
S∆n,k( f ; x) =
n−1

∑
j=−k

f (ξ j,k)N j,k(x)

X = k
er(T −

I) ⊕
ran(T

− I)

κ̃n(α; x) = ˙̃αn(t) × ¨̃αn(t)∏︁ ˙̃αn(t)∏︁3
lim
m→∞

Tm = P

∏︁T n
− P∏︁op ≤ C ⋅ γ n

This thesis is divided into two parts. The first part is devoted to the curvature estimation
of piecewise smooth curves using variation diminishing splines. The variation diminish-
ing property combined with the ability to reconstruct linear functions leads to a convexity
preserving approximation that is crucial if additional sign changes in the curvature esti-
mation have to be avoided. To this end, we will first establish the foundations of variation
diminishing transforms and introduce the Bernstein and the Schoenberg operator on the
space of continuous functions and its generalization to the Lp-spaces. In order to be able
to detect C2-singularities in piecewise smooth curves, we establish lower estimates for the
approximation error in terms of the second ordermodulus of smoothness for Schoenberg’s
variation diminishing operator. Afterwards, we consider smooth curve approximations
using only finitely many samples of the curve, where the approximation, its first, and its
second derivative converge uniformly to its corresponding part of the curve to be approxi-
mated. In this case, we can show that the estimated curvature converges uniformly to the
real curvature if the number of samples goes to infinity. Based on the lower estimates that
relates the decay rate of the approximation error with smoothness we propose a multi-scale
algorithm to estimate the curvature and to detectC2-singularities. We numerically evaluate
our algorithm and compare it to others to show that our algorithm achieves competitive
accuracy while our curvature estimations are significantly faster to compute.

The second part deals with generalizations of the established lower estimates for the
Schoenberg operator. We will show that such estimates can be obtained for linear operators
on a general Banach function space with smooth range provided that the iterates of the
operator converge uniformly and a semi-norm defined on the range of the operator anni-
hilates the fixed points of the operator. To this end, we will prove by spectral properties
that the iterates of every positive finite-rank operator converge uniformly. As highlight of
this thesis, we show a constructive way using a Gramian matrix where the dual fixed points
operate on the fixed points of an operator to derive the limit of the iterates for an arbitrary
quasi-compact operator defined on a general Banach space.
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abstract iii

Abstract
This thesis is divided into two parts. The first part is devoted to the curvature estima-
tion of piecewise smooth curves using variation diminishing splines. The variation
diminishing property combined with the ability to reconstruct linear functions leads
to a convexity preserving approximation that is crucial if additional sign changes in
the curvature estimation have to be avoided. To this end, we will first establish the
foundations of variation diminishing transforms and introduce the Bernstein and the
Schoenberg operator on the space of continuous functions and its generalization to the
Lp-spaces. In order to be able to detect C2-singularities in piecewise smooth curves,
we establish lower estimates for the approximation error in terms of the second order
modulus of smoothness for Schoenberg’s variation diminishing operator. Afterwards,
we consider smooth curve approximations using only finitely many samples of the
curve, where the approximation, its first, and its second derivative converge uniformly
to its corresponding part of the curve to be approximated. In this case, we can show
that the estimated curvature converges uniformly to the real curvature if the number
of samples goes to infinity. Based on the lower estimates that relates the decay rate
of the approximation error with smoothness we propose a multi-scale algorithm to
estimate the curvature and to detect C2-singularities. We numerically evaluate our
algorithm and compare it to others to show that our algorithm achieves competitive
accuracy while our curvature estimations are significantly faster to compute.

The second part deals with generalizations of the established lower estimates for
the Schoenberg operator. We will show that such estimates can be obtained for linear
operators on a general Banach function space with smooth range provided that the
iterates of the operator converge uniformly and a semi-norm defined on the range of
the operator annihilates the fixed points of the operator. To this end, we will prove
by spectral properties that the iterates of every positive finite-rank operator converge
uniformly. As highlight of this thesis, we show a constructive way using a Gramian
matrix where the dual fixed points operate on the fixed points of an operator to derive
the limit of the iterates for an arbitrary quasi-compact operator defined on a general
Banach space.
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chap t e r 1chap t e r 1chap t e r 1 Motivation

‘‘ Mathematics is not a careful march down a well-cleared highway,
but a journey into a strange wilderness, where the explorer often gets lost.’’

w. s. anglin

There are many applications that rely on different shape properties of 2D objects
in digital images. This thesis covers the problem to estimate the curvature of given

2D shapes. The curvature profile of a shape is a crucial tool in pattern recognition
to match corresponding shapes, as every planar curve is uniquely determined by its
curvature profile up to its orientation and translation. Accordingly, the curvature pro-
vides a natural similarity measure for 2D shapes. The theory of differential geometry
provides a concrete formula of the curvature of a smooth planar curve α ∶ I → R2

defined on an real interval I by

κ(t) = det (α̇(t), α̈(t))∏︁α̇(t)∏︁3
2

.

Despite the simple appearance of this formula, the estimation of the curvature of planar
curves in digital images is a nontrivial task. Due to the digitization of real world images
the continuous representation of these curves is not available, hence the exact solution
is unknown. Another challenge is hidden in the denominator of this formula. The
norm of the tangent vector is numerically highly unstable and the error even gets
worse by the exponentiation. There is also a practical issue to handle. As curves in the
real world are in general not well behaved, we should be able to detect singular points
on the planar curve in order to exclude them from the curvature estimation. In the
literature, the convergence of curvature estimators has already been proved recently
for smooth convex shapes by several authors, see [HK07; DLF07; RL11; CLL14; LCL14].
We will show in this thesis a way to obtain an convexity preserving approximate

curve representation by splines that guarantees the convergence of the approximate
curvature towards the real curvature for any smooth curve, i. e., not necessarily convex.
Additionally, an algorithm is presented that includes the detection of singular points
on the curve by a multiscale approach. The decay rate of the approximation error

1
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[JohannesNagler– February 10, 2015 at 12:11]

(a) exact curve

[JohannesNagler– February 10, 2015 at 12:13]

(b) smooth curve interpolation

Figure 1.1:A planar curve in an image and its digitization. Note that the original curve is convex,
whereas the interpolation introduces additional sign changes in the curvature.

is used to weight the curvature approximation which enables a detection of singular
points. Combined we provide a new algorithm that is able to estimate the curvature
of the digitization of piecewise smooth curves in a stable and efficient way.

To obtain the continuous approximation of the curve there are two possible choices.
Either the curve is computed by interpolation at given pixels or by an approximation
scheme (quasi-interpolation). A smooth polynomial interpolation of pixel values is
depicted in Figure 1.1. Clearly, it shows that this is not an appropriate choice for our
case as it introduces oscillating effects around the singularity at the bottom in order
to obtain a smooth interpolation. This leads to additional sign changes in the second
derivative and introduces new local maxima which are often used to characterize
important points on the curve. Moreover, the convexity of the original curve is not
preserved. As the curvature is the deviation of the curve from a straight line, we
need an approximation method which ensures that the approximated curve does not
oscillate more often about any straight line as the original curve. Therefore, it is crucial
to preserve the shape properties of the original curve. The shape preservation of curves
can be guaranteed by only three properties, namely the preservation of the positivity,
the monotonicity, and the convexity of curves. These three properties lead to the so
called shape preserving approximation methods, where a key concept is the variation-
diminishing property. An example of a shape preserving approximation method of a
digitized curve is shown in Figure 1.2. Note that the shape preserving approximation
method in fact preserves the convexity of the curve, but the approximation error is
larger at the singularity. In fact, this observation will allow us to detect the singularity
as shown later.

The estimation of a curve’s curvature requires at least a C2-smooth curve approxi-
mation that allows a stable and efficient computation of the first and the second order
derivatives. The latter property is important to avoid numerical issues. A local approxi-
mation schemewould also allow formore flexibility in local changes and can avoidhigh
computation times. If one considers all these points, there aremainly twomethods that
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[JohannesNagler– February 10, 2015 at 12:11]

(a) exact curve

[JohannesNagler– February 10, 2015 at 12:13]

(b) smooth curve approximation

Figure 1.2: A planar curve in an image and its digitization. Important to note is preservation of
the shape of the approximation and the large approximation error at the singularity.

fit these properties. An approximation by Bezier-curves based on the Bernstein poly-
nomials [Ber12] will lead to a global approximation method that requires a uniform
pixel spacing, whereas the spline approximation according to Schoenberg [Sch67] al-
lows a nonuniform spacing and offers a local adjustment. Thus, the approximation
method of our choice is the variation-diminishing spline approximation devised by
Schoenberg due to its locality and flexibility with the pixel spacing. Both methods are
introduced in Chapter 3.
Digitized curves are of course not naturally differentiable twice and consequently,

the curvature of such curves is not defined on such points. To overcome this issue,
a detection of singular point provides an elegant enhancement for piecewise smooth
C2-curves. The detection of such singular points is solved by obtaining lower estimates
of the approximation error by the second order modulus of smoothness. A theory that
explains the key ingredients to obtain lower estimates by moduli of smoothness or
K-functionals of any order and shows how to derive these lower estimates is provided
in Chapter 10. Concretely, we will show this first for Schoenberg’s spline operator
in Chapter 4. Accordingly, the problem of curvature estimation of discretely given
points is divided into three parts: first we approximate the original continuous curve,
second we compute an approximate curvature measure, and finally we detect singular
points to derive a piecewise continuous approximation of the curvature. The method
to approximate the curvature and to detect singular points is discussed in detail in
Chapter 5. We have evaluated the curvature estimated numerically and compared the
results with other recent curvature estimators.

In the second part of this thesis we will show generalizations of the lower estimates
that we have shown for the Schoenberg operator. The key concept of Chapter 4 is
the convergence of the iterates of the corresponding approximation operator. We will
revisit the idea of the proof in Chapter 6 and outline its necessary conditions in an
operator theoretic viewpoint. Accordingly, Chapter 7 shows that the iterates of positive
linear operators with finite rank and a partition of unity property do always converge
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to a limiting operator. While the convergence is guaranteed the limiting operator has
already to be known previously in this case. As highlight of this thesis, we provide in
Chapter 9 a constructive method to derive the limiting operator if a basis of the fixed
point space and its dual are known. Thereby, we use an approach based on operator
theory to consider the iterates of quasi-compact operators on Banach spaces. This
viewpoint allows the direct construction provided that the fixed point space is finite
dimensional.

1.1 Outline of the thesis and highlights
We give a short overview of the organization of this thesis that provides the main
results and most important references as convenience for the reader. This thesis is
divided into two parts. The first part is devoted to provide a solution to the problem
of curvature estimation based on variation diminishing splines. In the second part,
we show generalizations based on operator theory to derive lower estimates and to
construct the limiting operator of iterates.
Chapter 2 covers the variation-diminishing property introduced in 1930 by I. J.

Schoenberg. A variation-diminishing transform features the property that themapped
function has nomore sign changes than the function to be mapped. If additionally the
positivity of functions has to be preserved, the variation-diminishing property leads
to the famous and often discussed concept of total positivity, see especially the mono-
graph of S. Karlin [Kar68]. Total positivity provides the key-role concept to construct
shape preserving approximation methods.

The two operators that are important throughout the whole thesis are introduced in
detail in Chapter 3: the Bernstein operator and Schoenberg’s operator, while the focus
lies on the spline operator devised by Schoenberg due to its local flexibility. Both oper-
ators will be introduced on the space of continuous functions and the most important
properties are provided. Besides, their counterparts on the Lp-spaces are discussed.
More detailed information can be found in Lorentz [Lor86] for the Bernstein opera-
tor and the Bernstein polynomials, while we refer to de Boor [dBoo01], Nürnberger
[Nür89], and Schumaker [Sch07] for extensive information on splines and the Schoen-
berg operator. More references are given in the chapter. Both operators preserve the
positivity, the monotonicity, and the convexity of functions. Derivatives of approx-
imations by the Bernstein operator converge uniformly in all order against the real
derivatives, while the derivatives of the spline approximations by Schoenberg operator
converge only up to the second order derivative. For both approximationmethods, the
approximation error is bounded from above by the second order modulus of smooth-
ness. While a lower estimate is known for the Bernstein operator, an analogous esti-
mate for the Schoenberg operator is missing. We will provide such an lower estimate
in Chapter 4. At the end of Chapter 3, we will also prove that the Schoenberg operator
has besides 0 and 1 only distinct positive real eigenvalues.
Chapter 5 is devoted to solve the topic of this thesis. Utilizing all the results of the

previous chapters, we are now able to construct approximation methods that allow
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an approximation of the curvature of smooth curves. We provide an estimate of the
approximation error of the curvature based on the convergence rate of the first two
derivatives. Therefore, for appropriate operators we are able to prove the uniform con-
vergence of the approximated curvature towards the real curvature if the pixel spacing
goes to zero. Furthermore, we present an algorithm that is able to detect singular
points (corners) of piecewise smooth curves based on the lower estimate of the spline
approximation error depending on the second order modulus of smoothness. In the
end numerical experiments are presented that show that our algorithm outperforms
the others in the sense that our spline based estimator achieves competitive accuracy
but uses significantly less computation time. Besides, we demonstrate the ability to
estimate the curvature of piecewise smooth curves.
Due to the importance of the proven lower estimates for the approximation with

Schoenberg splines for handling piecewise smooth curves, we will start the second part
of this thesis by revisiting the key concepts of the proof in Chapter 6 by an operator
theoretic viewpoint. We will outline the most important conditions that are character-
ized by spectral properties to ensure the convergence of the iterates, the smoothness
of the range and the null space of the operator.

Motivated by the spectral condition, we discuss the iterates of positive linear opera-
tors with a partition of unity property defined on a Banach function space in Chapter 7.
We will show that the spectrum of such operators is not only contained in the unit
circle, the only common point on the unit circle is the eigenvalue 1. By the above men-
tioned theorem of Katznelson and Tzafriri [KT86] we can proof the convergence of
the iterates. Moreover, we show a criterion how the limiting operator can be derived.
The results of this chapter have already been published in the Journal of Mathematical
Analysis and Applications [Nag15].

The next two chapters are devoted to construct the limiting operator of the iterates
of an arbitrary linear operator using techniques of Fredholm theory. To this end, we
provide in Chapter 8 the necessary fundamentals of the Riesz-Schauder theory for
compact operators and its generalization to Riesz operators. Finally, we introduce the
class of quasi-compact operators which constitutes the necessary setting to consider
the iterates of linear operators. As highlight of this thesis, we discuss in Chapter 9 the
limit of the iterates of linear operators between general Banach spaces. We provide a
constructive method to obtain the limiting operator. The key concept to characterize
the convergence of the iterates, where the limiting operator can be provided is the con-
cept of quasi-compactness. The main ingredience used for the results in this chapter
is the work of Dunford [Dun43b] published already in 1943, the famous theorem of
Katznelson and Tzafriri [KT86], and the classical results from functional analysis that
can be found in Rudin [Rud91] and Heuser [Heu82].
As all the previous results have been shown on general Banach spaces, Chapter 10

provides a general framework to derive lower estimates for all operators with smooth
range on general Banach functions spaces that satisfy some additional weak conditions.

We conclude this thesis in Chapter 11 with a short summary and discuss open prob-
lems.
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1.2 Publications and preprints
Results of this thesis have already been partly published and submitted to different
journals:

• The results of Chapter 7 have been published in the Journal of Mathematical
Analysis and Application, see [Nag15].

• The results of Chapter 5 have been partly announced in the Proceedings in Ap-
plied Mathematics and Mechanics, see [Nag14].

• The results of Chapter 10 have been submitted to the Journal of Complexity con-
cretely for the Schoenberg operator on C((︀0, 1⌋︀) with the coauthors B. Forster
and P. Cerejeiras, see [NCF14].

1.3 Notation
Let R be the set of real numbers and C the set of complex numbers. Given a positive
integer n, we denote by Rn and Cn the real and complex n-dimensional vector spaces
equippedwith the Euclidean norm ∏︁⋅∏︁2, defined for x = (x1, . . . , xn) ∈ Rn (respectively
Cn), by

∏︁x∏︁2 = (⋃︀x1⋃︀2 +⋯ + ⋃︀xn⋃︀2)1⇑2 . (1.1)

Throughout this thesis we will consider (if not declared otherwise) all Banach function
spaces over the complex numbers C. Some remarks on the complexification of real
Banach spaces can be found in the end of this section.

IMPORTANT FUNCTION SPACES

By C((︀0, 1⌋︀) we denote the Banach space of continuous functions on (︀0, 1⌋︀ equipped
with the norm of uniform convergence

∏︁ f ∏︁∞ = sup{⋃︀ f (x)⋃︀ ∶ x ∈ (︀0, 1⌋︀} .
The space of all polynomials of atmost degree k is denoted by𝒫k . For f ∈ C((︀0, 1⌋︀), the
divided difference ∆(x j , . . . , x j+k+1) f is defined as the coefficient of xk in the unique
polynomial of degree k or less that interpolates the continuous function f at the points
x j , . . . , x j+k+1. We denote the truncated power function of degree k for x ∈ R by

xk+ = )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
xk , for x > 0,
0, for x ≤ 0.

The space of measurable functions on (︀0, 1⌋︀ is denoted by Lp((︀0, 1⌋︀) and all functions
that are k-times continuously differentiable on (︀0, 1⌋︀ are denoted by Ck((︀0, 1⌋︀). A de-
tailed description of these spaces can be found in the book of Rudin [Rud91]. Note that
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these spaces can also be defined on a compact Hausdorff space K, while for simplicity
we will act on the unit interval (︀0, 1⌋︀. The space of all splines of degree k, i. e., piecewise
polynomials of degree k with breakpoints at the knot sequence ∆n, will be denoted by𝒮(∆n , k). A short and precise introduction to the spline space 𝒮(∆n , k) is given in
Section 3.2. A linear operator T defined on C((︀0, 1⌋︀) or Lp((︀0, 1⌋︀) is said to be positive
if T f ≥ 0 holds whenever f ≥ 0. Positive linear operators can also be defined on more
general Banach spaces that are equipped with a partial ordering. For more details for
positive linear operators defined on so called Banach lattices, we refer to the book of
Schaefer [Sch74].

BANACH SPACES AND LINEAR OPERATOR S

Thespace of bounded linear operators from X toY is denoted byℒ(X ,Y)with identity
operator I and equipped with the usual operator norm ∏︁⋅∏︁op. The range and the null
space of T ∈ ℒ(X ,Y) are denoted by ran(T) and ker(T), respectively. We consider
the following three operator topologies onℒ(X ,Y). A sequence of operators (Tn)n∈N
is said to converge uniformly towards T ∈ ℒ(X ,Y) if it converges in the operator norm.
The sequence converges strongly if ∏︁Tnx − Tx∏︁Y → 0 converges for n → ∞ and all
x ∈ X. If ⋃︀α∗(Tnx) − α∗(Tx)⋃︀ → 0 converges for n → ∞ for all x ∈ X, α∗ ∈ Y∗ then
the sequence (Tn)n∈N converges in the weak operator topology.

SPECT RAL PROPERTIES

For T ∈ ℒ(X), we denote by σ(T) the spectrum of T ,

σ(T) = {λ ∈ C ∶ T − λI is not invertible} .
By σp(T), we denote the point spectrum of T ,

σp(T) = {λ ∈ C ∶ T − λI is not one-to-one}
which contains all eigenvalues of T . The resolvent set ρ(T) consists of all points λ
in the complex plane where T − λI is invertible, ρ(T) = C ∖ σ(T). The open ball
of radius r > 0 at the point z ∈ C in the complex plane will be denoted by B(z, r) ∶={λ ∈ C ∶ ⋃︀λ − z⋃︀ < r} and its closure by B(z, r).
MODULI OF SMOOTHNES S AND K-FUNCTIONALS

There are different kind of functionals to measure the smoothness of a function. The
K-functional introduced by J. Peetre in 1968 measures how well a function can be
approximated by functions that are continuously differentiable of a certain order. The
K-functional of order r is defined for f ∈ C((︀0, 1⌋︀) and t ≥ 0 as the value of

Kr( f , t) ∶= inf
д∈Cr((︀0,1⌋︀){∏︁ f − д∏︁∞ + t ∏︁Dr д∏︁∞} ,
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where Dr denotes the differential operator on Cr((︀0, 1⌋︀) of order r. One important
property to note here is that for fixed t ≥ 0 the K-functional Kr(⋅, t) is a semi-norm
on C((︀0, 1⌋︀) with Kr( f , t) ≤ ∏︁ f ∏︁∞.
Another way to measure the smoothness of a function is using discrete differential

operators. Accordingly, the moduli of smoothness of order r is defined for t ≥ 0 and
f ∈ C((︀0, 1⌋︀) by

ωr( f , t) ∶= sup{∏︁∆r
h f (x)∏︁∞ ∶ 0 < h < t and x , x + rh ∈ (︀0, 1⌋︀} , (1.2)

where ∆r
h is the forward difference operator of order r,

∆r
h f (x) ∶= r∑

l=0(−1)r−l(r
l
) f (x + l h).

More properties of moduli of smoothness and K-functionals and relations between
them can be found in Butzer and Berens [BB67], Johnen [Joh72], and Johnen and
Scherer [JS77]. In a similar way, the modulus of smoothness can also be defined on
the LP-spaces using the p-Norm instead of the norm of uniform convergence. In this
case, we denote the integral modulus of smoothness by ωr,p( f , t). More information
on moduli of smoothness and K-functionals are given in Chapter 10.

ON THE COMPLEXIF ICATION OF REAL BANACH SPACES

Note that the problem to compute the curvature mentioned previously is naturally
modeled on a real Banach function space X. This case will treated by its complexifica-
tion XC = X ⊕ iX equipped with the norm

∏︁ f + i д∏︁C = sup
0≤φ≤2π

∏︁ f cosφ + д sinφ∏︁ , f , д ∈ X .
Then XC is a Banach space and X is continuously embedded in XC. The corresponding
complex extension TC of T is defined for all f , д ∈ X by

TC( f + i д) = T f + iT д.

In this way, the operator norm is consistent, i.e., ∏︁T∏︁op = ∏︁TC∏︁op holds. The spectrum
σ(T) of T is defined as σ(TC). Note that the set σp(TC)∩R consists of the eigenvalues
of T ∶ X → X. For more details on the complexification of real Banach spaces we refer
to [Rus86, pp. 7–16] and [MST99].

1.4 Related Research
There also exist many methods that interpolate discretely given data points in a shape
preserving way, i. e., they preserve the positivity, monotonicity, and convexity defined
by the discrete data. While most methods can construct a continuous or C1- inter-
polant, only a few of them are able to interpolate with a smooth C2-function. Note
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that we are interested in estimating the curvature, hence C2-smoothness is essential
here. Best known are the so called tension methods. Thereby, a smooth function is
constructed as a collection of patches that depends on a set of tension parameters. The
main problem here is the estimation of these parameters in order to preserve the shape
of discretely given data. While local methods also require values of the derivatives of
the function to interpolate, global methods rely only on function values.
Lamberti and Manni [LM01] have proposed a global tension method to obtain a

C2-shape preserving interpolant. This scheme requires the solution of a tridiagonal,
diagonally dominant linear system as well as a parameter selection. The selection of
the tension parameters is based on an automatic iterative algorithm depending on
conditions on the monotonicity and the convexity of the curve. Themain drawback of
this method is that no explicit analytic expression of the final interpolant is available.
Thus, computing its derivatives as we need to calculate the curvature is not possible.
Recently, another approach has been developed by Goodman and Ong [GO05] using
a vector subdivision scheme with cubic splines, while the shape preserving property
holds only for the limiting function. An overview of various shape preserving inter-
polation methods has been given in the surveys of Goodman [Goo02] and Pan and
Cheng [PC12].
Finally, we also want to mention other shape preserving approximation methods.

Recently, Kong and Ong [KO09] have constructed a shape preserving approximation
using spatial cubic splines. Shape preserving approximations based on Bernstein-type
operators with fixed polynomials have been considered by Cárdenas-Morales, Garran-
cho, and Muñoz-Delgado [CGM06].

Before we conclude this chapter, we want to highlight the advantages of our chosen
shape preserving approximation method based on Schoenberg’s variation diminish-
ing splines. As the spline operator is linear, the approximation is fast to compute and
does not require to solve a linear system. Another advantage are the available explicit
representations of the derivatives based on the coefficients of the operator. This al-
lows for a fast and stable evaluation of the derivatives which is crucial to compute the
curvature. Besides, we can utilize the approximation error to detect singularities of
piecewise smooth curves.
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chap t e r 2chap t e r 2chap t e r 2 Variation Diminishing Transforms
and Total Positivity

‘‘ If there is a problem you can’t solve,
then there is an easier problem you can solve: find it.’’

georg pólya

The first article describing variation diminishing transforms has already
been published in 1930 by I. J. Schoenberg. Given a matrix A ∈ Rm×n, the linear

map x ↦ Ax is said to be variation diminishing if for a real vector x ∈ Rn the image
y = Ax has no more sign changes than the given vector x. This remarkable property is
completely characterized when of all of the minors of the matrix A have the same sign.
Matrices where all minors are non-negative are said to be totally positive. This remark-
able concept has been extended on functions spaces where an approximation has less
sign changes than the function to approximate. We will use this kind of transforms
for the approximation of a curve to ensure that the approximation introduces no addi-
tional oscillations. For more details on total positivity we refer to the comprehensive
monograph of S. Karlin [Kar68] which is influenced by I. J. Schoenberg.
Around the same time as I. J. Schoenberg (1933-1937), Gantmacher and Krein have

also extensively discussedproperties of totally positivematrices basedon their research
on vibration of mechanical systems. An extensive overview of their work can be found
in the book [GK02]. In contrast to I. J. Schoenberg, they were motivated by the Perron-
Frobenius Theorem for positive matrices to study the behaviour of the eigenvalues and
eigenvectors of totally positive matrices. In particular, they have proved that strictly
total positivematrices, i. e.matrices where allminors are positive, have distinct positive
eigenvalues. Besides, they revealed an oscillatory structure of the eigenvectors. In their
work they could prove these properties for a broader class of matrices, the so called
oscillatorymatrices.

We start with the precise definition in the discrete setting according to Schoenberg
[Sch30] and show relations to so called sign-regular matrices. In the next section the
concept of variation diminution will be specialized to positivity preserving transforms.
These transformes are said to be totally positive. The work of [GK37] complements
the results of I. J. Schoenberg by spectral properties. We conclude with approximation

13
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operators that preserve the shape of the function to approximate. It will be shown that
variation diminishing operators which can reproduce linear functions in fact leave the
positivity, monotonicity and the convexity of functions unchanged. This will serve
as the framework of our choice to approximate the curvature of a curve where only
discrete data points are provided.

2.1 The Variation Diminishing Property
Definition 2.1 (Variation diminishing matrix). Let v ∶ Rn → R count the number of
sign changes of a vector. Thematrix A ∈ Rm×n is variation diminishing, if for all x ∈ Rn

v(Ax) ≤ v(x).
Let us consider first two examples in R2.

Example 2.1. The identity matrix E2 = ( 1 0
0 1 ) is obviously variation diminishing. Con-

trarily, the matrix A = ( 1 0
0 −1 ) is not variation diminishing, as

(1 0
0 −1)(11) = ( 1−1) ,

and 1 = v(Ax) ≥ v(x) = 0 for x = (1, 1)T .

For general matrices, the criterion of variation diminishing matrices used in the
definition is usually hard to check, as this property has to be shown for all x ∈ Rn. An-
other way to characterize the variation diminishing property are sign-regularmatrices.
We will define them next and show their relation to variation diminishing matrices.

Definition 2.2 (Sign-regular matrix). A matrix A ∈ Rm×n is called sign-regular if all
minors of A have the same sign.

Example 2.2. The matrix A = ( 1 2
0 1 ) is sign-regular as the minors det(1) = 1, det(2),

det(0), det(1) and det(A) = 1 have the same sign (non-negative). In contrast, the
matrix A = ( 1 0

0 −1 ) from Example 2.1 is not sign-regular.

According to Schoenberg, the following relation between sign-regular matrices and
variation diminishing matrices holds:

Proposition 2.1 ([Sch30, see Satz 1 and 2]). Let A ∈ Rm×n with rank less or equal to n.
Then the following two statements hold:

1. If A is sign-regular, then A is variation diminishing.

2. If A has rank n and A is variation diminishing, then A is sign-regular.

The next corollary considers as special case quadratic full-rank matrices. If one com-
bines both statements of Proposition 2.1 it immediately follows that being variation
diminishing is equivalent to being sign-regular.
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Corollary 2.2. A non-singular matrix A ∈ Rn×n is variation diminishing if and only if
it is sign regular.

The preceding corollary states in particular, that invertible matrices are variation di-
minishing if and only if all minors have the same sign. An equivalent property of
general matrices has been shown by Motzkin [Mot36].

Note that it is still possible that variation diminishing matrices do not preserve the
positivity of vectors.

Example 2.3. Consider the non-singular matrix A = ( −1 −1−2 −1 ). All minors are negative
and hence, A is sign-regular and by Corollary 2.2 it is also variation diminishing. But
the image of the positive vector (1, 2)T under A yields the negative vector (−3,−4).
Thus, positivity is not preserved under A.

Accordingly, the concept of variation diminution will be extended to the concept
of total positivity to overcome these shortcomings.

2.2 Total Positivity
In addition to the variation diminution, I. J. Schoenberg introduced the concept of
total positivity in [Sch30] to describe positivity preserving transforms. Here, the non-
singular real matrix is said to be totally positive if all of its minors, of any order, are
nonnegative. If all minors are positive, then the matrix is called strictly totally positive.
Note that in recent articles these matrices are often called totally non-negative to dis-
tinguish between strongly totally positive matrices and totally positive matrices where
all minors are strictly positive. Here, we will stick to the notation which has been in-
troduced first by I. J. Schoenberg. The reader will find more information in the gentle
introduction to total positivity by T. Ando [And87], whereas even more results can be
found in the recent book ofA. Pinkus [Pin10]. A fundamental overview about total pos-
itivity in a variety of fields can be found in the monograph of S. Karlin [Kar68] where
also applications to the theory of summability, interpolation problems and differential
equations are presented.

Example 2.4. The matrix ( 2 1
1 1 ) is totally positive and also strictly totally positive,

whereas the matrix ( 2 1
0 1 ) is only totally positive.

An important relation between the class of strictly totally positive matrices and to-
tally positive matrices has been shown by Whitney [Whi52]. He characterized strictly
totally positive matrices as dense set in the set of totally positive matrices.

Proposition 2.3 ([Whi52, Thm. 1]). Every totally positive matrix can be approximated
arbitrarily closely by strictly totally positive matrices.

During their research research on vibration of mechanical systems, Gantmacher
and Krein [GK02] have also investigated properties of totally positive matrices. For
the original research article, we refer to Gantmakher and Krein [GK37]. Motivated by
the Perron-Frobenius Theorem they studied a generalization of strictly totally positive
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matrices, the so called oscillatorymatrices. They have shown that these matrices have
distinct positive eigenvalues and revealed an oscillatory structure of the eigenvectors.
We will state these results in the following.

Definition 2.3 (Oscillatory matrix). Amatrix A ∈ Rn×n is called oscillatory if A is to-
tally positive and there exists a positive integer k such that Ak is strictly totally positive.

Proposition 2.4 (Gantmacher and Krein [GK02, Thm. 6, p.87]). Let A ∈ Rn×n be
an oscillatory matrix. Then the eigenvalues of A are n distinct positive real numbers,
i.e., λ1 > λ2 > ⋯ > λn > 0. Besides, let v be an eigenvector for the k-th largest eigenvalue.
Then v has exactly k − 1 sign variations.

Gantmacher and Krein have also established a sufficient and necessary criterion
for totally positive matrices to be oscillatory. This criterion characterizes oscillatory
matrices as non-singular matrices, where the first diagonal below the main diagonal,
and the first diagonal above the main diagonal are positive.

Proposition 2.5 ([GK02, Thm. 10, p.100]). A totally positive matrix A ∈ Rn×n is called
oscillatory if and only if

(i) A is non-singular and

(ii) ai,i+1 > 0 and ai+1,i > 0 for i ∈ {1, . . . , n − 1}.
This criterion will be of importance in the end of the next chapter to prove spectral

properties of the variation-diminishing spline operator devised by Schoenberg.
Using the spectral properties of oscillatory matrices shown in Proposition 2.4 and

the density of strictly totally positive matrices stated in Proposition 2.3, we can show
now that totally positive matrices share the same spectral properties as symmetric,
positive definite matrices.

Proposition 2.6 ([Pin10, Cor. 5.5]). If A is a totally positive Matrix, then all the eigen-
values of A are non-negative, real numbers.

Example 2.5 (Totally positive matrices with row sum 1). In the next chapters, we will
deal with totally positive matrices that arise from functional evaluations of certain
positive basis functions like polynomials or splines. In order to be able to reconstruct
constants, a necessary condition on the basis functions is that they form a partition of
unity. In this case, 1 is always the largest eigenvalue corresponding to the eigenvector
that contains only ones. The eigenvalues are non-negative, real numbers and can be
ordered as

1 = λ1 ≥ λ2 ≥ ⋯ ≥ λn = 0.
2.3 Totally positive transforms
In the following, we will extend the concepts of total positivity to functions. It will be
shown that the total positivity of a kernel guarantees the variation diminishing prop-
erty for the corresponding integral transform operator. Moreover, shape preserving
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properties can be characterized by the kernel. For the convenience of the reader we
state in this section briefly the most important results of the comprehensive book of
Karlin [Kar68] that we need in our context on shape preserving approximations.

Suppose X and Y as intervals or as sets of positive integers and let K ∶ X × Y → R
be a real function. In the current section, we will discuss transforms of the form

T( f ; x) = ∫Y K(x , y) f (y)dµ(y), x ∈ X , (2.1)

where µ is a sigma-finite measure on Y . During this section, we use the Bernstein
operator to illustrate the shown results. Here, X = (︀0, 1⌋︀, Y = {1, . . . , n} and the kernel
K ∶ X × Y is given by the Bernstein polynomials of degree n:

Kn(x , j) = (nj)x j(1 − x)n− j , j = 0, . . . , n.
In this case, (2.1) reduces to the classical Bernstein operator

Bn( f ; x) = n∑
j=0 f (

j
n
)(n

j
)x j(1 − x)n− j , x ∈ (︀0, 1⌋︀ ,

that approximates continuous functions by their uniform point evaluations. Originally,
this kind of approximation has been used in by S. N. Bernstein [Ber12] to prove the
Weierstrass approximation theorem in a short and elegant way. More details on this
operator and on Schoenberg’s variation diminishing spline operator are provided in
the next chapter.

2.3.1 Totally positive kernels
Motivated by the integral transform (2.1) we extend the concept of total positivity to
integral kernels. An example is given afterwards.

Definition 2.4. A kernel K ∶ X × Y → R over linearly ordered sets X and Y is said to
be totally positive, if for all integers m and ordered selections x1 < x2 < ⋯ < xm, and
y1 < y2 < ⋯ < ym in X and Y , respectively, the inequalities

K (x1 x2 ⋯ xm
y1 y2 ⋯ ym

) ∶= det

⎛⎜⎜⎜⎜⎝
K(x1, y1) K(x1, y2) ⋯ K(x1, ym)
K(x2, y1) K(x2, y2) ⋯ K(x2, ym)⋯ ⋯ ⋯
K(xm , y1) K(xm , y1) ⋯ K(xm , ym)

⎞⎟⎟⎟⎟⎠
≥ 0

hold true. In the case where strict inequality holds, we call K strictly totally positive.

In particular, K(x , y) ≥ 0 holds for all (x , y) ∈ X × Y . X or Y might be considered
as intervals or as sets of positive integers. If both sets are finite, then K(x , y) can be
considered as a matrix and the notion of total positivity is understood in the sense of
the preceding section.
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Example 2.6 (Bernstein basis, see [Kar68, p. 287]). For any fixed integer n and all
sequences

0 ≤ x1 < x2⋯ < xn ≤ 1
the matrix

⎛⎜⎜⎜⎜⎝
pn,1(x1) pn,1(x2) ⋯ pn,1(xn)
pn,2(x1) pn,2(x2) ⋯ pn,2(xn)⋯ ⋯ ⋯
pn,n(x1) pn,n(x2) ⋯ pn,n(xn)

⎞⎟⎟⎟⎟⎠
is totally positive, where pn, j are the Bernstein polynomials defined by

pn, j(x) = (nj)x j(1 − x)n− j , j = 0, . . . , n.

2.3.2 Variation diminishing transforms
Let K(x , y) be a totally positive kernel on X × Y . We consider now the integral trans-
form

T( f ; x) = ∫Y K(x , y) f (y)dµ(y), (2.2)

where µ is a sigma-finite measure on Y . Besides, we assume that K(x , y) has the
necessary growth properties to ensure that this integral (2.2) exists for every bounded
Borel-measurable function f defined on Y .
Clearly, T is a linear operator. Note that if Y is a set of positive integers, then T

is a discrete operator. In the following, we will discuss under which conditions on
the integration kernel K(x , y) the operator T is variation diminishing and which
assumptions T is able to preserve the monotonicity and convexity of functions.

The concept of variation diminution has been further generalized to approximation
operators [Sch48; Sch50a; Sch59]. For a real-valued function f let us denote by v( f )
the number of sign changes in (︀0, 1⌋︀ of the function f ,

v( f ) ∶= sup𝒫n ,n∈N v( f (x1), f (x2), . . . , f (xn)),
where the supremum is taken over all partitions

𝒫n = {x1, . . . , xn ∈ (︀0, 1⌋︀ ∶ 0 ≤ x1 < x2 < ⋯ < xn ≤ 1} .
Then we can define an operator T to be variation diminishing in the following sense.
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Definition 2.5. A linear operator T is called variation diminishing if

v(T f ) ≤ v( f )
holds for all real-valued functions f .

Hence, if T is variation diminishing the approximation T f has less sign changes
than the original function f . Note that we use here the original notation introduced
by I. Schoenberg, while other authors use the symbol S− to measure the number of
sign changes with discarded zero terms.

The following result of S. Karlin relates the concept of total positivity with the varia-
tion diminishing property.

Proposition 2.7 ([Kar68, Thm. 3.1 on p. 285]). If K ∶ X × Y → R is totally positive
kernel, then T defined as in (2.2) has the variation diminishing property.

Example 2.7 (Bernstein operator). Given a fixed integer n, the Bernstein polynomials
are defined by

Kn( j, x) = (nj)x j(1 − x)n− j , j = 0, . . . , n.
Using this kernel, the integral transform (2.1) reduces to the the Bernstein operator
Bn ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) defined by

Bn( f ; x) = n∑
j=0 f (

j
n
)(n

j
)x j(1 − x)n− j , x ∈ (︀0, 1⌋︀ .

By Example 2.6 Bn is variation diminishing.

2.3.3 Shape preserving transforms
If K is a totally positive kernel, i. e., T is variation diminishing, then the integral
transform T has the ability to preserve themonotonicity and the convexity of functions,
provided that T can reproduce constants and linear functions.

Proposition 2.8 ([Kar68, Thm. 3.4(a) on p. 285]). If K ∶ X×Y → R is a totally positive
kernel and T is able to reproduce constants, i. e.,

∫Y K(x , y)dµ(y) = 1, x ∈ X .
Then the integral transform (2.1)maps increasing functions into increasing functions.

While the total positivity of the kernel combined with the ability to reconstruct con-
stants leads to amonotonicity preserving transform, the additional ability to reproduce
linear functions leads to a convexity preserving transform.
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Proposition 2.9 ([Kar68, Thm. 3.5(a) on p. 285]). If K ∶ X × Y → R is a totally
positive kernel and T is able to reconstruct constants and maps linear functions into
linear functions, i. e.

∫Y K(x , y)dµ(y) = 1, ∫Y K(x , y)ydµ(y) = ax + b, x ∈ X ,
where a and b are real numbers and a > 0. Then the integral transform (2.1) maps
convex functions into convex functions.

Example 2.8 (Bernstein operator, [Kar68, pp. 287]). Consider the Bernstein operator
of Example 2.7,

Bn( f ; x) = n∑
j=0 f (

j
n
)(n

j
)x j(1 − x)n− j .

It has been shown Karlin [Kar68, pp. 287] that Bn( f ; x) is convex whenever f is
convex. Moreover, Bn( f ; x) ≥ f (x) holds for every continuous convex function f ,
see also Popoviciu [Pop38].

2.3.4 Shape preserving discrete transforms
To estimate the curvature in a variation diminishing way, we need an approximation
method that is able to preserve the convexity as seen in the last section. Furthermore,
we require an approximation method that approximates a curve given only at finitely
many points on the curve. In the following, we will consider discrete approximation
operators of this kind based on the integral transform (2.1). Operators of this kind
are, e. g., the Bernstein operator or Schoenberg’s spline operator. Both operators are
discussed in the next chapter. We will show as seen in Proposition 2.9 that a general
discrete operator leads to convexity preserving transform provided that the basis func-
tions are totally positive and the operator is able to reproduce constants and linear
function.

As we only consider here discrete kernels here, we will first introduce the notion of a
collocation matrix in analogy to Definition 2.4 and state the most important theorems
from the last sections once more in the discrete setting. Thereby, we will restrict the
approximation of real-valued function onto the unit interval (︀0, 1⌋︀. Finally, we will
extend this discrete approximation operator to the approximation of planar curves
defined on (︀0, 1⌋︀. This section is along the lines of Goodman [Goo96].

Definition 2.6 (collocation matrix). Consider a sequence of real valued functions(e1, . . . , en). The collocation matrix for the points 0 ≤ x1 < x2 < ⋯ < xn ≤ 1 is then
defined as the matrix

M (e1 e2 ⋯ en
x1 x2 ⋯ xn

) ∶=
⎛⎜⎜⎜⎜⎝
e1(x1) e2(x1) ⋯ en(x1)
e1(x2) e2(x2) ⋯ en(x2)⋮ ⋮ ⋮
e1(xn) e2(xn) ⋯ en(xn)

⎞⎟⎟⎟⎟⎠
.
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The functions e1, . . . , en are in the following assumed to be linearly independent.
Therefore, they build a basis for the n-dimensional subspace they span.

Definition 2.7 (Totally positive bases). A sequence (e1, . . . , en) of real valued func-
tions over (︀0, 1⌋︀ is said to be totally positive if for any points 0 ≤ x0 < . . . < xm ≤ 1,
the collocation matrix M( e1 e2 ⋯ enx1 x2 ⋯ xn ) is totally positive. The sequence (e1, . . . , en) is
normalized totally positive if, in addition,

n∑
j=0 e j(x) = 1, x ∈ (︀0, 1⌋︀ .

Consider, for instance, the Bernstein polynomials as shown in Example 2.6.
Based on the total positivity of the bases, we obtain the following relation to the

variation diminishing property by Proposition 2.7.

Proposition 2.10 ([Goo96, Thm. 3.1]). If (e1, . . . , en) are totally positive on (︀0, 1⌋︀, then
for any λ1, . . . , λn we have

v(λ1e1 +⋯ + λnen) ≤ v(λ1, . . . , λn).
Next, we will consider a linear operator that yields a linear combination of the basis(e1, . . . , en) in order to provide a variation diminishing operator. Therefore, we will

assume to the rest of this section that (e1, . . . , en) is a normalized totally positive basis.
Additionally, we assume that the basis has the property to approximate straight lines
in the sense

x = n∑
j=1 x je j(x), x ∈ (︀0, 1⌋︀ .

We will now concretely consider the discrete approximation operator T that is defined
for every real-valued function f on (︀0, 1⌋︀ as

T( f ; x) = n∑
j=1 f (x j)e j(x), x ∈ (︀0, 1⌋︀ . (2.3)

The next proposition characterizes the operator (2.3) as positive linear operator that
is able to interpolate at the endpoints of the interval.

Proposition 2.11 ([Goo96, Thm. 3.3]). The operator T in (2.3) defines a positive linear
operator which reproduces linear functions. Besides, the operator T interpolates at the
endpoints of (︀0, 1⌋︀:

T f (0) = f (0) and T f (1) = f (1).
By Proposition 2.8 and Proposition 2.9 mentioned in the last section, we obtain the

following two corollaries:
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Corollary 2.12. If the function f is increasing (decreasing), then T f is increasing (de-
creasing).

Corollary 2.13. If the function f is convex, then T f is convex and T f ≥ f .

Next, we try to generalize these properties to the approximation of curves. Recall
here that convexity of planar curves can be defined as curves where any straight line
has at most two intersection points. In this sense, the next proposition counts how
often any straight line will cross f and T f by the variation diminishing property:

Proposition 2.14. For any linear function ℓ and any real-valued function f on (︀0, 1⌋︀
v(T f − ℓ) ≤ v( f − ℓ)

holds.

Using this property, we can consider now the approximation of curves in the fol-
lowing way and show a relation between the curve and the polygonal arc defined by
discretely many points on the curve.

Proposition 2.15 ([Goo96, Thm. 3.2]). Let (e1, . . . , en) be a normalized totally positive
basis on (︀0, 1⌋︀. For given points (xi , yi) ∈ R2 we consider the curve

α(t) = (x(t), y(t)) = n∑
j=1 (

x j
y j
) e j(t), t ∈ (︀0, 1⌋︀ . (2.4)

Then the number of times the curve α ∶ I → R2 crosses any straight line ℓ is bounded by
the number of times the polygonal arc through the points (x j , y j) crosses the line ℓ.

Based on this important property, we obtain the following shape preserving results:

Corollary 2.16. If the polygonal arc through the given points (xi , yi) is monotonic in a
given direction, then so is the curve α defined by (2.4).

Corollary 2.17. If the polygonal arc through the points (xi , yi) is convex, then so is the
curve α defined by (2.4).

To approximate the curvature of a planar curve, these two properties guarantee
that the sign changes of curvature are only defined by behaviour of its polygonal arc.
Furthermore, if the basis functions are locally supported, then the shape preserving
properties can be considered not only globally but also locally. Thus, local monotonic-
ity is preserved as well as local convexity in a weak sense.

2.4 Generalized discrete approximation
For the estimation of the curvature we are interested in a shape preserving approx-
imation of a digitized curve. It was pointed out in the preceding sections, that the
total positivity of a kernel or a basis is the fundamental concept for shape preserving
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approximations. Accordingly, we consider here a normalized totally positive basis(e1, . . . , en).
The integral transforms discussed in the last sections are only able to evaluate a

function at certain values. We define here a generalized approximation operator T
that is defined for every real-valued function f on (︀0, 1⌋︀ as

T f = n∑
j=1 α

∗
j ( f )e j , (2.5)

where α∗k are positive linear functionals satisfying α∗k(1) = 1 and α∗k(ek) > 0 for
k ∈ {1, . . . , n}. The linear functionals are able to represent different linear digitization
schemes. Note that the positivity of the functionals is crucial to assure the positivity
preservation of the function f . Also note that the condition α∗k(ek) > 0 can be seen
as a localization property. Operators of kind (2.5) are discussed in the next chapter.
We will show here only two examples of possible functionals.

Example 2.9 (Point evaluation). The Riesz representation theorem gives a character-
isation of positive linear functionals on C((︀0, 1⌋︀). Namely, for every positive linear
functional a∗ ∶ C((︀0, 1⌋︀) → R, there is a unique positive Radon measure ν such that

α∗( f ) = ∫ 1

0
f dν for every f ∈ C((︀0, 1⌋︀).

A classical example of a positive linear functional on C((︀0, 1⌋︀) is the Dirac measure
at a point x ∈ (︀0, 1⌋︀ defined for f ∈ C((︀0, 1⌋︀) by

δx( f ) = f (x).
Given a partition ∆n = {xk}nk=1 of (︀0, 1⌋︀ satisfying

0 = x1 < x2 < . . . < xn = 1,
then a popular choice for the functionals are α∗k = δxk for k ∈ {1, . . . , n}. In this case,
the positive finite-rank operator can be written for x ∈ (︀0, 1⌋︀ as

T f = n∑
k=1 f (x j)ek .

If the digitized values are modeled as local averages we can consider the following
functionals on the space of integrable functions.

Example 2.10 (Local Averaging). Given a partition ∆n = {xk}nk=1 of (︀0, 1⌋︀ satisfying

0 = x1 < x2 < . . . < xn = 1,
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then a local averaging is provided by the functionals α∗k = n ∫ k
n
k−1
n
⋅dt for k ∈ {1, . . . , n}.

In this case, the positive finite-rank operator can be written for x ∈ (︀0, 1⌋︀ as

T f = n∑
k=1(n ∫

k
n

k−1
n

f (t)dt) ek .
We have seen in the last section that this operator is shape preserving if additionally

Tx = n∑
i=1 α

∗
k(x)e j = x

holds.
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‘‘ Intuition is the undoubting conception of a pure and attentive mind,
which arises from the light of reason alone,

and is more certain than deduction.’’
rené descartes

We introduce here two variation-diminishing operators on the space of con-
tinuous functions, the Bernstein operator and Schoenberg’s spline operator, as

well as their generalizations to the Lp-spaces. The Bernstein operator samples a contin-
uous functions uniformly, whereas the Schoenberg operator can sample a continuous
function at predefined knots. Other advantages to use spline approximations over
Bernstein polynomials are the faster convergence rate and their local flexibility. While
the Bernstein polynomials have their support on the whole interval (︀0, 1⌋︀, the spline
basis functions have support in small subintervals of (︀0, 1⌋︀ whose size depends on
the degree k. Thus, a local change of the function has a global influence for its ap-
proximation with Bernstein polynomials while the spline approximation only changes
locally. Nevertheless, both operators can be used to estimate the curvature of discretely
given functions values. The Bernstein operator preserves convexity of all orders, while
the Schoenberg operator can only preserve positivity, monotonicity, and the ordinary
convexity. In contrast to the point evaluations on the space of continuous functions,
the generalized operators on the Lp-spaces use local integrals to evaluate measurable
functions. While the operators on the continuous function space are able to repro-
duce constant and linear functions, the operators acting on the space of measurable
functions are only able to reproduce constant functions.

The focus on this chapter lies on spline approximations based on Schoenberg’s varia-
tion diminishing operator due to the previously mentioned advances. As highlight, we
will prove that this operator has only non-negative distinct real eigenvalues. For this
purpose, we prove that the Gramian matrix of the corresponding integral Schoenberg
operator is in fact an oscillatory matrix. Finally, we show a relation between those
operators to transfer these result to the Schoenberg operator on C((︀0, 1⌋︀). Note that
up to our knowledge a concrete formula for the eigenvalues is still missing.

25
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3.1 Operators based on Bernstein polynomials
The Bernstein operator and the polynomials have been applied in a vast range of appli-
cations due to its simplicity and its elegant properties. Consider, e. g., the Bezier-curves
as their extension to higher dimensions which are the leading concept to model curves
in CAGD. To get an overview, we will state here their most important properties. The
Bernstein operator as well as the other operators introduced in the following will serve
as examples throughout this thesis.
For a given integer n > 0 the Bernstein polynomials are defined on (︀0, 1⌋︀ by

pn,k(x) ∶= (nk)xk(1 − x)n−k , k ∈ {0, . . . , n} .
An illustration for n = 8 is shown in Figure 3.1. These polynomials have been first
constructed by S. N. Bernstein [Ber12] in 1912 to prove the Weierstrass approximation
theorem in a short and elegant way. Concretely, he as shown that each f ∈ C((︀0, 1⌋︀)
can be uniformly approximated in the following way:

⨄︁ f (x) − n∑
k=0 f (

k
n
) pn,k(x)⨄︁∞ → 0, for n →∞. (3.1)

It is known that these functions form a partition of unity,

n∑
j=0 pn, j(x) = 1,

and they build a basis of the space of polynomials up to degree n. In the following
we will discuss two operators based on these Bernstein polynomials. The classical
Bernstein operator onC((︀0, 1⌋︀) used in (3.1) and its extension to the Lp((︀0, 1⌋︀)-spaces,
the Kantorovič operator. Formore properties on these polynomials and corresponding
operators, we refer to the comprehensive textbook of Lorentz [Lor86].
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[Johannes Nagler – February 10, 2015 at 12:11]

Figure 3.1: The Bernstein polynomials for n = 8. Note their global support on (︀0, 1⌋︀.
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3.1.1 The Bernstein operator
Given an integer n > 0, the Bernstein operator Bn ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) is defined
for f ∈ C((︀0, 1⌋︀) by

Bn( f ; x) = n∑
j=0 f (

j
n
)(n

j
)x j(1 − x)n− j = n∑

j=0 f (
j
n
) pn, j(x)

for all x ∈ (︀0, 1⌋︀.
As already mentioned above, the Bernstein operator is able to reproduce constant

functions due to the partition of unity. Particularly, the Bernstein operator can repro-
duce all linear functions as also Bnx = x holds, i. e.,

n∑
j=0

j
n
pn, j(x) = x , x ∈ (︀0, 1⌋︀ ,

and {1, x} constitutes a basis of the linear functions. Moreover, all polynomials of
degree k ≤ n are preserved in the sense that Bnxk is always polynomial of degree k,
see Lorentz [Lor86]. Due to this property [Kar68, p.286], the next proposition states
the shape preserving properties of the Bernstein polynomials.

Proposition 3.1. The Bernstein operator preserves convexity of all orders, i. e.,

DkBn f ≥ 0 if Dk f ≥ 0, f ∈ Ck((︀0, 1⌋︀).
Lorentz has shown that the derivatives of all orders of Bn f converge uniformly to

the corresponding derivative of f .

Proposition 3.2 (Lorentz [Lor37]). If f ∈ Cr((︀0, 1⌋︀) for some integer r ≥ 0, then

lim
n→∞ ∏︁DrBn f − Dr f ∏︁∞ → 0.

We now consider estimates for the approximation error. An upper estimate for the
approximation error by the second order modulus of smoothness has first been shown
by Brudnyi [Bru65] in 1962:

Proposition 3.3. For a given integer n and f ∈ C((︀0, 1⌋︀), there exists a constant C
independent of f and n such that

∏︁Bn f − f ∏︁∞ ≤ C ⋅ ω2( f ; 1⌋︂
n
).

Note that the second order modulus of smoothness reflects the approximation be-
haviour of the Bernstein operator Bn, as ω2 annihilates linear functions as does the
operator Bn − I. Thus, estimates using the second order modulus of smoothness is the
right tool here. Inverse theorems have been considered by Berens and Lorentz [BL72],
while related lower estimates have been shown only for the so called Ditzian-Totik
modulus of smoothness which is a generalization of the classical modulus of smooth-
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ness. For a detailed discussion we refer to the book of Ditzian and Totik [DT87], we
state here only its definition to show the lower estimates.

Definition 3.1 (Ditzian-Totik modulus of smoothness). The Ditzian-Totik modulus of
smoothness of order r is given by

ωφ
r ( f , t) ∶= sup{⋃︁∆r

hφ(x) f (x)⋃︁∞ ∶ 0 < h < t and x , x + rh ∈ (︀0, 1⌋︀} ,
where, if not stated otherwise, φ(x) = ⌈︂x(1 − x). Here ∆r

hφ(x) denotes the r-th for-
ward difference operator with step hφ(x) depending on x.

Clearly, if φ(x) = 1, then the ωφ
r reduces to the usual modulus of smoothness as

defined on page 8. Using this generalizedmodulus of smoothness, the following results
has been shown.

Proposition 3.4 (Ditzian andTotik [DT87], Knoop andZhou [KZ94]). For any integer
n > 0 and given f ∈ C((︀0, 1⌋︀) there exists constants C1,C2 > 0 independent on f and n
such that

C1ωφ
r ( f , 1⌋︂

n
) ≤ ∏︁Bn f − f ∏︁∞ ≤ C2ωφ

r ( f , 1⌋︂
n
).

The eigenvalues of the Bernstein operator have been revealed by the Russian author
Călugăreanu. A comprehensive discussion on the corresponding eigenfunctions can
be found in the work of Cooper and Waldron [CW00].

Proposition 3.5 (Călugăreanu [Căl66]). The Bernstein operator Bn has only real eigen-
values, namely

λ(n)k = n!(n − k)! 1
nk

, k ∈ {0, 1, . . . , n} .
The iterates of Bn have been also extensively discussed. The work of Kelisky and

Rivlin [KR67], Nielson, Riesenfeld, and Weiss [NRW76], da Silva [dSil84], and Wenz
[Wen97] have proved the limiting operator based on the theory of stochastic matrices.
Karlin and Ziegler [KZ70] andNagel [Nag80] have used theorems Korovkin-type. The
authors Agratini and Rus [AR03] and Rus [Rus04] have provided an alternative way
using a contraction principle. The limiting behaviour of the iterates by methods of the
theory of operator semigroups has also studied by Micchelli [Mic73]. The iterates of
the Bernstein operators have been recently revisited by Badea [Bad09] using methods
from functional analysis and operator theory. Accordingly, the next proposition is due
to these authors.

Proposition 3.6 ([KR67]). For a given integer n and f ∈ C((︀0, 1⌋︀) we have
lim
m→∞Bm

n ( f ; x) → B1( f ; x) = f (0) + ( f (1) − f (0))x
uniformly on (︀0, 1⌋︀.
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The iterates of the Bernstein operator converge uniformly against the linear inter-
polation operator at the endpoints of (︀0, 1⌋︀. We will provide an new proof based on
operator theory in Chapter 7 and Chapter 9.

3.1.2 The Kantorovič operator
As covered in the preceding sections, the Bernstein operator is only able to approxi-
mate continuous functions as it needs a point evaluation. An extension to integrable
functions has been constructed by L. Kantorovič in 1930 in order to transfer the theo-
rem of Weierstrass to the space of integrable functions (in the sense of Lebesgue).

To this end, he defined a sequence of operators Kn ∶ L1((︀0, 1⌋︀) → C((︀0, 1⌋︀) as
follows. Let f ∈ L1((︀0, 1⌋︀), then

Kn( f ; x) ∶= (n + 1) n∑
k=0 ∫

k+1
n+1
k

n+1
f (t)dt(n

k
)xk(1 − x)n−k , x ∈ (︀0, 1⌋︀ ,

see [Kan30]. The variation diminishing property of the Kantorovič operator has been
shown by Bardaro et al. [BBSV03, Prop. 3.3]. There is a strong relation between the
Kantorovič operator and the Bernstein operator as shown in the next proposition.

Proposition 3.7 ([Lor86, p.30]). For all f ∈ C1((︀0, 1⌋︀)
Kn(D f ) = D(Bn+1 f )

Cooper and Waldron [CW00] have used this property to relate eigenvalues and
eigenfunction of Bn with the corresponding eigenvalues and eigenfunction of Kn.

Proposition 3.8 ([CW00, Cor. 7.1]). Denote by p(n)k the eigenfunction of Bn correspond-
ing to the eigenvalue λ(n)k . Then λ(n+1)k is an eigenvalue of Kn with eigenfunction Dp(n+1)k ,
i. e.,

Kn (Dp(n+1)k ) = D(Bn+1p(n+1)k ) = λ(n+1)k+1 (Dp(n+1)k )) , k ∈ {0, 1, . . . , n} .
We will show a similar relation for the splines in order to prove spectral properties

of the Schoenberg operator that will be introduced in the next section.
Lorentz [Lor37] has proved in his dissertation that for each f ∈ L1((︀0, 1⌋︀) the limit

lim
n→∞ ∫

1

0
⋃︀Kn( f ; x) − f (x)⋃︀dx → 0

holds. Using a theorem of Orlicz [Orl34] for kernel based integral transforms, Lorentz
could prove in 1953 that the approximations Kn( f ; x) converge strongly for each f ∈
Lp((︀0, 1⌋︀) in the corresponding ∏︁⋅∏︁p-norm if n →∞.

Proposition 3.9 ([Lor53, Thm. 2.1.2]). For each f ∈ Lp((︀0, 1⌋︀), 1 ≤ p < ∞,

lim
n→∞ ∏︁Kn f − f ∏︁p → 0.
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Quantitative results based on the integral modulus of continuity have been first
shown by Grundmann [Gru76] for L1((︀0, 1⌋︀). In [Mül76], Müller has considered the
general case for the Lp-spaces, where 1 ≤ p < ∞.

Proposition 3.10 ([Mül76, Satz 2]). For f ∈ Lp((︀0, 1⌋︀), 1 ≤ p < ∞, the estimate

∏︁Kn f − f ∏︁p ≤ Mp ⋅ ω1,p ( f , 1⌋︂
n
)

holds, where Mp is a constant independent on f .

The iterates of the Kantorovič operator have been considered by Nagel using the
relation of Proposition 3.7.

Proposition 3.11 ([Nag82]). For a given integer n and f ∈ L1((︀0, 1⌋︀), there holds

lim
m→∞Km

n ( f ; x) → ∫
1

0
f (t)dt.

In Chapter 7 and Chapter 9, we will show a generalization for the convergence of
the iterates on the Lp-spaces, 1 < p < ∞.

3.2 Spline Operators
Even though the Bernstein operator has the beautiful properties to be variation di-
minishing, to preserve convexity up to order n, and the uniform convergence of the
derivatives of order up to n, the approximation with Bernstein polynomials results in
a slow convergence rate. In this section, we will introduce approximation operators
based on splines that guarantee a faster convergence rate, while the other properties
of the Bernstein operator are weakened. The Schoenberg operator discussed in Sec-
tion 3.2.1 is only able to preserve the positivity, the monotonicity and the convexity
and the derivatives converge only up to order 2. As main advantage, the knots can be
chosen arbitrarily and for smooth functions, the approximation rate is of quadratic
order. We will first introduce spline basis functions on given knots. Afterwards, we
will introduce the variation diminishing operator devised by Schoenberg and present
the integral Schoenberg operator analogous to the Kantarovič operator. Finally, we
will prove that the Schoenberg operator has only distinct real eigenvalues (except 0
and 1).
Let n > 0 be an integer and {x0, . . . , xn} be a finite partition of (︀0, 1⌋︀ such that

0 = x0 < x1 < . . . < xn = 1.
For k > 0, we consider the extended knot sequence ∆n = {x j}n+kj=−k , where the first and
the last knot is repeated k-times, i. e.,

x−k ∶= ⋯ ∶= x−1 ∶= 0, and xn+1 ∶= ⋯ ∶= xn+k ∶= 1.



3.2 Spline Operators 31

The k-fold repetition of the first and the last knot will lead to the interpolation property
at these knots, as we will see later. We will denote by ⋃︀∆n⋃︀min and ⋃︀∆n⋃︀max the minimal
and maximal mesh gauge,

⋃︀∆n⋃︀min ∶= min
0≤ j<n (x j+1 − x j) , ⋃︀∆n⋃︀max ∶= max

0≤ j<n (x j+1 − x j) .
If the knots are uniformly spaced then ⋃︀∆n⋃︀min = ⋃︀∆n⋃︀max holds. Now we are able to
define a spline function of a certain degree as a piecewise polynomial of the following
form, according to Curry and Schoenberg [CS66].

Definition 3.2. A function s(x) ∈ 𝒮(∆n , k) is said to be a spline function of degree k,
provided that it satisfies the following conditions:

1. s(x) ∈ Ck−1((︀0, 1⌋︀),
2. s(x) ∈ 𝒫k in each interval (x j , x j+1) for all j ∈ {0, . . . , n − 1}.

The approximation with splines, i.e., piecewise polynomials, on knots that are uni-
formly distributed has first been developed by Schoenberg in 1946, see the articles
[Sch46b; Sch46a]. An illustration of a basis of the spline space where the knots are
uniformly distributed is shown in Figure 3.2. In the review of the very same article
[Sch46b; Sch46a], Curry has already pointed out an extension to non-equidistantly
spaced knots, while this generalization has not been published until 1966 by Curry
and Schoenberg [CS66]. Figure 3.3 shows basis functions for non-equidistant knots.
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[Johannes Nagler – February 10, 2015 at 12:12]

Figure 3.2: The normalized B-splines of degree k = 3 and uniformly distributed knots (n = 8).
Note that the five basis functions in the center, N0,3 , . . . ,N4,3, are translates of each other.

Curry and Schoenberg have provided also a basis for the spline space, the so called
B-spline basis. Let us define the B-splines M j,k for j ∈ {−k, . . . , n − 1} as in [CS66] by
the (k + 1)-th divided difference of the truncated power function of degree k:

M j,k(x) ∶= ∆(x j , . . . , x j+k+1)(k + 1)(⋅ − x)k+. (3.2)

These functions have finite support,

suppM j,k(x) = )︀x j , x j+k+1⌈︀ ,
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[Johannes Nagler – February 10, 2015 at 12:12]

Figure 3.3: The normalized B-splines of degree k = 3 and non-equidistant knots (n = 8). Here,
∆n = {0, 0.1, 0.25, 0.35, 0.5, 0.75, 0.8, 0.9, 1}.

and are normalized to have integral one,

∫
1

0
M j,k(x)dx = 1.

The n + k B-splines M j,k are linearly independent and moreover, they form a basis
of the spline space 𝒮(∆n , k). As consequence, every spline s(x) ∈ 𝒮(∆n , k) can be
uniquely represented in the form

s(x) = n−1∑
j=−k c jM j,k(x),

with coefficients c j ∈ R. For more detail, we refer to Curry and Schoenberg [CS66]. It
has been shown in [Sch67,Thm. 5] that this basis is in particular variation-diminishing.
Moreover, S. Karlin has shown that the B-spline basis are in fact totally positive [Kar68].
Note this results has been proved using a different technique by de Boor [dBoo76].
De Boor and DeVore have constructed a purely geometrical proof in [dBD85].

Proposition 3.12 ([Kar68, Thm. 4.1 (p.527)]). The kernel M j,k(x) is totally positive on
Z ×R.

Recall that using Proposition 2.7, the variation diminishing property follows for
every integral operator of type (2.1) as discussed in Section 2.3.2.
While the B-splines are normalized to have integral one, there exists a renormal-

ization yielding a basis that forms a partition of unity. Accordingly, we define the
normalized B-splines as in [Sch67, p.270 and p.274] for x ∈ (︀0, 1⌋︀ by

N j,k(x) ∶= x j+k+1 − x j
k + 1 M j,k(x) = (ξ j,k+1 − ξ j−1,k+1)M j,k(x). (3.3)
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We denote by 𝒮(∆n , k) the spline space of degree k with respect to the knot sequence
∆n,

𝒮(∆n , k) = )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
n−1∑
j=−k c jN j,k ∶ c j ∈ R, j ∈ {−k, . . . , n − 1}[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀ ⊂ C

k−1((︀0, 1⌋︀).
Since 𝒮(∆n , k) is an finite-dimensional subspace of C((︀0, 1⌋︀) of dimension n + k,𝒮(∆n , k) is a Banach space with the inherited norm ∏︁⋅∏︁∞. For more information on
spline spaces and splines see, e.g., the books of de Boor [dBoo01], Nürnberger [Nür89],
and Schumaker [Sch07].
In the next section, we will see that these basis functions {N j,k} form a partition

of unity and provide a way to preserve linear functions. These two properties are due
to Schoenberg’s variation-diminishing spline operator, which will be discussed in the
following.

3.2.1 The Schoenberg operator
The Schoenberg operator S∆n ,k ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) of degree k with respect to the
knot sequence ∆n is defined for the continuous function f by

S∆n ,k f (x) = n−1∑
j=−k f (ξ j,k)N j,k(x), x ∈ (︀0, 1⌋︀ , (3.4)

where ξ j,k are the so called Greville nodes, see the supplement in [Sch67], defined for
all j ∈ {−k, . . . , n − 1} by

ξ j,k ∶= x j+1 +⋯ + x j+k
k

. (3.5)

The normalized B-splines N j,k are defined for all j ∈ {−k, . . . , n − 1} and x ∈ (︀0, 1⌋︀ by
N j,k(x) ∶= (x j+k+1 − x j)∆(x j , . . . , x j+k+1)(⋅ − x)k+,

where ∆(()x j , . . . , x j+k+1) denotes the divided difference operator and xk+ denotes the
truncated power function as defined in Section 1.3 on page 6. In order to guarantee
the evaluation of the Schoenberg operator on the whole interval (︀0, 1⌋︀, especially at
the point 1, the B-splines are chosen here in such a way that the B-splines are right-
continuous at the knots x1, . . . , xn−1, while at the point xn = 1 they are chosen to be
left continuous. This is due to the definition of the divided difference operator. For
more details, we refer to de Boor’s book [dBoo01].

The operator S∆n ,k has been first devised by I. J. Schoenberg in 1967 [Sch67]. This
operator evaluates continuous functions at the so called Greville nodes. These are
named after Greville who has calculated as first an exact representation of these nodes,
see the supplement [Sch67, p. 286 ff.]. In this manner, Schoenberg’s operator provides
a variation-diminishing smooth approximation of continuous functions by a linear
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combination of the splines basis functions. The smoothness of the approximation is
depending on the degree of the spline. The Schoenberg operator is able to reproduce
constants, and hence, the normalized B-splines form a partition of unity

n−1∑
j=−kN j,k(x) = 1. (3.6)

Moreover, the Schoenberg operator can reproduce linear functions, i.e.,

n−1∑
j=−k ξ j,kN j,k(x) = x , (3.7)

due to the chosenGreville nodes. Formore properties of this operator, see, e.g., [Sch67;
MS66; Mar70]. We note that the reference for the Greville nodes and the Schoenberg
operator is dated by 1967, while the conference where the result has first been an-
nounced has been held in 1965. A comprehensive overview of direct inequalities can
be found in [BGKT02].

In [Sch67, Theorem 7] it has been shown by I. J. Schoenberg that the operator S∆n ,k
is in fact variation-diminishing.

Proposition 3.13 (Variation-diminishing property). For all f ∈ C((︀0, 1⌋︀) the approxi-
mation with the Schoenberg operator is variation-diminishing, i. e.,

v(S∆n ,k f ) ≤ v( f ).
Furthermore, the Schoenberg operator interpolates at the endpoints of the interval

due to the k-fold end knots, i. e.,

S∆n ,k f (0) = f (0), S∆n ,k f (1) = f (1)
holds for all f ∈ C((︀0, 1⌋︀) and these are the only interpolation points of S∆n ,k .

The derivatives of the spline approximation derived by the Schoenberg operator
can be explicitly calculated. To this end, let us define the discrete backward difference
operator ∇l working on the Greville nodes as

∇l f (ξ j,k) ∶= f (ξ j,k) − f (ξ j−1,k)
ξ j,l − ξ j−1,l .

As for all x ∈ (︀0, 1⌋︀,
DN j,k(x) = N j,k−1(x)

ξ j,k − ξ j−1,k −
N j+1,k−1(x)
ξ j+1,k − ξ j,k ,
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holds for all j ∈ {−k, . . . , n − 1}, we get the following two representation according to
Lemma 1 and 2 in Marsden [Mar70, pp. 32–36],

DS∆n ,k f (x) = n−1∑
j=1−k

f (ξ j,k) − f (ξ j−1,k)
ξ j,k − ξ j−1,k N j,k−1(x)

= n−1∑
j=1−k∇k f (ξ j,k)N j,k−1(x),

while the second derivative can be represented in the form

D2S∆n ,k f (x) = n−1∑
j=2−k

f (ξ j,k)− f (ξ j−1,k)
ξ j,k−ξ j−1,k − f (ξ j−1,k)− f (ξ j−2,k)

ξ j−1,k−ξ j−2,k

ξ j,k−1 − ξ j−1,k−1 N j,k−2(x)
= n−1∑

j=2−k∇k−1∇k f (ξ j,k)N j,k−2(x).
The following two important statements can be found inMarsden [Mar70]. The first

lemma states that the first two derivatives of the approximation converge uniformly
against the derivatives of the function, whereas for the second order derivative this
only holds true on compact subsets of (0, 1).
Proposition 3.14 ([Mar70, Theorem 9 and 11]). Let f ∈ C2((︀0, 1⌋︀). Then

1. limn→∞ S∆n ,k f (x) = f (x) uniformly in (︀0, 1⌋︀,
2. limn→∞ DS∆n ,k f (x) = D f (x) uniformly in (︀0, 1⌋︀,
3. limn→∞ D2S∆n ,k f (x) = D2 f (x) uniformly on compact subsets of (0, 1).

The Schoenberg operator is able to preserve positivity, monotonicity and convexity
of smooth functions.

Proposition 3.15 ([Mar70, Theorem 10]). For f ∈ C2((︀0, 1⌋︀) and k > 2 we have that

1. If f (x) ≥ 0 on (︀0, 1⌋︀, then S∆n ,k f (x) ≥ 0 on (︀0, 1⌋︀.
2. If D f (x) ≥ 0 on (︀0, 1⌋︀, then DS∆n ,k f (x) ≥ 0 on (︀0, 1⌋︀.
3. If D2 f (x) ≥ 0 on (︀0, 1⌋︀, then D2S∆n ,k f (x) ≥ 0 on (︀0, 1⌋︀.

Remark. In contrast to the Bernstein operator, the above lemma does not hold for the
third derivative. If f ∈ C3((︀0, 1⌋︀) and D3 f (x) ≥ 0 on (︀0, 1⌋︀, then for all k ≥ 3,
D3 S∆n ,k f (x) need not to be non-negative on (︀0, 1⌋︀.
A quantitative upper estimate by the second order modulus of smoothness has been

first considered by Esser [Ess76]. We show here the estimate given by Beutel et al.
[BGKT02], where quantitative results on the Schoenberg operator have been exten-
sively discussed.
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Proposition 3.16 ([BGKT02, Cor. 7]). The following uniform estimates hold for all
f ∈ C((︀0, 1⌋︀):

∏︁S∆n ,k f − f ∏︁∞ ≤ 5
4
⋅ ω2 ( f , 1k) ,

if ∆n is fixed and k →∞, and

∏︁S∆n ,k f − f ∏︁∞ ≤ (1 + k + 1
24

) ⋅ ω2 ( f , ⋃︀∆n⋃︀max)
for fixed spline degree k > 0 and ⋃︀∆n⋃︀max → 0.

We will prove corresponding lower estimates for the Schoenberg operator in Chap-
ter 4. To this end, we will also show the asymptotic behaviour of the iterates of S∆n ,k .

3.2.2 Integral Schoenberg operator
The integral Schoenberg operator has been introduced by M.W. Müller [Mül77] as
generalization to the Lp((︀0, 1⌋︀)-spaces of the variation-diminishing spline approxima-
tion devised by Schoenberg [Sch67] only on the space of continuous functions. As in
the last section, we assume ∆n to be the extended knot sequence

x−k = ⋯ = x0 = 0 < x1 < . . . < xn = ⋯ = xn+k = 1.
Let 1 ≤ p < ∞. The generalization of the Schoenberg operator to arbitrary Lp((︀0, 1⌋︀)-

spaces is now given for f ∈ Lp((︀0, 1⌋︀) by
V∆n ,k f (x) ∶= DS∆n ,k+1 F(x) = n−1∑

j=−k ∫
ξ j,k+1

ξ j−1,k+1
f (t)dt

N j,k(x)
ξ j,k+1 − ξ j−1,k+1 , (3.8)

where F(x) = ∫ x
0 f (t)dt. Note that according to (3.3) we can replace the last term

(ξ j,k+1 − ξ j−1,k+1)−1 N j,k(x)
by the B-splines M j,k(x) defined in (3.2). The following proposition gathers the con-
vergence properties of V∆n ,k .

Proposition 3.17 ([Mül77, Thm. 1]). For f ∈ Lp((︀0, 1⌋︀), 1 ≤ p ≤ ∞, there holds for
fixed spline degree k

lim⋃︀∆n ⋃︀max→0
∏︁V∆n ,k f − f ∏︁p = 0.

If the nodes ∆n are fixed, then similarly

lim
k→∞ ∏︁V∆n ,k f − f ∏︁p = 0. (3.9)
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Müller has also shown an upper estimate of the approximation error with respect
to the integral modulus of continuity.

Proposition 3.18 ([Mül77, Thm. 3]). Let f ∈ Lp((︀0, 1⌋︀), 1 ≤ p ≤ ∞. Then there exists
M > 0 independent of f and p, depending only on ∆n and k, such that

∏︁V∆n ,k f − f ∏︁p ≤ M ⋅ ω1,p( f , ⋃︀∆n⋃︀max).
Din [Din83] has found the related upper estimate when n is fixed and k tends to

infinity.

Proposition 3.19 ([Din83, Thm. 6]). Let f ∈ Lp((︀0, 1⌋︀), 1 ≤ p ≤ ∞. Then there exists
M > 0 independent of f and k, n, p such that

∏︁V∆n ,k f − f ∏︁p ≤ M ⋅ ω1,p( f , 1⌋︂
k + 1).

We will prove a corresponding lower estimate in Chapter 10 and show the limit of
the iterates of V∆n , k in Chapter 7 and Chapter 9.

3.2.3 On the eigenvalues of the Schoenberg operator
The eigenvalues of the Bernstein operator have been revealed already in 1966 by the
Russian Călugăreanu. Up to our knowledge results on the eigenvalues of the Schoen-
berg operator are not known explicitly. In the following, we show that 1 is a simple
eigenvalue of V∆n ,k and all the other eigenvalues are distinct non-negative, real num-
bers. Finally, we will show that the Schoenberg operator has the same eigenvalues as
V∆n ,k with the exception that 1 is not a simple eigenvalue anymore as the Schoenberg
operator reproduces constants and linear functions.

Theorem 3.20. The collocation matrix of the integral Schoenberg operator with the B-
splines as defined in (3.2)

( ∫ ξ i ,k+1
ξ i−1,k+1

M j,k(t)dt)
i j

is an oscillation matrix and thus, all eigenvalues are distinct positive real numbers. In
particular, 1 is the only eigenvalue on the unit circle and dim(ker(V∆n ,k − I)) = 1.
Proof. Recall, that the Greville nodes ξ j,k are defined as the knot averages as in (3.5)
by

ξ j,k ∶= x j+1 +⋯ + x j+k
k

.

First, note that the relations

x j < ξ j−1,k+1 < ξ j,k < ξ j,k+1 < x j+k+1, x j+1 < ξ j,k+1 < ξ j+1,k < ξ j+1,k+1 < x j+k+2
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and

suppM j,k = )︀x j , x j+k+1⌈︀ , suppM j+1,k = )︀x j+1, x j+k+2⌈︀
hold. From the continuity of M j,k and M j+1,k and the relations

M j,k(ξ j,k) > 0, M j+1,k(ξ j,k+1) > 0, M j,k(ξ j,k+1) > 0,
we can follow that

∫
ξ j,k+1

ξ j−1,k+1
M j,k(t)dt > 0, ∫ ξ j,k+1

ξ j−1,k+1
M j+1,k(t)dt > 0, and ∫ ξ j+1,k+1

ξ j,k+1
M j,k(t)dt > 0

holds. Moreover, the matrix

( ∫ ξ i ,k+1
ξ i−1,k+1

M j,k(t)dt)
i j

is non-singular as the B-splines M j,k(x) are linearly independent and so are the func-
tionals ∫ ξ i ,k+1

ξ i−1,k+1 ⋅dt due to their distinct support. From that we can conclude that the
collocation matrix is oscillatory according to the criteria of Proposition 2.5 provided
by Gantmacher and Krein [GK02].

Cooper and Waldron have used in [CW00] a relation between the Bernstein opera-
tor and the Kantorovič operator to deduce the eigenvalues of the Kantorovič operator.
We prove here a similar relation between the Schoenberg operator and its counterpart
for the Lp-spaces to characterize the eigenvalues of the Schoenberg operator.

Lemma 3.21. For all f ∈ C((︀0, 1⌋︀) the relation

DS∆n ,k f = V∆n ,k−1 D f

holds.

Proof. Follows directly by the definition of the integral Schoenberg operator, as by
(3.8)

V∆n ,k f (x) = DS∆n ,k+1 ∫
x

0
f (t)dt.

Then a simple calculation shows

V∆n ,k−1 D f (x) = DS∆n ,k+1 ∫
x

0
D f (t)dt = DS∆n ,k ( f (x)− f (0)) = DS∆n ,k f (x).

In the last step, we used the linearity of S∆n ,k and that S∆n ,k can reproduce constants.

Finally, we can use that the collocation matrix of V∆n ,k is an oscillatory matrix to
prove that the eigenvalues of the Schoenberg operator are non-negative, real numbers.
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The only eigenvalue with multiplicity two is 1, whereas all the others have multiplicity
one.

Theorem 3.22. The eigenvalues of the Schoenberg operator are characterized by

1 = λ0 = λ1 > λ2 > ⋯ > λn+k−1 > λn+k = 0.
Thus, besides 0 and 1 the Schoenberg operator has n + k − 1 distinct positive real eigen-
values.

Proof. We use that V∆n ,k−1 has n + k − 1 distinct positive eigenvalues combined with
the eigenvalue 0 coming from the finite-dimensional range ofV∆n ,k−1 and Lemma 3.21
saying that

DS∆n ,k f = V∆n ,k−1 D f

holds for all f ∈ C((︀0, 1⌋︀).
We show first that 0 ∈ σp(S∆n ,k ). To this end, let f ∈ C((︀0, 1⌋︀) be a function, such

that

f (ξ j) = 0 for all j ∈ {−k, . . . , n − 1}
and such that there exists x ∈ (︀0, 1⌋︀ ∖ {ξ j ∶ j ∈ {−k, . . . , n − 1}} with f (x) ≠ 0. For
example, consider the polynomial f (x) = ∏n−1

i=−k(x − ξi). Clearly, f ∈ C((︀0, 1⌋︀) and
we obtain S∆n ,k f = 0 ⋅ f = 0, because for all x ∈ (︀0, 1⌋︀

S∆n ,k f (x) = n−1∑
j=−k ⌊︀

n−1∏
i=−k(ξ j − ξi)}︀N j,k(x) = 0.

Wenow construct the set of eigenvalues and eigenfunctions of S∆n ,k by their relation
to the integral Schoenberg operator V∆n ,k−1 . To this end, let us consider now an eigen-
function s ∈ 𝒮(∆n , k) of S∆n ,k corresponding to some eigenvalue λ ∈ σp(S∆n ,k ) ∖{0, 1}. Then we calculate

V∆n ,k−1 Ds = DS∆n ,k s = λDs.

This states in particular that the eigenvalue λ ≠ 0 of the Schoenberg operator with
corresponding eigenfunction s is again an eigenvalue of V∆n ,k−1 with associated eigen-
function Ds. The only exception yields the eigenfunction 1. Here, we obtain

V∆n ,k D1 = D1 = 0.
Therefore, 0 = D1 does not yield a new linear independent eigenfunction of V∆n ,k−1 .
Whereas, the eigenfunction x corresponding to the eigenvalue 1 is mapped to the
constant eigenfunction 1:

V∆n ,k Dx = DS∆n ,k x = Dx = 1.
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As all the eigenfunctions s1, . . . , sn+k−1 of S∆n ,k corresponding to the eigenvalues
λ1, . . . , λn+k−1 are linearly independent, so are the functions Ds1, . . . ,Dsn+k−1. Conse-
quently, λ1, . . . , λn+k−1 are exactly the n + k − 1 distinct positive eigenvalues of S∆n ,k .
This concludes the proof.
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Variation Diminishing Splines

‘‘ All truths are easy to understand once they are discovered;
the point is to discover them.’’

galileo galilei

To be able to detect singularities of piecewise smooth functions we will es-
tablish lower estimates for Schoenberg’s variation-diminishing splines which we

have introduced in previous chapter. Concretely, we will show a lower bound for
the approximation error by the second order modulus of smoothness or the related
K-functional. Using the already known upper estimate allows us to interpret the ap-
proximation error in terms of local smoothness of the function.

In 2002, L. Beutel and her coauthors investigated in the article [BGKT02] quantita-
tive direct approximation inequalities for the Schoenberg operator. More importantly,
the authors stated an interesting conjecture regarding the equivalence of the approxi-
mation error of the Schoenberg operator on (︀0, 1⌋︀ and the second order Ditzian-Totik
modulus of smoothness with weight function φ(x) = ⌈︂x(1 − x).
We show here a lower estimate for the approximation error by the classical second

order modulus of smoothness. Thereby, we first characterize the asymptotic behavior
of the iterates of the Schoenberg operator. Afterwards, we use this result in order
to prove a lower bound of the approximation error with respect to the second order
modulus of smoothness. The convergence of the iterates of the Schoenberg operator
to the operator of linear interpolation at the endpoints of the interval (︀0, 1⌋︀ can be
also seen by the method provided by Gavrea and Ivan [GI11a] based on Korovkin-type
approximation theory. However, while theirmethods ensure the uniform convergence
of those iterates, they do not give the rate of convergence in which in fact we are
interested. Therefore, our approach uses an earlier result of Badea [Bad09], where
the asymptotic behavior of the iterates is characterized by their spectral properties.
Moreover, these results provide a simple and elegant generalization of the results of
the manuscript [NK13] to the non-uniform case by using a functional analysis based
framework. Based on this framework we will show in the second part of this thesis
how to transfer this method to linear operators on general Banach spaces with smooth

41
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range. We will also provide a complete characterization of the iterates of operators
based on spectral properties provided that the fixed point space of the operator is
finite-dimensional in Chapter 9.
Let us briefly recall the definition of the Schoenberg operator. Given integers n >

0, k > 0 and the knot sequence ∆n = {x j}n+kj=−k such that

x−k = ⋯ = x0 = 0 < x1 < . . . < xn = ⋯ = xn+k = 1
we consider the variation-diminishing spline operator S∆n ,k ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀)

S∆n ,k f (x) = n−1∑
j=−k f (ξ j,k)N j,k(x), 0 ≤ x ≤ 1,

where ξ j,k are the Greville nodes and N j,k the normalized B-splines. More details can
be found in the previous chapter in Section 3.2. For the convenience of the reader we
highlight once more the partition of unity property

n−1∑
j=−kN j,k(x) = 1, (4.1)

and the ability to reproduce linear functions, i.e.,

n−1∑
j=−k ξ j,kN j,k(x) = x . (4.2)

Also recall, that we denote by ⋃︀∆n⋃︀min and ⋃︀∆n⋃︀max the minimal and the maximal mesh
gauge, respectively. Finally, we mention here that the results of this chapter can be
found in the manuscript [NCF14] submitted to the Journal of Complexity, which is
joint work with Paula Cerejeiras and Brigitte Forster.

4.1 Spectral location and the limit of the iterates
We investigate first some basic properties of the Schoenberg operator needed in order
to characterize the spectrum and to show the limit of the iterates. The following fact
can, e.g., be found in [dBoo73].

Theorem 4.1. The Schoenberg operator S∆n ,k ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) is bounded and∏︁S∆n ,k ∏︁op = 1.
Proof. Let f ∈ C((︀0, 1⌋︀) with ∏︁ f ∏︁∞ = 1. Then

∏︁S∆n ,k f ∏︁∞ =
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=−k f (ξ j,k)N j,k(x)

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞ ≤ ∏︁ f ∏︁∞ ⋅
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=−kN j,k(x)

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞ = 1,
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because of property (4.1). Therefore, ∏︁S∆n ,k ∏︁ ≤ 1. By considering now the con-
stant function 1 ∈ C((︀0, 1⌋︀), we get ∏︁S∆n ,k 1∏︁∞ = 1. Hence, the operator has norm
1, ∏︁S∆n ,k ∏︁op = 1.
Due to the finite-dimensional image of S∆n ,k , we can directly obtain the compact-

ness of the Schoenberg operator.

Theorem 4.2. The Schoenberg operator S∆n ,k ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) is compact and
as such ran(S∆n ,k − I) is closed. Besides, 1 is not a cluster point of the spectrum σ(S∆n ,k ).
Proof. From Theorem 4.1 it follows that the operator is bounded with ∏︁S∆n ,k ∏︁op = 1
and maps continuous functions to the spline space 𝒮(∆n , k). Therefore, the operator
has finite rank andfinite rank operators are compact. For compact operators ran(T−I)
is closed and 0 is the only possible cluster point of σ(S∆n ,k ), see [Rud91, Thm. 4.25].

Next, we will characterize the spectrum of the Schoenberg operator based on the
results we have shown in the end of the previous chapter. We will extendTheorem 3.22
stating the point spectrum of S∆n ,k consists of only of distinct, real numbers to the
spectrum of S∆n ,k .

Corollary 4.3. The spectrum of the Schoenberg operator consists only of the point spec-
trum and

σ(S∆n ,k ) ⊂ B(0, 1) ∪ {1} .
Proof. Since ∏︁S∆n ,k ∏︁op = 1, for λ ∈ σ(S∆n ,k ) the inequality

⋃︀λ⋃︀ ≤ ∏︁S∆n ,k ∏︁op = 1
holds. Therefore, σ(S∆n ,k ) ⊂ B(0, 1).
For compact operators, it is known that every λ ≠ 0 in the spectrum is contained

in the point spectrum of the operator. This classical result is stated, e.g., in Rudin
[Rud91, Thm. 4.25]. The n + k eigenvalues λ0, . . . , λn+k of S∆n ,k can be characterized
by Theorem 3.22 as

1 = λ0 = λ1 > λ2 > ⋯ > λn+k−1 > λn+k = 0.
As 0 ∈ σp(S∆n ,k ), it follows that

σ(S∆n ,k ) = σp(S∆n ,k ) ⊂ (︀0, 1) ∪ {1} ⊂ B(0, 1) ∪ {1} .
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For m → ∞ we investigate the asymptotic behaviour of the iterates Sm
∆n ,k of the

Schoenberg operator in order to prove the lower estimates, where the iterates are
defined by S0

∆n ,k = I and for m ∈ N by

Sm
∆n ,k f (x) = Sm−1

∆n ,k (S∆n ,k f )(x).
Concretely, we show that the iterates of the Schoenberg operator converge in the limit
uniformly to the linear operator L ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀), defined for f ∈ C((︀0, 1⌋︀)
by

(L f )(x) = f (0) + ( f (1) − f (0))x , x ∈ (︀0, 1⌋︀,
i. e., we will show that

lim
m→∞ ∫︁Sm

∆n ,k − L∫︁op = 0.
In [Bad09] it has been shown that operators of a certain structure converge to this

linear operator L. In fact, the Schoenberg operator S∆n ,k ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀)
fulfills the following required properties:

• The operator S∆n ,k is bounded and ran(S∆n ,k − I) is closed,

• ker(S∆n ,k − I) = span(1, x), i.e., the Schoenberg operator reproduces constant
and linear functions,

• S∆n ,k f (0) = f (0) and S∆n ,k f (1) = f (1) for every f ∈ C((︀0, 1⌋︀), i.e., the Schoen-
berg operator interpolates start and end points,

• σ(S∆n ,k ) ⊂ B(0, 1) ∪ {1}, and finally,

• 1 is not a cluster point of σ(S∆n ,k ), since

sup{⋃︀λ⋃︀ ∶ λ ∈ σ(S∆n ,k ) ∖ {1}} < 1.
All these properties have been shown in the previous section. We can conclude:

Theorem 4.4. With γ∆n ,k ∶= sup{λ ∈ C ∶ λ ∈ σ(S∆n ,k ) ∖ {1}}, we obtain

∫︁Sm
∆n ,k − L∫︁op ≤ C ⋅ γm∆n ,k

for some suitable constant 1 ≤ C ≤ 1⇑(γ∆n ,k) and therefore,

lim
m→∞ ∫︁Sm

∆n ,k − L∫︁op = 0.
Proof. The result follows now immediately from [Bad09, Thm. 2.1] using the above
mentioned properties of S∆n ,k .
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4.2 Lower estimates for the approximation error
In this section, we show that for r ∈ N, r ≥ 2, k > r, there exists a uniform constant
M > 0 such that

M ⋅ ωr( f , t(∆n , k)) ≤ ∏︁ f − S∆n ,k f ∏︁∞
and t(∆n , k) → 0 provided that ∏︁ f − S∆n ,k f ∏︁∞ → 0. Recall, that the r-th modulus of
smoothness ωr ∶ C((︀0, 1⌋︀) × (0, 1r ⌈︀ → (︀0,∞) is defined by

ωr( f , t) ∶= sup
0<h<t

sup{⋃︀∆r
h f (x)⋃︀ ∶ x ∈ (︀0, 1 − rh⌋︀} ,

with the forward difference operator

∆r
h f (x) = r∑

l=0(−1)r−l(r
l
) f (x + l h).

The r-th modulus of smoothness satisfies the following properties [Zyg02; Tim94]:

Lemma 4.5. Let 0 < t ≤ 1
r be fixed.

1. For f1, f2 ∈ C((︀0, 1⌋︀), the triangle inequality holds,

ωr( f1 + f2, t) ≤ ωr( f1, t) + ωr( f2, t). (4.3)

2. If f ∈ C((︀0, 1⌋︀), then

ωr( f , t) ≤ 2r ∏︁ f ∏︁∞ . (4.4)

3. If f ∈ Cr((︀0, 1⌋︀), then

ωr( f , t) ≤ tr ∏︁Dr f ∏︁∞ . (4.5)

Note that for k > r the spline space 𝒮(∆n , k) ⊂ Cr((︀0, 1⌋︀), because S∆n ,k f ∈
Ck−1((︀0, 1⌋︀). Hence, using inequalities (4.3) – (4.5), we obtain

ωr( f , t) ≤ 2r ∏︁ f − S∆n ,k f ∏︁∞ + tr ∏︁DrS∆n ,k f ∏︁∞ . (4.6)

This inequality shows the relation to Peetre’s K-functional. Recall that Kr( f , tr), the
Peetre K-functional is given by

Kr( f , tr) = inf
д∈Cr((︀0,1⌋︀){∏︁ f − д∏︁∞ + tr ∏︁Dr д∏︁∞} ,

It has been shown by Butzer and Berens [BB67] and Johnen and Scherer [JS77] that
the modulus of smoothness is equivalent to the corresponding K-functional. That is,

M−1 ⋅ ωr( f , t) ≤ Kr( f , tr) ≤ M ⋅ ωr( f , t)
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for a constant M independent of 0 < t ≤ 1 and f ∈ C((︀0, 1⌋︀).
In the following we will estimate the last term of (4.6) with respect to the approxima-

tion error ∏︁S∆n ,k f − f ∏︁∞. To this end, we consider the minimal mesh length ⋃︀∆n⋃︀min
of the knots,

⋃︀∆n⋃︀min ∶= min{(x j+1,k − x j,k) ∶ j ∈ {0, . . . , n − 1}} .
To establish the lower estimate, we need that the operator norm of the differential
operator Dr is bounded on the range of S∆n ,k that is the spline space 𝒮(∆n , k). We
will prove first that the differential operator of order one is bounded on the spline
space. Then we will extend this result to arbitrary orders.

Lemma 4.6. The differential operator D ∶ 𝒮(∆n , k) → 𝒮(∆n , k − 1) is bounded with∏︁D∏︁op ≤ (2k⇑ ⋃︀∆n⋃︀min)dk , where dk > 0 is a constant depending only on k.

Proof. Let s ∈ 𝒮(∆n , k), s(x) = ∑n−1
j=−k c jN j,k(x), with ∏︁s∏︁∞ = 1. According to

[Mar70], we can calculate the derivative by

Ds(x) = n−1∑
j=1−k

c j − c j−1
ξ j,k − ξ j−1,k N j,k−1(x).

Then we obtain with the triangle inequality

∏︁Ds∏︁∞ =
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=1−k

c j − c j−1
ξ j,k − ξ j−1,k N j,k−1

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞
= ∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=1−k

k(c j − c j−1)
x j+k − x j N j,k−1

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞ .

Due to the k-fold endpoints we can estimate the denominator only by

x j+k − x j ≥ ⋃︀∆n⋃︀min

instead of x j+k − x j ≥ k ⋃︀∆n⋃︀min and obtain

∏︁Ds∏︁∞ ≤ k (∏︁c∏︁∞ + ∏︁c∏︁∞)⋃︀∆n⋃︀min
⋅ ∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=1−kN j,k−1

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞ ,

where

∏︁c∏︁∞ = max{⋂︀c j⋂︀ ∶ j ∈ {−k, . . . , n − 1}} . (4.7)

According to [dBoo73], there exists dk > 0 depending only on k, such that

d−1k ∏︁c∏︁∞ ≤
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=−k c jN j,k

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞ ≤ ∏︁c∏︁∞ . (4.8)
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Rewriting the first inequality yields ∏︁c∏︁∞ ≤ dk , because ∏︁s∏︁∞ = 1. Now we use the
partition of the unity (4.1) to derive the estimate

∏︁Ds∏︁∞ ≤ 2k⋃︀∆n⋃︀min
dk .

Taking the supremum of all s ∈ 𝒮(∆n , k) with ∏︁s∏︁∞ = 1 yields the result.

Corollary 4.7. For l < k, the differential operators D l ∶ 𝒮(∆n , k) → 𝒮(∆n , k − l) are
bounded and

∫︁D l∫︁op ≤ ( 2k⋃︀∆n⋃︀min
)l dk .

Remark. The asymptotic behaviour of the constant dk occuring in Lemma 4.6 is already
characterized quite well in the literature. C. de Boor has conjectured that

dk ∼ 2k

holds for all k > 0. In [Lyc78], T. Lyche has proved the lower bound

2−3⇑2 k − 1
k
⋅ 2k ≤ dk .

Finally, C. de Boor’s conjecturewas confirmed in the article [SS99] of Scherer andShadrin
up to a polynomial factor. There the authors have shown that the upper inequality

dk ≤ k ⋅ 2k
holds for all k > 0. In our interest is the relation dk →∞ if k tends to infinity.

Now we are able to estimate ∏︁DrS∆n ,k f ∏︁∞ in terms of the approximation error∏︁ f − S∆n ,k f ∏︁∞.
Lemma 4.8. For any f ∈ C((︀0, 1⌋︀) there exists a constant M independent on f , such
that

∏︁DrS∆n ,k f ∏︁∞ ≤ M ⋅ ∏︁ f − S∆n ,k f ∏︁∞ .

Proof. We derive

∏︁DrS∆n ,k f ∏︁∞ = ∫︁DrS∆n ,k f − DrS2
∆n ,k f + DrS2

∆n ,k f − DrS3
∆n ,k f + . . .∫︁∞

≤ ∞∑
m=1 ∫︁DrSm

∆n ,k ( f − S∆n ,k f )∫︁∞
≤ ∏︁ f − S∆n ,k f ∏︁∞ ∞∑

m=1 ∫︁DrSm
∆n ,k ∫︁op
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= ∏︁ f − S∆n ,k f ∏︁∞ ∞∑
m=1 ∫︁Dr(Sm

∆n ,k − L + L)∫︁op
= ∏︁ f − S∆n ,k f ∏︁∞ ∞∑

m=1 ∫︁Dr(Sm
∆n ,k − L)∫︁op ,

as Dr annihilates linear functions and therefore, DrL = 0. Then we obtain using
Theorem 4.4 and Corollary 4.7

∏︁DrS∆n ,k f ∏︁ ≤ ∏︁ f − S∆n ,k f ∏︁∞ ∏︁Dr∏︁op ∞∑
m=1 ∫︁Sm

∆n ,k − L∫︁op
≤ ∏︁ f − S∆n ,k f ∏︁∞ ∏︁Dr∏︁op ∞∑

m=1Cγ
m
∆n ,k

≤ ∏︁ f − S∆n ,k f ∏︁∞ ∏︁Dr∏︁op Cγ∆n ,k
1 − γ∆n ,k

≤ 2rkrγ∆n ,kdkC⋃︀∆n⋃︀rmin (1 − γ∆n ,k) ∏︁ f − S∆n ,k f ∏︁∞ .

As C ≤ 1⇑γ∆n ,k , we get

∏︁DrS∆n ,k f ∏︁∞ ≤ 2rkrdk⋃︀∆n⋃︀rmin (1 − γ∆n ,k) ∏︁ f − S∆n ,k f ∏︁∞ .

The following two theorems are the main result of this chapter. We will establish
first the lower estimates in terms of moduli of smoothness and afterwards, we will
show corresponding estimates using the K-functional. Note that both theorems are a
direct consequence of the preceding lemma.

Theorem 4.9. Let f ∈ C((︀0, 1⌋︀) and k > r ≥ 2. Then the spline approximation error
can not be better than

1
2r+1ωr ( f , t(∆n , k)) ≤ ∏︁ f − S∆n ,k f ∏︁∞ ,

where

t(∆n , k) = ⋃︀∆n⋃︀min
k
⋅ ( 1 − γ∆n ,k

dk
)1⇑r

given a fixed grid ∆n and the degree k of the spline approximation. Moreover, we have
that t(∆n , k) → 0 if the approximation error converges to zero.

Proof. The proof follows immediately by Lemma 4.8.
Applying inequality (4.6) for 0 < t ≤ 1

r yields

ωr( f , t) ≤ 2r (1 + krdk⋃︀∆n⋃︀rmin (1 − γ∆n ,k) tr) ⋅ ∏︁ f − S∆n ,k f ∏︁∞ . (4.9)
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Setting

t(∆n , k) ∶= t = ⋃︀∆n⋃︀min
k
⋅ ( 1 − γ∆n ,k

dk
)1⇑r

in (4.9) yields the first claim. If the spline approximation converges, then necessarily

⋃︀∆n⋃︀min
k

→ 0

holds by [Mar70] and we conclude that t(∆n , k) → 0 and the proof is complete.

Using the same technique, we can state in the next theorem a uniform estimate for
the K-functional in a similar way:

Theorem 4.10. Let f ∈ C((︀0, 1⌋︀) and k > r ≥ 2. Then we have

1
2
⋅ Kr( f , t(∆n , k)r) ≤ ∏︁ f − S∆n ,k f ∏︁∞

with

t(∆n , k) ∶= t = ⋃︀∆n⋃︀min
k
⋅ ( 1 − γ∆n ,k

dk
)1⇑r .

Proof. Analogous to the proof of Theorem 4.9.
We obtain using the upper estimate for ∏︁DrS∆n ,k f ∏︁∞ of Lemma 4.8,

Kr( f , tr) ≤ ∏︁ f − S∆n ,k ∏︁∞ + tr ∏︁DrS∆n ,k f ∏︁∞
≤ (1 + 2rkrdk⋃︀∆n⋃︀rmin (1 − γ∆n ,k) tr) ⋅ ∏︁ f − S∆n ,k ∏︁∞ .

Finally, there is still one open question to answer. By definition of the constants, we
have dk →∞ for k →∞ and ⋃︀∆n⋃︀min → 0 for n →∞ provided that the approximation
error converges to zero. The question is whether the second largest eigenvalues of
the operator can speed up the convergence in Theorem 4.9. As far as we know, the
eigenvalues and eigenfunctions of the Schoenberg operator are still unknown. We
conclude this chapter with the following conjecture that characterizes the behavior of
the second largest eigenvalue of the Schoenberg operator.

Conjecture 4.1. Let k > 0 be fixed. Then

γ∆n ,k → 1, for n →∞.

Let n > 0 be fixed. Then

γ∆n ,k → 1, for k →∞.
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‘‘ In theory there is no difference
between theory and practice.

In practice there is.’’
yogi berra

The curvature of planar curves provides a crucial tool for various appli-
cations where shape information matters. Typical problems are to match specific

shapes or objects in segmented digital images or to try to understand the objects or
the scene that is depicted in the image based on the shape information. The curvature
profile of the contour of the shape is one of the most commonly used measures as
every planar curve is uniquely determined by its curvature profile up to its orientation
and translation.

This chapter is devoted to the curvature estimation of digitized planar curves as they
appear in digital images in a precise mathematical way. The approximation method of
our choice will be the Schoenberg’s splines which we have introduced in Section 3.2.
The variation-diminishing property combined with the ability to reproduce linear
functions are the key to construct a convexity preserving curvature estimation that
converges towards the real curvature. Even though this chapter focuses on splines due
to their outstanding approximation properties, the proof for the convergence holds
for general approximation operators provided that not only the curve but also their
derivatives can be uniformly approximated. In this case, we can state a pointwise upper
bound for the curvature approximation error. Furthermore, we are able to detect C2-
singularities using the established lower estimates of the approximation error by the
second order modulus of smoothness from Chapter 4.
First, we will give an overview over some applications and related research to the

estimation of the curvature. Next, we will cover the fundamentals of differential ge-
ometry to introduce the curvature of curves. We present the fundamental theorem of
curves which states that each curve is uniquely defined by its curvature profile up to
translation and orientation. In Section 5.3 we will deal with the problem to estimate
the curvature given only discretely many points on the curve. A general proof is given
for the convergence of the estimated curvature which gives necessary conditions on

51
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the used approximation operators. By the work of Goodman [Goo96] as shown in
Section 2.3.4 we can state that variation-diminishing operators that are able to repro-
duce linear functions preserve convexity. We will show that spline approximation
constructed according to Schoenberg provides a good curvature estimation that pre-
serves the convexity of the shape. For the case of piecewise C2-smooth curves, we
present an algorithm in Section 5.4.4 that is able to detect the singularities based on
lower estimates. We evaluate our algorithm numerically and compare our algorithm
with the state of art estimators of recent literature at the end of this chapter. The results
show that our spline based algorithm achieves competitive accuracy at significantly
slower computation times.

5.1 Applications and related work
We will briefly refer to some recent applications of the curvature profile of shapes in
digital images. Afterwards, we will give an overview over related research.

APPLICATIONS
Gardner et al. [GHJS05] have used the curvature for shape discrimination with a view
to cancer diagnostics. More recently, Pasqualato et al. [Pas12] have proposed quan-
titative shape analysis based on curvature for cancer cells. Biological shape analysis
by digital curvature has been discussed by Costa et al. [Cos04] and Castañón et al.
[Cas07]. Another important application for shape classification is the detection of im-
portant points on the curve. In the comprehensive work of Tuytelaars andMikolajczyk
[TM07] several local invariant feature detectors have been surveyed where one of the
presented features are points of high curvature. The significance of high curvature
points for visual perception has been highlighted once more by Loncaric [Lon98] in
their survey of shape analysis techniques. Recently, Yalim Keles and Tari [YT15] has
proposed a robust method for scale independent detection of curvature-based critical-
ities and intersections in line drawings. Zhong and Ma have analyzed in [ZM10] the
curvature scale-space and have evaluated the technique for corner detection and shape
representation. A shape detection method based on curvature has been considered
lately by Šukilović [Šuk15].

RELATED WORK
One way to measure the curvature in digital images is to measure the angular change
of the tangent along the path of the curve. Bennett and Mac Donald [BM75] have
discussed this approach with respect to the quantization noise that occurs in the dis-
cretization of the digital image. Based on the famous primal sketch model of the
neuroscientist D. Marr, Asada and Brady [AB86] has introduced the curvature primal
sketch that includes a set of parameterized curvature discontinuities. Medioni and
Yasumoto where the first to use B-splines for corner detection based on the curvature
[MY87]. Worring and Smeulders [WS93] have proposed several methods for curva-
ture estimation in digital images. A multiscale, curvature-based shape representation
for planar curves has been proposed in Mokhtarian andMackworth [MM92], see also



5.2 Preliminaries 53

Marcondes Cesar Jr. and Da Fontoura Costa [MD96] who have proposed effective
shape representations based on curvature multiscale methods. The occuring numeri-
cal problems in the curvature estimation have been analyzed in Kovalevsky [Kov01].
Due to these numerical issues, Utcke [Utc03] has discussed error bounds. Recently,
Hermann and Klette [HK07] evaluated in their comparative study several curvature
estimators for two-dimensional curves in images. As result they recommended to use
a B-spline based approximations for images with high resolution due to numerical
experiments, while a quantitative result proving this result is still missing. Recently,
De Vieilleville, Lachaud, and Feschet [DLF07], Roussillon and Lachaud [RL11], Coeur-
jolly, Lachaud, and Levallois [CLL14], and Levallois, Coeurjolly, and Lachaud [LCL14]
have proved the multi-grid convergence of their estimators for convex shapes with
techniques from differential geometry. We will compare our spline based curvature
estimates with these estimators and confirm the observation made by Hermann and
Klette in the numerical evaluations in Section 5.4.4.

5.2 Preliminaries
For the convenience of the reader, we will give here a short introduction to planar
curves in order to define the curvature properly and to state the fundamental theorem
for planar curves. Formore details we refer to the classical book of do Carmo [dCar76].

Throughout this section, we consider I = (︀a, b⌋︀ ⊂ R as an interval. We study planar
curves α ∶ I → R2 defined by two coordinate maps x , y ∶ I → R as α(t) = (x(t), y(t))
and discuss their properties.

Definition 5.1 (Planar parametrized curves). A differentiable map α ∶ I → R2 is
said to be a (parametrized) differentiable curve. If the map α is k-times continuously
differentiable, then α is called a (parametrized) planar Ck-curve.

If α ∶ I → R2 is a parametrized planar curve, then the two corresponding coordinate
maps x ∶ I → R and y ∶ I → R are differentiable. One important class of curves are
those where the first derivative does not vanish on I.

Definition 5.2 (Regular curves). A parametrized differentiable curve α ∶ I → R2 is
said to be regular if α̇(t) ≠ 0 for all t ∈ I.
For regular parametrized curves we can calculate its arc length. The arc length of

the regular parametrized curve α ∶ I → Rn is the integral value

L(α) = ∫ b

a
⋃︀α̇(t)⋃︀dt,

where

∏︁α̇(t)∏︁ = ⌈︂ẋ(t)2 + ẏ(t)2.

A special case is where ∏︁α̇(t)∏︁ = 1 for all t ∈ I. Then L(α) = b − a. In that case we call
the curve α parametrized by arc length.
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Next, given a regular C2-curve α ∶ I → R2 we consider for any t0 ∈ I the Taylor
expansion

α(t) = α(t0) + (t − t0)α̇(t0) + (t − t0)2

2
α̈(t0) + ((t − t0)2),

for t → t0. In the following we will discuss the meaning of α̇(t0) and α̈(t0).
Definition 5.3. Let α ∶ I → R2 be a parametrized curve. Then T(t) = α̇(t) is called
the tangent of α at the point t.

The length of the tangent vector measures the speed to travels along the curve. If
the curve is parametrized by arc length, then ⋃︀α̇⋃︀ = ∏︁T(s)∏︁ = 1 holds. I.e., the curve
travels along the curve with constant speed one.

The second derivative of α, i. e., the first derivative of the tangent vector, provides a
perpendicular vector to the tangent vector.

Definition 5.4. Let α ∶ I → R2 be a parametrized curve. Then N(t) = α̈(t) is called
the normal of α at the point t. The unit normal vector will be denoted by Nu(t) ∶=
N(t) ∏︁N(t)∏︁.

The length of the normal vector measures the acceleration, i. e., the rate of change
of the tangent vector, to travel along the curve. Accordingly, we define the curvature
as the signed length of the normal vector in the case where the curve is parametrized
by arc length. The curvature measures how much the curve deviates from its tangent
line.

Definition 5.5 (Curvature). Let α ∶ I → R2 be a curve parametrized by arc length s.
Then we denote by κα(s) the signed curvature of α at the point s ∈ I, where

α̈(s) = κα(s)Nu(s).
Note. Straight lines have curvature 0, while a circle of radius r has curvature 1⇑r. The
sign of the curvature provides information in which direction the curve bends. A positive
sign means that the curves bends in direction of the normal vector, while a negative sign
is obtained if the curve bends in the opposite direction of the normal vector.

Proposition 5.1. A planar curve is a line if and only if its curvature is 0 everywhere.

The curvature of planar curves that are not parametrized by arc length can be cal-
culated by a normalization:

Proposition 5.2. Let α ∶ I → R2 be a regular C2-curve with α(t) = (x(t), y(t))T for
t ∈ I. Then the curvature of α at t ∈ I is given by

κα(t) = α̇(t) × α̈(t)∏︁α̇(t)∏︁3 .
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α(t)

T(t0)

N(t0)

t0

Figure 5.1: Tangent and normal vector on a curve

For the special case, where α is the graph of a function, the curvature term can be
simplified in the following way.

Proposition 5.3. For a function f ∶ I → R, f ∈ C2(I), the curvature of y = f (x) is
given by

κ f (x) = D2 f (x)
(1 + ⋃︀D f (x)⋃︀2) 3

2
,

where D represents the differential operator with respect to the x-coordinate.

Next, we state the fundamental theorem of curve theory in the Euclidean plane. This
theorem states that a regular curve parametrized by arc length is entirely determined
(up to orientation and translation) by its curvature.

Proposition 5.4 (Fundamental theorem of planar curves). Let κ̃ ∶ I → R be a smooth
function. Then there exists a planar curve α parametrized by arc length such the cur-
vature of α equals κ̃, i. e., κα = κ̃. This curve is unique up an orientation preserving
isometry.

Note that throughout the next sections we will choose w.l.o.g. the interval I as the
unit interval (︀0, 1⌋︀.
5.3 Curvature estimation
Based on the fundamental theorem of planar curves, the curvature profile of a shape
is an often used measure in pattern recognition to match corresponding shapes, as
every planar curve is uniquely determined by its curvature profile up to its orientation
and translation.
In the following, we want to approximate the curvature of a planar curve where

only discrete samples are available. We want an approximation method, where the
approximation does not oscillate more often about any straight line than the function
to be approximated. This criterion is important, as the curvature is defined as the
deviation from a straight line, namely the tangent line. This kind of approximation is
called shape preserving approximations, see Section 2.3.4. There, it has been shown



56 chapter 5 Curvature Estimation of Piecewise Smooth Curves

by Karlin [Kar68] and Goodman [Goo96] that variation diminishing operators that
can reproduce constants and linear functions are able to preserve the positivity, the
monotonicity, and the convexity of curves. Karlin has shown this result for smooth
functions f ∶ (︀0, 1⌋︀ → R, whereas this result has been extended by [Goo96] to smooth
curves α ∶ (︀0, 1⌋︀ → R2.

Therefore, we are considering variation diminishing operators that can reproduce
linear functions. Two famous operators of this kind have been introduced and dis-
cussed in Chapter 3, the Bernstein operator and Schoenberg’s spline operator. We
will provide here a general framework for variation diminishing approximation opera-
tors that ensures the convergence of the curvature estimate towards the real curvature.
Concretely, we will prove that the variation diminishing splines are admissible and are
able to preserve the convexity of the sampled curve. We are choosing the splines here
due to their local flexibility and the non-uniform spacing of the knots.

5.3.1 Uniform convergence of curvature approximations
Consider α ∶ (︀0, 1⌋︀ → R2 as a regular curve where α(t) = (x(t), y(t))T for t ∈ (︀0, 1⌋︀.
As shown in the last section, the curvature κ(α; t) at the point α(t) can be analytically
computeted by

κ(α; t) = α̇(t) × α̈(t)∏︁α̇(t)∏︁3 , (5.1)

provided that α is twice differentiable.
Next, we consider a sequence of smooth C2-approximation α̃n ∶ (︀0, 1⌋︀ → R2 of the

given curve α where only n points of α are evaluated. Using this approximation α̃n,
we can define an n-term curvature estimate of the curve α by

κ̃n(α; t) = ˙̃αn(t) × ¨̃αn(t)
∫︁ ˙̃αn(t)∫︁3 , (5.2)

We will prove in this section under additional assumptions on α̃n that κn(α) → κ(α)
for n →∞. First, we state the following pointwise estimate of the curvature for n →∞.

Theorem 5.5. Let α ∶ I → R2 be a regular planar C2-curve and consider the C2-smooth
approximation α̃n. Suppose there exists constants C3,C4 > 0 independent on n such that

∫︁ ˙̃αn∫︁∞ ≤ C3 ∏︁α̇∏︁∞ , ∫︁ ¨̃αn∫︁∞ ≤ C4 ∏︁α̈∏︁∞
holds and

lim
n→∞ ∏︁α(t) − α̃n(t)∏︁∞ = 0, lim

n→∞ ∫︁α̇(t) − ˙̃αn(t)∫︁∞ = 0.
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Then there exists constants C1,C2 > 0 independent on α̃n such that

⋃︀κ(α; t) − κ̃n(α; t)⋃︀ ≤ C1 ∫︁α̇(t) − ˙̃αn(t)∫︁1 + C2 ∫︁α̈(t) − ¨̃αn(t)∫︁1
for n →∞ and all t ∈ (︀0, 1⌋︀.
Proof. We start adding a mixed term and use the triangle inequality:

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
ẋ(t) ÿ(t) − ẍ(t) ẏ(t)∏︁α̇∏︁3 − ˙̃xn(t) ¨̃yn(t) − ¨̃xn(t) ˙̃yn(t)

∫︁ ˙̃αn∫︁3

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
= ∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

ẋ(t) ÿ(t) − ẍ(t) ẏ(t)∏︁α̇∏︁3 − ẋ(t) ÿ(t) − ẍ(t) ẏ(t)
∫︁ ˙̃αn∫︁3

+ ẋ(t) ÿ(t) − ẍ(t) ẏ(t)
∫︁ ˙̃αn∫︁3 − ˙̃xn(t) ¨̃yn(t) − ¨̃xn(t) ˙̃yn(t)

∫︁ ˙̃αn∫︁3

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
≤ ∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

ẋ(t) ÿ(t) − ẍ(t) ẏ(t)∏︁α̇∏︁3 − ẋ(t) ÿ(t) − ẍ(t) ẏ(t)
∫︁ ˙̃αn∫︁3

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
+ ∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

ẋ(t) ÿ(t) − ẍ(t) ẏ(t)
∫︁ ˙̃αn∫︁3 − ˙̃xn(t) ¨̃yn(t) − ¨̃xn(t) ˙̃yn(t)

∫︁ ˙̃αn∫︁3

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
≤ ⋃︀ẋ(t) ÿ(t) − ẍ(t) ẏ(t)⋃︀ ∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

1∏︁α̇∏︁3 − 1
∫︁ ˙̃αn∫︁3

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
+ 1
∫︁ ˙̃αn∫︁3 ⋂︀ẋ(t) ÿ(t) − ˙̃xn(t) ¨̃yn(t) + ¨̃xn(t) ˙̃yn(t) − ẍ(t) ẏ(t)⋂︀ (5.3)

In the following, we will estimate the first and the last term by the approximation error
of the first and second order derivative. First, we estimate the last term by adding
missing mixed terms and use the triangle inequality once more to obtain:

⋂︀ẋ(t) ÿ(t) − ˙̃xn(t) ¨̃yn(t) + ¨̃xn(t) ˙̃yn(t) − ẍ(t) ẏ(t)⋂︀
= ⋂︀ẋ(t) ÿ(t) + ˙̃xn(t) ÿ(t) − ˙̃xn(t) ÿ(t) − ˙̃xn(t) ¨̃yn(t)
+ ¨̃xn(t) ˙̃yn(t) − ¨̃xn(t) ẏ(t) + ¨̃xn(t) ẏ(t) − ẍ(t) ẏ(t)⋂︀
= ⋂︀ ÿ(t) ⋅ (︀ẋ(t) − ˙̃xn(t)⌋︀ + ˙̃xn(t) ⋅ (︀ ÿ(t) − ¨̃yn(t)⌋︀
+ ¨̃xn(t) ⋅ (︀ ˙̃yn(t) − ẏ(t)⌋︀ + ẏ(t) ⋅ (︀ ¨̃xn(t) − ẍ(t)⌋︀⋂︀
≤ ⋂︀ ˙̃xn(t)⋂︀ ⋂︀ ÿ(t) − ¨̃yn(t)⋂︀ + ⋂︀ ¨̃xn(t)⋂︀ ⋂︀ ẏ(t) − ˙̃yn(t)⋂︀
+ ⋃︀ ẏ(t)⋃︀ ⋂︀ẍ(t) − ¨̃xn(t)⋂︀ + ⋃︀ ÿ(t)⋃︀ ⋂︀ẋ(t) − ˙̃xn(t)⋂︀

Note that the first and the second derivative of x(t) and y(t) respectively are bounded
on (︀0, 1⌋︀. Then, with C̃1 ∶= max{C4 ∏︁ẍ∏︁∞ , ∏︁ ÿ∏︁∞} and C̃2 ∶= max{C3 ∏︁ẋ∏︁∞ , ∏︁ ẏ∏︁∞}
we obtain the estimate

⋂︀ẋ(t) ÿ(t) − ˙̃xn(t) ¨̃yn(t) + ¨̃xn(t) ˙̃yn(t) − ẍ(t) ẏ(t)⋂︀
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≤ C̃1 ∫︁α̇(t) − ˙̃αn(t)∫︁1 + C̃2 ∫︁α̈(t) − ¨̃αn(t)∫︁1 .
Next, we estimate the first line of (5.3) using a Taylor expansion. Concretely, we use

the Taylor expansion for the function д(x , y) = (x2 + y2)−3⇑2 evaluated at the points
α̇(t) = (ẋ(t), ẏ(t)) and ˙̃αn(t) = ( ˙̃xn(t), ˙̃yn(t)). A short calculation shows that

∂
∂x

д(x , y) = −3x
(x2 + y2)5⇑2 and ∂

∂y
д(x , y) = −3y

(x2 + y2)5⇑2 .
Then we obtain for n →∞:

⨄︀∏︁α̇∏︁−3 − ∫︁ ˙̃αn∫︁−3⨄︀ = ⋂︀д(ẋ(t), ẏ(t)) − д( ˙̃xn(t), ˙̃yn(t))⋂︀
= ∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

−3 ⋅ ˙̃αn(t)T

( ˙̃xn(t)2 + ˙̃yn(t)2)5⇑2 (α̇(t) − ˙̃αn(t)) + o(∫︁α̇(t) − ˙̃αn(t)∫︁1)
∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀≤ C̃3 ⋅ ∫︁α̇(t) − ˙̃αn(t)∫︁1 ,

where

C̃3 = 3 ⋅max{∫︁ ˙̃xn(t)∫︁∞ , ∫︁ ˙̃yn(t)∫︁∞}⋃︁( ˙̃xn(t)2 + ˙̃yn(t)2)5⇑2⋃︁∞
.

As ⋃︀ẋ(t) ÿ(t) − ẍ(t) ẏ(t)⋃︀ is bounded on (︀0, 1⌋︀, we get the final result

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
ẋ(t) ÿ(t) − ẍ(t) ẏ(t)∏︁α̇∏︁3 − ˙̃xn(t) ¨̃yn(t) − ¨̃xn(t) ˙̃yn(t)

∫︁ ˙̃αn∫︁3

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀≤ C1 ∫︁α̇(t) − ˙̃αn(t)∫︁1 + C2 ∫︁α̈(t) − ¨̃αn(t)∫︁1 .

Corollary 5.6. Let α ∶ (︀0, 1⌋︀ → R2 be a regular, twice differentiable planar curve and
let (α̃n)n∈N be a sequence of C2-smooth approximations of α such that

• α̃n − α(t) → 0 uniformly as n →∞,

• ˙̃αn − α̇(t) → 0 uniformly as n →∞,

• ¨̃αn − α̈(t) → 0 uniformly as n →∞.

and their exists constants C1,C2 > 0 independent of n such that

• ∫︁ ˙̃αn∫︁∞ ≤ C1 ∏︁α̇∏︁∞,
• ∫︁ ¨̃αn∫︁∞ ≤ C2 ∏︁α̈∏︁∞.

Then for n →∞ the approximation of the curvature converges uniformly, i. e.,

∏︁κ(α; t) − κ̃n(α; t)∏︁∞ → 0, for all t ∈ (︀0, 1⌋︀ .
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Note that the statements of Theorem 5.5 and Corollary 5.6 hold for all smooth
approximations that satisfy the stated conditions. The rate of convergence depends on
the rate of convergence of the first and the second derivatives.

5.3.2 Variation diminishing curvature estimation
In the following, we will consider variation diminishing approximation methods that
guarantee preserving of convexity of curves in order to provide ameaningful curvature
estimate. To this end, we consider as in Section 2.3.4 a normalized totally positive
basis {e1, . . . , en} and the corresponding sequence of approximation operator Tn ∶
C((︀0, 1⌋︀) → C((︀0, 1⌋︀),

Tn( f ; x) = n∑
i=1 f (xi)ei(x), t ∈ (︀0, 1⌋︀ ,

where the evaluation points 0 ≤ x1 < x2 < ⋯ < xn ≤ 1 are given. Furthermore, we
assume that this operator can reproduce linear functions, i. e.,

n∑
i=1 xiei(x) = x

holds. Due to the normalization of the basis, the basis functions do also form a par-
tition of unity. Thus, the operator Tn is able to reproduce all linear functions. Recall
that by Proposition 2.11 these properties already lead to the interpolation of start and
endpoints, i.e.,

Tn( f ; 0) = f (0) and Tn( f ; 1) = f (1).
Examples for this kind of operators are given in Chapter 3, e. g., the Schoenberg op-
erator or the Bernstein operator. According to Proposition 2.7, the operators Tn are
variation diminishing as the basis is totally positive and by Proposition 2.8 and Propo-
sition 2.9 the monotonicity and convexity is preserved under Tn. Recall that these
results are due to Karlin [Kar68]
In order to approximate the curve α ∶ (︀0, 1⌋︀ → R2 we extend the operator Tn by

applying it to every coordinate of α(t) = (x(t), y(t))T . Accordingly, for given evalu-
ation points 0 ≤ t1 < t2 < ⋯ < tn ≤ 1 we consider the operator Tn applied to the curve
α as

Tn(α; t) = n∑
j=1 (

x(t j)
y(t j)) e j(t), t ∈ (︀0, 1⌋︀ . (5.4)

The approximation is the linear combination of the basis functions weighted with
discretely many samples of the curve α. By the work of Goodman [Goo96], the shape
preserving properties in the 1D-case can be transferred to the approximation of curves.
Proposition 2.15 and its corollaries state that Tn preserves the monotonicity and the
convexity of α.
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In the following, we will show that the curvature approximation by the operator Tn
converges under some additional assumptions.

Corollary 5.7. Let α ∶ (︀0, 1⌋︀ → R2 be a regular, twice differentiable planar curve and
let (Tn)n∈N be a sequence of C2-smooth variation diminishing operators as in (5.4) that
satisfy the conditions of Corollary 5.6 of the form (5.4). Let us denote by α̃n(t) ∶=
Tn(α; t). If

• α̃n(t) − α(t) → 0 uniformly on (︀0, 1⌋︀ as n →∞,

• ˙̃αn(t) − α̇(t) → 0 uniformly on (︀0, 1⌋︀ as n →∞,

• ¨̃αn(t) − α̈(t) → 0 uniformly on (︀0, 1⌋︀ as n →∞.

and their exists constants C1,C2 > 0 independent of n such that

• ∫︁ ˙̃αn∫︁∞ ≤ C1 ∏︁α̇∏︁∞,
• ∫︁ ¨̃αn∫︁∞ ≤ C2 ∏︁α̈∏︁∞.

Then for n →∞ the approximation of the curvature converges uniformly, i. e.,

∏︁κ(α; t) − κ̃n(α; t)∏︁∞ → 0, for all t ∈ (︀0, 1⌋︀ .
By the variation diminishing property and the ability to reproduce linear functions the
approximations α̃n(t) preserve positivity, monotonicity, and the convexity of α(t) for
every integer n.

Also note that in this case the approximation error of the curvature is zero for
constants and lines, as the operators Tn can preserve constants and linear functions.

5.4 Curvature estimation with splines
Having established the convergence results for general variation diminishing operators
we will now show that the Schoenberg operator satisfies all the conditions of Corol-
lary 5.7 and thus, provides a linear approximation scheme to estimate the curvature of
finite number of samples of a smooth curve. We want to highlight the linearity here,
as this will lead to a fast algorithm which is of importance if big data is considered.
We will sketch the spline based multi-scale algorithm in Section 5.4.2 where the decay
rate of the error is used to weight different scales. This is due to the established lower
estimates of Chapter 4 which allow us to interpret the approximation error as local
smoothness. Accordingly, for smooth regions coarser scales will be preferred where
in more detailed regions finer scales are used.

We will evaluate our algorithm numerically in Section 5.4.3 for discrete points eval-
uations of a smooth curve. As the theory only guarantees the uniform convergence
for point evaluations, the convergence of the curvature estimation of digitized curves
is not guaranteed. We will overcome this issue in first to approximate the discrete
digitized values by a smoothing spline and then we apply our algorithm to the same
number of samples of the smoothing spline. We will numerically evaluate this method
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in Section 5.4.4 and compare our algorithm to recent curvature estimator. We will
show that while we achieve comparable accuracy of the curvature estimation we out-
perform the other methods in the running time.
As highlight we will demonstrate in Section 5.4.4 how our multi-scale algorithm

gives us the possibility to detect C2-singularities. Thus, the algorithm will first detect
the singularities for a piecewise smooth curve and then estimates the curvature on each
smooth patch. As far as we know this spline based multi-scale algorithm is the first
methods that is able to estimate the curvature of piecewise smooth curves. Therefore,
our algorithm is not only superior to the others compared to the running time but
also to the wider class of curves that can be considered.

5.4.1 Uniform convergence
Using the results of the preceding section, we will consider here the Schoenberg oper-
ator and show that all necessary condition of Corollary 5.7 are satisfied. This proves
that the variation diminishing splines provide a well behaved framework to estimate
the curvature of curves by only discretely given points. Recall, that the Schoenberg
operator is given for any continuous function f on (︀0, 1⌋︀ by

S∆n ,k f (x) = n−1∑
j=−k f (ξ j,k)N j,k(x), x ∈ (︀0, 1⌋︀ ,

where ξ j,k are the Greville nodes and N j,k are the normalized B-splines. See Sec-
tion 3.2.1 on page 33 for details. In fact, it has been shown in the work of Schoenberg
[Sch67] that S∆n ,k is variation diminishing and is able to preserve constants and linear
functions. The uniform convergence of the first two derivatives and the operator itself
has already been shown by Marsden [Mar70], see Proposition 3.14 in Chapter 3. The
convexity preserving property has also been proved in [Mar70], see Proposition 3.15.
Therefore, the only two missing conditions on S∆n ,k are the boundedness of the first
and the second order derivative. We will show these properties in the next lemma.

Lemma 5.8. The derivatives of the spline approximation are bounded by

∏︁D S∆n ,k ( f ; x)∏︁∞ ≤ ∏︁D f (x)∏︁∞
and

∫︁D2 S∆n ,k ( f ; x)∫︁∞ ≤ ⋃︀∆n⋃︀max⋃︀∆n⋃︀min
⋅ ∫︁D2 f (x)∫︁∞ .

Proof. Marsden [Mar70] has provided an explicit form for the derivatives of Schoen-
berg’s operator applied to a continuous function. Using [Mar70, Lemma 1 on p. 32],
the first derivative can be represented in the form

D S∆n ,k ( f ; x) = n−1∑
j=1−kD f (η(1)j )N j,k−1(x),
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where η(1)j ∈ (ξ j−1, ξ j). Similarly, we can write the second derivative by [Mar70,
Lemma 2 on p. 35] as

D2 S∆n ,k ( f ; x) = n−1∑
j=2−kD

2 f (η(2)j ) ξ j,k − ξ j−2,k

2(ξ j,k−1 − ξ j−1,k−1)N j,k−2(x),
with η(2)j ∈ (ξ j−1, ξ j). We will use both representation to directly calculate the bounds.
Accordingly, the stated upper bounds for the first derivative follow by

∏︁D S∆n ,k ( f ; x)∏︁∞ =
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=1−kD f (η(1)j )N j,k−1(x)

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞
≤ ∏︁D f (x)∏︁∞ ⋅

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁
n−1∑
j=1−kN j,k−1(x)

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞ = ∏︁D f (x)∏︁∞
and for the second derivative by

∫︁D2 S∆n ,k ( f ; x)∫︁∞ =
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=2−kD

2 f (η(2)j ) ξ j,k − ξ j−2,k

2(ξ j,k−1 − ξ j−1,k−1)N j,k−2(x)
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞

≤ ∫︁D2 f (x)∫︁∞
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=2−k

ξ j,k − ξ j−2,k

2(ξ j,k−1 − ξ j−1,k−1)N j,k−2(x)
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞

= ∫︁D2 f (x)∫︁∞
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

n−1∑
j=2−k

(k − 1)(x j+k − x j + x j+k−1 − x j−1)
2k(x j+k−1 − x j) N j,k−2(x)

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞
≤ ∫︁D2 f (x)∫︁∞

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁
n−1∑
j=2−k

(k − 1) ⋅ 2k ⋅ ⋃︀∆n⋃︀max
2k ⋅ ⋃︀∆n⋃︀min

N j,k−2(x)
∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∞

= (k − 1) ⋅ ⋃︀∆n⋃︀max⋃︀∆n⋃︀min
⋅ ∫︁D2 f (x)∫︁∞ .

Note that we need a bound that holds independently on n. For the uniform Schoen-
berg operator the ratio ⋃︀∆n⋃︀max ⇑ ⋃︀∆n⋃︀min = 1. We assume for the nonuniform case that⋃︀∆n⋃︀max ⇑ ⋃︀∆n⋃︀min ≤ M for some M independent on n. In this case, we can state the
following theorem.

Theorem 5.9. Let α ∶ (︀0, 1⌋︀ → R2 be a regular, twice differentiable planar curve and let
us consider the approximations α̃n(t) ∶= S∆n ,k (α; t) for k > 2. If there exist a constant
M independent on n such that ⋃︀∆n⋃︀max ⇑ ⋃︀∆n⋃︀min ≤ M holds, then the approximation of
the curvature converges uniformly for fixed k and n →∞, i. e.,

∏︁κ(α; t) − κ̃n(α; t)∏︁∞ → 0, for all t ∈ (︀0, 1⌋︀ .
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Besides, the approximations α̃n(t) preserve the positivity, monotonicity, and the convex-
ity of α(t) for every integer n.

Proof. Follows immediately by Corollary 5.7 using Proposition 3.14 and Lemma 5.8.

Note that the condition ⋃︀∆n⋃︀max ⇑ ⋃︀∆n⋃︀min ≤ M holds if we consider uniformly spaced
samples of the curve α.

5.4.2 Algorithm
In the following we describe the algorithm to estimate the curvature of a piecewise
smooth curve α ∶ (︀0, 1⌋︀ → R2, α(t) = (x(t), y(t))T . Thereby, we assume that we have
given a discrete set of points

𝒫n = {Pi ∶ Pi = (xi , yi) ∈ R2, i = 1, . . . , n}
that are sampled from the curve α, i. e., there exists t1 < ⋯ < tn ∈ (︀0, 1⌋︀ such that
α(ti) = Pi for all i ∈ {1, . . . , n}. To be able to consider different scales of the curve
approximation, we assume further that we have given interleaving point sets

𝒫(s1)n ⊂ 𝒫(s2)
n ⊂ ⋯ ⊂ 𝒫(s l )n ⊂ Pi

that construct the approximation α̃(sk)n (t) at scale s j or j ∈ {1, . . . , l}. Besides we
assume that the scale numbers

1 ≤ s1 < ⋯ < sl ≤ n
are equal to the number of points corresponding to their points sets. Then the algo-
rithm works as follows.

Step 1: Compute the cubic spline approximation α̃n , α̃(s1)n , . . . , α̃(s l )n by

α̃n(t) = S∆n ,k (α(𝒫n); t), α̃s j
n (t) = S∆n ,k (α(𝒫(s j)n ); t)

as shown in (5.4), where αn(𝒫n) and αn(𝒫(s j)n )means that the approximation
operator S∆n ,k is using only the points of the point set 𝒫n, respectively 𝒫(s j)n .

Step 2: For each scale s j we compute the corresponding curvature estimate

κ̃(s j)n (α; t) ∶= κn(α(𝒫(s j)n ); t)
by (5.2).
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curve parametrization parameters κmin κmax

Ellipse Rϕ(a cos(t), b sin(t)) a = 30, b = 20, ϕ = 0.5 0.0444 0.1500

Flower (ρ(t) ⋅ cos(t), ρ(t) ⋅ sin(t)),
ρ(t) = r1 + r2 ⋅ cos(k ⋅ t) r1 = 20, r2 = 5, k = 5 −0.575 0.1812

Table 5.1: The ellipse and the flower.
Both curves are given in explicit form with their parameters and their minimal and
maximal curvature. An illustration is shown in Figure 5.3 and Figure 5.4.

Step 3: For each scale s j we measure the absolute approximation error at each point
Pi corresponding to ti ∈ (︀0, 1⌋︀:

ε j(ti) ∶= ⋂︀α̃s j
n (ti) − Pi ⋂︀ ,

where Pi ∈ 𝒫 s l
n . With these error numbers we define the discrete decay rates

d j
j−1(ti) ∶= ⋂︀εs j−1(ti) − εs j(ti)⋂︀ , j ∈ {2, . . . , l}

that describe the change of the error between the coarse scale s j−1 and the finer
scale s j.

Step 4: If the discrete decay rates

d2
1 (ti), . . . , d l

l−1(ti)
of the multi-scale errors ε1(ti), . . . , εl(ti) are slow then the point Pi is classi-
fied as a C2-singularity. Concretely, this is done by looking for consisting local
maxima in the decay rates that are above a certain threshold.

Step 5: For the final curvature estimate at the point ti we weight the curvature esti-
mate at scale s j with the corresponding approximation error and the decay rate
to the next scale s j+1:

κ̃n(α; ti) ∶= ∑n−1
j=1 (ε j(ti) ⋅ d j+1

j (ti))−1 κ(s j)n (ti)
∑n−1

j=1 (ε j(ti) ⋅ d j+1
j (ti))−1 .

5.4.3 Numerical evaluation for samples of curves
We have implemented the algorithm in Matlab using the spline toolbox. For the evalu-
ation of the accuracy, we have tested the algorithm for a rotated ellipse with great axis
30 and small axis 20 and a flower with k petals where an explicit parametrization as
well as the explicit curvature is available. The explicit form and the used parameters
for the ellipse and the flower are listed in Table 5.1. Both curves can be seen in digitized
form in Figure 5.3 and Figure 5.4 together with their curvature profiles.
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For both evaluations we have used the scales

s1 = 8, s2 = 4, s3 = 2, s4 = 1,
where these numbers denote the sub-sampling factors. We have evaluated both curves
at n ∈ (︀100, 20000⌋︀ points t1, . . . , tn and we have computed for each n the curvature
estimate κ̃n(α; ti). To demonstrate the convergence and to numerically estimate the
convergence rate, we have measured the maximal and the average absolute error de-
fined by

εabs(n) = ∏︁κ(α; ti) − κn(α; ti)∏︁
and the maximal and the average relative error

εrel(n) = εabs(n)∏︁κ(α; ti)∏︁ .
The reported results for the absolute errors are plotted in Figure 5.2. We have chosen
to show the absolute error over the relative error in order to better visualize the gap
between the maximal and the average error. However, the measurements of both
curves suggest a decay rate of the error of the curvature estimation of𝒪(n−2) which
matches the approximation rate of the spline approximation for smooth functions.
Therefore, the measured results confirm the results that we have proved in theory
in the preceding sections. Also note that the estimation error of the ellipse is much
smaller than the curvature estimation error of the flower.

These promising results will motivate us to study the algorithm also for digitized
curves, even though the uniform convergence has only been proved for point evalu-
ations. We will curves that are digitized according to the Gauss scheme in the next
section.

5.4.4 Numerical evaluation for digitized contours
We consider now contours of shapes that have been digitized according to the Gauss
scheme.

Definition 5.6 (Gauss digitization). Let X ∈ Rd be a compact subset with smooth
boundary δX. The Gauss digitization of X at grid size h is defined as

Dh(X) = ( 1h ⋅ X) ∩Zd ,

where h−1 ⋅X is the uniform scaling of X by the factor h−1. We will denote by αh(X; t)
the corresponding digitized contour.

In the following, we will consider digitizations of the ellipse and the flower using
the same parameters as in the preceding section, see also Table 5.1. Both shapes have
been digitized using the Gauss scheme at three different grid steps h ∈ {1, 0.1, 0.01}.
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Figure 5.2: The absolute maximal and average error of the curvature estimation of an ellipse and
a flower at different number of point evaluations n ∈ (︀100, 20000⌋︀. The sub-sampling factors
for the multi-scale approach are set to 1, 2, 4, 8. We have plotted the curve n−2 to illustrate the
quadratic decay rate of the error. Note that the error for the ellipse is much smaller compared
to the error made for the flower.

The digitized shapes are illustrated in Figure 5.3 and Figure 5.4 for h = 1 and h = 0.1
with their curvature profile.

We compare our algorithm to the BC estimator [MBF08; EMC11] based on a con-
volution with a binomial kernel and the MDCA estimator [RL11] based on the set of
maximal digital circular arcs. For the evaluation we use the available C++ implementa-
tion of the open source libraryDGtal ¹. Note that our algorithm has been implemented
in Matlab using the spline toolbox. Thus, the run times are not directly comparable,
as the computation times in Matlab are usually slower compared to a corresponding
C++ implementation. Nevertheless, we show that our estimator is significantly faster
to compute than the others.

¹www.dgtal.org

www.dgtal.org
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Figure 5.3: Digitized ellipse with great axis 30 and small axis 20 rotated by 0.5rad.
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Figure 5.4: Digitized flower with 5 petals with great radius 20 and small radius 5.

Before we will compare our algorithm with the BC- and the MDCA-estimator and
discuss the results, we will briefly sketch how we have modified the original algorithm
to work also on digitized contours and not only for discrete samples of continuous
curves.

MODIF ICATIONS OF THE ALGORITHM

In order to reduce the digitization problem to the case of point evaluations, we have first
constructed a cubic smoothing spline to the digitized contour. The cubic smoothing
spline s (︀0, 1⌋︀ → R2 is the solution of the minimization problem

λ
n∑
i=1 (s(ti) − αh(X; ti))2 + (1 − λ) ∫ 1

0
(D2s(t))2 dt.

With λ = 1 we obtain the cubic spline interpolant to the data αh(X; ti). If λ → 0,
the smoothing spline converges to a straight line. For the evaluation, we have used
the smoothing parameter λ = 0.55 for an almost equal relation between data validity
and smoothness. In order to achieve a smooth curvature estimate we also smooth the
resulting curvature estimation as linear combination of the weighted scale estimates
by a smoothing spline with same parameter λ = 0.55.

As second modification, we have smoothed the approximation error and the curva-
ture estimates at the scales s1, . . . , sl by a convolution with a Gaussian. We have used a
window size that depends on the grid size h and on the current scale. At coarse scales
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Ellipse Flower

grid step h = 1 h = 0.1 h = 0.01 h = 1 h = 0.1 h = 0.01
# points 104 1016 10140 368 3644 36424

absolute max. error 0.0287 0.0081 0.0056 0.3591 0.1594 0.0580
absolute avg. error 0.0094 0.0021 0.0008 0.0305 0.0090 0.0019

relative max. error 0.1920 0.0541 0.0370 0.6246 0.2772 0.1009
relative avg. error 0.1179 0.0265 0.0103 0.3693 0.1118 0.0232

Table 5.2: Evaluation of the spline curvature estimator.

the window was smaller, while at fine scales more smoothing was necessary. Similarly,
we have used a larger window for a small grid step h using a logarithmic scaling.

For both shapes, we have used the grid step independent scales

s1 = 32, s2 = 16, s3 = 8, s4 = 4, s5 = 2,

where these factors are used as sub-sampling factors for the variation diminishing
spline approximation. Except this modifications, we have used the algorithm as de-
scribed in Section 5.4.2.

ACCU RACY

We have measured the absolute average and the maximal error as well as the relative
error for the digitization steps h = 1, h = 0.1, and h = 0.01. Moreover, we have reported
the corresponding running times. The results of the spline based curvature estimator
are shown in detail in Table 5.2. Table 5.3 compares the spline based estimator against
the other algorithms based on the relative average error and the running time. We
choose to show the relative error in order to be able to compare the error of both
shapes with each other. The curvature estimations are plotted against the ground truth
in Figure 5.5 for the ellipse and in Figure 5.6 for the flower.

The results show that each estimator is more accurate at the ellipse than at the flower.
This phenomenon is also reflected in Figure 5.7 and Figure 5.8 where the relative aver-
age error and the relativemaximal error is illustrated for both shapes. Another point to
look at are the oscillations of the spline estimator in Figure 5.5. These effects are coming
from the digitization of the smooth shape and its smoothing spline approximation and
are better resolved in the flower shown in Figure 5.6 where the shape contains more de-
tails. However, the spline estimator achieves very good accuracy compared to the BC
and theMDCA estimator as can be seen in Figure 5.7 and Figure 5.8. The BC estimator
performs worse at both shapes while our spline based algorithm achieves compara-
ble accuracy as the MDCA estimator. Also note that the accuracy of our algorithm
increases more significant at finer digitizations compared to the others. Therefore, we
recommend our algorithm if fine digitizations are considered. In the following, we will
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relative avg. error run time [ms]

BC MDCA Spline BC MDCA Spline

Ellipse, h = 1 0.0930 0.1138 0.1179 0.6 18.5 18.4
Ellipse, h = 0.1 0.0298 0.0311 0.0265 74.9 222.4 35.5
Ellipse, h = 0.01 0.0105 0.0090 0.0103 22020 2843.3 126.7

Flower, h = 1 0.3875 0.3354 0.3693 3.5 63.0 30.2
Flower, h = 0.1 0.2240 0.0907 0.1118 663.4 956.1 57.5
Flower, h = 0.01 0.0968 0.0266 0.0232 186821 9334.9 532.9

Table 5.3: Comparison between curvature estimators.
The table shows the relative average error and the corresponding run time for the
curvature estimation for two shapes digitized at three different grid steps. Note that
while the spline based estimator achieves competitive performance the computation
times are significantly faster.

give another argument that confirms this statement as our algorithm is much faster to
compute.

RUNNING TIME

All the evaluations have been run on an Intel Core i7 with 2.5Ghz and 8GB of main
memory. The resulting running times are reported in Table 5.3. While at the relative
average error of the curvature estimations all estimator are quite close, the spline based
method is the only one that can run each evaluation significantly under a second. The
longest running times have been measured for the flower shape at digitization level
h = 0.01. The BC estimator needs more than 3 minutes for the estimation and the
MDCA estimator needs 9 seconds, whereas the spline estimator only needs about
0.5 seconds. In terms of running times, the spline estimator clearly outperforms the
other two which is of importance if shapes at high resolutions are considered or if
the curvature of a large number of shapes have to be computed. This is due to the
linear approximation scheme of the spline estimator. Also note that the BC and the
MDCA estimator are implemented on C++, the spline estimator is only implemented
in Matlab. Therefore, the real running times for the spline estimator can be even faster.

PIECEWISE SMOOTH CU RVES

If fast computation times matter and accuracy of the curvature estimation is crucial,
we have already seen that our algorithm has to be chosen over the BC and the MDCA
estimator. We will give now another advantage, as the spline based algorithm is able
to handle piecewise smooth curves.

The lower estimates of the spline approximation error shown in the last chapter com-
bined with the known upper estimates allow the characterization of the smoothness
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of the function. A fast decay rate of the approximation error characterizes smooth
regions, whereas a slow decay rate occurs around C2-singularities. We utilize this rela-
tion for the detection of C2-singularities. This has already described in Section 5.4.2,
where we have provide a multi-scale based algorithm that decides whether a point on
the curve is a singularity or not based on the decay rate. As the variation diminishing
spline operator interpolates at the endpoints, we can split our curves at the singularities
and reduce the problem to estimate the curvature of the piecewise smooth curve to
estimate the curvature of each of the smooth patches. Then, Theorem 5.9 guarantees
the convergence of the spline based curvature estimates.

We have tested the algorithm for a circle, a rectangle and for a smooth Bezier-curve
that has exactly one singularity at the bottom. We have constructed the curve in such
a way that a second point of the curve has about the same estimated curvature value
as at the singularity. This is to show that singularities can no be detected by pure
thresholding of high curvature values. The results shown in Figure 5.9, Figure 5.10,
and Figure 5.11 demonstrate the exactness of the detected singularities.

5.4.5 Summary
The evaluations in the preceding section have shown that while the spline based es-
timator achieves competitive accuracy the running times are much faster compared
to the BC and the MDCA estimator. Another highlight of the spline based solution
coming from the field approximation theory is the ability to handle piecewise smooth
curves due to the lower estimates by the second order modulus of smoothness if the
spline degree is at least 3. Overall, our algorithm does not only outperform the others
if computation times matter but is also able to handle piecewise smooth curves that
occur naturally in many digital images.
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Figure 5.5: Curvature profiles for the digitized ellipse with varying parameter h ∈ {1, 0.1, 0.01}.

Note the oscillations that aremade by spline estimation due to the smoothing of the digitization.
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Figure 5.6: Curvature profiles for the digitized flower with varying parameter h ∈ {1, 0.1, 0.01}.
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Figure 5.7: The relative average and maximal errors for the estimated curvature of the ellipse.
While the spline estimator performs worst at the digitization step h = 1, it achieves almost the
same accuracy as the MDCA estimator.
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Figure 5.8: The relative average and maximal error for the estimated curvature of the flower. At
the large grid step h = 1, the accuracy of the spline estimator is between the other estimators.
The finer the grid step gets, the better the accuracy gets compared to the BC and the MDCA
estimator. At h = 0.01 the spline estimator outperforms both curvature estimators.
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(b) C2-Singularities

Figure 5.9: Singularity detection at a circle. The algorithm has correctly detected no singularities.
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(b) C2-Singularities

Figure 5.10: Singularity detection at a rectangle. The detected singularities are very well localized
at each corner.
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(b) C2-Singularities

Figure 5.11: Singularity detection at smooth curve with one singularity.
As can bee seen the singularity has been detected correctly. Note that by pure thresholding a
second smooth point would have been wrongly detected.
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chap t e r 6chap t e r 6chap t e r 6 Lower Estimates
– An Operator Theoretic View

‘‘ Pure mathematics is, in its way, the poetry of logical ideas.’’
albert einstein

The established lower estimates of the variation diminishing spline op-
erator provide an elegant way to characterize the singularities of a continuous

function depending on the chosen degree of the spline. Here, we will take an operator
theoretic view on the proof of Theorem 4.9 to obtain new insights in the underlying
concept for a generalization to other operators. Revisiting the proof for the lower es-
timate reveals mainly three important conditions. First, a differential operator of a
certain order has to be bounded on the range of the operator. Second, the iterates
of the operator have to converge in the uniform operator topology against a limiting
operator, and finally, the differential operator has to annihilate this limiting operator.
While the first condition depends only on the smoothness of the range of the operator,
the other two conditions are more interesting to characterize. In the following it will
be shown that the asymptotic behavior of the iterates can be established by spectral
properties. Moreover, the limiting operator of the iterates is an projection operator on
the fixed points of the iterated operator.

In the next section, we will revisit the proof for the lower estimate of Schoenberg’s
operator and highlight its key concepts in a general setting. Afterwards, a character-
ization of the iterates will be given in Section 6.2 by the classical work of Dunford
[Dun43b] and Katznelson and Tzafriri [KT86]. Finally, we give an outlook of open
questions that will be answered during the next chapters.

6.1 Lower estimates revisited
The key idea of the proof of the lower estimates for the Schoenberg operator is to
find and upper bound of the norm ∏︁DrS∆n ,k f ∏︁∞ in terms of the approximation error∏︁ f − S∆n ,k f ∏︁∞. This has been achieved using an extension to a telescopic series where

77
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the iterates of S∆n ,k have to be estimated. In the following we revisit the the proof of
Theorem 4.9 stated on page 48 in a generalized setting.

To this end, let us consider a general bounded operator T defined on a complex
Banach space (X , ∏︁⋅∏︁X) that satisfies the following conditions:

1. ran(T) ⊂ Cr and Dr is bounded on the range of T for r ∈ N,
2. the iterates Tm converge for m →∞ against an operator P with rate

∏︁Tm − P∏︁op ≤ γm−1,
where 0 < γ < 1,

3. Dr annihilates P, i. e., DrP = 0.
Under these assumption on T , we can estimate the term ∏︁DrT f ∏︁X for any f ∈ X as

follows:

∏︁DrT f ∏︁X = ∫︁DrT f − DrT2 f + DrT2 f − DrT3 f + . . .∫︁X
≤ ∞∑

m=1 ∏︁DrTm( f − T f )∏︁X
≤ ∏︁ f − T f ∏︁X ∞∑

m=1 ∏︁DrTm∏︁op
= ∏︁ f − T f ∏︁X ∞∑

m=1 ∏︁Dr(Tm − P + P)∏︁op
= ∏︁ f − T f ∏︁X ∞∑

m=1 ∏︁Dr(Tm − P)∏︁op ,

as Dr annihilates P. Now we can use the boundedness of Dr on the range of T to get
the operator norm of Dr in front of the series:

∏︁DrT f ∏︁X ≤ ∏︁Dr∏︁op∶ran(T) ∏︁ f − T f ∏︁X ∞∑
m=1 ∏︁Tm − P∏︁op .

Applying condition 2, the convergence of the iterates, yields the inequality

∏︁DrT f ∏︁X ≤ ∏︁Dr∏︁op∶ran(T) ∏︁ f − T f ∏︁X ∞∑
m=1 γ

m−1.

= ∏︁Dr∏︁op∶ran(T) ∏︁ f − T f ∏︁X ∞∑
m=0 γ

m .

In fact, this geometric series converges as γ < 1 and hence, we obtain final the estimate

∏︁DrT f ∏︁X ≤ ∏︁D
r∏︁op∶ran(T)
1 − γ ∏︁ f − T f ∏︁ . (6.1)
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Let us conclude with some remarks on this approach. The rate of convergence of the
series depends on the real number γ < 1. We will see later that this number is equal to
the second largest eigenvalue of T by its modulus. Besides, note that if f ∈ ker(T − I),
i. e., f is a fixed point of T , then the inequality (6.1) yields ∏︁DrT f ∏︁X ≤ 0. Therefore,∏︁DrT f ∏︁X = 0 has to be true for all fixed points of T . In fact, this property is guaranteed
by the condition that DrP = 0 holds. It will be shown in the next section that P is
necessarily the projection onto the fixed point space ker(T − I).
6.2 Iterates of linear operators
Motivated by the last section, we will consider now the asymptotic behaviour of the
iterates of a linearoperator. We start herewith fundamentalworkofDunfordpublished
already in 1943. To this end, we consider a complex Banach space X and let T ∈ ℒ(X)
a bounded linear contraction, i. e., ∏︁T∏︁op ≤ 1. In a more general setting, Dunford
[Dun43b] has shown the following.

Theorem 6.1 ([Dun43b, Thm. 3.16]). Let T be an operator such that ∫︁Tm+1 − Tm∫︁op →
0 for m →∞. Then the following statements are equivalent.

1. Tm → P, P2 = P, P(X) = ker(T − I).
2. X = ker(T − I) ⊕ ran(T − I) and ran(T − I) is closed.

3. The point λ = 1 is either in ρ(T) or else a simple pole of R(λ, T).
4. ran(T − I)2 is closed.

The first item guarantees the convergence of the iterates towards an projection op-
erator P that projects onto the fixed point space of T . Furthermore, if a power of T
is compact, Dunford has shown in particular that all items hold true provided that
Tm+1 − Tm converges to zero in the uniform operator topology.

Proposition 6.2 ([Dun43b, Thm. 3.16]). Let T ∈ ℒ(X) with ∏︁T∏︁op ≤ 1 be such that∫︁Tm+1 − Tm∫︁op → 0 for m → ∞. If Tm is compact for some integer m, then the state-
ments of Theorem 6.1 are all true.

As the operators of our interest are in general compact there remains only one open
question. Wewant to knowwhich conditions on T guarantee that ∫︁Tm+1 − Tm∫︁op → 0
converges ifm tends to infinity. A concrete answer can be found in the beautiful work
of Katznelson and Tzafriri [KT86]. They provided a sufficient and necessary criterion
based on the spectral location of T .

Proposition 6.3 (Katznelson and Tzafriri [KT86, Thm. 1]). Let T be an operator such
that ∏︁T∏︁op ≤ 1. Then

lim
m→∞ ∫︁Tm+1 − Tm∫︁op = 0
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if and only if

σ(T) ⊂ B(0, 1) ∪ {1} . (6.2)

The spectrum has to be contained in the unit ball with the only intersection at 1.
Clearly, if ∏︁T∏︁op < 1, then ∏︁Tn∏︁op → 0. Thus, we are interested in the case when∏︁T∏︁op = 1 holds.
In the next chapter, we consider positive linear operators with finite rank and a

partition of unity property as discussed in Chapter 3. In particular, we show that these
operators do always fulfill the spectral location property (6.2) according to Katznelson
and Tzafriri. Furthermore, we provide a sufficient criterion on the limiting projection
operator and give examples based on the introduced operators of Chapter 3.

Nevertheless, there is no general method to obtain the limiting projection operator
in an easy way. Using functional calculus, the limiting operator can be obtained by an
integral of the form

P = 1
2πi ∫B(1,ε)(T − λI)−1 dλ,

for some ε > 0 small enough such that there is no other spectral value inside the ball
B(1, ε), see Heuser [Heu82, pp. 204] or Section 8.5. However, this integral can not be
easily solved for T in general. As highlight of this thesis, will show in Chapter 9 how
to construct the limiting operator based on the fixed points of T and the fixed points
of T∗. To this end, we will state the most fundamental results that are necessary to
develop these results in Chapter 8.
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‘‘ It is not enough to have a good mind.
The main thing is to use it well.’’

rené descartes

We study positive linear operators defined on a general infinite-dimensional
complex Banach function space X that contains the constant function 1 with

norm equal to one. In addition, we assume that the associated basis functions of the
positive linear operator form a partition of unity that guarantees the exact reconstruc-
tion of constant functions. Operators of this kind have already been discussed in detail
in Section 2.4 and Chapter 3. Remember, e. g., the variation diminishing spline opera-
tor devised by Schoenberg or the classical Bernstein operator. The results shown here
are established in a more general setting, namely on general Banach spaces. Therefore,
they are applicable to all positive operators on the space of continuous functions as
well as on the space of integrable functions.

We are interested in the asymptotic behavior of the iterates, as motivated in Chap-
ter 6 by proving lower estimates. Here, we provide a functional analysis based approach
using spectral properties that guarantees the existence of the limit of these iterates de-
fined on a general Banach space. Concretely, we want to apply the famous theorem
of Katznelson and Tzafriri [KT86] already stated in Proposition 6.3. This chapter is
devoted to give an application of this beautiful result in the field of approximation
theory for positive linear operators. Accordingly, we will show that the spectrum of a
positive linear operators T with a partition of unity property is characterized by

σ(T) ⊂ B(0, 1) ∪ {1} .
This property guarantees the convergence of the iterates towards a projection operator
using the work of Dunford [Dun43b]. We will finally provide a sufficient criterion to
derive the limiting operator and show how this criterion can be applied based on the
operators we have introduced in Chapter 3.
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The asymptotic behaviour of the iterates of positive linear operators has already
been extensively discussed by many authors. Kelisky and Rivlin [KR67] have been
the first to consider the limit of iterates of the classical Bernstein operator on the
space C((︀0, 1⌋︀). This result has been extended by Karlin and Ziegler [KZ70] to a more
general setting. In [Nag80; Nag82], Nagel has examined the asymptotic behaviour
of the Bernstein and the Kantorovič operators. Using a contraction principle, Rus
[Rus04] has shown an alternative way to prove the convergence of the iterates of the
Bernstein operator. The iterates of the Bernstein operator have been also revisited by
Badea [Bad09] using spectral properties. Recently, contributions have been made by
Gavrea and Ivan [GI10; GI11a; GI11c; GI11b] and by Altomare [Alt13] using methods
basedonKorovkin-type approximation theory. However, all these results are restricted
to the space of continuous functions, i.e., are not applicable for the Lp spaces, and there
is no general theory that guarantees the existence of the limit of the iterates.

Note that the results shown in this chapterhave already been published in the Journal
of Mathematical Analysis and Applications (JMAA), see [Nag15].

7.1 Setting
In the following let K be a compact Hausdorff space and let (X , ∏︁⋅∏︁X) be a complex
infinite-dimensional Banach function space on K that contains the constant function
1 with ∏︁1∏︁X = 1. Given an integer n > 0 and linearly independent positive functions
e1, . . . , en ∈ X that form a partition of unity, i.e.,

n∑
k=1 ek = 1. (7.1)

we set Y ∶= span{e1, . . . , en}. Clearly, Y is a finite-dimensional subspace of X with
1 ∈ Y . Equipped with a norm ∏︁⋅∏︁Y that satisfies ∏︁1∏︁Y = 1, the space Y becomes a
Banach space sharing the property of X that the constant function one is normalized.
Consider, e.g, Y equipped with the inherited norm of X.

Then we define the positive finite-rank operator T ∶ X → Y by

T f = n∑
k=1 α

∗
k( f )ek , f ∈ X , (7.2)

where α∗k are positive linear functionals satisfying ∫︁α∗k∫︁X∗ = α∗k(1) = 1 and α∗k(ek) > 0
for k ∈ {1, . . . , n}.

Note that the operator, we are interested in are usually defined on real Banach spaces.
However, the results of this chapter can be applied if one considers a complexificiation
of the real Banach spaces C((︀0, 1⌋︀), Lp((︀0, 1⌋︀), as demonstrated in the first chapter of
[Rus86]. In this case, there are many operators that match this definition, consider
e.g., the Bernstein operator, Schoenberg’s variation-diminishing spline operator that
arise in many applications in approximation theory and CAGD.
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7.2 Basic properties
This section discusses properties that characterize the positive finite-rank operator T .
The next lemma states the positivity of T and the ability to preserve constants.

Lemma 7.1. The linear operator T, defined by (7.2), is positive and reproduces constants.

Proof. As the α∗k are linear positive functionals and ek ≥ 0, we conclude for f ∈
C((︀0, 1⌋︀), f ≥ 0,

T f = n∑
k=1 α

∗
k( f )ek ≥ 0.

And we obtain by applying the preconditions on T that

T1 = n∑
k=1 α

∗
k(1)ek = n∑

k=1 ek = 1.

Lemma 7.2. The operator T ∶ X → Y is bounded and ∏︁T∏︁op = 1.
Proof. Let f ∈ X such that ∏︁ f ∏︁X = 1. Then

∏︁T f ∏︁Y = ⨄︁ n∑
k=1 α

∗
k( f )ek⨄︁

Y
≤ max

k
⋃︀α∗k( f )⋃︀ ⋅ ⨄︁ n∑

k=1 ek⨄︁Y ≤ ∏︁ f ∏︁X ⋅max
k

∏︁α∗k∏︁X∗ = 1,
where we used the partition of unity (7.1) and that ∫︁α∗k∫︁X∗ = 1. Using that T1 = 1, we
conclude that ∏︁T∏︁op = 1.
Now we will prove that the operator T is indeed a finite-rank operator and give

additional basic properties.

Lemma 7.3. The linear operator T has finite rank. Thus, the operator T is compact.

Proof. As ran(T) = span{∑n
k=1 α∗k( f )ek ∶ f ∈ X}, the range can be written as a linear

combination of the n basis functions ek and hence, dim(ran(T)) ≤ n. Therefore, the
linear operator T has finite rank and each finite-rank operator is compact.

We can also give an explicit representation of the adjoint of T . Here, the basis of T∗
are the functionals α∗k instead of the basis functions ek for T .

Theorem 7.4. The adjoint T∗ ∶ Y∗ → X∗ of T is a finite-rank operator. It is given for
x∗ ∈ Y∗ as

T∗x∗( f ) = n∑
k=1 x

∗(ek)α∗k( f ), f ∈ X .
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Proof. We calculate

x∗(T f ) = x∗( n∑
k=1 α

∗
k( f ) ⋅ ek) = n∑

k=1 α
∗
k( f )x∗(ek) = T∗x∗( f ).

7.3 Spectral properties
We give here a characterization of the spectrum of the operator T . More specifically,
we will show that the eigenvalue 1 is the only spectral value on the unit circle and all
spectral values are in particular eigenvalues of the operator.

Theorem 7.5 (The spectrum). The spectrum of the operator T, defined above by (7.2),
consists only of the point spectrum and is characterized by

{0} ⊂ σ(T) = σp(T) ⊂ B(0, 1) ∪ {1} .
Corollary 7.6. The positive finite-rank operator T given by (7.2) has the following prop-
erties:

1. 1 ∈ ker(T − I), i. e., 1 is an (isolated) eigenvalue of T,

2. σ(T) ⊂ B(0, 1) ∪ {1}, and finally,
3. dim(ker(T)) = ∞.

I.e., the only eigenvalue on the peripheral spectrum is 1 and all spectral values are eigenval-
ues. Moreover, 0 is always an eigenvalue of T corresponding to an infinite-dimensional
eigenspace of T.

Proof of Theorem 7.5. Since ∏︁T∏︁op = 1, the inequality ⋃︀λ⋃︀ ≤ ∏︁T∏︁ = 1 holds for each
λ ∈ σ(T). Therefore,

σ(T) ⊂ B(0, 1).
In the following, we show that σ(T) ⊂ B(0, 1) ∪ {1}, i.e., if λ ∈ σ(T) with ⋃︀λ⋃︀ = 1 then
λ = 1 and all the spectral values are eigenvalues of T .
Note that for compact operators it is known that every λ ≠ 0 in the spectrum is

contained in the point spectrum. This classical result is stated, e.g., in Rudin [Rud91,
Theorem 4.25]. Therefore, if 0 ∈ σp(T), then it follows already that

σ(T) = σp(T).
The proof is organized as follows: in the first step, we prove that 0 ∈ σp(T). Then,
we will show that 1 ∈ σp(T). Finally, we consider eigenvalues λ ∈ σp(T) ∖ {0, 1} and
we show that in this case ⋃︀λ⋃︀ < 1 holds. Here we will use the well-known result of
Gershgorin [Ger31] to describe the spectrum.
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Step 1: In order to prove that 0 ∈ σp(T) we show ker(T) ≠ {0}. Using Rudin [Rud91,
Theorem 4.12], we obtain that ker(T) = ran(T∗)�. As T(X) is closed in Y ,
so is T∗(Y∗) weak∗-closed in X∗. Suppose now that ker(T) = {0}. It fol-
lows that ran(T∗)� = {0} and therefore, (ran(T∗)�)� = X∗. This requires
that ran(T∗) is weak∗-dense in X∗. This gives a contradiction as ran(T∗) =
span{α∗1 , . . . , α∗n} is weak∗-closed and X∗ ≠ span{α∗1 , . . . , α∗n}, because X∗ is
infinite-dimensional.

We conclude that ker(T) ≠ {0} and the finite-rank operator T is not one-to-one,
i. e., 0 ∈ σp(T).

Step 2: By definition of the operator T we have that 1 ∈ σ(T), because of the partition
of unity property and the unit 1 is an eigenfunction of T corresponding to the
eigenvalue 1, T1 = 1.

Step 3: We consider now all the other possible eigenvalues of T that are not equal to
zero or one. We will prove that for all these eigenvalues λ ∈ σ(T) ∖ {0, 1}, we
have

⋃︀λ⋃︀ < 1.
Let λ ∈ σ(T) ∖ {0, 1}. As the operator maps continuous functions to the finite
dimensional space ran(T), the eigenfunctions have to be in this space, too. Let
p ∈ ran(T), p = ∑n

k=1 c jek , be such an eigenfunction for the eigenvalue λ. Then
we get the following characterization:

Tp = λp
⇐⇒ n∑

k=1
n∑
j=1 c jα

∗
k(e j)ek(x) = λ n∑

k=1 c jek(x)
⇐⇒ n∑

k=1
⎨⎝⎝⎝⎝⎪

n∑
j=1 c jα

∗
k(e j) − λck

⎬⎠⎠⎠⎠⎮ ek(x) = 0
⇐⇒ n∑

j=1 c jα
∗
k(e j) = λck , for all k ∈ {0, . . . , n} .

Thus, λ ≠ 0 is an eigenvalue of the operator T , if and only if λ is an eigenvalue
of the matrix M ∈ Rn×n,

M =
⎛⎜⎜⎜⎜⎝
α∗1 (e1) α∗1 (e2) ⋯ α∗1 (en)
α∗2 (e1) α∗2 (e2) ⋯ α∗2 (en)⋮
α∗n(e1) α∗n(e2) ⋯ α∗n(en)

⎞⎟⎟⎟⎟⎠
.

This matrix M is nonnegative as ek ≥ 0 and α∗k are positive linear functionals.
Moreover, every row sums up to one because of the partition of unity property.
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To see this, let us calculate for some fixed row k ∈ {1, . . . , n} the following sum:

n∑
j=1 α

∗
k(e j) = α∗k( n∑

j=1 e j) = α∗k(1) = 1. (7.3)

Hence, the underlyingmatrix of the finite-rank operator T is a stochasticmatrix.
We will show next, that 1 is the only spectral value on the unit circle.

By the famous Theorem of Gershgorin [Ger31], the eigenvalues of M are con-
tained in the union of circles,

λ ∈ n⋃
j=1D j ,

where

D j ∶= )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀λ ∈ C ∶ ⋂︀λ − α
∗
j (e j)⋂︀ ≤ n∑

k=1,k≠ j α
∗
j (ek)[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀ .

Applying (7.3) yields

D j = {λ ∈ C ∶ ⋂︀λ − α∗j (e j)⋂︀ ≤ 1 − α∗j (e j)} .
We conclude the proof noting that α∗j (e j) > 0 holds for all j ∈ {1, . . . , n} and
thus,

n⋃
j=1D j ∩ {λ ∈ C ∶ ⋃︀λ⋃︀ = 1} = {1} .

Finally, we have proved that all spectral values of T are in particular eigenvalues
and the spectrum of T is contained in B(0, 1) ∪ {1}.

7.4 The asymptotic behavior of the iterates
Using the spectral properties shown in the last section, the existence of a limit of the it-
erates is now guaranteed by the result of Katznelson and Tzafriri [KT86]. Furthermore,
the limiting operator preserves the ability to reconstruct constants.

Theorem 7.7 (The existence of the limit of the iterates). Let the operator T be a finite-
rank operator with a partition of unity property as in (7.2). Then

lim
n→∞Tn = P
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uniformly in the operator norm, where P is a compact operator on X such that P1 = 1
holds. Moreover, P is the unique projection operator onto ker(T − I) that satisfies TP =
PT = P.
Proof. Now we will show the existence of the limit of the iterates of the finite-rank
operator that has the partition of unity property.
Katznelson and Tzafriri [KT86] have shown that for every linear operator T on a

Banach space X with ∏︁T∏︁op ≤ 1 the limit

lim
n→∞ ∫︁Tn+1 − Tn∫︁op = lim

n→∞ ∏︁Tn(T − I)∏︁op = 0
holds if and only if either there is no spectral value on the unit circle or the unit circle
contains the single value 1. As Corollary 7.6 states, a finite-rank operator with a parti-
tion of unity property contains 1 as an eigenvalue and this is the only spectral value
on the unit circle, σ(T) ⊂ B(0, 1) ∪ {1}.

To prove Theorem 7.7 let us consider the sequence (Tn)n∈N. By Katznelson and
Tzafriri [KT86, Thm. 1] and by Dunford [Dun43b, Thm. 3.18] this sequence has a limit
P in the Banach algebra ℒ(X ,Y). As Tn1 = 1 for any positive integer n we obtain due
to the uniform convergence in the operator norm the result P1 = 1. As a limit of the
finite-rank operators Tn, the operator P is compact. Furthermore, TP = PT = P holds
and P is idempotent, i.e., P = P2.

The next corollary provides a sufficient (and necessary) criterion to obtain the lim-
iting operator P. Moreover, the operator P preserves all the fixed points of T .

Corollary 7.8. Let T be a positive linear operator as in (7.2). If there exists an idempotent
operator, i.e., P2 = P, that commutes with T such that TP = PT = P holds with range
ran(P) = ker(T − I), then

lim
m→∞ ∏︁Tm − P∏︁op = 0.

Proof. We have from Dunford [Dun43b, Theorem 3.16 on page 216] that

X = ker(T − I) ⊕ ran(T − I) (7.4)

and TP = PT = P and P is idempotent, i.e., P = P2.
We now show that ker(P) = ran(T − I). As P(T − I) = PT − P = 0, ran(T − I) ⊂

ker(P) holds. We show that the converse holds also true. Let 0 ≠ x ∈ ker(P), then
x ⇑∈ ker(T − I). By (7.4), there are xker ∈ ker(T − I) and xran ∈ ran(T − I) such that
x = xker + xran. Using that x ∈ ker(P), we obtain

0 = Px = Pxker + Pxran = Pxker,

as xran ∈ ran(T−I) ⊂ ker(P). From xker ∈ ker(P)we conclude that xker = 0. Therefore,
x = xran and we get the final statement x ∈ ran(T − I). Hence, ran(P) = ker(T − I)
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and ker(P) = ran(T − I). As direct consequence we obtain Corollary 7.8 using the
uniqueness of the limiting projection operator that satisfies TP = PT = P.
7.5 Examples
We show concrete examples where the results of the preceding sections can be applied
using the operators introduced in Chapter 3. First the space of continuous functions
is considered where an operator evaluates a continuous function on finitely many
given points. Here, we show the limiting operator of the Bernstein and Schoenberg
operator. In the second example, we discuss the Kantorovič operator on L1((︀0, 1⌋︀)
that yields an extension of the classical Bernstein operator to the space of integrable
functions. Finally, we will consider the integral Schoenberg operator as L1-extension
of Schoenberg’s variation diminishing spline operator.

7.5.1 Operators using point evaluations
TheRiesz representation theorem gives a characterization of positive linear functionals
on C((︀0, 1⌋︀). Namely, for every positive linear functional a∗ ∶ C((︀0, 1⌋︀) → R, there is
a unique positive Radon measure ν such that

α∗( f ) = ∫ 1

0
f dν for every f ∈ C((︀0, 1⌋︀).

A classical example of a positive linear functional on C((︀0, 1⌋︀) is the Dirac measure
at a point x ∈ (︀0, 1⌋︀ defined for f ∈ C((︀0, 1⌋︀) by

δx( f ) = f (x).
Given a partition ∆n = {xk}nk=1 of (︀0, 1⌋︀ satisfying

0 = x1 < x2 < . . . < xn = 1,
then a popular choice for the functionals is α∗k = δxk for k ∈ {1, . . . , n}. In this case,
the positive finite-rank operator can be written for x ∈ (︀0, 1⌋︀ as

T f (x) = n∑
k=1 f (x j)ek(x), ek ∈ C((︀0, 1⌋︀).

Operators of this kind are often used to approximate continuous functions by only
a finite number of samples. To apply Theorem 7.5, we also need the property that
ek(xk) > 0 for all k ∈ {1, . . . , n}. There are many examples where this property holds,
see e.g., the Bernstein operator or the variation-diminishing Schoenberg operator
discussed in Chapter 3. Let us suppose this property holds for T , then we obtain that 1
is the only spectral value on the unit circle and hence, limm→∞ Tm f exists uniformly
for all f ∈ C((︀0, 1⌋︀) by Theorem 7.7. It has already been shown by Badea [Bad09] that
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the operator L f (x) = f (0) + ( f (1) − f (0))x for f ∈ C((︀0, 1⌋︀) satisfies the conditions
of Corollary 7.8 for the Bernstein operator. Thus, we provide here an additional simple
criterion to obtain the limit of the iterates of the Bernstein operator. Furthermore, we
have shown in Chapter 4 that the conditions of Corollary 7.8 are also satisfied for the
Schoenberg operator. Accordingly, the iterates of the Schoenberg operator converge
uniformly towards L. The limiting operator of the Schoenberg operator has been
shown the first time in Theorem 4.4 on page 44.

7.5.2 The Kantorovič operator
Let us consider the iterates of theKantorovič operatordefinedon the space of integrable
functions L1((︀0, 1⌋︀). Additionally, we illustrate the criterion given in Corollary 7.8 to
derive the limiting operator.

Recall that the Kantorovič operator Kn ∶ L1((︀0, 1⌋︀) → C((︀0, 1⌋︀) is defined as

Kn f (x) = (n+1) n∑
k=0(

n
k
)xk(1−x)n−k ∫

k+1
n+1
k

n+1
f (t)dt, f ∈ L1((︀0, 1⌋︀), x ∈ (︀0, 1⌋︀ .

For more details, we refer to Section 3.1.2. First, we show that this is a finite-rank
operator of the form (7.2). Then we will apply the main results of this chapter. To this
end, let us denote the Bernstein polynomials by pn,k(x) ∶= (nk)xk(1 − x)n−k and the
functionals by

αn,k( f ) ∶= ∫
k+1
n+1
k

n+1
f (t)dt

for f ∈ L1((︀0, 1⌋︀). Then the Kantorovič operator can be represented for f ∈ L1((︀0, 1⌋︀)
by

Kn f (x) = (n + 1) n∑
k=0 αk,n( f )pk,n(x).

In fact, the Bernstein polynomials form a partition of unity and ∫
k+1
n+1
k

n+1 pk,n(t)dt > 0 as

pk,n(x) > 0 on the open interval ( k
n+1 , k+1n+1) for all k ∈ {1, . . . , n}. Thus, each of the

operators Kn is positive and has finite-rank. Using Theorem 7.5, we can characterize
the spectrum of these operators by σ(Kn) ⊂ B(0, 1)∪{1} and 1 is an isolated eigenvalue
of Kn. Hence, for fixed n and as m goes to infinity the iterates Km

n uniformly converge
to an operator with the ability to reproduce constants. As this operator only preserves
constant functions, we demonstrate an application of Corollary 7.8.
Let us consider the operator L ∶ L1((︀0, 1⌋︀) → C((︀0, 1⌋︀),

L( f ; x) = ∫ 1

0
f (t)dt ⋅ 1,
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i. e., each f is mapped to the constant value of the integral over (︀0, 1⌋︀. This operator L
is idempotent, as

L2( f ; x) = ∫ 1

0
( ∫ 1

0
f (t)dt)ds = ∫ 1

0
f (t)dt ⋅ 1.

Also Kn ○ L = L holds, as for all f ∈ L1((︀0, 1⌋︀) we obtain for x ∈ (︀0, 1⌋︀:
(Kn ○ L)( f ; x) = (n + 1) n∑

k=0(
n
k
)xk(1 − x)n−k ∫

k+1
n+1
k

n+1
L( f ; t)dt

= (n + 1) n∑
k=0(

n
k
)xk(1 − x)n−k ∫

k+1
n+1
k

n+1 ∫
1

0
f (s)dsdt

= (n + 1) ∫ 1

0
f (s)ds

n∑
k=0(

n
k
)xk(1 − x)n−k 1

n + 1
= ∫ 1

0
f (s)ds ⋅ 1.

In the last step we used the partition of unity property of the Kantorovič polynomials,
namely that Kn(1; x) = 1 holds for all x ∈ (︀0, 1⌋︀. Also L ○ Kn = L holds. To prove this
let f ∈ C((︀0, 1⌋︀) and x ∈ (︀0, 1⌋︀. Then

(L ○ Kn)( f ; x) = ∫ 1

0
Kn( f ; t)dt

= (n + 1) ∫ 1

0

n∑
k=0(

n
k
)tk(1 − t)n−k ∫

k+1
n+1
k

n+1
f (s)dsdt

= (n + 1) n∑
k=0 ∫

k+1
n+1
k

n+1
f (s)ds(n

k
) ∫ 1

0
tk(1 − t)n−kdt

= (n + 1) n∑
k=0 ∫

k+1
n+1
k

n+1
f (s)ds 1

n + 1
= ∫ 1

0
f (s)ds = L( f ; x).

Here, we note that ∫ 1
0 tk(1 − t)n−kdt is the value of the Beta function

β(k + 1, n + 1 − k) = k! (n − k)!(n + 1)! .

Therefore, the integral of the Bernstein polynomials is constant,

∫
1

0
(n
k
)tk(1 − t)n−kdt = 1

n + 1 .
This has been shown, e. g., by Kreyszig [Kre79]. The preceding results have shown that
TL = LT = L holds and that L2 = L.
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Therefore, all condition of Corollary 7.8 are satisfied and we conclude that

lim
m→∞Km

n ( f ; x) = L( f ; x) uniformly on (︀0, 1⌋︀ for all f ∈ L1((︀0, 1⌋︀).
Indeed, this result has first been shown byNagel [Nag82] but only for f ∈ L2((︀0, 1⌋︀). In
contrast, our result not only extends the uniform convergence to the space L1((︀0, 1⌋︀)
we also derive the convergence in the uniform operator norm.

7.5.3 The integral Schoenberg operator
In the same manner as for the Kantorovič operator, we will prove the limiting be-
haviour of the integral Schoenberg operator, introduced in Section 3.2.2. Note, that
the partition of unity property V∆n ,k1 = 1 holds true for this operator. Again, let us
consider the operator L ∶ Lp((︀0, 1⌋︀) → C((︀0, 1⌋︀),

L( f ; x) = ∫ 1

0
f (t)dt ⋅ 1.

We show now that L ○ V∆n ,k = V∆n ,k ○ L = L holds. We calculate

∫
1

0
V∆n ,k( f ; t)dt = n−1∑

j=−k ∫
ξ j,k+1

ξ j−1,k+1
f (s)ds ∫

1

0

N j,k(t)
ξ j,k+1 − ξ j−1,k+1dt

= n−1∑
j=−k ∫

ξ j,k+1
ξ j−1,k+1

f (s)ds

= ∫ 1

0
f (s)ds

and

V∆n ,k ( ∫ 1

0
f (t)dt; x) = n−1∑

j=−k ∫
ξ j,k+1

ξ j−1,k+1 ∫
1

0
f (t)dtds

N j,k(x)
ξ j,k+1 − ξ j−1,k+1

= n−1∑
j=−k ∫

1

0
f (t)dt (ξ j,k+1 − ξ j−1,k+1) N j,k(x)

ξ j,k+1 − ξ j−1,k+1
= ∫ 1

0
f (t)dt

n−1∑
j=−kN j,k(x)

= ∫ 1

0
f (t)dt.

By Corollary 7.8, the iterates of the integral Schoenberg operator converge uniformly
in the operator norm to the operator L, i. e.,

lim
m→∞ ∫︁Vm

∆n ,k − L∫︁op = 0.
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7.6 Remarks
Even though the results of Theorem 7.7 and Corollary 7.8 guarantee the convergence
for positive linear operators of finite-rank with a partition of unity property and also
provide a criterion to derive the limiting operator, the concrete limiting operator has
to be known previously. Besides, the theory of Dunford [Dun43b] and Katznelson
and Tzafriri [KT86] does also work for general linear operators on complex Banach
spaces. Note that complex Banach spaces are not a restriction, as real Banach spaces
can be complexified as noted in Section 1.3. The complexity of the Banach space is
important to consider spectral properties. Accordingly, we will generalize our setting
in the next chapters to operators with finite-dimensional fixed points spaces. This
viewpoint allows finally the explicit construction of the limiting operator based on an
inversion of a Gramian matrix.



chap t e r 8chap t e r 8chap t e r 8 Introduction to Riesz-Schauder and
Fredholm Theory

‘‘ The mathematician does not study pure mathematics because it is useful;
he studies it because he delights in it and he delights in it because it is beautiful.’’

henri poincaré

For the convenience of the reader this chapter provides a compact overview
over themost important facts on annihilators, complemented subspaces and projec-

tions. We introduce the concepts of the Riesz-Schauder theory for compact operators.
Based on preserving the spectral properties of compact operators we motivate its gen-
eralization to Riesz operators by classical Fredholm theory. Finally, we consider quasi-
compact operators as further generalization which constitutes the necessary setting to
consider the iterates of linear operators. All results in this chapter can be found in the
comprehensive books on functional analysis of Heuser [Heu82] and Rudin [Rud91].
Let us now briefly recall some notation. To this end, let X be a complex Banach

space equipped with a norm ∏︁⋅∏︁X . If the used norm is unambiguous we will just use
the abbreviated version ∏︁⋅∏︁. The Banach algebra of bounded linear operators on X is
denoted by ℒ(X) equipped with the usual operator norm ∏︁⋅∏︁op. The identity operator
on X is I ∈ ℒ(X). The corresponding topological dual space ℒ(X ,C) is denoted by(X∗, ∏︁⋅∏︁X∗). The range and the null space of T ∈ ℒ(X) is denoted by ran(T) and
ker(T), respectively. The closure of M ⊂ X is denoted by M. Note that the results
shown here are also applicable on real Banach spaces using a complexification as out-
lined in the end of Section 1.3.

8.1 Annihilators and complemented subspaces
Orthogonal complements are an important concept in Hilbert spaces. Annihilators
are the corresponding generalization on Banach spaces. They are differently defined
for a set on the Banach space and a set of functionals.

93
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Definition 8.1 (Annihilator and Pre-annihilator). Let X be a Banach space and let
M ⊂ X, Λ ⊂ X∗. The annihilator of M is the subspace

M� = {x∗ ∈ X∗ ∶ x∗(x) = 0 for every x ∈ M} ⊂ X∗,
whereas the subspace

Λ� = {x ∈ X ∶ x∗(x) = 0 for every x∗ ∈ Λ} ⊂ X
is called the pre-annihilator of the set Λ.

The annihilator set M� contains all continuous linear functionals on X that vanish
on M, while Λ� is the subset of X on which every bounded functional from Λ is zero.
The next propositions state the most important properties of the annihilator and the
pre-annihilator. Recall that the closure of a set M ⊂ X is denoted by M. For proofs
and more properties we refer to Rudin [Rud91, 95 ff.].

Proposition 8.1. Let X be a Banach space and let M ⊂ X and Λ ∈ X∗. Then the
following statements hold true:

1. M� is a closed subspace of X∗, and
M� = span(M)� and (M�)� = span(M).

2. Λ� is a closed subspace of X, and

Λ� = span(Λ)� and span(Λ) ⊂ (Λ�)�.
3. span(M) = X if and only if M� = {0}.

The last item yields an elegant way of saying when a subspace M ⊂ X is dense in X.
We will use the second result later for the dual space X∗ and for the pre-annihlator of
a subspace Λ ⊂ X∗ to show that for finite many linear functionals there exists always
x ∈ X ∖ {0} such that x ∈ Λ�.
Proposition 8.2. Let X be a Banach space and let M ⊂ X be a closed subspace. Further-
more, let π ∶ X → X⇑M be the quotient map. Then

(X⇑M)∗ ≅ M�
via the isomorphism Φ ∶ (X⇑M)∗ → M�, Φ(α)(x) = α(π(x)).
Proposition 8.3. Assume that X and Y are Banach spaces and let T ∈ ℒ(X ,Y). Then

ker(T∗) = T(X)�, ker(T) = T∗(Y∗)�.
Proof. See Rudin [Rud91, Thm 4.12 on p. 99].
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Next, we will consider direct sum decompositions of a Banach space. In contrary
to the finite-dimensional case, the closedness of the subspaces is necessary.

Definition 8.2 (Complemented subspace). Let X be a Banach space and let M ,N ⊂ X.
Then X is said to be the complemented sum of M, denoted by X = M ⊕ N , if for every
x ∈ X there are m ∈ M and n ∈ N such that x = m + n has a unique representation.
We say that a closed subspace M of X is complemented in X, if there is a closed

subspace N of X such that X = M ⊕ N .

A natural question that arises is whether a given subspace has a complemented
subspace in a Banach space. One way to answer the question is to use projections
on closed subspaces. Bounded projections yield a canonical way to construct comple-
mented subspaces by the range and the null space. To state this result, which can be
found in Rudin [Rud91, 133 ff.], we will define first a projection on a Banach space X
onto a given subset M ⊂ X.
Definition 8.3 (Projection). Let X be a vector space. We call the linear mapping
P ∈ ℒ(X) a projection onto M ⊂ X, if

• P(X) = M and

• P2 = P on X, i.e., P is idempotent.

The next proposition states that every bounded projection onto closed subspaces
canonically yields a space decomposition, see, e. g., Rudin [Rud91, Theorem 5.16].

Proposition 8.4 (Complemented sum with projections). Let X be a Banach space
and P ∈ ℒ(X) a bounded projection onto a closed subspace of X. Then

X = ran(P) ⊕ ker(P).
This space decomposition based on a bounded projection are fundamental for the

results in the next chapter. Concretely, we will construct a projection onto a finite-
dimensional subspace of X. Using the projection, we have decomposed the space X
into two closed subspaces.

8.2 Riesz-Schauder theory of compact operators
This section gives a brief introduction to the Riesz-Schauder theory of compact op-
erators. For more details and proofs, we refer to Rudin [Rud91, pp. 103–111]. The
Riesz-Schauder theory characterizes the class of compact operators. It will be shown
that if T is a compact operator, the spectrum of T is countable with 0 as the only possi-
ble limit point, T − λI has closed range for all λ ∈ C, and the dimensions of the spaces
ker(T − λI) and ker(T∗− λI) are finite and equal. The latter property is important for
the Fredholm theory where these kinds of operators get assigned the Fredholm index
0. More on Fredholm theory will be shown in the next section. Let us start with the
definition of a compact operator.
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Definition 8.4 (Compact operator). Let X ,Y be Banach spaces and let U ⊂ X be the
open unit ball in X. T ∈ ℒ(X ,Y) is said to be compact if T(U) is compact in Y .

Clearly, if ran(T) is compact in Y , then T is bounded, i. e., T ∈ ℒ(X ,Y). We denote
the space of all compact operators from X toY by𝒦(X ,Y). The next proposition gives
a characterization of compact operators.

Proposition 8.5 (Rudin [Rud91, Thm. 4.18 and Thm. 4.19]). Let X and Y be Banach
spaces. Then the following statements hold true:

1. 𝒦(X ,Y) is a Banach space, a closed subspace of ℒ(X ,Y).
2. If T ∈ ℒ(X ,Y) and dim ran(T) < ∞, then T is compact.
3. If T ∈ 𝒦(X ,Y) and ran(T) is closed, then dim ran(T) < ∞.
4. If T ∈ 𝒦(X) and λ ≠ 0, then dimker(T − λI) < ∞.
5. If dimX = ∞, T ∈ 𝒦(X), then 0 ∈ σ(T).
6. If T ∈ ℒ(X ,Y). Then T is compact if and only if T∗ is compact.

The first item states in particular, that if Tn ∈ 𝒦(X ,Y) converge towards T in the
operator norm, then T ∈ 𝒦(X ,Y). Combined with the second item, we get that a
convergent series of finite-rank operators converge to a compact operators. Note that
on a Hilbert space every compact operator is the limit of finite-rank operators, while
this is not true on general Banach spaces which has been shown by a counterexample
by Enflo [Enf73]. The property that every compact operator can be written as a limit
of finite-rank operators is called the approximation property.

The following two propositions show how the operator T − λI behaves if t is a
compact operator.

Proposition 8.6 (Rudin [Rud91, Thm. 4.23]). If X is a Banach space, T ∈ 𝒦(X), and
λ ≠ 0, then T − λI has closed range.

The next proposition characterizes the dimension of the eigenspaces of T and T∗.
If T is compact, then dimker(T − λI) = dimker(T∗ − λI) holds for all λ ∈ C. We will
see later, that the difference of these dimensions defines the so called Fredholm index.

Proposition 8.7 (Rudin [Rud91, Thm. 4.25]). Let X be a Banach space, T ∈ 𝒦(X).
Then the space dimensions

α = dimker(T − λI),
β = dim (X⇑ ran(T − λI)) ,

α∗ = dimker(T∗ − λI),
β∗ = dim (X∗⇑ ran(T∗ − λI)) ,

are equal and finite.

Finally, compact operators posses special spectral properties. In particular, all spec-
tral values except 0 are isolated eigenvalues in the spectrum. Moreover, the spectrum
of a compact operator is always a countable set.
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Proposition 8.8 (Rudin [Rud91, Thm. 4.25]). Let T ∈ 𝒦(X), then

1. σ(T) is countable,

2. if λ ∈ σ(T) ∖ {0}, then λ ∈ σp(T), i. e., λ is an eigenvalue of T,

3. the only possible limit point of σ(T) is 0.
Accordingly, compact operators can be considered as an extension of matrices on

finite-dimensional normed vector spaces. Analogous, we can define the geometrical
and algebraic multiplicities. Note that both values are in fact finite.

Definition 8.5 (Multiplicities). The geometrical multiplicity of T ∈ ℒ(X) is defined by
dimker(T − λI),

the dimension of the eigenspace accociated with λ ∈ σ(T). The value of

dim
∞⋃
k=1ker(T − λI)k

defines the algebraic multiplicity of λ ∈ σ(T).
According to these results, the eigenvalues of each compact operator T can be listed

by their modulus in decreasing order,

⋃︀λ1(T)⋃︀ ≥ ⋃︀λ2(T)⋃︀ ≥ ⋯ ≥ 0,
where each eigenvalue is repeated with its algebraic multiplicity. In the next section,
we will generalize these concepts where both multiplicities are finite.

8.3 Fredholm theory and Riesz operators
In the following, we will generalize the possibility to decompose the space X into the
null space and the image of a linear operator. For these results we introduce now the
most fundamental aspects of Fredholm theory of linear operators. More details can
be found in the comprehensive books of Heuser [Heu82] and Ruston [Rus86].

Definition 8.6 (Ascent, Descent). Let X be a Banach space and let T ∈ ℒ(X).
1. T is said to have finite ascent if there exists k ∈ N such that

ker(Tk) = ker(Tk+1).
Thenwe denote by asc(T) the smallest integerwith this property and say asc(T)
is the ascent of T .

2. T has finite descent if there exist k ∈ N such that

ran(Tk) = ran(Tk+1).
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Then we denote by dsc(T) the smallest integer with this property and call this
number the descent of T .

The next proposition shows the relation of the ascent and the descent of a linear
operator with complemented sum decompositions.

Proposition 8.9 ([Heu82, Prop. 38.1 and 38.2]). Let T ∈ ℒ(X) and let m ≥ 0 be a
integer. Then

1. asc(T) ≤ m < ∞ if and only if ker(Tn) ∩ ran(Tm) = {0} holds,

2. dsc(T) ≤ m < ∞ if and only if X = ker(Tm) + ran(Tn).
In both statements the integer n > 0 can be chosen arbitrarily.

If the ascent and the descent of a linear operator are finite, then they are equal, as the
next proposition states. In this case, the operator T is said to have finite chain length.

Proposition 8.10 ([Heu82, Prop. 38.3]). If asc(T) < ∞ and dsc(T) < ∞, then both
values are equal, i. e., asc(T) = dsc(T) holds.

Having the requirements of the last proposition satisfied, then such an operator
yields a direct sum decomposition in the following way:

Proposition 8.11 ([Heu82, Prop. 38.4]). Let T ∈ ℒ(X) have finite chain length p =
asc(T) = dsc(T) < ∞. Then X can be decomposed into

X = ran(T p) ⊕ ker(T p). (8.1)

We will ask later when this space decomposition can be derived by so called spectral
projections.

To better understand the properties of operators with finite chain length we now
introduce the concept of Fredholm operators. First we define the nullity and the defi-
ciency of an operator as dimension of the null space of T and T∗, respectively.

Definition 8.7 (Nullity and Deficiency). Let T ∈ ℒ(X). We denote by

α(T) ∶= dim(ker(T))
the nullity of T and by

β(T) ∶= dim(ker(T∗))
the deficiency of the operator T .

The next definition characterizes these Fredholm operators as the special class of
operators, where the nullity and the deficiency are both finite.

Definition 8.8 (Fredholm Operators). Let X ,Y be two Banach spaces. Then the set
of Fredholm operators is defined by

Φ(X ,Y) = {T ∈ ℒ(X ,Y) ∶ α(T) < ∞ and β(T) < ∞} .
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ran(T) closed α(T) = β(T) < ∞ asc(T) = dsc(T) < ∞
T Fredholm yes not necessarily not necessarily
T Weyl yes yes not necessarily
T Browder yes yes yes

Table 8.1: Comparison between Fredholm, Weyl and Browder operators.

Then the index of T ∈ Φ(X ,Y) is defined by ind(T) = α(T) − β(T).
Now we can relate the concept of Fredholm operators, i. e., the nullity and the defi-

ciency, with the concept of the ascent and descent of an operator T ∈ ℒ(X).
Proposition 8.12 ([Heu82, Prop. 38.5 and 38.6]). If T is a linear operator on a Banach
space X then the following properties hold:

1. If asc(T) < ∞, then α(T) ≤ β(T).
2. If dsc(T) < ∞, then α(T) ≥ β(T).
3. If asc(T) = dsc(T) < ∞, then α(T) = β(T) (possibly infinite).

4. If α(T) = β(T) < ∞, and if either asc(T) or dsc(T) is finite, then asc(T) =
dsc(T).

According to the first item in the last proposition, we can identify all Fredholm
operators T ∈ Φ(X) with finite ascent, p = asc(T) < ∞, as operators where

dim(ker(T)) ≤ dim(ker(T∗)) < ∞.

Thus, T has a Fredholm index less or equal than zero, T ∈ Φ−(X). Operators of this
kind will play an important role in the beginning of the chapter, where we consider the
iterates of an operator and its corresponding fixed point space. To obtain the limiting
operator, it will be finally shown that operators with index 0 are the appropriate choice.

Fredholm operators with index 0 have special spectral properties. H.Weyl [Wey09]
has considered in 1909 operators where the spectrum can be partitioned into a set of
isolated eigenvalues of finite multiplicity and a remaining set. Accordingly, Fredholm
operators with index 0 are named after H. Weyl.

Definition 8.9 (Weyl Operator). A bounded operator T ∈ ℒ(X) is said to be aWeyl
operator if T is a Fredholm operator with index 0. The class of all Weyl operators on
X will be denoted by𝒲(X).
Definition 8.10 (Browder Operator). A bounded operator T ∈ ℒ(X) is said to be a
Browder operator if it is a Fredholm operator with finite chain length. We will denote
the sets of all Browder operators on X by𝒲B(X).
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Each Browder operator T is in fact a Weyl operator, as by definition asc(T) =
dsc(T) < ∞ and α(T) < ∞, β(T) < ∞ holds. By item 4 of Proposition 8.12 we
conclude that

α(T) = β(T) < ∞.

Therefore, we get the relation

𝒲B(X) ⊂ 𝒲(X).
A comparison between both classes is shown in Table 8.1. Consider now a Browder
operator T having finite ascent p, then

1. dim(ker(T)) = dim(ker(T∗)) < ∞,

2. ker(T p) ∩ ran(T p) = {0},
3. X = ker(T p) ⊕ ran(T p).

In the next chapter, we are interested in operators T ∈ ℒ(X) where (T − λI) is a
Browder operator. In that case, we will prove the last item in a constructive way using
a projection for the space decomposition.
Next, we introduce the concept of so called Riesz operators as generalization of

compact operators. They admit similar spectral properties and share also finite multi-
plicities. Recall, that if K ∈ ℒ(X) is compact, then K−λI ∈ 𝒲(X), see Proposition 8.7.
Furthermore, every eigenvalues except 0 is isolated. We will define a Riesz operator
as an operator, where T − λI is a Fredholm operator for all λ ∈ C ∖ {0}. We will see
in the next proposition that this definition is in fact equivalent to the fact that T − λI
is a Weyl operator.

Definition 8.11 (Riesz-Operators). A bounded operator T ∈ ℒ(X) on a Banach space
X is said to be a Riesz operator if T − λI ∈ Φ(X) for every λ ∈ C∖ {0}. We denote the
set of all Riesz operators on X byℛ(X).

The next proposition characterizes Riesz operators. These results can be found, e. g.,
in Aiena [Aie04, Section 3.9].

Proposition 8.13 (Characterization of a Riesz operator). Let T ∈ ℒ(X) where X is a
Banach space. Then the following statements are equivalent:

1. T is a Riesz operator,

2. T − λI ∈ ℒ(X) for every λ ∈ C ∖ {0},
3. T − λI ∈ 𝒲(X) for every λ ∈ C ∖ {0}, and finally,
4. every spectral point λ ≠ 0 is isolated and ∪k∈N ker(T − λI)k is finite-dimensional.

The next theorem gives another characterization of Riesz operators in terms of the
limit of the iterates. Namely, Ruston [Rus86] has shown that the iterates of Riesz
operators can be approximated closely by compact operators.
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Proposition 8.14 (Ruston Condition for Riesz operators). Let T ∈ ℒ(X). Then T is a
Riesz operator, T ∈ ℛ(X), if and only if

lim
n→∞( inf

K∈𝒦(X) ∏︁Tn − K∏︁op)
1⇑n = 0.

This limit is called the essential spectral radius of T and will be discussed in more
detail in the next section. Based on the essential spectral radius we will consider a
further generalization, the so called quasi-compact operators. The main property is
that every spectral value outside the essential spectral radius is isolated. As the essential
spectral radius of every Riesz operator is zero by Proposition 8.14, every spectral value
λ ≠ 0 is isolated, see also the last item of Proposition 8.13. Let us consider finally two
well known classes of Riesz operators.

Example 8.1 (Riesz operators).
Finite-rank operators and compact operators are special cases of Riesz-operators, and
we have the inclusions ℱ(X) ⊂ 𝒦(X) ⊂ ℛ(X). To see this note that

1. every finite-rank operator is a compact operator, i.e., ℱ(X) ⊂ 𝒦(X), and
2. every compact operator is a Riesz operator, i.e.,𝒦(X) ⊂ ℛ(X).

The first item is already stated in Proposition 8.5. The second item follows for instance
by the spectral properties of compact operators as shown in Proposition 8.8. Note
that we derive both facts also by the result for compact operators of Proposition 8.7 as
T − λI is a Weyl operator for every λ ∈ C ∖ {0}.
8.4 Spectral sets and quasi-compact operators
We consider here special spectral sets that characterize isolated points in the spectrum.
Of our interest will be the essential spectrum and the essential spectral radius in order
to define quasi-compact operators. Quasi-compact operators have the special property
that every peripheral spectral points is isolated. We start with the definition of the
resolvent set and the classical spectrum of a linear operator.
For T ∈ ℒ(X), the resolvent set ρ(T) can be defined in the following ways:

ρ(T) ∶= {λ ∈ C ∶ T − λI is invertible}
∶= {λ ∈ C ∶ α(T − λI) = β(T − λI) = 0}
∶= {λ ∈ C ∶ asc(T − λI) = dsc(T − λI) = 0} .

The resolvent set is an open set in C. The resolvent of T corresponding to λ ∈ C is
defined by R(T , λ) ∶= (T − λI)−1. The spectrum of T , denoted by σ(T), is a nonempty
compact set ofC and is defined as C∖ ρ(T) and hence, contains all values λ ∈ C such
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that T − λI is not invertible. The value r(T) ∶= sup{⋃︀λ⋃︀ ∶ λ ∈ σ(T)} is said to be the
spectral radius of T and can be calculated using Gelfand’s formula

r(T) = lim
n→∞ ∏︁Tn∏︁1⇑nop .

The spectral radius r(T) is bounded by ∏︁T∏︁op. The peripheral spectrum σper(T) de-
scribes the boundary of the spectrum, σper(T) ∶= σ(T) ∩ {λ ∈ C ∶ ⋃︀λ⋃︀ = r(T)}. By
σp(T), we denote the point spectrum of T ,

σp(T) ∶= {λ ∈ C ∶ T − λI is not one-to-one} ,
which contains all the eigenvalues of T . Of our interest here are is also the (Weyl)
essential spectrum of T , denoted by σess(T), and the (Browder) essential spectrum,
denoted by σb(T), which are defined by

σess(T) ∶= {λ ∈ C ∶ T − λI ⇑∈ 𝒲(X)} ,
σb(T) ∶= {λ ∈ C ∶ T − λI ⇑∈ 𝒲B(X)} .

Related to these essential spectra is the essential spectral radius ress(T)which is defined
as

ress(T) ∶= sup{⋃︀λ⋃︀ ∶ λ ∈ σess(T)} = lim
n→∞( inf

K∈𝒦(X) ∏︁Tn − K∏︁op)
1⇑n

.

In contrast to Hilbert spaces there are several ways to define the essential spectrum
on Banach spaces that are not equivalent. The following two definitions are in fact
equal on Hilbert spaces. If the essential spectrum is considered as the largest subset of
the spectrum which remains invariant under compact perturbations, then this leads
to the definition of σess(T), which also often said to be the essential Weyl spectrum
according to H. Weyl [Wey09], see also M. Schechter [Sch66]. A point λ ∈ σ(T) is in
the essential spectrum if it does not have all of the following properties:

1. α(T − λI) < ∞,

2. β(T − λI) < ∞,

3. α(T − λI) = β(T − λI), and
4. ran(T − λI) is closed.

However, this definition of the spectrum does not contain the limit points of the spec-
trum. If all these accumulation points are added to the essential spectrum, then we
derive the definition of F. E. Browder [Bro61]. There, a spectral value λ ∈ σ(T) is in
the essential spectrum, if at least one of the following conditions hold:

1. ran(T − λI) is not closed in X,

2. λ is a limit point of the spectrum σ(T),
3. ⋃k∈N ker(T − λI)k is infinite dimensional.
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These conditions are equivalent to the essential Browder spectrum σb(T) defined above.
The advantage of using σess is the perturbation invariance, while the advantage of the
Browder spectrum σb(T) is that σ(T) ∖ σb(T) is a countable set. Summing up these
facts, we have the relation

σess(T) ⊆ σb(T) = σess(T) ∪ acc σ(T) ⊂ σ(T),
where acc σ(T) denotes all the limit points of σ(T). Nevertheless, the essential spec-
tral radius ress(T) is the same in both definitions of the essential spectrum, i. e., all
spectral limit points are on the boundary of σess(T) and all spectral values outside of
ress(T) are isolated. Besides, if λ ∈ σ(T)with ⋃︀λ⋃︀ > ress(T) then T−λI is a Browder op-
erator, as α(T − λI) = β(T − λI) < in f ty and ∪k∈N ker(T − λI)k is finite-dimensional,
thus T − λI has finite chain length.
We have already introduced Riesz operators in the last section as generalization of

compact operators. Based on the Ruston condition, Proposition 8.14, the essential
spectral radius provides an alternative way to define Riesz operators T by the rela-
tion ress(T) = 0. Based on the preceding notes we can derive the following spectral
properties as already stated in the last item of Proposition 8.13.

Proposition 8.15. If T is a Riesz operator, then each spectral point λ ≠ 0 is isolated and
the corresponding generalized eigenspace ⋃k∈N ker(T − λI)k is finite-dimensional.

In the next chapter, we discuss contraction operators T , i. e., ∏︁T∏︁op ≤ 1. As shown
in Section 6.2, a necessary condition for the convergence of the iterates is that σ(T) ⊂
B(0, 1) ∪ {1}. We are interested in operators, where 1 is an isolated point in the spec-
trum. Therefore, we are considering in the following operators with essential spectral
radius strictly less than 1.

Definition 8.12 (Quasi-compact operator). An operator T ∈ ℒ(X) on a Banach space
X is said to be quasi-compact, if ress(T) < 1.
In fact, being quasi-compact is weaker than being Riesz and thus, the following

chain of implications hold:

finite-rank ⇒ compact ⇒ Riesz ⇒ quasi-compact

A comparison of these operators based on the nullity, deficient and ascent is given
in Table 8.2. Note that if ∏︁T∏︁op = 1 and T is quasi-compact, then every peripheral
spectral value is not contained in the essential spectrum. In the next proposition, it
will be shown that such a spectral point is already an eigenvalue of T .

Proposition 8.16 (Sasser [Sas64]). Let T ∈ ℒ(X) be a quasi-compact operator. Then
if λ0 ∈ σ(T) and ⋃︀λ0⋃︀ = r(T), then λ0 is an isolated point in σ(T) and is in the point
spectrum.

We will provide an explanation of this result in the next section using so called
spectral projections. The main argument is that if T is quasi-compact, then T − λ0I is
a Browder operator if ⋃︀λ0⋃︀ = r(T). In this case, λ is an isolated eigenvalue.
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T compact T Riesz T quasi-compact

ress(T) = 0 = 0 < 1
α(T − λI) = β(T − λI) < ∞ λ ≠ 0 λ ≠ 0 ⋃︀λ⋃︀ > ress(T)
asc(T − λI) < ∞ λ ≠ 0 λ ≠ 0 ⋃︀λ⋃︀ > ress(T)
T − λI ∈ 𝒲B(X) λ ≠ 0 λ ≠ 0 ⋃︀λ⋃︀ > ress(T)

Table 8.2: Properties of compact, Riesz and quasi-compact operators.
Note that if r(T) = ∏︁T∏︁op = 1, then T − λI is a Browder operator for every peripheral
spectral value λ, i. e., ⋃︀λ⋃︀ = 1, and λ is an isolated eigenvalue of T.

8.5 Spectral projections
We conclude this chapter with the introduction of spectral projection. It has been
shown inDunford [Dun43b], that the iterates of an operator converge against a spectral
projection corresponding to the spectral set 1. We will first show that the spectral
projection leads to a space decomposition by its range and its null space. Then, we
relate the chain length of an operator with corresponding spectral projection. Recall,
that we denote by R(T , λ) the resolvent of T , R(T , λ) ∶= (T − λI)−1.

In the following X is considered as complex Banach space and T ∈ ℒ(X). Important
to define spectral projection are spectral sets. These are closed subsets of the spectrum
that have always a positive distance to its complement. This is needed to create a
integration path in the spectrum that contains only the spectral set.

Definition 8.13 (Spectral Set). A subset σ of σ(T) is said to be a spectral set of T if σ
and σ(T) ∖ σ are closed.

Note that this definition is equivalent to say that there exists open sets U1 ⊃ σ and
U2 ⊃ σ(T) ∖ σ such that U1 ∩ U1 = ∅. Using functional calculus, see e. g., Heuser
[Heu82, pp. 204], one can define spectral projections associated with a spectral set in
the following way.

Definition 8.14 (Spectral projection). Let σ be a (possible empty) spectral set and let
Γσ be a simple, closed integration path that lies in in the resolvent set ρ(T). Further,
we assume that Γσ is oriented counterclockwise and encloses σ . Then the operator

Pσ ∶= 1
2πi ∫Γσ

R(T , λ)dλ (8.2)

is a bounded projection on X and is called the spectral projection associated with σ .

We show next that λ is a pole of the resolvent R(T , λ) if and only if the related
operator T − λI has finite chain length, i. e., asc(T − λI) < ∞. In this case, the null
space and the range of the spectral projection associated with {λ} are explicitly given.
If furthermore T − λI is a Fredholm operator, i. e., asc(T − λI) < ∞ and dsc(T − λI) <∞, then λ is always an isolated eigenvalue of T and the spectral projection is finite-
dimensional.
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Proposition 8.17 ([Heu82, Prop. 50.2]). λ is a pole of the resolvent of T if and only
if T − λI has positive finite chain length. The common chain-length p is the order of
the pole. In this case λ ∈ σp(T), i. e., λ is an eigenvalue of T. The spectral projector P
corresponding to {λ} satisfies

ran(P) = ker(T − λI)p and ker(P) = ran(T − λI)p .
Proposition 8.18 ([Heu82, Prop. 50.3]). T − λI is a Browder operator, i. e., T − λI is a
Fredholm operator with positive finite chain length

0 < asc(T − λI) < ∞,

if and only if λ is an isolated spectral point of T and the corresponding spectral projector
P is finite-dimensional. In this case λ is a pole of the resolvent R(T , λ).

The computation of the spectral projection using the formula provided in (8.2) is
in general hard to calculate. We will consider operators T where T − λI is a Browder
operator in the next chapter and show a constructive way based on the invertibility of a
Gramianmatrix to derive the spectral projector P. Table 8.2 shows that quasi-compact
operators with r(T) = ∏︁T∏︁op = 1 guarantee that T − λI is a Browder operator for every
peripheral spectral value λ. By the preceding propositions, we can conclude that λ is
an isolated eigenvalue and X = ker(T − λI)p ⊕ ran(T − λI)p where p is the ascent of
T − λI. Compare this result with Proposition 8.11 and Proposition 8.16 and note that
ker(T − λI)p is finite-dimensional.
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‘‘ The elegance of a mathematical theorem is directly proportional
to the number of independent ideas one can see in the theorem
and inversely proportional to the effort it takes to see them.’’

georg pólya

We discuss here the limit of the iterates of linear operators defined on a com-
plex Banach space X and show under which conditions those iterates converge

uniformly towards a limiting operator. In particular, we show as highlight of this the-
sis a constructive way to obtain the limit of the iterates provided that the fixed points
and dual fixed points are explicitly known, which is often the case for approximation
operators. We will give new necessary and sufficient criteria for the convergence of
the iterates and embed the developed theory in existing results.

First, we give an overview of existing results on this field starting with fundamental
work of Dunford published already in 1943. A topic closely related to the limit of
the iterates uniform ergodic theory. Uniform ergodic theorems prove the desired
result for the limit of the mean value of the iterates which is in fact weaker and not
sufficient for our application, namely obtaining lower estimates as already outlined in
Chapter 6. To show the simplicity of our approach, we will provide an example for
variation-diminishing operators before we state our results. After this introduction,
we discuss how finite-dimensional generalized eigenspaces of a bounded operator can
be complemented in the Banach spaces by the use of projections. We will start using
the classical coordinate map to show the principle of our approach. It turns out that
this coordinate map extended to X is a spectral projection and naturally gives the
complement of the generalized eigenspace as null space of the coordinate map. It will
be shown thatwhen using aGramianmatrixwhere the dual generalized eigenfunctions
are operating on the generalized eigenfunctions, the range of the projection is invariant
under T if and only if the Gramian matrix is invertible.

These results are applied next in order to prove the limiting behaviour of the iterates
of an operator. It will be shown that if the spectrum of the operator T is contained in
the unit ball where 1 is the only spectral value on the boundary and T − I is a Browder
operator with ascent one, then the iterates Tn converge uniformly towards the spectral
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projection associated with the eigenvalue 1. This result is constructive in the sense that
the limit operator can be explicitly calculated by the inverse of the Gramian matrix.

9.1 Fundamentals
We will state here the fundamental results of Dunford [Dun43b; Dun43a] and show
their relation to the convergence of the iterates or related ergodic theorems. We will
cover both topics independently and give an overview over necessary and sufficient
conditions for the convergence.

9.1.1 The work of Dunford
Letℋ(T) denote the class of all complex functions of a complex variable which are
regular at every point of an open set containing the eigenvalues λ1, . . . , λk of T . Let
us denote by D the differential operator applied to the complex variable. Recall that
a sequence of operators (Tn)n∈N on a Banach space X is said to converge uniformly
towards T ∈ ℒ(X) if it converges in the operator norm. A sequence of operators
Tn converges strongly if ∏︁Tnx − Tx∏︁Y → 0 converges for n → ∞ and all x ∈ X. If⋃︀α∗(Tnx) − α∗(Tx)⋃︀ → 0 converges for n → ∞ for all x ∈ X, α∗ ∈ Y∗ then the
sequence (Tn)n∈N converges in the weak operator topology.

Proposition 9.1 ([Dun43b, Thm. 3.13]). Let p(λ) = ∏k
i=1(λi − λ)ν i be a polynomial

whose distinct roots are λ1, . . . , λk . Let fn ∈ ℋ(T) be such that

1. fn(λi) → 1, D j fn(λi) → 0, i = 1, . . . , k, j = 1, . . . , νi − 1.
2. fn(T) → P weakly, P2 = P, ran(P) = ker(p(T)).

Then

3. fn(T) → P strongly if and only if p(T) fn(T) → 0 strongly,

4. fn(T) → P uniformly if and only if p(T) fn(T) → 0 uniformly and ran(p(T))
is closed,

where the limits are taken for n →∞.

Note that for the strong convergence ran(P) is not necessarily closed while in the
case of uniform convergence ran(P) is closed. However,

X = ran(P) ⊕ ker(P)
holds in any case.
Of our interest is the special case p(T) = T − I, thus k = 1 and λ1 = 1. In this case,

Dunford has shown the following.

Proposition 9.2 ([Dun43b, Thm. 3.16 on p. 215]). Let fn ∈ ℋ(T) satisfy fn(1) → 1
and (T − I) fn(T) → 0. Then the following statements are equivalent.

1. fn(T) → P, P2 = P, ran(P) = ker(T − I).
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2. The point λ = 1 is either in ρ(T) or a pole of R(λ, T).
3. The point λ = 1 is either in ρ(T) or a simple pole of R(λ, T).
4. X = ker(T − I) ⊕ ran(T − I) and ran(T − I) is closed.

5. ran(T − I)2 is closed.

Here, the convergence is understood in any of either the weak, the strong or the uniform
operator topology.

See also Theorem 8 and 9 in [Dun43a, pp. 648,649]. The fourth item states partic-
ularly that T − I has finite chain length one, thus both ascent and descent of T − I
equals one. Note that this is in fact equivalent to the third item by Proposition 8.17.
If additionally P is a finite-rank projection, we can conclude that T − I is a Browder
operator with ascent one. We will show later how this relates to the quasi-compactness
of T . Now we will discuss two popular choices of fn ∈ ℱ(T) for the case p(T) = T − I.

1. fn(λ) = n−1∑n−1
k=0 λk , and

2. fn(λ) = λn.
In the first option, the necessary condition (T − I) fn(T) → 0 of the preceding propo-
sition reduces to Tn⇑n → 0 for n →∞. To see this, we rewrite the expression to

(T − I)(n−1 n−1∑
k=0 Tk) = n−1 n∑

k=1 Tk − n−1 n−1∑
k=0 Tk = n−1Tn − n−1I.

Clearly, n−1Tn − n−1I converges to zero if and only if n−1Tn converges to zero. If
we consider the second option, the necessary condition requires that Tn+1 − Tn → 0
uniformly for n →∞. Also note that the second option implies the first one, thus if the
iterates converge uniformly then also the so called Cesáro means converge uniformly.
For this reason, we consider in the following also ergodic theorems and give necessary
and sufficient conditions.

9.1.2 Uniform ergodic theorems
Given an operator T ∈ ℒ(X), we discuss the convergence of the Cesáro means

an(T) ∶= n−1 n−1∑
k=0 Tk .

In the literature, this kind of convergence is discussed by so called uniform ergodic
theorems. Lin [Lin74] has considered the condition under which ∏︁Tn⇑n∏︁op → 0 holds
and could specify another criterion for the convergence of the Cesáro means an(T).
Combined with the criteria shown previously by N. Dunford [Dun43b] we get the
following proposition, where the last item is due to Lin.

Proposition 9.3. Let T be a bounded linear operator on a Banach space X satisfying∫︁n−1Tn∫︁op → 0 for n →∞. Then the following conditions are equivalent:
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1. There exists a bounded linear operator P such that

⨄︁n−1 n−1∑
k=0 Tk − P⨄︁

op
→ 0,

P2 = P, and ran(P) = ker(T − I) holds.

2. ran(T − I) is closed and X = ker(T − I) ⊕ ran(T − I).
3. ran(T − I)2 is closed.

4. ran(T − I) is closed.

Accordingly, if ∫︁n−1Tn∫︁op converges to 0 as n →∞ and ran(T − I) is closed, then
T is uniformly ergodic, i. e., there exists P such that an(T) → P uniformly. Note
that ran(T − I) is always closed if T is a quasi-compact operator, see for instance the
definition of the essential spectrum in Section 8.4.
An interesting relation between the fixed points of T and T∗ has been shown by

Sine [Sin70]:

Proposition 9.4 ([Sin70]). Let T be a contraction, i. e., ∏︁T∏︁op ≤ 1. Then

an(T) ∶= n−1 n−1∑
k=0 Tk

converges in the strong operator topology if and only if the fixed points of T separate the
fixed points of T∗.
In the proof Sine has used the fact that the Cesáro means an(T) converge in the

weak operator topology if and only if they converge in the strong operator topology
provided ∏︁T∏︁op ≤ 1. We show in Section 9.4.4, how this point separation property
relates to the invertibility of the Gramian matrix that we will consider throughout the
next sections.
For positive contractions on C(K), where K is a compact Hausdorff space, M. Lin

has proved the following equivalent conditions in [Lin75]. Note that a bounded op-
erator T on C(K) is said to be positive if T f ≥ f holds whenever f ≥ 0 Besides, a
bounded operator T is called a contraction if ∏︁T∏︁op ≤ 1 holds.

Proposition 9.5. Let T be a positive contraction of C(K), where K is a compact Haus-
dorff space. Then the following conditions are equivalent.

1. T is quasi-compact.

2. n−1∑n
k=1 Tk converges for n →∞ uniformly to a finite dimensional projection.

3. ran(T − I) is closed and ker(T − I) is finite dimensional.

4. ran(T∗ − I) is closed and the space of invariant measures ker(T∗ − I) is finite
dimensional.

5. ran(T − I) is closed and ker(T∗ − I) is finite dimensional.
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Corollary 9.6. Let T be a positive contraction of C(K). If n−1∑n
k=1 Tk converges uni-

formly to a finite dimensional projection, then, for every l ≥ 1,
n−1 n∑

k=1 Tkl

converges uniformly.

After the preceding result stated in [Lin75], M. Lin mentioned that this corollary
does not hold when the projection is infinite-dimensional.

9.1.3 Convergence of the iterates
Next, we consider the case where fn(T) ∶= Tn. We have already shown previously that
Dunford’s criterion reduces in this case to Tn+1 − Tn → 0 for n → ∞. To fulfill the
condition Tn+1−Tn → 0 the result of Katznelson andTzafriri [KT86] yields a sufficient
and necessary criterion. Katznelson and Tzafriri state that if T is a contraction on a
Banach space then ∫︁Tn+1 − Tn∫︁op → 0 holds if and only if the intersection of the
spectrum of T and the unit circle contains at most the point 1.

Proposition 9.7 (Katznelson and Tzafriri [KT86, Thm. 1]). Let T be an linear operator
on X such that ∏︁T∏︁op ≤ 1. Then

lim
m→∞ ∫︁Tm+1 − Tm∫︁op = 0

if and only if

σ(T) ⊂ B(0, 1) ∪ {1} . (9.1)

Clearly, if ∏︁T∏︁op < 1, then ∏︁Tn∏︁op → 0. Thus, of our interest will be the case where
the operator norm of T is equal to one.

Using the result of Proposition 9.7, the Proposition 9.2 reduces to the following
proposition.

Proposition 9.8. Let T be an operator such that ∏︁T∏︁op ≤ 1 and σper(T) ⊂ {1}.
Then the following statements are equivalent.

1. Tn → P uniformly, P2 = P, ran(P) = ker(T − I).
2. The point λ = 1 is either in ρ(T) or else a simple pole of R(T , λ).
3. X = ker(T − I) ⊕ ran(T − I) and ran(T − I) is closed.

4. ran(T − I)2 is closed.

Thenext sections are devoted to the construction of the limiting operatorP provided
that T − I is a Browder operator with ascent one. In this case ran(T − I) is closed and
we get using the spectral projection P the space decomposition

X = ker(T − I) ⊕ ran(T − I),
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see also Proposition 8.17. Recall, that the uniform convergence of the iterates is impor-
tant to derive lower estimates as shown in Chapter 6.

9.2 An introductory example
To motivate the theory of this chapter and to demonstrate the simplicity and the ele-
gance of our results, we will provide here an example using a variation diminishing
operator. We will sketch first our results for quasi-compact operator where T − I has
ascent one. To this end, let T ∈ ℒ(X) be a quasi-compact operator on a Banach space
X with ∏︁T∏︁op = 1 such that T − I has ascent one. Furthermore, we assume that 1 is
the only spectral value on the unit circle. By Proposition 8.16 and Proposition 8.18 the
fixed point space ker(T − I) is finite dimensional. The same holds true for the dual
fixed point space, as T − I is a Browder operator and α(T − I) = β(T − I). Accordingly,
we consider the following spaces

M = ker(T − I) = {x ∈ X ∶ Tx = x} ,
Λ = ker(T∗ − I) = {x∗ ∈ X∗ ∶ x∗(Tx) = x∗(x) for all x ∈ X} .

We have that n = dim(M) = dim(Λ) is a positive integer, hence these spaces have a
finite basis

M = span{e1, . . . , en} and Λ = span{e∗1 , . . . , e∗n} ,
and w.l.o.g. we assume that these bases are normalized.

By Katznelson and Tzafriri [KT86, Thm. 1] we get that Tn−1−Tn → 0 in the uniform
operator topology and by Dunford [Dun43b] we can conclude by Proposition 9.8 that
the iterates Tn converge uniformly towards a projection P with ran(P) = ker(T − I),
provided that X = ker(T−I)⊕ran(T−I). In the following, wewill answer the question
how to calculate P if bases of the above mentioned spaces are known. Bases for these
fixed-point spaces are often explicitly known for positive linear operators arising in
approximation theory. Consider, for instance, the Bernstein operator or Schoenberg’s
spline operator. The key idea is to construct a projection P with ran(P) = ker(T − I)
and ker(P) = ran(T − I) to achieve the above mentioned space decomposition. In
this case the range and the null space of P are invariant under T .

9.2.1 The inverse of the Gram matrix
For the exact representation of the projection operator P, let us consider the Gram
matrix, where the invariant functionals operate on the fixed points of T ,

G ∶= ⎛⎜⎜⎝
e∗1 (e1) ⋯ e∗1 (en)⋮ ⋮
e∗n(e1) ⋯ e∗n(en)

⎞⎟⎟⎠ ∈ C
n×n .
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It will be shown in the following that if this matrix is invertible then the projection P
on the space ker(T − I) has the form

Px = n∑
i=1

n∑
j=1 ai je

∗
j (x)ei , x ∈ X ,

where A = (ai j) = G−1 and the iterates converge uniformly towards P, i. e.,

lim
m→∞ ∏︁Tm − P∏︁op = 0.

9.2.2 Example: variation-diminishing transforms
We now give a short example of our result on C((︀0, 1⌋︀), the space of continuous func-
tions on the interval (︀0, 1⌋︀ equipped with the norm of uniform convergence. Thereby,
let n be a positive integer and suppose that {x j}nj=1 form a partition of (︀0, 1⌋︀ such that

0 = x1 < x2 < ⋯ < xn = 1.
We consider the variation-diminishing operator already introduced in Section 2.3.4,
see (2.3) on page 21. Let T ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) be defined for f ∈ C((︀0, 1⌋︀) by

T f (x) = n∑
k=1 f (xk)ek(x), x ∈ (︀0, 1⌋︀ ,

where {e1, . . . , en} are positive functions of C((︀0, 1⌋︀) that form a partition of unity,
i.e.,

n∑
k=1 ek(x) = 1 for all x ∈ (︀0, 1⌋︀ .

Besides, we assume that T f = f whenever f is a linear function. These conditions are
satisfied, e. g., for the Bernstein and the Schoenberg operator, discussed in Chapter 3.
It is now easy to see that in this case T1 = 1 and ∏︁T∏︁op = r(T) = 1, where r(T) is the
spectral radius of T . Using the positivity of T and the ability to reproduce constants
and linear functions it follows by Goodman [Goo96, Thm. 3.5] that e1(0) = en(1) = 1.
As consequence, T interpolates at 0 and 1, as

T f (0) = n∑
k=1 f (xk)ek(0) = f (x1) = f (0),

T f (1) = n∑
k=1 f (xk)ek(1) = f (xn) = f (1).

Here, we used the partition of unity property, to conclude that ek(0) = δk,1 and ek(1) =
δk,n for all k ∈ {1, . . . , n}. The introduced operator is a finite-rank operator with T1 = 1
and Tx = x and two linearly independent invariant functionals for T∗ are given due
to the interpolation at 0 and 1. If δ0, δ1 denote the continuous functionals that evaluate
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continuous functions at 0 and 1 respectively, then δ0(T f ) = δ0( f ) and δ1(T f ) = δ1( f )
for all f ∈ C((︀0, 1⌋︀).

Now, wewant to answer the questionwhether the limit of the iterates Tm form →∞
exists and if so to which operator the iterates converge. In Chapter 7 ([Nag15]) it has
been shown that the partition of unity property of the basis {e1, . . . , en} guarantees
the spectral location σ(T) ⊂ B(0, 1) ∪ {1}. To derive the limiting operator, we have to
specify the eigenspaces of T and its adjoint T∗ that corresponde to the eigenvalue 1.
Using the partition of unity and the ability to reproduce linear functions as well as the
interpolation property at the endpoints of the interval (︀0, 1⌋︀, we derive the following
normalized basis for the fixed-point spaces

ker(T − I) = span(1, x), ker(T∗ − I) = span(δ0, δ1),
as already discussed previously. Next, we consider the Gram matrix

G ∶= (δ0(1) δ0(x)
δ1(1) δ1(x)) = (1 0

1 1) ,
where the fixed points of T∗ operate on the fixed points of T . Indeed, this matrix is
invertible with

A ∶= G−1 = ( 1 0−1 1) .
Using the main result of this chapter we are able to use the coefficients a11 = 1, a12 = 0,
a11 = −1, a12 = 1 to conclude that

lim
m→∞ ∏︁Tm − P∏︁op = 0,

where the projection P ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) is defined for f ∈ C((︀0, 1⌋︀) by
P f = (a11δ0( f ) + a12δ1( f )) ⋅ 1 + (a21δ1( f ) + a22δ0( f )) ⋅ x= δ0( f ) ⋅ 1 + δ1( f ) − δ0( f ) ⋅ x = f (0) + ( f (1) − f (0)) x .

The iterates converge to the linear interpolation operator that interpolates at the end-
points of (︀0, 1⌋︀. Consequently, we have demonstrated our underlying framework for
general variation-diminishing operators that reproduce constant and linear functions,
consider e. g., the Bernstein and the Schoenberg operator. However, the convergence is
guaranteed for all quasi-compact contraction operators, as we will see in the following.

9.3 Invariants of Operators
The aim of this section is to show how to construct a projection P onto a generalized
eigenspace of a bounded linear operator T defined on a complex Banach space X
corresponding to an eigenvalue λ ∈ C. To this end, we consider an operator T such
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that T − λI is a Browder operator with ascent asc(T − λI) = p. In this case, the
projection has the property ker(P) = ran(T − λI)p which gives us generically the
following space decomposition:

X = ker(T − λI)p ⊕ ran(T − λI)p
= ran(P) ⊕ ker(P).

We provide a simple criterion under which assumptions this space decomposition
is possible. Before we will look at a finite-dimensional generalized eigenspace of an
operator T ∈ ℒ(X), wewill construct the projection on an arbitrary finite-dimensional
subspace M of a vector space X. On M we introduce the classical coordinate map
defined by a basis of M and the corresponding dual basis of the dual space M∗. By
the extension theorems of Hahn-Banach the coordinate map gives us a continuous
projection of X onto M. In the sequel, we will discuss conditions on the functionals
that can be chosen in the coordinate map to build a dual basis. Finally, we apply the
results to the generalized eigenspaces of a bounded linear operator T on a Banach space
X and its adjoint T∗ corresponding to an eigenvalue λ ∈ C. A necessary condition on
the operator T − λI is being Fredholm with non-positive index. If in addition T − λI
is a Browder operator, i. e., the index is zero and its chain length is finite, then the
projection yields the previously mentioned direct sum decomposition of X.
Note that this space decomposition is already well known, see Proposition 8.17

provided T − λI has positive finite chain length. In contrast to existing literature we
prove it using an explicitly constructed finite-rank projection P. This method uses
in fact the restriction that T − λI has to be Weyl operator, i. e., a Fredholm operator
of index zero, to guarantee that the corresponding generalized eigenspaces of T and
T∗ have finite dimension. This direct construction of the projection P provides an
alternative way to calculate the spectral projection corresponding to the eigenvalue λ
as shown in Section 8.5.

9.3.1 Dual basis and the coordinate map
Let X be a normed vector space over the complex numbers and let M ⊂ X be a closed
subspace with 0 < dim(M) < ∞. In the sequel, we denote its dimension by n =
dim(M). Moreover, let {e1, . . . , en} be a basis for M. Then every x ∈ M has a unique
representation

x = n∑
i=1 e

∗
i (x)ei , (9.2)

where {e∗1 , . . . , e∗n} are appropriate continuous linear functionals onM. By definition,
each ei can also be represented by (9.2) which yields the characterization

e∗i (ek) = δik = )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
1 if i = k
0 if i ≠ k, (9.3)
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X M

Cn Cn

Φ∗ Φ

ΦΦ∗

(Φ∗Φ)−1 = In

Φ

Figure 9.1: A commutative diagram that illustrates the projectionΦΦ∗ ∶ X → M as composition
of the synthesis operator Φ and analysis operator Φ∗. Note that the projection can also be
written as Φ(Φ∗Φ)−1Φ∗.

for all i , k ∈ {1, . . . , n}. In analogy to the construction of the frame operator onHilbert
spaces [Chr01; Chr03], we define a synthesis operator Φ ∶ Cn → M by

Φ(a1, . . . , an) = n∑
i=1 aiei . (9.4)

The adjoint of this operator Φ∗ ∶ M → Cn yields the analysis operator

Φ∗(x) = ⎛⎜⎜⎝
e∗1 (x)⋮
e∗n(x)

⎞⎟⎟⎠ , x ∈ X . (9.5)

Combining both operators we can represent the coordinate map (9.2) by the compo-
sition Φ∗Φ ∶ M → M,

(ΦΦ∗)(x) = n∑
i=1 e

∗
i (x)ei = x .

Note that according to (9.3) the matrix Φ∗Φ ∈ Cn×n is the identity on Cn:

Φ∗Φ = ⎛⎜⎜⎝
e∗1 (e1) ⋯ e∗1 (en)⋮ ⋮
e∗n(e1) ⋯ e∗n(en)

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
1 0 ⋯ 0
0 1 ⋯ 0⋮ ⋱ ⋮
0 ⋯ 0 1

⎞⎟⎟⎟⎟⎠
= In .

Accordingly, the basis {e∗1 , . . . , e∗n} ⊂ M∗ is said to be the dual basis for {e1, . . . , en} ⊂
M. Applying the Theorem of Hahn-Banach, the coordinate map can be extended to
the whole vector space X. To simplify notation the extended functionals on X∗ will
be also denoted by e∗1 , . . . , e∗n in the following.

Lemma 9.9. The operator ΦΦ∗ ∶ M → M can be extended to a projection of the space
X onto the closed set M and is bounded by

∏︁(ΦΦ∗)(x)∏︁ ≤ ∏︁x∏︁ n∑
i=1 ∏︁e∗i ∏︁ .
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The matrix (Φ∗Φ)i j ∈ Cn×n is invertible and the coordinate map ΦΦ∗⋂︀M ∶ M → M
which is restricted on M yields an isomorphism. The space X can be decomposed into

X = M ⊕ ker(ΦΦ∗).
Proof. The continuous functionals e∗i can be extended by the classical Hahn-Banach
Theorem to X∗ with the same properties as on M. We denote the resulting extensions
again as e∗i ∈ X∗. Therefore, ΦΦ∗ ∶ X → M and

(ΦΦ∗)(x) = n∑
i=1 e

∗
i (x)ei = x for all x ∈ M .

Moreover, the operator is bounded on X since for x ∈ X we have

∏︁(ΦΦ∗)(x)∏︁ = ⨄︁ n∑
i=1 e

∗
i (x)ei⨄︁ ≤ n∑

i=1 ∏︁e∗i (x)∏︁ ∏︁ei∏︁ ≤ ∏︁x∏︁
n∑
i=1 ∏︁e∗i ∏︁ ,

where we used that ∏︁ei∏︁ = 1 and the fact that ∏︁e∗i (x)∏︁ ≤ ∏︁e∗i ∏︁ ∏︁x∏︁. Clearly, (Φ∗Φ) is
invertible with (Φ∗Φ)−1 = In. It yields also a projection, because for every x ∈ M we
obtain (ΦΦ∗)(x) = x and therefore, (ΦΦ∗)2 = (ΦΦ∗). As the operatorΦΦ∗ ∈ ℒ(X)
is a bounded projection onto the closed space M, we obtain canonically the space
decomposition X = M ⊕ ker(ΦΦ∗), see Proposition 8.4.

The key property to notice here is that (Φ∗Φ)i j is an invertible matrix and that
ΦΦ∗ is a projection ontoM. The commutative diagram shown in Figure 9.1 illustrates
the behaviour of Φ and Φ∗.

In the following, we show which functionals {e∗1 , . . . , e∗n} can be chosen instead of
the dual basis such that ΦΦ∗ is still a projection where the analysis operator Φ∗ now
contains the new functionals. The next section shows that the matrix Φ∗Φ must have
full column rank.

9.3.2 Complemented subspaces and projections
We consider now the following problem. Given a set of linear functionals Λ ⊂ X∗, we
ask whether it is possible to construct a projection onto the closed finite dimensional
subspace M ⊂ X with functionals chosen only from the set Λ. We give a characteriza-
tion in the next theorem. As in the previous section, we consider a finite-dimensional
subspace M of X. Additionally, let Λ ⊂ X∗ be a finite-dimensional subspace of X∗.
Let us denote by {e1, . . . , en} and {e∗1 , . . . , e∗m} a basis of M and Λ, respectively. The
synthesis operator Φ ∶ Cn → X is constructed as in (9.4), whereas the analysis operator
Φ∗ ∶ X → Cn is not defined as the adjoint of Φ but uses the basis functionals of Λ:

Φ∗(x) = ⎛⎜⎜⎝
e∗1 (x)⋮
e∗m(x)

⎞⎟⎟⎠ , x ∈ X .



118 chapter 9 Iterates of Quasi-Compact Operators by Fredholm Theory

X M

Cm Cn

Φ∗ Φ

ΦAΦ∗

A

Figure 9.2: Commutative diagram showing the projection ΦAΦ∗ ∶ X → M. Here the matrix A
is either the left inverse of the matrix Φ∗Φ or its inverse.

Let us assume that dim(Λ) ≥ dim(M) holds. Then we will show in the next theorem
that againΦΦ∗ yields a projection operatorontoM provided thatΦ∗Φhas full column
rank.

Theorem 9.10. Let Λ ⊂ X∗ with 0 < dim(M) ≤ dim(Λ) < ∞ and let n = dim(M),
m = dim(Λ). Then the operator P ∈ ℒ(X) defined for A = (ai j) ∈ Cn×m by

Px = ΦAΦ∗(x) = n∑
i=1

m∑
j=1 ai je

∗
j (x)ei , x ∈ X , (9.6)

yields a projection onto M if and only if the matrix

G ∶= (Φ∗Φ) = ⎛⎜⎜⎝
e∗1 (e1) ⋯ e∗1 (en)⋮ ⋮
e∗m(e1) ⋯ e∗m(en)

⎞⎟⎟⎠ ∈ C
m×n (9.7)

has full column rank n. In this case, the matrix A is determined by the left inverse of G,

A = (GTG)−1GT .

Proof. Let us first assume that the matrix G ∈ Cm×n has a left inverse

G−1l e f t = (GTG)−1GT ∈ Cn×m ,
and let A = G−1l e f t . According to the definition of a left inverse matrix, the equation

A ⋅G = G−1l e f t ⋅G = In (9.8)

holds. Now, we prove that P, defined for x ∈ X as in (9.6), is a projection onto M. To
this end, we will show that P(x) = x holds for all x ∈ M by considering the basis ofM.
Thus, we only have to prove P(ek) = ek for all k ∈ {1, . . . , n}. The direct calculation
of P(ek) yields

P(ek) = n∑
i=1

m∑
j=1 ai je

∗
j (ek)ei = n∑

i=1
⎨⎝⎝⎝⎝⎪

m∑
j=1 ai je

∗
j (ek)

⎬⎠⎠⎠⎠⎮ ei .
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Applying (9.8) yields∑m
j=1 ai je∗j (ek) = δki . Therefore,

P(ek) = n∑
i=1 piδki = ek

holds and we obtain P(X) = M. Furthermore, P2 = P on X as {e1, . . . , en} forms a
basis for M. Finally, we show the reverse direction. To this end, let us assume that P
is a projection onto M, i. e., P(X) = M and P2 = P holds. Then P(ek) = ek must hold
for any k ∈ {1, . . . , n}, as ei ∈ M. We calculate

P(ek) = n∑
i=1

m∑
j=1 ai je

∗
j (ek)ei = n∑

i=1
⎨⎝⎝⎝⎝⎪∑j=1 ai je

∗
j (ek)

⎬⎠⎠⎠⎠⎮ ei .
This yields necessary the requirement∑m

j=1 ai je∗j (ek) = δik for all k ∈ {1, . . . , n}. There-
fore, we derive the matrix equation A ⋅ G = In with the unknown coefficient matrix
A = (ai j) ∈ Cn×m. In fact, this equation has a solution if and only if the matrix G has
a left inverse G−1l e f t , which concludes the proof.

Next, we will provide an upper bound of the projection operator P = ΦAΦ∗ by the
1-norm of the matrix A.

Lemma 9.11. Under the assumption of Theorem 9.10, the projection operator P defined
by (9.6) has finite-rank and is bounded by

∏︁Px∏︁ ≤ ∏︁x∏︁ n∑
i=1

m∑
j=1 ⋂︀ai j⋂︀ , x ∈ X .

Proof. Clearly, P is a finite rank operator. Let x ∈ X. For arbitrary i ∈ {1, . . . , n} we
obtain∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁

m∑
j=1 ai je

∗
j (x)

∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁∑︁ ≤ ∏︁x∏︁
m∑
j=1 ⋂︀ai j⋂︀ ,

because the dual basis is normalized, i. e., ⋃︁e∗j ⋃︁ = 1. Using the same argument for the
basis of M we get

∏︁Px∏︁ = ∏︁ΦAΦ∗x∏︁ = n∑
i=1

m∑
j=1 ai je

∗
j (x)ei ≤ ∏︁x∏︁ n∑

i=1
m∑
j=1 ⋂︀ai j⋂︀ .

9.3.3 Invariant subspaces and projections
In the following we will consider a linear operator T defined on a complex Banach
space X. As in the preceding sections we are interested in the construction of a pro-
jection onto a finite-dimensional subspace of X. Here, we choose M as a generalized
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eigenspace of T corresponding to an eigenvalue λ ∈ σp(T). It will be shown that the
set of functionals is exactly given by the corresponding generalized eigenspace of the
adjoint T∗.

Accordingly, given some integer p > 0, we consider now the following two subspaces

Mp
λ = ker(T − λI)p = {x ∈ X ∶ (T − λI)px = 0} ⊂ X , (9.9)

Λp
λ = ker(T∗ − λI)p = {x∗ ∈ X∗ ∶ (T∗ − λI)px∗ = 0} ⊂ X∗. (9.10)

Note that due to the fact that ker(T∗−λI)p = ran((T−λI)p)� holds by Proposition 8.3
the set Λp

λ can also be determined as

Λp
λ = {x∗ ∈ X∗ ∶ x∗ ((T − λI)px) = 0 for all x ∈ X} . (9.11)

To assure that both spaces (9.9) and (9.10) are finite-dimensional and that the dimen-
sion of the functionals Λp

λ is greater than the dimension of Mp
λ , we assume in the fol-

lowing that (T−λI)p is a Fredholm operatorwith negative index, i. e., ind(T−λI)p ≤ 0.
Then we have by definition

n = dim(Mp
λ) ≤ dim(Λp

λ) = m
and we can consider w.l.o.g. normalized bases of MP

λ and ΛP
λ :

Mp
λ = span{e1, . . . , en} and Λp

λ = span{e∗1 , . . . , e∗m} (9.12)

such that ∏︁ei∏︁X = 1 and ∏︁e∗i ∏︁X∗ = 1. If we additionally suppose we have the following
finite chain of inclusions

ker(T − λI) ⊊ ker(T − λI)2 ⊊ ⋯ ⊊ ker(T − λI)p = ker(T − λI)p+1 = ⋯,
then the ascent of T − λI is specified as p ∶= asc(T − λI) < ∞. Corresponding to
the eigenvalue λ ∈ σp(T), the set Mλ contains all of the generalized eigenvectors of
the operator T and the set Λp

λ contains all the dual generalized eigenvectors. More
precisely, the set Λp

λ contains all the generalized eigenvectors of the adjoint operator
T∗ to the eigenvalue λ.

Remark. Note that the assumption on T are not very restrictive. As shown in the end of
the last chapter, every compact operator satisfies all of the conditions. Moreover, quasi-
compact operators satisfy these condition in the case where λ = 1 is chosen. Especially,
every operator where T − λI is a Browder operator fulfills these conditions, see Defini-
tion 8.10 and the comments below this definition on page 99. Consider also Proposi-
tion 8.7 and Proposition 8.12.

We will show next how to construct a projection P onto ker(T − λI)p to obtain the
space decomposition

ker(T − λI)p ⊕ ker(P)
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such that ker(P) = ran(T − λI)p holds. Note that in this case ran(T − λI)p is closed
as it is the null space of the projection P.

First, we provide an equivalent characterization of the restrictions on T to have finite
chain length of the generalized eigenspaces of T provided that T − λI is a Fredholm
operator with ind(T − λI) ≤ 0 to assure that the generalized eigenspaces of T and T∗
are finite-dimensional. The next lemma shows that the ascent can be characterized
by the column rank of the Gramian matrix constructed using the matrix (9.7). In the
following, we will denote by Φ−(X) all Fredholm operators defined on the Banach
space X that have an index less or equal to zero.

Lemma 9.12. Let T ∈ ℒ(X) and λ ∈ σp(T) such that T − λI ∈ Φ−(X). Then T − λI
has finite ascent p, i. e., p = asc(T − λI) = p < ∞, if and only if the Gramian matrix

G ∶= (Φ∗Φ) = ⎛⎜⎜⎝
e∗1 (e1) ⋯ e∗1 (en)⋮ ⋮
e∗m(e1) ⋯ e∗m(en)

⎞⎟⎟⎠ ∈ C
m×n

has full column rank.

Proof. Suppose that T − λI is Fredholm operator with non-positive index. Then (T −
λI)p is also Fredholm with non-positive index p ⋅ ind(T − λI). This follows by the
index theorem [Heu82, Thm. 23.1], as

ind((T − λI)⋯(T − λI))︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
p−times

) = p∑
i=1 ind(T − λI) = p ⋅ ind(T − λI).

Therefore, ran(T − λI)p is closed [Heu82, Prop. 24.3] and

n = α((T−λI)p) = dim(ker(T−λI)p) ≤ dim(ker(T∗−λI)p) = β((T−λI)p) = m.

Note that (Λp
λ)� = (ran((T − λI)p)�)� = ran(T − λI)p = ran(T − λI)p.

Let us now assume that T − λI has ascent p. In order to show that the columns of
G = Φ∗Φ are linearly independent, we choose c = (c1, . . . , cn)T ∈ Cn such that

n∑
i=1 cie

∗
j (ei) = 0

for all j ∈ {1, . . . ,m}. Then we derive that e∗j (∑n
i=0 ciei) = 0 for all j ∈ {1, . . . ,m}.

Therefore,

n∑
i=0 ciei ∈

m⋂
j=1 ker(e∗j ) = (Λp

λ)� = ran(T − λI)p .
As T − λI has finite ascent p we can conclude with Proposition 8.9 that ker(T −

λI)p ∩ ran(T − λI)p = {0} holds. As by definition also∑n
i=1 ciei ∈ ker(T − λI)p holds

we derive that∑n
i=1 ciei = 0. From the linear independence of {e1, . . . , en} it follows
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that c1 = ⋯ = cn = 0. Therefore, the matrix Φ∗Φ has full rank, as the columns are
linearly independent.

To show that the converse is also true let us suppose that the matrix G has full
column rank. Hence, if∑n

i=1 cie∗j (ei) = 0 holds it follows that every coefficient ci = 0
for all i ∈ {1, . . . , n}. Suppose now that x ∈ ker(T − λI)p ∩ ran(T − λI)p. Then x
can be written as linear combination x = ∑n

i=1 ciei for some coefficients ci ∈ C. As
ran(T − λI)p = (Λp

λ)�, we obtain for all j ∈ {1, . . . ,m} that

0 = e∗j ( n∑
i=1 ciei) =

n∑
i=1 cie

∗
j (ei).

We conclude that ci = 0 for all i ∈ {1, . . . , n} as the matrix G has full column rank.
Finally, we have x = 0. Therefore, ker(T − λI)p∩ ran(T − λI)p = {0}. By the first item
of Proposition 8.9 this is equivalent to the statement that the ascent of T − λI is p and
the proof is complete.

As the Gramianmatrix has full column rank, we can construct a projection operator
onto ker(T − λI) according to Theorem 9.10. Consequently, we consider as in the last
section the finite-rank operator P ∈ 𝒦(X) defined for x ∈ X by

Px = (ΦAΦ∗)(x) = n∑
i=1

m∑
j=1 ai je

∗
j (x)ei , (9.13)

where ei ∈ Mλ, e∗j ∈ Λλ are the normalized bases and A = (ai j) ∈ Cn×m. This time, the
functionals e∗j are explicitly chosen as basis of ker(T∗ − λI)p where the coefficients
ai j serve as parameter. In this setting, Theorem 9.10, yields a projection operator that
projects onto the generalized eigenspace Mp

λ and gives a space decomposition of X
into X = Mp

λ ⊕ ker(P).
Corollary 9.13. Let T ∈ ℒ(X) and λ ∈ σp(T) such that T − λI ∈ Φ−(X) with ascent
p ∈ N. Then the linear operator P ∈ 𝒦(X) defined for x ∈ X as

Px = ΦAΦ∗(x),
where A is the left inverse of (Φ∗Φ), yields a continuous projection onto Mp

λ ⊂ X, where
ran(P) = Mp

λ = ker(T − λI)p is a closed subspace.

Proof. This is a direct consequence of Lemma 9.9 and Lemma 9.12.

Note that in the current setting, we obtain a projection P where ran(P) = ker(T −
λI)p is a T-invariant subspace. Accordingly, we have the space decomposition

X = ran(P) ⊕ ker(P) = ker(T − λI)p ⊕ ker(P).
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In the following we are interested when also ker(P) is invariant with respect to the
operator T . Then we can decompose the operator T into

T = (J 0
0 S) ∈ ℒ(ker(T − λI)p ⊕ ker(P)),

where J is the Jordan normal form of T on the generalized eigenspace ker(T − λI)p
and S ∈ ℒ(ker(P)) is equal to the operator T restricted to ker(P).
Remark. Even though we write the operator decomposition in matrix notation, we don’t
assume the Banach space X to be separable. Thematrix form is only used to demonstrate
the space decomposition easier where ker(T − λI) is always finite-dimensional. In this
case, J is given according to some basis, whereas J is not necessarily defined by a countable
dense set in X.

Furthermore, we are not only interested when ker(P) is invariant with respect to T ,
we also want to know underwhich conditions on T the relation ker(P) = ran(T−λI)p
holds. It turns out that this is the exactly the case when the T−λI is a Browder operator,
i. e., the operator T − λI has Fredholm index 0 and finite chain length p. We will
discuss this particular case in the following. First, we show in the next lemma that
the Fredholm index 0 of T − λI leads to the invertibility of the Gramian matrix Φ∗Φ.
Finally, we will prove that in this case ker(P) = ran(T − λI)p holds. We will conclude
this section with an overview over related results.

Lemma 9.14. Let T ∈ ℒ(X) and λ ∈ C such that T − λI ∈ Φ−(X). Then T − λI is a
Browder operator if and only if the matrix G = Φ∗Φ is invertible.

Proof. If G is invertible, then T − λI has finite ascent p by Lemma 9.12 and G is neces-
sarily a square matrix, thus ind(T − λI)p = 0 as

n = α((T − λI)p) = β((T − λI)p) = m, (9.14)

using the definition of the nullity α((T − λI)p) = dimker(T − λI)p and the deficiency
β((T − λI)p) = dimker(T∗ − λI)p. By the fourth item of Proposition 8.12 on page 99
we can conclude by α(T − λI) = β(T − λI) and asc(T − λI) = p < ∞ that also the
descent of T−λI is finite. Therefore, T−λI ∈ 𝒲B(X), i. e., T−λI is a Browder operator
with ascent p.

Assume to the contrary that T − λI is a Browder operator. Then T − λI has finite
ascent p and ind(T − λI) = 0 by definition. As ind(T − λI) = 0 the matrix G = Φ∗Φ
is a n × n-matrix as n = α((T − λI)p) = β((T − λI)p) using the same argument as
in (9.14). As we have the conditions ind(T − λI) = 0 and asc(T − λI) = p we can
apply Lemma 9.12 to conclude that the matrix G has full rank and thus, is invertible
as square matrix.

Next, we will prove that the null space of the projection P is given by ker(P) =
ran(T − λI)p provided that T − λI is a Fredholm operators with index 0 having finite
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chain length p, i. e., T − λI is a Browder operator. Note that the invertibility of Φ∗Φ
is already sufficient for this result.

Theorem 9.15 (Space decomposition). Let T ∈ ℒ(X) and λ ∈ σp(T) such that T − λI
is a Browder operator with ascent p. Then

X = ker(T − λI)p ⊕ ran(T − λI)p ,
where ran(Φ(Φ∗Φ)−1Φ∗) = ker(T − λI)p and ker(Φ(Φ∗Φ)−1Φ∗) = ran(T − λI)p.
Proof. Let n = dim(ker(T − λI)p) = dim(ker(T∗ − λI)p) < ∞. As (T − λI)p is a
Fredholm operator, ran(T − λI)p is closed. We already have shown that ran(P) =
ker(T − λI)p. In order to show ker(P) = ran(T − λI)p let x ∈ ker(P). Then we have

0 = Px = n∑
i=1

n∑
j=1 ai je

∗
j (x)ei . (9.15)

As {e1, . . . , en} form a basis for ker(T − λI)p by (9.9) and (9.12), the relation (9.15)
can only hold if

n∑
j=1 ai je

∗
j (x) = 0

for every i ∈ {1, . . . , n}. Using that A = (Φ∗Φ)−1 is invertible by Lemma 9.12, we
obtain that e∗j (x) = 0 for all j ∈ {1, . . . ,m}. Then it is easy to see that

x ∈ (Λp
λ)� = (ran((T − λI)p)�)� = ran(T − λI)p ,

because ran(T − λI)p is closed.
Now let y ∈ ran(T − λI)p. Accordingly, there is x ∈ X with (T − λI)px = y. In this

case also y ∈ ker(P) holds, because

Py = n∑
i=1

m∑
j=1 ai je

∗
j ((T − λI)px)ei = 0.

In the last step we used that e∗j ∈ ran((T − λI)p)�. Finally, we obtain the space
decomposition

X = ran(P) ⊕ ker(P) = ker(T − λI)p ⊕ ran(T − λI)p ,
where ran(P) = ker(T − λI)p and ker(P) = ran(T − λI)p.

We conclude this section with a theorem that gathers all the results we have shown
for a bounded operator T with eigenvalue λ ∈ σp(T), where T − λI is a Weyl operator,
i. e., a Fredholm operator with zero index. Note once more that this restriction is im-
portant for our settingwhere the generalized eigenspaces have to be finite-dimensional.
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Theorem 9.16 (Characterization of the Browder operator T − λI).
Let T ∈ ℒ(X) and λ ∈ σp(T) such that T − λI ∈ 𝒲(X). Then the following statements
are equivalent:

1. T − λI is a Browder operator, T − λI ∈ 𝒲B(X),
2. the operator T − λI has finite chain length, i. e., asc(T − λI) = dsc(T − λI) < ∞,

3. the space X can be decomposed into X = ker(T − λI)p ⊕ ran(T − λI)p,
4. the n × n matrix G ∶= (Φ∗Φ),

G = ⎛⎜⎜⎝
e∗1 (e1) ⋯ e∗1 (en)⋮ ⋮
e∗n(e1) ⋯ e∗n(en)

⎞⎟⎟⎠ ∈ C
n×n

is invertible, where n = dimker(T − λI)p = dimker(T∗ − λI)p,
5. the operator P ∶ X → ker(T − λI)p defined by

Px = ΦAΦ∗(x) = n∑
i=1

n∑
j=1 ai je

∗
j (x)ei , x ∈ X ,

yields a projection onto ker(T − λI)p, where A = (ai j) ∶= G−1.
My results are in particular the invertibility of the Grammatrix and the construction

of the projection operator in the last item. I have shownhow to construct the projection
operator P by the inverse of the Gramian matrix for the space decomposition in the
third point. In the next section, we will use this projection operator to derive the
limiting operator of iterates.

9.4 Iterates of quasi-compact contractions
Using the preceding results, we consider in the following the limit of the iterates of an
operator T ∈ ℒ(X). Recall that T is said to be a contraction if ∏︁T∏︁op ≤ 1. As already
mentioned previously, of our interest is the case where ∏︁T∏︁op = 1. If ∏︁T∏︁op < 1, then
indeed Tn → 0 uniformly for n → ∞ and the limiting operator is zero. Assuming
that ∏︁T∏︁op = 0, we are interested in the conditions on the operator under which the
iterates converge uniformly provided that the operator T has a non-trivial fixed point
space. This is of importance, as the iterates converge to a projection onto the fixed
point space according to Proposition 9.8. To apply the results of the last section, we
also have to assume that the fixed point space is finite-dimensional.

In order to satisfy the necessary condition of Proposition 9.8, we will consider opera-
tors where the spectrum is contained in the closed unit diskB(0, 1)with spectral radius
1. There are two cases to discuss separately. The first case is where σ(T) ⊂ B(0, 1)∪{1}
and 1 is an eigenvalue ofT . In the other case, we discuss operators where the peripheral
spectrum σper ∶= σ(T)∖B(0, 1) contains more eigenvalues than 1. Here, we can prove
a convergence result only when σper is periodic, i. e., when there exists µ ∈ σper(T)
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such that σper(T) = {µk ∶ k ∈ N}. This, for instance, is the case when T is a positive
contraction.
We will first prove some results for quasi-compact operators. It will be shown that

every quasi-compact operator T with ∏︁T∏︁op = r(T) = 1 has the property that T − λI is
a Browder operator of ascent one if λ is a peripheral eigenvalue. Besides, there exists
at least one peripheral eigenvalue. If one further assumes that T is a positive quasi-
compact operator that satisfies ∏︁T∏︁op = r(T) = 1 then 1 is always an eigenvalue of T
and the peripheral spectrum is cyclic. Due tho these results, we will consider operators
of ascent one in Section 9.4.2 and apply the results of the preceding section. It will be
shown, that this is equivalent to the property that the projection operatorP constructed
by the inverse of the Gramian matrix commutes with T , i. e., TP = PT = λP holds.
Finally, we consider the case where λ = 1. In this case, it will be shown that the
iterates Tn converge uniformly to P for n → ∞. Note that if the iterates converge to
a finite-rank operator, then this operator is quasi-compact by definition. We show
further results for quasi-compact operators where the peripheral spectrum is cyclic.
We conclude this chapter to show a relation to the result of Sine [Sin70] as stated in
Proposition 9.4. Concretely, we will show that the fixed points of T separate the fixed
points of T∗ if and only if the corresponding Gramian matrix is invertible. Sine has
shown that this is equivalent to the convergence of the Cesáro means n−1∑n−1

k=0 Tk .

9.4.1 Quasi-compact operators and the peripheral spectrum
Now, suppose T ∈ ℒ(X) is a quasi-compact operator, i. e., the essential spectral radius
is less than one. Consequently, it follows that every spectral value λ ∈ σ(T) with mod-
ulus larger than the essential spectral radius is an isolated eigenvalue and the operator
T − λI is a Browder operator. Therefore, there always exists an eigenvalue λ ∈ σ(T)
withmodulus equal to the spectral radius r(T). Moreover, there are only finitely many
eigenvalues on the peripheral spectrum. The next lemma gives a characterization.

Lemma 9.17. Let T ∈ ℒ(X) be a quasi-compact operator with r(T) ≥ 1. Then, there is
at least one eigenvalue λ with ⋃︀λ⋃︀ = r(T). Besides, every spectral value λ ∈ σ(T) with⋃︀λ⋃︀ > ress(T) is an isolated eigenvalue of T and T − λI is a Browder operator. There are
only finitely many eigenvalues on the peripheral spectrum of T.

Proof. By the definition of quasi-compactness, we have ress(T) < 1 and all of the spec-
tral values outside with modulus larger than ress(T) are isolated. As already discussed
above, T − λI is a Browder operator. If λ ⇑∈ σb(T), then by [Lay68, Thm. 1], λ is a pole
of the resolvent of finite order. Applying Proposition 8.17, we derive that asc(T − λI)
is positive and finite and hence, λ is an isolated eigenvalue of T . As all the cluster
points of the spectrum are on the boundary of σess(T), there is at least one eigenvalue
λ ∈ σ(T) with ⋃︀λ⋃︀ = r(T). Finally, there are only finitely many on the peripheral
spectrum as otherwise there would be an accumulation point outside of the essential
Browder spectrum.
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We show now that for the eigenvalues λ of quasi-compact operators T ∈ ℒ(X) that
are on the peripheral spectrum, i. e., eigenvalues λ with modulus r(T), the associated
Browder operator T−λI has ascent one. A similar result for transition probabilities has
already been shown by Hennion and Hervé [HH01, Proposition V.1] and is stated here
in amore general setting. We consider operators that are not restricted to r(T) = 1 and
X can be an arbitrary complex Banach space instead a Banach function space where
point evaluations are continuous linear functionals.

Lemma 9.18. Let T ∈ ℒ(X) be a quasi-compact operator with r(T) ≥ 1 such that

sup
n∈N r(T)−n ∏︁Tn∏︁op < ∞.

Then for every peripheral eigenvalue λ ∈ σper(T) the associated Browder operator T − λI
has ascent one.

Proof. Note that the existence of a peripheral eigenvalue has been shown in the lemma
above. We consider now an eigenvalue λ ∈ σp(T) with ⋃︀λ⋃︀ = r(T). Suppose that
x ∈ ker(T − λI)2. Then we can represent Tnx for all positive integers n by

Tnx = (λI + (T − λI))nx = n∑
k=0(

n
k
)λn−k(T − λI)kx = λnx − nλn−1(T − λI)x .

We will show now that (T − λI)x = 0 holds. To this end, we calculate using that⋃︀λ⋃︀ = r(T) and the existence of B > 0 such that r(T)−m ∏︁Tm∏︁op < B for all positive
integers m:

∫︁nλn−1(T − λI)x∫︁ = ∏︁λnx − Tnx∏︁ ≤ ⋃︀λn⋃︀ ∏︁x∏︁ + ∏︁Tnx∏︁
≤ r(T)n ∏︁x∏︁ + ∏︁Tn∏︁op ∏︁x∏︁≤ r(T)n(1 + B) ∏︁x∏︁ .

It is now easy to see that ∏︁(T − λI)x∏︁ ≤ r(T)(1+B)
n ∏︁x∏︁ and we finally conclude that

x ∈ ker(T−λI) as nwas arbitrary. Thus, we have shown that ker(T−λI)2 = ker(T−λI),
i. e., T − λI has ascent one as ker(T − λI) ≠ 0.

The following corollary considers the special case when r(T) = ∏︁T∏︁op holds. Oper-
ators of this kind are said to be normaloid and have been discussed in Heuser [Heu82,
Chap. 54]. Note that a similar proof of the previously lemma for normaloid operators
can also be found in [Heu82, Prop. 54.2 & 54.3]. If T is a quasi-compact normaloid
operator, we obtain the following corollary:

Corollary 9.19. Let T ∈ ℒ(X) be a quasi-compact operator with r(T) = ∏︁T∏︁op. There
exists at least one eigenvalue with modulus r(T). Furthermore, for every peripheral
eigenvalue T − λI is a Browder operator with ascent one.
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Proof. For all positive integers n the inequality r(T) ≤ ∏︁Tn∏︁1⇑nop ≤ ∏︁T∏︁op holds. There-
fore, r(T)−n ∏︁Tn∏︁op ≤ 1 for all n. The result follows by Lemma 9.17 and Lemma 9.18.

If X is a Banach lattice and T is a positive linear operator even stronger results
can be made. Roughly speaking, a Banach lattice is a partially ordered Banach space,
where the norm is compatible with the ordering. For more details, we refer to Schaefer
[Sch74]. Note that Banach lattices are important to define positivity in general spaces
due to the equipped ordering. According to H. P. Lotz [Lot68], the authors Krĕin and
Rutman [KR48] have first shown in 1948 that every positive compact operator on a
Banach lattice with r(T) = ∏︁T∏︁op has a cyclic peripheral spectrum. This result has
been generalized in Lotz [Lot68, Theorem 4.10], where the peripheral spectrum of
a positive operator T ∈ ℒ(X) on a Banach lattice X is cyclic if the spectral radius
r(T) is a pole of the resolvent. Furthermore, H. P. Lotz concluded in [Lot68] that the
peripheral spectrum of every positive compact operator is cyclic.

The next corollary sums up these results for positive quasi-compact operators.

Corollary 9.20. Let X be a Banach lattice and let T ∈ ℒ(X) be a positive quasi-compact
operator with r(T) = ∏︁T∏︁op = 1. Then 1 ∈ σ(T), i. e., T − I is a Browder operator of
ascent one. Furthermore, the peripheral spectrum is cyclic consisting only of roots of
unity.

Proof. It has been shown by H. P. Lotz [Lot68] that r(T) ∈ σ(T) if T is positive. In
the case where T is a quasi-compact positive operator with r(T) = 1, T has the real
eigenvalue one and T − I is a Browder operator with ascent one.

It has been shown in Lemma 9.17 that the peripheral spectrum of the quasi-compact
operator T contains only finitely many eigenvalues of T and 1 ∈ σper(T) by the posi-
tivity of T . Besides, the peripheral spectrum is cyclic as the spectral radius r(T) is a
pole of the resolvent by Proposition 8.17 and the above mentioned result in [Lot68].
Therefore, we can conclude that σper(T) can only contain roots of unity.

Accordingly, suppose that T ∈ ℒ(X) is a positive quasi-compact operator on a
Banach lattice X with ∏︁T∏︁op = r(T) = 1. Then clearly σ(T) ⊂ B(0, 1) holds. The
preceding results show that 1 is an isolated eigenvalue ofT and the peripheral spectrum
is cyclic. Let us denote by the positive integer l the number of spectral values in the
peripheral spectrum. Then we have to discuss two cases separately:

1. l = 1: then σper(T) = {1}, otherwise

2. σper(T) = {e2πi kl ∶ k ∈ {1, . . . , l}}.
The first case has already been characterized by Katznelson and Tzafriri [KT86],

who have been shown that for every linear operator T on a Banach space X with∏︁T∏︁op ≤ 1 the limit

lim
n→∞ ∫︁Tn+1 − Tn∫︁op = lim

n→∞ ∏︁Tn(T − I)∏︁op = 0
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holds if (and only if) σper(T) ⊂ {1}, see also Proposition 9.8. In the following, we
will consider quasi-compact operators and peripheral eigenvalues λ ∈ σper(T) and
characterize the operators T−λI having ascent one. Wewill apply the results of the last
section to construct a projection to the corresponding finite-dimensional eigenspace
of T . We will show that the projection operator commutes with T and give a further
characterization.

9.4.2 Operators with ascent one
The last results have shown that peripheral eigenvalues λ of quasi-compact operators,
the operator T − λI has always ascent one. In this case the spaces M1

λ and Λ1
λ as

considered in Section 9.3.3 contain only eigenvectors of T and T∗ respectively. To
simplify the notation let us denote them in the following by

Mλ ∶= ker(T − λI) = {x ∈ X ∶ Tx = λx} , (9.16)
Λλ ∶= ker(T∗ − λI) = {x∗ ∈ X∗ ∶ x∗(Tx) = x∗(λx) for all x ∈ X} , (9.17)

and let n ∶= dim(Mλ) = dim(Λλ). The result of Theorem 9.16 yields a projection
P ∶ X → Mλ onto the eigenspace associated with λ. Recall that the Gramian matrix
where the eigenvectors of T∗ are acting on the eigenvectors of T ,

G ∶= (Φ∗Φ) = ⎛⎜⎜⎝
e∗1 (e1) ⋯ e∗1 (en)⋮ ⋮
e∗m(e1) ⋯ e∗m(en)

⎞⎟⎟⎠ ∈ R
n×n ,

is invertible. Setting A = (ai j) = G−1, the projection has the form

Px = Φ(Φ∗Φ)−1Φ∗ = n∑
i=1

m∑
j=1 ai je

∗
j (x)ei , x ∈ X .

The next lemma gives a characterization of this projection.

Theorem 9.21. Let T ∈ ℒ(X) and λ ∈ σp(T) such that T − λI is a Browder operator.
Then the following two statements are equivalent:

1. T − λI has ascent one,

2. there exists a projection P ∈ 𝒦(X) such that TP = PT = λP,
Proof. Suppose that the first statement holds. Then we obtain a projection P ∈ 𝒦(X)
from Theorem 9.16. We have the property T ○ P = λP, because for x ∈ X we obtain

(T ○ P)(x) = T( n∑
i=1

m∑
j=1 ai je

∗
j (x)ei) = n∑

i=1
m∑
j=1 ai je

∗
j (x)T(ei) = λP(x),
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as Tei = λei by (9.16). Similarly, we obtain P ○ T = λP. Namely, for x ∈ X using
e∗j (Tx) = e∗j (λx) by (9.17) it holds that

(P ○ T)(x) = n∑
i=1

m∑
j=1 ai je

∗
j (Tx)ei = n∑

i=1
m∑
j=1 ai je

∗
j (λx)ei = λP(x).

Now we show that if there exists a projection P ∈ 𝒦(X) with TP = PT = λP, then
T − λI has ascent one. As ker(T − λI) ⊂ ker(T − λI)2 and ran(P) = ker(T − λI),
it is enough to show that ker(T − λI)2 ⊂ ran(P). Suppose x ∈ ker(T − λI)2. Then(T − λI)2x = 0 and (T − λI)x ∈ ker(T − λI) = ran(P). Therefore, there is y ∈ ran(P)
such that Py = (T − λI)x. Then

y = Py = P2y = P(T − λI)x = PTx − λPx = λPx − λPx = 0.
Thus, y = 0 and we obtain using 0 = y = Py = (T − λI)x the final result, namely
x ∈ ker(T − λI) = ran(P).
Lemma9.22. Let T ∈ ℒ(X) and λ ∈ σp(T). Suppose there exists a projection P ∈ 𝒦(X)
such that TP = PT = λP. Then

(T − TP)n = Tn − TnP = Tn − λnP
holds for all n ∈ N.
Proof. We will use the fact that if P is a projection then I − P is a projection as well.
Also note that I − P commutes with T , as

(I − P)T = T − TP = T − PT = T(I − P).
Now we derive the result with the following steps:

(T − TP)n = (T(I − P))n = Tn(I − P)n
= Tn(I − P) = Tn − TnP = Tn − λnP.

9.4.3 The limit of the iterates of quasi-compact operators
Now we are able to prove the convergence of iterates of quasi-compact operators and
derive the limiting operator. Let us assume in the following that T is a quasi-compact
operator with ∏︁T∏︁op = 1 and r(T) = 1. We will restrict us first to the fixed point space
of a quasi-compact operator T ∈ ℒ(X) and assume that σ(T) ⊂ B(0, 1) ∪ {1}, i. e., 1 is
the only peripheral eigenvalue of T . In this case, if T − I ∈ 𝒲B(X) has ascent one and
the iterates will converge to the projection operator P that projects onto the fixed point
space of T . Later we will consider the case where the peripheral spectrum is cyclic.
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In order to prove ourmain result we will need the following result that states that iso-
lated spectral values can be removed by the projection operator on the corresponding
generalized eigenspace.

Lemma 9.23. Let T ∈ ℒ(X) and λ ∈ σp(T) such that T − λI ∈ 𝒲B(X) with ascent p.
Let P be denote the projection onto ker(T − λI)p, defined by Theorem 9.16. Then λ is an
isolated spectral value and λ ∉ σ(T − TP).
Proof. As usual let us denote the dimension of the generalized eigenspace ker(T−λI)p
by n. We use the space decomposition X = ker(T − λI)p ⊕ ran(T − λI)p. Then the
operator T can be written as

(J 0
0 S) ∈ ℒ(ker(T − λI)p ⊕ ran(T − λI)p),

where J is the Jordan normal form of T on the finite-dimensional space ker(T − λI)p
and S ∈ ℒ(ran(T − λI)p). As

T − TP = (0 0
0 S) ,

it is enough to show, that λ ⇑∈ σ(S). To this end, let us write J = λIn + N , where In
is the identity matrix on Cn and N is a nilpotent matrix with N p = 0. Then we can
decompose the operator (T − λI)p on ker(T − λI)p ⊕ ran(T − λI)p with basic linear
algebra in the following way:

(T − λI)p = ((λIn + N − λIn)p 0
0 (S − λI)p) = (0 0

0 (S − λI)p) . (9.18)

Let us now consider the operator S − λI. This operator is one-to-one, because

ker(S − λI) ⊂ ker(S − λI)p ⊂ ker(T − λI)p ,
where the last step follows from the decomposition of (T − λI)p shown in (9.18). This
implies in fact that ker(S − λI)p = {0} holds, as

ker(T − λI)p ∩ ran(T − λI)p = {0}
by Proposition 8.9 and hence, the operator S − λI is one-to-one.
Next, we show that S − λI is onto, i. e., ran(S − λI) = ran(T − λI)p. To this end,

let y ∈ ran(T − λI)p, i. e., there exists x ∈ X such that (T − λI)px = y. Using that
T − λI = S − λI on ran(T − λI)p, we calculate

(S − λI)y = (S − λI)(T − λI)px = (T − λI)p+1x
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and derive that ran(S − λI) = ran(T − λ)p+1 on ran(T − λI)p. As the chain length
of T − λI equals p and hence ran(T − λI)p+1 = ran(T − λI)p holds, we conclude that
ran(S − λI) = ran(T − λI)p and the proof is complete.

Now we can state our main result that characterizes quasi-compact operators by
the convergence of the iterates provided that the spectrum is located according to
Katznelson and Tzafriri [KT86].

Theorem 9.24. Let T ∈ ℒ(X) with r(T) = ∏︁T∏︁op = 1 satisfying the spectral condition
σ(T) ⊂ B(0, 1) ∪ {1}. Then T is quasi-compact if and only if

lim
m→∞ ∏︁Tm − P∏︁op = 0,

where P ∈ 𝒦(X) is a finite-rank projection with TP = PT = P.
Proof. Clearly, if the iterates Tm converge to a finite-rank operator, then T is a quasi-
compact operator as ress(T) = 0 in this case.
Now let T be quasi-compact with σ(T) ⊂ B(0, 1) ∪ {1}, then r(T) = 1 and 1 is an

isolated peripheral eigenvalue. Thus, T − I is Browder with ascent one. We now prove
the limit of the iterates. By Theorem 9.15 the space X has the decomposition

X = ker(T − I) ⊕ ran(T − I). (9.19)

Therefore, we can decompose the operator T into

T = (I 0
0 S) ∈ ℒ(ker(T − I) ⊕ ran(T − I)),

with S ∈ ℒ(ran(T − I)). Then

T − P = (0 0
0 S) ,

where P is the projection operator defined by Theorem 9.16. Using Lemma 9.23 we
derive that 1 ⇑∈ σ(S) ⊂ B(0, 1)∪{1}, and hence, σ(S) ⊂ B(0, 1). Therefore, the spectral
radius of S is strictly smaller than 1 and thus, the iterates Sm converge to 0 in the
operator norm as m tends to infinity. Finally, applying Lemma 9.22 we obtain the final
result

lim
m→∞ ∏︁Tm − P∏︁op = lim

m→∞ ∏︁(T − P)m∏︁op = lim
m→∞ ∏︁Sm∏︁op = 0.

The iterates Tm converge in the uniform operator topology to the operator P, the
projection onto the fixpoint space of T .
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Corollary 9.25 (Convergence Rate). Let T ∈ ℒ(X) be a quasi-compact operator with
r(T) = ∏︁T∏︁op = 1 satisfying the spectral condition σ(T) ⊂ B(0, 1) ∪ {1}. Define

γ ∶= sup{⋃︀γ⋃︀ ∶ γ ∈ σ(T) ∖ {1}} .
Then there exists a constant 1 ≤ C ≤ γ−1, such that for all m ∈ N

∏︁Tm − P∏︁op ≤ C ⋅ γm ,
where P ∈ 𝒦(X) is the operator defined by Theorem 9.16.

Proof. According to the proof of Theorem 9.24 we decompose

T = (I 0
0 S) ∈ ℒ(ker(T − I) ⊕ ran(T − I)).

Furthermore, we have that σ(S) ⊂ B(0, 1) and therefore we obtain r(S) = γ < 1. As
r(S) = limm→∞ ∏︁Sm∏︁1⇑m, we obtain that there exists a constant 1 ≤ C ≤ γ−1 such that

∏︁Sm∏︁ ≤ C ⋅ γm
for every m ∈ N.
If a sequence of operators with the spectrum contained in B(0, 1) ∪ {1} shares the

same fixpoints spaces, the following limit theorem hold.

Corollary 9.26. Let Tn ∈ ℒ(X) be a sequence of continuous linear operators with
σ(Tn) ⊂ B(0, 1) ∪ {1} such that Tn − λI ∈ 𝒲B(X) has ascent one for all n ∈ N. Further-
more, we assume that ker(Tn − I) = ker(Tn+1 − I) and ker(T∗n − I) = ker(T∗n+1) for all
n ∈ N. Let (kn)n∈N ⊂ N be a strictly increasing sequence of positive integers and let

γn ∶= sup{⋃︀γ⋃︀ ∶ γ ∈ σ(Tn) ∖ {1}} .
If γknn → 0 for n →∞, then

lim
n→∞ ∫︁Tkn

n − P∫︁op = 0,
where P ∈ 𝒦(X) is the operator defined by Theorem 9.16.

Proof. Follows analogously to Corollary 9.25 using the decomposition

Tn = (I 0
0 Sn

) ∈ ℒ(ker(Tn − I) ⊕ ran(Tn − I)).
Then, we have that σ(Sn) ⊂ B(0, 1) and r(Sn) = γn < 1 for any n ∈ N. Using Gelfand’s
formula,

r(Sn) = lim
m→∞ ∏︁Sm

n ∏︁1⇑mop ,
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there exists a positive constant C such that

∏︁Sm
n ∏︁ ≤ C ⋅ γm

for every m ∈ N and n ∈ N. Consequently, we derive that

∫︁Tkn
n − P∫︁ = ∫︁Skn

n ∫︁ ≤ Cγknn .

By the assumption γknn → 0 for n → ∞ we obtain that ⋃︁Tkn
n − P⋃︁ → 0 if n tends to

infinity.

Finally we discuss the case, when the peripheral spectrum is cyclic.

Theorem 9.27. Let T ∈ ℒ(X) be a quasi-compact operator with r(T) = ∏︁T∏︁op = 1 with
a non-trivial fixed point space. Furthermore, we assume the peripheral spectrum to be
finite and cyclic. Then there exists l ∈ N such that

lim
m→∞ ∫︁T lm − P∫︁op = 0,

where P ∈ 𝒦(X) is the operator defined by Theorem 9.16 for applied to the operator T l .

Proof. As the peripheral spectrum is finite and cyclic and 1 ∈ σper(T), the spectrum
contains only roots of unity. Let us denote by l the number of spectral values contained
in the spectrum. Then

σper(T) = {ρk
l ∶ k ∈ {1, . . . , l}} ,

where ρl is the l-th root of unity. By the spectral mapping theorem for the point
spectrum, see e. g., Rudin [Rud91, Theorem 10.33] we conclude that the peripheral
spectrum of T l contains only the eigenvalue 1. As T l is also quasi-compact, we can
derive the result by Theorem 9.24 applied to T l .

9.4.4 Relation to ergodic theorems
We conclude this chapter by showing a relation between the theory developed in the
last sections and uniform ergodic theorems. As already stated in Section 9.1.2, Sine
[Sin70] has shown that if T is a contraction on a Banach space X then the Cesáro
means

an(T) ∶= n−1 n−1∑
k=0 Tk

converge strongly for n → ∞ if and only if the fixed points of T separate the fixed
points of T∗.

We showhere that for a contraction T whereT−I is aWeyl operator, i. e., a Fredholm
operator of index 0, the fixed point separation property of Sine is equivalent to the
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property that T − I has ascent one. This states in particular that T − I is in fact a
Browder operator.

Theorem 9.28. Let T ∈ ℒ(X) such that ∏︁T∏︁op ≤ 1 and T − I ∈ 𝒲(X). Then ker(T − I)
separates the points of ker(T∗ − I) if and only if the matrix

G = ⎛⎜⎜⎝
e∗1 (e1) ⋯ e∗1 (en)⋮ ⋮
e∗n(e1) ⋯ e∗n(en)

⎞⎟⎟⎠ ∈ C
n×n

is invertible, where n = dim(T − λI) = dim(T∗ − λI).
Proof. We show first that if the fixed points of T separate the fixed points of T∗ then
the matrix G is invertible. To this end, let us assume to the contrary that the matrix G
is not invertible. Wewill show that in this case ker(T−I) does not separate ker(T∗−I).
If G is not invertible, then the rows of G are not linearly independent. Hence, we can
assume there are c1, . . . , cn ∈ C such that

n∑
j=1 c je

∗
j (ei) = 0, for all i ∈ {1, . . . , n} ,

where there is at least one coefficient with ck ≠ 0. Then

e∗k(x) = ∑
j≠k−(

c j
ck
) e∗j (x)

for all x ∈ ker(T − I) as e1, . . . , en form a basis. We conclude that ker(T − I) does not
separate ker(T∗ − I).
We prove next by contradiction that if G is invertible then ker(T − I) separates

ker(T∗ − I). To this end, assume that the fixed points of T do not separate the fixed
points of T∗. Then there are x∗1 ≠ x∗2 ∈ ker(T∗ − I) such that for all x ∈ ker(T − I)

x∗1 (x) = x∗2 (x).
Let x∗1 = ∑n

j=1 c je∗j and x∗2 = ∑n
j=1 b je∗j . Then as well

x∗1 (ei) − x∗2 (ei) = ∑
j=1(c j − b j)e∗j (ei) = 0

holds for all i ∈ {1, . . . , n}. As ci ≠ bi for at least one i ∈ {1, . . . , n} the rows of G are
linearly dependent and G is not invertible.

Finally, we extendour results ofTheorem9.16with the result of the previous theorem.

Corollary 9.29. Let T ∈ ℒ(X) with ∏︁T∏︁op ≤ 1 such that T − I ∈ 𝒲(X). Then the
following statements are equivalent:

1. T − I has chain length one, i. e., asc(T − I) = dsc(T − I) = 1,
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2. X = ker(T − I) ⊕ ran(T − I),
3. T − I ∈ 𝒲B(X),
4. G is invertible,

5. P = ΦG−1Φ∗ yields a projection onto ker(T − I),
6. The Cesáro means n−1∑n−1

k=0 Tk converge in the strong operator topology towards
P for n →∞.
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for Operators with Smooth Range

‘‘ The essence of mathematics is its freedom.’’
georg cantor

We prove lower bounds for the approximation error of quasi-compact con-
tractions with smooth range in terms of classical moduli of smoothness and

related K-functionals. Recall that a bounded linear operator T is said to be a contrac-
tion if ∏︁T∏︁op ≤ 1. The operator T is defined here on an arbitrary open set Ω ⊂ Rd

and is not restricted to functions defined on the unit interval in contrast to Chapter 6.
As underlying function spaces we consider the space of continuous functions and
the Lp-spaces for 1 ≤ p < ∞. Consequently, we use the space of r-times continu-
ously differentiable functions and the classical Sobolev spaces as their corresponding
smooth subspaces. We will prove these lower estimates for linear operators based on
a functional analytic framework depending on the fixed points of the operator and
the smoothness of the range. The key idea is to estimate the semi-norm occuring in
the K-functional by the approximation error using the convergence of the iterates of
the operator. In this approach, one condition is that differential operators of a certain
order annihilate the fixed points of T . Besides, these differential operators have to be
bounded on the range of T . More details on the underlying concept have already been
discussed in Chapter 6 in the one-dimensional setting on the unit interval.
We conclude this chapter with examples, where we show lower estimates for the

variation-diminishing operators that have been introduced in Chapter 3, namely the
integral Schoenberg operator, the Bernstein operator, and the Kantorovič operator.
Lower estimates for the Schoenberg operator have already been proved in Chapter 4.
Finally, we show how to derive lower estimates for positive linear operators with finite
rank as shown in Chapter 7. The convergence of the iterates of such operators is always
guaranteed. It will be shown that the degree of the modulus of smoothness or the used
K-functional depends only on the smoothness of the range and the fixed points of T .

137
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10.1 Preliminaries
As we will generalize the results of Chapter 4 to general linear operators with smooth
range, we will provide here the necessary fundamentals and corresponding notation.
To this end, let d be a positive integer and let Ω be an open subset of Rd . We will
first introduce the space of continuously differentiable functions on Ω and the related
Sobolev spaces both equipped with a semi-norm. Afterwards, the modulus of smooth-
ness and the K-functional are defined and a relation between them is outlined.

FUNCTION SPACES
We use the multi-index notation of Schwartz [Sch50b] to introduce derivatives. Ac-
cordingly, we denote by Dα the differential operator

Dα = ∂⋃︀α⋃︀
∂xα11 ∂xα2

2 ⋯∂xαn
n

,

where α = (α1, . . . , αn) is a multi-index with modulus ⋃︀α⋃︀ = ∑n
i=1 αi . For a smooth

function f , we denote its mixed partial derivative by

Dα f = ∂⋃︀α⋃︀ f
∂xα11 ∂xα2

2 ⋯∂xαn
n

, (10.1)

In the following, we will introduce function spaces that are defined on an open set Ω ⊂
Rn. The space Cr(Ω) contains all complex valued functions f that have continuous
and bounded derivatives Dα f up to order r, i. e., ⋃︀α⋃︀ ≤ r. The norm on Cr(Ω) is given
by

∏︁ f ∏︁ ∶= sup⋃︀α⋃︀=r
∏︁Dα f ∏︁∞ .

The convergence of a sequence of functions on Ω means uniform convergence of the
sequence itself and convergence of the sequence of its partial derivatives up to order r.
Next, we will define the Lp(Ω) spaces. For 1 ≤ p < ∞, the space Lp(Ω) contains

all Lebesgue measurable functions defined on Ω whose p-th power is integrable with
respect to the measure dx = dx1⋯dxn = dµ, i. e.,

∫Ω ⋃︀ f (x)⋃︀p dx < ∞
holds. Equipped with the norm

∏︁ f ∏︁p = ( ∫Ω ⋃︀ f (x)⋃︀p dx)
1⇑p

the space Lp(Ω) becomes a Banach space. The Sobolev spaceW p,r(Ω) corresponding
to Lp(Ω) consists of all functions f ∈ Lp(Ω) whose derivatives Dα f ∈ Lp(Ω) for all
orders ⋃︀α⋃︀ ≤ r. Here, the derivatives are understood in the distributional sense.
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To simplify notation and to combine the previouslymentioned spaces, we introduce
the spaces Xp,r(Ω) for 1 ≤ p ≤ ∞ and r = 0, 1, 2, . . . as follows:

Xp,0(Ω) ∶= Lp(Ω), 1 ≤ p < ∞; X∞,0(Ω) ∶= C(Ω)
Xp,r(Ω) ∶=W p,r(Ω), 1 ≤ p < ∞; X∞,r(Ω) ∶= Cr(Ω)

Finally, we define the semi-norms

⋃︀ f ⋃︀r,p ∶= sup⋃︀α⋃︀=r
∏︁Dα f ∏︁p (10.2)

for all smooth functions f ∈ Xp,r(Ω).
MODULI OF SMOOTHNESS AND K -FUNCTIONALS
Now, we will introduce the modulus of smoothness and Peetre’s K-functional for
the previously defined spaces according to Johnen and Scherer [JS77]. To simplify
notation, let us denote for h ∈ Rd by Ω(h) the set

Ω(h) ∶= {x ∈ Ω ∶ x + th ∈ Ω for 0 ≤ t ≤ 1} .
Then we define the r-th modulus of smoothness as follows.

Definition 10.1. The modulus of smoothness of order r, ωr,p ∶ Xp,0(Ω) × (0,∞) →(︀0,∞), 1 ≤ p ≤ ∞, is defined by

ωr,p( f , t) ∶= )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
∏︁ f ∏︁p , r = 0
sup0<⋃︀h⋃︀≤t ∫︁χΩ(rh)∆r

h f (x)∫︁p , r = 1, 2, . . . .
where ∆r

h is the forward difference operator into direction h ∈ Rd ,

∆r
h f (x) = r∑

l=0(−1)r−l(r
l
) f (x + l h).

According to Peetre [Pee68], Johnen and Scherer [JS77] we define the K-functional
on the spaces Xp,r(Ω) as follows:

Definition 10.2. The K-functional Kr,p ∶ Xp,0(Ω) × (0,∞) → (︀0,∞), 1 ≤ p ≤ ∞ is
defined by

Kr,p( f , tr) ∶= inf {∏︁ f − д∏︁p + tr ⋃︀д⋃︀p,r ∶ д ∈ Xp,r(Ω)} .
The next proposition shows that the modulus of smoothness can be bounded from

above by the related K-functional. We provide the proof due to its brevity, as it only
uses basic properties of the modulus of smoothness, see for instance (4.3) – (4.5).
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Proposition 10.1 (Johnen and Scherer [JS77, Lem. 1]). Let Ω ∈ Rd be an open set. Then
for all 0 < t < ∞ and f ∈ Xp,0(Ω), д ∈ Xp,r(Ω), 1 ≤ p ≤ ∞, there holds

ωr,p( f , t) ≤ 2r ∏︁ f − д∏︁p + dr⇑2tr ⋃︀д⋃︀r,p . (10.3)

Proof. We split f up into f = ( f − д) + д and obtain

ωr,p( f , t) ≤ ωr,p( f − д, t) + ωr,p(д, t)
= 2r ∏︁ f − д∏︁p + dr⇑2tr ⋃︀д⋃︀r,p .

Moreover, the equivalence of the modulus of smoothness to the K-functional have
been shown, see Butzer and Berens [BB67] for the one-dimensional case and Johnen
and Scherer [JS77] for arbitrary Lipschitz domains.

10.2 Lower estimates
In the following, let Ω be an open subset of Rd and 1 ≤ p ≤ ∞. We will consider a
sequence of linear operators Tn defined on Xp,0(Ω) with smooth range ran(Tn) ⊂
Xp,r(Ω)whose fixed point space ker(Tn − I) is annihilated by every differential opera-
tor Dα of order r that is bounded on ran(Tn). In this general setting, we will show that
for all s ≥ r and n > 0 there is tn > 0 and there are constants M1,M2 > 0 independent
of n and f ∈ Xp,0(Ω), such that

M1 ⋅ ωs,p( f , tn) ≤ ∏︁Tn f − f ∏︁p and M2 ⋅ Ks,p( f , ts
n) ≤ ∏︁Tn f − f ∏︁p .

Here, tn → 0 for n →∞ provided that ∏︁ f − Tn f ∏︁p → 0.
In order to prove these estimates, we will consider the case where the smooth func-

tion д in Proposition 10.1 is replaced by a smooth approximation Tn f . Then, we will
estimate the semi-norm ⋃︀Tn f ⋃︀r,p = sup ∏︁DαTn f ∏︁p with respect to the approximation
error ∏︁Tn f − f ∏︁p. The key concept – as already outlined in Chapter 6 – is to use the
limiting operator of the iterates Tn. Hereby, the quasi-compactness of the operators
Tn will guarantee the existence of the limiting operator. With this is mind, we can
state the following lemma:

Lemma 10.2. Let 1 ≤ p ≤ ∞ and let T ∶ Xp,0(Ω) → Xp,0(Ω) be a quasi-compact
contraction, i. e., ∏︁T∏︁op ≤ 1. Suppose

1. σ(T) ⊂ B(0, 1) ∪ {1},
2. ran(T) ⊂ Xp,r(Ω) for some positive integer r,

3. Dα is bounded on ran(T) for all α with ⋃︀α⋃︀ = r,

4. Dα annihilates ker(T − I) for all α with ⋃︀α⋃︀ = r.
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Then for every f ∈ Xp,0(Ω),
⋃︀T f ⋃︀r,p ≤ sup⋃︀α⋃︀=r ∏︁Dα∏︁op∶ran(T)

1 − γ ∏︁T f − f ∏︁p ,
where ∏︁Dα∏︁op∶ran(T) is the operator norm of Dα on ran(T) and

γ ∶= sup{⋃︀λ⋃︀ ∶ λ ∈ σ(T) with ⋃︀λ⋃︀ < 1} .
Proof. As T is quasi-compact, T − I is a Browder operator with ascent one. Due to the
spectral property σ(T) ⊂ B(0, 1) ∪ {1} and Corollary 9.25, there exists a projection P
with ran(P) = ker(T − I) and there exists a constant 0 ≤ C ≤ γ−1 such that

∏︁Tm − P∏︁op ≤ Cγm
holds for all integers m > 0. As the range of P is exactly the fixed point space of T , we
have that DαP = 0 whenever ⋃︀α⋃︀ = r.

Using these results we obtain

⋃︀T f ⋃︀r,p = sup⋃︀α⋃︀=r
∏︁DαT f ∏︁p = sup⋃︀α⋃︀=r

∫︁DαT f − DαT2 f + DαT2 f − DαT3 f + . . .∫︁p
≤ sup⋃︀α⋃︀=r

∞∑
m=1 ∏︁DαTm( f − T f )∏︁p

≤ ∏︁T f − f ∏︁p ⋅ sup⋃︀α⋃︀=r

∞∑
m=1 ∏︁DαTm∏︁op

= ∏︁T f − f ∏︁p ⋅ sup⋃︀α⋃︀=r

∞∑
m=1 ∏︁Dα(Tm − P + P)∏︁op

= ∏︁T f − f ∏︁p ⋅ sup⋃︀α⋃︀=r

∞∑
m=1 ∏︁Dα(Tm − P)∏︁op ,

as Dα annihilates ker(T − I) and therefore, DαP = 0. By the boundedness of Dα on
ran(T) we get

⋃︀T f ⋃︀r,p ≤ ∏︁T f − f ∏︁p ⋅ sup⋃︀α⋃︀=r
∏︁Dα∏︁op∶ran(T) ∞∑

m=1 ∏︁Tm − P∏︁op
≤ ∏︁T f − f ∏︁p ⋅ sup⋃︀α⋃︀=r

∏︁Dα∏︁op∶ran(T) ⋅ ∞∑
m=1Cγ

m .

Using that C ≤ 1⇑γ the series reduces to a convergent geometric series andwe conclude
the proof with

⋃︀T f ⋃︀r,p ≤ ∏︁T f − f ∏︁p ⋅ sup⋃︀α⋃︀=r
∏︁Dα∏︁op∶ran(T) ⋅ ∞∑

m=0 γ
m
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≤ sup⋃︀α⋃︀=r ∏︁Dα∏︁op
1 − γ ∏︁T f − f ∏︁p .

Note that the fourth condition of Lemma 10.2 is reflected in the shown estimate as
for each f ∈ ker(T − I) we have that ∏︁T f − f ∏︁p = 0 and ⋃︀T f ⋃︀r,p = 0.

Using this lemma, we can state the main theorem of this chapter combining Propo-
sition 10.1 and Lemma 10.2.

Theorem 10.3. Let 1 ≤ p ≤ ∞ and let T ∶ Xp,0(Ω) → Xp,0(Ω) be a quasi-compact
contraction that satisfies the following conditions:

1. σ(T) ⊂ B(0, 1) ∪ {1},
2. ran(T) ⊂ Xp,r(Ω) for some positive integer r,

3. Dα is bounded on ran(T) for all α with ⋃︀α⋃︀ = r,

4. Dα annihilates ker(T − I) for all α with ⋃︀α⋃︀ = r.

Then

ωr,p( f , t) ≤ (2r + dr⇑2tr sup⋃︀α⋃︀=r ∏︁Dα∏︁op∶ran(T)
1 − γ ) ⋅ ∏︁T f − f ∏︁p

holds for all t ∈ (0,∞), where γ ∶= sup{⋃︀λ⋃︀ ∶ λ ∈ σ(T) with λ ≠ 1}.
Proof. We apply Proposition 10.1 and get directly by Lemma 10.2 the stated result.

Analogous we can state the result for a lower estimate by a K-functional.

Theorem 10.4. Let 1 ≤ p ≤ ∞ and let T ∶ Xp,0(Ω) → Xp,0(Ω) be a quasi-compact
contraction that satisfies the following conditions:

1. σ(T) ⊂ B(0, 1) ∪ {1},
2. ran(T) ⊂ Xp,r(Ω) for some positive integer r,

3. Dα is bounded on ran(T) for all α with ⋃︀α⋃︀ = r,

4. Dα annihilates ker(T − I) for all α with ⋃︀α⋃︀ = r.

Then

Kr,p( f , tr) ≤ (1 + tr sup⋃︀α⋃︀=r ∏︁Dα∏︁op∶ran(T)
1 − γ ) ⋅ ∏︁T f − f ∏︁p

holds for all t ∈ (0,∞), where γ ∶= sup{⋃︀λ⋃︀ ∶ λ ∈ σ(T) with λ ≠ 1}.
Proof. Follows by the same argumentation as in the proof of Theorem 10.3.

Corollary 10.5. Let (Tn) be a sequence of continuous linear operators on Xp,0(Ω) that
satisfies the conditions of Theorem 10.3 and Theorem 10.4. Besides, we assume that∏︁Tn f − f ∏︁p → 0 holds for all f ∈ Xp,0(Ω) if n tends to infinity.
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Then, with setting γn ∶= sup{⋃︀λ⋃︀ ∶ λ ∈ σ(Tn) ∖ {1}} the uniform lower estimates

ωr,p( f , δn) ≤ (2r + dr⇑2) ⋅ ∏︁Tn f − f ∏︁p and Kr,p( f , δr
n) ≤ 2 ⋅ ∏︁Tn f − f ∏︁p ,

where

δn = ⎛⎝ 1 − γn
sup⋃︀α⋃︀=r ∏︁Dα∏︁op∶ran(Tn)

⎞⎠
1⇑r

.

and δn → 0 if n tends to infinity.

Remark. The property that δn → 0 if n tends to infinity follows by ∏︁Tn f − f ∏︁p for f ∈
C((︀0, 1⌋︀). To assure that this property holds there are the following two options. Either
the second largest eigenvalue tends in the modulus to one, i. e.,

γn → 1

which is satisfied as Tn converges against the identity I in the strong operator topology,
or sup⋃︀α⋃︀=r ∏︁Dr∏︁op∶ran(Tn) →∞. The Bernstein operator, for example, fulfills both condi-
tions, as we will see in the next section.

Finally, we want to outline a generalization to derive lower estimates for a sequence
of linear operators (Tn)n∈N on arbitrary Banach spaces based on the K-functional
where smoothness of the range is not necessary. The conditions depend on the under-
lying semi-norms defined on the range of Tn. Accordingly, the semi-norms have to
annihilate the fixed points of Tn and are bounded on the range of Tn.

Theorem 10.6. Let (X1, ∏︁⋅∏︁X1
) be a Banach space and (X2, ⋃︀⋅⋃︀X2

) be a quasi Banach
space with X2 ⊂ X1. Consider Tn ∶ X1 → X2 as sequence of quasi-compact contractions.
Suppose that the following conditions hold:

1. σ(Tn) ⊂ B(0, 1) ∪ {1},
2. the semi-norm ⋃︀⋅⋃︀X2

annihilates ker(Tn − I), and
3. sup f ∈X1 ,∏︁ f ∏︁X1=1 ⋃︀Tn f ⋃︀X2

< ∞.

Then

1
2
⋅ inf

д∈X2
(∏︁ f − д∏︁p + δr

n ⋃︀д⋃︀X2
) ≤ ∏︁Tn f − f ∏︁p ,

where

δn = ⎛⎝ 1 − γn
sup f ∈X2 ,∏︁ f ∏︁X2

=1 ⋃︀Tn f ⋃︀X2

⎞⎠
1⇑r

.

Proof. Follows directly along the lines of the proof of Theorem 10.3.
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10.3 Applications to Positive Linear Operators
We conclude this chapter with concrete examples. We prove lower estimates for the
well-known operators from Chapter 3. As the lower estimate of the Schoenberg op-
erator has already been proved in Chapter 4, we will only show the estimates for the
Bernstein operator, the Kantorovič operator and the integral Schoenberg operator. Fi-
nally, we will show a general estimate for positive linear operators with finite rank as
considered in Chapter 7.

10.3.1 Lower estimate for the Bernstein operator
Let Bn ∶ C((︀0, 1⌋︀) → C((︀0, 1⌋︀) be the Bernstein operator of order n > 0 defined by

Bn f (x) = n∑
k=0(

n
k
)xk(1 − x)n−k f ( k

n
).

As shown in Chapter 3, this operator can reproduce constant and linear functions and
interpolates at the endpoints of the unit interval. Therefore

ker(Bn − I) = span(1, x),
and

ker(B∗n − I) = span(δ0, δ1)
As shown in Proposition 3.5, the eigenvalues (λk,n) of Bn are explicitly known for
k ∈ {0, . . . , n} by

λk,n = n!(n − k)! 1
nk

.

Clearly, we have σ(Bn) ⊂ B(0, 1) ∪ {1}, as

1 = λ0,n = λ1,n > λ2,n > . . . > λn,n = n!
nn

.

Note that this property follows also by Theorem 7.5. The second largest eigenvalue γn
of Bn is γn ∶= λ2,n = n−1

n . Moreover, by Theorem 9.24 we obtain the classical result of
Kelisky and Rivlin [KR67], namely

lim
m→∞ ∏︁Bm

n − L∏︁op → 0,

where L = δ0 + (δ1 − δ0) ⋅ e1.
The range of the Bernstein operator is given by the space of all polynomials with

degree at most n. Thus, for r < n we obtain using the representation of DrBn f in
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Lorentz [Lor86, p.24] the following upper bound for the operator norm of Dr on
ran(Bn):

∏︁Dr∏︁op ≤ 2rn!(n − r)! .
Finally, we obtain with Theorem 10.3 the lower estimate

ωr( f , t) ≤ ⎛⎝2r + tr
2r ⋅n!(n−r)!
1
n

⎞⎠ ⋅ ∏︁T f − f ∏︁∞ ≤ 2r (1 + nr+1tr) ⋅ ∏︁T f − f ∏︁∞
for all t ∈ (0,∞). For the case r = 2, we derive accordingly the following uniform
estimate:

Corollary 10.7. The approximation error of the Bernstein operator Bn can be uniformly
bounded for all f ∈ C((︀0, 1⌋︀) by

1
8
ω2 ( f , n−3⇑2) ≤ ∏︁Bn f − f ∏︁∞ , n →∞.

Remark. Compared to the known lower estimate using the Ditzian-Totik modulus of
smoothness as shown in Proposition 3.4 one would expect a decay rate of n−1⇑2. The
question arises, whether sharper estimates used in the proof can lead to this decay rate
or if this is already the best possible lower estimate.

10.3.2 Lower estimate for the Kantorovič operator
Let us consider the Kantorovič operator Kn ∶ L1((︀0, 1⌋︀) → C((︀0, 1⌋︀),
Kn f (x) = (n+1) n∑

k=0(
n
k
)xk(1−x)n−k ∫

k+1
n+1
k

n+1
f (t)dt, f ∈ L1((︀0, 1⌋︀), x ∈ (︀0, 1⌋︀ .

We have that ker(Kn− I) = span{1} and similarly to the iterates of the integral Schoen-
berg operator

lim
m→∞ ∏︁Km

N − L∏︁op = 0
holds, where L f = ∫ 1

0 f (t)dt. Clearly, D1 = 0, hence the differential operator D
annihilates ker(Kn − I). Besides, D is bounded on ran(Kn) in the same way as the
Bernstein operator:

∏︁DKn f (x)∏︁p = ∫︁D2Bn+1F(x)∫︁p ≤ ∫︁D2∫︁op∶ran(Bn+1) ∏︁ f ∏︁1 ,
where F(x) = ∫ x

0 f (t)dt. Therefore,

∏︁D∏︁op ≤ ∫︁D2∫︁op∶ran(Bn+1) = 4(n + 1)!(n + 1 − 2)! = 4(n2 + n).
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holds. Combining these results with Theorem 10.3 we can state the lower estimate

ω1,p( f , t) ≤ (2 + t 4(n2 + n)
1
n

) ⋅ ∏︁T f − f ∏︁∞ ≤ (2 + 4(n3 + n2)t) ⋅ ∏︁T f − f ∏︁∞
for all t ∈ (0,∞). Consequently, we get the following uniform estimate:

Corollary 10.8. The approximation error of the Kantorovič operator Kn can be uni-
formly bounded from below by

1
6
ω1,p ( f , 1

n3 + n2) ≤ ∏︁Kn f − f ∏︁∞ , n →∞,

for all f ∈ L1((︀0, 1⌋︀).
10.3.3 Lower estimate for the integral Schoenberg operator
The integral Schoenberg operator is defined by

V∆n ,k f (x) ∶= DS∆n ,k+1 F(x) = n−1∑
j=−k ∫

ξ j,k+1
ξ j−1,k+1

f (t)dt
N j,k(x)

ξ j,k+1 − ξ j−1,k+1 , (10.4)

where F(x) = ∫ x
0 f (t)dt. More details are shown in Section 3.2.2. As shown in

Section 7.5, we have that

lim
m→∞ ∫︁Vm

∆n ,k − L∫︁op = 0
holds, where L f = ∫ 1

0 f (t)dt. Besides, ker(Vm
∆n ,k − I) = span{1} and D1 = 0 holds. In

Section 3.2.3, it has been shown that

σ(V∆n ,k) ⊂ B(0, 1) ∪ {1} ,
holds and 1 is an eigenvalue of the integral Schoenberg operator. The operator norm
of the differential operator D, can be obtained similarly to the Kantorovič operator.
We use here the relation

DV∆n ,k f = D2S∆n ,k+1 F = ∫︁D2∫︁op∶ran(S∆n ,k+1 ) ∏︁ f ∏︁1 , (10.5)

where F(x) = ∫ x
0 f (t)dt. The operator norm of D2 on ran(S∆n ,k+1 ) has been shown

in Corollary 4.7. We get on ran(V∆n ,k ) by (10.5) the bound:

∏︁D∏︁op∶ran(V∆n ,k ) ≤ ∫︁D2∫︁op∶ran(S∆n ,k+1 ) = (2(k + 1)⋃︀∆n⋃︀min
)2

dk+1.

As all conditions of Corollary 10.5 are satisfied, we can state the following lower esti-
mates:
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Corollary 10.9. Lower estimates for the integral Schoenberg opeartor V∆n ,k are given by

1
6
ω1,p( f , t(∆n , k)) ≤ ∏︁V∆n ,k f − f ∏︁p and 1

5
K1,p( f , t(∆n , k)) ≤ ∏︁V∆n ,k f − f ∏︁p ,

where

t(∆n , k) = ⋃︀∆n⋃︀2min(k + 1)2 ⋅ ( 1 − γ∆n ,k
dk+1 ) .

10.3.4 Lower estimates for positive finite-rank operators
We generalize here the examples of the preceding sections for general positive linear
operators with a partition of unity property. Let Ω be an open subset of Rd such that
Xp,r(Ω) contains the constant function 1 with ∏︁1∏︁p = 1, for instance X = (0, 1)d . We
consider a sequence of positive finite-rank operator Tn ∶ Xp,0(Ω) → Xp,0(Ω),

Tn f = n∑
k=1 α

∗
k( f )ek , f ∈ Xp,0(Ω), (10.6)

where e1, . . . , en ∈ Xp,r(Ω) are linearly independent, smooth positive functions that
form a partition of unity; α∗k are positive linear functionals satisfying ∫︁α∗k∫︁ = α∗k(1) = 1
and α∗k(ek) > 0 for k ∈ {1, . . . , n}. By Theorem 7.5, the spectrum of Tn is characterized
by

σ(Tn) ⊂ B(0, 1) ∪ {1}
and 1 is an eigenvalue of Tn due to the partition of unity property. Thus, to prove lower
estimates with the technique shown in this chapter, only the last two conditions have
to be checked. Thus, we can modify Corollary 10.5 as follows:

Corollary 10.10. Let (Tn) be a sequence of continuous linear operators on Xp,0(Ω) of
the form (10.6) such that ∏︁Tn f − f ∏︁p → 0 holds for all f ∈ Xp,0(Ω) if n tends to infinity.
Let us denote with γn ∶= sup{⋃︀λ⋃︀ ∶ λ ∈ σ(Tn) with λ ≠ 1}. If

(i) every differential operator of order r is bounded on ran(Tn), and
(ii) every differential operator of order r annihilates ker(Tn − I),

then the approximation error can be bounded from below by

ωr,p( f , δn) ≤ (2r + 1) ⋅ ∏︁Tn f − f ∏︁p and Kr,p( f , δr
n) ≤ 2 ⋅ ∏︁Tn f − f ∏︁p ,

where

δn = ⎛⎝ 1 − γn
sup⋃︀α⋃︀=r ∏︁Dα∏︁op∶ran(Tn)

⎞⎠
1⇑r

.

and δn → 0 if n tends to infinity.
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‘‘ An expert is someone who knows some of the worst mistakes
that can be made in his subject, and how to avoid them.’’

werner heisenberg

We conclude this thesis with a short summary of the shown results. As solved
problems naturally lead to new questions and problems, we will finally discuss

open questions for further research.
Motivated by shape preserving properties of variation diminishing transforms, we

have proved in Section 5.4 the uniform convergence of our curvature approximation
using Schoenberg’s splines. The curvature approximation is convexity preserving
due to the variation diminishing property and features the possibility to detect C2-
singularities by the established lower estimates of Chapter 4 that relate the approxi-
mation error with local smoothness. Whereas the theory shows the convergence only
for point-wise evaluations of the curve, we have also considered the task to estimate
the curvature of digitized curves in Section 5.4.4. We have shown with numerical
evaluations that our spline based curvature estimator achieves competitive accuracy
compared to state of the art curvature estimators while our algorithm is significantly
faster to compute. Another advantage of our algorithm is the ability to estimate the
curvature of piecewise smooth curves and to localize occurring C2-singularities using
an multi-scale approach.

To be able to consider also other approximation operators, we have shown a gen-
eral technique to prove lower estimates for operators having smooth range. We have
proved in Chapter 7 that the iterates of positive finite-rank operators with a partition
of unity property always converge. Using Fredholm theory and the concept of quasi-
compactness, we have shown in Chapter 9 that the iterates of quasi-compact operators
converge towards a finite-rank projection if the spectrum is contained in the unit ball
where 1 is the only possible common point at the boundary. In particular, we have
shown how to construct the limiting operator using a Gramian matrix where the dual
fixed points operate on the fixed points of the operator. Using the uniform conver-
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gence of the iterates, we have provided a general technique to obtain lower estimates
in terms of moduli of smoothness or K-functionals in Chapter 10.

When we have considered the spline based multi-scale algorithm for the curvature
estimation and its numerical evaluation there are some open questions that may be
considered in further research. An interesting problem to investigate is how the cur-
vature estimations behave for a curve that is corrupted with noise. While the research
of this thesis was restricted to spline based approximations, the proof of the curvature
approximation also holds in a very general setting. Thus, we also want to consider
other approximation operators. Our future research will especially investigate convo-
lution operators that canonically lead to a multi-scale approach. Consider for instance
the Gaussian scale space generated as solution of the heat equation. Another open
problem is to study if a similar approach also works for the curvature estimation of
surfaces.
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