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Chapter 1
Introduction

Let Ro be a commutative ring with identity. To any commutative algebra R/Ro we

can associate various ideals in R which we call the differents. The most well known

different is the Dedekind different which was introduced in algebraic number theory

by Richard Dedekind in 1882. The other differents which are closely related to the

Dedekind different are the Noether and Kähler differents. It is useful to compare these

differents to each other and to relate them to properties of the algebra R/Ro. This

direction of research was initiated by Emmy Noether [Noe], and pursued by many

authors in the last half century (see for instance [AB], [Fos], [Her], [Ku1], [Ku5], [Mac],

[SS], and [Wal]). It turned out that many structural properties of the algebra R/Ro

can be phrased as properties of its differents. For example, one can obtain several

interesting criteria for the algebra in terms of these differents such as the Ramification

Criterion, the Regularity Criterion, and the Smoothness Criterion (see [Ku5]).

The goal of this thesis is to study the Noether, Dedekind, and Kähler differents of

a particular class of algebras. More precisely, we investigate these differents for the

homogeneous coordinate ring of a 0-dimensional scheme X in the projective n-space

PnK over an arbitrary field K. This approach is inspired by the work of M. Kreuzer

and his coworkers ([GKR], [Kr2], [Kr4]) which suggests that, in order to study the

geometry of the scheme X, one may start by considering related algebraic objects.

Given such a 0-dimensional scheme X ⊆ PnK , let IX denote the homogeneous vanishing

ideal of X in P = K[X0, . . . , Xn]. The homogeneous coordinate ring of X is then

given by R = P/IX. We always assume that no point of the support of X lies on the

hyperplane at infinity Z+(X0). Then the image x0 of X0 in R is a non-zerodivisor

of R and the algebra R/K[x0] is graded-free of rank deg(X) (see [Kr3] and [KR3,

Section 4.3]). In order to get more information about R/K[x0], and thus also about X,

it is useful to define and to consider the algebraic structure of the Noether, Dedekind,
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and Kähler differents of R/K[x0]. In particular, it is interesting to study the relations

between the algebraic structure of these differents and geometric properties of the

scheme X. Furthermore, we think that the Noether, Dedekind, and Kähler differents

for 0-dimensional schemes X ⊆ PnK provide a source of excellent examples in which

computer algebra methods can be applied to examine subtle structural properties of

these objects.

Motivating Questions

Let us briefly recall the definitions of the Noether and Kähler differents for a

0-dimensional scheme X in PnK . As above, let IX be the homogeneous vanishing ideal

of X, and let R = P/IX be the homogeneous coordinate ring of X. In the standard

graded K[x0]-algebra R ⊗K[x0] R = ⊕i≥0(⊕j+k=iRj ⊗ Rk), we have the homogeneous

ideal J = Ker(R⊗K[x0]R
µ−→ R), where µ is the homogeneous R-linear map of degree

zero given by µ(f ⊗ g) = fg. The Noether different of the algebra R/K[x0] (or for X
w.r.t. x0), denoted by ϑN(R/K[x0]), is the image of the annihilator of J in R⊗K[x0] R

under the map µ. It is clear that ϑN(R/K[x0]) is a homogeneous ideal of R.

Notice that the module of Kähler differentials of the algebra R/K[x0] is the finitely

generated graded R-module Ω1
R/K[x0] = J /J 2. Moreover, we can associate with

Ω1
R/K[x0] an ascending sequence of homogeneous ideals of R which are known as the

Fitting invariants or Fitting ideals of Ω1
R/K[x0]. The most important one is the initial

Fitting ideal of Ω1
R/K[x0] which is the homogeneous ideal of R generated by the images

of the maximal minors of the Jacobian matrix of the generators of IX. We denote

this invariant by ϑK(R/K[x0]) and call it the Kähler different of the algebra R/K[x0]

(or for X w.r.t. x0). In order to define the Dedekind different ϑD(R/K[x0]) of the

algebra R/K[x0] (or for X w.r.t. x0), it is necessary that the scheme X satisfies some

restrictive hypotheses. For example the definition in [DK] of ϑD(R/K[x0]) requires

that X is reduced and has K-rational support. When these differents are well-defined,

we ask ourselves the following questions.

Question 1.0.1. Can one compute ϑN(R/K[x0]), ϑK(R/K[x0]) and ϑD(R/K[x0]) by

using the existing functionality in a computer algebra system such as ApCoCoA?

Question 1.0.2. What can one say about these differents and their relations for some

special classes of schemes X (for instance, for complete intersections, arithmetically

Gorenstein schemes, locally Gorenstein schemes, or smooth schemes)?
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Furthermore, since all three kinds of differents are homogeneous ideals of R, a

natural question to ask is:

Question 1.0.3. What are the Hilbert functions of these differents?

In particular, we would like to determine their Hilbert polynomials and their regu-

larity indices. Apart from some special cases, to exactly determine the Hilbert functions

of the Noether, Dedekind, and Kähler differents of the algebra R/K[x0] is not an easy

problem, so we may try at least to find (possibly sharp) lower and upper bounds for

their regularity indices.

Now let us turn these questions around and ask about algebraic consequences of

geometric properties of X for the Noether, Dedekind, and Kähler differents. Suppose

that K is an algebraically closed field, and let rX ≥ 0 be the regularity index of the

Hilbert function HFX of R. We say that X is a Cayley-Bacharach scheme (in short,

CB-scheme) if every hypersurface of degree rX−1 which contains a subscheme Y ⊆ X
of degree deg(Y) = deg(X)− 1 automatically contains X. This notion was introduced

for a finite set of distinct K-rational points in [GKR], and then was generalized for

a 0-dimensional scheme X ⊆ PnK over an algebraically closed field K in [Kr2]. The

main results in these papers characterize CB-schemes in terms of the structure of the

canonical module of their homogeneous coordinate ring. This suggests the following

questions:

Question 1.0.4. Let K be an arbitrary field. Can one generalize the Cayley-Bacharach

property for a 0-dimensional scheme X in PnK? If the answer is yes, can one character-

ize the Cayley-Bacharach property in terms of the algebraic structure of the Noether,

Dedekind, and Kähler differents?

It is worth noticing here that the definition of the Cayley-Bacharach property as

above does not work for arbitrary 0-dimensional schemes X ⊆ PnK if K is not an

algebraically closed field. For instance, the 0-dimensional reduced scheme X ⊆ P2
Q with

IX = 〈X3
1 + 2X3

0 , X2〉 has degree 3 but it does not have any subscheme of degree 2.

The reason is that no closed point of X is K-rational. Thus, for the first part of

Question 1.0.4, we need more information about the scheme X. Moreover, the last part

of Question 1.0.4 can be generalized as follows:

Question 1.0.5. How is the geometry (e.g., the properties of being in (i, j)-uniform,

in uniform position) of X reflected in the algebraic structure of these differents?

Another topic we examine in this thesis is to construct new applications of the
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Noether, Dedekind, and Kähler differents of R/K[x0]. For instance, we investigate the

relationships between these differents and the i-th Fitting ideals of the module of Kähler

differentials Ω1
R/K , and we consider these differents for almost complete intersections.

Also, we look more closely at the Hilbert functions and the regularity indices of these

differents for fat point schemes.

Overview

Throughout the thesis we use the notation and terminology introduced in [KR2], [KR3],

[Kr3] and [Ku5] unless stated otherwise. The main work of the thesis will be to examine

a number of cases in which the questions posed above can be answered. We now give

an overview of the individual contributions of the thesis. Since every chapter starts

with an explanation of its organization, we omit such descriptions here.

Chapter 2 contains background results that we will need in the subsequent chapters.

We fix some terminology and notation as well. The starting point of this chapter is the

Noether different of an arbitrary algebra. We show how one can compute the Noether

different of an algebra of finite type (see Proposition 2.1.21). Then we recall several

well-known properties of the Fitting ideals of a finitely generated module and provide

examples to illustrate these properties. Next, we focus on considering 0-dimensional

schemes X ⊆ PnK over an arbitrary field K with support Supp(X) = {p1, . . . , ps}. We

introduce the concept of maximal pj-subschemes of X (see Definition 2.3.16) and give

some descriptions of them and their Hilbert functions. We also extend from [GKR]

the definition of the degree of each point of X (see Definition 2.3.23). Furthermore, we

generalize the notion and some results found in [Kr2] of a separator of a subscheme

of X of degree deg(X)−1 to a set of separators of a maximal pj-subscheme of X. Lastly,

we collect some facts concerning the trace maps for 0-dimensional schemes in PnK .

In Chapter 3 we explore the Noether, Dedekind, and Kähler differents for

0-dimensional schemes X ⊆ PnK . In other words, we define these differents for the

algebra R/K[x0] (or for X w.r.t. x0) and then give answers to Question 1.0.1, Ques-

tion 1.0.2, and Question 1.0.3 in some cases. Since the Noether different ϑN(R/K[x0])

and the Kähler different ϑK(R/K[x0]) are already defined in general, it remains to

define the Dedekind different ϑD(R/K[x0]). We show that ϑD(R/K[x0]) is well-defined

if X is locally Gorenstein (see Section 3.2).

Next we take a look at how to compute these differents and examine their relations.

Since ϑK(R/K[x0]) is a homogeneous ideal in R generated by the images of the maximal
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minors of the Jacobian matrix of the generators of IX, it is not hard to compute

ϑK(R/K[x0]). In order to compute ϑN(R/K[x0]) one can use the algorithm given in

Proposition 3.1.6. Moreover, we construct an algorithm for computing a homogeneous

minimal system of generators of ϑD(R/K[x0]) (see Proposition 3.2.29). The approach

for computing the Dedekind different is based on the description of the Dedekind

complementary module of the algebra R/K[x0] in terms of the sets of separators.

As in the general case, the relation between the Kähler different and the Noether

different is ϑN(R/K[x0])n ⊆ ϑK(R/K[x0]) ⊆ ϑN(R/K[x0]). In particular, the last

inclusion becomes an equality if X is a complete intersection. We also show that if

X is smooth then ϑN(R/K[x0]) = ϑD(R/K[x0]) (see Theorem 3.2.17). However, the

Noether and Dedekind differents can be different even when X is a complete intersection

(see Example 3.3.6).

One of our main tasks in this chapter is to give an answer to Question 1.0.3

in some cases. In Proposition 3.2.5, we show that if X is locally Gorenstein then

HPϑD(R/K[x0])(z) = deg(X) and ri(ϑD(R/K[x0])) ≤ 2rX, where rX is the regularity

index of HFX. It is not easy to exactly determine the Hilbert polynomials of the

Noether and Kähler differents in general. Fortunately, we can give (sharp) lower and

upper bounds for HPϑK(R/K[x0])(z) (see Proposition 3.3.19) by using sets of separa-

tors. As a consequence, we use the relations between these differents mentioned above

to derive bounds for HPϑN (R/K[x0])(z). Also, we can completely describe the Hilbert

functions of some of these differents for several special classes of schemes X such as com-

plete intersections and arithmetically Gorenstein schemes (see Proposition 3.2.8 and

Corollaries 3.3.5 and 3.3.7). Furthermore, Proposition 3.2.11 and Proposition 3.3.14

indicate that if X is a projective point set, then HPϑN (R/K[x0])(z) = HPϑD(R/K[x0])(z) =

HPϑK(R/K[x0])(z) = deg(X), ri(ϑD(R/K[x0])) = 2rX and 2rX ≤ ri(ϑK(R/K[x0])) ≤ nrX.

The principal results of Chapter 4 are related to Question 1.0.4 and Question 1.0.5.

We first generalize the Cayley-Bacharach property to 0-dimensional schemes X ⊆ PnK
over an arbitrary field K (see Section 4.1). This gives a positive answer to the first

part of Question 1.0.4. In Theorem 4.1.7, we characterize CB-schemes in terms of their

Dedekind differents. Using this theorem, we derive some consequences for the Hilbert

functions and the regularity indices of the Dedekind different for a 0-dimensional

locally Gorenstein CB-scheme as well as the Noether different for a 0-dimensional

smooth CB-scheme. This theorem is also an important tool to prove Proposition 4.1.15

which not only provides a criterion for a 0-dimensional locally Gorenstein scheme to be

arithmetically Gorenstein but also provides an answer to the question of P. Griffiths
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and J. Harris [GH]: CB-scheme +(?) = Complete intersection? in the case of a

0-dimensional smooth subscheme X of PnK .

Via the Kähler different we are able to describe the Cayley-Bacharach property for

projective point sets X in PnK which have generic Hilbert function (i.e., HFX(i) =

min{ deg(X),
(
i+n
n

)
} for i ∈ Z). We also generalize some results found in [GKR]

such as Dedekind’s formula (see Proposition 4.1.27) and the characterization of the

Cayley-Bacharach property by using Liaison theory (see Theorem 4.3.6).

When a 0-dimensional scheme X ⊆ PnK has K-rational support, we say that X
is (i, j)-uniform if every subscheme Y ⊆ X of degree deg(Y) = deg(X) − i satisfies

HFY(j) = HFX(j). Notice that if X has K-rational support then X is (1, rX−1)-uniform

if and only if it is a CB-scheme. In the case that X is locally Gorenstein and is (i, j)-

uniform, we describe relations between the Dedekind different and the homogeneous

saturated ideals of subschemes Y ⊆ X of degree deg(X) − i (see Proposition 4.4.10).

Based on these relations, we give a characterization of a projective point set X with

∆X = deg(X)−HFX(rX − 1) ≥ 2 to be (2, rX − 1)-uniform (see Proposition 4.4.12). In

addition, several propositions on the uniformities of a level scheme and cohomological

uniformity are proven.

In Chapter 5 we are interested in studying the Noether, Dedekind, and Kähler

differents for finite special classes of schemes X ⊆ PnK and finding out some applications

of these differents. First, we investigate these differents for reduced 0-dimensional

almost complete intersections X ⊆ PnK over a perfect field K. We provide an explicit

presentation of the Kähler different and derive a connection between these differents

(see also in [Her]). Furthermore, in the projective plane we can precisely compute the

first syzygy module of the Kähler different by constructing a homogeneous system of

generators of the normal module (IX/I2
X)∗ (see Proposition 5.1.12 and Corollary 5.1.13).

Next we establish a relation between the Kähler different ϑK(R/K[x0]) and the first

Kähler different ϑ(1)(R/K) of the algebra R/K (see Lemma 5.2.1). From this relation

we derive bounds for the Hilbert polynomial and the regularity index of ϑ(1)(R/K),

and give some characterizations of a complete intersection in terms of ϑ(1)(R/K) (see

Propositions 5.2.5 and 5.2.8).

Finally, we address the question what happens to these differents for fat point

schemes W in PnK . Let S denote the homogeneous coordinate ring of W. We show

that ϑK(S/K[x0]) is non-zero if and only if some of the points of W are reduced (see

Lemma 5.3.4). In Theorem 5.3.6, we determine the Hilbert polynomial of ϑK(S/K[x0])

and give upper bound for its regularity index. This bound enables us to use the upper
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bound for the regularity index of a fat point scheme to estimate the regularity index

of ϑK(S/K[x0]). Many results about sharp bounds for the regularity index of a fat

point scheme can be found in the literatures (see e.g. [CTV], [DG], [FL], [Thi], or [TV]

et al). When the supporting set of points X is arithmetically Gorenstein (which implies

the Cayley-Bacharach property) or satisfies some uniformity condition, we can improve

the bounds for the index of regularity of the Kähler different (see Propositions 5.3.13

and 5.3.15). Returning to the algebra S/K, we use the Hilbert functions of ϑ(i)(S/K)

(i = 1, . . . , n− 1) to formulate a criterion for W to be reduced, compute their Hilbert

polynomials and bound their regularity indices (see Proposition 5.3.16). At the same

time we provide bounds for the Hilbert polynomials of ϑ(n)(S/K) and ϑN(S/K[x0]).

The computer algebra system ApCoCoA [ApC] was used during our work to perform

the computations in most examples included in this thesis. In the appendix the

ApCoCoA functions which implement algorithms and procedures for computing the

Noether, Dedekind, and Kähler differents and their Hilbert functions are provided. We

also explain their usage with some examples.
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Chapter 2
Preliminaries

In this chapter we lay the mathematical foundation for the thesis by collecting and

extending some basic concepts, results, and techniques which are useful for the later

chapters.

The chapter is divided into 4 sections. In Section 2.1 we discuss one of the main

objects in this thesis, that is the Noether different of an algebra. We start this section

by providing some elementary notions in algebra and several well known results of the

Noether different of an algebra. We then establish other formulas for the Noether dif-

ferent of an algebra of finite type (see Propositions 2.1.12 and 2.1.14). Moreover, we use

some techniques from the theory of Gröbner bases over rings to work out an algorithm

to compute the Noether different of an algebra of finite type (see Proposition 2.1.21).

Section 2.2 introduces the Fitting ideals of a finitely generated module that we use to

define the Kähler different in Chapter 3. Some well known results of the Fitting ideals

are collected in this section. We also give many examples to illustrate their properties.

In Section 2.3 we introduce 0-dimensional schemes in the projective n-space PnK over an

arbitrary field K. Explicitly, we first recall from [Kr3, Section 1] several first results on

a 0-dimensional scheme X ⊆ PnK . If we write Supp(X) = {p1, . . . , ps} for some s ≥ 1,

then we define pj-subschemes and maximal pj-subschemes of X (see Definition 2.3.16).

By using the techniques that are inspired by those of [Kr2] and [Kr3], we establish a

1-1 correspondence between a socle element of the local ring at a point pj ∈ Supp(X)

and a maximal pj-subscheme of X (see Proposition 2.3.17). This correspondence also

tells us that the scheme X contains a subscheme of degree deg(X) − 1 if and only if

its support contains at least one K-rational point. In addition, we extend the defini-

tion of a separator of a subscheme of X of degree deg(X)− 1 to a set of separators of

a maximal pj-subscheme of X as well as the definition of the degree of a K-rational

point to a closed point in the support of X. The extension of the degrees of closed
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points of X is a useful tool to define the Cayley-Bacharach property of a 0-dimensional

scheme X ⊆ PnK over an arbitrary field K in Chapter 4. We also derive some de-

scriptions of the Hilbert function and the homogeneous vanishing ideal of a maximal

pj-subscheme of the scheme X (see Proposition 2.3.21). We end this section with some

generalizations of results in [Kr3, Section 1] of a set of separators of a maximal pj-

subscheme of the scheme X (see Lemmata 2.3.25 and 2.3.26). The final section is a

collection of facts concerning trace maps for a 0-dimensional scheme X in PnK . We

also add some descriptions of the canonical module of the homogeneous coordinate

ring of X (see Proposition 2.4.6). Furthermore, we discuss some conditions equivalent

to a 0-dimensional scheme being arithmetically Gorenstein (see Theorem 2.4.14 and

Proposition 2.4.18).

2.1 Noether Differents of Algebras

In the following by a ring Ro we shall always mean a commutative ring with identity

element 1Ro . A ring homomorphism from a ring Ro to a ring R is a map ϕ : Ro → R

such that ϕ(1Ro) = 1R and for all elements a, b ∈ Ro we have ϕ(a + b) = ϕ(a) + ϕ(b)

and ϕ(a · b) = ϕ(a) · ϕ(b) (i.e., ϕ preserves the ring operations). An Ro-module M is

a commutative group (M,+) with a scalar multiplication · : Ro ×M → M such that

1R0 · m = m for all m ∈ M , and such that the associative and distributive laws are

satisfied. An Ro-submodule of M is a (commutative) subgroup N ⊆ M such that

Ro · N ⊆ N . In particular, an Ro-submodule of the Ro-module Ro is called an ideal

of Ro. This can be rephrased by saying that a subset I of Ro is an ideal if it is an

additive subgroup of Ro such that if a ∈ Ro and b ∈ I, then ab ∈ I.

Some ideals of Ro have special properties. For instance, an ideal I ( Ro is called

a prime ideal if ab ∈ I implies a ∈ I or b ∈ I for all a, b ∈ Ro, and it is called a

maximal ideal of Ro if there is no ideal J such that I ( J ( Ro. Note that I is a

prime ideal if and only if Ro/I is an integral domain, that I is a maximal ideal if and

only if Ro/I is a field, and hence that maximal ideals are prime ideals.

Let M be an Ro-module. Given two Ro-submodules N and N ′ of M , the set

N :Ro N
′ = {a ∈ Ro | a ·N ′ ⊆ N}

is an ideal of Ro. It is called the colon ideal (or the ideal quotient if M = Ro) of N

by N ′. The ideal 〈0〉 :Ro M is called the annihilator of M and denoted by AnnRo(M).

For m ∈ M we write AnnRo(m) = {a ∈ Ro | a ·m = 0} and call it the annihilator
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of m. It is clear that AnnRo(Ro/I) = I for every ideal I of Ro, and that a non-zero

element a ∈ Ro is a non-zerodivisor of Ro if and only if AnnRo(a) = 〈0〉. For further

information on module theory, see for instance [Ei1], [KR2] and [Mat].

Definition 2.1.1. An algebra is a triple (R,Ro, ϕ) where R and Ro are rings and

ϕ : Ro → R is a ring homomorphism, called the structural homomorphism of the

algebra. The algebra is usually denoted by R/Ro or simply by R, and we sometimes

call it an Ro-algebra R or an algebra R over Ro.

An algebra R′/Ro is called a subalgebra of R/Ro if R′ is a subring of R that

contains the image of Ro.

Given two algebras R/Ro and S/Ro with structural homomorphisms ϕ and ψ, a

ring homomorphism θ : R → S is called an Ro-algebra homomorphism if we have

θ(ϕ(f) · g) = ψ(f) · θ(g) for all f ∈ Ro and all g ∈ R.

From the definition we see that for two Ro-algebra homomorphisms θ1 : R→ S and

θ2 : S → T , the composition map θ2 ◦ θ1 : R→ T is also an Ro-algebra homomorphism

and Ker(θ2 ◦ θ1) = θ−1
1 (Ker(θ2)). Moreover, if R/Ro and S/R are algebras, then S/Ro

is an algebra.

Definition 2.1.2. Let R/Ro be an algebra and let Λ be a set.

(i) A set {xλ | λ ∈ Λ} of elements of R is called a system of generators of R/Ro if

for every element f ∈ R there is a finite subset {λ1, . . . , λn} of Λ and a polynomial

P (X1, . . . , Xn) ∈ Ro[X1, . . . , Xn] such that f = P (xλ1 , . . . , xλn). In this case we

write R = Ro[xλ | λ ∈ Λ].

(ii) The algebra R/Ro is said to be an algebra of finite type if it has a finite

system of generators. An algebra of finite type over a field K is also called an

affine K-algebra.

(iii) The algebra R/Ro is called finitely generated (respectively, free, projective,

flat, . . . ) if R, considered as an Ro-module, has the corresponding property.

For an algebra R/Ro, the tensor product R ⊗Ro R is a ring (and hence an Ro-

algebra) with respect to the multiplication (f1 ⊗ g1) · (f2 ⊗ g2) = f1f2 ⊗ g1g2 for all

f1, f2, g1, g2 ∈ R. We call R⊗Ro R the enveloping algebra of the algebra R/Ro. Let

J denote the kernel of the canonical multiplication map µ : R ⊗Ro R −→ R given by

µ(f ⊗ g) = fg for f, g ∈ R. It is clear that J is an ideal of R⊗Ro R.

Lemma 2.1.3. We have

J = 〈 f ⊗ 1− 1⊗ f | f ∈ R 〉R⊗RoR .
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If R is generated as an Ro-algebra by {xλ | λ ∈ Λ}, then

J = 〈xλ ⊗ 1− 1⊗ xλ | λ ∈ Λ 〉R⊗RoR .

Proof. See [Ku7, G.7].

Now let AnnR⊗RoR(J ) = { f ∈ R ⊗Ro R | f · J = 0 } be the annihilator of the

ideal J . The ring R⊗Ro R can be considered as an R-module in two ways, namely via

α1 : R −→ R⊗Ro R, α1(f) = f ⊗ 1 and α2 : R −→ R⊗Ro R, α2(f) = 1⊗ f.

Similarly, J and AnnR⊗RoR(J ) are R-modules in two ways. However, on AnnR⊗RoR(J )

these two R-module structures coincide, since (f⊗1−1⊗f) ·AnnR⊗RoR(J ) = 0 by the

definition of the annihilator of J . We can thus consider AnnR⊗RoR(J ) as an R-module

in a unique way. Note that the image of AnnR⊗RoR(J ) under µ is an ideal of R.

Definition 2.1.4. Let R/Ro be an algebra. The ideal ϑN(R/Ro) = µ(AnnR⊗RoR(J ))

is called the Noether different of the algebra R/Ro.

Example 2.1.5. Let Ro be a ring, and let R/Ro be the algebra given by the presen-

tation R = Ro[X]/〈X2〉. Let x denote the residue class of X in R. Then x2 = 0 and

J = Ker(µ) = 〈x⊗ 1− 1⊗ x 〉R⊗RoR (see Lemma 2.1.3). We also see that x ⊗ x and

x⊗1+1⊗x belong to AnnR⊗RoR(J ). Let h =
∑n

i=1(ai+bix)⊗(ci+dix) ∈ AnnR⊗RoR(J )

with ai, bi, ci, di ∈ Ro and n ≥ 1. We have

0 = h · (x⊗ 1− 1⊗ x) =
n∑
i=1

(
aix⊗ (ci + dix)− (ai + bix)⊗ cix

)
=

n∑
i=1

aici(x⊗ 1− 1⊗ x) +
n∑
i=1

(aidi − bici)(x⊗ x).

This implies
∑n

i=1 aici = 0 and
∑n

i=1 aidi =
∑n

i=1 bici, since R ⊗Ro R is a free Ro-

module with a basis {1⊗ 1, 1⊗x, x⊗ 1, x⊗x}. Thus h =
∑n

i=1(ai + bix)⊗ (ci +dix) =∑n
i=1

(
aidi ⊗ x + bicix ⊗ 1 + bidix ⊗ x

)
=
∑n

i=1 aidi(x ⊗ 1 + 1 ⊗ x) +
∑n

i=1 bidix ⊗ x,

and so h is contained in 〈x⊗ x, x⊗ 1 + 1⊗ x 〉R⊗RoR. Therefore we get the equality

AnnR⊗RoR(J ) = 〈x⊗ x, x⊗ 1 + 1⊗ x 〉R⊗RoR, and hence the Noether different of R/Ro

is ϑN(R/Ro) = 〈2x〉R.

More generally, let R/Ro be an algebra of the form R = Ro[X]/〈F 〉 with a monic

polynomial F ∈ Ro[X], and let ∂F
∂x

denote the image of the formal derivative ∂F
∂X

in R.

Then the Noether different of the algebra R/Ro is given by ϑN(R/Ro) =
〈
∂F
∂x

〉
R

. This

result is an application of Proposition 2.1.8 that we will see later.
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Now we collect some properties of the Noether different of an algebra R/Ro which is

given by generators and relations. Let {xλ | λ ∈ Λ} be a system of generators of R/Ro,

and let I denote the kernel of the surjective Ro-algebra homomorphism

π : Ro[Xλ | λ ∈ Λ] −→ R = Ro[xλ | λ ∈ Λ]

defined by π(Xλ) = xλ for all λ ∈ Λ. Then π induces an Ro-algebra isomorphism

R ∼= Ro[Xλ | λ ∈ Λ]/I (2.1)

The isomorphism (2.1) is called a presentation of R/Ro by generators and relations,

and the ideal I is called the ideal of algebraic relations among {xλ | λ ∈ Λ} with

coefficients in Ro.

By setting A = Ro[Xλ | λ ∈ Λ], we have the following composed map

ρ : S = R[Xλ | λ ∈ Λ]
ϕ−→ R⊗Ro A

idR⊗π−→ R⊗Ro R
Xλ 7−→ 1⊗Xλ 7−→ 1⊗ xλ
xλ 7−→ xλ ⊗ 1 7−→ xλ ⊗ 1

where idR⊗π is an Ro-algebra epimorphism with Ker(idR⊗π) = R ⊗Ro I (cf. [Ku7,

G.2]), and where ϕ is an Ro-algebra isomorphism. Also, we get

Ker(ρ) = ϕ−1(Ker(idR⊗π)) = ϕ−1(R⊗Ro I) = IS ⊆ S.

The following lemma gives us a formula for the Noether different of R/Ro.

Lemma 2.1.6. Let R/Ro be an algebra which has a system of generators {xλ | λ ∈ Λ},
let S = R[Xλ | λ ∈ Λ], and let I be the ideal of A = Ro[Xλ | λ ∈ Λ] such that R ∼= A/I.

Then we have

ϑN(R/Ro) =
{
F ({xλ | λ ∈ Λ}) ∈ R | F ∈ IS :S 〈Xλ − xλ | λ ∈ Λ〉S

}
(2.2)

Proof. See [Ku1, Section 4, p. 178].

The localization of the Noether different of an algebra can be described as follows.

Proposition 2.1.7. Let R/Ro be an algebra, let J be the kernel of µ : R⊗Ro R→ R,

f ⊗ g 7→ fg for f, g ∈ R, and let U ⊆ R be a multiplicatively closed subset. Assume

that the ideal J is finitely generated. Then we have ϑN(RU/Ro) = ϑN(R/Ro)U .

Proof. See [SS, 15.6].



14 2. Preliminaries

Our next proposition presents a well-known formula for the Noether different of an

algebra in a special case.

Proposition 2.1.8. Let Ro be a Noetherian ring, let R/Ro be a flat algebra of finite

type which has a presentation R = Ro[X1, . . . , Xn]/〈F1, . . . , Fn〉, where {F1, . . . , Fn }
forms an Ro[X1, . . . , Xn]-regular sequence, and let ∂(F1,...,Fn)

∂(x1,...,xn)
denote the image of the

Jacobian determinant det
( ∂Fj
∂Xi

)
1≤i,j≤n in R. Then we have

ϑN(R/Ro) =

〈
∂(F1, . . . , Fn)

∂(x1, . . . , xn)

〉
R

.

Proof. See [Ku5, G.3].

Example 2.1.9. Let R/Ro be an algebra which has a presentation

R = Ro[X1, . . . , Xn]/〈Xα1
1 − a1, . . . , X

αn
n − an〉

with ai ∈ Ro and αi > 0 for all i = 1, . . . , n. Let xi be the image of Xi in R for

i = 1, . . . , n. Then R is a free (hence flat) Ro-module, since {Xβ1

1 · · ·Xβn
n | i =

1, . . . , n; 0 ≤ βi < αi } is an Ro-basis of R. An application of Proposition 2.1.8 yields

ϑN(R/Ro) =
〈

(
n∏
i=1

αi) · xα1−1
1 · · ·xαn−1

n

〉
R
.

Example 2.1.10. Let R be the affine K-algebra of the form R = K[X0, X1, X2]/I,

where I = 〈F1, F2〉 with F1 = X0 − X2 and F2 = X3
1 − 3X2

1X2 + 2X1X
2
2 . Clearly,

I is a homogeneous ideal and {F1, F2} is a K[X0, X1, X2]-regular sequence (since

K[X0, X1, X2]/〈F1〉 ∼= K[X1, X2] and the image of F2 in K[X1, X2] is F2). The de-

homogenization of I with respect to X0 is Ideh = 〈F deh
1 , F deh

2 〉 = 〈1 − X2, X
3
1 −

3X2
1X2 + 2X1X

2
2 〉 ⊂ K[X1, X2]. Thus the homogenization of Ideh with respect to X0 is

(Ideh)hom = I. By [KR3, Proposition 4.3.22], the ring R is a free K[X0]-module. Let xi

denote the image of Xi in R for i = 0, 1, 2. By Proposition 2.1.8, the Noether different

of the algebra R/K[x0] is

ϑN(R/K[x0]) =

〈
∂(F1, F2)

∂(x1, x2)

〉
R

=
〈

3x2
1 − 6x1x2 + 2x2

2

〉
R
.

Before we go on, we collect some basic properties of ideals in residue class rings.

Lemma 2.1.11. Let R be a ring, let I be a proper ideal of R, and let I1, I2 be ideals

in R such that I1, I2 contain I. Then the following properties hold true.
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(i) (R/I)/(I1/I) ∼= R/I1 (Third Isomorphism Theorem for Rings).

(ii) I1/I :R/I I2/I = (I1 :R I2)/I.

(iii) Let π : R→ R/I be the canonical epimorphism, let n ≥ 1, and let X1, . . . , Xn be

indeterminates. Then the map ϕ : R[X1, . . . , Xn] → (R/I)[X1, . . . , Xn] defined

by ϕ(
∑
α

fαT
α) =

∑
α

π(fα)Tα, where α = (α1, . . . , αn) ∈ Nn, Tα = Xα1
1 · · ·Xαn

n ,

fα ∈ R, and fα 6= 0 for only finitely many α ∈ Nn, is a ring homomorphism

which extends π and satisfies

Ker(ϕ) = IR[X1, . . . , Xn] =

{∑
α

fαT
α
∣∣∣ α ∈ Nn, fα ∈ I,
fα 6= 0 for only finitely many α ∈ Nn

}
.

Proof. See [Mat, Chapter 1, Section 1] and [KR2, Proposition 3.2.18].

Now let us consider an algebra R/Ro of finite type. There exists a presentation

R = Ro[X1, . . . , Xn]/I = Ro[x1, . . . , xn]

where n ≥ 1, where I is an ideal of the polynomial Ro-algebra A = Ro[X1, . . . , Xn],

and where xi is the image of Xi in R for i = 1, . . . , n. Suppose that I is generated by

{F1, . . . , Fr} with r ≥ 1, and put S := R[X1, . . . , Xn]. Then the formula (2.2) can be

rewritten as follows

ϑN(R/Ro) =
{
F (x1, . . . , xn) | F ∈ 〈F1, . . . , Fr〉S :S 〈X1 − x1, . . . , Xn − xn〉S

}
(2.3)

Our next goal is to find out other formulas for the Noether different ϑN(R/Ro). For

that, let Y1, . . . , Yn be new indeterminates, let J = 〈 F̃1, . . . , F̃r 〉Ro[Y1,...,Yn], where F̃i =

Fi(Y1, . . . , Yn) for i = 1, . . . , r, and let Q := A[Y1, . . . , Yn] = Ro[X1, . . . , Xn, Y1, . . . , Yn].

Let IQ and JQ denote the ideals of Q generated by {F1, . . . , Fr} and {F̃1, . . . , F̃r},
respectively. By Lemma 2.1.11(iii), we have Ro-algebra isomorphisms

Q/JQ ∼=
(
Ro[Y1, . . . , Yn]/J

)
[X1, . . . , Xn] ∼= S = R[X1, . . . , Xn].

Explicitly, the Ro-algebra isomorphism φ : Q/JQ
∼→ S is given by φ(Xi + JQ) = Xi

and φ(Yi + JQ) = xi for i = 1, . . . , n. Thus we have the composed map

θ : Q
π̃−→ Q/JQ

φ−→ S
ϕ−→ R⊗Ro A

idR⊗π−→ R⊗Ro R
µ−→ R

Xi 7−→ Xi + JQ 7−→ Xi 7−→ 1⊗Xi 7−→ 1⊗ xi 7−→ xi

Yi 7−→ Yi + JQ 7−→ xi 7−→ xi ⊗ 1 7−→ xi ⊗ 1 7−→ xi
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where π̃ is the canonical Ro-algebra epimorphism, where φ and ϕ are Ro-algebra iso-

morphisms, and where idR⊗π and µ are Ro-algebra epimorphisms.

Another formula for the Noether different ϑN(R/Ro) of the algebra R/Ro is given

by the following proposition.

Proposition 2.1.12. Using the notation as above, we have the formula

ϑN(R/Ro) =
{
θ(F ) | F ∈ (IQ+ JQ) :Q 〈X1 − Y1, . . . , Xn − Yn 〉Q

}
.

Proof. Since φ : Q/JQ→ S is an isomorphism of Ro-algebras, this implies

φ−1(IS :S I1) = φ−1(IS) :Q/JQ φ
−1(I1) ⊆ Q/JQ

where I1 = 〈X1 − x1, . . . , Xn − xn 〉S is an ideal of S. In the residue class ring Q/JQ,

we see that

φ−1(IS) = (IQ+ JQ)/JQ and φ−1(I1) = (〈X1 − Y1, . . . , Xn − Yn〉Q + JQ)/JQ.

We let I2 be the colon ideal (IQ+ JQ) :Q 〈X1 − Y1, . . . , Xn − Yn〉Q in the polynomial

ring Q. According to Lemma 2.1.11(ii), we have

φ−1(IS) :Q/JQ φ
−1(I1) = [(IQ+ JQ) :Q (〈X1 − Y1, . . . , Xn − Yn〉Q + JQ)]/JQ

= I2/JQ.

It follows that φ−1(IS :S I1) = I2/JQ and (µ◦ρ)(IS :S I1) = (µ◦ρ◦φ)(I2/JQ) = θ(I2),

where ρ = (idR ⊗ π) ◦ ϕ. Therefore we obtain the desired formula for the Noether

different of R/Ro by using Formula (2.3).

Example 2.1.13. Let Ro = Z be the ring of integers, and let R/Z be the algebra given

by the presentation R = Z[X1, X2]/I = Z[x1, x2], where I is the ideal of Z[X1, X2]

generated by F1 = X1X2 − 2X1 − X2 + 2, F2 = 2X2
1 − X2

2 − 4X1 + X2 + 2, and

F3 = X3
2 − 3X2

2 + 2X2, and where xi is the image of Xi in R for i = 1, 2. We want to

compute the Noether different ϑN(R/Z) of R/Z using Proposition 2.1.12.

We first form the polynomial ring Q = Z[X1, X2, Y1, Y2] with new indeterminates

Y1 and Y2. In Q, we let IQ = 〈F1, F2, F3〉Q and JQ = 〈F̃1, F̃2, F̃3〉Q, where F̃1 =

Y1Y2− 2Y1−Y2 + 2, F̃2 = 2Y 2
1 −Y 2

2 − 4Y1 +Y2 + 2, and F3 = Y 3
2 − 3Y 2

2 + 2Y2. Then we

compute a system of generators of the colon ideal (IQ+JQ) :Q 〈X1−Y1, X2−Y2〉Q and

get {F1, F2, F3, F̃1, F̃2, F̃3, G1, G2, G3}, where G1 = X2
1Y

2
2 + X2

1Y2 − 2X1Y
2

2 + X2Y
2

2 +

6X1Y1− 2X1Y2− 2X2Y2 + Y 2
2 − 6X1− 6Y1 + Y2 + 6, G2 = 2X2

1 + 2X1Y1 +X2Y2 + Y 2
2 −

6X1−2X2−2Y1−3Y2+6, and G3 = X2
2 +2X1Y1+X2Y2+Y 2

2 −2X1−3X2−2Y1−3Y2+4.
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Now we calculate the images of G1, G2, and G3 in R under the map θ. We find

θ(G1) = x2
1x

2
2 + x2

1x2 − 2x1x
2
2 + x3

2 + 6x2
1 − 2x1x2 − x2

2 − 12x1 + x2 + 6,

θ(G2) = 4x2
1 + 2x2

2 − 8x1 − 5x2 + 6,

θ(G3) = 2x2
1 + 3x2

2 − 4x1 − 6x2 + 4.

Note that the images of Fi and F̃i in R under θ are zero for i = 1, 2, 3. Thus we

conclude that ϑN(R/Z) = 〈θ(G1), θ(G2), θ(G3)〉R.

Proposition 2.1.14. Using the same notation as in Proposition 2.1.12, we let

ψ : Q = Ro[X1, . . . , Xn, Y1, . . . , Yn]→ A = Ro[X1, . . . , Xn] (2.4)

be the Ro-algebra epimorphism defined by ψ(Xi) = Xi and ψ(Yi) = Xi for i = 1, . . . , n,

and let {G1, . . . , Gs} be a system of generators of (IQ+JQ) :Q 〈X1−Y1, . . . , Xn−Yn〉Q.

Then we have θ = π ◦ ψ and

ϑN(R/Ro) = 〈ψ(G1), . . . , ψ(Gs)〉A/I.

Proof. Let us consider the following diagram

Q
ψ // //

π̃
����

A

π
����

Q/JQ
φ // S

ϕ // R⊗Ro A
idR⊗π// // R⊗Ro R

µ // // R

It is easy to check that this diagram is commutative. Since θ = µ◦ (idR⊗π)◦ϕ◦φ◦ π̃,

we have θ = π ◦ ψ. Moreover, since all homomorphisms in the diagram are surjec-

tive, we can apply Proposition 2.1.12 and get ϑN(R/Ro) = (π ◦ ψ)(〈G1, . . . , Gs〉Q) =

〈ψ(G1), . . . , ψ(Gs)〉A/I, as desired.

To use above tools for the computation of a system of generators of the Noether

different of the algebra R/Ro of finite type, we require some results from Gröbner

basis theory. In the following we give a brief introduction to Gröbner bases over rings

and algorithms to compute them. For more details about Gröbner bases and their

applications we refer to [KR2], [KR3] and [AL]. We begin by a prerequisite of the base

ring Ro being computable.

Definition 2.1.15. Let Ro be a Noetherian ring. We will say that linear equations

are solvable in Ro provided that
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(i) Given a, a1, . . . , am ∈ Ro, there is an algorithm to determine whether the element

a is contained in the ideal 〈 a1, . . . , am 〉Ro and if it is, to compute b1, . . . , bm ∈ Ro

such that a = a1b1 + · · ·+ ambm.

(ii) Given a1, . . . , am ∈ Ro, there is an algorithm that computes a system of generators

of the Ro-module

SyzRo(a1, . . . , am) = { (b1, . . . , bm) ∈ Rm
o | a1b1 + · · ·+ ambm = 0 }.

Remark 2.1.16. The Noetherian rings in which linear equations are solvable include

Z, Z/〈m〉 where m ≥ 1, Z[i] where i2 = −1, Z[
√
−5], and K[X1, . . . , Xn] where n ≥ 1

and where K is a field.

In what follows, we let Ro be a Noetherian ring such that linear equations are

solvable in Ro, and let A = Ro[X1, . . . , Xn]. The set of all terms of A is denoted by

Tn (or T(X1, . . . , Xn)). We assume that we have a term ordering <σ on Tn. Each

polynomial F ∈ A \ {0} has a unique representation as a linear combination of terms

F =
∑s

i=1 aiTi, where a1, . . . , as ∈ Ro\{0}, T1, . . . , Ts ∈ Tn with T1 >σ T2 >σ · · · >σ Ts.

As in Section 1.5 of [KR2], we define LTσ(F ) = T1, LCσ(F ) = a1 and LMσ(F ) = a1T1

(called the leading term, leading coefficient and leading monomial of F with respect

to <σ, respectively). Moreover, for an ideal I ⊆ A, the leading monomial ideal of I

with respect to <σ is given by LMσ(I) = 〈LMσ(F ) | F ∈ I 〉A. We now present the

Division Algorithm over rings.

Theorem 2.1.17. (The Division Algorithm over Rings) Let s ≥ 1, and let

F,G1, . . . , Gs ∈ A \ {0}. Consider the following sequence of instructions.

1) Let Q1 = · · · = Qs = 0, G = 0 and V = F .

2) We check the following two conditions

a) There exists i ∈ {1, . . . , s} such that LTσ(V ) is a multiple of LTσ(Gi).

b) There are c1, . . . , cs ∈ Ro and T1, . . . , Ts ∈ Tn such that

LMσ(V ) = c1T1 LMσ(G1) + · · ·+ csTs LMσ(Gs)

and LTσ(V ) = Ti LTσ(Gi) for all i such that ci 6= 0.

If these conditions are satisfied, then replace Qi by Qi + ciTi and replace V by

V − c1T1G1 − · · · − csTsGs.
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3) Repeat step 2) until one of two conditions a) and b) is not satisfied. Then replace

G by G+ LMσ(V ) and replace V by V − LMσ(V ).

4) If now V 6= 0, start again with step 2). Otherwise, return (G,Q1, . . . , Qs) ∈ As+1.

This is an algorithm which returns a tuple (G,Q1, . . . , Qs) ∈ As+1 such that

F =
s∑
i=1

QiGi +G

and such that the following conditions are satisfied.

a) If G 6= 0, then LTσ(F ) ≥σ LTσ(G) and no monomial of G lies in the lead-

ing monomial ideal 〈LMσ(G1), . . . ,LMσ(Gs) 〉A. The polynomial G is called an

irreducible polynomial of F with respect to {G1, . . . , Gs}.

b) If Qi 6= 0 for some i ∈ {1, . . . , s}, then LTσ(F ) ≥σ LTσ(QiGi).

Proof. See [AL], Theorem 4.1.10 and Algorithm 4.1.1.

Definition 2.1.18. A finite set {G1, . . . , Gs } of non-zero polynomials contained in an

ideal I of A is called a <σ-Gröbner basis of I if

〈LMσ(G1), . . . ,LMσ(Gs) 〉A = LMσ(I).

Note that a non-zero ideal I of A always has a <σ-Gröbner basis, and if {G1, . . . ,Gs}
is a <σ-Gröbner basis of I then I = 〈G1, . . . , Gs〉A. For the proofs of these claims, see

[AL, Corollaries 4.1.15 and 4.1.17]. To compute a <σ-Gröbner basis of I we can use

the following algorithm.

Theorem 2.1.19. (Möller’s Technique) Let {G1, . . . , Gs} ⊆ A \ {0} be a system of

generators of an ideal I of A. Consider the following sequence of instructions.

1) Let G = (G1, . . . , Gs), r = 1 and m = s.

2) If r > m, then return the result G. Otherwise, compute

S =

{
J ⊆ {1, . . . , r}

∣∣∣ r ∈ J and for all i ∈ {1, . . . , r} :

LTσ(Gi) | lcm(LTσ(Gj) : j ∈ J)⇒ i ∈ J

}
.

3) If S = ∅, then go to step 6). Otherwise, choose J ∈ S and delete it from S. Set

TJ = lcm(LTσ(Gj) : j ∈ J). Compute the set BJ = { b1J , . . . , bnJJ } of generators

of 〈LCσ(Gj) | j ∈ J \ {r} 〉Ro :Ro 〈LCσ(Gr) 〉Ro.
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4) If BJ 6= ∅, choose the smallest index i ∈ {1, . . . , nJ} such that biJ ∈ BJ and

delete biJ from BJ . Compute bj ∈ Ro, j ∈ J \ {r} such that
∑

j∈J\{r}
bj LCσ(Gj) +

biJ LCσ(Gr) = 0. If BJ = ∅, then continue with step 3).

5) Set FiJ :=
∑

j∈J\{r}
bj

TJ
LTσ(Gj)

Gj+biJ
TJ

LTσ(Gr)
Gr, and use the Division Algorithm 2.1.17

to compute an irreducible polynomial F̃iJ of FiJ with respect to {G | G ∈ G}.
If F̃iJ 6= 0, then append Gm+1 = F̃iJ to G and increase m by one. Then continue

with step 4).

6) Increase r by one and continue with step 2).

This is an algorithm which returns a tuple G of polynomials which form a <σ-Gröbner

basis of the ideal I.

Proof. See [AL, Algorithm 4.2.2].

The next proposition indicates how one can compute the intersection I ∩ J of two

ideals I, J of A using elimination. This also enables us to compute the colon ideal I : J

if J is generated by a set of non-zerodivisors in A.

Proposition 2.1.20. Let I = 〈F1, . . . , Fr〉A and J = 〈G1, . . . , Gs〉A be ideals of A.

(i) Let Y be a new indeterminate, let <Elim(Y ) be the elimination ordering on the

set of terms of A[Y ], and let <σ be the restriction of <Elim(Y ) on Tn (see [KR2,

Section 3.4]). Let

U = 〈Y F1, . . . , Y Fr, (1− Y )G1, . . . , (1− Y )Gs 〉A[Y ] ,

and let G be a <Elim(Y )-Gröbner basis of U . Then I ∩ J = U ∩ A and G ∩ A is

a <σ-Gröbner basis of I ∩ J .

(ii) We have I : J = (I : 〈G1〉A)∩· · ·∩(I : 〈Gs〉A). If I∩〈Gj〉A = 〈H1Gj, . . . , HtGj〉A
and Gj is not a zerodivisor in A, then I : 〈Gj〉A = 〈H1, . . . , Ht〉A.

Proof. See [AL], Theorem 4.3.6 and Propositions 4.3.9 and 4.3.11.

At this point we have assembled all tools that we need to establish an algorithm

for computing the Noether different of an algebra of finite type.
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Proposition 2.1.21. Let Ro be a Noetherian ring such that linear equations are solv-

able in Ro, and let R/Ro be an algebra of finite type. Suppose R has a presentation

R = Ro[X1, . . . , Xn]/I = Ro[x1, . . . , xn]

where n ≥ 1, and where I is an ideal of the polynomial Ro-algebra A = Ro[X1, . . . , Xn]

given by a set of generators. Let <σ be a term ordering on Tn. Consider the following

sequence of instructions.

1) Compute a tuple F = (F1, . . . , Fr) whose elements are a <σ-Gröbner basis of the

ideal I by using Möller’s Technique 2.1.19.

2) Form the polynomial ring Q = A[Y1, . . . , Yn] = Ro[X1, . . . , Xn, Y1, . . . , Yn], and

form the ideal JQ = 〈F̃1, . . . , F̃r〉Q, where F̃i = Fi(Y1, . . . , Yn) for i = 1, . . . , r.

3) Let <σ be a term ordering on the set of terms T2n = T(X1, . . . , Xn, Y1, . . . , Yn)

of Q. Compute a <σ-Gröbner basis Ĝ of the colon ideal

Î = (IQ+ JQ) :Q 〈X1 − Y1, . . . , Xn − Yn〉Q =
n⋂
i=1

(
(IQ+ JQ) :Q 〈Xi − Yi〉Q

)
by using Möller’s Technique 2.1.19 and Proposition 2.1.20.

4) Take the image of Ĝ under ψ, where ψ is given by (2.4), and form the ideal

Ĵ = ψ(Î) = 〈ψ(G) | G ∈ Ĝ〉A. Again using Möller’s Technique 2.1.19, we

compute a <σ-Gröbner basis Ĥ of Ĵ .

5) Let G be the tuple of all polynomials of Ĥ which are not contained in F , let V = ∅,
and let H = ∅.

6) If G = ∅, return the tuple H and stop. Otherwise, choose a polynomial G in G of

the smallest degree and remove it from G.

7) Compute an irreducible polynomial G̃ of G w.r.t. {F1, . . . , Fr} ∪ {H | H ∈ V} by

using the Division Algorithm 2.1.17. If G̃ = 0, continue with step 6).

8) Append G̃ to the tuple V and append the image of G̃ in R to the tuple H. Continue

with step 6).

This is an algorithm which computes a tuple H whose elements are a system of gener-

ators of the Noether different ϑN(R/Ro).

Proof. The correctness of this algorithm follows from Propositions 2.1.12 and 2.1.14.

The finiteness of this algorithm is clear.
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Example 2.1.22. Let us consider again the algebra R/Z given in Example 2.1.13. We

let <σ be the term ordering DegRevLex. Using Proposition 2.1.21, we compute a tuple

H whose elements are a system of generators of ϑN(R/Z) and get H = (4, x2 + 2). We

see that 4 ∈ ϑN(R/Z), but this is not a unit of R, and so ϑN(R/Z) = 〈4, x2+2〉R 6= 〈1〉R.

If we replace Z by the field of rational numbers Q, an application of Proposition 2.1.21

gives us H = (1) and ϑN(R/Q) = 〈1〉R.

Remark 2.1.23. Let R be an affine K-algebra of the form R = K[X1, . . . , Xn]/I =

K[x1, . . . , xn], and let d = dim(R). By Noether’s Normalization Theorem (cf. [Ku4,

Theorem 3.1] or [KR3, Tutorial 78]), we can find algebraically independent elements

X ′1, . . . , X
′
d in K[X1, . . . , Xn] such that the canonical map ı : K[X ′1, . . . , X

′
d] ↪→ R

is an injection and turns R into a finitely generated K[X ′1, . . . ., X
′
d]-module. Such a

subalgebra K[X ′1, . . . , X
′
d] is called a Noether normalization of R.

If the field K is infinite, there exists a linear change of coordinates given by

(Y1, . . . , Yn) = (X1, . . . , Xn)A, where A ∈ Matn(K) is a lower triangular matrix having

units on the main diagonal, with the property that K[Y1, . . . , Yd] is a Noether normal-

ization of R. To compute a Noether normalization of R one may use a randomized

algorithm or a Las Vegas algorithm, see [KR3, Tutorial 78].

Now we assume that R has a Noether normalization of the form K[X1, . . . , Xd],

and I is defined by a system of generators {F1, . . . , Fr} with r ≥ 1. Let xi denote the

image of Xi in R for i = 1, . . . , n, and let Ro = K[x1, . . . , xd]. Then an application

of Proposition 2.1.21 yields a system of generators of the Noether different ϑN(R/Ro)

of the algebra R/Ro.

2.2 Fitting Ideals of Finitely Generated Modules

Let R be a ring. Given any finitely generated R-module M , we can associated to M

a sequence of ideals of R which are determinantal ideals of a relation matrix for M .

These ideals are well known and called the Fitting ideals or Fitting invariants of M .

Many structural properties of the R-module M are reflected in its Fitting ideals. In

this section we recall several facts about these Fitting ideals which will be used in the

later chapters. Our main references are [Ku5] and [Nor].

Let {m1, . . . ,mn} be a system of generators of a finitely generated R-module M .

If M = 〈0〉, then we take n = 1 and m1 = 0. Every element m ∈ M can be written

(not necessarily uniquely) as m = f1m1 + · · · + fnmn, where f1, . . . , fn ∈ R. Let

E = {e1, . . . , en} be the canonical basis of Rn. Let ϕ : Rn → M denote the R-module
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homomorphism determined by E and by {m1, . . . ,mn}, i.e., ϕ(
∑n

i=1 fiei) =
∑n

i=1 fimi.

By K we denote the kernel of ϕ. Then we have a short exact sequence of R-modules

0 −→ K −→ Rn ϕ−→M −→ 0 (2.5)

Let {vλ | λ ∈ Λ} be a system of generators of the R-module K with vλ = (x1λ, . . . , xnλ)

in Rn. Notice that K = 〈0〉 if and only if M is a free R-module of rank n with

basis {m1, . . . ,mn}. In this case, we take Λ = {1} and v1 = (0, . . . , 0). Then the

matrix (xiλ)i=1,...,n
λ∈Λ

is called a relation matrix of M with respect to {m1, . . . ,mn}.
For i ∈ {0, . . . , n−1}, we let Fi(M) denote the ideal of R generated by all (n−i)-rowed

subdeterminants of (xiλ)i=1,...,n
λ∈Λ

, and let

Fi(M) =

R for i ≥ n,

〈0〉 for i < 0.

Definition 2.2.1. Let i ∈ Z. The ideal Fi(M) is called the i-th Fitting ideal (or

i-th Fitting invariant) of M . In particular, the ideal F0(M) is said to be the initial

Fitting ideal (or initial Fitting invariant) of M .

We observe that

〈0〉 ⊆ F0(M) ⊆ F1(M) ⊆ F2(M) ⊆ · · · ⊆ Fn(M) = R.

Moreover, the Fitting ideals of M have the following property.

Lemma 2.2.2. Let i ∈ Z. The i-th Fitting ideal Fi(M) depends neither on the choice

of the generating system {m1, ...,mn} of M nor on the special choice of a relation

matrix of M with respect to {m1, ...,mn}.

Proof. See [Ku5, D.1 and D.2] or [Nor, Chapter 3, Theorem 1].

Example 2.2.3. Let R = K[X] be a polynomial ring over a field K, and let M =

R/〈X〉 ⊕ R/〈X2 + 1〉. It is clear that M is a finitely generated R-module. A system

of generators of M is {m1,m2}, where m1 = (1, 0) and m2 = (0, 1). Then we have a

short exact sequence

0 −→ K −→ R2 ϕ−→M −→ 0.

Here ϕ is defined by ϕ(f1e1 +f2e2) = f1m1 +f2m2 = (f 1, f 2). It is not difficult to check

that K = Ker(ϕ) is given by K = 〈 v1, v2 〉R, where v1 = (X, 0) and v2 = (0, X2 + 1).
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Thus the relation matrix of M with respect to {m1,m2} is

M =

(
X 0

0 X2 + 1

)

and

Fi(M) =


〈0〉 for i < 0,

〈X3 +X〉 for i = 0,

R for i ≥ 1.

(2.6)

Now we consider another system of generators of M = 〈m1,m2,m3〉R given by

m1 = (1, 0), m2 = (0, 1), and m3 = (1, X). The corresponding short exact sequence is

0 −→ K′ −→ R3 ϕ′−→M −→ 0.

The map ϕ′ is defined by ϕ′(f1e1+f2e2+f3e3) = f1m1+f2m2+f3m3 and K′ = Ker(ϕ′).

We shall show that K′ = 〈 v1, v2, v3 〉R, where v1 = (X, 0, 0), v2 = (0, X2 + 1, 0), and

v3 = (−1,−X, 1). It is clear that vi ∈ K′ for i = 1, 2, 3. Let v = f1e1 +f2e2 +f3e3 ∈ K′.
Since m3 = m1 +Xm2, we have

0 = ϕ′(v) = f1m1 + f2m2 + f3m3 = (f1 + f3)m1 + (f2 +Xf3)m2.

This implies (f1 + f3)e1 + (f2 +Xf3)e2 ∈ 〈 v1, v2 〉R, and so

v = f1e1 +f2e2 +f3e3 = ((f1 +f3)e1 +(f2 +Xf3)e2)−f3(e1 +Xe2−e3) ∈ 〈 v1, v2, v3 〉R .

Thus the set {v1, v2, v3} is a system of generators of K′, as claimed.

Consequently, the relation matrix of M with respect to {m1,m2,m3} is

M′ =

X 0 −1

0 X2 + 1 −X
0 0 1


and Fi(M) is the same as (2.6). Note that the ideal of R generated by all 2-rowed

subdeterminants of M is different from that one of M′.

Recall that an R-module M is finitely presentable if there are a natural number

n ∈ N and a short exact sequence of R-modules

0 −→ K −→ Rn −→M −→ 0
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where K is a finitely generated R-module. For example, finitely generated modules over

Noetherian rings are always finitely presentable (cf. [Ku4, Chapter I, Proposition 2.17]).

If M is finitely presentable, we see that the Fitting ideals Fi(M), i ∈ Z, are finitely

generated ideals of R.

Now we collect some basic properties of Fitting ideals.

Proposition 2.2.4. Let R be a ring, let M be a finitely generated R-module, and let

i ∈ Z.

(i) For every algebra S/R, we have Fi(S ⊗RM) = S · Fi(M).

(ii) If U ⊂ R is a multiplicatively closed subset, then Fi(MU) = Fi(M)U .

(iii) If I is an ideal of R, then Fi(M/IM) = Fi(M), where Fi(M) denotes the image

of Fi(M) in R/I.

Proof. See [Ku5, D.4].

The next proposition says that the initial Fitting ideal F0(M) and AnnR(M) have

the same radical.

Proposition 2.2.5. Let M be a finitely generated R-module which can be generated

by n elements. Then

(AnnR(M))n ⊆ F0(M) ⊆ AnnR(M).

In particular, if M can be generated by a single element, we have F0(M) = AnnR(M).

Proof. See [Ku5, D.14] or [Nor, Chapter 3, Theorem 5].

Example 2.2.6. Let us go back to Example 2.2.3. The initial Fitting ideal of M is

given by F0(M) = 〈X3 + X〉 ⊆ R = K[X]. Moreover, it is not hard to see that the

annihilator of M is AnnR(M) = 〈X〉 ∩ 〈X2 + 1〉. Since 〈X〉 and 〈X2 + 1〉 are coprime,

we obtain AnnR(M) = 〈X〉 ∩ 〈X2 + 1〉 = 〈X3 +X〉 = F0(M).

Next we consider a further finitely generated R-module M ′ = R/〈X〉 ⊕ R/〈X3〉.
Then a minimal system of generators of M ′ is {(1, 0), (0, 1)} and the relation matrix

of M ′ with respect to this system is

M′ =

(
X 0

0 X3

)
.
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Thus we obtain

Fi(M ′) =


〈0〉 for i < 0,

〈X4〉 for i = 0,

〈X〉 for i = 1,

R for i ≥ 2.

In this case we have AnnR(M ′) = 〈X3〉 and (AnnR(M ′))2 ( F0(M ′) ( AnnR(M ′).

Observe that the Fitting ideals of a free R-module Rn with n ≥ 1 are given by

Fi(Rn) =

〈0〉 if i ≤ n− 1,

R if i ≥ n.

More general, we have the following proposition.

Proposition 2.2.7. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of

finitely generated R-modules and let i ≥ 0 and j ≥ 0 be integers. Then we have

Fi(M1) · Fj(M3) ⊆ Fi+j(M2).

Moreover, if the above exact sequence splits, i.e., if M2
∼= M1 ⊕M3, then

Fi(M2) = Fi(M1 ⊕M3) =
∑

j+k=i

Fj(M1) · Fk(M3)

for all i ∈ N.

Proof. See [Ku5, D.15 and D.17] or [Nor, pages 90-93].

Corollary 2.2.8. Let 0→M1 →M2 →M3 → 0 be a short exact sequence of finitely

generated R-modules. Suppose M3 has a system of n3 generators such that the kernel

of the corresponding presentation is also generated by n3 elements. Then F0(M3) is a

principal ideal and F0(M1) · F0(M3) = F0(M2).

Proof. See [Ku5, D.17] or [Nor, Chapter 3, Theorem 22].

Example 2.2.9. Let n ≥ 1, let I1, ..., In be ideals of R, and let M = R/I1 ⊕ R/I2 ⊕
· · · ⊕R/In. By Proposition 2.2.7, the initial Fitting ideal of M is

F0(M) = F0(R/I1) · F0(R/I2) · · · F0(R/In).

Since F0(R/Ii) = Ii ⊆ R for i = 1, . . . , n, we have F0(M) = I1 · I2 · · · In. Suppose that

the family { Ii | i = 1, . . . , n } is pairwise coprime, i.e., Ii + Ij = R for i, j ∈ {1, . . . , n}
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and i 6= j. Then we have I1 · I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In (cf. [Mat, Theorem 1.3]). In

this case we obtain

F0(M) = I1 ∩ I2 ∩ · · · ∩ In = AnnR(M).

Now we want to review some local properties of Fitting ideals. For that, let (R,m)

be a local ring, let M be a finitely generated R-module with a minimal system of

generators {m1, . . . ,mn }, and let (2.5) be the presentation defined by this system.

Let v = (x1, . . . , xn) ∈ Rn be an element of K. If there exists an index i ∈ {1, . . . , n}
such that xi /∈ m, then xi is a unit of R, so it follows from

∑n
j=1 xjmj = 0 that

mi = −x−1
i

∑
j 6=i xjmj. Thus we obtain a contradiction to the fact that {m1, . . . ,mn }

is a minimal system of generators of M . Hence the coefficients of the relation matrix

with respect to {m1, . . . ,mn } of M are elements of m, and therefore Fi(M) ⊆ m for

i ≤ n− 1. From this we deduce the following property (cf. [Ku5, D.8]).

Proposition 2.2.10. Let (R,m) be a local ring, and let M be a finitely generated

R-module. Then the number of minimal generators of M is min{ i | Fi(M) = R }.
Moreover, if Fr(M) is the smallest non-zero Fitting ideal of M , then M is free of

rank r if and only if Fr(M) = R.

Our next corollary is an immediate consequence of Proposition 2.2.10 and the local-

global principle (see [Ku4, Chapter IV, Rule 1.1]).

Corollary 2.2.11. For a ring R and a finitely generated R-module M the following

statements are equivalent:

(i) M is locally free of rank r.

(ii) Fi(M) = 〈0〉 for i = 0, . . . , r − 1, and Fi(M) = R for i ≥ r.

Remark 2.2.12. Let R be a ring, M a finitely generated R-module. We recall that

Supp(M) = { p ∈ Spec(R) |Mp 6= 〈0〉 }.

For p ∈ Spec(R), we have p ∈ Supp(M) if the Rp-module Mp contains at least one

non-zero element. This is equivalent to the condition that F0(M) ⊆ p. Thus we have

Supp(M) = { p ∈ Spec(R) | F0(M) ⊆ p }.

We conclude this section with the following proposition.
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Proposition 2.2.13. Let R be a reduced Noetherian ring, let M be a finitely generated

R-module, let pdR(M) denote the projective dimension of M (see for instance [Ku4,

Chapter VII, Definition 1.3]), and let T (M) be the set of all torsion elements in M ,

i.e., T (M) = {m ∈ M | fm = 0 for some non-zerodivisor f ∈ R}. The following

statements are equivalent:

(i) The smallest non-zero Fitting ideal Fr(M) of M is an invertible ideal.

(ii) M/T (M) is a projective R-module of rank r, and pdR(M) ≤ 1.

In particular, F0(M) is an invertible ideal if and only if T (M) = M and pdR(M) ≤ 1.

Proof. Since R is a reduced Noetherian ring, we have Min(R) = Ass(R). The claim

follows from [Ku5, D.19].

2.3 First Properties of 0-Dimensional Schemes

Throughout this section, we work over an arbitrary field K. Let n ≥ 0 and let P be the

polynomial ring P = K[X0, . . . , Xn] equipped with its standard grading deg(Xi) = 1.

Definition 2.3.1. Let I ⊆ P be a homogeneous ideal. The set

Isat = {F ∈ P | 〈X0, . . . , Xn〉i · F ⊆ I for some i ∈ N }

is called the saturation of I. The ideal I is called saturated if I = Isat.

It is easy to see that the saturation Isat of a given homogeneous ideal I ⊆ P is a

homogeneous saturated ideal of P and I ⊆ Isat.

In what follows, we let PnK be the projective n-space over K (i.e., PnK = Proj(P )).

Here we identify the set of K-rational points of PnK with the set of equivalence classes

P(Kn+1) = (Kn+1 \ {0})/ ∼, where ∼ is an equivalence relation on Kn+1 \ {0} by

letting (c0, . . . , cn) ∼ (c′0, . . . , c
′
n) if and only if there exists an element λ ∈ K such that

(c′0, . . . , c
′
n) = (λc0, . . . , λcn). Also, we shall say “a subscheme X of PnK” or “a scheme

X ⊆ PnK” when we really mean “a closed subscheme X of PnK together with a fixed

embedding X ⊆ PnK”. For more details about the theory of schemes we refer to [Har,

Chapter II]. Our main objects of study are 0-dimensional schemes X ⊆ PnK . We let

IX ⊆ OPnK be the ideal sheaf of X on PnK (see [Har, Chapter II, Section 5, p. 115]). It is

well known that the homogeneous ideal Γ∗(IX) =
⊕

i≥0H
0(PnK ,IX(i)) is an ideal in P

defining the scheme X. Moreover, this ideal is saturated, and hence it is the largest

homogeneous ideal in P defining the scheme X.
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Definition 2.3.2. Let X be a 0-dimensional subscheme of PnK , and let IX be the ideal

sheaf of X on PnK . Then the homogeneous saturated ideal Γ∗(IX)=
⊕

i≥0H
0(PnK ,IX(i))

is called the homogeneous vanishing ideal of X and is denoted by IX, and the residue

class ring R = P/IX is called the homogeneous coordinate ring of X.

Notice that the ring R = P/IX =
⊕

i≥0Ri is a standard graded K-algebra (i.e.,

R0 = K and R = K[R1] with dimK(R1) < ∞), its homogeneous maximal ideal is

denoted by m :=
⊕

i≥1Ri. We let Z+(X0) be the subscheme of PnK defined by 〈X0〉
and call it the hyperplane at infinity of PnK . The set of closed points of PnK in X will

be denoted by Supp(X) and called the support of X.

Assumption 2.3.3. Once and for all, we assume that no point of the support of X
lies on the hyperplane at infinity Z+(X0).

Let xi be the image of Xi in R for i = 0, . . . , n. By Assumption 2.3.3, x0 is not a

zerodivisor of R. Hence R is a 1-dimensional Cohen-Macaulay ring and R = R/〈x0〉 is

a 0-dimensional local ring with maximal ideal m = (m+ 〈x0〉)/〈x0〉 and dimK(R) <∞.

We write Supp(X) = {p1, . . . , ps} for some s ≥ 1. For every j ∈ {1, . . . , s}, let

Pj be the homogeneous prime ideal of P corresponding to pj. Its image in R will be

denoted by pj. The ideals p1, . . . , ps are minimal homogeneous prime ideals of R. The

local ring OX,pj is then the homogeneous localization of R at pj, i.e., OX,pj
∼= R(pj). The

degree of the scheme X is given by deg(X) = dimK H
0(X,OX) =

∑s
j=1 dimK(OX,pj).

Let Γ be the affine coordinate ring of X in the affine space D+(X0) ∼= An
K . We then

have Γ = H0(X,OX) ∼=
∏s

j=1OX,pj . Moreover, the ring Γ is a 0-dimensional Artinian

ring and Γ ∼= R/〈x0 − 1〉 (cf. [Kr3, Lemma 1.2]). The canonical epimorphism θ : R �

R/〈x0− 1〉 ∼= Γ is given by dehomogenization x0 7→ 1. We set IaX = IX/(IX ∩ 〈X0− 1〉)
and call it the affine ideal of X, so we get Γ ∼= A/IaX, where A = K[X1, . . . , Xn].

By using the homogenization theory and Theorem 4.3.22 in [KR3], we have the

following properties.

Lemma 2.3.4. (i) We have IaX = (IX)deh and IX = (IaX)hom.

(ii) The ring R is a graded free K[x0]-module of rank deg(X).

Remark 2.3.5. Let Ij ⊆ P be the homogeneous vanishing ideal of X at pj for all

j ∈ {1, . . . , s}. In order to compute the homogeneous vanishing ideal IX =
⋂s
j=1 Ij

of X we use the results in the paper of J. Abbott, M. Kreuzer and L. Robbiano [AKR].

More precisely, we can either proceed degree by degree to compute the reduced Gröbner

basis of IX by using the GPBM-Algorithm (cf. [AKR, Theorem 4.6]), or we can apply
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the GBM-Algorithm (cf. [AKR, Theorem 3.1]). In case we apply the GBM-Algorithm

to compute the reduced Gröbner basis of IX, we proceed as follows. Let <σ be a degree

compatible term ordering on Tn = T(X1, . . . , Xn), and let <σ be the extension of <σ

on Tn+1 = T(X0, . . . , Xn) (see [KR3, Definition 4.3.13]). Apply the GBM-Algorithm

to compute the reduced <σ-Gröbner basis {G1, . . . , Gr} of the affine ideal IaX. For

k = 1, . . . , r, we then compute the homogenization Ghom
k of Gk with respect to X0.

Observe that LTσ(Ghom
k )=LTσ(Gk) for all k = 1, . . . , r. Thus [KR3, Proposition 4.3.21]

and Lemma 2.3.4(i) yield that the set {Ghom
1 , . . . , Ghom

r } is the reduced <σ-Gröbner

basis of IX.

Next we introduce the Hilbert function of the homogeneous coordinate ring of X.

We start as follows.

Definition 2.3.6. Let M be a finitely generated graded R-module. It decomposes as

a direct sum of its homogeneous components M =
⊕

i∈ZMi. The Hilbert function

of M is defined by

HFM(i) = dimK(Mi) for all i ∈ Z.

In particular, the Hilbert function of R is given by HFX(i) = dimK(Ri) for all i ∈ Z.

The Hilbert function of M is invariant under a homogeneous linear change of coor-

dinates. Many properties of M are encoded in this invariant, for example, dimension

and multiplicity (cf. [KR3], [BH]). We say that an integer function f : Z → Z is

of polynomial type if there exists a number i0 ∈ Z and an integer valued polynomial

q ∈ Q[z] such that f(i) = q(i) for all i ≥ i0. This polynomial is uniquely determined

and denoted by HPf (z). The Hilbert function of a finitely generated graded R-module

M is an integer function of polynomial type (see [BH, Theorem 4.1.3]).

Definition 2.3.7. Let M be a finitely generated graded R-module, and let z be an

indeterminate over Q.

(i) The integer valued polynomial associated to HFM is called the Hilbert polyno-

mial of M and is denoted by HPM(z). In other words, we have HFM(i) = HPM(i)

for i� 0.

(ii) The number

ri(M) = min{ i ∈ Z | HFM(j) = HPM(j) for all j ≥ i }

is called the regularity index of M (or of HFM). Whenever HFM(i) = HPM(i)

for all i ∈ Z, we let ri(M) = −∞. The regularity index of HFX will be denoted

by rX.
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In the following proposition we collect some descriptions of the Hilbert function

and the Castelnuovo function of X. Here the Castelnuovo function of X is defined

to be the first difference function of HFX given by ∆ HFX(i) = HFX(i)−HFX(i− 1) for

all i ∈ Z.

Proposition 2.3.8. (i) For i < 0, we have HFX(i) = 0, and we have HFX(0) = 1.

(ii) We have HFX(i) = deg(X) for i ≥ rX.

(iii) We have HFX(0) < HFX(1) < · · · < HFX(rX − 1) < HFX(rX).

(iv) ∆ HFX(i) 6= 0 if and only if i ∈ {0, . . . , rX}.

(v) We have deg(X) =
∑rX

i=0 ∆ HFX(i) =
∑

i∈Z ∆ HFX(i).

Proof. See [Kr3, Lemma 1.3].

For pj ∈ Supp(X), the residue field of X at pj is denoted by K(pj) := OX,pj/mX,pj .

Obviously, the residue field K(pj) is in general a finite dimensional K-vector space and

K(pj) = K if and only if pj ∈ Supp(X) is a K-rational point of X. By X(K) we denote

the set of all K-rational points of X. It is clear that X(K) is a subset of Supp(X).

Definition 2.3.9. (i) We say that X has K-rational support if X(K) = Supp(X)

or, equivalently, if each closed point of X is also a K-rational point of X.

(ii) We say that X is reduced at pj if the local ring OX,pj is reduced (i.e., if 0 is the

only nilpotent element of OX,pj). The scheme X is called reduced if it is reduced

at every point pj ∈ Supp(X).

(iii) The scheme X is called a projective point set in PnK if it is reduced and has K-

rational support. In this case we write X = {p1, . . . , ps} ⊆ PnK with s = deg(X).

Remark that, if K is an algebraically closed field, then X always has K-rational

support, since all closed points of X are K-rational by Hilbert’s Nullstellensatz (see for

instance [KR2, Chapter 2, Section 6]). In this situation, X is reduced if and only if it

is a projective point set in PnK .

Many local properties of the scheme X are based on the following result.

Lemma 2.3.10. Let θ : R → R/〈x0 − 1〉 = Γ be the canonical epimorphism given

by dehomogenization. Then the K-linear map θ|Ri : Ri → R/〈x0 − 1〉 = Γ is an

isomorphism if i ≥ rX, and it is injective if 0 ≤ i < rX. In particular, the K-linear

map ı : RrX →
∏s

j=1OX,pj given by ı(f) = (fp1 , . . . , fps) for all f ∈ RrX, where fpj is

the germ of f at the point pj of Supp(X), is an isomorphism.

Proof. See [Kr2, Lemma 1.1].
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Notice that the isomorphism ı : RrX
∼→
∏s

j=1OX,pj satisfies ı(xrX0 ) = (1, . . . , 1). The

first application of this isomorphism is to characterize a non-zerodivisor of R as follows.

Lemma 2.3.11. Let f ∈ Ri with i ≥ 0 be a homogeneous element of R. If i ≤ rX we

set f̃ = xrX−i0 f , and if i > rX we write f = xi−rX0 f̃ for some f̃ ∈ RrX.

Then f is a non-zerodivisor of R if and only if ı(f̃) is a unit of
∏s

j=1OX,pj .

Proof. See [Kr3, Lemma 1.5].

To investigate subschemes of the scheme X, we require the following lemma.

Lemma 2.3.12. Let J ⊆ R be a homogeneous ideal, and let J sat be the saturation

of J , i.e., J sat := { f ∈ R | mif ⊆ J for some i ≥ 0 }. Then we have

J sat = { f ∈ R | xi0f ∈ J for some i ≥ 0 }.

Proof. See [Kr3, Lemma 1.6].

Now we examine subschemes Y ⊆ X of degree deg(Y) ≤ deg(X) − 1. By IY/X we

denote the saturated ideal of Y in R. Then the homogeneous coordinate ring of Y is

RY = R/IY/X. Because dimK(RY)i = deg(Y) < deg(X) = dimK Ri for i� 0, we define

αY/X := min{i ∈ N | (IY/X)i 6= 0} and call it the initial degree of IY/X. As x0 is a

non-zerodivisor of R, Proposition 2.3.8 yields Ri = xi−rX0 RrX for all i ≥ rX. Thus the

description of the saturation of a homogeneous ideal of R given in Lemma 2.3.12 tells

us that αY/X ≤ rX.

Remark 2.3.13. Suppose that Y ⊆ X is a subscheme of degree deg(Y) = deg(X)− 1.

(a) The Hilbert function of Y is given by

HFY(i) =

HFX(i) for i < αY/X,

HFX(i)− 1 for i ≥ αY/X.

For the proof of this claim see [Kr2] or [Kr3, Lemma 1.7].

(b) There exists exactly one point pj ∈ X(K) such that OY,pj 6= OX,pj . Indeed, it is

easily seen that there is exactly one point pj ∈ Supp(X) such that OY,pj 6= OX,pj .

If pj ∈ Supp(X) \ X(K), then we have dimK K(pj) = κ ≥ 2, and we may write

K(pj) = K ⊕Kv1 ⊕ · · · ⊕Kvκ−1, where {1, v1, . . . , vκ−1} is a K-basis of K(pj).

Let fY ∈ (IY/X)rX \ {0}. Then ı(fY) = (0, . . . , 0, sj, 0, . . . , 0) ∈
∏s

j=1OX,pj for
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some element sj ∈ OX,pj \ {0}. It is not difficult to check that sj, v1sj are K-

linear independent. By setting f1 := ı−1((0, . . . , 0, v1sj, 0, . . . , 0)) ∈ RrX , we

have dimK 〈 f1, fY 〉K = 2. Also, we observe that xrX0 f1 = f2fY ∈ IY/X with

f2 = ı−1((0, . . . , 0, v1, 0, . . . , 0)) ∈ RrX and x0 is a non-zerodivisor of RY. This

implies f1 ∈ IY/X. Hence we get 2 = dimK 〈 f1, fY 〉K ≤ dimK(IY/X)rX = 1, a

contradiction.

Example 2.3.14. Let X = Z+(2X4
0 + X2

0X
2
1 − X4

1 ) be the 0-dimensional scheme of

degree 4 in the projective line P1
Q. The affine ideal of X is

IaX = 〈2 +X2
1 −X4

1 〉 = 〈(X2
1 + 1)(X2

1 − 2)〉 = q1 ∩ q2 ⊆ Q[X1]

where q1 = 〈X2
1 + 1〉 and q2 = 〈X2

1 − 2〉. In Q[X1], both q1 and q2 are maximal, and

hence Supp(X) = {p1, p2} where pi is the closed point of X corresponding to qi, but

X(Q) = ∅. Thus Remark 2.3.13(b) yields that X has no subscheme of degree 3.

Recall from [Kr3, Section 2] that the Z-graded ring Γ∗(OX) =
⊕

i∈ZH
0(X,OX(i))

has a presentation as follows

Γ∗(OX) =
⊕
i∈Z
H0(X,OX(i)) ∼=

⊕
i∈Z

Γ =
⊕
i∈Z

(
s∏
j=1

OX,pj)
∼=

s∏
j=1

OX,pj [Tj, T
−1
j ] ∼= Rx0

where T1, . . . , Ts are indeterminates with deg(T1) = · · · = deg(Ts) = 1. We denote

R̃ :=
∏s

j=1OX,pj [Tj] the subring of Γ∗(OX). According to Lemma 2.3.10, we have an

injection

ı̃ : R→ R̃ =
s∏
j=1

OX,pj [Tj] ↪→ Γ∗(OX), f 7→ (fp1T
i
1, . . . , fpsT

i
s) (2.7)

for f ∈ Ri with i ≥ 0. Moreover, ı̃(x0) = (T1, . . . , Ts) and the restriction ı̃|Ri : Ri → R̃i

is an isomorphism of K-vector spaces for i ≥ rX. Here and subsequently, let us denote

κj := dimK K(pj) = dimK(OX,pj/mX,pj)

for j = 1, . . . , s. Given an element a ∈ OX,pj , we define

µ(a) := min{ i ∈ N | (0, . . . , 0, aT ij , 0, . . . , 0) ∈ ı̃(R) }

and

ν(a) := max{µ(ab) | b ∈ OX,pj \ {0} }.

Notice that µ(0) = ν(0) = 0 and if s ≥ 2 and a 6= 0 then ν(a) ≥ µ(a) ≥ 1, since

ı̃(R0) = 〈 (1, . . . , 1) 〉K . Some more precise rules for these values are provided by our

next lemma.
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Lemma 2.3.15. Assume that we are in the setting introduced.

(i) We have µ(a+ b) ≤ max{µ(a), µ(b) } for all a, b ∈ OX,pj .

(ii) Let G(OX,pj) denote the socle of OX,pj , i.e., G(OX,pj) = AnnOX,pj
(mX,pj), let sj

be a non-zero element of G(OX,pj), and let {ej1, . . . , ejκj} ⊆ OX,pj be such that

whose residue classes form a K-basis of K(pj). Then we have

ν(sj) = max{µ(ejkjsj) | kj = 1, . . . ,κj }.

(iii) Let sj, s
′
j ∈ G(OX,pj) \ {0}. If sj = as′j for some a ∈ OX,pj , then ν(sj) = ν(s′j).

Proof. (i) It suffices to show the claim in the case µ(a) ≤ µ(b). Let

f = ı̃−1((0, . . . , 0, aT
µ(a)
j , 0, . . . , 0)), g = ı̃−1((0, . . . , 0, bT

µ(b)
j , 0, . . . , 0)).

Then we have f, g ∈ R and

ı̃(x
µ(b)−µ(a)
0 f + g) = (0, . . . , 0, (a+ b)T

µ(b)
j , 0, . . . , 0).

It follows that µ(a+ b) ≤ µ(b).

(ii) Observe that

ν(sj) = max{µ(asj) | a ∈ OX,pj \ {0} } ≥ max{µ(ejkjsj) | kj = 1, . . . ,κj }.

Now let a ∈ OX,pj be such that asj 6= 0. Then a /∈ mX,pj , since sj ∈ G(OX,pj) \ {0}.
So we may write a = cj1ej1 + · · · + cjκjejκj (modmX,pj) for cj1, . . . , cjκj in K, not all

equal to zero. We deduce asj = cj1ej1sj + · · · + cjκjejκjsj. It follows from (i) that

µ(asj) = µ(cj1ej1sj + · · ·+ cjκjejκjsj) ≤ max{µ(ejkjsj) | kj = 1, . . . ,κj }. This implies

ν(sj) ≤ max{µ(ejkjsj) | kj = 1, . . . ,κj }. Therefore the claimed equality is proved.

(iii) Since sj = as′j and sj, s
′
j ∈ G(OX,pj) \ {0}, the element a is a unit of OX,pj .

Thus we have

ν(sj) = max{µ(sjb) | b ∈ OX,pj \ {0} } = max{µ(s′jab) | b ∈ OX,pj \ {0} }
≤ ν(s′j) = max{µ(s′jc) | c ∈ OX,pj \ {0} } = max{µ(sja

−1c) | c ∈ OX,pj \ {0} }
≤ ν(sj).

Hence we get the equality ν(s′j) = ν(sj).

For abbreviation, we introduce the following notion of a special subscheme of X.
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Definition 2.3.16. Let X ⊆ PnK be a 0-dimensional scheme, let Supp(X)={p1, . . . , ps},
and let j ∈ {1, . . . , s}. We say that a subscheme Y ⊆ X is a pj-subscheme if the

following conditions are satisfied:

(i) OY,pk = OX,pk for k 6= j.

(ii) The map OX,pj � OY,pj is an epimorphism.

A pj-subscheme Y ⊆ X is called maximal if deg(Y) = deg(X)− κj.

For example, let X ⊆ PnK be a 0-dimensional scheme which has K-rational support.

A maximal pj-subscheme of X is nothing but a subscheme Y ⊆ X of degree deg(Y) =

deg(X)− 1 with OY,pj 6= OX,pj .

From now on, if no ambiguity arises, we say “a pj-subscheme of X” without speci-

fying j ∈ {1, . . . , s}.
Given a 0-dimensional scheme X ⊆ PnK , at each pj ∈ Supp(X) we define a relation ∼

on the socle G(OX,pj) by sj ∼ s′j ⇔ sj = as′j for some a ∈ OX,pj \ mX,pj . It is easy

to see that ∼ is an equivalence relation. The equivalence class of sj under ∼, denoted

by [sj], is defined as [sj] = { s′j ∈ G(OX,pj) | sj ∼ s′j }. We set

Usj =
{

(0, . . . , 0, uj, 0, . . . , 0) ∈
s∏
j=1

OX,pj | uj ∈ [sj]
}
.

Proposition 2.3.17. Let X be a 0-dimensional subscheme of PnK with support

Supp(X) = {p1, . . . , ps}. There is a 1-1 correspondence{
maximal pj-subschemes

of the scheme X

}
←→

{
subsets Usj ⊆

∏s
j=1OX,pj

with sj ∈ G(OX,pj) \ {0}

}
Proof. Let Y ⊆ X be a maximal pj-subscheme, and let {ej1, . . . , ejκj} ⊆ OX,pj be such

that whose residue classes form a K-basis of K(pj). Let fY ∈ (IY/X)αY/X \ {0}, and

write ı̃(fY) = (0, . . . , 0, sjT
αY/X
j , 0, . . . , 0) ∈ R̃. Clearly, αY/X ≤ rX and sj 6= 0. We claim

that sj ∈ G(OX,pj). Indeed, if otherwise, then there is an element a ∈ mX,pj such that

asj 6= 0. Suppose there are c1, . . . , cκj+1 ∈ K such that

c1ej1sj + · · ·+ cκjejκjsj + cκj+1asj = (c1ej1 + · · ·+ cκjejκj + cκj+1a)sj = 0.

If c1ej1 + · · · + cκjejκj 6= 0 in K(pj), then c1ej1 + · · · + cκjejκj is a unit element, so is

c1ej1 + · · · + cκjejκj + cκj+1a (as a ∈ mX,pj). It follows from the above equality that

sj = 0, it is impossible. So, we must have c1ej1 + · · · + cκjejκj = 0. This implies

c1 = · · · = cκj = 0, since {ej1, . . . , ejκj} is a K-basis of K(pj). From this we deduce
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cκj+1asj = 0, hence cκj+1 = 0 (as asj 6= 0). Therefore the set {ej1sj, . . . , ejκjsj, asj}
is K-linearly independent. Let fjkj = ı̃−1((0, . . . , 0, ejkjsjT

rX
j , 0, . . . , 0)) ∈ (IY/X)rX

for kj = 1, . . . ,κj and fasj = ı̃−1((0, . . . , 0, asjT
rX
j , 0, . . . , 0)) ∈ RrX . Then we have

x
αY/X
0 fasj = fafY, where fa = ı̃−1((0, . . . , 0, aT rXj , 0, . . . , 0)) ∈ RrX , and so Lemma 2.3.12

yields fasj ∈ 〈 fY 〉
sat
R ⊆ IY/X. Thus we get

dimK(IY/X)rX ≥ dimK

〈
fj1, . . . , fjκj , fasj

〉
K

= κj + 1

and hence deg(Y) < deg(X)− κj, a contradiction.

Next we consider f ∈ (IY/X)i \ {0} with i ≥ αY/X. The previous claim also tells us

that fpj ∈ G(OX,pj) \ {0}. If fpj ∈ G(OX,pj) \ [sj], then it is not difficult to check that

{ fpj , ej1sj, . . . , ejκjsj } is K-linearly independent. This implies deg(Y) < deg(X)−κj,
and it is impossible. Hence we have fpj ∈ [sj].

Let g ∈ Ri \ {0} with i ≥ αY/X be such that ı̃(g) = (0, . . . , 0, gpjT
i
j , 0, . . . , 0) and

gpj ∈ [sj]. We are able to write gpj = asj for some a ∈ OX,pj \ mX,pj . Using a

similar argument as the previous part we get g ∈ 〈 fY 〉sat
R ⊆ IY/X. Therefore the image

of IY/X \ {0} in
∏s

j=1OX,pj is Usj with sj ∈ G(OX,pj) \ {0}, as was to be shown.

Conversely, let (0, . . . , 0, sj, 0, . . . , 0) ∈
∏s

j=1OX,pj with sj ∈ G(OX,pj) \ {0}, and

let f = ı̃−1((0, . . . , 0, sjT
rX
j , 0, . . . , 0)) ∈ RrX . We set Y := Z+(f) ⊆ X. Then we

have IY/X = 〈 f 〉sat
R . Obviously, the scheme Y is a pj-subscheme of X. It suffices

to prove deg(Y) = deg(X) − κj. Let fjkj = ı̃−1((0, . . . , 0, ejkjsjT
rX
j , 0, . . . , 0)) ∈ RrX

and gjkj = ı̃−1((0, . . . , 0, ejkjT
rX
j , 0, . . . , 0)) ∈ RrX for kj = 1, . . . ,κj. We see that

xrX0 fjkj = gjkjf for every kj ∈ {1, . . . ,κj}, and so Lemma 2.3.12 implies fjkj ∈ (IY/X)rX .

Thus we get the inequality

dimK(IY/X)rX ≥ dimK

〈
fj1, . . . , fjκj

〉
K

= κj.

Moreover, for h ∈ (IY/X)rX \ {0}, there is a number m ∈ N such that xm0 h ∈ 〈 f 〉R.

This clearly forces hpj = asj for some a ∈ OX,pj \ mX,pj and hpk = 0 for k 6= j. Let us

write asj =
∑κj

kj=1 cjkjejkjsj for some cj1, . . . , cjκj ∈ K. Then ı̃(h) = ı̃(
∑κj

kj=1 cjkjfjkj).

Since the map ı̃ is injective, we have h =
∑κj

kj=1 cjkjfjkj ∈
〈
fj1, . . . , fjκj

〉
K

. This

implies dimK(IY/X)rX ≤ κj, and therefore this inequality becomes an equality. Hence

we obtain dimK(IY/X)i+rX = κj for i ≥ 0 or deg(Y) = deg(X)− κj, as desired.

Corollary 2.3.18. A 0-dimensional scheme X ⊆ PnK contains a subscheme Y ⊆ X of

degree deg(X)− 1 if and only if X(K) 6= ∅.

Proof. This follows from Remark 2.3.13(b) and Proposition 2.3.17.
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Let Y be a maximal pj-subscheme of X, and let sj ∈ G(OX,pj) \ {0} be a socle

element corresponding to a non-zero element of (IY/X)αY/X . We shall also say that sj

is a socle element of OX,pj corresponding to Y. Let {ej1, . . . , ejκj} ⊆ OX,pj such that

whose residue classes form a K-basis of K(pj). For kj = 1, . . . ,κj, we set

f ∗jkj := ı̃−1((0, . . . , 0, ejkjsjT
µ(ejkj sj)

j , 0, . . . , 0)).

It follows from Lemma 2.3.15 that the maximal degree of {f ∗j1, . . . , f ∗jκj} depends neither

on the choice of the element sj nor on the specific choice of {ej1, . . . , ejκj}.

Definition 2.3.19. (i) The set {f ∗j1, . . . , f ∗jκj} is called a set of minimal separa-

tors of Y in X (with respect to sj and {ej1, . . . , ejκj}).

(ii) The set {fj1, . . . , fjκj}, where fjkj = x
rX−µ(ejkj sj)

0 f ∗jkj for kj = 1, . . . ,κj, is said to

be a set of separators of Y in X (with respect to sj and {ej1, . . . , ejκj}).

(iii) The number

νY/X := max{ deg(f ∗jkj) | kj = 1, . . . ,κj }

is called the maximal degree of a minimal separator of Y in X.

Remark 2.3.20. If X has K-rational support, then κ1 = · · · = κs = 1 and, for every

subscheme Y ⊆ X of degree deg(Y) = deg(X) − 1, a minimal separator f ∗Y of Y in X
is exactly a non-zero element of (IY/X)αY/X , i.e., f ∗Y is a minimal separator of Y in X
in the sense of [Kr2]. We also see that (IY/X)αY/X+i = 〈xi0 · f ∗Y 〉K for i ≥ 0, and an

element fY ∈ (IY/X)rX \ {0} is a separator of Y in X. Especially, when X = {p1, . . . , ps}
is a projective point set in PnK , for j ∈ {1, . . . , s} we write pj = (1 : pj1 : · · · : pjn) with

pjk ∈ K, and for f ∈ R we set f(pj) := F (1, pj1, . . . , pjn), where F is any representative

of f in P . Then f ∈ RrX is a separator of X \ {pj} in X if and only if f(pj) 6= 0 and

f(pk) = 0 for k 6= j. We shall say that a separator fj ∈ RrX of X \ {pj} in X is a

normal separator if fj(pk) = δjk for 1 ≤ k ≤ s.

Proposition 2.3.21. Let Y ⊆ X be a maximal pj-subscheme, let sj be a socle element

of OX,pj corresponding to Y, let {ej1, . . . , ejκj} ⊆ OX,pj such that whose residue classes

form a K-basis of K(pj), and let {f ∗j1, . . . , f ∗jκj} be a set of minimal separators of Y
in X with respect to sj and {ej1, . . . , ejκj}. The following assertions hold true.

(i) We have IY/X = 〈 f 〉sat
R for every f ∈ (IY/X)i \ {0} with i ≥ αY/X.
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(ii) We have νY/X ≤ rX and the Hilbert function of Y satisfies

HFY(i) =


HFX(i) if i < αY/X,

≤ HFX(i)− 1 if αY/X ≤ i < νY/X,

HFX(i)− κj if i ≥ νY/X.

(iii) There is a special choice of the set { ej1, . . . , ejκj } ⊆ OX,pj such that whose residue

classes form a K-basis of K(pj), IY/X =〈f ∗j1, . . . , f ∗jκj〉R, and for all i ∈ Z we have

∆ HFY(i) = ∆ HFX(i)−#
{
f ∗jkj ∈ {f

∗
j1, . . . , f

∗
jκj} | deg(f ∗jkj) = i

}
.

Proof. (i) It is clear that 〈 f 〉sat
R ⊆ IY/X. For the other inclusion, we write

ı̃(f) = (0, . . . , 0, asjT
i
j , 0, . . . , 0) ∈ R̃

for some a ∈ OY,pj \ mX,pj . Similarly, for every g ∈ (IY/X)k with k ≥ αY/X we have

ı̃(g) = (0, . . . , 0, bsjT
k
j , 0, . . . , 0) with b ∈ OX,pj . If b is not unit of OX,pj , then bsj = 0,

so g = 0 ∈ 〈 f 〉sat
R . Otherwise, let h = ı̃−1((0, . . . , 0, ba−1T rXj , 0, . . . , 0)) ∈ RrX . Then

xrX+i
0 g = xk0hf ∈ 〈 f 〉R, so g ∈ 〈 f 〉sat

R by Lemma 2.3.12. Hence we have IY/X = 〈 f 〉sat
R .

(ii) Observe that αY/X ≤ νY/X ≤ rX and HFY(i) ≤ HFX(i)− 1 for αY/X ≤ i < νY/X.

It remains to show that HFY(i + νY/X) = HFX(i + νY/X) − κj for i ≥ 0. We set

gjkj := x
νY/X−deg(f∗jkj

)

0 f ∗jkj ∈ (IY/X)νY/X for all kj = 1, . . . ,κj. Then we have ı̃(gjkj) =

(0, . . . , 0, ejkjsjT
νY/X
j , 0, . . . , 0) ∈ R̃. Since {ej1sj, . . . , ejκjsj} is K-linearly independent,

this implies

κj = dimK

〈
gj1, . . . , gjκj

〉
K
≤ dimK(IY/X)νY/X ≤ κj.

So dimK(IY/X)νY/X = dimK(IY/X)i+νY/X = κj for all i ≥ 0. Therefore HFY(i + νY/X) =

HFX(i + νY/X) − κj for all i ≥ 0, in particular, HFY(i + rX) = deg(X) − κj = deg(Y)

for all i ≥ 0.

(iii) We may construct the set {ej1, . . . , ejκj} ⊆ OX,pj with the desired properties as

follows. Let dαY/X = HFIY/X(αY/X), dαY/X+i = HFIY/X(αY/X + i) − HFIY/X(αY/X + i − 1)

for i = 1, . . . , νY/X − αY/X. Then we have κj = dαY/X + dαY/X+1 + · · ·+ dνY/X . We begin

taking f ∗j1, . . . , f
∗
jdαY/X

a K basis of (IY/X)αY/X . For i = 1, . . . , νY/X−αY/X, if dαY/X+i > 0,

we choose f ∗j ∑
0≤k<i

dαY/X+k+1, . . . , f
∗
j

∑
0≤k≤i

dαY/X+k
such that the set

{
xi0f

∗
j1, . . . , x

i
0f
∗
jdαY/X

, . . . ,x0f
∗
j

∑
0≤k<i−1

dαY/X+k+1, . . . , x0f
∗
j

∑
0≤k≤i−1

dαY/X+k
,

f ∗j ∑
0≤k<i

dαY/X+k+1, . . . , f
∗
j

∑
0≤k≤i

dαY/X+k

}
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forms a K-basis of (IY/X)αY/X+i. Then the ideal J = 〈f ∗j1, . . . , f ∗jκj〉R is a subideal of IY/X
and HFJ(i) = HFIY/X(i) for all i ≤ νY/X. By (ii) we have HFJ(i) = HFIY/X(i) = κj
for i ≥ νY/X. This implies IY/X = J = 〈f ∗j1, . . . , f ∗jκj〉R. Moreover, it follows from the

construction of the set {f ∗j1, . . . , f ∗jκj} that for all i ∈ Z we have

HFIY/X(i) = #
{
f ∗jkj ∈ {f

∗
j1, . . . , f

∗
jκj} | deg(f ∗jkj) ≤ i

}
.

Thus we obtain

∆ HFY(i) = HFY(i)− HFY(i− 1)

= (HFX(i)− HFIY/X(i))− (HFX(i− 1)− HFIY/X(i− 1))

= ∆ HFX(i)− (HFIY/X(i)− HFIY/X(i− 1))

= ∆ HFX(i)−#
{
f ∗jkj ∈ {f

∗
j1, . . . , f

∗
jκj} | deg(f ∗jkj) = i

}
.

Now let us write ı̃(f ∗jkj) = (0, . . . , 0, ejkjsjT
deg(f∗jkj

)

j , 0, . . . , 0) for kj = 1, . . . ,κj.
Obviously, the set {ej1sj, . . . , ejκjsj} is K-linearly independent. It remains to show

that the residue classes {ej1, . . . , ejκj} form a K-basis of K(pj). Suppose there are

cj1, . . . , cjκj ∈ K such that cj1ej1 + · · · + cjκjejκj = 0. It follows that the element

cj1ej1 + · · ·+ cjκjejκj is contained in mX,pj . This implies cj1ej1sj + · · ·+ cjκjejκjsj = 0.

Since {ej1sj, . . . , ejκjsj} is K-linearly independent, we deduce cj1 = · · · = cjκj = 0.

Therefore the set {ej1, . . . , ejκj} is a K-basis of K(pj), and the conclusion follows.

Note that the set {f ∗j1, . . . , f ∗jκj} of minimal separators of a maximal pj-subscheme

Y in X as in Proposition 2.3.21(iii) is not necessarily a homogeneous minimal system

of generators of IY/X, as the following example shows.

Example 2.3.22. Let X ⊆ P2
Q be the 0-dimensional reduced complete intersection

with IX = 〈X2, X
5
0X1− 11

6
X4

0X
2
1 + 2X3

0X
3
1 − 2X2

0X
4
1 +X0X

5
1 − 1

6
X6

1 〉. Then X contains

the projective point set Y = {(1 : 0 : 0), (1 : 1 : 0), (1 : 2 : 0), (1 : 3 : 0)} which is a

maximal p-subscheme, where p is the closed point corresponding to the homogeneous

prime ideal P = 〈X2
1 + X2

0 , X2〉. We see that deg(Y) = 4 = deg(X) − 2, and two

minimal separators of Y in X are f ∗1 = x3
0x1 − 11

6
x2

0x
2
1 + x0x

3
1 − 1

6
x4

1 and f ∗2 = x1f
∗
1 .

Moreover, the equality of the Castelnuovo function of Y holds true, while IY/X = 〈f ∗1 〉R.

Definition 2.3.23. Let X ⊆ PnK be a 0-dimensional scheme, and let Supp(X) =

{p1, . . . , ps}. For every pj ∈ Supp(X), the degree of pj in X is defined as

degX(pj) := min
{
νY/X

∣∣ Y is a maximal pj-subscheme of X
}
.
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Remark 2.3.24. (a) In the sense of the above definition, the degree of pj in X is

given by

degX(pj) = min{ ν(sj) | sj ∈ G(OX,pj) \ {0} }.

(b) If X has K-rational support, then we have

degX(pj) = min{αY/X | Y is a maximal pj-subscheme of X }.

If, in addition, X is reduced, then degX(pj) = αX\{pj}/X for all j = 1, . . . , s.

(c) We have 0 ≤ degX(pj) ≤ rX for all pj ∈ Supp(X). In particular, if X is a projective

point set in PnK , then there always exists a point pj ∈ X with maximal degree

degX(pj) = rX (cf. [GKR, Proposition 1.14]).

We end this section with following two lemmata in which we generalize some results

found in [Kr3, Section 1].

Lemma 2.3.25. Let X ⊆ PnK be a 0-dimensional scheme, let f ∈ Ri with i ≥ 0, let Y
be a maximal pj-subscheme of X, and let {fj1, . . . , fjκj} ⊆ RrX be a set of separators

of Y in X.

(i) We have f ·fjl =
∑κj

kj=1 c
l
jkj
xi0fjkj for some clj1, . . . , c

l
jκj ∈ K and l ∈ {1, . . . ,κj}.

(ii) If f · fjl = 0 for some l ∈ {1, . . . ,κj}, then f · fjλ = 0 for all λ ∈ {1, . . . ,κj}.
Moreover, f · fjl 6= 0 if and only if fpj /∈ mX,pj .

(iii) Let Y′ be a maximal pj′-subscheme of X, and let {fj′1, . . . , fj′κj′} ⊆ RrX be a set

of separators of Y′ in X. Then we have

fjkj · fj′kj′ ∈

x
rX
0

〈
fj1, . . . , fjκj

〉
K

if j = j′ and dimK(pj)(OX,pj) = 1,

〈0〉 otherwise.

Proof. We derive claim (i) from the fact that

f · fjl ∈ (IY/X)rX+i =
〈
xi0fj1, . . . , x

i
0fjκj

〉
K

for l = 1, . . . ,κj. Claims (ii) and (iii) follow by using the injection ı̃ and (fjkj)pj is a

socle element of G(OX,pj) for kj = 1, . . . ,κj.

Lemma 2.3.26. Let X ⊆ PnK be a reduced 0-dimensional scheme with support

Supp(X) = {p1, . . . , ps}, let {fj1, . . . , fjκj} ⊆ RrX be a set of separators of X\{pj} in X
for j = 1, . . . , s.
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(i) For every i ≥ rX the set {xi−rX0 f11, . . . , x
i−rX
0 f1κ1 , . . . , x

i−rX
0 fs1, . . . , x

i−rX
0 fsκs } is a

K-basis of Ri.

(ii) If f ∈ Ri and a11x
j
0f11 + · · · + asκsx

j
0fsκs ∈ Rj+rX for some i, j ≥ 0 and

a11, . . . , asκs ∈ K, then

f · (a11x
j
0f11 + · · ·+ asκsx

j
0fsκs) =

κ1∑
l=1

a1lc
l
11x

i+j
0 f11 + · · ·+

κs∑
l=1

aslc
l
sκsx

i+j
0 fsκs

where clj1, . . . , c
l
jκj ∈ K satisfy f · fjl =

∑κj
kj=1 c

l
jkj
xi0fjkj for j = 1, . . . , s and

l ∈ {1, . . . ,κj}.

Proof. (i) Since X is reduced, we have OX,pj = K(pj) = G(OX,pj) for j = 1, . . . , s. For

i ≥ rX, we see that

ı̃(xi−rX0 fjkj) = (0, . . . , 0, ejkjT
i
j , 0, . . . , 0) ∈ R̃,

where {ej1, . . . , ejκj} is the K-basis of OX,pj , for j = 1, . . . , s and for kj = 1, . . . ,κj.
Then it is not difficult to show that the set { ı̃(xi−rX0 f11), . . . , ı̃(xi−rX0 fsκs) } is K-linearly

independent. Thus this set forms a K-basis of R̃i for all i ≥ rX. Since for every

i ≥ rX the restriction ı̃|Ri : Ri → R̃i is an isomorphism of K-vector spaces, this implies

{xi−rX0 f11, . . . , x
i−rX
0 fsκs } is a K-basis of Ri.

(ii) This follows from Lemma 2.3.25(i).

2.4 Trace Maps for 0-Dimensional Schemes

As in the previous section we let K be an arbitrary field, let X ⊆ PnK be a 0-dimensional

scheme such that Supp(X) ∩ Z+(X0) = ∅, let IX be the homogeneous vanishing ideal

of X in P = K[X0, . . . , Xn], and let R = P/IX be the homogeneous coordinate ring

of X. Also, we denote the image of Xi in R by xi for i = 0, . . . , n. Then x0 is not a

zerodivisor of R and R is a graded-free K[x0]-module of rank m = deg(X).

Let <σ be a degree-compatible term ordering on Tn. The affine ideal of X is

IaX = (IX)deh ⊆ A = K[X1, . . . , Xn]. Then we have O = Tn \ LTσ(IaX) = {T1, . . . , Tm }
with Tj = X

αj1
1 · · ·Xαjn

n and αj = (αj1, . . . , αjn) ∈ Nn for j = 1, . . . ,m. W.l.o.g. we

assume that T1 <σ · · · <σ Tm. Let tj = Tj + IX ∈ R and set deg(tj) := deg(Tj) = nj

for j = 1, . . . ,m. Then n1 ≤ · · · ≤ nm and the set B = { t1, . . . , tm } is a K[x0]-basis

of R. From now on, if not stated otherwise, as a K[x0]-basis of R we always choose

the above K[x0]-basis B = { t1, . . . , tm }.
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Definition 2.4.1. Let ϕ ∈ End(R) and let B = { t1, . . . , tm } be a K[x0]-basis of R.

Write ϕ(tj) =
∑m

k=1 ajktk with aj1, . . . , ajm ∈ K[x0] for j = 1, . . . ,m. The trace and

norm of ϕ (independent of choice of the basis) are given by

Tr(ϕ) =
m∑
j=1

ajj and N(ϕ) = det(ajk).

Definition 2.4.2. Let f ∈ R, and let µf : R→ R denote the multiplication by f . The

map TrR/K[x0] : R → K[x0] defined by TrR/K[x0](f) = Tr(µf ) is called the canonical

trace map of R/K[x0], and NR/K[x0] : R → K[x0] defined by NR/K[x0](f) = N(µf ) is

called the canonical norm map of R/K[x0].

It follows from the definition that TrR/K[x0] ∈ HomK[x0](R,K[x0]), TrR/K[x0](1R) =

m, NR/K[x0](f1f2) = NR/K[x0](f1) ·NR/K[x0](f2) for f1, f2 ∈ R, and NR/K[x0](f) is a unit

if and only if f is a unit of R. We collect some results about canonical trace maps and

canonical norm maps in the following proposition (cf. [Ku5, F.4,5,6,7]).

Proposition 2.4.3. (i) We have TrR/K[x0] =
∑m

i=1 tit
∗
i , where the set { t∗1, . . . , t∗m }

in HomK[x0](R,K[x0]) is the dual basis of { t1, . . . , tm }.
(ii) Base change: If S/K[x0] is an algebra, then Tr(S⊗K[x0]R)/S = idS ⊗K[x0] TrR/K[x0]

and N(S⊗K[x0]R)/S(1⊗ f) = 1S · NR/K[x0](f) for every f ∈ R.

(iii) Direct products: Let S = S1 × · · · × Sn be a direct product of finitely generated

free K[x0]-algebras S1, . . . , Sn. Then for s = (s1, . . . , sn) ∈ S we have

TrS/K[x0](s) =
n∑
i=1

TrSi/K[x0](si) and NS/K[x0](s) =
n∏
i=1

NSi/K[x0](si).

(iv) Transitive law: Let T/R be another finitely generated free algebra. Then TrT/K[x0]

and NT/K[x0] are defined, and

TrT/K[x0] = TrR/K[x0] ◦TrT/R and NT/K[x0] = NR/K[x0] ◦ NT/R.

Definition 2.4.4. Let S/K be a standard graded algebra, and let M and N be

graded S-modules. We say that a homomorphism ϕ : M → N has degree i if

deg(ϕ(v)) = i + deg(v) for every homogeneous element v ∈ M . The K-vector space

of all homomorphisms of degree i from M to N is denoted by HomS(M,N)i. A ho-

momorphism φ : M → N is called homogeneous if φ ∈ HomS(M,N)i for some i, we

also say that φ is a (homogeneous) homomorphism of graded modules. We put

HomS(M,N) =
⊕
i∈Z

HomS(M,N)i,

and consider it as a graded S-module with {HomS(M,N)i}i∈Z as its grading.



2.4. Trace Maps for 0-Dimensional Schemes 43

Notice that 0 has arbitrary degree, thus in order to check whether ϕ ∈ HomS(M,N)

has degree i, it suffices to check the condition deg(ϕ(v)) = i + deg(v) only on the

homogeneous elements outside Ker(ϕ). In general, the graded S-module HomS(M,N)

is a submodule of HomS(M,N). We have equality in the following case.

Proposition 2.4.5. If M is a finitely generated graded S-module and N is a graded

S-module, then HomS(M,N) = HomS(M,N).

Proof. See [Pev, Proposition 2.7].

Now let us turn back to consider the algebra R/K[x0]. We denote ωR/K[x0] :=

HomK[x0](R,K[x0])(−1) and call it the canonical module of R/K[x0]. For i ∈ Z, the

K-vector space (ωR/K[x0])i consists of all K[x0]-linear homomorphisms ϕ : R → K[x0]

with ϕ(Rj) ⊆ K[x0]j+i for all j ∈ Z. The R-module structure of ωR/K[x0] is defined

by setting (f · ϕ)(f ′) = ϕ(ff ′) for all f, f ′ ∈ R and ϕ ∈ ωR/K[x0]. Several properties

of ωR/K[x0] are collected as follows.

Proposition 2.4.6. (i) The graded R-module ωR/K[x0] is finitely generated.

(ii) The element x0 is not a zerodivisor on ωR/K[x0], i.e., for ϕ ∈ ωR/K[x0] if x0 ·ϕ = 0

then ϕ = 0.

(iii) The Hilbert function of ωR/K[x0] satisfies

HFωR/K[x0]
(i) = deg(X)− HFX(−i) for all i ∈ Z.

(iv) If Y ⊆ X is a subscheme and RY = R/IY/X is its homogeneous coordinate ring,

then there is a canonical isomorphism of graded R-modules

ωRY/K[x0]
∼= {ϕ ∈ ωR/K[x0] | IY/X · ϕ = 0 }.

Proof. See [Kr3, Satz 2.3-4] or [GW].

Observe that the dual basis B∗ = { t∗1, . . . , t∗m } of B = { t1, . . . , tm } consists of

homogeneous homomorphisms in HomK[x0](R,K[x0]) with deg(t∗j) = − deg(tj) = −nj
for j = 1, . . . ,m. If we write α =

∑m
j=1 gjt

∗
j ∈ HomK[x0](R,K[x0]) for g1, . . . , gm ∈ R,

then α is homogeneous of degree i if and only if gj is homogeneous of degree nj + i

for all j = 1, . . . ,m. It is clear that the canonical trace map TrR/K[x0] is homogeneous

of degree zero.
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Definition 2.4.7. The algebra R/K[x0] has a trace map σ if there exists an element

σ ∈ HomK[x0](R,K[x0]) such that

HomK[x0](R,K[x0]) = R · σ.

If the algebra R/K[x0] has a trace map σ, it is called a homogeneous trace map if

it is a homogeneous element of HomK[x0](R,K[x0]).

Remark 2.4.8. (a) In general, the canonical trace map is not a trace map, i.e., we

do not always have HomK[x0](R,K[x0]) = R · TrR/K[x0].

(b) If R/K[x0] has a trace map σ, then HomK[x0](R,K[x0]) is a free R-module with

basis {σ}. For this we have to prove AnnR(σ) = 〈0〉. Let f ∈ R be such that

f · σ = 0. We have 0 = (f · σ)(f ′) = σ(ff ′) = (f ′ · σ)(f) for every f ′ ∈ R. This

implies α(f) = 0 for every α ∈ HomK[x0](R,K[x0]). If we write f =
∑m

j=1 gjtj

for some g1, . . . , gm ∈ K[x0], then we get gj = t∗j(
∑m

j=1 gjtj) = t∗j(f) = 0 for

j = 1, . . . ,m, and hence f = 0.

(c) Let σ be a trace map of R/K[x0]. An element σ′ ∈ HomK[x0](R,K[x0]) is a trace

map of R/K[x0] if and only if there exists a unit u ∈ R with σ′ = u · σ.

Proposition 2.4.9. If σ is a trace of the algebra R/K[x0], there exists a dual basis

{ t′1, . . . , t′m } to the basis B = { t1, . . . , tm } with respect to σ; i.e., there are elements

t′1, . . . , t
′
m ∈ R such that σ(tjt

′
k) = δjk for j, k = 1, . . . ,m. In this case, we have

TrR/K[x0] = (
m∑
j=1

tjt
′
j) · σ.

Proof. (See [Ku5, F.4]) Write t∗j = t′j · σ with t′j ∈ R and j = 1, . . . ,m for the elements

of the dual basis of B. Then σ(tjt
′
k) = t∗k(tj) = δjk for j, k = 1, . . . ,m. Being the images

of the t∗j under the isomorphism HomK[x0](R,K[x0])∼=R, the t′j form a basis of R/K[x0].

Thus Proposition 2.4.3(i) yields TrR/K[x0] =
∑m

j=1 tjt
∗
j =

(∑m
j=1 tjt

′
j

)
· σ.

Next we take a look at the enveloping algebra R ⊗K[x0] R of R/K[x0]. For i ∈ Z,

we let (R ⊗K[x0] R)i denote the subgroup of R ⊗K[x0] R generated by the elements of

the form f ⊗ f ′ where f ∈ Rj and f ′ ∈ Rk with j + k = i. It is easy to check that

R⊗K[x0] R =
⊕
i∈Z

(R⊗K[x0] R)i

and (R⊗K[x0] R)i · (R⊗K[x0] R)j ⊆ (R⊗K[x0] R)i+j for all i, j ∈ Z. Hence R⊗K[x0] R is

a graded K[x0]-algebra with its grading {(R⊗K[x0] R)i}i∈Z.
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Let J be the kernel of the canonical multiplication map µ : R⊗K[x0] R→ R given

by µ(f ⊗ g) = fg for all f, g ∈ R. The following lemma gives us a relation between the

R-module AnnR⊗K[x0]R(J ) and HomK[x0](R,K[x0]) which follows from [Ku5, F.9].

Proposition 2.4.10. We have an isomorphism of graded K[x0]-modules of degree zero

Θ : R⊗K[x0] R −→ HomK[x0](HomK[x0](R,K[x0]), R)

f =
∑
k

ak ⊗ bk 7−→ Θ(f) with Θ(f)(α) 7→
∑
k

α(ak)bk, α ∈ HomK[x0](R,K[x0]).

In particular, the homomorphism Θ induces an isomorphism of graded R-modules

Θ : AnnR⊗K[x0]R(J )
∼−→ HomR(HomK[x0](R,K[x0]), R).

Corollary 2.4.11. If R/K[x0] has a trace map, the following assertions hold true.

(i) AnnR⊗K[x0]R(J ) is a free R-module of rank 1.

(ii) The isomorphism Θinduces a bijection between the set of all trace maps ofR/K[x0]

and the set of all generators of the R-module AnnR⊗K[x0]R(J ): Each trace map

σ in HomK[x0](R,K[x0]) is mapped to the unique element ∆σ =
∑m

j=1 t
′
j ⊗ tj

in AnnR⊗K[x0]R(J ) such that
∑m

j=1 σ(t′j)tj = 1.

(iii) There is a one-to-one correspondence between the homogeneous traces of R/K[x0]

and the homogeneous generators of AnnR⊗K[x0]R(J ).

(iv) If
∑m

j=1 gj⊗tj generates the R-module AnnR⊗K[x0]R(J ) and σ∈HomK[x0](R,K[x0])

is such that
∑m

j=1 σ(gj)tj = 1, then σ is a trace map and ∆σ =
∑m

j=1 gj⊗tj; hence

{g1, . . . , gm} is the dual basis to {t1, . . . , tm} with respect to σ.

Proof. See [Ku5, F.10] and [Ku7, H.20].

Corollary 2.4.12. Suppose R/K[x0] has a trace map σ. Let { t′1, . . . , t′m } be the dual

basis to { t1, . . . , tm } with respect to σ, and let ∆σ =
∑m

j=1 t
′
j ⊗ tj. Then we have

TrR/K[x0] = µ(∆σ) · σ and µ(∆σ) =
m∑
j=1

TrR/K[x0](tj)t
′
j.

In particular, TrR/K[x0] is a trace map if and only if µ(∆σ) is a unit of R.

Proof. By Proposition 2.4.9, we have

TrR/K[x0] = (
m∑
j=1

tjt
′
j) · σ = µ(

m∑
j=1

t′j ⊗ tj) · σ = µ(∆σ) · σ.
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Moreover, for k = 1, . . . ,m, we see that

((
m∑
j=1

TrR/K[x0](tj)t
′
j) · σ)(tk) = σ(

m∑
j=1

TrR/K[x0](tj)t
′
jtk) =

m∑
j=1

TrR/K[x0](tj)σ(t′jtk)

=
m∑
j=1

TrR/K[x0](tj)δjk = TrR/K[x0](tk).

Thus µ(∆σ) · σ = TrR/K[x0] = (
∑m

j=1 TrR/K[x0](tj)t
′
j) · σ. Since AnnR(σ) = 〈0〉, we get

the equality µ(∆σ) =
∑m

j=1 TrR/K[x0](tj)t
′
j. Finally, the additional claim follows from

Remark 2.4.8(c).

Recall that the 0-dimensional local ring R = R/〈x0〉 is a standard graded K-

algebra and has HFR(i) = ∆ HFX(i) for all i ∈ Z. For simplicity of notation, we

denote the residue class of elements of R in R with a bar. If B = { t1, . . . , tm } is

the K[x0]-basis of R, then B = { t1, . . . , tm } is a K-basis of R as a K-vector space.

For α ∈ HomK[x0](R,K[x0]), we see that α(x0R) = 〈x0 〉K[x0]. So, α induces an el-

ement α ∈ HomK(R,K) with α(f) = α(f) for all f ∈ R. The dual basis B∗ of B
is thereby mapped to the dual basis {t∗1, . . . , t

∗
m} of B. [Ku7, H.5] shows that the

R-linear map ϕ : HomK[x0](R,K[x0]) → HomK(R,K) defined by ϕ(α) = α for all

α ∈ HomK[x0](R,K[x0]) induces an isomorphism of graded R-modules

HomK(R,K) ∼= HomK[x0](R,K[x0])/〈x0〉HomK[x0](R,K[x0]).

An application of this isomorphism and Nakayama’s Lemma for graded modules implies

the following result (cf. [Ku7, H.13]).

Lemma 2.4.13. Let σ ∈ HomK[x0](R,K[x0]) be a homogeneous element. Then σ is a

trace map of R/K[x0] if and only if the induced element σ ∈ HomK(R,K) is a trace

map of R/K.

Our next theorem provides characterizations of the existence of a homogeneous

trace map of the algebra R/K[x0].

Theorem 2.4.14. Let G(R) denote the socle of R, i.e., G(R) = {x ∈ R | m ·x = 0 }.
The following conditions are equivalent.

(i) The algebra R/K has a trace map.

(ii) The algebra R/K has a homogeneous trace map.

(iii) We have dimK(G(R)) = 1.

(iv) The algebra R/K[x0] has a homogeneous trace map.
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Proof. The equivalence of conditions (i),(ii) and (iii) follows from [Ku7, H.14 and H.16].

It remains to show that those conditions are equivalent to (iv). By Lemma 2.4.13, it

suffices to show that for a homogeneous trace map σ ∈ HomK(R,K), there exists a

homogeneous element σ ∈ HomK[x0](R,K[x0]) such that its induced element is σ. This

follows from the fact that the R-linear map ϕ : HomK[x0](R,K[x0]) → HomK(R,K)

given by α 7→ α is a surjective homogeneous homomorphism of graded modules of

degree zero. Furthermore, given a homogeneous trace map σ ∈ HomK(R,K), we

can construct a homogeneous trace map σ ∈ HomK[x0](R,K[x0]) in detail as follows.

Let rX be the regularity index of HFX. It is easy to check that deg(σ) = −rX and

G(R) = RrX . Thus σ(G(R)) 6= 〈0〉 and σ(Ri) = 〈0〉 for i < rX. Let {t1, . . . , tm}
be the K-basis of R corresponding to the K[x0]-basis {t1, . . . , tm} of R. We write

σ(tj) = cj ∈ K for j = 1, . . . ,m. If deg(tj) = deg(tj) < rX, then cj = 0. Let

σ : R → K[x0] be a K[x0]-linear map with σ(tj) = cj for j = 1, . . . ,m. Clearly,

we have σ ∈ HomK[x0](R,K[x0]) \ {0} and σ(tj) = 0 if deg(tj) < rX. This implies

σ ∈ (HomK[x0](R,K[x0]))−rX \ {0} and its induced element is σ.

Definition 2.4.15. A d-dimensional Noetherian local ring (S,m) is called a Goren-

stein local ring if it is a Cohen-Macaulay local ring of type r = 1, where the type r

is given by

r = dimK(G(S/〈a1, . . . , ad〉)).

Here {a1, . . . , ad} is any parameter system of S (i.e., it generates an m-primary ideal).

A Noetherian ring S is called a Gorenstein ring if Sm is a Gorenstein local ring for

all m ∈ Max(S).

Let S be a graded Noetherian ring and let p be any homogeneous prime ideal of S.

Then p is contained in a homogeneous maximal ideal m of S and Sp is a localization

of Sm (i.e., Sp
∼= (Sm)pSm). Thus if Sm is a Cohen-Macaulay (resp. Gorenstein) local

ring for every homogeneous maximal ideal m of S, then Sp is a Cohen-Macaulay (resp.

Gorenstein) local ring for every homogeneous prime ideal p of S.

Theorem 2.4.16. Let S be a graded Noetherian ring. If Sp is a Cohen-Macaulay local

ring of type ≤ r for every homogeneous prime ideal p, then S is a Cohen-Macaulay

ring of global type ≤ r. In particular, if Sp is Gorenstein for every homogeneous prime

ideal p, then S is Gorenstein.

Proof. See [AG, Theorem 3.1].
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Definition 2.4.17. Let S be a ring, and let T/S be an algebra.

(i) The algebra T/S is called a Gorenstein algebra if it is flat, and if for all

P ∈ Spec(T ) and p = P ∩ S the ring TP/pTP is a Gorenstein local ring.

(ii) The algebra T/S is called unramified if

• For all P ∈ Spec(T ) and p = P ∩ S, we have PTP = pTP.

• k(P)/k(p) is a separable algebraic field extension, where k(P) = TP/PTP

and k(p) = Sp/pSp.

The algebra T/S is said to be étale if it is flat and unramified.

It is well-known that the algebra R/K[x0] is graded-free of rank deg(X). We also

have 〈x0〉K[x0] = m ∩K[x0] and Rm/〈x0〉Rm = (R/〈x0〉R)m = Rm = R. Hence R/K[x0]

is a Gorenstein algebra if and only if R is a Gorenstein local ring. Moreover, we have

the following property.

Proposition 2.4.18. The following assertions are equivalent.

(i) HomK[x0](R,K[x0]) = R · σ ∼= R(rX) with σ ∈ (HomK[x0](R,K[x0]))−rX.

(ii) R is a Gorenstein local ring (i.e., dimK(G(R)) = 1).

(iii) The algebra R/K[x0] is a Gorenstein algebra.

(iv) R is a Gorenstein ring.

Proof. The equivalence of conditions (i), (ii) and (iii) follows from Theorem 2.4.14 and

the preceding argument. Now we show that the conditions (i) and (iv) are equivalent.

By Proposition 2.1.3 in [GW], the Cohen-Macaulay ring R is a Gorenstein ring if and

only if ωR/K[x0]
∼= R(d) for some d ∈ Z. Since HFωR/K[x0]

(i) = deg(X) − HFX(−i)
for i ∈ Z by Proposition 2.4.6(iii), this is equivalent to HomK[x0](R,K[x0]) ∼= R(rX).

Therefore the conclusion follows.

Corollary 2.4.19. Suppose the algebra R/K[x0] has a (homogeneous) trace map.

Then TrR/K[x0] is a trace map if and only if R/K[x0] is étale.

Proof. The claim follows from Corollary 2.4.12 and [Ku5, F.8].



Chapter 3
Various Differents for

0-Dimensional Schemes

The goal of this chapter is to define and study various differents, namely the Noether,

Dedekind and Kähler differents, for a 0-dimensional scheme X ⊆ PnK over an arbitrary

field K. In algebra, these differents have been known for several decades. Many

structural properties of an algebra are encoded in those invariants, or in similar ones

derived from them (cf. [Ku1], [Ku5], [Mac], [SS]). In this chapter we look more closely

at these differents for the scheme X by working out algorithms for the computation

of them, examining and relating their algebraic structures, and investigating their

Hilbert functions.

The chapter contains three sections and each section introduces one kind of these

differents. Section 3.1 begins with a definition of the Noether different (see Defini-

tion 3.1.1). We show that the Noether different is a principal ideal of the homogeneous

coordinate ring R of X when X is arithmetically Gorenstein (see Proposition 3.1.2),

and deduce from Section 2.1 its representations (see Corollary 3.1.5). Additionally, we

indicate how we can explicitly compute a minimal homogeneous system of generators

of a homogeneous ideal of R (see Proposition 3.1.10) and apply it to compute that of

the Noether different (see Proposition 3.1.13).

Section 3.2 is devoted to exploring the Dedekind different. Explicitly, we first

present some results on the homogeneous quotient ring Qh(R) of R (see Proposi-

tions 3.2.1 and 3.2.3). If we restrict to 0-dimensional locally Gorenstein schemes

X ⊆ PnK , the graded-free algebra Qh(R)/K[x0, x
−1
0 ] has a homogeneous trace map.

This enables us to define the Dedekind different for 0-dimensional locally Gorenstein

schemes (see Definition 3.2.4). In Proposition 3.2.5, we describe the Hilbert function of

the Dedekind different and give an upper bound for its regularity index. In particular,
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this upper bound is sharp if X is a projective point set in PnK (see Proposition 3.2.11).

We also characterize 0-dimensional arithmetically Gorenstein schemes in terms of their

Dedekind differents (see Proposition 3.2.8) and give a description of the Dedekind

complementary module (see Proposition 3.2.9). When X is smooth, we show that

the Noether different and the Dedekind different agree (see Theorem 3.2.17). So the

Dedekind different in this case can be computed using the method introduced in Sec-

tion 3.1. In the remainder of this section, we modify slightly the GBM-algorithm which

was proposed by J. Abbott et al [AKR] to compute some special K-bases of the vector

space RrX where rX is the regularity index of R (see Propositions 3.2.22 and 3.2.25) and

apply it to formulate an algorithm for computing the Dedekind different for a locally

Gorenstein scheme X under an additional hypothesis (see Proposition 3.2.29).

The Kähler different for 0-dimensional schemes is introduced in Section 3.3. It is

defined as the first Fitting ideal of the module of Kähler differentials Ω1
R/K[x0]. We

first take a look at relations of the Kähler different and two other differents in the

special case of a complete intersection X (see Corollaries 3.3.5 and 3.3.7). We then

show that the Noether different and the Dedekind different are not equal even when

X is a complete intersection (see Example 3.3.6) and present some general relations

between these differents (see Propositions 3.3.9 and 3.3.12). Moreover, we describe the

Hilbert function of the Kähler different and bound its regularity index when X is a

projective point set in PnK (see Proposition 3.3.14). Next, we relate it to the minimal

separators of X (see Corollary 3.3.16). Finally, we bound the Hilbert polynomial of the

Kähler different for an arbitrary 0-dimensional scheme X ⊆ PnK (see Proposition 3.3.19)

and derive from these bounds some consequences (see Corollaries 3.3.21 and 3.3.22).

Throughout this chapter, we let K be an arbitrary field, let n ≥ 1, and let PnK
be the projective n-space over K. The homogeneous coordinate ring of PnK is P =

K[X0, . . . , Xn] equipped with its standard grading deg(Xi) = 1. Let X ⊆ PnK be

a 0-dimensional scheme such that Supp(X) ∩ Z+(X0) = ∅. By IX we denote the

homogeneous vanishing ideal of X in P . The homogeneous coordinate ring of X is then

given by R = P/IX. The image of Xi in R is denoted by xi for i = 0, . . . , n.

3.1 Noether Differents for 0-Dimensional Schemes

In this section we address the problem of defining and computing the Noether different

for a 0-dimensional scheme X ⊆ PnK . We know that x0 is a non-zerodivisor of R

and the algebra R/K[x0] is graded-free of rank deg(X). Furthermore, the enveloping
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algebra R ⊗K[x0] R of R/K[x0] is a graded ring. Let J be the kernel of the canonical

multiplication map µ : R ⊗K[x0] R → R given by µ(f ⊗ g) = f · g for f, g ∈ R. Note

that µ is an R-linear map preserving degrees and

J = 〈x1 ⊗ 1− 1⊗ x1, . . . , xn ⊗ 1− 1⊗ xn 〉R⊗K[x0]R
.

This implies that J and AnnR⊗K[x0]R(J ) are homogeneous ideals of R ⊗K[x0] R. Con-

sequently, µ(AnnR⊗K[x0]R(J )) is a homogeneous ideal of R.

Definition 3.1.1. The homogeneous ideal ϑN(R/K[x0]) = µ(AnnR⊗K[x0]R(J )) is called

the Noether different of the algebra R/K[x0] (or for X with respect to x0).

First we give descriptions of the Noether different ϑN(R/K[x0]) when the scheme X
is a complete intersection or an arithmetically Gorenstein scheme. Here X is called a

complete intersection if IX can be generated by n homogeneous polynomials, and

it is called arithmetically Gorenstein if R is a Gorenstein ring. Note that if X is a

complete intersection then it is arithmetically Gorenstein, but the converse is not true

in general (see Example 3.1.4).

Proposition 3.1.2. Let X ⊆ PnK be a 0-dimensional scheme, and let rX denote the

regularity index of HFX.

(i) If X is arithmetically Gorenstein and char(K) - deg(X), then ϑN(R/K[x0]) is a

principal ideal of R generated by a non-zero homogeneous element of degree rX.

(ii) If X is a complete intersection with IX = 〈F1, . . . , Fn〉, then we have

ϑN(R/K[x0]) =
〈 ∂(F1,...,Fn)
∂(x1,...,xn)

〉
R
.

(iii) We have ϑN(RU/K[x0]) = ϑN(R/K[x0])U for every multiplicatively closed subset

U ⊆ R.

Proof. Since X is arithmetically Gorenstein, the algebra R/K[x0] has a homogeneous

trace map σ of degree−rX such that HomK[x0](R,K[x0]) = R·σ (see Proposition 2.4.18).

In this case, by Corollary 2.4.11, the graded R-module AnnR⊗K[x0]R(J ) is free of

rank 1 and it is generated by ∆σ, where ∆σ is the preimage under the isomorphism

AnnR⊗K[x0]R(J ) ∼= HomR(HomK[x0](R,K[x0]), R) of ψ : HomK[x0](R,K[x0])→ R given

by ψ(σ) = 1. Hence the Noether different ϑN(R/K[x0]) = µ(AnnR⊗K[x0]R(J )) is

a principal ideal generated by µ(∆σ). Obviously, TrR/K[x0](1) = deg(X) 6= 0 (as

char(K) - deg(X)). It follows from TrR/K[x0] = µ(∆σ) · σ (see Corollary 2.4.12)
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that µ(∆σ) 6= 0. Since the maps µ and Θ−1 are homogeneous of degree zero and

deg(σ) = −rX, we get deg(µ(∆σ)) = rX. Thus claim (i) follows. Claim (ii) follows from

Proposition 2.1.8, and claim (iii) is an immediate consequence of Proposition 2.1.7.

If n = 1, then every 0-dimensional subscheme X of P1
K is always a complete inter-

section. The homogeneous vanishing ideal IX is generated by a non-zero homogeneous

polynomial F1 ∈ P . In this situation, the Noether different of the algebra R/K[x0] is

ϑN(R/K[x0]) = 〈 ∂F1

∂x1
〉. If n > 1 and X ⊆ PnK is a projective point set of degree 1, then

it is clear that ϑN(R/K[x0]) = R.

Let us illustrate the results of this proposition with two more examples.

Example 3.1.3. Let X = {p1, . . . , p9} ⊆ P2
Q be the projective point set given by

p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 2 : 0), p4 = (1 : 0 : 1), p5 = (1 : 1 : 1),

p6 = (1 : 0 : 2), p7 = (1 : 2 : 1), p8 = (1 : 1 : 2), and p9 = (1 : 2 : 2). The vanishing ideal

of X in P = Q[X0, X1, X2] is IX = 〈X2
0X1− 3

2
X0X

2
1 + 1

2
X3

1 , X
2
0X2− 3

2
X0X

2
2 + 1

2
X3

2 〉, and

so X is a complete intersection. By Proposition 3.1.2, the Noether different of R/Q[x0]

is given by

ϑN(R/Q[x0]) =

〈
det

(
x2

0 − 3x0x1 + 3
2
x2

1 0

0 x2
0 − 3x0x2 + 3

2
x2

2

)〉
= 〈(x2

0 − 3x0x1 + 3
2
x2

1)(x2
0 − 3x0x2 + 3

2
x2

2)〉.

Example 3.1.4. Let X ⊆ P3
Q be the projective point set consisting of five points

p1 = (1 : 0 : 0 : 0), p2 = (1 : 0 : 1 : 0), p3 = (1 : 0 : 0 : 1), p4 = (1 : 1 : 0 : 1),

and p5 = (1 : 2 : 2 : 1). Then a minimal homogeneous system of generators of IX is

{X0X1−X1X3, X
2
1−X1X3−X2X3, X0X2−X2

2 +X2X3, X1X2−2X2X3, X0X3−X2
3} ⊆

Q[X0, . . . , X3]. So, the scheme X is not a complete intersection. However, a simple

calculation gives us HFX : 1 4 5 5 · · · and HFX\{pj} : 1 4 4 · · · for j = 1, . . . , 5. Thus it

follows from Theorem 7 in [GO] that X is arithmetically Gorenstein. In this case, the

Noether different of R/Q[x0] is ϑN(R/Q[x0]) = 〈x2
0 − 2x2

2 − 3x1x3 + 7x2x3 + x2
3〉.

In Section 2.1 we already discussed a method for computing a system of generators

of the Noether different of an algebra of finite type. As an application of this method,

we can show how to compute a homogeneous system of generators of the Noether

different of the algebra R/K[x0]. It is based on the representations of the Noether

different of R/K[x0] which we present below. Let us write

R = P/IX = K[X0, X1, . . . , Xn]/IX = K[x0, x1, . . . , xn].
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Let {F1, . . . , Fr} be a homogeneous system of generators of IX, where r ≥ n. Let

Y1, . . . , Yn be new indeterminates, and let γ : K[X0, X1, . . . , Xn] → K[X0, Y1, . . . , Yn]

be a K[X0]-algebra homomorphism given by γ(Xi) = Yi for i = 1, . . . , n. By J we

denote the homogeneous ideal of K[X0, Y1, . . . , Yn] generated by {γ(F1), . . . , γ(Fr)}.
We form the standard graded polynomial ring Q = K[X0, X1, . . . , Xn, Y1, . . . , Yn] with

deg(X0) = · · · = deg(Xn) = deg(Y1) = · · · = deg(Yn) = 1. In Q, we denote by IXQ
and JQ the homogeneous ideals generated by {F1, . . . , Fr} and {γ(F1), . . . , γ(Fr)},
respectively. As in the proof of Proposition 2.1.14, we have a commutative diagram

Q
ψ // //

π̃
����

P

π
����

Q/JQ
φ // S = R[X1, . . . , Xn]

ρ // // R⊗K[x0] R
µ // // R

(3.1)

where ρ : S → R ⊗K[x0] R is a K[x0]-algebra epimorphism given by ρ(Xi) = 1 ⊗ xi

for i = 1, . . . , n, ρ(xi) = xi ⊗ 1 for i = 0, . . . , n; φ : Q/JQ → S is a K[x0]-algebra

isomorphism defined by φ(Xi + JQ) = Xi for i = 0, . . . , n and φ(Yj + JQ) = xj for

j = 1, . . . , n; ψ : Q → P is a P -epimorphism defined by ψ(Yj) = Xj for j = 1, . . . , n;

π̃ and π are the canonical K[x0]-algebra epimorphisms. Notice that all maps in the

above diagram are homogeneous of degree zero.

Corollary 3.1.5. Using the notation as above. In Q = K[X0, X1, . . . , Xn, Y1, . . . , Yn],

we form the homogeneous colon ideal

Î := (IXQ+ JQ) :Q 〈X1 − Y1, . . . , Xn − Yn〉Q.

Then the Noether different of R/K[x0] is given by

ϑN(R/K[x0]) =
{
F (x1, . . . , xn) ∈ R | F ∈ IXS :S 〈X1 − x1, . . . , Xn − xn〉S

}
= (µ ◦ ρ ◦ φ ◦ π̃)(Î) = ψ(Î)/IX.

Proof. This follows from Lemma 2.1.6 and Propositions 2.1.12 and 2.1.14.

As we mentioned above, a homogeneous system of generators of ϑN(R/K[x0]) can

be found by using its representations in Corollary 3.1.5. Explicitly, we first compute

a homogeneous generating system {H1, . . . , Ht, γ(F1), . . . , γ(Fr) } of the colon ideal

Î = (IXQ + JQ) :Q 〈X1 − Y1, . . . , Xn − Yn〉Q with Hi /∈ JQ for i = 1, . . . , t. Secondly,

we compute a homogeneous generating system {H ′1, . . . , H ′t, F1, . . . , Fr } of the homo-

geneous ideal Ĵ = ψ(Î) of P , where H ′i = ψ(Hi) for i = 1, . . . , t. Finally, by taking hi
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the image of H ′i in R for i = 1, . . . , t, we obtain a homogeneous system of generators

{h1, . . . , ht} of ϑN(R/K[x0]).

Next we would like to describe explicitly a minimal homogeneous system of gener-

ators of ϑN(R/K[x0]) which is a subset of {h1, . . . , ht}. For this purpose, we discuss

below how to compute a minimal homogeneous system of generators of a homogeneous

ideal in the residue class ring R = P/IX.

In what follows, we let <σ be a term ordering on the monoid Tn+1 = T(X0, . . . , Xn)

of terms of P and let F = {F1, . . . , Fr} be a homogeneous <σ-Gröbner basis of IX.

Recall from [KR2, Section 2.4] that the normal form of a (homogeneous) polynomial

F ∈ P with respect to <σ is NFσ,IX(F ) = NRσ,F (F ) which can be computed by using

the Division Algorithm given in [KR2, Theorem 1.6.4]. We say that F is a normal

(homogeneous) polynomial modulo IX w.r.t. <σ if F = NFσ,IX(F ). In order to

perform division in R, we present the following algorithm.

Proposition 3.1.6. (The Division Algorithm) Let F = {F1, . . . , Fr} be a homoge-

neous <σ-Gröbner basis of IX, and let F,G1, . . . , Gs ∈ P \ {0} be normal homogeneous

polynomials modulo IX w.r.t. <σ, where s ≥ 1. Consider the following sequence of

instructions.

1) Let Q1 = · · · = Qs = 0, G = H = 0 and V = F .

2) If there exists i ∈ {1, . . . , s} such that LTσ(V ) = T · LTσ(Gi) for some term

T ∈ Tn+1, then replace Qi by Qi+
LCσ(V )
LCσ(Gi)

T, H by H+ LCσ(V )
LCσ(Gi)

(NFσ,IX(TGi)−TGi),

and V by V − LCσ(V )
LCσ(Gi)

NFσ,IX(TGi).

3) Repeat step 2) until there is no more i ∈ {1, . . . , s} such that LTσ(V ) is a multiple

of LTσ(Gi). Then replace G by G+ LMσ(V ) and V by V − LMσ(V ).

4) If V = 0, return the tuple (G,H,Q1, . . . , Qs) ∈ P s+2 and stop. Otherwise, start

again with step 2).

This is an algorithm which returns a tuple (G,H,Q1, . . . , Qs) ∈ P s+2 such that

F =
s∑
i=1

QiGi +G+H

and such that the following conditions are satisfied.

a) We have H ∈ IX and if H 6= 0 then LTσ(F ) >σ LTσ(H).

b) If G 6= 0, then no elements of Supp(G) is contained in the monomial ideal

〈{LTσ(G1), . . . ,LTσ(Gs)} ∪ LTσ{IX}〉 and LTσ(F ) ≥σ LTσ(G).
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c) For i ∈ {1, . . . , s}, Qi is a normal homogeneous polynomial modulo IX w.r.t. <σ

in P . If Qi 6= 0 for some i ∈ {1, . . . , s}, then LTσ(F ) ≥σ LTσ(QiGi).

d) For any index i = 1, . . . , s and all term T ∈ Supp(Qi), we have

T · LTσ(Gi) /∈ 〈{LTσ(G1), . . . ,LTσ(Gi−1)} ∪ LTσ{IX}〉.

Moreover, the tuple (G,H,Q1, . . . , Qs) ∈ P s+2 satisfies the above conditions is uniquely

determined by the tuple (F,G1, . . . , Gs) ∈ P s+1.

Proof. Analogous to [KR2, Theorem 1.6.4].

Let F,G1, . . . , Gs∈P \{0} be normal homogeneous polynomials modulo IXw.r.t.<σ,

where s ≥ 1, and let G be the tuple (G1, . . . , Gs). We denote a polynomial G obtained

in Proposition 3.1.6 by NRσ,IX,G(F ). For F = 0, we let NRσ,IX,G(F ) = 0. As an

immediate consequence of Proposition 3.1.6, we have the following corollary.

Corollary 3.1.7. Let J ⊆ P be a homogeneous ideal which contains IX, let G =

{G1, . . . , Gs} be a set of non-zero normal homogeneous polynomials modulo IX w.r.t.<σ

such that G ∪F is a homogeneous system of generators of J , and let G = (G1, . . . , Gs).

Then the following conditions are equivalent.

(i) The set G ∪F is a homogeneous <σ-Gröbner basis of J .

(ii) A normal homogeneous polynomial F ∈ P \ {0} modulo IX w.r.t. <σ satisfies

F ∈ J if and only if NRσ,IX,G(F ) = 0.

(iii) For every normal homogeneous polynomial F ∈ J \IX modulo IX w.r.t.<σ, there

are H1, . . . , Hs∈P and H∈IX such that F =
∑s

i=1HiGi +H, LTσ(F )>σLTσ(H)

if H 6= 0, and LTσ(F )≥σLTσ(HiGi) for all i = 1, . . . , s such that HiGi 6= 0.

Let G = {G1, . . . , Gs} be a set of non-zero normal homogeneous polynomials

modulo IX w.r.t. <σ such that G ∪ F is a homogeneous system of generators of

a homogeneous ideal J ⊆ P containing IX. We set SG∪F = {Sij ∈ P | (i, j) ∈
{1, . . . , s} × {1, . . . , s+ r}, i < j }, where

Sij = NFσ,IX(
lcm(LTσ(Gi),LTσ(Gj))

LMσ(Gi)
Gi − lcm(LTσ(Gi),LTσ(Gj))

LMσ(Gj)
Gj)

if j ≤ s and

Sij = NFσ,IX(
lcm(LTσ(Gi),LTσ(Fj−s))

LMσ(Gi)
Gi − lcm(LTσ(Gi),LTσ(Fj−s))

LMσ(Fj−s)
Fj−s)

if j > s, and call it the set of normal S-polynomials modulo IX w.r.t.<σ of G ∪F .

Clearly, all normal S-polynomials modulo IX w.r.t.<σ in SG∪F are homogeneous and

if j ≤ s then deg(Sij) ≥ max{deg(Gi), deg(Gj)} and if j > s then deg(Sij) > deg(Gi).
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Proposition 3.1.8. (Buchberger’s Criterion) Let J ⊆ P be a homogeneous ideal

which contains IX, let G = {G1, . . . , Gs} be a set of non-zero normal homogeneous

polynomials modulo IX w.r.t.<σ such that G ∪F is a homogeneous system of generators

of J , and let G = (G1, . . . , Gs). Then G ∪F is a homogeneous <σ-Gröbner basis of J

if and only if NRσ,IX,G(F ) = 0 for all F ∈ SG∪F .

Proof. If G ∪F is a homogeneous <σ-Gröbner basis of J , then F ∈ SG∪F ⊂ J implies

NRσ,IX,G(F ) = 0 by Corollary 3.1.7. Conversely, suppose that NRσ,IX,G(F ) = 0 for all

F ∈ SG∪F . To prove the set G ∪F is a homogeneous <σ-Gröbner basis of J , it suffices

to prove that all S-polynomials of G ∪F reduce to zero with respect to G ∪F by [KR2,

Theorem 2.4.1 and Proposition 2.5.2]. But this follows directly from the assumption

and F is a homogeneous <σ-Gröbner basis of IX.

Our next lemma gives a characterization of a minimal homogeneous system of

generators of a homogeneous ideal J/IX of R.

Lemma 3.1.9. Let J/IX be a homogeneous ideal of R generated by non-zero homoge-

neous elements {h1, . . . , ht}. For i = 1, . . . , t, let Hi ∈ P be the normal representative

modulo IX w.r.t.<σ of hi, let mi = deg(Hi), and assume that m1 ≤ · · · ≤ mt. Then

the following conditions are equivalent.

(i) The set {h1, . . . , ht} is a minimal homogeneous system of generators of J/IX.

(ii) Hi /∈ 〈{H1, . . . , Hi−1} ∪F 〉 for i = 1, . . . , t.

(iii) Hi /∈ 〈{H1, . . . , Ĥi, . . . , Ht} ∪F 〉 for i = 1, . . . , t, where Ĥi denotes an element

that is not included.

Proof. (i)⇒(ii): Assume that {h1, . . . , ht} is a minimal set of generators of J/IX and

Hi ∈ 〈{H1, . . . , Hi−1} ∪ F 〉 for some i ∈ {1, . . . , t}. Then there is a relation Hi =∑i−1
j=1 GjHj +

∑r
j=1 Gi−1+jFj with Gj ∈ P . This implies hi =

∑i−1
j=1 gjhj ∈ R, where gj

is the image of Gj in R for j = 1, . . . , i−1. We get J/IX = 〈h1, . . . , hi−1, hi+1, . . . , ht〉R,

it is impossible. Hence we must have Hi /∈ 〈{H1, . . . , Hi−1} ∪F 〉 for all i ∈ {1, . . . , t}.
(ii)⇒(iii): We shall show that Hi /∈ 〈{H1, . . . , Hi−1, Hi+1, . . . , Ht} ∪ F 〉 for all

i ∈ {1, . . . , t} if Hi /∈ 〈{H1, . . . , Hi−1} ∪F 〉 for all i ∈ {1, . . . , t}. Otherwise, we obtain

a representation

Hi = G1H1 + · · ·+Gi−1Hi−1 +Gi+1Hi+1 + · · ·+GtHt +Gt+1F1 + · · ·+Gt+rFr

where Gj ∈ P is a homogeneous polynomial of degree mi − mj for j ∈ {1, . . . , i −
1, i + 1, . . . , t} and of degree mi − deg(Fj−t) for j ∈ {t + 1, . . . , t + r} (cf. [KR2,

Corollary 1.7.11]). This implies Gj = 0 if mi < mj. Hence there are two possibilities.



3.1. Noether Differents for 0-Dimensional Schemes 57

+ If mi > mj for all j such that Gj 6= 0, then j < i and Hi=G1H1+· · ·+Gi−1Hi−1+

Gt+1F1 + · · ·+Gt+rFr. It follows that Hi ∈ 〈{H1, . . . , Hi−1} ∪F 〉, a contradiction.

+ There exists some index j with Gj ∈ K \ {0} such that mi = mj. We define

j0 = max{ j ∈ {1, . . . , t} | Gj ∈ K \ {0} }. Then we get Hj0 ∈ 〈{H1, . . . , Hj0−1} ∪F 〉.
This is also a contradiction.

(iii)⇒(i): If {h1, . . . , ht} is not a minimal set of generators of J/IX, then there

is an index i ∈ {1, . . . , t} such that hi =
∑

j 6=i gjhj with gj ∈ R. This implies that

hi −
∑

j 6=i gjhj = 0 or Hi −
∑

j 6=iGjHj ∈ IX, where Gj is a representative of gj in P .

Therefore we have Hi ∈ 〈{H1, . . . , Ĥi, . . . , Ht} ∪F 〉, a contradiction.

Notice that the two last conditions of the lemma can be checked effectively us-

ing the Submodule Membership Test (cf. [KR2, Proposition 2.4.10]). This gives us a

method for computing a minimal homogeneous system of generators of J/IX. However,

this method requires a large number of Gröbner basis computations. In the following

proposition, we present a procedure which computes a minimal homogeneous system

of generators of J/IX and avoids some unnecessary computations of Gröbner bases.

Proposition 3.1.10.(Buchberger’s Algorithm with Minimalization) Let J be a

homogeneous ideal of P containing IX, let H = (h1, . . . , hs) be a tuple of homogeneous

elements of R which generate J/IX. For j = 1, . . . , s, let Hj ∈ P be the normal

representative modulo IX w.r.t.<σ of hj, and assume that deg(H1) ≤ · · · ≤ deg(Hs).

Consider the following sequence of instructions.

1) Let S = ∅, V = (H1, . . . , Hs), G = ∅, s′ = 0, and Hmin = ∅.

2) Let d be the smallest degree of an element in S or in V. Form the subset Sd
of S consisting of elements F such that deg(F ) = d, form the subtuple Vd of V
consisting of the elements Hi such that deg(Hi) = d, and delete their entries from

S and V, respectively.

3) If Sd = ∅, continue with step 6). Otherwise, choose an element S ∈ Sd and delete

it from Sd.

4) Compute S ′ = NRσ,IX,G(S) by using the Division Algorithm 3.1.6. If S ′ = 0,

continue with step 3).

5) Increase s′ by one, append Gs′ = S ′ to the tuple G, and append the set {Sis′ | 1 ≤
i < s′} ∪ {S̃s′j | 1 ≤ j ≤ r} to the set S, where

Sis′ = NFσ,IX(
lcm(LTσ(Gi),LTσ(Gs′ ))

LMσ(Gi)
Gi − lcm(LTσ(Gi),LTσ(Gs′ ))

LMσ(Gs′ )
Gs′)
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and

S̃s′j = NFσ,IX(
lcm(LTσ(Gs′ ),LTσ(Fj))

LMσ(Gs′ )
Gs′ − lcm(LTσ(Gs′ ),LTσ(Fj))

LMσ(Fj)
Fj).

Then continue with step 3).

6) If Vd = ∅, continue with step 9). Otherwise, choose an element H ∈ Vd and

delete it from Vd.

7) Compute H ′ = NRσ,IX,G(H). If H ′ = 0, continue with step 6).

8) Increase s′ by one, append Gs′ = H ′ to the tuple G, append the image of H in R

to the tuple Hmin, and append the set {Sis′ | 1 ≤ i < s′} ∪ {S̃s′j | 1 ≤ j ≤ r},
which is established in an analogous way as in step 5), to the set S. Continue

with step 6).

9) If S = ∅ and V = ∅, return the pair (G,Hmin) and stop. Otherwise, continue with

step 2).

This is an algorithm which returns a pair (G,Hmin) such that the set {G | G ∈ G}∪F

is a homogeneous <σ-Gröbner basis of J , and Hmin is a subtuple of H which minimally

generates J/IX.

Proof. The finiteness of this algorithm and the claim that when the algorithm stops,

the set {G | G ∈ G} ∪F is a homogeneous <σ-Gröbner basis of J , follow by using a

similar argument as in [KR3, Theorem 4.5.5] and by using Buchberger’s Criterion 3.1.8.

The minimality of resulting tuple Hmin can be shown in the same way as in [KR3,

Theorem 4.6.3]. We note that after the procedure has finished looping through steps

3), 4), and 5), the tuple G satisfies the property that there are non-zero homogeneous

normal polynomials G′1, . . . , G
′
t modulo IX w.r.t. <σ such that deg(G′j) > d for all

j = 1, . . . , t and such that the set {G | G ∈ G} ∪ {G′1, . . . , G′t} ∪F is a homogeneous

<σ-Gröbner basis of 〈{G | G ∈ G} ∪ F 〉. Every time an element Gs′ of degree d is

added to G in step 8), the property is also true for the new tuple G. This enables

us to check whether a new normal polynomial H ∈ Vd modulo IX w.r.t.<σ which is

chosen in step 6) is contained in 〈{G | G ∈ G}∪F 〉 via step 7), and hence Lemma 3.1.9

guarantees thatHmin is always a minimal system of generators of 〈{G | G ∈ G}∪F 〉/IX
at the end of an iteration of step 8).

Remark 3.1.11. When we are only interested in computing a minimal homogeneous

system Hmin of generators of J/IX, we can speed this algorithm up by stopping the

execution of the algorithm after degree dmax = deg(Hs) is finished and appending only

the set {Sis′ | 1 ≤ i < s′, deg(Sis′) ≤ dmax} ∪ {S̃s′j | 1 ≤ j ≤ r, deg(S̃s′j) ≤ dmax} to the
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set S in steps 5) and 8). The implementation of the algorithm computing only the set

Hmin is given in the appendix.

Example 3.1.12. Let X = {p1, . . . , p5} be the projective point set of P2
F3

, where

p1 = (1 : 0 : 0), p2 = (1 : 1 : 1), p3 = (1 : 2 : 0), p4 = (1 : 0 : 2), and p5 = (1 : 2 : 2).

Let <σ be the term ordering DegRevLex. Then a homogeneous <σ-Gröbner basis

of IX is F = {F1, F2, F3} with F1 = X0X1 + X2
1 −X0X2 −X2

2 , F2 = X2
1X2 −X1X

2
2 ,

and F3 = X2
0X2 − X3

2 . Let H be the tuple of homogeneous elements (h1, h2, h3, h4),

where h1 = x3
1 − x3

2, h2 = x3
0 − x3

2, h3 = x0x
3
2 − x4

2, and h4 = x4
2, and let J/IX be

the homogeneous ideal of R generated by the elements in H. Let H1 = X3
1 − X3

2 ,

H2 = X3
0 −X3

2 , H3 = X0X
3
2 −X4

2 , and H4 = X4
2 . We follow the Buchberger Algorithm

with Minimalization 3.1.10 to compute a minimal homogeneous system of generators

of J/IX. We stop the computation after degree dmax = deg(H4) = 4 is finished and

append only the set {Sis′ | 1 ≤ i < s′, deg(Sis′) ≤ 4} ∪ {S̃s′j | 1 ≤ j ≤ r, deg(S̃s′j) ≤ 4}
to the set S in steps 5) and 8).

1) Let S = ∅, V = (H1, H1, H3, H4), G = ∅, s′ = 0, and Hmin = ∅.
2) Let d = deg(H1) = 3, V3 = (H1, H2), V = (H3, H4), S3 = ∅.
3) Since S3 = ∅, we continue with step 6).

6) Choose H = H1 and let V3 = (H2).

7) Compute H ′ = NRσ,IX,G(H) = H1.

8) Let s′ = 1, G = (G1) with G1 = H1, Hmin = (h1), and S = {S̃11, S̃12}, where

S̃11 = X4
1 − X4

2 , S̃12 = X1X
3
2 − X4

2 . Since deg(S̃13) = 6 > dmax, we do not add

S̃13 to S.

6) Choose H = H2 and let V3 = ∅.
7) Compute H ′ = NRσ,IX,G(H) = H2.

8) Let s′ = 2, G = (G1, G2) with G2 = H2, Hmin = (h1, h2). Since S12 and S̃22

have degree > dmax, we let S = {S̃11, S̃12, S̃21, S̃23}, where S̃21 = −X4
1 + X0X

3
2 −

X1X
3
2 +X4

2 and S̃23 = X0X
3
2 −X4

2 .

6) Since V3 = ∅, we continues with step 9).

9) Since S 6= ∅ and V 6= ∅, we continue with step 2).

2) We have deg(H3) = deg(S̃11) = 4. Let d = 4, V4 = (H3, H4), V = ∅, S4 =

{S̃11, S̃12, S̃21, S̃23}, and S = ∅.
3) Choose S = S̃11 and let S4 = {S̃12, S̃21, S̃23}.
4) Compute S ′ = NRσ,IX,G(S) = X1X

3
2 −X4

2 .
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5) Let s′ = 3, G = (G1, G2, G3) with G3 = S ′ = X1X
3
2 − X4

2 . Since S13, S23, S̃31,

S̃32, and S̃33 are either zero or homogeneous of degree > dmax, we let S = ∅.

3) Choose S = S̃12 and let S4 = {S̃21, S̃23}.

4) Compute S ′ = NRσ,IX,G(S) = 0. Since S ′ = 0, we continue with step 3).

3) Choose S = S̃21 and let S4 = {S̃23}.

4) Compute S ′ = NRσ,IX,G(S) = X0X
3
2 −X4

2 .

5) Let s′ = 4, G = (G1, G2, G3, G4) with G4 = S ′ = X0X
3
2 − X4

2 , and S = ∅.
Note that S14, S24, S34, S̃41, S̃42, and S̃43 are either zero or homogeneous of

degree > dmax.

3) Choose S = S̃23 and let S4 = ∅.

4) Compute S ′ = NRσ,IX,G(S) = 0 and continue with step 3).

3) Since S4 = ∅, we continue with step 6).

6) Choose H = H3 and let V4 = (H4).

7) Compute H ′ = NRσ,IX,G(H) = 0 and continue with step 6).

6) Choose H = H4 and let V4 = ∅.

7) Compute H ′ = NRσ,IX,G(H) = X4
2 .

8) Let s′ = 5, G = (G1, G2, G3, G4, G5) with G5 = H4, Hmin = (h1, h2, h4), and

S = ∅. Note that all S15, . . . , S45, S̃51, S̃52, and S̃53 have degree > dmax.

6) Since V4 = ∅, we continue with step 9).

9) Since S = ∅ and V = ∅, return Hmin and stop.

The returned tuple Hmin = (h1, h2, h4) of this algorithm is a minimal homogeneous

system of generators of the homogeneous ideal J/IX.

Now we are ready to formulate the following algorithm for the computation of a

minimal homogeneous system of generators of the Noether different for a 0-dimensional

scheme X ⊆ PnK .

Proposition 3.1.13. (Computation of Noether Differents) Let X ⊆ PnK be a

0-dimensional scheme, let Supp(X) = {p1, . . . , ps}, and for j ∈ {1, . . . , s} let Ij ⊆ P

be the homogeneous vanishing ideal of X at pj. Let <σ be a term ordering on Tn+1.

Consider the following sequences of instructions.

1) Compute the reduced <σ-Gröbner basis F = {F1, . . . , Fr} of IX =
⋂s
j=1 Ij by

using the GPBM-Algorithm (see [AKR, Theorem 4.6]).
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2) Form the polynomial ring Q = K[X0, X1, . . . , Xn, Y1, . . . , Yn] which is equipped

with the standard grading (deg(X0) = · · · = deg(Xn) = deg(Y1) = · · · =

deg(Yn) = 1), and form JQ = 〈F1(X0, Y1, . . . , Yn), . . . , Fr(X0, Y1, . . . , Yn)〉Q.

3) Let <σ be a term ordering on T2n+1 = T(X0, X1, . . . , Xn, Y1, . . . , Yn). Compute a

homogeneous <σ-Gröbner basis G = {G1, . . . , Gt} of the homogeneous colon ideal

Î = (IXQ+ JQ) :Q 〈X1 − Y1, . . . , Xn − Yn〉Q.

4) Compute a homogeneous system of generators {H1, . . . , Ht} of Ĵ = ψ(Î), where

ψ is given by (3.1), by taking Hi = ψ(Gi) for i = 1, . . . , t. Then sort the set

{H1, . . . , Ht} such that deg(H1) ≤ · · · ≤ deg(Ht).

5) Set H = {H1, . . . , Ht} \F . For each polynomial H ∈ H , compute its normal

polynomial NFσ,IX(H). If NFσ,IX(H) 6= 0, replace H by NFσ,IX(H). Otherwise,

delete H from H .

6) Apply Buchberger’s Algorithm with Minimalization 3.1.10 to compute a tuple

Hmin which generates Ĵ/IX minimally.

7) Return the tuple Hmin and stop.

This is an algorithm which computes a tuple Hmin whose elements are a minimal

homogeneous system of generators of the Noether different ϑN(R/K[x0]).

Proof. The finiteness of this algorithm is obviously true. The correctness of this algo-

rithm follows by combining Corollary 3.1.5 and Proposition 3.1.10.

In the following examples we use the term ordering DegRevLex for the computations

For more details about implementation see the appendix.

Example 3.1.14. Let X = {p1, . . . , p4} ⊆ P3
K be the projective point set given by

p1 = (1 : 1 : 1 : 1), p2 = (1 : 2 : 3 : 4), p3 = (2 : 3 : 4 : 5), and p4 = (3 :

4 : 5 : 1). First we consider the case K = Q. An application of Proposition 3.1.6

yields a minimal homogeneous system of generators {h1, h2, h3} of ϑN(R/Q[x0]), where

h1 = x1x3 − 2x2x3 + x2
3, h2 = x2x

2
3 − 66

85
x3

3, and h3 = x2
2x3 − 154

255
x3

3. This also tells us

that X is not arithmetically Gorenstein over Q.

Next we take K = F5. In this situation, the homogeneous vanishing ideal of X can

be generated by three homogeneous polynomials. This implies that X is a complete

intersection (and hence it is arithmetically Gorenstein). A calculation tells us that the

Noether different of R/F5[x0] is given by ϑN(R/F5[x0]) = 〈x3
2 + x2

2x3 + 2x2x
2
3 − 2x3

3〉.



62 3. Various Differents for 0-Dimensional Schemes

Example 3.1.15. Let us consider the 0-dimensional subscheme X of P2
Q of degree 16

with support Supp(X) = {p1, . . . , p7} and its homogeneous vanishing ideal given by

IX =
⋂7
j=1 Ij, where I1 = 〈X0−X1, X2〉, I2 = 〈X1, X0 +X2〉, I3 = 〈X0−X1, 2X0−X2〉,

I4 = 〈X0−X1, X0−X2〉, I5 = 〈X1, X2〉2, I6 = 〈3X2
0 +X2

1 , X2〉2, and I7 = 〈X1, 2X
3
0 +X3

2 〉
(Notice that Ij is the homogeneous vanishing ideal of X at pj for j = 1, . . . , 7). By

applying Proposition 3.1.6, a minimal homogeneous generating system of the Noether

different ϑN(R/Q[x0]) is computed as {x2
1x

4
2 − 3

5
x1x

5
2, x

2
0x

6
2 + 23

25
x0x

7
2 + 1

25
x8

2, x
3
0x

5
2 −

3
25
x0x

7
2 + 14

25
x8

2, x
4
0x

5
1 + 2

3
x2

0x
7
1 + 1

9
x9

1 }.

3.2 Dedekind Differents for 0-Dimensional Schemes

As usual, let K be an arbitrary field, and let X ⊆ PnK be a 0-dimensional scheme such

that Supp(X) ∩Z+(X0) = ∅. Let us write Supp(X) = {p1, . . . , ps} for some s ≥ 1. We

know that Γ∗(OX) =
⊕

i∈ZH
0(X,OX(i)) ∼=

∏s
j=1OX,pj [Tj, T

−1
j ] ∼= Rx0 , where T1, . . . , Ts

are indeterminates with deg(T1) = · · · = deg(Ts) = 1. Let R̃ =
∏s

j=1OX,pj [Tj], and let

ı̃ : R→ R̃ =
∏s

j=1OX,pj [Tj] ↪→ Γ∗(OX) be the injection given by (2.7). Note that ı̃ is a

homogeneous injection of degree zero and ı̃(x0) = (T1, . . . , Ts).

The localization of R with respect to the set of all homogeneous non-zerodivisors

of R is called the homogeneous quotient ring of R, and given by

Qh(R) =
{ f
g
| f, g ∈ R, g is a homogeneous non-zerodivisor

}
.

We have the following identification for the homogeneous quotient ring of R which is

a generalized version of [Kr4, Proposition 1.4].

Proposition 3.2.1. The map ı̃ extends to an isomorphism of graded R-modules

Ψ : Qh(R)
∼→

s∏
j=1

OX,pj [Tj, T
−1
j ],

where for every element f/g ∈ Qh(R) with f ∈ Rk and a non-zerodivisor g ∈ Rl

Ψ(
f

g
) =

ı̃(f)

ı̃(g)
=
(fp1

gp1

T k−l1 , . . . ,
fps
gps

T k−ls

)
.

In particular, we have Qh(R) ∼= Rx0.

Proof. For a non-zerodivisor g ∈ Ri, the element gpj ∈ OX,pj is a unit element for all

j = 1, . . . , s (see Lemma 2.3.11). Let f/g ∈ Qh(R) with f ∈ Rk and a non-zerodivisor
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g ∈ Rl. Then ı̃(f) = (fp1T
k
1 , . . . , fpsT

k
s ) and ı̃(g) = (gp1T

l
1, . . . , gpsT

l
s), so we get

Ψ
(f
g

)
=
ı̃(f)

ı̃(g)
=
(fp1

gp1

T k−l1 , . . . ,
fps
gps

T k−ls

)
∈

s∏
j=1

OX,pj [Tj, T
−1
j ].

Thus the map Ψ : Qh(R) →
∏s

j=1OX,pj [Tj, T
−1
j ] is well defined. It is clearly true

that Ψ is R-linear, homogeneous of degree zero. If Ψ(f
g
) = 0, then

fpj
gpj

= 0 ∈ OX,pj

for all j = 1, . . . , s. This implies fpj = 0 for all j = 1, . . . , s, and so f = 0, since

the map ı̃ is injective. Hence the map Ψ is an injection. Now we show that the

map Ψ is surjective. Let (g1, . . . , gs) ∈
∏s

j=1OX,pj [Tj, T
−1
j ]. For i � 0, we have

dimK(Ri) = deg(X) = dimK(
∏s

j=1OX,pj [Tj, T
−1
j ])i. Thus, for i � 0, (T i1g1, . . . , T

i
sgs)

is of the form Ψ(f) for some f ∈ R. Therefore the element (g1, . . . , gs) is the image

of f/xi0, and the claim follows.

3.2.1 Dedekind Differents for Locally Gorenstein Schemes

Definition 3.2.2. A 0-dimensional scheme X ⊆ PnK is called locally Gorenstein if

at each point pj ∈ Supp(X) the local ring OX,pj is a Gorenstein ring.

Proposition 3.2.3. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme with

Supp(X) = {p1, . . . , ps}. Set L := Qh(R) and L0 := K[x0, x
−1
0 ]. Then the following

statements hold true.

(i) The algebra L/L0 has a homogeneous trace map σL/L0 of degree zero.

(ii) There is an isomorphism of graded L-modules Σ : L → HomL0
(L,L0) given by

Σ(1) = σL/L0.

(iii) A homogeneous element σ ∈ HomL0
(L,L0) is a trace map of the algebra L/L0 if

and only if there exists a unit u ∈ L such that σ = u · σL/L0.

Proof. Since X is locally Gorenstein, the algebra OX,pj/K is a finite Gorenstein algebra

for every j ∈ {1, . . . , s}. It then follows from [Ku5, E.16] that there is a trace map

σj ∈ HomK(OX,pj , K) such that HomK(OX,pj , K) = OX,pj · σj for j = 1, . . . , s. Clearly,

L0/K[x0] and OX,pj [Tj, T
−1
j ]/L0 are algebras, and

OX,pj [Tj, T
−1
j ] ∼= OX,pj ⊗K K[Tj, T

−1
j ] ∼= OX,pj ⊗K L0.

By [Ku5, F.16(a)], the map σj = σj ⊗ idL0 : OX,pj [Tj, T
−1
j ] → K[Tj, T

−1
j ] ∼= L0 is a

trace map of the algebra OX,pj [Tj, T
−1
j ]/L0. Moreover, σj is a homogeneous trace map

of degree zero and

HomL0
(OX,pj [Tj, T

−1
j ], L0) = OX,pj [Tj, T

−1
j ] · σj.
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Based on Proposition 3.2.1, we may identify L =
∏s

j=1OX,pj [Tj, T
−1
j ]. Therefore an

application of [Ku5, F.16(b)] yields that the algebra L/L0 has a homogeneous trace map

σL/L0 = (σ1, . . . , σs) of degree zero given by σL/L0(g) =
∑s

j=1 σj(gj) for any element

g = (g1, . . . , gs) ∈
∏s

j=1OX,pj [Tj, T
−1
j ] = L, i.e.,

HomL0
(L,L0) = HomL0

( s∏
j=1

OX,pj [Tj, T
−1
j ], L0

)
=
( s∏
j=1

OX,pj [Tj, T
−1
j ]
)
· σL/L0 .

Hence claim (i) follows.

In order to prove (ii) and (iii), it suffices to prove only claim (ii). To this end,

we may write HomL0
(L,L0) = L · σL/L0 , where σL/L0 is a homogeneous trace map

of degree zero as above. It is enough to show that σL/L0 ∈ HomL0
(L,L0) satisfies

AnnL(σL/L0) = 〈0〉. Assume that f · σL/L0 = 0 for some homogeneous element f ∈ L.

We have f ·σL/L0(g) = σL/L0(fg) = g ·σL/L0(f) = 0 for all g ∈ L. This implies α(f) = 0

for every α ∈ HomL0
(L,L0). Since the algebra R/K[x0] is free of rank deg(X) and

L ∼= Rx0
∼= R⊗K[x0]L0, it follows that the algebra L/L0 is also free of rank deg(X). Let

m = deg(X), let {b1, . . . , bm} be a L0-basis of L, and let {b∗1, . . . , b∗m} be the dual basis

of {b1, . . . , bm}. We write f =
∑m

j=1 gjbj ∈ L (gj ∈ L0). Then gj = b∗j(
∑m

j=1 gjbj) =

b∗j(f) = 0 for all j = 1, . . . ,m. Hence we obtain f = 0, and so AnnL(σL/L0) = 〈0〉.

In what follows, let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme with

support Supp(X) = {p1, . . . , ps}, and let L := Qh(R) and L0 := K[x0, x
−1
0 ]. It follows

from Proposition 3.2.3 that HomL0(L,L0) = HomL0
(L,L0) = L · σL/L0 . Moreover,

we observe that L ∼= R ⊗K[x0] L0, and L0 is a flat K[x0]-module (cf. [Bo2, II, §3,

Proposition 13]). According to [Ei1, Proposition 2.10], we have isomorphisms of graded

L0-modules

HomK[x0](R,K[x0])⊗K[x0] L0
∼= HomL0

(L0 ⊗K[x0] R,L0 ⊗K[x0] K[x0]) ∼= HomL0
(L,L0)

and

HomK[x0](R,K[x0])⊗K[x0] L0
∼= HomK[x0](R,K[x0])⊗R L.

Thus there are canonical isomorphisms

HomL0
(L,L0) ∼= HomK[x0](R,K[x0])⊗K[x0] L0

∼= HomK[x0](R,K[x0])⊗R L

and the canonical map HomK[x0](R,K[x0]) ↪→ HomL0
(L,L0) is injective.
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Definition 3.2.4. The image of the monomorphism of R-graded modules

Φ : HomK[x0](R,K[x0]) ↪−→ HomL0
(L,L0) = L · σL/L0

Σ−1

−−→ L

ϕ 7−→ ϕ⊗ idL0

(3.2)

is a homogeneous fractional R-ideal CR/K[x0] of L. It is called the Dedekind comple-

mentary module of R/K[x0]. Its inverse, the R-ideal

ϑD(R/K[x0]) = C−1
R/K[x0] = { f ∈ L | f · CR/K[x0] ⊆ R },

is called the Dedekind different of R/K[x0] (or for X with respect to x0).

From the above definition, we have an isomorphism of graded R-modules CR/K[x0]
∼=

HomK[x0](R,K[x0]). It then follows from Proposition 2.4.6 that the graded R-module

CR/K[x0] is finitely generated and

HFCR/K[x0]
(i) = deg(X)− HFX(−i− 1) for all i ∈ Z.

As usual, we let rX denote the regularity index of HFX, i.e., rX = min
{
i ∈ Z |

HFX(i) = deg(X)
}
. Some properties of the Dedekind different of the algebra R/K[x0]

are given in the following proposition.

Proposition 3.2.5. (i) The Dedekind different ϑD(R/K[x0]) is a homogeneous ideal

of R and x2rX
0 ∈ ϑD(R/K[x0]).

(ii) The Hilbert function of ϑD(R/K[x0]) satisfies HFϑD(R/K[x0])(i) = 0 for i < 0,

HFϑD(R/K[x0])(i) = deg(X) for i ≥ 2rX, and

0 ≤ HFϑD(R/K[x0])(0) ≤ · · · ≤ HFϑD(R/K[x0])(2rX) = deg(X).

(iii) The regularity index of ϑD(R/K[x0]) satisfies rX ≤ ri(ϑD(R/K[x0]) ≤ 2rX.

Proof. It is obviously true that (CR/K[x0])0 ⊆ (L)0 as K-vector spaces. By the above

argument, we have HFCR/K[x0]
(0) = deg(X) − HFX(−1) = deg(X) = HFL(0). This

implies the equality (CR/K[x0])0 = (L)0. Thus we obtain R0 ⊆ (L)0 = (CR/K[x0])0, and

in particular, 1 ∈ CR/K[x0]. Hence ϑD(R/K[x0]) is a homogeneous ideal of R.

Now let m = deg(X), let {t1, . . . , tm} be a K[x0]-basis of R (see Section 2.4), and let

{t∗1, . . . , t∗m} be the dual basis of {t1, . . . , tm}. Note that deg(tj) = nj for j = 1, . . . ,m.

Then t∗j ∈ HomK[x0](R,K[x0])−nj for every j ∈ {1, . . . ,m}. By letting gj = Φ(t∗j) for

j = 1, . . . ,m, we obtain CR/K[x0] = 〈 g1, . . . , gm 〉R ⊆ L. Here gj is also homogeneous of

degree deg(gj) = −nj (since Φ is homogeneous of degree zero).



66 3. Various Differents for 0-Dimensional Schemes

We claim that, for j ∈ {1, . . . ,m}, there is a homogeneous element g′j ∈ RrX such

that gj = x
−rX−nj
0 g′j ∈ CR/K[x0]. Indeed, since gj ∈ L ∼= Rx0 , there exist g′′j ∈ R and

dj ∈ N such that gj = x
−dj
0 g′′j . If deg(g′′j ) = dj−nj ≤ rX, then we set g′j = x

rX−dj+nj
0 g′′j ∈

RrX . If deg(g′′j ) = dj−nj > rX, then we write g′′j = x
dj−nj−rX
0 g′j for some g′j ∈ RrX , since

Ri = xi−rX0 RrX for all i ≥ rX. Thus we get gj = x
−rX−nj
0 g′j, as claimed.

Consequently, we have CR/K[x0] =
〈
x−rX−n1

0 g′1, . . . , x
−rX−nm
0 g′m

〉
R

. Now it is clear

that x2rX
0 ∈ ϑD(R/K[x0]), since nj ≤ rX and x2rX

0 · (x
−rX−nj
0 g′j) = x

rX−nj
0 g′j ∈ R2rX−nj for

all j = 1, . . . ,m. Hence claim (i) follows.

Next we prove claim (ii). It is clear that HFϑD(R/K[x0])(i) ≤ HFϑD(R/K[x0])(i + 1)

for all i ∈ Z and HFϑD(R/K[x0])(i) = 0 for i < 0, since ϑD(R/K[x0]) is a homo-

geneous ideal of R by (i). Note that HFX(i) = m = deg(X) for all i ≥ rX and

HFϑD(R/K[x0])(i) ≤ HFX(i) for all i ∈ Z. So the Hilbert function of ϑD(R/K[x0]) satisfies

HFϑD(R/K[x0])(i) ≤ m for all i ∈ Z. We write CR/K[x0] =
〈
x−rX−n1

0 g′1, . . . , x
−rX−nm
0 g′m

〉
R

with g′1, . . . , g
′
m ∈ RrX as above, and let {f1, . . . , fm} be a K-basis of RrX . Then

fig
′
j ∈ R2rX . There is f̃ij ∈ RrX such that fig

′
j = xrX0 f̃ij for all i, j ∈ {1, . . . ,m}.

Thus (xrX0 fi) · (x
−rX−nj
0 g′j) = x

−nj
0 fig

′
j = x

rX−nj
0 f̃ij ∈ R2rX−nj for all i, j. It follows that

{xrX0 f1, . . . , x
rX
0 fm} ⊆ ϑD(R/K[x0])2rX ⊆ R2rX . On the other hand, we see that

m = HFX(2rX) = dimK 〈xrX0 f1, . . . , x
rX
0 fm 〉K

≤ dimK ϑD(R/K[x0])2rX = HFϑD(R/K[x0])(2rX) ≤ HFX(2rX) = m.

Therefore we obtain the equalities HFϑD(R/K[x0])(i) = m = deg(X) for all i ≥ 2rX.

Finally, claim (iii) is an immediate consequence of claims (i) and (ii).

Remark 3.2.6. Given a 0-dimensional locally Gorenstein scheme X ⊆ PnK with sup-

port Supp(X) = {p1, . . . , ps}, we have dimK(pj) G(OX,pj) = 1 for j = 1, . . . , s, where

K(pj) = OX,pj/mX,pj is the residue field of X at pj. It follows from Proposition 2.3.17

that there is a unique maximal pj-subscheme Yj⊆X corresponding to a socle element

ofOX,pj . In this case, the local ringOYj ,pj has a presentation asOYj ,pj =OX,pj/G(OX,pj).

Let κj = dimK K(pj), and let { f ∗j1, . . . , f ∗jκj } be a set of minimal separators of Yj in X
(see Definition 2.3.19). Then we have

degX(pj) = max{ deg(f ∗jkj) | kj = 1, . . . ,κj } ≤ rX.

Lemma 3.2.7. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme, and let

Supp(X) = {p1, . . . , ps}. For j ∈ {1, . . . , s}, let Yj ⊆ X be the maximal pj-subscheme,

and let { fj1, . . . , fjκj } be a set of separators of Yj in X. If there exists a point pj
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in Supp(X) with degX(pj) = rX and an element g in (CR/K[x0])−rX with fjkjg 6= 0 for

some kj ∈ {1, . . . ,κj}, then ri(ϑD(R/K[x0]) = 2rX.

Proof. Since HFϑD(R/K[x0])(2rX) = m = deg(X) and ri(ϑD(R/K[x0]) ≤ 2rX by Proposi-

tion 3.2.5, it suffices to prove HFϑD(R/K[x0])(2rX−1) < m. This is equivalent to proving

ϑD(R/K[x0])2rX−1(R2rX−1. Suppose for contradiction that ϑD(R/K[x0])2rX−1 =R2rX−1.

By the assumption that degX(pj) = rX, there is an index kj ∈ {1, . . . ,κj} such that

x0 - fjkj , say fj1. Of course, we have xrX−1
0 fjkj ∈ ϑD(R/K[x0])2rX−1 for kj = 1, . . . ,κj.

We may write g = x−2rX
0 g′ ∈ (CR/K[x0])−rX with g′ ∈ RrX \ {0}. Since fjkjg 6= 0 for

some kj ∈ {1, . . . ,κj}, it follows that (g′)pj ∈ OX,pj \ mX,pj is a unit element (see

Lemma 2.3.25). This also implies that fg′ 6= 0 for all f ∈ IYj/X \ {0}. Let us con-

sider the injection ı̃ : R → R̃ and write ı̃(fjkj) = (0, . . . , 0, ejkjsjT
rX
j , 0, . . . , 0) ∈ R̃

for kj = 1, . . . ,κj, where sj ∈ G(OX,pj) \ {0} is a socle element corresponding to Yj

and {ej1, . . . , ejκj} is a set of elements in OX,pj whose residue classes form a K-basis

of K(pj). Then the residue classes of elements {(g′)pjej1, . . . , (g′)pjejκj} also form a

K-basis of K(pj). There are cj1, . . . , cjκj ∈ K such that ej1 = cj1(g′)pjej1 + · · · +
cjκj(g

′)pjejκj (modmX,pj). This implies ej1sj = cj1(g′)pjej1sj + · · · + cjκj(g
′)pjejκjsj.

We put f = cj1fj1 + · · · + cjκjfjκj ∈ IYj/X \ {0}. Observe that f · g′ = xrX0 fj1,

since ı̃ is injective. Thus we have xrX−1
0 f · g = x−rX−1

0 f · g′ = x−1
0 fj1 ∈ RrX−1 (as

xrX−1
0 f ∈ ϑD(R/K[x0])2rX−1). It follows that fj1 ∈ x0RrX−1, in contradiction to the fact

that x0 - fj1.

Proposition 3.2.8. Let X ⊆ PnK be a 0-dimensional scheme. The following conditions

are equivalent.

(i) X is arithmetically Gorenstein.

(ii) X is locally Gorenstein and CR/K[x0]
∼= R(rX) (i.e., there exists g ∈ (CR/K[x0])−rX

such that CR/K[x0] = 〈g〉R and AnnR(g) = 〈0〉).

(iii) X is locally Gorenstein and there exists an element h ∈ RrX \ {0} such that

ϑD(R/K[x0]) = 〈h 〉R.

(iv) X is locally Gorenstein and there exists an element h ∈ ϑD(R/K[x0])rX with

AnnR(h) = 〈0〉.

If these conditions are satisfied, then the Hilbert function of the Dedekind different

satisfies HFϑD(R/K[x0])(i) = HFX(i− rX) for all i ∈ Z, and ri(ϑD(R/K[x0])) = 2rX.
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Proof. We remark that if X is arithmetically Gorenstein then it is also locally Goren-

stein. The equivalence of conditions (i) and (ii) is deduced from Proposition 2.4.18.

(ii)⇒(iii): Assume that CR/K[x0] = 〈 g 〉R ∼= R(rX) and AnnR(g) = 〈0〉. Then g

is a unit element of L. Obviously, h = g−1 ∈ ϑD(R/K[x0])rX ⊆ RrX (as h ∈ L and

h · CR/K[x0] ⊆ R). We shall prove that ϑD(R/K[x0]) = 〈h 〉R. Let f ∈ ϑD(R/K[x0])i

for some i ≥ 0. If i < rX, then fg ∈ Ri−rX = 〈0〉, and hence f = 0 (as AnnR(g) = 〈0〉).
Thus ϑD(R/K[x0])i = 〈0〉 for all i < rX. In the case i ≥ rX, there is an element

f1 ∈ Ri−rX such that fg = f1. This implies (f − f1h)g = 0. Since AnnR(g) = 〈0〉 and

f − f1h ∈ Ri, we have f = f1h, and consequently ϑD(R/K[x0]) = 〈h 〉R.

(iii)⇒(ii): Assume that ϑD(R/K[x0]) = 〈h 〉R with h ∈ RrX \{0}. Proposition 3.2.5

yields that there is an element f ∈ RrX such that fh = x2rX
0 ∈ ϑD(R/K[x0]), and so

h must be a non-zerodivisor of R or AnnR(h) = 〈0〉. Because dimK((CR/K[x0])−rX) =

deg(X) − HFX(rX − 1) = ∆X > 0, there exists a homogeneous element g = x−2rX
0 g′ ∈

(CR/K[x0])−rX \ {0} for some g′ ∈ RrX . Then gh = x−2rX
0 g′h = c ∈ R0 = K. If c = 0

then g′h = 0, and hence g′ = 0, since h and x0 are non-zerodivisors of R. This implies

g = x−2rX
0 g′ = 0, a contradiction. Hence it follows that c 6= 0, and CR/K[x0] = 〈 c−1g 〉R

with AnnR(c−1g) = 〈0〉.
(iii)⇒(iv): This has been shown in the proof of “(iii) implies (ii)”.

(iv)⇒(iii): Suppose h ∈ ϑD(R/K[x0])rX with AnnR(h) = 〈0〉. Let g be a non-zero

homogeneous element of degree −rX of CR/K[x0]. (Such an element always exists, since

HFCR/K[x0]
(−rX) = ∆X ≥ 1.) We can write g = x−2rX

0 g′ with g′ ∈ RrX as before.

Since x0 and h are not zerodivisors of R, we have gh = x−2rX
0 g′h 6= 0. It follows that

gh = c ∈ K \ {0} and AnnR(g) = 〈0〉. As the proof of “(ii) implies (iii)”, we obtain

ϑD(R/K[x0]) = 〈h 〉R.

The additional claim follows from the fact that ϑD(R/K[x0]) ∼= R(−rX).

Now let us consider the injection ı̃ : R → R̃ =
∏s

j=1OX,pj [Tj] given by (2.7). For

every pj ∈ Supp(X) = {p1, . . . , ps}, let νj := dimK(OX,pj) and let {ej1, . . . , ejνj} be

a K-basis of OX,pj . We set fjkj := ı̃−1((0, . . . , 0, ejkjT
rX
j , 0, . . . , 0)) for kj = 1, . . . , νj.

Note that fjkj · fj′kj′ = 0 for j 6= j′ and RrX = 〈 f11, . . . , f1ν1 , . . . , fs1, . . . , fsνs 〉K .

Since X is locally Gorenstein, as in the proof of Proposition 3.2.3 we see that the

algebra OX,pj/K has a trace map σj ∈ HomK(OX,pj , K). An argument similar to

that given in Proposition 2.4.9 shows that there is a K-basis {e′j1, . . . , e′jνj} of OX,pj

such that σj(ejkje
′
jk′j

) = e∗jk′j
(ejkj) = δkjk′j for all kj, k

′
j = 1, . . . , νj and TrOX,pj /K

=(∑νj
k=1 ejkje

′
jkj

)
· σj. We say that the K-basis {e′j1, . . . , e′jνj} is a dual basis of OX,pj

to the K-basis {ej1, . . . , ejνj} with respect to σj.
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When X is a projective point set in PnK , [Kr4, Proposition 1.6] provides an explicit

description of the Dedekind complementary module in terms of the set of separators.

This can be generalized for a 0-dimensional locally Gorenstein scheme X ⊆ PnK by using

the above tools as follows.

Proposition 3.2.9. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme, let

Φ be the monomorphism of R-graded modules defined by (3.2), let i ≥ 0, and let

ϕ ∈ HomK[x0](R,K[x0])i−rX. We write ϕ(fjkj) = cjkjx
i
0 with cjkj ∈ K. Then we have

Φ(ϕ) =
( ν1∑
k1=1

c1k1e
′
1k1
T i−rX1 , . . . ,

νs∑
ks=1

cskse
′
sksT

i−rX
s

)
∈ (CR/K[x0])i−rX .

In particular, Φ(ϕ) can be identified with the element xi−2rX
0 (

∑s
j=1

∑νj
kj=1 cjkj f̃jkj) of

Rx0
∼= L, where f̃jkj = ı̃−1((0, . . . , 0, e′jkjT

rX
j , 0, . . . , 0)) ∈ RrX for all j = 1, . . . , s and

for all kj = 1, . . . , νj.

Proof. We set εjkj := (0, . . . , 0, ejkj , 0, . . . , 0) ∈
∏s

l=1OX,pl for j = 1, . . . , s and kj =

1, . . . , νj. Due to Proposition 3.2.1, the set {ε11, . . . , ε1ν1 , . . . , εs1, . . . , εsνs} is a L0-basis

of L = Qh(R), where L0 = K[x0, x
−1
0 ]. So, the mapping ϕ⊗idL0 : L ∼= R⊗K[x0]L0 → L0

satisfies

(ϕ⊗ idL0)(xrX0 εjkj) = (ϕ⊗ idL0)((0, . . . , 0, ejkjT
rX
j , 0, . . . , 0)) = ϕ(fjkj) = cjkjx

i
0

for j = 1, . . . , s; kj = 1, . . . , νj. Thus (ϕ ⊗ idL0)(εjkj) = cjkjx
i−rX
0 for all j = 1, . . . , s

and kj = 1, . . . , νj. On the other hand, the algebra L/L0 has a homogeneous trace map

σL/L0 of degree zero by Proposition 3.2.3. We have

( ν1∑
k1=1

c1k1e
′
1k1
, . . .,

νs∑
ks=1

cskse
′
sks

)
· σL/L0(εjkj) = σL/L0

(
(0, . . . , 0,

νj∑
k′j=1

cjk′je
′
jk′j
ejkj , 0, . . . , 0)

)
= σj

( νj∑
k′j=1

cjk′je
′
jk′j
ejkj
)

=
νj∑
k′j=1

cjk′jσj(e
′
jk′j
ejkj)

=
νj∑
k′j=1

cjk′jδkjk′j = cjkj .

This implies that (ϕ ⊗ idL0) = xi−rX0

(∑ν1

k1=1 c1k1e
′
1k1
, . . . ,

∑νs
ks=1 cskse

′
sks

)
· σL/L0 in

HomL0
(L,L0). Hence

Φ(ϕ) =
( ν1∑
k1=1

c1k1e
′
1k1
T i−rX1 , . . . ,

νs∑
ks=1

cskse
′
sksT

i−rX
s

)
∈ (CR/K[x0])i−rX .
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Additionally, we observe that

x2rX
0 Φ(ϕ) = x2rX

0 ·
( ν1∑
k1=1

c1k1e
′
1k1
T i−rX1 , . . . ,

νs∑
ks=1

cskse
′
sksT

i−rX
s

)
=
( ν1∑
k1=1

c1k1e
′
1k1
T rX+i

1 , . . . ,
νs∑
ks=1

cskse
′
sksT

rX+i
s

)
= ı̃
(
xi0(

s∑
j=1

νj∑
kj=1

cjkj f̃jkj)
)
.

Thus the conclusion follows.

Next we determine a set of generators of the K-vector space (CR/K[x0])−rX for

a 0-dimensional locally Gorenstein scheme X. This is a similar property as [Kr4,

Corollary 1.10]. To shorten notation, we let m = deg(X), f1 = f11, . . . , fν1 = f1ν1 ,

fν1+1 = f21, . . . , fν1+ν2 = f2ν2 , . . . , f∑s−1
j=1 νj+1 = fs1, . . . , fm = fsνs . Similarly, we let

f̃1 = f̃11, . . . , f̃m = f̃sνs . The image of fj in R := R/〈x0〉 is denoted by Lfj and is

called the leading form of fj for j = 1, . . . ,m. Since {Lf1, . . . , Lfm} generates the

K-vector space RrX , we can renumber {f1, . . . , fm} in such a way that {Lf1, . . . , Lf∆X}
is a K-basis of RrX , where ∆X = HFX(rX)−HFX(rX− 1) is the last non-zero difference

of HFX. Then we write

Lf∆X+j = βj1Lf1 + · · ·+ βj∆XLf∆X

for j = 1, . . . ,m−∆X, βjk ∈ K.

Lemma 3.2.10. (i) Let h1, . . . , hm−∆X ∈ RrX−1 be elements which satisfy

x0hj = f∆X+j − βj1f1 − · · · − βj∆Xf∆X .

Then {h1, . . . , hm−∆X} forms a K-basis of RrX−1.

(ii) The set {g̃1, . . . , g̃∆X} forms a K-basis of (CR/K[x0])−rX, where

g̃j = x−2rX
0 (f̃j + β1j f̃∆X+1 + · · ·+ βm−∆Xj f̃m)

for every j ∈ {1, . . . ,∆X}.

Proof. (i) Clearly, the set {f1, . . . , fm} forms a K-basis of RrX . Thus claim (i) follows

from the fact that the elements f∆X+j − βj1f1 − · · · − βj∆Xf∆X with j = 1, . . . ,m−∆X

are linearly independent elements of x0RrX−1.

(ii) Notice that dimK HomK[x0](R,K[x0])−rX = dimK(CR/K[x0])−rX = ∆X ≥ 1.

The K-vector space HomK(RrX , K) has a K-basis {(Lf1)∗, . . . , (Lf∆X)∗}. By [Kr4,

Lemma 1.5], there is a 1-1 correspondence between elements ϕ of HomK[x0](R,K[x0])−rX
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and K-linear maps ϕ : RrX → K with ϕ(x0RrX−1) = 0. Thus we can lift the K-basis

{(Lf1)∗, . . . , (Lf∆X)∗} to obtain a K-basis {ϕ1, . . . , ϕ∆X} of HomK[x0](R,K[x0])−rX with

ϕj(fk) = δjk for k = 1, . . . ,∆X and ϕj(f∆X+k) = ϕj(βk1f1 + · · · + βk∆Xf∆X) = βkj for

k = 1, . . . ,m−∆X. Hence the claim follows by Proposition 3.2.9.

If X = {p1, . . . , ps} ⊆ PnK is a projective point set, then ν1 = · · · = νs = 1,

fj is the normal separator of X \ {pj} in X, and fj = f̃j for all j = 1, . . . , s. The

following proposition gives us a description of the Hilbert function of ϑD(R/K[x0])

and its regularity index for projective point sets.

Proposition 3.2.11. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set. Then we

have HFϑD(R/K[x0])(i) = 0 for i < 0, HFϑD(R/K[x0])(i) = s for i ≥ 2rX and

0 ≤ HFϑD(R/K[x0])(0) ≤ · · · ≤ HFϑD(R/K[x0])(2rX − 1) < HFϑD(R/K[x0])(2rX) = s.

In particular, the regularity index of ϑD(R/K[x0]) is 2rX.

Proof. It is clearly true that HFϑD(R/K[x0])(i) = 0 for i < 0 and HFϑD(R/K[x0])(i) ≤
HFϑD(R/K[x0])(i+ 1) for all i ∈ Z, since ϑD(R/K[x0]) is a homogeneous ideal of R. By

Proposition 3.2.5, we have HFϑD(R/K[x0])(i) = s for i ≥ 2rX. Now we shall prove the

last inequality HFϑD(R/K[x0])(2rX − 1) < HFϑD(R/K[x0])(2rX) = s. This is equivalent to

proving ri(ϑD(R/K[x0])) = 2rX. Since ∆X ≥ 1, we may assume that Lf1 6= 0 in RrX .

This means that degX(p1) = rX. By Lemma 3.2.10(ii), the elements g̃j = x−2rX
0 (fj +

β1jf∆X+1 + · · ·+ βs−∆Xjfs) such that 1 ≤ j ≤ ∆X form a K-basis of (CR/K[x0])−rX . We

have

f1 · g̃1 = f1 · x−2rX
0 (f1 + β11f∆+1 + · · ·+ βs−δ1fs) = x−rX0 f1 6= 0.

Therefore Lemma 3.2.7 implies ri(ϑD(R/K[x0])) = 2rX, as desired.

Obviously, the Dedekind different ϑD(R/K[x0]) is a homogeneous ideal of R which

depends on the choice of the linear non-zerodivisor x0 of R. In the case that X ⊆ PnK
is a projective point set, we have the following corollary.

Corollary 3.2.12. Let X be a projective point set in PnK, and let ` ∈ R1 be a non-

zerodivisor for R. Then we have

x0CR/K[x0] = `CR/K[`] and `ϑD(R/K[x0]) = x0ϑD(R/K[`]).

Proof. The first equality is due to Proposition 1.8 in [Kr4]. It remains to prove the

second one. Let h ∈ ϑD(R/K[x0]). By the first equality, we have

h · CR/K[x0] =
h

x0

(x0CR/K[x0]) =
h`

x0

CR/K[`] ⊆ R.
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This implies that h`
x0
∈ ϑD(R/K[`]) ⊆ R, and so h` ∈ x0ϑD(R/K[`]). Similarly,

we get gx0 ∈ `ϑD(R/K[x0]) for all g ∈ ϑD(R/K[`]). Hence we obtain the equality

`ϑD(R/K[x0]) = x0ϑD(R/K[`]), as we wanted to show.

3.2.2 Dedekind Differents for 0-Dimensional Smooth Schemes

Definition 3.2.13. A Noetherian local ring S containing the field K is called geomet-

rically regular over K if the ring L⊗KS is regular for every finite field extension L/K.

Let X ⊆ PnK be a 0-dimensional scheme with support Supp(X) = {p1, . . . , ps}. We

say that a point pj ∈ Supp(X) is a smooth point of X, or that X is smooth at pj,

if the local ring OX,pj is geometrically regular over K. We say that X is smooth if it

is smooth at all of its points.

Remark 3.2.14. Notice that if pj is a smooth point of X then it is a reduced point

of X. The converse is true if K is a perfect field (cf. [Ku5, Propositions 5.18 and 7.12]).

Moreover, if pj is a reduced point of X and K(pj)/K is a separable field extension,

then pj is a smooth point of X (cf. [Ku5, Corollary 7.16]).

For every pj ∈ Supp(X), the local ring OX,pj is a finite dimensional K-vector space.

The module of Kähler differentials of the algebra OX,pj/K will be denoted by Ω1
OX,pj /K

(see [Ku5, Section 1]). It is clear that Ω1
OX,pj /K

is a finitely generated OX,pj -module.

The smoothness criterion for the 0-dimensional scheme X ⊆ PnK is provided by our

next theorem, which follows from [Ku6, Theorem 5.16].

Theorem 3.2.15. Let K be the algebraic closure of K. The following assertions are

equivalent.

(i) X is smooth at pj.

(ii) K ⊗K OX,pj is regular.

(iii) Ω1
OX,pj /K

= 0.

(iv) K ′ ⊗K OX,pj is regular for any field extension K ′/K.

Proposition 3.2.16. Let X ⊆ PnK be a 0-dimensional smooth scheme, and let

Supp(X) = {p1, . . . , ps}. Let Q(R) be the full ring of quotients of R, and set L := Qh(R)

and L0 := K[x0, x
−1
0 ].

(i) The canonical trace map TrL/L0 is a homogeneous trace map of degree zero of the

algebra L/L0, especially, L/L0 is étale.
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(ii) The canonical trace map TrQ(R)/K(x0) is a trace map of the algebra Q(R)/K(x0),

especially, Q(R)/K(x0) is étale.

Proof. Since the scheme X is smooth, it follows from Theorem 3.2.15 that Ω1
OX,pj /K

= 0

and OX,pj = K(pj) for every pj ∈ Supp(X). [Ku5, Proposition 6.8] yields that OX,pj/K

is a finite separable field extension. So, the canonical trace map TrOX,pj /K
is a trace

map of OX,pj/K, i.e.,

HomK(OX,pj , K) = OX,pj · TrOX,pj /K
.

It follows that the trace map σL/L0 in Proposition 3.2.3(i) is exactly the canonical trace

map TrL/L0 if we choose σj = TrOX,pj /K
for j = 1, . . . , s in the proceed constructing the

trace map σL/L0 . The additional claim of (i) follows by [Ku5, Proposition F.8]. Thus

claim (i) follows.

For (ii), it suffices to show that TrQ(R)/K(x0) is a trace map of Q(R)/K(x0). Since X
is reduced, it follows from [Ku4, III, Proposition 4.23] and [Bo2, V, §1, Proposition 9]

that

Q(R) ∼=
s∏
j=1

Q(R/pj) ∼=
s∏
j=1

OX,pj(Tj).

As above, OX,pj/K is a finite separable field extension for every pj ∈ Supp(X). Then

OX,pj and K(x0) are linearly disjoint over K (cf. [Mor, V, Section 20]). This implies

OX,pj ⊗K K(x0) ∼= OX,pjK(x0) = OX,pj(x0). Thus Q(R) ∼= K(x0) ⊗K
∏s

j=1OX,pj , in

particular, Q(R) is a free K(x0)-module of rank deg(X). Let νj = dimK OX,pj , let

{ej1, . . . , ejνj} be a K-basis of OX,pj for j = 1, . . . , s, and set

εjkj = (0, . . . , 0, ejkj , 0, . . . , 0) ∈
s∏
j=1

OX,pj

for j = 1, . . . , s and for kj = 1, . . . , νj. Then the set {ε11, . . . , ε1ν1 , . . . , εs1, . . . , εsνs} is a

K-basis of
∏s

j=1OX,pj . Thus this set is also a K(x0)-basis of Q(R). By [Ku5, F.5 and

F.6], the canonical trace map of Q(R)/K(x0) is defined by

TrQ(R)/K(x0) : Q(R)→ K(x0), TrQ(R)/K(x0)(εjkj) = TrOX,pj /K
(ejkj)

for all j ∈ {1, . . . , s} and kj ∈ {1, . . . , νj}. Consider the homomorphism of Q(R)-

modules Θ : Q(R) → HomK(x0)(Q(R), K(x0)) given by Θ(1) = TrQ(R)/K(x0). For

every j ∈ {1, . . . , s} we let {e′j1, . . . , e′jνj} be the dual basis of OX,pj to the K-basis

{ej1, . . . , ejνj} with respect to TrOX,pj /K
. Then

∑νj
kj=1 ejkje

′
jkj

= 1 and

TrOX,pj /K
(ejkje

′
jk′j

) = e∗jk′j(ejkj) = δkjk′j (kj, k
′
j = 1, . . . , νj).
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Let ϕ : Q(R) → K(x0) be a K(x0)-linear mapping. For j ∈ {1, . . . , s} and for kj ∈
{1, . . . , νj}, we have ϕ(εjkj) = gjkj(x0)/hjkj(x0) for some gjkj(x0), hjkj(x0) ∈ K[x0] and

hjkj(x0) 6= 0. Observe that( ν1∑
k1=1

e′1k1

g1k1(T1)

h1k1(T1)
, . . . ,

νs∑
ks=1

e′sks
gsks(Ts)

hsks(Ts)

)
· TrQ(R)/K(x0)(εjk′j)

=
νj∑
kj=1

gjkj(x0)

hjkj(x0)
· TrOX,pj /K

(e′jkjejk′j) =
νj∑
kj=1

gjkj(x0)

hjkj(x0)
· δkjk′j =

gjk′j(x0)

hjk′j(x0)
.

It follows that

ϕ =
( ν1∑
k1=1

e′1k1

g1k1(T1)

h1k1(T1)
, . . . ,

νs∑
ks=1

e′sks
gsks(Ts)

hsks(Ts)

)
· TrQ(R)/K(x0)

and that Θ is surjective. Next we show that Θ is injective. For j = 1, . . . , s and

kj = 1, . . . , νj, we let gjkj , hjkj ∈ K[Tj] be polynomials such that hjkj 6= 0 and

ψ =
( ν1∑
k1=1

e′1k1

g1k1

h1k1

, . . . ,
νs∑
ks=1

e′sks
gsks
hsks

)
· TrQ(R)/K(x0) = 0.

Thus we have 0 = ψ(εjkj) = gjkj(x0)/hjkj(x0) for j = 1, . . . , s and kj = 1, . . . , νj. This

implies
(∑ν1

k1=1 e
′
1k1

g1k1

h1k1
, . . . ,

∑νs
ks=1 e

′
sks

gsks
hsks

)
= 0, and hence Θ is injective. Therefore

the homomorphism Θ is an isomorphism of Q(R)-modules, in particular, TrQ(R)/K(x0)

is a trace map of Q(R)/K(x0).

It is clear that every 0-dimensional smooth scheme X ⊆ PnK is locally Gorenstein.

So, the Dedekind complement module CR/K[x0] and Dedekind different ϑD(R/K[x0]) are

well-defined for a 0-dimensional smooth scheme X. Moreover, the Dedekind different

and the Noether different of R/K[x0] agree, as the following theorem shows.

Theorem 3.2.17. Let X ⊆ PnK be a 0-dimensional smooth scheme. Then we have

ϑD(R/K[x0]) = ϑN(R/K[x0]).

Proof. Notice that the algebra R/K[x0] is free of rank deg(X), so it is flat. Thus

the equality ϑN(R/K[x0]) = ϑD(R/K[x0]) follows from [Ku5, G.11] with a similar

argument if the algebra L/L0 is étale, where L = Qh(R) and L0 = K[x0, x
−1
0 ]. But this

is proved in Proposition 3.2.16, and hence the conclusion follows.

Definition 3.2.18. Let X ⊆ PnK be a 0-dimensional smooth scheme. We let

ϑX(R/K[x0]) := ϑN(R/K[x0]) = ϑD(R/K[x0])

and call ϑX(R/K[x0]) the Noether-Dedekind different (in short, ND-different)

of R/K[x0] (or for X with respect to x0).
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Remark 3.2.19. Let X ⊆ PnK be a 0-dimensional smooth scheme.

(i) The ND-different satisfies HPϑX(R/K[x0])(z) = deg(X) and ri(ϑX(R/K[x0])) ≤ 2rX.

(ii) In order to compute ϑX(R/K[x0]), one can use Proposition 3.1.6. Another effi-

cient method for computing ϑX(R/K[x0]) will be provided in the next subsection.

Corollary 3.2.20. Let X ⊆ PnK be a 0-dimensional smooth scheme. Then the following

assertions are equivalent.

(i) The scheme X is arithmetically Gorenstein.

(ii) There exists an element h ∈ RrX \ {0} such that ϑX(R/K[x0]) = 〈h 〉R.

(iii) There exists an element h ∈ ϑX(R/K[x0])rX with AnnR(h) = 〈0〉.

If these assertions are satisfied, then HFϑX(R/K[x0])(i) = HFX(i − rX) for all i ∈ Z and

ri(ϑX(R/K[x0])) = 2rX.

Proof. This is an immediate consequence of Proposition 3.2.8.

Example 3.2.21. Let X = {p1, . . . , p5} ⊆ P3
F7

be the projective point set with p1 =

(1 : 0 : 0 : 0), p2 = (1 : 1 : 1 : 1), p3 = (1 : −1 : 1 : −1), p4 = (1 : 2 : 4 : 8), and

p5 = (8 : 4 : 2 : 1). Notice that X consists of five points on the twisted cubic curve

C = { (u3 : u2v : uv2 : v3) | (u : v) ∈ P1
F7
} in P3

F7
. We have HFX : 1 4 5 5 · · ·

and rX = 2. The Noether-Dedekind different ϑX(R/F7[x0]) of R/F7[x0] is a principal

ideal generated by h1 = x2
0 − 2x0x3 − 3x1x3 − 2x2

3. Here we computed h1 by using

Proposition 3.1.6. It is not hard to check that the value of h1 at each point of X is not

zero. Lemma 2.3.11 yields that h1 is a non-zerodivisor of R. So, X is arithmetically

Gorenstein and the Hilbert function of ϑX(R/F7[x0]) is HFϑX(R/F7[x0]) : 0 0 1 4 5 5 · · · .
However, X is not a complete intersection since the number of elements in a minimal

homogeneous system of generators of the homogeneous vanishing ideal of X is 5.

3.2.3 Computing the Dedekind Differents

In this subsection we consider the problem of computing a minimal homogeneous

system of generators of ϑD(R/K[x0]) for a 0-dimensional locally Gorenstein scheme

X ⊆ PnK . The good approach of this problem is to use the K-basis {f11, . . . , fsνs} of

the K-vector space RrX which was explained in Subsection 3.2.1 for the computation.

This approach is based on the GBM-Algorithm (see [AKR, Theorem 3.1]) and the

description of the Dedekind complementary module given by Proposition 3.2.9.
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As above, we let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme with

Supp(X) = {p1, . . . , ps}. For j ∈ {1, . . . , s}, let Ij be the homogeneous vanishing

ideal of X at pj, and let qj = Ideh
j ⊆ A = K[X1, . . . , Xn]. Then IX = I1 ∩ · · · ∩ Is

and the affine ideal of X is given by IaX = Ideh
X =

⋂s
j=1 qj ⊆ A. Let νj = dimK(OX,pj),

let Oj = {ej1, . . . , ejνj} be a K-basis of OX,pj
∼= A/qj, and let πj : A → A/qj be the

canonical map for j = 1, . . . , s. Combining the canonical isomorphism A/qj → Kνj

with πj we obtain a K-linear, surjective map NFVOj : A → Kνj which sends ev-

ery polynomial F ∈ A to the uniquely defined tuple (a1, . . . , aνj) ∈ Kνj such that

πj(F ) =
∑νj

k=1 akejk. The map NFVOj is called a normal form vector map with

respect to Oj. Obviously, we have qj = Ker(NFVOj).

Now we make a small alteration of the GBM-Algorithm to compute a tuple S =

(s1, . . . , sm) of polynomials of A such that

NFVO1(si)⊕ · · · ⊕ NFVOs(si) = (0, . . . , 0, 1
[i]
, 0, . . . , 0) ∈ Km,

where m =
∑s

j=1 νj is the degree of the scheme X, as the following proposition shows.

Proposition 3.2.22. In the situation as above, and let <σ be a degree-compatible term

ordering on Tn. Consider the following sequence of instructions.

1) Let G = ∅, O = ∅, S = ∅, L = {1}, and let M = (mjk) be a matrix over K with

m =
∑s

j=1 νj columns and initially zero rows.

2) If L is empty, then row reduce M to a diagonal matrix and mimic these row

operations on the elements of S (considered as a column vector). Next replace S
by M−1S then return the triple (G,O,S) and stop. Otherwise choose the term

T = minσ(L) and remove it from L.

3) Compute the vector v = NFVO1(T )⊕ · · · ⊕ NFVOs(T ) ∈ Km.

4) Reduce v against the rows of M to obtain

v∗ = v −
∑
j

aj(mj1, . . . ,mjm) with aj ∈ K.

5) If v∗ = 0 then append the polynomial T −
∑

j ajsj to the tuple G, where sj is the

j-th element of the tuple S. Remove from L all multiples of T . Then continue

with step 2).

6) Otherwise v∗ 6= 0 so append v∗ as a new row to M, and T −
∑

j ajsj as a new

element to S. Append the corresponding term T as a new element to O. Add to

L those elements of {X1T, . . . , XnT} which are neither multiples of an element

of L nor multiples of {LTσ(g) | g ∈ G}. Continue with step 2).
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This is an algorithm which returns a triple (G,O,S) such that the following assertions

are satisfied.

(i) G is the reduced <σ-Gröbner basis of IaX = q1 ∩ · · · ∩ qs.

(ii) O is a tuple whose components are precisely the elements of Tn \ LTσ(IaX).

(iii) S = (s1, . . . , sm) is a tuple of polynomials of A such that si has degree deg(si) ≤ rX

and satisfies

NFVO1(si)⊕ · · · ⊕ NFVOs(si) = (0, . . . , 0, 1
[i]
, 0, . . . , 0) ∈ Km.

Proof. By [AKR, Theorem 3.1], we need only prove the correctness of (iii). We observe

that at each point in the procedure the matrix M always has linearly independent

rows, and the rows of M are the evaluation vectors NFVO1(si) ⊕ · · · ⊕ NFVOs(si) of

the polynomials in S. At the end of the procedure, i.e., when L is empty, the tuple O
contains m terms and the terms of O are merely the leading terms of the corresponding

elements in S. Since <σ is a degree compatible term ordering on Tn, the degrees of

elements of S are smaller than or equal to rX. At this point we also see that M is a

invertible square matrix of size m ×m. Moreover, step 6) shows that M is an upper

triangular matrix after a permutation of rows. When we diagonalize M and mimic

these row operations on the elements of S, we have a tuple S = (s′1, . . . , s
′
m) such that

NFVO1(s′i)⊕ · · · ⊕ NFVOs(s
′
i) = (0, . . . , 0,mii

[i]

, 0, . . . , 0) ∈ Km.

Therefore, by replacing S by M−1S, we obtain a tuple with the desired property.

Recall that the K-vector space RrX has a K-basis {f11, . . . , fsνs} with

fjkj = ı̃−1((0, . . . , 0, ejkjT
rX
j , 0, . . . , 0)) ∈ RrX

for kj = 1, . . . , νj, where ı̃ : R → R̃ is the injection given by (2.7). We can apply

Proposition 3.2.22 to compute this basis as follows.

Remark 3.2.23. Suppose that S = (s1, . . . , sm) is already computed by Proposi-

tion 3.2.22. Let Gjkj = (s∑
k<j νk+kj)

hom ∈ P and Fjkj = X
rX−deg(Gjkj )

0 Gjkj for j =

1, . . . , s, kj = 1, . . . , νj. Since πi(s∑k<j νk+kj) = 0 for i 6= j and πj(s∑k<j νk+kj) = ejkj ,

we have ı̃(Fjkj + IX) = (0, . . . , 0, ejkjT
rX
j , 0, . . . , 0) ∈ R̃ for j = 1, . . . , s and for

kj = 1, . . . , νj. Thus the set {Fjkj + IX | j = 1, . . . , s; kj = 1, . . . , νj} is the K-

basis of RrX that we wanted to compute. Notice that when X is reduced, the set

{Fj1 + IX, . . . , Fjνj + IX} is a set of separators of X \ {pj} in X for j = 1, . . . , s.
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According to the hypothesis, for j ∈ {1, . . . , s} the algebra OX,pj/K has a trace

map σj ∈ HomK(OX,pj , K) with HomK(OX,pj , K) = OX,pj · σj. Let O′j = {e′j1, . . . , e′jνj}
be the dual K-basis of OX,pj to the K-basis Oj with respect to σj, and let f̃j1, . . . , f̃jνj
be homogeneous elements of RrX such that

f̃jkj = ı̃−1((0, . . . , 0, e′jkjT
rX
j , 0, . . . , 0))

for kj = 1, . . . , νj. We set Aj = (ajkl)1≤,k,l≤νj = (σj(ejkejl))1≤,k,l≤νj ∈ Matνj×νj(K) and

Ejk =
(
0 · · · 0 1

[k]
0 · · · 0

)tr ∈ Matνj×1(K) for k = 1, . . . , νj. In the case the matrix

Aj is computable, the K-basis O′j can be computed in terms of the K-basis Oj by our

next lemma.

Lemma 3.2.24. The following assertions hold.

(i) The matrix Aj = (ajkl)1≤,k,l≤νj is invertible, i.e., det(Aj) 6= 0.

(ii) Let X =
(
x1, . . . , xνj

)tr
, where x1, . . . , xνj are indeterminates. For k = 1, . . . , νj,

the system of linear equations Aj ·X = Ejk has exactly one solution (αk1, . . . , αkνj)

and e′jk = αk1ej1 + · · ·+ αkνjejνj .

Proof. Let Φ : OX,pj×OX,pj → K be the bilinear form on the vector space OX,pj over K

defined by Φ(a, b) = σj(ab) for all a, b ∈ OX,pj . Then Aj is the associated matrix of Φ,

and [Bo1, Chapter 5, § 8, Lemma 1] implies that det(Aj) 6= 0 if and only if Φ is non-

degenerate, i.e., for every a 6= 0 in OX,pj there exists b in OX,pj such that Φ(a, b) 6= 0.

Since σj is a trace map of the algebra OX,pj/K, we have AnnOX,pj
(σj) = 〈0〉. Thus, for

every a 6= 0 in OX,pj , we have a · σj 6= 0. In other words, there is an element b ∈ OX,pj

such that (a · σj)(b) = σj(ab) 6= 0. This shows that Φ is non-degenerate, and hence

claim (i) follows.

Now we prove (ii). We write e′jk = βk1ej1 + · · · + βkνjejνj with βk1, . . . , βkνj ∈ K.

For every l ∈ {1, . . . , νj}, we have δkl = e∗jk(ejl) = (e′jk · σj)(ejl) = σj(ejle
′
jk) =∑νj

kj=1 βkkjσj(ejlejkj) =
∑νj

kj=1 βkkja
j
lkj

. It follows that the tuple (βk1, . . . , βkνj) is a

solution of the system of linear equations Aj · X = Ejk. But by (i) the system of linear

equations Aj · X = Ejk has exactly one solution (αk1, . . . , αkνj). Therefore we obtain

(βk1, . . . , βkνj) = (αk1, . . . , αkνj), as desired.

In order to apply Proposition 3.2.9 for computing the Dedekind complementary

module, it is necessary to compute the set {f̃11, . . . , f̃1ν1 , . . . , f̃s1, . . . , f̃sνs}. For this, we

present the following algorithm which is based on Proposition 3.2.22 and Lemma 3.2.24.
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Proposition 3.2.25. Let qj ⊆ A = K[X1, . . . , Xn] be the affine ideal of X at pj, let

Oj = {ej1, . . . , ejνj} be a K-basis of OX,pj
∼= A/qj. Suppose that the algebra OX,pj/K

has a computable trace map σj for j = 1, . . . , s. Let m = deg(X), and let <σ be a degree

compatible term ordering on Tn. Consider the following sequence of instructions.

1) For j = 1, . . . , s and for k = 1, . . . , νj, form matrices Aj = (σj(ejkejl))1≤k,l≤νj ∈
Matνj×νj(K) and Ejk =

(
0 · · · 0 1

[k]
0 · · · 0

)tr ∈ Matνj×1(K).

2) Compute the dual K-basis O′j = {e′j1, . . . , e′jνj} of OX,pj to Oj with respect to σj

for j ∈ {1, . . . , s}. Here e′jk = αk1ej1 + · · ·+ αkνjejνj where (αk1, . . . , αkνj) is the

solution of the system of linear equations AjX = Ejk (see Lemma 3.2.24).

3) Compute a tuple S ′ = (s′1, . . . , s
′
m) such that s′i has degree deg(s′i) ≤ rX and

satisfies

NFVO′1(s′i)⊕ · · · ⊕ NFVO′s(s
′
i) = (0, . . . , 0, 1

[i]
, 0, . . . , 0) ∈ Km

by using Proposition 3.2.22.

4) Compute Gjkj = (s′∑
k<j νk+kj)

hom ∈ P and F̃jkj = X
rX−deg(Gjkj )

0 Gjkj for j =

1, . . . , s; kj = 1, . . . , νj. Return the tuple S̃ = ((F̃jkj | kj = 1, . . . , νj) | j =

1, . . . , s) and stop.

This is an algorithm which computes a tuple S̃ = (S̃1, . . . , S̃s) such that the set of

all images of S̃j in R is {f̃j1, . . . , f̃jνj} with f̃jkj = ı̃−1((0, . . . , 0, e′jkjT
rX
j , 0, . . . , 0)) for

kj = 1, . . . , νj.

Proof. By assumption, we compute bjkj = σj(ejkj) and present ejkejl = cklj1ej1 + · · · +
ckljνjejνj for some ckljkj ∈ K and for k, l, kj = 1, . . . , νj. Then we have

ajkl = σj(ejkejl) =

νj∑
kj=1

ckljkjσj(ejkj) =

νj∑
kj=1

ckljkjbjkj

for k, l ∈ {1, . . . , νj}. This shows us how to form the matrix Aj = (ajkl)1≤k,l≤νj for

j = 1, . . . , s in step 1).

The correctness of this algorithm follows from the observation that for j ∈ {1, . . . , s}
and kj ∈ {1, . . . , νj} we have ı̃(F̃jkj + IX) = ı̃(f̃jkj) = (0, . . . , 0, e′jkjT

rX
j , 0, . . . , 0), since

πi(s
′∑
k<j νk+kj

) = 0 for i 6= j and πj(s
′∑
k<j νk+kj

) = e′jkj , where πi : A → A/qi is the

canonical projection for i = 1, . . . , s. Additionally, the finiteness of this algorithm is

clearly true.
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Remark 3.2.26. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme. We

would like to make some following comments about the existence of a computable

trace map of the algebra OX,pj/K for j = 1, . . . , s.

(a) If X has K-rational support, for every j ∈ {1, . . . , s} let Oj = {ej1, . . . , ejνj}
be a K-basis of OX,pj and assume G(OX,pj) = K · hj. Then an element τ ∈
HomK(OX,pj , K) is a trace map of OX,pj/K if and only if τ(hj) 6= 0 (see [Ku8,

Lemma 8.7]). Now we write hj = a1ej1 + · · · + akejk with a1, . . . , ak ∈ K and

ak 6= 0. Then the trace map σj can be chosen to be the map e∗jk : OX,pj → K

defined by e∗jk(ejkj) = δkkj for kj = 1, . . . , νj.

(b) When X is smooth, the trace map σj of the algebra OX,pj/K can be chosen

to be the canonical trace map TrOX,pj /K
for j = 1, . . . , s. In this case, we let

Oj = {ej1, . . . , ejνj} be a K-basis of OX,pj and write ejkejl = cklj1ej1 + · · ·+ ckljνjejνj

and Ckl =
(
cklj1 · · · ckljνj

)
∈ Mat1×νj(K) with ckljkj ∈ K for k, l, kj = 1, . . . , νj.

Then the values of the canonical trace map is computed by

TrOX,pj /K
(ejk) = Tr

 Ck1

...

Ckνj

 = ck1
j1c

k2
j2 · · · c

kνj
jνj

for k = 1, . . . , νj.

(c) Suppose that for every j ∈ {1, . . . , s} we have qj = 〈Gj1, . . . , Gjn〉, where

Gjk = X
mjk
k +Hjk,mjk−1(X1, . . . , Xk−1)X

mjk−1

k + · · ·+Hjk,0(X1, . . . , Xk−1)

are polynomials in X1, . . . , Xk monic in Xk for k = 1, . . . , n. Then

OX,pj = A/qj =
⊕

0≤αk<mjk
Kxα1

1 · · ·xαnn

is a complete intersection over K. According to [Ku8, Example 8.16], the trace

map σj of the algebra OX,pj/K can be chosen to be the map

τj(x
α1
1 · · ·xαnn ) =

{
1 for α1 = mj1 − 1, . . . , αn = mjn − 1;

0 otherwise.

Moreover, this can be applied if the scheme X is reduced but not smooth as

follows. For every j ∈ {1, . . . , s}, let Lj be the separable closure of K in OX,pj .
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By Primitive Element Theorem (see for instance [Mor, Theorem 5.6]), there is

βj1 ∈ Lj such that Lj = K(βj1). Let Gj1 ∈ K[X1] be the minimal polyno-

mial of βj1. By [Kar, Proposition 3.21], the field extension OX,pj/Lj is purely

inseparable. We may write OX,pj = Lj(βj2, . . . , βjd) = K(βj1, . . . , βjd) for some

d ≥ 2. Let q = char(K) > 0. The minimal polynomial of βjk over K is of

the form Gjk = (Xk − βjk)
qmk for 2 ≤ k ≤ d and for some mk ≥ 1. Thus

OX,pj = K[X1, . . . , Xd]/〈Gj1, . . . , Gjd〉 is a complete intersection over K of the

above form.

Now let <σ be a degree-compatible term ordering on Tn, let m = deg(X), and let

O = Tn\LTσ(IaX) = {T ′1, . . . , T ′m} with T ′i = Xαi1
1 · · ·Xαin

n and αi = (αi1, . . . , αin) ∈ Nn

for i = 1, . . . ,m. Let ti := T ′i +IX ∈ R and set deg(ti) := deg(T ′i ) = ni for i = 1, . . . ,m.

We assume that T ′1 <σ · · · <σ T
′
m, it follows that the degrees ni satisfy n1 ≤ · · · ≤ nm.

Then the set B = {t1, . . . , tm} is a K[x0]-basis of R and Ri =
⊕m

k=1K[x0]i−nktk for all

i ∈ Z (a direct sum of K-vector spaces). Let B∗ = {t∗1, . . . , t∗m} be the dual basis of B.

It is clear that t∗i ∈ HomK[x0](R,K[x0]) is homogeneous of degree deg(t∗i ) = −ni for

i = 1, . . . ,m, and HomK[x0](R,K[x0]) = 〈 t∗1, . . . , t∗m 〉K[x0].

Recall that {f11, . . . , fsνs} and {f̃11, . . . , f̃sνs} are the K-bases of RrX such that

ı̃(fjkj) = (0, . . . , 0, ejkjT
rX
j , 0, . . . , 0) and ı̃(f̃jkj) = (0, . . . , 0, e′jkjT

rX
j , 0, . . . , 0), where

Oj = {ej1, . . . , ejνj} is a K-basis of OX,pj , and O′j = {e′j1, . . . , e′jνj} is the dual K-basis

of OX,pj to the K-basis Oj with respect to the trace map σj, for j = 1, . . . , s and for

kj = 1, . . . , νj. Using this notation, we get the following property.

Proposition 3.2.27. (i) If we write t∗i (fjkj) = cijkjx
rX−ni
0 for some cijkj ∈ K, then

CR/K[x0] = 〈 g1, . . . , gm 〉K[x0], where

gi = x−ni−rX0 (
s∑
j=1

νj∑
kj=1

cijkj f̃jkj) ∈ Rx0 (3.3)

for j = 1, . . . ,m.

(ii) Let hi = x2rX
0 gi ∈ R for i = 1, . . . ,m. We have

ϑD(R/K[x0]) =
m⋂
i=1

(R :R 〈gi〉R) = 〈x2rX
0 〉R :R 〈h1, . . . , hm〉R.

Proof. Let gi = Φ(t∗i ) ∈ (CR/K[x0])−ni for i = 1, . . . ,m. Proposition 3.2.9 enables us to

write gi = x−ni−rX0 (
∑s

j=1

∑νj
kj=1 c

i
jkj
f̃jkj) ∈ Rx0

∼= L, and hence claim (i) follows.

Now we prove (ii). We have ϑD(R/K[x0]) = R :Rx0
CR/K[x0] ⊆ R. This implies

ϑD(R/K[x0]) = R :R 〈 g1, . . . , gm 〉R =
m⋂
i=1

(R :R 〈 gi 〉R).
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Since x0 is a non-zerodivisor of R and x2rX
0 CR/K[x0] ⊆ R, we get

R :R 〈 gi 〉R = { f ∈ R | fgi ∈ R } =
{
f ∈ R | fx−ni−rX0 (

s∑
j=1

νj∑
kj=1

cijkj f̃jkj) ∈ R
}

=
{
f ∈ R | fxrX−ni0 (

s∑
j=1

νj∑
kj=1

cijkj f̃jkj) ∈ x
2rX
0 R

}
= 〈x2rX

0 〉R :R 〈x2rX
0 gi〉R = 〈x2rX

0 〉R :R 〈hi〉R.

Therefore we obtain

ϑD(R/K[x0]) =
m⋂
i=1

(R :R 〈 gi 〉R) =
m⋂
i=1

〈x2rX
0 〉R :R 〈hi〉R = 〈x2rX

0 〉R :R 〈h1, . . . , hm〉R

as we wanted to show.

Next we set soc(O) := {T ′i ∈ O | XjT
′
i /∈ O for all j = 1, . . . , n }. The elements

of the set soc(O) are called the socle monomials of X. Let q ≥ 1 and i1, . . . , iq ∈
{1, . . . ,m} such that soc(O) = {T ′i1 , . . . , T

′
iq}. [BK, Proposition 4.4] tells us that the

set {t∗i1 , . . . , t
∗
iq} is a minimal Gröbner basis of the R-module HomK[x0](R,K[x0]) with

respect to a suitable filtration. Therefore we get CR/K[x0] =
〈
gi1 , . . . , giq

〉
R
⊂ Rx0 ,

where gil = x
−nil−rX
0 (

∑s
j=1

∑νj
kj=1 c

il
jkj
f̃jkj) for all l = 1, . . . , q. As a consequence of

Proposition 3.2.27, we immediately have the following corollary.

Corollary 3.2.28. (i) Let hl = x2rX
0 gil ∈ R for l = 1, . . . , q. We have

ϑD(R/K[x0]) =
q⋂
l=1

(R :R 〈 gil 〉R) = 〈x2rX
0 〉R :R 〈h1, . . . , hq〉R.

(ii) Let Hi be a representative of hi in P for i = 1, . . . , q. We have

ϑD(R/K[x0]) =
(
(〈X2rX

0 〉+ IX) :P 〈H1, . . . , Hq〉
)
/IX.

Our next proposition shows how we can compute minimal homogeneous systems

of generators of the Dedekind differents for 0-dimensional locally Gorenstein schemes

X ⊆ PnK when the algebra OX,pj/K has a computable trace map σj for j = 1, . . . , s.

Proposition 3.2.29. (Computation of Dedekind Differents) Let X ⊆ PnK be a

0-dimensional locally Gorenstein scheme, let Supp(X) = {p1, . . . , ps}, let m = deg(X),

and let Ij ⊆ P = K[X0, X1, . . . , Xn] be the homogeneous vanishing ideal of X at pj

for j = 1, . . . , s. Let <σ be a degree compatible term ordering on Tn, and let <σ be

the extension of <σ on Tn+1 (cf. [KR3, Definition 4.3.13]). Suppose that the alge-

bra OX,pj/K has a computable trace map σj for j = 1, . . . , s. Consider the following

sequence of instructions.



3.2. Dedekind Differents for 0-Dimensional Schemes 83

1) For every j ∈ {1, . . . , s}, we form the affine ideal qj ⊆ A = K[X1, . . . , Xn]

of X at pj by taking the dehomogenization of Ij and compute a K-basis Oj =

{ej1, . . . , ejνj} of OX,pj
∼= A/qj for j = 1, . . . , s.

2) Compute the reduced <σ-Gröbner basis {G1, . . . , Gr} of IaX and a K-basis O =

{T ′1, . . . , T ′m} of the affine K-algebra A/IaX and a tuple S = (s1, . . . , sm) with

NFVO1(si)⊕ · · ·⊕NFVOs(si) = (0, . . . , 1
[i]
, . . . , 0) ∈ Km for j = 1, . . . ,m by using

Proposition 3.2.22.

3) Compute the set of socle monomials soc(O) = {T ′i1 , . . . , T
′
iq } ⊆ O.

4) Compute the reduced <σ-Gröbner basis {F1, . . . , Fr} of IX by taking the homoge-

nization Fi = Ghom
i of Gi with respect to X0 for i = 1, . . . , r (see Remark 2.3.5).

5) Use Proposition 3.2.25 to compute a tuple S̃ = (S̃1, . . . , S̃s) such that the subtuple

S̃j = (f̃j1, . . . , f̃jνj) consists of elements of RrX with

f̃jkj = ı̃−1((0, . . . , 0, e′jkjT
rX
j , 0, . . . , 0))

for kj = 1, . . . , νj, where the set O′j = {e′j1, . . . , e′jνj} is the dual K-basis of OX,pj

to Oj with respect to σj for j = 1, . . . , s.

6) Compute the homogeneous generating system {gi1 , . . . , giq} of the Dedekind com-

plementary module CR/K[x0] corresponding to soc(O). Form the set {h1, . . . , hq}
with hl = x2rX

0 gil ∈ R for l = 1, . . . , q.

7) Form J1 = 〈X2rX
0 , F1, . . . , Fr〉 and J2 = 〈H1, . . . , Hq, F1, . . . , Fr〉 two homogeneous

ideals of P , where Hk is a representative of hk in P for k = 1, . . . , q. Compute

the reduced <σ-Gröbner basis {H ′1, . . . , H ′u} (u ≥ 1) of the colon ideal J1 :P J2.

Sort the set {H ′1, . . . , H ′u} such that deg(H ′1) ≤ · · · ≤ deg(H ′u).

8) Set H = {H ′1, . . . , H ′u} \ {F1, . . . , Fr}. For every polynomial H ∈ H , compute

its normal polynomial H ′ = NFσ,IX(H). If H ′ 6= 0, replace H by H ′. Otherwise,

delete H from H .

9) Apply Buchberger’s Algorithm with Minimalization 3.1.10 to compute a tuple

Hmin which generates (J1 :P J2)/IX minimally.

10) Return the tuple Hmin and stop.

This is an algorithm which returns a tuple Hmin whose elements are a minimal homo-

geneous system of generators of the Dedekind different ϑD(R/K[x0]).
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Proof. The finiteness of this procedure is obviously true. The correctness of this pro-

cedure follows by combining Proposition 3.1.10 and Corollary 3.2.28. We explain how

to compute the homogeneous generating system {gi1 , . . . , giq} of the Dedekind com-

plementary module CR/K[x0] in step 6). After step 2) we computed S = (s1, . . . , sm)

with NFVO1(si) ⊕ · · · ⊕ NFVOs(si) = (0, . . . , 1
[i]
, . . . , 0) ∈ Km for i = 1, . . . ,m. For

i ∈ {1, . . . ,m}, we see that all terms of si belong to O = {T ′1, . . . , T ′m}. This enables us

to write si = s∑
k<j νk+kj = c1

jkj
T ′1 + · · ·+ cmjkjT

′
m with i =

∑
k<j νk +kj and 1 ≤ kj ≤ νj.

We then form a matrix C = (cijkj) ∈ Matm×m(K). Now we assume that the algorithm

has already executed step 5). For every j ∈ {1, . . . , s}, let S̃j = (f̃j1, . . . , f̃jνj) be the

tuple of elements of RrX with f̃jkj = ı̃−1((0, . . . , 0, e′jkjT
rX
j , 0, . . . , 0)) for kj = 1, . . . , νj.

For every l ∈ {1, . . . , q}, we claim that

hl = x2rX
0 gil = x

rX−nil
0 (

s∑
j=1

νj∑
kj=1

ciljkj f̃jkj) ∈ R.

Indeed, for j ∈ {1, . . . , s} and for kj ∈ {1, . . . , νj}, let Fjkj ∈ PrX be the homogeneous

polynomial such that Fjkj = X
rX−deg(s∑

k<j νk+kj
)

0 (s∑
k<j νk+kj)

hom. Set fjkj := Fjkj +IX ∈
RrX for all j = 1, . . . , s and kj = 1, . . . , νj. Then

ı̃(fjkj) = ı̃(Fjkj + IX) = (0, . . . , 0, ejkjT
rX
j , 0, . . . , 0) ∈ R̃ =

s∏
j=1

OX,pj [Tj]

for j = 1, . . . , s and kj = 1, . . . , νj. In R, we get fjkj = c1
jkj
xrX−n1

0 t1 + · · ·+ cmjkjx
rX−nm
0 tm

for j = 1, . . . , s and kj = 1, . . . , νj. Hence we have t∗il(fjkj) = t∗il(c
1
jkj
xrX−n1

0 t1 + · · · +
cmjkjx

rX−nm
0 tm) = ciljkjx

rX−nil
0 for j = 1, . . . , s and kj = 1, . . . , νj and l = 1, . . . , q. Thus

the equalities for hl and gil as above follow.

Remark 3.2.30. In order to compute the Hilbert function of the Dedekind differ-

ent ϑD(R/K[x0]) for a 0-dimensional locally Gorenstein scheme X ⊆ PnK we perform

the following steps.

1) Compute a homogeneous generating system {h1, . . . , ht} of ϑD(R/K[x0]) by using

Proposition 3.2.29.

2) Form the homogeneous ideal J = IX + 〈H1, . . . , Ht〉 of P , where Hi is the normal

representative of hi in P for i = 1, . . . , t.

3) Compute the regularity index rX of HFX and then return the Hilbert function of

Dedekind different HFϑD(R/K[x0])(i) = HFX(i) − HFP/J(i) for all i ∈ Z. Notice
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that HFϑD(R/K[x0])(i) = 0 for i < 0 and HFϑD(R/K[x0])(i) = deg(X) for i ≥ 2rX

(see Proposition 3.2.5).

We end this section with an application of Proposition 3.2.29 to a concrete case.

Example 3.2.31. Let X ⊆ P3
Q be the reduced 0-dimensional scheme with support

Supp(X) = {p1, . . . , p6}, where p1 = (1 : 1 : 0 : 0), p2 = (1 : 0 : 1 : 0), p3 = (1 : 0 : 0 : 1),

p4 = (1 : 0 : 1 : 1), p5 corresponds to P5 = 〈3X2
0 +X2

1 , X2, X3〉, and p6 corresponds to

P6 = 〈X1, 2X
3
0 + X3

2 , X3〉. Let <σ be the term ordering DegRevLex on T4. We have

HFX : 1 4 7 9 9 · · · and rX = 3. By using Proposition 3.2.29, a minimal homogeneous

system of generators of the Dedekind different ϑD(R/Q[x0]) is given by

h1 = x2x
2
3 − 1

2
x3

3,

h2 = x2
0x

2
1 − 2

3
x0x

3
1 + x4

1,

h3 = x3
0x

2
2 − 3

2
x0x

4
2 + 2x5

2,

h4 = x5
1 − 27

16
x2

0x
3
2 + 27

8
x0x

4
2 − 27

16
x5

2,

h5 = x6
2.

The Hilbert function of ϑD(R/Q[x0]) is HFϑD(R/Q[x0]) : 0 0 0 1 3 6 9 9 · · · , and its

regularity index is ri(ϑD(R/Q[x0])) = 2rX = 6.

3.3 Kähler Differents for 0-Dimensional Schemes

The main goal of this section is to describe the module structure and Hilbert function

of the Kähler different for a 0-dimensional scheme X ⊆ PnK over an arbitrary field K

with Supp(X) ∩ Z+(X0) = ∅.
In the enveloping algebra R ⊗K[x0] R we have the homogeneous ideal J = Ker(µ),

where µ : R ⊗K[x0] R → R is the homogeneous R-linear map given by µ(f ⊗ g) = fg.

The module of Kähler differentials of the algebra R/K[x0] is defined to be the

finitely generated graded R-module Ω1
R/K[x0] = J /J 2. The homogeneous K[x0]-linear

map dR/K[x0] : R→ Ω1
R/K[x0] given by f 7→ f ⊗ 1− 1⊗ f + J 2 is called the universal

derivation of R/K[x0]. More generally, for any algebra T/S we can define in the same

way the module of Kähler differentials Ω1
T/S = J̃ /J̃ 2, where J̃ = Ker(T ⊗S T → T ),

and the universal derivation dT/S :T→ Ω1
T/S (t 7→ t⊗1−1⊗t+J̃ 2) (cf. [Ku5, Section 1]).

By using the notion of Fitting ideals which was introduced in Section 2.2, we give

a definition of the Kähler different for X as follows.
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Definition 3.3.1. For i ≥ 0, the i-th Fitting ideal of Ω1
R/K[x0] is denoted by

ϑ(i)(R/K[x0]) = Fi(Ω1
R/K[x0])

and is called the i-th Kähler different of R/K[x0] (or for X with respect to x0). In

particular, the ideal ϑ0(R/K[x0]) is called the Kähler different of R/K[x0] (or for X
with respect to x0) and is also denoted by ϑK(R/K[x0]).

From the definition we see that there is a chain of inclusions

〈0〉 ⊆ ϑK(R/K[x0]) ⊆ ϑ(1)(R/K[x0]) ⊆ · · · ⊆ ϑ(i)(R/K[x0]) ⊆ · · · ⊆ R

and ϑ(i)(R/K[x0]) = R for i ≥ m, where m is the minimal number of generators

of Ω1
R/K[x0]. Let {F1, . . . , Fr} be a homogeneous system of generators of IX, where

r ≥ n. By [Ku5, Proposition 4.19], we have the following exact sequence for the

module of Kähler differentials:

0→ K → RdX1 ⊕ · · · ⊕RdXn → Ω1
R/K[x0] → 0 (3.4)

Here K is generated by the elements
∑n

i=1
∂Fj
∂xi
dXi such that j ∈ {1, . . . , r}. The Jaco-

bian matrix
(
∂Fj
∂xi

)
i=1,...,n
j=1,...,r

is a relation matrix of Ω1
R/K[x0] with respect to {dx1, . . . , dxn}.

Thus ϑ(i)(R/K[x0]) is the ideal of R generated by all (n − i)-minors of the Jacobian

matrix. In particular, ϑK(R/K[x0]) is generated by the n-minors of that matrix. This

implies ϑ(i)(R/K[x0]) with i ≥ 1 and ϑK(R/K[x0]) are homogeneous ideals of R.

Remark 3.3.2. Let Ij ⊆ P be the homogeneous vanishing ideal of the scheme X at pj

for j = 1, . . . , s, and let <σ be a term ordering on Tn+1. Then a minimal homogeneous

system of generators of the Kähler different ϑK(R/K[x0]) of R/K[x0] can be computed

by performing the following sequence of instructions.

1) Compute the reduced <σ-Gröbner basis {F1, . . . , Fr} of IX =
⋂s
j=1 Ij by using

the GPBM-Algorithm (see [AKR, Theorem 4.6]).

2) Form the Jacobian matrix J =
(
∂Fj
∂Xi

)
i=1,...,n
j=1,...,r

. Compute the set {H1, . . . , Ht} of

all non-zero n-minors of J, and sort the set {H1, . . . , Ht} such that deg(H1) ≤
· · · ≤ deg(Ht).

3) Set H = {H1, . . . , Ht} \ {F1, . . . , Fr}. For every polynomial H ∈ H , compute

its normal polynomial H ′ = NFσ,IX(H). If H ′ 6= 0, replace H by H ′. Otherwise,

delete H from H .



3.3. Kähler Differents for 0-Dimensional Schemes 87

4) Compute a tuple Hmin which generates (〈H 〉 + IX)/IX minimally by using the

Buchberger Algorithm with Minimalization 3.1.10.

5) Return the tuple Hmin which is a minimal homogeneous system of generators

of ϑK(R/K[x0]).

Recall that the affine ideal of a 0-dimensional scheme X ⊆ PnK is IaX = Ideh
X ⊆ A =

K[X1, . . . , Xn], and the affine coordinate ring of X is Γ = A/IaX ∼= R/〈x0 − 1〉. By

ϑ(i)(Γ/K) we denote the i-th Kähler different of the algebra Γ/K, where i ∈ N.

Proposition 3.3.3. Let i be a positive integer.

(i) Let ϑ(i)(R/K[x0]) denote the image of ϑ(i)(R/K[x0]) in Γ. Then we have

ϑ(i)(Γ/K) = ϑ(i)(R/K[x0]).

(ii) For every multiplicatively closed set U ⊆ R, we have

ϑ(i)(RU/K[x0]) = ϑ(i)(R/K[x0])U .

Proof. This follows from Proposition 2.2.4.

Given a homogeneous system {F1, . . . , Fr} of generators of IX and pj ∈ Supp(X),

we define the Jacobian matrix at the point pj of X by J(pj) :=
(
(∂Fk
∂xi

)pj
)
i=1,...,n
k=1,...,r

where

(∂Fk
∂xi

)pj is the image of ∂Fk
∂xi

under the map

φj : R→ R/〈x0 − 1〉 = Γ ∼=
s∏
j=1

OX,pj
proj→ OX,pj

can→ OX,pj/mX,pj = K(pj)

f 7→ fdeh 7→ (fp1 , . . . , fps) 7→ fpj .

All entries of J(pj) are elements of K(pj). The Jacobian criterion for smoothness

of 0-dimensional scheme X ⊆ PnK is provided by our next proposition, which follows

from [Ku5, Corollary 7.18 and Theorem 10.12].

Proposition 3.3.4. The following conditions are equivalent.

(i) X is smooth at pj.

(ii) rank(J(pj)) = n− dimOX,pj = n.

(iii) ϑK(R/K[x0]) * pj, where pj is the prime ideal of R corresponding to pj.

(iv) ϑ(0)(Γ/K) * p′j, where p′j the image of pj in Γ.
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Corollary 3.3.5. Let X ⊆ PnK be a 0-dimensional complete intersection, and let IX =

〈F1, . . . , Fn〉 where Fj ∈ P is a homogeneous polynomial of degree dj for j = 1, . . . , n.

Then we have

ϑK(R/K[x0]) = ϑN(R/K[x0]) =
〈
∂(F1,...,Fn)
∂(x1,...,xn)

〉
R
.

In addition, if X is smooth, then

(i) ϑK(R/K[x0]) = ϑX(R/K[x0]) =
〈∂(F1,...,Fn)
∂(x1,...,xn)

〉
R

, where the element ∂(F1,...,Fn)
∂(x1,...,xn)

is a

non-zerodivisor of R of degree rX =
∑n

i=1 di − n.

(ii) CR/K[x0] =
〈(∂(F1,...,Fn)

∂(x1,...,xn)

)−1〉
R

.

(iii) HFϑK(R/K[x0])(i) = HFϑX(R/K[x0])(i) = HFX(i− rX) for all i ∈ Z.

Proof. This follows from Corollary 3.2.20 and Propositions 3.1.2 and 3.3.4.

The following example shows that the smoothness of X in the additional claim of

Corollary 3.3.5 is necessary, and that the Noether and Dedekind differents are not equal

even when X is a complete intersection.

Example 3.3.6. Let K be a field with char(K) 6= 2, 3, and let X ⊆ P2
K be the

0-dimensional complete intersection defined by IX = 〈F,G〉, where F = X1(X1 −
2X0)(X1 + 2X0) and G = (X2 − X0)(X2

1 + X2
2 − 4X2

0 ). Then X has degree 9 and

the support of X is Supp(X) = {p1, . . . , p7} with p1 = (1 : 0 : 1), p2 = (1 : 0 : 2),

p3 = (1 : 0 : −2), p4 = (1 : 2 : 1), p5 = (1 : 2 : 0), p6 = (1 : −2 : 1), and p7 =

(1 : −2 : 0). A homogeneous primary decomposition of the homogeneous vanishing

ideal of X is IX = I1 ∩ · · · ∩ I7, where Ii = Pi for i 6= 5, 7, I5 = 〈X1 − 2X0, X
2
2 〉, and

I7 = 〈X1 + 2X0, X
2
2 〉. This means that X is not reduced at p5 and p7, hence X is not

smooth at those points. By Corollary 3.3.5, the Kähler and Noether differents are

ϑK(R/K[x0]) = ϑN(R/K[x0]) =
〈 ∂(F,G)
∂(x1,x2)

〉
= 〈 4x0x

2
1x2 − 16x2

0x
2
2 − 3x2

1x
2
2 − 2x0x

3
2 + 6x4

2 〉.

Observe that ∂(F,G)
∂(x1,x2)

(p5) = ∂(F,G)
∂(x1,x2)

(p7) = 0. This implies ∂(F,G)
∂(X1,X2)

∈ P5∩P7, and hence
∂(F,G)
∂(x1,x2)

is a zero-divisor of R. Moreover, we have HFϑK(R/K[x0]) : 0 0 0 0 1 3 6 7 · · · ,
ri(ϑK(R/K[x0])) = 7, and HPϑK(R/K[x0])(z) = 7 < 9 = deg(X). Therefore we cannot

remove the assumption that X is smooth in the additional claim of Corollary 3.3.5.

Also, we have ϑN(R/K[x0]) 6= ϑD(R/K[x0]), since HPϑD(R/K[x0])(z) = deg(X) = 9 >

7 = HPϑN (R/K[x0])(z).
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For a 0-dimensional reduced complete intersection X ⊆ PnK , we can describe the

Hilbert function of the Kähler different as follows.

Corollary 3.3.7. Let X ⊆ PnK be a 0-dimensional reduced complete intersection, and

let IX = 〈F1, . . . , Fn〉, where Fj ∈ P is a homogeneous polynomial of degree dj for

j = 1, . . . , n. Let d :=
∑n

j=1 dj − n, and let Y ⊆ X be a subscheme defined by IY =⋂
pj∈Supp(X): smooth

Pj. Then, for all i ∈ Z, we have

HFϑK(R/K[x0])(i) = HFϑN (R/K[x0])(i) = HFY(i− d).

Proof. Let IY/X be the ideal of Y in R and put ∆ := ∂(F1,...,Fn)
∂(x1,...,xn)

. By Proposition 3.3.4,

the element ∆+IY/X is a non-zerodivisor of RY = R/IY/X and ∆ ∈
⋂

pj∈Supp(X)\Supp(Y)

pj.

Fix the degree i ≥ 0 and suppose HFY(i) = t. Let {g1 + IY/X, . . . , gt + IY/X} be a K-

basis of the vector space (RY)i. Then the set {∆ ·g1 +IY/X, . . . ,∆ ·gt+IY/X} ⊆ (RY)i+d

is K-linearly independent. It follows that the vector space (∆ ·R)i+d has K-dimension

greater than or equal to t. In other words, we have HFϑK(R/K[x0])(i+ d) ≥ HFY(i).

On the other hand, we observe that ∆ · h = 0 in R for every homogeneous element

h ∈ IY/X \ {0}, since X is reduced. For every f ∈ Ri, we write f = a1g1 + · · ·+ atgt +h

for some a1, . . . , at ∈ K and h ∈ (IY/X)i. Then ∆ · f = ∆ · (a1g1 + · · · + atgt + h) =

a1∆ · g1 + · · · + at∆ · gt ∈ 〈∆ · g1, . . . ,∆ · gt 〉K (as ∆ · h = 0 in R). Thus we have

ϑK(R/K[x0])d+i = (∆ ·R)i+d ⊆ 〈∆ · g1, . . . ,∆ · gt 〉K , and hence HFϑK(R/K[x0])(i+d) ≤
t = HFY(i). Therefore the conclusion follows.

Remark 3.3.8. In the setting of Corollary 3.3.7, the regularity indices of the Kähler

and Noether differents are d+ rY. If we remove the condition that X is reduced, then

we have HFϑK(R/K[x0])(i) = HFϑN (R/K[x0])(i) ≥ HFY(i− d) for all i ∈ Z.

Our next proposition collects some relations between the Kähler and Noether dif-

ferents of the algebra R/K[x0] and the annihilator of the module of Kähler differentials

Ω1
R/K[x0], which follow from [Ku5, Proposition 10.18].

Proposition 3.3.9. Let X ⊆ PnK be a 0-dimensional scheme, let m be the number of

minimal generators of Ω1
R/K[x0]. Then we have

(AnnR(Ω1
R/K[x0]))

m ⊆ ϑK(R/K[x0]) ⊆ ϑN(R/K[x0]) ⊆ AnnR(Ω1
R/K[x0]).

In particular, if X is smooth, then ϑX(R/K[x0])m ⊆ ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]).
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Definition 3.3.10. (i) A local ring (S,m) is called a complete intersection if it

is Noetherian and its m-adic completion Ŝ is a quotient of a regular local ring A

by an ideal generated by an A-regular sequence.

(ii) Given a ring S and an algebra T/S, we say that T/S is locally a complete

intersection if for all P ∈ Spec(T ) the algebra TP/Sp with p = P∩S is flat and

the local ring TP/pTP is a complete intersection.

It is well known (cf. [BH, Theorem 2.3.3]) that if S is a Noetherian local ring and

S = A/I with a regular local ring A, then S is a complete intersection if and only if I is

generated by an A-regular sequence. We refer to [BH, Section 2.3] for more properties

of complete intersection rings, and refer to [Ku5, Appendix C] for further information

on complete intersection algebras.

Lemma 3.3.11. Let X ⊆ PnK be a 0-dimensional scheme. Then the following state-

ments are equivalent.

(i) The scheme X is a complete intersection.

(ii) The algebra R/K[x0] is locally a complete intersection.

(iii) The local ring R = R/〈x0〉 is a complete intersection.

Proof. Let {F1, . . . , Fr} be a minimal homogeneous system of generators of IX, where

r ≥ n. If X is a complete intersection, then r = n, {F1, . . . , Fn} is an P -regular

sequence, and R = K[X0][X1, . . . , Xn]/〈F1, . . . , Fn〉. Hence R/K[x0] is locally a com-

plete intersection by [Ku5, Corollary C.7]. Thus we have “(i) implies (ii)”. More-

over, “(ii) implies (iii)” follows from the observations that 〈x0〉K[x0] = m ∩K[x0] and

Rm/〈x0〉Rm = (R/〈x0〉)m = Rm = R, where m = m/〈x0〉 is the maximal ideal of R.

It remains to prove “(iii) implies (i)”. Observe that if {F1, . . . , Fr, X0} is a minimal

homogeneous system of generators of the ideal IX + 〈X0〉 then we write

R = Rm
∼= (P/IX + 〈X0〉)m ∼= PP+/(〈F1, . . . , Fr, X0〉)P+ .

Since R is a complete intersection, the set {F1, . . . , Fr, X0} is a PP+-regular sequence

(see [BH, Theorem 2.1.2]). [Ku5, Lemma C.28] implies that {F1, . . . , Fr, X0} is a

P -regular sequence, and hence r = n or X is a complete intersection. Therefore we

only need to show that {F1, . . . , Fr, X0} is a minimal homogeneous system of generators

of IX+〈X0〉. Clearly, we have X0 /∈ IX. If there is an index i ∈ {1, . . . , r} such that Fi ∈
〈F1, . . . , Fi−1, Fi+1, . . . , Fr, X0〉, then we get a representation Fi =

∑
j 6=iGjFj + GX0

where Gj ∈ P is a homogeneous polynomial of degree deg(Fi) − deg(Fj) for j 6= i
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and where G ∈ P is a homogeneous polynomial of degree deg(Fi) − 1 (cf. [KR2,

Corollary 1.7.11]). This implies GX0 = Fi −
∑

j 6=iGjFj ∈ IX, and so G ∈ IX (as x0

is a non-zerodivisor of R). Thus there are homogeneous polynomials H1, . . . , Hr ∈ P
such that G =

∑r
j=1HjFj and deg(Hj) = deg(G) − deg(Fj). Note that Hi = 0 (as

deg(G) < deg(Fi)). Hence we have Fi =
∑

j 6=i(Gj + HjX0)Fj, in contradiction to the

minimality of {F1, . . . , Fr}.

Let us go back for a moment to Example 3.2.21. We saw that the projective point

set X = {(1 : 0 : 0 : 0), (1 : 1 : 1 : 1), (1 : −1 : 1 : −1), (1 : 2 : 4 : 8), (8 : 4 : 2 : 1)}
in P3

F7
consisting of 5 points on the twisted cubic curve is arithmetically Gorenstein,

but it is not a complete intersection. Furthermore, the Noether-Dedekind different

of R/F7[x0] is given by ϑX(R/F7[x0]) = 〈x2
0 − 2x0x3 − 3x1x3 − 2x2

3〉. On the other

hand, a calculation provides us with ϑK(R/F7[x0]) = 〈x2x
2
3−3x3

3, x1x
2
3, x0x

2
3−3x3

3, x
3
0〉.

Thus we get ϑK(R/F7[x0]) ( ϑX(R/F7[x0]). This shows that the condition that a

projective point set X ⊆ PnK is arithmetically Gorenstein does not suffice to imply

ϑK(R/K[x0]) = ϑX(R/K[x0]). However, in case X is arithmetically Gorenstein we

have the following property.

Proposition 3.3.12. Let X ⊆ PnK be a 0-dimensional smooth scheme which is arith-

metically Gorenstein. The following conditions are equivalent.

(i) The scheme X is a complete intersection.

(ii) The Hilbert function of ϑK(R/K[x0]) satisfies HFϑK(R/K[x0])(rX) 6= 0.

(iii) ϑK(R/K[x0]) = ϑX(R/K[x0]).

Proof. (i)⇒(ii): If X is a complete intersection, then let {F1, . . . , Fn} be a minimal

homogeneous system of generators of IX. By Corollary 3.3.5, we have

ϑK(R/K[x0]) =
〈
∂(F1,...,Fn)
∂(x1,...,xn)

〉
R

= ϑX(R/K[x0])

where ∂(F1,...,Fn)
∂(x1,...,xn)

is a non-zerodivisor of R with deg(∂(F1,...,Fn)
∂(x1,...,xn)

) = rX. Thus we get

HFϑK(R/K[x0])(rX) 6= 0.

(ii)⇒(iii): By Proposition 3.3.9, we have ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]). We now

prove the equality. Since X is arithmetically Gorenstein, we get ϑX(R/K[x0]) = 〈h〉R ∼=
R(−rX) with h ∈ RrX by Corollary 3.2.20. Also, we have

〈0〉 6= ϑK(R/K[x0])rX ⊆ ϑX(R/K[x0])rX = h ·R0 = h ·K.

This implies h ∈ ϑK(R/K[x0]), and hence ϑK(R/K[x0]) = ϑX(R/K[x0]).
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(iii)⇒(i): Suppose that ϑK(R/K[x0]) = ϑX(R/K[x0]). Since X is arithmetically

Gorenstein and by Corollary 3.2.20, we have ϑK(R/K[x0]) = 〈h〉R for some non-

zerodivisor h ∈ RrX . In particular, ϑK(R/K[x0]) is an invertible ideal. Moreover,

if the module of Kähler differentials Ω1
Q(R)/K[x0] = 〈0〉, where Q(R) is the full ring of

quotients of R, then it follows from [Ku5, Theorem 10.14] that the algebra R/K[x0] is

locally a complete intersection, and hence X is a complete intersection by Lemma 3.3.11.

Therefore it suffices to prove Ω1
Q(R)/K[x0] = 〈0〉. According to Proposition 3.2.16, the al-

gebra Q(R)/K(x0) is étale, and free of rank deg(X). Thus [Ku5, Proposition 6.8] yields

Ω1
Q(R)/K(x0) = 〈0〉. Also, it is not hard to see that Ker(K(x0)⊗K[x0]K(x0)

µ→ K(x0)) =

〈{ f ⊗ 1− 1⊗ f | f ∈ K(x0) }〉K(x0)⊗K[x0]K(x0) = 〈0〉, and so Ω1
K(x0)/K[x0] = 〈0〉. On the

other hand, we have Q(R) ∼= K(x0)⊗K
∏s

j=1OX,pj (as X is smooth). This implies

Q(R) ∼= K(x0)⊗K[x0] (K[x0]⊗K
s∏
j=1

OX,pj)
∼= K(x0)⊗K[x0] R̃

where R̃ =
∏s

j=1OX,pj [Tj] and T1, . . . , Ts are indeterminates. By [Ku5, Formulas 4.4],

we obtain Ω1
Q(R)/K(x0)

∼= K(x0)⊗K[x0] Ω1
R̃/K[x0]

and

Ω1
Q(R)/K[x0]

∼= K(x0)⊗K[x0] Ω1
R̃/K[x0]

⊕ R̃⊗K[x0] Ω1
K(x0)/K[x0]

∼= Ω1
Q(R)/K(x0) ⊕ R̃⊗K[x0] Ω1

K(x0)/K[x0] = 〈0〉.

This completes the proof.

Remark 3.3.13. We make the following two remarks on the Hilbert function and the

regularity index of the Kähler different in two special cases of the scheme X.

(a) If n = 1, then every 0-dimensional subscheme X of P1
K is always a complete

intersection. The homogeneous vanishing ideal IX is generated by a non-zero

homogeneous polynomial F1 ∈ P . In this situation, the Kähler and Noether

differents are ϑK(R/K[x0]) = ϑN(R/K[x0]) = 〈∂F1

∂x1
〉. Additionally, if X is smooth,

then HFϑK(R/K[x0])(i) = HFX(i−s+1) for all i ∈ Z and ri(ϑK(R/K[x0])) = 2rX =

(n+ 1)rX = (n+ 1)(s− 1).

(b) Let X = {p1} ⊆ PnK be a projective point set of degree 1. We write p1 = (1 : p11 :

· · · : p1n) for some p11, . . . , p1n ∈ K. Then the homogeneous vanishing ideal of X
is IX = P1 = 〈L11, . . . , L1n〉 where L1i = Xi − p1iX0 for i = 1, . . . , n. It follows

that

ϑK(R/K[x0]) = ϑX(R/K[x0]) =
〈
∂(L11, . . . , L1n)/∂(x1, . . . , xn)

〉
= 〈1〉.
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Also, we have HFϑK(R/K[x0])(i) = HFX(i) for all i ∈ N and ri(ϑK(R/K[x0])) =

2rX = 0.

Our next proposition describes the Hilbert function of ϑK(R/K[x0]) and gives lower

and upper bounds for its regularity index when X is a projective point set in PnK .

Proposition 3.3.14. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set, and let m

be the number of minimal generators of Ω1
R/K[x0].

(i) The Hilbert function of ϑK(R/K[x0]) satisfies

· · · = 0 ≤ HFϑK(R/K[x0])(0) ≤ HFϑK(R/K[x0])(1) ≤ HFϑK(R/K[x0])(2) ≤ · · · ≤ s

and HFϑK(R/K[x0])(i) = s for i� 0.

(ii) If n ≥ 2, then we have

2rX ≤ ri(ϑK(R/K[x0])) ≤ min{nrX, 2mrX } ≤ min{nrX, 2srX }.

In particular, the first inequality becomes an equality if X is a complete intersec-

tion or n = 2.

Proof. It is obviously true that HFϑK(R/K[x0])(i) ≤ HFϑK(R/K[x0])(i+1) ≤ s for all i ∈ N
and HFϑK(R/K[x0])(i) = 0 for i < 0. By Proposition 3.3.9, we have

ϑX(R/K[x0])m ⊆ ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]).

Let fj ∈ RrX be the normal separator of X\{pj} in X for j = 1, . . . , s. We remark that

RrX+i = xi0RrX = 〈xi0f1, . . . , x
i
0fs 〉K for i ≥ 0. Since HFϑX(R/K[x0])(i) = s for i ≥ 2rX by

Proposition 3.2.11, we get ϑX(R/K[x0])2rX = R2rX = 〈xrX0 f1, . . . , x
rX
0 fs 〉K . This implies

〈 (xrX0 f1)m, . . . , (xrX0 fs)
m 〉K ⊆ (ϑX(R/K[x0])m)2mrX ⊆ ϑK(R/K[x0])2mrX ⊆ R2mrX . For

j ∈ {1, . . . , s}, we see that fmj = xrX0 fj(pj)f
m−1
j = xrX0 f

m−1
j = x

(m−1)rX
0 fj, and hence

(xrX0 fj)
m = x

(2m−1)rX
0 fj. Thus we have

R2mrX =
〈

(xrX0 f1)m, . . . , (xrX0 fs)
m
〉
K

=
〈
x

(2m−1)rX
0 f1, . . . , x

(2m−1)rX
0 fs

〉
K

= (ϑX(R/K[x0])m)2mrX = ϑK(R/K[x0])2mrX .

Therefore we obtain HFϑK(R/K[x0])(i) = HFϑX(R/K[x0])m(i) = s for all i ≥ 2mrX, and

claim (i) follows.

Now we prove (ii). It follows from the proof of (i) that

ri(ϑK(R/K[x0])) ≤ 2mrX ≤ min{ 2nrX, 2srX }.
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Here the inequality m ≤ min{n, s } holds true, since Ω1
R/K[x0] = 〈 dx1, . . . , dxn 〉R =

〈 dt1, . . . , dts 〉R where t1, . . . , ts form a K[x0]-basis of R. Moreover, Proposition 3.2.11

shows that the regularity index of ϑX(R/K[x0]) is 2rX, and so the regularity index of

the Kähler different must satisfy 2rX ≤ ri(ϑK(R/K[x0])). Thus we get

2rX ≤ ri(ϑK(R/K[x0])) ≤ 2mrX ≤ min{ 2nrX, 2srX }.

Next we prove the inequality ri(ϑK(R/K[x0])) ≤ nrX if n ≥ 2. Notice that the

inequality does not hold when n = 1 (see Remark 3.3.13(a)). We see that if we have

fnj ∈ ϑK(R/K[x0])nrX for all j = 1, . . . , s then

RnrX ⊇ ϑK(R/K[x0])nrX ⊇
〈
fn1 , . . . , f

n
s

〉
K

=
〈
x

(n−1)rX
0 f1, . . . , x

(n−1)rX
0 fs

〉
K

= RnrX .

This implies ϑK(R/K[x0])nrX = RnrX , and hence the inequality ri(ϑK(R/K[x0])) ≤ nrX

holds true. Using this observation, we only need to prove fnj ∈ ϑK(R/K[x0])nrX for all

j = 1, . . . , s. It suffices to prove that fn1 belongs to ϑK(R/K[x0])nrX , since the other

cases follow similarly. We let Fj ∈ PrX be a representative of fj for every j ∈ {1, . . . , s},
and write P1 = 〈L11, . . . , L1n〉 ⊆ P as in Remark 3.3.13(b). It is clearly true that

F1L1i ∈ (IX)rX+1 for all i = 1, . . . , n, so the element ∂(F1L11, . . . , F1L1n)/∂(x1, . . . , xn)

is contained in the K-vector space ϑK(R/K[x0])nrX . We calculate

∂(F1L11, . . . , F1L1n)

∂(X1, . . . , Xn)
= det

F1
∂L11

∂X1
+ L11

∂F1

∂X1
· · · F1

∂L11

∂Xn
+ L11

∂F1

∂Xn
...

. . .
...

F1
∂L1n

∂X1
+ L1n

∂F1

∂X1
· · · F1

∂L1n

∂Xn
+ L1n

∂F1

∂Xn


(∗)
= det

F1
∂L11

∂X1
· · · F1

∂L11

∂Xn
...

. . .
...

F1
∂L1n

∂X1
· · · F1

∂L1n

∂Xn

+ det

L11
∂F1

∂X1
· · · L11

∂F1

∂Xn
...

. . .
...

L1n
∂F1

∂X1
· · · L1n

∂F1

∂Xn

+G

= det

F1
∂L11

∂X1
· · · F1

∂L11

∂Xn
...

. . .
...

F1
∂L1n

∂X1
· · · F1

∂L1n

∂Xn

+
∂F1

∂X1

· · · ∂F1

∂Xn

det

L11 · · · L11

...
. . .

...

L1n · · · L1n

+G

(∗∗)
= F n

1

∂(L11, . . . , L1n)

∂(X1, . . . , Xn)
+G = F n

1 +G

for some polynomial G ∈ IX. Here the equality (∗) holds because all other determinants

contain at least one column of the form
(
F1

∂L11

∂Xj
· · · F1

∂L1n

∂Xj

)tr
and one column of the

form
(
L11

∂F1

∂Xk
· · · L1n

∂F1

∂Xk

)tr
. Since F1L1j ∈ (IX)rX+1 for all j = 1, . . . , n, they are

contained in IX. The equality (∗∗) follows from n ≥ 2 and the last equality holds since
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∂(L11,...,L1n)
∂(X1,...,Xn)

= 1 by Remark 3.3.13(b). Hence we obtain fn1 ∈ ϑK(R/K[x0])nrX , as we

wanted to show.

The last claim follows from the inequalities 2rX ≤ ri(ϑK(R/K[x0])) ≤ nrX and the

equality ϑK(R/K[x0]) = ϑX(R/K[x0]) if X is a complete intersection.

When n ≥ 3, the upper bound for the regularity index of ϑK(R/K[x0]) given in

Proposition 3.3.14 is sharp, as the following example shows.

Example 3.3.15. Let X ⊆ P3
Q be the projective point set consisting of the following

ten points: p1 = (1 : 0 : 0 : 0), p2 = (1 : 0 : 1 : 0), p3 = (1 : 0 : 0 : 1), p4 =

(1 : 1 : 0 : 1), p5 = (1 : 2 : 0 : 0), p6 = (1 : 2 : 1 : 2), p7 = (1 : 2 : 2 : 1),

p8 = (1 : 2 : 2 : 2), p9 = (1 : 3 : 1 : 1), and p10 = (1 : 2 : 3 : 1). By calculation,

we have HFX : 1 4 10 10 · · · and rX = 2. The Hilbert function of ϑK(R/Q[x0]) is

HFϑK(R/Q[x0]) : 0 0 0 0 0 0 10 10 · · · , and its regularity index is ri(ϑK(R/Q[x0])) = 6.

In this case, X spans P3
Q, this implies the elements {dx1, dx2, dx3} form a minimal

homogeneous system of generators of Ω1
R/K[x0] (cf. [DK, Corollary 1.7]), so we get

m = n = 3. Therefore we obtain ri(ϑK(R/Q[x0])) = 6 = min{nrX, 2mrX }.

Corollary 3.3.16. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set, where s ≥ 2.

Let R̃ denote the integral closure of R in its full ring of quotients, and let FR̃/R be the

conductor of R in R̃.

(i) We have

(FR̃/R)max{2,n} ⊆ ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]) ⊆ FR̃/R.

(ii) We have ϑK(R/K[x0]) = 〈ϑK(R/K[x0])i≤nrX 〉R.

Proof. Let f ∗j be a minimal separator of X\{pj} in X for j = 1, . . . , s. By [GKR, Propo-

sition 3.13], the conductor FR̃/R as an ideal of R is generated by the set {f ∗1 , . . . , f ∗s }.
First we consider the case n = 1. Then max{2, n} = 2 and it is not hard to check that

F2
R̃/R
⊆ ϑK(R/K[x0]) = ϑX(R/K[x0]) ⊆ FR̃/R. Now we assume n ≥ 2. Using the same

argument as in the proof of Proposition 3.3.14, we can prove (f ∗j )n ∈ ϑK(R/K[x0]) for

all j = 1, . . . , s. Since f ∗j f
∗
k = 0 if j 6= k, we get Fn

R̃/R
⊆ ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]).

On the other hand, we have the inclusions R̃ ⊆ CR/K[x0] ⊆ L = Qh(R). It follows that

ϑX(R/K[x0]) = R :L CR/K[x0] ⊆ R :L R̃ = FR̃/R.

Hence claim (i) follows.
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Claim (ii) is obviously true if n = 1. If n ≥ 2, then the claim (ii) is an immediate

consequence of Proposition 3.3.14, since we have

ϑK(R/K[x0])nrX+i = RnrX+i = xi0RnrX = xi0ϑK(R/K[x0])nrX

for all i ≥ 0.

Corollary 3.3.17. Let X = {p1, . . . , ps} ⊆ P2
K be a projective point set. If the Hilbert

function of the Noether-Dedekind different satisfies HFϑX(R/K[x0])(2rX − 1) = 0, then

ϑK(R/K[x0]) = ϑX(R/K[x0]).

Proof. Since n = 2, Proposition 3.3.14 yields that ri(ϑK(R/K[x0])) = nrX = 2rX.

Moreover, we have ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]). Thus it follows from the equality

HFϑX(R/K[x0])(2rX − 1) = 0 that ϑK(R/K[x0]) = ϑX(R/K[x0]) = ⊕i≥2rXRi, and the

conclusion follows.

Example 3.3.18. Let Y = {(1 : 0 : 0), (1 : 0 : 1), (1 : 1 : 1), (1 : 2 : 0), (1 :

2 : 1), (1 : 0 : 2)} ⊆ P2
Q be the projective point set, sketched in the affine plane

A2 = D+(X0) = { (c0 : c1 : c2) ∈ P2
Q | c0 6= 0 } as follows:

(0, 2) • (2, 2)

• • •
(0, 0) • • (2, 0)

The Hilbert function of Y is HFY : 1 3 6 6 · · · and the regularity index of HFY is

rY = 2. We also have ϑY(R/K[x0]) = 〈x4
2, x1x

3
2, x0x

3
2, x

4
1, x0x

3
1, x

4
0〉 = ⊕i≥4Ri. By

Corollary 3.3.17, we get ϑK(R/Q[x0]) = ϑY(R/Q[x0]) and ri(ϑK(R/Q[x0])) = 4 = nrY.

However, Corollary 3.3.17 is not true in general. For that, we turn back to Ex-

ample 3.3.15. Observe that the Hilbert function of the Noether-Dedekind different is

HFϑX(R/Q[x0]) : 0 0 0 0 10 10 · · · , and so HFϑX(R/Q[x0])(2rX − 1) = HFϑX(R/Q[x0])(3) = 0.

But it is clearly true that ϑK(R/Q[x0]) 6= ϑX(R/Q[x0]).

Apart from some other special cases, to exactly determine the Hilbert polynomial

of the Kähler different for an arbitrary 0-dimensional subscheme X of PnK is not an easy

question, so we try at least to find (possibly sharp) lower and upper bounds for it.

Proposition 3.3.19. Let X ⊆ PnK be a 0-dimensional scheme, let Supp(X) =

{p1, . . . , ps}, and let Xsm be the set of smooth points of X in Supp(X). Then we have∑
pj∈Xsm

dimK(OX,pj) ≤ HPϑK(R/K[x0])(z) ≤ deg(X)− (s−#Xsm).
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Proof. Let Pj ⊆ P be the associated prime ideal of pj for j = 1, . . . , s, and set

I :=
⋂

pj∈Supp(X)\Xsm

Pj.

It follows from Proposition 3.3.4 that ϑK(R/K[x0]) ⊆ pj = Pj/IX for every point

pj ∈ Supp(X) \ Xsm. Hence we get ϑK(R/K[x0]) ⊆ I/IX, and consequently

HFϑK(R/K[x0])(i) ≤ HFI/IX(i) = HFX(i)− HFP/I(i) ≤ deg(X)− deg(Y)

for all i ∈ N, where Y is the 0-dimensional subscheme of PnK defined by I. Observe

that the scheme Y has degree deg(Y) ≥ s−#Xsm. Thus we obtain HPϑK(S/K[x0])(z) ≤
deg(X)− deg(Y) ≤ deg(X)− (s−#Xsm).

Next we prove the first inequality of HPϑK(R/K[x0])(z). If Xsm = ∅, then there is noth-

ing to prove, since we always have HPϑK(R/K[x0])(z) ≥ 0. Now let us consider the case

% := #Xsm ≥ 1. Without loss of generality, we may assume that Xsm = {p1, . . . , p%}.
For j ∈ {1, . . . , %}, we have ϑK(R/K[x0]) * pj = Pj/IX by Proposition 3.3.4. It follows

from Homogeneous Prime Avoidance (see for instance [KR3, Proposition 5.6.22]) that

there exists a homogeneous element h ∈ ϑK(R/K[x0])d \ {0} for some d ≥ 0 such that

h /∈
⋃%
j=1(pj)d. Fix j ∈ {1, . . . , %}. We set νj = dimK(OX,pj), and let {ej1, . . . , ejνj} be

a K-basis of OX,pj . Since pj is a smooth point of X, OX,pj/K is a finite separable field

extension. In particular, we have hpj 6= 0 in OX,pj , where hpj is the germ of h at pj.

For any non-zero element a ∈ OX,pj , it is not difficult to verify that {aej1, . . . , aejνj} is

a K-basis of OX,pj , then so is {hpjejkej1, . . . , hpjejkejνj}, where 1 ≤ k ≤ νj.

Now we consider the isomorphism of K-vector spaces ı : RrX →
∏s

j=1OX,pj given

by ı(f) = (fp1 , . . . , fps), where fpj is the germ of f at pj. For j = 1, . . . , % and for

kj = 1, . . . , νj, we let fjkj = ı−1((0, . . . , 0, ejkj , 0, . . . , 0)) ∈ RrX . Then we get〈
hf11, . . . , hf1ν1 , . . . , hf%1, . . . , hf%ν%

〉
K
⊆ ϑK(R/K[x0])rX+d ⊆ RrX+d.

Now we show that the elements {hf11, . . . , hf1ν1 , . . . , hf%1, . . . , hf%ν% } are K-linearly

independent. Remark that for j1, j2 ∈ {1, . . . , %} and for ki ∈ {1, . . . , νji}, where

i = 1, 2, we have fj1k1 · fj2k2 6= 0 if j1 = j2 and fj1k1 · fj2k2 = 0 if j1 6= j2, and hf 2
j1k1
6= 0

in R2rX+d. Suppose for a contradiction that there are c11, . . . , c1ν1 , . . . , c%1, . . . , c%ν% ∈ K,

not all equal to zero, such that
∑%

j=1

∑νj
kj=1 cjkjhfjkj = 0. W.l.o.g. we may assume

c11 6= 0. We then have

hf 2
11 = 1

c11
(
ν1∑
k1=2

c1k1hf1k1f11 +
%∑
j=2

νj∑
kj=1

cjkjhfjkjf11) = 1
c11

ν1∑
k1=2

c1k1hf11f1k1 .
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Thus, in OX,p1 , we get the equality hp1e
2
11 = 1

c11

∑ν1

k1=2 c1k1hp1e11e1k1 , in contradiction

to the fact that {hp1e
2
11, hp1e11e12, . . . , hp1e11e1ν1} is a K-basis of OX,p1 . Therefore we

obtain
HPϑK(R/K[x0])(z) ≥ dimK

〈
hf11, . . . , hf1ν1 , . . . , hf%1, . . . , hf%ν%

〉
K

=
%∑
j=1

νj =
∑

pj∈Xsm

dimK(OX,pj)

and the proposition is completely proved.

Example 3.3.20. Let us go back to Example 3.3.6. We see that the 0-dimensional

complete intersection X ⊆ P2
K is not smooth. Also, we have deg(X) = 9, s = 7, % = 5

(the number of smooth points of X), and the Kähler different is generated by one

element which vanishes at two points in support of X. It is not difficult to calculate

the following Hilbert functions:

HFX : 1 3 6 8 9 9 · · ·
HFϑK(R/K[x0]) : 0 0 0 0 1 3 6 7 7 · · ·

Thus the Hilbert polynomial of the Kähler different ϑK(R/K[x0]) satisfies

HPϑK(R/K[x0])(z) = deg(X)− (s− %) = 7 > 5 = % =
∑

pj∈Xsm

dimK(OX,pj)

and its regularity index is ri(ϑK(R/K[x0])) = 7 < 2rX = 8.

According to [GM, Proposition 1.1], we can find a minimal system {F1, . . . , Fr}
of generators of the homogeneous vanishing ideal IX such that deg(Fj) ≤ rX + 1 for

all j = 1, . . . , r. Since ϑK(R/K[x0]) is generated by n-minors of the Jacobian matrix

J =
(
∂Fj
∂xi

)
i=1,...,n
j=1,...,r

, it follows that ϑK(R/K[x0]) is generated in degree ≤ nrX. In

the special case that X is a 0-dimensional smooth subscheme of PnK , we can find a

homogeneous element h ∈ ϑK(R/K[x0])d for some d ≥ 0 such that h /∈
⋃s
j=1(pj)d by

a similar argument as in the proof of Proposition 3.3.19. By Lemma 2.3.11, such an

element h is a non-zerodivisor of R.

If d > nrX and 〈ϑK(R/K[x0])nrX〉R ⊆
⋃s
j=1(pj), then 〈ϑK(R/K[x0])nrX〉R ⊆ pj for

some j ∈ {1, . . . , s}, and hence the element h cannot exist. Thus h can be chosen such

that deg(h) = d ≤ nrX. Moreover, if {f1, . . . , fdeg(X)} is a K-basis of RrX , then the set

{hf1, . . . , hfdeg(X)} is a K-basis of ϑK(R/K[x0])d+rX .

We summarize these arguments here.

Corollary 3.3.21. Let X ⊆ PnK be a 0-dimensional smooth scheme. Then we have

HPϑK(R/K[x0])(z) = deg(X) and ri(ϑK(R/K[x0])) ≤ rX(n+ 1).
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Corollary 3.3.22. Let X ⊆ PnK be a 0-dimensional smooth scheme such that

IX = 〈(IX)αX〉P . Then ϑK(R/K[x0]) is generated by elements of degree n(αX−1) and

n(αX − 1) ≤ ri(ϑK(R/K[x0])) ≤ n(αX − 1) + rX.

Proof. If n = 1, then X is a complete intersection with IX = 〈F1〉 ⊆ P . This implies

ϑK(R/K[x0]) = 〈∂F1/∂x1〉 and ∂F1/∂x1 is a non-zerodivisor of R of degree rX =

αX − 1 (see Corollary 3.3.5). Thus we have ri(ϑK(R/K[x0])) = 2rX = 2(αX − 1),

and the claim follows. Now we suppose that n ≥ 2. Clearly, we have ϑK(R/K[x0]) =

〈ϑK(R/K[x0])n(αX−1) 〉R and n(αX−1) ≤ ri(ϑK(R/K[x0])). Notice that n(αX−1)+rX ≤
rX(n + 1) holds true, since αX ≤ rX + 1 (see [GM, Proposition 1.1]). In this case,

there is a non-zerodivisor h of R contained in ϑK(R/K[x0])n(αX−1) by the argument

before Corollary 3.3.21. Let f1, . . . , fdeg(X) ∈ RrX be a K-basis of RrX . Then we have

hfj ∈ ϑK(R/K[x0])n(αX−1)+rX for all j ∈ {1, . . . , deg(X)}, and

deg(X) = dimK

〈
hf1, . . . , hfdeg(X)

〉
K
≤ HFϑK(R/K[x0])(n(αX − 1) + rX) ≤ deg(X).

This implies that HFϑK(R/K[x0])(n(αX − 1) + rX) = deg(X), and therefore we get

ri(ϑK(R/K[x0])) ≤ n(αX − 1) + rX, as desired.

Example 3.3.23. Let us consider the 0-dimensional scheme X ⊆ P2
Q with the ho-

mogeneous vanishing ideal given by IX = 〈F1, F2, F3〉 ⊆ Q[X0, X1, X2], where F1 =

X0X1X2−X0X
2
2 −X1X

2
2 +X3

2 , F2 = X2
0X2− 2X0X

2
2 +X3

2 , and F3 = X3
0X1−X2

0X
2
1 +

X0X
3
1−X4

1 +2X2
1X

2
2−2X0X

3
2−2X1X

3
2 +2X4

2 . A homogeneous primary decomposition

of IX is given by

IX = P1 ∩P2 ∩P3 ∩P4 ∩P2
5 ∩P6

where P1 = 〈X1, X2〉, P2 = 〈X1−X0, X2〉, P3 = 〈X1 +X0, X2−X0〉, P4 = 〈X1, X2−
X0〉, P5 = 〈X1 − X0, X2 − X0〉, and P6 = 〈X2

1 + X2
0 , X2〉. So, we get Supp(X) =

{p1, . . . , p6}, Xsm = {p1, . . . , p4, p6}, % = 5, and deg(X) = 9. In particular, X is not

smooth at p5, and so it is not smooth. A calculation gives us the following Hilbert

functions:

HFX : 1 3 6 8 9 9 · · ·
HFϑK(R/K[x0]) : 0 0 0 0 0 2 4 6 6 · · ·

Thus we obtain HPϑK(R/K[x0])(z) =
∑

pj∈Xsm

dimK(OX,pj) = 6 < deg(X) − (s − %) = 8,

and ri(ϑK(R/K[x0])) = 7 < 2rX = 8.
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Let Y ⊆ X be the subscheme defined by IY = P1 ∩P2 ∩P3 ∩P4 ∩P6 ⊆ P . Then

Y is a smooth subscheme of X of degree 6. Moreover, we have

HFY : 1 3 5 6 6 · · ·
HFϑK(RY/K[x0]) : 0 0 0 1 3 5 6 6 · · ·

Hence we get HPϑK(RY/K[x0])(z) = deg(Y) = 6 and ri(ϑK(RY/K[x0])) = 6 = 2rY.

Remark 3.3.24. Let K be a perfect field, let n ≥ 2, let X ⊆ PnK be a reduced 0-

dimensional scheme, and let Supp(X) = {p1, . . . , ps}. It follows from Corollary 3.3.21

that x
rX(n+1)
0 ∈ ϑK(R/K[x0]). However, another non-zerodivisor of R contained in

ϑK(R/K[x0]) of smaller degree can be found in terms of a minimal system of generators

of IX as follows. In view of [DK, Proposition 5.1], we suppose that IX has a minimal

homogeneous system of generators {F1, . . . , Fr} such that {F1, . . . , Fn} is a P -regular

sequence and 〈F1, . . . , Fn〉PPj = PjPPj for j = 1, . . . , s. It follows that the ideal J =

〈F1, . . . , Fn〉 defines a 0-dimensional complete intersection W ⊆ PnK which is reduced at

the points of X. Since K is perfect, the scheme W is also smooth at the points of X. By

the Jacobian criterion for smoothness 3.3.4, we have (∂(F1, . . . , Fn)/∂(x1, . . . , xn))pj 6=0

in K(pj) for j = 1, . . . , s. Put ∆ = ∂(F1, . . . , Fn)/∂(x1, . . . , xn) ∈ ϑK(R/K[x0])d ⊆ Rd

with d =
∑n

j=1 deg(Fj)−n. Since IX is generated in degree ≤ rX +1, we have d ≤ nrX.

An application of Lemma 2.3.11 yields that ∆ is a non-zerodivisor of R.

If X = {p1, . . . , ps} ⊆ PnK is a projective point set, we may omit the assumption

that K is perfect. Because if the scheme W is reduced at the point pj of X then

OW,pj = K(pj) = K, and hence W is also smooth at pj.



Chapter 4
Differents and Uniformity of

0-Dimensional Schemes

Given a 0-dimensional scheme X in the projective n-space PnK over an arbitrary field K

such that Supp(X) ∩ Z+(X0) = ∅, we are interested in studying relations between the

geometry of the scheme and the algebraic structure of the Noether, Dedekind, and

Kähler differents. Explicitly, we want to find out some characterizations of uniformity

properties of X in terms of these differents. The techniques we use in this chapter are

inspired by those of Martin Kreuzer and his coworkers in their study of 0-dimensional

schemes in PnK (cf. [GKR], [KK], [Kr2], [Kr3], [Kr4], [KR1], and [GK]).

In Section 4.1, we start by generalizing the definition of the Cayley-Bacharach

scheme (CB-scheme) in PnK over an arbitrary field K. This notion was introduced

and studied for projective point sets in [GKR] and for 0-dimensional schemes over an

algebraically closed field in [Kr2]. The first main result is then Theorem 4.1.7 which

gives a characterization of CB-schemes in terms of their Dedekind differents. This

characterization also shows that the CB-scheme property can be shown by checking

a particular homogeneous component of the Dedekind different (see Corollary 4.1.9),

provides some descriptions of the Hilbert function, and determines the regularity in-

dex of the Dedekind different for a 0-dimensional locally Gorenstein CB-scheme (see

Propositions 4.1.11 and 4.1.12). Furthermore, when X is a 0-dimensional smooth CB-

scheme, we can determine X to be an arithmetically Gorenstein scheme (respectively,

a complete intersection) by looking at the Hilbert function of the Dedekind differ-

ent (respectively, the Kähler different) at degree rX, where rX is the regularity index

of HFX (see Proposition 4.1.15). The remainder of this section is devoted to dis-

cussing the Cayley-Bacharach property of degree d (CBP(d)) of the scheme X, where

0 ≤ d ≤ rX − 1. We give a sufficient condition for CBP(d) in terms of the Dedekind
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different (see Proposition 4.1.23). Also, we characterize CBP(d) in terms of the con-

ductor of R in a particular extension ring which is the integral closure of R if X is

reduced (see Proposition 4.1.26) and present a generalization of the Dedekind formula

for the conductor and the Dedekind complementary module which is found in [GKR]

(see Proposition 4.1.27).

Section 4.2 is concerned with the study of a particular class of 0-dimensional schemes

in PnK whose Hilbert functions are as large as possible, namely the schemes having

generic Hilbert function. More precisely, we first indicate, in Lemma 4.2.2, that a

0-dimensional scheme X ⊆ PnK , which has K-rational support and generic Hilbert

function, has CBP(d) for d = 0, . . . , rX − 2. However, not all such schemes are CB-

schemes (see Remark 4.2.3). Then we generalize some characterizations of arithmeti-

cally Gorenstein property for projective point sets found in [GO, Section 3-4] to reduced

0-dimensional schemes (see Proposition 4.2.4 and Corollary 4.2.5). Next we restrict our

attention to projective point sets X = {p1, . . . , ps} ⊆ PnK . We demonstrate that X has

generic Hilbert function with s =
(
n+αX−1

n

)
if and only if it is a CB-scheme and its

Kähler different equals the n-th power of the conductor of R in its integral closure

(see Proposition 4.2.7). Moreover, we use the Kähler different to provide some suf-

ficient conditions for Cayley-Bacharach properties (see Propositions 4.2.9 and 4.2.11)

and we characterize projective point sets having generic Hilbert function under some

additional hypotheses (see Propositions 4.2.7 and 4.2.13).

In Section 4.3, we use Liaison theory to explore Cayley-Bacharach properties of

0-dimensional schemes X in PnK . This approach was initiated by A.V. Geramita,

M. Kreuzer, and L. Robbiano [GKR]. They showed that a projective point set X, which

is contained in a reduced 0-dimensional complete intersection W, is a CB-scheme if and

only if there exists a homogeneous polynomial of degree rW − rX in the homogeneous

vanishing ideal of the complement of X in W which does not vanish at any point of X.

This result is generalized in Theorem 4.3.6 for 0-dimensional schemes contained in a

0-dimensional arithmetically Gorenstein scheme. Due to this theorem, we character-

ize CBP(d) in terms of the Dedekind complementary module (see Corollary 4.3.9 and

Theorem 4.3.10) and describe the Hilbert function of the Dedekind different (Propo-

sition 4.3.12). We also show that if two 0-dimensional schemes X and Y are linked

by a 0-dimensional arithmetically Gorenstein scheme W and pj ∈ Supp(X), then there

is a 1-1 correspondence between pj-subschemes of X and schemes containing Y as a

pj-subscheme (see Lemma 4.3.14). Furthermore, we apply this correspondence to gen-

eralize a result of [KR1] (see Theorem 4.3.15).
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In the final section 4.4 we investigate higher uniformities for a 0-dimensional scheme

X ⊆ PnK with K-rational support. We say that X is (i, j)-uniform if every subscheme

Y ⊆ X of degree deg(Y) = deg(X) − i satisfies HFY(j) = HFX(j). When X is locally

Gorenstein and (i, j)-uniform, we describe relations between the Dedekind different

and the homogeneous saturated ideals of maximal pj-subschemes of X (see Proposi-

tions 4.4.7 and 4.4.10). By using these relations, we give some characterizations of

(2, j)-uniformity (see Propositions 4.4.12 and 4.4.15). Additionally, we find a class

of CB-schemes which are not (2, rX − 1)-uniformity (see Proposition 4.4.18). We end

this section with some results (see Propositions 4.4.20 and 4.4.21) about cohomological

uniformity.

Throughout this chapter we work over an arbitrary field K. We let X ⊆ PnK be a

0-dimensional scheme, let IX ⊆ P = K[X0, ..., Xn] be the homogeneous vanishing ideal

of X, and let R = P/IX be the homogeneous coordinate ring of X in PnK . We always

assume that no point of the support of X lies on Z+(X0), and we denote the image

of Xi in R by xi for i = 0, . . . , n. It is necessary to keep in mind that x0 is not a

zerodivisor of R and R is a graded-free K[x0]-module of rank m = deg(X).

4.1 Differents and the Cayley-Bacharach Property

Let us start this section by recalling from Section 2.3 the following notation. Let

X ⊆ PnK be a 0-dimensional scheme, and let Supp(X) = {p1, . . . , ps} for some s ≥ 1.

We let κj := dimK K(pj) = dimK(OX,pj/mX,pj) for j = 1, . . . , s. For any element

a ∈ OX,pj , we set µ(a) = min{ i ∈ N | (0, . . . , 0, aT ij , 0, . . . , 0) ∈ ı̃(R) } and ν(a) =

max{µ(ab) | b ∈ OX,pj \{0} }, where ı̃ : R→ R̃ =
∏s

j=1OX,pj [Tj] is the injection given

by ı̃(f) = (fp1T
i
1, . . . , fpsT

i
s) for f ∈ Ri with i ≥ 0.

Given a maximal pj-subscheme Y ⊆ X, we let sj ∈ G(OX,pj) be a socle element

of OX,pj corresponding to Y. According to Proposition 2.3.21(iv), we can take a set

{ej1, . . . , ejκj} ⊆ OX,pj such that whose residue classes form a K-basis of K(pj) and

IY/X = 〈f ∗j1, . . . , f ∗jκj〉R, where {f ∗j1, . . . , f ∗jκj} is the set of minimal separators of Y in X
(w.r.t. sj and {ej1, . . . , ejκj}), i.e.,

f ∗jkj = ı̃−1((0, . . . , 0, ejkjsjT
µ(ejkj sj)

j , 0, . . . , 0))

for all kj ∈ {1, . . . ,κj}. The set {fj1, . . . , fjκj}, where fjkj = x
rX−µ(ejkj sj)

0 f ∗jkj for kj =

1, . . . ,κj, is the set of separators of Y in X (w.r.t. sj and {ej1, . . . , ejκj}). Obviously,

we have (IY/X)rX = 〈fj1, . . . , fjκj〉K . The maximal degree of minimal separators of Y
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in X is νY/X = max{ deg(f ∗jkj) | kj = 1, . . . ,κj }. Notice that νY/X does not depend

on a specific choice of a set of minimal separators and νY/X = ν(s′j) for every element

s′j ∈ sjOX,pj \ {0} (see Lemma 2.3.15).

Recall from Definition 2.3.23 that, for every point pj ∈ Supp(X), the degree of pj

in X is given by

degX(pj) = min
{
νY/X

∣∣Y is a maximal pj-subscheme of X
}
.

It is clear that degX(pj) ≤ rX for all j = 1, . . . , s. In case all points of Supp(X) have

the maximum possible degree rX, we have the following notion.

Definition 4.1.1. A 0-dimensional scheme X ⊆ PnK is called a Cayley-Bacharach

scheme (in short, CB-scheme) if every point pj ∈ Supp(X) has degree degX(pj) = rX.

First of all, we give an example which shows that a 0-dimensional scheme X ⊆ PnK
with X(K) ( Supp(X) can be a CB-scheme.

Example 4.1.2. Let X ⊆ P2
Q be the reduced 0-dimensional scheme of degree 14 with

support Supp(X) = {p1, . . . , p12}, where p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 1 : 1),

p4 = (1 : 0 : 1), p5 = (1 : −1 : 1), p6 = (1 : 1 : −1), p7 = (1 : 0 : −1), p8 = (1 : 2 : 0),

p9 = (1 : 2 : 1), p10 = (1 : 2 : −1), p11 corresponds to P11 = 〈2X2
0 + X2

1 , X2〉, and p12

corresponds to P12 = 〈X1, X
2
0 + 7X2

2 〉. Clearly, X does not have Q-rational support,

since the two points p11 and p12 are not contained in X(Q). A calculation gives us

HFX : 1 3 6 10 14 14 · · ·
HFX\{pj} : 1 3 6 10 13 13 · · · (j = 1, . . . , 10)

HFX\{p11} : 1 3 6 10 12 12 · · ·
HFX\{p12} : 1 3 6 9 12 12 · · · .

We have αX\{pj}/X = rX\{pj} = rX = 4 for j = 1, . . . , 11. This implies degX(pj) = 4 for

j = 1, . . . , 11. We also see that αX\{p12}/X = 3 < rX\{p12} = rX = 4. However, it follows

from HFIX\{p12}/X
(3) = 1 < κ12 = dimQOX,p12 = 2 that there is a minimal separator

of X \ {p12} in X having maximal degree 4. In other words, we have degX(p12) = 4.

Hence the scheme X is a CB-scheme.

Remark 4.1.3. Given a 0-dimensional scheme X ⊆ PnK , we consider the following two

statements:

(a) The scheme X is a CB-scheme.

(b) Every hypersurface of degree rX − 1 which contains a maximal pj-subscheme

Y ⊆ X automatically contains X.
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When the scheme X has K-rational support, then the statements (a) and (b) are

equivalent. Indeed, we have κj = dimK K(pj) = 1 for all j = 1, . . . , s and

degX(pj) = min{αY/X | Y is a maximal pj-subscheme of X }.

It follows that X is a CB-scheme if and only if, for each point pj ∈ Supp(X), every

maximal pj-subscheme Y ⊆ X has αY/X = rX. Thus (a) is clearly equivalent to (b).

In general, we observe that (b) implies (a), but (a) does not imply (b). For example,

the reduced 0-dimensional scheme X ⊆ P2
Q given in Example 4.1.2 is a CB-scheme. But

αX\{p12}/X = 3 < rX\{p12} = rX = 4, and so the statement (b) is not satisfied.

The following proposition gives a simple criterion for detecting whether a given

0-dimensional scheme X ⊆ PnK is a CB-scheme.

Proposition 4.1.4. The following conditions are equivalent.

(i) The scheme X is a CB-scheme.

(ii) For all j ∈ {1, . . . , s} and sj ∈ G(OX,pj) \ {0} we have ν(sj) = rX.

(iii) If Y ⊆ X is a maximal pj-subscheme and {fj1, . . . , fjκj} is a set of separators

of Y in X, then there exists kj ∈ {1, . . . ,κj} such that x0 - fjkj .

(iv) For all pj ∈ Supp(X), every maximal pj-subscheme Y ⊆ X satisfies

dimK(IY/X)rX−1 < κj.

Proof. (i)⇔(ii): This follows from Definition 4.1.1 and Proposition 2.3.17.

(i)⇔(iii): If we write fjkj = x
rX−deg(f∗jkj

)

0 f ∗jkj with f ∗jkj ∈ Rdeg(f∗jkj
) \ x0Rdeg(f∗jkj

)−1 for

kj = 1, . . . ,κj, then the set {f ∗j1, . . . , f ∗jκj} is a set of minimal separators of Y in X.

Hence the claim is clearly true.

(i)⇔(iv): For a maximal pj-subscheme Y ⊆ X, we always have dimK(IY/X)i ≤ κj
for i ≥ 0. Also, we see that dimK(IY/X)rX−1 = κj if and only if deg(f ∗jkj) ≤ rX − 1 for

all kj = 1, . . . ,κj. Thus the conclusion follows.

Example 4.1.5. Let X ⊆ P2
Q be the reduced 0-dimensional scheme with support

Supp(X) = {p1, . . . , p7}, where p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 1 : 1),

p4 = (1 : 0 : 1), p5 = (1 : −1 : 1), p6 = (1 : 2 : 3), and p7 corresponds to P7 =

〈2X2
0 + X2

1 , X2〉. We have κ1 = · · · = κ6 = 1 and κ7 = 2. The Hilbert functions of X
and its subschemes are computed as follows

HFX : 1 3 6 8 8 · · ·
HFX\{pj} : 1 3 6 7 7 · · · (j = 1, . . . , 6)

HFX\{p7} : 1 3 6 6 6 · · · .
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From this we deduce (IX\{pj}/X)rX−1 = (IX\{pj}/X)2 = 〈0〉 for all j = 1, . . . , 7. Hence

Proposition 4.1.4 yields that X is a CB-scheme.

Next we consider the subscheme Y = X \ {p6} of X. Then the support of Y is

Supp(Y) = {p1, . . . , p5, p7}. The Hilbert functions of Y and its subschemes are

HFY : 1 3 6 7 7 · · ·
HFY\{pj} : 1 3 5 6 6 · · · (j = 1, 3, 5)

HFY\{pj} : 1 3 6 6 6 · · · (j = 2, 4)

HFY\{p7} : 1 3 5 5 5 · · · .

We see that dimK(IY\{pj}/Y)rY−1 = dimK(IY\{pj}/Y)2 = 1 = dimK OY,pj for j = 1, 3, 5.

Thus the scheme Y is not a CB-scheme by Proposition 4.1.4.

Lemma 4.1.6. A homogeneous element ϕ∈HomK[x0](R,K[x0]) satisfies AnnR(ϕ)=〈0〉
if and only if for every pj ∈ Supp(X) and for every maximal pj-subscheme Y ⊆ X we

have f · ϕ 6= 0 for any element f ∈ (IY/X)rX \ {0}.

Proof. If AnnR(ϕ) = 〈0〉, then it is clear that f · ϕ 6= 0 for all f ∈ (IY/X)rX \ {0}.
Conversely, if g · ϕ = 0 for some g ∈ Ri \ {0} with i ≥ 0, then we may assume that

gpj 6= 0 for some j ∈ {1, . . . , s}. Let U = 〈gpj〉OX,pj
. It is clear that U 6= 〈0〉, and so

U ∩G(OX,pj) 6= 〈0〉, since Ass(U) = {mX,pj} (see [Ku4, Chapter IV, §3, p. 189]). Thus

we can find an element a ∈ OX,pj \{0} such that sj = agpj ∈ G(OX,pj)\{0}. Now we let

f = ı̃−1((0, . . . , 0, sjT
rX
j , 0, . . . , 0)) ∈ RrX and h = ı−1((0, . . . , 0, aT rXj , 0, . . . , 0)) ∈ RrX .

Then gh = xi0f and xi0f · ϕ = 0. Since x0 is a non-zerodivisor on HomK[x0](R,K[x0])

(cf. [Kr2, Lemma 1.3]), we get f · ϕ = 0. Moreover, the ideal 〈f〉R defines a maximal

pj-subscheme Y ⊆ X by Proposition 2.3.17. Hence the conclusion follows.

At this point we are able to characterize Cayley-Bacharach schemes in terms of

their Dedekind differents.

Theorem 4.1.7. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme and let

Supp(X) = {p1, . . . , ps}. The following conditions are equivalent.

(i) The scheme X is a CB-scheme.

(ii) For each pj ∈ Supp(X), every maximal pj-subscheme Y ⊆ X satisfies

xrX−1
0 (IY/X)rX * ϑD(R/K[x0])2rX−1.

If, moreover, the field K is infinite, the above conditions are equivalent to:

(iii) There is an element g ∈ (CR/K[x0])−rX such that AnnR(g) = 〈0〉.
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Proof. (i)⇒(ii): Since X is locally Gorenstein, there is for each point pj a uniquely de-

termined maximal pj-subscheme Yj⊆X corresponding to a socle element sj∈G(OX,pj)

of OX,pj . Let {ej1, . . . , ejκj} ⊆ OX,pj be such that whose residue classes form a K-basis

of K(pj), and let {f ∗j1, . . . , f ∗jκj} (resp. {fj1, . . . , fjκj}) be a set of minimal separa-

tors (resp. separators) of Yj in X with respect to sj and {ej1, . . . , ejκj}. Since X is

a CB-scheme, for every j ∈ {1, . . . , s} there is an index kj ∈ {1, . . . ,κj} such that

fjkj = f ∗jkj /∈ x0RrX−1. We assume without loss of generality that fj1 = f ∗j1 /∈ x0RrX−1

for j = 1, . . . , s. Let us fix an index j ∈ {1, . . . , s}. Then we can define a K-linear map

ϕj : RrX → K such that ϕj(x0RrX−1) = 〈0〉 and ϕj(fj1) 6= 0. By [Kr2, Lemma 1.5], we

may lift ϕj to obtain a K[x0]-linear map ϕj : R → K[x0] of degree −rX, i.e., ϕj is an

element of HomK[x0](R,K[x0])−rX such that ϕj|RrX = ϕj, especially, ϕj(fj1) 6= 0.

Given a homogeneous element f ∈ (IYj/X)rX\{0}, we proceed to show that f ·ϕj 6= 0.

According to Proposition 2.3.21, we have IYj/X = 〈f〉sat = 〈fj1〉sat. This implies that

xk0fj1 ∈ 〈f〉 for some k ≥ 0, and so we may write xk0fj1 = fh for some h ∈ Rk \ {0}.
Consequently, we have (f · ϕj)(h) = ϕj(hf) = ϕj(x

k
0fj1) = xk0ϕj(fj1) 6= 0. From this

we conclude f · ϕj 6= 0 for all f ∈ (IYj/X)rX \ {0}.
Since CR/K[x0] = Φ(HomK[x0](R,K[x0])), where Φ is the monomorphism of graded

R-modules in Definition 3.2.4, we find g∗j = Φ(ϕj) ∈ (CR/K[x0])−rX such that f · g∗j 6= 0

for all f ∈ (IYj/X)rX \ {0}. By Proposition 3.2.5, we have x2rX
0 ∈ ϑD(R/K[x0]). This

enables us to write g∗j = x−2rX
0 g̃∗j ∈ (CR/K[x0])−rX ⊆ (Rx0)−rX with g̃∗j ∈ RrX \ {0}. We

have fjkj · g̃∗j 6= 0 for kj = 1, . . . ,κj. It follows from Lemma 2.3.25 that (g̃∗j )pj is a unit

element of OX,pj . Therefore, for every j ∈ {1, . . . , s}, we have constructed an element

g∗j ∈ (CR/K[x0])−rX such that g∗j = x−2rX
0 g̃∗j with g̃∗j ∈ RrX \{0} and (g̃∗j )pj ∈ OX,pj \mX,pj .

Now we assume for a contradiction that there is a maximal pj-subscheme Yj ⊆ X
such that

xrX−1
0 (IYj/X)rX ⊆ ϑD(R/K[x0])2rX−1.

For such an index j, let g∗j = x−2rX
0 g̃∗j ∈ (CR/K[x0])−rX be constructed as above. To get a

contradiction, it suffices to show x0 | fj1. We write ı̃(fj1) = (0, . . . , 0, ej1sjT
rX
j , 0, . . . , 0)

and f = ı̃−1((0, . . . , 0, ej1(g̃∗j )
−1
pj
sjT

rX
j , 0, . . . , 0)). Then 0 6= xrX−1

0 f ∈ xrX−1
0 (IY/X)rX and

fg̃∗j = xrX0 fj1, especially, xrX−1
0 f ∈ ϑD(R/K[x0])2rX−1. Also, we observe that

xrX−1
0 f · g∗j = xrX−1

0 f · (x−2rX
0 g̃∗j ) = x−rX−1

0 fg̃∗j = x−rX−1+rX
0 fj1 = x−1

0 fj1.

Thus it follows from CR/K[x0] · ϑD(R/K[x0]) ⊆ R that x−1
0 fj1 ∈ RrX−1 \ {0}, and hence

we obtain fj1 ∈ x0RrX−1 or x0 | fj1, as desired.

(ii)⇒(i): Suppose that the scheme X is not a CB-scheme. Then there is a maximal

pj-subscheme Yj ⊆ X such that deg(f ∗jkj) ≤ rX − 1 for all kj = 1, . . . ,κj. Notice
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that fjkj = x
rX−deg(f∗jkj

)

0 f ∗jkj in x
rX−deg(f∗jkj

)

0 Rdeg(f∗jkj
) for all kj = 1, . . . ,κj. We let m =

deg(X), we let {t1, . . . , tm} be the K[x0]-basis of R introduced in Section 2.4, and we

let {t∗1, . . . , t∗m} ⊆ HomK[x0](R,K[x0]) be its dual basis. We remark that the element

t∗k is homogeneous of degree deg(t∗k) = − deg(tk) = −nk and nk ≤ rX for k = 1, . . . ,m.

Also, we may write CR/K[x0] = 〈 g1, . . . , gm 〉K[x0] ⊆ Rx0 where gk = Φ(t∗k) = x−2rX
0 g̃k

with g̃k ∈ R2rX−nk for k = 1, . . . ,m. By Lemma 2.3.25, there are cj1, . . . , cjκj ∈ K such

that fj1 · g̃k =
∑κj

kj=1 cjkjx
2rX−nk
0 fjkj . We calculate

xrX−1
0 fj1 · gk = xrX−1

0 fj1 · (x−2rX
0 g̃k) = x−rX−1

0 fj1g̃k = xrX−nk−1
0

κj∑
kj=1

cjkjfjkj

= xrX−nk0

κj∑
kj=1

cjkjx
rX−deg(f∗jkj

)−1

0 f ∗jkj ∈ R2rX−nk−1.

This implies xrX−1
0 fj1gk ∈ R2rX−nk−1 for every k ∈ {1, . . . ,m}. Hence the element

xrX−1
0 fj1 is contained in ϑD(R/K[x0])2rX−1. Similarly, we can show that xrX−1

0 fjkj is

a homogeneous element of degree 2rX − 1 of ϑD(R/K[x0])2rX−1 for all kj = 2, . . . ,κj.
Therefore we obtain

xrX−1
0 (IYj/X)rX =

〈
xrX−1

0 fj1, . . . , x
rX−1
0 fjκj

〉
K
⊆ ϑD(R/K[x0])2rX−1,

in contradiction to the assumption that xrX−1
0 (IYj/X)rX * ϑD(R/K[x0])2rX−1.

Next we assume that the field K is infinite. We want to prove “(i)⇔(iii)”. Suppose

that X is a CB-scheme and fj1 = f ∗j1 /∈ x0RrX−1 for j = 1, . . . , s. Then there are

elements ϕ1, . . . , ϕs ∈ HomK(RrX , K) such that ϕj(x0RrX−1) = 〈0〉 and ϕj(fj1) 6= 0 for

all j ∈ {1, . . . , s}. Since the field K is infinite, there are λ1, . . . , λs ∈ K such that

the K-linear map ϕ =
∑s

j=1 λjϕj satisfies ϕ(x0RrX−1) = 〈0〉 and ϕ(fj1) 6= 0 for all

j = 1, . . . , s. Again [Kr2, Lemma 1.5] yields an element ϕ ∈ HomK[x0](R,K[x0])−rX
such that ϕ|RrX = ϕ. For j ∈ {1, . . . , s}, we can argue as in the proof of “(i)⇒(ii)” to

get f · ϕ 6= 0, where f ∈ (IYj/X)rX \ {0}. By Lemma 4.1.6, ϕ ∈ HomK[x0](R,K[x0])−rX
satisfies AnnR(ϕ) = 〈0〉. Thus we find g=Φ(ϕ)∈(CR/K[x0])−rX such that AnnR(g)=〈0〉.

Conversely, let g ∈ (CR/K[x0])−rX with AnnR(g) = 〈0〉, and let ϕ = Φ−1(g). Clearly,

we have AnnR(ϕ) = 〈0〉. Assume that X is not a CB-scheme. Then there is an index

j ∈ {1, . . . , s} such that degX(pj)<rX. For such an index j, we shall show that fj1·ϕ=0.

Indeed, the assumption implies deg(f ∗jkj) < rX and ϕ(fjkj) = ϕ(x
rX−deg(f∗jkj

)

0 f ∗jkj) =

x
rX−deg(f∗jkj

)

0 ϕ(f ∗jkj) = 0 for all kj = 1, . . . ,κj. Let i ≥ 0, and let h ∈ Ri be a non-zero

homogeneous element. If hfj1 = 0, then (fj1 · ϕ)(h) = 0. Suppose that hfj1 6= 0. In

this case, Lemma 2.3.25 enables us to write hfj1 =
∑κj

kj=1 cjkjx
i
0fjkj for some elements



4.1. Differents and the Cayley-Bacharach Property 109

cj1, . . . , cjκj ∈ K. Thus we have (fj1 · ϕ)(h) = ϕ(hfj1) = ϕ(
∑κj

kj=1 cjkjx
i
0fjkj) =∑κj

kj=1 cjkjx
i
0ϕ(fjkj) = 0. Hence we obtain fj1 · ϕ = 0, and therefore AnnR(ϕ) 6= 〈0〉, a

contradiction.

Given an arbitrary field K, if the condition (iii) of Theorem 4.1.7 is satisfied, then

X is a CB-scheme. However, the converse is not true, as the following example shows.

Example 4.1.8. Let X ⊆ PnF2
be the projective point set consisting of three points

p1 = (1 : 1 : 0), p2 = (1 : 0 : 1), and p3 = (1 : 1 : 1). We have HFX : 1 3 3 · · ·
and rX = 1. It is not difficult to check that X is a CB-scheme. A calculation gives

us (CR/F2[x0])−1 = 〈 g1, g2 〉F2
, where g1 = x−2

0 x1 and g2 = x−2
0 x2. If g ∈ (CR/F2[x0])−1,

then g is one of three forms: g1, g2, and g1 + g2. We see that x0 + x1 ∈ AnnR(g1),

x0+x2 ∈ AnnR(g2), and x0+x1+x2 ∈ AnnR(g1+g2). Thus (CR/F2[x0])−1 cannot contain

an element g such that AnnR(g) = 〈0〉. Hence the condition (iii) of Theorem 4.1.7 is

not satisfied in this case.

The following corollary is an immediate consequence of Theorem 4.1.7.

Corollary 4.1.9. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme.

(i) If X has K-rational support then it is a CB-scheme if and only if for every

subscheme Y ⊆ X of degree deg(Y) = deg(X)− 1 and for every separator fY of Y
in X we have xrX−1

0 fY /∈ ϑD(R/K[x0])2rX−1.

(ii) If the Dedekind different satisfies ϑD(R/K[x0])2rX−1 = 〈0〉 then the scheme X is

a CB-scheme.

Example 4.1.10. Let X = {p1, . . . , p6} be the projective point set in P2
Q, where p1 =

(1 : 0 : 0), p2 = (1 : 2 : 0), p3 = (1 : 2 : 1), p4 = (1 : 0 : 2), p5 = (1 : 1 : 2), and

p6 = (1 : 2 : 2). We sketch X in the affine plane D+(X0) = A2
Q as follows:

(0, 2) • • • (2, 2)

•
(0, 0) • • (2, 0)

Then X has the Hilbert function HFX : 1 3 6 6 · · · and the regularity index rX = 2.

An application of Proposition 3.2.29 gives us the Dedekind different

ϑD(R/Q[x0]) = 〈x4
2, x1x

3
2, x0x

3
2, x

4
1, x0x

3
1, x

4
0〉 =

⊕
i≥4

Ri.

This implies ϑD(R/Q[x0])2rX−1 = ϑD(R/Q[x0])3 = 〈0〉. Therefore Corollary 4.1.9(ii)

yields that X is a CB-scheme.
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Proposition 4.1.11. Let X ⊆ PnK be a 0-dimensional locally Gorenstein CB-scheme.

Then the Hilbert function of ϑD(R/K[x0]) satisfies HFϑD(R/K[x0])(i) = 0 for i < rX,

HFϑD(R/K[x0])(i) = deg(X) for i ≥ 2rX and

0 ≤ HFϑD(R/K[x0])(rX) ≤ · · · ≤ HFϑD(R/K[x0])(2rX − 1) < HFϑD(R/K[x0])(2rX) = deg(X).

In this case, the regularity index of ϑD(R/K[x0]) is exactly 2rX.

Proof. Since X is a CB-scheme, there are elements g∗1, . . . , g
∗
s in (CR/K[x0])−rX such that

g∗j = x−2rX
0 g̃∗j with g̃∗j ∈ RrX and (g̃∗j )pj ∈ OX,pj \mX,pj (as in the proof of Theorem 4.1.7).

Let h ∈ ϑD(R/K[x0])i with i < rX. Then we have h · g∗j = x−2rX
0 hg̃∗j ∈ Ri−rX = 〈0〉

for j = 1, . . . , s. This implies hg̃∗j = 0, in particular, hpj · (g̃∗j )pj = 0 in OX,pj

for all j ∈ {1, . . . , s}. Since (g̃∗j )pj is a unit of OX,pj for j = 1, . . . , s, we have to

get hpj = 0 for all j = 1, . . . , s. In other words, we have ı̃(h) = 0. So, we get

h = 0 (as ı̃ is an injection). Hence the Hilbert function of the Dedekind defferent

satisfies HFϑD(R/K[x0])(i) = 0 for i < rX. Moreover, Proposition 3.2.5 yields that

0 ≤ HFϑD(R/K[x0])(i) ≤ HFϑD(R/K[x0])(i + 1) for i ≥ rX and HFϑD(R/K[x0])(i) = deg(X)

for i ≥ 2rX. Now we need to show that HFϑD(R/K[x0])(2rX − 1) < deg(X), i.e.,

ϑD(R/K[x0])2rX−1 ( R2rX−1. But this follows from Theorem 4.1.7, since otherwise

we have xrX−1
0 (IY/X)rX ⊆ ϑD(R/K[x0])2rX−1 for every maximal pj-subscheme Y ⊆ X

and thus X is not a CB-scheme.

Now let αϑD := min{ i ∈ Z | ϑD(R/K[x0])i 6= 〈0〉 } be the initial degree of the

Dedekind different ϑD(R/K[x0]). If X is a locally Gorenstein CB-scheme then we have

rX ≤ αϑD ≤ 2rX. Our next proposition gives a bound for the Hilbert function of the

Dedekind different when X is a locally Gorenstein CB-scheme.

Proposition 4.1.12. Let K be an infinite field, and let X ⊆ PnK be a 0-dimensional

locally Gorenstein CB-scheme. Then for all i ∈ Z we have

HFϑD(R/K[x0])(i) ≤ HFX(i− rX).

Moreover, let i0 be the smallest number such that HFϑD(R/K[x0])(i0) = HFX(i0−rX) > 0.

Then we have

(i) HFϑD(R/K[x0])(i) = HFX(i− rX) for i ≥ i0.

(ii) ϑD(R/K[x0]) =
〈
ϑD(R/K[x0])αϑD , ϑD(R/K[x0])αϑD+1, . . . , ϑD(R/K[x0])i0

〉
R

.
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Proof. Because X is a CB-scheme and K is infinite, there is a non-zerodivisor g̃ ∈ RrX

such that g = x−2rX
0 g̃ ∈ (CR/K[x0])−rX (see Theorem 4.1.7). For i < rX or i ≥ 2rX,

it follows from Proposition 4.1.11 that HFϑD(R/K[x0])(i) = HFX(i − rX). It remains to

consider the case rX ≤ i < 2rX. In this case we have g̃ · ϑD(R/K[x0])i ⊆ x2rX
0 Ri−rX .

Thus we obtain

HFϑD(R/K[x0])(i) = dimK(ϑD(R/K[x0])i) = dimK(g̃ · ϑD(R/K[x0])i)

≤ dimK(x2rX
0 Ri−rX) = HFX(i− rX).

Now we prove the additional claims. For (i), it suffices to prove the equality

HFϑD(R/K[x0])(i0 + 1) = HFX(i0 + 1 − rX). Let f ∈ Ri0+1−rX \ {0}. We may write

f = x0g0 + x1g1 + · · · + xngn for some homogeneous elements g0, . . . , gn ∈ Ri0−rX . By

assumption, we have g̃ · ϑD(R/K[x0])i0 = x2rX
0 Ri0−rX . There is hj ∈ ϑD(R/K[x0])i0

such that x2rX
0 gj = g̃hj for every j ∈ {0, . . . , n}. Hence

x2rX
0 f = x2rX

0 (x0g0 + x1g1 + · · ·+ xngn) = x0g̃h0 + x1g̃h1 + · · ·+ xng̃hn

= g̃(x0h0 + x1h1 + · · ·+ xnhn)

and so x2rX
0 f ∈ g̃ · ϑD(R/K[x0])i0+1. Thus we have x2rX

0 Ri0+1−rX = g̃ · ϑD(R/K[x0])i0+1.

In other words, we have HFϑD(R/K[x0])(i0 + 1) = HFX(i0 + 1− rX).

To prove (ii), we let

W =
{
h ∈ ϑD(R/K[x0])i0+1 | h =

n∑
j=0

xjhj, hj ∈ ϑD(R/K[x0])i0
}

be the subspace of ϑD(R/K[x0])i0+1 generated by ϑD(R/K[x0])i0 . We need to show

that W = ϑD(R/K[x0])i0+1. Let h ∈ ϑD(R/K[x0])i0+1 \ {0}. Then there is an element

f ∈ Ri0+1−rX such that g̃h = x2rX
0 f . Using the same argument as in the proof of (i), we

get g̃h = x2rX
0 f = g̃(x0h0 + x1h1 + · · ·+ xnhn) for some h0, h1, . . . , hn ∈ ϑD(R/K[x0])i0 .

This implies g̃(h−
∑n

j=0 xjhj) = 0. Since AnnR(g̃) = 〈0〉, we have h =
∑n

j=0 xjhj ∈ W .

Hence W = ϑD(R/K[x0])i0+1, and the claim follows by induction.

Corollary 4.1.13. Let K be an infinite field, and let X ⊆ PnK be a 0-dimensional

smooth CB-scheme. Then we have

HFϑK(R/K[x0])(i) ≤ HFϑX(R/K[x0])(i) ≤ HFX(i− rX)

for all i ∈ Z. If let i0 be the smallest number such that HFϑX(R/K[x0])(i0) = HFX(i0 −
rX) > 0. Then the following claims hold:
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(i) HFϑX(R/K[x0])(i) = HFX(i− rX) for i ≥ i0.

(ii) ϑX(R/K[x0]) =
〈
ϑX(R/K[x0])αϑX , ϑX(R/K[x0])αϑX+1, . . . , ϑX(R/K[x0])i0

〉
R
.

(iii) If, in addition, we have ϑK(R/K[x0])i = ϑX(R/K[x0])i for some i ∈ {i0, . . . , 2rX},
then ri(ϑK(R/K[x0])) = 2rX.

Proof. This is a consequence of Proposition 4.1.12 and the fact that ϑK(R/K[x0]) is a

subideal of ϑX(R/K[x0]).

Example 4.1.14. Let X = {p1, . . . , p7} ⊆ P3
Q, where p1 = (1 : 0 : 0 : 0), p2 = (1 : 1 :

0 : 1), p3 = (1 : 1 : 1 : 1), p4 = (1 : 3 : 0 : 1), p5 = (1 : 4 : 0 : 1), p6 = (1 : 5 : 0 : 1),

and p7 = (1 : 6 : 0 : 0). Then we have HFX : 1 4 6 7 7 · · · and rX = 3. By using

Proposition 3.2.29, we see that the Noether-Dedekind different of R/Q[x0] is given by

ϑX(R/Q[x0]) = 〈x2x3, x
3
0 − 1

18
x0x

2
1 + 1

18
x2

1x3 − x3
3,

x3
1x3 − 39

4
x2

1x
2
3 + 59

2
x1x

3
3 − 107

4
x4

3, x1x
4
3 − 41

11
x5

3 〉.

The Hilbert function of ϑX(R/Q[x0]) is HFϑX(R/Q[x0]) : 0 0 1 2 4 6 7 7 · · · . Since

HFϑX(R/Q[x0])(rX − 1) = HFϑX(R/Q[x0])(2) = 1 6= 0, we see that X is not a CB-scheme.

We also see that HFϑX(R/Q[x0])(3) = 2 > 1 = HFX(3 − rX). Hence we cannot omit the

hypothesis that X is a CB-scheme in Proposition 4.1.12.

Our next proposition provides a characterization of 0-dimensional arithmetically

Gorenstein schemes. Moreover, it gives an affirmative answer to a question posed

in [GH],[DM]: CB-scheme +(?) = Complete intersection? if X is a 0-dimensional

smooth subscheme of PnK .

Proposition 4.1.15. Let X ⊆ PnK be a 0-dimensional scheme.

(i) The scheme X is arithmetically Gorenstein if and only if it is a locally Gorenstein

CB-scheme and HFϑD(R/K[x0])(rX) 6= 0.

(ii) If X is smooth, then X is a complete intersection if and only if it is a CB-scheme

and HFϑK(R/K[x0])(rX) 6= 0.

Proof. (i) Suppose that the scheme X is arithmetically Gorenstein. Then it is clearly

true that X is locally Gorenstein. By Proposition 3.2.8, there is a non-zerodivisor h of R

contained in ϑD(R/K[x0])rX and an element g ∈ (CR/K[x0])−rX such that AnnR(g) = 〈0〉.
Hence HFϑD(R/K[x0])(rX) 6= 0 and the scheme X is a CB-scheme by Theorem 4.1.7.

Conversely, we remark that if X is locally Gorenstein, then ϑD(R/K[x0]) is well-

defined. Since HFϑD(R/K[x0])(rX) 6= 0, we let h ∈ ϑD(R/K[x0])rX \ {0}. Then there
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is a point pj ∈ Supp(X) such that hpj 6= 0 in OX,pj . Because X is a CB-scheme, we

can argue as in the proof of Theorem 4.1.7 to get an element g∗j ∈ (CR/K[x0])−rX \ {0}
such that g∗j = x−2rX

0 g̃∗j with g̃∗j ∈ RrX and (g̃∗j )pj ∈ OX,pj \ mX,pj . In OX,pj , we have

hpj · (g̃∗j )pj 6= 0. This implies h · g̃∗j 6= 0, and hence h · g∗j 6= 0 (as x0 is a non-zerodivisor

of R). Furthermore, there is an element c ∈ K\{0} such that c = h·g∗j ∈ R0 = K. Thus

h is a non-zerodivisor of R, and therefore the scheme X is arithmetically Gorenstein

by Proposition 3.2.8.

(ii) Obviously, if X is a complete intersection then it is a CB-scheme. More-

over, it follows from Corollary 3.3.5 that HFϑK(R/K[x0])(rX) 6= 0. Next we prove the

converse. Since ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]) and HFϑK(R/K[x0])(rX) 6= 0, we have

HFϑX(R/K[x0])(rX) 6= 0. By (i), the 0-dimensional smooth scheme X is arithmetically

Gorenstein. Therefore, by Proposition 3.3.12, the scheme X is a complete intersection,

as we wanted to show.

A similar result as [Kr2, Corollary 2.5] is given by the following corollary.

Corollary 4.1.16. Let X ⊆ PnK be a 0-dimensional scheme. Then X is arithmetically

Gorenstein if and only if it is a locally Gorenstein CB-scheme and HFX(i) + HFX(rX−
i− 1) = deg(X) for all i ∈ Z.

Proof. This result follows from Proposition 3.2.8 and Theorem 4.1.7. Here we notice

that if X is a locally Gorenstein CB-scheme and ∆X = deg(X)−HFX(rX− 1) = 1 then

(CR/K[x0])−rX = 〈g〉K with AnnR(g) = 〈0〉. Indeed, it follows from ∆X = 1 that the K-

vector space (CR/K[x0])−rX is generated by one element g = x−2rX
0 g̃, where g̃ ∈ RrX \{0}.

Since X is a CB-scheme, a similar argument as in the proof of Theorem 4.1.7 implies

that the element g̃pj is a unit of OX,pj for every j ∈ {1, . . . , s}. By Lemma 2.3.11, we

have that g̃ is a non-zerodivisor of R, and hence AnnR(g) = 〈0〉.

Corollary 4.1.17. Let X be a 0-dimensional smooth CB-scheme in the projective

plane P2
K. If HFϑK(R/K[x0])(rX + 1) = HFX(1), then ϑK(R/K[x0]) = ϑX(R/K[x0]).

Proof. We see that if HFϑK(R/K[x0])(rX) 6=0, then the scheme X is a complete intersection

by Proposition 4.1.15, and so we get ϑK(R/K[x0]) = ϑX(R/K[x0]). Now we suppose

HFϑK(R/K[x0])(rX) = 0. Then we have to get HFϑX(R/K[x0])(rX) = 0. Otherwise, it

follows from Proposition 4.1.15 that X is arithmetically Gorenstein. Since n = 2, it is

well known (cf. [Ser, Proposition 7]) that X is arithmetically Gorenstein if and only if

it is a complete intersection, and hence HFϑK(R/K[x0])(rX) 6= 0, a contradiction.
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Next, by the hypothesis and Corollary 4.1.13, we have HFϑK(R/K[x0])(rX + 1) =

HFϑX(R/K[x0])(rX+1) = HFX(1). From this we argue as in the proof of Proposition 4.1.12

to obtain HFϑK(R/K[x0])(rX + i) = HFϑX(R/K[x0])(rX + i) for all i ≥ 1. Therefore the

conclusion follows.

The following two examples show how one can apply Proposition 4.1.15 in practice.

Example 4.1.18. Let X = {p1, . . . , p8} ⊆ P3
Q be given by p1 = (1 : 0 : 0 : 0), p2 = (1 :

1 : 0 : 0), p3 = (1 : −1 : 0 : 0), p4 = (1 : 2 : 0 : 0), p5 = (1 : 0 : 1 : 1), p6 = (1 : 0 : 0 : 1),

p7 = (1 : 0 : −1 : 1), and p8 = (1 : 0 : 2 : 1). Here {p1, p2, p3, p4} ⊆ L1 = Z+(X2, X3)

and {p5, p6, p7, p8} ⊆ L2 = Z+(X3−X0, X1), where L1 and L2 are two skew lines in P3
Q.

Then we have HFX : 1 4 6 8 8 · · · and rX = 3. It is easy to check that X is a CB-scheme.

Also, we have

ϑX(R/Q[x0]) = 〈x2
2x

2
3 − x2x

3
3 − 1

5
x4

3, x
3
2x3 − 2x2x

3
3 + 1

5
x4

3,

x2
0x

2
1 + 4x0x

3
1 − 3x4

1, x
4
0 + 15x0x

3
1 − 10x4

1 − x4
3 〉

and HFϑX(R/Q[x0]) : 0 0 0 0 4 6 8 8 · · · , especially, HFϑX(R/Q[x0])(rX) = 0. Thus it follows

from Proposition 4.1.15 that X is not arithmetically Gorenstein.

Example 4.1.19. Let X ⊆ P3
Q be the projective point set consisting of eight points

p1, . . . , p8 on the twisted cubic curve C = { (u3 : u2v : uv2 : v3) | (u : v) ∈ P1
Q }, where

p1 = (1 : 0 : 0 : 0), p2 = (1 : 1 : 1 : 1), p3 = (1 : −1 : 1 : −1), p4 = (1 : 2 : 4 : 8), p5 =

(1 : −2 : 4 : −8), p6 = (8 : 4 : 2 : 1), p7 = (1 : 3 : 9 : 27), and p8 = (1 : −3 : 9 : −27).

Here HFX : 1 4 7 8 8 · · · and rX = 3. It is well known (cf. [GO, Section 4]) that X is a

CB-scheme. Moreover, we have ϑK(R/Q[x0]) = 〈h1, h2, h3, h4〉, where

h1 =x0x2x
2
3 + 834905041

46905556898
x0x

3
3 − 10864852683

23452778449
x1x

3
3 − 118190989

46905556898
x2x

3
3 + 985439798

23452778449
x4

3,

h2 =x0x1x
2
3 − 9195042601

23452778449
x0x

3
3 − 1669810082

23452778449
x1x

3
3 + 749057820

23452778449
x2x

3
3 + 236381978

23452778449
x4

3,

h3 =x2
0x

2
3 + 648448323

23452778449
x0x

3
3 − 5828244873

23452778449
x1x

3
3 − 91795767

23452778449
x2x

3
3 + 712547456

23452778449
x4

3,

h4 =x4
0 + 2300442431639

3377200096656
x0x

3
3 − 973727660323

844300024164
x1x

3
3 − 325655676731

3377200096656
x2x

3
3 + 137268654523

844300024164
x4

3.

Notice that deg(hj) = 4 for all j = 1, . . . , 4. Thus the Hilbert function of the Kähler

different ϑK(R/Q[x0]) satisfies HFϑK(R/Q[x0])(rX) = HFϑK(R/Q[x0])(3) = 0, and hence X
is not a complete intersection by Proposition 4.1.15. On the other hand, the Noether-

Dedekind different ϑX(R/Q[x0]) is a principal ideal of R generated by

h = x3
0 − 337

18
x2

0x3 − 1561
432

x0x1x3 + 6433
216

x0x2x3 + 301
216
x0x

2
3 − 979

108
x1x

2
3 − 49

432
x2x

2
3 + 145

216
x3

3.

Therefore Proposition 4.1.15 implies that the scheme X is arithmetically Gorenstein

and HFϑX(R/Q[x0])(i) = HFX(i− rX) for all i ∈ Z.
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Proposition 4.1.20. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme with

Supp(X) = {p1, . . . , ps}. If there exists an index j ∈ {1, . . . , s} such that pj /∈ X(K) and

the maximal pj-subscheme Yj ⊆ X satisfies αYj/X = rX, then X cannot be arithmetically

Gorenstein.

Proof. We only need to show that ∆X ≥ 2. For this purpose, we let Lf denote the image

of each element f ∈ R in R = R/〈x0〉. Let κj = dimK K(pj), let {fj1, . . . , fjκj} ⊆ RrX

be a set of separators of Yj in X. Since pj /∈ X(K), we have κj ≥ 2. We claim that

the set {Lfj1, . . . , Lfjκj} is K-linearly independent. Indeed, suppose that there are

cj1, . . . , cjκj ∈ K, not all equal to zero, such that cj1Lfj1 + · · · + cjκjLfjκj = 0. It

follows from dimK

〈
fj1, . . . , fjκj

〉
K

= κj that f = cj1fj1 + · · · + cjκjfjκj is a non-zero

element of (IYj/X)rX . Clearly, we have Lf = 0, and so we may write f = x0h for some

h ∈ RrX−1 \ {0}. We also observe that h ∈ 〈f〉sat = IYj/X (see Lemma 2.3.12 and

Proposition 2.3.21). This tells us that αYj/X < rX, in contradiction to our hypothesis

that αYj/X = rX. Thus the set {Lfj1, . . . , Lfjκj} is K-linearly independent. From this

we obtain ∆X = dimK RrX ≥ dimK

〈
Lfj1, . . . , Lfjκj

〉
= κj ≥ 2, as we wanted.

Definition 4.1.21. Let d ≥ 0, let X ⊆ PnK be a 0-dimensional scheme, and let

Supp(X) = {p1, . . . , ps}. We say that X has the Cayley-Bacharach property of

degree d (in short, X has CBP(d)) if every point pj ∈ Supp(X) has degX(pj) ≥ d+ 1.

In this terminology, X is a CB-scheme if and only if X has CBP(rX− 1). Moreover,

if X has CBP(d), then X has CBP(d − 1), and every 0-dimensional scheme X with

deg(X) ≥ 2 has CBP(0). Since degX(pj) ≤ rX for every point pj ∈ Supp(X), this

implies that the number rX − 1 is the largest degree d ≥ 0 such that X can have

the Cayley-Bacharach property of degree d. Therefore it is enough to consider the

Cayley-Bacharach property in degree d ∈ {0, . . . , rX − 1}.
Let ı̃ : R → R̃ =

∏s
j=1OX,pj [Tj] be the injection given by ı̃(f) = (fp1T

i
1, . . . , fpsT

i
s)

for f ∈ Ri with i ≥ 0. Recall that, for all j ∈ {1, . . . , s} and a ∈ OX,pj , we have µ(a) =

min{i ∈ N | (0, . . . , 0, aT ij , 0, . . . , 0) ∈ ı̃(R)} and ν(a) = max{µ(ab) | b ∈ OX,pj \ {0}}.

Proposition 4.1.22. Let X ⊆ PnK be a 0-dimensional scheme, let 0 ≤ d ≤ rX− 1, and

let Supp(X) = {p1, . . . , ps}. Then the following statements are equivalent.

(i) The scheme X has CBP(d).

(ii) For all j ∈ {1, . . . , s} and sj ∈ G(OX,pj), we have ν(sj) ≥ d+ 1.

(iii) If Y ⊆ X is a maximal pj-subscheme and {fj1, . . . , fjκj} is a set of separators

of Y in X, then there exists kj ∈ {1 . . . ,κj} such that xrX−d0 - fjkj .
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(iv) For each pj ∈ Supp(X), every maximal pj-subscheme Y ⊆ X satisfies

dimK(IY/X)d < κj.

Proof. This follows by a similar argument as in the proof of Proposition 4.1.4.

Proposition 4.1.23. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme, and

let 0 ≤ d ≤ rX − 1. If for every pj ∈ Supp(X) the maximal pj-subscheme Yj ⊆ X
satisfies

xd0(IYj/X)rX * ϑD(R/K[x0])rX+d

then X has CBP(d).

In particular, if X satisfies ϑD(R/K[x0])rX+d = 〈0〉 then X has CBP(d).

Proof. Suppose for contradiction that X does not have CBP(d). By Proposition 4.1.22,

there is an index j ∈ {1, . . . , s} such that the maximal pj-subscheme Yj ⊆ X has

dimK(IYj/X)d = κj. Let {f ∗j1, . . . , f ∗jκj} (resp. {fj1, . . . , fjκj}) be a set of minimal

separators (resp. separators) of Yj in X. Then deg(f ∗jkj) ≤ d and fjkj = x
rX−deg(f∗jkj

)

0 f ∗jkj
for all kj ∈ {1 . . . ,κj}. Let m = deg(X), let {t1, . . . , tm} be the K[x0]-basis of R as

in Section 2.4, and let {t∗1, . . . , t∗m} ⊆ HomK[x0](R,K[x0]) be its dual basis. So, the

Dedekind complementary module can be written as CR/K[x0] = 〈 g1, . . . , gm 〉K[x0], where

gk = Φ(t∗k) = x−rX−nk0 g̃k with g̃k ∈ RrX and nk = deg(tk) ≤ rX for k = 1, . . . ,m. Thus

we have

(xd0fjk) · (x
−rX−nl
0 g̃l) = xd−rX−nl0 fjkg̃l = xd−nl0

κj∑
kj=1

cjkjfjkj

= xd−nl0

κj∑
kj=1

cjkjx
rX−deg(f∗jkj

)

0 f ∗jkj

= xrX−nl0

κj∑
kj=1

cjkjx
d−deg(f∗jkj

)

0 f ∗jkj

for some cj1, . . . , cjκj ∈ K. Since rX − nl ≥ 0 and d − deg(f ∗jkj) ≥ 0, this implies

that (xd0fjk) · (x
−rX−nl
0 g̃l) ∈ RrX+d−nl for all l = 1, . . . ,m. Consequently, the element

xd0fjk is contained in ϑX(R/K[x0])rX+d for all k = 1, . . . ,κj, and therefore we get

xd0(IY/X)rX ⊆ ϑD(R/K[x0])rX+d, in contradiction to our assumption.

The following example shows that the converse of Proposition 4.1.23 is not true in

the general case (except for the case d = rX − 1).
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Example 4.1.24. Let X ⊆ P2
Q be the projective point set consisting of the points

p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 2 : 0), p4 = (1 : 3 : 1), p5 = (1 : 4 : 0),

p6 = (1 : 5 : 0), p7 = (1 : 6 : 1), and p8 = (1 : 1 : 1). It is easy to see that

HFX : 1 3 5 7 8 8 · · · and rX = 4. The Noether-Dedekind different is computed by

ϑX(R/Q[x0]) =〈x2
1x

2
2 − 20

3
x1x

3
2 + 9x4

2, x0x
6
1 − 857

3675
x7

1,

x5
0 − 393

100
x3

0x
2
1 + 1431

400
x2

0x
3
1 − 209

200
x0x

4
1 + 39

400
x5

1 − 3919
760

x5
2 〉

and its Hilbert function is HFϑX(R/Q[x0]) : 0 0 0 0 1 3 5 7 8 8 · · · . Clearly, X is not

arithmetically Gorenstein and HFϑX(R/Q[x0])(rX) 6= 0. Hence X is not a CB-scheme

by Proposition 4.1.15(i). By applying Proposition 4.1.22, we can check that X has

CBP(d) for 0 ≤ d ≤ 2. Now Y4 := X \ {p4} has a separator of the form f4 =

x0x
2
1x2− 7x0x1x

2
2 + 6x0x

3
2. It is not difficult to verify that xrX−2

0 f4 ∈ ϑX(R/Q[x0])2rX−2.

Thus X has CBP(2), but x2
0(IY4/X)rX ⊆ ϑD(R/K[x0])rX+2.

Now we let FR̃/R denote the conductor of R in the ring R̃ =
∏s

j=1OX,pj [Tj], i.e.,

FR̃/R = { f ∈ R̃ | fR̃ ⊆ R }. When the scheme X is reduced, R̃ is the integral

closure of R in its full quotient ring, and hence FR̃/R is the conductor of R in its

integral closure in the traditional sense. Notice that FR̃/R is an ideal of both R and R̃.

Some explicit descriptions of this ideal are presented by the following proposition which

follows from [Kr3, Proposition 2.9]. Here it is not necessary to assume that the field K

is an algebraically closed field.

Proposition 4.1.25. We have the following assertions.

(i) FR̃/R = 〈(0, . . . , 0, aT ν(a)
j , 0, . . . , 0) | 1 ≤ j ≤ s, a ∈ OX,pj \{0} 〉 as an ideal of R̃.

(ii) FR̃/R = 〈 fa | 1 ≤ j ≤ s, a ∈ OX,pj \ {0} 〉 as an ideal of R, where fa is the

preimage of (0, . . . , 0, aT
ν(a)
j , 0, . . . , 0) under the injection ı̃ : R→ R̃.

Proposition 4.1.26. Let X ⊆ PnK be a 0-dimensional scheme, and let 0 ≤ d ≤ rX− 1.

Then X has CBP(d) if and only if FR̃/R ⊆
⊕

i≥d+1 Ri. In particular, X is a CB-scheme

if and only if FR̃/R =
⊕

i≥rX Ri.

Proof. Let X have CBP(d). For a contradiction, we assume that FR̃/R *
⊕

i≥d+1Ri.

By Proposition 4.1.25(ii), we have FR̃/R = 〈 fa | 1 ≤ j ≤ s, a ∈ OX,pj \ {0} 〉 as an

ideal of R. It follows that there is a homogeneous element fa ∈ FR̃/R \ {0} such that

ı̃(fa) = (0, . . . , 0, aT
ν(a)
j , 0, . . . , 0) and ν(a) ≤ d. So, we can find an element b ∈ OX,pj

such that sj := ab ∈ G(OX,pj) is non-zero. We then have

ν(sj) = ν(ab) = max{µ(abc) | c ∈ OX,pj , abc 6= 0 } ≤ ν(a) ≤ d.
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Thus Proposition 4.1.22 yields that X does not have CBP(d), a contradiction.

Conversely, we suppose that FR̃/R ⊆
⊕

i≥d+1 Ri. Let Y ⊆ X be a maximal pj-

subscheme, and let {f ∗j1, . . . , f ∗jκj} be a set of minimal separators of Y in X. Recall that

ı̃(f ∗jkj) = (0, . . . , 0, ejkjsjT
µ(ejkj sj)

j , 0, . . . , 0) for kj = 1, . . . ,κj, where sj ∈ G(OX,pj)\{0}
is a socle element corresponding to Y, and where {ej1, . . . , ejκj} ⊆ OX,pj is such that

whose residue classes form a K-basis of K(pj). By Lemma 2.3.15, we have

ν(sj) = max{µ(sjb) | b ∈ OX,pj , sjb 6= 0 } = max{ deg(f ∗jkj) | 1 ≤ kj ≤ κj}.

Without loss of generality, we can assume that ν(sj) = deg(f ∗j1) = µ(ej1sj). Thus

we have ν(sj) = ν(ej1sj) and f ∗j1 ∈ FR̃/R. Since FR̃/R ⊆
⊕

i≥d+1Ri, it follows that

ν(sj) = deg(f ∗j1) ≥ d + 1. From this we conclude that degX(pj) ≥ d + 1 for all

j = 1, . . . , s, in other words, the scheme X has CBP(d).

Moreover, if we identify R with its image under ı̃, we have Ri = R̃i for all i ≥ rX.

Thus the ideal
⊕

i≥rX Ri is an ideal of both R and R̃, and it is contained in the

conductor FR̃/R. Hence the additional claim follows.

Our next proposition presents a generalization of Dedekind’s formula for the con-

ductor FR̃/R and the Dedekind complementary module CR/K[x0]. We use the notation

νj = dimK OX,pj for all j = 1, . . . , s.

Proposition 4.1.27. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme with

support Supp(X) = {p1, . . . , ps}, let Ij be the homogeneous vanishing ideal of X at pj,

and let Yj be the subscheme of X defined by IYj =
⋂
k 6=j Ik for j = 1, . . . , s. The

formula

FR̃/R · CR/K[x0] = R̃

holds true if one of the following conditions is satisfied:

(i) The scheme X is a CB-scheme.

(ii) For all j ∈ {1, . . . , s}, the Hilbert function of Yj is of the form

HFYj(i) =

HFX(i) if i < αYj/X,

HFX(i)− νj if i ≥ αYj/X.

In particular, if X is arithmetically Gorenstein, then we have

FR̃/R = 〈 ı̃(ϑD(R/K[x0])) 〉R̃ ⊆ R̃.
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Proof. Since X is a locally Gorenstein scheme, we have HomK(OX,pj , K) ∼= OX,pj for

all j = 1, . . . , s. This implies the isomorphism R̃ ∼= HomK[x0](R̃,K[x0]). Hence we

get HFHomK[x0](R̃,K[x0])(i) = 0 for i < 0 and HFHomK[x0](R̃,K[x0])(i) = deg(X) for i ≥ 0.

Let f ∈ (FR̃/R)i, let g ∈ (CR/K[x0])k, and let ϕ ∈ HomK[x0](R,K[x0])k such that

g = Φ(ϕ) where Φ was defined in Definition 3.2.4. Observe that (f ·ϕ)(R̃) = ϕ(fR̃) ⊆
ϕ(R) ⊆ K[x0]. This yields f · ϕ ∈ HomK[x0](R̃,K[x0])i+k. If f · ϕ 6= 0, then

deg(f · ϕ) = i + k ≥ 0. Thus we have f · g = f · Φ(ϕ) = Φ(f · ϕ) ∈ R̃, and hence we

get the inclusion FR̃/R · CR/K[x0] ⊆ R̃.

Now we prove the reverse inclusion when either (i) or (ii) is satisfied.

(i) For every j ∈ {1, . . . , s} we let { ej1, . . . , ejνj } be a K-basis of OX,pj and set

εjkj := (0, . . . , 0, ejkj , 0, . . . , 0) ∈ R̃, where kj ∈ {1, . . . , νj}. Then the elements

{ε11, . . . , εsνs} form a K[x0]-basis of R̃. Thus it is enough to show that ε11, . . . , εsνs
are contained in FR̃/R · CR/K[x0]. Since X is a CB-scheme, for j = 1, . . . , s we argue as

in the proof of Theorem 4.1.7 to get g∗j ∈ (CR/K[x0])−rX such that g∗j = x−2rX
0 g̃∗j , where

g̃∗j ∈ RrX and (g̃∗j )pj is a unit of OX,pj . By identifying R with its image in R̃ under ı̃, we

have that the element hjkj := (0, . . . , 0, (g̃∗j )
−1
pj
ejkjT

rX
j , 0, . . . , 0) is contained in RrX \{0}

for all j ∈ {1, . . . , s} and all kj ∈ {1, . . . , νj}. We see that

hjkj · g∗j = x−2rX
0 hjkj g̃

∗
j = x−2rX

0 (0, . . . , 0, ejkjT
2rX
j , 0, . . . , 0) = εjkj ∈ R̃.

By Proposition 4.1.26, we have FR̃/R =
⊕

i≥rX Ri. This implies h11, . . . , hsνs ∈ FR̃/R.

Therefore we obtain ε11, . . . , εsνs ∈ FR̃/R · CR/K[x0], and the claim follows.

(ii) In a similar fashion, we proceed to show that ε11, . . . , εsνs ∈ FR̃/R ·CR/K[x0]. For

j = 1, . . . , s, let σj denote the trace map of the algebra OX,pj/K, and let {e′j1, . . . , e′jνj}
be the dual K-basis of OX,pj to the K-basis {ej1, . . . , ejνj} with respect to σj, i.e.,

e′j1, . . . , e
′
jνj
∈ OX,pj such that σj(ejkje

′
jk′j

) = e∗jk′j
(ejkj) = δkjk′j for kj, k

′
j ∈ {1, . . . , νj}.

We may assume that e′j1 is a unit of OX,pj for all j ∈ {1, . . . , s}. Notice that the

subscheme Yj has degree deg(Yj) = deg(X)−νj for all j = 1, . . . , s. It follows from the

assumption that αYj/X = µ(ej1) = · · · = µ(ejνj). Then we have IYj/X = 〈 f ∗j1, . . . , f ∗jνj 〉,
where f ∗jkj = ı̃−1((0, . . . , 0, ejkjT

αYj/X
j , 0, . . . , 0)) for kj = 1, . . . , νj. We also see that the

image of (IYj/X)αYj/X
in R̃ is {(0, . . . , 0, aT

αYj/X
j , 0, . . . , 0) | a ∈ OX,pj}. This implies

ν(a) = µ(a) = αYj/X for every non-zero element a ∈ OX,pj . Thus Proposition 4.1.25

yields that IYj/X ⊆ FR̃/R.

Obviously, we have f ∗jkj /∈ 〈x0〉 and its image Lf ∗jkj in R is a non-zero element for

kj = 1, . . . , νj. If there exist elements aj1, . . . , ajνj in K, not all equal to zero, such that∑νj
kj=1 ajkjLf

∗
jkj

= 0, then f =
∑νj

kj=1 ajkjf
∗
jkj

is contained in (IYj/X)αYj/X
\ {0} and we
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get Lf = 0. So, we have f ∈ x0RαYj/X−1. Let h ∈ RαYj/X−1 \ {0} be such that f = x0h.

Since the ideal IYj/X is saturated, Lemma 2.3.12 implies h ∈ IYj/X\{0}, a contradiction.

Thus we have shown that the set {Lf ∗j1, . . . , Lf ∗jνj} is K-linearly independent.

Consequently, there is a homogeneous K-linear map ϕj1 : R→ K of degree −αYj/X

with ϕj1(Lf ∗j1) 6= 0 and ϕj1(Lf ∗jkj) = 0 for kj = 2, . . . , νj. Using the epimorphism

HomK[x0](R,K[x0]) � HomK(R,K), we can lift ϕj1 to obtain a homogeneous element

ϕj1 ∈ HomK[x0](R,K[x0])−αYj/X
with ϕj1(f ∗j1) 6= 0 and ϕj1(f ∗jkj) = 0 for kj = 2, . . . , νj.

Clearly, the set {xrX−µ(e11)
0 f ∗11, . . . , x

rX−µ(esνs )
0 f ∗sνs} forms a K-basis of the K-vector

space RrX . We write ϕj1(x
rX−µ(ej′kj′

)

0 f ∗j′kj′ ) = cj′kj′x
rX−αYj/X
0 for all j′ = 1, . . . , s and

kj′ = 1, . . . , νj′ . By Proposition 3.2.9, we have

gj1 := Φ(ϕj1) =
( ν1∑
k1=1

c1k1e
′
1k1
T
−αYj/X
1 , . . . ,

νs∑
ks=1

cskse
′
sksT

−αYj/X
s

)
∈ CR/K[x0].

Since e′j1 is a unit of OX,pj and cj1 ∈ K \ {0}, for kj = 1, . . . , νj we set

hjkj = ı̃−1((0, . . . , 0, (e′j1cj1)−1ejkjT
αYj/X
j , 0, . . . , 0)).

Then hj1, . . . , hjνj ∈ IYj/X ⊆ FR̃/R. In R̃, we have

hjkj · gj1 = (0, . . . , 0, (e′j1cj1)−1ejkj

νj∑
lj=1

cjlje
′
jlj , 0, . . . , 0)

= (0, . . . , 0, ejkj , 0, . . . , 0) = εjkj ,

since cj2 = · · · = cjνj = 0. Thus we obtain εjkj ∈ FR̃/R · CR/K[x0], as was to be shown.

Finally, if X is arithmetically Gorenstein, then ϑD(R/K[x0]) = 〈h 〉R for a non-

zerodivisor h ∈ RrX by Proposition 3.2.8. Observe that ı̃(h) = (hp1T
rX
1 , . . . , hp1T

rX
1 )

in R̃, where hpj is a unit of OX,pj for j = 1, . . . , s (see Lemma 2.3.11). Therefore, in R̃,

we get FR̃/R =
⊕
i≥rX

R̃i = 〈 ı̃(ϑD(R/K[x0])) 〉R̃ ⊆ R̃.

When we specialize to the case of projective point sets, the condition (ii) of Proposi-

tion 4.1.27 is satisfied. Therefore we recover the following result of A.V. Geramita et al

(see [GKR, Proposition 3.15]).

Corollary 4.1.28. Let X = {p1, . . . , ps} be a projective point set in PnK. Then we have

FR̃/R · CR/K[x0] = R̃.

Proposition 4.1.29. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme.

(i) We have F2
R̃/R
⊆ ϑD(R/K[x0]) ⊆ FR̃/R.

(ii) If X has CBP(d), then we have ϑD(R/K[x0])d = 〈0〉.
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Proof. (i) Let L = Qh(R) ∼=
∏s

j=1OX,pj [Tj, T
−1
j ]. Since (CR/K[x0])i = (L)i = (R̃)i for

all i ≥ 0, this implies R̃ ⊆ CR/K[x0]. Thus we get

ϑD(R/K[x0]) = R :L CR/K[x0] ⊆ R :L R̃ = R :R̃ R̃ = FR̃/R.

On the other hand, we see that F2
R̃/R
·CR/K[x0] ⊆ FR̃/RR̃ ⊆ R. This yields the inclusion

F2
R̃/R
⊆ ϑD(R/K[x0]). Therefore the claim follows.

(ii) If ϑD(R/K[x0])d 6= 〈0〉 then there exists a non-zero homogeneous element h of

degree d in ϑD(R/K[x0])d, and hence h ∈ (FR̃/R)d. By Proposition 4.1.26, the scheme

X does not have CBP(d), a contradiction.

Corollary 4.1.30. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set, and let fj be

the normal separator of X \ {pj} in X for j = 1, . . . , s. Then X is a CB-scheme if and

only if xrX−2
0 fj /∈ ϑX(R/K[x0])2rX−2 for all j = 1, . . . , s.

Proof. It is clear that xrX−1
0 fj ∈ ϑX(R/K[x0])2rX−1 if xrX−2

0 fj ∈ ϑX(R/K[x0])2rX−2.

Thus we get xrX−2
0 fj /∈ ϑX(R/K[x0])2rX−2 for every j ∈ {1, . . . , s} if X is a CB-scheme

by Corollary 4.1.9(i). Conversely, if X is not a CB-scheme, then we can find a minimal

separator f ∗j ∈ R with dj = deg(f ∗j ) ≤ rX − 1. Moreover, we may choose the minimal

separator f ∗j such that f ∗j (pj) = 1. Notice that f ∗j ∈ FR̃/R (see Proposition 4.1.25(ii)).

By Proposition 4.1.29(i), we get (f ∗j )2 ∈ F2
R̃/R
⊆ ϑX(R/K[x0]). Since X is a projective

point set, we have x
dj
0 f
∗
j = (f ∗j )2 and fj = x

rX−dj
0 f ∗j ∈ RrX . This implies that xrX−2

0 fj =

x
2rX−2dj−2
0 (x

dj
0 f
∗
j ) ∈ ϑX(R/K[x0])2rX−2. Therefore the corollary is proved.

4.2 Differents for Schemes Having Generic Hilbert

Function

In this section we are interested in studying the following special class of 0-dimensional

schemes in the projective n-space PnK .

Definition 4.2.1. Let X ⊆ PnK be a 0-dimensional scheme. We say that X has generic

Hilbert function if HFX(i) = min{ deg(X),
(
i+n
n

)
} for all i ∈ Z.

Let αX = min{ i ∈ N | (IX)i 6= 0 } be the initial degree of the homogeneous

vanishing ideal IX. It is well known (cf. [GO] and [BK]) that if X has generic Hilbert

function, then IX = 〈 (IX)αX , (IX)αX+1 〉P and αX is the unique integer such that(
n+ αX − 1

n

)
≤ deg(X) <

(
n+ αX

n

)
.
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We have the following observation.

Lemma 4.2.2. Let X ⊆ PnK be a 0-dimensional scheme which has generic Hilbert

function. Suppose that X has K-rational support and deg(X) ≥ 2 and rX ≥ 2.

(i) The scheme X has CBP(d) for all d = 0, . . . , rX − 2.

(ii) If deg(X) =
(
n+αX−1

n

)
, then X is a CB-scheme.

Proof. Let Y ⊆ X be a maximal pj-subscheme, where pj ∈ Supp(X). Observe that

if F ∈ (IY)αY/X and L ∈ P1 is a linear form through the point pj, then FL ∈ IX.

Thus we obtain αX − 1 ≤ αY/X ≤ rX. On the other hand, it follows from the equality

rX = min{i ∈ Z | HFX(i) = deg(X)} that X has generic Hilbert function if and only if

αX ≥ rX. This implies αY/X ≥ αX − 1 ≥ rX − 1. By Proposition 4.1.22, X has CBP(d)

for all d = 0, . . . , rX − 2, and claim (i) follows.

In addition, if deg(X) =
(
n+αX−1

n

)
, then αX = rX + 1. So, for every pj ∈ Supp(X)

and for every maximal pj-subscheme Y ⊆ X, we have αY/X ≥ αX − 1 ≥ rX. Therefore

claim (ii) follows by Proposition 4.1.22 again.

Remark 4.2.3. Given a 0-dimensional scheme X ⊆ PnK , the condition that X has

generic Hilbert function does not imply that it is a CB-scheme. For instance, consider

the projective point set X = {p1, . . . , p11} ⊆ P3
Q of degree 11 with p1 = (1 : 1 : 0 : 0),

p2 = (1 : 1 : 0 : 1), p3 = (1 : 0 : 1 : 1), p4 = (1 : 1 : 1 : 1), p5 = (1 : 2 : 2 : 1),

p6 = (1 : 3 : 1 : 1), p7 = (1 : 3 : 2 : 0), p8 = (1 : 3 : 2 : 1), p9 = (1 : 3 : 3 : 0),

p10 = (1 : 3 : 3 : 1), and p11 = (1 : 3 : 3 : 3). A calculation gives us rX = 3 = αX.

Hence X has generic Hilbert function and CBP(1). However, X is not a CB-scheme,

since there is a separator f ∗1 = 3x2
0 − x0x1 − 3x0x3 + x1x3 of X \ {p1} in X of degree 2.

In the following proposition we present a generalization of a result for projective

point sets found in [GO] for the special case of reduced 0-dimensional subschemes of PnK .

Proposition 4.2.4. Let X ⊆ PnK be a reduced 0-dimensional CB-scheme with support

Supp(X) = {p1, . . . , ps}.

(i) If X has generic Hilbert function, then X is arithmetically Gorenstein if and only

if deg(X) · rX = 2
(
n+rX
n+1

)
.

(ii) If there is a maximal pj-subscheme Y of degree deg(Y) = deg(X)− 1 such that Y
has generic Hilbert function, but X does not have generic Hilbert function, then X
is arithmetically Gorenstein if and only if deg(X) ·rX = 2

((
n+rX−1
n+1

)
+deg(X)−1

)
.
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Proof. Since X is reduced, then R̃ =
∏s

j=1OX,pj [Tj] is the integral closure of R in its full

ring of quotients Q(R). It is well known that the scheme X is arithmetically Goren-

stein if and only if `(R̃/FR̃/R) = dimK(R̃/FR̃/R) = 2 dimK(R/FR̃/R) = 2`(R/FR̃/R)

(see [Bas, Corollary 6.5]). Since X is a CB-scheme, it follows from Proposition 4.1.26

that FR̃/R =
⊕

i≥rX Ri. Hence we get the equalities dimK(R̃/FR̃/R) = deg(X) · rX and

dimK(R/FR̃/R) =
∑rX−1

i=0 HFX(i).

Suppose that X has generic Hilbert function. It follows that dimK(R/FR̃/R) =∑rX−1
i=0

(
n+i
n

)
=
(
n+rX
n+1

)
. Therefore claim (i) follows.

Now we show claim (ii). We know that rX − 1 ≤ rY ≤ rX. If rY = rX, then

αX ≥ αY ≥ rY = rX (as Y has generic Hilbert function), and so X has generic Hilbert

function, in contradiction to the hypothesis. Thus we conclude that rY = rX − 1 and

HFX(rX−1) = deg(X)−1. It follows that dimK(R/FR̃/R) =
∑rX−2

i=0

(
n+i
n

)
+(deg(X)−1) =(

n+rX−1
n+1

)
+ deg(X)− 1, and this completes the proof.

Note that if n = 1 or deg(X) = 1, then X is always arithmetically Gorenstein. Our

next corollary provides some characterizations of 0-dimensional arithmetically Goren-

stein schemes X when n ≥ 2 and deg(X) > 1.

Corollary 4.2.5. Let n ≥ 2 and let X ⊆ PnK be a reduced 0-dimensional CB-scheme

of degree deg(X) > 1.

(i) If X has generic Hilbert function, then

(a) X is arithmetically Gorenstein if and only if deg(X) = 2 or deg(X) = n+ 2.

(b) If X is arithmetically Gorenstein, then ri(ϑD(R/K[x0])) ∈ {2, 4}.

(ii) If deg(X) > n + 1 and there is a maximal pj-subscheme Y of degree deg(Y) =

deg(X)− 1 such that Y has generic Hilbert function, but X does not have generic

Hilbert function, then X is arithmetically Gorenstein if and only if deg(X) =

2(n+ 2) or deg(X) = (n+ 3)(n+ 2)/2− 1.

Proof. Part (a) of claim (i) follows from Proposition 4.2.4(i) and by an argument

analogous to the proof of Theorem 7 in [GO]. Part (b) of claim (i) is a consequence of (a)

and the fact that ri(ϑD(R/K[x0])) = 2rX. Claim (ii) follows from Proposition 4.2.4(ii)

and in the same way as the proof of Theorem 9 in [GO]. We note that in the claim (ii)

it suffices to treat the case deg(X) > n+ 1, since if deg(X) ≤ n+ 1 then X is contained

in a hyperplane H ∼= Pn−1
K . Moreover, there do not exist reduced 0-dimensional CB-

schemes X in P2
K of degree 17 or 22 such that there is a subscheme Y ⊆ X of degree

deg(Y) = deg(X) − 1 having generic Hilbert function, but X does not have generic
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Hilbert function. Otherwise, such a scheme X would be arithmetically Gorenstein

(by Proposition 4.2.4(ii)), and hence a complete intersection of type (d1, d2) for some

1 ≤ d1 ≤ d2. Then we have deg(X) = d1d2 and (IX)4 ⊆ (IY)4 = 〈0〉 (as Y has

generic Hilbert function). If deg(X) = 17 = d1d2, then (d1, d2) = (1, 17), and hence

(IX)1 6= 〈0〉. This is impossible. If deg(X) = 22 = d1d2, then (d1, d2) = (1, 22) or

(2, 11). This implies that (IX)2 6= 〈0〉, a contradiction.

Example 4.2.6. Let X ⊆ P3
Q be the reduced 0-dimensional scheme with support

Supp(X) = {p1, . . . , p4}, where p1 = (1 : 0 : 1 : 0), p2 = (1 : 1 : 0 : 1), p3 = (1 : 1 : 1 : 1),

and where p4 corresponds to P4 = 〈2X2
0 +X2

1 , X2, X3〉. Then deg(X) = n+ 2 = 5 and

αX = rX = 2. Thus X has generic Hilbert function. Moreover, it is easy to check that X
is a CB-scheme. Therefore X is arithmetically Gorenstein by Corollary 4.2.5(i). In this

case, we have ϑD(R/K[x0]) = 〈x2
1 + x2

2 − 3x2x3〉 ∼= R(−2) and ri(ϑD(R/K[x0])) = 4.

Observer that if a 0-dimensional scheme X ⊆ PnK has generic Hilbert function,

then the Hilbert function of the Kähler different satisfies HFϑK(R/K[x0])(i) = 0 for

i < n(rX − 1). Furthermore, if αX = rX + 1, then ϑK(R/K[x0]) is generated by

homogeneous elements of degree nrX. In the following, we want to examine whether

the converse of this statement is true. If X = {p1, . . . , ps} ⊆ PnK is a projective point

set, an affirmative answer for this problem is given by our next proposition. Notice

that if n = 1 or (n ≥ 2 and s = 1) then the projective point set X is a complete

intersection, and so ϑK(R/K[x0]) is generated by a non-zerodivisor of R of degree nrX

and we have HFϑK(R/K[x0])(i) = HFX(i− s+ 1) for all i ∈ N. Also, it is not hard to see

that X has generic Hilbert function with s =
(
n+αX−1

n

)
. Thus it suffices to consider the

case n ≥ 2 and s ≥ 2.

Proposition 4.2.7. Let n ≥ 2 and let X = {p1, . . . , ps} ⊆ PnK be a projective point set

of degree s ≥ 2. Suppose that char(K) = 0 or char(K) > rX. The following conditions

are equivalent.

(i) The scheme X has generic Hilbert function with s =
(
n+αX−1

n

)
.

(ii) The Hilbert function of Kähler different is given by

HFϑK(R/K[x0])(i) =

0 if i < nrX,

s if i ≥ nrX.

(iii) The scheme X is a CB-scheme and ϑK(R/K[x0]) = Fn
R̃/R

.
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Proof. (i)⇔(ii): Suppose that X has generic Hilbert function with s =
(
n+αX−1

n

)
.

Then we have αX = rX + 1. Thus ϑK(R/K[x0]) is generated by homogeneous elements

of degree nrX. By Proposition 3.3.14, we have ri(ϑK(R/K[x0])) = nrX. Therefore

ϑK(R/K[x0]) =
⊕

i≥nrX Ri and HFϑK(R/K[x0]) is as above.

Conversely, suppose that ϑK(R/K[x0]) =
⊕

i≥nrX Ri and αX ≤ rX (i.e., X does

not have generic Hilbert function or X has generic Hilbert function but s 6=
(
n+αX−1

n

)
).

By Remark 3.3.24, we suppose that IX has a minimal homogeneous system of generators

{F1, . . . , Fr} such that deg(Fj) ≤ rX + 1, {F1, . . . , Fn} is a P -regular sequence, and
∂(F1,...,Fn)
∂(x1,...,xn)

is a non-zerodivisor of R (i.e., it does not vanish at any point of X). If there

is an index j ∈ {1, . . . , n} such that deg(Fj) ≤ rX, then deg(∂(F1,...,Fn)
∂(x1,...,xn)

) ≤ nrX − 1.

Hence we have ∂(F1,...,Fn)
∂(x1,...,xn)

∈ ϑK(R/K[x0]) \ {0}, and this is a contradiction.

Now we consider the case deg(Fj) = rX + 1 for j = 1, . . . , n. Since αX ≤ rX, there

is an element Fj ∈ (IX)αX for some j ≥ n + 1, say Fn+1. By the assumption on the

characteristic of K and by Euler’s rule, we may assume that ∂Fn+1

∂X1
6= 0. Then it is

clear that ∂Fn+1

∂X1
/∈ IX, since deg(∂Fn+1

∂X1
) < αX. So, there is a point pk of X such that

∂Fn+1

∂x1
(pk) 6= 0. Without loss of generality, we can assume that ∂Fn+1

∂x1
(p1) 6= 0. Set

Vi :=
(
∂Fi
∂x1

(p1), . . . , ∂Fi
∂xn

(p1)
)
∈ Kn for i = 1, . . . , n+ 1 and

V :=


∂F1

∂x1
(p1) · · · ∂F1

∂xn
(p1)

...
. . .

...
∂Fn
∂x1

(p1) · · · ∂Fn
∂xn

(p1)

 .

The matrix V is invertible, since det(V) = ∂(F1,...,Fn)
∂(x1,...,xn)

(p1) 6= 0. By using elementary row

operations, we can transform the matrix V into an upper-triangular matrix W = (wij)

such that its diagonal entries are all non-zero (i.e., wik = 0 for k < i and wii 6= 0 for all

i = 1, . . . , n). Let Wi denote the i-th row of the matrix W . Then there are λij ∈ K,

i, j ∈ {1, . . . , n}, such that

Wi = (wi1, . . . , win) = λi1V1 + · · ·+ λinVn

=
( n∑
j=1

λij
∂Fj
∂x1

(p1), . . . ,
n∑
j=1

λij
∂Fj
∂xn

(p1)
)
.

For every i ∈ {2, . . . , n}, let Gi := λi1F1 + · · ·+ λinFn ∈ (IX)rX+1 \ {0}. Then we have
∂Gi
∂xk

(p1) =
∑n

j=1 λij
∂Fj
∂xk

(p1) = wik for all i = 2, . . . , n and k = 1, . . . , n. Notice that
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∂Gi
∂xk

(p1) = wik = 0 for k < i and ∂Gi
∂xi

(p1) = wii 6= 0. Thus we get

∂(Fn+1,G2,...,Gn)
∂(x1,...,xn)

(p1) = det


∂Fn+1

∂x1
(p1) ∂Fn+1

∂x2
(p1) · · · ∂Fn+1

∂xn
(p1)

0 w22 · · · w2n

...
...

. . .
...

0 0 · · · wnn


= ∂Fn+1

∂x1
(p1)w22 · · ·wnn 6= 0.

Hence we obtain ∂(Fn+1,G2,...,Gn)
∂(x1,...,xn)

∈ ϑK(R/K[x0])≤nrX−1 \ {0}, and this is a contradiction

again. Therefore it must be the case αX = rX + 1 or X has generic Hilbert function

with s =
(
n+αX−1

n

)
, as was to be shown.

(ii)⇔(iii): If X is a CB-scheme and Fn
R̃/R

= ϑK(R/K[x0]), then we have

Fn
R̃/R

= 〈 fn1 , . . . , fns 〉R =
⊕
i≥nrX

Ri = ϑK(R/K[x0])

where fj is the normal separator of X \ {pj} in X for j = 1, . . . , s. Thus the Hilbert

function of ϑK(R/K[x0]) is given as claim (ii).

Conversely, if ϑK(R/K[x0]) =
⊕

i≥nrX Ri, then X has generic Hilbert function with

s =
(
n+αX−1

n

)
, and so X is a CB-scheme by Lemma 4.2.2(ii). For every j ∈ {1, . . . , s}

we let f ∗j be the minimal separator of X \ {pj} in X with f ∗j (pj) = 1. It follows

from Proposition 4.1.25 that Fn
R̃/R

= 〈 (f ∗1 )n, . . . , (f ∗s )n 〉R. Since X is a CB-scheme,

this implies that deg(f ∗j ) = rX or f ∗j = fj for all j = 1, . . . , s. Therefore we get

Fn
R̃/R

=
⊕

i≥nrX Ri = ϑK(R/K[x0]), as was to be shown.

Corollary 4.2.8. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set. If X has generic

Hilbert function with s =
(
n+αX−1

n

)
then ri(ϑK(R/K[x0])) = nrX.

Proof. This is an immediate consequence of Proposition 4.2.7.

From Proposition 4.2.7 we see that if the Hilbert function of ϑK(R/K[x0]) in degree

nrX− 1 is zero then X is a CB-scheme. This observation can be generalized as follows.

Proposition 4.2.9. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set, let fj be the

normal separator of X \ {pj} in X for j = 1, . . . , s, and let 0 ≤ d ≤ rX − 1.

(i) If HFϑK(R/K[x0])(nd) = 0 then X has CBP(d).

(ii) Suppose that n = 2. Then X is a CB-scheme if and only if for every j ∈ {1, . . . , s}
we have xrX−2

0 fj /∈ ϑK(R/K[x0])2rX−2. In particular, if HFϑK(R/K[x0])(2rX−2) = 0,

then X is a CB-scheme.
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Proof. If rX ≤ 1, then it is easy to check that X is always a CB-scheme. Therefore we

may assume that rX ≥ 2. For every j ∈ {1, . . . , s}, let f ∗j ∈ R be a minimal separator

of Yj in X. Suppose that X does not have CBP(d). Then there exists an index

j ∈ {1, . . . , s} such that deg(f ∗j ) ≤ d. By Corollary 3.3.16(i), we have the inclusion

Fn
R̃/R
⊆ ϑK(R/K[x0]) ⊆ FR̃/R. This implies 0 6= (f ∗j )n ∈ ϑK(R/K[x0]). Hence we see

that 0 < HFϑK(R/K[x0])(n deg(f ∗j )) ≤ HFϑK(R/K[x0])(nd). We get a contradiction to our

assumption that HFϑK(R/K[x0])(nd) = 0. Thus claim (i) is proved completely.

Now we prove claim (ii). If xrX−2
0 fj ∈ ϑK(R/K[x0]) ⊆ ϑX(R/K[x0]) for some

j ∈ {1, . . . , s}, then X is not a CB-scheme by Corollary 4.1.30. Conversely, we assume

that xrX−2
0 fj /∈ ϑK(R/K[x0]) for all j = 1, . . . , s and X is not a CB-scheme. Then we

can find a minimal separator f ∗j ∈ R with dj = deg(f ∗j ) ≤ rX − 1 and f ∗j (pj) = 1.

We have xrX−2
0 fj = x

2rX−2dj−2
0 (f ∗j )2 ∈ F2

R̃/R
. Therefore Corollary 3.3.16(i) yields that

xrX−2
0 fj ∈ ϑK(R/K[x0]), a contradiction.

Remark 4.2.10. The converse of Proposition 4.2.9(i) is not true. For example, we

take X = {(1 : 0 : 0), (1 : 1 : 0), (1 : 0 : 1), (1 : 1 : 1)} ⊆ P2
K . Then X is a

complete intersection with rX = 2. Of course, X is a CB-scheme. But we see that

HFϑK(R/K[x0])(n(rX − 1)) = HFϑK(R/K[x0])(2) = HFX(2− 2) = HFX(0) = 1 6= 0.

Let X = {p1, . . . , ps} ⊆ PnK be a projective point set, where n ≥ 2. Suppose that

X has generic Hilbert function. Let t1 and t2 be the numbers of minimal generators of

degree rX and of degree rX + 1 of IX, respectively. Notice that if s =
(
n+αX−1

n

)
, then

rX = αX − 1, and so t1 = 0; and if
(
n+αX−1

n

)
< s <

(
n+αX
n

)
, then t1 = dimK(IX)rX =(

n+αX
n

)
− s. We assume that t1 ≥ n, and let F1, . . . , Ft1 be the minimal generators

of IX of degree rX. Let {h1, . . . , h(t1n)} ⊆ Rn(rX−1) be a set of generators of the K-vector

space ϑK(R/K[x0])n(rX−1), where hi =
∂(Fi1 ,...,Fin )

∂(x1,...,xn)
for a subset {i1, . . . , in} ⊆ {1, . . . , t1}.

For every j ∈ {1, . . . , s}, we denote

A =


h1(p1) h2(p1) · · · h(t1n)(p1)

h1(p2) h2(p2) · · · h(t1n)(ps)

...
...

. . .
...

h1(ps) h2(ps) · · · h(t1n)(ps)


s×(t1n)

, Ej =


0
...

1[j]
...

0


s×1

, Aj =
(
A Ej

)
s×(t1n)+1

.

Proposition 4.2.11. Let n ≥ 2, and let X = {p1, . . . , ps} ⊆ PnK be a projective

point set which has generic Hilbert function. Let t1 and t2 be the numbers of minimal

generators of degree rX and of degree rX + 1 of IX, respectively.
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(i) If t1 < n, then X is a CB-scheme.

(ii) Suppose that t1 ≥ n and rX ≥ 2. If rank(Aj) > rank(A) for all j = 1, . . . , s, then

X is a CB-scheme. Conversely, if X is a CB-scheme and n(rX − 1) ≤ 2rX − 1,

then rank(Aj) > rank(A) for all j = 1, . . . , s.

Proof. (i) It is clear that X is a CB-scheme if rX = 1. Thus we may assume that

rX ≥ 2. If t1 < n, then the Kähler different ϑK(R/K[x0]) is generated by homogeneous

element of degree at least nrX − n + 1, and so HFϑK(R/K[x0])(n(rX − 1)) = 0. Hence

Proposition 4.2.9 implies that X is a CB-scheme.

(ii) Let fj ∈ RrX be the normal separator of X \ {pj} in X for j = 1, . . . , s. Notice

that n(rX − 1) ≥ rX as rX ≥ 2. For every i ∈ {1, . . . ,
(
t1
n

)
}, we may write

hi = x
n(rX−1)−rX
0 (hi(p1)f1 + · · ·+ hi(ps)fs) = x

n(rX−1)−rX
0

s∑
j=1

hi(pj)fj.

Suppose that rank(Aj) > rank(A) for all j = 1, . . . , s, and X is not a CB-scheme.

Then there is a minimal separator f ∗j of X \ {pj} in X such that deg(f ∗j ) ≤ rX − 1

and fj = x
rX−deg(f∗j )

0 f ∗j . Without loss of generality, we may assume that deg(f ∗1 ) ≤
rX − 1 and f1 = x

rX−deg(f∗1 )
0 f ∗1 . It follows from Corollary 3.3.16(i) that x

n deg(f∗1 )−rX
0 f1 =

(f ∗1 )n ∈ ϑK(R/K[x0])ndeg(f∗1 ), and consequently x
n(rX−1)−rX
0 f1 ∈ ϑK(R/K[x0])n(rX−1).

Then there exist c1, . . . , c(t1n) ∈ K, not all equal to zero, such that

x
n(rX−1)−rX
0 f1 = c1h1 + · · ·+ c(t1n)h(t1n)

= x
n(rX−1)−rX
0

(
c1

s∑
j=1

h1(pj)fj + · · ·+ c(t1n)

s∑
j=1

h(t1n)(pj)fj
)

= x
n(rX−1)−rX
0

(
f1

(t1n)∑
k=1

hk(p1)ck + · · ·+ fs

(t1n)∑
k=1

hk(ps)ck
)
.

Thus there are linear equations in c1, . . . , c(t1n) as follows

(t1n)∑
k=1

hk(p1)ck = h1(p1)c1 + · · ·+ h(t1n)(p1)c(t1n) = 1,

(t1n)∑
k=1

hk(pj)ck = h1(pj)c1 + · · ·+ h(t1n)(pj)c(t1n) = 0, j = 2, . . . , s.

This implies rank(A) = rank(A1), in contradiction to our assumption.

Now let X be a CB-scheme and n(rX−1) ≤ 2rX−1. We assume for contradiction that

rank(Aj) = rank(A) for some j ∈ {1, . . . , s}, may say j = 1. Let C = (c1, . . . , c(t1n)) ∈
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K(t1n) be a root of the system of linear equations A·Y = E1 where Y = (y1, . . . , y(t1n))tr.

It follows that x
n(rX−1)−rX
0 f1 − (c1h1 + · · · + c(t1n)h(t1n)) = 0 in R. So, x

n(rX−1)−rX
0 f1 is

a non-zero element of ϑK(R/K[x0])n(rX−1). Since X is a CB-scheme, there exists an

element g1 = x−2rX
0 (a1f1 + · · · + asfs) ∈ (CR/K[x0])−rX with a1, . . . , as ∈ K and a1 6= 0

(as in the proof of Theorem 4.1.7). We have x
n(rX−1)−rX
0 f1 · g1 = x

n(rX−1)−3rX
0 a1f1f1 =

x
n(rX−1)−2rX
0 a1f1 ∈ R. Thus we get f1 ∈ x0RrX−1, since n(rX−1) ≤ 2rX−1. This means

that X is not a CB-scheme, a contradiction.

Let s be an integer such that(
n+ (α− 1)

n

)
< s <

(
n+ α

n

)
with n ≥ 2, α ≥ 2

and let X = {p1, . . . , ps} ⊆ PnK be a projective point set satisfying HFX(α) = s. If

dimK(IX)α ≤ n, then X has generic Hilbert function and s =
(
n+α
n

)
− dimK(IX)α.

Indeed, we see that rX ≤ α and HFX(α − 1) ≤ HFPnK (α − 1) =
(
n+(α−1)

n

)
< s. This

implies rX = α. Suppose that αX < rX. Let F be a non-zero form of degree rX − 1 in

(IX)rX−1. Then X0F,X1F, . . . , XnF are n + 1 linearly independent forms of degree rX

in (IX)rX . Thus we obtain dimK(IX)rX = dimK(IX)α > n, a contradiction. Therefore

αX ≥ rX or X has generic Hilbert function and s =
(
n+α
n

)
− dimK(IX)α, as we wished.

Proposition 4.2.12. Let s be an integer such that(
n+ (α− 1)

n

)
< s ≤

(
n+ α

n

)
− n with n ≥ 2, α ≥ 2.

Then there is a non-empty open set in (PnK)s whose each point corresponds to a projec-

tive point set X = {p1, . . . , ps} of PnK (not necessary X ∩ Z+(X0) = ∅) such that

(i) dimK(IX)α ≥ n,

(ii) there are n independent forms in (IX)α which meet in precisely αn distinct K-

rational points.

Proof. The result follows immediately from [GM, Proposition 4.4].

Proposition 4.2.13. Let s be an integer such that(
n+ (α− 1)

n

)
< s ≤

(
n+ α

n

)
− n with n ≥ 2, α ≥ 2,

and suppose char(K) - α. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set satisfying

the following conditions:
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(i) HFX(α) = s,

(ii) dimK(IX)α ≥ n,

(iii) there are n independent forms in (IX)α which meet in precisely αn distinct K-

rational points.

Then X has generic Hilbert function if and only if HFϑK(R/K[x0])(nα− n− 1) = 0.

Proof. Notice that the condition HFX(α) = s implies rX = α. If X has generic Hilbert

function, then rX = α = αX. Thus ϑK(R/K[x0]) is generated by homogeneous elements

of degree ≥ nα − n. It follows that HFϑK(R/K[x0])(nα − n − 1) = 0. Conversely,

suppose that HFϑK(R/K[x0])(nα − n − 1) = 0. According to the condition (iii), we let

F1, . . . , Fn ∈ (IX)α be n forms of degree α having exactly αn distinct common zeros

in PnK . Then F1, . . . , Fn form a P -regular sequence (cf. [KK, Theorem 1.12]), and so

the ideal 〈F1, . . . , Fn〉 defines a complete intersection W of degree αn containing X. By

Corollary 3.3.5, the element ∂(F1,...,Fn)
∂(x1,...,xn)

is a non-zerodivisor of P/〈F1, . . . , Fn〉 of degree

nα− n. In particular, it does not vanish at any point of W (so of X). If αX < α, then

we can argue analogously as in the proof of the part “(ii)⇒(i)” of Proposition 4.2.7 to

obtain a non-zero homogeneous element of degree nα − n − 1 in ϑK(R/K[x0]). This

implies HFϑK(R/K[x0])(nα − n− 1) 6= 0, in contradiction to the assumption. Therefore

we must have αX = α = rX. In other words, X has generic Hilbert function.

Corollary 4.2.14. Let n ≥ 2 and let X = {p1, . . . , ps} ⊆ PnK be a projective point set.

If X has generic Hilbert function with s =
(
n+αX
n

)
− n and (IX)αX contains a P -regular

sequence of length n which meet in precisely αnX distinct K-rational points, then X is a

CB-scheme.

Proof. This follows from Proposition 4.2.11.

4.3 Cayley-Bacharach Properties and Liaison

Throughout this section let K be an arbitrary field, let W ⊆ PnK be a 0-dimensional

arithmetically Gorenstein scheme such that Supp(W) ∩ Z+(X0) = ∅, let IW be the

homogeneous vanishing ideal of W in P , and let S := P/IW be the homogeneous

coordinate ring of W. We shall use “ ” to denote residue classes modulo X0. For a

0-dimensional subscheme X ⊆ W, the ideal AnnS(IX/W) ⊆ S is saturated and defines

a 0-dimensional subscheme Y of W (see [Kr3, Section 16]).
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Definition 4.3.1. The subscheme Y ⊆W which is defined by the homogeneous ideal

IY/W = AnnS(IX/W) is said to be the residual scheme of X in W.

We collect from [DGO] or [Kr3, Section 16] some useful results.

Proposition 4.3.2. Let W⊆PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X ⊆ W be a subscheme, and let Y ⊆ W be the residual scheme of X in W. The

following assertions hold true.

(i) IX/W = AnnS(IY/W).

(ii) deg(W) = deg(X) + deg(Y).

(iii) ∆ HFW(i) = ∆ HFX(i) + ∆ HFY(rW − i) for i = 0, . . . , rW.

(iv) rW = rX + αY/W = rY + αX/W.

Lemma 4.3.3. For every d ∈ {1, . . . , rX}, we have

(IW)rW : (IY)αY/W+(rX−d) = (IX)d.

Proof. Clearly, we have IX·IY ⊆ IW. This implies that (IX)d ⊆ (IW)rW : (IY)αY/W+(rX−d).

For the other inclusion, let f ∈ (IW)rW : (IY)αY/W+(rX−d). In S = S/〈x0〉, we have

f ∈ (AnnS((IY/W)αY/W+(rX−d)))d. Since W is arithmetically Gorenstein, the ring S is

a 0-dimensional local Gorenstein ring with socle SrW
∼= K. Thus we can argue in the

same way as Lemma 4.1 and Proposition 4.3.a of [GKR] to get

(AnnS((IY/W)αY/W+(rX−d)))d = (AnnS((IY/W)rW−d))d

= (AnnS(IY/W))d = (IX/W)d.

Consequently, we have f ∈ (IX/W)d, and hence f ∈ (IX)d, as desired.

As usual, we let Supp(X) = {p1, . . . , ps} and set κj = dimK K(pj) for j = 1, . . . , s.

Given a maximal pj-subscheme X′ ⊆ X, let {f ∗j1, . . . , f ∗jκj} be a set of minimal sep-

arators of X′ in X. Then a set of separators of X′ in X is {fj1, . . . , fjκj}, where

fjkj = x
rX−deg(f∗jkj

)

0 f ∗jkj for kj = 1, . . . ,κj. Let F ∗jkj ∈ Pdeg(f∗jkj
) and Fjkj ∈ PrX be

representatives of f ∗jkj and fjkj , respectively. We also say that the set {F ∗j1, . . . , F ∗jκj} is

a set of minimal separators of X′ in X, and the set {Fj1, . . . , Fjκj} is a set of separators

of X′ in X. Let 0 ≤ d ≤ rX − 1. In view of Proposition 4.1.22, the scheme X has

CBP(d) if and only if the following condition holds: for every point pj ∈ Supp(X) and

for every maximal pj-subscheme X′ ⊆ X; letting {Fj1, . . . , Fjκj} be a set of separators

of X′ in X, we have Fjkj /∈ 〈X
rX−d
0 , (IX)rX 〉P for some kj ∈ {1, . . . ,κj}.
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Lemma 4.3.4. Let X have CBP(d), let 0 ≤ d ≤ rX − 1, let X′ ⊆ X be a maximal

pj-subscheme, and let {Fj1, . . . , Fjκj} ⊆ PrX be a set of separators of X′ in X.

(i) If 〈Fj1, . . . , Fjκj〉K⊆〈X
rX−d−1
0 , (IX)rX〉P and if we write Fjkj =F ′jkj +XrX−d−1

0 Gjkj

with F ′jkj ∈ (IX)rX and Gjkj ∈ Pd+1, then there is kj ∈ {1, . . . ,κj} such that

Gjkj /∈ (IW)rW : (IY)αY/W+(rX−d)−1.

(ii) If d = rX − 1, then Fjkj /∈ (IW)rW : (IY)αY/W for some kj ∈ {1, . . . ,κj}.

Proof. Suppose that Gjkj ∈ (IW)rW : (IY)αY/W+(rX−d)−1 for all kj = 1, . . . ,κj. Then we

have Gjkj(IY)αY/W+(rX−d)−1 ⊆ (IW)rW . Thus Lemma 4.3.3 yields that Gjkj ∈ (IX)d+1.

This allows us to write Gjkj = G′jkj +X0Hjkj with G′jkj ∈ (IX)d+1 and Hjkj ∈ Pd. Note

that Hjkj ∈ (IX′)d. From this we rewrite Fjkj = (F ′jkj + XrX−d−1
0 G′jkj) + XrX−d

0 Hjkj

for all kj = 1, . . . ,κj. It follows that Fjkj ∈ 〈X
rX−d
0 , (IX)rX 〉P for all kj = 1, . . . ,κj.

Thus X does not have CBP(d), in contradiction to our hypothesis. Therefore claim (i)

is completely proved. The proof of claim (ii) is similar.

Definition 4.3.5. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X ⊆W be a subscheme, and let Y ⊆W be the residual scheme of X in W. We say

that X and Y are geometrically linked (by W) if they have no common irreducible

component.

From the point of view of the saturated ideals, the schemes X and Y are geo-

metrically linked by W if and only if IW = IX ∩ IY and neither IX nor IY is con-

tained in any associated prime of the other (see [Mig, Section 5.2]). In this case,

if Supp(X) = {p1, . . . , ps} ⊆ PnK and Supp(Y) = {p′1, . . . , p′t} ⊆ PnK , then we have

Supp(W) = Supp(X)∪ Supp(Y) = {p1, . . . , ps, p
′
1, . . . , p

′
t} and Supp(X)∩ Supp(Y) = ∅.

This also implies that OW,pj = OX,pj for j = 1, . . . , s and OW,p′j
= OY,p′j for j = 1, . . . , t.

Let pj ∈ Supp(X). Using the map Θj : P−�R = P/IX
θ
−�

∏s
k=1OX,pk

proj
−� OX,pj

we can form the element Hpj = Θj(H) ∈ OX,pj for each H ∈ P . Then a homogeneous

polynomial H is contained in IX if and only if Hpj = 0 for all j = 1, . . . , s.

Now we present a characterization of CBP(d) using the homogeneous vanishing

ideal of a geometrically linked scheme. This result is a generalized version of [GKR,

Theorem 4.6].

Theorem 4.3.6. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X ⊆ W be a subscheme, and let Y ⊆ W be the residual scheme of X in W. Let
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0 ≤ d ≤ rX−1, let Supp(X) = {p1, . . . , ps}, and suppose that X and Y are geometrically

linked. The following conditions are equivalent.

(i) The scheme X has CBP(d).

(ii) For every pj ∈ Supp(X), there exists an element Hj of (IY)αY/W+(rX−d)−1 such

that (Hj)pj ∈ OX,pj \ {0} is a unit.

Proof. (ii)⇒(i): Let X′ ⊆ X be a maximal pj-subscheme, let sj ∈ G(OX,pj) \ {0}
be a socle element corresponding to X′, and let {ej1, . . . , ejκj} ⊆ OX,pj be such that

whose residue classes form a K-basis of K(pj). Let {F ∗j1, . . . , F ∗jκj} be a set of minimal

separators of X′ in X (with respect to sj and {ej1, . . . , ejκj}), i.e., let

F ∗jkj + IX = ı̃−1((0, . . . , 0, ejkjsjT
µ(ejkj sj)

j , 0, . . . , 0))

for all kj = 1, . . . ,κj, where ı̃ : R → R̃ =
∏s

j=1OX,pj [Tj] is the injection given by

ı̃(F + IX) = (Fp1T
i
1, . . . , FpsT

i
s) for F ∈ Pi (i ≥ 0). Set

dj := ν(sj) = max{ deg(F ∗jkj) | 1 ≤ kj ≤ κj }.

We proceed to show that dj ≥ d+ 1. By assumption, let Hj ∈ (IY)αY/W+(rX−d)−1 be an

element such that (Hj)pj ∈ OX,pj \mX,pj . It is clear that (F ∗jkjHj)p = (F ∗jkj)p(Hj)p = 0

for every point p in Supp(W) \ {pj} and (F ∗jkjHj)pj 6= 0 in OW,pj . Since X and Y are

geometrically linked, we have OX,pj = OW,pj for all j = 1, . . . , s. So, it follows from

(F ∗jkj)pj = ejkjsj ∈ G(OX,pj) that (F ∗jkjHj)pj = ejkjsj(Hj)pj ∈ G(OW,pj).

For kj ∈ {1, . . . ,κj}, we denote Gjkj + IX := X
dj−deg(F ∗jkj

)

0 F ∗jkj + IX. Let 0 ≤ i ≤ n

and 1 ≤ k ≤ κj. Then we have XiGjk + IX =
∑κj

kj=1 cjkjX0Gjkj + IX for some

cj1, . . . , cjκj ∈ K. This implies XiGjkHj + IW =
∑κj

kj=1 cjkjX0GjkjHj + IW. Because

the set { ej1sj(Hj)pj , . . . , ejκjsj(Hj)pj } is K-linear independent, we have

dimK

(〈
F ∗jkjHj + IW | 1 ≤ kj ≤ κj

〉
S

)
i

= dimK

(〈
GjkjHj + IW | 1 ≤ kj ≤ κj

〉
S

)
i

= κj

for every i ≥ dj + αY/W + (rX − d) − 1 = rW + dj − d − 1. Hence the homogeneous

ideal 〈F ∗jkjHj + IW | 1 ≤ kj ≤ κj 〉S defines a maximal pj-subscheme W′ ⊆W and the

homogeneous vanishing ideal of W′ satisfies dimK(IW′/W)rW+dj−d−1 = κj. Moreover,

the scheme W is arithmetically Gorenstein. In particular, it is a CB-scheme. It follows

from Proposition 4.1.22 that rW +dj−d−1 ≥ rW, and hence dj ≥ d+1. Consequently,

the scheme X has CBP(d).



134 4. Differents and Uniformity of 0-Dimensional Schemes

(i)⇒(ii): Let X′ ⊆ X be a maximal pj-subscheme, and let {Fj1, . . . , Fjκj} ⊆ PrX be

a set of separators of X′ in X. Since X has CBP(d), there exists kj ∈ {1, . . . ,κj} such

that Fjkj /∈ 〈X
rX−d
0 , (IX)rX 〉P . Now we need to find an element Hj ∈ (IY)αY/W+(rX−d)−1

which satisfies (Hj)pj ∈ OX,pj \mX,pj .

First we consider the case 〈Fj1, . . . , Fjkj 〉K ⊆ 〈X
rX−d−1
0 , (IX)rX 〉P . If we write

Fjkj = F ′jkj + XrX−d−1
0 Gjkj with F ′jkj ∈ (IX)rX and Gjkj ∈ Pd+1, then Lemma 4.3.4 im-

plies that there is an index kj ∈ {1, . . . ,κj} such that Gjkj /∈ (IW)rW : (IY)αY/W+(rX−d)−1,

say Gj1. So, there is an element Hj of (IY)αY/W+(rX−d)−1 such that Gj1Hj /∈ (IW)rW .

It is clear that IX · IY ⊆ IW and Gjkj ∈ IX′ for all kj = 1, . . . ,κj. We deduce

(Gj1Hj)p = 0 in OW,p for every point p ∈ Supp(W) \ {pj}. Since X and Y are ge-

ometrically linked, we get (Gj1)pj ∈ G(OW,pj). If (Hj)pj ∈ mX,pj , then in OX,pj we

have (Gj1Hj)pj = 0, and so (Gj1Hj)p = 0 in OW,p for all points p ∈ Supp(W). Since

the map ıS : SrW
∼→

∏
p∈Supp(W)

OW,p is an isomorphism, we deduce Gj1Hj ∈ (IW)rW , a

contradiction. Hence we obtain (Hj)pj ∈ OX,pj \mX,pj .

Next we consider the case 〈Fj1, . . . , Fjkj 〉K * 〈XrX−d−1
0 , (IX)rX 〉P . Without loss of

generality, we assume that Fj1 /∈ 〈XrX−d−1
0 , (IX)rX 〉P . If 〈Fj1, . . . , Fjkj 〉K is contained

in 〈XrX−d−2
0 , (IX)rX 〉P . Then we write Fjkj = F ′jkj + XrX−d−2

0 Gjkj with F ′jkj ∈ (IX)rX
and Gjkj ∈ (IX′)d+2. Using the same argument as in the proof of Lemma 4.3.4, we

can check that Gj1 · (IY)αY/W+(rX−d)−2 * (IW)rW . Therefore there exists an element

Hj ∈ (IY)αY/W+(rX−d)−2 such that Gj1Hj /∈ (IW)rW . It follows by the same reasoning

as above that (Hj)pj ∈ OX,pj \ mX,pj , and therefore X0Hj ∈ (IY)αY/W+(rX−d)−1 and

(X0Hj)pj ∈ OX,pj \mpj .

By repeating this process for ideals of the form 〈Xδ
0 , (IX)rX 〉P with δ ≤ rX − d− 2,

we can reach the case 〈Fj1, . . . , Fjkj 〉K * 〈X0, (IX)rX 〉P eventually. Thus there is an

index kj ∈ {1, . . . ,κj} such that Fjkj(IY)αY/W * (IW)rW . From this we can find an

element Hj of (IY)αY/W+(rX−d)−1 such that (Hj)pj ∈ OX,pj \ mX,pj in exactly the same

way as above. Altogether, for every point pj of Supp(X), we can find an element

Hj ∈ (IY)αY/W+(rX−d)−1 such that (Hj)pj ∈ OX,pj \mX,pj .

Remark 4.3.7. When the field K is infinite, the scheme X has CBP(d) if and only if

there is an element H ∈ (IY)αY/W+(rX−d)−1 such that its image in R is a non-zerodivisor.

This follows from Theorem 4.3.6 and Lemma 2.3.11.

Example 4.3.8. Going back to Example 3.3.6, we have seen that the scheme X is a

complete intersection of degree 9 with Supp(X) = X(K) = {p1, . . . , p7}, but it is not

reduced at p5 and p7. A homogeneous primary decomposition of IX is IX = I1∩· · ·∩I7,
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where Ii = Pi for i 6= 5, 7, I5 = 〈X1 − 2X0, X
2
2 〉, and I7 = 〈X1 + 2X0, X

2
2 〉.

(a) Let X1 denote the 0-dimensional subscheme of X of degree 5 defined by the ideal

IX1 = I1 ∩ I3 ∩ I4 ∩ I5 ⊆ P . Then X1 is not reduced, but it is locally Gorenstein.

Let Y1 be the residual scheme of X1 in X. It is not hard to see that X1 and Y1 are

geometrically linked. We calculate rX = 4 and rX1 = αX1/X = rY1 = αY1/X = 2.

In this case there is a homogeneous polynomial H ∈ (IY1)2 such that its image

in the homogeneous coordinate ring RX1 of X1 is a non-zerodivisor, for instance,

H = X2
0 +X0X1 + 1

4
X2

1 − 1
2
X0X2− 1

4
X1X2. Therefore Theorem 4.3.6 implies that

the scheme X1 is a CB-scheme.

(b) Let X2 be the projective point set in X with its vanishing ideal IX2 = P1 ∩P3 ∩
P4 ∩P5, and let Y2 be the residual scheme of X2 in X. Then the homogeneous

saturated ideal of Y2 is IY2 = P2 ∩P5 ∩P6 ∩ I7. It is clear that rX2 = αX2/X =

rY2 = αY2/X = 2 and (IY2)2 = 〈X2
0 − 1

4
X2

1 − 1
2
X0X2 − 1

4
X1X2〉K . In this case X2

and Y2 are not geometrically linked, since Supp(X2) ∩ Supp(Y) = {p5}. Also, it

is not difficult to verify that X2 is a CB-scheme. However, there is no element

H in (IY2)2 such that Hp5 6= 0 in OX2,p5 . Moreover, we see that the element

F5 = X2
1 − 2X1X2 is a minimal separator of X2 \ {p5} in X2 and (F5H5)p5 is a

socle element of OX,p5 , where H5 = X2
0 − 1

4
X2

1 − 1
2
X0X2 − 1

4
X1X2 ∈ (IY2)2.

According to Proposition 2.2.9 in [GW] or Remark 4.7 in [GKR], we get the follow-

ing sequence of isomorphism of graded R-modules

HomK[x0](R,K[x0])(−rX) ∼= HomS(R,HomK[x0](S,K[x0]))(−rX)

∼= HomS(S/IX/W, S(rW))(−rX)

∼= HomS(S/IX/W, S)(rW − rX) ∼= AnnS(IX/W)(αY/W)

∼= IY/W(αY/W).

Since W is arithmetically Gorenstein and X and Y are geometrically linked, this implies

that X is locally Gorenstein. So, the Dedekind complementary module CR/K[x0] of the

algebra R/K[x0] is well-defined and we have the isomorphism of graded R-modules

CR/K[x0](−rX) ∼= IY/W(αY/W). Based on this isomorphism and Theorem 4.3.6, we get

the following consequence.

Corollary 4.3.9. In the setting of Theorem 4.3.6, the following conditions are equivalent.

(i) The scheme X has CBP(d).

(ii) For every pj ∈ Supp(X), there exists an element g∗j ∈ (CR/K[x0])−d−1 such that

g∗j = x−rX−d−1
0 g̃∗j with g̃∗j ∈ RrX and (g̃∗j )pj ∈ OX,pj \mX,pj .
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Moreover, if K is infinite, then the above conditions are equivalent to:

(iii) There exists an element g of (CR/K[x0])−d−1 such that AnnR(g) = 〈0〉.

Theorem 4.3.10. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X be a subscheme of W such that X and its residual scheme in W are geometrically

linked, and let 0 ≤ d ≤ rX − 1. The following conditions are equivalent.

(i) The scheme X has CBP(d).

(ii) The multiplication map RrX⊗(CR/K[x0])−d−1 → (CR/K[x0])rX−d−1 is nondegenerate.

(iii) For all i, j ≥ 0, the multiplication map

Ri ⊗ (CR/K[x0])−d−1+j → (CR/K[x0])−d−1+i+j

is nondegenerate.

(iv) The multiplication map Rd ⊗ (CR/K[x0])−d−1 → (CR/K[x0])−1 is nondegenerate.

Proof. (i)⇒(ii): If g ∈ (CR/K[x0])−d−1 and g · Ri = 〈0〉 for some i ≥ 0 then xi0g = 0,

and hence g = 0. Now we let f ∈ RrX \ {0}. Then there is a point pj of Supp(X)

such that fpj 6= 0 in OX,pj . We want to prove f · (CR/K[x0])−d−1 6= 〈0〉. Since X has

CBP(d), Corollary 4.3.9 yields that there is an element g∗j ∈ (CR/K[x0])−d−1 such that

g∗j = x−rX−d−1
0 g̃∗j with g̃∗j ∈ RrX and (g̃∗j )pj ∈ OX,pj \mX,pj . Then we have fpj · (g̃∗j )pj 6= 0

in OX,pj . This implies that fg̃∗j 6= 0, and so f · g∗j 6= 0. Therefore the multiplication

map RrX ⊗ (CR/K[x0])−d−1 → (CR/K[x0])rX−d−1 is nondegenerate.

(ii)⇒(iii): Since g · Ri 6= 〈0〉 for every g ∈ (CR/K[x0])−d−1+j \ {0}, it is enough to

show that if f ∈ Ri satisfies f · (CR/K[x0])−d−1+j = 〈0〉 then f = 0. Suppose that

f · (CR/K[x0])−d−1+j = 〈0〉 for f ∈ Ri. This implies fxj0 · (CR/K[x0])−d−1 = 〈0〉, and so

f · (CR/K[x0])−d−1 = 〈0〉. If i ≤ rX, then fxrX−i0 ∈ RrX and fxrX−i0 · (CR/K[x0])−d−1 = 〈0〉,
and hence f = 0. If i > rX, then we may write f = xi−rX0 f̃ with f̃ ∈ RrX . It follows

from f̃ · (CR/K[x0])−d−1 = 〈0〉 that f̃ = 0, and therefore f = xi−rX0 f̃ = 0.

(iii)⇒(iv): This is clearly true.

(iv)⇒(i): Suppose that X does not have CBP(d), i.e., that there exists a maximal

pj-subscheme X′ ⊆ X and a set of separators {fj1, . . . , fjκj} ⊆ RrX of X′ in X such

that xrX−d0 | fjkj for all kj = 1, . . . ,κj. We write fjkj = xrX−d0 hjkj with hjkj ∈ Rd

for kj = 1, . . . ,κj. For g ∈ (CR/K[x0])−d−1, let ϕ ∈ HomK[x0](R,K[x0])−d−1 be a

homogeneous element such that g = Φ(ϕ), where Φ is the homomorphism of graded

R-modules given in Definition 3.2.4. Then ϕ(Ri) = 〈0〉 for i ≤ d, in particular, we

have ϕ(fjkj) = xrX−d0 ϕ(hjkj) = 0 for all kj = 1, . . . ,κj. Now we show that fj1 · ϕ = 0.
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Let i ≥ 0 and let f ∈ Ri. By Lemma 2.3.25, we may write ffj1 =
∑κj

kj=1 x
i
0cjkjfjkj

for some cjkj ∈ K. Then we have (fj1 · ϕ)(f) = ϕ(ffj1) = ϕ(
∑κj

kj=1 x
i
0cjkjfjkj) =∑κj

kj=1 x
i
0cjkjϕ(fjkj) = 0, and so fj1 · ϕ = 0. Thus 0 = Φ(fj1 · ϕ) = fj1Φ(ϕ) = fj1g.

This implies that hj1 · g = 0 for an arbitrary element g ∈ (CR/K[x0])−d−1, and therefore

we obtain hj1 · (CR/K[x0])−d−1 = 〈0〉, a contradiction.

Corollary 4.3.11. In the setting of Theorem 4.3.10, assume that K is infinite and X
has CBP(d).

(i) For all i ∈ Z we have HFX(i) + HFX(d− i) ≤ deg(X).

(ii) For i = 0, . . . , rX we have h0 + · · ·+hi ≤ hd−i+1 + · · ·+hrX, where hi = ∆ HFX(i).

Proof. Since K is infinite and X has CBP(d), there is an element g ∈ (CR/K[x0])−d−1

such that AnnR(g) = 〈0〉 by Corollary 4.3.9. Thus the map µg : R→ CR/K[x0](−d− 1)

given by f 7→ fg is injective, and hence we have

HFX(i) ≤ HFCR/K[x0](−d−1)(i) = HFCR/K[x0]
(i− d− 1) = deg(X)− HFX(d− i)

for all i ∈ Z. This completes the proof of claim (i). Claim (ii) follows from the claim (i)

and the fact that HFX(i) = h0 + · · ·+ hi and deg(X) = h0 + · · ·+ hrX .

Corollary 4.3.9 can be used to describe the Hilbert function and the regularity

index of the Dedekind different as follows. We use the notation αϑD = min{i ∈ N |
ϑD(R/K[x0])i 6= 〈0〉}.

Proposition 4.3.12. Let K be an infinite field, let W ⊆ PnK be a 0-dimensional

arithmetically Gorenstein scheme, and let X be a subscheme of W such that X and

its residual scheme in W are geometrically linked. Suppose that X has CBP(d) with

0 ≤ d ≤ rX − 1.

(i) We have d+ 1 ≤ αϑD ≤ 2rX and HFϑD(R/K[x0])(i) ≤ HFX(i− d− 1) for all i ∈ Z.

(ii) Let i0 be the smallest number such that HFϑD(R/K[x0])(i0) = HFX(i0 − d− 1) > 0.

Then we have HFϑD(R/K[x0])(i) = HFX(i− d− 1) for all i ≥ i0 and

ri(ϑD(R/K[x0])) = max
{
i0, rX + d+ 1

}
.

(iii) If X is a projective point set and d ≤ rX − 2, then i0 = 2rX, in particular,

HFϑD(R/K[x0])(i) < HFX(i− d− 1) for i ∈ {αϑD , . . . , 2rX − 1}.
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Proof. By Corollary 4.3.9, there is a non-zerodivisor g̃ ∈ RrX such that g = x−rX−d−1
0 g̃

in (CR/K[x0])−d−1. We observe that g̃ · ϑD(R/K[x0])i ⊆ xrX+d+1
0 Ri−d−1. This implies

ϑD(R/K[x0])i = 〈0〉 for i ≤ d, and so d+ 1 ≤ αϑD . We calculate

HFϑD(R/K[x0])(i) = dimK ϑD(R/K[x0])i = dimK(g̃ · ϑD(R/K[x0])i)

≤ dimK(xrX+d+1
0 Ri−d−1) = HFX(i− d− 1).

Thus claim (i) is completely proved.

Now we prove claim (ii). Clearly, we have d + 1 ≤ i0 ≤ 2rX. We only need to

show that HFϑD(R/K[x0])(i0 + 1) = HFX(i0 − d) > 0. Let f ∈ Ri0−d \ {0}. There are

g0, . . . , gn ∈ Ri0−d−1 such that f = x0g0 + x1g1 + · · · + xngn. By assumption, we have

g̃ ·ϑD(R/K[x0])i0 = xrX+d+1
0 Ri0−d−1. This enables us to write xrX+d+1

0 gj = g̃hj for some

hj ∈ ϑD(R/K[x0])i0 , where j ∈ {0, . . . , n}. Thus we have

xrX+d+1
0 f = xrX+d+1

0 (x0g0 + x1g1 + · · ·+ xngn) = x0g̃h0 + x1g̃h1 + · · ·+ xng̃hn

= g̃(x0h0 + x1h1 + · · ·+ xnhn)

and so xrX+d+1
0 f ∈ g̃ ·ϑD(R/K[x0])i0+1. Hence we get xrX+d+1

0 Ri0−d= g̃ ·ϑD(R/K[x0])i0+1.

In other words, we have HFϑD(R/K[x0])(i0 + 1) = HFX(i0 − d).

Let k = max
{
i0, rX + d+ 1

}
. In order to prove the equality ri(ϑD(R/K[x0])) = k,

we consider the following two cases.

Case (1) Let i0 ≥ rX + d+ 1. Then we have k = i0. Observe that

deg(X) ≥ HFϑD(R/K[x0])(k) = HFX(k − d− 1) ≥ HFX(rX) = deg(X).

It follows that HFϑD(R/K[x0])(k) = deg(X), and hence k ≥ ri(ϑD(R/K[x0])). Moreover,

for i < k = i0, we have HFϑD(R/K[x0])(i) < HFX(i− d− 1) ≤ HFX(k− d− 1) = deg(X).

Thus we get ri(ϑD(R/K[x0])) = k.

Case (2) Let i0 < rX + d+ 1. Then we have k = rX + d+ 1 and HFϑD(R/K[x0])(k) =

HFX(k − d − 1) = HFX(rX) = deg(X). This implies k ≥ ri(ϑD(R/K[x0])). For i < k,

we have HFϑD(R/K[x0])(i) ≤ HFX(i− d− 1) ≤ HFX(rX − 1) < deg(X). Hence we obtain

ri(ϑD(R/K[x0])) = k again.

Finally, claim (iii) follows from (ii) and the fact that ri(ϑD(R/K[x0])) = 2rX.

Lemma 4.3.13. Let A/K be a finite Gorenstein algebra.

(i) There is a non-degenerate K-bilinear form Φ : A×A→ K with the property that

Φ(xy, z) = Φ(x, yz) for all x, y, z ∈ A.
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(ii) Let I be a non-zero ideal of A, and let I0 = {x ∈ A | Φ(I, x) = 0 }. Then we

have AnnA(I) = I0 and dimK I + dimK AnnA(I) = dimK A.

Proof. Claim (i) follows from [Lam, Theorem 3.15], and claim (ii) follows from [Lam,

Lemma 16.38 and Theorem 16.40].

Lemma 4.3.14. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X (resp. X′) be a subscheme of W, and let Y (resp. Y′) be the residual scheme of X
(resp. X′) in W. Let pj ∈ Supp(X). Then X′ is a (maximal) pj-subscheme of X if and

only if Y′ contains Y as a (maximal) pj-subscheme.

Proof. As sets, Supp(W) = Supp(X)∪ Supp(Y) by [Mig, Proposition 5.2.2]. Hence we

may write Supp(W) = {p1, . . . , ps, ps+1, . . . , pt, pt+1, . . . , pu}, Supp(X) = {p1, . . . , pt},
and Supp(Y) = {ps+1, . . . , pu}. Then there are ideals qs+1, . . . , qt ⊆ OW,pj such that

OX,pj =


OW,pj for j = 1, . . . , s,

OW,pj/qj for j = s+ 1, . . . , t,

〈0〉 for j = t+ 1, . . . , u.

We consider the map θ : S →
∏u

j=1OW,pj . Notice that θ|Si is an injection for 0 ≤ i < rW

and θ|Si is an isomorphism for all i ≥ rW. We see that

θ(IX/W) = θ((IX/W)rW) = {0} × · · · × {0} × qs+1 × · · · × qt ×OW,pt+1 × · · · × OW,pu

and dimK θ(IX/W) = deg(W)− deg(X). In
∏u

j=1OW,pj , we set

Λ := OW,p1 × · · · × OW,ps × AnnOW,ps+1
(qs+1)× · · · × AnnOW,pt

(qt)× {0} × · · · × {0}.

By Lemma 4.3.13, we have deg(W) = dimK Λ + dimK θ(IX/W). This implies that

dimK Λ = deg(W) − deg(Y). We want to show that θ(IY/W) = Λ. Let i ≥ αY/W and

let f be a non-zero homogeneous element in (IY/W)i. If θ(f) = (fp1 , . . . , fpu) /∈ Λ, then

we consider the following two cases:

Case (a1) There is an index j ∈ {s+ 1, . . . , t} such that fpj /∈ AnnOW,pj
(qj).

In this case we find a non-zero element a ∈ qj such that a · fpj 6= 0. Let g =

θ−1((0, . . . , 0, a, 0, . . . , 0)) ∈ (IX/W)rW \ {0}. Then f · g 6= 0 in S, since (f · g)pj 6= 0.

This is a contradiction to the fact that IX/W · IY/W = 〈0〉.

Case (a2) Suppose that fpj ∈ AnnOW,pj
(qj) for all j = 1, . . . , t, and that there is an

index k ∈ {t + 1, . . . , u} such that fpk 6= 0. In this case we argue as in case (a1) to

obtain g ∈ (IX/W)rW \ {0} such that f · g 6= 0. This is impossible.
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Thus we have shown that θ(f) ∈ Λ for every f ∈ (IY/W)i \ {0}, where i ≥ αY/W. In

other words, we get θ(IY/W) ⊆ Λ. For the other inclusion, let i ≥ 0, let f ∈ Si \ {0}
such that θ(f) ∈ Λ, and let g ∈ (IX/W)k \{0} with k ≥ αX/W. Then we have f ·g ∈ Si+k
and θ(f · g) = 0. This implies that f · g = 0, and hence f ∈ AnnS(IX/W) = IY/W.

Altogether, we have θ(IY/W) = Λ, as wanted.

Now we assume that X′ is a pj-subscheme of X. Then we have OX′,pk = OX,pk for

all k ∈ {1, . . . , u} \ {j} and OX′,pj = OW,pj/q
′
j. We distinguish the following two cases.

Case (b1) Suppose that 1 ≤ j ≤ s.

We see that q′j 6= 〈0〉 and

θ(IX′/W) = {0} × · · · × q′j × · · · × {0} × qs+1 × · · · × qt ×OW,pt+1 × · · · × OW,pu

θ(IY′/W) = OW,p1 × · · · × AnnOW,pj
(q′j)× · · · × OW,ps × AnnOW,ps+1

(qs+1)× · · ·

× AnnOW,pt
(qt)× {0} × · · · × {0}.

This implies OY′,pk = OY,pk for k 6= j and OY′,pj = OW,pj/AnnOW,pj
(q′j) 6= 〈0〉 = OY,pj .

Hence Y is a pj-subscheme of Y′.

Case (b2) Suppose that s+ 1 ≤ j ≤ t.

We have q′j ) qj and

θ(IX′/W) = {0} × · · · × {0} × qs+1 × · · · × q′j × · · · × qt ×OW,pt+1 × · · · × OW,pu

θ(IY′/W) = OW,p1 × · · · × OW,ps × AnnOW,ps+1
(qs+1)× · · · × AnnOW,pj

(q′j)× · · ·

× AnnOW,pt
(qt)× {0} × · · · × {0}.

This implies that OY′,pk = OY,pk for k 6= j and OY′,pj = OW,pj/AnnOW,pj
(q′j) 6=

OW,pj/AnnOW,pj
(qj) = OY,pj . Hence Y is a pj-subscheme of Y′.

Conversely, if Y is a pj-subscheme of Y′, where pj ∈ Supp(X), we can argue

analogously as above to get that X′ is a pj-subscheme of X.

The next theorem provides a characterization of the Cayley-Bacharach property of

degree d which is a generalization of [KR1, Theorem 4.1].

Theorem 4.3.15. Let W⊆PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X ⊆ W be a subscheme, let Y ⊆ W be the residual scheme of X in W, and let

0 ≤ d ≤ rX − 1. Then the following statements are equivalent.

(i) The scheme X has CBP(d).

(ii) Every subscheme Y′ ⊆ W containing Y as a maximal pj-subscheme, where pj is

a point in Supp(X), satisfies HFIY/Y′ (αY/W + (rX − d)− 1) > 0.
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Proof. Let pj ∈ Supp(X), let X′ be a maximal pj-subscheme of X, let RX′ be the

homogeneous coordinate ring of X′, and let Y′ be the residual scheme of X′ in W.

By Proposition 4.3.2, we have deg(Y′) = deg(Y) + κj, Y ⊆ Y′, and rX′ + αY′/W =

rW = rX + αY/W. Moreover, we see that HomK[x0](R,K[x0])(−rX) ∼= IY/W(αY/W) and

HomK[x0](RX′ , K[x0])(−rX′) ∼= IY′/W(αY′/W). This implies HFIY/W(αY/W+(rX−i)−1) =

deg(X)−HFX(i) and HFIY′/W(αY/W + (rX − i)− 1) = HFIY′/W(αY′/W + (rX′ − i)− 1) =

(deg(X)− κj)− HFX′(i). Thus we get

HFIY/W(αY/W + (rX − i)− 1)− HFIY′/W(αY/W + (rX − i)− 1) = κj − HFIX′/X(i).

According to Proposition 4.1.22, X has CBP(d) if and only if HFIX′/X(d) < κj for every

maximal pj-subscheme X′ of X. This is equivalent to HFIY/Y′ (αY/W + (rX − d) − 1) =

HFIY/W(αY/W + (rX − d) − 1) − HFIY′/W(αY/W + (rX − d) − 1) > 0 for every residual

scheme Y′ ⊆ W of a maximal pj-subscheme X′ ⊆ X. By Lemma 4.3.14, there is a 1-1

correspondence between a maximal pj-subscheme X′ ⊆ X and a subscheme Y′ ⊆ W
containing Y as a maximal pj-subscheme. In particular, Y′ is exactly the residual

scheme of X′ in W. Therefore the proof of the proposition is complete.

Corollary 4.3.16. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X ⊆ W be a subscheme, let Y ⊆ W be the residual scheme of X in W, and let

0 ≤ d ≤ rW − αY/W − 1. If IY/W is generated by its elements of degree less than or

equal to rW − d− 1 then X has CBP(d).

Proof. This follows by Theorem 4.3.15 using a similar argument as in the proof of [Kr3,

Corollary 16.5].

Corollary 4.3.17. Let W ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

let X ⊆ W be a subscheme, let Y ⊆ W be the residual scheme of X in W, and let

0 ≤ d ≤ rX − 1. Then the following conditions are equivalent.

(i) X has CBP(d).

(ii) IW : (IY)αY/W+(rX−d)−1 = IX

(iii) AnnS((IY/W)αY/W+(rX−d)−1) = IX/W

(iv) (IW)rW−1 : (IY)αY/W+(rX−d)−1 = (IX)d

(v) (AnnS((IY/W)αY/W+(rX−d)−1))d = (IX/W)d
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Proof. Observe that “(ii)⇔(iii)” and “(iv)⇔(v)” are obviously true. Moreover, the

implication “(ii)⇒(iv)” is clear. It remains to prove “(i)⇒(ii)” and “(iv)⇒(i)”. First we

show “(i)⇒(ii)”. We have IX ⊆ IW : (IY)αY/W+(rX−d)−1. To prove the reverse inclusion,

we let F ∈ IW : (IY)αY/W+(rX−d)−1. Suppose for a contradiction that F /∈ IX. There is

a point pj ∈ Supp(X) such that Fpj 6= 0. Then we can find an element aj ∈ OX,pj such

that aj · Fpj is a socle element in G(OX,pj). By Proposition 2.3.17, there is a maximal

pj-subscheme X′ of X corresponding to (0, . . . , 0, aj ·Fpj , 0, . . . , 0) ∈
∏

pk∈Supp(X)

OX,pk . Let

Y′ be the residual scheme of X′ in W. Since X has CBP(d), Theorem 4.3.15 tells us that

HFIY/Y′ (αY/W + (rX− d)− 1) > 0. Let G ∈ (IY)αY/W+(rX−d)−1. It is clear that FG ∈ IW
and G ·IX ⊆ IW. Moreover, since IW is saturated, we get G · 〈F, IX〉sat ⊆ IW. It follows

from the inclusion IX′ ⊆ 〈F, IX〉sat that G · IX′ ⊆ IW or G ∈ (IY′)αY/W+(rX−d)−1. Thus

we obtain HFIY/Y′ (αY/W + (rX − d)− 1) = 0, a contradiction.

Now we prove “(iv)⇒(i)”. For a contradiction, assume that the scheme X does not

have CBP(d). Then there is a maximal pj-subscheme X′ ⊆ X such that deg(F ∗jkj) ≤ d

for all kj = 1, . . . ,κj, where {F ∗j1, . . . , F ∗jκj} is a set of minimal separators of X′ in X. Let

Gjkj = X
d−deg(F ∗jkj

)

0 F ∗jkj for kj = 1, . . . ,κj. Since Gjkj /∈ (IX)d, the hypothesis implies

Gjkj /∈ (IW)rW−1 : (IY)αY/W+(rX−d)−1 for kj = 1, . . . ,κj. Let H ∈ (IY)αY/W+(rX−d)−1 \ {0}
be such that Gj1H /∈ (IW)rW−1. As sets, we have Supp(W) = Supp(X)∪ Supp(Y). For

p ∈ Supp(W) \ {pj}, we see that (Gj1H)p = 0 in OW,p and (Gj1H)pj 6= 0 in OW,pj . By

writing OX,pj = OW,pj/qj for some ideal qj of OW,pj , we get qj · Hpj = 0 in OW,p and

a · (Gj1)pj ∈ qj for every a ∈ mW,pj . This implies mW,pj · (Gj1H)pj = 〈0〉 in OW,p. Thus

the element (Gj1H)pj is a socle element in G(OW,pj).

Notice that if G ∈ IX′ \ IX then Proposition 2.3.17 implies Gpj = x · (Gj1)pj + y

for some x /∈ mW,pj and some y ∈ qj. Hence we have (GH)pj = (x · (Gj1)pj + y)Hpj =

x · (Gj1H)pj 6= 0. Now we prove that the set {(Gj1H)pj , . . . , (GjκjH)pj} ⊆ OW,pj is

K-linearly independent. Suppose that there are elements aj1, . . . , ajκj ∈ K such that

aj1(Gj1H)pj+· · ·+ajκj(GjκjH)pj = 0. Then we have (aj1Gj1+· · ·+ajκjGjκj)pj ·Hpj = 0.

This shows that aj1Gj1 + · · ·+ ajκjGjκj ∈ IX. Furthermore, we have

dimK(IX′/X)d = dimK(〈Gjkj + IX | kj = 1, . . . ,κj 〉R)d = κj.

From this we get aj1 = · · · = ajκj = 0. Hence the set {(Gj1H)pj , . . . , (GjκjH)pj} is

K-linearly independent, as was to be shown.

Let J := 〈GjkH + IW | k = 1, . . . ,κj 〉S. It is clearly true that dimK JrW−1+i ≥ κj
for all i ≥ 0. Moreover, we can write XiGjl + IX =

∑κj
kj=1 c

l
jkj
X0Gjkj + IX for some

clj1, . . . , c
l
jκj ∈ K, where 0 ≤ i ≤ n and 1 ≤ l ≤ κj. This implies XiGjlH + IW =
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∑κj
kj=1c

l
jkj
X0GjkjH+IW. Hence we obtain dimK JrW−1+i ≤ κj for all i ≥ 0. Altogether,

we get dimK JrW−1+i = κj for all i ≥ 0. Consequently, the ideal J defines a maximal

pj-subscheme W′ ⊆ W of degree deg(W′) = deg(W) − κj. In particular, we have

dimK(IW′/W)rW−1 = κj. Therefore Proposition 4.1.22 yields that the scheme W is not

a CB-scheme, a contradiction.

4.4 Differents and Higher Uniformity of 0-Dimen-

sional Schemes

In this section we let X ⊆ PnK be a 0-dimensional scheme which has K-rational support,

i.e., X(K) = Supp(X) = {p1, . . . , ps}. In this situation the Cayley-Bacharach property

is merely the weakest of a whole series of uniformity conditions which a 0-dimensional

scheme X ⊆ PnK can satisfy. The following uniformity concepts were introduced in [Kr4,

Section 5] and [GK].

Definition 4.4.1. Let 1 ≤ i ≤ deg(X) − 1 and 1 ≤ j < rX. We say that X is

(i, j)-uniform if every subscheme Y ⊆ X of degree deg(Y) = deg(X) − i satisfies

HFY(j) = HFX(j).

Remark 4.4.2. (a) The scheme X has CBP(d) if and only if it is (1, d)-uniform.

(b) If X is (i, j)-uniform, then it is (i− 1, j)-uniform and (i, j − 1)-uniform.

(c) If X is (i, rX − 1)-uniform, then every subscheme Y ⊆ X of degree deg(X) − i ≤
deg(Y) ≤ deg(X) has Hilbert function HFY(j) = min{ deg(Y),HFX(j) } for all

j ∈ Z. The converse is true for i ∈ {1, . . . ,∆X}, where ∆X = deg(X)−HFX(rX−1)

is the last non-zero difference of HFX.

(d) The scheme X is in uniform position if and only if it is (i, j)-uniform for all

1 ≤ j ≤ rX − 1 and all 1 ≤ i ≤ deg(X)− HFX(j).

(e) If X is (i, j)-uniform, then i ≤ deg(X)− HFX(j).

(f) If X is arithmetically Gorenstein, then it cannot be (2, rX − 1)-uniform. This

follows from ∆X = 1 and by [Kr2, Proposition 2.8] and (e).

Corollary 4.4.3. Let X ⊆ PnK be a 0-dimensional scheme. If X is a CB-scheme with

∆X = 1, then it is (2, rX − 2)-uniform.

Proof. Let Y ⊆ X be a subscheme of degree deg(Y) = deg(X)−2. By [Kr2, Lemma 2.2],

there is a subscheme Y1 of X of degree deg(X) − 1 such that Y ⊆ Y1 ⊆ X. It follows
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from [Kr2, Proposition 2.8] that the scheme Y1 is a CB-scheme. Since ∆X = 1, we

have HFY1(rX − 1) = HFX(rX − 1) = deg(Y1) and rY1 = rX − 1. Thus HFY(rX − 2) =

HFY(rY1 − 1) = HFY1(rY1 − 1) = HFX(rX − 2), and hence X is (2, rX − 2)-uniform.

A characterization of the uniformity of X in terms of the Dedekind complementary

module is given by the next proposition which follows from [Kr2, Theorem 3.2].

Proposition 4.4.4. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme, and

let j ∈ {1, . . . , rX − 1}. The following conditions are equivalent.

(i) The scheme X is (deg(X)− HFX(j), j)-uniform.

(ii) The multiplication map µ : Rj ⊗ (CR/K[x0])−j−1 → (CR/K[x0])−1 is biinjective, i.e.,

if µ(f ⊗ g) = 0 implies f = 0 or g = 0 for all f ∈ Rj and g ∈ (CR/K[x0])−j−1.

We have the following observation.

Lemma 4.4.5. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme, let

j ∈ {1, . . . , rX − 2}, and let ∆ HFX(j + 1) = k ∈ {1, . . . , deg(X) − HFX(j) − 1}. If

the multiplication map Rj ⊗ (CR/K[x0])−j−2 → (CR/K[x0])−2 is biinjective, then X is

(s− HFX(j)− k, j)-uniform.

Proof. Assume that Y ⊆ X of degree deg(Y) = HFX(j) + k satisfies HFY(j) < HFX(j).

Then rY ≥ j + 1 and there is an element f ∈ (IY/X)j \ {0}. If rY = j + 1, then

HFY(j + 1) = deg(Y) = HFX(j) + k = HFX(j + 1) by assumption. This implies

(IY/X)j+1 = 〈0〉, contradicting 0 6= x0f ∈ (IY/X)j+1. Hence we must have rY ≥ j + 2.

In this case Proposition 2.4.6 yields that there is g ∈ (CR/K[x0])−j−2 \ {0} such that

fg = 0, a contradiction.

Proposition 4.4.6. If K is algebraically closed and X is a 0-dimensional locally

Gorenstein scheme such that ∆ HFX(j + 1) = 1 for some j ∈ {1, . . . , rX − 2}, the

following statements are equivalent.

(i) The scheme X is (i, j)-uniform for some 1 ≤ i ≤ deg(X)− HFX(j).

(ii) The Hilbert function of X satisfies HFX(1) = 2, i.e., the support of X lies on

a line.

Proof. It is clear that (ii) implies (i). Now we assume that X is (deg(X)−HFX(j)−k, j)-
uniform for some k ∈ {0, . . . , deg(X)− HFX(j)− 1}. By Remark 4.4.2(b), we may as-

sume that k 6= 0. Then the multiplication map Rj⊗ (CR/K[x0])−j−k−1 → (CR/K[x0])−k−1

is biinjective by a similar argument as in the proof of [Kr2, Theorem 3.2]. Since



4.4. Differents and Higher Uniformity of 0-Dimensional Schemes 145

K is an algebraically closed field, the Biinjective Map Lemma (cf. [Kr2, Section 3])

yields HFCR/K[x0]
(−k − 1) ≥ HFX(j) + HFCR/K[x0]

(−j − k − 1) − 1. This implies

deg(X)−HFX(k) ≥ HFX(j)+(deg(X)−HFX(j+k))−1. Since ∆ HFX(j+1) = 1, we have

HFX(j+k) = HFX(j)+k (cf. [KR3, Corollary 5.5.28]). Hence we get deg(X)−HFX(k) ≥
HFX(j) + (deg(X)−HFX(j)−k)−1 = deg(X)− (k+ 1), or HFX(k) ≤ k+ 1. Moreover,

the Hilbert function of X satisfies 0 < HFX(1) < · · · < HFX(k) ≤ k + 1. Therefore it

must be the case that HFX(1) = 2.

In view of Lemma 2.3.12, the saturation of a non-zero homogeneous ideal J ⊆ R is

given by

J sat = { f ∈ R | xn0f ⊆ J for some n ≥ 0 }.

In particular, the ideal J is saturated if and only if x0f ∈ J implies f ∈ J . Using this

description, we prove the following proposition.

Proposition 4.4.7. Let X ⊆ PnK be a 0-dimensional locally Gorenstein scheme with

support Supp(X) = {p1, . . . , ps}, and let 1 ≤ m ≤ ∆X. If X is (m, rX − 1)-uniform,

then any subscheme Y ⊆ X of degree deg(Y) = deg(X)−m satisfies

xrX−1
0 (IY/X)rX ∩ ϑD(R/K[x0])2rX−1 = 〈0〉.

Proof. Suppose for contradiction that there is a non-zero element h ∈ xrX−1
0 (IY/X)rX ∩

ϑD(R/K[x0])2rX−1, where Y ⊆ X is a subscheme of degree deg(Y) = deg(X)−m. Since

X is (m, rX−1)-uniform, we have HFY(i) = HFX(i) for i < rX and HFY(i) = deg(X)−m
for i ≥ rX. Let f1, . . . , fm be a K-basis of the K-vector space (IY/X)rX . Then we

have IY/X = 〈f1, . . . , fm〉 and (IY/X)rX+i = 〈xi0f1, . . . , x
i
0fm 〉K for all i ≥ 0. So, we

may write h = xrX−1
0 (a1f1 + · · · + amfm) for some a1, . . . , am ∈ K. On the other

hand, the scheme X is also a CB-scheme. As in the proof of Theorem 4.1.7 we find

elements g∗1, . . . , g
∗
s ∈ (CR/K[x0])−rX such that g∗j = x−2rX

0 g̃∗j with g̃∗j ∈ RrX \ {0} and

(g̃∗j )pj ∈ OX,pj \mX,pj for j = 1, . . . , s. Given j ∈ {1, . . . , s}, we have

h · g∗j = xrX−1
0 (a1f1 + · · ·+ amfm) · x−2rX

0 g̃∗j = x−rX−1
0 (a1f1 + · · ·+ amfm)g̃∗j

= x−1
0 (bj1f1 + · · ·+ bjmfm) ∈ RrX−1

for some bj1, . . . , bjm ∈ K. This yields that bj1f1 + · · ·+bjmfm ∈ x0RrX−1. Since IY/X is

a saturated ideal of R and (IY/X)rX−1 = 〈0〉, the condition bj1f1 + · · ·+bjmfm ∈ x0RrX−1

implies bj1 = · · · = bjm = 0, especially, h ·g∗j = h · g̃∗j = 0. It follows that hpj · (g̃∗j )pj = 0

in OX,pj . Since the element (g̃∗j )pj is a unit of OX,pj , we get hpj = 0. Thus we have

shown that hpj = 0 in OX,pj for all j = 1, . . . , s. Therefore Lemma 2.3.10 yields that

h = 0, in contradiction to h 6= 0.
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Example 4.4.8. Let K be a field with char(K) = 0 or char(K) ≥ 5. We consider the

projective point set X = {p1, . . . , p10} ⊆ P2
K with p1 = (1 : 1 : 0), p2 = (1 : 3 : 0),

p3 = (1 : 1 : 1), p4 = (1 : 2 : 1), p5 = (1 : 3 : 1), p6 = (1 : 0 : 2), p7 = (1 : 1 : 2),

p8 = (1 : 2 : 2), p9 = (1 : 3 : 2), and p10 = (1 : 3 : 3). Sketched in the affine plane

A2 = D+(X0) = {(c0 : c1 : c2) ∈ P2
Q | c0 6= 0} the set X codes as follows:

(0, 3) • (3, 3)

• • • •
• • •

(0, 0) • • (3, 0)

The Hilbert function of X is HFX : 1 3 6 10 10 · · · , so that rX = 3 and αX = 4 = ∆X.

Furthermore, the Noether-Dedekind different is computed by ϑD(R/K[x0]) =
⊕

i≥6Ri,

and so ϑD(R/K[x0])2rX−1 = 〈0〉. In this case, X is (1, rX − 1)-uniform by Corol-

lary 4.1.9(ii). Let Y = X \ {p4, p6, p8}. Using the figure, we see that the hypersurface

defined by F = (X1−X0)(X1−3X0) contains Y. This implies (IY/X)2 6= 0 (as αX = 4).

Thus we obtain HFY(rX − 1) = HFY(2) < HFX(2) = HFX(rX − 1) = 6. Explicitly,

the Hilbert function of Y is given by HFY : 1 3 5 7 7 · · · , and HFY(rX − 1) = 5 <

6 = HFX(rX − 1). It follows from Definition 4.4.1 that X is neither (3, 2)-uniform nor

(∆X, rX − 1)-uniform. Hence the converse of Proposition 4.4.7 is not true in general.

Corollary 4.4.9. If a 0-dimensional locally Gorenstein scheme X⊆PnK satisfies rX =1,

then either X has ϑD(R/K[x0])1 = 〈0〉 or X is arithmetically Gorenstein.

Proof. Since rX = 1, we have HFX : 1 deg(X) · · · and ∆X = deg(X) − 1. Thus it is

easy to check that X is in uniform position. Now it follows from Proposition 4.4.7 that

ϑD(R/K[x0])1∩(IY/X)1 = 〈0〉 for any subscheme Y ⊆ X of degree deg(Y) = deg(X)−1.

Hence we get ϑD(R/K[x0])0 = 〈0〉. If ϑD(R/K[x0])1 6= 〈0〉, then the scheme X is

arithmetically Gorenstein by Proposition 4.1.15.

Under the assumption that X is a CB-scheme, Proposition 4.4.7 can be generalized

as follows.

Proposition 4.4.10. Let X ⊆ PnK be a 0-dimensional locally Gorenstein CB-scheme,

and let Supp(X) = {p1, . . . , ps}. If X is (i, j)-uniform, then any subscheme Y ⊆ X of

degree deg(Y) = deg(X)− i satisfies

xj0(IY/X)rX ∩ ϑD(R/K[x0])rX+j = 〈0〉.
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Proof. Since X is a CB-scheme, there are elements g∗1, . . . , g
∗
s ∈ (CR/K[x0])−rX such that

g∗k = x−2rX
0 g̃∗k with g̃∗k ∈ RrX \ {0} and (g̃∗k)pk ∈ OX,pk \mX,pk for k = 1, . . . , s (as in the

proof of Theorem 4.1.7). Let Y ⊆ X be a subscheme of degree deg(Y) = deg(X)−i, and

let h ∈ xj0(IY/X)rX ∩ ϑD(R/K[x0])rX+j. We want to show that h = 0. Let {f1, . . . , fi}
be a K-basis of the K-vector space (IY/X)rX . There are a1, . . . , ai ∈ K such that

h = a1x
j
0f1 + · · ·+ aix

j
0fi ∈ ϑD(R/K[x0])rX+j. Let 1 ≤ k ≤ s. We see that

h · g∗k = x−2rX+j
0 (a1f1 + · · ·+ aifi)g̃

∗
k = x−rX+j

0 (bk1f1 + · · ·+ bkifi) ∈ Rj

for some bk1, . . . , bki ∈ K. It follows that bk1f1 + · · · + bkifi ∈ xrX−j0 Rj. So, we may

write bk1f1 + · · ·+ bkifi = xrX−j0 h̃k for some h̃k ∈ Rj. Since X is (i, j)-uniform, we have

HFY(j) = HFX(j), so αY/X ≥ j+ 1. Furthermore, the ideal 〈f1, . . . , fi〉 of R defines the

subscheme Y of X scheme-theoretically. This implies 〈f1, . . . , fi〉⊆〈f1, . . . , fi〉sat =IY/X.

Because IY/X is saturated and xrX−j0 h̃k = bk1f1 + · · ·+ bkifi ∈ 〈f1, . . . , fi〉rX , we deduce

that h̃k ∈ (IY/X)j = 〈0〉. Thus we get h · g∗k = x−rX+j
0 (bk1f1 + · · ·+ bkifi) = h̃k = 0, and

hence h · g̃∗k = 0. In particular, we have hpk · (g̃∗k)pk = 0 in OX,pk . Since the element

(g̃∗k)pk is a unit of OX,pk , we get hpk = 0. Thus hpk = 0 in OX,pk for all k = 1, . . . , s.

Hence Lemma 2.3.10 yields h = 0, and therefore

xj0(IY/X)rX ∩ ϑD(R/K[x0])rX+j = 〈0〉

for any subscheme Y ⊆ X of degree deg(Y) = deg(X)− i.

Corollary 4.4.11. Let X ⊆ PnK be a 0-dimensional arithmetically Gorenstein scheme,

and assume i ≤ deg(X)− HFX(j). The following conditions are equivalent.

(i) The scheme X is (i, j)-uniform.

(ii) Every subscheme Y ⊆ X of degree deg(Y) = deg(X)− i satisfies

xj0(IY/X)rX ∩ ϑD(R/K[x0])rX+j = 〈0〉.

Proof. Since the scheme X is arithmetically Gorenstein, it is also a CB-scheme and

∆X = 1. The implication “(i)⇒(ii)” follows from Proposition 4.4.10. Now we prove

“(ii)⇒(i)”. Suppose that X is not (i, j)-uniform, i.e., there is a subscheme Y ⊆ X of

degree deg(X)− i such that HFY(j) < HFX(j). Let us write (IY/X)rX = 〈 f1, . . . , fi 〉K .

We deduce that (IY/X)j = (〈f1, . . . , fi〉sat)j 6= 〈0〉. Let f ∈ (IY/X)j \ {0}, and write

xrX−j0 f = a1f1 + · · · + aifi for some a1, . . . , ai ∈ K. By Proposition 3.2.8, there is a

non-zerodivisor h ∈ RrX such that ϑD(R/K[x0]) = 〈h 〉R. Then we have

0 6= fh = xj−rX0 (a1f1 + · · ·+ aifi) · h = xj0(b1f1 + · · ·+ bifi) ∈ ϑD(R/K[x0])rX+j
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for some elements b1, . . . , bi ∈ K. Hence we get xj0(IY/X)rX ∩ ϑD(R/K[x0])rX+j 6= 〈0〉,
a contradiction.

Now let X = {p1, . . . , ps} ⊆ PnK be a projective point set of degree s, and let fj ∈ RrX

be the normal separator of X\{pj} in X for j = 1, . . . , s. By Lfj we denote the leading

form (i.e. the residue class) of fj in R := R/〈x0〉 (j = 1, . . . , s). Notice that we can

renumber {p1, . . . , ps} in such a way that {Lf1, . . . , Lf∆X} is a K-basis of RrX . We write

Lf∆X+j = βj1Lf1 + · · ·+ βj∆XLf∆X

for j = 1, . . . , s−∆X, and form the matrix B := (βji)
tr. Recall from Lemma 3.2.10 that

the elements h1, . . . , hs−∆X ∈ RrX−1 which satisfy x0hk = f∆X+k−βk1f1−· · ·−βk∆Xf∆X

form a K-basis of RrX−1, and (CR/K[x0])−rX = 〈 g̃1, . . . , g̃∆X 〉K with g̃j = x−2rX
0 (fj +

β1jf∆X+1 + · · ·+ βs−∆Xjfs) for j = 1, . . . ,∆X.

We observe that xrX−i0 fj /∈ ϑX(R/K[x0])2rX−i for all j ∈ {1, . . . ,∆X} and for all

i ∈ {1, . . . , rX − 1}. Otherwise, there is an index j ∈ {1, . . . ,∆X} such that xrX−i0 fj ∈
ϑX(R/K[x0])2rX−i. Then we obtain xrX−i0 fj g̃j = x−i0 fj ∈ RrX−i, and so fj ∈ xi0RrX−i,

contradicting the hypothesis Lfj 6= 0.

Proposition 4.4.12. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set with ∆X ≥ 2.

Then the following conditions are equivalent.

(i) X is (2, rX − 1)-uniform.

(ii) For any subset of two elements {j1, j2} ⊆ {1, . . . , s} we have

ϑX(R/K[x0])2rX−1 ∩
〈
xrX−1

0 fj1 , x
rX−1
0 fj2

〉
K

= 〈0〉.

Proof. If X is (2, rX − 1)-uniform, then X is also a CB-scheme. Thus the implication

“(i)⇒(ii)” follows from Proposition 4.4.10. Now we prove “(ii)⇒(i)”. We suppose for

a contradiction that X is not (2, rX − 1)-uniform. Then there exist j1, j2 ∈ {1, . . . , s}
such that j1 < j2 and such that the subscheme Y = X \ {pj1 , pj2} of degree s − 2

satisfies HFY(rX − 1) < HFX(rX − 1). Since the ideal 〈fj1 , fj2〉 defines Y in X scheme-

theoretically, we have IY/X = 〈fj1 , fj2〉sat. It follows from (IY/X)rX−1 6= 〈0〉 that there

is a non-zero homogeneous element f ∈ (IY/X)rX−1 such that x0f = a1fj1 + a2fj2 for

some a1, a2 ∈ K. Because X is a CB-scheme, we have a1 6= 0 and a2 6= 0. Letting

α = −a2/a1, we get fj1 − αfj2 = x0f/a1 ∈ x0RrX−1 and Lfj1 = αLfj2 . As above, we

assume that the set {Lf1, . . . , Lf∆X} is a K-basis of RrX . We consider the following

three cases.
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Case (a) Suppose that 1 ≤ j1 < j2 ≤ ∆X. In this case we observe that {Lfj1 , Lfj2}
is linearly independent in RrX . But we also have Lfj1 − αLfj2 = 0. Thus this is

impossible.

Case (b) Suppose that 1 ≤ j1 ≤ ∆X < j2 ≤ s. Let us write j2 = ∆X + i2. In RrX ,

we have Lfj2 = α−1Lfj1 = βi21Lf1 + · · ·+ βi2∆XLf∆X . We deduce that

βi21Lf1 + · · ·+ βi2j1−1Lfj1−1 + (βi2j1 − α−1)Lfj1 + βi2j1+1Lfj1+1 + · · ·+ βi2∆XLf∆X = 0.

This implies βi2j1 = α−1 and βi2k = 0 for every k 6= j1. We write (CR/K[x0])−rX =

〈 g̃1, . . . , g̃∆X 〉K with g̃k = x−2rX
0 (fk + β1kf∆X+1 + · · ·+ βs−∆Xkfs) for all k = 1, . . . ,∆X.

Now we compute

xrX−1
0 (fj1 − α2fj2) · g̃k = x−rX−1

0 (fj1 − α2fj2)(fk + β1kf∆X+1 + · · ·+ βs−∆Xkfs)

=

−x−1
0 βi2kα

2fj2 if k 6= j1

x−1
0 (fj1 − βi2j1α2fj2) if k = j1

=

0 if k 6= j1

x−1
0 (fj1 − αfj2) if k = j1

=

0 if k 6= j1

f/a1 if k = j1.

This implies that xrX−1
0 (fj1 − α2fj2) · g̃k ∈ RrX−1 for all k = 1, . . . ,∆X. Moreover, a

homogeneous element g ∈ (CR/K[x0])i with i > −rX can be written as g = x−rX+i
0 g′

with some g′ ∈ RrX . It follows that xrX−1
0 (fj1 − α2fj2) · g = xi−1

0 (fj1 − α2fj2)g′ =

xrX+i−1
0 (g′(pj1)fj1−α2g′(pj2)fj2)∈R2rX+i−1. Thus we get xrX−1

0 (fj1−α2fj2)·CR/K[x0]⊆R,

and hence xrX−1
0 (fj1 − α2fj2) ∈ ϑX(R/K[x0])2rX−1, in contradiction to our assumption.

Case (c) Suppose that ∆X < j1 < j2 ≤ s. In this case we write j1 = ∆X + i1,

j2 = ∆X + i2,

Lfj1 = Lf∆X+i1 = βi11Lf1 + · · ·+ βi1∆XLf∆X ,

Lfj2 = Lf∆X+i2 = βi21Lf1 + · · ·+ βi2∆XLf∆X .

It follows from the equality Lfj1 = αLfj2 that

(βi11 − αβi21)Lf1 + · · ·+ (βi1∆X − αβi2∆X)Lf∆X = 0.
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Hence we get βi1k = αβi2k for all k = 1, . . . ,∆X. We calculate

(fj1 − α2fj2) · g̃k = x−2rX
0 (f∆X+i1 − α2f∆X+i2)(fk + β1kf∆X+1 + · · ·+ βs−∆Xkfs)

= x−rX0 (βi1kf∆X+i1 − βi2kα2f∆X+i2)

= x−rX0 βi1k(f∆X+i1 − αf∆X+i2)

= x−rX0 βi1kx0f/a1 = x−rX+1
0 βi1kf/a1.

From this we deduce xrX−1
0 (fj1 − α2fj2) · g̃k ∈ RrX−1 for all k = 1, . . . ,∆X. Using the

same reasoning as in the second case, we obtain xrX−1
0 (fj1 − α2fj2) · CR/K[x0] ⊆ R, and

hence xrX−1
0 (fj1−α2fj2) ∈ ϑX(R/K[x0])2rX−1, in contradiction to our assumption again.

Altogether, the claim is completely proved.

Corollary 4.4.13. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set with ∆X ≥ 2.

If HFϑX(R/K[x0])(2rX − 1) = 0, then X is (2, rX − 1)-uniform.

Example 4.4.14. Let us go back to Example 4.4.8. We observed that the projective

point set X = {p1, . . . , p10} ⊆ P2
K has rX = 3 and ∆X = 4, and the Noether-Dedekind

different is given by ϑX(R/K[x0]) = 〈ϑX(R/K[x0])2rX 〉R =
⊕

i≥6Ri. In particular, we

have HFϑX(R/K[x0])(2rX − 1) = 0. Thus Corollary 4.4.13 yields that X is (2, 2)-uniform.

Next we use the above method to characterize the uniformities of a level scheme.

Here we say that a 0-dimensional scheme X ⊆ PnK is level if the Artinian local ring R

satisfies G(R) = RrX . It is well known (cf. [Kr3, Section 11]) that X is a level scheme

if and only if the graded R-module HomK[x0](R,K[x0]) is generated by homogeneous

elements of degree −rX. In particular, if the scheme X is a locally Gorenstein scheme,

then this is also equivalent to the condition that CR/K[x0] =
〈

(CR/K[x0])−rX
〉
R

.

Proposition 4.4.15. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set which is a

level scheme. If ∆X =1, we let j∈{1, . . . , rX−2}. Otherwise, we let j∈{1, . . . , rX−1}.
Then the following conditions are equivalent.

(i) X is (2, j)-uniform.

(ii) For any subset of two elements {j1, j2} ⊆ {1, . . . , s} we have

ϑX(R/K[x0])rX+j ∩
〈
xj0fj1 , x

j
0fj2

〉
K

= 〈0〉.

Proof. First we observe that if ∆X = 1, then X is not (2, rX−1)-uniform, since 2 > ∆X =

s− HFX(rX − 1) and Remark 4.4.2(e) applies. That is why we take j < rX − 1 in this
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case. Now let j satisfy our hypothesis. Since X is a level scheme, [GK, Proposition 6.1]

tells us that X is a CB-scheme. Hence, if X is (2, j)-uniform, we have

ϑX(R/K[x0])rX+j ∩
〈
xj0fj1 , x

j
0fj2

〉
K

= 〈0〉

for any subset of two elements {j1, j2} ⊆ {1, . . . , s} by Proposition 4.4.10.

Conversely, suppose for a contradiction that X is not (2, j)-uniform, i.e., there is

a subscheme Y = X \ {pj1 , pj2} of degree s − 2 such that HFY(j) < HFX(j). Then

IY/X = 〈fj1 , fj2〉sat ⊆ R and (IY/X)j 6= 〈0〉. Let f ∈ (IY/X)j \ {0}. We may write

xrX−j0 f = f(p1)f1+f(p2)f2+· · ·+f(ps)fs = f(pj1)fj1 +f(pj2)fj2 with f(pj1), f(pj2) ∈ K.

Since X is a CB-scheme, we must get f(pj1), f(pj2) ∈ K \ {0}. By the same argument

as in the proof of Proposition 4.4.12, we obtain xj0(f(pj1)2fj1 − f(pj1)2fj2) · g̃k ∈ Rj for

all k = 1, . . . ,∆X. Moreover, we have CR/K[x0] =
〈

(CR/K[x0])rX
〉
R

, because X is a level

scheme. It follows that xj0(f(pj1)2fj1 − f(pj1)2fj2) · CR/K[x0] ⊆ R. In other words, we

obtain xj0(f(pj1)2fj1 − f(pj2)2fj2) ∈ ϑX(R/K[x0])rX+j, a contradiction.

Corollary 4.4.16. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set which is a level

scheme. If ∆X = 1, we let j ∈ {1, . . . , rX − 2}. Otherwise, we let j ∈ {1, . . . , rX − 1}.
Suppose that for any subset of two elements {j1, j2} ⊆ {1, . . . , s} we have

ϑX(R/K[x0])rX+j ∩
〈
xj0fj1 , x

j
0fj2

〉
K

= 〈0〉.

Then X is (2 + k, j − k)-uniform for k = 1, . . . , j − 1.

Proof. This follows from Proposition 4.4.15 and [GK, Proposition 6.1].

Corollary 4.4.17. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set.

(i) If X is a CB-scheme, if ∆X = 1, and if char(K) - s, then xrX0 RrX−1*ϑX(R/K[x0]).

In particular, we have xrX0 /∈ ϑX(R/K[x0]).

(ii) If X is (2, rX − 1)-uniform, then we have xrX0 hk /∈ ϑX(R/K[x0])2rX−1 for every

k ∈ {1, . . . , s−∆X}.

Proof. (i) Notice that Lfj 6= 0 for all j = 1, . . . , s if X is a CB-scheme. Suppose that

xrX0 hk∈ ϑX(R/K[x0])2rX−1 for all k = 1, . . . , s−1. Because X is a CB-scheme and ∆X =1,

we have x0hk = f1+k−βk1f1, Lf1+k = βk1Lf1 with βk1 6= 0, and (CR/K[x0])−rX = 〈 g̃1 〉K
with g̃1 = x−2rX

0 (f1 +β11f2 + · · ·+βs−11fs). Then xrX0 hk · g̃1 = βk1x
−1
0 (f1+k−f1) ∈ RrX−1.

This implies βk1(f1+k − f1) ∈ x0RrX−1 and βk1(Lf1+k − Lf1) = (β2
k1 − βk1)Lf1 = 0,

and so βk1 = 1 for k = 1, . . . , s − 1. Thus we get β11 + · · · + βs−11 = s − 1 6= −1, in

contradiction to [Kr4, Lemma 1.2.a].
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(ii) Suppose for a contradiction that there is an index k ∈ {1, . . . , s − ∆X} such

that xrX0 hk ∈ ϑX(R/K[x0])2rX−1. For any j ∈ {1, . . . ,∆X}, we calculate xrX0 hk · g̃j =

βkjx
−1
0 (f∆X+k − fj) ∈ RrX−1. This implies that βkj(f∆X+k − fj) ∈ x0RrX−1, and so

βkj(Lf∆X+k − Lfj) = 0. Since X is (2, rX − 1)-uniform, we have ∆X ≥ 2 and the

set {Lf∆X+k, Lfj} is linearly independent in RrX by [Kr2, Proposition 3.4]. Hence it

follows from βkj(Lf∆X+k − Lfj) = 0 that βkj = 0 for all j = 1, . . . ,∆X, and Lf∆X+k =

βk1Lf1 + · · ·+ βk∆XLf∆X = 0, contradicting the fact that X is a CB-scheme.

Proposition 4.4.18. Let K be an infinite field, let X = {p1, . . . , ps} ⊆ PnK be a pro-

jective point set which is a CB-scheme, and let αϑX := min{ i ∈ N | HFϑX(R/K[x0])(i) =

HFX(i− rX) > 0 }. Suppose that αϑX ≤ 2rX − 1. Then X is not (2, rX − 1)-uniform. In

particular, if ∆X ≥ 2 then X is not (∆X, rX − 1)-uniform.

Proof. If ∆X = 1 then X is not (2, rX−1)-uniform by Remark 4.4.2(e). Now we consider

the case ∆X ≥ 2 and αϑX ≤ 2rX−1. Since αϑX ≤ 2rX−1 and X is a CB-scheme, there is

g̃ = c1f1 + · · ·+ csfs ∈ RrX \ {0} such that x−2rX
0 g̃ ∈ CR/K[x0], such that AnnR(g̃) = 〈0〉,

and such that g̃ϑX(R/K[x0])2rX−1 = x2rX
0 RrX−1 (see Proposition 4.1.12). Notice that

cj 6= 0 for all j = 1, . . . , s. We have RrX−1 = 〈h1, . . . , hs−∆X 〉K , where the elements hk

satisfy x0hk = f∆X+k − βk1f1 − · · · − βk∆Xf∆X . For every k ∈ {1, . . . , s −∆X}, we can

write x2rX
0 hk = g̃vk = (c1f1 + · · · + csfs)vk with vk ∈ ϑX(R/K[x0])2rX−1. This implies

ϑX(R/K[x0])2rX−1 = 〈 v1, . . . , vs−∆X 〉K and

vk = xrX−1
0 ( 1

c∆X+k
f∆X+k − βk1

c1
f1 − · · · −

βk∆X
c∆X

f∆X).

Moreover, we have

x2rX
0 (CR/K[x0])−rXϑX(R/K[x0])2rX−1 = g̃ϑX(R/K[x0])2rX−1 = x2rX

0 RrX−1.

Let us write (CR/K[x0])−rX =〈 g̃1, . . . , g̃∆X 〉K with g̃j =x−2rX
0 (fj+β1jf∆X+1+· · ·+βs−∆Xjfs)

for j = 1, . . . ,∆X. We obtain x2rX
0 g̃jvk = x2rX−1

0
βkj

cjc∆X+k
(cjf∆X+k − c∆X+kfj) ∈ x2rX

0 RrX−1

for all k ∈ {1, . . . , s − ∆X} and j ∈ {1, . . . ,∆X}. Hence, if βkj 6= 0, then we have

(cjf∆X+k−c∆X+kfj) ∈ x0RrX−1. Because of β1j+· · ·+βs−∆Xj = −1 for j = 1, . . . ,∆X, we

may assume without loss of generality that β11 6= 0. Thus we get (c1f∆X+1−c∆X+1f1) ∈
x0RrX−1. On the other hand, we can write x2rX−1

0 (c1f∆X+1 − c∆X+1f1) = g̃v for some

v ∈ ϑX(R/K[x0])2rX−1 \ {0}. This implies that for all j ∈ {2, . . . ,∆X,∆X + 2, . . . , s} we

have v(pj) = 0. Hence we deduce

ϑX(R/K[x0])2rX−1 ∩
〈
xrX−1

0 f1, x
rX−1
0 fj∆X+1

〉
K
6= 〈0〉.

Therefore, by Proposition 4.4.10, X is not (2, rX − 1)-uniform.
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In the remainder of this section, we discuss the following notion (cf. [Kr1], [Kr4]).

Definition 4.4.19. A projective point set X = {p1, . . . , ps} ⊆ PnK is said to split

cohomologically if we can decompose X = Y∪Y′ such that Y 6= ∅, Y′ 6= ∅, Y∩Y′ = ∅
and

∑
pj∈Y

K · Lfj ∩
∑
pj∈Y′

K · Lfj = 〈0〉 in RrX . If X does not split cohomologically, we

say that X is cohomologically uniform.

In [Kr4], Theorem 2.4 tells us that X is cohomologically uniform if and only if

the multiplication map µ : RrX−1 ⊗ (CR/K[x0])−rX → (CR/K[x0])−1 is nondegenerate and

surjective. It follows that (∆X, rX − 1)-uniform schemes are cohomologically uniform.

Moreover, if X is cohomologically uniform, then X is a CB-scheme, and the converse is

true if ∆X = 1.

Proposition 4.4.20. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set. Suppose

that 2 ≤ ∆X ≤ 3 and that for any subset of two elements {j1, j2} ⊆ {1, . . . , s} we have

ϑX(R/K[x0])2rX−1 ∩
〈
xrX−1

0 fj1 , x
rX−1
0 fj2

〉
K

= 〈0〉.

Then X is cohomologically uniform.

Proof. By assumption and Proposition 4.4.12, X is (2, rX−1)-uniform. If ∆X = 2, then

X is (∆X, rX − 1)-uniform, so it is cohomologically uniform via the above argument.

Now we consider the case ∆X = 3. Obviously, X is a CB-scheme. Thus it follows from

Theorem 4.3.10 that the multiplication map µ : RrX−1⊗ (CR/K[x0])−rX → (CR/K[x0])−1 is

nondegenerate. So, we need to prove that this map is surjective. For this, we assume

that {Lf1, . . . , Lf3} is a K-basis of RrX , we write Lf3+j = βj1Lf1 + βj2Lf2 + βj3Lf3

for j = 1, . . . , s− 3, and we form the matrix

B := (βji)
tr =

β11 β21 · · · βs−3 1

β12 β22 · · · βs−3 2

β13 β23 · · · βs−3 3

 .

Now we fix an index j ∈ {1, . . . , s − 3}. If βj1 = βj2 = βj3 = 0 or if two of the

elements βj1, βj2, βj3 are zero, say βj1 6= 0 and βj2 = βj3 = 0, then we have Lf3+j =

βj1Lf1 + βj2Lf2 + βj3Lf3 = 0 or Lf3+j = βj1Lf1 + βj2Lf2 + βj3Lf3 = βj1Lf1. Both

cases cannot occur, since X is (2, rX − 1)-uniform and by [Kr2, Proposition 3.4]. Thus

each column of B contains at least two non-zero entries. On the other hand, no row

of B can be zero. Otherwise, we have β1k = · · · = βs−3 k = 0 for some k ∈ {1, 2, 3},
and it follows from [Kr4, Lemma 1.2] that 0 = β1k + · · ·+βs−3 k = −1, a contradiction.
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Therefore the matrix B has no zero row and each column of B contains at least two

non-zero entries.

Let h1, . . . , hs−3 ∈ RrX−1 form a K-basis of RrX−1 such that x0hj = f3+j − βj1f1 −
βj2f2 − βj3f3 for j = 1, . . . , s − 3. We also write (CR/K[x0])−rX = 〈 g̃1, g̃2, g̃3 〉K with

g̃k = x−2rX
0 (fk+β1kf4 + · · ·+βs−3 kfs) for k = 1, 2, 3. Then hj · g̃k = βjkx

−rX−1
0 (f3+j−fk)

in (CR/K[x0])−1 for j = 1, . . . , s − 3 and k = 1, 2, 3. We define a relation ∼ on the set

{1, . . . , s} by j ∼ k if and only if x−rX−1
0 (fj − fk) ∈ Im(µ). Clearly, the relation ∼

is an equivalence relation. Furthermore, if βj−3 k 6= 0, then in (CR/K[x0])−1 we have

hj−3g̃k = βj−3 kx
−rX−1
0 (fj − fk) or j ∼ k. According to [Kr4, Corollary 1.11], the

elements x−rX−1
0 (fi+1 − fi) with i = 1, . . . , s − 1 form a K-basis of (CR/K[x0])−1, so in

order to prove that µ is surjective, it suffices to show that 1 ∼ 2 ∼ · · · ∼ s.

Let {j1, . . . , js−3} be a permutation of {4, . . . , s} such that βjk−3 1 6= 0 for k =

1, . . . , t and βjk−3 1 = 0 for k = t + 1, . . . , s − 3. Here we have 1 ≤ t ≤ s − 3 and

1 ∼ j1 ∼ · · · ∼ jt. If t = s − 3, then 1 ∼ j1 ∼ · · · ∼ js−3 ∼ 2 ∼ 3 (i.e., 1 ∼ · · · ∼ s)

because each row of B has a non-zero entry. Now we consider the case t < s − 3 and

we rewrite the matrix B into the following matrixβj1−3 1 βj2−3 1 · · · βjt−3 1 0 · · · 0

βj1−3 2 βj2−3 2 · · · βjt−3 2 βjt+1−3 2 · · · βjs−3−3 2

βj1−3 3 βj2−3 3 · · · βjt−3 3 βjt+1−3 3 · · · βjs−3−3 3

 .

Since each column of new matrix also contains at least two non-zero entries, this yields a

number k ∈ {2, 3} such that not all elements of {βj1−3 k, . . . , βjt−3 k} are zero. Without

loss of generality, let k = 2 and βjv−3 2 6= 0 for some v ∈ {1, . . . , t}. This implies that

2 ∼ jv ∼ 1. Moreover, we also have βjl−3 k 6= 0 for l = t+1, . . . , s−3 and k = 2, 3. This

yields 2 ∼ jt+1 ∼ · · · ∼ js−3 ∼ 3. Therefore we obtain 1 ∼ 2 ∼ 3 ∼ j1 ∼ · · · ∼ js−3 or

1 ∼ 2 ∼ · · · ∼ s, as required.

Proposition 4.4.21. Let X = {p1, . . . , ps} ⊆ PnK be a projective point set, and let

m := b∆X
2
c + 1 where, for a rational number α, we let bαc be the greatest integer less

than or equal to α. If X is (m, rX − 1)-uniform, then it is cohomologically uniform.

If, in addition, char(K) = 0 or char(K) ≥ rX, then we have

HFX(i) + HFX(rX − i− 1) ≤ s−∆X + 1

for all i ∈ {0, . . . , rX − 1}.

Proof. First we note that if ∆X ≤ 3, then the claim is proved by Proposition 4.4.20.

So, we may assume that ∆X ≥ 4 and m ≥ 3. By assumption, X is a CB-scheme. Thus
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Theorem 4.3.10 implies the multiplication map µ : RrX−1⊗ (CR/K[x0])−rX→(CR/K[x0])−1

is nondegenerate. Due to [Kr4, Theorem 2.4], it is enough to prove that µ is surjective.

We assume that {Lf1, . . . , Lf∆X} is a K-basis of RrX . We write Lf∆X+j = βj1Lf1 +

· · ·+ βj∆XLf∆X for j = 1, . . . , s−∆X and form the matrix

B := (βji)
tr =


β11 β21 · · · βs−∆X 1

β12 β22 · · · βs−∆X 2

...
...

. . .
...

β1∆X β2∆X · · · βs−∆X ∆X

 .

Since X is (m, rX− 1)-uniform, it follows from [Kr2, Proposition 3.4] that every subset

of m elements from {Lf1, . . . ., Lfs} is linearly independent in RrX . Thus, for every

j ∈ {1, . . . , s−∆X}, at least m elements of {βj1, . . . , βj∆X} are non-zero. In other words,

each column of B has at least m non-zero entries. Furthermore, in [Kr4, Lemma 1.2]

it is shown that β1k + · · ·+ βs−∆X k = −1 for k = 1, . . . ,∆X. Thus B has no zero row.

As before, we let {h1, . . . , hs−∆X} ∈ RrX−1 be a K-basis of RrX−1 such that x0hj =

f∆X+j − βj1f1 − · · · − βj∆Xf∆X for j = 1, . . . , s − ∆X, and we write (CR/K[x0])−rX =

〈 g̃1, . . . , g̃∆X 〉K with g̃k = x−2rX
0 (fk + β1kf∆X+1 + · · · + βs−∆Xkfs) for k = 1, . . . ,∆X.

We see that hj g̃k = βjkx
−rX−1
0 (f∆X+j − fk) ∈ (CR/K[x0])−1 for j = 1, . . . , s − ∆X and

k = 1, . . . ,∆X. As in the proof of Proposition 4.4.20, we define an equivalence relation∼
on the set {1, . . . , s} by j ∼ k if and only if x−rX−1

0 (fj − fk) ∈ Im(µ). Notice that if

βj−∆Xk 6= 0, then hj−∆X g̃k = βj−∆Xkx
−rX−1
0 (fj − fk) ∈ (CR/K[x0])−1 or j ∼ k. By [Kr4,

Corollary 1.11], we need to show that the elements x−rX−1
0 (fi+1−fi) with i = 1, . . . , s−1

are in the image of µ. It suffices to show that 1 ∼ 2 ∼ · · · ∼ s. First we renumber

the points p∆X+1, . . . , ps such that βj1 6= 0 for j = 1, . . . , t1 and βj1 = 0 for j =

t1 + 1, . . . , s−∆X. Here we have 1 ≤ t1 ≤ s−∆X and 1 ∼ ∆X + 1 ∼ · · · ∼ ∆X + t1. If

t1 = s −∆X, then we have 1 ∼ ∆X + 1 ∼ · · · ∼ ∆X + t1 = s ∼ 2 ∼ · · · ∼ ∆X because

each row of B has a non-zero entry. Thus we have 1 ∼ · · · ∼ s, as desired.

Next, we consider the case t1 < s − ∆X. Because each column of the matrix B
contains at least m non-zero entries, we can renumber p2, . . . , p∆X such that βt1k 6= 0

for k = 2, . . . ,m. So, we get 1 ∼ ∆X + t1 ∼ 2 ∼ · · · ∼ m. Also, the equality

m = b∆X
2
c + 1 implies ∆X − m ≤ m − 1. This allows us to assume βt1+1 2 6= 0,

since if βt1+1 2 = · · · = βt1+1m = 0 then the (t1 + 1)-th column of B contains at

most m − 1 non-zero entries, which is impossible. Consequently, we may renumber

p∆X+t1+1, . . . , ps such that βt1+1 2 6= 0, . . . , βt2 2 6= 0 and βt2+1 2 = · · · = βs−∆X 2 = 0 for

some t1 + 1 ≤ t2 ≤ s − ∆X. Then we have 1 ∼ · · · ∼ m ∼ ∆X + t1 ∼ · · · ∼ ∆X + t2.

If t2 = s − ∆X, then 1 ∼ · · · ∼ s (as each row of B has a non-zero entry). In the
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case t2 < s − ∆X, we renumber p3, . . . , p∆X such that βt2 k 6= 0 for k = 3, . . . ,m + 1,

βt2+1 3 6= 0, and we get m ∼ ∆X + t2 ∼ m + 1. Continuing this process, we eventually

find a number k ∈ {1, . . . ,m} such that tk = s−∆X, and the matrix B looks as follows:

B =


β11 · · · βt11 0 · · · 0 0 · · · 0 · · · 0

β12 · · · βt12 βt1+1 2 · · · βt22 0 · · · 0 · · · 0

...
...

...
...

...
...

...

β1k · · · βt1k βt1+1 k · · · βt2k βt2+1 k · · · βtk−1+1 k · · · βtkk
...

...
...

...
...

...
...

β1∆X · · · βt1∆X βt1+1∆X · · · βt2∆X βt2+1∆X · · · βtk−1+1∆X · · · βtk∆X

 .

Here we get k ≤ m, since if k ≥ m + 1 and tm < s−∆X, then the (m + 1)-th column

of the matrix B has at most m − 1 non-zero entries, in contradiction to the fact that

each column of the matrix B has at least m non-zero entries. Moreover, we obtain

1 ∼ · · · ∼ m+k−1 ∼ ∆X + 1 ∼ · · · ∼ ∆X + tk = s. Since each row of B has a non-zero

entry, this implies 1 ∼ 2 ∼ · · · ∼ s, as we wanted to show. Finally, the inequality for

the Hilbert function of X follows from [Kr4, Theorem 3.1].



Chapter 5
Differents for Some Special Cases

and Applications

In the previous chapters we investigated many interesting properties of the Noether,

Dedekind, and Kähler differents for 0-dimensional schemes in PnK . In particular, we saw

that a lot of information about the geometry of the schemes is reflected in the structure

of these differents. In this chapter we proceed with the study of these differents for

several special classes of 0-dimensional schemes in PnK and find out their applications.

In the first section of this chapter we look at the above differents for 0-dimensional

almost complete intersections in PnK . The notion of an almost complete intersection has

been extensively studied by many authors in the last thirty years. Among the people

that have worked on it are E. Kunz, T. Matsuoka, J. Herzog, R. Waldi, M. Kreuzer,

and G.D. Dominicis (see, for example, [Ku2], [Ku3], [Mats], [Her], [Wal], [DK]). In this

section, we present a description of the Dedekind complementary module as in [DK]

for a reduced 0-dimensional almost complete intersection X ⊆ PnK over a perfect field

K (see Proposition 5.1.5). Using this result, we construct an explicit presentation of

the Kähler different (see Proposition 5.1.6) and derive a connection between the Kähler

different and the Noether-Dedekind different (see Corollary 5.1.8) as in [Her, Satz 3.1].

Moreover, the first syzygy module of the Kähler different for a reduced 0-dimensional

almost complete intersection in P2
K is explicitly described by constructing a homoge-

neous system of generators of the normal module (IX/I2
X)∗ (see Proposition 5.1.12 and

Corollary 5.1.13).

In the second section we apply our knowledge of the Noether, Dedekind, and Kähler

differents for a 0-dimensional scheme X ⊆ PnK to explore the Kähler different ϑ(1)(R/K)

of the algebra R/K, where R is the homogeneous coordinate ring of X. In Lemma 5.2.1,

we establish some relations between ϑ(1)(R/K) and the Kähler different ϑK(R/K[x0]).
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From these relations we derive bounds for the Hilbert polynomial and the regularity

index of ϑ(1)(R/K) (see Proposition 5.2.2). We also prove some characterizations of a

complete intersection in terms of ϑ(1)(R/K) (see Propositions 5.2.5 and 5.2.8). At the

end of this section, we present a characterization for arithmetically Gorenstein schemes

(see Corollary 5.2.10).

In the third section we are concerned with studying the differents for fat point

schemes. We first recall the definition of fat point schemes W in PnK (see Defini-

tion 5.3.1). Then we describe the Kähler differents and their Hilbert functions when

the scheme W is contained in the projective line (see Lemma 5.3.3). Next we concen-

trate our attention on the Kähler different ϑK(S/K[x0]) in the case n ≥ 2, where S

is the homogeneous coordinate ring of W. We show that it is zero if and only if the

multiplicity of each point of W is greater than 1 (see Lemma 5.3.4), compute its Hilbert

polynomial, bound its regularity index (see Theorem 5.3.6), and determine bounds for

its Hilbert function (see Proposition 5.3.7). For some special positions of the sup-

port of the fat point scheme W, we can improve the bounds for the regularity index

of ϑK(S/K[x0]) which involve other numerical invariants of the scheme (see Proposi-

tions 5.3.13 and 5.3.15). Finally, we provide some properties of the Kähler differents of

the algebra S/K (see Proposition 5.3.16) and give bounds for the Hilbert polynomial

of the Noether different ϑN(S/K[x0]) (see Proposition 5.3.18).

As usual, let K be an arbitrary field, and let X ⊆ PnK be a 0-dimensional scheme

such that Supp(X) ∩ Z+(X0) = ∅. By IX we denote the homogeneous vanishing ideal

of X in P . The homogeneous coordinate ring of X is then given by R = P/IX, and the

image of Xi in R is denoted by xi for i = 0, . . . , n.

5.1 Differents for Almost Complete Intersections

Definition 5.1.1. Let A = (aij) be a matrix in Matr,s(P ). We say that A is a

homogeneous matrix (or simply homogeneous) if there exist two tuples d0 =

(d01, . . . , d0r) ∈ Zr and d1 = (d11, . . . , d1s) ∈ Zs such that the polynomial aij is homo-

geneous of degree deg(aij) = d1j − d0i for i = 1, . . . , r and j = 1, . . . , s. In this case,

the pair (d0, d1) ∈ Zr × Zs is called a degree pair of A.

Note that degree pairs are not uniquely determined, since if (d0, d1) is a degree

pair of a homogeneous matrix A then (d′0, d
′
1), where d′0 = (d01 + d, . . . , d0r + d) and

d′1 = (d11 + d, . . . , d1s + d) for some d ∈ Z, is also a degree pair of A. Moreover, when

A is a homogeneous square matrix of size r × r, its determinant is a homogeneous
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polynomial of degree
∑r

i=1(d1i− d0i). We refer the reader to [KR3, Section 4.7] for the

general theory of homogeneous matrices.

Definition 5.1.2. Let X ⊆ PnK be a 0-dimensional scheme.

(i) We say that X is an almost complete intersection if IX is minimally generated

by n+ 1 homogeneous polynomials F1, . . . , Fn+1 ∈ P .

(ii) We say that X is a special almost complete intersection if there exists a n-

tuple of homogeneous polynomials G = (G1, . . . , Gn) and a homogeneous matrix

A = (aij)n over P such that IX = 〈 {G · A} ∪ {det(A)} 〉.

Proposition 5.1.3. Let X ⊆ PnK be a 0-dimensional local Gorenstein scheme which is

an almost complete intersection. If HFϑD(R/K[x0])(i) 6= 0 for some i ≤ rX, then X is not

a CB-scheme.

Proof. According to [Ku2, Corollary 1.2], a Noetherian local ring which is an almost

complete intersection is not a Gorenstein ring. This implies that if X is an almost

complete intersection then X is not arithmetically Gorenstein, since the Noetherian

local ring R cannot be both an almost complete intersection and a Gorenstein ring.

Thus if HFϑD(R/K[x0])(i) 6= 0 for some i ≤ rX, then Propositions 4.1.11 and 4.1.15 imply

that X cannot be a CB-scheme.

In what follows, we work over a perfect field K. Let X ⊆ PnK be a reduced 0-

dimensional scheme which is an almost complete intersection, and let IX =〈F1, . . ., Fn+1〉
such that {F1, . . . , Fn} is a P -regular sequence. For j ∈ {1, . . . , n + 1}, we denote

dj := deg(Fj). By Remark 3.3.24, we may assume that the ideal J = 〈F1, . . . , Fn〉
defines a 0-dimensional complete intersection W which is smooth at the points of X.

In particular, the homogeneous element ∆n+1 := ∂(F1,...,Fn)
∂(x1,...,xn)

contained in ϑK(R/K[x0])

is a non-zerodivisor of R.

Let Y be the residual scheme of X in W. Then we can check that X and Y are

geometrically linked by W. The following lemma provides a relation between the

image of the homogeneous vanishing ideal of Y in R and the Dedekind compelementary

module CR/K[x0] which we prove using arguments in the spirit of [Ku3, Section 3].

Lemma 5.1.4. Using the notation introduced as above, we have

(IY + IX)/IX = ∆n+1CR/K[x0].
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Proof. Let S and RY denote the homogeneous coordinate rings of W and Y respectively.

We set L = Qh(R) and L0 = K[x0, x
−1
0 ]. Since X and Y are geometrically linked by

W, by Proposition 3.2.1, we have Qh(S) = L0 ⊗K[x0] S = L × Qh(RY). So, the image

of IY/W in Qh(S) is (IY + IX)/IX × 〈0〉. Moreover, we have the commutative diagram

of graded K[x0]-modules

HomK[x0](R,K[x0])
φ1 //

ψ1

��

HomL0
(L,L0)

φ2

��
HomK[x0](S,K[x0])

ψ2 // HomL0
(S ⊗K[x0] L0, L0)

where all maps are injective and homogeneous of degree zero. Since X is smooth, the

canonical trace map TrL/L0 is a trace map of the algebra L/L0 (see Proposition 3.2.16).

We also have HomL0
(L0⊗K[x0]S, L0) = HomL0

(L,L0)×HomL0
(Qh(RY), L0). Thus φ2 is

the canonical injection onto the first factor, and so Im(φ2 ◦φ1) = CR/K[x0] ·TrL/L0 ×〈0〉.
On the other hand, since W is a complete intersection, [Ku5, F.23] yields that the

algebra S/K[x0] has the homogeneous trace map τ of degree −rW such that TrS/K[x0] =

∆n+1 · τ . We see that IY/W ∼= HomK[x0](R,K[x0])(−rW) and the map f · τ factors

through R for all f ∈ IY/W. This implies Im(ψ1)=IY/W · τ . According to [Ku5, F.16],

we have HomL0
(L0⊗K[x0]S, L0)=(L×Qh(RY))·(idL0⊗τ), and so Im(ψ2◦ψ1)=Im(φ2◦φ1)

implies ((IY+IX)/IX×〈0〉)·(idL0⊗τ) = CR/K[x0] ·TrL/L0 ×〈0〉. Furthermore, we observe

that ∆n+1((IY + IX)/IX × 〈0〉) · (idL0 ⊗ τ) = ((IY + IX)/IX × 〈0〉) · TrL0⊗K[x0]S/L0 =

(IY +IX)/IX ·TrL/L0 ×〈0〉. It follows that (IY +IX)/IX ·TrL/L0 = ∆n+1CR/K[x0] ·TrL/L0 .

Therefore we get (IY + IX)/IX = ∆n+1CR/K[x0], since AnnL(TrL/L0) = 〈0〉.

In [DK], Proposition 5.2 provides a description of the Dedekind complementary

module CR/K[x0]. This description can be proved by using the above lemma as follows.

Proposition 5.1.5. Let X ⊆ PnK be a reduced 0-dimensional scheme which is an almost

complete intersection as above. Then we have an exact sequence of graded R-modules

0 −→ CR/K[x0]

(
n−

n+1∑
j=1

dj
) ϕ−→

n+1⊕
j=1

R(−dj)
ψ−→ IX/I2

X −→ 0

where ϕ is given by ϕ(g) =
∑n+1

j=1 g∆jej, ∆j =
∂(F1,...,F̂j ,...,Fn+1)

∂(x1,...,xn)
(j = 1, . . . , n + 1) are

n-minors of the Jacobian matrix, and ψ is given by ψ(ej) = Fj+I2
X for j = 1, . . . , n+1.

Proof. We first observe g∆j ∈ R for g ∈ CR/K[x0] and for j = 1, . . . , n + 1, since

∆1, . . . ,∆n+1 ∈ ϑX(R/K[x0]). It is not difficult to verify that ϕ is well-defined and R-

linear. Let g ∈ (CR/K[x0])i for some i ≥ −rX. Then ϕ(g) =
∑n+1

j=1 g∆jej is homogeneous
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of degree i +
∑n+1

j=1 dj − n. (Note that deg(∆j) =
∑

k 6=j dk − n, deg(ej) = dj for

j = 1, . . . , n+ 1.) This implies that ϕ is homogeneous of degree zero.

Next we prove that ϕ is injective. Let g ∈ (CR/K[x0])i, where i ≥ −rX, and suppose

that ϕ(g) =
∑n+1

j=1 g∆jej = 0. Then g∆j = 0 for j = 1, . . . , n + 1. Since x0 and ∆n+1

are non-zerodivisors of R and g can be written as g = x−m0 g̃ with m ≥ 0 and g̃ ∈ R,

we deduce g = 0.

Now we check that Ker(ψ) = Im(ϕ). For g ∈ (CR/K[x0])i with i ≥ −rX, Lemma 5.1.4

allows us to write g∆n+1 = G+IX with G ∈ J : IX, where J = 〈F1, . . . , Fn〉P . Also, we

get a representationGFn+1 =
∑n

j=1GjFj with homogeneous polynomialsG1, . . . , Gn∈P
of degree deg(Gj) = deg(G) + dn+1 − dj for j = 1, . . . , n. For k ∈ {1, . . . , n}, we see

that ∂(GFn+1)
∂Xk

= ∂Fn+1

∂Xk
G+ ∂G

∂Xk
Fn+1 =

∑n
j=1

( ∂Fj
∂Xk

Gj +
∂Gj
∂Xk

Fj
)
. This yields

n∑
j=1

∂Fj
∂Xk

Gj − ∂Fn+1

∂Xk
G = ∂G

∂Xk
Fn+1 −

n∑
j=1

∂Gj
∂Xk

Fj ∈ IX.

Thus the element
∑n

j=1(Gj + IX)ej − (G + IX)en+1 is contained in the kernel of the

R-linear map  :
⊕n+1

j=1 R(−dj) →
⊕n

j=1R(−1) given by the Jacobian matrix J =

(
∂Fj
∂xi

)i=1,...,n
j=1,...,n+1

. Moreover, we have Ker() =
{ ∑n+1

j=1 h∆jej | h ∈ ϑK(R/K[x0])−1
}

(cf. [Ku3, Lemma 1]). This implies that
∑n

j=1(Gj+IX)ej−(G+IX)en+1 =
∑n+1

j=1 h∆jej

for some h ∈ ϑK(R/K[x0])−1 ⊆ Rx0 . Hence we deduce g∆n+1 = G + IX = −h∆n+1,

and so we get h = −g, since ∆n+1 is a non-zerodivisor of R. Also, for j = 1, . . . , n, we

have Gj + IX = −g∆j. Thus we obtain

ψ(ϕ(g)) = ψ(
n+1∑
j=1

g∆jej) = ψ(−
n∑
j=1

(Gj + IX)ej + (G+ IX)en+1)

= −
n∑
j=1

GjFj +GFn+1 + I2
X = 0,

and hence Im(ϕ) ⊆ Ker(ψ).

To prove the other inclusion, we suppose that there are homogeneous polynomials

H1, . . . , Hn+1 ∈ P such that ψ(
∑n+1

j=1 (Hj + IX)ej) =
∑n+1

j=1 HjFj + I2
X = 0. It follows

from the equality I2
X = IXJ+〈F 2

n+1〉 that there are homogeneous polynomials Gjk, G ∈
P such that

∑n+1
j=1 HjFj =

∑n
j=1

∑n+1
k=1 GjkFkFj+GF

2
n+1. This clearly forces

∑n
j=1(Hj−∑n+1

k=1 GjkFk)Fj + (Hn+1 − GFn+1)Fn+1 = 0, and so the polynomial Hn+1 − GFn+1 is

contained in J : IX. By Lemma 5.1.4, we see that Hn+1 − GFn+1 + IX = Hn+1 +

IX ∈ ∆n+1CR/K[x0]. Thus there exists a homogeneous element g ∈ CR/K[x0] such that

Hn+1 + IX = g∆n+1. As above, we get g∆j = Hj −
∑n+1

k=1 GjkFk + IX = Hj + IX
for j = 1, . . . , n. Therefore we have ϕ(g) =

∑n+1
j=1 g∆jej =

∑n+1
j=1 (Hj + IX)ej, and

consequently Im(ϕ) ⊇ Ker(ψ).
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Our next proposition provides an explicit presentation of the Kähler different for a

reduced 0-dimensional almost complete intersection.

Proposition 5.1.6. Let X ⊆ PnK be a reduced 0-dimensional almost complete inter-

section as above, and let {ê1, . . . , ên+1} be the canonical basis of
⊕n+1

j=1 R(dj). Then we

have an exact sequence of graded R-modules

0 −→ (IX/I2
X)∗

ψ̂−→
n+1⊕
j=1

R(dj)
ϕ̂−→ ϑK(R/K[x0])

(n+1∑
j=1

dj − n
)
−→ 0

where (IX/I2
X)∗ = HomR(IX/I2

X, R), the map ψ̂ is given by ψ̂(α) =
∑n+1

j=1 α(Fj +I2
X)êj,

and the map ϕ̂ is given by ϕ̂(
∑n+1

j=1 gj êj) =
∑n+1

j=1 gj∆j. In particular, for all i ∈ Z we

have

HFϑK(R/K[x0])(i) =
n+1∑
j=1

HFX(i+ n−
∑
k 6=j
dk)− HF(IX/I2

X)∗(i+ n−
n+1∑
j=1

dj).

Proof. Applying HomR( , R) to the exact sequence in Proposition 5.1.5, we get the

following exact sequence of graded R-modules

0 −→ (IX/I2
X)∗

ψ∗−→ HomR(
n+1⊕
j=1

R(−dj), R)
ϕ∗−→ HomR(CR/K[x0]

(
n−

n+1∑
j=1

dj
)
, R).

Obviously, the maps ψ∗ and ϕ∗ are homogeneous homomorphisms of degree zero. More-

over, we have the isomorphism of graded R-modules

θ : HomR(
n+1⊕
j=1

R(−dj), R) =
n+1⊕
j=1

HomR(R(−dj), R)
∼→

n+1⊕
j=1

R(dj)

given by θ(β) =
∑n+1

j=1 β(ej)êj and θ−1(
∑n+1

j=1 gj êj) = µ∑n+1
j=1 gjej

, where µ∑n+1
j=1 gjej

is

the multiplication map given by µ∑n+1
j=1 gjej

(
∑n+1

j=1 hjej) =
∑n+1

j=1 gjhj for all elements∑n+1
j=1 hjej ∈

⊕n+1
j=1 R(−dj). We deduce ψ̂ = θ ◦ ψ∗ and ψ̂(α) =

∑n+1
j=1 α(Fj + I2

X)êj

for all α ∈ (IX/I2
X)∗. Furthermore, there is an isomorphism of graded R-modules

HomR(CR/K[x0]

(
n−

∑n+1
j=1 dj

)
, R)

∼→ ϑX(R/K[x0])
(∑n+1

j=1 dj − n
)
, β 7→ β(1). By taking

the composition of this map and ϕ∗ ◦ θ−1, we get a homogeneous homomorphism of

degree zero ϕ̂ :
⊕n+1

j=1 R(dj) → ϑX(R/K[x0])
(∑n+1

j=1 dj − n
)

given by ϕ̂(
∑n+1

j=1 gj êj) =∑n+1
j=1 gj∆j for all

∑n+1
j=1 gj êj ∈

⊕n+1
j=1 R(dj). Hence we find

Im(ϕ̂) = 〈∆1, . . . ,∆n+1〉
(n+1∑
j=1

dj − n
)

= ϑK(R/K[x0])
(n+1∑
j=1

dj − n
)
.

Therefore we obtain the desired exact sequence.
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Remark 5.1.7. Let X ⊆ PnK be a reduced 0-dimensional almost complete intersection.

We make some observations about the preceding proposition.

(a) If {α1, . . . , αu} is a homogeneous system of generators of (IX/I2
X)∗, then the

first syzygy module Syz1
R(∆1, . . . ,∆n+1) of the Kähler different ϑK(R/K[x0]) is

generated by the elements{
(αj(F1 + I2

X), . . . , αj(Fn+1 + I2
X)) | j = 1, . . . , u

}
.

(b) Since HF(IX/I2
X)∗(i) = 0 for i < −d = −max{dj | j = 1, . . . , n + 1}, Proposition

5.1.6 yields HFϑK(R/K[x0])(i) = 0 for i < −d+
∑n+1

j=1 dj − n.

The derived functors of HomR( , ) will be denoted by ExtiR( , ), where i ∈ Z.

Notice that, for a finitely generated graded R-module M and a graded R-module N ,

the R-modules ExtiR(M,N) admit a natural grading and ExtiR(M,N) = ExtiR(M,N)

for the underlying R-modules. In analogy with [Her, Satz 3.1], we get the following

connection between the differents.

Corollary 5.1.8. Let X ⊆ PnK be a reduced 0-dimensional almost complete intersection

as above. We have an exact sequence of graded R-modules

0 −→ ϑK(R/K[x0]) −→ ϑX(R/K[x0])
δ−→ Ext1

R(IX/I2
X, R)

(
n−

n+1∑
j=1

dj
)
−→ 0,

where δ is the connecting homomorphism. In particular, if X is a special almost com-

plete intersection, then Ext1
R(IX/I2

X, R) = 0 and ϑK(R/K[x0]) = ϑX(R/K[x0]).

Proof. Applying the functor HomR( , R) to the exact sequence

0 −→ CR/K[x0]

(
n−

n+1∑
j=1

dj
) ϕ−→

n+1⊕
j=1

R(−dj)
ψ−→ IX/I2

X −→ 0

we get a long exact sequence of graded R-modules

0 −→ (IX/I2
X)∗

ψ̂−→
n+1⊕
j=1

R(dj)
ϕ̂−→ ϑX(R/K[x0])

(n+1∑
j=1

dj − n
)

δ−→ Ext1
R(IX/I2

X, R) −→ Ext1
R(

n+1⊕
j=1

R(dj), R) = 0,

where ψ̂ and ϕ̂ are described as in Proposition 5.1.6. Thus the exact sequence of

the corollary follows from the fact that Im(ϕ̂) = ϑK(R/K[x0])
(n+1∑
j=1

dj − n
)
. The last

statement follows from [Wal, Satz 4].
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Note that the equality ϑK(R/Q[x0]) = ϑX(R/Q[x0]) can occur without the assump-

tion that X is a special almost complete intersection, as our next example shows.

Example 5.1.9. Let X ⊆ P3
Q be the projective point set consisting of thirteen points

p1 = (1 : 0 : 0 : 0), p2 = (1 : 1 : 0 : 0), p3 = (1 : 0 : 0 : 1), p4 = (1 : 0 : 1 : 0),

p5 = (1 : 0 : −1 : 0), p6 = (1 : 0 : 0 : −1), p7 = (1 : 0 : 1 : −1), p8 = (1 : 0 : −1 : 1),

p9 = (1 : 1 : −1 : 0), p10 = (1 : 1 : −1 : −1), p11 = (1 : 1 : 1 : −1), p12 = (1 : 1 : −1 : 1),

and p13 = (1 : 1 : 0 : −1). Then the homogeneous vanishing ideal IX is minimally

generated by one quadratic form and three cubic forms, and the Cohen-Macaulay type

of R is 4. Thus X is an almost complete intersection, but it is not a special almost

complete intersection, since ht(IX) = 3 < 4 = type(R) (cf. [Wal, Bemerkung 1]). In

this case, a calculation gives us

ϑK(R/Q[x0]) = 〈x6
3, x0x

4
2 − 1/2x1x

4
2 − x0x

4
3 + 1/2x1x

4
3,

x5
1 − 2x1x

4
2 + 4x0x2x

3
3 − 6x1x2x

3
3 − 2x2

2x
3
3 + 2x0x

4
3 − 3x1x

4
3 − 2x2x

4
3,

x5
0 + 1/2x1x

4
2 − x0x2x

3
3 + 6x1x2x

3
3 + 5x2

2x
3
3 − 2x0x

4
3 + 3/2x1x

4
3 + 5x2x

4
3〉

= ϑX(R/Q[x0]).

Therefore these differents are equal even when the almost complete intersection X is

not special.

Now we restrict our attention to the reduced 0-dimensional schemes X in the pro-

jective plane P2
K . According to the Hilbert-Burch theorem (cf. [Ei1, Theorem 20.15]

or [Pev, Theorem 24.2]), there exists a homogeneous non-zerodivisor u and a homoge-

neous matrix A = (ajk) of size r× (r− 1) such that the minimal graded free resolution

of IX has the form

0 −→
r−1⊕
j=1

P (−d′j)
ϕ1−→

r⊕
j=1

P (−dj)
ϕ0−→ IX −→ 0 (5.1)

Here ϕ1 is defined by A and ϕ0 is defined by
(
uF1 · · · uFr

)
, where Fj is the deter-

minant of the matrix
(
Ej A

)
with Ej =

(
0 · · · 0 1

[j]
0 · · · 0

)tr

for j = 1, . . . , r.

Remark 5.1.10. Note that the above non-zerodivisor u is contained in K, and so

we may assume u = 1. Indeed, suppose for a contradiction that u /∈ K. Then we

have deg(u) ≥ 1. Because IX is a homogeneous ideal of height 2, we can assume

that {uF1, uF2} is a P -regular sequence. We see that F1 /∈ 〈uF1〉 or the image of F1

in P/〈uF1〉 is not zero. Moreover, the image of uF2 in P/〈uF1〉 is a non-zerodivisor.

But the image of uF2F1 in P/〈uF1〉 is zero, a contradiction.
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Tensoring (5.1) with R we get the exact sequence of graded R-modules

0 −→ TorP1 (IX, R) −→
r−1⊕
j=1

R(−d′j)
ϕ1−→

r⊕
j=1

R(−dj)
ϕ0−→ IX/I2

X −→ 0

where ϕ1 is defined by the matrix A = (ajk), ajk = ajk + IX, and ϕ0 is given by

ϕ0(ej) = Fj + I2
X for j = 1, . . . , r. Hence we deduce the following exact sequence of

graded R-modules:

0 −→ (IX/I2
X)∗

ϕ̂0−→
r⊕
j=1

R(dj)
ϕ̂1−→

r−1⊕
j=1

R(d′j).

The map ϕ̂0 is given by ϕ̂0(α) = (α(F1 +I2
X), . . . , α(Fr+I2

X)), and ϕ̂1 is defined by Atr
.

Therefore a mapping α : IX/I2
X → R is an R-module homomorphism if and only if the

vector (α(F1 + I2
X), . . . , α(Fr + I2

X)) satisfies Atr · (α(F1 + I2
X), . . . , α(Fr + I2

X)) = 0.

To describe the homogeneous generators of (IX/I2
X)∗, we require the following lemma.

Lemma 5.1.11. In the above situation, let V = (G1, . . . , Gr) ∈ (
⊕r

j=1 P (−dj))i be a

non-zero homogeneous vector such that Atr · V = 0. Then there exists a homogeneous

polynomial G ∈ Pi such that V = G · (F1, . . . , Fr).

Proof. It is not difficult to see that rank(A) = r− 1, and so rank(Atr) = r− 1 (see for

instance [Bro] for the definition of the rank of a matrix over a ring). Let Q(P ) denote

the quotient field of P , and let W = {v ∈
⊕r

j=1 P (−dj) | Atr · v = 0}. Then we get

dimQ(P ) W = 1. This implies that V and (F1, . . . , Fr) are proportional over Q(P ), and

so GjFk = GkFj for all j, k. Obviously, we have F1 6= 0 in Q(P ). This enables us

to write Gj = G1F
−1
1 Fj for all j = 1, . . . , r. Since V 6= 0, the element G1F

−1
1 is not

zero. We see that G1Fj ∈ 〈F1〉P for all j = 1, . . . , r. Thus G1 ∈ 〈F1〉P : IX. Moreover,

the multiplication map µF1 : IX → IX is injective and IX ∼=
⊕r

j=1 P (−dj)/ Im(ϕ1).

By [Bro, Lemma D.3], we have 〈F1〉P = 〈F1〉P : IX. Hence G1 = G · F1 for some

G ∈ Pi \ {0} and V = G · (F1, . . . , Fr), as we wanted.

In analogy with [Sch, Corollary 3], a homogeneous system of generators of the

normal module (IX/I2
X)∗ can be constructed as in the following proposition.

Proposition 5.1.12. Using the notation as above, we let Ak denote the k-th column

of the matrix A for k = 1, . . . , r − 1.

(i) The map αjk : IX/I2
X → R (j = 1, . . . , r; k = 1, . . . , r − 1) defined by

αjk(Fl + I2
X) = det

(
Ej A1 · · · Ak−1 El Ak+1 · · · Ar−1

)
+ IX

is a homogeneous element of degree dj − d′k of the R-module (IX/I2
X)∗.
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(ii) We have

(IX/I2
X)∗ = 〈αjk | 1 ≤ j ≤ r, 1 ≤ k ≤ r − 1 〉R .

Proof. We set Gjkl = det
(
Ej A1 · · · Ak−1 El Ak+1 · · · Ar−1

)
for l = 1, . . . , r,

and Gjk = (Gjk1, . . . , Gjkr) for j = 1, . . . , r and k = 1, . . . , r − 1. Observe that

(Ak′)tr · Gjk =
r∑
l=1

ak′lGjkl =
r∑
l=1

det
(
Ej A1 · · · Ak−1 ak′lEl Ak+1 · · · Ar−1

)
= det

(
Ej A1 · · · Ak−1 Ak′ Ak+1 · · · Ar−1

)
.

This implies that (Ak′)tr · Gjk = 0 if k′ 6= k and (Ak)tr · Gjk = Fj ∈ IX. Thus we

get Atr · (αjk(F1 + I2
X), . . . , αjk(Fr + I2

X)) = 0. Therefore the element αjk is contained

in (IX/I2
X)∗ for all j, k. Now we check that αjk is homogeneous of degree dj − d′k.

Obviously, αjk(Fl + I2
X) = 0 if l = j. In order to compute the degree of αjk, we need

to consider the degree of αjk(Fl + I2
X) with l 6= j. Notice that deg(ajk) = d′k − dj for

all j, k. We can exhibit the submatrix of the matrix A by deleting the j-th and l-th

rows (l > j) and deleting the k-th column as follows:

d′1 · · · d′k−1 d′k+1 · · · d′r−1

a11 · · · a1k−1 a1k+1 · · · a1r−1

...
...

... · · · ...

aj−11 · · · aj−1k−1 aj−1k+1 · · · aj−1r−1

aj+11 · · · aj+1k−1 aj+1k+1 · · · aj+1r−1

...
...

... · · · ...

al−11 · · · al−1k−1 al−1k+1 · · · al−1r−1

al+11 · · · al+1k−1 al+1k+1 · · · al+1r−1

...
...

... · · · ...

ar1 · · · ark−1 ark+1 · · · arr−1



−d1

...

−dj−1

−dj+1

...

−dl−1

−dl+1

...

−dr

Thus we have deg(αjk(Fl + I2
X)) =

∑
i 6=k d

′
i −
∑

i 6=j,l di for all l 6= j. This implies that

deg(αjk) =
∑

i 6=k d
′
i −

∑
i 6=j,l di − dl =

∑
i 6=k d

′
i −

∑
i 6=j di. It is well known (cf. [Ei2,

Proposition 3.8]) that
∑r−1

i=1 d
′
i =

∑r
i=1 di. Hence we obtain deg(αjk) = dj − d′k, which

completes the proof of (i).

Next we prove (ii). For this, let α ∈ (IX/I2
X)∗i be a non-zero homogeneous element

and let G = (G1, . . . , Gr) with α(Fj + I2
X) = Gj + IX, Gj ∈ Pdj+i, for j = 1, . . . , r. It is

clear that (Ak)tr · G ∈ IX, and so (Ak)tr · G =
∑r

j=1 bjkFj for some bjk ∈ Pd′k−dj+i. Put
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G ′ =
∑

j,k bjkGjk. For every k′ ∈ {1, . . . , r − 1}, we have

(Ak′)tr · (G − G ′) =
r∑
j=1

bjk′Fj −
∑
j,k

bjk(Ak′)tr · Gjk =
r∑
j=1

bjk′Fj −
r∑
j=1

bjk′Fj = 0.

Hence Atr · (G − G ′) = 0. It follows from Lemma 5.1.11 that there is a homogeneous

element G ∈ Pi such that G − G ′ = G · (F1, . . . , Fr). Consequently, we obtain α =∑
j,k(bjk + IX) · αjk, and the claim (ii) follows.

Suppose X ⊆ P2
K is an almost complete intersection. Then the minimal graded free

resolution of IX has the form

0 −→ P (−d′1)⊕ P (−d′2)
A−→ P (−d1)⊕ P (−d2)⊕ P (−d3) −→ IX −→ 0

and IX is generated by all 2× 2-minors of the homogeneous matrix A = (ajk)j=1,2,3
k=1,2

. In

this situation, we give an explicit description of the first syzygy module of the Kähler

different ϑK(R/K[x0]) = 〈∆1,∆2,∆3〉 of the algebra R/K[x0] as follows.

Corollary 5.1.13. Let X be a reduced 0-dimensional scheme in P2
K which is an almost

complete intersection. Then we have an exact sequence of graded R-modules

0→ Syz1
R(∆1,∆2,∆3) −→ R(d1)⊕R(d2)⊕R(d3) −→ ϑK(R/K[x0])

( 3∑
j=1

dj − 2
)
→ 0.

In particular, the module Syz1
R(∆1,∆2,∆3) is generated by the following homogeneous

vectors: (0, a32 + IX,−a22 + IX), (0,−a31 + IX, a21 + IX), (−a32 + IX, 0, a12 + IX),

(−a31 + IX, 0, a11 + IX), (a22 + IX,−a12 + IX, 0), and (−a21 + IX, a11 + IX, 0).

Proof. This follows from Remark 5.1.7(a) and Proposition 5.1.12.

We close this section with the following observation.

Corollary 5.1.14. Let X be a reduced 0-dimensional subscheme of P2
K.

(i) If X is an almost complete intersection, then ϑK(R/K[x0]) = ϑX(R/K[x0]).

(ii) If X is contained in a complete intersection of degree deg(X) + 1, then we have

ϑK(R/K[x0]) = ϑX(R/K[x0]).

Proof. (i) Let G = (−a12, a11) and A′ =

(
a21 a31

a22 a32

)
. Then it is clear that we have

IX = 〈{GA′} ∪ {det(A′)}〉 ⊆ P . Thus X is a special almost complete intersection, and

therefore we have ϑK(R/K[x0]) = ϑX(R/K[x0]) by Corollary 5.1.8.

(ii) This follows from (i) and the fact that X is a complete intersection or an almost

complete intersection.
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5.2 The Kähler Differents of the Coordinate Ring

of 0-Dimensional Schemes

Let X ⊆ PnK be a 0-dimensional scheme such that Supp(X) ∩ Z+(X0) = ∅. In the

same way as Definition 3.3.1, we define the i-th Kähler different of the algebra R/K

to be the i-th Fitting ideal of Ω1
R/K , and we denote it by ϑ(i)(R/K). Clearly, we have

〈0〉 ⊆ ϑ(0)(R/K) ⊆ ϑ(1)(R/K) ⊆ ϑ(2)(R/K) ⊆ · · · ⊆ R and ϑ(i)(R/K) = R for i ≥ m,

where m is the minimal number of generators of Ω1
R/K .

Notice that the set {dx0, . . . , dxn} is a homogeneous system of generators of the

graded R-module Ω1
R/K . Moreover, we have AnnR(Ω1

R/K) = 〈0〉 by [Kr3, Satz 4.5].

Thus Proposition 3.3.9 implies ϑ(0)(R/K) = ϑN(R/K) = 〈0〉. If X ⊆ PnK is a 0-

dimensional smooth scheme, then ϑ(0)(R/K) = 〈0〉 and ϑ(i)(R/K) 6= 〈0〉 for all i ≥ 1.

The following lemma provides useful relations between the Kähler differents

of R/K[x0] and of R/K.

Lemma 5.2.1. Let X ⊆ PnK be a 0-dimensional scheme. Then we have

x0ϑ
(1)(R/K) = ϑK(R/K[x0])m ⊆ ϑK(R/K[x0]) ⊆ ϑ(1)(R/K).

Proof. By [Ku5, Proposition 3.24], we have an exact sequence of graded R-modules

0 −→ Rdx0
α−→ Ω1

R/K

β−→ Ω1
R/K[x0] −→ 0

where α is the inclusion map and β is given by β(fdR/Kf
′) = fdR/K[x0]f

′. So, it follows

from Proposition 2.2.7 that

ϑK(R/K[x0]) = F1(Rdx0) · ϑK(R/K[x0]) ⊆ ϑ(1)(R/K).

Now we show that x0ϑ
(1)(R/K) = ϑK(R/K[x0])m ⊆ ϑK(R/K[x0]). Let {F1, . . . , Fr} be

a minimal homogeneous system of generators of IX. The Jacobian matrix
(
∂Fj
∂xi

)
i=0,...,n
j=1,...,r

is a relation matrix of Ω1
R/K with respect to {dx0, . . . , dxn} (cf. [Ku5, Proposition 4.19]).

Thus ϑ(i)(R/K) is the ideal of R generated by all (n + 1 − i)-minors of the Jacobian

matrix. In particular, the ideal ϑ(1)(R/K) is generated by the minors of size n of that

matrix. Let I = {i1, . . . , in} ⊆ {1, . . . , r}, and let

∆I,j :=
∂(Fi1 , . . . , Fin)

∂(x0, . . . , x̂j, . . . , xn)
(j = 0, . . . , n).

We see that ∆I,0 ∈ ϑK(R/K[x0]) and ∆I,j ∈ ϑ(1)(R/K) for j = 0, . . . , n. If ∆I,0 = 0,

then we claim that ∆I,j = 0 for all j ∈ {1, . . . , n}. Indeed, suppose that there is an
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index j ∈ {1, . . . , n} such that ∆I,j 6= 0. By applying Euler’s rule, we find relations

∂Fik
∂x0

x0 +
∂Fik
∂x1

x1 + · · ·+ ∂Fik
∂xn

xn = 0 for k = 1, . . . , n.

Thus it follows from Cramer’s rule that ∆I,jx0 = (−1)n+1−j∆I,0xj. Since x0 is a

non-zerodivisor of R, we have ∆I,jx0 6= 0, and so ∆I,0 6= 0. Moreover, we have

∆I,0xj = (−1)n+1−j∆I,jx0 for all j ∈ {1, . . . , n}. Furthermore, the ideal x0ϑ
(1)(R/K)

(resp. ϑK(R/K[x0])m) is generated by elements of the form ∆I,jx0 (resp. ∆I,0xj) for

all j = 0, . . . , n and all subsets I = {i1, . . . , in} ⊆ {1, . . . , r}. This implies that

x0ϑ
(1)(R/K) = ϑK(R/K[x0])m ⊆ ϑK(R/K[x0]), and the proof is complete.

By applying the lemma, we can give bounds for the Hilbert polynomial and the

regularity index of the Kähler different ϑ(1)(R/K), as the following proposition shows.

Proposition 5.2.2. Let X ⊆ PnK be a 0-dimensional scheme with support Supp(X) =

{p1, . . . , ps}, and let Xsm be the set of smooth points of X in Supp(X). Then we have∑
pj∈Xsm

dimK(OX,pj) ≤ HPϑ(1)(R/K)(z) = HPϑK(R/K[x0])(z) ≤ deg(X)− (s−#Xsm)

and ri(ϑK(R/K[x0]))− 1 ≤ ri(ϑ(1)(R/K)) ≤ ri(ϑK(R/K[x0])).

Proof. By Lemma 5.2.1, we have x0ϑ
(1)(R/K) ⊆ ϑK(R/K[x0]) ⊆ ϑ(1)(R/K). This

implies the equalities HPx0ϑ(1)(R/K)(z) = HPϑK(R/K[x0])(z) = HPϑ(1)(R/K)(z), since x0

is a non-zerodivisor of R. Hence Proposition 3.3.19 yields the above bounds for the

Hilbert polynomial of ϑ(1)(R/K). Now we prove the claimed inequalities of regularity

indices. Obviously, we have ri(ϑ(1)(R/K)) ≤ ri(ϑK(R/K[x0])). It follows from the

inclusion x0ϑ
(1)(R/K) ⊆ ϑK(R/K[x0]) that HFϑ(1)(R/K)(i) ≤ HFϑK(R/K[x0])(i + 1) for

all i ∈ Z. Therefore we obtain the inequalities ri(ϑK(R/K[x0]))− 1 ≤ ri(ϑ(1)(R/K)) ≤
ri(ϑK(R/K[x0])).

If X ⊆ PnK is a 0-dimensional smooth scheme, then the Hilbert polynomial of

the Kähler different ϑ(1)(R/K) is HPϑ(1)(R/K)(z) = deg(X) and its regularity index

satisfies ri(ϑ(1)(R/K)) ≤ rX(n + 1) (see Corollary 3.3.21). In particular, if X =

{p1, . . . , ps} ⊆ PnK is a projective point set, then we have HPϑ(1)(R/K)(z) = s and

2rX − 1 ≤ ri(ϑ(1)(R/K)) ≤ nrX. Furthermore, we have the following corollary.

Corollary 5.2.3. Let X be a 0-dimensional reduced complete intersection in PnK, and

let IX = 〈F1, . . . , Fn〉, where Fj ∈ P is a homogeneous polynomial of degree dj for
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j = 1, . . . , n. Let d :=
∑n

j=1 dj − n, and let Y ⊆ X be the subscheme defined by

IY =
⋂

pj∈Supp(X): smooth

Pj. Then, for all i ∈ Z, we have

HFϑ(1)(R/K)(i) =

0 if i < d,

HFY(i+ 1− d) if i ≥ d.

In particular, we have ri(ϑ(1)(R/K)) = ri(ϑK(R/K[x0]))− 1 = d+ rY − 1.

Proof. We set ∆0 = ∂(F1,...,Fn)
∂(x1,...,xn)

. Then ϑK(R/K[x0]) = 〈∆0 〉R by Corollary 3.3.5. It

follows from Lemma 5.2.1 that x0ϑ
(1)(R/K) = ∆0m. Since x0 is a non-zerodivisor of R,

the Hilbert function of ϑ(1)(R/K) satisfies HFϑ(1)(R/K)(i) = HF∆0m(i+ 1) for all i ∈ Z.

If i < d, then 0 ≤ HFϑ(1)(R/K)(i) ≤ HFm(i+ 1− d) = 0, and so HFϑ(1)(R/K)(i) = 0. For

i ≥ d, we see that HFϑ(1)(R/K)(i) = HF∆0m(i+ 1) = HFϑK(R/K[x0])(i+ 1). Furthermore,

Corollary 3.3.7 yields that HFϑK(R/K[x0])(i) = HFY(i − d) for all i ∈ Z. This implies

HFϑ(1)(R/K)(i) = HFY(i+ 1− d) for all i ≥ d.

Corollary 5.2.4. Let X ⊆ PnK be a 0-dimensional smooth scheme which is a complete

intersection. Then we have

HFϑ(1)(R/K)(i) =

0 if i < rX,

HFX(i+ 1− rX) if i ≥ rX.

In particular, we have ri(ϑ(1)(R/K)) = ri(ϑK(R/K[x0]))− 1 = 2rX − 1.

Proof. This is an immediate consequence of Corollary 5.2.3.

Now we present a characterization for a smooth scheme X being a complete inter-

section in terms of the Kähler different ϑ(1)(R/K) as follows.

Proposition 5.2.5. Let X ⊆ PnK be a 0-dimensional smooth scheme. Then the follow-

ing conditions are equivalent.

(i) The scheme X is a complete intersection.

(ii) The scheme X is a CB-scheme and HFϑ(1)(R/K)(rX) 6= 0.

(iii) x0ϑ
(1)(R/K) · CR/K[x0] = m.

Proof. (i)⇔(ii): According to Lemma 5.2.1, we infer that HFϑ(1)(R/K)(rX) 6= 0 if and

only if HFϑK(R/K[x0])(rX) 6= 0. Hence the claim follows from Proposition 4.1.15(ii).
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(i)⇒(iii): If X is a complete intersection, then we set ∆j := ∂(F1,...,Fn)
∂(x0,...,x̂j ,...,xn)

for

j = 0, . . . , n, where {F1, . . . , Fn} is a minimal system of generators of IX. By Corol-

lary 3.3.5, we get ϑK(R/K[x0]) = 〈∆0 〉R, CR/K[x0] =
〈

∆−1
0

〉
R

, and ∆0 is non-

zerodivisor of R. We also have x0ϑ
(1)(R/K) = ∆0m by Lemma 5.2.1. Then multiplying

by CR/K[x0], we obtain x0ϑ
(1)(R/K) · CR/K[x0] = m.

(iii)⇒(i): Suppose that x0ϑ
(1)(R/K) · CR/K[x0] = m. It follows from the equality

x0ϑ
(1)(R/K) = ϑK(R/K[x0])m that ϑK(R/K[x0])CR/K[x0]m = m. Since ϑK(R/K[x0])

is a subideal of ϑX(R/K[x0]), this implies that

ϑK(R/K[x0])CR/K[x0] ⊆ ϑX(R/K[x0])CR/K[x0] ⊆ R.

If ϑK(R/K[x0])CR/K[x0] ( R, then ϑK(R/K[x0])CR/K[x0] is a homogeneous ideal of R

contained in m and

〈0〉 ⊆ m = ϑK(R/K[x0])CR/K[x0]m ⊆ 〈0〉+ m2.

By Nakayama’s lemma (cf. [KR2, Proposition 1.7.15]), we have m = 〈0〉, which is

impossible. Thus we must have ϑK(R/K[x0])CR/K[x0] = R. Consequently, CR/K[x0]

is invertible and ϑK(R/K[x0]) = ϑX(R/K[x0]). So, the scheme X is arithmetically

Gorenstein and ϑK(R/K[x0]) = ϑX(R/K[x0]). Therefore Proposition 3.3.12 yields

that X is a complete intersection.

As usual, for a 0-dimensional scheme X ⊆ PnK with Supp(X) = {p1, . . . , ps}, we let

R̃ =
∏s

j=1OX,pj [Tj] be the subring of L := Qh(R) =
∏s

j=1OX,pj [Tj, T
−1
j ]. Our next

proposition gives us a smoothness criterion for X in terms of the module of Kähler

differentials Ω1
R̃/K

of the K-algebra R̃.

Proposition 5.2.6. Let X ⊆ PnK be a 0-dimensional scheme, and let Supp(X) =

{p1, . . . , ps}. The following assertions are equivalent:

(i) The scheme X is smooth.

(ii) Ω1
Γ/K = 0.

(iii) Ω1
R̃/K

=
∏s

j=1OX,pj [Tj]dTj.

Proof. “(i)⇔(ii)” follows from [Ku6, Corollary 4.12]. It remains to show “(i)⇔(iii)”.

On account of [Ku5, Corollary 4.8], we have Ω1
R̃/K

=
∏s

j=1 Ω1
OX,pj [Tj ]/K

. Also, [Ku5,

Formula 4.4.b] implies

Ω1
OX,pj [Tj ]/K

= Ω1
OX,pj⊗KK[Tj ]/K

= OX,pj ⊗K Ω1
K[Tj ]/K

⊕K[Tj]⊗K Ω1
OX,pj /K

= OX,pj [Tj]dTj ⊕K[Tj]⊗K Ω1
OX,pj /K

.



172 5. Differents for Some Special Cases and Applications

It follows that Ω1
OX,pj [Tj ]/K

= OX,pj [Tj]dTj if and only if Ω1
OX,pj /K

= 0. This is equivalent

to the condition that pj is a smooth point of X (see Theorem 3.2.15). Therefore

Ω1
R̃/K

=
∏s

j=1OX,pj [Tj]dTj if and only if X is smooth.

In the remainder of this section, we assume that the scheme X is smooth. We

consider the canonical inclusion ı̃ : R ↪→ R̃ given by ı̃(f) = (fp1T
i
1, . . . , fpsT

i
s) for

f ∈ Ri with i ≥ 0. By Proposition 3.23 in [Ku5], we have an R-linear map

Ψ : Ω1
R/K → Ω1

R̃/K
∼=

s∏
j=1

OX,pj [Tj]dTj ↪→ Ω1
L/K
∼=

s∏
j=1

OX,pj [Tj, T
−1
j ]dTj,

fdxi 7→ (fp1(xi)p1T
k
1 dT1, . . . , fps(xi)psT

k
s dTs)

for f ∈ Rk. The map Ψ is homogeneous of degree zero and satisfies

(Ψ ◦ d)(f) = (dR̃ ◦ ı̃)(f) for all f ∈ R

and Ψ(dx0) = (dT1, . . . , dTs).

Corollary 5.2.7. We have Ker(Ψ) =
{ ∑n

i=0 gidxi ∈ Ω1
R/K |

∑n
i=0 gixi = 0

}
.

Proof. Clearly, we have
{ ∑n

i=0 gidxi ∈ Ω1
R/K |

∑n
i=0 gixi = 0

}
⊆ Ker(Ψ). Now let

ω =
∑n

i=0 gidxi ∈ (Ω1
R/K)k be a homogeneous element of degree k such that Ψ(ω) = 0.

Then we find 0 = Ψ(ω) = (
∑n

i=0(gi)p1(xi)p1T
k
1 dT1, . . . ,

∑n
i=0(gi)ps(xi)psT

k
s dTs). This

implies
∑n

i=0(gi)pj(xi)pj =
∑n

i=0(gixi)pj = 0 for j = 1, . . . , s. Since the map ı̃ is

injective, we get
∑n

i=0 gixi = 0, and hence the claim follows.

Given j ∈ {1, . . . , s}, we let νj = dimK OX,pj , let {ej1, . . . , ejνj} be a K-basis

of OX,pj , and set εjkj = (0, . . . , 0, ejkj , 0, . . . , 0) for kj = 1, . . . , νj. We put L0 :=

K[x0, x
−1
0 ]. Then the set {ε11, . . . , ε1ν1 , . . . , εs1, . . . , εsνs} is a basis of the graded-free

algebra L/L0. Moreover, L/L0 is étale (see Proposition 3.2.16). Thus the canonical

trace map TrL/L0 of L/L0 induces canonically a trace map Tr1
L/L0

: Ω1
L/K → Ω1

L0/K

given by Tr1
L/L0

(εjkj · (dT1, . . . , dTs)) = TrL/L0(εjkj)dx0 for j = 1, . . . , s; kj = 1, . . . , νj.

We set

ΩX :=
{
ω ∈ Ω1

L/K | Tr1
L/L0

(ωR) ⊆ Ω1
K[x0]/K

}
.

Then it is easy to check that Ψ : Ω1
R/K → ΩX ↪→ Ω1

L/K and ΩX = CR/K[x0]Ψ(dx0).

Moreover, we have the following property.

Proposition 5.2.8. Let X ⊆ PnK be a 0-dimensional smooth scheme. Then the scheme

X is a complete intersection if and only if Ψ(Ω1
R/K) = ϑ(1)(R/K)ΩX.
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Proof. Assume that X is a complete intersection with IX = 〈F1, . . . , Fn〉. We set

∆j := ∂(F1,...,Fn)
∂(x0,...,x̂j ,...,xn)

for j = 0, . . . , n. In Ω1
R/K , there are relations

∂Fi
∂x0

dx0 +
∂Fi
∂x1

dx1 + · · ·+ ∂Fi
∂xn

dxn = 0 for i = 1, . . . , n.

Due to Cramer’s rule, for every j ∈ {1, . . . , n} we have ∆0dxj = (−1)n+1−j∆jdx0. This

implies that Ψ(dxj) = (−1)n+1−j ∆j

∆0
Ψ(dx0) for all j = 1, . . . , n, since Ψ is R-linear.

Therefore we deduce from Ω1
R/K = Rdx0 + · · ·+Rdxn and CR/K[x0] =

〈
∆−1

0

〉
R

that

Ψ(Ω1
R/K) =

〈
∆0

∆0

,
∆1

∆0

, · · · , ∆n

∆0

〉
R

Ψ(dx0)

= ϑ(1)(R/K)
〈

∆−1
0

〉
R

Ψ(dx0) = ϑ(1)(R/K)ΩX.

Conversely, we consider the epimorphism of R-graded modules ϕ : Ω1
R/K → m given

by dxi 7→ xi for i = 0, . . . , n. By Corollary 5.2.7, we have Ker(Ψ) = Ker(ϕ) and the

following diagram of graded R-modules

0 // Ker(ϕ) �
� // Ω1

R/K

ϕ // m //

γ

��

0

0 // Ker(Ψ) �
� // Ω1

R/K
Ψ // Ψ(Ω1

R/K) // 0

where γ is given by γ(f) = f · Ψ(dx0)
x0
∈ Ψ(Ω1

R/K) ⊆ L ·Ψ(dx0) for all f ∈ m. The map

γ is well-defined, since in L we have xi = ((xi)p1 , . . . , (xi)ps) · x0 for all i = 1, . . . , n.

Moreover, for i ∈ {0, . . . , n} we see that γ ◦ ϕ(dxi) = γ(xi) = ((xi)p1 , . . . , (xi)ps) ·
x0

Ψ(dx0)
x0

= ((xi)p1 , . . . , (xi)ps) · Ψ(dx0) = Ψ(dxi). So, the diagram is commutative. It

is not difficult to verify that γ is a homogeneous isomorphism of degree zero. Thus

we have Ψ(Ω1
R/K) = m · Ψ(dx0)

x0

∼= m. It follows from Ψ(Ω1
R/K) = ϑ(1)(R/K)ΩX that

m · Ψ(dx0) = x0ϑ
(1)(R/K)CR/K[x0] · Ψ(dx0). Since AnnR(Ψ(dx0)) = 〈0〉, we obtain

m = x0ϑ
(1)(R/K)CR/K[x0]. Therefore the conclusion follows from Proposition 5.2.5.

Remark 5.2.9. Let us make some following observations.

(a) We have Ψ(Ω1
R/K) = m · Ψ(dx0)

x0

∼= m.

(b) There is an exact sequence of graded R-modules

0→ Ker(Ψ)→ Ω1
R/K → ΩX → ΩX/Ψ(Ω1

R/K)→ 0.
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We set JX = ΩX/Ψ(Ω1
R/K). Then we have HFJX(i) = deg(X)−HFX(−i)−HFm(i)

for all i ∈ Z and

dimK(JX) = (rX − 1) deg(X) + 1 +
rX−1∑
i=0

(deg(X)− HFX(i)− HFX(rX − i− 1)).

Corollary 5.2.10. Let K be an infinite field, and let X ⊆ PnK be a 0-dimensional

smooth scheme. The following statements are equivalent.

(i) The scheme X is arithmetically Gorenstein.

(ii) The scheme X is a CB-scheme and dimK(JX) = (rX − 1) deg(X) + 1.

Proof. If X is an arithmetically Gorenstein scheme, then X is a CB-scheme and we

have HFX(i) + HFX(rX− i− 1) = deg(X) for all i = 0, . . . , rX− 1 (see Corollary 4.1.16).

Thus Remark 5.2.9(b) implies that dimK(JX) = (rX − 1) deg(X) + 1.

Conversely, we assume that X is a CB-scheme and dimK(JX) = (rX−1) deg(X) + 1.

By Theorem 4.1.7, we find an element g ∈ (CR/K[x0])−rX with AnnR(g) = 〈0〉. We see

that R(−rX) ∼= R · g ⊆ CR/K[x0]. This implies

HFX(i) ≤ HFCR/K[x0]
(i− rX) = deg(X)− HFX(rX − i− 1)

for all i ∈ Z. Since dimK(JX) = (rX−1) deg(X)+1, we deduce
∑rX−1

i=0 (deg(X)−HFX(i)−
HFX(rX − i− 1)) = 0. Hence we must have HFX(i) = deg(X)−HFX(rX − i− 1) for all

i ∈ Z. Therefore Corollary 4.1.16 yields that X is arithmetically Gorenstein.

Corollary 5.2.11. If X is arithmetically Gorenstein with deg(X) 6= char(K), then

ϑX(R/K[x0]) = 〈h〉 * 〈x0〉. In particular, we have m−1 = 〈 1, h/x0 〉R.

Proof. Proposition 3.2.8 yields that ϑX(R/K[x0]) = 〈h〉 and that CR/K[x0] = 〈h−1 〉R,

where h ∈ RrX is a non-zerodivisor. Let B = {t1, . . . , tdeg(X)} be a K[x0]-basis of R,

let σ be a trace map of R/K[x0], and let {t′1, . . . , t′deg(X)} be the dual K[x0]-basis of R

to B w.r.t. σ. We may assume t1 = 1. Then TrR/K[x0](t1) = deg(X) 6= char(K). Also,

Corollary 2.4.12 yields

h =
deg(X)∑
j=1

TrR/K[x0](tj)t
′
j = deg(X)t′1 +

deg(X)∑
j=2

TrR/K[x0](tj)t
′
j.

Thus ϑX(R/K[x0]) = 〈h〉 * 〈x0〉. Moreover, we have x−1
0 mΨ(dx0) = Ψ(Ω1

R/K) ⊆ ΩX =

〈h−1 〉R Ψ(dx0). This implies mϑX(R/K[x0]) ⊆ 〈x0 〉R, and so ϑX(R/K[x0])⊆〈x0 〉R :m.

By [Kr3, Satz 4.21], there is a surjective multiplication map µ1/x0 : 〈x0 〉R : m→ m−1.

Since x0 - h and `(m−1/R) = 1, we get m−1 = 〈 1, h/x0 〉R, as desired.
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5.3 Differents for Fat Point Schemes

In this section we work over an arbitrary field K. Let X = {p1, . . . , ps} be a projective

point set of PnK . For j = 1, . . . , s, we let Pj be the associated homogeneous prime ideal

of pj in P = K[X0, . . . , Xn].

Definition 5.3.1. Given a sequence of positive integers m1, . . . ,ms, the intersection

IW = Pm1
1 ∩ · · · ∩ Pms

s is a saturated homogeneous ideal in P and is therefore the

vanishing ideal of a zero-dimensional subscheme W of PnK .

(i) The scheme W is called a fat point scheme in PnK and is denoted by W =

{p1, . . . , ps;m1, . . . ,ms}.

(ii) If m1 = · · · = ms = m, we denote W also by mX and call it an equimultiple

fat point scheme.

Remark 5.3.2. The degree of the fat point scheme W = {p1, . . . , ps;m1, . . . ,ms} is

given by the formula deg(W) =
∑s

j=1

(
mj+n−1

n

)
. In particular, if W is an equimultiple

fat point scheme with m1 = · · · = ms = m, then deg(W) = s
(
m+n−1

n

)
. Let rW be

the regularity index the Hilbert function of W. Then we have HFW(i) = 0 for i < 0,

1 = HFW(0) < HFW(1) < · · · < HFW(rW − 1) < deg(W), and HFW(i) = deg(W) =∑s
j=1

(
mj+n−1

n

)
for i ≥ rW.

Notice that the support of W is X = {p1, . . . , ps}. In what follows, we always

assume that no point of X lies on the hyperplane Z+(X0). The homogeneous coordinate

ring of W is S = P/IW. The image of Xi in S is denoted by xi for i = 0, . . . , n.

Then x0 is a non-zerodivisor of S, and the graded algebra S/K[x0] is free of rank

deg(W) =
∑s

j=1

(
mj+n−1

n

)
.

Now we look at the Hilbert functions and give upper bounds for the regularity

indices of the Kähler differents ϑK(S/K[x0]) and ϑ(i)(S/K). Our first case is n = 1,

i.e., fat point schemes in the projective line P1
K .

Lemma 5.3.3. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme in P1
K with

mj ≥ 1 for j = 1, . . . , s, let µ = m1+· · ·+ms, and suppose char(K) = 0 or char(K)>µ.

(i) The ideal ϑK(S/K[x0]) is a principal homogeneous ideal of S and its Hilbert

function is of the form

HFϑK(S/K[x0]) : 0 · · · 0 1
[µ−1]

2 3 · · · s− 1 s
[µ+s−2]

s · · · .

In particular, its regularity index satisfies ri(ϑK(S/K[x0])) = µ+ s− 2.
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(ii) The ideal ϑ(1)(S/K) is non-zero and its Hilbert function is of the form

HFϑ(1)(S/K) : 0 · · · 0 2
[µ−1]

3 4 · · · s− 1 s
[µ+s−3]

s · · · .

In particular, its regularity index satisfies ri(ϑ(1)(S/K)) = µ+ s− 3.

Proof. Let us write pj = (1 : pj1) and Pj = 〈X1 − pj1X0〉 for all j = 1, . . . , s (note

that pj1 6= pk1 if k 6= j). Then the homogeneous vanishing ideal of the support of W is

generated by F = (X1−p11X0) · · · (X1−ps1X0) and we have IW = Pm1
1 ∩· · ·∩Pms

s = 〈G〉
with G = (X1 − p11X0)m1 · · · (X1 − ps1X0)ms . Obviously, the Hilbert function of W is

of the form HFW : 1 2 3 · · ·µ− 1 µ · · · . We have

∂G
∂X0

= ∂F
∂X0
·

s∏
j=1

(X1 − pj1X0)mj−1, ∂G
∂X1

= ∂F
∂X1
·

s∏
j=1

(X1 − pj1X0)mj−1.

Thus the Kähler different of W is given by

ϑK(S/K[x0]) = 〈 ∂G
∂x1
〉 =

〈
∂F
∂x1
·

s∏
j=1

(x1 − pj1x0)mj−1
〉
.

We put G̃ :=
∏s

j=1(X1 − pj1X0)mj−1 and J := 〈G, G̃ ∂F
∂X1
〉. In order to calculate the

Hilbert function of ϑK(S/K[x0]), it is enough to calculate HFP/J and then apply the

equality HFϑK(S/K[x0])(i) = HFW(i) − HFP/J(i) for all i ≥ 0. Since char(K) = 0 or

char(K) > µ, Euler’s relation implies µG = G̃(X0
∂F
∂X0

+ X1
∂F
∂X1

), and so G̃X0
∂F
∂X0
∈ J .

Hence we may write J = 〈G, G̃ ∂F
∂X1
〉 = I · 〈X0

∂F
∂X0

, ∂F
∂X1
〉, where I is the principal ideal

of P generated by G̃. Moreover, it is not hard to show that {X0
∂F
∂X0

, ∂F
∂X1
} is a P -

regular sequence. Consequently, this sequence is also an I-regular sequence. (Here I

is regarded as a graded P -module). Therefore we get HFI/〈G1,G2〉I(i) = HFI(i) −
HFI(i− s)− HFI(i− s+ 1) + HFI(i− 2s+ 1) and

HFP/J(i) = HFP (i)− HFJ(i) = HFP (i)− (HFI(i)− HFI/〈G1,G2〉I(i))

= HFP (i)− HFI(i− s)− HFI(i− s+ 1) + HFI(i− 2s+ 1).

On the other hand, we have HFI(i) = (i+ 1)−HFP/I(i) and HFP/I : 1 2 3 · · ·µ− s · · · .
Thus we obtain

HFP/J : 1 2 · · ·µ− 2 µ− 1 µ− 1
[µ−1]

µ− 2 µ− 3 · · ·µ− (s− 1) µ− s
[µ+s−2]

µ− s · · ·

and claim (i) follows. Claim (ii) follows by the same way as the proof of (i).
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Next we consider the case n ≥ 2. In this case, the Kähler different of a fat point

scheme W is zero if the multiplicity of each point is greater than or equal to 2, as the

following lemma shows.

Lemma 5.3.4. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme in Pn, where

n ≥ 2, and let s′ be the number of indices j ∈ {1, . . . , s} such that mj = 1.

(i) If s′ = 0, i.e., mj ≥ 2 for j = 1, . . . , s, then ϑK(S/K[x0]) = 〈0〉.

(ii) If s′ > 0 then ϑK(S/K[x0]) 6= 〈0〉.

Proof. (i) For j = 1, . . . , s, we write Pj = (1 : pj1 : · · · : pjn) with pjk ∈ K. Then we

have Pj = 〈Lj1, ..., Ljn〉, where Lj1 = X1 − pj1X0, . . . , Ljn = Xn − pjnX0 are linearly

independent linear forms, and IW = Pm1
1 ∩ · · · ∩Pms

s . Let {G1, ..., Gr} be a minimal

homogeneous system of generators of IW.

For i ∈ {1, . . . , r} and j ∈ {1, . . . , s}, we have Gi ∈ P
mj
j = 〈Lj1, . . . , Ljn〉mj =

〈H1, . . . , Ht〉 with t =
(
n+mj−1
n−1

)
. There are polynomials Gi1, . . . , Git ∈ P such that

Gi = Gi1H1 + · · · + GitHt. Observe that we have ∂Hk/∂Xl ∈ P
mj−1
j for k = 1, . . . , t

and l = 1, . . . , n, since mj ≥ 2. This yields ∂Gi/∂Xl ∈ P
mj−1
j . Thus it follows from

n ≥ 2 that, for every I = {i1, . . . , in} ⊂ {1, . . . , r} and every j ∈ {1, . . . , s}, we have

∂(Gi1 , . . . , Gin)

∂(X1, . . . , Xn)
= det


∂Gi1
∂X1

· · · ∂Gi1
∂Xn

...
. . .

...
∂Gin
∂X1

· · · ∂Gin
∂Xn

 ∈ P
mj
j .

Now the fact that ϑK(S/K[x0]) is generated by the images in S of the elements of the

form
∂(Gi1 ,...,Gin )

∂(X1,...,Xn)
implies the claim ϑK(S/K[x0]) = 〈0〉.

(ii) Let u = s− s′, and let j1, . . . , ju ∈ {1, . . . , s} be the indices such that mjk > 1

for k ∈ {1, . . . , u}. If u = 0 then W is a projective point set in PnK and it is clearly true

that ϑK(S/K[x0]) 6= 〈0〉.
Now we assume that 0 < u < s. We write IW = Pm1

1 ∩ · · · ∩Pms
s = I ∩ I ′, where

I = P
mj1
j1
∩· · ·∩Pmju

ju
and I ′ =

⋂
j 6=j1,...,ju

Pj. By Y we denote the subscheme of W defined

by I ′. Let RY be the homogeneous coordinate ring of Y. Then ϑK(RY/K[x0]) 6= 〈0〉
shows that there are homogeneous polynomials F1, . . . , Fn∈I ′ such that ∂(F1,...,Fn)

∂(X1,...,Xn)
/∈I ′.

Thus there is an index j0 ∈ {1, . . . , s} \ {j1, . . . , ju} such that ∂(F1,...,Fn)
∂(X1,...,Xn)

/∈ Pj0 . Also,

the Prime Avoidance Theorem (cf. [KR3, Proposition 5.6.22]) yields I * Pj0 , and

consequently there exists a homogeneous polynomial F0 ∈ I \ Pj0 . This implies that

F0Fi ∈ IW for i = 1, . . . , n.
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In the following we show ∂(F0F1,...,F0Fn)
∂(X1,...,Xn)

/∈ Pj0 . Then we get ∂(F0F1,...,F0Fn)
∂(X1,...,Xn)

/∈ IW, and

thus ϑK(RW/K[x0]) 6= 〈0〉, as claimed. We have

∂(F0F1, ..., F0Fn)

∂(X1, ..., Xn)
= det

F0
∂F1

∂X1
+ F1

∂F0

∂X1
· · · F0

∂F1

∂Xn
+ F1

∂F0

∂Xn
...

. . .
...

F0
∂Fn
∂X1

+ Fn
∂F0

∂X1
· · · F0

∂Fn
∂Xn

+ Fn
∂F0

∂Xn



= det

F0
∂F1

∂X1
· · · F0

∂F1

∂Xn
...

. . .
...

F0
∂Fn
∂X1

· · · F0
∂Fn
∂Xn

+G

= F n
0

∂(F1, ..., Fn)

∂(X1, ..., Xn)
+G

for some polynomial G ∈ I ′ ⊆ Pj0 . Now if F n
0

∂(F1,...,Fn)
∂(X1,...,Xn)

∈ Pj0 then F0 ∈ Pj0

or ∂(F1,...,Fn)
∂(X1,...,Xn)

∈ Pj0 , in contradiction to the construction. Therefore we must have

F n
0
∂(F1,...,Fn)
∂(X1,...,Xn)

/∈ Pj0 , and the conclusion follows.

Remark 5.3.5. Given a fat point scheme W = {p1, . . . , ps;m1, . . . ,ms} in PnK , the

number s′ given in Lemma 5.3.4 is the number of smooth points of W. In particular, it

is also the number of K-rational points of W. Thus Proposition 3.3.19 yields that the

Hilbert polynomial of ϑK(S/K[x0]) satisfies HPϑK(S/K[x0])(z) ≥
∑

pj∈Wsm

dimK(OX,pj) = s′,

where Wsm is the set of all smooth points of W. Hence claim (ii) of Lemma 5.3.4 is an

immediate consequence of this observation.

At this point we are ready to prove our first main result of this section. In a non-

trivial case, we determine the Hilbert polynomial of the Kähler different and bound its

regularity index.

Theorem 5.3.6. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme in PnK, where

n ≥ 2, and assume that there exists an index s′ ≤ s such that m1 = · · · = ms′ = 1 and

2 ≤ ms′+1 ≤ · · · ≤ ms. Then the Kähler different ϑK(S/K[x0]) has the constant Hilbert

polynomial HPϑK(S/K[x0])(z)=s′and its regularity index satisfies ri(ϑK(S/K[x0]))≤nrW.

Proof. If s′ = 0 then mj ≥ 2 for every j∈{1, . . . , s}, and we have ϑK(S/K[x0]) = 〈0〉 by

Lemma 5.3.4(i). Now we consider the case s′ = s, i.e., the case when W = {p1, . . . , ps}
is a set of s distinct reduced K-rational points of PnK . Then Proposition 3.3.14 implies

that HPϑK(S/K[x0])(z) = s and ri(ϑK(S/K[x0])) ≤ nrW, proving the theorem in the

reduced case.
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Consequently, we may assume that 0 < s′ < s. In this case, we first show

HPϑK(S/K[x0])(z) ≤ s′. To this end, let {h1, . . . , ht} be a homogeneous system of gener-

ators of ϑK(S/K[x0]), and let Hi ∈ P be a representative of hi for i = 1, . . . , t. We let

J := 〈H1, . . . , Ht〉+IW ⊆ P and write IW = P1∩· · ·∩Ps′∩P
ms′+1

s′+1 ∩· · ·∩Pms
s = I∩I ′,

where I ′ = P1 ∩ · · · ∩Ps′ and I = P
ms′+1

s′+1 ∩ · · · ∩Pms
s . Using the same argument as in

the proof of Lemma 5.3.4(i), we obtain J ⊆ P
mj
j for j = s′+1, . . . , s, and it follows that

IW ⊆ J ⊆ I. Thus we have HFP/I(i) ≤ HFP/J(i) for all i ≥ 0. By Remark 5.3.2, the

Hilbert polynomial of P/I is the constant polynomial HPP/I(z) =
∑s

j=s′+1

(
mj+n−1

n

)
.

We deduce that HPP/J(z) ≥ HPP/I(z) =
∑s

j=s′+1

(
mj+n−1

n

)
. Hence we get

HPϑK(S/K[x0])(z) = HPW(z)− HPP/J(z) ≤ HPW(z)− HPP/I(z)

=
s∑
j=1

(
mj + n− 1

n

)
−

s∑
j=s′+1

(
mj + n− 1

n

)

=
s′∑
j=1

(
mj + n− 1

n

)
= s′,

as we wanted to show.

Secondly, we need to show that HPϑK(S/K[x0])(z) ≥ s′. But this inequality follows

from Proposition 3.3.19. Altogether, we have shown that HPϑK(S/K[x0])(z) = s′.

Finally, it remains to prove ri(ϑK(S/K[x0])) ≤ nrW. For every j ∈ {1, . . . , s′}, let

f ∗j ∈ S\{0} be a minimal separator of W\{Pj} in W, and let F ∗j ∈ P be a representative

of f ∗j . It is well known that deg(F ∗j ) ≤ rW and (F ∗j )k /∈ IW (or (f ∗j )k 6= 0) for j =

1, . . . , s′ and k ≥ 1. Let us write Pj = 〈Lj1, . . . , Ljn〉 as in the proof of Lemma 5.3.4.

We see that F ∗j Ljk ∈ IW for k = 1, . . . , n. Moreover, we may argue as the proof

of Proposition 3.3.14 to obtain
∂(F ∗j Lj1,...,F

∗
j Ljn)

∂(X1,...,Xn)
≡ (F ∗j )n (mod IW), and this implies

(f ∗j )n ∈ ϑK(S/K[x0])ndeg(f∗j ). Thus we know that x
n(rW−deg(f∗j ))

0 (f ∗j )n ∈ ϑK(S/K[x0])nrW
for all j = 1, . . . , s′.

Let us show that the elements x
n(rW−deg(f∗1 ))
0 (f ∗1 )n, . . . , x

n(rW−deg(f∗
s′ ))

0 (f ∗s′)
n are K-

linearly independent. Suppose there exist elements c1, . . . , cs′ in K, not all equal to

zero, such that
∑s′

j=1 cjx
n(rW−deg(f∗j ))

0 (f ∗j )n = 0. W.l.o.g., we can assume c1 6= 0. Then

we have

x
n(rW−deg(f∗1 ))
0 (f ∗1 )n+1 = 1

c1

s′∑
j=2

cjx
n(rW−deg(f∗j ))

0 f ∗1 (f ∗j )n = 0.

Since x0 is a non-zerodivisor of S, we get (f ∗1 )n+1 = 0, a contradiction.
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It follows that we have an inequality

HFϑK(S/K[x0])(nrW) ≥ dimK

〈
x
n(rW−deg(f∗1 ))
0 (f ∗1 )n, . . . , x

n(rW−deg(f∗
s′ ))

0 (f ∗s′)
n
〉
K

= s′.

Combining this with HFϑK(S/K[x0])(i) ≤ s′ for i ≥ 0 and HFϑK(S/K[x0])(i) = s′ for i� 0,

we obtain HFϑK(S/K[x0])(nrW) = s′ and ri(ϑK(S/K[x0])) ≤ nrW, as desired.

Our next proposition gives us another way to prove the equality in Theorem 5.3.6

for the Hilbert polynomial of a fat point scheme.

Proposition 5.3.7. Let X = {p1, . . . , ps} be a projective point set in PnK, where n ≥ 2,

and let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme in PnK with m1 = · · · =

ms′ = 1 and 2 ≤ ms′+1 ≤ · · · ≤ ms. Let Y = {p1, . . . , ps′} be a subscheme of X, and let

RY be the homogeneous coordinate ring of Y. Then there exists a number d ≥ 1 such

that

HFϑK(RY/K[x0])(i− nd) ≤ HFϑK(S/K[x0])(i) ≤ HFϑK(RY/K[x0])(i)

for all i ∈ N.

Proof. Let us denote I := P
ms′+1

s′+1 ∩ · · · ∩Pms
s and I ′ := P1 ∩ · · · ∩Ps′ . Then we have

IW = P1 ∩ · · · ∩Ps′ ∩P
ms′+1

s′+1 ∩ · · · ∩Pms
s = I ∩ I ′. Since I * Pj for j ∈ {1, . . . , s′}, the

Prime Avoidance Theorem yields I *
⋃s′

j=1 Pj. Let F ∈ I \
⋃s′

j=1 Pj be a homogeneous

polynomial of degree d, and let f be the image of F in RY. By Lemma 2.3.11, the

element f is a non-zerodivisor of RY. Moreover, we observe that FG ∈ IW for all

G ∈ IY, and for G1, . . . , Gn ∈ IY we have

∂(FG1,...,FGn)
∂(X1,...,Xn)

= F n ∂(G1,...,Gn)
∂(X1,...,Xn)

+H

with a polynomial H ∈ IY. Notice that the homogeneous polynomial H belongs to

IW ⊆ IY, since n ≥ 2 and ∂F
∂Xi
∈ P

mj−1
j for j = s′ + 1, . . . , s and i = 1, . . . , n. From

this we deduce fnϑK(RY/K[x0]) ⊆ (J + IY)/IY, where J is the preimage in P of the

Kähler different ϑK(S/K[x0]). It is obviously true that (J + IY)/IY ⊆ ϑK(RY/K[x0]),

and hence

fnϑK(RY/K[x0]) ⊆ (J + IY)/IY ⊆ ϑK(RY/K[x0]).

In particular, for every i ∈ N, we have

HFϑK(RY/K[x0])(i− nd) = HFfnϑK(RY/K[x0])(i) ≤ HF(J+IY)/IY(i) ≤ HFϑK(RY/K[x0])(i).

Moreover, we have the exact sequence

0 −→ J ∩ IY
IW

−→ J

IW
−→ J + IY

IY
−→ 0.
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Since IW ⊆ J ⊆ I, this implies IW ⊆ J ∩ IY ⊆ I ∩ IY = IW. Consequently, we get

an isomorphism J/IW ∼= (J + IY)/IY. It follows that HFϑK(S/K[x0])(i) = HFJ/IW(i) =

HF(J+IY)/IY(i) for all i ∈ N. Therefore we obtain inequalities

HFϑK(RY/K[x0])(i− nd) ≤ HFϑK(S/K[x0])(i) ≤ HFϑK(RY/K[x0])(i)

for all i ∈ N.

It is easy to apply the preceding proposition in order to see that HPϑK(S/K[x0])(z) =

HPϑK(RY/K[x0])(z). Since Y is a projective point set of PnK of degree deg(Y) = s′,

Proposition 3.3.14 yields HPϑK(RY/K[x0])(z) = s′, and so the equality of the Hilbert

polynomial of W provided by Theorem 5.3.6 follows.

Remark 5.3.8. For a fat point scheme of the form W = {p1, p2, . . . , ps; 1,m2, . . . ,ms}
in Pn, where n ≥ 2 and 2 ≤ m2 ≤ · · · ≤ ms, the Kähler different ϑK(S/K[x0]) is a prin-

cipal homogeneous ideal of S and is generated by a separator of the subscheme W\{p1}.
Indeed, letting αϑK := min{ i ∈ N | ϑK(S/K[x0])i 6= 0 }, we have HFϑK(S/K[x0])(i) = 1

for all i ≥ αϑK by Theorem 5.3.6. This means that ϑK(S/K[x0]) = 〈h〉S for some

homogeneous element h ∈ S of degree αϑK . Moreover, since h ∈ Pm2
2 ∩ · · · ∩Pms

s \P1,

it follows that h is a separator of W \ {p1}.

An upper bound for the regularity index of ϑK(S/K[x0]) in terms of m1, . . . ,ms is

given by the following corollary.

Corollary 5.3.9. Let X = {p1, . . . , ps} be a projective point set of PnK, where n ≥ 2,

and let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme supported on X with m1 =

· · · = ms′ = 1 and 2 ≤ ms′+1 ≤ · · · ≤ ms for some 1 ≤ s′ ≤ s.

(i) We have ri(ϑK(S/K[x0])) ≤ min
{
nmsrX, n(

∑s
j=1mj − 1)

}
.

(ii) If X is in general position (i.e., if no n+1 points of X lie on a hyperplane of PnK),

then we have

ri(ϑK(S/K[x0])) ≤ nmax
{
ms,

⌊
(
s∑
j=1

mj + n− 2)/n
⌋ }
.

Proof. In [DG], E.D. Davis and A.V. Geramita proved that rW ≤
∑s

j=1mj − 1. Thus

Theorem 5.3.6 yields ri(ϑK(S/K[x0])) ≤ n
(∑s

j=1 mj − 1
)
. For the proof of (i), it

remains to show that ri(ϑK(S/K[x0])) ≤ nmsrX. For j = 1, . . . , s, let Fj ∈ PrX be a

representative of the normal separator of X \ {pj} in X. For all j ∈ {1, . . . , s′}, we let

I(j) = P1 ∩ · · · ∩ P̂j ∩ · · · ∩Ps′ ∩P
ms′+1

s′+1 ∩ · · · ∩Pms
s .
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It is straightforward to check that Fms
j ∈ I(j) and Fms

j /∈ Pj for j = 1, . . . , s′. Therefore

the image fmsj of Fms
j in S is a separator of W \ {pj} in W. Now we argue as in proof

of Theorem 5.3.6 and obtain (fmsj )n ∈ ϑK(S/K[x0])nmsrX for j = 1, . . . , s′, as well

as dimK 〈 (fms1 )n, . . . , (fmss′ )n 〉K = s′. Thus we have HFϑK(S/K[x0])(nmsrX) = s′ and

ri(ϑK(S/K[x0])) ≤ nmsrX, and claim (i) follows.

Notice that the bound ri(ϑK(S/K[x0])) ≤ n
(∑s

j=1 mj− 1
)

can be derived by using

the set of separators. Explicitly, we can find a hyperplane Z+(Ljk) which contains pk

and does not contain pj for k = 1, . . . , j−1, j+1, . . . , s. We put Gj =
∏

k 6=j(Ljk)
mk ∈ P

for j = 1, . . . , s′. Thus we have Gj ∈ I(j)\Pj and deg(G1) =
∑

k 6=1mk =
∑s

k=1mk−1 =

deg(Gj) for j = 1, . . . , s′. Using a similar argument as above, we get the desired bound.

It remains to prove (ii). Since X is in general position in PnK , it follows from [CTV,

Lemma 4] that we can find t linear forms, say L′j1, . . . , L
′
jt, defining hyperplanes which

avoid pj such that Hj = L′j1 · · ·L′jt ∈ I(j). Here t is a positive integer such that

nt ≥
∑s

j=1 mj−1 and t ≥ ms. For instance, we may choose t = max
{
ms,

⌊(∑s
j=1 mj+

n − 2
)
/n
⌋}

, since
⌊(∑s

j=1 mj + n − 2
)
/n
⌋

= min{t | nt ≥
∑s

j=1 mj − 1}. Thus the

image of Hj in S is a separator of W \ {pj} in W for j = 1, . . . , s′. Reasoning as above,

we have ri(ϑK(S/K[x0])) ≤ nt = nmax
{
ms,

⌊(∑s
j=1mj + n− 2

)
/n
⌋}

.

The following examples show that the bound in this corollary is sometimes sharp,

and sometimes it is not.

Example 5.3.10. Let X = {p1, p2, p3, p4} be the projective point set of P2
Q with p1 =

(1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 0 : 1), and p4 = (1 : 1 : 1). It is clear that X is in

general position in P2
Q.

(a) The fat point scheme W1 = {p1, p2, p3, p4; 1, 1, 1, 2} has the Hilbert function

HFW1 : 1 3 6 6 · · · and the regularity index rW1 = 2. Its Kähler different satisfies

HFϑQ(S/Q[x0]) : 0 0 0 0 3 3 · · · This implies that

ri(ϑQ(S/Q[x0])) = 4 = nrW1 = nmax
{
m4,

⌊( 4∑
j=1

mj + n− 2
)
/n
⌋ }
.

(b) Now we consider the fat point scheme W2 = {p1, p2, p3, p4; 1, 1, 2, 2} in P2
Q. Here

we have HFW2 : 1 3 6 8 8 · · · and rW2 = 3. Moreover, we calculate HFϑQ(S/Q[x0]) :

0 0 0 0 1 2 2 · · · . Thus we have

ri(ϑQ(S/Q[x0])) = 5 < 6 = nrW2 = n
⌊( 4∑

j=1

mj + n− 2
)
/n
⌋
.
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Remark 5.3.11. Given a fat point scheme W whose support is in general position, if

we apply [CTV, Theorem 6] and Theorem 5.3.6 then we get

ri(ϑK(S/K[x0])) ≤ nrW ≤ nmax
{
ms +ms−1 − 1,

⌊( s∑
j=1

mj + n− 2
)
/n
⌋ }
.

In the case ms ≥
⌊(∑s

j=1mj + n− 2
)
/n
⌋
, Corollary 5.3.9(ii) gives us a better bound

for ri(ϑK(S/K[x0])) which is given by ri(ϑK(S/K[x0])) ≤ nms. For instance, we take

Supp(W) to be in general position in PnK , s′ = s − 2, ms−1 = 2 ≤ ms, and s ≤
(n− 1)ms + 1.

Let us also check the remark for an example in P3
K .

Example 5.3.12. Let W = {p1, p2, p3, p4; 1, 1, 2, 2} be the fat point scheme in P3
Q with

p1 = (1 : 0 : 0 : 0), p2 = (1 : 1 : 0 : 1), p3 = (1 : 0 : 1 : 1), and p4 = (1 : 1 : 1 : 1).

Its support X = {p1, p2, p3, p4} is clearly in general position in P3
Q. We calculate

HFW : 1 4 9 10 10 · · · and rW = 3, as well as HFϑQ(S/Q[x0]) : 0 0 0 0 0 2 2 · · · . Thus the

above inequality reads

ri(ϑQ(S/Q[x0])) = 5 < 6 = nmax
{
m4,

⌊( 4∑
j=1

mj + n− 2
)
/n
⌋ }

< 9 = nrW.

Based on the notion of Cayley-Bacharach property and Liaison theory introduced

in Section 4.1 and Section 4.3, we can now improve the bound for the regularity index

of the Kähler different.

Proposition 5.3.13. Let n ≥ 2, and let X = {p1, . . . , ps} be a projective point set

of PnK which is arithmetically Gorenstein. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat

point scheme in PnK supported at X. Assume that K is infinite and that there exists a

number s′ ∈ {1, . . . , s} such that m1 = · · · = ms′ = 1 and 2 ≤ ms′+1 ≤ · · · ≤ ms. Let

Y be the subscheme Y = {p1, . . . , ps′} of X, and let d ∈ {1, . . . , rY − 1} be the greatest

integer such that Y has CBP(d). Then we have

ri(ϑK(S/K[x0])) ≤ n
(
ms(rX − d− 1) + rY

)
.

Proof. Let Y′ = X\Y be the residual scheme of Y in X, and let IY′ be the homogeneous

vanishing ideal of Y′. Since Y has CBP(d), Theorem 4.3.6 implies that there exists an el-

ement of (IY′)rX−d−1, namelyH, which does not vanish at any point of Y. Hence we have

Hms ∈ P
ms′+1

s′+1 ∩ · · · ∩Pms
s and Hms /∈ Pj for j = 1, . . . , s′. Therefore the image h of H

in the homogeneous coordinate ring RY of Y is a non-zerodivisor (see Lemma 2.3.11).

As in the proof of Proposition 5.3.7, we obtain (hms)nϑK(RY/K[x0])) ⊆ (J + IY)/IY,
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where J is the homogeneous ideal of P such that ϑK(S/K[x0]) = J/IW, and where

the regularity index of the ideal (hms)nϑK(RY/K[x0]) is greater than or equal to the

regularity index of the Kähler different ϑK(S/K[x0]).

On the other hand, since Y is a projective point set of PnK of degree s′, we have

ri(ϑK(RY/K[x0])) ≤ nrY by Proposition 3.3.14. Altogether, we get

ri((hms)nϑK(RY/K[x0])) = deg((hms)n) + ri(ϑK(RY/K[x0]))

= nms(rX − d− 1) + ri(ϑK(RY/K[x0]))

≤ n
(
ms(rX − d− 1) + rY

)
,

and hence ri(ϑK(S/K[x0])) ≤ ri((hms)nϑK(RY/K[x0])) ≤ n
(
ms(rX − d − 1) + rY

)
, as

we wanted to show.

The following example shows that a strict inequality ri(ϑK(S/K[x0])) < nrW can

occur even for a fat point scheme W supported at a set of points X which is contained

in a line.

Example 5.3.14. Let n ≥ 2, and let X = {p1, . . . , ps} ⊆ PnK be a projective point

set which lies on a line. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme

in PnK supported at X. W.l.o.g. we may assume that m1 = · · · = ms′ = 1 and

2 ≤ ms′+1 ≤ · · · ≤ ms for some 1 ≤ s′ < s. Recall that we have rW =
∑s

i=1 mi − 1.

In this setting, the schemes X and Y = {p1, . . . , ps′} are complete intersections, and

we have rX = s−1 and rY = s′−1. Therefore Y is a CB-scheme and ri(ϑK(RY/K[x0])) =

2rY. Using the argument of the proof of Proposition 5.3.13, we get

ri(ϑK(S/K[x0])) ≤ nms(rX − (rY − 1)− 1) + 2rY = nms(s− s′) + 2(s′ − 1).

This bound shows that the strict inequality ri(ϑK(S/K[x0])) < nrW can occur even

when X lies on a line.

For instance, consider the case n = 4 and ms = · · · = ms′+1 = 3. Then we have

ri(ϑK(S/K[x0])) ≤ 12(s − s′) + 2(s′ − 1) = 12s − 10s′ − 2 and rW =
∑s

i=1mi − 1 =

3(s − s′) + s′ − 1 = 3s − 2s′ − 1. The inequality 12s − 10s′ − 2 < 4(3s − 2s′ − 1) is

equivalent to s′ > 1. Therefore, if s′ > 1, then we have ri(ϑK(S/K[x0])) < 4rW.

As in the previous proposition, in order to estimate ri(ϑK(S/K[x0])) we need to

find a hypersurface Z+(H) of minimal degree which contains the fat point scheme Y′ =
{ps′+1, . . . , ps;ms′+1, . . . ,ms} but does not pass through any of the points p1, . . . , ps′ .

Using the technique in [TV, Theorem 2.2], we obtain the following upper bound for

the regularity index ri(ϑK(S/K[x0])).
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Proposition 5.3.15. Let K be a infinite field, let n ≥ 2, and let X = {p1, . . . , ps} be

a projective point set of PnK. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme

in PnK supported at X. W.l.o.g. we may assume that m1 = · · · = ms′ = 1 and

2 ≤ ms′+1 ≤ · · · ≤ ms for some 1 ≤ s′ < s. Suppose that every subscheme X′ ⊆ X of

degree ≤ s− s′ + 1 satisfies

HFX′(i) = min{HFX(i), deg(X′) }

for all i ∈ Z. Let X′′ ⊆ X be a subscheme of degree s − s′ + 1, let d be the regularity

index of X′′, let hi = HFX′′(i) for i = 0, . . . , d, and let Y = {p1, . . . , ps′}. Then we have

ri(ϑK(S/K[x0])) ≤ n
( d−1∑
i=0

ms−hi+1 + rY
)
.

Proof. We first see that hi = HFX(i) for i = 0, . . . , d−1 and hd = deg(X′′) = s−s′+1 ≤
HFX(d). So we get s− hi + 2 ≥ s′ + 1 for every i ∈ {1, . . . , d} and s− hd + 2 = s′ + 1.

Now we let j ∈ {1, . . . , s′} and i ∈ {1, . . . , d}. For the sets V = {ps−hi+2, . . . , ps} and

V′ = V ∪ {pj}, we have deg(V) = hi − 1 and deg(V′) = hi. By assumption, we know

that

HFV(i) = min{HFX(i), hi − 1 } = hi − 1 < hi = deg(V′).

Thus we can find a hypersurface Z+(Hi) of degree i passing through all points of V
but avoiding pj. For k ∈ {1, . . . , s− s′}, let t be the least integer such that k ≤ ht− 1.

Then we have s− k+ 1 ≤ s− ht−1 + 1, t ≤ d, and Hi ∈ Ps−k+1 for all i ≥ t. Hence we

obtain

H
ms−ht−1+1−ms−ht+1

t · · ·H
ms−hd−2+1−ms−hd−1+1

d−1 H
ms−hd−1+1

d ∈ P
ms−ht−1+1

s−k+1 ⊆ P
ms−k+1

s−k+1 .

Next we define H̃j := H
ms−h0+1−ms−h1+1

1 · · ·H
ms−hd−2+1−ms−hd−1+1

d−1 H
ms−hd−1+1

d . We have

H̃j ∈ P
ms′+1

s′+1 ∩ · · · ∩Pms
s \Pj. From this we deduce that H̃j(pj) 6= 0 for j = 1, . . . , s′.

Since K is infinite, we can find elements λ1, . . . , λs′ in K such that H := λ1H̃1 +

· · · + λs′H̃s′ does not vanish at any point of Y = {p1, . . . , ps′}. Clearly, we have

H ∈ P
ms′+1

s′+1 ∩ · · · ∩Pms
s , and the image of H in RY is a non-zerodivisor. The degree

of H satisfies deg(H) = (ms−h0+1 − ms−h1+1) + 2(ms−h1+1 − ms−h2+1) + · · · + (d −
1)(ms−hd−2+1 −ms−hd−1+1) + dms−hd−1+1 =

∑d−1
i=0 ms−hi+1. Arguing as in the proof of

Proposition 5.3.13, we obtain ri(ϑK(S/K[x0])) ≤ n
(∑d−1

i=0 ms−hi+1+rY
)

as claimed.

The Hilbert polynomials and the regularity indices of the Kähler differents ϑ(i)(S/K)

can be derived from those for S/K[x0] and are given by the following proposition.



186 5. Differents for Some Special Cases and Applications

Proposition 5.3.16. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme in PnK,

where n ≥ 2, such that m1 = · · · = ms′ = 1 and 2 ≤ ms′+1 ≤ · · · ≤ ms for some

0 ≤ s′ ≤ s. The following assertions hold true.

(i) We have ϑ(i)(S/K) = 〈0〉 for some i ∈ {1, . . . , n− 1} if and only if s′ = 0.

(ii) For i ∈ {1, . . . , n−1}, we have HPϑ(i)(S/K)(z) = s′, ri(ϑ(i)(S/K)) ≤ ri(ϑ(1)(S/K))

and ri(ϑK(S/K[x0]))− 1 ≤ ri(ϑ(1)(S/K)) ≤ ri(ϑK(S/K[x0])).

(iii) We have ϑ(n)(S/K) 6= 〈0〉 and its Hilbert polynomial satisfies

s′ ≤ HPϑ(n)(S/K)(z) ≤
s∑
j=1

(
mj + n− 2

n− 1

)
.

Proof. First we prove (i). Proposition5.2.2 yields that HPϑK(S/K[x0])(z)=HPϑ(1)(S/K)(z).

Therefore Theorem 5.3.6 implies the equalities HPϑ(1)(S/K)(z) = HPϑK(S/K[x0])(z) = s′.

If we have ϑ(i)(S/K) = 〈0〉 for some i ∈ {1, . . . , n − 1}, then we get ϑ(1)(S/K) = 〈0〉,
and hence s′ = 0.

Conversely, suppose that s′ = 0. Let {G1, . . . , Gr} be a minimal homogeneous

system of generators of IW. Since mj ≥ 2 for j = 1, . . . , s, we know that ∂Gk/∂Xl ∈
P
mj−1
j for k ∈ {1, . . . , r} and l ∈ {0, . . . , n}. Now i ≤ n− 1 implies that all (n+ 1− i)-

minors of the Jacobian matrix
(
∂Gk
∂Xl

)
k=1,...,t
l=0,...,n

are contained in IW. Therefore we get

ϑ(i)(S/K) = 〈0〉 and claim (i) follows.

To prove (ii), we note that s′ = HPϑ(1)(S/K)(z) ≤ HPϑ(i)(S/K)(z). Furthermore, we

have ϑ(i)(S/K) ⊆ (
⋂s
j=s′+1 P

mj
j )/IW. This implies

HPϑ(i)(S/K)(z) ≤ HP
(
⋂s
j=s′+1 P

mj
j )/IW

(z) = HPW(z)− HP
P/

⋂s
j=s′+1 P

mj
j

(z) = s′.

Thus we get HPϑ(i)(S/K)(z) = s′ for i = 1, . . . , n− 1. Moreover, it is clear that

ri(ϑ(i)(S/K)) ≤ ri(ϑ(1)(S/K)) ≤ ri(ϑK(S/K[x0])).

Also, the inequalities ri(ϑK(S/K[x0])) − 1 ≤ ri(ϑ(1)(S/K)) ≤ ri(ϑK(S/K[x0])) follows

from Proposition 5.2.2.

Finally, we prove (iii). We have ϑ(n)(S/K) =
〈
∂Gk
∂xl
| 1 ≤ k ≤ r, 0 ≤ l ≤ n

〉
S
6= 〈0〉.

Since it follows from (ii) that s′ = HPϑ(n−1)(S/K)(z) ≤ HPϑ(n)(S/K)(z), it remains to show

the last inequality. It is easy to check that ϑ(n)(S/K) ⊆ P
mj−1
j /IW for j = s′+1, . . . , s.
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Hence we get ϑ(n)(S/K) ⊆ (
⋂s
j=s′+1 P

mj−1
j )/IW. Thus we find

HPϑ(n)(S/K)(z) ≤ HP
(
⋂s
j=s′+1 P

mj−1

j )/IW
(z) = HPW(z)− HP

P/
⋂s
j=s′+1 P

mj−1

j

(z)

=
s∑
j=1

(
mj + n− 1

n

)
−

s∑
j=s′+1

(
mj + n− 2

n

)

=
s∑
j=1

[(
mj + n− 1

n

)
−
(
mj + n− 2

n

)]
=

s∑
j=1

(
mj + n− 2

n− 1

)
.

and claim (iii) is proved.

Remark 5.3.17. If s′ < s, then there exists an index j ∈ {1, . . . , s} such that 〈0〉 6=
ϑ(n)(S/K) ⊆ Pj. Proposition 2.2.10 implies that µ(Ω1

S/K) = n + 1, and hence the set

{dx0, . . . , dxn} is a minimal system of generators of Ω1
S/K .

Both in Section 3.2 and in Section 3.3, we have seen that the Noether different for

a 0-dimensional smooth scheme in PnK contains a homogeneous non-zerodivisor of the

homogeneous coordinate ring of the scheme. However, this property is not true for an

arbitrary fat point scheme in PnK , as the following proposition shows.

Proposition 5.3.18. Let W = {p1, . . . , ps;m1, . . . ,ms} be a fat point scheme in Pn

such that m1 = · · · = ms′ = 1 and 2 ≤ ms′+1 ≤ · · · ≤ ms for some 0 ≤ s′ ≤ s. Then

the Noether different of S/K[x0] satisfies ϑN(S/K[x0]) ⊆ ϑ(n)(S/K) and

s′ ≤ HPϑN (S/K[x0])(z) ≤
s∑
j=1

(
mj + n− 2

n− 1

)
,

and it does not contain a homogeneous non-zerodivisor of S. In particular, if n = 1

and we let µ =
∑s

j=1mj, then ϑN(S/K[x0]) = ϑK(S/K[x0]) and

HFϑN (S/K[x0]) : 0 · · · 0 1
[µ−1]

2 3 · · · s− 1 s
[µ+s−2]

s · · · .

Proof. Let {G1, . . . , Gr} be a minimal homogeneous system of generators of IW. Let

h ∈ ϑN(S/K[x0]) \ {0}, and let H be a representative of h in P . By Corollary 3.1.5,

we have H · (Xi − xi) ∈ IWS[X1, . . . , Xn] for i = 1, . . . , n. So, there are homogeneous

elements Hi1, . . . , Hir ∈ S[X1, . . . , Xn] such that H · (Xi − xi) =
∑r

j=1HijGj. Then
∂(H·(Xi−xi))

∂Xi
= (Xi − xi) ∂H∂Xi + H =

∑r
j=1(Hij

∂Gj
∂Xi

+ Gj
∂Hij
∂Xi

). By taking the image in S,

the last equality becomes h =
∑t

j=1 hij
∂Gj
∂xi

, where hij is the image of Hij in S. This

implies h ∈
〈 ∂Gj
∂xi
| 1 ≤ j ≤ t, 0 ≤ i ≤ n

〉
S

= ϑ(n)(S/K). Hence we obtain the
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inclusion ϑN(S/K[x0]) ⊆ ϑ(n)(S/K) and Proposition 5.3.16(iii) yields

HPϑN (S/K[x0])(z) ≤ HPϑ(n)(S/K)(z) ≤
s∑
j=1

(
mj + n− 2

n− 1

)
.

On the other hand, if n = 1, then the scheme W is a complete intersection. In

this case, we have ϑK(S/K[x0]) = ϑN(S/K[x0]) by Corollary 3.3.5. Consequently,

the above description of HFϑN (S/K[x0]) follows from Lemma 5.3.3. In particular, we

have HPϑN (S/K[x0])(z) = HPϑK(S/K[x0])(z) = s ≥ s′. In the case n ≥ 2, it follows

from Proposition 3.3.9 that ϑK(S/K[x0]) ⊆ ϑN(S/K[x0]). Then Theorem 5.3.6 yields

HPϑN (S/K[x0])(z)≥HPϑK(S/K[x0])(z)=s′. Thus we have shown that HPϑN (S/K[x0])(z)≥s′.
Furthermore, the ideal ϑN(S/K[x0]) does not contain a homogeneous non-zerodivisor

of S, since otherwise we would have HPϑN (S/K[x0])(z) = deg(W) >
∑s

j=1

(
mj+n−2
n−1

)
.

Therefore the proof of the proposition is complete.

Finally, we give an example of a fat point scheme W in PnK supported at a complete

intersection, and we compute HFϑK(S/K[x0]), HFϑ(i)(S/K), and HFϑN (S/K[x0]) in this case.

Moreover, this example shows that the upper bound of HPϑ(n)(S/K)(z) given in Propo-

sition 5.3.16 is sharp, and that the Noether and Kähler differents of S/K[x0] have the

same Hilbert polynomial but do not agree.

Example 5.3.19. Let W = {p1, . . . , p9;m1, . . . ,m9} be the fat point scheme in P4
Q,

where p1 = (1 : 0 : 0 : 1 : 1), p2 = (1 : 1 : 0 : 1 : 1), p3 = (1 : 0 : 1 : 1 : 1),

p4 = (1 : 1 : 1 : 1 : 1), p5 = (1 : 2 : 0 : 1 : 1), p6 = (1 : 0 : 2 : 1 : 1), p7 = (1 : 1 : 2 : 1 : 1),

p8 = (1 : 2 : 1 : 1 : 1), and p9 = (1 : 2 : 2 : 1 : 1), and where m1 = · · · = m5 = 1

and m6 = · · · = m9 = 2. Then the support of W is a complete intersection, and we

have HFW : 1 5 12 18 23 25 · · · and rW = 5. It is not difficult to calculate the following

Hilbert functions

HFϑK(S/Q[x0]) : 0 0 0 0 0 0 0 0 0 0 0 0 4 5 5 · · ·
HFϑ(1)(S/Q[x0]) : 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 · · ·
HFϑ(4)(S/Q[x0]) : 0 2 8 14 19 21 21 · · ·
HFϑN (S/Q[x0]) : 0 0 0 0 0 0 0 0 3 5 5 · · ·

Thus we get HPϑ(4)(S/Q[x0])(z) =
∑s

j=1

(
mj+n−2
n−1

)
= 21 and ri(ϑ(4)(S/Q[x0])) = 5. This

indicates that the upper bound of HPϑ(n)(S/K[x0])(z) given in Proposition 5.3.16 is sharp.

Also, we have HPϑK(S/Q[x0])(z) = HPϑ(1)(S/Q[x0])(z) = HPϑN (S/Q[x0])(z) = s′ = 5 and

ri(ϑN(S/Q[x0])) = 9 < ri(ϑ(1)(S/Q[x0])) = 12 < ri(ϑK(S/Q[x0])) = 13.

Hence the Hilbert polynomials of ϑN(S/Q[x0]) and ϑK(S/Q[x0]) are equal, but their

Hilbert functions are not equal.



Appendix

In Chapter 3 we have discussed the computation of the Noether, Dedekind and Kähler

differents for 0-dimensional schemes in PnK . In particular, we have explained algorithms

for computing these differents and their Hilbert functions. In this appendix we provide

the functions which implement these algorithms in ApCoCoA and describe their usage

with some examples. The computer algebra system ApCoCoA is primarily designed

for working with real world problems by using symbolic computation methods and by

developing new libraries for related computations. It can be obtained for free via the

ApCoCoA home page:

http://www.apcocoa.org

There are also a comprehensive manual and a series of tutorials at this web address.

The default term ordering for the rings in ApCoCoA is defined as DegRevLex. We

use this term ordering for our computations in all examples of the appendix.

A.1 Implementation of the Division Algorithm 3.1.6

-----------------------------------------------------------------------------

-- NRR(F,GG,FF): Perform division in the residual class ring R = P/I_X

-- where P=K[X_0,...,X_n] is the standard graded polynomial ring over

-- a field K with deg(X_i)=1 and I_X is a homogeneous ideal of P

-- defining a 0-dimensional scheme X in P^n_K.

-- Input: F a homogeneous normal polynomial modulo I_X = <FF>

-- FF a list of a homogeneous Groebner basis of I_X

-- GG a list of homogeneous normal polynomials modulo I_X

-- Output: A list [R1,R2,[Q_i]] such that F = sum_iG_iQ_i+ R1 + R2, R2 in I_X

-----------------------------------------------------------------------------

Define NRR(F,GG,FF)

If GG <> [] Then
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K1 := Len(GG); Q := NewList(K1,0);

R1 := 0; R2 := 0; V := F;

LTG := [LT(P) | P In GG];

Repeat

If NR(LT(V), LTG) = 0 Then

D := DivAlg(LT(V), LTG);

DD := D.Quotients;

For I := 1 To Len(DD) Do

If DD[I] <> 0 Then

C := LC(V)/LC(GG[I]);

Q[I] := Q[I] + C*DD[I];

R2 := R2 + C*(NR(DD[I]*GG[I],FF) - DD[I]*GG[I]);

V := V - C*NR(DD[I]*GG[I],FF) ;

EndIf;

EndFor;

Else R1 := R1 + LM(V); V := V - LM(V);

EndIf;

Until V = 0;

Return [R1,R2,Q];

Else Return [F,0,Q];

EndIf;

EndDefine;

Example A.1.1. Consider the projective point set X = {p1, . . . , p5} ⊆ P2
F3

, where

p1 = (1 : 0 : 0), p2 = (1 : 1 : 1), p3 = (1 : 2 : 0), p4 = (1 : 0 : 2), and p5 = (1 : 2 : 2).

Then a homogeneous Gröbner basis of IX is F = {X0X1 +X2
1 −X0X2 −X2

2 , X
2
1X2 −

X1X
2
2 , X

2
0X2−X3

2}. Let F = −X4
1 +X0X

3
2 −X1X

3
2 +X4

2 be the homogeneous normal

polynomial modulo IX, and let G be the tuple consisting of the following three normal

homogeneous polynomials modulo IX: G1 = X3
1 − X3

2 , G2 = X3
0 − X3

2 , and G3 =

X1X
3
2 −X4

2 . To compute NRσ,IX,G(F ), we run the following commands in ApCoCoA:

Use ZZ/(3)[x[0..2]];

F := - x[1]^4 + x[0]x[2]^3 - x[1]x[2]^3 + x[2]^4;

FF := [x[0]x[1] + x[1]^2 - x[0]x[2] - x[2]^2, x[1]^2x[2] - x[1]x[2]^2,

x[0]^2x[2] - x[2]^3];

GG := [x[1]^3 - x[2]^3, x[0]^3 - x[2]^3, x[1]x[2]^3 - x[2]^4];

NRR(F,GG,FF);

The output of these commands is the following list whose first element is NRσ,IX,G(F ):

[x[0]x[2]^3 - x[2]^4, 0, [-x[1], 0, 1]].
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A.2 The Buchberger Algorithm with Minimalization 3.1.10

-----------------------------------------------------------------------------

-- HBAM(HH, FF): Compute a minimal homogeneous system of generators of J/I_X

-- Input: FF a list of a homogeneous Groebner basis of I_X = <FF>

-- HH = [H_1,...,H_s] a list of homogeneous normal polynomials

-- modulo I_X such that J = <HH> + I_X and deg(H_1) <=...<= deg(H_s)

-- Output: A list whose elements generate minimally J/I_X

-----------------------------------------------------------------------------

Define HBAM(HH, FF)

SS := []; VV := HH; GG := []; N := 0; HHmin := [];

D := 0; Dmax := Deg(HH[Len(HH)]);

SSd := []; VVd := [];

Repeat

CC := ConcatLists([SS,VV]);

D := Deg(CC[1]);

For I := 2 To Len(CC) Do

If D > Deg(CC[I]) Then D := Deg(CC[I]); EndIf;

EndFor;

If SS <> [] Then

SSd := [F | F In SS And Deg(F)=D];

SS := [F | F In SS And Deg(F)>D];

EndIf;

If VV <> [] Then

VVd := [F | F In VV And Deg(F)=D];

VV := [F | F In VV And Deg(F)>D];

EndIf;

While SSd <> [] Do

S1 := SSd[1]; Remove(SSd,1);

NRS1 := NRR(S1,GG,FF); S11 := NRS1[1];

If S11 <> 0 Then

N := N+1; Append(GG,S11);

For I := 1 To N Do

SI := LCM(LT(GG[I]), LT(GG[N]))* GG[I]/LM(GG[I])

- LCM(LT(GG[I]), LT(GG[N]))* GG[N]/LM(GG[N]);

Sin := NR(SI, FF);

If Sin <> 0 And Deg(Sin) <= Dmax Then

Append(SS, Sin);

EndIf;

EndFor;

For J := 1 To Len(FF) Do

SJ := LCM(LT(GG[N]), LT(FF[J]))* GG[N]/LM(GG[N])

- LCM(LT(GG[N]), LT(FF[J]))* FF[J]/LM(FF[J]);
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Snj := NR(SJ, FF);

If Snj <> 0 And Deg(Snj) <= Dmax Then

Append(SS, Snj);

EndIf;

EndFor;

EndIf;

EndWhile;

While VVd <> [] Do

H1 := VVd[1]; Remove(VVd,1);

NRH1 := NRR(H1,GG,FF);

H11 := NRH1[1];

If H11 <> 0 Then

N := N+1; Append(GG,H11); Append(HHmin,H1);

For I:= 1 To N Do

SI := LCM(LT(GG[I]), LT(GG[N]))* GG[I]/LM(GG[I])

- LCM(LT(GG[I]), LT(GG[N]))* GG[N]/LM(GG[N]);

Sin := NR(SI, FF);

If Sin <> 0 And Deg(Sin) <= Dmax Then

Append(SS, Sin);

EndIf;

EndFor;

For J:= 1 To Len(FF) Do

SJ := LCM(LT(GG[N]), LT(FF[J]))* GG[N]/LM(GG[N])

- LCM(LT(GG[N]), LT(FF[J]))* FF[J]/LM(FF[J]);

Snj := NR(SJ, FF);

If Snj <> 0 And Deg(Snj) <= Dmax Then

Append(SS, Snj);

EndIf;

EndFor;

EndIf;

EndWhile;

Until (SS = [] And VV = []);

Return HHmin;

EndDefine;

Example A.2.1. Going back to Example A.1.1, we have seen that F = {X0X1+X2
1−

X0X2−X2
2 , X

2
1X2−X1X

2
2 , X

2
0X2−X3

2} is a homogeneous Gröbner basis of the vanishing

ideal IX of X. Let J be the homogeneous ideal of P generated by F ∪ {H1, . . . , H4},
where H1 = X3

1 − X3
2 , H2 = X3

0 − X3
2 , H3 = X0X

3
2 − X4

2 , and H4 = X4
2 . Note that

all Hi are normal homogeneous polynomials modulo IX and deg(H1) ≤ · · · ≤ deg(H4).

We can compute a minimal homogeneous system of generators of the ideal J/IX by

running the following commands in ApCoCoA:
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Use ZZ/(3)[x[0..2]];

FF := [x[0]x[1] + x[1]^2 - x[0]x[2] - x[2]^2, x[1]^2x[2] - x[1]x[2]^2,

x[0]^2x[2] - x[2]^3];

HH := [x[1]^3 - x[2]^3, x[0]^3 - x[2]^3, x[0]x[2]^3 - x[2]^4, x[2]^4];

HBAM(HH,FF);

The output of the above commands is the following list of minimal generators of J/IX:

[x[1]^3 - x[2]^3, x[0]^3 - x[2]^3, x[2]^4].

A.3 Computation of the Noether Different 3.1.13

----------------------------------------------------------------------------

-- NoetherDifferentRel(PP): Compute the Noether different

-- Input: PP = a list of points in P^n_K which are not contained in Z^+(x_0)

-- or a homogeneous vanishing ideal of a 0-dimensional scheme

-- in P^n_K which does not intersect Z^+(x_0)

-- Output: A list of minimal generators of the Noether different

----------------------------------------------------------------------------

Define NoetherDifferentRel(PP)

If Type(PP) = IDEAL Then

IP := Minimalized(PP);

Else IP := IdealOfProjectivePoints(PP);

EndIf;

N := Len(Indets()) - 1;

Qxy ::= CoeffRing[x[0..N],y[1..N]];

Using Qxy Do

L := ConcatLists([[x[0]],[y[I] | I In 1..N]]); F := RMap(L);

L1 := [x[I]| I In 0..N]; F1 := RMap(L1);

J1 := Image(IP,F); GJ1 := ReducedGBasis(J1);

J2 := Image(IP,F1);

J3 := Ideal([x[I]-y[I] | I In 1..N]);

J := (J2 + J1) : (J3 + J1);

EndUsing;

L3 := Indets(); L4 := ConcatLists([L3, Last(L3,N)]);

F2 := RMap(L4); PL := ReducedGBasis(Image(J,F2));

If Len(PL) > 1 Then

For I := 1 To Len(PL) Do

For J := I + 1 To Len(PL) Do

If LT(PL[I])>LT(PL[J]) Then

CH := PL[I]; PL[I] := PL[J]; PL[J] := CH;

EndIf;

EndFor;

EndFor;
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EndIf;

GIP := GBasis(IP); D := Len(PL); T := 1;

While T < D + 1 Do

If NR(PL[T],GIP) = 0 Then

Remove(PL,T); D := Len(PL); T := 1;

Else PL[T] := NR(PL[T],GIP); T := T + 1;

EndIf;

EndWhile;

NL := HBAM(PL, GBasis(IP));

Return NL;

EndDefine;

Example A.3.1. Let us compute the Noether different for the 0-dimensional scheme

X ⊆ P2
Q of degree 16 defined by IX =

⋂7
j=1 Ij, where I1 = 〈X0 − X1, X2〉, I2 =

〈X1, X0 + X2〉, I3 = 〈X0 − X1, 2X0 − X2〉, I4 = 〈X0 − X1, X0 − X2〉, I5 = 〈X1, X2〉2,

I6 = 〈3X2
0 + X2

1 , X2〉2, and I7 = 〈X1, 2X
3
0 + X3

2 〉. We run the following commands in

ApCoCoA:

Use QQ[x[0..2]];

I1 := Ideal([x[0]-x[1],x[2]]);

I2 := Ideal([x[1],x[0]+x[2]]);

I3 := Ideal([x[0]-x[1],2x[0]-x[2]]);

I4 := Ideal([x[0]-x[1],x[0]-x[2]]);

I5 := Ideal([x[1],x[2]])^2;

I6 := Ideal([3x[0]^2+x[1]^2,x[2]])^2;

I7 := Ideal([x[1], 2x[0]^3+x[2]^3]);

IP := Intersection(I1, I2, I3, I4, I5, I6, I7);

NoetherDifferentRel(IP);

The result of these commands is the following list of minimal generators of the Noether

different.

[x[1]^2x[2]^4 - 3/5x[1]x[2]^5, x[0]^2x[2]^6 + 23/25x[0]x[2]^7 + 1/25x[2]^8,

x[0]^3x[2]^5 - 3/25x[0]x[2]^7 + 14/25x[2]^8, x[0]^4x[1]^5 + 2/3x[0]^2x[1]^7

+ 1/9x[1]^9].

A.4 Computation of the Dedekind Different 3.2.29

----------------------------------------------------------------------------

-- DedekindDifferentRel(PP): Compute the Dedekind different

-- Input: PP = a list of points in P^n_K which are not contained in Z^+(x_0)

-- Output: A list of minimal generators of the Dedekind different

----------------------------------------------------------------------------
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Define DedekindDifferentRel(PP)

N := Len(PP[1]) - 1;

PP := [(PP[I][1])^(-1)*PP[I] | I In 1..Len(PP)];

RR ::= CoeffRing[x[1..N]];

IP := IdealOfProjectivePoints(PP);

S := SeparatorsOfProjectivePoints(PP);

Rx := RegularityIndex(Hilbert(CurrentRing()/IP));

P1 := [Last(PP[I],N) | I In 1..Len(PP)];

Using RR Do

I1 := IdealOfPoints(P1); OI := QuotientBasis(I1);

L1 := ConcatLists([[1],Indets()]); F := RMap(L1);

S1 := Image(S,F); GI1 := GBasis(I1);

S2 := [NR(S1[I],GI1)| I In 1..Len(S1)];

OA := NewList(0); D := 1;

For J := 1 To Len(OI) Do

For I := 1 To N Do

If (x[I]*OI[J] IsIn OI) Then D := D + 1; EndIf;

EndFor;

If D = 1 Then Append(OA, OI[J]); Else D := 1; EndIf;

EndFor;

EndUsing;

L2 := Indets(); F1 := RMap(Last(L2,N));

OP := Image(OA,F1); S3 := Image(S2,F1);

SI := ConcatLists([Homogenized(L2[1], [S3[I]])| I In 1..Len(S3)]);

S := [L2[1]^(Rx-Deg(F))*F | F In SI];

L3 := []; V := NewList(Len(OP));

For I := 1 To Len(OP) Do

L3 := [CoeffOfTerm(L2[1]^(Rx-Deg(OP[I]))*OP[I], F )| F In S];

V[I] := (L2[1]^(Rx-Deg(OP[I])))*Sum([S[J]*L3[J] | J In 1..Len(S)]);

EndFor;

PL := ReducedGBasis((Ideal(L2[1]^(2*Rx)) + IP): Ideal(V) + IP);

If Len(PL) > 1 Then

For I := 1 To Len(PL)-1 Do

For J := I+1 To Len(PL) Do

If LT(PL[I]) > LT(PL[J]) Then

CH := PL[I]; PL[I] := PL[J]; PL[J] := CH;

EndIf;

EndFor;

EndFor;

EndIf;

GIP := GBasis(IP); D := Len(PL); T := 1;

While T < D + 1 Do

If NR(PL[T],GIP) = 0 Then
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Remove(PL,T); D := Len(PL); T := 1;

Else PL[T] := NR(PL[T],GIP); T := T + 1;

EndIf;

EndWhile;

NL := HBAM(PL, GBasis(IP));

Return NL;

EndDefine;

Example A.4.1. Let X ⊆ P3
Q be the projective point set consisting of eight points

p1 = (1 : 0 : 0 : 0), p2 = (1 : 1 : 0 : 0), p3 = (1 : −1 : 0 : 0), p4 = (1 : 2 : 0 : 0),

p5 = (1 : 0 : 1 : 1), p6 = (1 : 0 : 0 : 1), p7 = (1 : 0 : −1 : 1), and p8 = (1 : 0 : 2 : 1).

In order to compute the Noether and Dedekind differents for X, we run the following

commands in ApCoCoA:

Use QQ[x[0..3]];

PP := [[1,0,0,0], [1,1,0,0], [1,-1,0,0], [1,2,0,0],

[1,0,0,1], [1,0,1,1], [1,0,-1,1], [1,0,2,1]];

NoetherDifferentRel(PP);

DedekindDifferentRel(PP);

The results of these commands are the following two lists of minimal generators of the

Noether and Dedekind differents respectively.

[x[2]^2x[3]^2 - x[2]x[3]^3 - 1/5x[3]^4, x[2]^3x[3] - 2x[2]x[3]^3 + 1/5x[3]^4,

x[0]^2x[1]^2 + 4x[0]x[1]^3 - 3x[1]^4, x[0]^4 + 15x[0]x[1]^3 - 10x[1]^4 - x[3]^4]

-------------------------------

[x[2]^2x[3]^2 - x[2]x[3]^3 - 1/5x[3]^4, x[2]^3x[3] - 2x[2]x[3]^3 + 1/5x[3]^4,

x[0]^2x[1]^2 + 4x[0]x[1]^3 - 3x[1]^4, x[0]^4 + 15x[0]x[1]^3 - 10x[1]^4 - x[3]^4]

Thus the Noether and Dedekind differents are equal in this case.

A.5 Computation of the Hilbert Function of the ND-Different

----------------------------------------------------------------------------

-- HilbertNDDiff(PP): Compute the Hilbert function of the ND-different

-- Input: PP = a list of points in P^n_K which are not contained in Z^+(x_0)

-- Output: The Hilbert function of the ND-different

----------------------------------------------------------------------------

Define HilbertNDDiff(PP)

N := Len(PP[1]) - 1;

PP := [(PP[I][1])^(-1)*PP[I] | I In 1..Len(PP)];

RR ::= CoeffRing[x[1..N]];

IP := IdealOfProjectivePoints(PP);
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S := SeparatorsOfProjectivePoints(PP);

HF1 := HilbertFn(CurrentRing()/IP);

Rx := RegularityIndex(HF1);

P1 := [Last(PP[I],N) | I In 1..Len(PP)];

Using RR Do

I1 := IdealOfPoints(P1); OI := QuotientBasis(I1);

L1 := ConcatLists([[1],Indets()]);

F := RMap(L1); S1 := Image(S,F); GI1 := GBasis(I1);

S2 := [NR(S1[I],GI1)| I In 1..Len(S1)];

OA := NewList(0); D := 1;

For J := 1 To Len(OI) Do

For I := 1 To N Do

If (x[I]*OI[J] IsIn OI) Then D := D + 1; EndIf;

EndFor;

If D = 1 Then Append(OA, OI[J]); Else D := 1; EndIf;

EndFor;

EndUsing;

L2 := Indets(); F1 := RMap(Last(L2,N));

OP := Image(OA,F1); S3 := Image(S2,F1);

SI := ConcatLists([Homogenized(L2[1], [S3[I]])| I In 1..Len(S3)]);

S := [L2[1]^(Rx-Deg(F))*F | F In SI];

L3 := []; V := NewList(Len(OP));

For I := 1 To Len(OP) Do

L3 := [CoeffOfTerm(L2[1]^(Rx-Deg(OP[I]))*OP[I], F )| F In S];

V[I] := (L2[1]^(Rx-Deg(OP[I])))*Sum([S[J]*L3[J] | J In 1..Len(S)]);

EndFor;

PL := (Ideal(L2[1]^(2*Rx)) + IP): Ideal(V) + IP;

HF2 := HilbertFn(CurrentRing()/PL);

EvalHF := [EvalHilbertFn(HF1,K) - EvalHilbertFn(HF2,K)| K In 0..2*Rx];

Rvd := Len(EvalHF)-1;

For I := 1 To Rvd Do PrintLn "H(",I-1,") = ",EvalHF[I]

EndFor;

Using QQt Do

Print "H(t) = ", EvalHF[Rvd+1], " for t >= ", Rvd

EndUsing;

EndDefine;

Example A.5.1. Let X ⊆ P3
Q be the projective point set given in Example A.4.1.

The Hilbert function of the ND-different can be computed by running the following

commands in ApCoCoA:

Use QQ[x[0..3]];

PP := [[1,0,0,0], [1,1,0,0], [1,-1,0,0], [1,2,0,0],
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[1,0,0,1], [1,0,1,1], [1,0,-1,1], [1,0,2,1]];

HilbertNDDiff(PP);

The output of the above commands is the following Hilbert function of the ND-different:

H(0) = 0

H(1) = 0

H(2) = 0

H(3) = 0

H(4) = 4

H(5) = 6

H(t) = 8 for t >= 6

-------------------------------

A.6 Computation of the Kähler Different 3.3.2

----------------------------------------------------------------------------

-- KaehlerDifferentRel(PP): Compute the Kaehler different

-- Input: PP = a list of points in P^n_K which are not contained in Z^+(x_0)

-- or a homogeneous vanishing ideal of a 0-dimensional scheme

-- in P^n_K which does not intersect Z^+(x_0)

-- Output: A list of minimal generators of the Kaehler different

----------------------------------------------------------------------------

Define KaehlerDifferentRel(PP)

If Type(PP) = IDEAL Then

IP := Minimalized(PP);

Else IP := Minimalized(IdealOfProjectivePoints(PP));

EndIf;

M := Jacobian(Gens(IP)); K := Len(M); N := Len(M[1]);

J1 := Submat(M,ConcatLists([1..K]),2..N);

JJ := Minors(N-1, J1);

PL := ReducedGBasis(Ideal(JJ) + IP);

If Len(PL) > 1 Then

For I := 1 To Len(PL) Do

For J := I + 1 To Len(PL) Do

If LT(PL[I]) > LT(PL[J]) Then

CH := PL[I]; PL[I] := PL[J]; PL[J] := CH;

EndIf;

EndFor;

EndFor;

EndIf;

GIP := GBasis(IP); D := Len(PL); T := 1;

While T < D + 1 Do

If NR(PL[T],GIP) = 0 Then
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Remove(PL,T); D := Len(PL); T := 1;

Else PL[T] := NR(PL[T],GIP); T := T + 1;

EndIf;

EndWhile;

NL := HBAM(PL, GBasis(IP));

Return NL;

EndDefine;

Example A.6.1. Let us compute the Kähler different for the projective point set

X ⊆ P3
Q given in Example A.4.1. We run the following commands in ApCoCoA:

Use QQ[x[0..3]];

PP := [[1,0,0,0], [1,1,0,0], [1,-1,0,0], [1,2,0,0],

[1,0,0,1], [1,0,1,1], [1,0,-1,1], [1,0,2,1]];

KaehlerDifferentRel(PP);

The output of the above commands is the following list of minimal generators of the

Kähler different:

[x[2]x[3]^4 - 1/2x[3]^5, x[2]^2x[3]^3 - 7/10x[3]^5, x[2]^3x[3]^2 - 4/5x[3]^5,

x[0]x[1]^4 - 13/20x[1]^5, x[0]^2x[1]^3 - 2/5x[1]^5, x[0]^5 - 1/2x[1]^5 - x[3]^5]

In this case the Kähler different is a proper subideal of the ND-different, since the

ND-different is generated by homogeneous elements of degree 4 (see Example A.4.1).

A.7 Computation of the Hilbert Function of the Kähler Different

----------------------------------------------------------------------------

-- HilbertKDiff(PP): Compute the Hilbert function of the Kaehler different

-- Input: PP = a list of points in P^n_K which are not contained in Z^+(x_0)

-- or a homogeneous vanishing ideal of a 0-dimensional scheme

-- in P^n_K which does not intersect Z^+(x_0)

-- Output: The Hilbert function of the Kaehler different

----------------------------------------------------------------------------

Define HilbertKDiff(PP)

If Type(PP) = IDEAL Then

IP := Minimalized(PP);

Else IP := Minimalized(IdealOfProjectivePoints(PP));

EndIf;

J := Jacobian(Gens(IP)); K := Len(J); N := Len(J[1]);

J1 := Submat(J,ConcatLists([1..K]),2..N);

JJ := Minors(N-1, J1); J2 := Ideal(JJ) + IP;

HF1 := HilbertFn(CurrentRing()/IP); HF2 := HilbertFn(CurrentRing()/J2);

K0 := Max(RegularityIndex(HF1),RegularityIndex(HF2));
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DH := EvalHilbertFn(HF1,K0)-EvalHilbertFn(HF2,K0); K1 := K0+1;

Repeat K1 := K1-1;

Until EvalHilbertFn(HF1,K1) - EvalHilbertFn(HF2,K1) <> DH Or K1 = 0;

If K1 = 0 Then EvalHF := [EvalHilbertFn(HF1,K1) - EvalHilbertFn(HF2,K1)];

Else EvalHF := [EvalHilbertFn(HF1,K) - EvalHilbertFn(HF2,K)| K In 0..(K1+1)];

EndIf;

Rvd := Len(EvalHF) - 1;

For I := 1 To Rvd Do PrintLn "H(",I-1,") = ",EvalHF[I]

EndFor;

Using QQt Do

Print "H(t) = ", EvalHF[Rvd+1], " for t >= ", Rvd

EndUsing;

EndDefine;

Example A.7.1. Let X ⊆ P2
Q be the 0-dimensional scheme given in Example A.3.1.

We compute the Hilbert function of the Kähler different by running the following

commands in ApCoCoA:

Use QQ[x[0..2]];

I1 := Ideal([x[0]-x[1],x[2]]);

I2 := Ideal([x[1],x[0]+x[2]]);

I3 := Ideal([x[0]-x[1],2x[0]-x[2]]);

I4 := Ideal([x[0]-x[1],x[0]-x[2]]);

I5 := Ideal([x[1],x[2]])^2;

I6 := Ideal([3x[0]^2+x[1]^2,x[2]])^2;

I7 := Ideal([x[1], 2x[0]^3+x[2]^3]);

IP := Intersection(I1, I2, I3, I4, I5, I6, I7);

HilbertKDiff(IP);

The result of these commands is the following Hilbert function of the Kähler different:

H(0) = 0

H(1) = 0

H(2) = 0

H(3) = 0

H(4) = 0

H(5) = 0

H(6) = 1

H(7) = 2

H(8) = 4

H(t) = 7 for t >= 9

-------------------------------
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