
Fakultät für Mathematik und Informatik

Dissertation

Circle Planarity of Level Graphs

Christian Bachmaier

Supervisor
Prof. Dr. Franz J. Brandenburg

14 May 2004

Dissertation for the aquisition of the degree of a doctor in natural sciences at the
Faculty of Mathematics and Computer Science of the University of Passau.

1st referee: Prof. Dr. Franz J. Brandenburg, University of Passau
2nd referee: Prof. Dr. Ulrik Brandes, University of Konstanz

Abstract

In this thesis we generalise the notion of level planar graphs in two directions: track
planarity and radial planarity. Our main results are linear time algorithms both for
the planarity test and for the computation of an embedding, and thus a drawing.
Our algorithms use and generalise PQ-trees, which are a data structure for efficient
planarity tests.

A graph is a level graph, if it has a partition of the vertices in levels such that
the vertices of each level can be placed on a horizontal line and the edges are strictly
downwards. It is level planar if there are no edge crossings. Level planarity can be
tested efficiently in linear time by sophisticated and complex algorithms.

Level graphs exclude horizontal edges between vertices on the same level. Such
edges are allowed by our track graphs. In radial level graphs the vertices of each level
are placed on concentric circles and the edges are outwards. We characterise essential
differences between level and radial level planar graphs, which are expressed by level
non-planar biconnected components called rings. The presence of rings introduces
the particular problem of the nesting of non-connected components. Further, we
study forbidden subgraphs which destroy radial level planarity. The track and circle
extensions are combined to form circle graphs, which allow edges along the concentric
circles.

Level planar graphs arise as a specialisation of directed acyclic graphs that are
usually drawn by the Sugiyama algorithm, which avoids edge crossings. Applications
of level or track planar drawings include for example biochemical pathways, entity
relationship and UML class diagrams, or flow charts which occur for example in
project management. Typical applications of radial drawings are social networks.

Preface

It is a pleasure to express my gratitude to those to whom I am indebted, directly
or indirectly in writing this thesis. First of all, thanks are due to my supervisor,
Professor Dr. Franz J. Brandenburg, who introduced me to graph drawing. Unlike
me, he was sure even before I finished my diploma that I was capable of a work like
this. Therefore he was the one who encouraged me to have a “look” at hierarchical
graphs. I am very grateful to Franz Brandenburg for supporting my work in every
aspect I could imagine. He gave me the opportunity and freedom to take part in the
research in computer science, and to take part in conferences. It were the Graph
Drawing Conferences that have been very important for me. Without his care and
friendship, I would not have been able to complete this work.

Further I am very grateful to Professor Dr. Ulrik Brandes who always took the
time to discuss various problems with me. He always had very helpful suggestions.
My thanks also go to Dr. Sebastian Leipert for explaining his algorithm in detail to
me. I wish to thank Andi Pick, Marcus Raitner, and Mike Forster for never getting
tired of answering my questions about C++ and STL, and for providing technical
support for the implementation of the prototype. I am especially grateful to Mike
for fruitful cooperation on various problems related to level planarity and for writing
various papers together with me. Last but not least I wish to thank Ruth Eades for
carefully proofreading this thesis.

Christian Bachmaier

i

ii Preface

Contents

Preface i

Contents iii

1 Introduction 1
1.1 Preliminaries . 3

1.1.1 Graphs . 3
1.1.2 Connectivity . 4
1.1.3 Trees . 4
1.1.4 DAGs . 5
1.1.5 Level Graphs . 5

1.2 Sugiyama Algorithm . 5
1.3 Overview . 6

2 Planarity 7
2.1 Definition of Planarity . 7
2.2 PQ-Trees . 8

2.2.1 Reduce . 10
2.2.1.1 Templates for the Leaves 12
2.2.1.2 P-Templates . 12
2.2.1.3 Q-Templates . 13

2.2.2 Replace Pertinent . 14
2.2.3 Improved Symmetric Lists . 15

2.3 Planarity Test . 15
2.4 Planar Embedding . 17

2.4.1 Definition of a Planar Embedding 17
2.4.2 Computing a Planar Embedding 18

2.4.2.1 Computation of an Upward st-Embedding Eu 18
2.4.2.2 Computation of an st-Embedding Est 19

3 Level Planarity 21
3.1 Definition of Level Planarity . 22
3.2 Foundations . 22
3.3 Level Planarity Testing . 23

iii

iv Contents

3.4 Level Planar Embedding . 29

3.5 Straight-Line Drawings . 31

4 Track Planarity 33

4.1 Definition of Track Planarity . 33

4.2 Reduction to Level Planarity . 34

4.3 Algorithm . 36

5 Radial Level Planarity 39

5.1 Definition of Radial Level Planarity 39

5.2 Related Work . 42

5.3 Radial Level Planarity Testing . 42

5.3.1 Fundamental Properties . 42

5.3.2 Properties of Rings . 44

5.3.3 R-Nodes . 47

5.3.4 New Templates . 51

5.3.4.1 P-Templates . 51

5.3.4.2 Q-Templates . 52

5.3.4.3 R-Templates . 53

5.3.5 Merge Operations on PQR-Trees 56

5.3.6 Nesting of Processed Non-Rings 58

5.3.7 Nesting of Processed Rings . 58

5.3.8 Completion . 61

5.3.9 Correctness . 61

5.4 Radial Level Planar Embedding . 65

5.4.1 Meet Levels between Ignored Siblings 65

5.4.2 Contacts as Children of R-nodes 65

5.4.3 Embedding the Edges . 65

5.4.4 Augmenting G to an st-Graph Gst 68

5.4.5 Computation of a Radial Upward st-Embedding Eu 69

5.4.6 Computation of a Radial Level Embedding El 72

5.5 Assigning Coordinates . 76

5.5.1 Radial Drawing . 77

5.5.2 Drawing Algorithm . 79

5.5.3 Drawing Edges without Bends 81

5.5.4 Force Directed Approach . 81

6 Circle Planarity 83

6.1 Definition of Circle Planarity . 83

6.2 Testing and Embedding . 83

6.3 Generating a Drawing . 86

Contents v

7 Forbidden Subgraphs 87
7.1 Level Non-Planar Patterns for Hierarchies 87
7.2 Minimum Level Non-Planar Patterns 88

7.2.1 Level Non-Planar Trees . 89
7.2.2 Level Non-Planar Cycles . 90
7.2.3 Level Planar Cycles with Incident Paths 90

7.3 Minimum Radial Level Non-Planar Patterns 92
7.3.1 Radial Level Non-Planar Trees 92
7.3.2 Radial Level Planar Cycles . 94
7.3.3 Radial Level Non-Planar Cycles 94

7.3.3.1 Disjoint Components 94
7.3.3.2 Connected Components 97

8 Conclusion 101
8.1 Summary . 101
8.2 Future Work . 102

A Improved Symmetric Lists 105
A.1 Motivation . 105

A.1.1 Concept . 105
A.1.2 Applications . 107

A.2 Implementation . 108
A.3 Extensions . 110

A.3.1 Losing Information . 110
A.3.2 Blind Operations . 112

B Implementation 113

List of Figures 115

List of Definitions 119

Bibliography 133

Partial Publications 135

Index 137

vi Contents

1
Introduction

In the mid 1980s graphic workstations became standard for information and software
engineers. Since then, visualisation of relational information has became more and
more indispensable. Such information is commonly modelled by graphs with vertices
for the entities and edges for the relationships. A graph has the particular advantage
of a natural visualisation. The human understanding of such a relational model
depends heavily on whether the drawings can convey the information easily to the
user. As the Chinese proverb says, “a good picture is worth a thousand words”,
but a poor one can be confusing and misleading. Therefore the graph drawing
community is concerned with finding good drawings of graphs. The central problem
in automated graph drawing is designing an algorithm which assigns a location to
each vertex and computes a routing for each edge while optimising some aesthetic
criteria. This is called the graph drawing problem.

There are many criteria for measuring the quality of drawings, e. g., few edge
bends in straight line drawings, orthogonal line segments for the edges, small display
area, representation of a common flow direction, good spatial and angular resolution,
or recognisable symmetries. For an extensive list see [38]. Although their respective
importance depends in most cases on the application and certain criteria cannot
be optimised simultaneously, there are several which most drawings should have in
common. One of the most important criteria, as indicated by the empirical studies
of [125], is the edge crossing aesthetic criterion. The intersections of the curves used
for drawing edges should be minimised. Planar graphs allow a drawing in the plane
without any edge crossing.

In practice many network structures are hierarchically organised and contain
some global direction like a time line, flow, or inheritance, e. g., in software engi-
neering, project management, or database design. Such a network corresponds to a
directed acyclic graph, where the vertices are restricted to placement on horizontal

1

2 Chapter 1. Introduction

lines (levels) according to their position in the hierarchy, and where the edge direc-
tions indicate the direction of information from lower to higher level. For drawing
such structures the graph is usually layouted with the well known Sugiyama algo-
rithm which reduces crossings in order to increase readability. Since all its phases
are NP-hard problems [70], it uses heuristics. This is also true for its third phase,
the reduction of the crossing number . The problem remains NP-hard even if there
are only two levels and the ordering of the vertices on one level is fixed [52, 56]. As
a consequence a crossing-free drawing cannot be guaranteed even if one exists. But
exactly in this case it is especially desirable to obtain a planar drawing, because if
a human looks at an automatically generated drawing, changing positions of only a
few vertices to eliminate crossings seems to be very easy to her. As a consequence
she might think that the unchanged layout is a bad layout. Fortunately, there is a
linear time algorithm for efficiently detecting such kind of planarity, the so-called
level planarity. Thus it is possible to check on level planarity in a preprocessing step
and to avoid this dissatisfying situation.

Level planarity excludes horizontal edges between vertices in the same level. But
horizontal edges occur in practice, e. g., as associations in UML diagrams. In this
thesis we define track planarity, where these edges are allowed. We present a linear
time algorithm which is based on a reduction of track planarity to level planarity. It
can detect track planarity and construct a track planar embedding of track planar
graphs, i. e., the topological structure of a planar drawing. Another new concept are
radial level graphs, where the vertices of each level are placed on concentric circles
instead of horizontal lines.

Figure 1.1. The radial drawing from the cover page of Kaufmann and Wagner
[105].

A motivation for radial level planar graphs are the radial drawings of social net-
works studied in [18, 19], where the vertices are constrained to lie on radial levels
according to their centrality. Here structural centrality is mapped to a geometric
one. Simply speaking, a social network [105] is obtained by taking a group of people
as vertices and inserting edges based on some abstract relationships between the

1.1. Preliminaries 3

individuals. This research is motivated by the belief that visualising social struc-
tures and detecting patterns gives insight into how a society works, how individuals
interact with society, and even why certain societies or individuals are more suc-
cessful than others. Aspects taken into account may be sociological, economical,
demographical, ethnical, or medical, and are used for various purposes on all scales.

We establish essential differences between level and radial level planar graphs,
which are expressed by level non-planar biconnected components called rings. As
our main result we present a linear time algorithm for detecting and embedding
radial level planar graphs. The basis of this new algorithm is the new PQR-tree
data structure which is a generalisation of PQ-trees. R-nodes represent biconnected
components called rings, which are radial level planar but not level planar. Their
presence entails the nesting of non-connected components. In a further step, the
track and radial level extensions are combined to form circle graphs, which allow
edges along the concentric circles. In analogy to Kuratowski’s forbidden subgraphs
for planarity, we study the forbidden subgraphs for radial level planarity. This gives
a deeper insight into the combinatorial structures that are allowed in radial level
planar graphs but forbidden in level planar ones.

1.1 Preliminaries

In this section we recall some basic concepts of graph theory from standard textbooks
on graphs, e. g., from [30, 31, 44, 124]. Throughout the thesis, we freely adapt the
terminology of [95, 97, 99, 112] to suit our needs. The established visualisation
methods for different classes of graphs are summarised in [38, 105, 147], which cover
the basics of graph drawing.

1.1.1 Graphs

A graph G = (V,E) is a finite non-empty set of vertices V which are connected
by edges E. It is directed (a digraph) if the edges are ordered pairs of vertices and
undirected if the order does not matter. The vertices u and v are the end vertices
of an edge e = (u, v) and are called adjacent to each other. Then it is said that u
and v are neighbours . An end vertex is called incident to its edge(s) and vice versa.
A vertex is called isolated if it has no incident edges. Consider two directed edges
(u, v) and (v, w). Then (u, v) is called an incoming edge of v and (v, w) is called
outgoing edge of v. The degree of a vertex is the number of incident edges.

Usually graphs are visualised in such a way that vertices are drawn as points,
circles, or squares and edges as curves between vertices. For a digraph an edge
e = (u, v) is drawn as an arrow from its source vertex u to its target vertex v. For
an undirected graph an edge is drawn as simple line between its end vertices, not as
an arrow. This should indicate the symmetry.

Parallel edges are two or more edges with the same end vertices. A reflex edge is
an edge (v, v). A simple graph is a graph without parallel and reflex edges. Without

4 Chapter 1. Introduction

loss of generality, we consider only simple graphs from now on.

A graph G′ = (V ′, E ′) is called a subgraph of the graph G = (V,E) if V ′ ⊆ V
and E ′ = { (u, v) | u, v ∈ V ′ } ⊆ E hold. A graph is said to be complete if every
vertex v ∈ V is adjacent to every other vertex w ∈ V − {v}. A complete graph
with n vertices is denoted by Kn, see Figure 2.1(b) for an example. Kn,m is a graph

(V
.
∪W,E) with E = V ×W .

Every graph G = (V,E) can be traversed by a breadth first search (BFS) using
a queue or by a depth first search (DFS) using a stack or recursion in O(|V |+ |E|)
time.

1.1.2 Connectivity

A directed or an undirected path P = (v1, . . . , vk) is a sequence of vertices vi with
(vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1. P is simple if all vertices except the ends are
distinct. P is a cycle if v1 = vk for k > 2. It is common to write v1 →∗ vk for
P . The (graph theoretical) length of a path is the number of edges on that path.
A chain is a path containing only vertices of degree 2 except the end vertices. A
directed edge e = (u, v) is a transitive edge if there is a directed path from u to v
not containing e.

Two vertices u, v are connected in G = (V,E) if there exists a path between them.
G is connected if any pair of its vertices is connected. Every maximum subgraph
that is connected is called a connected component or simply component of G. Thus
a disconnected graph has at least two components. A cut vertex is a vertex whose
removal increases the number of components. Thus if G is connected, at least one
vertex has to be removed in order to disconnect it. If no such vertex exists, G is
called biconnected . A pair of vertices u, v ∈ V in a biconnected graph is called a
split pair if their removal disconnects the graph. G is called triconnected if there is
no split pair.

1.1.3 Trees

A digraph T = (V,E) is a (rooted) tree if it contains no cycle, there is exactly one
vertex called the root which is not the target of any edge in E, and each other vertex
is the target of exactly one edge. The vertices of T which are not a source vertex of
any edge are called leaves . All other vertices are called internal vertices . The source
vertex u of an incoming edge (u, v) of a target vertex v is called the parent of v. On
the other hand, the target vertex w of every outgoing edge (v, w) of a vertex v is
called a child of v. Vertices with the same parent are called siblings . Any vertex u
for which a path u →∗ v exists is called an ancestor of v. Similarly, any vertex w
for which a path v →∗ w exists is called a descendant of v. The length of a path
from the root to a vertex v is called the depth of v. The largest depth of any vertex
in T is called the height of T . By definition a tree is always connected. A forest is
a set of trees.

1.2. Sugiyama Algorithm 5

An ordered tree is a tree in which the children of each vertex are ordered from
left to right. Two children of the same parent are said to be direct siblings if they
are siblings and appear consecutively in the children order of their parent.

1.1.4 DAGs

A DAG is a directed acyclic graph. Further, more than one root vertex with no
incoming edges is allowed. In a DAG, a vertex with no incoming edges is called a
source and a vertex with no outgoing edges is called a sink . Each DAG D = (V,E)
has a topological sorting of its vertices, which is a linear ordering of all its vertices
v ∈ V such that if E contains a directed edge (u, v) then u appears previous to v in
this ordering. Such a vertex ordering is not unique and can be found efficiently in
O(|V |) time by successively removing all sources.

1.1.5 Level Graphs

Now we specialise to k-level graphs, which is one of the central notions of this thesis.
A k-level graph G = (V,E, φ) with k ≤ |V | is a graph with a level assignment
φ : V → {1, 2, . . . , k} that partitions the vertex set into k pairwise disjoint subsets
V = V 1

.
∪ V 2

.
∪ · · ·

.
∪ V k, V j = φ−1(j), 1 ≤ j ≤ k, such that φ(u) 6= φ(v) for each

edge (u, v) ∈ E. A k-level graph is proper if each edge (u, v) ∈ E is short , i. e.,
|φ(u) − φ(v)| = 1. Otherwise, it has a long edge which spans several levels. Level
graphs are a generalisation of bipartite graphs which have only two levels, e. g., a
Kn,m is a complete bipartite graph. Sources and sinks in a level graph are defined
analogously to DAGs using the implicit edge direction from lower to higher levels.
A hierarchy G = (V,E, φ) as defined by [39] is a level graph with all sources on the
first level V 1. If G is a hierarchy with more than one vertex in V 1, we can add a new
level V 0 containing exactly one dummy source vertex which is connected to every
v ∈ V 1. Such a transformation does not modify the planarity of the graph and its
size remains O(|V |). Thus we consider only hierarchies with |V 1| = 1. Please do not
confuse hierarchy with hierarchical graph. Some people use this term as a synonym
for level graph, e. g., [51, 53].

1.2 Sugiyama Algorithm

The display of hierarchical structures is an important issue in automatic graph draw-
ing. DAGs and trees are usually drawn such that the vertices are placed on horizontal
levels, and the edges are straight lines or y-monotone polylines. This technique is
used by the Sugiyama1 algorithm, the most common algorithm for drawing DAGs
and level graphs [38, 54, 105, 148]. The algorithm operates in four phases: In the

1Although there was some initial work on level drawings by Warfield [157] and Carpano [24]
before, this approach is commonly attributed to Sugiyama et al. [148].

6 Chapter 1. Introduction

first phase, called cycle removal, the input graph is made acyclic by reversing ap-
propriate edges. Reversing a minimum set of edges is known as the feedback arc
set problem and is NP-hard [70, 104]. During the second phase, called level as-
signment, the vertices are assigned to horizontal levels. Thereby minimising both
the height and the width is NP-hard as a simple reduction of the multiprocessor
scheduling problem shows, see [70]. The first two steps are not necessary for level
graphs. Before the third phase, long edges are subdivided into short edges by the
introduction of up to O(|V |2) dummy vertices. These dummy vertices represent
potential bends of long edges. In the third phase, called crossing reduction, an or-
dering of the vertices within a level is computed such that the number of crossings
is reduced. The fourth phase, called horizontal coordinate assignment, computes an
x-coordinate for every vertex. The fourth phase is usually constrained to preserve
the ordering determined in the third phase, and to introduce a minimum separation
space between vertices within a level. The y-coordinates are given by the levels.
Finally, the dummy vertices introduced before the crossing reduction are removed
and replaced by edge bends.

However, crossing minimisation in phase three is also NP-hard, see Garey and
Johnson [71]. This is even the case if there are only two levels [94, p. 97] and the
vertices of one level are fixed [52, 56]. The two level crossing problem is fundamental
and has received great attention in literature [38]. Therefore the Sugiyama algorithm
uses one (or more) of the many and intensively investigated heuristics in its third
phase. In the best case no crossings remain at all and the graph is drawn level
planar. But a heuristic does not guarantee a planar drawing even if one exists,
although in this case it is especially desirable to avoid crossings. Fortunately, there
are efficient algorithms for testing this property and for constructing a drawing
without a crossing, see Chapter 3.

1.3 Overview

In the next chapter we discuss the planarity of graphs. This section is intended
as an introduction to the linear level planarity testing and embedding algorithm of
Jünger, Leipert, and Mutzel [95–97, 99, 100, 112] which is summarised in Chapter 3
beside a survey of other results related to level planarity. This algorithm is the
basis of our radial level planarity testing and embedding algorithm in Chapter 5.
We show in Chapter 4 how track planar graphs can be recognised, i. e., level graphs
with additional edges between vertices on the same level. In Chapter 6 we combine
track and radial level planarity to circle planarity, where level graphs can have edges
within a radial level. In Chapter 7 we give combinatorial characterisations of graphs
that are not radial level planar and elaborate the essential differences between level
and radial level planarity. The discussions of Chapter 8 are intended to summarise
the results of this work and to suggest directions for further investigation in the
wider sense of the topic level planarity. The appendix shows technical details of
symmetrical lists and of our prototype implementation.

2
Planarity

The study of planar graphs has a long history in mathematics, going back to Leonard
Euler in the 18th century. As a consequence, planar graphs are well investigated
and there are many known facts about them and their drawings, e. g., see [102, 123].
Since the notions of graph planarity and graph embedding are fundamental here,
they are discussed in detail.

2.1 Definition of Planarity

Consider a graph G = (V,E) drawn in the plane such that each vertex is represented
by a distinct point. Each edge is drawn as a continuous curve between its two end
points. If no two edges share any point except their possible common ends, G is
said to be planar. Before we treat the question of efficiently testing whether a given
graph is planar in the next sections, we use the rest of this section to discuss some
classical work concerning planar graphs.

Theorem 2.1 (Euler 1736). Let G = (V,E) be a non-empty connected planar
graph. Then the number of faces f satisfies

|V |+ f − |E| = 2. (2.1)

Corollary 2.1 (Euler). If G = (V,E) is a non-empty connected planar graph with
no parallel and reflex edges and |V | > 2 then

|E| ≤ 3|V | − 6. (2.2)

One of the most outstanding result is Kuratowski’s theorem, which gives a simple
certificate whether a graph is planar.

7

8 Chapter 2. Planarity

Theorem 2.2 (Kuratowski). A graph G is non-planar if and only if there is a
subgraph of G which is homeomorphic to either K3,3 or K5.

Two graphs are homeomorphic if they can both be obtained from a common
graph by a sequence of replacing edges by paths. In appearance, homeomorphic
graphs look like ones that have extra vertices added or removed from edges.

(a) K3,3 (b) K5

Figure 2.1. Kuratowski subgraphs

For planarity testing it is useful to have a special numbering of the vertices.
Given a graph G = (V,E) with an edge (s, t) ∈ E with s 6= t. An st-numbering of G
is a bijective numbering st : V → {1, 2, . . . , |V |} of its vertices such that st(s) = 1,
st(t) = |V |, and that for every vertex v ∈ V − {s, t} there are two adjacent vertices
u,w ∈ V with st(u) < st(v) < st(w). A graph with such a numbering is called an
st-graph. In [113] it is shown that every biconnected graph has an st-numbering.
In [59] an O(|V | + |E|) time algorithm for finding such a numbering is given for
biconnected graphs.

After planarity of a graph is approved, a planar drawing visualises the correctness
of this result. A straight-line drawing of a graph is a drawing where every edge is
drawn as a straight line. Fáry [60], Stein [145], Steinitz and Rademacher [146], and
Wagner [156] have shown independently that every planar graph admits a straight-
line drawing. For producing (straight-line) drawings of planar graphs see for example
[27, 28, 35, 79, 102, 137, 153, 154].

2.2 PQ-Trees

In this section we explain in detail PQ-trees which were introduced by Booth and
Lueker [13] for the consecutive ones property in matrices. This data structure is the
basis of the planarity testing algorithm described in Section 2.3 and all subsequent
algorithms.

A PQ-tree represents the set of permutations of a finite set S, where the members
of specified subsets S ′ ⊆ S occur consecutively. It is a rooted, ordered tree with
the leaves representing the elements of S. The possible permutations of the leaves
are encoded by the combination of the two types of internal nodes, P-nodes and
Q-nodes . P-nodes are drawn as circles and Q-nodes are drawn as rectangles. For
PQ-leaves only their label or the element they represent is drawn. Sub-PQ-trees are

2.2. PQ-Trees 9

abstracted by triangles. Each of the following three operations will construct a valid
PQ-tree.

1. Every element s ∈ S is a PQ-tree whose root is s.

2. If T1, T2, . . . , Ti, i ≥ 2, are PQ-trees then the structure shown in Figure 2.2(a)
is a PQ-tree whose root is a P-node.

3. If T1, T2, . . . , Ti, i ≥ 2, are PQ-trees then the structure shown in Figure 2.2(b)
is a PQ-tree whose root is a Q-node.

T
1

T
2

T
i

(a) A P-node

T
1

T
2

T
i

(b) A Q-node

Figure 2.2. Drawing of internal PQ-nodes

Two PQ-trees are equivalent if and only if one can be transformed into the
other by applying equivalence transformations. There are two types of equivalence
transformations: The children of a P-node can be permuted arbitrarily, which means
that there is no left-to-right-order among them. The children of a Q-node are ordered
and only reversion is allowed. Hence, the same two children will always remain
endmost , i. e., leftmost or rightmost , and all others will remain interior , i. e., not
endmost. In addition, each interior child of a Q-node always has the same two direct
siblings. Since every internal node has at least two children, the number of internal
nodes is at most the number of leaves. Reading the leaves of a PQ-tree T from left
to right yields its frontier , frontier(T). The frontier of a PQ-tree is one admissible
permutation of the set S. See Figure 2.3 for an example.

A B C

D

E F I

G H J K

(a)

FE

D

I

KJH G

AB C

(b)

Figure 2.3. Two equivalent PQ-trees over a set S = {A,B, . . . ,K}

10 Chapter 2. Planarity

2.2.1 Reduce

As the elements of each new subset S ′ ⊆ S are constrained to appear together,
the number of admissible permutations is reduced. Given S ′ and a PQ-tree T , a
reconstruction T ′ of T is needed such that its admissible permutations are exactly
the original permutations in which the leaves selected by S ′ occur consecutively.
This is achieved by the main operation on PQ-trees which is called reduction with
respect to S ′.

PQ-leaves representing elements of S ′ are called pertinent . After the reduction,
the so-called pertinent subtree is the subtree of minimum height containing all per-
tinent PQ-leaves. This pertinent subtree is unique with respect to S ′. Its root is
called the pertinent root . A PQ-node with at least one pertinent child different from
the pertinent root is called pertinent too. In illustrations of PQ-trees a grey shading
indicates that a node or a subtree is pertinent. Nodes which are detected during
reduction as having only pertinent children are marked as full and nodes having only
non-pertinent children are marked as empty , actually those remain empty. While
pertinent PQ-leaves are always marked as full, the non-pertinent ones are always
marked as empty, accordingly. All other nodes, i. e., nodes with pertinent and non-
pertinent children at the same time, are marked as partial . The method REDUCE
performs the reduction. Its details are listed in Algorithm 2.1.

REDUCE is a bottom up strategy from the pertinent leaves to the pertinent
root that uses a queue. X is the currently treated node. For every newly detected
X, one of the later defined templates must fit to realise local changes within the
tree or REDUCE fails. A failure means that it is impossible to make members of
S ′ consecutive due to other constraints. Then the resulting PQ-tree T ′ is empty,
i. e., there is no permutation with the given restrictions. P0, Q0, and marking non-
pertinent leaves as empty are actually not executed because the algorithm starts
only with pertinent leaves.

For efficiency reasons only the endmost children of a Q-node know their current
parent whereas the interior children do not in general, cf. [13, 127]. Therefore,
before each application of REDUCE, the method BUBBLE [13, p. 358] updates the
father pointer of each child in the pertinent subtree to its correct value. This does
not violate the time complexity of REDUCE, except for a single problem where
efficiency does not allow a search of the pertinent root, see Figure 2.4. There the
pertinent root is a Q-node where all its pertinent children are interior children and
none of them knows their parent. But in this particular case the knowledge over
the real parent is not necessary at all because a pseudo Q-node Z is introduced as
a known parent to the children. Z does not know its father either. But even that
is not necessary because Z is the new pertinent root. BUBBLE knows when it has
reached the pertinent root by sophistically counting the pertinent leaves which are
at the frontier of the subtree induced by the currently treated node.

The main part of Algorithm 2.1 is the pattern matching step which uses tem-
plates , cf. [13]. The left piece of a template is the pattern and the right piece is the
replacement . Prior to the application of a template it may be necessary to permute

2.2. PQ-Trees 11

Algorithm 2.1. REDUCE

Input: A PQ-tree T and a subset S ′ ⊆ S

Output: The PQ-tree T ′

Queue Q

foreach s ∈ S ′ do
insert(Q, s)

end

while Q not empty do
X = delete first(Q)
if some template applies to X then

substitute the replacement for the pattern in T

else
return T ′ ← ∅ // reduction impossible

end
if S ′ ⊆ {Y | X is an ancestor of Y } then

exit from while loop // reduction completed

end
if every sibling of X has been matched then

insert(Q, parent(X))

end
end

return T ′ ← T

(a) The full children do
not know their parent

Z

(b) The new pseudo Q-
node Z is the pertinent
root

Figure 2.4. Introduction of a pseudo Q-node

12 Chapter 2. Planarity

the children of P-nodes or to reverse children of Q-nodes. All templates have special
sub-cases in order to avoid creating chains and therefore to follow the definitions of
PQ-trees. This is to ensure time complexities.

2.2.1.1 Templates for the Leaves

The node X is a leaf. If X is pertinent, i. e., X ∈ S ′, then X is marked as full.
Otherwise X is marked as empty. In both cases there are no structural changes in
the PQ-tree.

2.2.1.2 P-Templates

Template P0 The node X is a P-node which has only empty children. Then X
remains empty. There are no structural changes in the PQ-tree.

−→

Figure 2.5. Template P0

Template P1 The node X is a P-node which has only full children. Then X is
marked as full. There are no structural changes in the PQ-tree.

−→

Figure 2.6. Template P1

Template P2 The node X is a P-node and the pertinent root. It has at least one
empty and one full child. After grouping all full children with a new full P-node
which is attached to X as a child, X is marked as partial.

pertinent root−−−−−−−−→

Figure 2.7. Template P2

Template P3 The node X is a P-node and not the pertinent root. It has at least
one empty and one full child. Then the newly created Q-node Y which has two
children is marked as partial. The empty P-node X grouping its empty children is
attached to Y as the first child. A new full P-node which groups all full children of
X is attached to Y as the second child.

2.2. PQ-Trees 13

not pertinent root−−−−−−−−−−→

Figure 2.8. Template P3

Template P4 The node X is a P-node and the pertinent root. It has exactly
one partial Q-node X ′ and an arbitrary number of other empty and full nodes as
children. Then all full children of X are grouped by a new full P-node, which is
attached to the pertinent end of X ′ as a child, and X is marked as partial.

pertinent root−−−−−−−−→

Figure 2.9. Template P4

Template P5 The node X is a P-node and not the pertinent root. It has exactly
one partial Q-node X ′ and an arbitrary number of other empty and full nodes as
children. Then the empty P-node X which groups all its empty children is attached
to X ′ as a child at the empty end of X ′. All full children are grouped by a new full
P-node, which is attached as a child at the pertinent end of X ′. The Q-node X ′ at
the top of the replacement remains partial.

not pertinent root−−−−−−−−−−→

Figure 2.10. Template P5

Template P6 The node X is a P-node and the pertinent root. It has exactly two
partial Q-nodes X ′ and X ′′ and an arbitrary number of other empty and full nodes
as children. Then all full children of X are grouped by a new full P-node, which is
attached as a child to the pertinent end of either X ′ or X ′′. Afterwards, X ′ and X ′′

are concatenated into one doubly partial Q-node which becomes the pertinent root.

pertinent root−−−−−−−−→

Figure 2.11. Template P6

2.2.1.3 Q-Templates

Template Q0 The node X is a Q-node which has only empty children. Then X
remains empty. There are no structural changes in the PQ-tree.

14 Chapter 2. Planarity

−→

Figure 2.12. Template Q0

Template Q1 The node X is a Q-node which has only full children. Then X is
marked as full. There are no structural changes in the PQ-tree.

−→

Figure 2.13. Template Q1

Template Q2 The node X is a Q-node which has at most one partial Q-node X ′

and an arbitrary number of other empty and full nodes as children. X ′ is located
at the beginning of its consecutive pertinent sequence assuming that this sequence
is located at the end of its children list. Then, after the children of X ′ are attached
to X as children, X is marked as partial.

−→

Figure 2.14. Template Q2

Template Q3 The node X is a Q-node and the pertinent root. It has at most
two partial Q-nodes X ′ and X ′′ and an arbitrary number of other empty and full
nodes as children. X ′ is located at the beginning and X ′′ is located at the end of
its consecutive pertinent sequence. Thus all full children are located between them.
Both endmost children must either be empty or partial, otherwise Template Q2
would apply. Then the children of X ′ and X ′′ are attached to X as children. X is
marked as doubly partial and becomes the pertinent root.

pertinent root−−−−−−−−→

Figure 2.15. Template Q3

2.2.2 Replace Pertinent

There is another important operation on PQ-trees, replacing pertinent leaves. This
task is performed by a method called REPLACE. It enlarges the set S by new
members S∗, i. e., S = S ∪ S∗. For this it replaces a consecutive subset S ′ ⊆ S
(actually the pertinent subtree(s) induced by S ′) after the reduction with respect to

2.3. Planarity Test 15

S ′ with a newly created P-node whose children are leaves representing the members
of S∗. If S∗ contains only one element s then there is no P-node created and S ′ is
directly replaced by a leaf representing s.

2.2.3 Improved Symmetric Lists

We store the set of children of a PQ-node in a symmetric list . Symmetric lists are
an advanced data structure, which in addition to the standard operations on doubly
connected lists supports both reversing the list and inserting a list into another one
in constant time. This is essential for the linear running time of the vertex addition
method [13] for planarity testing, i. e., for the REDUCE operation described above.
Symmetric lists are described in detail in Appendix A.

2.3 Planarity Test

This section describes the well known linear time vertex addition method for pla-
narity testing introduced by Lempel, Even, and Cederbaum (LEC) [13, 58, 113] in
1966. We recall this algorithm as described in [13] because it is the base for all subse-
quent algorithms. An implementation of this test can be found for example in GTL
[76, 127]. Booth and Lueker [13] showed in 1976 how this test can be performed in
O(|V |) time by the usage of PQ-trees. In 1985, Chiba, Nishizeki, Abe, and Ozawa
[26] presented an extension of this method to compute a planar embedding of planar
graphs.

However, there are many other planarity tests, like Hopcroft and Tarjan’s linear
time path addition method [89] which is based in part on earlier work of Auslander
and Parter [2] and Goldstein [73], online planarity testing with SPQR-trees [41], the
O(|V |) time edge addition method of Boyer and Myrvold [16, 17] which is very fast
in practice [14, 15], or tests for parallel machines with |V | processors in O(log2 |V |)
time [108, 109]. Further, there is the test of Williamson [158], the left-right algorithm
of de Fraysseix and Rosenstiehl [36, 37], and the algorithm of Shih and Hsu [139, 140]
based on the PC-tree data structure.

The idea of the vertex addition method is adding one additional vertex at each
step. Previously drawn edges incident to this vertex are connected to it and newly
discovered edges incident to it are drawn while their other endpoints are left uncon-
nected.

We assume that the input graph G = (V,E) is biconnected and has an st-
numbering. If the graph is not biconnected then every biconnected component is
treated separately or the algorithm of Mehlhorn, Mutzel, and Näher [119] is used
to augment the graph with edges to achieve biconnectivity while potential planarity
is not violated. It can be integrated in the test on biconnectivity which must be
executed anyway. Recall that augmenting the graph with a minimum number of
edges in order to make it biconnected is NP-hard [102]. Fortunately, this minimum
number is not necessarily required here. The only restrictions are to add not more

16 Chapter 2. Planarity

than O(|E|) edges and the algorithm must not need more than O(|E|) time. Both
is satisfied by the method described in [119].

Here edge direction means the implicit direction indicated by the st-numbering
from the lower to the higher end vertex. Let Gk = (Vk, Ek) be the directed subgraph
of G induced by Vk = { v ∈ V | st(v) ≤ k }, 1 ≤ k ≤ |V |. Ek consists of all edges of
E whose both end vertices are in Vk. Gk is extended to Bk as follows: For each edge
(u, v) ∈ E with u ∈ Vk and v ∈ V − Vk the graph Bk gets a new virtual vertex and
a virtual edge connecting u to this vertex. So there may be several separate virtual
vertices in Bk that correspond to the same vertex in G. Virtual vertices are labelled
as their counterparts in G. A representation of Bk with all virtual vertices drawn
on a horizontal line is called a bush form, see Figure 2.16(c) for an example. Similar
to level graphs, we draw a bush form with strictly downwards edges.

1

3

5

2

4

6

(a) G

1

3

2

(b) G3

1

6

3

44 55

2

6

(c) B3

Figure 2.16. A graph and a bush form of it. The labels of the vertices indicate
their name and their st-number at the same time

The algorithm proceeds successively “drawing”B1, B2, . . . , B|V |−1, B|V | = G. If
in the realisation of Bk all virtual vertices with st-number k + 1 are next to each
other then it is easy to draw Bk+1. One joins all these virtual vertices into one vertex
v and “pulls” it up from the horizontal line. Afterwards, all the virtual edges which
emanate from v are added. See Figure 2.17.

It remains to explain how one can bring the virtual vertices with st-number k+1
next to each other, or if this is not possible to reject G as not planar. Therefore
the PQ-tree data structure described in the last section is used. The leaves of the
PQ-tree are the virtual vertices and the combination of its internal nodes saves
their admissible permutations. This strategy leads to the fact that a P-node always
represents a cut vertex and a Q-node represents a biconnected component of the
currently scanned graph. By calling REDUCE on the set of leaves which correspond
to the virtual vertices with number k + 1, the stored permutation set is restricted
to those where these leaves lie side by side. If the reduction fails, i. e., a pattern
occurs for which no template matches, G is not planar. The PQ-tree operation
REPLACE extends the permutations with new leaves representing the new virtual
vertices afterwards.

2.4. Planar Embedding 17

planar

unvisited

(a)

planar

unvisited

(b)

Figure 2.17. Vertices are reduced according to their st-numbering

2.4 Planar Embedding

In this section we describe the embedding algorithm of Chiba, Nishizeki, Abe, and
Ozawa [26], which integrates seamlessly into the LEC algorithm described previously,
whereby the O(|V |) time complexity is preserved.

2.4.1 Definition of a Planar Embedding

A planar drawing partitions the plane into topologically connected regions called
faces . The contour of a face is the sequence of edges adjacent to the face. The
unbounded face is called the outer face and all other faces are called inner faces .
A planar drawing determines a cyclic ordering of the neighbours of each vertex v
according to the clockwise sequence of the incident edges around v. It is irrelevant
if the cyclic order is clockwise or counterclockwise as long as all adjacency lists are
interpreted equally. To illustrate this, one can think of looking at a transparent
slide from both sides on which a planar graph is drawn. Two planar drawings
are equivalent if they determine the same cyclic ordering of the neighbour set. A
planar embedding E is an equivalence class of planar drawings and is described by
the cyclic order of the neighbours of each vertex v. That means it is defined by
ordered adjacency lists E [v]. A planar graph may have an exponential number of
embeddings. If E is an embedding of an st-graph, it is also common to speak of an
st-embedding Est.

Given an embedding, a generation of a drawing of the graph requires choosing an
outer face, vertex positions and edge shapes. This is viewed as a separate problem, in
part because it is application dependent. For example, the notion of what constitutes
a suitable rendering of a graph may differ substantially if the graph represents an
electronic circuit versus a hypertext book.

18 Chapter 2. Planarity

2.4.2 Computing a Planar Embedding

This section outlines how the LEC algorithm can be changed [26] such that it com-
putes ordered adjacency lists of a planar input graph G. As in Section 2.3 it is
assumed that G is biconnected and st-numbered.

In the first step an upward embedding Eu is computed, which is afterwards the
base for computing E . An upward embedding consists of ordered adjacency lists Eu[v]
for each vertex v ∈ V which only contain adjacent vertices with smaller st-number.
For an example see Figure 2.18 which is an upward embedding of the graph shown
in Figure 2.16(a).

1

2

3

4

5

1

2

2

36

1

2

4

1

Figure 2.18. An upward embedding Eu of the graph in Figure 2.16(a)

2.4.2.1 Computation of an Upward st-Embedding Eu

At the end of a successful reduction all leaves with the label k+ 1 lie in consecutive
positions. Consider the corresponding bush form. Merging them into one vertex v
determines the order of its incident edges to vertices with smaller st-number. That
means the order of the virtual vertices k+1 corresponds to one admissible order of the
incoming edges of v. Therefore traversing the leaves of the corresponding pertinent
subtree from left to right with an ordered DFS delivers an upward embedding Eu[v].
But in the course of the following reduction steps there may be one or more reversions
of the biconnected component to which v is attached. Hence, it may be necessary
to reverse Eu[v]. This is exactly the case if the pertinent root is a partial Q-node
X before the removal of the leaves k + 1. Because of running time restrictions,
the direction of the created list is only known relatively to the other children of X.
Thus for saving this information a direction indicator is inserted as a child of X
next to the newly created P-node which groups the new virtual edges of v. This
indicator should reflect the direction in which the full children of X were traversed
as Eu[v] was created. Of course all operations on PQ-trees must be updated to
simply ignore the new node type direction indicator. In drawings of PQ-trees a
direction indicator is depicted as a triangle pointing in its stored direction. Direction
indicators representing the order of incoming edges of a vertex v are labelled with v.

Whenever a direction indicator d is found as an internal element of a pertinent
sequence of a vertex w by REPLACE, it is removed together with this sequence
from the PQ-tree and stored in Eu[w]. The direction of d indicates the traversal
direction of the ordered pertinent sequence at the time of its removal. At the end

2.4. Planar Embedding 19

v v...

X

(a) The arrow indicates
the traversal direction of
the pertinent sequence

X

l
1

l
h

vv

(b) Figure 2.19(a) after RE-
PLACE with (v, li) ∈ E, 1 ≤
i ≤ h

Figure 2.19. Direction of traversing pertinent children and the resulting direction
indicator

of such a modified planarity test, there is no direction indicator left in the PQ-tree.
All indicators are stored in the upward embedding which has to be corrected now
according to these indicators. Therefore all Eu[v] with v in descending st-order are
traversed and each found direction indicator d is removed. Let u be the vertex which
is the label of d. If the direction of d is opposite to the one of Eu[v] then the entire
list Eu[u] is reversed.

2.4.2.2 Computation of an st-Embedding Est

As final step Eu is extended to an st-embedding Est. For this Chiba et al. use the
method ENTIRE-EMBED shown in Algorithm 2.2, which is a backward DFS in Eu.
The DFS starts at t. Let w be a newly detected vertex. For each vertex v ∈ Eu[w],
w is added at the front of the ordered list Eu[v].

20 Chapter 2. Planarity

Algorithm 2.2. ENTIRE-EMBED

Input: An upward embedding Eu of the graph G = (V,E) and
the sink vertex t

Output: An st-embedding Est

procedure DFS(w)
visited[w]← true
foreach vertex v ∈ Eu[w] do

insert w at the beginning of Eu[v]
if visited[v] = true then

DFS(v)

end
end

end

foreach v ∈ V do
visited[v]← false

end
DFS(t)

return Est ← Eu

3
Level Planarity

The visualisation of hierarchical structures is an important issue in automated graph
drawing. Such structures appear for example in project management (data flow or
work flow charts), bioinformatics (biochemical pathways), database design (ER di-
agrams), and software engineering (UML diagrams) and are used to express depen-
dencies due to time, reactions, or inheritance. They are modelled by directed acyclic
graphs (DAGs). DAGs and trees are usually drawn such that the vertices are placed
on horizontal levels, and the edges are drawn as straight lines or as y-monotone
polylines. This technique is used by the Sugiyama algorithm, the most commonly
used algorithm for drawing DAGs [38]. Because crossing minimisation is NP-hard,
a possible planar embedding is not guaranteed, at least not in polynomial time. But
exactly in this particular case it is especially desirable to obtain no crossings. Such
drawings are easy to understand, as empirical experiments of Purchase [125, 126]
have shown. Fortunately, there is a linear time algorithm to test level planarity,
although the level planarisation problem, i. e., determining the minimum edge set
whose removal eliminates crossings, is NP-hard even for two levels [52, 55, 152].
The level planarity algorithm can also compute an embedding in linear time if the
graph is level planar. It is described after a few definitions and a section about
the foundations of this topic in Section 3.3. Another important application of this
algorithm is the detection of clustered level planar graphs [67]. There the vertices
are not only constraint to lie on levels but also side by side within a rectangular box
if they belong to the same cluster. For further information on clustered (planar)
graphs see [21, 33, 63, 64, 78, 133–135].

21

22 Chapter 3. Level Planarity

3.1 Definition of Level Planarity

The level planarity problem [39, 85, 99] is the question whether or not a level graph
G can be drawn in the plane such that all vertices of the j-th level V j are placed on
the j-th horizontal line lj = { (x, j) | x ∈ R }, 1 ≤ j ≤ k, and the edges are drawn
as strictly y-monotone curves without crossings. Alternatively, level planar graphs
are called h-planar , e. g., in [48, 51, 53]. An example of a level planar graph is given
in Figure 3.1.

1

3

2

0

1 2 3

4

4 7

5 6

Figure 3.1. A level planar graph

For k-level graphs the partition of the set of vertices into levels is given. Finding
a levelling is a different problem. Heath and Rosenberg [88] have shown that it is
NP-hard whether a planar graph has a levelling into a proper level planar graph.
In the non-proper case every planar graph has an O(|V |)-level planar levelling with
many levels and long edges. This follows for example from straight-line grid drawings
of planar graphs [34, 35, 38, 137] or from visibility representations of planar graphs
[38, 40, 42, 130, 149]. Both approaches, however, take into account neither the
number of levels nor the length of the edges, e. g., for a minimisation. O(|V |) is also
the lower bound for the number of levels, as the nested sequence of triangles of [34]
show.

3.2 Foundations

The basis of our algorithm is the linear time algorithm of Jünger, Leipert, and
Mutzel (JLM) [95–97, 99, 100, 112] for level planarity testing and embedding which
in turn is based on the approach of Heath and Pemmaraju [85, 86]. These algorithms
extend the level planarity testing algorithm for hierarchies of Di Battista and Nardelli
[39] to arbitrary level graphs. The linear time algorithm of Chandramouli and
Diwan [25] determines whether a triconnected DAG is level planar. Because the
JLM algorithm is rather involved and difficult to implement, Healy and Kuusik
[81] have presented a much simpler approach for the detection of level planarity.
Their algorithm runs in O(|V |2) time for proper level graphs and O(|V |4) time in
the general case. If an embedding is needed, the time complexity raises to O(|V |3)
and O(|V |6), respectively. Dujmović et al. [48] have applied the concept of fixed
parameter tractability to level planarity testing. They obtain linear running time if

3.3. Level Planarity Testing 23

the number of levels is constant. Finally, Randerath et al. [128] presented a quadratic
time reduction of level planarity of proper level graphs to the satisfiability problem
of Boolean formulas in 2CNF. 2CNF formulas are solvable in linear time.

3.3 Level Planarity Testing

Since the JLM algorithm must be extended in various directions, its basic concepts
are recalled. Let G be a k-level graph. The algorithm performs a top down sweep,
processing the levels in ascending order. Let Gj be the subgraph induced by the
vertices of the first j levels V 1 ∪ V 2 ∪ · · · ∪ V j. For every Gj, 1 ≤ j < k, a set of
admissible permutations of V j+1 is computed, which are the permutations of level
planar embeddings of Gj+1. The input graph G is level planar if and only if the set
of permutations of Gk = G is non-empty.

In order to store and manipulate sets of admissible vertex permutations effi-
ciently, the PQ-tree data structure of Booth and Lueker is used. As already men-
tioned in Section 2.3, a P-node represents a cut vertex and a Q-node represents a
biconnected component of the visited part of the graph. The leaves represent edges
to the unvisited part. Restrictions are introduced by edges towards the same vertex.
If there are no permutations with the given restrictions, the PQ-tree is empty.

Figure 3.2 illustrates the sweep over one level. Consider the difference to Fig-
ure 2.17, where the reduction order is according to the st-ordering of the vertices.
Here vertices are reduced from left to right for each level.

level planar

j

unvisited

(a) Before re-
ducing level j

level planar

j

unvisited

(b) While re-
ducing level j

level planar

j

unvisited

(c) After re-
ducing level j

Figure 3.2. Vertices are reduced level by level

The subgraph Gj induced by the first j levels is not necessarily connected. Thus
a separate PQ-tree T (F j

i) is introduced for every component F j
i of Gj with mj such

components and 1 ≤ i ≤ mj. T (F j
i) represents the set of admissible permutations

of the vertices of F j
i in V j that appear in some level planar embedding of Gj. If

two different components are adjacent to a common vertex v, their corresponding
PQ-trees must be merged. T (Gj) denotes the set of all T (F j

i).

24 Chapter 3. Level Planarity

Algorithm 3.1. LEVEL-PLANARITY-TEST

Input: A level graph G = (V 1
.
∪ V 2

.
∪ . . .

.
∪ V k, E, φ)

Output: A Boolean value indicating whether G is level planar

Initialise T (G1)
for j ← 1 to k − 1 do
T (Gj+1)← CHECK-LEVEL(T (Gj), V j+1)
if T (Gj+1) = ∅ then

return false
end

end

return true

A formal description of the LEVEL-PLANARITY-TEST algorithm is given by
Algorithm 3.1. All operations are directly applied to the PQ-trees and not to the
graph. The procedure CHECK-LEVEL in Algorithm 3.2 is a sweep over a single
level j, divided into a first and a second reduction phase.

Algorithm 3.2. CHECK-LEVEL

Input: The PQ-trees T (Gj) and the vertices V j+1 of the next level

Output: The PQ-trees T (Gj+1) of the next level

T (Gj)← FIRST-REDUCTION-PHASE(T (Gj), V j+1)
if T (Gj) = ∅ then

return ∅
end

T (Gj)← SECOND-REDUCTION-PHASE(T (Gj), V j+1)
if T (Gj) = ∅ then

return ∅
end
T (Gj)← FINAL-UPDATES(T (Gj), V j+1)

return T (Gj+1)← T (Gj)

The following describes the first reduction phase as formally shown in Algo-
rithm 3.3. Define Hj

i to be the extended form of F j
i which consists of F j

i and some
new virtual vertices and virtual edges . For every edge (u, v) ∈ E with u ∈ V (F j

i)∩V j

and φ(v) > j, a new virtual vertex v′ with label v and a virtual edge (u, v′) are in-
troduced into Hj

i . The set of all virtual vertices of Hj
i with label v is denoted by

Sv
i . Note that there may be several virtual vertices with the same label, possibly

adjacent to different components of Gj and each with exactly one entering edge. The
extension of T (F j

i) to T (Hj
i) is called the vertex addition step and is accomplished

by the PQ-tree operation REPLACE. After REDUCE all PQ-leaves with the same
label v appear consecutively in every admissible permutation. REPLACE replaces

3.3. Level Planarity Testing 25

every such consecutive set with a P-node labelled v. This is the parent of some new
leaves representing the adjacent vertices of v in V j+1 ∪ V j+2 ∪ · · · ∪ V k. Thereafter
all PQ-leaves representing vertices in V j+1 with the same label are reduced to ap-
pear as a consecutive sequence in any permutation stored by the PQ-trees. Then
REPLACE-SINGLE replaces them with a single representative PQ-leaf with the
same label by a call of REPLACE. The resulting reduced extended form of Hj

i is
denoted by Rj

i . If the graph is not a hierarchy, the replacement with a single rep-
resentative is necessary for the correctness of the algorithm as Leipert [112, p. 71ff]
has discovered.

Algorithm 3.3. FIRST-REDUCTION-PHASE

Input: The PQ-trees T (Gj) and the vertices V j+1 of the next level

Output: The PQ-trees T (Gj)

foreach component F j
i in Gj do

construct Hj
i

construct T (Hj
i) // from the PQ-tree of the previous iteration

end

foreach v ∈ V j+1 do
foreach extended form Hj

i do
if Sv

i 6= ∅ then
T (Rj

i)← REDUCE(T (Hj
i), S

v
i)

if T (Rj
i) = ∅ then

return ∅
end
let ṽ be a single representative of Sv

i

UPDATE(Sv
i , ṽ) // update PML and QML

T (Rj
i)← REPLACE-SINGLE(T (Hj

i), S
v
i , ṽ)

end
end

end

return T (Gj)

Different PQ-trees may contain PQ-leaves with the same label. Thus a second
reduction phase is needed to merge these trees, see Algorithm 3.4. A reduced ex-
tended form Rj

i is called v-singular if all its virtual vertices have the same label,
i. e.,

⋃
w∈V,φ(w)>j S

w
i = {v}. Whenever new inner faces are created by replacing all

leaves labelled v with a single representative, a value PML or QML , which stores
the lowest level of these faces, is maintained in the PQ-leaf representing v. Using
this information it is possible to decide whether or not a v-singular component fits
into an inner face above v. Otherwise, it is checked whether it can be placed into
the outer face with the same mechanism as for non-singular forms.

26 Chapter 3. Level Planarity

Algorithm 3.4. SECOND-REDUCTION-PHASE

Input: The PQ-trees T (Gj) and the vertices V j+1 of the next level

Output: The PQ-trees T (Gj)

foreach v ∈ V j+1 do
// lazy reductions
foreach PQ-tree T (Rj

i) containing a leaf labelled with v do
if Sv

i ≥ 2 then
T (Rj

i)← REDUCE(T (Rj
i), S

v
i)

if T (Rj
i) = ∅ then

return ∅
end
let ṽ be a single representative of Sv

i

UPDATE(Sv
i , ṽ) // update PML and QML

T (Rj
i)← REPLACE-SINGLE(T (Rj

i), S
v
i , ṽ)

end
end

eliminate all v-singular Rj
i except for the one with the lowest LL-value

reorder indices such that Sv
1 , Sv

2 , . . . , Sv
p 6= ∅, Sv

q = ∅ for q > p,

and LL(Rj
1) ≤ LL(Rj

2) ≤ . . .≤ LL(Rj
p)

for i← 1 to p do
T (Rj

1)← INSERT(T (Rj
1), T (Rj

i), v)
Rj

1 ← Rj
1 ∪v R

j
i

if REDUCE(T (Rj
1), S

v
1) = ∅ then

return ∅
end
let ṽ be a single representative of Sv

1

UPDATE(Sv
1 , ṽ) // update PML and QML

REPLACE-SINGLE(T (Rj
1), S

v
1 , ṽ)

end
end

return T (Gj)

3.3. Level Planarity Testing 27

Next we briefly describe these pairwise merge operations finally executed by the
procedure INSERT. Define the low indexed level LL(F j

i) of F j
i to be the least d

such that F j
i contains a vertex in V d. This value is maintained as an attribute of

the corresponding PQ-tree T (F j
i). The height of a component F j

i is j − LL(F j
i). A

merge operation is accomplished by using information that is stored at the nodes
of the PQ-trees. For any set of virtual vertices S ⊆ V j+1 ∪ V j+2 ∪ · · · ∪ V k of a
form Hj

i or Rj
i define the meet level ML(S) of S to be the largest d ≤ j such that

V d∪V d+1∪· · ·∪V j induces a subgraph of G where all s ∈ S occur in the same con-
nected component. For every P-node X a single value ML(X) = ML(frontier(X))
is maintained, where frontier(X) is the sequence of its descendent leaves from
left to right. For every Q-node Y with ordered children Y1, Y2, . . . , Yt the values
ML(Yi, Yi+1) = ML(frontier(Yi) ∪ frontier(Yi+1)), 1 ≤ i < t, are stored. These
indicators tell whether a PQ-tree with a given low indexed level fits into the inden-
tations below a P-node or between two sons of a Q-node. The maintenance of the
ML-values during template reductions and insertions in PQ-trees is straightforward.
The definition of the meet levels imply the following Observation 3.1.

Observation 3.1. The meet levels between a node and its siblings are always less
or equal to those between its children.

Let T v
1 , T

v
2 , . . . , T

v
f be all PQ-trees containing a leaf v ∈ V j+1 sorted1 by descend-

ing height. All PQ-trees T v
e , 2 ≤ e ≤ f , are merged sequentially into the highest

one, T v
1 . This corresponds to adding the root of the guest PQ-tree T v

e as a child to a
PQ-node of the host PQ-tree T v

1 . In order to find an appropriate location to insert
T v

e , the method starts with the leaf in T v
1 labelled with v and traverses upwards

in T v
1 until a node X ′ and its parent X are encountered which satisfy one of the

following merge conditions. These are checked in the order A to E.

Merge Condition A The node X is a P-node with ML(X) < LL(T v
e). Then

attach T v
e as a child of X in T v

1 .

v

X

X
0

T
1

v

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

→
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

v

X

X
0

T
1

v

Figure 3.3. Merge condition A

Merge Condition B The node X is a Q-node with ordered children X1, X2, . . . ,
Xt, X

′ = X1, and ML(X1, X2) < LL(T v
e). Then replace X ′ in T v

1 with a new Q-
node Y having X ′ and T v

e as children. The case where X ′ = Xt and ML(Xt−1, Xt) <
LL(T v

e) is symmetric.

1Sorting must be done in linear time, e. g., with bucket sort.

28 Chapter 3. Level Planarity

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

v

X

X
2

X
t

X
0

T
1

v

→

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

v

X

Y

X
2

X
t

X
0

T
1

v

Figure 3.4. Merge condition B

Merge Condition C The node X is a Q-node with ordered children X1, X2, . . . ,
Xt, X

′ = Xi, 1 < i < t, and ML(Xi−1, Xi) < LL(T v
e) and ML(Xi, Xi+1) < LL(T v

e).
Then replace X ′ with a new Q-node Y having X ′ and T v

e as children.

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

Y

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

Figure 3.5. Merge condition C

Merge Condition D The node X is a Q-node with ordered children X1, X2, . . . ,
Xt, X

′ = Xi, 1 < i < t, and

ML(Xi−1, Xi) < LL(T v
e) ≤ ML(Xi, Xi+1).

Then attach T v
e as a child of X between Xi−1 and Xi. If

ML(Xi, Xi+1) < LL(T v
e) ≤ ML(Xi−1, Xi)

then attach T v
e as a child of X between Xi and Xi+1.

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

Figure 3.6. Merge condition D

Merge Condition E The node X ′ is the root of T v
1 . Then reconstruct T v

1 by
inserting a new Q-node Y as the new root with X ′ and T v

e as children.

3.4. Level Planar Embedding 29

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

v

T
1

v

X
0

→
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

vv

Y

X
0

T
1

v

Figure 3.7. Merge condition E

After each merge operation REDUCE and REPLACE-SINGLE are called again
to make all v-leaves consecutive and then to replace them with a single represen-
tative PQ-leaf. Afterwards, T v

e is deleted from T (Gj+1). In order to achieve linear
running time there is no scan for other leaves with the same label after v-merging
several reduced extended forms. However, this strategy results in improper reduced
extended forms possibly with several virtual vertices with the same label. These are
called partially reduced extended forms and are reduced on demand.

Finally, in a new sweep over the current level Algorithm 3.5 deletes all PQ-leaves
representing sinks v in V j+1 from their corresponding PQ-tree and reconstructs the
tree such that it obeys the properties of a valid PQ-tree again. Further, it is necessary
to update the pointers of the leaves to the potentially new PQ-tree to which they
belong. Afterwards, for every detected source vertex on level j + 1 a new PQ-tree
is created before the sweep over the next level j + 1.

Algorithm 3.5. FINAL-UPDATES

Input: The PQ-trees T (Gj) and the vertices V j+1 of the next level

Output: The PQ-trees T (Gj)

delete leaves representing sink vertices of V j+1 from the PQ-trees
update the pointers of the leaves to their PQ-tree
add for every source in V j+1 a new PQ-tree to T (Gj)

return T (Gj)

Remember, LEVEL-PLANARITY-TEST also works on non-proper level graphs
within O(|V |) time and without inserting up to O(|V |2) dummy vertices for long
edges by adding all children on higher levels and not only those on the next level.

3.4 Level Planar Embedding

Level planar embeddings are characterised by a family of linear orderings (≤j)1≤j≤k

of the vertices on each level V j, which in our case is the ordering from left to
right. For a witness after the positive level planarity test and for a level planar
drawing the algorithm computes a level embedding in two passes. This is outlined
by Algorithm 3.6. First G is augmented to a planar st-graph. An st-numbering for G
can be computed by topologically sorting the vertices using implicit edge directions
from lower to higher levels. This corresponds to numbering the vertices level by

30 Chapter 3. Level Planarity

level in ascending order. Then a planar st-embedding is obtained by the algorithm
of Chiba et al. [26], from which a level planar embedding is directly computed by
an ordered DFS.

Algorithm 3.6. LEVEL-PLANAR-EMBED

Input: A level graph G = (V 1
.
∪ V 2

.
∪ . . .

.
∪ V k, E, φ)

Output: A level embedding El of G if it is level planar, ∅ otherwise

expand G to Gst by adding V 0 ← {s} and V k+1 ← {t}
AUGMENT(Gst)
if AUGMENT fails then

return El ← ∅
end

// Gst is now a hierarchy

reverse the level numbering Gst from bottom to top
AUGMENT(Gst) // cannot fail
reverse level numbering Gst from the top to the bottom
Est ← Est ∪ (s, t) // add st-edge

// Gst is now an st-graph

TOPSORT(Vst)
compute a planar embedding Est according to Chiba et al. [26]

using the topological sorting as an st-ordering

El ← CONSTRUCT-LEVEL-EMBED(Est, Gst)

return El

Augmenting a level graph G to an st-graph Gst is divided into two phases. After
adding a new source s and a new sink t, in the first phase an outgoing edge is added
to every old sink of G by the application of a modified LEVEL-PLANARITY-TEST
algorithm from level 1 to k. Using the same algorithmic concept bottom up from
level k to 1, an incoming edge is added to every old source of G in the second phase.
To add these edges without violating level planarity, every PQ-leaf representing a
sink in G is replaced with a sink indicator as a leaf in its corresponding PQ-tree.
This indicator is ignored throughout the application of the algorithm. If all siblings
of a node are ignored, its parent is ignored, too. Thus entire PQ-trees can be
ignored. Sink indicators are removed either together with the leaves representing
the incoming edges of some vertex w ∈ V l, l > j, where j is the current level, or they
are still left in the final PQ-trees. In the first case vertices which are represented by
sink indicators are connected to w after its reduction by the subsequent REPLACE
on w. In the second case they are connected to t at the end of the augmentation
phase. Sink indicators in PQ-trees representing a v-singular form are connected to
v if they are inserted into an inner face above v.

3.5. Straight-Line Drawings 31

Algorithm 3.6 computes an st-embedding Est according to the technique of Chiba
et al. [26] using a topological sorting of the augmented graph as the st-numbering.
The algorithm CONSTRUCT-LEVEL-EMBED computes a level planar embedding
El of G from the planar embedding Est. For this it traverses the graph with DFS from
t and proceeds from every visited vertex v to the unvisited neighbour w on a smaller
level that appears first in the clockwise ordering of v’s adjacency list in Est. Initially,
all levels in El are empty. If a vertex w 6∈ {s, t} is visited, it is appended at the end
of the ordered list of the vertices assigned to φ(w), i. e., at the end of El[φ(w)]. Since
the DFS starts at t and uses only edges to vertices with a smaller st-number, the
DFS in Chiba’s method ENTIRE-EMBED in Algorithm 2.2 extending the obtained
directed upward embedding Eu into a complete and undirected st-embedding Est can
be omitted.

In order to achieve linear running time a search for sink indicators which can be
considered for augmentation must be avoided. But sink indicators must be treated
correctly by merge operations. Therefore a new ignored node type called contact
is introduced in the PQ-trees during the merge operations B and C. The contacts
store which sinks have to be augmented if the newly introduced Q-node is inserted
into its parent Q-node by an application of a template later in the algorithm. For
details see [95, 97, 112].

3.5 Straight-Line Drawings

It is clear that every proper level planar graph has a straight-line drawing. Moreover,
Eades, Feng, and Lin have shown in [51, 53] that every level planar graph, even with
long edges, has a straight line drawing. Further, they have presented anO(|V |2) time
algorithm for computing such a drawing from a level planar embedding. However,
the drawings produced by this algorithm require up to exponential area.

32 Chapter 3. Level Planarity

4
Track Planarity

Next we generalise level planar graphs to obtain an even larger class of hierarchical
graphs for which hierarchically planar drawings can be generated efficiently. We
introduce track graphs, where edges connecting consecutive vertices on the same
hierarchical level are allowed.

This generalisation is similar to the extension of strictly upward drawings of
binary trees to upward drawings. In strictly upward drawings the edges are strictly
monotone, whereas in upward drawings horizontal edges are also allowed. It is
well known [38] that Θ(|V | log |V |) is the upper and lower bound for the area of
strictly upward drawings of binary trees while only O(|V |) area is needed for upward
drawings [72].

4.1 Definition of Track Planarity

A k-track graph G = (V,E ∪ E ′, φ) is a k-level graph with additional edges E ′ ⊆
{ (u, v) | u, v ∈ V, φ(u) = φ(v) } on the same level (track 1). It is k-track planar if
there are linear orderings ≤i, 1 ≤ i ≤ k, of the vertices on each level such that edges
are drawn as weak monotone curves without edge or vertex intersections. Thus in
a track planar embedding El = (≤i)1≤i≤k all edges (u, v) ∈ E ′ connect consecutive
vertices on the same level i = φ(u), i. e., u ≤i v implies ∀t ∈ V i − {u, v} : ¬(u ≤i

t ≤i v). Figure 4.1 shows a 3-track planar graph and a track planar drawing. Note
that an additional edge (6, 8) is not allowed because it violates edge monotony or
planarity by overlapping edges.

1The term “track” stems from the two layer planarisation approach of [61, 62]. However, these
papers consider straight line drawings, which is not guaranteed here, especially under the presence
of long edges.

33

34 Chapter 4. Track Planarity

1

3

2 1 3

6 7 8

0

2 4

5

(a) A 3-track planar graph

1

3

2 1 3

6

4

578

0

2

(b) A 3-track planar drawing of Fig-
ure 4.1(a)

Figure 4.1. A track planar graph and a track planar drawing of it

Di Giacomo [43, Chapter 6–8] describes families of graphs which admit a 3-
dimensional straight-line track planar drawing, see Figure 4.2 for an example. Con-
trary to our track graphs, the vertices are not preassigned to the tracks. Further,
there no three distinct tracks are allowed to be co-planar, i. e., no three tracks are
allowed to be drawn on a plane. All tracks are parallels of the x-axis. Particularly,
Di Giacomo examines upper and lower bounds of the track number which is the
minimum number of the tracks needed for a 3-dimensional straight-line track planar
drawing.

1

3

2

4

Figure 4.2. The 3d track planar graph of [43, p. 100]

However, we consider 2d-drawings of track graphs with a given partition of the
vertices into tracks. All tracks are parallels on the xy-plane.

Remark 4.1. For a k-track graph G:

G is k-level planar ⇒ G is k-track planar ⇒ G is planar.

4.2 Reduction to Level Planarity

Our basic idea for solving the track planarity problem is a linear time reduction
to level planarity. We transform the track graph G = (V,E, φ) into a level graph
G′ = (V ′, E ′, φ′) such that G′ is level planar if and only if G is track planar. After
initialising V ′ with V and E ′ with E we triple the number of levels by defining
φ′(v) = 3φ(v) − 1 for all v ∈ V ′. Then every horizontal edge e = (u, v) ∈ E ′

4.2. Reduction to Level Planarity 35

with φ′(u) = φ′(v) is replaced by a diamond subgraph, see Figure 4.3. Two new
vertices ve and v′e on the two adjacent levels are introduced and are connected to
both end vertices of e. Afterwards, e is removed from E. We obtain |V ′| ∈ O(|V |)
and |E ′| ∈ O(|E|). The transformation preserves planarity and the embedding of
the graph.

u vi
e

(a) A horizon-
tal edge

u v3 -1i

3 -2i

3i

v
e

v
0

e

(b) A diamond
for Figure 4.3(a)

Figure 4.3. Transformation of the horizontal edges into diamonds

Example 4.1. Figure 4.4 shows the transformation of a 3-track graph into an equiv-
alent 9-level graph which contains two diamond chains. Note that the new vertices
are on levels which do not contain original vertices and vice versa.

1

3

2 1 3

6 7 8

0

2 4

5

(a) A 3-track graph

1

3

2

4

0

1 2 3

6

4

5 7 8

5

7

6

8

9

(b) The 9-level transformation
of Figure 4.4(a)

Figure 4.4. Example of a track graph transformed into a level graph

Theorem 4.1. Let G be a k-track graph and G′ its transformation. Then

G is k-track planar⇔ G′ is 3k-level planar.

Proof. Since isolated vertices affect neither track nor level planarity, we consider
only graphs not containing isolated vertices.

36 Chapter 4. Track Planarity

For the only if direction let G = (V,E, φ) be k-track planar. Thus there exists a
k-track planar embedding El of G. We construct an embedding E ′l of G′ = (V ′, E ′, φ′)
from El by tripling the number of levels and by defining ≤′

3i−1=≤i, 1 ≤ i ≤ k. The
remaining relations ≤′

3i−2 and ≤′
3i are given by ordering the dummy vertices on levels

3i−2 and 3i according to their adjacent non-dummy vertices. The two new vertices
of diamonds are always placed with respect to horizontal ordering between the end
vertices of the corresponding horizontal edge e without violating planarity. Suppose
that E ′l is not level planar. Then at least two edges e1 and e2 cross in E ′l . If they are
both non-diamond edges, they also cross in El, a contradiction to the track planarity
of El. If exactly one of them is a diamond edge, suppose e2, then e1 crosses the
horizontal edge in El due to which e2 was introduced. Again a contradiction to the
track planarity of El. If both edges are diamond edges, we obtain a contradiction
again because their corresponding horizontal edges overlap in El which is not allowed
for track planar embeddings. Since E ′l is level planar, G′ is level planar, too.

For the if direction let G′ be 3k-level planar. Thus G′ has a 3k-level planar
embedding E ′l . In E ′l the inner face of every diamond is empty. Apart from isolated
vertices, which don’t exist at this step, no vertex can be inside without violating
level planarity, see Figure 4.5.

Figure 4.5. No vertex can be inside a diamond

Thus it is possible to draw an edge in G′ between the two original vertices of
every diamond without violating planarity. Every level i with i 6≡ 2 (mod 3) and
all vertices on that level i together with their adjacent edges are deleted. Deletions
never violate planarity. After renumbering the levels from 1 to k we obtain a k-track
planar embedding El of G. �

We summarise the results of this chapter: Due to Theorem 4.1, the given trans-
formation can be used to reduce track planarity to level planarity in linear time.

Theorem 4.2. There is an O(|V |) time reduction of track planarity to level pla-
narity.

4.3 Algorithm

From Theorem 4.2 we obtain a straightforward track planarity testing algorithm.
We use the method TRANSFORM for transforming G into G′ and apply any level
planarity test afterwards. Because TRANSFORM runs in linear time, the overall

4.3. Algorithm 37

algorithm has the same complexity as the embedded level planarity test, O(|V |) time
for the JLM algorithm and up to O(|V |4) time for Healy and Kuusik’s algorithm
for non-proper graphs. Note that our construction has to be made proper for usage
with the algorithm of Healy and Kuusik.

Since the transformation of horizontal edges to diamonds and the shrinking of
diamonds to edges preserves the embedding, we can use Algorithm 4.1 to obtain a
track planar embedding El of a track planar graph G.

Algorithm 4.1. TRACK-PLANAR-EMBED

Input: A track graph G = (V,E, φ)

Output: A track embedding El if G is track planar, ∅ otherwise

remove all isolated vertices from G
G′ ← TRANSFORM(G)

El ← LEVEL-PLANAR-EMBED(G′)
if El = ∅ then

return ∅
end

remove all levels i from El for which i 6≡ 2 (mod 3)
renumber the levels from 1 to k
insert each removed isolated vertex v of G at the end of El[φ(v)]

in arbitrary order

return El

Again, the running time of the level embedding algorithm, O(|V |) time for JLM’s
up to O(|V |6) time for Healy and Kuusik’s, dominates the overall complexity. In
order to prevent occurrences of isolated vertices within inner faces of diamonds we
handle these in a special way. They are removed at the beginning and reinserted in
arbitrary order afterwards. Placing them at the end of their respective ordered level
in El does not violate planarity in any case.

Corollary 4.1. The algorithm TRACK-PLANAR-EMBED returns a valid track
planar embedding if and only if the input track graph G is track planar.

Proof. Assuming that the level embedding algorithm applied in Algorithm 4.1 re-
turns a valid level embedding E ′l , we obtain a valid vertex ordering of each level i
with 2 ≡ i (mod 3). These are exactly the vertex orderings of each level in a valid
track planar embedding El of G according to the proof of Theorem 4.1. �

38 Chapter 4. Track Planarity

5
Radial Level Planarity

Our innovation in this chapter is a generalisation of level planarity to radial level
planarity. In contrast to Chapter 3, the vertices are not drawn on k horizontal lines
but on k concentric circles lj = { (j cos θ, j sin θ) | θ ∈ [0, 2π) }, 1 ≤ j ≤ k. Such
drawings extend the radial tree drawings of Eades [49, 50], where the levels of the
vertices are given by their depth. Another motivation for radial level planar graphs
are radial drawings of social networks in [18, 19], where the vertices are constrained
to lie on radial levels according to their centrality. This maps structural centrality
to a geometric one and thus a traditional sociogram [121] is obtained. There are also
the ring diagrams introduced by [129] which, e. g., eliminate some disadvantages of
the Hasse diagrams1.

5.1 Definition of Radial Level Planarity

A k-level graph is radial k-level planar if there are orderings (≤j)1≤j≤k of the ver-
tices on each radial level such that the edges can be drawn as strictly monotone
curves from inner to outer levels without crossings. This ensures that edges between
two levels do not cross inner level lines. Thus the drawing is a so-called outward
drawing . Every level planar embedding can be transformed into a radial level planar
embedding by connecting the ends of each level to concentric circles. This introduces
new possibilities to add edges as monotone curves from the end of one level to the
beginning of another. These cut edges cross a ray from the centre of the concentric
levels to infinity through the connection points of the level lines exactly once. Hence,
there are two directions for routing cut edges around the centre. As an extension to
level planar embeddings, radial level planar embeddings need additional information

1A Hasse diagram is an an upward drawing of a DAG without reflex and transitive edges.

39

40 Chapter 5. Radial Level Planarity

about cut edges and their direction. Figure 5.1(b) shows a radial level planar draw-
ing of the graph in Figure 5.1(a) which is not level planar. The edge (1, 6) crosses
the ray and thus is a clockwise cut edge, following its implicit direction from lower
to higher levels. Another simple example is a levelled K2,2 which is proper radial
2-level planar and not proper 2-level planar.

1

3

2

0

1 2 3

4

4 7

5 6

(a) A radial 3-level
planar graph

234 1 0

1

4

2

5

3 6

7

(b) A radial level planar drawing of
Figure 5.1(a)

6

1

3

4

0

7

4

2
1

7

2

5

3

(c) A 3d-drawing of Fig-
ure 5.1(a) on a cylinder

Figure 5.1. A radial level planar graph with radial level planar drawings

Figure 5.1(c) is a 3-dimensional planar drawing of Figure 5.1(a). To obtain such
a drawing, which is another nice representation of radial level planar graphs, one can
imagine putting the drawing of Figure 5.1(c) on a cylinder. This is different to the
representation of graphs on a cylinder in [150], where visibility representations are
considered. The opposite direction is a projection onto the plane where the radii of
the level lines grow by a constant factor. Note that our radial drawings are different
to the recurrent hierarchies of Sugiyama et al. [148], where the levels are drawn as

5.1. Definition of Radial Level Planarity 41

consecutive rays emanating from the centre, see Figure 5.2 for an example. There
(directed) edges are allowed from the bottom levels to the top levels. In analogy to
Figure 5.1(c), such graphs can be be drawn in three dimensions with horizontal level
lines on a horizontal cylinder where the “cut” between the last and the first level is
a horizontal line, too. However, in the following only 2d-drawings and concentric
levels are considered.

1 5

3

7

2 4

68

Figure 5.2. The recurrent hierarchy from the cover page of Kaufmann and Wagner
[105]

Figure 5.3 shows a minimum 2-level graph which is not radial level planar. It is a
levelled variant of K2,3 with the two vertices fixed to one level and the three vertices
fixed to another level. Note that there are also radial level non-planar graphs which
do not contain a cycle, cf. Section 7.3.1.

3 4 5

21

(a) A levelled K2,3

1

4

2

5

3

(b) A radial draw-
ing of Figure 5.3(a)

Figure 5.3. A minimum radial level non-planar graph

42 Chapter 5. Radial Level Planarity

Remark 5.1. For a k-level graph G:

G is level planar ⇒ G is radial level planar ⇒ G is planar.

5.2 Related Work

It is well known that every planar graph has a concentric representation based on
a BFS traversal [155]. There the vertices are placed on concentric circles and the
edges are routed as not necessarily monotone curves without crossings. Here we take
the opposite view (for monotone edge routing) and consider the problem whether
a graph with a given partition of its vertices on k concentric levels is radial k-level
planar. Another type of radial drawings are the circular visibility layouts of [91],
which also do not accommodate a predefined vertex partition.

In addition to level planarity, the concept of fixed parameter tractability can also
be applied to radial level planarity. Dujmović et al. [48] have shown that the radial
k-level planarity problem is fixed parameter tractable. However, k must be bounded
by a constant. As a consequence an O(|V |) running time is obtained for a fixed
number of levels, but the O-notation hides large constants, i. e., 232k3

is an upper
bound even if the levelling is not given. We pursue a direct approach and improve
the result of Dujmović et al. to linear time for an arbitrary number of levels by
giving a practical algorithm based on the JLM algorithm described in Section 3.3.

5.3 Radial Level Planarity Testing

Our extensions made in this section are the new data structure PQR-trees with
advanced merging and the detection of nested rings. But before we explore that, we
establish some fundamental properties of radial level planar graphs.

5.3.1 Fundamental Properties

First we elaborate distinctions between level and radial level planar graphs. Our
first result is obvious.

Lemma 5.1. A radial level planar graph is level planar if there are no cut edges.

Proof. The correctness follows directly from the transformation of a level planar
graph into a radial planar graph in Section 5.1. �

Next consider connectivity. The JLM algorithm relies on the fact that a level
graph is level planar if and only if each connected component is level planar. There-
fore it tests each connected component separately, which is no restriction since sep-
arate components can be placed next to each other. This is no longer true for radial
level planarity as Figure 5.4(c) illustrates. There two disjoint ovals interleave.

5.3. Radial Level Planarity Testing 43

1

2

1

2

34

(a) A radial level pla-
nar component

1

2

56

7

8

(b) A radial level pla-
nar component

1

2

5

1

6

2

3

7

4

8

(c) Figures 5.4(a) and
5.4(b) combined

Figure 5.4. Two radial planar connected components and a radial level non-planar
graph which is a combination of them

Obviously a graph is radial level planar if it consists only of level planar compo-
nents. Hence, we must consider those components of a level graph that are radial
level planar and level non-planar.

Definition 5.1 (Ring). A ring is a biconnected component of a level graph which
is radial level planar and not level planar. A level graph containing a ring is called
a ring graph.

It is not immediate whether a biconnected component is a ring. We will see
later how rings are detected. Nevertheless, we investigate some properties of rings
first. The graph in Figure 5.5(a) consists of four biconnected components with a
darker shaded ring. Observe that a component can and sometimes must be nested in
another one. This occurs if a component contains a ring. Clearly, a ring must contain
a cycle, but a cycle does not necessarily induce a ring. In fact every biconnected
component with at least three vertices contains a cycle, but whether it is a ring
depends on the levelling. If vertex 14 in Figure 5.5(a) was on level 1, this graph
would not contain a ring because according to the ray in Figure 5.5(b) there are no
cut edges and every component is level planar.

Lemma 5.2. If a level graph G does not contain a ring, the following are equivalent:

1. G is radial level planar.

2. G is level planar.

3. Each connected component of G is level planar.

4. Each connected component of G is radial level planar.

Hence, if a graph does not contain a ring, we can use JLM’s level planarity testing
algorithm to test for radial level planarity. For ring graphs the algorithm needs an
extension.

44 Chapter 5. Radial Level Planarity

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16 17

18

19

20

21

22

23

24

25

0

2

3

4

1

5

(a) A ring graph

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16 17

18

19

20

21

22

23

24

25

0

2

3

4

1

5

(b) Not a ring graph

Figure 5.5. Rings depend on the levelling

5.3.2 Properties of Rings

Before we describe how our algorithm stores the admissible permutations of the
vertices on each radial level, we discuss some more properties of rings.

Lemma 5.3. In every radial level planar embedding of a ring graph the centre of
the concentric levels lies in an inner face. This face is called the centre face.

Proof. Suppose there exists a ring graph G that has a radial level planar embedding
with the centre lying in the outer face. Then there is a ray from the centre to
infinity which crosses no edges. Hence, there are no cut edges and every biconnected
component of G is level planar. Thus G does not contain a ring contradicting the
assumption. �

Lemma 5.4. A ring contains at least four vertices and four edges, and there is a
ring of that size.

Proof. A ring is not level planar. Thus every level embedding contains at least two
crossing edges (u, v) and (w, x) with mutually different vertices u, v, w, and x. To
ensure biconnectivity at least four edges are needed. The K2,2 on two levels is a
minimum ring , see Figure 5.4(a). �

Another important property of rings is the nesting, which is determined by some
characterising parameters:

Definition 5.2 (Ring extremes). For a k-level graph G containing a ring R let
αR and δR be the minimum and maximum levels of R containing a vertex of R,

5.3. Radial Level Planarity Testing 45

respectively. Let the inner radius βR of R be the maximum level with a vertex of the
centre face of R in any radial level planar embedding of G, and let the outer radius
γR of R be the minimum level with a vertex of the outer face of R in any radial level
planar embedding of G.

These parameters are illustrated by Figure 5.6. The minimum level αR and the
maximum level δR of a ring are independent of the embedding because they are
given by the levelling of the graph. This is not necessarily true for the inner radius
βR and the outer radius γR. This can be seen in Figure 5.6 by moving vertex 5 to
the right and by moving vertex 10 to the left.

1

3

4

5

6

2

1

2
3

457

8

9

6

7

8

10

Figure 5.6. Extreme levels of a ring. αR = 2, βR = 6, γR = 3, δR = 8

Definition 5.3 (Level optimal). A radial level planar embedding of a ring R is
level optimal if βR and γR are the extremes of the centre face and of the outer face
in any radial level planar embedding of R.

Our algorithm always constructs level optimal embeddings, as will be shown later
by Lemma 5.11.

Lemma 5.5. Every level planar graph has an embedding that is level optimal for
each contained ring.

Lemma 5.6. Every ring R spans at least two levels and its characterising parameters
relate by δR > γR ≥ αR and δR ≥ βR > αR.

Proof. The end vertices of an edge always lie on different levels since inner level
edges are not allowed. By Lemma 5.4 a ring always contains edges and thus has
vertices on at least two levels. Therefore the four relations follow directly from the
definitions. �

46 Chapter 5. Radial Level Planarity

Lemma 5.7. Let G be a level graph consisting of two disjoint rings R and S. G is
radial level planar if and only if there are radial level planar embeddings of R and S
satisfying

(αS > γR and βS > δR) or (αR > γS and βR > δS),

i. e., R can be embedded in the centre face of S or vice versa.

Proof. For the only if direction let G be a radial level planar graph consisting of two
disjoint rings R and S. Since subgraphs of radial level planar graphs are radial level
planar, R and S are radial level planar. Each ring is biconnected and encloses the
centre according to Lemma 5.3. Thus in any radial level planar embedding one ring
is completely contained within the centre face of the other. Let R be contained in
S. If αS ≤ γR or βS ≤ δR then the contour CS of the centre face of S intersects the
contour CR of the outer face of R. CR and CS are cycles, each with one inner face
containing the centre. For their computation we assume w. l. o. g. that G and thus
both rings are proper. The ordering of incident edges around a vertex is determined
by the ordering of the adjacent edges in the radial level planar embedding of G
together with its information about cut edges and their direction. This allows the
traversal of the contour of each face and thus the computation of CR and CS. Assume
αS ≤ γR. The case βS ≤ δR is symmetric. Then the vertex v of CS which defines
αS lies in the inner face of CR because γR defines the least level of a vertex u of
CR. S has a vertex w in the outer face of CR. Otherwise S would be contained in
R. Since S is connected, there exists a path P = v →∗ w. P crosses CR, which is
a contradiction to the radial level planarity of G. This is also true in the extreme
case αS = γR. Vertex v cannot be placed in the outer face of CS since both incident
edges of u in CR connect u with vertices on a higher level. For an illustration see
Figure 5.7.

u v

C
R

C
S

® °=
S R

Figure 5.7. Two intersecting contour cycles CR and CS with αS = γR

For the if direction let G be a level graph consisting of two disjoint radial level
planar rings R and S with αS > γR and βS > δR. The case αR > γS and βR > δS is
symmetric. We show the radial level planarity of G by constructing an embedding
ER∪S

l of G which combines the radial level planar embeddings ER
l and ES

l of R and
S. These embeddings have only the levels between αS and δR in common, whereas
the others remain unchanged. Thus we copy ES

l completely and ER
l from level 1 to

5.3. Radial Level Planarity Testing 47

αS − 1 to ER∪S
l maintaining the original vertex orderings. Since αS > γR all vertices

of S are on higher levels than γR and thus can be placed beyond the contour of the
outer face of R. Since βS > δR all vertices of R fit inside the contour of the centre
face of S. Observe that it may be necessary to rotate and squeeze R, so that all
vertices fit inside the largest cavity of S and vice versa.

It remains to show where to insert the vertices of R from level αS to δR between
the vertices of S in ER∪S

l . We assume that R and S are proper and that in ER
l ,

ES
l , and ER∪S

l the position of the ray among the vertices of each ordered level is
implicitly after the last vertex. Let CR be the contour of the outer face of R and
let CS be the contour of the centre face of S. They are computed as described in
the only if part of this proof. Thus we know for each edge whether it is an edge on
one of the two contours or not. First we rotate R: Let u be the vertex of R which
defines γR. It has exactly two incident edges (u, a) and (u, b) in CR. The levels of
a and b relate as φ(a) = φ(b) = γR + 1. We rotate the level γR + 1, i. e., move
vertices of ER

l [γR +1] from the front to the back or vice versa, such that exactly one
of the edges (u, a) and (u, b) is a cut edge. After this intersection, the ray leaves R
to R’s outer face. From this point outwards no further intersection of the ray with
an edge is necessary. We rotate the levels γR + 2 to δR in ascending order such that
there are no edges which cross the ray. Thereby it may be possible to run into a
local maximum since CR is not necessarily monotone and thus a rotation of one of
the next levels without producing a cut edge is impossible, see Figure 5.8(a). To
avoid this we use a backtracking strategy. Now, analogously to R, we rotate S: Let
v be the vertex of S which defines βS. It has exactly two incident edges (v, c) and
(v, d) in CS. The levels of c and d relate as φ(c) = φ(d) = βS − 1. We rotate the
level βS − 1 such that exactly one of the edges (v, c) and (v, d) is a cut edge. After
this intersection, the ray enters the centre face of S. From this point inwards the
ray needs not to cross any more edges of S. We rotate the levels βS − 2 to αS in
descending order such that there are no edges which cross the ray. Again, we need
a backtracking strategy, here to get out of local minima, see Figure 5.8(b). The
described operations are done before copying ES

l and ER
l from level αR to αS to

ER∪S
l . At the end, the ordered sets of the remaining levels of ER

l are inserted at the
back of the corresponding levels of ER∪S

l . �

The nesting of disjoint rings is illustrated in Figure 5.9. This is an essential
difference to disjoint components of level planar graphs, which are usually placed
side by side and which can be treated separately.

5.3.3 R-Nodes

We now come to the main results of this chapter and extend the JLM algorithm to
test for radial level planarity, see Algorithm 3.1. The input graph is traversed in a top
down sweep, which now becomes a wavefront sweep outwards from the centre. The
processed part of the graph is represented by a collection of trees which is denoted
by T . We need a new data structure PQR-trees to deal with rings. PQR-trees store

48 Chapter 5. Radial Level Planarity

u

a

b

C
R

°
R

±
R

R

(a) A local maximum while traversing a path from u in
CR outwards

C
S ¯

S

S

®
S

c

d

v

(b) A local minimum while traversing a path from v in CS

inwards

Figure 5.8. The rotations to avoid cut edges may fall for local extrema

5.3. Radial Level Planarity Testing 49

1

2

3

4

5

6 7

1

3

4
5

2

(a) The inner ring R, γR = 1, δR = 4

89

10

1112

13

1

3

4
5

2

(b) The outer ring S, αS = 2, βS = 5

1

3

4
5

2

8 1112 9

10

13

2

5

4

1 3

7 6

(c) R nested in the centre face of S

Figure 5.9. Nesting of rings

50 Chapter 5. Radial Level Planarity

the admissible edge permutations of radial level planar graphs. They are based on
PQ-trees and contain a new “R” node type for the rings. PQR-trees are not related
to SPQR-trees that are used for example in incremental planarity testing [41]. R-
nodes are similar to Q-nodes. Their new properties express the differences between
rings and other biconnected components. An R-node is drawn as an elliptical ring.
The admissible equivalence operations on an R-node are reversion, i. e., inverting
the iteration direction of its children in the same way as for Q-nodes, and a new
one, rotation. Since rings always contain the centre, it is possible to rotate a ring.
This corresponds to rotating the graph around the centre and moves a subsequence
of the children of the R-node from the beginning of the children list to its end, or
vice versa, maintaining their relative order. See Figure 5.10 for an example. This
happens implicitly on circular lists. Therefore R-nodes (as well as Q-nodes) can be
efficiently implemented with the improved symmetric list data structure explained
in Appendix A. This is an encapsulated data structure where insertions, reversions
and rotations can be done in constant time. This is crucial for the linear running
time of the test.

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

T
1

T
i

T
i+1

T
t

(a) An R-node with chil-
dren T1, T2, . . . , Tt

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

T
1

T
i

T
i+1

T
t

(b) Figure 5.10(a) after
rotation

Figure 5.10. Rotation of an R-node

Lemma 5.8. During the radial planarity test the admissible edge permutations can
be stored such that R-nodes only occur as the root of PQR-trees.

Proof. At any time in the wavefront sweep the leaves of a PQR-tree represent edges
to vertices of the unvisited part of the graph. When a ring R is encountered, radial
planarity implies that there are no such edges left originating from a component
nested within the centre face of R. Otherwise, an edge would cross a cycle of R
which encloses the centre. Hence, it is sufficient that R-nodes never have siblings
and thus they only occur at the root of PQR-trees. This follows from the definition
of PQ-trees, since P-nodes or Q-nodes must have at least two children, see [13,
p. 339]. The same holds in PQR-trees. A P-node encodes arbitrary permutations
of its children. If it has a single child, there is only one permutation as it is the
case if the child is on the position of its P-parent. The same argument holds for a
Q-node encoding reversion of its children. As we see later, R-nodes can have a single
child, and thus chains of R-nodes representing nested rings would be possible. This
is unnecessary because it suffices to keep only the outermost ring in the PQR-tree,

5.3. Radial Level Planarity Testing 51

since the embedding of the inner components can be left unchanged. The contours
of the inner rings are cycles, there are no crossings, and they are only connected via
cut vertices to the next outer ring. �

5.3.4 New Templates

For the R-nodes twelve new templates are needed to implement REDUCE on PQR-
trees, some of them being analogous to Q-node templates. They are given in Fig-
ures 5.11 to 5.22. Similar to P0 and Q0, R0 is actually not used because we initialise
the bottom up strategy of REDUCE only with full leaves. REDUCE has to test the
templates in the order P1, . . . , P9, Q1, . . . , Q7, R1, . . . , R4. The descriptions of
the templates assume implicitly that previously tested templates do not fit and that
there are at least two children of every P-node and Q-node.

5.3.4.1 P-Templates

Template P7 The node X is a P-node and not the root or the pertinent root. It
has exactly two partial Q-nodes X ′ and X ′′ and an arbitrary number of other empty
and full nodes as children. Then all empty children of X are grouped by the empty
P-node X, which is attached as a child at the empty end either of X ′ or X ′′. All full
children of X are grouped by a new full P-node, which is attached as a child at the
pertinent end of either X ′ or X ′′. Afterwards, X ′ and X ′′ are concatenated into one
boundary partial Q-node. Observe that P7 is the variant of P6 for nodes different
to the pertinent root.

not root−−−−−−−−−−→
not pertinent root

Figure 5.11. Template P7

Template P8 The node X is a P-node and the root. As a consequence X is also
the pertinent root. It has exactly one boundary partial Q-child X ′ and an arbitrary
number of other full nodes as children. It has no empty children. Then all full
children of X are grouped by the full P-node X, which is attached to X ′ as a child
at an arbitrary end of X ′. Afterwards, X is replaced by a new partial R-node which
becomes the pertinent root.

root−−→

Figure 5.12. Template P8

52 Chapter 5. Radial Level Planarity

Template P9 The node X is a P-node and not the root or the pertinent root.
Besides, this template has the same pattern as P8. X has exactly one boundary
partial Q-child X ′ and an arbitrary number of other full children. X has no empty
children. Then all full children are grouped by the full P-node X, which is attached
at an arbitrary end of X ′ as a child. X ′ remains boundary partial.

not root−−−−−−−−−−→
not pertinent root

Figure 5.13. Template P9

5.3.4.2 Q-Templates

Template Q4 The node X is a Q-node and the root. As a consequence X is
also the pertinent root. It has at most two partial Q-nodes X ′ and X ′′ and an
arbitrary number of other empty or full nodes as children. X ′ and X ′′ cannot be
the only children, because then template Q3 would apply. X ′ and X ′′ are located
at the beginning and at the end, respectively, of X’s consecutive sequence of empty
children. Thus all empty children are enclosed between them. Then the children of
X ′ and X ′′ are attached to X as children. X is afterwards replaced by a new partial
R-node which becomes the pertinent root. Observe that Q4 is the outwards turned
variant of Q3.

root−−→

Figure 5.14. Template Q4

Template Q5 The node X is a Q-node and not the root or the pertinent root. As
a consequence it is not the root. Besides, this template has the same pattern as Q4.
X has at most two partial Q-nodes X ′ and X ′′ and an arbitrary number other empty
and full nodes as children. The partial Q-children are located at the beginning and
at the end, respectively, of X’s consecutive sequence of empty children. Thus all
empty children are enclosed between them. Then the children of X ′ and X ′′ are
attached to X as children. X is marked as boundary partial.

not root−−−−−−−−−−→
not pertinent root

Figure 5.15. Template Q5

5.3. Radial Level Planarity Testing 53

Template Q6 The node X is a Q-node and the root. As a consequence X is also
the pertinent root. It has exactly one boundary partial Q-node X ′ and an arbitrary
number of other full nodes as children. X has no empty children. Then, after the
children of X ′ are attached to X as children, X is replaced by a new partial R-node
which becomes the pertinent root.

root−−→

Figure 5.16. Template Q6

Template Q7 The node X is a Q-node and not the root or the pertinent root.
Besides, this template has the same pattern as Q6. X has exactly one boundary
partial Q-node X ′ and an arbitrary number of other full nodes as children. It has
no empty children. Then, after the children of X ′ are attached to X as children, X
is marked as boundary partial.

not root−−−−−−−−−−→
not pertinent root

Figure 5.17. Template Q7

5.3.4.3 R-Templates

Template R0 The node X is an R-node and thus the root. Besides, this template
has the same pattern as Q0. X has only empty children. X remains empty. There
are no structural changes in the PQR-tree.

root−−→

Figure 5.18. Template R0

Template R1 The node X is an R-node and thus the root. Besides, this template
has the same pattern as Q1. X has only full children. Then all children of X are
grouped by a new full Q-node Y , which is attached to X as a child. X remains
empty and Y becomes the pertinent root.

root−−→

Figure 5.19. Template R1

54 Chapter 5. Radial Level Planarity

Template R2 The node X is an R-node and thus the root. Besides, this template
has the same pattern as Q2. X has at most one partial Q-node X ′ and an arbitrary
number of other empty and full nodes as children. X ′ is located at the beginning
of its consecutive pertinent sequence. Then, after the children of X ′ are attached to
X as children, X is marked as partial and X becomes the pertinent root.

root−−→

Figure 5.20. Template R2

Template R3 The node X is an R-node and thus the root. Besides, this template
has the same pattern as Q3. X has at most two partial Q-nodes X ′ and X ′′ and an
arbitrary number of other empty and full nodes as children. X ′ and X ′′ are located
at the beginning and at the end, respectively, of its consecutive pertinent sequence.
Thus all full children are enclosed between them. Then, after the children of X ′

and X ′′ are attached to X as children, X is marked as partial and X becomes the
pertinent root.

root−−→

Figure 5.21. Template R3

Template R4 The node X is an R-node and thus the root. Besides, this template
has the same pattern as Q7. X has exactly one boundary partial Q-node X ′ and an
arbitrary number of other full nodes as children. It has no empty children. Then,
after all children of X ′ are attached to X as children, X is marked as partial and X
becomes the pertinent root.

root−−→

Figure 5.22. Template R4

A new R-node is generated only by the templates P8, Q4, or Q6 illustrated in
Figures 5.12, 5.14, and 5.16. The displayed children are optional, as long as the
child sequence of the resulting R-node starts and ends with pertinent children and
has at least one empty child. Obviously, in these cases it is not possible to apply any
of the standard templates, i. e., the graph is not level planar anymore. An R-node
is created only when needed, i. e., if newly encountered edges transfer a represented
biconnected component from level planar into a ring. By Lemma 5.8 templates P8,

5.3. Radial Level Planarity Testing 55

Q4, and Q6 may only be applied to the root of a PQR-tree. This is different from
the restriction that some PQ-tree templates may only be applied to the pertinent
root.

The meet level between two children of an R-node which are direct siblings or
are both endmost is defined and maintained analogously to the meet levels between
children of a Q-node, cf. p. 27. To determine which graph components fit below a
ring component we define the following:

Definition 5.4 (minML). For an R-node X with children X1, X2, . . .Xt let

minML = min{ML(Xi, Xi+1) | 1 ≤ i ≤ t,Xt+1 = X1 }.

To treat patterns with an R-node as the root it is necessary to provide new
templates R0–R4, shown in Figures 5.18 to 5.22, that are similar to the templates
Q0–Q3 and Q6. Before an R-template can be applied it may be necessary to rotate
the R-node. R0, R2, R3, and R4 are the straightforward transformations of Q0, Q2,
Q3, and Q6, respectively. For technical reasons we introduce a new pseudo Q-node
Y in R1 as the parent of all full children. This R-node preserves the information
that the PQR-tree represents a ring component and allows a later computation of
minML, i. e., the least level on which a component fitting below this ring can have
a vertex. The single meet level ML(Y, Y) at the root of the replacement is set to
minML of the R-root X of the pattern, which can be done after an appropriate
rotation of X. This rotation is not done explicitly because REPLACE will remove
the pertinent subtree anyway.

In P8 and Q6 a Q-node may be boundary partial , i. e., it may have pertinent
children at the boundaries, enclosing some empty children in the middle. In radial
level planar graphs this can occur if the root of the PQR-tree is already an R-node
or becomes an R-node during the current reduction step and thus if a rotation is
possible thereafter. Then the front and the back can be connected by cut edges.
Clearly, for that each child of an ancestor of the boundary partial Q-node Z must
be full if it is not on the path from Z to the root. For an example see Figure 5.23. All
pertinent children become children of the R-node and can be made consecutive by a
rotation. If no template matches for a boundary partial Q-node during REDUCE,
the graph is not radial level planar, because its PQR-tree contains non-consecutive
pertinent nodes. Observe that the templates prohibit a boundary partial Q-node
being created at the pertinent root, because this always results in a non consecutive
pertinent sequence, except in one special case: Because of R1, an R-root is the only
internal node which may have a single child in a valid PQR-tree. If this single child
later becomes boundary partial and would be the pertinent root during REDUCE,
we must explicitly set the pertinent root to its father R-node to allow the application
of R4 and a rotation thereafter. In contrast, in (level) planarity testing the graph is
immediately rejected as non-planar as soon as a Q-node is known to be boundary
partial because then a consecutive pertinent sequence cannot be formed.

For the boundary partial Q-nodes we must provide the additional templates P7–
P9 and Q5–Q7. P7 is the straightforward transformation of P6 if P6 is not applied to

56 Chapter 5. Radial Level Planarity

Figure 5.23. Iterative merges of boundary partial Q-nodes

the pertinent root. The full children are grouped by a new P-node which is inserted
into the Q-node. It is admissible to place it at either boundary of the Q-node. The
only difference between these two positions is whether or not the edges represented
by the descendant leaves later become cut edges. This holds accordingly for the
new P-node created in P8 or P9. P8 can only be applied to the root, otherwise P9
is applied. Template Q5 is basically the same as Q4 but it treats non-roots. Q4
and Q5 are the inversions of Q3. Templates Q6 and Q7 are used for Q-nodes with
only full children except for one boundary partial child. The former is for the root
and the latter for a non-root. Now we are ready to establish another important
property of R-nodes. Further, we see that no template is destructive because they
are specifically constructed that way.

Lemma 5.9. If an R-node is created, it is preserved until the PQR-tree containing
it is deleted.

Proof. There is no template which destroys or replaces an R-node. Furthermore, R1
ensures that an R-node never becomes full, which means that it is never replaced
by an application of REPLACE. �

Observation 5.1. None of the templates P1, . . . , P9, Q1, . . . , Q7, R0, . . . , R4
destroys radial level planarity.

5.3.5 Merge Operations on PQR-Trees

Since radial level planarity works on graphs which are not necessarily hierarchies,
merges of PQR-trees are needed for the same reason as for PQ-trees. If there is no
R-node, the merge conditions for PQR-trees are essentially the same as those for
PQ-trees described in Section 2.2. Because of Lemma 5.7 merge condition E cannot
be applied if any of the trees has an R-root. As a consequence a merge operation
may fail in contrast to the non-radial case, where condition E is always admissible
if no other condition applies. For PQR-trees with an R-node as root we have to
provide two additional merge conditions. If the root of the guest PQR-tree T v

e is
an R-node then the merge operation fails and the input graph is rejected as radial
level non-planar, see proof of Lemma 5.8. For an R-root X of the host PQR-tree
T v

1 , condition B and C collapse into the new condition CR. This is because R-nodes
can be rotated such that the merge can be done on its interior children. Similarly,
if X is the root of the pattern of condition D and X is an R-node we obtain DR.

5.3. Radial Level Planarity Testing 57

Merge Condition CR The root of T v
e is not an R-node. The node X is an R-node

with ordered children X1, X2, . . . , Xt, X
′ = Xi, 1 < i < t, and ML(Xi−1, Xi) <

LL(T v
e) and ML(Xi, Xi+1) < LL(T v

e). Then replace X ′ with a new Q-node Y with
X ′ and T v

e as children.

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

Y

v

X

X
i 1+

X
tX

0

T
1

v

X
1

X
i 1-

Figure 5.24. Merge condition CR

Merge Condition DR The root of T v
e is not an R-node. The node X is an R-node

with ordered children X1, X2, . . . , Xt, X
′ = Xi, 1 < i < t, and

ML(Xi−1, Xi) < LL(T v
e) ≤ ML(Xi, Xi+1).

Then attach T v
e as a child of X between Xi−1 and Xi. If

ML(Xi, Xi+1) < LL(T v
e) ≤ ML(Xi−1, Xi)

then attach T v
e as a child of X between Xi and Xi+1.

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

Figure 5.25. Merge condition DR

Merge Condition E The node X ′ is the root of T v
1 . X ′ and the root of T v

e are
not R-nodes. Then reconstruct T v

1 by inserting a new Q-node Y as the new root
with X ′ and T v

e as children.

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

v

T
e

v

v

T
1

v

X
0

→
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

vv

Y

X
0

T
1

v

Figure 5.26. Merge condition E

58 Chapter 5. Radial Level Planarity

5.3.6 Nesting of Processed Non-Rings

In level planar graphs separate components can always be placed next to each other
without violating planarity. This is not necessarily true for radial level planar graphs.
If a component of the input graph G contains a ring, it must be checked that each
other component detected so far fits into an inner face of the ring or into its outer
face. First we consider the case that the other components do not contain a ring. For
the efficient execution of the additional checks, the algorithm maintains the lowest
level minLL where an insertion of such a component is necessary.

Definition 5.5 (minLL). A completely processed PQR-tree is a PQR-tree rep-
resenting a component of the graph with no vertices on the current or on higher
levels. minLL = min({LL(T) | T is a completely processed PQR-tree without an
R-root } ∪ {∞}). If there is no completely processed tree T then minLL =∞.

The detection of a processed PQR-tree T works as follows: After every call of
REPLACE-SINGLE we check whether T consists of a single leaf (or of an R-node
with one leaf) and whether the vertex represented by this leaf is a sink of the graph.
As soon as a PQR-tree T is classified as completely processed after REPLACE-
SINGLE, minLL is updated by min{minLL,LL(T)}. All processed PQR-trees are
discarded as in the JLM testing algorithm. It suffices to check whether the compo-
nent C of the completely processed PQR-tree starting at the lowest level fits into an
internal face. For all other processed (non-ring) components there is enough space
to embed them in the same face as C. Inner faces are always closed by a call of
REPLACE-SINGLE for a vertex v. If there is a processed PQR-tree without an
R-root, i. e., if minLL <∞, we check if the newly created inner face starting at the
lowest level can include C. For that we use the same mechanism as JLM do for
v-singular forms and compare minML with the new PML/QML value, see p. 25. If
minLL > PML or minLL > QML, we set minLL = ∞. Otherwise, we need not
care whether another processed component smaller than C and whose PQR-tree
has already been discarded can be nested inside a face without violating planarity.
These will fit later when a face for C is found. If no such face can be found, the
graph is not radial level planar. Recall that a processed PQR-tree with an R-root
cannot be included in this way. Their nesting is described in the next section.

5.3.7 Nesting of Processed Rings

Our algorithm maintains the invariant that at any time while testing a radial level
graph there is at most one PQR-tree TR with an R-root. This is no restriction of
planarity as is described in the following. TR may be processed. A link vertex v
denotes the vertex for which the reduction of all leaves labelled with v transforms the
component represented by the PQR-tree into a ring. At the start of the algorithm
TR is undefined and the invariant is obviously true. As the process continues, it
is maintained as follows: If the algorithm detects a ring for the first time, TR is
defined. It remains defined until the end of the algorithm. However, the tree for TR

5.3. Radial Level Planarity Testing 59

may change. If another PQR-tree T gets an R-root by the application of template
P8, Q4 or Q6 during the reduction of a link vertex v, we proceed as described by
Algorithm 5.1.

Algorithm 5.1. TREAT-NEW-RING
Input: A PQR-tree T of a newly encountered ring, the link vertex v,

TR, and minLL

Output: A Boolean value for radial level planarity

if TR 6= NULL then
if TR is not completely processed and TR is not v-singular then

return false
end
minML← min{ML between the children of the root of TR}
if minML ≥ LL(T) or minML ≥ minLL then

return false
end
delete TR

end
TR ← T

return true

If there is a PQR-tree TR with an R-node as root, it must be either completely
processed or v-singular. Otherwise, TR has leaves which represent vertices different
to v on level φ(v) or higher, i. e., G is not radial level planar as we have already seen
in the proof of Lemma 5.8. The algorithm checks whether minML is small enough
for T to fit below TR. Moreover, the tree with the smallest low indexed level minLL
and thus all other trees must fit between T and TR. Recall that before the nesting
TR must be rotated and squeezed such that all its jags are embedded into the space
above v and such that the indentation of TR with the minML meet level encloses all
inner jags of T . See Figure 5.27 for an illustration. The rotation of TR is not done
explicitely because TR is discarded anyway.2

If any of the checks fails then by Lemma 5.7 G is not radial level planar. That
means if R and S are the rings represented by TR and T , respectively, either δR ≥ βS,
γR ≥ αS, or γR ≥ minLL. We will see later in the proof of Lemma 5.11 that γR

corresponds to minML of TR and that βR corresponds to φ(v). If γR ≥ minLL,
there is a component for which it was not possible to embed it in a prior step into
an inner face of R. Now it turns out that it does not fit in the outer face of R either.
Finally in the algorithm, TR is updated. By the construction of Algorithm 5.1 the
invariant shown by Lemma 5.10 is preserved.

Lemma 5.10. At any time while testing a radial level graph, the collection of trees
T contains at most one PQR-tree with an R-node as its root.

2When computing an embedding this has already been done by an earlier application of the
embedding variant of template R1 as we will see later in Section 5.4.3.

60 Chapter 5. Radial Level Planarity

T
R

T

v

T
0

T
00

(a) TR is completely processed

T
R

T

v

T
0

T
00

(b) TR is v-singular

Figure 5.27. Schematic nesting of a processed ring. T ′ and T ′′ correspond to two
other completely processed components

5.3. Radial Level Planarity Testing 61

5.3.8 Completion

Finally, if there is no PQR-tree TR representing a ring graph then the graph is level
planar. Otherwise, if no other trees have occurred after TR has been detected, the
graph is radial level planar. This is the case if minLL = ∞. If minLL < ∞ it
remains to check whether the other PQR-trees fit below TR, i. e., minML < minLL.
Otherwise, G is not radial level planar since there is no face including the outer
face which spans enough levels to completely contain the component which defines
minLL.

5.3.9 Correctness

For the correctness of the algorithm every computed embedding of a ring must be
level optimal, and this property is granted by our algorithm.

Lemma 5.11. Our radial level planarity test induces a level optimal embedding for
every ring.

Proof. Let R be a ring of the given graph. As long as the corresponding PQR-tree
does not contain an R-node, the centre of the concentric levels lies in the outer face.
Only the templates P8, Q4, and Q6 introduce a new R-node which closes the centre
face. This does not cover the case shown in Figure 5.28, where two nested rings
share a common vertex on a lower level than the link vertex of the outer ring. Then
the centre face of the outer ring is closed by the application of template R4.

1

2

3

4

4

12

3

5 6

7

8

(a) Vertex 4 links two rings

78 8

(b) Before clos-
ing the outer ring

Figure 5.28. Linked and nested rings

As these four templates are only applied if no other template matches, there is
no admissible permutation which allows the closure of the centre face on a higher
level. Hence, the centre face ends on level βR, which is the radius of the centre face.
Note that inserting v-singular forms into the centre face of R does not influence βR.

Each PQR-tree representing a ring R has an R-node as its root. At any time dur-
ing the application of the algorithm the indentations of the outer face are represented

62 Chapter 5. Radial Level Planarity

by the ML-values between two siblings in the PQR-tree. Since Observation 3.1 is
also true for PQR-trees, the least ML-values are stored between children of the root.
Thus minML represents the highest indentation of the outer contour of R, i. e., the
contour of the outer face of R in the embedding. The value of minML can only
change if an inner face is closed by REPLACE-SINGLE. Then there may be several
faces which can be closed due to the freedom of rotation. Which one is taken only
depends on the templates applied in REDUCE. Only template R1 has multiple op-
tions. Since R1 always preserves the minimum meet level as shown in Section 5.3.4,
it is guaranteed that the highest possible indentation is preserved whenever this
is possible. Thus the outer radius γR = minML is level optimal in the induced
embedding. �

Lemma 5.12. The REDUCE operation, extended with the new templates from Fig-
ures 5.11 to 5.22, correctly computes the new set of admissible permutations for
radial level planarity.

Proof. We follow the corresponding arguments for PQ-trees in [13, p. 348f]. First,
no template violates radial level planarity, see Observation 5.1. Second it must be
shown that any radial planar graph can be processed successfully, i. e., no further
templates are necessary. Consider the complete case analysis of node types, their
position in the tree, and the order of their empty, full, and (doubly/boundary) partial
children in Tables 5.1 and 5.2. Note that partial child in both tables always means
partial Q-child. We do not consider partial P-nodes as pertinent children because
they never occur according to the bottom up traversal of REDUCE and Template
P3. For example consider line 8 of Table 5.1. If any vertex has three or more partial
children (and an arbitrary number of all kinds of other children) there is no way
to construct a consecutive pertinent sequence without violating planarity since each
of the partial children corresponds to a biconnected component which can only be
reversed. The consequence of this complete enumeration of all cases in a PQR-tree
is that either a presented template fits or radial level non-planarity follows, i. e., no
further templates are needed. �

In analogy to Jünger et al. [95, 97, 99, 112] this implies our first main theorem
of this chapter:

Theorem 5.1. There is an O(|V |) time algorithm for testing radial k-level planarity.

Proof. The linear running time follows directly from the linear running time of the
JLM algorithm. We have only a constant number of new templates to test for each
pertinent node during REDUCE. The height of the PQR-trees is the same as for
PQ-trees, except for the technical exception that an R-node may have only one child
which results in a difference of at most one. The number of merges of PQR-trees
stays also linear to the number of vertex reductions. The nesting of components
needs constant time per face. �

5.3. Radial Level Planarity Testing 63

Table 5.1. Situations in a PQR-tree with an special set of children of the currently
treated node. The abbreviation n. p. stands for radial level non-planar

children
not pertinent

root
pertinent root
and not root

pertinent root
and also root

empty full partial
doubly

partial

boundary

partial
P Q P Q P Q R

0 0 0 0 0 — — — — — — —

1 0 0 0 0 — — — — — — —

> 1 0 0 0 0 P0 Q0 P0 Q0 P0 Q0 R0

0 1 0 0 0 — — — — — — —

0 > 1 0 0 0 P1 Q1 P1 Q1 P1 Q1 R1

0 0 1 0 0 — — — — — — —

0 0 2 0 0 P7 Q5 P6 Q3 P6 Q3 R3

> 2 n. p. n. p. n. p. n. p. n. p. n. p. n. p.

0 0 0 0 1 — — — — — — R4

> 1 n. p. n. p. n. p. n. p. n. p. n. p. n. p.

> 0 n. p. n. p. n. p. n. p. n. p. n. p. n. p.

> 0 > 0 n. p. n. p. n. p. n. p. n. p. n. p. n. p.

> 0 1 n. p. n. p. n. p. n. p. n. p. n. p. n. p.

64 Chapter 5. Radial Level Planarity

T
a
b
le

5
.2

.
S
itu

ation
s

in
a

P
Q

R
-tree

w
ith

arb
itrary

ch
ild

ren
sets

of
th

e
cu

rren
tly

treated
n
o
d
e.

T
h
e

sp
ecial

cases
of

T
ab

le
5.1

are
regard

ed
as

alread
y

fi
ltered

ou
t

ch
ild

ren
n
o
t

p
ertin

en
t

ro
o
t

p
ertin

en
t

ro
o
t

a
n
d

n
o
t

ro
o
t

p
ertin

en
t

ro
o
t

a
n
d

a
lso

ro
o
t

co
n
secu

tiv
en

ess
p
o
sitio

n
p
a
rtia

l
b
o
u
n
d
a
ry

p
a
rtia

l
P

Q
P

Q
P

Q
R

pertinent
children

not
consecutive

pertinent
children

not
consecutive

at
boundaries

0
0

P
3

n.p.
P

2
n.p.

P
2

n.p.
n.p.

1
P

5
n.p.

P
4

n.p.
P

4
n.p.

n.p.

2
P

7
n.p.

P
6

n.p.
P

6
n.p.

n.p.

pertinent
children

consecutive
at

boundaries

0

0

P
3

Q
5

P
2

n.p.
P

2
Q

4
R

3

1
at

em
pty

begin
or

end
P

5
Q

5
P

4
n.p.

P
4

Q
4

R
3

1
not

at
em

pty
begin

or
end

P
5

n.p.
P

4
n.p.

P
4

n.p.
n.p.

2
at

em
pty

begin
and

end
P

7
Q

5
P

6
n.p.

P
6

Q
4

R
3

2
not

at
em

pty
begin

and
end

P
7

n.p.
P

6
n.p.

P
6

n.p.
n.p.

pertinent
children
consecutive

pertinent
children

at
(w

.l.o.g.)
right

boundary

0
0

P
3

Q
2

P
2

Q
2

P
2

Q
2

R
2

1
P

9
Q

7
n.p.

n.p.
P

8
Q

6
R

4

1
at

pertinent
begin

0

P
5

Q
2

P
4

Q
2

P
4

Q
2

R
2

1
at

pertinent
end

P
5

n.p.
P

4
Q

3
P

4
Q

3
R

3

1
not

at
pertinent

begin
or

end
P

5
n.p.

P
4

n.p.
P

4
n.p.

n.p.

2
at

pertinent
begin

and
end

P
7

n.p.
P

6
Q

3
P

6
Q

3
R

3

2
not

at
pertinent

begin
and

end
P

7
n.p.

P
6

n.p.
P

6
n.p.

n.p.

pertinent
children

in
the

m
iddle

0
0

P
3

n.p.
P

2
Q

3
P

2
Q

3
R

3

1
P

9
Q

7
n.p.

n.p.
P

8
Q

6
R

4

1
at

pertinent
begin

0

P
5

n.p.
P

4
Q

3
P

4
Q

3
R

3

1
not

at
pertinent

begin
P

5
n.p.

P
4

n.p.
P

4
n.p.

n.p.

2
at

pertinent
begin

and
end

P
7

n.p.
P

6
Q

3
P

6
Q

3
R

3

2
not

at
pertinent

begin
and

end
P

7
n.p.

P
6

n.p.
P

6
n.p.

n.p.

5.4. Radial Level Planar Embedding 65

5.4 Radial Level Planar Embedding

Algorithm 3.6 describes the algorithm of Jünger et al. [95–97, 112] for computing
level planar embeddings of level planar graphs. This algorithm is extended to com-
pute radial level planar embeddings of radial level planar graphs consisting of an
ordering of the vertices and a specification of clockwise and counterclockwise cut
edges. We extend the upward embedding algorithm of Chiba et al. [26] to work with
PQR-trees instead of PQ-trees and present a new algorithm for constructing a radial
level planar embedding from the upward embedding.

5.4.1 Meet Levels between Ignored Siblings

When computing an embedding, PQ-trees can contain ignored nodes. Since we
use the same strategy for computing radial embeddings, we have to treat ignored
nodes. This is particularly important when minML is computed because we have
to consider ML-values between any pair of children of the R-node which are direct
siblings. This includes ignored children. Therefore we have to ensure that the ML-
values of ignored nodes are computed correctly. Particularly, the outer ML-values
have to be initialised when a Q-node with outermost ignored children is inserted
into another Q-node. This is straightforward and can be done in constant time.

5.4.2 Contacts as Children of R-nodes

At the end of Section 3.4 we mentioned that a search for sink indicators after in-
serting a Q-node into its father Q-node must be avoided to obtain linear running
time. This is also true for inserting a Q-node into an R-father. Thus contacts are
also necessary as children of an R-node. Their treatment is analogous to that for
children of a Q-node in JLM’s algorithm for creating a level planar embedding. For
R-nodes contacts are introduced by the merge operation CR.

5.4.3 Embedding the Edges

We not only have to compute a vertex ordering ≤j on each level j but also the edge
routing. It is not necessary to sort the adjacent edges of each vertex as it has been
done in [26], but it suffices to determine cut edges. The detection of cut edges is
done by the st-embedding creation step described in Section 5.4.5, and not during
the augmentation phase since we need to know the cut edges and their types for the
st-embedding to generate a radial level embedding.

Initially there are no edges marked as cut edges. They are recognised as follows:
For an R-node we introduce a new child denoted by ray indicator and labelled with
$ which marks where the ray splits the children. Like the sink indicators the ray
indicator is ignored throughout the algorithm, and it remains always a child of the
R-node. It is created with every R-node by modified templates P8, Q4, and Q6, see
Figures 5.29 to 5.32.

66 Chapter 5. Radial Level Planarity

Template R1 with Ray Indicator The node X is an R-node and thus the root.
Besides, this template has the same pattern as Q1. Except for its ray indicator $,
X has only full children. Then all children of X except $ are grouped by a new full
Q-node Y which is attached to X as a child. X remains empty and Y becomes the
pertinent root. But before the children of X are attached to Y they are rotated such
that the minimum meet level is between the first and the last child. This value is
used for the meet level between Y and $ which remains a child of X.

$

root−−→ $

Figure 5.29. Template R1 with ray indicator

Template P8 with Ray Indicator The node X is a P-node and the root. As
a consequence X is also the pertinent root. It has exactly one boundary partial
Q-child X ′ and an arbitrary number of other full nodes as children. It has no empty
children. Then all full children of X are grouped by the full P-node X, which is
attached to X ′ as a child at an arbitrary end of X ′. After the new ray indicator $ is
inserted at an arbitrary end of X as a child, X is replaced by a new partial R-node
which becomes the pertinent root.

root−−→ $

Figure 5.30. Template P8 with ray indicator

Template Q4 with Ray Indicator The node X is a Q-node and the root. As
a consequence X is also the pertinent root. It has at most two partial Q-nodes X ′

and X ′′ and an arbitrary number of other empty or full node as children. X ′ and
X ′′ cannot be the only children because then template Q3 would apply. X ′ and X ′′

are located at the beginning and at the end, respectively, of its consecutive sequence
of empty children. Thus all empty children are enclosed between them. Then the
children of X ′ and X ′′ are attached to X as children. After the new ray indicator $
is inserted at an arbitrary end of X as a child, X is replaced by a new partial R-node
which becomes the pertinent root. Note that Q4 is the outwards turned variant of
Q3.

root−−→
$

Figure 5.31. Template Q4 with ray indicator

5.4. Radial Level Planar Embedding 67

Template Q6 with Ray Indicator The node X is a Q-node and the root. As
a consequence X is also the pertinent root. It has exactly one boundary partial
Q-node X ′ and an arbitrary number of full nodes as children. X has no empty
children. Then the children of X ′ are attached to X as children. After the new ray
indicator $ is inserted at an arbitrary end of X as a child, X is replaced by a new
partial R-node which becomes the pertinent root.

root−−→
$

Figure 5.32. Template Q6 with ray indicator

R1 has to be modified, too. Recall that R1 creates a pseudo Q-node Y . Before
this is done the R-node is rotated such that the two siblings with minML in be-
tween become the end vertices of Y . Otherwise, level optimality may be lost. See
Figure 5.33 for an illustration.

1

2

3

4

1

2

3

5 6

7

5

4

(a) Not level optimal

1

2

3

4

1

2

3

5 6

7

5

4

(b) Level optimal

7

5
6

$

ML=2

ML=3

7

(c) Initial PQR-
tree on level 4

56

$

ML=2

ML=3

7 7

(d) After rotation

7

56

7

ML=2

ML=3

$X
0

(e) Final PQR-tree

Figure 5.33. Preserving level optimality

The ray indicator $ may divide the children of Y into two parts. Thus before
creating Y it is necessary to drag one part over $ because $ must remain a child of
the R-node. This is an additional step which is different to the previously described
rotation to get minML between the outer children. Remember that rotation is only

68 Chapter 5. Radial Level Planarity

moving children from the front to the back and vice versa, cf. Section 5.3.3. The
leaves of all pertinent subtrees that are dragged over the ray indicator represent
cut edges. They are computed by DFS without violating the O(|V |) time bound
since REPLACE removes the traversed pertinent subtrees from the PQR-tree after
each drag operation. Accordingly, if the ray indicator in REPLACE lies within
the pertinent sequence, one part of the pertinent sequence is dragged over the ray
indicator before the pertinent sequence is replaced. As an example consider the
graph shown in Figure 5.34(a). Figure 5.34(b) shows the corresponding PQR-tree
before the reduction of all leaves with label 4, whereas Figure 5.34(c) shows the
resulting PQR-tree after the reduction by template Q4. As shown in Figure 5.34(d)
the leaf representing the edge (1, 4) is dragged over $ in REPLACE and thus the
edge (1, 4) becomes a cut edge. The number of drag operations is the same as the
number of reductions. Thus the linear time complexity is preserved.

2

1
0

1

2

3

3

4

(a) The input graph

3 44

1 2

(b) The PQR-
tree before Q4

$ 3 44

1
2

(c) Figure 5.34(b)
after REDUCE

$ 3 44

2
1

(d) Edge (1, 4) is
dragged over $

Figure 5.34. Detection of a cut edge while reducing the leaves of vertex 4

5.4.4 Augmenting G to an st-Graph Gst

The processed PQR-trees from Section 5.3 are now called ignored PQR-trees because
they consist of ignored nodes only, cf. Section 3.4. However, the LL-value of the
highest ignored PQR-tree minLL is not sufficient here. We must also store the
whole ignored PQR-trees, because their sinks must later be augmented with edges if
a ring is closed by templates P8, Q4, or Q6. Then all sinks are connected to the link
vertex w on which REDUCE was called and which closes the ring. The embedding

5.4. Radial Level Planar Embedding 69

of ignored components within a newly encountered ring never introduces crossings
because φ(w) > φ(u) for each ignored sink u. Furthermore, if inner faces are closed
by REPLACE-SINGLE for a vertex v, it is necessary to connect sinks of components
which are nested into these faces to v. Hence, we maintain a collection T * which
stores all ignored PQR-trees in addition to the active collection T .

When an R-node is created, an existing PQR-tree with an R-root is nested into
the centre face. This includes an ignored PQR-tree with an R-root. Only a single
PQR-tree TR is left. In analogy to Lemma 5.10, this leads directly to the following
Lemma 5.13.

Lemma 5.13. T ∪T *contains at most one R-rooted PQR-tree TR.

If a vertex v closes a face, it does not suffice to test whether the ignored PQR-
tree starting at the lowest level fits into this face after REPLACE-SINGLE. If it fits,
additionally all sinks in T * are connected to v and T * is emptied. Similar to the
radial level planarity test, this step is omitted for a face different from the centre
face of an outer ring if there exists an ignored R-rooted PQR-tree TR. Rings cannot
be embedded into faces not containing the centre. The other PQR-trees in T * are
embedded later in the same face as TR. If they do not fit in this face, the graph is
not radial level planar because previous tests after each REPLACE-SINGLE have
shown that they do not fit in an inner face of the ring represented by TR also.

The tests whether minLL and the LL-value of a newly detected ring are greater
than the minML-value of an enclosed ignored ring in Algorithm 5.1 can be omitted
as an optimisation. These checks are done automatically in the bottom up phase
with the single hierarchy rooted at t. However, the sinks have to be connected to
the link vertex.

If a PQR-tree contains ignored nodes, the templates P8, Q4, and Q6 can be
applied to nodes other than the root of a PQR-tree. There may be a path from
the PQ-node X to the root which is the only non-ignored path from the root down-
wards, i. e., all predecessors of X have only one non-ignored child. Then all vertices
represented by nodes that are not descendants of X can be embedded within the
ring represented by the new R-root. Therefore these nodes are removed and the
corresponding sinks are connected to the link vertex. The O(|V |) time bound is
preserved. If the test on the above situation fails, either the input graph is not
radial level planar and the algorithm rejects, or there is a situation similar to the
one shown in Figure 5.23 and other templates fit. This case can be checked in O(1)
time since there is no node chain in a PQR-tree and thus the parent Q-node of X
has at least one other non-ignored child. If the test does not fail, the traversed nodes
are removed. Hence, the total computation time remains linear.

5.4.5 Computation of a Radial Upward st-Embedding Eu
To compute an st-embedding Est of the graph Gst (see Algorithm 3.6) the algorithm
of Chiba et al. [26] is used. It is based on the vertex addition method of [58, 113] and
needs an st-graph. But in our case Gst has no st-edge (s, t). If G is a ring graph, s

70 Chapter 5. Radial Level Planarity

and t are not in the same face of any planar level embedding El of G, i. e., s does not
lie in the outer face as t does, cf. Lemma 5.3. Therefore the introduction of a new
edge (s, t), as in the JLM algorithm, is not possible since it may destroy radial level
planarity and the st-embedding algorithm would fail. Thus we omit introducing the
edge (s, t) and obtain only an induced st-numbering by numbering the vertices level
by level in ascending order. After the radial edge augmentation each vertex except
s and t has at least one incoming and at least one outgoing edge. There are no
sources other than s and no sinks other than t. Without the st-edge, Gst may be
not biconnected. The essential property of an st-numbering for embedding a graph
with the vertex addition method is that there is a path of higher numbered vertices
leading from every vertex to t, which has the highest number. Thus there must exist
an embedding of the first i vertices such that the remaining vertices (i+ 1 to t) can
be embedded in a single face (the outer face) of the already embedded part. This
property also holds for our induced st-numbering.

If an embedding is computed by the standard vertex addition method [26, 58,
113], the edge (s, t) behaves similarly to the ray in the radial level planarity test.
The st-edge is real, however, and therefore no other edge is allowed to cross. Thus
cyclic reductions, i. e., cut edges, are not allowed and need not be considered. With-
out (s, t) cyclic reductions are admissible. We adopt our ideas from extending the
level planarity test to the radial case. The standard planar embedding algorithm
is updated with the PQR-tree data structure to realise cyclic reductions. Again we
omit ENTIRE-EMBED of Chiba’s algorithm, shown in Algorithm 2.2, to compute
an st-embedding Est from the upward st-embedding Eu, cf. Section 3.4. Here the
reason is both efficiency and correctness. In the radial case the upward embedding
Eu can be seen as an inward embedding because every vertex knows its ordered edges
from vertices on a smaller and thus inner level. In our approach it is possible to
route edges around s. The routing around t is not allowed because we consider
only monotone level planar graphs. Figure 5.35(b) without the dashed st-edge is a
radial level planar drawing of the graph shown in Figure 5.35(a). If cut edges exist,
Chiba’s ENTIRE-EMBED may provide an invalid edge ordering around each vertex.
The adjacency lists of vertices 0 and 2 in Figure 5.35(h) are incorrect, while in Eu

the orderings of the incoming edges are correct, see Figure 5.35(g). Therefore in
Section 5.4.6 we use Eu instead of Est to compute a radial level planar embedding El.

For instance, Figures 5.35(c) to 5.35(f) show the now admissible cyclic reduction
of vertex 4 by an illustration of the bushes, cf. Section 2.3, and their corresponding
PQR-trees. With the edge (s, t) T (B4) cannot be reduced according to vertex 4
because no template fits. Otherwise, template Q4 can be applied and we obtain
Figure 5.35(f). Afterwards, replacing 4 with 5 by an application of REPLACE
determines one of the edges (1, 4) or (2, 4) as a cut edge.

The procedure UPWARD-EMBED from [26, p. 67f] relies on the fact that the
leaves which are removed from the PQR-tree by REPLACE for storing the repre-
sented edges in Eu are in an admissible order except for reversion. Possible subse-
quent reversions of a parent Q-node are handled by direction indicators [26]. Re-
versions of a parent R-node X are accomplished accordingly. However, if the ray

5.4. Radial Level Planar Embedding 71

0

1 2

4

5

3

1

2

3

4

s

t

(a) A planar
graph

0

1 2

34

5

1

2

3

4

s

t

(b) A planar
drawing

0

1 2

3

4 45 5 5

(c) The bush B4

0

1 2

34

5 5 5 5

(d) The bush B5

4 5

5

0

45

21

(e) T (B4), reducing 4 is
not possible

$ 4 5 45

1
2

(f) T (B4) after reduc-
tion of 4

0

1

2

3

4

5

0

0

1

1

2

2

24 3

(g) Eu

0

1

2

3

4

5

0

0

1

1

2

2

24 3

1 2

3 4

5 3 4

5

5

(h) Est

Figure 5.35. Embedding an edge around s without the (dashed) st-edge. The
numbers in the vertices not only show their label but also represent their induced
st-numbers

72 Chapter 5. Radial Level Planarity

indicator occurs within the pertinent sequence of X, we have to drag a part of the
sequence over it. This is done before the removal of the pertinent sequence. Later
in the algorithm there is the possibility of a rotation of X and thus of an implicit
rotation of its children. However, this only means a rotation of the whole graph
including the ray. Hence, the ordering of the stored sequence remains valid. If
an R-node has only pertinent children then it is admissible to move the ray indi-
cator arbitrarily, leading to different cut edges and thus to different embeddings.
This is not significant because we are interested in a single admissible embedding.
Thus, analogously to UPWARD-EMBED of Chiba et al., we obtain a valid inward
embedding.

5.4.6 Computation of a Radial Level Embedding El
In this section we assume that in the upward embedding Eu the incoming edges
of every vertex are sorted in clockwise order. Before we present our algorithm for
computing a radial level embedding El we establish further properties.

Lemma 5.14. Let Gst = (Vst, Est) be the augmented st-graph. Then every vertex
v ∈ Vst − {s} has at least one incoming non-cut edge.

Proof. Gst is an induced st-graph without an st-edge. Thus every vertex v ∈ Vst−{s}
has at least one incoming edge. An edge is only marked as a cut edge in REPLACE
or in template R1 if the ray indicator lies within the pertinent sequence. In both
cases there are PQ-leaves representing edges on both sides of the ray. They must be
placed on one side of the ray indicator. Thus the edges which are not dragged over
$ are non-cut edges. If $ is already at the beginning or at the end of the pertinent
sequence, there are no cut edges. �

Corollary 5.1. There exists a path from s to every vertex v ∈ Gst not containing a
cut edge.

Lemma 5.15. In any upward embedding Eu the ordered adjacency list of a vertex v
never contains a cut edge between two non-cut edges.

Proof. Assume that v has adjacent incoming edges in the ordering e1, ec, e2, where
e1 and e2 are non-cut edges and ec is a cut edge, see Figure 5.36.

Let v1 be the source vertex of e1 and v2 the source vertex of e2. Then v1 6= v2.
Thus there exist two paths p1 and p2 from s to v1 and from s to v2, respectively,
which according to Corollary 5.1 differ in at least one edge. The cut edge ec vi-
olates planarity by crossing the contour of the face between p1 and p2, which is a
contradiction. �

This leads to two different types of cut edges according to their position in the
adjacency list. We call them clockwise or counterclockwise according to the implicit
direction from lower to higher levels.

5.4. Radial Level Planar Embedding 73

s

v

v
1

v
2

e
1 e

2

e
c

w

Figure 5.36. No cut edge can be between two non-cut edges

Definition 5.6 (Edge direction). A cut edge is called clockwise with respect to
Eu if it occurs at the right end of the incoming adjacency list of its target vertex.
Otherwise, it is called counterclockwise.

Lemma 5.16. All cut edges of a radial level planar embedding that end on the same
level have the same direction (clockwise or counterclockwise) and the same target
vertex.

Proof. First we show that all cut edges with their target vertex on the same level
have the same direction. Assume two cut edges with different directions ending on
the same level. Their target vertices need not be different. The obtained crossing,
see Figure 5.37(a) for an illustration, contradicts radial level planarity. This crossing
cannot be avoided because there are paths from s to the source vertices of the cut
edges according to Corollary 5.1.

s

(a)

s

(b)

Figure 5.37. In a radial level planar graph all cut edges ending on the same level
have the same direction and the same target vertex

It remains to show that there is at most one vertex with incoming cut edges
on a level. Assume that there are two vertices on the same level which both have
an incoming cut edge. We have already shown that they have the same direction.
Then the inner cut edge crosses a path from s to the target of the other cut edge, see
Figure 5.37(b) for an illustration. Such a path always exists because of Corollary 5.1.
This contradicts radial level planarity. �

74 Chapter 5. Radial Level Planarity

Algorithm 5.2. CONSTRUCT-LEVEL-EMBED

Input: The upward embedding Eu and the st-graph Gst = (Vst, Est)

Output: A radial level planar embedding El

procedure DFS((v, dir))
if visited[v] = false then

visited[v]← true

if dir = left then
insert v at the left end of El[φ(v)]

else
insert v at the right end of El[φ(v)]

end

foreach incoming non-cut edge e of v scanned in direction dir do
DFS((source(e), dir))

end

if v has incoming clockwise cut edges then
foreach incoming cut edge e of v scanned from right to left do

insert(Q, (source(e), left))

end
else

foreach incoming cut edge e of v scanned from left to right do
insert(Q, (source(e), right))

end
end

end
end

foreach v ∈ Vst do
visited[v]← false

end
Queue Q // stores pairs
insert(Q, (t, right))
while Q not empty do

DFS(delete first(Q))

end

return El

5.4. Radial Level Planar Embedding 75

Because of the above lemmata we can introduce Algorithm 5.2, CONSTRUCT-
LEVEL-EMBED. El[j] denotes the vertex list of the radial level j, ordered by ≤j.
The algorithm is a sequence of ordered backward DFS traversals in Eu which use no
cut edges. The first of these traversals starts at the sink vertex t and inserts every
visited vertex v at the right end of El[φ(v)]. The part of the graph visited in this
first step is called trunk , see Figure 5.38. Source vertices of discovered cut edges are
placed into a queue together with the information on which side of the trunk they
have to be placed later. It is important that these vertices are inserted into the queue
in the correct order, from right to left for incoming clockwise cut edges and from left
to right for incoming counterclockwise cut edges. The subsequent DFS traversals
start at a vertex from the queue and insert visited vertices at the respective side of
El. Source vertices of newly detected cut edges are again inserted into the queue.
The algorithm terminates when the queue is empty and thus all vertices have been
visited.

s

t

1

2

3

4

5

trunk

Figure 5.38. Successive and sorted attachments of faces to the sides of the trunk

The correctness of the algorithm relies on the following fact:

Lemma 5.17. Let G be a level graph with a single sink assuming edge directions
from lower to higher levels. Then an upward embedding of G induces a unique level
embedding.

Proof. Assume there are two different level embeddings of G. Then there are
two vertices u and v on the same level whose relative positions differ in the two
embeddings. From both vertices there exists a path to the sink. Let w be the first
common vertex on these paths and let u′ and v′ be the direct predecessors on the
respective paths, see Figure 5.39. Since the paths u→∗ u′ and v →∗ v′ are disjoint
and do not cross, the edges (u′, w) and (v′, w) have different relative positions in the

76 Chapter 5. Radial Level Planarity

u

w

v

t

u
0

v
0

Figure 5.39. An upward embedding induces a unique level embedding

incoming adjacency list of w and thus contradict the common upward embedding.
�

Theorem 5.2. Algorithm 5.2 constructs a valid radial level planar embedding of the
given upward embedding Eu in O(|V |) time.

Proof. The running time of O(|V |) is obvious because the algorithm performs DFS
only with different parts of the graph one after the other. To see the correctness,
the algorithm starts at t and first traverses the trunk. This is the same mechanism
as JLM use in Algorithm 3.6 for computing a level planar embedding from an st-
embedding. A branch is a subgraph that is traversed with a single invocation of
DFS. Since each branch is level planar and meets the requirements of Lemma 5.17,
it has a unique level embedding. The side of the trunk on which the branches are
placed, left or right, is predefined by the direction of the cut edges that led to them.
Thus vertices of the left branches are stored at the front of their ordered level lists
and vertices of the right branches are stored at the back of their ordered level lists.
This is done recursively for each branch by the same algorithm as JLM use. Here
the only difference is that incoming edges on a vertex in a left branch are traversed
from right to left. For vertices in a right branch they are traversed as usual from
left to right. It only remains to show that the branches are processed in the correct
order. This is ensured by processing the cut edges from the outside inwards. Their
source vertices and thus their branches are traversed on the left side of the trunk
from right to left, on the right side of the trunk from left to right, and in each case
from bottom to top. �

Example 5.1. Figure 5.40 shows El computed by Algorithm 5.2 from Eu shown in
Figure 5.35(g).

5.5 Assigning Coordinates

By the computation of x-coordinates for the vertices a finalisation of the graph
drawing is determined. The previous steps only define the order of the vertices on

5.5. Assigning Coordinates 77

1

2

3

4

0

1 2

4 3

5

Figure 5.40. El computed from Eu in Figure 5.35(g)

each level. The y-coordinates are fixed by the given levelling of the graph. Now the
vertices are fixed in the plane. This is similar to the fourth phase of the Sugiyama
algorithm described in Section 1.2.

5.5.1 Radial Drawing

First we show that each radial level planar embedding has a corresponding radial
level planar drawing. In a level drawing with horizontal levels let z be the maximum
x-coordinate and k be the maximum y-coordinate. The origin of the used coordinate
system is the upper left corner, (z, 0) is the upper right corner, and (0, k) is the lower
left corner.

Every point of a straight-line edge e from (x1, y1) to (x2, y2) can be described
with Equation 5.1 where 0 ≤ t ≤ 1, 1 ≤ x1 ≤ z, 1 ≤ x2 ≤ z, and 1 ≤ y1 < y2 ≤ k.
See Figure 5.41 for an illustration.

ψ(t) = (1− t)(x1, y1) + t(x2, y2) (5.1)

1 zx
1

1

k

y
2

y
1

x
2

e

Figure 5.41. Geometrical description of an edge in the plane

The vertices of a level drawing with coordinates (x, y) can be transferred into a
radial drawing by Equation 5.2 where 1 ≤ x ≤ z and 1 ≤ y ≤ k.

ω(x, y) = (y · cos
2πx

z
, y · sin 2πx

z
) (5.2)

Usually we draw edges in a radial drawing as spiral segments, e. g., see Fig-
ures 5.1(b), 5.6, and 5.9. This has the advantage over straight lines that they never
cross the lower radial level lines indicated by the dashed circles. Further, it ensures

78 Chapter 5. Radial Level Planarity

that edges are always drawn monotonic from the centre outwards and that an out-
ward drawing is created. Every point of such a spiral segment in a radial level planar
drawing can be described by Equation 5.3.

ψ′(t) = ω(ψ(t)) =

=

[
((1− t)y1 + ty2) · cos

(
2π((1− t)x1 + tx2

z

)
,

((1− t)y1 + ty2) · sin
(

2π((1− t)x1 + tx2

z

)] (5.3)

Observation 5.2. Since both Equations 5.1 and 5.2 are bijective on the restricted
ranges of their parameters, the composition of them shown in Equation 5.3 is bijec-
tive, too.

Theorem 5.3. For every radial level planar graph there exists a radial level planar
drawing.

Proof. With the algorithm described in this chapter we obtain a radial level planar
embedding of the graph. For this proof we split each edge into proper edges with the
insertion of up to O(|V |2) dummy vertices. This is done before the radial embedding
algorithm in order to determine where long edges are routed between the vertices
of a level. Further, this detects the proper segment of a cut edge which crosses the
ray. Hence, for the rest of this proof we assume w. l. o. g. that the radial level planar
embedding is proper.

To simplify matters first, we assume that there are no cut edges in the embedding
and thus it is a level planar embedding. From this we produce a planar drawing with
the O(|V |) time3 algorithm of Brandes and Köpf [20]. In the resulting drawing every
originally long edge has at most two bends and the segments are drawn straight-
line. Remember that every proper level planar graph has a straight-line drawing
according to Section 3.5 and [51, 53]. After all vertices are moved to their radial
levels by the coordinate transformation with Equation 5.2, the edge segments are
transformed with Equation 5.3 to segments of a spiral. As a result each radial edge
has at most two bends. Because of Observation 5.2, the drawing is planar.

In the general case we have cut edges in our radial embedding, see Figure 5.42(a)
where the dotted line is a cut edge. We have to simulate each cut edge as shown
in Figure 5.42(c) with two segments to avoid crossings. This picture is transformed
as previously described to a radial drawing, where these two segments are melted
into one again. We use the trick of doubling the drawing as shown in Figure 5.42(b)
for determining the gradient of the segments of the cut edges. This is necessary to
determine the parameters of Equation 5.3. �

3On non-proper level graphs the algorithm needs O(|V |2) time.

5.5. Assigning Coordinates 79

3

1 2

4

(a)

11 22

3 4 43

(b)

1 2

3 4

(c)

Figure 5.42. Drawing (segments of) cut edges

5.5.2 Drawing Algorithm

Of course we like to obtain nice drawings which follow certain aesthetic criteria and
not only arbitrary planar drawings. If we use the method of [20] as suggested by
the proof of Theorem 5.3 we have automatically optimised the following aesthetic
criteria because the horizontal coordinate assignment algorithm ensures this on the
fly and our radial transformation is bijective according to Observation 5.2.

• Edges should be short.

• Vertex positioning should be balanced between upper and lower neighbours.

• Long edges should be as straight as possible.

This O(|V |2) time algorithm ensures that every cut edge has at most four bends,
see Figure 5.43, because all dummy vertices are drawn among each other except
both dummy end vertices of the cut-segment which is inserted at a later stage of
the algorithm. Every other edge has at most two bends, which is especially useful
in radial drawings. Here, bends tend to be even more confusing than in drawings
with horizontal levels since they are connecting segments of a spiral and not straight
lines.

If one likes as few cut edges as possible, because they can have up to four bends,
there is the possibility of rotation. That means searching for the ray which crosses
the fewest edges. Therefore one can use BFS on the dual graph, cf. Definition 5.7, to
find the shortest graph theoretic way from the centre to the outer face. Afterwards,
the graph is unfolded into a level planar graph by hiding the cut edges.

Definition 5.7 (Dual graph). A dual graph of a planar graph G is a graph with a
vertex for each face in a planar embedding of G and an edge for each pair of adjacent
faces. The new edges cross exactly the edges of G which are the boundaries between
the adjacent faces in the embedding of G. A dual of a planar graph is also planar.
The original graph is the dual of the dual graph. That is, they are duals of each
other.

80 Chapter 5. Radial Level Planarity

Figure 5.43. A cut edge can be drawn with at most four bends. The black vertices
are dummy vertices

Algorithm 5.3 shows an outline of how a radial drawing can be generated out
of a radial planar level embedding. It is being implemented in the context of the
diploma thesis [65] as a plug-in of the Graph Visualization Toolkit (Gravisto) [75].

Algorithm 5.3. DRAW-RADIAL
Input: A proper level graph G and a radial planar level embedding El of G

Output: A radial level planar drawing

compute the dual graph GD of G according to El

search a shortest path P from the centre to the outer face in GD with BFS
rotate El such that edges of G crossed by P are cut edges

hide cut edges
apply horizontal x-coordinate assignment algorithm
determine gradients of cut edges
insert cut edges

transform into a radial drawing
remove dummy vertices
optionally beautify bends with splines

For the x-coordinate assignment algorithm it is only necessary that the curves
for the edges can be described with a bijective function. Besides of this, any other
algorithm, e. g., [22, 23], [131, 132, 134], or the ones referenced in [38, Section 9.3],
can be used to optimise any aesthetics criteria other than view edge bends. In any
case there is always the option of smoothing bends with splines.

5.5. Assigning Coordinates 81

Since the circumference of level j with 1 < j ≤ k is larger than its predecessor
level j−1, there is space for more vertices on it. For a radial drawing to not become
more and more sparse by traversing the levels outwards, the level graph should have
the following property: For every level j there is a growth factor gj with V j = gjV

j−1

which is approximately the same as the growth factor of the respective circumference.
Equation 5.4 shows gj for drawings with a constant distance d between the radial
level lines.

gj ≈
2πjd

2π(j − 1)d
=

j

j − 1
(5.4)

5.5.3 Drawing Edges without Bends

Why do we not use the straight-line algorithm of [51, 53] already mentioned in
Section 3.5 for generating a level planar drawing without cut edges before performing
the radial transformation? There is a simple answer: The insertion of long cut edges
with the trick of Figure 5.42 can introduce edge crossings, see Figure 5.44. This is
also the deeper reason why long cut edges can get up to four bends and not only
two as non-cut edges while using the method of [20] in Algorithm 5.3.

11

2

3 3

2

Figure 5.44. A long straight cut edge (1, 3) introduces an edge crossing

Another advantage of the two bend algorithm over the straight-line algorithm is
that it only needs linear width whereas the latter one needs up to exponential width
in the worst case [53, p. 126], which means up to exponential area. Transforming
this into a radial drawing means that the resolution would be very bad, e. g., the
number of vertices in certain small areas would be high.

5.5.4 Force Directed Approach

Another possibility for generating nice radial level planar drawings (see [105, Sec-
tion 4]) is to apply a force directed approach, i. e., the spring embedder method of
Fruchtermann and Reingold [68] or the energy based method of Kamada and Kawai
[101]. Again, this only applies to proper graphs in order to avoid crossings of long
edges. Thus the graph has to be made proper by inserting up to O(|V |2) dummy

82 Chapter 5. Radial Level Planarity

vertices before the application of the radial embedding algorithm. The dummy ver-
tices determine between which consecutive levels a long edge crosses the ray, i. e.,
which proper segment of a long edge is the proper cut edge. Further, they fix the
routing of long edges between the vertices.

First we generate an initial placement. This can be done for example by the
following strategy: The vertices on the first level are distributed equally on the
innermost radial level line. Afterwards, all other vertices of the graph are placed
level by level outwards by a barycentre or median heuristic. In order to obtain
unique positions of the vertices in the radial case, both heuristics consider the angles
between the ray and lines from the centre through the adjacent vertices on the inner
level instead of their x-coordinates. The ray represents 0◦ and we take the positive
angles in counterclockwise direction. We start on a new level always with the first
vertex in counterclockwise direction after the ray which has no incident cut edge
connecting it to a vertex on an inner level. With barycentre heuristic the angle
spanned by such a cut edge is negative. The ordering of the vertices must not be
violated. If this is required by the placement heuristic then the vertex is placed with
a default minimum distance next to its predecessor in the embedding. This is also
the strategy for placing vertices which have no adjacent vertices on a smaller level.

After that, we use a force directed approach [38, 68, 101] for a postprocessing of
the vertex placement such that vertices on the same level repel themselves. For this
it suffices that repelling forces are only considered between neighbours on a level.
Vertices connected by an edge attract each other. Again there is the constraint that
the vertex orderings must not be violated and the vertices must remain on their
respective radial level line. Remember that the radial level lines are equidistant. For
an implementation of the effects of the forces one may operate with polar coordinates
and not with Euclidean distances. Due to the fixed radius only the direction, i. e.,
positive or negative angle in which a vertex is attracted or repelled, and the size of
this angle need to be computed.

At the end all edges are drawn as segments of spirals. For this one should
pay attention whether the current edge to draw is a cut edge. This determines
the direction in which it has to be drawn around the centre. At the end, dummy
vertices are removed. However, this approach creates many bends in long edges
since there are no strict rules to place dummy vertices of a long edge on the same
angle. Therefore it is actually only useful for “nearly proper” graphs.

6
Circle Planarity

In Chapter 5 level planarity has been generalised to radial level planarity. Now we
generalise track planarity, see Chapter 4. For this we consider a combination of track
planarity and radial level planarity and thus obtain an even larger class of levelled
graphs that can be tested on planarity efficiently. The graphs treated here are a
superset of planar level and track graphs.

6.1 Definition of Circle Planarity

The k-circle planar graphs generalise radial level planar graphs in the same way as
track planar graphs generalise level planar graphs, i. e., consecutive vertices on a
radial level can be connected by a “horizontal” edge. Figure 6.1(b) shows a circle
planar drawing of the track graph in Figure 6.1(a) which is neither level planar nor
track planar.

Remark 6.1. For a k-level graph G:

G is level planar ⇒ G is circle planar ⇒ G is planar.

6.2 Testing and Embedding

For the detection and the embedding of k-circle planar graphs we use the same
technique as for k-track planar graphs. At the beginning all isolated vertices are
removed from the graph G. The number of levels is tripled and the radial level of
every vertex v is updated to φ′(v) = 3φ(v)− 1. Every horizontal chain is extended
to a chain of diamonds. Therefore two new vertices, ve on level φ′(ve) = φ′(u) − 1

83

84 Chapter 6. Circle Planarity

1

3

2

0

1 2 3

4

(a) A 3-track graph

23 1 0 1

2

3

4

(b) A circle planar draw-
ing of Figure 6.1(a)

Figure 6.1. A circle planar graph and a circle planar drawing of it

and v′e on level φ′(v′e) = φ′(u) + 1 are created for every horizontal edge e = (u, v),
φ(u) = φ(v). As a replacement for e we introduce four new edges (ve, u), (ve, v),
(u, v′e), and (v, v′e). If in the original graph a horizontal chain closes to a circle, i. e.,
a single level cycle, we call the arising structure in the transformation a diamond
wheel . For example, Figure 6.3 is generated from the graph shown in Figure 6.1.
It contains a diamond wheel on levels 4 to 6. After transforming a k-circle graph
G = (V,E, φ) into the radial 3k-level graph G′ = (V ′, E ′, φ′) the linear time radial
level planarity test algorithm described in Chapter 5 can be applied to G′ in order
to detect circle planarity of G according to the following lemma:

Lemma 6.1. Let G be a radial level graph without isolated vertices and G′ be the
radial level graph obtained via the transformation of G described above. Then

G is k-circle planar⇔ G′ is radial 3k-level planar.

Since G contains no isolated vertices, the proof of Lemma 6.1 is analogous to
the proof of Theorem 4.1. It remains to show how to treat isolated vertices. If a
circle occurs on level i, 1 ≤ i ≤ k, we have no space left to place isolated vertices of
i. Thus the graph under test has to be rejected as circle non-planar. This can be
tested within linear time, e. g., in a preprocessing step.

A radial level embedding E ′
l of G′ can easily be transformed into a circle planar

embedding El of G, see Section 4.2. But as described in Section 5.1, to compute a
radial embedding the algorithm must identify cut edges. Therefore if exactly one
of the artificial edges (u, ve) and (v, ve) of E ′l is a cut edge, their original horizontal
edge e is a cut edge in El, too. Note that if both edges (u, ve) and (v, ve) are cut
edges, e is not a cut edge, see Figure 6.2. For example, in Figure 6.3 the edge (9, 1)
is a cut edge and therefore edge (3, 1) in Figure 6.1 is a cut edge, too. Edge (4, 1) is
also a cut edge but an original one.

Theorem 6.1. There is an O(|V |) time reduction of circle planarity to radial level
planarity.

6.2. Testing and Embedding 85

u

v

v
e

v
0

e

e

Figure 6.2. Both artificial edges (ve, u) and (ve, v) are cut edges but the original
circle edge e is not

0

2

4

78
1

2
3

4
5

6

7

8

9

6

5

9

10

1

3

Figure 6.3. The radial 9-level planar graph G′ computed from Figure 6.1

86 Chapter 6. Circle Planarity

6.3 Generating a Drawing

In order to draw a circle planar graph with the help of a horizontal x-coordinate
assignment, the procedure is nearly the same as described for radial level planar
graphs in Section 5.5. The only difference is that horizontal edges are not considered
for the computation of the x-coordinates. These edges can be easily integrated in
an existing drawing. They follow the radial level line.

The force directed approach sketched in Section 5.5.4 can also be used to generate
a circle planar drawing. Then the optimal length of a horizontal j edge on level j
is ljo = 2πjd

|V j | , where d is the constant distance between the radial level lines. If the
length of a horizontal edge e in the current drawing is higher than the optimal length,
i. e., lje > ljo, there is an attraction between the two end vertices. Otherwise, lje < ljo
and there is a repulsion between them. This is handled by choosing the functions of
edge attraction and of vertex repulsion such that the attraction of the edge and the
repulsion of the vertices level off at ljo.

7
Forbidden Subgraphs

There is the famous characterisation of planar graphs by Kuratowski’s Theorem 2.2
stating that a graph is not planar if and only if it contains a subgraph homeomorphic
to the K3,3 or the K5. Healy, Kuusik, and Leipert [80, 82, 83] have presented the
complete set of minimum level non-planar subgraph patterns (MLNPs) for proper
level non-planar graphs. These are the counterparts of the Kuratowski graphs for
level planarity. Minimum means deleting an arbitrary edge leads to level planarity.
The steps provided in this chapter are intended to realise a theorem similar to
Theorem 2.2 for radial level planarity, i. e., to give a combinatorial characterisation
of graphs which are not level planar. This would be helpful to make some proofs
easier and to present a small witness to the (radial) level non-planarity of a graph.

7.1 Level Non-Planar Patterns for Hierarchies

Since [80, 82, 83] are based on the three (not necessarily minimum) level non-planar
subgraph patterns (LNP) for hierarchies, we summarise the results of Di Battista
and Nardelli [39] in Theorem 7.1. This needs some terminology. Let i and j, i < j,
be two levels of a level graph G = (V,E, φ). Then LACE(i, j) denotes the set of
paths C connecting any two vertices x ∈ Vi and y ∈ Vj such that z ∈ C ⇒ z ∈ Vl

with i ≤ l ≤ j. If C1 and C2 are disjoint paths belonging to LACE(i, j) then a
bridge is a path connecting vertices x ∈ C1 and y ∈ C2. Vertices x and y are thus
called the end vertices of a bridge.

Theorem 7.1 (Di Battista and Nardelli). Let G = (V,E, φ) be a hierarchy with
k > 1 levels. G is level planar if and only if there is no triple L1, L2, L3 ∈ LACE(i, j),
0 < i < j ≤ k, that satisfies one of the following conditions:

87

88 Chapter 7. Forbidden Subgraphs

(a) L1, L2, and L3 are completely disjoint and pairwise connected by bridges. The
bridges do not share a vertex with L1, L2, and L3, except their end vertices. See
Figure 7.1(a).

(b) L1 and L2 share an end vertex p and a possibly empty path C starting from p,
L1 ∩ L3 = L2 ∩ L3 = ∅. There is a bridge b1 between L1 and L3 and a bridge b2
between L2 and L3, b1 ∩ L2 = b2 ∩ L1 = ∅. See Figure 7.1(b).

(c) L1 and L2 share an end vertex p and a possibly empty path C1 starting from p.
L1 and L3 share an end vertex q (q 6= p) and a path C2 (possibly empty) starting
from q, C2 ∩ C1 = ∅. L2 and L3 are connected by a bridge b, b ∩ L1 = ∅. See
Figure 7.1(c).

1 2 3

4

5

6

7

8
9

10 11 12

L
1

L
2 L

3

i

j

b
1

b
2

b
3

(a)

1

2 3

4

5 6

7 8 9

L
1

L
3

i

j

L
2

b
2

b
1

C

p

(b)

1

2 3

4 5

6

L
3L

2

L
1

C
1

i

j

C
2

p

b

q

(c)

Figure 7.1. LNP for hierarchies

7.2 Minimum Level Non-Planar Patterns

Healy et al. [82] have presented a characterisation of MLNPs for arbitrary proper
level graphs. The properness is no restriction in the topological sense, since every
level graph can be made proper by the introduction of dummy vertices. For the
rest of this chapter we assume that every level graph is proper. Healy et al. have
divided MLNPs for arbitrary level graphs into three categories: trees, level non-
planar cycles, and level planar cycles with incident paths. They use some terms
that are common to all patterns: The uppermost and lowermost levels that contain
vertices of a pattern P are called extreme levels of P . They are not necessarily the
extreme levels 1 and k of the graph. If a vertex v lies on an extreme level then it is
called the incident extreme level and the other extreme level the opposite extreme
level of v. For the following patterns i and j are the respective extreme levels.

7.2. Minimum Level Non-Planar Patterns 89

7.2.1 Level Non-Planar Trees

Let x denote a root vertex with degree 3 that is located on one of the levels i, . . . , j.
From the root vertex 3 subtrees emerge that have the following common properties:

• Each subtree has at least one vertex on both extreme levels.

• A subtree is either a chain or it has two branches which are chains.

• All the leaf vertices of the subtrees are located on the extreme levels, and if
there is a leaf vertex v of a subtree S on an extreme level l ∈ {i, j} then v is
the only vertex of S on l.

• Those subtrees which are chains have one or more non-leaf vertices on the
extreme level opposite to the level of their leaves.

The location of the root vertex distinguishes two characterisations:

MLNP T1 The root vertex x is on an extreme level, i. e., φ(x) = i or φ(x) = j.

i

j

x wva

cbu

1

(a)

i

j

x wva

cbu

1

(b)

Figure 7.2. MLNP T1

MLNP T2 The root vertex x is on one of the intermediate levels, i. e., i < φ(x) <
j. At least one of the subtrees is a chain that starts from x, goes to the level i and
finishes on level j. Additionally, at least one of the subtrees is a chain that starts
from x, goes to the level j, and finishes on level i.

i

j

x

wv a

cbu

1

Figure 7.3. MLNP T2

90 Chapter 7. Forbidden Subgraphs

7.2.2 Level Non-Planar Cycles

The next category are cycles that are bounded by the extreme levels i and j of
the pattern. A cycle contains at least two distinct paths between the extreme levels
having vertices of the extreme level only as their end vertices. These paths are called
pillars .

MLNP C0 A cycle with more than two distinct pillars.

i

j

1 2 3

4 5 6

(a)

i

j

1 2 3

4 5 6

(b)

Figure 7.4. MLNP C0

7.2.3 Level Planar Cycles with Incident Paths

Level planar cycles can be augmented by a set of chains to obtain minimum level
non-planarity. A vertex on a pillar is called an outer vertex . The end vertices of
pillars are called corner vertices . If an extreme level has only one vertex it is called
a single corner vertex . A bridge in the context of a planar cycle is the shortest path
between corner vertices on the same level. A bridge contains two corner vertices
as its end vertices and the remainder are inner vertices. A pillar is monotone if in
a traversal of the cycle the level numbers of subsequent vertices of the pillar are
monotonic increasing or decreasing, depending on the direction of traversal. Two
paths or chains are parallel if they start on the same pillar and end on the same
extreme level. If a chain is connected to a cycle by one of its vertices with degree
1 (considering only edges of the chain) then this vertex is called the start vertex of
the chain and its level, the start level . The other vertex of degree 1 of the chain is
the end vertex and its level, the end level .

There are four cases where augmentation of a level planar cycle by paths result
in minimum level non-planarity. In all cases the paths start at a vertex on the cycle
and end on an extreme level. The bounds of the cycle are the extreme levels i and j.

MLNP C1 A single path p1 starting from an inner vertex vp1 of a bridge and
ending on the opposite extreme level of vp1 ; p1 and the cycle share only the vertex
vp1 . The path will have at least one vertex on an extreme level, the end vertex, and
at most two, the start and the end vertices.

7.2. Minimum Level Non-Planar Patterns 91

i

j

1 2 3

4 5

p
1

v
p1

Figure 7.5. MLNP C1

MLNP C2 Two paths p1 and p2 starting, respectively, from vertices vp1 and vp2 ,
vp1 6= vp2 , of the same pillar L = (vj, . . . , vp1 , . . . , vp2 , . . . , vj) terminating on extreme
levels j and i, respectively. Vertices vp1 and vp2 may be identical to the corner vertices
of L (vp1 = vi or vp2 = vj) only if the corner vertices are not single corner vertices.
Paths p1 and p2 have no vertices other than their start (if corner) and end vertices
on the extreme levels. There are two subcases according to the levels of vp1 and vp2 :
φ(vp1) < φ(vp2) or φ(vp1) ≥ φ(vp2). The latter means that L is a non-monotonic
pillar.

i

j

v
i

v
j

v
p1

v
p2

L

p
1

p
2

1

2

h

l

(a)

i

j

v
i

v
j

v
p1

v
p2

L

p
1

p
2

1

2

h

l

(b)

Figure 7.6. MLNP C2

MLNP C3 Three paths, p1, p2, and p3. Path p1 starts from a single corner vertex
c1 and ends on the opposite extreme level. Paths p2 and p3 start from opposite
pillars and end on the extreme level of c1. Neither p2 nor p3 can start from a single
corner vertex.

92 Chapter 7. Forbidden Subgraphs

i

j

c
1

p
1

p
2

3

p
3

v
p2

v
p3

1 2

4 5

Figure 7.7. MLNP C3

MLNP C4 Four paths, p1, p2, p3, and p4. The cycle comprises a single corner
vertex on each of the extreme levels, c1 and c2. Paths p1 and p2 start from different
corner vertices and end on the opposite extreme level to their start with the paths
embedded on either side of the cycle such that they do not intersect. Paths p3 and
p4 start from distinct non-corner vertices on the same pillar and finish on different
extreme levels. The level numbers of the start vertices are such that they do not
cause crossing of the last two paths.

i

j

c
1

p
1

p
2

p
3

1 2

4c
2

v
p4

3

p
4

v
p3

Figure 7.8. MLNP C4

To see why the restriction to proper level graphs is necessary consider for example
pattern C1. There the path p1 needs not to be bounded by the extreme levels of
the cycle i and j if long edges were allowed, e. g., vertex 2 in Figure 7.5 could lie on
level i− 1.

Theorem 7.2 (Healy, Kuusik, and Leipert). Let G = (V,E, φ) be a proper level
graph with k > 1 levels. Then G is not level planar if and only if it contains one of
the MLNPs T1, T2, or C0 to C4.

7.3 Minimum Radial Level Non-Planar Patterns

7.3.1 Radial Level Non-Planar Trees

For the radial case we first consider the case that the graph contains no cycle. Hence,
here it suffices to consider only connected graphs because a ring can only occur if the
graph contains a cycle, cf. Section 5.3.1. Thus there are no rings and analogously

7.3. Minimum Radial Level Non-Planar Patterns 93

to level planarity the components can be placed side by side. It is easy to see that
both MLNP T1 and T2 can not be drawn radial level planar, see Figure 7.9 for an
illustration. In the radial context we call them minimum radial level non-planar
subgraph patterns (MRLNPs) T1 and T2.

j

i

x

w

c

b

v

u a

1

(a) A radial drawing of
Figure 7.2(a), MRLNP T1

j

i

x

w

c

b

v

u a

1

(b) A radial drawing of
Figure 7.2(b), MRLNP T1

j

i

x

c

w

a

b

vu

1

(c) A radial drawing of Figure 7.3,
MRLNP T2

Figure 7.9. Minimum radial level non-planar trees

Lemma 7.1. Let G be a connected proper level graph without a cycle. Then G is
not radial level planar if and only if it contains MRLNP T1 or T2.

Proof. Theorem 7.2 states that MLNPs T1 and T2 are complete for level planarity
without a cycle and that they are minimum patterns. Since radial level planar
graphs are a superset of level planar graphs it follows that MRLNPs T1 and T2
are complete for radial level planarity without a cycle. They are minimum patterns
because deleting at least one edge results in level planarity, see Theorem 2 of [82],
which also means radial level planarity. �

94 Chapter 7. Forbidden Subgraphs

7.3.2 Radial Level Planar Cycles

Next we consider MLNP C0. The cycles are radial level planar because one can take
one path between the corner vertices on the same extreme level and route it such
that it contains exactly one cut edge.

j

i
1

2

3

4

5

6

(a) A radial level planar
drawing of Figure 7.10(a)

j

i

1

2

3

4

5

6

(b) A radial level planar
drawing of Figure 7.10(b)

Figure 7.10. Radial level planar drawings of the pattern C0

Similar to the pattern C0, the level planar cycles with attached paths, C1 to C4
can also be drawn radial level planar, see Figures 7.11 and 7.12. These five patterns
characterise the essential difference between level and radial level planarity. MLNPs
C0–C4 can not serve as witnesses to radial level non-planarity.

7.3.3 Radial Level Non-Planar Cycles

Without loss of generality, we could restrict the input graphs and thus the radial
level non-planar subgraph patterns to hierarchies by showing that the patterns for
hierarchies and non-hierarchies are the same. This can be done analogously to the
proof of Theorem 12 in [82]. The proof must only use the bottom up phase of our
radial level embedding algorithm described in Section 5.4, instead of JLM’s level
embedding algorithm to make a hierarchy out of the input graph. But contrary
to the LNPs for level planar hierarchies, there are no known patterns for radial
hierarchies. This implies that it is not much easier to treat only hierarchies. Hence,
we consider patterns for arbitrary level graphs directly. Again, let i and j be the
extreme levels of the patterns with i < j.

7.3.3.1 Disjoint Components

Two non-connected components (or subgraphs of them) between two extreme levels
intersect if the nesting of one component in a face of the other component fails. Then
at least one component must contain a ring. A ring between the extreme levels i and

7.3. Minimum Radial Level Non-Planar Patterns 95

j

i

p
1

11

2

3

4 5 6

(a) A radial level planar drawing
of Figure 7.5

j

i

l

h

v
i

v
j

v
p1

v
p2

L

p
1

p
2

1

2

(b) A radial level planar drawing
of Figure 7.6(a)

j

i

l

h

v
p2

v
p1

v
i

v
p1

1

2 p
2

p
1

(c) A radial level planar drawing
of Figure 7.6(b)

j

i

c
1

p
3

p
2

5

v
p2

p
1

v
p3

1 2

3 4

(d) A radial level planar drawing
of Figure 7.7

Figure 7.11. Radial level planar drawings of the patterns C1 to C3

96 Chapter 7. Forbidden Subgraphs

j

i

c
1

4

p
1

1

c
2

p
2

2 v
p3p

3

v
p4

p
4

3

Figure 7.12. A radial level planar drawing of Figure 7.8

j is a subgraph homeomorphic to the K2,2 with the extreme vertices {c1, c2, c3, c4}
and a levelling φ(c1) = φ(c2) = i and φ(c3) = φ(c4) = j. Thus it corresponds to a
cycle consisting of four paths (pillars) c1 →∗ c3, c1 →∗ c4, c2 →∗ c3, and c2 →∗ c4.
Each of the following RLNPs RC1–RC5 contains such a cycle.

RLNP RC1 A path p1 = u →∗ v starting on the extreme level in the inner face
of the cycle and ending on the opposite extreme level, i. e., φ(u) = i and φ(v) = j.

j

i

u

v

p
1

c
1

c
2

c
3

c
4

Figure 7.13. RLNP RC1

RLNP RC2 Two paths p2 = u →∗ v and p3 = x →∗ w whose vertices are all
between or on levels h and j, i < h < j; u ∈ c1 →∗ c3, v ∈ c1 →∗ c4, w ∈ c2 →∗ c3,
and x ∈ c2 →∗ c4. A path p1 = y →∗ z starting on level φ(y) = h on the inner
face of the cycle (u, . . . , v, . . . , c1, . . . , u) or of the cycle (w, . . . , x, . . . , c2, . . . , w) and
ending on level φ(z) = j.

7.3. Minimum Radial Level Non-Planar Patterns 97

p
1

p
2

u

v

j

i

h

c
2

c
3

c
4

c
1

p
3

x

w

z

y

Figure 7.14. RLNP RC2

7.3.3.2 Connected Components

For connected components containing a ring we have identified the following three
radial level non-planar patterns:

RLNP RC3 A path p1 = u →∗ v, where u ∈ c2 →∗ c3 and v ∈ c1 →∗ c4 with
i < φ(u) < j and i < φ(v) < j. If pillar (c1, . . . , w, . . . , c3) is non-monotonic and
φ(w) = j then u and c3 may coincide. If pillar (c2, . . . , x, . . . , c3) is non-monotonic
and φ(x) = j then v and c4 may coincide.

j

i

v

u

p
1

c
3

c
1

c
2

c
4

(a)

j

i

v

p
1

c
1

c
2

x

w

u

(b)

Figure 7.15. RLNP RC3

98 Chapter 7. Forbidden Subgraphs

RLNP RC4 A path p1 = (u, . . . , w, . . . , v), where u ∈ c2 →∗ c3 and v ∈ c1 →∗ c3
with φ(w) = j and u, v 6= c3.

j

i

v

u
p

1

w

c
3

c
1

c
2

c
4

(a)

j u

v

w

p
1

i

c
2

c
4

c
3

(b)

Figure 7.16. RLNP RC4

RLNP RC5 Two disjoint paths p1 = w →∗ x and p2 = u →∗ v, where the path
(u, . . . , w, . . . , v) is a subpath of (c3, . . . , c1, . . . , c4), u ∈ c3 →∗ c1, and v ∈ c1 →∗ c4.
The path p2 is disjoint with (c3, . . . , c1, . . . , c4) except its end vertices u and v.

j

i

v

u

w

x
p

1

p
2

c
1

c
2

c
3

c
4

Figure 7.17. RLNP RC5

Theorem 7.3. Let G be a proper level graph with k > 1 levels.

1. G is not level planar if it contains a MRLNP T1, T2, or an RLNP RC1 to
RC5.

7.3. Minimum Radial Level Non-Planar Patterns 99

2. There are MLNPs which are radial level planar.

Theorem 7.3 summarises our observations. Unfortunately, the patterns which
are radial level non-planar cycles are not minimum in every case. A complete char-
acterisation for radial level non-planar graphs containing a cycle is left as open.

100 Chapter 7. Forbidden Subgraphs

8
Conclusion

In our opinion there are no good drawing algorithms for planar graphs. For level
planar graphs there are some. We have extended the concept of level planarity to
obtain a larger class of planar graphs for which good drawing algorithms exist.

8.1 Summary

After an introduction to the well known topics planarity and level planarity we have
introduced three new concepts of planarity: track planarity, radial level planarity,
and circle planarity. This allows planar drawings of more graphs with vertices par-
titioned into levels. Figure 8.1 summarises the relationships between the different
concepts which directly follow from the definitions and from Remarks 4.1, 5.1, and
6.1.

level planarity track planarity) non-monotone track planarity

radial level planarity circle planarity non-monotone circle planarity

planarity

))

)

Figure 8.1. Relationships between different concepts

We have presented a linear time reduction from track planarity to level planarity,
leading to a linear time algorithm to recognise track planarity. This can be easily
integrated into an existing level planarity test algorithm. Clearly, the core algorithms
need not be changed because we only extend the input graph with O(|V |) dummy
vertices and O(|V |) dummy edges in a preprocessing step. Thus the time complexity
of the algorithm does not change. Further, we have presented a new algorithm
for detecting radial level planarity of k-level graphs in linear time. For this we

101

102 Chapter 8. Conclusion

have enhanced the PQ-tree data structure of [13] with a new node type, R-nodes,
in order to represent ring components of the graph. The obtained data structure
is the PQR-tree structure. Our algorithm can also compute a radial level planar
embedding within the same linear time bounds as other planar embedding algorithms
[26, 95, 97, 99, 112]. Also we have presented a linear time algorithm for the detection
of k-circle planar graphs and for computing an embedding for them as a combination
of the above.

While working on theoretical subjects we have implemented an object oriented
prototype of our algorithm in C++ using the Graph Template Library (GTL) [76]
with improved symmetric lists [7], see Appendix B. This algorithm can detect pla-
narity, level planarity, track planarity, radial level planarity, as well as circle pla-
narity. Additionally, it can compute the corresponding embeddings.

8.2 Future Work

An interesting future challenge would be a new method or a extension of the existing
methods, e. g., of [20, 22, 23, 51, 53, 131, 132, 134], for x-coordinate assignment
which directly works on the radial embedding. Then aesthetic criteria like edges
without bends or cut edges with at most two bends like the other edges could be
treated more easily. Further, the possibility of rotating a radial level to obtain a
better coordinate assignment has not been exploited exhaustively yet. An algorithm
like [57] which directly works with long edges without inserting a quadratic number
of dummy vertices could speed up this procedure. For the drawing of long edges
without, or at least with fewer, dummy vertices it might also be helpful to use the
incident edge orderings computed in the embedding phase with Chiba’s algorithm.

Further investigations are needed in order to show that all RLNPs of Section 7.3.3
are complete and to find these patterns for track and circle planarity. Additionally,
all patterns should be directly characterised for non-proper level graphs. Further, it
would be helpful if the patterns can be minimised such that deleting one edge leads
to radial, track, or circle planarity, respectively. It is also desirable to efficiently
expand the test algorithms for the various kinds of level planarity to detect the
forbidden subgraph patterns if the tested graph is not (radial) level, track, or circle
planar. This work already has been done for the detection of the Kuratowski graphs
K3,3 and K5 in general graph planarity. Both can be efficiently found as [103, 159]
or [120, Section 3.2] show. As already mentioned in the conclusion of [112, p. 211]
the detection of forbidden subgraph patterns can also be used to verify the results of
a (radial) level planarity test. Since such a test is a non-trivial algorithm and thus
it is not unlikely that an implementation is faulty, it is desirable to not only prove
planarity by an embedding or by a drawing, but also to show non-planarity on the
basis of minimum patterns.

Another interesting topic is the generalisation of level graphs to non-monotonic
edges while the levels of the vertices remain fixed. How can a graph be tested and
embedded efficiently for non-monotone variations of (radial) level planarity? What

8.2. Future Work 103

has also not been discussed in this thesis and what is unfortunately not addressed
very well in literature is planarity or crossing minimisation for recurrent hierarchies
as shown in Figure 5.2.

Clearly, level graphs that need to be visualised are not level planar in general.
Thus we expect research to continue concentrating on the subject of minimising
the number of edge crossings. Since almost all approaches known in literature only
attack the problem of 2-level crossing minimisation, studies on more general ap-
proaches are desirable in order to obtain a global view on the graph while reducing
edge crossings.

A lot of problems arise when using the Sugiyama approach on graphs that do
not have a levelling. Then the vertices are assigned to certain levels. Although this
is done according to certain requirements, e. g., the level graph should be compact,
the levelling has to be proper, or the number of dummy vertices that have to be
introduced should be small, this phase is encapsulated and predetermines in some
sense the final drawing of the graph. The crossing number is highly dependent on
the chosen levelling. Therefore it would be preferable to develop methods that try
to combine the phases of the Sugiyama algorithm.

These considerations reveal that there is a large number of open problems related
to the topics of this thesis. We hope that the tools and results we have presented
will contribute to a deeper understanding in drawing level graphs.

104 Chapter 8. Conclusion

A
Improved Symmetric Lists

A.1 Motivation

A doubly linked list consists of cells each containing a data field storing an element
of the list and two pointers to its neighbours. In general, the interpretation of these
pointers is hard-coded [1, 74, 110] or [120, Section 8.7]. Lists usually rely on the
interpretation that the pointer named prev refers to the previous cell and the one
named next to the next cell. Clearly, reversing such a list can either be done in
linear time by interchanging the pointers in all cells or in constant time by globally
reversing their interpretation. However, then the pointers are interpreted identically
for all cells. This prevents inserting a reversed list into another in constant time,
since then the pointers of the cells of the inserted list and of the original list have
different meanings.

Example A.1. Consider the two lists in Figure A.1(a) and Figure A.1(b). As the
arrows in the background indicate, the list in Figure A.1(b) has been reversed, i. e.,
the pointers in cells 1, 2, and 3 on the one hand and cells A, B, and C on the
other are interpreted differently. If the list in Figure A.1(b) is inserted in the list
in Figure A.1(a) between cells 1 and 2 (in constant time), we obtain Figure A.1(c).
Obviously, the adjacency pointers do not have the same meaning in all cells in this
list. Of course, this can be fixed by interchanging the pointers in each cell of the
inserted list, but this takes linear time.

A.1.1 Concept

Following an idea of Tarjan [151], our data structure symlist solves this problem by
ignoring the common direction information of the pointers in a cell. Symlists only

105

106 Appendix A. Improved Symmetric Lists

p

n

1
p

n

2
p

n

3

(a) A non-reversed list, i. e., n refers to
the next and p to the previous cell

p

n

A
p

n

B
p

n

C

(b) A list which was reversed by switch-
ing the interpretation of n and p

p

n

C
p

n

B
p

n

A

p

n

1
p

n

2
p

n

3

(c) The result of inserting the list in Figure A.1(b) into the one in Figure A.1(a). Not all
pointers in this list have the same meaning, e. g., n in cell 1 refers to the next cell, but n in
cell B refers to the previous one

Figure A.1. Example of the problem of inserting a reversed list into a non-reversed
one in constant time with fixed interpretation of the pointers in the cells. In each
cell n and p denote pointer next and prev respectively

preserve the invariant that the two pointers refer to the two adjacent cells without
specifying directly or indirectly which one is the previous and which is the next.
Although this is not common in data structures, cf. [1, 74, 110, 120], it makes sense
from a software engineering perspective because the directional information is not a
feature of the cell. It is needed only for traversing a list.

Clearly, a traversal is more complicated for a symlist than for an ordinary doubly
linked list. In our implementation we use iterators that store the directional infor-
mation along with the cell they refer to. Whenever the iterator is moved in either
direction both its position and its direction must be updated (see Section A.2 for
a detailed description). Although the basic idea of symlists is already described in
[151], an anomaly which a straightforward implementation of this idea will have is
not mentioned, see Section A.3.1 for details.

A symlist is related to the quad-edge data structure [77] that is used for efficiently
representing embeddings of graphs in two-dimensional manifolds. It consists of quad-
edges and each vertex contains four references to adjacent quad-edges. For iterating
through this data structure, two flags are stored along with the current quad-edge.
These are used to determine the next quad-edge in the iteration. Depending on the
value of these flags, either the graph, its dual, or its mirror image are traversed. If
we use two of the four pointers of a quad-edge and one of its flags only, iterating
through this data structure is similar to the iteration through a symlist. However,
the quad-edge data structure was designed for that particular purpose only and is
not meant to be generic. It is used for iterating through the represented graph and
does not support reversals and insertions.

A.1. Motivation 107

Sleator and Tarjan [144] describe the efficient management of dynamic paths via
biased trees. There every internal vertex v of the tree has a flag reversed(v). The
reversal state of v is an exclusive or of the reversed flags from v to the root. This
indicates whether the path segment descendant to v is reversed and can be computed
within logarithmic time. We touch on this work because a list can be seen as a path
containing data information in its vertices. Of course, an insertion of a new element
in the path, an operation not mentioned in [144], has to update this tree structure,
which is not possible in constant time.

A.1.2 Applications

Symlists can be used for any doubly linked list; in particular, when in addition to
the standard operations, both reversing the list and inserting a list into another has
to be done in constant time.

Within the PQ-tree data structure, cf. Section 2.2, we have these requirements for
the lists storing the children of an internal PQ-node. The most important operation
on PQ-trees is REDUCE. This operation may reverse the order of the children of
some Q-nodes and insert the children of a Q-node somewhere in between the children
of another Q-node. In order to achieve the complexity of REDUCE proved in [13],
both reversing a list of children and inserting a list of children into another must
be done in constant time. Remember, this complexity of REDUCE is crucial for all
linear time planarity testing and embedding algorithms described in this thesis. In
some implementations of PQ-trees no separate list data structure is used for storing
the children of a Q-node. The references to the adjacent siblings are stored in each
child [13, 99, 111]. In these implementations the adjacency pointers are treated as an
unordered set. Hence, they have no fixed meaning either and reversing and inserting
a reversed list can be done in constant time. However, from a software engineering
perspective it is better to have a separate and reusable data structure with a well
defined interface that provides appropriate methods for accessing and manipulating
the children of a Q-node. There is another linear time planarity test of Boyer and
Myrvold which does not use PQ-trees but also needs an efficient data structure for
flipping biconnected components, see [16, Section 2]. They call this data structure
a doubly linked cycle with no sense of clockwise. This is exactly the paradigm of
symlists.

Common implementations of doubly linked lists encode the direction of the list
into their cell by using pointers with a uniform meaning for the whole list [1, 74, 110]
or [120, Section 8.7]. As illustrated by Example A.1, these implementations cannot
provide constant time methods for both reversing a list and inserting a reversed
list into another. Hence, they cannot be used in a PQ-tree within the desired time
bounds. Our data structure symlist fills this gap. As shown in Table A.1, the time
complexity of all methods on lists are identical except for reversing a list, which can
be done in constant time on a symlist.

108 Appendix A. Improved Symmetric Lists

Table A.1. Typical operations on lists and iterators and their time complexity

Operation symlist ordinary list

List insert O(1) O(1)
splice O(1) O(1)
erase O(1) O(1)
reverse O(1) O(n)
size O(n) O(n)
empty O(1) O(1)

Iterator ++ O(1) O(1)
- O(1) O(1)

A.2 Implementation

Our implementation is based on the interface of the Standard Template Library
(STL) class list [122, 141] containing methods like empty, insert, splice, erase,
and reverse, see Figure A.2. Furthermore, the interface is enriched with the new
methods attach_sublist, detach_sublist, blind_insert, and blind_erase, see
Section A.3.2.

A symlist consists of cells containing two adjacency pointers, p [0] and p [1]. As
suggested in [110] and used in STL, our implementation is a cyclic list with an
additional cell between the first and the last cell, see Figure A.3. It is called the end
cell because this is the cell to which the end iterator symlist::end() refers.

The end cell is stored in our list class along with a flag dir ∈ {0, 1} indicating
which of the two pointers refers to the first cell of the list. In addition to its cell
object cell, each iterator stores its current direction as a flag dir ∈ {0, 1} indicating
that p[dir] in cell leads to the next cell.

Algorithm A.1 explains the effect of the ++-operator (advancing to the next cell)
applied to an arbitrary iterator it in detail. The −−-operator is defined analogously.

Insertion of a new cell z before an arbitrary iterator it referring to cell x works as
follows: With −−it we determine the previous cell y of x in the sense of the iterator
it’s local direction. After updating the appropriate pointers of x, y, and z, a new
iterator pointing to z and having the same direction as it is returned.

For an iteration we need begin and end iterators. As already mentioned, the end
iterator points to the end cell and its direction flag is set to the direction flag of the
list. In order to get a begin iterator, i. e., symlist::begin(), we internally call ++
on the end iterator, which gives an iterator pointing to the first element in the list
and heading in the direction of the list.

Now reversing a symlist can be done in constant time by flipping the direction
flag of the list. This avoids the problems illustrated in Example A.1 and avoids using
linear time for reversing. Furthermore, an iterator can easily be reversed by flipping
its direction flag. As in STL, all existing iterators, except the ones referring to erased

A.2. Implementation 109

uses

+symlist()

+symlist(l:const symlist<T>&)

+operator=(l:const symlist<T>&):symlist<T>&

+~symlist()

+empty():bool

+front():T&

+back():T&

+begin():symlist_iterator

+end():symlist_iterator

+rbegin():symlist_iterator

+rend():symlist_iterator

+insert(pos:symlist_iterator,data:const T&):symlist_iterator

+splice(pos:symlist_iterator,it:symlist_iterator):void

+splice(pos:symlist_iterator,begin:symlist_iterator,end:symlist_iterator):void

+erase(pos:iterator):iterator

+erase(begin:symlist_iterator,end:symlist_iterator):symlist_iterator

+attach_sublist(begin:symlist_iterator,end:symlist_iterator):void

+detach_sublist():void

+reverse():void

+blind_insert(pos:symlist_iterator,data:const T&):symlist_iterator

+blind_erase(pos:symlist_iterator):symlist_iterator

symlist T:class

symlist_iterator

+symlist_iterator()

+symlist_iterator(it:const self&)

+operator=(it:const self&):self&

+operator==(it:const self&):bool

+operator!=(it:const self&):bool

+operator*():Ref

+operator++():self&

+operator--():self&

+reverse():void

T :class
Ref:class

Figure A.2. The interface of our symlist implementation in UML notation

110 Appendix A. Improved Symmetric Lists

Algorithm A.1. operator++
Input: Nothing

Output: An iterator to the next cell in this iterator’s direction

tmp← it.cell // make a copy of the current cell
it.cell← tmp.p [it.dir] // move to the next cell

if it.cell.p [0] = tmp then
it.dir ← 1 // p[0] points back, hence new dir is 1

else
it.dir ← 0 // p[1] points back, hence new dir is 0

end

return it

cells, remain valid and consistent to their possibly new adjacency throughout the
lifetime of a symlist and all update operations on it. This also holds if the blind
operations from Section A.3.2 are used.

A.3 Extensions

A.3.1 Losing Information

In the basic implementation as outlined above, the information stored in an iterator
together with the direction flag of the list may be insufficient. This is clarified by
the following example.

Example A.2. Consider the symlists in Figure A.3(a) and Figure A.3(b). These
are almost identical. The only difference is that p [0] and p [1] in cell A are switched.
Therefore the iterator t in Figure A.3(a) has the same direction as the end iterator,
whereas t in Figure A.3(b) has the opposite direction. Hence, inserting a new cell
before t in Figure A.3(a) results in a new cell between end and A. On the other
hand, in Figure A.3(b) this insertion results in a new cell between A and B.

If we delete cell B in both Figures A.3(a) and A.3(b), we get the configurations
shown by Figures A.3(c) and A.3(d), respectively. Clearly, inserting a new cell
before t in Figure A.3(c) should give a list beginning with the new cell, and inserting
it in Figure A.3(d) should give a list with the new cell at the end. But the two
configurations in Figures A.3(c) and A.3(d) are indistinguishable, i. e., both pointers
in each cell refer to the other cell, the direction flag of the list is 0, and t has direction
0. Thus it is impossible to determine what “insertion before t” really means. Both
positions could be correct.

Obviously, this problem occurs only on singleton lists as shown in Figure A.3(c).
Through the iterator pointing to the only data cell and its direction flag, it is known
which pointer of this cell is affected by an insertion. But it is impossible to determine

A.3. Extensions 111

1

0

end A
1

0

B
1

0

0 0
t

(a) Here inserting before t results in a new cell
between end and A

1

0

end

A
1

0 B
1

0

0 0
t

(b) In this configuration inserting before t re-
sults in a new cell between A and B

1

0

end A
1

0

0 0
t

(c) Result of deleting cell B in
Figure A.3(a). Inserting the
new cell should behave as in Fig-
ure A.3(a), i. e., should result in
a list with the new cell at the
beginning

1

0

end
A

1

0

0 0
t

(d) The result of deleting cell B
in Figure A.3(b). This is identi-
cal to Figure A.3(c), but insert-
ing a new cell should behave as
in Figure A.3(b), i. e., with the
new cell at the end

Figure A.3. Example where the information stored in an iterator is not sufficient
to determine where to insert a new cell. The 0 and 1 in the cells denote pointers
p [0] and p [1], respectively. The circles pointing to a cell are iterators. The number
in an iterator is its direction flag. The iterator pointing to the end cell is the end
iterator, i. e., its direction flag is the direction of the list

112 Appendix A. Improved Symmetric Lists

which pointer in the end cell needs to be updated, cf. Figures A.3(c) and A.3(d).
If the direction is encoded into the cells using pointers prev and next, this cannot
occur because we know that the corresponding pointer for prev in the data cell is
next in the end cell, for instance.

This problem can and must be resolved to prevent errors. As a particular applica-
tion consider for example level planarity testing, which uses PQ-trees, cf. Section 3.
The children of all PQ-nodes are stored in symlists, and in the template matching
algorithm it can happen that a Q-node temporarily has only one child.

Since this anomaly occurs only in singleton lists, we can simply keep a hidden
cell to avoid it. In our implementation this additional cell is always a neighbour
of the end cell. This enforces some modifications in the methods of class symlist

to hide the existence of the additional cell. Beside the insert and erase methods,
the ++-operation and the −−-operation on iterators must be changed to ignore the
invisible cell. To achieve this efficiently, our extension is to mark each cell according
to its type (data, hidden, or end) when it is created.

Exactly the same problem occurs with Tarjan’s reversible lists, as described in
[151], but on lists of size two and not on singleton lists. This is due to the fact that
there is no extra end cell and the global direction of the list is stored within the last
data cell, the so-called tail. Moreover, Tarjan does not describe what previous or
next means to an arbitrary external pointer on a cell. In a symlist every iterator has
a local direction, for a simple pointer this is impossible. But for some applications
this feature is very useful, e. g., for (level) planarity testing.

A.3.2 Blind Operations

Besides the standard methods on doubly linked lists, we need the more specialised
methods attach_sublist and detach_sublist for maintaining the children of a Q-
node. If a planarity testing algorithm uses PQ-trees, sometimes a pseudo Q-node,
cf. Section 2.3, must be created which temporarily contains a sequence of children
out of the middle of another Q-node. Remember, this parent Q-node may not be
known at the moment due to time complexity restrictions. Hence, because only
the iterators to the relevant children are known, we need a constant time operation
attach_sublist which sets the adjacency pointers of that pseudo list’s end cell e
to the first and the last data cell, w and v, of the sublist. The adjacencies of w and
v are adapted accordingly. Moreover, pointers to the previous and next cells from
that sequence in the original list are stored in the pseudo list in order to know where
the sublist must be inserted in the original list by detach_sublist later on in the
algorithm.

Another useful feature is the ability to insert or erase an element of a symlist if its
position is given by an external iterator, but not the symlist object itself. Therefore,
we introduce two static methods blind_insert and blind_erase, both running in
constant time. The use of such methods prohibits maintaining a size counter as a
data member of symlist which is updated with each operation affecting the size.

B
Implementation

Figure B.1 shows a suitable UML diagram for implementing an algorithm which is
capable of performing the various tests shown in this thesis: level planarity, track
planarity, radial level planarity, and circle planarity. In each case it can also compute
an embedding if the graph has the demanded planarity property. For example, our
prototypic implementation is derived from this model, except for the fact that the
functionalities of the classes r_node and q_node are combined into a single class.
This prototype is intended to be a feasibility study which is written in the C++
programming language on the basis of the GTL graph data structure [76].

The presented UML model is an 8-circle planar graph which is also 8-track planar
if one edge is deleted, e. g., the uses arrow from the level_planarity class to the
planarity class.

113

114 Appendix B. Implementation

pq_node

p_node q_node pq_leaf

dir_ind sink_ind contact

planar_embedding

pq_tree

level_planar_embedding

planaritylevel_planarity st_number

algorithm

r_node ignored_node

has
1 0..*

has
10..1

symlist_iterator

T :class
Ref:class

symlist

symnode T:class

uses has

uses

uses

hashas

has

has

root

children

has

sibling[]1sibling[]0

1

1

1

1

1

2

1

1

1

0..1

0..1

1

0..1

1

0..*

1

0..1

1

11

T:class

ray_ind

Figure B.1. A suitable UML model

List of Figures

1.1 The radial drawing from the cover page of Kaufmann and Wagner [105]. 2

2.1 Kuratowski subgraphs . 8
2.2 Drawing of internal PQ-nodes . 9
2.3 Two equivalent PQ-trees . 9
2.4 Introduction of a pseudo Q-node . 11
2.5 Template P0 . 12
2.6 Template P1 . 12
2.7 Template P2 . 12
2.8 Template P3 . 13
2.9 Template P4 . 13
2.10 Template P5 . 13
2.11 Template P6 . 13
2.12 Template Q0 . 14
2.13 Template Q1 . 14
2.14 Template Q2 . 14
2.15 Template Q3 . 14
2.16 A graph and a bush form of it . 16
2.17 Vertices are reduced according to their st-numbering 17
2.18 An upward embedding Eu of the graph in Figure 2.16(a) 18
2.19 Direction of traversing pertinent children and the resulting direction in-

dicator . 19

3.1 A level planar graph . 22
3.2 Vertices are reduced level by level . 23
3.3 Merge condition A . 27
3.4 Merge condition B . 28
3.5 Merge condition C . 28
3.6 Merge condition D . 28
3.7 Merge condition E . 29

4.1 A track planar graph and a track planar drawing of it 34
4.2 The 3d track planar graph of [43, p. 100] 34
4.3 Transformation of the horizontal edges into diamonds 35

115

116 List of Figures

4.4 Example of a track graph transformed into a level graph 35
4.5 No vertex can be inside a diamond . 36

5.1 A radial level planar graph with radial level planar drawings 40
5.2 The recurrent hierarchy from the cover page of Kaufmann and Wagner

[105] . 41
5.3 A minimum radial level non-planar graph 41
5.4 Two radial planar connected components and a radial level non-planar

graph which is a combination of them . 43
5.5 Rings depend on the levelling . 44
5.6 Extreme levels of a ring . 45
5.7 Two intersecting contour cycles CR and CS with αS = γR 46
5.8 The rotations to avoid cut edges may fall for local extrema 48
5.9 Nesting of rings . 49
5.10 Rotation of an R-node . 50
5.11 Template P7 . 51
5.12 Template P8 . 51
5.13 Template P9 . 52
5.14 Template Q4 . 52
5.15 Template Q5 . 52
5.16 Template Q6 . 53
5.17 Template Q7 . 53
5.18 Template R0 . 53
5.19 Template R1 . 53
5.20 Template R2 . 54
5.21 Template R3 . 54
5.22 Template R4 . 54
5.23 Iterative merges of boundary partial Q-nodes 56
5.24 Merge condition CR . 57
5.25 Merge condition DR . 57
5.26 Merge condition E . 57
5.27 Schematic nesting of a processed ring . 60
5.28 Linked and nested rings . 61
5.29 Template R1 with ray indicator . 66
5.30 Template P8 with ray indicator . 66
5.31 Template Q4 with ray indicator . 66
5.32 Template Q6 with ray indicator . 67
5.33 Preserving level optimality . 67
5.34 Detection of a cut edge while reducing the leaves of vertex 4 68
5.35 Embedding without an st-edge . 71
5.36 No cut edge can be between two non-cut edges 73
5.37 In a radial level planar graph all cut edges ending on the same level have

the same direction and the same target vertex 73
5.38 Successive and sorted attachments of faces to the sides of the trunk . . . 75

List of Figures 117

5.39 An upward embedding induces a unique level embedding 76
5.40 El computed from Eu in Figure 5.35(g) 77
5.41 Geometrical description of an edge in the plane 77
5.42 Drawing (segments of) cut edges . 79
5.43 A cut edge can be drawn with at most four bends 80
5.44 A long straight cut edge (1, 3) introduces an edge crossing 81

6.1 A circle planar graph and a circle planar drawing of it 84
6.2 Both artificial edges (ve, u) and (ve, v) are cut edges but the original circle

edge e is not . 85
6.3 The radial 9-level planar graph G′ computed from Figure 6.1 85

7.1 LNP for hierarchies . 88
7.2 MLNP T1 . 89
7.3 MLNP T2 . 89
7.4 MLNP C0 . 90
7.5 MLNP C1 . 91
7.6 MLNP C2 . 91
7.7 MLNP C3 . 92
7.8 MLNP C4 . 92
7.9 Minimum radial level non-planar trees 93
7.10 Radial level planar drawings of the pattern C0 94
7.11 Radial level planar drawings of the patterns C1 to C3 95
7.12 A radial level planar drawing of Figure 7.8 96
7.13 RLNP RC1 . 96
7.14 RLNP RC2 . 97
7.15 RLNP RC3 . 97
7.16 RLNP RC4 . 98
7.17 RLNP RC5 . 98

8.1 Relationships between different concepts 101

A.1 Inserting a reversed list . 106
A.2 The interface of our symlist implementation in UML notation 109
A.3 Example of the anomaly . 111

B.1 A suitable UML model . 114

118 List of Figures

List of Definitions

5.1 Ring . 43
5.2 Ring extremes . 44
5.3 Level optimal . 45
5.4 minML . 55
5.5 minLL . 58
5.6 Edge direction . 73
5.7 Dual graph . 79

119

120 List of Definitions

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms,
pages 204–205. Addison Wesley, 1983.

[2] L. Auslander and P. S. V. On imbedding graphs in the plane. Journal of
Mathematics and Mechanics, 10(3):517–523, 1961.

[3] C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity
testing and embedding in linear time. Technical Report MIP-0303, University
of Passau, June 2003.

[4] C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity
testing and embedding in linear time. Submitted for publication, February
2004.

[5] C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity
testing and embedding in linear time (extended abstract). In G. Liotta, ed-
itor, Proc. Graph Drawing, GD 2003, volume 2912 of LNCS, pages 393–405.
Springer, 2004.

[6] C. Bachmaier, F. J. Brandenburg, and M. Forster. Track planarity testing and
embedding. In P. Van Emde Boas, J. Pokorný, M. Bieliková, and J. Štuller, ed-
itors, Proc. Software Seminar: Theory and Practice of Informatics, SOFSEM
2004, volume 2, pages 9–17. MatFyzPres, 2004.

[7] C. Bachmaier and M. Raitner. Improved symmetric lists. Submitted for
publication. Preprint available at http://www.infosun.fmi.uni-passau.

de/~chris/index.html#publications, February 2004.

[8] F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of
Combinatorial Geometry, page B 27, 1979.

[9] P. Bertolazzi, C. Mannino, G. Di Battista, and R. Tamassia. Optimal up-
ward planarity testing of single-source digraphs. Technical Report CS-94-46,
Department of Computer Science, Brown University, 1994.

[10] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions
of a small treewidth. Technical Report RUU-CS-92-27, Computer Science
Department, Utrecht University, 1992.

121

http://www.infosun.fmi.uni-passau.de/~chris/index.html#publications
http://www.infosun.fmi.uni-passau.de/~chris/index.html#publications

122 Bibliography

[11] N. Bonichon, B. Le Saëc, and M. Mosbah. Optimal area algorithm for planar
polyline drawings. In L. Kuera, editor, Graph-Theoretic Concepts in Computer
Science: 28th International Workshop, WG 2002, volume 2573 of LNCS, pages
35–46. Springer, 2002.

[12] G. Booch, J. Rumbaugh, and I. Jacobson. Das UML Benutzerhandbuch.
Addison-Wesley, first edition, 1999.

[13] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of
Computer and System Sciences, 13:335–379, 1976.

[14] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding
your P’s and Q’s: Implementing a fast and simple DFS-based planarity testing
and embedding algorithm. Technical Report RT-DIA-83-2003, Dipartimento
di Informatica e Automazione, Università degli studi di Roma Tre, November
2003. http://web.dia.uniroma3.it/ricerca/rapporti/rt/2003-83.pdf.

[15] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding
your P’s and Q’s: Implementing a fast and simple DFS-based planarity testing
and embedding algorithm. In G. Liotta, editor, Proc. Graph Drawing, GD
2003, volume 2912 of LNCS, pages 25–36. Springer, 2003.

[16] J. M. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simpli-
fied O(n) planar embedding algorithm. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, SODA 1999, pages 140–146, 1999.

[17] J. M. Boyer and W. Myrvold. Stop minding your P’s and Q’s: Simplified
planarity by edge addition. Submitted for publication. Preprint available
at http://www.pacificcoast.net/~lightning/planarity.pdf, September
2003.

[18] U. Brandes, P. Kenis, and D. Wagner. Centrality in policy network draw-
ings. In J. Kratochv́ıl, editor, Proc. Graph Drawing, GD 1999, volume 1731
of LNCS, pages 250–258. Springer, 1999.

[19] U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy net-
work drawings. IEEE Transactions on Visualization and Computer Graphics,
9(2):241–253, 2003.

[20] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment.
In P. Mutzel, M. Jünger, and S. Leipert, editors, Proc. Graph Drawing, GD
2001, volume 2265 of LNCS, pages 31–44. Springer, 2001.

[21] R. Brockenauer and S. Cornelsen. Drawing Clusters and Hierarchies, chapter 8,
pages 193–227. Volume 2025 of LNCS [105], 2001.

http://web.dia.uniroma3.it/ricerca/rapporti/rt/2003-83.pdf
http://www.pacificcoast.net/~lightning/planarity.pdf

Bibliography 123

[22] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level
graphs. Technical Report 99-368, Institut für Informatik Universität zu Köln,
1999.

[23] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level
graphs. In J. Marks, editor, Proc. Graph Drawing, GD 2000, volume 1984 of
LNCS, pages 229–240. Springer, 2001.

[24] M.-J. Carpano. Automatic display of hierarchized graphs for computer aided
decision analysis. IEEE Transactions on Systems, Man, and Cybernetics,
10(11):705–715, 1980.

[25] M. Chandramouli and A. A. Diwan. Upward numbering testing for tricon-
nected graphs. In F. J. Brandenburg, editor, Proc. Graph Drawing, GD 1995,
volume 1027 of LNCS, pages 140–151. Springer, 1996.

[26] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embed-
ding planar graphs using PQ-trees. Journal of Computer and System Sciences,
30:54–76, 1985.

[27] M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs.
International Journal of Computational Geometry and Applications, 7(3):211–
223, 1997.

[28] M. Chrobak and T. H. Payne. A linear-time algorithm for drawing a planar
graph on a grid. Information Processing Letters, 54(4):241–246, 1995.

[29] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Embedding graphs in
books: A layout problem with applications to vlsi-design. SIAM Journal on
Algorithms and Discrete Methods, 8(1):33–58, 1987.

[30] J. Clark and D. A. Holton. Graphentheorie, Grundlagen und Anwendungen.
Spektrum, 1994.

[31] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 2000.

[32] S. Cornelsen, T. Schank, and D. Wagner. Drawing graphs on two and three
lines. In S. G. Kobourov and M. T. Goodrich, editors, Proc. Graph Drawing,
GD 2002, volume 2528 of LNCS, pages 31–41, 2002.

[33] E. Dahlhaus. A linear time algorithm to recognize clustered planar graphs and
its parallelization. In C. L. Lucchesi, editor, 3rd Latin American Symposium
on Theoretical Informatics, LATIN ’98, volume 1380 of LNCS, pages 239–248.
Springer, 1998.

124 Bibliography

[34] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fáry embed-
dings of planar graphs. In Proc. ACM Symposium on Theory of Computing,
STOC 1988, pages 426–433. ACM Press, 1988.

[35] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a
grid. Combinatorica, 10:41–51, 1990.

[36] H. de Fraysseix and P. Rosenstiehl. A depth-first characterisation of planarity.
Annals of Discrete Mathematics, 13:75–80, 1982.

[37] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs by
trémaux orders. Combinatorica, 5(2):127–135, 1985.

[38] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[39] G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Trans-
actions on Systems, Man, and Cybernetics, 18(6):1035–1046, 1988.

[40] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic
digraphs. Theoretical Computer Science, 61:175–198, 1988.

[41] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):957–997, 1996.

[42] G. Di Battista, R. Tamassia, and I. G. Tollis. Constraint visibility represen-
tations of graphs. Information Processing Letters, 41:1–7, 1992.

[43] E. Di Giacomo. Computing Drawings of Graphs with Constraint Vertex Posi-
tions. PhD thesis, Università degli studi di Perugia, 2003.

[44] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, second edition, 2000. electronic version from ftp://ftp.math.

uni-hamburg.de/pub/unihh/math/books/diestel/GraphTheoryII.pdf.

[45] M. B. Dillencourt, D. Eppstein, and D. S. Hirschberg. Geometric thickness of
complete graphs. Journal of Graph Algorithms and Applications, 4(3):5–17,
2000.

[46] C. Dornheim. Planar graphs with topological constraints. Journal of Graph
Algorithms and Applications, JGAA, 6(1):27–66, 2002.

[47] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[48] V. Dujmović, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. Mc-
Cartin, N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. H. White-
sides, and D. R. Wood. On the parameterized complexity of layered graph
drawing. In F. Meyer auf der Heide, editor, Proc. European Symposium on
Algorithms, ESA 2001, volume 2161 of LNCS, pages 488–499. Springer, 2001.

ftp://ftp.math.uni-hamburg.de/pub/unihh/math/books/diestel/GraphTheoryII.pdf
ftp://ftp.math.uni-hamburg.de/pub/unihh/math/books/diestel/GraphTheoryII.pdf

Bibliography 125

[49] P. Eades. Drawing free trees. Technical Report IIAS-RR-91-17E, International
Institute for Advanced Study of Social Information Science, Fujitsu Limited,
Japan, 1991.

[50] P. Eades. Drawing free trees. Bulletin of the Institute of Combinatorics and
its Applications, 5:10–36, 1992.

[51] P. Eades, Q.-W. Feng, and X. Lin. Straight-line drawing algorithms for hi-
erarchical graphs and clustered graphs. Technical Report 96-2, University of
Newcastle, 1996.

[52] P. Eades, B. D. McKay, and N. C. Wormald. On an edge crossing problem.
In Proc. Australian Computer Science Conference, pages 327–334. Australian
National University, 1986.

[53] P. Eades, F. Quing-Wen, and X. Lin. Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. In S. North, editor, Proc. Graph
Drawing, GD 1996, volume 1190 of LNCS, pages 113–128. Springer, 1997.

[54] P. Eades and K. Sugiyama. How to draw a directed graph. Journal of Infor-
mation Processing, 13(4):424–437, 1990.

[55] P. Eades and S. H. Whitesides. Drawing graphs in two layers. Theoretical
Computer Science, 131:361–374, 1994.

[56] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(1):379–403, 1994.

[57] M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. An efficient implementa-
tion of Sugiyama’s algorithm for layered graph drawing. Submitted for publi-
cation. Preprint, February 2004.

[58] S. Even. Graph Algorithms, chapter 7, pages 148–191. Computer Science
Press, 1979.

[59] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2:339–344, 1976.

[60] I. Fáry. On straight line representing of planar graphs. Acta Scientiarum
Mathematicarum Szeged, 11:229–233, 1948.

[61] S. Felsner, G. Liotta, and S. K. Wismath. Straight-line drawings on restricted
integer grids in two and three dimensions. Technical Report TR-CS-01-01,
University of Lethbridge, 2001.

[62] S. Felsner, G. Liotta, and S. K. Wismath. Straight-line drawings on restricted
integer grids in two and three dimensions. In P. Mutzel, M. Jünger, and
S. Leipert, editors, Proc. Graph Drawing, GD 2001, volume 2265 of LNCS,
pages 328–342. Springer, 2002.

126 Bibliography

[63] Q.-W. Feng. Algorithms for Drawing Clustered Graphs. Thesis for the de-
gree of doctor of philosophy, Department of Computer Science and Software
Engineering, University of Newcastle, 1997.

[64] Q.-W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs (ex-
tended abstract). In P. Spirakis, editor, Proc. European Symposium on Algo-
rithms, ESA 1995, volume 979 of LNCS, pages 213–226. Springer, 1995.

[65] F. Fischer. Koordinatenzuweisung beim radialen Zeichnen von gerichteten
Graphen (working title). diploma thesis under work, Fakultät für Mathematik
und Informatik, Universität Passau, 2004.

[66] M. Forster. Applying crossing reduction strategies to layered compound
graphs. In S. G. Kobourov and M. T. Goodrich, editors, Proc. Graph Drawing,
GD 2002, volume 2528 of LNCS, pages 276–284. Springer, 2002.

[67] M. Forster and C. Bachmaier. Clustered level planarity. In P. Van Emde Boas,
J. Pokorný, M. Bieliková, and J. Štuller, editors, Proc. Software Seminar:
Theory and Practice of Informatics, SOFSEM 2004, volume 2932 of LNCS,
pages 218–228. Springer, 2004.

[68] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software - Practice and Experience, 21(11):1129–1164, 1991.

[69] E. R. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
1993.

[70] M. R. Garey and D. S. Johnson. A Guide to the Theory of NP-Completeness.
W. H. Freemann, 1979.

[71] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983.

[72] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings
with optimal area. International Journal of Computational Geometry and
Applications, 6(3):333–356, 1996.

[73] A. J. Goldstein. An efficient and constructive algorithm for testing whether
a graph can be embedded in a plane. Technical Report Contract No. NONR
1858-(21), Department of Mathematics, Princeton University, 1963.

[74] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java,
chapter 5.2. John Wiley & Sons, second edition, 2001.

[75] Gravisto. Graph Visualization Toolkit. http://www.gravisto.org/. Univer-
sity of Passau.

http://www.gravisto.org/

Bibliography 127

[76] GTL. Graph Template Library. http://www.infosun.fmi.uni-passau.de/

GTL/. University of Passau.

[77] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of voronoi diagrams. ACM Transactions on
Graphics, 4(2):74–123, April 1985.

[78] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and R. Weis-
kircher. Advances in c-planarity testing of clustered graphs. In M. T. Goodrich
and S. G. Kobourov, editors, Proc. Graph Drawing, GD 2002, volume 2528 of
LNCS, pages 220–235. Springer, 2002.

[79] D. Harel and M. Sardas. An algorithm for straight-line drawings of planar
graphs. Algorithmica, 20(2):119–135, 1998.

[80] P. Healy and A. Kuusik. Characterisation of level non-planar graphs by mini-
mal patterns. Technical Report UL-CSIS-98-4, Department of Computer Sci-
ence and Information Systems, University of Limerick, July 1998.

[81] P. Healy and A. Kuusik. The vertex-exchange graph: A new concept for multi-
level crossing minimisation. In J. Kratochv́ıl, editor, Proc. Graph Drawing, GD
1999, volume 1731 of LNCS, pages 205–216. Springer, 1999.

[82] P. Healy, A. Kuusik, and S. Leipert. Characterization of level non-planar
graphs by minimal patterns. In D.-Z. Du, P. Eades, V. Estivill-Castro, X. Lin,
and A. Sharma, editors, Computing and Combinatorics, 6th Annual Inter-
national Conference, COCOON 2000, volume 1858 of LNCS, pages 74–84.
Springer, 2000.

[83] P. Healy, A. Kuusik, and S. Leipert. Characterization of level non-planar
graphs by minimal patterns. Technical Report 2000-382, Institut für Infor-
matik, Universität zu Köln, 2000.

[84] P. Healy and N. S. Nikolov. How to layer a directed acyclic graph. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Proc. Graph Drawing, GD 2001, volume
2265 of LNCS, pages 16–30. Springer, 2002.

[85] L. S. Heath and S. V. Pemmaraju. Recognizing leveled-planar dags in linear
time. In F. J. Brandenburg, editor, Proc. Graph Drawing, GD 1995, volume
1027 of LNCS, pages 300–311. Springer, 1996.

[86] L. S. Heath and S. V. Pemmaraju. Stack and queue layouts of directed acyclic
graphs: Part II. SIAM Journal on Computing, 28(5):1588–1626, 1999.

[87] L. S. Heath, S. V. Pemmaraju, and A. N. Trenk. Stack and queue layouts
of directed acyclic graphs: Part I. SIAM Journal on Computing, 28(4):1510–
1539, 1999.

http://www.infosun.fmi.uni-passau.de/GTL/
http://www.infosun.fmi.uni-passau.de/GTL/

128 Bibliography

[88] L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM
Journal on Computing, 21(5):927–958, 1992.

[89] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the
Association for Computing Machinery, JACM, 21(4):549–568, 1974.

[90] C. Hundack, K. Mehlhorn, and S. Näher. A simple linear time algorithm for
identifying Kuratowski subgraphs of non-planar graphs. unpublished, March
1996.

[91] J. P. Hutchinson. On polar visibility representations of graphs. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Proc. Graph Drawing, GD 2001, volume
2265 of LNCS, pages 422–434. Springer, 2001.

[92] M. D. Hutton and A. Lubiw. Upward planar drawing of single source acyclic
digraphs. In Proc. ACM-SIAM Symposium on Discrete Algorithms, SODA
1991, pages 203–211, 1991.

[93] M. D. Hutton and A. Lubiw. Upward planar drawing of single source acyclic
digraphs. SIAM Journal on Computing, 25(2):291–311, 1996.

[94] D. S. Johnson. The NP-completeness column: An ongoing guide. Journal of
Algorithms, 3(1):89–99, 1982.

[95] M. Jünger and S. Leipert. Level planar embedding in linear time. In J. Kra-
tochv́ıl, editor, Proc. Graph Drawing, GD 1999, volume 1731 of LNCS, pages
72–81. Springer, 1999.

[96] M. Jünger and S. Leipert. Level planar embedding in linear time. Technical
Report 99.374, Institut für Informatik, Universität zu Köln, 1999.

[97] M. Jünger and S. Leipert. Level planar embedding in linear time. Journal of
Graph Algorithms and Applications, JGAA, 6(1):67–113, 2002.

[98] M. Jünger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in automatic
graph drawing. In G. Di Battista, editor, Proc. Graph Drawing, GD 1997,
volume 1353 of LNCS, pages 193–204. Springer, 1997.

[99] M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time.
In S. H. Whitesides, editor, Proc. Graph Drawing, GD 1998, volume 1547 of
LNCS, pages 224–237. Springer, 1998.

[100] M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time.
Technical Report 99.369, Institut für Informatik, Universität zu Köln, 1999.

[101] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, 1989.

Bibliography 129

[102] G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Universtät
Utrecht, 1993.

[103] A. Karaberg. Classification and detection of obstructions to planarity. Linear
and Multilinear Algebra, 26:15–38, 1990.

[104] R. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85–103. Plenum Press, 1972.

[105] M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS.
Springer, 2001.

[106] M. Kaufmann and R. Wiese. Embedding the vertices at points: Few bends suf-
fice for planar graphs. Journal of Graph Algorithms and Applications, JGAA,
6(1):115–129, 2002.

[107] M. Kaufmann and R. Wiese. Maintaining the mental map for circular draw-
ings. In S. G. Kobourov and M. T. Goodrich, editors, Proc. Graph Drawing,
GD 2002, volume 2528 of LNCS, pages 12–22. Springer, 2002.

[108] P. N. Klein and J. H. Reif. An efficient parallel algorithm for planarity. In
Proc. IEEE Symposium on Foundations of Computer Science, FOCS 1986,
pages 465–477. IEEE Computer Society Press, 1986.

[109] P. N. Klein and J. H. Reif. An efficient parallel algorithm for planarity. Journal
of Computer and System Sciences, 37(2):190–246, 1988.

[110] D. S. Knuth. The Art of Computer Programming, volume 1, pages 280–281.
Addison Wesley Longman, 3 edition, 1997.

[111] S. Leipert. PQ-trees – an implementation as template class in C++. Technical
Report 97.259, Institut für Informatik, Universität zu Köln, 1997.

[112] S. Leipert. Level Planarity Testing and Embedding in Linear Time. Disserta-
tion, Mathematisch-Naturwissenschaftliche Fakultät der Universität zu Köln,
1998.

[113] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of
graphs. In P. Rosenstiehl, editor, Theory of Graphs, International Symposium,
Rome, pages 215–232. Gordon and Breach, 1967.

[114] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1982.

[115] X. Lin and P. Eades. Area minimization for grid visibility representation of
hierarchically planar graphs. In T. Asano, H. Imai, L. D. T., S.-I. Nakano,
and T. Tokuyama, editors, Computing and Combinatorics, 5th Annual Inter-
national Conference, COCOON 1999, volume 1627 of LNCS, pages 92–102.
Springer, 1999.

130 Bibliography

[116] U. Manber. Introduction to Algorithms: A Creative Approach. Addison-
Wesley, 1989.

[117] K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and
NP-Completeness. EATCS Monographs on Theoretical Computer Science.
Springer, 1984.

[118] K. Mehlhorn. Data Structures and Algorithms 3: Multi-Dimensional Searching
and Computional Geometry. EATCS Monographs on Theoretical Computer
Science. Springer, 1984.

[119] K. Mehlhorn, P. Mutzel, and S. Näher. An implementation of the Hopcroft
and Tarjan planarity test and embedding algorithm. Research Report MPI-I-
93-151, Max-Planck-Institut für Informatik, Saarbrücken, October 1993.

[120] K. Mehlhorn and S. Näher. LEDA, A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

[121] J. L. Moreno. Who Shall Survive: Foundations of Sociometry, Group Psy-
chotherapy, and Sociodrama. Beacon House, 1953.

[122] D. R. Musser and A. Saini. The STL Tutorial and Reference Guide. Addison
Wesley, 1996.

[123] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms, volume 32
of Annals of Discrete Mathematics. North Holland, 1988.

[124] T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen. Spektrum,
third edition, 1996.

[125] H. C. Purchase. Which aesthetic has the greatest effect on human understand-
ing? In G. Di Battista, editor, Proc. Graph Drawing, GD 1997, volume 1353
of LNCS, pages 248–261. Springer, 1997.

[126] H. C. Purchase. Metrics for graph drawing aesthetics. Journal of Visual
Languages and Computing, 13:501–516, 2002.

[127] M. Raitner. Effiziente Algorithmen zum Test der Planarität von Graphen.
Master’s thesis, Fakultät für Mathematik und Informatik, Universität Passau,
1999.

[128] B. Randerath, E. Speckenmeyer, E. Boros, P. Hammer, A. Kogan, K. Makino,
B. Simeone, and O. Cepek. A satisfiability formulation of problems on level
graphs. Rutcor Research Report RRR 40-2001, Rutgers Center for Operations
Research, Rutgers University, 2001.

[129] M. G. Reggiani and F. E. Marchetti. A proposed method for representing
hierarchies. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):2–8,
1988.

Bibliography 131

[130] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar ori-
entations of planar graphs. Discrete & Computional Geometry, 1(4):343–353,
1986.

[131] G. Sander. Graph layout through the VCG tool. In R. Tamassia and I. G. Tol-
lis, editors, Proc. of the DIMACS International Workshop on Graph Drawing
(GD 1994), volume 894 of LNCS, pages 194–205. Springer, 1995.

[132] G. Sander. A fast heuristic for hierarchical manhattan layout. In F. J. Bran-
denburg, editor, Proc. Graph Drawing, GD 1995, volume 1027 of LNCS, pages
447–458. Springer, 1996.

[133] G. Sander. Layout of compound directed graphs. Technical Report A/03/96,
Universität Saarbrücken, 1996.

[134] G. Sander. Visualisierungstechniken für den Compilerbau. PhD thesis, Uni-
versität Saarbrücken, 1996.

[135] G. Sander. Graph layout for applications in compiler construction. Theoretical
Computer Science, 217:175–214, 1999.

[136] T. Schank. Algorithmen zur Visualisierung planarer, partitionierter Graphen.
Master’s thesis, Universität Konstanz, 2001.

[137] W. Schnyder. Embedding planar graphs on the grid. In Proc. ACM-SIAM
Symposium on Discrete Algorithm, SODA 1990, pages 138–148, 1990.

[138] F. Schreiber. Visualisierung biochemischer Reaktionsnetze. PhD thesis,
Fakultät für Mathematik und Informatik, Universität Passau, 2001.

[139] W.-K. Shih and W.-L. Hsu. A simple test for planar graphs. In Proc. Workshop
on Discrete Mathematics and Algorithms, pages 110–122, 1993.

[140] W.-K. Shih and W.-L. Hsu. A new planarity test. Theoretical Computer
Science, 223(1–2):179–191, 1999.

[141] Silicon Graphics, Inc. STL. Standard Template Library. http://www.sgi.

com/tech/stl/.

[142] J. M. Six and I. G. Tollis. Circular drawings of biconnected graphs. In M. T.
Goodrich and C. C. McGeoch, editors, Proc. International Workshop on Al-
gorithm Engineering and Experimentation, ALENEX 1999, volume 1619 of
LNCS, pages 57–73. Springer, 1999.

[143] J. M. Six and I. G. Tollis. A framework for circular drawings of networks. In
J. Kratochv́ıl, editor, Proc. Graph Drawing, GD 1999, volume 1731 of LNCS.
Springer, 1999.

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/

132 Bibliography

[144] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(1):362–391, 1983.

[145] S. K. Stein. Convex maps. In Proc. American Mathematical Society, volume 2,
pages 464–466, 1951.

[146] E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder.
Springer, 1934.

[147] K. Sugiyama. Graph Drawing and Applications for Software and Knowledge
Engineers, volume 11 of Software Engineering and Knowledge. World Scien-
tific, 2002.

[148] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and
Cybernetics, 11(2):109–125, 1981.

[149] R. Tamassia and I. G. Tollis. A unified approach to visibility representations
of planar graphs. Discrete & Computional Geometry, 1(4):321–341, 1986.

[150] R. Tamassia and I. G. Tollis. Representations of graphs on a cylinder. SIAM
Journal of Discrete Mathematics, 4(1):139–149, 1991.

[151] R. E. Tarjan. Data Structures and Network Algorithms, chapter 1.3, page 11.
CBMS-NSF Regional Conferences Series in Applied Mathematics. Society for
Industrial and Applied Mathematics, 1983.

[152] N. Tomii, Y. Kambayashi, and S. Yajima. On planarization of 2-level graphs.
Papers of Technical Group on Electronic Computers, IECEJ, EC77-38:1–12,
1977.

[153] W. T. Tutte. Convex representations of graphs. In Proc. London Mathematical
Society, Third Series, volume 10, pages 304–320, 1960.

[154] W. T. Tutte. How to draw a graph. In Proc. London Mathematical Society,
Third Series, volume 13, pages 743–768, 1963.

[155] J. D. Ullman. Computational Aspects of VLSI, chapter 3.5, pages 111–114.
Computer Science Press, 1984.

[156] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deut-
schen Mathematiker-Vereinigung, 46:26–32, 1936.

[157] J. N. Warfield. Crossing theory and hierarchy mapping. IEEE Transactions
on Systems, Man, and Cybernetics, 7(7):502–523, 1977.

[158] S. G. Williamson. Embedding graphs in the plane — algorithmic aspects.
Annals of Discrete Mathematics, 6:349–384, 1980.

Bibliography 133

[159] S. G. Williamson. Depth-first search and Kuratowski subgraphs. Journal of
the Association for Computing Machinery, JACM, 31(4):681–693, 1984.

134 Bibliography

Partial Publications

• C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing
and embedding in linear time. Technical Report MIP-0303, University of Passau,
June 2003.

• C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing
and embedding in linear time. Submitted for publication, February 2004.

• C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing
and embedding in linear time (extended abstract). In G. Liotta, editor, Proc.
Graph Drawing, GD 2003, volume 2912 of LNCS, pages 393–405. Springer, 2004.

• C. Bachmaier, F. J. Brandenburg, and M. Forster. Track planarity testing and
embedding. In P. Van Emde Boas, J. Pokorný, M. Bieliková, and J. Štuller,
editors, Proc. Software Seminar: Theory and Practice of Informatics, SOFSEM
2004, volume 2, pages 9–17. MatFyzPres, 2004.

• C. Bachmaier and M. Raitner. Improved symmetric lists. Submitted for publica-
tion. Preprint available at http://www.infosun.fmi.uni-passau.de/~chris/

index.html#publications, February 2004.

135

http://www.infosun.fmi.uni-passau.de/~chris/index.html#publications
http://www.infosun.fmi.uni-passau.de/~chris/index.html#publications

136 Partial Publications

Index

A
active PQR-tree collection.69
adjacent. .3
algorithm

of JLM see JLM
of LEC.see LEC

ancestor . 4

B
BFS.see breadth first search
biconnected . 4
bipartite graph . 5
boundary partial 55
branch . 76
breadth first search.4
bridge. .87
bush form. 16

C
centre . 39

face . 44
chain .4
child . 4
circle .84

planar graph 83
clockwise cut edge 40, 73
cluster . 21
complete

bipartite graph 5
graph . 4

completely processed PQR-tree58
component . . see connected component
connected . 4

component . 4

contact. .31
contour of a face 17
corner vertex . 90
counterclockwise cut edge 40, 73
crossing number . 2
cut

edge . 39
vertex . 4

cycle . 4

D
DAG see directed acyclic graph
degree. .3
depth . 4

first search . 4
descendant . 4
DFS see depth first search
diamond . 35

chain .35
wheel . 84

digraph see directed graph
direct siblings . 5
directed

acyclic graph . 5
graph . 3
path . see path

direction indicator 18
disconnected graph 4
doubly partial . 13
dual graph . 79

E
edge . 3
element . 105
embedding . 17

137

138 Index

empty. .10
end

cell . 108
level . 90
vertex . 90
vertices of a bridge 87
vertices of an edge3

endmost. .9
extended form. .24
extreme level . 88

F
face . 17
first reduction phase 24
forest . 4
frontier . 9, 27
full .10

G
graph . 3

drawing problem 1
guest PQ-tree . 27

H
h-planar . 22
height . 4, 27
hidden cell . 112
hierarchical graph 5
hierarchy . 5
homeomorphic . 8
horizontal edge 34, 83
host PQ-tree . 27

I
ignored

PQR-tree . 68
PQR-tree collection 69

incident . 3
extreme level 88

incoming edge . 3
inner

face . 17
radius . 45

interior .9
internal vertex . 4

inward embedding.70
isolated vertex . 3

J
JLM . 22

K
Kuratowski subgraphs 8

L
leaf . 4
LEC . 15
leftmost . 9
length

of a path . 4
level

graph . 5
non-planar subgraph pattern . . . 87
optimal . 45
planarisation problem 21
planarity . 22

link vertex . 58
LL see low indexed level
LNP see level non-planar subgraph

pattern
long edge . 5, 29, 78
low indexed level 27

M
meet level . 27
minimum

level non-planar subgraph pat-
tern . 87

radial level non-planar subgraph
pattern . 93

ring . 44
minLL . 58
minML . 55
ML. see meet level
MLNP . see minimum level non-planar

subgraph pattern
monotone pillar . 90
MRLNP. see minimum radial level

non-planar subgraph pattern

Index 139

N
neighbours . 3

O
opposite extreme level 88
ordered

adjacency list 17
tree . 5

outer
face . 17
radius . 45
vertex . 90

outgoing edge . 3
outward drawing 39, 78

P
P-node . 8
parallel

chains . 90
paths . 90

parallel edge . 3
parent. .4
partial . 10
partially reduced extended forms . . . 29
path . 4
pattern . 10
pertinent . 10

root . 10
subtree . 10

pillar .90
planar graph . 7
PML. 25
PQ-

leaf. .8
tree . 8

PQR-tree . 47
processed see completely processed

PQR-tree
proper . 5
pseudo Q-node 10, 112

Q
Q-node. .8
QML . 25

R
R-node. .50
radial level planar 39

embedding . 39
ray. .39

indicator . 65
recurrent hierarchy 40
reduced extended form 25
reduction . 10
reflex edge . 3
replace pertinent 14
replacement . 10
rightmost . 9
ring . 43

graph . 43
root . 4
rotation . 50

S
second reduction phase 25
short edge . 5
sibling . 4
simple

graph . 3
path . 4

single corner vertex 90
singular . 25
sink . 5

indicator . 30
of a level graph 5

source . 5
of a level graph 5
vertex of an edge 3

split pair . 4
st-

embedding . 17
graph . 8, 29
numbering . 8

start
level . 90
vertex . 90

straight-line drawing 8
subgraph . 4
symlist see symmetric list

140 Index

symmetric list 15, 50, 105

T

target vertex of an edge 3

templates . 10

topological sorting.5

track . 33

graph . 33

number . 34

planar. .33

transitive edge . 4

tree . 4

triconnected .4

trunk . 75

U
undirected

graph . 3
path . see path

upward embedding 18

V
vertex . 3

addition method 15
addition step 24

virtual
edge . 16
edges. .24
vertex . 16
vertices . 24

	Preface
	Contents
	1 Introduction
	1.1 Preliminaries
	1.1.1 Graphs
	1.1.2 Connectivity
	1.1.3 Trees
	1.1.4 DAGs
	1.1.5 Level Graphs

	1.2 Sugiyama Algorithm
	1.3 Overview

	2 Planarity
	2.1 Definition of Planarity
	2.2 PQ-Trees
	2.2.1 Reduce
	2.2.1.1 Templates for the Leaves
	2.2.1.2 P-Templates
	2.2.1.3 Q-Templates

	2.2.2 Replace Pertinent
	2.2.3 Improved Symmetric Lists

	2.3 Planarity Test
	2.4 Planar Embedding
	2.4.1 Definition of a Planar Embedding
	2.4.2 Computing a Planar Embedding
	2.4.2.1 Computation of an Upward st-Embedding Eu
	2.4.2.2 Computation of an st-Embedding Est

	3 Level Planarity
	3.1 Definition of Level Planarity
	3.2 Foundations
	3.3 Level Planarity Testing
	3.4 Level Planar Embedding
	3.5 Straight-Line Drawings

	4 Track Planarity
	4.1 Definition of Track Planarity
	4.2 Reduction to Level Planarity
	4.3 Algorithm

	5 Radial Level Planarity
	5.1 Definition of Radial Level Planarity
	5.2 Related Work
	5.3 Radial Level Planarity Testing
	5.3.1 Fundamental Properties
	5.3.2 Properties of Rings
	5.3.3 R-Nodes
	5.3.4 New Templates
	5.3.4.1 P-Templates
	5.3.4.2 Q-Templates
	5.3.4.3 R-Templates

	5.3.5 Merge Operations on PQR-Trees
	5.3.6 Nesting of Processed Non-Rings
	5.3.7 Nesting of Processed Rings
	5.3.8 Completion
	5.3.9 Correctness

	5.4 Radial Level Planar Embedding
	5.4.1 Meet Levels between Ignored Siblings
	5.4.2 Contacts as Children of R-nodes
	5.4.3 Embedding the Edges
	5.4.4 Augmenting G to an st-Graph Gst
	5.4.5 Computation of a Radial Upward st-Embedding Eu
	5.4.6 Computation of a Radial Level Embedding El

	5.5 Assigning Coordinates
	5.5.1 Radial Drawing
	5.5.2 Drawing Algorithm
	5.5.3 Drawing Edges without Bends
	5.5.4 Force Directed Approach

	6 Circle Planarity
	6.1 Definition of Circle Planarity
	6.2 Testing and Embedding
	6.3 Generating a Drawing

	7 Forbidden Subgraphs
	7.1 Level Non-Planar Patterns for Hierarchies
	7.2 Minimum Level Non-Planar Patterns
	7.2.1 Level Non-Planar Trees
	7.2.2 Level Non-Planar Cycles
	7.2.3 Level Planar Cycles with Incident Paths

	7.3 Minimum Radial Level Non-Planar Patterns
	7.3.1 Radial Level Non-Planar Trees
	7.3.2 Radial Level Planar Cycles
	7.3.3 Radial Level Non-Planar Cycles
	7.3.3.1 Disjoint Components
	7.3.3.2 Connected Components

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	A Improved Symmetric Lists
	A.1 Motivation
	A.1.1 Concept
	A.1.2 Applications

	A.2 Implementation
	A.3 Extensions
	A.3.1 Losing Information
	A.3.2 Blind Operations

	B Implementation
	List of Figures
	List of Definitions
	Bibliography
	Partial Publications
	Index

