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Chapter 1
Introduction

“Kähler’s concept of a differential module of a ring
had a great impact on commutative algebra and algebraic geometry”

(Rolf Berndt)
“like the differentials of analysis,

differential modules “linearize” problems,
i.e. reduce questions about algebras (non-linear problems)

to questions of linear algebra”
(Ernst Kunz)

1.1 Motivation and Overview

The description ”Kähler differentials” was used in the mathematical literature for the

first time in Zariski’s note in 1966 [Za]. However, the concept of ”the universal module

of differentials” was introduced by Kähler, who used differentials to study inseparable

field extensions [Ka1], [Ka2]. Some of the many applications of Kähler differentials in

algebraic geometry and commutative algebra were contributed by E. Kunz, R. Waldi,

L. G. Roberts, and J. Johnson (see [Kun], [KW1], [KW2], [Joh1], [Joh2], [Rob1], [Rob2]

and [Rob3]). In [C], Cartier gave a different approach to the universal module of

differentials: Let Ro be a ring, and let R/Ro be an algebra. By J we denote the kernel

of the canonical multiplication map µ : R ⊗Ro R → R given by r1 ⊗ r2 7→ r1r2. Then

the module of Kähler differential 1-forms of R/Ro is the R-module Ω1
R/Ro

= J/J2. The

Kähler differential algebra ΩR/Ro of R/Ro is the exterior algebra of Ω1
R/Ro

. Let K be

a field of characteristic zero. When Ro is a standard graded K-algebra and R/Ro is a

graded algebra, the Kähler differential algebra ΩR/Ro =
⊕

m∈N
∧m
R (Ω1

R/Ro
) is a bigraded

R-algebra. The Hilbert function of ΩR/Ro , defined by HFΩR/Ro
(m, i) = HFΩm

R/Ro
(i) =

dimK(Ωm
R/Ro

)i, is a basic and interesting invariant for many questions about the Kähler

differential algebra.
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For some special classes of graded algebras R/Ro, one can describe the Hilbert

function of the graded R-modules Ωm
R/Ro

explicitly. For instance, let F be a product of

s linear factors in the standard graded polynomial rings of two variables S = K[X, Y ],

and let R = S/〈F 〉S. By taking the derivative of F , the Hilbert functions of Ω1
R/K

and Ω2
R/K are all found (see [Rob1, Section 4]). Moreover, in this case we see that the

ideal 〈F 〉S is the homogeneous vanishing ideal of a set of s distinct K-rational points

in the projective line P1.

In 1999, G. Dominicis and M. Kreuzer generalized this result by giving a concrete

formula for the Hilbert function of the module of Kähler differential 1-forms for a

reduced 0-dimensional complete intersection X in the projective n-space Pn. More

precisely, they showed that if the homogeneous vanishing ideal IX of X is generated

by n homogeneous polynomials in S = K[X0, . . . , Xn] of degrees d1, . . . , dn and if

RX = S/IX is the homogeneous coordinate ring of X then the Hilbert function of Ω1
RX/K

satisfies HFΩ1
RX/K

(i) = (n + 1) HFX(i − 1) −
∑n

j=1 HFX(i − dj) for all i ∈ Z (see [DK,

Proposition 4.3]). The proof of this formula is based on the construction of an exact

sequence of graded RX-modules

0 −→ I2X/I2
X −→ IX/I2

X −→ Rn+1
X (−1) −→ Ω1

RX/K
−→ 0 (1.1)

(see [DK, Proposition 3.9]). This exact sequence establishes a connection between

the module of Kähler differential 1-forms Ω1
RX/K

for X and the Hilbert function of the

double point scheme 2X in Pn.

Double point schemes is a particular class of fat point schemes: Let X = {P1, ..., Ps},
and let ℘i be the associate prime ideal of Pi in S. For a sequence of positive integers

m1, ...,ms, the scheme W, defined by the saturated ideal IW = ℘m1
1 ∩· · ·∩℘mss , is called

a fat point scheme in Pn. If m1 = · · · = ms = ν then W is called an equimultiple fat

point scheme and we denoteW by νX. The structure of the Kähler differential algebras

for fat point schemes, and in general for 0-dimensional schemes in Pn has received little

attention so far. The aim of this thesis is to investigate Kähler differential algebras

and their Hilbert functions for 0-dimensional schemes in Pn.

There are many reasons to study this topic. First, although the Hilbert functions

of the homogeneous coordinate rings of 0-dimensional schemes in Pn provide us infor-

mation about the geometry of those schemes, we believe that the Hilbert functions of

their Kähler differential algebras contain even more information about the geometry

of these schemes. Second, the exact sequence (1.1) mentioned above inspires us to

find a connection between the Kähler differential algebra of a fat point scheme and

other fat point schemes in Pn. This gives us a tool to study fat point schemes via
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their Kähler differential algebras. Third, the study of the Kähler differential algebras

for 0-dimensional schemes in Pn provides a number of concrete examples of Kähler

differential algebras to which computer algebra methods can be applied.

Now we give an overview of the thesis and mention our main contributions. The

thesis is divided into five chapters and one appendix. The first chapter is this intro-

duction.

In Chapter 2 we define some basic concepts, introduce notation and recall results

that will be used in the rest of the thesis. Most of these results are well known.

An original contribution is the following upper bound for the regularity index of a

submodule of a free RX-module, where RX is the homogeneous coordinate ring of a

0-dimensional scheme X ⊆ Pn.

Proposition 2.4.10. Let X be a 0-dimensional scheme in Pn, and let rX be the reg-

ularity index of HFX. Let V be a graded RX-module generated by the set of homoge-

neous elements {v1, . . . , vd} for some d ≥ 1, let δj = deg(vj) for j = 1, . . . , d, and let

m ≥ 1. Assume that δ1 ≤ · · · ≤ δd. Then the regularity index of
∧m
RX

(V ) satisfies:

ri(
∧m
RX

(V )) = −∞ for m > d, and for 1 ≤ m ≤ d we have

ri(
∧m
RX

(V )) ≤ max
{
rX + δ + δd − δd−m+1, ri(V ) + δ − δd−m+1

}
,

where δ = δd−m+1 + · · · + δd. In particular, if 1 ≤ m ≤ d and δ1 = · · · = δd = t then

we have ri(
∧m
RX

(V )) ≤ max{ rX +mt, ri(V ) + (m− 1)t }.

This proposition can be applied to get upper bounds for the regularity indices of

the module of Kähler differential m-forms Ωm
RX/Ro

, where Ro is either K or K[x0], which

will be presented in the later chapters.

In Chapter 3 we study the Kähler differential algebras of finitely generated graded

algebras R/Ro and apply them to investigate 0-dimensional schemes in Pn. One of the

main tools for studying the Kähler differential algebra of R/Ro is its Hilbert function,

which plays a fundamental role throughout this chapter. Let Ro be a N-graded ring,

let S be a standard graded polynomial ring over Ro, let I be a homogeneous ideal

of S, and let R = S/I. We denote by dS/Ro the universal derivation of the graded

algebra S/Ro. The universal property of the module of Kähler differential 1-forms

Ω1
R/Ro

implies the presentation Ω1
R/Ro

= Ω1
S/Ro

/〈dS/RoI + IΩ1
S/Ro
〉S. Based on this

presentation, we establish an algorithm for computing Ω1
R/Ro

and its Hilbert function

(see Proposition 3.1.9). Moreover, for m ≥ 1, we use the universal property of the

m-th exterior power to get a presentation of the module of Kähler differential m-forms

Ωm
R/Ro

= Ωm
S/Ro

/(〈dS/RoI〉S ∧S Ωm−1
S/Ro

+ IΩm
S/Ro

) (see Proposition 3.2.11). Using this
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presentation, we also write a procedure for the computation of a presentation of Ωm
R/Ro

and its Hilbert function (see Proposition 3.2.14).

Next, we look at the Kähler differential algebra of a 0-dimensional scheme X in Pn.

We always assume that Supp(X)∩Z+(X0) = ∅ and we let x0 be the image of X0 in the

homogeneous coordinate ring RX = S/IX of X. We see that x0 is a non-zero divisor

of RX and RX is a graded free K[x0]-algebra. Let RX = RX/〈x0〉, and let m ≥ 1. Then

we have the following relations between the modules of Kähler differential m-forms

Ωm
RX/K

,Ωm
RX/K[x0], and Ωm

RX/K
.

Proposition 3.3.3. Let m ≥ 1. There is an exact sequence of graded RX-modules

0 −→ RXdx0 ∧RX Ωm−1
RX/K

−→ Ωm
RX/K

−→ Ωm
RX/K[x0] −→ 0.

Moreover, the module Ωm
RX/K

has the presentation Ωm
RX/K

= Ωm
RX/K[x0]/〈x0〉Ωm

RX/K[x0].

From this proposition we derive some consequences for the Hilbert functions and

the regularity indices of the modules of Kähler differential m-forms for the scheme X.

In particular, in some special degrees, we can predict the Hilbert functions of Ωm
RX/K

and Ωm
RX/K[x0].

Proposition 3.3.8. Let X ⊆ PnK be a 0-dimensional scheme, and let αX be the initial

degree of IX, i.e. let αX = min{i ∈ N | (IX)i 6= 0}.

(i) For i < m, we have HFΩm
RX/K

(i) = HFΩm
RX/K[x0]

(i) = 0.

(ii) For m ≤ i < αX+m−1, we have HFΩm
RX/K

(i)=
(
n+1
m

)
·
(
n+i−m

n

)
and HFΩm

RX/K[x0]
(i)=(

n
m

)
·
(
n+i−m

n

)
.

(iii) The Hilbert polynomials of Ωm
RX/K

and Ωm
RX/K[x0] are constant polynomials.

(iv) Let Ro denote either K or K[x0]. We have HFΩm
RX/Ro

(rX + m) ≥ HFΩm
RX/Ro

(rX +

m+ 1) ≥ · · · , and if ri(Ωm
RX/Ro

) ≥ rX +m then

HFΩm
RX/Ro

(rX +m) > HFΩm
RX/Ro

(rX +m+ 1) > · · · > HFΩm
RX/Ro

(ri(Ωm
RX/Ro

)).

Furthermore, by applying the inequaltity ri(Ω1
RX/K[x0]) ≤ max{ri(Ω1

RX/K
), rX + 1}

and Proposition 2.4.10, we get the following sharp upper bound for the regularity index

of the module of Kähler differential m-forms Ωm
RX/Ro

(see Proposition 3.3.11):

ri(Ωm
RX/Ro

) ≤ max{ rX +m, ri(Ω1
RX/K

) +m− 1 }.

Next we consider the application of the Kähler differential algebras to prove geomet-

ric results for a special class of 0-dimensional schemes in Pn. Let X = {P1, ..., Ps} ⊆ Pn
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be a set of s distinct K-rational points in Pn, and let %X denote the dimension of

the linear span of X plus 1 (see Section 3.4). We show that %X = m if and only if

Ωm
RX/K

6= 〈0〉 and Ωm+1
RX/K

= 〈0〉 (see Proposition 3.4.7). Moreover, if n = 2 then the

Hilbert function of the module of Kähler differential 3-forms reflects some geometrical

properties of X as the next result shows.

Corollary 3.4.20. Let s ≥ 5, and let X = {P1, ..., Ps} ⊆ P2 be a set of s distinct

K-rational points.

(i) If HFΩ3
RX/K

(3) = 1 and HFΩ3
RX/K

(4) = 1, then X lies on two different lines and

no s− 1 points of X lie on a line.

(ii) Suppose that HFΩ3
RX/K

(3) = 1 and HFΩ3
RX/K

(i) = 0 for i 6= 3. If ∆ HFX(2) = 1,

then X contains s− 1 points on a line. Else, X lies on a non-singular conic.

In Chapter 4 we examine Kähler differential algebras for fat point schemes in Pn.

In the last fifty years, fat point schemes in Pn have been extensively studied by many

authors (see for instance [BGT], [BFL], [Ca], [CTV], [DG], [DSG], [GMT], [GT], [Th1],

[Th2], [TT]). However, as far as we know, these papers do not use the Kähler differential

algebra to study fat point schemes in Pn. This motivates us to use Kähler differential

algebras as a new tool to study fat point schemes. To start the chapter, we collect

some facts about a fat point scheme W = m1P1 + · · ·+msPs in Pn in Section 4.1. The

first main result of this chapter is a generalization of the exact sequence (1.1) which

has the following form.

Theorem 4.2.1. Consider the two fat point schemes W = m1P1 + · · · + msPs and

V = (m1 + 1)P1 + · · ·+ (ms + 1)Ps in Pn. Then the sequence of graded RW-modules

0 −→ IW/IV −→ Rn+1
W (−1) −→ Ω1

RW/K
−→ 0

is exact.

This theorem shows that one can compute the Hilbert functions of the modules of

Kähler differential 1-forms of RW/K from the Hilbert functions of W and V. Further-

more, this result can be applied to determine the Hilbert polynomials of these modules

and to give a bound for the regularity indices of Ω1
RW/K

(see Corollary 4.2.3). By the

short exact sequence of graded RW-modules

0 −→ RWdx0 ↪−→ Ω1
RW/K

β−→ Ω1
RW/K[x0] −→ 0
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(see Proposition 3.3.1) we get similar properties of the Hilbert function and the Hilbert

polynomial of Ω1
RW/K[x0]. The Hilbert polynomial of Ω1

RW/K[x0] provides a condition for

W to be a reduced scheme (see Corollary 4.2.4). Using [CTV, Theorem 6], we also

bound the regularity indices of Ω1
RW/K

and Ω1
RW/K[x0] if the support of W is in general

position (see Corollary 4.2.10).

Next we investigate the modules of Kähler differential m-forms of fat point schemes.

It is not easy to determine the Hilbert polynomials of these modules in general. Fortu-

nately, we can give bounds for these invariants (see Proposition 4.3.1). Also, we prove

the following sharp upper bounds for the regularity indices of Ωm
RW/K

and Ωm
RW/K[x0].

Proposition 4.3.4. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points, and let W = m1P1 + · · ·+msPs, and let V = (m1 + 1)P1 + · · ·+ (ms + 1)Ps.

(i) For all 1 ≤ m ≤ n we have

max{ri(Ωm
RW/K

), ri(Ωm
RW/K[x0])} ≤ max{rW +m, rV +m− 1}.

(ii) We have ri(Ωn+1
RW/K

) ≤ max{rW + n, rV + n− 1}.

In particular, if m1 ≤ · · · ≤ ms and if X is in general position, then for 1 ≤ m ≤ n we

have

max{ri(Ωm
RW/K

), ri(Ωm
RW/K[x0])} ≤ max{ms +ms−1 +m, b

∑s
j=1mj+s+n−2

n
c+m− 1}

and ri(Ωn+1
RW/K

) ≤ max{ms +ms−1 + n, b
∑s
j=1mj+s+n−2

n
c+ n− 1}.

When W = νX is an equimultiple fat point scheme, we get further properties and

insights. First of all, we show that the Hilbert polynomial of Ωn+1
RW/K

is determined

by HPΩn+1
RνX/K

(z) = HP(ν−1)X(z) = s
(
ν+n−2
n

)
, where s = #X (see Proposition 4.3.11).

Second, we establish relations between the module of Kähler differential 2-forms Ω2
RνX/K

and other fat point schemes via the complex of K-vector spaces

0 −→ (I(ν+1)X/I(ν+2)X)i
α−→ (IνXΩ1

S/K/I(ν+1)XΩ1
S/K)i

β−→ (Ω2
S/K/IνXΩ2

S/K)i
γ−→ (Ω2

RνX/K
)i −→ 0

(see Proposition 4.3.14). When X is a set of s distinct K-rational points in P2, this

complex is exact for i � 0 (see Corollary 4.3.16). Using these relations, the Hilbert

polynomial of Ω2
RνX/K

is HPΩ2
RνX/K

(z) = 1
2
(3ν2 − ν − 2)s (see Corollary 4.3.17).

If the support X ⊆ Pn is a complete intersection, then we have IνX = IνX [ZS,

Appendix 6, Lemma 5]. Hence, using some results of [BGT], we can explicitly described
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the Hilbert function and the regularity index of Ω1
RW/K

(see Proposition 4.4.2 and

Corollary 4.4.4). In this case we use techniques similar to the ones introduced in the

papers [GMT] and [GT] to prove that the Hilbert function of the module of Kähler

differential 1-forms of Yj =
∑

i 6=j νPi + (ν − 1)Pj is independent of j if ν ≥ 2 (see

Proposition 4.4.9). This result seems to hold in the reduced case ν = 1, too, but

we can only offer a proof for the special case of a complete intersection X of type

(d, . . . , d). By applying the above results, we also provide bounds for the Hilbert

function and regularity index of Ω1
RW/K

when W is a non-equimultiple fat point scheme

in Pn supported at a complete intersection (see Proposition 4.4.6 and Corollary 4.4.8).

In the final chapter, Chapter 5, we look more closely at the Kähler differential

algebras for some special fat point schemes in Pn where n = 2 or n = 4. Based on some

results of M.V. Catalisano [Ca], we give a concrete description of the Hilbert function of

the module of Kähler differential 1-forms of a fat point scheme W = m1P1 + · · ·+msPs

in P2 whose support lies on a non-singular conic (see Proposition 5.1.3). If, in addition,

m1 = · · · = ms = ν then we obtain the following presentation of Ω3
RW/K

.

Proposition 5.1.7. Let s ≥ 4, and let X = {P1, · · · , Ps} ⊆ P2 be a set of s distinct

K-rational points which lie on a non-singular conic C = Z+(C), and let ν ≥ 1. Then

we have Ω3
RνX/K

∼= (S/M I(ν−1)X)(−3). In particular, for all i ∈ Z, we have

HFΩ3
RνX/K

(i) = HFS/M I(ν−1)X(i− 3).

Moreover, this result can be applied to exhibit the Hilbert functions of Ω3
RνX/K

and Ω2
RνX/K

in terms of degrees of generators of IX (or of I(ν−1)X) (see Corollary 5.1.8

and Corollary 5.1.9).

In P4, we prove the so-called Segre bound for the regularity index of a set of s

distinct K-rational points by using the method of proof of [Th2] (see Theorem 5.2.8).

Furthermore, we show that this bound holds for equimultiple fat point schemes in P4

under an additional hypothesis as follows.

Theorem 5.2.12. Let X = {P1, . . . , Ps} be a set of s ≥ 5 distinct K-rational points

in P4, let TX,j = max
{⌊

1
j
(
∑q

l=1mil + j − 2)
⌋
| Pi1 , . . . , Piq lie on a j-plane

}
for

j = 1, . . . , 4, and let ν ≥ 2. If max{TX,j | 1 ≤ j ≤ 4} = TX,1, then the equimulti-

ple fat point scheme νX = νP1 + · · ·+ νPs satisfies

rνX = max
{
νq − 1 | Pi1 , . . . , Piq lie on a line

}
.
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This theorem also allows us to determine the regularity index of the module of

Kähler differential 1-forms and bound the regularity index of the module of Kähler

differential m-forms for equimultiple fat point schemes in P4 under the same additional

hypothesis (see Proposition 5.2.14 and Corollary 5.2.15).

Many results in this thesis are illustrated by concrete examples. These examples

have been computed by using the computer algebra system ApCoCoA [ApC]. In the

appendix we provide the functions which implement the algorithms and procedures

for the computation of the modules of Kähler differential m-forms and their Hilbert

functions for 0-dimensional schemes in Pn.
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Chapter 2
Preliminaries

In this chapter we collect the definitions, results and techniques that we require for the

later chapters. As a consequence, most of the material in this chapter is well known.

The chapter is divided into four sections. The main task of Section 1 is to intro-

duce graded rings, graded modules and exact sequences of graded modules. Also in

this section we review some of the standard facts on resolutions of graded modules

which we use for computing the degrees of minimal separators of fat point schemes in

Chapter 3. In the second section we discuss homogeneous Gröbner Bases and present

the Homogeneous Buchberger Algorithm for computing a homogeneous Gröbner basis

of a given graded module. In Section 3 we introduce the definition of the exterior

algebra and concentrate on some remarkable properties of homomorphisms of exterior

algebras which we use later in Chapter 3 and Chapter 4. The last section is about

0-dimensional schemes, a main subject of study in this thesis. Some required results

about 0-dimensional schemes are mentioned in this section. We refer to [KR1] and

[KR2] as standard text books, in particular for the discussion of graded rings, graded

modules and Gröbner bases. We refer to [SS] for studying exterior algebras and [DK]

for the notions introduced in the last section.

Throughout this chapter we let K be a field of characteristic zero and R a commu-

tative ring with 1 unless stated otherwise.

2.1 Resolutions of Graded Modules

Definition 2.1.1. Let R be a ring containing K.

(i) The ring R is called a Z-graded ring if there exists a family of additive subgroups

{Ri}i∈Z such that R = ⊕iRi, R0 = K and Ri · Rj ⊆ Ri+j. For brevity we call R

a graded ring.
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(ii) A module M over a graded ring R is said to be graded if there exists a family of

subgroups {Mi}i∈Z of M such that M = ⊕iMi and Ri ·Mj ⊆Mi+j for all i, j ∈ Z.

(iii) An element u ∈M is called homogeneous of degree i if u ∈Mi for some i ∈ Z.

In this case we write deg(u) = i.

Remark 2.1.2. Let R be a graded ring, let M be a graded R-module, and let N be a

graded submodule of M , i.e. let N be a submodule of M which is a graded R-module.

Then Ni = Mi ∩ N for all i ∈ Z. Furthermore, M/N is a graded R-module where

(M/N)i = Mi/Ni for i ∈ Z.

Definition 2.1.3. The Hilbert function of a finitely generated graded R-module M

is defined by HFM(i) = dimKMi for i ∈ Z. Its first difference function ∆ HFM : Z→ Z
given by ∆ HFM(i) = HFM(i)−HFM(i−1) is called the Castelnuovo function of M .

Theorem 2.1.4. The Hilbert function of a finitely generated graded R-module M of

dimension d is of polynomial type of degree d − 1, i.e. there exists a number i0 ∈ Z
and an integer valued polynomial Q ∈ Q[z] of degree d − 1 such that HFM(i) = Q(i)

for all i ≥ i0.

Proof. See Theorems 5.1.21 and 5.4.15 of [KR2] or Theorem 4.1.3 of [BH].

Definition 2.1.5. The unique polynomial in Q[z], denoted by HPM(z), for which

HFM(i) = HPM(i) for i � 0 is called the Hilbert polynomial of M . The minimal

number, denoted by ri(M), such that HFM(i) = HPM(i) for all i ≥ ri(M) is called

the regularity index of M . Whenever HFM(i) = HPM(i) for all i ∈ Z, we let

ri(M) = −∞.

From now on we denote the polynomial ring K[X0, . . . , Xn] by S and we equip S

with the standard grading, i.e. let deg(Xi) = 1 for i = 0, . . . , n.. The following example

gives us formulas for the Hilbert function, Hilbert polynomial and regularity index of

the simplest case M = S.

Example 2.1.6. For every t ∈ N we have HFS(t) =
(
n+t
n

)
. The Hilbert polynomial of

S is HPS(z) =
(
z+n
n

)
, and the regularity index is ri(S) = −n.

The next proposition provides useful rules for computing the Hilbert polynomial

under ideal-theoretic operations.

Proposition 2.1.7. Let I, J be proper homogeneous ideal of S.

(i) We have HPS/(I∩J)(z) = HPS/I(z) + HPS/J(z)− HPI+J(z).
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(ii) If
√
J = (X0, . . . , Xn) then HPS/(I∩J)(z) = HPI(z).

Proof. See [KR2, Proposition 5.4.16].

The remaining part of this section is devoted to providing the reader with the

definitions of minimal graded free resolution of a module, the mapping cone of a ho-

momorphism of complexes and the subsequent propositions.

Definition 2.1.8. Let R be a graded ring.

(i) Let i ∈ Z. A homomorphism of graded R-modules α : N → M is called a

homogeneous homomorphism of degree i if α(Nj) ⊆Mj+i for all j ∈ Z.

(ii) A sequence of graded R-modules

F : · · · αt+1−→ Ft
αt−→ Ft−1

αt−1−→ . . . ,

denoted by (F•, α•), is called a complex if Im(αt) ⊆ Ker(αt−1) for all t. If

Im(αt) = Ker(αt−1) for all t, then the sequence (F•, α•) is called an exact se-

quence of graded R-modules.

(iii) A graded free resolution of an R-module M is an exact sequence of free

R-modules

F : · · · αt+1−→ Ft
αt−→ Ft−1

αt−1−→ · · · α2−→ F1
α1−→ F0

α0−→M −→ 0

such that αi are homogeneous homomorphisms of degree zero for all i ≥ 0 and

Coker(α1) = M . If there exists a positive integer n ∈ N such that Fn+1 = 〈0〉 = Fj

for j ≤ −2 but Fi 6= 〈0〉 for 0 ≤ i ≤ n, we say that (F•, α•) is a finite graded

free resolution of length n.

(iv) Let M be a finitely generated graded R-module. A graded free resolution

F : · · · α3−→ F2
α2−→ F1

α1−→ F0
α0−→M −→ 0

of M is called a minimal graded free resolution of M if the images of the

canonical basis of vectors of Fi are a minimal system of generators of Ker(αi−1)

for every i ≥ 1.

The following proposition says that the minimal graded free resolution of a given

graded S-module M indeed exists and is unique.
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Proposition 2.1.9. Let M be a finitely generated graded S-module. Then the following

claims hold true:

(i) The module M has a minimal graded free resolution of length at most n+ 1.

(ii) Let

0 −→ F`
ϕ`−→ · · · ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M −→ 0

· · · −→ F ′`
ϕ`−→ · · · ϕ2−→ F ′1

ϕ1−→ F ′0
ϕ0−→M −→ 0

be two minimal graded free resolutions of M . Then for every 0 ≤ i ≤ `, we have

Fi = F ′i and F ′j = 0 for j > `.

Proof. See Corollary 4.8.7 and Theorem 4.8.9 of [KR2].

The length of the minimal graded free resolution of an S-module M exists and

is unique. This constant is called the projective dimension of M , and is denoted

by pdS(M).

Definition 2.1.10. Let R be a graded ring and let M be a graded R-module.

(i) A sequence of homogeneous elements F1, . . . , Ft ∈ R is called a regular se-

quence for M if 〈F1, . . . , Ft〉M 6= M and for i = 1, . . . , t we have Fi is a non-

zerodivisor for M/〈F1, . . . , Fi−1〉M .

(ii) A graded ring R is a complete intersection if there is a graded regular ring R̃

and a regular sequence of homogeneous elements F1, . . . , Ft ∈ R̃ such that

R ∼= R̃/〈F1, . . . , Ft〉. The sequence of degrees (deg(F1), . . . , deg(Ft)) is called the

type of R.

We define the depth of a graded S-module M , written by depth(M), to be the

maximal length of regular sequences for M . In order to compute the projective di-

mension of a graded S-module M , we use the following connection between projective

dimension and depth discovered by Auslander and Buchsbaum.

Proposition 2.1.11. (The Auslander-Buchsbaum Formula) Let M be a graded

finitely generated S-module. Its projective dimension is

pdS(M) = n+ 1− depth(M).

Proof. See [Pe, 15.3].
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Definition 2.1.12. Let R be a graded ring, let M be a graded R-module, and let

h ∈ Z. We define M(h) to be graded R-module with

M(h)i = Mh+i for all i ∈ Z.

We call M(h) the h-th twist of M .

Example 2.1.13. (Koszul Complex) Let S = K[X0, . . . , Xn] be the polynomial

ring and I = 〈X1, . . . , Xn〉. Let {ek1 ∧ · · · ∧ ekj}1≤k1<···<kj≤n be a basis of the free

S-modules S(nj). The sequence X1, . . . , Xn is a regular sequence on S, and the minimal

graded free resolution of the residue ring R = S/I is

0 −→ S(−n)
ϕn−→ S( n

n−1)(−n+ 1)
ϕn−1−→ · · · ϕ2−→ S(n1)(−1)

ϕ1−→ S
ϕ0−→ R −→ 0,

where the module homomorphism ϕj : S(nj)(−j) → S( n
j−1)(−j + 1) given by

ek1 ∧ · · · ∧ ekj 7→
∑j

i=1(−1)i+1xkiek1 ∧ · · · ∧ êki ∧ · · · ∧ ekj . Thus the projective di-

mension of the residue ring R is pdS(R) = n. Therefore the Hilbert function of R in

degree i is HFR(i) =
∑n

j=0(−1)j ·
(
n
j

)
·HFS(i−j) =

∑n
j=0(−1)j ·

(
n
j

)
·
(
n+i−j
n

)
. Moreover,

by Example 2.1.6, the regularity index of R is ri(R) = 0.

Example 2.1.13 is an easy case of the following result.

Theorem 2.1.14. (Koszul Resolution) Let R = S/I be a complete intersection of

type (d1, . . . , dn). Then the minimal graded free resolution of R has the form

0 −→ Hn −→ · · · −→ H2 −→ H1 −→ S −→ R −→ 0,

where Hj = ⊕1≤i1<i2<···<ij≤nS(−di1 − · · · − dij) for j = 1, . . . , n.

Proof. See [GT, Theorem 1.1].

Corollary 2.1.15. Let S/I and S/J be a complete intersections of types (a1, . . . , an)

and (b1, . . . , bn), respectively. Assume that HFS/I(t) = HFS/J(t) for all t ∈ N. Then the

residue rings S/I and S/J have the same type, i.e. if a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn

then aj = bj for j = 1, . . . , n.

Proof. Let

0 −→ Hn −→ · · · −→ H2 −→ H1 −→ S −→ S/I −→ 0

and

0 −→ Ln −→ · · · −→ L2 −→ L1 −→ S −→ S/J → 0
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be the Koszul resolutions of S/I and S/J as in Theorem 2.1.14, respectively. We have

HFI(k) − HFJ(k) =
∑n

i=1(−1)i+1 HFHi(k) −
∑n

i=1(−1)i+1 HFLi(k) = 0 for all k ∈ N.

By the definition of Hi, Li for i = 0, . . . , n− 1 and the assumption that a1 ≤ · · · ≤ an

and that b1 ≤ · · · ≤ bn, we get aj = bj for j = 1, . . . , n.

In what follows, we mention a simple, yet powerful method for constructing free

resolutions of rings.

Definition 2.1.16. (i) Let F = (F•, α•) and H = (H•, β•) be complexes of graded

R-modules. The sequence of homomorphisms of degree zero ϕt : Ft → Ht such

that the following diagram

Ft

ϕt

��

αt // Ft−1

ϕt−1

��
Ht

βt // Ht−1

is commutative for t ∈ Z, is called homomorphism of complexes, and is

denoted by ϕ : F → H.

(ii) Let ϕ : F → H be a homomorphism of complexes. It easy to check that the

sequence L = (L•, γ•), where Li = Fi−1 ⊕Hi, where the homomorphism is given

by γi : Li → Li−1, γi(f, h) = (−αi−1(f), βi(h) + ϕi−1(f)) for all f ∈ Fi−1, h ∈ Hi

and for i ∈ Z, is a complex. The complex L is called the mapping cone of ϕ.

Remark 2.1.17. Let γ : M → N be a homomorphism of graded S-modules. Let

F : · · · α2→ F1
α1→ F0

α0→ M → 0 and H : · · · β2→ H1
β1→ H0

β0→ N → 0 be free resolutions

of graded S-modules M and N , respectively. Since H0 maps onto N , the composite

map γ ◦ α0 may be lifted to a map ϕ0 : F0 → H0. We have β0 ◦ ϕ0 ◦ α1(F1) =

γ ◦ α0 ◦ α1(F1) = 0, therefore ϕ0 ◦ α1(F1) ⊆ Ker(β0) = Im(β1). So, the map ϕ0 ◦ α1

has a lifting ϕ1 : F1 → H1. Continuing in this way we get the map of complexes

ϕ : F → H. The homomorphism ϕ is called a complex homomorphism lifting γ.

Proposition 2.1.18. Let I be a homogeneous ideal of S and let H be a homogeneous

polynomial in S. Assume that I :S H = 〈H1, . . . , Ht〉S, where the sequence of ho-

mogenous polynomials H1, . . . , Ht is a regular sequence for S. Let F be a graded free

resolution of S/I, let H be the minimal graded free resolution of the ideal 〈H1, . . . , Ht〉,
and let ψ : H → F be a complex homomorphism lifting S/(I :S H) → S/I. Then the

mapping cone L of ψ yields a graded free resolution of S/〈I,H〉.

Proof. See [HT, p. 280].
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We illustrate this proposition by the following example.

Example 2.1.19. In the polynomial ring S = Q[X0, X1, X2], let I be the ideal gener-

ated by the regular sequence (F1, F2) where F1 = X1(X1 −X0)(X1 − 2X0)(X1 − 3X0)

and F2 = X2(X2−X0)(X2−2X0)). Let F = F1F2/X1X2. We have I :S 〈F 〉 = 〈X1, X2〉.
According to Example 2.1.13, the Koszul resolutions of the ideals J = 〈X1, X2〉 and I

are

0→ S(−2)→ S2(−1)→ J → 0,

0→ S(−7)→ S(−3)⊕ S(−4)→ I → 0,

respectively. Using Proposition 2.1.18 and the fact that deg(F ) = 5, we have a graded

free resolution of the residue class ring S/〈I, F 〉 of the form

0→ S(−7)→ S(−6)2 ⊕ S(−7)→ S(−5)⊕ S(−3)⊕ S(−4)→ S → S/〈I, F 〉 → 0.

2.2 Introduction to Homogeneous Gröbner Bases

As in the previous section, we let K be a field of characteristic zero. Let n ≥ 0, and

let S = K[X0, . . . , Xn] be the polynomial ring in n + 1 indeterminates, graded by

deg(Xi) = 1 for i = 0, . . . , n unless stated otherwise.

A polynomial F ∈ S of the form Xα0
0 · · ·Xαn

n such that (α0, . . . , αn) ∈ Nn+1 is called

a term. The set of all terms of S is denoted by Tn+1. Then (Tn+1, ·) is a monoid.

Let r ≥ 1 and let {e1, . . . , er} be the canonical basis of the free S-module Sr. A term

of Sr is an element of the form tei such that t ∈ Tn+1 and 1 ≤ i ≤ r. The set of all

terms of Sr is denoted by Tn+1〈e1, . . . , er〉. Recall that Tn+1〈e1, . . . , er〉, together with

the operation ∗ : Tn+1 × Tn+1〈e1, . . . , er〉 → Tn+1〈e1, . . . , er〉 given by (t, v) 7→ t ∗ v,

is a Tn+1-monomodule (see [KR1, Definition 1.3.1.c]). Now we recall the notions

of term ordering on Tn+1 and module term ordering on Tn+1〈e1, . . . , er〉. We refer

to [KR1] for more details about these notions.

Definition 2.2.1. A complete relation σ on Tn+1 is called a term ordering on Tn+1

if the following conditions are satisfied for all t1, t2, t3 ∈ Tn+1 :

(i) t1 ≥σ 1

(ii) t1 ≥σ t1

(iii) t1 ≥σ t2 and t2 ≥σ t1 imply t1 = t2
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(iv) t1 ≥σ t2 and t2 ≥σ t3 imply t1 ≥σ t3

(v) t1 ≥σ t2 implies t1t3 ≥σ t2t3.

Example 2.2.2. (i) Let t = Xα0
0 · · ·Xαn

n ∈ Tn+1 with (α0, . . . , αn) ∈ Nn+1. We

write log(t) = (α0, . . . , αn). The following definition yields a term ordering

on Tn+1. We call it the lexicographic term ordering and is denoted by Lex.

For two terms t1, t2 ∈ Tn+1 we say t1 ≥Lex t2 if and only if the first non-zero

component of log(t1)− log(t2) is positive or t1 = t2.

(ii) The following definition yields a term ordering on Tn+1. It is called the degree-

lexicographic term ordering and is denoted by DegLex. For t1, t2 ∈ Tn+1 we

let t1≥DegLex t2 if deg(t1) > deg(t2), or if deg(t1) = deg(t2) and t1 ≥Lex t2.

Definition 2.2.3. A complete relation σ on Tn+1〈e1, . . . , er〉 is called a module term

ordering if for all s1, s2, s3 ∈ Tn+1〈e1, . . . , er〉 and all t ∈ Tn+1 we have

(i) s1 ≥σ s1

(ii) s1 ≥σ s2 and s2 ≥σ s1 imply s1 = s2

(iii) s1 ≥σ s2 and s2 ≥σ s3 imply s1 ≥σ s3

(iv) s1 ≥σ s2 implies t ∗ s1 ≥σ t ∗ s2

(v) t ∗ s1 ≥σ s1.

The existence of module term ordering is showed by the next example.

Example 2.2.4. Given two elements t1ei, t2ej ∈ Tn+1〈e1, . . . , er〉, where t1, t2 ∈ Tn+1,

where i, j ∈ {1, . . . , r}. The following definition yields a module term ordering on

Tn+1〈e1, . . . , er〉. It is denoted by DegLexPos. We let t1ei ≥DegLexPos t2ej if and only if

t1 >DegLex t2 or (t1 = t2 and i ≤ j).

Let r ≥ 1, and let σ be a module term ordering on Tn+1〈e1, . . . , er〉. We see that

every element H∈Sr\{0} has a unique representation as a linear combination of terms

H =
∑s

i=1 citieγi , where c1, . . . , cs ∈ K \ {0}, t1, . . . , ts ∈ Tn, γ1, . . . , γs ∈ {1, . . . , r},
and where t1eγ1 ≥σ t2eγ2 ≥σ · · · ≥σ tseγs .

Definition 2.2.5. Let H =
∑s

i=1 citieγi ∈ Sr \ {0} as above, and let M be an

S-submodule of Sr.
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(i) The term LTσ(H) = t1eγ1 ∈ Tn+1〈e1, . . . , er〉 is called the leading term of H

with respect to σ.

(ii) The element LCσ(H) = c1 ∈ K \{0} is called the leading coefficient of H with

respect to σ.

(iii) We let LMσ(H) = LCσ(H) ·LTσ(H) = c1t1eγ1 and call it the leading monomial

of H with respect to σ.

(iv) The module LTσ(M) = 〈LTσ(H) | H ∈ M \ {0}〉 is called the leading term

module of M with respect to σ.

(v) In particular, if M ⊆ S is an ideal of S, then LTσ(M) ⊆ S is also called the

leading term ideal of M with respect to σ.

In order to perform the division on the free S-module Sr, we present the following

algorithm.

Theorem 2.2.6. (The Division Algorithm) Let t ≥ 1, and let F,H1, . . . , Ht ∈
Sr \ {0}. Consider the following sequence of instructions.

1) Let Q1 = · · · = Qt = 0, P = 0, L = F .

2) Find the smallest i ∈ {1, . . . , t} such that LTσ(L) is a multiple of LTσ(Hi). If

such an i exists, replace Qi by Qi + LMσ(L)
LMσ(Hi)

and L by L− LMσ(L)
LMσ(Hi)

Hi.

3) Repeat step 2) until there is no more i ∈ {1, . . . , s} such that LTσ(L) is a multiple

of LTσ(Hi). Then replace P by P + LMσ(L) and L by LMσ(L).

4) If L 6= 0 then start again with the step 2). If L = 0 then return the tuple

(Q1, . . . , Qt) ⊆ St and the vector P ∈ Sr.

This is an algorithm which returns vectors (Q1, . . . , Qt) ∈ St and P ∈ Sr such that

F =
∑t

i=1QiHi + P and either P = 0 or P is a K-linear combination of monomials

none of which is divisible by any of LT(H1), . . . ,LT(Ht). Furthermore, if Qi 6= 0 for

some i = 1, . . . , t then we have LTσ(QiHi) ≤σ LTσ(F ).

Proof. See [KR1, Theorem 1.6.4].

Let F,H1, . . . , Ht ∈ Sr \ {0} and let H be the tuple (H1, . . . , Ht). The vector P

given in Theorem 2.2.6 is called the normal remainder of F with respect to H and

is denoted by NRσ,H(F ). For F = 0, we let NRσ,H(F ) = 0.

Let us look at the next example to clarify the Division Algorithm.
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Example 2.2.7. Let S = Q[X0, . . . , X3].

(i) Let F = X2
0X

4
1X2 + X2

0X
5
3 , and let G be the tuple G = (G1, G2) ∈ S2, where

G1 = X4
1X2 + X2

1X
3
3 and G2 = X2

0X1 + X2
0X3. We follow the Division Algo-

rithm 2.2.6 to eliminate LTLex(F ) step by step and get

F = (X3
1X2 −X2

1X2X3 +X1X2X
2
3 −X2X

3
3 )G2 +X2

0X2X
4
3 +X2

0X
5
3 .

Thus NRLex,G(F ) = X2
0X2 + X2

0 . However, by using the term ordering DegLex,

Theorem 2.2.6 yields that F = X2
0G1 − (X1X

3
3 − X4

3 )G2, and therefore we get

NRDegLex,G(F ) = 0.

(ii) Let {e1, e2, e3} be the canonical basis of the free S-module S3, let G1 = X2
0e1 +

X0X1e2 + X2
2e3, G2 = X0X

2
2e1 + X0X

2
2e3, G3 = X5

2e3, G4 = X0X1X
5
2e2, and let

F = X5
2G1+X4

0G2+X2
0G3+0G4. We let G1,G2 be the tuples G1 = (G1, G2, G3, G4)

and G2 = (G3, G2, G4, G1), respectively. Let σ = DegLexPos. Then an application

of Theorem 2.2.6 gives us NRσ,G1(F ) = −X4
0X1X

2
2e2 + (X5

0X
2
2 − X3

0X
4
2 )e3 and

NRσ,G2(F ) = 0.

In the view of Example 2.2.7, the normal remainder of a non-zero vector F with

respect to a set of generators G = {G1, . . . , Gt} of an S-module M ⊆ Sr depends not

only on the choice of a term ordering but also on the order of elements in G. One

question is: can one choose a set of generators G ′ of M such that the normal remainder

of every vector H with respect to G ′ is the same. A positive answer is given using

the concept of Gröbner basis. In the following we fix a module term ordering σ on

Tn+1〈e1, . . . , er〉.

Definition 2.2.8. A system of generators H = {H1, .., Ht} of an S-module M ⊆ Sr

is called a σ-Gröbner basis of M if 〈LTσ(H1), . . . ,LTσ(Ht)〉 = LTσ(M). In the case

that M is a graded S-submodule of
⊕r

i=1 S(−δi) where δ1, . . . , δr ∈ Z, a σ-Gröbner

basis of M is called a homogeneous σ-Gröbner basis of M if it consists of only

homogeneous elements.

Proposition 2.2.9. (Existence of a Homogeneous σ-Gröbner Basis) Let M be

a non-zero graded S-submodule of
⊕r

i=1 S(−δi).

(i) Given a sequence of homogeneous elements H1, . . . , Ht ∈ M \ {0} such that

LTσ(M) = 〈LTσ(H1), . . . ,LTσ(Ht)〉, we have M = 〈H1, . . . , Ht〉, and the set

H = {H1, . . . , Ht} is a homogeneous σ-Gröbner basis of M .
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(ii) The module M has a homogeneous σ-Gröbner basis H = {H1, . . . , Ht} ⊆M \{0}.

Proof. See [KR1, Proposition 2.4.3] and [KR2, Proposition 4.5.1].

In order to compute a homogeneous σ-Göbner basis of a graded S-module

M ⊆
⊕r

i=1 S(−δi) from a given system of homogeneous generators, we can use the

homogeneous version of Buchberger’s algorithm which is stated below. To ease the

notation, we shall use the following convention. Given a tuple H = (H1, . . . , Ht)

of non-zero homogeneous vectors in
⊕r

i=1 S(−δi), we write LMσ(Hi) = citieγi where

ti ∈ Tn+1 and ci ∈ K and γi ∈ {1, . . . , r}. For all pairs (i, j) such that 1 ≤ i < j ≤ t

and γi = γj, the S-vector of Hi and Hj is Sij =
lcm(ti,tj)

citi
Hi− lcm(ti,tj)

cjtj
Hj. By S we denote

the set of all S-vectors of H.

Theorem 2.2.10. (The Homogeneous Buchberger Algorithm) Let M be a

graded S-submodule of the (standard) graded free S-module
⊕r

i=1 S(−δi), and

let H = (H1, . . . , Hs) be a tuple of non-zero homogeneous vectors which generate M .

Suppose that deg(H1) ≤ · · · ≤ deg(Hs). Consider the following sequence of instruc-

tions.

1) Let S = ∅, V = H, G = ∅, and s′ = 0.

2) Let d be the smallest degree of an element in S or in V. Form the subset

Sd = {Sij ∈ S | deg(Sij) = d} of S, form the subtuple Vd = (H ⊆ V | deg(H) = d)

of V, and delete their entries from S and V, respectively.

3) If Sd = ∅ then continue with step 6). Otherwise, choose an element F ∈ Sd and

remove it from Sd.

4) Compute F ′ = NRσ,G(F ). If F ′ = 0 continue with step 3).

5) Increase s′ by one, append Gs′ = F ′ to the tuple G, and append the set {Sis′ | 1 ≤
i < s′, γi = γs′} to the set S. Continue with the step 3).

6) If Vd = ∅, continue with step 9). Otherwise, choose a vector V ∈ Vd and remove

it from Vd.

7) Compute V ′ = NRσ,G(V ). If V ′ = 0, continue with step 6).

8) Increase s′ by one, append Gs′ = V ′ to the tuple G and append the set {Sis′ | 1 ≤
i < s′, γi = γs′} to the set S. Continue with step 6).
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9) If S = ∅ and V = ∅, return the tuple G and stop. Otherwise, continue with

step 2).

This is an algorithm which returns a tuple G = (G1, . . . , Gs′) such that deg(G1) ≤ · · · ≤
deg(Gs′). The elements of G are a homogeneous σ-Gröbner basis of M .

Proof. See [KR2, Theorem 4.5.5].

Example 2.2.11. Let us go back to Example 2.2.7(ii). We want to compute a homo-

geneous σ-Gröbner basis of the graded S-module M generated by {G1, . . . , G4}. We let

σ = DegLexPos. By applying Theorem 2.2.10, a homogeneous σ-Gröbner basis of M

is given by G = (G1, G2, G̃, G3, G4), where G̃ = X0X1X
2
2e2 + (X4

2 −X2
0X

2
2 )e3.

2.3 Exterior Algebras

Let R be a ring, and let V be an R-module. For every integer m ≥ 1, the m-th

tensor power of V over R is the R-module
⊗m

R (V ) = V ⊗R V ⊗R · · · ⊗R V , where

there are m factors. Note that
⊗1

R(V ) = V and
⊗0

R(V ) = R. Furthermore, if V

is a free R-module with a basis B, then
⊗m

R (V ) is also free and it has the elements

b1⊗ b2⊗ · · · ⊗ bm, where bi ∈ B, as a basis. For more information about tensor powers

of a module, we refer to [SS, Section 80-81] and [Nor, Chapter 1].

Now we let ImR (V ) denote the submodule of
⊗m

R (V ) which is generated by all

elements of the form x1 ⊗ · · · ⊗ xm with xi = xj for some i, j ∈ {1, . . . ,m} and i 6= j,

and let
∧m
R (V ) =

⊗m
R (V )/ImR (V ). The canonical map ϕ :

∏m
R (V )→

⊗m
R (V ) �

∧m
R (V )

is an alternating multilinear mapping, i.e. whenever (v1, . . . , vm) ∈
∏m

R (V ) contains a

repetition we have ϕ(v1, . . . , vm) = 0. For all v1, . . . , vm ∈ V , we denote by v1∧· · ·∧vm
the element ϕ(v1, . . . , vm) and call it the exterior product of v1, . . . , vm. Then

∧m
R (V )

is an R-module and its elements are finite sums of elements of the form v1 ∧ · · · ∧ vm
with v1, . . . , vm ∈ V .

Definition 2.3.1. The R-module
∧m
R (V ) is called the m-th exterior power of V

over R.

We remark that I0
R(V ) = I1

R(V ) = 〈0〉, and so
∧0
R(V ) = R and

∧1
R(V ) = V . If R is

a graded ring and V is a gradedR-module, then
∧m
R (V ) is also a gradedR-module for all

m ≥ 0, where (
∧m
R (V ))i={

∑
v1∧· · ·∧vm | vk ∈ V, k= 1, . . . ,m and

∑m
j=1 deg(vj)= i}.

Moreover, the m-th exterior power of V over R has the following universal property

(see [SS, 83.1]).
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Proposition 2.3.2. (Universal Property of the m-th Exterior Power)

Let V be an R-module, let m ∈ N, and let ϕ :
∏m

R (V ) →
∧m
R (V ) be the canonical

alternating multilinear map given by (v1, . . . , vm) 7→ v1 ∧ · · · ∧ vm. For any alternating

multilinear map Φ :
∏m

R (V )→ W of
∏m

R (V ) to an R-module W , there is a unique

R-linear map Φ̃ :
∧m
R (V )→ W such that the diagram∏m

R (V )
ϕ //

Φ
��

∧m
R (V )

Φ̃vv
W

is commutative (i.e. Φ̃ ◦ ϕ = Φ).

A set of generators of the m-th exterior power of a finitely generated R-module V

can be described as follows.

Lemma 2.3.3. Let V be an R-module generated by {v1, . . . , vn} for some n ≥ 1. Then

we have
∧m
R (V ) = 〈0〉 for m > n. For 1 ≤ m ≤ n, the R-module

∧m
R (V ) is generated

by the elements vi1 ∧ · · · ∧ vim, where 1 ≤ i1 < · · · < im ≤ n.

Proof. See [Nor, Chapter 5, Section 5.2, Theorem 5].

If V is a free R-module, then
∧m
R (V ) is also a free R-module, as the following

proposition shows.

Proposition 2.3.4. Let V be a free R-module with basis {e1, . . ., en}, and let 1≤m≤n.

Then
∧m
R (V ) is a free R-module with the basis

{ ei1 ∧ · · · ∧ eim | 1 ≤ i1 < · · · < im ≤ n }.

In particular, the rank of
∧m
R (V ) is

(
n
m

)
.

Proof. See [SS, 83.4].

Combine this proposition and [KR2, Proposition 5.1.14], we get the value of the

Hilbert function of a free S-module as follows.

Corollary 2.3.5. Let S = K[X0, . . . , Xn] be the standard graded polynomial ring over

a field K, let V =
⊕r

i=1 S(−dj) be a graded free S-module, and let 1 ≤ m ≤ r. Then

the Hilbert function of
∧m
R (V ) is given by

HF∧m
R (V )(i) =

∑
1≤j1<···<jm≤r

HFS(i−
m∑
k=1

djk) =
∑

1≤j1<···<jm≤r

(
i−
∑m

k=1djk + n

n

)
for all i ∈ Z.
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Let α : V → W be a homomorphism of R-modules, and let m ≥ 0. We let

α̃ :
∏m

R (V )→
∏m

R (W ) be the map given by α̃(v1, . . . , vm) = (α(v1), . . . , α(vm)) for all

(v1, . . . , vm) ∈
∏m

R (V ). Then the composition map of α̃ and the canonical alternating

multilinear map ϕW :
∏m

R (W ) →
∧m
R (W ) is an alternating multilinear map. By

Proposition 2.3.2, we get a unique R-linear map∧m(α) :
∧m
R (V )→

∧m
R (W ), v1 ∧ · · · ∧ vm 7→ α(v1) ∧ · · · ∧ α(vm).

Furthermore, this map makes the following diagram commutative∏m
R (V ) α̃ //

ϕV
��

∏m
R (W )

ϕW
��∧m

R (V )
∧m(α) //

∧m
R (V )

The map
∧m(α) is called the m-th exterior power of α.

Now we present some connections between the homomorphism α : V → W and its

m-th exterior power.

Lemma 2.3.6. Using the notation as above, the following statements hold true.

(i) If α is an isomorphism, then
∧m(α) is also an isomorphism.

(ii) If α is surjective, then
∧m(α) is surjective as well.

(iii) If R is a field and α is injective, then
∧m(α) is injective.

Proof. See [SS, 83.6].

In the case that the homomorphism α is surjective, we can describe the kernel of its

m-th exterior power explicitly. This result is well known (see Exercise 26 of Chapter X

of [SS]). However, for convenience of the reader, we include its proof.

Proposition 2.3.7. Let α : V −→ W be an epimorphism of R-modules. We set

G := Ker(α) and G ∧R
∧m−1
R (V ) := 〈f ∧ g | f ∈ G, g ∈

∧m−1
R (V )〉R. Then, for all

m ∈ N, we have the exact sequence of R-modules

0 −→ G ∧R
∧m−1
R (V ) −→

∧m
R (V )

∧m(α)−→
∧m
R (W ) −→ 0.

Proof. Notice that
∧m(α) is surjective, since α is surjective (see Lemma 2.3.6). Now

we let ι : G ∧R
∧n−1
R (V ) −→

∧n
R(V ) be the inclusion map. Then we have the short

exact sequence

0 −→ G ∧R
∧m−1
R (V ) −→

∧m
R (V )

ψ−→ Coker(ι) −→ 0.
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Since α is surjective, for every element (w1, . . . , wm) ∈ Wm there exists an element

(v1, . . . , vm) ∈ V m such that α(vi) = wi for all i = 1, . . . ,m. We define a map

φ : Wm → Coker(ι) given by φ((w1, . . . , wm)) = v1 ∧ v2 ∧ · · · ∧ vm + G ∧R
∧m−1
R (V ).

We first need to prove that the map φ is well-defined and is an R-multilinear, alter-

nating homomorphism. Assume that there are elements (v1, . . . , vm),(u1, . . . , um)∈ V m

such that α(ui) = α(vi) = wi for i = 1, . . . ,m. This implies that ui − vi ∈ Ker(α) and

v1 ∧ v2 ∧ · · · ∧ vm− u1 ∧ u2 ∧ · · · ∧ um = (v1− u1)∧ v2 ∧ · · · ∧ vm + u1 ∧ (v2− u2)∧ v3 ∧
· · · ∧ vm + · · ·+u1 ∧u2 ∧ · · · ∧um−1 ∧ (vm−um) ∈ Ker(α)∧

∧m−1
R (V ). Thus the map φ

is well-defined. By using the multilinear and alternating properties of
∧m
R (V ), it is not

difficult to verify that the map φ is an R-multilinear, alternating homomorphism.

Secondly, we show that the sequence

0 −→ G ∧R
∧m−1
R (V ) −→

∧m
R (V ) −→

∧m
R (W ) −→ 0

is exact. By the universal property of m-th exterior power, there is a unique homo-

morphism of R-modules ϕ :
∧m
R (W ) → Coker(ι) such that ϕ ◦ γ = φ, where the map

γ : Wm →
∧m
R (W ) is given by γ((w1, . . . , wm)) = w1∧· · ·∧wm. Let

∑
i riv1i∧· · ·∧vmi

be an element of
∧m
R (V ). Then we have

(ϕ ◦
∧m(α))(

∑
i

riv1i ∧ · · · ∧ vmi) =
∑
i

ϕ(riα(v1i) ∧ · · · ∧ α(vmi))

=
∑
i

riv1i ∧ · · · ∧ vmi + G ∧R
∧m−1
R (V )

= ψ(
∑
i

riv1i ∧ · · · ∧ vmi).

It follows that ϕ◦
∧m(α) = ψ. Consequently, we get relations G∧R

∧m−1
R (V )=Ker(ψ)=

Ker(ϕ ◦
∧m(α))⊇Ker(

∧m(α)). Moreover, we have
∧m(α)

(
G∧R

∧m−1
R (V )

)
= 〈0〉 and

so G ∧R
∧m−1
R (V ) ⊆ Ker(

∧m(α)). Therefore we obtain G ∧R
∧m−1
R (V ) = Ker(

∧m(α)),

and this finishes the proof.

Remark 2.3.8. In the setting of Proposition 2.3.7, assume that the R-module G is

generated by H1, . . . , Hp and the (m − 1)-th exterior power of V over R is generated

by L1, . . . , Lq. Then the R-module G ∧R
∧m−1
R (V ) is generated by the set

{Hi ∧ Lj | 1 ≤ i ≤ p, 1 ≤ j ≤ q }.

Now we denote the direct sum
⊕

m∈N
∧m
R (V ) by

∧
R(V ) and equip it with the

multiplication ∧ : (
⊕

m∈N
∧m
R (V ),

⊕
m∈N

∧m
R (V )) →

⊕
m∈N

∧m
R (V ), (ω, ν) 7→ ω ∧ ν.

Then
∧
R(V ) is an R-algebra. Also, V is a submodule of

∧
R(V ) and it generates∧

R(V ) as an R-algebra.
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Definition 2.3.9. Let V be an R-module. The algebra
∧
R(V ) is called the exterior

algebra of V over R.

Note that v ∧ v = 0 for all v ∈
∧
R(V ). The universal property of the exterior

algebra
∧
R(V ) is given by the following proposition.

Proposition 2.3.10. (Universal Property of the Exterior Algebras)

Let
∧
R(V ) be the exterior algebra of an R-module V and let φ : V → W be an R-linear

mapping of V into an R-algebra W, such that (φ(v))2 = 0 for all v ∈ V . Then there

exists a unique R-algebra homomorphism ψ :
∧
R(V )→ W such that φ = ψ ◦φV , where

φV : V →
∧
R(V ) is the canonical injection.

Proof. See [SS, 85.2] or [Nor, Chapter 5, Section 5.1, Theorem 2].

Similar to Lemma 2.3.6, we have basic properties of R-algebra homomorphisms of

exterior algebras.

Proposition 2.3.11. Let α : V → W be a homomorphism of R-modules. Then there

exists a unique R-algebra homomorphism
∧

(α) :
∧
R(V ) →

∧
R(W ). Moreover, the

following claims hold true:

(i) The homomorphism
∧

(α) is the direct sum of the maps
∧m(α) :

∧m
R (V )→

∧m
R(W ).

(ii) If α is an isomorphism then
∧

(α) is also an isomorphism.

(iii) If α is surjective then
∧

(α) is surjective as well.

(iv) If R is a field and α is injective then so is
∧

(α).

Proof. See [SS, 85.5 and 85.7].

We end this section with an immediate consequence of Proposition 2.3.7.

Corollary 2.3.12. Let α : V → W be an epimorphism of R-modules, and let G be the

kernel of α. Then the sequence

0 −→ G ∧
∧
R(V ) −→

∧
R(V ) −→

∧
R(W ) −→ 0

is exact.
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2.4 Some Properties of 0-Dimensional Schemes

First of all we fix the notation that will be used throughout the section. We work over

a field K of characteristic zero. By Pn we denote the projective n-space over K, where

n ≥ 1. The homogeneous coordinate ring of Pn is the polynomial ring S = K[X0, ..., Xn]

equipped with its standard grading deg(X0) = · · · = deg(Xn) = 1. If I ⊆ S is a

homogeneous ideal defining the scheme X (i.e. X = Proj(S/I)) and Ĩ = ⊕i≥i0Ii for

some i0 ≥ 0, then Ĩ also defines X. We refer to [Har, Chapter II] for more details about

the theory of schemes.

Definition 2.4.1. Let I be a homogeneous ideal of S. The set

Isat := {F ∈ S | 〈X0, . . . , Xn〉iF ⊆ I for some i ∈ N }

is a homogeneous ideal of S and is called the saturation of I. The ideal I is called a

saturated ideal if I = Isat.

Example 2.4.2. Let s be a positive integer, and let m1, . . . ,ms ∈ N. For j = 1, . . . , s,

we let Ij = 〈X1 − aj1X0, . . . , Xn − ajnX0〉mj ⊆ S for some aj1, . . . , ajn ∈ K, and let

I = ∩sj=1Ij. Then the ideal I is a saturated ideal of S. Indeed, it is clear that I ⊆ Isat.

Moreover, for a homogeneous element F ∈ Isat, there is i ∈ N such that X i
0F ∈ I. Note

that X0 /∈ Ij for all j = 1, . . . , s. So, the image x0 of X0 in S/I is a non-zerodivisor.

This implies F ∈ I. Therefore we get I = Isat, as desired.

Notice that the saturation of a given homogeneous ideal I ⊆ S is finitely generated,

since S is Noetherian. It follows from the definition of Isat that HFIsat(i) = HFI(i)

for i � 0, and hence I and Isat defines the same subscheme of Pn. Furthermore,

two homogeneous ideals I and J of S define the same subscheme of Pn if and only

if Isat = J sat (see [Per, Proposition 1.3]). Thus if X ⊆ Pn is a scheme defined by a

homogeneous ideal I of S, the saturation Isat is the largest homogeneous ideal of S

which defines X.

Definition 2.4.3. Let X be a scheme of Pn.

(i) The homogeneous saturated ideal of S defining X is called the homogeneous

vanishing ideal of X and is denoted by IX.

(ii) The residue class ring RX = S/IX is called the homogeneous coordinate ring

of X. Its homogeneous maximal ideal is denoted by mX.

(iii) The coefficient dim(S/IX)−1, denoted by dim(X), is called the dimension of X.
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Now we turn our attention to 0-dimensional scheme X of Pn. Given a 0-dimensional

scheme X, it is known that the ideal IX can be decomposed as IX =
⋂s
j=1 qj, where

each qj is a homogeneous primary ideal (see for instance [KR2, Proposition 5.6.21]). Let

Pj =
√
qj be the corresponding radical ideal of qj. Then Pi is a homogeneous prime

ideal and the only homogeneous prime ideal which contains Pj is M =
⊕

i≥1 Si. Notice

that Pj is the homogeneous ideal of the standard graded ring S so, the number of ele-

ments of minimal sets of generators of Pj is unique. Let {Lj1, . . . , Ljtj , Hj1, . . . , Hjmj}
be a set of minimal generators of the ideal Pj, where deg(Ljk) = 1 for k = 1, . . . , tj,

where deg(Hjl) ≥ 2 for l = 1, . . . ,mj. Since Pj  M and the sequence of linear forms

Lj1, . . . , Ljtj is a regular sequence for S, we can find linear forms Lj tj+1, . . . , Ljn such

that Lj1, . . . , Ljn is a regular sequence for S. By Qi we denote the point corresponding

to the homogeneous prime ideal ℘j = 〈Lj1, . . . , Ljn〉S. Due to [KR2, Lemma 6.3.20]

and the assumption that the field K is infinite, there exist a linear form L such that

L(Qj) 6= 0 for all j = 1, . . . , s. This means that L /∈ ℘j for all j = 1, . . . , s. By

the Prime Avoidance Theorem (cf. [KR2, Proposition 5.6.22]), we have L /∈
⋃s
j=1 ℘j.

This implies L /∈
⋃s
j=1〈Lj1, . . . , Ljtj〉S, and consequently L /∈

⋃s
j=1 Pj. Thus [KR2,

Proposition 5.6.17] yields that L is a non-zerodivisor for RX.

Let Supp(X) = {P1, . . . , Ps} be the set of closed points of Pn in X. Note that Pj is

the homogeneous prime ideal corresponding to Pj for j = 1, . . . , s. The local ring OX,Pj
is then the homogeneous localization of R at the image of Pj in R. The degree of X
is given by deg(X) =

∑s
j=1 dimK OX,Pj . The above argument allows us to make the

following assumption.

Assumption 2.4.4. From now on, the coordinates {X0, . . . , Xn} of Pn are always

chosen such that no point of Supp(X) lies on the hyperplane Z+(X0).

The image of Xi in RX is denoted by xi for i = 0, . . . , n. By the choice of the

coordinates, x0 is a non-zerodivisor for RX and K[x0] ∼= K[X0] is a subring of RX. Thus

RX is a 1-dimensional Cohen-Macaulay ring and RX = RX/〈x0〉 is a 0-dimensional local

ring. Moreover, it follows from Proposition 2.1.11 that pdS(RX) = n.

The Hilbert function of RX is denoted by HFX : Z → N (i 7→ dimK(RX)i). The

Hilbert polynomial of RX is HPX(z) = deg(X). By rX we denote the regularity index

of HFX. The following proposition collects some elementary properties of the Hilbert

function of 0-dimensional schemes which we use in the next chapters.

Proposition 2.4.5. Let X be a 0-dimensional scheme.

(i) We have HFX(i) = 0 for i < 0 and HFX(0) = 1.
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(ii) There is an integer αX ≥ 1 such that HFX(i) =
(
n+i
n

)
if and only if i < αX.

(iii) We have 1 = HFX(0) < HFX(1) < · · · < HFX(rX − 1) < HFX(rX) = deg(X) and

HFX(i) = deg(X) for all i ≥ rX.

Proof. See [Kre2, Lemma 1.3] and [DK, p. 155].

The number αX given in Proposition 2.4.5 is called the initial degree of IX. This

can be described as αX = min{i ∈ N | (IX)i 6= 0}. The degree of an element F of a

minimal homogeneous system of generators of IX is bounded by αX ≤ deg(F ) ≤ rX+1,

as the following proposition shows (cf. [GM, Proposition 1.1]).

Proposition 2.4.6. Let X be a 0-dimensional subscheme of Pn. Then the homogeneous

vanishing ideal of X satisfies IX = 〈(IX)αX , (IX)αX+1, . . . , (IX)rX+1〉S.

Below we proceed to give a bound for the regularity index of the m-th exterior power

of a finitely generated RX-module V , where m ≥ 1. For this, we need the following

result.

Lemma 2.4.7. Let d ≥ 1, let δ1, . . . , δd ∈ Z, and let V be a non-trivial graded submod-

ule of the graded free RX-module
⊕d

j=1 RX(−δj). Then x0 is not a zerodivisor for V ,

i.e. if x0 · v = 0 for some v ∈ V then v = 0.

Proof. Let {e1, . . . , ed} be the canonical RX-basis of
⊕d

j=1 RX(−δj), and let i ∈ Z.

Then every homogeneous element v ∈ Vi has a representation v = g1e1 + · · · + gded

for some homogeneous elements g1, . . . , gd ∈ RX, where deg(gj) = deg(v) − δj for

j = 1, . . . , d. Suppose that x0 · v = 0. This implies that x0g1e1 + · · · + x0gded = 0,

and so x0g1 = · · · = x0gd = 0 in RX. Since x0 is a non-zerodivisor for RX, we have

g1 = · · · = gd = 0, and hence v = 0. Thus the claim follows.

Proposition 2.4.8. Let d ≥ 1, let δ1, . . . , δd ∈ Z such that δ1 ≤ · · · ≤ δd, let

W =
⊕d

j=1RX(−δj) be the graded free RX-module, and let V be a non-trivial graded

submodule of W . Then, for 1 ≤ m ≤ d, we have

ri(V ∧RX

∧m
RX

(W )) ≤ ri(V ) + δd−m+1 + · · ·+ δd.

Proof. First we note that the Hilbert polynomial of W is HPW (z) = d · deg(X) and

that ri(W ) = rX + δd. This shows that the Hilbert polynomial of V is a constant

polynomial HPV (z) = u ≤ d · deg(X). Let r = ri(V ), and let v1, . . . , vu be a K-basis

of Vr. By Lemma 2.4.7, the elements {xi0v1, . . . , x
i
0vu} form a K-basis of the K-vector
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space Vr+i for all i ∈ N. We let {e1, . . . , ed} be the canonical RX-basis of W , we

let t =
(
d
m

)
, and we let {ε1, . . . , εt} be a basis of the graded free RX-module

∧m
RX

(W )

w.r.t. {e1, . . . , ed} (see Proposition 2.3.4). We set δ = δd−m+1 + · · ·+ δd, and let

N = 〈xδ−deg(εk)
0 vj ∧ εk ∈ V ∧RX

∧m
RX

(W ) | 1 ≤ j ≤ u, 1 ≤ k ≤ t〉K .

Let % = dimK N , and let w1, . . . , w% be a K-basis of N . It is not difficult to ver-

ify that N = 〈w1, . . . , w%〉K = (V ∧RX

∧m
RX

(W ))δ+r. Moreover, for any i ≥ 0, the

set {xi0w1, . . . , x
i
0w%} is K-linearly independent. Indeed, assume that there are el-

ements a1, . . . , a% ∈ K such that
∑%

j=1 x
i
0ajwj = 0. Since x0 is a non-zerodivisor

for V ∧RX

∧m
RX

(W ) by Lemma 2.4.7, we get
∑%

j=1 ajwj = 0, and hence a1 = · · ·=a%=0.

Now it is sufficient to prove that the set {xi0w1, . . . , x
i
0w%} generates the K-vector

space (V ∧RX

∧m
RX

(W ))δ+r+i for all i ≥ 0. Let w ∈ (V ∧RX

∧m
RX

(W ))δ+r+i be a non-zero

homogeneous element. Then there are homogeneous elements ṽj ∈ V , hk ∈ RX such

that w =
∑

j,k ṽj ∧hkεk =
∑

j,k hkṽj ∧ εk, where deg(ṽj) + deg(hk) = δ+ r+ i−deg(εk)

for all j, k. Note that deg(hkṽj) = δ + r + i − deg(εk) ≥ r + i for all i ≥ 0. Also, we

have

hkṽj ∈ Vδ+r+i−deg(εk) = 〈xδ+i−deg(εk)
0 v1, . . . , x

δ+i−deg(εk)
0 vu〉K .

Thus there are bjk1, . . . , bjku ∈ K such that hkṽj =
∑u

l=1 bjklx
δ+i−deg(εk)
0 vl. Hence we

have

w =
∑
j,k

hkṽj ∧ εk =
∑
j,k

u∑
l=1

bjklx
δ+i−deg(εk)
0 vl ∧ εk

= xi0
∑
j,k

u∑
l=1

bjklx
δ−deg(εk)
0 vl ∧ εk

=
∑
j,k

u∑
l=1

%∑
q=1

bjklcjklqx
i
0wq

with cjklq ∈ K. The last equality follows from the fact that {xi0w1, . . . , x
i
0w%} is a

K-basis of xi0N . Thus we get w ∈ 〈xi0w1, . . . , x
i
0w%〉K , and HFV ∧RX

∧m
RX

(W )(i) = % for

all i ≥ δ + r. Therefore we obtain ri(V ∧RX

∧m
RX

(W )) ≤ ri(V ) + δ, as we wanted to

show.

Using Proposition 2.4.8, we get immediately the following corollary.

Corollary 2.4.9. In the setting of Proposition 2.4.8, assume that δ1 = · · · = δd = 0.

Then we have ri(V ∧RX

∧m
RX

(W )) ≤ ri(V ) for 1 ≤ m ≤ d.

At this point we can bound the regularity index of the m-th exterior power of a

finitely generated graded RX-module V as follows.
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Proposition 2.4.10. Let V be a graded RX-module generated by the set of homoge-

neous elements {v1, . . . , vd} for some d ≥ 1, let δj = deg(vj) for j = 1, . . . , d, and

let m ≥ 1. Assume that δ1 ≤ · · · ≤ δd, and set δ = δd−m+1 + · · · + δd if m ≤ d. Then

the regularity index of
∧m
RX

(V ) satisfies ri(
∧m
RX

(V )) = −∞ if m > d and

ri(
∧m
RX

(V )) ≤ max
{
rX + δ + δd − δd−m+1, ri(V ) + δ − δd−m+1

}
if 1 ≤ m ≤ d. In particular, if 1 ≤ m ≤ d and δ1 = · · · = δd = t then we have

ri(
∧m
RX

(V )) ≤ max{ rX +mt, ri(V ) + (m− 1)t }.

Proof. According to Lemma 2.3.3, we have
∧m
RX

(V ) = 〈0〉 if m > d. Hence we see that

ri(
∧m
RX

(V )) = −∞ if m > d. Now we assume that 1 ≤ m ≤ d. It is easy to see that

the RX-linear map α : W =
⊕d

j=1RX(−δj) → V given by ej 7→ vj is a homogeneous

RX-epimorphism of degree zero. We let G = Ker(α). By Proposition 2.3.7, we get the

short exact sequence of graded RX-modules

0 −→ G ∧RX

∧m−1
RX

(W ) −→
∧m
RX

(W )
∧m(α)−→

∧m
RX

(V ) −→ 0.

Thus an application of Proposition 2.4.8 implies that

ri(
∧m
RX

(V )) ≤ max
{

ri(
∧m
RX

(W )), ri(G ∧RX

∧m−1
RX

(W ))
}

≤ max
{
rX + δ, ri(G) + δ − δd−m+1

}
≤ max

{
rX + δ + δd − δd−m+1, ri(V ) + δ − δd−m+1

}
.

Here the last inequality follows from the fact that ri(G) ≤ max{rX + δd, ri(V )}.

In the remainder of this section, we consider a special class of 0-dimensional sub-

schemes of Pn, namely finite sets of K-rational points in Pn. Let X = {P1, . . . , Ps} be a

set of s-distinct K-rational points in Pn. Note that we always assume Pj /∈ Z+(X0) for

all j = 1, . . . , s. This allows us to write Pj = (1 : pj1 : · · · : pjn) with pj1, . . . , pjn ∈ K
for j= 1, . . . , s. We let ℘j be the associated homogeneous prime ideal of the point Pj.

Then the homogeneous vanishing ideal of X is given by IX = ℘1 ∩ · · · ∩ ℘s ⊆ S.

For f ∈ RX and j ∈ {1, . . . , s}, we write f(Pj) := F (1, pj1, . . . , pjn), where F is any

representative of f in S. The element f ∈ (RX)rX is called a separator of X \ {Pj}
in X if f(Pj) 6= 0 and f(Pk) = 0 for all k 6= j. A separator fj ∈ (RX)rX of X \ {Pj}
in X is called the normal separator if fj(Pk) = δjk for all 1 ≤ k ≤ s.

In the following proposition we collect some properties of separators of a finite set

of reduced K-rational points in Pn (cf. [GKR, Propositions 1.13 and 1.14].).
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Proposition 2.4.11. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points, and let fj be a normal separator of X \ {Pj} in X for all j = 1, . . . , s.

(i) There is an index j ∈ {1, . . . , s} such that x0 - fj.

(ii) For every i ≥ rX, the set {xi−rX0 f1, . . . , x
i−rX
0 fs} is a K-basis of (RX)i.

(iii) If g ∈ (RX)i for some i ≥ 0 and c1x
k
0f1 + · · ·+ csx

k
0fs ∈ (RX)k+rX for some k ≥ 0

and c1, . . . , cs ∈ K, we have

g · (c1x
k
0f1 + · · ·+ csx

k
0fs) = c1g(P1)xi+k0 f1 + · · ·+ csg(Ps)x

i+k
0 fs.

In particular, we have fjfk = δjkx
rX
0 fj for all j, k ∈ {1, . . . , s}.



Chapter 3
Kähler Differential Algebras

In this chapter we investigate Kähler differential algebras and their Hilbert functions

for finitely generated graded algebras. In particular, we look more closely at them for

0-dimensional schemes in the projective n-space Pn.

The chapter contains four sections. In Section 3.1 we study the module of Kähler

differential 1-forms Ω1
R/Ro

of an algebraR/Ro. We first recall the definition of Ω1
R/Ro

and

present some basic results on it (see Proposition 3.1.5 and Corollary 3.1.6). When Ro is

a standard graded algebra over a field K and R = S/I, where S = Ro[X0, . . . , Xn] and

I is a homogeneous ideal of S, we give a short exact sequence of graded R-module Ω1
R/Ro

(see Corollary 3.1.7). Moreover, we also show how to compute the Hilbert function

of Ω1
R/Ro

in this case (see Proposition 3.1.9).

The Kähler differential algebra of an algebra R/Ro is introduced in Section 3.2.

We use the exterior algebra to define the Kähler differential algebra ΩR/Ro of R/Ro.

If R/Ro is an N-graded algebra, we indicate that ΩR/Ro has a natural structure of a

bi-graded algebra (see Proposition 3.2.4). Also, we give a presentation of the module

of Kähler differential m-forms of a graded algebra R/Ro, where R = S/I, where S/Ro

is a graded algebra, and where I is a homogeneous ideal of S (see Proposition 3.2.11).

Furthermore, we examine algorithms for the computation of Ωm
R/Ro

and its Hilbert

function (see Proposition 3.2.14 and Corollary 3.2.17).

In next sections, we restrict our attention to Kähler differential algebras for

0-dimensional schemes X ⊆ Pn. Section 3.3 is concerned with relations between the

Kähler differential algebras of RX/K and of RX/K[x0], where RX is the homogeneous

coordinate ring of X. We first present connections between Ω1
RX/K

and Ω1
RX/K[x0] and

their Hilbert functions (see Proposition 3.3.1 and Corollary 3.3.2). Then we establish

a connection between Ωm
RX/K

and Ωm
RX/K[x0] for m ≥ 1 (see Proposition 3.3.3) and de-

scribe their Hilbert functions (see Lemma 3.3.7 and Proposition 3.3.8). In the case
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n = 1 it is easy to determine the regularity indices of Ωm
RX/K

and Ωm
RX/K[x0]. However,

it is hard to determine them in the general case, so we try to give a sharp bound (see

Proposition 3.3.11).

In the last section 3.4 we consider the Kähler differential algebras for a special class

of 0-dimensional schemes in Pn, namely finite sets of K-rational points of Pn. Given

a finite set of distinct K-rational points X ⊆ Pn, we describe the Hilbert polynomials

of Ωm
RX/K

and Ωm
RX/K[x0] and bound their regularity indices (see Proposition 3.4.1 and

Corollary 3.4.3). Also, we show that AX has rank %X = m if and only if Ωm
RX/K

6= 〈0〉
and Ωm+1

RX/K
= 〈0〉 (see Proposition 3.4.7). Finally, we apply the Hilbert function of

Kähler differential algebra ΩRX/K to characterize some configurations of a set of distinct

K-rational points X ⊆ Pn (see Proposition 3.4.7 and Corollary 3.4.20).

The techniques we use in the first and second section are mainly inspired by the

work on Kähler differentials of E. Kunz [Kun] and the results of [AKR]. The material

of the last two sections is based on the work of G. Dominicis and M. Kreuzer [DK].

3.1 Modules of Kähler Differential 1-Forms of Al-

gebras

Let Ro be a ring and let R/Ro be an algebra. The ring R⊗RoR can be considered as an

R-module by defining the product r · (
∑

i ai⊗ bi) = (1⊗ r) · (
∑

i ai⊗ bi) for r ∈ R and∑
i ai⊗bi ∈ R⊗RoR. Let J denote the kernel of the multiplication map µ : R⊗RoR→ R

given by µ(r1 ⊗ r2) = r1r2 for r1, r2 ∈ R. For an element
∑

i ri ⊗ ti ∈ J , we see

that
∑

i riti = 0 and
∑

i ri ⊗ ti =
∑

i(1 ⊗ ti)(ri ⊗ 1 − 1 ⊗ ri) −
∑

i 1 ⊗ (tiri) =∑
i(1⊗ ti)(ri ⊗ 1− 1⊗ ri). This implies that J is the R-module generated by the set

{r ⊗ 1− 1⊗ r | r ∈ R}.
The mapping dR/Ro which is defined by dR/Ro : R→ J/J2, r 7→ r⊗1−1⊗ r+J2, is

Ro-linear. Moreover, dR/Ro satisfies the Leibniz rule, i.e. for every elements r1, r2 ∈ R,

we have

dR/Ro(r1r2) = r1r2 ⊗ 1− 1⊗ r1r2 + J2

= (r2 ⊗ 1− 1⊗ r2)(r1 ⊗ 1− 1⊗ r1)+

(1⊗ r2)(r1 ⊗ 1− 1⊗ r1) + (1⊗ r1)(r2 ⊗ 1− 1⊗ r2) + J2

= (1⊗ r2)(r1 ⊗ 1− 1⊗ r1) + (1⊗ r1)(r2 ⊗ 1− 1⊗ r2) + J2

= r2dR/Ror1 + r1dR/Ror2.

Thus the mapping dR/Ro is an Ro-derivation of R into J/J2.
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Definition 3.1.1. Let M be an R-module. An Ro-derivation d : R → M is called

universal if for every derivation δ : R → N of R into an R-module N , there is one

and only one linear mapping ` : M → N with δ = ` ◦ d.

If d1 : R → M1 and d2 : R → M2 are universal derivations of the algebra R/Ro

then by the universal property, there is a unique R-linear map ` : M1 →M2 such that

d2 = ` ◦ d1, and ` is an isomorphism. So, we can say that there is exactly one universal

derivation of R/Ro up to isomorphism. The existence of a universal derivation of R/Ro

is provided by the following proposition (cf. [Kun, Section 1]).

Proposition 3.1.2. The derivation dR/Ro : R → J/J2, r 7→ r ⊗ 1 − 1 ⊗ r + J2, is

universal.

Definition 3.1.3. If d : R→M is a universal derivation ofR/Ro then theR-moduleM

which is unique up to isomorphism is denoted by Ω1
R/Ro

and is called the module of

Kähler differential 1-forms of R/Ro.

When R/Ro is a graded algebra, the ring R⊗Ro R is a graded ring by the grading

(R ⊗Ro R)i = ⊕ij=0(Rj ⊗ Ri−j). The kernel J of the canonical multiplication map

µ : R⊗Ro R→ R given by r1⊗ r2 7→ r1r2 is therefore a homogeneous ideal of R⊗Ro R.

Thus the module of Kähler differential 1-forms Ω1
R/Ro

is a graded R-module. If r ∈ Ri

is a homogeneous element of degree i in R, then dR/Ror is a homogeneous element of

degree i in Ω1
R/Ro

as well.

Let us illustrate the concept of module of Kähler differential 1-forms with the

simplest case R = Ro[X0, . . . , Xn].

Example 3.1.4. Let Ro be a ring, and let S = Ro[X0, . . . , Xn] be the polynomial

ring in n + 1 indeterminates over Ro. Let J be the kernel of the multiplication map

µ : S ⊗Ro S → S defined by F ⊗G 7→ FG. The derivation dS/Ro : S → Ω1
S/Ro

= J/J2

given by dS/RoF = F ⊗ 1− 1⊗F + J2 for F ∈ S is a universal derivation of S/Ro. Let

us show that Ω1
S/Ro

is a free S-module with a basis {dS/RoX0, . . . , dS/RoXn}. Therefore

we deduce immediately that if Ro = K is a field then the Hilbert function of Ω1
S/Ro

is

HFΩ1
S/Ro

(i) = (n+ 1)
(
n+i−1
n

)
for i ∈ Z.

First we check that the set {dS/RoX0, . . . , dS/RoXn} generates the S-module Ω1
S/Ro

.

For two elements F,G ∈ S, we have

FG⊗ 1− 1⊗ FG+ J2 = F (G⊗ 1− 1⊗G) +G(F ⊗ 1− 1⊗ F ) + J2.
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By repeating this process, we see that the set {dS/RoX0, . . . , dS/RoXn} is a generating

set of the module of Kähler differential 1-forms Ω1
S/Ro

.

Second we use the universal property of the derivation dS/Ro to indicate that

Ω1
S/Ro

∼= Sn+1. Let v0, . . . , vn be an S-basis of a free S-module M = Sv0 ⊕ · · · ⊕ Svn.

The mapping

d : S −→M, F 7−→
n∑
i=0

∂F
∂Xi

vi,

where ∂F/∂Xi is the formal derivative of a polynomial F at the indeterminate Xi, is an

Ro-derivation of S into M . Also, for an S-module N and an Ro-derivation δ : S → N ,

there is one and only one map δ̃ : M → N, vi 7→ δ(Xi) such that δ = δ̃ ◦ d. So, we have

d is a universal derivation of S/Ro. Hence, by the universal property of the module

of Kähler differential 1-forms Ω1
S/Ro

we have Ω1
S/Ro

∼= Sn+1, and a basis of Ω1
S/Ro

is

{dS/RoX0, . . . , dS/RoXn}.

Let S/Ro be an arbitrary algebra, and let I be an ideal of S. The residual

class ring R = S/I is an Ro-algebra. In general, the module of Kähler differential

1-forms of R/Ro is not a free R-module (see Example 3.1.10). However, we can

study Ω1
R/Ro

via its presentation. Let dS/Ro and dR/Ro be universal derivations of

the algebras S/Ro and R/Ro, respectively. We let π denote the canonical projection

from S to R. Then the map π induces the mapping θ : Ω1
S/Ro

→ Ω1
R/Ro

given by

θ(
∑

i FidS/RoGi) =
∑

i(Fi + I)dR/Ro(Gi + I). We denote by 〈dS/RoI〉S the S-module

generated by {dS/RoF | F ∈ I}. It is clear that θ(〈dS/RoI〉S) = 0. Additionally,

〈dS/RoI〉S is an S-submodule of Ω1
S/Ro

containing IΩ1
S/Ro

, since for F ∈ S and G ∈ I
we have GdS/RoF = FdS/RoG−dS/Ro(FG) ∈ 〈dS/RoI〉S and Ω1

S/Ro
= 〈dS/RoF | F ∈ S〉S.

Proposition 3.1.5. Using the notation as above, we have Ker(θ) = 〈dS/RoI〉S.

Proof. Fist we note that Ω1
S/Ro

/〈dS/RoI〉S is an R-module via the multiplication

(F + I) · (dS/RoG+ 〈dS/RoI〉S) = FdS/RoG+ 〈dS/RoI〉S

for all F,G ∈ S. Let d1 : R → Ω1
S/Ro

/〈dS/RoI〉S be the map defined by d1(F + I) =

dS/RoF + 〈dS/RoI〉S. Let us show that d1 is a derivation of R into Ω1
S/Ro

/〈dS/RoI〉S
makes the diagram

S //

dS/Ro
��

S/I = R

d1
��

Ω1
S/Ro

// Ω1
S/Ro

/〈dS/RoI〉S
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commutative. It is clear that d1 is well-defined. For F,G ∈ S, we have d1(FG + I) =

dS/Ro(FG) + 〈dS/RoI〉S = FdS/RoG+GdS/RoF + 〈dS/RoI〉S = Fd1(G+ I) +Gd1(F + I).

Since dS/Ro is Ro-linear, so is d1. Hence d1 is a derivation of R into Ω1
S/Ro

/〈dS/RoI〉S.

Consequently, the diagram is commutative.

Now we prove that the derivation d1 : R → Ω1
S/Ro

/〈dS/RoI〉S is universal. For this,

let N be an R-module such that there is a derivation d2 : R→ N . Then we can check

that d2 ◦ π : S → N is a derivation of S/Ro. By the universal property of Ω1
S/Ro

, there

is a unique S-linear map φ̃ : Ω1
S/Ro

→ N such that d2 ◦ π = φ̃ ◦ dS/Ro . For F ∈ I,

we have φ̃(dS/RoF ) = φ̃ ◦ dS/Ro(F ) = d2 ◦ π(F ) = 0. It follows that φ̃ factors through

Ω1
S/Ro

/〈dS/RoI〉S, i.e. there is an S-linear map φ : Ω1
S/Ro

/〈dS/RoI〉S → N such that

φ̃ = φ◦π̃, where π̃ is the canonical projection from Ω1
S/Ro

to Ω1
S/Ro

/〈dS/RoI〉S. Moreover,

the map φ is an R-linear map which satisfies (φ◦d1)(F +I) = φ(dS/RoF + 〈dS/RoI〉S) =

d2(F + I) for all F ∈ S. In other words, we have φ ◦ d1 = d2.

Suppose that there is another R-linear map φ′ : Ω1
S/Ro

/〈dS/RoI〉S → N such that

φ′ ◦ d1 = d2. Then we have the commutative diagram

S
π //

dS/Ro
��

S/I = R

d1
��

d2

!!
Ω1
S/Ro

π̃ // Ω1
S/Ro

/〈dS/RoI〉S
φ

φ′
// N

From this we deduce φ′ ◦ π̃ = φ ◦ π̃, and so φ′ = φ (as π̃ is surjective). Thus d1 is

a universal derivation of R/Ro. Consequently, we have Ω1
R/Ro

= Ω1
S/Ro

/〈dS/RoI〉S, and

hence Ker(θ)=Ker(π̃)=〈dS/RoI〉S, as we wanted to show.

If R = S/I, where I is an ideal of S = Ro[X0, . . . , Xn] and dS/Ro : S → Ω1
S/Ro

is the

universal derivation of S/Ro, then by Example 3.1.4 and Proposition 3.1.5, we have

Ω1
S/Ro

= SdS/RoX0 ⊕ · · · ⊕ SdS/RoXn, and the presentation of the module of Kähler

differential Ω1
R/Ro

is Ω1
R/Ro

= SdS/RoX0 ⊕ · · · ⊕ SdS/RoXn/〈dS/RoI〉S. In this case, we

can explicitly describe a system of generators of 〈dS/RoI〉S as follows.

Corollary 3.1.6. Let S be the polynomial ring Ro[X0, . . . , Xn] and let {F1, . . . , Ft} be

a system of generators of a given ideal I of S. Let dS/Ro be the universal derivation

of S/Ro. Then the set

{dS/RoF1, . . . , dS/RoFt, F1dS/RoX0, . . . , F1dS/RoXn, . . . , FtdS/RoX0, . . . , FtdS/RoXn}

is a system of generators of the S-module 〈dS/RoI〉S.
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Proof. It is clear that dS/RoFi ∈ 〈dS/RoI〉S and FidS/RoXj = dS/Ro(FiXj)−XjdS/RoFi ∈
〈dS/RoI〉S for i = 1, . . . , t and j = 0, . . . , n. Let F ∈ I = 〈F1, . . . , Ft〉S. Then there are

G1, . . . , Gt ∈ S such that F =
∑t

i=1 FiGi. By the Leibniz rule applied to the deriva-

tion dS/Ro , we get dS/RoF = dS/Ro(
∑t

i=1 FiGi) =
∑t

i=1 FidS/RoGi +
∑t

i=1GidS/RoFi.

Moreover, we have dS/RoGi =
∑n

k=0
∂Gi
∂Xk

dS/RoXk. Thus we get

dS/RoF =
t∑
i=1

n∑
k=0

∂Gi
∂Xk

FidS/RoXk +
t∑
i=1

GidS/RoFi

Hence the conclusion follows.

Now we turn our attention to graded algebras. In what follows Ro denotes a stan-

dard graded algebra over a field K. Let S = Ro[X0, . . . , Xn] be the graded polynomial

ring over Ro with deg(X0) = · · · = deg(Xn) = 1, and let I be a homogenous ideal of S.

By R we denote the residual class ring S/I. We set G = 〈(∂F/∂x0, . . . , ∂F/∂xn) ∈
Rn+1 | F ∈ I〉R.

Corollary 3.1.7. The sequence of graded R-modules

0 −→ G(−1) −→ Rn+1(−1) −→ Ω1
R/Ro −→ 0

is exact.

Proof. It follows immediately from Proposition 3.1.5 that

Ω1
R/Ro = Ω1

S/Ro/〈dS/RoI〉S = Ω1
S/Ro/(〈dS/RoI〉S + IΩ1

S/Ro)

= (Ω1
S/Ro/IΩ1

S/Ro)/((〈dS/RoI〉S + IΩ1
S/Ro)/IΩ1

S/Ro)
(∗)

Since Ω1
S/Ro

= SdS/RoX0 ⊕ · · · ⊕ SdS/RoXn, we get the presentation Ω1
S/Ro

/IΩ1
S/Ro

=

Re0⊕· · ·⊕Ren, where ei is of degree 1. Thus we conclude from Corollary 3.1.6 and (∗)
that the sequence of graded R-modules

0 −→ G(−1) −→ Rn+1(−1) −→ Ω1
R/Ro −→ 0

is exact.

Similar to Proposition 1.8 of [DK] we get the similar properties of the structure of

the module G.

Proposition 3.1.8. (i) For every i ∈ N, we have

Gi = { (∂F/∂x0, . . . , ∂F/∂xn) ∈ Rn+1 | F ∈ Ii+1 }.
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(ii) If {F1, . . . , Ft} is a minimal homogeneous system of generators of I, then the

set {(∂Fj/∂x0, . . . , ∂Fj/∂xn) ∈ Rn+1 | 1 ≤ j ≤ t} is a minimal homogeneous

system of generators of the R-module G.

At this point we can write an algorithm for computing the Hilbert function of

the graded R-module Ω1
R/Ro

. This algorithm is based on the presentation Ω1
R/Ro

=

Ω1
S/Ro

/〈dS/RoI〉S.

Proposition 3.1.9. (Computation of the Hilbert function of Ω1
R/Ro

)

Let K be a field, let Ro = K[Y0, . . . , Ym], and let S = Ro[X0, . . . , Xn] be the polynomial

ring over Ro with deg(Yj) = deg(Xi) = 1 for j = 0, ...,m, for i = 0, . . . , n. Let I be a

homogeneous ideal of S given by a set of homogeneous generators {F1, . . . , Ft}, and let

R = S/I. Consider the following sequence of instructions.

1) Compute a minimal homogeneous system of generators L of I by Buchberger’s

Algorithm with Minimalization (see [KR2, Theorem 4.6.3]).

2) Form ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Sn+1 for i = 0, . . . , n + 1, and compute the set

L′ = {
∑n

i=0 ∂F/∂Xiei ∈ Sn+1 | F ∈ L }.

3) Form the graded S-submodule N of the graded-free S-module Sn+1 which is gen-

erated by L′ ∪ {Gej | G ∈ L, 0 ≤ j ≤ n}, and compute the quotient module

M = Sn+1/N .

4) Compute the Hilbert function and the regularity index of the module M , and

return the Hilbert function of Ω1
R/Ro

.

This algorithm computes the Hilbert function of the module of Kähler differential

1-forms Ω1
R/Ro

.

Proof. The correctness of this algorithm follows from Proposition 3.1.5 and Corol-

lary 3.1.6. Note that Ω1
S/Ro

∼= Sn+1(−1), and 〈dS/RoI〉S ∼= N(−1) hence we get

HFΩ1
R/Ro

(i) = 0 for i ≤ 0 and HFΩ1
R/Ro

(i) = HFSn+1/N(i − 1) for 1 ≤ i ≤ ri(Sn+1/N),

and HFΩ1
R/Ro

(i) = HPSn+1/N(i − 1) for all i ≥ ri(Sn+1/N) + 1. The finiteness of this

algorithm is clear.

Let us apply Proposition 3.1.9 to some concrete cases.
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Example 3.1.10. (i) Consider the homogeneous ideal I = 〈X3
0 − X2

1X2〉 of the

polynomial ring S = Q[X0, X1, X2]. Let R = S/I. Then the Hilbert function

of Ω1
R/Q is

HFΩ1
R/Q

: 0 3 9 17 6t+ 6 for t ≥ 3.

(ii) Consider the ideal I =
⋂6
i=1 ℘i in S = Q[X0, . . . , X3], where ℘1 = 〈X1, X2, X3〉2,

℘2 = 〈X1 − X0, X2, X3〉, ℘3 = 〈X1, X2 − X0, X3〉, ℘4 = 〈X1, X2, X3 − X0〉,
℘5 = 〈X1−2X0, X2−X0, X3−10X0〉, and where ℘6 = 〈X1−X0, X2−X0, X3−X0〉.
Note that the ideal I is the homogeneous vanishing ideal of a 0-dimensional

scheme whose support is in general position. The residual class ring R = S/I is

not only a Q-algebra but also a Q[x0]-algebra, where x0 is the image of X0 in R.

We have HFR : 1 4 9 9 . . . . By applying Proposition 3.1.9, the Hilbert functions

of Ω1
R/Q and Ω1

R/Q[x0] are computed as follows:

HFΩ1
R/Q

: 0 4 15 25 15 15 . . .

HFΩ1
R/Q[x0]

: 0 3 11 16 6 6 . . .

Since the Hilbert polynomials of Ω1
R/Q and of Ω1

R/Q[x0] are not multiples of the

Hilbert polynomial of R, we have neither the R-module Ω1
R/Q nor the R-module

Ω1
R/Q[x0] is a free R-module.

We end this section with a relation between modules of Kähler differential 1-forms.

Let I ⊆ J be homogeneous ideals of S. We denote the residual class rings S/I and

S/J by RI and RJ , respectively. Let % : RI → RJ be the canonical surjection given by

%(F + I) = F +J for all F ∈ S. We observe that the graded RJ - module Ω1
RJ/K

can be

considered as an RI-module via %, i.e. the multiplication defined by f(g1dRJ/Kg2) :=

%(f)g1dRJ/Kg2 for f ∈ RI and g1, g2 ∈ RJ . Then the canonical projection % induces an

RI-homomorphism of graded modules of Kähler differential 1-forms

γ : Ω1
RI/K

−→ Ω1
RJ/K

, fdRI/Kg 7→ %(f)dRJ/K%(g).

Lemma 3.1.11. The homomorphism γ is an RI-module epimorphism.

Proof. The surjective property of γ follows from that one of % since every element of

Ω1
RJ/K

is of the form dRJ/Kh for h ∈ RJ .

The preceding proposition induces immediately the following inequality, which will

be used in Section 3.4.

Corollary 3.1.12. For all i ∈ N we have HFΩ1
RI/K

(i) ≥ HFΩ1
RJ/K

(i).
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3.2 Kähler Differential Algebras

Let R/Ro be an algebra, and let Ω1
R/Ro

be the module of Kähler differential 1-forms

with the universal derivation d.

Definition 3.2.1. The exterior algebra
∧
R(Ω1

R/Ro
) of the R-module of Kähler dif-

ferential 1-forms over R is called the Kähler differential algebra of R/Ro and is

denoted by ΩR/Ro . The m-th exterior power of Ω1
R/Ro

over R is called the module of

Kähler differential m-forms of R/Ro and is denoted by Ωm
R/Ro

.

From the definition of the exterior power we see that ΩR/Ro =
⊕

m∈N Ωm
R/Ro

. Let us

collect some basic properties of Kähler differential algebras (cf. [Kun, 2.2]).

Proposition 3.2.2. (i) The restriction d : R → Ω1
R/Ro

of the differentiation d to

elements of degree zero is a derivation of R/Ro.

(ii) For all f, f ′ ∈ R, we have df ∧ df ′ + df ′ ∧ df = 0.

(iii) If ω =
∑
f0df1 ∧ · · · ∧ dfm ∈ ΩR/Ro, then dω =

∑
df0 ∧ df1 ∧ · · · ∧ dfm.

(iv) The Kähler differential algebra ΩR/Ro is anti-commutative, i.e. for ωm ∈ Ωm
R/Ro

and ωn ∈ Ωn
R/Ro

we have ωm ∧ ωn = (−1)mnωn ∧ ωm ∈ Ωm+n
R/Ro

.

(v) The map d is an anti-derivation, i.e. for ωm ∈ Ωm
R/Ro

and ω ∈ ΩR/Ro we have

d(ωm ∧ ω) = dωm ∧ ω + (−1)mωmdω.

Recall that the module of Kähler differential 1-forms Ω1
R/Ro

of a graded algebra

R/Ro is a graded R-module. Hence for m ∈ N, the Kähler differential m-forms Ωm
R/Ro

is also a graded R-module. In the analogy with the definition of grading on Ωm
R/Ro

, we

can now define the grading on the Kähler algebra ΩR/Ro .

Definition 3.2.3. Let R be a graded ring. An R-algebra Ω is called bi-graded if there

exists a family of R-modules Ωm and a family of subgroups Ωm,p ⊆ Ωm for m, p ∈ N
such that the following conditions are satisfied:

(i) Ωm =
⊕

p∈N Ωm,p.

(ii) Ωm,p · Ωm′,p′ ⊆ Ωm+m′,p+p′ for all m,m′, p, p′ ∈ N.

(iii) Ω0,p = Rp for all p ∈ N.

Proposition 3.2.4. Let Ro be an N-graded ring and let R/Ro be an N-graded algebra.

The Kähler differential algebra ΩR/Ro has a natural structure of a bi-graded R-algebra.
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Proof. The Kähler differential algebra ΩR/Ro has the presentation

ΩR/Ro =
⊕
m∈N

Ωm
R/Ro =

⊕
m∈N

RdR ∧ dR ∧ · · · ∧ dR︸ ︷︷ ︸
m−times

.

For every m, p ∈ N, we set

Ωm,p
R/Ro

=
∑

p0+···+pm=p

Rp0dRp1 ∧ · · · ∧ dRpm .

Since the derivation d is an Ro-linear map, this implies that Ωm,p
R/Ro

is a subgroup of the

module of Kähler differential m-forms Ωm
R/Ro

. Additionally, we have Ω0,p
R/Ro

= Rp.

Suppose that there are natural numbers m, p,m′, p′ such that Ωm,p
R/Ro
∩Ωm′,p′

R/Ro
6= {0}.

Let ω be a non-zero element of Ωm,p
R/Ro
∩Ωm′,p′

R/Ro
. Clearly, we have ω ∈ Ωm

R/Ro
∩Ωm′

R/Ro
, and

therefore we get m = m′. Moreover, the module of Kähler differential m-forms Ωm
R/Ro

is a residue class module of the graded R-module
⊗m

i=1 Ω1
R/Ro

. So we get p = p′ by

the definition of Ωm,p
R/Ro

. Hence we have Ωm
R/Ro

=
⊕

p∈N Ωm,p
R/Ro

. Furthermore, using the

grading induced by Ω1
R/Ro

on the tensor product and the fact that

Ωm
R/Ro · Ω

m′

R/Ro = Ωm
R/Ro ∧R Ωm′

R/Ro ⊆ Ωm+m′

R/Ro
,

we obtain Ωm,p
R/Ro

· Ωm′,p′

R/Ro
⊆ Ωm+m′,p+p′

R/Ro
, and the conclusion follows.

For m, p ∈ N, each element of the group Ωm,p
R/Ro

is a finite sum of elements of the form

fodf1∧· · ·∧dfm, where fo, . . . , fm ∈ R are homogeneous such that
∑m

i=0 deg(fi) = p. In

particular, for a graded K-algebra Ro and a graded algebra R/Ro, the group Ωm,p
R/Ro

is a

finite dimensional K-vector space. The Hilbert function of the bi-graded R-algebra

ΩR/Ro is defined by

HFΩR/Ro
(m, p) = dimK(Ωm,p

R/Ro
) = HFΩm

R/Ro
(p)

for all (m, p) ∈ N2.

Let us search for the Hilbert function of Kähler differential algebra in an easy case.

Proposition 3.2.5. Let S = Ro[X0, . . . , Xn] be a standard graded polynomial ring

over Ro. Then for 1 ≤ m ≤ n+ 1 and p ∈ Z we have

HFΩS/Ro
(m, p) =

(
n+1
m

)
HFS(p−m).

In particular, if Ro = K then HFΩS/K (m, p) =
(
n+1
m

)(
n+p−m

n

)
.

To prove this proposition, we use the following property.
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Proposition 3.2.6. Let S = Ro[X0, . . . , Xn] be a standard graded polynomial ring

over Ro. Then the module of Kähler differential m-forms Ωm
S/Ro

is a S-free module of

rank
(
n+1
m

)
.

Proof. As we computed in Example 3.1.4, the module Ω1
S/Ro

is a S-free module with

basis {dX0, . . . , dXn}. According to Satz 83.4 of [SS], for every m ∈ N, the module of

Kähler differential m-forms Ωm
S/Ro

is a S-free module with basis {dXi1∧· · ·∧dXim | 0 ≤
i1 < · · · < im ≤ n}. Hence, Ωm

S/Ro
is a free S-module of rank

(
n+1
m

)
as we wished.

Proof of Proposition 3.2.5. By Proposition 3.2.6, the module of Kähler differential

m-forms Ωm
S/Ro

is a S-free module with basis {dXi1 ∧ · · · ∧ dXim | 0 ≤ i1 < · · · <
im ≤ n}. By Lemma 2.3.3, we have Ωk

S/Ro
= 0 for all k > n + 1. Let 0 ≤ m ≤ n + 1

and p ∈ N. Thus the Hilbert function of Kähler differential algebra ΩS/Ro at degree

(m, p) is

HFΩS/Ro
(m, p) = dimK Ωm,p

S/Ro
=
(
n+1
m

)
HFS(p−m).

In particular, if Ro = K then HFΩS/K (m, p) =
(
n+1
m

)
HFS(p−m) =

(
n+1
m

)(
n+p−m

n

)
.

Notice that, given a graded residue ring R = S/I, the module of Kähler differential

m-forms Ωm
R/K = 0 for m > n+ 1. Thus we have ΩR/K = ⊕n+1

i=0 Ωi
R/K . A relation of the

modules Ωm
R/K for 0 ≤ m ≤ n+ 1 is provided by our next proposition.

Proposition 3.2.7. Let S = K[X0, . . . , Xn] be a standard graded polynomial ring

over K, let I be a homogeneous ideal of S, and let R = S/I. We let m = 〈x0, . . . , xn〉 be

the homogeneous maximal ideal of R, where xi is the image of Xi in R for i = 0, . . . , n.

Then we have a homogeneous exact sequence of graded R-modules

0 −→ Ωn+1
R/K

γ−→ Ωn
R/K

γ−→ · · · γ−→ Ω1
R/K

γ−→ m −→ 0 (3.1)

where γ(dxi1 ∧ · · · ∧ dxim) =
∑m

j=1(−1)j+1xijdxi1 ∧ · · · ∧ dxij−1
∧ dxij+1

∧ · · · ∧ dxim for

0 ≤ i1 < · · · < im ≤ n.

Proof. First we notice that Ωm
R/K is a graded R-module generated by the homogeneous

system {dxi1∧· · ·∧dxim | 0 ≤ i0 < · · · < im ≤ n} and that Ωk
R/K = 0 for all k > n+1.

Also, it is not hard to verify that the mapping γ : Ωm
R/K → Ωm−1

R/K is a homogeneous

homomorphism of graded R-modules of degree zero.
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Now we show that γ ◦ γ = 0, i.e. that the sequence (3.1) is a complex. Let

ω = dxi1 ∧ dxi2 ∧ · · · ∧ dxim be an element of Ωm
R/K . Then we have

(γ ◦ γ)(ω) = γ(
m∑
j=1

(−1)j+1xijdxi1 ∧ · · · ∧ dxij−1
∧ dxij+1

∧ · · · ∧ dxim)

=
m∑
j=1

∑
k<j

(−1)j+k+2xikxijdxi1∧· · ·∧dxik−1
∧dxik+1

∧· · ·∧dxij−1
∧dxij+1

∧· · ·∧dxim+

m∑
j=1

∑
k>j

(−1)j+k+1xijxikdxi1∧· · ·∧dxij−1
∧dxij+1

∧· · ·∧dxik−1
∧dxik+1

∧ · · · ∧dxim

= 0.

It remains to show that for each homogeneous element ω =
∑

i fidxi1 ∧ · · · ∧ dxim
in (Ωm

R/K)t+m with γ(ω) = 0 there is a homogeneous element ω̃ ∈ (Ωm+1
R/K)t+m such that

γ(ω̃) = ω. For such an ω, we have

γ(dω) = γ(
∑
i

dfidxi1 ∧ · · · ∧ dxim)

= γ(
∑
i

n∑
j=0

∂fi
∂xj

dxjdxi1 ∧ · · · ∧ dxim)

=
∑
i

n∑
j=0

∂fi
∂xj

xjdxi1∧· · ·∧dxim+
∑
i

n∑
j=0

m∑
k=1

∂fi
∂xj

xik(−1)kdxj∧dxi1∧· · ·∧d̂xik∧· · ·∧dxim

=
∑
i

tfidxi1 ∧ · · · ∧ dxim +
∑
i

m∑
k=1

xik(−1)kdfi ∧ dxi1 ∧ · · · ∧ d̂xik ∧ · · · ∧ dxim

= tω + d(γ(ω)) = tω.

Thus, by letting ω̃ = 1
t
d(ω), we obtain ω̃ ∈ Ωm+1

R/K and γ(ω̃) = ω, as desired.

Remark 3.2.8. Observe that the exact sequence (3.1) can be applied to compute the

Hilbert function of the bi-graded algebra ΩR/K . In fact, we will use it to compute

HFΩR/K when R is the homogeneous coordinate ring of a 0-dimensional scheme in the

projective plane (see later).

The remaining part of this section is devoted to providing the reader with some

useful properties of Kähler differential algebras. Let R and S be N-graded Ro-algebras,

and let π : S → R be a homogeneous ring epimorphism of degree zero. Furthermore,

let (ΩR/Ro , d) and (ΩS/Ro , d) be the corresponding Kähler differential algebras of R/Ro

and S/Ro, respectively. Then π induces a homogeneous epimorphism of graded Kähler

differential algebras

θ : ΩS/Ro → ΩR/Ro ,
∑
F0dF1 ∧ · · · ∧ dFm 7→

∑
π(F0)d(π(F1)) ∧ · · · ∧ d(π(Fm)).
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In this situation, in order to explicitly describe the kernel Ker(θ) of θ we need only

find the kernel of the restriction of θ on the m-th direct summand of ΩS/Ro for m ∈ N.

The following lemma, which follows immediately from Proposition 2.3.7, gives us an

explicit description of Ker(θ|Ωm
S/Ro

), where m ∈ N.

Lemma 3.2.9. Using the notation introduced above, let α = θ|Ω1
S/Ro

: Ω1
S/Ro

→ Ω1
R/Ro

be the canonical homogeneous epimorphism of graded S-modules of degree zero. We set

H = Ker(α) and H ∧S
∧m−1
S (Ω1

S/Ro
) = 〈v ∧ ω | v ∈ H, ω ∈

∧m−1
S (Ω1

S/Ro
)〉S. Then, for

all m ∈ N, we have a homogeneous exact sequence of graded S-modules

0 −→ H ∧S
∧m−1
S (Ω1

S/Ro) −→
∧m
S (Ω1

S/Ro)
∧m(α)−→

∧m
S (Ω1

R/Ro) −→ 0

where ∧m(α) :
∧m
S (Ω1

S/Ro
) →

∧m
S (Ω1

R/Ro
) is given by ∧m(α)(v1 ∧ · · · ∧ vm) = α(v1) ∧

· · · ∧ α(vm).

Remark 3.2.10. Let us make some observations about Lemma 3.2.9.

(a) If the graded S-module H is generated by homogeneous elements v1, . . . , vp and

the (m − 1)-th exterior power of the graded S-module Ω1
S/Ro

over S is generated by

ω1, . . . , ωq, then H ∧S
∧m−1
S (Ω1

S/Ro
) is generated by {vi ∧ ωj | 1 ≤ i ≤ p; 1 ≤ j ≤ q} as

an S-module.

(b) When Ω1
S/Ro

is a graded-free S-module of rank n + 1 with a basis {e0, . . . , en}
and H = 〈v1, . . . , vp〉S, where vi = Hi0e0 + · · ·+Hinen for i = 1, . . . , p, the S-submodule

H ∧S
∧n
S(Ω1

S/Ro
) of

∧n+1
S (Ω1

S/Ro
) is generated by the set

{Hije0 ∧ e1 ∧ · · · ∧ en | 1 ≤ i ≤ p; 0 ≤ j ≤ n}.

Indeed, we set M = 〈Hije0 ∧ · · · ∧ en | 1 ≤ i ≤ p; 0 ≤ j ≤ n〉S. It follows from

[SS, Satz 83.4] that the n-th exterior power
∧n
S(Ω1

S/Ro
) is a graded-free module of rank

n + 1 with a basis {ε0, . . . , εn} where εj = e0 ∧ · · · ∧ ej−1 ∧ êj ∧ ej+1 ∧ · · · ∧ en for

j = 0, . . . , n. We also see that vi ∧ εj = Hije0 ∧ e1 ∧ · · · ∧ en. So, we get the inclusion

H∧S
∧n−1
S (Ω1

S/Ro
) ⊇M . For the other inclusion, we let

∑
k νk∧ωk ∈ H∧S

∧n−1
S (Ω1

S/Ro
).

By a suitable arrangement, we may assume that νk ∈ H and ωk = εk ∈
∧n−1
S (Ω1

S/Ro
).

Since the S-module H is generated by {v1, . . . , vp}, for each νk there are Gik ∈ S

such that νk =
∑p

i=1Gikvi. Thus we have
∑

k νk ∧ εk =
∑

k(
∑p

i=1Gikvi) ∧ εk =∑
k(
∑p

i=1 Gik(
∑n

j=1Hijej)) ∧ εk =
∑

i,kGikHike1 ∧ · · · ∧ en ∈M .

Proposition 3.2.11. Let S be an N-graded Ro-algebra, let I be a homogeneous ideal

of S, and let R be the residual class ring R = S/I. Then the module of Kähler

differential m-forms Ωm
R/Ro

has the presentation

Ωm
R/Ro = Ωm

S/Ro/(〈dI〉S ∧S Ωm−1
S/Ro

+ IΩm
S/Ro).
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To prove Proposition 3.2.11, we require the following lemma.

Lemma 3.2.12. Let S be an N-graded Ro-algebra, let R/S be an algebra, and let

V be a graded S-module. For all m ∈ N, the universal canonical R-homomorphism

β :
∧m
S (V )⊗SR→

∧m
R (V ⊗SR) given by (v1∧· · ·∧vm)⊗1 7→ (v1⊗1)∧· · ·∧ (vm⊗1),

is a homogeneous isomorphism of R-modules of degree zero.

Proof. We see that the map γ : (
∧m
S (V )) × R →

∧m
R (V ⊗S R) given by γ(v1 ∧ · · · ∧

vm, 1) = (v1 ⊗ 1) ∧ · · · ∧ (vm ⊗ 1) is an S-multilinear map. By the universal property

of tensor product, there is an S-linear map β :
∧m
S (V ) ⊗S R →

∧m
R (V ⊗S R) such

that β ◦ α = γ, where α : (
∧m
S (V ))×R→

∧m
S (V )⊗S R is the canonical S-multilinear

map. Then we deduce β((v1 ∧ · · · ∧ vm)⊗ 1) = (v1 ⊗ 1) ∧ · · · ∧ (vm ⊗ 1). Clearly, the

map β is also an R-module homomorphism and it is homogeneous of degree zero. Now

we check that β is an isomorphism. Since the map θ :
∏m

R (V ⊗S R)→
∧m
S V ⊗S R

defined by (v1 ⊗ 1), · · · , (vm ⊗ 1) 7→ (v1 ∧ · · · ∧ vm) ⊗ 1 for all v1, . . . , vm ∈ V ,

is an R-multilinear map, it follows from the universal property of exterior power that

there is an R-multilinear map ψ :
∧m
R (V ⊗S R)→

∧m
S V ⊗S R such that

ψ((v1 ⊗ 1) ∧ · · · ∧ (vm ⊗ 1)) = (v1 ∧ · · · ∧ vm)⊗ 1.

Observe that α◦ψ = id∧m
R (V⊗SR) and ψ◦α = id∧m

S V⊗SR, therefore the claim follows.

Proof of Proposition 3.2.11. By Proposition 3.1.5, we have 〈dI〉S = 〈IΩ1
S/Ro

, dI〉S and

the homogeneous exact sequence of graded S-modules

0 −→ 〈IΩ1
S/Ro , dI〉S −→ Ω1

S/Ro −→ Ω1
R/Ro −→ 0.

So, an application of Lemma 3.2.9 yields the following homogeneous exact sequence of

graded S-modules

0 −→ 〈IΩ1
S/Ro , dI〉S ∧S Ωm−1

S/Ro
−→ Ωm

S/Ro −→
∧m
S Ω1

R/Ro −→ 0.

Thus we have

(
∧m
S Ω1

R/Ro)⊗S R = (Ωm
S/Ro/〈IΩ1

S/Ro , dI〉S ∧S Ωm−1
S/Ro

)⊗S R

= Ωm
S/Ro/(〈dI〉S ∧S Ωm−1

S/Ro
+ IΩm

S/Ro).

We can consider R as an S-algebra. By applying Lemma 3.2.12, we then get

(
∧m
S Ω1

R/Ro)⊗S R =
∧m
RΩ1

R/Ro = Ωm
R/Ro .

Hence a presentation of the module of Kähler differential m-forms Ωm
R/Ro

is given by

Ωm
R/Ro

= Ωm
S/Ro

/(〈dI〉S ∧S Ωm−1
S/Ro

+ IΩm
S/Ro

).
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Corollary 3.2.13. Let I be a homogeneous ideal of S = Ro[X1, . . . , Xn] generated by

the set {F1, . . . , Ft}, and let R = S/I. Let {εj | 1 ≤ j ≤
(
n+1
m−1

)
} and {ε̃k | 1 ≤ k ≤(

n+1
m

)
} be the canonical bases of the modules of Kähler differential Ωm−1

S/Ro
and Ωm

S/Ro
,

respectively. Then we have

〈dI + IΩ1
S/Ro〉S ∧S Ωm−1

S/Ro
= 〈Fj ε̃k, dFj ∧ εl | 1 ≤ j ≤ t; 1 ≤ l ≤

(
n+1
m−1

)
; 1 ≤ k ≤

(
n+1
m

)
〉S.

Proof. According to Corollary 3.1.6, we have the S-module 〈dI〉S is generated by the

set {FjdXi, dFl | 1 ≤ j, l ≤ t; 0 ≤ i ≤ n}. Notice that IΩ1
S/Ro

⊆ 〈dI〉S. Moreover, an

element of the S-module 〈dI+IΩ1
S/Ro
〉S∧SΩm−1

S/Ro
is of the form (

∑n
i=0

∑t
j=1GijFjdXi+∑t

j=1HjdFj) ∧ εk =
∑n

i=0

∑j
j=1GijFjdXi ∧ εk +

∑t
j=1 HjdFj ∧ εk, where Gij, Hj ∈ S.

It follows that 〈dI + IΩ1
S/Ro
〉S ∧S Ωm−1

S/Ro
= 〈Fj ε̃k, dFj ∧ εl | 1 ≤ j ≤ t; 1 ≤ l ≤

(
n+1
m−1

)
; 1 ≤

k ≤
(
n+1
m

)
〉S.

Based on the presentation of the module of Kähler differential m-forms Ωm
R/Ro

given

in Proposition 3.2.11, we can describe how to compute Ωm
R/Ro

as well as its Hilbert

function as follows.

Proposition 3.2.14. (Computation of Ωm
R/Ro

and its Hilbert function)

Let Ro be a standard graded K-algebra, let S = Ro[X0, . . . , Xn] be the graded polyno-

mial ring over Ro with deg(Xi) = 1, let I be a homogeneous ideal of S generated by

{F1, . . . , Ft}, let R = S/I, and let 1 ≤ m ≤ n + 1. Consider the following sequence of

instructions.

1) Compute a minimal homogeneous system of generators L of I by Buchberger’s

Algorithm with Minimalization (see [KR2, Theorem 4.6.3]).

2) Form the polynomial ring T = S[e0, . . . , en] = Ro[X0, . . . , Xn, e0, . . . , en] and com-

pute the set L′ = {
∑n

i=0 ∂F/∂Xiei | F ∈ L }.

3) Compute the canonical basis Vm−1 = {ej1 ∧ · · · ∧ ejm−1 | 0 ≤ j1 < · · · < jm−1 ≤ n}
of the free S-module Ωm−1

S/Ro
and the set

W1 = {
∑n

i=0∂F/∂Xiei ∧ ej1 ∧ · · · ∧ ejm−1 | F ∈ L, 0 ≤ j1 < · · · < jm−1 ≤ n}.

4) Compute the canonical basis Vm = {ej1 ∧ · · · ∧ ejm | 0 ≤ j1 < · · · < jm ≤ n} of

the free S-module Ωm
S/Ro

and the set

W2 = {F ∧ ej1 ∧ · · · ∧ ejm | F ∈ L, 0 ≤ j1 < · · · < jm ≤ n}.
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5) Form the canonical basis {εi = (0, . . . , 0, 1, 0, . . . , 0) ∈ S(n+1
m ) | 1 ≤ i ≤

(
n+1
m

)
} of

the graded-free S-module S(n+1
m ), and take the image W of W1 ∪W2 in S(n+1

m ) via

the isomorphism Ωm
S/Ro
∼= S(n+1

m ).

5) Compute the graded S-submodule N = 〈W 〉S of S(n+1
m ) and the residue class

module Ñ = S(n+1
m )/N .

6) Compute the regularity index of the module Ñ and return Ñ and its Hilbert func-

tion, stop.

This algorithm computes the module of Kähler differential m-forms Ωm
R/Ro

and its

Hilbert function.

Proof. The correctness of this algorithm follows immediately from Corollary 3.2.13 and

Proposition 3.2.11. The finiteness is clear.

Let us compute the Hilbert function of the Kähler differential algebra using this

algorithm.

Example 3.2.15. Let I = 〈(X0X
2
1 − X3

2 )(X1 − X2)3, (X0X
2
1 − X3

2 )(X1 − X0)2〉 be

the ideal of S = Q[X0, X1, X2]. We let R = S/I. The Hilbert function of the Kähler

differential algebra ΩR/Q is

HFR : 1 3 6 10 15 20 3t+ 6 for t ≥ 6

HFΩ1
R/Q

: 0 3 9 18 30 44 56 63 66 6t+ 22 for t ≥ 9

HFΩ2
R/Q

: 0 0 3 9 18 30 42 48 45 3t+ 22 for t ≥ 9

HFΩ3
R/Q

: 0 0 0 1 3 6 10 12 9 6 . . . for t ≥ 9.

Note that for S = Ro[X0, . . . , Xn], the module of Kähler differential (n + 1)-forms

Ωn+1
S/Ro

is a graded free S-module generated by dX0∧· · ·∧dXn. Let I be a homogeneous

ideal of S and let R = S/I. According to Proposition 3.2.11, we have

Ωn+1
R/Ro

= Ωn+1
S/Ro

/(〈dI〉S ∧S Ωn
S/Ro + IdX0 ∧ · · · ∧ dXn) ∼= (S/J)(−n− 1)

where J(−n− 1) is the image in S(−n− 1) of 〈dI〉S ∧S Ωn
S/Ro

+ IdX0∧ · · · ∧dXn under

the isomorphism of S-graded modules Ωn+1
S/Ro

∼= S(−n − 1). The homogeneous ideal

J ⊆ S is explicitly described by our next corollary.
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Corollary 3.2.16. Let S = Ro[X0, . . . , Xn] be the standard graded polynomial ring

over Ro, let I = 〈F1, . . . , Ft〉 be a homogeneous ideal of S, and let R = S/I. Then we

have

Ωn+1
R/Ro

= (R/Ĩ)(−n− 1) = (S/J)(−n− 1)

where Ĩ is the ideal of R generated by {∂Fi/∂Xj + I | 1 ≤ i ≤ t; 0 ≤ j ≤ n}, and J is

the ideal of S generated by {∂Fi/∂Xj | 1 ≤ i ≤ t; 0 ≤ j ≤ n}.

Proof. It is well-known (see Proposition 3.2.6) that the module of Kähler differential

n-forms Ωn
S/Ro

=
∧n
S(Ω1

S/Ro
) is a graded-free S-module of rank n + 1 with the basis

{dX0 ∧ · · · ∧ dXj−1 ∧ d̂Xj ∧ dXj+1 ∧ · · · ∧ dXn | 0 ≤ j ≤ n}. Let H = 〈dF1, . . . , dFt〉S.

Then Corollary 3.1.6 yields that

H ∧S Ωn
S/Ro + IdX0 ∧ · · · ∧ dXn = 〈dI〉S ∧S Ωn

S/Ro + IdX0 ∧ · · · ∧ dXn.

We write dFi = ∂Fi/∂X0dX0 + · · ·+∂Fi/∂XndXn for i = 1, . . . , t. Then an application

of Remark 3.2.10(b) implies

H ∧S Ωn
S/Ro = 〈∂Fi/∂XjdX0 ∧ · · · ∧ dXn | 1 ≤ i ≤ t; 0 ≤ j ≤ n〉S.

Hence the image of (H∧S Ωn
S/Ro

+IdX0∧· · ·∧dXn)(n+1) in S under the isomorphism

Ωn+1
S/Ro

(n + 1) ∼= S is J = 〈{∂Fi/∂Xj | 1 ≤ i ≤ t; 0 ≤ j ≤ n} ∪ {Fi | 1 ≤ i ≤ t}〉S.

Moreover, the field K is of characteristic zero, and so Euler’s formula yields that

deg(Fi)Fi =
∑n

j=0Xj∂Fi/∂Xj for all 1 ≤ i ≤ t. Thus J = 〈∂Fi/∂Xj | 1 ≤ i ≤ t; 0 ≤
j ≤ n〉S, and the conclusion follows.

Based on Corollary 3.2.16, we can improve the algorithm given in Proposition 3.2.14

for computing the Hilbert function of the module of Kähler differential (n + 1)-forms

Ωn+1
R/Ro

as follows.

Corollary 3.2.17. In the setting of Corollary 3.2.16, we consider the following se-

quence of instructions.

1) Compute a minimal homogeneous system of generators L of I by Buchberger’s

Algorithm with Minimalization (see [KR2, Theorem 4.6.3]).

2) Compute the set L′ = {∂F/∂Xj | F ∈ L, 0 ≤ j ≤ n} and form the homogeneous

ideal J = 〈L′〉S + I in S.

3) Compute the regularity index of the residue class ring S/I, return the module

Ωn+1
R/Ro

and its Hilbert function by using equality Ωn+1
R/Ro

= (S/J)(−n− 1), stop.
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This is an algorithm which computes the module Ωn+1
R/Ro

and its Hilbert function.

To wrap up this section we apply the algorithm of the corollary to the following

example.

Example 3.2.18. Let I be the ideal I = ∩4
i=1℘i of the ring S = Q[X0, . . . , X3], where

℘1 = 〈X1, X2, X3〉5S, ℘2 = 〈X1 − X0, X2, X3〉S, ℘3 = 〈X1, X2 − X0, X3〉4S, and where

℘4 = 〈X1, X2, X3−X0〉4S. Note that the ideal I is the homogeneous vanishing ideal of

a 0-dimensional scheme whose support is in general position. We let R = S/I. Then

the Hilbert function of Ω4
R/Q is

HFΩ4
R/Q

: 0 0 0 0 1 4 10 20 31 38 40 40 . . . .

3.3 Kähler Differential Algebras for 0-Dimensional

Schemes

Throughout this section we let X be a 0-dimensional subscheme of Pn such that

Supp(X) ∩ Z+(X0) = ∅. By IX we denote the homogeneous vanishing ideal of X
in S = K[X0, . . . , Xn]. Then the homogeneous coordinate ring of X is RX = S/IX.

Let xi be the image of Xi in RX for i = 0, . . . , n. We know that x0 is a non-zerodivisor

for RX and that RX is a graded K[x0]-algebra which is free of rank deg(X). In this

section we are interested in the study of the Kähler differential algebras of the algebras

RX/K and RX/K[x0]. In particular, we look more closely at their relations and their

Hilbert functions.

Let Ro be either K or K[x0]. We recall that the module of Kähler differential

1-forms of RX/Ro is given by Ω1
RX/Ro

= J/J2, where J is the homogeneous ideal of

the graded ring RX ⊗Ro RX =
⊕

i∈Z
⊕i

j=0(RX)j ⊗ (RX)i−j which is generated by the

set {xi ⊗ 1 − 1 ⊗ xi | i = 0, . . . , n}. The universal derivation d : RX → Ω1
RX/Ro

is

given by r 7→ r ⊗ 1 − 1 ⊗ r + J2. Then the Kähler differential algebra of RX/Ro is

ΩRX/Ro =
∧
RX

(Ω1
RX/Ro

)=
⊕

m∈N Ωm
RX/Ro

.

First we have the following connection between Ω1
RX/K

and Ω1
RX/K[x0] which is given

as Proposition 3.24 in [Kun].

Proposition 3.3.1. There is an exact sequence of graded RX-modules

RX ⊗K[x0] Ω1
K[x0]/K

α−→ Ω1
RX/K

β−→ Ω1
RX/K[x0] −→ 0

where Ω1
K[x0]/K

∼= K[x0]dx0, where α is given by α(f1⊗ f2dx0) = f1f2dx0, and where β

is given by β(f1dRX/Kf2) = f1dRX/K[x0]f2.
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We see that α(RX ⊗K[x0] Ω1
K[x0]/K) = RXdx0 ⊂ Ω1

RX/K
. Thus we get the exact

sequence of graded RX-modules

0 −→ RXdx0 ↪−→ Ω1
RX/K

β−→ Ω1
RX/K[x0] −→ 0 (3.2)

By exact sequence (3.1), the map γ : Ω1
RX/K

→ RX given by γ(FdG) = FG for all

F,G ∈ RX is a homomorphism of graded RX-modules. So, AnnRX(dx0) = 〈0〉, indeed

if there is F ∈ RX \ {0} such that Fdx0 = 0 then γ(Fdx0) = 0 = Fx0, contradict with

the assumption that x0 is a non-zero divisor of RX. From sequence (3.2) we obtain the

following equality for Hilbert functions of modules of Kähler differentials 1-forms.

Corollary 3.3.2. We have HFΩ1
RX/K[x0]

(i) = HFΩ1
RX/K

(i)−HFX(i− 1) for all i ∈ Z. In

particular, ri(Ω1
RX/K[x0]) ≤ max{ri(Ω1

RX/K
), rX + 1}.

Let RX = RX/〈x0〉. An application of [DK, Proposition 1.6] yields the exact se-

quence of graded RX-modules

0 −→ RXdx0 + 〈x0〉Ω1
RX/K

↪−→ Ω1
RX/K

−→ Ω1
RX/K

−→ 0 (3.3)

Our next proposition gives us connections between the modules of Kähler differen-

tial m-forms of RX/K,RX/K and RX/K[x0].

Proposition 3.3.3. Let m ∈ N. Then there is an exact sequence of graded RX-modules

0 −→ RXdx0 ∧RX Ωm−1
RX/K

−→ Ωm
RX/K

−→ Ωm
RX/K[x0] −→ 0.

Moreover, Ωm
RX/K

has a presentation Ωm
RX/K

= Ωm
RX/K[x0]/〈x0〉Ωm

RX/K[x0].

Proof. The exact sequence of Proposition 3.3.3 follows from Proposition 2.3.7 and

sequence (3.2). We only need to prove the additional part of this proposition. Due to

the short exact sequence (3.3) and Proposition 2.3.7, we get a short exact sequence of

graded RX-modules

0 −→ (RXdx0 + 〈x0〉Ω1
RX/K

) ∧RX Ωm−1
RX/K

−→ Ωm
RX/K

−→
∧m
RX

(Ω1
RX/K

) −→ 0.

We set V = (RXdx0 + 〈x0〉Ω1
RX/K

)∧RX Ωm−1
RX/K

. It follows from the exact sequence given

in Proposition 3.3.3 that Ωm
RX/K[x0] = Ωm

RX/K
/RXdx0 ∧RX Ωm−1

RX/K
. Then we have

∧m
RX

(Ω1
RX/K

) = Ωm
RX/K

/V = (Ωm
RX/K

/RXdx0 ∧RX Ωm−1
RX/K

)/(V/RXdx0 ∧RX Ωm−1
RX/K

)

= Ωm
RX/K[x0]/〈x0〉Ωm

RX/K[x0].
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Thus Lemma 3.2.12 yields

Ωm
RX/K

=
∧m
RX

Ω1
RX/K

⊗RX RX = Ωm
RX/K[x0]/〈x0〉Ωm

RX/K[x0] ⊗RX RX

= Ωm
RX/K[x0]/〈x0〉Ωm

RX/K[x0],

as we wanted to show.

As an immediate consequence of Proposition 3.2.11, we have the following corollary.

Corollary 3.3.4. Let X ⊆ PnK be a 0-dimensional scheme, and let 1 ≤ m ≤ n+ 1.

(i) The module of Kähler differential m-forms Ωm
RX/K

has a presentation:

Ωm
RX/K

= Ωm
S/K/(〈dIX〉S ∧S Ωm−1

S/K + IXΩm
S/K).

(ii) The module of Kähler differential m-forms Ωm
RX/K[x0] has a presentation:

Ωm
RX/K[x0] = Ωm

S/K[x0]/(〈dIX〉S ∧S Ωm−1
S/K[x0] + IXΩm

S/K[x0]).

Remark 3.3.5. Let X ⊆ Pn be a 0-dimensional scheme. We let Supp(X)={P1,. . .,Ps}
for some s ≥ 1, let ℘j be the homogeneous vanishing ideal of X at Pj for j = 1, . . . , s.

In order to compute the homogeneous vanishing ideal IX =
⋂s
j=1 ℘j of X we use the

results in the paper of J. Abbott, M. Kreuzer and L. Robbiano [AKR]. More precisely,

we can either proceed degree by degree to compute a homogeneous σ-Gröbner basis

of IX by using the GPBM-Algorithm (cf. [AKR, Theorem 4.6]), or we can apply the

GBM-Algorithm (cf. [AKR, Theorem 3.1]).

When a homogeneous Gröbner basis {F1, . . . , Ft} of IX has been computed, we can

apply Proposition 3.2.14 to compute presentations of the modules of Kähler differential

m-forms Ωm
RX/K

and Ωm
RX/K[x0] and their Hilbert functions. Note that Ωm

RX/K
= 〈0〉 if

m > n + 1 and Ωm
RX/K[x0] = 〈0〉 if m > n. In the case m = n + 1 we can also use

Corollary 3.2.17 to compute the Hilbert function of Ωn+1
RX/K

.

Moreover, we have Ωm
RX/K

= Ωm
RX/K[x0]/〈x0〉Ωm

RX/K[x0] (cf. Proposition 3.3.3). This

enables us to compute Ωm
RX/K

and its Hilbert function, too.

Example 3.3.6. Let X be the 0-dimensional scheme in P3
Q with the homogeneous

vanishing ideal IX = I1 ∩ I2 ∩ I3, where I1 = 〈X1 − 9X0, X2, X3〉3, I2 = 〈X1 −
6X0, X2, X3 −X0〉5, and I3 = 〈X1 − 2X0, X2 − 3X0, X3 − 3X0〉3. The Hilbert function

of ΩRX/Q is

Ω1
RX/Q

: 0 3 9 18 30 36 23 8 0 0 . . .

Ω2
RX/Q

: 0 0 3 9 18 30 27 12 2 0 0 . . .

Ω3
RX/Q

: 0 0 0 1 3 6 10 6 2 0 0 . . .



3.3. Kähler Differential Algebras for 0-Dimensional Schemes 53

Now we describe the Hilbert functions of the module of Kähler differential m-forms

Ωm
RX/K

and Ωm
RX/K[x0], where 1 ≤ m ≤ n+ 1. We first consider the case n = 1.

Lemma 3.3.7. Let X ⊆ P1 be a 0-dimensional scheme with the homogeneous vanishing

ideal IX = 〈F 〉, where F =
∏s

i=1(X1 − aiX0)mi for some mi ≥ 1 and ai ∈ K such that

ai 6= aj if i 6= j. Let µ =
∑s

i=1mi. Then the Hilbert functions of the modules of Kähler

differential m-forms are given by

HFΩ1
RX/K

: 0 2 4 6 · · · 2(µ− 2) 2(µ− 1) 2µ− 1 2µ− 2 · · · 2µ− s 2µ− s · · ·
HFΩ2

RX/K
: 0 0 1 2 · · · µ− 2 µ− 1 µ− 2 µ− 3 · · · µ− s µ− s · · ·

HFΩ1
RX/K[x0]

: 0 1 2 3 . . . µ− 2 µ− 1 µ− 1 µ− 2 . . . µ− s µ− s · · ·

and HFΩ2
RX/K[x0]

(i) = 0 for all i ∈ Z.

Proof. It is clear that the Hilbert function of RX is HFRX : 1 2 3 4 · · · µ− 1 µ µ · · · .
We let G =

∏s
i=1(X1 − aiX0)mi−1, H1 =

∑s
i=1 miai

∏
j 6=i(X1 − ajX0), and let H2 =∑s

i=1mi

∏
j 6=i(X1−ajX0). Note that deg(G) =

∑s
i=1(mi−1) and deg(H1) = deg(H2) =

s− 1. Then it is not hard to verify that the sequence H1, H2 is an S-regular sequence,

and hence this is a regular sequence for the principle ideal 〈G〉S. Thus it follows from

Corollary 3.2.16 that

HFΩ2
RX/K

(i) = HFS/〈∂F/∂X0,∂F/∂X1〉S(i− 2) = HFS/〈GH1,GH2〉S(i− 2)

= HFS/〈G〉S(i− 2) + HF〈G〉S/〈GH1,GH2〉S(i− 2)

= HFS/〈G〉S(i− 2) + HF〈G〉S(i− 2)− 2 HF〈G〉S(i− 1− s) + HF〈G〉S(i− 2s)

= HFS(i− 2)− 2 HFS(i− 1− µ) + HFS(i− s− µ)

=

(
i− 1

1

)
− 2

(
i− µ

1

)
+

(
i− s− µ+ 1

1

)
Therefore we have HFΩ2

RX/K
: 0 0 1 2 · · · µ− 2 µ− 1 µ− 2 µ− 3 · · · µ− s µ− s · · · .

By the homogeneous exact sequence given in Proposition 3.2.7, the module of Kähler

differentials 1-forms Ω1
RX/K

has the Hilbert function:

HFΩ1
RX/K

: 0 2 4 6 · · · 2(µ− 2) 2(µ− 1) 2µ− 1 2µ− 2 · · · 2µ− s 2µ− s · · · .

By Corollary 3.3.2, the Hilbert function of Ω1
RX/K[x0] is

HFΩ1
RX/K[x0]

: 0 1 2 . . . µ− 2 µ− 1 µ− 1 µ− 2 . . . µ− s µ− s · · · .

Finally, we have Ω1
RX/K[x0] = RXdx1, and therefore HFΩ2

RX/K[x0]
(i) = 0 for all i ∈ Z.
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In some special degrees, we can predict the Hilbert function of Ωm
RX/K

and Ωm
RX/K[x0].

Proposition 3.3.8. Let X ⊆ PnK be a 0-dimensional scheme, and let αX be the initial

degree of IX, i.e. let αX = min{i ∈ N | (IX)i 6= 0}.

(i) For i < m, we have HFΩm
RX/K

(i) = HFΩm
RX/K[x0]

(i) = 0.

(ii) For m ≤ i < αX+m−1, we have HFΩm
RX/K

(i)=
(
n+1
m

)
·
(
n+i−m

n

)
and HFΩm

RX/K[x0]
(i)=(

n
m

)
·
(
n+i−m

n

)
.

(iii) The Hilbert polynomials of Ωm
RX/K

and Ωm
RX/K[x0] are constant polynomials.

(iv) Let Ro denote either K or K[x0]. We have HFΩm
RX/Ro

(rX + m) ≥ HFΩm
RX/Ro

(rX +

m+ 1) ≥ · · · , and if ri(Ωm
RX/Ro

) ≥ rX +m then

HFΩm
RX/Ro

(rX +m) > HFΩm
RX/Ro

(rX +m+ 1) > · · · > HFΩm
RX/Ro

(ri(Ωm
RX/Ro

)).

Proof. (i) Let ω be a non-zero homogeneous element of the S-graded module Ωm
S/Ro

.

Since ω can be written as a sum of elements of the form FdXi1 · · · dXim for some F ∈ S.

We get deg(ω) ≥ m. By Corollary 3.3.4, an element in Ωm
RX/Ro

is the residue class of

an element in Ωm
S/Ro

, and therefore HFΩm
RX/Ro

(i) = 0 for all i < m.

(ii) Let Ro denote either K or K[x0]. Let m ≤ i < αX +m− 1. Suppose that ω is a

homogeneous element of degree i in the graded S-module IXΩm
S/Ro

+ 〈dIX〉SΩm−1
S/Ro

. We

proceed to show that ω = 0. Let us write ω =
∑

j Fjωj +
∑

k dFkω̃k, where Fj, Fk ∈ IX,

ωj ∈ Ωm
S/Ro

, and ω̃k ∈ Ωm−1
S/Ro

. Here Fj, ωj, Fk, ω̃k can be chosen homogeneous such

that deg(Fj) + deg(ωj) = deg(Fk) + deg(ω̃k) = i for all j, k. Obviously, we have

deg(Fj) ≥ αX, deg(Fk) ≥ αX, deg(ωj) ≥ m, and deg(ω̃k) ≥ m − 1. Therefore we get

deg(ω) ≥ αX + m − 1. This implies that ω = 0, as wanted. Consequently, we have

(IXΩm
S/Ro

+ 〈dIX〉SΩm−1
S/Ro

)i = 〈0〉 for all i < αX + m − 1. Thus for all i < αX + m − 1,

we obtain

HFΩm
RX/Ro

(i) = HFΩm
S/Ro

(i) =

{ (
n+1
m

)
·
(
n+i−m

n

)
if Ro = K(

n
m

)
·
(
n+i−m

n

)
if Ro = K[x0].

(iii) Since the module of Kähler differential m-forms Ωm
RX/Ro

is a finitely gener-

ated graded RX-module and RX is a Noetherian ring, by Theorem 2.1.4 we know

that the Hilbert polynomial of Ωm
RX/Ro

exists. Corollary 3.3.4 implies HFΩm
RX/Ro

(i) ≤
HFΩm

S/Ro
/IXΩm

S/Ro
(i) for i ∈ N. Hence the Hilbert polynomial of Ωm

RX/Ro
is a constant

polynomial.

(iv) The RX-module Ωm
RX/K

has the following presentation:

(Ωm
RX/K

)i+m = (RX)idx0 ∧ · · · ∧ dxm−1 + · · ·+ (RX)idxn−m+1 ∧ · · · ∧ dxn.
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We remark that if i ≥ rX+1 then (RX)i = x0(RX)i−1. Therefore we have (Ωm
RX/K

)i+m =

x0(Ωm
RX/K

)i+m−1 for all i ≥ rX + 1. Thus we get the inequality

HFΩm
RX/K

(i+m) ≤ HFΩm
RX/K

(i+m− 1)

for all i ≥ rX + 1. If there is a degree i ≥ rX such that HFΩm
RX/K

(i+m) = HFΩm
RX/K

(i+

m+ 1) then it follows from Corollary 3.1.7 and Proposition 2.3.7 that

HF∧m
RX

(Rn+1
X )(i)−HFG∧RX

∧m−1
RX

(RX
n+1)(i) = HF∧m

RX
(Rn+1

X )(i+1)−HFG∧RX
∧m−1
RX

(Rn+1
X )(i+1).

Here we have G = 〈(∂F/∂x0, . . . , ∂F/∂xn) | F ∈ IX〉RX . Since i ≥ rX, we have

HFX(i) = deg(X), and so HF∧m
RX

(Rn+1
X )(i) = HF∧m

RX
(Rn+1

X )(i + 1). The above equation

yields

HFG∧RX
∧m−1
RX

(Rn+1
X )(i) = HFG∧RX

∧m−1
RX

(Rn+1
X )(i+ 1).

Notice that x0 is a non-zerodivisor for RX, and hence by Lemma 2.4.7 this is also a

non-zerodivisor for the graded RX-submodule G ∧RX

∧m−1
RX

(Rn+1
X ) of the graded-free

RX-module
∧m
RX

(Rn+1
X ). This implies

(G ∧RX

∧m−1
RX

(Rn+1
X ))i+1 = x0(G ∧RX

∧m−1
RX

(Rn+1
X ))i.

In the view of Proposition 2.4.6, the ideal IX can be generated by polynomials of degree

less than or equal to rX+ 1. So, the graded RX-module G ∧RX

∧m−1
RX

(Rn+1
X ) is generated

in degree less than or equal to rX. Thus we obtain

(G ∧RX

∧m−1
RX

(Rn+1
X ))i+2 =x0(G ∧RX

∧m−1
RX

(Rn+1
X ))i+1 + · · ·+ xn(G ∧RX

∧m−1
RX

(Rn+1
X ))i+1

=x0(x0(G ∧RX

∧m−1
RX

(Rn+1
X ))i + · · ·+ xn(G ∧RX

∧m−1
RX

(Rn+1
X ))i)

=x0(G ∧RX

∧m−1
RX

(Rn+1
X ))i+1.

Altogether, we have HFΩm
RX/K

(i+m+ 1) = HFΩm
RX/K

(i+m+ 2), and the claim follows

by induction.

If Ro = K[x0], we have

(Ωm
RX/K[x0])i+m = (RX)idx1 ∧ · · · ∧ dxm + · · ·+ (RX)idxn−m+1 ∧ · · · ∧ dxn.

For i ≥ rX+ 1 then (RX)i = x0(RX)i−1. Thus we get (Ωm
RX/K[x0])i+m=x0(Ωm

RX/K[x0])i+m−1

for all i ≥ rX + 1. Therefore the inequality HFΩm
RX/K[x0]

(i+m) ≤ HFΩm
RX/K[x0]

(i+m− 1)

holds for all i ≥ rX+1. If there is i ≥ rX such that HFΩm
RX/K[x0]

(i+m) = HFΩm
RX/K[x0]

(i+

m+ 1) then we argue as above to get HF∧m
RX

(RnX)(j) = HF∧m
RX

(RnX)(j + 1) and

HF(H∧RX
∧m−1
RX

(RnX))(j) = HFx0(H∧RX
∧m−1
RX

(RnX))(j + 1)
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for j ≥ i, where H = 〈(∂F/∂x1, . . . , ∂F/∂xn)|F ∈ IX〉RX . Altogether, we have

HFΩm
RX/K[x0]

(j +m+ 1) = HFΩm
RX/K[x0]

(j +m+ 2), and the claims follows.

The following example shows that HFΩm
RX/K

(i+m) and HFΩm
RX/K[x0]

(i+m) may or

may not be monotonic in the range of αX +m ≤ i ≤ rX +m.

Example 3.3.9. Let X ⊆ P2
Q be the set of nine points X = {(1 : 0 : 0), (1 : 0 :

1), (1 : 0 : 2), (1 : 0 : 3), (1 : 0 : 4), (1 : 0 : 5), (1 : 1 : 0), (1 : 2 : 0), (1 : 1 : 1)},
which contains six points on a line and three points off that line. It is clear that

HFX : 1 3 6 7 8 9 9 · · · , αX = 3, and rX = 5. The Hilbert functions of the modules of

Kähler differential 1-forms, 2-forms, and 3-forms are computed as follows:

HFΩ1
RX/Q

: 0 3 9 15 14 13 14 13 12 11 10 9 9 · · ·

HFΩ2
RX/Q

: 0 0 3 9 9 4 5 4 3 2 1 0 0 · · ·

HFΩ3
RX/Q

: 0 0 0 1 3 0 0 · · · .

We see that HFΩ1
RX/Q

(αX+1) = 14 > 13 = HFΩ1
RX/Q

(αX+2) and HFΩ1
RX/Q

(αX+2) = 13 <

14 = HFΩ1
RX/Q

(rX+1). So, HFΩ1
RX/Q

is not monotonic in the range of αX+1 ≤ i ≤ rX+1.

But HFΩ1
RX/Q

is monotonic in the range of αX + 3 ≤ i ≤ rX + 3. Furthermore, we have

HFΩ1
RX/Q[x0]

: 0 2 6 9 7 5 5 4 3 2 1 0 0 . . . and HFΩ2
RX/Q[x0]

: 0 0 1 3 1 0 0 . . . .

Remark 3.3.10. By Propositions 3.3.3 and 3.3.8, the Hilbert polynomial of Ωm
RX/K

is

constant for all m = 1, . . . , n.

The regularity index of the modules Ωm
RX/K

and Ωm
RX/K[x0] can be bounded as follows.

Proposition 3.3.11. Let X ⊆ Pn be a 0-dimensional scheme, let m ≥ 1. The regular-

ity indices of the module of Kähler differential m-forms Ωm
RX/K

and Ωm
RX/K[x0] satisfies

max{ri(Ωm
RX/K

), ri(Ωm
RX/K[x0])} ≤ max{rX +m, ri(Ω1

RX/K
) +m− 1}.

Proof. We set G = 〈(∂F/∂x0, . . . , ∂F/∂xn) ∈ Rn+1 | F ∈ I〉R. Corollary 3.1.7 yields

the short exact sequence of graded RX-modules

0 −→ G −→ Ω1
S/Ro/IXΩ1

S/Ro −→ Ω1
RX/Ro

−→ 0.

Applying Proposition 2.4.10 to the RX-module Ω1
RX/Ro

which has a set of generators of

degree 1, we get ri(Ωm
RX/Ro

) ≤ max{rX+m, ri(Ω1
RX/Ro

) +m− 1}. By Corollary 3.3.2, we

get ri(Ω1
RX/K[x0]) ≤ max{ri(Ω1

RX/K
), rX + 1}. Thus the claim follows.
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Remark 3.3.12. If Ro = K then ri(Ωn+1
RX/K

) ≤ max{rX+n, ri(Ω1
RX/K

)+n−1}. Indeed,

the exact sequence of graded RX-modules

0 −→ Ωn+1
RX/K

−→ Ωn
RX/K

−→ · · · −→ Ω1
RX/K

−→ m −→ 0

deduces ri(Ωn+1
RX/K

) ≤ max{ri(Ωi
RX/K

)|i = 0, . . . , n} ≤ max{rX+n, ri(Ω1
RX/K

)+n−1}. In

conclusion, we obtain the following upper bounds for the regularity indices of Ωm
RX/K

:

ri(Ωm
RX/K

) ≤ min{max{rX + n, ri(Ω1
RX/K

) + n− 1},max{rX +m, ri(Ω1
RX/K

) +m− 1}}.

If Ro = K then the upper bound for the regularity index of the module of Kähler

differential m-forms Ωm
RX/K

which is given in the above remark is sharp. Moreover, if

Ro = K[x0] and m < n, the upper bound for the regularity index of the module of

Kähler differential m-forms Ωm
RX/K[x0] which is given in Proposition 3.3.11 is sharp, as

the following example shows.

Example 3.3.13. Let X be the 0-dimensional scheme in P3
Q with the homogeneous

vanishing ideal IX = ∩6
i=1℘i, where ℘1 = 〈X1, X2, X3〉2, ℘2 = 〈X1 − X0, X2, X3〉),

℘3 = 〈X1, X2 −X0, X3〉, ℘4 = 〈X1, X2, X3 −X0〉, ℘5 = 〈X1 − 2X0, X2 −X0, X3〉, and

℘6 = 〈X1−X0, X2−X0, X3−X0〉. We see that rX = 2 and ri(Ω1
RX/Q) = 4. Also, we have

ri(Ω2
RX/Q) = min{max{rX+n, ri(Ω1

RX/K
)+n−1},max{rX+m, ri(Ω1

RX/K
)+m−1}} = 5

and

ri(Ω3
RX/Q) = ri(Ω4

RX/Q)

= min{max{rX + n, ri(Ω1
RX/K

) + n− 1},max{rX +m, ri(Ω1
RX/K

) +m− 1}} = 6

for m = 3, 4. Thus the upper bound for the regularity index of the module of Kähler

differential m-forms Ωm
RX/Q given in Remark 3.3.12 is sharp. Furthermore, we have

ri(Ω1
RX/Q[x0]) = 4 and ri(Ω2

RX/Q[x0]) = 5 = max{rX + m, ri(Ω1
RX/Q + m − 1)} for m = 2.

Therefore, for m < n, the upper bound for the regularity index of Ωm
RX/Q[x0] given in

Proposition 3.3.11 is sharp.

3.4 Kähler Differential Algebras for Finite Sets of

K-Rational Points

In this section we restrict ourselves to investigating Kähler differential algebras for a

special class of 0-dimensional schemes in Pn, namely finite sets of distinct K-rational

points in Pn.
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In the following we let s ≥ 1, and we let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct

K-rational points in Pn. Furthermore, we always assume that no point of X lies on

the hyperplane at infinity Z+(X0). Let us write Pj = (pj0 : pj1 : · · · : pjn) with

pj1, . . . , pjn ∈ K and pj0 = 1 for j = 1, . . . , s. Then the vanishing ideal of Pj is

℘j = 〈pj1X0 − X1, . . . , pjnX0 − Xn〉S, where S = K[X0, . . . , Xn]. We have the image

x0 of X0 in RX is a non-zerodivisor for RX and that RX is a graded K[x0]-algebra

which is free of rank s. In [DK], Proposition 3.5 shows that the Hilbert polynomial

of Ω1
RX/K

is HPΩ1
RX/K

(z) = deg(X) = s and the regularity index of Ω1
RX/K

satisfies

ri(Ω1
RX/K

) ≤ 2rX + 1, where rX is the regularity index of HFX. This result was proved

by using the theory of separators in 1999 by M. Kreuzer and G. Dominicis [DK]. For

j = 1, . . . , s, let fj ∈ (RX)rX be the normal separator of X \ {Pj} in X, i.e. fj(Pk) = δjk

for j, k = 1, . . . , s. We recall that the set {xi−rX0 f1, . . . , x
i−rX
0 fs} is a K-basis of Ri for

i ≥ rX, and for f ∈ Rj and c1x
k
0f1 + · · ·+ csx

k
0fs ∈ Rk+rX with c1, . . . , cs ∈ K we have

f · (c1x
k
0f1 + · · ·+ csx

k
0fs) = c1f(P1)xj+k0 f1 + · · ·+ csf(Ps)x

j+k
0 fs.

Using the above tools, we can describe the Hilbert polynomial of the module of

Kähler differential m-forms Ωm
RX/K

for every 1 ≤ m ≤ n+ 1 as follows.

Proposition 3.4.1. Let 1 ≤ m ≤ n+ 1. We have

HPΩm
RX/K

(z) =

deg(X) if m = 1,

0 if m ≥ 2.

In particular, the regularity index of Ωm
RX/K

satisfies ri(Ωm
RX/K

) ≤ 2rX +m.

Proof. For m = 1 we have HPΩ1
RX/K

= deg(X) and ri(Ω1
RX/K

) ≤ 2rX + 1 (see [DK,

Proposition 3.5]). Assume that m ≥ 2. We see that Ωm
RX/K

is a graded RX-module

generated by the set of
(
n+1
m

)
elements

{
dxi1 ∧ · · · ∧ dxim | 0 ≤ i1 < · · · < im ≤ n+ 1

}
.

For j ∈ {1, . . . , s}, let fj be the normal separator of X \ {Pj} in X. Since the set

{xi−rX0 f1, . . . , x
i−rX
0 fs} is a K-basis of the K-vector space (RX)i for i ≥ rX, the set

{
xk−rX−m0 fjdxi1 ∧ · · · ∧ dxim | 0 ≤ i1 < · · · < im ≤ n+ 1; 1 ≤ j ≤ s

}
is a system of generators of the K-vector space (Ωm

RX/K
)k for all k ≥ rX +m. Note that

f 2
j = fj(Pj)x

rX
0 fi = xrX0 fi and xifj = pjix0fj, where we write Pj = (1 : pj1 : · · · : pjn)
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with pj1, . . . , pjn ∈ K for j = 1, . . . , s. Therefore we get

xrX0 fjdxi1 · · · dxim = f 2
j dxi1 · · · dxim = (d(f 2

j xi1)− xi1df 2
i )dxi2 · · · dxim

= (d(pji1x0f
2
j )− xi1df 2

j )dxi2 · · · dxim
= ((pji1x0 − xi1)df 2

j + pji1f
2
j dx0)dxi2 · · · dxim

= (2(pji1x0 − xi1)fjdfj + pji1f
2
j dx0)dxi2 · · · dxim

= pji1f
2
j dx0dxi2 · · · dxim = pji1x

rX
0 fjdx0dxi2 · · · dxim

= · · · = pji1pji2x
rX
0 fjdx0dx0dxi3 · · · dxim .

Since we have m ≥ 2, this implies that xrX0 fjdxi1 · · · dxim = 0 for all j = 1, . . . , s and

{i1, . . . , im} ⊆ {0, . . . , n+ 1}. Therefore we obtain (Ωm
RX/K

)k = 〈0〉 for all k ≥ 2rX +m,

and the conclusion follows.

Since ri(Ωn+1
RX/K

) ≤ max{rX, ri(Ωm
RX/K

) | 1 ≤ m ≤ n}, we get ri(Ωn+1
RX/K

) ≤ 2rX + n.

Hence we have ri(Ωm
RX/K

) ≤ min{2rX + m, 2rX + n}. These upper bounds for the

regularity indices of the Kähler differential m-forms Ωm
RX/K

are sharp, as our next

example shows.

Example 3.4.2. Let X = {P1, P2, P3, P4} be the set of four Q-rational points in P3
Q,

where P1 = (1 : 9 : 0 : 0), P2 = (1 : 6 : 0 : 1), P3 = (1 : 2 : 3 : 3), and P4 = (1 : 9 : 3 : 5).

It is clear that HFX : 1 4 4 . . . and rX = 1. Moreover, we have

HFΩ1
RX/Q

: 0 4 10 4 4 · · · , HFΩ2
RX/Q

: 0 0 6 4 0 0 · · · ,

HFΩ3
RX/Q

: 0 0 0 4 1 0 0 · · · , HFΩ4
RX/Q

: 0 0 0 0 1 0 0 · · · .

Thus we get ri(Ω1
RX/Q) = 2rX +m = 2rX + 1 = 3, ri(Ω2

RX/Q) = 2rX +m = 2rX + 2 = 4,

and ri(Ω3
RX/Q) = ri(Ω4

RX/Q) = min{2rX + m, 2rX + n} = 2rX + n = 5. Hence we obtain

the equality ri(Ωm
RX/Q) = min{2rX +m, 2rX + n} for m = 1, . . . , 4.

Follow from Corollary 3.3.2 and Propositions 3.3.3 and 3.4.1, we get an upper bound

for the regularity index of Ωm
RX/K[x0]:

Corollary 3.4.3. Let 1 ≤ m ≤ n + 1. Then the Hilbert polynomial of Ωm
RX/K[x0]

is HPΩm
RX/K[x0]

(z) = 0 and the regularity index of Ωm
RX/K[x0] satisfies ri(Ωm

RX/K[x0]) ≤
2rX +m.

For 1 ≤ m ≤ n, our next example shows that the upper bound for the regularity

index of Ωm
RX/K[x0] given in Corollary 3.4.3 is sharp.

Example 3.4.4. Let X={P1, . . . , P5} be the set of five Q-rational points in P4
Q where

P1 = (1 : 9 : 0 : 0 : 1), P2 = (1 : 1 : 6 : 0 : 1), P3 = (1 : 0 : 2 : 3 : 3), P4 = (1 : 9 : 3 : 0 : 5),
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and P5 = (1 : 3 : 0 : 4 : 1). Then we have HFX : 1 5 5 . . . and rX = 1. Moreover, we

have
HFΩ1

RX/K[x0]
: 0 4 10 0 0 · · · , HFΩ2

RX/K[x0]
: 0 0 6 4 0 0 · · · ,

HFΩ3
RX/K[x0]

: 0 0 0 4 1 0 0 · · · , HFΩ4
RX/K[x0]

: 0 0 0 0 1 0 0 · · · .

So, we get ri(Ωm
RX/Q) = min{2rX + m, 2rX + n} = 2 + m for m = 1, 2, 3. Hence the

upper bound for the regularity index of Ωm
RX/K[x0] given in Corollary 3.4.3 is sharp.

We form the matrix AX = (pij) i=1,...,s
j=0,...,n

∈ Mats×(n+1)(K), and let %X denote the rank

of the matrix AX.

Proposition 3.4.5. Using the notation as above, we have Ωm
RX/K

= 〈0〉 for all m > %X.

Proof. Let G = 〈(∂F/∂x0, . . . , ∂F/∂xn) ∈ Rn+1
X | F ∈ IX〉RX . Then the sequence of

graded RX-modules

0 −→ G ∧RX

∧%X
RX

(Rn+1
X ) −→

∧%X+1
RX

(Rn+1
X ) −→ Ω%X+1

RX/K
−→ 0 (3.4)

is exact by Proposition 2.3.7. Let Y =
(
y0 · · · yn

)tr
, let u = n + 1 − %X, and let

V be the space of solutions of the system of linear equations AX · Y = 0. Then

dimK V = u. Without loss of generality, we may assume that the set {v1, . . . , vu},
where v1 = (1, 0, . . . , 0, a1u+1, . . . , a1n+1), . . . , vu = (0, 0, . . . , 1, auu+1, . . . , aun+1), is a

K-basis of V . Then the linear forms L1 = X0 + a1u+1Xu + · · · + a1n+1Xn, . . . , Lu =

Xu−1 +auu+1Xu + · · ·+aun+1Xn are contained in IX. This implies that v1, . . . , vu ∈ G,

and so 〈v1, . . . , vu〉RX ⊆ G ⊆ Rn+1
X .

In order to prove Ω%X+1
RX/K

= 〈0〉, it suffices to prove that∧%X+1
RX

(Rn+1
X ) = 〈v1, . . . , vu〉RX ∧RX

∧%X
RX

(Rn+1
X ).

Let {e1, . . . , en+1} be a basis of the graded-free RX-module Rn+1
X , and let i ∈ {1, . . . , u}.

Then we see that vi = ei + ai u+1eu+1 + · · ·+ ainen+1 and

ei ∧ eu+1 ∧ · · · ∧ eu+%X = vi ∧ eu+1 ∧ · · · ∧ eu+%X ∈ 〈v1, . . . , vu〉RX ∧RX

∧%X
RX

(Rn+1
X ).

Let 1 ≤ k ≤ %X. We want to show that if

ei1 ∧ · · · ∧ eik ∧ eik+1
∧ · · · ∧ ei%X+1 ∈ 〈v1, . . . , vu〉RX ∧RX

∧%X
RX

(Rn+1
X )

for all {i1, . . . , ik} ⊆ {1, . . . , u} and {ik+1, . . . , i%X+1} ⊆ {u+ 1, . . . , u+ %X} then

ej1 ∧ · · · ∧ ejk+1
∧ ejk+2

∧ · · · ∧ ej%X+1 ∈ 〈v1, . . . , vu〉RX ∧RX

∧%X
RX
Rn+1
X
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for all {j1, . . . , jk+1} ⊆ {1, . . . , u} and {jk+2, . . . , j%X+1} ⊆ {u + 1, . . . , u + %X}. We

see that

ej1 ∧ · · · ∧ ejk+1
∧ ejk+2

∧ · · · ∧ ej%X+1

= (ej1 + aj1 u+1eu+1 + · · ·+ aj1 u+%Xeu+%X) ∧ · · · ∧ ejk+1
∧ ejk+2

∧ · · · ∧ ej%X+1

−
∑u+%X

l=u+1(−1)%Xaj1l(ej2 ∧ · · · ∧ ejk+1
) ∧ (ejk+2

∧ · · · ∧ ej%X+1 ∧ el)
= vj1 ∧ ej2 ∧ · · · ∧ ejk+1

∧ ejk+2
∧ · · · ∧ ej%X+1

−
∑u+%X

l=u+1(−1)%Xaj1l(ej2 ∧ · · · ∧ ejk+1
) ∧ (ejk+2

∧ · · · ∧ ej%X+1 ∧ el).

This implies that ej1∧· · ·∧ejk+1
∧ejk+2

∧· · ·∧ej%X+1 ∈ 〈v1, . . . , vu〉RX∧RX

∧%X
RX

(Rn+1
X ).

Thus we have shown that the set {ei1∧· · ·∧ei%X+1 | {i1, . . . , i%X+1} ⊆ {1, . . . , n+1},∃il ∈
{1, . . . , u}} is contained in 〈v1, . . . , vu〉RX∧RX

∧%X
RX

(Rn+1
X ). Since this set is also a system

of generators of the RX-module
∧%X+1
RX

Rn+1
X , we obtain the equality

∧%X+1
RX

Rn+1
X =

〈v1, . . . , vu〉RX ∧RX

∧%X
RX

(Rn+1
X ), as we wanted to show.

Let us clarify this proposition using an example.

Example 3.4.6. Let X ⊆ P4 be the set of seven Q-rational points P1 = (1 : 2 : 3 :

6 : 7), P2 = (1 : 0 : 0 : 0 : 6), P3 = (1 : 3 : 5 : 6 : 7), P4 = (1 : 3/2 : 5/2 : 3 : 13/2),

P5 = (2 : 5 : 8 : 12 : 14), P6 = (1 : 79 : 33 : 67 : 2), and P7 = (1 : 1 : 3/2 : 3 : 13/2).

Then we have %X = 4. A calculation gives Ω4
RX/K

6= 〈0〉 and Ω5
RX/K

= 〈0〉.

This example is a particular case of the following proposition.

Proposition 3.4.7. Let X be a set of s distinct K-rational points in Pn. Then AX
has rank %X = m if and only if Ωm

RX/K
6= 〈0〉 and Ωm+1

RX/K
= 〈0〉.

To prove Proposition 3.4.7 we use the following lemma, which has proved in [SS,

Proposition 85.12].

Lemma 3.4.8. Let R be a ring and V,W be R-modules. Then we have a canonical

isomorphism ∧n
R(V ⊕W ) =

∑n
i=0

∧n−i
R (V )⊗R

∧i
R(W ).

Proof of Proposition 3.4.7.

In view of Proposition 3.4.5, it suffices to show that Ω%X
RX/K

6= 〈0〉. We let v1, . . . , vn+1−%X

and L1, . . . , Ln+1−%X be defined as in the proof of Proposition 3.4.5. Then the vanishing

ideal of X can be written as IX = 〈L1, . . . , Ln+1−%X , F1, . . . , Fr〉S for some Fj ∈ S with

deg(Fj) ≥ 2. The RX-modules M = 〈v1, . . . , vn+1−%X〉RX and N = 〈en+2−%X , . . . , en+1〉RX
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are graded-free RX-modules of rank n + 1 − %X and %X respectively. We proceed to

show that M ∧RX

∧%X−1
RX

(Rn+1
X ) (

∧%X
RX

(Rn+1
X ). According to Lemma 3.4.8, we have

M ∧RX

∧%X−1
RX

(Rn+1
X ) = M ∧RX

∧%X−1
RX

(M ⊕N)

= M ∧RX

(∑%X−1
i=0

∧%X−1−i
RX

(M)⊗RX

∧i
RX

(N)
)

=
∑%X−1

i=0

∧%X−i
RX

(M)⊗RX

∧i
RX

(N).

Clearly, we have M ∩ N = 〈0〉. Thus we get rank(
∧%X
RX

(Rn+1
X )) =

∑%X
i=0

(
n+1−%X
%X−i

)
·
(
%X
i

)
and rank(M ∧RX

∧%X−1
RX

(Rn+1
X )) =

∑%X−1
i=0

(
n+1−%X
%X−i

)
·
(
%X
i

)
, and hence

rank(
∧%X
RX

(Rn+1
X ))− rank(M ∧RX

∧%X−1
RX

(Rn+1
X )) = 1.

Consequently, we have M ∧RX

∧%X−1
RX

(Rn+1
X ) (

∧%X
RX

(Rn+1
X ). Based on the exact se-

quence (3.4) and the fact that M ⊆ G and M0 = G0, we conclude that Ω%X
RX/K

6= 〈0〉.

Let us illustrate this proposition with a concrete example.

Example 3.4.9. Let X = {P1, . . . , Ps} ⊂ Pn be a set of s distinct K-rational points

lies on a line, i.e. Pj = (1 : λjp1 : · · · : λjpn) with p1, . . . , pn ∈ K, p1 6= 0, λ1 = 1, and

λj 6= λk if j 6= k. Then we have

HFΩ1
RX/K

: 0 2 4 6 · · · (2s− 2) (2s− 1) (2s− 2) (2s− 3) · · · (s+ 1) s s · · ·

HFΩ2
RX/K

: 0 1 2 · · · (s− 2) (s− 1) (s− 2) · · · 2 1 0 0 · · ·

and for m ≥ 3 we have HFΩm
RX/K

(i) = 0 for all i ∈ N.

In the remainder of this section, we discuss some geometrical configurations of a

finite set of s distinct K-rational points X in the projective plane P2 which are reflected

in terms of Hilbert functions of the modules of Kähler differentials 3-forms. We begin

with the following criterion for X to lie on a conic.

Proposition 3.4.10. Let X = {P1, . . . , Ps} be a set of s distinct K-rational points

in P2. Then X lies on a conic which is not a double line if and only if HFΩ3
RX/K

(i) ≤ 1

for all i ∈ N and HFΩ3
RX/K

(3) = 1.

Proof. Suppose that X ⊆ C = Z+(C), where C = a00X
2
0 + 2a01X0X1 + 2a02X0X2 +

a11X
2
1 +2a12X1X2 +a22X

2
2 and C 6= aL2 for any linear form L ∈ S and a ∈ K. W.l.o.g.

we may assume that a00 6= 0. Since C is contained in the vanishing ideal IX, the ideal

〈∂C/∂X0, ∂C/∂X1, ∂C/∂X2〉S is a subideal of 〈∂F/∂Xi | F ∈ IX, 0 ≤ i ≤ 2〉S. It is
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clear that we have 〈∂C/∂X0, ∂C/∂X1, ∂C/∂X2〉S = 〈a00X0 + a01X1 + a02X2, a01X0 +

a11X1 + a12X2, a02X0 + a12X1 + a22X2〉S. We see that the matrix A = (aij)i,j=0,1,2 is of

rank 1 if and only if it is of the form

A =

a00 a01 a02

a01
a201
a00

a01a02
a00

a02
a01a02
a00

a202
a00

 .

If rank(A) = 1, then a00C = (a00X0 + a01X1 + a02X2)2, a contradiction. Thus we

must have rank(A) ≥ 2. We may assume that the two vectors (a00, a01, a02) and

(a01, a11, a12) are linearly independent. Then the sequence of linear forms a00X0 +

a01X1 + a02X2, a01X0 + a11X1 + a12X2 is a regular sequence for S. By Corollary 3.2.16,

we have

HFΩ3
RX/K

(i) = HFS/〈∂F/∂Xi|F∈IX,0≤i≤2〉S(i− 3)

≤ HFS/〈∂C/∂X0,∂C/∂X1,∂C/∂X2〉S(i− 3)

≤ HFS/〈a00X0+a01X1+a02X2,a01X0+a11X1+a12X2〉S(i− 3) ≤ 1.

Since X does not lie on any lines, we have 〈∂F/∂Xi | F ∈ IX, 0 ≤ i ≤ 2〉S ⊆
〈X0, X1, X2〉S, and therefore HFΩ3

RX/K
(3) = 1.

Conversely, suppose HFΩ3
RX/K

(i) ≤ 1 for all i ∈ N and HFΩ3
RX/K

(3) = 1. If X lies on

a line then Proposition 3.4.7 shows that HFΩ3
RX/K

(i) = 0 for all i ∈ N, a contradiction.

Note that if X is contained in a double line then it lies on a line. Now we assume

that X does not lie on any conic. Then IX is generated in degrees greater than 2. It

follows that HF〈∂F/∂Xi|F∈IX,0≤i≤2〉S(1) = 0. Thus the Hilbert function of Ω3
RX/K

satisfies

HFΩ3
RX/K

(4) = 3 by Corollary 3.2.16. This is a contradiction.

Remark 3.4.11. It follows from the proof of Proposition 3.4.10 that a set of s distinct

K-rational points X in P2 lies on a line if and only if HFΩ3
RX/K

(i) = 0 for all i ∈ N.

Lemma 3.4.12. Let X ⊆ Pn be a 0-dimensional scheme, and let Y be a subscheme

of X. Then for all m ∈ N and for all i ∈ Z we have HFΩm
RY/K

(i) ≤ HFΩm
RX/K

(i).

Proof. Let IX and IY be the homogeneous vanishing ideals of X and Y, respectively.

By Lemma 3.1.11, the canonical epimorphism π : RX = S/IX → RY = S/IY induces an

epimorphism of graded RX-modules γ : Ω1
RX/K

→ Ω1
RY/K

. By Proposition 2.3.7, for any

m ∈ N, the map γ induces an epimorphism of graded RX-modules φ : Ωm
RX/K

→ Ωm
RY/K

.

Hence we obtain HFΩm
RY/K

(i) ≤ HFΩm
RX/K

(i) for all i ∈ Z.
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Lemma 3.4.13. Let Y = {P1, . . . , P5} be a set of five reduced K-rational points in P2

which lie on 2 different lines. Assume that none of four points of Y lie on a line. Then

we have HFΩ3
RY/K

: 0 0 0 1 1 0 · · · .

Proof. W.l.o.g, we may assume that L1 = a0X0 + a1X1 + a2X2 and L2 = b0X0 +

b1X1 + b2X2 are lines through P1, P2, P3 and P4, P5, respectively. For i = 1, 2, 3,

the homogeneous vanishing ideal of Pi is of the form ℘i = 〈L′i, L1〉S with L′i =

ci0X0 + ci1X1 + ci2X2 and ci0, ci1, ci2 ∈ K. So, the vanishing ideal of {P1, P2, P3}
is 〈L′1L′2L′3, L1〉S. Similarly, the vanishing ideal of {P4, P5} is 〈L′4L′5, L2〉S for some

linear forms L′i = ci0X0 + ci1X1 + ci2X2, where i = 4, 5. By the assumption, we have

gcd(L1, L2) = 1. Therefore, if F ∈ IY, then deg(F ) ≥ 2. Let F ∈ (IY)2 \ {0}. Then

we have F = F1L1 = F2L2 + λL′4L
′
5 for some λ ∈ K and deg(F1) = deg(F2) = 1. For

i = 4, 5, we have F (Pi) = F1(Pi)L1(Pi) = (λL′4L
′
5)(Pi) = 0. This means F1(P4) =

F1(P5) = 0, and hence F1 = kL2 for some k ∈ K \ {0}. As a consequence, we have

F ∈ (IY)2 \ {0} if and only if F = kL1L2 for some k ∈ K \ {0}. Since the matrix 2a0b0 a0b1 + a1b0 a0b2 + a2b0

a0b2 + a2b0 2a1b1 a1b2 + a2b1

a2b0 + a0b2 a2b1 + a1b2 2a2b2

 =

a0 b0 0

a1 b1 0

a2 b2 0


b0 b1 b2

a0 a1 a2

0 0 0


has determinant 0, we get 〈a0L2+b0L1, a1L2+b1L1, a2L2+b2L1〉S = 〈a0L2+b0L1, a1L2+

b1L1〉S ⊆ J = 〈∂F/∂Xi | F ∈ IX, 0 ≤ i ≤ 2〉S. Note that we have rank
(
b0 b1 b2

a0 a1 a2

)
= 2.

This implies HFΩ3
RY/K

(4) = 1. Moreover, we have L1L
′
4L
′
5 ∈ IY, and so L′4L

′
5 ∈ J . By

the inclusion 〈L1, L2, L
′
4L
′
5〉S ⊆ J and

rank

a0 a1 a2

b0 b1 b2

c40 c41 c41

 = rank

a0 a1 a2

b0 b1 b2

c50 c51 c51

 = 3

for all H ∈ S of degree bigger than or equal to 2, we have H ∈ 〈L1, L2, L
′
4L
′
5〉S ⊆ J .

Thus we get HFΩ3
RY/K

(i) = 0 for all i > 4.

Corollary 3.4.14. Let X ⊆ P2 be a set of s ≥ 5 distinct K-rational points which lie

on two different lines. Suppose there exist five points such that no four of them lie on

a line. Then we have HFΩ3
RX/K

(3) = HFΩ3
RX/K

(4) = 1.

Proof. Apply Proposition 3.4.10 to the scheme X which lies on two different lines. This

yields HFΩ3
RX/K

(3) = 1 and HFΩ3
RX/K

(4) ≤ 1. By Lemma 3.4.12 and Lemma 3.4.13, we

get HFΩ3
RX/K

(4) = 1.



3.4. Kähler Differential Algebras for Finite Sets of K-Rational Points 65

Lemma 3.4.15. In P2, let X = {P1, . . . , Ps} be a set of s distinct K-rational points

which lie on a line Z+(L), let Q /∈ Z+(L), and let Y = X ∪ {Q}. Then we have

HFΩ3
RY/K

(3) = 1 and HFΩ3
RY/K

(i) = 0 for all i 6= 3.

Proof. Since X ⊆ Z+(L), we may write ℘j = 〈Lj, L〉S for some linear form Lj ∈ S,

where j ∈ {1, . . . , s}. It follows that IX =
⋂s
j=1 ℘j = 〈F,L〉S with F =

∏s
j=1 Lj. Since

Q /∈ Z+(L), we may choose suitable linear forms L′1 and L′2 such that ℘Q = 〈L′1, L′2〉S
and L′1(P1) = 0 and L′2(P2) = 0. Then the homogeneous vanishing ideal of Y is

IY = IX ∩ ℘Q = 〈F,L〉S ∩ 〈L′1, L′2〉S ⊇ 〈FL′1, FL′2, L′1L,L′2L〉S.

We write L′1 = a0X0 + a1X1 + a2X2, L′2 = b0X0 + b1X1 + b2X2, and L = c0X0 + c1X1 +

c2X2, where ai, bi, ci ∈ K. In the following we show that the rank of the matrix

L =

a0 a1 a2

b0 b1 b2

c0 c1 c2


is 3. Otherwise, there are elements λ1, λ2 ∈ K such that L = λ1L

′
1 + λ2L

′
2. We have

0 = L(P1) = λ1L
′
1(P1) + λ2L

′
2(P1) = λ2L

′
2(P1). Since L′2(P1) 6= 0, we deduce λ2 = 0.

Similarly, we can show that λ1 = 0. Thus we get L = 0, a contradiction. Hence we

have rank(L) = 3, as claimed.

Now we see that 〈∂LL′k/∂Xi | 0 ≤ i ≤ 2, k = 1, 2〉S = 〈a0L+c0L
′
1, a1L+c1L

′
1, a2L+

c2L
′
1, b0L + c0L

′
2, b1L + c1L

′
2, b2L + c2L

′
2〉S ⊆ J = 〈∂G/∂Xi | G ∈ IY, 0 ≤ i ≤ 2〉S ⊆

〈X0, X1, X2〉S. Since L 6= L′1, we may assume that det

(
a0 c0

a1 c1

)
6= 0 and c0 6= 0. Then

det(M) = det


a0 c0 0

a1 c1 0

b0 0 c0


c0 c1 c2

a0 a1 a2

b0 b1 b2


 6= 0.

Moreover, we have M · (X0 X1 X2)tr = (a0L + c0L
′
1 a1L + c1L

′
1 b0L + c0L

′
2)tr.

Hence we get 〈a0L+ c0L
′
1, a1L+ c1L

′
1, b0L+ c0L

′
2〉S = 〈X0, X1, X2〉S, and consequently

J = 〈X0, X1, X2〉S. Thus, by Corollary 3.2.16, we obtain HFΩ3
RY/K

(3) = HFS/J(0) = 1

and HFΩ3
RY/K

(i) = HFS/J(i− 3) = 0 for all i 6= 3.

Corollary 3.4.16. In the setting of Lemma 3.4.15, the Castelnuovo function of Y
∆ HFY(i) := HFY(i)− HFY(i− 1) satisfies ∆ HFY(i) ≤ 1 for all i ≥ 2.
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Proof. Using the notation as in the proof of Lemma 3.4.15, we have

IY = IX ∩ ℘Q = 〈F,L〉S ∩ 〈L′1, L′2〉S ⊇ 〈FL′1, FL′2, L′1L,L′2L〉S.

This yields ∆ HFY(2) = 1, and therefore ∆ HFY(i) ≤ 1 for all i ≥ 2 (see [KR2,

Corollary 5.5.28]).

Lemma 3.4.17. Let X ⊆ P2 be a set of s distinct K-rational points which lie on

a non-singular conic C = Z+(C). Then we have HFΩ3
RX/K

(i) = 0 for i 6= 3 and

HFΩ3
RX/K

(3) = 1.

Proof. Let us write C = a00X
2
0 + 2a01X0X1 + 2a02X0X2 + a11X

2
1 + 2a12X1X2 + a22X

2
2 ,

where ajk ∈ K, and let A = (ajk)j,k=0,1,2. We know that C = Z+(C) is a non-singular

conic if and only if rank(A) = 3. This implies the equality 〈∂C/∂Xi | 0 ≤ i ≤ 2〉S =

〈a00X0+a01X1+a02X2, a10X0+a11X1+a12X2, a20X0+a21X1+a22X2〉S = 〈X0, X1, X2〉S.

Since C ∈ IX, we have J = 〈∂F/∂Xi | F ∈ IX, 0 ≤ i ≤ 2〉S = 〈X0, X1, X2〉S. Therefore

it follows from the isomorphism Ω3
RX/K

∼= (S/J)(−3) that HFΩ3
RX/K

(i) = 0 for i 6= 3

and HFΩ3
RX/K

(3) = 1, as desired.

Corollary 3.4.18. Let X ⊆ P2 be a set of s distinct K-rational points with s ≥ 5.

If X lies on a non-singular conic C = Z+(C), then there is an index i ≥ 2 such that

∆ HFX(i) ≥ 2.

To prove the corollary, we use the following lemma which is mentioned in [Uen,

Theorem 1.32].

Lemma 3.4.19. Let C1 = Z〈F 〉 and C2 = Z〈G〉 be plane curves of degree m and n,

respectively, in projective plane P2. If F and G do not possess a common divisor, then

C1 · C2 = mn.

Proof of Corollary 3.4.18. Since deg(X) = s > 4, it follows from Lemma 3.4.19 that the

homogeneous vanishing ideal IX contains only one homogeneous polynomial of degree 2.

Assume that IX = 〈C,F1, . . . , Ft〉S, where deg(Fj) > 2 for all j = 1, . . . , t. Then we

have HFX = HFS/〈C,F1,...,Ft〉S : 1 3 5 ∗ ∗ · · · . This implies that ∆ HFX(2) = 2.

Corollary 3.4.20. Let X ⊆ P2 be a set of s distinct K-rational points with s ≥ 5.

(i) If HFΩ3
RX/K

(3) = 1 and HFΩ3
RX/K

(4) = 1, then X lies on two different lines and

no s− 1 points of X lie on a line.



3.4. Kähler Differential Algebras for Finite Sets of K-Rational Points 67

(ii) Suppose that HFΩ3
RX/K

(3) = 1 and HFΩ3
RX/K

(i) = 0 for i 6= 3. If ∆ HFX(2) = 1,

then X contains s−1 points on a line. Otherwise, X lies on a non-singular conic.

Proof. By Propositions 3.4.5 and 3.4.10, we have HFΩ3
RX/K

(4) ≤ 1 and HFΩ3
RX/K

(3) = 1

if and only if X lies on a conic. There are three possibilities for the position of the

points of X.

If X lies on two different lines, such that no s − 1 points lie on a line then Corol-

lary 3.4.14 yields HFΩ3
RX/K

(3) = HFΩ3
RX/K

(4) = 1.

If X lies on a non-singular conic then Lemma 3.4.17 and Corollary 3.4.18 yield

HFΩ3
RX/K

(3) = 1,HFΩ3
RX/K

(4) = 0 and ∆ HFX(2) = 2.

If X contains s− 1 points on a line and the other points of X do not lie on this line

then by Lemma 3.4.15 and Corollary 3.4.16, we get HFΩ3
RX/K

(3) = 1, HFΩ3
RX/K

(4) = 0,

and ∆ HFX(2) = 1.

Example 3.4.21. Let X ⊆ P2 be a set of six K-rational points on a non-singular

conic, e.g.,

X = {(1 : 0 : 1), (1 : 0 : −1), (3 : 4 : 5), (3 : −4 : 5), (3 : −4 : −5), (3 : 4 : −5)},

and let Y ⊆ P2 be a set of six K-rational points on a singular conic, e.g.,

Y = {(1 : 0 : 2), (1 : 1 : 0), (1 : 0 : 1), (1 : 2 : 0), (1 : −1 : 0), (1 : 0 : −1)}.

Then we see that HFX = HFY : 1 3 5 6 6 · · · and

HFΩ1
RX/K

= HFΩ1
RY/K

: 0 3 8 11 10 7 6 6 · · · .

Moreover, the minimal graded free resolutions of RY and RX are the same, i.e. we have

0 −→ S(−5) −→ S(−2)⊕ S(−3) −→ S −→ S/I −→ 0

where I is either IX or IY (see [TT, Example 4.1]). However, in this case we have

HFΩ2
RX/K

: 0 0 3 6 4 1 0 · · · , HFΩ2
RY/K

: 0 0 3 6 5 1 0 0 · · ·

HFΩ3
RX/K

: 0 0 0 1 0 0 · · · , HFΩ3
RY/K

: 0 0 0 1 1 0 0 · · · .

This shows that we can distinguish two sets X and Y by looking at the Hilbert functions

of the modules of their Kähler differential m-forms, where m = 2, 3. But we can not

distinguish them by either the Hilbert functions of their homogeneous coordinate rings

or their minimal free resolutions.
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Chapter 4
Kähler Differential Algebras for Fat

Point Schemes

Given a finite set of points X = {P1, ..., Ps} in the projective n-space Pn, a fat point

scheme W = m1P1+· · ·+msPs is a 0-dimensional scheme whose homogeneous vanishing

ideal is of the form IW = ℘m1
1 ∩ · · · ∩ ℘mss where mi ≥ 1 and ℘i is the homogeneous

vanishing ideal of Pi. In the last twenty years many papers have investigated fat

point schemes W in Pn by looking at their algebraic properties such as the Hilbert

function, minimal graded free resolution, and graded Betti numbers (see for instance

[DG], [DK], [Ca], [GT],[GMT]). In [DK], G. Dominicis and M. Kreuzer used the module

of Kähler differential 1-forms as a new tool for studying sets of K-rational points X
in Pn. Inspired by their ideas, in this chapter we explore Kähler differential algebras

for fat point schemes in Pn.

In the first section we recall the definition and some properties of minimal separators

of a fat point scheme W in Pn (see Proposition 4.1.7 and Proposition 4.1.11). From

that, we define DegW(mjPj), the degree of the fat point mjPj in W. Also, we deduce

relations between DegW(mjPj) and the Hilbert function of the subschemeWj = m1P1+

· · ·+mj−1Pj−1 +mj+1Pj+1 + · · ·+msPs of W (see Propositions 4.1.12 and 4.1.17 and

Corollary 4.1.13). In addition, whenW = νX is an equimultiple fat point scheme whose

support X is a complete intersection, we collect some results on the minimal graded

free resolutions of W and its subschemes (see Propositions 4.1.18 and 4.1.19).

In Section 4.2 we focus on the modules of Kähler differential 1-forms for fat point

schemes. A remarkable result in this section is the short exact sequence of graded

RW-modules 0 → IW/IV → Rn+1
W → Ω1

RW/K
→ 0 where IV is the vanishing ideal of

the fat point scheme V = (m1 + 1)P1 + · · · + (ms + 1)Ps (see Theorem 4.2.1). From

this result, we deduce various formulas for Hilbert functions, Hilbert polynomials and
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regularity indices of the modules Ω1
RW/K

and Ω1
RW/K[x0] (see Corollary 4.2.3). Using the

Hilbert polynomial of Ω1
RW/K[x0], we can characterize whether a fat point scheme W is

reduced or not (see Corollary 4.2.4). Also, we give relations between modules of Kähler

differential 1-forms and degree of a fat point scheme when the support X = {P1, ..., Ps}
is a Caylay-Bacharach scheme (see Propositions 4.2.5 and 4.2.6). Furthermore, if X is

in general position, we get sharp upper bounds for the regularity indices of the modules

Ω1
RW/K

and Ω1
RW/K[x0] (see Corollary 4.2.10 and Example 4.2.11).

Continuing the studies of Section 4.2, in the third section, we are concerned with

the modules of Kähler differential m-forms of fat point schemes. We first bound the

Hilbert polynomials of Ωm
RW/K

and Ωm
RW/K[x0] (see Proposition 4.3.1). Then we point

out that for 2 ≤ m ≤ n + 1, the Hilbert polynomial of Ωm
RW/K

is a non-zero constant

if and only if W is a non-reduced scheme (see Corollary 4.3.2). Also, sharp upper

bounds for the regularity indices of Ωm
RW/K

and Ωm
RW/K[x0] are given in Proposition 4.3.4.

Moreover, we present a formula for the Hilbert function of Ωn+1
RW/K

when Supp(W) lies on

a hyperplane (see Propositions 4.3.6 and 4.3.9). If W = νX is an equimultiple fat point

scheme then the Hilbert polynomial of Ωn+1
RW/K

is given by HPΩn+1
RW/K

(z) = s
(
ν+n−2
n

)
(see Proposition 4.3.11 and Corollary 4.3.13). In the remainder of this section, we

establish a relation between the module of Kähler differential 2-forms Ω2
RW/K

and other

fat point schemes which are deduced from the equimultiple fat point scheme W in P2

(see Proposition 4.3.14 and Corollaries 4.3.15 and 4.3.17). From this relation, we also

deduce a formula for the Hilbert polynomial of Ω2
RW/K

.

In Section 4.4 we study the modules of Kähler differential m-forms, where m = 1 or

m = n+ 1, of a fat point scheme W supported at a complete intersection X. First we

show that the Hilbert function of Ω1
RW/K

of an equimultiple fat point scheme W = νX
can be calculated from that of X (see Proposition 4.4.2). In this case, the regularity

index of Ω1
RW/K

is given by ri(Ω1
RW/K

) = νdn +
∑n

j=1 dj − n, where (d1, ..., dn) is the

complete intersection type of X and d1 ≤ · · · ≤ dn (see Corollary 4.4.4). WhenW is not

an equimultiple fat point scheme, Proposition 4.4.6 provides upper and lower bounds

for the Hilbert function of Ω1
RW/K

. We also derive from this proposition an upper bound

for the regularity index of Ωm
RW/K

for m = 1, ..., n+1 (see Corollary 4.4.8). Furthermore,

if ν ≥ 2 and if W = νX is supported at a complete intersection X, we show that the

Hilbert function of Ω1
RWj /K

is independent of j where Wj =
∑

i 6=j νPi + (ν − 1)Pj (see

Proposition 4.4.9). In the case ν = 1, this result holds when the complete intersection

X is of type (d, . . . , d) (see Proposition 4.4.11). We end this section with a result on

the module of Kähler differential n+ 1-forms of an equimultiple fat point scheme W in
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some special cases of complete intersection types (d1, . . . , dn) (see Proposition 4.4.12).

Throughout this chapter we work over a field K of characteristic zero. By Pn

we denote the projective n-space over K. The homogeneous coordinate ring of Pn

is S = K[X0, . . . , Xn]. It is equipped with the standard grading deg(Xi) = 1 for

i = 0, . . . , n.

4.1 Fat Point Schemes

Let s ≥ 1, and let X = {P1, . . . , Ps} be a set of s distinct K-rational points in Pn. For

i = 1, . . . , s, we let ℘i be the associated prime ideal of Pi in S.

Definition 4.1.1. Given a sequence of positive integers m1, . . . ,ms, the intersection

IW := ℘m1
1 ∩ · · · ∩ ℘mss is a saturated homogeneous ideal in S and is therefore the

vanishing ideal of a 0-dimensional subscheme W of Pn.

(i) The schemeW, denoted byW = m1P1+· · ·+msPs, is called a fat point scheme

in Pn. The homogeneous vanishing ideal of W is IW. The number mj is called

the multiplicity of the point Pj for j = 1, . . . , s.

(ii) If m1 = · · · = ms = ν, we denote W also by νX and call it an equimultiple fat

point scheme.

The homogeneous coordinate ring of the scheme W is RW = S/IW. The ring

RW =
⊕

i≥0(RW)i is a standard graded K-algebra and its homogeneous maximal ideal

is mW =
⊕

i≥1(RW)i. Notice that the support of W is Supp(W) = X = {P1, . . . , Ps}.
Since K is infinite, we can choose the coordinate system {X0, . . . , Xn} such that no

point of X lies on the hyperplane at infinity Z+(X0). The image of Xi in RW is denoted

by xi for i = 0, . . . , n. Then x0 is a non-zerodivisor for RW.

As usual, we let rW denote the regularity index of HFW, i.e. rW = min{i ∈ Z |
HFW(j) = HPW(j) for all j ≥ i}. According to Proposition 2.4.5, we have HFW(i) = 0

for i < 0, 1 = HFW(0) < HFW(1) < · · · < HFW(rW − 1) < deg(W), and for i ≥ rW, we

have HFW(i) = deg(W).

Let us illustrate the concepts of fat point schemes and their Hilbert functions with

the following example.

Example 4.1.2. Let W be a fat point scheme W = m1P1 + · · · + msPs in P1, where

Pj = (1 : pj), pj ∈ K for j = 1, . . . , s. Then the vanishing ideal of W is IW = 〈F 〉S
with F = (X1 − p1X0)m1 · · · (X1 − psX0)ms . Thus we have αW =

∑s
j=1mj = deg(W),
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rW =
∑s

j=1mj −1, and the Hilbert function of W depend only on the sum of the

multiplicities of the points in W, i.e.

HFW : 1 2 · · ·
s∑
j=1

mj − 1
s∑
j=1

mj

s∑
j=1

mj · · · .

In many cases, the Hilbert function of a fat point scheme W depends not only

on the positions of the points in W but also their multiplicities (see for instance Ex-

ample 4.1.4). However, the following proposition show that the degree deg(W) is

independent of the position of the points in W. This result is well known. However,

for convenience of the reader, we include its proof.

Proposition 4.1.3. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn. Then

the Hilbert polynomial of W is HPW(z) = deg(W) =
∑s

j=1

(
mj+n−1

n

)
. In particular, if

W = νX is an equimultiple fat point scheme then HPW(z) = deg(W) = s
(
ν+n−1
n

)
.

Proof. Let 1 ≤ t ≤ s− 1. We claim that HP
S/(∩tj=1℘

mj
j +℘

mt+1
t+1 )

(z) = 0. Indeed, let F be

a homogeneous polynomial F ∈ ∩tj=1℘
mj
j \ ℘t+1. Then there are kt ∈ N and G ∈ ℘t+1

such that Xkt
0 = F+G. We set nt+1 = kt+mt+1. Then (Xkt

0 −F )mt+1 = Gmt+1 ∈ ℘mt+1

t+1 ,

and so X
nt+1

0 ∈ ∩tj=1℘
mj
j +℘

mt+1

t+1 . We denote the maximal ideal 〈X0, ..., Xn〉 ⊆ S by M.

For any homogeneous polynomial H ∈ Mnt+1+mt+1 , by the Dirichlet’s box principle,

there exist polynomials H1 ∈ ℘
mt+1

t+1 and H2 ∈ S such that H = H1 + X
nt+1

0 H2 ∈
∩tj=1℘

mj
j +℘

mt+1

t+1 . Thus we get Mnt+1+mt+1 ⊆ ∩tj=1℘
mj
j + ℘

mt+1

t+1 ⊆ M, and the claim

follows.

Given homogeneous ideals I and J in S, we have the exact sequence of graded rings:

0 −→ S/(I ∩ J)
α−→ S/I ⊕ S/J β−→ S/(I + J) −→ 0,

where α is given by α(a+(I∩J)) = (a+I, a+J) and where β is given by β(a+I, b+J) =

(a− b) + (I + J). We deduce from this exact sequence that

HPW(z) = HP
S/∩sj=1℘

mj
j

(z) = HP
S/∩s−1

j=1℘
mj
j

(z) + HPS/℘mss (z) =
s∑
j=1

HP
S/℘

mj
j

(z).

For t ∈ N, the Hilbert polynomial of ℘t−1
j /℘tj is

(
n−1+t−1
n−1

)
, the Hilbert polynomial

of S/℘j is 1, and hence

HP
P/℘

mj
j

(z) = HP
℘
mj−1

j /℘
mj
j

(z) + HP
P/℘

mj−1

j

(z)

=

(
n− 1 +mj − 1

n− 1

)
+ · · ·+

(
n− 1

n− 1

)
=

(
mj + n− 1

n

)
.

Therefore the conclusion follows.
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The following example show that the Hilbert functions of fat point schemes depend

on the position of their points.

Example 4.1.4. Let X be a set of six Q-rational points on a conic and two Q-rational

points off that conic X = {P1, . . . , P8} in P2, where P1 = (1 : 1 : 1), P2 = (1 : −1 : −1),

P3 = (1 : 1 : −1), P4 = (1 : −1 : 1), P5 = (1 : 3/4 : −3/5), P6 = (1 : −3/4 : 3/5),

and P7 = (1 : 3 : 3), and P8 = (1 : −3 : −3). We consider two fat point schemes

V = P1 +P2 +P3 +P4 +P5 +2P6 +P7 +P8 andW = P1 +P2 +P3 +P4 +P5 +P6 +2P7 +P8

in P2. Then we have HFV : 1 3 6 10 10 · · · and HFW : 1 3 6 9 10 10 · · · . Clearly, the

Hilbert polynomials of V and W are both given by

HPV(z) = HPW(z) = 7

(
1 + 2− 1

2

)
+

(
2 + 2− 1

2

)
= 10.

In Section 3.4 we use separators to relate a set of point to its subsets. Similar to

the definition of separators of a finite set of reduced K-rational points in Pn, we now

introduce the concept of separators of fat point schemes, which shall be useful in later

sections.

Definition 4.1.5. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn, and let

j ∈ {1, . . . , s}. By Wj we denote the subscheme Wj = m1P1 + · · ·+mj−1Pj−1 + (mj −
1)Pj + mj+1Pj+1 + · · · + msPs of W. Let IWj/W be the ideal of Wj in RW, i.e. the

residue class ideal of IWj
in RW. Then any non-zero homogeneous element of IWj/W is

called a separator of Wj in W (or of Pj of multiplicity mj).

Remark 4.1.6. If m1 = · · · = ms = 1, i.e. if W = X = {P1, . . . , Ps} is a reduced

scheme, and if j ∈ {1, . . . , s} then a separator f ∈ RW of W \ {Pj} in W satisfies

f(Pj) 6= 0 and f(Pk) = 0 for all k 6= j. Thus f is a separator of W \ {Pj} in W in the

usual sense (see Section 2.4).

It is clear that separators are not unique. Two separators of Wj in W differ by an

element of IW. The existence of separators is given by the following proposition (cf.

[GMT, Theorem 3.3]).

Proposition 4.1.7. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn, and

let j ∈ {1, . . . , s}. By Wj we denote the subscheme Wj = m1P1 + · · · + mj−1Pj−1 +

(mj − 1)Pj + mj+1Pj+1 + · · · + msPs of W. Then there exist νj = deg(W)− deg(Wj)

homogenous elements f ∗j1, . . . , f
∗
jνj
∈ RW such that IWj/W = 〈f ∗j1, . . . , f ∗jνj〉RW and these

elements form a minimal system of generators of IWj/W.
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Definition 4.1.8. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn, and let

j ∈ {1, . . . , s}. For k ∈ {0, . . . ,mj}, we denote by Wjk the subscheme Wjk = m1P1 +

· · ·+mj−1Pj−1+(mj−k)Pj+mj+1Pj+1+· · ·+msPs ofW. Let νj = deg(W)−deg(Wjmj).

a) The set {f ∗j1, . . . , f ∗jνj} given in Proposition 4.1.7 is called a minimal set of

separators of Wj in W (or of Pj of multiplicity mj).

b) Let {f ∗j1, . . . , f ∗jνj} be a minimal set of separators of Wj1 in W. Suppose that

deg(f ∗j1) ≤ · · · ≤ deg(f ∗jνj). We define the degree of Pj in W, denote by

sepdegW(Pj), as sepdegW(Pj) = (deg(f ∗j1), . . . , deg(f ∗jνj)).

c) Let S be the set of all entries of the tuples sepdegWj0
(Pj), . . . , sepdegWj mj−1

(Pj).

The tuple of elements of S in increasing order is called the degree of the fat

point mjPj in W and is denoted by SepdegW(mjPj).

Remark 4.1.9. We make some observations about Definition 4.1.8.

(i) If m1 = · · · = ms = 1, i.e. if W is a set of s distinct K-rational points in Pn,

then SepdegW(Pj) = sepdegW(Pj) for all j = 1, . . . , s. In this case we also write

sepdegW(Pj) = deg(f ∗j1) for all j = 1, . . . , s.

(ii) When k = 0, we have sepdegWjk
(Pj) = sepdegW(Pj).

(iii) If SepdegW(mjPj) = SepdegW(mkPk), then we have mj = mk.

The following example shows how to compute the degree of the fat point mjPj

in W, where mj ≥ 2. Moreover, this shows that the converse of Remark 4.1.9(iii) is

not true in general.

Example 4.1.10. Let X = {P1, . . . , P6} ⊆ P3 be the set of six K-rational points on a

plane given by P1 = (1 : 0 : 0 : 0), P2 = (1 : 0 : 1 : 0), P3 = (1 : 0 : 2 : 0), P4 = (1 :

2 : 1 : 0), P5 = (1 : 1 : 1 : 0), and P6 = (1 : 2 : 3 : 0). Let W be the fat point scheme

W = P1 +P2 + 2P3 + 2P4 + 3P5 + 3P6 in P3. We see that HFW : 1 4 10 18 25 30 30 · · ·
and rW = 5. Let j = 6. The subscheme W6 1 = P1 + P2 + 2P3 + 2P4 + 3P5 + 2P6

has HFW61 : 1 4 10 17 22 24 24 . . . and rW6 1 = 5. By using Proposition 4.1.11, we

get sepdegW6 0
(P6) = sepdegW(P6) = (3, 4, 4, 5, 5, 5). Similarly, the subscheme W6 2 =

P1 + P2 + 2P3 + 2P4 + 3P5 + P6 has HFW6 2 : 1 4 10 16 20 21 21 . . . and rW6 2 = 5,

and so sepdegW6 1
(P6) = (3, 4, 5). The subscheme W6 3 = P1 + P2 + 2P3 + 2P4 + 3P5

has HFW6 3 : 1 4 10 16 19 20 20 . . . and rW6 3 = 5, and thus sepdegW6 2
(P6) = (4).

Altogether, we obtain

SepdegW(3P6) = (3, 3, 4, 4, 4, 4, 5, 5, 5, 5).
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Moreover, we have

SepdegW(3P5) = (3, 3, 4, 4, 4, 5, 5, 5, 5, 5),

SepdegW(2P3) = SepdegW(2P4) = (4, 5, 5, 5),

SepdegW(P1) = SepdegW(P2) = (5).

In this case, we also see that m5 = 3 = m6, but SepdegW(3P5) 6= SepdegW(3P6).

Observe that if W = X is a set of s distinct K-rational points in Pn then we have

sepdegW(Pj) = αW\{Pj}/W = min{i ∈ N | (IW\{Pj}/W)i 6= 0} for every j ∈ {1, . . . , s}.
The Hilbert function of W \ {Pj} satisfies HFW\{Pj}(i) = HFW(i) for i < sepdegW(Pj)

and HFW\{Pj}(i) = HFW(i) − 1 for i ≥ sepdegW(Pj) (cf. [GKR, Proposition 1.3]). In

analogy with this observation, we can now use the minimal set of separators to describe

the Hilbert functions of fat point schemes in Pn.

Proposition 4.1.11. Let W be the fat point scheme W = m1P1+· · ·+msPs in Pn. For

j ∈ {1, . . . , s}, let Wj = m1P1 + · · ·+mj−1Pj−1 + (mj − 1)Pj +mj+1Pj+1 + · · ·+msPs,

let nj = deg(W)− deg(Wj), and let f ∗j1, . . . , f
∗
jnj
∈ RW be a minimal set of separators

of Wj in W. Then for all i ∈ Z we have

HFW(i)− HFWj
(i) = #{f ∗jk| deg(f ∗jk) ≤ i, 1 ≤ k ≤ nj}.

Proof. By Lemma 3.6 of [GMT], we have

#{f ∗jk| deg(f ∗jk) ≤ i, 1 ≤ k ≤ nj} = HFIWj/W(i)

= HFS(i)− HFIW(i)− HFS(i)− HFIWj (i)

= HFW(i)− HFWj
(i)

as we wished.

Similar to Proposition 4.1.11, the difference between the Hilbert functions of two

fat point schemes can be calculated by the degrees of fat points.

Proposition 4.1.12. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn, let

j ∈ {1, . . . , s}, and let Wjmj be the subscheme of W where Wjmj = m1P1 + · · · +
mj−1Pj−1 +mj+1Pj+1 + · · ·+msPs. Then for all i ∈ Z we have

HFW(i)− HFWjmj
(i) = #{d ∈ SepdegW(mjPj) | d ≤ i}.



76 4. Kähler Differential Algebras for Fat Point Schemes

Proof. Note that if mj = 1, then the claim follows immediately from Proposition 4.1.11.

So we may assume that mj ≥ 2. In this case, we let Wjk be the subscheme of W given

in Definition 4.1.8 for k = 0, . . . ,mj. Using Proposition 4.1.11, for all i ∈ Z we have

HFW(i)− HFWjmj
(i) = (HFW(i)− HFWj1

(i)) + (HFWj1
(i)− HFWj2

(i))

+ · · ·+ (HFWj mj−1
(i)− HFWjmj

(i))

= #{d ∈ sepdegWj0
(Pj) | d ≤ i}+ #{d ∈ sepdegWj1

(Pj) | d ≤ i}
+ · · ·+ #{d ∈ sepdegWj mj−1

(Pj) | d ≤ i}

= #{d ∈ SepdegW(mjPj) | d ≤ i}.

Thus the claim is proved.

The following corollary follows immediately from Proposition 4.1.12.

Corollary 4.1.13. In the setting of Proposition 4.1.12, let j, k ∈ {1, . . . , s} be such

that j 6= k. Then HFWjmj
(i) = HFWkmk

(i) for all i ∈ Z if and only if SepdegW(mjPj) =

SepdegW(mkPk).

Example 4.1.14. Let us go back to Example 4.1.10. We see that the fat point scheme

W = P1 +P2 + 2P3 + 2P4 + 3P5 + 3P6 has SepdegW(2P3) = SepdegW(2P4) = (4, 5, 5, 5).

Therefore the two subschemes W32 = P1 +P2 + 2P4 + 3P5 + 3P6 and W42 = P1 +P2 +

2P3 + 3P5 + 3P6 of W have the same Hilbert function which is given by

HFW32 = HFW42 : 1 4 10 18 24 26 26 · · · .

Now we recall the following notion of a Cayley-Bacharach scheme which was care-

fully studied in [GKR] and [Kre1].

Definition 4.1.15. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points. We say that X is a Cayley-Bacharach scheme (in short, CB-scheme) if

every hypersurface of degree rX− 1 which contains all but one point of X must contain

all points of X.

Note that X is a CB-scheme if and only if sepdegX(Pj) = rX for all j = 1, . . . , s.

Equivalently, the Hilbert function of X \ {Pj} does not depend on the choice of j.

Furthermore, it follows from the well-known Cayley-Bacharach Theorem that every

reduced 0-dimensional complete intersection X of type (d1, . . . , dn) is a CB-scheme. In

this special case, for all j ∈ {1, . . . , s} we have sepdegX(Pj) =
∑n

i=1 di − n and the
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Hilbert function of Xj = X \ {Pj} satisfies

HFXj(i) =

HFX(i) if i < sepdegX(Pj),

HFX(i)− 1 if i ≥ sepdegX(Pj).

If W is an equimultiple fat point scheme whose support is a complete intersection,

we have a concrete formula for the Hilbert function ofW as in the following proposition

(cf. [GT, Corollary 2.3]).

Proposition 4.1.16. Let X = {P1, . . . , Ps} ⊆ Pn be a complete intersection of

type (d1, . . . , dn). Let Lj = {(a1, . . . , an) ∈ Nn|a1 + · · ·+ an = j}. For every ν ∈ N, the

Hilbert function of the equimultiple fat point scheme νX satisfies

HFνX(i) =
ν−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− a1d1 − · · · − andn)

for all i ∈ Z. In particular, the Hilbert function of νX depend only on the type of the

scheme X and the multiplicity ν.

Using this proposition and Corollary 2.1.15, we now show that the degrees of fat

points of a given scheme can be the same.

Proposition 4.1.17. Let X= {P1,. . . ,Ps} ⊆ Pn be a set of s distinct K-rational points.

Suppose that X is a Cayley-Bacharach scheme, and that the subschemes

Xi = X \ {Pi}, Xj = X \ {Pj} are complete intersections, for some i, j ∈ {1, . . . , s}.
Then the subschemes Xi and Xj have the same complete intersection types, and for all

ν ≥ 1 and we have SepdegνX(νPi) = SepdegνX(νPj).

Proof. Since X is a CB-scheme, this implies HFXi(`) = HFXj(`) for all ` ∈ Z. By

Corollary 2.1.15, the complete intersections Xi and Xj have the same type. From this,

Proposition 4.1.16 shows that HFνXi(`) = HFνXj(`) for all ` ∈ Z. Thus for ` ∈ Z, we

get

HFνX(`)−#{d ∈ SepdegνX(νPi) | d ≤ `} = HFνXi(`) = HFνXj(`)

= HFνX(`)−#{d ∈ SepdegνX(νPj) | d ≤ `}

Hence we have SepdegνX(νPi) = SepdegνX(νPj).

The next proposition describes explicitly the minimal graded free resolution of an

equimultiple fat point scheme W = νX in Pn supported at a complete intersection X.
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Proposition 4.1.18. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points which is a complete intersection of type (d1, . . . , dn). The minimal graded free

resolution of IνX has the form

0 −→ Fn−1 −→ Fn−2 −→ · · · −→ F0 −→ IνX −→ 0,

where F0 =
⊕

(a1,...,an)∈Mn,ν,1
S(−a1d1 − · · · − andn), and for i = 1, . . . , n, we have

Fi =
n⊕

l1=i+1

[
n⊕

l2=l1

[
· · ·

[
n⊕

li=li−1

[ ⊕
(a1,...,an)∈Mn,ν+i,li

S(−a1d1 − · · · − andn)

]]
· · ·

]]

where Mn,s,t :={(a1, . . . , an) ∈ Nn |
∑n

i=1 ai=s and at least t of ai’s are non-zero}.

Proof. Since the homogeneous vanishing ideal of X is generated by a regular sequence,

we can use [ZS, Appendix 6, Lemma 5] and get IνX = I(ν)
X = IνX for all ν ∈ N. Thus

the claim follows from [GT, Theorem 2.1].

We end this section with the following proposition which shows that the degree of

any point Pj in a given equimultiple fat point scheme W and the Hilbert function of

the fat point subscheme obtained from W by reducing the multiplicity of Pj by one do

not depend on the position of Pj in the complete intersection X.

Proposition 4.1.19. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points which is a complete intersection of type (d1, . . . , dn), let ν ≥ 1 and let Fn−1

be given in Proposition 4.1.18. For every j ∈ {1, . . . , s}, let Wj1 be the subscheme

Wj1 = νP1 + · · ·+ νPj−1 + (ν − 1)Pj + νPj+1 + · · ·+ νPs of νX.

(i) We have rank(Fn−1) = deg(W)− deg(Wj1) =
(
ν+n−2
n−1

)
.

(ii) Let we denote the tuple of all elements of the set W = {a1d1 + · · · + andn − n |
ai 6= 0,

∑n
i=1 ai = ν + n − 1} in increasing order by (b1, . . . , b(ν+n−2

n−1 )). Then we

have

sepdegνX(P1) = · · · = sepdegνX(Ps) = (b1, . . . , b(ν+n−2
n−1 )).

(iii) For every j ∈ {1, . . . , s}, the schemes Wj1 all have the same Hilbert function.

(iv) A graded free resolution of RWj1
is of the form

0→
⊕∏n

i=1 ai 6=0,
∑n
i=1 ai=ν+n−1

S( n
n−1)(−a1d1−· · ·−andn+1)→ · · · → S → RWj1

→ 0.
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Proof. To prove (i), let us compute the free S-module Fn−1 first. Using Proposi-

tion 4.1.18, we have Fn−1 =
⊕

(a1,...,an) S(−a1d1 − · · · − andn), where ai 6= 0 for all

i = 1, . . . , n and
∑n

i=1 ai = ν +n− 1. Thus rank(Fn−1) =
(
ν+n−2
n−1

)
. Moreover, Proposi-

tion 4.1.3 implies deg(W)−deg(Wj1) = s
(
ν+n−1
n

)
−(s−1)

(
ν+n−1
n

)
−
(
ν−1+n−1

n

)
=
(
ν+n−2
n−1

)
.

Hence the first claim follows.

Now we prove the second claim. By (i), there exists a set V of
(
ν+n−2
n−1

)
polynomials

such that V is a minimal set of separator of Wj1 in W. Let V ′ be the sequence of

degrees of all entries of V in increasing order V ′ = (c1, . . . , c(ν+n−2
n−1 )). It follows from (i)

and [GMT, Theorem 5.4] that there exists a free S-module F ′n−1 such that

Fn−1 =
⊕

∏n
i=1 ai 6=0,

∑n
i=1 ai=ν+n−1

S(−a1d1 − · · · − andn)

= F ′n−1 ⊕ S(−c1 − n)⊕ S(−c2 − n)⊕ · · · ⊕ S(−c(ν+n−2
n−1 ) − n).

By comparing coefficients, we get F ′n−1 = 0 and ci = bi for i = 1, . . . ,
(
ν+n−2
n−1

)
, where

(b1, . . . , b(ν+n−2
n−1 )) is the tuple of all elements of the set W = {a1d1 + · · · + andn − n |

ai 6= 0,
∑n

i=1 ai = ν + n− 1} in increasing order. Therefore the claim follows from the

fact that sepdegνX(Pj) = (c1, . . . , c(ν+n−2
n−1 )).

Let us proceed to prove (iii). We let V be a minimal set of separator of Wj1 in W.

Then Corollary 4.1.11 yields

HFWj1
(i) = HFW(i)−#{f ∗j ∈ V | deg(f ∗j ) ≤ i}

= HFW(i)−#{b ∈ {b1, ..., b(ν+n−2
n−1 )} | b ≤ i}.

So, the claim (iii) follows from (ii).

Finally, we show (iv). From the last exact sequence in the proof of [GMT, Theo-

rem 5.4], the resolution of the ring RWj1
is

0→
⊕∏n

i=1 ai 6=0,
∑n
i=1 ai=ν+n−1

S( n
n−1)(−a1d1−· · ·−andn+1)⊕Hn−1 → · · · → S → RWj1

→ 0

where the free S-module Hn−1 satisfies the equality

Fn−1 =
⊕∏n

i=1 ai 6=0,
∑n
i=1 ai=ν+n−1

S( n
n−1)(−a1d1 − · · · − andn)⊕Hn−1.

In the proof of (i) we have Fn−1 =
⊕∏n

i=1 ai 6=0,
∑n
i=1 ai=ν+n−1

S( n
n−1)(−a1d1 − · · · − andn).

Consequently, it follows from the proof of (i) that Hn−1 = 0.
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4.2 Modules of Kähler Differential 1-Forms for Fat

Point Schemes

In this section we study the modules of Kähler differential 1-forms Ω1
RW/K

and Ω1
RW/K[x0]

for fat point schemes W in Pn. More precisely, we work out their Hilbert functions and

give bounds for their regularity indices.

Let W = X = {P1, . . . , Ps} be a set of s distinct K-rational points in Pn. The

following presentation for the module of Kähler differentials Ω1
RX/K

was given in [DK]:

0 −→ IX/I2X −→ Rn+1
X (−1) −→ Ω1

RX/K
−→ 0

where 2X = 2P1 + · · ·+ 2Ps is the corresponding scheme of double points in Pn. This

presentation can be generalized to the case of an arbitrary fat point scheme in Pn as

follows.

Theorem 4.2.1. Consider the two fat point schemes W = m1P1 + · · · + msPs and

V = (m1 + 1)P1 + · · ·+ (ms + 1)Ps in Pn. Then the sequence of graded RW-modules

0 −→ IW/IV −→ Rn+1
W (−1) −→ Ω1

RW/K
−→ 0

is exact.

In the proof of this theorem we use the following lemma which follows for instance

from [Mat, Chapter 3, §7, Theorem 7.4 (i)].

Lemma 4.2.2. Let M be a free S-module of rank m and let I, J be ideals of S. Then

we have IM ∩ JM = (I ∩ J)M .

Proof of Theorem 4.2.1. Since Rn+1
W (−1) ∼= Ω1

S/K/IWΩ1
S/K , it suffices to prove that the

sequence of graded RW-modules

0 −→ IW/IV
α−→ Ω1

S/K/IWΩ1
S/K −→ Ω1

RW/K
−→ 0

is exact, where α : IW/IV → Ω1
S/K/IWΩ1

S/K is given by α(F + IV) = dF + IWΩ1
S/K for

all F ∈ IW.

First we check that the map α is well defined: Let F1, F2 ∈ IW be such that

F1−F2 ∈ IV. Then we have F1−F2 ∈ ℘
mj+1
j for j ∈ {1, . . . , s}, and hence dF1−dF2 ∈

d(℘
mj+1
j ) ⊂ ℘

mj
j Ω1

S/K . Therefore we see that dF1 − dF2 ∈
⋂s
j=1 ℘

mj
j Ω1

S/K . Notice

that Ω1
S/K is a free S-module of rank n + 1. By Lemma 4.2.2, we get dF1 − dF2 ∈⋂s

j=1 ℘
mj
j Ω1

S/K = IWΩ1
S/K .
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Next we show that the map α is RW-linear: For F1, F2 ∈ IW and G1, G2 ∈ S, we

have

α(G1F1 +G2F2 + IV) = d(G1F1 +G2F2) + IWΩ1
S/K

= G1dF1 +G2dF2 + IWΩ1
S/K

= (G1 + IW) · α(F1 + IV) + (G2 + IW) · α(F2 + IV).

Now we prove that the map α is injective. For a contradiction, suppose that there

is a homogeneous polynomial F ∈ IW \ IV such that α(F + IV) = dF + IWΩ1
S/K = 0.

Since F /∈ IV =
⋂s
j=1 ℘

mj+1
j , there is an index j0 ∈ {1, . . . , s} such that F /∈ ℘mj0+1

j0
.

Setting

Σ = {G ∈ ℘mj0j0
| G /∈ ℘mj0+1

j0
, dG ∈ ℘mj0j0

Ω1
S/K},

we see that F ∈ Σ 6= ∅. Let G be a homogeneous polynomial of minimal degree in Σ.

By Euler’s rule, we have

deg(G) ·G =
n∑
i=0

∂G

∂Xi

Xi =
n∑
i=1

∂G

∂Xi

(Xi − pj0iX0) +X0

n∑
i=0

pj0i
∂G

∂Xi

where we write Pj0 = (1 : pj01 : · · · : pj0n) with pji ∈ K. Let G̃ =
∑n

i=0 pj0i
∂G
∂Xi

. It

follows from dG =
∑n

i=0
∂G
∂Xi

dXi ∈ ℘
mj0
j0

Ω1
S/K that ∂G

∂Xi
∈ ℘mj0j0

for all i = 0, . . . , n, and

hence G̃ ∈ ℘
mj0
j0

. On the other hand, we have
∑n

i=1
∂G
∂Xi

(Xi − pj0iX0) ∈ ℘
mj0+1

j0
, and

thus, since G /∈ ℘
mj0+1

j0
, we get X0G̃ /∈ ℘

mj0+1

j0
. This implies that G̃ /∈ ℘

mj0+1

j0
, and

in particular G̃ 6= 0. Moreover, both dG and d
(∑n

i=1
∂G
∂Xi

(Xi − pj0iX0)
)

are contained

in ℘
mj0
j0

Ω1
S/K . This implies d(X0G̃) = X0dG̃ + G̃dX0 ∈ ℘

mj0
j0

Ω1
S/K . Clearly, G̃dX0 is

an element of ℘
mj0
j0

Ω1
S/K , and so is X0dG̃. Since the image of X0 in S/℘

mj0
j0

is not a

zerodivisor for S/℘
mj0
j0

, we have dG̃ ∈ ℘mj0j0
Ω1
S/K . Altogether, we find G̃ ∈ Σ \ {0} and

deg(G̃) < deg(G), in contradiction to the choice of G. Consequently, the map α is

injective.

Now it is straightforward to see that the sequence of graded RW-modules

0 −→ IW/IV
α−→ Ω1

S/K/IWΩ1
S/K −→ (Ω1

S/K/IWΩ1
S/K)/ Im(α) −→ 0

is exact. Furthermore, we have Im(α) = α(IW/IV) = (〈dIW〉S +IWΩ1
S/K)/IWΩ1

S/K and

Ω1
RW/K

∼= Ω1
S/K/(〈dIW〉S + IWΩ1

S/K). Therefore we obtain the desired exact sequence.

In view of Proposition 4.1.3, we see that the Hilbert polynomial of W depends

only on the number of points in its support and their multiplicities. Moreover, the
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following corollary shows that the Hilbert polynomials of Ω1
RW/K

and Ω1
RW/K[x0] also

have the same property. Moreover, this corollary gives us a relation between the

Hilbert functions of Ω1
RW/K

(as well as of Ω1
RW/K[x0]) and of W and V.

Corollary 4.2.3. Consider the two fat point schemes W = m1P1 + · · · + msPs and

V = (m1 + 1)P1 + · · ·+ (ms + 1)Ps in Pn.

(i) We have HFΩ1
RW/K

(i) = (n+ 1) HFW(i− 1) + HFW(i)− HFV(i) for all i ∈ Z.

(ii) The Hilbert polynomial of Ω1
RW/K

is the constant polynomial

HPΩ1
RW/K

(z) = (n+ 2)
s∑
j=1

(
mj + n− 1

n

)
−

s∑
j=1

(
mj + n

n

)
.

(iii) We have HFΩ1
RW/K[x0]

(i) = nHFW(i− 1) + HFW(i)− HFV(i).

(iv) The Hilbert polynomial of Ω1
RW/K[x0] is

HPΩ1
RW/K[x0]

(z) = (n+ 1)
s∑
j=1

(
mj + n− 1

n

)
−

s∑
j=1

(
mj + n

n

)
.

(v) The regularity indices of the modules of Kähler differentials 1-forms Ω1
RW/K

and

Ω1
RW/K[x0] are bounded by

max{ri(Ω1
RW/K

), ri(Ω1
RW/K[x0])} ≤ max{rW + 1, rV}.

Proof. Claim (i) follows immediately from the exact sequence of the module of Kähler

differential 1-forms Ω1
RW/K

given in Theorem 4.2.1. Claim (ii) follows from Proposi-

tion 4.1.3 and the fact that HPΩ1
RW/K

(z) = (n+ 2) HPW(z)−HPV(z) which is induced

by (i).

Now we prove (iii). By Corollary 3.3.2 and (i), we have

HFΩ1
RW/K[x0]

(i) = HFΩ1
RW/K

(i)− HFW(i− 1)

= (n+ 1) HFW(i− 1) + HFW(i)− HFV(i)− HFW(i− 1)

= nHFW(i− 1) + HFW(i)− HFV(i)

for all i ∈ Z. Claim (iv) follows from (iii) and Proposition 4.1.3. Finally, claim (v) is

an immediate consequence of (i) and (iii).

Our next corollary indicates that the Hilbert function of Ω1
RW/K[x0] knows whether

the scheme is reduced.
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Corollary 4.2.4. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn. Then

m1 = · · · = ms = 1 if and only if HPΩ1
RW/K[x0]

(z) = 0.

Proof. By Corollary 4.2.3(v), we have the equalities

HPΩ1
RW/K[x0]

(z) = HPΩ1
RW/K

(z)− HPW(z)

= (n+ 1)
s∑
j=1

(
mj + n− 1

n

)
−

s∑
j=1

(
mj + n

n

)

=
s∑
j=1

(mj + n− 1)!

n!mj!

(
(n+ 1)mj −mj − n

)
=

s∑
j=1

(
mj + n− 1

n− 1

)(
mj − 1

)
.

Hence we have HPΩ1
RW/K[x0]

(z) = 0 if and only if mj = 1 for j = 1, . . . , s.

When W = X = {P1, . . . , Ps} ⊆ Pn is a CB-scheme, we have the following property.

Proposition 4.2.5. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points which is a CB-scheme, and let Xj = X \ {Pj} for j = 1, . . . , s. Then we have

Sepdeg2X(2Pj) = Sepdeg2X(2Pk) if and only if HFΩ1
RXj /K

(i) = HFΩ1
RXk

/K
(i) for all i ∈ Z.

Proof. Let j, k ∈ {1, . . . , s} with j 6= k. Since X is a CB-scheme, we have HFXj(i) =

HFXk(i) for all i ∈ Z. Thus due to Theorem 4.2.1, we get

HFΩ1
RXj /K

(i)− HFΩ1
RXk

/K
(i) = (n+ 1) HFXj(i− 1) + HFXj(i)− HF2Xj(i)

− ((n+ 1) HFXk(i− 1) + HFXk(i)− HF2Xk(i))

= HF2Xk(i)− HF2Xj(i)

for all i ∈ Z. Hence HFΩ1
RXj /K

(i) = HFΩ1
RXk

/K
(i) for all i ∈ Z if and only if HF2Xk(i) =

HF2Xj(i) for all i ∈ Z. According to Corollary 4.1.13, this is equivalent to the fact that

Sepdeg2X(2Pj) = Sepdeg2X(2Pk), and the claim is proved.

We can generalize the above property as follows.

Proposition 4.2.6. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points which is a CB-scheme, let Xj = X \ {Pj} for j = 1, . . . , s, and let ν ≥ 1.

Then we have HFΩ1
RlXj /K

(i) = HFΩ1
RlXk

/K
(i) for all i ∈ Z and 1 ≤ l ≤ ν if and only if

(Sepdeg2X(2Pj), . . . , Sepdeg(ν+1)X((ν+1)Pj)) = (Sepdeg2X(2Pk), . . . , Sepdeg(ν+1)X((ν+

1)Pk)).
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Proof. In the case ν = 1, the claim follows from Proposition 4.2.5. Now we assume

that ν ≥ 2. Notice that HFXj(i) = HFXk(i) for all i ∈ Z, since X is a CB-scheme. By

Theorem 4.2.1, we have

HFΩ1
RlXj /K

(i)− HFΩ1
RlXk

/K
(i) = (n+ 1) HFlXj(i− 1) + HFlXj(i)− HF(l+1)Xj(i)

− ((n+ 1) HFlXk(i− 1) + HFlXk(i)− HF(l+1)Xk(i))

= (n+ 1)(HFlXj(i− 1)− HFlXk(i− 1))

+ (HFlXj(i)− HFlXk(i)) + (HF(l+1)Xk(i)− HF(l+1)Xj(i))

for all i ∈ Z. Thus, we get HFΩ1
RlXj /K

(i) = HFΩ1
RlXk

/K
(i) for all i ∈ Z and 1 ≤ l ≤ ν if

and only if HF(l+1)Xk(i) = HF(l+1)Xj(i) for all i ∈ Z and 1 ≤ l ≤ ν, and an application

of Corollary 4.1.13 finishes the proof.

Remark 4.2.7. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational points

which satisfies the hypotheses of Proposition 4.1.17, and let ν ≥ 1. Then we have

HFΩ1
RνXi /K

(`) = HFΩ1
RνXj /K

(`) for all ` ∈ Z.

Let us clarify the details of Proposition 4.2.6 using an example.

Example 4.2.8. Let X = {P1, . . . , P5} ⊆ P4 given by P1 = (1 : 0 : 1 : 1 : 0),

P2 = (1 : 1 : 0 : 1 : 0), P3 = (1 : 2 : 1 : 1 : 1), P4 = (1 : 2 : 2 : 0 : 1), and

P5 = (1 : 0 : 2 : 1 : 1). Then X has the Hilbert function HFX : 1 5 5 . . . , and so it is

a CB-scheme. Notice that X \ {P1} is not a complete intersection. Furthermore, for

j ∈ {1, . . . , 5}, we can check that Sepdeg2X(2Pj) = (2, 3, 3, 3, 3) and

Sepdeg3X(3Pj) = (3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5).

So, we have
(

Sepdeg2X(2Pj), Sepdeg3X(3Pj)
)

=
(

Sepdeg2X(2Pk), Sepdeg3X(3Pk)
)

for

all j, k ∈ {1, . . . , 5}. Hence Proposition 4.2.6 yields that HFΩ1
RlXj /K

(i) = HFΩ1
RlXk

/K
(i)

for all i ∈ Z and l = 1, 2 and j, k ∈ {1, . . . , 5}.

A set of s distinct K-rational points in Pn is said to be in general position if no

h + 2 points of them are on an h-plane for h < n. For a fat point scheme W in Pn

whose support is in general position, we recall the following bound for its regularity

index which has been proved by M.V. Catalisano et al (cf. [CTV, Theorem 6]).

Proposition 4.2.9. Let s ≥ 2, let X = {P1, . . . , Ps} be a set of s distinct K-rational

points of Pn in general position, and let W = m1P1 + · · ·+msPs be a fat point scheme
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in Pn with support X. Suppose that m1 ≤ · · · ≤ ms. Then we have

rW ≤ max

{
ms +ms−1 − 1,

⌊∑s
j=1mj + n− 2

n

⌋}
where bac denotes the integer part of a ∈ Q.

Based on this result, a bound for the regularity index of the module of Kähler

differentials for a fat point scheme in Pn whose support is in general position can be

given as follows.

Corollary 4.2.10. Let s ≥ 2, let X = {P1, . . . , Ps} be a set of s distinct K-rational

points of Pn in general position, and let W = m1P1 + · · ·+msPs be a fat point scheme

in Pn with m1 ≤ · · · ≤ ms. Then we have

max{ri(Ω1
RW/K

), ri(Ω1
RW/K[x0])} ≤ max

{
ms +ms−1 + 1,

⌊
1
n

s∑
j=1

mj + s+ n− 2
⌋}
.

Proof. Let ζ denote max{ri(Ω1
RW/K

), ri(Ω1
RW/K[x0])}. Using Corollary 4.2.3 and Propo-

sition 4.2.9, we have

ζ ≤ max
{
ms +ms−1 + 1,

⌊
1
n
(
s∑
j=1

mj + s+ n− 2)
⌋
,
⌊

1
n

s∑
j=1

mj + n− 2
⌋

+ 1
}
.

If s ≥ n then
⌊
(
∑s

j=1mj + s + n − 2)/n
⌋
≥
⌊
(
∑s

j=1 mj + n − 2)/n
⌋

+ 1. If s < n,

we use s ≥ 2 and 1 ≤ m1 ≤ · · · ≤ ms−1 ≤ ms and get nms ≥
∑s

j=1mj as well as

nms−1 ≥ n. This shows ms + ms−1 + 1 ≥
⌊
(
∑s

j=1mj + n − 2)/n
⌋

+ 1. Therefore we

obtain ζ ≤ max
{
ms +ms−1 + 1,

⌊
1
n

∑s
j=1 mj + s+ n− 2

⌋}
.

The upper bound for the regularity indices of Ω1
RW/K

and Ω1
RW/K[x0] which is given

in Corollary 4.2.10 is sharp, as the following examples show.

Example 4.2.11. (a) Let W be the fat point scheme W = P1 + 4P2 + 4P3 in P4,

where P1 = (1 : 2 : 4 : 8 : 16), P2 = (1 : 0 : 0 : 0 : 0), and where P3 = (1 : 1 : 1 : 1 : 1).

Clearly, the set X = {P1, P2, P3} is in general position in P4. Now we calculate

HFΩ1
RW/K

: 0 5 25 75 161 238 270 281 282 281 281 · · · ,

HFΩ1
RW/K[x0]

: 0 4 20 60 126 182 204 211 211 210 210 · · · .

Then ri(Ω1
RW/K

) = ri(Ω1
RW/K[x0]) = 9 = 4 + 4 + 1.

(b) Let W be the fat point scheme W = P1 + P2 + P3 + P4 + 2P5 + 2P6 in P2 where

P1 = (1 : 2 : 4), P2 = (1 : 3 : 9), P3 = (1 : 4 : 16), P4 = (1 : 5 : 25), P5 = (1 : 0 : 0), and
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where P6 = (1 : 1 : 1). It is easy to check that X = {P1, . . . , P6} is in general position

in P2. Then we calculate

HFΩ1
RW/K

: 0 3 9 17 22 20 17 16 16 · · · and HFΩ1
RW/K[x0]

: 0 2 6 11 13 10 7 6 6 · · · .

Therefore we have ri(Ω1
RW/K

) = ri(Ω1
RW/K[x0]) = 7 = (8 + 6 + 2− 2)/2.

We conclude this section with the following corollary which summarizes some basic

properties of the Hilbert functions of Ω1
RW/K

and Ω1
RW/K[x0] for a fat point scheme W

in Pn.

Corollary 4.2.12. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn, and let

V = (m1 + 1)P1 + · · ·+ (ms + 1)Ps.

(i) For i ≤ 0 we have HFΩ1
RW/K

(i) = HFΩ1
RW/K[x0]

(i) = 0.

(ii) For 1 ≤ i < αW we have HFΩ1
RW/K

(i) = (n+ 1)
(
n+i−1
n

)
.

(iii) For 1 ≤ i < αW we have HFΩ1
RW/K[x0]

(i) = n
(
n+i−1
n

)
.

(iv) We have HFΩ1
RW/K

(αW) = HFW(αW) + (αW − 1)
(
n+αW−1
n−1

)
.

(v) We have HFΩ1
RW/K[x0]

(αW) = HFW(αW) + n
(
n+αW−1

n

)
−
(
n+αW
n

)
.

(vi) For αW < i < αV, we have

HFΩ1
RW/K

(i) = (n+ 1) HFW(i− 1) + HFW(i)−
(
i+ n

n

)
.

(vii) For αW < i < αV, we have

HFΩ1
RW/K[x0]

(i) = nHFW(i− 1) + HFW(i)−
(
i+ n

n

)
.

(viii) We have HFΩ1
RW/K

(rW + 1) ≥ HFΩ1
RW/K

(rW + 2) ≥ · · · .
If ri(Ω1

RW/K
) ≥ rW + 1, then HFΩ1

RW/K
(rW + 1) > HFΩ1

RW/K
(rW + 2) > · · · · · · >

HFΩ1
RW/K

(ri(Ω1
RW/K

)) = (n+ 2)
(∑s

j=1

(
mj+n−1

n

))
−
∑s

j=1

(
mj+n
n

)
.

Proof. First we note that, given a homogeneous polynomial F ∈ (IV)αV , Euler’s rule

shows that there is an index i ∈ {0, . . . , n} such that ∂F/∂Xi ∈ (IW)αV−1 \ {0}. This

yields αW < αV. Thus the claims of the corollary follow immediately from Proposi-

tion 3.3.8 and Corollary 4.2.3(i) and (iii) .
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4.3 Modules of Kähler Differential m-Forms for Fat

Point Schemes

Throughout this section we let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points, and we let W = m1P1 + · · · + msPs be a fat point scheme in Pn supported

at X. In Section 4.2 we have taken a first step towards studying the modules of

Kähler differential 1-forms for the fat point scheme W. In the process we investigated

many interesting properties of Ω1
RW/K

and Ω1
RW/K[x0]. In this section we look more

closely at the modules of Kähler differential m-forms for the fat point scheme W,

where 1 ≤ m ≤ n+ 1.

First we bound the Hilbert polynomials of Ωm
RW/K

and Ωm
RW/K[x0] as follows.

Proposition 4.3.1. Let W = m1P1 + · · ·+msPs be a fat point scheme in Pn such that

mi ≥ 2 for some i ∈ {1, . . . , s}, and let 1 ≤ m ≤ n+ 1.

(i) The Hilbert polynomial of Ωm
RW/K

is a constant polynomial which is bounded by

s∑
i=1

(
n+ 1

m

)(
mi + n− 2

n

)
≤ HPΩm

RW/K
(z) ≤

s∑
i=1

(
n+ 1

m

)(
mi + n− 1

n

)
.

(ii) If 1 ≤ m ≤ n, then the Hilbert polynomial of Ωm
RW/K[x0] is a constant polynomial

which is bounded by

s∑
i=1

(
n

m

)(
mi + n− 2

n

)
≤ HPΩm

RW/K[x0]
(z) ≤

s∑
i=1

(
n

m

)(
mi + n− 1

n

)
.

Proof. Let Y be the subscheme Y = (m1 − 1)P1 + · · · + (ms − 1)Ps of W. Since we

have 〈dIW〉S ⊆ IYΩ1
S/K , this implies 〈dIW〉S ∧ Ωm−1

S/K ⊆ IYΩm
S/K . Obviously, we have

the inclusion IW ⊆ IY. It follows that IWΩm
S/K ⊆ IYΩm

S/K . From this we deduce

IWΩm
S/K + 〈dIW〉SΩm−1

S/K ⊆ IYΩm
S/K . By Corollary 3.3.4, the Hilbert function of Ωm

RW/K

satisfies HFΩm
RW/K

(i) = HFΩm
S/K

/(IWΩm
S/K

+〈dIW〉SΩm−1
S/K

)(i) ≥ HFΩm
S/K

/IYΩm
S/K

(i) for all i ∈ Z.

We see that HPΩm
S/K

/IYΩm
S/K

(z) =
∑s

i=1

(
n+1
m

)(
mi+n−2

n

)
> 0 since mi ≥ 2 for some

i ∈ {1, . . . , s}. Hence we get the stated lower bound for Hilbert polynomial of Ωm
RW/K

.

In particular, HPΩm
RW/K

(z) > 0.

Furthermore, Proposition 3.3.8 shows that HPΩm
RW/K

(z) is a constant polynomial.

Now we find an upper bound for HPΩm
RW/K

(z). Clearly, the RW-module Ωm
RW/K

is

generated by the set {dxi1 ∧ · · · ∧ dxim | {i1, . . . , im} ⊆ {0, . . . , n}} consisting of
(
n+1
m

)
elements. This implies HFΩm

RW/K
(i) ≤

(
n+1
m

)
HFW(i − m) for all i ≥ 0. Hence we get
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HPΩm
RW/K

(z) ≤
(
n+1
m

)∑s
i=1

(
mi+n−1

n

)
, which completes the proof of claim (i). Claim (ii)

follows from Corollary 3.3.4 with a similar argument as above.

The following corollary in an immediate consequence of this proposition and Propo-

sition 3.4.1.

Corollary 4.3.2. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn, and let

mmax = max{m1, . . . ,ms}. The following conditions are equivalent.

(i) The scheme W is not reduced i.e. mmax > 1.

(ii) There exists m ∈ {2, . . . , n+ 1} such that HPΩm
RW/K

(z) > 0.

(iii) HPΩn+1
RW/K

(z) > 0.

(iv) There exists m ∈ {2, . . . , n} such that HPΩm
RW/K[x0]

(z) > 0.

Notice that the corollary does not always hold true for an arbitrary 0-dimensional

subscheme of Pn, as the following example shows.

Example 4.3.3. Let K be an algebraically closed field, and letW be the 0-dimensional

complete intersection by two hypersurfaces Z1 = Z+(X2
0 + X2

1 − X2
2 ) and

Z2 = Z+(5X2
0 +5X2

1 +6X0X1 +6X1X2−5X2
2 ). By using Bézout’s theorem, the scheme

W contains the point (1 : 0 : −1) with multiplicity 3 and the point (1 : 0 : 1) with mul-

tiplicity 1. A simple computation gives us HPΩ3
RW/K

(z) = 0 and HPΩ1
RW/K

(z) = 6 6= 4.

Therefore the scheme W is neither a set of distinct K-rational points nor a fat point

scheme. In this case, we also have HPΩ2
RW/K

(z) = 2 6= 0.

Similar to Corollaries 4.2.3 and 4.2.10, we bound the regularity indices of Ωm
RW/K

and Ωm
RW/K[x0], for m = 1, . . . , n+ 1, as follows.

Proposition 4.3.4. Let W = m1P1 + · · ·+msPs and V = (m1 +1)P1 + · · ·+(ms+1)Ps

be fat point schemes in Pn.

(i) For m = 1, . . . , n we have

max{ri(Ωm
RW/K

), ri(Ωm
RW/K[x0])} ≤ max{rW +m, rV +m− 1}.

(ii) We have ri(Ωn+1
RW/K

) ≤ max{rW + n, rV + n− 1}.

In particular, if m1 ≤ · · · ≤ ms and Supp(W ) = {P1, . . . , Ps} is in general position

then for 1 ≤ m ≤ n we have

max{ri(Ωm
RW/K

), ri(Ωm
RW/K[x0])} ≤ max{ms+ms−1 +m, b

∑s
j=1mj + s+ n− 2

n
c+m−1}
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and

ri(Ωn+1
RW/K

) ≤ max{ms +ms−1 + n, b
∑s

j=1mj + s+ n− 2

n
c+ n− 1}.

Proof. Claim (i) follows directly from Proposition 3.3.11 and Corollary 4.2.3. By (i)

and the exact sequence of modules of Kähler differentials given in Proposition 3.2.7,

we have ri(Ωn+1
RW/K

) ≤ max
{
rW, ri(Ω

1
RW/K

), . . . , ri(Ωn
RW/K

)
}
≤ max{rW+n, rV+n−1},

and hence claim (ii) follows.

Moreover, if Supp(W) is in general position, then Proposition 4.2.9 implies that

max{rW +m, rV +m− 1} ≤ max{ms +ms−1 +m− 1, b
∑s
j=1mj+n−2

n
c+m,ms +ms−1 +

m + 1, b
∑s
j=1mj+s+n−2

n
c + m − 1} ≤ max{ms + ms−1 + m, b

∑s
j=1mj+s+n−2

n
c + m − 1}.

Thus the additional claim follows from (i) and (ii).

The following example indicates that the upper bound for the regularity index

of Ωm
RW/K

given in Proposition 4.3.4 is sharp.

Example 4.3.5. Let W be the fat point scheme W = P1 + 2P2 + P3 + P4 + 2P5 +

2P6 + 2P7 + P8 in P3, where P1 = (1 : 9 : 0 : 0), P2 = (1 : 6 : 0 : 1), P3 =

(1 : 2 : 3 : 3), P4 = (1 : 9 : 3 : 5), P5 = (1 : 3 : 0 : 4), P6 = (1 : 0 : 1 : 3),

P7 = (1 : 0 : 2 : 0), and P8 = (1 : 3 : 0 : 10). Let V be the fat point scheme

V = 2P1 + 3P2 + 2P3 + 2P4 + 3P5 + 3P6 + 3P7 + 2P8 containing the scheme W. We

have rW = 3 and rV = 5 so, max{rW + m, rV + m − 1} = m + 4 for m = 1, ..., 4. The

regularity index of Ωm
RW/K

is m + 4 for m = 1, ..., 3, and ri(Ω4
RW/K

) = 7. Furthermore,

the regularity index of Ωm
RW/K[x0] is m + 4 for m = 1, 2. Thus the bounds for regular

indices in claims i) and ii) are sharp bounds.

Let X be the scheme X = {P4, P5, P6, P7, P8} in P3. Then X is in general position.

For m = 1, . . . , 3, the regularity index of Ωm
R2X/K

is 4+m. Also we have ri(Ωm
R2X/K[x0]) =

4 + m for m = 1, 2 and ri(Ω3
R2X/K[x0]) = 6. Thus max{ri(Ωm

R2X/K
), ri(Ωm

R2X/K[x0])} =

4 +m = max{2 + 2 +m, b(
∑5

i=1 2 + 5 + 3− 2)/3c+m− 1} for m = 1, 2, 3. In addition,

for m = 4, we have ri(Ω4
R2X/K

) = 7 = max{2 + 2 + 3, b(
∑5

i=1 2 + 5 + 3− 2)/3c+ 3− 1,

and so the bounds in the additional claim are sharp bounds.

Given a fat point scheme W = m1P1 + · · · + msPs in Pn, the Hilbert function of

the RW-module Ω1
RW/K

is HFΩ1
RW/K

(i) = (n+ 1) HFW(i− 1) + HFW(i)−HFV(i) for all

i ∈ Z, where V = (m1 + 1)P1 + · · · + (ms + 1)Ps (see Corollary 4.2.3). Naturally, we

still want to give the formula for the Hilbert function of the module Ωm
RW/K

for m ≥ 2.

In fact, we can formulate the Hilbert function of Ωn+1
RW/K

under the following certain

case.
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Proposition 4.3.6. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational points.

For m1, . . . ,ms ∈ N, let W be the fat point scheme W = m1P1 + · · · + msPs ⊆ Pn,

and let Y be the subscheme Y = (m1 − 1)P1 + · · · + (ms − 1)Ps of W. Suppose that

the scheme X is contained in a hyperplane. Then we have Ωn+1
RW/K

∼= S/IY(−n− 1). In

particular, HFΩn+1
RW/K

(i) = HFY(i− n− 1) for all i ∈ Z.

Proof. Assume that X ⊆ Z+(H), where 0 6= H =
∑n

i=0 aiXi ∈ S, a0, . . . , an ∈ K. By

letting J = 〈∂F/∂Xi | F ∈ IW, 0 ≤ i ≤ n〉S + IW, we have Ωn+1
RW/K

∼= (S/J)(−n − 1)

(see Corollary 3.2.16). Let F ∈ IW = ℘m1
1 ∩ · · · ∩ ℘mss be a non-zero homogeneous

polynomial. For any i = 0, . . . , n, we see that ∂F/∂Xi ∈ ℘
mj−1
j , and so ∂F/∂Xi ∈ IY.

This implies J ⊆ IY, and thus HFΩn+1
RW/K

(i) ≥ HFY(i− n− 1) for all i ∈ N.

Now we prove IY = J . Suppose for a contradiction that there exists a non-zero

homogeneous polynomial G such that G ∈ IY \ J . Then HG ∈ IW. Since H 6= 0,

we may assume ai 6= 0 for some i ∈ {0, . . . , n}. By taking the partial derivative

of HG of Xi, we have ∂(HG)/∂Xi = aiG + H∂G/∂Xi ∈ J . Since G /∈ J , we deduce

H∂G/∂Xi ∈ IY\J . We setG1 := H∂G/∂Xi 6= 0. Then we continue to haveHG1 ∈ IW,

and so ∂(H∂G1/∂Xi)/∂Xi = H2∂2G/∂X2
i + 2aiH∂G/∂Xi ∈ J . This implies that

0 6= H2∂2G/∂X2
i ∈ IY \ J . Repeating this process, we eventually get Hdeg(G) ∈ IY \ J .

On the other hand, since G ∈ IY, we have deg(G) ≥ m := max{m1 − 1, . . . ,ms − 1},
and therefore Hm+1 ∈ IW. Thus Hdeg(G) = 1

ai
∂Hdeg(G)+1/∂Xi ∈ J , a contradiction.

Consequently, we get IY = J , and hence Ωn+1
RW/K

∼= RY(−n− 1), as desired.

Example 4.3.7. Let W and Y be fat point schemes W = 2P1 + 3P2 + 4P3 + 2P4 +

P5 + 7P6 + 5P7 and Y = P1 + 2P2 + 3P3 + P4 + 6P6 + 4P7 in P5
Q, respectively, where

P1 = ((1 : 1 : 1 : 1 : 1 : 15/6), P2 = (1 : 2 : 1 : 1 : 1 : 17/6), P3 = (1 : 1 :

2 : 1 : 1 : 18/6), P4 = (1 : 2 : 3 : 4 : 5 : 55/6), P5 = (1 : 2 : 2 : 1 : 1 : 20/6),

P6 = (1 : 3 : 2 : 1 : 1 : 22/6), and where P7 = (1 : 0 : 0 : 1 : 1 : 10/6). Then

X = {P1, . . . , P7} is contained in the hyperplane Z+(H), where H = X0 − 4X3 + 3X4.

Thus Proposition 4.3.6 yields that Ω6
RW/K

∼= RY(−6) and the Hilbert function of Ω6
RW/K

is HFΩ6
RX/K

: 0 0 0 0 0 0 1 6 21 56 126 252 306 329 336 337 337 · · · .

Lemma 4.3.8. In the setting of Proposition 4.3.6, if αY + 2 ≤ αW then

HFΩn+1
RW/K

(αW + n− 1) > HFY(αW − 2).

Proof. Let J = 〈∂F/∂Xi | F ∈ IW, 0 ≤ i ≤ n〉S + IW. The inclusions IW ⊆ J ⊆ IY
yield that αW = αJ + 1 ≥ αY, where αJ = min{i ∈ N | Ji 6= 0}, and that

HFΩn+1
RW/K

(αW+n−1) = HFS/J(αW−2) = HFS/J(αJ−1) = HFS(αJ−1) = HFS(αW−2).
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Also, it follows from the inequality αY + 2 ≤ αW that

HFY(αW − 2) = HFS(αW − 2)− HFIY(αW − 2)

≤ HFS(αW − 2)− HFIY(αY)

< HFS(αW − 2).

Thus we get HFΩn+1
RW/K

(αW + n− 1) = HFS(αW − 2) > HFY(αW − 2).

Now we present a criterion for the support of a fat point scheme to lie on a hyper-

plane.

Proposition 4.3.9. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational points,

let W = m1P1 + · · · + msPs be a fat point scheme in Pn, and let Y = (m1 − 1)P1 +

· · ·+ (ms − 1)Ps be a subscheme of W. Suppose that αW = αY + αX. Then the scheme

X is contained in a hyperplane if and only if HFΩn+1
RW/K

(αW + n− 1) = HFY(αW − 2).

Proof. If X is contained in a hyperplane, then Proposition 4.3.6 implies HFΩn+1
RW/K

(i) =

HFY(i−n−1) for all i ∈ Z. In particular, we have HFΩn+1
RW/K

(αW+n−1) = HFY(αW−2).

Conversely, suppose that HFΩn+1
RW/K

(αW + n − 1) = HFY(αW − 2) and that X does not

lie on any hyperplane. It is clear that αX ≥ 2. By assumption, we have αY + 2 ≤
αY + αX = αW. So, Lemma 4.3.8 implies HFΩn+1

RW/K
(αW + n − 1) > HFY(αW − 2), a

contradiction.

Let us apply the proposition to the following concrete examples.

Example 4.3.10. (a) Let W be the fat point scheme W = 3P1 + 2P2 + 8P3 + 5P4 +

4P5 + 2P6 + 5P7 + P8 + 2P9 in P3, where P1 = (1 : 3/4 : 0 : 0), P2 = (1 : 2 : 0 : 0),

P3 = (1 : 1/23 : 0 : 0), P4 = (1 : 1 : 1 : 0), P5 = (1 : 7 : 1 : 0), P6 = (1 : 2 : 1 : 0),

P7 = (1 : 1/2 : 2 : 0), P8 = (1 : 3 : 1/6 : 0), and where P9 = (1 : 3/17 : 1/4 : 0). Let

Y be the subscheme Y = 2P1 + P2 + 7P3 + 4P4 + 3P5 + P6 + 4P7 + P9 of W. Then

X = Supp(W) lies on the hyperplane Z+(X3) and αW = 13 = 3 + 10 = αX + αY. Thus

Proposition 4.3.9 yields that HFΩ4
RW/K

(i) = HFY(i−n− 1) for all i ∈ Z. Explicitly, we

have HFΩ4
RW/K

(n+1) = HFRY : 1 4 10 20 35 56 84 106 124 136 141 141 · · · .
(b) Let X = {P1, . . . , Ps} ⊆ Pn be a complete intersection of type (d1, . . . , dn), and let

ν ≥ 2. Clearly, we have

ανX = ν min{d1, . . . , dn}
= (ν − 1) min{d1, . . . , dn}+ min{d1, . . . , dn}
= α(ν−1)X + αX.
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So, if αX = 1 then X is contained in a hyperplane, and therefore, an application

of Proposition 4.3.9 implies HFΩn+1
RνX/K

(i) = HF(ν−1)X(i− n− 1) for all i ∈ Z.

(c) Let X = {P1, P2, P3} ⊆ Pn be a set of three points in general position, and let

ν ≥ 1. It is well known (cf. [DSG, Example 3.6]) that

ανX =

{
3k − 1 for ν = 2k − 1,

3k for ν = 2k.

From this we deduce αX = 2, α2νX = 3ν, and α(2ν+1)X = 3ν + 2 = αX + α2νX. If n ≥ 3,

then X is always contained in some hyperplane, and thus Proposition 4.3.9 shows that

HFΩn+1
R(2ν+1)X/K

(i) = HF2νX(i− n− 1) for all i ∈ Z.

Although no formula for the Hilbert function of the module of Kähler differential

(n + 1)-forms of an equimultiple fat point scheme is known, the following proposition

provides a formula for its Hilbert polynomial.

Proposition 4.3.11. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points, and let ν ≥ 1. Then we have HPΩn+1
R(ν+1)X/K

(z) = HPνX(z).

To prove this proposition, we use the following remark which is mentioned in [HC,

Remark 4.2].

Remark 4.3.12. Let IX = ∩si=1℘i be the homogeneous vanishing ideal of the scheme

X = {P1, · · · , Ps} ⊆ Pn. For ν ≥ 1, there is a M-primary ideal J such that the

intersection IνX ∩ J is a primary decomposition of the ideal IνX. Moreover, we have

(I(ν)
X )i = (IνX)i for i� 0.

Proof of Proposition 4.3.11. Let I = 〈∂F/∂Xi | F ∈ IX, 0 ≤ i ≤ n〉S + IX be a

homogeneous ideal of S. Then Corollary 3.2.16 and Proposition 3.4.1 yield that

Ωn+1
RX/K

∼= (S/I)(−n − 1) and HFΩn+1
RX/K

(i) = HFS/I(i − n − 1) = 0 for i � 0. So,

there exists t1 ∈ N such that It1+i = Mt1+i for all i ∈ N. Moreover, it follows from

Remark 4.3.12 that there is t2 ∈ N such that (IνX)t2+i = (IνX)t2+i for all i ∈ N. Let

t = max{t1, t2, rνX}, let r =
(
n+t
n

)
− s, let {F1, . . . , Fr} be a K-basis of the K-vector

space (IX)t, and let

J = 〈∂F/∂Xi | F ∈ I(ν+1)X, 0 ≤ i ≤ n〉S + I(ν+1)X.

Clearly, we have I(ν+1)X ⊆ J ⊆ IνX. Since Ωn+1
R(ν+1)X/K

∼= (S/J)(−n − 1) (by Corol-

lary 3.2.16) and since IνX is generated by elements of degree ≤ t + 1 (see Proposi-

tion 2.4.6), it suffices to show that HFJ(i) = HFIνX(i) for some i ≥ t+ 1.



4.3. Modules of Kähler Differential m-Forms for Fat Point Schemes 93

We observe that

It = (〈∂F/∂Xi | F ∈ IX, 0 ≤ i ≤ n〉S + IX)t

= 〈{∂F/∂Xi | F ∈ (IX)t+1, 0 ≤ i ≤ n}
∪ {G∂H/∂Xi | G ∈ (IX)k, H ∈ St+1−k, 0 ≤ i ≤ n}〉K

= 〈∂F/∂Xi | F ∈ (IX)t+1, 0 ≤ i ≤ n〉K + (IX)t.

For F ∈ (IX)t, since 〈F1, . . . , Fr〉K = (IX)t, Euler’s relation implies that there are

elements a1, . . . , ar ∈ K such that F =
∑r

j=1 ajFj =
∑r

j=1

∑n
i=0

1
deg(Fj)

ajXi∂Fj/∂Xi.

Thus F is contained in 〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉KM1. Moreover, we have

〈∂G/∂Xi | G ∈ (IX)t+1, 0 ≤ i ≤ n〉K = 〈∂XjH/∂Xi | H ∈ (IX)t, 0 ≤ i, j ≤ n〉K
= 〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉KM1.

Thus It = 〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉KM1 + (IX)t. So, we get equalities

(IνX)(ν+1)(nr+1)t = (IνX)νtM((ν+1)nr+1)t = (IνX)νt(M
(ν+1)nr+1)((ν+1)nr+1)t

= (IνX)νt(M
(ν+1)nr+1)((ν+1)nr+1)t

= (IX)t · · · (IX)t︸ ︷︷ ︸
ν times

Mt · · ·Mt︸ ︷︷ ︸
(ν+1)nr+1 times

= (IX)t · · · (IX)t︸ ︷︷ ︸
ν times

It · · · It︸ ︷︷ ︸
(ν+1)nr+1 times

= 〈F1, . . . , Fr〉νK · (〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉KM1)(ν+1)nr+1

+ (I(ν+1)X)(ν+1)(nr+1)t.

So, Proposition 4.3.11 holds if we have the following inclusion

〈F1, . . . , Fr〉νK · (〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉KM1)(ν+1)nr+1 ⊆ J.

Indeed, for 0 ≤ i1 ≤ n and 1 ≤ j1 ≤ r we have (ν + 1)F ν
j1

∂Fj1
∂Xi1

=
∂F ν+1

j1

∂Xi1
∈ J . Also, for

i1, i2 ∈ {0, . . . , n} and j1, j2 ∈ {1, . . . , r}, we get

νF ν−1
j1

Fj2
∂Fj1
∂Xi1
· ∂Fj1
∂Xi2

=
∂F νj1

Fj2
∂Xi1

· ∂Fj1
∂Xi2
− F ν

j1

∂Fj1
∂Xi2
· ∂Fj2
∂Xi1
∈ J.

Now we assume that F ν−k
j1

Fj2 · · ·Fjk+1

∂Fj1
∂Xi1
· · · ∂Fj1

∂Xik+1
∈ J for all i1, . . . , ik+1 ∈ {0, . . . , n}

and j1, . . . , jk+1 ∈ {1, . . . , r} and 1 ≤ k ≤ ν. We shall prove

F ν−k−1
j1

Fj2 · · ·Fjk+2

∂Fj1
∂Xi1
· · · ∂Fj1

∂Xik+2
∈ J

for all i1, . . . , ik+2 ∈ {0, . . . , n} and j1, . . . , jk+2 ∈ {1, . . . , r}. We have

(ν − k)F ν−k−1
j1

Fj2 · · ·Fjk+2

∂Fj1
∂Xi1
· · · ∂Fj1

∂Xik+2

=
∂F ν−kj1

Fj2 ···Fjk+2

∂Xi1
· ∂Fj1
∂Xi2
· · · ∂Fj1

∂Xik+2
− F ν−k

j1

∂Fj2 ···Fjk+2

∂Xi1
· ∂Fj1
∂Xi2
· · · ∂Fj1

∂Xik+2

=
∂F ν−kj1

Fj2 ···Fjk+2

∂Xi1
· ∂Fj1
∂Xi2
· · · ∂Fj1

∂Xik+2
−

k+2∑
l=2

F ν−k
j1

Fj2 ···Fjk+2

Fjl

∂Fjl
∂Xi1
· ∂Fj1
∂Xi2
· · · ∂Fj1

∂Xik+2
.
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By the inductive hypothesis, we have F ν−k−1
j1

Fj2 · · ·Fjk+2

∂Fj1
∂Xi1
· · · ∂Fj1

∂Xik+2
∈ J . Thus we

have shown that F ν−k
j1

Fj2 · · ·Fjk+1

∂Fj1
∂Xi1
· · · ∂Fj1

∂Xik+1
∈ J for all i1, . . . , ik+1 ∈ {0, . . . , n}

and j1, . . . , jk+1 ∈ {1, . . . , r} and 1 ≤ k ≤ ν. In particular, if k = ν, then we

have Fj1Fj2 · · ·Fjν
∂Fj
∂Xi1
· · · ∂Fj

∂Xiν+1
∈ J for all i1, . . . , iν+1 ∈ {0, . . . , n} and j, j1, . . . , jν ∈

{1, . . . , r}. On the other hand, due to Dirichlet’s box principle, for any element F of

the set 〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉νr+1
K , there is an integer k ∈ {1, ..., r} such

that F = ∂Fk
∂Xi1
· · · ∂Fk

∂Xiν+1
for some i1, ..., iν+1 ∈ {0, ..., n}. Since (ν+1)nr+1 ≥ (νr+1),

we get any element of the K-vector space

〈F1, . . . , Fr〉νK · 〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉(ν+1)nr+1
K

is a sum of elements of the form Fj1 · · ·Fjν
∂Fj
∂Xi1
· · · ∂Fj

∂Xiν+1
H for some homogeneous

polynomial H in S. Therefore we get

〈F1, . . . , Fr〉νK · (〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ r〉KM1)(ν+1)nr+1 ⊆ J,

and this completes the proof.

The following corollary follows immediately from Propositions 4.1.3 and 4.3.11,

Corollary 4.3.13. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational points,

and let ν ≥ 1. Then we have HPΩn+1
R(ν+1)X/K

(z) = s
(
ν+n−1
n

)
.

In the last part of this section we study the Kähler differential 2-forms of fat point

schemes W. Let us begin with a short exact sequence of RW-modules.

Proposition 4.3.14. Let W = m1P1 + · · · + msPs be a fat point scheme in Pn. For

every i ∈ N, we let Wi := (m1 + i)P1 + · · ·+ (ms + i)Ps. Then the sequence of graded

RW-modules

0 −→ IW1/IW2

α−→ IWΩ1
S/K/IW1Ω

1
S/K

β−→ Ω2
S/K/IWΩ2

S/K

γ−→ Ω2
RW/K

−→ 0 (∗∗)

is a complex, where α(F + IW2) = dF + IW1Ω
1
S/K, where β(GdXi + IW1Ω

1
S/K) =

d(GdXi)+IWΩ2
S/K, and where γ(H+IWΩ2

S/K) = H+(IWΩ2
S/K+dIWΩ1

S/K). Moreover,

(i) the map α is injective,

(ii) the map γ is surjective, and

(iii) β(IWΩ1
S/K/IW1Ω

1
S/K) = Ker(γ).
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(iv) For all i ≥ 0, we have

HFΩ2
RW/K

(i+ 2) ≥ n(n+ 1)

2
HFW(i) + HFW2(i+ 2)

− HFW1(i+ 2)− (n+ 1)(HFW1(i+ 1)− HFW(i+ 1)).

Proof. Similar to the proof of Theorem 4.2.1, it follows that the map α is an injective

map. Claims (ii) and (iii) are a consequence of induced from the presentation

Ω2
RW/K

= Ω2
S/K/(IWΩ2

S/K + 〈dIW〉SΩ1
S/K)

(see Proposition 3.2.11). The map d is an anti-derivation, hence β ◦α(IW1/IW2) = 〈0〉.
Therefore the sequence (∗∗) is a complex. Additionally, claim (iv) follows from the fact

that (∗∗) is a complex and from claim (iii).

The following corollary is an immediate consequence of Proposition 4.3.14.

Corollary 4.3.15. In the setting of Proposition 4.3.14, we have

HPΩ2
RW/K

(z) ≥ (n+2)(n+1)
2

HPW(z) + HPW2(z)− (n+ 2) HPW1(z).

Let us consider the special case that W = νX is an equimultiple fat point scheme

in P2. First, we show that the sequence of K-vector space (∗∗) is exact. Then we

establish the formula for the Hilbert polynomial of Ω2
RW/K

.

Corollary 4.3.16. Let X = {P1, · · · , Ps} ⊆ P2 be a set of s distinct K-rational points,

and let ν ≥ 1. For i� 0, we have the following exact sequence of K-vector spaces:

0 −→ (I(ν+1)X/I(ν+2)X)i
α−→ (IνXΩ1

S/K/I(ν+1)XΩ1
S/K)i

β−→ (Ω2
S/K/IνXΩ2

S/K)i
γ−→ (Ω2

RνX/K
)i −→ 0.

Here the maps α, β and γ are defined as in Proposition 4.3.14.

Proof. According to Proposition 4.3.14, it suffices to show that the Hilbert polynomial

of Ω2
RνX/K

is

HPΩ2
RνX/K

(z) = (n+2)(n+1)
2

HPνX(z) + HP(ν+2)X(z)− (n+ 2) HP(ν+1)X(z).

Due to Proposition 3.2.7, we have the exact sequence of graded RνX-modules

0 −→ Ω3
RνX/K

−→ Ω2
RνX/K

−→ Ω1
RνX/K

−→ mνX −→ 0.
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Thus, by Corollary 4.2.3 and Proposition 4.3.11, we get

HPΩ2
RνX/K

(z) = HPΩ1
RνX/K

(z) + HPΩ3
RνX/K

(z)− HPνX(z)

= ((n+ 2) HPνX(z)− HP(ν+1)X(z)) + HP(ν−1)X(z)− HPνX(z)

= 3s
(
ν+1

2

)
− s
(
ν+2

2

)
+ s
(
ν
2

)
= 1

2
(3ν2 − ν − 2)s

= 6s
(
ν+1

2

)
+ s
(
ν+3

2

)
− 4s

(
ν+2

2

)
= (n+2)(n+1)

2
HPνX + HP(ν+2)X−(n+ 2) HP(ν+1)X,

and this finishes the proof.

From the proof of Corollary 4.3.16 we get the formula for the Hilbert polynomial

of Ω2
RνX/K

as follows.

Corollary 4.3.17. Let X = {P1, . . . , Ps} ⊆ P2 be a set of s distinct K-rational points,

and let ν ≥ 1. Then HPΩ2
RνX/K

(z) = 1
2
(3ν2 − ν − 2)s.

4.4 Kähler Differential 1-Forms for Fat Point

Schemes Supported at Complete Intersections

As in the previous sections, we let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct reduced

K-rational points, and we let W = m1P1 + · · ·+msPs be a fat point scheme supported

at X. We have computed the Hilbert polynomial and the regularity index of the module

of Kähler differential m-forms of RX, and we have extended this to arbitrary fat point

schemes as far as we could. In some special cases, the modules Ω1
RW/K

and Ω1
RW/K[x0]

have particular Hilbert functions. In this section we examine such special fat point

schemes.

For reduced complete intersections X, we can determine the Hilbert function of the

module Ω1
RX/K

and its regularity index explicitly. This result has been shown in [DK,

Proposition 4.3].

Proposition 4.4.1. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct reduced

K-rational points which is a complete intersection of type (d1, . . . , dn). Then we have

HFΩ1
RX/K

(i) = (n+ 1) HFX(i− 1)−
n∑
j=1

HFX(i− dj)

for all i ≥ 0 and ri(Ω1
RX/K

) =
∑n

i=1 di − n+ max{dj | 1 ≤ j ≤ n}.
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Now we extend this proposition to equimultiple fat point schemes whose supports

are complete intersections.

Proposition 4.4.2. Let X ⊆ Pn be a set of s distinct reduced K-rational points which is

a complete intersection of type (d1,. . ., dn). Let Lj ={(a1, . . ., an) ∈ Nn | a1+· · ·+an= j}
for j ≥ 1 and let ν ≥ 1.

(i) We have the following exact sequence of graded RνX-modules:

0 −→ IνX/Iν+1
X −→ (S/IνX)n+1(−1) −→ Ω1

RνX/K
−→ 0

(ii) For all i ∈ Z, we have

HFΩ1
RνX/K

(i) =(n+ 1)
( ν−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− 1− a1d1 − · · · − andn)
)

−
∑

(a1,...,an)∈Lν

HFX(i− a1d1 − · · · − andn).

(iii) For all i ∈ N, we have

HFΩ1
RνX/K[x0]

(i) =n
( ν−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− 1− a1d1 − · · · − andn)
)

−
∑

(a1,...,an)∈Lν

HFX(i− a1d1 − · · · − andn).

Proof. (i) By Theorem 4.2.1, we have an exact sequence of graded RνX-modules

0 −→ I(ν)
X /I(ν+1)

X −→ Rn+1
νX (−1) −→ Ω1

RνX/K
−→ 0.

Since the homogeneous vanishing ideal of X is generated by a regular sequence, we

can use [ZS, Appendix 6, Lemma 5] and get I(ν)
X = IνX for all ν ∈ N. Then we have

RνX = S/I(ν)
X = S/IνX. Hence we get the desired exact sequence.

(ii) By Proposition 4.1.16, the Hilbert function of RνX is

HFνX(i) =
ν−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− a1d1 − · · · − andn).

So, we get

HFIνX/I
ν+1
X

(i) = HF(ν+1)X(i)− HFνX(i)

=
∑

(a1,...,an)∈Lν

HFX(i− a1d1 − · · · − andn).
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By the first part of this proposition, we obtain

HFΩ1
RνX/K

(i) = (n+ 1) HFνX(i− 1)− HFIνX/I
ν+1
X

(i)

= (n+ 1)
( ν−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− 1− a1d1 − · · · − andn)
)

−
∑

(a1,...,an)∈Lν

HFX(i− a1d1 − · · · − andn).

(iii) By Corollary 3.3.2, we have HFΩ1
RνX/K[x0]

(i) = HFΩ1
RνX/K

(i)−HFνX(i−1) for all

i ∈ Z. Thus, according to (ii), we get

HFΩ1
RνX/K[x0]

(i) = n
( ν−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− 1− a1d1 − · · · − andn)
)

−
∑

(a1,...,an)∈Lν

HFX(i− a1d1 − · · · − andn)

as we wished.

Remark 4.4.3. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct reduced K-rational

points which is a complete intersection of type (d1, . . . , dn) with d1 ≤ · · · ≤ dn.

(a) We have rX =
∑n

j=1 dj − n.

(b) If ν = 1 then ri(Ω1
RX/K

) = dn +
∑n

j=1 dj −n (see Proposition 4.4.1). Moreover, the

Hilbert function of Ω1
RX/K[x0] satisfies

HFΩ1
RX/K[x0]

(i) = nHFX(i− 1)−
∑

(a1,...,an)∈L1

HFX(i− a1d1 − · · · − andn)

for all i ∈ Z (by Proposition 4.4.2(iii)). Thus ri(Ω1
RX/K[x0]) = dn+

∑n
j=1 dj−n if dn ≥ 2

and ri(Ω1
RX/K[x0]) = −∞ if dn = 1.

(c) In the case n = 1, we see that HFνX(i) =
∑ν−1

j=0 HFX(i − jd1) and HFIνX/I
ν+1
X

(i) =

HFX(i− νd1) for all i ∈ Z. Thus Proposition 4.4.2(ii) implies that

HFΩ1
RνX/K

(i) = 2
∑ν−1

j=0 HFX(i− 1− jd1)− HFX(i− νd1)

for all i ∈ Z, and the regularity index of Ω1
RνX/K

satisfies ri(Ω1
RνX/K

) = νd1 + d1 − 1.

Also, Proposition 4.4.2(iii) yields

HFΩ1
RνX/K[x0]

(i) =
ν−1∑
j=0

HFX(i− 1− jd1)− HFX(i− νd1)

=
ν−2∑
j=0

HFX(i− 1− jd1) + (HFX(i− 1− (ν − 1)d1)− HFX(i− νd1)
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for all i ∈ Z. If d1 = 1 then HFΩ1
RνX/K[x0]

(i) =
∑ν−2

j=1 HFX(i − 1 − j) for all i ∈ Z, and

so ri(Ω1
RνX/K[x0]) = (ν − 1)d1 + d1 − 1. In the case d1 ≥ 2, we see that for j ≤ ν − 1 we

have 1 + jd1 < νd1, and consequently ri(Ω1
RνX/K[x0]) = νd1 + d1 − 1.

Now we apply Proposition 4.4.2 and the above remark to precisely describe the

regularity indices of Ω1
RνX/K

and of Ω1
RνX/K[x0] as follows.

Corollary 4.4.4. Let s ≥ 2, let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct

K-rational points which is a complete intersection of type (d1, . . ., dn) with d1≤ · · ·≤ dn,

and let ν ≥ 1. Then the RνX-modules Ω1
RνX/K

and Ω1
RνX/K[x0] have the same regularity

index which is given by

ri(Ω1
RνX/K

) = ri(Ω1
RνX/K[x0]) = νdn +

n∑
j=1

dj − n.

Proof. First we remark that s ≥ 2. This implies dn ≥ 2. In view of Remark 4.4.3,

we may assume that n ≥ 2 and ν ≥ 2. For j ≥ 1 we let Lj = {(a1, . . . , an) ∈ Nn |
a1 + · · ·+ an = j}, and we let

tj := max{a1d1 + · · ·+ andn | (a1, . . . , an) ∈ Lj}.

Note that d1 ≤ · · · ≤ dn and rX =
∑n

j=1 dj − n. So, if j < k then tj = jdn < kdn = tk.

This implies max{1 +
∑n

i=1 aidi | (a1, . . . , an) ∈ Lj, 1 ≤ j ≤ ν − 1} = 1 + (ν − 1)dn <

νdn = tν , since dn ≥ 2. Thus it follows from Proposition 4.4.2(ii) and (iii) that

ri(Ω1
RνX/K

) = ri(Ω1
RνX/K[x0])

= max{rX + a1d1 + · · ·+ andn | (a1, . . . , an) ∈ Lν}
= rX + max{a1d1 + · · ·+ andn | (a1, . . . , an) ∈ Lν}

= rX + tν =
n∑
j=1

dj − n+ νdn.

Hence the conclusion follows.

Let us look at an example to illustrate this corollary.

Example 4.4.5. Let X = {P1, . . . , P8} ⊆ P2 be the set consisting of eight points

P1 = (1 : 0 : 0), P2 = (1 : 0 : 1), P3 = (1 : 0 : 2), P4 = (1 : 0 : 3), P5 = (1 : 1 : 0),

P6 = (1 : 1 : 1), P7 = (1 : 1 : 2), and P8 = (1 : 1 : 3). Then it is easy to see that X
is a complete intersection of type (2, 4). Let ν ≥ 1. An application of Corollary 4.4.4

implies

ri(Ω1
RνX/K

) = ri(Ω1
RνX/K[x0]) = 4ν + 2 + 4− 2 = 4(ν + 1).
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For instance, if ν = 5 then we have

HFΩ1
R5X/K

:0 3 9 18 30 45 63 84 108 135 164 192 219 242 262 279 293 304 312

317 319 318 315 313 312 312 . . .

HFΩ1
R5X/K[x0]

:0 2 6 12 20 30 42 56 72 90 109 127 144 158 170 180 188 194 198

200 200 198 195 193 192 192 . . . .

and ri(Ω1
R5X/K

) = ri(Ω1
R5X/K[x0]) = 24 = 4(5 + 1).

Observe that Proposition 4.4.2 and Corollary 4.4.4 contain formulas for the Hilbert

functions of Ω1
RνX/K

and Ω1
RνX/K[x0] and their regularity indices. For a non-equimultiple

fat point scheme W whose support Supp(W) = X is a reduced complete intersection,

these results can be applied to give bounds for the Hilbert functions of Ω1
RW/K

and

Ω1
RW/K[x0] and their regularity indices.

Proposition 4.4.6. Let W = m1P1 + · · ·+msPs be a fat point scheme in Pn supported

at a complete intersection X = {P1, . . . , Ps} of type (d1, . . . , dn). Suppose that W is

not an equimultiple fat point scheme. We set mmin := min{m1, . . . ,ms} and mmax :=

max{m1, . . . ,ms}, and we set

HF1(i) = (n+ 1)
mmin−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− 1− a1d1 − · · · − andn)

−
mmax∑
j=mmin

∑
(a1,...,an)∈Lj

HFX(i− a1d1 − · · · − andn)

and

HF2(i) = (n+ 1)
mmax−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− 1− a1d1 − · · · − andn))

+
mmax−1∑
j=mmin+1

∑
(a1,...,an)∈Lj

HFX(i− a1d1 − · · · − andn)

for all i ∈ Z. Then, for all i ∈ Z, we have

HF1(i) ≤ HFΩ1
RW/K

(i) ≤ HF2(i).

Proof. For t ≥ 0 and i ∈ Z, we set

H1(t, i) =
t∑

j=0

∑
(a1,...,an)∈Lj

HFX(i− a1d1 − · · · − andn)

and

H2(t, i) =
t∑

j=0

∑
(a1,...,an)∈Lj

HFX(i− 1− a1d1 − · · · − andn).
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It follows from the inclusions mminX ⊆ W ⊆ mmaxX that for all i ∈ Z, we have

HFmminX(i) ≤ HFW(i) ≤ HFmmaxX(i). Thus Proposition 4.1.16 yields

H1(mmin − 1, i) =
mmin−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− a1d1 − · · · − andn)

≤ HFW(i)

≤
mmax−1∑
j=0

∑
(a1,...,an)∈Lj

HFX(i− a1d1 − · · · − andn) = H1(mmax − 1, i).

Let V be the fat point scheme V = (m1 + 1)P1 + · · ·+ (ms + 1)Ps in Pn. For the same

reason as above, we get H1(mmin, i) ≤ HFV(i) ≤ H1(mmax, i) for all i ∈ Z. According

to Corollary 4.2.3, for every i ∈ Z the Hilbert function of Ω1
RW/K

satisfies

HFΩ1
RW/K

(i) = (n+ 1) HFW(i− 1) + HFW(i)− HFV(i).

Hence we get

(n+ 1)H2(mmin − 1, i) + H1(mmin − 1, i)− H1(mmax, i)

≤ HFΩ1
RW/K

(i) ≤ (n+ 1)H2(mmax − 1, i) + H1(mmax − 1, i)− H1(mmin, i).

Note that mmin < mmax. So, we have

HF1(i) = (n+ 1)H2(mmin − 1, i) + H1(mmin − 1, i)− H1(mmax, i)

and

HF2(i) = (n+ 1)H2(mmax − 1, i) + H1(mmax − 1, i)− H1(mmin, i)

for all i ∈ Z. Therefore the inequalities HF1(i) ≤ HFΩ1
RW/K

(i) ≤ HF2(i) hold true for

all i ∈ Z, as we wanted to show.

Remark 4.4.7. In the setting of Proposition 4.4.6, we can give bounds for the Hilbert

function of Ω1
RX/K[x0] as follows. For every i ∈ Z, we have HFΩ1

RW/K[x0]
(i)=HFΩ1

RW/K
(i)−

HFW(i− 1). We use the same argument as in the proof of Proposition 4.4.6 to get

nH2(mmin − 1, i) + H1(mmin − 1, i)− H1(mmax, i)

≤ HFΩ1
RW/K[x0]

(i) ≤ nH2(mmax − 1, i) + H1(mmax − 1, i)− H1(mmin, i)

for all i ∈ Z.

Corollary 4.4.8. Using the notation introduced in Proposition 4.4.6, the regularity

index of module of Kähler differential 1-forms Ω1
RW/K

is bounded by

ri(Ω1
RW/K

) ≤ (mmax + 1)dn + d1 + · · ·+ dn−1 − n.
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Proof. Let V be the fat point scheme V = (m1 + 1)P1 + · · · + (ms + 1)Ps in Pn.

Since W ⊆ mmaxX, this implies that rW ≤ rmmaxX = (mmax − 1)dn +
∑n

j=1 dj − n

(see Corollary 4.4.4). Similarly, we have rV ≤ r(mmax+1)X = mmaxdn +
∑n

j=1 dj − n.

Corollary 4.2.3 implies that ri(Ω1
RW/K

) ≤ max{rW + 1, rV}. Thus an upper bound for

the regularity index of Ω1
RW/K

is

ri(Ω1
RW/K

) ≤ max
{

(mmax − 1)dn +
∑n

j=1dj − n+ 1,mmaxdn +
∑n

j=1dj − n
}

≤ (mmax + 1)dn + d1 + · · ·+ dn−1 − n,

as we wished.

For an equimultiple fat point scheme νX supported at a complete intersection,

Proposition 4.4.2 shows that the Hilbert functions of the Kähler differential modules

Ω1
RνX/K

and Ω1
RνX/K[x0] depend only on the type of X. Our next proposition says that,

if we reduce in νX the multiplicity of one point Pj by one, the Hilbert function of the

module of Kähler differentials of the resulting scheme does not depend on the choice

of j.

Proposition 4.4.9. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational points

which is a complete intersection of type (d1, . . . , dn), and let ν ≥ 2. For j ∈ {1, . . . , s},
let Yj = νP1 + · · ·+ νPj−1 + (ν − 1)Pj + νPj+1 + · · ·+ νPs. Then the Hilbert function

of Ω1
RYj /K

does not depend on the choice of j.

Proof. According to Corollary 4.1.19, the schemes Yj all have the same Hilbert func-

tion. Similarly, the schemes Wj = (ν + 1)P1 + · · ·+ (ν + 1)Pj−1 + νPj + (ν + 1)Pj+1 +

· · ·+ (ν + 1)Ps all have the same Hilbert function. By Theorem 4.2.1, the sequence of

graded RYj -modules

0 −→ IYj/IWj
−→ Rn+1

Yj (−1) −→ Ω1
RYj /K

−→ 0

is exact. Hence we have

HFΩ1
RYj /K

(i) = (n+ 1) HFYj(i− 1) + HFYj(i)− HFWj
(i)

for all i ∈ Z, and the conclusion follows.

Surprisingly, in the case ν = 1, i.e. in the case of a reduced 0-dimensional complete

intersection, the analogue of the preceding proposition seems to be more difficult. We

offer two partial results in this case. First of all, the claim holds for subschemes of P2,

as the following example shows.
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Example 4.4.10. Let X = {P1, . . . , Ps} ⊆ P2 be a set of s distinct K-rational points

which is a complete intersection of type (a, b), and let a ≤ b. For every j ∈ {1, . . . , ab},
let Yj denote the scheme 2(X\{Pj}) of double points in P2. By Theorem 4.4 of [BGT],

a minimal separator of Yj in Wj = 2P1 + · · · + 2Pj−1 + Pj + 2Pj+1 + · · · + 2Pab is of

degree 2b + a − 3. Thus all schemes Yj have the same Hilbert function. Now we can

use Theorem 4.2.1 to conclude that the Hilbert function of Ω1
RX\{Pj}/K

does not depend

on the choice of j.

Next we prove the desired property for reduced 0-dimensional complete intersections

of type (d, . . . , d), where d ≥ 1.

Proposition 4.4.11. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points which is a complete intersection of type (d, . . . , d) for some d ≥ 1, and let

Xj = X \ {Pj} for j = 1, . . . , s. Then the Hilbert function of Ω1
RXj /K

does not depend

on the choice of j.

Proof. For j = 1, . . . , s, letWj and Yj be the subschemesWj = 2P1 +· · ·+2Pj−1 +Pj+

2Pj+1 + · · ·+ 2Ps and Yj = 2P1 + · · ·+ 2Pj−1 + 2Pj+1 + · · ·+ 2Ps of the scheme 2X. By

Corollary 4.1.19(iii), the Hilbert function ofWj does not depend on j. For j = 1, . . . , s,

let f ∗j ∈ RWj
be a minimal separator of Yj in Wj, and let F ∗j ∈ S be a representative

of f ∗j . It is clear that deg(F ∗j ) = αYj/Wj
, where αYj/Wj

= min{i ∈ N | (IYj/Wj
)i 6= 0}.

Then we have a short exact sequence

0 −→ S/(IWj
: F ∗j )(−αYj/Wj

)
×F ∗j−→ S/IWj

−→ S/IYj −→ 0.

By [GMT, Lemmata 2.2 and 5.1], we have IWj
: F ∗j = ℘j, and ℘j has a minimal graded

free resolution

0→ S(−n)→ S( n
n−1)(−n+ 1)→ · · · → S(n1)(−1)→ ℘j → 0.

Since 2X is a scheme of double points in Pn, Corollary 4.1.19 implies that all minimal

separators of Wj in 2X have the same degree, namely (n+ 1)d−n, and the graded free

resolution of RWj
is given by

0→ S2n(−(n+ 1)d+ 1)→ Gn−2 → · · · → G0 → S → S/IWj
→ 0.

Now an application of the mapping cone construction (see Definition 2.1.16) yields the

following graded free resolution of RYj

0→ S(−αYj/Wj
− n)→ S2n(−(n+ 1)d+ 1)⊕ Sn(−αYj/Wj

− n+ 1)

→ · · · → S(−αYj/Wj
)⊕ G0 → S → S/IYj → 0.
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Since the ideal IYj is saturated, its projective dimension is n − 1. Hence the module

S(−αYj/Wj
−n) must be a submodule of S2n(−(n+1)d+1)⊕S( n

n−1)(−αYj/Wj
−n+1).

By degree comparison, the term S(−αYj/Wj
− n) must cancel against something in

the module S2n(−(n + 1)d + 1). This implies αYj/Wj
= (n + 1)(d − 1). Thus the

Hilbert function of Yj does not depend on the choice of Pj in X. Furthermore, the

Hilbert function of X \ {Pj} is independent of the choice of j, because X is a complete

intersection. Therefore the claim follows from Theorem 4.2.1.

Our last proposition of this section presents some results on the the module of

Kähler differential (n + 1)-forms of an equimultiple fat point scheme supported at a

complete intersection.

Proposition 4.4.12. Let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational

points which is a complete intersection with IX = 〈F1, . . . , Fn〉S, let dj = deg(Fj) for

j = 1, . . . , n, let M = 〈X0, . . . , Xn〉S, and let ν ≥ 1. Suppose that d1 ≤ · · · ≤ dn.

(i) If d1 = 1, then we have Ωn+1
RνX/K

∼= R(ν−1)X(−n− 1).

(ii) If 2 = d1 = · · · = dt < dt+1 ≤ · · · ≤ dn, 1 ≤ t ≤ n, and there is j ∈ {1, . . . , t}
such that Z+(Fj) is a non-singular conic, then we have

Ωn+1
RνX/K

∼= (S/MI(ν−1)X)(−n− 1).

(iii) Suppose that 2 = d1 = · · · = dt < dt+1 ≤ · · · ≤ dn for some t ∈ {1, . . . , n}. We

let X = (X0 · · · Xn) and write ∂Fj/∂Xk = X ·Ajk, where Ajk ∈ Mat1×(n+1)(K),

1 ≤ j ≤ t, and 0 ≤ k ≤ n. If rank
((
A1 0 · · · Atn

))
< n+ 1, then

Ωn+1
RνX/K

� (S/MI(ν−1)X)(−n− 1).

(iv) If 1 < d1 < d2 ≤ · · · ≤ dn, then we have

Ωn+1
RνX/K

∼= (S/MI(ν−1)X)(−n− 1)

if and only if Z+(F1) is a non-singular conic.

Proof. Claim (i) follows directly from Proposition 4.3.6. Now we prove claim (ii).

For this, we may assume without lost of generality that Z+(F1) is a non-singular

conic. Then we write F1 = XAX tr, where A = (aij)i,j=0,...,n with aij = aji for all

i, j ∈ {0, . . . , n} and i 6= j. It follows from the assumption that det(A) 6= 0. For
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every i ∈ {0, . . . , n}, we have ∂F1/∂Xi = 2(ai0X0 + · · · + ainXn). This implies that

〈∂F1/∂X0, . . . , ∂F1/∂Xn〉S = M = 〈X0, . . . , Xn〉S.

Moreover, since the scheme X is a complete intersection, we deduce that

IνX = 〈F1, . . . , Fn〉νS = 〈F ν
1 , F

ν−1
1 F2, . . . , F

ν
n 〉S.

Let J = 〈∂F/∂Xi | F ∈ IνX, 0 ≤ i ≤ n〉S+IνX. According to Corollary 3.2.16, it suffices

to show that J = I(ν−1)XM. Since d1 > 1, it follows that J ⊆ I(ν−1)XM. For other

inclusion, it is enough to show that Fi1 · · ·Fiν−1M ⊆ J for all i1, . . . , iν−1 ∈ {1, . . . , n}.
In the following, we use induction on k to prove F k

1 Fi1 · · ·Fiν−1−kM ⊆ J for all

k ∈ N and i1, . . . , iν−1−k ∈ {1, . . . , n}. We see that the claim is clearly true for k ≥ ν

and F ν−1
1 M = 〈∂F ν

1 /∂X0, . . . , ∂F
ν
1 /∂Xn〉S ⊆ J . Moreover, since ∂Fj/∂Xk ∈ M, we

see that

F ν−2
1 Fi1M = 〈F ν−2

1 Fi1∂F1/∂Xi | 0 ≤ i ≤ n〉S
= 〈∂(F ν−1

1 Fi1)/∂Xi − F ν−1
1 ∂Fi1/∂Xi | 0 ≤ i ≤ n〉S ⊆ J.

Now we assume that F k
1 Fi1 · · ·Fiν−1−kM ⊆ J for some 1 ≤ k ≤ ν − 2 and for

any i1, . . . , iν−1−k ∈ {1, . . . , n}. We need to show F k−1
1 Fi1 · · ·Fiν−kM ⊆ J for any

i1, . . . , iν−k ∈ {1, . . . , n}. It is clear that F k
1 Fi1 · · ·Fiν−k ∈ IνX. Therefore for ev-

ery i ∈ {0, . . . , n}, we have ∂(F k
1 Fi1 · · ·Fiν−k)/∂Xi = F k−1

1 Fi1 · · ·Fiν−k∂F1/∂Xi +∑ν−k
j=1 F

k
1 Fi1 · · · F̂ij · · ·Fiν−k∂Fij/∂Xi ∈ J . By the inductive hypothesis, the elements

F k
1 Fi1 · · · F̂ij · · ·Fiν−k∂Fij/∂Xi are contained in J (as ∂Fij/∂Xi ∈ M), and so we get

F k−1
1 Fi1 · · ·Fiν−k∂F1/∂Xi ∈ J for all i = 0, . . . , n. Consequently,

F k−1
1 Fi1 · · ·Fiν−kM = 〈F k−1

1 Fi1 · · ·Fiν−k∂F1/∂Xi | 0 ≤ i ≤ n〉S ⊆ J.

Hence F k
1 Fi1 · · ·Fiν−1−kM ⊆ J for all k ∈ N and i1, . . . , iν−1−k ∈ {1, . . . , n}. In other

words, the equality J = I(ν−1)XM is proved.

Next we prove (iii). We assume that rank
((
A1 0 · · · Atn

))
< n + 1. This implies

that M * 〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ t〉S. Let i ∈ {0, . . . , n} be an index such

that Xi ∈ M \ 〈∂Fj/∂Xi | 0 ≤ i ≤ n, 1 ≤ j ≤ t〉S. Then it is easy to see that

XiF
ν−1
1 ∈MI(ν−1)X. As above, let J = 〈∂F/∂Xi | F ∈ IνX, 0 ≤ i ≤ n〉S + IνX. Then

J2ν−1 = 〈∂Fi1 · · ·Fiν/∂Xi | 0 ≤ i ≤ n, 1 ≤ i1, . . . , iν ≤ t〉K and J2ν−2 = 〈0〉. Now we

distinguish two cases.

• If ν = 1 then it is clear that J 6= M.

• If ν ≥ 2 then we have XiF
ν−1
1 /∈ J , and hence J 6= MI(ν−1)X.
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Consequently, an application of Corollary 3.2.16 yields that

Ωn+1
RνX/K

∼= (S/J)(−n− 1) � S/MI(ν−1)X(−n− 1),

and this finishes the proof of (iii).

Finally, claim (iv) follows from the claims (ii) and (iii).



Chapter 5
Some Special Cases and

Applications

In this chapter we investigate the Hilbert functions and the regularity indices of the

Kähler differential algebras for some special fat point schemes in Pn, where n = 2 or

n = 4.

In the first section we consider the case of fat point scheme W on a non-singular

conic in P2. We first recall one of the results of Catalisano [Ca] which gives a de-

scription of the Hilbert function of W in terms of a certain subscheme. Then we use

this description to compute the Hilbert function of the module of Kähler differential

1-forms of the scheme W (see Proposition 5.1.3). Next we show that if, in addi-

tion, W = νX is an equimultiple fat point scheme, then Ω3
RW/K

∼= S/MI(ν−1)X(−3)

(see Proposition 5.1.7), and apply this isomorphism to exhibit the Hilbert function

of Ω3
RνX/K

in terms of degrees of generators of IX (or of I(ν−1)X) (see Corollary 5.1.8).

Finally, we apply the exact sequence given in Proposition 3.2.7 to write down the

Hilbert function of Ω2
RνX/K

(see Corollary 5.1.9).

In Section 5.2, we study the case of fat point schemes in P4. By following the

method of proof of [Th2] (which is a rather extended case-by-case argument), we prove

the Segre bound for the regularity index of a set of points in P4 (see Theorem 5.2.8).

Then we prove that, under an additional hypothesis, this bound holds for equimultiple

fat point schemes in P4 and is actually an equality (see Theorem 5.2.12). Finally, we

use the latter result to compute the regularity index of the module of Kähler differential

1-forms and bound the regularity index of the module of Kähler differential m-forms

under this additional hypothesis (see Proposition 5.2.14 and Corollary 5.2.15).

Throughout this chapter let K be a field of characteristic zero, and let Pn be the pro-

jective n-space over K. The homogeneous coordinate ring of Pn is S = K[X0, . . . , Xn].
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It is equipped with the standard grading deg(Xi) = 1 for i = 0, . . . , n. Furthermore,

we let X = {P1, . . . , Ps} ⊆ Pn be a set of s distinct K-rational points, and we let

W = m1P1 + · · ·+msPs be a fat point scheme in Pn supported at X, where mj ≥ 1 for

all j = 1, . . . , s.

5.1 Kähler Differential Algebras for Fat Point

Schemes on a Non-Singular Conic in P2

In Lemma 3.3.7, we described concretely the Hilbert functions of Ωm
RW/K

and Ωm
RW/K[x0]

when W is a fat point scheme in P1. This result leads us to the following question:

Question 5.1.1. Can we compute explicitly the Hilbert function of the bi-graded

RW-algebra ΩRW/K for a fat point scheme W = m1P1 + · · ·+msPs in P2?

In this section we answer some parts of the above question. More precisely, we give

concrete formulas for the Hilbert function of the bi-graded algebra ΩRW/K if W is an

equimultiple fat point scheme in P2 whose support X lies on a non-singular conic.

In what follows, we let C = Z+(C) be a non-singular conic defined by a quadratic

C ∈ S = K[X0, X1, X2], we let X = {P1, . . . , Ps} be a set of s distinct K-rational

points in C, and we let W = m1P1 + · · ·+msPs be a fat point scheme in P2 supported

at X. Suppose that 0 ≤ m1 ≤ · · · ≤ ms and s ≥ 4. Then it is well-known (cf. [Ca,

Proposition 2.2]) that the regularity index ofW is rW = max{ms+ms−1−1, b
s∑
j=1

mj/2c}.

Moreover, the Hilbert function of W can be effectively computed from the Hilbert

function of a certain subscheme Y of W, as the following proposition points out.

Proposition 5.1.2. Using the notation introduced as above, we define a fat point

subscheme Y of W as follows

a) for
∑s

j=1mj ≥ 2ms−1 + 2ms, let Y = max{m1 − 1, 0}P1 + · · ·+ max{ms − 1, 0}Ps
b) and for

∑s
j=1mj ≤ 2ms−1 + 2ms − 1, we let Y = m1P1 + m2P2 · · · + ms−2Ps−2 +

max{ms−1 − 1, 0}Ps−1 + max{ms − 1, 0}Ps.
Then we have

HFW(i) =
∑s

j=1

(
mj+1

2

)
if i ≥ rW,

= 2i+ 1 + HFY(i− 2) if 0 ≤ i < rW and
∑s

j=1 mj ≥ 2ms−1 + 2ms,

= i+ 1 + HFY(i− 1) if 0 ≤ i < rW and
∑s

j=1 mj ≤ 2ms−1 + 2ms − 1,

= 0 if i < 0.
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Proof. See [Ca, Theorem 3.1].

Due to Proposition 5.1.2, the Hilbert function of the module of Kähler differential

1-forms Ω1
RW/K

satisfies the following conditions.

Proposition 5.1.3. (i) If
∑s

j=1mj + s ≥ 2ms + 2ms−1 + 4 then

HFΩ1
RW/K

(i) =
∑s

j=1
(mj+1)(3mj−2)

2
for i ≥ b(

∑s
j=1mj + s)/2c,

= 3
∑s

j=1

(
mj+1

2

)
− 2i− 1 for rW + 2 ≤ i < b(

∑s
j=1mj + s)/2c,

= 4
∑s

j=1

(
mj+1

2

)
− 2i− 1− HFW(i− 2) for i = rW + 1,

=
∑s

j=1

(
mj+1

2

)
+ 3 HFW(i− 1)− 2i− 1− HFW(i− 2) for i = rW,

= 3 HFW(i− 1) + HFW(i)− 2i− 1− HFW(i− 2) for 0 ≤ i < rW.

(ii) If
∑s

j=1mj+s ≤ 2ms+2ms−1 +3 and let Y = (m1 +1)P1 + · · ·+(ms−2 +1)Ps−2 +

ms−1Ps−1 +msPs, then

HFΩ1
RW/K

(i) =
∑s

j=1
(mj+1)(3mj−2)

2
for i ≥ ms +ms−1 + 1,

= 4
∑n

j=1

(
mj+1

2

)
−i−1− HFY(i−1) for rW + 1 ≤ i ≤ ms +ms−1,

=
∑s

j=1

(
mj+1

2

)
+3 HFW(i−1)−i−1− HFY(i− 1) for i = rW,

= 3 HFW(i− 1) + HFW(i)− i− 1− HFY(i− 1) for 0 ≤ i < rW.

Proof. Let V be the fat point scheme V = (m1 + 1)P1 + · · ·+ (ms + 1)Ps containing W.

Then we have rV = max{ms +ms−1 + 1, b(
∑s

j=1mj + s)/2c}. By Corollary 4.2.3(i), we

have

HFΩ1
RW/K

(i) = 3 HFW(i− 1) + HFW(i)− HFV(i)

for all i ∈ Z. In the following we distinguish two cases.

First we consider the case
∑s

j=1mj + s ≥ 2ms + 2ms−1 + 4. In this case, we have

rV = b(
∑s

j=1mj + s)/2c. Since s ≥ 4, we get the inequality

rW + 1 = max{ms +ms−1 − 1, b
s∑
j=1

mj/2c}+ 1 < b(
s∑
j=1

mj + s)/2c = rV.

So, Corollary 4.2.3(iii) yields ri(Ω1
RW/K

) ≤ rV = b(
∑s

j=1mj + s)/2c. Also, we see that

HFΩ1
RW/K

(rV − 1) = 4 deg(W)− HFV(rV − 1) > 4 deg(W)− HFV(rV + i)

= 4 deg(W)− deg(V) = HFΩ1
RW/K

(rV + i)

for all i ≥ 0, and hence ri(Ω1
RW/K

) = rV. Consequently, we can apply Proposition 5.1.2

to work out the Hilbert function of Ω1
RW/K

with respect to the range of degree i as

follows:
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(a) For i ≥ rV = b(
∑s

j=1mj + s)/2c, the Hilbert function of Ω1
RW/K

satisfies

HFΩ1
RW/K

(i) = 4
s∑
j=1

(
mj+1

2

)
−
(
mj+2

2

)
=

s∑
j=1

(mj+1)(3mj−2)

2
.

(b) Let rW + 2 ≤ i < rV = b(
∑s

j=1 mj + s)/2c. Then we have HFW(i − 2) =

HFW(i−1) = HFW(i) = deg(W) =
∑s

j=1

(
mj+1

2

)
and HFV(i) = 2i+1+HFW(i−2).

This follows that

HFΩ1
W/K

(i) = 4
s∑
j=1

(
mj+1

2

)
− 2i− 1− HFW(i− 2) = 3

s∑
j=1

(
mj+1

2

)
− 2i− 1.

(c) Let i = rW + 1. Then we have HFW(i − 1) = HFW(i) =
∑s

j=1

(
mj+1

2

)
and

HFV(i) = 2i+ 1 + HFW(i− 2). So,

HFΩ1
W/K

(i) = 4
s∑
j=1

(
mj+1

2

)
− 2i− 1− HFW(i− 2).

(d) Similarly, if i = rW then HFW(i) =
∑m

j=1

(
mj+1

2

)
and HFV(i) = 2i+1+HFW(i−2),

and hence

HFΩ1
RW/K

(i) =
s∑
j=1

(
mj+1

2

)
+ 3 HFW(i− 1)− 2i− 1− HFW(i− 2).

(e) In the case i < rW, we have

HFΩ1
RW/K

(i) = HFW(i) + 3 HFW(i− 1)− 2i− 1− HFW(i− 2).

Altogether, when
∑s

j=1mj + s ≥ 2ms + 2ms−1 + 4, we have proved the formula for the

Hilbert function of Ω1
RW/K

.

Next we consider the second case
∑s

j=1 mj + s ≤ 2ms + 2ms−1 + 3. In this case, the

relation between Hilbert functions of V and of Y follows from Proposition 5.1.2. Also,

we have rV = ms +ms−1 + 1 and rW = ms +ms−1− 1 < rV, and hence ri(Ω1
RW/K

) = rV.

Therefore a similar argument as in the first case yields the desired formula for the

Hilbert function of Ω1
RW/K

.

It is worth noting that Propositions 5.1.2 and 5.1.3 give us a procedure for com-

puting the Hilbert function of the module of Kähler differential 1-forms of RW/K from

some suitable fat point schemes. Moreover, HFΩ1
RW/K

is completely determined by s

and the multiplicities m1, . . . ,ms.

Using Proposition 5.1.3 we can extend Proposition 4.4.11 by the next example.
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Example 5.1.4. On a non-singular conic C, let W be a complete intersection of type

(2, n). Let P ∈W, and let Y = W \ {P}. The regularity index of the CB-scheme Y is

n−1. Using Proposition 5.1.3 we see that the Hilbert function of Ω1
RY/K

is independent

of position of the point P .

The following lemma can be used to find out a connection between the Hilbert

functions of Ω3
RW/K

(as well as of Ω2
RW/K

) and of a suitable subscheme of W if W is an

equimultiple fat point scheme, i.e. if m1 = · · · = ms = ν.

Lemma 5.1.5. Let X, W and Y be as in Proposition 5.1.2, and let

q = max{ms +ms−1, b(
s∑
j=1

mj + 1)/2c}.

Let {G1, . . . , Gr} be a minimal homogenous system of generator of IY, let L be the

linear form such that Ps, Ps−1 ∈ Z+(L), and write C = Z+(C).

(i) If
∑s

j=1mj ≥ 2ms + 2ms−1, and
∑s

j=1 mj is odd, then there exist F1, F2 ∈ (IW)q

such that the set {CG1, · · · , CGr, F1, F2} is a minimal homogeneous system of

generators of IW.

(ii) If
∑s

j=1mj ≥ 2ms + 2ms−1, and
∑s

j=1mj is even, then there exists F ∈ (IW)q

such that the set {CG1, · · · , CGr, F} is a minimal homogeneous system of gen-

erators of IW.

(iii) If
∑s

j=1 mj ≤ 2ms + 2ms−1 − 1, then there exists G ∈ (IW)q such that the set

{LG1, · · · , LGr, G} is a minimal homogeneous system of generators of IW.

Proof. This result follows from [Ca, Proposition 4.3].

In particular, if X = {P1, . . . , Ps} is a set of s distinct K-rational points on a non-

singular conic C = Z+(C) then, for every k ∈ N, a minimal homogeneous system of

generators of IkX has the following form.

Corollary 5.1.6. Let s ≥ 4 and let X = {P1, . . . , Ps} be a set of s distinct K-rational

points on a non-singular conic C = Z+(C). Let IX = 〈C,G1, . . . , Gt〉S and let k ∈ N.

(i) If s = 2v for some v ∈ N then

{Ck, Ck−1G1, . . . , C
k−1Gt, C

k−2F2 1, C
k−3F3 1, . . . , CF(k−1) 1, Fk 1}

is a minimal homogeneous system of generators of IkX, where deg(Fj 1) = jv for

every j = 2, . . . , k.
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(ii) If s = 2v + 1 and k = 2h for some v, h ∈ N then

{Ck, Ck−1G1,. . .,C
k−1Gt, C

k−2F2 1,C
k−3F3 1, C

k−3F3 2,. . ., CF(k−1) 1, CF(k−1) 2, Fk 1}

is a minimal homogeneous system of generators of IkX, where deg(Fj l) satisfies

deg(Fj l) = b(j(2v + 1) + 1)/2c for every j = 2, . . . , k and l = 1, 2.

(iii) If s = 2v + 1 and k = 2h+ 1 for some v, h ∈ N then

{Ck, Ck−1G1, . . . , C
k−1Gt, C

k−2F2 1, C
k−3F3 1, C

k−3F3 2, . . . , CF(k−1) 1, Fk 1, Fk 2}

is a minimal homogeneous system of generators of IkX, where deg(Fj l) satisfies

deg(Fj l) = b(j(2v + 1) + 1)/2c for every j = 2, . . . , k and l = 1, 2.

Proof. Since s ≥ 4, we have qt = max{t+ t, b(st+1)/2c} = b(st+1)/2c for every t. By

applying Lemma 5.1.5 and by induction on k, we get the claimed minimal homogeneous

system of generators of the ideal IkX.

Now we present a relation between the Hilbert functions of the module of Kähler

differential 3-forms Ω3
RνX/K

and of S/MI(ν−1)X.

Proposition 5.1.7. Let s ≥ 4 and ν ≥ 1, and let X = {P1, · · · , Ps} ⊆ P2 be a set of

s distinct K-rational points which lie on a non-singular conic C = Z+(C). Then we

have Ω3
RνX/K

∼= (S/MI(ν−1)X)(−3). In particular, for all i ∈ N, we have

HFΩ3
RνX/K

(i) = HFS/MI(ν−1)X(i− 3).

Proof. Let B1 = {C,G1, . . . , Gt} be a minimal homogeneous system of generators of IX,

and let J (ν) = 〈∂F/∂Xi | F ∈ IνX, 0 ≤ i ≤ n〉S. By Corollary 3.2.16, we have

Ω3
RνX/K

∼= (S/J (ν))(−3). Thus it suffices to prove the equality J (ν) = MI(ν−1)X for

all ν ≥ 1. We remark that J (ν) ⊆ MI(ν−1)X is always true for all ν ≥ 1, and that

〈 ∂C
∂Xi
| 0 ≤ i ≤ 2〉S = M, since C is a non-singular conic.

We proceed to prove MI(ν−1)X = J (ν) and C · J (ν) ⊆ J (ν+1) by induction on ν. If

ν = 1, then we have J (1) = M = MI(ν−1)X, and

C · J (1) = CM = 〈∂C2

∂Xi
| 0 ≤ i ≤ 2〉S ⊆ J (2),

and hence the claim is true for the case ν = 1. Now we distinguish the following two

cases.

Case (a): Suppose that s is even.
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If ν = 2 then we apply Corollary 5.1.6(i) and find a polynomial F2 1 of degree s such

that B2 = {C2, CG1, . . . , CGt, F2 1} is a minimal homogeneous system of generators

of I2X. For 1 ≤ j ≤ t and 0 ≤ i ≤ 2, we see that
∂CGj
∂Xi

= Gj
∂C
∂Xi

+ C
∂Gj
∂Xi
∈ J (2). Since

C
∂Gj
∂Xi
∈ CM ⊆ J (2), we get Gj

∂C
∂Xi
∈ J (2), and hence GjM ⊆ J (2). This implies

IXM = 〈XiG | 0 ≤ i ≤ 2, G ∈ B1〉S ⊆ J (2),

and hence IXM = J (2). Moreover, we have C2M = C2〈 ∂C
∂Xi
| 0 ≤ i ≤ 2〉S ⊆ J (3) and

CGj
∂C
∂Xi

= 1
2
(
∂(C2Gj)

∂Xi
+ C2 ∂G

∂Xi
) ∈ J (3). From this we deduce

C · J (2) = C · IXM = 〈C2, CG1, . . . , CGt〉S · 〈 ∂C∂Xi | 0 ≤ i ≤ 2〉S ⊆ J (3).

Now we assume that for 2≤ k≤ ν−1 we have I(k−1)XM= J (k), C ·J (k)⊆ J (k+1), and

Bk = {Ck, Ck−1G1, . . . , C
k−1Gt, C

k−2F2 1, . . . , CFk−1 1, Fk 1} is a minimal homogeneous

system of generators of IkX, where deg(Fk1) = sk
2

and

2 ≤ max{deg(Gj) | 1 ≤ j ≤ t} < s = deg(F2 1) < · · · < sk
2

= deg(Fk 1).

Again, Corollary 5.1.6(i) enables us to find a homogeneous polynomial Fν 1 ∈ (IνX)sν/2

such that Bν = {Cν , Cν−1G1, . . . , C
ν−1Gt, C

ν−2F2 1, . . . , CFν−1 1, Fν 1} is a minimal

homogeneous system of generators of IνX. Clearly, we have Cν−1M ⊆ J (ν). Let

i ∈ {0, 1, 2}, j ∈ {1, . . . , t}, and k ∈ {2, . . . , ν − 1}. We deduce

• (ν − 1)Cν−2Gj
∂C
∂Xi

=
∂(Cν−1Gj)

∂Xi
− Cν−1 ∂Gj

∂Xi
∈ J (ν) (as

∂Gj
∂Xi
∈M).

• (ν − k)Cν−k−1Fk 1
∂C
∂Xi

= ∂(Cν−kFk 1)
∂Xi

− Cν−k ∂Fk 1

∂Xi
∈ J (ν) (as ∂Fk 1

∂Xi
∈ I(k−1)XM).

Thus we get I(ν−1)XM ⊆ J (ν), and so I(ν−1)XM = J (ν). Furthermore, we see that

(a1) Cν〈 ∂C
∂Xi
| 0 ≤ i ≤ 2〉S = CνM ⊆ J (ν+1).

(a2) νCν−1Gj
∂C
∂Xi

=
∂(CνGj)

∂Xi
− Cν ∂Gj

∂Xi
∈ J (ν+1) (by (a1)).

(a3) (ν−1)Cν−2F2 1
∂C
∂Xi

= ∂(Cν−1F2 1)
∂Xi

−Cν−1 ∂F2 1

∂Xi
∈J (ν+1), since Cν−1 ∂F2 1

∂Xi
∈Cν−1IX〈 ∂C∂Xi |

0 ≤ i ≤ 2〉S ⊆ J (ν+1) (by (a1) and (a2)).

(a4) (ν − k + 1)Cν−kFk 1
∂C
∂Xi

= ∂(Cν−k+1Fk 1)
∂Xi

− Cν−k+1 ∂Fk 1

∂Xi
∈ J (ν+1), since we have

Cν−k+1 ∂Fk 1

∂Xi
∈ Cν−k+1I(k−1)X〈 ∂C∂Xi | 0 ≤ i ≤ 2〉S ⊆ J (ν+1) (by (a1), (a2), (a3) and

induction on k).
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This shows that C · J (ν) ⊆ J (ν+1), as wanted.

Case (b): Suppose that s is odd.

If ν = 2 we argue the same as in the case (a) and get MIX = J (2) and C ·J (2) ⊆ J (3).

Suppose that ν = 3. By Corollary 5.1.6(ii), there are polynomials F3 1, F3 2 ∈ I3X of

degree b(3s+ 1)/2c such that B3 = {C3, C2G1, . . . , C
2Gt, CF2 1, F3 1, F3 2} is a minimal

homogeneous base of I3X. Then

(b1) For k = 2, 3 we have Ck ·M ⊆ J (k+1).

(b2) For k = 2, 3 we have kCk−1Gj
∂C
∂Xi

=
∂(CkGj)

∂Xi
− Ck ∂Gj

∂Xi
∈ J (k+1) (as

∂Gj
∂Xi
∈M and

(b1)).

(b3) For l = 0, 1, we have (l + 1)C lF2 1
∂C
∂Xi

= ∂(Cl+1F2 1)
∂Xi

− C l+1 ∂F2 1

∂Xi
∈ J (l+3), since

C l+1 ∂F2 1

∂Xi
∈ C l+1IX〈 ∂C∂Xi | 0 ≤ i ≤ 2〉S ⊆ J (l+3) (by (b1) and (b2)).

(b4) For l = 1, 2 we have F3 l
∂C
∂Xi

= ∂(CF3 l)
∂Xi

− C ∂F3 l

∂Xi
∈ J (4), since we have C ∂Fk l

∂Xi
∈

CI2X〈 ∂C∂Xi | 0 ≤ i ≤ 2〉S ⊆ J (4) (by (b1), (b2), and (b3)).

Thus we get MI2X ⊆ J (3) and C · J (3) ⊆ J (4).

Now we assume that 2 ≤ k ≤ ν− 1 we have I(k−1)XM = J (k), C ·J (k) ⊆ J (k+1), and

the minimal homogeneous system of generators Bk of IkX is given by

Bk={Ck, Ck−1G1, . . . , C
k−1Gt, C

k−2F2 1, C
k−3F3 1, C

k−3F3 1, . . . , CF2l−1 1, CF2l−1 2, F2l 1}

if k = 2l and

Bk = {Ck, Ck−1G1, . . . , C
k−1Gt, C

k−2F2 1, C
k−3F3 1, C

k−3F3 1, . . . , CF2l 1, F2l+1 1, F2l+1 2}

if k = 2l + 1. Note that 2 ≤ max{deg(Gj) | 1 ≤ j ≤ t} < s = deg(F2 1) < · · · <
deg(Fk 1). If ν is even, then we use the same argument as in the case (a) and get

MI(ν−1)X ⊆ J (ν) and C · J (ν) ⊆ J (ν+1). Otherwise, we can argue similarly as the

subcase ν = 3 and get the same result.

Altogether, we have shown that MI(ν−1)X = J (ν) and C ·J (ν) ⊆ J (ν+1) for all ν ≥ 1,

and this finishes the proof of the proposition.

Corollary 5.1.8. In the setting of Proposition 5.1.7, let B1 = {C,G1, . . . , Gt} be a

minimal homogeneous system of generators of IX, let dj = deg(Gj) for j = 1, . . . , t,
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and assume that d1 ≤ · · · ≤ dt. If ν = 1 then HFΩ3
RνX/K

(i) = 1 for i = 3 and

HFΩ3
RνX/K

(i) = 0 for i 6= 3. If ν ≥ 2 then

HFΩ3
RνX/K

(i) = s
(
ν
2

)
+ hi + δi for i ≥ bs(ν − 1)/2c+ 3

= HFνX(i− 1)− 2i+ 1 + hi + δi for 2 < i < bs(ν − 1)/2c+ 3

= 0 for i ≤ 2.

Here hi = #{F ∈ B1 | deg(F ) = i− 1− 2ν} and δi is defined as follows.

(i) If s = 4 then δi = ν − 2 if i = 2ν − 4 and δi = 0 otherwise.

(ii) If s = 5 then:

• If ν is odd then δi = 1 if i = 2(ν − 3) + 5, and δi = 3 if i = 2ν + k − 1 for

some k = 1, . . . , (ν − 3)/2 and δi = 0 otherwise.

• If ν is even then δi = 1 if i = 2(ν − 3) + 5, and δi = 3 if i = 2ν + k − 1 for

some k = 1, . . . , (ν−2)/2 and δi = 2 of i = (5ν−4)/2 and δi = 0 otherwise.

(iii) If s ≥ 6 then:

• If s is even then δi = 1 if i = 2(ν−k) + (k−1)s/2 + 3 for some k = 3, . . . , ν

and δi = 0 otherwise.

• If s is odd then we have δi = 1 if i = 2(ν − 2k − 1) + ks + 3 for some

k = 1, . . . , b(ν− 1)/2c and δi = 2 if i = 2(ν− 2k− 2) + b(2sk+ s+ 1)/2c+ 3

for some k = 1, . . . , b(ν − 2)/2c and δi = 0 otherwise.

Proof. By Proposition 5.1.7, we have HFΩ3
RνX/K

(i) = HFS/MI(ν−1)X(i − 3). In the case

ν = 1 we have HFΩ3
RνX/K

(i) = HFS/M(i− 3), and hence HFΩ3
RνX/K

(i) = 0 for i 6= 3 and

HFΩ3
RνX/K

(i) = 1 for i = 3. If ν ≥ 2 we have

HFΩ3
RνX/K

(i) = HFS/MI(ν−1)X(i− 3)

= HFS(i− 3)− HFMI(ν−1)X(i− 3)

= HFS(i− 3)− dimK(M1(I(ν−1)X)i−4)

= HFS(i− 3)− (dimK(I(ν−1)X)i−3 −#(Bν−1)i−3)

= HF(ν−1)X(i− 3) + #(Bν−1)i−3

The sequence of degrees of the elements in the sequence

A = (Cν−3F2 1, C
ν−4F3 1, . . . , CF(ν−2) 1, F(ν−1) 1)
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is A∗ = (2(ν−3)+b(2s+1)/2c, 2(ν−4)+b(3s+1)/2c, . . . , 2+b((ν−2)s+1)/2c, b((ν−
1)s+ 1)/2c.

(i) If s = 4 then every element of the sequence A∗ equals 2ν − 4 so, #(Bν−1)i−3 =

#{F ∈ B1 | deg(F ) = i− 1− 2ν}+ δi where δi = ν − 2 if i = 2ν − 4 and δi = 0

otherwise.

(ii) If s = 5 then we see that 2(ν− 2k− 1) + b(2ks+ 1)/2c < 2(ν− 2k− 2) + b((2k+

1)s+ 1)/2c = 2(ν − 2k − 3) + b((2k + 2)s+ 1)/2c for all k = 1, . . . , b(ν − 3)/2c.

• If ν is odd then #(Bν−1)i−3 = #{F ∈ B1 | deg(F ) = i − 1 − 2ν} + δi

where δi = 1 if i = 2(ν − 3) + 5, and δi = 3 if i = 2ν + k − 1 for some

k = 1, . . . , (ν − 3)/2 and δi = 0 otherwise.

• If ν is even then #(Bν−1)i−3 = #{F ∈ B1 | deg(F ) = i − 1 − 2ν} + δi

where δi = 1 if i = 2(ν − 3) + 5, and δi = 3 if i = 2ν + t − 1 for some

t = 1, . . . , (ν − 2)/2 and δi = 2 if i = (5ν − 4)/2 and δi = 0 otherwise.

(iii) If s ≥ 6 then the sequence of elements in A∗ is strictly increasing.

• If s is even then Corollary 5.1.6(i) implies that #(Bν−1)i−3 = #{F ∈ B1 |
deg(F ) = i− 1− 2ν}+ δi where δi = 1 if i = 2(ν − k) + (k − 1)s/2 + 3 for

some k = 3, . . . , ν and δi = 0 otherwise.

• If s is odd then Corollary 5.1.6(ii) and (iii) yields that #(Bν−1)i−3 = #{F ∈
B1 | deg(F ) = i−1−2ν}+δi, where δi = 1 if i = 2(ν−2k−1)+ks+3 for some

k = 1, . . . , b(ν− 1)/2c and δi = 2 if i = 2(ν− 2k− 2) + b(2sk+ s+ 1)/2c+ 3

for some k = 1, . . . , b(ν − 2)/2c and δi = 0 otherwise.

If i ≥ bs(ν − 1)/2c + 3 then by [Ca, Proposition 2.2] we have HF(ν−1)X(i − 3) = s
(
ν
2

)
.

Otherwise, if i < bs(ν − 1)/2c+ 3 then HF(ν−1)X(i− 3) = HFνX(i− 1)− 2i+ 1. Hence

the claims follow.

Corollary 5.1.9. Using the notation given in Corollary 5.1.8, we have.

(i)

HFΩ2
RX/K

(i) = 0 for i ≥ s

= 3 HFX(2)− 9 for i = 3

= 3 HFX(i− 1)− HFX(i− 2)− 2i− 1 for i < s and i 6= 3.
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(ii) For every ν ≥ 2, let t = bs(ν + 1)/2c and u = bs(ν − 1)/2c+ 3. Then we have

HFΩ2
RνX/K

(i) =s(3ν + 2)(ν − 1)/2 + hi + δi for i ≥ t

=3 HFνX(i− 1)− HFνX(i− 2)+ s
(
ν
2

)
+ hi+ δi− 2i− 1 for u≤ i< t

=4 HFνX(i− 1) + HFνX(i− 2)− 4i+ hi + δi for i < u.

Proof. Clearly, HFΩ2
RνX/K

(i) = 0 for i ≤ 1. By Proposition 3.2.7 we have a short exact

sequence of graded RνX-modules

0 −→ Ω3
RνX/K

−→ Ω2
RνX/K

−→ Ω1
RνX/K

−→ mνX −→ 0.

For i ≥ 2 we get

HFΩ2
RνX/K

(i) = HFΩ1
RνX/K

(i) + HFΩ3
RνX/K

(i)− HFνX(i)

(∗)
= (HFνX(i) + 3 HFνX(i− 1)− HF(ν+1)X(i)) + HFΩ3

RνX/K
(i)− HFνX(i)

= 3 HFνX(i− 1)− HF(ν+1)X(i) + HFΩ3
RνX/K

(i)

where (∗) follows from Corollary 4.2.3(i).

We consider the case ν = 1. We see that HF2X(3) = 10, so HFΩ2
RX/K

(3) = 3 HFX(2)−
10 + 1 = 3 HFX(2)− 9. For i < s and i 6= 3 we have HFΩ2

RX/K
(i) = 3 HFX(i− 1)− (2i+

1 + HFX(i− 2)). For i ≥ s we get HFΩ2
RX/K

(i) = 3 HFX(i− 1)−HF2X(i) = 3s− 3s = 0.

Thus claim (i) follows.

Now we suppose ν ≥ 2. By Corollary 5.1.8 we have HFΩ2
RνX/K

(i) = 3s
(
ν+1

2

)
−

s
(
ν+2

2

)
+ s
(
ν
2

)
+ hi + δi = s(3ν + 2)(ν − 1)/2 + hi + δi for i ≥ bs(ν + 1)/2c. For

bs(ν − 1)/2c + 3 ≤ i < bs(ν + 1)/2c we obtain HFΩ2
RνX/K

(i) = 3 HFνX(i − 1) − (2i +

1 + HFνX(i− 2)) + s
(
ν
2

)
+ hi + δi. For i < bs(ν − 1)/2c+ 3, by Corollary 5.1.8 we get

HFΩ2
RνX/K

(i) = 3 HFνX(i−1)− (2i+1+HFνX(i−2))+(HFνX(i−1)−2i+1+hi+δi) =

4 HFνX(i−1)+HFνX(i−2)−4i+hi+δi. Therefore claim (ii) is completely proved.

5.2 Segre’s Bound for Fat Point Schemes in P4

Given a fat point scheme W = m1P1 + · · ·+msPs in Pn, we define

TW,j := max
{⌊mi1 + · · ·+miq + j − 2

j

⌋
| Pi1 , . . . , Piq lie on a j-plane

}
for j = 1, . . . , n and set TW := max{TW,j | j = 1, . . . , n}. In 1996, the following

conjecture, called Segre’s bound, was formulated by N.V. Trung (cf. [Th1]) and

independently by G. Fatabbi and A. Lorenzini (cf. [FL]).
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Conjecture 5.2.1. The regularity index of a fat point scheme W satisfies rW ≤ TW.

In this section, we show that rW ≤ TW if W is a set of s distinct reduced K-rational

points in P4. We also show that Segre’s bound is attained by an equimultiple fat point

scheme in P4 whose support X := Supp(W) satisfies TX = TX,1. Moreover, we prove

that the regularity index of Ω1
RνX/K

is exactly T(ν+1)X in this case.

These proofs require a number of preparations. The following techniques were

developed in [CTV, Lemmata 1 and 3].

Lemma 5.2.2. Let X = {P1, . . . , Ps, Q} be a set of s + 1 distinct K-rational points

in Pn, let ℘i (resp. q) be the associated prime ideal of Pi (resp. Q), and let m1, . . . ,ms,

a be positive integers. Define two ideals J := ℘m1
1 ∩ · · · ∩ ℘mss and I = J ∩ qa.

(i) We have ri(S/I) = max{a− 1, ri(S/J), ri(S/(J + qa))}.

(ii) In the case Q = (1 : 0 : · · · : 0), i.e. in the case q = 〈X1, . . . , Xn〉, we have

ri(S/(J + qa)) ≤ T if and only if XT−i
0 M ∈ J + qi+1 for every monomial M ∈ qi

and for i = 0, . . . , a− 1.

In many cases, the regularity index ri(S/J) can be estimated by induction on the

number s of points in the support of the scheme. In order to use the lemma, one needs

to find a good bound for ri(S/(J + qa)). This is equivalent to finding the minimal

number T such that for any monomial M ∈ qi with 0 ≤ i ≤ a − 1 there exist T − i
linearly independent linear forms L1, . . . , LT−i which do not vanish at Q and satisfy

L1 · · ·LT−iM ∈ J . Since we may assume q = 〈X1, . . . , Xn〉, we can write Lj = X0 +Gj

with a linear form Gj ∈ q for j = 1, . . . , T − i. Then the relation

L1 · · ·LT−iM = (X0 +G1) · · · (X0 +GT−i)M ∈ J

implies XT−i
0 M ∈ J + qi+1. This means that we have ri(S/(J + qa)) ≤ T .

The next two lemmata are useful tools to construct suitable linear forms Li. They

follow from [Th2, Lemmata 2.3 and 2.4].

Lemma 5.2.3. Let X = {P1, . . . , Ps} be a set of s distinct K-rational points in a

2-plane K0
∼= P2 in Pn, let Q ∈ K0 \ X, and let m1, . . . ,ms be positive integers. We

define

tj := max
{⌊∑q

k=1 mik + j − 1

j

⌋
| Pi1 , . . . , Piq , Q lie on a j-plane

}
for j = 1, 2, and let t := max{t1, t2}.
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Then there exist t lines contained in K0, say L1, . . . , Lt, which do not pass through Q

and have the property that for every j ∈ {1, . . . , s} there exist mj lines Li1 , . . . , Limj
with Pj ∈ Li1 ∩ · · · ∩ Limj .

Lemma 5.2.4. Let X = {P1, . . . , Ps} be a set of s distinct K-rational points in a

3-plane H ∼= P3 in Pn, let Q ∈ H \ X, and let m1, . . . ,ms be positive integers. We

define

tj := max
{⌊∑q

k=1 mik + j − 1

j

⌋
| Pi1 , . . . , Piq , Q lie on a j-plane

}
for j = 1, 2, 3 and let t := max{t1, t2, t3}.

Then we can find t 2-planes contained in H, say K1, . . . , Kt, which do not pass

through Q and have the property that for every j ∈ {1, . . . , s} there exist mj 2-planes

Ki1 , . . . , Kimj
with Pj ∈ Ki1 ∩ · · · ∩Kimj

.

By using the above lemmata, P. V. Thien proved the following result (cf. [Th2,

Theorem 1.1]).

Lemma 5.2.5. Let X = {P1, . . . , Ps} be a set of s distinct K-rational points in P4.

Then we have r2X ≤ T2X.

The next proposition tells us that the conjecture holds true for a fat point scheme

in P4 whose support is contained in a hyperplane.

Proposition 5.2.6. Let X = {P1, . . . , Ps} be a set of s distinct K-rational points

in P4, and let W = m1P1 + · · · + msPs be a fat point scheme. If X is contained in a

hyperplane H ∼= P3, then we have rW ≤ TW.

Proof. For j = 1, . . . , s, let P ′j denote the point of H ∼= P3 corresponding to Pj, and let

W′ = m1P
′
1 + · · ·+msP

′
s be the fat point scheme of P3 corresponding to W. By [Th1,

Theorem 1.1], we know that rW′ ≤ TW′ holds. Now it follows from Lemma 4.4 in [BFL]

that rW ≤ TW′ . In view of the inequality TW′ ≤ TW which follows immediately from

the definition of TW, we get the desired result.

Next we start to work towards the first main result of this section, namely the proof

of Segre’s bound in the casem1 = · · · = ms = 1, i.e. for a reduced 0-dimensional scheme

in P4. We use the method of proof in [Th2] and estimate the regularity index ri(S/(J+

q)) as follows.
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Proposition 5.2.7. Let X = {P1, . . . , Ps} be a set of s distinct K-rational points in P4

which is not contained in a hyperplane. Then there exists a point Pi0 ∈ X such that the

ideal J :=
⋂
j 6=i0 ℘j satisfies the inequality

ri(S/(J + ℘i0)) ≤ TX.

Proof. By Lemma 5.2.2(ii), we only need to show that there exist a point Pi0 ∈ X
and a number t ∈ {1, . . . , TX} such that there are linear forms L1, . . . , Lt ∈ S with

L1 · · ·Lt ∈ J \ ℘i0 .
To begin with, let d ≥ 1 be the least integer such that there are hyperplanes

H1, . . . , Hd in P4 for which the following conditions are satisfied:

(i) X ⊆ H1 ∪ · · · ∪Hd

(ii) For i = 1, . . . , d− 1, we have∣∣Hi ∩ (X \
i−1⋃
j=1

Hj)
∣∣ = max

{
|H ∩ (X \

i−1⋃
j=1

Hj)| | H is a hyperplane
}
.

Notice that we have d ≥ 2 here, because X is not contained in a hyperplane. For

convenience we put Xi := Hi ∩ (X \
⋃i−1
j=1Hj) for i = 1, . . . , d. By the choice of d we

have Xd 6= ∅. We write Xd = {P1, . . . , Pr} for some r ≥ 1. The desired point Pi0 will

be chosen in Xd. Depending on the geometry of Xd, we distinguish three cases.

Case (a) Suppose that Xd is not contained in a 2-plane.

Notice that this implies r = |Xd| ≥ 4. Let u := |Xd−1|. Since d ≥ 2 and r ≥ 4, we

have (dr + 2)/4 ≥ d+ r−1
2
− 1. This implies

TX ≥ TX,4 ≥
⌊(d− 1)u+ r + 2

4

⌋
≥
⌊dr + 2

4

⌋
≥ d+

⌊r − 1

2

⌋
− 1.

Let ` be a line contained in Hd such that

|` ∩ Xd| = max{|`′ ∩ Xd| | `′ is a line contained in Hd}.

Note that, since Xd * `, we can choose a point Pi0 ∈ Xd \ `. Now we set

tj := max
{⌊

1
j

(|H ∩ (Xd \ {Pi0})|+ j − 1)
⌋
| H is a j-plane containing Pi0

}
for j = 1, 2, 3 and t := max{t1, t2, t3}. Let `1 be a line containing Pi0 such that

|`1 ∩Xd \ {Pi0}| = t1. Since Xd does not lie on a 2-plane and by the choice of `, we get

r = |Xd| ≥ |` ∩ Xd|+ |`1 ∩ Xd| ≥ 2|`1 ∩ Xd|.
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This yields t1 ≤
⌊
r−2

2

⌋
≤
⌊
r−1

2

⌋
.

Next we let E ⊆ Hd be a 2-plane containing Pi0 such that
⌊
|E∩(Xd\{Pi0})|+1

2

⌋
= t2.

Then we have |E ∩ Xd| ≤ r − 1, and therefore t2 ≤
⌊
r−1

2

⌋
. Since r ≥ 4, we have

t3 ≤
⌊

(r−1)+2
3

⌋
≤
⌊
r−1

2

⌋
. Thus we obtain t = max{t1, t2, t3} ≤

⌊
r−1

2

⌋
. By Lemma 5.2.4,

we can find
⌊
r−1

2

⌋
2-planes K1, . . . , Kb r−1

2 c contained in Hd avoiding Pi0 such that, for

i 6= i0, there is an index ji ∈ {1, . . . ,
⌊
r−1

2

⌋
} with Pi ∈ Kji . If we choose hyperplanes

Z+(Lj) containing Kj and avoiding Pi0 for j = 1, . . . ,
⌊
r−1

2

⌋
and let Lb r−1

2 c+j be the

linear form defining the hyperplane Hj for j = 1, . . . , d−1, we have L1 · · ·Ld+b r−1
2 c−1 ∈

J \ ℘i0 , as we wanted.

Case (b) Suppose that Xd is contained in a 2-plane K0, but not in a line.

W.l.o.g. we may assume that Xd−1 = {Pr+1, . . . , Pr+u} for some u ∈ N. Then we

have r ≥ 3 and u ≥ |K0 ∩ (Xd−1 ∪ Xd)|+ 1 ≥ |K0 ∩ Xd|+ 1 = r + 1 ≥ 4 by the choice

of Hd−1. Depending on the size of u, we distinguish the two subcases.

Subcase (b.1) Suppose that u ≥ r + 2.

In this case we see that bd(r+2)
4
c ≥ d + b r

2
c − 1 iff d(r + 2) ≥ 4d + 4b r

2
c − 4 iff

dr − 2d− 4b r
2
c+ 4 ≥ 0 iff (2r − 4b r

2
c) + (r − 2)(d− 2) ≥ 0. The last inequality holds

for all r ≥ 3 and d ≥ 2. This implies

TX ≥ TX,4 ≥
⌊ (d−1)u+r+2

4

⌋
≥
⌊d(r+2)

4

⌋
≥ d+

⌊
r
2

⌋
− 1.

Let ` be a line contained in K0 with |` ∩ Xd| = max{|`′ ∩ Xd| | `′ is a line contained

in K0}. There is a point Pi0 ∈ Xd \` because Xd is not contained in a line. For j = 1, 2,

we set

tj := max
{⌊

1
j

(|H ∩ (Xd \ {Pi0})|+ j − 1)
⌋
| H is a j-plane containing Pi0

}
and we let t = max{t1, t2}. Furthermore, let `1 ⊂ K0 be a line containing Pi0 such that

|`1 ∩ Xd \ {Pi0}| = t1. By the choice of `, we get

r + 1 = |Xd|+ 1 ≥ |` ∩ Xd|+ |`1 ∩ Xd| ≥ 2|`1 ∩ Xd|.

This implies t1 ≤ b r−1
2
c ≤ b r

2
c. Also, we observe that t2 ≤ b1

2
(|Xd \ {Pi0}|+ 1)c = b r

2
c.

Hence we conclude that t = max{t1, t2} ≤ b r2c. By Lemma 5.2.3, we can find b r
2
c

lines `1, . . . , `b r
2
c contained in K0 and avoiding Pi0 such that for i 6= i0 there exists an

index ji ∈ {1, . . . , b r2c} with Pi ∈ `ji . We choose hyperplanes Z+(Lj) containing `j

and avoiding Pi0 for j = 1, . . . , b r
2
c, and we let Lb r

2
c+j be a linear form defining the
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hyperplane Hj for j = 1, . . . , d − 1. Then we find L1 · · ·Ld+b r2c−1 ∈ J \ ℘i0 , as we

wanted.

Subcase (b.2) Suppose that u = r + 1.

In this case we have r+ 1 = u ≥ |K0 ∩ (Xd−1 ∪Xd)|+ 1 ≥ |K0 ∩Xd−1|+ r+ 1, and

therefore K0 ∩ Xd−1 = ∅. Observe that we have d(r + 1)/4 ≥ d + (r − 3)/2 for d ≥ 2

and r ≥ 3, and Thus

TX ≥ TX,4 ≥
⌊d(r+1)+1

4

⌋
≥
⌊
d+ 2r−5

4

⌋
≥ d+

⌊
2r−5

4

⌋
.

If r = 2k+1 for some k ≥ 1, then
⌊
r
2

⌋
= k and TX ≥ d+k−1. Thus if we choose Pi0 and

L1, . . . , Ld+k−1 as in Subcase (b.1), we obtain the desired relation L1 · · ·Ld+k−1 ∈ J\℘i0 .
It remains to consider the case r = 2k for some k ≥ 2. In this case, we have

⌊
r
2

⌋
= k

and TX ≥ d + k − 2 ≥ d. Let Y = {P1, . . . , Pr−1} ⊆ Xd, and let ` be a line contained

in K0 such that |` ∩ Y| = max{|`′ ∩ Y| | `′ is a line contained in K0}.
Now there are two possibilities. If Y ⊆ `, then we have Pr /∈ ` since Xd does not lie

on a line. Thus we may define Pi0 := Pr. We choose a linear form L such that Z+(L)

contains ` and avoids Pi0 , and we let Hj = Z+(Lj) for j = 1, . . . , d− 1. Then we have

L1 · · ·Ld−1L ∈ J \ ℘i0 , as we wanted.

The second possibility is Y * `. In this case we let Pi0 ∈ Y \ ` and define

tj := max
{⌊

1
j

(|H ∩ (Y \ {Pi0})|+ j − 1)
⌋
| H is a j-plane containing Pi0

}
for j = 1, 2, and then t := max{t1, t2}. By the choice of `, we have t1 ≤

⌊
|Y|−1

2

⌋
=⌊

r−2
2

⌋
= k − 1, and t2 ≤

⌊
|Y\{Pi0}|+1

2

⌋
=
⌊
r−1

2

⌋
= k − 1. Consequently, we have

t = max{t1, t2} ≤ k−1. By Lemma 5.2.3, we can find k−1 lines `1, . . . , `k−1 contained

in K0 and avoiding Pi0 such that for every i 6= i0 there is an index ji ∈ {1, . . . , k − 1}
with Pi ∈ `ji . Since Pi0 /∈ Hd−1, there exist four points of Xd−1, say P2r−2, P2r−1, P2r,

and P2r+1, such that Pi0 and these four points do not lie on a hyperplane.

W.l.o.g. we may assume that Pi0 = (1 : 0 : 0 : 0 : 0), P2r−2 = (1 : 1 : 0 :

0 : 0), P2r−1 = (1 : 0 : 1 : 0 : 0), P2r = (1 : 0 : 0 : 1 : 0), and P2r+1 = (1 :

0 : 0 : 0 : 1). Since Pr 6= Pi0 , Pr /∈ Hd−1 = Z+(X0 − X1 − X2 − X3 − X4) and

span(Pi0 , P2r−2, P2r−1, P2r, P2r+1) = span(Pi0 , Pr, P2r−2, P2r−1, P2r, P2r+1) = P4, there

are i1, i2, i3 ∈ {2r−2, . . . , 2r+1} such that span(Pi0 , Pi1 , Pi2 , Pi3 , Pr) = P4. W.l.o.g. we

may therefore assume that span(Pi0 , P2r−1, P2r, P2r+1, Pr) = P4. Let K1 ⊆ P4 be the

2-plane passing through the three points P2r−1, P2r, P2r+1, and let `′ be the line passing

through Pi0 and Pr. Then there is no hyperplane in P4 containing K1 and `′. Let Lk

be a linear form defining the hyperplane of P4 containing both K1 and Pr.
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If Pi0 ∈ Z+(Lk) then we have K1 ⊆ Z+(Lk) and `′ ⊆ Z+(Lk) which is impossible.

Hence we have Pi0 /∈ Z+(Lk). For j = 1, . . . , k− 1, let Lj be a linear form defining the

hyperplane containing `j, Pr+j and P2r−j−1. Then we also see that Pi0 /∈ Z+(Lj) for

j = 1, . . . , k−1, since otherwise `j∪Pi0 ⊆ K0 ⊆ Z+(Lj) implies |Z+(Lj)∩(Xd−1∪Xd)| ≥
r + 2 > u, in contradiction to the choice of Hd−1. Thus we have

L1 · · ·Lk ∈ ℘1 ∩ · · · ∩ ℘̂i0 ∩ · · · ∩ ℘r ∩ · · · ∩ ℘2r+1.

Letting Lk+j be a linear form defining Hj for j = 1, . . . , d − 2, we therefore obtain

L1 · · ·Ld+k−2 ∈ J \ ℘i0 , as we wanted.

Case (c) Suppose that Xd is contained in a line `. In this case we distinguish four

subcases depending on the size of TX.

Subcase (c.1) TX ≥ r + d− 2

Let Pi0 = Pr. We choose a linear from Lj defining a hyperplane passing through

Pj and avoiding Pi0 for j = 1, . . . , r − 1, and choose a linear form Lr−1+k defining Hk

for k = 1, . . . , d− 1. Then L1 · · ·Lr+d−2 ∈ J \ ℘i0 .
Hence we assume from here on that TX ≤ r+d−3. Before we move on to the other

subcases, let us write down some general inequalities which will come in handy later.

For j = 1, . . . , d− 1, let P ′j = ` ∩Hj. Clearly, the points P1, . . . , Pr, P
′
1, . . . , P

′
d−1 all lie

on `. Since we have TX ≥ TX,1, there is an index j ∈ {1, . . . , d− 1} such that P ′j /∈ Xj.
Let e ∈ {1, . . . , d− 1} be the largest integer such that P ′e /∈ Xe, and let v = |Xe|. Then

we have |Xj| ≥ |` ∩ (Xj ∪ · · · ∪ Xd)| + 2 for every j = 1, . . . , d − 1, and P ′j ∈ Xj and

|Xj| ≥ r + 2 + d− j ≥ 4 for j = e+ 1, . . . , d− 1. In particular, this shows

v ≥ |` ∩ (Xe ∪ · · · ∪ Xd)|+ 2 ≥ |` ∩ (Xe+1 ∪ · · · ∪ Xd)|+ 2 ≥ r + 2 + (d− e− 1). (∗)

Consequently, we have two further inequalities

TX ≥ TX,4 =
⌊

1
4

( e∑
i=1

|Xi|+
d−1∑
i=e+1

|Xi|+ |Xd|+ 2
)⌋

≥
⌊

1
4

(
ev + (r + d+ 1− e) + · · ·+ (r + 3) + r + 2

)⌋
≥
⌊

1
4

(
ev + (2r+d−e+4)(d−e−1)

2
+ r + 2

)⌋ (∗∗)

and

TX,1 ≥ |` ∩ (Xe+1 ∪ · · · ∪ Xd)| − 1 = r + d− e− 2. (∗ ∗ ∗)

Notice that, for x, y ∈ N and z ∈ N+, the inequality x ≥ by
z
c implies x+1 ≥ y+1

z
. From

the first inequality in (∗∗) we deduce r + d− 3 ≥ b1
4
(ev + 4(d− e− 1) + r + 2)c. This
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yields r + d− 2 ≥ 1
4
(e v + 4(d− e− 1) + r + 3), and thus e(v − 4) ≤ 3r − 7. Therefore

we have r ≥ 3 and v ≤ 3r − 3.

Now we turn our attention to the next subcase.

Subcase (c.2) TX = r + d− 3

We put tj := max
{⌊ |H∩Xe|+j−1

j

⌋
| H is a j-plane containing P ′e

}
for j = 1, 2, 3, and

let t = max{t1, t2, t3}. We choose a line `1 containing P ′e such that |`1 ∩ Xe| = t1, and

we let K1 be the 2-plane containing ` and `1. By the definition of He, we have

v = |Xe| ≥ |K1 ∩ (Xe ∪ · · · ∪ Xd)|+ 1 ≥ |`1 ∩ Xe|+ |` ∩ (Xe+1 ∪ · · · ∪ Xd)|+ 1.

If |`1 ∩ Xe| ≥ r, then we have v ≥ 2r + d − e. Hence it follows from (∗∗) that

3r− 7 ≥ e(v− 4) + (2r+d−e−4)(d−e−1)
2

≥ e(2r+ (d− e− 1)− 3) + (2r+d−e−4)(d−e−1)
2

. Since

d−e−1 ≥ 0 and 2r+d−e−4 ≥ 1 and r ≥ 3, we have e ≤ 3r−7
2r−3
≤ 3

2
. This shows e = 1.

Therefore we find 3r − 7 ≥ 2r + d − 5 + (2r+d−5)(d−2)
2

= 2r − 3 + (2r+d−3)(d−2)
2

. Hence

we have d = 2 and TX,2 ≥ b |K1∩X|
2
c ≥ b |`1∩Xe|+|`∩Xd|

2
c > r − 1 = TX, a contradiction.

Altogether, we conclude that we may assume t1 ≤ r − 1.

Let K2 be a 2-plane which contains P ′e and satisfies b |K2∩Xe|+1
2

c = t2. Then the

plane K2 and the line ` lie on a hyperplane containing P ′e. By the choice of He, we

have v ≥ |K2∩Xe|+|`∩Xd| = |K2∩Xe|+r. This implies |K2∩Xe| ≤ v−r ≤ 2r−3. Hence

we have t2 = b |K2∩Xe|+1
2

c ≤ b2r−3+1
2
c = r− 1. We also see that t3 = b |Xe|+2

3
c = bv+2

3
c ≤

b3r−3+2
3
c ≤ r−1. Combining these insights, we obtain t = max{tj | j = 1, 2, 3} ≤ r−1.

By Lemma 5.2.4, we can now find 2-planes K ′1, . . . , K
′
r−1 avoiding P ′e and contained

in He such that, for every index i with Pi ∈ Xe , there exists a 2-plane K ′ji containing

Pi.

Let Pi0 := P1. For j = 1, . . . , r − 1, we take Lj to be a linear form defin-

ing the hyperplane containing K ′j and Pj+1. Since we have P ′e /∈ K ′j, and since

Pj+1, Pi0 , P
′
e are collinear, we must have Pi0 /∈ Z+(Lj) for j = 1, . . . , r − 1. For

j = 1, . . . , e− 1, e+ 1, . . . , d− 1, we let Lr+j−1 be a linear form defining Hj. Then we

have L1 · · ·Lr+e−2Lr+e · · ·Lr+d−2 ∈ J \ ℘i0 , as we wanted.

Subcase (c.3) TX = d+ r − 4

From (∗ ∗ ∗) we deduce that r + d− 4 ≥ r + d− e− 2, and hence e ≥ 2. By (∗∗),
we have r + d− 4 ≥ b1

4
(e v + (2r+d−e+4)(d−e−1)

2
+ r + 2)c. It follows that 4(r + d− 3) ≥

e v+ (2r+d−e+4)(d−e−1)
2

+ r+ 3, and thus 3r− 11 ≥ e(v− 4) + (2r+d−e−4)(d−e−1)
2

. We also

have v ≥ r + 2 + (d − e − 1) ≥ r + 2 by (∗). Putting these inequalities together, we

find 3r − 11 ≥ e(r − 2 + (d − e − 1)) + (2r+d−e−4)(d−e−1)
2

≥ e(r − 2), and therefore we
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have 2 ≤ e ≤ 3r−11
r−2

< 3 or e = 2. If d ≥ 4, then 3r − 11 ≥ 2(r − 2) + r − 1 = 3r − 5 is

impossible. Consequently, we must have d = e+ 1 = 3.

Now we note that 2(r − 2) ≤ 2(v − 4) ≤ 3r − 11 implies r ≥ 7 and v ≤ 3r−3
2

.

Let Xe = X2 = {Pr+1, . . . , Pr+v}, and let L be a linear form defining the hyperplane

containing ` and the two points Pr+v−1 and Pr+v. Since X2 and ` are not contained in

a hyperplane, there is a point, say Pr+v−2, which does not belong to Z+(L). We put

Pi0 = Pr+v−2 and let Y = {Pr+1, . . . , Pr+v−2}. Moreover, we let

tj = max
{⌊

1
j

(|H ∩ (Y \ {Pi0})|+ j − 1)
⌋
| H is a j-plane containing Pi0

}
for j = 1, 2, 3 and define t = max{t1, t2, t3}.

Given a line `1 which contains Pi0 and satisfies |`1 ∩ (Y \ {Pi0})| = t1, we see that

v = |X2| ≥ |`1∩Y|+|`∩X3| = |`1∩Y|+r. Hence we have |`1∩Y| ≤ v−r ≤ 3r−3
2
−r = r−3

2
,

and therefore t1 = |`1 ∩ (Y \ {Pi0})| ≤ r−3
2
− 1 = r−5

2
≤ r − 3.

Given a 2-plane K1 which contains Pi0 and satisfies b |K1∩(Y\{Pi0})|+1

2
c = t2, we have

|K1∩Y| ≤ v− 2 ≤ 3r−3
2
− 2 = 3r−7

2
. This yields |K1∩ (Y \ {Pi0})| ≤ 3r−9

2
. Using r ≥ 7,

we obtain the bound t2 = b |K1∩(Y\{Pi0})|+1

2
c ≤ b3r−7

4
c ≤ r − 3.

Since r ≥ 7, we also have t3 = b |Y\{Pi0}|+2

3
c = bv−1

3
c ≤ b3r−5

6
c ≤ r − 3. Now we

combine these inequalities and get t = max{tj | j = 1, 2, 3} ≤ r − 3. By Lemma 5.2.4,

we can find 2-planes K ′1, . . . , K
′
r−3 avoiding Pi0 and contained in H2 such that for

every index i with Pi ∈ Y \ {Pi0} there exists an index ji for which K ′ji contains Pi.

Since Pi0 /∈ K ′j, we can choose a linear from Lj defining a hyperplane containing K ′j
and avoiding Pi0 for j = 1, . . . , r − 3. Letting Lr−2 be a linear form defining H1 and

Lr−1 = L, we get L1 · · ·Lr−1 ∈ J \ ℘i0 , as we wanted. Notice that in this subcase we

have TX = r + d− 4 = r − 1.

Subcase (c.4) TX ≤ r + d− 5

From (∗∗∗) and r+d−5 ≥ TX ≥ TX,1 it follows that e ≥ 3. The inequality (∗∗) yields

3r − 15 ≥ e(v − 4) + (2r+d−e−4)(d−e−1)
2

≥ e(v − 4). Moreover, we deduce from (∗) that

v ≥ r+ 2. Combining this with e ≥ 3 and r ≥ 3, we get 3r− 15 ≥ e(r− 2) ≥ 3(r− 2),

a contradiction. Therefore the subcase TX ≤ r + d− 5 cannot occur.

Altogether, cases (a), (b), and (c) cover all possibilites for the geometry of Xd, and

the proposition is completely proved.

Now we are already to prove the Segre bound in the case m1 = · · · = ms = 1, i.e.

for sets of points in P4.

Theorem 5.2.8. Let X = {P1, . . . , Ps} be a set of s distinct reduced K-rational points

in P4. Then we have rX ≤ TX.
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Proof. To prove rX ≤ TX we proceed by induction on s. The case s = 1 is trivial. For

the induction step, we have s ≥ 2. If X is contained in a hyperplane H ∼= P3
K , the

desired inequality follows from Proposition 5.2.6. Hence we may assume that X is not

contained in a hyperplane. By Proposition 5.2.7, there is a point Pi0 ∈ X such that

ri(S/(J + ℘i0)) ≤ TX where J =
⋂
j 6=i0 ℘j. Moreover, it follows from Lemma 5.2.2(i)

that rX = max{0, ri(S/J), ri(S/(J + ℘i0))}. By induction, we may assume that

ri(S/J) ≤ max{T ′j | j = 1, 2, 3, 4} ≤ TX

where T ′j = max
{⌊

q+j−2
j

⌋
| Pi1 , . . . , Piq lie on a j-plane, ik 6= i0, k = 1, . . . , q

}
. There-

fore we obtain rX ≤ TX, as claimed.

Our next goal is to prove the Segre bound for equimultiple fat point schemes in P4

under the additional hypothesis TX = TX,1. We need several preparations.

Lemma 5.2.9. Let X = {P1, . . . , Ps} be a set of s ≥ 2 distinct K-rational points in P4,

let i ≥ 1, let J (i) = ℘i1∩· · ·∩℘is, and let q = 〈X1, . . . , X4〉. Assume that there are positive

integers r1, ra such that the bounds ri(S/(J (1) +q)) ≤ r1 and ri(S/(J (a) +qa)) ≤ ra hold

for some a ≥ 2.

Then we have ri(S/(J (a+1) + qa+1)) ≤ r1 + ra + 1.

Proof. In view of Lemma 5.2.2(ii), it suffices to show Xr1+ra+1−i
0 M ∈ J (a+1) + qi+1 for

all M ∈ qi and i = 0, . . . , a. Since ri(S/(J (1) + q)) ≤ r1, we have Xr1
0 ∈ J (1) + q.

Furthermore, the hypothesis ri(S/J (a) + qa) ≤ ra implies Xra−j
0 M ′ ∈ J (a) + qj+1 for all

M ′ ∈ qj and j = 0, . . . , a− 1. Consequently, we get

Xr1+ra−i
0 M = Xr1

0 (Xra−i
0 M) ∈ (J (1) + q)((J (a) + qi+1) ∩ qi)

⊆ J (1) · J (a) + qi+1 ⊆ J (a+1) + qi+1

for i = 0, . . . , a− 1 and M ∈ qi.

Now we consider the case i = a and M = Xα1
1 · · ·Xα4

4 ∈ (qa)a. W.l.o.g. we may

assume that α1 ≥ 1 and write M = X1·M ′ with M ′ ∈ S. Then we have Xr1+ra+1−a
0 M =

Xr1
0 X1(X

ra−(a−1)
0 M ′) ∈ (J (1)q + q2)((J (a) + qa) ∩ qa−1) ⊆ J (1) · J (a) + qa+1 ⊆ J (a+1) +

qa+1. Altogether, we have verified the hypothesis of Lemma 5.2.2 and the conclusion

follows.

Let us give an example for the application of the preceding lemma.
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Example 5.2.10. Let X = {P1, . . . , P4} ⊆ P4 be the set of reduced points given by

P1 = (1 : 0 : −1 : 1 : 1), P2 = (1 : 0 : 2 : 0 : 2), P3 = (1 : 1 : 1 : 0 : 1),

and P4 = (1 : 2 : 2 : 2 : 1). Then we can check that ri(S/(J (1) + q)) = 1 and

ri(S/(J (2) + q2)) = 3. The preceding lemma yields the bound ri(S/(J (3) + q3)) ≤ 5

which turns out to be an equality in this case.

The hypothesis TX = TX,1 in the theorem below can be exploited as follows.

Lemma 5.2.11. Let X = {P1, . . . , Ps} be a set of s ≥ 2 distinct reduced K-rational

points in P4. If we have TX = TX,1, then TνX ≥ T(ν−1)X + TX + 1 for all ν ≥ 2.

Proof. Let q = TX + 1. First we show that TνX = TνX,1 = νq − 1 for every ν ≥ 2. Let

j0 ∈ {1, 2, 3, 4} and q0 ∈ N be chosen such that TνX = TνX,j0 = bνq0+j0−2
j0
c.

If j0 = 1, the claim is clearly true. Hence it suffices to consider j0 ∈ {2, 3, 4}. By the

definition of TX we have q−1 ≥ b q0+j0−2
j0
c. This implies νq−1 ≥ νb q0+j0−2

j0
c+ν−1. Now

we letAj0 = νb q0+j0−2
j0
c+ν−1 andBj0 = bνq0+j0−2

j0
c, and we write q0 = kj0+l with k ∈ N

and 0 ≤ l ≤ j0−1. Then we have Aj0−Bj0 = ν−1+νb l+j0−2
j0
c−bνl+j0−2

j0
c. Using the fact

that (ν−2)(j0−2) ≥ 0, this implies that we have νj0−j0 ≥ j0 +ν+(ν−4) ≥ j0 +ν−2

or ν−1 ≥ ν+j0−2
j0

. Thus if l < 2, then we have Aj0−Bj0 ≥ ν−1−bν+j0−2
j0
c ≥ 0. In the

case l ≥ 2, we see that Aj0−Bj0 ≥ 2ν−1−bν(j0−1)+j0−2
j0

c ≥ 0, since bν(j0−1)+j0−2
j0

c ≤ ν.

Altogether, we obtain νq−1 ≥ Aj0 ≥ Bj0 . In other words, we have TνX = νq−1 = TνX,1.

Now it is clear that if TX = q− 1, then T(ν−1)X = (ν − 1)q− 1 and TνX = νq− 1. It

therefore follows that TνX ≥ T(ν−1)X + TX + 1, as claimed.

At this point we have assembled all tools that we need to prove the Segre bound

for equimultiple fat point schemes satisfying TX = TX,1.

Theorem 5.2.12. Let X = {P1, . . . , Ps} be a set of s ≥ 5 distinct reduced K-rational

points in P4 such that TX = TX,1 = max
{
q − 1 | Pi1 , . . . , Piq lie on a line

}
, and let

ν ≥ 3. Then the equimultiple fat point scheme νX = νP1 + · · ·+ νPs satisfies

rνX = TνX = max
{
νq − 1 | Pi1 , . . . , Piq lie on a line

}
.

Proof. First we fix an index i0 ∈ {1, . . . , s}. For very a ≥ 1, we let J (a) =
⋂
j 6=i0 ℘

a
j .

By induction on a, we prove ri(S/(J (a) + ℘aj )) ≤ TaX. The cases a = 1, 2 are true by

Theorem 5.2.8 and Lemma 5.2.5. Now we assume that we have ri(S/(J (a−1) +℘a−1
i0

)) ≤
T(a−1)X for some a ≥ 3. From Lemmata 5.2.9 and 5.2.11 we obtain ri(S/(J (a) +℘ai0)) ≤
T(a−1)X + TX + 1 ≤ TaX, and this finishes the induction.
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Next we prove the inequality rνX ≤ TνX by induction on s. In the case s = 5 we let

i0 = 1 and Y = X\{Pi0}. Then we have ri(S/(J (ν) +℘ν1)) ≤ TνX, where J (ν) =
⋂s
j=2 ℘

ν
j .

Since Y is contained in a hyperplane H ∼= P3, it follows from Proposition 5.2.6 that

ri(S/J (ν)) ≤ max{TνY,j | j = 1, 2, 3, 4} ≤ TνX

where TνY,j = max
{⌊

νq+j−2
j

⌋
| Pi1 , . . . , Piq ∈ Y lie on a j-plane

}
for j = 1, 2, 3, 4. By

Lemma 5.2.2(i), we conclude that

rνX = max{ν − 1, ri(S/J (ν)), ri(S/(J (ν) + ℘ν1))} ≤ TνX.

Now let s > 5. For every i ∈ {5, . . . , s}, we can find a subset Y′ ⊆ X of degree i

such that

TY′ = TY′,1 = max
{
q − 1 | Pi1 , . . . , Piq ∈ Y′ lie on a line

}
.

Thus by induction, we can assume that there is an index i0 ∈ {1, . . . , s} such that

Y′′ = X \ {Pi0} satisfies rνY′′ = ri(S/
⋂
j 6=i0 ℘

ν
j ) ≤ TνY′′ . As above, we also have

ri(S/(
⋂
j 6=i0 ℘

ν
j + ℘νi0)) ≤ TνX. Thus we see that rνX ≤ TνX by using Lemma 5.2.2(i)

again.

In order to prove the equality rνX = TνX, we let X′ = {Pi1 , . . . , Piq} be a subset of X
which lies on a line and satisfies TX′ = q − 1. The homogeneous saturated ideal of νX′

is J ′ =
⋂q
k=1 ℘

ν
ik

. It is well known (cf. [DG]) that rνX′ = ri(S/J ′) = νq − 1. Since νX′

is a subscheme of νX, this implies rνX ≥ rνX′ = νq − 1. On the other hand, we have

TνX = νq − 1 as in the proof of Lemma 5.2.11. Therefore we obtain rνX = TνX, as we

wanted to show.

Let us apply the statement of this theorem to a family of examples.

Example 5.2.13. Let `1, . . . , `5 be five distinct lines in P4, and let q1 ≥ 5. We

take q1 points on `1, say P11, . . . , P1q1 . Then, for i = 2, . . . , 5, we choose numbers

qi ≤ q1/5 and points Pi1, . . . , Piqi in `i \ {P11, . . . , Pi−1 qi−1
}. Now we form the set

X = {P11, . . . , P5q5} ⊆ P4. By the choice of the points Pij, we have TX = q1− 1. Hence

it follows from Theorem 5.2.12 that rνX = νq1 − 1 for every ν ≥ 1.

The final result of this section applies the previous bounds to derive a bound for

the regularity index of the module of Kähler differentials of an equimultiple fat point

scheme νX in P4 whose support satisfies TX = TX,1.

Proposition 5.2.14. Let X = {P1, . . . , Ps} be a set of s ≥ 2 distinct reduced

K-rational points of P4 such that TX = TX,1. Then we have ri(Ω1
RνX/K

) = T(ν+1)X

for every ν ≥ 1.
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Proof. By Theorem 5.2.12, we have rνX = TνX for all ν ≥ 1. Notice that this clearly

holds also for the cases s = 2, 3, 4. From Lemma 5.2.11 we get r(ν+1)X = T(ν+1)X ≥
TνX + TX ≥ rνX + 2 > rνX + 1. Hence Corollary 4.2.3(i) implies HFΩ1

RνX/K
(i) =

(n + 2) deg(νX) − deg((ν + 1)X) for i ≥ T(ν+1)X and HFΩ1
RνX/K

(T(ν+1)X − 1) = (n +

2) deg(νX)−HF(ν+1)X(T(ν+1)X − 1) > (n+ 2) deg(νX)− deg((ν + 1)X). Altogether we

obtain ri(Ω1
RνX/K

) = T(ν+1)X, as claimed.

The following corollary is directly induced from Propositions 2.4.10 and 5.2.14.

Corollary 5.2.15. In the setting of Proposition 5.2.14, let 1 ≤ m ≤ 5. Then we have

ri(Ωm
RνX/K

) ≤ min{T(ν+1)X + 3, T(ν+1)X +m− 1} for every ν ≥ 1.

Example 5.2.16. Let X = {(1 : 0 : 0 : 0 : 0), (1 : 1 : 0 : 0 : 0), (1 : 0 : 1 :

0 : 0), (1 : 0 : 0 : 1 : 0), (1 : 0 : 0 : 0 : 1)} be a set of 5 points in P4. We have

HFX : 1 5 5 . . . ,HFΩ1
RX/K

: 0 5 15 5 5 . . . ,HFΩ2
RX/K

: 0 0 10 10 0 0 . . . ,HFΩ3
RX/K

:

0 0 0 10 5 0 0 . . . ,HFΩ4
RX/K

: 0 0 0 0 5 1 0 0 . . . and HFΩ5
RX/K

: 0 0 0 0 0 1 0 0 . . . .

Then q1 = 2 and the regularity indices are rX = 2 − 1 = 1 and ri(Ω1
RX/K

) = 3 =

4 − 1 = ri(Ω2
RX/K

) − 1 = ri(Ω3
RX/K

) − 2 = ri(Ω4
RX/K

) − 3 = ri(Ω5
RX/K

) − 3 respectively.

Thus the bounds which given in Corollary 5.2.15 are sharp bounds. For m = 4 we

have r4X = 4 · 2 − 1 = 7 and ri(Ωi
R4X/K

) = 9 ≤ 7 + 2 + i − 1 for i = 1, 2, 3 and

ri(Ωi
R4X/K

) = 10 ≤ 7 + 2 + i− 1 for i = 4, 5.
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Appendix

In this appendix we provide the functions which implement the algorithms for com-

puting the Kähler differential modules and their Hilbert functions in ApCoCoA and

describe their usage with some examples. The ApCoCoA computer algebra system

is primarily designed for working with applied problems by using the symbolic com-

putation methods of CoCoA [Co] and by developing new libraries for the necessary

computations. It can be obtained for free from the ApCoCoA home page:

http://www.apcocoa.org

There is also a comprehensive manual and a series of tutorials available at this web

address.

A.1 Computing the Kähler Differential Module Ωm
R/K and Its

Hilbert Function

---------------------------------------------------------------------------------

-- KaehlerDifferentialModuleAndHF(IP,M): Computes the Kaehler diffenrential Module

-- of the algebra R/K and its Hilbert function, where R=S/I is the residual

-- class ring, S=K[X_0,..,X_n], I is a homogeneous ideal of S.

-- Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

-- (1:a_1:...:a_n)

-- M = the number of form of the Kaehler diffenrential module \Omega^M(R/K)

-- Output: A presentation and the Hilbert function of \Omega^M(R/K)

---------------------------------------------------------------------------------

Define KaehlerDifferentialModuleAndHF(IP,M);

If Type(IP) = IDEAL Then I := GBasis(IP);

Else I := GBasis(IdealOfProjectivePoints(IP));

EndIf;

N := Len(Indets());

S ::= CoeffRing[x[1..N],y[1..N]], DegRevLex;
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Using S Do

-- Form the canonical bases V1, V2 of \Omega^(M-1)(S/K), \Omega^M(S/K)

S1 := Subsets(1..N,M-1); V1 := NewList(Len(S1),0);

For I1 := 1 To Len(S1) Do

V1[I1] := Product([y[S1[I1][J]] | J In 1..(M-1)]);

EndFor;

S2 := Subsets(1..N,M); V2 := NewList(Len(S2),0);

For I2 := 1 To Len(S2) Do

V2[I2] := Product([y[S2[I2][J]] | J In 1..M ]);

EndFor;

-- Compute the submodule B2 = dI.\Omega^(M-1)(S/K) of \Omega^M(S/K)

H := NewList(Len(V1)*Len(I),0); Q := 1;

LI1 := Indets(); LI2 := First(LI1, N); F1 := RMap(LI2);

NewI1 := Image(Ideal(I),F1);

NewI := GBasis(NewI1);

For W := 1 To Len(V1) Do

C := Log(V1[W]);

For K := 1 To Len(I) Do

For J := 1 To N Do

If Der(NewI[K],x[J]) <> 0 Then

If GCD(V1[W],y[J]) <> y[J] Then

D := N; D1 := 0;

Repeat D := D + 1;

If C[D] <> 0 Then D1 := D1 + 1; EndIf;

Until D = N + J;

H[Q] := H[Q] + (-1)^(D1)*Der(NewI[K],x[J])*y[J]*V1[W];

EndIf;

EndIf;

EndFor;

Q := Q+1;

EndFor;

EndFor;

B2 := [];

For J := 1 To Len(H) Do

If H[J] <> 0 Then B2 := Concat(B2,[H[J]]); EndIf;

EndFor;

-- Compute the submodule B3 = I.\Omega^M(S/K) of \Omega^M(S/K)

B3 := NewList(Len(V2)*Len(NewI));

Q := 1;

For W := 1 To Len(V2) Do

For J := 1 To Len(NewI) Do

B3[Q] := NewI[J]V2[W];

Q := Q+1;
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EndFor;

EndFor;

-- Compute the submodule U = B2+B3 of \Omega^M(S/K)\cong S^{C^M_N}

D := List(Identity(Len(V2)));

G := NewList(Len(B2),0D[1]);

H := NewList(Len(B3),0D[1]);

For J := 1 To Len(B3) Do

X := Monomials(B3[J]);

For Y := 1 To Len(X) Do

For K := 1 To Len(V2) Do

If GCD(X[Y],V2[K]) = V2[K] Then

H[J] := H[J] + (X[Y]/V2[K])*D[K];

EndIf;

EndFor;

EndFor;

EndFor;

For J := 1 To Len(B2) Do

X := Monomials(B2[J]);

For Y := 1 To Len(X) Do

For K := 1 To Len(V2) Do

If GCD(X[Y],V2[K]) = V2[K] Then

G[J] := G[J] + (X[Y]/V2[K])*D[K];

EndIf;

EndFor;

EndFor;

EndFor;

U := Concat(G,H);

EndUsing;

-- Return the image of U in S^{C^M_N}

LI3 := Indets();

LI4 := ConcatLists([LI3, [1 | J In 1..N]]);

F := RMap(LI4);

NewU := Image(U,F);

K1 := Len(NewU[1]);

LO1 := CurrentRing()^K1/Module(NewU);

LO2 := Hilbert(LO1);

LO3 := RegularityIndex(LO2);

LO4 := NewList(LO3+M+1,0);

LO5 := HilbertPoly(LO1);

PrintLn "A presentation of Omega^",M, "_(R/K):";

PrintLn "Omega^",M, "_(R/K)(-",M,") = ",LO1;

For J := M+1 To Len(LO4) Do

LO4[J] := LO4[J]+ EvalHilbertFn(LO2,J-M-1);
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EndFor;

PrintLn "The Hilbert function of Omega^",M, "_(R/K):";

For J:=1 To Len(LO4)-1 Do

PrintLn "H(",J-1,") = ",LO4[J]

EndFor;

Using QQt Do

PrintLn "H(t) = ", LO5 , " for t >= ", Len(LO4)-1

EndUsing;

EndDefine;

Example A.1.1. Let us compute a presentation and the Hilbert function of the

Kähler differential module Ωm
R/Q of the algebra R/Q given in Example 3.2.15. We run

the following commands in ApCoCoA:

Use QQ[x[0..2]];

IP := Ideal((x[0]x[1]^2-x[2]^3)(x[1]-x[2])^3, (x[0]x[1]^2-x[2]^3)(x[1]-x[0])^2);

KaehlerDifferentialModuleAndHF(IP,1);

KaehlerDifferentialModuleAndHF(IP,2);

KaehlerDifferentialModuleAndHF(IP,3);

The results of these commands are the following presentations and Hilbert functions

of Ωm
R/Q, where m = 1, 2, 3:

A presentation of Omega^1_(R/K):

Omega^1_(R/K)(-1) = CurrentRingEnv^3/Module([[3x[0]^2x[1]^2 - 4x[0]x[1]^3 + x[1]^4 -

2x[0]x[2]^3 + 2x[1]x[2]^3, 2x[0]^3x[1] - 6x[0]^2x[1]^2 + 4x[0]x[1]^3 + 2x[0]x[2]^3 -

2x[1]x[2]^3, -3x[0]^2x[2]^2 + 6x[0]x[1]x[2]^2 -3x[1]^2x[2]^2], [x[1]^5 -3x[1]^4x[2]+

3x[1]^3x[2]^2 - x[1]^2x[2]^3, 5x[0]x[1]^4 - 12x[0]x[1]^3x[2] + 9x[0]x[1]^2x[2]^2 -

2x[0]x[1]x[2]^3- 3x[1]^2x[2]^3+ 6x[1]x[2]^4- 3x[2]^5, -3x[0]x[1]^4+ 6x[0]x[1]^3x[2]-

3x[0]x[1]^2x[2]^2 - 3x[1]^3x[2]^2 + 12x[1]^2x[2]^3 - 15x[1]x[2]^4 + 6x[2]^5],

[x[0]^3x[1]^2 - 2x[0]^2x[1]^3 + x[0]x[1]^4 - x[0]^2x[2]^3 + 2x[0]x[1]x[2]^3 -

x[1]^2x[2]^3, 0, 0], [x[0]x[1]^5- 3x[0]x[1]^4x[2]- x[1]^3x[2]^3+ 3x[0]x[1]^3x[2]^2 -

x[0]x[1]^2x[2]^3 + 3x[1]^2x[2]^4 - 3x[1]x[2]^5 + x[2]^6, 0, 0], [0, x[0]^3x[1]^2 -

2x[0]^2x[1]^3 + x[0]x[1]^4 - x[0]^2x[2]^3 + 2x[0]x[1]x[2]^3 - x[1]^2x[2]^3, 0],

[0, x[0]x[1]^5 - 3x[0]x[1]^4x[2]+ 3x[0]x[1]^3x[2]^2- x[0]x[1]^2x[2]^3- x[1]^3x[2]^3+

3x[1]^2x[2]^4 - 3x[1]x[2]^5 + x[2]^6, 0], [0, 0, x[0]^3x[1]^2 - 2x[0]^2x[1]^3 +

x[0]x[1]^4 - x[0]^2x[2]^3 + 2x[0]x[1]x[2]^3 - x[1]^2x[2]^3], [0, 0, x[0]x[1]^5 -

3x[0]x[1]^4x[2]+ 3x[0]x[1]^3x[2]^2- x[0]x[1]^2x[2]^3 - x[1]^3x[2]^3+ 3x[1]^2x[2]^4 -

3x[1]x[2]^5 + x[2]^6]])

The Hilbert function of Omega^1_(R/K):

H(0) = 0

H(1) = 3

H(2) = 9

H(3) = 18
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H(4) = 30

H(5) = 44

H(6) = 56

H(7) = 63

H(8) = 66

H(t) = 6t + 22 for t >= 9

-------------------------------

A presentation of Omega^2_(R/K):

Omega^2_(R/K)(-2) = CurrentRingEnv^3/Module([[-2x[0]^3x[1] + 6x[0]^2x[1]^2 -

4x[0]x[1]^3 - 2x[0]x[2]^3 + 2x[1]x[2]^3, 3x[0]^2x[2]^2 - 6x[0]x[1]x[2]^2 +

3x[1]^2x[2]^2, 0], [-5x[0]x[1]^4 + 12x[0]x[1]^3x[2] - 9x[0]x[1]^2x[2]^2 + 3x[2]^5 +

2x[0]x[1]x[2]^3 + 3x[1]^2x[2]^3 - 6x[1]x[2]^4, 3x[0]x[1]^4 - 6x[0]x[1]^3x[2] +

3x[0]x[1]^2x[2]^2 + 3x[1]^3x[2]^2 - 12x[1]^2x[2]^3 + 15x[1]x[2]^4 - 6x[2]^5, 0],

[3x[0]^2x[1]^2 - 4x[0]x[1]^3 + x[1]^4 -2x[0]x[2]^3 + 2x[1]x[2]^3, 0, 3x[0]^2x[2]^2-

6x[0]x[1]x[2]^2+3x[1]^2x[2]^2], [x[1]^5 - 3x[1]^4x[2] + 3x[1]^3x[2]^2-x[1]^2x[2]^3,

0, 3x[0]x[1]^4 - 6x[0]x[1]^3x[2] +3x[0]x[1]^2x[2]^2+3x[1]^3x[2]^2 -12x[1]^2x[2]^3 +

15x[1]x[2]^4 - 6x[2]^5], [0, 3x[0]^2x[1]^2 - 4x[0]x[1]^3 + x[1]^4 - 2x[0]x[2]^3 +

2x[1]x[2]^3, 2x[0]^3x[1] - 6x[0]^2x[1]^2 + 4x[0]x[1]^3 + 2x[0]x[2]^3 -2x[1]x[2]^3],

[0, x[1]^5 -3x[1]^4x[2]+3x[1]^3x[2]^2 -x[1]^2x[2]^3, 5x[0]x[1]^4- 12x[0]x[1]^3x[2]+

9x[0]x[1]^2x[2]^2 - 2x[0]x[1]x[2]^3 - 3x[1]^2x[2]^3 + 6x[1]x[2]^4 - 3x[2]^5],

[x[0]^3x[1]^2 - 2x[0]^2x[1]^3 + x[0]x[1]^4 - x[0]^2x[2]^3 + 2x[0]x[1]x[2]^3 -

x[1]^2x[2]^3, 0, 0], [x[0]x[1]^5 - 3x[0]x[1]^4x[2] + 3x[0]x[1]^3x[2]^2 -

x[0]x[1]^2x[2]^3 - x[1]^3x[2]^3+ 3x[1]^2x[2]^4 - 3x[1]x[2]^5 + x[2]^6, 0, 0],

[0, x[0]^3x[1]^2 - 2x[0]^2x[1]^3 + x[0]x[1]^4 - x[0]^2x[2]^3 + 2x[0]x[1]x[2]^3 -

x[1]^2x[2]^3, 0], [0, x[0]x[1]^5 - 3x[0]x[1]^4x[2] + 3x[0]x[1]^3x[2]^2 -

x[0]x[1]^2x[2]^3 - x[1]^3x[2]^3 + 3x[1]^2x[2]^4 - 3x[1]x[2]^5 + x[2]^6, 0], [0, 0,

x[0]^3x[1]^2- 2x[0]^2x[1]^3+x[0]x[1]^4-x[0]^2x[2]^3+ 2x[0]x[1]x[2]^3-x[1]^2x[2]^3],

[0, 0, x[0]x[1]^5-3x[0]x[1]^4x[2]+3x[0]x[1]^3x[2]^2-x[0]x[1]^2x[2]^3-x[1]^3x[2]^3 +

3x[1]^2x[2]^4 - 3x[1]x[2]^5 + x[2]^6]])

The Hilbert function of Omega^2_(R/K):

H(0) = 0

H(1) = 0

H(2) = 3

H(3) = 9

H(4) = 18

H(5) = 30

H(6) = 42

H(7) = 48

H(8) = 45

H(t) = 3t + 22 for t >= 9

-------------------------------

A presentation of Omega^3_(R/K):

Omega^3_(R/K)(-3) = CurrentRingEnv^1/Module([[-3x[0]^2x[2]^2 + 6x[0]x[1]x[2]^2 -
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3x[1]^2x[2]^2], [-3x[0]x[1]^4 + 6x[0]x[1]^3x[2] - 3x[0]x[1]^2x[2]^2 -3x[1]^3x[2]^2+

12x[1]^2x[2]^3 - 15x[1]x[2]^4 + 6x[2]^5], [-2x[0]^3x[1] +6x[0]^2x[1]^2-4x[0]x[1]^3-

2x[0]x[2]^3 + 2x[1]x[2]^3], [-5x[0]x[1]^4 + 12x[0]x[1]^3x[2] - 9x[0]x[1]^2x[2]^2 +

2x[0]x[1]x[2]^3 + 3x[1]^2x[2]^3 - 6x[1]x[2]^4+3x[2]^5], [3x[0]^2x[1]^2-4x[0]x[1]^3+

x[1]^4 - 2x[0]x[2]^3 + 2x[1]x[2]^3], [x[1]^5 - 3x[1]^4x[2] + 3x[1]^3x[2]^2 -

x[1]^2x[2]^3], [x[0]^3x[1]^2 - 2x[0]^2x[1]^3 + x[0]x[1]^4 - x[0]^2x[2]^3 +

2x[0]x[1]x[2]^3 - x[1]^2x[2]^3], [x[0]x[1]^5 - 3x[0]x[1]^4x[2] + 3x[0]x[1]^3x[2]^2-

x[1]^3x[2]^3- x[0]x[1]^2x[2]^3 + 3x[1]^2x[2]^4 - 3x[1]x[2]^5 + x[2]^6]])

The Hilbert function of Omega^3_(R/K):

H(0) = 0

H(1) = 0

H(2) = 0

H(3) = 1

H(4) = 3

H(5) = 6

H(6) = 10

H(7) = 12

H(8) = 9

H(t) = 6 for t >= 9

-------------------------------

Example A.1.2. Let X be the set of Q-rational points X = {P1, . . . , P9} ⊆ P2 given

by P1 = (1 : 0 : 0), P2 = (1 : 0 : 1), P3 = (1 : 0 : 2), P4 = (1 : 0 : 3), P5 = (1 : 0 : 4),

P6 = (1 : 0 : 5), P7 = (1 : 1 : 0), P8 = (1 : 2 : 0), and P9 = (1 : 1 : 1) (see also

Example 3.3.9). To compute a presentation and the Hilbert function of Ω2
R/Q, we run

the following commands in ApCoCoA:

Use QQ[x[0..2]];

PP := [[1,0,0],[1,0,1],[1,0,2],[1,0,3],[1,0,4],[1,0,5],[1,1,0],[1,2,0],[1,1,1]];

KaehlerDifferentialModuleAndHF(PP,2);

The results of the above commands are the following presentation and the Hilbert
function of Ω2

R/Q:

A presentation of Omega^2_(R/K):

Omega^2_(R/K)(-2) = CurrentRingEnv^3/Module([[-x[0]^2 + 3x[0]x[1] -3/2x[1]^2, 0, 0],

[-x[0]x[2]+ x[2]^2, -x[0]x[1]+2x[1]x[2], 0], [-2x[1]x[2] +x[2]^2, -x[1]^2+2x[1]x[2],

0], [0, -x[0]^5+ 137/30x[0]^4x[2]-45/8x[0]^3x[2]^2+ 17/6x[0]^2x[2]^3- 5/8x[0]x[2]^4+

1/20x[2]^5, 0], [2x[0]x[1] - 3/2x[1]^2, 0, 0], [x[1]x[2], 0, -x[0]x[1] + 2x[1]x[2]],

[0, 0, -x[1]^2 + 2x[1]x[2]], [5x[0]^4x[2] - 137/15x[0]^3x[2]^2 + 45/8x[0]^2x[2]^3 -

17/12x[0]x[2]^4 + 1/8x[2]^5, 0, -x[0]^5 + 137/30x[0]^4x[2] - 45/8x[0]^3x[2]^2 +

17/6x[0]^2x[2]^3 - 5/8x[0]x[2]^4 + 1/20x[2]^5], [0, 2x[0]x[1] - 3/2x[1]^2, x[0]^2 -

3x[0]x[1] + 3/2x[1]^2], [0, x[1]x[2], x[0]x[2] - x[2]^2], [0, 0, 2x[1]x[2] -x[2]^2],
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[0, 5x[0]^4x[2]-137/15x[0]^3x[2]^2 + 45/8x[0]^2x[2]^3-17/12x[0]x[2]^4+1/8x[2]^5, 0],

[x[0]^2x[1] - 3/2x[0]x[1]^2 + 1/2x[1]^3, 0, 0], [x[0]x[1]x[2] - x[1]x[2]^2, 0, 0],

[x[1]^2x[2] - x[1]x[2]^2, 0, 0], [x[0]^5x[2] - 137/60x[0]^4x[2]^2+15/8x[0]^3x[2]^3-

17/24x[0]^2x[2]^4 + 1/8x[0]x[2]^5-1/120x[2]^6, 0, 0], [0, x[0]^2x[1]-3/2x[0]x[1]^2+

1/2x[1]^3, 0], [0, x[0]x[1]x[2] - x[1]x[2]^2, 0], [0, x[1]^2x[2] - x[1]x[2]^2, 0],

[0, x[0]^5x[2]-137/60x[0]^4x[2]^2+15/8x[0]^3x[2]^3-17/24x[0]^2x[2]^4+1/8x[0]x[2]^5-

1/120x[2]^6, 0], [0, 0, x[0]^2x[1] - 3/2x[0]x[1]^2+1/2x[1]^3], [0, 0, x[0]x[1]x[2]-

x[1]x[2]^2], [0, 0, x[1]^2x[2] - x[1]x[2]^2], [0, 0, x[0]^5x[2]-137/60x[0]^4x[2]^2+

15/8x[0]^3x[2]^3 - 17/24x[0]^2x[2]^4 + 1/8x[0]x[2]^5 - 1/120x[2]^6]])

The Hilbert function of Omega^2_(R/K):

H(0) = 0

H(1) = 0

H(2) = 3

H(3) = 9

H(4) = 9

H(5) = 4

H(6) = 5

H(7) = 4

H(8) = 3

H(9) = 2

H(10) = 1

H(t) = 0 for t >= 11

-------------------------------

A.2 Computing the Kähler Differential Module Ωn+1
R/K and Its

Hilbert Function

---------------------------------------------------------------------------------

-- KaehlerDifferentialModuleN1AndHF(IP): Compute the module \Omega^{n+1}(R/K) of

-- R/K and its Hilbert function

-- Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

-- (1:a_1:...:a_n)

-- Output: A presentation and the Hilbert function of \Omega^{n+1}(R/K)

---------------------------------------------------------------------------------

Define KaehlerDifferentialModuleN1AndHF(IP);

If Type(IP) = IDEAL Then I := GBasis(IP);

Else I := GBasis(IdealOfProjectivePoints(IP));

EndIf;

N := Len(Indets());

S ::= CoeffRing[x[1..N]], DegRevLex;

Using S Do

M := Len(I)*N; A := NewList(M,0); H := 0;



138 Appendix

For K := 1 To Len(I) Do

For J := 1 To N Do

A[H+J] := Der(I[K],x[J]);

EndFor;

H := N*K;

EndFor;

D := Concat(I,A);

EndUsing;

LI1 := Indets(); F := RMap(LI1);

NewD := Image(D,F);

LO1:= CurrentRing()/Minimalized(Ideal(NewD));

LO2 := Hilbert(LO1);

LO3 := RegularityIndex(LO2);

LO4 := HilbertPoly(LO1);

LO5 := NewList(LO3+N+1,0);

PrintLn "A presentation of Omega^",N, "_(R/K):";

PrintLn "Omega^",N, "_(R/K)(-",N,") = ",LO1;

For J := N+1 To Len(LO5) Do

LO5[J] := LO5[J]+ EvalHilbertFn(LO2,J-N-1);

EndFor;

PrintLn "The Hilbert function of Omega^",N, "_(R/K):";

For J := 1 To Len(LO5)-1 Do

PrintLn "H(",J-1,") = ",LO5[J]

EndFor;

Using QQt Do

Print "H(t) = ", LO4, " for t >= ", Len(LO5)-1

EndUsing;

EndDefine;

Example A.2.1. Let R/Q be the algebra given in Example 3.2.18. We compute a

presentation and the Hilbert function of Ωn+1
R/Q by running the following commands in

ApCoCoA:

Use QQ[x[0..3]];

I1 := Ideal(x[1], x[2], x[3])^5;

I2 := Ideal(x[1]-x[0], x[2], x[3]);

I3 := Ideal(x[1], x[2]-x[0], x[3])^4;

I4 := Ideal(x[1],x[2],x[3]-x[0])^4;

IP := Intersection(I1,I2,I3,I4);

KaehlerDifferentialModuleN1AndHF(IP);

The results of these commands are the following presentation and Hilbert function

of Ω4
R/Q:
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A presentation of Omega^4_(R/K):

Omega^4_(R/K)(-4) = CurrentRingEnv/Ideal(x[1]^3x[2], x[1]^3x[3], 3x[1]^2x[2]x[3],

x[1]^4, x[0]x[1]^2x[3]^2 - x[1]^2x[3]^3, 2x[0]x[1]x[2]x[3]^2 - 2x[1]x[2]x[3]^3,

x[0]x[1]^2x[2]^2 - x[1]^2x[2]^3, 2x[0]x[1]x[2]^2x[3] - 2x[1]x[2]^3x[3],

2x[1]x[2]^2x[3]^2, x[0]x[2]^2x[3]^2 - x[2]^3x[3]^2 - x[2]^2x[3]^3, - 2x[2]^3x[3]^3,

2x[0]^2x[2]x[3]^3 - 4x[0]x[2]x[3]^4 + 2x[2]x[3]^5, x[0]^2x[1]x[3]^3 + x[1]x[3]^5 -

2x[0]x[1]x[3]^4, 2x[0]^2x[2]^3x[3]- 4x[0]x[2]^4x[3] +2x[2]^5x[3], x[0]^2x[1]x[2]^3-

2x[0]x[1]x[2]^4 + x[1]x[2]^5, x[0]^3x[2]^4 - 3x[0]^2x[2]^5 + 3x[0]x[2]^6 - x[2]^7,

x[0]^3x[3]^4 - 3x[0]^2x[3]^5 + 3x[0]x[3]^6 - x[3]^7)

The Hilbert function of Omega^4_(R/K):

H(0) = 0

H(1) = 0

H(2) = 0

H(3) = 0

H(4) = 1

H(5) = 4

H(6) = 10

H(7) = 20

H(8) = 31

H(9) = 38

H(t) = 40 for t >= 10

-------------------------------

A.3 Computing the Kähler Differential Module Ωm
R/K[x0]

and Its

Hilbert Function

---------------------------------------------------------------------------------

-- KaehlerDiffModuleRelAndHF(IP,M): Compute the Kaehler differential module of

-- the algebra R/K[x_0] and its Hilbert function

-- Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

-- (1:a_1:...:a_n)

-- M = the number of form of Kaehler differential module \Omega^M(R/K[x_0])

-- Output: A presentation and the Hilbert function of \Omega^M(R/K[x_0])

---------------------------------------------------------------------------------

Define KaehlerDiffModuleRelAndHF(IP,M);

If Type(IP) = IDEAL Then I := GBasis(IP);

Else I := GBasis(IdealOfProjectivePoints(IP));

EndIf;

N := Len(Indets());

S ::= CoeffRing[x[1..N],y[1..(N-1)]], DegRevLex;

Using S Do

-- Form bases V1, V2 of \Omega^(M-1)(P/K[x_0]), \Omega^M(P/K[x_0])
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S1 := Subsets(1..(N-1),M-1); V1 := NewList(Len(S1),0);

For I1 := 1 To Len(S1) Do

V1[I1] := Product([y[S1[I1][J]] | J In 1..(M-1)]);

EndFor;

S2 := Subsets(1..(N-1),M); V2 := NewList(Len(S2),0);

For I2 := 1 To Len(S2) Do

V2[I2] := Product([y[S2[I2][J]] | J In 1..M ]);

EndFor;

-- Compute B2 = dI.\Omega^(M-1)(P/K[x_0])

H:=NewList(Len(V1)*Len(I),0); Q := 1;

LI1 := Indets(); LI2 := First(LI1, N); F1 := RMap(LI2);

NewI1 := Image(Ideal(I),F1);

NewI := GBasis(NewI1);

For W := 1 To Len(V1) Do

C := Log(V1[W]);

For K := 1 To Len(I) Do

For J:=2 To N Do

If Der(NewI[K],x[J]) <> 0 Then

If GCD(V1[W],y[J-1]) <> y[J-1] Then

D := N; D1 := 0;

Repeat D := D+1;

If C[D] <> 0 Then D1 := D1+1; EndIf;

Until D = N+J-1;

H[Q] := H[Q]+(-1)^(D1)*Der(NewI[K],x[J])*y[J-1]*V1[W];

EndIf;

EndIf;

EndFor;

Q := Q+1;

EndFor;

EndFor;

B2 := [];

For J := 1 To Len(H) Do

If H[J] <> 0 Then B2 := Concat(B2,[H[J]]);EndIf;

EndFor;

-- Compute B3 = I.\Omega^M(P/K[x_0])

B3 := NewList(Len(V2)*Len(NewI));

Q := 1;

For W := 1 To Len(V2) Do

For J := 1 To Len(NewI) Do

B3[Q] := NewI[J]V2[W];

Q := Q+1;

EndFor;

EndFor;



141

-- Compute MM = B2+B3 in P^(C^M_{N-1}) and return the result

D := List(Identity(Len(V2)));

H := NewList(Len(B3),0D[1]);

G := NewList(Len(B2),0D[1]);

For J := 1 To Len(B3) Do

X := Monomials(B3[J]);

For Y := 1 To Len(X) Do

For K := 1 To Len(V2) Do

If GCD(X[Y],V2[K]) = V2[K] Then H[J] := H[J]+(X[Y]/V2[K])*D[K];

EndIf;

EndFor;

EndFor;

EndFor;

For J := 1 To Len(B2) Do

X := Monomials(B2[J]);

For Y := 1 To Len(X) Do

For K := 1 To Len(V2) Do

If GCD(X[Y],V2[K]) = V2[K] Then G[J] := G[J]+(X[Y]/V2[K])*D[K];

EndIf;

EndFor;

EndFor;

EndFor;

MM:=Concat(G,H);

EndUsing;

L5 := Indets();

L6 := ConcatLists([L5, [1 | J In 1..(N-1)]]);

F := RMap(L6);

NewM := Image(MM,F); -- Image of MM in R=K[x_1,...,X-n]

K1 := Len(NewM[1]);

LO1 := CurrentRing()^K1/Module(NewM);

LO2 := Hilbert(LO1);

LO3 := RegularityIndex(LO2);

LO4 := HilbertPoly(LO1);

LO5 := NewList(LO3+M+1,0);

PrintLn "A presentation of Omega^",M, "_(R/K[x_0]):";

PrintLn "Omega^",M, "_(R/K[x_0])(-",M,") = ",LO1;

For J :=M+1 To Len(LO5) Do

LO5[J] := LO5[J]+ EvalHilbertFn(LO2,J-M-1);

EndFor;

PrintLn "The Hilbert function of Omega^",M, "_(R/K[x_0]):";

For J:=1 To Len(LO5)-1 Do

PrintLn "H(",J-1,") = ",LO5[J]

EndFor;
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Using QQt Do

Print "H(t) = ", LO4, " for t >= ", Len(LO5)-1

EndUsing;

EndDefine;

Example A.3.1. Let us go back to Example A.1.2 and compute a presentation and

the Hilbert function of the Kähler differential module Ωm
R/Q[x0] for the set X, where

m = 1, 2. We run the following commands in ApCoCoA:

Use QQ[x[0..2]];

PP:=[[1,0,0],[1,0,1],[1,0,2],[1,0,3],[1,0,4],[1,0,5],[1,1,0],[1,2,0],[1,1,1]];

KaehlerDiffModuleRelAndHF(PP,1);

KaehlerDiffModuleRelAndHF(PP,2);

The output of these commands is as follows:

A presentation of Omega^1_(R/K[x_0]):

Omega^1_(R/K[x_0])(-1) = CurrentRingEnv^2/Module([[x[0]^2 - 3x[0]x[1]+3/2x[1]^2, 0],

[x[0]x[2] - x[2]^2, x[0]x[1] - 2x[1]x[2]], [2x[1]x[2] - x[2]^2, x[1]^2 - 2x[1]x[2]],

[0, x[0]^5 - 137/30x[0]^4x[2] + 45/8x[0]^3x[2]^2 - 17/6x[0]^2x[2]^3 + 5/8x[0]x[2]^4-

1/20x[2]^5], [x[0]^2x[1] - 3/2x[0]x[1]^2 + 1/2x[1]^3, 0], [x[0]x[1]x[2] -x[1]x[2]^2,

0], [x[1]^2x[2] - x[1]x[2]^2, 0], [x[0]^5x[2] - 137/60x[0]^4x[2]^2+15/8x[0]^3x[2]^3-

17/24x[0]^2x[2]^4 + 1/8x[0]x[2]^5 - 1/120x[2]^6, 0], [0, x[0]^2x[1] - 3/2x[0]x[1]^2+

1/2x[1]^3], [0, x[0]x[1]x[2]-x[1]x[2]^2], [0, x[1]^2x[2]-x[1]x[2]^2], [0,x[0]^5x[2]-

137/60x[0]^4x[2]^2 + 15/8x[0]^3x[2]^3-17/24x[0]^2x[2]^4+1/8x[0]x[2]^5-1/120x[2]^6]])

The Hilbert function of Omega^1_(R/K[x_0]):

H(0) = 0

H(1) = 2

H(2) = 6

H(3) = 9

H(4) = 7

H(5) = 5

H(6) = 5

H(7) = 4

H(8) = 3

H(9) = 2

H(10) = 1

H(t) = 0 for t >= 11

-------------------------------

A presentation of Omega^2_(R/K[x_0]):

Omega^2_(R/K[x_0])(-2)=CurrentRingEnv^1/Module([[-x[0]x[1] + 2x[1]x[2]], [-x[1]^2 +

2x[1]x[2]], [-x[0]^5 + 137/30x[0]^4x[2] - 45/8x[0]^3x[2]^2-5/8x[0]x[2]^4+ 1/20x[2]^5

+ 17/6x[0]^2x[2]^3], [x[0]^2 - 3x[0]x[1]+3/2x[1]^2], [x[0]x[2]-x[2]^2], [2x[1]x[2] -

x[2]^2], [x[0]^2x[1] - 3/2x[0]x[1]^2 + 1/2x[1]^3], [x[0]x[1]x[2] - x[1]x[2]^2],
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[x[1]^2x[2] - x[1]x[2]^2], [x[0]^5x[2] - 137/60x[0]^4x[2]^2 + 15/8x[0]^3x[2]^3 -

17/24x[0]^2x[2]^4 + 1/8x[0]x[2]^5 - 1/120x[2]^6]])

The Hilbert function of Omega^2_(R/K[x_0]):

H(0) = 0

H(1) = 0

H(2) = 1

H(3) = 3

H(4) = 1

H(t) = 0 for t >= 5

-------------------------------

A.4 Computing the Kähler differential Module Ωm
(R/(x0))/K

and

Its Hilbert Function

---------------------------------------------------------------------------------

-- KaehlerDiffModuleBarAndHF(IP,M): Compute the Kaehler differential

-- module of the algebra (R/(x_0))/K and its Hilbert function

-- Input: IP = A non-zero homogeneous ideal of S or a list of points of the form

-- (1:a_1:...:a_n)

-- M = the number of form of Kaehler differential module

-- \Omega^M((R/(x_0))/K)

-- Output: A presentation and the Hilbert function of \Omega^M((R/(x_0))/K)

---------------------------------------------------------------------------------

Define KaehlerDiffModuleBarAndHF(IP,M);

If Type(IP) = IDEAL Then I := GBasis(IP);

Else I := GBasis(IdealOfProjectivePoints(IP));

EndIf;

N := Len(Indets());

S ::= CoeffRing[x[1..N],y[1..(N-1)]], DegRevLex;

Using S Do

-- Form bases V1, V2 of \Omega^(M-1)(P/K[x_0]), \Omega^M(P/K[x_0])

S1 := Subsets(1..(N-1),M-1); V1 := NewList(Len(S1),0);

For I1 := 1 To Len(S1) Do

V1[I1] := Product([y[S1[I1][J]] | J In 1..(M-1)]);

EndFor;

S2 := Subsets(1..(N-1),M); V2 := NewList(Len(S2),0);

For I2 := 1 To Len(S2) Do

V2[I2] := Product([y[S2[I2][J]] | J In 1..M ]);

EndFor;

-- Compute B2 = dI.\Omega^(M-1)(P/K[x_0]);

H := NewList(Len(V1)*Len(I),0); Q := 1;

LI1 := Indets(); LI2 := First(LI1, N); F1 := RMap(LI2);
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NewI1 := Image(Ideal(I),F1);

NewI := GBasis(NewI1);

For W := 1 To Len(V1) Do

C := Log(V1[W]);

For K := 1 To Len(I) Do

For J := 2 To N Do

If Der(NewI[K],x[J]) <> 0 Then

If GCD(V1[W],y[J-1]) <> y[J-1] Then

D := N; D1 := 0;

Repeat D := D+1;

If C[D] <> 0 Then D1 := D1+1; EndIf;

Until D = N+J-1;

H[Q] := H[Q]+(-1)^(D1)*Der(NewI[K],x[J])*y[J-1]*V1[W];

EndIf;

EndIf;

EndFor;

Q:=Q+1;

EndFor;

EndFor;

B2 := [];

For J := 1 To Len(H) Do

If H[J] <> 0 Then B2 := Concat(B2,[H[J]]); EndIf;

EndFor;

-- Compute B3 = I.\Omega^M(P/K[x_0]);

B3 := NewList(Len(V2)*Len(NewI));

Q := 1;

For W := 1 To Len(V2) Do

For J := 1 To Len(NewI) Do

B3[Q] := NewI[J]V2[W];

Q := Q+1;

EndFor;

EndFor;

-- Compute MM = B2+B3 in P^(C^M_{N-1}) and return the result

D := List(Identity(Len(V2)));

H := NewList(Len(B3),0D[1]);

G := NewList(Len(B2),0D[1]);

For J := 1 To Len(B3) Do

X := Monomials(B3[J]);

For Y := 1 To Len(X) Do

For K := 1 To Len(V2) Do

If GCD(X[Y],V2[K]) = V2[K] Then H[J] := H[J]+(X[Y]/V2[K])*D[K];

EndIf;

EndFor;
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EndFor;

EndFor;

For J := 1 To Len(B2) Do

X := Monomials(B2[J]);

For Y := 1 To Len(X) Do

For K := 1 To Len(V2) Do

If GCD(X[Y],V2[K]) = V2[K] Then G[J] := G[J]+(X[Y]/V2[K])*D[K];

EndIf;

EndFor;

EndFor;

EndFor;

MM := Concat(G,H);

EndUsing;

L5 := Indets();

L6 := ConcatLists([L5, [1 | J In 1..(N-1)]]);

F := RMap(L6);

NewM := Image(MM,F); -- Image of MM in R=K[x_1,...,X-n]

K1 := Len(NewM[1]); X0 := Ideal(x[0]);

MT1 := X0*CurrentRing()^K1 + Module(NewM);

LO1 := CurrentRing()^K1/Minimalized(MT1);

LO2 := Hilbert(LO1);

LO3 := RegularityIndex(LO2);

LO4 := HilbertPoly(LO1);

LO5 := NewList(LO3+M+1,0);

PrintLn "A presentation of Omega^",M, "_((R/(x_0)/K):";

PrintLn "Omega^",M, "_((R/(x_0)/K)(-",M,") = ",LO1;

For J := M+1 To Len(LO5) Do

LO5[J] := LO5[J]+ EvalHilbertFn(LO2,J-M-1);

EndFor;

PrintLn "The Hilbert function of Omega^",M, "_((R/(x_0))/K):";

For J := 1 To Len(LO5)-1 Do

PrintLn "H(",J-1,") = ",LO5[J]

EndFor;

Using QQt Do

Print "H(t) = ", LO4, " for t >= ", Len(LO5)-1

EndUsing;

EndDefine;

Example A.4.1. Let X be the set ofQ-rational points X = {P1, . . . , P6} ⊆ P2 given by

P1 = (1 : 0 : 1), P2 = (1 : 0 : −1), P3 = (3 : 4 : 5), P4 = (3 : −4 : 5), P5 = (3 : −4 : −5),

and P6 = (3 : 4 : −5), and let m = 1, 2. We apply KaehlerDiffModuleBarAndHF(...)

to compute a presentation and the Hilbert function of Ωm
(R/(x0))/Q of (R/(x0))/Q as
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follows. We run the following commands in ApCoCoA:

Use QQ[x[0..2]];

PP :=[[1,0,1],[1,0,-1],[3,4,5],[3,-4,5],[3,-4,-5],[3,4,-5]];

KaehlerDiffModuleBarAndHF(PP,1);

KaehlerDiffModuleBarAndHF(PP,2);

The output of these commands is as follows:

A presentation of Omega^1_((R/(x_0)/K):

Omega^1_((R/(x_0)/K)(-1) = CurrentRingEnv^2/Module([[2x[1], -2x[2]], [0, x[0]],

[x[0], 0], [0, x[1]^2 - x[2]^2], [-x[2]^2, x[1]x[2]], [27/25x[2]^2, 0]])

The Hilbert function of Omega^1_((R/(x_0))/K):

H(0) = 0

H(1) = 2

H(2) = 3

H(3) = 1

H(t) = 0 for t >= 4

-------------------------------

A presentation of Omega^2_((R/(x_0)/K):

Omega^2_((R/(x_0)/K)(-2) = CurrentRingEnv^1/Module([[2x[1]], [2x[2]], [x[0]]])

The Hilbert function of Omega^2_((R/(x_0))/K):

H(0) = 0

H(1) = 0

H(2) = 1

H(t) = 0 for t >= 3

-------------------------------
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