
Dissertation

Mathematical Methods for
the Approximation of Radar Traces

Author:
Thilo Schneider, M.Sc.

Supervisor:
Prof. Dr. Tomas Sauer

Second Referee:
Prof. Tom Lyche, Ph.D.

Submitted to the Faculty of Computer Science and Mathematics of the University of Passau

February 2015

Acknowledgements

This thesis would not have been possible if it had not been for the ongoing support of many
persons. First of all I am greatly indebt to my supervisor Tomas Sauer. Our intensive and fruitful
discussions, his ideas and feedback are the foundation this work is build upon. Whenever needed,
he helped me to overcome both the scientific and administrative obstacles in my way and ensured
a smooth progress of the research.

My gratitude is extended to Stefan Kunis. After my talk at the Rhein-Ruhr-Workshop 2014 he
provided me with a reference to Björck [7] that in retrospective had a great influence on the results
of this thesis. Sometimes even the little things have a big impact.

I am also grateful to Malcolm Sabin. His valuable input and ideas after the conference on New
Trends in Applied Geometry 2014 made me think to include infrastructure related bounds and
therefore gave rise to chapter 7.2.

This dissertation project was inspired and supported by the Fraport AG. I greatly appreciate that
I was offered the opportunity to work on such a both mathematically interesting and practically
useful problem. The option to spend parts of my working hours on research was invaluable for
the success of this project.

In particular, I am deeply thankful to Steffen Wendeberg who is responsible for making all this
possible. His pragmatic and supporting approach on managing my working hours ensured that I
did finish the project on time.

Furthermore I would like to show my appreciation to my colleagues. Especially Andreas Figur
certainly got some of the work assignments that usually would have been in my responsibility.
By constantly covering my back he allowed me to concentrate properly on my research.

I had the honour to instruct several interns throughout the past years. I am thankful for the work of
Christian Laus, Robert Hennings and Veronika Kilzer who implemented prototypes of my results,
played with the parameterization of the algorithms and forced me to explain my knowledge in a
way that frequently improved my own understanding.

My sincere thanks also go to the Erich-Becker-Stiftung that offered generous financial support
for my research.

Finally my deepest thankfulness goes to my wife and my parents. Their support, encouragement
and love is what kept me going in the long and dry periods of unsuccessful search for correct
proofs. Especially my wife Sabine did not only have to remove my numerous spelling mistakes
out of this work but also had to cope with a husband only talking mathematics during dinner.

Contents

Introduction 1

I Preliminaries 5

1 Defining the challenge 6
1.1 The data supply system . 6
1.2 The data itself . 7
1.3 Design goals and model building . 11

2 Introducing the algorithm 13

II Core concepts 18

3 Spline curves 19
3.1 B-splines . 19
3.2 B-spline curves . 21
3.3 Spline evaluation . 25

4 Approximation 27
4.1 l2-Approximation . 30
4.2 Huber-Approximation . 33
4.3 A side note to l1-approximation in the linear case 42

III The approximation of radar traces 44

5 Identification of standstills 45
5.1 Density based spatial clustering with noise . 45
5.2 Detection of standstill candidates . 48
5.3 Isolating standstills . 52

6 Spline Approximation 56

7 Approximation of standstill periods 61
7.1 Enforcing f ′(t) = 0 . 62
7.2 Enforcing a known direction . 63
7.3 Enforcing a constant, unknown direction . 65
7.4 Refinement of standstill periods . 76

7.5 Speeding up the approximation . 79

8 Filling the gaps 81
8.1 Local approximation . 81
8.2 Choosing an optimal knot sequence . 85
8.3 A side note to the selection of the smoothing parameter 91

9 Numerical results and conclusion 93

Appendices 99

A Numerical foundations 100
A.1 Quadrature Rules . 100
A.2 Computations with polynomials . 101
A.3 Root finding . 102

List of algorithms 103

Symbols and notation 105

Bibliography 107

Introduction

In November 2011, Frankfurt airport, one of the world’s most important airports, opened its fourth
runway. Part of the agreement between the airport’s operator Fraport, the responsible regulatory
authority and the surrounding population was that in exchange to the increased capacity caused
by the fourth runway and the accompanying increase of noise pollution certain operational re-
strictions became effective. The most prominent of them was the introduction of a near total ban
on night flights. Since then all aircrafts planned to depart on a certain day have to do so strictly
before eleven o’clock in the night.

Within the first few months processes were not so well-rehearsed as they are now. Thus it fre-
quently happened that aircrafts had to return back to their parking position after preparing for
takeoff and taxiing to the designated runway.

But why did that happen? What could have been done differently by airport operations to mini-
mize the risk of an aircraft being required to stay on the ground for the entire night?

Of course, the answers to these questions are neither straightforward nor to be searched at only
one place, but rather are a composition of different conditions. One way to obtain the required
information would be to regularly interview apron controllers and other involved employees.
However, answers obtained this way are highly subjective and prone to interpretation errors.

This thesis lays out the foundations for an entirely different approach.

Most major airports collect positional information of the moving aircrafts via various technical
means. Those positions then are brought to display to apron controllers and, in more advanced
settings, used for alerting and guidance purposes. While those Advanced Surface Movement
Guidance and Control Systems (A-SMGCS) [2] primarily are used for real time purposes, the
collected data of course could be saved and used later to analyze situations in the past.

As we may see in the example above there might be a wide range of questions that could be
attempted to be answered by such a collection of data. Those include, but are not limited to:

• How is the traffic on the airport distributed?

• What is the velocity aircrafts are travelling with at specific points?

• Where do delays occur and how are they caused?

• What are typical areas where aircrafts are held on during their taxi process?

• How do aircrafts relate to each other: What distances do they keep and how does one
movement depend on another one?

1

Figure A: Frankfurt’s A-SMGCS constantly visualizes the position of moving aircrafts to the
responsible apron controllers. (Photo: Fraport AG)

Figure B: Screenshot of Fraport’s analysis toolkit for A-SMGCS data that is build upon various
open source software products.

2

•

•

•

•

•

•

•

•

Figure C: If one just linearly interpolates the recorded positions, it is immediately clear that ve-
locities between data points can be greatly overestimated.

For most of those questions it is favourably to analyze a significant amount of distinct movements
at once to gain statistical significance. Preferred are assessments that take a time span of a year
or at least half a year into account.

Fraport AG developed an in-house solution [31] to analyze the available A-SMGCS data. This
software toolkit is flexible enough to model most of the arising questions and is able to query
even large amounts of data within reasonable running times.

Due to technical limitations of the A-SMGCS the obtained positional accuracy is not as good as
one could wish. While those inaccuracies usually do not pose a problem in real-time use of the
data, they do in post-processing. One of the arising problems is demonstrated in Figure C, where
the velocities are overestimated if the data points are just interpolated. Much better results could
be gained if some kind of approximation was used that smoothes the positions. In summary: For
attaining the possibility of a nearly automatic data processing it is important to deal with data
errors sufficiently.

Before this thesis the smoothing algorithm employed by Fraport AG was a standard smoothing
spline implementation without much further modelling. Whereas this approximation delivered
reasonable results for the majority of the data, it turned out that it performed poorly in certain
situations.

This thesis strives to develop mathematical methods improving approximation quality up to a
level that fixes data problems in a way they do not interfere with later analysis. From a math-
ematical point of view the central challenges to be overcome are the use of robust smoothing
methods and modelling physically correct behaviour around the standstill of aircrafts.

The following research will primarily focus on the ground movement of aircrafts. Nevertheless,
the developed methods should be applicable to positional information of all types of vehicles
that follow similar physical laws, especially cars, trucks and busses as well as ships to a certain
amount.

The content of this thesis is divided into three parts. The first part seeks building a model of the
available data. The second part introduces the mathematical techniques used on an abstract level.
Finally those two components are combined in the third part by formally explaining the steps
required for data smoothing.

Chapter 1 strives to give an in-depth introduction to the problem and the available data. As
such it is the only chapter that has a strong connection to airport processes and airport know-
how. We will focus on understanding the data, its characteristic problems and the corresponding
challenges. At the end of the chapter a more formal model will be built.

3

In direct succession chapter 2 introduces the actual algorithm we will use on a heuristic and
descriptive level. The main goal is to give the reader the knowledge necessary to answer the
question “Why is this specific mathematical theory necessary for the application?” throughout
the remaining parts of the thesis. Up to this point the text is intended to be understandable to any
reader with high school level mathematical background.

We will use B-splines as the central concept to represent aircraft movements. Chapter 3 briefly
introduces the relevant theory and states central results that are available in literature. The reader
familiar with the topic may skip this chapter altogether.

Chapter 4 establishes various approximation concepts on an abstract level. While those tech-
niques will be used in the context of spline approximation, the assumptions required throughout
this chapter are kept as general as possible. From a scientific point of view one of the major con-
tributions of this thesis to science can be found within chapter 4.2: Here a rigorous treatment of
the convergence of robust approximation methods is conducted. Although parts of this analysis
have been known for multiple decades the work presented in the following seems to be the most
exhaustive up to the current knowledge of the author.

It turned out that proper treatment of phases the vehicle under observation is standing still is of
central relevance for the quality of the approximation. The last part of this thesis is opened by the
discussion on how to detect those standstill positions in chapter 5.

The application of the approximation concepts to spline smoothing is introduced in chapter 6.
Again, this chapter serves as a repetition of known results and may be skipped by the familiar
reader.

Another major question of this thesis is how to handle standstill periods with various geometric
restrictions in the spline smoothing process. Those methods are discussed in chapter 7.

Chapter 8 concentrates on how to approximate the segments between standstills. Among others
it is discussed how to obtain optimal knot sequences for the spline to be saved. This method is
strongly based on observations by de Boor and generalizes his work in two small, but relevant
aspects.

Finally, chapter 9 summarizes the results and shows examples of the smoothing results obtained.
Here also the issue of the performance of the algorithms developed is broached. At last the author
offers ideas for further research.

Even if mostly common notation is used, it is not avoidable to define central symbols used in
multiple occasions. References for those symbols and notation are listed in the appendix.

4

Part I

Preliminaries

5

1 Defining the challenge

Before we may attempt to develop algorithms dealing with the available data, it is advantageous
to gain some basic understanding of the data itself, including its characteristics, drawbacks and
specialities. We will spend the next paragraphs to give a brief introduction to the technology
employed. While this is not strictly necessary for the understanding of the remaining parts of this
thesis, it provides useful background information that help the reader to integrate the developed
algorithms into a greater context.

1.1 The data supply system

The positional data collected by Advanced Surface Movement Guidance and Control Systems
usually is a fusion of multiple data sources that originate from up to four different technologies:

• Positions from a Multilateration System (MLAT). Multilateration is based on the idea that
any vehicle equipped with a suitable transponder regularly transmits a signal with various
status information of the vehicle. Those signals are collected by multiple receivers spread
over the observed area and the vehicles position is calculated based on delay differences.
As long as the signals are not disturbed this system probably offers the best accuracy.
More information can be found in the book Multilateration - Executive Reference Guide,
available online [27].

• Radar signals. Here, the images from different radar systems are processed and the centre
of masses of the aircraft point clouds are computed. This approach offers very high de-
tection rates and good stability, whereas the positional accuracy generally is limited to the
accuracy of the centre of masses. This in turn highly depends on the angle the vehicle is
rotated to the radar as well as weather conditions and other factors influencing the quality
of radar images. At most airports there are different radar systems in use that cover both
ground and surrounding airspace.

• Automatic Dependent Surveillance – Broadcast (ADS-B) data. This is a position informa-
tion most modern aircrafts broadcast regularly and that can be received by anyone with
suitable hardware. The quality of the signal heavily depends on the accuracy of the po-
sition the aircraft’s navigational systems provide. Depending on the available equipment
the information originate either from the aircraft’s GPS device or from dead reckoning. In
this case the position constantly is updated based on the known velocity and movement
direction. GPS coordinates generally are mostly accurate, but there is no such guarantee
for the data from dead reckoning. As ADS-B data can easily be received there exist free
web portals visualizing all positions of aircrafts in certain parts of the world [30].

6

• Gap-filler technologies. Due to the limitations of radar and ADS-B data on the ground the
data from the MLAT system is of special importance. However, upgrading the system to
increase coverage in a narrow area is cost intensive and thus tried to avoid. One possibility
to do this is by employing technologies that allow the localization of vehicles through other
means. Prim candidates are surveillance camera systems and induction loops. As those gap
fillers are not yet used at Frankfurt Airport their effects are neglected in this thesis.

The A-SMGCS collects data from some or all of the data sources mentioned above and tries to
create a fused position of those information. The algorithms employed are proprietary and not
known to the author of this thesis. We will treat the fusion process mostly as a black box. Due
to observations we may assume that the fusion performs reasonably well when all data sources
are present but shows some quirks when signals are lost and extrapolation is used to compute
positions.

This thesis primarily intends to develop algorithms that are able to deal with A-SMGCS data.
However, the developed algorithms should also be able to process MLAT or radar data directly.
Even if all systems have their specific weaknesses it turns out this generalization does not harm
the algorithms performance in any way.

In the following we will use the term radar data for all those data sources interchangeably.
Although this denomination is slightly imprecise it probably is the most natural term for readers
with non-aviation background. This simplification also was done in the title of this thesis.

1.2 The data itself

Depending on the data source various data attributes are available. The most important and gen-
erally available fields are the x- and y-coordinates in a defined spatial reference system, the time
of measurement and, depending on the vehicle under observation, the height. Furthermore some
systems provide an estimated velocity that originates from the aircrafts inertial navigation sys-
tem. The resolution of those values is limited by the system specification. The system employed
in Frankfurt, for example, generates the position value with an accuracy of 0.25 meters.

The remaining attributes consist of various operational and technical data, such as an unique
address of the aircrafts transponder, attributes to identify the aircraft, possibly the type of the
aircraft and so on. While this information is vital for analyzing the data, it is of no relevance to
the problems in this thesis.

The frequency the positional information are recorded again depends on the data source. In
Frankfurt the position of a vehicle is determined approximately each second by the A-SMGCS
system. In the surrounding airspace we have to rely on radar data which, restricted by the rotation
velocity of the radar, comes only every five seconds. It is always possible that single recordings
are left out or are duplicated.

Figure 1.2 shows some typical movement patterns that can be encountered frequently. Different
phases of the aircraft’s movement process usually evoke different phenomena to be noted within
the data. This is mostly related to the fact that the technical systems collecting the data behave
differently in certain phases, e.g. the position of an aircraft in flight is detected mainly by radar
while on the ground the main source is multilateration. While the transition between those states

7

time x-coordinate y-coordinate height

956 -4164 -1184.75 152.4
957 -4095 -1159 152.4
958 -4041 -1140 152.4
959 -3993.25 -1124.5 144.78
960 -3926.75 -1100 144.78
961 -3860 -1075.25 144.78
962 -3793.5 -1050.75 144.78
963 -3744.25 -1033.25 144.78
964 -3693 -1018.75 129.54
965 -3628.5 -995.5 129.54
966 -3582.75 -977.25 121.92
967 -3521.75 -953.75 114.3
968 -3465 -932.5 114.3
969 -3400.25 -908.75 106.68
970 -3336 -886.75 99.06
971 -3269.75 -866.25 99.06

Table 1.1: Subset of data from an arbitrary aircraft movement. The time coordinate is measured
in seconds from the beginning of the recording; the spatial reference system used for
the x- and y-coordinates is local to the aerodrome reference point1.

is floating, it is helpful having a separate look at the typical phenomena that can be observed. The
following information is based on intensive empirical studies of the data but does by no means
claim to be complete.

In flight, during takeoff and landing
The target is moving with a high velocity. Compared to this velocity the observable noise of the
data points is very small. A smooth movement is observable in most of the cases.

Jumps in the data happen frequently, most of the times at transition points where different data
sources start or end to account to the reported position. This usually includes some correction in
the reported positions.

It is difficult to verify the absolute data accuracy. According to the observations made it is likely
that there are systematic and non-random errors. Due to the nature of approximation we will not
be able to deal with those problems though.

Taxi with medium to high velocity
A smooth movement is clearly distinguishable, the data points seem to be scattered along a
smooth curve. The observable errors appear to be randomly distributed and independent of each
other. A straightforward approximation of those data points promises to achieve good results.

1The aerodrome reference point is the origin of the airports local coordinate system. It is fundamental to all aspects
of airport design and one of the first things to define when planning a new airport [54].

8

Figure 1.1: A typical aircraft movement with the airports infrastructure shown in the background.
As the infrastructure is of no relevance to the algorithms proposed we will mostly
omit this kind of display and use standard scatterplots.

Greater data problems do occur rarely. The most common of those rare problems are gaps in
the data. Short gaps, e.g. one to three missing data points usually do not influence the position
accuracy of surrounding points. In case of longer gaps it is likely to have up to five massive
outliers in the direct neighbourhood of the observable gap.

Pushback2, taxi with low velocity
Compared to movements with higher velocity the variance of the random errors around the as-
sumed smooth curve greatly increases. This pattern is often observable together with gaps. Mas-
sive outliers are common and may happen frequently. Most of the time outliers appear in groups
of two to four in a row. The increase of errors partially is based on the fact that due to the
proximity of buildings and other vehicles a lot of signal reflections appear.

Parking or holding
The variance of errors comes to a peak when the target is not moving anymore. Frequently the
measured velocity between single data points equals the velocity observed at aircrafts during
flight. Apart from that, gaps and massive outliers may be observed regularly. Again outliers
emerge in groups of up to five consecutive points. During standstills however it happens that two
or more such outlier groups directly follow on each other.

At times the centre of the data is oscillating between two different positions where one can be
clearly identified as being the correct location as the data points prior and after the holding posi-
tion lead to this position.

2The process where a departing aircraft is pushed back from its parking position by a separate pushback tractor is
called pushback. The pushback process continues until the tractor has been decoupled from the aircraft.

9

(a) Typical, well-behaved aircraft movement on the
ground.

(b) Aircraft in final approach. The jump where a new
data source becomes available can be clearly noticed
on the right.

(c) Aircraft at takeoff. Due to the velocity change the
spacing of data points increases significantly.

(d) More scattering, the standstill position is good to
recognize.

(e) Standstill with a gap connecting it to the rest of the
data points, heavy outliers around the holding point.

(f) Movement with two standstills, one point is oscil-
lating between different positions.

Figure 1.2: Examples of characteristic movement patterns. Each figure shows the projection on
the x-y-plane and thus neglects the time component of the data points.

10

If the halt is at the start or end of the movement it is typical that the first or respectively last few
points are outliers.

While airport operations carefully distinguish between parking and holding the results regarding
our data are identical. Therefore, in the future we will refer to those processes in summary as
standstill or standstill period.

1.3 Design goals and model building

The algorithms that shall be developed should be able to correct the data problems mentioned
above as good as possible. Apart from that it is crucial that the algorithms are able to deal suitably
with a wide range of situations. In particular, some care is needed to avoid the algorithms to fit to
the given problems so closely that generalization is difficult. Nevertheless the list above can be
reduced to a few different kinds of problems the algorithms will have to be calibrated for:

• Detection and handling of standstills: To enforce the fitted function to be absolutely
constant it is necessary to detect standstill periods and take care of them in an appropriate
manner. At the same time this detection allows to take out the parts of the movement that
probably have the worst data quality and therefore impede further processing.

• Handling of non-uniformly distributed parameter values: As there are gaps and dupli-
cated points in the time-domain of the data the algorithms will not be allowed to assume a
strictly uniform distribution of the data points in the parameter space.

• Removal of outliers: Those points influence all algorithms that assume a common distri-
bution and independence of errors. Thus we will need to present a method to detect those
outliers and either remove them or incorporate them in the following steps in a way that
they do have not to much influence on the final results.

• Handling of random noise: The core concept of the approximation is to smooth out the
noise mentioned before while not loosing details in the data that come from actual move-
ments of the vehicle.

• Varying significance of data changes: On the ground and with slow motion an error of ten
meters is significant in a way that it may alter following analyses. In contrast the same error
in the airspace and at much higher velocity is barely noticeable. Hence all parameters that
influence the approximation’s accuracy should be designed in a way that allows changing
them throughout the movement.

Having carefully defined what we would like the developed algorithms to achieve and how this
corresponds to the data at hand we are now able to deploy a suitable notation as well as a model
used for analyzing the data.

Our general goal is to find a function f mapping the time to the position of the aircraft.

We will rely on the following notation:

11

• The vehicle movement is denoted by f : R → Rl, l ∈ {2, 3}, where the first component
of the functions value denotes the position on the x-axis and the second component the
position on the y-axis of the coordinate system. If the height coordinate is present, the third
coordinate will be used to give the representation for the height. Depending on the context
we will use f either for the true and unknown vehicle movement or the approximation.

• The single components of f will be written as fx and fy and, if available, fz, that is
f = [fx, fy]T or f = [fx, fy, fz]T. Here the symbols x, y and z are just a symbolic refer-
ence to the respective axis of the coordinate system. Whenever used in subscripts, we will
use this interpretation.

• The data points have been recorded at the sites t0, . . . , tm−1 resulting in the known positions
P0, . . . , Pm−1 ∈ Rl. If we need the single elements of Pi, we will assume Pi = [Px,i, Py,i]T

or Pi = [Px,i, Py,i, Pz,i]T.

• In vector notation those are written as T := [t0, . . . , tm−1] and P = [P0, . . . , Pm−1]T. When-
ever required we additionally will interpret P and T as sets containing the values t0, . . . , tm−1
and P0, . . . , Pm−1 respectively. There will be no confusion on the version used in a specific
situation. Furthermore, we define the dimension-wise vectors Px := [Px,0, . . . , Px,m−1]T,
Py := [Py,0, . . . , Py,m−1]T and Pz := [Pz,0, . . . , Pz,m−1]T.

Using the introduced notation we may describe our regression problem as

Pi = f (ti) + ei (1.1)

where ei represent the random, possibly correlated noise. We will assume the expected value of
ei to be zero.

The main work in this thesis will be dedicated to finding an estimate for f . Criteria that can be
used to judge the performance of the algorithms are as follows:

• Correctness in the absence of noise and outliers. Is the result of the algorithm correct if
ei = 0 for i = 1, . . . ,m?

• Correctness in the presence of random noise but without outliers. Does the algorithm
perform well in case that the errors ei follow a symmetric, uncorrelated and reasonably
well located distribution?

• Robustness against outliers. What happens when outliers are present?

• False positives. Whenever something is detected, how are the chances that we detect
something we did not want to identify?

• Performance. How fast can the computations be done? What is computational complexity
of the algorithm?

• Storage requirements of the approximated function. How much memory does the ap-
proximated function require to be stored?

We will either design our algorithms with those model assumptions in mind or come back to those
criteria and to some degree will verify the developed algorithms against those requirements.

12

2 Introducing the algorithm

In chapter 1.2 we observed that the quality of the radar data directly corresponds to the vehi-
cles movement state. It proves useful to distinguish between those phases within approximation
mainly for this reason. Especially standstill periods have to be identified and treated separately as
they not only require specific algorithms but also offer great potential for performance optimiza-
tion of the algorithm.

Phase detection

Detection whether an aircraft is in flight or on the ground does not require mathematical algo-
rithms, because the transition between those phases is bound to happen on runways. Thus, it is
easy to filter out all data points located on the relevant runway and define the corresponding time
interval as takeoff or touchdown. For our purpose it is sufficient to identify this transition phase
and not to detect actual takeoff or landing times.

Things get more difficult when we try to detect standstill periods. The infrastructure-based ap-
proach we took for takeoffs and touchdowns does not work sufficiently anymore, as it is possible
that the vehicle stops moving at any place while on the ground. Furthermore, it will be neces-
sary to add the fact that the vehicle is not moving as a boundary condition to the approximation
problem later on for various reasons. Thus, we have to detect standstill periods as accurately as
possible.

Therefore we will use a two-step approach: Firstly we identify standstill candidates that are
guaranteed to include the standstill period and then we will use various methods to refine the
exact standstill location until we yield a good estimate on the correct standstill period.

Figure 2.1: The transition between flying and taxiing on the ground may be located by identifying
the points geometrically located on a runway.

13

Figure 2.2: The human mind is able to analyze the pattern in the data instantly and provides us
with a good guess of the standstill’s location.

A standstill of relevant length is characterized by the fact that there are multiple data points at
various times and roughly the same location. Thus, an intuitive way to detect whether data points
might belong to a standstill is to count how many other points lie close to it. If this number
exceeds a given threshold the point is likely to belong to a standstill. We will formalize this idea
in chapter 5.

The obtained standstill candidate will need to be refined in the later processing. Initially we
use a straight linear regression line to narrow down the approximated beginning and ending of
the standstill. Afterwards we will fine-tune the standstill duration by repeatedly approximating
it with different standstill lengths and choosing the ones which result in the best fit in a close
neighbourhood of the standstill location.

Approximation of standstills

From a mathematical point of view the correct approximation of standstills forms the major chal-
lenge of this thesis. Describing what has to be done, on the other hand, could not be more
straightforward.

We distinguish between four types of standstills that each need separate care:

Standstill at the begin or end of movement. In this case we just have to force the approx-
imation to be constant within the standstill interval. Comparing Figure 2.3 (a) to Fig-
ure 2.3 (b) shows that this is necessary to yield good results.

Standstill at the begin or end of movement with known direction. Data recordings com-
monly start or end at parking positions of vehicles. These parking positions provide fur-
ther information in which direction the movement has to begin. This especially is helpful
as those parking positions usually are close to buildings and therefore come with worse
data quality than usual. However, due to infrastructure limitations, we can assume that
the vehicle has been moving in a certain, known direction. Adding this condition to the

14

approximation process may increase the approximation quality further, as can be seen in
Figure 2.3 (c).

Standstill between periods of movement. It is of course possible to approximate a stand-
still between periods of movement just by adding the boundary condition enforcing the
approximation to be constant as was done above. This leads to an approximation shown
in Figure 2.3 (d). To get a behaviour that is more likely to resemble the actual physical
trajectory of the movement we might add another boundary condition that enforces the
movement directions before and after the standstill to be equal. The result is visualized in
Figure 2.3 (e).

Standstill as a way to model the pushback process. During the pushback process an air-
craft is moved backward by an external force. Afterwards, it either is pulled forward again
or the tractor is decoupled and the aircraft continues its track with its own engines. In any
way the movement direction after the backward movement changes by exactly 180 degrees.
It turns out that modelling this special case results in the same boundary conditions as in the
case of standstills between periods of movement. Thus, we need not to take special care.
However, we have to keep in mind that the holding time between moving backward and
forward might be very short as the towing vehicle might only need to change directions.

Approximation between standstills

Of course we now could add the derived boundary conditions for all standstills to a combined
approximation problem that fits the whole vehicle movement all at once. However, as we al-
ready approximated the proximity of detected standstills while searching for the exact standstill
intervals we might just use this information.

In fact, it is sufficient to approximate the segments between standstills that have not yet been
approximated and then combine these different parts to one big approximation spanning the whole
vehicle movement. This way we not only save time by not approximating the standstills again
but also reduce computational complexity in total.

This is caused by the fact that within the approximation process at least one system of linear
equations has to be solved, or, in other words, a matrix decomposition has to be computed. With
most implementations this is an process that needs O(m3) operations with m being the number of
observations. While in theory faster algorithms exist, they are hardly used for various reasons [60,
p. 108]. Hence, if we use a detected standstill period to split up the approximation problem in two
parts with m1 and m2 data points, respectively, the approximation process only needs O(m3

1 + m3
2)

operations. Depending on m this might be a significant gain in performance.

In case there are longer data gaps within the segment to approximate we have no information
on how the vehicle behaved during this times. Furthermore we already know that those gaps are
not within a standstill period. Thus, depending on the length of the gap it probably will not be
possible to fill in the missing information. The best strategy available is to break the part up and
keep the gap in the resulting approximation. For later analysis it is better to have no data than
incorrect data.

There is one final aspect to keep in mind. In chapter 1.3 we formulated the requirement that the
approximated function can be stored with a minimal amount of required memory. Thus, to reduce

15

(a) Without special care the approximation will not be
constant over the whole standstill interval.

(b) Forcing the approximation to be constant within
the standstill yields much better results.

(c) Forcing the direction to equal the infrastructure di-
rection may increase approximation quality further.

(d) If the standstill is between periods of movement,
the movement direction may change after the standstill.
The resulting curve is not differentiable.

(e) Forcing the directions to be equal results in an ap-
proximation that usually resembles the actual physical
behaviour of the vehicle better.

(f) The same process allows a good approximation of
the pushback procedure.

Figure 2.3: Various standstill situations have to be treated differently.

16

storage needs we furthermore will show how an already found approximation can be used to find
a new approximation with fewer parameters to save.

Algorithm outline

Summarizing the discussion above we gain the following, rough algorithm outline:

1. Detect all standstill candidates and obtain rough bounds for the standstill.

2. For each found standstill candidate:

(a) Approximate using the appropriate boundary conditions.

(b) Optimize the standstill duration such that the region around the holding position is
represented best.

3. For each segment between two standstills:

(a) If there is a long gap without data points within this segment, split the segment up and
do the following steps with each part of the segment separately.

(b) Approximate with boundary conditions derived from the standstill approximations.

(c) Approximate again with optimized parameter count.

4. Combine the single approximation parts to one big approximation.

In the following we will develop the single steps of the algorithm in depth and present the math-
ematical theory that assures correctness of the suggested methods.

17

Part II

Core concepts

18

3 Spline curves

Representing arbitrary types of data points by a curve requires a suitable mathematical description
of such curves. While there are quite a few possible ways to define sufficient ones, we will use
one special class, namely spline curves.

Splines stand out due to a few properties that make them remarkably useful for the problems at
hand:

• They offer a compact representation using relatively few parameters that have a clear geo-
metric interpretation.

• A strong mathematical structure that helps deriving required results is available.

• Differentiation of spline curves is easy and reduces the complexity of the function.

• Efficient algorithms for computing the spline’s values as well as its derivatives exist.

Splines are considered first to be brought to attention by Schoenberg in 1946 [15], though even
nowadays they are still a topic of intensive research. A few decades later, in 1978, Carl de Boor
published a rigorous treatment of fundamental results which still is one of the most comprehen-
sive books on that particular topic. Thus, the following chapter is manly based on the revised
edition of his Practical Guide to Splines [10]. Additional information may also be found in
Farin’s book Curves and Surfaces for CAGD [29]. More recently, Klaus Höllig and Jörg Hörner
published Approximation and Modelling with B-Splines [40], an excellent and understandable
introduction to the topic.

One way of representing spline curves is using a linear combination of certain basis functions:

f (x) =

n−1∑
i=0

diNi,q(x).

In this chapter we will first introduce the basis functions Ni,q and examine some of their most
important features. Afterwards a formal definition of spline curves becomes possible. As a last
step, we will present a fundamental algorithm for the evaluation of spline curves.

3.1 B-splines

Definition 3.1. (a) For given n, q ∈ N the vector T = [τ0, . . . , τn+q] with τi ≤ τi+1 for all
i = 0, . . . , n + q − 1 is called a knot sequence.

(b) The elements of T are called knots.

19

(c) If τi−1 < τi = · · · = τi+k−1 < τi+k, then τi is a knot of multiplicity k.

Now, using the terminology just introduced, we may define the basis functions that will form the
building blocks of the spline curves.

Definition 3.2. For given n ∈ N, a knot sequence T and i ∈ { 0, . . . , n − 1 } the i-th B-spline of
degree q is recursively defined as

Ni,0(t | T) :=

1 if τi ≤ t < τi+1,

0 otherwise,

Ni,q(t | T) :=
t − τi

τi+q − τi
Ni,q−1(t | T) +

τi+q+1 − t
τi+q+1 − τi+1

Ni+1,q−1(t | T). (3.3)

The order of the B-spline equals q + 1.

We note that (3.3) may contain division by zero for suitable knot vectors. However, in that case
the corresponding Ni,q−1(t | T) or Ni+1,q−1(t | T) will be 0 or undefined as well. Therefore it is
adequate to define the whole product to equal 0 in this rare case.

Convention 3.4. 1. Most of the time the knot vector T will be implicitly defined by the con-
text. In that cases we will write Ni,q(t | T) just as Ni,q(t) for keeping the notation free of
unnecessary symbols.

2. For simplicity, we define Nq(t) := [N0,q(t), . . . ,Nn−1,q(t)]T.

3. We define the collocation matrix Nq(T) := [Nq(t0), . . . ,Nq(tm−1)]T ∈ Rn×m at the sites
T = [t0, . . . , tm−1]T.

By induction one may easily see that B-splines are piecewise polynomials of degree q.

The useful properties of B-spline curves are founded to a great amount on a few essential yet plain
observations. Their proof is mostly straightforward and might either be found in [58, pp. 55 – 58]
or in [10, pp. 91 – 96].

Theorem 3.5. (a) Local support: The functions Ni,q(t) vanish if t < [τi, τi+q+1).

(b) For t ∈ [τi, τi+1) only the functions Ni−q,q(t), . . . ,Ni,q(t) may be greater than zero.

(c) Nonnegativity: Ni,q(t) ≥ 0 for all i, q and t.

(d) Partition of one: For t ∈ [τi, τi+1) the identity

i∑
j=i−q

Ni,q(t) = 1

holds.

As we want to create a class of smooth functions by using linear combinations of B-splines we
would expect unique representations for all different possible curves. This is justified by the
following, central result:

20

0 1 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Figure 3.1: The B-splines belonging to the knot vector T = [0, 0, 0, 0, 1, 3, 4, 4, 4, 5, 6, 6, 6, 6].
Note the behaviour at the threefold knot 4.

Theorem 3.6 (Curry & Schoenberg). For t ∈ [τi, τi+1) the functions Ni−q,q, . . . ,Ni,q are linearly
independent.

A proof may be found in most books on B-splines as well as in numerous books on approximation
theory, for example in [21, p. 141].

Finally, we may compute derivatives of the Ni,q using the identity

N′i,q(t) =
q

τi+q − ti
Ni,q−1(t) − q

ti+q+1 − ti+1
Ni+1,q−1(t). (3.7)

Note that one of the divisors again may equal zero. However, as formerly seen with the B-spline
recurrence equation, the corresponding B-spline vanishes at the same time [10, p. 117]. Thus, it
again is sensible and consistent to define the whole product as zero.

3.2 B-spline curves

Now that B-splines have been introduced, we may finally define spline curves.

Definition 3.8. For a given degree q, a dimension l ∈ N and a knot vector T = [τ0, . . . , τn+q] the
spline curve f : [τ0, τn+q]→ Rl is defined as

f (t) :=
n−1∑
i=0

diNi,q(t)

with the control points di ∈ Rl, i = 0, . . . , n − 1.

Convention 3.9. 1. It is desirable to enforce the interpolation of the first and last control
point, which means f (τ0) = d0 and f (τn+q) = dn−1. This may be done by ensuring
q + 1-fold multiplicity of the boundary knots [39, p. 106]. In the following we will there-
fore assume the knot sequence to be of the form

τ0 = · · · = τq < τq+1 ≤ · · · ≤ τn−1 < τn = · · · = τn+q.

21

2. There is no formal requirement on the multiplicity of knots. However, knots with a mul-
tiplicity greater than q + 1 do not provide further information as this forces B-spline func-
tions to be equal to zero over the whole time interval. Consequently usually one requires
the knots to be of maximal multiplicity q + 1.

3. The vector space that is spanned by the B-splines of a given knot sequence T and degree q
will be denoted by Sq(T). According to Theorem 3.6 the functions N0,q, . . . ,Nn−1,q form a
basis of Sq(T).

Remark 3.10. The representation of spline curves using B-splines is only one of various possible
representations, albeit numerically the most stable. We will solely use the form presented and thus
not introduce further ones.

We immediately note that most of the properties of B-splines directly carry over to spline curves.
For a given point in time t there are at most q + 1 of the basis functions greater than zero, thus
only q + 1 of the control points influence the function value at that specific time. Equally, altering
one control point only alters a small part of the whole spline curve.

It is convenient to define d = [d0, . . . , dn−1]T ∈ Rn×l and write the linear combination of B-splines
as inner product:

n−1∑
i=0

diNi,q(t) = dTNq(t). (3.11)

Note that the transposition of d is not necessary if di ∈ R, which is the case most commonly used
in this thesis.

One of the most important properties of spline curves is the existence of derivatives. In the
open intervals (τi, τi+1) this is guaranteed by the existence of derivatives of the basis functions.
However, at the knots a separate result is needed.

Theorem 3.12. For a spline curve f with knot vector T the following property holds: If the knot
τi is of multiplicity k, the function f is q − k times differentiable at τi.

A proof can be found in [40, pp. 55 – 56].

Convention 3.13. In the following we will assume that all inner knots are of multiplicity one.
This not only saves us from a bit more complicated discussions when computing derivatives but
it also is a sensible choice when modelling the trajectories of vehicles.

Calculating the concrete derivative now may be done by using equation (3.7):

f ′(t) =

n−1∑
i=0

diN′i,q(t) =

n−1∑
i=0

di

(
q

τi+q − τi
Ni,q−1(t) − q

τi+q+1 − τi+1
Ni+1,q−1(t)

)

= q
n−1∑
i=0

di

τi+q − τi
Ni,q−1(t) − q

n∑
i=1

di−1

τi+q − τi
Ni,q−1(t)

= q
n∑

i=0

di − di−1

τi+q − τi
Ni,q−1(t),

22

where d−1 = dn := 0.

While computing the derivatives, we again encounter division by zero for i = 0 and i = n. How-
ever, as before, the corresponding B-splines evaluate to zero as well and hence the corresponding
summands can be omitted. Finally, we get

f ′(t) = q
n−1∑
i=1

di − di−1

τi+q − τi
Ni,q−1

(
t | T

)
= q

n−2∑
i=0

di+1 − di

τi+q+1 − τi+1
Ni,q−1

(
t | T̃

)
(3.14)

with T̃ = [τ1, . . . , τn+q−1].

Further derivatives can be computed by repeating that process. It is important to notice that
derivatives of spline curves are spline curves as well.

The computation of derivatives may be reduced to matrix multiplication. Let

Dn :=


−1

1
. . .
. . . −1

1

 ∈ R
n×n−1

and

∆qT :=


τq+1 − τ1

. . .

τn+q−1 − τn−1


−1

∈ Rn−1×n−1.

Note that by Convention 3.13 only boundary knots are of multiplicity greater than one. As those
boundary knots are left out in the matrix as was done in (3.14), all diagonal elements of (∆qT)−1

are greater than zero, hence the matrix is invertible. Then, the derivative may be written as

f ′(t) = qdTDn∆qTNq−1
(
t | T̃

)
.

Using the notation presented, derivatives of splines essentially are linear maps of the control
points. This will be a valuable tool for spline approximation.

Repeating the process leads to the following, simple observation.

Lemma 3.15. For a spline curve f of degree q, the knot vector T = [τ0, . . . τn+q], the control
point matrix d, the modified knot vectors

T (k) := [τk, . . . , τn+q−k]

and the derivative matrices

GT
k :=

q!
(q − k)!

k−1∏
j=0

Dn− j∆q− jT (j),

the k-th derivative of f is given by

f (k)(t) = dTGT
k Nq−k

(
t | T (k)

)
.

23


.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •• •• •• •• •• •• •


(a) G1


.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• • •• • •• • •• • •• • •• • •• • •


(b) G2


.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• • • •• • • •• • • •• • • •• • • •• • • •


(c) G3

Figure 3.2: Sparsity pattern of the first three derivative matrices with n = 9.

When dynamics of a function are of interest special attention is paid to the parts where there
is no movement, i.e. the function is actually constant. For spline curves constant intervals can
be characterized just by looking at the control points. This simple observation will be of key
importance in chapter 7.

Theorem 3.16. A spline curve f of degree q with knot vector T = [τi, . . . , τn+q] and control
points d0, . . . , dn−1 is constant over the interval [τi, τi+1] if and only if di−q = · · · = di.

Remark 3.17. Spline curves are piecewise polynomials over knot intervals. Thus, the spline
curve is either constant over a whole knot interval or not constant at all. Therefore the restriction
on knot intervals in Theorem 3.16 is sufficient.

Proof of Theorem 3.16. Without loss of generality let t ∈ (τi, τi+1). For t = τi or t = τi+1 the
result follows by the continuity of spline curves.

If di−q = · · · = di it follows by the local support and partition of one from Theorem 3.5 that

f (t) =

n−1∑
j=0

d jN j,q(t) =

i∑
j=i−q

d jN j,q(t) = di

i∑
j=i−q

N j,q(t) = di.

Now we suppose there is another combination of control points d̃0, . . . , d̃n−1 such that f (t) = c
for all t ∈ (τi, τi+1). Then, by using the same properties again,

f (t) =

i∑
j=i−q

cN j,q(t) =

i∑
j=i−q

d̃ jN j,q(t)

and hence

0 =

i∑
j=i−q

cN j,q(t) −
i∑

j=i−q

d̃ jN j,q(t) =

i∑
j=i−q

(c − d̃ j)N j,q(t).

By the linear independence of the N j,q (Theorem 3.6) it follows that d̃ j = c for i = i−q, . . . , i. �

24

3.3 Spline evaluation

After defining B-spline curves one major topic is not yet covered: How do we evaluate the values
of a B-spline curve in an efficient and numerical stable manner?

The given algorithm manages that in a two step process: First the location of the value to evaluate
within the knot sequence is found and then the spline is evaluated using this information.

Searching the correct knot interval can be done by using the well known binary search [17,
p. 799].

Algorithm 3.1: Binary search (within a knot sequence)
Input: Knot sequence T = [τ0, . . . , τn+q] for a spline of degree q.

Value t ∈ [τq, τn] the spline shall be evaluated at.
Result: Index i with t ∈ [τi, τi+1].

if t = τn then
return n-1

end if
low← q
high← n

mid← (low + high)/2 . integer division
while t < τmid || t ≥ τmid+1 do

if t < τmid then
high← mid

else
low←mid

end if
mid← (low + high)/2 . integer division

end while
return mid

As an alternative to binary search we may use plain linear search within the knot interval if some
a priori information are available. This situation typically arises when one wants to sample the
whole spline function or uses an iterative algorithm that converges to a single value. In both cases
the knot interval changes only marginally between different evaluations which suggests using the
information available from previous evaluations.

In actual spline implementations it is useful to provide both ways of locating the knot interval
and choosing the best suited approach depending on the application.

After the correct interval is found, the algorithm of de Boor may be used to compute the value
of the spline and its derivatives. As only convex combinations are used the algorithm offers high
numerical stability.

25

Algorithm 3.2: de Boor [10, pp. 109 – 126]
Input: Spline f with knot sequence T = [τ0, . . . , τn+q] and control points d0, . . . , dn.

Value t the spline shall be evaluated at.
Index i such that t ∈ [τi, τi+1).

Result: The values f (t), f ′(t) and f ′′(t).

for i← 0 to q do . initialization
d(0)

m ← di−m

end for

for j = 1 to q do
for m = 0 to q − j do

c← t − τi−m
τi−m+q− j+1 − τi−m

d(j)
m ← (1 − c) · d(j−1)

m+1 + c · d(j−1)
m

end for
end for
c1 ← q

τi+1 − τi

c2 ← c1 · q − 1
τi+2 − τi

c3 ← c1 · q − 1
τi+1 − τi−1

f (t)← d(q)
o

f ′(t)← c1 ·
(
d(q−1)

0 − d(q−1)
1

)
f ′′(t)← c2 · d(q−2)

o − (c3 + c2) · d(q−2)
1 + c3 · d(q−2)

2

26

4 Approximation

In this chapter we will introduce the approximation concepts used throughout this work. While it
will come as no surprise that those algorithms will be used in the context of spline approximation
all discussion in this chapter will be conducted in a slightly more general form. The actual appli-
cation to spline approximation problems and all corresponding specializations will be discussed
in chapters 6 and 7.

We will denote the m data points to be approximated by y0, . . . , ym−1 ∈ R and their corresponding
function arguments by t0, . . . , tm−1. In vector notation those will be written as T := [t0, . . . , tm−1]T

and Y := [y0, . . . , ym−1]T.

To approximate a given set of points sensible approaches need to contain a measure ρ of how well
the data is approximated. This measure is supposed to assign high values to points that are far
away from the approximation and low values to points that are accurately approximated. From
a mathematical point of view this requests the function ρ to be positive and convex as well as
symmetric. A basic approximation problem then may be stated as

min
f

m−1∑
i=0

ρ
(
yi − f (ti)

)
where the functions f are chosen from a predefined class of functions. As such arbitrary classes
are rather difficult to describe and to deal with mathematically we will only discuss parametric
approximation. Therefore we make a transition as follows: Instead of our function only being
dependent on ti we introduce the function parameters x ∈ Rn and assume that all functions in our
defined function class may be written as f : R ×Rn → R. In the context of spline approximation,
i.e. f ∈ Sq(T), those functions would be defined as f (ti, x) = NT

q (ti)x and thus the parameter
vector x takes the role of the spline’s control points. Using this notation our approximation
problem becomes

min
x

m−1∑
i=0

ρ
(
yi − f (ti, x)

)
. (4.1)

In the case of ordinary spline approximation f is linear in the control points x. This, however,
will not be enough for all algorithms needed within this thesis. Hence we will also examine cases
where the function f is non-linear but still twice continuously differentiable in x.

With ρ ≡ (·)2 this concept of data fitting is well known as least squares estimation. The more gen-
eral form requiring only measurable ρ was proposed as M-estimator by Peter Huber in 1967 [43]
and since then has been a topic of intensive statistical research. Although we are more interested
in the numerical algorithms and properties for solving (4.1), a few distinct choices for ρ stick out
from a statistical point of view:

27

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Contours where ρ(x) + ρ(y) = 0.75 and c = 0.5.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Contours where ρ(x) + ρ(y) = 2 and c = 0.5.

Figure 4.1: Comparison between the three mentioned choices of ρ. The blue line depicts ρ ≡ (·)2,
the black line ρ ≡ |·|. The Huber loss function, drawn in red, is a transition between
both.

• For ρ ≡ (·)2 the concept is well known and investigated as least squares approximation, as
has been mentioned above. The estimator (4.1) can be shown to be a maximum likelihood
estimator for the function f if the residuals f (ti)− yi are normally distributed [55, p. 48][7,
p. 4]. If a constant value is fitted (namely f (ti, x) ≡ x ∈ R), equation (4.1) is solved by the
usual arithmetic mean.

• Setting ρ ≡ |·| yields a so called least absolute deviations (LAD) or l1-approximation prob-
lem. Then equation (4.1) is a maximum likelihood estimator if the residuals are drawn
from a Laplace distribution [22, p. 137]. Fitting a constant value basically is equivalent to
finding the median of the data points [8, p. 17].

• Using the Huber loss function

ρ(x) =

 x2

2c + c
2 , |x| ≤ c,

|x|, |x| > c

a transition between least squares approximation and l1-approximation is possible. This
may be thought as an estimator to the situation in case the errors are assumed to come from
a distribution (1 − ε)N + εE where N is normally and E laplacian distributed. There is a
direct relationship between the parameters ε and c [26].

A more thorough discussion of the statistical properties of M-estimates and their asymptotics
may be found in [44].

Of course other functions ρ have been suggested in literature. It will become clear later on why the
given ones are sensible choices for our purpose of data approximation and the available data.

Apart from a clear statistical interpretation those estimators above also offer efficient solution
algorithms. In comparison, the least squares solution may be determined significantly faster

28

than the LAD-solution, with the solution using the Huber loss function ranking somewhere in
between. The robustness against outliers on the other hand is greatly increased by the Huber and
l1-solutions. However, depending on the choice of the parameter c there is only little difference
between the robustness of those two approaches.

We therefore will concentrate our discussion on the Huber loss function, while we will briefly
review the common methods for least squares approximation and will only give a short overview
on where to find information how to solve the l1-problems. The least squares and Huber approach
will be utilized in different forms later on.

Up to now we assumed that accuracy is the only aspect that is required for a good approximation
of the data. Another important aspect for spline fitting however is that the fitted function should
be reasonably smooth. Thus, the addition of a roughness penalty to equation (4.1) may be con-
sidered. Without going into to much detail right now, such a roughness penalty may be given as
a non-negative function S of the parameter vector x. This rather abstract concept gives us

min
x

m−1∑
i=0

ρ
(
yi − f (ti, x)

)
+ S (x). (4.2)

Finally, a small generalization is possible by adding non-negative weights w0, . . . ,wm−1 to the
single data points, resulting in the final approximation problem

min
x

m−1∑
i=0

wiρ
(
yi − f (ti, x)

)
+ S (x). (4.3)

For simplicity we define fi(x) := f (ti, x).

Note that we assumed the function f as well as the values yi to be one-dimensional. The general-
ization to use vector valued f can be easily done by defining ρ∗ : Rl → R as

ρ∗(x) :=
l−1∑
i=0

ρ(xi)

with x = [x0, . . . , xl−1]T. This interpretation still is consistent with the usual theory, particularly
if ρ ≡ (·)2 then ρ∗ ≡ ‖·‖22 and if ρ ≡ |·| then ρ∗ ≡ ‖·‖1.

29

4.1 l2-Approximation

Least squares approximation is a well-known technique used in plenty different contexts and is
conceptionally simple as well as thoroughly investigated. Therefore, we will only briefly recall
key concepts and reference to standard textbooks for further reading. For example, one may
consider [7], [37], [56].

The optimization problem

min
x

m−1∑
i=0

wi
(
yi − fi(x)

)2
+ S (x) (4.4)

may be written as

min
x

∥∥∥∥√W
(
Y − f (x)

)∥∥∥∥2

2
+ S (x) (4.5)

with f (x) = [f0(x), . . . , fm−1(x)], W = diag(w0, . . . ,wm−1) and the
√· function defined to work

component-wise, that is
√

W = diag
(√

w0, . . . ,
√

wm−1)
)
.

With J f (x) being the Jacobian matrix of f (x) it is easy to see that the gradient of the target
function is given as

2JT
f (x)W

(
Y − f (x)

)
+ ∇S (x).

It is well known that all minima of a function g will satisfy ∇g(x) = 0 which leads directly to the
normal equations of least squares problems with smoothing penalty:

JT
f (x)W f (x) +

1
2
∇S (x) = JT

f WY. (4.6)

It is a common situation that the smoothing penalty may be modelled as S (x) = xTBx for some
symmetric and positive definite matrix B ∈ Rn×n. If additionally the fi are linear, i.e. f (x) = J f x,
the normal equations result in a system of linear equations:

(JT
f WJ f + B)x = JT

f WY. (4.7)

Note that the matrix JT
f WJ f is a Gram matrix and therefore positive semidefinite [38, p. 293]. As

JT
f WJ f + B is a sum of positive semidefinite matrices, it is positive semidefinite itself and (4.7)

has a solution. This also results in the target function being convex, hence the solution in fact is at
the location of the required minimum. If JT

f WJ f + B is positive definite, the solution furthermore
is unique.

Solving the problem (4.4) for non-linear fi gets a bit more interesting. Of course, all general
optimization methods are applicable, for example one could solve (4.6) using Newton’s method.
However, the quadratic structure available might be utilized. A common approach is the Gauß-
Newton method that is based on replacing fi(x) by

fi(x(k) + δ) ≈ fi(x(k)) + J f (x(k))δ.

This yields the normal equation

JT
f (x(k))WJ f (x(k))δ + ∇S (x(k) + δ) = JT

f (x(k))W(Y − fi(x(k))) (4.8)

30

that might be used to determine a descent direction. If not available, ∇S (x) also could be approx-
imated by a Taylor expansion. The value δ that solves equation (4.8) may be used in an additional
line search

min
α∈R

∥∥∥∥√W
(
Y − f (x(k) + αδ)

)∥∥∥∥2

2
+ S (x(k) + αδ)

that allows to find a new value x(k+1) = x(k) + αδ.

Note that the Gauss-Newton method is a Quasi-Newton method that uses JT
f J f as an approxima-

tion to the Hessian. It can be shown that this method actually converges to a critical point and
that the convergence rate is quadratic under reasonable conditions [56, pp. 255 – 257]. Further
information might also be found in [7], [37], [63].

If we require even more structure of the problem, further optimizations are possible. We will
briefly recall an algorithm that was firstly put to use by Golub and Pereyra [34]. In chapter 7.3
we will use parts of their approach to solve our actual optimization problem efficiently. We will
neglect the presence of a smoothing penalty for the discussion at this place. How to include the
smoothing penalty as well is discussed in chapter 7.3.

A least squares problem is called separable if

f
([

x
ξ

])
= J(ξ)x

with J being a matrix valued function depending on ξ.

The corresponding separable optimization problem then may be written as

min
x,ξ
‖Y − J(ξ)x‖22. (4.9)

Now suppose that the optimal value ξ was known as ξ̂. In this case the subproblem

min
x

∥∥∥Y − J(ξ̂)x
∥∥∥2

2

is a linear least squares problem and its solution may be found by solving(
JT (ξ̂)J(ξ̂)

)
x = JT(ξ̂)Y. (4.10)

If J(ξ) has full column rank for all possible values of ξ, inserting the solution in equation (4.9)
yields

min
ξ

∥∥∥∥(1 − J(ξ)(JT (ξ)J(ξ))−1JT(ξ)
)
Y
∥∥∥∥2

2
. (4.11)

In their work Golub and Pereyra use this approach with the Moore-Penrose pseudoinverse instead
of (4.10) and thus get rid of the requirement that J(ξ) is of full rank. For us it will be sufficient to
stick with J(ξ) of full rank. Recall that ξ is called a critical point of f if ∇ f (ξ) = 0.

As (4.10) is an orthogonal projection of Y on the space spanned by J(ξ), Golub and Pereyra
named their approach variable projection algorithm. They have given an explicit and efficient
way to compute the derivative of (4.11) and therefore made it possible to first solve this reduced
optimization problem that has been stripped off of all linear variables and just contains the non-
linear part. The full solution then may be found by applying (4.10). Furthermore, they prove the
following theorem:

31

Theorem 4.12 (Golub and Pereyra, 1973 [34]). If J(ξ) has constant rank in an open set Ω around
ξ̂, the following holds:

(a) If ξ̂ is a critical point of (4.11) and x̂ a solution of equation (4.10), then [x̂T, ξ̂T]T is a critical
point of (4.9).

(b) If [x̂T, ξ̂T]T is a global minimizer of (4.9) for ξ ∈ Ω, then ξ̂ is a global minimizer of (4.11) in
Ω.

In the following let 1n denote the identity matrix in Rn where the index n will be omitted if it
is clearly defined by the context. We will only introduce the first step of Golub and Pereyra’s
attack for problem (4.11) under the assumption that J(ξ) has full rank. They compute a QR-
decomposition of J(ξ) such that

J(ξ) = Q(ξ)R(ξ)P(ξ) =
[
Q0(ξ) Q1(ξ)

] [R0(ξ)
0

]
P(ξ)

with Q(ξ) orthogonal, R0(ξ) upper triangular and P(ξ) a permutation matrix. Omitting the argu-
ment ξ for briefness this yields a rapid simplification of the original problem, as

J
(
JTJ

)−1
JT = QRP

(
PTRTQTQRP

)−1
PTRTQT

= QR(RTR)−1RTQT

= Q
[
R0
0

]
(RT

0R0)−1
[
RT

0 0
]

QT

= Q
[
1
0

] [
1 0

] [QT
0

QT
1

]
= Q

[
QT

0
0

]
and, using ‖Qx‖2 = ‖x‖2, it follows that∥∥∥∥(1 − J

(
JTJ

)−1JT
)

Y
∥∥∥∥2

2
=

∥∥∥∥∥∥QT
(
1 − Q

[
QT

0
0

])
Y
∥∥∥∥∥∥2

2
=

∥∥∥QT
1Y

∥∥∥2
2.

This gives another, final reformulation for problem (4.9):

min
ξ

∥∥∥QT
1 (ξ)Y

∥∥∥2
2. (4.13)

Apart from introducing the idea up to this point we will not go too deep into their algorithm.
For our purpose it is sufficient to use the theorem above and equation (4.13). We will develop a
specialized method depending on this in chapter 7.3. However, for completeness we will give a
short overview over the current state of research on variable projection.

Two years after Golub and Pereyra, Linda Kaufman [46] suggested an approximation to the
derivative of (4.11) that was easier to compute and still showed similar numerical performance.
Later on Ruhe and Wedin [61] showed theoretically that the variable projection approach always
converges faster than the same optimization procedure applied to the unreduced problem (4.5).
A more modern summary of the algorithm may be found in [7, pp. 351 – 354]. Additionally,
Golub and Pereyra summarize the developments of the variable projection method and give an
impressive list of applications where the method has been used in [35]. Probably the most recent
work has been done by Osborne [57] who explicitly proved convergence rates for the Gauss-
Newton algorithm with variable projection.

32

Remark 4.14. The use of a QR-decomposition to compute the optimal solution of linear least
squares problems is numerically more accurate than solving the normal equations (4.7). This is
caused by the fact that computing the product ATA increases the condition number of A roughly to
its square. The QR-decomposition therefore works on a quadratically better conditioned matrix
A compared to the normal matrix ATA.

4.2 Huber-Approximation

In 1964 Peter Huber proposed to use the function

ρc(x) :=

 x2

2c + c
2 , |x| ≤ c,

|x|, |x| > c
(4.15)

as a replacement for the two-norm in data fitting problems [41]. Today this approach is widely
accepted as one of the available robust statistical methods. Accordingly, numerous researchers
examined different ideas on how to solve those optimization problems efficiently. Usually, one
also estimates some scale parameter σ in case it is not known a priorily, resulting in the general
optimization problem

min
x,σ

m−1∑
i=0

wiρc

(
yi − fi(x)

σ

)
. (4.16)

For linear fi, Rudolf Dutter provided an in-depth examination of methods to solve similar prob-
lems [23]. He proved the convergence of two different methods with different advantages and
drawbacks. In the following years it could be shown that both approaches are drawn from the
same group of methods which is based on replacing the function ρc by a quadratic approxi-
mation [16]. Various methods have been proposed that focus on estimating σ alongside x, for
example see [71]. Huber’s book Robust Statistics [44] may be used as a modern reference on this
topic.

There have been numerous approaches to find algorithms that are able to solve problem (4.16) for
non-linear fi. Dutter generalized his two algorithms in 1981 [24]. Further work has been done by
Dennis [45] as well as Ekblom and Edlund [25], [26].

Obtaining robust smoothing splines by adding a smoothing penalty to (4.16) was suggested by
Lenth in 1977 [50] and two years later again by Huber [42]. Utreras [66] suggested an algorithm
to compute smoothing splines. Furthermore, there has been done plenty of research on the sta-
tistical properties of such smoothing splines, for example see [18], [47], [48]. Yet none of the
available publications seems to proof the actual convergence of the straightforward generalization
of Huber’s and Dutter’s algorithms in a general form. We will combine the existing knowledge
and augment it such that convergence may be proved under suitable assumptions.

Firstly, we will briefly state some properties of the function ρc that help to gain a better under-
standing. While based on the norm |·|, it is immediately clear that ρc is no norm anymore, as it is
not homogeneous. Some important aspects are preserved though.

Lemma 4.17. For x, y ∈ R and c > 0 the function ρc

(a) respects the triangle inequality ρc(x + y) ≤ ρc(x) + ρc(y),

33

(b) fulfils ρc(αx) = |α|ρc|α|(x) for α ∈ R
(c) and is convex.

We observe that (b) is a property similar to homogeneity. The only difference is that the function
parameter c also changes under scalar multiplication.

Proof. First note that |x| ≤ x2

2c + c
2 , as

x2

2c
+

c
2
− |x| = 1

2c

(
x2 − 2c|x| + c2

)
=

1
2c

(|x| − c)2 ≥ 0.

Hence |x| ≤ ρ(x) for x ∈ R. Now we assume |x + y| > c. Then

ρ(x + y) = |x + y| ≤ |x| + |y| ≤ ρ(x) + ρ(y).

For |x + y| ≤ c the relation (x + y)2 = x2 + 2xy + y2 ≤ c2 and therefore xy ≤ c2

2 holds. Now for
|x| ≤ c as well as |y| ≤ c we have

ρ(x + y) =
(x + y)2

2c
+

c
2

=
x2

2c
+

y2

2c
+

xy
c

+
c
2
≤ x2

2c
+

y2

2c
+

c
2

+
c
2

= ρ(x) + ρ(y).

If either |x| > c or |y| > c then

ρ(x + y) ≤ ρ(c) = c ≤ |x| + |y| ≤ ρ(x) + ρ(y),

which proves (a).

(b) may be seen by elementary algebraic reformulation and the convexity of ρ immediately fol-
lows from the monotonic growth of its derivative

ρ′c(x) =

 x
c , |x| ≤ c
sgn(x), |x| > c.

(4.18)
�

As the context our problem resides in allows us to provide an estimate of the scale parameter σ,
we will neglect the optimization of such a σ and instead hide its value in the parameter c of the
function ρc, as Lemma 4.17 (b) suggests.

With the addition of the smoothness penalty and by writing

ri(x) := yi − fi(x),

we have to minimize

g(x) :=
m−1∑
i=0

wiρc
(
ri(x)

)
+ S (x). (4.19)

The following discussion does not need ρ to be the Huber loss function but works with much
weaker assumptions on ρ. Hence we will continue in the general form.

34

Following Dutter [23] and Byrd [16], the general idea to find a suitable minimum is to replace ρ
iteratively by a quadratic approximation qi at the previous iterations value x̃ such that

ρ
(
ri(x)

) ≤ qi
(
ri(x)

)
for all x ∈ R (4.20)

and
ρ
(
ri(x̃)

)
= qi

(
ri(x̃)

)
. (4.21)

It is obvious that all quadratic functions qi fulfilling those conditions will be of the form

qi
(
ri(x)

)
= ρ

(
ri(x̃)

)
+ ρ′

(
ri(x̃)

)(
ri(x) − ri(x̃)

)
+

1
2

bi
(
ri(x) − ri(x̃)

)2. (4.22)

The so called W-algorithm proposed by Dutter chooses

bi :=

ρ′(ri(x̃))
ri(x̃) , ri(x̃) , 0,

ρ′′(0), ri(x̃) = 0.

This choice in fact fulfils (4.20) and (4.21) as Dutter has shown:

Lemma 4.23 (Dutter, 1975). Let ρ be convex and symmetric, ρ′(u)
u bounded and monotonically

non-increasing for u > 0 and

q(u) :=

ρ(ũ) + ρ′(ũ)(u − ũ) +
ρ′(ũ)
2ũ (u − ũ)2, ũ , 0

ρ(ũ) + ρ′(ũ)(u − ũ) +
ρ′′(0)

2 (u − ũ)2, ũ = 0

for some ũ ∈ R. Then ρ(u) ≤ q(u) and ρ(ũ) = q(ũ).

As Lemma 4.23 is one of the fundamental pillars for the idea to be presented, we will repeat the
proof of Dutter.

Proof. ρ(ũ) = q(ũ) is trivially true. Similarly for ũ = 0 the result follows immediately by the fact
that ρ(0) and ρ′′(0) > 0. Without loss of generality let u , 0 , ũ. The difference

z(u) := q(u) − ρ(u) = ρ(ũ) + ρ′(ũ)(u − ũ) +
ρ′(ũ)
2ũ

(u − ũ)2 − ρ(u)

with derivative
z′(u) := ρ′(ũ) +

ρ′(ũ)
ũ

(u − ũ) − ρ′(u) =
ρ′(ũ)

ũ
u − ρ′(u)

satisfies z(ũ) = z(−ũ) = 0 as well as z′(ũ) = z′(−ũ) = 0. Suppose ũ > 0. All that is left to show is
z′(u) ≥ 0 for u > ũ and z′(u) ≤ 0 for 0 < u < ũ, henceρ′(ũ)

ũ − ρ′(u)
u ≥ 0, u > ũ,

ρ′(ũ)
ũ − ρ′(u)

u ≤ 0, 0 < u < ũ,

which is true as ρ′(u)
u is monotonically non-increasing. For ũ < 0 the result follows by the sym-

metry of ρ. �

35

Byrd proved an even stronger result:

Lemma 4.24 (Byrd, 1979 [16]). Assume ρ satisfies all conditions of Lemma 4.23 and let q be
defined as above. Then q(u) ≤ q̃(u) holds for all quadratic functions q̃ with ρ(u) < q̃(u) and
ρ(ũ) = q̃(ũ) and arbitrary u ∈ R.

Thus, the function class qi from equation (4.22) with the values bi as suggested by Dutter is
optimal in the sense that there is no other quadratic function as close to ρ that fulfils (4.20) and
(4.21). Byrd as well as Wolke and Schwetlick [71] recommended the use of a function that is only
locally greater than ρ but offers a better approximation in a neighbourhood of ũ. Though, after
numerical testing they come to the conclusion that this is not worth the additional effort in most
cases [72]. Similarly, choosing bi = ρ′′(ri(x̃)) and thus gaining a perfect Taylor approximation
also violates the global majoring property (4.20) of qi that otherwise is present.

As a next step we have to explain how to use those approximations qi to gain a procedure that
actually decreases the value of (4.19). The approach here is nonetheless straightforward and
based on the work of Dutter. Let

φ(x) :=
m−1∑
i=0

wiqi
(
ri(x)

)
+ S (x).

Suppose we can find some x ∈ R with

φ(x) < φ(x̃).

Then according to Lemma 4.23 we have

g(x) =

m−1∑
i=0

wiρ(ri(x)) + S (x) ≤ φ(x) < φ(x̃) = g(x̃). (4.25)

Thus, any step decreasing φ(x̃) also decreases g(x̃).

We have all methods available to optimize φ(x) as the following lemma shows:

Lemma 4.26. For symmetric ρ and with

zi :=

wiρ
′(ri(x̃))

2ri(x̃) , ri(x̃) , 0
wiρ

′′(0)
2 , ri(x̃) = 0

the equation

φ(x) =

m−1∑
i=0

zi
(
ri(x)

)2
+ S (x) + κ

with some constant κ ∈ R holds.

36

−c c

(a) The function ρc is just the absolute value function
lopped of and completed with a parabola.

−c c

(b) The weight zi plotted as a function of the residual
ri(x(k)).

Figure 4.2: The function ρc and the corresponding weights zi.

Proof. The proof follows observations made by Byrd [16]. It is sufficient to examine the single
summands. Let i ∈ {0, . . . ,m − 1}. We write r := ri(x) and r̃ := ri(x̃). Then for r̃ , 0

wiqi(r) = wi

(
ρ(r̃) + ρ′(r̃)(r − r̃) +

ρ′(r̃)
2r̃

(r − r̃)2
)

= wi

(
ρ(r̃) + ρ′(r̃)(r − r̃) +

ρ′(r̃)
2r̃

r2 − ρ′(r̃)r +
1
2
ρ′(r̃)r̃

)
=

wiρ
′(r̃)

2r̃
r2 + wi

(
ρ(r̃) − 1

2
ρ′(r̃)r̃

)
︸ ︷︷ ︸

=:κi

= zir2 + κi

where κi does not depend on the variable r = ri(x). For r̃ = 0 we have

wiqi(r) = wi

(
ρ(0) + ρ′(0)r +

ρ′′(0)
2

r2
)
.

As ρ is symmetric, ρ′(0) = 0 and hence

wiqi(r) =
wiρ

′′(0)
2

r2 + κi

with κi constant. �

As the constant κ is not relevant for minimization, φ(x) is an ordinary least squares problem and
therefore may be minimized with the methods discussed in chapter 4.1.

This allows us to formulate a general optimization algorithm for the function g that builds up on
any optimization procedure that is able to minimize

m−1∑
i=0

zi
(
ri(x)

)2
+ S (x).

37

Algorithm 4.1: Iteratively reweighted least squares
Input: Residual functions ri(x) and weights wi for i = 0, . . . ,m − 1.

Roughness penalty S (x).
Initial solution x(0).
Threshold ε.
Algorithm optimstep that performs one iteration of an optimization method.

Result: Solution x that minimizes g(x) :=
∑m−1

i=0 wiρ(ri(x)) + S (x).

k ← 0
repeat

for i = 0 to m − 1 do
if ri(x(k)) , 0 then

zi ← wi
ρ′(ri(x(k)))
2ri(x(k))

else
zi ← wiρ

′′(0)
2

end if
end for
x(k+1) ← optimstep(∑m−1

i=0 zi(ri(x))2 + S (x))
k ← k + 1

until g(x(k−1)) − g(x(k)) > ε

x← x(k)

The observation that just the weights of the least squares problem change over the iterations is the
reason that this algorithm became known as Iteratively Reweighted Least Squares or short IRLS
in literature.

The following theorem guarantees convergence in a significantly more general form than the
previously known results:

Theorem 4.27. Let ρ be convex and symmetric, ρ
′(x)
x bounded and monotonically non-increasing

for x > 0 and S (x) bounded from below. Suppose that ri and S are continuously differentiable in
a set Ω := {x : g(x) ≤ g(x(0))} and the functions ∇r2

i as well as ∇S are Lipschitz continuous on Ω.
Furthermore denote the function φ of the k-th step by φk. If the optimization procedure used in
Algorithm 4.1 is a descent algorithm that sets x(k+1) = x(k) + αpk for a descent direction pk with

−∇φT
k (x(k))pk

‖∇φk(x(k))‖ ‖pk‖
≥ δ > 0 (4.28)

for ‖∇φk(x(k)‖ > 0 and a step length αk > 0 that satisfies the Wolfe conditions

φk(x(k+1)) ≤ φk(x(k)) + c1αk∇φk(x(k))T pk (4.29)

∇φk(x(k+1))T pk ≥ c2∇φk(x(k))T pk (4.30)

for constants 0 < c1 < c2 < 1, then Algorithm 4.1 terminates with

∇g(x(k))→ 0.

38

Proof. To prove Theorem 4.27 we will use a common line of argument that for instance also is
used in [56, Theorem 3.2]. According to Lemma 4.26

∇φk(x) =

m−1∑
i=0

zi∇(ri(x))2 + ∇(S (x)).

It follows that ∇φk|Ω is Lipschitz continuous as a linear combination of Lipschitz continuous
functions. The weights zi are bounded above hence there exists a constant L independent of k
such that

|∇φk(x) − ∇φk(y)| ≤ L|x − y|,
and, using the Cauchy-Schwarz inequality,(

∇φk(x(k+1)) − ∇φk(x(k))
)T

pk ≤ αkL‖pk‖2.

According to equation (4.30) furthermore(
∇φk(x(k+1)) − ∇φk(x(k))

)T
pk ≥ (c2 − 1)∇φk(x(k))T pk.

Combining those two equations yields

αk ≥ c2 − 1
L

∇φT
k pk

‖pk‖2
.

Let ‖∇φk(x(k)‖ > 0. According to equation (4.29) and Lemma 4.26 each iteration step of the
algorithm decreases the value of the current function φk and according to equation (4.25) also the
value of g(x(k)). As g is bounded from below g(x(k)) − g(x(k+1))→ 0. Then, again using equation
(4.25),

0 ≤ φk(x(k)) − φk(x(k+1)) ≤ g(x(k)) − g(x(k+1))→ 0.

With equation (4.29) and (4.28) it follows that

φk(x(k)) − φk(x(k+1)) ≥ −c1αk∇φk(x(k))T pk

≥ c1(c2 − 1)
L

(
∇φk(x(k))T pk

)2

‖pk‖2

≥ c1(c2 − 1)δ2

L
‖∇φk(x(k))‖ ≥ 0.

and thus ∇φk(x(k))→ 0. With

∂

∂x j
g(x(k)) =

m−1∑
i=0

ρ′
(
ri(x(k))

) ∂

∂x j
ri(x(k)) +

∂

∂x j
S (x(k))

=

m−1∑
i=0

2ziri(x(k))
∂

∂x j
ri(x(k)) +

∂

∂x j
S (x(k)) =

∂

∂x j
φk(x(k))

the result follows. �

39

Remark 4.31. 1. Theorem 4.27 does not imply convergence of x(k) itself. In fact it is possible
that x(k) diverges for certain choices of non-linear ri. Gaining a procedure that converges
globally and unconditionally is not to be expected for arbitrary choices of ri, though.

2. The properties required by equations (4.28), (4.29) and (4.30) are used solely to ensure
proper convergence of the optimization procedure. There exists a multitude of algorithms
that guarantee to fulfill those conditions. One may see [56] for further details.

3. The proof of Theorem 4.27 does not rely on (4.28), (4.29) and (4.30) being satisfied in
every iteration step. More specific, it is sufficient if there exists K such that the properties
are fulfilled for all k ≥ K.

In chapter 7 we will introduce an algorithm that solves the optimization problem minx φk(x) in
one step, thus minx φk(x) = φk(x(k)). This leads us to

Corollary 4.32. Let ρ be convex and symmetric, ρ
′(x)
x bounded and monotonically non-increasing

for x > 0 and S (x) bounded from below. Suppose that ri and S continuously differentiable in a
set Ω := {x : g(x) ≤ g(x(0))} and the functions ∇r2

i as well as ∇S are Lipschitz continuous on Ω.
Furthermore denote the function φ of the k-th step by φk. If the optimization procedure used in
Algorithm 4.1 guarantees min φk(x) = φk(x(k+1)) then Algorithm 4.1 terminates with

∇g(x(k))→ 0.

Proof. To use the same line of argument as in the proof of Theorem 4.27 all that we have to show
is that for φk(x(k)) − φk(x(k+1)) → 0 it follows that ∇φk(x(k)) → 0. Suppose ∇φk(x(k)) 9 0. Then
we could choose an optimization method that guarantees (4.28), (4.29) and (4.30), for example
the steepest descent method with an additional line search [56]. This method would result in x′

such that φk(x(k)) ≥ φk(x′) ≥ φk(x(k+1)) = minx φk(x) and hence φk(x(k)) − φk(x′) → 0. The result
follows by the same arguments as in the proof of Theorem 4.27. �

In case of the Huber loss function the convergence rate massively depends on the choice of c, as
one may easily see by looking at Figure 4.2 (b) on page 37. The bigger c, the less likely it will
be that zi changes for small changes in the residuals. However, if zi does change only slightly,
the approximation of the next step also will be nearly identical. To put it another, rather heuristic
way: If the residuals of all but a few data points are smaller than c, the algorithm may solve all of
those in one step and needs the iterative procedure just to cope with the outliers.

This chapter will be concluded with a generalization of the convergence result of Dutter that gives
an actual lower bound for the decrease of the function g in the most common situation of linear ri.
The presented method closely follows the proof of Dutter [23] and generalizes his version only
regarding the presence of a smoothing penalty.

As was mentioned before it is common that S (x) ≡ xTBx for symmetric and positive definite B.
This results in an optimization problem of the form

min
x

m−1∑
i=0

ρ(yi − aT
i x) + xTBx. (4.33)

40

Writing Y := [y0, . . . , ym−1], J f := [a0, . . . , am−1]T and Z(k) = diag(z0, . . . , zm−1), we directly find
the solution of

min
x
φ(x) =

m−1∑
i=0

zi(yi − aT
i x)2 + xTBx

as the vector solving the linear system

(JT
f Z(k)J f + B)x(k+1) = JT

f Z(k)Y (4.34)

according to chapter 4.1.

Remark 4.35. JT
f Z(k)J f is positive definite as long as J f is of full rank, since it is a Gram matrix

of the matrix

diag
(√

(z0x(k)), . . . ,
√

zm−1(x(k))
)

J f .

However, as z(k)
i may become arbitrary small, it is possible that the linear system is poorly condi-

tioned. For spline approximation, this situation has a clear interpretation: There is a knot interval
that only contains outliers but no fairly exact data points. In this case it would be advisable to
choose a new knot sequence for the spline approximation containing more data points within that
specific interval.

Theorem 4.36. Given the optimization problem (4.33), a function ρ satisfying the conditions of
Theorem 4.27 and the optimization rule (4.34) Algorithm 4.1 guarantees

g(x(k)) − g(x(k+1)) ≥ (x(k+1) − x(k))T(JT
f Z(k)J f + B)(x(k+1) − x(k)) ≥ 0

in every iteration step.

Proof of Theorem 4.36. Dropping the iteration number (k) from Z(k) and setting x(k) = x̃ and
x(k+1) = x for brevity, we may use equation (4.34) and get

g(x̃) − g(x)

≥ g(x̃) − φ(x)

=

m−1∑
i=0

z(k)
i r2

i (x̃) −
m−1∑
i=0

z(k)
i r2

i (x) + x̃TBx̃ − xTBx

= − 2x̃T JT
f ZY + x̃TJT

f ZJ f x̃ + 2xTJT
f ZY − xTJT

f ZJ f x + x̃TBx̃ − xTBx

= − 2x̃T(JT
f ZJ f + B)x + x̃TJT

f ZJ f x̃ + 2xT(JT
f ZJ f + B)x − xTJT

f ZJ f x + x̃TBx̃ − xTBx

= (x − x̃)T(JT
f ZJ f + B)(x − x̃). �

It may be seen that the presence of a roughness penalty increases the rate of convergence. This
side effect is gratefully accepted but was to be expected. Without going into detail, we note that
if we decompose B = CTC, the matrix C takes the role of a Tikhonov matrix. As such it is known
to decrease the condition number of the original problem [67].

Remark 4.37. In the linear case the optimization problem (4.33) is convex, though not strictly
convex. Thus, Algorithm 4.1 not only converges to a critical point but to a global minimum.
Since we have no strict convexity, the minimum does not have to be unique.

41

4.3 A side note to l1-approximation in the linear case

In the last chapter we introduced Huber’s loss function ρc and developed an algorithm to solve

the corresponding optimization problem. One may note that ρc(·) c→0−−−→ | · |. So, in a certain
sense, solving equation (4.3) with the Huber loss function ρc for small c may be seen as an
approximation to l1-approximation. Adcock and Meade [1] explicitly use this algorithm as an
attack to classical l1-approximation problems, probably without being aware of the work of Huber
and all publications based on his idea. Another approximation, based on a different weighting
scheme, was suggested by Schlossmacher [62].

For linear l1-problems there furthermore is a vast theory available that does not rely on approxi-
mations but is able to solve the problem exactly. We will state the general idea of most of those
algorithms just for comparison, but won’t dig too deep into the actual methods.

Again suppose that fi(x) = aT
i x, J f := [a0, . . . , am−1]T and W := diag(w0, . . . ,wm−1). Then the

optimization problem may be written as

min
x

m−1∑
i=0

wi
∣∣∣yi − aT

i x
∣∣∣ = min

x

∥∥∥W(Y − J f x)
∥∥∥

1.

It is well known that with e = [1, . . . , 1]T ∈ Rm and by introduction of additional variables u, v
this problem may be easily written as the linear program

minimize eTu + eTv
subject to WJ f x + u − v = WY

u, v ≥ 0.

For this kind of problem we have some obvious algorithms readily available, the most prominent
certainly being the simplex method and interior point algorithms.

The linear l1-program still provides more structure that can be utilized to design efficient solving
algorithms. This has been a topic of intensive research over the past 50 years. A general, slightly
outdated overview of theory and algorithms for l1-approximation is given by Bloomfield and
Steiger [8]. To find a suitable minimum, Wagner [68] first suggested transforming those kind
of problems to linear programming in 1959, as was done above. Shortly after, Barrodale and
Roberts published a modified version of the standard simplex method that efficiently solves the
approximation problem [3]–[5]. Various algorithms have been proposed later on, partly based
on linear programming, partly leveraging other methods [9], [49]. All those problems, however,
have in common that they do not generalize well in cases where a roughness penalty is present or
the fi are not entirely linear.

In terms of performance it is hard to find an objective comparison between the simplex based
methods and the approach using the approximation ρc. However, Adcock and Meade [1] suggest
that the difference is not substantial. While we will not conduct such an examination ourselves,
the methods presented above work reasonably fast and compare well to a rough and not fully
optimized version of the Barrodale and Roberts algorithm.

The addition of roughness penalties to l1-problems like we did for the Huber loss problem is not
new. Other approaches to attack problems similar to the l1-problem (4.3) have been suggested,

42

among others by Bosworth and Lall [13] or Tepper and Sapiro [65]. However, they neither do
work well in the given context nor do they generalize nicely to non-linear fi.

43

Part III

The approximation of radar traces

44

5 Identification of standstills

As was discussed previously the identification of standstills is crucial for the whole approximation
process. For the human eye it is rather trivial to identify the location of a standstill as we can
easily verify by examining Figure 2.2 on page 14. One major rule our mind is using to do this
is to judge how far data points are away from each other and to form clusters of points that
are close to each other. A well known algorithm that tries to find dense clusters by judging
distances between points is called DBSCAN (Density based spatial clustering with noise) [28].
The following chapter will introduce that algorithm in a slightly generalized form that fits on
the given problem. Afterwards, the concrete application of DBSCAN to the data at hand will
be shown and the results will be processed in a way that helps gaining fairly exact standstill
intervals.

5.1 Density based spatial clustering with noise

This chapter closely follows the original proposal of DBSCAN by Ester, Kriegel, Sander and
Xu [28]. However, they define the algorithm using a given distance metric which actually de-
mands more structure than needed. We will slightly release those requirements and ask only for
the properties that are absolutely necessary.

Let P denote a set of points we want to divide into different clusters. Furthermore we define a
predicate Q : P × P → {0, 1} describing a concept of closeness, thus Q(p, q) = 1 implicates that
p and q are close to each other under some notion yet to define. The only requirement of the
predicate Q is its symmetry

Q(p, q) = Q(q, p) for all p, q ∈ P. (5.1)

Intuitively, DBSCAN distinguishes between three different types of points:

• Core points that have a sufficient large amount of points close to them.

• Boundary points that are close to a core point but do not have enough neighbours around
themselves.

• Points that are neither core nor boundary points are called noise.

More formally we require a fair bit of terminology:

Definition 5.2. Let P be a set of points and p, q ∈ P.

(a) The neighbourhood NQ(p) of p with respect to Q is defined as

NQ,P(p) := {q ∈ P : Q(p, q) = 1}.

45

•
•

•

•
••

•
••

•
• •
••

•
•
•

•

•
•

•

•

•

•
•

•

(a) A common predicate to
define closeness is the Eu-
clidean distance ‖p− q‖2 ≤ c
for c ∈ R.

•
•

•

•
••

•
••

•
• •
••

•
•
•

•

•
•

•

•

•

•
•

•

(b) A core point (drawn in
red) has more than ν points
in its neighbourhood.

•
•

•

•
••

•
••

•
• •
••

•
•
•

•

•
•

•

•

•

•
•

•

(c) While points that are no
core points but close to one
are called boundary points
(drawn in blue).

•
•

•

•
••

•
••

•
• •
••

•
•
•

•

•
•

•

•

•

•
•

•

(d) Points that are remain-
ing and therefore are neither
core nor boundary points are
called noise (drawn in grey).

•
•

•

•q
••

•
•44•
•��
•p
��

•
••

•
•
•

•

•
•

•

•

•

•
•

•

(e) In one point is a core point
and there is a path over neigh-
bouring core points to another
point, those two points are said
to be density-connected.

•

•

••

•
•r•
•��
•p
��

•
•••tt•qll

•
•
•

•

•
•

•

•

•

•
•

•

(f) The definition of the term
density-reachability is weaker:
Both points p and q have to
share a density-connected core
point.

Figure 5.1: The concepts behind Definition 5.2 and 5.3 are straightforward to understand visually.

(b) p is called core point if |NQ,P| ≥ ν for a given value ν ∈ N.

(c) p is called boundary point if p is not a core point but there is a core point q with p ∈ NQ,P(q).

(d) p is directly density-reachable from q if p ∈ NQ,P(q) and q is a core point.

(e) p is density-reachable from a core point q if there are core points p0, . . . , pk with p0 = q,
pi ∈ NQ,P(pi−1) for all i = 1, . . . , k and q ∈ NQ,P(pk).

Density-reachability is transitive. Moreover, using the symmetry of Q, density-reachability is
symmetric for core points. As soon as one boundary point is involved, however, the symmetry
is lost. Even worse, two boundary points do not have to be density-connected if they share the
intuitive property of being in the same neighbourhood. To overcome this limitation we introduce
density-connected points.

Definition 5.3. Two points p and q are called density-connected if there is a core point r such
that p as well as q are density-reachable from r.

Density-connectivity in contrast to density-reachability is symmetric even for boundary points.
This allows defining the concept of clusters in a mathematical way:

46

Definition 5.4. Let P be a set of points. A cluster C with respect to the core point size ν ∈ N is a
non-empty subset of P with

(a) If p ∈ C is a core point and q is density-reachable from p then q ∈ C.

(b) If p, q ∈ C then p is density-connected to q.

After that terminology-based introduction the definition of the DBSCAN-Algorithm is straight-
forward:

Algorithm 5.1: DBSCAN [28]
Input: Set P of points to cluster.

Predicate Q : P × P→ {0, 1} defining closeness of two points.
Minimum core cluster size ν.

Result: Clusters C0, . . . ,Ck of P, if those exist.

i← 0 . Cluster index
for all unvisited p ∈ P do

mark p as visited
N ← {q ∈ P : Q(p, q) = 1}
if |N | ≥ ν then . p is a core point

Ci ← p
for all p′ ∈ N do

if p′ is not visited then
mark p′ as visited
N′ ← {q ∈ P : Q(p′, q) = 1}
if |N | ≥ ν then

N ← N ∪ N′

end if
end if
if p′ < C0 ∪ . . . ∪Ci−1 then

Ci ← Ci ∪ p′

end if
end for
i← i + 1

end if
end for

Remark 5.5. It is easy to see that the algorithm in the form stated above has a complexity of
O

(
|P|2

)
. Depending on the nature of Q, it might be possible to define index structures that lower

the complexity down to O(|P| log|P|). For example, take the predicate Qδ : R2 ×R2 → {0, 1} with

(p, q) 7→
1, ‖p − q‖2 ≤ d,

0, otherwise.

For this we can sort all points p ∈ P with respect to one coordinate direction and determine
p0, . . . , pm−1 such that px,0 ≤ . . . ≤ px,m−1. If we now assume a uniform distribution of the
values of px,i, the check which points are close to a given point pi will only require looking

47

at a neighbourhood pi− j, . . . , pi+k. Assuming that j + k � n, the dominating task in terms of
computational complexity is the sorting algorithm, which could be performed in O(|P| log|P|)
steps.

One additional question has to be asked though: Does the order in which the points of P are
visited have an impact on the result? Generally, this is not the case for core points. To proof this,
we consider that each point in a cluster C is density-reachable from all core points of the cluster.
Therefore, C contains exactly the density-reachable points from an arbitrary core point in C.

In the rare event of two clusters being very close to each other, some boundary points may belong
to both. The algorithm as stated would now assign the point to the first cluster identified.

Corollary 5.6 (Correctness of DBSCAN [28]). Core points in the DBSCAN-Algorithm 5.1 are
always assigned to the same cluster independently of the processing order.

5.2 Detection of standstill candidates

The idea behind our approach to identify standstills is simple yet effective: Granted that a target is
not moving during a longer period of time, we expect most data points to be within close distance
to each other. Finding those clusters of data is exactly what DBSCAN offers to us. All we have
to assume is a certain density of data points within a given area.

However, it is immediately clear that slow movements and holding points may be confused by
DBSCAN. Thus we will only gain standstill candidates that will have to be refined later on.

There are a few heuristic rules that proved to increase detection accuracy during testing of the
methods. While those do not offer deeper mathematical insight, we will outline the entire algo-
rithm for completeness.

Using DBSCAN with the predicate of Remark 5.5 we obtain clusters C0, . . . ,Ck that form the
foundation of our standstill candidates. Coming from those the intervals

S i :=
[
min

{
t j

∣∣∣∣ p j ∈ Ci
}
,max

{
t j

∣∣∣∣ p j ∈ Ci
}]

are obvious guesses for standstill candidates.

Now it is quite possible that the path of the movement intersects itself. This would result in an
area with a high point density. Using the definition of S i above will yield totally wrong results
in this case. The solution is to split up those intervals into multiple ones if a certain amount of
consecutive points within the interval does not belong to Ci.

Similarly it is possible that two detected standstill intervals overlap each other. In this case we
just might merge both intervals. It has shown to be of advantage to merge standstill candidates if
the time between both intervals is shorter than a given value.

Finally, the data quality usually is worst directly at the beginning or end of the recorded data. Be-
cause those effects often come along with a standstill, it proved effective to enlarge the standstill
to the data boundaries if it is not well separated from those.

48

(a) Self-intersecting (vehicle) movement. The inter-
section has a high enough point density to be falsely
detected as standstill candidate.

(b) The marked outliers are the first few recorded
points of the movement.

Figure 5.2: There are various special cases that might arise after the application of DBSCAN.

We yield the following algorithm:

Algorithm 5.2: Detect standstill candidates

Input: Set of data points P ⊂ R2 and corresponding times T.
Maximum distance between two points δ ∈ R to be close to each other.
Core cluster size ν ∈ N.
Maximum gap η ∈ N within one standstill interval.
Minimum time µ ∈ R between two distinct standstill candidates.
Minimum distance σ ∈ R from data boundary.

Result: A set S of standstill candidates S = [s0, s1] with s0, s1 ∈ T.

C0, . . . ,Ck−1 ← DBSCAN(P, Q(p, q) := 1‖p−q‖2≤δ ,ν)

for i← 0 to k − 1 do . Find standstill candidate intervals.
J ← { j | p j ∈ Ci}
[j0, . . . , j|Ci |−1]← sort(J)
j′ ← j0
for all i′ ∈ {i′ | ji′+1 − ji′ > η} do
S ← S ∪ [t j′ , t ji′]
j′ ← ji′+1

end for
S ← S ∪ [t j′ , t j|C|−1]

end for

while there are S , S ′ ∈ S with min S ′ −max S < µ do . Merge overlapping intervals
S ← S \ {S , S ′}
S ← S ∪ [min S ,max S ′]

end while
S ← arg minS∈Smin S . Add boundary points to standstill candidate
if min S < σ then S ← [t0,max S]

S ← arg maxS∈Smax S
if tm−1 −max S < σ then S ← [min S , tm−1]

49

While the algorithm above is heuristically motivated a few simple observations justify its use for
standstill detection:

Corollary 5.7. If Pi = f (ti) + εi where εi are 2-dimensional, independent random vectors and
the probability that ‖εi‖2 ≤ δ

2 equals p then Algorithm 5.2 finds a standstill period with k ≥ ν

recordings with a probability of at least

1 −
ν−1∑
i=0

(
k
i

)
(1 − p)k−i pi.

Proof. Take Pi, Pi′ within the standstill with ‖εi‖2 ≤ δ
2 and ‖εi′‖2 ≤ δ. As f (ti) = f (ti′), it follows

that
‖Pi − Pi′‖2 = ‖εi − εi′‖2 ≤ ‖εi‖2 + ‖εi′‖2 ≤ δ.

Thus P′i is in the neighbourhood of Pi according to DBSCAN. A cluster and a corresponding
standstill candidate hence will be detected if there are ν points Pi with ‖εi‖2 ≤ δ

2 . On the contrary,
it is possible that no standstill is detected if less than ν points are close to f (ti). The corresponding
probability may then be computed by applying the cumulated distribution function of the well
known binomial distribution. �

Under perfect conditions we furthermore may show that the standstill candidates overestimate
the actual standstill:

Corollary 5.8. If ti+1−ti = 1 for all i = 0, . . . ,m−2 and Pi = f (ti), f ′(t) = 0 for t ∈ [t j, tk], k− j ≥ ν
and ‖ f ′′(t)‖2 ≤ a then the standstill candidate found by Algorithm 5.2 is at least√

(i∗ − k)2 +
2δ
a

points too large at each side of the standstill, where

i∗ := max
i>k

i :

√(i − k)2 +
2δ
a

 − 
√

(i − k)2 − 2δ
a

 ≥ ν − 1

 .
Proof. As k − j ≥ ν and P j = . . . = Pk, the standstill is detected. Let k ≤ i < i′. Then

f (ti′) = f (ti) +

∫ ti′

ti
f ′(t) dt = f (ti) +

∫ ti′

ti

(
f ′(ti) +

∫ t

ti
f ′′(u) du

)
dt

and therefore

‖Pi − Pi′‖2 = ‖ f (ti) − f (ti′)‖2
=

∥∥∥∥∥∥
∫ ti′

ti

(
f ′(ti) +

∫ t

ti
f ′′(u) du

)
dt

∥∥∥∥∥∥
2

≤
∫ ti′

ti

(∥∥∥ f ′(ti)
∥∥∥

2 +

∥∥∥∥∥∥
∫ t

ti
f ′′(u) du

∥∥∥∥∥∥
2

)
dt.

50

With ∥∥∥ f ′(ti)
∥∥∥

2 =

∥∥∥∥∥∥ f ′(tk) +

∫ ti

tk
f ′′(t) dt

∥∥∥∥∥∥
2
≤

∥∥∥ f ′(tk)
∥∥∥

2 + (ti − tk)a = (i − k)a

it follows that

‖Pi − Pi′‖2 ≤ (ti′ − ti)
∥∥∥ f ′(ti)

∥∥∥
2 +

∫ ti′

ti
(t − ti)a dt

≤ (ti′ − ti)(i − k)a +
1
2

(ti′ − ti)2a

=
a
2

(i′ − i)(i + i′ − 2k).

Now if
δ ≥ 1

2
(i′ − i)(i + i′ − 2k)a ≥ ‖Pi − Pi′‖2, (5.9)

then Pi′ is guaranteed to be in the neighbourhood of Pi. Furthermore

0 ≥ (i′ − i)(i + i′ − 2k) − 2δ
a

= i′2 − 2ki′ − i(i − 2k) − 2δ
a

=

i′ − k +

√
(i − k)2 +

2δ
a

 i′ − k −
√

(i − k)2 +
2δ
a


which is fulfilled, if

|i′ − k| ≥
√

(i − k)2 +
2δ
a
.

Assuming i′ > k, it follows that equation (5.9) is equivalent to

i′ ≤ k +

√
(i − k)2 +

2δ
a

and, respecting i′ ∈ N
i′ ≤ k +

√(i − k)2 +
2δ
a

 .
Similarly, one can show that Pi′′ with i′′ ≤ i is in the neighbourhood of Pi if

i′′ ≥ k +


√

(i − k)2 − 2δ
a

 .
Pi is a core point if i′ − i′′ + 1 ≥ ν, thus the last core point belonging to the cluster of the standstill
has the index

i∗ = max
i>k

i

∣∣∣∣∣∣∣
√(i − k)2 +

2δ
a

 − 
√

(i − k)2 − 2δ
a

 ≥ ν − 1

 .
The last boundary point of the cluster is the last point in the neighbourhood of this point, which
has the index

k +

√
(i∗ − k)2 +

2δ
a
.

51

The index of the first point belonging to the cluster before the standstill may be found analogously.
�

From a practical point of view Corollary 5.7 and 5.8 offer three important insights:

• If δ is chosen such that δ < Pi − f (ti) for most of the recordings, then the probability of
detecting all standstills is very high.

• The probability of correct detection increases with the duration of the standstill.

• For reasonably good data the actual standstill is guaranteed to be a subset of the found
standstill candidate. Note that we needed strong assumptions to prove Corollary 5.8 mostly
for technical reasons. In practice data errors and missing data will change this fact very
rarely, if the system is well calibrated. In fact, during testing not one of those situations
could be found.

5.3 Isolating standstills

Algorithm 5.2 offers a high probability of standstill detection and is extremely robust against
outliers but on the other hand also has a high probability of false-positives as well as a significant
overestimation of the standstills duration. It performs especially bad in long periods of slow
movements that might be detected as one single standstill period.

Narrowing down the standstill candidate to fairly accurate standstill positions does require treat-
ment of various special cases. Those are highly situation dependent and do not offer deeper
insights. Hence we will restrain ourselves to describing a method that yields reliable results in
many cases and will only briefly introduce ideas that might be employed for dealing with the
remaining special cases.

Using the concept of core points DBSCAN detects a cluster of points if the point density is high
in a variable sized area. For the typical standstill however one has a good estimate on the radius
the recorded data points will be distributed around the actual holding position. Thus, with a high
probability there is a point p such that NQδ,P(p) contains most points belonging to the standstill.
We might find such a point by examining

p∗ := arg max
p∈S i

|NQδ,S i(p)|. (5.10)

Firstly, we observe that the proof of Corollary 5.7 is still valid in the current situation. Thus, the
detection rate still is high with just random noise. With the parameter d chosen adequately this
approach yields a good estimate on the actual standstill location, if it does not exhibit uncommon
errors.

However, note that the found point p∗ does not have to be unique. We suggest to use the follow-
ing algorithm that heuristically searches for all plausible standstill locations within the standstill
candidate interval S i.

52

(a) Projection on the x-y-plane. (b) The x-coordinate over time.

Figure 5.3: A typical standstill with few outliers and clearly defined standstill location.

Algorithm 5.3: Isolating standstill locations
Input: Points pi ∈ S for a standstill candidate S .

Maximum distance δ ∈ R between two points.
Minimum standstill size ν ∈ N.

Result: Possible standstill locations p∗0, . . . p∗k.

P← S
k ← 0
while maxp∈P

∣∣∣NQδ,P(p)
∣∣∣ ≥ ν do

p∗k ← arg maxp∈P

∣∣∣NQδ,P(p)
∣∣∣

P← P \ NQδ,P
(
p∗k

)
k ← k + 1

end while
if k = 0 then p∗0 ← arg maxp∈P

∣∣∣NQδ,P(p)
∣∣∣

In the best case the algorithm returns exactly one possible location, p∗0. Then we may assume that
a good guess for our standstill interval is the time spanned by the points within NQδ,P

(
p∗k

)
.

Formally we yield
T∗k :=

{
ti

∣∣∣∣ pi ∈ NQδ,P
(
p∗k

)}
.

Assuming that T∗k might contain the time stamps of two different halts at the same position as
well as noise it is possible to use DBSCAN on the set T∗k. By doing this we can split up different
time clusters and remove noise that likely is caused by data outliers that do not belong to the
actual standstill.

If k > 0 we will have to employ heuristics that allow us to filter out the relevant standstill posi-
tions. Without going into to much detail those could include:

• If the time intervals T∗k, T∗k′ relating to two possible locations are clearly separated we
are likely facing two different standstill periods at once. Thus, we might just treat them
separately.

53

• If
∣∣∣T∗k ∩ T∗k′

∣∣∣ ≥ j for some j both time intervals overlap significantly, we are likely dealing
with a standstill that is oscillating between different standstill positions. An example is
depicted in Figure 1.2 (f) on page 10. It probably is a good guess to combine both intervals
and treat them as one standstill.

• If min T∗k − max T∗k′ ≤ j for some j both time intervals are close to each other. This is the
most difficult case as we have to assume that at least one of the time periods is caused by
slow movement. If both intervals differ greatly in size, we may just choose the greater one
and discard the remaining interval. If, however, both are similar sized, we have to find out
if any of them in fact is an actual standstill. One possibility to do this is to fit a straight line
through the identified data points and verify whether the slope of this line is close to zero.
This would indicate an actual holding position.

If we removed the last line of Algorithm 5.3 we could apply it to raw data points without calling
DBSCAN previously. As the requirement to have a lot of points on exactly the same place is
a strong one, this does not guarantee that all standstills are found, however. Especially in case
of short standstills with a lot of outliers and noise the detection probability of Algorithm 5.2 is
noticeably higher.

After the process just described we gain new standstill candidates S 1, . . . , S k that should be sig-
nificantly more precise than the standstill candidates returned by Algorithm 5.2.

To get an even closer estimate on the standstill’s location we will make use of a simple observa-
tion: After a few seconds of acceleration the typical behaviour around standstills usually can be
nicely approximated by a linear function. In particular, for the start time of the standstill S k we
might fit a function

t 7→
[
ax

ay

]
t +

[
bx

by

]
such that

imax∑
i=i0

ρ∗
([

ax

ay

]
t j−i +

[
bx

by

]
− P j−i

)
is minimal, where j is chosen such that t j = min S k. If we compute[

px

py

]
:= median

Pi∈S k
Pi,

we gain an estimated standstill start time for each dimension separately by finding t with

pβ = aβt + bβ

and adding the previously assumed shift i0. We yield

t∗β :=
pβ − bβ

aβ
+ i0

for β ∈ {x, y}.
As a new beginning of the standstill we choose

min S k := max{t∗x, t∗y}.

54

Figure 5.4: The time where the slope before the standstill intersects the standstill’s location can
be used as an estimated standstill start time. Analogously the standstill end time may
be determined.

This procedure can be repeated a few times to gain an optimal standstill location. The end time
of the standstill may be treated likewise.

Again, there are various special cases to consider:

• If |aβ| is less than a given threshold c for β ∈ {x, y}, then the values do not change signifi-
cantly on the corresponding coordinate axis. In this case it is not advisable to use tβ as an
estimate for the standstill and we only use the remaining coordinate.

• If
∥∥∥[ax, ay]T

∥∥∥
2 is less than a given threshold c the chosen standstill is too small. We might

just enlarge the standstill period and repeat the process.

• If t j − t∗β is too large, this also indicates a bad fit. One simple solution is to restrict the step
in each iteration to only a small change of min S k.

• It is possible that min S k increases over the original ending of the standstill period and
max S k decreases so that it is smaller than the original beginning. This is a strong sign
that the standstill candidate in fact is a false positive detection and we might discard the
standstill.

In chapter 2 we mentioned that it is reasonable to enforce the movement directions before and
after the standstill to be equal (see Figure 2.3 (e) on page 16). There might be situations where
this restriction is not justified by the data. This case can be detected if the angle of the slopes
[ax, ay]T before and after the standstill is significantly greater than zero, thus

aTa′

‖a‖2‖a′‖2
≤ c,

if a is the slope before and a′ the slope after the standstill.

55

6 Spline Approximation

Finding a good spline representation for the recorded data points is one of the central problems
of this thesis. While we introduced a broad toolkit of approximation techniques in chapter 4, we
yet have to transfer the theoretical knowledge to practical spline smoothing problems.

Fitting splines to data usually is a two step process: At first, a knot sequence has to be identi-
fied that offers enough flexibility to fit the required curve but at the same time minimizes storage
requirements. Afterwards, the concrete values of the control points have to be determined. If nec-
essary, those steps may be iterated to incorporate some kind of adaptive algorithm that modifies
the knot sequence depending on the accuracy and curvature of a previous fit.

For the moment we will neglect the problem of finding good knot sequences and assume T to
resemble an a priori given knot sequence whenever needed. We will discuss how to choose a
good knot sequence in chapter 8.2.

Spline approximation in theory is possible for data points of arbitrary dimension - we will see that
problems in multiple dimensions might just be reduced to multiple one-dimensional problems.

As it was done in chapter 3.2, we will denote the n × l-matrix containing the control points of
a spline curve by d. If l ∈ {2, 3}, we furthermore use dx, dy and, if necessary, dz for the single
columns of d.

Up to now we considered the addition of a roughness penalty in a very abstract form (see
eq. (4.2)). With the concrete concept of smooth functions for approximation in mind, it is a
reasonable approach to interpret smoothness as change in one of the derivatives, preferably the
second. This brings us to

min
f∈Sq(T)

m−1∑
i=0

wiρ
∗(Pi − f (ti)) + λ

∫
R

∥∥∥ f ′′(x)
∥∥∥2

2 dx (6.1)

with λ > 0. The smoothing parameter λ may be used to influence the balance between approxi-
mation error and smoothness. With ρ∗ ≡ ‖·‖22 this concept is commonly called smoothing spline.
Using the Huber loss function for ρ∗ we gain a robust smoothing spline.

It is important to notice that – in contrast to equation (4.1) – the vector within the norm might be
multidimensional. However, as we defined ρ∗ to be additive in its components we just may solve
each dimension separately and solve the approximation problems

min
fβ∈Sq(T)

m−1∑
i=0

wiρ
(
Pβ,i − fβ(ti)

)
+ λ

∫
R

(
f ′′β (x)

)2
dx, β ∈ {x, y, z}.

56

Allowing the smoothing parameter λ to vary over time is a small generalization that permits much
more flexible modelling, because it enables varying accuracy in the data to be respected. We yield
the approximation problems

min
fβ∈Sq(T)

m−1∑
i=0

wiρ
(
Pβ,i − fβ(ti)

)
+

∫
R
λ(x)

(
f ′′β (x)

)2
dx, β ∈ {x, y, z}. (6.2)

From chapter 4.2 we know that this problem may be attacked using the IRLS Algorithm 4.1 that
requires solving multiple least squares problems

min
fβ∈Sq(T)

m−1∑
i=0

wi
(
Pβ,i − fβ(ti)

)2
+

∫
R
λ(x)

(
f ′′β (x)

)2
dx, β ∈ {x, y, z}. (6.3)

Writing fβ(ti) = NT
q (ti)dβ as in (3.11) and

f ′′β (x) = NT
q−2

(
x | T (2)

)
G2dβ

using the derivative matrices of Lemma 3.15, problem (6.3) may be transformed to

min
dβ∈Rn

m−1∑
i=0

wi
(
Pβ,i − NT

q (ti)dβ
)2

+

∫
R
λ(x)

(
NT

q−2

(
x | T (2)

)
G2dβ

)2
dx, β ∈ {x, y, z} (6.4)

for given weights wi and λ : [τ0, τn+q]→ R.

Apart from the roughness penalty the optimization problem clearly is quadratic. We furthermore
have ∫

R
λ(x)

(
NT

q−2
(
x | T (2))G2dβ

)2
dx

=

∫
R
λ(x)dT

βGT
2 Nq−2

(
x | T (2))NT

q−2
(
x | T (2))G2dβ dx

= dT
βGT

2

(∫
R

Nq−2
(
x | T (2))λ(x)NT

q−2
(
x | T (2)) dx

)
G2dβ.

This yields a Gram matrix

Bq(T , λ) :=
∫
R

Nq−2
(
x | T (2))λ(x)NT

q−2
(
x | T (2)) dx (6.5)

which is positive semidefinite as long as λ(x) ≥ 0 for all x ∈ T .

The computation of the matrices Bq(T , λ) is completely possible for arbitrary λ. The computa-
tional effort, however, is much smaller if we restrict ourselves to the case when λ is piecewise
constant over the knot sequence T . Then

λ(t) =

n−1∑
i=q

λi1[τi,τi+1)(t)

57


.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••

=

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••••

••••

••••

••••

+

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••••

••••

••••

••••

+

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••••

••••

••••

••••

+

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••••

••••

••••

••••


B3(T , λ) λ3

∫ τ4

τ3
. . . dt λ4

∫ τ5

τ4
. . . dt λ5

∫ τ6

τ5
. . . dt λ6

∫ τ7

τ6
. . . dt

Figure 6.1: Sparsity pattern of the matrix B3(T , λ) and its summands with n = 7.

for some λi ∈ R. The smoothing parameter λ is not a direct part of the function to approximate,
but rather a parameterization parameter that can be used for generating the best fitting curve.
Hence this simplification does not reduce the freedom for modelling the curve in a significant
way. Nonetheless, it reduces the computational overhead induced by varying λ over time to
matrix addition and scalar multiplication.

Now we note that using the locality of splines (3.5 (a)) the Gram matrix can be written as a sum
of integrals.

Bq(T , λ) =

∫
R

Nq−2
(
x | T (2))λ(x)NT

q−2
(
x | T (2)) dx

=

n−1∑
i=q

λi

∫ τi+1

τi

Nq−2
(
x | T (2))NT

q−2
(
x | T (2)) dx.

Using Gaussian quadrature of degree q−1 (see Appendix A.1), we now can compute the integrals
exact up to rounding errors. This is possible because the integrand is just a matrix of polynomials
of degree 2(q − 2).

Remark 6.6. When actually computing the matrix Bq(T , λ), a few simplifications can be made:

1. It is not necessary to deal with the modified knot sequences T (2) since shifting indices
yields Nq−2(x | T (2)) = [N2,q−2(x | T), . . . ,Nn+2−1,q−2(x | T)]T.

2. As within a given knot interval only a few splines are greater than zero (Theorem 3.5 (b)),
the matrix to be integrated is nonzero only at the rows and columns with index i − q, . . . , i.
Furthermore, that matrix as well as Bq(T , λ) is symmetric.

3. If some iterative algorithm is used to find good values for the λi, it is possible to save only
the nonzero submatrices that are summed up weighted by lambda. That way, recomputing
Bq(T , λ) boils down to matrix addition and scalar multiplication.

Remark 6.7. Not only the summands, but also the matrix Bq(T , λ) is sparse. Only the diag-
onal and q sub-and superdiagonals are filled. Due to the sparsity of the matrix Gk the product
GT

k Bq(T , λ)Gk also is banded. Only q + k sub- and superdiagonals are filled, as one can see in
Figures 6.1 and 6.2.

58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••

••••••


=



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• • •• • •• • •• • •• • •• • •• • •• • •• • •





.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••
••••

••••

••••

••••





.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••• ••• ••• ••• ••• ••• ••• ••• •••


GT

2 B3(T , λ)G2 GT
2 B3(T , λ) G2

Figure 6.2: Sparsity pattern of the matrix GT
2 B3(T , λ)G2 with n = 11. Only the diagonal and q+k

sub- and superdiagonals are filled.

In chapter 7.3 it will be useful to decompose Bq(T , λ) = CTC. Using any exact quadrature rule
for integration, we may find weights ωk and points S = [sk] such that

Bq(T , λ) =

[∫
R

Ni,q−2(x | T (2))λ(x)N j,q−2(x | T (2)) dx
]
i, j=0,...,n

=

∑
k

ωkλ(sk)Ni,q−2(sk | T (2))N j,q−2(sk | T (2))


i, j=0,...,n

=
[
NT

i,q−2(S | T (2))ΩN j,q−2(S | T (2))
]
i, j=0,...,n

= Nq−2(S | T (2))ΩNT
q−2(S | T (2)),

with
Ω = diag([ωkλ(sk)]).

Altogether this gives us∫
R
λ(x)

(
NT

q−2

(
x | T (2)

)
G2dβ

)2
dx = dT

βGT
2 Nq−2(S | T (2))ΩNT

q−2(S | T (2))G2dβ (6.8)

for β ∈ {x, y, z}.
Now, the solution to the least squares variant of the smoothing spline problem (6.4) is a direct
application of the theory from chapter 4.1:(

NT
q (T)WNq(T) + GT

2 Bq(T , λ)G2
)

dβ = NT
q (T)WPβ, β ∈ {x, y, z}. (6.9)

Note that if we solve the problem for multiple βwe may reuse the matrix decomposition computed
for solving (6.9) and get the second and third column of d cheaply.

The solution using the Huber loss function may be determined by using Algorithm 4.1 with the
optimization step:(

NT
q (T)Z(k)

β Nq(T) + GT
2 Bq(T , λ)G2

)
dβ = NT

q (T)Z(k)Pβ, β ∈ {x, y, z}. (6.10)

Because of the weight matrix Z(k)
β depending on β, it will not be possible to reuse the matrix

decomposition in this case though.

59

Figure 6.3: Looking at the contours of ρ∗c with l = 2 one may easily see that it is invariant under
rotations only for values with small euclidean norm.

Convention 6.11. As long as T,T and λ are clearly defined by the context we will write N
instead of Nq(T) and just B instead of GT

2 Bq(T , λ)G2 in the following.

Remark 6.12. There is one important difference between approximation with the Huber loss
function ρc and ordinary least squares approximation that only stands out when looking at the
multidimensional case. Given an arbitrary rotation matrix R the relation

m−1∑
i=0

wiρ
∗ (Pi − dTNq(ti)

)
=

m−1∑
i=0

wiρ
∗ (RPi − RdTNq(ti)

)
will in general hold only if ρ∗(Rx) = ρ∗(x) for all x ∈ Rl. This is true for ‖·‖22, however one
may easily see that generally ‖Rx‖1 , ‖x‖1 as well as ρ(Rx) , ρ(x) with ρ being the Huber loss
function. Therefore, our robust approximation techniques are not invariant under rotations. This
is a small drawback. However, especially when approximating spatial data, the advantages of
robust approximation outweighs the disadvantage for the problem at hand.

As the Huber loss function uses the two norm for small residuals, we yield an effect that might
be called partially invariant under rotations. If all errors are small compared to the parameter
c of the loss function, the result will be invariant under rotations while the influence of outliers
changes depending on the chosen coordinate axes. This effect is also clearly visible in Figure 6.3.

60

7 Approximation of standstill periods

After identifying standstill candidates and discussing how general spline approximation works,
we have to take care of adding the boundary conditions that we identified as useful in chapter 2
to the approximation algorithm.

Therefore, we will temporarily assume that the vehicle whose movement is to be approximated
is known to have been standing still in the time interval I ⊂ T . Furthermore, as standstills should
not happen during flight of aircrafts, we will also ignore the height coordinate and assume l = 2
for the whole chapter.

To gain a correct approximation, this fact has to be enforced by our approximation procedure. The
first, intuitive condition is that the approximation actually is constant over these time intervals,
thus

f ′(t) = 0 for all t ∈ I. (7.1)

We furthermore recognized it to be desirable that the direction in which the holding position is
reached matches the direction it is left. This might be modelled with the condition

f ′(min I − ε) and f ′(max I + ε) are linearly dependent for small ε. (7.2)

If the standstill is known to be in a parking area we might have additional information available
that tells us the angle in which the vehicle or aircraft is supposed to enter or leave its parking
position. Hence, if an intended movement direction δ = [δx, δy]T ∈ R2, ‖δ‖2 = 1 is available, we
yield a replacement for (7.2):

f ′(min I − ε) = µδ for some µ ∈ R,
f ′(max I + ε) = λδ for some λ ∈ R. (7.3)

Clearly, (7.1) will always have to be fulfilled while (7.2) and (7.3) depend on the actual situation
and information available. In the following we will develop methods to accommodate those
conditions into our approximation concept. We will start with the most simple condition (7.1)
and successively add further conditions.

For our purpose it is sufficient to assume that there is only one standstill period in the time interval
to be approximated.

61

7.1 Enforcing f ′(t) = 0

We will start the approximation process by deciding on a knot sequence that is suitable for the
standstill. By Remark 3.17 we know that the spline curve has to be constant over a whole knot
interval if it is constant at all. Thus, we choose our first two knots τk, τk+1 such that I = [τk, τk+1].
How we build the knot sequence around those knots is not too important for the further algorithm
and rather a topic of parameterization. If the data is equally distributed we could for example
choose

T = [. . . , τk − 3c, τk − 2c, τk − c, τk, τk+1, τk+1 + c, τk+1 + 2c, τk+1 + 3c, . . . ,]

for some constant c. In this case, c should be chosen in a way that each knot interval contains at
least one, better multiple data points. The bigger c, the less flexible the spline curve will be. If the
standstill touches the boundary of the recorded data, we might just expand the knot sequence to
one direction and insert the other delimiter of the standstill period as a q-fold boundary knot.

According to Theorem 3.16 condition (7.1) may be enforced by requiring

dk−q = · · · = dk. (7.4)

In matrix notation this yields the linear boundary conditions

Edβ = 0, β ∈ {x, y}
with

E := [0q,k−q−1, E, 0q,n−k] ∈ Rq×n,

and

E :=


1 −1

. . .
. . .

1 −1

 ∈ Rq,q+1.

This could be incorporated into the optimization problem as linear boundary conditions, for ex-
ample using Lagrange multipliers. However, this approach, as it is described by Nocedal and
Wright, has the disadvantage that the resulting matrix for the system of linear equations can be
shown to be indefinite [56, p. 454]. Therefore it may not be solved as fast as it would be possible
using positive definite matrices.

A simple and totally different attack is to substitute dβ = Kxβ with K chosen such that EK = 0.
If K is a basis of the kernel of E, obviously those and only those dβ that can be represented by
Kxβ fulfil the boundary constraints.

As the structure of E is relatively simple, a basis of its kernel may be explicitly given as

K :=


1k−q−1

K
1n−k

 ∈ Rn×n−q,

and

K :=


1
...

1

 ∈ Rq+1.

62

This way, the approximation problem (6.4) becomes

min
xβ∈Rn−q

m−1∑
i=0

wi
(
Pβ,i − NT

q (ti)Kxβ
)2

+ xβKTBKxβ, β ∈ {x, y} (7.5)

with the solution
KT

(
NTWN + B

)
Kxβ = KTNTWPβ, β ∈ {x, y}. (7.6)

To use this solution in Algorithm 4.1, the weight matrix W just has to be replaced with the iterated
weights Z(k).

The original solution dβ afterwards may simply be obtained with

dβ = Kxβ. (7.7)

7.2 Enforcing a known direction

To enforce condition (7.3), we first describe f ′(τk − ε) for ε > 0:

f ′(τk − ε)
(3.14)

= q
n−1∑
i=1

di − di−1

τi+q − τi
Ni,q−1(τk − ε)

3.5(b)
= q

k−1∑
i=k−q

di − di−1

τi+q − τi
Ni,q−1(τk − ε)

(7.4)
= q

dk − dk−q−1

τk − τk−q
Nk−q,q−1(τk − ε),

thus

f ′(τk − ε) = q
dk − dk−q−1

τk − τk−q
Nk−q,q−1(τk − ε). (7.8)

Similarly, we receive

f ′(τk+1 + ε) = q
dk+1 − dk

τk+q+1 − τk+1
Nk+1,q−1(τk+1 + ε). (7.9)

Since we have just been interested in f ′(τk − ε) and f ′(τk+1 + ε) being linearly dependent on δ,
we receive additional boundary conditions as

dk − dk−q−1 = µδ, for some µ ∈ R,
dk+1 − dk = λδ, for some λ ∈ R. (7.10)

Note that (7.10) actually couples the single dimensions of the approximation problem that we
considered separately up to now.

Solving both approximation problems in one step is nevertheless straightforward. As we know
that the situation with general ρ might be reduced to successive least squares problems using
Algorithm 4.1, for purely notational purposes we will only examine the least squares problem.

63

By reason of this we just have to take care to use different weights wx,i and wy,i for each dimension
because those may take different values in the IRLS algorithm.

Both problems without the boundary conditions are perfectly decoupled. So it is obvious that the
sum of the target functions of our approximation problems, which is

m−1∑
i=0

wx,i
(
Px,i − NT

q (ti)dx
)2

+ dxBdx +

m−1∑
i=0

wy,i
(
Py,i − NT

q (ti)dy
)2

+ dyBdy

=
∥∥∥∥√

Wx(Px − Ndx)
∥∥∥∥2

2
+

∥∥∥√
Wy(Py − Ndy)

∥∥∥2
2 +

[
dx dy

] [B 0
0 B

] [
dx

dy

]
=

∥∥∥∥∥∥
[√

Wx 0
0

√
Wy

] ([
Px

Py

]
−

[
N 0
0 N

] [
dx

dy

])∥∥∥∥∥∥2

2
+

[
dx dy

] [B 0
0 B

] [
dx

dy

]
has the same minimum solution as the separate problems. Writing

Nxy :=
[
N 0
0 N

]
Wxy :=

[
Wx 0
0 Wy

]
Bxy :=

[
B 0
0 B

]
we gain a new linear least squares problem

min
[dx,dy]T

∥∥∥∥∥∥√
Wxy

([
Px

Py

]
− Nxy

[
dx

dy

])∥∥∥∥∥∥2

2
+

[
dx dy

]
Bxy

[
dx

dy

] . (7.11)

The boundary conditions (7.4) and (7.10) again are linear and may be treated the same way as
was done in chapter 7.1. By including the two additional variables µ and λ it is easy to see that
those boundary conditions can be written as

[
0q+2,k−q−2 E 0q+2,n−q−3 0q+2,q+3 0q+2,n−k−1 ∆x

0q+2,k−q−2 0q+2,q+3 0q+2,n−q−3 E 0q+2,n−k−1 ∆y

]
︸ ︷︷ ︸

∈R2q+4×2n+2


dx

dy

µ

λ

 = 0

with

E :=


1 −1

. . .
. . .

1 −1

 ∈ Rq+2×q+3

and

∆β :=



δβ 0
0 0
...

...

0 0
0 δβ


∈ Rq+2×2, β ∈ {x, y}.

A basis of the kernel of this boundary condition is

K :=



1k−q−2 0k−q−2,2

K K∆x

1n−q−3 0n−q−3,2

K K∆y

1n−k−1 0n−k−1,2

02,2(n−q−2) 12


∈ R2n+2×2(n−q−1)

64

with

K :=


1
...

1

 ∈ Rq+3

and

K∆β :=



−δβ 0
0 0
...

...

0 0
0 δβ


∈ Rq+3×2.

To keep the matrix K well conditioned it is advisable to choose a δ such that ‖δ‖2 = 1.

The optimization problem now has to be altered insofar that it also includes the free variables µ
and λ:

min
[dx,dy,µ,λ]T


∥∥∥∥∥∥∥∥∥∥∥
√

Wxy


[
Px

Py

]
−

[
Nxy 02m,2

] 
dx

dy

µ

λ



∥∥∥∥∥∥∥∥∥∥∥

2

2

+
[
dx dy µ λ

] [Bxy

02,2

] 
dx

dy

µ

λ


 .

Replacing the variable vector and solving the linear system similarly to (6.10) we get

KT
(NT

xyWxyNxy + Bxy
)

02m,2

02,2m 02,2

 Kx = KT
[

NT
xy

02,2m

]
Wxy

[
Px

Py

]
(7.12)

and 
dx

dy

µ

λ

 = Kx. (7.13)

If the standstill is at the beginning or end of the recorded data this process has to be adapted
slightly. We will only need one boundary condition for each dimension. Thus we will need
to delete two rows from the boundary condition matrix. Furthermore, only one additional free
variable will be necessary. Those modifications result in a marginally different kernel basis. As
the same general idea is used and the result looks mostly identical, we will omit the detailed
description of the process.

7.3 Enforcing a constant, unknown direction

Finally we have to discuss how to handle (7.2) where a constant, yet unknown direction shall
be enforced. According to equations (7.8) and (7.9) the correct condition can easily be given as
linear dependence of the difference of control points:

λ(dk − dk−q−1) + µ(dk+1 − dk) = 0. (7.14)

65

Again the x- and y-dimension are coupled by the boundary condition. In contrast to the previous
chapter the free parameters µ and λ now are multiplied by control points and not constants. Thus,
we yield a quadratic boundary condition. This aspect will result in a significantly more difficult
approximation problem.

The matrix containing the boundary conditions now becomes a matrix valued function of µ and
λ. We do not need to combine the dimensions into one single approximation problem, though.
The boundary conditions are[

0q+1,k−q−2 E(µ, λ) 0q+1,n−k−1

]
dβ = 0, β ∈ {x, y}

with

E(µ, λ) :=


−λ λ − µ µ

1 −1
. . .

. . .

1 −1

 ∈ Rq+1×q+3.

The basis of the kernel, which means a basis for the valid solutions, also may be formulated in a
similar fashion as above:

K(µ, λ) :=


1k−q−2

K(µ, λ)
1n−k−1

 ∈ Rn×n−q−1, (7.15)

with

K(µ, λ) :=



1 µ

1 0
...

...

1 0
1 λ


∈ Rq+3×2.

Letting both µ and λ vary, introduces an additional degree of freedom that technically is not
necessary and was just included for symmetry reasons. In terms of numerical stability we will
not get problems as long as both µ and λ stay within a reasonable magnitude, i.e. neither µ nor
λ go close to infinity or zero. In the following we will therefore keep the parameter λ fixed and
write

K(µ, λ) =: Kλ(µ), λ ∈ R. (7.16)

Substituting dx = Kλ(µ)xx and dy = Kλ(µ)xy this yields the constrained robust approximation
problem

min
[xx,xy,µ]

∑
β∈{x,y}

m−1∑
i=0

wβ,iρ
(
Pβ,i − NT

q (ti)Kλ(µ)xβ
)

+ xT
βKT

λ (µ)BKλ(µ)xβ

 .
This is a non-linear approximation problem as discussed in chapter 4.2. Thus the derived theory
for robust regression problems may be applied and the problem may be reduced to a series of
least squares problems. In vector notation we get

min
xx,xy,µ

∑
β∈{x,y}

(∥∥∥∥√
Wβ

(
Pβ − NKλ(µ)xβ

)∥∥∥∥2

2
+ xT

βKT
λ (µ)BKλ(µ)xβ

)
. (7.17)

66

The least squares part of this problem can be easily seen to be separable (compare to equation
(4.9)). Using the Cholesky-like decomposition C such that B = CTC, introduced in equation
(6.8), we note that ∥∥∥∥√

Wβ

(
Pβ − NKλ(µ)xβ

)∥∥∥∥2

2
+ xT

βKT
λ (µ)BKλ(µ)xβ

=
∥∥∥√

WβPβ −
√

WβNKλ(µ)xβ
∥∥∥2

2 +
∥∥∥CKλ(µ)xβ

∥∥∥2
2

=

∥∥∥∥∥∥
[√

WβPβ
0n,1

]
−

[√
WβN
C

]
Kλ(µ)xβ

∥∥∥∥∥∥2

2
.

Now (7.17) becomes

min
xx,xy,µ

∑
β∈{x,y}

∥∥∥∥∥∥
[√

WβPβ
0n,1

]
−

[√
WβN
C

]
Kλ(µ)xβ

∥∥∥∥∥∥2

2
.

This problem is separable and, according to Theorem 4.12, equivalent to solving

min
µ

min
xx,xy

∑
β∈{x,y}

∥∥∥∥∥∥
[√

WβPβ
0n,1

]
−

[√
WβN
C

]
Kλ(µ)xβ

∥∥∥∥∥∥2

2
,

because K(µ) has full rank for all µ as long as λ , 0.

Using the fact that both dimensions are only coupled by µ the optimization problem is identical
to

min
µ

(
gx(µ) + gy(µ)

)
(7.18)

with

gβ(µ) = min
xβ

∥∥∥∥∥∥
[√

WβPβ
0n,1

]
−

[√
WβN
C

]
Kλ(µ)xβ

∥∥∥∥∥∥2

2
, β ∈ {x, y}. (7.19)

To find an optimal value for (7.18) we are able to give an explicit expression for the functions
gβ(µ).

Theorem 7.20. Let λ , 0, A = [a0, . . . , an−1] ∈ Rm×n for m ∈ N, y ∈ Rm, n′ := n − q − 1,
P ∈ Rn′×n′ a permutation matrix that exchanges the (k − q)-th column of a matrix with the n′-th
column and Kµ(λ) as in equation (7.15). Furthermore let QλRλ be QR-decomposition such that

AKλ(0)P = QλRλ =
[
Qλ,0 Qλ,1

] [Rλ,0
0

]
,

where Rλ,0 is upper triangular, Qλ orthogonal, zλ the last column of Qλ,0 and rλ the bottom right
entry of Rλ,0. Then

g(µ) := min
x
‖y − AKλ(µ)x‖22 =

((θληλ − γλζλ)µ + ηλrλ)2

γ((θλµ + rλ)2 + γλµ2)
+ c

with

θλ = zT
λak−q−2, ηλ = aT

k−q−2Qλ,1QT
λ,1y, γλ = aT

k−q−2Qλ,1QT
λ,1ak−q−2, ζλ = zT

λy

and some c ∈ R.

67

Convention 7.21. For brevity we will omit the fixed parameter λ in the following and just write
K(µ), Q, R, Q0, Q1, R0, z and r as well as θ, η, γ and ζ.

The proof is conceptually simple while at the same time technically laborious. We will use the
variable projection approach of Golub and Pereyra. The important idea is to explicitly find the
QR-decomposition of AK(µ)P as a function of µ. Note that the permutation matrix P just pivots
the columns of AK(µ) in a way that finding this decomposition becomes possible.

Lemma 7.22. Let the notation be as in Theorem 7.20. The matrix

R̃ := G(µ)Q̃QTAK(µ)P

with

G(µ) :=


1n′−1

r+θµ√
(r+θµ)2+γµ2

√
γµ√

(r+θµ)2+γµ2

−
√
γµ√

(r+θµ)2+γµ2

r+θµ√
(r+θµ)2+γµ2

1m−n′−1


and

Q̃ :=
[
1n′

1m−n′ − 2vvT

]
, v :=

QT
1ak−q−2 − √γe0

‖QT
1ak−q−2 − √γe0‖2

is upper triangular and G(µ) and Q̃ are orthogonal, i.e. QQ̃TGT(µ)R̃ is a QR-decomposition of
AK(µ)P.

The idea of the transformation that yields the QR decomposition is schematically displayed in
Figure 7.1.

Proof. The proof is divided in two parts: First, we will show that R̃ in fact is upper triangular.
Only afterwards we verify that the given matrices form a QR decomposition of AK(µ)P.

First note that γ =
∥∥∥QT

1ak−q−2
∥∥∥

2. The matrix 1m−n′ − 2vvT is a Householder transformation that
reflects the vector QT

1ak−q−2 on the vector
√
γe0 and is orthogonal [36]. Thus we have

Q̃(R + µQTak−q−2eT
n′−1) =

[
1n′

1m−n′ − 2vvT

] ([
R0
0

]
+ µ

[
QT

0ak−q−2
QT

1ak−q−2

]
eT

n′−1

)
=

[
R0
0

]
+ µ

[
QT

0ak−q−2√
γe0

]
eT

n′−1.

This matrix is close to upper triangular with only the entry at index n′, n′−1 disturbing the pattern
and having the value µ

√
γ. The matrix entry at index n′ − 1, n′ − 1 equals

r + θµ.

Thus the matrix G(µ) is a Givens rotation matrix [36] that removes the value at position n′, n′ −1.
Furthermore G(µ) is orthogonal. It follows that

R̃ = G(µ)Q̃(R + µQTak−q−2eT
n′−1)

is upper triangular.

68


••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
• 

=


••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
•

••
••
••
••
• 



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •••
••••

•••••


+


.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••
••
••
••
•

AK(µ)P Q · R A(K(µ) − K(0))P
(a) To find a QR decomposition of AK(µ)P we have the decomposition of AK(0)P available.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •••
••••

•••••••••


=



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •••
••••

•••••


+


.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

••
••
••
••
•

QTAK(µ)P R QTA(K(µ) − K(0))P
(b) By multiplying (a) with QT we already have a matrix that is close to
upper triangular.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •••
••••

••••••


=



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• • • • • ••••

••••

••••

••••


·



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •••
••••

•••••••••


Q̃QTAK(µ)P Q̃ QTAK(µ)P

(c) The Householder transformation Q̃ removes most non-zero el-
ements in the last column without altering the remaining zero ele-
ments.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •••
••••

•••••


=



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• • • • •• •• • • •


·



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• •• •••
••••

••••••


G(µ)Q̃QTAK(µ)P G(µ) Q̃QTAK(µ)P

(d) After one final Givens rotation G(µ) the matrix product has upper triangular
form. The matrix Q of the QR decomposition now simply can be obtained by
collecting the inverse of the transformation matrices used: QQ̃TGT(µ).

Figure 7.1: Schematic display of the effects of various matrix operations used in the process of
finding a QR decomposition of AK(µ)P. Possible sparsity of A is not taken into
consideration.

69

Finally we observe that
A (K(µ) − K(0)) = µak−q−2eT

k−q−1.

Using QQT = 1m we get

R̃ = G(µ)Q̃(R + µQTak−q−2eT
n′−1)

= G(µ)Q̃QT(QRPT + µak−q−2eT
n′−1PT)P

= G(µ)Q̃QT(AK(0)PPT + µak−q−2eT
k−q−1)P

= G(µ)Q̃QT (AK(0) + A (K(µ) − K(0))) P

= G(µ)Q̃QTAK(µ)P

and hence
AK(µ)P =

(
QQ̃TGT(µ)

)
R̃. �

Note that the previous proof especially reveals

R̃ = G(µ)Q̃(R + µQTak−q−2eT
n′−1) = G(µ)

(
R + µ

[
QT

0ak−q−2√
γe0

]
eT

n′−1

)
. (7.23)

Proof of Theorem 7.20. g(µ) is a separable problem, thus we may apply the variable projection
approach of Golub and Pereyra, in particular the reformulation given in equation (4.13). Accord-
ing to Lemma 7.22 we have the orthogonal matrix Q of the QR-decomposition of AK(µ) given
as

QQ̃TGT(µ).

The last m − n′ columns which are needed to use the representation as in equation (4.13) may be
selected by removing the first n′ rows of G(µ). This yields the identity

g(µ) =

∥∥∥∥∥∥∥
 01,n′−1 −

√
γµ√

(r+θµ)2+γµ2

r+θµ√
(r+θµ)2+γµ2

01,m−n′−1

0m−n′−1,n′−1 0m−n′−1,1 0m−n′−1,1 1m−n′−1

 Q̃QTy

∥∥∥∥∥∥∥
2

2

.

Only the first entry of the vector within the norm above depends on µ. Thus all other entries will
be constant and there exists some c ∈ R such that

g(µ) =

∥∥∥∥∥[01,n′−1 −
√
γµ√

(r+θµ)2+γµ2

r+θµ√
(r+θµ)2+γµ2

0m−n′−1,1

]
Q̃QTy

∥∥∥∥∥2

2
+ c.

For the following computation we are only interested in the values of Q̃QTy that have the indices
n′ − 1 and n′. As we remember

Q̃ =

[
1n′

1m−n′ − 2vvT

]
,

the first of those entries just is the value at index n′−1 of QTy which is zTy = ζ. The second entry
requires a bit more effort. With Q = [Q0,Q1], Q0 ∈ Rn′×n′ and v = [v0, . . . , vm−n′−1] the required
value equals

(eT
0 − 2v0vT)QT

1y.

70

Let x := QT
1ak−q−2 =: [x0, . . . , xm−n′−1]. According to the definition of γ in Theorem 7.20 we

have ‖x‖22 = γ and

v =
x − √γe0

‖x − √γe0‖2
.

Furthermore

2v0vT =
2(x0 − √γ)(xT − √γeT

0)

‖x − √γe0‖22
=

2(x0 − √γ)(xT − √γeT
0)

γ − x2
0 + (x0 − √γ)2

=
2(x0 − √γ)(xT − √γeT

0)
2(γ − x0

√
γ)

= − xT

√
γ

+ eT
0 .

It follows that

(eT
0 − 2v0vT)QT

1y =
xT

√
γ

QT
1y =

η√
γ
.

Altogether we have

g(µ) =

∥∥∥∥∥∥[− √
γµ√

(r+θµ)2+γµ2

r+θµ√
(r+θµ)2+γµ2

]  ζη√
γ

∥∥∥∥∥∥
2

2

+ c

=

(
η(r+θµ)√

γ
− ζ √γµ

)2

(r + θµ)2 + γµ2 + c =
((θη − γζ)µ + ηr)2

γ
(
(r + θµ)2 + γµ2) + c. �

In total we have shown that the functions gβ are rational functions

gβ(µ) =
((θβηβ − γβζβ)µ + ηβrβ)2

γβ((θβµ + rβ)2 + γβµ2)
+ cβ, β ∈ {x, y} (7.24)

with the coefficients θβ, γβ, ζβ, ηβ and rβ defined as in Theorem 7.20. This brings us a huge step
closer towards the solution of the optimization problem

min
µ

g(µ) := min
µ

(
gx(µ) + gy(µ)

)
.

Finding a minimum now may be achieved by finding all zeros of the derivative g′(µ) and selecting
the zero with the smallest value of g(µ). First, we note that

g′(µ) = g′x(µ) + g′y(µ).

Lemma 7.25.

g′β(µ) =
−2rβ

(
(θβηβ − γβζβ)µ + ηβrβ

)(
(ζβθβ + ηβ)µ + ζβrβ

)(
(θβµ + rβ)2 + γβµ2)2 , β ∈ {x, y}.

71

Proof. The result follows from the quotient rule and straightforward simplifications:

g′β(µ) =
2(θβηβ − γβζβ)((θβηβ − γβζβ)µ + ηβrβ

)(
(θβµ + rβ)2 + γβµ

2)
γβ

(
(θβµ + rβ)2 + γβµ2)2

− 2
(
(θβηβ − γβζβ)µ + ηβrβ

)2(θβ(θβµ + rβ) + γβµ
)

γβ
(
(θβµ + rβ)2 + γβµ2)2

=
2
(
(θβηβ − γβζβ)µ + ηβrβ

)
γβ

(
(θβµ + rβ)2 + γβµ2)2

(
(θβηβ − γβζβ)((θβµ + rβ)2 + γβµ

2)
− (

(θβηβ − γβζβ)µ + ηβrβ
)(
θβ(θβµ + rβ) + γβµ

))
and

(θβηβ − γβζβ)((θβµ + rβ)2 + γβµ
2) − (

(θβηβ − γβζβ)µ + ηβrβ
)(
θβ(θβµ + rβ) + γβµ

)
= (θβηβ − γβζβ)(θβµ + rβ)2 − (

(θβηβ − γβζβ)µ + ηβrβ
)
θ(θβµ + rβ) − ηβrβγβµ

= (θβηβ − γβζβ)(θβµ + rβ)rβ − ηβrβθ(θβµ + rβ) − ηβrβγβµ
= −rβ

(
(ζβθβ + ηβ)µ + ζβrβ)

)
. �

Furthermore, the maximal and minimal value gβ may be easily seen:

Corollary 7.26.

arg min
µ

gβ(µ) =
ηβrβ

γβζβ − θβηβ and arg max
µ

gβ(µ) = − ζβrβ
ζβθβ + ηβ

for β ∈ {x, y}.

Proof. Obviously g′β(µ) has two zeros at the locations above. Looking at gβ(µ) itself one may
clearly identify the minimum. Therefore, the second zero has to form a maximum. Moreover we
notice by standard theory of rational functions that

lim
µ→±∞ g(µ) =

(θlηl − γlζl)2

γ2
l + θ2

l

. (7.27)

As this limit is constant, the minimum and maximum above in fact are global optimal values. �

Corollary 7.28.
lim
µ→±∞ g(µ) > inf

µ
g(µ).

Proof. From equation (7.27) it follows that

lim
µ→−∞ g(µ) = lim

µ→∞ g(µ).

The asymptotic behaviour of g′(µ) is identical to the behaviour of cµ−2, hence

sign(g′(−µ)) = sign(g′(µ))

for large enough µ. This shows that either the value of g(µ) is decreasing for small µ or increasing
for large µ and especially that there are µ with function values smaller than the limiting value. �

72

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 7.2: Three typical graphs of g(µ) (with the image of g(µ) normalized) as they arise in
practical approximation situations. The red line comes from a pushback process.

Due to Corollary 7.28 we know that the minimal value of g(µ) has to be located at a zero of g′(µ).
This function is, as a sum of rational functions, again rational. Most importantly the numerator is
a polynomial of degree six and therefore might have as much as six real zeros. Empirical results
have shown that in most cases there are only two zeros though.

Without loss of generality we will assume that gx and gy have different minimal values, i.e.

ηxrx

γxζx − θxηx
,

ηyry

γyζy − θyηy
. (7.29)

Otherwise the minimum of g(µ) clearly is taken at ηxrx
γxζx−θxηx

.

The general idea we will follow is to divide R into intervals that guarantee gx and gy both being
monotone within. Therefore, let a1, . . . , a4 be the zeros of g′x and g′y ordered so that

a1 ≤ a2 ≤ a3 ≤ a4.

Then
R = (−∞, a1] ∪ (a1, a2] ∪ (a2, a3] ∪ (a3, a4] ∪ (a4,∞).

We will denote a0 := −∞, a5 = ∞. In the following we will only examine the interior of the
intervals above. The only case the minimum may lie on the boundary of one intervals has been
handled in equation (7.29).

Obviously, the requirement
g′(µ) = g′x(µ) + g′y(µ) = 0

only may be fulfilled if g′x and g′y have different signs. As by construction the sign of g′x and g′y
does not change within one interval we immediately get a first condition on the existence of a
minimum:

arg min
µ

g(µ) < (ai, ai+1) if g′x
(ai + ai+1

2

)
g′y

(ai + ai+1

2

)
≥ 0. (7.30)

Using this observation out of the five intervals possibly containing the minimum we are able to
rule out at least two, as the sign of the product of the derivatives has to be alternating between the
different intervals.

73

We may easily obtain the numerator polynomial h(µ) of g(µ) numerically. A corresponding sym-
bolic computation of course also is possible, but technically exhausting. In the following we will
therefore state how the minimum may be found without conducting the computations itself. A
reference on the numerical methods may be found in Appendix A.2.

Now all that we have to do is to find all zeros of the polynomial h(µ). The amount of algorithms
to locate zeros of polynomials is so immense that there are entire books written on that single,
but important topic [52], [53]. As the degree of h is rather low, we will omit the introduction
of overly complicated methods and follow a simple approach based on Newton’s method and
Sturm’s theorem.

We obtain the numerator polynomial

h(µ) =

6∑
i=0

hiµ
i.

The Gershgorin circle theorem [6] guarantees that the absolute values of all zeros of h are less
than

max{|h0|, 1 + |h1|, . . . , 1 + |h5|}
|h6| .

Hence we may set

a0 := −max{|h0|, 1 + |h1|, . . . , 1 + |h5|}
|h6| , a5 :=

max{|h0|, 1 + |h1|, . . . , 1 + |h5|}
|h6| .

Now let us recall Sturm’s theorem: For a polynomial p let the Sturm polynomials be defined as

p0(x) := p(x),

p1(x) := p′(x),

pi(x) := − rem(pi−2(x), pi−1(x)), i ≥ 2.

Here rem(pi−2(x), pi−1(x)) denotes the remainder of the polynomial division of pi−2 by pi−1.
Those polynomials can be computed by polynomial long division.

Theorem 7.31 (Sturm, 1829 [14, p. 44]). Let σ(ξ) equal the number of sign changes in the
sequence p0(ξ), . . . , pm(ξ) where m is chosen such that pm+1 ≡ 0. Then σ(a) − σ(b) equals the
number of distinct real roots of p in the interval (a, b].

Note that if m < 6 the polynomial has multiple roots. We never observed this case in practical ap-
plications, however if it may happen we can remove the multiple root using Euclid’s algorithm.

Using Sturm’s theorem we can count how many roots are to be expected within each of the
intervals (ai, ai+1). If we just have a single root within the interval we may use a combination of
the binary search and Newton’s method (see Appendix A.3) to identify the exact location of the
root.

If, on the other hand, we have multiple roots within one interval, we just take the half of the
interval and employ Sturm’s theorem again. This method is not the most efficient possible but

74

as in practical situations each interval usually contains one root, we do not need to use a more
sophisticated algorithm.

In total we gain:

Algorithm 7.1: Root finding of h(µ)
Input: Polynomial function h(µ).

Breaks a0, . . . , a5.
Result: SetM containing all real zeros of h.

p0, . . . , pm ← Sturm polynomials of h(x)
σ(µ)← Function that computes the sign changes of the Sturm polynomials
for i← 0to 4 do
M←M∪ findZeros(h, σ, ai, ai+1)

end for

procedure findZeros(h, σ, a, b, s, s′)
if σ(a) − σ(b) = 0 then

return ∅
else if σ(a) − σ(b) = 1 then

return {newtonBisectionHybrid(h, a, b)}
else

return findZeros(h, σ, a, a+b
2) ∪ findZeros(h, σ, a+b

2 , b)
end if

end procedure

After using this algorithm we get µ0, . . . , µ j−1 such that

g′(µi) = h(µi) = 0, i = 0, . . . , j − 1

and select
µ̂ := arg min

{µ0...,µ j−1}
g(µ).

Now the very last step is to use the optimal value µ̂ to gain the solution to the whole spline fitting
problem (7.17), namely the values for xx and xy or, substituting back, the original spline control
points dx and dy. Again we may solve the decoupled problems separately to find xβ that solves the
optimization problem in gβ(µ̂) from equation (7.19). Using the same notation as in Theorem 7.20
this equals the problem

min
x
‖y − AK(µ̂)x‖22. (7.32)

According to Lemma 7.22 we have a QR-decomposition

AK(µ̂) = QQ̃TGT(µ̂)R̃PT .

This gives us the equivalent approximation problem

min
x

∥∥∥y − QQ̃TGT(µ̂)R̃PT x
∥∥∥2

2.

75

We know that the solution to this problem can be found with (4.7)

PR̃TG(µ̂)Q̃QT QQ̃TGT (µ̂)R̃PTx = PR̃TG(µ̂)Q̃QT y

which is equivalent to
R̃T

(
R̃PTx −G(µ̂)Q̃QT y

)
= 0.

Beyond that

R̃ =

[
R̃1
0

]
,

where R̃1 is upper triangular and of full rank. So we may remove additional zeros out of this sum,
multiply by R̃−1

1 and yield yet another expression for the solution of (7.32):

R̃1PTx =
[
1n′ 0m−n′

]
G(µ̂)Q̃QT y.

Together with equation (7.23) we get

[
1n′ 0m−n′

]
G(µ̂)

(
R + µ̂

[
QT

0ak−q−2√
γe0

]
eT

n′−1

)
PT x =

[
1n′ 0m−n′

]
G(µ̂)Q̃QT y. (7.33)

The solution of this linear system is cheap as the left hand side is upper triangular.

7.4 Refinement of standstill periods

In chapter 5 we described how to identify approximate locations of standstills from given data
points. Now, as we also know how to enforce the corresponding boundary conditions we may
bring both information together and suggest a method to identify exact standstill locations to-
gether with an approximation of their surrounding.

Let S = [a, b] equal the approximated standstill interval. Furthermore, we assume for simplicity
that S is in the middle of the movement. Now, we might define a simple knot sequence

T :=
[
a − lδ, . . . , a − lδ︸ ︷︷ ︸

q+1 times

, a − (l − 1)δ, . . . , a − δ, a, b, b + δ, . . . , b + (l − 1)δ, b + lδ, . . . , b + lδ︸ ︷︷ ︸
q+1 times

]
with given constants δ ∈ R and l ∈ N. Then the standstill is in the interval [τq+l, τq+l+1].

Remark 7.34. It has to be taken care that the knot sequence lies completely within the time
sequence of the movement, which requires a − lδ ≥ t0 and a + lδ ≤ tm−1. In addition we have to
ensure that each knot interval contains at least one, better three or four, data points. Otherwise
we risk the approximation problem becoming ill-conditioned (see Remark 4.35).

Using this knot sequence, we may approximate the data employing suitable boundary conditions
and yield a spline approximation f . While doing so it is useful to weight the data points within
the standstill such that ∑

i∈{ j | t j∈S }
wi = λ

for given λ ∈ R.

76

Figure 7.3: The standstill is slightly too long, thus the fitted curve diverges from the data points a
few seconds before the actual standstill begin.

This way we ensure that the standstill always has the same effect, no matter how long it is. Failing
this, long standstills would completely overweight the more relevant behaviour surrounding the
standstill.

A first check on the quality of the standstill duration can be made by verifying

‖dl−1 − dl‖22 ≥ α (7.35)

and ∥∥∥dq+l+1 − dq+l+2
∥∥∥2

2 ≥ α (7.36)

for a given constant α. According to equations (7.8) and (7.9) this norm of control point differ-
ences corresponds directly to the norm of f ′ on the intervals before and after the standstill. Thus,
if the first condition above is violated, the movement before the standstill is so small that it is not
significant. This indicates that we should decrease a and try again. Analogously, if the second
condition is violated, we increase b and repeat the process.

If the data points within the standstill are trustworthy, it is likely that the standstill candidate S
already was fairly exact and therefore the standstill should be well approximated. If, however, the
standstill candidate was off, it has to be expected that the points within the standstill are of bad
quality. Therefore, we will examine the region bordering the holding interval. Figure 7.3 shows
a typical example: The first few data points bordering the beginning of the standstill are fitted
well, while the points before those could clearly be better represented by the curve. To judge the
quality of the standstill duration, it hence is best to examine a region close to, but not exactly
bordering the standstill.

Let jl such that a = t jl and jr such that b = t jr . We define the operators

L f :=
imax∑
i=i0

ρ∗
(

f (t jl−i) − P jl−i
)

and

R f :=
imax∑
i=i0

ρ∗
(

f (t jr+i) − P jr+i
)

for i0, imax ∈ N.

77

Now we will modify the standstill as long as we can reduce the values of L f and R f . To ensure
that we do not diverge to much from the original standstill location, we will limit the absolute
change to a certain amount. We find

Algorithm 7.2: Standstill refinement
Input: Standstill candidate S = [t jl , t jr] with equations (7.35) and (7.36) enforced.

Maximal change θ.
Result: Refined standstill S and approximation f .

il ← 0
ir ← 0
f ← approximation with standstill [t jl , t jr]
for all σ ∈ {1,−1} do

repeat
changed← false
f ∗ ← approximation with standstill [t jl+il−σ, t jr+ir]
if L f ∗ < L f and |il| ≤ θ then

f ← f ∗

il ← il − σ
changed← true

end if
f ∗ ← approximation with standstill [t jl+il , t jr+ir+σ]
if R f ∗ < R f and |ir | ≤ θ then

f ← f ∗

il ← ir + σ

changed← true
end if

until changed = false
end for
S ← [t jl+il , t jr+ir]

Note that this algorithm is a brute force local optimization method that does in no way guarantee
that the best possible minimum is found. On the contrary, longer standstills usually mean better
approximation results, which is why we first try to increase the standstill duration before trying
to reduce it.

78

7.5 Speeding up the approximation

Due to the refinement steps stated above as well as the employment of robust smoothing methods,
approximating one standstill requires solving a multitude of least squares problems. Therefore,
it is worth to spend some time on speeding up the process of solving such a least squares prob-
lem. We already encountered two different numerical approaches to do so: Either by solving the
normal equation

ATWAx = AT Wy

or by computing the QR-decomposition of A and using this decomposition to solve the problem
directly.

If A is a m× n matrix with m ≥ n, the normal projection approach requires us to compute the ma-
trix product ATA. This can either be done with the conventional multiplication approach, taking
O(m2n) flops or using a fast matrix multiplication technique such as Strain’s matrix multiplica-
tion, requiring O(m2.807) flops [36, p. 31]. Besides that, the solution of the linear system needs
about O(n3) computations. Similarly, computing the QR-decomposition also requires O(m2n)
operations.

Hence we may reduce the computational effort by a fair amount if we reduce m. In the presence
of standstills this turns out to be surprisingly easy. All our standstill approximation problems lead
to a minimization problem of the form

min
x

m−1∑
i=0

wi(yi − f (ti, x))2

with one boundary condition being

f (x) = const. for all x ∈ [τk, τk+1].

Let J = {i | ti ∈ [τk, τk+1]}. Splitting up the sum yields

min
x

m−1∑
i<J

wi(yi − f (ti, x))2 +

m−1∑
i∈J

wi(yi − f (τk, x))2

 . (7.37)

This can be simplified significantly, as the following lemma shows:

Lemma 7.38. Given any function f , it follows that

∑
i∈J

wi(yi − f (x))2 =

(∑
i∈J wiyi∑
i∈J wi

− f (x)
)2 ∑

i∈J

wi + κ

for some κ ∈ R.

79

Proof. With

κ :=
∑
i∈J

wi(yi − f (x))2 −
(∑

i∈J wiyi∑
i∈J wi

− f (x)
)2 ∑

i∈J

wi

=
∑
i∈J

wi(y2
i − 2 f (x)yi + f (x)2) −

(∑i∈J wiyi∑
i∈J wi

)2

− 2 f (x)
∑

i∈J wiyi∑
i∈J wi

+ f (x)2

∑
i∈J

wi

=
∑
i∈J

wiy2
i −

(∑
i∈J wiyi

)2∑
i∈J wi

the result follows immediately. �

Thus the solution of equation (7.37) is identical to the solution of

min
x

m−1∑
i<J

wi(yi − f (ti, x))2 +

(∑
i∈J wiyi∑
i∈J wi

− f (τk, x)
)2 ∑

i∈J

wi

 . (7.39)

This amounts to replacing all points within the standstill with one point corresponding to their
weighted average and giving this point the sum of all weights within the standstill as a new
weight.

The resulting least squares problem has m − |J| data points left and therefore might be solved in
O

(
(m − |J|)2n

)
flops, whereas the computation of the weighted mean can be done in O(|J|) steps.

Especially for longer standstills it is a common situation that m − |J| � |J|, thus the reduction
in flops is highly significant. Numerical experiments have shown that the execution time of the
smoothing algorithm decreases by a factor of 4 for standstills of average length.

80

8 Filling the gaps

8.1 Local approximation

So far we have only considered how to approximate a spline that contains at most one standstill.
The average aircraft movement, however, may often contain significantly more than one.

After having approximated the direct neighbourhood of the detected standstills it is now time
to fill the gaps between those standstills with a suitable spline. As the general idea of robust
smoothing splines has been explained in chapters 4 and 6 we just have to take care to choose
suitable boundary conditions that allow a smooth transition of the standstill approximation.

Suppose we have a knot sequence

T = [. . . , τk−2, τk−1, τk, τk+1, τk+2, . . .]

with a standstill period in the interval [τk, τk+1]. Furthermore, suppose that the exact location c
of the standstill is known. According to (7.4) we have

dk−q = · · · = dk = c.

Due to the locality of splines one may easily see that the approximation f̂ (t) only depends on c
and d0, . . . , dk−q−1 for t ≤ τk and similarly only depends on c and dk+1, . . . , dn−1 for t ≥ τk+1.
Thus, if we assume c is known, the approximation for the whole spline splits up in two parts that
are not depending on each other. In other words: The approximation problem can be solved for
t ≤ τk and t ≥ τk+1 separately.

This justifies the approach to first approximate the standstill locally and use this information to
determine the standstill position. The full approximation problem then may be split into two
by the standstill period. The only aspect we still have to discuss is how to translate the more
restricting boundary conditions. We will take the limiting behaviour before and after the standstill
from the local standstill approximation and translate it to the new, gap-filling approximation.
Therefore, let

T ′ = [τ′0, . . . , τ
′
k′ = τk, τ

′
k′+1 = τk+1, . . . , τ

′
n′+q]

be the knot sequence of the local approximation l(x) and d′0, . . . , d
′
n′ the corresponding control

points. We will first discuss the behaviour before the standstill. To enforce either one of the
known boundary conditions, we require

f ′(τk − ε) = l′(τk′ − ε)

for sufficiently small ε, which is

lim
ε→0

f ′(τk − ε)
l′(τk′ − ε)

= 1. (8.1)

81

According to equation (7.8) and using the recursive B-spline Definition 3.2 we have

f ′(τk − ε) = (dk − dk−q−1)
q

τk − τk−q
Nk−q,q−1(τk − ε).

This expression may easily be simplified:

Lemma 8.2. For q ≥ 1 and ε < τk − τk−1

Nk−q,q−1(τk − ε) =
εq−1∏q−1

j=1(τk − τk− j)

and

Nk+1,q−1(τk+1 + ε) =
εq−1∏q−1

j=1(τk+1+ j − τk+1)
.

Proof. For q = 1 the result follows directly from the definition of B-splines. Now assume that
Lemma 8.2 is correct for q − 1. Then

Nk−q,q−1(τk − ε) =
τk − ε − τk−q

τk−1 − τk−q
Nk−q,q−2(τk − ε)︸ ︷︷ ︸

=0

+
ε

τk − τk−q−1
Nk−q+1,q−2(τk − ε)

=
ε

τk − τk−q−1

εq−2∏q−2
j=1(τk − τk− j)

=
εq−1∏q−1

j=1(τk − τk− j)
.

The second equation follows analogously. �

Thus
f ′(τk − ε) = (dk − dk−q−1)q

εq∏q−1
j=1(τk − τk− j)

and
l′(τk′ − ε) = (d′k′ − d′k′−q−1)q

εq∏q−1
j=1(τ′k′ − τ′k′− j)

.

We yield

lim
ε→0

f ′(τk − ε)
l′(τk′ − ε)

=
dk − dk−q−1

d′k′ − d′k′−q−1

q∏
j=1

τ′k′ − τ′k′− j

τk − τk− j

and therefore

dk−q−1 = dk −
(
d′k′ − d′k′−q−1

) q∏
j=1

τk − τk− j

τ′k′ − τ′k′− j
. (8.3)

The control point after the standstill may be computed similarly using equation (7.9):

lim
ε→0

f ′(τk+1 + ε)
l′(τk′+1 − ε)

=
dk+1 − dk

d′k′+1 − d′k′

q∏
j=1

τ′k′+1+ j − τ′k′+1

τk+1+ j − τk+1
,

82

thus

dk+1 = (d′k′+1 − d′k′)
q∏

j=1

τk+1+ j − τk+1

τ′k′+1+ j − τ′k′+1
+ dk. (8.4)

We just have shown how the boundary conditions of the local approximation translate to the
control points of the spline segments between standstills. We gain

d∗β =



c −
(
d′β,k′ − d′β,k′−q−1

)∏q
j=1

τk−τk− j
τ′k′−τ′k′− j

c
...

c
c + (d′β,k′+1 − d′β,k′)

∏q
j=1

τk+1+ j−τk+1
τ′k′+1+ j−τ′k′+1


.

This splits the control point vector into

dβ =:
[
d(0)
β ,d∗β,d

(1)
β

]T
=

[
[dβ,0, . . . , dβ,k−q−2], [dβ,k−q−1, . . . , dβ,k+1], [dβ,k+2, . . . , dβ,n−1]

]T
where the entries of d(0)

β are the control points before the standstill and the entries of d(1)
β the

control points after the standstill. Similarly, we may split up the matrix Nq(T) := [N(0)
T ,N∗T,N

(1)
T]

such that

Nq(T)dβ :=
[
N(0)

T ,N∗T,N
(1)
T

] 
d(0)
β

d∗β
d(1)
β

 = N(0)
T d(0)

β + N∗Td∗β + N(1)
T d(1)

β .

According to equations (6.4) and (6.5) the spline approximation problem without constraints in
vector notation is

min
dβ

ρ∗
(
Pβ − Nq(T)dβ

)
+ dT

βGT
2 Bq(T , λ)G2dβ.

This allows us to alter the optimization problem by incorporating the known control points:

min
d(0)
β ,d(1)

β

ρ∗
(
Pβ − N∗Td∗β − N(0)

T d(0)
β − N(1)

T d(1)
β

)
+


d(0)
β

d∗β
d(1)
β


T

GT
2 Bq(T , λ)G2


d(0)
β

d∗β
d(1)
β

 (8.5)

for β ∈ {x, y}.
By the locality of splines we note that N(0)

T has non-zero rows only for the times that were recorded
before the standstill. Likewise N(1)

T has non-zero rows only for times recorded after the standstill.
Specifically let

T(0) := {ti | ti < τk}, T(1) := {ti | ti > τk+1}
and let P(0)

β ,P(1)
β contain the corresponding data points. Then the term modelling the approxima-

tion accuracy from (8.5) becomes

ρ∗
(
P(0)
β − N∗T(0)d∗β − N(0)

T(0)d
(0)
β

)
+ ρ∗

(
P(1)
β − N∗T(1)d∗β − N(1)

T(1)d
(1)
β

)
+ c

for some c ∈ R and β ∈ {x, y}.

83

//|
τk

|
τk+1︸ ︷︷ ︸

T(0)

︸ ︷︷ ︸
T(1)

Figure 8.1: The local standstill approximation l (drawn in red) determines the behaviour of the
curve close to the standstill [τk, τk+1]. The expressions relevant to the approximation
left of the standstill are marked with the superscript (0), the expressions relevant to
the approximation right of the standstill with (1).

As a next step we split up the smoothing matrix such that

GT
2 B(T , λ)G2 =:


A1,1 AT

2,1 AT
3,1

A2,1 A2,2 AT
3,2

A3,1 A3,2 A3,3


and

A1,1 ∈ Rk−q−1×k−q−1, A2,2 ∈ Rq+3,q+3, A3,3 ∈ Rn−k−2.

As GT
2 B(T , λ)G2 is banded with a bandwidth of q + 2 according to Remark 6.7 it follows that

A3,1 = 0. Then
d(0)
β

d∗β
d(1)
β


T

GT
2 Bq(T , λ)G2


d(0)
β

d∗β
d(1)
β

 =
[
d(0)T
β ,d∗Tβ ,d

(1)T
β

] 
A1,1 AT

2,1 0
A2,1 A2,2 AT

3,2
0 A3,2 A3,3



d(0)
β

d∗β
d(1)
β


= d(0)T

β A1,1d(0)
β + 2d∗Tβ A2,1d(0)

β + 2d∗Tβ AT
3,2d(1)

β + d(1)T
β A3,3d(1)

β + d∗Tβ A2,2d∗β.

In summary the constrained optimization problem (8.5) may be split up into the two independent
problems

min
d(0)
β

ρ∗
(
P(0)
β − N∗T(0)d∗β − N(0)

T(0)d
(0)
β

)
+ d(0)T

β A1,1d(0)
β + 2d∗Tβ A2,1d(0)

β (8.6)

and
min
d(1)
β

ρ∗
(
P(1)
β − N∗T(1)d∗β − N(1)

T(1)d
(1)
β

)
+ d(1)T

β A3,3d(1)
β + 2d∗Tβ AT

3,2d(1)
β (8.7)

for β ∈ {x, y}.

84

Note that both (8.6) and (8.7) are convex problems: ρ∗ of a linear function is convex and the
new smoothing penalty is convex as a shifted partial function of the original convex smoothing
penalty.

When applying the IRLS algorithm, which is by now well known, we gain a series of weighted
least squares problems. Those might be solved by referring to equation (4.6). The required
gradients of the smoothing penalties are

2A1,1d(0)
β + 2AT

1,1d∗β

and
2A3,3d(1)

β + 2A3,2d∗β.

Thus, we obtain the linear systems(
N(0)T

T(0) WN(0)
T(0) + A1,1

)
d(0)
β = N(0)T

T(0) W
(
P(0)
β − N∗T(0)d∗β

)
− AT

2,1d∗β (8.8)

and (
N(1)T

T(1) WN(1)
T(1) + A3,3

)
d(1)
β + = N(1)T

T(1) W
(
P(1)
β − N∗T(1)d∗β

)
− A3,2d∗β. (8.9)

We just derived the concept to incorporate the correct boundary conditions into the approximation
problem in the presence of one standstill. In real applications it is likely that we will have more
than one standstill. However, the same concept could be applied if the movement part is sur-
rounded by two standstill periods. This is rather a matter of strict notation than of mathematical
insight and thus will be omitted here.

8.2 Choosing an optimal knot sequence

Good knot placement is of central importance for the quality of the approximation. If there are
too few or badly placed knots, the smoothing spline will not be able to reproduce all features of
the given data set. If, on the other hand, too many knots are used, the approximated spline will
be less efficient to store and handle in all further computations. Thus, we have to find a good
trade-off between the amount of knots and the quality of the approximation.

It is a very hard problem to find an optimal number of knots and knot sequence. Consequently,
the best we may hope for is to find an approximation to an optimal knot sequence. A thorough
examination of the topic has been conducted by de Boor in his Practical Guide to Splines [10,
pp. 156 – 161]. We will repeat his ideas and make some small amendments to accommodate
the concepts used in this thesis. The most notable of those is the generalization to curves in Rl

instead of R as well as a small modification that allows to alter the required accuracy over the
time domain.

First, we remember that we denoted the linear space spanned by the B-spline basis function
N0,q(· | T), . . . ,Nn−1,q(· | T) by Sq(T). For a spline with values in Rl all that we do is to allow
the coefficients of the linear combination to lie in this l-dimensional space. It is convenient to
introduce a separate notation:

Sl
q(T) :=

n−1∑
i=0

diNi,q(t | T)

∣∣∣∣∣∣∣ di ∈ Rl

 . (8.10)

85

For now we will assume that the function g : T → Rl to be approximated is known. The selection
of the knot sequence aims at giving the approximation process all the freedom that is required
but not to offer too many degrees of freedom. In other words, it is essential that the space Sl

q(T)
contains a function that is close to g. This motivates

Definition 8.11.
distI

(
g,Sl

q(T)
)

:= min
f∈Sq(T)

max
x∈I
‖ f (x) − g(x)‖2

for some interval I ⊂ T .

The most fundamental requirement is that the knot sequence T to be chosen has a minimal
number of knots while satisfying

distT
(
g,Sl

q(T))
)
≤ C (8.12)

for some value C ∈ R. However, in our case it is of advantage to be able to let the required
accuracy vary over time. Therefore, we define a function α : T → R+ and restate (8.12) as

min
f∈Sq(T)

max
x∈T

α(x)‖ f (x) − g(x)‖2 ≤ 1. (8.13)

Note that with α ≡ 1
C this is equivalent to (8.12).

This concept may be used to model different accuracy requirements in different movement phases:
As the movements in flight happen on a significantly larger scale, we may reduce the accuracy in
these phases.

Finding a knot sequence T that fulfils (8.13) with an optimal number of knots is rather challeng-
ing. We can not hope to give such an exact solution without an excessive amount of computa-
tional efforts. Therefore, we will make some simplifications that will result in a knot sequence
that fulfils those conditions at least approximately.

The first of those amendments is to look at an upper bound of the distance function of Defini-
tion 8.11. For this we will make use of the following result shown by de Boor in [12] and [10,
p. 156]:

Lemma 8.14 (de Boor, 1973 [12]). There exists a constant cq such that for any given q + 1-times
differentiable function g : [a, b] → R and a knot sequence T = [τ0, . . . , τn+q] with τ0 = a and
τn+q = b there exists f ∈ Sq(T) such that

max
x∈[τi,τi+1]

| f (x) − g(x)| ≤ cq(τi+q − τi−q+1)q+1 max
x∈[τi−q+1,τi+q]

∣∣∣g(q+1)(x)
∣∣∣ (8.15)

holds for all i = q, . . . , n − 1.

Note that due to the q + 1-fold boundary knots of the knot sequence T it is not necessary that the
bound holds for the remaining knot intervals.

86

As an addition to the work of de Boor we may generalize this result neatly to the l-dimensional
case:

Corollary 8.16. There exists a constant cq such that for any given q + 1-times differentiable
function g : [a, b]→ Rl and a knot sequence T = [τ0, . . . , τn+q], τ0 = a and τn+q = b there exists
a function f ∈ Sl

q(T) such that

max
x∈[τi,τi+1]

‖ f (x) − g(x)‖2 ≤
√

l cq|Ji|q+1 max
x∈Ji

∥∥∥g(q+1)(x)
∥∥∥

2

with
Ji := [τi−q+1, τi+q], |Ji| := τi+q − τi−q+1

holds for all i = q, . . . , n − 1.

Proof. Let g = [g0, . . . , gl−1]T and fi ∈ Sq(T) a function satisfying (8.15) for gi. We define
f := [f0, . . . , fl−1]T ∈ Sl

q(T). For i = q, . . . , n − 1 we find that

l−1∑
j=0

max
x∈Ji

(
g(q+1)

j (x)
)2 ≤ l max

j={0,...,i−1}
max
x∈Ji

(
g(q+1)

j (x)
)2

≤ l max
x∈Ji

l−1∑
j=0

(
g(q+1)

j (x)
)2

= l max
x∈Ji

∥∥∥g(q+1)(x)
∥∥∥2

2.

Hence

max
x∈[τi,τi+1]

‖ f (x) − g(x)‖22 = max
x∈[τi,τi+1]

l−1∑
j=0

(
(f j(x) − g j(x)

)2

≤
l−1∑
j=0

max
x∈[τi,τi+1]

(
f j(x) − g j(x)

)2

≤ c2
q|Ji|2(q+1)

l−1∑
j=0

max
x∈Ji

(
g(q+1)

j (x)
)2

≤ lc2
q|Ji|2(q+1) max

x∈Ji

∥∥∥∥g(q+1)
j (x)

∥∥∥∥2

2

by applying Lemma 8.14. The result follows by taking the root of the derived bound. �

We may use Corollary 8.16 to give a slightly stricter condition on our knot sequence that obvi-
ously ensures that equation (8.12) is fulfilled:

max
i=q,...,n−1

(
|Ji|q+1 max

x∈Ji

∥∥∥g(q+1)(x)
∥∥∥

2

)
≤ C

cq
√

l
.

Letting the accuracy vary over time as in (8.13) does not allow to use the bound above without
further simplifications. However, employing another coarse estimate we find

max
x∈[τi,τi+1]

α(x)‖g(x) − f (x)‖2
≤ max

x∈[τi,τi+1]
α(x) · max

x∈[τi,τi+1]
‖g(x) − f (x)‖2

≤
√

l cq|Ji|q+1 max
x∈[τi,τi+1]

α(x) ·max
x∈Ji

∥∥∥g(q+1)(x)
∥∥∥

2

87

for i = q, . . . , n − 1 and hence we may replace (8.13) by

max
i=q,...,n−1

(
|Ji|q+1 max

x∈[τi,τi+1]
α(x) ·max

x∈Ji

∥∥∥g(q+1)(x)
∥∥∥

2

)
≤ 1

cq
√

l
, (8.17)

or, taking the q + 1-th root, by

max
i=q,...,n−1

(
|Ji| max

x∈[τi,τi+1]

q+1
√
α(x) ·max

x∈Ji

∥∥∥g(q+1)(x)
∥∥∥ 1

q+1

2

)
≤

(
c2

ql
)− 1

2(q+1) . (8.18)

Up to now we have replaced the boundary condition of the approximation problem by the more
restrictive condition (8.18). To gain a reasonable fast algorithm we will have to sacrifice strict
mathematical accuracy with an approximated approach. De Boor claims that “we can not hope
to place each knot optimally. We can only hope to obtain an optimal knot distribution or den-
sity.” [10, p. 157] One way to do so is to note that for maxi(τi+1 − τi)→ 0 asymptotically

|Ji| max
x∈[τi,τi+1]

q+1
√
α(x) ·max

x∈Ji

∥∥∥g(q+1)(x)
∥∥∥ 1

q+1

2 ≈
∫

Ji

(
α(x)

∥∥∥g(q+1)(x)
∥∥∥

2

) 1
q+1 dx.

It follows that an asymptotically equivalent way to bound equation (8.18) is to bound

max
i=q,...,n−1

∫ τi+q

τi−q+1

(
α(x)

∥∥∥g(q+1)(x)
∥∥∥

2

) 1
q+1 dx ≤ C (8.19)

for some constant C. In practice one will choose C by trial and error. Thus the actual meaning of
the constant is nice to know but not essential for the method itself. De Boor now assumes that all
knots have q-fold multiplicity, which allows further simplifications. We will show that the same
result can be achieved without using multiple knots:

Let

H(a, b) :=
∫ b

a

(
α(x)

∥∥∥g(q+1)(x)
∥∥∥

2

) 1
q+1 dx.

Theorem 8.20. For given n ∈ N, τ0, τn+q ∈ R

min
T

max
i=q,...,n−1

H(τi−q+1, τi+q) =
2q − 1
n − q

H(τ0, τn+q)

where T iterates over all knot sequences with q + 1-fold boundary knots at τ0 and τn+q. This
minimum is taken for T such that

H(τi, τi+1) =
1

n − q
H(τ0, τn+q)

for i = q, . . . , n − 1.

Proof. Due to the additivity of integration it follows that

H(τi−q+1, τi+q) =

i+q−1∑
j=i−q+1

H(τ j, τ j+1).

88

Then

max
i=q,...,n−1

H(τi−q+1, τi+q) ≥ min
i=2q−1,...,n−q

i+q−1∑
j=i−q+1

H(τ j, τ j+1)

≥ (2q − 1) min
i=2q−1,...,n−q

min
j=i−q+1,...,i+q−1

H(τ j, τ j+1)

= (2q − 1) min
i=q,...,n−1

H(τi, τi+1). (8.21)

As the integrand of H(a, b) is monotonically decreasing in a and monotonically increasing in b we
may find knots τq+1, . . . , τn−1. So there is a constant c with c = H(τi, τi+1) for all i = q, . . . , n− 1.
Then

H(τ0, τn+q) =

n−1∑
i=q

H(τi, τi+1) = (n − q)c

and thus

c =
H(τ0, τn+q)

n − q
.

Furthermore

max
i=q,...,n−1

H(τi−q+1, τi+q) = max
i=q,...,n−1

i+q−1∑
j=i−q+1

H(τ j, τ j+1) = (2q − 1)c.

and
(2q − 1) min

i=q,...,n−1
H(τi, τi+1) = (2q − 1)c.

Together with equation (8.21) we have shown that the given knot sequence minimizes (8.19). �

Theorem 8.20 gives us a recipe for our approximately optimal knot sequence if we can invert

Hτ0(x) := H(τ0, x) =

∫ x

τ0

(
α(t)

∥∥∥g(q+1)(t)
∥∥∥

2

) 1
q+1 dt.

Corollary 8.22. For given n ∈ N, τ0, τn+q ∈ R an optimal knot sequence in the sense that (8.19)
is minimized is given by τ1 = · · · = τq := τ0, τn = · · · = τn+q−1 := τn+q and

τi := H−1
τ0

(
i − q
n − q

Hτ0(τn+q)
)

for i = q + 1, . . . , n − 1.

Note that de Boor’s discussion on the topic concludes with the same result under the condition
that l = 1 and α(t) ≡ const.

From here all that is left to do is to find a method to invert Hτ0(x). The method presented for
this purpose will be identical to the algorithm proposed by de Boor [10, pp. 158 – 159] since the
small generalizations introduced will not be important anymore.

Inverting Hτ0 will be easy, if α(x)
∥∥∥g(q+1)(x)

∥∥∥
2 is a piecewise constant function. This is the case,

if both α and g(q+1) are piecewise constant. As α is just a tuning parameter, we may replace it by
a piecewise constant approximation without too much hassle.

89

In our approximation context the function g is not known a priori but is a result of the smoothing
process. Thus, before determining the optimal knot sequence we have to find an approximation
of g(q+1). One way to do this would be to approximate the data with a function g of order q + 2
and then use the q + 1-th derivative of this function. De Boor suggested another way that does
not require to raise the order of the approximation [11].

He recommends approximating g with a smoothing spline f of degree q with a suitable knot se-
quence T (i.e. by choosing equidistant knots). Then g(q) is a piecewise constant function that can
easily be determined from the control points of the first approximation using (3.7). Specifically
we obtain d′i such that

g(q)(x) ≈
n−q−1∑

i=0

d′i Ni,0(x | T (q)). (8.23)

De Boor now approximates this function by a spline of degree two and uses g(q+1) as the derivative
of this spline. The approximation scheme he proposes is to fit a parabola that interpolates (8.23)
at the sites 1

2 (τ(q)
i−1 + τ

(q)
i), 1

2 (τ(q)
i + τ

(q)
i+1) and 1

2 (τ(q)
i+1 + τ

(q)
i+2) for each knot interval i. The slope of

this parabola at 1
8 (τ(q)

i−1 + 3τ(q)
i + 3τ(q)

i+1 + τ
(q)
i+2) is then chosen as value for g(q+1) in the knot interval

[τi, τi+1). Including boundary effects this approach yields [12]

g(q+1)(x) ≈ ĝ(q+1)(x) :=


2

d′1−d′0
τ

(q)
2 −τ

(q)
0

, if x ∈
[
τ

(q)
0 , τ

(q)
1

)
,

d′i−d′i−1

τ
(q)
i+1−τ

(q)
i−1

+
d′i+1−d′i
τ

(q)
i+2−τ

(q)
i

, if x ∈
[
τ

(q)
i , τ

(q)
i+1

)
, i ∈ {1, . . . , n − 2},

2 dn−dn−1

τ
(q)
n −τ(q)

n−2

, if x ∈
[
τ

(q)
n−1, τ

(q)
n

]
.

This way we gain a piecewise constant approximation for the function g(q+1) and thus trivially
also for

∥∥∥g(q+1)
∥∥∥.

We will require

α :=
n−q−1∑

i=0

αiNi,0(x | T)

to have the same knot vector as the initial spline approximation f . This requirement is no re-
striction: We could always insert knots into the break sequence of ĝ(q+1) as well as α until both
sequences are equal. Furthermore we note that T (q) equals the knot vector T with the first and
last q knots removed. With

hi :=
i∑

j=q

(τ j+1 − τ j)
(
α j

∥∥∥∥∥∥ĝ(q+1)
(
1
2

(τ j + τ j+1)
)∥∥∥∥∥∥

) 1
q+1

we gain

Hτ0(x) ≈
n−1∑
i=0

hiNi,1(x | T). (8.24)

A spline curve of degree one may be inverted by exchanging knots and control points while taking
care of multiple boundary knots. Let

S := [hq, hq, . . . , hn, hn].

90

(a) The fitted spline clearly diverges from the data
points - the smoothing parameter is too large.

(b) The fitted spline oscillates and picks up behaviour
clearly produced by noise.

Figure 8.2: Examples of the same part of a curve fitted with different smoothing parameters.

Then

H−1
τ0

(x) ≈
n−1∑
i=0

τi+qNi,1(x | S). (8.25)

An approximated optimal knot sequence then may be found using Corollary 8.22.

If required, we may easily apply this method to the partial approximation problems discussed in
chapter 8.1. Only slight modifications of the hi are necessary to deal with the fact that there are
no multiple boundary knots.

8.3 A side note to the selection of the smoothing parameter

The smoothness of smoothing splines may be adjusted by the smoothing parameter as described
in chapter 6. One important question for our approximation process is how to choose a smoothing
parameter in a way that it does not force the fitted spline to disregard certain features in the
curve. On the other hand it has to be ensured that the random error of the approximation does not
influence the fitted approximation unduly. Examples of both situations are shown in Figure 8.2.

The selection of suitable smoothing parameters has been a topic of intensive research. Quite a
few methods rely on Generalized Cross Validation [19] or Generalized Maximum Likelihood [69]
to estimate a data-driven global smoothing parameter. A thorough introduction may be found in
Spline Models for Observational Data by Grace Wahba [70].

In our situation a global smoothing parameter certainly is not able to model the varying accuracy
present. Data driven approaches to select the smoothing parameter also have been investigated,
for example by Pintore, Speckman and Holmes [59], Storlie, Bondell and Reich [64] as well as by
Liu and Guo [51]. Especially Pintore et al. [59] also impose the restriction of piecewise constant
λ. This greatly improves the computational efforts required to solve the actual smoothing spline
problem. One drawback of those approaches is that they usually focus on dealing with varying
roughness of the function to be approximated. For us, they should rather treat varying quality in
the data observed.

91

It could be considered modifying one of their approaches or creating a new version that is suitable
for our kind of problem. We would have to gain a data driven algorithm to select the smoothing
parameter. This might raise the approximation quality further. However, the data offers much
information in the first place that can be used to choose the smoothing parameter: The location of
standstills, the approximated velocity, the phase of aircraft movement, the placement of the data
points. Using fixed parameters employing only those information already yields good results, so
we will spend no additional effort on researching this problem more thoroughly.

92

9 Numerical results and conclusion

Throughout this thesis we developed an approximation framework that allows the approxima-
tion of vehicle and aircraft movements under boundary conditions that enforce physically correct
movement behaviour. Special care was taken to detect and approximate standstill periods suit-
ably.

All algorithms presented have been implemented and tested as prototypes. The transfer of those
prototypical implementations into Fraport’s productive system currently is under way. Hence it
is no surprise that large scale demonstration of the achieved results will only be possible after
implementation has been completed. In the following we will highlight some examples that show
the good performance of the developed algorithms. We will compare the newly achieved results
with the smoothing algorithms used before this thesis. Those practically amount to using standard
least squares with variable spaced knots and without further boundary conditions.

Figure 9.1 depicts the usual, smooth movement. It can be plainly seen that the new approximation
yields slightly better approximation results. As all data points are of good quality, the reason for
this is to be sought elsewhere: As the robust regression is able to handle outliers better, the
smoothing parameter could be lowered without risking the approximation to be overly affected
by outliers. As a result the fit adapts better throughout the curves.

The effect achieved by employing robust smoothing methods can be seen in Figure 9.2. For
better comparison the new approximation has been conducted without adding standstill boundary
conditions. As the smoothing parameter previously had to be utilized to reduce oscillation caused
by outliers in the data, correct details in the data could not be picked up by the approximation. The
newly developed algorithms now handle outliers using robust smoothing methods. One should
note that the maximum error during the standstill is smaller while on the same time the actual
movement is fitted better.

Figures 9.3 and 9.4 demonstrate the use of the derived standstill boundary conditions. The ap-
proximation in Figure 9.3 mainly benefits from the smooth trajectory and exact location of the
actual standstill. When looking at Figure 9.4 the significant increase in approximation quality
becomes obvious. Here the enforced standstill causes the approximation to be at the centre of the
aircrafts parking position. The outliers previously present do not pose a significant problem any-
more. Secondly the approximation of the pushback procedure resembles the correct movement
of the aircraft. Apart from a good approximation this also allows to detect the position and time
where the pushback tractor is decoupled from the aircraft. From an operational perspective this is
an important timestamp in aircraft processing that now can be determined with high accuracy.

We spent some effort to split up the approximation problem into single parts between standstills
and also found a way to speed up the approximation of standstill significantly. This work clearly
pays off in the approximation speed: On average it took about 0.4 seconds to approximate one
aircraft movement without applying boundary conditions. If boundary conditions are added and

93

(a) Fraport’s original least-squares approximation.

(b) Robust smoothing algorithm presented in this thesis.

Figure 9.1: Due to the robust fitting algorithm, the smoothing parameter could be lowered and
thus a better adaption to the original data points could be achieved.

94

(a) Fraport’s original least-squares approximation.

(b) Robust smoothing algorithm presented in this thesis without standstill boundary condition.

Figure 9.2: The difference between robust and ordinary least-squares fitting is obvious. Even with
drastically smaller smoothing penalty the fitted curve is less influenced by outliers.

95

(a) Robust approximation without boundary conditions.

(b) Robust approximation with standstill boundary conditions

Figure 9.3: Adding standstill boundary conditions to the approximation guarantees the approxi-
mation to be constant within the standstill interval. The resulting fit closely resembles
the actual behaviour of the aircraft.

96

(a) Robust approximation without boundary conditions.

(b) Robust approximation with standstill boundary conditions added.

Figure 9.4: The standstill boundary conditions do not only enforce physically correct behaviour
but also reduce the effect of outliers throughout the standstill. The pushback process
now is clearly detectable in the approximation.

97

the problem is split up as described this time decreases to 0.05 seconds. Additionally determining
the standstill intervals using DBSCAN and the refinement algorithm described in chapter 7.4
increases the average computation time to 0.1 seconds.

In summary we have shown that the derived algorithms obtain good results both in the absence
and presence of noise and outliers. The performance of the algorithms is significantly better than
Fraport’s old least squares approach while at the same time more robust against outliers. We may
conclude that the design goals of this thesis have been achieved.

Nevertheless, there are possibilities for further research that shall not be left unmentioned. We
have seen that the quality of the approximation is strongly influenced by the choice of the smooth-
ing parameter. In chapter 8.3 we suggested that this parameter could be selected based on the
region the points were recorded in. First tests of this approach yielded good results but this has
not been verified on a large scale.

One important aspect that has not been covered in this thesis is self-verification of the algorithm
as well as recovery in case of wrong approximation results. Is it possible for the approximation
algorithm to estimate its own approximation quality and automatically point out approximation
problems?

One way to do this would require defining a measure of quality and detecting deviations from the
usual values. This would not only allow to identify regions of bad approximation but could also
be used as a test on the integrity of the provided data. This approach even could be translated
to near-real time data: In the knowledge that the position information the A-SMGCS provides
are used increasingly for traffic control it would be valuable to identify problems with the data
sources automatically and send a warning to the responsible apron controllers.

Another way to detect at least obvious outliers and approximation errors would be to compare
the found velocities to common velocities in the same region. In this case velocities that are too
high could indicate approximation problems and justify increasing the smoothing parameter in
this region.

Some data source also transmit an estimate on the velocity of the aircraft. This estimate could
be used as additional data source in the approximation, i.e. we could add auxiliary summands
ρ∗(vi − f ′(ti)) to further increase the approximation accuracy. The approximation also could be
further restricted by a boundary condition limiting the maximal velocity, which is ‖ f ′(x)‖22 < c.
Both approaches promise a further robustness against outliers.

Finally, this thesis only focuses on the approximation of the data. It is of course necessary to use
the found spline approximations later on to commence actual analysis tasks. This requires the
development of various algorithms for the processing of the found splines. In this regard Fraport
already created a broad toolkit of possible procedures that work on polygonal chains. Those can
easily be obtained from the spline approximations. In terms of performance and accuracy it is
desired to replace the mentioned algorithms successively with similar ones working directly on
splines.

From a mathematical point of view the central result of this thesis certainly is the generalization
of the IRLS algorithm to arbitrary optimization procedures. While this method has been used
previously, this seems to be the first work actually proving the convergence of the method in such
a general setting. Furthermore the idea how to solve the quadratic smoothing program under
a simple, quadratic boundary condition can serve as a blueprint to derive solution methods for
similarly structured problems.

98

Appendices

99

A Numerical foundations

Throughout the following some fundamental numerical algorithms shall be presented. While nei-
ther new nor spectacular, they build the foundation for some more sophisticated algorithms pre-
sented before. All procedures will be presented in a compact form and without further proofs.

A.1 Quadrature Rules

Typical numerical integration tries to approximate an integral by a weighted sum of function
values. Such a quadrature rule is given by∫ 1

−1
f (x) dx ≈

n∑
i=1

wi f (ci).

The values wi ∈ R are the weights multiplied to the function values at knots ci ∈ R.

If for some weighting function w a polynomial q of degree m can be exactly integrated, e.g. the
equation ∫ 1

−1
w(x) f (x) dx =

n∑
i=1

wi f (xi)

holds. The quadrature rule is said to exact up to degree m. Finally, a quadrature rule that is exact
up to degree 2n − 1 is said to be Gaussian.

For the purpose of this thesis, only the weighting function w ≡ 1 is of interest. A Gaussian
quadrature rule for that case can be given using the Legendre knots and weights. For n = 1, . . . , 4
those weights are given in Table A.1.

When integration is to be done on an arbitrary interval [a, b] rather than [−1, 1], variable trans-
formation can be used to obtain the desired results:∫ b

a
f (x) dx =

b − a
2

∫ 1

−1
f
(
b − a

2
x +

a + b
2

)
dx ≈ b − a

2

n∑
i=1

wi f
(
b − a

2
ci +

a + b
2

)
.

Further details on numerical integration can be found in [20].

100

ci wi

n = 1 0 2

n = 2 −0.577350269189626 1
0.577350269189626 1

n = 3 −0.774596669241483 0.555555555555554
0 0.888888888888889
0.774596669241483 0.555555555555554

n = 4 −0.861136311594053 0.347854845137454
−0.339981043584856 0.652145154862546

0.339981043584856 0.652145154862546
0.861136311594053 0.347854845137454

Table A.1: The Legendre knots and weights used for Gaussian quadrature on the interval [−1, 1]
for n = 1, . . . , 4.

A.2 Computations with polynomials

Chapter 7.3 requires the numerical computations with polynomials, primarily their multiplication
and evaluation.

We may save a polynomial by saving a vector of its coefficients:

[p0, . . . , pn]T

correlates to

p(x) :=
n∑

i=0

pixi.

Addition and subtraction then can simply be defined as straightforward vector addition. If both
polynomials were of different degree, the vector of lesser degree just would have to be filled up
with zeros accordingly.

For our purpose it is sufficient to define polynomial multiplication in the trivial way, thus for two
polynomials q and q the coefficients of r = pq are

ri =

i∑
j=0

p jqi− j.

Zeros are inserted whenever the indices do not exist. There are more efficient ways for polyno-
mial multiplication available, for example by Karatsuba and Ofman or based on the Fast Fourier
Transform. See [32] for an in-depth discussion on this topic.

Evaluating polynomials may be achieved using the Horner scheme: Let p be a polynomial of
degree n. Then

bn = pn

bi = xbi+1 + pi, i = n − 1, . . . , 0

and p(x) = b0 [33, pp. 280 – 282].

101

A.3 Root finding

Finding the roots of real valued functions is a well investigated concept with plenty of different
methods available. Purely for reference we will include a few different algorithms that may be
combined to find zeros for arbitrary functions f ∈ C2(R). More information on one-dimensional
optimization can be found in any textbook on numerical analysis, for example in [56], [60].

One of the most elementary methods is the bisection algorithm.

Algorithm A.1: Bisection
Input: Function f .

Confidence interval [a, b] with f (a) f (b) < 0.
Error tolerance ε.

Result: Value t with | f (t)| ≤ ε.

repeat
t ← a+b

2
if f (a) f (t) > 0 then

a← t
else

b← t
end if

until | f (t)| > ε

Due to the fact that the condition f (a) f (b) < 0 secures a root within the given confidence interval
the bisection method is guaranteed to converge. The disadvantage of the method, however, is that
it only offers linear convergence.

Newton’s method on the other hand assures quadratic convergence as long as the starting value
is sufficiently close to the actual root but does not converge in every situation. Both methods can
be combined to gain an efficient and secure algorithm:

102

Algorithm A.2: Newton-Bisection-Hybrid

Input: Function f and its derivative f ′.
Confidence interval [a, b] with f (a) f (b) < 0.
Error tolerance ε.
Maximum number of successive Newton iterations c ∈ N.

Result: Value t with | f (t)| ≤ ε.

t ← a+b
2

i← 0
repeat

if | f ′(t)| < ε or t < [a, b] or i > C then . One step bisection
t ← a+b

2
i← 0

else . One step Newton’s method
t ← t − f (t)

f ′(t)
i← i + 1
if f (a) f (t) > 0 then . Update confidence interval

a← t
else

b← t
end if

end if
until | f (t)| > ε

103

List of algorithms

3.1 Binary search (within a knot sequence) . 25
3.2 Algorithm of de Boor . 26
4.1 Iteratively reweighted least squares . 38
5.1 DBSCAN . 47
5.2 Detect standstill candidates . 49
5.3 Isolating standstill locations . 53
7.1 Root finding of h(µ) . 75
7.2 Standstill refinement . 78
A.1 Bisection . 102
A.2 Newton-Bisection-Hybrid . 103

104

Symbols and notation

0 j,k A zero matrix in R j×k.

d·e The ceiling operator that returns the smallest integer greater than the argument.

b·c The floor operator that returns the largest integer less than the argument.

1k A k × k identity matrix.

‖·‖1 The l1-norm, i.e. ‖x‖1 =
∑l−1

i=0|xi| with x = [x0, . . . , xl].

‖·‖2 The euclidean norm.

di The i-th control point of a spline curve.

d The matrix [d0, . . . , dn−1]T of control points.

dβ β-column of d with β ∈ {x, y, z}, i.e. β = [dx,dy,dz].

diag(· · ·) A diagonal matrix with the functions arguments on the diagonal.

ei i-th unit vector.

f A function f : R → Rl. In most cases used as function mapping time to a vehicles
position.

fβ β-component of f with β ∈ {x, y, z}, i.e. f = [fx, fy, fz].

fi(x) Shorthand for f (ti, x).

Gk The k-th derivative matrix of a spline.

l The dimension of an object. Usually l ∈ {2, 3}.

m The number of data points available.

n The number of control points of a spline curve.

Ni,q(t | T) The i-th B-spline of degree q to the knot sequence T .

Ni,q(t) Shorthand for Ni,q(t | T) whenever the knot sequence T is clear from the context.

Nq(t) The vector [N0,q(t), . . . ,Nn−1,q(t)]T.

105

Nq(T) The collocation matrix [Nq(t0), . . . ,Nq(tm−1)]T for T = [t0, . . . , tm−1]T.

Pi Pi = f (ti). Furthermore Pi = [Px,i, Py,i, Pz,i]T.

P The matrix P = [P0, . . . , Pm−1]T.

Pβ The vector P = [Pβ,0, . . . , Pβ,m−1]T with β ∈ {x, y, z}.

q The degree of a spline. q + 1 is called the order of a spline.

ri(x) The residual yi − fi(x).

ρ A measurable, positive and convex function that is used as distance measure for M-
estimators.

ρc The Huber loss function, a special M-estimate. See (4.15).

ρ∗ Multidimensional expansion of ρ, with ρ∗(x) :=
∑l

i=0 ρ(xi).

S l
q The linear space

{∑n−1
i=0 diNi,q(t | T)

∣∣∣ di ∈ Rl
}
.

Sq(T) The vector space that is spanned by the B-splines of degree q with respect to the knot
sequence T .

T Knot sequence T = [τ0, . . . , τn+q] with τi ≤ τi+1.

τi The i-th knot of the knot sequence T .

T (k) A modification of the knot sequence T that has q + 1 − k-fold boundary knots.

ti Timestamp ti ∈ R the function f has been sampled at.

T The vector T := [t0, . . . , tm−1].

W Diagonal matrix of weights, W = diag(w0, . . . ,wm−1).

wi Weights for data points within the approximation problem, see eq. (4.3).
√

W Diagonal matrix of the square root of weights, W = diag(
√

w0, . . . ,
√

wm−1).

Y The vector Y := [y0, . . . , ym−1] of data points to be approximated.

106

Bibliography

[1] C. Adcock and N. Meade, “A comparison of two LP solvers and a new IRLS algorithm
for l1 estimation,” in L1-statistical procedures and related topics, Y. Dodge, Ed., vol. 3,
IMS Lecture Notes, 1997, pp. 119–132.

[2] Advanced Surface Movement Guidance and Control Systems (A-SMGCS) Manual, Doc.
9830. International Civil Aviation Organization, 2004.

[3] I. Barrodale and F. D. K. Roberts, “An efficient algorithm for discrete l1 linear
approximation with linear constraints,” SIAM Journal on Numerical Analysis, vol. 15, no.
3, pp. 603–611, 1978.

[4] I. Barrodale and F. D. K. Roberts, “An improved algorithm for discrete l1 linear
approximation,” SIAM Journal on Numerical Analysis, vol. 10, no. 5, pp. 839–848, 1973.

[5] I. Barrodale and F. D. K. Roberts, “Applications of mathematical programming to lp

approximation,” Nonlinear Programming, pp. 447–464, 1970.

[6] H. E. Bell, “Gershgorin’s theorem and the zeros of polynomials,” The American
Mathematical Monthly, vol. 72, no. 3, pp. 292–295, 1965.

[7] Å. Björck, Numerical methods for least squares problems. Society for Industrial and
Applied Mathematics, 1996.

[8] P. Bloomfield and W. L. Steiger, Least Absolute Deviations. Theory, Applications and
Algorithms, ser. Progress in Probability and Statistics. Birkhäuser, 1983, vol. 6.

[9] P. Bloomfiled and W. L. Steiger, “Least absolute deviations curve-fitting,” SIAM Journal
on Scientific and Statistical Computing, vol. 1, pp. 290–301, 1980.

[10] C. de Boor, A Practical Guide to Splines, 2nd ed., ser. Applied Mathematical Sciences
27. Springer, 2001.

[11] C. de Boor, “Good approximation by splines with variable knots. II,” in Conference on
the Numerical Solution of Differential Equations, G. Watson, Ed., ser. Lecture Notes in
Mathematics, vol. 363, Springer, 1974, pp. 12–20.

[12] C. de Boor and G. J. Fix, “Spline approximation by quasiinterpolants,” Journal of
Approximation Theory, vol. 8, no. 1, pp. 19–45, 1973.

[13] K. W. Bosworth and U. Lall, “An l1 smoothing spline algorithm with cross validation,”
Numerical Algorithms, vol. 5, no. 8, pp. 407–417, 1993.

[14] I. Bronshtein, K. Semendyayev, G. Musiol, and H. Mühlig, Handbook of Mathematics.
Springer, 2007.

[15] P. L. Butzer, M. Schmidt, and E. L. Stark, “Observations on the history of central
B-splines,” Archive for History of Exact Sciences, vol. 39, pp. 137–156, 2 1988.

107

[16] R. H. Byrd and D. A. Pyne, “Convergence of iteratively reweighted least squares
algorithm for robust regression,” Department of Mathematical Sciences, The John
Hopkins University, Tech. Rep. 313, 1979.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed. The MIT Press, 2009.

[18] D. D. Cox, “Asymptotics for M-type smoothing splines,” The Annals of Statistics, vol. 11,
no. 2, pp. 530–551, 1983.

[19] P. Craven and G. Wahba, “Smoothing noisy data with spline functions,” Numerische
Mathematik, vol. 31, pp. 377–403, 4 1978.

[20] P. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., ser. Dover Books
on Mathematics Series. Dover Publications, 2007.

[21] R. DeVore and G. Lorentz, Constructive Approximation, ser. Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen. Springer, 1993.

[22] N. Draper and H. Smith, Applied regression analysis, 3rd ed., ser. Wiley Series in
Probability and Statistics. Wiley, 1998.

[23] R. Dutter, “Robust regression: Different approaches to numerical solution and
algorithms,” Fachgruppe für Statistik, Eidgenössische Technische Hochschule, Zürich,
Tech. Rep., 1975.

[24] R. Dutter and P. J. Huber, “Numerical methods for the nonlinear robust regression
problem,” Journal of Statistical Computation and Simulation, vol. 13, no. 2, pp. 79–113,
1981.

[25] O. Edlund, H. Ekblom, and K. Madsen, “Algorithms for non-linear M-estimation,”
Computational Statistics, vol. 12, pp. 373–383, 1997.

[26] H. Ekblom and K. Madsen, “Algorithms for non-linear Huber estimation,” BIT Numerical
Mathematics, vol. 29, no. 1, pp. 60–76, 1989.

[27] ERA a.s. (2014). Multilateration - executive reference guide, [Online]. Available:
http://www.multilateration.com (visited on 12/05/2014).

[28] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise,” in Procedings of the Second International
Conference on Knowledge Discovery and Data Mining, E. Simoudis, J. Han, and
U. Fayyad, Eds., AAAI, 1996, pp. 226–231.

[29] G. Farin, Curves and Surfaces for CAGD. Academic Press, 2002.

[30] Flightradar24 AB. (2015). Flightradar24, [Online]. Available:
http://www.flightradar24.com (visited on 12/05/2014).

[31] Fraport AG, “S.O.D.A.,” Software toolbox for analyzing A-SMGCS data, 2014.

[32] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge University
Press, 2003, isbn: 9780521826464.

[33] W. Gautschi, Numerical Analysis, 2nd ed. Birkhäuser, 2012.

[34] G. H. Golub and V. Pereyra, “The differentiation of pseudo-inverses and nonlinear least
squares problems whose variables separate,” SIAM Journal on Numerical Analysis, vol.
10, no. 2, pp. 413–432, 1973.

108

http://www.multilateration.com
http://www.flightradar24.com

[35] G. Golub and V. Pereyra, “Separable nonlinear least squares: The variable projection
method and its applications,” Inverse Problems, vol. 19, no. 2, R1–R26, 2003.

[36] G. Golub and C. Van Loan, Matrix Computations, 4th ed. Johns Hopkins University
Press, 2012.

[37] P. Hansen, V. Pereyra, and G. Scherer, Least Squares Data Fitting with Applications.
Johns Hopkins University Press, 2012.

[38] M. Hazewinkel, Encyclopaedia of Mathematics. Springer, 1989, vol. 4.

[39] M. Hirz, W. Dietrich, A. Gfrerrer, and J. Lang, Integrated Computer-Aided Design in
Automotive Development: Development Processes, Geometric Fundamentals, Methods of
CAD, Knowledge-Based Engineering Data Management. Springer, 2013.

[40] K. Höllig and J. Hörner, Approximation and Modeling with B-Splines. Society for
Industrial and Applied Mathematics, 2014.

[41] P. J. Huber, “Robust estimation of a location parameter,” Annals of Mathematical
Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[42] P. J. Huber, “Robust smoothing,” in Robustness in Statistics: Proceedings of a Workshop,
R. Launer and G. Wilkinson, Eds., Academic Press, 1979, pp. 33–48.

[43] P. J. Huber, “The behavior of maximum likelihood estimates under nonstandard
conditions,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics, University of California Press, 1967, pp. 221–233.

[44] P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed., ser. Wiley Series in
Probability and Statistics. Wiley, 2009.

[45] J. J. E. Dennis, “Non-linear least squares and equations,” in State of the Art in Numerical
Analysis, D. A. H. Jacobs, Ed., Academic Press, 1977, pp. 269–306.

[46] L. Kaufman, “A variable projection method for solving separable nonlinear least squares
problems,” BIT Numerical Mathematics, vol. 15, no. 1, pp. 49–57, 1975.

[47] J. S. Lee and D. D. Cox, “Robust smoothing: Smoothing parameter selection and
applications to fluorescence spectroscopy,” Computational Statistics & Data Analysis,
vol. 54, no. 12, pp. 3131–3143, 2010.

[48] T. C. M. Lee and H.-S. Oh, “Robust penalized regression spline fitting with application to
additive mixed modeling,” Computational Statistics, vol. 22, no. 1, pp. 159–171, 2007.

[49] D. Lei, I. Anderson, and M. Cox, A Robust Algorithm for Least Absolute Deviations
Curve Fitting. Defense Technical Information Center, 2001.

[50] R. V. Lenth, “Robust splines,” Communications in Statistics - Theory and Methods, vol. 6,
no. 9, pp. 847–854, 1977.

[51] Z. Liu and W. Guo, “Data driven adaptive spline smoothing,” Statistica Sinica,
pp. 1143–1163, 2010.

[52] J. McNamee, Numerical Methods for Roots of Polynomials - Part 1. Elsevier Science,
2007.

[53] J. McNamee and V. Pan, Numerical Methods for Roots of Polynomials - Part 2. Elsevier
Science, 2013.

[54] H. Mensen, Planung, Anlage und Betrieb von Flugplätzen. Springer, 2007.

109

[55] E. Mikhail and F. Ackermann, Observations and least squares. University Press of
America, 1982.

[56] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer, 2006.

[57] M. Osborne, “Separable least squares, variable projection, and the gauss-newton
algorithm,” Electronic Transactions on Numerical Analysis, vol. 28, no. 2, pp. 1–15, 2007.

[58] L. Piegl and W. Tiller, The NURBS Book. Springer, 1995.

[59] A. Pintore, P. Speckman, and C. C. Holmes, “Spatially adaptive smoothing splines,”
Biometrika, vol. 93, no. 1, pp. 113–125, 2006.

[60] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes:
The Art of Scientific Computing, 3rd ed. Cambridge University Press, 2007.

[61] A. Ruhe and P. Wedin, “Algorithms for separable nonlinear least squares problems,”
SIAM Review, vol. 22, no. 3, pp. 318–337, 1980.

[62] E. J. Schlossmacher, “An iterative technique for absolute deviations curve fitting,”
Journal of the American Statistical Association, vol. 68, no. 344, pp. 857–859, 1973.

[63] G. Seber and C. Wild, Nonlinear Regression, ser. Wiley Series in Probability and
Statistics. Wiley, 2003.

[64] C. B. Storlie, H. D. Bondell, and B. J. Reich, “A locally adaptive penalty for estimation of
functions with varying roughness,” Journal of Computational and Graphical Statistics,
vol. 19, no. 3, pp. 569–589, 2010.

[65] M. Tepper and G. Sapiro, “L1 splines for robust, simple, and fast smoothing of grid data,”
2012. arXiv: 1208.2292v2 [cs.NA].

[66] F. Utreras, “On computing robust splines and applications,” SIAM Journal on Scientific
and Statistical Computing, vol. 2, no. 2, pp. 153–163, 1981.

[67] C. Vogel, Computational Methods for Inverse Problems, ser. Frontiers in Applied
Mathematics. Society for Industrial and Applied Mathematics, 2002.

[68] H. M. Wagner, “Linear programming techniques for regression analysis,” Journal of the
American Statistical Association, vol. 54, no. 285, pp. 206–212, 1959.

[69] G. Wahba, “A comparison of GCV and GML for choosing the smoothing parameter in
the generalized spline smoothing problem,” Annals of Statistics, vol. 13, pp. 1378–1402,
1985 1985.

[70] G. Wahba, Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, 1990.

[71] R. Wolke and H. Schwetlick, “Iteratively reweighted least squares: Algorithms,
convergence analysis, and numerical comparisons,” SIAM Journal on Scientific and
Statistical Computing, vol. 9, no. 5, pp. 907–921, 1988.

[72] R. Wolke, “Iteratively reweighted least squares: A comparison of several single step
algorithms for linear models,” BIT Numerical Mathematics, vol. 32, no. 3, pp. 506–524,
1992.

110

http://arxiv.org/abs/1208.2292v2

	Introduction
	Preliminaries
	Defining the challenge
	The data supply system
	The data itself
	Design goals and model building

	Introducing the algorithm

	Core concepts
	Spline curves
	B-splines
	B-spline curves
	Spline evaluation

	Approximation
	l2-Approximation
	Huber-Approximation
	A side note to l1-approximation in the linear case

	The approximation of radar traces
	Identification of standstills
	Density based spatial clustering with noise
	Detection of standstill candidates
	Isolating standstills

	Spline Approximation
	Approximation of standstill periods
	Enforcing f'(t)=0
	Enforcing a known direction
	Enforcing a constant, unknown direction
	Refinement of standstill periods
	Speeding up the approximation

	Filling the gaps
	Local approximation
	Choosing an optimal knot sequence
	A side note to the selection of the smoothing parameter

	Numerical results and conclusion

	Appendices
	Numerical foundations
	Quadrature Rules
	Computations with polynomials
	Root finding

	List of algorithms
	Symbols and notation
	Bibliography

