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|Chapter 1

Introduction

Let R, be a commutative ring with identity. To any commutative algebra R/R, we
can associate various ideals in R which we call the differents. The most well known
different is the Dedekind different which was introduced in algebraic number theory
by Richard Dedekind in 1882. The other differents which are closely related to the
Dedekind different are the Noether and Kéhler differents. It is useful to compare these
differents to each other and to relate them to properties of the algebra R/R,. This
direction of research was initiated by Emmy Noether [Noe|, and pursued by many
authors in the last half century (see for instance [AB], [Fos|, [Her|, [Kul], [Ku5], [Mac],
[SS], and [Wal]). It turned out that many structural properties of the algebra R/R,
can be phrased as properties of its differents. For example, one can obtain several
interesting criteria for the algebra in terms of these differents such as the Ramification

Criterion, the Regularity Criterion, and the Smoothness Criterion (see [Kub]).

The goal of this thesis is to study the Noether, Dedekind, and Kahler differents of
a particular class of algebras. More precisely, we investigate these differents for the
homogeneous coordinate ring of a 0-dimensional scheme X in the projective n-space
P over an arbitrary field K. This approach is inspired by the work of M. Kreuzer
and his coworkers ([GKR], [Kr2|, [Kr4]) which suggests that, in order to study the
geometry of the scheme X, one may start by considering related algebraic objects.
Given such a 0-dimensional scheme X C [P let Zx denote the homogeneous vanishing
ideal of X in P = K[Xy,...,X,]. The homogeneous coordinate ring of X is then
given by R = P/Zx. We always assume that no point of the support of X lies on the
hyperplane at infinity Z7(X,). Then the image zo of X, in R is a non-zerodivisor
of R and the algebra R/K|[x¢] is graded-free of rank deg(X) (see [Kr3] and [KR3,
Section 4.3]). In order to get more information about R/K[x¢], and thus also about X,

it is useful to define and to consider the algebraic structure of the Noether, Dedekind,
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and Kahler differents of R/K|xo]. In particular, it is interesting to study the relations
between the algebraic structure of these differents and geometric properties of the
scheme X. Furthermore, we think that the Noether, Dedekind, and Kéhler differents
for 0-dimensional schemes X C P’ provide a source of excellent examples in which
computer algebra methods can be applied to examine subtle structural properties of

these objects.

Motivating Questions

Let us briefly recall the definitions of the Noether and Kahler differents for a
O-dimensional scheme X in P%.. As above, let Zx be the homogeneous vanishing ideal
of X, and let R = P/Zx be the homogeneous coordinate ring of X. In the standard
graded K[zo]-algebra R ®@kz] R = @i>o(®@j4+x=iR; ® Ri), we have the homogeneous
ideal J = Ker(R ®@k[z R 5 R), where p is the homogeneous R-linear map of degree
zero given by u(f ® g) = fg. The Noether different of the algebra R/K|xg] (or for X
w.r.t. 29), denoted by ¥y (R/K[xo]), is the image of the annihilator of J in R @[z, R
under the map p. It is clear that ¥ (R/K[zo]) is a homogeneous ideal of R.

Notice that the module of Kéhler differentials of the algebra R/K|[zo] is the finitely
generated graded R-module Q}%/K[xo] = J/J? Moreover, we can associate with
Q5 K] A1 ascending sequence of homogeneous ideals of R which are known as the
Fitting invariants or Fitting ideals of QF K [zo]" The most important one is the initial
Fitting ideal of O, I Kzo] which is the homogeneous ideal of R generated by the images
of the maximal minors of the Jacobian matrix of the generators of Zx. We denote
this invariant by ¥ (R/K|xo]) and call it the Kahler different of the algebra R/ K|z
(or for X w.r.t. zp). In order to define the Dedekind different ¥p(R/K|xo]) of the
algebra R/K|x| (or for X w.r.t. zp), it is necessary that the scheme X satisfies some
restrictive hypotheses. For example the definition in [DK] of ¥p(R/K|[z¢]) requires
that X is reduced and has K-rational support. When these differents are well-defined,

we ask ourselves the following questions.

Question 1.0.1. Can one compute n(R/K|[zo]), Vx(R/K[xo]) and Ip(R/K[xo]) by

using the existing functionality in a computer algebra system such as ApCoCoA?

Question 1.0.2. What can one say about these differents and their relations for some
special classes of schemes X (for instance, for complete intersections, arithmetically

Gorenstein schemes, locally Gorenstein schemes, or smooth schemes)?



Furthermore, since all three kinds of differents are homogeneous ideals of R, a

natural question to ask is:
Question 1.0.3. What are the Hilbert functions of these differents?

In particular, we would like to determine their Hilbert polynomials and their regu-
larity indices. Apart from some special cases, to exactly determine the Hilbert functions
of the Noether, Dedekind, and Kéhler differents of the algebra R/K|x¢] is not an easy
problem, so we may try at least to find (possibly sharp) lower and upper bounds for
their regularity indices.

Now let us turn these questions around and ask about algebraic consequences of
geometric properties of X for the Noether, Dedekind, and Kéhler differents. Suppose
that K is an algebraically closed field, and let rx > 0 be the regularity index of the
Hilbert function HFx of R. We say that X is a Cayley-Bacharach scheme (in short,
CB-scheme) if every hypersurface of degree rx — 1 which contains a subscheme Y C X
of degree deg(Y) = deg(X) — 1 automatically contains X. This notion was introduced
for a finite set of distinct K-rational points in [GKR], and then was generalized for
a O-dimensional scheme X C P} over an algebraically closed field K in [Kr2]. The
main results in these papers characterize CB-schemes in terms of the structure of the
canonical module of their homogeneous coordinate ring. This suggests the following

questions:

Question 1.0.4. Let K be an arbitrary field. Can one generalize the Cayley-Bacharach
property for a 0-dimensional scheme X in P} ? If the answer is yes, can one character-
ize the Cayley-Bacharach property in terms of the algebraic structure of the Noether,
Dedekind, and Kahler differents?

It is worth noticing here that the definition of the Cayley-Bacharach property as
above does not work for arbitrary 0-dimensional schemes X C P% if K is not an
algebraically closed field. For instance, the O-dimensional reduced scheme X C ]P’(%Q with
Ix = (X3 + 2X3, X;) has degree 3 but it does not have any subscheme of degree 2.
The reason is that no closed point of X is K-rational. Thus, for the first part of
Question 1.0.4, we need more information about the scheme X. Moreover, the last part

of Question 1.0.4 can be generalized as follows:

Question 1.0.5. How is the geometry (e.qg., the properties of being in (i, j)-uniform,

in uniform position) of X reflected in the algebraic structure of these differents?

Another topic we examine in this thesis is to construct new applications of the
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Noether, Dedekind, and Kéhler differents of R/K[xzy]. For instance, we investigate the
relationships between these differents and the i-th Fitting ideals of the module of Kahler
differentials QF, K and we consider these differents for almost complete intersections.
Also, we look more closely at the Hilbert functions and the regularity indices of these

differents for fat point schemes.

Overview

Throughout the thesis we use the notation and terminology introduced in [KR2], [KR3],
[Kr3] and [Kub] unless stated otherwise. The main work of the thesis will be to examine
a number of cases in which the questions posed above can be answered. We now give
an overview of the individual contributions of the thesis. Since every chapter starts
with an explanation of its organization, we omit such descriptions here.

Chapter 2 contains background results that we will need in the subsequent chapters.
We fix some terminology and notation as well. The starting point of this chapter is the
Noether different of an arbitrary algebra. We show how one can compute the Noether
different of an algebra of finite type (see Proposition 2.1.21). Then we recall several
well-known properties of the Fitting ideals of a finitely generated module and provide
examples to illustrate these properties. Next, we focus on considering 0-dimensional
schemes X C P} over an arbitrary field K with support Supp(X) = {p1,...,ps}. We
introduce the concept of maximal p;-subschemes of X (see Definition 2.3.16) and give
some descriptions of them and their Hilbert functions. We also extend from [GKR]
the definition of the degree of each point of X (see Definition 2.3.23). Furthermore, we
generalize the notion and some results found in [Kr2] of a separator of a subscheme
of X of degree deg(X) —1 to a set of separators of a maximal p;-subscheme of X. Lastly,
we collect some facts concerning the trace maps for O-dimensional schemes in P .

In Chapter 3 we explore the Noether, Dedekind, and Kéhler differents for
O-dimensional schemes X C P%. In other words, we define these differents for the
algebra R/K|zo] (or for X w.r.t. zo) and then give answers to Question 1.0.1, Ques-
tion 1.0.2, and Question 1.0.3 in some cases. Since the Noether different ¥ (R/K|zo))
and the Kéhler different ¥y (R/K|[zo]) are already defined in general, it remains to
define the Dedekind different ¥ p(R/Kxo]). We show that ¥p(R/K[xz]) is well-defined
if X is locally Gorenstein (see Section 3.2).

Next we take a look at how to compute these differents and examine their relations.

Since Uk (R/ K [x]) is a homogeneous ideal in R generated by the images of the maximal



minors of the Jacobian matrix of the generators of Zg, it is not hard to compute
Ui (R/K][xo]). In order to compute Jy(R/K[zo]) one can use the algorithm given in
Proposition 3.1.6. Moreover, we construct an algorithm for computing a homogeneous
minimal system of generators of ¥p(R/K|xo]) (see Proposition 3.2.29). The approach
for computing the Dedekind different is based on the description of the Dedekind
complementary module of the algebra R/K[z,] in terms of the sets of separators.
As in the general case, the relation between the Kéhler different and the Noether
different is Uy (R/K[zo])" C Ix(R/K[xo]) C In(R/K|xo]). In particular, the last
inclusion becomes an equality if X is a complete intersection. We also show that if
X is smooth then Un(R/K[xg]) = Op(R/K][xo]) (see Theorem 3.2.17). However, the
Noether and Dedekind differents can be different even when X is a complete intersection
(see Example 3.3.6).

One of our main tasks in this chapter is to give an answer to Question 1.0.3
in some cases. In Proposition 3.2.5, we show that if X is locally Gorenstein then
HPy, (r/k(wo)(2) = deg(X) and ri(¥p(R/K[xo])) < 2rx, where rx is the regularity
index of HFx. It is not easy to exactly determine the Hilbert polynomials of the
Noether and Kéhler differents in general. Fortunately, we can give (sharp) lower and
upper bounds for HPy, (r/k[s))(2) (see Proposition 3.3.19) by using sets of separa-
tors. As a consequence, we use the relations between these differents mentioned above
to derive bounds for HPy (g, K[xo])(z). Also, we can completely describe the Hilbert
functions of some of these differents for several special classes of schemes X such as com-
plete intersections and arithmetically Gorenstein schemes (see Proposition 3.2.8 and
Corollaries 3.3.5 and 3.3.7). Furthermore, Proposition 3.2.11 and Proposition 3.3.14
indicate that if X is a projective point set, then HPy (r/k[z0))(2) = HPy,(r/K(z])(2) =
HPy, (r/K[zo)) (2) = deg(X), ri(¥p(R/K[x0])) = 2rx and 2rx < ri(Vx(R/K[xo])) < nrx.

The principal results of Chapter 4 are related to Question 1.0.4 and Question 1.0.5.
We first generalize the Cayley-Bacharach property to 0-dimensional schemes X C P}
over an arbitrary field K (see Section 4.1). This gives a positive answer to the first
part of Question 1.0.4. In Theorem 4.1.7, we characterize CB-schemes in terms of their
Dedekind differents. Using this theorem, we derive some consequences for the Hilbert
functions and the regularity indices of the Dedekind different for a 0O-dimensional
locally Gorenstein CB-scheme as well as the Noether different for a 0-dimensional
smooth CB-scheme. This theorem is also an important tool to prove Proposition 4.1.15
which not only provides a criterion for a 0-dimensional locally Gorenstein scheme to be

arithmetically Gorenstein but also provides an answer to the question of P. Griffiths
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and J. Harris [GH]: CB-scheme +(?) = Complete intersection? in the case of a

0-dimensional smooth subscheme X of P7.

Via the Kéahler different we are able to describe the Cayley-Bacharach property for
projective point sets X in P which have generic Hilbert function (i.e., HFx(i) =
min{ deg(X), ("I") } for i € Z). We also generalize some results found in [GKR]
such as Dedekind’s formula (see Proposition 4.1.27) and the characterization of the

Cayley-Bacharach property by using Liaison theory (see Theorem 4.3.6).

When a 0-dimensional scheme X C P% has K-rational support, we say that X
is (i, j)-uniform if every subscheme Y C X of degree deg(Y) = deg(X) — ¢ satisfies
HFy(j) = HFx(j). Notice that if X has K-rational support then X is (1, rx—1)-uniform
if and only if it is a CB-scheme. In the case that X is locally Gorenstein and is (i, 7)-
uniform, we describe relations between the Dedekind different and the homogeneous
saturated ideals of subschemes Y C X of degree deg(X) — i (see Proposition 4.4.10).
Based on these relations, we give a characterization of a projective point set X with
Ax = deg(X) — HFx(rx — 1) > 2 to be (2,rx — 1)-uniform (see Proposition 4.4.12). In
addition, several propositions on the uniformities of a level scheme and cohomological

uniformity are proven.

In Chapter 5 we are interested in studying the Noether, Dedekind, and Kahler
differents for finite special classes of schemes X C [P and finding out some applications
of these differents. First, we investigate these differents for reduced 0O-dimensional
almost complete intersections X C P% over a perfect field K. We provide an explicit
presentation of the Kahler different and derive a connection between these differents
(see also in [Her|). Furthermore, in the projective plane we can precisely compute the
first syzygy module of the Kahler different by constructing a homogeneous system of

generators of the normal module (Zx /Z2)* (see Proposition 5.1.12 and Corollary 5.1.13).

Next we establish a relation between the Kéhler different 9 (R/K[zo]) and the first
Kihler different 9(V(R/K) of the algebra R/K (see Lemma 5.2.1). From this relation
we derive bounds for the Hilbert polynomial and the regularity index of ¥ (R/K),
and give some characterizations of a complete intersection in terms of 9™ (R/K) (see
Propositions 5.2.5 and 5.2.8).

Finally, we address the question what happens to these differents for fat point
schemes W in P%.. Let S denote the homogeneous coordinate ring of W. We show
that U (S/K|[zo]) is non-zero if and only if some of the points of W are reduced (see
Lemma 5.3.4). In Theorem 5.3.6, we determine the Hilbert polynomial of 0 (S/K[x])

and give upper bound for its regularity index. This bound enables us to use the upper



bound for the regularity index of a fat point scheme to estimate the regularity index
of Vg (S/K|[xg]). Many results about sharp bounds for the regularity index of a fat
point scheme can be found in the literatures (see e.g. [CTV], [DG], [FL], [Thi], or [TV]
et al). When the supporting set of points X is arithmetically Gorenstein (which implies
the Cayley-Bacharach property) or satisfies some uniformity condition, we can improve
the bounds for the index of regularity of the Kéhler different (see Propositions 5.3.13
and 5.3.15). Returning to the algebra S/K, we use the Hilbert functions of ¥ (S/K)
(1=1,...,n—1) to formulate a criterion for W to be reduced, compute their Hilbert
polynomials and bound their regularity indices (see Proposition 5.3.16). At the same
time we provide bounds for the Hilbert polynomials of 9™ (S/K) and 9y (S/K [x0)).
The computer algebra system ApCoCoA [ApC] was used during our work to perform
the computations in most examples included in this thesis. In the appendix the
ApCoCoA functions which implement algorithms and procedures for computing the
Noether, Dedekind, and Kahler differents and their Hilbert functions are provided. We

also explain their usage with some examples.
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Chapter

Preliminaries

In this chapter we lay the mathematical foundation for the thesis by collecting and
extending some basic concepts, results, and techniques which are useful for the later

chapters.

The chapter is divided into 4 sections. In Section 2.1 we discuss one of the main
objects in this thesis, that is the Noether different of an algebra. We start this section
by providing some elementary notions in algebra and several well known results of the
Noether different of an algebra. We then establish other formulas for the Noether dif-
ferent of an algebra of finite type (see Propositions 2.1.12 and 2.1.14). Moreover, we use
some techniques from the theory of Grobner bases over rings to work out an algorithm
to compute the Noether different of an algebra of finite type (see Proposition 2.1.21).
Section 2.2 introduces the Fitting ideals of a finitely generated module that we use to
define the Kahler different in Chapter 3. Some well known results of the Fitting ideals
are collected in this section. We also give many examples to illustrate their properties.
In Section 2.3 we introduce O-dimensional schemes in the projective n-space P over an
arbitrary field K. Explicitly, we first recall from [Kr3, Section 1] several first results on
a 0-dimensional scheme X C P%. If we write Supp(X) = {p1,...,ps} for some s > 1,
then we define p;-subschemes and maximal p;-subschemes of X (see Definition 2.3.16).
By using the techniques that are inspired by those of [Kr2] and [Kr3], we establish a
1-1 correspondence between a socle element of the local ring at a point p; € Supp(X)
and a maximal p;-subscheme of X (see Proposition 2.3.17). This correspondence also
tells us that the scheme X contains a subscheme of degree deg(X) — 1 if and only if
its support contains at least one K-rational point. In addition, we extend the defini-
tion of a separator of a subscheme of X of degree deg(X) — 1 to a set of separators of
a maximal p;-subscheme of X as well as the definition of the degree of a K-rational

point to a closed point in the support of X. The extension of the degrees of closed
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points of X is a useful tool to define the Cayley-Bacharach property of a 0-dimensional
scheme X C P% over an arbitrary field K in Chapter 4. We also derive some de-
scriptions of the Hilbert function and the homogeneous vanishing ideal of a maximal
p;-subscheme of the scheme X (see Proposition 2.3.21). We end this section with some
generalizations of results in [Kr3, Section 1] of a set of separators of a maximal p;-
subscheme of the scheme X (see Lemmata 2.3.25 and 2.3.26). The final section is a
collection of facts concerning trace maps for a O-dimensional scheme X in P}. We
also add some descriptions of the canonical module of the homogeneous coordinate
ring of X (see Proposition 2.4.6). Furthermore, we discuss some conditions equivalent
to a O-dimensional scheme being arithmetically Gorenstein (see Theorem 2.4.14 and
Proposition 2.4.18).

2.1 Noether Differents of Algebras

In the following by a ring R, we shall always mean a commutative ring with identity
element 1, . A ring homomorphism from a ring R, to aring Risamap ¢ : R, = R
such that ¢(1r,) = 1z and for all elements a,b € R, we have p(a + b) = p(a) + p(b)
and ¢(a - b) = @(a) - ¢(b) (i.e., ¢ preserves the ring operations). An R,-module M is
a commutative group (M, +) with a scalar multiplication - : R, x M — M such that
1r, -m = m for all m € M, and such that the associative and distributive laws are
satisfied. An R,-submodule of M is a (commutative) subgroup N C M such that
R, - N C N. In particular, an R,-submodule of the R,-module R, is called an ideal
of R,. This can be rephrased by saying that a subset I of R, is an ideal if it is an
additive subgroup of R, such that if a € R, and b € I, then ab € I.

Some ideals of R, have special properties. For instance, an ideal I C R, is called
a prime ideal if ab € I implies a € I or b € [ for all a,b € R,, and it is called a
maximal ideal of R, if there is no ideal J such that I C J C R,. Note that [ is a
prime ideal if and only if R,/I is an integral domain, that [ is a maximal ideal if and
only if R,/I is a field, and hence that maximal ideals are prime ideals.

Let M be an R,-module. Given two R,-submodules N and N’ of M, the set

N:p, N={a€R,|a-N CN}

is an ideal of R,. It is called the colon ideal (or the ideal quotient if M = R,) of N
by N’. The ideal (0) :p, M is called the annihilator of M and denoted by Anng, (M).

For m € M we write Anng, (m) = {a € R, | a- m = 0} and call it the annihilator
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of m. It is clear that Anng (R,/I) = I for every ideal I of R,, and that a non-zero
element a € R, is a non-zerodivisor of R, if and only if Anng,(a) = (0). For further

information on module theory, see for instance [Eil], [KR2] and [Mat].

Definition 2.1.1. An algebra is a triple (R, R,, ) where R and R, are rings and
¢ : R, — R is a ring homomorphism, called the structural homomorphism of the
algebra. The algebra is usually denoted by R/R, or simply by R, and we sometimes
call it an R,-algebra R or an algebra R over R,.

An algebra R'/R, is called a subalgebra of R/R, if R’ is a subring of R that
contains the image of R,.

Given two algebras R/R, and S/R, with structural homomorphisms ¢ and ), a

ring homomorphism 6 : R — S is called an R,-algebra homomorphism if we have
0(o(f)-g) =u(f)-0(g) for all f € R, and all g € R.

From the definition we see that for two R,-algebra homomorphisms ¢; : R — S and
Oy : S — T, the composition map 6,06, : R — T is also an R,-algebra homomorphism
and Ker(6 0 0;) = 0, *(Ker(,)). Moreover, if R/R, and S/R are algebras, then S/R,

is an algebra.

Definition 2.1.2. Let R/R, be an algebra and let A be a set.

(i) A set {x) | A € A} of elements of R is called a system of generators of R/R, if
for every element f € R there is a finite subset {\1, ..., A, } of A and a polynomial
P(Xy,...,X,) € R[Xy,...,X,] such that f = P(z,,,...,z),). In this case we
write R = Ro[zy | A € A].

(ii) The algebra R/R, is said to be an algebra of finite type if it has a finite
system of generators. An algebra of finite type over a field K is also called an
affine K-algebra.

(iii) The algebra R/R, is called finitely generated (respectively, free, projective,

flat, ...) if R, considered as an R,-module, has the corresponding property.

For an algebra R/R,, the tensor product R ®g, R is a ring (and hence an R,-
algebra) with respect to the multiplication (f1 ® g1) - (fo ® g2) = fifa ® g1g2 for all
f1, f2, 91,92 € R. We call R ®pg, R the enveloping algebra of the algebra R/R,. Let
J denote the kernel of the canonical multiplication map p : R ®z, R — R given by
u(f ®g) = fgfor f,g € R. It is clear that J is an ideal of R ®p, R.

Lemma 2.1.3. We have
TJ=(fo1-1xf | feR)R®ROR.
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If R is generated as an R,-algebra by {x) | A € A}, then
T=(ex®1-1®z\ [ A€ A)py, p-
Proof. See [Ku7, G.7]. O

Now let Anngg, r(J) = {f € R®g, R | f-J = 0} be the annihilator of the

ideal J. The ring R ®p, R can be considered as an R-module in two ways, namely via
aj:R— R®pr R, a;(f)=f®1 and ay: R— R®pg, R, as(f) =1® f.

Similarly, J and Anngg, r(J) are R-modules in two ways. However, on Anngg, r(J)
these two R-module structures coincide, since (f®1—1® f)-Anngg, r(J) = 0 by the
definition of the annihilator of 7. We can thus consider Anngg, r(J) as an R-module

in a unique way. Note that the image of Anngg, r(J) under u is an ideal of R.

Definition 2.1.4. Let R/R, be an algebra. The ideal ¥5(R/R,) = u(Anngg, r(J))
is called the Noether different of the algebra R/R,.

Example 2.1.5. Let R, be a ring, and let R/R, be the algebra given by the presen-
tation R = R,[X]/(X?). Let x denote the residue class of X in R. Then x? = 0 and
J =Ker(p) =(z®1-1®2)pg, p (see Lemma 2.1.3). We also see that + ® z and
r®1+1®z belong to Anngg, r(J). Let h =71 (a;+biz)®@(c;+d;iz) € Anngg, r(J)
with a;, b;, ¢;,d; € R, and n > 1. We have

0:h~(a:®1—1®x):Z(am@(cﬁ—dix)—(ai—l—bix)@cia:)

=1

= zn:aic,-(;v ®1—-1®x)+ > (a;d; — bic;)(z @ x).
i=1 =1

This implies Y 0 a;c; = 0 and Y. a;d; = Y., bic;, since R ®p, R is a free R,
module with a basis {1®1,1Qz,2®1,z®x}. Thus h =>_" (a; +b;x) @ (¢; + diz) =
Yoy (aidi Rz +bicix @1+ bidix @ x) =>" ad(z®@1+1®z)+ > bdrQux,
and so h is contained in (r®z,2®1+1®x) Reon, R* Therefore we get the equality
Amngg, r(J) = (2 Q2,2 @1+1Q@x) g, 5, and hence the Noether different of R/ R,
is UnN(R/R,) = (22)g.

More generally, let R/R, be an algebra of the form R = R,[X]/(F) with a monic
polynomial F' € R,[X], and let %—5 denote the image of the formal derivative g—f; in R.
Then the Noether different of the algebra R/R, is given by Uy (R/R,) = ( %) - This

result is an application of Proposition 2.1.8 that we will see later.
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Now we collect some properties of the Noether different of an algebra R/ R, which is
given by generators and relations. Let {x) | A € A} be a system of generators of R/R,,

and let I denote the kernel of the surjective R,-algebra homomorphism
T:R[X) | A€EA — R=Roz\ | A €A
defined by 7(X,) = x, for all A € A. Then 7 induces an R,-algebra isomorphism
R=RJ[X\| A€ A]/I (2.1)

The isomorphism (2.1) is called a presentation of R/R, by generators and relations,
and the ideal I is called the ideal of algebraic relations among {z, | A € A} with
coefficients in R,,.

By setting A = R,[X | A € A], we have the following composed map

p: S=RX\|AeA % Rop A U3 Rep R
X, — 1 X, —  1®ux,
T — Ty ®1 — Ty ®1

where idg ®m is an R,-algebra epimorphism with Ker(idg ®7) = R ®pg, I (cf. [Ku?,

G.2]), and where ¢ is an R,-algebra isomorphism. Also, we get
Ker(p) = ¢~ '(Ker(idgp ®7)) = ¢ (R®p, I) = IS C S.

The following lemma gives us a formula for the Noether different of R/R,.

Lemma 2.1.6. Let R/ R, be an algebra which has a system of generators {x) | A € A},
let S = R[X)| A €Al and let I be the ideal of A = R,[X\ | A € A] such that R = A/I.

Then we have
ﬁN(R/Ro):{F({$A|>\EA})ER | FelS:g <X>\—J]>\|>\€A>S} (22)
Proof. See [Kul, Section 4, p. 178]. ]

The localization of the Noether different of an algebra can be described as follows.

Proposition 2.1.7. Let R/R, be an algebra, let J be the kernel of un: R®gr, R — R,
f®gw— fg for f,g € R, and let U C R be a multiplicatively closed subset. Assume
that the ideal J is finitely generated. Then we have In(Ry/R,) = On(R/Ry)u-

Proof. See [SS, 15.6]. O
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Our next proposition presents a well-known formula for the Noether different of an

algebra in a special case.

Proposition 2.1.8. Let R, be a Noetherian ring, let R/R, be a flat algebra of finite
type which has a presentation R = R,[X1,..., X,|/{(F1,..., F,), where { F\,...,F,}

forms an R,[X1, ..., X,]-reqular sequence, and let H denote the image of the
Jacobian determinant det (2_2)19,3‘9 m R. Then we have
d(Fy, ..., F,)
IN(R/R,) = ( —m— .
~(R/R,) <3(m1,...,xn) R
Proof. See [Kub, G.3]. O

Example 2.1.9. Let R/R, be an algebra which has a presentation
R=R,[Xy,.... X,])/(X{" —ay,..., X" —ay)

with a; € R, and o; > 0 for all ¢ = 1,...,n. Let z; be the image of X; in R for
i = 1,...,n. Then R is a free (hence flat) R,-module, since { X7'... X | 4 =
1,...,n; 0 < B; < oy } is an R,-basis of R. An application of Proposition 2.1.8 yields

In(R/R,) = <(iﬁlai) . x‘f“l .. .xzn—1 >R'

Example 2.1.10. Let R be the affine K-algebra of the form R = K[Xy, X1, X5]/I,
where I = (Fy, Fy) with F} = Xy — Xy and F, = X3 — 3X?X, + 2X,X2. Clearly,
I is a homogeneous ideal and {F, Fb} is a K[Xj, X1, Xo|-regular sequence (since
K[Xo, X1, Xo]/(F1) = K[X;, X5 and the image of Fy in K[Xy, Xs] is Fy). The de-
homogenization of I with respect to Xy is [ = (b pdeh) = (1 — X, X3 —
3X2X,+2X,X2) C K[X1, X5]. Thus the homogenization of 19" with respect to X is
([dehyhom — 1 By [KR3, Proposition 4.3.22], the ring R is a free K[Xy]-module. Let z;
denote the image of X; in R for i = 0,1, 2. By Proposition 2.1.8, the Noether different
of the algebra R/K[x] is

In(R/K[xg]) = < % >R = (32} — 6z122 + 223 i

Before we go on, we collect some basic properties of ideals in residue class rings.

Lemma 2.1.11. Let R be a ring, let I be a proper ideal of R, and let Iy, Iy be ideals
m R such that Iy, Is contain I. Then the following properties hold true.
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(i) (R/I1)/(11/I)= R/I, (Third Isomorphism Theorem for Rings).
(ZZ) ]1/[ IR/[ _[2/_[ = (Il ‘R ]2)/[

(i1i) Let m: R — R/I be the canonical epimorphism, let n > 1, and let X4, ..., X, be
indeterminates. Then the map ¢ : R[Xy,..., X, = (R/I)[X4,...,X,] defined
by (O foT) = > 7(fo)T, where a = (aq, ..., ) € N, T = X" ... X0
fa € ?%, and fo 72 0 for only finitely many o« € N, is a ring homomorphism

which extends ™ and satisfies

Ker(¢) = IR[X, ..., X,] = {ZfaTo‘

aeN", fo €1, }
fa # 0 for only finitely many o € N* |

Proof. See [Mat, Chapter 1, Section 1] and [KR2, Proposition 3.2.18]. O

Now let us consider an algebra R/R, of finite type. There exists a presentation
R = Ro[Xl, oo ,Xn]/l == Ro[l’l,. .. ,In]

where n > 1, where I is an ideal of the polynomial R,-algebra A = R,[X,...,X,],
and where z; is the image of X; in R for ¢ = 1,...,n. Suppose that I is generated by
{Fi,...,F.} with r > 1, and put S := R[Xy,...,X,]. Then the formula (2.2) can be

rewritten as follows
In(R/R,) = { F(z1,....2,) | F € (F1, ..., Fy)s s (X1 —21,..., X, —x)s | (2.3)

Our next goal is to find out other formulas for the Noether different J5(R/R,). For
that, let Y7,...,Y, be new indeterminates, let J = (ﬁl, ..., F, ) Ro[Y1,....Y,]» Where F, =
Fi(Yy,...)Y,) fori=1,... r,and let Q := A[Y},...,Y,]| = R[Xy,..., X, Y1,..., Y,
Let IQ and J@Q denote the ideals of @) generated by {F,..., F.} and {ﬁl, e ,ﬁr},

respectively. By Lemma 2.1.11(iii), we have R,-algebra isomorphisms
Q/JQ = (Ro[Yl, . ,Yn]/J)[Xl, o Xa] =2 S =R[Xy,. .., X,

Explicitly, the R,-algebra isomorphism ¢ : Q/JQ = S is given by ¢(X; + JQ) = X;
and ¢(Y; + JQ) = x; for i = 1,...,n. Thus we have the composed map

0: Q@ = Q/JQ -5 S % Rep A 'S Rex R -5 R

X, — Xi+JQ — X, — 11X, +— 1z, +— z;
Y, — Y +JQ — 1, — 1;®1 — 5,01 — x
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where 7 is the canonical R,-algebra epimorphism, where ¢ and ¢ are R,-algebra iso-

morphisms, and where idg ®7 and p are R,-algebra epimorphisms.
Another formula for the Noether different ¥y5(R/R,) of the algebra R/R, is given
by the following proposition.

Proposition 2.1.12. Using the notation as above, we have the formula
N(R/R,) ={0(F) | Fe(IQ+JQ):q (X1 —Y1,.... X, —Ya)o }.
Proof. Since ¢ : QQ/JQ — S is an isomorphism of R,-algebras, this implies

¢~ (IS s 1) = ¢ (15) 1qraq ¢ (1) € Q/JQ

where I} = (X, —xy,...,X,, — 2, )s is an ideal of S. In the residue class ring @/ JQ,

we see that

¢(IS) = (IQ+JQ)/JQ and ¢ '(I}) = (X1 —Yi,..., X, = Ya)o +JQ)/JQ.

We let I be the colon ideal (IQ + JQ) 1o (X1 —Yi,..., X, — Y,)¢o in the polynomial
ring (). According to Lemma 2.1.11(ii), we have

¢ NIS) g0 ¢ (L) = [IQ+JQ) :q (X1 = Y1,...,. Xp = Va)o +JQ)]/JQ
— 1,)JQ.

It follows that ¢~1(1S :s I}) = I,/JQ and (uop)(IS :5 1)) = (uopod)(l/JQ) = 0(1),
where p = (idg ® 7) o ¢. Therefore we obtain the desired formula for the Noether

different of R/R, by using Formula (2.3). O

Example 2.1.13. Let R, = Z be the ring of integers, and let R/Z be the algebra given
by the presentation R = Z[Xy, Xs]/I = Z|x1,xs], where I is the ideal of Z[X, Xy]
generated by Fy = X1 Xy — 2X; — Xo + 2, Fy, = 2X? — X2 —4X, + Xy + 2, and
F3 = X3 — 3X2 4 2X,, and where z; is the image of X; in R for i = 1,2. We want to
compute the Noether different ¥y (R/Z) of R/Z using Proposition 2.1.12.

We first form the polynomial ring @ = Z[X, Xs, Y1, Y2] with new indeterminates
Yy and Y5, In @, we let IQ = (Fy, Fy, F5)g and JQ = <F1,F2,F3>Q7 where Fy =
YiYo—-2Y, — Yo+ 2, ﬁg =2Y? - Y7 —4Y, + Y+ 2, and F3 = Y3 — 3Y}? +2Y,. Then we
compute a system of generators of the colon ideal (1Q+.JQ) :o (X1 —Y1, Xo—Y5)g and
get {Fy, Fy, Fy, Fy, Fy, Fy, Gy, Ga, Gs}, where Gy = X2Y2 4+ X2V, — 2X V2 + XoY2 +
6X1Y: —2X Yo —2XoYo + V2 —6X; —6Y) + Yo+ 6, Gy = 2XF +2X1Y) + XoYo + Y7 —
6X1—2X5,—2Y;—3Y5+6, and G3 = X3+2X, Y1+ X5 Yo+ Y7 —2X; —3X,—2Y; —3Ys+4.
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Now we calculate the images of G1, G, and G35 in R under the map #. We find

0(G1) = 2315 + xiwy — 22175 + 25 + 627 — 201200 — T3 — 12271 + 22 + 6,
0(Gy) = 4a] + 25 — 811 — 5x9 + 6,
0(G3) = 227 + 325 — 4xy — 629 + 4.

Note that the images of F; and E in R under 6 are zero for ¢ = 1,2,3. Thus we
conclude that In(R/Z) = (0(G1),0(Gs),0(G3))R.

Proposition 2.1.14. Using the same notation as in Proposition 2.1.12, we let
V:Q=R)X1,..., X0, Y1,.... Y| > A=R,J[Xy,..., X,] (2.4)

be the R,-algebra epimorphism defined by ¥(X;) = X; and (Y;) = X; fori=1,...,n,
and let {G1, ..., Gs} be a system of generators of (I1Q+JQ) :q (X1—Y1,..., X0—Y0)o-
Then we have § = 7o and

UN(R/Ro) = (¥(G1), ..., (Gs))a/ 1.

Proof. Let us consider the following diagram

Q v A

™ m

Q/JQ—2~5—*-Rop AL R, R—-R
It is easy to check that this diagram is commutative. Since § = po (idg®@m)opopoT,
we have § = 7w o1. Moreover, since all homomorphisms in the diagram are surjec-
tive, we can apply Proposition 2.1.12 and get I5(R/R,) = (7 o ¥)((G1,...,Gs)q) =
(W(GY), ..., 0(Gs))a/I, as desired. O

To use above tools for the computation of a system of generators of the Noether
different of the algebra R/R, of finite type, we require some results from Grobner
basis theory. In the following we give a brief introduction to Grobner bases over rings
and algorithms to compute them. For more details about Grobner bases and their
applications we refer to [KR2], [KR3] and [AL]. We begin by a prerequisite of the base
ring R, being computable.

Definition 2.1.15. Let R, be a Noetherian ring. We will say that linear equations

are solvable in R, provided that



18 2. Preliminaries

(i) Given a,ay,...,a, € R,, there is an algorithm to determine whether the element
a is contained in the ideal (ay, ..., an ), and if it is, to compute by, ..., b, € R,
such that a = a1b1 + - - - + anby,.

(ii) Givenay,...,a, € R,, there is an algorithm that computes a system of generators
of the R,-module

SyZRo<a17'”7am):{(bl,...7bm) GRZL | a1b1+"'+ambm20}.

Remark 2.1.16. The Noetherian rings in which linear equations are solvable include
Z, 7./(m) where m > 1, Z[i] where i* = —1, Z[/=5], and K[X1,...,X,,] where n > 1
and where K is a field.

In what follows, we let R, be a Noetherian ring such that linear equations are
solvable in R,, and let A = R,[X1,...,X,]. The set of all terms of A is denoted by
T (or T(Xy,...,X,)). We assume that we have a term ordering <, on T". Each
polynomial F' € A\ {0} has a unique representation as a linear combination of terms
F=5%"" a7, whereay,...,as € R\{0}, T1,...,Ts € T" with T >, Tp >, - -+ >, Ts.
As in Section 1.5 of [KR2], we define LT, (F') = T, LC,(F) = a; and LM, (F) = a1 Ty
(called the leading term, leading coefficient and leading monomial of F' with respect
to <., respectively). Moreover, for an ideal I C A, the leading monomial ideal of T
with respect to <, is given by LM, (/) = (LM,(F) | F € I)4. We now present the
Division Algorithm over rings.

Theorem 2.1.17. (The Division Algorithm over Rings) Let s > 1, and let
F.Gy,...,Gs € A\ {0}. Consider the following sequence of instructions.

1) Let Qr=---=Qs=0,G=0and V =F.
2) We check the following two conditions

a) There exists i € {1,...,s} such that LT,(V) is a multiple of LT,(G;).
b) There are ¢1,...,cs € R, and Ty, ..., Ty € T™ such that

LMJ(V) = ClTl LMU(G1> + e+ CsTs LMU(GS)
and LT, (V') = T, LT, (G;) for all i such that ¢; # 0.

If these conditions are satisfied, then replace Q; by Q; + ¢;T; and replace V' by
V- ClTlGl — CSTSGS.
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3) Repeat step 2) until one of two conditions a) and b) is not satisfied. Then replace
G by G+ LM, (V) and replace V by V. — LM, (V).

4) If nowV # 0, start again with step 2). Otherwise, return (G, Q1, . ..,Q,) € AL

This is an algorithm which returns a tuple (G, Qq, . ..,Q,) € AT such that
F—i@Q+G
and such that the following conditions are satisfied.
a) If G # 0, then LT,(F) >, LT,(G) and no monomial of G lies in the lead-

ing monomial ideal (LM, (G1),...,LMy(Gs))a. The polynomial G is called an
irreducible polynomial of F' with respect to {Gy,...,Gs}.

b) If Q; # 0 for some i € {1,...,s}, then LT,(F) >, LT,(Q:G;).
Proof. See [AL], Theorem 4.1.10 and Algorithm 4.1.1. O

Definition 2.1.18. A finite set { G1, ..., G} of non-zero polynomials contained in an
ideal I of A is called a <,-Groébner basis of [ if

(LM,(G), ..., LM,(Gy) ), = LM, (I).

Note that a non-zero ideal I of A always has a <,-Grobner basis, and if {Gy, ... ,Gs}
is a <,-Grobner basis of I then I = (G, ...,Gs)4. For the proofs of these claims, see
[AL, Corollaries 4.1.15 and 4.1.17]. To compute a <,-Grébner basis of I we can use
the following algorithm.

Theorem 2.1.19. (Mdller’s Technique) Let {Gy,...,Gs} C A\ {0} be a system of

generators of an ideal I of A. Consider the following sequence of instructions.

1) Let G = (Gy,...,Gs), 7 =1 and m = s.

2) If r > m, then return the result G. Otherwise, compute

' 1,... :
S:{Jg{l,...,r} re€J and for alli € {1,...,r} }

LT,(G;) | lem(LT,(G;):j e J)=1i1€ J

3) If S =0, then go to step 6). Otherwise, choose J € S and delete it from S. Set
Ty =1lem(LT,(G;) : j € J). Compute the set By = {biy,...,by,s} of generators
of (LCo(Gj) | j € J\{T}>Ro ‘v, (LCo(G) >Ro'
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4) If By # 0, choose the smallest index i € {1,...,n;} such that b;; € By and

delete b;y from B;. Compute b; € R,, j € J\ {r} such that > b;LC,(G;) +
jeN{r}
by LC,(G,) =0. If By =, then continue with step 3).

5) Set Fyy:= Z\{ }bj%Gj—kbU%@Gm and use the Division Algorithm 2.1.17
jeJ\{r

to compute an irreducible polynomial EJ of F;; with respect to {G | G € G}.
If F,y # 0, then append G 1 = Eyy to G and increase m by one. Then continue
with step 4).

6) Increase r by one and continue with step 2).

This is an algorithm which returns a tuple G of polynomaials which form a <.,-Grobner
basis of the ideal I.

Proof. See [AL, Algorithm 4.2.2]. ]

The next proposition indicates how one can compute the intersection I N J of two
ideals I, J of A using elimination. This also enables us to compute the colon ideal I : J

if J is generated by a set of non-zerodivisors in A.

Proposition 2.1.20. Let [ = (F\,...,F.)a and J = (G4, ...,Gs)a be ideals of A.

(i) Let Y be a new indeterminate, let <Elim(y) be the elimination ordering on the
set of terms of AlY], and let <, be the restriction of <gimy) on T" (see [KR2,
Section 3.4]). Let

U=(YF,....;YF, (1-Y)G1,...,(1 = Y)Gy) u

and let G be a <gim(y)-Grobner basis of U. Then INJ =UNA and GN A is
a <,-Grobner basis of I N J.

(ZZ) We have I : J = (I : <G1>A)ﬂ"'ﬁ(l : <G8>A) ]f]ﬂ(Gj>A = <H1Gj,...,Hth>A
and G; is not a zerodivisor in A, then I : (Gj)a = (Hy, ..., Hy)a.

Proof. See [AL], Theorem 4.3.6 and Propositions 4.3.9 and 4.3.11. O

At this point we have assembled all tools that we need to establish an algorithm

for computing the Noether different of an algebra of finite type.
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Proposition 2.1.21. Let R, be a Noetherian ring such that linear equations are solv-

able in R,, and let R/R, be an algebra of finite type. Suppose R has a presentation
R = RO[Xl, Ce ,Xn]/j = RO[.%'l,. .. ,In]

where n > 1, and where I is an ideal of the polynomial R,-algebra A = R,[X1, ..., X,]
given by a set of generators. Let <, be a term ordering on T™. Consider the following

sequence of instructions.

1) Compute a tuple F = (Fi,. .., F.) whose elements are a <,-Gréibner basis of the
ideal I by using Moller’s Technique 2.1.19.

2) Form the polynomial ring Q = A[Y1,...,Ys] = Ro[X1,..., Xy, Y1,...,Ys], and
form the ideal JQ) = <ﬁ1, e fr>Q, where F; = F,(Y1,....,Y,) fori=1,... r.

3) Let <z be a term ordering on the set of terms T?" = T(Xy,..., X,,Y1,...,Yy,)
of Q. Compute a <z-Grdobner basis G of the colon ideal

s

f:(IQ—i-JQ) QX1 =Y, Xy, = Ya)g =

%

(IQ + JQ) ¢ (X; — Yi)q)

1

by using Moller’s Technique 2.1.19 and Proposition 2.1.20.
4) Take the image of G under 1, where 1 is given by (2.4), and form the ideal

~

J =9YI) = W(G) | G € G)a. Again using Méller’s Technique 2.1.19, we

compute a <,-Grobner basis H of J.

5) Let G be the tuple of all polynomials ofﬁ which are not contained in F, letV =,
and let H = 0.

6) If G =0, return the tuple H and stop. Otherwise, choose a polynomial G in G of
the smallest degree and remove it from G.

7) Compute an irreducible polynomial G of G w.r.t. {Fy,..., F,YU{H | H € V} by
using the Division Algorithm 2.1.17. ]fé =0, continue with step 6).

8) Append G to the tuple ¥V and append the image ofé in R to the tuple H. Continue
with step 6).

This is an algorithm which computes a tuple H whose elements are a system of gener-
ators of the Noether different Un(R/R,).

Proof. The correctness of this algorithm follows from Propositions 2.1.12 and 2.1.14.

The finiteness of this algorithm is clear. O]
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Example 2.1.22. Let us consider again the algebra R/Z given in Example 2.1.13. We
let <, be the term ordering DegRevLex. Using Proposition 2.1.21, we compute a tuple
‘H whose elements are a system of generators of ¥y (R/Z) and get H = (4,x2 +2). We
see that 4 € Un(R/Z), but this is not a unit of R, and so U5 (R/Z) = (4, 22+2)r # (1) k.
If we replace Z by the field of rational numbers QQ, an application of Proposition 2.1.21
gives us H = (1) and Iy (R/Q) = (1)g.

Remark 2.1.23. Let R be an affine K-algebra of the form R = K[X;,...,X,]/I =
K[zy,...,z,], and let d = dim(R). By Noether’s Normalization Theorem (cf. [Ku4,
Theorem 3.1] or [KR3, Tutorial 78]), we can find algebraically independent elements
X1, ..., X, in K[Xy,...,X,] such that the canonical map » : K[X{,...,X)] — R
is an injection and turns R into a finitely generated K[X7,...., X}]-module. Such a
subalgebra K[X7,..., X]] is called a Noether normalization of R.

If the field K is infinite, there exists a linear change of coordinates given by
(Y1,....Y,) = (X1,..., X,)A, where A € Mat,,(K) is a lower triangular matrix having
units on the main diagonal, with the property that K[Y1,..., Y] is a Noether normal-
ization of R. To compute a Noether normalization of R one may use a randomized
algorithm or a Las Vegas algorithm, see [KR3, Tutorial 78].

Now we assume that R has a Noether normalization of the form K|[Xi,..., X4,
and I is defined by a system of generators {F7,..., F,.} with r > 1. Let x; denote the
image of X; in R for i = 1,...,n, and let R, = K[z1,...,24. Then an application
of Proposition 2.1.21 yields a system of generators of the Noether different J5(R/R,)
of the algebra R/R,.

2.2 Fitting Ideals of Finitely Generated Modules

Let R be a ring. Given any finitely generated R-module M, we can associated to M
a sequence of ideals of R which are determinantal ideals of a relation matrix for M.
These ideals are well known and called the Fitting ideals or Fitting invariants of M.
Many structural properties of the R-module M are reflected in its Fitting ideals. In
this section we recall several facts about these Fitting ideals which will be used in the
later chapters. Our main references are [Kub] and [Nor].

Let {my,...,m,} be a system of generators of a finitely generated R-module M.
If M = (0), then we take n = 1 and m; = 0. Every element m € M can be written
(not necessarily uniquely) as m = fim; + --- + fam,, where fi,...,f, € R. Let
E ={e1,...,e,} be the canonical basis of R". Let ¢ : R" — M denote the R-module
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homomorphism determined by £ and by {mx,...,m,}, i.e., D"\, fie;) = > fim.

By K we denote the kernel of . Then we have a short exact sequence of R-modules
0—K—R'"ZM—0 (2.5)

Let {vy | A € A} be a system of generators of the R-module K with vy = (21, ..., Zn)
in R". Notice that £ = (0) if and only if M is a free R-module of rank n with
basis {mj,...,m,}. In this case, we take A = {1} and v; = (0,...,0). Then the
matrix (z;y)i=1,..» is called a relation matrix of M with respect to {ms,...,m,}.

AEA
Fori € {0,...,n—1}, we let F;(M) denote the ideal of R generated by all (n—1)-rowed

subdeterminants of (x;y)i=1,...,
AEA

n, and let

R fori>n,

FiM) = (0) fori<0.

Definition 2.2.1. Let ¢ € Z. The ideal F;(M) is called the i-th Fitting ideal (or
i-th Fitting invariant) of M. In particular, the ideal F,(M) is said to be the initial
Fitting ideal (or initial Fitting invariant) of M.

We observe that
(0) C Fo(M) CF(M) CF(M)C---CF,(M)=R.

Moreover, the Fitting ideals of M have the following property.

Lemma 2.2.2. Leti € Z. The i-th Fitting ideal F;(M) depends neither on the choice
of the generating system {mq,...,m,} of M nor on the special choice of a relation

matriz of M with respect to {my,...,m,}.
Proof. See [Ku5, D.1 and D.2] or [Nor, Chapter 3, Theorem 1]. O

Example 2.2.3. Let R = K[X] be a polynomial ring over a field K, and let M =
R/{(X)® R/(X?+ 1). Tt is clear that M is a finitely generated R-module. A system
of generators of M is {my, my}, where m; = (1,0) and my = (0,1). Then we have a
short exact sequence

0—K— R M —0.

Here ¢ is defined by o(fie; + faea) = fimi+ fama = (fy, f5). It is not difficult to check
that K = Ker(yp) is given by K = (v1,ve ), where v1 = (X,0) and vy = (0, X* + 1).
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Thus the relation matrix of M with respect to {mq, mo} is

M:<X 0)
0 X241

and
(0) for i <0,
Fi(M) =< (X?+X) fori=0, (2.6)
R for ¢ > 1.

Now we consider another system of generators of M = (my,mg, ms)r given by

my = (1,0), mg = (0,1), and m3 = (T, X). The corresponding short exact sequence is
0— K — R 25 M —0.

The map ¢’ is defined by ¢'(fie1+ faea+ f3e3) = fimi+ foma+ fams and K' = Ker(¢').
We shall show that K' = (vq, v9,v3 ), where v; = (X,0,0), v, = (0, X? + 1,0), and
V3 = (—1, -X, ].) It is clear that v; € K’ for i = 1,2,3. Let v = fie1+ faea+ fzez € K.

Since m3 = my + X'msy, we have
0=¢'(v) = fimu + foma + fams = (fi + fs)mi + (f2 + X fa)ma.
This implies (f1 + f3)er + (fo + X f3)ea € (v1,v2 ), and so
v = fie1+ faca+ fzezs = ((fi+ fs)er + (fa+ X f3)ea) — fa(er + Xea —e3) € (v1,v2,03) .

Thus the set {v1,v9,v3} is a system of generators of K', as claimed.

Consequently, the relation matrix of M with respect to {my, ma, ms} is

X 0 -1
M=|0 X241 —-X
0 0 1

and F;(M) is the same as (2.6). Note that the ideal of R generated by all 2-rowed
subdeterminants of M is different from that one of M.

Recall that an R-module M is finitely presentable if there are a natural number

n € N and a short exact sequence of R-modules

00— K —R"— M —0
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where /C is a finitely generated R-module. For example, finitely generated modules over
Noetherian rings are always finitely presentable (cf. [Ku4, Chapter I, Proposition 2.17]).
If M is finitely presentable, we see that the Fitting ideals F;(M), i € Z, are finitely
generated ideals of R.

Now we collect some basic properties of Fitting ideals.
Proposition 2.2.4. Let R be a ring, let M be a finitely generated R-module, and let
1 € 2.
(i) For every algebra S/R, we have F;(S @ M) =S - F;(M).
(i) If U C R is a multiplicatively closed subset, then F;(My) = Fi;(M)y.

(1i1) If I is an ideal of R, then Fi(M/IM) = F;(M), where F;(M) denotes the image
of Fi(M) in R/I.

Proof. See [Kub, D.4]. O

The next proposition says that the initial Fitting ideal Fo(M) and Anng(M) have

the same radical.

Proposition 2.2.5. Let M be a finitely generated R-module which can be generated

by n elements. Then

(Anng(M))" C Fo(M) C Anng(M).
In particular, if M can be generated by a single element, we have Fo(M) = Anng(M).
Proof. See [Ku5, D.14] or [Nor, Chapter 3, Theorem 5]. O

Example 2.2.6. Let us go back to Example 2.2.3. The initial Fitting ideal of M is
given by Fo(M) = (X? + X) C R = K[X]. Moreover, it is not hard to see that the
annihilator of M is Anng(M) = (X) N (X?+1). Since (X) and (X?+ 1) are coprime,
we obtain Anng(M) = (X) N (X?+1) = (X?® + X) = Fo(M).

Next we consider a further finitely generated R-module M’ = R/{X) & R/(X?).
Then a minimal system of generators of M’ is {(1,0), (0,1)} and the relation matrix

of M’ with respect to this system is

M’:XO.
0 X3



26 2. Preliminaries

Thus we obtain
0) for i <0,

(

(XY fori=0,

(X) for i =1,

R for i > 2.

In this case we have Anng(M’) = (X3) and (Anng(M’))* C Fo(M') C Anng(M').

(M) =

Observe that the Fitting ideals of a free R-module R™ with n > 1 are given by

(0) if i <n-—1,
R if i >n.

Fi(B") =

More general, we have the following proposition.

Proposition 2.2.7. Let 0 — M; — My — Ms — 0 be a short exact sequence of
finitely generated R-modules and let i@ > 0 and j > 0 be integers. Then we have

Fi(My) - Fj(Ms) C Fiyj(Ma).
Moreover, if the above exact sequence splits, i.e., if My = My & Ms, then

Fi(My) = Fi(My ® M3) = > F;(My) - Fir(Ms)

k=i
for all i € N.
Proof. See [Ku5, D.15 and D.17] or [Nor, pages 90-93]. ]

Corollary 2.2.8. Let 0 — M; — My — M3 — 0 be a short exact sequence of finitely
generated R-modules. Suppose Ms has a system of ng generators such that the kernel

of the corresponding presentation is also generated by ng elements. Then Fo(Ms) is a
principal ideal and Fo(My) - Fo(M3) = Fo(Ms).

Proof. See [Ku5, D.17] or [Nor, Chapter 3, Theorem 22]. O

Example 2.2.9. Let n > 1, let I3, ..., I, be ideals of R, and let M = R/I; ® R/I, &
.-+ @® R/I,. By Proposition 2.2.7, the initial Fitting ideal of M is

Fo(M) = Fo(R/1,) - Fo(R/13) - - Fo(R/1,).

Since Fo(R/1;) =1; C Rfori=1,...,n, we have Fo(M) =1, - Iy--- I,. Suppose that
the family {/; | i =1,...,n} is pairwise coprime, i.e., [; + [; = R for i,j € {1,...,n}
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and ¢ # j. Then we have I - Iy--- I, = NI, N---N 1, (cf. [Mat, Theorem 1.3]). In

this case we obtain
Fo(M)y=LnNLN---NI,=Anng(M).

Now we want to review some local properties of Fitting ideals. For that, let (R, m)
be a local ring, let M be a finitely generated R-module with a minimal system of
generators {mi,...,m, }, and let (2.5) be the presentation defined by this system.
Let v = (z1,...,2,) € R" be an element of K. If there exists an index i € {1,...,n}
such that z; ¢ m, then z; is a unit of R, so it follows from 2?21 xym; = 0 that
m; = —x; " > jziTjm;. Thus we obtain a contradiction to the fact that { m,...,m, }
is a minimal system of generators of M. Hence the coefficients of the relation matrix
with respect to {my,...,m, } of M are elements of m, and therefore F;(M) C m for

i <n — 1. From this we deduce the following property (cf. [Kub, D.§8]).

Proposition 2.2.10. Let (R,m) be a local ring, and let M be a finitely generated
R-module. Then the number of minimal generators of M is min{i | F;(M) = R}.
Moreover, if F.(M) is the smallest non-zero Fitting ideal of M, then M is free of
rank v if and only if F.(M) = R.

Our next corollary is an immediate consequence of Proposition 2.2.10 and the local-
global principle (see [Ku4, Chapter IV, Rule 1.1]).

Corollary 2.2.11. For a ring R and a finitely generated R-module M the following

statements are equivalent:

(i) M is locally free of rank r.
(ii) Fi(M)=(0) fori=0,...,r—1, and F;(M) =R fori>r.

Remark 2.2.12. Let R be a ring, M a finitely generated R-module. We recall that
Supp(M) = {p € Spec(R) | M, # (0) }.

For p € Spec(R), we have p € Supp(M) if the Ry,-module M, contains at least one

non-zero element. This is equivalent to the condition that Fy(M) C p. Thus we have
Supp(M) = {p € Spec(R) | Fo(M) S p}.

We conclude this section with the following proposition.
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Proposition 2.2.13. Let R be a reduced Noetherian ring, let M be a finitely generated
R-module, let pdp(M) denote the projective dimension of M (see for instance [Ku4,
Chapter VII, Definition 1.3]), and let T (M) be the set of all torsion elements in M,
ie., T(M) = {m € M | fm =0 for some non-zerodivisor f € R}. The following

statements are equivalent:

(i) The smallest non-zero Fitting ideal F.(M) of M is an invertible ideal.
(ii) M/T (M) is a projective R-module of rank r, and pdgz(M) < 1.

In particular, Fo(M) is an invertible ideal if and only if T(M) = M and pdp(M) < 1.

Proof. Since R is a reduced Noetherian ring, we have Min(R) = Ass(R). The claim
follows from [Ku5, D.19]. O

2.3 First Properties of 0-Dimensional Schemes

Throughout this section, we work over an arbitrary field K. Let n > 0 and let P be the
polynomial ring P = K[Xy, ..., X,] equipped with its standard grading deg(X;) = 1.

Definition 2.3.1. Let I C P be a homogeneous ideal. The set
I ={FeP| (Xy... X, FCIforsomeicN}
is called the saturation of I. The ideal I is called saturated if I = 7.

It is easy to see that the saturation I*** of a given homogeneous ideal I C P is a
homogeneous saturated ideal of P and I C 1%,

In what follows, we let P be the projective n-space over K (i.e., P% = Proj(P)).
Here we identify the set of K-rational points of P} with the set of equivalence classes
P(K™) = (K™ \ {0})/ ~, where ~ is an equivalence relation on K™™'\ {0} by
letting (co, ..., cn) ~ (¢p, ..., c,) if and only if there exists an element A € K such that

(¢, ) = (Aco, ..., Acy). Also, we shall say “a subscheme X of P” or “a scheme

X C P}” when we really mean “a closed subscheme X of P} together with a fixed
embedding X C P%.”. For more details about the theory of schemes we refer to [Har,
Chapter II]. Our main objects of study are 0-dimensional schemes X C P7%.. We let
Fx C Opn be the ideal sheaf of X on Py (see [Har, Chapter II, Section 5, p. 115]). Tt is
well known that the homogeneous ideal I'.(Fx) = @,~, H* (P}, #x(i)) is an ideal in P
defining the scheme X. Moreover, this ideal is saturz_ited, and hence it is the largest

homogeneous ideal in P defining the scheme X.
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Definition 2.3.2. Let X be a 0-dimensional subscheme of P}, and let .#x be the ideal
sheaf of X on .. Then the homogeneous saturated ideal I', () = @, 1 (P, Hx (i)
is called the homogeneous vanishing ideal of X and is denoted by Zx, and the residue

class ring R = P/Zx is called the homogeneous coordinate ring of X.

Notice that the ring R = P/Zx = @, R: is a standard graded K-algebra (i.e.,
Ry = K and R = K[R,] with dimK(Rl)_< 00), its homogeneous maximal ideal is
denoted by m := @,-, R;. We let Z*(Xj) be the subscheme of P} defined by (Xo)
and call it the hyper;)lane at infinity of P}.. The set of closed points of P} in X will
be denoted by Supp(X) and called the support of X.

Assumption 2.3.3. Once and for all, we assume that no point of the support of X

lies on the hyperplane at infinity Z7(X)).

Let x; be the image of X; in R for ¢ = 0,...,n. By Assumption 2.3.3, xg is not a
zerodivisor of R. Hence R is a 1-dimensional Cohen-Macaulay ring and R = R/ (x) is
a 0-dimensional local ring with maximal ideal M = (m+ (z))/(z¢) and dimg(R) < co.

We write Supp(X) = {p1,...,ps} for some s > 1. For every j € {1,...,s}, let
B; be the homogeneous prime ideal of P corresponding to p;. Its image in R will be
denoted by p;. The ideals pi,...,p,s are minimal homogeneous prime ideals of R. The
local ring O, is then the homogeneous localization of R at p;, i.e., Ox,, = Ryp,). The
degree of the scheme X is given by deg(X) = dimgx H*(X, Ox) = 377_, dimg (Ox,,).

Let I" be the affine coordinate ring of X in the affine space D, (X() = A%. We then
have I' = H'(X, Ox) & szl Oxp,. Moreover, the ring I' is a 0-dimensional Artinian
ring and I' = R/(xo — 1) (cf. [Kr3, Lemma 1.2]). The canonical epimorphism 6 : R —
R/(xq—1) = T is given by dehomogenization xo — 1. We set ¢ = Zx /(Zx N (Xo — 1))
and call it the affine ideal of X, so we get I' = A/T¢ where A = K[X;,..., X,].

By using the homogenization theory and Theorem 4.3.22 in [KR3], we have the

following properties.
Lemma 2.3.4. (i) We have T¢ = (Ix)" and Ix = (Z¢)"™.

(i) The ring R is a graded free K|xo|-module of rank deg(X).
Remark 2.3.5. Let I; € P be the homogeneous vanishing ideal of X at p; for all
j €{1,...,s}. In order to compute the homogeneous vanishing ideal Zx = ﬂjzl I;
of X we use the results in the paper of J. Abbott, M. Kreuzer and L. Robbiano [AKR).

More precisely, we can either proceed degree by degree to compute the reduced Grobner
basis of Zx by using the GPBM-Algorithm (cf. [AKR, Theorem 4.6]), or we can apply
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the GBM-Algorithm (cf. [AKR, Theorem 3.1]). In case we apply the GBM-Algorithm
to compute the reduced Grobner basis of Zx, we proceed as follows. Let <, be a degree
compatible term ordering on T" = T(X},...,X,), and let <z be the extension of <,
on T"™ = T(X,,...,X,) (see [KR3, Definition 4.3.13]). Apply the GBM-Algorithm
to compute the reduced <,-Grobner basis {Gy,...,G,} of the affine ideal Z¢. For
k =1,...,r, we then compute the homogenization G}*™ of G}, with respect to Xj.
Observe that LT5(G!™)=LT,(Gy) for all k = 1,...,r. Thus [KR3, Proposition 4.3.21]
and Lemma 2.3.4(i) yield that the set { Gho™, ... GRm} is the reduced <zGrébner
basis of Zx.

Next we introduce the Hilbert function of the homogeneous coordinate ring of X.

We start as follows.

Definition 2.3.6. Let M be a finitely generated graded R-module. It decomposes as
a direct sum of its homogeneous components M = @,_, M;. The Hilbert function

of M is defined by

€7

HF (i) = dimg (M;) for all i € Z.
In particular, the Hilbert function of R is given by HFx(i) = dimg (R;) for all i € Z.

The Hilbert function of M is invariant under a homogeneous linear change of coor-
dinates. Many properties of M are encoded in this invariant, for example, dimension
and multiplicity (cf. [KR3], [BH]). We say that an integer function f : Z — Z is
of polynomial type if there exists a number 7y € Z and an integer valued polynomial
q € Q[z] such that f(i) = ¢(i) for all i > 5. This polynomial is uniquely determined
and denoted by HP¢(z). The Hilbert function of a finitely generated graded R-module
M is an integer function of polynomial type (see [BH, Theorem 4.1.3]).

Definition 2.3.7. Let M be a finitely generated graded R-module, and let z be an

indeterminate over Q.

(i) The integer valued polynomial associated to HF ), is called the Hilbert polyno-
mial of M and is denoted by HP/(2). In other words, we have HF /(i) = HP /(1)
for ¢ > 0.

(ii) The number
ri(M) =min{i € Z | HFy;(j) = HPy(j) for all j > i}
is called the regularity index of M (or of HF;;). Whenever HF /(i) = HP ()

for all ¢ € Z, we let ri(M) = —oo. The regularity index of HFx will be denoted
by rx.
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In the following proposition we collect some descriptions of the Hilbert function
and the Castelnuovo function of X. Here the Castelnuovo function of X is defined
to be the first difference function of HFx given by A HFx(i) = HFx (i) — HFx(i — 1) for
all 1 € Z.

Proposition 2.3.8. (i) Fori <0, we have HFx(i) = 0, and we have HFx(0) = 1.
(ii) We have HFx(i) = deg(X) for i > rx.

(111) We have HFx(0) < HFx(1) < --- < HFx(rx — 1) < HFx(rx).

(iv) AHFx(i) # 0 if and only ifi € {0, ... ,rx}.
(v) We have deg(X) = > AHFx(i) = >,., AHFx(i).

Proof. See [Kr3, Lemma 1.3]. O

For p; € Supp(X), the residue field of X at p; is denoted by K (p;) := Oxp, /mx,,
Obviously, the residue field K (p;) is in general a finite dimensional K-vector space and
K(p;) = K if and only if p; € Supp(X) is a K-rational point of X. By X(K') we denote
the set of all K-rational points of X. It is clear that X(K) is a subset of Supp(X).

Definition 2.3.9. (i) We say that X has K-rational support if X(K) = Supp(X)

or, equivalently, if each closed point of X is also a K-rational point of X.

(ii) We say that X is reduced at p; if the local ring Ox,, is reduced (i.e., if 0 is the
only nilpotent element of Ox ). The scheme X is called reduced if it is reduced

at every point p; € Supp(X).

(iii) The scheme X is called a projective point set in P% if it is reduced and has K-

rational support. In this case we write X = {p1,...,ps} C P} with s = deg(X).

Remark that, if K is an algebraically closed field, then X always has K-rational
support, since all closed points of X are K-rational by Hilbert’s Nullstellensatz (see for
instance [KR2, Chapter 2, Section 6]). In this situation, X is reduced if and only if it
is a projective point set in P

Many local properties of the scheme X are based on the following result.

Lemma 2.3.10. Let 6 : R — R/{xg — 1) = I' be the canonical epimorphism given
by dehomogenization. Then the K-linear map 0|r, : R; — R/{xg — 1) = T is an
isomorphism if i > rx, and it is injective if 0 < i < rx. In particular, the K-linear
map 1 : R, — H;Zl Oxp, given by o(f) = (for,-- -, fp,) for all f € R,,, where f, is
the germ of f at the point p; of Supp(X), is an isomorphism.

Proof. See [Kr2, Lemma 1.1]. O
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Notice that the isomorphism ¢ : R,, = [5_; Ox,, satisfies o(zg*) = (1,...,1). The

first application of this isomorphism is to characterize a non-zerodivisor of R as follows.

Lemma 2.3.11. Let f € R; with i > 0 be a homogeneous element of R. If 1 < rx we

set f: TN, and if i > rx we write f = xé‘rxffor some fe R,,.

Then f is a non-zerodivisor of R if and only if 1(f) is a unit of szl Oxp,; -
Proof. See [Kr3, Lemma 1.5]. O

To investigate subschemes of the scheme X, we require the following lemma.

Lemma 2.3.12. Let J C R be a homogeneous ideal, and let J¥* be the saturation
of J, i.e., ¥ :={feR|m'f CJ for somei>0}. Then we have

J={feR|xz\feJ for somei>0}
Proof. See [Kr3, Lemma 1.6]. O

Now we examine subschemes Y C X of degree deg(Y) < deg(X) — 1. By Zy,x we
denote the saturated ideal of Y in R. Then the homogeneous coordinate ring of Y is
Ry = R/Iy/x. Because dimg(Ry); = deg(Y) < deg(X) = dimg R; for i > 0, we define
ayyx = min{i € N | (Zy/x); # 0} and call it the initial degree of Zy/x. As w( is a
non-zerodivisor of R, Proposition 2.3.8 yields R; = 2§ "*R,., for all i > rx. Thus the
description of the saturation of a homogeneous ideal of R given in Lemma 2.3.12 tells

us that ay/x < rx.

Remark 2.3.13. Suppose that Y C X is a subscheme of degree deg(Y) = deg(X) — 1.

(a) The Hilbert function of Y is given by

HFx(7) for i < ay/x,

HFy (i) =
HFx(Z) —1 for ¢ Z Qy/x.

For the proof of this claim see [Kr2] or [Kr3, Lemma 1.7].

(b) There exists exactly one point p; € X(K) such that Oy, # Oxp,. Indeed, it is
easily seen that there is exactly one point p; € Supp(X) such that Oy, # Oxp,.
If p; € Supp(X) \ X(K), then we have dimy K(p;) = » > 2, and we may write
Kp)=K®&Kv & & Kv,_1, where {1,v1,...,v,.1} is a K-basis of K(p;).
Let fyv € (Zy/x)ry \ {0}. Then o(fy) = (0,...,0,5;,0,...,0) € Hj-:l Oxp, for
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some element s; € Ox,, \ {0}. It is not difficult to check that s;,v;s; are K-
linear independent. By setting f; := +7((0,...,0,v1s;,0,...,0)) € R, we
have dimg ( f1, fyr)x = 2. Also, we observe that xzy*fi = fofy € Zy/x with
fo = 11(0,...,0,v1,0,...,0)) € R,, and x¢ is a non-zerodivisor of Ry. This
implies f1 € Zy/x. Hence we get 2 = dimg ( fi, fv ) < dimg(Zy/x)r, = 1, a

contradiction.

Example 2.3.14. Let X = Z7(2X} + X2X? — X}) be the 0-dimensional scheme of
degree 4 in the projective line I%. The affine ideal of X is

Ty = (2+ X7 — Xi) = (X} + (X} - 2)) = g1 Ng2 € Q[XY]

where q; = (X? + 1) and qo = (X7 — 2). In Q[X;], both q; and g, are maximal, and
hence Supp(X) = {p1,p2} where p; is the closed point of X corresponding to g;, but
X(Q) = 0. Thus Remark 2.3.13(b) yields that X has no subscheme of degree 3.

Recall from [Kr3, Section 2] that the Z-graded ring I',(Ox) = @, H*(X, Ox(i))
has a presentation as follows

L.(Ox) = QH (X, 02(1)) = @T = @([10x,,) = [10x, [T, T = R,
€7 i€Z i€Z j=1 =1

where T, ..., T are indeterminates with deg(77) = --- = deg(7s) = 1. We denote
R:= [T, Ox,,[T;] the subring of I'.(Ox). According to Lemma 2.3.10, we have an

injection
~ S

’ZV: R - R = Hloxpj [T’]] — F*(Ox), f = (fP1T1i7 R fpsTsl) (27)
j=

for f € R; with i > 0. Moreover, 7(xzo) = (11, ...,T) and the restriction 7|g, : R; — R;

is an isomorphism of K-vector spaces for i > rx. Here and subsequently, let us denote
»j = dimg K(p;) = dimg (Oxp, /mxp,)
for j =1,...,s. Given an element a € Oy, , we define
p(a) :=min{i € N|(0,...,0,aT},0,...,0) €7(R) }

and

v(a) := max{ p(ab) | b € Oxyp, \ {0} }.
Notice that ©(0) = v(0) = 0 and if s > 2 and a # 0 then v(a) > p(a) > 1, since
W Ry) = ((1,...,1)) . Some more precise rules for these values are provided by our

next lemma.
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Lemma 2.3.15. Assume that we are in the setting introduced.

(i) We have p(a +b) < max{ pu(a), u(b) } for all a,b € Ox,,.

(ii) Let &(Ox,,) denote the socle of Ox,y,, i.c., &(Oxp,) = Amno, (mx,p,), let s;
be a non-zero element of &(Ox,y,), and let {eji, ... e} € Ox,, be such that

whose residue classes form a K-basis of K(p;). Then we have
v(s;) = max{ u(er;s;) | kj =1,..., 5 }.
(ii) Let sj, s € &(Ox,p,) \ {0}. If s; = as) for some a € Ox,,,, then v(s;) = v(s)).
Proof. (i) It suffices to show the claim in the case p(a) < u(b). Let
fF=71(0,...,0,aT"”,0,...,0)), g=7(0,...,0,674",0,...,0)).
Then we have f,g € R and
Wb M f 4 g) = (0,...,0,(a + )T 0,...,0).

It follows that p(a + b) < pu(b).
(ii) Observe that

v(s;) = max{ p(as;) | a € Oxp, \ {0} } > max{ pu(ejr;s;) [ kj=1,..., 5 }.

Now let a € Ox,, be such that as; # 0. Then a ¢ mx,,, since s; € &(Ox,,) \ {0}.

So we may write a = cjiej1 + -+ + ¢ €55, (modmyy, ) for ¢ji,...,¢cj, in K, not all
equal to zero. We deduce as; = cjiej15; + -+ + ¢j;€j,,5;. It follows from (i) that
pas;) = p(cjieis; + -+ 4 Cjsx €55, 55) < maxq{ p(ejr; 55) | kj = 1,..., 5 }. This implies

v(s;) < max{ u(ejr;s;) | kj = 1,..., 5 }. Therefore the claimed equality is proved.
(iii) Since s; = as} and sj;,5, € B(Oxyp,;) \ {0}, the element a is a unit of Ox,, .
Thus we have
(s;) = mas{ u(s8) | b € Oxy, \ {0} } = max{ u(sjab) | b € Ox,, \ {0} )
< () = max{ u(s}c) | ¢ € Oy, \ {0} } = max{ u(s;07'c) | ¢ € Oxyy \ {0} }
< v(s;).

Hence we get the equality v(s}) = v(s;). O

For abbreviation, we introduce the following notion of a special subscheme of X.
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Definition 2.3.16. Let X C P% be a 0-dimensional scheme, let Supp(X)={p1,...,ps},
and let j € {1,...,s}. We say that a subscheme Y C X is a p;-subscheme if the

following conditions are satisfied:

(i) Ovp, = Oxpy for k # j.

(ii) The map Ox,, — Oy, is an epimorphism.
A pj-subscheme Y C X is called maximal if deg(Y) = deg(X) — ;.

For example, let X C P be a 0-dimensional scheme which has K-rational support.
A maximal p;-subscheme of X is nothing but a subscheme Y C X of degree deg(Y) =
deg(X) — 1 with Oy, # Ox,p,.

From now on, if no ambiguity arises, we say “a p;-subscheme of X” without speci-
fying j € {1,...,s}.

Given a 0-dimensional scheme X C P}, at each p; € Supp(X) we define a relation ~
on the socle &(Oxyp,) by s; ~ s; < s; = as) for some a € Ox,, \ mx,,. It is easy
to see that ~ is an equivalence relation. The equivalence class of s; under ~, denoted
by [s;], is defined as [s;] = { s} € &(Oxp,) | 55 ~ s; }. We set

Usj = {(O,...,O,uj,O,...,O) S HIOXJ)J. ’ Uj S [Sj]}.
j=

Proposition 2.3.17. Let X be a 0-dimensional subscheme of P} with support
Supp(X) = {p1,...,ps}. There is a 1-1 correspondence

{ mazimal p;j-subschemes } R { subsets Us; € [[5_; Oxp, }
of the scheme X with s; € &(Ox,p,) \ {0}

Proof. Let Y C X be a maximal p;-subscheme, and let {eji, ..., e, } € Ox,, be such
that whose residue classes form a K-basis of K(p;). Let fy € (Zy/x)ay,, \ {0}, and
write 7(fy) = (0,...,0, szfY/X, 0,...,0) € R. Clearly, ay/x < rx and s; # 0. We claim
that s; € &(Ox,p,). Indeed, if otherwise, then there is an element a € my, such that

as; # 0. Suppose there are cy,. .., ¢, 11 € K such that
C1€j18j F + -+ Cop ;€5 Sj + Copyy105; = (C1€51 4 - -+ + Cyp €5y + Coy1a)85 = 0.

If ciej1 + -+ + ¢ €, # 0 in K(p;), then ciej + -+ + ¢, €5, is a unit element, so is
C1€j1 + +++ + Cxy€js; + Coy10 (as @ € myy,). It follows from the above equality that
s; = 0, it is impossible. So, we must have c;€;; + --- + Cx;€jr; = 0. This implies

€1 =+ = ¢y =0, since {€j1,...,€j,,} is a K-basis of K(p;). From this we deduce
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Cy;410a5; = 0, hence ¢, 11 = 0 (as as; # 0). Therefore the set {ejis;,..., ¢, 5;,as;}
is K-linearly independent. Let fi, = 7 '((0,...,0,e,5,7,%,0,...,0)) € (Ty/x)r,
for kj = 1,...,5 and fos; = 7 ((0,...,0,as;T;%,0,...,0)) € R,,. Then we have
20" fas; = fufy, where f, =771((0,...,0, al}*,0,...,0)) € R
yields fos, € ( fy >j§t C Zy/x. Thus we get

> and so Lemma 2.3.12

dlmK(IY/X)TX 2 dlmK <f]17 A 7fj%]'7 f(lSj>K - %] + ]-

and hence deg(Y) < deg(X) — »;, a contradiction.

Next we consider f € (Zy/x); \ {0} with i > ay/x. The previous claim also tells us
that f,, € &(Ox,,) \ {0}. If f,, € 8(Ox,,) \ [s;], then it is not difficult to check that
{ fp;>€j18j, ..., €js;8; } is K-linearly independent. This implies deg(Y) < deg(X) — 5,
and it is impossible. Hence we have f, € [s;].

Let g € R; \ {0} with i > ay/x be such that i(g) = (0,...,0,9,,7},0,...,0) and
gp;, € [sj]. We are able to write g, = as; for some a € Ox,p, \ mx,,. Using a
similar argument as the previous part we get g € ( fy )Sﬁf‘t C Zy/x. Therefore the image
of Zyyx \ {0} in [[}_, Ox,, is Us; with s; € &(Ox,,) \ {0}, as was to be shown.

Conversely, let (0,...,0,s;,0,...,0) € [[}_, Ox,, with s; € &(Ox,,) \ {0}, and
let f =7"(0,...,0,57;%,0,...,0)) € R.,. WesetY := Z*(f) C X. Then we
have Zyx = (f );ﬁ“. Obviously, the scheme Y is a pj-subscheme of X. It suffices
to prove deg(Y) = deg(X) — »;. Let fir, =7 '((0,...,0,e5,5,7;%,0,...,0)) € Ry,
and g, = 7 '((0,...,0,e5,7;%,0,...,0)) € Ry, for kj = 1,...,3;. We see that
xo* fir; = ik, f for every kj € {1,..., 5}, and so Lemma 2.3.12 implies fjx, € (Zy/x)ry-
Thus we get the inequality

dim g (Zyx)re > dimg ( fi1, -, fisg ) = %5

Moreover, for h € (Zy/x)r, \ {0}, there is a number m € N such that zg'h € ( f)p.
This clearly forces h,, = as; for some a € Ox,, \ mx,p, and h,, = 0 for k # j. Let us
write as; = szzl Cjk,; €k, S; for some ¢;1, ..., ¢j,; € K. Then 2(h) :7(2,};:1 Cik; [ik;)-
Since the map 7 is injective, we have h = Z:j:l Cik; fin; € <fj1, oo Jig >K This
implies dimg (Zy/x)r, < 2;, and therefore this inequality becomes an equality. Hence
we obtain dimg (Zy /x )itr, = 2 for i > 0 or deg(Y) = deg(X) — s, as desired. O

Corollary 2.3.18. A 0-dimensional scheme X C P} contains a subscheme Y C X of
degree deg(X) — 1 if and only if X(K) # 0.

Proof. This follows from Remark 2.3.13(b) and Proposition 2.3.17. O
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Let Y be a maximal pj;-subscheme of X, and let s; € &(Ox,,) \ {0} be a socle

element corresponding to a non-zero element of (Zy/x)a, . We shall also say that s;

oy /x
is a socle element of Oy, corresponding to Y. Let {e;1,..., ¢, } € Ox,, such that
whose residue classes form a K-basis of K(p;). For k; =1,..., »;, we set
* ~ w(ejk; 8;5)
Fio, =T 10,0, e5,8,T5777,0,...,0)).

It follows from Lemma 2.3.15 that the maximal degree of { f7, ..., fj’»‘%j} depends neither

on the choice of the element s; nor on the specific choice of {e;1,...,¢j, }.

Definition 2.3.19. (i) The set {f7,.. ., f]?"%j} is called a set of minimal separa-
tors of Y in X (with respect to s; and {e;1,...,€j.,}).

(ii) The set {fj1,..., fjx }, where fj,, = xgx_“(ejkjs]') iry for k=1, 3¢, is said to

be a set of separators of Y in X (with respect to s; and {ej1, ..., €., }).
(iii) The number
vy x = max{deg(f},) | kj =1,...,5}

is called the maximal degree of a minimal separator of Y in X.

Remark 2.3.20. If X has K-rational support, then s = --- = 3, = 1 and, for every
subscheme Y C X of degree deg(Y) = deg(X) — 1, a minimal separator f§ of Y in X

is exactly a non-zero element of (Zy/x) i.e., fy is a minimal separator of Y in X

ay x
in the sense of [Kr2]. We also see that (/IY/X)av/x-‘ri = (z}- f3 ) for i > 0, and an
element fy € (Zy/x)r, \ {0} is a separator of Y in X. Especially, when X = {py,...,p,}
is a projective point set in P, for j € {1,...,s} we write p; = (1 : pj1 : - -+ : pj,) with
pir € K, and for f € Rweset f(p;) :== F(1,pj1,...,pjn), Where F' is any representative
of fin P. Then f € R,, is a separator of X\ {p;} in X if and only if f(p,;) # 0 and
f(pe) = 0 for k # j. We shall say that a separator f; € R,, of X\ {p;} in X is a

normal separator if f;(p;) = d;; for 1 <k <s.

Proposition 2.3.21. Let Y C X be a maximal p;-subscheme, let s; be a socle element

of Oxp, corresponding to Y, let {ej1, ..., e, } C Ox,, such that whose residue classes
form a K-basis of K(p;), and let {f},..., [} be a set of minimal separators of Y
in X with respect to s; and {e;1, ..., ej. }. The following assertions hold true.

(i) We have Ty;x = { f)5" for every f € (Zy/x): \ {0} with i > ay/x.
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(ii) We have vy;x < rx and the Hilbert function of Y satisfies

HFx(7) if i< oyx,
HFy(Z) =49 < HFx(Z) —1 Zf Ay /x <i< VY /X
HFx(Z) — % Zf v > Vy/x.

(iii) There is a special choice of the set { ej1, ..., ej,, } € Ox,, such that whose residue

classes form a K -basis of K(p;), Ty/x=(fj1,---» ;‘%j)R, and for all v € Z we have

AHFy(i) = AHFx(i) — #{ i, € {fi1.- - [} | deg(fip,) =i }.
Proof. (i) It is clear that { f)3" C Zyx. For the other inclusion, we write
Wf) =(0,...,0,as;T%,0,...,0) € R

for some a € Oy, \ mx,,. Similarly, for every g € (Zy/x)r with k& > ay/x we have
2(g) = (0,...,0, bszf,O, ...,0) with b € Oxp,. If bis not unit of Oy, then bs; = 0,
sog=0¢€ (f)5. Otherwise, let h =77'((0,...,0,ba™"T7*,0,...,0)) € R,,. Then
2y g = akhf € (f)p, 50 g € (f)%" by Lemma 2.3.12. Hence we have Ty x = ( f )5

(ii) Observe that ay/x < vy/x < rx and HFy (i) < HFx (i) — 1 for ayyx <@ < vy/x.

It remains to show that HFy(i + vy/x) = HFx(i + vy/x) — 3 for i > 0. We set
—deg(f¥. ) _
Gy = q;gY/X Bk iy € (Dayx)uyy for all kj = 1,... 5¢. Then we have (gjk,) =
0,...,0, ejkjsz;/Y/X, 0,...,0) € R. Since {¢;15;,...,¢€j,,5;} is K-linearly independent,
this implies
s = dimg (g1, .- Gix, >K < dimg (Zyx)y ) < 7.

So dirn[((l'y/x)l,\y/X = dimK(Iy/X)H,,Y/X = x; for all i > 0. Therefore HFy (i + vy/x) =
HFx(i + vyx) — 2 for all i > 0, in particular, HFy(i + rx) = deg(X) — »; = deg(Y)
for all 7 > 0.

(iii) We may construct the set {eji, ..., e, } € Ox,, with the desired properties as
follows. Let day/x = HFIY/X(CKY/X), dav/x+i = HFIY/X (Oéy/x + Z) — HFIy/X (Oéy/x +1— 1)
fori=1,...,vy/x — ay/x. Then we have s; = daY/X + day/x+1 4+ -4 dl,wx. We begin

ayx- For:=1,... Uy /x — oy /X, if dO‘Y/X‘H > 0,

> f7 v a, ., such that the set

taking f7,, ... ’f;day/x a K basis of (Zy,x)

we choose [

d “+1 -
og%o' oy /xtk 0<E<i “Y/X
1 L* A * *
xof'l,...,xo d ,...,.]Tof- d +1’...’$0f' d 3
{ J Jay ¢ 305121'71 ay x+k J0<k253i71 oy gtk

f* *
]0§%<idaY/X+k+l’ e %<idaY/X+k}
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forms a K-basis of (Zy x)ay,+i- Then theideal J = (f;,.... f}, )r is a subideal of Zy x

and HF;(i) = HFz, , (i) for all i < vy/x. By (ii) we have HF,;(:) = HFz, (i) = 5;
for i > vy x. This implies Iy x = J = (f

gl
construction of the set {f};,..., 7, } that for all i € Z we have

-+ [}, ) r. Moreover, it follows from the

HFIY/X(?;) = #{ f;k:j S {f;lﬁ s 7f;‘%j} ‘ deg(fj*k]) S i }
Thus we obtain

AHFy(:) = HFy (i) — HFy(i — 1)

= (HFx(i) — HFz, , (1)) — (HFx(i — 1) = HFz, , (i — 1))

= A HFX<Z> - (HFZY/X (Z) - HFIY/X (l - 1))

= AHFx(i) — #{ fix, € {fi1- - fr,} | deg(ffy,) =i}
. ~ deg(f;k,)
Now let us write z(f;‘,cj) = (0,...,0,ejx,5;7T; 7,0,...,0) for k; = 1,..., ;.
Obviously, the set {e;15;,...,¢€;x,s;} is K-linearly independent. It remains to show
that the residue classes {€;1,...,€;,,} form a K-basis of K(p;). Suppose there are
Ci1y -+ Cjry; € K such that cji€j + -+ + ¢j,,€,;, = 0. It follows that the element
Cj1€j1 + -+ Csy €, 18 contained in my .- This implies cjiej18; + -+ -+ Cj;€js; S5 = 0.
Since {e;15;,...,¢€js,5;} is K-linearly independent, we deduce ¢j; = --- = ¢j,;, = 0.

Therefore the set {€;1,...,€;,,} is a K-basis of K(p;), and the conclusion follows. [

Note that the set {f7,..., f},,} of minimal separators of a maximal p;-subscheme
Y in X as in Proposition 2.3.21(iii) is not necessarily a homogeneous minimal system

of generators of Zy/x, as the following example shows.

Example 2.3.22. Let X C IP’?Q be the 0-dimensional reduced complete intersection
with Tx = (Xo, X§ X1 — § X X7+ 2X3 X3 — 2X3 X1 + Xo X7 — $ X7). Then X contains
the projective point set Y = {(1:0:0),(1:1:0),(1:2:0),(1:3:0)} which is a
maximal p-subscheme, where p is the closed point corresponding to the homogeneous

prime ideal P = (X? + XZ, X). We see that deg(Y) = 4 = deg(X) — 2, and two
3 11,22 1.4

minimal separators of Y in X are ff = ajz; — Yaga] + xor} — s2f and f5 = xf}.

Moreover, the equality of the Castelnuovo function of Y holds true, while Zy x = (f{) -

Definition 2.3.23. Let X C P} be a 0-dimensional scheme, and let Supp(X) =
{p1,...,ps}. For every p; € Supp(X), the degree of p; in X is defined as

degy (p;) := min { vy/x | Y is a maximal pj;-subscheme of X }.
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Remark 2.3.24. (a) In the sense of the above definition, the degree of p; in X is
given by
degy (p;) = min{v(s;) | s; € &(Oxp,) \ {0} }.

(b) If X has K-rational support, then we have
degx(p;) = min{ aoy/x | Y is a maximal p;-subscheme of X }.

If, in addition, X is reduced, then degyx(p;) = ax\(p,3/x forall j =1,...,s.
(c) We have 0 < degx(p;) < rx for all p; € Supp(X). In particular, if X is a projective

point set in P, then there always exists a point p; € X with maximal degree
degx(p;) = rx (cf. [GKR, Proposition 1.14]).

We end this section with following two lemmata in which we generalize some results
found in [Kr3, Section 1].

Lemma 2.3.25. Let X C P} be a 0-dimensional scheme, let f € R; withi >0, let'Y
be a mazimal pj-subscheme of X, and let {fj1,..., fj;} C Ry, be a set of separators
of Y in X.

(i) We have f- f;; = Z;:j:l cé-kj:)séfjkj for some cél, . ,cé,{j e Kandle{l,...,x}.
(i) If f - fj1 =0 for some l € {1,...,5}, then f- fix =0 for all X € {1,...,5;}.
Moreover, f - fi # 0 if and only if f,, & mx,,.

(i1i) Let Y' be a mazimal pj-subscheme of X, and let {fjn, ..., fj/%j,} C R, be a set
of separators of Y' in X. Then we have

x6X<fj17 s 7fj%j >K Zf.] = j, and dimK(pj)(OX,Pj) = 17

Firs = fiw, € _
(0) otherwise.

Proof. We derive claim (i) from the fact that

f i€ @i = (2o fis - 20Fis ) e

for [ =1,..., ;. Claims (ii) and (iii) follow by using the injection 7 and (fjx,)p, is a

socle element of &(Ox,y,) for k; =1,..., ;. O

Lemma 2.3.26. Let X C P% be a reduced 0-dimensional scheme with support

Supp(X) = {p1,....0s}, let {fj1,. .., fi;} C© Rry be a set of separators of X\ {p,} in X
forj=1,...s.
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(i) For everyi > rx the set {xéﬁrxfn, . ,xéﬁrxflm, . ,xéﬁrxfsl, . ,xéﬁrxfsﬂs }isa

K -basis of R;.

(i) If f € Ry and anxdfiy + -+ + 0@l for. € Rjrpy for some i,j > 0 and
a1, ..., 0s,, € K, then

. . 71 PR s PR
frlanagfu+ -+ au g fon) = Sauchyzg” fu + -+ Yaacy, 157 fo,
=1 =1

l ! . o > 1 i _
where Ciy -1 Cisgy € K satisfy f - fu = k=1 cjijofjkj for g =1,...,5 and

Proof. (i) Since X is reduced, we have Ox, = K(p;) = &(Ox,p,) for j =1,...,s. For
1 > ry, we see that

Wxg ™ fir,) = (0,...,0,e,77,0,...,0) € R,

where {ej1,..., €} is the K-basis of Ox,,, for j = 1,...,s and for k; = 1,..., ;.
Then it is not difficult to show that the set {2(xf "™ fi1),...,5(z) " fs..) } is K-linearly
independent. Thus this set forms a K-basis of fiz for all ¢+ > rx. Since for every
i > rx the restriction 7]g, : R; — éz is an isomorphism of K-vector spaces, this implies
{xf)_rxfll, . ,a:é_rxfs,{s } is a K-basis of R;.

(i) This follows from Lemma 2.3.25(i). O

2.4 Trace Maps for 0-Dimensional Schemes

As in the previous section we let K be an arbitrary field, let X C P be a 0-dimensional
scheme such that Supp(X) N Z7(X,) = 0, let Zx be the homogeneous vanishing ideal
of X'in P = K[Xo,...,X,], and let R = P/Zx be the homogeneous coordinate ring
of X. Also, we denote the image of X; in R by x; for i = 0,...,n. Then z; is not a
zerodivisor of R and R is a graded-free K|[xo]-module of rank m = deg(X).

Let <, be a degree-compatible term ordering on T". The affine ideal of X is
T¢ = (Ix)%" C A = K[X4, ..., X,]. Then we have O = T\ LT, (Z¢) = {T\,...,Trn }
with T; = X77' - X7 and a; = (aj1,...,q,) € N* for j = 1,...,m. W.lo.g. we
assume that Ty <, --- <, Tp,. Let t; = T; + Ix € R and set deg(t;) := deg(7}) = n;
for j =1,...,m. Then n; < --- < n,, and the set B = {t1,...,t, } is a K|[xo|-basis
of R. From now on, if not stated otherwise, as a K[zo]-basis of R we always choose
the above K|xg]-basis B = {t1,...,tn }.
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Definition 2.4.1. Let ¢ € End(R) and let B = {t1,...,t, } be a Kxo]-basis of R.
Write ¢(t;) = > po, @ty With aji,. .., ajm € Klzg] for j = 1,...,m. The trace and

norm of ¢ (independent of choice of the basis) are given by
Tr(p) = >_a;; and N(p) = det(a;i).
j=1

Definition 2.4.2. Let f € R, and let 1y : R — R denote the multiplication by f. The
map Trp /o : B — K[xo] defined by Trr/kzo)(f) = Tr(uy) is called the canonical
trace map of R/K|xg|, and Ng k[, : B — Klxo] defined by Ng k2, (f) = N(py) is

called the canonical norm map of R/K|x).

It follows from the definition that Trg ks, € Homgp (R, Kzo]), Trr/k(ze)(1r) =

m, Nr/kzo](f1f2) = Nr/kizo) (f1) - Nr/kizo)(f2) for fi, fo € R, and N kzo)(f) is a unit
if and only if f is a unit of R. We collect some results about canonical trace maps and

canonical norm maps in the following proposition (cf. [Kub, F.4,5,6,7]).
Proposition 2.4.3. (i) We have Trg ke = > iy tity, where the set {t7,...,t;, }
in Hompgiz) (R, K[wo]) is the dual basis of {t1,... tm }.
(ii) Base change: If S/K|xo| is an algebra, then Tr(se kg R)/S = ids ®K(zo) Tr R/ K (0]
and Nsg ., r)/s(1 ® f) = 1s - N[z (f) for every f € R.

(iii) Direct products: Let S = Sy X --- X S, be a direct product of finitely generated
free K[xo|-algebras Sy, ...,S,. Then for s = (s1,...,8,) € S we have

Trs/kiwe) () = ;Trsi/x[mo](si) and  Ng/kz0)(5) = ENsi/K[xO](Si).

(iv) Transitive law: Let T'/R be another finitely generated free algebra. Then Trr)kz)

and N7 gz, are defined, and

Trr k(2] = Trr/K(ze) © Trr/R and  Nrygies) = Nr/Kzo) © N1y/R-

Definition 2.4.4. Let S/K be a standard graded algebra, and let M and N be
graded S-modules. We say that a homomorphism ¢ : M — N has degree i if
deg(p(v)) = @ + deg(v) for every homogeneous element v € M. The K-vector space
of all homomorphisms of degree i from M to N is denoted by Homg¢(M, N);. A ho-
momorphism ¢ : M — N is called homogeneous if ¢ € Homg(M, N); for some i, we

also say that ¢ is a (homogeneous) homomorphism of graded modules. We put
Homg(M, N) = @ Homg(M, N);,
1€Z
and consider it as a graded S-module with {Homg(M, N);}iez as its grading.
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Notice that 0 has arbitrary degree, thus in order to check whether ¢ € Homg(M, N)
has degree i, it suffices to check the condition deg(¢(v)) = i + deg(v) only on the
homogeneous elements outside Ker(p). In general, the graded S-module Homg (M, N)
is a submodule of Homg(M, N). We have equality in the following case.

Proposition 2.4.5. If M is a finitely generated graded S-module and N is a graded
S-module, then Homg¢(M, N) = Homg(M, N).

Proof. See [Pev, Proposition 2.7]. ]

Now let us turn back to consider the algebra R/K{[zo]. We denote wgr/kiz, =
Hom 1, (R, K[xo])(—1) and call it the canonical module of R/K][z¢]. For i € Z, the
K-vector space (Wr/klz))i consists of all K[xg]-linear homomorphisms ¢ : R — Kz
with p(R;) € K] for all j € Z. The R-module structure of wp ks is defined
by setting (f - ¢)(f') = @(ff') for all f, f' € R and ¢ € wp/kz,]- Several properties
of Wr/Kz, are collected as follows.

Proposition 2.4.6. (i) The graded R-module wr, ks, is finitely generated.

(1i) The element xy is not a zerodivisor on Wr Kz, i€, for © € Wr/K(wy if To ¢ =0

then ¢ = 0.
141) The Hilbert function of wr ks, satisfies
/K[zo]

HF“UR/K[IO] (Z) = deg(X) - HFX(_i) fOT all i € 7.

(iv) If Y C X is a subscheme and Ry = R/TIy/x is its homogeneous coordinate ring,

then there is a canonical isomorphism of graded R-modules

WRy/Klzo] = { ¥ € WR/Kwo) | Ty/x -9 =0}
Proof. See [Kr3, Satz 2.3-4] or [GW]. O

Observe that the dual basis B* = {t],...,t5 } of B = {t1,...,t, } consists of
homogeneous homomorphisms in Hom ., (R, K[zo]) with deg(t}) = —deg(t;) = —n;
for j =1,...,m. If we write a = > 7", g;t; € Hom e, (R, K[zo]) for g1,...,9m € R,
then « is homogeneous of degree 7 if and only if g; is homogeneous of degree n; + i
for all j =1,...,m. It is clear that the canonical trace map Trg k[, is homogeneous

of degree zero.
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Definition 2.4.7. The algebra R/K[x,] has a trace map o if there exists an element
o € Homy, (R, K[xo]) such that

Hom e, (R, K[zo]) = R - 0.

If the algebra R/K[zo| has a trace map o, it is called a homogeneous trace map if

it is a homogeneous element of Hom (1 (R, K[zo]).

Remark 2.4.8. (a) In general, the canonical trace map is not a trace map, i.e., we
do not always have Hom ., (R, K[zo]) = R - Trr/K[z)-

(b) If R/K[xo] has a trace map o, then Hom, (R, K[zo]) is a free R-module with
basis {o}. For this we have to prove Anng(c) = (0). Let f € R be such that
f-o0=0. Wehave 0= (f-0o)(f")=0a(ff')=(f-0)(f) for every f' € R. This
implies a(f) = 0 for every a € Homy, (R, K[zo]). If we write f = 377", g;t;
for some g1,...,9m € Klzo), then we get ¢g; = t;‘(zznzl gitj) = t;(f) = 0 for
j=1,...,m, and hence f = 0.

(c) Let o be a trace map of R/K[xo]. An element o € Hom ., (R, K|[xo]) is a trace
map of R/K x| if and only if there exists a unit v € R with ¢/ = u - 0.

Proposition 2.4.9. If o is a trace of the algebra R/ K|xo|, there exists a dual basis
{t),....,t } to the basis B = {ty,...,t, } with respect to o; i.e., there are elements
th,...,t, € R such that o(t;t},) = 0 for j,k =1,...,m. In this case, we have

et

TrR/K[aco] = ( t]tg) - 0.

1

J

Proof. (See [Kub, F.4]) Write t; = t’ -0 with t; € R and j =1,...,m for the elements
of the dual basis of B. Then o(¢;t}) = t;(t;) = d;x for j,k =1, ..., m. Being the images
of the ¢} under the isomorphism Hom s, (R, K[xo]) = R, the t} form a basis of R/ K [x].
Thus Proposition 2.4.3(i) yields Trr/x(zy) = D -, tit; = (Z;”Zl tith) - o. O

Next we take a look at the enveloping algebra R ® gy, R of R/K|xo]. For i € Z,
we let (R ®giqy) 12)i denote the subgroup of R @k, R generated by the elements of
the form f ® f’ where f € R; and f' € Ry, with j + k = 4. It is easy to check that

R ®xpo) = DR Do) )i
1€
and (R ®K[x0] R)z . (R ®K[a:o} R)] Q (R ®K[a:o} R)H—j for all Z,j € Z. Hence R ®K[z0] R is
a graded K|zg|-algebra with its grading {(R ® ks, R)i}icz-
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Let J be the kernel of the canonical multiplication map p : R ® k., & — R given
by u(f®g) = fg for all f, g € R. The following lemma gives us a relation between the

R-module Annpg,, r(J) and Hom, (R, K[zo]) which follows from [Ku5, F.9].

ol
Proposition 2.4.10. We have an isomorphism of graded K[zo|-modules of degree zero

O : R @kl @ — Home, . (Hom g, 1 (R, Ko]), R)
f= ;ak ® b, — O(f) with O(f)(«) — Za(ak)bk, a € Hom e, (R, K[zo]).

In particular, the homomorphism © induces an isomorphism of graded R-modules
O: AnnR@K[xO]R(j) — HO—mR(HO—mK[xQ](Rv K[ZEO]), R)'
Corollary 2.4.11. If R/K|[xo] has a trace map, the following assertions hold true.

(i) Anngg,, r(J) is a free R-module of rank 1.

(i1) The isomorphism © induces a bijection between the set of all trace maps of R/K [x]
and the set of all generators of the R-module AHHR@,([IO]R(j) . FEach trace map

th ®t;

o in Hompp, (R, K[zo]) is mapped to the unique element A, = Y77, 1)

m AnnR®K[mO]R(j) such that Z;n:1 U(t;‘>tj =L

(111) There is a one-to-one correspondence between the homogeneous traces of R/ K [x]

and the homogeneous generators of AnnR®K[wO]R(j).

(iv) If 3752, g;®t; generates the R-module Anngg, . r(J) and o € Hom e, 1 (1R, K [7o))
is such that 77" o(g;)t; = 1, then o is a trace map and A, = 377", g;®t;; hence
{91, -, gm} is the dual basis to {t1,...,t,} with respect to o.

Proof. See [Kub, F.10] and [Ku7, H.20]. O

Corollary 2.4.12. Suppose R/K|xo| has a trace map o. Let {t},... t. } be the dual

basis to {t1,...,tm } with respect to o, and let A, =377t @t;. Then we have

TI“R/K[JCO] = /L(Ag) o and ,u( ) E TI‘R/K [o] (t )t;

In particular, Trr K, s a trace map if and only if 1(A,) is a unit of R.

Proof. By Proposition 2.4.9, we have

Teyic = (5545) -0 = W31,
]:
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Moreover, for k = 1,...,m, we see that
((Zl Tt/ ilag) (8)1)) - 0) (L) = U(Zl Tty i) (t)tr) = 21 Tt /i) (t) 0 (titk)
j= j= j=

= 21 Trr/Keo) (tj)05k = TrR/K[zo) (tk)-
]:

Thus 1(As) - 0 = Trr k) = Q)= Trr/K(z)()t;) - 0. Since Anng(o) = (0), we get
the equality j(A,) = 377" Trr k) (t;)t;. Finally, the additional claim follows from
Remark 2.4.8(c). O

Recall that the O-dimensional local ring R = R/{wo) is a standard graded K-
algebra and has HFx(i) = AHFx(i) for all i € Z. For simplicity of notation, we
denote the residue class of elements of R in R with a bar. If B = {t1,...,t,} is
the K[zg)-basis of R, then B = {,...,%, } is a K-basis of R as a K-vector space.
For o € Homy, (R, Kxo]), we see that a(zoR) = (o), S0, a induces an el-
ement @ € Hom, (R, K) with @(f) = «(f) for all f € R. The dual basis B* of B
is thereby mapped to the dual basis {f},...,%, } of B. [Ku7, H.5] shows that the
R-linear map ¢ : Homyp, (R, K[zo]) — Hom, (R, K) defined by ¢(a) = @ for all

o € Hom e, (R, K[zo]) induces an isomorphism of graded R-modules
Hom (R, K) = Hom 1, (R, Klwo]) /(o) Hom 1) (R, K[ao]).

An application of this isomorphism and Nakayama’s Lemma for graded modules implies
the following result (cf. [Ku7, H.13]).

Lemma 2.4.13. Let o € Homy, (R, K[xo]) be a homogeneous element. Then o is a
trace map of R/K|xo) if and only if the induced element & € Hom, (R, K) is a trace
map of R/K.

Our next theorem provides characterizations of the existence of a homogeneous
trace map of the algebra R/K|[z).

Theorem 2.4.14. Let (R) denote the socle of R, i.e., 5(R) ={x € R | m-2=0}.

The following conditions are equivalent.

(i) The algebra R/K has a trace map.
(ii) The algebra R/K has a homogeneous trace map.

(i1i) We have dimg(B(R)) = 1.
() The algebra R/K|[xo| has a homogeneous trace map.
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Proof. The equivalence of conditions (i), (ii) and (iii) follows from [Ku7, H.14 and H.16].
It remains to show that those conditions are equivalent to (iv). By Lemma 2.4.13, it
suffices to show that for a homogeneous trace map & € Hom, (R, K), there exists a
homogeneous element o € Hom (. (R, K[zo]) such that its induced element is &. This
follows from the fact that the R-linear map ¢ : Homyy, (R, K[zo]) — Hom (R, K)
given by a — @ is a surjective homogeneous homomorphism of graded modules of
degree zero. Furthermore, given a homogeneous trace map & € Hom, (R, K), we
can construct a homogeneous trace map o € Hom g, (R, K[zo]) in detail as follows.
Let rx be the regularity index of HFx. It is easy to check that deg(z) = —rx and
&(R) = R,,. Thus a(&(R)) # (0) and &(R;) = (0) for i < rx. Let {t1,...,tm}
be the K-basis of R corresponding to the K[zg]-basis {t;,...,t,} of R. We write
o(t;) = ¢; € K for j = 1,...,m. If deg(t;) = deg(t;) < rx, then ¢; = 0. Let

o : R — Klzg| be a Klxg]-linear map with o(t;) = ¢; for j = 1,...,m. Clearly,
we have o € Homp, (R, K[zo]) \ {0} and o(t;) = 0 if deg(t;) < rx. This implies
o € (Homp, (R, K[zo]))-r, \ {0} and its induced element is . O

Definition 2.4.15. A d-dimensional Noetherian local ring (S, m) is called a Goren-
stein local ring if it is a Cohen-Macaulay local ring of type r = 1, where the type r
is given by

r=dimg(&(S/(as, ..., aq))).

Here {ay,...,aq} is any parameter system of S (i.e., it generates an m-primary ideal).
A Noetherian ring S is called a Gorenstein ring if S, is a Gorenstein local ring for
all m € Max(5S).

Let S be a graded Noetherian ring and let p be any homogeneous prime ideal of S.
Then p is contained in a homogeneous maximal ideal m of S and S, is a localization
of Sm (., Sy = (Sm)psn). Thus if Sy is a Cohen-Macaulay (resp. Gorenstein) local
ring for every homogeneous maximal ideal m of S, then S, is a Cohen-Macaulay (resp.

Gorenstein) local ring for every homogeneous prime ideal p of S.

Theorem 2.4.16. Let S be a graded Noetherian ring. If S, is a Cohen-Macaulay local
ring of type < r for every homogeneous prime ideal p, then S is a Cohen-Macaulay
ring of global type < r. In particular, if Sy is Gorenstein for every homogeneous prime
ideal p, then S is Gorenstein.

Proof. See [AG, Theorem 3.1]. O
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Definition 2.4.17. Let S be a ring, and let T'/S be an algebra.

(i) The algebra T'/S is called a Gorenstein algebra if it is flat, and if for all
B € Spec(T') and p =P N S the ring Ty /pTy is a Gorenstein local ring.

(ii) The algebra T'/S is called unramified if
e For all P8 € Spec(T') and p =P NS, we have PTy = pTip.
o k(P)/k(p) is a separable algebraic field extension, where k(P) = T /BTy
and k(p) = S,/pSp.
The algebra T'/S is said to be étale if it is flat and unramified.

It is well-known that the algebra R/K[x¢] is graded-free of rank deg(X). We also
have (20) o) = M N K (2] and Ry /(20) R = (R/{x0)r)w = Rw = R. Hence R/K][x)
is a Gorenstein algebra if and only if R is a Gorenstein local ring. Moreover, we have

the following property.

Proposition 2.4.18. The following assertions are equivalent.

(i) Home, (R, K[xo]) = R-0 = R(rx) with o € (Hom g, (R, K[xo])) -

(ii) R is a Gorenstein local ring (i.e., dimg(&(R)) = 1).

(iii) The algebra R/K|xq] is a Gorenstein algebra.

(iv) R is a Gorenstein ring.
Proof. The equivalence of conditions (i), (ii) and (iii) follows from Theorem 2.4.14 and
the preceding argument. Now we show that the conditions (i) and (iv) are equivalent.
By Proposition 2.1.3 in [GW], the Cohen-Macaulay ring R is a Gorenstein ring if and
only if wr)k,) = R(d) for some d € Z. Since HF,, . (i) = deg(X) — HFx(—i)
for i € Z by Proposition 2.4.6(iii), this is equivalent to Hom g, (R, K[zo]) = R(rx).

Therefore the conclusion follows. O

Corollary 2.4.19. Suppose the algebra R/K[zo| has a (homogeneous) trace map.
Then Trr/kzo) 45 a trace map if and only if R/K[xo| is étale.

Proof. The claim follows from Corollary 2.4.12 and [Ku5, F.8]. ]



Chapter

Various Differents for

0O-Dimensional Schemes

The goal of this chapter is to define and study various differents, namely the Noether,
Dedekind and Kahler differents, for a O-dimensional scheme X C P% over an arbitrary
field K. In algebra, these differents have been known for several decades. Many
structural properties of an algebra are encoded in those invariants, or in similar ones
derived from them (cf. [Kul], [Ku5], [Mac], [SS]). In this chapter we look more closely
at these differents for the scheme X by working out algorithms for the computation
of them, examining and relating their algebraic structures, and investigating their
Hilbert functions.

The chapter contains three sections and each section introduces one kind of these
differents. Section 3.1 begins with a definition of the Noether different (see Defini-
tion 3.1.1). We show that the Noether different is a principal ideal of the homogeneous
coordinate ring R of X when X is arithmetically Gorenstein (see Proposition 3.1.2),
and deduce from Section 2.1 its representations (see Corollary 3.1.5). Additionally, we
indicate how we can explicitly compute a minimal homogeneous system of generators
of a homogeneous ideal of R (see Proposition 3.1.10) and apply it to compute that of
the Noether different (see Proposition 3.1.13).

Section 3.2 is devoted to exploring the Dedekind different. Explicitly, we first
present some results on the homogeneous quotient ring Q"(R) of R (see Proposi-
tions 3.2.1 and 3.2.3). If we restrict to O-dimensional locally Gorenstein schemes
X C P%, the graded-free algebra Q"(R)/K|[xo,7'] has a homogeneous trace map.
This enables us to define the Dedekind different for O-dimensional locally Gorenstein
schemes (see Definition 3.2.4). In Proposition 3.2.5, we describe the Hilbert function of

the Dedekind different and give an upper bound for its regularity index. In particular,
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this upper bound is sharp if X is a projective point set in P (see Proposition 3.2.11).
We also characterize 0-dimensional arithmetically Gorenstein schemes in terms of their
Dedekind differents (see Proposition 3.2.8) and give a description of the Dedekind
complementary module (see Proposition 3.2.9). When X is smooth, we show that
the Noether different and the Dedekind different agree (see Theorem 3.2.17). So the
Dedekind different in this case can be computed using the method introduced in Sec-
tion 3.1. In the remainder of this section, we modify slightly the GBM-algorithm which
was proposed by J. Abbott et al [AKR] to compute some special K-bases of the vector
space R,, where rx is the regularity index of R (see Propositions 3.2.22 and 3.2.25) and
apply it to formulate an algorithm for computing the Dedekind different for a locally
Gorenstein scheme X under an additional hypothesis (see Proposition 3.2.29).

The Kéhler different for 0-dimensional schemes is introduced in Section 3.3. It is
defined as the first Fitting ideal of the module of Kahler differentials 2, IKlwo)- Ve
first take a look at relations of the Kahler different and two other differents in the
special case of a complete intersection X (see Corollaries 3.3.5 and 3.3.7). We then
show that the Noether different and the Dedekind different are not equal even when
X is a complete intersection (see Example 3.3.6) and present some general relations
between these differents (see Propositions 3.3.9 and 3.3.12). Moreover, we describe the
Hilbert function of the Kahler different and bound its regularity index when X is a
projective point set in P (see Proposition 3.3.14). Next, we relate it to the minimal
separators of X (see Corollary 3.3.16). Finally, we bound the Hilbert polynomial of the
Kahler different for an arbitrary 0-dimensional scheme X C P (see Proposition 3.3.19)
and derive from these bounds some consequences (see Corollaries 3.3.21 and 3.3.22).

Throughout this chapter, we let K be an arbitrary field, let n > 1, and let P}
be the projective n-space over K. The homogeneous coordinate ring of P% is P =
K[Xo,...,X,] equipped with its standard grading deg(X;) = 1. Let X C P% be
a 0-dimensional scheme such that Supp(X) N Z¥(Xy) = 0. By Zx we denote the
homogeneous vanishing ideal of X in P. The homogeneous coordinate ring of X is then
given by R = P/Zx. The image of X; in R is denoted by x; for i =0,...,n.

3.1 Noether Differents for 0-Dimensional Schemes

In this section we address the problem of defining and computing the Noether different
for a O-dimensional scheme X C P%. We know that z( is a non-zerodivisor of R

and the algebra R/K (x| is graded-free of rank deg(X). Furthermore, the enveloping
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algebra R ® gy, R of R/K[xo] is a graded ring. Let J be the kernel of the canonical
multiplication map p : R ®gg B — R given by u(f ® g) = f - g for f,g € R. Note
that p is an R-linear map preserving degrees and

j:<$1®1—1®$1a---v$n®1_1®m”>R®K[zo]R'

This implies that 7 and AnnR®K[x0] r(J) are homogeneous ideals of R ® K[zo] 1. Con-
sequently, ¢(Anngg, ., r(J)) is a homogeneous ideal of R.

Definition 3.1.1. The homogeneous ideal ¥ (R/K[zo]) = p(Annpg ., r(J)) is called
the Noether different of the algebra R/K|[z,] (or for X with respect to x).

First we give descriptions of the Noether different ¥ (R/K [xo]) when the scheme X
is a complete intersection or an arithmetically Gorenstein scheme. Here X is called a
complete intersection if Zx can be generated by n homogeneous polynomials, and
it is called arithmetically Gorenstein if R is a Gorenstein ring. Note that if X is a
complete intersection then it is arithmetically Gorenstein, but the converse is not true

in general (see Example 3.1.4).

Proposition 3.1.2. Let X C P} be a 0-dimensional scheme, and let rx denote the

reqularity index of HFx.

(i) If X is arithmetically Gorenstein and char(K)  deg(X), then 95(R/K]xo]) is a

principal ideal of R generated by a non-zero homogeneous element of degree rx.

(i) If X is a complete intersection with ITx = (F1, ..., Fy,), then we have

(111) We have In(Ry /K [xg]) = In(R/K[xo])u for every multiplicatively closed subset
UCR.

Proof. Since X is arithmetically Gorenstein, the algebra R/K|[xz,] has a homogeneous
trace map o of degree —rx such that Hom ., (R, K[xo]) = R-0 (see Proposition 2.4.18).
In this case, by Corollary 2.4.11, the graded R-module Anngg,, r(J) is free of
rank 1 and it is generated by A,, where A, is the preimage under the isomorphism
Anngg,, r(J) = Homp(Homp, (R, K[zo]), R) of ¢ : Homp, (R, K[zo]) — R given
by ¢(0) = 1. Hence the Noether different Jy(R/K[zo]) = p(Anngs,, r(J)) is
a principal ideal generated by u(A,). Obviously, Trp k(1) = deg(X) # 0 (as
char(K) { deg(X)). It follows from Trg ks = H(As) - 0 (see Corollary 2.4.12)
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that u(A,) # 0. Since the maps u and ©~! are homogeneous of degree zero and
deg(o) = —rx, we get deg((A,)) = rx. Thus claim (i) follows. Claim (ii) follows from

Proposition 2.1.8, and claim (iii) is an immediate consequence of Proposition 2.1.7. [

If n = 1, then every O-dimensional subscheme X of P} is always a complete inter-
section. The homogeneous vanishing ideal Zx is generated by a non-zero homogeneous
polynomial F; € P. In this situation, the Noether different of the algebra R/K x| is
IN(R/K[xo]) = <g—ﬁ ). If n > 1 and X C P} is a projective point set of degree 1, then
it is clear that Uy (R/K[xo]) = R.

Let us illustrate the results of this proposition with two more examples.

Example 3.1.3. Let X = {p1,...,po} C ]P’?Q be the projective point set given by
pr=01:0:0),p=(1:1:0),p3=(1:2:0),ps=0:0:1),ps=(1:1:1),
pe=(1:0:2),pr=(1:2:1),ps=(1:1:2),and pg = (1:2:2). The vanishing ideal
of Xin P = Q[Xo, X1, Xo] is Zx = (X3X1 — 2 X0 X7+ X3, X2 X5 — 3 X X3 +1X3), and
so X is a complete intersection. By Proposition 3.1.2, the Noether different of R/Q[x(]

is given by

22 — 3xory + 222 0
In(R = (det | 271
n(B/Qlzo]) < ¢ ( 0 x5 — 3wy + a3

= ((x% — 3zoxy + %x%)(m% — 3xoxs + %x%))

Example 3.1.4. Let X C IED% be the projective point set consisting of five points
pr=(1:0:0:0),p=(1:0:1:0),p3s=01:0:0:1),pg=(1:1:0:1),
and ps = (1 :2:2:1). Then a minimal homogeneous system of generators of Zx is
{Xo X1 — X1 X3, X2 — X1 X3— X0 X3, XoXo— X0+ Xo X3, X1 Xp —2X5 X3, Xo X3 — X3} C
Q[Xo, ..., X3]. So, the scheme X is not a complete intersection. However, a simple
calculation gives us HFx : 14 5 5--- and HFx\(, 3 : 14 4--- for j=1,...,5. Thus it
follows from Theorem 7 in [GO] that X is arithmetically Gorenstein. In this case, the
Noether different of R/Qlxg] is U (R/Q[zo]) = (23 — 223 — 3w173 + Troms + 23).

In Section 2.1 we already discussed a method for computing a system of generators
of the Noether different of an algebra of finite type. As an application of this method,
we can show how to compute a homogeneous system of generators of the Noether
different of the algebra R/K[xg]. It is based on the representations of the Noether
different of R/K[xo] which we present below. Let us write

R:P/IX:K[Xo,Xl,...,Xn]/IX:K[l’o,l’l,...,l’n].



3.1. Noether Differents for 0-Dimensional Schemes 53

Let {F1,...,F.} be a homogeneous system of generators of Zx, where r > n. Let
Y1,...,Y, be new indeterminates, and let v : K[Xo, X1,..., X,)] =& K[Xo,Y,...,Y,]
be a K[Xj|-algebra homomorphism given by v(X;) = Y; for i = 1,...,n. By J we
denote the homogeneous ideal of K[Xy,Yi,...,Y,] generated by {v(F1),...,v(EF)}.
We form the standard graded polynomial ring @ = K[X,, Xi,..., X,, Y1,...,Y,] with
deg(Xp) = -+ = deg(X,,) = deg(Y1) = --- = deg(¥,,) = 1. In @, we denote by Zx(Q
and J@ the homogeneous ideals generated by {Fi,...,F.} and {y(F1),...,v(F)},
respectively. As in the proof of Proposition 2.1.14, we have a commutative diagram

Q : P
|+ i
R

Q)JQ -5 =R[X,...,X,]| —L> R @y B —

(3.1)

where p : § = R ®ks R is a K|xg]-algebra epimorphism given by p(X;) = 1 ® ;
fori=1,....n, p(x;) = x; @1 fori =0,...,n; ¢ : Q/JQ — S is a KJ[xg|-algebra
isomorphism defined by ¢(X; + JQ) = X, for i = 0,...,n and ¢(Y; + JQ) = z; for
j=1,...,n;9¢:Q — P is a P-epimorphism defined by ¢(Y;) = X, for j =1,...,n;
7 and 7 are the canonical K[zg|-algebra epimorphisms. Notice that all maps in the

above diagram are homogeneous of degree zero.

Corollary 3.1.5. Using the notation as above. In Q = K[Xo, X1,..., X, Y1,...,Y,],

we form the homogeneous colon ideal
I=(TxQ+JQ) g (X1 — Yi,..., X, — Vi)o.
Then the Noether different of R/ K [xq] is given by

On(R/Klxo]) = {F(1,...,2,) € R | F € IxS 15 (X1 — w1, ..., Xy — )5 }

= (nopogom)(I) =v(I)/Ix.
Proof. This follows from Lemma 2.1.6 and Propositions 2.1.12 and 2.1.14. ]

As we mentioned above, a homogeneous system of generators of ¥y (R/K[xy]) can
be found by using its representations in Corollary 3.1.5. Explicitly, we first compute
a homogeneous generating system { Hy,..., Hy,v(F1),...,7(F,)} of the colon ideal
I=(TxQ+JQ) 0 (X1 —V1,.... X, — Y,)o with H; ¢ JQ for i = 1,...,t. Secondly,
we compute a homogeneous generating system { Hi, ..., H,, Fy,..., F,} of the homo-
geneous ideal J = ¢(f) of P, where H! = ¢(H;) for i = 1,...,t. Finally, by taking h;
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the image of H in R for i = 1,...,t, we obtain a homogeneous system of generators
{h1,..., i} of In(R/K|[x0)).

Next we would like to describe explicitly a minimal homogeneous system of gener-
ators of ¥y (R/K|[xo]) which is a subset of {hq,...,h}. For this purpose, we discuss
below how to compute a minimal homogeneous system of generators of a homogeneous
ideal in the residue class ring R = P/Zx.

In what follows, we let <, be a term ordering on the monoid T"*! = T(X, ..., X,,)
of terms of P and let % = {F},..., F.} be a homogeneous <,-Grobner basis of Zx.
Recall from [KR2, Section 2.4] that the normal form of a (homogeneous) polynomial
F € P with respect to <, is NF, 7, (F) = NR, #(F') which can be computed by using
the Division Algorithm given in [KR2, Theorem 1.6.4]. We say that F is a normal
(homogeneous) polynomial modulo Zx w.r.t. <, if F' = NF, 7, (F). In order to

perform division in R, we present the following algorithm.

Proposition 3.1.6. (The Division Algorithm) Let # = {Fy,...,F.} be a homoge-

neous <,-Grobner basis of Ix, and let F,G1,...,Gs € P\ {0} be normal homogeneous
polynomials modulo Ix w.r.t. <., where s > 1. Consider the following sequence of
mstructions.

1) Let@Qr=--=Qs=0,G=H=0andV =F.

2) If there exists i € {1,...,s} such that LT,(V) = T - LT,(G;) for some term
T € T", then replace Q; by Qi+%(v_))T, H by H+4=eW) (NF, 7, (TG;)-TG,),

(G LC,(Gy)
and V by V — £52E NF, 1. (TG)).

3) Repeat step 2) until there is no more i € {1,...,s} such that LT,(V') is a multiple
of LT, (G;). Then replace G by G + LM, (V) and V' by V — LM, (V).

4) If V=0, return the tuple (G, H,Q1,...,Q,) € P and stop. Otherwise, start
again with step 2).

This is an algorithm which returns a tuple (G, H,Q1,...,Qs) € P**2 such that
i=1

and such that the following conditions are satisfied.

a) We have H € Ix and if H # 0 then LT,(F) >, LT,(H).

b) If G # 0, then no elements of Supp(G) is contained in the monomial ideal
(LT, (). .. LT (G)} ULT, {Z}) and LT,(F) >, LT,(G).
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c) Forie{l,...,s}, Q; is a normal homogeneous polynomial modulo Tx w.r.t. <,
in P. If Q; # 0 for some i € {1,...,s}, then LT,(F) >, LT,(Q;G;).
d) For any indexi=1,...,s and all term T € Supp(Q;), we have
T-LT,(Gy) & ({LT,(G1), ..., LTo(Gi1)} ULT, {Z}).

Moreover, the tuple (G, H,Q1, . ..,Q,) € P52 satisfies the above conditions is uniquely
determined by the tuple (F, Gy, ...,G,) € P*TL,

Proof. Analogous to [KR2, Theorem 1.6.4]. ]

Let F, G4, ...,Gs€ P\{0} be normal homogeneous polynomials modulo Zx w.r.t. <,,
where s > 1, and let G be the tuple (G, ...,Gs). We denote a polynomial G' obtained
in Proposition 3.1.6 by NR, 7, g(F'). For F' = 0, we let NR,7,¢(F) = 0. As an

immediate consequence of Proposition 3.1.6, we have the following corollary.

Corollary 3.1.7. Let J C P be a homogeneous ideal which contains Ix, let G =
{G1,...,G} be a set of non-zero normal homogeneous polynomials modulo Tx w.r.t. <,
such that ¢ U.Z is a homogeneous system of generators of J, and let G = (Gq,. .., Gy).

Then the following conditions are equivalent.

(i) The set 4 U.Z is a homogeneous <,-Grébner basis of J.

(i) A normal homogeneous polynomial F € P\ {0} modulo Ix w.r.t. <, satisfies
F e J if and only if NR, 1, g(F) = 0.

(ii1) For every normal homogeneous polynomial F € J\ Ix modulo Ix w.r.t. <,, there
are Hy,...,H;€ P and H € Ix such that F=Y . | H;G;+ H, LT,(F)>,LT,(H)
if H#0, and LT,(F)>,LT,(H;G;) for alli=1,...,s such that H;G; # 0.

Let 4 = {G4,...,Gs} be a set of non-zero normal homogeneous polynomials
modulo Zx w.r.t. <, such that 4 U .# is a homogeneous system of generators of
a homogeneous ideal J C P containing Zx. We set Syuz = {S;; € P | (i,j) €
{1,...,8} x{1,...,s+7r},i < j}, where

o lem(LT+(G;),LT+(Gy)) lem(LT+(G;),LT+(G5))
Sij = NFU,Ix( LM, (G;) =G - LM, (G;) : GJ')

if 7 <sand

. lem(LT o (G4),LTo (Fj_4)) lem(LTo (G4),LTo (Fj_4))
Sij = NFU,Ix( LM, (G;) ’ Gi — LM, (Fj—s) . Fj—s)

if 7 > s, and call it the set of normal S-polynomials modulo Zx w.r.t. <, of YU.%.

Clearly, all normal S-polynomials modulo Zx w.r.t. <, in S¢u# are homogeneous and
if j < s then deg(S;;) > max{deg(G;),deg(G;)} and if j > s then deg(S;;) > deg(G;).
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Proposition 3.1.8. (Buchberger’s Criterion) Let J C P be a homogeneous ideal
which contains Ix, let 4 = {G1,...,Gs} be a set of non-zero normal homogeneous
polynomials modulo Ix w.r.t. <, such that YU.Z is a homogeneous system of generators
of J, and let G = (G1,...,Gs). Then G U.Z is a homogeneous <,-Grobner basis of J
if and only if NRyz, g(F) =0 for all F € Syyz.

Proof. If ¢ U.% is a homogeneous <,-Grobner basis of .J, then F' € S¢,# C J implies
NR, z,.¢(F) = 0 by Corollary 3.1.7. Conversely, suppose that NR, 7, ¢(F) = 0 for all
F € Syyuz. To prove the set ¢ U.# is a homogeneous <,-Grobner basis of J, it suffices
to prove that all S-polynomials of ¢ U.% reduce to zero with respect to Y U.% by [KR2,
Theorem 2.4.1 and Proposition 2.5.2]. But this follows directly from the assumption

and .% is a homogeneous <,-Grobner basis of Zy. O

Our next lemma gives a characterization of a minimal homogeneous system of

generators of a homogeneous ideal J/Zx of R.

Lemma 3.1.9. Let J/Ix be a homogeneous ideal of R generated by non-zero homoge-
neous elements {hy,...,h}. Fori=1,...,t, let H; € P be the normal representative
modulo Tx w.r.t. <, of h;, let m; = deg(H;), and assume that my < --- < my. Then

the following conditions are equivalent.

(i) The set {hy,...,h} is a minimal homogeneous system of generators of J/Ix.

(ZZ) Hz¢<{H1, z 1}U >f07”Z—1
(iii) H; ¢ <{H1,...j{\ o HYUF) fori = 1,...,t, where H; denotes an element
that s not included.

Proof. (1)=(ii): Assume that {hq,...,h;} is a minimal set of generators of J/Zx and
H;, € ({Hi,....,H;i_1} U.#) for some i € {1,...,t}. Then there is a relation H; =
Z;;ll GiHj+ 30— Gi1y;F; with G € P. This 1mplies h; = Z;;ll gjh; € R, where g;
is the image of G in Rfor j =1,...,i—1. Weget J/Zx = (h1,..., hi—1, hit1, .., hi)r,
it is impossible. Hence we must have H; ¢ ({Hy,...,H; 1} U.%) for all i € {1,... t}.

(ii)=-(iii): We shall show that H; ¢ ({Hy,...,H;—1,H;1,...,Hi} U.F) for all
ie{l,...,t}if H; ¢ ({Hy,...,Hi1}U.Z) foralli € {1,...,t}. Otherwise, we obtain

a representation
Hi=GH + - +G_1H1+GHip+ - +GH A+ G By + - -+ G B

where G; € P is a homogeneous polynomial of degree m; —m; for j € {1,...,i —
1,i + 1,...,t} and of degree m; — deg(Fj_¢) for j € {t + 1,...,t + r} (cf. [KR2,
Corollary 1.7.11]). This implies G; = 0 if m; < m;. Hence there are two possibilities.
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+ If m; > m, for all j such that G; # 0, then j <iand H;=GH,+---+G,_1H;_1+
Gy Fy + - -+ Gy Fy. Tt follows that H; € ({Hy, ..., H; 1} UZ), a contradiction.

+ There exists some index j with G; € K \ {0} such that m; = m;. We define
Jjo=max{j e {l,...,t} | G; € K\{0}}. Then we get H;, € ({Hi,...,Hjp—-1} U.Z).
This is also a contradiction.

(iii)=-(i): If {hy,...,h:} is not a minimal set of generators of J/Zx, then there
is an index i € {1,...,t} such that h; = >, g;h; with g; € R. This implies that
h; — Z#i gjh; =0 or H; — Z#i qj\Hj € Ix, where G, is a representative of g; in P.
Therefore we have H; € ({Hy, ..., H;,..., Hy} UZ), a contradiction. O

Notice that the two last conditions of the lemma can be checked effectively us-
ing the Submodule Membership Test (cf. [KR2, Proposition 2.4.10]). This gives us a
method for computing a minimal homogeneous system of generators of J/Zx. However,
this method requires a large number of Grobner basis computations. In the following
proposition, we present a procedure which computes a minimal homogeneous system

of generators of J/Zx and avoids some unnecessary computations of Grobner bases.

Proposition 3.1.10. (Buchberger’s Algorithm with Minimalization) Let J be a
homogeneous ideal of P containing Ix, let H = (hq,...,hs) be a tuple of homogeneous
elements of R which generate J/Ix. For j = 1,...,s, let H; € P be the normal
representative modulo Ix w.r.t. <, of hj, and assume that deg(H;) < --- < deg(Hy).

Consider the following sequence of instructions.

1) Let S=0,V = (Hy,...,H,), G=10, s =0, and Huyin = 0.

2) Let d be the smallest degree of an element in S or in V. Form the subset Sy
of S consisting of elements F' such that deg(F') = d, form the subtuple V; of V
consisting of the elements H; such that deg(H;) = d, and delete their entries from
S and V), respectively.

3) If Sq = 0, continue with step 6). Otherwise, choose an element S € Sy and delete
it from Sy.
4) Compute S" = NRyz,¢(S) by using the Division Algorithm 3.1.6. If S’ = 0,

continue with step 3).

5) Increase s’ by one, append Gy = S’ to the tuple G, and append the set {S;y | 1 <
i< sPU{Sy; |1 <j<r} tothe setS, where

B lem (LT (G;), LT+ (G.)) lem (LT, (G;),LTo (G 1))
Sis’ - NFU,Ix( LM, (G;) GZ - LM (G /) GS/)
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and

T lem(LTo (G 1), LT (F;)) lem(LT 4 (G,/), LT, (F}))
Ss’j—NFo-,Ix( LM, (G,/) =Gy — LM, (Fj) ’ Fj)~

Then continue with step 3).

6) If V4 = 0, continue with step 9). Otherwise, choose an element H € Vy and
delete it from V.

7) Compute H' = NR, 1, g(H). If H' =0, continue with step 6).

8) Increase s' by one, append Gy = H' to the tuple G, append the image of H in R
to the tuple Humm, and append the set {S;y | 1 < i < s}U{Sy; | 1< j <r},
which is established in an analogous way as in step 5), to the set S. Continue
with step 6).

9) If S=0 and V =, return the pair (G, Hmn) and stop. Otherwise, continue with
step 2).

This is an algorithm which returns a pair (G, Hmin) such that the set {G | G € G} U.Z
1s a homogeneous <,-Grobner basis of J, and Hyi 1s a subtuple of H which minimally

generates J/Ix.

Proof. The finiteness of this algorithm and the claim that when the algorithm stops,
the set {G | G € G} U.Z is a homogeneous <,-Grébner basis of J, follow by using a
similar argument as in [KR3, Theorem 4.5.5] and by using Buchberger’s Criterion 3.1.8.
The minimality of resulting tuple Hm can be shown in the same way as in [KR3,
Theorem 4.6.3]. We note that after the procedure has finished looping through steps
3), 4), and 5), the tuple G satisfies the property that there are non-zero homogeneous
normal polynomials G, ..., G} modulo Ty w.r.t. <, such that deg(G’) > d for all
j =1,...,t and such that the set {G | G € G} U{G",...,G} U.Z is a homogeneous
<,-Grobner basis of ({G | G € G} U .%). Every time an element Gy of degree d is
added to G in step 8), the property is also true for the new tuple G. This enables
us to check whether a new normal polynomial H € V; modulo Zx w.r.t. <, which is
chosen in step 6) is contained in ({G | G € G}U.Z) via step 7), and hence Lemma 3.1.9
guarantees that H i, is always a minimal system of generators of ({G | G € G}U.F) /Ix
at the end of an iteration of step 8). O

Remark 3.1.11. When we are only interested in computing a minimal homogeneous
system Hpi, of generators of J/Zx, we can speed this algorithm up by stopping the
execution of the algorithm after degree d,.x = deg(Hj) is finished and appending only
the set {Sis | 1 < i < &',deg(Sis) < dmax} U {§5’j |1<j <, deg(gslj) < dyax } to the
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set S in steps 5) and 8). The implementation of the algorithm computing only the set

Hmin is given in the appendix.

Example 3.1.12. Let X = {py,...,ps} be the projective point set of Pg , where
pr=01:0:0,p=(1:1:1),p3=(1:2:0),ps=(1:0:2), andps=(1:2:2).
Let <, be the term ordering DegRevLex. Then a homogeneous <,-Grobner basis
of Ty is F = {F}, Fy, Fy} with Fy = XoX; + X? — XoXo — X2, Fy = XX, — X, X2,
and F3 = X2X, — X3. Let H be the tuple of homogeneous elements (hy, ha, hs, hy),
where hy = 23 — 23, hy = x3 — 23, hy = wox3 — 3, and hy = w3, and let J/Zx be
the homogeneous ideal of R generated by the elements in H. Let H;, = X} — X3,
Hy = X3 — X3, Hy = Xo X3 — X3, and H; = X3. We follow the Buchberger Algorithm
with Minimalization 3.1.10 to compute a minimal homogeneous system of generators
of J/Ix. We stop the computation after degree dp.x = deg(Hy) = 4 is finished and
append only the set {S;s | 1 <1 < ¢, deg(S;s) <4} U {gs/j |1<j5<mr, deg(gs/j) <4}
to the set S in steps 5) and 8).

1) Let S=0,V = (Hy, Hy, Hy, Hy), G = 0, s = 0, and Hyngn = 0.
) Let d = deg(H,) = 3, Vs = (Hy, Hs), V = (Hy, Hy), Sy = 0.
) Since S3 = (), we continue with step 6).
)
)
)

S W N

Choose H = H; and let V3 = (Hj).

Compute H = NR, 7, ¢(H) = H;.

Let s = 1, G = (Gy) with Gy = Hy, Huim = (h1), and S = {511, S5}, where

Si= Xt — X5, Sio = X1 X3 — X2, Since deg(S13) = 6 > dpay, we do not add

Si3 to S.

6) Choose H = Hy and let V3 = ().

7) Compute H = NR, 7, g(H) = Ho.

8) Let 8 = 2, G = (G1,Gs) with Gy = Hs, Huin = (h1, hs). Since Spo and S,
have degree > dyax, we let S = {S11, Si2, Sa1, Sa3}, where Sy = —X| + X X3 —
X1X3 4+ X2 and Sy = Xo X3 — X2,

6) Since V3 = (), we continues with step 9).

9) Since S # () and V # (), we continue with step 2).

2) We have deg(Hs) = deg(S11) = 4. Let d = 4, Vy = (H3, Hy), V = 0, Sy =
{S11, S12, 521, Sa3}, and S = ().

3) Choose S = Sy and let S, = {§12, §21, §23}.

4) Compute S = NR, 7, ¢(5) = X1 X3 — X3.

oo
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5) Let s = 3, G = (G, Ga, Gs) with G5 = ' = X, X3 — X2, Since Sy, Sas, S,
Ss39, and Ss3 are either zero or homogeneous of degree > d,,., we let S = ().

) Choose S = S and let Sy = {§21, §23}.

) Compute S" = NR, 7, ¢(S) = 0. Since ' = 0, we continue with step 3).
3) Choose S = Sy and let S, = {§23}.

) Compute S = NR, 7, 6(5) = X0 X3 — X3.

) Let s = 4, G = (G1,Go,G5,Gy) with Gy = S = X X3 — X3 and S = 0.
Note that Sy, Sos, S34, Sa1, Si2, and Sz are either zero or homogeneous of

degree > dpax.
) Choose S = Sys and let S, = 0.

) Compute S’ = NR, 7, ¢(S) = 0 and continue with step 3).

) Since S; = (), we continue with step 6).
6) Choose H = Hj and let V4 = (Hy).

) Compute H' = NR, 7, ¢(H) = 0 and continue with step 6).

) Choose H = H, and let V, = (.

) Compute H = NR, 7, ¢(H) = X3.

) Let s = 5, G = (G1,Ga,Gs3,Gy, Gs) with G5 = Hy, Humin = (h1, he, hy), and
S = ). Note that all Sis,...,Ss5, Ss1, S50, and Ss3 have degree > dj.y.
6) Since V; = (), we continue with step 9).

9) Since S =0 and V = 0, return H,,;, and stop.

The returned tuple Hpin = (h1, ho, hy) of this algorithm is a minimal homogeneous

system of generators of the homogeneous ideal J/Zx.

Now we are ready to formulate the following algorithm for the computation of a
minimal homogeneous system of generators of the Noether different for a 0-dimensional
scheme X C P%.

Proposition 3.1.13. (Computation of Noether Differents) Let X C P} be a
0-dimensional scheme, let Supp(X) = {p1,...,ps}, and for j € {1,...,s} let I; C P
be the homogeneous vanishing ideal of X at p;. Let <, be a term ordering on T+ .

Consider the following sequences of instructions.

1) Compute the reduced <,-Grébner basis F = {Fy,..., .} of Iy = (Y;_, 1; by
using the GPBM-Algorithm (see [AKR, Theorem 4.6]).
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2) Form the polynomial ring Q = K[Xo, X1,..., Xy, Y1,...,Y,] which is equipped
with the standard grading (deg(Xo) = --- = deg(X,) = deg(V;) = --- =
deg(Y,) = 1), and form JQ = (F1(Xo,Y1,...,Yy), ..., F.(Xo, Y1, ..., Y0))o-

3) Let <z be a term ordering on T*"** = T(Xo, X1,..., X, Y1,...,Y,). Compute a

homogeneous <z-Grobner basis ¢ = {G1, ..., G} of the homogeneous colon ideal
T=(IxQ+JQ) g (X1 —Yi,..., X, — Yi)o.

4) Compute a homogeneous system of generators {Hy, ..., H;} of J = w(f), where
Y is given by (3.1), by taking H; = ¢(G;) for i = 1,...,t. Then sort the set
{Hy,..., Hi} such that deg(H;) < --- < deg(Hy).

5) Set A = {Hy,...,H;}\ F. For each polynomial H € €, compute its normal
polynomial NF, 7, (H). If NF, 1, (H) # 0, replace H by NF, 7, (H). Otherwise,
delete H from 2.

6) Apply Buchberger’s Algorithm with Minimalization 3.1.10 to compute a tuple

Humin which generates j/IX minimally.

7) Return the tuple Huin and stop.

This is an algorithm which computes a tuple Huyin whose elements are a minimal

homogeneous system of generators of the Noether different 9n(R/K [x]).

Proof. The finiteness of this algorithm is obviously true. The correctness of this algo-

rithm follows by combining Corollary 3.1.5 and Proposition 3.1.10. [

In the following examples we use the term ordering DegRevLex for the computations

For more details about implementation see the appendix.

Example 3.1.14. Let X = {py,...,ps} C P3% be the projective point set given by
pp=1:1:1:1),p=(1:2:3:4),p3=(2:3:4:5), andpy = (3:
4 :5:1). First we consider the case K = Q. An application of Proposition 3.1.6
yields a minimal homogeneous system of generators {hy, he, h3} of O5(R/Q]xo]), where
hy = 2123 — 200w3 + 23, hy = xox} — a3, and hy = 23z; — 2223, This also tells us
that X is not arithmetically Gorenstein over Q.

Next we take K = [F5. In this situation, the homogeneous vanishing ideal of X can
be generated by three homogeneous polynomials. This implies that X is a complete
intersection (and hence it is arithmetically Gorenstein). A calculation tells us that the

Noether different of R/F5[xg] is given by Oy (R/Fs[xg]) = (x5 + xixs + 21922 — 273).
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Example 3.1.15. Let us consider the O-dimensional subscheme X of Pé of degree 16

with support Supp(X) = {p1,...,pr} and its homogeneous vanishing ideal given by

Ix = ﬂ]7~21 I;, where I} = (Xo— X1, Xa), Ir = (X1, Xo+Xs), Is = (Xo— X1,2X0— Xo),

I = (Xo— X1, Xo—Xo), Iy = (X1, X5)?, Iy = 3XZ+X?, X5)2, and I; = (X, 2X3+X3)

(Notice that [; is the homogeneous vanishing ideal of X at p; for j = 1,...,7). By

applying Proposition 3.1.6, a minimal homogeneous generating system of the Noether
6 7 8 3.5

different ¥ (R/Qlxo]) is computed as {zia] — a3, adad + Bwoal + 548, adaf —

3 7 14 .8 4,..5 2,.2..7 1,.9
55T0Ty + 52Ty, L) + FTGT] + 527 }.

3.2 Dedekind Differents for O-Dimensional Schemes

As usual, let K be an arbitrary field, and let X C P be a 0-dimensional scheme such
that Supp(X) N Z+(Xy) = 0. Let us write Supp(X) = {p1,...,ps} for some s > 1. We
know that I',(Ox) = @, H*(X, Ox(1)) = [T52, Oxp, [T, T; '] = Ry, where Ty, ..., T,

i€z
are indeterminates with deg(71) = - - = deg(7}) = 1. Let R = [[;_, Ox,,[T}], and let
7:R—R= [[5-) Oxp,[Tj] = T.(Ox) be the injection given by (2.7). Note that 7 is a
homogeneous injection of degree zero and 7(xo) = (11, ..., Ty).

The localization of R with respect to the set of all homogeneous non-zerodivisors

of R is called the homogeneous quotient ring of R, and given by

Q"(R) = { S | f,g € R, g is a homogeneous non-zerodivisor }
g

We have the following identification for the homogeneous quotient ring of R which is

a generalized version of [Kr4, Proposition 1.4].

Proposition 3.2.1. The map 7 extends to an isomorphism of graded R-modules
U Q"(R) = []Ox,, [T, T,

where for every element f/g € Q"(R) with f € Ry and a non-zerodivisor g € R,

"
Iy _ W) o hoiet oo
\Ij(g)—T(g) (gplTl "”’gpsTs )

In particular, we have Q"(R) = R,,.

Proof. For a non-zerodivisor g € R;, the element g, € Ox,, is a unit element for all
j=1,...,s (see Lemma 2.3.11). Let f/g € Q"(R) with f € Ry and a non-zerodivisor
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9 € Ri. Thena(f) = ([, IT, ..., [, TY) and (g) = (g, 11, - - -, 9. %), s0 we get

fy ) o1 et Jos it . —1
w(Ly = 2 = (g Tegkely € [0y, (15, T,
() i9) (gpl ' 9p. ) 1O 15,757
Thus the map ¥ : Q"(R) — szl Oxp; [Tj,Tj_l] is well defined. It is clearly true

that ¥ is R-linear, homogeneous of degree zero. If \I/(g) = 0, then % = 0 € Oxy,

for all j = 1,...,s. This implies f,, = 0 for all j = 1,...,s, and so f = 0, since
the map 7 is injective. Hence the map W is an injection. Now we show that the
map V¥ is surjective. Let (g1,...,9s) € [[jo; Oxp, [T}, T;']. For i > 0, we have
dimg (R;) = deg(X) = dimg ([T}—; Oxp,[T5, T; '])i- Thus, for i > 0, (Tigy, ..., Tigs)
is of the form W(f) for some f € R. Therefore the element (gi,...,gs) is the image
of f/z}, and the claim follows. O

3.2.1 Dedekind Differents for Locally Gorenstein Schemes

Definition 3.2.2. A 0-dimensional scheme X C P is called locally Gorenstein if

at each point p; € Supp(X) the local ring Oy, is a Gorenstein ring.
Proposition 3.2.3. Let X C P} be a 0-dimensional locally Gorenstein scheme with
Supp(X) = {p1,...,ps}. Set L := Q"(R) and Ly := Klxg,zy']. Then the following
statements hold true.

(i) The algebra L/Lo has a homogeneous trace map o1, of degree zero.

(ii) There is an isomorphism of graded L-modules ¥ : L — Hom; (L, Lg) given by

E(l) = UL/LO-
(iii) A homogeneous element o € Hom; (L, Ly) is a trace map of the algebra L/Lg if

and only if there exists a unit uw € L such that o = u - oL, .

Proof. Since X is locally Gorenstein, the algebra Ox /K is a finite Gorenstein algebra
for every j € {1,...,s}. It then follows from [Kub, E.16] that there is a trace map
7; € Homg (Ox,,, K) such that Homg (Ox,p,, K) = Oxp, - 7; for j = 1,...,s. Clearly,
Lo/K[zo] and Ox, [Tj,Tj_l] /Lo are algebras, and

Oscp, [T Tj ] = Ox, @5 K[T5, T = Oxp, @ Lo
By [Ku5, F.16(a)], the map o; = ; ® idy, : Ox,, [1;, T, '] = K[T;,T; '] = Lo is a

trace map of the algebra Ox, [T}, Tj_l]/ Ly. Moreover, o; is a homogeneous trace map

of degree zero and

HO—mLO(OX,pj [T], Tj_IL LO) = OXJ?J' [ij Tj_l] *0j.
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Based on Proposition 3.2.1, we may identify L = [[;_, Ox,, [T;,T;']. Therefore an
application of [Kub, F.16(b)] yields that the algebra L/ Ly has a homogeneous trace map
oLy = (01,...,0) of degree zero given by or/1,(g) = ijl 0;(g;) for any element
9=1(g1,---,95) € Hj:l Oxp, [T}, Tjil] =L, ie,

S

Homy, (L, Lo) = Hom, (T1 O, (7, 757 Lo) = (11O (T3 T57'1) - 020

Jj=1 J

Hence claim (i) follows.

In order to prove (ii) and (iii), it suffices to prove only claim (ii). To this end,
we may write Ho_mLO(L,LO) = L-op1,, where or,1, is a homogeneous trace map
of degree zero as above. It is enough to show that o7/, € Hom; (L, L) satisfies
Anny(op/r,) = (0). Assume that f - o/, = 0 for some homogeneous element f € L.
We have f-01/1,(9) = 0r/1,(f9) = g-01/1,(f) = 0 for all g € L. This implies a(f) =0
for every a € Hom; (L, Ly). Since the algebra R/K|xo| is free of rank deg(X) and
L= R,y = R®k[a) Lo, it follows that the algebra L /Ly is also free of rank deg(X). Let
m = deg(X), let {by,...,b,} be a Ly-basis of L, and let {b7,...,b",} be the dual basis
of {b1,..., b} We write f =3 g;b; € L (g; € Lo). Then g; = b5(3°7", g;b;) =
bi(f) =0forall j=1,...,m. Hence we obtain f =0, and so Anng(0oz/z,) = (0). O

In what follows, let X C P% be a 0-dimensional locally Gorenstein scheme with
support Supp(X) = {p1,...,ps}, and let L := Q"(R) and Ly := K[z, z;']. It follows
from Proposition 3.2.3 that Homp,(L,Lo) = Hom; (L,Lo) = L - orr,- Moreover,
we observe that L = R Qg Lo, and Lo is a flat K|xg]-module (cf. [Bo2, II, §3,
Proposition 13]). According to [Eil, Proposition 2.10], we have isomorphisms of graded

Lo-modules
HOHlK[xO}(R, K[ZL‘O]) ®K[oco] LO = HOIHLO (LO ®K[960] R, Lo ®K[x0} K[I‘O]) & HOHlLO(L, Lo)

and

Hom 1, (R, Ko]) ®K(zg) Lo = Hompp, 1 (R, Kzo]) ®p L.

Thus there are canonical isomorphisms
Hom, (L, Lo) = Hom g, (R, K[70]) ®K(zg) Lo = Homy, (R, K[zo]) ®r L

and the canonical map Hom (R, K[zo]) < Hom; (L, Lo) is injective.
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Definition 3.2.4. The image of the monomorphism of R-graded modules

® : Hom g, (R, K[zo]) — Homy (L, Lo) = L - 011, R/
pr—p idLO

(3.2)

is a homogeneous fractional R-ideal €g/ky, of L. It is called the Dedekind comple-

mentary module of R/K|[x]. Its inverse, the R-ideal

Up(R/K[zo]) = €1_3/}(960 {fel | f-Crikpy CRY,
is called the Dedekind different of R/K[x¢] (or for X with respect to x).

From the above definition, we have an isomorphism of graded R-modules €g /x5, =
Hom (1 (R, K[zo]). It then follows from Proposition 2.4.6 that the graded R-module

Cr/Kxo) 1s finitely generated and
HF¢, ., (1) = deg(X) — HFx(—i — 1) for all i € Z.

As usual, we let rx denote the regularity index of HFy, i.e., rx = min {z €Z |
HFx(i) = deg(X) }. Some properties of the Dedekind different of the algebra R/K[z]

are given in the following proposition.

Proposition 3.2.5. (i) The Dedekind different Vp(R/K[x]) is a homogeneous ideal
of R and 23 € Vp(R/K[x0]).
(1i) The Hilbert function of Vp(R/K[xo]) satisfies HFy, (r/Kk[z)(i) = 0 for i < 0,
HF g, (r/Kzo)) (1) = deg(X) for i > 2rx, and

0 < HFg,(m/k0) (0) < -+ < HFyp (ryK ) (2rx) = deg(X).

(111) The regularity index of Ip(R/K[xo]) satisfies rx < ri(Vp(R/K|[zo]) < 2rx.

Proof. It is obviously true that (Cr/kz,)0 € (L)o as K-vector spaces. By the above
argument, we have HFe, . (0) = deg(X) — HFx(—1) = deg(X) = HF.(0). This
implies the equality (Cr/k(w,)o = (L)o. Thus we obtain Ry C (L)o = (€r/kizo])o, and
in particular, 1 € €g/x(y,. Hence Ip(R/Kxo]) is a homogeneous ideal of R.

Now let m = deg(X), let {t1, ...t} be a K|[xg]-basis of R (see Section 2.4), and let
{ti,...,t:,} be the dual basis of {t1,...,%,}. Note that deg(t;) =n; for j=1,...,m.
Then t; € Hom (R, K[xo])—n, for every j € {1,...,m}. By letting g; = ®(¢}) for
j=1,...,m, we obtain €r/k(z] = (g1,-- - 9m ) C L. Here g; is also homogeneous of

degree deg(g;) = —n; (since ® is homogeneous of degree zero).
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We claim that, for j € {1,...,m}, there is a homogeneous element g € R,, such
x—n

that g; = z," "g; € €r/Klag)- Indeed, since g; € L = R,,, there exist gf € R and

rx—d;+n; g

d; € Nsuch that g; = :vadjg;/. If deg(g}) = dj—n; < rx, then we set g; = gj €

dj—nj—r

R,,. If deg(gj) = dj —n; > rx, then we write g} = *gj for some g} € R,,, since

x—

R; =z ™R, for all i > rx. Thus we get gi=z5 " g;, as claimed.

Consequently, we have €/ = (0™ g, ..., 2" " gh, >R. Now it is clear
that x5 € Up(R/K[zo)), since n; < ryx and o™ - (z, " " g}) = 2" g} € Ropy—n, for
all j =1,...,m. Hence claim (i) follows.

Next we prove claim (ii). It is clear that HFy, (r/k[we) (1) < HFy,(r/K(wo)) (@ + 1)
for all i € Z and HFy, (r/k(w,) (i) = 0 for i < 0, since ¥p(R/K[zo]) is a homo-
geneous ideal of R by (i). Note that HFx(i) = m = deg(X) for all i > rx and
HFy, (r/Kz0)) (1) < HFx (@) for all ¢ € Z. So the Hilbert function of ¥p(R/K[x]) satisfies
HF g, (r/K(zo)) (1) < m for all i € Z. We write €r/pizg) = (20 ™ g1, .., 2™ " g >R
with ¢1,...,9,, € R, as above, and let {fi,..., f,,} be a K-basis of R,,. Then
fig; € Ry There is fij € R,, such that fig; = :ngﬁj for all 4,7 € {1,...,m}.
Thus (z5*f;) - (xo 7 g}) = x¢ * fig) = xg" 7 fi € Ry, for all 4,j. It follows that
{zi* f1, - 2" f} € Up(R/K[x0))2ry € Raory. On the other hand, we see that

m = HFx(2rx) = dimg (25" f1, .. ., 20" fn ) i

S dll’nK ﬂD(R/K[xo])QTX = HF'&D(R/K[QJO})(QTX) S HFx<2T§g> =m.

Therefore we obtain the equalities HF g, (r/k(z)) (1) = m = deg(X) for all ¢ > 2rx.

Finally, claim (iii) is an immediate consequence of claims (i) and (ii). O

Remark 3.2.6. Given a O-dimensional locally Gorenstein scheme X C P% with sup-
port Supp(X) = {p1,...,ps}, we have dimg, ) &(Oxp,) = 1 for j = 1,...,s, where
K(p;) = Oxp, /mxp, is the residue field of X at p;. It follows from Proposition 2.3.17
that there is a unique maximal p;-subscheme Y; CX corresponding to a socle element
of Ox,p,. In this case, the local ring Oy, ,,, has a presentation as Oy, ,, = Ox p, /6 (Ox,p, ).
Let 5¢; = dimy K(p;), and let { f};, ..., f}.. } be a set of minimal separators of Y; in X
(see Definition 2.3.19). Then we have
degx<pj> = max{ deg(f;kj) ‘ ki=1,...,% } < Tx-

Lemma 3.2.7. Let X C P} be a 0-dimensional locally Gorenstein scheme, and let
Supp(X) = {p1,...,ps}. Forje{1,...,s}, let Y; C X be the mazimal p;-subscheme,
and let { fj1,..., fix, } be a set of separators of Y; in X. If there exists a point p;
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in Supp(X) with degy(p;) = rx and an element g in (Cg)x(zg))—ry With fix,g # 0 for
some k; € {1,...,5}, then ri(Vp(R/K|[zo]) = 2rx.

Proof. Since HF g, (r/K[zo))(2rx) = m = deg(X) and ri(¥p(R/K[xo]) < 2rx by Proposi-
tion 3.2.5, it suffices to prove HFy, (r/kw))(27x —1) < m. This is equivalent to proving
Up(R/K[xo))are—1 < Rope—1. Suppose for contradiction that 9p(R/ K [x¢])are—1=Roryg—1-
By the assumption that degy(p;) = rx, there is an index k; € {1,...,;} such that

xo 1 fjr;» say fj1. Of course, we have xgxflfjkj € Up(R/K[xg|)ore—1 for kj =1,..., ;.
We may write g = 25°%g' € (Cr/Klxo))—rx With ¢’ € Ry, \ {0}. Since fix,g # 0 for
some k; € {1,...,5}, it follows that (¢9'),, € Oxp, \ mxp, is a unit element (see

Lemma 2.3.25). This also implies that fg' # 0 for all f € Zy ,x \ {0}. Let us con-
sider the injection 7 : R — R and write W fir;) = (0,...,0,e5,,575%,0,...,0) € R
for k; = 1,...,5;, where 5; € &(Ox,,) \ {0} is a socle element corresponding to Y;
and {ej1,..., €y} is a set of elements in Ox,, whose residue classes form a K-basis
of K(p;). Then the residue classes of elements {(g)p,€j1,- .., (9")p,€jx, } also form a
K-basis of K(p;). There are cji,...,cj,, € K such that e;; = ¢;i(g')p,ej1 + -+ +
Cise (9')p;€js; (mod My ). This implies ejis; = ¢ji(g)p,€185 + -+ + Ciog; (9)p, €555
We put f = cifjn + - 4 ¢ fi; € Ty, x \ {0} Observe that f - g = x"fj,
since 7 is injective. Thus we have zi 'f - g = 2, 'f - ¢ = 25 fin € Ry (as
25 f € Op(R/K[xo))ar,1)- It follows that f;; € zoR,, 1, in contradiction to the fact
that o 1 fj1. O

Proposition 3.2.8. Let X C P} be a 0-dimensional scheme. The following conditions

are equivalent.

(i) X is arithmetically Gorenstein.

(ii) X is locally Gorenstein and Cr)k(z, = R(rx) (i-e., there exists g € (Cr)klwo])—ry
such that Cp iz, = (9)r and Anng(g) = (0)).

(111) X is locally Gorenstein and there exists an element h € R, \ {0} such that
Ip(R/K[zo]) = (h)p-

(v) X is locally Gorenstein and there exists an element h € Jp(R/K|xo)),
Anng(h) = (0).

with

X

If these conditions are satisfied, then the Hilbert function of the Dedekind different
satisfies HEy, (r/k(zo)) (1) = HFx (i — rx) for all i € Z, and ri(Vp(R/K[z])) = 2rx.
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Proof. We remark that if X is arithmetically Gorenstein then it is also locally Goren-
stein. The equivalence of conditions (i) and (ii) is deduced from Proposition 2.4.18.

(i)=(iii): Assume that Cr/k, = (9)r = R(rx) and Anng(g) = (0). Then g
is a unit element of L. Obviously, h = g~' € Ip(R/K|[z¢])r, C R, (as h € L and
h - Cr/kw € R). We shall prove that ¥p(R/K|xo]) = (h)p. Let f € Op(R/K[xo));
for some i > 0. If i < rx, then fg € R;,_,, = (0), and hence f =0 (as Anng(g) = (0)).
Thus Up(R/K|x]); = (0) for all i < rx. In the case i > rx, there is an element
fi € Ri_,, such that fg = f;. This implies (f — fih)g = 0. Since Anng(g) = (0) and
f— fih € R;, we have f = fih, and consequently Up(R/K|xo]) = (h)p.

(iii)=-(ii): Assume that ¥p(R/K[z¢]) = (h)p with h € R,, \ {0}. Proposition 3.2.5
yields that there is an element f € R,, such that fh = 22" € ¥p(R/K[zo]), and so
h must be a non-zerodivisor of R or Anng(h) = (0). Because dimg ((€r/(w])—ry) =
deg(X) — HFx(rx — 1) = Ax > 0, there exists a homogeneous element g = z,>*¢’ €
(CRr/K[xg))—ry \ {0} for some ¢ € R,,. Then gh = 7, *gh =c€ Ry =K. If c =0
then ¢’h = 0, and hence ¢’ = 0, since h and xy are non-zerodivisors of R. This implies
g =1x3"%g" = 0, a contradiction. Hence it follows that ¢ # 0, and Cr/klzo) = (¢ '9)g
with Anng(c™'g) = (0).

(iii)=-(iv): This has been shown in the proof of “(iii) implies (ii)”.

(iv)=-(iii): Suppose h € Up(R/K|x¢])r, with Anng(h) = (0). Let g be a non-zero
homogeneous element of degree —rx of €r/kz)- (Such an element always exists, since
HF ¢, o (—x) = Ax > 1.) We can write g = 2% g' with ¢’ € R,, as before.
Since zp and h are not zerodivisors of 2, we have gh = %'l % 0. Tt follows that
gh =c € K\ {0} and Anng(g) = (0). As the proof of “(ii) implies (iii)”, we obtain
9o (R/Kzo]) = (h) .

The additional claim follows from the fact that Jp(R/K[xg]) = R(—7x). O

Now let us consider the injection 7: R — R = [15= Ox,,[T}] given by (2.7). For
every p; € Supp(X) = {p1,...,ps}, let v; := dimg(Oxp,) and let {e;i, ..., e;,} be
a K-basis of Ox, .. We set fj, = 71((0,...,0, ek, 15%,0,...,0)) for kj = 1,...,v;.
Note that fjk, - fyw, = 0 for j # j" and R,, = (fri, oo fros ooy fsro oo fovs ) e
Since X is locally Gorenstein, as in the proof of Proposition 3.2.3 we see that the
algebra Oy, /K has a trace map 7; € Homg(Oxp,, K). An argument similar to
that given in Proposition 2.4.9 shows that there is a K-basis {e};, ... ,e;-l,j} of Oxp,
such that Ej(ejkje;k}) = e;fkg_(ejkj) = O, for all kj, k7 = 1,...,v; and Tro,, /K =
(>0, ejkje;.kj) -0j. We say that the K-basis {e};,.... €], } is a dual basis of Ox,,

to the K-basis {¢;i,...,¢;,,} with respect to 7;.
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When X is a projective point set in P%, [Kr4, Proposition 1.6] provides an explicit
description of the Dedekind complementary module in terms of the set of separators.
This can be generalized for a 0-dimensional locally Gorenstein scheme X C P by using

the above tools as follows.

Proposition 3.2.9. Let X C P% be a 0-dimensional locally Gorenstein scheme, let
O be the monomorphism of R-graded modules defined by (3.2), let i > 0, and let
Y E HomK[xo](R, K(wo])i—ry. We write o(fjr,) = cjkj:vf) with c;; € K. Then we have

(I)(SD) = (kz Clklellklef_TX7 cee 7kz CSkselsksTsi_TX> S (Q:R/K[Io])i—rx'
1=1 s=1
In particular, ®(p) can be identified with the element xéfwx(z;:l 22:1 cjkjfvjkj) of
R, = L, where fvjk]. =721((0,... ,o,e;ij;X,o, .,0) € R, forallj=1,...,s and
forallk; =1,...,v;.

Proof. We set €, == (0,...,0,e5,,0,...,0) € [[;_; Oxyp, for j =1,...,s and k; =
1,...,vj. Due to Proposition 3.2.1, the set {€11,..., €1y, .., €s1,. ., €s,} IS a Lo-basis
of L = Q"(R), where Ly = K[z¢,z"]. So, the mapping ¢®idy, : L = R®K1zo) Lo — Lo

satisfies
(¢ @idr,) (g €n;) = (p @ idLe ) (0, ., 0,50, 17,0, ..., 0)) = o fir;) = cn; 7

forj=1,...,8k; =1,...,v;. Thus (p ®idg,)(ej,) = cjijf)_rx forall j =1,...,s
and k; = 1,...,v;. On the other hand, the algebra L/Lj has a homogeneous trace map

or/L, of degree zero by Proposition 3.2.3. We have

V1 Vs Vj
( Y Cli €y D cskselsks) 0L/ (€jk;) = UL/LO((O, 500> cjk;,e;k;_ejkj, 0,..., O))
k1=1 ks= k=
Vj Vj J
=0 (kz ik} k!, ejkj) > Cjk’ O j (e]k’ ejk])
i=1 i

This implies that (p ® idg,) = xéﬂx(zz;l Cly €1, - - .,Zzzzl cskse;ks) - 0p/L, In
Hom, (L, Lo). Hence

121 . Vs .
(I)((p) = (kzlclkl e;.k‘le rx? e 7kzlcsks e;ksTsZﬂnX) S (Q:R/K[ro])ifrx'
1= s=
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Additionally, we observe that

V1 . Vs .
xgrxé(go) = xgrx ’ ( Z Clklelllell_rX’ Tt Z CSkse;ksTslirX)

k1=1 k=1
(G rooprati S 1ot (gt S 7
- ( Z Clk1 €15, 41 7 Z CsksCspos L s ) - Z('770(23 Z Cjkjfjkj))'
k1=1 k=1 j=1k;=1
Thus the conclusion follows. O

Next we determine a set of generators of the K-vector space (Cr/kiz])—ry for
a O-dimensional locally Gorenstein scheme X. This is a similar property as [Kr4,

Corollary 1.10]. To shorten notation, we let m = deg(X), fi = fit,-- s fuu = fin,
forst = Fotve s Fown = Fos oo Sty = fotrooo fon = fo Sinvilarly, we let
fi = firs--o, fmw = fs,. The image of f; in R := R/(x¢) is denoted by Lf; and is
called the leading form of f; for j = 1,...,m. Since {Lf1,...,Lf,} generates the
K-vector space R,,, we can renumber {fi,..., f,} in such a way that {Lfi,..., Lfa,}
is a K-basis of R,,,

of HFx. Then we write

X )

where Ax = HFx(rx) — HFx(rx — 1) is the last non-zero difference

Lfo-f—j = ﬂlefl + 4 BijLfo

forj=1,...,m—Ax, Bx € K.

Lemma 3.2.10. (i) Let hy, ..., hyn, € Ry 1 be elements which satisfy

rohj = fay+j — Bjnfi — - — Bing fay-

Then {hy, ..., him—ny} forms a K-basis of Ry._1.
(11) The set {qi,...,gay} forms a K-basis of (Cr/K(zo])—rye, Where

g; = $0_2T‘X(fj + 51ijX+1 4+ ﬁmfojfm)
for every j € {1,..., Ax}.

Proof. (i) Clearly, the set {fi,..., fm} forms a K-basis of R,,. Thus claim (i) follows
from the fact that the elements fa,1; — B1f1 — - — Bjafa, wWith j=1,...,m — Ax
are linearly independent elements of zoR,,_;.

(ii) Notice that dimp Hom e, (R, K[zo])—r, = dimg(€r/kfe))-—rx = Ax > 1.
The K-vector space Homg (R, K) has a K-basis {(Lf1)*,...,(Lfa,)*}. By [Kr4,

Lemma 1.5], there is a 1-1 correspondence between elements ¢ of Hom ., (R, K[xo])r,
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and K-linear maps @ : R,, — K with ®(zoR,,_1) = 0. Thus we can lift the K-basis
{(Lf1)*, ..., (Lfay)*} to obtain a K-basis {¢1, ..., pa,} of HomK (R, K[xo])_, with

@i(fr) = dj for k =1,..., Ax and ¢;(fay+x) = @i (B fr + -+ + 5kAXfo) = /Bkj for
k=1,...,m — Ax. Hence the claim follows by Proposition 3.2.9. O
If X = {p1,...,ps} € P% is a projective point set, then v, = -+ = vy = 1,

f; is the normal separator of X \ {p;} in X, and f; = f] for all j = 1,...,s. The
following proposition gives us a description of the Hilbert function of ¥p(R/K|x¢])

and its regularity index for projective point sets.

Proposition 3.2.11. Let X = {py,...,ps} C P% be a projective point set. Then we
have HFﬁp(R/K[:po])( ) =0 fori <0, HFﬂD(R/K[SEoD< ) = s fori > 2rx and

0 < HFy,(r/K[eo))(0) < -+ < HFy, (r/kzo)) (2rx — 1) < HF g, (r/K[w)) (27%) = 5.
In particular, the regularity index of Op(R/K[xo]) is 2rx.

Proof. 1t is clearly true that HFy, (g k(e (2) = 0 for i < 0 and HFy, (r/Kzo)) (i) <
HFy, (r/Kzo)) (¢ + 1) for all i € Z, since ¥p(R/K[xo]) is a homogeneous ideal of R. By
Proposition 3.2.5, we have HFy, (r/k[zo)(2) = s for i > 2rx. Now we shall prove the
last inequality HF g, (r/k{w))(2rx — 1) < HFy,(r/kwo])(2rx) = s. This is equivalent to
proving 1i(Jdp(R/K[xo))) = 2rx. Since Ax > 1, we may assume that Lf; # 0 in R,,
This means that degy(p1) = . By Lemma 3.2.10(ii), the elements §; = 25" (f; +
Brjfags1 + -+ Bs—nayjfs) such that 1 < j < Ay form a K-basis of (€r/s(ze))—re- We
have
frogv=fr-ag® (i + Bufas+ -+ Bearfs) = 25" fL # 0.

Therefore Lemma 3.2.7 implies ri(Jp(R/K[xg])) = 2rx, as desired. O

Obviously, the Dedekind different ¥ p(R/K[zo]) is a homogeneous ideal of R which
depends on the choice of the linear non-zerodivisor =y of R. In the case that X C P’

is a projective point set, we have the following corollary.

Corollary 3.2.12. Let X be a projective point set in P}, and let £ € Ry be a non-

zerodivisor for R. Then we have
xOCR/K[ZO] = €€R/K[é] and gﬂp(R/K[ﬂ?o]) = xoﬁD(R/K[ﬂ)

Proof. The first equality is due to Proposition 1.8 in [Kr4]. It remains to prove the
second one. Let h € Ip(R/K|[xg]). By the first equality, we have

h
h - Crike) = 0($0¢R/K [wo]) = z—QR/K 1 € R.
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This implies that 2 € 9p(R/K[(]) C R, and so hl € zgp(R/K[(]). Similarly,
we get grg € (Wp(R/K|xo)) for all g € Ip(R/K¢]). Hence we obtain the equality
0p(R/K|xo]) = xgV¥p(R/K]|l)]), as we wanted to show. O

3.2.2 Dedekind Differents for O-Dimensional Smooth Schemes

Definition 3.2.13. A Noetherian local ring S containing the field K is called geomet-
rically regular over K if the ring L& S is regular for every finite field extension L/ K.

Let X C P% be a 0-dimensional scheme with support Supp(X) = {py,...,ps}. We
say that a point p; € Supp(X) is a smooth point of X, or that X is smooth at p;,
if the local ring Ox , is geometrically regular over K. We say that X is smooth if it

is smooth at all of its points.

Remark 3.2.14. Notice that if p; is a smooth point of X then it is a reduced point
of X. The converse is true if K is a perfect field (cf. [Ku5, Propositions 5.18 and 7.12]).
Moreover, if p; is a reduced point of X and K(p;)/K is a separable field extension,
then p; is a smooth point of X (cf. [Kub, Corollary 7.16]).

For every p; € Supp(X), the local ring Ox , is a finite dimensional K-vector space.
The module of Kéhler differentials of the algebra Ox /K will be denoted by Qéx,pj /K
(see [Kub, Section 1]). It is clear that Qé?x,pj /i 18 a finitely generated O ,,-module.

The smoothness criterion for the 0-dimensional scheme X C P’ is provided by our

next theorem, which follows from [Ku6, Theorem 5.16].

Theorem 3.2.15. Let K be the algebraic closure of K. The following assertions are

equivalent.

(i) X is smooth at p;.
(it) K ®x Ox,, is regular.
(it1) Qb e = 0.
(iv) K' @k Oxp, is reqular for any field extension K'/K.
Proposition 3.2.16. Let X C P% be a 0-dimensional smooth scheme, and let

Supp(X) = {p1,...,ps}. Let Q(R) be the full ring of quotients of R, and set L := Q"(R)
and Ly := K[z, z5"].

(i) The canonical trace map Try,r, is a homogeneous trace map of degree zero of the

algebra L/ Ly, especially, L/Lq is étale.
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(ii) The canonical trace map Tror)/K(x,) @5 a trace map of the algebra Q(R)/K (xy),
especially, Q(R)/K (zo) is €étale.

Proof. Since the scheme X is smooth, it follows from Theorem 3.2.15 that Q}pr_ k=0
and Ox ,, = K (p;) for every p; € Supp(X). [Kub, Proposition 6.8] yields that Ox , /K
is a finite separable field extension. So, the canonical trace map Troxypj /K is a trace

map of Ox,, /K, ie.,
HomK(OX,pjv K)= OX,pj 'Tr@x,p]-/K'

It follows that the trace map oy, in Proposition 3.2.3(i) is exactly the canonical trace
map Trz,r, if we choose 7; = Tfoxypj sk for j =1,...,sin the proceed constructing the
trace map oy,/r,. The additional claim of (i) follows by [Ku5, Proposition F.8]. Thus
claim (i) follows.

For (ii), it suffices to show that Tro(r) /K (z0) is a trace map of Q(R)/K(xp). Since X
is reduced, it follows from [Ku4, III, Proposition 4.23] and [Bo2, V, §1, Proposition 9
that

QR) = TTQ(R/p)) = [0, (T)).

As above, Ox,, /K is a finite separable field extension for every p; € Supp(X). Then
Oxp;, and K(zg) are linearly disjoint over K (cf. [Mor, V, Section 20]). This implies
Ox p; @K K(19) = Oxp K(20) = Oxp,(20). Thus Q(R) = K(x) @k [[_) Oxyp,» in
particular, Q(R) is a free K(zp)-module of rank deg(X). Let v; = dimg Ox,,, let

{ej1, ..., e} be a K-basis of Ox,, for j =1,...,s, and set

ejkj = (O,...,O,ejkj,O,...,O) € HOX,p]-
j=1

J

for j=1,...,sand for k; =1,...,v;. Then the set {€11,...,€1,,...,€51,...,€5,} IS a
K-basis of [[;_; Ox,,. Thus this set is also a K (xo)-basis of Q(R). By [Ku5, .5 and
F.6], the canonical trace map of Q(R)/K () is defined by

Tro(r)/K (o) QUR) = K(w0), Trgr) k(o) (€;) = Troy, /x(€n;)

for all j € {1,...,s} and k; € {1,...,v;}. Consider the homomorphism of Q(R)-
modules © : Q(R) — Hompg ) (Q(R), K(x¢)) given by O(1) = Tror)/k (). For
every j € {1,...,s} we let {€j;,... €}, } be the dual basis of Ox,, to the K-basis

. vj / o
{ej1, .-, €5, } with respect to Tro,,. /- Then 2 ky=1 €jk; €5, = 1 and

TrOX’pj/K(ejkje;kg) = e;kg(ejkj) = (5kjk;_ (k;, k; =1,...,v).
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Let ¢ : Q(R) — K(z0) be a K(x¢)-linear mapping. For j € {1,...,s} and for k; €
{1,..., v}, we have p(ejr;) = gji; (w0)/hjr,; (7o) for some g, (o), hjw,; (7o) € K[zo] and
hjk,(z0) # 0. Observe that

91k (Tl) N s Ysks (TS)

¢! o Sl ) LTy e
(lﬂz::l t hag, (T7) ko1 ks hskS(TS)) QR)/K( 0)( ka)

Y. Gjk, (o) . 9ji;, (o)

Vi gik: \ Lo
. J J( ) - Tro, ,/K(el'kvejk;/-) — kikl = .
7 P JRj IR kalhjkj(xo) I%j hj%(ﬂ])

w21 bk, (o)

It follows that

L glk’l(Tl) <N gsks(TS)

/
gp: (& ey 685 .TI‘ R)/K(z
(/ﬁZ:l 1k h1k1<T1) kSZ:1 k hSk}S(TS)) Q(R)/K(wo)
and that © is surjective. Next we show that © is injective. For j = 1,...,s and

kj =1,...,v;, we let g, hjr, € K[T}] be polynomials such that hj, # 0 and

@D = ( Zl: elllq%? S ZS e/sks }g;ks) ’ TrQ(R)/K(:ro) = 0.
k=1 1k, ko=1 sks
Thus we have 0 = ¥(ejx,) = gji,; (20)/hjr, (z0) for j =1,...,sand k; = 1,...,v;. This
implies (>0, e’lklii—';ll, D G, Zs’;) = 0, and hence O is injective. Therefore
the homomorphism © is an isomorphism of Q(R)-modules, in particular, Trg g (z)
is a trace map of Q(R)/K (zo). O

It is clear that every 0-dimensional smooth scheme X C P% is locally Gorenstein.
So, the Dedekind complement module €g) k(5. and Dedekind different ¥p(R/K|x]) are
well-defined for a 0-dimensional smooth scheme X. Moreover, the Dedekind different

and the Noether different of R/K|x¢] agree, as the following theorem shows.
Theorem 3.2.17. Let X C P} be a 0-dimensional smooth scheme. Then we have
Up(R/K[zo]) = In(R/K|xo])-

Proof. Notice that the algebra R/K|[xzg] is free of rank deg(X), so it is flat. Thus
the equality Un(R/Klxo)) = Ip(R/K[zo]) follows from [Kub, G.11] with a similar
argument if the algebra L/ Ly is étale, where L = Q"(R) and Ly = K[z¢,z,"]. But this

is proved in Proposition 3.2.16, and hence the conclusion follows. O]
Definition 3.2.18. Let X C P be a 0-dimensional smooth scheme. We let
Ox(R/K[zo]) := In(R/Klxo]) = Ip(R/K[xo])

and call Yx(R/K|[zo]) the Noether-Dedekind different (in short, ND-different)
of R/K|[xy| (or for X with respect to ).
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Remark 3.2.19. Let X C P be a O-dimensional smooth scheme.

(i) The ND-different satisfies HPy, g/ (z))(2) = deg(X) and ri(Ix(R/K[xo])) < 2rx.

(ii) In order to compute Vx(R/K[x¢]), one can use Proposition 3.1.6. Another effi-
cient method for computing ¥x(R/K[xo]) will be provided in the next subsection.

Corollary 3.2.20. Let X C P} be a 0-dimensional smooth scheme. Then the following

assertions are equivalent.

(i) The scheme X is arithmetically Gorenstein.
(ii) There exists an element h € R,, \ {0} such that 9x(R/K[x]) = (h) .
(11i) There exists an element h € Ux(R/K|xo])r, with Anng(h) = (0).

X

If these assertions are satisfied, then HFy (r/k(z)) (1) = HFx(i — rx) for all i € Z and
rl(ﬁx(R/K[l’o])) = 2’/‘}{.

Proof. This is an immediate consequence of Proposition 3.2.8. O]

Example 3.2.21. Let X = {p;,...,ps} C P be the projective point set with p; =
(1:0:0:0),pp=(1:1:1:1),p3=(1:—-1:1:-1),ps=(1:2:4:8), and
ps = (8 :4:2:1). Notice that X consists of five points on the twisted cubic curve
C={(:v*:uw?:v* | (u:v)e€Py}inP;. Wehave HFy : 1455---
and rx = 2. The Noether-Dedekind different ¥x(R/F7[zo]) of R/F7[xz] is a principal
ideal generated by h; = x% — 2x0x3 — 3x103 — 2x§. Here we computed h; by using
Proposition 3.1.6. It is not hard to check that the value of hy at each point of X is not
zero. Lemma 2.3.11 yields that hy is a non-zerodivisor of R. So, X is arithmetically
Gorenstein and the Hilbert function of ¥x(R/F7[xo]) is HF g, (r/myfmey : 0014 55---.
However, X is not a complete intersection since the number of elements in a minimal

homogeneous system of generators of the homogeneous vanishing ideal of X is 5.

3.2.3 Computing the Dedekind Differents

In this subsection we consider the problem of computing a minimal homogeneous
system of generators of Jp(R/K][xg]) for a O-dimensional locally Gorenstein scheme
X C P%. The good approach of this problem is to use the K-basis {fi1,..., fs.} of
the K-vector space R,, which was explained in Subsection 3.2.1 for the computation.
This approach is based on the GBM-Algorithm (see [AKR, Theorem 3.1]) and the
description of the Dedekind complementary module given by Proposition 3.2.9.
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As above, we let X C P} be a 0-dimensional locally Gorenstein scheme with
Supp(X) = {p1,...,ps}. For j € {1,...,s}, let I; be the homogeneous vanishing
ideal of X at p;, and let q; = [{" € A = K[X;,...,X,]. Then Zx = [ N--- NI
and the affine ideal of X is given by T¢ = Zg™" = ()7_, q; C A. Let v; = dimg (Ox,,),
let O; = {ej1,...,€j,} be a K-basis of Ox,, = A/q;, and let m; : A — A/q; be the
canonical map for j = 1,...,s. Combining the canonical isomorphism A/q; — K"
with 7; we obtain a K-linear, surjective map NFVp, : A — K" which sends ev-
ery polynomial F' € A to the uniquely defined tuple (ai,...,a,,) € K" such that
mi(F) = >, agejr. The map NFVy, is called a normal form vector map with
respect to ;. Obviously, we have q; = Ker(NFVo,).

Now we make a small alteration of the GBM-Algorithm to compute a tuple S =
(S1,...,8m) of polynomials of A such that

NFV@l(Si) @@NFVOQ(&) = (0,...,0, 1_,0,...,0) e K™,

i

where m = Z;Zl v; is the degree of the scheme X, as the following proposition shows.

Proposition 3.2.22. [n the situation as above, and let <, be a degree-compatible term

ordering on T". Consider the following sequence of instructions.

1) Let G=0,0=0,8=0, L ={1}, and let M = (mji,) be a matriz over K with
m =) "_,vj columns and initially zero rows.

2) If L is empty, then row reduce M to a diagonal matriz and mimic these row
operations on the elements of S (considered as a column vector). Next replace S
by M™'S then return the triple (G,0,8S) and stop. Otherwise choose the term

T = min, (L) and remove it from L.
3) Compute the vector v.=NFVp, (T) & --- & NFVo, (T) € K™.
4) Reduce v against the rows of M to obtain

vi=v—> aj(mj,...,mjn) witha; € K.
j
5) If v* = 0 then append the polynomial T — Zj a;sj to the tuple G, where s; is the
j-th element of the tuple S. Remove from L all multiples of T'. Then continue
with step 2).
6) Otherwise v* # 0 so append v* as a new row to M, and T — Zj a;s; as a new
element to S. Append the corresponding term T as a new element to O. Add to
L those elements of {X1T,..., X, T} which are neither multiples of an element
of L nor multiples of {LT,(g) | g € G}. Continue with step 2).
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This is an algorithm which returns a triple (G, O, S) such that the following assertions

are satisfied.

(i) G is the reduced <,-Grébner basis of T§ = q; N --- N (.
(i) O is a tuple whose components are precisely the elements of T" \ LT, (Z¢).
(11i) S = (S1,...,5m) 1S a tuple of polynomials of A such that s; has degree deg(s;) < rx

and satisfies
NFVo,(s;) @ -+ ® NFVo,(s;) = (0,...,0, [}],0, ...,0) e K™
Proof. By [AKR, Theorem 3.1], we need only prove the correctness of (iii). We observe
that at each point in the procedure the matrix M always has linearly independent
rows, and the rows of M are the evaluation vectors NEVp, (s;) @ --- @& NFV,(s;) of
the polynomials in S. At the end of the procedure, i.e., when L is empty, the tuple O
contains m terms and the terms of O are merely the leading terms of the corresponding
elements in S. Since <, is a degree compatible term ordering on T", the degrees of
elements of S are smaller than or equal to rx. At this point we also see that M is a
invertible square matrix of size m x m. Moreover, step 6) shows that M is an upper
triangular matrix after a permutation of rows. When we diagonalize M and mimic

these row operations on the elements of S, we have a tuple S = (s}, ..., s),) such that

T m

NFVo, (s}) @ -+ @& NFVo,(s}) = (0,...,0,my,0,...,0) € K™
[i]

Therefore, by replacing S by M~1S, we obtain a tuple with the desired property. [J
Recall that the K-vector space R,, has a K-basis {fi1,..., fs,} with
fjk’j :7_1((07 s 707 ejkj@“? 07 s 70)) € Rrx

for k; = 1,...,v;, where 7 : R — R is the injection given by (2.7). We can apply

Proposition 3.2.22 to compute this basis as follows.

Remark 3.2.23. Suppose that & = (s1,...,s,) is already computed by Proposi-

rx—deg(G k..
tion 3.2.22. Let Gy, = (555, pyn)™™ € P and Fyy = X, 0 9 Gy, for j =
1,...,s,kj=1,...,v5. Since ﬂi(squ vetk;) = 0 for 7 # j and Wj(squ_ Vetk;) = €jk; s
we have o(Fy, + Ix) = (0,...,0,e34,7;%,0,...,0) € R for j = 1,...,s and for

kj = 1,...,v;. Thus the set {Fjx, +Zx | j = 1,...,87k; = 1,...,v;} is the K-
basis of R,, that we wanted to compute. Notice that when X is reduced, the set
{Fj1 +Ix, ..., Fj,, + Ix} is a set of separators of X\ {p;} in X for j =1,...,s.
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According to the hypothesis, for j € {1,...,s} the algebra Ox, /K has a trace
map 7; € Homg (Ox,p,, K) with Hom (Ox,, K) = Oxp, - 0;. Let O = {€};,....€}, }

be the dual K-basis of Oy, to the K-basis O; with respect to o, and let fji, ..., ]?;-Vj

be homogeneous elements of R,, such that
iy =TH(0,...,0, ¢}, TI%,0,...,0))

for k; =1,...,v;. Weset A; = (ail)lg’k’lg,,j = (Tj(ejneji) ) 1< ki<r; € Mat, ., (K) and

Er=(0 010 0)" € Mat,i(K) for k = 1,...,v;. In the case the matrix
k

Aj; is computable, the K-basis O’ can be computed in terms of the K-basis O; by our

next lemma.

Lemma 3.2.24. The following assertions hold.

(i) The matriz A; = (a‘]il)lﬁ,k,lng is invertible, i.e., det(A;) # 0.

(i) Let X = (931, . L,j)tr, where x1,...,m,, are indeterminates. Fork =1,... v;,
the system of linear equations A;-X = &, has exactly one solution (o1, . . ., Qky,)

A
and € = e + o+ Q€

Proof. Let @ : Ox . X Oxp, — K be the bilinear form on the vector space Ox,; over K
defined by ®(a,b) = 7;(ab) for all a,b € Oxj,. Then A; is the associated matrix of @,
and [Bol, Chapter 5, § 8, Lemma 1] implies that det(.A;) # 0 if and only if ® is non-
degenerate, i.e., for every a # 0 in Ox,, there exists b in Ox,, such that ®(a,b) # 0.
Since 7; is a trace map of the algebra Oy, /K, we have Amno, (;) = (0). Thus, for
every a # 0 in Ox,,, we have a - 7; # 0. In other words, there is an element b € Ox,
such that (a-7;)(b) = 7,(ab) # 0. This shows that ® is non-degenerate, and hence
claim (i) follows.

Now we prove (ii). We write €%, = Brieji + -+ + Br,ju, With Ber, ..., B, € K.
For every | € {1,...,v,}, we have'5kl = ej(ej) = (€ - 05)(en) = Ti(eucly,) =
2221 B, (ejiejr,) = 222:1 6kkja{kj. It follows that the tuple (Bi1,...,Bkw,) is a
solution of the system of linear equations A; - X = £;;,. But by (i) the system of linear
equations A; - X = &, has exactly one solution (a1, ..., az,). Therefore we obtain
(Brts - -+ Brw;) = (Qgas - - - gy, ), as desired. H

In order to apply Proposition 3.2.9 for computing the Dedekind complementary
module, it is necessary to compute the set {fi1, ..., fipy, -+, fs1, -+, fsv. }- For this, we

present the following algorithm which is based on Proposition 3.2.22 and Lemma 3.2.24.
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Proposition 3.2.25. Let q; C A = K[X;,...,X,] be the affine ideal of X at p;, let
O; ={ej1,...,eu,} be a K-basis of Ox,p, = A/q;. Suppose that the algebra Ox,p, /K
has a computable trace map & for j =1,...,s. Let m = deg(X), and let <, be a degree

compatible term ordering on T™. Consider the following sequence of instructions.

1) Forj=1,...,s and for k =1,...,v;, form matrices A; = (7;(ejxeji))1<ki<v; €
Matl/le/j(K) and Sjk - (O 0 [1] 0 O)tr € MathXI(K)'
k

2) Compute the dual K-basis O} = {€}y,... €}, } of Oxyp, to O; with respect to o
forje{l,...,s}. Here €l = Qr1€j1 + - + Qpy €5, where (Qk1, .o, Q) S the

solution of the system of linear equations A;X = E;, (see Lemma 3.2.24).
3) Compute a tuple §' = (s),...,s.,) such that s, has degree deg(s}) < rx and

’r m

satisfies

NFVo,(s}) @ --- & NFVo (s)) = (0,...,0,1,0,...,0) € K™

]

by using Proposition 3.2.22.
rx—deg(G

4) Compute G, = (S’Zk<jyk+kj)h°m € P and f’jkj = X, & G]k for j =
L,...,8; kj = 1,...,v5. Return the tuple S = ((Fj, | kj = 1,...,v5) | j =
1,...,s) and stop.

This is an algm“zthm which computes a tuple S = (51, e ,gs) such that the set of

all images ofS in R is {fﬂ, . fWJ} with f]k =71((0,.. - 0,€,17%,0,...,0)) for
k’j = ]_,...,I/j.
Proof. By assumption, we compute bj,, = 7;(ejr,;) and present ejre; = c;‘?{ejl +oe 4
ckl v for some c € K and for k,1,k; = 1,...,v;. Then we have

v v

R Kl — ki
a, =Ti(emen) = > i Tilen,) = > it by,

kj:1 kjfl

for k,1 € {1,...,v;}. This shows us how to form the matrix A; = (ail)lgk,l@j for

j=1,...,sin step 1).

The correctness of this algorithm follows from the observation that for j € {1,...,s}
and k; € {1,...,v;} we have i(Fjy; + Ix) =i fjr,) = (0,...,0,€}, T;%,0,...,0), since
m(s’zk<j Vij) =0 for i # j and Wj(s’qu Vk+kj) = €},, where m; : A — A/q; is the
canonical projection for ¢ = 1,...,s. Additionally, the finiteness of this algorithm is

clearly true. O
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Remark 3.2.26. Let X C P% be a 0-dimensional locally Gorenstein scheme. We

would like to make some following comments about the existence of a computable

trace map of the algebra Ox,. /K for j=1,...,s.

(a)

If X has K-rational support, for every j € {1,...,s} let O; = {ej1,...,€j,}
be a K-basis of Ox, and assume &(Ox,,) = K - h;. Then an element 7 €
Homp (Ox,p,, K) is a trace map of Ox, /K if and only if 7(h;) # 0 (see [KuS,
Lemma 8.7]). Now we write h; = ajej1 + - -+ + agejp with aq,...,a; € K and
ar # 0. Then the trace map ; can be chosen to be the map €}, : Ox, — K
defined by e;k(ejkj) = Ok, for ky =1,...,v;.

When X is smooth, the trace map @; of the algebra Ox,, /K can be chosen

to be the canonical trace map Troxypj/;( for j = 1,...,s. In this case, we let
O; ={ej1,..., ¢, } be a K-basis of Ox,, and write ejre; = cﬁeﬂ +-- '+c§,l/jejl,j
and C; = <cﬁ cﬁj) € Maty,,, (K) with cf,lcj € K for k,l,k; = 1,...,v;.
Then the values of the canonical trace map is computed by
Cr1
. k1 k2 kv;
Tro., /xlem) =T [ 1 [ =cucg ¢
Ckl/j

for k=1,...,v,.

Suppose that for every j € {1,...,s} we have q; = (Gj1,...,Gj,), where
Gt = X3 4 Hipomsp1 (X1, o, X)) Xg ™ ™ o Hipo(X o, Xieoa)

are polynomials in X1, ..., X monic in X, for k=1,...,n. Then

Oy, = Alaj= @ Kaf' ooy
0<ar<mjk
is a complete intersection over K. According to [Ku8, Example 8.16], the trace
map 7; of the algebra Oy, /K can be chosen to be the map
1 foraog=myn—1,...,a, =m;, —1;
Tj(x?l...xan>_ { 1 j1 ) ? J

0 otherwise.

Moreover, this can be applied if the scheme X is reduced but not smooth as

follows. For every j € {1,...,s}, let L; be the separable closure of K in Oxp,.
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By Primitive Element Theorem (see for instance [Mor, Theorem 5.6]), there is
Bj1 € Lj such that L; = K(B;1). Let G;1 € K[X;] be the minimal polyno-
mial of 3;;. By [Kar, Proposition 3.21], the field extension Ox,, /L; is purely
inseparable. We may write Ox,, = L;(Bj2,...,Bja) = K(Bj1,...,Bja) for some
d > 2. Let ¢ = char(K) > 0. The minimal polynomial of f;;, over K is of
the form Gy = (X, — Bj)?" for 2 < k < d and for some m;, > 1. Thus
Oxp, = K[X1,...,X4]/{Gj1,...,Gjq) is a complete intersection over K of the

above form.

Now let <, be a degree-compatible term ordering on T", let m = deg(X), and let
O =T"\LT,(Z¢) ={Ty,..., T, } with T} = X" - .- X%n and o; = (a1, ..., q4,) € N"
fori=1,...,m. Let t; := T/ +Zx € R and set deg(t;) := deg(T}) =n; fori=1,...,m.
We assume that 7] <, --- <, T, , it follows that the degrees n; satisfy ny < --- < ny,.
Then the set B = {t1,...,t,} is a K[xg]-basis of R and R; = @, | K[2¢i—n,tx for all
i € Z (a direct sum of K-vector spaces). Let B* = {t},...,t: } be the dual basis of 5.
It is clear that ¢; € Homq, (R, K[zo]) is homogeneous of degree deg(t;) = —n; for
i=1,...,m, and Hom, (R, K[xo])N: (3, o sl ) Ko

Recall that {fi1,..., fa.} and {fi1,..., fs.} are the K-bases of R, such that
Wfin,) = (0,...,0,e5,77%,0,...,0) and i(fjr,) = (0,...,0,€} T7%,0,...,0), where
O; ={ej1,...,¢ej,} is a K-basis of Ox,,, and O = {€;,...,¢€], } is the dual K-basis
of Ox,p, to the K-basis O; with respect to the trace map @;, for j = 1,...,s and for

vy

k; =1,...,v;. Using this notation, we get the following property.

Proposition 3.2.27. (i) If we write t;(f;,) = ¢}, 25" for some ¢}y € K, then

C R/ K] = (g1, 9m >K[m0]7 where

g = a3 (Y 3 Cy finy) € Ry (3.3)
J=1 k=1
forg=1,...,m.
(i) Let hy = 2%g; € R fori=1,...,m. We have
Ip(R/K[zo]) = N(R :r {gi)r) = {20™)r ir (b, B e
i=1
Proof. Let g; = ®(t7) € (€p/Kkwg))—n, for i = 1,...,m. Proposition 3.2.9 enables us to
write g; =z (3001, ZZ§:1 c§kj fik;) € Rey = L, and hence claim (i) follows.
Now we prove (ii). We have 9p(R/K[zo]) = R :r,, €r/K[zs) © R. This implies

OB/ K laa]) = R (g1, 0m ) = () (R om (95))
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Since x( is a non-zerodivisor of R and xg’"XQ:R/ Kzo) © R, we get
Rin(g)n={f€R| fg € R} ={f€R | fay" (L 5 ciy, fin)) € B}
J=1k;=1

={f€ER| foX_"i(ZlkZ cgkjﬁkj) €xg*R}
i=1k;=1

= (27")Vr r (25" g1V R = (25 ) R 1R (hi)R.

Therefore we obtain
Up(R/Kxo]) = ,OI(R r(9i)r) = N )k r (hi)r = (@3 r ir (M, h)r
as we wanted to show. O

Next we set soc(O) == {1} € O | X;T] ¢ O forall j =1,...,n}. The elements
of the set soc(Q) are called the socle monomials of X. Let ¢ > 1 and ¢y,...,i, €
{1,...,m} such that soc(O) = {T},..., T} }. [BK, Proposition 4.4] tells us that the
set {t;,...,t} } is a minimal Grobner basis of the R-module Hom ., (R, K[zo]) with
respect to a suitable filtration. Therefore we get €r/x[y) = < Girs -+ Yig > r C R,
where g;, = xg”””"x(Zj:l 22:1 Célkj-};kj) for all [ = 1,...,q. As a consequence of

Proposition 3.2.27, we immediately have the following corollary.

Corollary 3.2.28. (i) Let h; = a:grxgil eER forl=1,...,q. We have

Up(R/Klxo]) = !

(R:r {gi)p) = (@ )R ik (h1, ... hy)R.

ID-

(ii) Let H; be a representative of h; in P fori=1,... q. We have
Ip(R/Kxo)) = ((XJ™) + Ix) :p (Hi, ..., Hy)) /Ix.

Our next proposition shows how we can compute minimal homogeneous systems
of generators of the Dedekind differents for 0-dimensional locally Gorenstein schemes

X C P% when the algebra Oy, /K has a computable trace map 7; for j =1,...,s.

Proposition 3.2.29. (Computation of Dedekind Differents) Let X C P% be a
0-dimensional locally Gorenstein scheme, let Supp(X) = {p1,...,ps}, let m = deg(X),
and let I; C P = K[Xo, X1,...,X,] be the homogeneous vanishing ideal of X at p,
for g =1,...,s. Let <, be a degree compatible term ordering on T", and let <z be
the extension of <, on T (c¢f. [KR3, Definition 4.5.13]). Suppose that the alge-
bra Ox,, /K has a computable trace map 7; for j = 1,...,s. Consider the following

sequence of instructions.
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1) For every j € {1,...,s}, we form the affine ideal q; € A = K[Xy,...,X,)]
of X at p; by taking the dehomogenization of I; and compute a K-basis O; =
{ejr, . e} of Oxp, = Afq; forj=1,...,s.

2) Compute the reduced <,-Grébner basis {G1,...,G,} of ¢ and a K-basis O =
{T7,...,T],} of the affine K-algebra A/T¢ and a tuple S = (s1,...,Sm) with
NFVo,(s;)&---®&NFVo,(s;) = (0,.. .,[}], ..,0) e K™ forj=1,...,m by using
Proposition 3.2.22.

5) Compute the set of socle monomials soc(O) ={T;,...,T; } CO.

4) Compute the reduced <z-Grébner basis {F1, ..., F.} of Ix by taking the homoge-
nization F; = GM°™ of G; with respect to Xo fori=1,...,r (see Remark 2.3.5).

5) Use Proposition 3.2.25 to compute a tuple S = (gl, ..., Ss) such that the subtuple
§j = (fj1,- .-, fju;) consists of elements of R,, with

J?jkj :'{*1((0, . ,O,e;ijjT’X,O, ...,0))

for kj =1,...,v;, where the set O = {¢};, ... ,egyj} is the dual K -basis of Oxp,
to O; with respect to a; for j =1,...,s.

6) Compute the homogeneous generating system {g;,, ..., g:,} of the Dedekind com-
plementary module €g) iz, corresponding to soc(O). Form the set {hi, ..., hq}
with hy = 23" g;, € R forl=1,...,q.

7) Form J, = (XS, Fy,...,F,) and J, = (Hy, ..., H,, Fy, ..., F,) two homogeneous
ideals of P, where Hy is a representative of hy in P for k =1,...,q. Compute
the reduced <g-Grébner basis {Hy,...,H.,} (u > 1) of the colon ideal Jy :p Jo.
Sort the set {Hy, ..., H.} such that deg(H}) < --- < deg(H,).

8) Set # = {Hy,...,H .} \{F\,...,E.}. For every polynomial H € €, compute
its normal polynomial H' = NF, 7. (H). If H' # 0, replace H by H'. Otherwise,
delete H from .

9) Apply Buchberger’s Algorithm with Minimalization 3.1.10 to compute a tuple
Hmin which generates (Jy :p Ja)/Ix minimally.

10) Return the tuple Hpm and stop.

This is an algorithm which returns a tuple Huyin whose elements are a minimal homo-
geneous system of generators of the Dedekind different 9p(R/K|[zo)).
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Proof. The finiteness of this procedure is obviously true. The correctness of this pro-
cedure follows by combining Proposition 3.1.10 and Corollary 3.2.28. We explain how
to compute the homogeneous generating system {g;,,...,g;,} of the Dedekind com-
plementary module € ks, in step 6). After step 2) we computed S = (s1,...,5m)
with NFVp,(s;) @ --- @ NFVp,(s;) = (0,.. .,[}],...,0) € K™ fori=1,...,m. For
i€ {l,...,m}, we see that all terms of s; belong to O = {T7,..., T/ }. This enables us
to write 8; = 855, yik; = c}ijl’ +oed e Ty withi =37, v +kjand 1 < k; < v
We then form a matrix C = (c%) € Matyxm(K). Now we assume that the algorithm
has already executed step 5). For every j € {1,...,s}, let S; = (fj1,..., fj,) be the
tuple of elements of R,, with ]?;-kj =71(0,...,0, e;.ij;X, 0,...,0)) for k; =1,...,v,.
For every [ € {1,...,q}, we claim that

IO ¢ R
b= a9y = wg" (L X i fin,) € R.

j=1k;=1

Indeed, for j € {1,...,s} and for k; € {1,...,v;}, let Fj, € P, be the homogeneous

re—des(syy - vti;)

polynomial such that Fj,, = X, (squ Vk+kj)h°m, Set fi, == Fyi,+Ix €
R, forall j=1,...,sand k; =1,...,v;. Then

W fik;) =W Fji, +Ix) = (0,..., 0,54, T7%,0,...,0) € R = [[ Ox,,[T}]
j=1

forj=1,...,sand kj = 1,...,v;. In R, we get fj, = cj a5 "1+ -+ ag" "ty
for j =1,...,s and k; = 1,...,v;. Hence we have t; (fj,) = tjl(cjl-ijgx_"ltl +- 4
e, To" ) = c;lijgx_n” forj=1,...,sand k; =1,...,v;and l = 1,...,¢. Thus

the equalities for h; and g;, as above follow. O

Remark 3.2.30. In order to compute the Hilbert function of the Dedekind differ-
ent Up(R/K[xg]) for a 0-dimensional locally Gorenstein scheme X C P we perform

the following steps.

1) Compute a homogeneous generating system {hy, ..., h;} of 9p(R/K|xo]) by using
Proposition 3.2.29.

2) Form the homogeneous ideal J = Zx + (Hy, ..., H;) of P, where H; is the normal

representative of h; in P for i =1,...,t.

3) Compute the regularity index rx of HFx and then return the Hilbert function of
Dedekind different HFy,,(r/k([20)) (1) = HFx(7) — HFp/;() for all ¢ € Z. Notice
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that HF@D(R/K[QEO])(@) =0 for i < 0 and HFﬁD(R/K[wO])(i) = deg(X) for i > 2rg
(see Proposition 3.2.5).

We end this section with an application of Proposition 3.2.29 to a concrete case.

Example 3.2.31. Let X C IP’% be the reduced 0-dimensional scheme with support
Supp(X) = {p1,...,pe}, wherep; = (1:1:0:0),po=(1:0:1:0),p3=(1:0:0:1),
pa=(1:0:1:1), ps corresponds to Ps = (3XZ + X7, Xy, X3), and pg corresponds to
Ps = (X1,2X3 + X3, X3). Let <, be the term ordering DegRevLex on T4. We have
HFx: 14799 ... and rx = 3. By using Proposition 3.2.29, a minimal homogeneous
system of generators of the Dedekind different Jp(R/Q]x¢]) is given by

hy = xox3 — 123,

hy = J:Sxf — %xox‘;’ + x‘f,

hs = x3x3 — %xoxé + 213,

hy = 25 — f—ga:gxg’ + %xox;l — %xg,

h5 = Ig
The Hilbert function of ¥p(R/Q[xo]) is HFy,(r/qze) : 0001369 9---, and its
regularity index is ri(dp(R/Q[zo])) = 2rx = 6.

3.3 Kahler Differents for 0O-Dimensional Schemes

The main goal of this section is to describe the module structure and Hilbert function
of the Kahler different for a 0-dimensional scheme X C P% over an arbitrary field K
with Supp(X) N Z+(Xy) = 0.

In the enveloping algebra R ® ks, R we have the homogeneous ideal J = Ker(u),
where 41 1 R ®g1y) R — R is the homogeneous R-linear map given by u(f ® g) = fg.
The module of Kahler differentials of the algebra R/K|x¢] is defined to be the
finitely generated graded R-module Q}, I K[zo] = J/T?. The homogeneous K [zo]-linear
map dr/K[z) : 12— Q}%/K[IO] given by f = f®1—-1® f 4+ J? is called the universal
derivation of R/K|xo|. More generally, for any algebra 7'/S we can define in the same
way the module of Kihler differentials Qf, g = J /T2, where J = Ker(T @ T — T),
and the universal derivation dp/g: T — Q%r/s (t = t@1-10t+T2) (cf. [Ku5, Section 1]).

By using the notion of Fitting ideals which was introduced in Section 2.2, we give
a definition of the Kahler different for X as follows.
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Definition 3.3.1. For ¢ > 0, the ¢-th Fitting ideal of Q}%/K[mo] is denoted by
ﬁ(i)(R/K[$O]) = E(Q}%/K[a:o])

and is called the i-th Kahler different of R/K|x] (or for X with respect to x). In
particular, the ideal 9°(R/K|[zo]) is called the Kahler different of R/K x| (or for X
with respect to xg) and is also denoted by ¥ (R/K|x]).

From the definition we see that there is a chain of inclusions
(0) € I (R/K[xo)) C 9NV (R/Klxo]) € -+ SOV (R/K[xo]) C--- C R

and 99 (R/K[x)) = R for i > m, where m is the minimal number of generators
of Q}%/K[mo]. Let {F1,...,F.} be a homogeneous system of generators of Zx, where
r > n. By [Kub, Proposition 4.19], we have the following exact sequence for the

module of Kéihler differentials:

0= K= RdX, @ ® RAX,, = Qp/xip = 0 (3.4)

Here K is generated by the elements > | g—ngi such that j € {1,...,r}. The Jaco-

bian matrix (%)izl 77777 ,, 1s a relation matrix of Q}%/K[xo} with respect to {dxy, ..., dz,}.
J=1,...,r

Thus 9 (R/K][x,]) is the ideal of R generated by all (n — i)-minors of the Jacobian
matrix. In particular, 9 (R/K|xo]) is generated by the n-minors of that matrix. This
implies 9 (R/K[xo]) with i > 1 and Yk (R/K[x0]) are homogeneous ideals of R.

Remark 3.3.2. Let I; C P be the homogeneous vanishing ideal of the scheme X at p;
for j =1,...,s, and let <, be a term ordering on T""!. Then a minimal homogeneous
system of generators of the Kéhler different ¥ (R/K|[zo]) of R/K[x] can be computed

by performing the following sequence of instructions.

1) Compute the reduced <,-Grobmer basis {7, ..., F,.} of Zx = (\;_, I; by using
the GPBM-Algorithm (see [AKR, Theorem 4.6]).

2) Form the Jacobian matrix J = (g—g)izl . Compute the set {H,..., Hi} of

=1,...r

j_
all non-zero n-minors of J, and sort the set {Hy,..., H;} such that deg(H;) <
< deg(H)).
3) Set S = {Hy,...,H;} \{F1,...,F.}. For every polynomial H € %, compute
its normal polynomial H' = NF, . (H). If H' # 0, replace H by H'. Otherwise,
delete H from 7.
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4) Compute a tuple Hpi, which generates ((#) + Zx)/Zx minimally by using the
Buchberger Algorithm with Minimalization 3.1.10.

5) Return the tuple Hy;, which is a minimal homogeneous system of generators
of 9x(R/K|xo)).

Recall that the affine ideal of a 0-dimensional scheme X C P is 7¢ = 74t C A =
K[Xi,...,X,], and the affine coordinate ring of X is I' = A/T¢ = R/(xy — 1). By
Y9 (T/K) we denote the i-th Kihler different of the algebra I'/ K, where i € N.

Proposition 3.3.3. Let i be a positive integer.
(i) Let 90 (R/K][xo]) denote the image of 99 (R/K|xy]) in T. Then we have
V(L) K) = 0O (R/K ).
(i) For every multiplicatively closed set U C R, we have
IRy /K zo]) = 0V (R/ K [zo))u-

Proof. This follows from Proposition 2.2.4. O]

Given a homogeneous system {Fy,..., F,} of generators of Zx and p; € Supp(X),
we define the Jacobian matrix at the point p; of X by J(p;) := ((2%),, )i=1
k

77777 n Where

=1,..., T

ox;

(E

5o )p, is the image of % under the map

¢ R— Rf(xg—1) =T = HIOXM = Oxp, = Oxp, /Mxp; = K(p))
j=

f = fdeh = (fpu"'afps) '_>7pj'

All entries of J(p;) are elements of K(p;). The Jacobian criterion for smoothness
of O-dimensional scheme X C P is provided by our next proposition, which follows
from [Ku5, Corollary 7.18 and Theorem 10.12].

Proposition 3.3.4. The following conditions are equivalent.

(i) X is smooth at p;.

(ii) rank(J(p;)) = n — dim Ox, = n.
(i) Ok (R/K|xo)) € p;, where p; is the prime ideal of R corresponding to p;.
(iv) 9O(T/K) & v, where p); the image of p; in T
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Corollary 3.3.5. Let X C P} be a 0-dimensional complete intersection, and let Ix =
(F1,..., F,) where F; € P is a homogeneous polynomial of degree d; for j =1,...,n.

Then we have
Ui (R/K[2o]) = In(R/K]xo)) = < s >R.

In addition, if X is smooth, then

i) O (R/Kxo]) = Ox(R/K|xg)) = (2Ehtn) wheretheelementMisa
(i) Vx(R/K|xo]) = Ix(R/K][z]) .

O(T1,eeyTn) O(T1,eeyTn)
non-zerodiisor of R of degree rx = >  d; —n
(ii) i) = ((5203) D
(ZZZ) HFﬁK(R/K[IO])(Z) = HFﬁX(R/K[xo})(i) = HFX(i — Tx) fOT all i € Z.
Proof. This follows from Corollary 3.2.20 and Propositions 3.1.2 and 3.3.4. O

The following example shows that the smoothness of X in the additional claim of
Corollary 3.3.5 is necessary, and that the Noether and Dedekind differents are not equal

even when X is a complete intersection.

Example 3.3.6. Let K be a field with char(K) # 2,3, and let X C P% be the
O-dimensional complete intersection defined by Zx = (F,G), where F' = X;(X; —
2X0)(X1 + 2Xy) and G = (Xo — Xo)(X? + X7 — 4X2). Then X has degree 9 and
the support of X is Supp(X) = {p1,...,pr} with py = (1 : 0: 1), pp = (1:0 : 2),
p3=1:0:-2),pp=010:2:1),ps=01:2:0),ps=(1:-2:1), and p; =
(1 : =2 :0). A homogeneous primary decomposition of the homogeneous vanishing
ideal of X is Zx = I, N -+ N Iy, where I; = B, for i # 5,7, Iy = (X1 — 2X,, X2), and
I; = (X + 2Xj, X2). This means that X is not reduced at ps and p;, hence X is not
smooth at those points. By Corollary 3.3.5, the Kahler and Noether differents are

G
Dic(R/K o)) = I (R/Kwo]) = {5 m’)
= (4worizy — 162575 — 3wiwy — 2woxh + 675 ).
Observe that e m)) (ps) = Ezgf SQ))( 7) = 0. This implies a?)((F f{)) € B NP7, and hence
88(552) is a zero-divisor of R. Moreover, we have HFy, (r/kjzp) : 0000136 7---,

ri(Vg(R/K[xo])) = 7, and HPy, (r/k[zo)(2) = 7 < 9 = deg(X). Therefore we cannot
remove the assumption that X is smooth in the additional claim of Corollary 3.3.5.
Also, we have Un(R/K|xo]) # Up(R/K[x0]), since HPy, (/K20 (2) = deg(X) =9 >
7 = HPy, (r/Kz0])(2)-
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For a 0O-dimensional reduced complete intersection X C [P%, we can describe the
Hilbert function of the Kahler different as follows.

Corollary 3.3.7. Let X C P} be a 0-dimensional reduced complete intersection, and

let Ix = (F1,...,F,), where F; € P is a homogeneous polynomial of degree d; for

jg=1,....n. Letd:= 2?21 d; —n, and let Y C X be a subscheme defined by Iy =
N B,. Then, for alli € Z, we have

p;€Supp(X): smooth
HEg e (r/rtao)) (1) = HE oy 8/ 12o)) (1) = HFy (i = d).

Proof. Let Zy/x be the ideal of Y in R and put A := M. By Proposition 3.3.4,

T1yeen )
the element A+ Zy/x is a non-zerodivisor of Ry = R/Zy/x and A € N ;.
p; €Supp(X)\Supp(Y)
Fix the degree i > 0 and suppose HFy(i) = t. Let {g1 + Zy/x, ..., 9t + Zv/x} be a K-

basis of the vector space (Ry);. Then the set {A-g1 +Zy/x, ..., A g +Zy/x} C (Ry)ita
is K-linearly independent. It follows that the vector space (A - R); 4 has K-dimension
greater than or equal to ¢. In other words, we have HFy, (r/k(z0)) (7 + d) > HFy (7).
On the other hand, we observe that A-h =0 in R for every homogeneous element
h € Iy/x \ {0}, since X is reduced. For every f € R;, we write f = a1 +---+a,g: +h
for some a1,...,a; € K and h € (Zy/x);- Then A- f = A-(a1g1 + -+ + g + h) =
aAN-g+ - Fad-g e (Ag,...,A g ), (as A-h =0in R). Thus we have
Uk (R/K[xo))ari = (A-R)iva € (A~ g1, ., A~ g ), and hence HEy, (r/ K[z (i +d) <
t = HFy (7). Therefore the conclusion follows. O

Remark 3.3.8. In the setting of Corollary 3.3.7, the regularity indices of the Kéhler
and Noether differents are d + ry. If we remove the condition that X is reduced, then
we have HF@K(R/K[QCOD(Z') = HFﬂN(R/K[xo])(i) > HFy(i — d) for all 7 € Z.

Our next proposition collects some relations between the Kahler and Noether dif-
ferents of the algebra R/K|xo| and the annihilator of the module of Kahler differentials
Q3 /K lzo]» Which follow from [Kub, Proposition 10.18].

Proposition 3.3.9. Let X C P} be a 0-dimensional scheme, let m be the number of
minimal generators of Q}Q/K[m]. Then we have

(Annp(Qp i)™ € Ox(R/K(wo]) € On(R/K[wo]) © Anng(Qpkpy)-

In particular, if X is smooth, then Ux(R/K[xo])™ C ¥k (R/K[xo]) C Ix(R/K]|xo)).
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Definition 3.3.10. (i) A local ring (S, m) is called a complete intersection if it
is Noetherian and its m-adic completion Sisa quotient of a regular local ring A

by an ideal generated by an A-regular sequence.

(ii) Given a ring S and an algebra T'/S, we say that 7'/S is locally a complete
intersection if for all ¢ € Spec(7") the algebra Tis/S, with p =P NS is flat and

the local ring Ty /pTsy is a complete intersection.

It is well known (cf. [BH, Theorem 2.3.3]) that if S is a Noetherian local ring and
S = A/I with a regular local ring A, then S is a complete intersection if and only if I is
generated by an A-regular sequence. We refer to [BH, Section 2.3| for more properties
of complete intersection rings, and refer to [Ku5, Appendix C] for further information

on complete intersection algebras.

Lemma 3.3.11. Let X C P% be a 0-dimensional scheme. Then the following state-

ments are equivalent.

(i) The scheme X is a complete intersection.
(i) The algebra R/ K|xo)] is locally a complete intersection.

(i4i) The local ring R = R/(xo) is a complete intersection.

Proof. Let {Fy,..., F.} be a minimal homogeneous system of generators of Zx, where
r > n. If X is a complete intersection, then r = n, {Fy,..., F,} is an P-regular
sequence, and R = K[Xo][X1,...,X,]/(F1,..., F,). Hence R/K|[xy] is locally a com-
plete intersection by [Kub, Corollary C.7]. Thus we have “(i) implies (ii)”. More-
over, “(ii) implies (iii)” follows from the observations that (z¢)xz,) = m N K|xg] and
R/ (20) R = (R/{x0))w = Rw = R, where M = m/(z,) is the maximal ideal of R.

It remains to prove “(iii) implies (i)”. Observe that if {F},..., F,, X} is a minimal

homogeneous system of generators of the ideal Zx + (Xj) then we write
R =Rz = (P/Ix + (Xo))w = Pp, /({F1, ..., F}, Xo)) p, -

Since R is a complete intersection, the set {Fy,..., F,, Xy} is a Pp, -regular sequence
(see [BH, Theorem 2.1.2]). [Kub, Lemma C.28] implies that {Fy,..., F., Xo} is a
P-regular sequence, and hence » = n or X is a complete intersection. Therefore we
only need to show that {F}, ..., F,, Xy} is a minimal homogeneous system of generators
of Zx+(Xy). Clearly, we have X, ¢ Zx. If thereis anindexi € {1,...,r} such that F; €
(Fi,..., Fio1, Figa, ..o, By, Xo), then we get a representation F; = 3., G I + GXo
where GG; € P is a homogeneous polynomial of degree deg(F;) — deg(F}) for j # ¢
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and where G € P is a homogeneous polynomial of degree deg(F;) — 1 (cf. [KR2,
Corollary 1.7.11]). This implies GXo = F; — >, ,, G;F; € Ix, and so G € Ix (as g
is a non-zerodivisor of R). Thus there are homogeneous polynomials Hy,..., H, € P
such that G = 77| H;F; and deg(H,;) = deg(G) — deg(Fj). Note that H; = 0 (as
deg(G) < deg(F;)). Hence we have F; = 3. ,(G; + H;Xo)F}, in contradiction to the
minimality of {Fy, ..., F,.}. O

Let us go back for a moment to Example 3.2.21. We saw that the projective point
set X={(1:0:0:0),(1:1:1:1),(1:—=1:1:-1),(1:2:4:8),8:4:2:1)}
in ]P’]gF7 consisting of 5 points on the twisted cubic curve is arithmetically Gorenstein,
but it is not a complete intersection. Furthermore, the Noether-Dedekind different
of R/F;[xo] is given by Ux(R/F;[zo]) = (23 — 2x9z3 — 3z123 — 223). On the other
hand, a calculation provides us with 9 (R/F7[z]) = (zex? — 323, v122, wox3 — 323, 23).
Thus we get g (R/F7[xo]) € Ux(R/F7[xo]). This shows that the condition that a
projective point set X C P is arithmetically Gorenstein does not suffice to imply
Vi (R/K[xo]) = Ox(R/K][zo]). However, in case X is arithmetically Gorenstein we
have the following property.

Proposition 3.3.12. Let X C P% be a 0-dimensional smooth scheme which is arith-

metically Gorenstein. The following conditions are equivalent.

(i) The scheme X is a complete intersection.
(ii) The Hilbert function of O (R/K[xo]) satisfies HEy, (r/K[zo)) (rx) 7# 0.
(111) Vg (R/K[xo]) = Ux(R/K|x0)).

Proof. (i)=(ii): If X is a complete intersection, then let {Fy,..., F,,} be a minimal

homogeneous system of generators of Zx. By Corollary 3.3.5, we have
O(Fi,..., n
Ui (R/K[zo]) = <#>R = Ux(R/K[x))

is a non-zerodivisor of R with deg(
HEy v/ xfeo)) (1) 7 0.

(ii)=-(iii): By Proposition 3.3.9, we have Vi (R/K[zo]) C Ux(R/K][zo]). We now
prove the equality. Since X is arithmetically Gorenstein, we get Vx(R/K[xo]) = (h)gp =
R(—rx) with h € R,, by Corollary 3.2.20. Also, we have

= rx. Thus we get

(0) # Uk (R/Klxo])r, € Ix(R/K[zo])ry =h-Ro=h-K.

This implies h € ¥ (R/K|[zo]), and hence Uk (R/K|[xo]) = Ox(R/ K [x0)).
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(iii)=-(i): Suppose that Vx(R/K[xg]) = Ox(R/K][xo]). Since X is arithmetically
Gorenstein and by Corollary 3.2.20, we have ¥x(R/K|xg]) = (h)r for some non-
zerodivisor h € R,,. In particular, 9 (R/K[x¢]) is an invertible ideal. Moreover,
if the module of Kahler differentials Q R)/Klzo] = (0), where Q(R) is the full ring of
quotients of R, then it follows from [Ku5, Theorem 10.14] that the algebra R/K[zo] is
locally a complete intersection, and hence X is a complete intersection by Lemma 3.3.11.
Therefore it suffices to prove Qé( R)/K[zo] = (0). According to Proposition 3.2.16, the al-
gebra Q(R)/ K (zy) is étale, and free of rank deg(X). Thus [Kub, Proposition 6.8] yields
Qé(R)/K(m) = (0). Also, it is not hard to see that Ker(K () ®x(zg) K (z0) = K(20)) =
{f@1-1® f|f € K(®0) }) k@)K @) = (0), and s0 Qp e = (0). On the
other hand, we have Q(R) = K (zq) ®x [[j_; Ox,p,; (as X is smooth). This implies

Q(R) = K(0) ®xag) (K|wo] @k T[] Oxp,) = K (20) @rag) B
=1
where R = [[5—1 Oxp, [T)

]
we obtain Qé}(R)/K(wo) = K(20) ®K(x) Q}“%/K[xo] and

and T1,...,T; are indeterminates. By [Kub, Formulas 4.4],

Q) xctoo) = K (00) Orctaol Uy ey © R ol V(o)1
= Q0 r)/K (z0) P R ®Kfwo] Lk (o) /Klwo] = (0)-

This completes the proof. O

Remark 3.3.13. We make the following two remarks on the Hilbert function and the

regularity index of the Kahler different in two special cases of the scheme X.

(a) If n = 1, then every O-dimensional subscheme X of Pk is always a complete
intersection. The homogeneous vanishing ideal Zyx is generated by a non-zero
homogeneous polynomial F} € P. In this situation, the Kahler and Noether
differents are O (R/K|[zo]) = In(R/K]x0]) = <‘9F1> Additionally, if X is smooth,
then HFy, (r/ k(o)) (1) = HFx(i —s+1) for all i € Z and ri(x (R/K[x0])) = 2rx =
(n+Drx=(Mn+1)(s—1).

(b) Let X = {p1} C P% be a projective point set of degree 1. We write p; = (1 : py; :

: p1n) for some piq,...,p1, € K. Then the homogeneous vanishing ideal of X

is Zx =By = (L1, ..., L1,) where Ly; = X; — p;; Xo for i = 1,...,n. It follows
that

79K<R/K[ZEO]> = ﬁx(R/K[ZL‘()]) = <8<L11, e 7L1n)/a(l’1, . ,[En)> = <]_>
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Also, we have HFy, (r/k(w,)) (i) = HFx(i) for all i € N and ri(dx(R/K|xo])) =
27"X = 0.

Our next proposition describes the Hilbert function of 0 (R/K|[zo]) and gives lower

and upper bounds for its regularity index when X is a projective point set in P7.

Proposition 3.3.14. Let X = {py,...,ps} C P% be a projective point set, and let m
be the number of minimal generators of Q}%/K[xo}.

(i) The Hilbert function of x(R/K[xo]) satisfies
=0 < HF o (r/K[20)) (0) < HE e (ryK(eo)) (1) < HF g (r/k[o (2) < -+ < s
and HF g, (r/Kz0)) (%) = s fori > 0.
(i) If n > 2, then we have
2rx <ri(Vg(R/K[x])) < min{ nrx, 2mryx } < min{ nry, 2srx }.

In particular, the first inequality becomes an equality if X is a complete intersec-

tion or n = 2.

Proof. 1t is obviously true that HFy, (r/k[zo)) (1) < HF g, (r/K[zo(1+1) < s foralli € N
and HFgK(R/K[xO])(i) = 0 for ¢ < 0. By Proposition 3.3.9, we have

Ux(R/K[zo])™ C Uk (R/Klxo]) € Ix(R/K][wo)).

Let f; € R,, be the normal separator of X\ {p,;} in X for j = 1,...,s. We remark that
Ryyyi = Ry, = (ahf1, ..., xhfs ) for i > 0. Since HFy, (r/K(s)) (1) = s for i > 2rx by
Proposition 3.2.11, we get Ux(R/K[zo))2ry = Rory = (25" f1, ..., 25" fs ) - This implies
(P o L™ € ORI K 0] e € k(R K (0] s € Ramry. For
jeA{l,... s}, wesee that f7" = agf;(p;) f]"' = ag" [} = x(()mfl)Tij, and hence

J
(zb f)m = 2™V £, Thus we have
Romr = ( (&g i)™ @ f)™ ) g = (o™ ey )
= (Ux(R/K[xo])™)2mry = Vi (R/K[20])2mry -

Therefore we obtain HFy, (r/k(z)) (1) = HF g, (r/K[wo)m (1) = s for all i > 2mrx, and
claim (i) follows.

Now we prove (ii). It follows from the proof of (i) that

ri(0x (R/K|[zo])) < 2mrx < min{ 2nry, 2srx }.
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Here the inequality m < min{n,s} holds true, since Q}%/K[IO] = (dzy,...,dzx, ) =
(dty,...,dts), where ty, ..., t, form a K[zg]-basis of R. Moreover, Proposition 3.2.11
shows that the regularity index of Jx(R/K[zo]) is 2rx, and so the regularity index of
the Kéhler different must satisfy 2rx < ri(dx(R/K|xo])). Thus we get

2rx <ri(Ux(R/K|[zo])) < 2mrx < min{ 2nrx, 2srx }.

Next we prove the inequality ri(Vx(R/K[xo])) < nrx if n > 2. Notice that the
inequality does not hold when n = 1 (see Remark 3.3.13(a)). We see that if we have
fi' € Vg (R/K[zo])nry, for all j =1,... s then

Rury 2 95 (R/K 0] nry 2 (f1 oo ) e = (a0 fry o a§ L) o = R

This implies Vg (R/K[x0])nry = Rurye, and hence the inequality ri(Vx(R/K[zo])) < nrx
holds true. Using this observation, we only need to prove f}' € ¥ (R/K[xo])nr, for all
j=1,...,s. It suffices to prove that fJ* belongs to ¥x(R/K[zo|)nry, since the other
cases follow similarly. We let F; € P,, be a representative of f; for every j € {1,..., s},
and write By = (L11,..., L1,) € P as in Remark 3.3.13(b). It is clearly true that
FiLy; € (Ix) g1 for all i = 1,...,n, so the element O(Fy L1y, ..., F1L1,)/0(x1, ..., x,)

is contained in the K-vector space U (R/K[xo])nr. We calculate

F OL11 + L 6F1 . F BLH + L BFl
OFilu,.. Filw) _ toxy T e K HoXn
a(X17"'7XTL) o o o B
£ Lln +L1n F1 Fl Lln +L1n F1
R REE\ (Dl o gl
Daet |+ . et 2 e
F %gg FI%LTl: Lm 9F1 Lm 5F1
R o R\ (Do D
— det : : Lo et | 2 0 G
“ o) Tax ax, | S
Fa)éf e Pigge Lin -+ L,
(%) (L1, .., Liy)
= " G=I"+G
18(X1,...,X)+ v
for some polynomial G € Zx. Here the equality (*) holds because all other determinants
contain at least one column of the form (F1 BL“ . Fl%L%)tr and one column of the
J
form (Lug% oo Ly, 8F1) " Since FiLy; € (IX)TX—‘,-I for all j = 1,...,n, they are

contained in Zx. The equality (xx) follows from n > 2 and the last equality holds since
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H = 1 by Remark 3.3.13(b). Hence we obtain f}" € Vg (R/K[xo])nry, as we
wanted to show.
The last claim follows from the inequalities 2rx < ri(Jx(R/K[x¢])) < nrx and the

equality Uk (R/K[xo]) = Ox(R/K][xo]) if X is a complete intersection. O

When n > 3, the upper bound for the regularity index of ¥y (R/K|xo]) given in

Proposition 3.3.14 is sharp, as the following example shows.

Example 3.3.15. Let X C IP’% be the projective point set consisting of the following
ten points: pp = (1 :0:0:0),ppo=(1:0:1:0),p3=(1:0:0:1), py =
(1:1:0:1),ps=(1:2:0:0,ps=(1:2:1:2),pr=(1L:2:2:1),
ps =(1:2:2:2), pg=(1:3:1:1),and pjp = (1:2:3:1). By calculation,
we have HFx : 1 4 10 10--- and rx = 2. The Hilbert function of ¥x(R/Q|xo]) is
HFy,(r/qlzo)) : 00000010 10---, and its regularity index is ri(dx (R/Q[zo])) = 6.
In this case, X spans P, this implies the elements {dx;,dzs,dzs} form a minimal
homogeneous system of generators of Q}%/K[xo} (cf. [DK, Corollary 1.7]), so we get
m =n = 3. Therefore we obtain ri(Jx(R/Q[xo])) = 6 = min{ nrx, 2mrx }.

Corollary 3.3.16. Let X = {p1,...,ps} CP% be a projective point set, where s > 2.
Let R denote the integral closure of R in its full ring of quotients, and let SE/R be the
conductor of R in R.

(i) We have
(B i)™ C Ok (R/Kwo]) € Ix(R/Kwo]) € T/

(ZZ) W@ hcwe ﬁK(R/K[IQD = <0K(R/K[$O])i§n7‘x >R'

Proof. Let f; be a minimal separator of X\{p;} in Xfor j = 1,...,s. By [GKR, Propo-
sition 3.13], the conductor §/p, as an ideal of R is generated by the set {f7,..., f/}.
First we consider the case n = 1. Then max{2,n} = 2 and it is not hard to check that
S%/R C Ik (R/K[zo]) = Ux(R/K[zo]) € F5/p- Now we assumen > 2. Using the same
argument as in the proof of Proposition 3.3.14, we can prove (f;)" € Vg (R/K|[xo]) for
all j =1,...,s. Since f7fi=0if j #k, we get S%/R C Ik (R/K|xo)) C Ix(R/K][xo]).
On the other hand, we have the inclusions R C €p/xzo] € L = Q"(R). It follows that

ﬁx(R/K[$0]) =R L Q:R/K[zo] - R L E = Sﬁ/R

Hence claim (i) follows.
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Claim (ii) is obviously true if n = 1. If n > 2, then the claim (ii) is an immediate

consequence of Proposition 3.3.14, since we have
Uk (R/K[xo])nreti = Ryt = xéRnTx = IéﬁK(R/K[xO])nrx
for all 7+ > 0. L]

Corollary 3.3.17. Let X = {p1,...,ps} C P% be a projective point set. If the Hilbert
function of the Noether-Dedekind different satisfies HFy, (r/k[z0)(2rx — 1) = 0, then
Ok (R/K[wo]) = Ox(R/K]x]).

Proof. Since n = 2, Proposition 3.3.14 yields that ri(dx(R/K[zo])) = nrx = 2rx.
Moreover, we have 0y (R/K[zo]) C Ux(R/K][zo]). Thus it follows from the equality
HFﬂX(R/K[xU])(QTX - 1) = 0 that 19K(R/K[JZO]) = ﬁx(R/K[l’oD = EBiZ?TXRia and the

conclusion follows. O

Example 3.3.18. Let Y = {(1 : 0 : 0),(1 : 0 : 1),(1 : 1 :1),(L:2:0),(1:
2:1),(1:0:2)} CP§ be the projective point set, sketched in the affine plane
A* =D (Xo) ={(co:c1:c2) €PH | co # 0} as follows:

(0,2) e (2,2)

(0,0) o e (2,0

The Hilbert function of Y is HFy : 1 3 6 6--- and the regularity index of HFy is
ry = 2. We also have dy(R/K|xo)) = (x5, v123, zox3, 21, w023, 23) = @54 Ri. By
Corollary 3.3.17, we get Vg (R/Q[zo]) = Yy (R/Q[zo]) and ri(Ix(R/Q|x¢])) = 4 = nry.

However, Corollary 3.3.17 is not true in general. For that, we turn back to Ex-
ample 3.3.15. Observe that the Hilbert function of the Noether-Dedekind different is
HFﬂX(R/Q[xO]) : 000010 10-- Y and so HF@X(R/Q[Q;O])(QTX - 1) = HFﬁx(R/Q[xo})(?’) =0.
But it is clearly true that Vg (R/Q|xo]) # Ix(R/Q|xo)).

Apart from some other special cases, to exactly determine the Hilbert polynomial
of the Kahler different for an arbitrary 0-dimensional subscheme X of P} is not an easy

question, so we try at least to find (possibly sharp) lower and upper bounds for it.
Proposition 3.3.19. Let X C P} be a 0-dimensional scheme, let Supp(X) =
{p1,-..,ps}, and let Xy, be the set of smooth points of X in Supp(X). Then we have

E dimK(OX,Pj) < HPﬂK(R/K[Io])(Z) < deg(X) - (8 - #Xsm)'

pj €Xsm
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Proof. Let B; C P be the associated prime ideal of p; for j =1,...,s, and set

[:= n %
P; €Supp(X)\Xsm
It follows from Proposition 3.3.4 that ¥k (R/K[zo]) C p; = PB;/Zx for every point
p; € Supp(X) \ Xyn. Hence we get Ui (R/K|[xo]) C I/Zx, and consequently

HFE g, (r/K[20)) (1) < HF )7, (1) = HFx (1) — HFp/; (i) < deg(X) — deg(Y)

for all 7 € N, where Y is the 0-dimensional subscheme of P} defined by I. Observe
that the scheme Y has degree deg(Y) > s — #X,,. Thus we obtain HPy, (s/xw)) (2) <
deg(X) — deg(Y) < deg(X) — (s — #Xom).

Next we prove the first inequality of HPy, (r/k[zo)) (2). If Xem = 0, then there is noth-
ing to prove, since we always have HPy, (r/K[zo))(2) = 0. Now let us consider the case
0 = #Xsn > 1. Without loss of generality, we may assume that Xg, = {p1,...,p,}
For j € {1,..., 0}, we have U (R/K[xo]) € p; = B;/Zx by Proposition 3.3.4. It follows
from Homogeneous Prime Avoidance (see for instance [KR3, Proposition 5.6.22]) that
there exists a homogeneous element h € 9 (R/K[xg])q \ {0} for some d > 0 such that
h¢ Uj_ (pj)a- Fixj € {1,...,0}. Weset v; = dimg(Ox,,), and let {ej1, ..., ez, } be
a K-basis of Ox ;. Since p; is a smooth point of X, Oy, /K is a finite separable field
extension. In particular, we have h, # 0 in Ox,,, where h, is the germ of h at p;.
For any non-zero element a € Oy, , it is not difficult to verify that {ae;i,. .., ae;,, } is
a K-basis of Ox,, then so is {hy ejrej1, ..., hyejrej, }, where 1 <k < v

Now we consider the isomorphism of K-vector spaces 1 : R, — [[;_;Ox,, given
by o(f) = (fpi,- -5 fp.), Where f,. is the germ of f at p;. For j = 1,...,0 and for
ki=1,...,v;, welet fj, =+7'((0,...,0,€5,,0,...,0)) € R,,. Then we get

<hf117"'7hf11/17'-'7hf917"->hfgug >K g ﬁK(R/K[xO])TXer g Rrerd-

Now we show that the elements { hfii,...,hfi,...,hfe,... hfp, } are K-linearly
independent. Remark that for ji,jo € {1,...,0} and for k; € {1,...,v;,}, where
i =1,2, we have fj1, * fioks # 01f j1 = jo and fjx, * fiaks = 01if j1 # Jo, and hf? e 70
in Ry, 4. Suppose for a contradiction that there are ci1,...,c1, ..., Co1,. .., Co, € K,
not all equal to zero, such that 2521 Zijl cik;hfir;, = 0. W.lo.g. we may assume
c11 # 0. We then have

hit = CH( Z Cig hfiey i+ Z Z Cikhfin; fun) = a Z iy L f11 fiky -

J=2k;=1
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Thus, in Ox,,, we get the equality h, e?; = % > hi—o Clky hp €11€11,, in contradiction
to the fact that {h,, €3, hy e11€1a, ..., hyerren,, } is a K-basis of Ox,,. Therefore we

obtain
HPﬂK(R/K[xo])<Z) Z dlmK < hfn, Ce ,hflyl, P hfgla ce ,]’Lfgl,g >K
e
= ZVJ' = Z dimK<OX7pj)
Jj=1 ijXsm

and the proposition is completely proved. O

Example 3.3.20. Let us go back to Example 3.3.6. We see that the 0-dimensional
complete intersection X C P2 is not smooth. Also, we have deg(X) =9, s=7,0=5
(the number of smooth points of X), and the Kéhler different is generated by one
element which vanishes at two points in support of X. It is not difficult to calculate

the following Hilbert functions:

HF 1136899
HF 0 (r/Klzo) 000013677

Thus the Hilbert polynomial of the Kéhler different Jx(R/K|xo]) satisfies

HPy, (r/k(wo))(2) =deg(X) = (s —0) =T>5=p0= ) dimK(OX,pj)

pjexsm
and its regularity index is ri(Vx(R/K|zo])) =7 < 2rg = 8.

According to [GM, Proposition 1.1], we can find a minimal system {F},..., F,}
of generators of the homogeneous vanishing ideal Zx such that deg(F};) < rx + 1 for
all j = 1,...,r. Since Ok (R/K|zo]) is generated by n-minors of the Jacobian matrix
J = (%)izl .» it follows that Vg (R/K|xo]) is generated in degree < nrx. In

the special g;slémghat X is a 0-dimensional smooth subscheme of P}, we can find a
homogeneous element h € Uy (R/K[wo])q for some d > 0 such that h ¢ (J;_, (p;)a by
a similar argument as in the proof of Proposition 3.3.19. By Lemma 2.3.11, such an
element h is a non-zerodivisor of R.

1 d > nrg and (9xc(R/K[2o])urn € U (by), then (0 (R/Klwo])ury)r € by for
some j € {1,...,s}, and hence the element h cannot exist. Thus h can be chosen such
that deg(h) = d < nrx. Moreover, if {fi,..., faegx)} is a K-basis of R, , then the set
{hfi, . hfaegx)} is a K-basis of Ux (R/K[20])dtry-

We summarize these arguments here.

Corollary 3.3.21. Let X C P% be a 0-dimensional smooth scheme. Then we have
HPy, (r/K[zo)) (2) = deg(X) and ri(Vx (R/K[xo])) < rx(n+1).
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Corollary 3.3.22. Let X C P% be a 0-dimensional smooth scheme such that
Ix = ((Zx)ay)p- Then Ox(R/K|zo)) is generated by elements of degree n(ax —1) and

n(ax — 1) <ri(Ix(R/K[zo])) < n(ax — 1) + rx.

Proof. If n = 1, then X is a complete intersection with Zyx = (F7) € P. This implies
Ui (R/K[xo]) = (0F1/0z1) and OF;/0z, is a non-zerodivisor of R of degree rx =
ax — 1 (see Corollary 3.3.5). Thus we have ri(dx(R/Klx])) = 2rx = 2(ax — 1),
and the claim follows. Now we suppose that n > 2. Clearly, we have V5 (R/K|xo)) =
(O (R/K[o])n(ax—1) ) r and n(ax—1) < ri(¥x(R/K[xo])). Notice that n(ax—1)+rx <
rx(n + 1) holds true, since ax < rx + 1 (see [GM, Proposition 1.1]). In this case,
there is a non-zerodivisor h of R contained in ¥x(R/K[%0])n(ax—1) by the argument
before Corollary 3.3.21. Let fi,..., faegx) € Rry be a K-basis of R,,. Then we have
hf; € Ox(R/K[xo])nax—1)+ry for all j € {1,... deg(X)}, and

deg(X) = dlmK < hfl, c. 7hfdeg(X) >K S HF,gK(R/K[xO])(n(aX — 1) -+ Tx) S deg(X)

This implies that HFy, (r/k(zo))(n(ax — 1) + rx) = deg(X), and therefore we get
ri(x (R/K[zo))) < n(ax — 1) + rx, as desired. O

Example 3.3.23. Let us consider the O-dimensional scheme X C I% with the ho-
mogeneous vanishing ideal given by Zx = (Fi, Fy, F3) C Q[Xo, X, X3], where F} =
XoX1 Xy — X X2 - X1 X2+ X3, Fy = X2Xy —2Xo X3+ X3, and F3 = X3 X; — XZX?+
Xo X3 — X{+2X2X2 —2X X3 —2X, X3+2X3. A homogeneous primary decomposition
of Zx is given by

Tx = P1 NPFo NPBs NPy NP2 NP

where By = (X1, Xa), P2 = (X7 — Xo, Xo), B3 = (X1 + Xo, Xo — Xo), Ps = (X3, Xo —
Xo), Bs = (X; — Xo, Xo — Xo), and P = (X7 + X2, X3). So, we get Supp(X) =
{p1,---,p6}, Xsm = {p1,---,P1,06}, 0 = 5, and deg(X) = 9. In particular, X is not
smooth at ps, and so it is not smooth. A calculation gives us the following Hilbert

functions:
HFx :136899--.

HFy, (r/Kwo)) :000002466---

Thus we obtain HPy, (r/kzo)(2) = > dimg(Oxp,) = 6 < deg(X) — (s — o) = 8,
pjexsm

and ri(Vx (R/K|[zo])) =7 < 2rx = 8.
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Let Y C X be the subscheme defined by Zy = 1 NP NP3 NP, NP C P. Then

Y is a smooth subscheme of X of degree 6. Moreover, we have

HFy :13566---
HFﬁK(Ry/K[xO]) :00013566---

Hence we get HPy, (g, /k[z0])(2) = deg(Y) = 6 and 1i(Vx (Ry/K[zo])) = 6 = 2ry.

Remark 3.3.24. Let K be a perfect field, let n > 2, let X C P be a reduced 0-
dimensional scheme, and let Supp(X) = {p1,...,ps}. It follows from Corollary 3.3.21
that ng(”“) € Ix(R/K]|xo]). However, another non-zerodivisor of R contained in
Ui (R/K|[xg]) of smaller degree can be found in terms of a minimal system of generators
of Zx as follows. In view of [DK, Proposition 5.1], we suppose that Zx has a minimal
homogeneous system of generators {Fi, ..., F,.} such that {Fy,..., F,} is a P-regular
sequence and (F, ..., F,)Pp, = B; Py, for j = 1,...,s. It follows that the ideal J =
(Fy, ..., F,) defines a O-dimensional complete intersection W C P% which is reduced at
the points of X. Since K is perfect, the scheme W is also smooth at the points of X. By
the Jacobian criterion for smoothness 3.3.4, we have (O(F1, ..., [5,)/0(x1, ..., 2,))p, 70
in K(p;) forj=1,...,s. Put A=0(Fy,..., F,)/0(z1,...,2,) € Ig(R/K[xo])a C Ra
with d = Z?:l deg(F;) —n. Since Zx is generated in degree < rx +1, we have d < nrx.
An application of Lemma 2.3.11 yields that A is a non-zerodivisor of R.

If X = {p1,...,ps} € P% is a projective point set, we may omit the assumption
that K is perfect. Because if the scheme W is reduced at the point p; of X then
Ow,p, = K(p;) = K, and hence W is also smooth at p;.



|Chapter 4

Differents and Uniformity of

0O-Dimensional Schemes

Given a 0-dimensional scheme X in the projective n-space P over an arbitrary field K
such that Supp(X) N Z*(X,) = 0, we are interested in studying relations between the
geometry of the scheme and the algebraic structure of the Noether, Dedekind, and
Kahler differents. Explicitly, we want to find out some characterizations of uniformity
properties of X in terms of these differents. The techniques we use in this chapter are
inspired by those of Martin Kreuzer and his coworkers in their study of 0-dimensional
schemes in P} (cf. [GKR], [KK], [Kr2], [Kr3], [Kr4], [KR1], and [GK]).

In Section 4.1, we start by generalizing the definition of the Cayley-Bacharach
scheme (CB-scheme) in P over an arbitrary field K. This notion was introduced
and studied for projective point sets in [GKR] and for 0-dimensional schemes over an
algebraically closed field in [Kr2]. The first main result is then Theorem 4.1.7 which
gives a characterization of CB-schemes in terms of their Dedekind differents. This
characterization also shows that the CB-scheme property can be shown by checking
a particular homogeneous component of the Dedekind different (see Corollary 4.1.9),
provides some descriptions of the Hilbert function, and determines the regularity in-
dex of the Dedekind different for a 0-dimensional locally Gorenstein CB-scheme (see
Propositions 4.1.11 and 4.1.12). Furthermore, when X is a 0-dimensional smooth CB-
scheme, we can determine X to be an arithmetically Gorenstein scheme (respectively,
a complete intersection) by looking at the Hilbert function of the Dedekind differ-
ent (respectively, the Kahler different) at degree ryx, where rx is the regularity index
of HFx (see Proposition 4.1.15). The remainder of this section is devoted to dis-
cussing the Cayley-Bacharach property of degree d (CBP(d)) of the scheme X, where
0 <d<rx—1. We give a sufficient condition for CBP(d) in terms of the Dedekind
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different (see Proposition 4.1.23). Also, we characterize CBP(d) in terms of the con-
ductor of R in a particular extension ring which is the integral closure of R if X is
reduced (see Proposition 4.1.26) and present a generalization of the Dedekind formula
for the conductor and the Dedekind complementary module which is found in [GKR]
(see Proposition 4.1.27).

Section 4.2 is concerned with the study of a particular class of 0-dimensional schemes
in P% whose Hilbert functions are as large as possible, namely the schemes having
generic Hilbert function. More precisely, we first indicate, in Lemma 4.2.2, that a
0-dimensional scheme X C P%, which has K-rational support and generic Hilbert
function, has CBP(d) for d = 0,...,rx — 2. However, not all such schemes are CB-
schemes (see Remark 4.2.3). Then we generalize some characterizations of arithmeti-
cally Gorenstein property for projective point sets found in [GO, Section 3-4] to reduced
0O-dimensional schemes (see Proposition 4.2.4 and Corollary 4.2.5). Next we restrict our
attention to projective point sets X = {py,...,ps} C P%. We demonstrate that X has
generic Hilbert function with s = ("J"jf—l) if and only if it is a CB-scheme and its
Kahler different equals the n-th power of the conductor of R in its integral closure
(see Proposition 4.2.7). Moreover, we use the Kéhler different to provide some suf-
ficient conditions for Cayley-Bacharach properties (see Propositions 4.2.9 and 4.2.11)
and we characterize projective point sets having generic Hilbert function under some

additional hypotheses (see Propositions 4.2.7 and 4.2.13).

In Section 4.3, we use Liaison theory to explore Cayley-Bacharach properties of
O-dimensional schemes X in P%. This approach was initiated by A.V. Geramita,
M. Kreuzer, and L. Robbiano [GKR]. They showed that a projective point set X, which
is contained in a reduced 0-dimensional complete intersection W, is a CB-scheme if and
only if there exists a homogeneous polynomial of degree rw — rx in the homogeneous
vanishing ideal of the complement of X in W which does not vanish at any point of X.
This result is generalized in Theorem 4.3.6 for 0-dimensional schemes contained in a
0-dimensional arithmetically Gorenstein scheme. Due to this theorem, we character-
ize CBP(d) in terms of the Dedekind complementary module (see Corollary 4.3.9 and
Theorem 4.3.10) and describe the Hilbert function of the Dedekind different (Propo-
sition 4.3.12). We also show that if two 0-dimensional schemes X and Y are linked
by a 0-dimensional arithmetically Gorenstein scheme W and p; € Supp(X), then there
is a 1-1 correspondence between pj-subschemes of X and schemes containing Y as a
p;-subscheme (see Lemma 4.3.14). Furthermore, we apply this correspondence to gen-
eralize a result of [KR1] (see Theorem 4.3.15).



4.1. Differents and the Cayley-Bacharach Property 103

In the final section 4.4 we investigate higher uniformities for a 0-dimensional scheme
X C P} with K-rational support. We say that X is (7, j)-uniform if every subscheme
Y C X of degree deg(Y) = deg(X) — i satisfies HFy(j) = HFx(j). When X is locally
Gorenstein and (7, j)-uniform, we describe relations between the Dedekind different
and the homogeneous saturated ideals of maximal p;-subschemes of X (see Proposi-
tions 4.4.7 and 4.4.10). By using these relations, we give some characterizations of
(2, j)-uniformity (see Propositions 4.4.12 and 4.4.15). Additionally, we find a class
of CB-schemes which are not (2, rx — 1)-uniformity (see Proposition 4.4.18). We end
this section with some results (see Propositions 4.4.20 and 4.4.21) about cohomological
uniformity.

Throughout this chapter we work over an arbitrary field K. We let X C P% be a
O-dimensional scheme, let Zx C P = K[ X, ..., X,,] be the homogeneous vanishing ideal
of X, and let R = P/Zx be the homogeneous coordinate ring of X in P%. We always
assume that no point of the support of X lies on Z7(Xj), and we denote the image
of X; in R by x; for ¢ = 0,...,n. It is necessary to keep in mind that xy is not a

zerodivisor of R and R is a graded-free K[zg]-module of rank m = deg(X).

4.1 Differents and the Cayley-Bacharach Property

Let us start this section by recalling from Section 2.3 the following notation. Let
X C P% be a 0-dimensional scheme, and let Supp(X) = {p;,...,ps} for some s > 1.
We let s; = dimg K(p;) = dimg(Ox,p,/mxyp,) for j = 1,...,s. For any element
a € Oxp,, we set p(a) = min{i € N | (0,...,0,aT},0,...,0) € %(R)} and v(a) =
max{ p(ab) | b € Oxp, \ {0} }, where7: R — R= [T;-, Oxp,[T}] is the injection given
by i(f) = (fp T4, -, [, T7) for f € R; with ¢ > 0.

Given a maximal p;-subscheme Y C X, we let s; € &(Ox,,) be a socle element

of Ox,p, corresponding to Y. According to Proposition 2.3.21(iv), we can take a set

{ej1, .-, €} C© Oxyp, such that whose residue classes form a K-basis of K(p;) and
Tyx = (fi s fJ’-k%j>R, where {f};, ... ,f;%j} is the set of minimal separators of Y in X
(w.rt. s; and {ej1,...,€j,,}), ie,
* ~ n(ejk; s5)
fjkj = 1((0, c. 7076]"@7‘8]'7’]' 787 ,0, Ce ,O))

for all k; € {1,...,5}. Theset {fj1,..., fjx}, where fj, = xgx_ﬂ(ejk"sj)f;kj for k; =
1,...,;, is the set of separators of Y in X (w.r.t. s; and {e;1,...,¢j,,}). Obviously,

we have (Zy/x)ry, = (fj1,-- -, fjs;) k- The maximal degree of minimal separators of Y
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in X is vy;x = max{deg(f, ) | kj = 1,...,3 }. Notice that vy,x does not depend

j
on a specific choice of a set of minimal separators and vy x = v(s}) for every element
s € 5j0x,, \ {0} (see Lemma 2.3.15).

Recall from Definition 2.3.23 that, for every point p; € Supp(X), the degree of p,

in X is given by
degy (p;) = min { vy x | Y is a maximal p;-subscheme of X }.

It is clear that degx(pj) < rx for all j = 1,...,s. In case all points of Supp(X) have

the maximum possible degree rx, we have the following notion.

Definition 4.1.1. A 0-dimensional scheme X C P’ is called a Cayley-Bacharach
scheme (in short, CB-scheme) if every point p; € Supp(X) has degree degx(p;) = x.

First of all, we give an example which shows that a 0-dimensional scheme X C P}
with X(K') € Supp(X) can be a CB-scheme.

Example 4.1.2. Let X C I% be the reduced 0-dimensional scheme of degree 14 with
support Supp(X) = {p1,...,p12}, wherep; = (1:0:0),po=(1:1:0),p3=(1:1:1),
pr=1:0:1),ps=01:—-1:1),pg=(1:1:=1),pr=(1:0:-1),ps=(1:2:0),
po=(1:2:1), pro=(1:2:—1), pyy corresponds to Py; = (2XZ + X7, X5), and pio
corresponds to Pio = (X, X2 + 7X2). Clearly, X does not have Q-rational support,

since the two points p;; and pi2 are not contained in X(Q). A calculation gives us

HFx : 1361014 14---
HFx\py: 136101313--- (j=1,...,10)
HFx\ ()0 136101212
HFx\(poy 0 136 91212

We have ax\(p,1/x = Tx\{p;} = rx = 4 for j =1,...,11. This implies degy(p;) = 4 for
J=1,...,11. We also see that ax\(p,1/x = 3 < rx\{p1n} = 7x = 4. However, it follows
from HFz, . . .(3) =1 < a2 = dimg Ox,,, = 2 that there is a minimal separator
of X'\ {p12} in X having maximal degree 4. In other words, we have degy(pi2) = 4.

Hence the scheme X is a CB-scheme.

Remark 4.1.3. Given a 0-dimensional scheme X C P, we consider the following two
statements:
(a) The scheme X is a CB-scheme.

(b) Every hypersurface of degree rx — 1 which contains a maximal p;-subscheme

Y C X automatically contains X.
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When the scheme X has K-rational support, then the statements (a) and (b) are

equivalent. Indeed, we have s; = dimg K(p;) =1 forall j =1,...,s and
degy(p;) = min{ ay/x | Y is a maximal p;-subscheme of X }.

It follows that X is a CB-scheme if and only if, for each point p; € Supp(X), every
maximal p;-subscheme Y C X has ay/x = rx. Thus (a) is clearly equivalent to (b).

In general, we observe that (b) implies (a), but (a) does not imply (b). For example,
the reduced 0-dimensional scheme X C IP’(%D given in Example 4.1.2 is a CB-scheme. But

X\ [pra}/x = 3 < Ix\{p1o} = Tx = 4, and so the statement (b) is not satisfied.

The following proposition gives a simple criterion for detecting whether a given

0-dimensional scheme X C P} is a CB-scheme.

Proposition 4.1.4. The following conditions are equivalent.
(i) The scheme X is a CB-scheme.
(ii) For all j € {1,...,s} and s; € &(Oxp,) \ {0} we have v(s;) = rx.
(iii) If Y C X is a mazimal p;-subscheme and {fj1,..., fj.,} is a set of separators
of Y in X, then there exists k;j € {1,..., 3} such that xo 1 fi,.
(w) For all p; € Supp(X), every mazimal pj-subscheme Y C X satisfies

dimK(Iy/X)rx_l < x;.

Proof. (i)<(ii): This follows from Definition 4.1.1 and Proposition 2.3.17.
N : re—deg(fix) L, o L,
(i) (iii): If we write fjr, = x, i ik, With ff € Rdeg(f}‘kj) \:EoRdeg(f;kj)fl for

k; = 1,...,;, then the set {ffp ceey f;‘%j} is a set of minimal separators of Y in X.
Hence the claim is clearly true.

(i) (iv): For a maximal p;-subscheme Y C X, we always have dimg (Zy/x); < 7
for i > 0. Also, we see that dimg(Zy/x),,—1 = 2; if and only if deg(fj’.kkj) <rx —1 for
all k; =1,..., 5. Thus the conclusion follows. m

Example 4.1.5. Let X C I% be the reduced 0-dimensional scheme with support

Supp(X) = {p1,...,pr}, where p; = (1 :0:0), pp = (1:1:0), p3 =(1:1:1),
pp=(1:0:1),ps=(1:—-1:1), ps = (1:2:3), and p; corresponds to P, =

(2X2 + X%, X,). We have 5, = -+ = 35 = 1 and s¢; = 2. The Hilbert functions of X
and its subschemes are computed as follows
HFx : 13688---

HFX\{pj}Z 13677--- (j:1,...,6)
HFs\(pr 0 13666---.
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From this we deduce (Zx\(p;1/x)r—1 = (Tx\(p;3/x)2 = (0) for all j = 1,...,7. Hence
Proposition 4.1.4 yields that X is a CB-scheme.

Next we consider the subscheme Y = X\ {ps} of X. Then the support of Y is
Supp(Y) = {p1,...,ps5,pr}. The Hilbert functions of Y and its subschemes are

HFy : 13677
HF v\ 13566--- (j=1,3,5)
HFy\ ()0 13666--- (5 =2,4)
HFy\(pry 0 13555--

We see that dimK<IY\{pj}/Y>’r'y—l = dimK(Iy\{pj}/y)Q =1= dlmK Oy’pj for j = 1, 3, 5.
Thus the scheme Y is not a CB-scheme by Proposition 4.1.4.

Lemma 4.1.6. A homogeneous element p € Hom 1, (R, K[zo]) satisfies Anng(p)=(0)
if and only if for every p; € Supp(X) and for every maximal pj-subscheme Y C X we
have f - # 0 for any element f € (Zyx)r \ {0}

Proof. If Anng(p) = (0), then it is clear that f-¢ # 0 for all f € (Zy/x)r, \ {0}.
Conversely, if g - ¢ = 0 for some g € R; \ {0} with ¢ > 0, then we may assume that
gp, 7# 0 for some j € {1,...,s}. Let U = (gpj>(gx7pj. It is clear that U # (0), and so
UN&(Oxp,) # (0), since Ass(U) = {mx,, } (see [Kud, Chapter IV, §3, p. 189]). Thus
we can find an element a € Oxp, \ {0} such that s; = ag,, € &(Ox,,)\{0}. Now we let
f=70,...,0,57;%,0,...,0)) € Ry, and h =17'((0,...,0,aT}%,0,...,0)) € R,,.
Then gh = 24 f and 23f - ¢ = 0. Since x is a non-zerodivisor on Hom (. (R, K[xo])
(cf. [Kr2, Lemma 1.3]), we get f - ¢ = 0. Moreover, the ideal (f)g defines a maximal
pj-subscheme Y C X by Proposition 2.3.17. Hence the conclusion follows. O

At this point we are able to characterize Cayley-Bacharach schemes in terms of
their Dedekind differents.

Theorem 4.1.7. Let X C P} be a 0-dimensional locally Gorenstein scheme and let

Supp(X) = {p1,...,ps}. The following conditions are equivalent.

(i) The scheme X is a CB-scheme.
(ii) For each p; € Supp(X), every mazimal pj-subscheme Y C X satisfies

25" (Zujx)re L Ip(R/K o] )ore—1-
If, moreover, the field K is infinite, the above conditions are equivalent to:

(1ii) There is an element g € (Cr/K(zo))—re Such that Anng(g) = (0).

X
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Proof. (1)=(ii): Since X is locally Gorenstein, there is for each point p; a uniquely de-
termined maximal p;-subscheme Y; CX corresponding to a socle element s; € &(Ox,p,)
of Oxp,. Let {ej1,..., ¢} € Ox,, be such that whose residue classes form a K-basis
of K(p;), and let {fﬂ, oo fi b (resp. {fin, ..o, [ }) be a set of minimal separa-
tors (resp. separators) of Y; in X with respect to s; and {eji,..., €., }. Since X is
a CB-scheme, for every j € {1,...,s} there is an index k; € {1,..., 5} such that
fie, = f]’.*kj ¢ 2ol 1. We assume without loss of generality that f;; = f; & zoR,
forj=1,...,s. Let us fix an index j € {1,...,s}. Then we can define a K-linear map
?; : Ry — K such that 3,(vo R, 1) = (0) and ,(f;1) # 0. By [Kr2, Lemma 1.5], we
may lift @, to obtain a K|zo]-linear map ¢; : R — K[zo] of degree —rx, i.e., p; is an
element of Hom e, (R, K[zo]) ., such that ¢;|r, = ®;, especially, ¢;(fj1) # 0.

Given a homogeneous element f € (Zy, /x)r, \{0}, we proceed to show that f-¢; # 0.
According to Proposition 2.3.21, we have Ty /x = (f)*™" = (f;1)*". This implies that
zkfi € (f) for some k > 0, and so we may write zf f;; = fh for some h € Ry \ {0}.
Consequently, we have (f - ¢;)(h) = @;(hf) = p;(x§fi1) = zkei(fj1) # 0. From this
we conclude f - ; # 0 for all f € (Zy,/x)r, \ {0}

Since Cryxr,) = P(Hom e, (R, K[zo])), where ® is the monomorphism of graded
R-modules in Definition 3.2.4, we find g} = ®(p;) € (€r/K(zo))—ryx Such that f - g7 # 0
for all f € (Zy,/x)r, \ {0}. By Proposition 3.2.5, we have 2§ € ¥p(R/K[zo]). This

enables us to write g5 = xo ) 9; € (Cr/K(g))—rx © (Ray)—ry With g7 € R, \ {0}. We
have fji, - g7 # 0 for kj = 1,..., 5. Tt follows from Lemma 2.3.25 that (g;),, is a unit
element of Ox,,. Therefore, for every j € {1,...,s}, we have constructed an element

€ (€r/Kao))—ry Such that g7 = xam‘ﬁ;‘ with g7 € R,, \ {0} and (g}),, € Oxp, \mx ;-
Now we assume for a contradiction that there is a maximal p;-subscheme Y; C X
such that
25" (v, %) © Ip(R/K [20])2re-1-

For such an index j, let g5 = x4 ) 9; € (€r/K[z])—ry be constructed as above. To get a

contradiction, it suffices to show g | f;1. We write 7(f;1) = (0,...,0 eﬂs]TTX 0,...,0)
and [ =7"1((0,...,0,e;1(g;),,'s;T;*,0,...,0)). Then 0 # "~ 1f € 2y (Zy/x)r, and
fg; = 25" fin, espemally, e ﬁD(R/K[xO])QTX_l. Also, we observe that

oy gy =g (g ) = g gy =g = g
Thus it follows from €g k(s - Ip(R/K[zo]) C R that x5 fj1 € Ryy—1 \ {0}, and hence
we obtain fj; € zgR,,_1 or zo | fj1, as desired.

(ii)=-(i): Suppose that the scheme X is not a CB-scheme. Then there is a maximal
p;-subscheme Y; C X such that deg(fjkj) < rx —1forall k; =1,...,5. Notice
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rx—deg(f¥. ) rx—deg(f
that fj, = OX 7% 7k, 1D xOX Rdeg o) y forall kj = 1,...,3¢. Welet m =

deg(X), we let {t1,...,t,} be the K[zg)-basis of R introduced in Section 2.4, and we
let {t1,...,%,,} C Hompg, (R, K[xo]) be its dual basis. We remark that the element
tf is homogeneous of degree deg(t;) = —deg(ty) = —ny and ng < rx for k=1,...,m.
Also, we may write €r)xfsg] = (91,- -+ 9m ) geug & Lty Where gy = (1) = = 2Tng
with gy € Ropy—n, for k=1,...,m. By Lemma 2.3.25, there are ¢, . .. , Cjx; € K such

that f;1 - g, = Z:jzl cjijgrx_"’“ fir;- We calculate

%
TX 1 —2rx~\ __ _—rx—1 ~ _ rx—nip—1
fin - gr = xg* fjl (o " 9k) = 7 fitgr = g > Cjkjfjkj
kj=1
> rx— deg(f ) 1
TX—Nk *
=Xy > Cik;Tg Fik, € Raryg—ny—1-
k=1
L . 1
This implies z3* fj19x € Ropy—n,—1 for every k € {1,...,m}. Hence the element

xoxflfjl is contained in Yp(R/K[xo])ary—1. Similarly, we can show that ng*lfjkj is
a homogeneous element of degree 2rx — 1 of Vp(R/K[x¢])2r—1 for all k; = 2,..., ;.

Therefore we obtain

e Ty )y = (G ity 36 fi ) e € UD(R/K [0])2r, 1,

in contradiction to the assumption that :ch*l(IY JX)rx € Up(R/K [20])2rg—1-

Next we assume that the field K is infinite. We want to prove “(i)<>(iii)”. Suppose
that X is a CB-scheme and f;; = fj, ¢ 2R, 1 for j = 1,...,s. Then there are
elements @,, ..., %, € Homg(R,,, K) such that @;(zoR,, 1) = (0) and @;(f;1) # 0 for
all j € {1,...,s}. Since the field K is infinite, there are A\;,..., Ay € K such that
the K-linear map @ = > 7| \;p; satisfies B(woR,—1) = (0) and B(f;1) # 0 for all
j=1,...,s. Again [Kr2, Lemma 1.5] yields an element ¢ € Hom . (R, K[2o])-ry
such that ¢|g, = . For j € {1,...,s}, we can argue as in the proof of “(i)=-(ii)” to
get f - #0, where f € (Zy,/x)ry \ {0}. By Lemma 4.1.6, ¢ € Hom, (R, K[xo]) s,
satisfies Anng(¢) = (0). Thus we find g=®(p) € (€r/K(w])—ryx Such that AnnR( )= (0>

Conversely, let g € (€r/kzy))—rx With Anng(g) = (0), and let ¢ = @71(g). Clearly,
we have Anng(p) = (0). Assume that X is not a CB-scheme. Then there is an index

g € {1,..., s} such that degx(p,) <7rx. For such an index j, we shall show that fi1-=0.

(F5e)
Indeed, the assumption implies deg(f;k,) < rx and @(fjr,) = (ZL’O delli, Jk) =
rx—deg(f3, )
ZUOX &(Jjk; @(fir,) = 0forall kj =1,...,5. Let i > 0, and let h € R; be a non-zero

homogeneous element. If hf;; = 0, then (fjl -¢)(h) = 0. Suppose that hf;; # 0. In

this case, Lemma 2.3.25 enables us to write hf;; = ZZ;ZI cjijéfjkj for some elements
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Cjly- -+ Gy € K. Thus we have (fji - ¢)(h) = ¢(hfin) = (0 i ciraofin,) =
Zijl ¢k, wo@(fik,) = 0. Hence we obtain fj; - ¢ = 0, and therefore Anng(¢) # (0), a
contradiction. O

Given an arbitrary field K, if the condition (iii) of Theorem 4.1.7 is satisfied, then

X is a CB-scheme. However, the converse is not true, as the following example shows.

Example 4.1.8. Let X C Py be the projective point set consisting of three points
pr=(1:1:0,p=(1:0:1),andps =(1:1:1). We have HFx : 13 3---
and rg = 1. It is not difficult to check that X is a CB-scheme. A calculation gives
us (Crymyfao]) 1 = (01,92 )p,, Where g1 = xg%w; and gy = 257w, If g € (Crypyfmg)) -1,
then g is one of three forms: g1, g2, and g; + g2. We see that xo + 21 € Anng(gy),
To+x2 € Anng(g2), and xo+1+22 € Anng(gi1+9g2). Thus (€r/k,[z]) -1 cannot contain
an element g such that Anng(g) = (0). Hence the condition (iii) of Theorem 4.1.7 is
not satisfied in this case.

The following corollary is an immediate consequence of Theorem 4.1.7.
Corollary 4.1.9. Let X C P} be a 0-dimensional locally Gorenstein scheme.

(i) If X has K-rational support then it is a CB-scheme if and only if for every
subscheme Y C X of degree deg(Y) = deg(X) — 1 and for every separator fy of Y
in X we have xi ' fy & Op(R/K[x0])ary—1.-

(i) If the Dedekind different satisfies Op(R/K[xo])ary—1 = (0) then the scheme X is
a CB-scheme.

Example 4.1.10. Let X = {py,...,ps} be the projective point set in I%, where p; =
(1:0:0,po=(1:2:0),p3=(1:2:1),p4=(1:0:2),ps=(1:1:2), and
pe = (1:2:2). We sketch X in the affine plane D, (X,) = A as follows:

(0,2) o o o (2,2)

(0,0) e e (2,0

Then X has the Hilbert function HFx : 1 3 6 6--- and the regularity index rx = 2.
An application of Proposition 3.2.29 gives us the Dedekind different

Up(R/Qlwo]) = (23, 2123, 073, 77, 2077, ) = DR:.

i>4

This implies Up(R/Q[xo])2re—1 = Up(R/Q[z0])s = (0). Therefore Corollary 4.1.9(ii)
yields that X is a CB-scheme.
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Proposition 4.1.11. Let X C P% be a 0-dimensional locally Gorenstein CB-scheme.
Then the Hilbert function of Vp(R/K[xo]) satisfies HF g, (r/kzo) (1) = 0 for i < rx,
HFEy, (r/Kzo)) (1) = deg(X) for i > 2rx and

0 < HFyp(r/Klao) (rx) < -+ < HFyp(ryk(ae)) (2rx — 1) < HFy (/K 00)) (2rx) = deg(X).
In this case, the reqularity index of 9p(R/K|[zo)]) is exactly 2rx.

Proof. Since X is a CB-scheme, there are elements g7, ..., g} in (€g/x(z])—r, such that
g = x&ZTxﬁ; with g7 € R, and (g7),, € Oxp; \Mxp, (as in the proof of Theorem 4.1.7).
Let h € Up(R/K|xo]); with i < rg. Then we have h - g7 = J:ngxhg;‘ € R, = (0)
for j = 1,...,s. This implies hg; = 0, in particular, hy, - (gj),, = 0 in Ox,,
for all j € {1,...,s}. Since (gj),, is a unit of Ox,, for j = 1,...,s, we have to
get h,, = 0 for all j = 1,...,s. In other words, we have 7(h) = 0. So, we get
h = 0 (as 7 is an injection). Hence the Hilbert function of the Dedekind defferent
satisfies HFy, (r/K[zo) (1) = O for i < rx. Moreover, Proposition 3.2.5 yields that
0 < HEyp(r/k(ao]) (1) < HFgp (r/(mo)) (1 + 1) for @ > and HEy, (r/xc(ro)) (1) = deg(X)
for i > 2rx. Now we need to show that HFy, (r/k@,))(2rx — 1) < deg(X), i.e.,
Up(R/K[zo))2re—1 S Rope—1. But this follows from Theorem 4.1.7, since otherwise

we have xGX_I(IY/X)TX C ¥p(R/K]xo])2ry—1 for every maximal p;-subscheme Y C X
and thus X is not a CB-scheme. O

Now let ay, := min{i € Z | Ip(R/K][zo]); # (0) } be the initial degree of the
Dedekind different 9p(R/K|xo]). If X is a locally Gorenstein CB-scheme then we have
rx < ay, < 2rx. Our next proposition gives a bound for the Hilbert function of the
Dedekind different when X is a locally Gorenstein CB-scheme.

Proposition 4.1.12. Let K be an infinite field, and let X C P be a 0-dimensional
locally Gorenstein CB-scheme. Then for all i € 7 we have

HFﬁp(R/K[xo})@) S HFX(i — TX).

Moreover, let i be the smallest number such that HF g, (r/k(zo)) (t0) = HFx(ip —7x) > 0.
Then we have

(Z) HFﬁD(R/K[mD(i) = HFX(i — TX) for 1 > 1ig.
(ii) Vo (B/K[wo)) = { 9p(R/Klzo])ag,, 90 (R K o))y, 1, - I (R/Klzo])iy )
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Proof. Because X is a CB-scheme and K is infinite, there is a non-zerodivisor g € R,
such that ¢ = 257%G € (€r/Kr))-ry (see Theorem 4.1.7). For i < ryx or i > 2ry,
it follows from Proposition 4.1.11 that HFy, (r/k[z0)) (1) = HFx(i — rx). It remains to
consider the case rx < i < 2rx. In this case we have § - ¥p(R/K[xo]); C 2o  Ri_py.

Thus we obtain

HEy,(r/ ko)) (1) = dimg (Op(R/Klxo])s) = dimg (g - Ip(R/Klx]);)
< dimg (22 R;_,,) = HFx (i — rx).

Now we prove the additional claims. For (i), it suffices to prove the equality
HFEy, (r/K[z)) (0 + 1) = HFx(ip + 1 — rx). Let f € Rjy1-r, \ {0}. We may write
f =090 + 101 + - - - + 2,9, for some homogeneous elements gy, ..., g, € Rij—ry. By
assumption, we have § - Vp(R/K[x0])i, = 2o Riy_ry- There is h; € Ip(R/K[xo))s,
such that x%rxgj = gh; for every j € {0,...,n}. Hence

xo f = 23 (vogo + 191 + -+ Tugn) = Togho + T1Ghy + -+ - + TGha,
= g(xoho + z1hy + -+ - + x,hy)

and so 20" f € §-9p(R/K[x0])ips1. Thus we have 25 Riy 41—y = G- 9p(R/K[20])igs1-
In other words, we have HFy, (r/k(w)) (t0 + 1) = HFx(ig + 1 — rx).

To prove (ii), we let
W = {h € p(R/Kx])ipr1 | h= Y x;h;, h; € Ip(R/Klxo))i, }
j=0

be the subspace of ¥p(R/K[x¢])i+1 generated by Jp(R/K|xo])i,- We need to show
that W = 9p(R/K[zo])ig+1- Let h € Ip(R/K[xo])ig+1 \ {0}. Then there is an element
f € Riy4+1-ry such that gh = x%rx f. Using the same argument as in the proof of (i), we
get gh = :ch’Xf = g(xoho + x1hy + - - - + 2, hy) for some hg, hy, ..., h, € Ip(R/K|xo))i,-
This implies g(h—>_7_yx;h;) = 0. Since Annpg(g) = (0), we have h = > 7 x;h; € W.
Hence W = dp(R/K|x¢])iy+1, and the claim follows by induction. O

Corollary 4.1.13. Let K be an infinite field, and let X C P% be a 0-dimensional

smooth CB-scheme. Then we have

HEy, (r/K(wo)) (1) < HF g (r/K[wo)) (1) < HFx(i — 7%)

for all i € Z. If let iy be the smallest number such that HEy, (r/k(z0))(t0) = HFx(ig —
rx) > 0. Then the following claims hold:
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(i) HFy, (r/K20) (1) = HEx(i — rx) for i > .
(ii) Dx(R/Kxo]) = (Ix(R/K[w0])ay,, O (R/ K[wo])ay, 41, - - O (R/Kxo])io ) -
(i11) If, in addition, we have 9 (R/K|xo]); = Ux(R/K|xo))i for somei € {ig,...,2rx},
then ri(Vx (R/K[xo])) = 2rx.

Proof. This is a consequence of Proposition 4.1.12 and the fact that Ix(R/K|[z]) is a
subideal of ¥x(R/K|x]). O

Example 4.1.14. Let X = {py,...,p7} C Pf’@, where p; = (1:0:0:0), po=(1:1:
0:1),p3=(1:1:1:1),pa=(1:3:0:1),p5=(1:4:0:1),ps=(1:5:0:1),
and py = (1 :6:0:0). Then we have HFx : 1467 7--- and rx = 3. By using
Proposition 3.2.29, we see that the Noether-Dedekind different of R/Q[z,] is given by

Ux(R/Qlxo)) = (@ows, x) — 15207 + 150773 — 23,

3 39.2 2, 59 3 1074 4 41,5
TIT3 — PXIT3 A ST 1Ty — T3, T1T3 — 1703 ).

The Hilbert function of ¥x(R/Q[xo]) is HFy,(r/qzey : 001246 7 7---. Since
HFEy, (r/qwo)) (x — 1) = HFy,(r/gw)(2) = 1 # 0, we see that X is not a CB-scheme.
We also see that HFy, (r/qjz))(3) = 2 > 1 = HFx(3 — rx). Hence we cannot omit the
hypothesis that X is a CB-scheme in Proposition 4.1.12.

Our next proposition provides a characterization of O-dimensional arithmetically
Gorenstein schemes. Moreover, it gives an affirmative answer to a question posed
in [GH],[DM]: CB-scheme +(7) = Complete intersection? if X is a 0-dimensional

smooth subscheme of P%.

Proposition 4.1.15. Let X C P} be a 0-dimensional scheme.

(i) The scheme X is arithmetically Gorenstein if and only if it is a locally Gorenstein
CB-scheme and HFy, g/ k(o) (rx) 7 0.

(i) If X is smooth, then X is a complete intersection if and only if it is a CB-scheme
and HE g, (r/ K[z (1x) 7 0-

Proof. (i) Suppose that the scheme X is arithmetically Gorenstein. Then it is clearly
true that X is locally Gorenstein. By Proposition 3.2.8, there is a non-zerodivisor h of R
contained in ¥p(R/K[xo])r, and an element g € (Cr/k[z0])—rye Such that Anng(g) = (0).
Hence HFy,(r/k(z)) (x) # 0 and the scheme X is a CB-scheme by Theorem 4.1.7.
Conversely, we remark that if X is locally Gorenstein, then Jp(R/K|x¢]) is well-
defined. Since HFy, (r/K(wo) (1x) # 0, we let h € Up(R/K[zo])r, \ {0}. Then there
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is a point p; € Supp(X) such that h, # 0 in Ox,,. Because X is a CB-scheme, we
can argue as in the proof of Theorem 4.1.7 to get an element g5 € (Cr/k(wo))—ry \ {0}
such that g7 = z; QTXEj with g7 € R, and (g;),, € Oxp, \ mx,,. In Ox,., we have
hp; - (G5 )p; 7 0. This implies - g5 # 0, and hence h - g5 # 0 (as z¢ is a non-zerodivisor
of R). Furthermore, there is an element ¢ € K'\{0} such that ¢ = h-gj € Ry = K. Thus
h is a non-zerodivisor of R, and therefore the scheme X is arithmetically Gorenstein
by Proposition 3.2.8.

(ii) Obviously, if X is a complete intersection then it is a CB-scheme. More-
over, it follows from Corollary 3.3.5 that HFy, (r/k(z,])(7x) # 0. Next we prove the
converse. Since Vg (R/K[xog]) C Vx(R/K[xo]) and HFy, (r/k[z])(Tx) # 0, we have
HFy, (r/k(wo)) (rx) # 0. By (i), the 0-dimensional smooth scheme X is arithmetically
Gorenstein. Therefore, by Proposition 3.3.12, the scheme X is a complete intersection,

as we wanted to show. O

A similar result as [Kr2, Corollary 2.5] is given by the following corollary.

Corollary 4.1.16. Let X C Py be a 0-dimensional scheme. Then X is arithmetically
Gorenstein if and only if it is a locally Gorenstein CB-scheme and HFx(i) + HFx (rg —
i—1) =deg(X) foralli € Z.

Proof. This result follows from Proposition 3.2.8 and Theorem 4.1.7. Here we notice
that if X is a locally Gorenstein CB-scheme and Ax = deg(X) — HFx(rx — 1) = 1 then
(Cr/Kwo))—rx = (9)x With Anng(g) = (0). Indeed, it follows from Ax = 1 that the K-
vector space (€g/xlzy])—ry iS generated by one element g = z,°"*g, where § € R, \ {0}.
Since X is a CB-scheme, a similar argument as in the proof of Theorem 4.1.7 implies
that the element g, is a unit of Ox,, for every j € {1,...,s}. By Lemma 2.3.11, we

have that ¢ is a non-zerodivisor of R, and hence Anng(g) = (0). O

Corollary 4.1.17. Let X be a 0-dimensional smooth CB-scheme in the projective
plane P If HF g, (r/K[wo)) (rx + 1) = HFx(1), then 9k (R/K[xo]) = Ix(R/K|[x)).

Proof. We see that if HF . (r)k[z,]) (7x) 70, then the scheme X is a complete intersection
by Proposition 4.1.15, and so we get Vg (R/K|x]) = Ux(R/K|[zo]). Now we suppose
HFy, (r/K[zo))(Tx) = 0. Then we have to get HFy, (r/k[z])(7x) = 0. Otherwise, it
follows from Proposition 4.1.15 that X is arithmetically Gorenstein. Since n = 2, it is
well known (cf. [Ser, Proposition 7]) that X is arithmetically Gorenstein if and only if

it is a complete intersection, and hence HFy, (g k(s (rx) # 0, a contradiction.
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Next, by the hypothesis and Corollary 4.1.13, we have HFy, (r/k(wo)(rx + 1) =
HFy, (r/K[w)) (rx+1) = HFx(1). From this we argue as in the proof of Proposition 4.1.12
to obtain HF@K(R/K[QSOD(TX +1i) = HF@X(R/K[QCO])(TX + ) for all ¢ > 1. Therefore the
conclusion follows. O

The following two examples show how one can apply Proposition 4.1.15 in practice.

Example 4.1.18. Let X = {p;,...,ps} CP{ be given by p; = (1:0:0:0), po = (1:
1:0:0),p3=(1:-1:0:0),p4=(1:2:0:0),ps=(1:0:1:1),pg=(1:0:0:1),
pr=(1:0:=1:1),and pg = (1:0:2:1). Here {p1,p2,p3,p4} C L1 = Z7(X3, X3)
and {ps, ps, p7, P8} C Lo = Z7(X3— X, X1), where L; and L, are two skew lines in IP’%.
Then we have HFx : 146 8 8--- and rx = 3. It is easy to check that X is a CB-scheme.

Also, we have
2.2 3 1.4 3 3,14
Ux(R/Q[xo]) = (323 — 227y — 273, Tyw3 — 27975 + £ 3,
2 2 3 4 4 3 4 .4
rgr] + dxox] — 3x7, ry + 1bxoxy — 10x] — x35)

and HFy, (r/qze)) : 000046 88---, especially, HFy, (r/q[z,)) (7x) = 0. Thus it follows

from Proposition 4.1.15 that X is not arithmetically Gorenstein.

Example 4.1.19. Let X C }P’f@ be the projective point set consisting of eight points
p1,--.,ps on the twisted cubic curve C' = { (u* : v*v : wv® : v®) | (u:v) € Py}, where
pr=01:0:0:0),p=(1:1:1:1),p3=(1:=1:1:-1),py=(1:2:4:8),p5=
(1:—2:4:-8),ps=(8:4:2:1),py=(1:3:9:27),and pg = (1:—-3:9:-27).
Here HFx : 1478 8--- and rx = 3. It is well known (cf. [GO, Section 4]) that X is a
CB-scheme. Moreover, we have 9, (R/Q[xzo]) = (h1, ha, hs, hy), where

834905041 3 10864852683 3 118190989 3 985439798 .4

ha :x0x2x§ F 26005556898 Y073 ~ 234527784497 173 6005556898 L2783 T 23452778449 L3>
hy =20T1T5 — 33isarmiss 073 — asimarisiis V1T3 T asisarrsian 2T + 5assarrsaio T
hy =625+ 53isarrass T0T3 ~ SatarisidsV1T3 ~ TkarisinV2T3 + agisarsids U

ha =0+ S3iTaono9m030 L0735 — sii00001T64 T3 — 57720009666 0203 T 34is0003116175:

Notice that deg(h;) =4 for all j = 1,...,4. Thus the Hilbert function of the Kéhler
different ¥ (R/Qlxo]) satisfies HF g, (r/qlwo)) ("x) = HF g, (r/Qlzo))(3) = 0, and hence X
is not a complete intersection by Proposition 4.1.15. On the other hand, the Noether-
Dedekind different Jx(R/Q[zo]) is a principal ideal of R generated by

.3 3372 _ 1561 6433 301,. .2 979, .2 49, 2 , 145, 3
h = x5 — S5 20%3 — T35 LoT123 + 576 ToTa®3 + 556 Tols — Jog 0125 — g33L2%3 + 5673

Therefore Proposition 4.1.15 implies that the scheme X is arithmetically Gorenstein
and HFy, (r/q[o) (1) = HFx (i — 7x) for all 7 € Z.
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Proposition 4.1.20. Let X C P} be a 0-dimensional locally Gorenstein scheme with
Supp(X) = {p1,...,ps}. If there exists an index j € {1,...,s} such that p; ¢ X(K) and
the mazimal p;-subscheme Y; C X satisfies oy, ;x = rx, then X cannot be arithmetically

Gorenstein.

Proof. We only need to show that Ax > 2. For this purpose, we let L f denote the image
of each element f € R in R = R/(xo). Let »; = dimg K (p;), let {fj1,..., fi;} € Rry
be a set of separators of Y; in X. Since p; ¢ X(K), we have »; > 2. We claim that
the set {Lfj1,..., Lfj.} is K-linearly independent. Indeed, suppose that there are
Ci1y -+ Ciy; € K, mot all equal to zero, such that c;iLfj1 + -+ + ¢jo, L, = 0. It
follows from dimg < fits s fing >K = »; that f =cjfj + -+ ¢, fj; 18 @ non-zero
element of (Zy, /x)r,. Clearly, we have Lf = 0, and so we may write f = zoh for some
h € R.,_1\ {0}. We also observe that h € (f)*™ = Ty /x (see Lemma 2.3.12 and
Proposition 2.3.21). This tells us that ay,/x < rx, in contradiction to our hypothesis
that ay,/x = rx. Thus the set {Lf;1,..., Lfj,,} is K-linearly independent. From this
we obtain Ax = dimg ETX > dimg < Lfj1, .., Lfj, > = s; > 2, as we wanted. O

Definition 4.1.21. Let d > 0, let X C P% be a 0O-dimensional scheme, and let
Supp(X) = {p1,...,ps}. We say that X has the Cayley-Bacharach property of
degree d (in short, X has CBP(d)) if every point p; € Supp(X) has degx(p;) > d + 1.

In this terminology, X is a CB-scheme if and only if X has CBP(rx — 1). Moreover,
if X has CBP(d), then X has CBP(d — 1), and every 0-dimensional scheme X with
deg(X) > 2 has CBP(0). Since degx(p;) < rx for every point p; € Supp(X), this
implies that the number ry — 1 is the largest degree d > 0 such that X can have
the Cayley-Bacharach property of degree d. Therefore it is enough to consider the
Cayley-Bacharach property in degree d € {0,...,rx — 1}.

Let7: R— R = [[;—; Ox,,[T;] be the injection given by i(f) = (f,, 11, .., fp.T%)
for f € R; with i > 0. Recall that, for all j € {1,...,s} and a € Ox,,, we have u(a) =
min{i € N | (0,...,0,aT7},0,...,0) € 7(R)} and v(a) = max{u(ab) | b € Ox,p, \ {0}}.
Proposition 4.1.22. Let X C P} be a 0-dimensional scheme, let 0 < d <rx—1, and

let Supp(X) = {p1,...,ps}. Then the following statements are equivalent.

(i) The scheme X has CBP(d).
(ii) For all j € {1,...,s} and s; € &(Ox,,), we have v(s;) > d + 1.

(i4i) If Y C X is a mazimal p;-subscheme and {f;1,..., fj.,} is a set of separators
of Y in X, then there exists k; € {1..., 5} such that zy**{ fik, -
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() For each p; € Supp(X), every mazimal pj-subscheme Y C X satisfies

dimK(Iy/X)d < ;.

Proof. This follows by a similar argument as in the proof of Proposition 4.1.4. O

Proposition 4.1.23. Let X C P} be a 0-dimensional locally Gorenstein scheme, and
let 0 < d < rx—1. If for every p; € Supp(X) the mazimal p;-subscheme Y; C X

satisfies
Ig(IYj/X)rx {q Ip(R/K[xo])ry+a

then X has CBP(d).
In particular, if X satisfies Vp(R/K[xo])re+a = (0) then X has CBP(d).

Proof. Suppose for contradiction that X does not have CBP(d). By Proposition 4.1.22,
there is an index j € {1,...,s} such that the maximal p;-subscheme Y; C X has

dimg (Zy,/x)a = 2. Let {f1,.... f..} (resp. {fj1,..., fj»;}) De a set of minimal

separators (resp. separators) of Y; in X. Then deg(fjkj) <dand fj, = TX el )f]k
for all k; € {1...,5}. Let m = deg(X), let {t1,...,%,,} be the K[:co] basis of R as
in Section 2.4, and let {t],...,t;,} C Homy, (R, K[zo]) be its dual basis. So, the
Dedekind complementary module can be written as €g ko) = (G15 -+ 9m )k Klao]’ where
gr = P(t;) = 2y * " gy with gx € R, and ny = deg(ty) < rx for k =1,...,m. Thus

we have

(ng]k> ’ (marx_nl/gvl) = l’g T nlf]kgl = $0 Z Cik; f]k
kj=1

X— deg(f k; )
— n
xo Z Cjk;Xo fjk

d—deg(f7;..)

= $7’x ny Z Cjk, T f;k]-
k=1

for some ¢j1,...,¢j,, € K. Since rx —n; > 0 and d — deg(f]’-*kj) > 0, this implies
that (zdf) - (2™ " q) € Ryysan, for all [ = 1,... m. Consequently, the element
x3fr is contained in Vx(R/K|[xo))ryra for all k = 1,...,%j, and therefore we get

8Ly x)ry C Ip(R/K[20])rytd, in contradiction to our assumption. O

The following example shows that the converse of Proposition 4.1.23 is not true in

the general case (except for the case d = rx — 1).



4.1. Differents and the Cayley-Bacharach Property 117

Example 4.1.24. Let X C IP’?@ be the projective point set consisting of the points
pr=1:0:0),p=(1:1:0,p3=01:2:0),ps=(1:3:1),p5=1(1:4:0),
pe = (1L :5:0),pr=(1:6:1),and ps = (1 : 1 :1). It is easy to see that
HFx:135788 --- and ry = 4. The Noether-Dedekind different is computed by

Ix(R/Q[xo)) =(aias — Lwyas + 9r3, 2o2b — L7

3 3675
70 — 1007071 + o0 ToT1 — 0ToT1 + o571 — Tag 75 )
and its Hilbert function is HFy, (r/qze) : 0000135788 ---. Clearly, X is not

arithmetically Gorenstein and HFy, (r/g,))(rx) # 0. Hence X is not a CB-scheme
by Proposition 4.1.15(i). By applying Proposition 4.1.22, we can check that X has
CBP(d) for 0 < d < 2. Now Y, := X\ {ps} has a separator of the form f; =
Tox3xe — Twox175 + 62075, Tt is not difficult to verify that zg ™ ’fy € Ux(R/Qlxo])2ry—2-
Thus X has CBP(2), but 3(Zy, /x)r, € Ip(R/K[20])reto2-

Now we let ?ﬁ/R dinote the conductor of R in the ring R = ijl Oxp, [T}], iee.,
Szr = {f € R | fRC R}. When the scheme X is reduced, R is the integral
closure of R in its full quotient ring, and hence §z /R is the conductor of R in iEs
integral closure in the traditional sense. Notice that §z /g 1s an ideal of both R and R.
Some explicit descriptions of this ideal are presented by the following proposition which
follows from [Kr3, Proposition 2.9]. Here it is not necessary to assume that the field K

is an algebraically closed field.
Proposition 4.1.25. We have the following assertions.
(1) S/ = <(0,...,O,aT]'.’(a),O,...,O) | 1<j5<s,a€ Oxp, \{0}) as an ideal of R.
(i1) Sim = (fa | 1 <7 <s,a € Oxp, \{0}) as an ideal of R, where f, is the
preimage of (0,...,0, aT;j(a), 0,...,0) under the injection7: R — R.
Proposition 4.1.26. Let X C P% be a 0-dimensional scheme, and let 0 < d < rx —1.
Then X has CBP(d) if and only if §5/5 € @541 Bi- In particular, X is a CB-scheme
if and only if g, = Disr, -
Proof. Let X have CBP(d). For a contradiction, we assume that §z ¢ Disar Bi-
By Proposition 4.1.25(ii), we have §z/p = (fa | 1 < j < s5,a € Oxp, \ {0}) as an
ideal of R. It follows that there is a homogeneous element f, € §g,/5 \ {0} such that

W(f.) = (0,... ,O,aTjV(a),O, ...,0) and v(a) < d. So, we can find an element b € Ox,,
such that s; := ab € &(Ox,,) is non-zero. We then have

v(s;) = v(ab) = max{ p(abc) | c € Ox,p,,abc # 0} < wv(a) < d.
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Thus Proposition 4.1.22 yields that X does not have CBP(d), a contradiction.
Conversely, we suppose that 3173/3 - ®izd+1 R;. Let Y C X be a maximal p;-

subscheme, and let {f},..., f}, } be a set of minimal separators of Y in X. Recall that
W fi,) = (0,....0, ejkjsz;L(ejkjsj), 0,...,0)for k; = 1,..., 5, where s; € &(Ox,,)\ {0}
is a socle element corresponding to Y, and where {e;1,...,ej.,} C Ox,, is such that

whose residue classes form a K-basis of K(p;). By Lemma 2.3.15, we have

v(s;) = max{ pu(s;b) | b € Oxp,, 550 # 0} = max{deg(fi,) | 1 <k; <55}

J

Without loss of generality, we can assume that v(s;) = deg(f/;) = p(ejis;). Thus
we have v(s;) = v(ejis;) and f}; € §5/p- Since Fg/p © Disgyq i it follows that
v(s;) = deg(f;;) = d+ 1. From this we conclude that degx(p;) > d + 1 for all
j=1,...,s, in other words, the scheme X has CBP(d).

Moreover, if we identify R with its image under 7, we have R; = R for all @ > rx.
Thus the ideal ., R; is an ideal of both R and R, and it is contained in the

conductor §5 IR Hence the additional claim follows. O

Our next proposition presents a generalization of Dedekind’s formula for the con-
ductor §5 IR and the Dedekind complementary module €g/x[,,. We use the notation

v; =dimg Oxp, forall j =1,...,s.

Proposition 4.1.27. Let X C P} be a 0-dimensional locally Gorenstein scheme with
support Supp(X) = {p1,...,ps}, let I; be the homogeneous vanishing ideal of X at p;,
and let Y; be the subscheme of X defined by Iy, = ﬂk# Iy for 7 = 1,...,s. The

formula

Si/r - Cr/Km) = 1

holds true if one of the following conditions is satisfied:

(i) The scheme X is a CB-scheme.
(ii) For all j € {1,...,s}, the Hilbert function of Y, is of the form

HFx(Z) Zf?, < Qay; /X,

HFy, (1) = . y
HFx (i) —v; ifi > ay,/x.

In particular, if X is arithmetically Gorenstein, then we have

Sh/p = (1(Up(R/K[z0])) )5 € R.
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Proof. Since X is a locally Gorenstein scheme, we have Homy (O %0 K) = Ox,, for
all j = 1,...,s. This implies the isomorphism R = Hom e, (R, K[xo]). Hence we
get HFHomK[ (, Klzo)(#) = 0 for i < 0 and HFHomK[ (7 K[o)) (i) = deg(X) for 7 > 0.
Let f € (SR/R)“ let g € (Cr/kwo))k, and let ¢ € HomK[xO]( [wo])k such that
g = ®(¢) where ® was defined in Definition 3.2.4. Observe that (f-¢)(R) = ¢(fR) C
©(R) C Klxg|. This yields f-¢ € HO_mK[wO](E, Klzo))izr- If f-@ # 0, then
deg(f-¢) =i+ k >0. Thus we have f-g = f-P(p) = ®(f - ¢) € R, and hence we
get the inclusion SE/R “CRr/Kzo C R.

Now we prove the reverse inclusion when either (i) or (ii) is satisfied.

(i) For every j € {1,...,s} we let {e;1,...,¢j, } be a K-basis of Ox,, and set
€k, = (0,...,0,e5,,0,...,0) € R, where k;j € {1,...,v;}. Then the elements
{€11,...,€s,} form a K[xq]-basis of R. Thus it is enough to show that eq,..., €z,
are contained in SE/R - €Rr/Klzo)- Since X is a CB-scheme, for j =1,..., s we argue as
in the proof of Theorem 4.1.7 to get g; € (Cr/K[zo])—ry Such that g; = % 2rxg;, where
g; € R, and (g;),, is a unit of Ox,,. By identifying R with its image in R under 7, we
have that the element hj, := (0,...,0, (gj) ejr; T;%,0,...,0) is contained in R, \ {0}
for all j € {1,...,s} and all k; € {1, . ,y]}. We see that

-2 -2 2 D
hjkj . g; = Txhjkjgj =y TX(O, N ,O,ejij'jTX,O, Ce ,0) = ijj € R.

By Proposition 4.1.26, we have 3§/R = Gainx R;. This implies hqy,...,hg, € SE/R'

Therefore we obtain €11, ...,€g, € SE/R - €Rr/K[wo), and the claim follows.
(ii) In a similar fashion, we proceed to show that €jq,..., €5, € SE/R CR/Kwo]- For
j=1,...,s, let 5; denote the trace map of the algebra Oxp /K, and let {¢};, ... ,egyj}

be the dual K-basis of Ox,, to the K-basis {e;i,...,¢e;,} with respect to 7;, ie.,

€1y €5, € Oxp,; such that 7;(eju; ejk,) = ejk;(ejk].) = Onwy for ky by € {1,... v}

We may assume that e}, is a unit of OX% for all j € {1,...,s}. Notice that the
subscheme Y has degree deg(Y;) = deg(X) —vy;forallj=1,...,s. It follows from the
assumption that ay,/x = p(ej) = -+ = u(ej,,j). Then we have Zy, /x = ( ff1,..-, [}, ),
where ff, =7~ Y0, ..., 0, €5, T; T, ,0)) for k; =1,...,v;. We also see that the
in Ris {(0,...,0,aT; 7*,0,...,0) | a € Ox,,}. This implies
v(a) = p(a) = ay,/x for every non-zero element a € Ox,,. Thus Proposition 4.1.25
yields that Zy, x C Sﬁ/R‘

Obviously, we have fjkj ¢ (ro) and its image L I3 %, 10 R is a non-zero element for

image of (Zy, /x)

Qy .
Y, /X

kj=1,...,v;. If there exist elements a;y, ..., a;,, in K, not all equal to zero, such that
22:1 aji; Lf;,, =0, then f = 222:1 ajk; [y, 18 contained in (IYj/X)an/X \ {0} and we
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get Lf =0. So, we have f € zqR,, 1. Let h € R, .1\ {0} be such that f = xgh.
Since the ideal Zy, /x is saturated, Lemma 2.3.12 implies 2 € Ty, /x\{0}, a contradiction.
Thus we have shown that the set {Lf5,..., L f;‘uj} is K-linearly independent.
Consequently, there is a homogeneous K-linear map ¢;; : R — K of degree —ay, /x
with ©,;(Lf;;) # 0 and @jl(Lf]T“kj) = 0 for k; = 2,...,v;. Using the epimorphism
Hom e, (R, K[xo]) - Homp (R, K), we can lift $;; to obtain a homogeneous element
pji € Homyp, (R, K[$0])_Oéyj/X with ¢;1(f71) # 0 and @1 (f};,) = 0 for k; =2,...,v;.

Qy . Qy .
Y;/X Y, /X

Clearly, the set {af ™) fr . gl e 5.} forms a K-basis of the K-vector
. Tx—ﬂ(ej/k.,) " TX Oy, /X .
space R,,. We write ¢;1(z, T Tik,) = ¢, 7 forall = 1,...,s and
J

ky =1,...,vy. By Proposition 3.2.9, we have

V1 —Qy./ Vs —Qy,/
gi1 == ®(pj1) = (X ey, Ty RS Coly e, Ts Y X) € Cr/Klwo]-
ki=1 ks=1
Since €/, is a unit of Ox ;. and ¢;; € K \ {0}, for k; =1,...,v; we set
~ _ Ay .
he, =710, ..., 0, (€)yen) e, T; 77,0,...,0)).

Then hj1, ..., hji, € Ty, jx € §j 5. In R, we have
vj
hjkj “gi1 = (0, ..., 0, (6;16]'1)_16]'1% Z lejeljlj, 0,... ,O)
1

= (07"'707ejkj707"'70) = 6jkj7

since ¢jp = -+ = ¢j,,; = 0. Thus we obtain €;;; € SE/R  €R/Kxo]> @8 Was to be shown.

Finally, if X is arithmetically Gorenstein, then ¥p(R/K|z¢]) = (h)y for a non-
zerodivisor h € R,, by Proposition 3.2.8. Observe that i(h) = (h,,11*, ..., hyT7%)
in R, where hp, is a unit of Ox,, for j =1,...,s (see Lemma 2.3.11). Therefore, in R,
we get §/0 = @ R = ({0p(R/K[ao))) )5 € R a

1>TX

When we specialize to the case of projective point sets, the condition (ii) of Proposi-
tion 4.1.27 is satisfied. Therefore we recover the following result of A.V. Geramita et al
(see [GKR, Proposition 3.15]).

Corollary 4.1.28. Let X = {p1,...,ps} be a projective point set in P%. Then we have
Sh/r " Cr/Klwo) = 1T
Proposition 4.1.29. Let X C P} be a 0-dimensional locally Gorenstein scheme.

(i) We have %’%/R C Ip(R/K[zo]) C 35/ x-

(i1) If X has CBP(d), then we have Vp(R/K|[zo))a = (0).
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Proof. (i) Let L = Qh~(R) = 15y Oxp, [T}, ;). Since (€ryxpey)i = (L)i = (R); for
all 7 > 0, this implies R C €g/x[s,). Thus we get

Up(R/K[xo]) = R 1 Cr/kpze) € R 1 R=R ‘R R= Si/r:

On the other hand, we see that 3%/1% “CR/Kzo C SE/RE C R. This yields the inclusion
S%/R C Ip(R/K]xo]). Therefore the claim follows.

(ii) If Yp(R/K[xo])a # (0) then there exists a non-zero homogeneous element h of
degree d in ¥p(R/K[xo])a, and hence h € (§5/p)a. By Proposition 4.1.26, the scheme

X does not have CBP(d), a contradiction. O

Corollary 4.1.30. Let X = {p1,...,ps} C P} be a projective point set, and let f; be
the normal separator of X\ {p;} in X for j=1,...,s. Then X is a CB-scheme if and
only if xSX_ij ¢ Ux(R/K|xo])ary—2 for all j=1,...,s.

Proof. Tt is clear that x* ' f; € Ox(R/K|[xo))ar,—1 if 25 2f; € Ux(R/K[x0])2ry 2
Thus we get x5 > f; ¢ Ux(R/K[2o])ar,_2 for every j € {1,...,s} if X is a CB-scheme
by Corollary 4.1.9(i). Conversely, if X is not a CB-scheme, then we can find a minimal
separator f; € R with d; = deg(f;) < rx — 1. Moreover, we may choose the minimal
separator f; such that f7(p;) = 1. Notice that f; € SE/R (see Proposition 4.1.25(ii)).
By Proposition 4.1.29(i), we get (f;)* € S%/R C ¥x(R/K]|xg)). Since X is a projective
point set, we have z{’ fi=(f)?and f; = Y fi € R,,. This implies that T =
R P f7) € 9x(R/K[xo])2ry—2. Therefore the corollary is proved. O

4.2 Differents for Schemes Having Generic Hilbert

Function

In this section we are interested in studying the following special class of O-dimensional

schemes in the projective n-space P7..

Definition 4.2.1. Let X C P} be a O-dimensional scheme. We say that X has generic
Hilbert function if HFx(i) = min{ deg(X), (**"") } for all i € Z.

Let ax = min{: € N | (Zx); # 0} be the initial degree of the homogeneous
vanishing ideal Zx. It is well known (cf. [GO] and [BK]) that if X has generic Hilbert

function, then Zx = ((Zx)ay, (Zx)ag+1 ) p and ax is the unique integer such that

(n—i—ax—l) < deg(X) < (nmx)

n n
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We have the following observation.

Lemma 4.2.2. Let X C P% be a 0-dimensional scheme which has generic Hilbert

function. Suppose that X has K-rational support and deg(X) > 2 and rx > 2.

(i) The scheme X has CBP(d) for alld=0,...,rx — 2.
(i) If deg(X) = ("***7"), then X is a CB-scheme.

n

Proof. Let Y C X be a maximal p;-subscheme, where p; € Supp(X). Observe that
if e (Zy) and L € P; is a linear form through the point p;, then FL € Zx.
Thus we obtain ax — 1 < ay/x < rx. On the other hand, it follows from the equality
rx = min{i € Z | HFx(i) = deg(X)} that X has generic Hilbert function if and only if
ax > rx. This implies ay/x > ax —1 > rx — 1. By Proposition 4.1.22, X has CBP(d)
forall d =0,...,7x — 2, and claim (i) follows.

In addition, if deg(X) = ("+°‘nx_1), then ax = rx + 1. So, for every p; € Supp(X)

and for every maximal pj-subscheme Y C X, we have ay/x > ax —1 > rx. Therefore

Ay /x

claim (ii) follows by Proposition 4.1.22 again. O

Remark 4.2.3. Given a 0O-dimensional scheme X C P}, the condition that X has
generic Hilbert function does not imply that it is a CB-scheme. For instance, consider
the projective point set X = {py,...,pn} C IP% of degree 11 with p; = (1:1:0:0),
pp=(1:1:0:1),p3=(1:0:1:1),pp=0:1:1:1),ps=(1:2:2:1),
pe =(1:3:1:1),pr=(1:3:2:0),ps=01:3:2:1),p9=(1:3:3:0),
po=(1:3:3:1),and p;; = (1:3:3:3). A calculation gives us rx = 3 = ax.
Hence X has generic Hilbert function and CBP(1). However, X is not a CB-scheme,

since there is a separator f; = 322 — zox1 — 3zox3 + 2173 of X\ {p1} in X of degree 2.

In the following proposition we present a generalization of a result for projective

point sets found in [GO] for the special case of reduced 0-dimensional subschemes of P .

Proposition 4.2.4. Let X C P} be a reduced 0-dimensional CB-scheme with support
Supp(X) = {ph cee Jps}-

(i) If X has generic Hilbert function, then X is arithmetically Gorenstein if and only

if deg(X) - rx = 2(717%).

(11) If there is a mazimal p;-subscheme Y of degree deg(Y) = deg(X) — 1 such that Y
has generic Hilbert function, but X does not have generic Hilbert function, then X

is arithmetically Gorenstein if and only if deg(X) -rx = 2(("2’};1) +deg(X) — 1).
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Proof. Since X is reduced, then R = [ ;-1 Ox,,[T}] is the integral closure of R in its full
ring of quotients Q(R). It is well known that the scheme X is arithmetically Goren-
stein if and only if {(R/Fz/p) = dimg(R/Tz/p) = 2dimg(R/F5/5) = 20(R/S5/5)
(see [Bas, Corollary 6.5]). Since X is a CB-scheme, it follows from Proposition 4.1.26
that §5/p = @D;>,, Fi- Hence we get the equalities dimK(ﬁ/SR/R) = deg(X) - rx and
dimg (R/F /) = Yo%y HFx(i),

Suppose that X has generic Hilbert function. It follows that dimg(R/F 5 / r) =
SESL () = ("), Therefore claim (i) follows.

Now we show claim (ii). We know that rx — 1 < ry < rx. If ry = rx, then
ax > ay > ry = rx (as Y has generic Hilbert function), and so X has generic Hilbert

function, in contradiction to the hypothesis. Thus we conclude that ry = rgx — 1 and
HFx(rz—1) = deg(X)—1. It follows that dimg (R/Tj,5) = it (1) +(deg(X)—1) =

n

(”tﬁgl— 1) + deg(X) — 1, and this completes the proof. ]

Note that if n = 1 or deg(X) = 1, then X is always arithmetically Gorenstein. Our
next corollary provides some characterizations of O-dimensional arithmetically Goren-
stein schemes X when n > 2 and deg(X) > 1.

Corollary 4.2.5. Let n > 2 and let X C P} be a reduced 0-dimensional CB-scheme
of degree deg(X) > 1.

(i) If X has generic Hilbert function, then
(a) X is arithmetically Gorenstein if and only if deg(X) = 2 or deg(X) =n+2.
(b) If X is arithmetically Gorenstein, then ri(Vp(R/K[x¢])) € {2,4}.

(11) If deg(X) > n + 1 and there is a mazimal p;-subscheme Y of degree deg(Y) =
deg(X) — 1 such that Y has generic Hilbert function, but X does not have generic
Hilbert function, then X is arithmetically Gorenstein if and only if deg(X) =

2(n+2) ordeg(X) =(n+3)(n+2)/2 — 1.

Proof. Part (a) of claim (i) follows from Proposition 4.2.4(i) and by an argument
analogous to the proof of Theorem 7 in [GO]. Part (b) of claim (i) is a consequence of (a)
and the fact that ri(Jp(R/K|x¢])) = 2rx. Claim (ii) follows from Proposition 4.2.4(ii)
and in the same way as the proof of Theorem 9 in [GO]. We note that in the claim (ii)
it suffices to treat the case deg(X) > n+ 1, since if deg(X) < n+ 1 then X is contained
in a hyperplane H = P%'. Moreover, there do not exist reduced 0-dimensional CB-
schemes X in P% of degree 17 or 22 such that there is a subscheme Y C X of degree
deg(Y) = deg(X) — 1 having generic Hilbert function, but X does not have generic
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Hilbert function. Otherwise, such a scheme X would be arithmetically Gorenstein
(by Proposition 4.2.4(ii)), and hence a complete intersection of type (dy,ds) for some
1 < d; < dy. Then we have deg(X) = dydy and (Zx)s € (Zy)s = (0) (as Y has
generic Hilbert function). If deg(X) = 17 = dyds, then (di,ds) = (1,17), and hence
(Zx)1 # (0). This is impossible. If deg(X) = 22 = dydy, then (di,d2) = (1,22) or
(2,11). This implies that (Zx)2 # (0), a contradiction. O

Example 4.2.6. Let X C IP’% be the reduced 0-dimensional scheme with support
Supp(X) = {p1,...,psa}, wherep; =(1:0:1:0),po=(1:1:0:1),p3=(1:1:1:1),
and where p, corresponds to Py = (2XZ + X2, Xy, X3). Then deg(X) =n+2 =5 and
ax = rx = 2. Thus X has generic Hilbert function. Moreover, it is easy to check that X
is a CB-scheme. Therefore X is arithmetically Gorenstein by Corollary 4.2.5(i). In this
case, we have Up(R/K|xg]) = (3 + 23 — 3xow3) = R(—2) and ri(Vp(R/K|zo))) = 4.

Observer that if a O-dimensional scheme X C P} has generic Hilbert function,
then the Hilbert function of the Kahler different satisfies HFy, (r/k(z,)) (i) = 0 for
i < mn(rg —1). Furthermore, if ax = rx + 1, then Jx(R/K|[zo]) is generated by
homogeneous elements of degree nrx. In the following, we want to examine whether
the converse of this statement is true. If X = {py,...,ps} C P is a projective point
set, an affirmative answer for this problem is given by our next proposition. Notice
that if n = 1 or (n > 2 and s = 1) then the projective point set X is a complete
intersection, and so ¥k (R/K|x¢]) is generated by a non-zerodivisor of R of degree nrx
and we have HFy, (r/k20)) (1) = HFx(i — s+ 1) for all ¢ € N. Also, it is not hard to see
")

that X has generic Hilbert function with s = . Thus it suffices to consider the

case n > 2 and s > 2.

Proposition 4.2.7. Letn > 2 and let X = {p1,...,ps} C P% be a projective point set
of degree s > 2. Suppose that char(K) = 0 or char(K) > rx. The following conditions

are equivalent.

(i) The scheme X has generic Hilbert function with s = ("***~).
(ii) The Hilbert function of Kdihler different is given by
0 o1 <nry,

HF (/Koo () = L
s ifi > nrx.

(iii) The scheme X is a CB-scheme and 9 (R/K[xq]) = S%/R.
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Proof. (1)(il): Suppose that X has generic Hilbert function with s = ("7**71),

n

Then we have ax = rx + 1. Thus ¥k (R/K[xg]) is generated by homogeneous elements
of degree nrx. By Proposition 3.3.14, we have ri(Jx(R/K|zo])) = nrx. Therefore
Uk (R/K[zo]) = @ispy, B and HF g (r/r(ao)) is as above.

Conversely, suppose that Jx(R/K[zo]) = ;5 i and ax < rx (i.e., X does

n+ax—1>)'

not have generic Hilbert function or X has generic Hilbert function but s #£ ( -

By Remark 3.3.24, we suppose that Zx has a minimal homogeneous system of generators

{F1,..., F.} such that deg(F;) < rx + 1, {F\,...,F,} is a P-regular sequence, and
O(Fy,..iF)
O(x1,..yTn)
is an index j € {1,...,n} such that deg(F;) < rx, then deg(w) < nrg — 1.

T1yeensTn)
Hence we have g((Fl’—’F" € Ok (R/K|[xg]) \ {0}, and this is a contradiction.

is a non-zerodivisor of R (i.e., it does not vanish at any point of X). If there

Now we consider the case deg(F;) = rx + 1 for j =1,...,n. Since ax < rx, there
is an element F; € (Zx)q, for some j > n + 1, say F,;;. By the assumption on the
characteristic of K and by Euler’s rule, we may assume that 8F"“ # 0. Then it is
clear that 8F"“ ¢ Ty, since deg(2 ”“) < ax. So, there is a pomt pr of X such that
9Enir(p,) 7é O. Without loss of generality, we can assume that 8F”“( 1) # 0. Set

ox1
V, = (%(pl)""’ax (pl)) e K"fori=1,...,n+ 1 and

o (pl) e S0 (py)
V= : :
Papy) - S2(p)
The matrix V is invertible, since det(V) = %(}71) # 0. By using elementary row

operations, we can transform the matrix V into an upper-triangular matrix W = (w;;)
such that its diagonal entries are all non-zero (i.e., wy, = 0 for k < i and w;; # 0 for all
i=1,...,n). Let W, denote the i-th row of the matrix W. Then there are \;; € K,
i,7 € {1,...,n}, such that

Wi = (Wi, .o, Win) = Mg Vi + - + i Vo,
(Z)\u 90 (P1), - Z&gax (p1))-

For every i € {2,. n} let G; == A F1+ -+ XinFy € (Zx)ry11 \ {0}. Then we have

gfh (p1) = >0, /\'Uaz “(p1) = wy for all i = 2,... ., nand k = 1,...,n. Notice that
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9G; L(p1) = wy, = 0 for k < i and aG (pl) = w;; # 0. Thus we get

&rk
aT‘lH(pl) (9:13;1 (pl) o BT::I(pl)
9(Fn+1,G2,...,.Gn) - ’ N
8(+z11,...2,xn) (p1) = det . ' | .
0 0 U wnn

= 65;“ (P1)waz - - - Wpp # 0.

Hence we obtain W € Uk (R/K[xo])<nry—1 \ {0}, and this is a contradiction
again. Therefore it must be the case ax = rx + 1 or X has generic Hilbert function
with s = (”Jr‘:f‘_l), as was to be shown.

(ii)<(iii): If X is a CB-scheme and 3%/1% = Ik (R/K]zo]), then we have

R/R <f17"'7fsn>R: @Rz:ﬁK<R/K[$O])

'iZTLTX

where f; is the normal separator of X\ {p;} in X for j = 1,...,s. Thus the Hilbert
function of ¥ (R/K[x¢]) is given as claim (ii).

Conversely, if Jx(R/K|[xo]) = @D;>,, Fi, then X has generic Hilbert function with
s = (""**71), and so X is a CB-scheme by Lemma 4.2.2(ii). For every j € {1,...,s}
we let fi be the minimal separator of X'\ {p;} in X with ff(p;) = 1. It follows
from Proposition 4.1.25 that S%/R = ((fH)" ..., (f2)") g Since X is a CB-scheme,

this implies that deg(f;) = rx or f; = f; for all j = 1,...,s. Therefore we get
&"é/R Disnr, i = Ik () K]x0]), as was to be shown. O
Corollary 4.2.8. Let X = {p1,...,ps} C P% be a projective point set. If X has generic
Hilbert function with s = ("***~1) then 1i(x (R/K[xo))) = nrx.

Proof. This is an immediate consequence of Proposition 4.2.7. ]

From Proposition 4.2.7 we see that if the Hilbert function of 9, (R/K[x¢]) in degree

nrx — 1 is zero then X is a CB-scheme. This observation can be generalized as follows.

Proposition 4.2.9. Let X = {py,...,ps} C P} be a projective point set, let f; be the
normal separator of X\ {p;} in X for j=1,...,s, and let 0 < d <rx — 1.

(i) If HF g, (r/K[zo)) (nd) = O then X has CBP(d).

(ii) Suppose that n = 2. Then X is a CB-scheme if and only if for every j € {1,...,s}
we have x5 f; & Vi (R/K[x0])arg—2. In particular, if HF y . (r/k[wo)) (275 — 2) =0,
then X is a CB-scheme.



4.2. Differents for Schemes Having Generic Hilbert Function 127

Proof. If r¢ <1, then it is easy to check that X is always a CB-scheme. Therefore we
may assume that rg > 2. For every j € {1,...,s}, let Ji € R be a minimal separator
of Y; in X. Suppose that X does not have CBP(d). Then there exists an index
j € {1,...,s} such that deg(f;) < d. By Corollary 3.3.16(i), we have the inclusion
3’11%/}% C Uk (R/Klxo]) C Sg/p- This implies 0 # (f7)" € Jx(R/K[zo]). Hence we see
that 0 < HFy, (r/K(ao)) (R deg(f)) < HFg,(r/K(zo) (nd). We get a contradiction to our
assumption that HFy, (r/k[zo)) (nd) = 0. Thus claim (i) is proved completely.

Now we prove claim (ii). If o °f; € U (R/K[xo]) C 9x(R/K][xo]) for some
j€{1,...,s}, then X is not a CB-scheme by Corollary 4.1.30. Conversely, we assume
that 25 > f; & Vx(R/K|[x]) for all j = 1,...,s and X is not a CB-scheme. Then we
can find a minimal separator f; € R with d; = deg(f;) < rx — 1 and f/(p;) = 1.
We have x> f; = mgrxﬁdjﬂ(f;)? € S%/R. Therefore Corollary 3.3.16(i) yields that
xy 2 f; € Vi (R/K[x]), a contradiction. O

Remark 4.2.10. The converse of Proposition 4.2.9(i) is not true. For example, we
take X = {(1 : 0:0),(1 :1:0),(1:0:1),(1:1:1)} CP% Then Xis a
complete intersection with rg = 2. Of course, X is a CB-scheme. But we see that
HE g, (ryrepeo) (01 — 1)) = HF e (r/K12o)) (2) = HFx(2 = 2) = HFx(0) = 1 # 0.

Let X = {p1,...,ps} € P% be a projective point set, where n > 2. Suppose that
X has generic Hilbert function. Let t; and ¢5 be the numbers of minimal generators of
degree rx and of degree rx + 1 of Zx, respectively. Notice that if s = ("J’C;X_l), then
rx = ax — 1, and so t; = 0; and if ("+°‘nx_1) <s< ("ZO‘X), then ¢, = dimg(Zx),, =

("Tx) — 5. We assume that t; > n, and let Fi,..., F;, be the minimal generators
of Zx of degree rx. Let {hq, ... ,h(tl)} C Ry(ry—1) be a set of generators of the K-vector
space U (R/K[xo])n(re—1), Where h; = H for a subset {iy,...,i,} C{1,..., 61}
For every j € {1,..., s}, we denote

hi(p1) ha(pr) h(t&)(m) 0

hi(p2)  ha(ps) h(y (s) :
.A == . (n) 5 gj = 1[j] 5 .Aj = (.A (c:j> . .

: : . : ) sx (1) +1
hi(ps) ha(ps) -+ hun(s)) :
(S () 0/ s

Proposition 4.2.11. Let n > 2, and let X = {p1,...,ps} C P% be a projective
point set which has generic Hilbert function. Let ty and ty be the numbers of minimal

generators of degree rx and of degree rx + 1 of Ix, respectively.
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(i) If t; < n, then X is a CB-scheme.

(11) Suppose that t; > n and rx > 2. If rank(A;) > rank(A) forall j =1,...,s, then
X is a CB-scheme. Conversely, if X is a CB-scheme and n(rx — 1) < 2rg — 1,
then rank(A;) > rank(A) for allj=1,...,s.

Proof. (i) It is clear that X is a CB-scheme if rx = 1. Thus we may assume that
rx > 2. If t; < n, then the Kéhler different 9 (R/K[x¢]) is generated by homogeneous
element of degree at least nrx —n + 1, and so HFy, (r/k[z))(n(rx — 1)) = 0. Hence
Proposition 4.2.9 implies that X is a CB-scheme.

(ii) Let f; € R,, be the normal separator of X\ {p;} in X for j = 1,...,s. Notice
that n(rgx — 1) > rx as rx > 2. For every i € {1,..., (tnl)}, we may write

h; = mg(rxil)im(hi(pl)fl + -+ hz(ps)fs) = x(T)L(TX71)7TXZhi(pj)fJ"

1

S
j:

Suppose that rank(A;) > rank(A) for all j = 1,...,s, and X is not a CB-scheme.

Then there is a minimal separator fF of X\ {p;} in X such that deg(f;) < rx —1
and f; = xgxfdeg(f;) f;. Without loss of generality, we may assume that deg(f;) <
rx — 1 and f; = mgx_deg(ff)ff. It follows from Corollary 3.3.16(i) that xgdeg(ff)_rxfl =
(fi)" € Uk(R/K[20])ndeg(sr)» and consequently IS = Ui (R/K[20])n(ry—1)-

Then there exist cq, ...  C(4) € K, not all equal to zero, such that

n

= xg(rxfl)*rx (Cljg hl(pj)fj S C<tﬁ)]§h(2>(pj)fj)
()

AL S SR cyhn

1
(%)
= gD (flkzlhk(pl)ck + -+ fsk;hk(ps)ck)-

Thus there are linear equations in ¢y, . .. ,C(tl) as follows

(%)
k:1hk<p1)ck = hl(pl)cl + 4 h(tg)(]?l)C(té) = 1,

()
hk(pj)ck = hl(pj)cl + -+ h(tl)(pj)c<t1) = 0, j = 2, ..., S
k=1 " "

This implies rank(A) = rank(.4,), in contradiction to our assumption.
Now let X be a CB-scheme and n(rx—1) < 2rg—1. We assume for contradiction that

rank(A;) = rank(.A) for some j € {1,...,s}, may say j = 1. Let C = (cy,... ,C(tl)) €
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K1) be a root of the system of linear equations A-) = & where Y = (y1, ... ,y(tnl))“.
It follows that wg(rxfl)ﬂxfl — (cthy + -+ + c<tyg)h 2)) = 0in R. So, mg(rxfl)frxfl is
a non-zero element of Ui (R/K[2o])nry—1). Since X is a CB-scheme, there exists an
element ¢g; = xSQTX(alfl + -+ asfs) € (Cr/kwo])—re With ay,...,a, € K and a; # 0
(as in the proof of Theorem 4.1.7). We have xg(rx_l)_rxfl cg = xg(rx_l)_?’rxalflfl =
:Bg(rx_l)_%xalfl € R. Thus we get f; € zgR,,_1, since n(rx — 1) < 2rg — 1. This means

that X is not a CB-scheme, a contradiction. O

Let s be an integer such that

1
<n+<0‘ )><s<<"+o‘> withn > 2, a > 2
n n

and let X = {p1,...,ps} € P& be a projective point set satisfying HFx(a) = s. If
dimg (Zx)s < n, then X has generic Hilbert function and s = ("ZO‘) — dimg (Zx)o-
Indeed, we see that rx < a and HFx(a — 1) < HFP?((a —-1) = (n+(371)) < s. This
implies rx = . Suppose that ax < rx. Let F be a non-zero form of degree rx — 1 in
(Zx)ry—1- Then XoF, X1 F, ..., X, F are n + 1 linearly independent forms of degree rx
in (Zx)r.. Thus we obtain dimg(Zx),, = dimg(Zx)s > n, a contradiction. Therefore

ax > rx or X has generic Hilbert function and s = (”Z“) — dimg (Zx ), as we wished.

Proposition 4.2.12. Let s be an integer such that

-1
(n—l—(a )><s§(n+a)—nwithn22,a22.

n n

Then there is a non-empty open set in (P)* whose each point corresponds to a projec-

tive point set X = {p1,...,ps} of P (not necessary XN Z+(Xy) = 0) such that

(i) dimg(Zx)s > n,

(ii) there are n independent forms in (Zx), which meet in precisely o™ distinct K-

rational points.

Proof. The result follows immediately from [GM, Proposition 4.4]. O

Proposition 4.2.13. Let s be an integer such that

—1
(n—i—(a )><s§(n+a)—nwithn22,a22,
n n

and suppose char(K) t a. Let X = {p1,...,ps} C P be a projective point set satisfying

the following conditions:
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(i) HFx(a) = s,
(Z’L) dimK(Ix>a 2 n,

(iii) there are n independent forms in (Zx), which meet in precisely o™ distinct K-

rational points.
Then X has generic Hilbert function if and only if HF g, (r/K [z (nae —n — 1) = 0.

Proof. Notice that the condition HFx(«) = s implies rx = a. If X has generic Hilbert
function, then rx = a = ax. Thus 9k (R/K|[zo]) is generated by homogeneous elements
of degree > na — n. It follows that HFy, (r/kw,))(na —n — 1) = 0. Conversely,
suppose that HFy, (r/K[zo)) (v —n — 1) = 0. According to the condition (iii), we let
Fi,...,F, € (Zx)s be n forms of degree a having exactly a™ distinct common zeros
in P%. Then Fy,..., F, form a P-regular sequence (cf. [KK, Theorem 1.12]), and so
the ideal (F}, ..., F,) defines a complete intersection W of degree a™ containing X. By

Corollary 3.3.5, the element is a non-zerodivisor of P/(Fy,..., F,) of degree

ONx1,yeesTn)
na — n. In particular, it does not vanish at any point of W (so of X). If ax < «, then

7

we can argue analogously as in the proof of the part “(ii)=-(i)” of Proposition 4.2.7 to
obtain a non-zero homogeneous element of degree naw —n — 1 in Vg (R/K|xo]). This
implies HFy, (r/K[z0])(nx —n — 1) # 0, in contradiction to the assumption. Therefore

we must have ax = a = rx. In other words, X has generic Hilbert function. O

Corollary 4.2.14. Let n > 2 and let X = {py,...,ps} C P be a projective point set.
If X has generic Hilbert function with s = (”Zax) —n and (Zx)ay contains a P-regular
sequence of length n which meet in precisely o distinct K -rational points, then X is a
CB-scheme.

Proof. This follows from Proposition 4.2.11. ]

4.3 Cayley-Bacharach Properties and Liaison

Throughout this section let K be an arbitrary field, let W C P be a 0-dimensional
arithmetically Gorenstein scheme such that Supp(W) N Z*(X,) = 0, let Zw be the
homogeneous vanishing ideal of W in P, and let S := P/Zw be the homogeneous
coordinate ring of W. We shall use “—~” to denote residue classes modulo X,. For a
0-dimensional subscheme X C W, the ideal Anng(Zx w) C S is saturated and defines
a 0-dimensional subscheme Y of W (see [Kr3, Section 16]).



4.3. Cayley-Bacharach Properties and Liaison 131

Definition 4.3.1. The subscheme Y C W which is defined by the homogeneous ideal
Tyw = Anng(Zx,w) is said to be the residual scheme of X in W.

We collect from [DGO] or [Kr3, Section 16] some useful results.

Proposition 4.3.2. Let WC P} be a 0-dimensional arithmetically Gorenstein scheme,
let X C W be a subscheme, and let Y C W be the residual scheme of X in W. The

following assertions hold true.

(Z) Ix/w = Anns(Iy/W).
(11) deg(W) = deg(X) + deg(Y).

(iv) rw =rx + Qy/w =Ty + ax/w-

Lemma 4.3.3. For every d € {1,...,rx}, we have

(:Z"_W)T’W : (IY)Oéy/W+(Tx—d) = (I_X)d

Proof. Clearly, we have Zx-Zy C Zw. This implies that (Zx)a € (Zw)ry : (Zv)ay p—
For the other inclusion, let f € (Zw), : (Zy)
fe (Anng((Zy)w) ay /WJF(TX,d)))d. Since W is arithmetically Gorenstein, the ring S is

(rg—a)- In S = S/{zy), we have

ay Wt

a 0-dimensional local Gorenstein ring with socle S,, = K. Thus we can argue in the

same way as Lemma 4.1 and Proposition 4.3.a of [GKR] to get

(Anng(Tyyw)ay et (re—a)))a = (Anng(Tyyw )y —a))a
= (Anng(m»d = (IX/W)d-

Consequently, we have f € (Zx/w)a, and hence f € (Ix)q, as desired. O

As usual, we let Supp(X) = {py,...,ps} and set s¢; = dimy K(p;) for j =1,...,s.
Given a maximal p;-subscheme X' C X, let {f,..., ;%j} be a set of minimal sep-
arators of X' in X. Then a set of separators of X' in X is {fji,..., fj,}, where
f, = ay o) s for by = 1,54, Let Fjy € Py ) and Fj, € P, be
representatives of 7, -and fji,, respectively. We also say that the set {F F]*%j} is
a set of minimal separators of X' in X and the set {Fji, ..., Fj%j} is a set of separators
of X'in X. Let 0 < d < rx — 1. In view of Proposition 4.1.22, the scheme X has
CBP(d) if and only if the following condition holds: for every point p; € Supp(X) and
for every maximal p;-subscheme X’ C X letting {Fji,..., Fj,,} be a set of separators

of X" in X, we have Fj, ¢ (X5 (Tx)yy ) p for some k; € {1,..., 5},
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Lemma 4.3.4. Let X have CBP(d), let 0 < d < rx — 1, let X’ C X be a mazimal
pj-subscheme, and let {Fj1,..., Fj,. } C P, be a set of separators of X' in X.

(i) If (Fj1,..., Fj, )k C (XgF~ 9 (Ix)r) p and if we write Ej, =Fj, +X5X7d71ijj
with ijkj € (Zx)ry and Gy, € Pyy1, then there is ky € {1,..., 5} such that

ijj ¢ (I\W)TW : (IY)QY/W+(Tx—d)—1'
(i) If d=rx — 1, then Fix; & (Zw)ry : (Zy)ayy for some kj € {1,..., 5}

Proof. Suppose that G, € (Zyy)ry, (IY)QY/WHTX_C;)_l for all k; =1,..., ;. Then we
have G, (IY)QY/WJF(TX,d),l C (Zw)ry. Thus Lemma 4.3.3 yields that G, € (Zx)as1-
This allows us to write G, = G;kj + XoH i, with G;kj € (Zx)4s1 and Hy,, € Py. Note
that Hj, € (Zx)q. From this we rewrite Fjy, = (Fj, + ngfdflG;.kj) + X¢* T Hyy,
for all k; = 1,..., 5. It follows that Fj, € (ngfd, (Zx)pyg )p for all k; = 1,..., 3.
Thus X does not have CBP(d), in contradiction to our hypothesis. Therefore claim (i)

is completely proved. The proof of claim (ii) is similar. ]

Definition 4.3.5. Let W C P}% be a 0-dimensional arithmetically Gorenstein scheme,
let X C W be a subscheme, and let Y C W be the residual scheme of X in W. We say
that X and Y are geometrically linked (by W) if they have no common irreducible

component.

From the point of view of the saturated ideals, the schemes X and Y are geo-
metrically linked by W if and only if Zyw = Zx N Zy and neither Zx nor Zy is con-
tained in any associated prime of the other (see [Mig, Section 5.2]). In this case,
if Supp(X) = {p1,...,ps} € P% and Supp(Y) = {p},...,p;} C P%, then we have
Supp(W) = Supp(X) USupp(Y) = {p1. ..., ps Pi, - - .. pi} and Supp(X) N Supp(Y) = 0.
This also implies that Ow,, = Ox,, forj=1,...,s and Ow,p; = Oy’p; foryj=1,...,t.

proj

0
Let p; € Supp(X). Using the map ©; : P—»R = P/Ix — [[;_Oxp, — Ox,
we can form the element H,, = ©;(H) € Ox,, for each H € P. Then a homogeneous
polynomial H is contained in Zx if and only if H,, =0 forall j =1,...,s.

Now we present a characterization of CBP(d) using the homogeneous vanishing
ideal of a geometrically linked scheme. This result is a generalized version of [GKR,
Theorem 4.6].

Theorem 4.3.6. Let W C P} be a 0-dimensional arithmetically Gorenstein scheme,
let X C W be a subscheme, and let Y C W be the residual scheme of X in W. Let
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0<d<rx—1, let Supp(X) = {p1,...,ps}, and suppose that X and Y are geometrically

linked. The following conditions are equivalent.

(i) The scheme X has CBP(d).

(ii) For every p; € Supp(X), there exists an element Hj of (Zy)ay syt (re—d)—1 Such
that (H;),, € Oxp, \ {0} is a unit.

Proof. (ii)=-(i): Let X’ C X be a maximal p;-subscheme, let s; € &(Ox,,) \ {0}
be a socle element corresponding to X', and let {e;i,..., €.} € Oxp, be such that
whose residue classes form a K-basis of K (p;). Let {F7;,..., F}, } be a set of minimal
separators of X’ in X (with respect to s; and {e;1,...,ej,,}), i.e., let

Fi 4T =710, 0, e, 5,70 7™

i ,0,...,0))
for all k; = 1,...,5;, where7 : R — R = [T, Ox,p,[Tj] is the injection given by

WF +Ix) = (B, Ti, ..., E, T?) for F € P, (i > 0). Set
dj == v(s;) = max{deg(F}, ) [ 1 < k; <3¢}

We proceed to show that d; > d + 1. By assumption, let H; € (Iy)ay/WJr(rX,d),l be an
element such that (H;),, € Oxyp, \ mxp,. It is clear that (F};, Hj)p = (FF),)p(H;)p =0
for every point p in Supp(W) \ {p;} and (F}, H;),, # 0 in Ow,,. Since X and Y are
geometrically linked, we have Ox,, = Ow,y, for all j = 1,...,s. So, it follows from
(Fi; ), = €iy85 € G(Oxp,) that (Fjy Hj)p, = ejx;55(Hj)p, € &(Owyp,).

d;—deg(F};, )
For k; € {1,...,5;}, we denote G, + Ix := XOJ i Fi +1Ix. Let 0<i<n

and 1 < k < ;. Then we have X;Gj + Ix = 22:1 Cik; XoGjk, + Ix for some
Ci1s -+, Cis; € K. This implies X;GjH; + Iy = Zgzl cik; XoG i, Hj + Iyw. Because

the set { ej15;(Hj)p,, - €jsx;8i(Hj)p, } is K-linear independent, we have

= dimg ((Gjw, Hj +Tw | 1<k < 365)g), = 5

for every i > d; + ay w + (rx —d) —1=rw+d; —d— 1. Hence the homogeneous
ideal (Fj, Hj+Zw | 1 < kj < 5;)s defines a maximal p;-subscheme W' C W and the
homogeneous vanishing ideal of W’ satisfies dim g (Zyy /W)Tw+dj_d_1 = ;. Moreover,
the scheme W is arithmetically Gorenstein. In particular, it is a CB-scheme. It follows
from Proposition 4.1.22 that rw+d; —d—1 > rw, and hence d; > d+1. Consequently,
the scheme X has CBP(d).
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(i)=(ii): Let X’ C X be a maximal pj-subscheme, and let {Fji,..., Fj,,} € P, be
a set of separators of X’ in X. Since X has CBP(d), there exists k; € {1,...,s;} such
that Fj, ¢ <X6X_d, (Zx)ry ) p- Now we need to find an element H,; € (IY)QY/WJF(,"X,d),l
which satisfies (H;),, € Oxp,; \ Mx,p,-

First we consider the case ( Fji,..., Fj, )x C (X5 (Tx),y Vp. If we write
Fi, = F;kj + ng_d_lijj with kaj € (Zx)r, and Gy, € Pyy1, then Lemma 4.3.4 im-
plies that there is an index k; € {1, ..., 5¢;} such that Gjx; & (Zw)ry * (Tv) ay syt (re—d)—15
say Gji1. So, there is an element H; of (IY)QY/WHTX,C[),l such that Gj1H; & (Zw)r,,-
It is clear that Zx - Zy C Zw and ijj € Iy for all k; = 1,...,5;. We deduce
(Gj1Hj)p, = 0 in Ow,, for every point p € Supp(W) \ {p,;}. Since X and Y are ge-
ometrically linked, we get (Gj1),, € &(Owy,). If (Hj),, € mx,,, then in Ox, we
have (Gj1Hj),, = 0, and so (G;1Hj), = 0 in Oy, for all points p € Supp(W). Since

~

— ]I  Ow, is an isomorphism, we deduce G;1H; € (Zw)y,, &
pESupp(W)
contradiction. Hence we obtain (H;),, € Oxp, \ Mxp, .

Next we consider the case ( Fjy, ..., Fj, )k € ( X (Tx),, ) p. Without loss of
generality, we assume that Fj; ¢ ( Xg* " (Zx)r Ve I (Fj1, ..., Fji, )i is contained
in (X5 (Ix)r, )p. Then we write Fj, = .+ Xp~7?Gyy, with Fl € (Ix)ry

and Gji, € (Zx/)ir2. Using the same argument as in the proof of Lemma 4.3.4, we

the map 15 : .S

W

can check that Gj1 - (Zy)a, P (r—d)—2 ¢ (Zw)ry- Therefore there exists an element
Hj S (Iy)ay/w+
as above that (Hj),, € Oxp, \ mx,,, and therefore XoH; € (Zv)ayy+(x—a)—1 and
(XOHj)pj € OX,IJ]‘ \mpj'

By repeating this process for ideals of the form ( X{, (Zx),, ) p with § < rg —d — 2,

(rx—d)—2 such that G;1H; ¢ (Zw),,,. It follows by the same reasoning

we can reach the case (Fji,..., Fjy, )k € (Xo, (Zx)r, )p eventually. Thus there is an
index k; € {1,...,5} such that Fjx,(Zy)ay,, € (Zw)r,. From this we can find an
element H; of (Zy)ay -+ (rz—d)—1 such that (Hj),, € Ox,, \ mx,, in exactly the same
way as above. Altogether, for every point p; of Supp(X), we can find an element
H; e (IY)QY/WJF(TX,d),l such that (H;),, € Oxp, \ Mx,p, - O

Remark 4.3.7. When the field K is infinite, the scheme X has CBP(d) if and only if
there is an element H € (Zy)q, Jwt(re—d)—1 such that its image in R is a non-zerodivisor.
This follows from Theorem 4.3.6 and Lemma 2.3.11.

Example 4.3.8. Going back to Example 3.3.6, we have seen that the scheme X is a
complete intersection of degree 9 with Supp(X) = X(K) = {p1,...,pr}, but it is not
reduced at p; and p;. A homogeneous primary decomposition of Zx is Zx = [;N---N 1,
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where ]z = mz for ¢ 7é 5, 7, ]5 = <X1 - 2X0,X22>, and I7 = <X1 + 2X0,X22>

(a) Let X; denote the 0-dimensional subscheme of X of degree 5 defined by the ideal
Ix, =LNIsNnIyNI; C P. Then X; is not reduced, but it is locally Gorenstein.
Let Yy be the residual scheme of X; in X. It is not hard to see that X; and Y, are
geometrically linked. We calculate rx = 4 and rx, = ax,/x = ry, = ay,/x = 2.
In this case there is a homogeneous polynomial H € (Zy, )2 such that its image
in the homogeneous coordinate ring Rx, of X; is a non-zerodivisor, for instance,
H = Xg + Xo X1+ iXIQ — %XOXQ — inXg. Therefore Theorem 4.3.6 implies that
the scheme X; is a CB-scheme.

(b) Let Xy be the projective point set in X with its vanishing ideal Zx, = B; NP3 N
PB4 NP5, and let Yo be the residual scheme of X, in X. Then the homogeneous
saturated ideal of Yy is Zy, = P2 NP5 N *Pe N I7. It is clear that rx, = ax,/x =
ry, = ay,x = 2 and (Zy,)s = (X7 — in — %XOXQ — iX1X2>K. In this case X,
and Yy are not geometrically linked, since Supp(Xz) N Supp(Y) = {ps}. Also, it
is not difficult to verify that X, is a CB-scheme. However, there is no element
H in (Zy,)s such that H,, # 0 in Ox,,,. Moreover, we see that the element
Fy = X? — 2X,X, is a minimal separator of Xy \ {ps} in Xy and (F5Hs),, is a
socle element of Oy, where Hy = X3 — 1 X7 — 1 X X5 — 1 X1X, € (Zy, ).

According to Proposition 2.2.9 in [GW] or Remark 4.7 in [GKR], we get the follow-
ing sequence of isomorphism of graded R-modules
Hom g (R, Klzo])(—rx) = Homg(R, Hom g, (S, Klzo]))(—rx)
= Homg(S/Zx w, S(rw))(—rx)
= Homg(S/Zx w, S)(rw — rx) = Anng(Zx,w)(cy w)
= Ty w(oy w)-

Since W is arithmetically Gorenstein and X and Y are geometrically linked, this implies
that X is locally Gorenstein. So, the Dedekind complementary module €/, of the
algebra R/K|[xq] is well-defined and we have the isomorphism of graded R-modules
Cr/Kz0](—Tx) = Iy w(oy/w). Based on this isomorphism and Theorem 4.3.6, we get

the following consequence.

Corollary 4.3.9. In the setting of Theorem 4.3.6, the following conditions are equivalent.
(i) The scheme X has CBP(d).

(i1) For every p; € Supp(X), there exists an element g; € (€r/xiag))—a—1 such that
* —rx—d—1~% Y Nt ~%
g5 =" lgj with g5 € Ry, and (g7 )p; € Oxp; \ Mxp; -
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Moreover, if K 1s infinite, then the above conditions are equivalent to:

(iii) There exists an element g of (Cr/K(z])—a—1 such that Anng(g) = (0).

Theorem 4.3.10. Let W C P be a 0-dimensional arithmetically Gorenstein scheme,
let X be a subscheme of W such that X and its residual scheme in W are geometrically

linked, and let 0 < d < rx — 1. The following conditions are equivalent.

(i) The scheme X has CBP(d).
(ii) The multiplication map Ry, @ (Cr/k(w))—d—1 — (Cr/K[zo])re—d—1 15 nondegenerate.

(#i) For alli,j > 0, the multiplication map

Ri ® (Cr/Kwo) —d—1+7 = (CR/K[wo])—d—1+i+;

18 nondegenerate.

(iv) The multiplication map Rq ® (Cr/kiwe))-d—1 — (Cr/Kzo])—1 15 nondegenerate.

Proof. (1)=(ii): If g € (€Rr/K[ze))—a—1 and g - R; = (0) for some ¢ > 0 then zfg = 0,
and hence ¢ = 0. Now we let f € R,, \ {0}. Then there is a point p; of Supp(X)
such that f, # 0 in Ox,p,. We want to prove f - (€r/xfw])—d—1 # (0). Since X has
CBP(d), Corollary 4.3.9 yields that there is an element g5 € (€r/x(z])—a—1 Such that
g; = :cgrx_d_lﬁ;‘ with g7 € R,, and (g5),, € Ox,p, \mx,,. Then we have f, - (g57),, # 0
in Ox,p,. This implies that fg; # 0, and so f - g; # 0. Therefore the multiplication
map R, ® (Cr/kzo))—d—1 = (€R/K[zo])rx—d—1 15 nondegenerate.

(ii)=(iii): Since g - R; # (0) for every g € (Cr/K[uy))—d—1+; \ {0}, it is enough to
show that if f € R; satisfies [ - (Cr/kz])—d—14; = (0) then f = 0. Suppose that
f o (Cr/Kfao)—d—1+5 = (0) for f € R;. This implies fa} - (€g/kwo)) a1 = (0), and so
- (Crykiao))—a1 = (0). 1f i <y, then fag*™" € Ry, and fag"™" - (Crykie))—a = (0),
and hence f = 0. If ¢ > rx, then we may write f = xéﬂxf with f € R,,. It follows
from f - (Cr/Kzo])—d—1 = (0) that f =0, and therefore f = 25 f = 0.

(iii)=(iv): This is clearly true.

(iv)=(i): Suppose that X does not have CBP(d), i.e., that there exists a maximal
pj-subscheme X' C X and a set of separators {fj1,..., fj»,} € R,, of X' in X such
that :ng_d | fir; for all kj = 1,...,5. We write fj, = xgx_dhjkj with hjr, € Ry
for k; = 1,...,5;. For g € (Cr/kzo])-a—1, let ¢ € HO_mK[xO}(R,K[xO])_d_l be a
homogeneous element such that g = ®(p), where ® is the homomorphism of graded
R-modules given in Definition 3.2.4. Then ¢(R;) = (0) for i < d, in particular, we
have ¢(fjr;) = aigxfdga(hjkj) =0 forall k; =1,..., ;. Now we show that f;; - ¢ = 0.
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Let 7 > 0 and let f € R,. By Lemma 2.3.25, we may write ff;; = Z:;zl ¢k, fik,
for some ¢, € K. Then we have (fi1 - 9)(f) = o(ffir) = (0 wheim, fir;) =
ZZ;ZI w4cik, 0 (fik;) = 0, and so fj1 - = 0. Thus 0 = ®(fj1 - @) = fu®(p) = fig.
This implies that h;; - g = 0 for an arbitrary element g € (€g/x(zy))—a—1, and therefore

we obtain hj; - (Cr)kiw])—a—1 = (0), a contradiction. O

Corollary 4.3.11. In the setting of Theorem 4.3.10, assume that K is infinite and X
has CBP(d).

(i) For all i € Z we have HFx(i) + HFx(d — i) < deg(X).

(i) Fori=0,...,rx we have ho+---+h; < hg_jt1+- -+ hyy, where h; = AHFx(i).
Proof. Since K is infinite and X has CBP(d), there is an element g € (€r/x(z])—d—1
such that Anng(g) = (0) by Corollary 4.3.9. Thus the map iy : R = Cp/kzo(—d — 1)

given by f — fg is injective, and hence we have
HFX@) < HFQR/K[xO](_d_l)(Z.) = HFQR/K[:EO] (2 —d— 1) = deg(X) - HFX(d - 2)

for all i € Z. This completes the proof of claim (i). Claim (ii) follows from the claim (i)
and the fact that HFx (i) = hg + - -- + h; and deg(X) = ho + - - - + hyy. O

Corollary 4.3.9 can be used to describe the Hilbert function and the regularity

index of the Dedekind different as follows. We use the notation oy, = min{i € N |
Up(R/Klzo]); # (0)}.
Proposition 4.3.12. Let K be an infinite field, let W C P% be a 0-dimensional

arithmetically Gorenstein scheme, and let X be a subscheme of W such that X and
its residual scheme in W are geometrically linked. Suppose that X has CBP(d) with
0 S d S rs — 1.

(i) We have d+1 < ay,, < 2rx and HF g, (/K [wo)) (1) < HFx(i —d — 1) for all i € Z.

(1i) Letig be the smallest number such that HFy(r/kzo]) (%) = HFx(ig —d — 1) > 0.
Then we have HFy, (r/K[zo)) (1) = HFx(i —d — 1) for all i > iy and

ri(0p(R/K[xo])) = max { ig,rx +d +1}.

(111) If X is a projective point set and d < rx — 2, then igc = 2rx, in particular,
HEy, (r/K(eo) () < HFx(i —d — 1) fori € {ay,,, ..., 2rx — 1}.
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—rx—d—1~

Proof. By Corollary 4.3.9, there is a non-zerodivisor g € R, such that g = x, g
in (Cr/Kiz)—a—1- We observe that g - Jp(R/K[xo]); C mSXerHRZ-_d_l. This implies
Up(R/Klxo)); = (0) for i < d, and so d + 1 < ay,,. We calculate

< dimg (2T R _g_1) = HFx(i — d — 1).

Thus claim (i) is completely proved.

Now we prove claim (ii). Clearly, we have d + 1 < ig < 2rx. We only need to
show that HFy, (r/k[z))(i0 + 1) = HFx(ig — d) > 0. Let f € Rj;—q \ {0}. There are
9oy -+ Gn € Riy,—q—1 such that f = zggo + v191 + - + 2,9,. By assumption, we have
G- 9p(R/K|x0))iy = 6T Rsy_q_1. This enables us to write 254!y, = Gh; for some
h; € 9p(R/K|x0))i,, where j € {0,...,n}. Thus we have

xSXerHf = xSXerH(l‘ogo + 2191 + -+ Tngn) = 2ogho + 1M1 + - - + 2pghy

= g(xoho + $1h1 + -+ l‘nhn)

and so 2z T f €G- Ip(R/ K [0])sp1. Hence we get 2T Ry _q=G-9p(R/K[x0])igs1-
In other words, we have HFy g/ k(z)) (t0 + 1) = HFx(ig — d).
Let k = max { ip,rx +d+1 }. In order to prove the equality ri(dp(R/K[zo])) = k,

we consider the following two cases.

Case (1) Letig>rx+d+ 1. Then we have k = i5. Observe that
deg(X) Z HFﬂD(R/K[xO])(k) = HFx(k? —d—- 1) Z HFx(Tx) = deg(X)

It follows that HFy, (r/kzo)) (k) = deg(X), and hence k > ri(¥p(R/K[xo])). Moreover,
for i < k =iy, we have HFy (r/k[zo)) (1) < HFx(i —d — 1) < HFx(k —d — 1) = deg(X).
Thus we get ri(dp(R/K|xo])) = k.

Case (2) Let iy <rx+d+ 1. Then we have k = rx + d + 1 and HFy g/ k(w,)) (k) =
HFx(k —d — 1) = HFx(rx) = deg(X). This implies & > ri(dp(R/K|x¢])). For i < k,
we have HFy, (r/kz)) (1) < HFx(i —d — 1) < HFx(rx — 1) < deg(X). Hence we obtain
ri(0p(R/K[xo])) = k again.

Finally, claim (iii) follows from (ii) and the fact that ri(dp(R/K|[zo])) = 2rx. O

Lemma 4.3.13. Let A/K be a finite Gorenstein algebra.

(i) There is a non-degenerate K -bilinear form ® : Ax A — K with the property that
O(xy,z) = O(z,yz) for all x,y,z € A.
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(ii) Let I be a non-zero ideal of A, and let I° = {z € A | ®(I,z) = 0}. Then we
have Anny(I) = I° and dimg I + dimg Anny(I) = dimg A.

Proof. Claim (i) follows from [Lam, Theorem 3.15], and claim (ii) follows from [Lam,
Lemma 16.38 and Theorem 16.40]. O

Lemma 4.3.14. Let W C P be a 0-dimensional arithmetically Gorenstein scheme,
let X (resp. X') be a subscheme of W, and let Y (resp. Y') be the residual scheme of X
(resp. X') in W. Let p; € Supp(X). Then X' is a (mazimal) p;-subscheme of X if and

only if Y contains Y as a (maximal) p;-subscheme.

Proof. As sets, Supp(W) = Supp(X) U Supp(Y) by [Mig, Proposition 5.2.2]. Hence we

may write Supp(W) = {p1,...,ps, Pss1,-- > Pt Des1s - - Pufy SUpp(X) = {p1,...,p},
and Supp(Y) = {ps41,- .., pu}. Then there are ideals qsy1,...,q; € Ow,y, such that

Ow p, for j=1,...,s,
Oxp; = Owp,/q; forj=s+1,...,t,
(0) forj=t+1,...,u.

We consider the map 6 : S — [];_, Ow,,. Notice that 0[5, is an injection for 0 < i < 7y

and 6|g, is an isomorphism for all ¢ > ryw. We see that

0(Zxyw) = 0((Zscyw)ry) = {0} X == X {0} X qog1 X - -+ X s X Oy X - o+ X Oy,
and dimp 0(Zyx/w) = deg(W) — deg(X). In [[;_; Ow,,, we set

A= Oy, X -+ X Oy, X Annowypsﬂ(qsﬂ) X -+ x Anng,,  (q:) X {0} x -+ x {0}

By Lemma 4.3.13, we have deg(W) = dimg A + dimg 0(Zx/w). This implies that
dimg A = deg(W) — deg(Y). We want to show that §(Zy,w) = A. Let i > ayw and
let f be a non-zero homogeneous element in (Zyw);. If 0(f) = (fp,,- .-, fp.) € A, then

we consider the following two cases:

Case (a;) Thereis an index j € {s+1,...,t} such that f, ¢ Amno,, (q;)-

In this case we find a non-zero element a € q; such that a- f,, # 0. Let g =
0-((0,...,0,a,0,...,0)) € (Zxyw)r, \ {0}. Then f-g # 0in S, since (f - g),, # 0.
This is a contradiction to the fact that Zx w - Zy,w = (0).

Case (az) Suppose that f, € Annow}pj (q;) for all j =1,...,t, and that there is an
index k € {t+1,...,u} such that f, # 0. In this case we argue as in case (a;) to
obtain g € (Zx w)r, \ {0} such that f-g # 0. This is impossible.
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Thus we have shown that 0(f) € A for every f € (Zyw); \ {0}, where i > ay w. In
other words, we get 6(Zy,w) C A. For the other inclusion, let i > 0, let f € S;\ {0}
such that 6(f) € A, and let g € (Zx/w)x \ {0} with & > ax/w. Then we have f-g € Si
and O(f - g) = 0. This implies that f-g = 0, and hence f € Anng(Zx,w) = Ly w.
Altogether, we have 6(Zy,w) = A, as wanted.

Now we assume that X' is a p;-subscheme of X. Then we have Oy, = Ox,, for
all k € {1,...,u} \{j} and Ox p, = Ow,,/q;. We distinguish the following two cases.

Case (by) Suppose that 1 < j <s.
We see that q); # (0) and

O(Zx: jw) = {0} x -+ x q; X oo X {0} X g1 X oo X gy X Owpyyy X -+ X Oy,
0(Zy jw) = Owp, X -+ X Anng,, | (qj) - X O p, X Annow’psﬂ (qsy1) X -
x Anng,, , (q:) x {0} x - x {0}.
This implies Oy, = Ovyp, for k # j and Oy, = Owy,/ Anng,, , (4)) # (0) = Oy,
Hence Y is a p;-subscheme of Y'.

Case (by) Suppose that s +1 < j <t.
We have q 2 q; and

0(Zxrjw) = {0} x -+ X {0} X g1 X =+ X @ X -+ X e X Oy X o X Oy,
Q(Iy//w) = Owﬂgl X - X OW,ps X AnnOW,ps.H (qs—i-l) X oo X AHHOW (q])
x Anng,, , (q:) x {0} x -+ x {0}.

This implies that Oy, = Oy, for k& # j and Oy, = Ow,y, /Annowypj(q;) #
Ow,p,/ Anng,, (q;) = Oyp,. Hence Y is a p;-subscheme of Y'.
Conversely, if Y is a pj-subscheme of Y’, where p; € Supp(X), we can argue

analogously as above to get that X' is a p;-subscheme of X. O]

The next theorem provides a characterization of the Cayley-Bacharach property of
degree d which is a generalization of [KR1, Theorem 4.1].

Theorem 4.3.15. Let W CP% be a 0-dimensional arithmetically Gorenstein scheme,
let X C W be a subscheme, let Y C W be the residual scheme of X in W, and let
0 <d<rg—1. Then the following statements are equivalent.

(1) The scheme X has CBP(d).

(11) Every subscheme Y C W containing Y as a mazimal pj-subscheme, where p; is

a point in Supp(X), satisfies HFz, (o yw + (rx —d) — 1) > 0.
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Proof. Let p; € Supp(X), let X’ be a maximal p;-subscheme of X, let Ry, be the
homogeneous coordinate ring of X', and let Y’ be the residual scheme of X' in W.
By Proposition 4.3.2, we have deg(Y’) = deg(Y) + »;, Y C Y, and rx + oy yw =
rw = rx + ayw. Moreover, we see that Hom yr, (R, K[xo])(—rx) = Ly w(ay/w) and
Hom e, (R, K [zo])(=73) = Ly jw(aeyryw). This implies HF 7, (ayyw+(rx—i)—1) =
deg(X) — HFx(:) and HFz,, | (ay/w + (rx —i) —1) = HFz,, (avw+ (re —i) — 1) =
(deg(X) — 5;) — HFy/ (). Thus we get

HFIWW(ay/W + (TX — Z) — 1) — HFZW/W(O[Y/W + (’I”X — ’l) — 1) = %j — HFIX’/X(i)'

According to Proposition 4.1.22, X has CBP(d) if and only if HFz,, (d) < 5¢; for every
maximal p;-subscheme X’ of X. This is equivalent to HFz, /Y,(Oéy wt(rx —d) —1) =
HFz, ,, (avw + (rx —d) — 1) — HFz,  (avw + (rx —d) — 1) > 0 for every residual
scheme Y’ C W of a maximal p;-subscheme X' C X. By Lemma 4.3.14, there is a 1-1
correspondence between a maximal p;-subscheme X’ C X and a subscheme Y C W
containing Y as a maximal p;-subscheme. In particular, Y’ is exactly the residual

scheme of X’ in W. Therefore the proof of the proposition is complete. n

Corollary 4.3.16. Let W C P be a 0-dimensional arithmetically Gorenstein scheme,
let X C W be a subscheme, let Y C W be the residual scheme of X in W, and let
0 <d<rw—ayw—1. If Iy)w is generated by its elements of degree less than or
equal to rwy —d — 1 then X has CBP(d).

Proof. This follows by Theorem 4.3.15 using a similar argument as in the proof of [Kr3,
Corollary 16.5]. O

Corollary 4.3.17. Let W C P} be a 0-dimensional arithmetically Gorenstein scheme,
let X C W be a subscheme, let Y C W be the residual scheme of X in W, and let

0 <d<rg—1. Then the following conditions are equivalent.

(i) X has CBP(d).

(1) T (Tv) oy jyt (rg—a)—1 = Ix
(i) Anngs(Zy/w)ay -+ (rg—d)—1) = Lxyw
(1) (Zw)ry—1 + (Tx)ay et re—)—1 = (Ix)a

(v) (Anns(Zy/w)ay s+ (rg—d)-1))a = (Txyw)a
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Proof. Observe that “(ii)<(iii)” and “(iv)<(v)” are obviously true. Moreover, the
implication “(ii)=-(iv)” is clear. It remains to prove “(i)=-(ii)” and “(iv)=-(i)”. First we
show “(i)=-(ii)”. We have Tx C Zw : (Zy)ayw+(rz—d)—1- 10 prove the reverse inclusion,
we let F' € Ty : (Zy)ay e (re—d)—1- Suppose for a contradiction that F' ¢ Zx. There is
a point p; € Supp(X) such that F),, # 0. Then we can find an element a; € Ox,, such
that a; - F,, is a socle element in &(Ox ). By Proposition 2.3.17, there is a maximal

pj-subscheme X' of X corresponding to (0,...,0,a;-F,,0,...,0) € [  Oxp,. Let
prE€Supp(X)

Y’ be the residual scheme of X" in W. Since X has CBP(d), Theorem 4.3.15 tells us that
HFIWY,(CW/W +(rgx—d)—1)>0. Let G € (ZY)QY/WJF(TX_d)_l. It is clear that F'G € Zw
and G- Zx C Zyw. Moreover, since Zy is saturated, we get G - (F, Ix)** C Zy. It follows
from the inclusion Zys C (F,Zx)*" that G - Ixs C Zw or G € (Ly)ay et (rg—dy—1- Thus
we obtain HFz, (w4 (rx — d) — 1) = 0, a contradiction.

Now we prove “(iv)=(i)”. For a contradiction, assume that the scheme X does not
have CBP(d). Then there is a maximal p;-subscheme X' C X such that deg(F7}, ) < d

forall kj = 1,..., 5, where {F};, ..., Fj%j} is a set of minimal separators of X’ in X. Let

d—deg(F%, )
G, = X, 7 F, for kj =1,..., 5. Since Gy, ¢ (Zx)a4, the hypothesis implies

Gik; & (Tw)ry—1 + (Tv)ay et (re—ay—1 for kj =1, 5. Let H € (Zy)ayy+oe—a)—1 \ {0}
be such that Gj1H ¢ (Zw)r,—1. As sets, we have Supp(W) = Supp(X) U Supp(Y). For
p € Supp(W) \ {p;}, we see that (G;1H), = 0in Ow, and (G;1H),, # 0 in Ow,,. By
writing Ox,, = Ow,p,/q; for some ideal q; of Oy, , we get q; - H,, = 0 in Oy, and
a-(Gj1)p, € q; for every a € myy ;. This implies myyp, - (Gj1H)p, = (0) in Oyyyp. Thus
the element (G;1H),, is a socle element in &(Oyyy, ).

Notice that if G € Ty \ Zx then Proposition 2.3.17 implies G, = z - (Gj1)p, + ¥
for some z ¢ myy,, and some y € q;. Hence we have (GH),, = (- (Gj1)p, +y)H,y, =
v - (GjpH)y, # 0. Now we prove that the set {(Gj1H)p,,..., (G, H)p} C© Owy, is
K-linearly independent. Suppose that there are elements aji, ..., a;,, € K such that
aj1(GjH)p, A+ - -+, (G H)p, = 0. Then we have (a;1 G+ - -+a;,, G, )p, - Hp, = 0.
This shows that a;1Gj1 + - -+ + a;,,Gj,.; € Ix. Furthermore, we have

dimK(IX//X)d = dlmK(<G]kJ +IX ‘ kj = 1, ceey X >R)d = ;.

From this we get aj; = --- = a;,, = 0. Hence the set {(G;1H),,,..., (G, H)y,} is
K-linearly independent, as was to be shown.

Let J:=(GjH+Zw | k=1,...,5)g. It is clearly true that dimg J,,_14; > 5
for all ¢ > 0. Moreover, we can write X;G;; + Ix = Z:jzl cé-ijoijj + Zx for some

cé-l,...,cé-%j € K, where 0 < ¢ <nand 1 <[ < 3. This implies X;G;;H + Zw =
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Z:jzlcgijoijjH+Iw. Hence we obtain dimg J,,,—14+; < »; for all i > 0. Altogether,
we get dimg Jy,—14; = 2 for all 7 > 0. Consequently, the ideal J defines a maximal
pj-subscheme W' C W of degree deg(W') = deg(W) — ;. In particular, we have
dimg (Zw jw)ryy—1 = 2. Therefore Proposition 4.1.22 yields that the scheme W is not

a CB-scheme, a contradiction. n

4.4 Differents and Higher Uniformity of 0-Dimen-

sional Schemes

In this section we let X C P’ be a 0-dimensional scheme which has K-rational support,
i.e., X(K) = Supp(X) ={p1,...,ps}. In this situation the Cayley-Bacharach property
is merely the weakest of a whole series of uniformity conditions which a 0-dimensional

scheme X C P% can satisfy. The following uniformity concepts were introduced in [Kr4,
Section 5] and [GK].

Definition 4.4.1. Let 1 < ¢ < deg(X) — 1 and 1 < j < rg. We say that X is
(i, j)-uniform if every subscheme Y C X of degree deg(Y) = deg(X) — i satisfies
HFy(j) = HFx(j).

Remark 4.4.2. (a) The scheme X has CBP(d) if and only if it is (1, d)-uniform.

(b) If X is (4, j)-uniform, then it is (¢ — 1, j)-uniform and (i, j — 1)-uniform.

(c) If X'is (7,5 — 1)-uniform, then every subscheme Y C X of degree deg(X) — i <
deg(Y) < deg(X) has Hilbert function HFy(j) = min{ deg(Y), HFx(7) } for all
j € Z. The converse is true for i € {1,..., Ax}, where Ax = deg(X)—HFx(rx—1)
is the last non-zero difference of HFx.

(d) The scheme X is in uniform position if and only if it is (7, j)-uniform for all
1<j<rx—1landalll<i<deg(X)—HFx(j).

(e) If X'is (7, j)-uniform, then i < deg(X) — HFx(j).

(f) If X is arithmetically Gorenstein, then it cannot be (2,75 — 1)-uniform. This
follows from Ax = 1 and by [Kr2, Proposition 2.8] and (e).

Corollary 4.4.3. Let X C P} be a 0-dimensional scheme. If X is a CB-scheme with
Ax =1, then it is (2,rx — 2)-uniform.

Proof. Let Y C X be a subscheme of degree deg(Y) = deg(X)—2. By [Kr2, Lemma 2.2],
there is a subscheme Y; of X of degree deg(X) — 1 such that Y C Y; C X. It follows
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from [Kr2, Proposition 2.8] that the scheme Y; is a CB-scheme. Since Ax = 1, we
have HFy, (rx — 1) = HFx(rx — 1) = deg(Y;) and ry, = rx — 1. Thus HFy(rx — 2) =
HFy(ry, — 1) = HFy, (ry, — 1) = HFx(rx — 2), and hence X is (2, rx — 2)-uniform. [

A characterization of the uniformity of X in terms of the Dedekind complementary

module is given by the next proposition which follows from [Kr2, Theorem 3.2].

Proposition 4.4.4. Let X C P be a 0-dimensional locally Gorenstein scheme, and

let j € {1,...,rx — 1}. The following conditions are equivalent.

(i) The scheme X is (deg(X) — HFx(j), j)-uniform.
(1) The multiplication map p : R; @ (Crkiwe))—j—1 = (Cr/K[mo))—1 15 biinjective, i.e.,
if w(f ®g) =0 implies f =0 or g=0 for all f € R; and g € (Cr/K[wo))—j—1-

We have the following observation.

Lemma 4.4.5. Let X C P} be a 0-dimensional locally Gorenstein scheme, let
jge{l,...;rx =2}, and let AHFx(j+1) = k € {1,...,deg(X) — HFx(j) — 1}. If
the multiplication map R; ® (Cr/kiz])—j—2 — (Cr/Kz0])—2 15 biinjective, then X is
(s — HFx(j) — k, j)-uniform.

Proof. Assume that Y C X of degree deg(Y) = HFx(j) + k satisfies HFy(j) < HFx(j).
Then ry > j + 1 and there is an element f € (Zy/x); \ {0}. If ry = j + 1, then
HFy(j + 1) = deg(Y) = HFx(j) + ¥ = HFx(j + 1) by assumption. This implies
(Zy/x)j+1 = (0), contradicting 0 # xof € (Zy/x);j+1. Hence we must have ry > j + 2.
In this case Proposition 2.4.6 yields that there is g € (Q:R/K[xo]>fj72 \ {0} such that
fg =0, a contradiction. o

Proposition 4.4.6. If K 1is algebraically closed and X is a 0-dimensional locally
Gorenstein scheme such that AHFx(j7 + 1) = 1 for some j € {1,...,rx — 2}, the

following statements are equivalent.

(i) The scheme X is (i, j)-uniform for some 1 < i < deg(X) — HFx(j).
(i) The Hilbert function of X satisfies HFx(1) = 2, i.e., the support of X lies on

a line.

Proof. 1t is clear that (ii) implies (i). Now we assume that X is (deg(X)—HFx(j)—*k, 7)-
uniform for some k € {0, ..., deg(X) — HFx(j) — 1}. By Remark 4.4.2(b), we may as-
sume that k # 0. Then the multiplication map R; ® (€r/kzo])—j—k—1 = (CRr/K[zo])—k—1

is biinjective by a similar argument as in the proof of [Kr2, Theorem 3.2]. Since
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K is an algebraically closed field, the Biinjective Map Lemma (cf. [Kr2, Section 3])
yields HF¢, .. ,(=k — 1) = HFx(j) + HF¢, ., (=7 — k — 1) — 1. This implies
deg(X)—HFx(k) > HFx(j)+(deg(X)—HFx(j+k))—1. Since AHFx(j+1) = 1, we have
HFx(j+k) = HFx(j)+k (cf. [KR3, Corollary 5.5.28]). Hence we get deg(X)—HFx(k) >
HFx(j) + (deg(X) —HFx(j) — k) — 1 = deg(X) — (k+1), or HFx(k) < k+ 1. Moreover,
the Hilbert function of X satisfies 0 < HFx(1) < --- < HFx(k) < k + 1. Therefore it
must be the case that HFx (1) = 2. O

In view of Lemma 2.3.12, the saturation of a non-zero homogeneous ideal J C R is
given by
J*={feR | alf CJforsomen >0}

In particular, the ideal J is saturated if and only if z¢f € J implies f € J. Using this

description, we prove the following proposition.

Proposition 4.4.7. Let X C P} be a 0-dimensional locally Gorenstein scheme with
support Supp(X) = {p1,...,ps}, and let 1 < m < Ax. If X is (m,rx — 1)-uniform,
then any subscheme Y C X of degree deg(Y) = deg(X) — m satisfies

2G" " (Tyx)ry N Op(R/K|xo])2r,—1 = (0).

Proof. Suppose for contradiction that there is a non-zero element h € xgx_l(l'y /X )ry N
Up(R/K|xo))are—1, where Y C X is a subscheme of degree deg(Y) = deg(X) —m. Since
Xis (m, rx —1)-uniform, we have HFy (i) = HFx () for i < rx and HFy (i) = deg(X)—m
for 1 > rx. Let fi,..., f,, be a K-basis of the K-vector space (Iy/x)rx. Then we
have Zy/x = (fi,..., fm) and (Zy/x)retri = (b f1,. .., fm ) for all i > 0. So, we
may write h = ng‘l(alfl + -+ + apfr) for some ay,...,a, € K. On the other
hand, the scheme X is also a CB-scheme. As in the proof of Theorem 4.1.7 we find
elements gi,..., 95 € (€r/Kfzo))-ry Such that gi = ng’”Xg;f with g; € R, \ {0} and
(97)p; € Oxp; \ My, for j=1,... 5. Given j € {1,...,s}, we have

he-g; =ag " afi + -+ amfm) - 25775 = 2™ anfi + -+ amfm)G;
=25 (bjfi + -+ 4 bjmfm) € Ry
for some bj1, ..., b, € K. This yields that bj; fi +-- - +bjm fim € 2oRyy—1. Since Ly x is
a saturated ideal of R and (Zy x)r.—1 = (0), the condition bj; f1+- - -4 bjim frn € ToRry—1
implies bj; = - -+ = bj,, = 0, especially, h- g5 = h-g; = 0. It follows that hy, - (g7),, = 0
in Oxp,;. Since the element (g;),, is a unit of Ox,,, we get h,, = 0. Thus we have
shown that h, = 0in Ox,, for all j = 1,...,s. Therefore Lemma 2.3.10 yields that
h = 0, in contradiction to h # 0. ]
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Example 4.4.8. Let K be a field with char(K) = 0 or char(K) > 5. We consider the
projective point set X = {p1,...,pro} C P% with p; = (1 :1:0), po = (1 : 3 :0),
ps=1:1:1),ps=(1:2:1),ps=01:3:1),ps=(1:0:2),pr=(1:1:2),
ps = (1:2:2), pg=(1:3:2), and pjp = (1 :3:3). Sketched in the affine plane
A? =D, (Xo) ={(co:c1:c2) € P | co # 0} the set X codes as follows:

(0,3) e (3,3)

(0,0) ° e (3,0

The Hilbert function of X is HFx : 136 10 10---, so that rx =3 and ax = 4 = Ax.
Furthermore, the Noether-Dedekind different is computed by ¥p(R/K[zo]) = D,>¢ R
and so Up(R/K[xo])ary—1 = (0). In this case, X is (1,7x — 1)-uniform by Corol-
lary 4.1.9(ii). Let Y = X\ {p4, ps, ps}. Using the figure, we see that the hypersurface
defined by F' = (X7 — Xo) (X1 —3Xj) contains Y. This implies (Zy/x)2 # 0 (as ax = 4).
Thus we obtain HFy(rx — 1) = HFy(2) < HFx(2) = HFx(rx — 1) = 6. Explicitly,
the Hilbert function of Y is given by HFy : 1357 7---, and HFy(rg — 1) = 5 <
6 = HFx(rx — 1). It follows from Definition 4.4.1 that X is neither (3,2)-uniform nor

(Ax,rx — 1)-uniform. Hence the converse of Proposition 4.4.7 is not true in general.

Corollary 4.4.9. If a 0-dimensional locally Gorenstein scheme X CP} satisfies rx =1,
then either X has Vp(R/K[xo])1 = (0) or X is arithmetically Gorenstein.

Proof. Since rx = 1, we have HFx : 1 deg(X)--- and Ax = deg(X) — 1. Thus it is
easy to check that X is in uniform position. Now it follows from Proposition 4.4.7 that
Up(R/K[x])1N(Zy/x)1 = (0) for any subscheme Y C X of degree deg(Y) = deg(X)—1.
Hence we get p(R/K[xo])o = (0). If I9p(R/K]xo])1 # (0), then the scheme X is
arithmetically Gorenstein by Proposition 4.1.15. [

Under the assumption that X is a CB-scheme, Proposition 4.4.7 can be generalized

as follows.

Proposition 4.4.10. Let X C P} be a 0-dimensional locally Gorenstein CB-scheme,
and let Supp(X) = {p1,...,ps}. If X is (i, 5)-uniform, then any subscheme Y C X of
degree deg(Y) = deg(X) — i satisfies

(L) e N Op(R/K[wo]) e = (0).
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Proof. Since X is a CB-scheme, there are elements g, ..., g; € (Cr/K[zo))—ry sSuch that
gr = 137 gr with g € R, \ {0} and (3}),, € Oxp, \ Mx,, for k=1,... s (as in the
proof of Theorem 4.1.7). Let Y C X be a subscheme of degree deg(Y) = deg(X) —i, and
let h € 2} (Zy/x)r, N Ip(R/K[x0])ryrj. We want to show that h = 0. Let {f1,..., f;}
be a K-basis of the K-vector space (Zy/x),,. There are ai,...,a; € K such that

h=ax)fi + - +axdf; € 9p(R/K[0))rys- Let 1 <k <s. We sece that
hegi = o aifi+ -+ aif)g = 25" (b fr + -+ bifi) € Ry

for some byy,...,br; € K. It follows that by fi + - + biif; € :ng_jRj. So, we may
write bgr fi + -+ brifi = xgx_jﬁk for some Ek € R;. Since X is (¢, j)-uniform, we have
HFy(j) = HFx(j), so ay/x > j+ 1. Furthermore, the ideal (fi, ..., f;) of R defines the
subscheme Y of X scheme-theoretically. This implies (f1,..., fi) C(f1,..., fi)™ =ZTy/x.
Because Zy x is saturated and xgx_jﬁk =bufi+---+buifi € (fi,..., fi)ry, we deduce
that hy, € (Zy/x); = (0). Thus we get h - g; = ngrx+j(bk1fl +oF bk fi) = hy = 0, and
hence h - gf = 0. In particular, we have h,, - (g;),. = 0 in Ox,,. Since the element
(G5)p, 1s a unit of Oxy,, we get h,, = 0. Thus h,, = 0in Ox,, forall k =1,...,s.
Hence Lemma 2.3.10 yields h = 0, and therefore

x%(IY/X>Tx NIp(R/K[xo])ret+j = (0)
for any subscheme Y C X of degree deg(Y) = deg(X) — i. =

Corollary 4.4.11. Let X C P} be a 0-dimensional arithmetically Gorenstein scheme,

and assume i < deg(X) — HFx(j). The following conditions are equivalent.

(i) The scheme X is (i, j)-uniform.
(ii) Every subscheme Y C X of degree deg(Y) = deg(X) — i satisfies

(T /) N Up(R/K[wo]) e = (0).

Proof. Since the scheme X is arithmetically Gorenstein, it is also a CB-scheme and
Ax = 1. The implication “(i)=-(ii)” follows from Proposition 4.4.10. Now we prove
“(ii)=-(i)”. Suppose that X is not (i, j)-uniform, i.e., there is a subscheme Y C X of
degree deg(X) — i such that HFy(j) < HFx(j). Let us write (Zy/x)r, = (1,5 fi) &
We deduce that (Zy/x); = ((f1,..., fi)*"); # (0). Let f € (Zy/x); \ {0}, and write
ng*jf =ayf1 + -+ a;f; for some aq,...,a; € K. By Proposition 3.2.8, there is a
non-zerodivisor h € R, such that ¥p(R/K[x¢]) = (h)g. Then we have

0# fh=a} " (arfi+ -+ aifi) - h = (bifi + - +bifi) € Ip(R/K[x0])ryss
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for some elements by, ...,b; € K. Hence we get 2}(Zy/x)ry, N Ip(R/K[w0])rysj # (0),

a contradiction. O

Now let X = {p1,...,ps} C P% be a projective point set of degree s, and let f; € R,.,
be the normal separator of X\ {p;} in X for j =1,...,s. By Lf; we denote the leading
form (i.e. the residue class) of f; in R := R/{(z¢) (j = 1,...,s). Notice that we can
renumber {p1, ..., ps} in such a way that {Lf1,..., Lfa,}is a K-basis of R,,. We write

Lfagy; = BinLfi + -+ Bing Lfay

for j =1,...,s—Ax, and form the matrix B := (f;;)". Recall from Lemma 3.2.10 that
the elements hy, ..., hs_a, € R,,_1 which satisfy xohy = fa,sr — Beifi — = Bray fay
form a K-basis of R,,_1, and (Cr/kz])—rx = (G1s---:0ay )¢ With g; = ma%g(fj +
Bijfagsr + -+ Bsagifs) for j=1,..., Ax.

We observe that zy* ' f; ¢ Ux(R/K[xo])ar—i for all j € {1,...,Ax} and for all
i € {1,...,rx — 1}. Otherwise, there is an index j € {1,..., Ax} such that 2" f; €
Ux(R/K[20))ar,—i. Then we obtain zf* " f;g; = 25" f; € Rey_i, and so f; € ThR,, i,
contradicting the hypothesis Lf; # 0.

Proposition 4.4.12. Let X = {p1,...,ps} C P% be a projective point set with Ax > 2.

Then the following conditions are equivalent.

(i) X is (2,rx — 1)-uniform.
(ii) For any subset of two elements {ji,jo} C{1,...,s} we have

Ox(R/K[xo])ar,—1 N (i fr 26 fin ) o = (0).

Proof. 1f X is (2,75 — 1)-uniform, then X is also a CB-scheme. Thus the implication
“(i)=(i1)” follows from Proposition 4.4.10. Now we prove “(ii)=-(i)”. We suppose for
a contradiction that X is not (2,rx — 1)-uniform. Then there exist ji,72 € {1,...,s}
such that j; < j» and such that the subscheme Y = X'\ {p;,,pj;,} of degree s — 2
satisfies HFy(rx — 1) < HFx(rx — 1). Since the ideal (f;,, f;,) defines Y in X scheme-
theoretically, we have Zy/x = (f;,, fj,)**". It follows from (Zy/x),,—1 # (0) that there
is a non-zero homogeneous element f € (Zy/x)r,—1 such that xof = aif;, + aaf;, for
some aj,a; € K. Because X is a CB-scheme, we have a; # 0 and ay # 0. Letting
a = —ag/ay, we get fj, —af;, = xof /a1 € xoR—1 and Lf; = aLfj,. As above, we
assume that the set {Lfi,..., Lfa,} is a K-basis of R,,. We consider the following

three cases.
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Case (a) Suppose that 1 < j; < jo < Ax. In this case we observe that {Lf;,, Lf;,}
is linearly independent in R,,. But we also have L fiy —aLf;, = 0. Thus this is

impossible.

Case (b) Suppose that 1 < j; < Ax < jo < 5. Let us write jo = Ax +iy. In R,,,

we have Lfj, = o 'Lf;, = BiyiLfi + -+ + Biyay Lfa,. We deduce that

/62'21Lf1 +oeet ﬁizjl—lth—l + (61'2]'1 - a_l)Lf]i + ﬁi2j1+1ij1+1 +- /BizAfoAx = 0.

This implies f3;,;, = a™' and fB;,x = 0 for every k # ji. We write (Cr/xizo))—ry =
<§17 cee agAx >K with gk = x(;QrX(fk + 51kaX+1 + -+ Bs—Axkfs) for all k = 17 s 7AX'

Now we compute

:IZ'SX_1<f]'1 - Oézsz) ’ gk = xarx_l(fjl - 052fj2)<fk + BlkaXJrl oot ﬁs—Akas>

B 25 Bk fj, if k# j;
e (i = Buna?fy) ik =y
o if k £ j,
et — ) ik =i
o itk#4

s/ itk =

This implies that «7 ' (fj, — a®fj,) - Gk € Ry for all k = 1,..., Ax.

Moreover, a
—rx+i s

homogeneous element g € (€r/ko))i With ¢ > —rx can be written as g = 2,y

with some ¢’ € R,,. It follows that 2{* ' (f;, — @2fi,) - g = xb ' (f;
rx+i—1

- a2fj2>g/ =

) (g/(pjl)fjl _a29/(pj2)fj2) S R2Tx+i*1' Thus we get xgx_l<fj1 _Qij2>'Q:R/K[$0] - R7

rx—1

and hence xg* " (fj, — a®f},) € Ux(R/K[xo])ary—1, in contradiction to our assumption.

Case (c) Suppose that Ax < j; < jo < s. In this case we write j; = Ax + iy,

Jo = Ax + 1o,
L-fjl = Lfﬁx-i-h = ﬁhlLfl +e 5i1AfoAxa
Lfj, = Lfay+io = BinLf1 + -+ + Bigay Lfay-

It follows from the equality Lf; = aLf;, that

(6@'11 - Oéﬁizl)Lfl +oeee At (ﬂhAx - aﬁbﬁx)[’fo =0.
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Hence we get f;,x = af,, for all k =1,..., Ax. We calculate

(i — a%f5) - Gk = 252 (fagrin — O fagrin) (fx + Biefages + -+ Beoagrfs)
= zarx(/ghk’fo-l—h - BiszQfo—i—ig)
= $arxﬁi1k(fo+i1 - afAX+i2)

= 1" Biprof /a1 = 2y Birf a1

From this we deduce zg* ' (f;, — a®f},) - Gr € Rpy1 for all k = 1,..., Ax. Using the
same reasoning as in the second case, we obtain 2" ' (f;, — a2f},) - €r/kim) C R, and
hence 2§ (f;, — a2 f;,) € Ux(R/K[2o])ar, 1, in contradiction to our assumption again.

Altogether, the claim is completely proved. O

Corollary 4.4.13. Let X = {py,...,ps} C P% be a projective point set with Ax > 2.
If HF o (R k(2o (2rx — 1) = 0, then X is (2,7x — 1)-uniform.

Example 4.4.14. Let us go back to Example 4.4.8. We observed that the projective
point set X = {py,...,p10} C P% has rx = 3 and Ax = 4, and the Noether-Dedekind
different is given by Vx(R/K|[xo]) = (Ux(R/K[x0])ore ) g = D, Ri- In particular, we
have HF g, (r/k{wo)) (2rx — 1) = 0. Thus Corollary 4.4.13 yields that X is (2, 2)-uniform.

Next we use the above method to characterize the uniformities of a level scheme.
Here we say that a O-dimensional scheme X C P% is level if the Artinian local ring R
satisfies &(R) = R,,. It is well known (cf. [Kr3, Section 11]) that X is a level scheme
if and only if the graded R-module Hom ., (R, K[zo]) is generated by homogeneous
elements of degree —rx. In particular, if the scheme X is a locally Gorenstein scheme,

then this is also equivalent to the condition that € x(me] = ((€r/Kfo])—rs >R.

Proposition 4.4.15. Let X = {p1,...,ps} C P% be a projective point set which is a
level scheme. If Ax=1, we let je{1,... ,rx —2}. Otherwise, we let je{1,... rx—1}.

Then the following conditions are equivalent.
(i) X is (2, j)-uniform.
(ii) For any subset of two elements {ji,jo} C {1,...,s} we have

Ox(R/K[x0])ress N (@ fir bS50 ) e = (0).

Proof. First we observe that if Ax = 1, then X is not (2, rx—1)-uniform, since 2 > Ayx =
s —HFx(rx — 1) and Remark 4.4.2(e) applies. That is why we take j < rx — 1 in this
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case. Now let j satisfy our hypothesis. Since X is a level scheme, [GK, Proposition 6.1]

tells us that X is a CB-scheme. Hence, if X is (2, j)-uniform, we have

19X<R/K[x0]>Tx+j N <x%fj17x%fj2 >K = <0>

for any subset of two elements {ji,j2} C {1,...,s} by Proposition 4.4.10.

Conversely, suppose for a contradiction that X is not (2, j)-uniform, i.e., there is
a subscheme Y = X\ {p;,,pj,} of degree s — 2 such that HFy(j) < HFx(j). Then
Tyx = (fj,, [i)™ € R and (Zy;x); # (0). Let f € (Zy/x); \ {0}. We may write
v f = F0) it f o) fart -+ F (o) fo = F(03) fin+F () fio with f(py,), f (D) € K.
Since X is a CB-scheme, we must get f(p;,), f(p;,) € K \ {0}. By the same argument
as in the proof of Proposition 4.4.12, we obtain z(f(p;,)*f; — f(05,)*f5) - Gx € R; for
all k =1,..., Ax. Moreover, we have €p/x(n] = { (€r/[wo])rx >R, because X is a level
scheme. It follows that «3(f(p;,)?f; — F(Pj1)?fj2) - Cr/K(ze) € R. In other words, we
obtain @} (f(p;)2fi — f(9;,)*fsn) € Vx(R/K [0))ryr, a contradiction. O

Corollary 4.4.16. Let X = {p1,...,ps} C P% be a projective point set which is a level
scheme. If Ax =1, we let j € {1,...,rx — 2}. Otherwise, we let j € {1,...,rx — 1}.
Suppose that for any subset of two elements {j1,72} C {1,...,s} we have

Ox(R/K[0)) st N (2 firs 2 i ) e = (0.
Then X is (2 + k,j — k)-uniform for k=1,...,7 — 1.
Proof. This follows from Proposition 4.4.15 and [GK, Proposition 6.1]. O]
Corollary 4.4.17. Let X = {p1,...,ps} C P% be a projective point set.

(i) IfX is a CB-scheme, if Ax = 1, and if char(K) 1 s, then xg* Ry 1 € Ox(R/ K [x0]).
In particular, we have xi* ¢ Ix(R/K|[xo)).

(1) If X is (2,rx — 1)-uniform, then we have xy*hy ¢ Ox(R/K[xo])2re—1 for every
ke{l,...,s—Ax}.

Proof. (i) Notice that Lf; # 0 for all j =1,...,s if X is a CB-scheme. Suppose that
zg hy € Ux(R/K[xo))are—1 forallk = 1,..., s—1. Because X is a CB-scheme and Ax =1,
we have zohy, = fiyr — B fi, Lfisr = B Lfi with By # 0, and (€r/xiwg]))—re = (91 )k
with g1 = 20 (fi+Bufat- -+ Bs—u1fs). Then xi*hy-Gi = Brazg (frsn— fi) € Rrpr1.
This implies Bi1(fivr — f1) € @oRr,—1 and Bpi(Lfiwr — Lf1) = (Bf — Br)Lf1 = 0,
and so By =1fork=1,...,s—1. Thuswe get 11+ -+ Bs—1 =5 —1# —1,in

contradiction to [Kr4, Lemma 1.2.a].



152 4. Differents and Uniformity of 0-Dimensional Schemes

(ii) Suppose for a contradiction that there is an index k € {1,...,s — Ax} such
that xzg*h, € Ux(R/K[zo])2ry—1. For any j € {1,...,Ax}, we calculate z(*hy - g; =
Brizo  (fager — fj) € Ryy—1. This implies that By;(fa,ix — f;) € ToRr 1, and so
Bri(Lfag+r — Lf;) = 0. Since X is (2,rx — 1)-uniform, we have Ax > 2 and the
set {Lfayir, Lf;} is linearly independent in R,, by [Kr2, Proposition 3.4]. Hence it
follows from By, (L fay+r — Lfj) = 0 that 8;; =0 forall j =1,..., Ax, and Lfa,+r =
BriLfi + -+ + BrayLfa, = 0, contradicting the fact that X is a CB-scheme. O

Proposition 4.4.18. Let K be an infinite field, let X = {p1,...,ps} C P% be a pro-
jective point set which is a CB-scheme, and let ovg, := min{i € N | HFy, (g k(w,)) (i) =
HFx(i —rx) > 0}. Suppose that ay, < 2rx — 1. Then X is not (2,rx — 1)-uniform. In
particular, if Ax > 2 then X is not (Ax, rx — 1)-uniform.

Proof. If Ax = 1 then X is not (2, rx—1)-uniform by Remark 4.4.2(e). Now we consider
the case Ax > 2 and ay, < 2rx—1. Since oy, < 2rx—1 and X is a CB-scheme, there is
G=cifi+ - +csfs € Ry \ {0} such that 2, 7*g € €k s, Such that Anng(g) = (0),
and such that g¥x(R/K[xo])are—1 = 2o * Ry —1 (see Proposition 4.1.12). Notice that
cj#0foral j=1,...,s. We have R,,_1 = (hq,..., hs_a, ), where the elements hy,
satisfy xohy = fayir — Brifi — -+ — Bray fay. For every k € {1,...,s — Ax}, we can
write xg’”th = gu = (c1ft + -+ + csfs)vr with v, € Ux(R/K[xo])2r4—1. This implies
Ux(R/K[xo])2ry—1 = (V1,...,Vs—ny ) and

— prx—l_1 B
v = X (CAXJrkaXJrk = fi

Bra
CAXX fAX)

Moreover, we have
20 (€ Ry lwo))—ry U (R K [20])2rg—1 = GOx(R/ K [0])2ry—1 = 5 * Ryy—1.

Let us write (€p/x(ag))—ry ={G1s- - - Gag ) ¢ With G =10 " (f;+Buj fagr1+ -+ Be-nyifs)
for j =1,..., Ax. We obtain x%rx'gvjvk = x%Tx*lqiﬁ(cijerk — cagtkfi) € ngXRTX_l
for all k € {1,...,s — Ax} and j € {1,...,Ax}. Hence, if f; # 0, then we have
(¢jfagtk—Cay+kfi) € xoRy—1. Because of 51+ -+ fs_n,; = —1forj=1,..., Ax, we
may assume without loss of generality that 811 # 0. Thus we get (¢1 fay+1 —cay+1f1) €
2oR,.—1. On the other hand, we can write x%rx*l(clfAXH — cay+1f1) = gu for some
v € Ox(R/K[xo])2rs—1\ {0}. This implies that for all j € {2,...,Ax,Ax+2,...,s} we
have v(p;) = 0. Hence we deduce
Da (R K wo])ars 1 0 (™ ol sy ) (00,

Therefore, by Proposition 4.4.10, X is not (2, rx — 1)-uniform. m
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In the remainder of this section, we discuss the following notion (cf. [Kr1], [Kr4]).

Definition 4.4.19. A projective point set X = {py,...,ps} C P} is said to split

cohomologically if we can decompose X = YUY’ such that Y # 0, Y # (), YNY' = ()

and Y. K-Lfjn Y, K-Lf; =(0)in R,,. If X does not split cohomologically, we
Dj eY p]'GY’

say that X is cohomologically uniform.

In [Kr4], Theorem 2.4 tells us that X is cohomologically uniform if and only if
the multiplication map f : R, —1 ® (€r/kzo])—rx — (Cr/K[zo])—1 15 nOndegenerate and
surjective. It follows that (Ax,rx — 1)-uniform schemes are cohomologically uniform.
Moreover, if X is cohomologically uniform, then X is a CB-scheme, and the converse is
true if Ax = 1.

Proposition 4.4.20. Let X = {py1,...,ps} C P% be a projective point set. Suppose
that 2 < Ax < 3 and that for any subset of two elements {j1,72} € {1,...,s} we have

Ox(R/K[xo])ar,—1 N {2 frs 26 frn ) = (0).
Then X is cohomologically uniform.

Proof. By assumption and Proposition 4.4.12, X is (2, rx — 1)-uniform. If Ax = 2, then
X is (Ax,rx — 1)-uniform, so it is cohomologically uniform via the above argument.
Now we consider the case Ax = 3. Obviously, X is a CB-scheme. Thus it follows from
Theorem 4.3.10 that the multiplication map g : Ry, —1 @ (Cr/kizo])—re = (Cr/Kz0]) -1 18
nondegenerate. So, we need to prove that this map is surjective. For this, we assume
that {Lfy,...,Lfs} is a K-basis of R, we write Lfs,; = BjLfi + Bj2Lf2 + BisLfs
for j=1,...,s— 3, and we form the matrix

511 ﬁ21 U ﬁs%}l
B = (Bji)tr = 612 B22 U /88—32
513 523 U 53—33

Now we fix an index j € {1,...,s —3}. If ;1 = Bj2 = Bj3 = 0 or if two of the
elements (3,1, Bj2, B3 are zero, say ;1 # 0 and ;2 = B;3 = 0, then we have Lfs,; =
B Lf1 + BjaLfa + BjsLfs = 0 or Lfsy; = BjLfi + BjeLfe+ Bj3Lf3 = BjLfi. Both
cases cannot occur, since X is (2,rx — 1)-uniform and by [Kr2, Proposition 3.4]. Thus
each column of B contains at least two non-zero entries. On the other hand, no row
of B can be zero. Otherwise, we have 1 = -+ = fs_3, = 0 for some k € {1, 2,3},
and it follows from [Kr4, Lemma 1.2] that 0 = 8y + - - -+ Bs_3, = —1, a contradiction.
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Therefore the matrix B has no zero row and each column of B contains at least two
non-zero entries.

Let hy,...,hs—3 € R,,_1 form a K-basis of R, _; such that xoh; = fs1; — Bj1f1 —
Bijafa — Bjafs for j = 1,...,5 —3. We also write (Cr/kzo))—ry = (1,02, g3 ) With
G = 0 " (fu+ Bunfat- -+ Bsarfs) for k =1,2,3. Then h;-Gx = Bijrzg ™ (fa1;— fr)
in (Cr/Kw))—1 for j =1,...,5s =3 and k = 1,2,3. We define a relation ~ on the set
{1,...,s} by j ~ k if and only if :lrgrx_l(fj — fx) € Im(u). Clearly, the relation ~
is an equivalence relation. Furthermore, if 8;_3; # 0, then in (€g/k[,)-1 We have
hi sk = Bij_srxg ™ '(fj — fr) or j ~ k. According to [Kr4, Corollary 1.11], the
elements z,"* ' (fi11 — fi) with i = 1,...,s — 1 form a K-basis of (€g/s[z])-1, 50 in
order to prove that u is surjective, it suffices to show that 1 ~ 2 ~ --- ~ s.

Let {j1,...,Js—3} be a permutation of {4,...,s} such that §;,_31 # 0 for k =
1,...,tand B, 31 = O0for k =t+1,...,5 —3. Here we have 1 <t < s — 3 and
l~jp~eee~g ft=s—=3 thenl ~jj~ - ~jog~2~3 (le, 1~ ~s)
because each row of B has a non-zero entry. Now we consider the case t < s — 3 and

we rewrite the matrix B into the following matrix

Bji—31 Bjp—s1 - Bj-31 0 o 0
Bj—32 Bjs—32 = Bj—32 Bja-32 - Bj._s-32
Bj1733 /8j2*33 e /Bjt*?)?) /Bjt+1*33 e /8j3—3733

Since each column of new matrix also contains at least two non-zero entries, this yields a
number k € {2,3} such that not all elements of {5, _34, ..., 5j,—3x} are zero. Without
loss of generality, let &k = 2 and f;,_32 # 0 for some v € {1,...,¢}. This implies that
2 ~ j, ~ 1. Moreover, we also have 3,_s # 0 forl =t+1,...,s—3 and k = 2,3. This
yields 2 ~ 411 ~ --- ~ js_3 ~ 3. Therefore we obtain 1 ~2~3 ~ j; ~--- ~ js 3 o0r

1~2n~ ...~ s, as required. [

Proposition 4.4.21. Let X = {p1,...,ps} C P% be a projective point set, and let
m = L%j + 1 where, for a rational number o, we let || be the greatest integer less
than or equal to . If X is (m,rx — 1)-uniform, then it is cohomologically uniform.
If, in addition, char(K) = 0 or char(K) > rx, then we have

HFx(i>+HFx<Tx—i—1) S S—Ax+1
foralli e {0,...,rx — 1}.

Proof. First we note that if Ax < 3, then the claim is proved by Proposition 4.4.20.
So, we may assume that Ax > 4 and m > 3. By assumption, X is a CB-scheme. Thus
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Theorem 4.3.10 implies the multiplication map f1: Ry, -1 ® (€r/kwo])—rx — (CRr/Kwo]) -1
is nondegenerate. Due to [Kr4, Theorem 2.4], it is enough to prove that p is surjective.
We assume that {Lfi,..., Lfa,} is a K-basis of R,,. We write Lfa,+; = BiLfi +
oo+ BingLfay for j=1,...,5s — Ax and form the matrix

/811 /821 e /BS—Axl
B e ()" = 5:12 5:22 ﬁs—:sz
Biny Pony 0 Bs-ngax

Since X is (m, rx — 1)-uniform, it follows from [Kr2, Proposition 3.4] that every subset
of m elements from {Lfi,....,Lf,} is linearly independent in R,,. Thus, for every
je{l,...,s—Ax}, at least m elements of {;1, ..., Bja, } are non-zero. In other words,
each column of B has at least m non-zero entries. Furthermore, in [Kr4, Lemma 1.2]
it is shown that By + -+ + Bs—a, k = —1 for k =1,..., Ax. Thus B has no zero row.

As before, we let {hy,...,hs_n,} € R,,—1 be a K-basis of R,,_; such that zoh; =
faxt; — Bjnfr — -+ = Bjayfay for j = 1,...,s — Ax, and we write (Cr/kzo])—ry =
(G- Gay )i With G = 22 (fx + Bucfagsr + - + Beoagrfs) for k = 1,..., Ax.
We see that h;g, = @w&rx*l(foﬂ» — fx) € (Cr/K[ay))—1 for j =1,...,5 — Ax and
kE=1,...,Ax. Asin the proof of Proposition 4.4.20, we define an equivalence relation ~
on the set {1,...,s} by j ~ k if and only if ;" ' (f; — fx) € Im(u). Notice that if
Bi—agk # 0, then hj_a, Gk = Bi—ap@y ™ (fj — fi) € (Crykimg))-1 0r j ~ k. By [Kr4,
Corollary 1.11], we need to show that the elements zy ™" (fiy1— f;) withi =1,...,5—1
are in the image of u. It suffices to show that 1 ~ 2 ~ .-+ ~ 5. First we renumber
the points pay41,...,ps such that 5;; # 0 for 7 = 1,...,¢; and ;3 = 0 for j =
t1+1,...,s— Ax. Herewehave 1 <t; <s—Axand 1 ~Ax+1~- -+~ Ax+1t;. If
t1 =s— Ax, then we have 1 ~ Ax+1~ -~ Ax+1t; =s~ 2~ --- ~ Ax because
each row of B has a non-zero entry. Thus we have 1 ~ --- ~ s, as desired.

Next, we consider the case t; < s — Ax. Because each column of the matrix B
contains at least m non-zero entries, we can renumber po, ..., pa, such that B, # 0
for k = 2,...,m. So, we get 1 ~ Ax +1t; ~ 2 ~ - ~ m. Also, the equality
m = L%j + 1 implies Ax — m < m — 1. This allows us to assume ;112 # 0,
since if By, 412 = -+ = By+1m = 0 then the (4 + 1)-th column of B contains at
most m — 1 non-zero entries, which is impossible. Consequently, we may renumber
PAgtti+15 - - -, Ps such that By 112 # 0,..., 8,2 # 0 and Bi412 = -+ = Bs_ny2 = 0 for
some t; +1 <ty <s—Ax. Thenwehave l ~ -+ ~m~ Ax +t; ~ -+ ~ Ax + to.

If t9 = s — Ax, then 1 ~ --- ~ s (as each row of B has a non-zero entry). In the
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case to < s — Ax, we renumber ps,...,pa, such that 8, # 0 for k =3,...,m+ 1,
Bt+13 # 0, and we get m ~ Ax + to ~ m + 1. Continuing this process, we eventually
find a number k£ € {1,...,m} such that ¢, = s — Ay, and the matrix B looks as follows:

B o B 0 0 0 0 0

Bz - P2 Bti+12 - Bre2 0 0 0
o Bik - Buk Bti+1k 0 Bk Btot1ik  Bey_i+1k o Bk

Bingy 0 Buny Ba+ingy 0 Biaay  Btatiay 0 B +1ayx 0 Bryag

Here we get k < m, since if k > m + 1 and ¢, < s — Ay, then the (m + 1)-th column
of the matrix B has at most m — 1 non-zero entries, in contradiction to the fact that
each column of the matrix B has at least m non-zero entries. Moreover, we obtain
l~eiimm+k—1~Ax+1~---~ Ax+t, = s. Since each row of B has a non-zero
entry, this implies 1 ~ 2 ~ ... ~ s, as we wanted to show. Finally, the inequality for
the Hilbert function of X follows from [Kr4, Theorem 3.1]. O



Chapter

Differents for Some Special Cases

and Applications

In the previous chapters we investigated many interesting properties of the Noether,
Dedekind, and Kahler differents for O-dimensional schemes in P. In particular, we saw
that a lot of information about the geometry of the schemes is reflected in the structure
of these differents. In this chapter we proceed with the study of these differents for

several special classes of O-dimensional schemes in P and find out their applications.

In the first section of this chapter we look at the above differents for O-dimensional
almost complete intersections in P%. The notion of an almost complete intersection has
been extensively studied by many authors in the last thirty years. Among the people
that have worked on it are E. Kunz, T. Matsuoka, J. Herzog, R. Waldi, M. Kreuzer,
and G.D. Dominicis (see, for example, [Ku2], [Ku3], [Mats], [Her], [Wal], [DK]). In this
section, we present a description of the Dedekind complementary module as in [DK]
for a reduced 0-dimensional almost complete intersection X C P over a perfect field
K (see Proposition 5.1.5). Using this result, we construct an explicit presentation of
the Kéahler different (see Proposition 5.1.6) and derive a connection between the Kahler
different and the Noether-Dedekind different (see Corollary 5.1.8) as in [Her, Satz 3.1].
Moreover, the first syzygy module of the Kéhler different for a reduced 0-dimensional
almost complete intersection in P2 is explicitly described by constructing a homoge-
neous system of generators of the normal module (Zx/Z2)* (see Proposition 5.1.12 and
Corollary 5.1.13).

In the second section we apply our knowledge of the Noether, Dedekind, and Kéhler
differents for a 0-dimensional scheme X C P to explore the Kihler different 9(R/K)
of the algebra R/ K, where R is the homogeneous coordinate ring of X. In Lemma 5.2.1,
we establish some relations between ") (R/K) and the Kihler different 9 (R/K [x0]).
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From these relations we derive bounds for the Hilbert polynomial and the regularity
index of 9V(R/K) (see Proposition 5.2.2). We also prove some characterizations of a
complete intersection in terms of ¥ (R/K) (see Propositions 5.2.5 and 5.2.8). At the
end of this section, we present a characterization for arithmetically Gorenstein schemes
(see Corollary 5.2.10).

In the third section we are concerned with studying the differents for fat point
schemes. We first recall the definition of fat point schemes W in P} (see Defini-
tion 5.3.1). Then we describe the Kéhler differents and their Hilbert functions when
the scheme W is contained in the projective line (see Lemma 5.3.3). Next we concen-
trate our attention on the Kéhler different ¥, (S/K|xo]) in the case n > 2, where S
is the homogeneous coordinate ring of W. We show that it is zero if and only if the
multiplicity of each point of W is greater than 1 (see Lemma 5.3.4), compute its Hilbert
polynomial, bound its regularity index (see Theorem 5.3.6), and determine bounds for
its Hilbert function (see Proposition 5.3.7). For some special positions of the sup-
port of the fat point scheme W, we can improve the bounds for the regularity index
of Vi (S/K|xp]) which involve other numerical invariants of the scheme (see Proposi-
tions 5.3.13 and 5.3.15). Finally, we provide some properties of the Kéahler differents of
the algebra S/K (see Proposition 5.3.16) and give bounds for the Hilbert polynomial
of the Noether different 9y (S/K[xo]) (see Proposition 5.3.18).

As usual, let K be an arbitrary field, and let X C P be a 0-dimensional scheme
such that Supp(X) N Z+(Xy) = 0. By Zx we denote the homogeneous vanishing ideal
of X'in P. The homogeneous coordinate ring of X is then given by R = P/Zx, and the
image of X; in R is denoted by x; for : =0,...,n.

5.1 Differents for Almost Complete Intersections

Definition 5.1.1. Let A = (a;;) be a matrix in Mat, ((P). We say that A is a
homogeneous matrix (or simply homogeneous) if there exist two tuples dy =
(dot,...,doy) € Z" and dy = (dy1, ..., d1s) € Z° such that the polynomial a;; is homo-
geneous of degree deg(a;;) = dy; —dp; for i =1,...,r and j = 1,...,s. In this case,
the pair (dy,d;) € Z" x Z* is called a degree pair of A.

Note that degree pairs are not uniquely determined, since if (dy,d;) is a degree
pair of a homogeneous matrix A then (dy,d;), where dj, = (dp + d, ..., do + d) and
dy = (dy1 4+ d, ..., dis + d) for some d € Z, is also a degree pair of A. Moreover, when

A is a homogeneous square matrix of size r X r, its determinant is a homogeneous
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polynomial of degree "', (dy; — dy;). We refer the reader to [KR3, Section 4.7] for the

general theory of homogeneous matrices.

Definition 5.1.2. Let X C P% be a 0-dimensional scheme.

(i) We say that X is an almost complete intersection if Zx is minimally generated

by n 4+ 1 homogeneous polynomials Fi, ..., F,. € P.

(ii) We say that X is a special almost complete intersection if there exists a n-

tuple of homogeneous polynomials G = (G, ..., G,) and a homogeneous matrix
A = (a;;),, over P such that Zx = ({G - A} U {det(A)}).

Proposition 5.1.3. Let X C P} be a 0-dimensional local Gorenstein scheme which is
an almost complete intersection. If HFy, (r/kw)) () 7# 0 for some i < rx, then X is not
a CB-scheme.

Proof. According to [Ku2, Corollary 1.2], a Noetherian local ring which is an almost
complete intersection is not a Gorenstein ring. This implies that if X is an almost
complete intersection then X is not arithmetically Gorenstein, since the Noetherian
local ring R cannot be both an almost complete intersection and a Gorenstein ring.
Thus if HFy,,(r/K1zo])(¢) 7 0 for some ¢ < rx, then Propositions 4.1.11 and 4.1.15 imply
that X cannot be a CB-scheme. O]

In what follows, we work over a perfect field K. Let X C P% be a reduced 0-
dimensional scheme which is an almost complete intersection, and let Zx = (F, . . ., Fj,41)
such that {Fy,..., F,} is a P-regular sequence. For j € {1,...,n + 1}, we denote
d; = deg(F;). By Remark 3.3.24, we may assume that the ideal J = (F},..., F,)
defines a O-dimensional complete intersection W which is smooth at the points of X.
In particular, the homogeneous element A, ; := H contained in Vg (R/K[x¢))
is a non-zerodivisor of R.

Let Y be the residual scheme of X in W. Then we can check that X and Y are
geometrically linked by W. The following lemma provides a relation between the
image of the homogeneous vanishing ideal of Y in R and the Dedekind compelementary

module €x/kz,] Which we prove using arguments in the spirit of [Ku3, Section 3.

Lemma 5.1.4. Using the notation introduced as above, we have

(Zy + Ix) /Zx = An1CR/K (o)
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Proof. Let S and Ry denote the homogeneous coordinate rings of W and Y respectively.
We set L = Q"(R) and Ly = K|xg,7;']. Since X and Y are geometrically linked by
W, by Proposition 3.2.1, we have Q"(S) = Ly ®[zo] S = L x Q"(Ry). So, the image
of Zy w in Q"(S) is (Zy + Ix) /Zx x (0). Moreover, we have the commutative diagram
of graded K[zg]-modules

@
I_IO—mK[xo](R7 K[JIO]) : ML()(IG LO)

X .

Y
I—IO—mK[mo] (Sv K[mo]) — HO_HILO (5 O Klzo] Ly, Lo)

where all maps are injective and homogeneous of degree zero. Since X is smooth, the
canonical trace map Try/, is a trace map of the algebra L /L (see Proposition 3.2.16).
We also have Hom; (Lo ® gz S; Lo) = Hom; (L, Lo) x Hom; (Q"(Ry), Lo). Thus ¢, is
the canonical injection onto the first factor, and so Im(¢20¢1) = Cr/kzg) - Trr/L, X (0).
On the other hand, since W is a complete intersection, [Kub, F.23] yields that the
algebra S/K|xo| has the homogeneous trace map 7 of degree —ryw such that Trg) ks, =
Apyr - 7. We see that Zyw = Homy, (R, K(zo])(—7w) and the map f - 7 factors
through R for all f € Zy,w. This implies Im(¢)1) =Zyw - 7. According to [Kub, F.16],
we have Hom (Lo®k{z0)S, Lo) = (LxQ"(Ry))-(id,®7), and so Im(¢p20th1 ) =Im(¢20¢)
implies ((Zy +Zx)/Zx x(0))-(id, ®T) = €r/Kzo] Trr L, % (0). Furthermore, we observe
that Apy1((Zy + Ix) /Ix x (0)) - (ide, ® 7) = ((Zy + Ix) /Tx X (0))  Trreeppys/to =
(Zy +Ix) /Ix - Trpr, x(0). It follows that (Zy +Zx)/Zx - Trr n, = Ans1€r/Kz0] - Tr1/L0-
Therefore we get (Zy + Zx) /Ix = Ap1€r)K[wo)» since Anng, (Trz ) = (0). O

In [DK], Proposition 5.2 provides a description of the Dedekind complementary

module €g/ ). This description can be proved by using the above lemma as follows.

Proposition 5.1.5. Let X C Py be a reduced 0-dimensional scheme which is an almost

complete intersection as above. Then we have an exact sequence of graded R-modules

n+1 n+1
0 — Cayxm) (n — Do d;) -2 B R(—d;) —5 Ty /T2 — 0
j=1 j=1

where @ is given by p(g) = Z?;Lll gAje;, A; = ‘ I CTRE (G=1,...,n+1) are
n-minors of the Jacobian matriz, and v is given by (e;) = F;4+Z5 forj =1,...,n+1.

Proof. We first observe gA; € R for g € Cg/g) and for j = 1,...,n + 1, since
Ay, .., Apyy € Ux(R/Kxo]). It is not difficult to verify that ¢ is well-defined and R-
linear. Let g € (€r/k[a))i for some i > —rx. Then p(g) = Z;Lill g/ e; is homogeneous
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of degree i + Z"Hd —n. (Note that deg(A;) = >, dy — n, deg(e;) = d; for
j=1,...,n+1.) This implies that ¢ is homogeneous of degree zero.

Next we prove that ¢ is injective. Let g € (€g/k[z))i; Where i > —rx, and suppose
that p(g) = Z;L;l gAje; =0. Then gA; =0 for j =1,...,n+ 1. Since ¢y and A, 44
are non-zerodivisors of R and g can be written as g = x,""g with m > 0 and g € R,
we deduce g = 0.

Now we check that Ker(¢)) = Im(p). For g € (€r/kiz])s With i > —rx, Lemma 5.1.4
allows us to write gA, 11 = G+Zx with G € J : Ix, where J = (Fy, ..., F,)p. Also, we
get a representation GF,, 1= Z?Zl G, F; with homogeneous polynomials Gy, ..., G, € P
of degree deg(G;) = deg(G) +dy1 —djfor j =1,...,n. For k € {1,...,n}, we see

that GF,:rl) aFn+1G + 8X Fn+1 — Zz?zl(g;i Gi+ S)CZ j). This yields

OF, OF i1 G LNy;Ter
Zaka X, G = % 1 — 18_Xij € Ix.
]:
Thus the element » 7, (G + Ix)e; — (G + Ix)enqq is contained in the kernel of the
R-linear map 7 : @?ﬂl R(—d;) — Dj_ 1R( 1) given by the Jacobian matrix J =
(g—g)i'zll ,,,,, n . Moreover, we have Ker(y) = { Z"H hAje; | h € Ox(R/K|zo]) ™"}
P

(cf. [Ku3, Lemma 1]). This implies that Zj:1<Gj +7Zx)e; — (G+ZIx)ent1 = Z"H hAje;
for some h € 9 (R/K|xo])™" C R,,. Hence we deduce gA, 1, = G + Ix = —h, 11,
and so we get h = —g, since A, is a non-zerodivisor of R. Also, for j =1,...,n, we
have G; + Zx = —gA ;. Thus we obtain

n+1

vle(9) = ¥(Sa0e) = ¢<—§ (G;+ Te)e; + (G + Tx)ensn)
= SCG,F + Gy + T2 =0,
j=1

and hence Im(p) C Ker(v)).

To prove the other inclusion, we suppose that there are homogeneous polynomials
Hy,...,H, € P such that (300 (Hj + Ix)e;) = Y00 HjFy + I3 = 0. 1t follows
from the equality Z§ = ZxJ + (F2,,) that there are homogeneous polynomials G, G €
P such that Z”H HiFy =37, St G Fy Fj+GF2, . This clearly forces > (Hj—

’,jj GrEy)F; + (Hpp1 — GFohq1)Fpq = 0, and so the polynomial H, 1 — GF,,44 is
contained in J : Zx. By Lemma 5.1.4, we see that H,,1 — GF,11 +ZIx = H,o1 +
Ix € Ap1€R/K[wy)- Thus there exists a homogeneous element g € €g ks, such that
Hy1 4+ Ix = gAny1. As above, we get gA; = H; Z”H GiFr +Ix = Hj + Ix
for j = 1,...,n. Therefore we have p(g) = ijl gAje; = Z"+1(H + Ix)e;, and
consequently Im(p) 2 Ker(2)). O
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Our next proposition provides an explicit presentation of the Kahler different for a

reduced 0-dimensional almost complete intersection.

Proposition 5.1.6. Let X C P% be a reduced 0-dimensional almost complete inter-
section as above, and let {€y,...,€,41} be the canonical basis of @”H R(d;). Then we

have an exact sequence of graded R-modules

0 — (Ix/Z3)" 2, %R(dj) N ﬁK(R/K[a:O])(%ldj —n) —0

where (Tx/T2)* = Hom (Zx /T2, R), the map ¥ is given by ¥(a) = Z:Jrll o(F;+13)e;,

and the map @ is given by @(Z;”ll gj€j) = Z?Jrll g;A;. In particular, for all i € Z we
have
n+1 ] n+1
HFﬁK(R/K[IO] ( ) Z HFx(Z +n — %dk) HF(IX/I@* (l +n — Zld])
k#j J=

Proof. Applying Homg( , R) to the exact sequence in Proposition 5.1.5, we get the
following exact sequence of graded R-modules
ntl n+1

0 — (Tx/T2)" 5 Homp(@ R(—d;), R) £ Hom (€ ki (n — 3. d;), R).
j=1 1

Obviously, the maps ¥* and ¢* are homogeneous homomorphisms of degree zero. More-

over, we have the isomorphism of graded R-modules

n+1 n+1 n+1
0: m_mR(@lR(—dj)aR) = G%I{O_mR(R(—dj)aR) — EBlR(dj)
J= J= J=

given by 0(5) = Z”“B(ej)e] and 6~ (Z;LJrll g;€;) = Hsntl greyr WheTe fignir s
the multiplication map given by prsns (ZnH hje;) = Z;”rll g;h; for all elements

195¢
Z"H hje; € @”H R(—d;). We deduce ¥ = 0oy and P(a) = Z?+11 a(F; + I3)e;
for all @ € (Zx/Z%)*. Furthermore, there is an isomorphism of graded R-modules
Hom (€py o) (n — 30727 d5), R) 5 9x(R/K[2o]) (X727 dj —n), 5 — B(1). By taking
the composition of this map and ¢* o §71, we get a homogeneous homomorphism of
degree zeto § : @177 R(d;) — Vx(R/Ko]) (S d; — n) given by 31 g,8) =
E"+11 g;A; for all Z"il gje; € @nﬂ R(d;). Hence we find

Therefore we obtain the desired exact sequence. O]
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Remark 5.1.7. Let X C [P% be a reduced 0-dimensional almost complete intersection.

We make some observations about the preceding proposition.

(a) If {a1,...,q,} is a homogeneous system of generators of (Zx/Z%)*, then the
first syzygy module Syzp(Ay, ..., A, 1) of the Kihler different ¥ (R/K[xo]) is
generated by the elements

(PR +T3),. 0 (Fan + 1) | §=1,...,u}.

ince 7.12y+(1) = 0 for i < —d = —max{d; | j = 1,...,n+ 1}, Proposition
b) Si HF(X/X) ) 0 for 7 d di |7 =1 1+, P iti
5.1.6 yields HFﬁK(R/K[xO])(i) =0fori< —d+ Z@Jrl dj —n.

Jj=1

The derived functors of Homp( , ) will be denoted by Extk( , ), where i € Z.
Notice that, for a finitely generated graded R-module M and a graded R-module N,
the R-modules Exth (M, N) admit a natural grading and Extl (M, N) = Extl (M, N)
for the underlying R-modules. In analogy with [Her, Satz 3.1], we get the following

connection between the differents.

Corollary 5.1.8. Let X C [Py be a reduced 0-dimensional almost complete intersection

as above. We have an exact sequence of graded R-modules
n+1
0 — Ok (R/Klxo)) — Ox(R/Kw0]) — Exth(Zx/I2, R)(n — Y. d;) — 0,
j=1
where 0 is the connecting homomorphism. In particular, if X is a special almost com-
plete intersection, then Extp(Zx /T2, R) = 0 and Vg (R/K|xo)) = 9x(R/ K |0]).
Proof. Applying the functor Homy( , R) to the exact sequence
n+tl , il " ,
0 — Crikfm)(n — D dj) — @D R(—dj) — Ix/Iz — 0
=1 j=1

we get a long exact sequence of graded R-modules

-~ n4+1 n+1

0 — (/T2 - JG:}lR(dj) N ﬁX(R/K[xO])(; d; —n)
S Exth (T /T2, R) —> Exth(@ R(d,), B) =0,

where QZ and @ are described as in Proposition 5.1.6. Thus the exact sequence of
n+1
the corollary follows from the fact that Im($) = Vx(R/K|xo])( > d; — n). The last

J=1
statement follows from [Wal, Satz 4]. O
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Note that the equality 9y (R/Qxo]) = Ux(R/Q|xo]) can occur without the assump-

tion that X is a special almost complete intersection, as our next example shows.

Example 5.1.9. Let X C ]P’% be the projective point set consisting of thirteen points
pr=(1:0:0:0),p=(1:1:0:0),p3=01:0:0:1),p4=(1:0:1:0),
ps=01:0:-1:0),ps=(1:0:0:-1),pr=(1:0:1:—-1),ps=(1:0:—-1:1),
po=(1:1:-1:0),ppo=(1:1:-1:-1),ppn=(1:1:1:—1), po=(1:1:—-1:1),
and p13 = (1 : 1:0: —1). Then the homogeneous vanishing ideal Zx is minimally
generated by one quadratic form and three cubic forms, and the Cohen-Macaulay type
of R is 4. Thus X is an almost complete intersection, but it is not a special almost
complete intersection, since ht(Zx) = 3 < 4 = type(R) (cf. [Wal, Bemerkung 1]). In

this case, a calculation gives us
I (R/Qlmo]) = (2§, wowy — 1/22125 — w3 + 1/27173,
T} — 2m125 4 4roroxs — 611 mexs — 20308 4 22073 — 31173 — 2973,
x5 4+ 1/23175 — ToToT3 + 6212975 + Sa5Ts — 2w075 + 3/271 75 + 5roTy)
= Ux(R/Qlwo))-

Therefore these differents are equal even when the almost complete intersection X is
not special.

Now we restrict our attention to the reduced O-dimensional schemes X in the pro-
jective plane P%. According to the Hilbert-Burch theorem (cf. [Eil, Theorem 20.15]
or [Pev, Theorem 24.2]), there exists a homogeneous non-zerodivisor u and a homoge-
neous matrix A = (a;;) of size r x (r — 1) such that the minimal graded free resolution
of Zx has the form

r—1 T
0 — PP(—d;) = @P(—d;) =5 Ix — 0 (5.1)
j=1 j=1
Here ¢, is defined by A and ¢ is defined by (uF1 e uFT>, where F} is the deter-
tr
minant of the matrix <Sj ,A) with & = (0 - 0 [}] 0 - 0) forj=1,...,r.

Remark 5.1.10. Note that the above non-zerodivisor u is contained in K, and so
we may assume u = 1. Indeed, suppose for a contradiction that u ¢ K. Then we
have deg(u) > 1. Because Zx is a homogeneous ideal of height 2, we can assume
that {uFy,ulFy} is a P-regular sequence. We see that Fy ¢ (uF}) or the image of F}
in P/(uFy) is not zero. Moreover, the image of wFy in P/{uF}) is a non-zerodivisor.

But the image of uFyFy in P/(uFy) is zero, a contradiction.
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Tensoring (5.1) with R we get the exact sequence of graded R-modules

r—1 — r _
0 — Tor{ (Zx, R) — @R(~d}) = @R(—d;) =% Ix /T3 — 0
j=1 j=1
where @, is defined by the matrix A = (@), @z = aj + Ix, and @, is given by
Polej) = Fj+Z3 for j = 1,...,r. Hence we deduce the following exact sequence of

graded R-modules:
~ r ~ r—1
0 — (Zx/I)" = @R(d;) = @R(d)).
j=1 j=1

The map @ is given by Po(a) = ((Fy +I2), ..., a(F,+72)), and 3y is defined by A"
Therefore a mapping « : Zx /Z2 — R is an R-module homomorphism if and only if the
vector (a(Fy + Z2), ..., aF, + I2)) satisfies A" - (a(Fy + Z2), ..., o(F, + I2)) = 0.

To describe the homogeneous generators of (Zx/Z%)*, we require the following lemma.

Lemma 5.1.11. In the above situation, let V = (Gy,...,G,) € (B'_, P(—d;)); be a

j=1
non-zero homogeneous vector such that A™ -V = 0. Then there exists a homogeneous
polynomial G € P; such thatV =G - (Fy,..., F,).

Proof. Tt is not difficult to see that rank(.A) = r — 1, and so rank(A"™) = r — 1 (see for
instance [Bro| for the definition of the rank of a matrix over a ring). Let Q(P) denote
the quotient field of P, and let W = {v € @]_, P(~d;) | A" -v = 0}. Then we get
dimgpy W = 1. This implies that V and (F1, ..., F,) are proportional over Q(P), and
so G,;F, = G F; for all j,k. Obviously, we have I} # 0 in Q(P). This enables us
to write G; = GlFlej for all j = 1,...,7. Since V # 0, the element G| F, ' is not
zero. We see that G1F; € (Fy)p for all j =1,...,r. Thus Gy € (Fi)p : Ix. Moreover,
the multiplication map up, : Zx — ZIx is injective and Zx = P)_, P(—d;)/Im(p1).
By [Bro, Lemma D.3|, we have (Fi)p = (Fi)p : Zx. Hence G; = G - F; for some
Ge P\{0}and V=G (F,...,F,), as we wanted. O

In analogy with [Sch, Corollary 3], a homogeneous system of generators of the

normal module (Zx/Z2)* can be constructed as in the following proposition.

Proposition 5.1.12. Using the notation as above, we let A, denote the k-th column
of the matriz A fork=1,...,r — 1.

(i) The map i : Ix/Z3 = R (7 =1,...,r;k=1,...,r — 1) defined by
aji(Fy + Ig) = det (5;' Av o A & A AT_1>+IX

is a homogeneous element of degree d; — dj, of the R-module (Ix/Z3)*.
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(ii) We have
(Tx/Z3) = (e | 1<j<r,1<k<r—1),.

Proof. We set G = det (é’j Ay o Ay & Apyr - .AT_1> forl=1,...,r,
and G, = (Gjg1,...,Gjiy) for j=1,...,rand k=1,...,r — 1. Observe that

T

(Ak/)tr . gjk = Z ak/lijl = Z det (6] Ay o Ay awis Ak—H e Ar—l)

=1 =1

= det <5j Ar o A A Appr - Ar71>'

This implies that (Ap)™ - G = 0 if &’ # k and (Ap)™ - G = F; € Ix. Thus we
get A" (au(FL +T2), ..., oyn(F, + I2)) = 0. Therefore the element o is contained
in (Zx/Z3)* for all j,k. Now we check that ajx is homogeneous of degree d; — dj.
Obviously, a;x(F; +Z%) = 0 if I = j. In order to compute the degree of i, we need
to consider the degree of ajx(F; + Z3) with [ # j. Notice that deg(a;) = dj, — d; for
all j, k. We can exhibit the submatrix of the matrix A by deleting the j-th and [-th
rows ([ > j) and deleting the k-th column as follows:

! ! ! !

dy U dkfl dk+1 e d'r—l

aix o Glk—1 Aik+1 - Qip—1 —d;
Aj—11 - Gj—1k—1 Qj—1k4+1 *°° Aj—1r—1 —Gj1
Ajr11 0 Gipik-1 Gj4ik+1l 0 Gyl —0j+1
Q11 Q—ik—1 Q—1k+1 Q11 —di—
Q411 0 Aip1k—1 Ap1k+1 0 Giglr—1 —di41

ar1 T Qrl—1 Qrk1 e Qpr—1 _dr

Thus we have deg(ay(F +Z%)) = >, di — >, di for all I # j. This implies that

deg(ajr) = Do di — doizjydi —di = 3 di — 32545 di 1t is well known (cf. [Ei2,
Proposition 3.8]) that 27— d; = S°7_, d;. Hence we obtain deg(a;;) = d; — dj,, which
completes the proof of (i).

Next we prove (ii). For this, let o € (Zx/Z%)} be a non-zero homogeneous element
and let G = (G, ...,G,) with «(F; +I3) = G +Ix, Gj € Py yq, for j=1,... r. It is

clear that (Ag)™ -G € Zx, and so (Ap)" -G = Z;Zl bjx Fj for some by, € Py g, 1. Put
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G = Zj,k bjkG;i. For every k' € {1,...,r — 1}, we have
(A)™ (G =G) = bwFy = > biul(A)™  Gie = > biwFj — Y b F; = 0.
j=1 ik j=1 j=1

Hence A" - (G — G') = 0. Tt follows from Lemma 5.1.11 that there is a homogeneous
element G € P, such that G — G’ = G - (F},...,F,). Consequently, we obtain a =
>0k + Ix) - ajx, and the claim (ii) follows. O

Suppose X C P% is an almost complete intersection. Then the minimal graded free

resolution of Zx has the form
0 — P(=d)) & P(—d)) 25 P(—dy) & P(—dy) & P(—d3) — Tx — 0

and Zx is generated by all 2 x 2-minors of the homogeneous matrix A = (a;j)j=1,2,3. In
k=12
this situation, we give an explicit description of the first syzygy module of the Kahler

different U (R/K|xo]) = (A1, Ag, As) of the algebra R/K|x,] as follows.

Corollary 5.1.13. Let X be a reduced 0-dimensional scheme in P% which is an almost

complete intersection. Then we have an exact sequence of graded R-modules

j=1
In particular, the module Syzy(A1, Ao, A3) is generated by the following homogeneous
vectors: (0,asy + Ix, —ag + Ix), (0, —as1 + Ix, az + Ix), (—as + Ix, 0, a12 + Ix),
<_a31 + IX7 Oa ai + IX); (a22 + IX7 —ai2 + IX7 0)7 and (_a21 + IX7 aii + IX) 0)

Proof. This follows from Remark 5.1.7(a) and Proposition 5.1.12. O
We close this section with the following observation.

Corollary 5.1.14. Let X be a reduced 0-dimensional subscheme of P3.
(i) If X is an almost complete intersection, then Ok (R/K[zo]) = Ix(R/K[x0)).

(ii) If X is contained in a complete intersection of degree deg(X) + 1, then we have
Uk (R/Klxo]) = Ux(R/K[wo]).

as a
Proof. (i) Let G = (—ayp,a1;) and A’ = [ 2 "®'). Then it is clear that we have
Q2  A32

Ix = ({GA'} U {det(A")}) C P. Thus X is a special almost complete intersection, and
therefore we have ¥k (R/K|xo)) = Vx(R/K|[zo]) by Corollary 5.1.8.
(ii) This follows from (i) and the fact that X is a complete intersection or an almost

complete intersection. O
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5.2 The Kahler Differents of the Coordinate Ring

of 0-Dimensional Schemes

Let X C P% be a 0-dimensional scheme such that Supp(X) N Z7(Xy) = 0. In the
same way as Definition 3.3.1, we define the i-th Kéhler different of the algebra R/K
to be the i-th Fitting ideal of Q}z/m and we denote it by 9@ (R/K). Clearly, we have
0) CYONR/K) CIINR/K) CIYPD(R/K)C - C Rand 99 (R/K) = R for i > m,
where m is the minimal number of generators of QF, K

Notice that the set {dxo,...,dz,} is a homogeneous system of generators of the
graded R-module Qp . Moreover, we have Anng(Qp ) = (0) by [Kr3, Satz 4.5].
Thus Proposition 3.3.9 implies 9O (R/K) = d5(R/K) = (0). If X C P% is a 0-
dimensional smooth scheme, then ¥ (R/K) = (0) and 9 (R/K) # (0) for all i > 1.

The following lemma provides useful relations between the Kahler differents

of R/K|xo| and of R/K.

Lemma 5.2.1. Let X C P% be a 0-dimensional scheme. Then we have
209 (R/K) = 0 (R/K [xo])m C I (R/K[zo]) € 9V(R/K).
Proof. By [Kub5, Proposition 3.24], we have an exact sequence of graded R-modules
0 — Rdwg ~5 Qi 5 Qb ion) — 0

where o is the inclusion map and 3 is given by B(fdr/x ') = fdr/K[we ['- S0, it follows
from Proposition 2.2.7 that

Vi (R/K[x0)) = Fi(Rdxo) - Vi (R/K[x0]) € 9 (R/K).

Now we show that 2o V(R/K) = 9x(R/K[z¢))m C Ik (R/K|x]). Let {F,..., F} be

. . . [ OF,
a minimal homogeneous system of generators of Zx. The Jacobian matrix (52 )._,
[ —Uyeery

.....

Thus ¥ (R/K) is the ideal of R generated by all (n + 1 — i)-minors of the Jacobian
matrix. In particular, the ideal 9 (R/K) is generated by the minors of size n of that
matrix. Let I = {iy,...,i,} C{1,...,r}, and let
O(F; F,)

0o,y Tjye ey Tp)

190

Arj =

(j=0,...,n).

We see that A7y € I (R/K|xo]) and A;; € 9W(R/K) for j =0,...,n. If Ay =0,
then we claim that A;; = 0 for all j € {1,...,n}. Indeed, suppose that there is an
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index j € {1,...,n} such that A;; # 0. By applying Euler’s rule, we find relations

.« e n:O f k:17..., .
B0 Ty + 9, xy + + o, T or n
Thus it follows from Cramer’s rule that Aj zg = (=1)"""JA;¢z;. Since zg is a

non-zerodivisor of R, we have A;;zg # 0, and so A;y # 0. Moreover, we have
Arpzj = (=1)""7IA; g for all j € {1,...,n}. Furthermore, the ideal zqd(R/K)
(resp. Vg (R/K[xo])m) is generated by elements of the form Aj ;zy (resp. Ajox;) for
all 5 = 0,...,n and all subsets I = {iy,...,i,} € {1,...,7}. This implies that
200 (R/K) = 9 (R/K[zo))m C I (R/K|[x)), and the proof is complete. O

By applying the lemma, we can give bounds for the Hilbert polynomial and the
regularity index of the Kihler different 9)(R/K), as the following proposition shows.

Proposition 5.2.2. Let X C P% be a 0-dimensional scheme with support Supp(X) =
{p1,-..,ps}, and let Xy be the set of smooth points of X in Supp(X). Then we have

Y. dimg(Ox,,) < HPyoy(r/x)(2) = HPy o (r/ K[z (2) < deg(X) — (s — #Xqm)

and ti(0x (R/K[zo])) — 1 < iV (R/K)) < ri(¥x(R/Kx0)))-

Proof. By Lemma 5.2.1, we have xq9V(R/K) C Vx(R/K|xo)) € 9V(R/K). This
implies the equalities HP, yo)(g/x)(2) = HPyy(r/K(zo) (2) = HPy) (g k) (2), since xg
is a non-zerodivisor of R. Hence Proposition 3.3.19 yields the above bounds for the
Hilbert polynomial of 9V (R/K). Now we prove the claimed inequalities of regularity
indices. Obviously, we have ri(dV(R/K)) < 1i(dx(R/K[zo])). It follows from the
inclusion 209V (R/K) C Ox(R/Klxo]) that HF yo g/ (i) < HFy, (r/kpeo) (i + 1) for
all i € Z. Therefore we obtain the inequalities ri(Jx (R/K[x0])) — 1 < ri(dV(R/K)) <
ri(Vx (R/K[zo])). O

It X C Pj is a O-dimensional smooth scheme, then the Hilbert polynomial of
the Kahler different 9 (R/K) is HP y)(r/x)(2) = deg(X) and its regularity index
satisfies ri(9V(R/K)) < rx(n + 1) (see Corollary 3.3.21). In particular, if X =
{p1,...,ps} C Pk is a projective point set, then we have HPyu)p/x)(2) = s and
2rx — 1 < 1i(WM(R/K)) < nrx. Furthermore, we have the following corollary.

Corollary 5.2.3. Let X be a 0-dimensional reduced complete intersection in Py, and

let Ix = (Fy,...,F,), where F; € P is a homogeneous polynomial of degree d; for
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jg=1,...,n. Letd :=>" dj—mn, and let Y C X be the subscheme defined by

j=1
Iy = N B,. Then, for alli € Z, we have

p;€Supp(X): smooth

0 if 1 <d,

HEy0) (ryxy (1) = , L
HFy(i+1—d) if i>d.

In particular, we have ri(VM(R/K)) = ri(Vx (R/K|[xo))) — 1 =d + 7y — 1.

Proof. We set Ay = W. Then Uk (R/K[x0]) = (Ao)y by Corollary 3.3.5. It

T1,yeeyTn)
follows from Lemma 5.2.1 that 2o (R/K) = Agm. Since 7 is a non-zerodivisor of R,

the Hilbert function of 9 (R/K) satisfies HF g0 (g5 (1) = HF agm(i 4 1) for all i € Z.
Ifi < d, then 0 § HFﬂ(l)(R/K)(i) S HFm(Z +1—- d) = 0, and so HFﬁ(l)(R/K)(i) = 0. For
i > d, we see that HEFy) g0y (1) = HF Agm(i + 1) = HFy, (r/K[,)) (¢ + 1). Furthermore,
Corollary 3.3.7 yields that HFy, (r/k[zo)) (i) = HFy(i — d) for all ¢ € Z. This implies

Corollary 5.2.4. Let X C P} be a 0-dimensional smooth scheme which is a complete
intersection. Then we have
0 if 1<y,

HFﬂ(l)(R/K)(i) = ) o
HFx(i + 1 —7rx) if 1> rx.

In particular, we have ri(9V(R/K)) = ri(x(R/K[x0])) — 1 = 2rg — 1.
Proof. This is an immediate consequence of Corollary 5.2.3. m

Now we present a characterization for a smooth scheme X being a complete inter-
section in terms of the Kihler different 9 (R/K) as follows.

Proposition 5.2.5. Let X C P} be a 0-dimensional smooth scheme. Then the follow-

ing conditions are equivalent.

(i) The scheme X is a complete intersection.
(i) The scheme X is a CB-scheme and HF ya) g/ (rx) # 0.
(iii) £V (R/K) - €yl = M.

Proof. (i) (ii): According to Lemma 5.2.1, we infer that HFyo) g/ (rg) # 0 if and
only if HFy, (r/K(z0])(7x) # 0. Hence the claim follows from Proposition 4.1.15(ii).
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(i)=(iii): If X is a complete intersection, then we set A; := I CT for
0yesTgyees®n)
j=0,...,n, where {Fy,..., F,} is a minimal system of generators of Zx. By Corol-

lary 3.3.5, we get Ux(R/K[zo]) = (Do)g, Cr/km) = (A" ) and Ag is non-
zerodivisor of R. We also have 2o (R/K) = Agm by Lemma 5.2.1. Then multiplying
by Q:R/K[xo]7 we obtain x(ﬂ?(l)(R/K) . Q:R/K[;vo} =m.

(iii)=(i): Suppose that zgdM(R/K) - €p/kiz = m. It follows from the equality
209 V(R/K) = 9 (R/K[xo))m that I (R/K[2o))€r/Kzgm = m. Since ¥ (R/K [xo])
is a subideal of ¥x(R/K]zo]), this implies that

Ui (R/K[xo])Cr)Kze) € Vx(R/K[20])CR/K[ze) € R

If Vi (R/K[x0])Cr K[z & R, then Vg (R/K[x0])Cr/K(s) is @ homogeneous ideal of R

contained in m and
<0> g m = ﬁK(R/K[xO])QR/K[IO]m Q <0> + mQ.

By Nakayama’s lemma (cf. [KR2, Proposition 1.7.15]), we have m = (0), which is
impossible. Thus we must have Vg (R/K|20])Cr/k(z) = R. Consequently, €r /]
is invertible and Jx(R/K|[zo]) = Ix(R/K][zo]). So, the scheme X is arithmetically
Gorenstein and 0x(R/K[zo]) = Ox(R/K][xo]). Therefore Proposition 3.3.12 yields

that X is a complete intersection. O

As usual, for a 0-dimensional scheme X C P} with Supp(X) = {p1,...,ps}, we let
R = [T[;—1 Ox,,[T}] be the subring of L := Q"(R) = [[}_; Ox,, [7;,T;"]. Our next
proposition gives us a smoothness criterion for X in terms of the module of Kahler
differentials QF,  of the K-algebra R.

Proposition 5.2.6. Let X C P} be a 0-dimensional scheme, and let Supp(X) =

{p1,-..,ps}. The following assertions are equivalent:

(i) The scheme X is smooth.
(ii) Qb5 = 0.

(iii) Q}}/K = H;:l Ovaj [T3)dT;.

Proof. “(i)<(ii)” follows from [Ku6, Corollary 4.12]. It remains to show “(i)<(iii)”.

On account of [Ku5, Corollary 4.8], we have Q%/K = [[;=, Q}DX,,,j[Tj]/K' Also, [Kub,

Formula 4.4.b] implies

o, /K = s, errmlx = Oxp, Ox Uy ® K1) ®x Qo , /i

= Oxy, [T]dT; & K[Tj] ®x Qo , /ic-
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It follows that 2, o, LI/K = = Ox,, [T;]dT; if and only if Q, /i = 0. This is equivalent
to the condition that p; is a smooth point of X (see Theorem 3.2.15). Therefore

R/K = [[;_ Ox,,[T5]dT} if and only if X is smooth. O

In the remainder of this section, we assume that the scheme X is smooth. We
consider the canonical inclusion 7 : R < R given by i(f) = (fo, 1%, ..., f,.T") for
f € R; with ¢ > 0. By Proposition 3.23 in [Ku5|, we have an R-linear map

fdx; — (fpl (xi>p1T1 dIy, ..., fp, ('ri)psTSdes)

for f € Ri. The map ¥ is homogeneous of degree zero and satisfies
(Vod)(f)=(dgor)(f) foral feR

and qj(dl’o) = (dTl, e ,dTS).
Corollary 5.2.7. We have Ker(¥) = { > gidx; € Qi | Ximp g =0 }.

Proof. Clearly, we have { >0 gidx; € QE/K | S g =0} C Ker(¥). Now let
w=>y 1 ,gdr; € (Q}%/K)k be a homogeneous element of degree k such that W(w) = 0.
Then we find 0 = U(w) = (31 (9i)ps (@) TFATY, - o> 5o (9i)p. (4) p, TEdT). This
implies -7 (9i)p, (Ti)p, = i o(giwi)p, = 0 for j = 1,...,s. Since the map 7 is
injective, we get Y ", g;z; = 0, and hence the claim follows. [

Given j € {1,...,s}, we let v; = dimg Oxy,, let {e;1,...,¢e;,} be a K-basis
of Ox,,, and set €j, = (0,...,0,e5,;,0,...,0) for k; = 1,...,v;. We put Ly :=
K[zg,75"]. Then the set {€11,...,€1,,---,€1,--.,€s,} is a basis of the graded-free
algebra L/Ly. Moreover, L/L, is étale (see Proposition 3.2.16). Thus the canonical
trace map Trz/r, of L/Ly induces canonically a trace map Trp,; @ Q) — Qp
given by Tr}:/Lo(ejk.j (dTy, ..., dTy)) = Trpyre(ep, )dag for j = 1,... 85 k; =1,...,v;.
We set

Qx ={we QIL/K | Tri/L (wR) C Q}([xo]/K }.

Then it is easy to check that ¥ : Q}, rixk — Ox = QL/K and Qx = Cr/kz Y (dao).

Moreover, we have the following property.

Proposition 5.2.8. Let X C P} be a 0-dimensional smooth scheme. Then the scheme
X is a complete intersection if and only if ¥(§2 R/K) I (R/K)Qx.
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Proof. Assume that X is a complete intersection with Zx = (Fy,..., F,). We set

A= % for j=0,...,n. In Q}DL/K, there are relations
OF; OF; OF; .
drg+ —dr1+---+ =—dr,=0 fore=1,... n.
8330 8:1:1 aan

Due to Cramer’s rule, for every j € {1,...,n} we have Agdz; = (—1)""'"IA;dzy. This
implies that V(dz;) = (—1)”*1_j§—2\11(dxo) for all j = 1,...,n, since ¥ is R-linear.
Therefore we deduce from Q}%/K = Rdxo + -+ - + Rdx, and Cg/ k[, = < Aal >R that

Ay A A
1 (== =
\P<QR/K) - < AO’AO7 ’AO >R\Ij(dl‘0)

= 9NV(R/K) (A" ), U(dao) = 9V (R/K)Qx.

Conversely, we consider the epimorphism of R-graded modules ¢ : QF, /x —r M given
by dz; — x; for i = 0,...,n. By Corollary 5.2.7, we have Ker(¥) = Ker(y) and the
following diagram of graded R-modules

0 —— Ker(¢)—— QJIQ/K f—m 0

|k

S \P(QJIQ/K

0 — Ker(¥)—— Q}?,/K

)—=0

where 7 is given by y(f) = f - %:O) € \I!(Q}%/K) C L-VU(dxg) for all f € m. The map
v is well-defined, since in L we have z; = ((@;)p,, ..., (@i)p,) - ¥o for all i = 1,...,n.
Moreover, for i € {0,...,n} we see that v o ¢(dr;) = v(z;) = (®)pys- - (Ti)ps) -
xo%jo) = ((Zi)prs- -+ (Ti)p,) - ¥(dxg) = ¥(dw;). So, the diagram is commutative. It
is not difficult to verify that v is a homogeneous isomorphism of degree zero. Thus
we have W(Qp ) = m - %:0) = m. Tt follows from W(Q}, ) = 9V(R/K)Qx that

m - U(drg) = 2oV (R/K)Cr Kk - V(dzo). Since Anng(¥(dzg)) = (0), we obtain
m = 29V (R/K)C R/Kxo]- Therefore the conclusion follows from Proposition 5.2.5. [

Remark 5.2.9. Let us make some following observations.

(a) We have W(Qj ) =m - Ydwo) o 4y

o

(b) There is an exact sequence of graded R-modules

0 — Ker(¥) = Qp = Qx = Qx/V(Qp k) — 0.
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We set Jx = Qx/U(Qp ). Then we have HF y, (i) = deg(X) — HFx(—1) — HF(4)
for all 7 € Z and

rg—1

i=0
Corollary 5.2.10. Let K be an infinite field, and let X C P} be a 0-dimensional

smooth scheme. The following statements are equivalent.

(i) The scheme X is arithmetically Gorenstein.

(ii) The scheme X is a CB-scheme and dimg (Jx) = (rx — 1) deg(X) + 1.

Proof. If X is an arithmetically Gorenstein scheme, then X is a CB-scheme and we
have HFx (i) + HFx(rx —i—1) = deg(X) for all i = 0,...,rx — 1 (see Corollary 4.1.16).
Thus Remark 5.2.9(b) implies that dimg(Jx) = (rx — 1) deg(X) + 1.

Conversely, we assume that X is a CB-scheme and dimg (Jx) = (rx — 1) deg(X) + 1.
By Theorem 4.1.7, we find an element g € (€g)x(z])—r, With Anng(g) = (0). We see
that R(—rx) =2 R - g C €g/k[s,- This implies

HFx(Z) S HFGR/K[IQ](i — Tx) = deg(X) — HFx(Tx -1 — 1)

for all i € Z. Since dimg (Jx) = (rx—1) deg(X)+1, we deduce 37" (deg(X) —HFx (i) —
HFx(rx —i—1)) = 0. Hence we must have HFx (i) = deg(X) — HFx(rx — ¢ — 1) for all
1 € Z. Therefore Corollary 4.1.16 yields that X is arithmetically Gorenstein. O

Corollary 5.2.11. If X is arithmetically Gorenstein with deg(X) # char(K), then
Ix(R/K[xzo]) = (h) € (x0). In particular, we have m™ = (1,h/zo)p.

Proof. Proposition 3.2.8 yields that ¥x(R/K|[zo]) = (h) and that €g/xp = (A1),
where h € R,, is a non-zerodivisor. Let B = {t1,...,taegx)} be a K[xg|-basis of R,
let o be a trace map of R/K|xo|, and let {t], ... 1}, } e the dual K[zo]-basis of R
to B w.r.t. 0. We may assume ¢; = 1. Then Trp/ gz (t1) = deg(X) # char(K). Also,
Corollary 2.4.12 yields

deg(X) , , deg(X) ,
h = 231 TI"R/K[QJO} (tj)tj = deg(X)tl + 22 TrR/K[xo](tj)tj~
j= j=

Thus Vx(R/K[zo]) = (h) € (x0). Moreover, we have x5 'mW¥(dzg) = \II(Q}%/K) CQx =
(h™1)p U(dxy). This implies mix(R/K[xo]) C (o) g, and so Ix(R/K[xo]) C(xg ) :m.
By [Kr3, Satz 4.21], there is a surjective multiplication map 1,5, : (2o )p : m — m™ 1.

Since 9 1 h and {(m~'/R) =1, we get m™ = (1,h/zy)p, as desired. O



5.3. Differents for Fat Point Schemes 175

5.3 Differents for Fat Point Schemes

In this section we work over an arbitrary field K. Let X = {py,...,ps} be a projective
point set of P%.. For j =1,...,s, we let 3; be the associated homogeneous prime ideal
Ofpj in P= K[Xo, e ,Xn]

Definition 5.3.1. Given a sequence of positive integers my, ..., mg, the intersection
Iy =PI N--- NPT is a saturated homogeneous ideal in P and is therefore the

vanishing ideal of a zero-dimensional subscheme W of P.

(i) The scheme W is called a fat point scheme in P} and is denoted by W =
{p1,.. ., ps;ma,...,mg}.

(i) If my = --- = mgy = m, we denote W also by mX and call it an equimultiple

fat point scheme.

Remark 5.3.2. The degree of the fat point scheme W = {py,... ,ps;mq,...,ms} is
given by the formula deg(W) = ijl (mjtl"_l). In particular, if W is an equimultiple
fat point scheme with m; = --- = my = m, then deg(W) = s("™*""). Let rw be
the regularity index the Hilbert function of W. Then we have HFw(i) = 0 for i < 0,
1 = HFw(0) < HFw(1) < -+ < HFw(rw — 1) < deg(W), and HFw(i) = deg(W) =

Zj’:l (mjt:“l) for 1 > ry.

Notice that the support of W is X = {py,...,ps}. In what follows, we always
assume that no point of X lies on the hyperplane Z*(Xy). The homogeneous coordinate
ring of W is S = P/Zw. The image of X; in S is denoted by z; for i = 0,...,n.
Then x is a non-zerodivisor of S, and the graded algebra S/K|[z| is free of rank
deg(W) = >27_, (™7 71).

Now we look at the Hilbert functions and give upper bounds for the regularity
indices of the Kihler differents 9 (S/K[zo]) and 9@ (S/K). Our first case is n = 1,

i.e., fat point schemes in the projective line P}-.

Lemma 5.3.3. Let W = {py,...,ps;my,...,ms} be a fat point scheme in Pk with
m; >1forj=1,...,s, let g = my+---+mg, and suppose char(K) = 0 or char(K)> p.

(i) The ideal O (S/K]|xo]) is a principal homogeneous ideal of S and its Hilbert

function is of the form

HFy,(s/kfzop © 0 -+- 0 [M}” 2351 ta2]

In particular, its reqularity index satisfies ri(0g(S/K|[xg])) = u+ s — 2.
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(ii) The ideal YV (S/K) is non-zero and its Hilbert function is of the form

HFﬁ(l)(s/K): 0 --- O[;El] 34---5—1 [u+§—3] S

In particular, its reqularity index satisfies ri(9M)(S/K)) = p+ s — 3.

Proof. Let us write p; = (1 : pj1) and PB; = (X7 — pj1Xo) for all j = 1,...,s (note
that pj1 # pr1 if k # 7). Then the homogeneous vanishing ideal of the support of W is
generated by F' = (X1—p11Xo) - - - (X1—ps1 Xo) and we have Zyy = B N- - -NPTs = (G)
with G = (X7 — p11Xo)™ -+ - (X1 — ps1Xo)™. Obviously, the Hilbert function of W is
of the form HFw :123---p—1 p---. We have

S S

% - 88_)150 ']1:[1()(1 _pleO)mj_l’ 88_)?1 - 59_)1?1 ‘jl:ll(Xl —pleo)mj_l.

Thus the Kahler different of W is given by
ﬁK(S/K[iE’()D = <g_xG1> = <g_£ . Hl(xl _pﬂxo)mj71>'
J:

We put G = [T (Xi —pjXo)™~" and J := (G, é%). In order to calculate the
Hilbert function of ¥ (S/K[x]), it is enough to calculate HF p,; and then apply the
equality HFy, (s/k(z]) (1) = HFw(i) — HFp,;(i) for all i > 0. Since char(K) = 0 or
char(K) > u, Euler’s relation implies uG = CNJ(Xoaa—;O + Xlaa—)?l), and so CN;Xoaa—)Z) € J.
Hence we may write J = (G, éaa_)i> =1 (ng—)g, g—)fl), where [ is the principal ideal

of P generated by G. Moreover, it is not hard to show that {Xog—;o, g—)fl} is a P-

regular sequence. Consequently, this sequence is also an [-regular sequence. (Here [
is regarded as a graded P-module). Therefore we get HF /g, ¢,y1(i) = HF;(i) —
HF;(i —s) —HF;(i — s+ 1)+ HF;(: — 2s + 1) and
HFEp,;(1) = HF p(¢) — HF ;(i) = HFp(i) — (HF;(7) — HF/6,,60)1(%))
= HFp(l) — HF](Z — S) — HF[(Z — S5+ 1) + HF](Z — 25+ 1)
On the other hand, we have HF;(i) = (i+1) —HFp/;(i) and HFp;; : 123---pp—5---

Thus we obtain

HEpjy: 12 -oop—2p—1p—1p—2p—=3---p—(s—1) p—s p—s---
[n—1] [uts—2]

and claim (i) follows. Claim (ii) follows by the same way as the proof of (i). O
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Next we consider the case n > 2. In this case, the Kahler different of a fat point
scheme W is zero if the multiplicity of each point is greater than or equal to 2, as the

following lemma shows.

Lemma 5.3.4. Let W = {py,...,ps;ma,...,ms} be a fat point scheme in P™, where
n > 2, and let s’ be the number of indices j € {1,...,s} such that m; = 1.

(1) If & =0, i.e., mj > 2 for j=1,...,s, then Vg (S/K[xo]) = (0).
(i1) If s > 0 then 0 (S/K[xo]) # (0).

Proof. (i) For j =1,...,s, we write P; = (1 : pj1 : - -+ : pj,) with pjp € K. Then we
have B, = (L1, ..., Ljn), where Lj; = X3 —paXo, ..., Ljn = X,, — pjnXo are linearly
independent linear forms, and Zw = P N --- NPT, Let {Gy, ..., G, } be a minimal
homogeneous system of generators of Zyy.

For i € {1,...,r} and j € {1,...,s}, we have G; € P} = (Lj1,...,Ljn)"™ =
(Hy,...,H;) with t = (ntﬁjfl). There are polynomials G;1,...,G;; € P such that
G; = GaHy + -+ + Gy H;. Observe that we have 0H/0X, € ‘B;-nrl for k=1,...,t
and [ = 1,...,n, since m; > 2. This yields 0G;/0X; € ‘B;»nj_l. Thus it follows from
n > 2 that, for every I = {iy,...,i,} C{l,...,7r} and every j € {1,..., s}, we have

8G’i1 aGil

8X1 6X7
a(G’Ll)aG’Ln) o . . . ' m;
(X1, X) o o

ax:1 T X,

Now the fact that ¥, (S/K[xg]) is generated by the images in S of the elements of the

A=) implies the claim U (S/K [xo]) = (0).

(ii) Let w = s — &', and let jy,...,7, € {1,..., s} be the indices such that m;, > 1

form

for k € {1,...,u}. If u =0 then W is a projective point set in P% and it is clearly true
that ¥ (S/K|xo)) # (0).
Now we assume that 0 < v < s. We write Zyy = P/ N--- NPT = I N I', where

I = ‘B;:“ n-- -ﬂm;:j“ and ' = 3 ﬂ ' B;. By Y we denote the subscheme of W defined
JFJLs-0, Ju

by I’. Let Ry be the homogeneous coordinate ring of Y. Then ¥k (Ry/K|[zo]) # (0)

shows that there are homogeneous polynomials Fy, ..., F,, € I’ such that H ¢l
a(F

Thus there is an index jo € {1,...,s} \ {Jj1,...,Ju} such that 8()(1—5(73) ¢ Bj,. Also,
the Prime Avoidance Theorem (cf. [KR3, Proposition 5.6.22]) yields I ¢ B;,, and
consequently there exists a homogeneous polynomial Fy € I\ ;. This implies that

WF, € Iy fori=1,...,n.
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In the following we show 2LofLfofn) ¢ Bj,- Then we get o Fo ) g 7 and

(X1, Xn) B(X1,sXn)
thus Vi (Rw/K|xo]) # (0), as claimed. We have
FO% —i—Flaﬂ Fanl + F OFg
AR Fy, . FoF) 7 OXn 0K
X1, Xa) .
Fogx + Ingxy - Fogx + Fugx;
OF OF
= det : : +G
OFy, OFp
Py - Fydkn
I(Fy, ... F,)
=5 +G
09(X1, ..., X,,) *
for some polynomial G € I’ C Bj,. Now if F&% € ‘B, then Fy € Py,
or H € B,,, in contradiction to the construction. Therefore we must have
FO"H ¢ B,,, and the conclusion follows. O

Remark 5.3.5. Given a fat point scheme W = {p;,...,ps;mq,...,ms} in P%. the
number s’ given in Lemma 5.3.4 is the number of smooth points of W. In particular, it
is also the number of K-rational points of W. Thus Proposition 3.3.19 yields that the
Hilbert polynomial of ¥ x (S/ K [x]) satisfies HPy, (s/x[zo))(2) = D_ dimg(Oxy,) = &,

pjewsm
where W, is the set of all smooth points of W. Hence claim (ii) of Lemma 5.3.4 is an

immediate consequence of this observation.

At this point we are ready to prove our first main result of this section. In a non-
trivial case, we determine the Hilbert polynomial of the Kahler different and bound its

regularity index.

Theorem 5.3.6. Let W = {py,...,ps;ma,...,ms} be a fat point scheme in P}, where
n > 2, and assume that there exists an index s’ < s such that my =--- =my =1 and
2 <mgy1 <--- < mg. Then the Kdhler different 9 (S/K|xo]) has the constant Hilbert
polynomial HPy, (s/k[we)) (2) = 8" and its reqularity index satisfies 1i(Vx (S/K|[xo])) <nry.

Proof. 1If s = 0 then m; > 2 for every j€{1,..., s}, and we have U (S/K|xo]) = (0) by
Lemma 5.3.4(i). Now we consider the case s’ = s, i.e., the case when W = {py,... ps}
is a set of s distinct reduced K-rational points of P%. Then Proposition 3.3.14 implies
that HPy, (s/k(z))(2) = s and ri(0x(S/K[xe])) < nrw, proving the theorem in the

reduced case.
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Consequently, we may assume that 0 < s’ < s. In this case, we first show
HPy, (s/Kzo))(2) < 8. To this end, let {h4,...,h:} be a homogeneous system of gener-
ators of Vi (S/K[xg]), and let H; € P be a representative of h; for i = 1,...,¢t. We let
J:=(Hy,...,H;)+Zw C P and write Zyy =Py N--- NP NP, iflﬂ NP = INT,
where I' =1 N--- NPy and [ = ‘]3:/1{1 N---NPT=. Using the same argument as in
the proof of Lemma 5.3.4(i), we obtain J C ‘13;”] for j = s'+1,...,s, and it follows that
Iw C J C I. Thus we have HF p/;(i) < HFp,;(7) for all ¢ > 0. By Remark 5.3.2, the
Hilbert polynomial of P/I is the constant polynomial HPp;(z) = >27 ., (Mt
We deduce that HPp;(z) > HPp/r(2) = >0 o1, (™s*=1). Hence we get

HPﬂK(S/K[xo])(Z) = HPw(Z) — HPP/J(Z) S pr<2) — HPP/](Z)

:;<mj+nn—1) B Z <mj+nn—1)

j=s'+1
SI
Z mj+n—1 ,
= = S s
- n
Jj=1

as we wanted to show.

Secondly, we need to show that HPy, (s/k[zo)(2) > s’. But this inequality follows
from Proposition 3.3.19. Altogether, we have shown that HPy, (s/k[zq))(2) = &

Finally, it remains to prove ri(0x(S/K[xo])) < nrw. For every j € {1,...,5'}, let
f7 € S\{0} be a minimal separator of W\{P;} in W, and let F; € P be a representative
of fr. It is well known that deg(F}) < rw and (F;)¥ & Zw (or (f7)* # 0) for j =
1,...,s and k > 1. Let us write P; = (Lj1,..., Lj,) as in the proof of Lemma 5.3.4.
We see that F'Ljy, € Zw for k = 1,...,n. Moreover, we may argue as the proof

of Proposition 3.3.14 to obtain O Lt P Lin) - = (F})" (mod Zy), and this implies

X1, Xn)
(fi)re ﬁK(S/K[xo])ndeg( . Thus we know that g(rw deg(f; ))(f;f)” € Vi (S/K[xo])nry
forall j=1,...

Let us show that the elements xo(rw dea (/i) (..., g(rw_deg(f:/))(f;,)” are K-
linearly independent. Suppose there exist elements c¢y,...,cy in K, not all equal to

s n(ry—deg(f*
zero, such that 3 7, cjxo( wdesls; ))(f;)” = 0. W.lLo.g., we can assume ¢; # 0. Then

we have

S/

n(ry—deg(fF *\ N r(rw—deg(f
:L‘o(W g(fl))(fl) “:izcﬁo o fl(f) B

=2

Since zg is a non-zerodivisor of S, we get (f;)"*! = 0, a contradiction.
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It follows that we have an inequality

; n(ry—deg(f))) ( pxyn n(r—deg(f7) | pxn
HFE g, (s/K o)) (M7w) ZdlmK<x0(W g(fl))(fl) ey T wmees (f3) >K:5’,

Combining this with HF g, (s/k[z0)) (1) < 8’ for i > 0 and HFy, (s/kz0)) (1) = " for i > 0,
we obtain HFy, (s/kzo)) (nrw) = s and 1i(Vx (S/ K[x0])) < nrw, as desired. O

Our next proposition gives us another way to prove the equality in Theorem 5.3.6

for the Hilbert polynomial of a fat point scheme.

Proposition 5.3.7. Let X = {p1,...,ps} be a projective point set in PY., where n > 2,
and let W = {p1,...,ps;mq,...,ms} be a fat point scheme in P with m; = -+ =
mg =1and2 <mgy1 < -+ <mg. Let Y ={p1,...,ps} be a subscheme of X, and let
Ry be the homogeneous coordinate ring of Y. Then there exists a number d > 1 such
that

HEy . (Ry /K (o)) (0 — nd) < HFyg, (57K 2]y (1) < HE g (Ry [0} (7)
for all i € N.

Proof. Let us denote [ := ‘Bz,lil“ N---NPTs and I' :=P; N ---NPy. Then we have
Iy =P1N-- NPy NP N AP™s = INT'. Since I ¢ P, for j € {1,..., s}, the
Prime Avoidance Theorem yields I ¢ Uj/:l Bj. Let F €1 \Uj/:1 B, be a homogeneous
polynomial of degree d, and let f be the image of F' in Ry. By Lemma 2.3.11, the
element f is a non-zerodivisor of Ry. Moreover, we observe that F'G € Zyw for all

G € Iy, and for G4,...,G, € Iy we have

O(FGy,..,FGn) _ 1m d(G1,....Gn)
a(xi ..... X,) =F a(xi ..... Xn)+H

with a polynomial H € Zy. Notice that the homogeneous polynomial H belongs to
Iw C Iy, since n > 2 and g—; € mqjﬁrl for j=¢+1,...,sand i = 1,...,n. From
this we deduce f"Ix(Ry/K|xo]) C (J + Zy) /Iy, where J is the preimage in P of the
Kahler different ¥k (S/K[x¢]). It is obviously true that (J + Zy)/Zy C 9 (Ry/K|zo)),
and hence

"k (Ry/Klzo]) € (J + Iy) /Iy € U (Ry/Klxo)).

In particular, for every i € N, we have

HEy o (Ry /K [eo)) (0 — nd) = HF pr e Ry /(o)) (1) < HE (1132, (1) < HF o (Ry /o)) (4)-

Moreover, we have the exact sequence

JN1y J J+ 1Ly

0 0.
— 7. —>IW—> 7 —
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Since Zwy C J C I, this implies Zw C JNZy C I NZy = Zw. Consequently, we get
an isomorphism J/Zw = (J + Iy) /Iy. It follows that HFy, (s/x(w)) (1) = HF j/7, (i) =

HF (j41,)/7, () for all i € N. Therefore we obtain inequalities

HEy, (Ry /K (o) (0 — nd) < HFy (5720 (1) < HF e (Ry K0} (7)
for all 7 € N. ]

It is easy to apply the preceding proposition in order to see that HPy, (s/kz0))(2) =
HPy, (ry/K[zo))(2). Since Y is a projective point set of P% of degree deg(Y) = ¢,
Proposition 3.3.14 yields HPy, (r,/k[z,])(2) = ', and so the equality of the Hilbert

polynomial of W provided by Theorem 5.3.6 follows.

Remark 5.3.8. For a fat point scheme of the form W = {p1,ps, ..., ps; 1, ma, ..., my}
in P", where n > 2 and 2 < mgy < - -+ < my, the Kéhler different 9 (S/K|[xzo]) is a prin-
cipal homogeneous ideal of S and is generated by a separator of the subscheme W\ {p, }.
Indeed, letting ay, :=min{i € N | Jx(S/K[xo]); # 0}, we have HF g, (s/k20)) (1) = 1
for all i@ > ay, by Theorem 5.3.6. This means that Ux(S/K|x¢]) = (h)s for some
homogeneous element h € S of degree ay,.. Moreover, since h € P52 N --- NPT\ Py,
it follows that h is a separator of W\ {p; }.

An upper bound for the regularity index of Jx(S/K[x¢]) in terms of my, ..., ms is

given by the following corollary.

Corollary 5.3.9. Let X = {p1,...,ps} be a projective point set of P}, where n > 2,
and let W = {py,...,ps;mi,...,ms} be a fat point scheme supported on X with m; =

co=mg=1and 2 <myq < - < my for somel < s <s.

(i) We have ri(9(S/K][zo])) < min { nm,rx, n(d 5y m;—1) }.
(i) If X is in general position (i.e., if no n+1 points of X lie on a hyperplane of PY, ),

then we have

1i(05 (/K zo])) < nmax { m, |( ;mj +n—2)/n|}.

J

Proof. In [DGJ, E.D. Davis and A.V. Geramita proved that rw < >, m; — 1. Thus
Theorem 5.3.6 yields ri(Vx(S/Kzo])) < n(Z;ZI m; — 1). For the proof of (i), it
remains to show that ri(dx(S/K|xo])) < nmgrx. For j =1,...,s, let F; € P., be a
representative of the normal separator of X\ {p,;} in X. For all j € {1,...,5'}, we let

I(j):mlm...m@m...ﬂms,ﬂmﬁirlﬂ...ﬂq:s‘;ns.
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It is straightforward to check that Fi™ € I ) and F g Py forj=1,..., " Therefore
the image f;" of " in S is a separator of W\ {p;} in W. Now we argue as in proof
of Theorem 5.3.6 and obtain (f;**)" € Vx(S/K[xo])nm.y for j = 1,...,5", as well
as dimg ( (f1")", ..., (fo)" ) = 8. Thus we have HFy, (s/k[z))(nmsrx) = s and
ri(0g (S/K[xo])) < nmgrx, and claim (i) follows.

Notice that the bound ri(d (S/K[z])) < n( Do My — 1) can be derived by using
the set of separators. Explicitly, we can find a hyperplane Z%(L;;) which contains py
and does not contain p; fork=1,...,j—1,j+1,...,s. Weput G; = Hk#(ij)mk epP
for j =1,...,s". Thus we have G; € IV\'B; and deg(G,) = Dokt M =D e =1 =
deg(G,) for j =1,...,s". Using a similar argument as above, we get the desired bound.

It remains to prove (ii). Since X is in general position in P%, it follows from [CTV,
Lemma 4] that we can find ¢ linear forms, say L, ..., L};, defining hyperplanes which
avoid p; such that H; = L} --- L}, € I, Here t is a positive integer such that
nt > ijl m;—1and t > m,. For instance, we may choose ¢t = max {ms, L( Zj‘:1 m;+
n—2)/n|}, since [ (Y27, mj+n—2)/n] =min{t | nt > 3% m; —1}. Thus the
image of H; in S is a separator of W\ {p,} in W for j =1,...,s". Reasoning as above,
we have ri(dx (S/K[zo])) < nt = nmax { m,, L(ijl m;+n—2)/n|}. O

The following examples show that the bound in this corollary is sometimes sharp,

and sometimes it is not.

Example 5.3.10. Let X = {py, p2, p3, p4} be the projective point set of IP)?@ with p; =
(1:0:0),pp=(1:1:0),p3=(1:0:1),and py = (1:1:1). It is clear that X is in
general position in IP’?Q.

(a) The fat point scheme Wy = {p1,ps2,ps,p4;1,1,1,2} has the Hilbert function
HFw, : 1 36 6--- and the regularity index rw, = 2. Its Kahler different satisfies
HFy,(s/Qlzo)) : 00003 3--- This implies that

ri(dg(S/Qlwo])) = 4 = nrw, = nmax { my, L(émj +n—2)/n]|}.

(b) Now we consider the fat point scheme Wy = {p1, p2, p3,p4; 1,1,2,2} in ]P’é. Here
we have HFyw, : 13 6 8 8--- and rw, = 3. Moreover, we calculate HFy(s/q[z0)) :
0000122---. Thus we have

1i(g(S/Q[z0))) =5 < 6 = nry, = nL(ilmj +n—2)/n|.
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Remark 5.3.11. Given a fat point scheme W whose support is in general position, if
we apply [CTV, Theorem 6] and Theorem 5.3.6 then we get

ri(V (S/K[zo])) < nryw < nmax { m, + my_y — 1, L(ilmj +n—2)/n|}.

In the case my > | ( dymytn— 2)/n], Corollary 5.3.9(ii) gives us a better bound
for ri(Vx (S/K[zo])) which is given by ri(dx(S/K]zo])) < nms. For instance, we take
Supp(W) to be in general position in P%, & = s — 2, mg; = 2 < my, and s <
(n—1)ms + 1.

Let us also check the remark for an example in P%,.

Example 5.3.12. Let W = {p1, p2, p3, ps; 1, 1,2, 2} be the fat point scheme in ]P’% with
pr=01:0:0:0),pp=(1:1:0:1),p3=(1:0:1:1),andpy,=(1:1:1:1).
Its support X = {p1,p2,ps,ps} is clearly in general position in IP’?Q. We calculate
HFw :1491010--- and rw = 3, as well as HFy,(s/qjzo)) : 00000 2 2---. Thus the

above inequality reads
4
ri(Jg(S/Qlxo])) =5 < 6 =nmax { ma, | (X m; +n—2)/n| } <9=nry.
j=1

Based on the notion of Cayley-Bacharach property and Liaison theory introduced
in Section 4.1 and Section 4.3, we can now improve the bound for the regularity index
of the Kéhler different.

Proposition 5.3.13. Let n > 2, and let X = {p1,...,ps} be a projective point set
of P which is arithmetically Gorenstein. Let W = {p1,...,ps;mq,...,ms} be a fat
point scheme in P} supported at X. Assume that K is infinite and that there exists a
number s € {1,...,s} such that my = -+ =mg =1 and 2 < myyq < -+ < mg. Let
Y be the subscheme Y = {p1,...,ps} of X, and let d € {1,...,ry — 1} be the greatest
integer such that Y has CBP(d). Then we have

ri(V (S/K[zo])) < n(ms(rx —d —1) 4+ ry).

Proof. Let Y = X\ Y be the residual scheme of Y in X and let Zy: be the homogeneous
vanishing ideal of Y. Since Y has CBP(d), Theorem 4.3.6 implies that there exists an el-
ement of (Zy/) . —q—1, namely H, which does not vanish at any point of Y. Hence we have
H™s € ‘Bzifl N---NPT and H™ ¢ P, for j = 1,...,s". Therefore the image h of H
in the homogeneous coordinate ring Ry of Y is a non-zerodivisor (see Lemma 2.3.11).
As in the proof of Proposition 5.3.7, we obtain (h™ )"k (Ry/K[x¢])) C (J + Zy)/Zy,
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where J is the homogeneous ideal of P such that 0k (S/K[x¢]) = J/Zw, and where
the regularity index of the ideal (h™)"0x(Ry/K|[xo]) is greater than or equal to the
regularity index of the Kéhler different ¥, (S/K[zo)).

On the other hand, since Y is a projective point set of P of degree s, we have
ri(0 g (Ry/K|[zo])) < nry by Proposition 3.3.14. Altogether, we get

ri((h"™)" "Ik (Ry/K[zo])) = deg((h™)") + ri(J (Ry/K[x0]))
=nmg(rgx —d — 1) + ri(Vx (Ry/K|[zo]))
< n(my(rx —d—1) +ry),

and hence 1i(x (S/K[xo])) < ri((h™)"Ik(Ry/K[zo])) < n(ms(rx —d — 1) + ry), as

we wanted to show. O

The following example shows that a strict inequality ri(dx(S/K|[zo])) < nrw can
occur even for a fat point scheme W supported at a set of points X which is contained

in a line.

Example 5.3.14. Let n > 2, and let X = {py,...,ps} C P}% be a projective point
set which lies on a line. Let W = {py,...,ps;my,...,ms} be a fat point scheme
in P% supported at X. W.lo.g. we may assume that m; = -+ = my = 1 and
2 <mgy1 <--- <my for some 1 < ¢ < s. Recall that we have ryw =7, m; — L.

In this setting, the schemes X and Y = {pi,...,py} are complete intersections, and
we have rx = s—1 and ry = s'—1. Therefore Y is a CB-scheme and ri(Jx (Ry/K|[zo])) =
2ry. Using the argument of the proof of Proposition 5.3.13, we get

ri(Vg (S/Kx])) < nmg(rg — (ry — 1) = 1) 4+ 2ry = nmg(s — §') + 2(s' — 1).

This bound shows that the strict inequality ri(dx(S/K|[zo])) < nrw can occur even
when X lies on a line.

For instance, consider the case n = 4 and my = --- = myy; = 3. Then we have
ri(Vg (S/K[zo])) < 12(s — &) +2(s' = 1) =125 — 108’ =2 and rw = >, ,m; — 1 =
3(s—s)+s —1=23s—2¢ —1. The inequality 12s — 10s’ — 2 < 4(3s — 2¢' — 1) is
equivalent to s’ > 1. Therefore, if s’ > 1, then we have ri(Jx(S/K[x¢])) < 4rw.

As in the previous proposition, in order to estimate ri(dx(S/K[xo])) we need to
find a hypersurface Z*(H) of minimal degree which contains the fat point scheme Y’ =
{Ps'+1y -+, Ds;Mg41, ..., ms} but does not pass through any of the points py, ..., py.
Using the technique in [TV, Theorem 2.2], we obtain the following upper bound for
the regularity index ri(Jx (S/K|xq))).
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Proposition 5.3.15. Let K be a infinite field, let n > 2, and let X = {p1,...,ps} be
a projective point set of P. Let W = {py,...,ps;m1,...,ms} be a fat point scheme
mn P supported at X. W.l.o.g. we may assume that m; = --- = my = 1 and
2 < mgy1 < oo <my for some 1 < 8 < s. Suppose that every subscheme X' C X of
degree < s — s’ + 1 satisfies

HFx (i) = min{ HFx(7), deg(X') }

for alli € Z. Let X" C X be a subscheme of degree s — s’ + 1, let d be the reqularity
index of X", let h; = HFxn (i) fori=0,...,d, and let Y = {py,...,ps}. Then we have

d—1

(ke (S/K[wo])) < n( ) mapo1 +1v).
=0
Proof. We first see that h; = HFx(i) fori = 0,...,d—1 and hy = deg(X") = s—s'+1 <
HFx(d). So we get s —h; +2> s + 1 foreveryi € {1,...,d} and s —hy+2 =5+ 1.
Now we let j € {1,...,s'} and i € {1,...,d}. For the sets V = {ps_p.12,...,ps} and
V' =VU{p,}, we have deg(V) = h; — 1 and deg(V’) = h;. By assumption, we know
that
HFy (i) = min{ HFx (i), h; — 1} = h; — 1 < h; = deg(V’).

Thus we can find a hypersurface Z7(H;) of degree i passing through all points of V
but avoiding p;. For k € {1,...,s — '}, let ¢ be the least integer such that & < hy — 1.
Then we have s —k+1<s—h;,_1+1,¢t <d, and H; € P, 41 for all i > ¢. Hence we

obtain

HmS*ht—1+1*mS*ht+1‘ . HmS*hd—erl*mS*hd—lJrl HmS*hd—lJrl mmsfht—ﬁrl C ;Bms—k+1
t d—1 d s—k+1 - s—k+1 -

Next we define ﬁj = HyoThottT ekt Hﬁ{hd’ﬁlimkhd’ﬁlH;ns*hd’ﬁl. We have
f[j € ‘,Bz,lifl N--- NP7\ P,. From this we deduce that f[j(pj) #0forj=1,...,5.
Since K is infinite, we can find elements A{,..., Ay in K such that H := )\1[:]1 +
oo+ )\S/}NIS/ does not vanish at any point of Y = {p;,...,ps}. Clearly, we have
H € ‘ngif "N NPT, and the image of H in Ry is a non-zerodivisor. The degree
of H satisfies deg(H) = (Ms—no41 — Ms—ni+1) + 2(Mepyg1 — Ms_ppp1) + -+ + (d —
D) (Ms—ny_yt1 — Ms—py_41) +dMs_p, +1 = Z?:_OI Ms_p,4+1- Arguing as in the proof of

Proposition 5.3.13, we obtain ri(d x (S/K[zo])) < n( Zd_ol Ms_h+1+7y) as claimed. O

7=l

The Hilbert polynomials and the regularity indices of the Kihler differents 9 (S/K)

can be derived from those for S/K[zg] and are given by the following proposition.
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Proposition 5.3.16. Let W = {py,...,ps;m,...,ms} be a fat point scheme in P,
where n > 2, such that my = --- = myg =1 and 2 < mg 1 < --- < myg for some

0 < s <s. The following assertions hold true.

(i) We have 99 (S/K) = (0) for some i € {1,...,n — 1} if and only if s' = 0.

(ii) Forie{l,...,n—1}, we have HP 5 5 (2) = &', ri(0(S/K)) < ri(9D(S/K))
and 1i(Vx (S/ K1) — 1 < 1i(0V(S/K)) < 1i(9x (S/ K [10))).

(i4i) We have 9™ (S/K) # (0) and its Hilbert polynomial satisfies
m;+n—
S, S HPﬁ(n)(S/K < Z ( ]n 1 )

Proof. First we prove (i). Proposition5.2.2 yields that HPy,(s/s(zo)) (2) = HP ) (g/1)(2).
Therefore Theorem 5.3.6 implies the equalities HP ya) (g, x)(2) = HPyy(5/K(a0))(2) = 5"
If we have 9(S/K) = (0) for some i € {1,...,n — 1}, then we get 9V (S/K) = (0),
and hence s’ = 0.

Conversely, suppose that s = 0. Let {Gy,...,G,} be a minimal homogeneous
system of generators of Zyw. Since m; > 2 for j = 1,...,s, we know that 0G;/0X; €
‘B;nj*l for ke {1,...,r}and [ € {0,...,n}. Now i < n—1implies that all (n+1 —1)-

G, . .
—8X1>k:1 ..... , are contained in Zw. Therefore we get

minors of the Jacobian matrix (
1=0,...,n

ID(S/K) = (0) and claim (i) follows.
To prove (ii), we note that s’ = HPya)(s/x)(2) < HPye(s/x)(2). Furthermore, we
have 9 (S/K) C (N;= w11 B;7)/Ty. This implies

HPM“(S/K)( ) < HP pr(Z) — HP

2) =5

(s /7 (2) = PRI

Thus we get HP i) (5/x)(2) = 8 for i = 1,...,n — 1. Moreover, it is clear that
(00 (S/K)) < ri(@W(S/K)) < 1i(Ix(S/K o).

Also, the inequalities ri(Vx (S/K[zo])) — 1 < ri(@M(S/K)) < 1i(Vx(S/K|x))) follows
from Proposition 5.2.2.

Finally, we prove (iii). We have 9™ (S/K) = (525 | 1 <k <r,0<1<n) # (0).
Since it follows from (ii) that s" = HP ym-1)(s/x)(2) < HP o (g/1)(2), it remains to show
the last inequality. It is easy to check that 9 (S/K) C ‘B;nj*l/IW forj=s4+1,...,s
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Hence we get 9" (S/K) C ((_y 4 m?j_l)/fw. Thus we find

HPﬁ(">(S/K)(Z) S HP = HPW(Z) — HP

(Mj=sr 41 m;'nj_l)/IW<Z) P/ —er 1 m;nj_l (Z)

:i(mj—i-nn—l) B Z (mj+nn—2)
(")

j=s'+1
and claim (iii) is proved. O

)

]:

Remark 5.3.17. If s’ < s, then there exists an index j € {1,...,s} such that (0) #
9™ (S/K) C %;. Proposition 2.2.10 implies that M(QE/K) =n+ 1, and hence the set

{dxy,...,dz,} is a minimal system of generators of Qf, K-

Both in Section 3.2 and in Section 3.3, we have seen that the Noether different for
a O-dimensional smooth scheme in P, contains a homogeneous non-zerodivisor of the
homogeneous coordinate ring of the scheme. However, this property is not true for an

arbitrary fat point scheme in P}, as the following proposition shows.

Proposition 5.3.18. Let W = {py,...,ps;mq,...,ms} be a fat point scheme in P™
such that my = -+ =mg =1 and 2 < mgy, 1 < -+ < my for some 0 < s’ <s. Then
the Noether different of S/ K[| satisfies In(S/K[xo]) € 9™ (S/K) and

m;+n —
s’ <HP§N S/K[mo] <Z( Jn—l )7

and it does not contain a homogeneous non-zerodivisor of S. In particular, if n = 1
and we let =375 my, then In(S/Kxo]) = Uk (S/K][xo]) and

HEow(s/Klaoh = 0 -0+ 0 1 28005 =1 6 s
Proof. Let {G1,...,G,} be a minimal homogeneous system of generators of Zyw. Let
h € In(S/K]zo)) \ {0}, and let H be a representative of h in P. By Corollary 3.1.5,
we have H - (X; — ;) € ZwS[X1, ..., X,] for i = 1,...,n. So, there are homogeneous
elements H;q,..., H; € S[Xl, ..., X, such that H - (X; — 2;) = Z;zl H;;G;. Then
W = (X; — ;)2 -+ H =37 (H gf{ +G; 88[){(”) By taking the image in S,
the last equality becomes h = ZJ 1 hij %i , where h;; is the image of H;; in S. This

implies h € <W | 1 <j<t0<i< n>S = Y™ (S/K). Hence we obtain the
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inclusion ¥y (S/K[zg]) € 9™ (S/K) and Proposition 5 3.16(iii) yields
m; +mn—2
HP (/610 (2) < HPyon (5750 (2) < Z ( ’ >

n—1
On the other hand, if n = 1, then the scheme W is a complete intersection. In
this case, we have Vg (S/K|xo]) = Un(S/K][xo]) by Corollary 3.3.5. Consequently,
(

the above description of HFy (s/k[z,)) follows from Lemma 5.3.3. In particular, we

N
have HPy, (s/kzo))(2) = HPyy(s/kfme)(2) = s > s'. In the case n > 2, it follows
from Proposition 3.3.9 that Jx(S/K|x]) C In(S/K[xe]). Then Theorem 5.3.6 yields
HPﬁN(S/K[xo})<2) > HPﬁK(S/K[xo})<z) =s'. Thus we have shown that HPﬁN(S/K[xo})(Z) >

Furthermore, the ideal Jx(S/K|[zo]) does not contain a homogeneous non-zerodivisor

")

of S, since otherwise we would have HPy, (s/r(z))(2) = deg(W) > 377, (
Therefore the proof of the proposition is complete. O

Finally, we give an example of a fat point scheme W in P} supported at a complete
intersection, and we compute HF g, (5/K[z]); HFEy6) (57K and HF g (s/Kx)) in this case.
Moreover, this example shows that the upper bound of HP yw) s,k (2) given in Propo-
sition 5.3.16 is sharp, and that the Noether and Kahler differents of S/K[z,] have the

same Hilbert polynomial but do not agree.

Example 5.3.19. Let W = {py,...,po;m1,...,mg} be the fat point scheme in Pg,
where pp = (1:0:0:1:1),pp=(1:1:0:1:1),p3=(1:0:1:1:1),
pp=(1:1:1:1:1),ps=(1:2:0:1:1),ps=(1:0:2:1:1),pr=(1:1:2:1:1),
ps=(1:2:1:1:1),andpyg=(1:2:2:1:1), and where my = --- = m5 = 1
and mg = -+ = mg = 2. Then the support of W is a complete intersection, and we
have HFw : 1512 18 23 25--- and rw = 5. It is not difficult to calculate the following

Hilbert functions

HF g, (s/a@p: 0 0000 0 0 0 0 0
HEyoys/gmep: 0 000 0 0 0 0 0000 5
HE o s/qmy © 0 2 8 14 19 21 21

HFgu(s/aleop: 0 00 0 0 0 0 0 3 5 5

21 and (9™ (S/Q[zo])) = 5. This

Thus we get HP ya)(5/q[zo)) (2 z) = Z (mﬁn 2)
indicates that the upper bound of HP y) s/ k[4,]) (2) given in Proposition 5.3.16 is sharp.
(

n

Also, we have HPy,. (s/qiro)) (2) = HP o) (s/q10)) (2) = HPuy(s/qizo (2) = 8" = 5 and
ri(In(S/Qlzo))) = 9 < ri(WM(S/Q[xg))) = 12 < 1i(Wx (S/Q[z0))) = 13.
Hence the Hilbert polynomials of ¥x(S/Q[xo]) and ¥ (S/Qxo]) are equal, but their

Hilbert functions are not equal.



Appendix

In Chapter 3 we have discussed the computation of the Noether, Dedekind and Kéahler
differents for 0-dimensional schemes in P% . In particular, we have explained algorithms
for computing these differents and their Hilbert functions. In this appendix we provide
the functions which implement these algorithms in ApCoCoA and describe their usage
with some examples. The computer algebra system ApCoCoA is primarily designed
for working with real world problems by using symbolic computation methods and by
developing new libraries for related computations. It can be obtained for free via the

ApCoCoA home page:
http://www.apcocoa.org

There are also a comprehensive manual and a series of tutorials at this web address.
The default term ordering for the rings in ApCoCoA is defined as DegRevLex. We
use this term ordering for our computations in all examples of the appendix.

A.1 Implementation of the Division Algorithm 3.1.6

-- NRR(F,GG,FF): Perform division in the residual class ring R = P/I_X
- where P=K[X_0,...,X_n] is the standard graded polynomial ring over
- a field K with deg(X_i)=1 and I_X is a homogeneous ideal of P
- defining a O-dimensional scheme X in P"n_K.
-- Input: F a homogeneous normal polynomial modulo I_X = <FF>
- FF a list of a homogeneous Groebner basis of I_X
- GG a list of homogeneous normal polynomials modulo I_X
—-— Output: A list [R1,R2,[Q_i]] such that F = sum_iG_iQ_i+ R1 + R2, R2 in I_X
Define NRR(F,GG,FF)
If GG <> [] Then
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K1 := Len(GG); Q := NewList(X1,0);
R1 := 0; R2 :=0; V :=F;
LTG := [LT(P) | P In GG];
Repeat
If NR(LT(V), LTG) = O Then
D := DivAlg(LT(V), LTG);
DD := D.Quotients;
For I := 1 To Len(DD) Do
If DD[I] <> O Then
C := LC(V)/LC(GG[I]);
Q[11 := Q[I] + C+DD[I];
R2 := R2 + Cx(NR(DD[I]*GG[I],FF) - DD[I]*GG[I]);
V := V - C+NR(DD[I]*GG[I],FF) ;
EndIf;
EndFor;
Else R1 :=R1 + LM(V); V :=V - LM(V);
EndIf;
Until V = 0;
Return [R1,R2,Q];
Else Return [F,0,Q];
EndIf;
EndDefine;

Example A.1.1. Consider the projective point set X = {p1,...,ps} C IP’IQFB, where
pr=(1:0:0,p=(1:1:1),p3=(1:2:0),ps=(1:0:2),andps =(1:2:2).
Then a homogeneous Grobner basis of Zx is F = {XoX; + X? — XXy — X2, X7 X, —
X1X3, X3X, — X3}, Let F=—X} + XoX; — X, X3 + X3 be the homogeneous normal
polynomial modulo Zx, and let G be the tuple consisting of the following three normal
homogeneous polynomials modulo Zx: Gy = X} — X5, Gy = X3 — X3, and G3 =
X1X3 — X3. To compute NR, 7, g(F), we run the following commands in ApCoCoA:

Use ZZ/(3) [x[0..2]1];
F := - x[1]74 + x[01x[2]°3 - x[1]1x[2]"3 + x[2]"4;

FF := [x[0]x[1] + x[1]°2 - x[0]x[2] - x[2]"2, x[1]"2x[2] - x[1]x[2]"2,
x[0]~2x[2] - x[2]3];
66 := [x[11°3 - x[2]°3, x[0]1"3 - x[2]"3, x[11x[2]"3 - x[2]~4];

NRR(F,GG,FF);
The output of these commands is the following list whose first element is NR, 7, g(F):

[x[0]x[2]"3 - x[2]1"4, O, [-x[1], O, 11].
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A.2 The Buchberger Algorithm with Minimalization 3.1.10

-- HBAM(HH, FF): Compute a minimal homogeneous system of generators of J/I_X
—-- Input: FF a list of a homogeneous Groebner basis of I_X = <FF>
- HH = [H_1,...,H_s] a list of homogeneous normal polynomials
- modulo I_X such that J = <HH> + I_X and deg(H_1) <=...<= deg(H_s)
—-- Output: A list whose elements generate minimally J/I_X
Define HBAM(HH, FF)
SS := []; VV := HH; GG := []; N := 0; HHmin := [];
D := 0; Dmax := Deg(HH[Len(HH)]);
Ssd := [1; vvd := [1;
Repeat
CC := ConcatLists([SS,VV]);
D := Deg(CC[1]);
For I := 2 To Len(CC) Do
If D > Deg(CC[I]) Then D := Deg(CC[I]); EndIf;
EndFor;
If SS <> [] Then
SSd := [F | F In SS And Deg(F)=D];
SS := [F | F In SS And Deg(F)>D];
EndIf;
If VV <> [] Then
VVd := [F | F In VV And Deg(F)=D];
VV := [F | F In VV And Deg(F)>D];
EndIf;
While SSd <> [] Do
S1 := SSd[1]; Remove(SSd,1);
NRS1 := NRR(S1,GG,FF); S11 := NRS1[1];
If S11 <> 0 Then
N := N+1; Append(GG,S11);
For I := 1 To N Do
SI := LCM(LT(GG[I]), LT(GG[NI))* GG[I]/LM(GG[I])
- LCM(LT(GG[I]), LT(GGIN]))* GG[NI/LM(GG[N]);
Sin := NR(SI, FF);
If Sin <> 0 And Deg(Sin) <= Dmax Then
Append(SS, Sin);
EndIf;
EndFor;
For J := 1 To Len(FF) Do
SJ := LCM(LT(GG[N]), LT(FF[J]))* GGI[N]/LM(GG[NI)
- LCM(LT(GG[N]), LT(FF[J]1))* FF[JI/LM(FF[J]);
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Snj := NR(SJ, FF);
If Snj <> 0 And Deg(Snj) <= Dmax Then
Append(SS, Snj);
EndIf;
EndFor;
EndIf;
EndWhile;
While Vvd <> [] Do
H1 := VVd[1]; Remove(VVd,1);
NRH1 := NRR(H1,GG,FF);
H11 := NRH1[1];
If H11 <> O Then
N := N+1; Append(GG,H11); Append(HHmin,H1);
For I:= 1 To N Do
SI := LCM(LT(GG[I]), LT(GGIN]))* GG[I]/LM(GG[I])
LCM(LT(GG[I1), LT(GGINI))* GG[N]/LM(GGINI);
Sin := NR(SI, FF);
If Sin <> O And Deg(Sin) <= Dmax Then
Append(SS, Sin);
EndIf;
EndFor;
For J:= 1 To Len(FF) Do
SJ := LCM(LT(GG[N]), LT(FF[J]))* GG[N]/LM(GG[N])
LCM(LT(GG[N]), LT(FF[J1))* FF[J1/LM(FF[JI);
Snj := NR(8J, FF);
If Snj <> 0 And Deg(Snj) <= Dmax Then
Append(SS, Snj);
EndIf;
EndFor;
EndIf;
EndWhile;
Until (SS = [] And VV = [1);
Return HHmin;
EndDefine;

Example A.2.1. Going back to Example A.1.1, we have seen that .# = { X, X+ X7 —
XoXo— X2, X2 Xo— X1 X2, X2 X,— X3} is a homogeneous Grobner basis of the vanishing
ideal Zx of X. Let J be the homogeneous ideal of P generated by # U {Hq,..., Hy},
where H; = X} — X3, Hy = X3 — X3, Hy = XoX; — X3, and H; = X;. Note that
all H; are normal homogeneous polynomials modulo Zx and deg(H;) < --- < deg(Hy).
We can compute a minimal homogeneous system of generators of the ideal J/Zx by

running the following commands in ApCoCoA:
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Use ZZ/(3) [x[0..2]1];

FF := [x[0]x[1] + x[1]"2 - x[0]x[2] - x[2]"2, x[1]"2x[2] - x[1]1x[2]"2,
x[0]"2x[2] - x[2]"°3];
HH := [x[1]1°3 - x[2]1"3, x[0]1"3 - x[2]"3, x[0]x[2]"3 - x[2]"4, x[2]"4];

HBAM(HH, FF) ;

The output of the above commands is the following list of minimal generators of .J/Zx:

[x[11°3 - x[2]"3, x[0]"3 - x[2]"3, x[2]"4].

A.3 Computation of the Noether Different 3.1.13

—-- NoetherDifferentRel (PP): Compute the Noether different
—-— Input: PP = a list of points in P"n_K which are not contained in Z~+(x_0)
- or a homogeneous vanishing ideal of a O-dimensional scheme
- in P"n_K which does not intersect Z~+(x_0)
—-— QOutput: A list of minimal generators of the Noether different
Define NoetherDifferentRel (PP)

If Type(PP) = IDEAL Then

IP := Minimalized(PP);
Else IP := IdealOfProjectivePoints(PP);

EndIf;
N := Len(Indets()) - 1;
Qxy ::= CoeffRing[x[0..N],y[1..N]1];

Using Qxy Do
L := ConcatLists([[x[0]],[y[I] | T In 1..N]1); F := RMap(L);

L1 := [x[I]| I In O..N]; F1 := RMap(L1);

J1 := Image(IP,F); GJ1 := ReducedGBasis(J1);
J2 := Image(IP,F1);

J3 := Ideal ([x[I]-y[I] | I In 1..N]1);

J = (J2 +J1) : (J3 + J1);
EndUsing;
L3 := Indets(); L4 :
F2 := RMap(L4); PL :
If Len(PL) > 1 Then
For I := 1 To Len(PL) Do
For J := I + 1 To Len(PL) Do
If LT(PL[I])>LT(PL[J]) Then
CH := PL[I]; PL[I] := PL[J]; PL[J] := CH;
EndIf;
EndFor;
EndFor;

ConcatLists([L3, Last(L3,N)]1);
ReducedGBasis (Image(J,F2));
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EndIf;
GIP := GBasis(IP); D := Len(PL); T :=1;
While T < D + 1 Do
If NR(PL[T],GIP) = O Then
Remove(PL,T); D := Len(PL); T := 1;
Else PL[T] := NR(PL[T],GIP); T :=T + 1;
EndIf;
EndWhile;
NL := HBAM(PL, GBasis(IP));
Return NL;
EndDefine;

Example A.3.1. Let us compute the Noether different for the 0-dimensional scheme
X C P} of degree 16 defined by Ty = ()I_; [;, where I; = (Xo — X1, Xs), I, =
(X1, X0+ Xo), Iz = (Xo — X1,2X0 — Xo), I, = (Xo — X1, Xo — Xo), I5 = (X1, X5)2,
Is = (3X2 + X7, X5)? and I; = (X1,2X3 + X3). We run the following commands in
ApCoCoA:

Use QQ[x[0..2]11;

I1 := Ideal([x[0]-x[1],x[2]11);

I2 := Ideal([x[1],x[0]+x[2]1);

I3 := Ideal([x[0]-x[1],2x[0]-x[2]11);

I4 := Ideal([x[0]-x[1],x[0]-x[2]11);

I5 := Ideal([x[1],x[2]11)"2;

16 := Ideal([3x[0]"2+x[1]1"2,x[2]]1)"2;

I7 := Ideal([x[1], 2x[0]"3+x[2]1°31);

IP := Intersection(Il, I2, I3, I4, I5, 16, I7);
NoetherDifferentRel (IP);

The result of these commands is the following list of minimal generators of the Noether
different.

[x[1]1"2x[2]"4 - 3/56x[1]x[2]"5, x[0]"2x[2]"6 + 23/25x[0]x[2]"7 + 1/25x[2]"8,
x[0]1°3x[2]°6 - 3/26x[01x[2]1"7 + 14/25x[2]1"8, x[0]"4x[1]1°5 + 2/3x[0]"2x[1]1"7
+ 1/9x[1]179].

A.4 Computation of the Dedekind Different 3.2.29

—-- DedekindDifferentRel(PP): Compute the Dedekind different
-- Input: PP = a list of points in P"n_K which are not contained in Z"+(x_0)

—— Output: A list of minimal generators of the Dedekind different
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Define DedekindDifferentRel (PP)
N := Len(PP[1]) - 1;
PP := [(PP[I][1])"(-1)*PP[I] | I In 1..Len(PP)];
RR ::= CoeffRing[x[1..N]];
IP := IdealOfProjectivePoints(PP);
S := Separators0fProjectivePoints(PP);

Rx := RegularityIndex(Hilbert (CurrentRing()/IP));
P1 := [Last(PP[I],N) | I In 1..Len(PP)];
Using RR Do
I1 := IdealOfPoints(P1); OI := QuotientBasis(I1);
L1 := ConcatLists([[1],Indets()]); F := RMap(Ll);
S1 := Image(S,F); GI1 := GBasis(Il);
S2 := [NR(S1[I],GI1)| I In 1..Len(S1)];
0A := NewList(0); D := 1;
For J := 1 To Len(0I) Do
For I := 1 To N Do
If (x[I1*0I[J] IsIn OI) Then D := D + 1; EndIf;
EndFor;
If D = 1 Then Append(0A, OI[J]); Else D := 1; EndIf;
EndFor;
EndUsing;

L2 := Indets(); F1 := RMap(Last(L2,N));
OP := Image(0A,F1); S3 := Image(S2,F1);
SI := ConcatLists([Homogenized(L2[1], [S3[I]])| I In 1..Len(S3)1);
S := [L2[1]"(Rx-Deg(F))*F | F In SI];
L3 := []; V := NewList(Len(OP));
For I := 1 To Len(0OP) Do

L3 := [Coeff0fTerm(L2[1]"~ (Rx-Deg(OP[I]))*0P[I], F )| F In S];

V[I] := (L2[1]1" (Rx-Deg(OP[I])))*Sum([S[JI1*L3[J] | J In 1..Len(S)1);
EndFor;
PL := ReducedGBasis((Ideal(L2[1]"(2*Rx)) + IP): Ideal(V) + IP);
If Len(PL) > 1 Then

For I := 1 To Len(PL)-1 Do

For J := I+1 To Len(PL) Do
If LT(PL[I]) > LT(PL[J]) Then
CH := PL[I]; PL[I] := PL[J]; PL[J] := CH;
EndIf;
EndFor;

EndFor;
EndIf;
GIP := GBasis(IP); D := Len(PL); T := 1;
While T < D + 1 Do

If NR(PL[T],GIP) = O Then
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Remove(PL,T); D := Len(PL); T := 1;
Else PL[T] := NR(PL[T],GIP); T :=T + 1;
EndIf;
EndWhile;
NL := HBAM(PL, GBasis(IP));
Return NL;
EndDefine;

Example A.4.1. Let X C IP% be the projective point set consisting of eight points
pp=01:0:0:0,p=01:1:0:0,p3=(1:-1:0:0),ps=(1:2:0:0),
ps=(1:0:1:1),ps=(1:0:0:1),pr=(1:0:—-1:1),andpg=(1:0:2:1).
In order to compute the Noether and Dedekind differents for X, we run the following

commands in ApCoCoA:

Use QQ[x[0..3]]1;

PP := [[1,0,0,0], [1,1,0,0], [1,-1,0,01, [1,2,0,0],
[1,0,0,1], [1,0,1,1]1, [1,0,-1,1], [1,0,2,1]1];
NoetherDifferentRel (PP) ;

DedekindDifferentRel (PP);

The results of these commands are the following two lists of minimal generators of the
Noether and Dedekind differents respectively.

[x[2]"2x[3]"2 - x[2]x[3]"3 1/5x[3]1°4, x[2]"3x[3] - 2x[2]x[3]"3 + 1/5x[3]"4,
x[0]"2x[1]1"2 + 4x[0]1x[1]1°3 - 3x[1]1°4, x[0]"4 + 15x[0]1x[1]"3 - 10x[1]1"4 - x[3]"°4]
[x[2]~2x[3]"2 - x[2]x[3]"3 - 1/5x[3]°4, x[2]1"3x[3] - 2x[2]x[3]"3 + 1/5x[3]"4,
x[0]"2x[1]"2 + 4x[0]x[1]"3 3x[1]1°4, x[0]"4 + 15x[0]x[1]"3 - 10x[1]"4 - x[3]"4]

Thus the Noether and Dedekind differents are equal in this case.

A.5 Computation of the Hilbert Function of the ND-Different

—-- HilbertNDDiff (PP): Compute the Hilbert function of the ND-different
—-— Input: PP = a list of points in P"n_K which are not contained in Z~+(x_0)
—-— Output: The Hilbert function of the ND-different
Define HilbertNDDiff (PP)
N := Len(PP[1]) - 1;
PP := [(PP[I1[1]1)"(-1)*PP[I] | I In 1..Len(PP)];
RR ::= CoeffRing[x[1..N]];
IP := IdealOfProjectivePoints(PP);
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S := Separators0fProjectivePoints(PP);
HF1 := HilbertFn(CurrentRing()/IP);

Rx := RegularityIndex(HF1);
P1 := [Last(PP[I],N) | I In 1..Len(PP)];
Using RR Do
I1 := IdealOfPoints(P1); OI := QuotientBasis(I1);
L1 := ConcatLists([[1],Indets()]);
F := RMap(L1); S1 := Image(S,F); GI1 := GBasis(I1);
S2 := [NR(S1[I],GI1)| I In 1..Len(S1)];
0A := NewList(0); D := 1;
For J := 1 To Len(0I) Do
For I := 1 To N Do
If (x[I]*0I[J] IsIn OI) Then D := D + 1; EndIf;
EndFor;
If D = 1 Then Append(0A, OI[J]); Else D := 1; EndIf;
EndFor;
EndUsing;

L2 := Indets(); F1 := RMap(Last(L2,N));
OP := Image(0A,F1); S3 := Image(S2,F1);
SI := ConcatLists([Homogenized(L2[1], [S3[I]J])| I In 1..Len(S3)1);
S := [L2[1]"(Rx-Deg(F))*F | F In SI];
L3 := []; V := NewList(Len(0OP));
For I := 1 To Len(0P) Do
L3 := [Coeff0fTerm(L2[1]"~ (Rx-Deg(OP[I]))*0P[I], F )| F In S];
V[I] := (L2[1]" (Rx-Deg(OP[I])))*Sum([S[JI1*L3[J] | J In 1..Len(S)1);
EndFor;
PL := (Ideal(L2[1]°(2#Rx)) + IP): Ideal(V) + IP;
HF2 := HilbertFn(CurrentRing()/PL);
EvalHF := [EvalHilbertFn(HF1,K) - EvalHilbertFn(HF2,K)| K In 0..2*Rx];
Rvd := Len(EvalHF)-1;
For I := 1 To Rvd Do PrintLn "H(",I-1,") = ",EvalHFI[I]
EndFor;
Using QQt Do
Print "H(t) = ", EvalHF[Rvd+1], " for t >= ", Rvd
EndUsing;
EndDefine;

Example A.5.1. Let X C ]P’;a be the projective point set given in Example A.4.1.
The Hilbert function of the ND-different can be computed by running the following
commands in ApCoCoA:

Use QQ[x[0..31];
PP := [[1,0,0,0], [1,1,0,0], [1;_1,0;0]’ [13210’0]’
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[1)030)1]3 [130)151]) [130)_131], [1)032)1]];
HilbertNDDiff (PP);

The output of the above commands is the following Hilbert function of the ND-different:

H(0) =0
H(1) =0
H(2) =0
H(3) =0
H(4) = 4
H(5) = 6
H(t) = 8

for t >= 6

—-- KaehlerDifferentRel (PP): Compute the Kaehler different
—-— Input: PP = a list of points in P"n_K which are not contained in Z~+(x_0)
- or a homogeneous vanishing ideal of a O-dimensional scheme
- in P"n_K which does not intersect Z~+(x_0)
—-- QOutput: A list of minimal generators of the Kaehler different
Define KaehlerDifferentRel (PP)

If Type(PP) = IDEAL Then

IP := Minimalized(PP);

Else IP := Minimalized(IdealOfProjectivePoints(PP));

EndIf;

M := Jacobian(Gens(IP)); K := Len(M); N := Len(M[1]);

J1 := Submat(M,ConcatLists([1..K]),2..N);
JJ := Minors(N-1, J1);
PL := ReducedGBasis(Ideal(JJ) + IP);

If Len(PL) > 1 Then
For I := 1 To Len(PL) Do
For J := I + 1 To Len(PL) Do
If LT(PL[I]) > LT(PL[J]) Then
CH := PL[I]; PL[I] := PL[J]; PL[J] := CH;
EndIf;
EndFor;
EndFor;
EndIf;
GIP := GBasis(IP); D := Len(PL); T := 1;
While T < D + 1 Do
If NR(PL[T],GIP) = O Then
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Remove(PL,T); D := Len(PL); T := 1;
Else PL[T] := NR(PL[T],GIP); T :=T + 1;
EndIf;
EndWhile;
NL := HBAM(PL, GBasis(IP));
Return NL;
EndDefine;

Example A.6.1. Let us compute the Kahler different for the projective point set
X C ]P’fa given in Example A.4.1. We run the following commands in ApCoCoA:

Use QQ[x[0..31];

PP := [[1,0,0,0], [1,1,0,0], [1,-1,0,0], [1,2,0,0],
(t1,0,0,11, [1,0,1,1], [1,0,-1,1], [1,0,2,1]];
KaehlerDifferentRel (PP);

The output of the above commands is the following list of minimal generators of the
Kahler different:

[x[2]x[3]1°4 - 1/2x[3]"5, x[2]"2x[3]"3 - 7/10x[3]"°5, x[2]"3x[3]"2 - 4/5x[3]"5,
x[0]x[1]°4 - 13/20x[1]°5, x[0]"2x[1]"3 - 2/5x[1]1"5, x[0]"5 - 1/2x[1]°5 - x[3]"5]

In this case the Kéhler different is a proper subideal of the ND-different, since the
ND-different is generated by homogeneous elements of degree 4 (see Example A.4.1).

A.7 Computation of the Hilbert Function of the Kahler Different

-— HilbertKDiff (PP): Compute the Hilbert function of the Kaehler different
—-— Input: PP = a list of points in P"n_K which are not contained in Z"+(x_0)
- or a homogeneous vanishing ideal of a O-dimensional scheme
- in P"n_K which does not intersect Z~+(x_0)
—-- Output: The Hilbert function of the Kaehler different
Define HilbertKDiff (PP)

If Type(PP) = IDEAL Then

IP := Minimalized(PP);

Else IP := Minimalized(IdealOfProjectivePoints(PP));

EndIf;

J := Jacobian(Gens(IP)); K := Len(J); N := Len(J[1]);

J1 := Submat(J,ConcatLists([1..K]),2..N);

JJ := Minors(N-1, J1); J2 := Ideal(JJ) + IP;

HF1 := HilbertFn(CurrentRing()/IP); HF2 := HilbertFn(CurrentRing()/J2);

KO := Max(RegularityIndex(HF1),RegularityIndex(HF2)) ;
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DH := EvalHilbertFn(HF1,K0)-EvalHilbertFn(HF2,K0); K1 := KO+1;
Repeat K1 := Ki1-1;
Until EvalHilbertFn(HF1,K1) - EvalHilbertFn(HF2,K1) <> DH Or K1 = 0;
If K1 = 0 Then EvalHF := [EvalHilbertFn(HF1,K1) - EvalHilbertFn(HF2,K1)];
Else EvalHF := [EvalHilbertFn(HF1,K) - EvalHilbertFn(HF2,K)| K In O..(K1+1)];
EndIf;
Rvd := Len(EvalHF) - 1;
For I := 1 To Rvd Do PrintLn "H(",I-1,") = ",EvalHF[I]
EndFor;
Using QQt Do
Print "H(t) = ", EvalHF[Rvd+1], " for t >= ", Rvd
EndUsing;
EndDefine;

Example A.7.1. Let X C }P’é be the 0-dimensional scheme given in Example A.3.1.

We

compute the Hilbert function of the Kéhler different by running the following

commands in ApCoCoA:

Use QQ[x[0..2]11;

I1 := Ideal([x[0]-x[1],x[2]11);

I2 := Ideal([x[1],x[0]+x[2]11);

I3 := Ideal([x[0]-x[1],2x[0]1-x[2]11);

I4 := Ideal([x[0]-x[1],x[01-x[2]1);

15 := Ideal([x[1],x[2]11)"2;

16 := Ideal([3x[0]"2+x[1]1"2,x[2]11)"2;

I7 := Ideal([x[1], 2x[0]"3+x[2]1"3]1);

IP := Intersection(Il, I2, I3, I4, I5, 16, I7);
HilbertKDiff (IP);

The result of these commands is the following Hilbert function of the Kahler different:

H(0)
H(1)
H(2)
H(3)
H(4)
H(5)
H(6)
H(7)
H(8)
H(t)

for t >= 9
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