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|Chapter 1

Introduction

“Kahler’s concept of a differential module of a ring

had a great impact on commutative algebra and algebraic geometry”
(Rolf Berndt)

“like the differentials of analysis,

differential modules “linearize” problems,

i.e. reduce questions about algebras (non-linear problems)

to questions of linear algebra”
(Ernst Kunz)

1.1 Motivation and Overview

The description ”Kahler differentials” was used in the mathematical literature for the
first time in Zariski’s note in 1966 [Za]. However, the concept of ”the universal module
of differentials” was introduced by Kahler, who used differentials to study inseparable
field extensions [Kal], [Ka2]. Some of the many applications of Kéhler differentials in
algebraic geometry and commutative algebra were contributed by E. Kunz, R. Waldi,
L. G. Roberts, and J. Johnson (see [Kun], [KW1], [KW2], [Johl], [Joh2], [Robl], [Rob2]
and [Rob3]). In [C], Cartier gave a different approach to the universal module of
differentials: Let R, be a ring, and let R/R, be an algebra. By J we denote the kernel
of the canonical multiplication map p : R ®g, R — R given by r; ® r9 +— r175. Then
the module of Kahler differential 1-forms of R/R, is the R-module QF, r, = I/ 2. The
Kahler differential algebra (1g/pg, of R/R, is the exterior algebra of Q}% Ry Let K be
a field of characteristic zero. When R, is a standard graded K-algebra and R/R, is a
graded algebra, the Kéhler differential algebra Qg g, = @,,cn AR (25 y ,) is a bigraded
R-algebra. The Hilbert function of Qg g,, defined by HFq, , (m,i) = HFQE@/RO (i) =
dim (%, )i, is a basic and interesting invariant for many questions about the Kéhler

differential algebra.
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For some special classes of graded algebras R/R,, one can describe the Hilbert
function of the graded R-modules Q}?/ r, explicitly. For instance, let F' be a product of
s linear factors in the standard graded polynomial rings of two variables S = K[X, Y],
and let R = S/(F)g. By taking the derivative of F', the Hilbert functions of Qj K
and Q% /i are all found (see [Robl, Section 4]). Moreover, in this case we see that the
ideal (F')g is the homogeneous vanishing ideal of a set of s distinct K-rational points
in the projective line P!

In 1999, G. Dominicis and M. Kreuzer generalized this result by giving a concrete
formula for the Hilbert function of the module of Kahler differential 1-forms for a
reduced O-dimensional complete intersection X in the projective n-space P". More
precisely, they showed that if the homogeneous vanishing ideal Zx of X is generated
by n homogeneous polynomials in S = K[Xj,...,X,] of degrees dy,...,d, and if
Rx = S/Zx is the homogeneous coordinate ring of X then the Hilbert function of Qll?x K
satisfies HF%X/K(@') = (n+ 1)HFx(i — 1) = 377, HFx(i — d;) for all i € Z (see [DK,
Proposition 4.3]). The proof of this formula is based on the construction of an exact

sequence of graded Rx-modules
0 — Tx /T — Ix/Tz — R (—1) — Qe — 0 (1.1)

(see [DK, Proposition 3.9]). This exact sequence establishes a connection between
the module of Kahler differential 1-forms Q}%x /K for X and the Hilbert function of the
double point scheme 2X in P".

Double point schemes is a particular class of fat point schemes: Let X = { P, ..., P},
and let @; be the associate prime ideal of P; in S. For a sequence of positive integers
mi, ..., ms, the scheme W, defined by the saturated ideal Iy = " N---Nps, is called
a fat point scheme in P". If m; = --- = m, = v then W is called an equimultiple fat
point scheme and we denote W by vX. The structure of the Kéahler differential algebras
for fat point schemes, and in general for O-dimensional schemes in P" has received little
attention so far. The aim of this thesis is to investigate Kahler differential algebras
and their Hilbert functions for O-dimensional schemes in P".

There are many reasons to study this topic. First, although the Hilbert functions
of the homogeneous coordinate rings of 0-dimensional schemes in P" provide us infor-
mation about the geometry of those schemes, we believe that the Hilbert functions of
their Kahler differential algebras contain even more information about the geometry
of these schemes. Second, the exact sequence (1.1) mentioned above inspires us to
find a connection between the Kahler differential algebra of a fat point scheme and

other fat point schemes in P". This gives us a tool to study fat point schemes via



1.1. Motivation and Overview 3

their Kahler differential algebras. Third, the study of the Kahler differential algebras
for O-dimensional schemes in P" provides a number of concrete examples of Kéhler
differential algebras to which computer algebra methods can be applied.

Now we give an overview of the thesis and mention our main contributions. The
thesis is divided into five chapters and one appendix. The first chapter is this intro-
duction.

In Chapter 2 we define some basic concepts, introduce notation and recall results
that will be used in the rest of the thesis. Most of these results are well known.
An original contribution is the following upper bound for the regularity index of a
submodule of a free Rx-module, where Rx is the homogeneous coordinate ring of a

0-dimensional scheme X C P™.

Proposition 2.4.10. Let X be a 0-dimensional scheme in P", and let rx be the reg-
ularity index of HFx. Let V' be a graded Rx-module generated by the set of homoge-
neous elements {vy,...,vq} for some d > 1, let 6; = deg(v;) for j =1,...,d, and let
m > 1. Assume that 6, < --- < Jg. Then the regularity index of Np (V) satisfies:
ri( AR, (V) = —oc for m > d, and for 1 <m < d we have

ri(Ag, (V) < max { rx + 6 4 04 — da—m1, 1i(V) + 6 — Ga—my1 |,

where § = 0g_my1 + -+ dq. In particular, if 1 <m < d and 6y = --- = 64 =t then
we have ri( Ay (V) < max{rx +mt,ri(V) + (m — 1)t }.

This proposition can be applied to get upper bounds for the regularity indices of
the module of Kéhler differential m-forms Q2 5 . where R, is either K or K [zo], which
will be presented in the later chapters.

In Chapter 3 we study the Kéhler differential algebras of finitely generated graded
algebras R/R, and apply them to investigate 0-dimensional schemes in P". One of the
main tools for studying the Kéhler differential algebra of R/R, is its Hilbert function,
which plays a fundamental role throughout this chapter. Let R, be a N-graded ring,
let S be a standard graded polynomial ring over R,, let I be a homogeneous ideal
of S, and let R = S/I. We denote by dg/g, the universal derivation of the graded
algebra S/R,. The universal property of the module of Kéhler differential 1-forms
Q}%/RO implies the presentation Q}%/RO = Q}q/Ro/<dS/Rol + ]Q}g/Rﬁg. Based on this
presentation, we establish an algorithm for computing Q}% IR, and its Hilbert function
(see Proposition 3.1.9). Moreover, for m > 1, we use the universal property of the
m-th exterior power to get a presentation of the module of Kahler differential m-forms

O, = Up /({ds/r,I)s Ns QZ?/}IO + I ) (see Proposition 3.2.11). Using this
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presentation, we also write a procedure for the computation of a presentation of Q’;{?/ R
and its Hilbert function (see Proposition 3.2.14).

Next, we look at the Kahler differential algebra of a O0-dimensional scheme X in P".
We always assume that Supp(X) N Z*(X,) = 0 and we let 2o be the image of X in the
homogeneous coordinate ring Rx = S/Zx of X. We see that zy is a non-zero divisor
of Rx and Ry is a graded free K[zg]-algebra. Let Rx = Rx/(xo), and let m > 1. Then
we have the following relations between the modules of Kahler differential m-forms
Q Q and Q7

m m
Rx/K7 Rx/K[QTO]’ Rx/K

Proposition 3.3.3. Let m > 1. There is an exact sequence of graded Rx-modules

0 — Redwo Amy U ke — Uiy — R, i) — 0.

m

Moreover, the module QRX/K

has the presentation Q%‘X/K = Q%X/K[IO}/@o)Q%X/K[IO}-

From this proposition we derive some consequences for the Hilbert functions and
the regularity indices of the modules of Kahler differential m-forms for the scheme X.
In particular, in some special degrees, we can predict the Hilbert functions of Q. /K

and ng K[zo]"
Proposition 3.3.8. Let X C P} be a 0-dimensional scheme, and let ax be the initial
degree of Ix, i.e. let ax = min{i € N | (Zx); # 0}.

(i) Fori < m, we have HFQ;;IX/K(Z.) = HFQEX/K[zO](i) =0.

(i) Form < ’i < ax+m—1, we have HFQZLX/K(Z') = (") ("1™ and HFQZ?X/K[JO] (i) =
() - (57):

(iii) The Hilbert polynomials of QEX/K and QEX/K[%] are constant polynomials.

() Let R, denote either K or Klxy). We have HFQTIQX/RD (rg +m) > HFQ;;X/RO (rx +

m+1) >, and if ri(Qy,_/p ) = rx +m then
HFqp . (rx+m)>HFap  (rg+m+1)> - >HFoy  (1i(Qf,g,)).

Furthermore, by applying the inequaltity ri(€j, JKzo) S max {ri(Q i) Tx + 1}
and Proposition 2.4.10, we get the following sharp upper bound for the regularity index

of the module of Kahler differential m-forms Q% (see Proposition 3.3.11):
ri(Q%, /p,) < max{rx + m,ri(Q}%X/K) +m—1}.

Next we consider the application of the Kahler differential algebras to prove geomet-

ric results for a special class of O-dimensional schemes in P". Let X = {P, ..., P} C P
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be a set of s distinct K-rational points in P, and let px denote the dimension of
the linear span of X plus 1 (see Section 3.4). We show that gx = m if and only if
Q. x # (0) and Q’g}:r/lK = (0) (see Proposition 3.4.7). Moreover, if n = 2 then the
Hilbert function of the module of Kahler differential 3-forms reflects some geometrical

properties of X as the next result shows.

Corollary 3.4.20. Let s > 5, and let X = {Py,...,P,} C P? be a set of s distinct

K -rational points.

(i) If HFgs (3) =1 and HFgs  (4) = 1, then X lies on two different lines and
Ry /K Ry /K

no s — 1 points of X lie on a line.

(ii) Suppose that HFgs ~ (3) =1 and HFqs (i) = 0 fori # 3. If AHFx(2) = 1,
Rx/K Ry /K

then X contains s — 1 points on a line. Else, X lies on a non-singular conic.

In Chapter 4 we examine Kahler differential algebras for fat point schemes in P".
In the last fifty years, fat point schemes in P™ have been extensively studied by many
authors (see for instance [BGT], [BFL], [Ca], [CTV], [DG], [DSG], [GMT], [GT], [Th1],
[Th2], [TT]). However, as far as we know, these papers do not use the Kéhler differential
algebra to study fat point schemes in P". This motivates us to use Kahler differential
algebras as a new tool to study fat point schemes. To start the chapter, we collect
some facts about a fat point scheme W = m; P, + - - -+ m P, in P” in Section 4.1. The
first main result of this chapter is a generalization of the exact sequence (1.1) which

has the following form.
Theorem 4.2.1. Consider the two fat point schemes W = m P, + -+ + myP, and
V=(mi+1)P+-+ (ms+ 1)Ps in P*. Then the sequence of graded Ry-modules

0 — Zw/Ty — Ry (=1) — Qg — 0

18 exact.

This theorem shows that one can compute the Hilbert functions of the modules of
Kéhler differential 1-forms of Ry/K from the Hilbert functions of W and V. Further-
more, this result can be applied to determine the Hilbert polynomials of these modules
and to give a bound for the regularity indices of Q}%W K (see Corollary 4.2.3). By the

short exact sequence of graded Rw-modules

B
O — RWdI’O — Q}%W/K — QEw/K[IU] — 0
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(see Proposition 3.3.1) we get similar properties of the Hilbert function and the Hilbert
polynomial of Q}%W K [wo] The Hilbert polynomial of Q}%W /K [xo] provides a condition for
W to be a reduced scheme (see Corollary 4.2.4). Using [CTV, Theorem 6], we also
bound the regularity indices of Qj, ;- and Qp - rr, 1 if the support of W is in general
position (see Corollary 4.2.10).

Next we investigate the modules of Kahler differential m-forms of fat point schemes.
It is not easy to determine the Hilbert polynomials of these modules in general. Fortu-
nately, we can give bounds for these invariants (see Proposition 4.3.1). Also, we prove

the following sharp upper bounds for the regularity indices of 277 JK and Qf K (o]

Proposition 4.3.4. Let X = {Py,...,P;} C P" be a set of s distinct K-rational
points, and let W = mi Py + -+ msPs, and let V= (my + 1)P, +--- 4+ (ms + 1) Ps.

(i) For all 1 < m < n we have
max{ri(Qp,, k), 11(QE,, /Ko b < max{rw +m,ry +m — 1}.

(i) We have ri(Qz\tvl/K) < max{rw + n,ry +n — 1}.

In particular, if m; < --- < mg and if X is in general position, then for 1 < m <n we

have

L >oig mjtstn—2
n

max{ri(Qg, k), QR Kme) T < max{ms +ms_1 +m, |+m—1}

and ri(QZ:;VI/K) < max{ms + ms_1 +n, ij +n—1}.

When W = vX is an equimultiple fat point scheme, we get further properties and
insights. First of all, we show that the Hilbert polynomial of Q%@K is determined
by HPQZJ;;/K(z) = HP(,_1x(2) = s("*"7?), where s = #X (see Proposition 4.3.11).
Second, we establish relations between the module of Kahler differential 2-forms Q%DX /K

and other fat point schemes via the complex of K-vector spaces

a

0— (I(V—i—l)X/I(V—i—Q)X)i — (IVXQE/K/I(VH)XQEV/K%

B
—— (W r /Tx 2 )i — (O, k)i — O

(see Proposition 4.3.14). When X is a set of s distinct K-rational points in P2, this
complex is exact for i > 0 (see Corollary 4.3.16). Using these relations, the Hilbert
polynomial of Q?%ux/K is HPQ%VX/K(z) = 1(3v® — v —2)s (see Corollary 4.3.17).

If the support X C P" is a complete intersection, then we have Z,x = Z¥ [ZS,

Appendix 6, Lemma 5]. Hence, using some results of [BGT], we can explicitly described
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the Hilbert function and the regularity index of Q}%W /K (see Proposition 4.4.2 and
Corollary 4.4.4). In this case we use techniques similar to the ones introduced in the
papers [GMT] and [GT] to prove that the Hilbert function of the module of Kahler
differential 1-forms of Y; = >°, . vF; + (v — 1)P; is independent of j if v > 2 (see
Proposition 4.4.9). This result seems to hold in the reduced case v = 1, too, but
we can only offer a proof for the special case of a complete intersection X of type
(d,...,d). By applying the above results, we also provide bounds for the Hilbert
function and regularity index of Q}%W /K when W is a non-equimultiple fat point scheme
in P™ supported at a complete intersection (see Proposition 4.4.6 and Corollary 4.4.8).

In the final chapter, Chapter 5, we look more closely at the Kahler differential
algebras for some special fat point schemes in P" where n = 2 or n = 4. Based on some
results of M. V. Catalisano [Ca], we give a concrete description of the Hilbert function of
the module of Kahler differential 1-forms of a fat point scheme W = m P, +- - - +m P,
in P? whose support lies on a non-singular conic (see Proposition 5.1.3). If, in addition,

my = --+- = mg = v then we obtain the following presentation of Q%W K

Proposition 5.1.7. Let s > 4, and let X = {Py,--- , P;} C P? be a set of s distinct
K -rational points which lie on a non-singular conic C = Z7(C), and let v > 1. Then
we have Q%ux/K = (S/MZ—1x)(—3). In particular, for all i € Z, we have

HFgy (i) = HEgimz,, (i - 3).

Moreover, this result can be applied to exhibit the Hilbert functions of Q%yx /K
and Q%VX /i I terms of degrees of generators of Zx (or of Z(,_1)x) (see Corollary 5.1.8
and Corollary 5.1.9).

In P4, we prove the so-called Segre bound for the regularity index of a set of s
distinct K-rational points by using the method of proof of [Th2] (see Theorem 5.2.8).
Furthermore, we show that this bound holds for equimultiple fat point schemes in P*

under an additional hypothesis as follows.

Theorem 5.2.12. Let X = {Py,..., P} be a set of s > 5 distinct K-rational points
in P4, let Tx; = max{ﬁ(zgzl miy, +j —2)] | Py,...,P, lic on aj-plane} for
jg=1,...,4, and let v > 2. If max{Tx; | 1 < j < 4} = Tx 1, then the equimulti-
ple fat point scheme vX = vP, + - - - + v P, satisfies

rux :max{yq— L|Py,..., B, licona lz’ne}.
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This theorem also allows us to determine the regularity index of the module of
Kahler differential 1-forms and bound the regularity index of the module of Kahler
differential m-forms for equimultiple fat point schemes in P* under the same additional
hypothesis (see Proposition 5.2.14 and Corollary 5.2.15).

Many results in this thesis are illustrated by concrete examples. These examples
have been computed by using the computer algebra system ApCoCoA [ApC]. In the
appendix we provide the functions which implement the algorithms and procedures
for the computation of the modules of Kahler differential m-forms and their Hilbert

functions for 0-dimensional schemes in P".
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Chapter

Preliminaries

In this chapter we collect the definitions, results and techniques that we require for the
later chapters. As a consequence, most of the material in this chapter is well known.

The chapter is divided into four sections. The main task of Section 1 is to intro-
duce graded rings, graded modules and exact sequences of graded modules. Also in
this section we review some of the standard facts on resolutions of graded modules
which we use for computing the degrees of minimal separators of fat point schemes in
Chapter 3. In the second section we discuss homogeneous Grobner Bases and present
the Homogeneous Buchberger Algorithm for computing a homogeneous Grébner basis
of a given graded module. In Section 3 we introduce the definition of the exterior
algebra and concentrate on some remarkable properties of homomorphisms of exterior
algebras which we use later in Chapter 3 and Chapter 4. The last section is about
0-dimensional schemes, a main subject of study in this thesis. Some required results
about O-dimensional schemes are mentioned in this section. We refer to [KR1] and
[KR2| as standard text books, in particular for the discussion of graded rings, graded
modules and Grébner bases. We refer to [SS] for studying exterior algebras and [DK]
for the notions introduced in the last section.

Throughout this chapter we let K be a field of characteristic zero and R a commu-

tative ring with 1 unless stated otherwise.

2.1 Resolutions of Graded Modules

Definition 2.1.1. Let R be a ring containing K.

(i) Thering R is called a Z-graded ring if there exists a family of additive subgroups
{Ri}iGZ such that R = @sz; RO = K and Rz : Rj Q Ri—l—j- For brevity we call R
a graded ring.
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(ii) A module M over a graded ring R is said to be graded if there exists a family of
subgroups {M; }iez of M such that M = &,;M; and R;- M; C M, ; forall i, j € Z.

(iii) An element u € M is called homogeneous of degree i if u € M, for some i € Z.

In this case we write deg(u) = 1.

Remark 2.1.2. Let R be a graded ring, let M be a graded R-module, and let N be a
graded submodule of M, i.e. let N be a submodule of M which is a graded R-module.
Then N; = M; N N for all i € Z. Furthermore, M /N is a graded R-module where
(M/N); = M;/N;, for i € Z.

Definition 2.1.3. The Hilbert function of a finitely generated graded R-module M
is defined by HF (i) = dimy M; for i € Z. Its first difference function AHFy, : Z — Z
given by AHF (i) = HF /(i) —HF /(¢ — 1) is called the Castelnuovo function of M.

Theorem 2.1.4. The Hilbert function of a finitely generated graded R-module M of
dimension d is of polynomial type of degree d — 1, i.e. there exists a number iy € Z
and an integer valued polynomial Q € Q|z] of degree d — 1 such that HF y(i) = Q(7)
for all 1 > 1.

Proof. See Theorems 5.1.21 and 5.4.15 of [KR2] or Theorem 4.1.3 of [BH]. O

Definition 2.1.5. The unique polynomial in Q[z], denoted by HP,(z), for which
HF /(i) = HPp(7) for ¢ > 0 is called the Hilbert polynomial of M. The minimal
number, denoted by ri(M), such that HF (i) = HPp (i) for all i > ri(M) is called
the regularity index of M. Whenever HF ), (i) = HPy (i) for all i € Z, we let
ri(M) = —oc.

From now on we denote the polynomial ring K|[Xy,...,X,] by S and we equip S
with the standard grading, i.e. let deg(X;) = 1for ¢ =0,...,n.. The following example
gives us formulas for the Hilbert function, Hilbert polynomial and regularity index of
the simplest case M = S.

Example 2.1.6. For every t € N we have HF¢(t) = (”:Lrt) The Hilbert polynomial of
S is HPg(z) = (*I"), and the regularity index is ri(S) =

n

—n.

The next proposition provides useful rules for computing the Hilbert polynomial

under ideal-theoretic operations.
Proposition 2.1.7. Let I,J be proper homogeneous ideal of S.

(1) We have HPg/(;ny)(2) = HPg/1(2) + HPg,5(2) — HP715(2).
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(i) If VJ = (Xo,...,X,) then HPg)1ny(2) = HP;(2).

Proof. See [KR2, Proposition 5.4.16]. O

The remaining part of this section is devoted to providing the reader with the

definitions of minimal graded free resolution of a module, the mapping cone of a ho-

momorphism of complexes and the subsequent propositions.

Definition 2.1.8. Let R be a graded ring.

(i)

(i)

(iii)

Let ¢ € Z. A homomorphism of graded R-modules o : N — M is called a

homogeneous homomorphism of degree i if o(N;) C M, for all j € Z.

A sequence of graded R-modules
.F: "‘at—+l>Fti>Ft_1 Oét_—1>”.7

denoted by (F,,a,), is called a complex if Tm(oy) C Ker(ay_y) for all ¢. If
Im(cy) = Ker(ay_1) for all ¢, then the sequence (F,, a,) is called an exact se-

quence of graded R-modules.

A graded free resolution of an R-module M is an exact sequence of free

R-modules
« o —
F. - BFSp =R SRS M—0

such that «; are homogeneous homomorphisms of degree zero for all © > 0 and
Coker(ay) = M. If there exists a positive integer n € N such that £, 11 = (0) = F;
for j < =2 but F; # (0) for 0 < i < n, we say that (F,,a,) is a finite graded

free resolution of length n.
Let M be a finitely generated graded R-module. A graded free resolution
Fioo- 220 SR 2% M-—0

of M is called a minimal graded free resolution of M if the images of the
canonical basis of vectors of F; are a minimal system of generators of Ker(a;_1)

for every ¢ > 1.

The following proposition says that the minimal graded free resolution of a given

graded S-module M indeed exists and is unique.
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Proposition 2.1.9. Let M be a finitely generated graded S-module. Then the following

claims hold true:
(i) The module M has a minimal graded free resolution of length at most n + 1.

(ii) Let
0—F 5. ... 2072525 M-—0
s F S B S F S M — 0
be two minimal graded free resolutions of M. Then for every 0 < i < ¢, we have
Fy=F; and F; =0 for j > (.

Proof. See Corollary 4.8.7 and Theorem 4.8.9 of [KR2]. O

The length of the minimal graded free resolution of an S-module M exists and
is unique. This constant is called the projective dimension of M, and is denoted
by pdg(M).

Definition 2.1.10. Let R be a graded ring and let M be a graded R-module.

(i) A sequence of homogeneous elements Fi,..., F; € R is called a regular se-
quence for M if (Fy,...,F;)M # M and for i = 1,...,t we have F} is a non-
zerodivisor for M/(Fy, ..., F,_1)M.

(ii) A graded ring R is a complete intersection if there is a graded regular ring R

and a regular sequence of homogeneous elements Fy,..., F} € R such that
R= E/(Fl, ..., Fy). The sequence of degrees (deg(F}),...,deg(F;)) is called the
type of R.

We define the depth of a graded S-module M, written by depth(M), to be the
maximal length of regular sequences for M. In order to compute the projective di-
mension of a graded S-module M, we use the following connection between projective

dimension and depth discovered by Auslander and Buchsbaum.

Proposition 2.1.11. (The Auslander-Buchsbaum Formula) Let M be a graded

finitely generated S-module. Its projective dimension is
pdg(M) =n+ 1 — depth(M).

Proof. See [Pe, 15.3]. O
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Definition 2.1.12. Let R be a graded ring, let M be a graded R-module, and let
h € Z. We define M (h) to be graded R-module with

M(h); = My, for all i € Z.

We call M(h) the h-th twist of M.

Example 2.1.13. (Koszul Complex) Let S = K[Xy,...,X,] be the polynomial
ring and I = (Xi,...,X,). Let {ex, A -+ A ex, }1<k,<..<k;<n be a basis of the free
S-modules S (). The sequence X1, ..., X, is a regular sequence on S, and the minimal

graded free resolution of the residue ring R = S/I is

0 — S(—n) 2% SGM) (1) 2o 22 g(D(-1) 25 5 2% R 0,
where the module homomorphism ¢; : S(?>(—j) — S(J'L)(—j + 1) given by
ey N Ay, Zle(—l)"“xkiekl A+ Aég A Aeg,. Thus the projective di-
mension of the residue ring R is pdg(R) = n. Therefore the Hilbert function of R in
degree i is HF (i) = Y7 o(—1)7- (?) HFg(i—j) = 37 _o(=1)7 (’;) - (""*77). Moreover,
by Example 2.1.6, the regularity index of R is ri(R) = 0.

Example 2.1.13 is an easy case of the following result.

Theorem 2.1.14. (Koszul Resolution) Let R = S/I be a complete intersection of
type (dy,...,dy,). Then the minimal graded free resolution of R has the form

0—H,— - —Hy,— H — 55— R—0,
where Hj = @1§i1<i2<-~~<ij§n8(_di1 — dzj) fO’f’j = 1, o, n.
Proof. See [GT, Theorem 1.1]. O

Corollary 2.1.15. Let S/I and S/J be a complete intersections of types (aq, ..., ay)
and (b1, ..., by), respectively. Assume that HF g/;(t) = HFg/;(t) for allt € N. Then the
residue rings S/I and S/J have the same type, i.e. if a; <--- < a, and by < --- < b,
then aj =bj for j=1,...,n.

Proof. Let
0O—H,— - —Hy— H —S— S/ —0

and

0—L,— - —Ly—L —S—5/J—=0
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be the Koszul resolutions of S/I and S/J as in Theorem 2.1.14, respectively. We have
HF (k) — HF,;(k) = >0 (-1 HFp, (k) — >0, (=1)""' HF,(k) = 0 for all k € N.
By the definition of H;, L; for : = 0,...,n — 1 and the assumption that a; < --- < a,
and that by <--- < by, we get a; =b; for j =1,...,n. m

In what follows, we mention a simple, yet powerful method for constructing free

resolutions of rings.

Definition 2.1.16. (i) Let F = (F,,a.) and H = (H,, S.) be complexes of graded
R-modules. The sequence of homomorphisms of degree zero ¢, : F, — H; such
that the following diagram

Ot
Fy——=F

L% =

H,—2-H,

is commutative for ¢ € Z, is called homomorphism of complexes, and is
denoted by ¢ : F — H.

(ii) Let ¢ : F — H be a homomorphism of complexes. It easy to check that the
sequence L = (Ls, %), where L; = F;,_; @ H;, where the homomorphism is given
by i : Li = Li—1,%(f, h) = (=ai_1(f), Bi(h) + wi_1(f)) for all f € F;_y, h € H,
and for i € Z, is a complex. The complex L is called the mapping cone of .

Remark 2.1.17. Let v : M — N be a homomorphism of graded S-modules. Let
F:---%FlgFogM%OandH:---ﬁHlﬁHOﬁN%Obefreeresolutions
of graded S-modules M and N, respectively. Since Hy maps onto N, the composite
map 7y o ap may be lifted to a map ¢y : Fy — Hy. We have [y o ¢y o ay(Fy) =
v oo aq(Fr) = 0, therefore g o ay(F1) C Ker(fy) = Im(f51). So, the map g0 oy
has a lifting ¢; : F; — H;. Continuing in this way we get the map of complexes
¢ : F — H. The homomorphism ¢ is called a complex homomorphism lifting ~.

Proposition 2.1.18. Let I be a homogeneous ideal of S and let H be a homogeneous
polynomial in S. Assume that I :g H = (Hy,...,H;)s, where the sequence of ho-
mogenous polynomials Hy, ..., H; is a reqular sequence for S. Let F be a graded free
resolution of S/1, let H be the minimal graded free resolution of the ideal (Hy, ..., H),
and let ¥ : H — F be a complex homomorphism lifting S/(I :s H) — S/I. Then the
mapping cone L of ¥ yields a graded free resolution of S/(I, H).

Proof. See [HT, p. 280]. O
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We illustrate this proposition by the following example.

Example 2.1.19. In the polynomial ring S = Q[Xy, X1, X5], let I be the ideal gener-
ated by the regular sequence (F, Fy) where F} = X (X7 — Xo)(X1 — 2X0)(X1 — 3X))
and Fy = Xy(Xo—Xo)(Xo—2X0)). Let F = FyFy/X, Xo. We have I 15 (F) = (X, X,).
According to Example 2.1.13, the Koszul resolutions of the ideals J = (X;, X3) and [
are

0— S(—2) = S*(-1) = J =0,

0—S(-7) — S(-3)e& S(—4) - I —0,

respectively. Using Proposition 2.1.18 and the fact that deg(F) = 5, we have a graded

free resolution of the residue class ring S/(I, F') of the form

0— S(=7) = S(—=6)*® S(=7) = S(=5) ®S(=3) ® S(~4) = S = S/{I,F) — 0.

2.2 Introduction to Homogeneous Grobner Bases

As in the previous section, we let K be a field of characteristic zero. Let n > 0, and
let S = K[Xo,...,X,] be the polynomial ring in n + 1 indeterminates, graded by
deg(X;) =1 fori=0,...,n unless stated otherwise.

A polynomial F' € S of the form X§° - -- X2 such that (v, ..., a,) € N**1is called
a term. The set of all terms of S is denoted by T"**. Then (T"*! .) is a monoid.
Let r > 1 and let {ey,...,e,} be the canonical basis of the free S-module S™. A term
of S” is an element of the form te; such that ¢t € T"™! and 1 < i < r. The set of all
terms of S is denoted by T"1{ey, ..., e,). Recall that T""(ey, ..., e,), together with
the operation * : T x T ey, ... e,) — T" ey, ... e,) given by (t,v) — ¢ * v,
is a T""'-monomodule (see [KR1, Definition 1.3.1.c]). Now we recall the notions
of term ordering on T and module term ordering on T""!(ey,...,¢e,). We refer

to [KR1] for more details about these notions.

Definition 2.2.1. A complete relation o on T"*! is called a term ordering on T"*!

if the following conditions are satisfied for all ¢;,t,t5 € T :
(i) t1 >, 1
(i) t1 >4 t1

(111) tl Zg t2 and tg Za tl 1mply tl = tg
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(lV) t1 2o to and to >, t3 1mply t1 25 t3
(V) tl Zo t2 1mphes t1t3 Za tgtg.

Example 2.2.2. (i) Let t = X{°--- X% € T""! with (ag,...,q,) € N*™1. We
write log(t) = (ag,...,a,). The following definition yields a term ordering
on T"*!. We call it the lexicographic term ordering and is denoted by Lex.
For two terms t1,ts € T we say t; >rex t2 if and only if the first non-zero

component of log(t,) — log(ts) is positive or t; = to.

(ii) The following definition yields a term ordering on T""!. Tt is called the degree-
lexicographic term ordering and is denoted by DegLex. For t;,t, € T""! we
let tl ZDegLex t2 if deg(tl) > deg(t2>7 or if deg(tl) - deg@?) and 131 ZLex t2‘

Definition 2.2.3. A complete relation o on T"{ey, ..., e,) is called a module term
ordering if for all s1, 59,53 € T""!(ey,...,¢e,) and all t € T"™! we have
(i) s1 =0 81

(ii) s1 >4 s2 and s >, s; imply 1 = s9
(iii) s1 >4 s9 and sy >, s3 imply 51 >, S3
(iv) 81 >4 So implies t % 57 >, € * $9

(V) t*s1 >, 1.

The existence of module term ordering is showed by the next example.

Example 2.2.4. Given two elements t1e;, toe; € T ey, ..., €,), where ty,t, € T
where i,j € {1,...,r}. The following definition yields a module term ordering on
T (ey,...,e.). It is denoted by DegLexPos. We let t1e; >pegrexpos t2€; if and only if
1 >pegrex L2 OF (t1 =t2 and @ < j).

Let r > 1, and let o be a module term ordering on T" (e, ..., e,). We see that
every element H € S"\{0} has a unique representation as a linear combination of terms
H =37 ctie,,, where ¢1,...,cs € K\ {0}, t1,...,ts € T, 71,...,7s € {1,....r},

and where tie,, >, o€y, >4 -+ >4 tee,,.

Definition 2.2.5. Let H = Y7  ¢itie,, € S\ {0} as above, and let M be an
S-submodule of S”.
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(i) The term LT,(H) = tie,, € T"" ! (eq,...,e,) is called the leading term of H

with respect to o.

(ii) The element LC,(H) = ¢; € K \ {0} is called the leading coefficient of H with
respect to o.

(iii) We let LM, (H) = LC,(H)-LT,(H) = c1t1e,, and call it the leading monomial
of H with respect to o.

(iv) The module LT, (M) = (LT,(H) | H € M \ {0}) is called the leading term

module of M with respect to o.

(v) In particular, if M C S is an ideal of S, then LT,(M) C S is also called the
leading term ideal of M with respect to o.

In order to perform the division on the free S-module S”, we present the following

algorithm.

Theorem 2.2.6. (The Division Algorithm) Lett > 1, and let F, H,,...,H; €

S™\ {0}. Consider the following sequence of instructions.
1) LetQ=-=Q,=0,P=0,L =F.

2) Find the smallest i € {1,...,t} such that LT,(L) is a multiple of LT,(H;). If

such an i exists, replace Q; by Q; + LIJI\IZ/IUG(%?) and L by L — LLI\IZ/IU“((;?) H;.

3) Repeat step 2) until there is no more i € {1,...,s} such that LT,(L) is a multiple
of LT,(H;). Then replace P by P+ LM, (L) and L by LM,(L).

4) If L # 0 then start again with the step 2). If L = 0 then return the tuple
(Q1,...,Q¢) € S" and the vector P € S".

This is an algorithm which returns vectors (Q1,...,Q¢) € S* and P € S™ such that
F = 25:1 Qi:H; + P and either P =0 or P is a K-linear combination of monomials
none of which is divisible by any of LT (Hy),...,LT(H;). Furthermore, if Q; # 0 for
some i =1,...,t then we have LT, (Q;H;) <, LT,(F).

Proof. See [KR1, Theorem 1.6.4]. O
Let F,Hy,...,H;, € S"\ {0} and let H be the tuple (Hy,...,H;). The vector P

given in Theorem 2.2.6 is called the normal remainder of F' with respect to H and
is denoted by NR, (F). For F = 0, we let NR, »(F') = 0.
Let us look at the next example to clarify the Division Algorithm.
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Example 2.2.7. Let S = Q[X,, ..., X3].

(i) Let F = X2X! X, + X2X3, and let G be the tuple G = (G1,G5) € S?, where
G; = X{Xy+ XX3 and Gy = X2X; + X2X3. We follow the Division Algo-
rithm 2.2.6 to eliminate LT (F') step by step and get

F=(X3Xy — X2Xo X3+ X1 X5 X2 — XoX3)Go + X2Xo X2+ X2X5.

Thus NRyexg(F) = X§ X2 + X3. However, by using the term ordering DegLex,
Theorem 2.2.6 yields that F' = X2G; — (X1 X3 — X3)Gs, and therefore we get
NRDegLex,g(F) - O

(ii) Let {e1, e, e3} be the canonical basis of the free S-module S%, let G; = XZe; +
XoXiey + Xzes, Gy = XoX2e; + XoX3es, Gz = Xjes, Gy = XX X5eo, and let
F = X3G 1+ X$Go+ X2G35+0G,. Welet Gi, Gy be the tuples Gy = (G, Go, G, Gy)
and Gy = (G3,Ge, G4, G1), respectively. Let 0 = DegLexPos. Then an application
of Theorem 2.2.6 gives us NR, g, (F) = —X;X1X%es + (XJX3 — X3 X3 )es and
NR,.g,(F) = 0.

In the view of Example 2.2.7, the normal remainder of a non-zero vector F with
respect to a set of generators G = {Gy,...,G;} of an S-module M C S” depends not
only on the choice of a term ordering but also on the order of elements in G. One
question is: can one choose a set of generators G’ of M such that the normal remainder
of every vector H with respect to G’ is the same. A positive answer is given using

the concept of Grobner basis. In the following we fix a module term ordering o on
T (e, ..., er).

Definition 2.2.8. A system of generators H = {H, .., H;} of an S-module M C S”
is called a 0-Grébner basis of M if (LT,(H;),...,LT,(H,;)) = LT,(M). In the case
that M is a graded S-submodule of @;_, S(—0d;) where dy,...,d, € Z, a o-Grébner
basis of M is called a homogeneous o-Grobner basis of M if it consists of only

homogeneous elements.

Proposition 2.2.9. (Existence of a Homogeneous o-Grobner Basis) Let M be
a non-zero graded S-submodule of @;_, S(—9;).

(i) Given a sequence of homogeneous elements Hy,...,H, € M \ {0} such that
LT,(M) = (LT,(Hy),...,LT,(H,)), we have M = (Hy,...,H;), and the set
H ={H,...,H} is a homogeneous o-Grobner basis of M.
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(i) The module M has a homogeneous o-Gréobner basis H = {Hy, ..., H} € M\{0}.
Proof. See [KR1, Proposition 2.4.3] and [KR2, Proposition 4.5.1]. O

In order to compute a homogeneous o-Gobner basis of a graded S-module
M C @;_, S(—9;) from a given system of homogeneous generators, we can use the
homogeneous version of Buchberger’s algorithm which is stated below. To ease the
notation, we shall use the following convention. Given a tuple H = (Hy,..., H;)
of non-zero homogeneous vectors in @;_, S(—0d;), we write LM, (H;) = ¢;t;e,, where
t; € T"™ and ¢; € K and v; € {1,...,r}. For all pairs (i, ) such that 1 <i < j <t
and v; = v;, the S-vector of H; and H; is S;; = lcmc(:tii’tj VH,— lcn;gtt:tj \H ;. By S we denote
the set of all S-vectors of H.

Theorem 2.2.10. (The Homogeneous Buchberger Algorithm) Let M be a
graded S-submodule of the (standard) graded free S-module @;_, S(—¢;), and
let H = (Hq,...,Hs) be a tuple of non-zero homogeneous vectors which generate M.
Suppose that deg(H,) < --- < deg(H,). Consider the following sequence of instruc-

tions.

1) Let S=0,V=H,G=0, and s = 0.

2) Let d be the smallest degree of an element in S or in V. Form the subset
Sa = {Si; € S| deg(Si;) = d} of S, form the subtuple Vy = (H CV | deg(H) = d)
of V, and delete their entries from S and V), respectively.

3) If Sq = 0 then continue with step 6). Otherwise, choose an element F' € Sy and

remove it from Sy.
4) Compute F' = NR, g(F). If F' =0 continue with step 3).

5) Increase s’ by one, append Gy = F' to the tuple G, and append the set {S;y | 1 <
i <8,y =g} to the set S. Continue with the step 3).

6) If Vg = 0, continue with step 9). Otherwise, choose a vector V€ Vy and remove
it from Vy.

7) Compute V! = NR, g(V). If V! =0, continue with step 6).

8) Increase s by one, append Gy = V' to the tuple G and append the set {S;y | 1 <
i < 8,y =7¢} to the set S. Continue with step 6).
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9) If S = 0 and V = 0, return the tuple G and stop. Otherwise, continue with
step 2).

This is an algorithm which returns a tuple G = (G, ..., Gg) such that deg(Gy) < --- <
deg(Gy). The elements of G are a homogeneous o-Grébner basis of M.

Proof. See [KR2, Theorem 4.5.5]. O

Example 2.2.11. Let us go back to Example 2.2.7(ii). We want to compute a homo-
geneous o-Grobner basis of the graded S-module M generated by {G1,...,G4}. We let
o = DeglexPos. By applying Theorem 2.2.10, a homogeneous o-Groébner basis of M
is given by G = (G4, Gs, G, G5, Gy), where G = Xo X, X2e5 + (X2 — X2X2)es.

2.3 Exterior Algebras

Let R be a ring, and let V be an R-module. For every integer m > 1, the m~th
tensor power of V over R is the R-module Q% (V) =V ®rV Qg --- ®r V, where
there are m factors. Note that @5(V) = V and @®%(V) = R. Furthermore, if V
is a free R-module with a basis B, then @ (V) is also free and it has the elements
b1 ®by®---®b,,, where b; € B, as a basis. For more information about tensor powers
of a module, we refer to [SS, Section 80-81] and [Nor, Chapter 1].

Now we let I7}(V) denote the submodule of @ (V) which is generated by all
elements of the form 71 ® - - - ® z,, with z; = x; for some i,j € {1,...,m} and i # j,
and let A% (V) = Q% (V)/IF(V). The canonical map ¢:[[5(V) = Q% (V) = AR (V)
is an alternating multilinear mapping, i.e. whenever (vy,...,v,,) € [[5(V) contains a
repetition we have ¢(vy,...,v,) = 0. For all vy,..., v, € V, we denote by vy A---Avy,
the element ¢(v1, . .., v,,) and call it the exterior product of vy, ..., v,. Then AR (V)
is an R-module and its elements are finite sums of elements of the form v; A --- A v,

with vq,...,v,, € V.

Definition 2.3.1. The R-module A% (V) is called the m-th exterior power of V

over R.

We remark that I%(V) = IL(V) = (0), and so A%(V) = Rand AL(V) = V. If Ris
a graded ring and V is a graded R-module, then A7, (V') is also a graded R-module for all
m > 0, where (AR (V))i={>_viA--Avy, vy € V,k=1...,mand 37", deg(v;)=1}.
Moreover, the m-th exterior power of V' over R has the following universal property
(see [SS, 83.1]).
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Proposition 2.3.2. (Universal Property of the m-th Exterior Power)

Let V be an R-module, let m € N, and let ¢ : [[5(V) = AR(V) be the canonical
alternating multilinear map given by (vi,...,vy) — V1 A+ Avy,. For any alternating
multilinear map ® : [[R(V) = W of [[5(V) to an R-module W, there is a unique
R-linear map ® : Ar (V) = W such that the diagram

[Tz(V) ———=AR(V)

(I)l %

is commutative (i.e. o =d).

A set of generators of the m-th exterior power of a finitely generated R-module V'

can be described as follows.

Lemma 2.3.3. Let V be an R-module generated by {vi,...,v,} for somen > 1. Then
we have N\ (V) = (0) for m > n. For 1 < m < n, the R-module Ny (V') is generated
by the elements v;, \--- Nwv;,,, where 1 <i3 < -+ <y, <.

Proof. See [Nor, Chapter 5, Section 5.2, Theorem 5]. ]

If Vis a free R-module, then A% (V) is also a free R-module, as the following
proposition shows.

Proposition 2.3.4. LetV be a free R-module with basis {e, .. .,e,}, and let 1 <m<n.
Then N (V) is a free R-module with the basis

{es Ao Ney, | 1<iy<---<ip<n}.

In particular, the rank of N5 (V) is ().

m

Proof. See [SS, 83.4]. O

Combine this proposition and [KR2, Proposition 5.1.14], we get the value of the
Hilbert function of a free S-module as follows.

Corollary 2.3.5. Let S = K[Xo, ..., X,] be the standard graded polynomial ring over
a field K, let V = @,_, S(—d;) be a graded free S-module, and let 1 < m < r. Then
the Hilbert function of Ny (V') is given by

HEppan() = ) HFS@—édjk): > (i_2k=1djk+”>

n
1<j1 < <gm<r 1<j1 < <jm <r

foralli € Z.
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Let a : V — W be a homomorphism of R-modules, and let m > 0. We let
a:[[R(V) = [IR(W) be the map given by a(vi,...,v,) = (a(v1),...,a(v,)) for all
(v1,...,0m) € [[%(V). Then the composition map of & and the canonical alternating
multilinear map ¢w : [[R(W) — AR(W) is an alternating multilinear map. By

Proposition 2.3.2, we get a unique R-linear map
AN (@) Ag(V) = AR(W), o1 A Avg = a(v1) A= A a(vyy,).

Furthermore, this map makes the following diagram commutative
[Iz (V) ———1IIx(W)

Aﬁl(V> AL /\}?l(V)

The map A™(«) is called the m-th exterior power of .

Now we present some connections between the homomorphism o : V' — W and its

m-th exterior power.
Lemma 2.3.6. Using the notation as above, the following statements hold true.
(i) If v is an isomorphism, then N\ («) is also an isomorphism.
(i1) If v is surjective, then \™(«) is surjective as well.
(1ii) If R is a field and « is injective, then N\ () is injective.
Proof. See [SS, 83.6]. O

In the case that the homomorphism « is surjective, we can describe the kernel of its
m-th exterior power explicitly. This result is well known (see Exercise 26 of Chapter X

of [SS]). However, for convenience of the reader, we include its proof.

Proposition 2.3.7. Let a : V. — W be an epimorphism of R-modules. We set
G = Ker(a) and G AR N ' (V) == (fAglf € Gge Ny " (V)g. Then, for all

m € N, we have the exact sequence of R-modules
0— G AR N7 (V) — ARV) S AR(W) — 0.

Proof. Notice that \™(«) is surjective, since « is surjective (see Lemma 2.3.6). Now
we let ¢ : G Ar N (V) — A%(V) be the inclusion map. Then we have the short

exact sequence

0—GArR NG (V) — AR (V) N Coker(r) — 0.
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Since « is surjective, for every element (ws,...,w,,) € W™ there exists an element
(v1,...,0,) € V™ such that a(v;) = w; for all i = 1,...,m. We define a map
¢: W™ — Coker(s) given by ¢((wr,...,wy)) =vi Ava A+ Avy +G Ar /\;’;71(‘/).
We first need to prove that the map ¢ is well-defined and is an R-multilinear, alter-
nating homomorphism. Assume that there are elements (vy, ..., vy), (U1, ..., Up)E V™
such that a(u;) = a(v;) = w; for i = 1,...,m. This implies that u; — v; € Ker(«) and
VIAV A AUy — U AUg A+ - Ay, = (01 —Uug) AU A= AUy +ug A (09 — ug) Aug A
AU AU AU A Aty 1 A (U — ) € Ker(a) AARTH(V). Thus the map ¢
is well-defined. By using the multilinear and alternating properties of Az (V'), it is not
difficult to verify that the map ¢ is an R-multilinear, alternating homomorphism.

Secondly, we show that the sequence
0—=G AR Ag (V) — NR(V) — AR (W) — 0

is exact. By the universal property of m-th exterior power, there is a unique homo-
morphism of R-modules ¢ : A5 (W) — Coker(:) such that ¢ oy = ¢, where the map
v W™ — AR(W) is given by y((w1, ..., wm)) = wi A+ Awp,. Let Y0 105 Ao - Avpy
be an element of A% (V). Then we have

(po /\m(Oé))(zi:Tz‘Uu A AN ug) = Xi:so(na(vu) A A (Vi)
= Zrivli A A Umi + g /\R /\gil(‘/)
= Q/J(ZTZ'UM A A Umi)~

It follows that wo A" () = 1. Consequently, we get relations GAr A (V) =Ker(y) =
Ker(p o A™(a)) 2 Ker(A™(a)). Moreover, we have A" (a)(GArAR (V) = (0) and
s0 G Ar N (V) € Ker(A™(a)). Therefore we obtain G Ag A" (V) = Ker(A™(a)),
and this finishes the proof. m

Remark 2.3.8. In the setting of Proposition 2.3.7, assume that the R-module G is
generated by Hy,..., H, and the (m — 1)-th exterior power of V' over R is generated
by Li,..., L, Then the R-module G Ap /\271(‘/) is generated by the set

{HiANL; | 1<i<p 1<j<q}.

Now we denote the direct sum €P,, .y AR (V) by Ax(V) and equip it with the
multiplication A : (B,,ey AR(V): @en AR (V) = B,en AR (V) (w,v) = w A v
Then AR(V) is an R-algebra. Also, V is a submodule of A,(V) and it generates
Ag(V) as an R-algebra.



26 2. Preliminaries

Definition 2.3.9. Let V be an R-module. The algebra A (V') is called the exterior
algebra of V over R.

Note that v Av = 0 for all v € AR(V). The universal property of the exterior
algebra A\ (V) is given by the following proposition.

Proposition 2.3.10. (Universal Property of the Exterior Algebras)

Let N (V) be the exterior algebra of an R-module V and let ¢ : V — W be an R-linear
mapping of V into an R-algebra W, such that (¢p(v))? = 0 for all v € V. Then there
ezists a unique R-algebra homomorphism 1 : \p(V) — W such that ¢ = 1) o ¢y, where
oy 1 V= Ag(V) is the canonical injection.

Proof. See [SS, 85.2] or [Nor, Chapter 5, Section 5.1, Theorem 2]. ]

Similar to Lemma 2.3.6, we have basic properties of R-algebra homomorphisms of

exterior algebras.

Proposition 2.3.11. Let o : V. — W be a homomorphism of R-modules. Then there
exists a unique R-algebra homomorphism N(a) : Ngr(V) = Ag(W). Moreover, the

following claims hold true:
(i) The homomorphism N «) is the direct sum of the maps N™(a): Np (V) — Nr(W).
(i) If a is an isomorphism then \(«) is also an isomorphism.

(1i) If o is surjective then \(«) is surjective as well.

() If R is a field and « is injective then so is ().

Proof. See [SS, 85.5 and 85.7]. O

We end this section with an immediate consequence of Proposition 2.3.7.

Corollary 2.3.12. Let o : V. — W be an epimorphism of R-modules, and let G be the

kernel of a.. Then the sequence
0—=GANAR(V) — Ag(V) — Ag(W) — 0

18 exact.
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2.4 Some Properties of 0-Dimensional Schemes

First of all we fix the notation that will be used throughout the section. We work over
a field K of characteristic zero. By P" we denote the projective n-space over K, where
n > 1. The homogeneous coordinate ring of P" is the polynomial ring S = K[X, ..., X,,]
equipped with its standard grading deg(Xy) = -+ = deg(X,) = 1. If I C S is a
homogeneous ideal defining the scheme X (i.e. X = Proj(S/I)) and I = @®;s;,1; for
some 7y > 0, then I also defines X. We refer to [Har, Chapter 1I] for more details about
the theory of schemes.

Definition 2.4.1. Let I be a homogeneous ideal of S. The set
™ :={FeS|(Xy.. . X,)FCIforsomeicN}

is a homogeneous ideal of S and is called the saturation of I. The ideal I is called a

saturated ideal if [ = [2t.

Example 2.4.2. Let s be a positive integer, and let my,...,ms € N. For j =1,... s,
we let I; = (X1 —ajnXo,..., Xy —ajnXo)™ C S for some aj1,...,a5, € K, and let
I = ﬂj-:llj. Then the ideal I is a saturated ideal of S. Indeed, it is clear that I C 53,
Moreover, for a homogeneous element F' € %% there is i € N such that X}F € I. Note
that Xy ¢ I; for all j = 1,...,s. So, the image zy of Xy in S/I is a non-zerodivisor.
This implies F' € I. Therefore we get I = I, as desired.

Notice that the saturation of a given homogeneous ideal I C S is finitely generated,
since S is Noetherian. It follows from the definition of I*** that HF (i) = HF(4)
for i > 0, and hence I and I*** defines the same subscheme of P". Furthermore,
two homogeneous ideals I and J of S define the same subscheme of P" if and only
if I5% = J%at (see [Per, Proposition 1.3]). Thus if X C P" is a scheme defined by a
homogeneous ideal I of S, the saturation I*® is the largest homogeneous ideal of S
which defines X.

Definition 2.4.3. Let X be a scheme of P".

(i) The homogeneous saturated ideal of S defining X is called the homogeneous

vanishing ideal of X and is denoted by Zx.

(ii) The residue class ring Rx = S/Zx is called the homogeneous coordinate ring

of X. Its homogeneous maximal ideal is denoted by mx.

(iii) The coefficient dim(S/Ix) — 1, denoted by dim(X), is called the dimension of X.
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Now we turn our attention to 0-dimensional scheme X of P". Given a 0-dimensional
scheme X, it is known that the ideal Zx can be decomposed as Zyx = ﬂ;zl q;, where
each q; is a homogeneous primary ideal (see for instance [KR2, Proposition 5.6.21]). Let
B; = /4; be the corresponding radical ideal of q;. Then ; is a homogeneous prime
ideal and the only homogeneous prime ideal which contains *B; is 9t = €, S;. Notice
that B; is the homogeneous ideal of the standard graded ring S so, the number of ele-
ments of minimal sets of generators of B; is unique. Let {L;1,..., Lj,, Hj1, ..., Hjm; }
be a set of minimal generators of the ideal 3;, where deg(L;;) = 1 for k = 1,...,1;,
where deg(Hj;) > 2 for [ =1,...,m;. Since B; & M and the sequence of linear forms
Lji, ..., Lj; is a regular sequence for S, we can find linear forms Lj¢ 41, ..., Lj, such
that Lji, ..., Lj, is a regular sequence for S. By @); we denote the point corresponding
to the homogeneous prime ideal ©; = (Lj1,..., Lj,)s. Due to [KR2, Lemma 6.3.20]
and the assumption that the field K is infinite, there exist a linear form L such that
L(Q;) # 0 for all j = 1,...,s. This means that L ¢ g, for all j = 1,...,s. By
the Prime Avoidance Theorem (cf. [KR2, Proposition 5.6.22]), we have L ¢ (J;_, p;.
This implies L ¢ (J;_,(Lj1, .-, Ljs,)s, and consequently L ¢ (J;_, F;. Thus [KR2,
Proposition 5.6.17] yields that L is a non-zerodivisor for Rx.

Let Supp(X) = { Py, ..., P} be the set of closed points of P" in X. Note that ; is
the homogeneous prime ideal corresponding to P; for j = 1,...,s. The local ring Ox p,
is then the homogeneous localization of R at the image of *33; in R. The degree of X
is given by deg(X) = > 7, dimg Ox p,. The above argument allows us to make the

following assumption.

Assumption 2.4.4. From now on, the coordinates {Xy,...,X,} of P" are always

chosen such that no point of Supp(X) lies on the hyperplane Z*(Xj).

The image of X; in Rx is denoted by x; for ¢ = 0,...,n. By the choice of the
coordinates, z is a non-zerodivisor for Rx and K|[x¢] = K[Xy] is a subring of Rx. Thus
Ry is a 1-dimensional Cohen-Macaulay ring and Rx = Rx /(o) is a 0-dimensional local
ring. Moreover, it follows from Proposition 2.1.11 that pdg(Rx) = n.

The Hilbert function of Ry is denoted by HFx : Z — N (i — dimg(Rx);). The
Hilbert polynomial of Ry is HPx(z) = deg(X). By rx we denote the regularity index
of HFx. The following proposition collects some elementary properties of the Hilbert

function of 0-dimensional schemes which we use in the next chapters.

Proposition 2.4.5. Let X be a 0-dimensional scheme.

(i) We have HFx (i) =0 fori < 0 and HFx(0) = 1.
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(ii) There is an integer ax > 1 such that HFx(i) = (") if and only if i < ax.

n

(111) We have 1 = HFx(0) < HFx(1) < --- < HFx(rx — 1) < HFx(rx) = deg(X) and
HFx (i) = deg(X) for all i > rx.

Proof. See [Kre2, Lemma 1.3] and [DK, p. 155]. O

The number ax given in Proposition 2.4.5 is called the initial degree of Zx. This
can be described as ax = min{i € N | (Zx); # 0}. The degree of an element F' of a
minimal homogeneous system of generators of Zx is bounded by ax < deg(F) < rx+1,

as the following proposition shows (cf. [GM, Proposition 1.1]).

Proposition 2.4.6. Let X be a 0-dimensional subscheme of P"™. Then the homogeneous
vanishing ideal of X satisfies Tx = ((Zx)ax> (Tx)agt1s - - - 5 (Ix)ryg+1)5-

Below we proceed to give a bound for the regularity index of the m-th exterior power
of a finitely generated Rx-module V', where m > 1. For this, we need the following

result.

Lemma 2.4.7. Letd > 1, let d1,...,04 € Z, and let V be a non-trivial graded submod-
ule of the graded free Rx-module @;l:l Rx(—0;). Then xq is not a zerodivisor for V,

ie. if xg-v =0 for some v €V then v =0.

Proof. Let {ei,...,eq} be the canonical Rx-basis of @j:l Rx(—9;), and let i € Z.

Then every homogeneous element v € V; has a representation v = gie; + -+ - + gqeq

for some homogeneous elements ¢i,...,94 € Rx, where deg(g;) = deg(v) — ¢; for
j =1,...,d. Suppose that xy-v = 0. This implies that zogie; + -+ + xogseq = O,
and so xgg; = --- = x9gq = 0 in Rx. Since z( is a non-zerodivisor for Ry, we have
g1 =--+-=gq=0, and hence v = 0. Thus the claim follows. O]

Proposition 2.4.8. Let d > 1, let 61,...,04 € 7Z such that 6; < -+ < g4, let
W = @?:1 Rx(—9;) be the graded free Rx-module, and let V' be a non-trivial graded
submodule of W. Then, for 1 <m < d, we have

ri(v /\RX /\TI;LX(W)) < ri(V) + 6d—m+1 + -+ 5d-

Proof. First we note that the Hilbert polynomial of W is HPy (2) = d - deg(X) and
that ri(W) = rx + d4. This shows that the Hilbert polynomial of V' is a constant
polynomial HPy (2) = u < d - deg(X). Let r = ri(V), and let vy,...,v, be a K-basis

of V,. By Lemma 2.4.7, the elements {z{vy,...,x}v,} form a K-basis of the K-vector
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space V,y; for all i € N. We let {ey,...,eq} be the canonical Rx-basis of W, we
let t = (), and we let {e1,...,2,} be a basis of the graded free Rx-module Nk, (W)
w.r.t. {e1,...,eq} (see Proposition 2.3.4). We set § = 0411 + -+ - + g4, and let

N = (25 ¥ Nep € V Ar, N (W) [1 <5 <u 1<k <t)g

Let o = dimg N, and let wy,...,w, be a K-basis of N. It is not difficult to ver-
ify that N = (wi,...,wy)x = (V Ary Ag,(W))s4r. Moreover, for any i > 0, the

set {ziwy,...,ziw,} is K-linearly independent. Indeed, assume that there are el-
ements ai,...,a, € K such that > 7, zhajw; = 0. Since zg is a non-zerodivisor
for VAR, Ak, (W) by Lemma 2.4.7, we get 37| ajw; = 0, and hence a;=---=a,=0.

Now it is sufficient to prove that the set {ziwy, ..., ziw,} generates the K-vector

space (V Ary A, (W))ssryi for all i > 0. Let w € (V Ap, AR, (W))s1r+i be a non-zero
homogeneous element. Then there are homogeneous elements v; € V, h, € Rx such
that w = Z kUi ANhier = Z] i eV N e, where deg(v;) +deg(hy) = 6+ 7 +i—deg(ey)
for all j, k. Note that deg(hzv;) = d + 7+ i — deg(ex) > r + i for all i > 0. Also, we

have

~ 0+i—d o+i—d
hkvj € V5+r+i—deg(ak) = <$o+ eg(gk)vla ce 0+ esen) u>K
Thus there are bjy1, ..., bk, € K such that hyv; = > bime gﬂ deg(ex),, v;. Hence we
have
w = thvj Aep =33 byual @y A gy
7,k =1
=) ijklxg R A gy
7.k 1=
Zk > Z bjKICjkig )W,
with ¢jry € K. The last equality follows from the fact that {z{ws,...,z{w,} is a
K-basis of i N. Thus we get w € (ziwy,...,ziw,) K, and HE v p g, . 1) (i) = o for
all i > § + r. Therefore we obtain 1i(V' Ar, A, (W)) < 1i(V) + 0, as we wanted to
show. O

Using Proposition 2.4.8, we get immediately the following corollary.

Corollary 2.4.9. In the setting of Proposition 2.4.8, assume that 61 = --- = 64 = 0.
Then we have 1i(V Ag, \g, (W)) <1i(V) for 1 <m < d.

At this point we can bound the regularity index of the m-th exterior power of a

finitely generated graded Rx-module V' as follows.
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Proposition 2.4.10. Let V' be a graded Rx-module generated by the set of homoge-
neous elements {vi,...,vq} for some d > 1, let 0; = deg(v;) for j = 1,...,d, and
let m > 1. Assume that 6y < --- < 4, and set 6 = 0g_my1+ -+ g if m < d. Then
the regularity index of Ny (V) satisfies ri( N (V) = —o0 if m > d and

1°i</\71121X (V)) < max { 7% + 0 + 0a — da—mr1, Ti(V) + 0 — da—mi1 }

if 1 < m < d. In particular, if 1 < m < d and 6 = --- = 04 = t then we have
ri(AR, (V) < max{rx +mt,ri(V) + (m — 1)t }.

Proof. According to Lemma 2.3.3, we have A, (V) = (0) if m > d. Hence we see that
ri( AR, (V)) = —oc if m > d. Now we assume that 1 < m < d. It is easy to see that
the Rx-linear map o : W = EB?:l Rx(—0;) — V given by e; — v; is a homogeneous
Rx-epimorphism of degree zero. We let G = Ker(«). By Proposition 2.3.7, we get the

short exact sequence of graded Rx-modules
m— m A" (@) rm
Thus an application of Proposition 2.4.8 implies that

ri(Ag, (V) < max { ri( A%, (W), 1i(G Ar, AR (W) }
< max { rx 4+ 0, 1i(G) + & — 0g—mt1 }
< max { rs + 0+ 0g — 0g—ma1, Ti(V) + 0 — 0g_m1 }

Here the last inequality follows from the fact that ri(G) < max{rx + d4, ri(V')}. O

In the remainder of this section, we consider a special class of 0-dimensional sub-
schemes of P", namely finite sets of K-rational points in P". Let X = {P;,..., P;} be a
set of s-distinct K -rational points in P". Note that we always assume P; ¢ Z7(X,) for
all j =1,...,s. This allows us to write P; = (1 : pj1 : -+ : pj,) with pj1,...,pjn € K
for j=1,...,s. We let p; be the associated homogeneous prime ideal of the point P;.
Then the homogeneous vanishing ideal of X is given by Iy = o1 N --- N ps C S.
For f € Rx and j € {1,...,s}, we write f(P;) := F(1,pj1,...,Pjn), where F' is any
representative of f in S. The element f € (Rx)., is called a separator of X\ {P;}
in X if f(P;) # 0 and f(P,) = 0 for all k # j. A separator f; € (Rx),, of X\ {F;}
in X is called the normal separator if f;(P;) = d;; for all 1 <k <s.

In the following proposition we collect some properties of separators of a finite set
of reduced K-rational points in P" (cf. [GKR, Propositions 1.13 and 1.14].).
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Proposition 2.4.11. Let X = {Py,...,P;} C P" be a set of s distinct K-rational
points, and let f; be a normal separator of X\ {P;} in X forallj=1,...,s.

(i) There is an index j € {1,...,s} such that x¢ 1 f;.
(ii) For everyi > rx, the set {xh ™ f1,...,2b ™ f,} is a K-basis of (Rx);.

(iii) If g € (Rx); for some i >0 and cyxffi + -+ csxb fs € (Rx)piry for some k>0

and ¢y, ...,cs € K, we have
g-(cabfi+ - Feabf) = cig(P)i™ fi + -+ cog(P)xb™ f,.

In particular, we have f;fi = 0z f; for all j,k € {1,...,s}.



Chapter

Kahler Differential Algebras

In this chapter we investigate Kahler differential algebras and their Hilbert functions
for finitely generated graded algebras. In particular, we look more closely at them for
0-dimensional schemes in the projective n-space P".

The chapter contains four sections. In Section 3.1 we study the module of Kahler
differential 1-forms Q}, /g, of an algebra R/R,. We first recall the definition of Q5 /R, and
present some basic results on it (see Proposition 3.1.5 and Corollary 3.1.6). When R, is
a standard graded algebra over a field K and R = S/I, where S = R,[Xo, ..., X,] and
I is a homogeneous ideal of S, we give a short exact sequence of graded R-module Q, IRy
(see Corollary 3.1.7). Moreover, we also show how to compute the Hilbert function
of Q}E/Ro in this case (see Proposition 3.1.9).

The Kéhler differential algebra of an algebra R/R, is introduced in Section 3.2.
We use the exterior algebra to define the Kahler differential algebra Qg/r, of R/R,.
If R/R, is an N-graded algebra, we indicate that Qg g, has a natural structure of a
bi-graded algebra (see Proposition 3.2.4). Also, we give a presentation of the module
of Kéhler differential m-forms of a graded algebra R/R,, where R = S/I, where S/R,
is a graded algebra, and where [ is a homogeneous ideal of S (see Proposition 3.2.11).
Furthermore, we examine algorithms for the computation of Q% and its Hilbert
function (see Proposition 3.2.14 and Corollary 3.2.17).

In next sections, we restrict our attention to Kahler differential algebras for
O-dimensional schemes X C P". Section 3.3 is concerned with relations between the
Kéhler differential algebras of Rx/K and of Rx/K|[xg|, where Ry is the homogeneous
coordinate ring of X. We first present connections between Q}%X K and Q}%x JK (o] and
their Hilbert functions (see Proposition 3.3.1 and Corollary 3.3.2). Then we establish
a connection between Q- and Qp (., for m > 1 (see Proposition 3.3.3) and de-

scribe their Hilbert functions (see Lemma 3.3.7 and Proposition 3.3.8). In the case
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n =11t is easy to determine the regularity indices of (2 /K and Q. K [wo]- However,
it is hard to determine them in the general case, so we try to give a sharp bound (see
Proposition 3.3.11).

In the last section 3.4 we consider the Kahler differential algebras for a special class
of 0-dimensional schemes in P", namely finite sets of K-rational points of P". Given
a finite set of distinct K-rational points X C P" we describe the Hilbert polynomials
of Q. K and Q. JK (o] and bound their regularity indices (see Proposition 3.4.1 and
Corollary 3.4.3). Also, we show that Ax has rank ox = m if and only if QR x # (0)
and Qg;/lK = (0) (see Proposition 3.4.7). Finally, we apply the Hilbert function of
Kabhler differential algebra Qg /x to characterize some configurations of a set of distinct
K-rational points X C P™ (see Proposition 3.4.7 and Corollary 3.4.20).

The techniques we use in the first and second section are mainly inspired by the
work on Kéhler differentials of E. Kunz [Kun] and the results of [AKR|. The material

of the last two sections is based on the work of G. Dominicis and M. Kreuzer [DK].

3.1 Modules of Kahler Differential 1-Forms of Al-

gebras

Let R, be aring and let R/R, be an algebra. The ring R®pg, R can be considered as an
R-module by defining the product r- (>, a; ®b;)) = (1®@71)- (>, a;, ®b;) for r € R and
>, a;®b; € R®p, R. Let J denote the kernel of the multiplication map p : R®r, R — R
given by pu(ri ® rq) = riry for 1,72 € R. For an element ) .1, ®t; € J , we see
that > .rt; = 0and Y .rm®t = > (1)l —-10r) —>,1® (tir) =
>,1®t)(r; ®1 —1®nr;). This implies that J is the R-module generated by the set
{rel—-1®r|re R}

The mapping dg/g, which is defined by dr/g, : R — J/J?,r = r®@1—1Qr+J% is
R,-linear. Moreover, dg/g, satisfies the Leibniz rule, i.e. for every elements 7,7, € R,

we have

dr/r,(rir2) = Tira®@1—1Q@rre + J?
= (Mel-10r)(nel-10r)+
1@r)(rel—10r)+1er)(rn®l—1®mr)+ J?
= 1@m)rel-10r)+1r)(rn®l—1xmr)+ J?

= rodp/r,T1 + T1dR/R,T2-

Thus the mapping dg/g, is an R,-derivation of R into J/J*.
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Definition 3.1.1. Let M be an R-module. An R,-derivation d : R — M is called
universal if for every derivation § : R — N of R into an R-module N, there is one

and only one linear mapping ¢ : M — N with 6 = od.

If di : R — M, and dy : R — M, are universal derivations of the algebra R/R,
then by the universal property, there is a unique R-linear map ¢ : M; — M, such that
dy =l ody, and ¢ is an isomorphism. So, we can say that there is exactly one universal
derivation of R/R, up to isomorphism. The existence of a universal derivation of R/R,

is provided by the following proposition (cf. [Kun, Section 1]).

Proposition 3.1.2. The derivation dgjg, : R — J/J*r = r®@1—1Q@r+ J?%, is

universal.

Definition 3.1.3. If d: R — M is a universal derivation of R/ R, then the R-module M
which is unique up to isomorphism is denoted by Q}, IR, and is called the module of
Kahler differential 1-forms of R/R,.

When R/R, is a graded algebra, the ring R ®pr, R is a graded ring by the grading
(R ®g, R)i = ®,_¢(R; ® Ri_;). The kernel J of the canonical multiplication map
i R®g, R — R given by r; ® ry — 1115 is therefore a homogeneous ideal of R ®p, R.
Thus the module of Kihler differential 1-forms Q}Q IR, is a graded R-module. If r € R;
is a homogeneous element of degree 7 in R, then dg/gr,r is a homogeneous element of
degree i in Q, /r, as well.

Let us illustrate the concept of module of Kéahler differential 1-forms with the
simplest case R = R,[ Xy, ..., X,].

Example 3.1.4. Let R, be a ring, and let S = R,[Xy, ..., X,] be the polynomial
ring in n + 1 indeterminates over R,. Let J be the kernel of the multiplication map
jr:S®p, S — S defined by F ® G+ FG. The derivation dgyg, : S — Qg = J/J?
given by dg/p, F'=F®1—-1® F + J? for F € S is a universal derivation of S/R,. Let
us show that Q}S‘/RO is a free S-module with a basis {ds/r, X0, .., ds/r,Xn}. Therefore
we deduce immediately that if R, = K is a field then the Hilbert function of Qg /R, 15

HFoy (i) = (n+1) ("N

n

for i € Z.
First we check that the set {dg/r,Xo,...,ds/r,Xn} generates the S-module Q}g/Ro-

For two elements F,G € S, we have

FGR1-1FG+J*=FG®1-1G)+G(F®1-1® F)+ J
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By repeating this process, we see that the set {dg/r,Xo,...,ds/r,Xn} is a generating
set of the module of Kéhler differential 1-forms Qg Ry

Second we use the universal property of the derivation dg/g, to indicate that
QE/RO >~ Sntl Let v, ...,v, be an S-basis of a free S-module M = Svg @ - -- @ Sv,,.

The mapping

d:S— M, Fr— > 2y,
i=0 "

where 0F/0X; is the formal derivative of a polynomial F' at the indeterminate X;, is an
R,-derivation of S into M. Also, for an S-module N and an R,-derivation 6 : S — N,
there is one and only one map §: M — N,v; — §(X;) such that § = Sod. So, we have
d is a universal derivation of S/R,. Hence, by the universal property of the module

of Kahler differential 1-forms Q}g/ r, We have Qg IR, = S™+1, and a basis of Q}S‘/Ro is
{dS/RoXOa s 7dS/RoXn}-

Let S/R, be an arbitrary algebra, and let I be an ideal of S. The residual
class ring R = S/I is an R,-algebra. In general, the module of Ké&hler differential
I-forms of R/R, is not a free R-module (sec Example 3.1.10). However, we can
study Q}% IR, via its presentation. Let dg/p, and dgr/r, be universal derivations of
the algebras S/R, and R/R,, respectively. We let m denote the canonical projection
from S to R. Then the map 7 induces the mapping 0 : Qg — Qfp given by
00>, Fids/r,Gi) = >_,(F; + I)dgr/r,(Gi + I). We denote by (ds/r,I)s the S-module
generated by {dg/r,F | F € I}. It is clear that 0((ds/r,I)s) = 0. Additionally,
(ds/r,1)s is an S-submodule of Qg containing I, , since for F € S and G € I
we have Gdg/p, F' = Fds/r,G—dg/r,(FG) € (dg/r,I)s and QE/RO = (dg/p, ' | F € S)s.

Proposition 3.1.5. Using the notation as above, we have Ker() = (dg/r,I)s.
Proof. Fist we note that Qg /r,/(ds/r,I)s is an R-module via the multiplication
(F +1) - (dsyr,G + (ds/r,I)s) = Fds/r,G + (ds/r,I)s

for all F,G € S. Let di : R — Qg /(ds/r,I)s be the map defined by d\(F + 1) =
ds/r, F + (ds/r,I)s. Let us show that d; is a derivation of R into Q}g/Ro/(dS/RODS

makes the diagram

S S/T=R

]dS/RU jdl

Qgp, — Yg/p,/(ds/r,I)s
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commutative. It is clear that d; is well-defined. For F,G € S, we have d;(FG + I) =
ds/r,(FG)+ (ds/r,I)s = Fdg/p,G+Gds/r, F' +(ds/r,I)s = Fdi(G+ 1)+ Gd,(F+1).
Since dgy/g, is R,-linear, so is d;. Hence d, is a derivation of R into QIS/RO/<dS/ROI>S-
Consequently, the diagram is commutative.

Now we prove that the derivation d; : R — Qf IR, /{ds/r,I)s is universal. For this,
let N be an R-module such that there is a derivation dy : R — N. Then we can check
that dyomr: S — N is a defivation of S/R,. By the universal pri)perty of Qf Ry there
is a uniqge S-linear map o : QE/RO — N such that dyom = ¢ o di/pm. For F' € I,
we have ¢(dg/r,F) = ¢ odg/r,(F) = dy om(F) = 0. It follows that ¢ factors through
QIS/RO/WS/ROU& i.e. there is an S-linear map ¢ : Qg p /(ds/r,[)s — N such that
¢ = ¢o7, where T is the canonical projection from Qg to Qg p /(ds/r,I)s. Moreover,
the map ¢ is an R-linear map which satisfies (¢pody)(F+1) = ¢(ds/r, F + (ds/r,I)s) =
do(F + 1) for all F' € S. In other words, we have ¢ o d; = ds.

Suppose that there is another R-linear map ¢’ : Q}q/Ro/<dS/ROI>S — N such that

¢' ody = dy. Then we have the commutative diagram

S— " - S/T=R

d2
ds/Rr, Ldl \

7 ¢
Qg/r, — Qgym, /sy, D)s = 5= N

From this we deduce ¢/ o™ = ¢ o, and so ¢’ = ¢ (as 7 is surjective). Thus d; is
a universal derivation of R/R,. Consequently, we have Qp » =Qg, /{(ds/r,1)s, and
hence Ker() =Ker(7) = (dgs/r,1)s, as we wanted to show. O

If R=S/1, where I is an ideal of S = R,[Xy,...,X,] and dg/p, : S — QE/RO is the
universal derivation of S/R,, then by Example 3.1.4 and Proposition 3.1.5, we have
le/Ro = Sds/r,Xo ® -+ @ Sdg/r,X,, and the presentation of the module of Kahler
differential Q}%/RO is Q}%/Ro = Sdg/r,Xo ® -+ ® Sds/r,Xn/{ds/r,I)s. In this case, we
can explicitly describe a system of generators of (dg/p,I)s as follows.

Corollary 3.1.6. Let S be the polynomial ring R,[ Xy, ..., X,] and let {Fy,..., F;} be
a system of generators of a given ideal I of S. Let dg/p, be the universal deriwation

of S/R,. Then the set
{ds/r, F1, ... ds/r, Fy, Fidg/r,Xo, ..., Fidg/p,Xn, ..., Fyds/r, Xo, . .., Fydg/r,Xn}

is a system of generators of the S-module (ds/r,I)s.
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Proof. 1t is clear that dS/ROFi S <dS/ROI>S and FidS/RoXj = dS/RO(EXj) _deS/Ron' €
(ds/r,I)s fori=1,...,tand j =0,...,n. Let F € I = (F},...,F})s. Then there are
G1,...,G; € S such that F = Z’;:l F;G;. By the Leibniz rule applied to the deriva-

tiOH ds/Ro, we get dS/RoF = dS/RO(ZZ 1FG) = Zi_ FdS/ROGi + 2:21 GidS/ROE
Moreover, we have dg/r,G; = Y 1_, a dS/ROXk Thus we get

dS/ROF Z Z 6X FdS/ROXk + ZG dS/Ro
i=1k=0

Hence the conclusion follows. O

Now we turn our attention to graded algebras. In what follows R, denotes a stan-
dard graded algebra over a field K. Let S = R,[Xy, ..., X,] be the graded polynomial
ring over R, with deg(Xy) = -+ = deg(X,,) = 1, and let I be a homogenous ideal of S.
By R we denote the residual class ring S/I. We set G = ((0F/0xy,...,0F/0x,) €
R | F € I)g.

Corollary 3.1.7. The sequence of graded R-modules
0— G(=1) — R"™(=1) — Qp/p, — 0
1S exact.

Proof. Tt follows immediately from Proposition 3.1.5 that

Qn/r, = s/, /{dsyr, s = Qg /({dsr, D) s + 145,
= (© S/RO/[QS/RO)/((<dS/Ro[>S + IQ}S‘/RO)/IQ}S‘/RO)

Since QE/RO = Sdg/p,Xo @ -+ ® Sdg/r, Xy, we get the presentation QS/R /IQS/R =

(%)

Rey@ - - - @ Re,,, where ¢; is of degree 1. Thus we conclude from Corollary 3.1.6 and (%)
that the sequence of graded R-modules

0— G(—1) — R"™(-1) — Q}%/Ro —0
1s exact. L]

Similar to Proposition 1.8 of [DK]| we get the similar properties of the structure of
the module G.

Proposition 3.1.8. (i) For every i € N, we have

G, = { (OF /0y, ..., 0F /0x,) € R™ | F e I, ).
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(ii) If {F1,...,F} is a minimal homogeneous system of generators of I, then the
set {(0F;/0xq,...,0F;/0x,) € R | 1 < j <t} is a minimal homogeneous
system of generators of the R-module G.

At this point we can write an algorithm for computing the Hilbert function of

the graded R-module Q7 /r,- Lhis algorithm is based on the presentation Q5 IR, =
QE/RO/MS/ROUS-

Proposition 3.1.9. (Computation of the Hilbert function of Q}%/Ro)

Let K be a field, let R, = K[Yy,..., Y], and let S = R,[Xo, ..., Xy] be the polynomial
ring over R, with deg(Y;) = deg(X;) =1 for j =0,....,m, fori=0,...,n. Let I be a
homogeneous ideal of S given by a set of homogeneous generators {Fi, ..., F;}, and let

R = S/I. Consider the following sequence of instructions.

1) Compute a minimal homogeneous system of generators L of I by Buchberger’s
Algorithm with Minimalization (see [KR2, Theorem 4.6.3]).

2) Forme; = (0,...,0,1,0,...,0) € S"™*! fori=0,...,n+ 1, and compute the set
L'={YL,0F/0X;e; € S""' | F e L}.

3) Form the graded S-submodule N of the graded-free S-module S™™' which is gen-
erated by L' U{Ge; | G € L,0 < j < n}, and compute the quotient module
M = S"t1/N.

4) Compute the Hilbert function and the regularity index of the module M, and

return the Hilbert function of Q}%/Ro.

This algorithm computes the Hilbert function of the module of Kahler differential

1-forms Q}%/RO.

Proof. The correctness of this algorithm follows from Proposition 3.1.5 and Corol-
lary 3.1.6. Note that Q}S‘/Ro >~ §7t(—1), and (ds/g,I)s = N(—1) hence we get
HFQ}WRO (1) =0 for i« <0 and HFQ}WRO (1) = HF gns1/y (i — 1) for 1 <@ < ri(S™/N),
and HF%/H (1) = HPgns1/n(i — 1) for all ¢ > ri(S™"'/N) + 1. The finiteness of this

algorithm is clear. O]

Let us apply Proposition 3.1.9 to some concrete cases.
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Example 3.1.10. (i) Consider the homogeneous ideal I = (X3 — X?X5,) of the
polynomial ring S = Q[Xy, X1, Xs|. Let R = S/I. Then the Hilbert function
of QO g 18
HFQ}{/Q 039176t +6 for t > 3.

(ii) Consider the ideal I = 0_, i in S = Q[Xy, ..., X3, where p; = (X1, Xo, X3)2,
P2 = (X1 — Xo, Xo, X3), g3 = (X1, X0 — Xo, X3), o4 = (X1, X2, X3 — Xy),
o5 = (X1—2X0, Xo—Xo, X3—10X), and where pg = (X7 —Xo, Xo—Xo, X3—X0o).
Note that the ideal I is the homogeneous vanishing ideal of a 0-dimensional
scheme whose support is in general position. The residual class ring R = S/I is
not only a Q-algebra but also a Q[x¢]-algebra, where xq is the image of Xj in R.
We have HFg : 1499 .... By applying Proposition 3.1.9, the Hilbert functions

of Q}, 1o and Q3 JQlz,] Ar€ computed as follows:

HF 1 0415251515 ...
R/Q
HF o1 03111666 ...

R/Q[z(]
Since the Hilbert polynomials of Qf ¢ and of Qp ., ; are not multiples of the
Hilbert polynomial of R, we have neither the R-module Q7 /g Dor the R-module
Q5 J0lwy) 15 @ free R-module.

xo

We end this section with a relation between modules of Kahler differential 1-forms.
Let I C J be homogeneous ideals of S. We denote the residual class rings S/I and
S/J by R; and Ry, respectively. Let o : Ry — Ry be the canonical surjection given by
o(F+1I)=F+Jforall F € S. We observe that the graded R ;- module Q}%J/K can be
considered as an R;-module via g, i.e. the multiplication defined by f(gi1dr,/kg2) =
o(f)gdr, kg2 for f € Ry and g1, g» € R;. Then the canonical projection g induces an
R;-homomorphism of graded modules of Kahler differential 1-forms

v Qe — Qi e Fdryyg = o(f)dr, xo0(g).
Lemma 3.1.11. The homomorphism 7y is an Rr-module epimorphism.

Proof. The surjective property of v follows from that one of ¢ since every element of
Q}%J/K is of the form dg,,xh for h € R;. O

The preceding proposition induces immediately the following inequality, which will

be used in Section 3.4.

Corollary 3.1.12. For all i € N we have HF g1 I (i) > HF g1 (4).
I

Rj/K
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3.2 Kahler Differential Algebras

Let R/R, be an algebra, and let Q}, IR, be the module of Kéahler differential 1-forms

with the universal derivation d.

Definition 3.2.1. The exterior algebra A R(Q}%/RO) of the R-module of Kéhler dif-
ferential 1-forms over R is called the Kahler differential algebra of R/R, and is
denoted by Qg/g,. The m-th exterior power of QF /R, OVer R is called the module of
Kébhler differential m-forms of /R, and is denoted by Qfp, .

From the definition of the exterior power we see that Qg r, = @ Let us

meN QTREL/RO .
collect some basic properties of Kéhler differential algebras (cf. [Kun, 2.2]).

Proposition 3.2.2. (i) The restriction d : R — Q}E/Ro of the differentiation d to

elements of degree zero is a derivation of R/R,.
(ii) For all f, f' € R, we have df Ndf' + df' Ndf = 0.
(ii5) If w="73" fodfi N--- Ndfy, € Qpyg,, then dw =" dfo ANdfi A -+ Ndfp,.

(iv) The Kdhler differential algebra Qg g, is anti-commutative, i.e. for w,, € QF/r,
and w, € Q%/RO we have wy, A w, = (=1)™"w, A wy, € Q"szél.

(v) The map d is an anti-derivation, i.e. for w,, € Qf/p, and w € Qp/g, we have
d(wm A w) = dwy, Aw + (—1)"wydw.

Recall that the module of Kahler differential 1-forms Qf, IR, of a graded algebra
R/R, is a graded R-module. Hence for m € N, the Kéhler differential m-forms Qr/r,
is also a graded R-module. In the analogy with the definition of grading on Q’]g/ R, WE

can now define the grading on the Kahler algebra Qg g, .

Definition 3.2.3. Let R be a graded ring. An R-algebra (2 is called bi-graded if there
exists a family of R-modules 2" and a family of subgroups Q™ C Q™ for m,p € N

such that the following conditions are satisfied:
(1) " = @y 7.
(i) Qme . Qme" C Qmtmet for all m,m/,p,p’ € N.
(iii) Q% = R, for all p € N,

Proposition 3.2.4. Let R, be an N-graded ring and let R/R, be an N-graded algebra.
The Kdbhler differential algebra Qg g, has a natural structure of a bi-graded R-algebra.
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Proof. The Kahler differential algebra (2g, g, has the presentation

Qryr, = D g, = @ RIRAIRA -~ N dR.

meN meN f
m—times

For every m,p € N, we set

Qg;%o = > RydR, N---NdR,,.
PO+t +Ppm=p

m?p

R/R,

module of Kahler differential m-forms QTI’%/ r,- Additionally, we have Q%’ r, = Ip.

Since the derivation d is an R,-linear map, this implies that (2 is a subgroup of the

Suppose that there are natural numbers m, p, m’, p’ such that Q’g}%o N Qz}’g; # {0}.
Let w be a non-zero element of Qgﬁqo HQ%’}@;. Clearly, we have w € QO OQE} r,» and
therefore we get m = m/. Moreover, the module of Kéahler differential m-forms Q’;{?/ R
is a residue class module of the graded R-module Q" QF, IRy So we get p = p’ by
the definition of Q77 . Hence we have Qf, p = €D,y (g5, - Furthermore, using the

grading induced by QF, /g, On the tensor product and the fact that

m m’ _Oom m’ m+4m/
r/r, " YRR, = QR/R, AR QR/R, € QR

we obtain QE;ZO - ng}}i C QZL/ZZ Rats /, and the conclusion follows. O

For m, p € N, each element of the group Qgg/ &, 18 a finite sum of elements of the form
Jodfi A+ - Adf,,, where f,, ..., fmn € R are homogenecous such that > deg(f;) = p. In
particular, for a graded K-algebra R, and a graded algebra R/R,, the group Qgﬁ%o is a
finite dimensional K-vector space. The Hilbert function of the bi-graded R-algebra
Qg/r, is defined by

HFQR/RO (m,p) = dimK(ngl)ﬁtO) - HFQ%/RO (p)

for all (m,p) € N2.
Let us search for the Hilbert function of Kéhler differential algebra in an easy case.

Proposition 3.2.5. Let S = R,[Xy,...,X,] be a standard graded polynomial ring
over R,. Then for1 < m <n-+1 and p € Z we have

HFq,, . (m,p) = (""") HFs(p — m).

m

In particular, if R, = K then HFq (m,p) = (n-H) (n-l—p—m)'

m n

To prove this proposition, we use the following property.
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Proposition 3.2.6. Let S = R,[Xy,...,X,] be a standard graded polynomial ring
over R,. Then the module of Kdhler differential m-forms QE”/RO s a S-free module of

rank (”;1) )

Proof. As we computed in Example 3.1.4, the module Q§ IRy is a S-free module with
basis {d Xy, ...,dX,}. According to Satz 83.4 of [SS], for every m € N, the module of
Kahler differential m-forms Q) is a S-free module with basis {dX;, A---AdX;,, | 0 <

i < -+ <1, <n}. Hence, QZL/RO is a free S-module of rank (”;;1) as we wished. [

Proof of Proposition 3.2.5. By Proposition 3.2.6, the module of Kahler differential
m-forms Q?/Ro is a S-free module with basis {dX;, A---AdX;, | 0 <i < -+ <
im < n}. By Lemma 2.3.3, we have Q@/Ro =0forallk >n+1. Let 0<m<n+1
and p € N. Thus the Hilbert function of Kahler differential algebra €g/r, at degree
(m,p) is

HFq,,, (m,p) = dimg Qgh = (""1) HFs(p — m).

In particular, if R, = K then HFq , (m,p) = (";;1) HFg(p —m) = ("21) ("t O
Notice that, given a graded residue ring R = S/I, the module of Kéhler differential
m-forms Q- = 0 for m > n+1. Thus we have g/ = @;‘:J’OIQE/K. A relation of the

modules Q”R?/ i for 0 <m < n+1is provided by our next proposition.

Proposition 3.2.7. Let S = K|[Xy,...,X,] be a standard graded polynomial ring
over K, let I be a homogeneous ideal of S, and let R = S/I. Weletm = (xq,...,z,) be
the homogeneous maximal ideal of R, where x; is the image of X; in R fori=20,... n.
Then we have a homogeneous exact sequence of graded R-modules

0 — Qphl — Qe ==+ — Qe — m — 0 (3.1)
where y(dzy, A+ Ndx;,) = Z;n:l(—l)j“xijd:vil Ao Ndxg,_ Ndai A Ndg,, for
0<i; <+ <y, <.

Proof. First we notice that QEL/ i 1s a graded R-module generated by the homogeneous
system {dx;, A---Adz;,, | 0 <iy<--- <i, <n} and that Q'E/K =0forall k >n+1.
Also, it is not hard to verify that the mapping = : Q}?/K — QZL/} is a homogeneous

homomorphism of graded R-modules of degree zero.
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Now we show that v o~ = 0, i.e. that the sequence (3.1) is a complex. Let

w = dw; Adziy, A--- Adz;, be an element of Q.. Then we have
(vo)(w) =~v(X (=1 g dwyy A Aday,_, Adag,, N ANdag,,)
= z .(—1)j+k+2£€ikl‘ijd%1 AR '/\dﬂ?ikil/\dl’ikﬂ/\' . ‘/\d‘fij71 /\dwij+1/\' . /\d&?zm—i-

m .
Z '(—1)]+k+1l‘ijl’ikd$i1 AR '/\dIZ‘j71 /\dl’ij+l AR '/\dflfik_l /\dIik_H AR /\dfblm

It remains to show that for each homogeneous element w =Y, fidx;, A--- Adz;,

in (Q g )t+m With y(w) = 0 there is a homogeneous element w € (£ R/Jr[%)ter such that

~(@) = w. For such an w, we have

v(dw) = V(deidﬁil A Ndxg,)

=v0>] Z B dx]dle “Ndx;))
j

v 7=0
Ofi n 3fz
= 228 zidx; N+ -Ndxg, +> ) Z i (D) fdz Adai, A - /\dxlk/\ -Adx;,,
i 7=0 I] i 7=0k= 1

i i k=1
=tw+d(y(w)) = tw.
Thus, by letting & = $d(w), we obtain & € Qm? and v(w) = w, as desired. O

Remark 3.2.8. Observe that the exact sequence (3.1) can be applied to compute the
Hilbert function of the bi-graded algebra Qg k. In fact, we will use it to compute
HFq, , when R is the homogeneous coordinate ring of a 0-dimensional scheme in the

projective plane (see later).

The remaining part of this section is devoted to providing the reader with some
useful properties of Kahler differential algebras. Let R and S be N-graded R,-algebras,
and let m : S — R be a homogeneous ring epimorphism of degree zero. Furthermore,
let (Qg/r,,d) and (Q2s/g,,d) be the corresponding Kahler differential algebras of R/R,
and S/ R,, respectively. Then 7 induces a homogeneous epimorphism of graded Kéhler
differential algebras

0 - QS/RO — QR/R07 ZFOdFl VAR dFm — ZW(F())d(ﬂ'(Fl)) VANRIERIWAN d(?T(Fm))
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In this situation, in order to explicitly describe the kernel Ker(f) of 6 we need only
find the kernel of the restriction of ¢ on the m-th direct summand of €g/r, for m € N.
The following lemma, which follows immediately from Proposition 2.3.7, gives us an

explicit description of Ker(9|grsn/ »,)s where m € N.

Lemma 3.2.9. Using the notation introduced above, let o = 6’]%/% : le/Ro — Q}%/RO
be the canonical homogeneous epimorphism of graded S-modules of degree zero. We set
H = Ker(a) and H As ?71(939/}%0) =(WAwl|veEHwE /\?71(%/&»5' Then, for
all m € N, we have a homogeneous exact sequence of graded S-modules

m— m A" (@) m
0 —HAs \g 1(Qé/Ro) — N (Qs/r,) — N&(Qp/p,) —0

where A™(a) : N§(Qg/5,) — Ns (g g,) is given by AN™(a)(vi A=+ Avm) = avr) A
AN a(vg).

Remark 3.2.10. Let us make some observations about Lemma 3.2.9.

(a) If the graded S-module H is generated by homogeneous elements vy, . .., v, and
the (m — 1)-th exterior power of the graded S-module Qf /r, Over S is generated by
Wi, ..., wy, then H Ag A?_l(Q}q/RO) is generated by {v; Aw; |1 <i<p;1<j<gq}as
an S-module.

(b) When QIS/RO is a graded-free S-module of rank n + 1 with a basis {ey,...,e,}
and H = (vy,...,v,)s, where v; = Hypeg+- - -+ Hypep, for i = 1,.. . p, the S-submodule
H As Ns(Q5)p,) of /\?1(9}9/&) is generated by the set

{HijeoNer N---Nep |1 <i<p;0<j<n}

Indeed, we set M = (Hijeg A---Ne, | 1 < i < p;0 < j < n)g. It follows from
SS, Satz 83.4] that the n-th exterior power A§(Qg /r,) is a graded-free module of rank
n + 1 with a basis {€,...,€,} where ¢, = eg A --- Aej_1 A€ ANejyr A+ Ae, for
J=0,...,n. We also see that v; A ¢; = Hjjeg Aeg A--- Ae,. So, we get the inclusion
HAS/\gfl(QIS/RO) D M. For the other inclusion, we let >, vy Awy € HAS/\gfl(QIS/RO).
By a suitable arrangement, we may assume that v, € H and w, = €, € /\g_l(le/Ro).
Since the S-module #H is generated by {vy,...,v,}, for each v there are Gy € S
such that vy = > 7  Guv;. Thus we have Y, vp Aep = >, (O 0 Guvi) N e, =
SO G (D0 Higeg)) New = D2, GiHier A -+ N, € M,

Proposition 3.2.11. Let S be an N-graded R,-algebra, let I be a homogeneous ideal
of S, and let R be the residual class ring R = S/I. Then the module of Kdihler

differential m-forms QQ/RO has the presentation

Brr, = i, /((dD)s As QR+ 1R, ).
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To prove Proposition 3.2.11, we require the following lemma.

Lemma 3.2.12. Let S be an N-graded R,-algebra, let R/S be an algebra, and let
V' be a graded S-module. For all m € N, the universal canonical R-homomorphism
B:Ng(V)@sR— Np(V®sR) given by (Vi A+~ Avp) @1 = (01 @L) A+ A (v, @1),
is a homogeneous isomorphism of R-modules of degree zero.

Proof. We see that the map v : (A5 (V)) x R = AR(V ®g R) given by y(vy A --- A
Uy 1) = (11 @ 1) A+ A (v, ® 1) is an S-multilinear map. By the universal property
of tensor product, there is an S-linear map 5 : Ag(V) ®s R — AR(V ®s R) such
that 3 oa =+, where a: (A (V)) x R = A¢(V) ®s R is the canonical S-multilinear
map. Then we deduce S((vy A+ Avy)®@1) = (11 ® 1) A+ A (v, @ 1). Clearly, the
map [ is also an R-module homomorphism and it is homogeneous of degree zero. Now
we check that § is an isomorphism. Since the map 6 : [[R(V ®s R) > AgV ®s R
defined by (v; ® 1), , (v, ® 1) — (v A -+ Avy) ® 1 for all vy,... v, € V,
is an R-multilinear map, it follows from the universal property of exterior power that
there is an R-multilinear map ¢ : AR (V ®g R) = A4V ®g R such that

V(@A ANp®@1) =1 A Avy) @ 1.
Observe that coy) = idpm(vggr) and Yoa = idpm yegr, therefore the claim follows. [

Proof of Proposition 3.2.11. By Proposition 3.1.5, we have (dI)g = <[Q§/RO, dl)s and

the homogeneous exact sequence of graded S-modules

So, an application of Lemma 3.2.9 yields the following homogeneous exact sequence of

graded S-modules
0 — (IQg/p,,d)s Ns le/}lo — Q& — NgQpyp, — 0.
Thus we have
(NS Qpyr,) ®s R = (g, /{(IQs)p,, d)s As Qi) ®s R
= Q%r,/((dl)s As Q?/;zlo + 1Q4R,)-
We can consider R as an S-algebra. By applying Lemma 3.2.12, we then get
(/\?Q}%/Ro) ®s R = /\ZLQ}%/RO = O%/R, -

Hence a presentation of the module of Kahler differential m-forms QT];L/ r, 18 given by
g, = Qg /(dl)s As e + 1985 ). O
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Corollary 3.2.13. Let I be a homogeneous ideal of S = R,[X1,...,X,] generated by
the set {Fy,...,F;}, and let R = S/I. Let {¢; |1 < j < (")} and {& |1 <k <
("7:1)} be the canonical bases of the modules of Kahler differential le/}lo and Qg”/RD,
respectively. Then we have

(A + 15, )s As Uiy, = (B dFy Ae | 1< <511 () 1<k < ().

Proof. According to Corollary 3.1.6, we have the S-module (dI)g is generated by the
set {F;dX;,dF; |1 <j1<t0<4i<n}. Notice that [Q}q/RO C (dI)s. Moreover, an
element of the S-module <dI+IQ}9/RO>S Ag Qg”/}lo is of the form (3}, 2221 G FdX;+
S HidF)) A e = 3000 Y Gy Fyd X A e+ Y5 HidFj A ey, where Gij, H; € S.
It follows that (dI + Qg )s As Q) = (Fjer, dFjAq |1 <5 <1 <1< ()1 <

E< (s O
Based on the presentation of the module of Kahler differential m-forms Q’]{/ R, glven

in Proposition 3.2.11, we can describe how to compute QQ/RO as well as its Hilbert

function as follows.

Proposition 3.2.14. (Computation of Q%/Ro and its Hilbert function)

Let R, be a standard graded K-algebra, let S = Ry[Xo,...,X,] be the graded polyno-
mial ring over R, with deg(X;) = 1, let I be a homogeneous ideal of S generated by
{Fi,...,F}, let R=S/I, and let 1 <m <n+ 1. Consider the following sequence of

nstructions.

1) Compute a minimal homogeneous system of generators L of I by Buchberger’s
Algorithm with Minimalization (see [KR2, Theorem 4.6.5]).

2) Form the polynomial ring T = Sleq, .. .,en] = Ro[Xo, ..., Xn, €0, - - ., €n] and com-
pute the set L' = {> " JOF/0X;e; | F € L}.

3) Compute the canonical basis Vi1 = {ej, A---Nej,  |0<71 < -+ < jmo1 <n}

of the free S-module Qgﬁi and the set

Wl:{Z:’L:OaF/aXiei/\ejl/\"'/\ejm—l ‘ F€L70§]l<<]m—l§n}

4) Compute the canonical basis Vi, = {ej, N---Nej, | 0<j1 < - < jm <n} of
the free S-module Qg‘/RO and the set

WQZ{F/\Gjl/\"'/\ejm | FGL,OS]1<<]m§n}
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5) Form the canonical basis {e; = (0,...,0,1,0,...,0) € s(a) [1<i< ("N} of
the graded-free S-module S(n#), and take the image W of W1 U W5 in sCa) via
the 1somorphism QgL/RO =~ ("),

5) Compute the graded S-submodule N = (W)g of SUnY) and the residue class

n+1

module N = (' )/N

6) Compute the reqularity index of the module N and return N and its Hilbert func-

tion, stop.

This algorithm computes the module of Kdhler differential m-forms Q"R?/Ro and 1its
Hilbert function.

Proof. The correctness of this algorithm follows immediately from Corollary 3.2.13 and

Proposition 3.2.11. The finiteness is clear. O

Let us compute the Hilbert function of the Kahler differential algebra using this

algorithm.

Example 3.2.15. Let I = <(X0X12 — XS)(XI — XQ)S,(X()XIQ — XS)(XI — X0)2> be
the ideal of S = Q[Xy, X1, Xs]. We let R = S/I. The Hilbert function of the Kahler
differential algebra Qg q is

HF g : 1361015203t +6fort>6

HFQ}WQ : 039183044 56 63 66 6t + 22 fort > 9
HFQ?%/Q : 003918304248 453t +22fort>9
HFQ%/Q : 000136101296 ...fort>9.

Note that for S = R,[Xo, ..., X,], the module of Kéhler differential (n + 1)-forms
Qg}:}zo is a graded free S-module generated by dXyA---AdX,. Let I be a homogeneous
ideal of S and let R = S/I. According to Proposition 3.2.11, we have

Vg, = Lg/p,/(dD)s Ns sy, + 1dXo A+ NdX,) = (S/T)(—n — 1)

where J(—n —1) is the image in S(—n—1) of (dI)s \s Q5,5 +1dXo A~ -+ AdX, under
the isomorphism of S-graded modules Qg;réo =~ S(—n — 1). The homogeneous ideal

J C S is explicitly described by our next corollary.
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Corollary 3.2.16. Let S = R,[Xy,...,X,] be the standard graded polynomial ring
over R,, let [ = (Fy, ..., F;) be a homogeneous ideal of S, and let R = S/I. Then we

have

Dpig, = (R/D)(=n—1) = (S/J)(-n—1)

where T is the ideal of R generated by {0F;)0X; +1]|1<i<t0<j<n}, and J is
the ideal of S generated by {0F;/0X; |1 <i<t;0<j<n}.

Proof. 1t is well-known (see Proposition 3.2.6) that the module of Kéhler differential
n-forms Qg p = /\Z(QE/RO) is a graded-free S-module of rank n + 1 with the basis

{dXo N NdX;_1 NdXGANAXj N NdX, | 0<j<n}. Let H = (dFy,...,dF})s.
Then Corollary 3.1.6 yields that

HAs Qgyp, +1dXo N+ NdXy, = (dl)s Ns Gy, + 1dXo A -+ AN dX,.

We write dF; = OF;/0XodXo+- -+ 0F;/0X,,dX, for i = 1,...,t. Then an application
of Remark 3.2.10(b) implies

H As Uy, = (OF,/0X;dXo A+~ AdX, | 1 <i <0< j < n)s.

Hence the image of (H As €25,z +1dXoA---AdX,)(n+1) in S under the isomorphism
Vg (n+1) = Sis J = ({0F/0X; |1 <i<t0<j<nfU{F|1<i<t}s.
Moreover, the field K is of characteristic zero, and so Euler’s formula yields that
deg(Fi)F; = > 7 X;0F;/0X; for all 1 <4 <t. Thus J = (0F;/0X; [1<i<#0<
j <n)g, and the conclusion follows. O

Based on Corollary 3.2.16, we can improve the algorithm given in Proposition 3.2.14
for computing the Hilbert function of the module of Kéhler differential (n + 1)-forms

QT}J}% as follows.

Corollary 3.2.17. In the setting of Corollary 3.2.16, we consider the following se-

quence of instructions.

1) Compute a minimal homogeneous system of generators L of I by Buchberger’s
Algorithm with Minimalization (see [KR2, Theorem 4.6.5]).

2) Compute the set L' = {0F/0X; | F € L,0 < j <n} and form the homogeneous
ideal J = (L')s + 1 in S.

3) Compute the regularity index of the residue class ring S/I, return the module

Q%ﬁia and its Hilbert function by using equality QTE/“}BD = (S/J)(—n — 1), stop.
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This is an algorithm which computes the module Q?/’}%O and its Hilbert function.

To wrap up this section we apply the algorithm of the corollary to the following

example.

Example 3.2.18. Let I be the ideal I = N}_,p; of the ring S = Q[Xy, ..., X3], where
o1 = (X1, Xo, X3)%, 0o = (X7 — X, Xo, X3)5, 03 = (X1, Xy — X, X3)%, and where
o1 = (X1, X, X3—Xo)%. Note that the ideal I is the homogeneous vanishing ideal of
a 0-dimensional scheme whose support is in general position. We let R = S/I. Then
the Hilbert function of Q% 0 is

HFQ;LQ/Q:000014102031384040....

3.3 Kahler Differential Algebras for 0-Dimensional

Schemes

Throughout this section we let X be a 0-dimensional subscheme of P" such that
Supp(X) N Z7(Xy) = 0. By Zx we denote the homogeneous vanishing ideal of X
in S = K[Xy,...,X,]. Then the homogeneous coordinate ring of X is Rx = S/Zx.
Let x; be the image of X; in Rx for i =0,...,n. We know that x is a non-zerodivisor
for Rx and that Rx is a graded K[zo]-algebra which is free of rank deg(X). In this
section we are interested in the study of the Kéhler differential algebras of the algebras
Rx/K and Rx/K|zo|. In particular, we look more closely at their relations and their
Hilbert functions.

Let R, be either K or K[xg]. We recall that the module of Kéhler differential
1-forms of Rx/R, is given by Qp r, = /J?, where J is the homogeneous ideal of
the graded ring Rx ®r, Rx = @,z @;—o(FRx); ® (Lx)i—; which is generated by the
set {z; ® 1 =1 ®a; | i = 0,...,n}. The universal derivation d : Rx — Q}%X/Ro is
given by r — r® 1 —1®r + J? Then the Kihler differential algebra of Rx/R, is
rs/r, = Nr Ly r,) = Dumen Vi,

First we have the following connection between Q}%X K and Q}%X JK (o] which is given

as Proposition 3.24 in [Kun]|.
Proposition 3.3.1. There is an exact sequence of graded Rx-modules
a B
Ry ®Kfwo] Vo) — gy = Qg /Klwg) — 0

where Q}qmol/K > Klxoldzo, where av is given by a(f1 ® faodxg) = f1fadxg, and where
18 given by 6(fldRX/Kf2) = fldRX/K[xo}fQ'
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We see that a(Rx ® gz Q}qmo]/K) = Rxdxy C Q}%X/K. Thus we get the exact

sequence of graded Rx-modules

By exact sequence (3.1), the map ~ : QJIQX/K — Rx given by v(FdG) = FG for all
F,G € Rx is a homomorphism of graded Rx-modules. So, Anng, (dz) = (0), indeed
if there is F' € Rx \ {0} such that Fdxy = 0 then v(Fdxy) = 0 = Fxy, contradict with
the assumption that z( is a non-zero divisor of Rx. From sequence (3.2) we obtain the

following equality for Hilbert functions of modules of Kéhler differentials 1-forms.

Corollary 3.3.2. We have HF g1 (1) = HFq - (1) —HFx(i—1) foralli € Z. In

X/K[Io]

particular, ri(Q};L.X/K[xO]) < max{ri(QL Ry /K) rx + 1}

Let Rx = Rx/{(zo). An application of [DK, Proposition 1.6] yields the exact se-
quence of graded Rx-modules

0— Rxdl'o + <‘T0>Q}?X/K — Qll?x/K — QL

B/ 0 (3.3)

Our next proposition gives us connections between the modules of Kahler differen-
tial m-forms of Rx/K, Rx/K and Rx/K|[z)|.

Proposition 3.3.3. Letm € N. Then there is an exact sequence of graded Rx-modules

0 — Rxdxo Apy QR /K — QR JK QRX/K[QTO] — 0.

Moreover, Svg /K has a presentation Q. K= = Q% ko) (T0) VR, /1o

Proof. The exact sequence of Proposition 3.3.3 follows from Proposition 2.3.7 and
sequence (3.2). We only need to prove the additional part of this proposition. Due to
the short exact sequence (3.3) and Proposition 2.3.7, we get a short exact sequence of

graded Rx-modules
0 — (Rxdzo + (20)Qg, /i) Nrx Vh ) x> QR — Nr, (2 Feyic) — 0

We set V' = (Rxdwo + (o), Jic) N S0 /IK It follows from the exact sequence given

in Proposition 3.3.3 that Q. JK[zo] = RX/K/RdeO ARy Q- /lK Then we have

N, i) = VgV = (U, i/ Bxdo Arye Vi) /(V/ Bxdizg Ary i)

= QF, /K[xo]/ (xom?& /Klzol



52 3. Kahler Differential Algebras

Thus Lemma 3.2.12 yields
Ok = /\EXQ%X/K ®ry Rx = Qo) [ (T0) VR, yrejay) @ Rx Bx
= Q%X/K[mo]/<x0>Q%X/K[mo]a
as we wanted to show. O

As an immediate consequence of Proposition 3.2.11, we have the following corollary.

Corollary 3.3.4. Let X C P} be a 0-dimensional scheme, and let 1 <m <n + 1.

(i) The module of Kdhler differential m-forms QT]%LX/K has a presentation:
Ygx/K = Q?/K/(WIX)S Ns an/}l + IX{Z?/K)-
(ii) The module of Kdhler differential m-forms ng/K[xo] has a presentation:
B/ Klwo] = Y8 r1e0)/ ((@Tx) s As Vgt + T8 i(ag))-

Remark 3.3.5. Let X C P" be a 0-dimensional scheme. We let Supp(X)={P,,...,Ps}
for some s > 1, let p; be the homogeneous vanishing ideal of X at P; for j =1,...,s.
In order to compute the homogeneous vanishing ideal Zx = ﬂ;zl ©; of X we use the
results in the paper of J. Abbott, M. Kreuzer and L. Robbiano [AKR]. More precisely,
we can either proceed degree by degree to compute a homogeneous o-Grébner basis
of Zx by using the GPBM-Algorithm (cf. [AKR, Theorem 4.6]), or we can apply the
GBM-Algorithm (cf. [AKR, Theorem 3.1]).

When a homogeneous Grobner basis { F}, ..., F;} of Zx has been computed, we can
apply Proposition 3.2.14 to compute presentations of the modules of Kahler differential
m-forms Qp . and Qf . and their Hilbert functions. Note that Qf - = (0) if
m > n+1and Qf 0 = (0) if m > n. In the case m = n + 1 we can also use
Corollary 3.2.17 to compute the Hilbert function of ng K

Moreover, we have Q%X/K = Q% keo)/ ()R, /K[y (cf. Proposition 3.3.3). This
enables us to compute Q%X K and its Hilbert function, too.

Example 3.3.6. Let X be the 0-dimensional scheme in IP% with the homogeneous
vanishing ideal Ix = I; N I, N I3, where I; = (X; — 9X,, X5, X3)3, I, = (X; —
6X0, Xo, X3 — Xo)°, and I3 = (X; — 2X,, Xy — 3Xp, X3 — 3X)3. The Hilbert function
of Qg g 18

Qlﬁ :03918303623800...
x/Q

2 .

QEX/Q :003918302712200...
Q3 :000136106200...
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Now we describe the Hilbert functions of the module of Kahler differential m-forms

Q’EX/K and ng/K[xo}’ where 1 <m < n + 1. We first consider the case n = 1.

Lemma 3.3.7. Let X C P! be a 0-dimensional scheme with the homogeneous vanishing
ideal Ix = (F), where F' = [;_,(Xq — a; Xo)™ for some m; > 1 and a; € K such that
a; #ajifi #j. Let w=>;_ m;. Then the Hilbert functions of the modules of Kihler

differential m-forms are given by

HFQ}%X/K 20246 - 2(p—2)2(u—1)2u—12u—2 - 2u—82u—8§---
HF g2 20012 - p—2pu—1p—2pu—3 - p—spu—5---

Ry /K
HFQ}QX/K[EO] 0123 ... u—2pu—1p—-1p—-2 ... p—spu—s---

and HF g2 (1) =0 for alli € Z.

Ry /K [x(]
Proof. 1t is clear that the Hilbert function of Rx is HFp, : 1234 --- p—1pp---.
We let G = [[_,(Xq1 — a; Xo)™ Y, Hy = >0 may [1,.:(X1 — a;Xo), and let Hy =
> i1 i [ [2s(Xa—a;Xo). Note that deg(G) = 377, (m;—1) and deg(H,) = deg(H2) =
s — 1. Then it is not hard to verify that the sequence H;, Hs is an S-regular sequence,

and hence this is a regular sequence for the principle ideal (G)g. Thus it follows from
Corollary 3.2.16 that

HFQ%X/K(Z.) = HFg/0r/0x0,0r/0x1)s (0 — 2) = HE g/, cry) 5 (1 — 2)
= HF /(65 (0 = 2) + HF (e (a1 ara) s (0 = 2)
= HFS/<G>s(i — 2) + HF<G>S(i — 2) — 2HF<G>S(i — 1= S) —+ HF<G>S(i — 28)
= HFS(Z — 2) — 2HF5<Z -1 M) —|—HF5<Z — S — /L)

() ()

ThereforewehaveHFQ% P 0012 -+~ p—2p—1p—2p—3 -+ p—Spu—5---.
X
By the homogeneous exact sequence given in Proposition 3.2.7, the module of Kéahler

differentials 1-forms Q}%X /K has the Hilbert function:
HF o1 /K:0246 2 =2)2(p—1)2u—12u—2 -+ 2u— 82— 8§+ .
X
By Corollary 3.3.2, the Hilbert function of Q}%X JKzo] 18

HFq 012 ... p—-2p—1p—-1p—-2 ... p—spu—s---.

1
Ry /K[zq]

Finally, we have Qp /(. = fixdzy, and therefore HF g2 1 (i)=0forallieZ. O
X

(=]
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In some special degrees, we can predict the Hilbert function of Qf JK and Q. K [zo]-

Proposition 3.3.8. Let X C P} be a 0-dimensional scheme, and let o be the initial
degree of Ix, i.e. let ax = min{i € N | (Zx); # 0}.
(i) Fori < m, we have HFQ;%X/ (1) = HFQRX/K[IO]( i) =0.
(i) Form <i < ax+m—1, we have HFQSQX/K(Z'): (" ("™ and HF g
() - ("5):
(iii) The Hilbert polynomials of Q. /K ond Q. K[z OT€ constant polynomials.

(iv) Let R, denote either K or K[xg]. We have HFQ;?X/RO (rx +m) > HFQTI;LX/RO
m+1) >, and if ri(Qf,_/p ) = rx +m then

R/ K 0] ()=

(TX +

HFQELX/RO (rg +m) > HFQgX/RO (rx+m+1)>---> HFQQX/RO(Ti(QTﬁX/RO))-

Proof. (i) Let w be a non-zero homogeneous element of the S-graded module Q-
Since w can be written as a sum of elements of the form FdX;, - --dX;  for some F € S.
We get deg(w) > m. By Corollary 3.3.4, an element in QF /Ry 1S the residue class of
an element in €2g,, , and therefore HFQEX/RO( i) =0 for all i < m.

(ii) Let R, denote either K or K|[zg]. Let m <1i < ax+m — 1. Suppose that w is a
homogeneous element of degree i in the graded S-module IXQS/ R, T (dZx) SQS Re" We
proceed to show that w = 0. Let us write w = Zj Fiwj+> ", dFyWg, where Fj, F, € Iy,
w; € QS/R, and wy € QS/R
that deg(F}) + deg(w;) = deg(F}) + deg(wy) = 4 for all j,k. Obviously, we have
deg(F;) > ax, deg(Fi) > ax, deg(w;) > m, and deg(wy) > m — 1. Therefore we get

Here F},wj, Fy,w; can be chosen homogeneous such

deg(w) > ax +m — 1. This implies that w = 0, as wanted. Consequently, we have
(IxQ 5, + <dIX>sQS/R )i = (0) for all i < ax +m — 1. Thus for all i < ax +m — 1,

we obtain

() () R, = K

m

() - (") Ry = Ko

HFQ”I;IX/ (1) = HFQS/RO (i) = {

(iii) Since the module of Kahler differential m-forms Q7 . is a finitely gener-
ated graded Rx-module and Ry is a Noetherian ring, by Theorem 2.1.4 we know
that the Hilbert polynomial of Q% p exists. Corollary 3.3.4 implies HFQ’%IX/RO (1) <
HF

polynomial.

am . /IXQ?/RO(Z') for i € N. Hence the Hilbert polynomial of Qp /R, is a constant

(iv) The Rx-module Qf - has the following presentation:

(R, /i )itm = (Bx)idro A -+« ANdTm 1 + - + (Rx)idTp—mi1 A -+ A dp.
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We remark that if i > rx+1 then (Rx); = zo(Rx);—1. Therefore we have (QELX/K)Hm =
zo(25, / x)i4m—1 for all i > rx 4+ 1. Thus we get the inequality

HFop  (i+m) < HFqp  (i+m—1)

for all ¢ > ry + 1. If there is a degree ¢ > rx such that HF om /K(i +m) = HFQrIg P (1+
X
m + 1) then it follows from Corollary 3.1.7 and Proposition 2.3.7 that

HF/\T};X (R§+1)(/L> - HFg/\Rx/\TéLX_I(RXn+1) (Z) = HF/\'II;LX(RQ-FI) ('l + 1) - HFQARxAggl(R§+1)<i + 1)

Here we have G = ((0F/0xo,...,0F/0x,) | F € Ix)r,. Since i > rx, we have
HFx (i) = deg(X), and so HF/\m (i) = HF/\m g+ (i +1). The above equation
yields

HE g a0 = HE g amot gy (0 41).
Notice that x( is a non-zerodivisor for Ry, and hence by Lemma 2.4.7 this is also a
non-zerodivisor for the graded Rx-submodule G Ar, ;!‘;(Rgﬂ) of the graded-free
Rx-module A} (Rg"™). This implies

(G Ary Niy (RE))is1 = 20(G Ar, N, (RET)):

In the view of Proposition 2.4.6, the ideal Zx can be generated by polynomials of degree
less than or equal to 7x + 1. So, the graded Rx-module G Ag, \j;~ Y(R™*) is generated

in degree less than or equal to rg. Thus we obtain

(G Ary ARy 1(R”+1))Z+2_x0(g Are Niy (BE™D)irs -+ 2a(G Mg N, (BE™))ia
zo(@o(G Ary Ay (BET))i + -+ 2a(G Ane A, (BE™)):)

20(G Ary N, YREM)) i

Altogether, we have HFop (i+m+1)= HFQEX/K(Z' +m +2), and the claim follows

by induction.
If R, = K[zo], we have

(QF,/Kk(wo))itm = (Bx)idzy A= Ndxy, + -+ + (Bx)idZp—mi1 A -+ A dy.

For i > rx+1 then (Rx); = zo(Rx)i—1. Thus we get (U w0 itm =20(UR, /(o) Jitm

for all i > rx + 1. Therefore the inequality HFqm Lo (z +m) < HFqgm (oo (z +m—1)
holds for all 7 > rx+1. If there is 7 > rx such that HFQm Ko (z—l—m) HFQR ke ](z'—i-

m + 1) then we argue as above to get HEpm (ry(J) = HF/\R (rp)(J + 1) and

HE o npt () () = HE g unn a1 () (U + 1)
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for 7 > i, where H = ((0F/0xy,...,0F/0z,)|F € Ix)gr,. Altogether, we have
HFgm (j+m+1) =HFgm ](j + m + 2), and the claims follows. O

Ry /K[zq] Ry /K[zq

The following example shows that HFqm /K(i +m) and HF gm ](i +m) may or
X

Ry /Klzg
may not be monotonic in the range of ax + m < i <rx + m.

Example 3.3.9. Let X C Pg be the set of nine points X = {(1 : 0 : 0),(1 : 0 :
1),(1:0:2),(1:0:3),(1:0:4),1:0:5),(1:1:0),(1:2:0),(L:1:1)},
which contains six points on a line and three points off that line. It is clear that
HFx: 1367899---, ax = 3, and rx = 5. The Hilbert functions of the modules of

Kahler differential 1-forms, 2-forms, and 3-forms are computed as follows:

HFg: :039151413141312111099---

Rx/Q

HF g2 :0039945432100---
Ry /Q

HFqs :0001300---.
Ry /Q

We see that HFQ}%X/Q(QX%—I) =14>13 = HFQ}%X/Q(QX%—Q) and HFQ}QX/Q(QX—I—Q) =13<
14 = HFQ}%X/Q (rx+1). So, HFQEX/@ is not monotonic in the range of ax+1 < i < rg+1.
But HFQ}%X/(Q is monotonic in the range of ax + 3 < i < rx + 3. Furthermore, we have
:0269755432100... andHFQ%XQ ]: 0013100....

HFQ /Ql=zq

}?x/@lwo]
Remark 3.3.10. By Propositions 3.3.3 and 3.3.8, the Hilbert polynomial of €2

constant for allm =1,... n.

m
R K 1S

The regularity index of the modules €27 /K and Q. /K [wo) €A be bounded as follows.

Proposition 3.3.11. Let X C P" be a 0-dimensional scheme, let m > 1. The regular-

ity indices of the module of Kdhler differential m-forms Q}?—}X/K and QZLX/K[IO} satisfies
max{ri(Qp ), (g, /kpy)} < max{rx +m,ri(Qp, k) +m — 1}

Proof. We set G = ((OF /dxy,...,0F/dz,) € R"™ | F € I)g. Corollary 3.1.7 yields

the short exact sequence of graded Rx-modules
0—G— Q}g/RO/IXQ;/RO — QIRX/RO — 0.

Applying Proposition 2.4.10 to the Rx-module Q}%X /r, Which has a set of generators of
degree 1, we get 1i(Q /) < max{rx +m, 1i(Q, /g, ) +m—1}. By Corollary 3.3.2, we
get 1i(Qp, /xay) < max{ri(Qp, ) rx + 1}. Thus the claim follows. O
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Remark 3.3.12. If R, = K then ri(Q’é;}K) < max{rx +n,1i(Qp, ;) +7 —1}. Indeed,

the exact sequence of graded Rx-modules

0—>QZ§}K—>Q’§X/K—>---—>Q}%X/K—>m—>0

deduces ri(Qpt) ) < max{ri(Q} )i =0,...,n} <max{rg+n,ri(Q ) +n—1} In

conclusion, we obtain the following upper bounds for the regularity indices of Q. K
ri(Q%, /) < min{max{rg +n, ri(Q}%X/K) +n — 1}, max{rg + m, Ti(Q}zx/K) +m —1}}.

If R, = K then the upper bound for the regularity index of the module of Kahler
differential m-forms Q7 K which is given in the above remark is sharp. Moreover, if
R, = Klzy] and m < n, the upper bound for the regularity index of the module of
Kahler differential m-forms QE‘X JKzo] which is given in Proposition 3.3.11 is sharp, as

the following example shows.

Example 3.3.13. Let X be the 0-dimensional scheme in IED?2 with the homogeneous
vanishing ideal Ix = N%_,p;, where p; = (X1, Xo, X3)%, 02 = (X1 — X, Xo, X3)),
03 = (X1, Xo — Xo, X3), 91 = (X1, Xo, X3 — Xo), 05 = (X1 — 2X5, Xa — Xo, X3), and
06 = (X1— X, Xo— Xo, X3—Xg). We see that rx = 2 and ri(Q}%X/Q) = 4. Also, we have
ri(Q%, o) = min{max{rg +n,1i(Qp_r) +n — 1} max{rg +m,1i(Qp ) +m—1}} =5
and

1i(Q, ) = 1i(Qp, q)
= min{max{rx + n,ri(Qp, k) + n — 1}, max{rx + m, ri(Q}%X/K) +m—1}} =6

for m = 3,4. Thus the upper bound for the regularity index of the module of Kéhler
differential m-forms ng /0 given in Remark 3.3.12 is sharp. Furthermore, we have
Qg o)) = 4 and 11(Q%_gp,) = 5 = max{rg +m,1i(Qp o +m — 1)} for m = 2.
Therefore, for m < n, the upper bound for the regularity index of Q2% /Qlo] given in

Proposition 3.3.11 is sharp.

3.4 Kahler Differential Algebras for Finite Sets of
K-Rational Points

In this section we restrict ourselves to investigating Kahler differential algebras for a
special class of 0-dimensional schemes in P", namely finite sets of distinct K-rational

points in P".
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In the following we let s > 1, and we let X = { Py, ..., P;} C P" be a set of s distinct
K-rational points in P". Furthermore, we always assume that no point of X lies on
the hyperplane at infinity Z%(X,). Let us write P; = (pjo : pj1 : -+ : Djn) with
Pji,---,Pjn € K and pjo = 1 for j = 1,...,s. Then the vanishing ideal of P; is
©; = (pj1Xo— X1,...,pinXo — Xy)s, where S = K[Xy,...,X,]. We have the image
zo of Xy in Ry is a non-zerodivisor for Rx and that Ry is a graded K[zq|-algebra
which is free of rank s. In [DK], Proposition 3.5 shows that the Hilbert polynomial
of Q}%X/K is HP%X/K(z) = deg(X) = s and the regularity index of Q}%X/K satisfies
ri(Q}{X / ) < 2rx + 1, where rx is the regularity index of HFx. This result was proved
by using the theory of separators in 1999 by M. Kreuzer and G. Dominicis [DK]. For
j=1,...,s, let f; € (Rx)r, be the normal separator of X\ {P;} in X, i.e. f;(Py) = d;x
for j k =1,...,s. We recall that the set {2} ™ fi,..., 25 "™ f,} is a K-basis of R; for
i > rx, and for f € R; and c1x§f1 4+ 4 csx'gfs € Rjtr, With ¢1,..., ¢, € K we have

folaabfi 4+ +ealbfs) = af(P)ad™ fi 4+ 4 e f(P)x) ™ £

Using the above tools, we can describe the Hilbert polynomial of the module of

Kahler differential m-forms Q’gx /K for every 1 < m < n+ 1 as follows.

Proposition 3.4.1. Let 1 < m <n+ 1. We have

deg(X) ifm =1,
HPop . (2) = .
% 0 if m > 2.

In particular, the reqularity index of Q’]{X/K satisfies ri(Q%X/K) < 2rx +m.

Proof. For m =1 we have HPq) = deg(X) and 1i(Qp, ) < 2rx + 1 (see [DK,
X

Proposition 3.5]). Assume that m > 2. We see that Qf /i 1s a graded Ryx-module

generated by the set of (”7:1) elements {da:il Ao Ndr, |[0<iy < <ip, <n+1 }

For j € {1,...,s}, let f; be the normal separator of X\ {F;} in X. Since the set
{ab™ f1, ..., xb ™ f,} is a K-basis of the K-vector space (Rx); for i > rx, the set

{a:g#x*mfjdxil/\~~/\dxim|O§i1<~~<im§n+l;1§j§s}

is a system of generators of the K-vector space (% )i for all k > rx +m. Note that

f]2 = [;(P)zi* fi = ot fi and z; f; = pjiwof;, where we write P; = (1 : pj1 -+ : Djn)
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with pji,...,pjn € K for j =1,...,s. Therefore we get

wot fidw, - --dug, = fidwg, - dag, = (d(ff2,) — 2,df?)d;, - - - dry,,
= (d(pjilngjz) — xildff)daciQ ceedxy,
((Pjis o — x4, )df] + pji, [1dwo)ds, - - - dxy,,
= (2(pji, w0 — xi,) f5df; +Pji1fj2d3?0)d$i2 ceedx,
= pji, [ldwodzs, - - - dx;,, = pji, xg° fidzodzs, - - - d;,

— J— X
= = pjilpjizxo fjd(lfodl’odlﬁizﬁ, s dIZ'm.

Since we have m > 2, this implies that z(* f;dx;, - - - dx;, = 0 for all j = 1,...,s and
{ir, ... im} €40,...,n+1}. Therefore we obtain (Qf ;)i = (0) for all & > 2rx +m,
and the conclusion follows. O]

Since ri(Q}%}K) < max{ry, 1i(Q%, ) [ 1 < m < n}, we get ri(Q}%‘}K) < 2rx +n.
Hence we have ri(Qf /K) < min{2rx + m,2rx + n}. These upper bounds for the
regularity indices of the Kéhler differential m-forms Qf K are sharp, as our next

example shows.

Example 3.4.2. Let X = {P}, P, P53, P,} be the set of four Q-rational points in P3),
where Py =(1:9:0:0),P,=(1:6:0:1),P3=(1:2:3:3),and P,=(1:9:3:5).

It is clear that HFx : 1 4 4... and ry = 1. Moreover, we have
HFqg:  :041044---, HFgp :006400---,
Rx/Q Rx/Q
HFgps :0004100---, HFg :0000100---.
Rx/Q Rx/Q

Thus we get 1i(Qp_ o) = 2rx +m = 2rx + 1 = 3, 1i(Q%, ) = 2rx +m = 2rx +2 =4,
and 1i(Q% q) = 11(Q, o) = min{2rx +m, 2rx +n} = 2rx +n = 5. Hence we obtain
the equality ri(Qf ) = min{2rx +m, 2rx + n} form =1,.... 4.

Follow from Corollary 3.3.2 and Propositions 3.3.3 and 3.4.1, we get an upper bound
for the regularity index of (2 K o)’

Zo

Corollary 3.4.3. Let 1 < m < n+ 1. Then the Hilbert polynomial of ng/K[Io]
is HPQ%LX/K[mO](z) = 0 and the regularity index of Xy (.., satisfies ri(ng/K[xo}) <
2rs +m.

For 1 < m < n, our next example shows that the upper bound for the regularity

index of Q2 Kzo) 21VEN in Corollary 3.4.3 is sharp.

Example 3.4.4. Let X={P,..., Ps} be the set of five Q-rational points in IF’?"Q where
P=(1:9:0:0:1),P,=(1:1:6:0:1),P35=(1:0:2:3:3),P=(1:9:3:0:5),
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and Ps = (1:3:0:4:1). Then we have HFx : 1 5 5... and rx = 1. Moreover, we

have

HF g1 :041000---, HF 2 :006400---,
Ry /K[zq] Ry /K[zq]

HF o5 0004100---, HF 0000100---.
Ry /K[zq] Ry /K[zq]

So, we get ri(Qp, o) = min{2rx +m,2rx + n} = 2+ m for m = 1,2,3. Hence the
upper bound for the regularity index of Q;’gx /K zo] given in Corollary 3.4.3 is sharp.

We form the matrix Ax = (pij)i=1,...s € Matyx(ny1)(K), and let ox denote the rank

of the matrix Ax.
Proposition 3.4.5. Using the notation as above, we have Qg - = (0) for allm > ox.

Proof. Let G = ((0F/0x,...,0F/0r,) € R¥™ | F € Ix)p,. Then the sequence of
graded Rx-modules

0 — G Ary NBL(RET) — AT (RET) — QF0 — 0 (3.4)

is exact by Proposition 2.3.7. Let Y = (yg yn)tr, let w =mn+1— ox, and let
V' be the space of solutions of the system of linear equations Ax - ) = 0. Then
dimg V' = u. Without loss of generality, we may assume that the set {vq,...,v,},
where v; = (1,0,...,0,a1411, -+, 01n11), -+ Vu = (0,0, ..., 1, Gyusty -y QGuntt), IS @
K-basis of V. Then the linear forms L; = Xo+ a1 Xy + -+ a1001Xp, .., Ly =
Xy1+ayui1Xy+- -+ ayn1X, are contained in Zx. This implies that vy,...,v, € G,

and so (vy,...,v,)r, € G C REM.
In order to prove Qfé;;}( = (0), it suffices to prove that
NS RE) = (o1, v e Are B (RET).

Let {ej,...,en41} be a basis of the graded-free Rx-module RE™, and let i € {1,...,u}.

Then we see that v; = e; + a;yr1€0+1 + -+ - + Ginens1 and
€iNCut1 N A Cusgr = Ui A€yt A A Cytog € (V14 V) Ry ARy %i(Rgg“).
Let 1 < k < gox. We want to show that if
iy N Neig New N Neiy € (u1,. 0, vu) Ry Arg N (RET)
for all {iy,...,i} C{1,...,u} and {ig41,.. . g1} S {u+1,...,u+ ox} then

) ) ) . ox pn+l
ey N Nej Nej, A /\ejgxﬂ6(1}1,...,%)3X Ary N, It
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for all {j1,...,7kr1} C {1,...,u} and {Jri2,- - Joxr1} C {u+1,...,u+ ox}. We
see that
Cjp N Nejy Nejpo Ao Nej,
= (€ + Ay ut1€ut1 + -+ QjrutorCutor) N N €jy AN, NomANej,
— Z}Hﬁl( D% aji(ej, Ao Nejy) A (€ Aoee A Cjgy i1 /N er)
:Ujl/\€j2/\"'/\ejk+1/\€jk+2/\"'/\6jgx+1

;H—ugfl<_ ) ajll(ejz ARRRNA ejk+1) A (ejk+2 ARRRNA engJrl A el)'

This implies that e, A---Aej,  Aej A Aej, o € (01, v ry Ary N3y, (RET).
Thus we have shown that the set {e;, A---Ae;, ., | {i1, .. 7igx+1} C{l,...,n+1},3; €

1,...,u}} is contained in (v, ..., V)R AR QX R”+1 Since this set is also a system
X X y

of generators of the Rx-module QRXH R we obtain the equality QXH R”+1 =

(i, V) Ry Ary N (Rg™), as we wanted to show. O

Let us clarify this proposition using an example.

Example 3.4.6. Let X C P be the set of seven Q-rational points P, = (1 :2: 3 :
6:7),P,=(1:0:0:0:6), 5=(1:3:5:6:7),P,=(1:3/2:5/2:3:13/2),
P;=(2:5:8:12:14), Bo=(1:79:33:67:2),and P, = (1:1:3/2:3:13/2).
Then we have ox = 4. A calculation gives Q- # (0) and QF,_,, = (0).

This example is a particular case of the following proposition.

Proposition 3.4.7. Let X be a set of s distinct K-rational points in P"*. Then Ax
has rank g = m if and. only if Qe # (0) and ke = (0).

To prove Proposition 3.4.7 we use the following lemma, which has proved in [SS,
Proposition 85.12].

Lemma 3.4.8. Let R be a ring and V,W be R-modules. Then we have a canonical

1somorphism

Ne(V & W) =300 Ni ' (V) @r (V).

Proof of Proposition 3.4.7.

In view of Proposition 3.4.5, it suffices to show that Q Ry /K # (0). Welet vy,. .., Ups1—py
and Ly, ..., L,41-,, be defined as in the proof of Proposition 3.4.5. Then the vanishing
ideal of X can be written as Zx = (L1, ..., Lyy1—py, F1, ..., F})s for some F; € S with
deg(Fj) > 2. The Rx-modules M = (v, ..., Vnt1-gg) Ry A0A N = (€nio gy -y Ent1) Ry
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are graded-free Rx-modules of rank n + 1 — px and px respectively. We proceed to
show that M Agr, AT YRt ¢ 7 (REH). According to Lemma 3.4.8, we have

M Apy N REY) = M Ap, N5 (M @ N)
:M/\RX( 2 NG (M) @, A%X(N)>
= 270 N (M) @y Ny, (N).

Clearly, we have M N N = (0). Thus we get rank( %(R;{Ll)) = Yo (o) L ()

ox—i i
and rank(M Ag, A% (RET)) = S0 ("Z;:fx) - (%), and hence

rank(A% (RE™)) — rank(M Ag, NG Y(RrHh)) = 1.

Consequently, we have M Agr, A YR € A% 7 (Rg*). Based on the exact se-

=

quence (3.4) and the fact that M C G and M, = QO, we conclude that QF - # (0). O

Let us illustrate this proposition with a concrete example.

Example 3.4.9. Let X = {P;,..., P;} C P" be a set of s distinct K-rational points
lies on a line, i.e. Pj = (1:X\jp1 -+ A\jp,) with py,...,p, € K, p1 #0, \y =1, and
Aj # A if 7 # k. Then we have

HFQ}%X/K:0246--- (2s—2) (2s—1) (2s—2) (2s—3)-+- (s+1) s s
HFQ%X/K1012 o (s—=2)(s—1)(s—2) ---2100---

and for m > 3 we have HF gm /K(i) =0 for all i € N.
X

In the remainder of this section, we discuss some geometrical configurations of a
finite set of s distinct K-rational points X in the projective plane P? which are reflected
in terms of Hilbert functions of the modules of Kéhler differentials 3-forms. We begin

with the following criterion for X to lie on a conic.

Proposition 3.4.10. Let X = {Py,..., P} be a set of s distinct K-rational points
in P2. Then X lies on a conic which is not a double line if and only if HFQ?:é p (1) <1
X
foralli e N and HF s (3) = 1.
Ry /K

Proof. Suppose that X C C = Z7(C), where C' = ago X3 + 2a0 X0 X1 + 2a02 X0 Xo +
a1 X2 +2a19X1 Xy + a9 X2 and C # aL? for any linear form L € S and a € K. W.l.o.g.

we may assume that agg # 0. Since C' is contained in the vanishing ideal Zx, the ideal
(000X, 0C 10X 1,0C /0X5)g is a subideal of (0F/0X; | F € Tx,0 < i < 2)g. It is
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clear that we have (0C'/0Xy,0C /0X1,0C/0Xs)s = (appXo + a0 X1 + age X2, ag1 Xo +
CL11X1 + angg, (IOQX() + CL12X1 + a22X2>S. We see that the matrix A = (aij)i,j:(),m is of

rank 1 if and only if it is of the form

Qoo Ap1 Qo2
2
A — a agy ap1a02
01 aoo ago
ap1a02 ago
o2 apo apo

If rank(A) = 1, then agC = (agXo + ag1 X1 + ageX2)?, a contradiction. Thus we
must have rank(A) > 2. We may assume that the two vectors (ago, ao1, agz) and
(ap1,ai1,a12) are linearly independent. Then the sequence of linear forms agpyXy +
a1 X1 + ageXa, ag1 Xo + a11 X1 + a12 X5 is a regular sequence for S. By Corollary 3.2.16,

we have

HFqs () = HEs/or/0x,|rez; 0<i<2)5 (1 = 3)

< HFg/10¢/0x0,00/0%1,00/0x2)5 (0 — 3)

< HFS/<t100X0+a(nX1th102X27CL01X0+CL11X1JralzXz)s(Z - 3) <L

Since X does not lie on any lines, we have (0F/0X; | F € Ix,0 < i < 2)g C
(Xo, X1, X2)s, and therefore HFQ%X/K(?)) =1.

Conversely, suppose HFQ%X/K(Z') <1 for all i € N and HFQ%X/K(?)) = 1. If X lies on
a line then Proposition 3.4.7 shows that HFQ%X/K(Z') =0 for all 7 € N, a contradiction.
Note that if X is contained in a double line then it lies on a line. Now we assume
that X does not lie on any conic. Then Zx is generated in degrees greater than 2. It
follows that HF 9p/0x,|pezy,0<i<2)s (1) = 0. Thus the Hilbert function of Qi;’%x K satisfies
HFQ%X/K (4) = 3 by Corollary 3.2.16. This is a contradiction. O

Remark 3.4.11. It follows from the proof of Proposition 3.4.10 that a set of s distinct
K-rational points X in P? lies on a line if and only if HF g3 p (1) =0 for all 7 € N.
X

Lemma 3.4.12. Let X C P" be a 0-dimensional scheme, and let Y be a subscheme
of X. Then for allm € N and for all i € Z we have HFgm /K(z’) < HFgm /K(i).
Y X

Proof. Let Zx and Zy be the homogeneous vanishing ideals of X and Y, respectively.
By Lemma 3.1.11, the canonical epimorphism 7 : Rx = S/Zx — Ry = S/Zy induces an
epimorphism of graded Rx-modules 7 : Q}, K Qk, /i~ By Proposition 2.3.7, for any
m € N, the map ~ induces an epimorphism of graded Rx-modules ¢ : Q’]{X K Q’IQY K-
Hence we obtain HFng/K<i) < HFQQX/K(Z') for all i € Z. O
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Lemma 3.4.13. Let Y = {P,..., Ps} be a set of five reduced K -rational points in P>
which lie on 2 different lines. Assume that none of four points of Y lie on a line. Then
we have HF o3 000110 ---.

Ry/K

Proof. W.l.o.g, we may assume that L; = aoXo + a1 X1 + a2 Xy and Ly = by Xy +
b1 X1 + by Xy are lines through P, P, P3 and Py, Ps, respectively. For ¢ = 1,2,3,
the homogeneous vanishing ideal of P; is of the form p; = (L}, L;)s with L} =
cioXo + cn X1 + ¢pXo and ¢y, ¢i1,¢0 € K. So, the vanishing ideal of {Py, P, P3}
is (LYLyLY5, Ly)g. Similarly, the vanishing ideal of {Py, Ps} is (L) LL, Ly)s for some
linear forms L, = ¢;oXo + ¢i1 X1 + ¢i2Xa, where i = 4,5. By the assumption, we have
ged(Ly, Ly) = 1. Therefore, if F' € Iy, then deg(F) > 2. Let F' € (Iy)2 \ {0}. Then
we have F' = F1L; = FyLo + AL} LL for some A € K and deg(F}) = deg(Fy) = 1. For
i = 4,5, we have F(P;) = F\(P,)L,(P,) = (AL)LL)(P;) = 0. This means Fi(Py) =
Fi(Ps) = 0, and hence Fy = kL for some k € K \ {0}. As a consequence, we have
F € (Iy)2 \ {0} if and only if F' = kL, L, for some k € K \ {0}. Since the matrix

2@0[)0 a0b1 + a1b0 a0b2 + agbo ao bo 0 b() b1 bQ
a,()bg + CLQbo 2&1[)1 albg + CLle = aq bl 0 ap a1 as
&Qbo + (Zobg CLle + &1b2 2(12[)2 as bg 0 0 0 0

has determinant 0, we get <CLOL2+Z)0L1, a1L2+b1L1, ang—i—bng}S = <CLOL2+b0L1, a1L2—|—
bi1L1)s CJ=(0F/0X; | F € Ix,0 < i < 2)g. Note that we have rank (ZZ Zi Zz =2.

This implies HF g3 /K(4) = 1. Moreover, we have L, L) L; € Iy, and so L)Ly € J. By
Y
the inclusion (L;, Lo, L} LL)s C J and

Qp a1 Qg Gy aip as
rank bo bl bg = rank bo b1 bg =3
Cq0 C41 C41 C50 Cs1 Cs1

for all H € S of degree bigger than or equal to 2, we have H € (L, Ly, L} LL)s C J.
Thus we get HF o3 /K(z’) =0 for all ¢ > 4. O
Y

Corollary 3.4.14. Let X C P? be a set of s > 5 distinct K -rational points which lie
on two different lines. Suppose there exist five points such that no four of them lie on
a line. Then we have HFgs ~ (3) = HFqs  (4) = 1.

Ry /K Ry /K

Proof. Apply Proposition 3.4.10 to the scheme X which lies on two different lines. This
yields HF g3 /K(B) =1 and HF s /K(4) < 1. By Lemma 3.4.12 and Lemma 3.4.13, we
"X X
get HF s (4) = 1. O
Ry /K
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Lemma 3.4.15. In P2, let X = {Py,..., P} be a set of s distinct K -rational points
which lie on a line ZT (L), let Q ¢ Z7(L), and let Y = XU {Q}. Then we have
HFQ%WK (3) =1 and HFQ:;%WK(Z') =0 for all i # 3.

Proof. Since X C Z*(L), we may write p; = (L;, L)s for some linear form L; € S,
where j € {1,...,s}. It follows that Zx = (_, p; = (F, L)s with F' = [[;_, L;. Since
Q ¢ Z*(L), we may choose suitable linear forms L} and L) such that pg = (L}, L})s
and L) (P;) =0 and L)(P,) = 0. Then the homogeneous vanishing ideal of Y is

Iy =Ix Npg = (F, Lys N (L, Ly)s D (FLY, FL,, L\ L,L}L)s.

We write Lll = a[)XO + a1X1 + GQXQ, LIQ = bOXO -+ lel -+ bQXQ, and L = CoXO -+ Cle -+
co Xg, where a;, b;, ¢; € K. In the following we show that the rank of the matrix

apg ap as
E - b() bl b2
Ch C1 Co

is 3. Otherwise, there are elements A\, \y € K such that L = A\ L} + A\ L},. We have
0= L(P) =ML (P)+ MNLy(P) = XNLy(Py). Since Ly(Py) # 0, we deduce Ay = 0.
Similarly, we can show that \; = 0. Thus we get L. = 0, a contradiction. Hence we
have rank(£) = 3, as claimed.

Now we see that (OLL]./0X; | 0<i<2,k=1,2)s = (agL+coL},a1L+c1L},as L+
oL, bo L+ oLy, b1 L + c1 Ly, bo L + co L) s € J = (0G/0X; | G € Ty,0 < i < 2)g C
@« # 0 and ¢y # 0. Then

a; ¢

(Xo, X1, X2)g. Since L # LY, we may assume that det

ag ¢co O Co C1 Co
det(M) = det a, ¢ 0 apg ai; as £ 0.
bo 0 Co bo bl b2

Moreover, we have M - (Xg X; Xo)" = (aol + col} a1L + L} boL + coLhy)™.
Hence we get (agL + coL), a1 L+ c1 L, boL + coLy) s = (X0, X1, X2)s, and consequently
J = (Xo, X1, X2)s. Thus, by Corollary 3.2.16, we obtain HFQ%WK(S) = HFg/,(0) =1
and HFQ%WK(Z') = HFg/;(i —3) =0 for all i # 3. O

Corollary 3.4.16. In the setting of Lemma 3.4.15, the Castelnuovo function of Y
AHFy(i) := HFy(i) — HFy(i — 1) satisfies AHFy(i) <1 for all i > 2.
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Proof. Using the notation as in the proof of Lemma 3.4.15, we have
Iy =Ix N PQ = <F7 L>S A <L/17 L,2>S 2 <FL/17FL,27L/1L7L/2L>S

This yields AHFy(2) = 1, and therefore AHFy(i) < 1 for all i > 2 (see [KR2,
Corollary 5.5.28]). O

Lemma 3.4.17. Let X C P? be a set of s distinct K-rational points which lie on

a non-singular conic C = Z*(C). Then we have HF s /K(i) = 0 fori # 3 and
X

HFQsRX/K (3) - 1

Proof. Let us write C' = ago X3 + 2a01 X0 X1 + 2a02 X0 Xo + a11 X2 + 2415 X1 Xo + an X3,
where aj; € K, and let A = (aji);jr=012. We know that C = Z7(C) is a non-singular
conic if and only if rank(A) = 3. This implies the equality (0C/0X; | 0 < i < 2)g =
(agoXo+ao1 X1+apXa, a10Xo+a11 X1+a12 Xz, az0 Xo+asn X1 +aXs)s = (Xo, X1, Xo)s.
Since C' € Ix, we have J = (0F/0X; | F € Ix,0 < i < 2)s = (X, X1, Xa)s. Therefore
it follows from the isomorphism Q3 . = (S/J)(=3) that HFQ%X/K (i) = 0 for i # 3
and HFQ%X/K(?)) =1, as desired. O

Corollary 3.4.18. Let X C P? be a set of s distinct K-rational points with s > 5.
If X lies on a non-singular conic C = Z7(C), then there is an index i > 2 such that
AHFx (i) > 2.

To prove the corollary, we use the following lemma which is mentioned in [Uen,
Theorem 1.32].

Lemma 3.4.19. Let C; = Z(F) and Cy = Z(G) be plane curves of degree m and n,

respectively, in projective plane P2. If F' and G' do not possess a common divisor, then
Ci-Cy = mn.

Proof of Corollary 3.4.18. Since deg(X) = s > 4, it follows from Lemma 3.4.19 that the
homogeneous vanishing ideal Zx contains only one homogeneous polynomial of degree 2.
Assume that Zx = (C, F, ..., F})s, where deg(F;) > 2 for all j = 1,...,¢. Then we
have HFx = HF g/, mys © 1 35 % *---. This implies that AHFx(2) = 2. O

.....

Corollary 3.4.20. Let X C P? be a set of s distinct K -rational points with s > 5.

(i) If HFgs  (3) = 1 and HFgs  (4) = 1, then X lies on two different lines and
Rx/K Ry /K

no s — 1 points of X lie on a line.
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(ii) Suppose that HFgs ~ (3) =1 and HFqs (i) = 0 fori # 3. If AHFx(2) = 1,
Rx/K Ry /K

then X contains s — 1 points on a line. Otherwise, X lies on a non-singular conic.

Proof. By Propositions 3.4.5 and 3.4.10, we have HF g3 /K(4) < 1 and HFqs /K(S) =1
X X
if and only if X lies on a conic. There are three possibilities for the position of the
points of X.
If X lies on two different lines, such that no s — 1 points lie on a line then Corol-
lary 3.4.14 yields HF s (3) = HFgs  (4) = 1.
Ry /K Ry /K
If X lies on a non-singular conic then Lemma 3.4.17 and Corollary 3.4.18 yield
HFQ:;,%X/K(B) =1, HFQ;X/K(ZL) =0 and AHFx(2) = 2.
If X contains s — 1 points on a line and the other points of X do not lie on this line
then by Lemma 3.4.15 and Corollary 3.4.16, we get HFqs I (3) =1, HFgs I (4) =0,
X X
and A HFx(2) = 1. O

Example 3.4.21. Let X C P? be a set of six K-rational points on a non-singular

conic, e.g.,
X={(1:0:1),(1:0:—-1),(3:4:5),(3: —4:5),(3: —4:-5),(3:4:=5)},
and let Y C IP? be a set of six K-rational points on a singular conic, e.g.,
Y={{(1:0:2),(1:1:0),(1:0:1),(1:2:0),(1:—=1:0),(1:0:—1)}.
Then we see that HFx = HFy: 1356 6--- and

HF,, =HFy : 0381110766 .
Ry Ry /K

/K
Moreover, the minimal graded free resolutions of Ry and Ry are the same, i.e. we have
0— S(=5) — S(—-2)®S(-3) — S — S/T —0

where Z is either Zx or Zy (see [TT, Example 4.1]). However, in this case we have

HFp: :0036410---, HFpe :00365100--
Ry /K Ry/K

HFys :000100---, HFp :0001100---.
RX/K RY/K

This shows that we can distinguish two sets X and Y by looking at the Hilbert functions
of the modules of their Kahler differential m-forms, where m = 2,3. But we can not
distinguish them by either the Hilbert functions of their homogeneous coordinate rings

or their minimal free resolutions.
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|Chapter 4

Kahler Differential Algebras for Fat

Point Schemes

Given a finite set of points X = {P,..., Ps} in the projective n-space P, a fat point
scheme W = my P+ - -+m,Ps is a O-dimensional scheme whose homogeneous vanishing
ideal is of the form Zw = @i N --- N e where m; > 1 and gp; is the homogeneous
vanishing ideal of P;. In the last twenty years many papers have investigated fat
point schemes W in P" by looking at their algebraic properties such as the Hilbert
function, minimal graded free resolution, and graded Betti numbers (see for instance
[DG], [DK], [Ca], [GT],[GMT]). In [DK], G. Dominicis and M. Kreuzer used the module
of Kéahler differential 1-forms as a new tool for studying sets of K-rational points X
in P". Inspired by their ideas, in this chapter we explore Kahler differential algebras

for fat point schemes in P".

In the first section we recall the definition and some properties of minimal separators
of a fat point scheme W in P" (see Proposition 4.1.7 and Proposition 4.1.11). From
that, we define Degy (m;P;), the degree of the fat point m;P; in W. Also, we deduce
relations between Degy (m; P;) and the Hilbert function of the subscheme W, = m; P, +
o+ mi1Pioy +my Py + - -+ mg Py of W (see Propositions 4.1.12 and 4.1.17 and
Corollary 4.1.13). In addition, when W = vX is an equimultiple fat point scheme whose
support X is a complete intersection, we collect some results on the minimal graded
free resolutions of W and its subschemes (see Propositions 4.1.18 and 4.1.19).

In Section 4.2 we focus on the modules of Kahler differential 1-forms for fat point
schemes. A remarkable result in this section is the short exact sequence of graded
Rw-modules 0 — Ty /Iy — Ryt — Qr )k — 0 where Zy is the vanishing ideal of
the fat point scheme V = (my + 1)P; + --- 4 (my + 1) P, (see Theorem 4.2.1). From

this result, we deduce various formulas for Hilbert functions, Hilbert polynomials and



70 4. Kahler Differential Algebras for Fat Point Schemes

regularity indices of the modules Q}, ;- and Qj JK[w) (s€€ Corollary 4.2.3). Using the
Hilbert polynomial of Q}%W JKzo)» WE Can characterize whether a fat point scheme W is
reduced or not (see Corollary 4.2.4). Also, we give relations between modules of Kéahler
differential 1-forms and degree of a fat point scheme when the support X = { Py, ..., Ps}
is a Caylay-Bacharach scheme (see Propositions 4.2.5 and 4.2.6). Furthermore, if X is
in general position, we get sharp upper bounds for the regularity indices of the modules

Q}%W/K and QEW/K[QUO} (see Corollary 4.2.10 and Example 4.2.11).

Continuing the studies of Section 4.2, in the third section, we are concerned with
the modules of Kahler differential m-forms of fat point schemes. We first bound the
Hilbert polynomials of Q2 /K and Qp JKzo)] (see Proposition 4.3.1). Then we point
out that for 2 < m < n + 1, the Hilbert polynomial of QELW K is a non-zero constant
if and only if W is a non-reduced scheme (see Corollary 4.3.2). Also, sharp upper
bounds for the regularity indices of Q7 /K and Q- /Kzo) BT€ glven in Proposition 4.3.4.
Moreover, we present a formula for the Hilbert function of Qg}‘vl/ x When Supp(W) lies on
a hyperplane (see Propositions 4.3.6 and 4.3.9). If W = vX is an equimultiple fat point
scheme then the Hilbert polynomial of Qg‘;’l/ 5 1s given by HPQT]%:;;/K(Z) = S(V+Z_2)
(see Proposition 4.3.11 and Corollary 4.3.13). In the remainder of this section, we
establish a relation between the module of Kahler differential 2-forms Q?%W /K and other
fat point schemes which are deduced from the equimultiple fat point scheme W in P?
(see Proposition 4.3.14 and Corollaries 4.3.15 and 4.3.17). From this relation, we also

deduce a formula for the Hilbert polynomial of Q%W K-

In Section 4.4 we study the modules of Kahler differential m-forms, where m =1 or
m =n + 1, of a fat point scheme W supported at a complete intersection X. First we
show that the Hilbert function of Q}%W K of an equimultiple fat point scheme W = vX
can be calculated from that of X (see Proposition 4.4.2). In this case, the regularity
index of Q}%W/K is given by ri(Q}%W/K) = vd, + )7, dj — n, where (dy, ...,d,) is the
complete intersection type of X and d; < --- < d,, (see Corollary 4.4.4). When W is not
an equimultiple fat point scheme, Proposition 4.4.6 provides upper and lower bounds
for the Hilbert function of Q}%W K We also derive from this proposition an upper bound
for the regularity index of Q- form =1, ..., n+1 (see Corollary 4.4.8). Furthermore,
if v > 2 and if W = vX is supported at a complete intersection X, we show that the
Hilbert function of Q}%Wj /i is independent of j where W; = 3", . vF; + (v — 1)P; (see
Proposition 4.4.9). In the case v = 1, this result holds when the complete intersection
X is of type (d,...,d) (see Proposition 4.4.11). We end this section with a result on

the module of Kahler differential n + 1-forms of an equimultiple fat point scheme W in
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some special cases of complete intersection types (dy, ... ,d,) (see Proposition 4.4.12).

Throughout this chapter we work over a field K of characteristic zero. By P”
we denote the projective n-space over K. The homogeneous coordinate ring of P"
is S = K[Xo,...,X,]. It is equipped with the standard grading deg(X;) = 1 for

1=0,...,n.

4.1 Fat Point Schemes

Let s > 1, and let X = {P,..., P} be a set of s distinct K-rational points in P". For

1=1,...,s, we let p; be the associated prime ideal of P; in S.
Definition 4.1.1. Given a sequence of positive integers my, ..., ms, the intersection
Iy = " N--- N el is a saturated homogeneous ideal in S and is therefore the

vanishing ideal of a 0-dimensional subscheme W of P".

(i) The scheme W, denoted by W = m; P+ - -+mP;, is called a fat point scheme
in P*. The homogeneous vanishing ideal of W is Zw. The number m; is called

the multiplicity of the point P; for j =1,...,s.

(i) If my =+ =ms = v, we denote W also by vX and call it an equimultiple fat

point scheme.

The homogeneous coordinate ring of the scheme W is Rw = S/Zw. The ring
Rw = @,-,(Rw); is a standard graded K-algebra and its homogeneous maximal ideal
is my = é}i>1(RW)i. Notice that the support of W is Supp(W) = X = {P,..., Ps}.
Since K is iﬁﬁnite, we can choose the coordinate system {Xj,..., X, } such that no
point of X lies on the hyperplane at infinity Z7(X,). The image of X; in Ry is denoted
by x; for i =0,...,n. Then xy is a non-zerodivisor for Ry.

As usual, we let ry denote the regularity index of HFy, i.e. rw = min{i € Z |
HFw(j) = HPw(y) for all j > i}. According to Proposition 2.4.5, we have HFw(i) =0
for i < 0,1 =HFw(0) < HFw(1) < --- < HFw(rw — 1) < deg(W), and for i > ryw, we
have HFw (i) = deg(W).

Let us illustrate the concepts of fat point schemes and their Hilbert functions with

the following example.
Example 4.1.2. Let W be a fat point scheme W = m P, + - -- + m P, in P!, where

P; = (1:pj),pj € K for j=1,...,s. Then the vanishing ideal of W is Zw = (F)s
with F' = (X; — p1Xo)™ -+ (X1 — psXo)™. Thus we have aw =3, m; = deg(W),
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rw = ijl m; — 1, and the Hilbert function of W depend only on the sum of the

multiplicities of the points in W, i.e.

HFw:12 --- imj—l i:mj imjn-.
j=1 j=1 j=1

In many cases, the Hilbert function of a fat point scheme W depends not only
on the positions of the points in W but also their multiplicities (see for instance Ex-
ample 4.1.4). However, the following proposition show that the degree deg(W) is
independent of the position of the points in W. This result is well known. However,

for convenience of the reader, we include its proof.

Proposition 4.1.3. Let W = m P, + --- + myP; be a fat point scheme in P". Then
the Hilbert polynomial of W is HPyw(z) = deg(W) = > 7, (Mt In particular, if

W = vX is an equimultiple fat point scheme then HPw(z) = deg(W) = 3(”*”*1),

Proof. Let 1 <t <s—1. We claim that HP_, , m;  m.1,(2) = 0. Indeed, let F be

. S/(mjzlpj +pt+1 )
a homogeneous polynomial F' € ﬂ}zlp;r” \ @i+1. Then there are k, € N and G € g1
such that X§* = F+G. Weset n;41 = k;+myy1. Then (X — F)m = Gment € o't
and so X" € Ni_ o7 + /" We denote the maximal ideal (X, ..., X,,) € S by 9.
For any homogeneous polynomial H € 9"+ T"+1 Ty the Dirichlet’s box principle,
there exist polynomials H; € @;\7' and Hy € S such that H = Hy+ X" H, €
ﬁﬁ-zlp;nj + o1t Thus we get Dmrrtmes C ﬂﬁ-:lp;nj + ot € M, and the claim
follows.

Given homogeneous ideals I and J in S, we have the exact sequence of graded rings:
0— S/(INJ) -2 S/TaS/T-2 S/(I+J)—0,

where « is given by a(a+(INJ)) = (a+1,a+J) and where 3 is given by S(a+1,b+J) =
(a —b) + (I + J). We deduce from this exact sequence that

J=1%

HPy(z) = HPg,, i (2) = HPg 0 mi (2) + HP e (2) = > HP 7om (2).
7=1

n—1+t—1
n—1

For t € N, the Hilbert polynomial of p?‘l / pz is (
of S/p; is 1, and hence

), the Hilbert polynomial

HP,, s (2) = HP mys m;(2) + HP

J ®j

n—1+m;—1 n—1 mj+n—1
n—1 n—1 n

Therefore the conclusion follows. O

P/o} proys (2)
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The following example show that the Hilbert functions of fat point schemes depend

on the position of their points.

Example 4.1.4. Let X be a set of six Q-rational points on a conic and two Q-rational
points off that conic X = {P;,..., Ps} in P2, where P, = (1:1:1), P, = (1: —1:—1),
Pr=(1:1:-1),P=1:-1:1), Ps=(1:3/4:-3/5), P =(1:-3/4:3/5),
and P, = (1 :3:3),and s = (1 : =3 : —3). We consider two fat point schemes
V=P+P,+P;+P+P+2P+P,+FPsand W = P+ P+ P3+ Py+ Ps+ Ps+ 2P+ Py
in P2, Then we have HFy : 136 10 10--- and HFw : 136 9 10 10--- . Clearly, the
Hilbert polynomials of V and W are both given by

HPy(z) = HPw(z) = 7(1 +§_ 1) + <2+§_ 1) = 10.

In Section 3.4 we use separators to relate a set of point to its subsets. Similar to
the definition of separators of a finite set of reduced K-rational points in P", we now
introduce the concept of separators of fat point schemes, which shall be useful in later

sections.

Definition 4.1.5. Let W = m; P, + --- + m,P, be a fat point scheme in P", and let
je{l,...,s}. By W, we denote the subscheme W; = m; P, +---+m;_1P;_; + (m; —
)P+ mj1Pjy1 + -+ + mePs of W. Let Ty, w be the ideal of W; in Ry, i.e. the
residue class ideal of Zy; in Rw. Then any non-zero homogeneous element of Zyy, vy is
called a separator of W; in W (or of P; of multiplicity m;).

Remark 4.1.6. If my = --- = my =1, ie. f W=X={P,..., P} is a reduced
scheme, and if j € {1,...,s} then a separator f € Rw of W\ {F;} in W satisfies
f(P;) # 0 and f(P;) =0 for all k # j. Thus f is a separator of W\ {P;} in W in the
usual sense (see Section 2.4).

It is clear that separators are not unique. Two separators of W; in W differ by an

element of Iy. The existence of separators is given by the following proposition (cf.
[GMT, Theorem 3.3]).

Proposition 4.1.7. Let W = m P, + -+ + myP, be a fat point scheme in P", and
let j € {1,...,s}. By W; we denote the subscheme W; = m; Py + --- +m;_1Pj_1 +
(mj —1)Pj+mj 1 P+ - +myPs of W. Then there exist v; = deg(W) — deg(W;)
homogenous elements f7,, ..., [}, € Rw such that Ty, jw = (f}1,. .., [}, ) ry and these
elements form a minimal system of generators of Ly, w.
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Definition 4.1.8. Let W = m; P, + - -- + m P, be a fat point scheme in P", and let
je{l,...,s}. For k € {0,...,m;}, we denote by W, the subscheme W;, = m; P, +
dmy Py (my—k) Pitmy P+ +mg Py of W Let v = deg(W) —deg(Wy,,, ).

a) The set {f},...., f;,} given in Proposition 4.1.7 is called a minimal set of
separators of W; in W (or of P; of multiplicity m;).

b) Let {f,..-, f;‘l,j} be a minimal set of separators of W;; in W. Suppose that
deg(ff;) < --- < deg(f},,). We define the degree of P; in W, denote by
sepdegy (F;), as sepdegy (P;) = (deg(ff1), .. ., deg(f,,)))-

c) Let S be the set of all entries of the tuples sepdegy  (F), ..., sepdegy, ot (P)).
The tuple of elements of S in increasing order is called the degree of the fat

point m;P; in W and is denoted by Sepdegy, (m;P;).
Remark 4.1.9. We make some observations about Definition 4.1.8.

(i) fmy =--- =my =1, ie. if Wis a set of s distinct K-rational points in P",
then Sepdegy (F;) = sepdegw(F;) for all j =1,...,s. In this case we also write
sepdegy (P;) = deg(f;) forall j =1,... 5.

(ii) When k = 0, we have sepdegy,, (P;) = sepdegy ().

(iii) If Sepdegyw(m;P;) = Sepdegy (miFy), then we have m; = my,.

The following example shows how to compute the degree of the fat point m;P;
in W, where m; > 2. Moreover, this shows that the converse of Remark 4.1.9(iii) is

not true in general.

Example 4.1.10. Let X = {P,,..., Ps} C P2 be the set of six K-rational points on a
plane given by P, = (1:0:0:0), B, =(1:0:1:0), Ps=(1:0:2:0), P, = (1:
2:1:0),P=(1:1:1:0),and P =(1:2:3:0). Let W be the fat point scheme
W =P+ P,+2P;+ 2P, + 3P5 + 3Ps in P3. We see that HFw : 141018253030 - -
and rw = 5. Let 5y = 6. The subscheme Wg1 = P, + P, + 2P + 2P, + 3P5 + 2F5
has HFw,, : 14 10 17 22 24 24... and rw,, = 5. By using Proposition 4.1.11, we
get sepdegyy,  (Ps) = sepdegy(Fs) = (3,4,4,5,5,5). Similarly, the subscheme Wgy =
P, + P, 4+ 2P3; 4+ 2Py + 3FP; + FPs has HFw,, : 14 10 16 20 21 21... and rw,, = 5,
and so sepdegy, , (FPs) = (3,4,5). The subscheme Wg3 = Py + P, + 2P + 2P, + 3P;
has HFy,, : 14 10 16 19 20 20... and rw,, = 5, and thus sepdegy, ., (Fs) = (4).
Altogether, we obtain

Sepdegw (3F) = (3,3,4,4,4,4,5,5,5,5).
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Moreover, we have

Sepdegw(3P5) = (3, 3,4,4,4,5,5,5,5, 5),
Sepdegy (2P;) = Sepdegyw (2P;) = (4,5,5,5),
Sepdegy (1) = Sepdegy (F2) = (5).

In this case, we also see that ms = 3 = mg, but Sepdegy, (3P5) # Sepdegy (3F%).

Observe that if W = X is a set of s distinct K-rational points in P" then we have
sepdegy (P;) = aw\pyyw = min{i € N | (Zyp\(p,yw)i # 0} for every j € {1,...,s}.
The Hilbert function of W\ {P;} satisfies HFyy\(p,) (1) = HFw(7) for i < sepdegy (F;)
and HFwp\(p,3 (i) = HFw(i) — 1 for i > sepdegy(F;) (cf. [GKR, Proposition 1.3]). In
analogy with this observation, we can now use the minimal set of separators to describe

the Hilbert functions of fat point schemes in P".

Proposition 4.1.11. Let W be the fat point scheme W = my P+ - -+msP; in P™. For
jge{l,...,sh let W; =myPy+---4+mj_1 Py + (mj — 1)Pj+mj1 P+ +ms P,
let nj = deg(W) — deg(W;), and let f,,.... [}, € Rw be a minimal set of separators
of W; in W. Then for all i € Z we have

HFyw (i) — HFw, (i) = #{ fji| deg(f}x) < i,1 <k < n;}.
Proof. By Lemma 3.6 of [GMT], we have

#{ il deg(ffy) <i,1 <k <n;} =HFz, (i)
= HFg(i) — HFz, (i) — HF (i) — HFz, (i)
= HF (i) — HFyw, (i)

as we wished. O

Similar to Proposition 4.1.11, the difference between the Hilbert functions of two

fat point schemes can be calculated by the degrees of fat points.

Proposition 4.1.12. Let W = m P, + -+ + m4 P, be a fat point scheme in P, let
j € {l,...,s}, and let W;y,,, be the subscheme of W where Wj,,. = miPy + --- +
mj_1Pj_1 +mj 1Py + - +mgPs. Then for all i € Z we have

HFw (i) — HFw,,, (i) = #{d € Sepdegy (m; F}) | d < i}.
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Proof. Note that if m; = 1, then the claim follows immediately from Proposition 4.1.11.
So we may assume that m; > 2. In this case, we let W;;, be the subscheme of W given

in Definition 4.1.8 for £ =0, ..., m,. Using Proposition 4.1.11, for all 7 € Z we have

HF (i) — HFy,, (i) = (HFy(i) — HFy,, (i) + (HFy,, (i) — HFy, (1))
+ -+ (HFw,,,, (i) — HFw,,, (7))
= #{d € sepdegy, ,(F;) | d < i} + #{d € sepdegy,, () | d < i}
+-- + #H{d € sepdegy,, _,(P)) | d < i}

= #{d € Sepdegyw(m;P;) | d <i}.

Thus the claim is proved. O

The following corollary follows immediately from Proposition 4.1.12.

Corollary 4.1.13. In the setting of Proposition 4.1.12, let j,k € {1,...,s} be such
that j # k. Then HFw,, (¢) = HFw,,, (1) for alli € Z if and only if Sepdegy(m;P;) =
Sepdegyy (mg Py ).

Example 4.1.14. Let us go back to Example 4.1.10. We see that the fat point scheme
W = P, + P+ 2P;+ 2P, + 3P5 + 3P has Sepdegy (2P3) = Sepdegyw(2F,) = (4,5,5,5).
Therefore the two subschemes Wsy = Py + Py + 2P, +3P5 +3F; and Wy, = P, + P, +
2P; + 3P5 + 3F of W have the same Hilbert function which is given by

HFy,, = HFy,, : 141018242626 -- .

Now we recall the following notion of a Cayley-Bacharach scheme which was care-
fully studied in [GKR] and [Krel].

Definition 4.1.15. Let X = {P,..., P} C P" be a set of s distinct K-rational
points. We say that X is a Cayley-Bacharach scheme (in short, CB-scheme) if
every hypersurface of degree rx — 1 which contains all but one point of X must contain

all points of X.

Note that X is a CB-scheme if and only if sepdegx(F;) = rx for all j = 1,...,s.
Equivalently, the Hilbert function of X \ {F;} does not depend on the choice of j.
Furthermore, it follows from the well-known Cayley-Bacharach Theorem that every
reduced 0-dimensional complete intersection X of type (di, ..., d,) is a CB-scheme. In

this special case, for all j € {1,...,s} we have sepdegx(P;) = > .., d; —n and the



4.1. Fat Point Schemes 77

Hilbert function of X; = X\ {P;} satisfies

HF (i) if ¢ < sepdegy (F;),

HFx, (i) =
HFx(i) — 1 if i > sepdegx(F;).

If W is an equimultiple fat point scheme whose support is a complete intersection,
we have a concrete formula for the Hilbert function of W as in the following proposition
(cf. [GT, Corollary 2.3]).

Proposition 4.1.16. Let X = {P,..., P} C P" be a complete intersection of
type (dy,...,d,). Let L; = {(ai,...,a,) € N"|ay +---+a, = j}. For everyv € N, the
Hilbert function of the equimultiple fat point scheme vX satisfies

v—1

HFyx(’L> = Z Z HFx(Z — a1d1 — s — andn)

=0 (a1, an)EL;

for all i € Z. In particular, the Hilbert function of vX depend only on the type of the
scheme X and the multiplicity v.

Using this proposition and Corollary 2.1.15, we now show that the degrees of fat

points of a given scheme can be the same.

Proposition 4.1.17. Let X={P;,...,P;} C P" be a set of s distinct K -rational points.
Suppose that X is a Cayley-Bacharach scheme, and that the subschemes
X, = X\ {P}, X; = X\ {P;} are complete intersections, for some i,5 € {1,...,s}.
Then the subschemes X; and X; have the same complete intersection types, and for all
v > 1 and we have Sepdeg,x(vP;) = Sepdeg, x(VF;).

Proof. Since X is a CB-scheme, this implies HFx,(¢) = HFx, () for all £ € Z. By
Corollary 2.1.15, the complete intersections X; and X; have the same type. From this,
Proposition 4.1.16 shows that HF x,(¢) = HFx,(¢) for all £ € Z. Thus for ¢ € Z, we
get

HF, x(¢) — #{d € Sepdeg,y(vP,) | d < £} = HF,,(¢) = HF ., (¢)
— HF,x(¢) — #{d € Sepdeg,(vP}) | d < £}

Hence we have Sepdeg,x(vP;) = Sepdeg,x(vF;). O

The next proposition describes explicitly the minimal graded free resolution of an

equimultiple fat point scheme W = vX in P" supported at a complete intersection X.
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Proposition 4.1.18. Let X = {Py,...,P;} C P" be a set of s distinct K-rational
points which is a complete intersection of type (di,...,d,). The minimal graded free

resolution of ZL,x has the form
0 — Foog — Fpg —r - — Fo — Lx — 0,

where Fo = @(al 7777 an)EMn o S(—ardy — -+ — andy,), and fori=1,...,n, we have

e |6 | @ st ma) ||

lh=i+1 |la=l1 li=li—1 | (a1,.ey YEMu i,
where My, s1:={(a1,...,a,) € N"|> "  a;=s and at least t of a;’s are non-zero}.

Proof. Since the homogeneous vanishing ideal of X is generated by a regular sequence,
we can use [ZS, Appendix 6, Lemma 5] and get Z,x = IS({) = T¥ for all v € N. Thus
the claim follows from [GT, Theorem 2.1]. O

We end this section with the following proposition which shows that the degree of
any point P; in a given equimultiple fat point scheme W and the Hilbert function of
the fat point subscheme obtained from W by reducing the multiplicity of P; by one do

not depend on the position of P; in the complete intersection X.

Proposition 4.1.19. Let X = {Py,..., P} C P" be a set of s distinct K -rational
points which is a complete intersection of type (dy,...,d,), let v > 1 and let F,_,
be given in Proposition 4.1.18. For every j € {1,...,s}, let W;; be the subscheme
Wiy =vP+---+vPj_1+ (v—1)Pj+vPjy + -+ vPs of vX.

(i) We have rank(F,_1) = deg(W) — deg(W;;) = (*1"?).

n—1

(ii) Let we denote the tuple of all elements of the set W = {aydy + -+ + apd, — n |
a; # 0,3 a; = v+ n— 1} in increasing order by (by,. .. ,b(wnfz)). Then we
have

sepdeg, «(P)) = - - - = sepdeg,x(Ps) = (by, ..., b<u+7:2)).
(111) For every j € {1,...,s}, the schemes W1 all have the same Hilbert function.
(iv) A graded free resolution of Ry, is of the form

O—> @ S(nzl)(—aldl—-.._andn‘i‘l)—}..._>S_>ij1_>0.
H?:l ai7£072?:1 a;=v+n—1
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Proof. To prove (i), let us compute the free S-module F, _; first. Using Proposi-

tion 4.1.18, we have F,,_1 = @(al 77777 an) S(—aydy — -+ — ayd,), where a; # 0 for all
i=1,...,nand > !, a; =v+n—1. Thus rank(F,_;) = (”ZEQ) Moreover, Proposi-
tion 4.1.3 implies deg(W) —deg(W;1) = s(”+2_1)— (s—1) (”+Z_1)— (”_1:”_1) = (”:ff)

Hence the first claim follows.

v4+n—2

M ) polynomials

Now we prove the second claim. By (i), there exists a set V' of (

such that V' is a minimal set of separator of W;; in W. Let V' be the sequence of

n—1

and [GMT, Theorem 5.4] that there exists a free S-module F;,_; such that

degrees of all entries of V' in increasing order V' = (¢4, . .. ,c(u+n_2)). It follows from (i)

‘anl = @ S(_aldl - andn)

[Tz @i#0,375, ai=v+n—1

= ]:7/1—1 D S(_Cl - n) ¥ S(_CQ - n) D---D S(_C<V+n72) — n)

n—1

By comparing coefficients, we get F,,_; =0 and ¢; = b; for i = 1,..., (”fo

(by, ... ,b(u+n_2>) is the tuple of all elements of the set W = {a1dy + -+ + and,, — n |

), where
n—1
a; #0,>°"  a; = v +n— 1} in increasing order. Therefore the claim follows from the
fact that sepdeg,x(P;) = (c1, .- - ,c(wgzz)).
Let us proceed to prove (iii). We let V' be a minimal set of separator of W;; in W.
Then Corollary 4.1.11 yields

HFn,, (i) = HEw(i) — #{f; € V| deg(f;) < i}
= HFw (i) = #{b € {b1, ., boen-} | b < i},

So, the claim (iii) follows from (ii).
Finally, we show (iv). From the last exact sequence in the proof of [GMT, Theo-

rem 5.4}, the resolution of the ring Ry, is

0— 45, SGU) (—aydy— =+ 1)OHy > - — S — Ry, — 0
[Tiz; @i#0,5°0 aj=v+n—1

where the free S-module H,,_; satisfies the equality

Frno1 = @ S(nil)(—aldl — = andn) S H, 1.
H?:l ai7é0a2?:1 a;=v+n—1

In the proof of (i) we have F,,_; = &P S(nil)(—aldl — e — apdy).
[Tz @i70,375, ai=v4n—1
Consequently, it follows from the proof of (i) that H,_; = 0. ]
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4.2 Modules of Kahler Differential 1-Forms for Fat

Point Schemes

In this section we study the modules of Kahler differential 1-forms Q}%W K and Q}%W /Kzo]
for fat point schemes W in P". More precisely, we work out their Hilbert functions and
give bounds for their regularity indices.

Let W = X = {P,..., P} be a set of s distinct K-rational points in P". The

following presentation for the module of Kahler differentials €2}, /i Was given in [DK]:
0 — Ix/Tox — RyH(—1) — Qg — 0

where 2X = 2P, + - - - + 2P, is the corresponding scheme of double points in P". This
presentation can be generalized to the case of an arbitrary fat point scheme in P" as

follows.

Theorem 4.2.1. Consider the two fat point schemes W = miP; + --- + my P, and
V=(m+1)P+-+ (ms+ 1)Ps in P". Then the sequence of graded Ry -modules

0 — Zw/Ty — Ry (1) — Qg — 0

18 exact.

In the proof of this theorem we use the following lemma which follows for instance
from [Mat, Chapter 3, §7, Theorem 7.4 (i)].

Lemma 4.2.2. Let M be a free S-module of rank m and let I,J be ideals of S. Then
we have IM N JM = (INJ)M.

Proof of Theorem 4.2.1. Since Ryt (—1) & S/K/IWQS/K, it suffices to prove that the

sequence of graded Rw-modules

is exact, where « : Zyy /Iy — QE/K/IWQE/K is given by o(F + Zy) = dF +IWQ}9/K for
all I’ € Ty.

First we check that the map « is well defined: Let Fy,Fy, € Zw be such that
Fy — Fy € Ty. Then we have Fy — F, € g, it for j € {1,...,s}, and hence dF} —dF; €
d(p;n]“) ©; Q. Therefore we see that dFy — ng € M=y ©; ' Qyx- Notice
that Q}S”/K is a free S-module of rank n + 1. By Lemma 4.2.2, we get dF} — dF, €
=1 ) JQlS/K = IWQ}S‘/K‘
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Next we show that the map « is Rw-linear: For Fi, Fy, € Ty and G1,Gy € S, we

have

OZ(GlFl + G2F2 —f-Iv) = d(G1F1 + GQFQ) —f—IwQ}S«/K
= G1dFy + GodFy + TwQg
== (Gl +Iw) . Oé(Fl —|—IV) + (GQ —|-Iw) . Oé(FQ —|-Iv)

Now we prove that the map « is injective. For a contradiction, suppose that there
is a homogeneous polynomial F' € Zy \ Zy such that o(F + Zy) = dF + IWQ},;/K =0.
Since F' ¢ Iy = ﬂj 1 pm’ 1, there is an index jo € {1,...,s} such that F' ¢ p mJOH.
Setting

S={Gep” |G ¢ ot dG e g0k ),

we see that F' € X # (). Let G be a homogeneous polynomial of minimal degree in X.

By Euler’s rule, we have

“~ 0G oG oG
deg(G) - G = > a_)QX" X, (X, — piniXo) + Xo Z Phig
where we write P, = (1 : pjo1 @ -+- © Pjon) With pﬂ € K. Let G = S opJozaX It

follows from dG = Y " | #EdX; € ¢ o 0 that §2 € 0.0 foralli=0,...,n, and
S (X; — pjpiXo) € pmm“, and

hence G € Do 0 On the other hand we have ZZ L 8X

thus, since Gjé @jo 1, we get XoG ¢ @jo o™ This implies that G ¢ m’0+1, and
in particular G # 0. Moreover, both dG and d( Y, 88)2 (Xi — pjiXo)) are contained
in p;szQ}g/K This implies d(X,G) = XodG + GdX, € p;zjoﬂg/K Clearly, GdX, is
an element of g, JOQE/K, and so is XodG. Since the image of Xy in S/pj 0 is not a
zerodivisor for S/pj " we have dG € Do o QE@/K Altogether, we find G € ¥\ {0} and
deg(G) < deg(G), in contradiction to the choice of G. Consequently, the map « is
injective.

Now it is straightforward to see that the sequence of graded Ry-modules
0 — Tw/Ty — Qg /Twhs /e — (s /TwSs )/ Im(ar) — 0

is exact. Furthermore, we have Im(a) = a(Zw/Zyv) = ((dZw)s +IWQS/K)/IWQ§/K and
Q. K = Qg i/ ((dZw) s + Tw g /xc)- Therefore we obtain the desired exact sequence.

[]

In view of Proposition 4.1.3, we see that the Hilbert polynomial of W depends

only on the number of points in its support and their multiplicities. Moreover, the
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following corollary shows that the Hilbert polynomials of Qf, /i and Qk., JK[mo] A1SO
have the same property. Moreover, this corollary gives us a relation between the
Hilbert functions of Qp . (as well as of Qp 1) and of W and V.

Corollary 4.2.3. Consider the two fat point schemes W = miP; + --- + m,Ps and
V=u+1)P +-- 4 (ms+1)P in P".

(i) We have HFQ}QW/K(Z') = (n+1)HFw(i — 1) + HFw(i) — HFy(¢) for alli € Z.
(ii) The Hilbert polynomial of Q}%W/K 15 the constant polynomaial
B i mj+mn—1 > m;+n
HPgy (z)—(n—{—Q)Z;( ; )-2( ; )
Jj= j=

(iti) We have HF g1 il ](z) =nHFw(i — 1) + HFw(:) — HFy (7).
W zo
(iv) The Hilbert polynomial of Q}%W/K[xo] is

B > m; +n — > m;+n
HPgy ()= (n+1)) < > < )
j=1 j=1
(v) The reqularity indices of the modules of Kihler differentials 1-forms Q}%W/K and
Q}%W/K are bounded by

max{ri(Q}zW/K), ri(Q}zW/K a:o])} < max{rw + 1,7v}.

Proof. Claim (i) follows immediately from the exact sequence of the module of Kéhler

differential 1-forms QF, /i given in Theorem 4.2.1. Claim (ii) follows from Proposi-

tion 4.1.3 and the fact that HPgy I (z) = (n+ 2) HPw(z) — HPy(z) which is induced
W

by (i).
Now we prove (iii). By Corollary 3.3.2 and (i), we have

HFq (i) =HFq (i)~ HFy(i - 1)
= (n+ 1)HFy(i — 1) + HFy(i) — HFy (i) — HFw(i — 1)
— nHFyw(i — 1) + HFyw(i) — HFy (i)

for all i € Z. Claim (iv) follows from (iii) and Proposition 4.1.3. Finally, claim (v) is

an immediate consequence of (i) and (iii). O

Our next corollary indicates that the Hilbert function of QIRW /K [o] knows whether

the scheme is reduced.
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Corollary 4.2.4. Let W = m P, + --- + msPs be a fat point scheme in P". Then
my =---=mgz =1 if and only ifHPQ}% (z) =0.

w/ K(xg]

Proof. By Corollary 4.2.3(v), we have the equalities

HPq: (2) = HPgy () — HPuw()

Ryy /K [z0]
m;:+n—1 m;+n
— 1 J J
w;( L)

_Z (m; +n— '(( m —mj—n)

n!m;!
m; +n—
—z( R ()
Hence we have HPo1 (2) =0ifand only if m; =1for j=1,...,s. O

Ryy/Klao)
When W =X ={P,..., P} CP"is a CB-scheme, we have the following property.
Proposition 4.2.5. Let X = {Py,...,P;} C P" be a set of s distinct K-rational

points which is a CB-scheme, and let X; = X\ {P;} for j =1,...,s. Then we have
Sepdegyx(2P;) = Sepdegyx (2P;) if and only if HF g1~ (i) = HF (2) foralli € Z.
Ry, /K Ry, /K

Proof. Let j,k € {1,...,s} with j # k. Since X is a CB-scheme, we have HFy, (i) =
HFx, (i) for all ¢ € Z. Thus due to Theorem 4.2.1, we get

HFg, (i) = HFqy (i) = (n+ 1) HFy, (i — 1) + HF, (i) — HFax, (i)

Ry, /K
— ((n+1)HFx, (i — 1) + HFx, () — HFx, (7))
= HFox, (i) — HFx, (4)
for all i € Z. Hence HFq ‘/K( i) = HFqu /K(') for all i € Z if and only if HFyx, (i) =
HFyx, (i) for all i € Z. Accordlng to Corollary 4.1.13, this is equivalent to the fact that
Sepdeg,x (2P;) = Sepdegyx (2P;), and the claim is proved. O

We can generalize the above property as follows.

Proposition 4.2.6. Let X = {P;,...,P;} C P" be a set of s distinct K-rational

points which is a CB-scheme, let X; = X\ {P;} for j = 1,...,s, and let v > 1.

Then we have HFQ1 /K( i) = HFQI (2) foralli € Z and 1 <1 < v if and only if
j k

(Sepdegyx (2FP;), - Sepdeg (v+1)X ((V+ 1)P;)) = (Sepdegyx (2F%), - - -, Sepdeg(yﬂ)x((u—i—
1) Py)).
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Proof. In the case v = 1, the claim follows from Proposition 4.2.5. Now we assume
that v > 2. Notice that HFx, (i) = HF, (¢) for all i € Z, since X is a CB-scheme. By

Theorem 4.2.1, we have

HFQI (Z) - HFQI (’l) = (n + 1) HFlXj (Z - 1) + Hlej (Z) - HF([+1)Xj (Z)

Rix, /K Ry, /K
~((n+1)HFp, (i — 1) + HFpy, (i) — HF a1y, (1))
= (n+ 1)(HFyx, (i — 1) — HFpg, (i — 1))
+ (HFux, (i) — HFix, (1)) + (HF g%, (1) = HF 1), (2))

for all © € Z. Thus, we get HF 1 (1) = HF g (1) forallie Zand 1 <[ < v if
Ryx; /K Rix, /K

and only if HF 4 1yx, (i) = HF g11)x, (i) for all i € Z and 1 < < v, and an application
of Corollary 4.1.13 finishes the proof. m

Remark 4.2.7. Let X = {Py,..., P} C P" be a set of s distinct K-rational points
which satisfies the hypotheses of Proposition 4.1.17, and let » > 1. Then we have
HFQ}%X#K(E) = HF%VXj o (¢) for all ¢ € Z.

Let us clarify the details of Proposition 4.2.6 using an example.
Example 4.2.8. Let X = {P,...,Ps} C P'given by P, = (1 : 0:1:1:0),
Ph=(1:1:0:1:0,P=(1:2:1:1:1),FP=(1:2:2:0:1), and
P;=(1:0:2:1:1). Then X has the Hilbert function HFx : 155..., and so it is

a CB-scheme. Notice that X'\ {P;} is not a complete intersection. Furthermore, for
j€{1,...,5}, we can check that Sepdeg,x(2P;) = (2,3, 3,3,3) and

Sepdegay (3P;) = (3,4,4,4,4,4,4,4,4,4,4,5.5,5,5).

So, we have (SepdegZX(QPj),Sepdeg3x(3f’j)) = (SepdegQX(ZPk),Sepdeg3x(3Pk)) for
all j,k € {1,...,5}. Hence Proposition 4.2.6 yields that HF: (1) = HF (1)
Rix; /K Rix, /K
foralli € Zand [ =1,2 and j,k € {1,...,5}.
A set of s distinct K-rational points in P" is said to be in general position if no
h 4+ 2 points of them are on an h-plane for h < n. For a fat point scheme W in P"

whose support is in general position, we recall the following bound for its regularity
index which has been proved by M.V. Catalisano et al (cf. [CTV, Theorem 6)).

Proposition 4.2.9. Let s > 2, let X = {Py,..., P} be a set of s distinct K -rational
points of P in general position, and let W = m, P, + - - -+ m,Ps be a fat point scheme
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in P™ with support X. Suppose that m; < --- < mg. Then we have

==l

n

rw < max {ms + mg_1 — 1,

where |a| denotes the integer part of a € Q.

Based on this result, a bound for the regularity index of the module of Kahler
differentials for a fat point scheme in P" whose support is in general position can be

given as follows.

Corollary 4.2.10. Let s > 2, let X = {Py,..., P} be a set of s distinct K -rational
points of P in general position, and let W = my P + -+ -+ msPs be a fat point scheme

mn P with my < --- <my. Then we have
max{ri(Q}zW/K), ri(Q}%W/K[xO])} <max {m, +my_1+1,[2 S mj+s+n-2]}.
j=1

Proof. Let ¢ denote max{ri(Q}%W/K), ri(Q}%W/K[zO])}. Using Corollary 4.2.3 and Propo-

sition 4.2.9, we have
C<max {my+ma 41, [2(Em+s+n—2)], [L5m; +n—2] +1}.
i=1 j=1

If s > n then L(Z‘;:lmj +s+n—2)/n| > L(Z‘;:lmj +n—2)/n|+1. If s < n,

weuse s > 2and 1 < my < --- < my_y < my, and get nm, > Z;:Nnj as well as
nms_1 > n. This shows mg +mg_q + 1 > L(ijl m; +n — 2)/n| + 1. Therefore we
obtainﬁgmax{ms—l—ms_l—l—l, L%ijlmj—i—s%—n—ﬂ}. O

The upper bound for the regularity indices of Q}%W K and Q}%W JK (o] which is given

in Corollary 4.2.10 is sharp, as the following examples show.

Example 4.2.11. (a) Let W be the fat point scheme W = P, + 4P, + 4P in P4,
where Py =(1:2:4:8:16), P,=(1:0:0:0:0), and where Ps=(1:1:1:1:1).
Clearly, the set X = {P}, P, P53} is in general position in P*. Now we calculate

HFQ}% . : 052575161 238 270 281 282 281 281 -- -,

W

HF 1 : 042060 126 182 204 211 211 210 210--- .
Ryy /K [zq]

(b) Let W be the fat point scheme W = P, + P, + Ps + P, + 2P5 + 2P in P? where
P=(1:2:4),P=(1:3:9),P3=(1:4:16), P,=(1:5:25), Ps=(1:0:0), and
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where P = (1:1:1). It is easy to check that X = {Py,..., P} is in general position
in P2. Then we calculate

HF 1 :0391722201716 16--- and HF :026111310766---.
Ry /K Ryy ]

/Klzo
Therefore we have ri(Q}%W/K) = ri(Q}QW/K[zO]) =7=8+6+2—-2)/2.

We conclude this section with the following corollary which summarizes some basic
properties of the Hilbert functions of Q}%W /K and Q}%W /Kzo] for a fat point scheme W

zo
in P,

Corollary 4.2.12. Let W = mP, + --- + msPs be a fat point scheme in P", and let
V=(m+1)P+-+(ms+1)P,.

(i) Fori <0 we have HFg1 (i) = HF (i) =0.
Ryy /K

Ryy /K [zq]

(i) For 1 <i < aw we have HFq1 (i) = (n+ 1)("%*1)'
Ry /K

n

N o (ntie1
/K[zo](z) o n(n n )

(iv) We have HF g /K(aw) = HFw(aw) + (aw — 1)(n+awfl)‘
W

n—1

(aw) = HFw(aw) +n("For™) — ("hem),

n n

(#ii) For 1 <i < aw we have HFQ}%W

(v) We have HFQ}%W/K[IO]

(vi) For aw < i < ay, we have

Ry /K n

HFg1 (i) = (n+ 1) HFy(i — 1) + HFy(i) — (’ * ”) .
(vii) For aw < i < oy, we have

. : . 1+n
HFQ}%W/K[IO] (Z) = ’rLHFw(Z - 1) + HFw(Z) - ( n )
(viii) We have HF g1~ (rw+ 1) > HFg1  (rw +2) > ---.
o Ry /K Ry /K
If ri(Qp,, ) = rw + 1, then HFQ}%W/K (rw—+1) > HFQ}%W/K(TW +2) > e =

HFqy  (i(Q, ) = (n+2) (Zj:1 (mﬂfl”_l)) —> (™).

Proof. First we note that, given a homogeneous polynomial F' € (Zy),,, Euler’s rule
shows that there is an index i € {0,...,n} such that 0F/0X; € (Zw)ay-1 \ {0}. This
yields aw < ay. Thus the claims of the corollary follow immediately from Proposi-
tion 3.3.8 and Corollary 4.2.3(i) and (iii) . O
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4.3 Modules of Kahler Differential m-Forms for Fat

Point Schemes

Throughout this section we let X = {Py,..., P;} CP" be a set of s distinct K-rational
points, and we let W = m P, 4+ --- + my P, be a fat point scheme in P" supported
at X. In Section 4.2 we have taken a first step towards studying the modules of
Kahler differential 1-forms for the fat point scheme W. In the process we investigated
many interesting properties of Q, /5 and Qk., /K[m,]- 10 this section we look more
closely at the modules of Kahler differential m-forms for the fat point scheme W,
where 1 <m <n+ 1.
First we bound the Hilbert polynomials of 2 /i and Q% K] B8 follows.

Proposition 4.3.1. Let W = m P, +---+ms P be a fat point scheme in P™ such that
m; > 2 for somei € {1,...,s}, and let 1 <m <n-+1.

(i) The Hilbert polynomial of Q’]{W/K 15 a constant polynomial which is bounded by

i (n; 1) (mi +nn — 2) <HPgy () < i (n; 1) (mi +nn — 1).

i=1

(ii) If 1 < m < n, then the Hilbert polynomial of QgW/K[mO] 18 a constant polynomial
which 1s bounded by

() (") ==X () ()

i=1 =1

Proof. Let Y be the subscheme Y = (m; — 1)P; + -+ 4 (ms — 1)Ps of W. Since we
have (dZw)s C IYQS/K7 this implies (dZw)s A Qg?/Kl C ZyQg) k. Obviously, we have
the inclusion Zyw C Zy. It follows that IWQS/K C IYQS/K From this we deduce
IWQS/K + <dIW>SQS/K C IYQS/K By Corollary 3.3.4, the Hilbert function of QRW/K
satisfies HFqm K( i) = HF S/K/(IWQS/K+<dIW>SQ§"/K1)( i) > HFom jz0m (i) for all i € Z.
We see that HPQT;/K/IYQS/K(Z) = >0, (”;:1) (m”;l” 2) > (0 since m; > 2 for some
i €{1,...,s}. Hence we get the stated lower bound for Hilbert polynomial of Q% JK-
In particular, HPQELW/K<Z) > 0.

Furthermore, Proposition 3.3.8 shows that HPQT}%W/K(Z) is a constant polynomial.
Now we find an upper bound for HPQEW/K(Z). Clearly, the Ry-module Qp . is
generated by the set {dx;, A--- Adw;, | {i1,...,im} € {0,...,n}} consisting of ("}")
elements. This implies HFQ%W/K (i) < (") HFw(i — m) for all i > 0. Hence we get
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HPqm /K(Z) < (”H) Soiy (M), which completes the proof of claim (i). Claim (i)
W

m

follows from Corollary 3.3.4 with a similar argument as above. O

The following corollary in an immediate consequence of this proposition and Propo-
sition 3.4.1.

Corollary 4.3.2. Let W = m1 P, + -+ + m P, be a fat point scheme in P", and let

Mmax = max{my, ..., ms}. The following conditions are equivalent.

(i) The scheme W is not reduced i.e. Myayx > 1.

(ii) There exists m € {2,...,n+ 1} such that HPQ%W/K (z) > 0.
(iii) HPQ%@K(Z) > 0.
() There exists m € {2,...,n} such that HPQ%LW/K[%] (z) > 0.

Notice that the corollary does not always hold true for an arbitrary 0-dimensional

subscheme of P", as the following example shows.

Example 4.3.3. Let K be an algebraically closed field, and let W be the 0-dimensional
complete intersection by two hypersurfaces Z; = ZT(X? + X? — X2) and
Zy = ZT(5X2+5XE+6X X, +6X; Xy —5X3). By using Bézout’s theorem, the scheme
W contains the point (1 : 0 : —1) with multiplicity 3 and the point (1 : 0 : 1) with mul-
tiplicity 1. A simple computation gives us HPQ%W/K(Z) =0 and HPQ}%W/K (z) =6 #4.
Therefore the scheme W is neither a set of distinct K-rational points nor a fat point

scheme. In this case, we also have HPg2 o (2) =2#0.
W

Similar to Corollaries 4.2.3 and 4.2.10, we bound the regularity indices of Qf /K
and Q7

Ry /Klzo] form=1,...,n+ 1, as follows.

Proposition 4.3.4. Let W =m P +---+msPs andV = (m1+1)P+-- -+ (ms+1)Ps

be fat point schemes in P™.
(i) Form =1,...,n we have
max{ri(Q%, k), 1i(QR, kme) < max{rw +m,ry +m — 1}.
(ii) We have ri(Q’%}l/K) < max{rw + n,ry +n — 1}.

In particular, if my < --- < mg and Supp(W) = {Py,..., Ps} is in general position
then for 1 < m < n we have
Zj:lm]+s+n_2

n

max{ri(Qp, k) QR /Ko } < max{mg+me1+m, | |+m—1}
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and
S my s n—2

(Q"+1 ) < max{ms+ ms_ 1 +mn,| -

T | K |+n—1}.

Proof. Claim (i) follows directly from Proposition 3.3.11 and Corollary 4.2.3. By (i)
and the exact sequence of modules of Kahler differentials given in Proposition 3.2.7,
we have rl(Q’;;fl/K) < max { rw, i(Qp, r)s - T ) } <max{rw+mn,ry+n—1},
and hence claim (ii) follows.

Moreover, if Supp(W) is in general position, then Proposition 4.2.9 implies that
max{ry +m,ry +m — 1} < max{ms+ms_; +m—1, LZ§ e i QJ +m, mg+ms_q1+
mo 1, [ ZEER L 1) < max{m, + mey +m, LWJ +m—1}.

Thus the additional claim follows from (i) and (ii). O

The following example indicates that the upper bound for the regularity index

of Q. /K given in Proposition 4.3.4 is sharp.

Example 4.3.5. Let W be the fat point scheme W = P, + 2P, + Py + P, + 2P5 +
2Ps + 2P, + Py in P2, where P, = (1 : 9 :0:0), B, =(1:6:0:1), P3 =
(1:2:3:3,P=(1:9:3:5,P=(1:3:0:4),F=(1:0:1:3),
Pr=(1:0:2:0),and Pg = (1 :3:0:10). Let V be the fat point scheme
V=2P +3P,+2P; + 2P, + 3P; + 3F; + 3P; + 2P containing the scheme W. We
have rw = 3 and ry = 5 so, max{rw + m,ry + m — 1} =m+4 for m = 1,...,4. The
regularity index of Q% . is m +4 form =1,...,3, and ri(Q /i) = 7. Furthermore,
the regularity index of Q2 K[zo) 18T+ 4 for m = 1,2. Thus the bounds for regular
indices in claims i) and ii) are sharp bounds.

Let X be the scheme X = { Py, P5, B, P;, Ps} in P3. Then X is in general position.
Form =1,...,3, the regularity index of €23 ;- is 4+m. Also we have ri(Q%X/K[m]) =
4+m for m = 1,2 and 1i(Q%, rpe) = 6. Thus max{ri(QF, ), i, /kp)} =
4+m=max{24+2+m, (3, 2+5+3—2)/3] +m—1} for m = 1,2,3. In addition,
for m = 4, we have ri(Q}, ) =7=max{2+2+3, (X7, 2+5+3-2)/3] +3 -1,
and so the bounds in the additional claim are sharp bounds.

Given a fat point scheme W = m; P, + --- + m,Ps in P", the Hilbert function of
the Rw-module Q}%W/K is HFQ}%W/K(Z') =(n+1)HFw(i — 1) + HFw(:) — HFy(7) for all
i € Z, where V. = (m; +1)P; + -+ + (ms + 1) Ps (see Corollary 4.2.3). Naturally, we
still want to give the formula for the Hilbert function of the module Q7 /K for m > 2.
In fact, we can formulate the Hilbert function of Q”+ R/ K¢ under the following certain

case.
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Proposition 4.3.6. Let X = {Py,..., P;} CP" be a set of s distinct K -rational points.
For mqy,...,ms € N, let W be the fat point scheme W = m P, + --- + m,P, C P",
and let Y be the subscheme Y = (my — 1)Py + -+ + (ms — 1)Ps of W. Suppose that
the scheme X is contained in a hyperplane. Then we have Q’]‘%@K = S/Ty(—n—1). In
particular, HFQ%}/K(Z) =HFy(i —n—1) for alli€ Z.

Proof. Assume that X C Z*(H), where 0 # H =Y ;a,X; € S, ag,...,a, € K. By
letting J = (OF/0X; | F € Tw,0 < i < n)g + Zw, we have QZ@K = (S/J)(—n —1)
(see Corollary 3.2.16). Let F € Zyy = o' N--- N 7 be a non-zero homogeneous
polynomial. For any i = 0,...,n, we see that 0F/0X; € p;”j*l, and so OF/0X; € Ty.
This implies J C Zy, and thus HFQEQQVI/K (i) > HFy(i —n —1) for all i € N.

Now we prove Zy = J. Suppose for a contradiction that there exists a non-zero
homogeneous polynomial G such that G € Zy \ J. Then HG € Zyw. Since H # 0,
we may assume a; # 0 for some ¢ € {0,...,n}. By taking the partial derivative
of HG of X;, we have 0(HG)/0X; = a;,G + HOG/0X; € J. Since G ¢ J, we deduce
HOG/0X; € Iy\J. Weset G| := HOG/0X; # 0. Then we continue to have HG; € Zy,
and so O(HOG,/0X;)/0X; = H?0’G/0X? + 24, HOG/0X; € J. This implies that
0 # H?0°G/0X? € Iy \ J. Repeating this process, we eventually get H8(@) ¢ Ty \ J.
On the other hand, since G € Zy, we have deg(G) > m := max{m; — 1,...,ms; — 1},
and therefore H™' € Zy. Thus HY() = LY@ /§X; € J, a contradiction.

Consequently, we get Zy = J, and hence Q%@l/ x = Ry(—n — 1), as desired. ]

Example 4.3.7. Let W and Y be fat point schemes W = 2P, + 3P, + 4P5 + 2P, +
P; +7Ps+5P; and Y = Py + 2P, 4+ 3Ps + P, + 6P + 4P; in P}, respectively, where
P=((1:1:1:1:1:15/6), B, =(1:2:1:1:1:17/6), P =(1:1:
2:1:1:18/6), L =(1:2:3:4:5:55/6), Ps=(1:2:2:1:1:20/6),
Ps=(1:3:2:1:1:22/6), and where P, = (1 : 0:0:1:1:10/6). Then
X ={P,..., Pr} is contained in the hyperplane Z*(H), where H = X, — 4X5 + 3X,.
Thus Proposition 4.3.6 yields that Qf, = Ry(—6) and the Hilbert function of Qf
is HFQ%X/K 000000162156 126 252 306 329 336 337 337--- .

Lemma 4.3.8. In the setting of Proposition 4.3.6, if ay + 2 < aw then
HFQn+l (Q{W +n — 1) > HFy(OzW — 2)
Ry /K

Proof. Let J = (0F/0X; | F € Iw,0 < i < n)s + Zw. The inclusions Zywy C J C Iy
yield that aw = oy + 1 > ay, where a; = min{i € N | J; # 0}, and that

HFQ*};*'I/K(O'/W—i_n_l) = HFS/J<04W—2) = HFS/J(Oé]—l) = HFS(OéJ—l) = HFS(QW—Q).
W
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Also, it follows from the inequality ay + 2 < aw that

HFy(OéW - 2) = HFs(CMW - 2) - HFZY (Oéw - 2)
S HFs(OéW — 2) — I’IFIY (Oly)
< HFs(OéW — 2)

Thus we get HFQ;;H/K(QW +n—1) =HFg(aw — 2) > HFy(aw — 2). O
W

Now we present a criterion for the support of a fat point scheme to lie on a hyper-
plane.

Proposition 4.3.9. Let X ={Py,..., P;} CP" be a set of s distinct K -rational points,
let W =myP, + -+ msP; be a fat point scheme in P, and let Y = (my — 1)P; +
-+ (mg — 1) Py be a subscheme of W. Suppose that awy = ooy + ax. Then the scheme
X is contained in a hyperplane if and only if HF%@K(QW +n—1) = HFy(aw — 2).

Proof. If X is contained in a hyperplane, then Proposition 4.3.6 implies HFQY}L?;}/K(i) =
HFy(i—n—1) for all i € Z. In particular, we have HFQHJ/K(@W—HL_U = HFy(aw—2).
Conversely, suppose that HFQE»‘);II/K(O(W +n —1) = HFy(aw — 2) and that X does not
lie on any hyperplane. It is clear that ax > 2. By assumption, we have ay + 2 <
ay + ax = aw. S0, Lemma 4.3.8 implies HFQTIL%@K(@W +n—1) > HFy(aw — 2), a
contradiction. 0

Let us apply the proposition to the following concrete examples.

Example 4.3.10. (a) Let W be the fat point scheme W = 3P, + 2P, + 8P; + 5P, +
4Ps +2Ps + 5P; + Py + 2Py in P3, where P, = (1:3/4:0:0), P, =(1:2:0:0),
Py=(1:1/23:0:0), P,=(1:1:1:0),=(1:7:1:0), F=(1:2:1:0),
P,=(1:1/2:2:0), Ps=(1:3:1/6:0), and where Py = (1:3/17:1/4:0). Let
Y be the subscheme Y = 2P, + P, + 7P; + 4P, + 3P5 + Ps + 4P; + Py of W. Then
X = Supp(W) lies on the hyperplane Z%(X3) and aw = 13 = 3+ 10 = ax + ay. Thus
Proposition 4.3.9 yields that HFQEW/K (1) = HFy(i —n—1) for all 7 € Z. Explicitly, we
have HFQ%W/K(H_H) = HFp, : 1410 20 35 56 84 106 124 136 141 141--- .

(b) Let X ={P,..., P} CP"be a complete intersection of type (dy,...,d,), and let
v > 2. Clearly, we have

a,x =vmin{dy,...,d,}
= (v —1)min{d;,...,d,} + min{d,,....d,}

= Q@p-1x T ox.
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So, if ax = 1 then X is contained in a hyperplane, and therefore, an application
of Proposition 4.3.9 implies HFQ%H/K(i) = HF(,_yx(t —n —1) for all i € Z.

vX
(¢c) Let X = {P, P,, 3} C P" be a set of three points in general position, and let
v > 1. It is well known (cf. [DSG, Example 3.6]) that

3k—1 forv=2k-—1,
ayx =
3k for v = 2k.

From this we deduce ax = 2, ag,x = 3v, and a(g41)x = 3V +2 = ax + agx. fn > 3,
then X is always contained in some hyperplane, and thus Proposition 4.3.9 shows that
HF oo+ (1) = HF o x(i —n — 1) for all i € Z.

Rav1)x/K
Although no formula for the Hilbert function of the module of Kéhler differential
(n + 1)-forms of an equimultiple fat point scheme is known, the following proposition

provides a formula for its Hilbert polynomial.

Proposition 4.3.11. Let X = {Py,..., P} C P" be a set of s distinct K-rational
points, and let v > 1. Then we have HP gni1 (z) = HP,x(2).

Ra41)x/K
To prove this proposition, we use the following remark which is mentioned in [HC,
Remark 4.2].

Remark 4.3.12. Let Zx = N;_,p; be the homogeneous vanishing ideal of the scheme
X ={P, - ,P} C P" For v > 1, there is a M-primary ideal J such that the
intersection Z,x N J is a primary decomposition of the ideal Zg. Moreover, we have
(ZV); = (T4); for i > 0.

Proof of Proposition 4.3.11. Let I = (0F/0X; | F € Ix,0 < i < n)s + Ix be a
homogeneous ideal of S. Then Corollary 3.2.16 and Proposition 3.4.1 yield that
Ot = (S/I)(=n — 1) and HFQ%}K(@') = HFg/;(i —n—1) = 0 for i > 0. So,
there exists ¢; € N such that I;,y; = 9, 4; for all ¢ € N. Moreover, it follows from
Remark 4.3.12 that there is t5 € N such that (Z,x)sy+i = (Z¥)i,+i for all ¢ € N. Let
t = max{ty, to, r,x}, let r = (":{t) — s, let {F,...,F.} be a K-basis of the K-vector

space (Zx):, and let
J=(0F/0X; | F € Ziyx, 0 <0 < n)g +Z+)x.

Clearly, we have Z,, 1)x € J C Z,x. Since Q%J(rlﬂ)x/ff = (S/J)(—n — 1) (by Corol-

lary 3.2.16) and since Z,x is generated by elements of degree < t 4+ 1 (see Proposi-
tion 2.4.6), it suffices to show that HF ;(i) = HFz . () for some ¢ > ¢t 4 1.
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We observe that
Iy = ((OF/0X; | F € Ix,0 < i < n)s + Ix);
= ({0F/0X; | F € (Zx)4+1,0 <i < n}
U{GOH/0X; | G € (Zx)i, H € St11-%,0<i<n})g
= (0F/0X; | F € (Zx)i4+1,0 <i < n)g + (Ix):.
For F' € (Ix):, since (Fi,...,F.)k = (Zx):, Euler’s relation implies that there are
elements ai,...,a, € K such that F' =377 a;F; =377 >0 deg Tea (7 Ui 0F;/0X,.
Thus F is contained in (0F;/0X; | 0<i<n,1<j <r)gM. Moreover we have
(0G)0X; | G € (Ix)t4+1,0 <i <n)g = (0X;H/0X; | H € (Ix):,0 < i,j <n)k
= (0F;/0X; | 0<i<n,1<j<r) M.
Thus I, = (0F;/0X; | 0 <i<n,1 <j <r)g + (Ix):. So, we get equalities

(Zox) w4+ 1) (10t = (Lox) vt M- Dynr+1)t = (IVX)Vt(m(V+1)nT+1)((V+1)nr+1)t
= (Isz)ut(fm(yﬂ)wﬂ)((V+1)m~+1)t
= (Zx): 9 (IX)E M, - m, = SIX)t o <IX)E I 1,

v times (v+1)nr+1 times v times (v+1)nr+1 times

= (Fi,...,F) - ((0F;/0X; | 0 < i <n, 1< j < r)geity) Dt

+ (I(V+1)X)(V+1)(n1“+1)t'
So, Proposition 4.3.11 holds if we have the following inclusion
(Fi,.. . B ((OF;/0X; |0 < i <ny 1< j <o)y it C

OF; oF;*!

. . 5
Indeed, for 0 < i; < n and 1 < j; < r we have (v + I)FJ1 X = aX € J. Also, for
i1,i9 € {0,...,n} and j1,j2 € {1,...,r}, we get
I/FV 1F 8F]1 BFjl _ 8F]1/1Fj2 . BF]-I - ,/8F]-1 . 8F]2 6 J
J2 dX 8Xi2 6Xi1 8Xi2 J1 8Xi2 dX
v—k OFy, OFy, . .
Now we assume that F; " Fj, - "ijﬂﬁ rax T € Jforalliy, ... ig1 €40,...,n}
and j1,...,Jk1 € {1,...,7} and 1 < k < v. We shall prove
ke OF, OF,
prklp g S0 9 o g
71 J2 Tk+2 90X, 8Xik+2
for all 41,...,ig12 € {0,...,n} and j1,...,jrso € {1,...,7}. We have
v—k—1 oFj, OFj,
(v = R)ES " F - Flngx ax
k+2
_ 8FV7 FiowFigyo  0Fy  0F; ok OF iy, 0F;,  OF;
_ BX 8X¢2 aXik+2 J1 6X BXZ' 3X1k+2
v—k X k+2
_OFTFyy e Fy ., OF,  OF;, ok B Fines OFy  OFy  0F;,
- 8X11 6X7,2 8Xik+2 l—2 j Fjl 8X 8X22 8Xik+2 '
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. . . e F F

By the inductive hypothesis, we have F}’ b 1Fj2 e ij+2§X—Jill e 8()9(1-,11“ € J. Thus we
_ OF; OF; . .

have shown that Fj~"Fj, - Fj, 5 g2 € J for all iy, gy € {0,...,n}

and ji,...,Jk1 € {1,...,r} and 1 < k < v. In particular, if & = v, then we

OF; OF; . . . .
have ﬂleQ---ﬂuﬁ---axijﬂ € Jforalliy,...,i,.1 €{0,...,n}and j,51,...,j, €

{1,...,7r}. On the other hand, due to Dirichlet’s box principle, for any element F' of
the set (OF;/0X; | 0 < i <mn,1 <j <r)?* there is an integer k € {1,...,7} such

that F = 2k ... 2% for some iy, ..., 4,41 € {0,...,n}. Since (v+1)nr+1> (vr+1),
i1 iyl

we get any element of the K-vector space

(Fi, ... F)% (0F; )X, |0<i<n1<j< T>§?+1)nr+1

: OF; OF;
is a sum of elements of the form Fj - "Fjuﬁ T ox

—.— H for some homogeneous
Ty+1

polynomial H in S. Therefore we get
<F17 ) F?“>?( ’ (<6Fj/aXZ | 0 S { S n, 1 S] S r)]{ml)(ll-‘rl)m"-i-l g J)
and this completes the proof. O]

The following corollary follows immediately from Propositions 4.1.3 and 4.3.11,

Corollary 4.3.13. Let X ={Py,..., P} CP" be a set of s distinct K-rational points,
and let v > 1. Then we have HP gn+1 (z) = s(**" ).

Ro+1nx/K "
In the last part of this section we study the Kahler differential 2-forms of fat point

schemes W. Let us begin with a short exact sequence of Rw-modules.

Proposition 4.3.14. Let W = m P, + - - + m P, be a fat point scheme in P". For
every i € N, we let W; := (mq + )P, + -+ + (mgs + 1) P;. Then the sequence of graded

Rw-modules
0 — T, /T, > Tw e/ T, U SN O /Ty 0 Q% i — 0 (%)

is a complex, where a(F + Iyw,) = dF + IWIQ}q/K, where B(GdX; + leﬁé'/l() =
d(GdX;)+Tw ., and where y(H +IwS¥ ) = H+(TwSg) e +dTwShy) ). Moreover,
(i) the map « is injective,
(ii) the map 7y is surjective, and

(i) ﬂ(IWQé/K/legiq/K> = Ker(7).
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(iv) For alli > 0, we have

@ HFyy () + HF o, (i + 2)

— HFw, (i +2) — (n 4+ 1)(HFy, (i + 1) — HRyw(i + 1)).

HFQ?%W/K (Z + 2) Z

Proof. Similar to the proof of Theorem 4.2.1, it follows that the map « is an injective

map. Claims (ii) and (iii) are a consequence of induced from the presentation

Q?%W/K = Q?S‘/K/(IWQ?S'/K + <dIW>SQ}§/K)

(see Proposition 3.2.11). The map d is an anti-derivation, hence f o a(Zw, /Zw,) = (0).
Therefore the sequence (x%) is a complex. Additionally, claim (iv) follows from the fact

that (xx) is a complex and from claim (iii). O

The following corollary is an immediate consequence of Proposition 4.3.14.

Corollary 4.3.15. In the setting of Proposition 4.3.14, we have

HPo:  (2) > W20t gp o (2) 4 HPw, (2) — (n + 2) HPyw, (2).

Rw/k 2

Let us consider the special case that W = vX is an equimultiple fat point scheme
in P2, First, we show that the sequence of K-vector space (xx) is exact. Then we

establish the formula for the Hilbert polynomial of Q7 K

Corollary 4.3.16. Let X = {P,,--- ,P,} CP? be a set of s distinct K -rational points,

and let v > 1. For 1> 0, we have the following eract sequence of K-vector spaces:

0 — (Z1x/Lo2x)i — (LoxQsyr/L+x s/ k)i
B
— (Q?S‘/K/vaQ%/K)i o (Q?%VX/K)i — 0.
Here the maps «, 8 and v are defined as in Proposition 4.3.14.

Proof. According to Proposition 4.3.14, it suffices to show that the Hilbert polynomial
of Q%yx K 18
HPge  (2) = WD HP o (2) + HP % (2) — (0 + 2) HP(,1yx(2).

RVX/K

Due to Proposition 3.2.7, we have the exact sequence of graded R, x-modules

0— Q% xk — Qo — Qg — myx — 0.
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Thus, by Corollary 4.2.3 and Proposition 4.3.11, we get

HPg:  (2) = HPqu ik (2) + HPgs  (2) — HP,x(2)

R x/K R x/K

= ((n+2)HP,x(2) — HP(,11)x(2)) + HP(,_1)x(2) — HP,x(2)

=3s("3") —s("37) +5()
=13 —v—-2)s
= 6s("3") +5(77) —4s("37)

— % HP,x +HP, 12x —(n + 2) HP (4 1)x,

and this finishes the proof. O

From the proof of Corollary 4.3.16 we get the formula for the Hilbert polynomial

of Q%yx K S follows.

Corollary 4.3.17. Let X = {Py,...,P,} CP? be a set of s distinct K-rational points,
and let v > 1. Then HPg2 /K(z) =132 —v —2)s.
vX

4.4 Kahler Differential 1-Forms for Fat Point

Schemes Supported at Complete Intersections

As in the previous sections, we let X = {P;,..., P} C P™ be a set of s distinct reduced
K-rational points, and we let W = m P, + - - - +m4P; be a fat point scheme supported
at X. We have computed the Hilbert polynomial and the regularity index of the module

of Kahler differential m-forms of Ry, and we have extended this to arbitrary fat point

1
Rw/K[xo]

have particular Hilbert functions. In this section we examine such special fat point

schemes as far as we could. In some special cases, the modules Q}%W /K and €

schemes.

For reduced complete intersections X, we can determine the Hilbert function of the
module Q}%X /K and its regularity index explicitly. This result has been shown in [DK,
Proposition 4.3].

Proposition 4.4.1. Let X = {P,...,P;} C P" be a set of s distinct reduced

K -rational points which is a complete intersection of type (di,...,d,). Then we have

HF 1 (i) = (n+ 1) HFy(i — 1) — i HFy (i — d;)

Ry /K =

for alli >0 and ri(Q}%X/K) =3 ,di—n+max{d; |1 <j<n}.



4.4. Kahler Differential 1-Forms for Fat Point Schemes Supported at Complete
Intersections 97

Now we extend this proposition to equimultiple fat point schemes whose supports

are complete intersections.

Proposition 4.4.2. Let X C P" be a set of s distinct reduced K -rational points which is
a complete intersection of type (dy,. .., dy). Let Li={(ay,...,a,) € N* | art- - -+a,= j}
forj>1 andlet v > 1.

(i) We have the following exact sequence of graded R,x-modules:
0 — Ix/Ty™ — (S/Zx)" (1) — Qg yx — 0

(ii) For all i € Z, we have

v—1
HFgy, (i) =(n+1) ( 3 HFx(i — 1 aidy — -+ — andn))
J=0 (a1

..... an)eLj

(i11) For alli € N, we have

v—1
HFg, (i) :n(z S HFx(i-1-aidy e — andn)>

=0 (a1, an)EL;

— Z HFx(l — Cbldl — = andn).

Proof. (i) By Theorem 4.2.1, we have an exact sequence of graded R,x-modules
0 — 2V /Z¥ ) — RN (1) — g, — 0.

Since the homogeneous vanishing ideal of X is generated by a regular sequence, we
can use [ZS, Appendix 6, Lemma 5] and get I}({) = 7 for all v € N. Then we have
Ryx =S /IF({) = S/Z§. Hence we get the desired exact sequence.

(ii) By Proposition 4.1.16, the Hilbert function of R,x is

v—1
HFyx<Z) = Z HFx(Z — a1d1 — s — andn)
J7=0 (a1

..... an)ELj

So, we get
HF 7, 741 (1) = HF @ 0)x (i) — HF % (2)

= Z HFx(l — a1d1 — s — andn)
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By the first part of this proposition, we obtain
HFQ}%X/K (Z) = (n + 1) HF,,X(i — 1) — HFI;’Q/Igﬂ (l)

:(n+1)(VZl HFX(i—l—aldl—---—andn)>

(a1 ..... an)ELj
— Z HFx(i—aldl—"'—CLnd )
(a1,...,an)ELy
(iii) By Corollary 3.3.2, we have HF 1 (1) = HF (1) —HF,x(i—1) for all
R, x/Klzg] Ryx/K

i € Z. Thus, according to (ii), we get

v—1

HFg (i) = n( > Y HFi-1l-ad - andn)>

as we wished. O

Remark 4.4.3. Let X = {Py,..., P;} C P" be a set of s distinct reduced K-rational
points which is a complete intersection of type (dy,...,d,) with d; <--- < d,.

(a) We have ry =377, d; —n.
(b) Ifv =1 thenri(Q ) =dn+> 7, dj —n (see Proposition 4.4.1). Moreover, the
Hilbert function of Qp ,, satisfies

HF 1 (i) =nHFx(i—1)— Y HFx(i—aid — - — ayd,)

Ry /Klz]
for all ¢ € Z (by Proposition 4.4.2(iii)). Thus ri(Q}%X/K[IO}) =d,+> 5 dj—nifd, >?2
and ri(Q}%X/K[mO]) =-—oc0ifd, =1

(¢) In the case n = 1, we see that HF x(i) = Z;;é HFx(i — jd;) and HFI§/I§+1(i) =
HFx (i — vd,) for all ¢ € Z. Thus Proposition 4.4.2(ii) implies that

HFqy (i) = 250 HFx (i — 1 — jdy) — HFx (i — vd,)

for all i € Z, and the regularity index of Qll?yx/K satisfies ri(Q}%VX/K) =vdy +d; — 1L
Also, Proposition 4.4.2(iii) yields

v—1

HFqy (i) = > HFx(i — 1 — jdy) — HFx(i — vdy)
j=0
v—2

= HFx(i — 1 - jd) + (HFx(i — 1 = (v — 1)dy) — HFx (i — vdy)

Jj=0
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forall i € Z. If dy =1 then HFgy - (i) = S TP HFx(i — 1 — j) for all i € Z, and
vX o

SO ri(Q}%yx/K[xo]) = (v —1)dy +dy — 1. In the case d; > 2, we see that for j <v —1 we
have 1+ jd; < vd;, and consequently ri(Q}%yx/K[xO]) =vd, +dy — 1.

Now we apply Proposition 4.4.2 and the above remark to precisely describe the

regularity indices of Qj - and of Qp .+ as follows.

Corollary 4.4.4. Let s > 2, let X = {P,...,P;} C P" be a set of s distinct
K -rational points which is a complete intersection of type (dy, . . ., d,) with d; < ---< d,,,
and let v > 1. Then the R, x-modules Q%%ux/K and Q}%VX/K[a:o] have the same reqularity
mdex which is given by

j=1
Proof. First we remark that s > 2. This implies d,, > 2. In view of Remark 4.4.3,
we may assume that n > 2 and v > 2. For j > 1 we let L; = {(a1,...,a,) € N |

a;+---+a, =j}, and we let
t; =max{aidy + - + andy, | (a1,...,a,) € L;}.

Note that d; < --- <d,, and rx = Z?Zl dj —n. So, if j <k then t; = jd,, < kd,, = t;.
This implies max{1 + >, a;d; | (a1,...,a,) € L;;1 <j<v—1} =14 (v—1)d, <
vd, = t,, since d,, > 2. Thus it follows from Proposition 4.4.2(ii) and (iii) that

ri(Qg,, x) = 11D, /Kl
= max{rx + a;dy + - + and, | (a1,...,a,) € L,}
=rx + max{a;dy + -+ + apd, | (a1,...,a,) € L,}

:TX+tV:Zdj—n+Vdn.

j=1

Hence the conclusion follows. O

Let us look at an example to illustrate this corollary.

Example 4.4.5. Let X = {P},..., s} C P? be the set consisting of eight points
P=(1:0:0,PR,=(1:0:1),P=(1:0:2),P,=(1:0:3),P5,=(1:1:0),
Ps=(1:1:1),P,=(1:1:2),and Py = (1:1:3). Then it is easy to see that X
is a complete intersection of type (2,4). Let v > 1. An application of Corollary 4.4.4
implies

ri(Qp k) = 1H(Qk,, k) = W +2+4—2=14(v+1).
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For instance, if ¥ = 5 then we have
HF o1 P :039 18 30 45 63 84 108 135 164 192 219 242 262 279 293 304 312
5X

317 319 318 315 313 312 312. ..
HF g1 | :0 26 12 20 30 42 56 72 90 109 127 144 158 170 180 188 194 198

Rsx/K[zg

200 200 198 195 193 192 192.. ..

Observe that Proposition 4.4.2 and Corollary 4.4.4 contain formulas for the Hilbert
functions of Qll‘%yx /i and Q}%ux /K [o] and their regularity indices. For a non-equimultiple
fat point scheme W whose support Supp(W) = X is a reduced complete intersection,
these results can be applied to give bounds for the Hilbert functions of Q}%W /K and

Qll%w /K zo] and their regularity indices.

Proposition 4.4.6. Let W = m P, +---+m,Ps be a fat point scheme in P" supported
at a complete intersection X = {Py,..., P} of type (di,...,d,). Suppose that W is

not an equimultiple fat point scheme. We set my, := min{my, ..., ms} and myay =
max{my,...,ms}, and we set
mmin_l
7=0 (a1 ..... an)ELJ
— 3 Y HFx(i—awdy — - — andy,)
J=Mmin ((ll ..... (ln)ELJ
and )
HF () = (n+1) S S HFx(i—1—aydy — - — andy))
J=0(a1,...,an)€EL;
Mmax—1
+ Z Z HFx(l — a1d1 — e — andn)

for all v € Z. Then, for all i € Z, we have
HF, (i) < HFQ}%W/K(Z') < HF5(7).

Proof. For t > 0 and 7 € Z, we set
t
Hl(t, Z) = Z Z HFx(’l — a1d1 — s — andn)

and
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It follows from the inclusions mpu,X C€ W C mp.X that for all ¢ € Z, we have
HF,, . x(i) < HFw(:) < HF,,_..x(¢). Thus Proposition 4.1.16 yields

'rnmin_1
Hl(mmin — 1, Z) = Z Z HFx(Z — a1d1 — = CLndn)
J=0 (ai,...,an)€L;
< HFw(Z)
Mmax—1
S Z HFx<’i—a1d1 —---—andn) :Hl(mmax— 1,2)

Let V be the fat point scheme V = (my + 1)P; + - - + (ms + 1) Ps in P". For the same
reason as above, we get Hy(muyn, 1) < HFy(7) < Hy(mmax,?) for all ¢ € Z. According
to Corollary 4.2.3, for every ¢ € Z the Hilbert function of Qll%w K satisfies

HFoy (i) = (n+1) HFy(i — 1) + HFy (i) — HFy (3).
Hence we get
(n+ D)Ha(mmin — 1,49) + Hy(mumin — 1,4) — Hy(mmax, )

< HFQ}?W/K(Z') < (n+ 1D)Ha(mmax — 1,7) + Hi(mmax — 1,7) — Hi (Mumin, 7).
Note that mpmin < Mmax. S0, we have

HF, (i) = (n 4+ 1)Ha(mumin — 1,7) + Hi(mmin — 1,7) — Hy(mumax, 7)
and

HF5(i) = (n + D)Ha(mmax — 1,7) + Hi(mmax — 1,7) — Hi(Mumin, 7)
for all i € Z. Therefore the inequalities HF; (i) < HFQ}{W/K('L') < HF4(7) hold true for

all 1 € Z, as we wanted to show. O

Remark 4.4.7. In the setting of Proposition 4.4.6, we can give bounds for the Hilbert

())=HFgqr  (i)—
. _ /K o] Ryy /K
HFw(i — 1). We use the same argument as in the proof of Proposition 4.4.6 to get

function of Q}%X Ko 35 follows. For every i € Z, we have HFQ}2
W

nHQ(mmin - ]-7 7') + Hl (mmin - 17 Z) - Hl (mmax7 Z)
S HFﬂl <Z> S nH2<mmax - 17 Z) + Hl (mmax - 1; Z) - Hl (mmim 7‘)

Ryy/ K [z0]

for all 7 € Z.

Corollary 4.4.8. Using the notation introduced in Proposition 4.4.6, the reqularity
index of module of Kdhler differential 1-forms Q}%W/K is bounded by

ri(Q}%W/K) < (Muax + Ddp +dy + -+ dp_y — 1.
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Proof. Let V be the fat point scheme V = (m; + 1)P; + --- + (ms + 1)P; in P™.
Since W C mya, X, this implies that rw < 7. x = (Mmax — 1)d,, + Z?Zl dj —n
(see Corollary 4.4.4). Similarly, we have rv < 7(mpt1)x = Mmaxdn + D5 dj — n.
Corollary 4.2.3 implies that ri(Q}%W/K) < max{rw + 1,7y}. Thus an upper bound for

the regularity index of Qj, | i 18

ri(Q}%W/K) < max {(m]max —1)d, + Z?Zldj —n+ 1, Mypaxdy, + Z;L:ldj - n}
S (mmax+1)dn+d1+"'+dn—l —n,

as we wished. N

For an equimultiple fat point scheme rX supported at a complete intersection,
Proposition 4.4.2 shows that the Hilbert functions of the Kéahler differential modules
Qf /i and Qp . /K[zy) depend only on the type of X. Our next proposition says that,
if we reduce in ¥X the multiplicity of one point P; by one, the Hilbert function of the
module of Kéhler differentials of the resulting scheme does not depend on the choice
of j.

Proposition 4.4.9. Let X = {Py,..., P} CP" be a set of s distinct K -rational points
which is a complete intersection of type (di,...,d,), and let v > 2. Forj e {l,..., s},

letY,=vP+---+vP_1+ (v—1)P;+vPji1 +---+vP,. Then the Hilbert function
of Q}QY'/K does not depend on the choice of j.

Proof. According to Corollary 4.1.19, the schemes Y; all have the same Hilbert func-
tion. Similarly, the schemes W; = (v +1)Pi +---+ (v + 1) Py +vP;+ (v +1)Pj11 +
-+ (v +1)Ps all have the same Hilbert function. By Theorem 4.2.1, the sequence of
graded Ry ,-modules

0— IY]./IW]. — R@l(—l) — Q}%Y_/K — 0
J
is exact. Hence we have

HFq (i) = (n+ 1) HFy, (i = 1) + HFy, (i) — HFw, (i)
Y

for all 7+ € Z, and the conclusion follows. O

Surprisingly, in the case v = 1, i.e. in the case of a reduced 0-dimensional complete
intersection, the analogue of the preceding proposition seems to be more difficult. We
offer two partial results in this case. First of all, the claim holds for subschemes of P2,

as the following example shows.
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Example 4.4.10. Let X = {P},..., P;} C P? be a set of s distinct K-rational points
which is a complete intersection of type (a,b), and let a < b. For every j € {1,...,ab},
let Y; denote the scheme 2(X\ {P;}) of double points in P2. By Theorem 4.4 of [BGT],
a minimal separator of Y; in W; = 2P, +--- +2P;_1 + P; + 2P 41 + -+ - + 2P, is of
degree 2b 4+ a — 3. Thus all schemes Y; have the same Hilbert function. Now we can
use Theorem 4.2.1 to conclude that the Hilbert function of Q}ZX\{PJ-} /i does not depend

on the choice of j.

Next we prove the desired property for reduced O-dimensional complete intersections
of type (d,...,d), where d > 1.

Proposition 4.4.11. Let X = {Py,...,P;} C P" be a set of s distinct K-rational
points which is a complete intersection of type (d,...,d) for some d > 1, and let
X, =X\ {P} forj=1,...,s. Then the Hilbert function of Q}%xj/K does not depend

on the choice of j.

Proof. For j =1,...,s,1let W, and Y, be the subschemes W; = 2P, +---4+2P;_; + P, +
2Pj 1+ +2P;and Y; = 2P, + - - +2P;_1 + 2P 1 + - - - + 2P; of the scheme 2X. By
Corollary 4.1.19(iii), the Hilbert function of W, does not depend on j. For j =1,...,s,
let f € Rw; be a minimal separator of Y; in W;, and let F} € S be a representative
of fi. It is clear that deg(F}) = avy,w,, where ay,/w, = min{i € N | (Zy,w,); # 0}.
Then we have a short exact sequence

xF*
0— S/(ij : F}-*)(—Oéyj/wj) — S/ij — S/ij — 0.

By [GMT, Lemmata 2.2 and 5.1], we have Ty, : F! = pj, and p; has a minimal graded
free resolution

n
1

0— S(—n) — S(nil)(—nJrl) NI~ )(—1) — p; — 0.

Since 2X is a scheme of double points in P*, Corollary 4.1.19 implies that all minimal
separators of W; in 2X have the same degree, namely (n+1)d —n, and the graded free

resolution of Ryy; is given by
0—=S*"(—(n+1)d+1) > Guo— - —=Gyg— S — S/Ty, = 0.

Now an application of the mapping cone construction (see Definition 2.1.16) yields the

following graded free resolution of Ry,

0— S(_an/Wj — TL) — SQ"(—(n + 1)d + 1) D Sn(—OéYj/Wj —-n+ 1)
— = S(—ay,w,) ®Gy — S = /Iy, — 0.
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Since the ideal Zy, is saturated, its projective dimension is n — 1. Hence the module
S(—ay,w, —n) must be a submodule of S**(—(n+1)d+1) @S(nzl)(—ayj/wj —n+1).
By degree comparison, the term S(—ay, w, — n) must cancel against something in
the module S**(—(n + 1)d + 1). This implies ay,;w, = (n + 1)(d — 1). Thus the
Hilbert function of Y; does not depend on the choice of P; in X. Furthermore, the
Hilbert function of X'\ {P;} is independent of the choice of j, because X is a complete

intersection. Therefore the claim follows from Theorem 4.2.1. OJ

Our last proposition of this section presents some results on the the module of
Kaéhler differential (n 4 1)-forms of an equimultiple fat point scheme supported at a

complete intersection.

Proposition 4.4.12. Let X = {Py,..., P} C P" be a set of s distinct K -rational
points which is a complete intersection with Ix = (F1,..., Fy)s, let dj = deg(Fj) for
j=1,...,n, let M= (Xo,...,X,)s, and let v > 1. Suppose that d; < --- < d,.

(i) If dy = 1, then we have Q’;JQK = Rip-nx(—n —1).

(i) If2=dy = =d; <dpy1 <--- <dy, 1 <t <mn, and there is j € {1,...,t}
such that Z*(F}) is a non-singular conic, then we have

Drloi = (S/MLp1yx)(—n = 1).

(7ii) Suppose that 2 =dy = -+ =dy < dpyq1 < -+ < d,, for somet € {1,... ,n}. We
let X = (Xo --- X,) and write OF;/0X;, = X - Ajj, where Ajj, € Maty x(n11)(K),
1<j<t,and 0 <k <n. ]frank((Aw Am)) <n-+1, then

Q%E/K Z (S/ML,1x)(—n —1).
() If 1 <dy < dy <--- <d,, then we have
Otk = (S/MI1yx)(—n = 1)
if and only if Z*(F}) is a non-singular conic.

Proof. Claim (i) follows directly from Proposition 4.3.6. Now we prove claim (ii).

For this, we may assume without lost of generality that ZT(F}) is a non-singular

.....

i,j € {0,...,n} and i # j. Tt follows from the assumption that det(A) # 0. For
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every ¢ € {0,...,n}, we have 0F,/0X; = 2(a;nXo + -+ + @i X,,). This implies that
(OF, /0Xo, ..., 0F J0X,)s =M = (Xo, ..., Xn)s.

Moreover, since the scheme X is a complete intersection, we deduce that
Tx=(F,....,F)=(FF''Fy,...,F")s.

Let J = (OF/0X; | F € Z,x,0 <i < n)s+Z,x. According to Corollary 3.2.16, it suffices
to show that J = Z,_x9M. Since d; > 1, it follows that J C Z,_1)x9M. For other
inclusion, it is enough to show that Fj, --- F;, 9 C J for all 4y,...,i,1 € {1,...,n}.

In the following, we use induction on k to prove FFF; --- F, .9 C J for all
ke Nand iy,...,i,_1- € {1,...,n}. We see that the claim is clearly true for k£ > v
and FY7'9M = (OFY/0Xy,...,0F"/0X,)s C J. Moreover, since OF;/0X; € M, we

see that

F'2F, M = (FY2F, 0F J0X; | 0<1i < n)g
= (O(FV'F;,)/0X; — FY'0F;, J0X; | 0<i<n)g CJ

Now we assume that F{“Fil---Finlfkfm C Jforsomel <k < v—2 and for
any i1,...,0,-1- € {1,...,n}. We need to show Ff’lFil"-Fiwki)ﬁ C J for any
i1, yix € {1,...,n}. It is clear that FFF, ---F, . € Z,x. Therefore for ev-
ery i € {0,...,n}, we have O(FFF, ---F;, )/0X; = FF'F,,---F, ,0F/0X; +
Z;:f Fl"“]iZi o }/7; - F;,_ O0F;;/0X; € J. By the inductive hypothesis, the elements
FFE, - Fi, ---F;,_,0F;;/0X; are contained in J (as 0F;,/0X; € M), and so we get
FFMF, - F  0F/0X; € J for all i = 0,...,n. Consequently,

FIYE, - By M= (FFF, - OF /0X; | 0<i<n)gC.J

ly—k - 7

Hence FFF, ---F;,, , 9 C Jforall k € Nand iy,...,i, 1 € {1,...,n}. In other
words, the equality J = Z(,_1)x9 is proved.

Next we prove (iii). We assume that rank ((.A]_o e »Am)) < n + 1. This implies
that M & (OF;/0X; | 0 <i <n,1 <j <t)s. Letie {0,...,n} be an index such
that X; € M\ (0F;/0X; | 0 < i < n,1 < j < t)s. Then it is easy to see that
X;FY™' € MI,_1)x. As above, let J = (0F/0X; | F € I,x,0 < i < n)s + Lx. Then
Jop—1 = (0F;, -+ F;,J0X; | 0<1i<mn1<iy,...,5 <t)g and Jy,_o = (0). Now we
distinguish two cases.

o If v =1 then it is clear that J # 9.

o If v > 2 then we have X;F} ' ¢ J, and hence J # ML 1)x-
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Consequently, an application of Corollary 3.2.16 yields that

Q%E/K = (S/I)(=n —1) & S/ML-pyx(—n — 1),

and this finishes the proof of (iii).

Finally, claim (iv) follows from the claims (ii) and (iii). O



Chapter

Some Special Cases and

Applications

In this chapter we investigate the Hilbert functions and the regularity indices of the
Kahler differential algebras for some special fat point schemes in P", where n = 2 or
n =4.

In the first section we consider the case of fat point scheme W on a non-singular
conic in P?2. We first recall one of the results of Catalisano [Ca] which gives a de-
scription of the Hilbert function of W in terms of a certain subscheme. Then we use
this description to compute the Hilbert function of the module of Kéhler differential
1-forms of the scheme W (see Proposition 5.1.3). Next we show that if, in addi-
tion, W = vX is an equimultiple fat point scheme, then Q%W/K = S/ML,—1yx(—3)
(see Proposition 5.1.7), and apply this isomorphism to exhibit the Hilbert function
of Q%yx /i in terms of degrees of generators of Zx (or of Z(,_1)x) (see Corollary 5.1.8).
Finally, we apply the exact sequence given in Proposition 3.2.7 to write down the
Hilbert function of Q% - (see Corollary 5.1.9).

In Section 5.2, we study the case of fat point schemes in P*. By following the
method of proof of [Th2] (which is a rather extended case-by-case argument), we prove
the Segre bound for the regularity index of a set of points in P* (see Theorem 5.2.8).
Then we prove that, under an additional hypothesis, this bound holds for equimultiple
fat point schemes in P* and is actually an equality (see Theorem 5.2.12). Finally, we
use the latter result to compute the regularity index of the module of Kéhler differential
1-forms and bound the regularity index of the module of Kahler differential m-forms
under this additional hypothesis (see Proposition 5.2.14 and Corollary 5.2.15).

Throughout this chapter let K be a field of characteristic zero, and let P be the pro-

jective n-space over K. The homogeneous coordinate ring of P" is S = K[Xj, ..., X,].
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It is equipped with the standard grading deg(X;) = 1 for ¢ = 0,...,n. Furthermore,
we let X = {Py,..., P} C P" be a set of s distinct K-rational points, and we let
W =m P, +---+m.F; be a fat point scheme in P" supported at X, where m; > 1 for
all j=1,...,s.

5.1 Kahler Differential Algebras for Fat Point

Schemes on a Non-Singular Conic in P?

In Lemma 3.3.7, we described concretely the Hilbert functions of €2 /K and (2 /K (o]

when W is a fat point scheme in P!. This result leads us to the following question:

Question 5.1.1. Can we compute explicitly the Hilbert function of the bi-graded
Ryy-algebra Qg k. for a fat point scheme W = m Py + - - -+ myPs in P22

In this section we answer some parts of the above question. More precisely, we give
concrete formulas for the Hilbert function of the bi-graded algebra Qg /k if W is an
equimultiple fat point scheme in P? whose support X lies on a non-singular conic.

In what follows, we let C = Z%(C) be a non-singular conic defined by a quadratic
C €S = K[Xo, X1,X3], we let X = {Py,..., P} be a set of s distinct K-rational
points in C, and we let W = m P, + - - - +m P, be a fat point scheme in P? supported
at X. Suppose that 0 < m; < --- < mg and s > 4. Then it is well-known (cf. [Ca,

Proposition 2.2]) that the regularity index of W is rw = max{ms+m,_1—1, > m;/2]|}.
j=1
Moreover, the Hilbert function of W can be effectively computed from the Hilbert

function of a certain subscheme Y of W, as the following proposition points out.

Proposition 5.1.2. Using the notation introduced as above, we define a fat point
subscheme Y of W as follows

a) for ijl m; > 2ms_q + 2my, let Y = max{m; — 1,0} + - -- + max{m, — 1,0} F;
b) and for ijl m; < 2mgq +2mg — 1, we let Y = mqPy + maPy--- +mys_oPs o +
max{ms_1 — 1,0} Ps_1 + max{ms — 1,0} Ps.

Then we have
HFw (i) =0, (") if > rw,
=2i+ 1+ HFy(i—=2) if 0<i<wrwand >, m;>2ms .+ 2ms,
=i+ 1+HFy(i—1) 4f 0<i<rwand Y7 m;<2mgy+2m,—1,
=0 if 1<O.
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Proof. See [Ca, Theorem 3.1]. ]

Due to Proposition 5.1.2, the Hilbert function of the module of Kéahler differential

1-forms Qll%w K satisfies the following conditions.
Proposition 5.1.3. (i) If 25:1 m; + s > 2mg + 2ms_1 + 4 then

HFqr (i) =00, CtBmisd o for g > (S35 my + 5) /2],

Ry /K j=1
=330 (") =21 forrw+2<i<[(X7,m+s)/2],
=430 (") =2 —1—HFw(i —2) fori=ry+1,
= >0 (") 4+ 3HFw(i — 1)— 2i— 1— HFw(i — 2) for i = ry,
= 3HFw(i — 1) + HFw(i) — 20 — 1 — HFw(i — 2) for 0 < i < ry.

(i1) [ijzl m;+s < 2mgs+2mg_1+3 and let Y = (my+1)Py+- - -+ (ms—o+1)Ps_o+
ms_1Ps_1 + mgPy, then

) = I fori > m 4m 1

HFQI
Ry
=437, (M) —i—1—HFy(i—1) for rew +1 <4 < mg + my_1,
=350 (") +3HFy (i-1)—i—1 —HFy(i - 1) fori = ru,
R R

Proof. Let V be the fat point scheme V = (my +1)P; + - - - + (m, + 1) Ps containing W.
Then we have ry = max{m, +m,_1+1, (3 ;_, m; +5)/2]}. By Corollary 4.2.3(i), we
have
HFQ}{W/K(i) =3HFw(i — 1) + HFw(7) — HFy(7)
for all 2 € Z. In the following we distinguish two cases.
First we consider the case Z;Zl mj + s > 2mg + 2ms_1 + 4. In this case, we have

ry = [(32;—;m; +s)/2]. Since s > 4, we get the inequality
rw + 1 =max{m, +ms_1 — 1, > m;/2|} +1 < [(D-m; +5)/2] =rv.
j=1 j=1
So, Corollary 4.2.3(iii) yields ri(Q}%W/K) <ry =321 my +5)/2]. Also, we see that
HFQ}%W/K (ry —1) = 4deg(W) — HFy(ry — 1) > 4deg(W) — HFy(ry + 1)
= 4deg(W) —deg(V) =HFq:  (ry +1)
Ry /K

for all i > 0, and hence ri(Q}%W / x) = ry. Consequently, we can apply Proposition 5.1.2
to work out the Hilbert function of Q}%W /K with respect to the range of degree i as

follows:
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(a) Fori>ry = [(3°;_;m;+s)/2], the Hilbert function of Qj, Ry i Satisties

1 (mj;-l) _ (mj2+2) _ ]szl (mj+1)g3mj—2).

Ry /K
w/ j

&

(b) Let rw +2 < i < rv = |(32;-ym; + s)/2]. Then we have HFyw(i — 2) =
HFw(i—1) = HFy (i) = deg(W) = >0, (™,"!) and HFy (i) = 2i+1+HFy(i—2).
This follows that

HF g1 (i) =43 (™5) —2i — 1 — HFw(i — 2) = z (M) —2i — 1.
Jj=1 j=1
(c) Let i = rw + 1. Then we have HFw(i — 1) = HFw(i) = >, ("5 and
HFy (i) = 2i + 1 + HFy (i — 2). So,

HF gy /(i) = 43 (") —2i — 1 — HFw (i — 2).
j=1

(d) Similarly, if i = rw then HFw (i) = Y70, ("5"") and HFy (i) = 2i+1+HFy(i—2),

and hence

HF g (i) = Z (M) + 3HFw(i — 1) — 2i — 1 — HFw(i — 2).

Ry /K

(e) In the case i < ryw, we have

HFoy (i) = HFy(i) + 3HFy(i — 1) = 2i — 1 — HFy(i - 2).
W

Altogether, when ZS LM+ 8> 2mg+2m,_; +4, we have proved the formula for the
Hilbert function of Q! R/ K-

Next we consider the second case ijl mj+s < 2mg+2ms_1 + 3. In this case, the
relation between Hilbert functions of V and of Y follows from Proposition 5.1.2. Also,
we have ry = mg +mg_1 +1 and rw = mg +ms_; — 1 < ry, and hence ri(Q};{W/K) = ry.
Therefore a similar argument as in the first case yields the desired formula for the
Hilbert function of Q! R/ K- O]

It is worth noting that Propositions 5.1.2 and 5.1.3 give us a procedure for com-
puting the Hilbert function of the module of Kéhler differential 1-forms of Ry /K from
some suitable fat point schemes. Moreover, HF T is completely determined by s
and the multiplicities mq, ..., ms.

Using Proposition 5.1.3 we can extend Proposition 4.4.11 by the next example.
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Example 5.1.4. On a non-singular conic C, let W be a complete intersection of type
(2,n). Let P € W, and let Y = W \ {P}. The regularity index of the CB-scheme Y is
n—1. Using Proposition 5.1.3 we see that the Hilbert function of Q}%Y K is independent
of position of the point P.

The following lemma can be used to find out a connection between the Hilbert
functions of Q% s (as well as of 0, /i) and of a suitable subscheme of W if W is an
W W

equimultiple fat point scheme, i.e. if m; =--- =m, =v.

Lemma 5.1.5. Let X, W and Y be as in Proposition 5.1.2, and let
q = max{ms +ms_1, [(D_m; +1)/2]}.
j=1

Let {Gy,...,G.} be a minimal homogenous system of generator of Ty, let L be the
linear form such that Ps, Ps_y € ZT(L), and write C = Z*(C).

(i) If ijl mj > 2mg + 2m,_q, and ijl m; is odd, then there exist Fy, Fy € (Zy),
such that the set {CGy,--- ,CG,, F, Fy} is a minimal homogeneous system of
generators of Lyy.

(i) If Y25 my > 2mg + 2m,1, and Y25 m; is even, then there exists F' € (Zw),
such that the set {CGy,--- ,CG,, F} is a minimal homogeneous system of gen-

erators of L.

(iii) If 35y my < 2my + 2myy — 1, then there exists G € (Iw), such that the set

{LGy,---,LG,,G} is a minimal homogeneous system of generators of Ly.
Proof. This result follows from [Ca, Proposition 4.3]. ]
In particular, if X = {P,..., Ps} is a set of s distinct K-rational points on a non-

singular conic C = Z(C) then, for every & € N, a minimal homogeneous system of

generators of Zpx has the following form.

Corollary 5.1.6. Let s > 4 and let X = {Py,..., Ps} be a set of s distinct K -rational
points on a non-singular conic C = Z+(C). Let g = (C, Gy, ...,Gy)s and let k € N.

(i) If s = 2v for some v € N then
{Ck, CF Gy, ... ,CF G, CF 2Ry, C* P By, .. CFr-1)1, Fr1}

is a minimal homogeneous system of generators of Iyx, where deg(Fj1) = jv for

every j =2,...,k.
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(ii) If s =2v+1 and k = 2h for some v,h € N then
{C*,C*'Gy,.. ,C* Gy, CF 2 Fy,CF P F1, CF P By, CFi-1)1,CFu-1)2, Fr1}

is a minimal homogeneous system of generators of Iyx, where deg(F};) satisfies
deg(Fj;) = |(j(2v+1) +1)/2| for every j =2,...,k andl =1, 2.

(iii) If s =2v+1 and k = 2h + 1 for some v,h € N then
{Ckack_lGla---aCk_thaCk_QFZl;Ck_gFi%l,Ck_?)FSQa~--»CF(k—l)laFk;laFk2}

is a minimal homogeneous system of generators of Iyx, where deg(F},) satisfies
deg(Fj;) = |(j(2v+ 1) +1)/2] for every j=2,...,k and | =1, 2.

Proof. Since s > 4, we have ¢, = max{t+t,|(st+1)/2]|} = |[(st+1)/2] for every t. By
applying Lemma 5.1.5 and by induction on k, we get the claimed minimal homogeneous

system of generators of the ideal Z;x. O

Now we present a relation between the Hilbert functions of the module of Kéhler
differential 3-forms Q?j{”x s and of S/MT, 1yx.

Proposition 5.1.7. Let s >4 and v > 1, and let X = {P,,--- , P;} C P? be a set of
s distinct K-rational points which lie on a non-singular conic C = Z%(C'). Then we
have Q3 = (S/ML,—1yx)(=3). In particular, for all i € N, we have

Ryx/K —
HFQ%VX/K (z) = HFS/M(W1>X (z — 3).

Proof. Let By = {C,G4,...,G} be a minimal homogeneous system of generators of Zx,
and let J¥ = (0F/0X; | F € T,x,0 < i < n)g. By Corollary 3.2.16, we have
Q3Rux/K >~ (S/JW)(—=3). Thus it suffices to prove the equality J) = IMZ,_1yx for
all v > 1. We remark that J®) C IMZ,—1)x is always true for all v > 1, and that
(g—)i |0 <i<2)g =M, since C is a non-singular conic.

We proceed to prove ML, _x = J¥ and C - J®) C J®+Y by induction on v. If
v =1, then we have JU) = M = IMZ(,—1)x, and

C-JV =Cm= (3| 0<i<2sCJ?,

and hence the claim is true for the case v = 1. Now we distinguish the following two
cases.

Case (a): Suppose that s is even.
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If v = 2 then we apply Corollary 5.1.6(i) and find a polynomial F3; of degree s such
that By, = {C?,CGy,...,CGy, Fy1} is a minimal homogeneous system of generators
of Zox. For 1 < j <tand 0 <i <2, we see that ag)gj = Gjaa_)% + C’g—% e J®. Since
C’g—fé € CMC J?, we get ng—)i € J@, and hence G;9 C J@. This implies

M = (X,G | 0<i<2,GeBsCJ?,

and hence Zx9 = J@. Moreover, we have C?9 = C’%% |0 <i<2)gCJ® and

Cng_gi = %(% + 025—2) € J®). From this we deduce

C-J? =C-IyM=(C*,CGy,...,CGs- (FL[0<i<2)5C T,

Now we assume that for 2< k< v—1 we have Z;,_)xIM= J®E O J® C JED and
B, = {C* C*1Gy, ..., C* Gy, C*2Fyy, ... ,CFy_11, Fy.1} is a minimal homogeneous

system of generators of Zyx, where deg(Fj;) = % and
2 < max{deg(G;) | 1 < j <t} <s=deg(Fhy) <--- < 2 = deg(Fy1).

Again, Corollary 5.1.6(i) enables us to find a homogeneous polynomial F,; € (Z,x)s/2
such that B, = {C",C"7'Gy,...,C"'G;,C"%Fyy,...,CF,_11,F,,} is a minimal
homogeneous system of generators of Z,x. Clearly, we have C*~19t C J®). Let
i€{0,1,2},j€{1,...,t},and k € {2,...,v — 1}. We deduce

o (v— 102G L = 2C ) w18 e JO) (as 9% € M),

o (v—k)CrFIF2C = 6(0“8*—)’;%) _ CV—I@%F_)?; € JW (as %F—)‘gj € Ti1yxM).

Thus we get Z,_1)xM C J(”), and so Z,_xIM = Jw), Furthermore, we see that

(al) CV<§_)€ |0 <i<2)g=0C"MC JHD,

(a2) vOv1G, 28 = ASE) — v IS € JWH (by (al)).

_ a(Cv—1F _ ) _ _
(a3) (v—1)C" 2F21§—)€:—( e 21) v 1—%};?; e JW*D since C¥ 1—%};?; eC” 1IX(38—)€

0<i<2)gCJ¥ (by (al) and (a2)).

(ad) (v — k + 1)01/7ka138—)% = %;:F“) — C’”’kﬂ%F—)’él € JW+D  since we have
Crv 1881 e Cv R ITy x (S5 10 <i < 2)s € JUHD (by (al), (a2), (a3) and

induction on k).
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This shows that C' - J® C J¥*+D_ as wanted.

Case (b): Suppose that s is odd.

If v = 2 we argue the same as in the case (a) and get MZx = J@ and C-J? C JO),
Suppose that v = 3. By Corollary 5.1.6(ii), there are polynomials F31, F35 € Z3x of
degree |(3s+1)/2] such that By = {C?,C*Gy,...,C?*Gy,CFy1, F31, F32} is a minimal
homogeneous base of Zzx. Then

(b1) For k = 2,3 we have C* . 9t C J*+1),

(b2) For k = 2,3 we have kC’“_lng—)% = 8(2’:;?” - C”"’g—% € J*+D (as g—% € M and
(b1)).

(b3) For I = 0,1, we have (I + 1)C’lF21§—§i = %);Fm — C’l“% € JU | since

CH18fs € O T (J& | 0 < i < 2)g € JUH) (by (b1) and (b2)).

(b4) For [ = 1,2 we have Fglaa—)?i = a(gﬁfl) - C%F;il € JW, since we have C%L)’gil €

CLox(gg | 0 < i <2)s € JW (by (b1), (b2), and (b3)).

Thus we get MTyx C J@ and C - JO C JW.
Now we assume that 2 < k < v —1 we have Z;_xI = J® C.J® C gkt and

the minimal homogeneous system of generators By of Zyx is given by

B,={C* C*¥ Gy, ...,C*" Gy, O 2Fy, C* 3 Fy ,C* 3y, ... ,CFy_11,CFy_19, Fy}
if k=2l and

By = {C*,C*'Gy,...,C* Gy, CF 2 Fyy, CF P Fy 1, C* P Fy1, ... ,CFy1, Forsn1, Farpio}

if £ = 2l + 1. Note that 2 < max{deg(G,) | 1 < j <t} < s =deg(Fz1) < --- <
deg(Fk1). If v is even, then we use the same argument as in the case (a) and get
MIL,—1)x C J¥ and C - JW C J¥*D_ Otherwise, we can argue similarly as the
subcase v = 3 and get the same result.

Altogether, we have shown that IMZ,_x = J¥ and C'-JW C J¥Y forall v > 1,
and this finishes the proof of the proposition. O

Corollary 5.1.8. In the setting of Proposition 5.1.7, let By = {C,G1,...,G} be a

minimal homogeneous system of generators of Ix, let d; = deg(G;) for j = 1,...,t,
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and assume that di < -+ < d;. If v = 1 then HFQ% /K(z’) =1 fori = 3 and
vX
HFgs /K(z') =0 fori#3. Ifv>2 then
vX

HF g3 /K(i) =s(y) +hi+& fori>|[s(v—1)/2]+3
vX
—HF(i—1)—2i+1+hi+08 for2<i<]|s(v—1)/2]+3
=0 fori<2.
Here h; = #{F € By | deg(F) =i — 1 —2v} and 0; is defined as follows.
(i) If s=4 then §; = v — 2 if i = 2v — 4 and §; = 0 otherwise.
(ii) If s =5 then:
o [fvisoddthen ;=1 ifi =2(v—3)+5, and 6; =3 ifi =2v+k —1 for
somek=1,...,(v—3)/2 and 6; = 0 otherwise.
o [fviseventhend;=1ifi=2(v—3)+5, and 6; =3 ifi =2v+k—1 for
somek=1,...,(v—2)/2 and 6; = 2 of i = (bv —4)/2 and 6; = 0 otherwise.
(113) If s > 6 then:
o Ifsiseventhend; =1 ifi=2(v—k)+(k—1)s/243 for somek =3,...,v
and 6; = 0 otherwise.

e [f s is odd then we have §; = 1 if i = 2(v — 2k — 1) + ks + 3 for some
E=1,....|(v—=1)/2] and §; =2 if i =2(v —2k—2)+ | (2sk+s+1)/2] +3
for some k=1,...,|(v—2)/2]| and §; = 0 otherwise.

Proof. By Proposition 5.1.7, we have HFqs /K( i) = HFs/mz,,_,,(i — 3). In the case
v =1 we have HFqa /K( i) = HF /(7 — 3) “and hence HFQs ( ) =0 for ¢ # 3 and
vX
HF gz /K()—lforz—?) If v > 2 we have
vX

HFqs (1) = HFsmz, . (i = 3)
= HFs(i — 3) — HFmz,, , (i — 3)
= HFg(i — 3) — dimg (9% (Zp—1)x)i—a)
= HFs(i — 3) — (dimg (Z-1)x)i—3 — #(Bo-1)i-3)
=HF_1x(i —3) + #(By-1)i-3

The sequence of degrees of the elements in the sequence

A= (CV?3F217 CV?4F317 ceey CF(V—2)17F(V—1)1)
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is A* = (2(r—=3)+[(2s+1)/2],2(v—4)+[(3s+1)/2],..., 24+ [((r—2)s+1) /2], | (v—
1)s+1)/2].

(i) If s = 4 then every element of the sequence A* equals 2v — 4 so, #(B,_1);—3 =
#{F € By |deg(F)=i—1—2v}+0; where 6 =v—2ifi=2v—4and §; =0

otherwise.

(ii) If s =5 then we see that 2(v — 2k — 1)+ | (2ks +1)/2] < 2(v — 2k —2) + | ((2k +
Ds+1)/2] =2(v —2k—3)+ [((2k+2)s+ 1)/2| forall k =1,..., | (v — 3)/2].

o If v is odd then #(B,_1)is = #{F € By | deg(F) =i —1—-2v} +;
where §; = 1 if i = 2(v —3) + 5, and §; = 3 if i = 2v + k — 1 for some
k=1,...,(v—3)/2 and §; = 0 otherwise.

o If v is even then #(B,_1)i—3 = #{F € By | deg(F) =1 —1—-2v} +;
where 6; = 1ifi = 2(r —3)+ 5, and 6; = 3 if i = 2v +t — 1 for some
t=1,...,(v—2)/2 and §; = 2 if i = (bv — 4)/2 and §; = 0 otherwise.

(iii) If s > 6 then the sequence of elements in A* is strictly increasing.

o If 5 is even then Corollary 5.1.6(i) implies that #(B,_1);—3 = #{F € By |
deg(F)=1i—1—2v}+0; where §; =1if i =2(v — k) + (k — 1)s/2 + 3 for
some k= 3,...,v and §; = 0 otherwise.

e If 5 is odd then Corollary 5.1.6(ii) and (iii) yields that #(B,_1);—3 = #{F' €
By | deg(F') = i—1—2v}+0;, where ¢; = 1if i = 2(v—2k—1)+ks+3 for some
k=1,....[(v—=1)/2] and §; =2 if i =2(v —2k—2) + | (2sk+s+1)/2| +3
for some k =1,...,|(v —2)/2] and §; = 0 otherwise.

If i > |s(v —1)/2] + 3 then by [Ca, Proposition 2.2] we have HF,_1)x(i — 3) = s(3).
Otherwise, if ¢ < [s(v —1)/2] 4+ 3 then HF(,_1)x(i — 3) = HF ,x(i — 1) — 2i + 1. Hence
the claims follow. O

Corollary 5.1.9. Using the notation given in Corollary 5.1.8, we have.
(1)
HFQ?{X/K (1) =0 fori>s

— 3HFx(2) —9 fori=3
=3HFx(i—1)—HFx(i—2)—2i—1 fori<s andi# 3.
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(ii) For every v > 2, lett = |s(v+1)/2] and u = |s(v — 1)/2] + 3. Then we have

HF g2 /K(i) =s(Bv+2)(v—1)/2+h;+6; fori>t
vX
=3HF,x(i — 1)— HF jx(i— 2)+ s(5) + hi+ 6;— 2i— 1 foru< i<t

Proof. Clearly, HF g2 I (1) =0 for ¢ < 1. By Proposition 3.2.7 we have a short exact
vX

sequence of graded R,x-modules
0— Q?I’%yx/K — Q%ﬁ,,x/K — Q}%UX/K —rmyx — 0.

For 1 > 2 we get

HFQ??,,X/K (l) - HFQ}QVX
)

= (HF,x () + 3HFux (i = 1) = HF(10)x(2)) + HFqq (1) — HF,x(0)
(4)

() +HFgy (i) = HF,x(3)

= 3HF,x(i — 1) — HF(x(i) + HFqy

where (x) follows from Corollary 4.2.3(i).

We consider the case v = 1. We see that HF,x(3) = 10, so HFQ%X/K(Z%) = 3HFx(2)—
10+1=3HFx(2) —9. For i < s and ¢ # 3 we have HFQ%X/K(Z') =3HFx(i—1)—(2i+
1+ HFx(i —2)). For i > s we get HFQ%X/K(Z') =3HFx(i — 1) — HFyx(i) = 3s — 3s = 0.
Thus claim (i) follows.

Now we suppose v > 2. By Corollary 5.1.8 we have HFq2 (1) = 33(’”2“1) —
RI/X/K

s("3?) +s(5) + hi + 6 = s(Bv+2)(v — 1)/2 4+ h; + & for i > [s(v + 1)/2]. For
|s(v —1)/2] +3 <i < [s(v+1)/2] we obtain HFQ%VX/K(Z‘) =3HF,x(i — 1) — (2¢ +
1+ HF,x(i — 2)) + s(3) + h; + 0;. For i < [s(v —1)/2] + 3, by Corollary 5.1.8 we get
HFQ%VX/K(z') =3HF, x(i—1)—(2i+1+HF,x(: —2))+ (HF x(: —1) = 2i+ 1+ h; +6;) =
4HF x(i—1)+HF, x(i—2) — 4i+ h; + 6;. Therefore claim (ii) is completely proved. [

5.2 Segre’s Bound for Fat Point Schemes in P*

Given a fat point scheme W = m P, + - - - + m,P, in P", we define
My + -+ my, +J — 2
J
for j = 1,...,n and set Tw = max{Tw, | j = 1,...,n}. In 1996, the following

.., P, lieon a j-plane}

Ty j ::max{[ J | Py, .

conjecture, called Segre’s bound, was formulated by N.V. Trung (cf. [Thl]) and
independently by G. Fatabbi and A. Lorenzini (cf. [FL]).



118 5. Some Special Cases and Applications

Conjecture 5.2.1. The regularity index of a fat point scheme W satisfies ryw < Tw.

In this section, we show that rw < Tyw if W is a set of s distinct reduced K-rational
points in P*. We also show that Segre’s bound is attained by an equimultiple fat point
scheme in P* whose support X := Supp(W) satisfies Tx = Tx ;. Moreover, we prove
that the regularity index of Q}%yx K is exactly T(,41)x in this case.

These proofs require a number of preparations. The following techniques were
developed in [CTV, Lemmata 1 and 3].

Lemma 5.2.2. Let X = {Py,...,P;,Q} be a set of s+ 1 distinct K-rational points
in P™, let p; (resp. q) be the associated prime ideal of P; (resp. Q), and let my,. .., ms,
a be positive integers. Define two ideals J := @i N---N ™ and [ = JNq®.

(i) We have 1i(S/I) = max{a — 1,1i(S/J),ri(S/(J +q%))}.

(ii) In the case @ = (1 : 0 : ---:0), i.e. in the case q = (X1,...,X,), we have
ri(S/(J +q%) < T if and only if XI "M € J + q*! for every monomial M € ¢’

and fori =0,...,a— 1.

In many cases, the regularity index ri(S/J) can be estimated by induction on the
number s of points in the support of the scheme. In order to use the lemma, one needs
to find a good bound for ri(S/(J + q%)). This is equivalent to finding the minimal
number T such that for any monomial M € q° with 0 < i < a — 1 there exist T — i
linearly independent linear forms L, ..., Ly_; which do not vanish at ) and satisfy
Ly---Ly_;M € J. Since we may assume ¢ = (Xi,...,X,), we can write L; = X0+ G;
with a linear form G; € q for j =1,...,7 — 4. Then the relation

Ly---Ly_;M = (X(] +G1) (X0+GT_i)M eJ

implies X ‘M € J 4 q"*'. This means that we have ri(S/(J +q%)) < T.
The next two lemmata are useful tools to construct suitable linear forms L;. They
follow from [Th2, Lemmata 2.3 and 2.4].

Lemma 5.2.3. Let X = {Py,..., P} be a set of s distinct K-rational points in a
2-plane Ky = P? in P, let Q € Ko\ X, and let my,...,m, be positive integers. We
define

4 ) i
s

; B, Q lie on aj—plane}

t; == max {

for j =1,2, and let t := max{ty,t2}.
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Then there existt lines contained in Ky, say L1, ..., Ly, which do not pass through Q)
and have the property that for every j € {1,...,s} there exist m; lines L; ,..., L
with P; GLilﬂ---ﬁLimj.

irn,

Lemma 5.2.4. Let X = {Py,..., P} be a set of s distinct K-rational points in a
3-plane H =2 P3 in P, let Q € H\ X, and let my,...,m, be positive integers. We
define

it I

Py,...,P,,Q lie on aj—pl(me}
J

t; = maX{

for 7 =1,2,3 and let t :== max{ty,ts,t3}.
Then we can find t 2-planes contained in H, say Ki,..., K;, which do not pass
through @ and have the property that for every j € {1,...,s} there exist m; 2-planes
Kin""Kimj with P] S Kil n--- ﬂKim]_.

By using the above lemmata, P. V. Thien proved the following result (cf. [Th2,
Theorem 1.1]).

Lemma 5.2.5. Let X = {Py,..., P} be a set of s distinct K-rational points in P*.

Then we have rox < Tox.

The next proposition tells us that the conjecture holds true for a fat point scheme

in P* whose support is contained in a hyperplane.

Proposition 5.2.6. Let X = {Py,..., P} be a set of s distinct K-rational points
in P4, and let W = m P, + --- + msP, be a fat point scheme. If X is contained in a
hyperplane H = P2, then we have rw < Tyy.

Proof. For j =1,...,s, let P/ denote the point of H = P? corresponding to P;, and let
W =my P + - -+ m,P! be the fat point scheme of P? corresponding to W. By [Thl,
Theorem 1.1], we know that ry < Ty holds. Now it follows from Lemma 4.4 in [BFL]
that rw < Twr. In view of the inequality Tyw < Tw which follows immediately from
the definition of Ty, we get the desired result. O

Next we start to work towards the first main result of this section, namely the proof
of Segre’s bound in the case m; = --- = my = 1, i.e. for a reduced 0-dimensional scheme
in P*. We use the method of proof in [Th2] and estimate the regularity index ri(S/(J +
q)) as follows.
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Proposition 5.2.7. Let X = {P},..., P,} be a set of s distinct K -rational points in P*
which is not contained in a hyperplane. Then there exists a point P;, € X such that the
ideal J = ﬂ#io ©; satisfies the inequality

ri(S/(J + i) < Tx.

Proof. By Lemma 5.2.2(ii), we only need to show that there exist a point P, € X
and a number t € {1,...,Tx} such that there are linear forms Lq,...,L, € S with
Ly--- L€ J\ g

To begin with, let d > 1 be the least integer such that there are hyperplanes

Hi,...,Hyin P* for which the following conditions are satisfied:
(i) XCHU---UH,y

(ii) Fori=1,...,d — 1, we have

i—1 i—1
[H: 0 (X\ U )| = max {|H 0 (X\ UH,)| | H is a hyperplane}.
j=1 j=1

Notice that we have d > 2 here, because X is not contained in a hyperplane. For
convenience we put X; := H; N (X'\ U;;ll H;) for i =1,...,d. By the choice of d we

have Xy # (0. We write Xy = {Py,..., P.} for some r > 1. The desired point P;, will

be chosen in X;. Depending on the geometry of X, we distinguish three cases.

Case (a) Suppose that X, is not contained in a 2-plane.

Notice that this implies r = |Xy| > 4. Let u := |X;_1|. Since d > 2 and r > 4, we
have (dr +2)/4 > d + *5* — 1. This implies
(d—1)1j1+r+2J > LaZTZQ
Let ¢ be a line contained in H; such that

|>d+ 22—

Tx > Tx4 > [ 5

[0 N Xyl = max{|¢' N Xy| | ¢ is a line contained in Hy}.
Note that, since X; € ¢, we can choose a point P;, € X, \ ¢. Now we set
tj := max { E (JHN (X \ {P,})|+j—1)| | H is a j-plane containing P, }

for j = 1,2,3 and t := max{ty,ts,t3}. Let ¢; be a line containing P;, such that
[6; N X\ {P,}| = t1. Since X; does not lie on a 2-plane and by the choice of ¢, we get

r = ‘Xdl Z MﬂXd| + |£1 ﬂXd| Z 2’61 ﬁXd‘.
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This yields t; < L%J < L%J
Next we let £ C Hy be a 2-plane containing P;, such that LWJ = ty.

Then we have |F N Xyl < r — 1, and therefore t; < Vg—lJ Since r > 4, we have

ty < {%J < |%*|. Thus we obtain ¢ = max{t,ts,¢3} < |5+ |. By Lemma 5.2.4,
we can find L”;le 2-planes Ky,..., K By contained in H, avoiding P, such that, for
i # 19, there is an index j; € {1,..., L%J} with P, € Kj,. If we choose hyperplanes
Z*(L;) containing K; and avoiding Py, for j = 1,..., %] and let LL%lJﬂ' be the
linear form defining the hyperplane H; for j =1,...,d—1, we have L; - - - L‘”L%J 4 €

J\ i, as we wanted.

Case (b) Suppose that X, is contained in a 2-plane Kj, but not in a line.
W.lo.g. we may assume that Xy 1 = {P,41,..., P.y,} for some u € N. Then we
have r > 3 and u > |[Ko N (Xgoa UXY)| +1 > |KgNXy +1=7r+12>4 by the choice

of H; 1. Depending on the size of u, we distinguish the two subcases.

Subcase (b.1) Suppose that u > r + 2.

In this case we see that L@J >d+ 5] —1iff d(r +2) > 4d +4|5] — 4 iff
dr —2d — 45| +4 > 0iff (2r —4[5]) + (r — 2)(d — 2) > 0. The last inequality holds
for all » > 3 and d > 2. This implies

Tx > Txa > L(d_l)ZMHJ > Ld(rﬁ)J >d+ EJ - L

Let ¢ be a line contained in Ky with [¢ N Xy = max{|¢' N Xy| | ¢' is a line contained
in Ko}. There is a point P;, € X\ ¢ because X, is not contained in a line. For j = 1,2,

we set
tj := max { E (JHN (Xg\ {P,})|+j—1)| | H is a j-plane containing P, }

and we let t = max{ty,ty}. Furthermore, let ¢; C K; be a line containing P;, such that
|6, N Xy \ {P;,}| = t1. By the choice of ¢, we get

This implies ¢; < |25+ ] < [£]. Also, we observe that ¢ < [5 (|Xg\ {P,} +1)] = [4].
Hence we conclude that ¢ = max{t;,t,} < |5|. By Lemma 5.2.3, we can find |f]
lines ¢y, ..., ¢ | contained in Ky and avoiding F;, such that for # iy there exists an
index j; € {1,..., 5]} with P, € ¢;,. We choose hyperplanes Z*(L;) containing ¢;

and avoiding P, for j = 1,...,[5], and we let L|z|;; be a linear form defining the
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hyperplane H; for j = 1,...,d — 1. Then we find Ll'“LdJr[ﬁj—l € J\ iy, as we

wanted.

Subcase (b.2) Suppose that u =r + 1.

In this case we have r + 1 =u > |Ko N (Xy_1 UXy)|+1 > |KogNXyq| + 7+ 1, and
therefore Ko N Xy 1 = (). Observe that we have d(r +1)/4 > d+ (r —3)/2 for d > 2
and » > 3, and Thus

Ty > Tea 2 |90 2 [d+ 202 2 d+ [

If r = 2k+1 for some k > 1, then \_%J = k and Tx > d+k—1. Thus if we choose F;, and

Ly, ..., Lgyk—1 asin Subcase (b.1), we obtain the desired relation Ly - -+ Lgyx—1 € J\ -

It remains to consider the case r = 2k for some k > 2. In this case, we have EJ =k
and Tx >d+k—2>d. Let Y={P,...,P._1} C Xy, and let ¢ be a line contained
in Ky such that [/ NY| =max{|¢' NY|| ¢ is a line contained in Kj}.

Now there are two possibilities. If Y C ¢, then we have P, ¢ ( since X, does not lie
on a line. Thus we may define P;, := P,. We choose a linear form L such that Z*(L)
contains ¢ and avoids P,,, and we let H; = Z%(L;) for j =1,...,d — 1. Then we have
Ly---Lq1L € J\ @i, as we wanted.

The second possibility is Y € ¢. In this case we let P;; € Y \ ¢ and define
tj := max { E (JHN (Y\{P,})|+7—1)| | H is a j-plane containing P;, }

for 7 = 1,2, and then t := max{t;,%2}. By the choice of ¢, we have t; < {‘Y'T*IJ =

L%J =k —1, and t; < {WJ = L%J = k — 1. Consequently, we have
t = max{t1,t2} < k—1. By Lemma 5.2.3, we can find k — 1 lines /1, ..., {;_; contained
in Ky and avoiding P,, such that for every i # iy there is an index j; € {1,...,k — 1}
with P, € ¢;,. Since P,, ¢ H,_1, there exist four points of X;_1, say Psr—2, Par_1, P,
and Ps,1, such that P,, and these four points do not lie on a hyperplane.

W.lo.g. we may assume that P,, = (1 : 0:0:0:0), Ppy_go = (1 :1:0:
0:0), Pppoqy =(1:0:1:0:0), P, =(1:0:0:1:0), and Py = (1 :
0:0:0:1). Since P, # P,, P, ¢ Hi.1 = Z7(Xo — X; — Xo — X3 — X) and
span(P;y, Por_2, Por_1, Por, Pari1) = span(Fyy, Py, Poy_o, Por_1, Poy, Pory1) = P*, there
are iy, 4,13 € {2r —2,...,2r+1} such that span(P,,, B;,, P, P;,, P,) = PY. W.lo.g. we
may therefore assume that span(P,,, Py _1, Py, Pori1, P) = P*. Let K; C P* be the
2-plane passing through the three points Ps,_1, Py, Py, 1, and let ¢’ be the line passing

07

through P;, and P,. Then there is no hyperplane in P* containing K; and ¢'. Let L
be a linear form defining the hyperplane of P* containing both K; and P,.



5.2. Segre’s Bound for Fat Point Schemes in P* 123

If P,, € Z%(Lg) then we have Ky C Z%(Ly) and ¢ C Z*(L;) which is impossible.
Hence we have P, ¢ Z%(Lg). For j =1,...,k—1, let L; be a linear form defining the
hyperplane containing ¢;, P,.; and Ps,_;_;. Then we also see that P, ¢ Z*(L,) for
j=1,...,k—1, since otherwise (;UP;,, C Ky C Z*(L;) implies | ZT(L;)N(Xy4-1UXy)| >

r 4+ 2 > u, in contradiction to the choice of H;_,. Thus we have
L1"'Lk€@1ﬂ"'m@‘oﬂ"'ﬂ@rﬂ"'ﬂpwﬂ-

Letting Ljy1; be a linear form defining H; for j = 1,...,d — 2, we therefore obtain
Ly Layk—2 € J\ piy, as we wanted.

Case (c) Suppose that X, is contained in a line £. In this case we distinguish four

subcases depending on the size of Tk.

Subcase (c.1) Tx >r+d—2

Let P, = P,. We choose a linear from L, defining a hyperplane passing through
P; and avoiding P, for j =1,...,r — 1, and choose a linear form L,_;; defining Hy,
fork=1,...,d—1. Then Ly---L,yq 2 € J\ @i,-

Hence we assume from here on that Tx < r+d — 3. Before we move on to the other
subcases, let us write down some general inequalities which will come in handy later.
For j=1,...,d—1,let P/ =N Hj. Clearly, the points P,..., P, P,..., Py ; all lie
on /. Since we have Tx > Tk, there is an index j € {1,...,d — 1} such that P; ¢ X;.
Let e € {1,...,d — 1} be the largest integer such that P! ¢ X,, and let v = |X,|. Then
we have [Xj| > [£N (X; U~ UXg)|+ 2 for every j = 1,...,d — 1, and P; € X and
IX;|>r+24+d—j>4for j=e+1,...,d— 1. In particular, this shows

V>N (X U UX)| 42> 0N (K U UXg)| 42> 7424 (d—e—1). (%)

Consequently, we have two further inequalities
e d—1
Tx > Txa = [ (Xl + X X +1Xa] +2) |
i=1 i=et1
> [ Lev+(r+d+l—e)+- -+ +3)+7r+2)]
> Lll (61) + (2r+dfe+24)(dfefl) 4ot Q)J

and
Tx1 > N (XeprU---UXY)|—1=r+d—e—2. (% % %)

Notice that, for 2,y € Nand z € Ny, the inequality > [ | implies z+1 > y7+1 From
the first inequality in (xx) we deduce r +d —3 > [(ev +4(d — e — 1) +r +2)]. This
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yields r +d —2 > 1(ev +4(d — e — 1) + r + 3), and thus e(v — 4) < 3r — 7. Therefore
we have r > 3 and v < 3r — 3.

Now we turn our attention to the next subcase.

Subcase (c.2) Tx=7r+d—3
We put tj = max { [%
let t = max{ty,ts,t3}. We choose a line ¢; containing P! such that |¢; N X.| = t;, and

we let K7 be the 2-plane containing ¢ and ¢;. By the definition of H., we have

J | H is a j-plane containing Pé} for j =1,2,3, and

v=IX ] > KN (XU---UX)|+1>16NXK ]+ 0N (X U---UXy)| + 1.

If ¢ NX.| > r, then we have v > 2r + d — e. Hence it follows from (%) that
Ir—7>e(v—4)+ (2r+d_e_24)(d_6_1) >e2r+(d—e—1)—3)+ (2T+d_e_24)(d_e_1). Since
d—e—1>0and 2r+d—e—4 > 1andr > 3, we have e < g::g < % This shows e = 1.
Therefore we find 3r — 7 > 2r+d—5+w = 2r—3+WM_—W. Hence
we have d = 2 and Tx o > UK?XU > L|emxe|2+|mxd|J > r — 1 = Tk, a contradiction.
Altogether, we conclude that we may assume t; < r — 1.

Let K5 be a 2-plane which contains P, and satisfies L%J = ty. Then the

e

plane K, and the line ¢ lie on a hyperplane containing P.. By the choice of H,., we
have v > |KoNX,|+0NXy| = |KoNX,|+r. This implies | KoNX,| < v—r < 2r—3. Hence
we have ty = L%j < |22 = — 1. We also see that t3 = L%j = |2 <
|3=32| < r—1. Combining these insights, we obtain ¢ = max{t; | j = 1,2,3} <r—1.

By Lemma 5.2.4, we can now find 2-planes K7,..., K|_; avoiding P! and contained

in H. such that, for every index i with P; € X, , there exists a 2-plane K7, containing
P;.

Let P, == P,. For j = 1,...,r — 1, we take L; to be a linear form defin-
ing the hyperplane containing K’ and Pj,;. Since we have P, ¢ K}, and since
Pi1, P,
j=1,...,e—1le+1,...,d—1, welet L, ;1 be a linear form defining H;. Then we

.. P, are collinear, we must have P, ¢ Z*(L;) for j = 1,...,r — 1. For

have Ly -+ Lyyeolyye Lyyg o € J\ g4, as we wanted.

Subcase (c.3) Tx=d+r—4

From (* % %) we deduce that r+d —4 > r +d — e — 2, and hence e > 2. By (xx),
we have r +d — 4 > [1(ev + (2T+d_e+;)(d_e_1) +r+2)|. It follows that 4(r +d — 3) >
ev+ (2T+d_e+;)(d_e_1) +r+3, and thus 3r — 11 > e(v —4) + (2T+d_6_24)(d_6_1). We also
have v > r+ 2+ (d —e — 1) > r + 2 by (x). Putting these inequalities together, we
find3r —11 >e(r—2+(d—e—1)) + (2r+d7€724)(d7671) > e(r — 2), and therefore we
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have2§e§%<30re:2. Ifd>4,then3r —11>2(r—2)+r—1=3r—>51is
impossible. Consequently, we must have d = e+ 1 = 3.

Now we note that 2(r — 2) < 2(v —4) < 3r — 11 implies 7 > 7 and v < ¥=3,
Let X, = Xy = {P,41,..., P}, and let L be a linear form defining the hyperplane
containing ¢ and the two points P,,, 1 and P,,,. Since X, and /¢ are not contained in
a hyperplane, there is a point, say P,, o, which does not belong to Z*(L). We put

P,=P.,oandlet Y={P.1,..., Py, 2}. Moreover, we let
t; = max { [% (IHN(Y\{P,})|+j—1)| | H is a j-plane containing P, }

for j = 1,2,3 and define t = max{ty, t2,t3}.

Given a line ¢; which contains P, and satisfies |[¢; N (Y \ {P;,})| = t1, we see that
v = |Xs| > |(NY |+ [0NX;] = |6,NY |+r. Hence we have |[(,NY| < v—r < 38 —p = 123
and therefore ¢, = [(; N (Y \ {P,})| <52 -1=2<r-3.

Given a 2-plane K; which contains P;, and satisfies ij = ty, we have
|KiNY| <v—2< 3 2= 3T This yields |K; N (Y\ {P;})| < 252, Using r > 7,
we obtain the bound ¢, = LlKlm(Y\{PiO})IHJ < L] <r-3.

Since r > 7, we also have t3 = LWJ = |5 < [Z22] < r—3. Now we
combine these inequalities and get t = max{t; | j = 1,2,3} <r — 3. By Lemma 5.2.4,

we can find 2-planes Ki,..., K/ 5 avoiding P,, and contained in H, such that for
every index 7 with P; € Y \ {F;,} there exists an index j; for which K7 contains P;.
Since P, ¢ Kj, we can choose a linear from L; defining a hyperplane containing K’
and avoiding P;, for j = 1,...,r — 3. Letting L,_5 be a linear form defining H; and
L.y=1L,weget Li---L,_y € J\ g, as we wanted. Notice that in this subcase we
have Tx =r+d—4=r —1.
Subcase (c.4) Tx <r+d-—5

From (s#x) and r+d—5 > Tx > Tk ; it follows that e > 3. The inequality (*x*) yields
3r—15 > e(v—4) + (2T+d_6_24)(d_6_1) > e(v —4). Moreover, we deduce from () that
v > r+ 2. Combining this with e > 3 and r > 3, we get 3r — 15 > e(r — 2) > 3(r — 2),

a contradiction. Therefore the subcase Tx < r + d — 5 cannot occur.

Altogether, cases (a), (b), and (c) cover all possibilites for the geometry of X, and
the proposition is completely proved. O

Now we are already to prove the Segre bound in the case m; = --- =mz =1, i.e.

for sets of points in P*.

Theorem 5.2.8. Let X = {Py,..., Ps} be a set of s distinct reduced K -rational points

in P*. Then we have rg < Tk.
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Proof. To prove rg < Tx we proceed by induction on s. The case s = 1 is trivial. For
the induction step, we have s > 2. If X is contained in a hyperplane H = P%  the
desired inequality follows from Proposition 5.2.6. Hence we may assume that X is not
contained in a hyperplane. By Proposition 5.2.7, there is a point P, € X such that
ri(S/(J + i,)) < Tx where J = (), ;. Moreover, it follows from Lemma 5.2.2(i)
that rx = max{0,ri(S/J),ri(S/(J + ¢i,))}- By induction, we may assume that

ri(S/J) < max{Tj | j =1,2,3,4} < Tx

where Tj’ = max { Lﬁ;—fﬂ | B\, ..., P, lie on a j-plane, i, # i, k=1,... ,q}. There-

fore we obtain ryx < Tk, as claimed. O

Our next goal is to prove the Segre bound for equimultiple fat point schemes in P*

under the additional hypothesis Tk = Tk ;. We need several preparations.

Lemma 5.2.9. Let X = {Py,..., P.} be a set of s > 2 distinct K -rational points in P*,
leti > 1, let J9 = gin---Ngl, and let q = (X1, ..., X4). Assume that there are positive
integers r1, 7, such that the bounds 1i(S/(JM +q)) < 7y and ri(S/(JW +q%)) < r, hold
for some a > 2.

Then we have 1i(S/(J@V) 4+ q@+1)) <ry +r, + 1.

Proof. In view of Lemma 5.2.2(ii), it suffices to show X§' ™™= M € J+D) 4 ¢+ for
all M € ¢ and i = 0,...,a. Since ri(S/(JY + q)) < ri, we have X' € JI +q.
Furthermore, the hypothesis 1i(S/J@ 4 q%) < r, implies X;* 7 M’ € J@ + g7+ for all
M' € ¢’ and j =0,...,a — 1. Consequently, we get

Xg UM = Xgt (X' M) € (JY + ) (Y + g Nng)
C JW. g@ o gitt c glath) o gitt
fori=0,...,a—1and M € q".

Now we consider the case i = a and M = X{"'--- X € (q%),. W.lLo.g. we may
assume that oy > 1 and write M = X;-M’ with M’ € S. Then we have X' "™\ =
Xngl(Xga_(a_l)M’) c (J(l)q + q2>((J(a) +q)Nget) C JO . @) 4 qatl C jlatl) 4
q@tt. Altogether, we have verified the hypothesis of Lemma 5.2.2 and the conclusion
follows. [

Let us give an example for the application of the preceding lemma.
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Example 5.2.10. Let X = {P,,..., Py} C P* be the set of reduced points given by
P=(1:0:-1:1:1),P=(1:0:2:0:2),P=(1:1:1:0:1),
and P, = (1 : 2:2:2:1). Then we can check that ri(S/(J® + q)) = 1 and
ri(S/(J@ 4 ¢%)) = 3. The preceding lemma yields the bound ri(S/(J® + ¢%)) < 5

which turns out to be an equality in this case.
The hypothesis Tx = Tx; in the theorem below can be exploited as follows.

Lemma 5.2.11. Let X = {Py,..., P} be a set of s > 2 distinct reduced K -rational
points in P*. If we have Tx = Tx 1, then T,x > T(—1yx + Tx + 1 for all v > 2.

Proof. Let ¢ = Tx + 1. First we show that T,x = T,x1 = vq — 1 for every v > 2. Let
Jo € {1,2,3,4} and ¢y € N be chosen such that T,x = T,x j, = L%ﬁo_ﬂ

If jo = 1, the claim is clearly true. Hence it suffices to consider jo € {2,3,4}. By the
definition of Tk we have ¢—1 > |_q°+j—0°_2j This implies vg—1 > VL"OJ?%J +v—1. Now
welet Aj, = u[‘m?%]—i—u—l and Bj, = L%ﬁ‘)_zj, and we write gy = kjo+l with & € N
and 0 <! < jo—1. Then we have A; —B;, = V—1+VU+JJ'%72J — L””jg)*zj. Using the fact
that (v —2)(jo—2) > 0, this implies that we have vjo—jo > jo+v+(v—4) > jo+v—2
orv—1> %8_2 Thus if [ < 2, then we have A;) — B, > v—1— L%S_QJ > 0. In the
case [ > 2, we see that A;) — B, > 2v—1— [WJ > 0, since [WJ <.
Altogether, we obtain vg—1 > A;; > B;,. In other words, we have T,x = vg—1 = Tx 1.

Now it is clear that if Tx = ¢ — 1, then T(,_y)x = (v —1)¢—1 and T,x = vg—1. It
therefore follows that T,x > T{,—1)x + Tx + 1, as claimed. O

At this point we have assembled all tools that we need to prove the Segre bound

for equimultiple fat point schemes satisfying Tx = Tx ;.

Theorem 5.2.12. Let X = {Py,..., Ps} be a set of s > 5 distinct reduced K -rational
points in P* such that Tx = Tk, = max {q —1|P,,.. ., By, lie on a line}, and let
v > 3. Then the equimultiple fat point scheme vX = vP, + --- + v P, satisfies

rx = Tyx = max{yq— 1| Py,...,B, licona line}.

Proof. First we fix an index iy € {1,...,s}. For very a > 1, we let J@ = jzio ©5-
By induction on a, we prove ri(S/(J@ + 97)) < Tux. The cases a = 1,2 are true by
Theorem 5.2.8 and Lemma 5.2.5. Now we assume that we have ri(S/(J@) + o))
T(a—1)x for some a > 3. From Lemmata 5.2.9 and 5.2.11 we obtain ri(S/(J@ 4 05))
Tla—1yx +Tx +1 < T,x, and this finishes the induction.

<
<
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Next we prove the inequality r,x < T,x by induction on s. In the case s = 5 we let
ip = 1and Y = X\ {P,}. Then we have ri(S/(J") +})) < T,x, where J®) = (\_, 0.

Since Y is contained in a hyperplane H = P3| it follows from Proposition 5.2.6 that
ri(S/JY) <max{T,y; | j=1,2,3,4} < Tpx

where Ty ; = max{{%ﬂj | P,y,...,P, € Ylieon a j—plane} for y =1,2,3,4. By

Lemma 5.2.2(i), we conclude that
rx = max{v — 1,1i(S/J),1i(S/(J® + ¢¥))} < Tox.

Now let s > 5. For every i € {5,...,s}, we can find a subset Y C X of degree i
such that
Ty =Ty = max{q —1|P,,...,P, €Y lieon a line}.

Thus by induction, we can assume that there is an index iqg € {1,...,s} such that
Y" = X\ {P,} satisfies r,yn = 1i(S/ (4, ©7) < Toyr. As above, we also have
ri(S/ (M, % + %)) < Tux. Thus we see that r,x < T,x by using Lemma 5.2.2(i)
again.

In order to prove the equality r,x = T,x, we let X' = {F; ,..., P, } be a subset of X
which lies on a line and satisfies Ty = ¢ — 1. The homogeneous saturated ideal of vX’
is J' = (Vi_; gF . It is well known (cf. [DG]) that r,x = 1i(S/J’) = vq — 1. Since vX'
is a subscheme of vX, this implies r,x > r,xx = vqg — 1. On the other hand, we have
T,x = vq — 1 as in the proof of Lemma 5.2.11. Therefore we obtain r,x = T,x, as we

wanted to show. O

Let us apply the statement of this theorem to a family of examples.

Example 5.2.13. Let /;,...,¢5 be five distinct lines in P*, and let ¢; > 5. We
take ¢, points on ¢y, say Pii,...,P,. Then, for i« = 2,...,5, we choose numbers
¢ < q1/5 and points Py,..., Py, in 6; \ {Pi1,...,Pi—14_,}. Now we form the set
X ={Py,..., P} CP% By the choice of the points P, we have Tx = ¢; — 1. Hence

it follows from Theorem 5.2.12 that r,x = vq; — 1 for every v > 1.

The final result of this section applies the previous bounds to derive a bound for
the regularity index of the module of Kéhler differentials of an equimultiple fat point

scheme vX in P* whose support satisfies Tx = Tx1.

Proposition 5.2.14. Let X = {P,..., P} be a set of s > 2 distinct reduced
K -rational points of P* such that Tx = Txi. Then we have ri(Q}%VX/K) = Ti1)x
for every v > 1.
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Proof. By Theorem 5.2.12, we have r,x = T,x for all v > 1. Notice that this clearly
holds also for the cases s = 2,3,4. From Lemma 5.2.11 we get 7, +1)x = T(p41)x >
Tox +Tx > rux +2 > rx + 1. Hence Corollary 4.2.3(i) implies HF%VX/K(Z') =
(n 4 2) deg(vX) — deg((v + 1)X) for i > T, +1)x and HFQ}{DX/K (Towryx — 1) = (n +

2) deg(vX) — HF ,11)x(Twsnx — 1) > (n + 2) deg(vX) — deg((v + 1)X). Altogether we

obtain ri(Q}%yx/K) = Tlu11)x, as claimed. O

The following corollary is directly induced from Propositions 2.4.10 and 5.2.14.

Corollary 5.2.15. In the setting of Proposition 5.2.14, let 1 < m < 5. Then we have
ri(QgVX/K) < min{T{,+1x + 3, Twyx +m — 1} for every v > 1.

Example 5.2.16. Let X = {(1: 0:0:0:0),(1:1:0:0:0),(1:0:1:
0:0,(1:0:0:1:0),(L:0:0:0:1)} beaset of 5 points in P*. We have
HFx: 155...,HFp  : 051555...,HFgz : 00101000...,HFgs -
Ry /K Ry /K Rx/K
00010500...,HFQ§%/K: 00005100... andHFQ%/K: 00000100....
X X

Then ¢, = 2 and the regularity indices are rx = 2 — 1 = 1 and 1i(Qp_ ;) = 3 =
4-1= ri(Q?zx/K) —-1= ri(Q%X/K) —-2= ri(Q‘}%X/K) -3 = ri(QE}’%X/K) — 3 respectively.
Thus the bounds which given in Corollary 5.2.15 are sharp bounds. For m = 4 we
have ryx = 4-2—1 =7 and 1i(Q,_ k) =9 < T+2+i—1fori =1,2,3 and
ri(Q’}'hX/K):lOS?—i-Q—i—i—lfori:4,5.
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Appendix

In this appendix we provide the functions which implement the algorithms for com-
puting the Kahler differential modules and their Hilbert functions in ApCoCoA and
describe their usage with some examples. The ApCoCoA computer algebra system
is primarily designed for working with applied problems by using the symbolic com-
putation methods of CoCoA [Co| and by developing new libraries for the necessary

computations. It can be obtained for free from the ApCoCoA home page:
http://www.apcocoa.org

There is also a comprehensive manual and a series of tutorials available at this web

address.

A.1 Computing the Kahler Differential Module Q”R?/K and Its
Hilbert Function

—-— KaehlerDifferentialModuleAndHF (IP,M): Computes the Kaehler diffenrential Module
- of the algebra R/K and its Hilbert function, where R=S/I is the residual
- class ring, S=K[X_0,..,X_n], I is a homogeneous ideal of S.

--— Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

- M = the number of form of the Kaehler diffenrential module \Omega"M(R/K)
-— Output: A presentation and the Hilbert function of \Omega"M(R/K)
Define KaehlerDifferentialModuleAndHF (IP,M);

If Type(IP) = IDEAL Then I := GBasis(IP);

Else I := GBasis(IdealOfProjectivePoints(IP));

EndIf;

N := Len(Indets());

S ::= CoeffRing[x[1..N],y[1..N]], DegRevLex;



132 Appendix

Using S Do
-- Form the canonical bases V1, V2 of \Omega~(M-1)(S/K), \Omega"M(S/K)
S1 := Subsets(1..N,M-1); V1 := NewList(Len(S1),0);
For I1 := 1 To Len(S1) Do
V1[I1] := Product([y[S1[I1]1[J1] | J In 1..(M-1)1);
EndFor;
S2 := Subsets(1..N,M); V2 := NewList(Len(S2),0);
For I2 := 1 To Len(S2) Do
V2[I2] := Product([y[S2[I21[J1]1 | J In 1..M 1);
EndFor;
-- Compute the submodule B2 = dI.\Omega”(M-1)(S/K) of \Omega~M(S/K)
H := NewList(Len(V1)#*Len(I),0); Q := 1;
LI1 := Indets(); LI2 := First(LI1, N); F1 := RMap(LI2);
NewIl := Image(Ideal(I),F1);
NewI := GBasis(NewIl);
For W := 1 To Len(V1) Do
C := Log(V1[W]);
For K := 1 To Len(I) Do
For J := 1 To N Do
If Der(NewI[K],x[J]) <> O Then
If GCD(V1[W],y[J]) <> y[J] Then
D :=N; D1 := 0;
Repeat D :=D + 1;
If C[D] <> 0 Then D1 := D1 + 1; EndIf;
Until D = N + J;
HIQ] := HIQ] + (-1)~(D1)*Der (NewI[K],x[J])*y[J1*V1[W];
EndIf;
EndIf;
EndFor;
Q := Q+1;
EndFor;
EndFor;
B2 := [];
For J := 1 To Len(H) Do
If H[J] <> 0 Then B2 := Concat(B2, [H[J]]); EndIf;
EndFor;
-— Compute the submodule B3 = I.\Omega"M(S/K) of \Omega~M(S/K)
B3 := NewList(Len(V2)*Len(NewI));
Q :=1;
For W := 1 To Len(V2) Do
For J := 1 To Len(NewI) Do
B3[Q] := NewI[J]V2[W];
Q := Q+1;
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EndFor;
EndFor;
-- Compute the submodule U = B2+B3 of \Omega"M(S/K)\cong S~{C"M_N}
D := List(Identity(Len(V2)));
NewList (Len(B2),0D[1]);
NewList (Len(B3),0D[1]);
For J := 1 To Len(B3) Do
X := Monomials(B3[J]);
For Y := 1 To Len(X) Do
For K := 1 To Len(V2) Do
If GCD(X[Y],V2([K]) = V2[K] Then
H[J] := H[J] + (X[Y]/V2[K])=*DI[X];
EndIf;
EndFor;
EndFor;
EndFor;
For J := 1 To Len(B2) Do
X := Monomials(B2[J]);
For Y := 1 To Len(X) Do
For K := 1 To Len(V2) Do
If GCD(X[Y],V2[K]) = V2[K] Then
G[J] := G[J] + (X[YI/V2[K])*D[K];
EndIf;
EndFor;
EndFor;
EndFor;
U := Concat(G,H);
EndUsing;
-- Return the image of U in S"{C"M_N}
LI3 := Indets();
LI4 := ConcatLists([LI3, [1 | J In 1..N]1);
F := RMap(LI4);
NewU := Image(U,F);
K1 := Len(NewU[1]);
L0l := CurrentRing() “K1/Module (NewU) ;
LO2 := Hilbert(LO1);
LO3 := RegularityIndex(L02);
L04 := NewList(LO3+M+1,0);
L05 := HilbertPoly(L01);
PrintLn "A presentation of Omega™",M, "_(R/K):";
Println "Omega™",M, "_(R/K)(-",M,") = ",L01;
For J := M+1 To Len(L04) Do
L04[J] := LO4[J]+ EvalHilbertFn(L02,J-M-1);

= oo
o
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EndFor;
PrintLn "The Hilbert function of Omega™",M, "_(R/K):";
For J:=1 To Len(L04)-1 Do
PrintLn "H(",J-1,") = ",L04[J]
EndFor;
Using QQt Do
Println "H(t) =", LO5 , " for t >= ", Len(L04)-1
EndUsing;
EndDefine;

Example A.1.1. Let us compute a presentation and the Hilbert function of the
Kahler differential module Q’IQ/Q of the algebra R/Q given in Example 3.2.15. We run
the following commands in ApCoCoA:

Use QQ[x[0..2]];

IP := Ideal((x[0]x[1]"2-x[2]"3) (x[1]1-x[2])"3, (x[01x[1]"2-x[2]"3) (x[1]1-x[0])"2);
KaehlerDifferentialModuleAndHF (IP,1);

KaehlerDifferentialModuleAndHF (IP,2);

KaehlerDifferentialModuleAndHF (IP,3);

The results of these commands are the following presentations and Hilbert functions
of qug/@v where m = 1,2, 3:

A presentation of Omega”1_(R/K):

Omega~1_(R/K) (-1) = CurrentRingEnv~3/Module([[3x[0]"2x[1]1"2 - 4x[0]1x[1]1"3 + x[1]1"4 -
2x[0]1x[2]7°3 + 2x[1]1x[2]1"3, 2x[0]"3x[1] - 6x[0]"2x[1]1"2 + 4x[0]x[1]1"3 + 2x[0]x[2]"3 -
2x[1]1x[2] 73, -3x[0]"2x[2]"2 + 6x[0]x[1]x[2]"2 -3x[1]"2x[2]"2], [x[1]1°5 -3x[1]-4x[2]+
3x[1]1°3x[2]"2 - x[1]1"2x[2]"3, 5x[0]1x[1]1"4 - 12x[0]1x[1]"3x[2] + 9x[0Ix[1]1"2x[2]"2 -
2x[01x[1]1x[2] "3~ 3x[1]"2x[2] "3+ 6x[1]x[2]"4- 3x[2]"5, -3x[0]x[1]~4+ 6x[0]x[1]"3x[2]-
3x[0]x[1]1"2x[2]"2 - 3x[1]1°3x[2]"2 + 12x[1]1"2x[2]"3 - 1b6x[1]x[2]1"4 + 6x[2]"°5],
[x[0]"3x[1]"2 - 2x[0]"2x[1]"3 + x[0]x[1]"4 - x[0]"2x[2]"3 + 2x[0]x[1]x[2]"3 -
x[1]1°2x[2]°3, 0, 0], [x[0]x[1]°5- 3x[0]x[1]-4x[2]- x[1]"3x[2]"3+ 3x[0]x[1]"3x[2]"2 -
x[01x[1]"2x[2]"3 + 3x[1]"2x[2]"4 - 3x[1]x[2]"5 + x[2]"6, O, O], [0, x[0]"3x[1]"2 -
2x[0]"2x[1]1°3 + x[0]x[1]1°4 - x[0]"2x[2]"3 + 2x[0]1x[1]1x[2]"3 - =x[1]1"2x[2]"3, O],
[0, x[0]x[1]°5 - 3x[0]x[1]~4x[2]+ 3x[0]x[1]"3x[2]"2- x[0]x[1]"2x[2]"3- x[1]"3x[2]"3+
3x[1]"2x[2]"4 - 3x[1]x[2]°5 + x[2]"6, O], [0, 0, =x[0]"3x[1]1"2 - 2x[0]"2x[1]"3 +
x[0]x[1]"4 - x[0]"2x[2]"3 + 2x[0]x[1]1x[2]"3 - x[1]"2x[2]"3], [0, 0, =x[0]x[1]"°5 -
3x[01x[1]"4x[2]+ 3x[0]x[1]1"3x[2]"2- x[0]x[1]"2x[2]"3 - x[1]"3x[2]"3+ 3x[1]"2x[2]"4 -
3x[1]1x[2]°5 + x[2]°6]11)

The Hilbert function of Omega~1_(R/K):

H() =0
H(1) = 3
H(2) =9
H(3) = 18



135

H(4) = 30
H(5) = 44
H(6) = 56
H(7) = 63
H(8) = 66

H(t) = 6t + 22 for t >= 9

A presentation of Omega”2_(R/K):

Omega~2_(R/K) (-2) = CurrentRingEnv~3/Module([[-2x[0]~3x[1] + 6x[0]"2x[1]"2 -
4x[0]1x[1]1°3 - 2x[0]1x[2]1"3 + 2x[1]1x[2]1"3, 3x[0]"2x[2]"2 - +6x[0]x[1]1x[2]"2 +
3x[1]1"2x[2]"2, 0], [-5x[0]1x[1]1"4 + 12x[0]x[1]"3x[2] - 9x[0]lx[1]"2x[2]"2 + 3x[2]°5 +

2x[0]1x[1]1x[2]1°3 + 3x[1]-"2x[2]"°3 - 6x[1]1x[2]"4, 3x[0]x[1]1"4 - 6x[0]x[1]"3x[2]
3x[0]x[1]1"2x[2]"2 + 3x[1]1"3x[2]"2 - 12x[1]1°2x[2]1"3 + 16x[1]1x[2]"4 - 6x[2]"5, 0],
[3x[0]"2x[1]1"2 - 4x[0]x[1]1"3 + x[1]1"4 -2x[0]1x[2]"3 + 2x[1]1x[2]1"3, 0, 3x[0]"2x[2] 2-
6x[0]x[1]1x[2]~2+3x[1]1"2x[2] 2], [x[1]1°5 - 3x[1]"4x[2] + 3x[1]"3x[2]"2-x[1]"2x[2]"3,
0, 3x[01x[1]1°4 - 6x[0]1x[1]1"3x[2] +3x[0]x[1]"2x[2]"2+3x[1]"3x[2]"2 -12x[1]"2x[2]"3 +
16x[11x[2]1°4 - 6x[2]1°5], [0, 3x[0]"2x[1]1"2 - 4x[0]x[1]1"3 + =x[1]1°4 - 2x[0]x[2]"3 +
2x[11x[2] 73, 2x[0]"3x[1] - 6x[0]"2x[1]"2 + 4x[0]1x[1]"3 + 2x[0]x[2]"3 -2x[1]x[2]"3],
[0, x[1]1°5 -3x[1]"4x[2]+3x[1]1"3x[2]"2 -x[1]"2x[2]"3, 5x[0]1x[1]"4- 12x[0]x[1]"3x[2]+

+

9x[0]x[1]1"2x[2]"2 - 2x[0]1x[11x[2]"3 - 3x[1]1°2x[2]"3 + 6x[1]1x[2]"4 - 3x[2]°5],
[x[0]"3x[1]1"2 - 2x[0]"2x[1]"3 + =x[0]x[1]1"4 - =x[0]"2x[2]"3 + 2x[0]x[1]1x[2]"3 -
x[1]1-2x[2]"3, o0, 0], [x[0]x[1]1"5 - 3x[0]x[1]-4x[2] + 3x[0]x[1]"3x[2]"2 -

x[0]x[1]1"2x[2]"3 - x[1]1"3x[2] "3+ 3x[1]"2x[2]"4 - 3x[1]1x[2]°5 + x[2]"6, 0, o],
[0, x[0]"3x[1]"2 - 2x[0]"2x[1]"3 + =x[0]x[1]1"4 - =x[0]"2x[2]°3 + 2x[0]x[1]x[2]"3 -
x[11~2x[2]~3, 0], [0, =x[0Ix[1]1°5 - 3x[0Ix[1]-"4x[2] + 3x[0]x[1]"3x[2]"2 -
x[0]1x[1]1°2x[2]1"3 - x[1]1"3x[2]"3 + 3x[1]"2x[2]"4 - 3x[1]x[2]"5 + x[2]"6, O], [0, O,
x[0]"3x[1]°2- 2x[0]"2x[1]"3+x[0]x[1]"4-x[0] "2x[2] "3+ 2x[0]x[1]1x[2]"3-x[1]"2x[2]"3],
[0, 0, x[0]1x[1]°5-3x[0]1x[1]"4x[2]+3x[0]1x[1]"3x[2]"2-x[0]1x[1]"2x[2]"3-x[1]"3x[2]"3 +
3x[1]172x[2]"4 - 3x[1]1x[2]°6 + x[2]"6]])

The Hilbert function of Omega”2_(R/K):

H(0) =0
H(1) =0
H(2) = 3
H(3) =9
H(4) = 18
H(5) = 30
H(6) = 42
H(7) = 48
H(8) = 45

H(t) = 3t + 22 for t >= 9

A presentation of Omega”3_(R/K):
Omega~3_(R/K) (-3) = CurrentRingEnv~1/Module([[-3x[0]"2x[2]"2 + 6x[0]lx[1]x[2]"2 -
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3x[1]"2x[2]"2], [-3x[0]x[1]1"4 + 6x[0]x[1]"3x[2] - 3x[0]x[1]"2x[2]"2 -3x[1]"3x[2] 2+
12x[1]1°2x[2]1"3 - 15x[11x[2]"4 + 6x[2]°5], [-2x[0]"3x[1] +6x[0]"2x[1]"2-4x[0]x[1]"3-
2x[01x[2] "3 + 2x[1]1x[2]"3], [-5x[0]x[1]1"4 + 12x[0]x[1]"3x[2] - 9x[0]x[1]"2x[2]"2 +
2x[0]1x[1]1x[2]1"3 + 3x[1]1"2x[2]1"3 - 6x[1]1x[2]"4+3x[2]"5], [3x[0]"2x[1]"2-4x[0]x[1]"3+
x[1]1°4 - 2x[0]x[2]°3 + 2x[1]1x[2]1°3], |[x[1]1°5 - 3x[1]°4x[2] + 3x[1]1°3x[2]"2 -
x[1]1"2x[2]°3], [x[0]-3x[1]1"2 - 2x[0]"2x[1]"3 + =x[0]x[1]"4 - x[0]~2x[2]"3 +
2x[0]1x[1]1x[2]1°3 - x[1]1"2x[2]"3], [x[01x[1]1°5 - 3x[01x[1]1"4x[2] + 3x[0]x[1]"3x[2]"2-
x[1173x[2]"3- x[0]x[1]1"2x[2]"3 + 3x[1]1"2x[2]"4 - 3x[1]1x[2]°5 + x[2]1"6]1])

The Hilbert function of Omega”3_(R/K):

H(0) =0
H(1) =0
H(2) =0
H(3) =1
H(4) =3
H(5) = 6
H(6) = 10
H(7) = 12
H(8) =9

H(t) =6 for t >= 9

Example A.1.2. Let X be the set of Q-rational points X = {P,,..., Py} C P? given
by A=(1:0:0),P=(1:0:1),P3=(1:0:2), P, =(1:0:3), Ps,=(1:0:4),
Po=(1:0:5),P=(1:1:0),FP=(1:2:0),and Py = (1:1:1) (see also
Example 3.3.9). To compute a presentation and the Hilbert function of Q% /gy We run

the following commands in ApCoCoA:

Use QQ[x[0..2]1;
PP := [[1,0,0] ) [1,0,1] > [1s032] ) [1’Os3] > [1,0’4] > [1,035] ) [1,1,0] > [1:2301 > [1!131]]’
KaehlerDifferentialModuleAndHF (PP,2) ;

The results of the above commands are the following presentation and the Hilbert
function of Q7 q:

A presentation of Omega~2_(R/K):

Omega~2_(R/K) (-2) = CurrentRingEnv~3/Module([[-x[0]"2 + 3x[0]x[1] -3/2x[1]1"2, 0, O],
[-x[0]x[2]+ x[2]"2, -x[0]x[1]+2x[1]x[2], O], [-2x[11x[2] +x[2]"2, -x[1]"2+2x[1]1x[2],
0], [0, -x[0]°5+ 137/30x[0]"4x[2]-45/8x[0]"3x[2]"2+ 17/6x[0]"2x[2]"3- 5/8x[0]x[2] 4+
1/20x[2]°5, 0], [2x[0]x[1] - 3/2x[1]1"2, O, O], [x[11x[2], O, -x[0lx[1] + 2x[1]1x[2]],
[0, 0, —x[1]"2 + 2x[11x[2]1]1, [5x[0]-4x[2] - 137/15x[0]1"3x[2]"2 + 45/8x[0]"2x[2]"3 -

17/12x[0]1x[2]"4 + 1/8x[2]°5, O, -x[0]"5 + 137/30x[0]"4x[2] - 45/8x[0]"3x[2]"2 +

17/6x[0]1"2x[2]1"3 - 5/8x[0]1x[2]1"4 + 1/20x[2]°5], [0, 2x[0]x[1] - 3/2x[1]1"2, x[0]"2 -

3x[0]x[1] + 3/2x[1]"°2], [0, x[1]lx[2], x[0]x[2] - x[2]"2], [0, O, 2x[1]x[2] -x[2]"2],
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[0, 5x[0]"4x[2]-137/15x[0] "3x[2]"2 + 45/8x[0]"2x[2]"3-17/12x[0]x[2] ~4+1/8x[2]"5, 0],
[x[0]"2x[1] - 3/2x[0]x[1]"2 + 1/2x[1]1°3, 0, 0], [x[0lx[1]1x[2] - x[1]1x[2]1"2, O, O],
[x[1]-2x[2] - x[1]x[2]"2, O, 0], [x[0]"5x[2] - 137/60x[0] 4x[2]"2+15/8x[0]"3x[2]"3-
17/24x[0]~2x[2]"4 + 1/8x[0]x[2]"5-1/120x[2]"6, O, 0], [0, x[0]"2x[1]1-3/2x[0]x[1]"2+
1/2x[1]1°3, 0], [0, x[0]x[1]1x[2] - x[11x[2]"2, O], [0, x[1]-2x[2] - =x[1]x[2]"2, O],
[0, x[0]"5x[2]-137/60x[0] ~4x[2] ~2+15/8x[0] "3x[2] ~3-17/24x[0] "2x[2] ~"4+1/8x[0]x[2] "5~
1/120x[2]1°6, 0], [0, O, x[0]"2x[1] - 3/2x[0]x[1]"2+1/2x[1]1"3], [0, O, x[0]x[1]x[2]-
x[1]1x[2]~2], [0, O, x[1]"2x[2] - x[1]x[2]"2], [0, O, x[0]"56x[2]-137/60x[0]"4x[2] "2+
16/8x[0]"3x[2]"3 - 17/24x[0]"2x[2]"4 + 1/8x[0]x[2]"5 - 1/120x[2]"6]1])

The Hilbert function of Omega”2_(R/K):

H(O) =0

H(1) =
H(2) =
H(3) =
H(4) =
H(5) =
H(6) =
H(7) =
H(8) =
H(9) =
H(10) =1

H(t) = 0 for t >= 11

N W O O © W O

A.2 Computing the Kahler Differential Module QE}( and Its
Hilbert Function

—-- KaehlerDifferentialModuleN1AndHF (IP): Compute the module \Omega“{n+1}(R/K) of
- R/K and its Hilbert function

-— Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

Define KaehlerDifferentialModuleN1AndHF (IP);
If Type(IP) = IDEAL Then I := GBasis(IP);
Else I := GBasis(IdealOfProjectivePoints(IP));
EndIf;
N := Len(Indets());
S ::= CoeffRing[x[1..N]], DegRevlex;
Using S Do
M := Len(I)*N; A := NewList(M,0); H := 0;
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For K := 1 To Len(I) Do
For J := 1 To N Do
A[H+J] := Der(I[K],x[J]1);

EndFor;

H := NxK;
EndFor;
D := Concat(I,A);

EndUsing;

LI1 := Indets(); F := RMap(LI1);

NewD := Image(D,F);

LO1:= CurrentRing()/Minimalized(Ideal(NewD)) ;

L02 := Hilbert(L01);

L03 := RegularityIndex(L02);
L04 := HilbertPoly(LO01);

L0O5 := NewList(LO3+N+1,0);

Println "A presentation of Omega™",N, "_(R/K):";
PrintLln "Omega™",N, "_(R/K)(-",N,") = ",L01;
For J := N+1 To Len(L05) Do

LO5[J] := LO5[J]+ EvalHilbertFn(L02,J-N-1);
EndFor;
PrintLn "The Hilbert function of Omega”",N, "_(R/K):";
For J := 1 To Len(L05)-1 Do

PrintLn "H(",J-1,") = ",L0O5[J]
EndFor;
Using QQt Do

Print "H(t) = ", LO4, " for t >= ", Len(L05)-1
EndUsing;

EndDefine;

Example A.2.1. Let R/Q be the algebra given in Example 3.2.18. We compute a
presentation and the Hilbert function of Q%J/ré by running the following commands in

ApCoCoA:

Use QQ[x[0..3]1;

I1 := Ideal(x[1], x[2], x[3]1)°5;

I2 := Ideal(x[1]-x[0], x[2], x[3]);
I3 := Ideal(x[1], x[2]-x[0], x[31)74;
I4 := Ideal(x[1],x[2],x[3]1-x[0])"4;
IP := Intersection(I1,I2,I3,I4);

KaehlerDifferentialModuleN1AndHF (IP) ;

The results of these commands are the following presentation and Hilbert function

4 .
of QR/Q.
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A presentation of Omega”4_(R/K):

Omega~4_(R/K) (-4) = CurrentRingEnv/Ideal(x[1]"3x[2], =x[1]"3x[3], 3x[1]1-2x[2]1x[3],
x[1]1°4, =x[0]x[1]1"2x[3]"2 - =x[1]1°2x[3]1°3, 2x[0]1x[1]1x[2]x[3]"2 - 2x[1]1x[2]x[3]"3,
x[0]x[1]"2x[2]"2 - x[1]-2x[2]"3, 2x [0]x[1]1x[2]"2x[3] - 2x[1]x[2]"3x[3],
2x[11x[2]"2x[3]"2, =x[0]x[2]"2x[3]"2 - x[2]"3x[3]"2 - x[2]"2x[3]"3, - 2x[2]"3x[3]"3,
2x[0]"2x[2]1x[3]1°3 - 4x[01x[2]1x[3]1"4 + 2x[2]x[3]1°5, =x[0]1"2x[1]1x[3]1"3 + x[11x[3]"5 -
2x[0]1x[11x[3]°4, 2x[0]"2x[2]"3x[3]- 4x[0]x[2]"4x[3] +2x[2]"5x[3], x[0]"2x[1]x[2]"3-
2x[0]x[1]1x[2]"4 + x[1]x[2]"5, =x[0]"3x[2]"4 - 3x[0]"2x[2]"5 + 3x[0]x[2]"6 - x[2]"7,
x[0]"3x[3]°4 - 3x[0]"2x[3]°5 + 3x[0]x[3]°6 - x[3]1°7)

The Hilbert function of Omega”4_(R/K):

H(0) =0
H(1) =0
H(2) =0
H(3) =0
H(4) =1
H(B) = 4
H(6) = 10
H(7) = 20
H(8) = 31
H(9) = 38

H(t) = 40 for t >= 10

A.3 Computing the Kahler Differential Module Q%/ %
Hilbert Function

] and Its

[zo

-- KaehlerDiffModuleRelAndHF (IP,M): Compute the Kaehler differential module of
- the algebra R/K[x_0] and its Hilbert function

—-— Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

- M = the number of form of Kaehler differential module \Omega M(R/K[x_0])
—-— Output: A presentation and the Hilbert function of \Omega"M(R/K[x_0])
Define KaehlerDiffModuleRelAndHF (IP,M);

If Type(IP) = IDEAL Then I := GBasis(IP);

Else I := GBasis(IdealOfProjectivePoints(IP));

EndIf;

N := Len(Indets());

S ::= CoeffRing[x[1..N],y[1..(N-1)]], DegRevlLex;

Using S Do

-- Form bases V1, V2 of \Omega~(M-1) (P/K[x_0]), \Omega"M(P/K[x_0])
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S1 := Subsets(1..(N-1),M-1); V1 := NewList(Len(S1),0);
For I1 := 1 To Len(S1) Do
V1[I1] := Product([y[S1[I11[J1]1 | J In 1..(M-1)1);
EndFor;
S2 := Subsets(1..(N-1),M); V2 := NewList(Len(S2),0);
For I2 := 1 To Len(S2) Do
V2[I2] := Product([y[S2[I21[J1] | J In 1..M 1);
EndFor;
-- Compute B2 = dI.\Omega~(M-1) (P/K[x_0])
H:=NewList (Len(V1)*Len(I),0); Q := 1;
LI1 := Indets(); LI2 := First(LI1, N); F1 := RMap(LI2);
NewIl := Image(Ideal(I),F1);
Newl := GBasis(NewIl);
For W := 1 To Len(V1) Do
C := Log(V1[W]);
For K := 1 To Len(I) Do
For J:=2 To N Do
If Der(NewI[K],x[J]) <> O Then
If GCD(V1[W],y[J-1]1) <> y[J-1] Then
D := N; D1 := 0;
Repeat D := D+1;
If C[D] <> 0 Then D1 := Di1+1; EndIf;
Until D = N+J-1;
HIQ] := H[QI+(-1)"(D1)*Der (NewI[K],x[J]1)*y[J-1]1*V1[W];
EndIf;
EndIf;
EndFor;
Q := Q+1;
EndFor;
EndFor;
B2 := [1;
For J := 1 To Len(H) Do
If H[J] <> O Then B2 := Concat(B2, [H[J]]);EndIf;
EndFor;
-- Compute B3 = I.\Omega"M(P/K[x_0])
B3 := NewList(Len(V2)*Len(NewI));
Q :=1;
For W := 1 To Len(V2) Do
For J := 1 To Len(NewI) Do
B3[Q] := NewI[JIV2[W];
Q := Q+1;
EndFor;
EndFor;
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-- Compute MM = B2+B3 in P~ (C"M_{N-1}) and return the result
D := List(Identity(Len(V2)));
NewList (Len(B3),0D[1]);
NewList(Len(B2),0D[1]);
For J := 1 To Len(B3) Do
X := Monomials(B3[J]);
For Y := 1 To Len(X) Do
For K := 1 To Len(V2) Do
If GCD(X[Y],V2[K]) = V2[K] Then H[J] := H[J]1+(X[Y]/V2[K])=*D[K];
EndIf;
EndFor;
EndFor;
EndFor;
For J := 1 To Len(B2) Do
X := Monomials(B2[J]);
For Y := 1 To Len(X) Do
For K := 1 To Len(V2) Do
If GCD(X[Y],V2[K]) = V2[K] Then G[J] := G[J]1+(X[Y]/V2[K])=*D[K];
EndIf;
EndFor;
EndFor;
EndFor;
MM:=Concat (G,H) ;
EndUsing;
L5 := Indets();
L6 := ConcatLists([L5, [1 | J In 1..(N-1)11);
F := RMap(L6);
NewM := Image(MM,F); -- Image of MM in R=K[x_1,...,X-n]
K1 := Len(NewM[1]);

Q m
[

L0l := CurrentRing() “K1/Module (NewM) ;
L02 := Hilbert(L01);

L03 := RegularityIndex(L02);

L04 := HilbertPoly(LO1);

L0O5 := NewList(LO3+M+1,0);

PrintLln "A presentation of Omega™",M, "_(R/K[x_0]):";
PrintLn "Omega™",M, "_(R/K[x_01)(-",M,") = ",LO01;
For J :=M+1 To Len(L05) Do
LO5[J] := LO5[J]+ EvalHilbertFn(L02,J-M-1);
EndFor;
PrintLn "The Hilbert function of Omega”",M, "_(R/K[x_0]):";
For J:=1 To Len(L05)-1 Do
PrintLn "H(",J-1,") = ",L05[J]
EndFor;
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Using QQt Do
Print "H(t) = ", LO4, " for t >= ", Len(L05)-1
EndUsing;
EndDefine;

Example A.3.1. Let us go back to Example A.1.2 and compute a presentation and

the Hilbert function of the Kéahler differential module Q}Q/@[IO] for the set X, where

m = 1,2. We run the following commands in ApCoCoA:

Use QQ[x[0..2]11;
PP:=[[1,0,0],[1,0,1],[1,0,2],[1,0,3],[1,0,41,[1,0,51,[1,1,01,[1,2,01,[1,1,111;
KaehlerDiffModuleRelAndHF (PP,1);

KaehlerDiffModuleRelAndHF (PP,2) ;

The output of these commands is as follows:

A presentation of Omega”1_(R/K[x_0]):

Omega~1_(R/K[x_0]) (-1) = CurrentRingEnv~2/Module([[x[0]"2 - 3x[0]x[1]+3/2x[1]"2, 0],
[x[0]x[2] - x[2]"2, x[0]x[1] - 2x[11x[2]], [2x[1]x[2] - x[2]"2, x[1]1"2 - 2x[1]1x[2]],
[0, x[0]"5 - 137/30x[0]"4x[2] + 45/8x[0]"3x[2]"2 - 17/6x[0]"2x[2]"3 + 5/8x[0]x[2]"4-
1/20x[2]°5], [x[0]-2x[1] - 3/2x[0]x[1]1"2 + 1/2x[1]1"3, 0], [x[0]x[1]lx[2] -x[11x[2]"2,
0], [x[1]1-2x[2] - x[1]x[2]"2, 0], [x[0]"5x[2] - 137/60x[0]~4x[2]~2+15/8x[0] ~3x[2]"3-
17/24x[0]~2x[2]"4 + 1/8x[0]1x[2]"°5 - 1/120x[2]°6, 0], [0, x[0]-2x[1] - 3/2x[0lx[1]-2+
1/2x[1]1°3], [0, x[0]x[1]x[2]-x[1]1x[2]"2], [0, x[1]"2x[2]-x[1]x[2]"2], [0,x[0]"5x[2]-
137/60x[0]"4x[2] "2 + 15/8x[0]"3x[2]~3-17/24x[0] "2x[2] ~4+1/8x[0]1x[2] "5-1/120x[2]"6]1])
The Hilbert function of Omega”1_(R/K[x_0]):

H(0) =0

H(1) =
H(2) =
H(3) =
H(4) =
H(5) =
H(6) =
H(7) =
H(8) =
H(9) =
H(10) =1

H(t) = 0 for t >= 11

N W OO O N

A presentation of Omega”2_(R/K[x_0]):

Omega~2_(R/K[x_0]) (-2)=CurrentRingEnv~1/Module ([ [-x[0]x[1] + 2x[1]1x[2]], [-x[1]1"2 +
2x[11x[2]1]1, [-x[0]"5 + 137/30x[0]"4x[2] - 45/8x[0]"3x[2]"2-5/8x[0]1x[2] "4+ 1/20x[2]"5
+ 17/6x[01°2x[2]173]1, [x[0]1"2 - 3x[0lx[11+3/2x[11"2], [x[0lx[2]1-x[2]1"2], [2x[1]1x[2] -
x[2]"2], [(x[0]-2x[1] - 3/2x[0]lx[1]-2 + 1/2x[1]1°3], [x[0lx[1]lx[2] - x[1]1x[2]"2],
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[x[11"2x[2] - x[11x[2]1"2], ([x[0]"bx[2] - 137/60x[0]"4x[2]"2 + 15/8x[0]"3x[2]"3 -
17/24x[0]"2x[2]"4 + 1/8x[0]x[2]"5 - 1/120x[2]"6]1])
The Hilbert function of Omega”2_(R/K[x_0]):

H(0) =0
H(1) =0
H(2) =1
H(3) =3
H(4) =1
H(t) =0 fort >=5

A.4 Computing the Kahler differential Module Q?}%/(zo))/f( and
Its Hilbert Function

-- KaehlerDiffModuleBarAndHF (IP,M): Compute the Kaehler differential
- module of the algebra (R/(x_0))/K and its Hilbert function

-— Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

- M = the number of form of Kaehler differential module
-- \Omega"M((R/(x_0))/K)
—-— Output: A presentation and the Hilbert function of \Omega"M((R/(x_0))/K)
Define KaehlerDiffModuleBarAndHF (IP,M);
If Type(IP) = IDEAL Then I := GBasis(IP);
Else I := GBasis(IdealOfProjectivePoints(IP));
EndIf;
N := Len(Indets());
S ::= CoeffRing[x[1..N],y[1..(N-1)]], DegRevlex;
Using S Do
-- Form bases V1, V2 of \Omega~(M-1) (P/K[x_0]), \Omega"M(P/K[x_0])
S1 := Subsets(1..(N-1),M-1); V1 := NewList(Len(S1),0);
For I1 := 1 To Len(S1) Do
V1[I1] := Product([y[S1[I11[J1]1 | J In 1..(M-1)1);
EndFor;
S2 := Subsets(1..(N-1),M); V2 := NewList(Len(S2),0);
For I2 := 1 To Len(S82) Do
V2[I2] := Product([y[S2[I2]1[J]] | J In 1..M 1);
EndFor;
-- Compute B2 = dI.\Omega~(M-1)(P/K[x_0]);
H := NewList(Len(V1)#*Len(I),0); Q := 1;
LI1 := Indets(); LI2 := First(LI1, N); F1 := RMap(LI2);
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NewIl := Image(Ideal(I),F1);
NewI := GBasis(NewIl);
For W := 1 To Len(V1) Do
C := Log(V1[W]);
For K := 1 To Len(I) Do
For J := 2 To N Do
If Der(NewI[K],x[J]) <> O Then
If GCD(V1[W],y[J-1]1) <> y[J-1] Then
D :=N; D1 := 0;
Repeat D := D+1;
If C[D] <> 0 Then D1 := D1+1; EndIf;
Until D = N+J-1;
H[Q] := HIQI+(-1)~(D1)*Der (NewI[K],x[J])*y[J-11*V1[W];
EndIf;
EndIf;
EndFor;
Q:=Q+1;
EndFor;
EndFor;
B2 := [];
For J := 1 To Len(H) Do
If H[J] <> 0 Then B2 := Concat(B2, [H[J]]); EndIf;
EndFor;
-- Compute B3 = I.\Omega M(P/K[x_0]);
B3 := NewList(Len(V2)*Len(NewI));
Q :=1;
For W := 1 To Len(V2) Do
For J := 1 To Len(NewI) Do
B3[Q] := NewI[J]V2[W];
Q := Q+1;
EndFor;
EndFor;
-- Compute MM = B2+B3 in P~ (C"M_{N-1}) and return the result
D := List(Identity(Len(V2)));

H := NewList(Len(B3),0D[1]);
G := NewList(Len(B2),0D[1]);
For J := 1 To Len(B3) Do

X := Monomials(B3[J]);
For Y := 1 To Len(X) Do
For K := 1 To Len(V2) Do
If GCD(X[Y],V2[K]) = V2[K] Then H[J] := H[J]1+(X[Y]/V2[K])*D[K];
EndIf;
EndFor;
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EndFor;
EndFor;
For J := 1 To Len(B2) Do
X := Monomials(B2[J]);
For Y := 1 To Len(X) Do
For K := 1 To Len(V2) Do
If GCD(X[Y],V2([K]) = V2[K] Then G[J] := G[J1+(X[Y]/V2[K])*DI[K];
EndIf;
EndFor;
EndFor;
EndFor;
MM := Concat(G,H);
EndUsing;
L5 := Indets();
L6 := ConcatLists([L5, [1 | J In 1..(N-1)]11);
F := RMap(L6);
NewM := Image(MM,F); -- Image of MM in R=K[x_1,...,X-n]
K1 := Len(NewM[1]); X0 := Ideal(x[0]);

MT1 := XO*CurrentRing() "K1 + Module (NewlM) ;
LO1 := CurrentRing() "K1/Minimalized(MT1);
L02 := Hilbert(L01);

L03 := RegularityIndex(L02);

L04 := HilbertPoly(LO1);

L0O5 := NewList(L0O3+M+1,0);

PrintLln "A presentation of Omega™",M, "_((R/(x_0)/K):";
PrintLn "Omega“",M, "_((R/(x_0)/K)(-",M,") = ",LO1;
For J := M+1 To Len(L05) Do
LO5[J] := LO5[J]+ EvalHilbertFn(L02,J-M-1);
EndFor;
PrintLn "The Hilbert function of Omega™",M, "_((R/(x_0))/K):";
For J := 1 To Len(L05)-1 Do
PrintLn "H(",J-1,") = ",L05[J]
EndFor;
Using QQt Do
Print "H(t) =", L04, " for t >= ", Len(L05)-1
EndUsing;
EndDefine;

Example A.4.1. Let X be the set of Q-rational points X = { Py, ..., Ps} C P? given by
P=(1:0:1),P,=(1:0:-1),P3s=(3:4:5),P,=(3:—-4:5),P5=(3:—-4:-5),
and Ps = (3:4:—5), and let m = 1,2. We apply KaehlerDiffModuleBarAndHF(. . .)
to compute a presentation and the Hilbert function of Qv g of (B/(20))/Q as
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follows. We run the following commands in ApCoCoA:

Use QQ[x[0..2]1];

PP :=[[1,0,1],[1,0,-1],[3,4,5],(3,-4,5],[3,-4,-5],[3,4,-51];
KaehlerDiffModuleBarAndHF (PP,1);
KaehlerDiffModuleBarAndHF (PP,2) ;

The output of these commands is as follows:

A presentation of Omega~1_((R/(x_0)/K):

Omega~1_((R/(x_0)/K) (-1) = CurrentRingEnv~2/Module([[2x[1], -2x[2]], [0, x[0]1],
[x[0], 0], [0, x[1]1"2 - x[2]1"2], [-x[2]1-2, x[11x[2]1]1, [27/25x[2]"2, 0]1)

The Hilbert function of Omega~1_((R/(x_0))/K):

H(O) =0
H(1) =2
H(2) = 3
H(3) =1
H(t) =0 for t >= 4

A presentation of Omega~2_((R/(x_0)/K):
Omega~2_((R/(x_0)/K) (-2) = CurrentRingEnv~1/Module([[2x[1]1], [2x[2]], [x[0]111)
The Hilbert function of Omega~2_((R/(x_0))/K):

H(O) =0
H(1) =0
H(2) =1
H(t) =0 for t >= 3
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