
dγ,i
0 ti

=

H(γ)∑
i=1

cijx
dγ,i
0 ti −

H(γ)∑
i=1

cijx
dγ,i
0 ti

= 0,

i.e. we have 〈G〉Bproj
O [x0, . . . , xn] ⊆ ker(Θ). This induces the Bproj

O [x0, . . . , xn]-module
epimorphism Θ : Bproj

O [x0, . . . , xn]/〈G〉Bproj
O [x0, . . . , xn] = Uproj

O � M , p 7→ p ∗ t1 by
Definition 6.1.5. Let O denote the image of O in Uproj

O . Since Θ(O) = O and since
O ⊆ M is a Bproj

O [x0]-module basis of M , it follows that O ⊆ Uproj
O is Bproj

O [x0]-linearly
independent. The claim now follows from Lemma 6.1.11, which yields that the set O
also generates Uproj

O as a Bproj
O [x0]-module.

As a direct consequence, we can give explicit Bproj
O -module bases of Uproj

O and its
homogeneous components.

Corollary 6.1.14. For all γ ∈ Z and i ∈ {1, . . . , µ}, we let dγ,i = γ − degW (ti) ∈ Z.

a) The element x0 ∈ Bproj
O [x0] is a non-zero divisor for Uproj

O .
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6.1 The (Projective) Border Basis Scheme

b) There are canonical isomorphisms of Z-graded Bproj
O [x0]-modules

Uproj
O
∼=

µ⊕
i=1

Bproj
O [x0](−degW (ti)) ∼=

degW (tµ)⊕
γ=0

(Bproj
O [x0](−γ))∆H(γ).

In particular, rk
Bproj
O

((Uproj
O )γ) = H(γ) for all γ ∈ Z.

c) Let O0 =
⋃∞
k=0 x

k
0O. Then the residue classes of the elements of O0 in Uproj

O form
a Bproj

O -module basis of Uproj
O . In particular, for every γ ∈ Z, the residue classes of

the elements of (O0)γ = {xdγ,10 t1, . . . , x
dγ,H(γ)

0 tH(γ)} in Uproj
O form a Bproj

O -module
basis of (Uproj

O )γ.

Proof. In order to prove a), let r ∈ Uproj
O be such that x0 · r = 0. By Theorem 6.1.13,

there exist c1, . . . , cµ ∈ Bproj
O [x0] such that r = c1t1 + · · · + cµtµ in Uproj

O . Thus we
get 0 = x0 · r = c1x0t1 + · · · + cµx0tµ. Since the residue classes of O in Uproj

O form a
Bproj
O [x0]-module basis of Uproj

O , we see that c1x0 = · · · = cµx0 = 0 in Bproj
O [x0]. Thus we

get c1 = · · · = cµ = 0 and r = 0, i.e. x0 ∈ Bproj
O [x0] is a non-zero divisor for Uproj

O .
The claims b) and c) are direct consequences of Theorem 6.1.13 and the definitions of

the maps H and ∆H.

The final remark compares the projective O-border basis scheme with the Gröbner
basis scheme as introduced in [Rob09].

Remark 6.1.15. Let σ be a term ordering and, without loss of generality, assume
that the elements of the border of O are ordered such that {b1, . . . , bη} ⊆ ∂O with
η ∈ {1, . . . , ν} contains precisely the corners of O, cf. Definition 2.3.3. Moreover, let

SO,σ = {cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , η}, bj >σ ti} ⊆ {c11, . . . , cµν}

and

LO,σ = 〈cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, ti >σ bj} ⊆ K[c11, . . . , cµν ].

In [Rob09, Defn. 2.4], the author introduces the (O, σ)-Gröbner basis scheme GO,σ
as the subscheme of A#SO,σ

K = Spec(K[SO,σ]) defined by the ideal

IO,σ = (I(BO) + LO,σ) ∩K[SO,σ] ⊆ K[SO,σ]

The idea behind that was to parametrize all the zero-dimensional ideals of P that possess
a σ-Gröbner basis with the property that the corresponding leading term ideal is 〈∂O〉.
To reach this goal, the author defined the generic (O, σ)-Gröbner prebasis to be of the
form G′ = {g′1, . . . , g′η} ⊆ P where for all j ∈ {1, . . . η},

g′j = bj −
∑

i∈{1,...,µ}
bj>σti

cijti ∈ P [SO,σ].
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Similar to [Rob09, Defn. 2.4 and 2.6], we denote the coordinate ring of GO,σ by GO,σ,
let UO,σ = GO,σ[x1, . . . , xn]/〈G′〉GO,σ[x1, . . . , xn], and call the the canonical K-algebra
homomorphism GO,σ ↪→ GO,σ[x1, . . . , xn] � UO,σ the universal (O, σ)-Gröbner basis
family. Note that, as done in Proposition 6.1.9 for the canonical K-algebra isomorphism
Uproj
O
∼= Q/I(BO)Q + 〈G〉, one can prove that there exists a canonical K-algebra iso-

morphism UO,σ ∼= P [SO,σ]/IO,σP [SO,σ] + 〈G′〉, i.e. the above definition of UO,σ indeed
coincides with the one in [Rob09, Defn. 2.6]. Then [Rob09, Thm. 2.9] yields that the
residue classes of the elements of O in UO,σ form a GO,σ-module basis of UO,σ. More-
over, if the term ordering σ is compatible with degW , the σ-Gröbner bases parametrized
by GO,σ are also Macaulay bases with respect to W . Thus we see that GO,σ shares all
the crucial properties of Bproj

O that we explicitly needed to study uniformity conditions of
zero-dimensional projective subschemes of weighted projective spaces PK(W ) given by
their defining ideal as we have done in Chapter 5.
But using the (O, σ)-Gröbner basis scheme GO,σ instead of the projective O-border

basis scheme Bproj
O has also some disadvantages.

First of all, projective O-border bases are more general as the following example shows.
Consider the set H = {x1x2−x2

2−x2
1, x

3
1, x1x

2
2, x

2
1x2, x

3
1} ⊆ Q[x1, x2] and the order ideal

O = {1, x2, x1, x
2
2, x

2
1} in T2. Then H is an O-border basis of the ideal 〈H〉 ⊆ Q[x1, x2]

as one can easily check using Theorem 2.4.19. Furthermore, H is a Macaulay basis with
respect to the grading given by W as one can easily check using [KR05, Thm. 4.3.19]
and [KR00, Prop. 2.4.19]. But there exists no term ordering σ on T2 such that H is a
σ-Gröbner basis of 〈H〉 with the property that LTσ(〈H〉) = 〈∂O〉. In other words, the
set H does not correspond to a point on the (O, σ)-Gröbner basis scheme GO,σ where σ
is any arbitrary term ordering on T2. But since the set H is the projective O-border
basis of 〈H〉hom by Proposition 4.1.8, the set H corresponds to a point on the projective
O-border basis scheme Bproj

O .
Another benefit of projective O-border bases is that their multiplicative structure is fully
determined by the corresponding (projective) multiplication matrices as we have seen in
Section 4.2 and that these matrices can immediately be read off from a given projective
O-border basis, cf. the Definitions 2.4.15 and 4.2.1. This enables us to study uniformity
conditions using the multiplicative structure of the coordinate ring of a zero-dimensional
projective subscheme as we have done in Section 5.2 much more explicitly.

6.2 The Multiplicative Structure of the Universal Projective
Border Basis Family

In this section, we study the multiplicative structure of the universal projective O-border
basis family Uproj

O . Similar to Section 4.2, we first introduce the generic projective multi-
plication matrices with respect to O in Definition 6.2.1 and show that they are homoge-
neous matrices in Proposition 6.2.3. Then we show that the Bproj

O [x0]-module structure
of Uproj

O can be completely described by the generic projective multiplication matrices
with respect to O in Proposition 6.2.4 and Corollary 6.2.5. After that, we prove that we
can also use the generic multiplication matrices with respect to O to explicitly describe
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the multiplicative structure of Uproj
O in Proposition 6.2.7 and Corollary 6.2.8.

To ease the notation of this section, we let Q = P [c11, . . . , cµν ] and Q = P [c11, . . . , cµν ],
again. Then Q =

⊕
γ∈ZQγ and Q =

⊕
γ∈ZQγ are non-negatively Z-graded by the ma-

trices V = (W | 0) ∈ Mat1,n+µν(Z) and V = (W | 0) ∈ Mat1,n+1+µν(Z), respectively,
according to [KR05, Defn. 4.1.6 and 4.2.4]. We let BO denote the O-border basis scheme
and BO → UO the universal O-border basis family as in Definition 6.1.1. For all indices
i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}, we let ∆ij = degW (bj) − degW (ti) ∈ Z. Moreover,
let G = {g1, . . . , gν} ⊆ Q denote the generic projective O-border prebasis, let Bproj

O ⊆ BO
be the projective O-border basis scheme, let Iproj

O ⊆ BO be its defining ideal, and let
Bproj
O → Uproj

O be the universal projective O-border basis family as in Definition 6.1.5.

First we introduce the generic projective multiplication matrices with respect to O.

Definition 6.2.1. For every index r ∈ {0, . . . , n}, let X proj
r ∈ Matµ(K[x0, c11, . . . , cµν ])

be the rth formal projective multiplication matrix of G as defined in Definition 4.2.1, i.e.
X proj

0 = x0Iµ and X proj
r = (ξ

(r,proj)
k` )1≤k,`,≤µ with

ξ
(r,proj)
k` =


δki if xrt` = ti ∈ O
ckjx

∆kj

0 if xrt` = bj ∈ ∂O and degW (tk) ≤ degW (bj)

0 if xrt` = bj ∈ ∂O and degW (tk) > degW (bj)

for all r ∈ {1, . . . , n} and k, ` ∈ {1, . . . , µ}. For all r ∈ {0, . . . , n}, we call the matrix X proj
r

the rth generic projective multiplication matrix with respect to O.

Example 6.2.2. Consider the order ideal O of Example 6.1.6, again. Recall that the
order ideal was O = {t1, . . . , t6} = {1, x2, x1, x1x2, x

2
1, x

3
1} and that its border was of the

form ∂O = {b1, . . . , b5} = {x2
2, x1x

2
2, x

2
1x2, x

3
1x2, x

4
1}. Moreover, G = {g1, . . . , g5} ⊆ Q

where the polynomials are of the form g1 = x2
2−c11x

2
0−c21x0x2−c31x0x1−c41x1x2−c51x

2
1,

gj = bj−c1jx
3
0−c2jx

2
0x2−c3jx

2
0x1−c4jx0x1x2−c5jx0x

2
1−c6jx

3
1 for all indices j ∈ {2, 3},

and gj = bj − c1jx
4
0− c2jx

3
0x2− c3jx

3
0x1− c4jx

2
0x1x2− c5jx

2
0x

2
1− c6jx0x

3
1 for all j ∈ {4, 5}

was the generic projective O-border prebasis. Then the generic projective multiplication
matrices X proj

0 ,X proj
1 ,X proj

2 ∈ Mat6(Q[x0, c11, . . . , c65]) with respect to O are

X proj
0 = x0I6 =



x0 0 0 0 0 0
0 x0 0 0 0 0
0 0 x0 0 0 0
0 0 0 x0 0 0
0 0 0 0 x0 0
0 0 0 0 0 x0

 , X proj
1 =



0 0 0 c13x
3
0 0 c15x

4
0

0 0 0 c23x
2
0 0 c25x

3
0

1 0 0 c33x
2
0 0 c35x

3
0

0 1 0 c43x0 0 c45x
2
0

0 0 1 c53x0 0 c55x
2
0

0 0 0 c63 1 c65x0

 ,
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and

X proj
2 =



0 c11x
2
0 0 c12x

3
0 c13x

3
0 c14x

4
0

1 c21x0 0 c22x
2
0 c23x

2
0 c24x

3
0

0 c31x0 0 c32x
2
0 c33x

2
0 c34x

3
0

0 c41 1 c42x0 c43x0 c44x
2
0

0 c51 0 c52x0 c53x0 c54x
2
0

0 0 0 c62 c63 c64x0


according to Definition 6.2.1.

Next we show that the generic projective multiplication matrices with respect to O
are homogeneous degree-ordered matrices as defined in Definition 4.2.3.

Proposition 6.2.3. Let X proj
0 , . . . ,X proj

n ∈ Matµ(K[x0, c11, . . . , cµν ]) be the formal
projective multiplication matrices of G.

a) For every index r ∈ {0, . . . , n}, the matrix X proj
r is a homogeneous degree-ordered

matrix with respect to the degree pair given by (degV (t1), . . . ,degV (tµ)) for the rows
and (degV (xrt1), . . . ,degV (xrtµ)) for the columns.

b) For all r, s ∈ {0, . . . , n}, the matrices X proj
r X proj

s and X proj
r X proj

s − X proj
s X proj

r are
both homogeneous degree-ordered matrices with respect to the degree pair given by
(degV (t1), . . . ,degV (tµ)) for the rows and (degV (xrxst1), . . . ,degV (xrxstµ)) for the
columns.

Proof. For all r ∈ {0, . . . , n}, let X proj
r = (ξ

(r,proj)
k` )1≤i,j≤µ ∈ Matµ(K[x0, c11, . . . , cµν ]).

Note that all entries of the matrices X proj
0 , . . . ,X proj

n are homogeneous.
For the proof of a), we let r ∈ {0, . . . , n}. If X proj

r = 0, nothing needs to be shown.
Thus assume that there are k, ` ∈ {1, . . . , µ} such that ξ(r,proj)

k` 6= 0. If r = 0, ξr,proj
k` 6= 0

implies k = ` and thus

degV (ξ
(0,proj)
k` ) = degV (x0) = degV (x0t`)− degV (tk)

by Definition 6.2.1. Now suppose that r 6= 0. If xrt` = ti for some i ∈ {1, . . . , µ},
δki = ξ

(r,proj)
k` 6= 0 implies k = i by Definition 6.2.1. Thus we get

degV (ξ
(r,proj)
k` ) = degV (δki) = degV (1) = 0 = degV (xrt`)− degV (tk)

according to Definition 6.2.1. If xrt` = bj for some j ∈ {1, . . . , ν}, we get

degV (ξ
(r,proj)
k` ) = degV (ckjx

∆kj

0 ) = degV (bj)− degV (tk) = degV (xrt`)− degV (tk)

by Definition 6.2.1. In all cases, X proj
r is homogeneous with respect to the degree pair

given by (degV (t1), . . . ,degV (tµ)) for the rows and (degV (xrt1), . . . ,degV (xrtµ)) for the
columns and as degV (t1) ≤ · · · ≤ degV (tµ), it is also degree-ordered by Definition 4.2.3.
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In order to prove b), we let now r, s ∈ {0, . . . , n}. By a), X proj
r is a homogeneous degree-

ordered matrix with respect to the degree pair given by (degV (t1), . . . ,degV (tµ)) for
the rows and (degV (xrt1), . . . ,degV (xrtµ)) for the columns and X proj

s is a homogeneous
degree-ordered matrix with respect to the degree pair given by (degV (t1), . . . ,degV (tµ))

for the rows and (degV (xst1), . . . ,degV (xstµ)) for the columns. In particular, X proj
s

is also a homogeneous degree-ordered matrix with respect to the degree pair given by
(degV (xrt1), . . . ,degV (xrtµ)) for the rows and (degV (xrxst1), . . . ,degV (xrxstµ)) for the
columns according to Definition 4.2.3. If X proj

r X proj
s = 0, the matrix X proj

r X proj
s triv-

ially satisfies the claimed properties. Thus assume that there are k, ` ∈ {1, . . . , µ} with∑µ
m=1 ξ

(r,proj)
km ξ

(s,proj)
m` 6= 0. Let m ∈ {1, . . . , µ} be such that ξ(r,proj)

km 6= 0 and ξ(s,proj)
m` 6= 0.

As the matrices X proj
r and X proj

s are homogeneous degree-ordered matrices with respect
to the above degree pairs, we get

degV (ξ
(r,proj)
km ξ

(s,proj)
m` ) = (degV (xrtm)− degV (tk)) + (degV (xrxst`)− degV (xrtm))

= degV (xrxst`)− degV (tk)

and X proj
r X proj

s is a homogeneous degree-ordered matrix with respect to the degree pair
given by (degV (t1), . . . ,degV (tµ)) for the rows and (degV (xrxst1), . . . ,degV (xrxstµ)) for
the columns according to Definition 4.2.3. By interchanging the roles of r and s, we see
that X proj

s X proj
r is a homogeneous degree-ordered matrix with respect to the same degree

pair, too. In particular, it follows that X proj
r X proj

s − X proj
s X proj

r is also a homogeneous
degree-ordered matrix according to Definition 4.2.3.

The next two propositions show that the generic projective multiplication matrices
with respect to O can be used to explicitly describe the multiplicative structure of the
universal projective O-border basis family Uproj

O .

Proposition 6.2.4. Let X proj
0 , . . . ,X proj

n ∈ Matµ(Bproj
O [x0]) denote the images of the

generic projective formal multiplication matrices with respect to O in Matµ(Bproj
O [x0]),

let c1, . . . , cµ ∈ Bproj
O [x0], and let q = c1t1 + · · ·+ cµtµ ∈ Bproj

O [x0, . . . , xn].

a) For every k ∈ {0, . . . , n}, we have

xk · q = (t1, . . . , tµ) · X proj
k · (c1, . . . , cµ)tr.

in Uproj
O . In particular, the matrices X proj

0 , . . . ,X proj
n are pairwise commuting.

b) For every q′ ∈ Bproj
O [x0, . . . , xn], we have

q′ · q = (t1, . . . , tµ) · q′(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in Uproj
O .
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Proof. Let {E1, . . . , Eµ} denote the canonical Bproj
O [x0]-module basis of (Bproj

O [x0])µ.
In order to prove the equality of a), let ` ∈ {1, . . . , µ}. Then we have

x0 · c`t` = (t1, . . . , tµ) · x0Iµ · c`Etr
` = (t1, . . . , tµ) · X proj

0 · c`Etr
`

in Uproj
O . Let k ∈ {1, . . . , n}. If xkt` = ti ∈ O for some i ∈ {1, . . . , µ}, we have

xk · c`t` = c`ti = (t1, . . . , tµ) · (δ1ic`, . . . , δµic`)
tr = (t1, . . . , tµ) · X proj

k · c`Etr
`

in Uproj
O . If xkt` = bj for some j ∈ {1, . . . , ν}, we have

xk · c`t` = c`bj

= c1jx
∆1j

0 c`t1 + · · ·+ cH(degW (bj)),jx
∆H(degW (bj)),j

0 c`tH(degW (bj))

= (t1, . . . , tµ) · (c1jx
∆1j

0 c`, . . . , cH(degW (bj)),jx
∆H(degW (bj)),j

0 c`, 0, . . . , 0)tr

= (t1, . . . , tµ) · X proj
k · c`Etr

`

in Uproj
O . Altogether, we see that for all k ∈ {0, . . . , n},

xk · q =

µ∑
`=1

xk · c`t` =

µ∑
`=1

(t1, . . . , tµ) · X proj
k · c`Etr

` = (t1, . . . , tµ) · X proj
k · (c1, . . . , cµ)tr

in Uproj
O . As the residue classes of the elements ofO in Uproj

O form a Bproj
O [x0]-module basis

of Uproj
O according to Theorem 6.1.13, we have also proved that for all k ∈ {0, . . . , n},

X proj
k represents the Bproj

O [x0]-algebra endomorphism of Uproj
O defined by q′ 7→ xkq

′ for all
q′ ∈ Q, i.e. the multiplication by xk in Uproj

O , with respect to this Bproj
O [x0]-module basis.

In particular, the commutativity of Uproj
O thus yields that the matrices X proj

0 , . . . ,X proj
n

are pairwise commuting.
Next we prove b). We start to prove the claim for homogeneous polynomials. Let

q′ ∈ (Bproj
O [x0, . . . , xn])γ be with γ ∈ Z. If γ ≤ 0, we have q′ ∈ Bproj

O and thus

q′ · q = q′ · (c1t1 + · · ·+ cµtµ)

= q′c1t1 + · · ·+ q′cµtµ

= (t1, . . . , tµ) · q′Iµ · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · q′(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in Uproj
O . We prove the claim for γ ∈ N \ {0} by induction on γ. For the induction start
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γ = 1, there exist d0, . . . , dn ∈ Bproj
O such that q = d0x0 + · · · dnxn. By a), we get

q′ · q =
n∑

m=1

dmxm · q

=
n∑

m=1

(t1, . . . , tµ) · (dmxm)(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) ·
( n∑
m=1

dmxm

)
(X proj

0 , . . . ,X proj
n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · q(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in Uproj
O and the induction start is proven. For the induction step, suppose now that

γ > 1. Then we can write q′ = c′1t
′
1 + · · · + c′st

′
s with s ∈ N, c′1, . . . , c′s ∈ Bproj

O , and
t′1, . . . , t

′
s ∈ Tn+1

γ . For every r ∈ {1, . . . , s}, there exist a kr ∈ {0, . . . , n} and a term
ur ∈ Tn+1

<γ such that xkrur = t′r. Then the induction hypothesis and a) yield

c′rt
′
r · q = xkr · c′rurq

= xkr · ((t1, . . . , tµ) · (c′rurq)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr)

= (t1, . . . , tµ) · X proj
kr · (c

′
rurq)(X

proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · (xkr · c′rurq)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · (c′rt′rq)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in Uproj
O for every r ∈ {1, . . . , s}. Altogether, we get

q′ · q =
s∑
r=1

c′rt
′
r · q

=

s∑
r=1

(t1, . . . , tµ) · (c′rt′rq)(X
proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) ·
( s∑
r=1

c′rt
′
rq

)
(X proj

0 , . . . ,X proj
n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · (q′q)(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in Uproj
O and the claim follows in the homogeneous case.

In order to prove the claim for arbitrary q′ ∈ Bproj
O [x0, . . . , xn], we let q′ =

∑
γ∈Z q

′
γ be
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the decomposition of q′ into its homogeneous components. Then

q′ · q =
∑
γ∈Z

q′γ · q

=
∑
γ∈Z

(t1, . . . , tµ) · q′γ(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) ·
(∑
γ∈Z

q′γ

)
(X proj

0 , . . . ,X proj
n ) · (c1, . . . , cµ)tr

= (t1, . . . , tµ) · q′(X proj
0 , . . . ,X proj

n ) · (c1, . . . , cµ)tr

in Uproj
O from the homogeneous case.

Corollary 6.2.5. Let O = {t1, . . . , tµ} ⊆ Uproj
O denote the image of the order ideal O

in Uproj
O . Moreover, let X proj

0 , . . . ,X proj
n ∈ Matµ(Bproj

O [x0]) be the images of the generic
projective multiplication matrices with respect to O in Matµ(Bproj

O [x0]), γ ∈ Z, and
q ∈ (Bproj

O [x0, . . . , xn])γ. Then q(X proj
0 , . . . ,X proj

n ) ∈ Matµ(Bproj
O [x0]) represents the ho-

mogeneous Bproj
O [x0]-algebra homomorphism πq : Uproj

O (−γ) → Uproj
O , r 7→ q · r, the

multiplication by q ∈ (Uproj
O )γ, with respect to the Bproj

O [x0]-module basis O of Uproj
O .

Proof. By Theorem 6.1.13, O is a Bproj
O [x0]-module basis of Uproj

O . Let {E1, . . . , Eµ}
denote the canonical Bproj

O [x0]-module basis of (Bproj
O [x0])µ. Then the claim follows since

we have πq(ti) = q · ti = (t1, . . . , tµ) · q(X proj
0 , . . . ,X proj

n ) · Etr
i for every i ∈ {1, . . . , µ} by

Proposition 6.2.4.

Example 6.2.6. Let P = Q[x1, x2] be standard graded, i.e. graded by the matrix
W = (1, 1) ∈ Mat1,2(Z) and let P = Q[x0, x1, x2] also be standard graded, i.e. graded
by the matrix W = (1 | W ) = (1, 1, 1) ∈ Mat1,3(Z). According to the Definitions 2.1.6,
2.1.7, and 4.1.11, the set O = {t1, . . . , t8} = {1, x2, x1, x

2
2, x1x2, x

2
1, x

2
1x2, x

3
1} is an order

ideal in T2 with maxdegW -border ∂O = {b1, . . . , b5} = {x3
2, x1x

2
2, x

2
1x

2
2, x

3
1x2, x

4
1}. Let

{cij | i ∈ {1, . . . , 8}, j ∈ {1, . . . , 5}}, be a set of further indeterminates. let BO be the
O-border basis scheme and BO → UO be the universal O-border basis family as defined
in Definition 6.1.1. Furthermore, we let Bproj

O ⊆ BO be the projective O-border basis
scheme, Iproj

O ⊆ BO its defining ideal, and Bproj
O → Uproj

O be the universal projective
O-border basis family as defined in Definition 6.1.5. Since the order ideal O has a
maxdegW -border, we have Iproj

O = {0}, i.e. Bproj
O coincides with BO.

Let G = {g1, . . . , g5} ⊆ P [c11, . . . , c85] be the generic projective O-border prebasis.
Then gj = bj−c1jx

3
0−c2jx

2
0x2−c3jx

2
0x1−c4jx0x

2
2−c5jx0x1x2−c6jx0x

2
1−c7jx

2
1x2−c8jx

3
1

for every index j ∈ {1, 2}, and for every index j in the set {3, 4, 5}, the polynomial
gj = bj−c1jx

4
0−c2jx

3
0x2−c3jx

3
0x1−c4jx

2
0x

2
2−c5jx

2
0x1x2−c6jx

2
0x

2
1−c7jx0x

2
1x2−c8jx0x

3
1.

The images X proj
0 ,X proj

1 ,X proj
2 ∈ Mat8(Bproj

O [x0]) of the generic projective multiplica-
tion matrices X proj

0 ,X proj
1 ,X proj

2 ∈ Mat8(K[x0, c11, . . . , c85]) with respect to O in the
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6.2 The Multiplicative Structure of the Universal Projective Border Basis Family

ring Mat8(Bproj
O [x0]) are

X proj
0 =



x0 0 0 0 0 0 0 0
0 x0 0 0 0 0 0 0
0 0 x0 0 0 0 0 0
0 0 0 x0 0 0 0 0
0 0 0 0 x0 0 0 0
0 0 0 0 0 x0 0 0
0 0 0 0 0 0 x0 0
0 0 0 0 0 0 0 x0


,

X proj
1 =



0 0 0 c12x
3
0 0 0 c14x

4
0 c15x

4
0

0 0 0 c22x
2
0 0 0 c24x

3
0 c25x

3
0

1 0 0 c32x
2
0 0 0 c34x

3
0 c35x

3
0

0 0 0 c42x0 0 0 c44x
2
0 c45x

2
0

0 1 0 c52x0 0 0 c54x
2
0 c55x

2
0

0 0 1 c62x0 0 0 c64x
2
0 c65x

2
0

0 0 0 c72 1 0 c74x0 c75x0

0 0 0 c82 0 1 c84x0 c85x0


,

and

X proj
2 =



0 0 0 c11x
3
0 c12x

3
0 0 c13x

4
0 c14x

4
0

1 0 0 c21x
2
0 c22x

2
0 0 c23x

3
0 c24x

3
0

0 0 0 c31x
2
0 c32x

2
0 0 c33x

3
0 c34x

3
0

0 1 0 c41x0 c42x0 0 c43x
2
0 c44x

2
0

0 0 1 c51x0 c52x0 0 c53x
2
0 c54x

2
0

0 0 0 c61x0 c62x0 0 c63x
2
0 c64x

2
0

0 0 0 c71 c72 1 c73x0 c74x0

0 0 0 c81 c82 0 c83x0 c84x0



by Definition 6.1.5. LetO be the image ofO in Uproj
O , q = x2

1+x0x2 ∈ (Bproj
O [x0, . . . , xn])2,

and let πq : Uproj
O (−2)→ Uproj

O , r 7→ q · r be the multiplication by q ∈ (Uproj
O )2. Then by
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6 The (Projective) Border Basis Scheme

Corollary 6.2.5, the matrix

q(X proj
0 ,X proj

1 ,X proj
2 )

= (X proj
1 )2 + X proj

0 · X proj
2

=



0 0 0 m14 m15 m16 m17 m18

x0 0 0 m24 m25 m26 m27 m28

0 0 0 m34 + c12x
3
0 m35 m36 m37 + c14x

4
0 m38 + c15x

4
0

0 x0 0 m44 m45 m46 m47 m48

0 0 x0 m54 + c22x
2
0 m55 m56 m57 + c24x

3
0 m58 + c25x

3
0

1 0 0 m64 + c32x
2
0 m65 m66 m67 + c34x

3
0 m68 + c35x

3
0

0 1 0 m74 + c52x0 m75 m76 + x0 m77 + c54x
2
0 m78 + c55x

2
0

0 0 1 m84 + c62x0 m85 m86 m87 + c64x
2
0 m88 + c65x

2
0


∈ Mat8(Bproj

O [x0])

where we have

mi4 = (ci2c42 + ci4c72 + ci5c82 + ci1)x
4−deg(ti)
0 ,

mi5 = (ci2 + ci4)x
4−deg(ti)
0 ,

mi6 = ci5x
4−deg(ti)
0 ,

mi7 = (ci2c44 + ci4c74 + ci5c84 + ci3)x
5−deg(ti)
0 ,

mi8 = (ci2c45 + ci4c75 + ci5c85 + ci4)x
5−deg(ti)
0

for all i ∈ {1, . . . , 8} represents the homogeneous Bproj
O [x0]-algebra homomorphism πq

with respect to the Bproj
O [x0]-module basis O of Uproj

O .

In the remaining part of this section, we prove that the generic multiplication matrices
with respect to O can also be used to explicitly describe the multiplicative structure of
the universal projective O-border basis family Uproj

O .

Proposition 6.2.7. Let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and i ∈ {1, . . . , µ},
let X 1, . . . ,X n ∈ Matµ(Bproj

O ) denote the images of the generic multiplication matrices
with respect to the order ideal O in Matµ(Bproj

O ), let c1, . . . , cH(γ) ∈ Bproj
O , and we let

q = c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ) ∈ (Bproj
O [x0, . . . , xn])γ.

a) We have

x0 · q = (x
dγ+1,1

0 t1, . . . , x
dγ+1,H(γ+1)

0 tH(γ+1), 0, . . . , 0)

· Iµ · (c1, . . . , cH(γ), 0, . . . , 0)tr

in Uproj
O and for every k ∈ {1, . . . , n}, we have

xk · q = (x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0)

· X k · (c1, . . . , cH(γ), 0, . . . , 0)tr

222



6.2 The Multiplicative Structure of the Universal Projective Border Basis Family

in Uproj
O .

b) For every γ′ ∈ Z and every q′ ∈ (Bproj
O [x0, . . . , xn])γ′, we have

q′ · q = (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q′(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in Uproj
O .

Proof. For all s ∈ {1, . . . , n}, let X s = (ξ
(s)
k` )1≤k,`≤µ ∈ Matµ(Bproj

O ) be as in Defini-
tions 6.1.1 and 6.1.5 and let {E1, . . . , Eµ} be the canonical Bproj

O -module basis of (Bproj
O )µ.

Moreover, we denote w0 = 1 and X0 = Iµ. If γ < 0, we have (Bproj
O [x0, . . . , xn])γ = {0}

and the claims follow trivially. Thus suppose that γ ≥ 0.
The first equality of a) follows as we have

x0 · q = x0 · (c1x
dγ,1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)

0 tH(γ))

= c1x
dγ,1+1
0 t1 + · · ·+ cH(γ)x

dγ,H(γ)+1

0 tH(γ)

= c1x
dγ+1,1

0 t1 + · · ·+ cH(γ)x
dγ+1,H(γ)

0 tH(γ)

= (x
dγ+1,1

0 t1, . . . , x
dγ+1,H(γ+1)
0 tH(γ+1), 0, . . . , 0) · Iµ · (c1, . . . , cH(γ), 0, . . . , 0)tr

in Uproj
O . In order to prove the second equality, let k ∈ {1, . . . , n} and ` ∈ {1, . . . ,H(γ)}.

If xkt` = ti ∈ O for some i ∈ {1, . . . , µ}, we have degW (ti) = degW (t`) + wk and hence

xk · x
dγ,`
0 t` = x

dγ+wk,i
0 ti

=

H(γ+wk)∑
m=1

δmix
dγ+wk,m
0 tm

=

H(γ+wk)∑
m=1

ξ
(k)
m`x

dγ+wk,m
0 tm

= (x
dγ+wk,1
0 t1, . . . , x

dγ+wk ,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · X k · Etr
`

in Uproj
O . If xkt` = bj for some j ∈ {1, . . . , ν}, we get degW (bj) = degW (t`) + wk and for

every m ∈ {1, . . . ,H(degW (bj))}, it follows that

dγ,` + ∆mj = γ − degW (t`) + degW (bj)− degW (tm)

= γ − degW (t`) + degW (t`) + wk − degW (tm)

= γ + wk − degW (tm)

= dγ+wk,m.
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6 The (Projective) Border Basis Scheme

Altogether, we get

xk · x
dγ,`
0 t` = x

dγ,`
0 bj

=

H(degW (bj))∑
m=1

cmjx
dγ,`+∆mj

0 tm

=

H(γ+wk)∑
m=1

ξ
(k)
m`x

dγ+wk,m
0 tm

= (x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · X k · Etr
`

in Uproj
O . Claim a) now follows as

xk · q =

H(γ)∑
`=1

xk · c`x
dγ,`
0 t`

=

H(γ)∑
`=1

(x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · X k · c`Etr
`

= (x
dγ+wk,1
0 t1, . . . , x

dγ+wk,H(γ+wk)

0 tH(γ+wk), 0, . . . , 0) · X k · (c1, . . . , cH(γ), 0, . . . , 0)tr

in Uproj
O .

Next we prove b). For all γ′ ∈ Z with γ′ < 0, we have Qγ′ = {0} and b) holds trivially.
We prove by induction on γ′ ∈ N that b) holds in general. For γ′ = 0, it follows that
q′ ∈ Bproj

O and thus

q′ · q = q′c1x
dγ,1
0 t1 + · · ·+ q′cH(γ)x

dγ,H(γ)

0 tH(γ)

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · q′Iµ · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ,1
0 t1, . . . , x

dγ,H(γ)

0 tH(γ), 0, . . . , 0) · q′(Iµ,X1, . . . ,Xn) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in Uproj
O . This shows the claim for γ′ = 0. For the induction step, we let γ′ > 0.

Then there exist an s ∈ N \ {0}, c′1, . . . , c′s ∈ Bproj
O , and t′1, . . . , t

′
s ∈ Tn+1

γ′ such that
q′ = c′1t

′
1 + · · · + c′st

′
s. For all indices r ∈ {1, . . . , s}, there are kr ∈ {0, . . . , n} and

ur ∈ Tn+1
<γ′ such that t′r = xkrur. Hence the induction hypothesis, the commutativity of
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the matrices X 1, . . . ,X n, which follows from Definition 6.1.1, together with a) yield

xkr · (c′rur · q)

= xkr · ((x
dγ+γ′−wkr ,1
0 t1, . . . , x

dγ+γ′−wkr ,H(γ+γ′−wkr )
0 tH(γ+γ′−wkr ), 0, . . . , 0)

· (c′rur)(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr)

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (X kr · (c′rur)(Iµ,X 1, . . . ,X n)) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (c′rxkrur)(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in Uproj
O for all r ∈ {1, . . . , s}. The claim for γ′ > 0 hence follows as

q′ · q =
s∑
r=1

xkr · (c′rur · q)

=
s∑
r=1

((x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· (c′rxkrur)(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr)

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

·
( s∑
r=1

c′rxkrur

)
(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

= (x
dγ+γ′,1
0 t1, . . . , x

dγ+γ′,H(γ+γ′)
0 tH(γ+γ′), 0, . . . , 0)

· q′(Iµ,X 1, . . . ,X n) · (c1, . . . , cH(γ), 0, . . . , 0)tr

in Uproj
O .

Corollary 6.2.8. Let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and all i ∈ {1, . . . , µ},
let X 1, . . . ,X n ∈ Matµ(Bproj

O ) denote the images of the generic multiplication matrices
with respect to the order ideal O in Matµ(Bproj

O ), and we let O0 denote the image of the
set O0 =

⋃∞
k=0 x

k
0O in Uproj

O . Moreover, we let γ, γ′ ∈ Z and q ∈ (Bproj
O [x0, . . . , xn])γ′.

Then the submatrix of the matrix q(Iµ,X1, . . . ,Xn) ∈ Matµ(Bproj
O ) consisting of the

first H(γ + γ′) rows and the first H(γ) columns represents the Bproj
O -algebra homomor-

phism π̂q : (Uproj
O )γ → (Uproj

O )γ+γ′, r 7→ q · r, the multiplication by q ∈ (Uproj
O )γ′ , with

respect to the Bproj
O -module bases (O0)γ of (Uproj

O )γ and (O0)γ+γ′ of (Uproj
O )γ+γ′.

Proof. Let {E1, . . . , Eµ} denote the canonical Bproj
O -module basis of (Bproj

O )µ. According
to Corollary 6.1.14, the sets (O0)γ and (O0)γ+γ′ are B

proj
O -module bases of (Uproj

O )γ
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6 The (Projective) Border Basis Scheme

and (Uproj
O )γ+γ′ , respectively. For all k ∈ {1, . . . ,H(γ)}, Proposition 6.2.7 yields

π̂q(x
dγ,k
0 tk) = q · xdγ,k0 tk

= (x
dγ+γ′ ,1

0 t1, . . . , x
dγ+γ′ ,H(γ+γ′)

0 tH(γ+γ′), 0, . . . , 0) · q(Iµ,X 1, . . . ,X n) · Etr
k

and the claim is a direct consequence of this.

Example 6.2.9. Consider the projective O-border basis scheme Bproj
O ⊆ BO and the

corresponding universal projective O-border basis family Bproj
O → Uproj

O of Example 6.2.6,
again. Recall that we had O = {t1, . . . , t8} = {1, x2, x1, x

2
2, x1x2, x

2
1, x

2
1x2, x

3
1} with the

maxdegW -border ∂O = {b1, . . . , b5} = {x3
2, x1x

2
2, x

2
1x

2
2, x

3
1x2, x

4
1} and that the polynomi-

als lived in the standard graded rings P = Q[x1, x2] respectively P = Q[x0, x1, x2]. The
generic projective O-border basis was of the form G = {g1, . . . , g5} ⊆ P [c11, . . . , c85] with
gj = bj − c1jx

3
0 − c2jx

2
0x2 − c3jx

2
0x1 − c4jx0x

2
2 − c5jx0x1x2 − c6jx0x

2
1 − c7jx

2
1x2 − c8jx

3
1

for all indices j ∈ {1, 2} and for every index j in the set {3, 4, 5}, the polynomial
gj = bj−c1jx

4
0−c2jx

3
0x2−c3jx

3
0x1−c4jx

2
0x

2
2−c5jx

2
0x1x2−c6jx

2
0x

2
1−c7jx0x

2
1x2−c8jx0x

3
1.

According to Definition 6.1.1, the images X 1,X 2 ∈ Mat8(Bproj
O ) of the generic multipli-

cation matrices X1,X2 ∈ Mat8(Q[c11, . . . , c85]) with respect to O in Mat8(Bproj
O ) are

X 1 =



0 0 0 c12 0 0 c14 c15

0 0 0 c22 0 0 c24 c25

1 0 0 c32 0 0 c34 c35

0 0 0 c42 0 0 c44 c45

0 1 0 c52 0 0 c54 c55

0 0 1 c62 0 0 c64 c65

0 0 0 c72 1 0 c74 c75

0 0 0 c82 0 1 c84 c85


, X 2 =



0 0 0 c11 c12 0 c13 c14

1 0 0 c21 c22 0 c23 c24

0 0 0 c31 c32 0 c33 c34

0 1 0 c41 c42 0 c43 c44

0 0 1 c51 c52 0 c53 c54

0 0 0 c61 c62 0 c63 c64

0 0 0 c71 c72 1 c73 c74

0 0 0 c81 c82 0 c83 c84


.

Consider the polynomial q = x2
1 + x0x2 ∈ (P [c11, . . . , c85])2 and the map H : Z → Z,

γ 7→ #{k ∈ {1, . . . , 8} | deg(tk) ≤ γ}. Then

q(I8,X 1,X 2) = X 2
1 + I8 · X 2

=



0 0 0 m̂14 m̂15 m̂16 m̂17 m̂18

1 0 0 m̂24 m̂25 m̂26 m̂27 m̂28

0 0 0 m̂34 + c12 m̂35 m̂36 m̂37 + c14 m̂38 + c15

0 1 0 m̂44 m̂45 m̂46 m̂47 m̂48

0 0 1 m̂54 + c22 m̂55 m̂56 m̂57 + c24 m̂58 + c25

1 0 0 m̂64 + c32 m̂65 m̂66 m̂67 + c34 m̂68 + c35

0 1 0 m̂74 + c52 m̂75 m̂76 + 1 m̂77 + c54 m̂78 + c55

0 0 1 m̂84 + c62 m̂85 m̂86 m̂87 + c64 m̂88 + c65


∈ Mat8(Bproj

O )
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where we have

m̂i4 = ci2c42 + ci4c72 + ci5c82 + ci1,

m̂i5 = ci2 + ci4,

m̂i6 = ci5,

m̂i7 = ci2c44 + ci4c74 + ci5c84 + ci3,

m̂i8 = ci2c45 + ci4c75 + ci5c85 + ci4

for all i ∈ {1, . . . , 8}. By Corollary 6.2.8, the submatrix

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


∈ Mat8,3(Bproj

O )

of q(I8,X 1,X 2) consisting of the first H(3) = 8 rows and the first H(1) = 3 columns
represents the homogeneous Bproj

O -algebra homomorphism π̂q : (Uproj
O )1 → (Uproj

O )3,
r 7→ q · r, the multiplication by q ∈ (Uproj

O )2, with respect to the Bproj
O -module bases

{x0, x2, x1} ⊆ Uproj
O of (Uproj

O )1 and {x3
0, x

2
0x2, x

2
0x1, x0x2

2, x0x1x2, x0x2
1, x

2
1x2, x3

1} ⊆ U
proj
O

of (Uproj
O )3. Note that since all the entries of the above matrix are in the base field Q,

the matrix is independent of the coefficients of the generic projective O-border preba-
sis G. Therefore, this matrix describes the multiplication by q for any arbitrary projective
O-border basis.

6.3 The Generic Canonical Module of the Universal
Projective Border Basis Family

After the study of the multiplicative structure of the universal projective O-border ba-
sis family Uproj

O in Section 6.2, we now want to consider the dual Bproj
O [x0]-module

of Uproj
O . Recall Section 4.3. For every homogeneous ideal I ⊆ P with the prop-

erty that it possesses a projective O-border basis, we can explicitly describe the dual
K[x0]-module of the quotient ring R = P/I, which is precisely the canonical mod-
ule ωR of R by Remark 4.3.5, and its multiplicative structure, cf. the Propositions 4.3.8
and 4.3.10 and Corollary 4.3.11. Moreover, we have seen that projective O-border bases
are unique by Proposition 4.1.7 and that thus the projective O-border basis scheme Bproj

O
parametrizes the one-dimensional homogeneous ideals in P that possess a projective
O-border basis in Section 6.1 This yields the question whether we can parametrize all
canonical modules ωR of quotient rings R = P/I where I possesses a projective O-border
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6 The (Projective) Border Basis Scheme

basis using Bproj
O . In this section, we show that this can actually be done. More precisely,

we do the following.
First we introduce the generic canonical module of Uproj

O /J where J ⊆ Uproj
O is a homo-

geneous ideal as the dual Bproj
O [x0]-module of Uproj

O /J in Definition 6.3.2. Then we prove
that the residue classes of the elements of O in Uproj

O immediately yield Bproj
O [x0]- respec-

tively Bproj
O -module bases of the generic canonical module ω

Uproj
O

of Uproj
O respectively

its homogeneous components in Proposition 6.3.4. After that, we study the multiplica-
tive structure of ω

Uproj
O

and describe it as explicitly as possible by means of the generic
(projective) multiplication matrices with respect to O in the Propositions 6.3.5 and 6.3.7
and Corollary 6.3.8. In particular, Corollary 6.3.8 is the crucial part of the proof of
the main result of this chapter, namely Theorem 6.4.4, which states that the set of all
points of the projective O-border basis scheme Bproj

O that correspond to (i, j)-uniform
zero-dimensional subschemes of PK(W ) is constructible.

As in the previous section, we denote Q = P [c11, . . . , cµν ] and Q = P [c11, . . . , cµν ].
Then Q =

⊕
γ∈ZQγ and Q =

⊕
γ∈ZQγ are non-negatively Z-graded by the matrices

V = (W | 0) ∈ Mat1,n+µν(Z) and V = (W | 0) ∈ Mat1,n+1+µν(Z), respectively. For
all i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}, let ∆ij = degW (bj) − degW (ti) ∈ Z. Moreover,
let G = {g1, . . . , gν} ⊆ Q be the generic projective O-border prebasis, let Bproj

O be the
projective O-border basis scheme with coordinate ring Bproj

O , and let Bproj
O → Uproj

O be
the universal projective O-border basis family as defined in Definition 6.1.5.

Before we start, we briefly recall Definition 4.3.1 and Proposition 4.3.2. For a Z-
graded ring R and Z-graded R-modules M and N , we defined HomR(M,N) in Defini-
tion 4.3.1 to be the set of all homogeneous R-module homomorphisms M → N and we
saw that HomR(M,N) =

⊕
γ∈Z(HomR(M,N))γ =

⊕
γ∈Z HomR(M,N(γ)) is a Z-graded

R-module.

Lemma 6.3.1. Let J ⊆ Uproj
O be a homogeneous ideal and let S = Uproj

O /J . Moreover,
we let M = Hom

Bproj
O [x0]

(S,Bproj
O [x0]).

a) The map

Uproj
O × S → S, (r, r′ + J) 7→ rr′ + J (r, r′ ∈ Uproj

O )

equips the Z-graded ring S with the structure of a Z-graded Uproj
O -algebra.

b) The map

Uproj
O ×M →M, (r, ϕ) 7→ (r′ 7→ ϕ(r · r′))

turns the Z-graded Bproj
O [x0]-moduleM into a Z-graded Uproj

O -module. In particular,
the Bproj

O [x0]-module structure of M as in Proposition 4.3.2 is compatible with this
Uproj
O -structure.
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6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

Proof. Claim a) follows from [KR00, Rem. 1.7.9].
In order to prove b), let r, r′, r′′ ∈ Uproj

O and ϕ,ϕ′ ∈M . Using a), we see that

(1 · ϕ)(r′′) = ϕ(1 · r′′) = ϕ(r′′),

i.e. 1 · ϕ = ϕ,

((rr′) · ϕ)(r′′) = ϕ((rr′) · r′′) = ϕ(r′ · (r · r′′)) = (r′ · ϕ)(r · r′′) = (r · (r′ · ϕ))(r′′)

i.e. (rr′) · ϕ = r · (r′ · ϕ),

((r + r′) · ϕ)(r′′) = ϕ((r + r′) · r′′) = ϕ(r · r′′) + ϕ(r′ · r′′) = (r · ϕ)(r′′) + (r′ · ϕ)(r′′)

i.e. (r + r′) · ϕ = r · ϕ+ r′ · ϕ, and

(r · (ϕ+ ϕ′))(r′) = (ϕ+ ϕ′)(r · r′)
= ϕ(r · r′) + ϕ′(r · r′)
= (r · ϕ)(r′) + (r · ϕ′)(r′)
= (r · ϕ+ r · ϕ′)(r′),

i.e. r · (ϕ+ϕ′) = r ·ϕ+ r ·ϕ′. Thus the given map turns M into a Uproj
O -module, which is

obviously compatible with theBproj
O [x0]-module structure ofM given in Proposition 4.3.2.

Next we define the generic canonical module of Uproj
O /J where J ⊆ Uproj

O is a ho-
mogeneous ideal as the dual Bproj

O [x0]-module of Uproj
O . Note that after applying the

substition cij 7→ aij for some point (a11, . . . , aµν) ∈ Bproj
O , this construction coincides

with the one in Definition 4.3.4. In other words, Bproj
O parametrizes the canonical mod-

ules of all the residue class rings P/I where I is a homogeneous ideal that possesses a
projective O-border basis.

Definition 6.3.2. Let J ⊆ Uproj
O be a homogeneous ideal and S = Uproj

O /J . Then

ωS = Hom
Bproj
O [x0]

(S,Bproj
O [x0])(−1)

is called the generic canonical module of S. If J = {0}, we identify Uproj
O with Uproj

O /J
and also write ω

Uproj
O

instead of ω
Uproj
O /J

.

This definition immediately yields the following properties of ω
Uproj
O

.

Proposition 6.3.3. a) The element x0 ∈ Bproj
O [x0] is a non-zero divisor for Uproj

O .

b) The element x0 ∈ Bproj
O [x0] is a non-zero divisor for ω

Uproj
O

.
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6 The (Projective) Border Basis Scheme

c) Let J ⊆ Uproj
O be a homogeneous ideal and let S = Uproj

O /J . Then there exists a
canonical homogeneous Uproj

O -module isomorphism

ωS ∼= {ϕ ∈ ωUproj
O
| J · ϕ = {0}}.

Proof. First we prove a). Assume that there exists a homomorphism ϕ ∈ ω
Uproj
O
\{0} such

that x0ϕ = 0. Then there is an element r ∈ Uproj
O such that ϕ(r) 6= 0 and Lemma 6.3.1

yields 0 = 0(r) = (x0ϕ)(r) = ϕ(x0 · r) = x0 · ϕ(r). Since ϕ(r) ∈ Bproj
O [x0] \ {0}, this is a

contradiction to Corollary 6.1.14. Thus x0 is a non-zero divisor for ω
Uproj
O

.
Next we prove claim b). Let M = {ϕ ∈ ω

Uproj
O
| J · ϕ = {0}}. For all ϕ1, ϕ2 ∈ M ,

r1, r2 ∈ Uproj
O , and s ∈ J , we have

(s · (ϕ1 − ϕ2))(r1) = (ϕ1 − ϕ2)(sr1)

= ϕ1(sr)− ϕ2(sr1)

= (s · ϕ1)(r)− (s · ϕ2)(r1)

= 0(r1) + 0(r1)

= 0,

i.e. J · (ϕ1 − ϕ2) = {0} and thus ϕ1 − ϕ2 ∈M , and since r1s ∈ J , we have

(s · (r1 · ϕ1))(r2) = (r1 · ϕ1)(sr2) = ϕ1(r1sr2) = ((r1s) · ϕ1)(r2) = 0(r2) = 0,

i.e. J · (r1 · ϕ1) = {0} and thus r1 · ϕ1 ∈ M . Altogether, it follows that the set M is a
Uproj
O -submodule of ω

Uproj
O

.
For every ϕ ∈M and all s ∈ J , we have

ϕ(s) = ϕ(s · 1) = (s · ϕ)(1) = 0(1) = 0

and hence J ⊆ ker(ϕ). Let ε : Uproj
O � S = Uproj

O /J be the canonical Bproj
O [x0]-module

epimorphism. Then for every ϕ ∈ M , the Universal Property of the Residue Class
Module S induces a unique Bproj

O [x0]-module homomorphism ϕ : S → Bproj
O [x0] which

satisfies ϕ = ϕ ◦ ε and ϕ ∈ ωS . In other words, every element ϕ ∈ M induces a unique
element ϕ ∈ ωS . Thus the map

φ : M → ωS , ϕ 7→ ϕ such that ϕ = ϕ ◦ ε

is well-defined. For all ϕ1, ϕ2 ∈M and r1, r2 ∈ Uproj
O , we have

φ(r1 · (ϕ1 − ϕ2))(r2 + J) = r1 · (ϕ1 − ϕ2)(r2 + J)

= (r1 · (ϕ1 − ϕ2))(r2)

= (ϕ1 − ϕ2)(r1r2)

= ϕ1(r1r2)− ϕ2(r1r2)

= ϕ1(r1r2 + J)− ϕ2(r1r2 + J)

= (ϕ1 − ϕ2)(r1r2 + J)

= (φ(ϕ1)− φ(ϕ2))(r1r2 + J)

= (r1 · (φ(ϕ1)− φ(ϕ2)))(r2 + J),
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6.3 The Generic Canonical Module of the Universal Projective Border Basis Family

i.e. φ(r1 · (ϕ1 − ϕ2)) = r1 · (φ(ϕ1) − φ(ϕ2)). Altogether, it follows that the map φ is a
Uproj
O -module homomorphism. Since for all γ, γ′ ∈ Z, r ∈ (Uproj

O )γ , and ϕ ∈Mγ′ , we also
have

φ(ϕ)(r + J) = ϕ(r + J) = ϕ(r) ∈ (Bproj
O [x0](γ′ − 1))γ = (Bproj

O [x0](−1))γ+γ′ ,

i.e. φ(ϕ) ∈ (ωS)γ′ , the U
proj
O -module homomorphism φ is homogeneous.

Next we prove that φ is bijective. For every ϕ ∈ ωS , the Uproj
O -module homomorphism

ϕ = ϕ ◦ ε ∈ ω
Uproj
O

satisfies (s · ϕ)(1) = ϕ(s) = ϕ(s+ J) = ϕ(0) = 0 for every s ∈ J , i.e.
s · ϕ = 0 and thus J · ϕ = {0}. In particular, for every ϕ ∈ ωS , we have ϕ ◦ ε ∈ M and
φ(ϕ ◦ ε) = ϕ. Altogether, it follows that φ is surjective. For every ϕ ∈ ker(φ), we have
ϕ = φ(ϕ) ◦ ε = 0 ◦ ε = 0, i.e. ker(φ) = {0} and φ is hence injective.

In the remaining parts of this thesis, for all homogeneous ideals J ⊆ Uproj
O , we identify

the elements of ω
Uproj
O /J

with the corresponding elements in {ϕ ∈ ω
Uproj
O
| J ·ϕ = {0}} as

proven in Proposition 6.3.3 without mention.

Next we show that the residue classes of the elements of O yield Bproj
O [x0]- respectively

Bproj
O -module bases of ω

Uproj
O

.

Proposition 6.3.4. Let dγ,i = γ−degW (ti) ∈ Z be for all γ ∈ Z and all i ∈ {1, . . . , µ},
let O = {t1, . . . , tµ} ⊆ Uproj

O denote the image of the order ideal O in Uproj
O , and let

O∗ = {t∗1, . . . , t
∗
µ} ⊆ ωUproj

O
be the dual Bproj

O [x0]-module basis of O, i.e. we have

t
∗
i : Uproj

O → Bproj
O [x0], tj 7→ δij (j ∈ {1, . . . , µ})

for every i ∈ {1, . . . , µ}.

a) The set O∗ is a Bproj
O [x0]-module basis of ω

Uproj
O

. In particular, there are canonical

isomorphisms of Z-graded Bproj
O [x0]-modules

ω
Uproj
O
∼=

µ⊕
i=1

Bproj
O [x0](degW (ti)− 1) ∼=

degW (tµ)⊕
γ=0

(Bproj
O [x0](γ − 1))∆H(γ).

In particular, rk
Bproj
O

((ω
Uproj
O

)−γ) = µ−H(γ) = µ− rk
Bproj
O

((Uproj
O )γ) for all γ ∈ Z.

b) Let O0 denote the image of O0 =
⋃∞
k=0 x

k
0O in Uproj

O and let O∗0 ⊆ ω
Uproj
O

be

the set of dual objects of the elements in O0. For every integer γ ∈ Z, the set
(O∗0)−γ = {x−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ} ⊆ (ω

Uproj
O

)−γ is a Bproj
O -module

basis of (ω
Uproj
O

)−γ.
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6 The (Projective) Border Basis Scheme

Proof. First we prove a). Since O ⊆ Uproj
O is a Bproj

O [x0]-module basis of Uproj
O according

to Lemma 6.1.12, the dual basis O∗ is a Bproj
O [x0]-module basis of ω

Uproj
O

according to
[Bou89, II.§2.6, Prop. 11 and Defn. 7]. By [Bou89, II.§1.6, Coro. 1 and II.§11.6, Rem.]),
there is a canonical homogeneous Bproj

O [x0]-module isomorphism

Hom
Bproj
O [x0]

(
µ⊕
i=1

Bproj
O [x0](−degW (ti)), B

proj
O [x0]

)

∼=
µ⊕
i=1

Hom
Bproj
O [x0]

(Bproj
O [x0](−degW (ti)), B

proj
O [x0]).

Moreover, there exists a canonical homogeneous Bproj
O [x0]-module isomorphism

Uproj
O =

µ⊕
i=1

Bproj
O [x0] · ti ∼=

µ⊕
i=1

Bproj
O [x0](−degW (ti))

by Corollary 6.1.14 and a canonical homogeneous Bproj
O [x0]-module isomorphism

Hom
Bproj
O [x0]

(Bproj
O [x0], Bproj

O [x0]) ∼= Bproj
O [x0]

by [Bou89, II.§11.6, p. 376]. Altogether, we get the canonical isomorphism

ω
Uproj
O

= Hom
Bproj
O [x0]

(Uproj
O , Bproj

O [x0])(−1)

∼= Hom
Bproj
O [x0]

(
µ⊕
i=1

Bproj
O [x0](−degW (ti)), B

proj
O [x0]

)
(−1)

∼=
µ⊕
i=1

Hom
Bproj
O [x0]

(Bproj
O [x0](−degW (ti)), B

proj
O [x0])(−1)

=

µ⊕
i=1

Hom
Bproj
O [x0]

(Bproj
O [x0], Bproj

O [x0])(degW (ti)− 1)

∼=
µ⊕
i=1

Bproj
O [x0](degW (ti)− 1)

∼=
degW (tµ)⊕
γ=0

(Bproj
O [x0](γ − 1))∆H(γ)
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of Z-graded Bproj
O [x0]-modules and the claim follows. In particular, for all γ ∈ Z, we have

(ω
Uproj
O

)−γ ∼=

degW (tµ)⊕
γ̃=0

(Bproj
O [x0](γ̃ − 1))∆H(γ̃)


−γ

=

degW (tµ)⊕
γ̃=0

((Bproj
O [x0](γ̃ − 1))−γ)∆H(γ̃)

=

degW (tµ)⊕
γ̃=0

(Bproj
O [x0]γ̃−1−γ)∆H(γ̃).

and as O is ordered increasingly with respect to degW , we get

rk
Bproj
O

((ω
Uproj
O

)−γ) =

degW (tµ)⊕
γ̃=γ+1

∆H(γ̃) = H(degW (tµ))−H(γ) = µ−H(γ).

As rk
(Uproj
O )γ

= H(γ) for all γ ∈ Z by Corollary 6.1.14, the remaining equality follows.
In order to prove b), let γ ∈ Z. For all i ∈ {1, . . . , µ}, we have

t
∗
i (ti) = 1 ∈ Bproj

O [x0]0 = (Bproj
O [x0](− degW (ti)))degW (ti),

and t∗i (tj) = 0 ∈ (Bproj
O [x0](−degW (ti)))degW (ti) for all indices j ∈ {1, . . . , µ}\{i}, i.e. we

have t∗i ∈ (ω
Uproj
O

)− degW (ti)+1. Moreover, for every index i ∈ {H(γ) + 1, . . . , µ}, we get

−dγ+1,i = −γ− 1 + degW (ti) ∈ N and thus x−dγ+1,i

0 t
∗
i ∈ (ω

Uproj
O

)−γ . Since t
∗
i (tj) = δij for

all i, j ∈ {1, . . . , µ} and since rk
Bproj
O

((ω
Uproj
O

)−γ) = µ −H(γ) according to a), it follows

that (O∗0)−γ = {x−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ} ⊆ (ω

Uproj
O

)−γ is a K-vector space
basis of (ω

Uproj
O

)−γ .

Next we explicitly describe the Bproj
O [x0]-module structure of ω

Uproj
O

by means of the
generic projective multiplication matrices with respect to O.

Proposition 6.3.5. Let O = {t1, . . . , tµ} ⊆ Uproj
O denote the image of the order ideal O

in Uproj
O and let O∗ = {t∗1, . . . , t

∗
µ} ⊆ ω

Uproj
O

be the dual Bproj
O [x0]-module basis of O.

Moreover, let X proj
0 , . . . ,X proj

n ∈ Matµ(Bproj
O [x0]) be the images of the generic projective

multiplication matrices with respect to O in Matµ(Bproj
O [x0]), let c1, . . . , cµ ∈ Bproj

O [x0],
and let ϕ = c1t

∗
1 + · · · + cµt

∗
µ ∈ ωUproj

O
. Then for all γ ∈ Z and q ∈ (Bproj

O [x0, . . . , xn])γ,
we have

q · ϕ = (t
∗
1, . . . , t

∗
µ) · q((X proj

0 )tr, . . . , (X proj
n )tr) · (c1, . . . , cµ)tr,

in ω
Uproj
O

, i.e. the matrix q((X proj
0 )tr, . . . , (X proj

n )tr) ∈ Matµ(Bproj
O [x0]) represents the ho-

mogeneous Bproj
O [x0]-module homomorphism π∗q : ω

Uproj
O

(−γ) → ω
Uproj
O

, ϕ 7→ q · ϕ, the
multiplication by q ∈ (Uproj

O )γ, with respect to the Bproj
O [x0]-module basis O∗ of ω

Uproj
O

.
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Proof. Let γ ∈ Z and we let q ∈ (Bproj
O [x0, . . . , xn])γ . According to Corollary 6.2.5,

q(X proj
0 , . . . ,X proj

n ) ∈ Matµ(Bproj
O [x0]) represents the homogeneous Bproj

O [x0]-module ho-
momorphism πq : Uproj

O (−γ) 7→ Uproj
O , r 7→ q · r, the multiplication by q, with respect

to the Bproj
O [x0]-module basis O. The dual module of the free Bproj

O [x0]-module Uproj
O

is (Uproj
O )

∗
= Hom

Bproj
O [x0]

(Uproj
O , Bproj

O [x0]) = ω
Uproj
O

(1). Thus the induced homoge-

neous Bproj
O [x0]-module homomorphism π∗q : ω

Uproj
O

(−γ) → ω
Uproj
O

, ϕ 7→ ϕ ◦ πq = q · ϕ
with respect to the dual Bproj

O [x0]-module basis O∗ of O is represented by the ma-
trix q(X proj

0 , . . . ,X proj
n )tr ∈ Matµ(Bproj

O [x0]) according to [Bou89, II.§10.4, Prop. 3] and
Corollary 6.2.5. Moreover, the matrices X proj

0 , . . . ,X proj
n , and hence also the matrices

(X proj
0 )tr, . . . , (X proj

n )tr, are pairwise commuting by Proposition 6.2.4 and the claim fol-
lows from q(X proj

0 , . . . ,X proj
n )tr = q((X proj

0 )tr, . . . , (X proj
n )tr).

Example 6.3.6. Consider the projective O-border basis scheme Bproj
O and the corre-

sponding universal projective O-border family Bproj
O → Uproj

O of Example 6.2.6, again.
Recall that the polynomial rings P = Q[x1, x2] respectively P = Q[x0, x1, x2] were stan-
dard graded, i.e. graded by the gradings given by W = (1, 1) ∈ Mat1,2(Z) respectively
W = (1, 1, 1) ∈ Mat1,3(Z), and that O = {t1, . . . , t8} = {1, x2, x1, x

2
2, x1x2, x

2
1, x

2
1x2, x

3
1}

had the maxdegW -border ∂O = {b1, . . . , b5} = {x3
2, x1x

2
2, x

2
1x

2
2, x

3
1x2, x

4
1}. Moreover,

we saw that the images X proj
0 ,X proj

1 ,X proj
2 ∈ Mat8(Bproj

O [x0]) of the generic projective
multiplication matrices with respect to O in Mat8(Bproj

O [x0]) are

X proj
0 =



x0 0 0 0 0 0 0 0
0 x0 0 0 0 0 0 0
0 0 x0 0 0 0 0 0
0 0 0 x0 0 0 0 0
0 0 0 0 x0 0 0 0
0 0 0 0 0 x0 0 0
0 0 0 0 0 0 x0 0
0 0 0 0 0 0 0 x0


,

X proj
1 =



0 0 0 c12x
3
0 0 0 c14x

4
0 c15x

4
0

0 0 0 c22x
2
0 0 0 c24x

3
0 c25x

3
0

1 0 0 c32x
2
0 0 0 c34x

3
0 c35x

3
0

0 0 0 c42x0 0 0 c44x
2
0 c45x

2
0

0 1 0 c52x0 0 0 c54x
2
0 c55x

2
0

0 0 1 c62x0 0 0 c64x
2
0 c65x

2
0

0 0 0 c72 1 0 c74x0 c75x0

0 0 0 c82 0 1 c84x0 c85x0


,
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and

X proj
2 =



0 0 0 c11x
3
0 c12x

3
0 0 c13x

4
0 c14x

4
0

1 0 0 c21x
2
0 c22x

2
0 0 c23x

3
0 c24x

3
0

0 0 0 c31x
2
0 c32x

2
0 0 c33x

3
0 c34x

3
0

0 1 0 c41x0 c42x0 0 c43x
2
0 c44x

2
0

0 0 1 c51x0 c52x0 0 c53x
2
0 c54x

2
0

0 0 0 c61x0 c62x0 0 c63x
2
0 c64x

2
0

0 0 0 c71 c72 1 c73x0 c74x0

0 0 0 c81 c82 0 c83x0 c84x0


.

Let q = x2
1 + x0x2 ∈ (Bproj

O [x0, . . . , xn])2 and let π∗q : ω
Uproj
O

(−2) → ω
Uproj
O

, ϕ 7→ q · ϕ
be the multiplication by q ∈ (Uproj

O )2. Furthermore, let O ⊆ Uproj
O be the image of O

in Uproj
O and let O∗ ⊆ ω

Uproj
O

be the dual Bproj
O [x0]-module basis of O. Then the matrix

q((X proj
0 )tr, (X proj

1 )tr, (X proj
2 )tr)

= ((X proj
1 )tr)2 + (X proj

0 )tr · (X proj
2 )tr

=



0 x0 0 0 0 1 0 0
0 0 0 x0 0 0 1 0
0 0 0 0 x0 0 0 1
m14 m24 m34 + c12x

3
0 m44 m54 + c22x

2
0 m64 + c32x

2
0 m74 + c52x0 m84 + c62x0

m15 m25 m35 m45 m55 m65 m75 m85

m16 m26 m36 m46 m56 m66 m76 + x0 m86

m17 m27 m37 + c14x
4
0 m47 m57 + c24x

3
0 m67 + c34x

3
0 m77 + c54x

2
0 m87 + c64x

2
0

m18 m28 m38 + c15x
4
0 m48 m58 + c25x

3
0 m68 + c35x

3
0 m78 + c55x

2
0 m88 + c65x

2
0


∈ Mat8(Bproj

O [x0])

where we have

mi4 = (ci2c42 + ci4c72 + ci5c82 + ci1)x
4−deg(ti)
0 ,

mi5 = (ci2 + ci4)x
4−deg(ti)
0 ,

mi6 = ci5x
4−deg(ti)
0 ,

mi7 = (ci2c44 + ci4c74 + ci5c84 + ci3)x
5−deg(ti)
0 ,

mi8 = (ci2c45 + ci4c75 + ci5c85 + ci4)x
5−deg(ti)
0

for all indices i ∈ {1, . . . , 8} represents the homogeneous Bproj
O [x0]-module homomor-

phism π∗q with respect to the Bproj
O [x0]-module basis O∗ of ω

Uproj
O

. Note that the matrices

X proj
0 ,X proj

1 ,X proj
2 ∈ Mat8(Bproj

O [x0]) are pairwise commuting and, therefore, we see that
q((X proj

0 )tr, (X proj
1 )tr, (X proj

2 )tr) = (q(X proj
0 ,X proj

1 ,X proj
2 )tr. In particular, the above result

coincides with the result of Example 6.2.6.
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Finally, we explicitly describe the Bproj
O -module structure of ω

Uproj
O

by means of the
generic multiplication matrices with respect to O. In particular, Corollary 6.3.8 will
turn out to be the crucial part of the proof of the main result of this chapter, namely
Theorem 6.4.4, which states that the set of all points of the projective O-border basis
scheme Bproj

O that correspond to (i, j)-uniform zero-dimensional subschemes of PK(W ) is
constructible with respect to the Zariski topology.

Proposition 6.3.7. Let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and i ∈ {1, . . . , µ},
let O = {t1, . . . , tµ} ⊆ Uproj

O denote the image of the order ideal O in Uproj
O , and let

O∗ = {t∗1, . . . , t
∗
µ} ⊆ ω

Uproj
O

be the dual Bproj
O [x0]-module basis of O. Moreover, we

let X 1, . . . ,X n ∈ Matµ(Bproj
O ) denote the images of the generic multiplication matri-

ces with respect to O in Matµ(Bproj
O ), let γ ∈ Z, let cH(γ)+1, . . . , cµ ∈ Bproj

O , and let

ϕ = cH(γ)+1x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ+1,µ

0 t
∗
µ ∈ (ω

Uproj
O

)−γ.

a) We have

x0 · ϕ = (0, . . . , 0, x
−dγ,H(γ−1)+1

0 t
∗
H(γ−1)+1, . . . , x

−dγ,µ
0 t

∗
µ)

· Iµ · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ω
Uproj
O

and for every k ∈ {1, . . . , n}, we have

xk · ϕ = (0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ)

· X tr
k · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ω
Uproj
O

.

b) For every γ′ ∈ Z and every q′ ∈ (Bproj
O [x0, . . . , xn])γ′ , we have

q′ · ϕ = (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· q′(Iµ,X
tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ω
Uproj
O

.

Proof. For every s ∈ {1, . . . , n}, we denote X s = (ξ
(s)
k` )1≤k,`≤µ ∈ Matµ(Bproj

O ) as in Def-
initions 6.1.1 and 6.1.5 and we let {E1, . . . , Eµ} denote the canonical Bproj

O -module basis
of (Bproj

O )µ. If γ ≥ degW (tµ), we have (ω
Uproj
O

)−γ = {0} and the claims follow trivially.
Thus we suppose that γ < degW (tµ).
First we prove a). For every i ∈ {1, . . . , µ}, we have

−dγ+1,i + 1 = −(γ + 1− degW (ti)) + 1 = −(γ − degW (ti)) = −dγ,i
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and get

x0 · ϕ = x0 · (cH(γ)+1x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ+1,µ

0 t
∗
µ)

= cH(γ)+1x
−dγ+1,H(γ)+1+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ+1,µ+1
0 t

∗
µ

= cH(γ)+1x
−dγ,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ cµx

−dγ,µ
0 t

∗
µ

= (0, . . . , 0, x
−dγ,H(γ−1)+1

0 t
∗
H(γ−1)+1, . . . , x

dγ,µ
0 t

∗
µ)

· Iµ · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ω
Uproj
O

. For the second part, let k ∈ {1, . . . , n}. Moreover, let i ∈ {H(γ) + 1, . . . , µ},
` ∈ {1, . . . , µ}, and γ̃ = degW (t`) + wk. Then Proposition 6.2.7 yields

(xk · t
∗
i )(t`) = t

∗
i (xkt`)

= t
∗
i ((x

dγ̃,1
0 t1, . . . , x

dγ̃,H(γ̃)

0 tH(γ̃), 0, . . . , 0) · X k · Etr
` )

=

{
0 if degW (ti) > γ̃

ξ
(k)
i` x

dγ̃,i
0 if degW (ti) ≤ γ̃

=

{
0 if degW (t`) < degW (ti)− wk
ξ

(k)
i` x

dγ̃,i
0 if degW (t`) ≥ degW (ti)− wk

.

Assume that there is an ˜̀∈ {1, . . . , µ} such that γ+ 1−wk ≤ degW (t˜̀) < degW (ti)−wk
and such that ξ(k)

i˜̀
6= 0. Then we have γ+1 ≤ degW (t˜̀)+wk < degW (ti). We distinguish

two cases. If xkt˜̀ = tr ∈ O for some r ∈ {1, . . . , µ}, we get degW (t˜̀) + wk = degW (tr).

In particular, we see that r 6= i and thus ξ(k)

i˜̀
= δir = 0 according to Definition 6.1.1

in this situation. If we have xkt˜̀ = bs ∈ ∂O for some index s ∈ {1, . . . , ν}, then
degW (ti) > degW (t˜̀)+wk = degW (bs). Since G is the generic projective O-border basis,
Definition 6.1.5 implies that gs = bs−

∑H(degW (bs))
m=1 cmsx

∆ms
0 tm and thus we have ξ(k)

i˜̀
= 0

by Definition 6.1.1 in this situation. Since both cases yield a contradiction, there is no
such index ˜̀. In particular, this implies that

(xk · t
∗
i )(t`) =

{
0 if degW (t`) < γ − wk + 1

ξ
(k)
i` x

dγ̃,i
0 if degW (t`) ≥ γ − wk + 1

.

Moreover, we have

−dγ+1,i + dγ̃,i = −(γ + 1− degW (ti)) + γ̃ − degW (ti)

= −γ − 1 + degW (t`) + wk

= −dγ−wk+1,`.
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Altogether, we get

xk · cix
−dγ+1,i

0 t
∗
i

=

µ∑
`=H(γ−wk)+1

ξ
(k)
i` cix

−dγ−wk+1,`

0 t
∗
`

= (0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ) · X tr

k · ciEtr
i

in ω
Uproj
O

and thus

xk · ϕ =

µ∑
i=H(γ)+1

xk · cix
−dγ+1,i

0 t
∗
i

=

µ∑
i=H(γ)+1

(0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ) · X tr

k · ciEtr
i

= (0, . . . , 0, x
−dγ−wk+1,H(γ−wk)+1

0 t
∗
H(γ−wk)+1, . . . , x

−dγ−wk+1,µ

0 t
∗
µ)

· X tr
k · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ω
Uproj
O

.

Next we prove b). Let γ′ ∈ Z and q′ ∈ (Bproj
O [x0, . . . , xn])γ′ . For all γ′ ∈ Z with γ′ < 0,

we have q′ = 0 and b) holds trivially. We prove by induction on γ′ ∈ N that b) holds in
general. For γ′ = 0, it follows q′ ∈ Bproj

O and thus

q′ · ϕ = q′cH(γ)+1x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1 + · · ·+ q′cµx

−dγ+1,µ

0 t
∗
µ

= (0, . . . , 0, x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ)

· q′Iµ · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

= (0, . . . , 0, x
−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ

0 t
∗
µ)

· q′(Iµ,X
tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ω
Uproj
O

. For the induction step, let now γ′ > 0. Then there exist a natural number

s ∈ N \ {0}, c′1, . . . , c′s ∈ B
proj
O , and t′1, . . . , t

′
s ∈ Tn+1

γ′ such that q′ = c′1t
′
1 + · · · + c′st

′
s.

Then for every r ∈ {1, . . . , s}, there are a kr ∈ {0, . . . , n} and a ur ∈ Tn+1
<γ′ such that

t′r = xkrur. Let w0 = 1, X 0 = Iµ, and for all r ∈ {1, . . . , s}, let γ̂r = γ − γ′ +wkr . Then
the induction hypothesis, the commutativity of the matrices X 1, . . . ,X n, which follows
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from Definition 6.1.1, together with a) yield

c′rt
′
r · ϕ = xkr · (c′rur · ϕ)

= xkr · ((0, . . . , 0, x
−dγ̂r+1,H(γ̂r)+1

0 t
∗
H(γ̂r)+1, . . . , x

−dγ̂r+1,µ

0 t
∗
µ)

· (c′ur)(Iµ,X
tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ̂r−wkr+1,H(γ̂r−wkr )+1

0 t
∗
H(γ̂r−wkr )+1, . . . , x

−dγ̂r−wkr+1,µ

0 t
∗
µ)

· (X tr
kr · (c

′
rur)(Iµ,X

tr
1 , . . . ,X

tr
n )) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· (c′rxkrur)(Iµ,X
tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· (c′rt′r)(Iµ,X
tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

in ω
Uproj
O

for all r ∈ {1, . . . , s}. Thus it follows that

q′ · ϕ =

s∑
r=1

c′rt
′
r · ϕ

=
s∑
r=1

((0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· (c′rt′r)(Iµ,X
tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr)

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

·
( s∑
r=1

c′rt
′
r

)
(Iµ,X

tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ)

· q′(Iµ,X
tr
1 , . . . ,X

tr
n ) · (0, . . . , 0, cH(γ)+1, . . . , cµ)tr

in ω
Uproj
O

and the claim follows for γ′ > 0.

Corollary 6.3.8. Let dγ,i = γ − degW (ti) ∈ Z be for all γ ∈ Z and all i ∈ {1, . . . , µ},
let O = {t1, . . . , tµ} ⊆ Uproj

O denote the image of the order ideal O in Uproj
O , and let

O∗ = {t∗1, . . . , t
∗
µ} ⊆ ωUproj

O
be the dual Bproj

O [x0]-module basis of O. Moreover, we let O0

be the image of O0 =
⋃∞
k=0 x

k
0O in Uproj

O , we let O∗0 ⊆ ω
Uproj
O

be the dual objects of

the elements in O0, and we let X 1, . . . ,X n ∈ Matµ(Bproj
O ) denote the images of the

generic multiplication matrices with respect to O in Matµ(Bproj
O ). Furthermore, we let

γ, γ′ ∈ Z and q ∈ (Bproj
O [x0, . . . , xn])γ′ . Then the submatrix obtained from deleting the

first H(γ − γ′) rows and the first H(γ) columns of q(Iµ,X
tr
1 , . . . ,X

tr
n ) ∈ Matµ(Bproj

O )
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represents the Bproj
O -module homomorphism π̂∗q : (ω

Uproj
O

)−γ → (ω
Uproj
O

)−γ+γ′, ϕ 7→ q · ϕ,
i.e. the multiplication by the element q ∈ (Uproj

O )γ′, with respect to the Bproj
O -module

bases (O∗0)−γ of (ω
Uproj
O

)−γ and (O∗0)−γ+γ′ of (ω
Uproj
O

)−γ+γ′ .

Proof. Let {E1, . . . , Eµ} denote the canonical Bproj
O -module basis of (Bproj

O )µ. Accord-
ing to Proposition 6.3.4, the sets (O∗0)−γ = {x−dγ+1,H(γ)+1

0 t
∗
H(γ)+1, . . . , x

−dγ+1,µ
0 t

∗
µ} and

(O∗0)−γ+γ′ = {x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ} are Bproj

O -module bases
of (ω

Uproj
O

)−γ and (ω
Uproj
O

)−γ+γ′ , respectively. For all indices k ∈ {H(γ) + 1, . . . , µ},
Proposition 6.3.7 yields

π̂∗q (x
−dγ+1,k

0 t
∗
k)

= q · x−dγ+1,k

0 t
∗
k

= (0, . . . , 0, x
−dγ−γ′+1,H(γ−γ′)+1

0 t
∗
H(γ−γ′)+1, . . . , x

−dγ−γ′+1,µ

0 t
∗
µ) · q(Iµ,X

tr
1 , . . . ,X

tr
n ) · Etr

k

and the claim is a direct consequence of this.

Example 6.3.9. Consider the projective O-border basis scheme Bproj
O and its universal

projective O-border basis family Bproj
O → Uproj

O of Example 6.2.9, again. Recall that
the polynomial rings P = Q[x1, x2] respectively P = Q[x0, x1, x2] were standard graded,
i.e. graded by W = (1, 1) ∈ Mat1,2(Z) respectively W = (1, 1, 1) ∈ Mat1,3(Z), that
the order ideal was of the form O = {t1, . . . , t8} = {1, x2, x1, x

2
2, x1x2, x

2
1, x

2
1x2, x

3
1}, and

that O had the maxdegW -border ∂O = {b1, . . . , b5} = {x3
2, x1x

2
2, x

2
1x

2
2, x

3
1x2, x

4
1}. We

also saw that the images X 1,X 2 ∈ Mat8(Bproj
O ) of the generic multiplication matrices

X1,X2 ∈ Mat8(Q[c11, . . . , c85]) with respect to O in Mat8(Bproj
O ) were

X 1 =



0 0 0 c12 0 0 c14 c15

0 0 0 c22 0 0 c24 c25

1 0 0 c32 0 0 c34 c35

0 0 0 c42 0 0 c44 c45

0 1 0 c52 0 0 c54 c55

0 0 1 c62 0 0 c64 c65

0 0 0 c72 1 0 c74 c75

0 0 0 c82 0 1 c84 c85


X 2 =



0 0 0 c11 c12 0 c13 c14

1 0 0 c21 c22 0 c23 c24

0 0 0 c31 c32 0 c33 c34

0 1 0 c41 c42 0 c43 c44

0 0 1 c51 c52 0 c53 c54

0 0 0 c61 c62 0 c63 c64

0 0 0 c71 c72 1 c73 c74

0 0 0 c81 c82 0 c83 c84


.

Moreover, q = x2
1 + x0x2 ∈ (Bproj

O [x0, x1, x2])2 and we denoted the map H : Z → Z,
γ 7→ #{k ∈ {1, . . . , 8} | deg(tk) ≤ γ}. Let π̂∗q : (ω

Uproj
O

)−2 → (ω
Uproj
O

)0, ϕ 7→ q · ϕ be the
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multiplication by q ∈ (Uproj
O )2. Then

q(I8,X
tr
1 ,X

tr
2 )

= (X tr
1 )2 + I8 · X

tr
2

=



0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
m̂14 m̂24 m̂34 + c12 m̂44 m̂54 + c22 m̂64 + c32 m̂74 + c52 m̂84 + c62

m̂15 m̂25 m̂35 m̂45 m̂55 m̂65 m̂75 m̂85

m̂16 m̂26 m̂36 m̂46 m̂56 m̂66 m̂76 + 1 m̂86

m̂17 m̂27 m̂37 + c14 m̂47 m̂57 + c24 m̂67 + c34 m̂77 + c54 m̂87 + c64

m̂18 m̂28 m̂38 + c15 m̂48 m̂58 + c25 m̂68 + c35 m̂78 + c55 m̂88 + c65


∈ Mat8(Bproj

O )

where we have

m̂i4 = ci2c42 + ci4c72 + ci5c82 + ci1,

m̂i5 = ci2 + ci4,

m̂i6 = ci5,

m̂i7 = ci2c44 + ci4c74 + ci5c84 + ci3,

m̂i8 = ci2c45 + ci4c75 + ci5c85 + ci4

for all i ∈ {1, . . . , 8}. By Corollary 6.3.8, the submatrix

1 0
0 1

m̂74 + c52 m̂84 + c62

m̂75 m̂85

m̂76 + 1 m̂86

m̂77 + c54 m̂87 + c64

m̂78 + c55 m̂88 + c65


∈ Mat7,2(Bproj

O )

of the matrix q(I8,X
tr
1 ,X

tr
2 ) obtained by deleting the first H(0) = 1 rows and the

first H(2) = 6 columns represents the homogeneous Bproj
O -module homomorphism π̂∗q

with respect to the Bproj
O -module basis {x2

1x2
∗
, x3

1

∗
} ⊆ ω

Uproj
O

of (ω
Uproj
O

)−2 and with re-

spect to the Bproj
O -module basis {x2

∗, x1
∗, x0x2

2

∗
, x0x1x2

∗, x0x2
1

∗
, x2

0x
2
1x2
∗
, x2

0x
3
1

∗
} ⊆ ω

Uproj
O

of (ω
Uproj
O

)0.

6.4 Uniformity Conditions

In the final section, we use the results of the previous two sections in order to explicitly
describe the points of the projective O-border basis scheme Bproj

O that correspond to
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an (i, j)-uniform zero-dimensional subscheme. The main result of this chapter is The-
orem 6.4.4 and yields that for i, j ∈ N, the set of all points of Bproj

O with the property
that the corresponding zero-dimensional subscheme is (i, j)-uniform is a constructible set
with respect to the Zariski topology.

In this section, we additionally assume that the base field K is algebraically closed.
This assumption is crucial since we want to apply Corollary 5.2.9 and thus need to
ensure that every zero-dimensional subscheme of PK(W ) that corresponds to a point
of the projective O-border basis scheme Bproj

O has a K-rational support. Since K is
assumed to be algebraically closed, this condition trivially holds. As before, we denote
the polynomial rings Q = P [c11, . . . , cµν ] and Q = P [c11, . . . , cµν ]. Then the polynomial
rings Q =

⊕
γ∈ZQγ and Q =

⊕
γ∈ZQγ are non-negatively Z-graded by the matrices

V = (W | 0) ∈ Mat1,n+µν(K) and V = (W | 0) ∈ Mat1,n+1+µν(K), respectively. Let BO
denote the O-border basis scheme and let BO → UO the universal O-border basis family.
As in Definition 6.1.5, we let Bproj

O ⊆ BO denote the projective O-border basis scheme,
i.e. the subscheme of the O-border basis scheme defined by the ideal

Iproj
O = 〈cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν},degW (ti) > degW (bj)〉 ⊆ BO,

we let G = {g1, . . . , gν} ⊆ Q be the generic projective O-border prebasis, and we
let Bproj

O → Uproj
O be the universal projective O-border basis family.

First we prove that every point of the projective O-border scheme Bproj
O induces a

zero-dimensional subscheme of PK(W ) with the property that none of its points lies on
the hyperplane at infinity H inf .

Proposition 6.4.1. Every point a ∈ Bproj
O induces a unique zero-dimensional sub-

scheme Xa ⊆ PK(W ) with K-rational support and with the property that Xa ∩H inf = ∅.

Proof. Let a ∈ Bproj
O . According to Proposition 6.1.4, there is a unique homogeneous

ideal Ia ⊆ P that possesses a projective O-border basis corresponding to a. Since O 6= ∅,
we have Ia ⊂ P . Let Xa ⊆ PK(W ) be the subscheme that is scheme-theoretically de-
fined by the ideal Ia. According to Corollary 4.1.16, P/Ia is a one-dimensional ring and
thus Xa ⊆ PK(W ) is a zero-dimensional subscheme. Moreover, the Propositions 4.1.7
and 5.1.8 yield that Ia = Ia :P 〈x0〉∞, i.e. Ia is saturated by Lemma 5.1.13, and that
Xa∩H inf = ∅. Since the base field K is algebraically closed, Xa trivially has a K-rational
support by Definition 5.1.5. In particular, since there is a one-to-one correspondence be-
tween the subschemes of PK(W ) and the saturated homogeneous ideals of P by Proposi-
tion 5.1.2 and since border bases are unique by Proposition 4.1.7, the uniqueness of the
induced zero-dimensional subscheme Xa ⊆ PK(W ) follows.

In the Propositions 6.1.4 and 6.4.1, we have seen that every zero-dimensional subscheme
of PK(W ) with the property that it has a K-rational support and that none of its points
lies on the hyperplane at infinity H inf induces a unique point of Bproj

O and vice versa.
The following definition is based on this one-to-one correspondence.
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6.4 Uniformity Conditions

Definition 6.4.2. a) For every homogeneous ideal I ⊆ P that possesses a projec-
tive O-border basis, the unique point aI ∈ Bproj

O corresponding to I as in Propo-
sition 6.1.4 is called the point on the projective O-border basis scheme
induced by I.

b) For every point a ∈ Bproj
O on the projective O-border basis scheme, the unique zero-

dimensional subscheme Xa ⊆ PK(W ) corresponding to a as in Proposition 6.4.1 is
called the zero-dimensional scheme induced by a.

The remaining part of this section is used to characterize and study the points of the
projective O-border basis scheme Bproj

O that correspond to an (i, j)-uniform subscheme
of PK(W ). Before we do that, we need the definition of constructible sets as, for instance,
in [CLO05, Section I.1.1].

Definition 6.4.3. Let (X, τ) be a Noetherian topologial space. A subset E ⊆ X is
called constructible if there is an m ∈ N and closed subsets U1, V1, . . . , Um, Vm ⊆ X
with respect to τ such that E =

⋃m
i=1(Ui \ Vi).

At last, we are now able to state and prove the main result of this chapter, namely that
the set of all points of Bproj

O with the property that the corresponding zero-dimensional
subscheme of PK(W ) is (i, j)-uniform is constructible with respect to the Zariski topology.

Theorem 6.4.4. (The (i, j)-Uniform Subschemes Form a Constructible Set)
Let i ∈ {1, . . . , µ − H(j)}, let j ∈ {1, . . . ,degW (tµ) − 1}, let {y1, . . . , yH(j)} be a set
of further indeterminates, and let T = K[c11, . . . , cµν , y1, . . . , yH(j)]. Moreover, we let
X1, . . . ,Xn ∈ Matµ(K[c11, . . . , cµν ]) denote the generic multiplication matrices with re-
spect to O and for every k ∈ {1, . . . ,H(j)}, we let Tk ∈ Matµ−1,µ−H(j)(K[c11, . . . , cµν ])
be the submatrix of tk(Iµ,X tr

1 , . . . ,X tr
n ) ∈ Matµ(K[c11, . . . , cµν ]) obtained by deleting the

first row and the first H(j) columns. Moreover, let J ⊆ T be the ideal generated by
the set of all i-minors of the matrix y1T1 + · · ·+ yH(j)TH(j) ∈ Matµ−1,µ−H(j)(T ) and let
πµν : Spec(K[c11, . . . , cµν , y1, . . . , yH(j)] = Aµν+H(j)

K → AµνK = Spec(K[c11, . . . , cµν ]) be
the projection to the first µν components. Then for every point a ∈ Bproj

O , the following
conditions are equivalent.

i) We have a ∈ πµν(Z(J) \ Z(〈y1, . . . , yH(j)〉)).

ii) The zero-dimensional subscheme Xa ⊆ PK(W ) induced by a, as defined in Defini-
tion 6.1.5, is not (i, j)-uniform.

In particular, the set of all points a ∈ Bproj
O with the property that the zero-dimensional

subscheme Xa ⊆ PK(W ) induced by a is (i, j)-uniform is a constructible set with respect
to the Zariski topology.

Proof. Let a = (a11, . . . , aµν) ∈ Bproj
O , let Xa ⊆ PK(W ) be the zero-dimensional scheme

induced by a as in Definition 6.1.5, and let Ja ⊆ K[y1, . . . , yH(j)] be the image of J under
the substitution K-algebra epimorphism T � K[y1, . . . , yH(j)] defined by cij 7→ aij for all
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6 The (Projective) Border Basis Scheme

i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}. As Z(〈y1, . . . , yH(j)〉) = AµνK ×{0} ⊆ Aµν+H(j)
K , we have

a ∈ πµν(Z(J)\Z(〈y1, . . . , yH(j)〉)) if and only if there is a (c1, . . . , cH(j)) ∈ AH(j)
K \{0} and

(a11, . . . , aµν , c1, . . . , cH(j)) ∈ Z(J), where AH(j)
K = Spec(K[y1, . . . , yH(j)]). Moreover,

(a11, . . . , aµν , c1, . . . , cH(j)) ∈ Z(J) if and only if (c1, . . . , cH(j)) ∈ Z(Ja). Altogether,
a ∈ πµν(Z(J) \ Z(〈y1, . . . , yH(j)〉)) if and only if there is a (c1, . . . , cH(j)) ∈ Z(Ja) \ {0}.
By Proposition 6.4.1, the zero-dimensional scheme Xa induced by a has a K-rational
support and satisfies Xa ∩H inf = ∅. Hence Corollary 5.2.9 shows that the existence of
an element (c1, . . . , cH(j)) ∈ Z(Ja) \ {0} is equivalent for the subscheme Xa ⊆ PK(W ) to
be not (i, j)-uniform.
Thus it remains to prove that the set of all points a ∈ Bproj

O with the property that the
zero-dimensional subscheme Xa ⊆ PK(W ) induced by a is (i, j)-uniform is a constructible
set with respect to the Zariski topology. The zero sets Z(J) and Z(〈y1, . . . , yH(j)〉) are
closed with respect to the Zariski topology. Thus the set Z(J) \ Z(〈y1, . . . , yH(j)〉) is
a constructible set by Definition 6.4.3. The projection πµν is obviously a polynomial
map. Thus the image πµν(Z(J) \ Z(〈y1, . . . , yH(j)〉)) is also a constructible set with
respect to the Zariski topology according to [Kem07, Algo. 1.6]. Moreover, the points
of the subscheme Bproj

O ⊆ Aµν are given by Z(I(BO) + Ĩproj
O ) ⊆ K[c11, . . . , cµν ], where

we let Ĩproj
O = 〈cij | degW (ti) > degW (bj), i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}〉, and also

form a constructible set by Definition 6.4.3 with respect to the Zariski topology. Since
(U1 \ V1) ∩ (U2 \ V2) = (U1 ∩ U2) \ (V1 ∪ V2) for any arbitrary sets U1, V1, U2, and V2,
the set Z(I(BO) + Ĩproj

O )∩ πµν(Z(J) \Z(〈y1, . . . , yH(j)〉)) is also a constructible set with
respect to the Zariski topology by Definition 6.4.3 and the claim follows.

Example 6.4.5. Consider the situation of Examples 6.1.2 and 6.1.6 over C, again.
Recall that C[x0, x1, x2] was standard graded, i.e. graded by W = (1, 1, 1) ∈ Mat1,3(Z),
that the order ideal in T2 was O = {t1, . . . , t6} = {1, x2, x1, x1x2, x

2
1, x

3
1}, with the border

∂O = {b1, . . . , b5} = {x2
2, x1x

2
2, x

2
1x2, x

3
1x2, x

4
1}. Let {y1, . . . , y5} be a set of further

indeterminates, let T = C[c11, . . . , c65, y1, . . . , y5], and let X1,X2 ∈ Mat6(C[c11, . . . , c65])
denote the generic multiplication matrices with respect to O. As in Example 6.1.2,

X1 =



0 0 0 c13 0 c15

0 0 0 c23 0 c25

1 0 0 c33 0 c35

0 1 0 c43 0 c45

0 0 1 c53 0 c55

0 0 0 c63 1 c65

 , X2 =



0 c11 0 c12 c13 c14

1 c21 0 c22 c23 c24

0 c31 0 c32 c33 c34

0 c41 1 c42 c43 c44

0 c51 0 c52 c53 c54

0 c61 0 c62 c63 c64

 .

Let f1, . . . , f24 ∈ C[c11, . . . , c65] be the polynomials of Example 6.1.2 with the property
that I(BO) = 〈f1, . . . , f24〉 and let a = (a11, . . . , a65) be with a51 = a62 = −1, a63 = 1,
and aij = 0 for all i ∈ {1, . . . , 6} and j ∈ {1, . . . , 5} such that (i, j) /∈ {(5, 1), (6, 2), (6, 3)}.
Then a ∈ Z({f1, . . . , f24}) = Z(I(BO)). For all i ∈ {1, . . . , 6} and j ∈ {1, . . . , 5}, we
have degW (ti) > degW (bj) if and only if (i, j) = (6, 5). Thus we get a ∈ Z(I(BO)+〈c61〉),
i.e. a ∈ Bproj

O by Proposition 6.1.4.
Let H : Z → Z, γ 7→ #{k ∈ {1, . . . , 6} | degW (tk) ≤ γ} and for all k ∈ {1, . . . , 5},
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6.4 Uniformity Conditions

let Tk ∈ Mat5,1(C[c11, . . . , cµν ]) be the submatrix of tk(I6,X tr
1 ,X tr

2 ) obtained by deleting
the first row and the first H(2) = 5 columns. Then we have

T1 =


0
0
0
0
1

 , T2 =


0
0
c63

1
c65

 , T3 =


c61

0
c62

c63

c64

 ,

and

T4 =


c62

c63

c23c61 + c43c62 + c53c63 + c63c64

c64

c25c61 + c45c62 + c55c63 + c64c65

 , T5 =


c63

1
c43c63 + c63c65 + c53

c65

c45c63 + c2
65 + c55

 .

In particular, the ideal J ⊆ Q[c11, . . . , c65, y1, . . . , y5] generated by the 1-minors of the
matrix y1T1 + · · ·+ y5T5 ∈ Q[c11, . . . , c65, y1, . . . , y5] is of the form J = 〈h1, . . . , h5〉 with

h1 = y3c61 + y4c62 + y5c63,

h2 = y4c63 + y5,

h3 = y2c63 + y3c62 + y4(c23c61 + c43c62 + c53c63 + c63c64) + y5(c43c63 + c63c65 + c53),

h4 = y2 + y3c63 + y4c64 + y5c65,

h5 = y1 + y2c65 + y3c64 + y4(c25c61 + c45c62 + c55c63 + c64c65) + y5(c45c63 + c2
65 + c55).

Let ϕ denote the substitution C-algebra epimorphism defined by cij 7→ aij for all in-
dices i ∈ {1, . . . , 6} and j ∈ {1, . . . , 5} and let π30 : A35

C → A30
C where we have

A35
C = Spec(C[c11, . . . , c65, y1, . . . , y5]) and A30

C = Spec(C[c11, . . . , c65]) be the projection
to the first 30 components. Then ϕ(h1) = −y4 + y5, ϕ(h2) = y4 + y5, ϕ(h3) = y2 − y3,
ϕ(h4) = y2 + y3, ϕ(h5) = y1, i.e. Z(ϕ(J)) = {0} ⊆ A5

C = Spec(C[y1, . . . , y5]), and thus
a /∈ π30(Z(J) \ Z(〈y1, . . . , y5〉)). By Theorem 6.4.4, the zero-dimensional subscheme
Xa ⊆ P2

C induced by a is (1, 2)-uniform, i.e. Xa is a Cayley-Bacharach scheme by Defini-
tion 5.2.1.

Corollary 6.4.6. Let i ∈ {1, . . . , µ−H(j)} and let j ∈ {1, . . . ,degW (tµ)− 1}. We let
{y1, . . . , yH(j)} be a set of further indeterminates and T = K[c11, . . . , cµν , y1, . . . , yH(j)].
Let Ĩproj

O = 〈cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν},degW (ti) > degW (bj)〉 ⊆ K[c11, . . . , cµν ]
and let X1, . . . ,Xn ∈ Matµ(K[c11, . . . , cµν ]) denote the generic multiplication matrices
with respect to O. For all k ∈ {1, . . . ,H(j)}, let Tk ∈ Matµ−1,µ−H(j)(K[c11, . . . , cµν ])
be the submatrix of tk(Iµ,X tr

1 , . . . ,X tr
n ) ∈ Matµ(K[c11, . . . , cµν ]) obtained by deleting the

first row and the first H(j) columns. Moreover, let J ⊆ T be the ideal generated by the
set of all i-minors of the matrix y1T1 + · · ·+ yH(j)TH(j) ∈ Matµ−1,µ−H(j)(T ).

a) The zero set Z(I(BO) + Ĩproj
O + ((J :T 〈y1, . . . , yH(j)〉) ∩ K[c11, . . . , cµν ])) ⊆ AµνK

where AµνK = Spec(K[c11, . . . , cµν ]) contains all points a ∈ Bproj
O with the property

that the zero-dimensional scheme Xa ⊆ PK(W ) induced by a is not (i, j)-uniform.
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b) If a ∈ Bproj
O and a /∈ Z

(
(J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]

)
, then the zero-

dimensional scheme Xa ⊆ PK(W ) induced by a is (i, j)-uniform.

c) If we have
√

(J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ] 6⊆
√
I(BO) + Ĩproj

O , there is an

element a ∈ Bproj
O with the property that the zero-dimensional scheme Xa ⊆ PK(W )

induced by a is (i, j)-uniform.

Proof. First we prove a). According to Proposition 6.1.4, there is a canonical K-algebra
isomorphism Bproj

O
∼= K[c11, . . . , cµν ]/I(BO)+ Ĩproj

O . Thus Z(I(BO)+ Ĩproj
O ) ⊆ AµνK where

AµνK = Spec(K[c11, . . . , cµν ]) contains precisely the points of the projective O-border basis
scheme Bproj

O . Consider the projection to the first µν components πµν : Aµν+H(j)
K → AµνK

where Aµν+H(j)
K = Spec(K[c11, . . . , cµν , y1, . . . , yH(j)]). According to Theorem 6.4.4,

Z(I(BO) + Ĩproj
O ) ∩ πµν

(
Z(J) \ Z(〈y1, . . . , yH(j)〉

)
is exactly the set of all points a ∈ Bproj

O on the projective O-border basis scheme such that
the zero-dimensional scheme Xa ⊆ PK(W ) induced by a is not (i, j)-uniform. By [CLO07,
Thm. 4.§4.7], we have

Z(J) \ Z(〈y1, . . . , yH(j)〉) ⊆ Z(J :T 〈y1, . . . , yH(j)〉)

and [CLO07, Thm. 4.§4.2] yields

πµν
(
Z(J :T 〈y1, . . . , yH(j)〉)

)
⊆ Z

(
(J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]

)
.

Altogether, it follows

Z(I(BO) + Ĩproj
O ) ∩ πµν

(
Z(J) \ Z(〈y1, . . . , yH(j)〉)

)
⊆ Z

(
I(BO) + Ĩproj

O ) +
(
(J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]

))
from [CLO07, Thm. 4.§3.4].
Now we start to prove b). By [CLO07, Thm. 4.§3.4], we have

Z(I(BO) + Ĩproj
O ) ∩ Z((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ])

= Z(I(BO) + Ĩproj
O + ((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ])).

Therefore, claim a) yields that for every point a ∈ Bproj
O such that

a /∈ Z(((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ])),

the induced zero-dimensional scheme Xa ⊆ PK(W ) is (i, j)-uniform.
For the proof of c), suppose that√

((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]) 6⊆
√
I(BO) + Ĩproj

O .
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Then we have√
I(BO) + Ĩproj

O + ((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]) 6⊆
√
I(BO) + Ĩproj

O

and the Ideal-Variety Correspondence [CLO07, Thm. 4.§2.7] yields

Z
(
I(BO) + Ĩproj

O +
(
(J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]

))
6⊇ Z(I(BO) + Ĩproj

O ).

By [CLO07, Thm. 4.§3.4], we have

Z(I(BO) + Ĩproj
O + ((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]))

= Z(I(BO) + Ĩproj
O ) ∩ Z((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ])

and this implies that

Z(I(BO) + Ĩproj
O ) ∩ Z((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]) 6⊇ Z(I(BO) + Ĩproj

O ).

Since this is equivalent to

Z(I(BO) + Ĩproj
O ) \ Z((J :T 〈y1, . . . , yH(j)〉) ∩K[c11, . . . , cµν ]) 6= ∅,

claim c) follows from b).

Example 6.4.7. Consider the situation of Example 6.4.5, again. Recall that we had
the order ideal O = {t1, . . . , t6} = {1, x2, x1, x1x2, x

2
1, x

3
1}, had the maxdegW -border

∂O = {b1, . . . , b5} = {x2
2, x1x

2
2, x

2
1x2, x

3
1x2, x

4
1}. Moreover, a = (a11, . . . , a65) ∈ Bproj

O was
of the form a51 = a62 = −1, a63 = 1, and aij = 0 for all i ∈ {1, . . . , 6} and j ∈ {1, . . . , 5}
with (i, j) /∈ {(5, 1), (6, 2), (6, 3)} and we had J = 〈h1, . . . , h5〉 ⊆ C[c11, . . . , c65, y1, . . . , y5]
with the polynomials

h1 = y3c61 + y4c62 + y5c63,

h2 = y4c63 + y5,

h3 = y2c63 + y3c62 + y4(c23c61 + c43c62 + c53c63 + c63c64) + y5(c43c63 + c63c65 + c53),

h4 = y2 + y3c63 + y4c64 + y5c65,

h5 = y1 + y2c65 + y3c64 + y4(c25c61 + c45c62 + c55c63 + c64c65) + y5(c45c63 + c2
65 + c55).

The ideal (J :C[c11,...,c65,y1,...,y5] 〈y1, . . . , y5〉)∩C[c11, . . . , c65] ⊆ C[c11, . . . , c65] is a principal
ideal generated by the polynomial p = c43c61c

2
63 + c4

63− c23c
2
61− c43c61c62− 2c62c

2
63 + c2

62.
Since p(a) = 4 6= 0, Corollary 6.4.6 implies the existence of a point a ∈ Bproj

O such that
the zero-dimensional subscheme Xa ⊆ P2

C induced by a is a Cayley-Bacharach scheme.
Note that this result coincides with Example 6.4.5.

Remark 6.4.8. Every algebraically closed field, and thus also K, is perfect. Therefore,
we can compute radical ideals in polynomial rings over K, cf. [KL91] if char(K) = 0
and [Mat01, Kem02] if char(K) > 0. Moreover, we can compute sums of ideals, colon
ideals, respectively elimination ideals, with standard Gröbner basis techniques, cf. [KR00,
Rem. 3.2.1, Prop. 3.2.15, respectively Thm. 3.4.5]. Altogether, we see that condition c)
of Theorem 6.4.4 can be checked algorithmically.
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7 Conclusion and Outlook

In this thesis, we have generalized and applied border bases in various ways.
Before this thesis, the theory of border basis was restricted to zero-dimensional ideals

in polynomial rings. In Chapter 2, we extended the theory to finitely generated modules
over polynomial rings. Our contribution in the Sections 2.1 to 2.5 was to generalize all the
well-known definitions, concepts, characterizations, and algorithms that hold for border
bases of zero-dimensional ideals in a polynomial ring to border bases of submodules of free
modules of finite rank over a polynomial ring with finite codimension. In Section 2.6,
we established generalized border bases of submodules of arbitrary finitely generated
modules over a polynomial ring with finite codimension. By a process of lifting these
generalized border bases to the free setting, we were able to characterize and, under
certain circumstances, also compute generalized border bases in this general setting.
As a byproduct, we saw that this new border bases theory was applicable for subideal
border bases and immediately yielded many new characterizations and an algorithm
for their computation that uses linear algebra techniques. By now there has only been
one characterization available for subideal border bases and the only algorithm for the
computation of subideal border bases has needed much more effort than ours.
After the theoretical introduction of border bases for modules in this thesis, one could
look for applications different from subideal border bases. Another possibility of further
research could be to take a closer look at numerical aspects of these border bases. Just as
it was done, for instance, in [Lim14] for border bases and in [KP11] for subideal border
bases, (generalized) border bases might be a good tool to model real word applications in
a data-driven setting. A natural question to ask is whether we can apply and make use
of the newly introduced concepts and the more general bases in such numerical settings.
In Chapter 3, we proved Schreyer’s Theorem for border bases in free modules of finite

rank over polynomial rings. To this end, we generalized the results of [KK14] to the
module setting. As a byproduct, we found a totally new proof of the characterization of
border bases via liftings of border syzygies. This proof is quite remarkable since it does
not depend on the characterization of border bases via commuting matrices but it only
depends on the characterizations of border bases via the special generation property and
via rewrite rules.
Many of the nice properties of border bases do use or are related to the characterization
of border bases via commuting matrices. Obviously, this theorem cannot be generalized
to a non-commutative setting. The study of border bases in a non-commutative setting
started with [BTBQM00]: the authors of that paper introduced border bases in free
associative algebras over a field and used them to compute Gröbner bases by FGLM
techniques in a non-commutative setting. But the authors of that paper neither further
developed the basic concepts of border bases nor characterized border bases in a non-
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7 Conclusion and Outlook

commutative setting. By proving a non-commutative version of the characterizations via
the special generation property and via rewrite rules, our new proof of the characteriza-
tion of border bases via liftings of border syzygies might yield a possible way to develop
a general border basis theory in a non-commutative setting.
Whereas the first two chapters of this thesis dealt with border bases in a module setting,

the remaining part of this thesis was then dedicated to the effect of homogenization to
border bases in a polynomial ring and to applications of such homogenizations of border
bases. In Chapter 4, we introduced the notion of projective border bases of homogeneous
ideals in a polynomial ring and we showed that projective border bases are related to
specific border bases. Then we studied the multiplicative structure of a polynomial ring
modulo a projective border basis and of its canonical module in detail. In particular,
we described these multiplicative structures explicitly by means of formal multiplication
matrices. These explicit descriptions turned out to be very useful in Chapter 5 for the
study of zero-dimensional closed subschemes of weighted projective spaces. In Chap-
ter 6, we introduced the projective O-border basis scheme Bproj

O as a subscheme of the
O-border basis scheme BO. Then we showed that the points of Bproj

O are in one-to-one
correspondence to specific zero-dimensional closed subschemes of a weighted projective
space and studied the set of points on Bproj

O that correspond to (i, j)-uniform schemes.
Besides the introduction of projective border bases and the projective O-border basis
scheme Bproj

O , the main contribution in the Chapters 4 to 6 are the characterizations of
(i, j)-uniform zero-dimensional subschemes of weighted projective spaces if the defining
ideals of these subschemes possess a projective border basis. We can prove these char-
acterizations for arbitrary i, j ∈ N in weighted projective spaces over arbitrary fields
whereas by now the only ways to characterize such (i, j)-uniform subschemes were re-
stricted to special base fields, e.g. to algebraically closed fields, reduced subschemes, or
to the standard grading. If the base field is algebraically closed or if the given zero-
dimensional closed subscheme is reduced, our characterizations even yielded algorithms
that allow us to check whether the subscheme is (i, j)-uniform or not. Furthermore, we
proved that the set of all points on the projective O-border basis scheme Bproj

O that cor-
respond to (i, j)-uniform schemes is constructible with respect to the Zariski topology.
An obvious way to do further research in this area is to study the constructible set of all
points on the projective O-border basis scheme Bproj

O that correspond to (i, j)-uniform
schemes. One could ask, for instance, whether this constructible set has any special
algebraic or geometric properties. Another path could be to restrict oneself to sub-
schemes that satisfy certain (i, j)-uniformity conditions, e.g. Cayley-Bacharach schemes
or schemes in uniform position. Instead of regarding (i, j)-uniform schemes in weighted
projective spaces, one could also transform the notion of (i, j)-uniform schemes to the
affine setting. This could be done by carefully reformulating the definitions and results
of this thesis. For instance, the defintion of (i, j)-uniform subschemes uses Hilbert func-
tions of projective coordinate rings. By replacing these Hilbert functions by affine Hilbert
functions, cf. [KR05, Section 5.6], of the coordinate rings of subschemes of affine spaces,
one could define and study (i, j)-uniform schemes in the affine setting.

250



Notation

The following list gives a brief overview of most of the notation used in this thesis.

Sets and Maps

N set of natural numbers {0, 1, 2, . . .}

Z set of integers

Q set of rational numbers

R set of real numbers

C set of complex numbers

Fq finite field with q elements

K arbitrary field

K algebraic closure of a field K

char(K) characteristic of a field K

A ⊆ B set A is a (not necessarily proper) subset of set B

A ⊂ B set A is a proper subset of set B

A \B set difference of A and B

#A number of elements of a finite set A

A ↪→ B injective map A→ B

A� B surjective map A→ B

A
∼−→ B bijective map A→ B

ψ ◦ ϕ composition of two maps ϕ : A→ B and ψ : B → C

idA identity map on a set A

ϕ∗ dual of a linear map ϕ
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Notation

ker(ϕ) kernel of a homomorphism ϕ

im(ϕ) image of a map ϕ

ϕ|U restriction of ϕ : A→ B to U ⊆ A

Elements, Gradings, and Matrices

δij Kronecker delta, i.e. δij = 1 if i = j and δij = 0 else

p∗ dual element of p

p residue class of p

deg(p) degree of a polynomial p ∈ P \ {0}

degxi(p) xi-degree of a polynomial p ∈ P \ {0}

degW (p) degree of a polynomial p ∈ P \ {0} with respect to the grad-
ing given by a matrix W

DFW (p) degree form of a polynomial p ∈ P \ {0} with respect to the
grading given by a matrix W

phom homogenization of an element p

pdeh dehomogenization of an element p

p(X1, . . . ,Xn) evaluation of a polynomial p ∈ P at (X1, . . . ,Xn), i.e. apply-
ing the substitution xk 7→ Xk

Matk(K) set of all k × k-matrices over K

Matk,`(K) set of all k × `-matrices over K

Ik identity matrix of size k × k

Atr transposed matrix of a matrix A

(A | B) ∈ Matk,`+m(K), concatenation of a matrix A ∈ Matk,`(K)
and a matrix B ∈ Matk,m(K)

rk(A) rank of a matrix A

trace(A) = a11 + · · ·+ akk trace of a square matrix A = (aij)1≤i,j≤k
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Vector Spaces, Modules, and Ideals

dimK(V ) dimension of a K-vector space V

codimK(V,W ) codimension of a K-vector subspace V ⊆W

〈O〉K K-vector subspace generated by O

rkR(M) rank of a free R-module M

〈v1, . . . , vk〉 submodule generated by {v1, . . . , vk}

M1 ⊕M2 direct sum of two groups or modules

IM submodule of module M generated by products of the form
pm where p ∈ I, m ∈M ,

N :P M ⊆ P , colon ideal of a module N by a module M

N :M I∞ ⊆M , saturation of a module N by an ideal I in M
√
I radical of an ideal I

SyzP (g1, . . . , gν) first syzygy module of (g1, . . . , gν)

Mp localization of a module M at the prime ideal p

M∗ dual module of a module M

ωR canonical module of R

Ihom homogenization of an ideal I

Ideh dehomogenization of an ideal I

M(γ′) =
⊕

γ∈Z(M(γ′))γ =
⊕

γ∈ZMγ+γ′ , Z-graded module ob-
tained from the Z-graded moduleM =

⊕
γ∈ZMγ by shifting

degrees by γ′ ∈ Z

Sγ = Mγ ∩ S set of all homogeneous elements of degree γ of a subset S of
a graded module M =

⊕
γ∈ZMγ

S<γ =
⊕γ−1

γ′=−∞ Sγ′ , set of all homogeneous elements of degree
less than γ ∈ Z of a subset S of a Z-graded module M

S≥γ =
⊕∞

γ′=γ Sγ′ , set of all homogeneous elements of degree
greater than or equal to γ ∈ Z of a subset S of a Z-graded
module M
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Notation

HFM γ 7→ dimK(Mγ), Hilbert function of a Z-graded module M

∆ HFM γ 7→ HFM (γ)− HFM (γ − 1), Castelnuovo function of HFM
of a Z-graded module M

Polynomials, Vectors, and Term Orderings

σ term ordering

DegRevLex degree-reverse-lexicographic term ordering

Ord(V ) term ordering associated to a matrix V

σPos term ordering “σ first, then position”

P = K[x1, . . . , xn] polynomial ring over K in the indeterminates x1, . . . , xn,
n ∈ N \ {0}

t = xα1
1 · · ·xαnn term in P , α1, . . . , αn ∈ N

log(t) logarithm of a term t = xα1
1 · · ·xαnn , log(t) = (α1, . . . , αn)

Tn monoid of all terms in P

ct monomial in P , c ∈ K, t ∈ Tn

LTσ(p) ∈ Tn, leading term of a polynomial p ∈ P \ {0} with respect
to a term ordering σ

LCσ(p) ∈ K, leading coefficient of a polynomial p ∈ P \ {0} with
respect to a term ordering σ

LMσ(p) = LCσ(T ) · LTσ(t), leading monomial of p ∈ P \ {0} with
respect to a term ordering σ

LTσ(I) = 〈LTσ(p) | p ∈ P \ {0}〉 ⊆ P , leading term ideal of an ideal
I ⊆ P with respect to a term ordering σ

LTσ{I} = {LTσ(p) | p ∈ P \ {0}} ⊆ Tn, monoideal of leading terms
of an ideal I ⊆ P with respect to a term ordering σ

NFσ,I(p) ∈ 〈Oσ(I)〉K , normal formal of a polynomial p ∈ P with
respect to a term ordering σ and an ideal I ⊆ P

P r free P -module with canonical basis {e1, . . . , er}, r ∈ N \ {0}
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tek term in P r, t ∈ Tn, k ∈ {1, . . . , r}

Tn〈e1, . . . , er〉 monoid of all terms in P r

ctek monomial in P r, c ∈ K, t ∈ Tn, k ∈ {1, . . . , r}

LTσ(v) ∈ Tn〈e1, . . . , er〉, leading term of a vector v ∈ P r \ {0} with
respect to a term ordering σ

LCσ(v) ∈ K, leading coefficient of a vector v ∈ P r \{0} with respect
to a term ordering σ

LMσ(v) = LCσ(v) · LTσ(v), leading monomial of v ∈ P r \ {0} with
respect to a term ordering σ

LTσ(U) = 〈LTσ(v) | v ∈ P r \ {0}〉 ⊆ P r, leading term module of a
P -submodule U ⊆ P r with respect to a term ordering σ

LTσ{U} = {LTσ(v) | v ∈ P r \ {0}} ⊆ Tn〈e1, . . . , er〉, monomodule of
leading terms of a P -submodule U ⊆ P r with respect to a
term ordering σ

Oσ(U) = Tn〈e1, . . . , er〉 \ LTσ{U}, order ideal of a P -submodule
U ⊆ P r with respect to a term ordering σ

NFσ,U (v) ∈ 〈Oσ(U)〉K , normal formal of a vector v ∈ P r with respect
to a term ordering σ and a P -submodule U ⊆ P r

(Projective) Border Bases

O = {t1, . . . , tµ} order ideal in Tn

∂O = {b1, . . . , bν} border of an order ideal O in Tn

O = {t1eα1 , . . . , tµeαµ} order ideal in Tn〈e1, . . . , er〉

∂O = {b1eβ1 , . . . , bνeβν} border of an order ideal O in Tn〈e1, . . . , er〉

Oϕ = {t1mα1 , . . . , tµmαµ} (generalized) order ideal in ϕ(Tn〈e1, . . . , er〉) with respect to
ϕ : P r �M = 〈m1, . . . ,mr〉, ei 7→ mi

∂Oϕ = {b1mβ1 , . . . , bνmβν} border of (generalized) order ideal in ϕ(Tn〈e1, . . . , er〉) with
respect to ϕ : P r �M = 〈m1, . . . ,mr〉, ei 7→ mi

∂kO kth border of an order ideal O

∂kO kth border closure of an order ideal O

G = {g1, . . . , gν} ⊆ P O-border prebasis, gj = bj −
∑µ

i=1 aijti where aij ∈ K
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Notation

G = {g1, . . . , gν} ⊆ P r O-border prebasis, gj = bjeβj −
∑µ

i=1 aijtieαi where aij ∈ K

Gϕ = {gϕ1 , . . . , g
ϕ
ν } ⊆M (generalized)O-border prebasis, gϕj = bjmβj−

∑µ
i=1 aijtimαi

where aij ∈ K with respect to ϕ : P r �M = 〈m1, . . . ,mr〉,
ei 7→ mi

G = {g1, . . . , gν} ⊆ P [x0] projective O-border prebasis, gj = bj −
∑µ

i=1 aijti where we
have aij ∈ K[x0]

indO(v) index of v with respect to an order ideal O

NRG(v) ∈ 〈O〉K normal remainder of v with respect to an O-border preba-
sis G

NFO,U (v) ∈ 〈O〉K normal formal of v with respect to an order ideal O and a
P -submodule U

BFO(v) ∈ Tn〈e1, . . . , er〉 border form of a vector v ∈ P r \{0} with respect to an order
ideal O in Tn〈e1, . . . , er〉

BFO(U) ⊆ P r border form module of a P -submodule U ⊆ P r with respect
to an order ideal O in Tn〈e1, . . . , er〉

gj−→ reduction step using gj
G−→ rewrite relation associated to G
G←→ equivalence relation generated by G−→

σij neighbor syzygy of the neighbors bieβi and bjeβj with respect
to O

λij neighbor lifting of the neighbors bieβi and bjeβj with respect
to O

Λ set of all neighbor liftings with respect to O

Xk ∈ Matµ(K) kth formal multiplication matrix with respect to anO-border
prebasis

X proj
k ∈ Matµ(K[x0]) kth formal projective multiplication matrix with respect to

a projective O-border prebasis

∆ij = degW (bj)− degW (ti)

dγ,i = γ − degW (ti), γ ∈ Z

H : Z→ Z γ 7→ #{k ∈ {1, . . . , µ} | degW (tk) ≤ γ}

∆H : Z→ Z γ 7→ H(γ)−H(γ − 1), first difference function of H

S(gi, gj) S-vector of gi and gj
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(Projective) Border Basis Schemes

BO ⊆ AµνK O-border basis scheme

BO cordinate ring of BO

BO → UO universal O-border basis family

{c11, . . . , cµν} = {cij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}}

Xk ∈ Matµ(K[cij ]) kth generic multiplication matrix with respect to an order
ideal O in Tn

Bproj
O ⊆ BO projective O-border basis scheme

Bproj
O cordinate ring of Bproj

O

Bproj
O → Uproj

O universal projective O-border basis family

X proj
k ∈ Matµ(K[x0, cij ]) kth generic projective multiplication matrix with respect to

an order ideal O in Tn

Algebraic Geometry

AnK n-dimensional affine space over K

PnK n-dimensional projective space over K

PK(W ) weighted projective space over K with respect to the ma-
trix W

a ∈ X closed point of the scheme X

Y ⊆ X closed subscheme of the scheme X

Spec(R) spectrum of a ring R

Proj(R) homogeneous spectrum of a Z-graded ring R

I+(X) ⊆ P [x0] (saturated) defining ideal of a subscheme X ⊆ PK(W )

I+
X (Y) ⊆ P/I+(X) (saturated) defining ideal of a subscheme Y ⊆ X

HFX γ 7→ dimK((P/I+(X))γ), Hilbert function of a closed sub-
scheme X ⊆ PK(W )
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Notation

∆ HFM γ 7→ HFM (γ)−HFM (γ−1), Castelnuovo function of a closed
subscheme X ⊆ PK(W )

deg(X) = max{HFX(γ) | γ ∈ Z} for a non-empty closed zero-
dimensional subscheme X ⊆ PK(W )

σX = max{γ ∈ Z | HFX(γ) < deg(X)} for a non-empty closed
zero-dimensional subscheme X ⊆ PK(W )

αX(Y) = min{γ ∈ Z | (I+
X (Y))γ 6= 0}, initial degree of a non-empty

subscheme Y of a zero-dimensional subscheme X ⊆ PK(W )

ZL(f) ⊆ AnL set of zeros of a polynomial f ∈ P in an extension field
K ⊆ L

ZL(I) ⊆ AnL set of zeros of an ideal I ⊆ P in an extension field K ⊆ L

Z(f) ⊆ An
K

set of zeros of a polynomial f ∈ P in the algebraic closure K

Z(I) ⊆ An
K

set of zeros of an ideal I ⊆ P in the algebraic closure K

I(S) ⊆ P vanishing ideal of a subset of affine points S in the affine
space AnK

Z+
L (f) ⊆ PL(W ) set consisting of all projective zeros of a homogeneous poly-

nomial f ∈ P [x0] in an extension field K ⊆ L

Z+
L (I) ⊆ PL(W ) set of projective zeros of a homogeneous ideal I ⊆ P [x0] in

an extension field K ⊆ L

Z+(f) ⊆ PK(W ) set consisting of all projective zeros of a homogeneous poly-
nomial f ∈ P [x0] in the algebraic closure K

Z+(I) ⊆ PK(W ) set of projective zeros of a homogeneous ideal I ⊆ P [x0] in
the algebraic closure K

H inf = Z+(x0) hyperplane at infinity

I+(S) ⊆ P [x0] homogeneous vanishing ideal of a subset of projective points S
in the projective space PK(W )

Miscellaneous

i := i+ 1 assignment in an algorithm
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